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ABSTRACT

The thesis examines the philosophical implications of the
computational theory of early vision developed by Marr. According to
Marr, early visual processes consist of sequences of "modular”
computational mechanisms. These processes rely on functional relations
between rates of change in stimulus magnitudes which result from
certain contingent, global properties - natural constraints — of the
physical world.

Marr argues that explanations of early vision must have three
distinct levels of description: computational, algorithmic and physical. In
Chapter 1 I defend the explanatory significance of this distinction in
levels. In fulfilling its role in describing the dependence of visual
processes on naiural constraints, the computational level forms an
autonomous level of description in the sense that it is unaffected by the
computational steps at the other levels.

In Chapter 2 I discuss the implications of natural constraints
for the issues of individualis-m and methodological solipsism. I conclude
that Marr’s theory is nonindividualistic in the sense that visual content
does not supervene on neural properties. However, this merely reflects

the fact that different computational theories may be selected for the

i




same system. Importantly, Marr’s theory does not violate
methodological solipsism since interpretations within theories must
supervene on neural properties.

In Chapter 3 I argue from the results of Chapters 1 and 2 that
psychological explanation does not reduce to neurophysiology. This
conclusion does not follow from the functionalist argument against
physicalism, which is based on an incorrect account of computational
theories. Rather the conclusion reflects the explanatory incompleteness
of neurophysiological theories given the autonomous role of the
computational level.

In Chapter 4 I look in detail at the arguments for a "language
of thought" as they apply to early vision. I distinguish two versions of
the language of thought hypothesis, one weaker than the other. I
conclude that the stronger version, which claims that a cognitive system
is "program-using", is false of early vision because of the role of natural
constraints. The weaker claim that cognitive processes employ symbolic
transformations i3 true of the computational-level theory of early vision,
but there is insufficient evidence to establish the claim at the algorithmic

level.
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CHAPTER ONE
NATURAL CONSTRAINTS AND THE COMPUTATIONAL LEVEL

0. Introduction.

The general purpose of this chapter is to argue that Marr's
distinctions between computational, algorithmic and physical levels of
description are of fundamental importance in understanding early
visual processes. (See Marr 1982 and the papers cited there.) I believe
that my articulation of the distinctions is faithful to Marr’s
understanding of the issues, but my primaryv objective is not
exegetical. The central conclusion of my argument is that there is a
distinguished computational level of decomposition of early visual
processes that has a unique explanatory role. Explanation at the
computational level consists of a sequence of functions that yield
successive representations of the stimulus. The primitive functions of
the sequence are postulated to explain the dependence of successful
perception on contingent facts about the world. Thus in important
respects the explanatory role of the computational level is the same as
that of Gibson’s theory of ecological optics, discussed in Section 3 of
this chapter and in Appendix 1. In fulfilling this explanatory role, the
computational level forms an "autonomous” level of decomposition in

the sense that the sequence of functions in the computational-level



description of early vision is not determined by the steps in the

algorithmic- and physical-level decompositions of visual processes.

1. The basic levels.

In this section I give a preliminary discussion of the
distinctions between the computational and algorithmic levels of
description, and between the algorithmic and physical levels. The
intention is to gain an introductory understanding of the levels as
Marr presents them.

The levels of description were devised by Marr primarily as
an articulation of computationalism in perception theory: the ass rtion
that the neurological processes that underlie perceptual abilities are in
some sense computing devices. But Marr intends his distinction
between levels as more than simply a tool for modelling the visual
system. The levels of description are viewed as having broad
significance for understanding computing mechanisms generally. In
this section we will see that in its widest application the distinction
between computational and algorithmic levels is relativized to a
context of enquiry. On such a reading. a descripticn of a function
which forms part of a computational-level theory in one context may

in another context form pait cf an algorithmic-level decompositior of
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the same system. Our first task is to establish a preliminary outline of
the distinctions.

Let us consider what it means to say that a physical
mechanism is a computing device. A mechanism M is given a
computational description by specifying an interpretation function I
from a distinguished set of physical states to the union of the domain
and range of a function F, the function "computed” by the system. Let
us call the set C of states of M in the domain of I the set of

computational states of M under 1. A mechanism M is said to

compute F if, in virtue of the natural laws that govern its behaviour,
there is a physical-state transition map P:C->C such that, for c € C,
I(P(c)) = F(I(c)).!

According to Marr, a complete explanation of the operation
of a computing device must be hased on a clear description of the
purpose it is designed (or has evolved) to serve. The role of the
computational level of theory is to relate the computational behaviour
of M to this description of its intended purpose. Since the purpose of

any computing device is the mechanical extraction of information,

'. As Stabler (1987) and Lycan (1981) point out, a difficulty in
explicating the nature of computational theories is that under some
interpretation every system computes every function. For example, it
is possible to construct trivial computational theories where the
appropriate computational relation among physical states is achieved
by building the function to be computed into the interpretation
function. This is a difficult problem whose solution will require some
account of the explanatory roles of computational theories.




such a description will include the information that is required from
the operation and the information that is available to it. A
computational-level description of M has two parts: (1) a description
of the function F computed by M; (2) a demonstration that the
computation of F yields the information required from the information
that is available.

In certain cases the states in C are simple physical
magnitudes or discrete physical states of M.? More commonly, the
states in C are complex states that correspond to sets of symbols, and
the state-transition map P is a computation of a symbolic
transformation function. The algorithmic level of theory describes the
manner in which a function is computed by a particular symbolic
transformation. An algorithmic-level description has two parts: (1) a
description of what Marr calls a "formal scheme” that describes how
the domain and range of F is "encoded” by sets of symbols; (2) an
"algorithm" consisting of a sequence of functions that describes how
the appropriate output is generated by symbolic transformations from

each set of input symbols. Let us see what this means.

2, For example, Fodor and Block (1973) describe such a
mechanism that computes the value of m/n, consisting of a power
source, a variable resistor and an ammeter, all connected in series; if
the voltage is m volts and the resistance is n ohms, then by Ohm's
Law the current is m/n amperes.



