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ABSTRACT
The boundary layer formed on the outer surface of a semi infinite circular cylinder in
steady axial incompressible flow is studied in this thesis. Governing equations are solved
using local similarity techniques and a nonsimilar numerical approach.

Two obvious similarity transformations can be used to obtain solutions for this
problem, but they do not yield the same results, since the flow is essentially nonsimilar.
In the extreme case that the radius of the cylinder is much larger than the boundary layer
thickness, only one of the transformations leads to the correct solution, i.e., the Blasius
solution. The other transformation yields an axial velocity profile which is deceptively
close to the Blasius. This is also strongly suggested by comparing the series expansions
of axial velocity profiles from each transformation. Solutions obtained by using either
transformation merge at downstream locations.

Since the use of a single similarity variable does not solve the problem in its full
range, an overall numerical solution is obtained by applying Keller’s Box method with
primitive variables and similarity coordinates. Similarity coordinates scale the axial and
radial coordinates such that bouncary layer growth does not appear explicitly as we move
downstream. Thus, the numerical mesh does not need to be enlarged and this leads to
increased efficiency in computation. Results are obtained in the range that start with the
Blasius solution and proceed far downstream.

A local similarity method, which is very efficient, using primitive variables with
similarity coordinates is also applied to obtain solutions that are valid over a wide range

of the flow,
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Results obtained by these methods compare well with previously obtained analytical

and numerical solutions, but they extend considerably the range of solution.
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1 PRELIMINARY CONSIDERATIONS

1.1 INTRODUCTION

The boundary layer formed on the outer surface of a semi-infinite circular cylinder
in steady laminar axial incompressible flow is studied in this thesis. The parameter
A =d/a, where & is the boundary layer thickness and ’a’ the radius of the cylinder is
important in describing this problem. When A is small the boundary layer thickness is
small with respect to the radius of the cylinder. This shall be referred to as the Blasius
limit of the problem because in this extreme the cylinder can be treated as a flat plate.
When A is large the boundary layer thickness is large with respect to the radius of the
cylinder. This shall be referred to as the needle limit because in this extreme the flow

situation can be treated as that over a very thin needle or wire.

An overall exact solution of this problem in the full range of A does not exist at

present, only parts of the solution have been obtained so far, with emphasis on skin
friction, displacement and momentum thickness. Seban and Bond (1953) and Kelly
(1954) constructed a second order series expansion atx ut the Blasius limit. Glauert
and Lighthill (1955) constructed an asymptotic expansion about the needle limit
which was calculated to second order. Skin friction was obtained to third order due to
the ingenuity of their method. Stewartson (1955) independently obtained an asymp-
totic expansion similar to that of Glauert and Lighthill (1955). An approximate full

range solution was constructed by Glauert and Lighthill which bridged the series

expansion of Seban and Bond (1953) and Kelly (1954) to their asymptotic expansion




by an approximate Pohlhausen expansion which covered the middle range of A. The
full range solution was an amalgamation of different solutions about different ranges
of A and was only approximate. Sawchuk (1985) obtained a series expansion about
the Blasius limit, similar to that of Seban and Bond (1953) and Kelly (1954), calcu-
lated to third order, but could be extended to higher orders. Jaffe and Okamura
(1968), Cebeci (1970), and Cebeci and Smith (1974) obtained accurate solutions for a
wide range of A, to the point at which Glauert and Lighthill (1955) deemed their
asymptotic solution to be accurate. This procedure was adequate for the skin-friction
coefficient and for such integral quantities as the displacement thickness. However,
the same point was not far enough in order to merge into the asymptotic solution as
far as velocity profiles are concerned. Velocity profiles in these papers are not
emphasized and often not shown. The values of the skin-friction coefficient obtained
by the asymptotic solution are not accurate in the middle range of A because the dif-
ference that is tolerated between them and with the coefficients obtained by the
numerical solutions is too large. Thus, in the middle range of A and beyond, an
accurate solution does not exist. An extensive review of previous solutions and meth-
ods of solution is presented and some of the results are compared with those obtained
by the methods in this thesis.

This thesis presents an exact full range solution using one method that starts at the
Blasius litnit and goes beyond the point that previous authors have gone in approach-
ing the needle limit and, thus, merge more closely to the asymptotic solution. It will
be referred to as the "overall” solution. The emphasis in this solution is on velocity
profiles, since velocity profiles of the existing asymptotic solution are not accurate for

a wide range of A. The profiles obtained by this method will eventually merge with



merge with those of the asvmptotic solution for very large A, where the asynptotic
velocities are more accurate. Because of the complexities of the governing equations,
the required solution must necessarily be numerical. However, since a single
similarity variable does not cover the entire range of the problem, careful analytical
considerations mus: precede the solution. The method uses primitive variables and
similarity coordinates which scale the boundary layer region and compensates for the
growth of the boundary layer as one moves downstream towards the needle limit with
little or no loss of accuracy. Previous solutions did not have these features.

’Quasi-similar’ solutions are also presented, which attempt to cover the entire
range of the problem, but are only valid for large A. They are based on similarity
methods and have led to the use of similarity coordinates in the “overall” solution. In
fact, two wransformations which lead to valid 'quasi-similar’ solutions are shown to
differ both numerically and analytically. These solutions in the middle range of A are
questionable on physical grounds. In the Blasius limit, one transformation leads to a
deceptive boundary layer solution and both numerical and analytical arguments show
that it creates terms that are one order of magnitude larger than is expected.

Another method is presented which is very efficient numerically, but limited in the
range of A. It employs primitive variables and similarity coordinates, but has a local
similarity constraint. The solutions obtained are quite accurate for large A.

In summary, the "overall" solution which we present covers the entirc range of the
problem. It agrees well with the Blasius limit, the needie limit, and with previous
solutions obtained in between. In principle, this solution could be taken as far as one

wishes towards the needle limit. In contrast, the 'quasi-similar’ or local similarity




solutions could be used only for large ) where they are very accurate. Local similar-
ity solutions yield more accurate velocity profiles than can be obtained by asymptotic

solutions.

1.2 GOVERNING EQUATIONS
The boundary layer equations governing the laminar incompressible flow over a
semi-infinite circular cylinder were first derived by Sowerby and Cooke (1953). They

will be referred to as Cooke’s equations and are given by :

du* ou* Pu* 1 ou*

* * =

o o ar*2+r*8r*]’ (1.2.1)
* gy* y*

it =0 (12.2)

—_+-——
ox* or* r*
with u*=v*=0air*=g and u - U as r* — oo,

where starred (*) quantities are dimensional. The equations are an approximation to

the corresponding dimensional form of the Navier-Stokes equations,

ou* ou* 1 H(r*ou*/or*) Ju*)| oP*
* * = -
YTV o v(r"' ar* axﬂ] ox*’ (123)
vt av: [ 13(r*oveary) v+ v+ oP* '
o "’(r* ar+ 'Fﬁ"ﬁ)“ar—*' (124
1 d(r*u*) ov* v* _
i +—ar*+r* =(, (1.2.5)

and were derived by assuming that r* = O (3), where & is the boundary layer thick-

ness.




Since r* =a + y*, where y* is measured radially from the surface of the cylinder,

then clearly y* = O(5). Hence, 'a’ must be at most O(3). Along with the above

assumptions of Cooke, we take x* and u* to be O(1).

d a(r*u*)
Then, — 375 and Fr

Applying this to the equation of continuity in the form :

or*u*) +8(r*v*)

ox* or*

=Q,

while insisting all terms be of the same order gives :

a(r*v
Tor*

*
) ~3, which in turn gives : v*~§,

2 individual terms on the left hand side of the momentum equation yield the rela-

tions :
au* ou*
—~ *—~
a . l1and v o 1.

The magnitude of the largest inertial term must match the highest ordered derivative

viscous term. This gives the following relation :

va(r*“"‘) ~1. Thus, v=0(5), smcc l%r*%) ! d Fu 8.

r* or*

The individual terms in the momentum equation in the radial direction behave as fol-

lows :

LOv* va( ) v v
5—;~5 v*a—;-ﬁ o 8* ——2), va*—fS’, and v:a~8.
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oP* . . .
Note, v i at most O(J), which asserts that the pressure gradient is
p/
negligible across the boundary layer. Applying Bernouli’s equation with constant U
gives rise to zero pressure gradient. Neglecting terms O (3) and higher leaves the
desired equations 1.1.1-2.
The nondimensional form of Cooke’s equations is :
ou ou 1{Ju 10u
—+Vv—=—| ==t | 1.2.
“xTVor R(ar2 rar) (1.26)
ou ov v
§;+a—r+;— y (1.2.7)
withu=v=0atr=landu—1asr e

* *
where x =x7 and r = %— are the dimensionless axial and radial coordinates respectively,

kfpk ok ol ok
= E% v= Y—('-'U—’l—l are the corresponding velocity components, R = %‘-1-,

and U is the free stream velocity, v is the kinematic viscosity and a’ is the radius of

the cylinder (see Figure 1.2.1).

1.3 BACKGROUND
Seban and Bond (1953) and Kelly (1954) used a series expansion about the Blasius
limit of the problem. A series expansion that is similar is derived by Sawchuk (1985)

which has been extended one order with possible extension to all orders.

We introduce the parameter & = 4vvx/Ua, which will also be useful in describing

the problem.




When £ is small (or A is small), a series expansion using the parameter

A[EE
&= Ua 22

is taken about &, = 0 for the stream function

y=Z &0, (13.1)
220 +2)
where { = T

The corresponding velocity components are:

u=3 Es’ and VLR v = _iogi“[;s,.'—(i +1)s). (132)

i=0
Substituting into the governing equations and equating coefficients of like powers of

€, to zero gives rise to the general kth order equation:

k
57 +2s, ) +40s, "+ AL, +4s, )+ ‘20[(1: +1-0)s"s, ., —(k —i)s;’s, ;")
£-1
20 X [(k ~ )55 = (k=i = 1)ss, i 1=0, (133).
where the boundary conditions are

5/(0)=5(0)=0, ;lim s,/ =1 and clim 5/©)=0,

where i >0 in the latter and prime (’) denotes differentiation with respect to {. Terms

with negative subscripts are taken to be zero.

The first equation to solve withk = Qs :

rnr

So +55g =0, (1.3.9)




i.e., the Blasius differential equation. All subsequent equations are linear and can be

taken to any order desired. In this case, third order results were obtained for velocity,
displacement thickness, and skin friction. A standard fourth order Runge-Kutta
method with shooting was used to obtain the results.

The displacement thickness is given by:
A =B 1im =500 = &y (=)~ Esyom) = B+ ..
ie.,
A=v2{1.217 + 0358E, +.5943t2 - 1.639E + . .. (1.3.5)

The nondimensional skin friction is given by

a ou u-l ”
= 0
u’Uto [ ay ]) =0 'g ‘ ( )

which to third order is
fﬁtoz.%%+.6943§,—.4643§f+.8125&. (13.6)

The axial velocity and radial velocity parameter are plotted for § = 2\2. € =.283in

Figure 1.3.1 and the skin friction and displacement thickness are plotted in Figure
1.3.2. The solution begins to deteriorate at approximately £ =0.1.

When & is large (or A is large) Glauert and Lighthill (1955) obtained an asymptotic

solution using the stream function

o) o), -

ra (137)

y~vx ‘[f.,(éa)+

where




2
Ut 5. .{‘“’"") (1.3.8)

4vx ¥’

Note that B= ln(%2 )

This series produces one nonlinear and n - 1 linear ordinary differential equations

0’”+ﬁ)”+%foﬁ)”=0’ (1.3-9)
Gl 15743 B, o =5 2, PO~y on )20 (13.10)

after equating coefficients of like powers of beta. The axial and radial velocity com-

ponents are respectively given by

[ﬁ) +—§+g,+0(ﬁ")] (1.3.11)

and

‘\IZVI*R = Sf1—h  Baf2=foth 3
U a \/_E(E"Cf" ~ft B + B +0@B )] (1.3.12)

with the boundary conditions f,=0 at &; =e™® for all n and each separate £’ satisfies

fi~a,+b,In(€;) as & =0, (1.3.13)
where
by=0, ay=2, b,=2, a,=2y, b,=2yand b,=a,_,, for n=1,2,. (13.14)

Glauert and Lighthill solve for the constants :

a,=b,=2f—-;-n’—41n2, (13.15)

They obtained the terms :
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ﬁ)=2§6,f(','=2,f(')”::0,

_%
f,=28Ei(-£5)+2e ° =2, f’=2Ei(-£;), f,”=2£§:,

£ =(267% + 41n&; + 2.+ 6y— Ei(—£0) Ei (o) ~ 4Ei (-256) ~ 6EI (-E5),

and

% %
5 =—2Ei(—”',c)[e-§° +%+-§lﬂ + 2%6—(2 InE +1+3y—¢ ™) (13.16)

In Appendix A we integrate f,’ with respect to &; and obtain f, given by :
L= [4§o InE;+(4+6Y)8—4- 4e™- EsEi (—%)]Ei(-éc) +4(1 - &5)Ei(-285)

HaInE, +4+6y-2¢70)e ™~ 6, EI(E;) - 4In2~2y-2. (1.3.17)
The error in the axial velocity component is O (1/B°) away from the wall and

(Y —21n2 - n%/4)/p at the wall. Theoretically, the error at the wall should be elimi-
nated by the next term in the series and it would have exactly the value quoted above
but of opposite sign, since the velocity at the wall must be zero by the no-slip
condition. Hence, the value of the velocity at the surface of the cylinder is actually
the error as the results indicate. It is questionable as to how far reaching the effect this
error has in the solution and at what point away from the surface does the smaller
error apply.

We obtain the radial velocity component and estimate its error. Away from the
wall the error estimate is O (1/B%). At the surface, the radial velocity should be zero

due to the no-slip condition. However, it turns out to be zero with the error given by :
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\2(2y-1)%--,as p o0 oras £ = 0. (1.3.18)

13’ ’
The error estimate above is the highest order neglected term in the expansion, i.¢.,

RE 1 2(1 {1- §c+0(§c)})
Z(V-d—— B Bz({l §G+Y §G

+%+0(§3;)} (4+2§0{1 -gc+%-+0(§3;)} +4)—4{1n(2§a)+7—2§a+§é +0 (&)}

'(4m§0+2+67){1 —§a+§2§+0(§;’;)} +2{1-28; + 28, + 0o} +41n2+21)+0(-;—3)

as &; —0,(1.3.19)
which reduces to

RE __1 2&—&2—+0@a) 1 _
2 r B Bz(2§01n§<;+2(2v 1)E; 282 In;

+3(1 -7 +0 s In éo))+0([—;;)l (1.3.20)

and at E; =™ gives :

-m
\/‘”'\f‘a 7

the second of which is the leading error term. The ervor away from the surface is

+*/_(27 ) (13.21)

O(1/B?). Near the surface, as B — o, the error estimate is O (e B?). If f;'(§c) were
available for the third order term in the expansion for R&v/Z\fi, then we expect the
above error estimate to cancel at &; = e ® with §;In&; and §;-terms that would exist

in this third order term. This would yield O(e™*/B’) as the error estimate at the
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surface.
The skin friction is given by :

nu S U z b,

%= [ aéGuIOB ] - uTu?OB;.
o=
2,2y, 2y -;m-4In2 (1)

i.e., = (1.3.22)

AR B

where Ef.”~b,, with an emror of O(e™), since at &; = ¢,

£, =0 and E;f,” =0,

g =2{1 - &+ O(EL)} =2{1-e?+0(e ™},

Eofy” = +67) {1 -Ec+OE)} - 2c{1 - &+ O} {In&s +Y-E: +0 o)}
“2{1-28;+ 0} =21 -&+ 0} {In& +Y-E + O (&)}

+4{InE; +y-E; + O (€L} +4InE{1 - &+ OED)} - 6{InEs +Y-E:+ O},

which reduces to :

£ =—4E; InE; +6(1 —PE; + O(E InEg) =4Be®+6(1-y)e ™+ ... (1.3.23)

Assembling the series for the shear stress yields :

. f” f2” ]
I:(o B Bz (Bg)] (1.3.24)

and at &; = e gives:
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_wf2 2y 2 60-ye? (L)]
1,= [B B2+ B + P +0 5
35

where the latter two terms are the error estimate, whichever is larger for the given
value of . One of the advantages of this asymptoticm  .d is the acquisition of the

constant b,, which gives the fourth term, i.e.,

_WUI2 oy 2W-5-4In2 5, (1)]
T, =—| 2 LR (1.3.26)
[ﬁ";f F B "o

and hence the new choice in error estimate.

It is expected that if f;”” were available that the leading error rerm in,

lim E&f,"=b, (1.3.27)

§G SeP -0
would be O (e */), which would be due to a term containing & In&; and this is

smaller than O (e™®/B), in the limit.
We calculate that for § > 8.6 or & > 148, the fourth order error term given in

(1.3.26) becomes greater. Hence, some care must be taken for small values of . The
shear stress, uses the skin-friction expansion at the surface and thus, the corresponding
error estimate. Away from the surface the error estimate is O(1/8%).

The displacement area is given by

A s (e 12k s ) Ly+2In2
Ttaz—e E(I:T_(% Zugoﬁ) n§| Bu ep(B 2 ..-), (1.3.28)

with an error of O (¢”/B").
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To demonstrate, velocity profiles are displayed at various values of B in Figures

1.3.3 and 1.3.4. Notice the negative values of u near the surface of the cylinder.
Radial velocity parameters are plotted in Figures 1.3.5 and 1.3.6. Shear stress profiles
are plotted in Figure 1.3.7 and tabulated in Table 1.3.1 respectively. One can see that
the skin-friction parameter grows without bound for increasing B, A or &, while the
shear stresses decay more rapidly away from the wall to the boundary layer edge.

The question of how far does the asymptotic solution apply is ver; important, i.e.,
when does it break down? The solution as it stands to second order (with a third order
skin friction expression) seems to give reasonable results to a wide range of .
However, velocity profiles especially near the surface of the cylinder break down at
lower values of B. In fact, negative axial velocities are still evident near the surface of
the cylinder at values of B = 12.42 or £ = 1000. The point downstream at which the
velocity profiles are very inaccurate should be the tentative cut off for the region of
validity for this solution. More terms could be added to the expansion in order to
make the solution more accurate, however, this may or may not enhance the velocity
profiles at smaller values of B. To obtain these extra terms would involve much
numerical integration of various exponential integrals. This could prove to be very
time consuming and even futile because some integrals arise which are asymptotically
complicated.

The error estimates given in most cases are the highest order neglected terms in the
asymptotic expansion. They do not represent the actual erroi because the coefficients
of these terms are usually unknown. In the above expansions, some of the coefficients
of the leading error terms for calculations about the surface of the cylinder have been

obtained to get a better handle on the ervor. However, this still does not represent the
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actual error. In the case of skin friction, two error estimates are given, i.e., each for a
different range of B. Other solutions, which are not asymptotic, attempting to match
with the asymptotic solution are only expected to approach the asymptotic values and
not match them exactly. It is clear, however, that as B — eo, that the asymptotic solu-
tion becomes more accurate.

The above solutions do not cover the entire range of the problem. The range of the
Pohlhausen solution in the paper by Glauert and Lighthill (1955) fills the gap between
the region of validity of the series expansion and the asymptotic solution, but the solu-
tion itself is only approximate. As is demonstrated, the velocity profiles obtained by
the asymptotic solution are not accurate near the surface of the cylinder. Also, the
general accuracy of the solution is questionable, because the error estimates are vague.

Stewartson (1955) obtains essentially the same asymptotic series as Glauert and
Lighthill (1955). Therefore, only some of the details of this asymptotic series to be
used later for comparison purposes will be discussed.

The expression of the skin-friction coefficient obtained by Stewartson (1955) is

given by :
é‘g'fo - 4Rm[{1/7|s -12+0(ns)} + {-In(msc/2)+32+ 0 ()}
2uU ¢ In(1/cR.) (In(1/cR.))?

{-1ms(2In2+ 74/4) - 1/2(In(Mc12))* ~ In(Msc/2) + O(1)} N {Dyms + O(In(n;))}
N (In(1/cR,))’ (In(1/cR,))*

. {lIms+0()}

(1.3.29)

2R, (In(1/cR,)) ="




16

where In(1/cR.,)=~InR, -y, R.=4/E?, v is Euler’s constant, and 7 = 2R_(r*)* is small,

and the constant D, is undetermined.

Evaluating (1.3.29) at the surface of the cylinder, N5 = 2R,, gives :'

.
Ei‘to=4 1 1 (21n2+-;) . 7 +0 1
20U “| 2R.In(1/cR.)  2R.(In(1/cR.)}* 2(n(l/cR)}?  \R.(n(l/cR.)*
(1.3.30)
where we have obtained the order term and /4 + 21n2 = 3.854. The order term in

(1.3.30) is of higher order than the third term in (1.3.30). The former is the leading
term which is neglected from the series and will be used as the error estimate in the
asymptotic expansion.

The numerical accuracy in expansion 1.3.30 is vague because the error estimate
which should demonstrate the accuracy in the series is only the order of the leading
neglected term. Hence, the margin of error in the series could be significantly
effected, especially for larger values of R, or smaller values of &. This uncertainty in
the accuracy necessitates obtaining a more accurate solution, at least to the point at

" which the uncertainty in accuracy is appropriately reduced, i.e., for large values of £,

1 There appears to be a typographical error in the paper by Stewartson (1955) in the third
term in (1.3.30). We assume the correct version is as presented above.
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|_Table 1.3.1 Shear Stress Profile From Asymptotic Solution.

£ B =12420 B =17.034 B =21.639 B «26.245
Surface 58.2362 424.1351 3330.2535 27397.6727
0.001 3.7659 2.7140 2.121 1.7407
0.002 2.6628 1.9185 1.4992 1.2302
0.003 2.1740 1.5660 1.2235 1.0039
0.004 1.8825 1.3557 1.0591 0.8689
0.005 1.6834 1.2120 0.9468 0.7767
0.006 1.5364 1.1060 0.8638 0.7086
0.007 1.4221 1.0235 0.7993 0.6556
0.008 1.3299 0.9569 0.7472 0.6129
0.009 1.2535 0.9018 0.7041 0.5774
0.010 1.1888 0.8551 0.6676 0.5474
0.050 0.5219 0.3733 0.2905 0.2377
0.100 0.3580 0.2548 0.1977 0.1614
0.200 0.2360 0.1667 0.1287 0.1048
0.300 0.1784 0.1253 0.0964 0.0783
0.400 0.1425 0.0996 0.0764 0.0620
0.500 0.1172 0.0816 0.0625 0.0506
1.000 0.0533 0.0366 0.0278 0.0223
2.000 0.0148 0.0100 0.0075 0.0060
3.000 0.0046 0.0031 0.0023 0.0018
4.000 0.0015 0.0010 0.0007 0.0006
5.000 0.0005 0.0003 0.0002 0.0002
10.000 0.0000 0.0000 0.0000 0.0000
50.000 0.0000 0.0000 0.0000 0.0000




2 SIMILARITY SOLUTIONS

2.1 PRELIMINARY
There are two obvious similarity transformations which may be applied to
governing equations 1.2.6 and 1.2.7, and which we consider in details in this chapter.
Unexpectedly, each transformation yields results that differ with each other. The
extreme case of A =0 or £ =0, i.e, the Blasius limit is studied and the solutions from
each transformation can be analytically shown to differ. One transformation yields
the Blasius solution, while the other produces a deceptive solution.

If Cooke’s equations 1.2.1 and 1.2.2 are written as

du*(x*,r*) ou*(x*,r*) [ Pu*(x*,r*) 1 du*(x*,r*)
u*(x*,r*)T+v*(x*.r*) e _v( 3" +-’; I+
2.1.1)
Kk pik * pk
ur(xt,r¥) Iratr) vietrh) 2.1.2)

ox* or* r*
it may be expected that as a — oo the two dimensional boundary layer equations of
Prandtl can be obtained. This limit corresponds to the case §=0 or A =0. In this
limit 7* — oo, which hastily implies that

1 du* v*
—-;5-—;—)0 and--—)O
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and leave the two dimensional boundary layer equations. However, since u*, v*, and
their derivatives depend on r*, it is nct clear that this limiting process does aciually
yield the two dimensional boundary layer equations.

On the other hand, if we now consider u = u(x,y) and v = v(x,y), Cooke’s equations

would read
R S ,%(az";;;y’+liya“§"y")), .13
aug;y)ﬁvg;y) vl(i:) 0, 2.14)
where

53;‘% (2.1.3)

The behavior of each individual term is still ambiguous in the limit *a’ — oo because

of the dependence of y upon 'a’. Therefore, it is important to analyze the behavior of
the velocity components and their derivatives more closely to see how they behave in
the limit as g — oo.

Introducing the nondimensional stream function

* * *
wx,r) =22 (Ua" ) 2.1.5)
such that
u= la-l’ and v --la—w. (2.1.6)

ror rox
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Cooke’s equations 1.2.6 and 1.2.7 take the form

dy Py oydy) dydy (+yya( 1 3 Q‘L’)
(l+)’)(ayaxay axay2J+axay‘ R ay\d+y)ay (1+y)ay (2.1.7)

We now use these equations to examine closely the two types of transformations and

their results.

2.2 SIMILARITY BASEDONTr
One transformation, based on the radial coordinate r, hereafter referred to as the

r-based transformation, is :

yix,r)= le U)2 (2.2.1)
Tlo
where
_ Ua 1 __Tlo2 _
=Ny, M= \/ v R and clearly y =wy(n,n,). (2.2.2)

The velocity components are :

u =F—:'3+F’(n> and v =22 (OF'(0) - F(7) (223)

Clearly, 4 =u(n) and v = v(n,n,)explicitly.

The individual terms in Cooke’s equations 1.2.6-7 are given by

!
g% = _“—I":—“—{F” + % - T—\F-z} (2.2.4)




O _’_“’_{nF’F" +F'F' +FF" - f‘ F }

ox

2

T {nF'F"+F’F’ 2P _ppr EE }
R ul n?

182u T\o{F,” F” F’ F}

LN ~2-42
Ror* R L
v N

or Tl ’
_l_a_zt.-n__«)_{F_”+.li’_£}
rRor RI(n n 7
K=p_92.{p’_£}’

r R n

and the terms neglected due to boundary layer approximation from the

nondimensional Navier-Stokes Equations, i.e.,

UtV ==| -

du du lfla(raular) Fu
& dr R\r or axz ax

u_+v__lfla(rav/ar)__\;_+g-’1 9P
ox ar—R\r or r: ox*) or’
la(ru) av +Y=0
r ox ar ’

are given by :
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(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)




132“ T\O{zm 1, ol F}
F" +4nF " +F —-—
Rox* RELV. ToM n

av__ﬂos{ 2pd ol I " FF}
“ax e NF'F" -nF'F 1]1f"1~'+n ,

o Mo
v§=l—?°;nF”{nF'—F},

T‘a S
; gz‘; R‘: {°F" + 6n2F" + 3nF' - 3F},
1 a’ v Mo

Raz Rz{ F”’+F”},

m__ P Fn, _
ar e 327 ar " or?
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(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)

Substitution of 2.2.1 into governing equations 1.1.6-7 gives, finally,
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°F™ + 20 F" =F' + F = 20FF + 20°FF' + 2’FF" =0, (2.2.22)
At 1 =1, the no-slip boundary conditions give :
F(n)=F'(n,)=0 and 51(11)+ Fim)—=1asn—oeo (2.2.23)
The displacement thickness in terms of the r-based transformation is:
a=Al L (1 -w)rdr = _iz' (1 —E-F')qdn. (2.2.24)
vX o Mo J n
0
,
2(n.
V(2 "° -nF(n .)) (2.2.25)
Mo\

The momentum thickness in terms of the r-based transformation is;
/ U ( N2 [(F F
0= ——Ju(l ~u)rdr =——f(—+F’)(l ——-—F'}ndn. (2.2.26)
vx o Mo 4 n n

2 N
. 8= Fon) - - FoLF ) - f—dn+anF”dn] (@227)
%o

The shear stress is given by:

1
la _tou ou_.u F F (2.2.28)

Mokl *~ nodr - o n

while skin friction is the above evaluated at 1), i.e.,
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1 a 1(ou ou Y]
—_— ]| —| =|— =F 2229
NoKU h T\o(a’ 1-1 (a“)n-n. 0 ( )

Recall that F (1) = F'(n,) =0.

