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ABSTRACT

The aim of this thesis is to develop a general mechanisin for the construction of
codes and to extract general properties of classes of codes. This mechanisin makes
it unnecessary to study various classes of codes separately — at least to some extent

~- by different constructions and properties.

To achieve this goal, the mechanism of characterizing classes of languages by
binary relations is studied. Some general propertics related to binary relations
and langnages are obtained. Moreover, threc new classes of codes, n-shuffie codes,
solid codes, and intercodes are constructed. Solid codes and intercodes have the
synchronous decoding property which is very useful in the design of circuits of
coders and decoders.

The studies of codes, n-codes, and intercodes indicate that these three classes
of codes cannmot be characterized by binary relations. We introduce a mmore general
mechanisin, that is, to characterize classes of languages by finitary relations. This
mechanisim can be used to characterize more classes of languages, such as the classes
of n-codes and intercodes. Sometimes, it is difficult to show inclusion relations
between classes of codes and hierarchy properties of classes of codes. Results derived

in this thesis provide a mechanism which can simplify this task.
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CHAPTER 1
Preliminaries

1.1 Introduction

A language is a code if every finite string can be decomposed into words taken
from this language in at most one way. This unique decipherability of codes is very
important in the application in information communication systems. Several code
testing methods can be found in [Sall]. While code testing is difficult in general,
there are many abstract properties of languages that define classes of codes directly.
Many classes of codes, such as uniform, infix, bifix, prefix, suffix codes, etc., have
been constructed in this way (see [Ber2), [Sall] and [Shyl] for examples).*

To develop a universal mechanism for characterizing classes of codes and
extracting common properties of codes is a very unportant issue in the theory
of codes and it is the aimn of this thesis. This work provides a general tool to
study common properties of codes and to avoid studying different classes of codes
by different constructions and properties. To achieve this goal, the mechanism of
characterizing classes of languages by binary relations is studied. Moreover, the
relationship between different classes of codes, and constructions and properties of
some new classes of codes are investigated.

In 1952. Higman investigated the connections between languages and sets
which are independent with respect to some binary relations ([Higl]). The charac-
terizations of several classes of codes, such as hypercodes, uniform codes, infix codes,
bifix codes, prefix codes and suffix codes, as the independent sets with respect to
binary relations can be found in [Hail}, [Jull], [Shy4], [ShyS5], [Thi2] and [Vall].

* In this introduction we give a general survey of our results in the context of

related research. Precise definitions of terms used are found in the literature or in

Scetion 1.2,




Shyr provided a survey of this early work in [Shyl]. After that, the connections
between independent sets and codes have been cxtensively investigated (see [Dayl].
[Ita2], [Ita3], [Itod], {Jiirl], [Jiir4], [Jiir5], {Pet1] and [Thi3)).

In most of that work, partial orderings provide characteriz: ‘ot s of certain

classes of codes. For instance, in [Jirl], a binary relation <,, on X* is defincd by:
u<piv &> u=vorv=zruyforsomer € X' andy ¢ AR

It has been shown that the binary relation <, is a partial order and the elass of
p-infix codes is equivalent to the <,;-independent sets.

However, it was also found that somne classes of codes, like the classes of outfix
codes ([Jiir5]) and n-shuffle codes ([Thi3]), cannot be characterized as independent
sets with respect to any partial order. Instead of partial orders. strict binary re-
lations are considered (see {Dayl], [Ito3], [Jiir5], [Shy4] and [Thi3] for examples).
Furthermore, in our research we have found that the length-preserving condition
of strict binary relations is not necessary in several cases. Only the reflexivity and
symnetry conditions will affect the relationship between binary relations and their
independent sets. Instead of considering strict binary relations, we consider reflex-
ive and symmetric closures of binary relations. The consideration of reflexive and
symmetric closures of binary relations provides a fundamental step for a further
generalization to develop a universal mechanism.

A counterexample for the binary relation mechanism is the class of n-codes.
n-codes have been introduced by Shyr and Thierrin in [Shy4]. Ito, Jiirgensen, Shyr
and Thierrin further investigated the hierarchy of n-codes and codes in 1987 and

1989 ([Ito2], [Ito3] and [Ito4]). The hierarchy of n-codes is as follows:

CC...CCLECi1€...CCCC,

where C and C,, are classes of codes and n-codes, respectively. It has been shown

)




that n-codes for n > 2 cannot be expressed as sets being independent with respect
to any binary relation.

In our recent research, we construct another counterexample, the classes of
intercodes ([Jiir2] and [Shy7]). A language is an intercode of indez m if every sen-
tence consisting of m words taken from this language can only be a left subsentence
or a right subsentence of other sentences consisting of m + 1 words of this language.

The hierarchy of intercodes is as follows:

where T and 7,, are classes of intercodes and intercodes of index m, respectively.
Again, intercodes cannot be expressed as sets which are independent with respect
to any binary relations.

These results provide the motivation to consider a more general mechanisin
to cover classes of n-codes and intercodes. The mechanisin, expressing the classes
of languages as the independent sets with respect to finitary relations, is introduced
in [Jiir2]. This finitary relation mechanism succeeds in expressing classes of n-codes
and intercodes as the independent sets with respect to some finitary relations.

Two important results are the gap theorem and the inclusion theorem. The
gap theorem provides a powerful tool to determine the impossibility of character-
izing certain classes of languages by finitary relations. In 1975, Shyr and Thierrin
showed that there is no strict binary relation such that the class of all independent
sets is exactly the class of all codes ([Shy4]). This result now can be modified and
shown by the gap theorem as that there is no finitary relation such that the class
of all independent sets is exactly the ciass of all codes. The inclusion theorem pro-
vides a tool to show the hierarchy of classes cf codes by the hierarchy of finitary

relations. Sometimes, to show the hierarchy of relations is much easier than to show

the hierarchy of codes directly.




A diagram of the relationship between certain various classes of codes and n-

codes is provided in {Ito4]. This diagram is shown as Figure 1 below, Three classes
of codes, n-shuffle codes, solid codes, and intercodes, which do not appear in the
diagram of Figure 1, are constructed and studied in ot:r research. These additional
classes of codes are shown in the redrawn diagram in Figure 2 in further below. In
addition to the main subject for developing a universal mechanisin to characterize
clusses of codes, we also study constructions and properties of n-shuffle codes, solid
codes, and intercodes.

The infix order is contained in the embedding oider and between these two
relations there is an infinite hierarchy of reflexive and antisymmetric binary relations
called the n-shuffle relations (see [Thi3]). These relations fill the gap between the
infix order and the embedding order. n-shuffie relations are binary relations but not
partial orders. It is shown that the n-shuffle relations are not compatible for n > 1
and not transitive for n > 2. Moreover, the transitive closure of each of them is the
embedding order. The corresponding independent sets form the classes of n-shuffle
codes. The classes of n-shuffle codes are submonoids of the free monoid of prefix
codes. But they are not free submonoids.

The unique decipherability condition does not address the case when a word
does not have a decomposition over L. For instance, such a case may arise when
the word in question, that is, the encoded message received over a noisy channel,
contains inserted noise symbols or has some symbols missing. To somne extent, the
definition of solid codes attempts to guarantee unique decipherability in such cases
too,

Solid codes were introduced in [Shy6)] and studied further in [Jiir1j and [Reil].

Intuitively speaking, a set L of words is a solid code if and only if every word has

a unique factorization into words in L and words which are not in X*LX".
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Solid codes may be useful as cryptographic techniques. Using a solid code
L as the coding method, in the transmission of a sequence y;,y2,...,¥n,... (with
y; € L), we choose an arbitrary sequence of words z,,z2,...,2Z4,Zpe1,--. such
that y; ¢ E(z;) for all y; and z; where E(z) = {u | v € X+ with u <; z} for
z € X*. Then the sequence z,¥1Z2Y2 .. . Tn¥YnTn41 - - . can be decoded correctly.
This encryption method assumes that L is known to the sender and the receiver,

and unknown to everybody else.

Some properties of solid codes with cardinality less than 3 were first studied
in [Shy6]. Let X be an alphabet and for z € X*, let P(z), S(z) and E(z) denote
the sets of proper prefixes of z, of proper suffixes of r, and of all subwords of
z, respectively. Then, the following characterization is a result of [Shy6]. For
u,v € X%, {u,v} is a solid code if and only if P(z,)NS(z;) = 0 for any 21, 22 € {u,v}
and u € E(v) or v € E(u) implies « = v. From this characterization, the class of
solid codes forms a subclass of the class of infix codes. The general casc of solid
codes of arbitrary cardinality is characterized as follows: A language L is a solid
code if and only if every subset of L with at most two elements is a solid code

([J1ar3)).

Since the publication in 1957 of the paper “Codes without comnmas” ([Cril]),
comma-free codes have been extensively investigated (see [Ber2], [Goll], [Gol2],
[Hsil] and [Shy1] for examples). A comma-frec code L has the property that for a
message z in LY, that is = uyus...u, for u; € L, if we decode this message and
find a factor y of z in L, then y is one term of u;. Comma-free codes have a very
important property, that is, the synchronization delay of a comma-free code is just
one. A word in a message consisting of words taken from a comma-free code can

be identified when the last symbol of this word is received.

In [Gol1]. comma-free codes were defined as bifix codes with the synchroniza-

tion delay equal to one. In [Sch3], Schiitzenberger introduced the notion of limited




codes. A characterization of comma-free codes has been given by using limited
codes (see [Ber2]). Recently, in [Hsil], Hsieh, Hsu and Shyr gave a characterization
of comma-free codes by using the intersection of sets: A .lmxgtmge LC Xtisa
comma-free code if and only if LZ2N X+LX+ = 0.

The intercodes introduced in [Shy7] and already mentioned above arc a class
of generalized comma-free codes. A language L C X is an intercode if and only
if L™ N X+L™mX+ = 0 for some m > 1. The class of intercodes is a subclass of
the bifix codes. Some properties and operations of intercodes and the relationship
between intercodes and comma-free codes are also studied in [Shy7] and [Yul]. It
has been shown that every intercode is limited and circular. In particular, for an
infix code L, L is an intercode if and only if L is a (p, ¢)-limited code. A thorough
study of the hierarchy of intercodes and n-intercodes can be found in [Jiir2]. The
diagram in Figure 3 below illustrates this hierarchy.

The maximality and the decidability of several classes of codes are also stud-
ied in this thesis. For some properties of maximal (prefix) codes, sce [Ber2], [Chal]
and [Per1). It is not difficult to show that every code is contained in a maximal code.
In [Szil], we also have the result that every prefix code is contained in a maximal
prefix code. In [Shy5), Shyr and Thierrin showed that a maximal code which is also
a hypercode is a maximal prefix code. Some properties of the maximality of hyper-
codes have also been investigated in [Shy5]. For the properties of the maximality
of bifix codes see {Sch5]. In [Sch4], Schiitzenberger showed that every scmaphore
code is a maximal code. Some properties of maximal n-codes have been studied in
[Ito2]. In [Guol], some properties of maximal infix codes have becn mentioned. In
(Ito4], some properties of the maximal p-infix codes, s-infix codes, cte., have been
studied. The maximality of solid codes has been studied in [Jilr3]. Some problems
of the maximality of comma-free codes have been investigated in [Jigl] and [Gol2}.

However several problems about the maximality of comma-free codes and all the

/]




Figure 3. The intercode hierarchy




problems about the maximality of intercodes are still open.

In [Itod], Ito, Jiirgensen, Shyr and Thierrin showed that whether a regular

language is in the class of right semaphore codes, p-infix codes, s-infix codes, infix
codes or outfix codes is decidable. The decidability problem of solid codes has been
studied in [Jiir3]. The decidability problems of intercodes are still open.

The organization of this thesis is as follows:

Chapter 1 is the preface including the introduction, fundamental definitions,
notation which is used in this thesis, and a summary of the main results of this
thesis.

Chapter 2 contains several subtopics of the relationship between some elasses
of codes and binary relations. In Section 2.1, we investigate the connections hetween
binary relations and the independent sets and extract some fundamental properties
of binary relations and classes of related languages. p-infix codes can be character-
ized as the independent sets with respect to a binary relation <,,. Some properties
of p-infix codes are studied in Section 2.2. The purpose of Section 2.3 is to study the
hierarchy of n-shuffle relations. n-shuffle codes are characterized as the independent
sets with respect to n-shuffle relations. In Section 2.3, some propertics of n-shuffie
relations and of the syntactic monoid of n-shuffle codes are also investigated.

Chapter 3 deals with the properties of solid codes. The definitions and nota-
tions can be found in Section 3.1. In Section 3.1, we give a characterization of solid
codes which is decidable for regular languages. In Section 3.2, we establish closure
and non-closure properties of solid codes. The maximality of solid codes is investi-
gated in Section 3.3. Section 3.4 mentions some results of further investigations of
solid codes (ref. [Shy6] and [Reil]).

Chapter 4 is devoted to the study of intercodes. First, in Section 4.1, we
give the following characterization of intercodes: A language is an intercode if and

only if it is a synchronously decipherable code. In particular, an infix code is an




intercode if and uly if it is a limited code. n-intercodes are studied in Section 4.2.
In Section 4.3, we show that the class of comma-free codes is exactly the class of
all intercodes of index 1. This result provides an abstract mathematical means to
study the properties of comma-free codes without checking the so-called comma-
free dictionary to impose restrictions on the set of words. We also characterize the
class of comma-free codes as the class of infix (p, ¢)-limited codes with p + ¢ = 3.
In Section 4.4, some properties of 2-comma-free codes are investigated. The same
closure and non-closure properties of the class of solid codes are established of the
class of 2-comma-free codes. A thorough study of the hierarchy of intercodes and
n-inte codes by using the hierarchy of certain finitary relations is later provided in

Section 5.4.

Chapter 5 deals with the mechanism for characterizing classes of languages as
sets being independent with respect to certain finitary relations. Some fundamental
properties of finitary relations and independent sets are investigated in Section 5.1.
The gap theoremn is shown in this section. In Section 5.2, we discuss how the earlier
treatment of binary relations and independent sets fits into the new framework.
The binary relations given before are redefined and listed in Table 5.1 in Section
5.2. This shows that the generalization from binary relations to finitary relations
is possible in such a way that all results concerning binary relations of the earlier
work are preserved. To show that the new mechanism is more powerful, a binary
relation w, is defined such that the class of w,-independent sets is the class of solid
codes. The purpose of Section 5.3 is to discuss the relationship between classes
of sets being independent with respect to finitary relations of different arities. In
Section 5.4, results obtained in the previous sections of this chapter are applied to
the cases of n-codes, n-intercodes, and n-ps-languages. We strengthen the hierarchy
results obtained in [Ito2] and add to those results obtained in [Shy7]. This chapter

completes the goal of this thesis.

11




Chapter 6 is the conclusion of this thesis. In this thesis we discover general
concepts, constructions, and results which not only extend the hierarchy of codes
and n-codes, but also generalize results of binary relations obtained before,

Given the results obtained in this thesis, it is now clear that it is not so much
relations, but rather dependence systems that ought to be considered for defining

classes of codes. These connections are being investigated in {Jiir6).

1.2 Fundamental Definitions and Notations

In this section we give some fundamental definitions and notations. Items not
defined in this section or in the following chapters can be found in the books [Ber2),

[Gin1), [Gral], [Hopl), [Lall], and [Wool] which we use as standard references.

1.2.1 Semigroups

An ulphabet X is a nonempty, finite set. In this thesis we always assune
that 2 < |X|. Any finite string ¢ = zy7r2---7, where 7, € X, 7 = 1,2.... 0, is
called a word. The empty word will be denoted by 1. Let X* be the set of all words
over X and let X+ = X*\ {1}. For any word r € X*, the length of x is denoted
by |z|. In particular, |1} = 0. Any subset L of X* is called a languagc over X and
the cardinality of L is denoted by |L|.

The multiplication of two words z and y of X* is defined as the juxtaposition
of = and y, that is, the catenation. For any two sets A and B, the catenation of A

and B is the set

AB={zy |z € A, y € B}.

In the sequel, A? = {1} and, inductively, A® = A""14 = A4"~!.

A nonempty subset S of a monoid M is called a base of M if and only if

ajag---ay =bybg . by, for a;,b; € Simplies n =m and a, = b,, 1 = 1.2,...,m.




A monoid M is free if and only there exists a base S such that $* = M. To
test whethrr or not a monoid is free is difficult. But there is an easier mecthod to
test whether a submonoid of a free monoid is free or not.

For any subsets A and B of M, we define
A'B={ze M| Azn B # 8};
BA ' ={ze M |zAN B #0}.

Theorem 1.1 ([Sch2]) Let M be a free manoid and let S be a submonoid of M.
Then S is free if and only if S'SNSS™ C S.

A word u € X is said to be primitive if it is not a power of another word,
that is, u is primitive if and only if u = f* with f € Xt implies n = 1. Let Q be
the set of all primitive words. Let @ denote the family of non-empty subsets of Q.

It is well-known that, for every word u # 1, there exists a unique primitive
word f and a unique integer k > 1 such that u = f* ([Lynl]). For any word u
let /u be this unique primitive word such that u is a power of /. And, for any
LC X* let VI = {/u|ue€ L}. Alanguage L is a 2-code if and only if L € @
(see [Shy4]).

A word u € X¥ is said to be unbordered if u € vX* N X*v implies v = 1.
Of course, an unbordered word is primitive. But a primitive word nced not be

unbordered. For example, let X = {a, b}. Then aba is primitive but not unbordered.

1.2.2 Codes and n-Codes

For a language L C X* and a word ¢ € L*, an L-factorization of z is a
sequence (Z;,%2,...,2,) of words in L for some n > 0 such that ¢ = z,2,...z,.
A nonempty language L C Xt is called a code if every word z € L* has a unique
L-factorization, that is, 172...Zm = y1y2...Yn With z;,y; € L for all i and j

itmplies n = m and z; = y; for all 2.

13
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A language L C Xt is called an n-code if every subset of L with at most
elements is a code (see [Shy4]). It is trivial that every (n + 1)-code is an n-code
and every code L with |L| = m is an n-code for n < m. Thus we have the following

hierarchy of n-codes:
CC...CC,CC1C...CCCC

Since {u} is a code for every word u € X+, C, is equivalent to 2V \ {0}, that is

every non empty language in X+ is an 1-code. Moreover, it was proved in [Ito?]
and [Shy4] that the hierarchy of n-codes is strict, that is, there exist (n — 1)-codes
which are not n-codes. Of course an n-code need not be a code. For example, let
X = {a,b} and let L = {a,b,ab}. Then L is a 2-code but not a code.

Many classes of codes have been studied. We give soine definitions.

Definition: 1.2 Let X be an alphabet and let L C X*. Then L is
(1) a prefiz code if LNLXY = §;
(2) a suffiz code if LN X*L = §;
(3) a bifiz code if it is both a prefiz code and a suffiz code;
(4) an infiz code if for everyz € L, X*zX*NL = {z};
(5) a uniform code if for every z,y € L, |z| = |y|,
(6) a full uniform code if L = X" for some n 2 1,
(7) an outfiz code if for all x,y,2 € X*, xy € L and rzy € L 1mply that =z = 1;
(8) a right semaphore code if X*L C LX* and L is a prefiz code;
(9) a left semaphore code if LX* C X*L and L is a suffiz code:;
(10) a p-infiz code if for all z,y,2 € X*, z€ L and zzy € L imply y = 1;
(11) an s-infiz code if for all z,y,2 € X*, 2€ L and z2y € L imply x = 1.