We can think of a formal scheme for a function F as

consisting of (1) an "encoding function" E that maps sets of symbols

to the union of the domain and range of F, and (2) a "symbolic
transformation function” T:5~>S, where S denotes the symbol sets in
the domain of E, such that
fors €S,

E(T(s)) = F(E(s)).

I will refer to a set of symbols in the domain of an encoding function

as a symbolic representation of the objects or states of affairs to which
it is mapped.

Marr’s notion of an algorithm corresponds to the standard
account in theory of computation. On this account, an algorithm for a
function F is a sequence <F,, F,, ... , F,> of functions where the value
of each function F, for 1 < i < n, is the argument for F,,, and such
that for any argument x in the domain of F,

F(x) = F(F,.( ... F,(x)).

Typically an algorithm will be a description of a sequence of steps in
a symbolic transformation that "realizes" F. By this I mean that for
each F, in the algorithmic sequence there is a formal scheme for F,
consisting of an encoding function E, and a symbolic transformation
function T, such that the sequence <T,, T,, ... , T,> produces the same

symbolic transformation as the function T.




The physical level of theory describes how a symbolic

transformation function is computed by a mechanism M. A physical-
level description consists of (1) a specification of how the
computational states of M correspond to symbol sets in the domain of
an encoding function E, and (2) a description of how a symbolic
transformation function T is computed by M. We satisfy (1) and (2)
by showing that the interpretation function I maps the computational
states in C to sets of symbols in the domain of E, and that the
physical-state transition function P is such that,

1(P(c)) = T(c)).

Although specification of the formal scheme realized in a
mechanism is a question at the algorithmic level, we can also see that
for reasons of rigour the computational level description must describe
the function as taking one set of symbolic representations to another.
If it is to be adequate, the computational level must demonstrate that
all of the information required is obtainable by mechanical operations
on physical states. The difference between the appeal to formal
schemes at the two levels lies in the explanatory purposes they fulfil.
The computational scheme must be a canonical description of the
computation performed, designed to demonstrate the completeness
and accuracy of the extraction of information. No claim is made that

the description of the formal scheme is realized in the physical



structure of the mechanism. We can think of the computationai-level
description as specifying a "virtual mechanism"” that characterizes a
class of devices that perform the same information-processing
operation. The algorithmic-level description identifies which scheme is
a true description of the implementation of the operation in a
particular physical device.

Marr’s emphasis on the description of a "formal scheme”
suggests that he views the algorithmic level in the manner of
Pylyshyn, as requiring the characterization of a canonical language for
the system.? Desi.ite this appearance there is no deep correspondence
between the two notions of an algorithmic level, since the explanatory
roles of an algorithmic level are completely different in the two
accounts. Although this issue will be discussed at length in Chapter 4,
it is instructive to compare Marr and Pylyshyn in some detail here.

According to Pylyshyn, computational models of cognitive
processes must do more than describe the input-output behaviour of
these processes; they must also describe how the behaviour is realized
in the primitive computational operations of the system. This much is
in accord with the aims of Marr’s algorithmic level. The difference lies
in Pylyshyn’s understanding of primitive computational mechanisms.

Pylyshyn refers to the task of describing the primitive operations of

%. Pylyshyn (1984). See also Fodor (1975 and 1987).




the system as that of modelling its "functional architecture".
Pylyshyn’s concern in developing the idea of functional architecture is
to make precise the claim that computational descriptions capture
behavioural generalizations that cannot be formulated in neurological
theories, since the generalizations involve regularities in the behaviour
of the nervous system that have no finitary description except in

terms of what the states of the system represent. On Pylyshyn’s view,
the only processes that exhibit these regularities are those that have

an internal syntax in the sense that the set of states in their memory
is recursively generable. (The prerr ise for this is that the input-output
behaviour of mechanisms without an internal syntax can be explained
entirely in terms of the physical or neurological processes that
instantiate the state transition map.) The functional architecture of the
system consists of those computational operations that do not
themselves require an internal syntax. According to Pylyshyn,
characterizing a process of the functional architecture is a matter of
describing its formal properties in such a way that a complete
description of the functional architecture of a system coincides with a
canonical description of the "language of thought”.

None of these concerns is involved in Marr’s justification of
an algorithmic level. The idea of a "formal scheme” is not intended to

yield a characterization of a "language of thought”; it is meant only to




reflet the .act that different physical systems may instantiate the
same symbolic encoding of a function. Nor is an algorithm, in Marr’s
sense, tied to a distinguished set ol primitive operations in the
manner suggested by Pylyshyn.

Let me end this section on a general note about the levels of
description. In theory of computation the difference between
computational and algorithmic levels of description is just that
between a function and its algorithmic decomposition. Hence in the
~ccount of an algorithmic level that we find within theory of
computation there is no sense in which, outside of a context of
enquiry, a particular function in a complex operation is part of a
computational-level or an algorithmic-level description of the system.
The particular level to which a function belongs depends on the
process whose explanation we are seeking. Within theory of
computation the question whether a function, computed by a
mechanism M, is part of a computational or algorithmic level
description of M is thus relativized to a context of enquiry.

The same is true of Marr’s general formulation of the levels
of description. What is peculiar to Marr’s notion of a computational
level of the~ry is his emphasis on the purpose of a computation. But
a function in an algorithmic-level decomposition may have its own

computational-level theory in this sense. In developing an algorithm
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we may know what information is required at a particular stage of
the algorithm without knowing how that information may be
extracted from some earlier stage. Specifying an information-
processing goal may thus form part of explaining how an algorithm
computes a complex function.

Neither is the claim that a computation is a realization of a
formal scheme inconsistent with the assertion that the distinction
between computational and algorithmic levels is context-relative. A
description of a set of symbolic transformations that best captures
generalizations at one level of decomposition is not thereby the best
description at other levels of decomposition. This is revealed, for
example, in the distinction between programming languages and
machine languages. So while a set ¢f symbolic transformations may
constitute an algorithmic decomposition of an information-processing
function at a given level of organization in the system, the primitive
operations in that set may have a decomposition into another
algorithmic sequence.