2.3 SIMILARITY BASED ON y
The other transformation based on y, hereafter referred to as the y-based

transformation is

+
\v(x,y)="'n oG m,), 23.1)

0

where
N =My and N=7,+1n, (23.2)
The velocity components are given by :

y= G(ny)
M+MNe

+G'(n,) and v = 20,6’ -G (n,) (23.3)
R

Clearly, u =u(n,,1,) and v =v(n,,n,) explicitly.
The individual terms in Cooke’s equations, 1.2.6-7, are given by

au ﬂoz{ i U I G }
— =1 - G+ s
ox R nl (M, +Mo) My + o)

(234

ou Mg { 1Al ™ Il U n No ] GG }
—_— = -GG -——m—GG"'+——GCG +——,
“ 9 R ! (M +Mo) 7 (M + o) (M + 1) M +No)’

(2.3.5)
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Ve =—

au noz{ G’G”+ nl G,Gl (2711+Tlo) GG”+ GG ]
M+no/

dy R (M +Mo) (m+r|o)2
(2.3.6)
1Fu T\o{ G" G' G |
+ -2 +2 , 2.3.7
R ay R Mi+M) M+ T\o)z m+ T\o)ST ( )
o 0
35 =R nG", 2.3.8)
v 1‘]2
=———{n,G' -G}, (2.39)

(1+y) RM+Mo)

and the terms neglected in the Navier-Stokes Equations, (2.2.11-13), are given by :

1 azu ﬂo { 2 1l + (4111 +3ﬂo) /i Ut 1 G }

+ G - ,
Rox* R? ' (m+o) M+N) M+
(2.3.10)
ov T\o{ 210l I~ n‘z u GG Mo l}
U—=— ¢'¢"-nG'G'-———GG" + + GG
ox R? T ™ (M +Mo) M+M) Mi+Mo)
2.3.11)
v Mo
vé;-—ln,c”{n,a’ G}, 2.3.12)
5
%gi";—';"‘{n,’a"’mn,G”+3n,c’ 3G}, (23.13)
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1 N
Koy~ MG+, (23.14)

1 Qv_:ﬂo3 40 "
R(1+y)dy R*(n,+mMo)

2.3.15)

v T|o
R(1+yY " R¥M, + 1o

{n,G'-G}, (2.3.16)

where

om_ M Iy _3n,
a2 4

a“l aznl y"lo
. =0, ——0 d—-—-O 2.3.1
ay To ay? dy dy? (23.17)

Substitution of transformation 2.3.1 into governing equations I.1.1-2 gives, finally, :

M, +M)°G™ +2(m, +MY’G" = (M, + NG’ + G -2, +N)GG
+21,(, +NJGG' + (2, + M) (M, +1,Y’'GG" =0, (2.3.18)
At 1, = 0 the no-slip boundary conditions give :

_ ol - G(ﬂn)
G0)=G (0)=0 and —

1 0

+G'(,) > las N, = oo. (2.3.19)

The displacement thickness in terms of the y-based transformation is:
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n_
A[Za- (.6 g
A= - l'(l u)(l+yMdy = ™ _o[(l —— G )(’ql +1Ne)dN,. (2.3.20)
2| e
=E T\..Tlo+-il‘-(ﬂo+ﬂ|.)G(Th_) - (2.3.21)

The momentumn thickness in terms of the y-based transformation is:

"
_«/_q' i} e G '
8= Vx{““ u)(1+y)dy-no{<c+(m+no)o- ~26G

(M +Mo)
-(n, +N)G'G")dn,. (2.322)
\2 G*(n,) " G?
— — p— -— l —
0=2 1, +196,) -5 =- (. + 106G M- [ S5
n_
+ f(m +1)GG"dn,). (2.3.23)
0
The shear stress is given by:
1 a 1 du ou i G, G
t=—a—=a—=G"+ - : 2.3.24
MU Medy oM M+ (N, +Me) ( )

while skin friction is the above evaluated at 0, i.e.,

1 a 1(0u ou "
— %= 5 ) =l ) . Z6C 2.3.25
ﬂoFlUto ﬂo{a}’)no (a’“ll‘.w © ( )

Recall that G(0)=G'(0)=0.
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2.4 NUMERICAL-SIMILARITY SOLUTIONS
We solve the resulting ordinary differential equations, 2.2.22 and 2.3.18, numerically
using a fourth order Runge-Kutta shooting method. In this section, the equations that
are used in the numerical scheme are derived, the application of the numerical procedure
is discussed, and the results are presented, discussed, and compared.

For the r-based transformation, we set

F'(m)=2Z(m) and Z'M) =S(). (2.4.1)

Then, equation 2.2.22 is converted into the three first order ordinary differential

equations,

F'=Z with F(ny) =0, Z' =S with Z(n,) =0 (2.4.2)
and

NS 420’ S -NZ +F -2nFF + 20°FZ + 20°F S =0, (2.4.3)

with S(M,) =&,
For the y-based transformation, we set
G',)=Zm,) and Z'n,) =S(n,). (2.4.4)

Then, equation 2.3.18 is converted into the three first order ordinary differential

equations,
G'=Z with G(0)=0, Z' =S with Z(0)=0 (2.4.5)

and
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(M, +7)’S' +2(, +1))’S - (M, +MIZ +G

-2, +NJGG +2,(M, +N)GZ + (21, + M) (M, +M,)°’GS =0 (2.4.6)
withS(0) = 0.

Note that the a’s are the initial shooting values for the second derivatives.

A Newton-Raphson procedure with over-relaxation is employed in conjunction
with the Runge-Kutta scheme. The function x = 1 ~Z(n.), is used to aid in
computation. It is a functicn of the asymptotic axial velocity near the boundary layer
edge and of the varying estimates of the first derivative of the velocity at the wall, i.e.,
o. Two reasonably close estimates of & are used to begin the procedure and then the
numerical routine carries on to convergence such that the iterates of a and the

requirement that x = 0 satisfy a prescribed tolerance.

For example, given o ~! and o, o/ *! is obtained using the Newton formula given

by:
g4l i K(a‘)
o =a Tda (24.7)
The derivative of x with respect to a is approximated by :
F+ly :
Ax _x(o”)-x(o) (2.4.8)

Aa a"l-a‘

After each new iterate of a is obtained, convergence is ested by making sure that

x < tolerance and that | *' — o] < tolerance. (2.4.9)
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To accelerate convergence, over-relaxation is employed to reduces the number of
iterations. The criterion to ensure over-relaxation is that if o, satisfies
|of*! — of| <.02¢C then the new iterate is increased according to :
o' =1.19¢. (24.10)
Otherwise, we use the original Newton iterate from equation 2.4.7.

In using the shooting method, caution must be taken to check that a particular solution
is converging and consistent. In the boundary layer case, this is done by varying the step
sizes and the prescribed value of the boundary layer edge to ensure that the nondimen-
sional axial velocity asymptotes unity near the boundary layer edge, that negative
velocities do not appear, that the shear stresses near the boundary layer edge asymptote
zero and that the skin-friction coefficient, as well as all other calculated values, settle to
a consistent value. Negative velocities usually indicate step sizes that are too large. The
gradual numerical asymptoting of either the axial velocity to unity or the shear stress to
zero is usually a good indicator of a stable numerical solution and a reliable test to ensure
that the prescribed value for the boundary layer edge is appropriate.

It must be stressed that the solutions obtained from both transformations are nonsimilar,
in general, due to the finite non-zero value of 1, which depends on x and which appears
in the boundary conditions. However, a "quasi-similar’ solution has been obtained in
which solutions si fixed 1, are pieced together to form an overall solution (Sawchuk

1985).
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Solutions are obtained for a wide range of € or n,. In principle, ’quasi-similar’

solutions could be obtained for all values of §&. However, larger values of & require
smaller step < »es in order to obtain consistent results and ,thus, more computer storage

is necessary.

Near £ =0, i.e., the Blasius limit, the step size can be as large as 0.1 in An. Moving

downstream, the step size gradually decreases to 107 at & = 10°,

The special case of similarity at§ = 0 or 1, = eis obtained numerically by prescribing

a large value of 1),. At the prescribed value of 1, 2 1000, the numerical solutions that
are obtained have already settled to consistent values, i.c., larger values of ), would yield
the same solution.

The integrals within the displacement and momentum thickness expressions are
evaluated using Simpson’s rule.

The numerical solutions stemming from the r-based transformation are obtained
without any difficulty. Once the appropri .e step size is established, the prescribed value
of the boundary layer edge is easily obtained because the numerical solution using the
r-based transformation asymptotes the appropriate ourer boundary conditions very
gradually. Even if the prescribed distance to integrate is larger than need be, the
asymptotic process begins numerically at the same point in the cross-stream direction

a; it would for a smaller estimate. The skin friction and integral parameters converge

to consistent values at larger estimates of the boundary layer edge.




Generally, there are no difficulties in obtaining the numerical results using the y-based
transformation. In the range 0.05 <& < 40 or 0.071 < 1, < 57, consistent solutions were
not obtainable. Variation of the step size or of the prescribed boundary layer edge would
not yield consistent results in this range.

Velocity profiles from the *quasi-similar’ solution for each transformation are plotted
for various & = 2V2 MeinFigures 2.4.4,2.4.5,2.49 and 2.4.10. Velocity and shear stress
profiles of one transformation are compared to those of the other transformation in
Figures 2.4.1-3, 2.4.6-8, and 2.4.11-13. Similarly, the skin-friction coefficient,
displacement and momentum thickness are tabulated for comparison with regards to
each transformation in Tables 2.4.1-3.

It is important to notice that the axial velocities of the two transformations differ with
each other in the Blasius limitat § = 0 or 1, — . One would expect that solutions from
either transformation would yield the same result and that this result would be consistent
with the Blasius limit. The numerical values from the axial velocity profiles suggest
that the y-based transformation does, in fact, yield the Blasius profile, while the r-based
transformation yields a solution deceptively close to the Blasius, i.e., one that is shifted
by a factor of V2'in the independent variable 1 — 1.

The radial velocity parameter obtained with each transformation for§ — 0 or 1, —= o

also differs significantly with respect to each transformation. The numerical values
obtained from the y-based transformation are consistent with 'he radial velocity

component obtained from the Blasius differential equation, vhereas, the values obtained
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from the r-based transformation are very large and on the same scale as the value chosen
for the fixed 1y, i.c., of the order 10°. At&=0.05 or n, = 56.6, a large difference can
be seen in the radial velocity parameters in Figure 2.4.6.

Significant differences are evident between the coefficients of skin-friction from the
two transformations in the lower range of § in Table 2.4.1. Percentage differences start
at approximately 41% at & = 0 and at £ = 40 reduce from 4.0 % to 0.0002% at § = 10°,

Momentum thickness also differs significantly with respect to each transformation.
Here, percentage dif*~rences begin at 21%, jump to 41 % at § = 40 and steadily decrease
t0 0.01 % at &=10°. The difference is still quite high at & =500, where it is 10%.
Comparing values of displacement thickness shows that large differences occur near
& =0, but that they decrease as & increases. At = 10°, the difference is 5% reducing to.

0.01 % at £ = 10°.

Therefore, the numerical results would suggest that as £ increases or 1), decreases

the solutions from both transformations merge. Note, that comparisons are not made in
the range 0.05 <& <40 because of the difficulties encountered with the numerical

solution of the y-based transformation.

2.5 ANALYTICAL RELATIONSHIP BETWEEN THE TWO SIMILARITY
TRANSFORMATIONS
In general, we expect that the similarity transformations based on r and y should

yield the same solutions. This, however, is not the case as the solutions presented

previously suggest. In the limit as @ — e or 1, — o, the y-based transformation
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yields the Blasius while the r-based transformation yields a solution which is not the
Blasius. To study this difference more closely a relationship is sought between F and

G in the limit as 1y — oo.

F()

The asymptotic boundary condition, T+F d M —=1asn oo (2.5.1)
suggests that, if F =0(n), then F~2— and F'~172. (2.5.22)
Let us assume along with (2.5.2a) that
lim F”=0(1) aad lim F¥=0(1). (2.5.2b)

N N—es

Evaluating equation 2.2.22 in the limit as N}, — e or 1| — =0, since =1, +7,,

with the assumptions 2.5.2a and 2.5.2b yields :

I
F"’+2FF”-2f§+2f£—=o. (2.5.3)

n

Similarly, in the limit as T, — oo, equation 2.3.18 becomes :

G"+G6"=0, (2.542)

G
with lim G'=1,and lim M) =0.

2.54b
L g “1’"‘(111 +n0) ( )

Hence, a direct scaling of similarity transformations and similarity variables does not
appear to be possible.

The numerical results suggest that as 1), — oo, and as we approach the boundary

layer edge, i.e., N = oo, that F(M)~(M-Tp) =1, #N.
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On the other hand, if in the limit
T, — o, we assume that as 1| — oo, that F~1 -1, =1, and F'~1, the asymptotic

boundary condition 2.5.1 is satisfied, while (2.2.22) becomes
F"+2FF" =0. (2.5.5)

An appropriate scaling of variables is chosen such that equation 2.5.5 is

transformed to (2.5.4a), while satisfying the boundary conditions. Setting

F=AX and n=0A, (2.5.6)
where A and o are constant, then equation 2.5.5 becomes

X" + 24 0XX" =0 and comparing with 2.5.4 implies that 2A@=1. (2.5.7)

The asymptotic boundary condition, (2.5.1), is rewritten as :

(X, @
}T}.(A“PX)_A . (2.5.8)

Comparing (2.5.8) with the asymptotic limit in (2.5.4) implies that

X . ; @

A -0, while X'~ 1 2.5.9)
— 1

From (2.5.7) and (2.5.9), we have : A == :/:2: (2.5.10)

Now, (2.5.5) has been transformed into (2.5.4a) by a suitable transformation and

careful assumptions, i.e.,

X A F
F =— and n =—= and that lim — =0, 2.5.11
Zn=g @3.1D

N




but, a direct mathematical relationship between F and G is not possible because
F =F(n) and G =G(n,). Therefore, an alternative approach is used to further
investigate the differences between the r-based and y-based transformations, in the

Blasius limit.

2.6 COMPARISON WITH THE BLASIUS
It is important to compare the limiting case as 1, — o of the above solutions with
the Blasius solution for flow past a semi-infinite flat plate to shed more light on the

inconsistencies encountered between the above solutions in the Blasius limit.

The nondimensional governing equations are :

ug(x,y) dug(x,y) 1 Fus(x,y)
un(x,)') ax + Vs(x;y) ay _RL ay 2 7 (2.6.])
dug(x, dvg(x,
ug(x ., s, Y) _ 0 (262,
ox dy :
where all quantities are nondimensionalized as
ug* wvg* yx  x* UL
Ug = U’vB"U’ y-L’X-L’RL" V,
and L is a characteristic length.
Defining y(x, y) such that
oy, v
ua(x’y) - ay9 vB - ax (2.63)

and using
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__f (Ms) _ _ , UL .
y= m— where 1, =m,y and 0, = e’ yields : (2.6.4)
I M,
up=f" and v, =E(n,f =N, (2.6.5)

Individual terms of the two dimensional boundary layer equations in terms of f are

given by :
Oitg _ u . OUp nL n az“B N u
uBaxB- Bff * Bay R f { nf f} R a 2 RLf ’ (266)

%:_m’fﬂ n aﬂd .a_v_..; nl’

axB R L ay, R L (2.6.7)

and individual terms neglected from the Navier-Stokes Equations for the flat plate

problem are given by :
_l_izﬁ_nl- m I
R g e+ 3naf ). (268)
3v, i
T-Ff {-nef " -naf '+ 11, (2.6.9)
Xp K
o mf”{nJ’-/} (2.6.10)
ﬂay R 2 ’ Q.
a2 5
LAY (naf "+ 4+ 3 =311, (2.6.11)

RL axB RL
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1 v 7]1.3 m ., ol
— i, S s -+ R 2.6.12)
where
a_"lg____ﬂs_ oM, _ 3N o =___T\_L
aXB 2xp ’ aXBz 4x32 ' axﬂ ZXB’
32711.=3ﬂ1. aﬂs__:n izﬂ_n__:o
ax? 4x?’ s © Oys
a"lz. aznl.
—=0and —=0. 2.6.13
ay B ayaz ( )
The differential equation obtained from the transformation 2.6.4 is :
M+ =0, (2.6.14)

i.e., the Blasius Differential Equation with the boundary conditions :

fO)=£'(0)=0 and f'(n;) > 1 as N — co.

Another similarity transformation based on r which is related to the previous
r-based transformation by a shift of V2in the independent variable is introduced. This
transformation follows directly from the transformation 2.5.11, which ransforms
(2.5.5) into (2.5.4a) in the previous section. Solutions obtained using this

transformation are exactly the same as that of the previous r-based transformation.
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The solution obtained using this transformation is compared to the solution obtained
using the y-based transformation in order to emphasize the differences between the
two, in the Blasius limit.

The similarity transformation is

W=izH(s)’ (2.6.15)
5o
Ua
where s =5 = \fz—n and s, = e =\/2-Tlo_ (2.6.16)
The velocity components are
u =”—s("—)+H’(s) and v = %(sﬂ’(s) _H(s)), 2.6.17)

Clearly, u = u(s) and v =v(s,s,).

Applying (2.6.15) to the governing equations 1.2.6-7 yields

s’H™ 4+ 25’H" —sH' + H - sHH +s*"HH' +s’HH" =0, (2.6.18)
with boundary conditions
H(s))=H'(sy)=0 and E—:S—)+H’(s) —lass oo, (2.6.19)

Equation 2.6.18 has been solved numerically using a 4rth order Runge-Kutta shooting

method for fixed 5,. Similarity breaks down, here, because the boundary conditions lead
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to the implicit functional dependence of H on s5,, which depends on x. A ’quasi-similar’
solution is obtained for fixed s,. Therelationship between the twor-based transformations

is presented in Appendix D.

2.7 TAYLOR SERIES ABOUT THE SURFACE

The results from each transformation in the limit as @ — oo are investigated via

Taylor series expansions and compared with that of the Blasius. The shift in the
independent variable of V2 in the solution obtained from the r-based transformation
can be viewed on a rigorous level. Results from both transformations are valid
mathematically and numerically, but the r-based transformation is questionable on
physical grounds.

A Taylor Series expansion of 11th order is obtained for F and its derivatives about
N =1, from equation 2.2.22. Similarly, an expansion for G and its derivatives about
1N, =0 are obtained from equation 2.3.18. The expansions are performed about the

surface of the cylinder and are of the form :

o, m
F(m) =Fo+n,F;+5F;'+§F;”+..., (2.7.1)

where the subscript "0’ indicates F evaluated at 1), i.e., Fo = F(1,) or G evaluated at 0,

i.e., G, = G(0) and the superscripts indicate differentiation with respect to the
corresponding arguments.

To obtain the coefficients in the expansions, viz,
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F, F], ... FX, FY,

the corresponding ordinary differential equations must be differentiated with respect
to function arguments 8 times. Then, each set of 9 equations, starting with the

original, are evaluated at the surface of the cylinder to obtain the corresponding

coefficients. The current equation being evaluated uses previously obtained
coefficients. Note that all equations will use F, and F! or G, and G obtained from the
no-slip boundary condition.

The 8 ordinary differential equations obtained by differentiation along with the
corresponding coefficients in the series expansions obtained from the r-based and
y-based transformations are presented in Appendix B and C respectively.

To obtain the Taylor Series expansions for the velocity components and the
individual terms in governing equations 1.2.6-7, the expansions of F, G and their

derivatives are used along with the expansions of
1m, 1m% ,and1m’ about n=n, or 1, =0.

The latter expansions are given by :

1 1 ={ "N 1 1 = .. uh

LR DL IR L ) B

n noi};"( T\oj n? 'ﬂoz"§°(l+ )( ﬂo}

1 1 2G+0G+( mY

LI Y LA ila PELLY 2.7.2
n’ Y'Io"§0 2 ( no) @72

From the series expansions obtained for F and its derivatives the series expansions

of the velocity components are given by :
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- . &:ﬂ_l3 , O uh '& % N
U=0mn, - My TI. 21“02 31 —(3 no +2ap) 4 (4 n +12n ]5'

2 7 2

1Ly 749"- '—“T+ 612 + 510 + 44 —'T—(7!EF7+3954EF;
% )6 L nd o ne oo Mo

3 2 2
ﬁl6ﬁ)—+(8'n—+34272&4»7256“—Jn—'—(9'— 329328

N, 8! T‘o ﬂo ﬂo
ap .
+85032;~—+3000af) 10'+0("' ) (2.7.3)

Qp n’ O uly Qe N3
v "—{no Ny =N 5 7 “1 -'xp 31' (12E+2n,,2a}]74—'!-+(60a5+ 6!]0(12)-3’?

2 2
{3609£+30a,,)"" 2520% +192°% +ando |2 ' —(20160—+ 1458
n 6 Mo Mo Mg N

Th' O al? 9 2
+352n,,a,3)—'—+ 181440 — +12690— + 3032(1,- _— (1814400—+ 124020—
8! To No Mo uly

3

aF 2411]

+29096n—+ 3000n,'a,) 707 +0m,")}, 27.4)

Resulting expansions for individual terms from the govemning equations, 1.2.6-7,
and neglected individual terms from the Navier-Stokes equations, 1.2-3-5, are
presented in Appendix B. The series expansions for individual terms of the
momentum equation 1.2.6 are in equations B.19-2Z. Those for the individual terms

from continuity equation 1.2.7 are in equations B.23-25. Those for the individual



51

terms neglected from Navier-Stokes equations 1.2.3-5 are in equations B.26-32.
Series expansions of the velocity components for G are given by :

_ g i'f_ll_ |4y % Th % % |

u_aGnl 21,‘ nl n23' (3113 %)4' (4 n°+6n )5'

2 2

{5'%+43%]2—:+(6'£G-+36.%+11 ’)-"—'—(7'%—+3414&

n No 0 0
2 2
+1099-‘"-)'-“'-+ svi'£+35604&+998°“‘ 3‘--(9'5+4047129ﬁ
N, 8! ne ne Ny Mo
al
+9364—3+375ac)——+0(11,"}, 2.1.5)
Ng 10!
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0 0

Resulting expansions for individual terms from the governing equations, 1.2.6-7,

and neglected individual terms from the Navier-Stokes equations, 1.2-3-5, are

presented in Appendix C. The series expansions for individual terms of the
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momentum equation 1.2.6 are in equations C.19-22. Those for the individual terms

from continuity equation 1.2.7 are in equations C.23-25. Those for the individual

terms neglected from Navier-Stokes equations 1.2.3-5 are in equations C.26-32.
Using the same method as in the previous sections, the ™'~sius function, f, is

expanded in a Taylor Series about 1, = 0 (see Weyl (1942)). The expansion is:

1
4T‘IB

ut 2 s 3 ne

fraym -0y +1loyor- 37505 137+ oMY, .1.7)
as n; =0 and, 0, =7'(0) = £, = 46960 (see Rosenhead 1963) (2.7.8)

Clearly,

Ny ul s’

Up = 0N, — a}-ﬁ- +1 1a;7‘i’- - 375a;1—0!+ om,>), 2.79)
and

. uly Ns Mg M 1
Vs ‘RL{(IB—Z—— 2 '§g_+77“’ §w3750a, TI-!+0m’ )

as N, — 0.2.7.10)

Resulting expansions for individual terms from the two dimensional boundary
layer equations and neglected individual terms from the two dimensional
Navier-Stokes equations are presented in Appendix D. The series expansions for
individual terms of the momentum equation are in equations D.28-30. Those for the
individual terms from continuity equation are in equations D.31-32. Those for the

individual terms neglected from Navier-Stokes equations are in equations D.33-37.
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Series expansion of individual terms and velocity components for the r-based
transformation involving H is presented in Appendix D. The axial and radial
components of velocity are given by equations D.19 and D.20. Individual terms of
the momentum equation are given by equations D.21-23. Individual terms from the

continuity equations are given by equations D.24-26.

2.8 COMPARISON OF SERIES EXPANSIONS
The Taylor series expansions for F and G differ from each other as do their
numerical solutions as seen in section 2.4 and 2.7 and in appendices B and C. While,
the corresponding coefficients of each expansion are of the same order in 1, a
relationship linking one expansion to the another does not exist. In this section, we
compare corresponding series expansions from the two r-based transformations, the

y-based transformation and the Blasius problem itself, in the Blasius limit.

As T, — oo, the axial velocity expansion, (2.7.3), from the r-based transformation

yields :
4 7 10
u=om, -2a:1}"-+44a;37"- - 3000a;%+ om,”,
for small n,. (2.8.1)

Numerical results suggest that lim o = 2 O, so that (2.8.1) can be written as

Mg ==
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,(«l‘ m) ,(\F m) (2ny)”

10!

~1log

~-3750,

u=0g(V21,) - ag +om™

for small n,. (2.8.2)
Similarly, in the limit as Ny — e or 5, — oe the expansion of the axial velocity

component from the r-based transformation involving H, given in Appendix D in

equation D.19, becomes :

S‘ .S‘7 10
U= 0ys, — O — m +1lo = 7y 375047 O'+0(s,“),

forsmall 5, =5 -5,= \Enl, (2.8.3)

Numerical results suggest that lim o = 0 indicating that (2.8.3) can be written as:

"0"'0 —> o

4 7 10

U= ags, -l o+ ua,;iﬁ- 375%'; +06,),

for small s,. (2.8.4)
In the limit as 1, — ee, the axial velocity component from the y-based transformation,
(2.7.5), becomes:

n N n
U =0T, ~ 0y +1lag - - 375%1#+0(s,”),

for small n,. (2.8.9)
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Numerical results suggest that lim ag; = oz. Note, that in the Blasius limit
Ng—de
Mo corresponds to 1, , R corresponds to R, 4 — ug, and v — v,

The coefficients of the powers of 0, in (2.8.5) are identical to the coefficients of

the powers of \2 7N; in (2.8.2) and to the coefficients of the powers of s, in (2.8.4).
These coefficients are identical to those in (2.7.9) after substituting a; = a. Thus,
the seris expansion from the y-based transformation, (2.8.5), matches exactly with
the Blasius expansion (2.7.9). Both series exvansions from the r-based
transformations, (2.8.2) and (2.8.4), indicate a shift in the independent variable of \2,
which is misleading close to the Blasius expansion 2.7.9.

Comparing series expansions of the radial velocity component in the limit as
T, — oo requires matching the highest order terms in 7, from each transformation with
that of the Blasius. In the limit as 7, — oo the expansion, (2.7.4), from the r-based

transformation yields :

no 0 n/
=-§-{a,n, 2(1,-241'4-440.3 '

a +o(nI )} for small n, (2.8.6)

while the expansion, 2.7.6, from the y-based transformation yields :

vz%’{%nzl 4(103"1 +77a0321' +0(m, )} fro small n,. (2.8.7)

Comparing (2.8.7) with the Blasius (2.7.10) shows an exact match, while (2.8.6) and

(2.7.10) indicate no cuitespondence at all. In fact, (2.8.6) is an order of 1, higher than
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in the correct (2.8.7). Significantly large values of the radial velocity component can
be seen in the numerical results, as was pointed out in section 2.4. It is interesting to
compare (2.8.6) with (2.8.1) in the limit as N, — e because the axial and radial

velocities from the r-based transformations are the same but for a factor of N¢R.

In the limit as 1, — oo, the series expansions of all individual terms in the

governing equations from the r-based transformations, equations B.19-25, do not
match with those of the Blasius, equations D.28-32. However, the series expansions
from the y-based transformation, equations C.19-25, are identical. The numerical

solutions obtained in section 2.4 suggest the same unexpected results.

2.9 OBTAINING THE TWO DIMENSIONAL BOUNDARY LAYER
EQUATIONS

To turther explain the difference between the two similarity transfo. mztions in the
limit as ), = oo, it is necessary to obtain Prandtl’s two dimensional boundary layer
equations from either the Navier-Stokes equations, 1.2.3-5, or Cooh¢’s equations,
1.2.1-2. Then the order of magnitude of each individual terms from the analysis of
these equations will be compared with the orders of magnitude of the same individual
terms produced by the similarity transformations in the next section.

Assuming
r¢=ag+y* ~1,x* ~ 1, y* ~ 8, and u* ~ 1, (29.1)

gives rise to
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a~1, dr=08 ~34 gi~l (29.2)

Applying these relations to the equation of continuity gives :

Hr*u*) o(r*v*)
Tox 1 and, thus, 3 1, (29.3)
L 3 &
which yields, v* ~8, 7 ~ 8, and g—v; ~ 1. (29.4)

The individual terms on the right hand side of the momentum equation, 1.2.3, give

* *
%‘i; ~ 1, %i‘; ~ 1. (29.5)

Matching the largest inertial term with the highest order derivative viscous term

vi’_*ga la(’*::) 1

- 1. Hence, v ~& since ————2 ~ —, (2.9.6)

implies S 5

Remaining terms from the two momentum equations 1.2.3-4 have the following

relations :
azu* 2 aV* azv 3 av
at*2~8, -5'-8 > ~ &, 5r—*~8
a(r*i'-:) *
are v
V—a-r—;—' ~ 8,and V;ﬁ ~83. (2.9.7)

Note, that the individual terms can be split into two pieces, i.e.,
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va("*;‘:)_ u* v ou*

=v
r* or* or*® r%or*

=0(1)+ O(d) respectively 2.9.8)

and

AT 222 0(1)+ O respectively. 2.99)

The magnitude of individual terms in the Navier-Stokes equations, 1.2.3-5,
respectively correspond to

aP

o+0o()=0(1)+0(H —5w (2.9.102)
0®)+0®)=0®)+0®)+0(8 -gg-, (2.9.10b)
oM)+0(1)+0(d) =0, (2.9.10¢)

*
where a—P— is at most O(d).
or¥

This leaves P as a function of x* only. Hence, applying Bernouli's equation with U
constant gives dP/ox* =0.
Retaining the terms in the Navier-Stokes equations that are O(1) only gives the

remaining two dimensional baundary layer equations, i.e.,

*au*ﬂ)*au* _vazu*
U ax* ay*— ay*z’

(2.9.11)

du* oJv*

.ax—*+ay-—*=0, (2'9-11 b),
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2.10 ORDER ANALYSIS ON SIMILARITY SOLUTIONS

Now that the behavior of the individual terms from both the Navier-Stokes and
Cooke’s equations is established in the Blasius limit, the behavior of the
corresponding terms obtained using the two similarity transformations can be
compared.