The class of all codes is denoted by C. For any fixed alphabet X, if P is

a property labelling codes or n-codes, then Cp is the class of codes or n-codes so

labelled over X. Usually we use the initial of the name of a class of codes or n-codes




to name the property of this class of codes or n-codes. For examples: C,, C,, C,;,
C,, are classes of prefix, suffix, p-infix, and right semaphore codes, respectively. In
Table 1.1 below, we list some classes of codes and n-codes. The table also shows
the property name and a biuary relation defining that class of codes or n-codes.

Let S be an arbitrary non-empty set. A family £ of subsets of S is said to
be non-trivial if ¢ L. For a language L, let Fin(L) be the set of non-empty, finite
sublanguages of L. A family £ of languages is said to be Fin-determined if it is
non-trivial and

Lel < Fin(L)CL

holds true.

Let £ be a non-trivial class of languages over an alphabet X. C is strictly

non-trivial if £ satisfies the following additional condition:

for all u € X*, {u} € L.
The class of all codes and every subclass of codes given in Definition 1.2 are strictly
non-trivial and Fin-determined.

A language L € L is a mazimal element of £ if and only if for any z € X+\L,
L U {z} is not in £, that is, L is a maximal element of £ if and only if L is not
properly contained in any other element of C.

Two special subclasses of n-codes, n-ps-codes and g-3-ps-codes, are intro-
duced in [It03). A language L C X* is called an n-prefiz-suffiz code, or n-ps-code
for short, if every subset of L with at most n elements is a prefix code or a suffix
code. A language L C X% is called a g-3-ps-code if

(1) foranyu fveEL,ugvXtorug Xtv,

(2) for any distinct u,v,w € L,u ¢ vXt oru ¢ Xtw.

The classes of n-ps-codes and g-3-ps-codes are denoted by PS,, and ¢PS, respec-

tively.




languages property | relation :

uniform codes v ws,v &= w=0vV |v| < |v|

hypercodes h w<av 3u,§§x.....z.€X‘:w=
21 Za AVE X213 X" ... 2, X"

n-shuffle codes shy W, v &> 32,...,2, EX 0w =
Ty Zu AVE X°®23 X*.-- 2. X°

prefix codes p w<,v &> vEwX*

suffix codes s w<,v & veEXw

bifix codes ] wy =.<.'U50

2-codes c v v & Iz v=wr=2w

infix codes i w<;v &b ve XvwX*

p-infix codes pi w<,v &= w=vVvE X wXt

s-infix codes si w<,,v & v=0VvE XtuX*

outfix codes o Wwe? ¢=> Jwy,w3: W=t wyAvE
w,X'wz

2'!"‘:“1” d .<.‘=Spn <,

Table 1.1. Some classes of codes and
n-codes, and their class labels and the
associated independence relations.
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1.2.3 Relations

For a set S, let

SI"=8x...xS$
e, o’
n times

be the n-fold Cartesian product of S. An n-ary relation w on S is a subset of [S]".

A strict binary relation w on X* is defined as follows: for all u,v € X*,
(1) wwu and lwu,
(2) wwv implies |Ju} < |vj,
(3) wwv and |u| = |v] imply u = v.
A language L is called an independent set with respect to a strict binary relation w
if for all u,v € L, wwv implies that u = v. Some strict binary relations and the
related independent sets are also listed in Table 1.1.

If a binary relation < defined on a set S is reflexive, antisymmetric and
transitive, then < is called a partial order of S. A strict partial order is a strict
binary relation which is also a partial order. A partial order < is said to be a total
order on S if for any u,v € S, one has u < v or v < u. A total order < is called
the standard total order on X* if for any u,v € X*, u < v when |u| < [vjand u < v
is the inherited lexicographic order from a given order on X when |u| = |v|. By
the standard total order < on X*, we enumerate the totally ordered set (X*,<)
as {rg < ) < 22 < ... < Zy < ...}. For every z € X*, let the index of z be
#(z) =m, if z = z,,. We note that z9 = 1. In the sequel, if < is any total order
on X*,andif A ={z; <23 <...}, B= {y1 <y2 <...} are two infinite languages
over X, then following [Shy2], we define the ordered catenation of A and B to be
theset AAB = {z;y; |i=1,2,...} andfori > 2,let A = AC-VAAQ = AAAG-D,

1.3 Summary of Results

Now we summarize the main results of this thesis:




i8

In Chapter 2, we investigate binary relations, p-infix codes and n-shuffie
codes. The class of all nonempty, w-independent sets is denoted by C,,.

Let w,v € X*. We define the binary relation <,; as follows:

w <p; v if and only if (w = v or v =zwy for some z € X* and y € X+).

o The relation <, is a partial urder on X+.

o The class of all non-empty, <,;-independent sets is the class of p-infix codes.

For every positive integer n, the binary relation w,,, is defined on X* by:
UW,p, U > U = Ujlig Uy, U= VgU v, - UyV,, Where u;,v, € X°.

The relation w,s , is reflexive and antisymmetic and it is called the n-shuflle relation.
o The relation w,y, is transitive, but for n > 2, w,s, is not transitive.

A non-empty set L C X+ which is w,,,-independent is a code, called an n-shuffie

code.

e Every n-shuffle code is an m-shuffle code for m < n and a prefix code.

We consider the relationship between binary relations and the independent sets and
derive the following results:
o Let wy,w; C [X*]?. Then symmw; = symmw, = £, = L, where symmuw,
denotes the symmetric closure of w;.
Let S denote the set of all symmetric binary relations on X*.
o Let wy,w € 6. Thenwy Cw, =L, CL,,.
If w, is reflexive then also £, C £, = w; C w2.
Hence, if both w; and w; are reflexive, then wy =wp < L, = L,,.

Because of this result, in the sequel, we need to consider reflexive and symmetric

binary relations only.




Let RS denote the set of reflexive and symmetric binary relations on X*.

For any strictly non-trivial, Fin-determined family £ of languages over X, let the

relation we be defined as
we = {(u,v) |u=v or {u,v} ¢ C}.

We derive the following result:
o Let £ be a strictly non-trivial, Fin-determined family of languages. If £ = £z
for some binary relation @ then symmref & = we¢.
o Let £, £, be two strictly non-trivial families of languages such that £ C
Ly € L, . Then there is no binary relation w such that £, = C,,.

e For n = 3,4,... there is no binary relation w on X* with £, = C,, or

L, = PS,.

In Chapter 3, we consider a subclass of infix codes, the class of sohd codes. The
fact that a singleton is not necessarily a solid code provides the impctus to consider
relations without the reflexive condition and to redefine the independent sets.
o A language L over X is a solid code if and only if every two words u,v € L
satisfy the following conditions:
(1) P(u)nS(v) =9;
(2) fu#vthenu ¢ E(v) and v ¢ E(u) where P(w) = {u |ue Xt : we
uX*t), S(w)y={u|veXt: we Xtuland E(w)={u|ue Xt: we
X*uX*} for any w € X*.

e For any word u € X*, {u} is a solid code if and only if u is a primitive word.

In Chapter 4, we investigate the properties of intercodes. We have the following

results:

o Alangnage L € X* such that L™ N X+*L"X* =0 forsomem > 1lisa

bifix code. A language L € X* satisfying this property is called an intercode

of index m.
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o Let I, be the class of all intercodes of index m. Then we have the following
strict hierarchy:

5,S$1,S...CZ.C...CQ.

-4 =

o Let L C X*. Then L is an intercode of index m if and only if L is a

(2m + 1)-intercode of index m.

These results provide examples of the fact that some classes of codes can only be

characterized as the independent sets with respect to some n-ary relations for n > 3.
The mechanism to express classes of languages as the independent sets with respect
to n-ary relations is studied in Chapter 5.

Let S be an arbitrary set and let R(™ be the set of all n-ary relations on §. Let

w € R For an n-tuple z = (z,,,,...,2,) € [S]", let
contr={y|y€Ss, Ji:z; =y}
A set L C S is said to be w-independent if
r€Ew=>contz & L.

Let £, denote the class of all nonempty, w-independent sets and let
LW ={C|3wC[S":L=LCL).

w is said to be symmetric if it has the following property: For z,y € [S]",if r € w
and contz = conty then y € w. w is said to be upward symmetric if it has the
following property: For z,y € [S]", if z € w and contz C conty then y € w. Lot
symmw and upsymmw denote the symmetric and the upward symmetric closures
of w, respectively. For any n-ary relation w on §, let @ = upsymmw. One has the
following theorem:

o Inclusion Theorem: Let w;,w; be n-ary relations on §. One has

@1 Cwy &= L, chr




This theorem can be used to show the inclusion relationship between classes of codes
using this relationship between finitary relations.
For any non-trival family £ of subsets of S and any n € N, we consider the n-ary

relation

w?) = {z |z € [S]",contz & L}.

e Let £ be a non-trivial family of subsets of S. If £ = L~ for some n-ary
relation @ then

. 5= W™
psymmaw = wg .

e Gap Theorem: Let n € N and £, £; be two strictly non-trivial families of
subsets of S such that

C C £1 Q cu(""
c

Then there is no n-ary relation w such that £, = (.
The gap theorem provides a powerful criterion to determine whether a given family
of sets can be characterized as families of independent sets with respect to n-ary
relations. For example, using the gap theorem, we show the following;:

¢ For n € N let w, be the n-ary relation on X+ given by
TEwy, &> contz &C

for € [X*]". The following properties obtain:
(1) Cu = Lo, for all n.
(2) There is no finitary relation w such that ¢ = C,.
(3) For all m € N, there is no n-ary relation w with £, = C,, and n < m.
Let Z,,,» denote the family of n-intercodes of index m over X. Consider the n-ary

relation g, m on X+ given by the following condition:

T € Ppm <> (contz)™! N X*(contz)™ X+ £0
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for all z € [X*t]". Clearly, L, ,. = Tn,m.
o Let k,nnmeNwithn<2m+1. If k <nandw C [X*])* then I,, .., # L.
¢ There is no binary relation w such that PS,, = £, for n = 3,4.

The results of this thesis provide a clear outline of the hierarchy of codes and n-codes

and a powerful tool for the investigation of codes. They constitute a foundation for

further research in this area.
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CHAPTER 2
Codes and Binary Relations

2.1 Binary Relations and Their Independent Sets

This section deals with thc relationships between binary relations and their
independent sets. It generalizes 1esults of [Shyl] concerning strict partial orders to

arbitrary relations.

Definition 2.1 Let w be a binary relation on X*. A language L is w-independent

tf for any u,v € L, uwv smplies u = v.

Let £, denote the class of all non-empty, w-independent languages. For a
binary relation w, let ref w, symmw, and transw denote the reflexive, symmetric,
and transitive closures of w, respectively. When we consider the connection between
binary relations and their independent sets, the following lemma allows us to restrict

our attention to symmetric binary relations.

Lemma 2.2 Let wy,w2 C X* X X* be such thet symmw; = symmw,. Then

Lo, =Co,.

Proof: Consider L € £, and suppose that L € £,,,. Then -~wwv for all u,v € L
with u # v. On the other hand, there exist distinct words u and v in L with ww,v
or vwzu. The fact that the symmetric closures of w; and w; coincide implies that

uwjv or vwu, a contradiction! This proves £,, C C,,. The converse is proved

analogously. [
Let S denote the set of all symmetric binary relations on X*.

Lemma 2.3 Let wy, w; € 6. Then
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If wy is reflezive then also

sz g Cun = wy € wy.

Hence, if both w; and w, are reflezive, then

W =Wy & Cu‘ = sz.

Proof: Let w; C w;. Consider L € £, and assume that L ¢ £, . Then there are
u,v € L, u # v, such that uw,v. But then uwpv by wy C wy. This implies L ¢ C,,.
a contradiction! Conversely, let w; be reflexive, £, C £, and assume that u,v
exist such that ww,v and ~uw,v. Then u # v, as wy is reflexive. Thus, {u,v} € L,

but {u,v} ¢ L., a contradiction! []

Lemma 2.4 Let wy; € S be any symmetric binary relations on X* such that w, 1s

the reflexive closure of wy. Then

L, =CL,,.

Proof: Clearly w; C w; and wy € &. By the first part of Lemma 2.3, one has
L., € L,,. Now consider L € £,, and assume that L ¢ £,,. Then there are
u,v € L, u # v, such that uw,v. But u # v implies that wwyv as w, is the reflexive

closure of w;, hence L ¢ L, a contradiction! [J

Because of this result we need to consider reflexive and symmetric binary
relations only in the sequel. Let RS denote the set of reflexive and symmetsic
binary relations on X* and let £ denote theset {€ | 3w C X* x X*: £ = L_}.

The preceding results immediately imply the following statement.

Theorem 2.5 The mapping w — L, is an antitonic bijection of RS onto £,




A U-semilattice is said to be U-complete if it is closed under unions taken
over arbitrary index sets. Similarly, one defines N-complete N-semilattices. A lattice
is complete if it is both U-complete and N-complete. Note that (MG uU,N) is a
complete lattice. Hence, the mapping w — £, induces a lattice structure on £
via L, VL, = Ly nu and L, AL, = L, yw, such that this mapping is an
isomorphism of (R& U, N) onto (L, A, V).

For any strictly non-trivial family £ of languages over X, let
L)={w|weRGLC L}

and

w(C) = {w|w € RE L, C L}.

(L) always contains at least the equality relation. The strict non-triviality of €
implies that w(L) is non-empty; it contains at least the universal relation. We now

turn to investigating the structure of the sets (L) and w(CL).

Theorem 2.6 Let £ be a strictly non-trivial family of languages and let wy, w, €
RS
(1) Letwy € UL). If wy C wo then wy € Q(L). Moreover, wy Nwy € (L) and
QL) is a N-complete N-semilattice with the equality relation as its minimum.
(2) L) is a U-complete U-semilattice. Hence L) has ¢ mazimum.
(3) Let wo € w(L). If wg C wy, then wy € wW(L). Moreover, wy Uw, € w(L),
and w(L) is a U-complete U-semilattice with the universal relation as its

mazrimum.
Proof: For (1), let wy C wy € (L). Then £ C £, C L., thus w; € Q(L). As

wp Nwy € wp one has wp Nwy € (L). Let {w; | i € I} be any family of relations
with w; € (L) for ¢ € I. Then
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for every j € I. Hence w € (L). As (L) contains the equality relation, it follows
that nwen(c)w = {(u,u) ' u e x'}-

For (2), consider a family {w; | i € I'} of relations w; € (L) for 1 € I. Let

We show that w € (L), that is, that £ C £,. Assume the contrary. Then there is
L € L such that L is not w-independent. Therefore, for some u,v € L, u # v, we
have uwv. Hence, there exists an ¢ € I such that ww;v. But then L ¢ C,, , that is,

w; & (L), a contradiction! Clearly, the relation

U

wEQR(L)

is the maximum of Q(L).
For (3), let wp C wy and wy € w(L). Then £, C L, C L, hence wy € w(L).

As wp € wo Uws, one has wo Uwp C w(L). Let {w; | : € I} be any family with
w; € w(L) for i € I. Then

for every j € I. Hence w € w(L). As w(L) contains the universal relation, it follows
that
U
wEw( L)

is the universal relation. [

Further below we show that w(C) is not closed under intersections in general.
It will turn out that w(L) is closed under intersections if and ouly if £ = £, for

some binary relation w.




Theorem 2.7 Let L be a strictly non-trivial, Fin-determined family of languages
over X. Then the following properties hold true:
(1) The relation
we = {(u,v) |u =v or {u,v} ¢ L}
is the mazimum of Q(L).
(2) For every wo € w(L) there is a minimal element wo, € w(L) suck that

wm g wWo.

Proof: Let w be the maximum of §(£). Both w and w, are reflexive. Hence in
order to prove that w = w it is sufficient to show that £, = L,.. ConsiderL € C,,
and suppose that L ¢ £,,,. Then uwcv for some u,v € L, u 3 v. By the definition

of we this implies that {u,v} ¢ £. Now consider the relation
& = w U {(t, ), (v, )},

Then L' € L, \ £ if and only if {u,v} C L'. But for such L' one has L' ¢ C
as L is Fin-determined. Therefore, & € Q(L). However, w is a proper subset of &
vontradicting the maximality of w. This shows L € £, that is £, C L,
Conversely, let L € £,,. Then {u,v} € £ for all u,v € L, u # v. Therefore,
~u@v for every & € (L). In particular, ~uwv, that is L € £,. This proves
Lo, €L, C Lo, that is, we is the maximum of Q(C).
To prove the second statement, assume that wy is not minimal—otherwise

nothing needs to be proved. Consider a decreasing chain

wo 2w 2wz 2

in w(L) and let w = nizo wi. Let L € £,. We show that L € £. As C is Fin-
determined, it is sufficient to show that L’ € £ for every L' € Fin(L).
Let L' € Fin(L). For every u,v € L', u # v, there is an index i(u,v) such

that Uiy, V. Let

Jj = max{i(u,v) | u,v € L', u # v}.
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As L' is finite, j exists. Then L' € £, C £. This implies L € £ and therefore

w € w(L). Now the existence of w,, follows by Zorn’s lemma. []

An intuitive explanation of the first part of Theorem 2.7 is as follows: Sup-
pose L is defined by some property P of languages, that is, £ = Lp. A langunge
L is in £, if and only if every subset of L of cardinality 2 is in £, that is, has
property P. Thus, in the cases of codes and prefix codes one has

we, =symm < and ch' =Cp
r

while

for instance.
Corollary 2.8 ([Shyl]) Let £ = C, the class of codes. Then symm <. = max Q(C).

Proof: <. characterizes the class of 2-codes [Ito2], that is, L<_ is the class of non-
empty languages L C X+ such that for every u,v € L, u # v, the set {u,v} is a
code. Therefore, symm <.=we. [J

Corollary 2.9 Consider C,UC, with C, and C, the classes of prefiz codes and suffiz
codes, respectively. Then symm <,;= maxQ(C, UC,).
Proof: By definition, symm <= {(u,v) Ju=v or {u,v} ¢C,UC(,}. O

While (L) always has a minimum and a maximum, w(C) is only guaranteed
to have a maximum. It turns out that it has a minimum if and only if £ coincides

with the class of independent sets with respect to some binary relation.

Theorem 2.10 Let £ be a strictly non-trivial family of languages.

(1) If £ = L for some binary relation & then w(L) has a minimum w and

w = symmref & = max 2(L).




(2) If C is Fin-determined and w(L) has a minimum w then L = £, and w =

max Q(L).

Proof: Suppose that £ = C~. Without loss of generality we assume that & is
symmetric and reflexive. Then & € w(L). Suppose there is w; € w(L), such that wy
is a proper subset of &. Then £ = L~ is a proper subset of £,,, contradicting the fact
that w) € w(L). Hence, @ is minimal. Now suppose that there is another minimal
element & € w(£). Then £, € € = L. Hence, @ C @ and, therefore, @ = @.
Thus @ is the minimum of w(C). Clearly also & € §2(L). Hence @ C max (L) and
Lraxn(e) & Lo = C, that is, L. n(c) = L. This proves part (1).

For part (2), we only need to show that £ = C,,. By the definition of w(L),
one has £, C L. Suppose there is a language L € £\ L. Then {u, v} is w-dependent

for some u and v, u # v, while {u,v} € £ as £ is Fin-determined. Let

G={(z,y) | z,y € X*: (z,y) & {(u,v),(v,u)}}.

Then @ € w(L) as
C;={{v,v}}Uu{{z} |z € X7}

Let & be a minimal element of w(L) with & C &. The existence of & follows from the
fact that £ is Fin-determined. Then —u&v and uwv, that is, © # w, contradicting

the fact that w is unique. Thus £ = C,.