Hence on Marr’s broad account of the levels, the distinction
between computational- and algorithmic-level descriptions of a
complex system is context-relative. I have raised this point because the
same is not true of Marr’s application of the two levels in his

empirical theories of early vision. In Marr’s empirical theories there is
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a_distinguished sequence of functions that is said to comprise a

computational-level description of the visual system. Hence the use
Marr makes of the computational and algorithmic levels in theories of

vision is not based solely on the general formulation of the
distinction. Let us begin with an outline of the sequence of functions
which, according to Marr’s theory of vision, constitutes a

computational-level description of the visual system.

2. Early vision: a sketch of the explanatory framework.

The basis of Marr’s explanations of visual abilities is the fact
that a great deal of information about the spatial layout of the distal
scene can be obtained by computational processes that are, in his
words, "modular”; i.e., they are relatively "independent” in that each
has access to a limited and specific range of information. According
to the theories of Marr, initial perception of the distal scene is
computed by a collection of such modular processes, where the
computational behaviour of each is independent of the output of the

others, and is not influenced by the output of "higher" cognitive

. It would be better to use "autonomous” here rather than
"independent”, which is Marr’s term. I have followed Marr’s use
because I have already reserved "autonomous” to describe the
computational level.
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processes.’ According to Marr, the modular processes of early vision
compute a sequence of functions that yield as output successive
representations of the stimulus culminating in a representation of the
three-dimensional shape and layout of objects in the field of view. A
description of this sequence of functions, and of the representations

generated by each function in the sequence, comprises what Marr

refers to as the computational level of the theory of early visual
Pr .

Representations generated by the initial functions in the
sequence make explicit the shapes and patterns in the spatial
arrangement of light intensity levels in the retinal image that carry
information about the physical world. The first representation of the
image, referred to as the grey level image, represents only local-
receptor intensity levels at each point on the retina. The second

representation of the image, which Marr calls the raw primal sketch,

specifies the locations of changes in light intensity level in the grey
level image. The components (or "tokens") of the raw primal sketch
represent specific items - oriented edge segments, bars (parallel
edges) and their terminations ~ in the variation of light intensity
across the grey level image. The third representation of the image, the

full primal sketch, specifies the spatial organization of the image

5, Fodor (1983) extends this idea to an entire class of what he
calls "input systems”, which inchides language comprehension.
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implicit in the raw primal sketch. The purpose of the full primal
sketch is to locate boundaries between regions of the image that
reflect discontinuities in physical surfaces.

According to Marr, the next stage of processing generates a
viewer-centred representation of the distance and orientation of visible
surfaces, which Marr calls the 2 1/2-D sketch. The idea here is that
the results of a number of independent computations operating on the
primal sketch combine to produce a single representation of distal
surfaces. In different ways most of these computations exploit the
changes in spatial relations between tokens of the primal sketch that
result from changes in viewer position.

In the last stage of processing, the 2 1/2-D sketch is used to
generate a complete object-centred representation of objects and
surfaces in the physical world. The basis of the theory here is a
theorem according to which a particular representation of three-
dimensional shapes called a generalized cone can, given certain
assumptions about physical surfaces, be derived from surface
discontinuities represented in the 2 1/2-D sketch.

In Marr’s presentation of these theories, the computational
level of description is restricted to the functions and representations

that comprise this sequence. In these theories, the purpose of the

computational level is to demonstrate that the computation of a
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particular function in the sequence -~ for example, calculation of the
three-dimensional shape of an object from a series of two-dimensional
retinal projections in the generation of the 2 1/2-D sketch - yields a
true representation of the stimulus from available information; this is
coupled with experimental evidence that this solution is in fact used
in human vision. The algorithmic level of description in these theories
is a set of formal schemes and algorithms that describe how each
function in the computational-level sequence is realized by a set of
symbolic transformations. Each distinct symbolic realization of the
computational-level sequence of functions will perform differently for
different arguments and under different circumstances. The purpose of
the algorithmic level is to demonstrate that a particular formal scheme
and algorithmic realization of the symbolic transformation function
matches the performance of the visual system. The notion of
"performance” at the algorithmic level includes such things as
chronometric studies and measures of the accuracy of output under
degradation of data. At the physical level of vision theory it is shown
how a symbolic transformation is implemented in neural processes.
Hence, in his empirical theories the distinction between
computational and algorithmic levels is "absolute”; i.e., whether a
function in the theories is part of a computational-level description or

part of an algorithmic-level description is not relative to a context of
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enquiry. In the theory of vision there is a distinguished set of
functions that comprises a computational level of description of visual
processes, and another distinguished set of functions that constitutes
an algorithmic level of description of those same processes.

There are two grounds for identifying a particular level of
decomposition as comprising a distinguished computational level of
theory:

(1) As an explanation of the dependence of successful perception on
certain global properties, or "natural constraints”, of the physical
environment, the computational level of description has explanatory
significance not shared by decompositions at other levels of analysis.
(2) The explanatory role of the computational level dictates that the
character of the computational level is determined by the relations in
the stimulus formed by the natural constraints, and not by the steps
in the behaviour of the system. Thus the computational level forms an
autonomous level of theory.

In Section 3 I look in detail at these two points.

3. Decomposition at the computational level.
I claimed at the outset that Gibson’s theory of perception is
an important antecedent to Marr’s approach to vision. To establish the

autonomy of the computational level, we can begin by looking at
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Gibson's influence on Marr’s theory. The basis of Gibson’s account is
that spatial information about the world is obtained from what he
refers to as "higher-order variables". The point of introducing the
notion of higher-order variables is an assertion that relations in the
stimulus upon which perceptual processes are based are not relations
between first-order physical magnitudes such as distance or light
intensity, but rates of change in those magnitudes. The simplest
example of this idea is the relation between the slope of a distal
surface and what Gibson calls "texture gradients" in the image.