From the basic assumptions in (2.9.1), one can see that:

1 y*
nL -~ _8', and nn =nl‘? ~ 1, (2.10.1)
where L ~1, R, ~ -8}5 and f(n,) ~ 1,as well as its derivatives.

As Ty — o, all individual terms obtained from the y-based transformation in
Sections 2.3 and expansions C.2.7 correspond exactly to the terms in the Blasius in
section 2.9, where

| y* . R
N ~ 5 n, =“°? ~ 1,and G(ny,) ~ 1 as well as its derivatives. (2.10.2)

However, the order analysis of terms obtained from the r-based transformation in
Section 2.2 and from equations B.19-25 does not agree with that of Section 2.9.
Individual terms from Navier-Stokes equations, (1.2.3-5), obtained from the r-based

ransformation give the following relations :




= ~ & and T 1. (2.10.3)

Note that U =0(1) and F(n) ~ 1, as well as its derivatives.
In a true boundary layer, the axial velocity component should be O(1), while the
radial velocity component should be O{5). However, this is not the case, here. In

fact, the independent variable

n= —-0( )O(l) 0( )#0(1) (2.10.4)

This suggest that 1) is large for small d and this presents a problem.

Solutions obtained using the r-based similarity transformations do not give the
Blasius in the limit 1, — e=. This is evident from comparisons with the Blasius solu-
tions from t.iree different approaches, i.e., comparing with the numerical solutions,
the series expansions, and with the order of magnitude arguments.

If we retain the individual terms from either the Navier-Stokes equations, 1.2.3-5,
or Cooke’s equations, 1.2.1-2, that are transformed using the r-based transformations
and are O(1) or higher according to.thc order of magnitude analysis, more than just
the two dimensional boundary layer equations, (2.9.11- 12), will remain. Unexpect-
edly, terms of O (1/3) remain. Examining the series expansions, B.19 and B.20 for the

nonlinear terms in the momentvm equation, i.c., 4*du*/dx* and v*du/dr* and the

individual terms (B.23) and (B.24) in the continuity equations, i.e.,
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equations, i.c., du*/dx* and dv*/dr*, shows that the terms 0O (1/5) or equivalently
O(Ms/R) do cancel leaving terms of the following magnitudes in Cooke’s equations

(see equations I.1.1-2 for the corresponding terms) :

oM+0(1)=0(1)+0(d), (2.10.6 )

oH+0(1)+0(1)=0. (2.10.6b)
In the Blasius limit, the following individual terms neglected by boundary layer
approximation from the Navier-Stokes equations, i.c.,

1 0u ( v — 1 ov _ 1 1% - _l_azv _
30 =0, ué;_o(g), "ar"o(a)’ R =0 and 2===0(),

have the following magnitudes, according to the order of magnitude analysis :
0@, 09), 0", 0(5), and O(5’) respectively,
Discounting these terms, the individual terms v*/r* ~ 1 still remain in the continuity

equation. The latter are not present in the two dimensional boundary layer equations.
Series expansions of all individual terms in Cooke’s equations, 1.2.1-2, cancel to
any order since they are based on these equations, however, individual terms should
reflect the corresponding orders of magnitude obtained in Section 2.8 which deals
with order of magnitude analysis applied to governing equations 1.2.1-2 or the
corresponding Navier-Stokes.
Sinailarity transformations on the boundary layer equations should preserve orders

of magnitude throughout the entire Navier-Stokes equations, not just the boundary

layer equations themselves, i. e. , a neglected term from the Navier-Stokes equation
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due to boundary layer approximation which is 0 (§) must have the similarity
transformation reflect that order of magnitude for that individual term even though the
term is neglected. The r-based similarity transformations do not adhere to this
concept, since higher order indi7zidual terms are produced which o not preserve the
correct orders of magnitude to obtain the Blasius limit as 1y — .

A finite axial velocity profile is obtained which is very near the Blasius in the limit
as M, — oo and this is very misleading. However, the highest order terms in the
differential equations (O (1/3)) cancelled in order to produce the finite u. This
cancellation can be seen term for term in the series expansions B.19 and B.20.

This natural and seemingly innocent similarity transformation does not yield
correct physical results in the limit as 1, — oo, as we have shown in this chapter, due
to the implicit functional dependence of F on 1, and hence, x (Sawchuk 1985). This
dependence brings about higher order terms associated with 1, in individual terms in
equetion 2.1.7 that contain a derivative with respect to x. These higher order terms do
not arise in the y-based similarity transformation because this implicit functional
dependence on 1, does not exist. This difference can be traced tousingrory +1 as
opposed to y in the similarity variable. A good example of this is in the radial

velocity compoenents of each transformation. For the r-based transformation

V)= +MOF ) - F (), 2.106)

and the y-based transformation
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v, ) =2 G/ -Gk, 2.107)

It is clear that in the former
v = v(1,M,) = O(M?) and in the latter that v =v(n;,Mg) = O(M,). The higher order term
is created by the r-based transformation which is not consistent with the order analysis

leading to the Blasius.
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£ ar,
22 kU
S r - based y-based
0.000 0.66411443 0.46959000
0.050 0.67415925 0.43501037
40.000 4 80335419 4.61898253
100.000 9.30769200 9.32413583
500.000 33.04048158 32.91289622
1000.000 58.64608517 58.52907237
10000.000 425.93454100 42:.84324282
100000.000 3340.58524616 3340.51059659
1000000.000 27459.72133193 27459.65827909
Table 2.4.1 Comparison of skin-friction coefficient obtained
from r-based and y-based transformation 'quasi’-similar solutions.
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A
f r - based y-based
0.000 1.21678323 1.72093588
0.050 1.22294359 2.19165879
40.000 4.49925919 7.08996600
100.000 8.14726118 10.77160556
500.000 27.01557998 29.67987473
1000.000 47.09254461 49.76898040
10000.000 329.43904642 332.14308058
100000.000 2530.90289097 2533.62338454
1000000.000 20537.55444739 20540.28578380

Table 2.4.2 Companson of displacement thickness
between the r-based ransformation vs. the y-based transformation.
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O )
é r - based y-based
0.000 0.46960228 0.66423656
< 050 0.47659754 0.99619155
40.000 3.39513927 5.76176508
100.000 6.54808174 902945454
500.000 23.34647029 2589978784
1000.000 41.43569916 4403105948
10000.000 301.14786449 303.79952157
100000.00C 2361.38641532 2364.37149780
1000000.000 19413.08034811 19416.08736250
Table 2.4.3 Comparison of momentum thickness obtained by
r-basec vs. y-based transformation from ‘quasi-similar solutions.




3 PAST NUMERICAL SOLUTIONS

3.1 PRELIMINARY

Since the similarity solutions do not cover the full range of the flow along a circu-
lar cylinder, in this chapter, we consider numerical solutions. A brief sketch of earlier
numerical solutions is presented in this chapter followed by present numerical
solutions in the next.

Jaffe and Okamura (1968) use a shooting method, Cebeci, Wogulis and Partin
(1968) and Cebeci (1970) use an implicit finite difference method outlined in Smith
and Cebeci (1968). More recently, the Keller’s Box method is used by Cebeci and
Smith (1974). In all cases a stream function formulation with stretched coordinates is
used. The full range of the problem is not covered, since the solution extending the
furthest from past numerical results, only envelopes the range, £ =0 to & = 64. Also,
velocity profiles are not emphasized. The asymptotic solutions of Glauert and Ligh-
thill (1955) and Stewartson (1955) only adequately cover the latter parts of this range
with regards to the skin-friction coefficient and displacement thickness. Velocity
profiles near the surface of the cylinder are inaccurate here, as well as, for values of §
beyond this range. The range of existing numerical solutions should be extended to

give a more accurate and complete picture of the flow.

80
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3.2 METHOD OF JAFFE AND OKAMURA
Jaffe and Okamura (1968) proposed a solution to the problem which we briefly

outline in order to compare with present solutions outlined in the next chapter.

ey aZ
5 and the transformation

With the variable 1, =~

Uvx*

Y= f= —éf(m. &), (3.2.2)

'Cooke’s equations, 1.2.6-7, are reduced to

v por_ gl O ndf
(A +En)f"Y +ff -E,(f' 3 f aa)‘ (3.2.3)
The velocity components are given by
f’ R& 1
= 2.4
with the boundary conditions
f0,5)=£1(0,8)=0 and f(n_,8)=2. (3.2.5)

A least squares fit is used to obtain the derivatives in the stream-wise direction.
The velocity field is divided up into n stations. Atn =0 or =0 the derivatives
vanish so that there is no need to approximate them. Atn = 1, the two point backward

difference equation, which is accurate to first order with respect to A is given by :

fizh % (3.2.6)

& ok

1 There appears to be a misprint in the paper by Jaffe and Okamura (1968) in equation
3.2.3, in which f and v are switched. We assume that the corrected version is as printed
here.
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d A
At n =2, the three point linear least squares fit is used, i.e. -8% = :le, 3.2
2
3 % 3 Xf

where | D, |= det and | A, |= det

IE ZEY I8 XS

At n 2 3, the four point quadratic least squares fit is used, i.e.

o, (4,1+21B,1%)

% DL ) (3.2.8)
[ 4 3t 36 4 sf 3@
where (D, = det| Z& €' IEY[ 14,z dee| T8 TEL T
2@ IE @Y IE @ @Y
and
KR

B,I=det| TE Z®) Z&%|
ZE)Y @)Y @)Y

In the above ex: ressions, f is replaced by f” to obtain the approximation for the cross
derivative in (3.2.3).2

The resulting equations are solved using a Runge-Kutta shooting method in the
cross-stream direction. The Runge-Kutta shooting method that is used is assumed to

be the standard fourth order method. The numerical convergence is testc 'y solving

2 There appears to be a misprint with the previous two determinants for equation 3.2.8 in
the paper of Jaffe and Okamura (1968). We assume the corrected versions to be as
printed in this paper.
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at twice the number of stations in the stream-wise direction using one half the value of
the original step size. For most results, accuracy is quoted to 3 and sometimes 4 deci- .
mal places. Ultimately, the skin friction coefficient, displacement and momentum
thickness are given in the range £ =0 to & = 40.

The reason that the numerical results were obtained only to & = 40 is not given.

Glauert and Lighthill (1955) mention that the limit of reliability of the asymptotic
series solution for the skin-friction is "probably” near this point. Therefore, a reason
for stopping the numerical method at this point in £ could be because it was felt that
the asymptotic series already covered the range beyond. The increase in numerical
error could be another reason. Another possiblity could be that using stretched coor-
dinates brings about a further complication at this point. As one moves downstream,
the numerical grid using stretched coordinates must be enlarged in order to satisfy the
asymptotic conditions at the boundary layer edge because of the growth of the bound-
ary layer. Thus, the authors could have stopped the procedure at £ = 40 because the
boundary layer thickness is quite large there and to keep increasing the grid further
complicates the numerical method. Using this method requires much computer stor-
age due to the least square approach which uses solutions at 4 previous stations in
general. This fact, together with the need for a growing numerical grid and the
subsequent care that must be taken in shooting may have also prevented the further
advancement of the solution.

The range covered by the numerical solutions should overlap with that of the
asymptotic solution in order to properly match ,i.e., numerical solutions should go
beyond & = 40. Since velocity profiles near the surface of the cylinder obtained from

the asymptotic solution are not reliable at this point, numerical solutions must go fur-
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further in § to obtain profiles that are reliable so that a proper comparison can be made
with the asymptotic solution. This would give a more complete and accurate picture

of the flow.

3.3 METHOD OF CEBECI
Cebeci (1970) used an implicit finite difference method to obtain the solution of
equations 1.2.1-2 in the range £ = 0 to £ = 64. This solution extends the range of the
series solution covered by Seban and Bond (1953) and Kelly (1954) and by the
asymptotic solution of Stewartson (1955). The emphasis in this work is on turbulent

flows, which involve many more details.

The transformation, y = v2&: f(§.,M;) with stretched coordinates

*2_ o2
g =puUx* and nc=2\"[;%’ Za“ . (3.3.1)

is substituted into goveming equations 1.2.6-7 and gives

((H‘\/m "')’ +ff = 25;,:( 5" ;{C) (33.2)

with the boundary conditions f(§.,0)=0, f(§.,0)=0, and f'(§.,0) =1. (3.3.3)

The coordinates are obtained from using a combination of the Mangler
transformation, as given by Probstein-Elliott (1956), and the Levy-Lees (1959)

transformation, i.e.,

2
dx =(%)dx*=adx and d?-(—-}!——) dy* = (1 + y)ady (3.3.4)

and
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& = puUdx and dn, =

Y 5 335

respectively. Note, L =a is the characteristic length.

Transformation 3.3.5 is used to stretch both coordinates and remove a possible
singularity at x = 0 for flows dealing with sharp tipped bodies. Using of similarity
variables can also remove this singularity (see Blottner (1975)).

These stretched coordinates remove a large variation in boundary layer thickness
along the surface in most similar and nonsimilar flows. However, the variation is not
removed in the flow along a semi-infinite circular cylinder. At& = 64, the boundary
layer thickness is about 100, whereas near & = 0 it has the value of 6 (see Cebeci and
Smith (1974)).

The stream function is translated by ¢ =f -1, (3.3.6)
The stream function is translated by ¢ = f =N and after discretization equation

3.3.2 becomes

((1 * 4\/%)0”} +(O+Nc)”=28((0 + 1) (A0 + A0, +49,_,

~0"(A0+A0, ., +A0, ) (3:37)

where ¢’s without a subscript are evaluated at station n. The coefficients

A,,A, and A, are known at the current station including the quantities with subscripts
n - 1 and n - 2 from the previous 2 stations. This reduces the problem to that of solv-

ing a nonlinear ordinary differential equation at station n.

At & =0, stream-wise derivatives vanish and at & = (§;), a two point formula

replaces the three point formula. At all other &, the three point formula takes over.
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Linearizing the discretized equation is done by assigning the value of the previous
iterate to each nonlinear factor, while all other values are at the current iterate value,

ie.,

((1 + \[%ﬂ@} + (@ MW" = 28c((0' + 1) (A0 +A0, " +A D, )

0y (A9 +A0,_+ A, ), (3.3.8)
where the subscript 0 indicates the previous iterate.
The dependent variables ¢ and ¢’ a-e replaced by the perturbations 8¢ = ¢ — ¢, and

3" =¢"— ¢, etc.. This is used, in order to reduce round off error. The difference
molecule seen in Figure 3.3.1 uses seven points, i.c., three in the stream-wise direction
and five in the cross-stream direction. Cebeci and Smith (1968) use a variable grid
which incorporates shorter steps near the wall and larger steps near the boundary layer
edge. In the numerical procedure a Choleski decomposition is used to solve the

resulting equations at each step of (&),

3.4 METHOD OF CEBECI AND SMITH
Cebeci and Smith (1974) use the Keller’s Box method to solve within the same
range of § as Cebeci (1970). The stream function and coordinates, equations 3.3.1,
used in Cebeci (1970), which lead to equation 3.3.2 are the same.

They substitute u. = f” and v, =u.’, into equation 3.3.2 to obtain :

((HW )”} fvc+2§c(uCagcc v"aéc} (3.4.1)

with the boundary conditions
fE,0=0, u(E:,0)=0 and u (E.,00)=1. (34.2)
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The equations used to substitute for the derivatives of f are discretized over the box
in Figure 3.4.1a, where central differences are taken in the cross-stream direction.
Here, the discretization occurs at n instead of the midpoint n — 1/2 because derivatives
in & do not occur and formulae remain second order while remaining simple
algebraically.

Momentum equation 3.3.1 is discretized over the center of the box in Figure
3.4.1b, where central differences and averages are taken in both stream-wise and
cross-stn:am directions.

The resulting difference equations are :

@ hf ")—1« Y+ ) (3.4.3)
]

() - - _1
h,

)

(1“/%“):"" ‘(“\/%");-."f-' ( (v +v/.)
h;

+ l+kl.(§,,+§,_,))(f;‘ +f. )__4..__

(( )+ )0, (3.4.4)

(5‘41? l)( ;.- 1)2 G+ gPl)(("“"’fﬁ-l)("“ I"'V ) (f'-l"'f-')(v +v,_1))

(i) (m/fnf ENf

Z(§.+§._:)-1)(ff"

PN A ey (§.+§.-) .-
o~ m S un, (34.5)

where the subscript C is dropped for simpiicity.

The boundary conditions are given by f; =0, u, =0 and 4; = 1. (3.4.6)
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Newton's method is used such that the dependent variables in (3.4.3-5) are
replaced by the perturbations,

) fi+1) _ A) © i+ _ 06) GO, _ 06

second order terms in J are neglected and a system of equations in the perturbation
quantities arise which form a block tridiagonal structure and are solved with a block
tridiagonal scheme. The degree of accuracy in this solution is not that clear, but it is
assumed that Richardson extrapolation is used.

At & =0 the transformed governing equations, (3.4.1), and difference equations,

(3.4.3-5), do not contain & -dependent terms. An initial estimate or a previously

derived solution is used to start the procedure.

A linear velocity profile is used to start the procedure, i.e., uc =a +b1,.
Integrating and using the boundary conditions 3.4.7 gives the initial iteraies:

2
o_Mc o N o_1
f( - 2T‘- 9 uc n- r vc T‘“ . (3-4.8)

Starting at a prescribed (€¢), involves starting the procedure with a previously

obtained profile or estimate or using a solution obtained by other means.

The growth of the boundary layer as one moves downstream necessitates the need
to extend the computational grid. To carry this out, the skin-friction parameter, v, is
tested at 1), to see if | v [ €, where € = 107, for example. If this condition is
satisfied, then there is no need to increase the size of the grid. If not, then 1. is

extended such that

('ﬂ.)“, = (Tl..), +4n,,
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where A1 is a constant numerical step size.

Values of the dependent variables are assigned in the newly created region
according to :
() =1, )} =0, f7 =), ~NAE))+fp forM), s(e), S, (348)

The equation for the extended values of f, in (3.4.8), are obtained by integrating the
equation :
uc=f, with u.=1.

Results are compared to the asymptotic solution by Stewartson (1955), the series
expansion obtained by Seban and Bond (1953) and Kelly (1954), and with the
previous numerical solution by Cebeci (1970).

The local skin-friction coefficient obtained by Cebeci and Smith (1974) agrees
well with that of Cebeci (1970).

In order to compare the local skin-friction coefficient obtained by the asymptotic
expansion of Stewartson (1955), Cebeci and Smith (1974) used two terms of the

series in equation 1.3.30, i.e.,

éi _ 2 1 - 3.854 + 3.4.1
2uUt°'R;n In(l/cR;) (n(1/cR)y (34.D

The "extra’ leading term given by Stewartson (1955), i.e., 7/2(In(1/cR,))?) is

neglected. However, this term makes a significant difference in the numerical values

obtained from the asymptotic expansion 1.3.30, especially for smaller values of £.
Table 3.4.1 compares the skin-friction coefficients of Cebeci (1970), Cebeci and

Smith (1974), calculated values from the first two terms of Stewartson’s (1955) series,

the proper leading error estimate in the series and the lower order term given by




Stewartson (1955) which we refer to as the extra’ term. Both numerical solutions
begin to match with the asymptotic series 3.4.1 for larger values of &, The leading
term neglected in (1.3.30), i.e., O(1/R,(In(1/cR.))*), appears to affect the truncated
series in the first decimal place and its importance diminishes for increasing . It does
not account for the dit.erence between the asymptotic and numerical solutions. Thus,
the estimate may be too small.

Cebeci and Smith (1974) claim that it "appears” as though the asymptotic series is
valid for § > 14. However, as we have already pointed out, accuracy of the
asymptotic series for lower values of £ is questionable. The match with the numerical
solutions with respect to skin-friction may be adequate, but not accurate, Although, it
is not expected that the numerical solutions compare exactly with the series solution,
since the series is asymptotic, a better match is expected for larger values of E. Thus,

the numerical solutions should cover a larger range in &,




1 (n

H (n.i)
M (.i-1)

M (n.i-2

N <
C
Figure 3.3.1 Discretization molecule for Cebeci (1968) and Cebeci (1970).
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(n-1.j) (n,j)
(a) h o
' (n,j-1/2)
, -l
(n-1,j-1) (n,j-1)
kl’l
(n-1,)) (n.j)
(b) h, 0

' (n-1/2,j-1/2)

(n-1,-1) (nj-1)
i.Me K

"ﬂ,g‘
C

Figure 3.4.1 Box used in numerical grid for Keller Box method
for (a) equations 3.4.1 and (b) momentum equation 3.4.2.




93

€a
22U A
13 CS (1974) |C(1970) [S(1955) |Leading Extra Term
Error
8.058 2.327 2.312 0.769 0.168 0.711
12.751 3.052 3.015 2.469 0.066 0.224
14.249 3.269 3.254 2.792 0.057 0.175
20.151 4.081 4.066 3.808 0.038 0.085
28.484 5.150 5.126 4983 6.028 0.044
63.725 9.123 9.086 9.077 0.020 0.011

Table 3.4.1 Comparison of skin-friction coefficient obtained from Stewartson
(19£5) (8), Cebeci (1970) (C), and Cebeci and Smith (1974) (CS). The leading
error is the error estimate from the order term in equation 1.4.2 and the extra

term is the 3rd. term included from the same equation.




4 PRESENT NUMERICAL SOLUTIONS

4.1 PRFLIMINARY

The numerical approach presented in this chapter uses Keller’s Box method, but
with a primitive variable and a similarity coordinate formulation. These features,
which have not been used on this problem previously, were inspired by the similarity
methods in Chapter 2. An accurate numerical solution in the full range of the problem
is obtained and compared with previous numerical solutions.

On using primitive variables, we refer to Keller (1978) who mentions, "there is no
great need in introducing a stream function when employing the Box scheme, but
tradition and bad habits are difficult to overcome.” It appears as though the Keller’s
Box scheme using pricmitive varizbles has not been applied to momentum equations in
boundary layer flow problems, in general.

By using similarity coordinates, we find that the growth of the boundary layer as
we move downstream is compensated for, i.e., the physical coordinates are scaled
such that the value for the edge of the boundary layer which is used numerically
remains constant. In fact, the computational grid is compressed to the extent that the

boundary layer thickness appears to shrink, as we move downstream

94
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On the other hand, the boundary layer thickness increases rapidly using stretched
coordinates. The numerical use of stretched coordinates tends to give better accuracy
near the surface of the cylinder for larger values of A, where sharp variations in shear
and velocity profiles are present. However, the loss of accuracy using similarity
coordinates is small and may be minimized.

Similarity coordinates have, in the past, been used extensively in solving two
dimensional boundary layer problems and some axially-symmetric problems. They
have not been used numerically to solve flow problems whose governing equations
involve the transverse curvature term, i.e., the y-term in parenthesis in
o[(1 + y)ou/dy)/dy, is the transverse curvature term.

Keller and Cebeci (1978) appear to choose the stretched coordinates for numerical
solutions to axially-symmetric problems without any hesitation. However, Keller’s
Box scheme has been used with similarity-type coordinates (see Keller (1978)), but
these are used in two dimensional problems and not axially--ymmetric problems.
Keller and Cebeci (1971) mention that "to treat axially-symmetric flows, the variable
transformation needs to be modified slightly.” This statement is made after a two
dimensicnal plane laminar boundary layer problem is set up with similarity-type
coordinates which are a consequence of the Levy-Lees (1959) transformation. The
former statement implies that the variable transformation would be different, i.e., the
Levy-Lees (1959) wransformation would still be used, but, it would yield stretched
coordinates for axially-symmetric problems (see equation 3.3.4 and 3.3.5). Swetched

coordinates are used by Jaffe and Okamura (1968), Cebeci, Wogulis, and Partin
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(1968), Cebeci (1970), and Cebeci and Smith (1974) in dealing with the boundary
layer formed along the outer surface of a semi-infinite circular cylinder in
incompressible laminar flow. Others have used the Levy-Lees (1959) transformation
for other axially-symmetric boundary layer problems Thus, it appears that when
dealing with any axially-symmetric boundary layer problems, stretched coordinates
are the coordinates of choice, while similarity coordinates appear to be reserved for
two-dimensional problems. This is reinforced by Blottner (1975), who reviews many
numerical methods for two-dimensional and axially-symmetric boundary layer flows.
Blottner mentions that the use of similarity variables keeps the boundary layer
thickness uniform for many flow situations, but that it is most common to use the
Levy-Lees (1956) transformations. Problems dealt with within Blottner (1975) use
the latter. Although, the paper deals with general compressible two-dimensionai or
axially-symmetric boundary layer equations, the axially-symmetric case does ot
involve a transverse curvature factor.

The numerical solution we obtain covers the range of £ from 0 to 1000 with the

possibility of being extended to any value of &. The range of some previous
numerical solutions could possibly be extendzd, but they stop at the point where the
asymptotic solutions appear to be valid with respect to the skin-friction coefficient.

Even though the asymptotic solutions appear to be valid at a specified value of £, the

accuracy in matching with past numerical solutions is not known.
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We have also obtained a solution using the Keller’s Box method with primitive
variables but using stretched coordinates. The solution can be readily compared to
that of previous authors, since essentially the same coordinates are used, and it also
serves as a comparison to the present solution, which is obtained using similarity
coordinates. It also covers the range of & from 0 to 1000, but it demonstrates the

growth of the boundary layer as we move downstream.

4.2 METHOD USING PRIMITIVE VARIABLES AND
SIMILARITY COORDINATES

The Keller’s Box method with primitive variables using similarity coordinates is
used to solve the governing equations 1.2.6-7. The method is accurate and efficient in
solving a system of partial differential equations that are parabolic (see Keller and
Cebeci (1972b)). The method employs a non-uniform grid, is easy to program, stable,
accurate to second order, and can be made more accurate with the use of Richardson
extrapolation.

Transforming the coordinate system from (x,r) to (n,, &) using :

_(Ua)") s 2228 F 89
n= v 7B S-ar‘ 3 'dm’arz-gzarﬁ’
and
9__8o 89
ox RE?oM, REOE
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Applying this transformation to the governing equations 1.2.6-7 yields

(HR), +OR =EHPP, 4.2.1)
Q. —(QH -1)P =EHP,, 4.2.2)
where

R=P,, 4.2.3)

cu. 0=v 6klnp_F& a1l
andP-u,Q—v,Q-H(T],P 2\EQ),andH—l+2\,§.n,.

The boundary conditions become:
P=0=0Q=0atn,=0and P = 1 as 1}, = oo.

The discretization of equations 4.2.1-2 over the box in Figure 4.2.1b gives :

— —ioy Ry o T
HJRJ_HJ-IRJ 1+_&1(QJ+Q1-1)(RI+RI 1)_;'_l ’j' :24]: (P}+PI 1) —H’ lRJ l

— h, - 21 f= — - -
~H, R\, =7 @4+ O DR, + R =B o 134,; PI P (424)

(§,.+§,-1)(H

i ;+H;"+H;_,+H::})}(P'+P"')

~ h
Q’—Q"’—E’{[HHHF’-H

h
=EI{H:-| +H.I.::

(& én l)(H’+H’ 1+H’ _(+HI }(P’_1+P )+Q Qn—l’

4.2.5)




where

E" -lIZ
o

H‘-1+—— f,etc. and HZ\2= (H’+H" +H!_ +H!"

‘\/_ =125 4

Discretizing 4.2.3 at &, over the box in Figure 4.2.1a gives
h — —,_
P -pP - @® +R' 7N =0. (4.2.6)

-172

Note that any ¢ (t +1,_,) or 1" =%(1’"+1"‘").

-1n=3
The boundary conditions in discretized form are given by :
P’=0, P!=1and 0!=0. 4.2.7)
Keller and Cebeci (1971), Keller (1975), Keller (1978), and others state that this
method is accurate to second order. Individual terms in the momentum equation,
(4.2.1), and the continuity equation, (4.2.2), are discretized over the box centered at
(-1/2,n-1/2) (see Figure 4.2.1). Keller (1975) states that product ternis or nonlinear
terms can either be discretized as "a product of averages or average of products.” The
errors would still be second order, provided that the discretization is accurately
centered, i.c., "symmetric centering must be maintained” (see Keller and Cebeci
(1972a)). Keller (1978) states that any weighted averages with total weight unity of
discretized product variables is acceptable. When the proper centering is maintained
there is no serious effect on accuracy or stability. The choice of discretization with

minimal arithmetic is ideal.
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For this analysis, product terms such as OR and (2H - 1)P on the le‘t hand side of

the momentur and the continuity equations, i.c., (4.2.1 and 4.2.2), are first averaged
in the n-direction and then each separate factor of the product is averaged in the

j-direction. To illustrate this, consider the product from (4.2.1), viz,
ORY, 12=0" "R, . (4.2.8)

In a series xpansion about &, _,,

G R, = (ORY R4S S {OR), o+ {(ng}f, R (4.2.9)
A =UIpl— 1’2 =12 J- 1/2
Q' "R, = OR), - 2{(QR).=,)}.. n {(QR)g}, "~ (4.2.10)

Adding and rearranging the above two expressions yields :

r~1/2

@RY =@ R+ @R, ) OBy @2.11)

nlIZ

Expanding the first term on the right hand side of (4.2.11) about (n,”"?,&,) gives :

V) P11 oL +00! hz Y R,+Ry"
(ORY, " =(g, ‘“Eu'z)( -2, ‘2+..-](_T_

R em - -
--;’(an.)', P4 )=0"R P om). (4.2.12)
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Similarly for the second term (GRY. 2

in (4.2.11), we get the same expression as in {4.2.12), except that the subscript n is
replaced by n - 1.