An explanation of the first part of Theorem 2.10 is as follows: The inde-
pendent sets with respect to a strict binary relation are exactly the same as the
independent sets with respect to the symmetric and reflexive closure of this binary
relation. Hence, all the early work and results concerning strict binary relations can
be preserved in the consideration of symmetric and reflexive binary relations.

The results obtained so far suffice to extend the non-characterizability proofs
of [Shy1] and [Jiir5).




Theorem 2.11 (Gap Theorem) Let £ be any strictly non-trivial family of lan-
guages over X with C,UC, C L C C. Then there is no binary relation w on X*
suchthatC =L,

Proof: The proof is based on a generalization of the idea used in the proof of [Ito2],
Theorem 3.3. Let w,, w, be the symmetric and reflexive binary relations defining
C, and C,, respectively, that is, the symmetric closures of <, and of <,. Assume
that w is a binary relation such that £ is the class of all w-independent languages,
that is, £ = £,. Without loss of generality we may assume that w € R& Then
CpUC, C £ implies w CwpNw,. For a,b € X, a # b, consider L = {a,b,ab}. Then
L is not a code, hence L ¢ £ as £ C C. We show that L is w-independent. Let
u,v € L, u # v, uwv. Then by w C wp Nw, there are words r,y € X* such that
v = ur = yu. But this is not possible for any choice of u and v in L. Thus L is

w-independent, that is, L € L, a contradiction! ]

Corollary 2.12 There is no binary relation w on X such that the class C of cores

over X is the class of w-independent languages over X.

Recall that the class C, UC, coincides with the class PS; of 4-ps-cades {Ito3);
for a general definition of n-ps-codes see further below.

Corollary 2.13 There is no binary relation w on X* such that the class PS, of
4.ps-codes over X is the class of w-independent languages over X.

Corollary 2.14 The class L., ., 15 not a class of codes.

We now develop a more general method for proving non-characterizability
as independent sets of binary relations. As a special case we then obtain a result
of [Ito2] stating that n-codes cannot be characterized as independent sets of binary
relations. We start with three useful lemmata. Let § denote the class of all strictly

non-trivial families of languages.
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Lemma 2.15 The class § of all strictly non-trivial families of languages over X is
a complete lattice. The family of all singleton languages is the minimum and the

set 2X* \ {0} is the mazimum of §.
Proof: Consider a family {L£; | i € I} of strictly non-trivial families of languages

over X where I is some index set. Clearly, both

C=()€C and £'=|JC
i€l sel

are strictly non-trivial families of languages. []
Lemma 2.16 Let £; and L, be two stirictly non-trivial families of languages over
X with £, C £y. Then maxQ(L;) C max(L,).

Proof: Let w; = max$2(L,) and wp € (L;). Then £, C £, implies Q(L2) C (L),
hence max (L;) C maxQ(L,). [

Recall that a closure operator on a lattice is an idempotent, monotonic map-
ping f of the lattice into itself such that z < f(z) for all lattice elements . Gen-

eralizing our notation, for any £ € § let
we = max Q(L).

In Theorem 2.7 a characterization of w, was given for the case of £ being Fin-
determined.

Lemma 2.17 The mapping

L— L,

is g closure operator on §.
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Proof: Consider £, L, € § with £, C £;. By Lemma 2.16 one has

we, Cwe,.

Hence,

Lo, € Lo,

that is, the operator is monotonic. To show that it is idempotent one verifies that

we, =we,,

using the definition of ws,. Finally,

cl C cw‘l

is an immediate consequence of the definition of 2(£;) and the fact that we, €

Q<) O

Theorem 2.18 Let £ and L, be sirictly non-trivial families of languages over X
such that

LCL,GCL,,.
Then there ts no binary relation w such that L3 = C,,.
Proof: By Lemma 2.17,

Ly = c“"n .

Assume that £y = L, for some binary binary relation w. Without loss of generality
we may assume that w is reflexive and symmetric. Then

w=max{)Ly) =we, = we,

hence

Cl = ‘:w;s

a contradiction! [J
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Theorem 2.18 provides a powerful tool for proving that certain classes of
languages cannot be characterized as families of independent sets with respect to

binary relations.

Corollary 2.19 If L is a family of languages satisfying

CCLCC or CoUC,CLEPS,

then there is no binary relation w on X* with L =C,,.

Proof: The families C and C, U C, cannot be characterized by binary relations.
Moreover

Cuc = Cz and ch,uc. = pSQ
O

Corollary 2.20 ([Ito2], {Ito3]) For n = 3,4,... there is no binary relation w on X*
with L, =C, or L, = PS,.

2.2 p-Infix Codes

This section deals with properties of p-infix codes. The partial order <,; is
defined to characterize the class of p-infix codes. The partial order <,; and s-infix

codes can be defined and characterized analogously.

Definition 2.21 The binary relation <,; is defined as follows: For u,v € X*,

U<piv < u=vorv=gzuy forsome r€ X* and ye X*.

Lemma 2.22 The relation <p; is a partial order on X*.
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Proof: 1t is clear that u <p; u for all u € X*. If u,v € X* such that u <,; v and
v Spi U, then clearly u = v. Now let u,v,w € X* such that u <,; vand v <,; w. If
% = v or v = w, then the result u <,; w is clear. If u,v, w are distinct words, then

v = zuy and w = z'vy’ for some z,z’' € X*, y,y € X*. Hence w = r'ruyy’ and

then u <,; w. [J

Proof: First we show that C,; C Lc,,. Let L € Cp;. If there exist u,v € L, u # v,
such that u <,; v, then v = zuy for some z € X*, y € X*. This contradicts the
definition of p-infix codes. Hence, L € L¢,,.

Now we show that L,, CC,i. Let L € L,,. If L ¢ C,;, then there exist two
distinct words u,v € L such that v = zuy for some r € X*, y € X*+. This means
that there exist two distinct words u,v € L such that u <,; v. Thus L ¢ Lg,,,a

contradiction. [J

The following result concerning p-infix codes is taken from [Ito4]. For morce

details, see that paper.

Corollary 2.24 ([Ito4]) A language L C X% is ¢ p-infiz code if and only if L is a

subset of a right semaphore code.

A language L C X is called r-shiftingif X*L C LX*. We have the following,

result.

Lemma 2.25 ([Jiirl)) If L is a r-shifting languege and a code, then L is o mazimal

prefiz code, a right semaphore code, and a mazimal code.
Corollary 2.24 and Lemma 2.25 imply the following theorem:

Theorem 2.26 Let L C X*. Then the following three staternents are equivalent:

(1) L is a right semaphore code;

(2) L is a p-snfiz code and L is a mazimal prefiz code;
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(3) L is a p-infix code and L is r-shifting.

Proof: Let L be a right semaphore code. Corollary 2.24 implies that L is a p-infix
code. The definition of right semaphore codes implies that L is a r-shifting language.
By Lemma 2.25, L is also a maximal prefix code. This shows that (1) implies (2).

Now let L be a p-infix code and a maximal prefix code. Corollary 2.24 implies
that L is a subset of a right semaphore code L'. Lemma 2.25 implies that L' is a
maximal prefix code. Since L is also a maximal prefix code, the case can only be
that L = L'. This shows that (2) implies (1).

Now the result that (1) implies (3) is derived directly from (2) and the
definition of right semaphore codes. By Lemma 2.25, (3) implies (1). (O

Let X, and X, be two alphabets. A homomorphism h: X§ — X7 is said to
be non-erasing if h(z) # 1 for all z € X;. Whether a homomorphism preserves the
p-infix code property or not can be tested by just testing whether or not this homo-
morphism preserves p-infix codes each of whose words has a length not exceeding

2.

Theorem 2.27 Let X be an alphabet with |X| > 2 and let h be a homomorphism
of X*. The following two statements are equivalent:

(1) h(L) is a p-infiz code for every p-infizx code LC X;

(2) h(L) is a p-infix code for every p-infiz code L C X U X2.

Proof: It is obvious that condition (1) implies condition (2). Now we show that
condition (2) implies condition (1). If h is erasing then there is a letter a € X
such that h(a) = 1. Since |X| > 2, there is a letter b € X such that b # a. The
set L = {b*,ba} C X? is a p-infix code while h(L) = {h(b)h(b), h(b)} is not. This
implies that A must be non-erasing. If & is not injective on X, that is, there are

distinct letters a,b € X such that h(a) = h(b), then h does not preserve the p-infix

property for some L C X U X2. Indeed, the set L = {a, ba} is a p-infix code while
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h(L) is not. Therefore, h has to be non-erasing and injective on X and we may
assume that |h(X)| = | X]|.

Let L € X* be a p-infix code such that A(L) is not a p-infix code. Then
there are distinct words u, v € L such that {u,v} is a p-infix code whereas h({u,v})
is not. Without loss in generality, we may assume that L = {u,v}. Of course,
L € X U X2, Indeed, the case that L € X U X? contradicts condition (2). Let L

be chosen in such a way that |u| + |v| is minimal with these properties. Let
Uu=uu3---u, and v=rvvy---v,

with uj,ug,...,u;vy,0,,...,v, € X. By the choice of L, k(L) is not a p-infix code.
Without loss in generality, we assume that h(u) <p; h(v), that is, there exist words

z,y and an index j such that
1<j<s, h(vi---vj) = zh(u)y and y| < [h(v;)I.

Thus, if y = 1, the condition that h(L) is not a p-infix code implies that j < s and
u <pi v, contradicting the fact that L is a p-infix code.

Therefore, y # 1. Moreover, for k = 1,2,...,r the inequalities
(21)  [h(o:)-- Bl < l2h(us) - h(ue)] < [h(ey) - hlogs )]

hold true. Otherwise, as u is not a p-infix factor of v, some h(u,) is a p-infix factor
of some h(v,,) contradicting the minimality of L. This implies that h(w;) is a p-
infix factor of h(vyv;). By condition (2), u; is a p-infix factor of vyv;. This case
can happen only when u; = vy. For an index k such that u; = v, for all : < &,
consider the case k 4+ 1. The inequalities (2.1) and u; = v; for all 1 < k imply that
[A(vi4+1)] < |Ze41h(urs1)l < |A(va+1Ve42)| for some zpyy € X°. Again, the case
can happen only when ug4;1 = vie4y. By induction on k, u is a p-infix factor of v.

contradicting the fact that L is a p-infix code. [J
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If a homomorphism h is p-infix preserving then it is injective. But an injective
homomorphism is not necessary p-infix preserving. For example, let h : X — Y
where X = {a,b,c} and Y = {a,b,¢,d} such that h(a) = ab, h(b) = be, h(c) = cd.
Then h({ac,b}) = {abcd, bc} which maps a p-infix code onto a set which is not a
p-infix code.

Morphisms whose inverses preserve the p-infix property are characterized in

the following theorem.

Theorem 2.28 Let X and Y be alphabets and let h be a homomorphism of Y* into
X*. The following conditions are equivalent:

(1) h~Y(L) i. a p-infiz code for every p-infiz code L C X*;

(2) h='(1) = {1}.
Proof: First we show that (2) implies (1). Suppose there exists a p-infix code L over
X such that h~!(L) is not a p-infix code. Then there are words z,u,y € Y* such
that u,zuy € h~!(L) and y # 1. Since A(u) € L and h(zuy) = h(z)h(u)h(y) € L,
l(y) = 1 where y # 1. This contradicts condition (2). This proves that (2) implies

(1). The converse is obvious. []

2.3 Shuffle Relations and Codes

The binary relations, <, <;, <, and <,, are called the embedding, infiz,
prefiz, and suffiz orders, respectively.

In this section, we define an infinite hierarchy of reflective and antisymmetric
binary relations on X*., These relations, called n-shuffle relations, contain the
embedding order and are contained in the infix order. They are not transitive except
for n = 1 and their transitive closure is the embedding order. The corresponding
independent sets form the classes of n-shuffle codes. The purpose of this section is
to study these hierarchies of n-shuffle relations and n-shuffie codes. Several types

of operations on these classes of codes are considered. Furthermore, some closure
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operations in relation with the notions of convexity associated with the cmbedding

order are investigated.

2.3.1 n-Shuffle Relations

For every positive integer n, the binary relation w,;,, is defined ou X* by:
UWyh, ¥ € U = UplUg ** - Uy, U = Vgl V) - - - Upy, Where u;,v; € X*.

The relation w,;, is reflezive and antisymmetric and it is called the n-shuffle rela-

tion. Clearly

Wehy SWep, €...Cwa, €...

and this hierarchy is strict. For example, let X = {a,b} and let u = b", v = a(ba)".

Then we have uw,;, v but not ww,y,_,v.

Lemma 2.29 The following two statements hold:
(1) For everyn 2 1, w,,, 18 not compatible.

(2) The relation w,p, is transitive, but for n > 2, w,;,, is not transitive.

Proof: (1) We have a™w,;,(ab)", but not a"aw,;,(ab)"a.
(2) It is immediate that w,y, is transitive. Let n > 2. We have a®*!bw,,, , (ab)"~'a®b

and (ab)"abw,n, (ab)"ababd, but not a”*1bw,, (ab)*~'abab. O

Since w,, is transitive, it is a partial order and coincide with the infix order,

that is, w,s, =<;.

Theorem 2.30 Let u,it,v,5,w € X+. Then:

(1) utw,y vo implies uw,p, v or Gw,p, D.

(2) vww,p,, vw implies uw,,, v and similarly www,;, wv implies ww,, v.
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Proof: (1) Since utiw,n, v¥, ui = uy -+ tn, V9 = VoU1V) : - - Upvy, for u;,v; € X*.
This implies that v = vouyv; -- - ujv;z where z = u' or r = u;4,v', v’ is a prefix
of uj41 and v’ is a prefix of vj41, §j < n. In the first case, v = vouyv; - - ujv;u’.
If lul < juy---uju’|, then uw,s,v. Otherwise, tiw,s,9. In the second case, v =
vou v - - - uv;u; v’ If [u] < luy - cujyy |, then uw,,, v. Otherwise, tiw,, B.
Both cases imply that uw,,v or tiw.s, .

(2) Since uvww,,, vw, ywW = Z;T3-- T, and VW = YI\Y) - TpYa Where
zi,y; € X*. There exist ¢ < n and u',w' € X* such that v'vw' = z;, u =
Zy--Ti—ju' and w = w'ziy;---z,. This implies that ww,,, w'yi- - zayn and

VWL, Y0T1Y) * + * Tim1Yi—1u'. Now it is clear that |w'y;---z,yn| 2 |w|. Since
VW = YoIyYh -+ TiaYica W W YiTig1Vigr - T,

lv] 2 lyoz1y1 - - - Ti—1yi—yu'|. That is, there exists v' € X* such that

[
V=YoliY1- " Ti-1Yi-1U V.

Sincet < n, wwa,v. O

Since w,p,, is reflective and anti-symmetric, transw,;, is a partial order rela-
tion. It is not difficult to show that u <, v if and only if uw,s, v for all n. Morcover,

we have the following theorem:
Theorem 2.31 For every n > 2 one has transw,,, =<;.

Proof: The fact that w,,, €<j implies that transw,;, C<; as <, is transitive.
On the converse, we want to show that u <, v implies that utransw,,, v. Since
u <pv,u=ujlz - Uk, V=gt vy --- UtV for some k > 1. Let m = k+ 1. Then
m 2 2 and ww,p,, v.

If m < n, then the fact that w,s, C w,s, C transw,,, implies that

utransui,s, v.
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For the case m > n, we first show that w,,_ C transw,n,,_,. Since uwyy,,v,

U=UU " Um, V=081 DU~ Uy 1 Vi f U Vs

Let v/ = vothv1 - - - Um—1%m¥Um. Sincem >n > 2, m —1 > 2. Hence wwa,,_,v' and
v'wep,.,v. Thus utransw,s,,_,v. The fact that utransw,,, v is then obtained by
decreasing the index m.

Therefore w, =<;. O

By the similarity with the definition of w,s,, we define the following two

binary relations 7, and ¢, on X* by: for u,v € X*,
UM, <> U= Ujly - Uy, U = UV UV - - - UV, Where u,,v, € X*;

UPpY & U =UQU] -~ -Up, V= UUjlU] - - Upn-1Un—-) Uy where u;, v; € X*.

By the definitions of w,a,, Tn, ¥a, <hy, $py So and K, it is not difficult to show

the following hierarchy:

iN

N
N
)

m =.<.p§ wen, =<i& m

e n - -
m =$pg P1=%CmC .. CMConCTan &...C

Using those three relations, w,s,, 7, and ¢yn, and the concept of the independent
sets of binary relations, we exhibit some subclasses of prefix codes, infix codes and

outfix codes in the next section.

2.3.2 n-Shuffle Codes

A non-empty set L € X* of w,,-independent words is a code, called an
n-shuffle code. Clearly every n-shuffle code is an m-shuflie code for every m < n,

Because of the strict hierarchy of the relations w,;,, an m-shuffle code is not in

general an n-shuffle code for m < n. If L is an n-shufle code for all n, then L is




called a hypercode (see [Shy5]). Hence a hypercode is a <)-independent set of words
where <), is the transitive closure of w,;_ for any n > 2. Let C,;_ be the class of

all n-shuffle codes. Then we have the following strict hierarchy:
ChC...CCuh, CECihan &---C6

It is well known that C,, is a free monoid with respect to the operation of catenation

of languages and that C, is a free submonoid of C, (see [Ito4], [Shy1] and [Shy3])!.

The next two theorems show that, for every positive integer n, C,, is a submonoid

of Cp, but not a free submonoid.
Theorem 2.32 C,),, is a submonoid of C,.

Proof: Let C,,C; € C,p,,. f Cy = {1} or C; = {1}, then clearly C,C; € C,;,,. Now
let Cy # {1} and C; # {1}. Suppose C,C; ¢ C,s,. Then there exist {uit,vd} C
C,C,, with u,v € C, and 4,3 € C; such that ufiw,,,vd. Then by Theorem 2.30,
Uwyp, v OF Giwgy, . This implies that C, ¢ C,p, or C; ¢ C,i,, a contradiction.

Therefore, C1C, € Cp,. (O
We use Theorem 1.1, to show that C,,_ is not free.

Theorem 2.33 For every positive integer n, C,p is not free.

Proof: Consider an alphabet X such that {a,b} C X. Let C; = {(ab)"q, "} and
let C; = {b}. Then C; ¢ C,p, and C; € C,p,. But C1C2,C2Cy € Cop,. Thus
C € C.;,""C,,.n NCon, Con, -1 This implies that C,,,, is not free. [

It is well known that every hypercode over a finite alphabet is finite. However
this is not the case for n-shuffle codes. For example let X = {a, b} and, for every
n>1,let L = {(a*b)*+'a* | k > 1}. Then L is an infinite n-shuffle code. In some

special cases, finiteness conditions can be obtained for n-shuffle codes.

! Here we let Cy,C,p, and C, contain the set {1}. Then they form monoids.




Theorem 2.34 Let X be an alphabet. Then:
(1) Regular n-shuffle codes over X are finite forn > 1;
(2) Context-free n-shuffle codes over X are finite for n > 2.

Proof: This is a direct consequence of the pumping lemmata for regular and context-

free languages and the definition of w,,.. [

Theorem 2.35 Let L be an infinste language over an alphabet X. Then there exists

an integer m such that L is not a n-shuffle code for every n > m.

Proof: Since every hypercode is finite and L is infinite, there exists an integer m
such that L is not a m-shuffle code. The proof then follows from the fact that every
s-shuffle code is a r-shuffie code for r <s. [

It follows from the Zorn’s lemma that every n-shuffle code over the alphabet

X is contained in a maximal n-shuffle code over X.