As is familiar from perspective line drawing, constant
increments in distance on a surface in front of the viewer are
correlated with constant decrease in distance between the
corresponding points in the image. And if the slope of the surface
with respect to the viewer is altered, this is reflected in a change in
the variation between distances in the image. Hence if there are
features of the ground surface occurring at constant spatial distances
from one another then the slope of the surface with respect to the
viewer is a function of the rate of variation in distances between these
features in the image. But many surfaces have a regular texture with
elements occurring at constant distances so that the slope of surfaces
facing the viewer can be obtained as a direct function of the rate of

change in distances between texture elements in the image, which
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Gibson calls texture gradient. The slope of surfaces in the distal scene
is thus a function of a single higher-order variable in the image. By
contrast, if we attempt to determine distances between single points in
space from the distances between their counterparts in a static image,
we face the problem that distances between features in the image are
functions of both the distances between their correlates in the world
and their distances from the viewer. Hence one of these must be
known before the other can be determined.

While determination of surface slope from texture gradient
depends on variation in relative distanc2 across the image, Gibson
argues that information can be obtained in a similar manner from
variation in relative distance in the image over time due to changes in
the position of the viewer. For example, he suggests that the three-
dimensional shape of an object might be recovered from the variation
in the shape of its two-dimensional projection in the image as the
object moves with respect to the viewer, an idea fully developed in
Uliman’s shape-from-motion theorem. Deriving three-dimensional
configurations from variation in their two-dimensional projections over
time avoids the underdetermination of three-dimensional geometry by

momentary two-dimensional stimulation.
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According to Marr, Gibson’s recognition of the importance

of relations between higher-order physical magnitudes in the normal

environment is his fundamental contribution to perception theory.
Gibson’s important contribution was to take the debate away from
the philosophical considerations of sense-data and the affective
qualities of sensation and to note instead that the important thing
about the senses is that they are channels for perception of the real
world outside or, in the case of vision, of the visible surfaces.
(1982: p.29)

But what precisely is the significance of Gibson’s work? It cannot be

the recognition of higher-order variables per se. Ohm and Helmholtz

developed the role of Fourier analysis in explanation of tonal

perception, an idea that incorporates whatever can be meant by

variables of higher-order. Rather Gibson’s contribution lies in his

insight that relations between rates of change in certain detectable

magnitudes in the stimulus are constrained by the structure of the

physical environment.® Higher-order variables in the stimulus can be

exploited in the manner Gibson describes only if there are constant, or
regular, spatial relations over time or distance between identifiable
features of the surrounding surfaces. For example, the determination
of surface slope from a texture gradient depends on the fact that
natural surfaces have an identifiable texture with elements at constant

distances. And as Ullman’s shape-from-motion theorem makes explicit,

£ In A;:Fendix 1 I discuss Gibson’s theory of direct perception
in more detail.
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the recovery of shape from variation in retinal projections depends on
the rigidity of physical objects. Hence the extraction of information in
the manner suggested by Gibson depends on the physical structure of
the environment. Thus the importance of "higher-order variables” for
perception theory is that perceptual response is seen to exploit the
existence of specific global properties of the normal environment. As a
result, perception theory is extended from physiological optics to the
study of properties of objects and surfaces in the world. Marr refers
to these global properties of the physical world upon which early
perceptual processes are based, as natural constraints.

By exploiting these constraints on relations between stimulus
magnitudes, significant information about the distal scene can be
obtained by highly modular processes. Natural constraints are global
properties of the normal environment; so computations that deploy
them can operate reliably with limited access to information about the
current stimulus. For example, a process that derives surface slope
from texture gradient need have access only to the valae of a single
variable in the stimulus. Similarly, the computational behaviour of a
process that computes Ullman’s shape-from-motion function is
completely determined by the variation in the spatial relations
between four points in the image. According to Marr’s theory, early

vision consists of a collection of such modular processes, each of
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which computes a single functional relation between magnitudes in

the stimulus that is a consequence of natural constraints in the
physical structure of the environment.

Let us consider the form of a computational-level description
of such a process. The description must do three things: (1) It must
provide a canonical description of the computation performed by the
process; (2) it must describe the conditions under which such a
function yields a true representation of a feature of the stimulus from
that of another feature; (3) it must describe the global properties of
the physical composition of the environment that makes these
conditions likely to hold. The last two tasks confer a unique role on
the description: The computational-level description of the process
must relate the behaviour of the system to the structure of the
physical world. To see this it is best to look at how such a
description constitutes an autonomous level of theory.

A description of a modular process of the sort under
discussion that accomplishes the three tasks just listed is a
computational-level description of a particular class of computing
mechanisms. It specifies a canonical encoding function for representing
the values of physical magnitudes in the stimulus, and it
demonstrates that under that encoding a canonical symbolic

transformation map generates a true representation of one set of
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stimulus magnitudes from a true representation of another set in an
environment that exhibits specific regularities.

Consider one such mechanism M,, in isolation from other
computational mechanisms of the system. Suppose that M, computes a
function F, from the values of one set A, of stimulus magnitudes to
the values of another such set A,. An assertion that such a mechanism
is part of the visual system entails the claim that the values of A, are
"available" to the system; i.e., the system has somehow determined the
values of A, as input to M,. This in turn entails that therc is some
process of the system that produces a true representation of A,. One
possible explanation of this claim is that the values of A, are what I
will call directly available to the system —~ by this I mean that the
explanation of how the system produces a true representation of A,
involves only descriptions of the properties of A, itself, together with
descriptions of the neurological processes of the system. When a
system represents a magnitude of the stimulus in this way, I will say
that the system directly detects that magnitude.

But in most of the cases described in Marr’s theories the
explanation of how A, is made available to M, is that the values of A,
are obtained by computing another function F, where F, describes a

relation between A, and the values of a third set A, of stimulus

magnitudes which holds in virtue of a distinct set of natural
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constraints.” In this case we explain how a true representation of A, is
obtained by giving a computational-level description of a second
mechanism M, that computes F,.

By coupling the two mechanisms so that the output of M, is
the input to M,, we have a description of a "composite mechanism"
M,,,. that computes values of M, from values of M,. By describing
M., as a composite of the two simpler mechanisms it is
characterized as performing two distinct operations. But in this

description, we have been providing only a computational-level theory

of the composite mechanism; what we have is a description of a
virtual machine which demonstrates only that the requisite
information is available by mechanical operations. To explain the
mechanical operations by which the information is in fact extracted
we have to supply algorithmic-level and physical-level descriptions of
the composite mechanism M_,,,.