Hence, (4.2.11) can be rewritten as

(ORY 2 =2 g1 1Q’ VR OB +ID). (4.2.13)

l'2 2
The product term in continuity equation 4.2.2, i.e.,

{@H - )R}, %, (4.2.18)

is discretized in the same manner as the term Q.E is above, where, Q is replaced by

(2H - 1). The term (Q‘,l)"”2 in (4.2.2) requires the series expansions of each of
2,047, 047 and Q7 _, about, (1;"*2,£, _,,), which are presented in Appendix G.

Combining and rearranging these expansions yields :

v _ 01 +0, -0 ' -0\ K
@, " 2h

7

koo
54 CnnnY 0 - E(Q,,lg):_‘:;..,, (4.2.15)

Similarly, (HR )y, from (4.2.1) becomes

12 HIR +H! R\ .—H)'R,'-H!2R.. l hz s kP = -2
1); i - 1 L ((ll ) 1'11'11), _""'((HR)"‘& u-l/2+
]

((H n -2 12

(4.2.16)
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The products on the right hand side of the momentum and continuity equations
4.2.1 and 4.2.2, have each factor averaged separately in both cirecti_ns of j and n. By
using series expansions similar to those in Appendix G, the term §H P P; from (4.2.1)

becomes :

h2 P] -112 P;I; 172 th )
gﬂ‘l " ‘Z(Pljl :g -é— "h'h)l—“z (ng _1,2 -') k l ( fhﬂIF,Y i

i 8 12
—5“2-(10 yo2 )_(E...+§._1)(H:+H£"+H.’.-1+H£Z§)(P:+P:"+P£VI+P£Z}
24° - I 4 4
h? o k? . Pi+P,'-P,_-Pi} A’ )
~5 Pon) o~ P4 ) (2 T3 — =S P
k’( yr L o C+E ) HI+HIT +H 1+H:-:){<P'+Pf e
mu ll2 2 4 Rkn
(P:-1+P!{::)2 2 2
———————1}+O0(h; +k}). (4.2.17)

8k,

Similar treatment is given to the term §H Py, in continuity equation 4.2.2.
Individual terms in equation 4.2.3 are averaged over (11, '?,£,), because there is no

need to average in the n direcrion since derivatives with respect to & are non-existent
here. Averaging in the n-directica would complicate the discretized equations more
than necessary. However, according to Keller (1975), there is no reason why
averaging in the n-direction could not be applied. In either case, the desired second

order accuracy is obtained (see Keller (1975)).




The differences in using a stream function formulation as in Cebeci and Smith

(1974) as opposed to a primitive variable formulation are obvious when we compare
the discretized equations of each approach. The stream function formulation involves
two equations used for substitution, i.¢., - = f and v¢ = u’, which require the
centering to be done at the edge of the box in Figure 4.2.1a. The remaining equation
3.4.1 is discretized at the center of the box. On the other hand, the primitive variable
formulation involves only one equation for substituting, i.e., (4.2.3), which requires
the centering be carried out at the edge of the box. The remaining two equations,
(4.2.1) and (4.2.2), require the discretization to be done in the middie of the box to

maintain the desired second order accuracy.

4.3 SOLUTIONS TO THE DISCRETIZED EQUATIONS
Taking (0, _,, R’ _,. P!_o be known quantities for 0 < j < J, the resulting
system of equations (4.2.4-7) is one of 3 J + 3 unknowns, i.e.,
@4, R,, P}, for j=0,1,2,....J.

Using Newton's method to solve this system, rewriting the unknowns by dropping

the subscript n, and introducing the ith iterates gives :
) B! N o
(Q(‘)s R(‘), P(‘)), 1—0,1,2’-._

with the following initial values:
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—0 - . _— — _ _.
P(?))=0- k—?o)'_'Ru-lv Q(()O)zo’ P(({)=P:—n R({))=Ri-1’ Q(cj))"" {--v
for1<j<J~1,

and P(6’)= 1, E(;)=Ei-1 and Q_(ol)"'Q-i-r

We introduce the higher iterates, namely,
0lin=04+80(, Riy=Ri+3R(, and P, =P +8P, 43.1)
which are substituted into equations 4.2.4-6. The quadratic terms in the perturbative
quantities (SQ'({), R SP(,.’)) are neglected. .

The discretized equations 4.2.4-6, then, become:

80y~ 80(;" +FAC' (P + 8P ") =m, (4.3.2)
B/aR’+0/80 ' +y'oP '+ 'SR’ +0780" " +y'8P' " =1/, (4.3.3)
and
hi—, —-
8P~ 8Py 'El(SR(-J)"' &RY,) l) =lgy @34
where

m' =0 =0 -FAC'(P' +P' )+ (' =’

r-1

h

m
*2

i sy

Etho)
4k

H_ +H! -1 (H.+H!™' +H;_,+H{,:})} (P._,+P.7),
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I S .
t'=S'_+H 'R '—H’R’—-j(Q"+Q”')(R’+R’ Y+& _HITR b L (P +PY,

- lf24k
hi — -
I’EP"'—P’+3’(R’+R’ . (4.3.5)
S:A!H’ lRl I_Hl (Q +Q_';’|.—ll)(§{|—l+§-{|:ll)—€m 1 :-:/’24[: AP i)
h . .
B’EH’+;’(Q’+Q"').
hy —
G’E—j(R’+RJ h,
Y ==, 10t 122,; (P’ +P'7Y),
h .
p=-t'""+7Q'+0"),
and
+
FAC’——-;{HHH,{"-l+§—4—I?-1)(Hj+Hj_,+Hj"+Hj::)}.
The boundary conditions are given by :
8Q0,=8P;,=8P,=0 i=0,1,.... (4.3.6)

According to Keller (1978), solving for the perturbative quantities directly over
solving for the absolute quantities during iteration is advantages in reducing

cancellation errors.




106
Equations 4.3.2-4 can be rewritten as:
Fi8,~Gidls =sly i=1,2,3,....J, where 43.7)
X mjy
&,=| &k, sh=l 4], (4.3.8)
8P b
and
1 0 FAC 1 0 -FAC
_ e ) _ & - L
Fo= b ,  Gy= g Y
0 -4 0o & 1
2 2

This linear system is set up into a block tridiagonal structure. From (4.3.6),

30 ?.‘) = 5P(?) =0, sothatat j =1, (4.3.7) becomes:
3Q'+FAC'6P =m’,
0'30' +B'OR +yoP' +f'SR" =1,
and
hl —1 1 hl =0 _ 1
-25R + P 28R =1,

In matrix notation,

q

R 1

50" M)
EQ| =i [=| %]

._BPI_. ()
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where

0 1 0 FACH
(El) = B 6 By Y%

2 2 _

Similarly at j = J, recalling that 5P’ =0,

& mg;,
J ;7| J
{E)|3Q7| =] %y |»
where

-1 0 FAC' 1 0

7 J
[E(f,] = 9{:') W Y(, 0{,.) B(a) )
h_, hl

-—— 1 -
0 2 0 2

The complete block tridiagonal system can be reduced to:
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[Ee) ) )
=2 52
G of 0 & 56
-3 =3
-GfF & 3(::)
= (439
—J-1=7-1 J -1 J-1
0 Gy Fo 8 S S(i)l
" [E({)]_ S_Q_J [ 56 .
| L8R L]
or
Ayt = sty (4.3.10)

where E(,-) is the coefficient matnx in (4.3.9) and

SR’ &p!
'=|80", 2/ =| 80’ |,.25jsJ. 4.3.11)
SR’ 3R’

The coefficient matrix A, is of order 3 J + 3 and the vectors z’ and s{, have that

dimension. Decomposing K(,, into 3 x 3 blocks, i. e.,
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—A(:) C(:) ]
2 2
B(?) Ay Cp
. 0
Z-(-') = Bé) Aé) C(Ji) , (4.3.11a)
0
J-1 J- J-
By Ayl Gyl
J 7
L By, A
where
0 1 0 ,
1 (1 9(1.) B(l FA.C 0 0
Ap=| T Dl Ch=| %y 0 0,
Moy b 1 09
2 2
1<j</-1, (43.12a)
and
0 -1 0 FAC' 1 0
J = 0 e:t) Bfi) J = Y(n) 9:‘) ﬁ{.)
B(n)- ’ A(,)— .
0 0 -2 1o -4
2 B 2

2<j<J (4.3.12D)
The block tridiagonal factorization procedure to solve this system of equations is

outlined in Appendix E.
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4.4 GENERAL ITERATION STEP

At & =0, terms on the right hand sides of equations 4.2.1 and 4.2.2 vanish, which

reduce to the equations that give the Blasius solution. Since there is no previous step
in &, all terms in the discretized equations 4.3.2-5 with subscript n - 1 vanish.
Individual terms in equations 4.3.2-5 with factors of & vanish, while H = 1.

At this point an initial profile is needed to begin the iteration procedure. A linear

profile in 1, is used, which satisfies the boundary conditions, i.e.,

P=—. (44.1)

—. (44.2)

Inserting (4.4.1) into (4.2.2), keeping in mind that §{ =0 and H =1, and then
integrating with respect to 1, gives Q, viz,

n
2(my).

0= (4.4.3)

Beginning calculations at the point where € > 0, involves starting the procedure

with a known solution or using a previous solution, obtained by this or some other

method, to be used as the initial iterate. An appropriate estimate of the solution may

also be used as is done above for the case § = 0.
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When iterations begin at a particular step in &, the initial iterate is the solution at

the previous step, i.e.,
(@0 Ry P)o) =G0 B, PEL) (4.4.9)
If this solution is smooth the error in the initial guess is O(k,). But Newton’s method

converges quadratically, i.e.,

§F*'=0({81), (4.4.5)
where & is the error in the Newton iteration scheme. Therefore, the initial error is
O(k,) and after one iteration the error is &' = O (k). This is in keeping with second
order accuracy.

Iterations start with a given initial profile and provided the next step in § is O(k,),
then the desired accuracy will be maintained. In applying the Keller’s Box procedure,
it is found that three iterations were carried out at each step in &, so that the error of
the iteration is much lower than the second order truncation error. In fact, it is O (k).
Keller (1978) states that if the step size in the downstream direction is too large, or a

different initial guess is used, or if there is a slight error in the computer coding that it

is not uncommon for three or four iterations to occur.
At a general stage in calculation where & > 0, the right hand sides of discretized

equations 4.2.4 and 4.2.5 are calculated only once for all iterations. During the
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current iteration, the quantities [,,,({_), th

Ij,) are calculated from equations 4.3.5.
Thus, the inhomogeneous terms ¢, as well as the coefficients in equations 4.3.2-4 are

known in (4.3.8).

The matrix elements for [A},, Bf,, Cf,] are determined from 4.3.12.

The factorization in Appendix E, equation E.1 is now used. The quantities
d}, el, 8¢ are calculated for j = 1 from (E.3) and Xg), Y@, Z; from (E.12). Then the
matrix elements of o, are found from (E.4), d%,, ef,, g, from (E.5), and x},, ¥, 2,

from (E.14) for j = 2. The last step is successively repeated forj=3,4,5, ..., L.

The perturbation quantities &, are then calculated from (E.15-17). Those

quantities are then added to the latest iterates according to (4.3.1) and the calculations
are repeated until convergence is achieved. Then, the whole procedure is repeated at
the next step in &.

The convergence criterion is given by :

|(8RY),,I< tolerance =10™ (4.4.6)

In general, criterion 4.4.6 brings about three iterations at each step in &.

Another criterion is used to test the shear stress parameter at the boundary layer
edge to see if the numerical grid needs to be enlarged in order to accommodate the

growth of the boundary layer. This criterion is given by :

|R(,,M.) I< tolerance = 107, (4.4.7)
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If (4.4.7) is satisfied, then the solution advances to the next step in £. Otherwise,

the numerical grid must be extended and values of the dependent variables at the new
grid points must be determined and implemented. However, because of the use of
similarity coordinates, condition 4.4.7 was always satisfied. In fact, criterion 4.4.7
was always satisfied even after tightening the tolerance to a value of 10™°. The value
for the edge of the boundary layer can remain constant with the use of similarity
coordinates, once an appropriate value is obtained. A value is chosen such that it is
minimal.

Approaching the edge of the boundary layer, as one moves downstream, shear
stress parameters progressively decrease in value and the axial velocity profiles
approach unity sooner. Thus, it appears as though the boundary layer thickness is
decreasing in value as one moves downstream. This trend is consistent throughout the

entire solution,

The solution at the needle limit is described by the velocity profile P =1,

everywhere, except for no-slip at the surface, @ =0, and (§a Y2V2, uU)r =0, except
for an infinite skin friction coefficient. Although this actual solution can never be
obtained numerically, the solutions we obtain using similarity coordinates as the
needle limit is approached favourably demonstrate a trend towards the limiting
solution.

With the advantage of compensating for boundary layer growth, similarity

coordinates could be used to scale the growth of the boundary layer in turbulent flows.
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Thus, it may be advantageous to use similarity coordinates over the Levy-Lees
coordinates for axially-symmetric turbulent boundary layer problems as well, since

the boundary layer grows very large using other coordinates.

4.5 RICHARDSON EXTRAPOLATION

Richardson extrapolation is applied to the results to increase the accuracy of the
solution. An estimate of the truncation error which is a polynomial in even powers of
the step sizes exists and begins with second order. This is demonstrated in the earlier
error analysis in Section 4.2. An extrapolation is applied to improve accuracy by two
orders of magnitude with each application. Also, Keller and Cebeci (1971), Keller
(1975), and Keller (1978) state and show that the errors in the numerical solution have
asymptotic expansions in powers of the squares of the mesh sizes so that Richardson
extrapolation is justified.

In using Richardson extrapolation, three kinds of error are confronted. Firstly,
round-off error is the error accumulated by rounding off values that are stored in a
computer to a finite number of digits. Next, iteration error is the error due to itera-
tions being terminated at a finite stage. Finally, truncation error is the error due to
approximation using a finite number of terms in a series xpansion.

It is assumed that an exact solution is available in order to use Richardson extrapo-
lation. However, this is not true in practice due to round-off error, but round-off error
can affect a value in the 14th or 15th decimal place with the use of double precision

programming. According to Keller and Cebeci (1972b) round-off error is usually sev-



eral orders of magnitude less than the truncation error tolerated. Thus, an extrapola-

tion will only increase the accuracy if the iteration errors are smaller than the
truncation errors. We saw in Section 4.4 that the iteration error is six orders of
magnitude smaller than the truncation error.

Three numerical solutions have been obtained using three different mesh sizes.
When extrapolated, fourth order accuracy is obtained.

When applying Richardson extrapolation to the displacement and momentum
thickness, the order of operation of numerical procedures performed on the integrals
involved is very important. The displacement thickness involves an integral with a
linear integrand. The integral may be numerically evaluated first and the result
extrapolated or the integrand may be first extrapolated and the result integrated
numerically. However, this is not the case for the momentum thickness because it
involves an integrand which is non-linear. Here, the integrand must first be extrapo-
lated and then the integral is evaluated numerically.

In the following, we demonstrate the need for the order of operations to occur. The
factors used in extrapolation, which are the values obtained from combining the dif-
ferent mesh sizes of individual solutions for Richardson extrapolation, are obtained in

Appendix F. Defining,
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A,_‘\l Ve !(1 u,rdr, A,-.‘\/ e .!.(1 wrdr,
—3 —a— ( -—
and A,-—‘\l a -!‘(1 w,)rdr 4.5.1)

and, in general, the factors a,, ¢,, and &,, where

o +0,+0,=1, (4.5.2)
we have
A, + A, + 054, = A, (4.5.3)

where A; = extrapolated displacement thickness obtained by extrapoiating the

displacement thickness calculated from three individual solutions.
We also define, u; = o u, + oLu, + 0, (4.5.4)

Then,

[T 1 .‘,U [

*\/}q--‘[{(aﬁaﬁ%)-ug}rdr: 73-{{“1+%+%-a:“1‘%%‘%*}’dr
Ua -f' ( [

= —Q, (l—u)rdr+a2 (l-ui)rdr+a'! (1_u3)rdr}
W‘{ i j f

=LA, + LA, + LA, = A, (4.5.5)
Hence, the order of operation in numerically calculating the extrapolated displacement

thickness is of no consequence.




Obtaining an extrapolated momentum thickness requires the numerical integration

of the already extrapolated axial velocity profile within the integrand.
Defining

’aU I
6, = E—!u,(l —u,)rdr,

_Uﬂ
6,= av—x—fu,(l—u,)rdr,
1

and

aU
93=‘\/7x-

and inserting u into the expression for momentum thickness yields

Ua ( Ua (
\/;; f ug(l-u£>rdr=\/7x— (o + 0y~ s - ok -
1 1

=204, 0,1, Uy — 200,00, Uy — 200,001, )1 dr 45.7)

(1 —w,)rdr. (4.5.6)

—&—ﬁ t

But,

0,0, + 0,0, + 0,0, =\ / %g f (@, - au’ +au, - a,u +au, ~ au)rdr. (4.5.8)
1

Comparison of (4.5.7) to (4.5.8) shows that
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Ua |
N / ;;[uE(l —ugrdr # 0,0, + 0,8, + 0,8,

and that the extrapolated velocity is needed initially for the proper calculation.

Three solutions, u,(h', k"), w,(h? k?) and u,(h* k?), are obtained in the range,

E=0 1o &=1000, and are extrapolated using the formula in Appendix F. The
derivation to obtain the formula for the fourth order solution is also presented in
Appendix F. The same extrapolations apply to the three dependent variables, viz, P,
0,andR.

Step sizes are small so that a very accurate solution is obtained and used for
comparison latez on. Step sizes are small throughout the entire range, especially in
the cross stream direction, so that interpolations are not needed further down stream
where rapid changes in profiles occur near the wall. An n,, of 8 is settled upon after
some experimentation. An ETA-10 Mainframe computer was used, which sustains 16
significant figures.

The mesh that is employed is given in Table 4.5.1.

For the range £ =0 to £ =0.005, the three solutions, i.e.,

u(h',5%%), u,(2h', k%) and uy(h',k%),combine, using equation F.5 from Appendix F,

to give :

_ (33U - u, - 8uy)

g 5 —4C(h") - 25D (k%' 4.59)
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Assuming that the constants C and D are O(1), the solution is reliable to 8 decimal
places.

For the range £ =0.005 to & = 0.05 the solutions given by :

u,(h',9k*), u,(2h',k*) and wu,(h',k*), combine to give :
dp= 22 4C(h') - 81D (k%'. (4.5.10)

In this range, the solution is reliable to at least 6 decimal places.
For the range & =0.05 to £ =0.1 the solutions, given by :
u(h',10k%), u,(2h',k*) and u,(h',k*), combine to give :

399
up = 2L 524 n'y - 100D (Y, @4.5.11)

The solution is reliable to at least 6 decimal places, again.
For € =0.1 to € =1000.0 the solutions given by :
u,(h',2k%, wy(2h', k%) and u,(h',k*), combine to give :

Suy—uy -
Ug = (—“1—5‘———-"3—) —4C(h'y -4D (K%', 4.5.12)
Here, the solution is reliable to at least 4 decimal places.

At & =0, step sizes in the downstream direction do not apply. Hence, u, and u, are
identical. Combining solutions u, and u, gives :

_ (4uy - u,)

uy == -4C ("’ (4.5.13)
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Table 4.5.3 compares the values obtained for the skin-friction parameter of the
three individual solutions with the extrapolated solution. Each individual solution
appears to be accurate to at least 3 decimal places.

Final results of the extrapolated solution for the range £ =0 to & = 1000 will be

presented in the final chapter.

Solutions have been obtained using a 386 personal computer, which will be
referred to as PC, in an attempt to minimize expense and maximize efficiency of the
method. Fewer discretized points are used creating larger mesh sizes to promote effi-
ciency. Since the most rapid changes in the dependent variables occur near the wall,
and since these changes become even sharper as one moves downstream, the highest
concentration of discretized points within the numerical grid should be close to the
wall. The most gradual changes occur near the boundary layer edge. As one moves
downstream, these changes become even more gradual. Thus, the lowest concentra-
tion of points within the grid should be near the boundary layer edge.

In approaching the needle case, the numerical solution changes more gradually in
the &-direction. Thus, progressively larger step sizes are used as & becomes larger.
To demonstrate this, later on a comparison is made between the solution obtained on
the ETA-10 computer using the smaller mesh to solution obtained on the PC using the
larger mesh.

The mesh employed is in Table 4.5.2.




For £ starting at 0 and going to 1000, three solutions given by :

u,(2h%2k%), u,(h%,2k% and u,(2h? k°), combine, using equation F.5 from Appendix
F, to give :

g 3 -36C(hY) -36D(k*)’. 4.5.14)

The extrapolated skin-friction parameter is compared with the individual solutions
obtained on the PC in Table 4.5.4. These results demonstrate more clearly the gain in
accuracy obtained in applying Richardson extrapolation to the numerical solutions
obtained on a coarse grid.

Comparisons of the solutions obtained on the ETA-10 with those obtained on the
PC show excellent agreement. Table 4.5.5 compares the extrapolated skin-friction
parameters. Table 4.5.6 and 4.5.7 compares momentum and displacement thickness.
Tables 4.5.8-11 compares the velocity component and shear stress parameter profiles.
The comparisons indicate that solutions obtained on the PC with a larger mesh agree
very well with solutions obtained on the ETA-10. Hence, the large jumps in step sizes
appear to be justifiable.

A comparison of skin-friction parameter obtained by Cebeci and Smith (1974),

Cebeci (1968), and the method of this chapter in Figure 4.5.2. Agreement between all

three methods is very good.
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4.6 METHOD USING PRIMITIVE VARIABLES WITH STRETCHED COOR-
DINATES

The Keller’s Box method is now used with primitive variables, but with the
stretched coordinates of Jaffe and Okamura (1968). A direct comparison of results of
this section is made with results of Jaffe and Okamura (1968). This primitive variable
approach has a different discretization to that of the stream function approach of
Cebeci and Smith (1974). This has already been pointed out in Section 4.2.

Using the stretched coordinates of Jaffe and Okamura (1968), i.¢.,

n,=—-—r g ,and H=1+§n,

and &, we take the primitive variables, P =u and Q =v, with the definition,
< R

g=mp-E:\Ho,

and transform equations 1.2.6-7 using the relations :

—-'_VT:ET‘_JB"]

29 (1+§m)a2
Eam g o

L
2

and

e
ox R§2 & Vam,

The governing equations 1.2.6-7 are rewritten as :
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(HR), +QR =28PP, (4.6.1)
and

0, —2P =2EP,, (4.6.2)
where R =P, , (4.6.3)
with the boundary conditions :

P=0=0=0atn,=0and P -1 asn, — oo, (4.6.4)

Discretizing (4.6.3) at the edge of box in Figure 4.2.1a gives :
h i — —
-1 1) _
P P! > (Ri +R ) =0 (4.6.5)

Discretizing (4.6.1) and (4.6.2) over the box centered at (j-1/2,n-1/2) in Figure

4.2.1b givss:

HR, -HI"'R, ' +h Q. "R - :;, ”“(P' =5t (4.6.6)
and

Q",'-Qﬁ"-h,(l+(§‘1£"“")J(P’+P' =0/ -0 +h1

R (46.7)

ks

where
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. R 2hE,
S =HIR\-HI_R,_ -hQ! VR -2 L Py

and H! =1 +E,1.

The boundary conditions become :
=0, P/ =1, and 0°=0. (4.6.8)
The method is still second order. Note that 11, is replaced by M, in Figure 4.5.1.
The discretization is performed in a similar way for equations 4.6.1-3 as it was for

equations 4.2.1-3 in Section 4.5.

4.7 SOLUTIONS TO THE DISCRETIZED EQUATIONS
Discretized equations 4.6.5-7 are solved using Newton’s method in the same way

as the equations in section 4.2.4-6. The resulting equations are :

80 /,~ 801, " + FAC, (8P + 8P Y =m) (4.7.1)
P~ 8P}y ~ (SR(,,+8R(,) ) (4.7.2)
BB iy + 0480 o+ YBP + Bl SR, + 00801 +38PL =1, (4.7.3)
where
A

th=Si1+ (P ~HIR +H, 'R =h Q' "R,

ks




G+8.0)
kn

m(.) Q-0 1+h(
. h
=Pl ~Po+ Z(R{‘) +Ry')

‘ h .
B'('i)EH:"'EJin) "

h;

—j-112
%)—ZR:O ’
; 2h’&n—ll2 i-12
Yo=- jkn P(Ji) J

hi - _
Bl =-HI"+ E’Q(,-)"’,

+&,
FACl,= ( (&, +Ea 1)]
ky
with the boundary conditions :

80,=8P;,=8P;=0 i=0,1,...
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)(P.{_1+ )-0p+ 04" - FAC[(P{,+P;"),

4.7.4)

4.7.5)

This system of equations is put into matrix and block matrix form in the same way

as the system of equations in section 4.3. The block tridiagonal system which is

obtained is the same as in section 4.3 using the same variable names and boundary

conditions, except that the definitions of the matrix elements and variables, given

above in 4.7.1-5, are different. Thus, the same block tridiagonal factorization

procedure is also used.
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4.8 GENERAL ITERATION STEP
The numerical procedure is the same as in section 4.4. The differences that are

encountered are included in this section.
At§ =0, i.e., the Blasius limit, the initial profile start the iteration procedure, is a
linear profile in n;, which satisfies the boundary conditions, i.e.,

n,
v 4.11.1
P . ( )

Differentiating (4.8.1) with respect to 1, gives the initial profile for R, i.e.,
= 1
R=—-—. (4.11.2)

Substituting (4.8.1) into (4.6.2) with § =0, and integrating with respect to 1y, gives :

n
).

0= 4.11.3)

Again, when starting the numerical procedure at a value of £ > 0, a known solution
is used as the first iterate. This solution is either previously obtained or an estimate at
that particular step in & is used.

The general stage in calculation is exactly the same as in section 4.4. The

convergence criterion is the same as condition 4.4.6 and it, still, brings about three

iterations at each new step in £,
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It is found that the boundary layer grows coasiderably as one moves downstream.
This is due to using the stretched coordinates. Also, condition 4.4.7 that tests the
shear stress parameter at the edge of the boundary layer to see whether the numerical
grid needs to be enlarged in order to accommodate the growth of the boundary layer
had to be adjusted. The reason for this is that the displacement and momentum thick-
ness were found to be much too small at larger &-values when compared with the pre-
viously obtained solutions in sections 4.4 and 4.5 or with the solutions of Glauert and
Lighthill (1955). However, the skin-friction coefficient and velocity profiles obtained
compared very well to solutions obtained in sections 4.4 and 4.5.

In order to obtain the proper values of the integral quantities, two approaches were

taken. First, the tolerance in condition 4.4.7 was tightened, i.e.,
|IR(E,,nJ) < tolerance = 107 (4.8.1)

Note, that this is a much smaller value than that suggested by Cebeci and Smith
(1974). Second, a new procedure is used. At each new step in &, the displacement
and momentum thickress are calculated. A new calculation is performed at the same
E-value, but with an enlarged numerical grid. Then, the former value of the displace-
ment thickness is compared to the newer value. Similarly for the momentum thick-
ness. This process is repeated until the comparison demonstrates convergence to 4
decimal places for both integral quantities. Then we move on to the next step in £,
The result of each approach obtained integral quantities that matched with those of

the Glauert and Lighthill (1955) and with the previous solution in Sections 4.4 and
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4.5. It was found that the skin-friction and axial velocity profiles matched more
closely with previous solutions. Of course, both approaches lead to prolonged
computer use because of repeated calculation at each step in & in order to satisfy the
new conditional criteria. It was noticed that the values for the boundary layer
thickness were greatly increased over the values obtained using the previous criterion
447,

When the numerical grid needs to be enlarged, the dependent variables must be
calculated and implemented into the extended region. The values of the dependent

variables are calculated as follows:
PE,.m)=1,

E(&n’ n;) = E(éu’nl)’

where

hy=4am,, M, ST, ST,

7, is the dependent variable in the extended grid region,
T,_ is the previous boundary layer edge distance at n — 1

and

n;._ is the new boundary layer edge distance at n.

Integrating equation 4.6.2 and recalling that at the edge of the boundary layer,
P =1 and P, =0, gives :
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0@, n;)=24n,+0E,n) (4.11.5)
An 1. =6 is used to begin the numerical procedure, but this soon increases as we

move downstream.

4.9 RICHARDSON EXTRAPOLATION

Richardson extrapolation is applied to three numerical solutions obtained using
three mesh sizes.
The solutici*s given as a function of mesh sizes are :
u,(2h%,2k%), u(h?,2k*) and w,(2h* k*), and are obtained for £ =0 to £ = 1000. The
mesh is relatively small so that a very accurate solution is obtained to compare with
previous solutions and so that interpolations are avoided further down stream where
closely spaced mesh points are needed to approximate the rapidly changing profiles
near the wall.

The mesh employed is given in Figure 4.9.1.