Theorem 2.36 Let L be a code over the alphabet X. Then L is an n-shuffle code

and mazimal as e code if and only if L is a full uniform code.

Proof: It is clear that every full uniform code is a maximal code and an n-shuffle
code. Conversely, let L be a maximal code and an n-shuffle code. Then, clearly,
L is a maximal prefix code because every n-shuffle code is a prefix code.  Let
A={we€L||w| €|ulforall ué€ L} and up(A) = U eaup(z) where up(z) = {y €
X* | zw,n,y}. The elements in 4 have the same length, that is, § # A C X" for
some m. Since L is a n-shuffie code, (L \ A) N up(A) = 0, that is, LN up{A4) = A.
Suppose that L is not a full uniform code. Since L is a maximal prefix code and
L#X*forallk, L\A#0. As AC X™ and A # X™, one has XA Z AX. For, if
XA CAX, then X™A C AX™ by induction on m. Thus A = X™, a contradiction!
Let we XA\ AX. Then wX* C up(A)\ A and wX* N L = 0. Hence there exists

no v € L such that w = vz or v = wz for some z € X*. Thus L U {w} is a prefix

code, a contradiction! Therefore, L is a full uniform code. [J




In [Itod], it has been shown that many subclasses of maximal codes are,
under certain conditions, just subclasses of uniform codes. The previous theorem
shows that an n-shuffle code is maximal as a code if and only if it is a uniform code.
The connection between a specific code which is maximal as a code and a maximal
specific code is a very interesting topic for further research.

For any binary relation g defined on X*, a language L over X is said to be
right (left) p-convez if ugv (vou) with u € L implies v € L. The language L is said
to be g-convez if upw and weov with u,v € L implies w € L.

Theorem 2.37 If a language is right or left w,,,-convez with n > 2, then it is

<j-convez.

Proof: Suppose that L is right w,s -convex and let u <, v with u € L. Then
u = ujtp---ux and v = Zou T uzZz---upTy. Let vg = zoujup---ug, vy =
ToU T U2U3 « - - Uk, V2 = ToU1Z1UTU3lU4 - - - Uk,..., Vg = v. Since L is right w, -
convex, L is right w,,-convex. From ww,p,v0, Vow,ea,V1s. - . s Vk—1Wen, v and vp = v
it follows that vo € L,vy € L,...,vx = v € L. Hence L is <;-convex. The proof is

similar if L is left w,,-convex. []

The previous theorem is not true for n = 1. For example L = {a?, aba?}
over X = {a, b} is right w,s, -convex but not <x-convex. A w,;,,-convex language is
not <,-convex in general. For example, the language L = {(ab)"aba, (a?b)"a?ba®}
i8 W, -convex, but not <x-convex. However, a <j-convex language is Wah, -CONVEX

for all n.

Theorem 2.38 Let L C Xt be a nonempty language and let n > 2. If L is

Wsh, -convez and an outfiz code, then L is an n-shuffle code.

Proof: Suppose there exist u,v € L such that ww,, v, that is, u = ujuz---u, and

U = UpUy U UgV3 -« - UgVy, U4,V € X*. Then for every i, = 0,1,..., n, we have:

U U * < UpWieh, YU - - UiVjUipy - * " Up,y UgUZ <« - UiVilUjgg c - UpWyy, V.
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Since L is w,; -convex, uj « -« u;viui41 - - Un € L and hence v; = 1. There-

fore, u = v and L is n-shuffle. (]

The above theorem is not true for n = 1. For example, L = {a?, aba} over

X = {a, b} is an 1-shuffle code but not an outfix code.

Let 7, and ¢, be defined as in preceding section. It is not difficult to show
that, for every n 2 1, Ly, and L, are two subclasses of prefix codes. Moreover,

we have the following hierarchy:

Ca

N

S Ly GCo G Lr, G G Lxy SCaky =Ci G Ly =G5

Ch€...C

-

Cans1 $Lpo G LS. CLay S Ly, =Co S Ly, =C,p.

These hierarchies clarify connections between hypercodes, prefix codes, infix
codes and outfix codes.

Since regular outfix codes are finite, every regular language in Ly, , Cus,,,
L,, where n > 1 is finite. By Theorem 2.34, every context-free n-shuffle code over
X is finite for n > 2. Similarly, every context-free language in L, C,s,,, Ly, where
n > 2 is finite.

2.3.3 The Syntactic Monoid of n-Shuffie Codes

In the sequel, a monoid M is called non-trivial if it contains at least threc

elements. An element © € M is called n-strict with n a positive integer if the

equality
ZQUIT] - - UpTp = Uy~ Uy = U
with z;,u; € M implies 7y = z; = ... = z, = e where e is the identity of the
monoid M. The identity e is said to be isolated if M \ {e} is a subscinigroup of M.
Given a language L C X°*, the principal congruence P;, determined by L is
defined by the following condition:

Vz,y€ X*: u=v(P.)if and only if (zuye€ L <> zvye L).
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The monoid X* /Py, is called the syntactic monoid of L and denoted by Syn(L). Re-
call that a monoid M is subdirectly srreducsble if it has a unique minimal congruence
(see [Schl] and [Thil]).

The following theorem is a generalization of the characterization of the syn-
tactic monoid of infix codes and hypercodes (see [Petl], {Jiir4] and [Shyl]).

Theorem 2.39 A monoid M is isomorphic with the syntactic monoid Syn(L) of
an n-shuffle code L if and only if M is a non-trivial subdirectly irreducible monoid

with an isolated identity and ¢ non-zero n-strict disjunctive element.

Proof: Let Pj, be the syntactic congruence of L and let M = Syn(L). Since L is n-
shuffle, L is an infix code and, by [Jiir4], Syn(L) is a subdirectly irreduc ble monoid.
Furthermore L is a class of P, and the residue W of L is non-empty and, hence,
also a class of P;. Since W is an ideal of X*, W # L. It is also immediate that the
class e of the empty word 1 is distinct from W and L. Hence M is non-trivial. Let
z be an element of the class of 1. Then z = 1(P.) and zc = ¢(PL) for every c € L.
Hence c¢,zc € L aud, since L is n-shuffie, z = 1. Therefore ¢ = {1} and the identity
e of M is isolated.

Since L is an n-shuffle code and also a class of the syntactic congruence P,
it follows then that Syn(L) contains a non-zero n-strict element, the class of L, and
that L is a disjunctive element of Syn(L).

For the converse, as M is subdirectly irreducible it has a unique minimal
congruence and by [Sch1] it contains at least two different disjunctive elements. Let
0 and e be respectively the zero and the identity elements of M and let ¢ be a non-
zero n-strict disjunctive element of M. Since M contains more than two elements
and e is isolated, e cannot be disjunctive. Hence, ¢ is different from e.

Let X be an alphabet such that | X| = |[M \ {e}| and let » be a bijection of
X onto M \ {e}. As usual, we extend ¢ (in a unique fashion) toc a homomorphism

of X* onto M. The relation 9 = pp~! is a congruence of X * such that the quotient
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monoid X*/9 is isomorphic with M. Let L = {u | u € X*, up =c}. Ascis
disjunctive one has ¥ = P, (see [Thi2] for example).

We need to show that L is n-shuffle. Clearly L C X*. Let uw,, v, u,v € L.
Then

U= U U - Uy, U= ToU T U2T2  * UnZy With z;,u; € X*.

Since u,v € L, up = v = c and ujp - Unp = ToPh@ - - UnPTpy = ¢, Since
¢ # 0 and c is n-strict, we must have rop = 7)¢ = ... = z,9 = €. Thercfore
To=Z)=...=Z,=1and u=v,

Since M is isomorphic with X* /9 and since ¥ = Pr, M is isomorphic with

the syntactic monoid Syn(L) of the n-shuffie code L. [J

Theorem 2.40 If L is a n +2-shuffle code withn > 1, then every non-zero element

of the syntactic monoid Syn(L) is n-strict.

Proof: Let &t = @iy Xy fiz- - linZn = g - iy # 0. where T denotes the Py -class
of z, that is

U = ToU T UT2 -+ - UnTy = Uglp - - U, (PL).

Since 4 # 0, u ¢ W, where W is the residue of L. Therefore there exist z,y € X*
such that v = zzgu; T 1u3Z2 -+ - u, To¥ € L, hence w = zuj uy - - u,y € L because L
is a Pp-class. It follows then that ww,s,,,v with w,v € L. Since L is n + 2-shuffle,

wehavew =v, 30 =21 =22 =... =7, = 1. Therefore, 3o =2y =... =4, = ¢

and i is n-strict. Therefore, every non zero element of Syn(L) is n-strict. [J
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CHAPTER 3

Solid Codes

3.1 Solid Codes

Solid codes can be used for information transmission over a noisy channel
to allcw one to decode the correct parts of a disturbed message correctly. For this
reason we call them solid codes. In this chapter, a characterization of solid codes
is given and some closure and non-closure properties of the class of all solid codes
are studied. Moreover, some conditions for a solid code to be maximal are also
investigated in this chapter.

Shyr and the author introduced solid codes in [Shy6]. Some properties of
solid codes with cardinality less than or equal to 2 were already studied in [Shy6).
First, we give some basic notions and definitions as follows:

For z,y € X*, if z = uyv for some u,v € X*, then we call y a factor of z.
For any z € X*, let u,v € X* such that z = uv. Then u is called a left factor of
z, and v is called a right factor of z. We define the proper left factor set P(z), the

proper right factor set S(z) and the factor set E(z) of z as

Pz)={ye X* |z eyX*},
S(zy={ye X* |z e X*y},
and

E(z)={ye X* |z e X*'yX*}.

Given a set L C X+, any word w € X+ can be represented as follows:

W=Tih1ZI2Y2.-  TalUnTn4l,
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wherey; € L, j =1,2,...,n, E(z2;)NL=0,i=1,2,....n+ 1. HEw)NnL =90
or L = 0, then we let w = z;. Any such representation of w is called an L-

representation of w.

Deflnition 3.1 A non-empty language L C X+ is said to be solid if for every

w € Xt there is a unique L-representation of w.
The following theorem justifies the terminology.
Therrem 3.2 Let L be a solid language over X. Then L is a code.

Proof: Suppose that L is a solid language, but not a code. Then there are words

Tiyee-yTnyY1y---5Ym € L such that
T1° - Tn=Y1"""Ym

withn #mor z; # y; forsomei,1 <i<n. But thenz,..-z, and y, ---y,, arc

two different L-representations of the same word, a contradiction! [J

In view of Theorem 3.2, we use the term “solid code” to denote a solid
language. By the definition of codes, the unique factorization property implics that
the factorization of a string composed from code words is unique. For example, the
language L - {ab,ba} is a uniform code. The factorization is unique for any word
over L. But for an arbitrary word there may be more than one parsi..g. For example,
aba = (ab)a = a(la), and a ¢ L. Thus abe has two distinct L-representations.
Such a situation may arise, for instance, when a noisy chanmnel inserts symbols into
the message stream. In that case, a partial but unique factorization would be an
important goal. With solid cods, the factorization is unique for arbitrary words.

The following result provides a necessary and sufficient condition for a lau-

guage L to be solid. It generalizes a characterization obtained in {ShyG] for the case

of |L| £2.
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Theorem 3.3 A language L over X is a solid code if and only if every two words
u,v € L satisfy the following conditions:

(a) P(u)n S(v) =0.

(b) Ifu #v then u ¢ E(v) and v ¢ E(u).

Proof: For |L| < 2, this is the result of [Shy6].

First assume that L is solid. Every subset L’ of L is solid. In particular, this
holds true for every subset L' with |L'| < 2, that is, by [Shy6], the conditions (a)
and (b) are satisfied for L’. This proves the necessity of the conditions.

For the converse, let L be a language which satisfies the conditions (a) and
(b) and which is not a solid code. By the above, |L| > 2. As L is not solid there is

a word w € X* which has two different L-representations
.1 ’ ' t
Ww=T1Y1 " ZTaYnZn+]l = 1Y T ¥mTm+1

where

yl"‘ﬂyﬂsy'l,-'-’y:n €L

and

E(z)nL=0=E(,)NL

for: =1,...,nand j = 1,...,m. We may assume that z,y; # z}y}. Othcrwise
we could cancel these factors and obtain a proper suffix of w which also has two
different L-representations.

From the definition of L-representations, one concludes that

y1 ¢ E(z}) and ¢ ¢ E(z1).

The language {11} U {y}} satisfies the conditions (a) and (b).
If y) # yj, then y3 ¢ E(y;) and y; ¢ E(y1) by condition (b). This is
impossible if |zy| = |2}|. Therefore, S(y}) N P(y1) # 0 or S(y1) N P(y}) # 0,

contradicting condition (a).
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Now assume thet y; = y}. If |z1| = |z}| then one has z,y; = |y} contrary

to the assumptions. Otherwise, again condition (a) is violated. [

Corollary 3.4 The class of solid codes is a proper subclass of the class of infiz

codes.

Proof: Infix codes can be characterized as <;-independent sets where
u<;v << veE X'uX"

for u,v € X*. This is just the above condition (b). On the other hand, the sct
{ab,ba} is an infix code which is not solid. [J

Recall that a word u € X+ is called unbordered if no proper nonempty left,
factor of u is a right factor of u. In other words, u is unbordered if and only if
P(u)n S(u) = 0, that is, {u} is a solid code. In the following <amples we indicate
how sets which do not satisfy the conditions mentioned in Theoremn 3.3 fail to be

solid codes.

Examples 3.5
(1) {a?} is not a solid code by Theorem 3.3. Indeed, for ezample «* = a(n?) =
(a?)a.
(2) L = {a®b®,ab} is not a solid code according to Theorem 3.3; for insta. .c,
the word a3b® has two L-representations: a3b® = a(a?b®) = a®(ab)h?.

(3) By Theorem 3.3, the languages {ab} and {a®b,abab®} are solid codes.

By a remark of [Shy6], a solid code cau contain only primitive words. If a
set L C X* is an infix code and P(z) N S(y) = @ for all z,y € L, then L is called a

strong infix code (see [Itol]). Using Theorem 3.3, this proves the following result:

Corollary 3.6 A language L C Xt is a solid code if and only if it is a strong infiz

code.
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Like prefix codes, infix codes, outfix codes, etc., solid codes are another
example of a class C of codes whose definition can be expressed in terms of a
property of the subsets of size at most 2. This is particularly important with
respect to deciding the respective code property. Clearly, if L is a finite language,
then for any such class C it is decidable whether L € C. The statement can be

extended to regular languages.

Theorem 3.7 Let L be a regular language over X. It is decidable whether or not

L is a solid code.

Proof: By [Itod], one can decide, whether L is an infix code. If L is not an infix

then it is not solid.

Otherwise, let
Pref(L) = {u |lu € X*. uX*n L # 0}

and

Suff(L) = {=|ue X*. X*unL #0}.

These sets are known to be regular for regular L. Moreover,

P(L) = U P(w) = Pref(L)\ L
we€lL

and

S(L) = | J S(w)= Suff(L)\ L
w€l

as L is an infix code.

Indeed, if u € P(L) then u € X* and w = uv for some w € L and v € X+,
Hence u € Pref(L). As L is an infix code and ¢ <; w it follows that u ¢ L. The
converse inclusion is obvious. The equality concerning S(L) is obtained dually.

The equalities show that the sets P(L) and S(L) are regular and that au-

tomata can be constructed for them from an automaton accepting L.




Now let w € P(L)NS(L). Then there are words u,v € L such that w € P(u)
and w € S(v). Hence, L is not solid. On the other hand, if P(L) N S(L) = 0 then
every two words u,v € L have P(u) N S(v) = 0.

Thus, in order to decide whether L is solid one decides whether the intersce-
tion P(L) N S(L) is empty. The decidability of this latter question for regular scts

is known from automata theory (see [Wool), for example). [J

3.2 Closure Properties

In this section we discuss closure properties of the class of solid codes. It
terns out to be closed under reversal, arbitrary intersections, inverse non-erasing ho-
momorphisms, and a restricted kind of products, while it is not closed under union,
complement, product, catenation closure, and (non-erasing) homomorphisms. The

first two properties are immediate consequences of the definitions.

Theorem 3.8 The class of solid codes ss closed under reversal and interscction
with arbitrary sets, and not closed under union, complement, product, catenation

closure, homomorphisms, and non-erasing homomorphisms.

Proof: By the definition of solid codes, it is clear that the class of solid codes is
closed under reversal and intersection with ar"irary sets. Now, consider the solid
codes {a} and {ab}. The sets {a,ab} = {a} U {ab}, {aba} = {ab}{«}, and {a}*
are not solid. This proves the statement for union, product, and catenation closure,
Moreover, as the class of solid codes is closed under intersections, but not closed
under unions, therefore it is also not closed under complement.

Consider the alphabets X = {a} and Y = {a,b} and let i be the homomor-
phism of X* into Y* which is defined Ly h(a) = aba. h is non-crasing and maps
the solid code {a} onto {aba}, the latter not a solid code. Thus, the class of solid

codes is not closed under non-erasing homomorphisms nor — a fortiori  under

arbitrary homomorphisms. []

[d4]
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While the class of solid codes is not closed under arbitrary non-erasing ho-
momorphisms in general, the class of homomorphisms which preserve solid codes

can be characterized effectively.

Theorem 3.9 Let X and Y be alphabets. A non-erasing homomorphism h: X* —
Y* preserves solid codes if and only if its restriction to X is injective and for any
a.b€ X, a#b, the sets {h(a)} and {h(a), h(d)} are solid. Therefore, for a given

non-erasing homomorphism h it is decidable whether it preserves solid codes.

Proof: Assume that h preserves solid codes. Consider a,b € X. As {a} is solid, it
follows that {h(a)} is solid. Similarly, if a # b, then {h(a), h(b)} is solid as {a, b}
is solid. Finally, if a # b then {ab} is solid and, therefore, also {h(a)h(b)} is solid.
This implies h(a) # h(b).

For the converse, assume that h satisfies the condition, but does not preserve
solid codes. Let L be a solid code over X with h(L) not solid. Hence there are
words u,v € L such that one of the following statements holds true:

(1) h(u) # h(v) and h(u) € E(h(v));
(2) P(h(u))n S(h(»)) £ 90.
Let u=uy---upandv=v;--- vy with uy,...,un,v1,...,0m € X.
Consider case 1: Then u # v. The fact that L is solid implies that there are

no r,y € X* with v = zuy or u = rvy. Let k be such that

h(u) ¢ E(h(vy---vs_1)) and h(u) € E(h(v; - - - vs)).

We show that, for j = n—1,n—-2,...,0,0ne has uj41 -+ Un = Ve_(nj)41 ' ¥k
and h(u; ---u;) is a suffix of h(v; - - - v4_(nq_j)).

Let j = n~1. If h(uy - - - u,_y) is not a suffix of h(v; - - - vg—y ) then P(h(vi))N
S(h(ug)) # 9 or h(u,) € E(h(vi)) contradicting the assumptions about k. This
shows that h(u, - - - u,_) is a suffix of (v, - - - v4_; ). Consequently, if h(u,) # h(vy)
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then h(un) € P(h(vi)), which is impossible by the assumptions about k. Thercfore,

h(u,) = h(vi), and this implies u,, = v;.