Now consider two possible algorithmic-level descriptions of

M..s:

(1) On one such description the algorithm includes the sequence <F,,
F,>. This means that there is an encoding function that encodes the
possible possible values of A, A, and A,; and there are two symbolic

transformation functions T, and T, such that under the encodings T,

7. Eventually of course this regress must terminate at some set
of stimulus magnitudes that is directly available.



takes representations of A, to representations of A,, and T, takes
representations of A, to representations of A,. So this mechanism
performs two distinct steps in the computation of the values of A,.

(2) On a second algorithmic-level description the encoding function is
a subfunction of the first that assigns symbolic representations only to
values of A, and A,. There is then a single symbolic transformation
function T, extensionally equivalent to the sequence <T,, T,>. In this
case there is a single computational step in the generation of the final
output. But this second description is an algorithmic level description
of the same computational-level mechanism M, because it yields the
same representation of A, for a given representation of A, so that it
is truth-preserving just in case the first one is.

If we suppose that one of the two algorithmic-level
descriptions is true, what decides which one it is? Clearly this is a
matter of which description is realized in the physical-level description
of the mechanism. According to the first algorithmic-level description
there is an interpretation function I that maps physical states of the
mechanism to the symbolic representations of A, A, and A,. And
there are on this description two physical-state transition functions P,
and P, such that under I the mechanism computes T, and T,.
According to the second algorithmic-level description the

interpretation function I’ is a subfunction of 1 that maps physical
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states of the mechanism to the symbolic representations of A, and A,.

And on this description there is a single physical-state transition
function such that under I' the mechanism computes T,,.
The point I want to stress is that the two algorithmic-level

descriptions have the same computational-level description. In

particular, the computational-level description must decompose the
process into a description of two virtual mechanisms even if the
algorithmic-level decomposition consists only of a single symbolic
operation T,,,. This is because the computational-level description
must relate the truth-value of the output to the natural conrstraints on
which it rests. The role of the natural constraints in the explanation of
the operation is to constrain relations between A,, A, and A, so that
they conform to the functions F, and F,. Hence describing the relation
between the natural constraints and the veridicality of the operation is
possible only by describing the relation between the initial and final
representations as a computation of the two functions F, and F,.*

The same reasoning applies to any set of algorithmic-level
descriptions of mechanisms whose initial and final states exhibit the

same semantic relations under the same natural constraints. Hence the

character of the computational-level description is dictated by the

relations between physical magnitudes upon which the veridicality of

® This point is illustrated in Appendix 2 by a discussion of Marr
and Poggio’s (1979) theory of stereoscopic vision.
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the computation rests, and not by the steps involved in the
mechanical production of the final output.

So the computational-level decomposition of visual processes
that relates the veridicality of the operations to the natural constraints
upon which that veridicality rests is autonomous with respect to the
descriptions which characterize the mechanical realization of the input-
output pairs. For this reason Marr is justified in identifying a
distinguished computational-level description of the visual system. The
sequence of functions and representations that we reviewed in Secuon
2 comprise precisely such a decomposition of visual processes. As it
happens, the algorithmic-level descriptions provided by Marr are such
that each function in the computational-level sequence is computed in
the algorithmic-level decomposition of the system. But as we have
seen, this issue is decided by facts other than those that determine the

character of the computational-level description.

4. Summary.

Let us briefly review the results of this chapter. We saw the
role of Marr's computational level of description is to relate the
computational behaviour of a mechanism to its intended purpose. This
requires a canonical description of the function computed by the

mechanism, together with a demonstration that computation of that
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function yields information required from information that is available.

The algorithmic level of description then specifies the symbolic
transformation functions by which this computation is carried out by
the system, while the physical level describes how these
transformations are computed by physical-state transitions of the
system.

It was noted that in its general application, the distinction
between computational and algorithmic levels of description is
relativized to a context of enquiry. But in its application to
explanations of early vision, there is a distinguished computational-
level description that explains how true representations of stimulus
magnitudes are obtained through exploitation of natural constraints in
the normal environment. In the Section 3 we saw that an absolute
distinction between computational and algorithmic levels in early
vision is warranted by the fact that the character of the
computational-level decomposition is autonomous with respect the
steps in the algorithmic level of description. In the chapters that
follow I apply these facts about the character of the computational
level to philosophical assertions about the nature of computational

theories.




CHAPTER TWO
SUPERVENIENCE AND COMPUTATIONAL EXPLANATION

0. Introduction

In Chapter 1 we saw that a central aspect of the
computational theory of vision developed by Marr is the use made of
contingent regularities, or "natural constraints”, in the physical
environment to explain how the visual system determines the shape
and location of objects in the world on the basis of the spatial
organization of the retinal image. In this chapter I am concerned with
a recent discussion of Burge (1986) concerning the implications of this
feature of Marr’s theory for understanding psychological explanation.

Burge claims that Marr’s use of natural constraints shows
the theory to be "nonindividualistic”. By this he means that the
individuation of psychological states within the theory depends
essentially on the objects and conditions of the world external to the
subject. In various papers Burge has given a number of versions of
individualism. Here I am concerned only with one version, namely,
the rule that the "representational content" of cognitive states
"supervenes” on neural states. To motivate this issue, let me first

introduce some terms.

27
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Let us call the representational states of a cognitive system
the set of neural states partitioned by their "representational content".
It is very hard to say what representational content is in general; but
in the restricted context of early vision we can say that the
representational content of a state is the information it is held to carry

under a computational description. Then the rule that representational

states supervene on neural states is the requirement that there are no
differences among representational states for which there is not a

corresponding difference among neural states. So supervenience is a

constraint on interpretation functions to the effect that the same neural
state cannot be mapped to more than one representational state.
Against this view of psychological theories, Burge argues that the role
of natural constraints within Marr’s theoretical framework has the
consequence that the individuation of representational states changes
as we (counterfactually) vary the description of the surrounding
environment, while the subject’s physical history remains fixed.