Applying equation F.5 from Appendix F, to the three individual solutions yields :

_ (duy = Suy +4u)

Ug 3 ~36C(h)" - 36D (k)" 4.9.1)

It is computationally more inconvenient to extrapolate the solutions with the
growth of the numerical grid because each individual soiution does not always reach a

common 1..).
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Final results of the extrapolated solution for the range & =0 to § = 1000 will be

presented in the final chapter.

The skin-friction coefficient obtained by the individual solutions is compared to
the extrapolated solution Table 4.9.2. Although the individual results are quite
accurate, the extrapolated results appear to be more relevant for the larger values of £.

Table 4.9.3 compares the skin-friction obtained from the previous solution using
similarity coordinates with the solution of this section using stretched coordinates.
Agreement is excellent with the largest difference being less than 0.01 %.

Table 4.9.4 compares the displacement thickness obtained previously using
similarity coordinates in section 4.5 to that obtained in this section and to that
obtained by Jaffe and Okamura (1968). The solutions obtained in this chapter agree
very well with each other with the largest difference being less than 0.6 %. The
largest difference between either of the solutions obtained in this chapter to that of
Jaffe and Okamura is less than .6 %.

The skin-friction coefficient obtained by the method of this section is compared to
that of Jaffe and Okamura (1968). The agreement is excellent, with the largest
difference being less than .2 %.

The momentum thickness obtained by the methods of this chapter are compared
with that of Jaffe and Okamura (1968). Agreement is =xcellent between the three
solutions. The largest difference between the solutions of this chapter is less than .2

%, while the largest difference between either of these solutions and the momentum
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thickness obtained by Jaffe and Okamura is less than .6 %.

The Keller’s Box method using similarity coordinates has an advantage over the
method using stretched coordinates in that discretized points do not need to be added
as we move downstream to accommodate the growing boundary layer. This is
because boundary layer growth is scaled out using these coordinates and , therefore,
there is no need for the numerical grid to be enlarged. However, the method using
stretched coordinates has a slight advantage over the method using similarity
coordinates because fewer points are needed to maintain similar accuracy near the
wall. The further one moves downstream, more points need to be added near the wall
to improve accuracy regardless of the coordinates being used. We feel that the
efficiency of the Keller’s Box method using either stretched coordinates or similarity

coordinates is nearly the same, provided that an optimally spaced non-uniform grid is

used in each case.
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Figure 4.2.1 Box used for discretization in Keller Box method
for (a) equation 4.2.3 and (b) momentum and continuity equations 4.2.1-2.
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VARIABLE GRID
Streamwise Direction Cross-stream Direction
Interval Step Size Interval Step Size
0<§<0.005 k*=0.001 0<n,<0.01 h'=107
0.005<£<0.1 |[k3=0.005 001<n,<05 |n'=10"
0.1<E£<1000. |{k*=0.05 0.5<1,£30 |a'=10"
Table 4.5.1 Step sizes used to obtain [3.0<n, <80  |4'=0.005
the overall solution.
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s a7
2/2 L U
§ MESH 1 MESH2 MESH3 | EXTRAPOLATED
0.000 0.46960003 0.46960016 0.46960003 0.46959999
0.005 0.47082568 0.47082610 0.47082597 0.47082594
0.100 0.49357367 0.49360100 0.49360087 0.49360110
0.200 0.51657479 0.51661179 0.51661165 0.51662389
0.300 0.53874271 0.53879942 0.53879927 0.53881807
0.400 0.56021925 0.56026845 0.56026830 0.56028460
0.500 0.58105720 0.58110605 0.58110589 0.58112207
0.600 0.601340757 0.60138407 0.60138391 0.60139830
0.700 0.62112024 0.62116197 0.62116181 0.62117561
0.800 0.64045163 0.64048945 0.64048929 0.64050179
0.900 0.65937242 0 65940850 0.65940834 0.65942026
1.000 0.67792186 0.67795497 0.67795480 0.67796572
2.000 0.8481338C 0.84815333 0.84815314 0.84815952
3.000 0.99998272 0.99999615 0.99999596 1.00000031
4.000 1.14037394 1.14038401 1.14038381 1.14038703
5.000 1.27269019 1.27269815 1.27269796 1.27270049
10.000 1.86278657 1.86279025 1.86279009 1.86279121
£0.000 5.41314674 5.41314633 5.41314722 541314768
100.000 9.06272788 9.06272394 9.06272808 9.06272953
500.000 | 32.56930776 32.56924110 32.56930778 32.56933001
600.000 | 37.85724221 37.85715578 37.85724223 37.85727105
700.000 | 43.02335327 43.02324611 43.02335328 43.02338901 i

800.000 | 48.08928235 48.08915412 48.08928296 48.08932591
900.600 | 53.07057016 53.07041864 53.07057017 53.07062068
1000.000 | 57.97886422 57.97868892 57.97886423 57.97892267

Table 4.5.3 Comparison of skin-friction coefficient from individual
solutions at different mesh sizes from the overall Keller Box method vs.
the results from Richardson extrapolation.

Results cbtained on ETA-10.




VARIABLE GRID
Streamwise Direction Cross-stream Direction
Interval Step Size Interval Step Size
0<&§<0.005 K*=25%x10" Jos<n,<10™ h*=5x10"
0005<E<005 |(*=225%x107 |107<n,£10” |a*=225x10"
005sE<0.1 |k’ =0.025 10°sn, <107 |A*=225%10"
0.1<£<10 k=005 102<n,£0.05 |A*=0.005
1.0<£<5.0 K=0.125 0.05s1,£80 |4*=0.025
50<£<10.0 k=025
10s§<40 k=05
40<E<50 k=10
50<E <100 k=25
100 <£ <200 k=50
200<E<300  |42=100
300<E<500  (£°=25.0
500<E<1000 [£*=50.0 Table 4.5.2 Step sizes used to obtain

the overall solution on PC.
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£ a7,
2/2 4 U
3 MESH 1 MESH2 MESH3 | EXTRAPOLATED
o
0.000 0.4696229067 0.4696057179 0.4696229067 0.4695999883
0.005 0.4708486610 0.4708313945 0.4708488730 0.4708259217
0.100 0.4935985068 0.4935798440 0.4936198771 0.4936021168
0.200 0.5166013854 0.5165814077 0.5166359871 0.5166208774
0.300 0.5387708612 0.5387497102 0.5388263765 0.5383166803
0.400 0.5602488029 0.5602265971 0.5602972457 0.5602837856
0.500 0.5810879797 0.5810648531 0.5811362817 0.5811215469
0.6 0.6013724507 0.6013485003 0.6014155047 0.6013979222
0.700 0.6211530628 0.8211284066 0.6211944243 0.6211753365
0.800 0.6404852779 0.6404600034 0.6405227638 0.6405015598
0.900 0.6594067425 0.6593809582 0.6594425311 0.6594200816
1.000 0.6779567499 0.6779305370 0.6779895762 0.6779655678
2.000 0.8481041855 0.8480784827 0.8481715142 0.8481596867
3.000 0.9999470216 0.9999299109 1.0000041171 1.0000003347
4.000 1.1403261706 1.1403254169 1.1403725715 1.1403870335
5.000 1.2726184559 1.2726416916 1.2726567296 1.2727004684
10.000 1.8623976964 1.8626515439 1.8624388959 1.8627910924
50.000 5.4036951874 5.410734109%4 5.4037323339 5.4131299454
100.000 9.0314015499 9.0547177805 9.0315028885 9.0626249755
500.000 32.1062730759 32.4482679292 32.1069316118 32.5631442615
600.000 37.2248170188 37.6902016220 37.2261273587 37.8470769429
700.000 42 2010274776 42.8048382324 42.2023133207 43.0078229415
800.000 47.0572153693 47.8131535603 47.0585321163 48.0668886200
900.000 51.8105655458 §2.7311747458 51.8118043779 5§3.0396962553
1000.000 56.4740340989 57.5706779721 56.4752281461 57.9378179928

Table 4.5.4 Comparison of skin-friction coefficient of individual solutions
obtained by overall Keller Box method vs.resuits of Richardson extrapolation.
Solutions obtained on PC.




£ arT,
2/2 LU
3 ETA-10 PC
0.000 0.46959999 0.46959999
0.005 0.47082594 0.47082592
0.100 0.49360110 0.49360212
0.200 0.51662389 0.51662088
0.300 0.53881807 0.53881668
0.400 0.56028460 0.56028379
0.500 0.58112207 0.58112155
0.600 0.60139830 0.60139792
0.700 0.62117561 0.62117534
0.800 0.64050179 0.64050156
0.900 0.65942026 0.65942008
1.000 0.67796572 0.67796557
2.000 0.84815952 0.84815969
3.000 1.00000031 1.00000033
4.000 1.14038703 1.14038703
5.000 1.27270049 1.27270047
10.000 1.86279121 1.86279109
20.000 2.87157226 2.87157108
30.000 3.77266300 3.77265889
49.000 4.61329320 4.61328376
50.000 5.41314768 5.41312995
100.000 9.06272953 9.06262498
500.000 32.56933001 32.56314426
600.000 37.85727105 37.84707694
700.000 43.02338901 43.00782294
800.000 48.08932591 48.06688862
900.000 53.07062068 53.03969626
1000.000 57.97892267 5793781799

Table 4.5.5 Comparison of skin-friction coefficient
obtained from overall Keller Box method using similarity

coordinates solved on ETA-10 vs. PC.




0

¢ ETA-10 PC
0.000 0.664114675 0.663330627
0.005 0.664981884 0.664195767
0.100 0.681211130 0.680386151
0.200 0.697821300 0.696964034
0.300 0.714014858 0.713118065
0.400 0.729826532 0.728893091
0.500 0.745294661 0.744326113
0.600 0.760450504 0.759447969
0.700 0.775321409 0.774285815
0.800 0.789930044 0.788862175
0.900 0.804296734 0.803197292
1.000 N.818438664 0.817308288
2.000 0.950202693 0.948787943
3.000 1.069630496 1.067961247
4.000 1.180870349 1.178964707
5.C00 1.286121546 1.283991995
10.000 1.757 145077 1.754001877
50.000 4571826736 4.561979736
100.000 7.430662374 7.412944464
500.000 25.551887904 25.469602945
600.000 29.595753625 29.496484294
700.000 33.539813994 33.423009017
800.000 37.401987137 37.267048091
900.000 41,195111530 41.04.,97520
1000.000 44928790121 | 44.755623350

Table 4.5.7 Comparison of momentum thickness

obtained by overall Keller Box method using similarity coordinates

solved on ETA-10vs. PC.
Percentage difference is less than 0.5 %.
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£ ETA-10 PC
0.000 1.7208208642 1.7215845980
0.005 1.7209131931 1.7216789300
0.100 1.7235724599 1.7243726415
0.200 1.7279174598 1.7287702055
0.300 1.7335048030 1.7343880154
0.400 1.7400693492 1.7409858794
0.500 1.7474056019 1.7483556425
0.600 1.7553689550 1.7563521176
0.700 1.7638431161 1.7648588431
0.800 1.7727387723 1.77378€4951
0.500 1.7819835872 1.7830627418
1.000 1.7915199730 1.7926300369
2.000 1.8956073833 1.8970038974
3.000 2.0050810637 2.0067476875
4.000 2.1145260576 2.1164266164
5.000 2.2223983811 2.2245320104
10.000 2.7320531449 2.7352655335
50.000 5.9438426511 5.9549414801
100.000 9.2126942597 9.2341085412
500.000 29.6022240549 29.7199153103
600.000 34.1076413974 34.2507403401
700.000 38.4922572948 38.6606099822
800.000 42.7779704042 42.9712592353
900.000 46.9804467879 47.1982400523
1000.000 51.1113918949 51.3531552105

Table 4.5.6 Comparison of displacement thickness obtained

by overall Keller Box method using similarity
coordinates solved on ETA-10 vs. PC.
Percentage difference is less than 0.5 %.
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Rt £ aT
t-o 2/2 2/2 kU
n 1 ETA-10 PC ETA-10 PC ETA-10 PC

0.000 0.00000000 0.00000000 0.0000000000 0.0000000000 0.46959999 10.46959999
0.001 0.00046960 0.00046961 0.0000002396 0.0000002396 0.46959999 | 0.46959999
0.010 0.00469600 0.00469600 0.0000234800 0.0000234800 0.46959995 |0.46059995
0.020 0.00939200 0.00939199 0.0000939200 0.0000039198 0.46959970 | 0.46959970
0.030 0.01408799 0.01408799 0.0002113197 0.0002113197 0.46959800 | 0.46859900
0.040 0.01878398 0.01878397 0.0003756792 0.0003756888 0.46959764 |0.46959763
0.050 0.02347994 0.02347995 0.00058608970 0.0005868975 0.46959540 | 0.46959539
0.100 0.04695807 0.04695908 €.2023479270 0.0023479280 0.46956324 | 0.46956323
0.500 0.23422747 0.22422747 0.05847 10450 0.0584710550 0.46503036 |<.45503036
1.000 0.46063258 0.46063258 0.2276424900 0.2276424800 0.43437914 ] 0.43437915
2.000 0.81669462 0.81669462 0.74659824100 0.7465824100 0.25566917 |0.25566918
3.000 0.96805461 0.96905460 1.1115858200 1.1115958800 0.06771035 |0.06771035
4,000 0.99777010 0.99777009 1.2071938400 1.2071938900 0.00687410 |0.00687410
5.000 0.99993586 0.99993587 1.2164447800 1.2164445200 0.00025779 |0.00025779
6.000 0.99999529 0.99099929 1.2167762200 1.2167762200 0.00000356 |0.00000356
7.000 1.00000000 1.00000000 1.2167806200 1.2167806300 0.00000002 10.00000002
8.000 1.00000000 1.00000000 1.2167806200 1.2167806300 0.00000000 | 0.00000000

Table 4.5.8 Comparison of velocity and shear stress profiles

between solutions obtained by the cverali Keller Box method soived

on ETA-10 vs. PC at

¢ =0
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RE £ aT
=1 2/2 2/2 4 U
4 ETA-10 PC ETA-10 PC ETA-10 PC
0.000 | | 0.00000000 | 0.00000000 0.0000000000 0.0000000000 0.67796572 | 0.67796558
0.001 | [ 0.00067784 | 0.00067784 0.0000002480 0.0000002480 067772611 0.67772597
0.010 | [ 0.00676770 | 0.00676770 0.0000246691 0.6000246790 0.67567713 | 0.67557699
0.020 { | 0.01351160 | 0.01351160 0.0000984566 0.0000984666 0.67320500 | 0.67320483
0.030 | [ 0.02023186 |0.02023t85 0.0002209896 0.0002209992 0.67084878 | 0.67084864
0.040 | | 0.02692862 | 0.02692862 0.0003919647 0.0003919746 0.66850799 | 0.66850784
0.050 | | 0.03360206 | 0.03360204 0.0006110219 0.0006110700 066618214 | 0.66618199
0.100 | | 0.06662424 | 0.06662423 0.0024161910 0.0024162576 0.65475968 | 0.65475953
0.500 | | 0.31133243 | 0.31133236 0.0552060633 0.0552075624 0.56978598 | 0.56978586
1.000 | | 0.56880503 | 0.56860403 0.1941526507 0.1941570413 0.45683212 | 0.45683206
2.000 | | 0.89207660 | 0.89207651 0.5122239663 0.5122313020 0.18965535 | 0.18965541
3.000 | { 0.96799633 | 0.98799630 0.6084281283 0.6084353806 0.03187460 | 0.03187463
4.000 | | 0.99947920 | 0.99947919 0.5509639084 0.5509703135 0.00188831 | 0.00188832
5.000 [ | 0.99999154 | 0.99999156 0.4824392483 0.4824448943 0.00003903 | 0.00003903
6.000 | 1 0.59999995 |0.99999995 0.4278310932 0.4278360142 0.00000028 | 0.00000028
7.000 | | 1.00000000 | 1.00000000 0.3843013995 0.3843058198 0.00000000 | 0.00000000
8.000 00000000 ___| 1.00000000 0.3488113511 __| 03488153632 ©.00000000 .00000000
Table 4.5.9 Comparison of velocity and shear stress profiles obtained
by overall Keller BOx method solved on ETA-10 vs. PC at £ =1.
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RE £ a1
t o u 2/2 2/2 4 U
n | ETA-10 PC ETA-10 PC ETA-10 PG

0.000 || 0.00000000 0.00000000 0.0000000000 0.0000000000 1.86279121 1.86279109
0.001 |{0.00185850 0.00185851 0.0000003847 0.0000003847 1.85622646 | 1.85622835
0.010 |{]0.01830617 0.01830617 0.0000373822 0.0000373726 1.79918034 1.798918022
0.020 || 0.03589760 0.03599761 0.0001462209 0.0001462211 1.73976901 1.73976888
0.030 || 005311420 |0.05311420 0.0003219919 | 0.0003220010 1.68415308 | 1.68415296
0.040 || 0.06969214 0.06969214 0.0005606290 0.0005606640 1.63197846 1.63197838
0.050 ||0.08576420 0.08576418 0.0008585449 0.0008585779 1.58293353 1.58293343
0.100 || 0.15949804 0.15949804 0.0031327329 0.0031329029 1.37602434 1.37602426
0.500 ||0.83440759 0.53440760 0.0487934735 0.0487956608 0.65932547 0.65932545
1.000 || 0.77698877 0.77608878 0.1319494007 0.1319525041 0.34955878 | 0.34955875
2.000 |]0.96634958 0.96634958 0.2379043387 0.2379071871 0.07628782 |0.07629781
3.000 || 0.99774147 0.95774147 0.2181407918 0.2181429311 0.00711467 | 0.00711468
4.000 || 0.99933930 0.99993932 0.1727916490 0.1727933748 0.00024815 | 0.00024814
5.000 }10.99999937 0.99999937 0.1402900121 0.1402913479 0.00000318  |0.00000319
6.000 || 1 00000000 1.00000000 0.1179836954 0.1179648181 0.00000001 0.00000001
7.000 ] 1.00000000 1.00000000 0.1017662166 0.1017671852 0.00000000 10.00000000

1.0000000u__| 1,00000000 47 | 0.0894806805 0.00000000 | 0.00000000
Table 4.5.10 Comparison of vedocity and shear stress profiles abtained
by the overall Keller Box method solved on the ETA-10 vs. PC at £ =10.




K £t
t.m3 u ol Sl

2a 2y k)
Tl ETM0 PG || ETAO PG || ETMD R
0.000 {1 0.00000000 (0.00000000 || 0.0000000000 | 00000000000 (5797892267 15798781799
0.001 |{0.04964497 1004961076 || 0.0000037953 [0.0000038202 |1428M603%2 |42.80423535
0010 || 024794215 1024825730 |{ 00001735761 | 0.0001645526 |{12783237%8 |[12.77417641
0.020 |{0.34245552 1034282200 || 0.0004756130 | 00004624793 || 7.18344308 | 717835441
0.030 |]040202019 {040237036 |1 00008378663 (0.0008230726 || 499510706 | 499157029
0.040 || 044563199 (044594735 1100012407894 00012241992 ([ 382858526 | 382587604
0.050 | 048003681 (048033208 || 00016745209 | 0.0016560488 310350939 | 3.10140480
0.100 |]0.58919824 {0.58044324 |1 00041486026 | 0.0041211376 150201100 | 1.59179217
0500 |0.04528012 [0.84535724 || 00295509563 | 0.0294764451 0.3054345% | 0.30524679
1000 1094133178 10.04135543 || 0.0586674713 10.0%85774757 || 0.11649980 | 0.116443%3
2000 1099396040 [0.99306213 || 00755844844 (00755001886 |1 0.01582560 | 0.01582055
3000 [}099970756 (0.99970761 || 0.0603018280 |0.06024865%2 000100958 | 0.00100328
4000 |10.99999407 [0.99999406 || 0.0453816779 ) 0.0459415983 || 0.00002580 | 0.00002579
5000 11099999995 {0.99900005 || 0.0368111349 [ 0.0367791078 || 0.00000025 | 0.000000%5
£.000 111.00000000 |1.00000000 || 00306733439 | 0.0306523662 |1 0.00000000 | 0.00000000
7000 111.00000000 {1.00000000 || 0.0262080789 | 0026275225 || 0.00000000 | 0.00000000
8.000 |]1.00000000 11.00000000 |]0.0230119654 [ 0.0220919834 || 0.00000000 | 0.000000

Tabie 4.5.11 Gompanson of velocity and shear stess pofies obtained by

overal Kellr Box method solved on ETA-10vs. PC
a ¢ =100,
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VARIABLE GRID

Streamwise Direction Cross-stream Direction

Interval Step Size Interval Step Size

0<£<0005 |,’=25x10"° |0<n,<005 [A*=125x10"

0.005<£<005 |x*=225%x102 [005<n,<80 |A*=0.0125

0.05<£<0.1 k*=0.025 80<sn,<180 |A%=0.025

0.1£<1.0 k> =005 18.0<n,<37.5 [A*=0.075

1.0<£<5.0 K =0.125 37.5sn,5550 |A*=0.175

50<£<100 k=025 550<m,<700 |A*=.375

10€E<40 =05 70.0<1, <860 |[42=0.8

40<§<50 =10 86.0<7, h*=10

50<E<100 =25

100 <€ <200 =50

200 <£<300 *=100

300<E<500  |k*=250

500<E<1000 |k®=500 Table 4.9.] Step sizes used to obtain
overall solution with PC using
stretched coordinates.
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4o,
221U
3 MESH 1 MESH2 MESH3 | EXTRAPOLATED
0.000 0.66417860 0.66413066 0.66417860 0.664114680
0.010 0.66591223 0.66586446 0.66591219 0.665848483
0.100 0.69813443 0.69809008 0.69811906 0.698054803
0.200 0.73068687 0.73064622 0.73068167 0.730625737
0.300 0.76210352 0.76206681 0.76205947 0.761995840
0.400 0.79245155 0.79241896 0.79241535 0.792359830
0.500 0.82190543 0.82187712 0.82187679 0.821829497
0.600 | 0.85057675 0.85055292 0.85054636 0.850504457
0.700 0.87853378 0.87851463 0.87850841 0.878474420
0.800 0.90585916 0.90584489 0.90583330 0.905805653
0.900 0.93260298 0.93259383 0.93258043 0.932560713
1.000 0.95882295 0.95881913 0.95880049 0.958787910
2.000 1.19948747 1.19954959 1.19941791 1.199477550
3.000 1.41411643 1.41426691 1.41404447 1.414221123
4.000 1.61252790 1.61278686 1.61245136 1.612784460
5.000 1.79950028 1.79988511 1.79944097 1.799934307
10.000 2.63312486 2.63431944 2.63305348 2.634622460
50.000 7.64480952 7.65387456 7.64529680 7.657545947
100.000 | 12.79508431 12.81217540 12.79534208 12.818216123
500.000 | 45.97890870 46.04134771 45.97773464 46.060595300
600.000 | 53.44373197 53.51707805 53.44181819 53.538975037
700.000 | 60.73542672 60.82017251 60.73283595 60.844966747
800.000 | 67.88386738 67.98067182 67.88116721 68.009339740
900.000 | 74.91135802 75.02102680 74.90865225 75.053575367
1000.000 | 81.83417017 81.95763243 81.83162767 81.995396517
Table 4.9.2 Comparison of skin-friction coefficient of individual
Keller Box solutions using stretched coordinates with Richardson
extrapolated results.




Table 4.9.3 Skin-friction coefficient obtained by overall Keller Box method

£ 9T
2/2 4V
£ SIMILARITY | STRETCHED
0.000 0.46959999 0.46959999
0.050 0.48173322 0.48173567
0.100 0.49360110 0.49359928
0.200 0.51662389 0.51663041
0.300 0.53881807 0.53881243
0.400 0.56028460 0.56028301
0.500 0.58112207 0.58112121
0.600 0.60139830 0.60139747
0.700 0.62117561 0.62117522
0.800 0.64050179 0.64050132
0.900 0.65942026 0.65942000
1.000 0.67796572 0.67796543
2.000 0.84815952 0.84815871
3.000 1.00000031 1.00000535
4.000 1.14038703 1.14041083
5.000 1.27270049 1.27274575
10.000 1.86279121 1.8629594 1
$0.000 5.41314768 5.41470267
100.000 9.06272953 9.06384754
500.000 32.56933001 32.56975928
600.000 37.85727108 37.85777231
700.000 43.02338901 43.02388859
800.000 48.08932591 48.08986531
900.000 53.07062068 53.07117494
1000000 | 57.97892267 | 57.97950090

using similarity coordinates vs stretched coordinates.




A
3 SIMILARITY | STRETCHED | JO (1968)
0.000 1.72082086 1.72078800 1.7208
0.005 1.72091319 1.72088000 1.721
0.050 1.72196839 1.72193300 1.722
0.100 1.72357246 1.72354100 -
0.200 1.72791746 1.72788000 1.728
0.30¢ 1.73350480 $.73348100 -
0.400 1.74006935 1.74003500 1.740
0.500 1.74740560 1.74736800 -
0.600 1.75536896 1.75532900 1.755
0.700 1.76384312 1.76380000 -
0.800 1.77273877 1.77269300 1.773
0.900 1,78198359 1.78183500 -
1.000 1.79151997 1.79146800 1.792
2.c00 1.89560738 1.89526000 1.896
3.000 2.00509106 2.00425900 2.005
4.000 2.11452606 2.11312000 2.115
5.000 2.22239838 2.22038100 2.222
10.000 2.73205314 2.72578200 2./
20.000 3.63992185 3.62066300 3.637
30.000 4.45815149 4.43086900 4.449
40.000 5.22060547 5.19357700 5.185
50.000 5.94384265 5.92159700 -
100.000 9.21269426 9.19831600 .
500.000 29.60222405 29.56097000 -
600.000 34.10764140 34.06005000 -
700.000 38.49225729 38.43863000 -
800.000 42.77797040 42.71741000 -
900.000 46.98044679 46.91220000 -
1000,000 51.11139189 51.03465000 -
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Table 4.9.4 Comparison of displacement thickness obtained by overall

Keller Box method using similarity vs. stretched coordinates

and vs. the solution obtained by Jaffe and Okamura (1968) (JO).

Greatest difference is less than 0.7 %.




£ a7,

22 hU

£ |Overall (stretched) | JO (1268)

0.000 0.664114680 0.6641
0.050 0.681277117 0.6813
0.100 0.698054803 -
0.200 0.730625737 0.7306

0.300 0.761995840 -
0.400 0.792359830 0.7924

0.500 0.821829497 -
0.600 0.850504457 0.8505
0.700 0.878474420 -
0.800 0.905805653 0.9058
0.900 0.932560713 -
1.000 0.958787910 0.9588

2.000 1.199477550 1.189
3.000 1.414221123 1.414

4.000 1.612784460 1.613
5.060 1.793934307 1.800
10.000 2.634622460 2.634
20.000 4.061734123 4.061
30.000 5.336718597 5.338
40.000 6.526130760 6.535
50.000 7.657545947 -
100.000 12.818216123
500.000 46.060595300
600.000 53.538975037
700.000 60.8449667..°
800.000 68.009339740
900.000 75.053975367
1000.000 81.995396517
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Table 4.9.5 Comparison of skir-friction coefficient

of overall Keller Box solution using stretched coordinates
vs. solution of Jaffe and Okamura (1968) (JO).

Greatest difference is less than 0.2 %.




0

3 SIMILARITY STRETCHED | J-O (1968)
0.000 | 0.664114675 0.664114673 0.6641
0.005 | 0664981884 0.664981912 0.6649
0.050 | 0.67272672¢ 0.672727886 0.6727
0100 | 0.681211130 0.681211470 .
0.200 0.697821300 0.697827250 0.6978
0.200 | 0.714014858 0.714019186 .
0400 | 0.729826532 0.729826797 0.7298
0.500 | 0.745294661 0.745295973 .
0.600 | 0.760450504 0.760451368 0.7604
0700 | 0.775321409 0.775321524 .
0.800 | 0.789930044 0789929263 0.7899
0.900 | 0.804206734 0.804294263 .
1.000 | 0.818438664 0.818433749 0.8184
2000 | 0.950202693 0.940914667 0.9503
3.000 | 1.069630496 1.068891456 1.070
4000 | 1.180870349 1.179609214 1.181
5000 | 1.286121546 1.284301786 1.286

10,000 | 1.757145077 1.751361252 1.756
20.000 | 2561382612 2543335039 2.557
30.000 | 3276621764 3.251409848 3270
40.000 | 3.941326847 3.916906600 3.921
50.000 | 4.571826736 4552352551 -
100.000 | T.430662374 7418496068 .
500.000 | 25.551887904 26515114817
600.000 | 29.595753625 29 553492470 ;
700.000 | 33.539613994 33.492373426
800.000 | 37.401937137 37341487212
900.000 | 41.195111530 41,134807848 .
1000.000 | 44.928790121 44860873234 1 -
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Table 4.9.6 Comparison of momentum thickness obtained by overall
Keller Box method using similarity vs. stretched coordinates vs.
the solution of Jaffe and Okamura (1968) {(JO).
Greatest percentage difference is less than 0.5 %.




5 LOCAL SIMILARITY SOLUTION

5.1 PRELIMINARY

Although, in principle, the Keller’s Box method described previously could be
used to obtain solutions that more closely approach the needle limit, it is restricted by
the limited storage capacity Jf computing systems. Of course, the need for increased
computer capacity is because smaller st, .izes, which foster more grid points, are
required to obtain reasonable accuracy to better approximate the rapidly changing
velocity and shear stress profiles near the surface of the cylinder for large values of §. -
This is regardless of the coordinates, variables or methods used. Thus, one must be
aware that numerical interpolation schemes are needed at this point to estimate values
of the dependent variables at the new discrete locations that are created when the
numerical grid is subdivided.