Now assume that ujy) -+ Uy = Vp_(n—j)41---vs and that h(uy .. -u;) iz a
suffix of h(vy - - - Ug_(n—j)) where 0 < j < n. If h(u;) # h(Vi—(n-j)) then h(u;) €
S(h(vik—(n-j))) or h(vi—(n-j)) € S(h(u;)), contradicting the assumptions about h.
Therefore, h(u;) = h(vk—(n-j)), and this implies u; = vi_(n—j). Thus,

Uj- Uy =Vg_(n-j) ' Vk,

and h(u; ---uj—y) is a suffix of A(v; - - - Vg_(n—j)-1)-

By induction on j, this proves that

Uy *- Un = Vk—n41 """ Vk,

that is, u € E(v) contradicting the solidity of L. This shows that case 1 is impos-
sible.

Now consider case 2: As L is solid, one has P(u) N S(v) = 0. Let w be the
longest word in P(h(u)) N S(h(v)). Let r be maximal such that h(u;---u,) is a
prefix of w, that is, w = h(u; - - -y, )w’ for some v’ € Y* where |w'{ < |u,4,|. The
assumptions about A imply that h(vyn) ¢ E(h(ur41)). Therefore, if Jw'| > 0 then
w' € P(h(u,41)) N S(h(v,,)) contradicting the assumptions about k. This implics
|w'| = 0, that is, w = h(uy - - - u,) and h(u; --- u,) is a suffix of h(v).

As in case 1, one shows by induction that uy -« u, = vy _r41 - Uy, that is,
P(u) N S(v) # @ contradicting the solidity of L. Hence, also case 2 is impossible.
a

Theorem 3.10 The class of solid codes is closed under inverse non-crusing homo-

morphisms.




Proof: Let X and Y be alphabets and let h: X* — Y™ be a non-erasing homomor-
phism. It suffices to show that for any u,v € Y*, if {u} U{v} is solid, then {w}U {7}
is solid for every @ € h~!(u) and ¥ € h=!(v).

Suppose that for some such ¥ and ¥ this is not true. f ¥ # ¥ and ¥ € E(7)
then u # v and u € E(v), 2 contradiction! The case of ¥ # ¥ and ¥ € E(%) is
analogous. Otherwise, if P(%@) N S(¥) # 0 or P() N S() # @ then P(u)NS(v) # 0
or P(v) N S(u) # @, respectively, again a contradiction! []

We conclude this section with a theorem stating that ‘he class of solid codes

is closed under a restricted kind of product.

Theorem 3.11 Let A, B be disjoint languages over X. If AU B is solid then AB
is solid.

Proof: The statement is obviously true if one of A and B is empty. Therefore,
suppose that A # 0 # B, and assume that AB is not solid. Then there exist
#A,v4 € A and ug,vp € B such that the set {u up,v4vg} is not solid. Hence for
some z,y € {usug,vavg} one has P(x)N S(y) # O or, assuming z # y, ¢ € E(y).
This implies the existence of ', y' € {ua,v4}U{up,vn} such that P(z')NS(y') # @
or, with z' # ¢/, z' € E(y'). But this contradicticts the fact that {u4,v4}U{ug,vg}
is a subset of the solid code A U B and, hence, itself solid. [

3.3 Maximal Solid Codes

In this section we study properties of maximal solid codes. The questions
addressed include the following: For which cardinalities do there exist solid codes?
Is every finite solid code contained in a finite maximal solid code? How does one
construct maximal solid codes? Note that by Zom’s lemma every solid code L is
contained in a maximal solid code L’. However, if L is finite, can L' be chosen

finite? Is there a situation when L’ is uniquely determined by L? The results of

this section give partial answers to some of these questions.
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First we consider the case of an alphabet of size 2. Assume that X = {a,b}.
The following is proved in [Shy6).

Lemma 3.12 ([Shy6]) Let X = {a,b} and u,v € X* such that the set {u} U (v} is
solid. The following propertics obtain:

If lul > 1 and |v] > 1, then either u,v € aX*b or u,v € bX*a. If, in
addition, u # v, then |u| >4 and |v}| > 4. Ifu,v € aX*b then u,v ¢ atbu abt.

We use Lemma 3.12 to prove the maximality of certain solid codes.

Theorem 3.13 Let X = {a,b} and let k be a positive integer. The language
L; = {aba't? | i = 1,2,...,k} U {a**' 0%} | i = 1,2,...,k} U {a**'b?}

is a mazimal solsd code over X.

Proof: One verifies, that for every u,v € L; the set {u} U {v} is solid. Hence, L; is
solid.

Suppose, L; is not maximal. Then there is a word w € X* \ L; such that
Li U {w} is solid. Lemma 3.12 implies that w has the form

w=an"b"a"™b*?...a" b’

for some n, n > 0, and some r;,s; with r; > 0and s; > 0 for: = 1,2,...,n. The
proof consists of three ‘steps.’
As a first step, we observe that s; < 2orr; < kfori=1,...,n. Otherwise

a*+15® <; w and, therefore, L; U {w} is not solid, a contradiction!

In the second step, we show that s; # 2orr; < kfori =1,...,n. Suppose
this is not true, and let j be maximal with s; =2 and r; > kb + 1.

If j = n then w = ua**+'52. Thus a**+'b? € P(a*+'b?ab?) N S(w) where

a*+1b%ab? € L;. Hence, Ly U {w} is not solid, a contradiction! This proves that

j<n




Let j < m € n and assume that r,, > k4 1. Then, by the result of the first
step above, s, < 2. The choice of j implies that s,, = 1. This shows that s,, =1
orry, <kform=j;+1,...,n

Suppose that rj4) < k and sj4; > 2. Then a*t'b2a%i+1b2 € Ly N E(w), a
contradiction!. Thus r;3; > k+1 or s;4; = 1. On the other hand, as shown above,
rj+1 < k or ;41 = 1 must hold true, too. This implies that s;4) = 1.

Let m be maximal with j <m <nands;=1fori=j+1,....m. fm=n
then ab € S(w) N P(abab?) where abab? € L, a contradiction! Therefore, m < n
and Spm+1 2> 2, rm+1 < k. Then aba™+18% € E(w) N L;, a contradiction!

We have shown that the assumption about j leads to a contradiction in every
case. This proves that s; # 2orr; < kfori=1,...,n.

As a third step, we prove that s; # 1 fori = 1,...,n. Suppose, s; = 1 for
some i, and let m be maximal with s, = 1. If m = n then ab € S(w) N P(abab?)
where abab? € L;, a contradiction. Therefore, m < n, 84y 2> 2. f ryy < k then
aba™+1b? € E(w)N L;, a contradiction. Therefore, rm+1 > k+1 and 8,4y < 2 by
the result of the first step of this proof. Hence, s;m+1 = 2, contradicting the result
of the second step. This shows that s; # 1 for all <.

When combined, the results of the three steps imply that
8; 2 2 and rs S k

fori =1,...,n. Thus, a"b? € P(w) N S(aba"b?) where aba™ b? € L,, a contradic-
tion! This completes the proof. [J

Corollary 3.14 For every odd number n > 3 there is ¢ mazimal solid code L with
{L| = n over X = {a,b}.

As there are infinite solid codes, Zorn’s lemma implies the existence of infinite

maximal solid codes. The following theorem provides an example.
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Theorem 3.15 The language L = {aba'h?® | i = 1,2,...} is a mazimal solid code
over X = {a,b}.

Proof: For any u,v € L one verifies that {u} U {v} is solid; hence, L is solid. Now
suppose that L U {w} is solid for some word w ¢ L. Then w has the form

w = arg bl[argb.j e a!‘. bl.;

for some n, n > 0, and some r;, S; with r;,s; > 1fori=1,...,n.

If s, > 2 then a" b € P(w) N S(aba"™b?) and aba™b? € L, a contradiction!
Therefore, s; = 1.

Suppose there is an s; > 2, and let m be minimal such that s,, > 2. Then
aba™ b € E(w) N L, a contradiction! Therefore, s; = 1 for all . But then ab €
P(abab?) N S(w) and abab® € L, again a contradiction! Hence LU {w} is not solid.
O

As is quite common in the theory of codes, the assumption that |[X| =
2 renders constructions more complicated than they would be for |X| > 2. For

example, let X = {a,b,c}. For every k > 2 the language

M, = {ac‘b|i=0,...,k}u{c"+’b}

is a maximal solid code, and |M}| = k+4-2. Similarly, when | X| > 3, infinitc maximal
solid codes can be obtained quite easily. One general method for constructing

certain maximal solid codes is provided by the following theorem.

Theorem 3.16 Let |X| > 2 and let A, B,C be mutually disjoint subsets of X such
that A0 # C and AUBUC = X. Then the language AB*C is o mazimal solid

code.

S
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Proof: Clearly AB*C is solid. Consider a word w ¢ AB*C where w = 7, --- 2,
with z; € X fori = 1,...,n. We show that AB*C U {w} is not solid.

Assume there is an index i with z; € A and, in fact, let i1 be maximal with
this property. If ¢ = n then z; € P(v) N S(w) for v € AB*C, hence AB*C U {w} is
not solid.

If i < nthen z;4,,...,2, € BUC. If 2;4; € C then z,z;4; € AB*CN E(w)
and AB*C U {w} is not solid.

Therefore, assume that z,4) € B. If 4, -- -2, € B} then z;z,y, - 2, €
P(v) N S(w) for some v € AB*C, and AB*C U {w} is not solid.

Thus, there is an index j with i + 1 < j < n and z; € C. Choose j minimal
with these properties. Then z;z;4,---z; € AB*C N E(w), hence AB*C U {w} is
not solid.

So far we have proved that w cannot contain a symbol from A if AB*CU {w}
is to be solid. The dual proof shows that it must not contain a symbol from B either.
Hence w € B*, that is, w € E(v) for some v € AB*C. But then AB*C U {w} is not
solid either. [J

This result has several interesting consequences. For X = {a,b} it implies
that the set {ab} is a maximal solid code. On the other hand, for X = {a,b,c}
it shows that the set {ab,ac}, {ac,bc}, and {ac’h|i == 0,1,...} arec maximal solid
codes. In view of the above example M,, this establishes the existence of a solid
code, that is, {ab} in this case, for which there is no unique maximal solid code
into which it can be embedded. Moreover, this solid code can be embedded in finite
and in infinite maximal solid codes. As a consequence of the preceding results and
proofs one obtains the following observations.

Remark 3.17 Let X be an alphabet.
(1) If X;,...,X, is a partition of X then every language X;X; with i # j is
solid.
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(2) If X1, X2 is a partition of X then X1 X2 is a mazimal solid code.

(3) LetY C X and LC Y+, Then L is a mazimal solid code over Y if and only
if LU(X \Y) is ¢ mazimal solid code over X.

(4) If L is a mazimal solid code over X then for every a € X one has a € E(w)

for some w € L.

Our next results concern finite maximal solid codes. If L is a language over

the alphabet X, let

Px(L)={ala€ X,aX* NL #£0}
and

Sx(L)={ala€ X,X*anL # 0}.

The following auxiliary result holds true without any finiteness or maxinality as-

sumptions.

Lemma 3.18 Let L be 1 solid code over the alphabet X. For every a € Px(L) and
every b€ Sx(L) one has |[LNna*tbt| < 1.

Proof: Consider a € Px(L) and b € Sx(L). Assume that w, = a™b" € L and
w, = a™b*? € L and that these two words are distinct.

If ry < rp and 8; < 53 then wy € E(wz) which is impossible. If 7y < ry aud
s; > s then anb® € P(w;) N S(w:), again a contradiction! The remaining two

cases are analogous. This shows that |[Lnatb*|<1. O

Theorem 3.19 Let L be a finite mazimal solid code over the alphabet X. Then the
sets Px(L), Sx(L), and LN X are mutually disjoint with

Px(L)uSx(L)U(LNX) = X.

Moreover, for every a € Px(L) and every b € Sx(L) one has |L Natbt| = 1.




Croof: As L is solid, the sets L N X, Px(L), and Sx(L) are mutually disjoint.
Suppose, there is a symbol a € X such that a ¢ Px(L)U Sx(L)U{L U X). By the
above remark, there is a word w € L such that w = uav for some words u,v € X*.
These may be chosen in such a way that a ¢ E(v).

Let k = max,¢r|z|. Then the set

LU {ua**'v}
is a solid code, contradicting the maximality of L. Therefore,
Px(L)USx(L)u(LuX)=X.
Now consider a € Px(L) and b € Sx(L). If LNa*b* = @ then the set
L U {a®*b*a*s?%)
is a solid code, a contradiction! Therefore, using the lemma, on~ concludes that

lL na+b+| =1. D

We have already given a few examples of finite maximal solid codes L such
that |L| = |X| where X is the underlying alphabet. This rather special situation is

analysed in the following theorem.

Theorem 3.20 Let X be an alphabet. The following statements hold tirue:
(1) If |X| < 2 then L is ¢ mazimal solid code over X with |L| = |X| if and only
ifL=X.
(2) If | X| >4 and L is a mazimal solid code over X with |[| = |X| and L # X.
Then | X|-32|LNnX| > |X]|-4.

Proof: Let X be an alphabet. Clearly, X is a maximal solid code. Let L be a
meximal solid code over X such that |[L| = |[X|. If |X| =1 then L = X as this is

the only possibility for a solid code over a singleton alphabet.
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Suppose that |X| =2 and L = {u,v} # X. By Lemma 3.12 onc bas

Ln(atbuab* ub*raUba*) = 0.
Theorem 3.19 implies that
ILna*tb*}=1 and |Lnb*ta*|=0

or vice versa. Hence, without loss of generality, we may assume that u = o'l € L

with 1,7 > 1. Therefore, the other word v € L has the form
v=a"b"a?b*...a""b*™

where m > 2 and 7,8 2 1 for k = 1,...,m. Morcover, v # abab---ab as

P(abab---ab)n S(abab---ab) # 8. Choose ;: > maxiry and ¢ > maxgsg and let
w = a" b"*aPbabla"™b’? --.a"" b"™.

Then w ¢ L and L U {w} is solid, contradicting the maximality of L.

Nowlet | X] >4 and L # X, but {L| = |X|. fa€ LN X then a ¢ E(w)
forany w € L withw # a. Let Y = X\(LNX)and M = LNY™*., Then M
is a maximal solid code over Y by Remark 3.17 (3). The fact that M # Y and
|M| = |Y| then implies that |[M| > 3, that is, |[LN X| < | X| - 3.

Assume that |L N X| = |X| ~ n where n > 4, that is, |Y| = n. = |M|. The
sets Py(M) and Sy(M) form a partition of Y such that |M Nna*d*| =1 for every
a € Py(M) and b € Sy(M). Therefore,

n=|M|2|Py(M)|-|Sy(M)| and |Py(M)|+|Sy(M)| =n.

If both Py (M) and Sy (M) contain more than one element then n > 4 implies

[Py (M)] - |Sy(M)| > n,




a contradiction! Therefore, without loss of gene'ulity, we may assume that |Py(M)|
=1and |Sy(M)| =n -1 2> 3. Let Py(M) = {a}. Thus,

|Py(M)] - |Sy(M)| =n -1 < |M],

that is, there is a (unique) word w € M which is not of the form a‘¥ with b €
Sy(M). Hence, w has the form w = avb for some v € Y+ \ a*b*.

Let c € Y N E(w) such that ¢ # b. Such a letter ¢ rlways exists; it may or
may not be equal to a. Then w has the form w = azcyb.

First, assume that ¢ # a. As |Sy(M)| > 3, there exists another letter
d € Sy(M) such that b # d # c. Then the set M U {azcdyb} is solid, contradicting
the maximality of M.

Finally, assume that ¢ = a. Then there is a letter d, d # ¢, such that v =
azdyb where yb € a* b*. As |Sy(M)| 2 3, there exists another letter € € Sy(M)
such that e # d. Then the set M U {azdeyb} is solid, again a contradiction!

This proves that n > 4 is impossible. []

The first statement of Theorem 3.20 completely solves the case of maximal
solid codes of cardinality |X| over the alphabet X for the case when |X| < 2. The
second statement deals with the case of |X| > 4: f L # X then L will contain 3
or 4 words whose lengths are greater than 1. The case of | X| = 3 and |X| = 4 are
open. We know that maximal solid codes L with L # X and |L| = |X| also exist in
these cases. For instance, if X = {a,b,c} then L = {ab, ¢2b, acb?} is such a maximal
solid code; for X = {a,b,c,d} the set L = {ac,ad, bc,bd} is an example.

All examples of maximal solid codes discussed so far are regular or even

finite. However, as is shown next, there are non-regular maximal solid codes.

Theorem 3.21 Let X = {a,b} and let T = {2' | i € N} where N denotes the sct of

all natural numbers. The language

L = {aba'h? | i € T} U {aba'ba’t? |i € N,j € N\ T}
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is a mazimal solid code which is not reqular where N = {1,2,3,...}.

Proof: One verifies that {u} U {v} is solid for any u, v € L; hence, L is solid.
Now suppose that there is a word w ¢ L such that LU {w} is solid. Then w
has the form

w=a"b"a™d*?...a"b".

If 5, > 1 then a" b? € P(w) N S(v) for some v € L. Hence, 3; = 1. If 5, = 1 then
ab € P(v) N S(w) for all v € L. Hence, s, > 1. Let 1 be minimal with s, > 1. If
r; € T then aba™ b? € E(w)NL, a contradiction! On the other hand, if r; € N\T then
one of the following two cases applies: If i = 2 then aba"b? € P(w) N S(ababa™ b*)
where ababa™ b? € L; if i > 2 then ababa™ * € E(w)N L. Both cases arc impossible.
This proves that L is maximal.

It follows from the Pumping Lemma for regular languages that L is not
regular. [

3.4 Some Further Investigations

The class of solid codes is interesting from various points of view. Its com-
binatorial properties can be exploited to derive properties of disjunctive domains
[Shy6] and the f-disjunctivity of certain congruences [Reil]. For more details one
can consult [Shy6] and [Reil].

Solid codes are also interesting from an information theoretic point of view.

We plan to investigate this issue further in a separate study.
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CHAPTER 4

Intercodes

4.1 Intercodes

There is an infinite hierarchy of subclasses of the class of bifix codes called
intercodes. In this section, we show that every intercode is uniformly synchronous,
limited, and circular. In particularly, for an intercode of index n but not of index
n — 1, we have that the synchronous decoding delay «(L) is n. A sufficient and
necessary condition for an infix code to be solid is also given in this section.

Intercodes are defined below as languages L C X+ satisfying

L™t A XtL™ X+ = @ for some m.

First, however, we show that a language L C X+ which satisfies this condition is a
bifix code.

Theorem 4.1 A non-empty language L C X+ which satisfies the condition L™+' N
XtLmX* =@ for some m > 1 is a bifiz code.

Proof: Suppose that L is a language satisfying the condition L™t N X+ L™ X+t = ¢
of some index m > 1, but not a bifix code. Then L is not a prefix code or not a
suffix code. Assume L is not a prefix code. Then there exist u,v € L such that
u # v and u = vy for some y € X*. This implies that u™*! = u(u™ 'v)y €
L™t'nX+L™X*, a contradiction! The case of L not being a suffix code is similar.

Therefore, L is a bifix code. [J

It is now clear that a language L such that L™*' N X+L™X* = 0 is a code.
This permits the following definition:

Definition 4.2 A non-empty language L C X* is said to be an intercode of indez

m,m>1,f Lt nXtLmxt = 0.
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A language L is called dense if for every u € X*, LN X*uX* # 0. We now
show that the converse of Theorem 4.1 does not hold. We prove the following result

which is of interest in its rights.
Lemma 4.3 No intercode is dense.

Proof: Foranyz € Land m > 1, X*z™X*NL=0. O

Corollary 4.4 There are bifiz codes which are not intercodes.