In this chapter I argue Burge is correct in his claim that
Marr’s theory is nonindividualistic. That is, in some contexts Marr's
explanatory framework justifies assignment of different interpretations
to systems that have identical physical descriptions but operate in
different environments. However, to avoid trivializing computational

explanations it is important to recognize that there are restrictions on
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the ways in which supervenience can be relaxed, and in this respect
Burge’s account is misleadingly incomplete. Here it is useful to
compare the issue of individualism with the question whether Marr’s
theory is compatible with methodological solipsism as a research
strategy. In Putnam’s original formulation, methodological solipsism is
the rule that "no psychological state, properly so-called, [should
presuppose] the existence of any individual other than the subject to
whom that state is ascribed” (Putnam 1975, p.220). In some
discussions methodological solipsism is similar in content to
individualism. But in Fodor's 1980 paper it assumes a very different

form. Fodor maintains that methodological solipsism, realized as the

assumption that semantic properties of psychological states are

irrelevant in_explanations of behaviour, defines the approach to theory
construction of computational psychology. I show that Marr's theory

is committed to methodological solipsism under Fodor's formulation,
and that this fact provides important constraints on relaxation of
supervenience. But Fodor's description of the role of methodological
solipsism in theory construction suffers from a confusion of issues
which has generated unnecessary resistance to his thesis. This
confusion is revealed in Kitcher’'s (1988) contention, argued on
grounds similar to those advanced by Burge vis a vis individualism,

that Marr’s theory violates methodological solipsism. In the concluding
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section I argue that Kitcher’s point is well-motivated but incorrect as

it is stated.

1. The "Argument from Success".

Let us first consider the claim that Marr’s theory is
nonindividualistic. Burge’s argument for this claim rests on two
assertions about Marr’s theories:

(A) The theories are designed to explain our success at
certain visual tasks, so that representational states are specified in a
way that will account for the veridicality of perception. In particular,
this means that the content of the visual representations specified by
the theory must be true in the normal case. Thus the content (and
hence the individuation) of representational states is determined by
their normal causal antecedents.

(B) The explanations the theory provides assume that the
visual system has evolved so as to exploit natural constraints in the
normal environment; our abilities are thus taken to require that global
regularities in the physical world ensure that early computational
processes are truth-preserving. In this way, the causal links between
states of the world and representational states of the system depend

on contingent facts about the normal environment.
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Burge argues from these two premises to the

nonindividualism of the theory by constructir-g a thought experiment
similar to Putnam’s Twin-Earth story. We can imagine two individuals
who have identical physical histories but who live successfully in
environments that differ in the regularities that underlie each
individual’s visual abilities. The point of the story is thut unless the
representational states of the subjects are individuated differently in
the two cases, one of them would have representations that are
regularly false contrary to (A) above. Hence we must assign different
representations to their perceptual states despite their physical
similarity. Burge concludes that the dependence of Marr’s theory on
the specification of natural constraints that underlie the relations
between visual representa*ions and the world requires the ascription
of type-distinct representational states to the two subjects, despite their
physical type-identity:

The methods of individuation and explanation are governed by the

assumption that the subject has adapted to his or her environment

sufficiently to obtain veridical information from it under certain

normal conditions. If the properties and relations that normally

caused visual impressions were regularly different from what they

are, the individual would obtain different information and have

visual experiences with different intentional content. (Burge 1986,
p-35)

Hence, it is argued, on Marr’s approach to vision representational
states of a subject do not supervene on neural states. Let’s look first

at what is right about Burge’s argument.
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We have seen in the preceding chapters that both of (A) and

(B) are true. Take (B) first. On Marr’s view, the explanation we give
of visual perception depends crucially on the nature of the
environment. This is an important consequence of Marr’s argument
for a computational level of description. The problem at the
computational level is to understand how veridical representations of
the world can be obtained from light intensity values in the image. As
we have seen, Marr’s solution to this problem is to find features of
the stimulus, light intensity gradients or patterns in the geometrical
structure at different scales for example, that carry reliable information
about the world, and that can be used in determining the final
representation. A crucial factor in Marr’s approach to the problem is
that only a study of the contingent regularities in the actual
environment will reveal which image properties are reliable carriers of
useful information.

(A) is equally important for understanding the theory. The
computational level of theory is formulated to explain the veridicality
of perception. At that level of the theory the representations
postulated are those required to show how the success of visual

processes is achieved. Specifically, the truth-values of intermediary

representations in the computational-level sequence have an important
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role in explaining the veridicality of the final representation - if they

are illusory in the normal environment, so is the final representation.

However, Burge’s discussion suggests a different, and
mistaken, reading of (A). It is a matter of common observation that
perceptions are generally veridical in the normal environment. We can
interpret (A) as simply the assertion that the role of perception theory
is to specify causal connections between representations and properties
of the world that account for this observation. On this view we do
not require that the veridicality of any one representation depends on
the veridicality of others. Rather the veridicality of each is seen to be
a consequence of a distinct correlation between it and some feature of
the stimulus in such a way that the explanations of these correlations
are independent of each other. This reading is similar to Gibson's
account. According to Gibson, theory construction is a matter of
discovering, for each property P of the distal scene that we are able
to successfully perceive, a set of variables in the ambient light that is
reliably correlated with P.

But Gibson’s view stems from his mistaken emphasis on
higher-order variables. By pointing to such variables Gibson argues
against the belief that perception involves information-processing, i.e.,
against the belief that vision is a product of operations on

representations. However, as we have seen, the significance of




environmental constraints on higher-order variables is not that it
eliminates visual processing; rather it shows how such processing can
be accomplished by modular units. A crucial feature of Marr's
theories is the fact that the computational-level functions and
representations form ordered sets such that the information carried by
one representation provides input to later operations. The existence of
natural constraints allows for the operations in the sequence to have
access to very limited and specific information, and yet collectively to
generate a complete representation of the distal scene. So the
significance of (A) lies in the fact that the truth-value of each
representation in the computational-level sequence contributes to the
explanation of the truth-value of the final representation.

So Burge is right in pointing out that we cannot construct a
theory of vision like Marr’s if we restrict our attention to the
physiological states of the subject. Understanding perception requires a
knowledge of how the patterns of retinal stimulation are causally
linked to appropriate features of the world. According to Marr’s
theory, states of the system carry information about conditions in the
worid because, as long as the natural constraints ensure the causal
links, they are regularly correlated with such objective conditions.
Thus the content of representations postulated to explain perception

depends on the structure of the physical environment, and this is
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justified by the presumption that we have evolved so as to exploit
natural constraints in our surroundings that connect the structure of
light intensities with shapes and surfaces in the world.