For large distances downstream, the asymptotic solution of Glauert and Lighthill
(1955) becomes more accurate due to the increase in value of the expansion parameter
B. However, it was pointed out previously, that even at a §-value of 1000, velocity
profiles are obtained which are inaccurate near the surface of the cylinder. Also, solv-
ing for higher order 12rms in the asymptotic expansion could be a difficult and tedious
numerical task. Since the solution must be obtained numerically, a simple and
efficient approach should be used. One of these approaches includes the "overall”
Keller’s Box procedure previously described. Another, is a method which is also effi-

cient, but - impler to use in an attempt to solve the full range of the problem.
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This method is related to the Keller’s Box method and it yields accurate solutions
near the needle limit. The simplicity of this method together with the accurate
solutions it produces makes it a suitable substtute to the "overall" Keller’s Box
procedure at large enough &. In principle, it could completely overtake the asymptotic
solution in its range of validity. This method and the results it produces are described

in this chapter.

§2 METHOD OF LOCAL SIMILARITY
Using the equations from the Keller’s Box primitive variable formulation, i.e.,
equations 4.2.1-3, with similarity coordinates n, and &, but setting P; =0, as in a local

similari:y approach gives :

R=P,, (5.2.1)
(HR), +QOR =0, (5.2.2)
and

Q, —(H -1)P =0, (5.2.3)
with the boundary conditions:

PO)=0()=0 atm,=0 and P() = 1. (5.2.4)

Quantities Q and H are defined as in section 4.2, i.e.

0 =H(ﬂ|P —EZ—EEQ) and H =1 +%rh.

and we note that P and Q are explicit functions of n,.

Alternatively, equations 5.2.1-3 may be obtained by transforming the governing

equations 1.2.6-7, via
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9 2\29 & 8 & d 8n, 09

—_— e = — d —=-o——

= , 3= , an =—= .
o & onor’ Eami'  ox  REIM,
This local similarity method which assumes that P; = 0 is comparable to the

methods used in Chapter 2 obtaining the "quasi’-similar solutions. This is because, in
each case, the dependent variables involved depend implicitly and no: explicitly on &.
Recoll that & = 22,

The method of solution uses the Keller’s Box technique with simplified equations
5.2.1-3. However, the discretization is employed over a line, as it Figure 5.2.1, and
not a box because of this lack of functional dependence of Pon €. Keller (1978)
states that the Box scheme can be used on equations of similar boundary layer flows
by setting the stream-w:se variable to zero in the nonsimilar equations. Blottner
(1975) explains that the assumption of local similarity, which neglects &-derivatives,
can be used to obtain approximate solutions to some flows.

Discretization of equation 5.2.1 is the same as in section 4.2, given by equation

4.2.6. The discretized equations of 5.2.1-3 are given by :

h o, .
PI_P!"__E/(R’+RI l):O, J.2.5)
HR -H"R™ "+ 0""R' " =0, (5.2.6)
and
Q' -0 ~h(H +H' T - 1P =0, (52.7)
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Central differences are used in approximation to obtain these discretized formulae
above. Alternatively, (5.2.6) and (5.2.7) could be obtained by setting individual terms
with subscripts (n - 1) and terms with k, in the denominator to zero in difference
equations 4.2.4 and 4.2.5.

Series expansions used in discretization are the same as those used in section 4.2,
except that individual terms in & and &-derivatives are neglected.

The product terms in equations 5.2.5 and 5.2.6 are discretized in a similar manner

as in (4.2.12) about ,"'%, i.e.,

Hence, we take the product of averages. Similarly for the term, (2H - 1)P, in (5.2.3),

where (2H - 1) is treated as the factor Q is above.

The term Q',,1 is simply discretized in a central difference over n}~ ' which as in

(4.2.15) gives :
Q, ==—=—=20 1" +.... (5.2.9)
This is similar for the term (HE ),11 in 5.2.2, where (H R bar) is treated as one entity.

Applying Newton’s method to equations 5.2.5-7 yields :
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B8R’ +0'80" + FaR' T + 680" =, (5.2.10)
8Q’ -80' ™'+ FAC'(8P’ +8P’ ") =m’, (5.2.11)
and

8P~ 8P, —%(ﬁﬁdﬁ &R,y )=t (5.2.12)
where

h, .
=H +210H' "7
W-H+2Q ,

h, .
sH '+ 2"
Bl 2Q ’

h EJ-IIZ

%
9’ 2 ’

/=_& g Tl
FAC’ = 2(H +H 1),

_— -1p7-1 D, = -1y - 112
P=H R -HR -h Q'R

h —, —,.
PP -P 42 R R, (5.2.13)
and
m=Q"" -0/ +h(H +H ' - 1)P' "1, (5.2.11)

The coefficient ¥ is non-existent, here, because the term EH P P; from equation 4.2.1,

that produces it has been set to zero in (5.2.2) due to local similarity considerations.

Rewriting this linear system as :
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Fy-G&'=¢, (5.2.14)
where

1 0 FAC] (1 0 -FAC
228 L L R g -0

0o by o B

2 i L 2 d

with the boundary conditions
5P =80" =8P’ =0, (5.2.15)

we see that the block tridiagonal structure can be maintained.
Thus, the complete block tridiagonal system can be reduced similarly to that in
(4.3.9) or (4.3.10), except that the elements of the 3 x 3 matrices are different and

definition 4.3.11 still holds, :.e.,

5R° 5p/~!
‘=180, Z=| 80’ |,25j<J. (3.2.16)
ﬁﬁl aﬁl

The coefficient matrix A ) is of order 3 J + 3 and the vectors z/ and s}, have that

dimension.

Decomposing the coefficient matrix, A—(,) into the 3 x 3 blocks gives :
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A(:) C(:)
B, Aq Cg
. 0
K(,)= Bi, Ay Ci )
0 .
By' Ayl Gy
J J
L By Ay
where
0 FAC' 0 0
1 1 1
A= poe B ,C'=l 0o o0 ol (5.2.17a)
Bo h 1 00
| 2 2
0 -1 0 FAC' 1 0
p=® ¥ Fligas 0 @ ‘yh (5.2.17b)
- - -1
bO 0 5 1 0 5
At j = 1, the boundary conditions 5.2.15 gives :
&R°
50" M)
[E(U —1| = t(:') ’
R p
BPI )
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Atj=1],(5.2.15) gives :

J

81—1 m(i)
[E(ﬂ 80’ (= ‘({)
&1L

-1 0 FAac’ 1 0
J J
[E(f | ¢ B 0 ¢ p .
e b g B
L 2 2
Appendix E may be consulted as to the solution of the block tridiagonal system, as

was the case in Sections 4.3 and 4.7.

£.3NUMERICAL SOLUTION
This method is very sensitive to the initial profiles that are used to begin the first
iteration. An initial profile must be chosen that is appropriate in approximating the
behavior of the velocity components and shear stresses at the location of the cylinder

that we wish to solve, i.e., at the chosen value of £,

For example, near £ =0, the profile is esseniially Blasius so that an initial profile

that is exactly the Blasius or one close to it can be used. However, much farther down
stream the velocity profile approaches the needle limit. In terms of sunilarity
coordinates, we know from the previous solution in Chapter 4 that the axial velocity
profile increases sharply to unity near the wall which makes u = 1 over most of the
boundary layer region. Similarly, the shear stress profile decreases sharply to zero
near the wall, such that it is equal to zero over most of the boundary layer region.

Thus, the initial profiles that are chosen to begin the iteration should < “cct this.
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The initial axial velocity profiles which must satisfy the boundary conditions are

estimated according to :

P=%for OSn,Sn: and P=1 forn:Sn,sn_, (5.3.1)

where the value of 1, is obtained by trial and error and depends "pon the value of £

which determines the point along the cylinder at which we seek a solution. Proceed-
ing further downstream requires a smaller value of 1;.

Integrating (5.2.3) using (5.3.1) yields the initial profile for the radial velocity, i.e.,

n n, n,
- _ ™
= dn, = | @H -1)Pdn, = || 1+E—= ,
0 '!Qm n !( Pdn J( +& ﬁ}’dm

2

which gives : 0 = l+§—T-‘-5— for 0<n, <7, (5.3.2a)
-2 32

or 0 =n,(l +§:T|i) for n; <M, <M. (5.3.2b)

Differentiating equation 5.3.1 with respect to 1, gives :

E:nl for 0<m,<m; and R=0 for n; <n, <M. (5.33)

Trial and error and prior knowledge from the "overall” Keller’s Box solution leads to
setting R(0) to be a large value which depends on & instead of using (5.3.3) there. For
example, at & = 1000, R(0) = 50 leads to a convergent solution.

In the case of an inappropriate estimate of an initial profile, divergence occurs in

just a few iterations.
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A value of 1 = 8 is used, while step sizes in h; are kept very small near the surface

of the cylinder. This numerical approach has been quite successful for
E=0to §=10°

The remaining calculations that are performed are the same as described in section
44,

The convergence criterion used is the same as in (4.4.4). With the appropniate
choice in initial profiles, only three to four iterations are required. The numerical grid
does not need to be enlarged because the boundary layer growth is scaled down due to
using similarity coordinates. However, if the grid needed to be increased, say if other
coordinates are used, then we need only begin the entire procedure with a larger gnd,
since the method only solves at one station in &. In other words, the solution does not
depend on any previous steps in &.

The local similarity Keller’s Box approach is simpler and more efficient than the
full Keller’s Box approach because the soluton is obtained only one station at a time
ir. § instead of at several stations. Computer storage is not required for solutions at a
previous-step and the same number of iterations occur in a particular step as in the full
Box scheme. The use of interpolation schemes further downstream which are needed
to deal with rapidly changing profiles near the wall are not required. This is because
the numerical grid need only be further subdivided in order to create the smaller step
sizes required to obtain the needed accuracy. On the other hand, some
experimentation is required in order to obtain the appropriate estimate of the initial
profile. Successful estimates are more easily obtained if the general behavior of the

boundary layer is known.
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We apply Richardson extrapolation to two individual solutions obtained at
different mesh sizes to produce a solution accurate to fourth order. Appendix F may
be consulted as to the equations that lead up to the fourth order expression.

The mesh employed in the 1,-direction is in Table 5.3.1.
The solutions as a function of mesh sizes are given by u,(#') and u,(2h") and are

obtained at a point of £ within the range & =0 to § = 10°. The extrapolated solutions

are obtained using equation F.7 from Appendix F and are given by :

(4u,—uy)
Ug = 3

~Ch;, (5.3.4)

Extrapolation formulae are the same for all dependent variables, P, 0, and R. The

largest step size of h' =0.01 maintains accuracy up to 7 decimal places, where a 386
PC is used to carry out the computations.

The final results in terms of the velocity and shear stress profiles are presented in
the next chapter.

Table 5.3.2 compares the individual skin-friction coefficient of each individual
solution with the extrapolated result. Agreement is good to five digits for most of the
steps, except at £ = 10°, where the extrapolation is more appropriate.

Comparisons are made with the solution obtained in this chapter to the "overall”
Keller’s Box solution. The skin-friction coefficient is compared in Table 5.3.3. We
see that after the initial match at & = 0, the coefficient obtained by the local similarity
approach deviates right after to a percenage difference of less than 5 % at
& =1 and & =10. However, as £ increases the solutions begin *o merge. Here, the

percentage differences are less than 3 % at & = 100 and less than 2 % at & = 1000.
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Comparison of velocity profiles between this local similarity approach and the
“overall" Keller’s Box method is demonstrated in Figures 5.3.1-4. We notice the
agreement for large values of &. For & > 100, profiles begin to merge. At = 1000,
agreement is good.

This method is very successful where the needle limit is being approached. Itis
also very accurate right at the Blasius limit as it must be. It is worth noting that this
method can take over where the y-based quasi-similar solrtion is not obtainable in the
range from & =.05 to £ < 40.

Comparison is made with the *quasi’-similar solutions obtained in Chapter 2. Fig-
ure 5.3.5 shows that the skin-friction coefficients from each approach begin to merge
at approximately § = 55. Figure 5.3.6 shows that the displacement thickness merges
at approximately £ = 400 and Figure 5.3.7 shows momentum thickness merging at
approximately & = 1000. It appears as though the present solution of this chapter is in
between the other two solutions.

The local similarity and ’quasi’-similar solutions appear to merge at approximately
E = 1000 overall. The success in matching of the focal similarity solution with the
“overall” Keller’s Box solution for & 2 100 suggests that the local similarity Keller’s
Box method could proceed where the "overall” Keller’s Box method stops, while

obtaining accurate solutions. The efficiency of this method makes it even more attrac-

tive to use.




¢ = fixed

Figure 5.2.1 Numerical grid used for local similarity methed.




VARIABLE GRID

Cross-stream Lurection

Interval Step Size

0<n,<0.001 h'=10"

0.001€1,<001 |4' =107

001<n,£01 |p'=10"

0.1<n,<1.0  |4'=0.001

1.0<n, <30 h' =0.005

30<n,580 h =001

Table 5.3.1 Step sizes used to obtain
the local similarity solution to

=105




5 é“W Wk | \g’w 1,2h") 2—\%“@@5){,
0.00 0.46960053 0.46960216 0.46959999
-(55 0.48444469 0.48444638 0.48444413
1.00 0.70645536 0.70645779 0.70645408
10.00 1.94337665 1.94337848 1.94337604
40.00 4.75290311 4.75289554 4.75290563
100.00 9.26873687 9.26870751 9.26874666
500.00 33.01477236 33.01460300 33.01482881
10° 58.62421628 58.62387976 58.62432845
10* 425.92012776 425.91703296 425.92115936
10° 3339.56674292 3339.44768300 3339.60642956
10° 27436.37393986 |(27207.53194150 |[27451.32127265

Table 5.3.2 Comparison of skin-friction coefficients from the individual
solutions at different mesh sizes to the extrapolated solution, (t¢),.




Percentage
N%E W) 2‘/%‘” ° Diffcrcnfc
Overall Local Similarity

0.00 0.46959999 0.46959999 0.0
0.05 0.48173322 0.48444413 0.6
1.00 0.67796572 0.70645408 4.2
10.00 1.86279121 1.94337604 43
100.00 9.06272953 9.26874666 23
£00.00 32.56933001 33.01482881 1.4
10° 57.97892267 58.62432845 1.1

Table 5.3.3 Comparison of skin-friction coefficients from the overall Keller’s
Box solution with that of the local similarity Keller’s Box solution. Percentage
difference is included.
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6 RESULTS, DISCUSSIONS AND CONCLUSIONS

6.1 INTRODUCTION

Solutions have been obtained for the flow along a circular cylinder using the "over-
all" Keller’s Box method in the range £ =0 to £=1000. This range of § considerably ‘
extends earlier results and connects the cylinder problem from the limit of very large
radius (Blasius limit) to very sinall radius (needle limit). A special case of this
method, the local similarity Keller’s Box approach, extends the range even further
from & = 10° to &= 10°. Either method may, in principle, obtain solutions to a limit-
less range in &. However, practical considerations with respect to computer storage
restrict this possibility.

’Quasi-similar’ solutions have been obtained numerically using transformations
based on obvious similarity variables. Near the Blasius limit, the soluticis obtained
using each transformation unexpectedly differ, while only the y-based transformation
yields the proper solution in the Blasius limit. However, both solutions merge as we
approach the needle limit. The validity of either solution appears to be in the range of
£ 2 1000 with the exception of the y-based transformation which is also valid at the

Blasius limit.
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6.2 RESULTS

Final results obtained from the "overall” Keller’s Box method using similarity
coordinates, stretched coordinates, and results obtained from the local similarity Kel-
ler’s Box method are presented. Richardson extrapolation has been applied in each
case to maintain fourth order accuracy.

Velocity profiles and profiles of the shear stress parameter obtained from the
"overall" Keller’s Box method using similarity coordinates are presented in Figures
6.2.1-3. Results for the skin-friction coefficient, displacement and momentum thick-
ness are presented in Figures 6.2.4a and 6.2.4b.

Velocity and shear stress parameter profiles obtained by the “overall" Keller’s Box
method using stretched coordinates are presented in Figure 6.2.5-10. The skin-
friction, displacement and momentum thickness are presented in Figure 6.2.11.

Velocity and shear stress parameter profiles obtained by the local similarity Kel-

ler’s Box method are presented in Figures 6.2.12-15.

6.3 COMPARISON WITH PREVIOUS RESULTS

Figures 6.3.1 and 6.3.2 compare the skin-friction and displacement thickness
parameters obtained by the "overall” Keller’s Box solution and the local similarity
Keller’s Box solution to the series solutions. A log-log graph is used for comparison.

The "overall” Keller's Box solution covers the entire range and fills the ‘gap’
created where each series solution begins to deviate. Solutiors within the range of the
'gap’ have been obtained by previous authors, but no extension was made into the so-
called region of validity of the asymptotic series solution. The range of the present

solution goes well beyond this region and widely overlaps with the region of validity
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of the asymptotic solution. The range of the local similanty Keller’s Box solution
proceeds further, where the "overall” solution stops, even though the “overall”
Keller’s Rox method could continue, in principle.

Table 6.3.1 compares the skin-friction coefficient obtained by the "overall”
Keller’s Box nethod with the series expansion methods. Percentage differences with
respect to the series expansion and the numerical solution increase for increasing &.
They begin at approximately 0 % at & = 0 and proceed to less than 3 % at§ = 1. ..
Percentage differences with respect to the asymptotic solution and the numerical
solution decrease with increasing & Beginning at § = 10, the percentage difference is
approximately 1 % and it increases to a peak difference of less than 3 % at
approximately £ = 20. The differences then steadily decrease to less than 0.5 % at
£ =1000.

Table 6.3.2 shows comgparisons of the displacement thickness for the "overall”
Keller’s Box solution with the series expansion for small § and with the asymptotic
expansion for large & The percentage diffezences start at approximately 0 % at & =0
and gradually increase to less than 3 % at € = 1. The percentage cifferences obtained
for the comparison with the asymptotic solution fluctuate beneath 8.5 % in the range
of 10 <& <60, after which it decreases from approximately 5 % to less than 3 % at
£ = 1000.

If a percentage difference of one percent is tolerated with respect to the
skin-friction coefficient, then the range of validity of the series expansion appears to
be within 0 <& <0.7. With a similar criterion, the range of validity of the asymptotic

expansion appears to be § 2200, Although, establishing the region of validity of

solutions from either expansion depends upon the accuracy one chooses to match with
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numerical solution. The criterion we have chosen, considered to be reasonable,
decreases the range of validity of the asymptotic expansion suggested by Glauert and
Lighthill (1954) from & = 40 to & >200. Quantities obtained from the asymptotic
solution should be given a liberal leeway, since error estimates are vague.

A comparison of velocity profiles obtained from the numerical solutions with those
obtained from the asymptotic expansion is made in Figures 6.3.3-6. Velocity profiles
from the asymptotic solution are inaccurate near the surface of the cylinder and also
near the boundary layer edge as indicated in the figures. However, as was previously |
mentioned, more terms in the expansion would improve the accuracy of the solution,
but these are difficult to obtain. Figure 6.3.3 and 6.3.4 show that at € = 100, the axial
velocity obtained from the asymptotic expansion is still inaccurate. This is also
reflected in the results given by Figures 6.3.5 and 6.3.6 with respect to the radial
velocity parameter and by Figures 6.3.7 and 6.3.8 regarding the shear stress parame-
ters. At = 1000, agreement becomes good throughout, although the axial velocity is
still negative at the surface and the profiles of the radial velocity and shear stress
parameter do not match completely. This is shown in Figures 6.3.4, 6.3.6 and 6.3.9
respectively. The local similarity Keller’s Box solution is compared ~t = 10° and
even at this point, the asymptotic axial velocity is negative at the surface and still not
in agreement near the surface. Thus, these comparisons r-licate that the asymptotic
solution appears to have a smaller range of validity, when the velocity and shear stress
parameter profiles are taken into account.

The local similarity Keller’s Box approach obtains results which match with the

"overall" Keller’s Box solution in the approximate range of § 2 100, as i+ \hown in

Chapter 5. The solutions match the ’quasi-similar’ solutions obtained 1 ¢ ‘hapter 2 at
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E =0 (except tie r-based transformation solution) and in the approximate range

€ 2 400, as has been shown in Figures 5.3.5-7. The comparison in Table 6.3.1 of the
locai similarity skin-friction coefficient with that of the asymptotic solution shows
excellent agreement, where percentage differences start at less than 0.5 % at & = 10°
and tend to less than 0.2 % at § = 10°. Table 6.3.2 comparing displacement thickness
shows percentage difference of less than 5 % to approximately 3 % in the same range.
Figures 6.3.10 and 6.3.11 comparing the velocity components at & = 10° shows good
agreement over most of the profile, except near the surface of the cylinder, where the
asymptotic solution is inaccurate. This method obtains velocity components more
accurately than the asymptotic solution, especially near the surface of the cylinder.
Thus, it may be more advantageous to generate solutions using the local similarity
method than the asymptotic expansions, especially if velocity and shear stress profiles
are required.

Numerical results of previous authors, namely Cebeci (1968), Cebeci (1970), and
Cebeci and Smith (1974), and Jaffe and Okamura (1968), have compared very well
with solutions obtained using the present methods in this thesis. This is established in
Tables 4.9.4-6 dealing with the results of Jaffe and Okamura (1968), and the "overall"
solutions using either similarity or stretched coordinates. Also, Fig .re 4.5.2
demonstrates the close match in skin-friction coefficient from results of Cebeci
(1970), Cebeci and Smith (1974) and the "overall” solution. Figure 6.3.12, compares
the skin-friction coefficient from the "overall” Keller’s Box solution with that
obtained by Cebeci and Smith (1974). We see that the range of the "overall” present
solution is much larger than that of Cebeci and Smith (1974), whose range extends the

furthest of past numerical solutions.
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The "overall" solution and the local similarity solution cover a large range of the
flow along a circular cylinder in axial flow. These methods have the possibility of
proceeding further to approach the needle limit even more closely. The solutions
match very well with the series expansion for small §, numerical solutions of other
authors for increasing values of &, and with the asymptotic solution for large &.
Velocity profiles obtained are more accurate than those obtained by the asymptotic
expansion. Thus, the “overall” Keller’s Box solution, which is very accurate, can, in

principle, cover the full range of the problem.

6.4 COMPARISON AND DISCUSSION OF DIFFERENT METHODS

Both analytical and numerical methods have been used in order to solve the
boundary layer equations 1.2.6-7. The series expansion for small £ and, especially,
the asymptotic solution for large &, have guided the solution of the problem
numerically.

The ’quasi-similar’ solutions which are obtained by solving either the ordinary
differential equation 2.2.22 or 2.3.18 numerically with the parameter n, use a standard
Runge-Kutta shooting method described in chapter 2. The solution is obtained at on=
location in & only. Thus, coraputer storage of previous solutions is not required. This
numerical integration method is accurate to 4th order and does not need to be
extrapolated for further accuracy, although stabilit, and consistency problems may
arise if the step size or domain of integration is inappropriate. It is a self starting
step-by-step methoc’ in the cross-stream direction that can easily employ a variable
grid if desired. Even though an efficient shooting algorithm is used with the

Runge-Kutta procedure, shooting itself draws on more computer time because it is an
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iterative process. Both similarity transformations yield solutions which appear to be
valid for £ 2 1000, while only the solution obtained from the y-based transformation is
valid at € =0.

Jaffe and Okamura (1968) used a least squares approximation in the stream-wise
direction, while using a Runge-Kautta shooting method in the cross-stream direction.
Because of the least squares approach, much computer memory is required to store the
solutions obtained at three previous location in €. Again, the iterations brought about
by shooting slow down the process of marching downstream at each step of £&. The
shooting procedure may become complicated because stretched coordinates are used
and these promote the enlargement of the numerical gnd that deal with the growth of
the boundary layer as one moves downstream. The inefficiency of this method, which
is due to the requirement of large amounts of computer storage, may have prevented
further progression in &, i.e., beyond & = 40.

The implicit finite difference method used by Cebeci (1970) requires computer
storage of 2 previous steps in €. It also uses 5 points for the discretization in the
cross-stream direction, which complicates the numerical formulae used, when
combined with a variable grid. Stretched coordinates are used, again, promoting the
growing numerical grid as one moves downstream in §. This exhausts more computer
time, since the iteration at a particular step must be repeated until the a=vmptotic
conditions are satisfied within the larger grid.

Cebeci and Smith (1974) used a stream function formulation in conjunction with
the Keller’s Box method which uses arbitrary step sizes and needs to store solutions at
one previous step in § only. Thus, a variable grid is easily implemented and the

solution, accurate to <econd order, may be extrapolated via Richardson extrapolation
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to 4th order. This implicit method is stable. Usually, 3 iterations are required at each
step ir. &, only. Increase in computer time at each step in £ is due to the progressive
lengthening of the numerical grid, again, due the use of stretched coordinates. The
application of Richardson extrapolation is more complicated because the individual
solutions obtained for different mesh sizes, do not all end at a common value of the
boundary layer edge.

The "overall" Keller’s Box method used in this thesis uses primitive variables and
similarity coordinates. It has the same advantages as stated in the method used by
Cebeci and Smith (1974), i.e., arbitrary step sizes, variable grid, computer storage at
only one previous location, stability , second order accuracy with possibility of using
Richardson extrapolation, and only 3 iterations required per step in . However, the
enlarging of the numerical grid is eliminated because of using similarity coordinates,
which scale down the growth of the Loundary layer as we move downstream. In fact,
the edge of the boundary layer can remain at a constant value of 8. Thus, fewer
discretized points are needed, which access less computer memory. Also, the extra
computational time required, which is due to the iterations required to satisfy the
asymptotic conditions for an enlarged computational grid at a particular stepin &, is
eliminated.

The "overall” Keller’s Box method using prunitive variables and stretched
coordinates is similar to the method using similarity coordinates. The mnajor
difference is that the growth of the boundary layer as one moves downstream must be
taken into account because of using stretched coordinates. The computational grid
must be enlarged to accommodate the boundary layer growth. Starting with a value of

8 for the edge of the boundary layer at = (), the grid grows quickly as we advance in
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values of &. At& =40, £ =100, and &= 1000, the numerical grid 1s enlarged, such
that values of the boundary layer edge increase to approximately 80, 200, and 1850,
respectively. Thus, at an early stage in computation, many more points are added to
the grid. More computer time is involved for each step in & that the numerical grid
must be enlarged in order to satisfy the asymptotic conditions for the new domain,
i.e., computations are repeated at the same step i.- &, but for a larger grid. As
mentioned earlier, the asymptotic condition 4.4.7 must be tightened to obtain accurate
values of the displacement and momentum thickness. This tightening causes even
more computer time to be spent per step in &,

The advantages of using similarity coordinates over that of stretched coordinates is
obvious when the question of the lengthening of the computational grid is raised.
However, stretched coordinates, as the nnme implies, stretches or magnifies the
domain of the boundary layer, whereas, similarity coordinates do the opposite of
stretched coordinates, i.e., they compress the domain. Near the surface of the
cylinder, where rapid changes occur in 2xial velocity and shear stress profiles as we
move downstream, larger step sizes for computation may be taken with stretched
coordinates than with similarity coordinates to obtain the same accuracy. This is
advantageous because fewer discretized points are required within the numerical grid
near the surface of the cvlinder. However, ve believe that approximately the same
number of discretized points would be required to obtain equivalent accuracy
regardless of coordinates that are used. This would only apply if a different variable
grid is used in each case, which is optimal with respect to the number of discretized
points required to maintain similar accuracy. Of course, in each case the <pacing of

the points within the grid would occur at different locations away from the cylinder,
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i.e., the case using similarity coordinates would have more points concentrated near
the wall and fewer near the edge of the boundary layer, while the case of stretched
coordinates would involve fewer points concentrated near the wall and more near the
boundary layer edge.

The local similarity Keller’s Box method using primitive variables with similarity
coordinates solves at one station of § only, therefore, not needing to store solutions at
any previous steps. It has the same advantages as the "overall” Keller’s Box method
using similanty coordinates described above. Only 3 to 4 iterations are, usually,
required at any value of & provided the estimates of the initial profiles are reasonable.
Only two solutions are needed to apply Richardson extiapolation to obtain fourth
order accuracy. Interpolation schemes are not required to obtain values for a more
concentrated numerical grid because from the very beginning of the computation, the
number of points within the grid ca. be increased and we need only to provide the
usual estimates of the initial profiles. The validity of the solutions, however, are
limited to £ =0 and for & = 100, as was pointed out in Chapter 5.

Out of all of the numerical methods described, it appears as though the "overall”
Keller’s Box method using primitive variables with similarity coordinates is the most
efficient single method obtaining accurate results for a large range in £, namely,
0<&<1000. Again, in principle, this method may proceed further in §. However,
the local similarity Keller’s Box method using primitive variables with similarity
coordinates, which is also very efficient and requires no storage of previous solutions,
obtains accurate results for the latter parts of this range and may be used at even larger

values of &, i.¢., further downstream. The velocity profiles it produces are easier 10

obtain and more accurate than those obtained by the asymptotic solution for very large
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values of g

6.5 PROPERTIES AT THE TWO LIMITS

From the "overall” and local similarity Keller’s Box solutions, we describe the
boundary layer along the semi-infinite circular cylinder in axial flow.