Proof: To show this corollary, we simply give an example. Let X = {a,b} and lct
L = {a"bzba™ | z € X* and n = #(z)}. Then L is a bifix code and L is dense.
This implies that there exists a bifix code which is not an intereode of any index

m2=>1. O

For a regular language L and an integer m > 1, the problem whether or not

L is an intercode of an integer index m is decidable.

Theorem 4.5 Let L be o regular language. Then for a given m > 1, it is decidable

whether or not L is an intercode of indez m.

Proof: By the definition of intercodes, L is an intercode of index i if and only
if L™ nX+tL™ Xt = 0. Since the family of regular languages is closed under
catenation and intersection, L™}, X*L™X* and L™ n X*+*L™ Xt are regular
languages. Since it is decidable whether or not a regular language is empty, whether
L™t n X+L™X* is empty or not is decidable. [J

Given a regular language L, to decide whether L is an intercode of index

for some m is still an open problem.

Theorem 4.8 Let | X| > 2 and let L C X+ be an intercode of indez 1 with n > 1.

Then L has the following properties:

(1) For every m, m > n, L is an intercode of indez m.

(2) LPNXYL*Xt =0 forallp<n+1.




Proof: Let L*"*'n X+L "X+ = 0.
First we show that (1) holds. Suppose that there exists an integer m > n
such that
L™ NnX+tL™X+ =@and L™P2nXHLmHIXt £ 0.
Then there exist z;,73,...,Zm42,%1,¥2+--- Ym+1 € L and u,v € X* such that

T)Ty " Tmy2 = UY1Y2 - Ym+1V- We have the following three cases:

Case 1: |u| > |x;|. For this case, it is clear that

T2 T2 € X¥ys - Y1 Xt and L™ HNXHL™ Xt £ @, a contradiction.

Case 2: |v| 2 |Zm+2|- Similar to the above case.

Case 3: |u| < |z,]| and |v| < [2;m42|. In this case, we have

V1Y2 Yma1 € X¥1o23 - T Xt and L™ N X+YL™ XY £ 0, a contra-

diction.
Hence L™t'nX+*L™X* = @ for any m > n implies that L™ 2N X+ L1 X+ - 9,
By inductionon m, L™ N X+L™ X+ =@ forall m > n.

Now we show that (2) holds. Assume on the contrary that LPNX*L*X* £ 0
for some p < n+1. Then § # L nL[rtl-PX+[nX+ C ["t'nXHTL"X o

contradiction! (J

From Theorem 4.€, we have that every intercode of index n is an intercode of
index m for all m > n. For any m > 1, we let Z,,, be the family of all intercodes of
index m. Then from Theorem 4.6 we have Z,, C Z,,4+1,m > 1. Nowlet a £ be X
and let u; = a'b'a’ for ¢ > 1. The language L = {ujuz--- upirUmez. 2, ui.

.oy Um, Um41 ) satisfies the condition L™t2 N X+L™m+H I X+ = @ that is, L € Z,,,4,.

Clearly,
iUz Umprtumez € XYugug - e Xt and L™ N XTLmXY £0,

This proves:




Theorem 4.7 The hierarchy of intercodes is strict, that is 1,, € 1,4 for all m,

m2>1,

Theorem 4.8 Let L C Xt. If L is an intercode, then L C Q.

Proof: Let L be an intercode of index m for some m. Assume that L ¢ Q, that is,
there is a word u = f' € L for some i > 1 and f € X*. Then u™*! = frimth -
(™) ff-te L™ NnX+tL™X*, thatis L™ N X*+L™ X+ # 8. This implies that
L ¢ I,,, a contradiction. Thus LC Q. O

Of course, {ab,ba} € Q but {abba} ¢ I, for any m > 1. Morcover,
{ab,ba} € Cy. This implies that T,, S @ N Cy. From Theorems 4.1, 4.6 and 4.8, we

have:
Corollary 497, C 1, C...CZ,C...C Q@NC,.

Forawordz € X*t,ifr =aja;---a, fora; € X,1=1,2,...,u, then the
word ay - - -aza; is called the reverse of z and denoted by rev(z). For a langnage
L C X*, we define the reverse rev(L) of L as rev(L) = {rev(z) | r € L}. The
following characterization of intercodes of index m is an immediate result from the

definition of intercodes.

Theorem 4.10 Let L C X*. Then the following statements are cquivalent:
(1) L is an sntercode of indez m;
(2) rev(L) is an sntercode of indez m;

(8) For anyu € L™, z,y € X*, ruy € L™} implies that r = 1 or y = 1.
Now we give the definition of synchronously decipherable codes as follows:

Definition 4.11 A code L is synchronously decipherable if there ix o non-neqatvoe

integer n such that

Vu,ne X*Aze€L"Auzve l®* =>uveE L.

)
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If a code L is synchronously decipherable, the smallest n such that this condition
holds is the synchronous decoding delay (L) of L.

Theorem 4.12 Let L C Xt be a code. Then L is an intercode of indez n if and
only if L is synchronously decipherable with delay «(L) < n.

Proof: Let L™t N XtL" Xt = §. We first show that L is synchronously deci-
pherable. Let z € L®, let u,v € X* and let uzv € L*. Since € L" and n > 1,
urv€ LY. fu=1lorv=1,thenv € L*orué€ L* as L is a bifix code. Hence
u,v € L*.

Hence assume that there exist u,v € X* such that uzv € L™ with m

minimal. We then have z,,22,...,Za, ¥1,¥2,---,¥m € L such that
Yivz  Ym =uzv and zxr3---x, =1

m < n+1,then L"NX+L"X* #£ 0, contradicting Theorem 4.6. Hence m > n+1.
Since 1 is minimal, y3 - -y, € XYzvand y1y2 -+ Yym-1 ¢ uzXt. Thus, zy24--- 2,
€ X*yr - Ym-1X*. That is, 2,25+ 24 = w1¥2** - Yym-101 for some u;,v, € X*.

The case u;,v; € X+ implies that L"NXTL™2X* £ 0. Sincen—-2 > n, by
Theorem 4.6, L™=2¥InX+[™-2X+ £ @and L**'NXTL" X+ #£ @, a contradiction.
Thus v; = 1 or u; = 1. Assume v; = 1. Since L is a bifix code, the equality
TyIz Ty = U1Y2° - Ym-1 can hold true only when m = n 4+ 2 and u; = 1. That
i8, u = Yy, UV = Yy, and u,v € L. Similarly u; = 1 implies that u,v € L.

For the converse, let L be a synchronously decipherable code with m =
«(L) and suppose that L™*!' N X*+*L™ X+ #£ 0. Then there exist z,,z,..., 2,

Y1.Y2,---+Ym+1 € L and u,v € Xt such that

Viyz2 - Ym41 = UT1T2 - - Ty
Since m = (L) and u,v € X*, u,v € L*, There exist 1,7 > 1 and uy,uy,...,u,,

vy,v2,...,Vj € L such that u = ujug---u; and v = vyvy - - v;. Thus

ViV Yma1 = Ul U T TypV) Vg ¢ - - U
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Since L is a bifix code, m + 1 =i+ m 4+ j > m + 2, a contradiction.
Thus, L™+*' n X+*L™X+ = 0. By Theorem 4.6 (), L*P'nXtLext = ¢
foralln>m.

A code L is called (p,q)-limited if for all U, U, Uz, ..., Upsq € X°,
ui—1u; € L* for all 1 <i < p+ ¢ implies that up € L*.

The following theorem shows that an intercode of index m is (ps q)-limited for all
p,q with p + ¢ = 2m + 1. Since every intercode of index m is an intercode of index
n where n > m. Thus every intercode of index m is (P, g)-limited for all p, ¢ with

p+g=2n+1lforalln>m.

Theorem 4.13 Let L C X+ be an intercode of indez m. Then L is (P, q)-limnited

Jorellp,q withp+ qg=2m + 1.

Proof: Let ug,uy,uz,...,u2m4) € X* such that u;_,u; € L* for all 1 <1< 2m+1.
Suppose that there exixts k with 0 < k < 2m + 1 such that u; = 1. Then uy € L.
Moreover, ug41, Ugy up4z € L*. Since L is a bifix code, ug,o € L*. It follows that
Uk43s-..oU2m41 € L*, and in a similar way ug_y,up_s,...,up € L*.

If there exists no k with0 < k < 2m+1 such that u; = 1, then g, gy, = L
foralli = 1,2,...,m. Hence ujuy ...uz,, € L’ for some j > m. By Theorem 4.6 (1),
one has L'*'NX+* L/ X+ = 0, By Theorem 4.12, upu,uy - U Uzat1 € oL Ugy
implies that 4o, um4) € L*. Since L is a bifix code, Uy, Ug, ..., U0y, € L*. Henee L

is (p, g)-limited for all p,q with p+g=2m+1. O

A code L is called a circular codeifforall n,m > 1, z,,z,,...,r,, Vi W2sen..
ym € L,andu € X*,v € X*, thefollowing twoequaliticszy, = vuand ury -, v =
iz ym imply that v =1, n = mand z; = y; forall 1 <i < n. From ([Ber2)).

we have the following theorem:

Theorem 4.14 ([Ber2]) Every limited code is circular.
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As a consequence, we have:
Corollary 4.15 Every intercode is circular.

We now turn to considering non-empty infix codes which are (p, ¢)-limited.
This results in special classes of intercodes.

Theorem 4.16 If an infix code L is (p, q)-limited for some p,q with p+q = 2m+1
for some integer m > 1, then the following two statements hold true:
(1) L ss (p,q)-limited for all p,q with p+q =2m + 1;

(2) L is an intercode of indez m.

Proof: Let L be an infix code which is (p, ¢)-limited for some p, q with p+¢ = 2m+1
for some integer m > 1.

First we show that statement (1) holds. Let uo,u;,...,u2m41 € X* such
that u;_ u; € L* forall 1 <i <2m+ 1. Since L is (p, g)-limited, u, € L*. Suppose
that u, € L*, n > p. Then upun4) € L* and the fact that L is infix imply that
un41 € L*. Hence by induction on n, u, € L* for all n > p. Similarly u,, € L* for
all n < p. Thus statement (1) holds.

Now we show that L is an intercode of index m. Suppose on the contrary
that L™*' N X+L™X+ £ 0. Then there exist £4,Z2,-..,Zm,Y1:Y2+---»Um41 € L

and u,v € X+ such that
VIY2---Ym+l = UX1T2...T V.
Since L is infix, there exist uy,ug,...,usm € X+ such that
Ti=ugiuziforall 1 <i<m,
Y1 = ult), Ym41 = Uzmv and y; = ugy_zuzj_y for all 2 < j < m.
Let up = u and let 42,41 = v. Then by statement (1), u; € L* forall 0 < 7 < 2m+1

and actually u; € L* becausc of u; € X*. This contradicts the fact that L is an
infix code. Thus L™ n X+tLm X+ =0.
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Thus,when we add the infix condition we obtain another strict hicrarchy:

Corollary 4.17 1, CZ,,C ... C I, S ... C QNC, where I, is the family of

infiz intercodes of indez m.

Proof: We need only to show the strictness of the inclusions. It can be done by
tiving the following example: Let a # b € X and let u; = a'b'a’ for i > 1 and let
L= {u,-u;...l ' 1 S ] S 2m + 2} ) {u3m+3}' Then L € Iim-l-l n Q r‘lC,, but L ¢ I,'m.
a

4.2, n-Intercodes

In this section, we investigate the properties of n-interocdes. First we give

the definition of n-intercodes as follows:

Definition 4.18 A language L C X* is called an n-intercode of indez m if cvery

subset of L with at most n elements is an intercode of indez m.

It is clear that every n-intercode of index m is a k-intercode of index m for
every k < n. Thus the class of all n-intercodes is a subclass of all k-intercodes for
k < n. From the definition of intercodes, it is clear that every word in a 1-intercode

is primitive. Moreover, we have the following property of 1-intercodes.
Theorem 4.19 A lunguage L is a 1-intercode sf and only if L € Q.

Proof: Let L be a l-intercode. For every u € L, {u} is an intercode. By Theo-
rem 4.8, u € Q. Thus, L € Q.

For the converse, let L be a non-empty subset of Q. If a word v € Xt has
the property that u? € X*+uX*, then u ¢ Q (see [Lall] and [Lynl], for cxample).
Hence, for every u € L, u? ¢ X*uX*. Theorem 4.6 implies that L is also &
1-intercode of any index m > 1. [J




It is also clear that every intercode of index m is an n-intercode of index m
for all n > 1. But for n < 2m, an n-intercode of index m is not necessarily an
intercode of index m. For example: Let a # b € X and let u; = a'd'a’ for i > 1.
Then clearly the language L = {u;u;4y | = 1,2,...,2m + 1} is a 2m-intercode
of index m, but not an intercode of index m. The property that a language is an
intercode of index m if and only if it is a (2m + 1)-interocde of index m, shown in
the following theorem, is a very important result in this thesis. It is one of the basic
examples that help us to generalize the mechanism investigated in Section 2.1 to
finitary relations. More details about the hierarchy of intercodes and n-intercodes
will be investigated in Section 5.4 by using the construction of finitary relations.

We show this property of intercodes and n-intercodes as follows:

Theorem 4.20 Let L C X*. Then L is an intercode of indez m if and only if L
is @ (2m+1)-intercode of indez m.

Proof: The sufficient condition is derived directly from the definitions.
For the converse, assume that L™ N X+TL™X* £ @, that is, thece exist z,,z2,.. .,

Tm,Tm+1 € L, y1,¥2,-..,Um € L and u,v € X* such that

I122°TmIm+l = UY1Y2 - Ym?.

This shows that L is not a (2m + 1)-intercode of index m, a contradiction! 7]

A diagram to illustrate the relationships between classes of intercodes and
n-intercodes of different indices is shown in Figure 3 in Section 1.1.
4.3 Comma-Free Codes

In this section, we study a subclass of the intercodes called comma-free codes.
Comma-free codes have been investigated by many researchers. For more details,

sec [Ber2], [Cril], [Hsil), [Gol2], [Jigl] and {Sch3].
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A comma-free code L has the property that for a message = in L, if one
decodes this message and finds a factor y of # in L, then y is a term of the unique L-
factorization of z. Thus a comma-free code has a very good performance in message
decoding. Moreover, the synchronous decoding delay of a comma-frec code is just
one. A word in a message consisting of words taken from a comma-free code can
be identified when the last symbol of this word is received.

Now we give the definition of synchronization delay (see [Gol1]) as follows:

Definition 4.21 A code L is uniformly synchronous if there is a non.ncgative

integer n such that

Vie L Au,v€ X*Auzv € L* = uz,zve L*.

If a code L is uniformly synchronous, the smallest n such that this property holds
is the uniform synchronization delay of L, denoted by o(L).

Definition 4.22 [Goll] 4 code is comma-free if L is bifiz and o(L) = 1.

From [Berl] we have the following characterization of comma-free codes
which is related to the limited and infix properties.

Theorem 4.23 ([Berl]) A code L is comma-free if and only if L satisfics the fol-
lowing two statements:

(1) L is (p,q)-limited for all p,q with p+q =3;

(2) X*LX*tNnL=0.

A simpler characterization of comma-free codes is given as follows by using

the set-intersection form:

Theorem 4.24 A language L C Xt is a comma-free code if and only if L is an

intercode of indez one.




Proof: Let L be a comma-free code, that is, L is a bifix code and ¢(L) = 1. For
z € L and u,v € X*, uzv € .t implies tha uz,zv € L*. Since L is a bifix code,
u,v € L*. Theoren, 4.12 implies that L is a:. ‘ntercode of index one. This proves
the sufficient condition.

For the converse, let L be an intercode of index one. Theorem 4.1 implies
that L is a bifix code. By Theorem 4.12, for every z € L and u,v € X*, uzv € L*
implies that u,v € L*. Clearly, uz,zv € L*. This complete this proof. []

Using the properties of intercodes, we show the following characterization of

comina-free codes:

Theorem 4.25 Let L C X* be a code. Then L is infiz and (p,q)-limited for some

P,q with p+ g = 3 if and only if L is comma-free.

Proof: By Theorem 4.16, the sufficient condition holds true. We need only to
show the necessary condition. By Theorem 4.1, L is bifix. By Theorem 1.23,
LNX*LX* = 0. Hence L is infix. From Theorem 4.13. we have that L is (p,q)-

limited for all p, g with p + ¢ = 3. Thus the necessary part holds true. [J

In [Hsil], it is shown that a comma-free code is an infix code But this is
not the case for intercodes of index m > 2. Consider the following example: Let
X = {a,b} and let L = {b?abad?, a}. The language L is an intercode of index 2 hut
not an infix code. It follows thau the class of comma-free codes is a proper subclass

of the class of intercodes.

4.4 n-Comma-Free Codes

A language L is called an n-comma-free code if every subset of L with at

most n elements is a comma-free code. We now consider the n-comma-free codes.

We have:




Theorem 4.26 A language is an n-comma-free code for some n > 3 if and only if

it is ¢ comma-free code.

Proof: From Theorem 4.24, we need only to show that a language is an n-intercode
of index 1 for some n > 3 if and only if it is an intercode of index 1. From
Theorem 4.20, we derive the result that a language is an n-intercode of index 1 for

some n > 3 if and only if it is an intercode of index 1. [

Moreover, Theorem 4.19 implies that a language is a 1-intercode if and ouly
if it is a non-empty subset of Q. Hence, in the sequel, we have only to consider
2-comma-free codes.

A language L is nonoverlapping if u,v € L, u = zy, v = y:z for some

z,y,z € X* imply that y = 1. The following results are obtained in [Hsil].

Theorem 4.27 ([Hsil]) The following two statements hold:
(1) Every 2-comma-free code is an infiz code.

(2) Let L C Q be a nonoverlapping language. If L is an infiz code then L is o

2-comma-free code.

For L C X*, if every word in L is unbordered and if L is withour the
condition of being nonoverlapping, then the conclusion of Theorem 4.27 need unt he
true. For example: Let X = {a,b,c} and let L = {cab,bc}. Then L C @ and every
word 1n L is unbordered. But L is nut 2-comma-free. We give a characterization of

2-comma-free codes us follows:

Theroem 4.28 Let L C Xt und let cvery word in L be unbordered. Then the

following two statements are equivalent:

(1) L is a 2-comma-free code;

(2) L is an infiz code and, for u,v € X, uv € L smplics that LNvX*u = §.

ar bt S Stasesr

Fa e A i S S

e W s M

SNSRI

Nl

PRCTS

it ne -




Proof: Let L be a 2-comma-free code. By Theorem 4.27 (1), L is an infix code. If

L' = {uv,vzu} C L for some z € X*, then (vzu)? € L n X*L'X*. This implies
that L is not a 2-comma-free code, a contradiction!

For the converse, let L satisfy condition (2). The condition LN vX*u = 0
implies that L C Q and L is a 2-code. Assume that L is not a 2-comma-free code.

Then there exist r,s € Xt and z,y € L such that rzs = y?, rzs = 2%

, TTS = Iy.
or rzs = yz. Since L is an infix code and every word in L is unbordered, cascs
rrs = z2, rzs = ry and rrs = yz can not be true. We need only to consider the
case rrs = y2. Since L is an infix code, we have that z = uv for some u,v € X+
such that y = y'u = vy”, y',y" € X*. If |y'| = lv|, then LN ovX*u # 0, a

contradiction. If jy'| < |v|, then u = 222, v = 232, for some z; € X*. This implies

that ¢ = 2329232, is not unbordered, a contradiction! []
We now discuss closure properties of the class of 2-comma-free codes.