The question, then, is whether the denial of supervenience is
a consequence of (A) and (B) in the manner suggested by the
thought-experiment. Against this conclusion, Fodor (1987, Chapter 2)
maintains that the possibility of mental causation depends on
supervenience —if Burge is right we will be unable to explain how
cognitive processes are realized in neural structure. Let us look first at

Fodor’s argument.

2. Assessment of the Argument from Success.

The issue of individualism is often discussed as the general
question whether certain relational properties of mental states are
relevant to psychological taxonomies: Is the type-identity of the
psychological states of a subject affected by relations between the
subject and the external world? But according to Fodor, the real point
in the defence of individualism is not the relevance of relational
properties; rather it is the contention that psychological taxonomies
should not include distinctions that are not causally relevant. A
taxonomy is individualistic as Fodor uses the term if it "distinguishes

between things insofar as they have different causal properties, and ...



groups things together insofar as they have the same causal
properties.” (1987, p.34) A causal property of an object is a property
in virtue of which the object is subsumed under a causal
generalization. He contends — correctly, it would seem — that the
requirement that theories are individualistic in this sense is
constitutive of scientific taxonomies generally.

Fodor argues that changes in the environmental
surroundings of a subject that do not affect the subject’s neural states
can have no relevance to the causal generalizations into which those
states can enter. In particular, distinctions among representational
states that do not correspond to differences among neural states can
in no way affect the behaviour of the system.' Thus such taxonomies
remove the basis for descriptions of mental causation of behaviour. So
any taxonomy that does not preserve the supervenience of
representational states draws distinctions that reflect no differences in
the causal properties of representational states. Since this violates the
just noted requirement on scientific theories, supervenience is a first
principle of psychological explanation.

Fodor is certainly right that psychological explanations of
behaviour cannot appeal to differences in the representational states of

a subject that do not have a corresponding difference in neural states.

. Unless you individuate behaviour the same way, which leads

to absurd results.
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But that constraint is not inconsistent with nonsupervenience in the
thought-experiments. The generalizations that underlie computational
explanations are not causal generalizations — at least not in the sense
that the taxonomies induced by computational descriptions are based
on sameness of causal properties. Rather the generalizations captured
by computational descriptions are those that assert an equivalence of
different physical systems under a single computational description.
According to Fodor, to deny supervenience is to construct a taxonomy
that is not based on causal properties. But this is incorrect. The issue
is whether there are legitimate explanatory reasons for assigning
different computational descriptions to the same physical mechanism.
Certainly, a physical system may fall under more than one
computational description - frivially so, since under some description
every system computes every function. The thought-experiments are
intended to show that there are good explanatory grounds for altering
the computational description of a system under different
environmental conditions.

Burge’s argument from the thought experiments is sound.
We can reformulate the argument according to the characterization of
computational theories laid out in chapter 1. Let us suppose that as a

consequence of some set of natural constraints in the normal

environment, the value of a physical magnitude M, in the stimulus is
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a function F of another stimulus magnitude M,. Let us also suppose

that according to a theory I', the visual system determines the value
of M, by computing this relation between M, and M,. If it is a
complete theory, I' describes a physical-state transition function P over
computational states of the system; and it provides an interpretation
function I, where I maps states in the domain of P to M, and states
in the range of P to M,” Burge’s thought experiment describes a
situation in which there is a distinct theory I for the system that
describes the same physical-state transition function P, but where the
interpretation function I’ maps states in the range of P to values of a
magnitude M’, distinct from M,. Then Burge’s argument is that I will
be the preferred theory of the system if the following two conditions
are met: (1) the system is in an environment where, given some new
set of natural constraints, M’, is a function F' of M,; (2) the system
computes F under P and I'.

In fact, since the computation of M’, will most likely be a stage in a
sequence of computations that ge - >rates a composite representation,
we must suppose that a similar relation holds between M’; and other

magnitudes in the stimulus, and that there are interpretation functions

2 In most cases the values of M, and M, will be represented by

symbolic expressions under an encoding function, and F will be
computed by carrying out a symbolic transformation function. But
these complications do not alter the point, so they can be ignored
here.
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that describe the state transitions of the system as computing these
relations. But these conditions do not appear impossible, and Burge’s
conclusion is consistent with Marr’s explanatory framework.

So individualism is false with respect Marr’s theories.
However, I believe that the significance of this lies in the emphasis it
places on Burge’s two premises (A) and (B), which are important.
There is a danger in identifying nonindividualism as the most
significant consequence of (A) and (B) in the way Burge does.
Nonindividualism tells us that in certain contexts it is legitimate to
assign distinct interpretations to the same neural processes. Burge’s
a~count of Marr’s theory says that such assignments are warranted in
explanations of early vision in order to preserve the overall
veridicality of the subject's representations. But clearly there must be
constraints placed on the assignment of interpretations in
computational theories to ensure the explanatory power of the theory.
It is precisely the specification of these constraints that must be
spelled out to determine the nature of computational explanation. For
example, the trivialization problem that attaches to Gibson’s theory is
that, although he successfully identifies causal links between stimulus
features that ensure the veridicality of perception, he does not specify
the computations by which these causal links are exploited in the

mechanical generation of representations. Fodor's concerns about the



mechanical production of behaviour by representational states still

needs a solution. In the next section I will claim that methodological
solipsism is an important constraint to ensure the explanatory power
of computational explanation, and in particular that it sets important

limits on the relaxation of supervenience.

3. Supervenience and methodological solipsism.

In the introduction I claimed that in Fodor’s (1980)
discussion methodological solipsism is different in content from
Putnam’s original formulation. In his statement of the principle Fodor
presents methodological solipsism as a claim similar to Putnam’s
version, and thus to some extent similar also to Burge’s individualism.
But Fodor’s application of methodological solipsism concerns different
issues than those that which motivates both Burge’s and Putnam’s
discussions.