Two extreme situations arise which are reflected in the solutions obtained. At
€ =0 or A=0, we have the flow along a cylinder with very large radius or the flow is
in *he region near (but not at) the front end of the cylinder. This is the Blasius limit,
where similarity exists. As & — o0 or A — o, we approach the flow along a very thin
needle or we are in the region of flow very far downstream. This is in the region near
the needle limit, where a different similarity is approached. Between these two
limiting cases, nonsimilar flows exist that start at the Blasius limit and gradually
approach the needle limit.

At the Blasius limit £ =0 or A =0, velocity and shear stress profiles, skin-friction,

displacement and momentuin thickness are obtained that match with those of the
Blasius solution.

As we proceed downstream or to cylinders of progressively smaller radii, the
nonsimilar flows can be described as proceeding throngh a transition which starts with
the Blasius limit. The growth or the boundary layer begins. Axial vefocity profiles
become different from that of the Blasius, while more rapid change occur near the
surface of the cylinder. The radial velocity parameter deviates from that of the

Blasius by becoming smaller in magnitude "overall” and developing a hump in

between, which decays to the boundary layer edge. The :hear stress changes more
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rapidly near the surface of the cylinder and vanishes more quickly when approaching
the boundary layer edge. The skin-friction coefficient steadily begins to increase as

does the displacement and momentum thickness.

As & — o0 or A — oo, the needle limit is being approached. The boundary layer

thickness with respect to the radius of the cylinder is very large and is still growing.
In fact, it grows without bound as it approaches the needle limit. The axial velocity
changes very rapidly nearer to the surface of the cylinder and appears to approach a
profile resembling a square in which most of the boundary layer is unity, except near
the surface, where it rapidly changes from 0 to 1. The closer one approaches the
needle limit, the nearer the changes occur to the surface and these changes become
more rapid. The radial velocity narameter still exhibits the hump but the overall
magnitude of the entre profile decreases even further. The shear stresses change
more quickly near the wall, rapidly vanishing away from it. These changes become
more extreme, as we more closely approach the needle limit. The skin-friction
coefficient keeps increasing on to infinity, as do the displacement and momentum
thickness.

The analytical and numerical results suggest the following description of the
needle case. The axial velocity profile would be such that the overall flow would be
thai of the mainstream velocity except for an infinitesimal region new the snrface of
the cylinder, where an extremely sharp fluctuation occurs from zero at the surface of
the cyli,der to the value of the mainstream infinitesimally away from the surface, i.e.,

no-slip is just satisfied. The radial velocity parameter would vanish everywhere. The
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shear stress would do the same, except for the skin-friction coefficient which would
be infinite. The displacernent and momentum thickness would, also, be infinite. The

profiles vary more slowly the further we move downstream.

6.6 CONCLUSIONS

The solution to this seemingly simple axisymmetric boundary layer problem has
been difficult to obtain due to complexities arising from the imposed boundary
conditions and the transverse curvature term. These difficulties lead to the general
nonsimilarity of the problem, although, similarity misleadingly appears to exist. The
problem becomes more involved, however, because similarity does exist locally at the
Blasius limit and another similarity, is approached, i.e., the needle limit.

The implication of similarity gives rise to the similarity methods of Chapter 2,
while the solutions obtained are ’quasi-similar’. The two transformations using
seemingly valid similarity variables obtain results at and near the Blasius limit, which
numerically and analytically differ from each other. At& =0, the r-based
transformadon gives a deceptive axial velocity profile which is shifted by a factor of
V2 in the independent variable and radial velocity components that are one order of
magnitude larger than expected. On the other hand, the y-based transformation gives
the expected Blasius solution. Both solutions merge on approaching the needle case.

The "overall” Keller’s Box method, can be used to solve the full range of the
problem, in principle. Capable of handling the nonsimilarity of the problem, solutions
are obtained from the Blasius limit to the ncedle limit. Solutions are obtained that .
greatly extend the range in & that others have solved towards. These accurate
solutions overlap much of the range of validity of the asymptotic solution, while

obtaining more accurate velocity profiles.
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Primitive variables and similarity coordinates are used, which have the advantage
of compressing the cross-stream domain of the problem such that the boundary layer
edge can remain fixed. We know that the commonly used stretched coordinates for
the numerical solution of axially symnietric flows require the computational grid to be
lengthened in order to handle the growth of the boundary layer.

However, we applied the efficient Keller's Box method using primitive variables
with the stretched coordinates and the solution obtained covered the same range, i.c.,
0 <& £1000. Solutions obtained using the "overall” Keller’s Box method using either
coordinates agree very well with both series solutions and past numerical solutions

An understanding of the flow for the full range is obtained, complete with velocity
and shear stress profiles, skin-friction, displacement and momentum thickness.
Finally, one simple method is used that efficiently and accurately obtains solutions

from one end of the problem to the other, i.e. the Blasius limit to the needle case.

Another method, the local similarity Keller’s Box method can solve at any fixed &

and is successful in obtaining valid results for the Blasius limit and larger & The
solutions match very well with the "overall” solution and the asymptotic solution for
large values of £. Again, velocity profiles are obtained which are more accurate than
that obtained by the asymptotic expansion.

It is this complete and accurate solution of the flow along a semi-infinite circular
cylinder along with that of the flow past a semi-infinite flat plate which will aid in the
study of the fully three dimensional problem of the boundary layer along a

semi-infinite elliptical cylinder.
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£arm,
27 kU
¢ GL (1954) Overal | % SE LS %
0.000 0.46359030 0001 046060000
0.050 04ANTR2 oon 0481703
0.100 049360110 0.001 049060287
0.200 0.51662000 0.007 051666072
00 0.53881807 003! 053898001
0400 0.56020460 Q02 05600032
0.500 0.58112207 0205 058221383
0.600 0.601398% 039t 060375130
0.700 0.62117561 0666 062531611
0800 064050179 1050 0647ZNT3
0.900 065042026 15% 066070464
1000 067796572 2211 0632950
2000 054815352
3.000 1 00000031
4.000 1 14038703
5.000 1 27270049
10.000 18042640 18627912 1004
14.000 232969474 220500414 1918
18.000 274878358 258009418 2458
20000 294605603 28115728 250
24000 33480504 202018 2507
28.000 36873364 353818404 2417
30.000 386405166 3.77266300 2365
34.000 420981598 41476072 2257
38 000 454687995 444087716 21%
40 000 4.71258760 461329320 2107
44 000 £.03042 4 93740006 2018
43000 5.35052831 526585419 1834
50 000 S5177T76% 541314768 1896
60 000 629163560 6 18281300 1790
70 000 704137378 692881010 15%
80 000 7 TH40625 76555158 1491
90 000 84850127 $.36604046 1402
100000 9 18460267 9.06272053 1326
200000 15.67968185 16 53400022 0028
300 000 21 64537513 21 48068081 0760
400 000 27 0884112 2712760065 0663
500 000 32 76548523 12 56333001 0538
500.000 38 06717965 785721105 0581
700 006 432451289 4302338901 0515
800 000 48 27416683 48 08922581 0485
900 000 £3.31696011 £307062068 0462
1000 000 58 625132 57 97890267 0441
10000 000 42413519870 425 92115% 0421
100090 000 333025353165 3309 60642956 02600
1000000 000 21397 6727460 27450 32127265 0195

Table 6.3.1 Comparison ot skin-friction coefficient obtained from the
Glauert and Lighthill (1954) {GL} asymptotic and the series expansion (SE)

overall and loca! similarity (LS) Keller Box solutions with tre

solutions. Percentage differences (%) between the numerical vs.

the carresponding series solutions are nresented.
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A j
é GL (1954) Overall % SE LS o
0.000 172082086 |0.016 | 17210879t
0.050 172106839 |0.0S | 1.72224275
0.120 172057246 0015 | 1.72389608
0,200 1.72791748 0.008 1.72006074
0.300 1.73350480 0.020 1.7331573%
0.400 1.74008335 0.089 1.73851125
0.500 174740560 10223 | 1.74350781
0.600 1.75536896 0.446 1.74753243
0,700 1.768384311 0.788 1.74487045
0.800 1.77273877 1.270 1.75020727
0.900 178196350 |1827 | 1.74762826
1.000 179151987 |2785 | 1.74161879
2.000 1.88560738
3.000 2.00509106
4.000 2.11452806
5.000 2.222730838
10.000 206044244 | 273208314 |B.428
14.000 316826039 | 210854836 |1.853
18.000 3.429185683 3.4871460 2 1.108
20.000 3.56885404 3.63962185 1.99%
24.000 3.85439529 367547179 3141
28.000 4.14174377 4.29068473 3.813
30.000 4,28490970 445815148 4.043
34.000 4 56917701 4,76887364 4,368
38.000 4.850080234 5.07164831 4568
40.000 498817072 5.22080547 4.638
44.000 526450180 | 551396814 | 4736
48.000 5.536838221 5.8018112% 4,784
50,000 5.67007473 5.94384285 4.811
80.000 6.33155052 6.83740875 4.830
70.000 6.973561568 7.30740888 4.787
80.000 7-508498800 7.95805283 4718
90.000 8.21144345 | 859238000 |4.699
100.000 8.81110298 9.212680426 4557
200.000 14.35081610 1491228436 3912
300.000 19.30457630 20.07915374 3520
400.000 2415220430 | 24.94353438 |2.278
500.000 20.71430540 29.60222405 3.091
600.000 33.13024210 34,10764140 2.950
700.000 37.43080380 38.49225729 2.836
800.000 41.63626360 42.77787040 2.742
900,000 4576212740 | 48.98044879 | 2862
1000.000 49.81935080 | 5111139189 | 2.563
10000.000 344.58003741 329.527868 4.370
100000.000 2627.01487735 2530.689761 3.668
1000000.000 | 21202.70319614 20535007208 | 3.148
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Percentage differences (%) between the numerical vs. series and asymptotic

and local similarity (LS) Keiler Box sclution with series expansion (SE)
soluticns are presented.

Table 6.3 2 Comparison of displacernent thickness for overall
and Glavert and Lighthill (1854) (GL) asymptotic soluion.
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A Overall
— GL {1954) at ¢ = 10
o Overall

— GL (1954) ot ¢ = 40

Figure 6.3.7 Comporison of sheor stress pororeter
obtoined from cverall Keiler Box vs. osymptotic
solution of Glouert ond Lighthili (1954),
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10
l a Overall
3 o GL (1954) ot ¢ = 100
o
[n}
5
2 59 °
7] ag
*q
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g %u a
o a
0 T 1
0.0 0.1 0.2
M

WB Comparigon of sheor stress paramaeter
obtoined from overali Kellert Box vs. asymptotic
solution of Glauert ond Lighthill (1954).
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T = GL(1954)at ¢ =1
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Figure 6.3.9 Comparison of shear stress parameter
o'&'o"ﬂ'{n “Trom overoll Kelter Box vs osymptotic
solution of Glauert and Lighthill {1954},
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APPENDIX A: INTEGRATING £, (&)

In this appendix, we present the exponential integrals which are not given in the paper
by Glauert and Lighthill (1954), but are used to generate their asymptotic solution. We
also integrate f;'(E;) from (1.3.16) to obtain £,(E;).

The exponential integrals are given by :
&
fEi(—x)d: =E Ei(-L;)+e =,

% x
J-Ei (<2t)dt = EEi(<2E,) + 55—

&

f EI(t)dt = E,EN(E,) — & Ei(-E.) -,

&

fEi (—)Ei(=t)dt = EEi(~EG)Ei(<E5) + 2e CEi(~E,) - 2Ei(-y),

&
fln(:)Ei(—:)d: = (o Ei(-E0) + ™ InE) ~EGEi(-55) — e - i),

e

56

Je"Ei (=2)dt = —e‘&”Ei(—F,G) +Ei(-28,),

The method of integration by parts is used to obtain the above.
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Thus, f,’, given by (1.3.16), can be integrated to obtain :
%
A= | fwa

%
= f{Ze"Ei (=) —4Ei(-2t)~ Ei(-t)Ei(~t) +4In(t)Ei(-t) — 6EI (-t) + (2 + 6Y)Ei(-1)} dt

=Ei (_ga)[_4e‘*" — & Ei(-E.)+4E; In(E) + (4 + 6Y)E; - 4]

+HEi(-55) (1 -éa)+e"""(-2e*° +4InE,) +4+ 67) -65.El(-E;)+C

The asymptotic forms of the functions Ei and EI given in the Glauert and Lighthill

paper, are:
Ei(-E5)~InEy) +y

and
EI(Eor L nE) +17 +

Applying the asymptotic forms as &; — 0 and £,0 gives:

N\

£~(n(Eg) +Y) (4—4)+4(In(2Es) +7) + 41n(Eg) + 2+ 6Y— 6&0[-;-(1;1(@0) +y)2+%J+ C =0,

1e.,
C=-4In2-2y=-2.

Therefore,

f&s) =Ei (-@c)[—4e—§° -8 Ei(-E;)+4E;InE,) + (4 + 6Y)E - 4]

FOEI(EG) (1= Eo) +e (~2e ™ + 41n(Ey) + 4 + 6y) — 6EEN (~Eq) £ 41n2 =2y -2.
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Glauert and Lighthill use this result to obtain the second term in the displacement
thickness, i.e., they found f;(e2).

Note that calculations include obtaining expansion formula for the Ei(-x) function
from Abromowitz and Stegun (1965) and that the EI(-x) function is calculated using the

fourth order Simpson’s rule.



APPENDIX B: SERIES EXPANSION OF F

In order to obtain the coefficients for the series expansions originating from the

r-based similarity transformation, 8 ordinary lifferential equations obtained by

differentiating ordinary differential equation 2.2.22 with respect to 1} are needed. The

series expansion is then used to obtain the expansions of the individual terms of the
Navier-Stokes equations, 1.2.2-5, and Cooke’s equations, 1.2.6-7.

The 8 equations obtained by differentiating (2.2.22) are :
W°FY + 5°F" + 3nF" - 2FF + 20*F'F' + 80’ FF" + 20°F'F" + 2n°FF",
WFY 4+ 80 F" + 1F" + 3F" = 3FF' + anF'F' + 180*F'F" + 16nFF"

+14n’FF" + W’ (2F"F" + 4F'F" + 2FF"} =0,

FY + 110 FY +20F" + 16F™ + 12F F" + n{60F'F" + 44F F™}

0 {24F"F" + 44F'F" + 20FF"™} + 0 {8F"F" + 6F'F" + 2FF"} =0,

WFY + 140 F" + 51nFY + 45F" + 12F'F" + 56FF" + n{108F"F"

+192F'F"™ + 84FF™} + n*{116F"F" + 82F'F"™ + 26FF"} + *{8F "' F"

+14F"F" + 8F'FY +2FF"} =0,

221

(B.1)

(B.2)

(B.3)

(B.4)
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WF 4+ 1M FY + 79FY + 96F" + 180F"F" + 320F'F" + 140FF"
+n{640F"F™ + 440F'F" + 136FF "} + n*{140F"F" + 240F"F"

+132F'FY + 32FF"} +{30F"F" + 22F"F" + 10F'F" + 2FF"™} =0, (B.5)

nF +20°F™ + 1130FY + 175F " + 1320F"F™ + 900F'F" + 276FF "
+n{920F"F" + 1560F"F" + 840F'F" + 200FF""} +*{610F"F" + 438F"F"
+194F'FY + 38FF"}y +*(30FF" + 52F"F" + 32F"FY 4+ 12F'F""

+2FF"™ =0, (B.6)

WFX +230°F™ +153nF " + 288F " + 2240F" F™ + 3780F"F" + 2016F'F"
+AT6FF" +n{4620F"F" + 3276F"F" + 1428F'F" + 276FF "}
+N*{700F"F" + 1204F"F¥ +728F"F" + 268F'F*" + 44F F""y +0’{112F"F"

+84F"FY + aaF"F" + 14F'F"" + 2FF™} =0, (B.7)

NFX 4 26m°F* + 199F™ + 441F " + 12880F™ F" + 9072F"F" + 3920F'F"
+752FF "™ +n{6020F" F™ + 10304F"F"¥ + 6160F"F" + 2240F ' F*" + 364FF """}
+117{2940F " F +2184F " F" + 1128F"F™ + 354F'F*" + SOF F™} + W’ {112F'F"

+196F"F" + 128F"F"" + 58F"F"" + 16F'F* + 2FF*} =0, (B.8)
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The corresponding coefficients for the expansion of F are obtained by evaluating the

above equations at 1| = 1, and replacing known coefficients obtained in previous

equations into the cuirent equation being evaluated. Thus, evaluating equation 2.2.22 at

N =T, gives :
FI o
Fo"'=—2l= _z_f,
n, Mo
where
ap=r o."

(B.9)

(B.10)

Evaluating the next equations (B.1-8) in order and using previously obtained coefficients

gives:

¢

v F

F, _7_2,
0

. a
F =-33—-2a/,
Mo

2

o Q,
F/=192—=+14—,
Mo Mo

2
(04 Qa

F," =~1320— - 1005,
To Mo

vin i an 3
F," =10440— + 792 — + 440,
Mo o

2 3
Q, o, Q,
F,* =-93240— - 7002 — - 660—,
Mo Mo Mo

(B.11)

(B.12)

(B.13)

(B.14)

(B.195)

(B.16)
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2 3

Q,
X =027360— + 68706 + 8312, (B.17)
Mo o Mo
2 3
—-—10160640——742374——103904———3000 2. (B.18)
110 Mo Tlo

Series expansions of individual terms from the boundary layer equations of Cooke,
1.2.6-7, and of individual terms from the Navier-Stokes equations, 1.2.3-5, have been
obtained by applying the resulting series expansion for F and its derivatives to the
corresponding terms.

Series expansions of individual terms from the momentum equation 1.2.6 are given by

ou 1 n
ua =E{no’[-a:n, + 10a}4—:-492

4“1

F7' +0(n| )]

+no’[ 5200 M s G216t s 0, + )] ‘{"Z“ml”gs“sm*om‘)]

F2 k3! Fa F6!

zTh 3711

FHOM 4 [-4va21‘—‘+14810a3"'

5' 1'8'+0(n1 )]

M 1 i M
+;1-[5a,26,+om1)] T][—60::7,+o<1n, )} n[7'a:8,+om, )] £}, (®.19

ou 1 m n
!'37=R?{Tlo’[aﬁn,— a}4:+492a‘}7"+0(n, )]

n‘[ 3a22‘+96a:2: 9216a;"’+0(n, )] q’:12a,327'—870a;2:+0(n,)]
n Ul
~600t; 7 + 82980t 1+ O(n, " )+ [360a,3'51: 85194ai;-‘—:+0\n, )}
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2“1

11[—25200:7, +0(n,)] T:[20160% 2+om, )] n[ 1814400’n'+0(n, )] .}

(B.20)

1% R

i ™
§§7=§{ﬂo{-a,.?nf+ 440 < — 30000, of —

F gl +O(Th ):I

2“1 3“1

+nn[—ar+ 12a§-%—616ap oM

1 nl 2“1

| 6%+ 51005 m A

1
85032a22:+0(m )] = [4 (051 - 39540 21+ O(n; )]

1 [ ut 2 ™ ‘I ,__1_[ n; 2 n

3 -S'apz;+34272ap7,+0(m ) il 610 5, ~ 3293280, oM’ ]+...},

(B.21)

1ou 1 T M

s e T 2"1 3"1
Rror - R {ﬂu[ap —20 3 +adop

+0(M, )] =20,M, + 200 — - 9240 — 7

Fa +0(M,")

1
¢ i, 174a,2,2"

1
kLY + 14648a;2; +0(n, )] o [—4'(1F2: + 1554ain‘ +0(™M,) ]

y
st Fl‘ 14832a:“’+0(m )] n[-&aﬁg:+152928a,2,21+0(n, ]+...}.

(B.22)

Series expansions of neglected terms from the Navier-Stokes equations, due to

boundary layer approximation are given by :




10 _ ml s
R ax? {ﬂo{ i) 7t 5!

~ 3000021

Fg1 +0(n xu)}

+no’[2ap~ ,32"+44a§2:+0(n,)]+m{10a}2" RPYPRCAL

F7'+0(n1l0] '“}’

(B.23)

4"1

av 1
us-= {T!o —o/n, + 1000 = m +0(1'|l )]

F4§

n Th 711
2 3 4
N, —o —2-—2(1,- 5 + 22800, — i +0(1'|l ):J]

no’[ ’2; 14 ;2,‘ 1?752a}%+0(n‘”)]+...}, (B.24)

ov
v 'P{T\o{a,m Oaiz: +492a;;h +0(M,") ]

4711

+Om| ]

+m ‘{~3a 22‘ + 6601,’,2: 6264a%

+ﬂo{15a2m-546a3m+79136a}2'+0(n,‘2}+ 1, (8.25)

F 3 ¥ 61

lov 1 uH UM m
Er—-a;-R,{no‘[aF 2ai3:+44a;6: 3000a;9:+0(n,)

2"1

,Th
¢ 47~ 6600

Foy +0(ﬂ1 )]

T}‘[ =20,.n, + 14

+ﬂ{7af%—100 22:+8312m’ nl+0(n, )J . (B.26)




l&’v 1 2111 3“1 4“1
Ror? Rz{"{ 20r 44“"’5'

300001,, + om, )]

znl 3 M

M| —0L + 60— 3 -3520;— 6'+0(111):|

znl

+n0{3apn, ~300 7 s

+30320 2 +0(m‘°)]+ s

1ov _1 o™ 30000 ™
Rox? {"{ 20y - +4dag <) = 30003,

7 +0Mm, )]

2“1 3 nl

zm 3 Th

o) 40N, - 220 57 136aF7'+0(n,‘°]+ +

4
v 3“1

2T
R {Tloz[a,,-n, - 20 4‘+440t,.-7'+0(7h )]

: .M ;M

+nd[_5apg + 260 — 51 - 10560 — T +o0(m, )]

T‘l 2‘11 3111

270,57~ 2820; 6'+18872aF9'+0(n,'2)+ 1.
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(B.27)

(B.28)

(B.29)
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Series expansions of individual terms from continuity equation 1.2.7 are given by :

3“1 4“1

ou 1 m
5:?:5{“{ -+ 205 3) ~ 4405 17+ 300003 5+ O, )]

znl 3“1

2n'+308a}m+0(n1 )]+ﬂ{l4aF - 232803 5

Mo —4(11: al +0(T\1 )]

zn: 3“1

2 Th
~660;  + 19728055,

+oM,")+— [384a,7'+0(n, )]

1 1
n[ 2640a;“‘+0(n, )] i [zossmig:w(m‘“)]+...}, (B.30)

ov 1 m n m
§;=R{n¢,{ap 205 — 3:+44a} > — 30000 9:+0(n, )]

M 3m

-

|

+na[3a,..g‘ 30a;"‘ +3032a::}+0(n, )

—12aF2‘ + 192a§2: 29096a:2: +o0m,

- -

1 m M

+or| 600 7 - 14580t} = m 2

1
+oMm, )] nOL—36001,,§+12690(1,,8'+0(~n1 )]

1[ n; nm |
3| 25200, 6: 124()20<a¢9;+0(nl )|+ (B.31)



~ | <

1 'ﬂl m
=E{n0{°‘r . 2ap4'+44a,’,7‘

.
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+0(ﬂ1 )]

3
: Tl 'ﬂ 2“1 3“1
-3a,"2 +16a;2; 7040331 -+0(,")| + 1203 - 1260 4 +936803 5+ 0 (n,")
1, n
—60%2:+107zm¢“‘+oml )] 5| 3600, 5~ 1005003 ¢ ‘+0(n.)}
oL
T‘l 2“1 W (B 32)
2520aF-6—'+103140aF9'+0(n, Hl+...} .
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APPENDIX C: SERIES EXPANSION OF G

In order to obtain the coefficients for the series expansions originating from the
y-based similarity transformation, 8 ordinary differential equations obtained by
differentiating ordinary differential equation 2.3.18 with respect to 1, are required. The
series expansion is then used to obtain the expansions for the individual terms of the
Navier-Stokes equations, 1.2.3-5, and Cooke’s equations, 1.2.6-7.

The 8 ordinary diffcrential equations obtained by differentiating equation 2.3.18 with
respect to 1), are given by :

(M, +1M,°G" +5(m, +M)’G" +3(m, +n)G" -2GG -2n,GG' +2n,(, +N)G'G’
H8N, +4n) (N, +NIGG" +2n, +n) (M, +1)* {GG" +G'G"},
(C.1)
M, +N)°G” +8(M, +N’G"™ +13(m, +M))G" +3G" -4GG' +4n,G'G’
+160, + 10M,)GG” +2(9n, +4n,) M, + NG G" + (141, + 8n,) (M, +N)GG"
+H2N, + M) (M, + M) {GG™ +G'G" +G"G"™} =0,
(€.2)
@M, +M)°G" + 110, +1,’G* +29(, +no)G" +16G" +12GG”
+60M, + 36N,)G'G" + (441, + 320 )GG" + (2407 + 360, + 12n /)G G”
+(44n.2+ 6801, +24n7)G'G" + (20m, + 320N, + 120 )G G + 20/
+5nn2+4ncn, +10) (4G G" +3G'G" + GG} =0,
(C.3)
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M, +M)’G"" +14(n, +M’GY +51(M, + )G " +45G" +72G'G" + 56GG™
+(108M, + 72n)G"G" + (1921, + 136n)G'G™ + (84, + 64n,)GG"
+(116n 2 + 180m;n, + 640 )G G™ + (822 + 130mon, + 480 HG'G"
+26n,” + 420N, + 16n)GG" +(2n,’ + 50N’ +4nn, +17) {4G"'G"
+1G6"6" +4G6'G" +GG™} =0,
(C .4)
M + MG "™ +17(n, +n’G*" +79M, + MG +96G" +180G"G" +320G'G"

+140GG™ + (640m, + 460M)G G™ + (440m, + 330Mm,)G'G" + (136m, + 106n,)GG"
+(140n,” +220nn, + 80MAG"'G" + (240n,” + 3800, + 140n))G"G"
+(132n 2 +212n,n, + 80 AHG'GY + (320 + S0, +20MAGG”
+2n, + san2 + a2, +n) {156"G" + 116”6V + 566" + GGy =0,

(C.5)
M, +MY’'G™ +20(m, + 1 )’G™ + 113, +n)G"" + 175G + 1320G"G™

+900G'G"™ +276GG" +(920m, + 680M,)G'G™ + (1560m, + 1170M,)G"G"™
+(840m, + 648n,)G'G” + (200m, + 158n,)GG"' +(610m, +970mgn, + 360 )G G"
+(438n,7 + 702N, +264nAG "G + (19412 + 314nn, + 120n)G'G” + (38n/
+621,n, +24n GG + 2n, + 5 2+, +n) {1567 G" + 266" GY
+16G”GVI + 6GIGV" + GG V"l} - O,
(C.6)
(M, +N’G* +23(M, +1,’G™ + 153(n, +n,)G " + 288G " +2240G " G"
+3780G"G" +2016G'G" +476G G" + (4620m, +3500m,)G"G"™ + (3276n,
+2520n,)G"G" + (1428n, + 1120,)G'G" + (2761, + 220m,)GG " + (700m?
+1120n,n, +420nAHG"G" + (12040, + 1932nn, + 728n )G "G + (7282
+1176n,n, +448n )G G + (268n 2 +436nn, + 168n)G'G"" + (44n
+72neN, +280)GG ™ + (20, + Smgn* + 4ng'n, + ) {5667 G”
+42G"G" + 2G6"G¢" +1G'G"™ + GG™} =0,
(.7
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M, + MG +26(M, + N, )’G* +199(n, +1,)G™ + 441G +12880G"'G"™
+9072G"G" +3920G'G" +752GG"" + (6020m, + 4620m,)G" G" + (103047,
+7952n,)G"G" + (6160m, +4816n,)G"G"" + (2240m, + 1776n,)G'G"" + (364n,
+2920)GG "™ + (2940m .2 + 473200, + 17920 DG G + (218407 + 3528n,n,
+1344nHGGY + (112812 + 1832, + 704 )G GY" + (35412 + 578,
+224n2G'G"™ + (502 +82n,n, + 32nAGG™ +(2n,) + Smgn 2+ 4nn,

M) {56G'G" +98G"G" +64G"G"" +29G"G" +8G'G™ + GG*} =0,

(C.8)
Evaluating the equation 2.3.18 atn, =0 gives
G "
Gl =0t - % (€.9)
Mo Mo
where
=Gy’ (C.10)

Evaluating the next equations (C.1-8) in order and using previously obtained coefficients

gives
G, = % (C.11)
Mo
GOV=—33E3-a;, (C.12)
Mo
2
G = 1925 4+ 7€, (€.13)
N Mo
a UG
G, =~1320—= - 56—, (C.14)
No Mo
a0

G, " = 10440— + 508—

+ 1o, (C.15)
No Mo
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2 3

G = 93240 - 5098 % - 1207, (C.16)
Mo Mo 0
o oG ag
G,' =927360— + 55858 =+ 1717—, (€.17)
To Mo L)
2 3
G.X = ~10160640—2 - 663110-% — 12771 =% - 3750, (C.18)
Mo Mo Mo

Series expansions of individual terms from the boundary layer equations of Cooke,
1.2.6-7, and of individual terms from the Navier-Stokes equations, 1.2.3-5, have been
obtained by applying the series expansion of G and its derivatives to the corresponding
terms.