Theorem 4.29 The class of 2-comma-free codes is closed under reve:sal and in-
tersection with arbitrary sets, and is not closed under union, product, complement,

catenation closure, and non-earsing homomorphisms.

Proof: By the definition of int: :codes of index 1, the class of 2-comma-free codes
is closed under reversal and intersection with arbitrary sets. The p1oof of the non-
closure properties will be dore by constructing some examples. The languages
{ab} and {ba} are two 2-comma-free codes. It is clear that the union {ab,ba} =
{ab} U {ba}, the product {(ab)’} = {ab}{ab}, and the catanation closure {ab}*
are not 2-comma-free codes. This proves the statements for union, product, and
catenation closure. Moreover, as the class of 2-comma-free codes is closed under

intersections, but not closed under unions, it is also not closed under complement.

Consider alphabets X = {a,b}, Y = {a} and let h be the homomorphism of

X* into Y* which is defined by h(a) = h(b) = a. h is non-eracing and maps the




2-comma-free code {ab} onto {a?}, the latter is not a 2-conuna-free code. Thus, the

class of 2-comma-free codes is not closed under non-erasing homomorphisms. [

Theorem 4.30 The class of 2-comma-free codes s closed under inverse non-erasing

homomorphisms.

Proof: Let X and Y be alphabets and let h: X* — Y* be a non-erasing homomor-
phism. It suffices to show that for any u,v € Y+, if {u,v} is a comma-free code,
then {%,7} is a comma-free code for every @ € h~'(u) and 7 € h~}(v).
Suppose that for some # and T this is not true. If @ # T and {W,7}* N
X+toXt £ 0 then {u,v})2N Y oY+ #£ 0, a contradiction! The case of T # T and
7,5)2 N X+tZX* # 0 is also impossible. []

It has been shown in Section 3.2 that the class of solid codes has the sane elo-

sure and non-closure properties as the class of 2-comma-free codes does. Morcover

the class of all codes also has the same closure and non-closure properties.

/]
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CHAPTER 5

n-ary Relations on Free Monoids and Their Independent Sets

5.1 n-ary Relations and Their Independent Sets

As shown in the preceding chapters, even though there are many classes of
languages which can be expressed as the independent sets with respect to some
binary relations, there are still nany other classes of lauguages which cannot be
characterized in such a way. As examples, we have the classes of codes, intercodes,
and n-codes.

In this chapter, we generalize the definitions and somc results of Section
2.1 to n-ary relations. It turns out ihat some of the classes of codes and n-codes
mentioned before can be characterized as the independent sets with respect to n-ary
relations. The generalization is twofold: We coasider relations of arbitrary finite
arity and their independent sets. Moreover, we develop the theory over arbitrary
sets first before considering the case of relations on free monoids. This latter point
results from the observation that most of the general results of Section 2.1 are
actually true for binary relations on arbitrary sets.

In the sequel, let S be an arbitrary non-empty set. For an n-tuple .+ =

(zr1,72....,2,) € [S]", let cont z denote the set of components of z, that is,

contz={y|y€8S,3i:z; =y}

cont z is called the contents of z.

Definition 5.1 Let w be an n-ary relation on S. A set L C S is said to be

w-tndependent if € w implies contz € L.
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Note that for n = 2 this new definition of w-independence does not specialize
to the one used in the preceding sections and in the literature. As shown in Section
2.1 only symmetric and reflexive binary relations need be considered given the older
definition. This is no longer true with this new definition. Howcever, we believe
that the new definition is more natural than the one used before. Details of the

connection between these notions are discussed in Section 5.2 below. Whenever it is

necessary to refer to the notions of Section 2.1 along with their re-defined versions,
we attach the subscript “514” to the former, that is, for instance w-independencey
would mean w-independence in the sense of Section 2.1.

For an n-ary relation w on S, £, denotes the family of all non-ciupty. w-
independent subsets of S. Given our new definition of w-independence, it is no
longer true that £, contains all the singleton sets. Thus we drop this condition
from the definition of strictly non-t.ivial families of sets. Hence, a family £ of

subsets of S is said to be non-trivial if LC 25 and 0 ¢ L.

Remark 5.2 Let w be an n-ary relation on S. Then L, 1s a non-trivial family of
languages which s closed under taking non-empty subsets. If (r,r,..... r) € w for

allz € S then L, = 0.

We first investigate the connection between the lattice structure of the set

R(" of all n-ary relations on S and the set
£ = (L] C[S]": £=CL,)

of non-trivial famil’ s of subsets of S which can be characterized Ly n-ary relations.
Ler-ma 5.3 Let wy,w; € R™. Then w; C w, implies that £, € L., .

Proof: Consider . € £, and a;,az,...,a, € L. Then (a;,ay,...,a,) ¢ wy. Thus

(ai,az,...,8,) ¢ wy. Thisimplies L€ £,,. O




The converse of the Lemma 5.3 is not true in general as is shown in the

following example.

Example 5.4 For X = {a,b,c},n =2,and S = X, consider
wy = [X‘..]2 \ {(aa a)a (bs b)s (a9 b)s (ba a)a(a’ C)}
and
wp = [X )2\ {(a,a),(b,}),(a,b),(b,a), (b,c)}.

Then
Lu; = sz = {{av b}’ {a}’ {b}}

However, w; and w» are not comparable.

For any n-ary relation w on S let
d(w) ={p|veR™. L, =L},

and let

5=U<pa.ndg=ngp.

pEP(w) PEX(w)

From w € ®(w) it is clear that w C w C @, that is, L5 C L, C L,

Theorem 5.5 For w € R(™ the set ®(w) is a complete U-semilattice with T as its

MATIMUIM.

Proof: Let &' be a non-empty subset of ®(w) and let
o= ¢
34
We have to show that L, = C,,.

Let L be a non-empty subset of S. If L ¢ £, then L ¢ L, for every

@ € &' C ®(w), that is, for every v € &', there exists z € ¢ such that contx C L.
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This implies z € ¢’ for every such z and, therefore, L ¢ L. This proves that
L,yCL,.

For the converse, assume that there exists a set L € £, such that L ¢ £ .
Then there exists ¢ € ¢' with contz C L. This implies that there exists o € P’
such that z € o, hence L ¢ £, = L, a contradiction! [J

Corollary 5.8 For w € R(™ one has L, = (3.

Our next result is provides a characterization of . For tlus we need the
following nctions of symmetric and upward symmetric n-ary relation. For n = 2,

the former specializes to the usual notion.

Definition 5.7 Let w be an n-ary relation on S.
(1) w is said to be symmetric if it has the following property: For r,y € [S]".if
Z € w and contr = conty then y € w.
(2) w is said to be upward symmetric if it has the following property: For r.y €

[S]", if # € w and contz C conty then y € w.

Clearly, every upward symmetric relation is also symmetric. Let &' and

U6 denote the sets of symmetric and upward symmetriz n-ary relations on S,

respectively. For an n-ary relation w, let symmw and upsymmew denote the sym-

metric and the upward symmet~ic closures of w, respectively.

Theorem 5.8 Let o and w be n-ary relations on S. Then o = T if and only 1f »
satisfies the following two conditions:

(1) ¢ € &(w).

(2) For every z,y € [S]", if £ € w and cont z C conty then y € .
Proof: Assume that ¢ = @. Then condition (1) is satisfied by Corollary 5.6. Suppose

that there are z,y € [S]" such that z € w, contz C corty and y & » = &. Then

conty € L, = L,. Consider p' = pU {y}. Then L, = L, = L. Thus p' € ¢(w)

and ¢ € ¢’ C @, a contradiction!

/]
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For the converse, assume that o satisfies the two conditions. Condition (1)
implies that ¢ € &. Consider y € @. It follows that conty ¢ L5 = €. By the
definition of £, there exir's z € [S]® with contz C conty and y € w. By condition

(2),y€p,hencealsow C . O

Corollary 5.9 For any n-ary relation w one hes & = upsymmu.

The fact that “upsymm” is a closure operator together with Corollary 5.9

implies that the mapping w — @ is 1a0nctonic.

Corollary 5.10 Let w be an n-ary relation on S. One has
2¢T <> contz € Lz
for all z € [S]".

Theorem 5.11 (Inclusion Theorem) Let w,w; be n-ary relations on S. One

has

51 CWy, & L,,CL,,.

Proof: If ©; C &, then £, = L5, C Ly, = L., .

For the converse, assume that £, C £, and &} € @,. Hence there i 2i
z € [S]" with z € @) and z ¢ @,. By Corollary 5.10 one has contz € L3, = L.,
and contz ¢ Lz, = L,,, a contradiction! [

Corollary 5.12 For every n € N the mapping w — L, is an antitonic bijection of

US(™ onto £,

The mapping w — C,, of US&™ onto £ can be shown to be a lattice

isomorphism with respect to naturally defined lattice structures on U&(™) and £(",
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Lemma 5.13 (US(™,U,N) is a complete lattice. Moreover, for uy.wy € US™ one

has

Lw‘ n £U) = CU‘UU’ Gﬂd Cw‘ U £u, g Lw‘ Ny

Proof: Consider a non-empty family ¥ = {w; | i € I} of n-ary relations in ust)
where I is an arbitrary index set. Clearly, with ¥y and ¢*n the union and the

intersection over ¥ one has

If z € ¥, then y € W, for some y € [S]* with conty C contx. Thus y € w,
for some i € I and, therefore, z € w;. This implies z € ¥u.

If z € ¥ then y € ¢ for some y € [S]™ with conty C cont.r. Thus y € w,
for all i € I and, therefore, z € w; for all i. Hence z € ¥'n.

This proves that (U&(™,U,N) is a complete lattice. Now consider £, NL_,.

Using the fact that the mapping w — L, is antitonic, one has L, u., € Lo

- 1

ne,,.
Let L € Lo, N L., and z € [S]" with contz C L. Then z ¢ w, and z ¢ wy, that is
r ¢ wy Uw;. Therefore, L € Luyuus- This proves that L, N L., = Lo, uu,-

The last statement is again an immediate consequence of the antitonicity of

the mapping w — L. [

By Lemma 5.13 the mapping w + £, of USM™ onto £ induces a lattice

structure on £ via L, V Lo, = Luynw, and Loy A Ly, = Luyuw,- This implics

the following statement.

Theorem 5.14 Th: mapping w — L, is a lattice isomorphism of (USH u,N)

onto (£, A, V).

The last statement of Lemma 5.13 concerning the union of language families

can be strengthened as follows.




Lemma 5.15 Let wy,w; € US(™, Then there is an n-ary relation w with L, =
C,UL,, sfandonlysfl,, UL,, =L, nu,-

Proof: Suppose that £, UL, = L, for some n-ary relation w. We may assume
that w € U6, Consider L € £,. Lemma 5.13 implies that w; Nwy C w. Consider
z € w. Then contz ¢ £, hence contz ¢ L,,, and contz ¢ £_,. Therefore r € w,

and z € w;. This proves w) Nw; = w. The converse is obvious. []

We now turn to considering w. While $(w) is a complete U-semilattice it

turns out not to be a N-semilattice in general.

Theorem 5.16 For w € R™ one has

Lo,=C,U{L|LC X' L#£OVueL: (uu,...,u) ¢w).

Proof: Let
C={L|LCX*,L#£0,VuelL: (u,u,...,u) ¢ w}.

We show first that £, U £ C C,.

From w C w it follows that £, C L, by Lemma 5.3. Consider L € £ and
z € [S]™ with contz C L. We have to prove that z ¢ w.

Because of w C w this is obvious for z ¢ w. Hence we assume that z € w.
By the definition of £ this implies that |contz| > 1. Let = = (z,,z3,...,2,) and
let ¢,j be such that 1 <i < j < n and a; # a;. Let

= (1, T2,y Tic1,Tjy Tig1,- N FERTE T TUR VO Ny

and consider the relation w' = (w \ {z}) U {z'}. In order to prove that = ¢ w it
suffices to show that w’ € ®(w) because, in this case, w C wNw' with z ¢ w'.

Now suppose that M € £, and M ¢ L.. Then there s a y € w' such that
conty C M. It is impossible that y = 2’ because contz’ = contz ¢ M by M € L.
However, also y # z' is impossible because y € w in this case. This shows L,CLC,.

The proof of the converse inclusion is analogous.
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We now turn to proving that £, C £,UL. Suppose there exists asct L € c,

such that L ¢ £, U L. Hence there is an element u € L with (u,u,...,u) € w
and (u,u,...,u) ¢ w. This implies the existence of a relation w' € ®(w) with
(u,u4,...,u) ¢ w'. Thus {u} € £, while {u} ¢ £,, a contradiction! Henee £, C
L,ul. Od

Corollary 5.17 For every S with |S| > 1 and everyn € N, n > 1, there is an
n-ary relation w on S such that $(w) is not a N-semilattice.

Proof: Let a,b € S, a # b. For n > 1 choose w = {(a,q,...,a,b)} and &' =
{(b,b,...,b,a)}. Then L = L,, that is, w' € $(w) whilewnNuw' =0¢g ®(w). O
Remark 5.18 If w is a unary relation on S then &(w) = {w}. Moreover, one has
Lecl, ifand onlyif LNw =0.

By Theorem 5.16 one always has the inclusion £, C £,. The following

example illustrates the general situation when the inclusion is proper.

Example 5.19 Consider X = {a,b}, $ = X*,and n = 3. Let w = {(a,b,b)).
Then ¢ = {(a,a,b)} € $(w) and w = 0. We have {a,b} € L, but {a,b} ¢ L.

For any non-trival family £ of subsets of S and any n € N we cousider the

(€)= {wjweus™ ccc,)

wo(L) = {w|we U™ ¢, c £}

of n-ary relations. These are the obvious counterparts of the setsqg (L) and w( L)
of Section 2.1. However, note that due to the change in definition of independence

these sets are actually not quite the same in the case of n = 2.




Both Q2,.(£) and wn(L) are always non-empty. The former contains at least
the empty relation. The latter contains at least the universal relation w = [S]" for
which £ = 0.

Cleatly, if £ € £, £ = £, with w € U6 gay, then w € Qu(L)Nwa(L). In
the sequel we show that, in this case, w is the maximum of 2,(£) and the minimum
of wa(L). As a preparation we generalize the corresponding results of Section 2.1

concerning the structure of these sets.

Remark 5.20 For every non-trivial family £ of subsets of S and every n € N onc

has

Qu(L)Nwa(L) = {?:g}, 'oftlfegvﬁ:);vherc w€ US™ and £ =L,
Theorem 5.21 Let £ be a non-trivial family of subsets of S, let n € N, and lect
wy,wp € USM,

(1) Iet wop € Q(L). If wy € wo then wy € QAn(L). Moreover, wy Nwy €
Qa(L) and N, (L) is a N-complete N-semilattice with the empty relation as
its minimum,

(2) Qa(L, s a U-complete U-semilattice. Hence Q,(L) has a mazimum.

(3) Let wy € wn(L). If wo C w1 then wy € wy(L). Moreover, wy Uw, € wy(L),
and w,(L) is a U-complete U-semilattice with the universal rclation as its

mazimum,

Proof: For (1), let w3 C wp € 2x(L). Then £ C £, C Lo,, thus w; € Q,(L). As
wo Nwz € wo one has wp Nwa € N, (L). Let {w; | i € I'} be any family of relations
with iw; € Q,(C) for it € I. Then
w= nw.- Cwj
i€l
for every j € I. Hence w € ,(L). As 2,(L) :ontains the empty relation, it follows

that N eq. (ow = 0.
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For (2), consider a family {w; | { € I'} of relations w; € Qn(C) for i€ 1. Let

w=Uw.-.

We show that w € R,(L), that is, that £ C £,. Assume the contrary. Then there
is L € £ such that L is not w-independent. Therefore, for some z € [S]® we have
z € w and contr C L. Hence there exists an i € I such that z ¢ w;. But then

L ¢ L., that is, w; g Qa(L), a contradiction! Clearly, the relation

U «

wE€Ny (L)

is the maximum of Q,(L).
For (3), let wy € wp(€) and wy € w;. Then L,, €L, CL Thusw €
wa(L). Since wo C wp Uwy, wo Uw, € wa(L). Let {w; | i € I} be a family with

wj € wu(L) for : € I. Then

w,-Qw:Uw.-
i€l

for every j € I. Hence w € wa(L). As wy(L) contains the universal relation, it

follows that

Uw

wEwy (L)

is the universal relation. [J

For a set L, let Fin{L) be the set of non-empty, finite subsets of L. A family

L of subsets of S is said to be Fin-determined if it is non-trivial and

Lel < Fin(L)CC

holds true.




Theorem 5.22 Let £ be a non-trivial, Fin-determined family of subsets of S and
let n € N. Then the following properties obtain:
(1) The relation
W™ = {z |z € [S]",contz & )
ts the mazimum of N, (L).
(2) For every wy € wy(L) there is a minimal element wo, € wy(L) such that

Ww g Wo.

Proof: Let w be the maximum of Q,(<). Then w,w!™ € US™. Hence in order to
prove that w = we it is sufficient to show that £, = ng.). Consider L € £, and
suppose that L ¢ Eug.). Then there exists z € w?) such that contz C L. By the

definition of w{™ this implies that contz ¢ £. Now consider the relation
@ = upsymm(w U {z}).

Then L' € L, \ £~ if and only if contz C L'. But for such L' one has L' ¢ £ as
L is Fin-determined. Therefore, & € Q,(L). However, w is a proper subsect of &
contradicting the maximality of w. This shows L € £ Wi that is £, C L"-‘i: ).
Conversely, let L € ng.). Then contz € £ for all z € [S]" with contz C L.
Therefore, ¢ @ for every w € ,(L). In particular, z ¢ w, that is L € £,,. This
proves ng.) ccC,C £u§"” that is, wg') is the maximum of Q,(C).
To prove the second statement, assume that wy is not minimal—otherwise

nothing needs to be proved. Consider a decreasing chain

wWo le 2&)23...

in wa(L) and let w = (Y;5owi- Let L € L,. We show that L € £. As C is
Fin-determined, it is sufficient to show that L' € £ for every L' € Fin(L).

Let L' € Fin(L). For every z € [S]" with contz C L' there is an index i(z)
such that z ¢ w;(,). Let

j = max{i(z) | z € [X*]",contz C L'}.



As L' is finite, j exists. Then L' € £,; C £. This implies L € £ and therefore
w € wy(L). Now the existence of we, follows by Zorn’s lemma. [J

Theorem 5.23 Let £ b: a non-trivial family of subsets of S.

(1) If £ = L for some n-ary relation & then wn(L) has ¢ minimum w and
w = upsymm & = max Q,(L).

(2) If £ is Fin-determined and wn(L) has ¢ minimum w then L = L, and

w = maxN,(L).

Proof: Suppose that £ = L£~. Without loss of generality we assume that & is
upward symmetric. Then & € wn(L). Let wy € wa(£L). Then £, C £ = L by the
definition of w, (L), hence & C w; using the fact that w, is upward symmetric. This
proves that w,(£) has a minimum and that @ is this minimum. Clearly, & € Q,(L),
hence & = max2,(L). This proves statement (1).

For part (2) we only need to show that £ = L. By the definition of w,(£)
one has €, € £. Suppose there is a set L € L\ £,. Then there is z € [S]" with
z € w and contz € £ as £ is Fin-determined. Let

@={y|y€[S]",conty Z contz}.
Clearly, & € #6(®), Moreover,
L~={L|0#LCcontz}.

As £ is Fin-determined this implies £~ C C, hence & € wq(£). As £ is Fin-
determined there is a minimal element & of w,(£) with & C &. From z € w and

z ¢ & it follows that & # w, contradicting the fact that w is unique. Thus £ = C(,,.
a



Let § denote the set of non-trivial families of subsets of S. The following
lemmata generalize the corresponding statements of Section 2.1. For arbitrary £ € §
let wg') = max (L), generalizing the notation introduced above.

Lemma 5.24 § is a complete lattice with ® and 25 \ {0} as its minimum and

mazimum, respectively.

Lemma 5.25 Let £y,L2 € § with £3 C Lo. Then ) C 0.

Lemma 5.26 The mapping

L cw(‘n)
is a closure operator on §.

These results enable us to generalize the “gap theorem,” that is, Theorem
2.21, to n-ary relations. It provides a powerful criterion by which to prove of a given
family of sets whether it can be characterized as the independent sets with respect

an n-ary relation.
Theorem 5.27 (Gap Theorem) Let n €N and £,L, € § such that
£LCcL, ¢ Cw(‘u).
Then there is no n-ary relation w such that £, = L.
Proof: By Lemma 5.26 one has
Lw(‘..) = CU?‘).
Assume that £; = £, for some n-ary relution w. Without loss of generality we may
assume that w € US(™. Then
w = max2,(L,) = wg:) = wg'),
hence

Ly =L ),
f4

a contradiction! [J
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5.2 Binary Relations Re-Visited

As mentioned in section 5.1, the new definitions of that section are inconsis-
tent with the earlier one of Section 2.1. In the present section we give the necessary
hints for a “translation.” Moreover we point out a few new results that can be
achieved for binary relations given our modified definitions. In the sequel we as-
sume that S = X+ where X is an alphabet with |X| > 2.

In Section 2.1, the definition of w-independencegq for w € [S]? made no
distinction between w and its reflexive closure. To obtain the same results, we have
to re-define the binary relations considered there by eliminating the diagonal. These
re-defined relations are listed in Table 5.1 below.

Given the new definition of w-independence, if w is a reflexive binary relation
then £, = 0. In detail, if w is a binary relation and (u,u) € w then u ¢ L for every
L € £,, that is, diagonal elements in w exclude the corresponding elements from
every w-independent set. In this way, the diagonal elements of w “behave like a
unary relation.” This idea is to be explored in general terms in Section 5.3 below.
Here we just provide another example.

Recall that a non-empty language L C X+ is called a solid code if every
word w € X+ has a unique decomposition of the form w = zyy;172y2 - T Yn Tt
withy,...,yp € Land {u |u <; z;}NL=0fori=1,...,n+ 1. We now give a
characterization of the class of solid codes in terms of a binary relation. Observe
that such a characterization was impossible with the earlier notion of independence.

A word w € X* is said to be an overlap of words u,v € Xt if w <, u and

w <, vorif w<, uand w<pv. The overlap relation w,, is defined by
(u,v) € w,, <=> there is an overlap w € X+ of u and v

for u,v € X*. Obviously, w,, is symmetric, but not upward symmetric. The
languages in C,,, are the overlap-free languages. Now define the binary relation
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languages property relation

uniform codes u W<, v = |Juw| <|v|

hypercodes h w<av & wFvAn3In,...,za €

) X*t:w=2z)---TaAVE X*2; X*-- - 2, X"

n-shuffle codes shy, W v <> wFvAID,... .2, w=
21T AVE X*21 X% - 2, X°

prefix codes P w<, v < vEwXt

suffix codes s w<,v & vEXtw

bifix codes b w =<, U<,

2-codes ¢ w<, v &> eEXt: v=wz=2zV0

infix codes ¢ w<; v &= wFEFvAvE X'vwX*

p-infix codes pi w<piv <> vE X wX*

s-infix codes si w<,v < vEXtwX"

outfix codes o W, &> Jw,wy: w=wwa AV E
w Xtw,

solid codes o We = Woy Usymm <; where wwo,v <>
there is an overlap u € X+ of wand v

2-ps-codes d <4=<,N<,

Table 5.1. Some classes of languages
and their defining properties, given
the new definition of independence.
In all cases one would have to take
the (upward) symmetric closure of the
defining relation.
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weon Xt as
We = Woy Usymm < .
]
The relation w, is also symmetric and again not upward symmetric.

Theorem 5.28 L € L, if and only if L is a solid code.

Proof: In [Jiir3] the following conditions are shown to be necessary and sufficient
for a non-empty language L C X+ to be a solid code:
(1) For any u,v € L, not necessarily distinct, u and v do not have an overlap.
(2} For any u,v € L, if u 3# v then u ¢ X*vX".
The first condition is captured by wes. The second one is captured by symm <.
By Lemma 5.13 £, ,ueymm<; = Lu,, N L¢;. O

5.3 Countable Sets of Finitary Relations, Relations of Different Arities,
and Their Independent Sets

The construction of the binary relation w, which characterizes the solid codes
could have been carried out differently. Given the conditions derived in [Jiir3], the
solid codes can be considered as languages which are independent with respect to
two relations, the binary relation wy \ {(u,u) | ¥ € X*} and the unary relation
{u | (u,u) € woy}. This idea can be captured formally and gereralized as follows:

Again let S be an arbitrary, non-empty set. Let ¥ = {¢; | j € J} be a
family of finitary relations on S where J is an index set and where v; is the arity of
¥;. A set L C S is said to be W-independent if it is ¥ ;-independent for every j € J.
Let Ly denote the family of y-independent subsets of S, that is, Ly = ;¢ ; Ly; -
In the sequel we restrict the attention to countable index sets J, that is, we assume
that J C N. Some generalizations to uncountable index sets are possible, but will
not be considered.

If J is infinite then, without loss of generality, we may asswne that J = N.

If J is finite we may assume that J = {1,...,n} for some n € N. In this case,



instead of ¥, we consider the family

' Py ' _ ) ¥, if j <n,
¥ ‘{"’i |’€N"”i‘{'/-f.. ifj>n }

Clearly, L is ¥-independent if and only if it is ¥'-independent. Therefore, to simplify
notation we can always assume that J = N. For j € N let 7, = maxs¢, va.

For n € N let w be an arbitrary n-ary relation on S and let m: € N with
m 2> n. We construct an m-ary relation denoted by upsymm,, w from w such that
L, = Lypsyymm,, »- This relation is referred to as the m-ary completion of w. It is
defined as follows:

upsymm,,, w = upsymm{(z1,...,Zm) | (Z1,-..,2p) € W, Zp4y = ... = 1y, = 1, }.

Lemma 5.20 For n,m € N with n < m and w C [S]" one has

Ly = cnp-ymmm we

Proof: Consider L with® # L C S. If L ¢ L, then there is ¢ € w such that cont.r C
L. Letting z = (z1,...,%n) one has (z1,...,2p,Zn,...,Tn) € upsymm,, w. Thus
L & Lupsymm,, w-

Conversely, assume that L ¢ Cypeymm,, - Then there is an z € upsymm,, w
such that cont z C L. By the definition of upsymm,, w there is an z' € w such that
cont z' C contz. Therefore, L¢ £,,. O

Lemma 5.30 Let ¥ = {¢; | j € N} be a family of finitary relations on S with v,
the arity of yj. Then

C\P = n Cl .s"P'ym'“f, wh®
JEN !
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Proof: By Lemma 5.13 one has
Qi CUP'Y""F, wy = LU.SJ upsymmy, wa *
Thus

n LU,S, wpeymmg, wn — n n Lupeymms, w1 = Lv.
JEN JENAS;

O

If, in particular, ¥ contains only finitely many different finitary relations
then max;en v; exists and, therefore, the sequence of relations U,,S ; UPSymig, wi,
converges to a finitary relation on S. This proves the following property.
Lemma 5.31 Let ¥ be & finite family of finitary relations on S and let n be the
mazimum of the arities of the relations in W. Then there is an n-ary relation
w(¥) € US'™ such that L y) = Ly. Moreover, w(¥) is the union of the n-ary
completions of the relations in W.

We can use these results for instance to prove the following “hierarchy the-

n

orem.

Theorem 5.32 Let L be an nontrivial family of subsets of S. The following prop-
erties obtasn:

(1) For every n € N one has
cC Lw“"*‘” - ng.).

(2) For every n € N, if
Lu(n+1) # Lw(u)
£ £

then there is no n-ary relation w such that

Cw = Ew(‘u«l-!).



Proof: For (1), one has

=L
wpsymm,, o, wi™ wi™

and

(»)

+1)
upsymm,, ., we 2‘

g maxﬂ,+,(£) =w

Y

hence the inclusion. Statement (2) follows from Theorem 5.27. [

It seems natural to conjecture that the sequence of families £ ., would
have the following stabilization property: If Cw‘(‘..m = L ) for some n € N then
£

Lu{"*"" = ng., for all m € N. It turns out that this is not true as shown in the

following example.
Example 5.33 Let S = {a;,a3,...,a,} withn > 6 and let S; = {a;,a,..... )
for k < n. Define
Lot = {X | X C Sy, |X| = m)
and
L= Cl,.. U Cz,s U Ca,s U £4'4.
Then

C = -
ng) S ng) Cw(‘z) s ng).

5.4 n-ary Relations and Codes

In this section, we apply our theory to n-codes, n-intercodes, and n-ps-
languages. We strengthen the hierarchy results obtained in [Ito2] and add to thosc
obtained in [{Shy7).

Recall that a language L is an n-code if every non-empty subsct of L of
cardinality at most n is a code. As an immediate consequence one has the following
results for the hierarchy of n-codes.
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Theorem 5.34 For n € N let 44 be the n-ary relation on X+ given by

ZEYm > contz gC

Jor z € [ X*|". The following propertics obtsin:
(1) Cx =L, for alln.
(2) Yo =Wt =wé:’ Jor alln end ellm with m > n.
(3) There is no finitary relstion w such thetC = L.
(4) For allm € N, there is no n-ary relation w with £, =C,, and n < m.

Proof: Statements (1) and (2) follow directly from the definition of v,. Statements
(3) and (4) are consequences of Theorem 5.27. (J

A hierarchy similar to that of n-codes can be built within the class of inter-
codes. Recall that a language L is called an intercode of indezm if 9 £ L C X+
and L™ N X+L™ Xt = §. Let Z,, denote the family of all intercodes of index m
over X and let 7 = | J, 5 Im denote the family of all intercodes. An n-intercode
of indez . is a non-empty language L, L C X*, such that every non-empty sub-
set of L of cardinality at most n is an intercode of index m. Let Z, ,, denote the
family of n-intercodes of index m over X and let Zn 00 = U, en denote the family
of n-intercodes. Note that

In=[)Zom and I={)Tne.
nEN nEN

In [Shy7] it is shown that a non-empty language L, L C X is an intercode of indcx
m if and only if it is 8 (2m + 1)-intercode of index m, that is, Z,;, = T34t ;m-

To describe n-intercodes of index m, we consider the n-ary relation g, ., on
X* given by the following condition:

T € pnm <> (contz)™' N X*(contz)"X* £0




for all z € [X*]". Clearly, £,, .. = Zam- The relation between intercodes and
codes is described by the following result. The complete situation is illustrated in
Figure 3 in Section 1.1.

Theorem 5.38 For every n,m € N the following statements hold true:
(1) Ifn22then Ty C Ty STunoo SCoand 2, CTIC I,0. Hence .very
n-intercode with n > 2 is & bifiz code.
(2) Ifn>22m+1 thenZ, p =T .
(3) Ifl<n<2mthen I, i G Tum-
(4) fn22andn<2m+1 then T, 0 STy m41-
(5) Zat1,00 S Tn,o
(6) o=T1m=QRQCCr and I} oo L C, forn > 2.
(7) Zm G Zms-
(8) I2,00 S QNG

Proof: For (1), consider a non-empty language L € X* which is not a bifix code.
Then there are distinct words u,v € L such that u <, v or u <, v. Suppose u <, v
holds, that is, v = uy for some y € X*+. Consider z € [X*]* with contz = {u,r}.
Then u™v € (cont )™ +'NX*(contz)™ X+. Thusz € pp ;- Thisimnplies L ¢ 1,, ...
This shows the inclusion Zn m C Cs, hence also the inclusion Zp o0 C Cs.

The inclusions Im € Iam € Zn,0 80d Im € I C Ip o are immediate
consequences of the definition. The inequalities Zam # Taco, Im # I, and T #
Z .00 will follow from statements (4), (7), and (5), respectively. Here we need to
prove only the inequality T, o # Cs. Suppose a € X. Then {a?} is a bifix code,
but {a?} @ Ta 00 for n € N.

By [Shy7) one has T3ms1m = L. By definition, Tnsym C Tnm. Using the

fact that I, = (),cn Zn,m One obtains statement (2).

To prove statement (3}, we give examples of languages L, € Z,, ,u \ T 41,0
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Let X = {a,b} and w; = a'b'a’ for § € N. Now define L, as

{WI' w3,... ,w.ﬂ,w;w',"""”w; vt w,.+2}
ifn<m, as
{wiwiyy |[i=1,2,...,n-1}U {w..;.,,w.w:._’,(“'"/zw..“}

if m <n<2mand nisodd, as

2

{wiwipr | $ =1,2,...,n -2} U {w...w....g,w...lw.w,'::,"/ Wn42}

if m < n < 2m and n is even, and as
{wiwig1 | =1,2,...,n+1}

if n = 2m. One then verifies that L, has the required properties.

To prove statement (4) one observes that the inclusion Z,, ., € T, m4; is
an immediate consequence of the definition. Moreover, with L, as above, one has
Luoy €Inmt1 \Tnm-

For (5), the inclusion Zy41,00 € Za 00 is an immediate consequence of the
definition. To prove the inequality, we give examples of languages M, € 7, o, \
Zn41,00. Moreover, statements (6) and (8) together will imply the inequality for
n = 1. Hence, here we consider the case of n > 2 only. Define M,, as

{wiwig1 |i =1,2,...,0} U {was w1}

One verifies that M, has the required properties.

For (6), from [Ito2) one has @ C C3. If a,b are distinct elements of X, then
{a,b,ab} € @\ Cy for n > 2. Therefore, we only need to prove that 7, ,, = Q for
all m, or equivalently, that

w™t! g Xt Xt &= weQ



holds true for all m. If w™*! € X*tw™X* then w = zy = yz for some z,y € X,
that is, w ¢ Q. Conversely, if w ¢ Q, that i3, w = z* for some z € Xt and i > 1
then

w™t! = gi(m+1) e Xtwmxt

form2> 1.

Statement (7) is proved in [Shy7]. Finally, in (8) the inclusion 7; o C Q@NC,
is obvious by (1) and (6). On the other hand, the language {a, bab} is a bifix code
" andin Q, but not in T3.00. [J

Corollary 5.36 Let k,n € Nand m e NU{oo} withn <2m + 1. Ifk < n and
w C [X+]* then Tom # L.,. Moreover, if w is any finitary relation on X+ then

I#LC.,.
Proof: One applies Theorem 5.27. [

Note that the inclusion Z,, ,, € Zp41,m+1 Which Figure 3 in Section 1.1 scems

to suggest is not true in general. For instance, the language
{abed, be, dabedebf, eb, fbce}

is in 74 3, but not in Z5 4. This example uses an alphabet with six letters. However,
using the encoding of the letters a,b,...,e by aba,a’t?a?,...,a%b%°® one obtains a
la.ngua.gg in T4 3 \ Z5,4 which uses only two letters.

The hierarchy of n-ps-languages is obtained in a slightly different fashion
{Ito3]. Recall that a language is called an n-ps-language if every subset of at most
n elements is a prefix code or a suffix code. The hierarchy of n-ps-codes is known

to collapse at n = 4. For n € N, n 2 2, define the n-ary relation w(, ;. on X+ by

I E W(n"") @ wntz ¢c’ Uc.

101



102

for z € {X*]" where C, and C, are the classes of prefix and of suffix codes, re-
spectively. Then L,  , = PS, where, as before, PS, denotes the family of
n-ps-codes.

We also consider the ternary relation wy,s3 , ,) defined as the upward sym-
metric closure of the set of triples z = (,,z2,73) € [X*]® satisfying the following
three conditions:

(1) |cont z| > 1.

(2) If |contz| = 3 then z, <, z2 A2y <, z3.

(3) Ifjcontz|=2then 2y =22 A2y S 23 AT &, 23,
The w(g3 p,,)-independent languages are the generalized 3-ps-codes of [It3]. Their
family is denoted by GPS.

Theorem 5.37 The following properties obiain for n-ps-codes:
(1) The hierarchy of n-ps-codes is finite, that is,

C,UC,:...:'PSs:'P&E'PS;,QQ’PSE'PSZ=£<‘ EC;:E.,C.

(2) There is no binary relation w such that PS, = L, for n = 3,4.
(3) There is no binary relation w suck that GPS = C,,.
(4) There is no ternary relation w such that PS, = L.

Proof: Statement (1) is proved in [Ito3]. Statements (2)-(4) are consequences of

Theorem 5.27. [J



CHAPTER 6
Closing Remarks

The aim of this thesis is to develop a universal mechanism which provides a
tool for constructing codes and extracting common properties of codes. The car-
lier work was mainly based on strict binary relations: several classes of codes were
expressed as the independent sets with respect to certain strict binary relations.
For convenience, we call this technique the strict-binary xpechanism. The binary
relations <,; and w,s, studied in this thesis serve to classify the classes of p-infix
codes and n-shuffle codes, respectively. The constructions of solid codes and in-
tercodes indicate that certain natural classes of codes cannot be expressed as the
independent sets with respect to strict binary relations. Hence, it is necessary to
modify the strict-binary mechanism.

By providing an appropriate definition, we generalize the strict-binary inech-
anism to an n-ary mechanism and derive several useful results. It should he noted
that tbs original definitions and results for binary relations can be reformulated and
preserved in the new framework.

The two most important results are the gap theorem and the inclusion the-
orem. The gap theorem provides a powerful tool to determine the impossibility of
characterizing certain classes of languages by n-ary relations. Using the gap theo-
rem, we can give a very easy proof of that there is no n-ary relation such that the
independent sets with respect to this n-ary relation is exactly the class of all codes.
The inclusion theorem provides a tool to exhibit hierarchies of classes of codes by
means of hierarchies of finitary relations.

Besides the investigation of the mechanism to classify classes of codes and n-
codes, we also construct two new classes of codes, the solid codes and the iutercodes.

Both are related to the class of comma-free codes. It must be mentioned that
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comma-free codes have a very good decoding property, that is, their synchronous
decoding delay is equal to 1. This property is very useful in the design of circuits
of coders and decoders. The solid codes form a proper subfamily of the class of
comma-free codes and have some interesting additional properties with respect to
decoding. The decipherability of coded messages is further studied in [Yu2].

The intercodes are a generalization of comma-free codes with the feature
of being synchronously decipherable, limited and circular. The property that a
language is an intercode of index m if and only if it is a 2m + 1l-intercode of index m
provides a strong connection between codes and n-codes. This result also provides
a useful example for the generalization of the binary-relation mechanism.

According to matroid theory, relations and their independent sets are related
to some kind of dependence systems. However, the connection is not as obvious as it
looks at first glance. Moreover, the studies of this thesis indicate that the hierarchy
constructions of n-codes and n-ps-codes are just special cases of a general technique
for constructing hierarchies. These two issues are discussed in [Jiir6).

The studies of this thesis provide a uniform and powerful mechanism to
characterize certain classes of languages and to extract the general properties of
relations and languages, and also contribute considerably to the understanding of
the crucial structural properties of the relationship between classes of codes and

n-codes.
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