Series expansions of individual terms from momentum equation 1.2.6 are given by :

.a_u.-_.l_ an 3“{ 4 ng 1
u xR {no{-—z%—2-+ 25%5—984%§+0(ﬂ| )

m m ul
’ 4 1
“"\(1[12%2—3—— 3270+ 19818%a+0(ﬂ112)]

n n
24 3 '

—+0( “’)+—1—r645 211-—f-52°78 3'—‘—";+0( )
700 not Oy~ 222180 g+ O,

A —5537a21—‘z+0( %) i 56231 2le:ro( oy 4 -607204 211—§+o< My

+...}, (C.19)
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ou 1 n: nt
Va—;‘—{'ﬂo{ 2-—‘-140105'+6090L}‘;8:+0(n, )]

4
s

AL omf’)] +490% 21~ 322708 31+ O (n,")

+ng[—7a;'3l; +22905

l 8
+— —377a§15]—:+45500acn O(n.”)]+n—[ 3222(13;2:+0(n1 )]

1] 1
= —30474ag’_;"+0(m )] n[316872aé2:+0(n1 ] +. (20)

1 1 . s e
Ry {no{ 22'+11a3;5—:-375a:;8:+0(n1)

3

+Tlf{—aa+6af; -109 3&_,_0(“1 ]*’2%11: 43%4!+998%7;+0(T1|'°)]

+—0 —6aG 1, 361 2m-93(5401362:+O(r1l )}

_1_- m n 1 n n
2 4'%;-34140%6,+0(n, )] n[—s'a%: 35604a3;7:+0(n1)

| .
+— 6'%%4&047120:22"+0(n1 )] . (C.21)
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1 du_1 N ,]
R(l+y)8y —R{n{%"%g';*'ll%a'foa]l)

4 7
2711

n
2051, + 1005 7 - 186af;:,-;+ om,

1f n; 2 m s u]
+_ i - _ —
TloL3'aG > 930 5!+2486ac 8!+0m‘ )

- 1 ,
1 n 2 n o 1 m 2 i 10
2__4!%§+919%a+ O, )J +T\3 5!%3—9847%ﬂ+0(m )

1 3 5 8
= —6!%m+114380a§;1—]1
L 5! 8!

+0(‘11")J +..}. (C.22)

Series expansion of neglected individual terms from the Navier-Stokes equations are

given by :

19 _ 1 - M o 5
ﬁy‘Rs{“:[-”%m-4!%E+693%ﬂ"45000%m+0(ﬂ1 )

) 2 5 8
41, -13%321+221agn—‘+-3147a;"‘

3 §;+0(m")]

[~ 3 6 9
+No]| 800, %‘T - 22990, '—27‘ + 105636013;3;1,l +0 (n,")] +..} (C.23)

[}

v 1,4 o i M
ué;-Ez-{no —9(16§+189acg!--10449aa-9-?+0(n, )

na T.‘7 nlO
+n0{82agz} -31570c, 7—; + 250758a;1—(‘)—' + 0(111'3)]

s 8 1
+n([—745ag%+47390a;g~;—4958547@%+0m,“)} +..}, (C24)
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4“1

yo1 {n{ ’“‘ 84«0 +5481a% 5+ O )]
ay R 0 aG T‘l

‘[ lel+1376 ’"‘ 168300a2?(;'+0(n,")]

5a;75l" 3444006;2:+39985110t‘é“l +0(m"‘)]+--~}’ (€.25)

10

1 _al_i znl 3“1 13]
R(1+y)ay“R2{n°z[aGn1 4%4'+77 ""'3750% 10'+0(’m )
1 n s 1
+nd[-6ac 45505 1 - 15760168|+0(n1 )J
n 2“1 3“1 12
+39on,3——6660ta6'+251370z,;9'+0(n1 N+...}, (C.26)

n,’ n uH
Ray - Rz{no‘[aa dol— 31'+77af;6—:—3750a?;9:+0(n, )]

+no’{-4acn,+35a32—: 96Oa3;1;:+0(n, )]

+n{21acm—336a;"‘ +10953aég:+0(n1 ]+...}, (€.27)

13 1 m n n; ny' 1
o™ {no{xs —'—192a,;2—'+7623af;8: 630000a:;1—;—!+0m,“)J

+7] | ~960t55; 2: + 2205%32—', - 11520002 '9"‘ +0(n, )]

+1,] | 735053 E - 26880(1031;" + 15662790, P(;, + om,”)] +...}, (C.28)
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3 9
v n zﬂx 3n1 "]_ M zﬂl 4
R(+y) Rz{ﬂ Ty 40n(;5'+77oz,38'+0(nl )|~ 1003, + 83057~ -23 6%9'
4 n n
+0m, ) +— [89(1,3?'- - 13300 7: +50943c; ; (')' +0Mm,M)+ } (C.29)

Series expansions of individual terms from continuity equation 1.2.7 are given by :

ou 1 37\1 4711 13
3 R{Tlo 0N ,+4aG 77%7'+3750a6 10'+0(r\1 )

n? ™ W
+n.{3%—-31agg:+ss3a’ag;+0(ng‘)]—14aG§§+277 10 _ 930002, 9,+0(n,”)]

L1 1
- [83acm—2807aém+100227013;?(1)'+0(n1“):| . [ 583%2:+31"36a202:+0(ﬂ1”)]

1] 1
- 4693%%-376006aég:+0(n,‘ )] m— [—42606a61‘-+4861218ag ?(‘),+0(n1”)]

-

1 nl 11 1 nl l Th
— 429048010 8'+0(n, )"+ n | 47484720, 9,+0(Th |+ i 57282480&010'4‘-0(‘!‘[, 0

+...} (C.30)
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av_l zn: 311.1, an:o 13]
5;—;{710 acn,—4aﬂ4—!+77aaﬂ—37500tcﬂ)—!+0(m )
ni .M s iy 421 II__;. 13 2_71_? 10953 333.,_0 12)
sl -4aG—-2—+3SaG§—96OuG§+O(Tl; )| +4l0 7~ 6%6!+ %5 (,
1| m M 3T 13]
+—I_ 2 —_— —_
= 1320.64!+3556a67! 1277100 1O!+O(T]1 )

1f ni 40784 T om™| +L| 792 T‘—?+502722 2T—ﬁ+0( )
i 2600 5 — 40784063, + O, )|+ 15 79200, Togr T

[ 1,17 nm 1 ntll
7308006 - 6631 100(1%—16—'4- O(n,”)] +¥[—745920aog+ o(m”>]
L . . 0 H

p—
O&I

—

9 1 10
= 8346240aag+ om,”)] +"ﬁ;[—101606400a,;-111(1)—'+ om,”)] +...}, (C.31)
b . 0 .

v 1 nz .ns ns
== ul:aa-2-'—4a§;~5§+77a28—;+0(n,")

ot N nt L] e )}
101

n . 1
~Totg 5+ 590 5 - 16530551 +0(n,") +ﬁ;[49a04—!-749ag7!-+ 274830, —+0(n,”

-1_- n 2“? ], 1 uh 211?
2-—377(153-+9548(XG—8-?+O(T\l ) +T\(3J 32220.0-6—!—126716(!0a

+0(M ‘2)}
Mo ! l

+i--30474 n—z+1769882 2T‘—:0+0(n ”)]+i[316872a nimm“)]
niL %71 TR R TTRAAL

uh
10!

ul 13 ’)
5 +0Mm)+--}- (C.32)

1 1
+;"a[-3597768aa + O(n,”)] +‘1'1'7I:44323920ac
0 0



APPENDIX D: SERIES EXPANSION OF H AND OF f;

The series expansions of H are obtained by differentiating equation 2.6.18 with
respect to s in order to obtain 8 ordinary differential equations, which when evaluated at
5, yield the coefficients for the expansions. Then series expansions of individual terms
from the governing equations 1.2.6-7 and those neglected from the Navier-Stokes

equations 1.2.3-5 are then obtained.

The resulting series expansions for the individual terms of the two dimensional
boundary layer equations are also ot "ned in this appendix. Those of individual terms
neglected from the two dimensional Navier-Stokes equations are also presented.

The 8 ordinary differential equations obtained by differentiating equation 2.6.18 with

respect to s are given by :
SPHY +5s’H" + 3sH" ~HH + s’H'H' + 4s’"HH" + s’H'H" + s’ HH™ (D.1)
s’HY +8s’H™ +13sH" + 3H" = 2HH' + 2sH'H' +9s°’H'H" + 8sHH"

+1s*HH" + s*{H"H" + 2H'H" + HH™} =0, (D.2)

s’HY + 115°HY +29sH"™ + 16H" + 6HH" + s {30H'H" + 2HH™}

+ {12H"H" + 2H'H" + 10HH"} +s*{aH"H" + 3H'H" + HH"} =0, (D.3)

239
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s*H" + 145’ H" +51sH" + 45H" + 36H'H" + 28HH" + s {54H"H"
+96H'H" + 2HH™} +s*{S8H"H" + 41H'H" + 13HH"} +5*{4H"H"

+7TH"H" + aH'HY + HH"} =0, (D .4)

SH™ +175°H" +79sHY +96H" + 90H"H" + 160H'H" + T0HH"™
+s{320H"H" + 220H'H" + 68HH"} +s*{TOH"H" + 120H"H"

+66H'HY + 16HH"} + s> {(1SH"H" + 1H"H" + SH'H" + HH'"} =0, (D.5)

SSH™ 4205 H"™ +113sH" + 175HY + 660H"H"™ + 450H'H" + 138HH"
+s{460H"H™ +780H"H"™ + 820H'H" + 100HH""} + s*{305H" H" +219H"H"
+9TH'H" + 19HH"} + s*{1SH™ H" + 26H" H" + 16H"H"' + 6H'H""

+HH"™} =0, (D .6)

s HY +23s*H™ +153s H"" + 288H"" + 11204 H™ + 1890H"H" + 1008H'H"
+238HH" +5{2310H" H" + 1638H"H" + T14H'H" + 138HH""}

+5s*{350HH" + 602H" H" + 364H"H" + 134H'H"" + 2HH""} +s*{56H" H"

+2H" 1Y + 22H"H" + TH'H™" + HH™} =0, (D7)
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P H™ +265°H* +199sH™ + 441H"™ + 6440H"H"™ + 4536H"H" + 1960H'H"
+376HH"" +5s{3010H"H" + 5152H"H" + 3080H"H"" + 1120H'"H"" + 182HH"™}
+s{1470H"H" +1092H"H" + 564H"H" + 177TH'H™ + 25HH™} + s*{56H H"
+98H"H" + 64H"H"" + 29H"H"™ + 8H'H™ + HH*} =0, (D.8)
Evaluating equation 2.6.18 at s =5, gives

H o
HM"=2=0nX D9

So 3o

where
o, =H' (D .10)

Evaluating the next equations (D.1-8) in order and using previously obtained coefficients

gives the following coefficients for the series expansion of H :

o
HY =1-=, (D.11)
So
Q,
Hy =-33— -ay, (D.12)
So
oy o
HyY =192—+7—, (D.13)
So SO
vit Oy o
H," =-1320— - 50—, (D.14)

Q,

2
Q
H,"™ = 10440 +396— + 110y, (D.15)

So S0
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2 3

oy o A Oy
=-93240— - 3501— - 165—, (D.16)
3o So So
Oy 0y Oy
HJ* =927360— +34353— +2078—, D.17)
So 5o So
X Oy o7 0y .
H," =-10160640— - 371187 —, - 25976 — - 375a,. (D.18)
So So So

The velocity components obtained from the series expansion for H are given by :

3 4
oy g2 Oty S, oy 5 oy ol sl
u=0o,s - +2——= 3!—+a,, —+(4! +6
#2552 3! 5o’ 4! P 5t

2 s6 2 7 2
5'— 37— =+ 6'—+255-——+11a,, ———(7 ——+1977——
So 6! So So So'

3 8 a” a}i aS S 9 2
+154——)-— 81— +17136— +1814— ——(9'-— 164664—
5 8! So So So’ So’ 5o

3 IO

+21258 +375a,,,) 0 +0(s,"), (D.19)
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1 5, oy 54 53
v=§{soz(1”s‘ So 3 Sl +3(l” 3 [12-;0-4-.;02(1 ) (60 + 35,00 ”)5,

41
6 3 Sl7 aH aHz
360-—+15a,, —+ 2520 +96 +11so @ |5~ (20160 + 7292
So 6! So' T 5o So’

5o so So

8 2 S 9 2
+88soa,,3) [181440-—+6345—+758a,,)—~(1814400—+62010—-

3 16

(44 $
+7274s—"+ 37550 04) —
0

™ +0(s,"}. (D.20)

The series expansions of the individual terms of momentum equation 1.2.6 are given

by :

ou_ 1 5 st 10
u'a;-"ZE{ _aHS!+5aH —123(1”7""0(51 )

2 }] 8
+so’{ 5‘ 26a;",5'+1554a,,8'+0(s,")]

r st 7
({ o? 3' 2 41494 —+0(319)J +3!af,a—983a,,7' +0(s,")

8 1 6
vaH5'+7405a,,8 +O(s,“)] [Sva,,6'+0(s, J

8
[—ma,,:ﬁm( ,"’)J [7!(1,,;'4-0(.;,”)} +...), (D.21)
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u 1 st 51
V=R {so’[a,fs, - 5(13,3—! + 123(1‘,‘,:ﬁ+ 0(s,")

S l

LS50 5] "
0 B +48a,,, - 23040, +0(sl )

S3 6 4 7
+su[120n,,f3—"—43501,,6'+0(s1 ) 60a,,4'+4149a,,.7'+0(sllo)

1[ s; s 51 al 1 250,
<] 3600, 5~ 42597a 2+ 05" + 5| 252002+ 0.

Sot.

1f zsl7 o 1 2 5t 1

—1201600,; =+ O(s, )| +—| -1814400, +O(s1 )N+ ch (D .22)
53 "7 Ss

1%u 1 s; s
E§ﬁ=2—R_{s°{—aHsl +22 5-750‘1” +0(31“):|

Sg 4 7
+s{-2a,, +1204 3—" -308a;;, 6 ' —+ O(sl )| +4aty,s, - 74(1,, 2 4 3628(1,, —+ 0(s,")

[ 5 8
S
+— —3ta,,s, +5100 2 S 42516af,8—:+0(s,”)]

l—24' s 3954 251 oG’ +—1—[ 2510, 5L 4 34272 251 0(s,"”
3| 0 5y~ Ayt (5,) iy T Oy 2y (s,)

l [ s5 8
| 6w 55 - 32932805, 2 +O(s,")]+ ) (D.23)
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14 58 i 57
Rr a': { {aﬂ u’H3'+11aH6'+0(s1 ) zaﬁsl+10ay 231 +0(s110)

1f s Si 5t |
11
+;; 3'&HE—87(1”‘5—'+3662(XH +O(l )J
1 [ SE 2 516 9 1 1 2 7 10
L 3+ 17T =+ 0G5, +;3_5-au“‘7415“~7s+0( 1)
1 [ slS ) 518 "
4| 610ty -+ 7646405 — + O (s,") | +...). (D.24)
siL 5! 8!

The series expansions of individual terms from continuity equation 1.2.7 are given by

ou 1 53 st -5'19
=5 ls 0’[_0[””,2,31!- 11a2,81!+375a;‘,—9—!+0(sl”)

4 s7 S 8
+sot[-2a,,z+77a,,§7+0(s,‘°)}+8{7a ;-582 '+O(s,")

8

9 7
-33a,,a+4932a,,9' + O(S,“") +— [192(1”-4- o(s,“’J

9

] s 1
+?[—1320af,§’;+0(s,“)J {1044001 —+o(s,‘2‘)J +..), (D .25)

0

H9'
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ov 1 2 St N 5t
a—r-ﬁ{ oy - a,,3'+11a,,6' 375(1,,§;+0(s1

4 7
+ 2 sl s 10
s2 , 5 s 5} 58 s?
+s{3cx,, 5 lSa,,S' +758a,,8' +0(s,”)] - 12a,, 3 +96a,,g'-—7274a,, o —+0(s5,")]

1[ st 5, ol 1 [ 5 0
+- 600y, 5% -729 24065+ 5| 3600, 5, + 6345, 8'+0(s1 )

So 7 0
1 [ sf ) sf 12- D 26
:3_2520a,,a—62010a,,a+0(s, )|+ (D 26)

4 1 2514 1 10

st s, st s; , 5P
+5 —aa,,2+8a,,5' 176a3,§+0(s,“) + 1204 3= 630,

9 4 7
+2 342a,,9—+0(s,”)+ [—60(1,, '+537a,,,7'+0(s,’°)]

5 8 6 9
51 251 n i 5i 2 51 L 12
So 1:360(1,_, 51 - 50250y, 3! +0(s, ):| + sg|:—2520(1,, ol + 515700, o1 O(s, ):| +..)(D.27)

The series expansion of individual terms for the two dimensional boundary layer
equations and the two dimensional Navier-Stokes equations follow.
The series expansions of individual terms from the two dimensional momentum

equation are given by :

dug n:':

2. nB 3 nB 4 n[l 5 ﬂe ~
Ug % -RL — 250 — - 9840, — m + 853050, “'+0(ng )] +...}, (D.28)

“31 B<|
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al“B T\Lz 2“32 q Tl; 4 Tlg 5 n;ll 14
VBE"EZ Oy —2—- 14&B§'!'+6090.B§!'-57408\‘!21—1—!+ oMmg ) (D .29)
1 3%, TI:.’[ Mg .M R “]
RL asz - RL —(XB —2_+ 1103 _5—! - 375(18'5'!"*'0(113 ) ] (D .30)

The series expansions of individual terms from the two dimensional continuity

equation are given by :

du; [ M M urs
E=ELﬂBnB+4a§2—!-—77(!:'7—!+3750(1;'1—6?-#0(1]313) , (D.31)
v, n’ [ 5 i 3 up s ny 13
;};-EZL(IBT]B—4(!82'!‘+77(137?"3750a3ﬁ+0(n5 NE (D .32)

The series expansion of neglected individual terms of the two dimensional

Navier-Siokes equations are given by :

1%, T, N s Na N5 " :
R B B0ty — 240 77 + 6930 77 — 4500003 70+ O (M) (L.33)
uaﬁ:ﬂir-g 23"—;+189 2T 10449 «Te 1166373 A om,’ (D.34)
P3xs - REL e 3y ¥ 1890y~ 10449a, 57+ 116637305 15+ O (g ) |
dvy an- Mg 37163 M3 smlsz 15

V035, = KoL % 31~ 8405 gy + 548105 5 - 6888960, 5 +0(1”) (D.35)
1 0% nl-3~ 2“?3 . 3“2 4“2 12]
Ea-y?’EE_a”’4“”—3?”’“”5'37500"@*'0(“‘* )| (D.36)

10 N, nf M , M M

R 32 Rl 150 ~ 19205 5+ 762305 57 - 6300000 17+ O(nu")]’ (D.37)

B8




APPENDIX E: SOLVING THE BLOCK TRIDIAGONAL SYSTEM

The system (4.3.9) or (4.3.10) is solvcd by a block tridiagonal factorization procedure,

which is described in this appendix.

A factorization for the matrix A, of the form

A=LU,
o,
B(?) “(2\ 0
where L = ' .] ,
By,
0
J 7
L By o4
1 Q. ]
I < 0
and U = o ,
! an
0 .
— [-

248

(E.1)
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1s employed.
In the large matrices L and U, the I’ are identity matrices of 3rd order and the &’ and &

are 3 x 3 matrices. Equation E.1 reduces to :

a(ll)=A(t)’ (#l)s}(’l)=c(jl)’ 1 S'.’ <J- 1’ (E2a)
and
o, = AL =Bl 2<j<, (E.2b)

when compared with matrix A , in equation 4.3.11a.

The unknown matrices o, and ¥, can be calculated from equations E.2, i.e., Q, is

obtained from E.2a and with it of, from E.2b. Substituting of, into E.2a. 7, can be
calculated. Using Q}, in E.2b yields oy, etc.. Defining

0 0] dy,
,=|w, 0 Oj’ and oy, =| e,
0 0 g(/‘

equation E.2a at j = | can be written as :

1 1 1
% 20 = Coy
but
1 1
o) = Agy
Therefore,
0 1 0
1 1 1 d(t) F AC(:)
B(t) 9(l) (1) el - Yl
h| h‘ (*) (1)




Solving for d;,, €;), 8. gives:

1
dhy=
® By = Bis\

1 _ 1

2
and g;,= {E»fd(})),

Defining

(o) (o) (o)
(x(ll)E (a’lly (0'22)! (a)j)l ’
@) () (o)

equation E.2b can be written as

r 4
r(all)’ (o) (o) FAC,,

(o) (o)) (o) ]= Yo
(0 (o) (o) -1
Hence,
[ e{,)"+FAC(;, 1
o, = Yo (,)e(,) [}(’,,g(,, 6)
i -1+ ng

2
( Yoy~ 0FACG+ A B(l‘))’

1
%

0 0 -1 0

diy"’
B{l) - O 9:‘) B‘(") el"‘ .
b lo o hl
—5 - 2 g(l)
2<j<J

(E.3a)

(E.3b)

(E.3¢)

(E.4)

Matrix €, can be calculated for j > 2 from (E.2a) after obtaining o, as above. Using

(E.4) we rewrite (E.2a) as :
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((au))’l ell B(j &\ [Fac,
%l S0 Poller | = Y

h .
_((’11)’ 0 "'2'2 g(li 1

Solving for d{), e, and g{, gives :

h,120Y,, - FAC,8(,) + B,

diy= v (E.5a)
e, =FAC))~(a,Yd;, 2<j<J-1, (E.5D)
dgl = 2 d.-1 ES
an 8(:)—;1:((0‘11)' 0 ), (E.5¢)
where elements of oy,, matrix are given in (E.4) and
) - h] hl e/
A =—2—(a’21)J 3 (Y + (o). (E.6)

To summarize the calculation of ¥, and ¢}, matrices, we first calculate o, from

(E.3), then o, from (E.4) for j = 2, then wj,, from (E.5) for j = 2, etc..

The system (4.3.9) cr (4.3.10) with (E.1) can be rewritten as LUz}, = 5{),.

Let Uz}, = w},, which gives Lw}, =s{,, or




0‘:-‘)
2 2
B o,
B (Jl) (If,)
0
From (E.7) it follows that :

B(Jn “{-L LW(J» LS({).

[ S | J el PV =yt ;
Wiy =Sy T =50~ "o =My 2<jsJ,

where
(b
ng, = (nn),|-
(P,

Rewriting Uz}, =wj,, as

1 Q
I

I Q,

- -

1
Z'(t)

z(t)

Z(a)

J
[ 2
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(E.T)

(E.8)

(E9)

(E.10)
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gives : z;,=w,, and z,=w} -z, 2<j<J-1 (E.11)
The components of vectors wj,, and z{, are calculated in the following manner.
X
First, wy, =| yg!-
Z
Then from (E.8) atj =1,
0 1 0 1 ml
1 1 ) ()
® e(‘) B(ll) 1| _ Il
h Yol =1 ot
_t 0 A Zl 11
2 2J g ©
Solving forx;,, ya, Zgp yields
1 —O,mb +2/m 0B,
xl = ) ()”:() 1 1()’3()’ (E.122)
(ﬁ(l) - ls(l))
y(:)z'"(:)’ (E.12b)
and
2 h
z! ______(11 +—lxl)- (E.12¢)
Q) h‘\(l) 27®
The components of n(,, for 2 <j <J, from (E.8) are given by :
(bbY,,=miy+yiy ', (E.132)
CONE AL AN T (£139)

and
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. h, . _
p)y= 1('-‘)*512('5) g (E.13¢)

The quantities x/), ¥, and Z{, can be obtained for 2 < j <J from the latter part of (E.8),

ie.,

, _ (B12)((nn )iy = 0,(BbY,) + Blylpp Xy

Xy = ~ (E.142)
Yiy = (bb ), — (04, Y X7, (E.14Db)
and
J 2 J
Ziy =5 () x5~ (PPY): (E.l4c)
7
Note that A’ is given in (E.6).
Now the components of z/,defined by (4.3.11) can be calculated from (E.11).
For j = J, the components of z;, are given by :
SP({).‘=X({)' SQ_(J,)=y(f),and &_ﬁnzz('nl)’ (E.15)

For2 <j<J -1, the components of z},are given by :

J-t J 7] Y
A | =] o | | 57 37 +1
= Yol -l€mw 0 0 w |

SR.L) Z(l')-l g(ll) 0 0 5]?_{,;'

or dP,; ' =x) —d! dP;,, 80}, =y/,- €/ dP.,, and 3R, =Z} - g/ OP, (E.16)
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—
OR
Since, z;,=| 50|,
1
SR «
= g |
then, Sﬁz)zx(f)—a':,SP(:,, 80,,= y(i)—e(f)SP(i, and 8R(,,=Z(f)—g(f)8P(:), (EXD)




APPENDIX F: RICHARDSON EXTRAPOLATION

In this appendix we derive tiie expressions for Richardson extrapolation that apply to
three numerical solutions of a two dimensional problem and two numerical solutions to a
one dimensional problem. In applying the extrapolation an estimate of the asympto-ic
expansion of the soiution is used which is in terms of the computational mesh sizes.

Richardson extrapolation or deferred approach to the limit in two dimensions requires
three solutions each at a different mesh size in order to increase accuracy to the next
level. Using central differences in discretization allows a leap frogging of orders of
truncation errors, i.e. the truncated error terms in the series expansion go from second
order to fourth order etc..

Three solutions of the form :
U-u,=Ahl+Bkl+Ch} +Dk + Ot +k®),
U-u,=Ahl+Bk; +Chy+Dk; +O(h; +k}),
U-u,=Ahl+ Bk +Chi + Dk + O(h + k%), (F.1)
where U is the true solution, the i, are the ith numerical solutions using i different nets,

and the A, B. C, and D are assumed constants of order one.

Eliminating A from equations F.1 yields :
hy(U = )= hi(U = ) = BB+ Chhy(h} = hy) + D (hok; — hiky) (F2)

and
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WU ) - h(U ~ ) = B+ Chh(hy - i) + D (hoky — i),
where o = k2h2 - k2h? and B =kZh: - kjh!l.
Eliminating B from equations F.2 and F.3 gives :
{a(h; =)+ Blhs ~ R U = ohgu, = Bhiu + (Bh; - othJuy + Ch{athi(h) ~ hy)
~Bhs(hy — k)} + D{ahsky = hikz) — Blhsks =~ Ak}
Rearranging equation F.4 establishes:

1
U=
ki(hs = h3)+ k3(hi = h3) + k3 (hd — h)

{3k ~ kohdu, + (hik; = Bk,

Hhik; - bk, + C (i gk (hy = b)) + hihski(hy — hy) + hihiky (ki = b))

+D (hlkGki (ks = k) + ik k(k? = k) + hok ki (ki = kD))

In one dimension, two solutions are required with expansions of the form (F.1).

Neglecting u, and setting B and D to zero, equation F.2 becomes :
Rj(U —u)) = hi(U ~w,) = ChIh}(h? - ).
Rearranging (F.6) yields :

1

hz" - 1'112

U=

(hzzu, 'hlzuz'Chlzhzz)-
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(F.3)

(F.4)

(F.5)

(F.6)

(F.7




APPENDIX G: SOME SERIES EXPANSIONS USED IN
DISCRETIZATION

In this appendix we obtain the series expansions of Q about (]~ '?,£, _, ) used for

numerical discretization in Chapter 4 to obtain expression 4.2.15.

The individual series expansions are given by :

< Ao P A S h’k,
QII =Qn—lf2+ Qﬂ] +—Q§ 8 Q“;"] 4 Qﬂf, 8 th 48Qﬂ|n1“1 24 Qﬂ]'hg

hk’ ki . k' h'k, hlk} hk, - ki .
+ 2 Qns* 35 Qen 35 Cnmnn * g5 Crnns * gz Crnie* g6 n ¥ 334 Qe

T T N Y L, S, R, VS Yy
a SXa-izT ¥y gt T4 2t %748 g, T 24 MM

hk Lk h h'k, hlk? hk - ky -
24 Q“|§§+48Qm 384Q“|ﬂ|“|ﬂ| 96 Q'l;“]"h{ Qﬂl"h;g 96 Q“;m 384Q

A T A T Y A k} . h'k,
Q""=Q"-"2-_2-Q'1|—_2-Q§+§Q'h’h+ 4 Oy 8Q§§ 48Q'hfh'h 24 Qﬂm;

hk? kl .k hk, hk} bk} ki .
‘E‘Qn,ﬁ 48Q 384Qnmm.m 96 Q'h'hmé anmﬁi 96 Q"xiiﬁ 334Q

and




. 7 T P P ¥ AP A hiky
Qu-l=Qn-lf2+5Qﬂ1-EQ§+.§-Qﬂ1ﬂ| Qn,’é SQH; 48Q‘1|'h‘h 24 Qn,n,&

hk’ ke h, hk, hk: hks - ky .
24 2 O™ 48Q5"'E 384Q“*"!""" 96 96 Qs 64 6 O™ 96 96 St 384Q
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