In his statement of methodological solipsism Fodor says that
the principle is represented in computational psychology by what he
calls the "formality condition". The formality condition says that "two
thoughts can be distinct in content only if they can be identified with

relations to formally distinct representations”. (1980: p.227) By

"formal properties” Fodor intends any nonsemantic properties of

psychological states, where semantic properties include truth, reference
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and representational content. In theory of early vision, where the
difficult problems in specifying the representational content of
propositional attitudes do not arise, we can take the representational
content of a computational state to be a function from physical
environments and computational states to truth-values. So the
formality condition says that the type-identity of representational
states is not affected by changes in the environment of a system that
do not affect the physical or symbolic character of computational
states® This much appears as a version of Burge’s individualism.

Fodor’s version of methodological solipsism breaks with
individualism in its application as a constraint on computational
explanations of behaviour. Here is Fodor's statement of how
methodological solipsism functions in computational psychology.

I'm saying, in effect, that the formality condition, viewed in this
context, is tantamount to a sort of methodological solipsism. If
mental processes are formal, then they have access only to the
formal properties of such representations of the environment as the
senses provide. Hence, they have no access to the semantic
properties of such representations, including the property of being
true, of having referents, or, indeed, the property of being

representations of the environment. (1980: p.231. Italics in the
original)

3. For Fodor appeal to symbolic transformations is constitutive of
computational explanations. So on his view, formal properties are
properties of symbol sets. I think, however, that this is not true of
very early visual computations such as edge detection. So I will
include both physical and symbolic states here.
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Notice that in this statement methodological solipsism is an assertion

about the kinds of properties to which mental processes have access.

Fodor’s methodological solipsism i concerned with placing constraints
on what can enter into descriptions of domains over which mental
processes are defined. The point of methodological solipsism, as Fodor
formulates it, is that any distinctions between mental states that affect
the behaviour of the system must correspond to distinctions between
physical properties of the system.

By contrast, individualism is not a restriction on the
properties of mental states that influence behaviour. Rather, it is a
constraint on psychological explanation generally, viz., psychological
explanations must not appeal to distinctions among representational

states to which the processes of the system have no access. There is

no conflict between methodological solipsism and a denial of
individualism, for they are concerned w~ith different things.
Methodological solipsism says that the processes of the system have
no access to semantic properties of mental states, so that these
properties cannot affect the behaviour of the system. By denying
individualism we allow only that semantic properties of computational
states can be appealed to in psychological explanations for some
purpose, where it is left open how this appeal can appear within the

theory. So an appeal to semantic properties that violates individualism
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is not inconsistent with methodological solipsism as long as it does
not appear in the description of the domains over which mental
processes are defined.

The appearance of conflict between the two doctrines arises
from Fodor’s remarks later in his paper which describe
methodological solipsism as restricting the domain of what is relevant
to psychological explanations. Thus, for example, Fodor remarks that
"there can’t be a psychology of knowledge." (1980: p.228) There is,
then, a question why he broadens the scope of methodologicai
solipsism in this way. I think that the inference to the conclusion that
methodological solipsism is a restriction on psychological explanation
generally has the following form:

The business of psychology is to provide explanations of the
mental causes of behaviour. According to methodological solipsism,
the mental processes that generate behaviour have no access to
semantic properties of representations. Therefore semantic
properties are irrelevant to psychology.

But we have seen that semantic properties are relevant to
psychological explanation, and this is the thrust of Burge’s argument.
Indeed, given the role of the computational level of description
isolated in Chapter 1, formulating a "psychology of knowledge” is the
first part of theory construction. On the presumption that we have

evolved to exploit the effects of natural constraints, the character of

cognitive processes is determined in part by semantic properties of
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representational states. However, this fact doesn’t entail the conclusion
that methodological solipsism is false. Rather it entails that
methodological solipsism is a constraint on how semantic properties
can enter into psychological explanations. In this form methodological
solipsism is both true and important.

So we need to specify how semantic properties can enter
into computational explanations of perceptual abilities. I think that the
answer now is quite clear. Semantic properties can appear in
explanations of perception as part of the justification of the choice of
a computational theory as characterizing a particular mechanism in a

particular environment. This statement explains the basis of
nonindividualism. Burge’s thought-experiment is intended to provide
an example of a case in which computational theories of two systems
in different environments may differ only in the interpretation

function that takes computational states of the system to properties of

the environment. But_by methodological solipsism semantic properties
cannot appear within a computational theory as part of the

individuation of representational states over which the computations
are defined.

Fodor reaches much the same conclusion following his

discussion of Burge. He points out that, in justifying the choice of a




45
particular theory, the "psychologist’s taxonomic apparatus is, often

enough, nonsolipsistic”. He concludes,

These sorts of explanations square with individualism, because the

relational facts they advert to affect the causal powers of mental

states; indeed, they affect their very existence. But naturally,

explanations of this sort — for that matter, all teleological

explanations — are ipso facto nonsolipsistic. (Fodor 1987, p.44)

But there are two problems with making the point this way.

(1) Fodor's account rests on his appeal to causal properties, and this
is not an appropriate way to frame the explanatory form of
computational theories. (2) If we take this approach, theories like
Marr’s will yield two taxonomies of representational states depending
on our explanatory goals. If we take causal properties of these states
to be specified by their role in the production of behaviour, then since
the behaviour of the visual system is unaffected by the semantic
values of its representations, semantic properties will not be included.
Thus representations will not be individuated by semantic properties
if the taxonomy is designed solely to account for the behaviour of the
system. But 2s Burge has shown, if our purpose is to explain why
this behaviour js successful we will have to specify the content of
representations in order to account for their veridicality. Thus we will
pull the ‘heory in two ways, depending on whether or not we count

the reliability of perception to be part of what it is designed to

explain.
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But it is quite unnecessary to state things in this way. While
we want to allow for the theoretical utility of semantic properties, we
do not want to go so far as to give truth values a role in explanations
of behaviour. But this is not a problem at all: The requirement that
truth values not enter explanations of behaviour is unaffected by what
for Burge is a nonindividualistic taxonomy of states. We can allow
that representational states do not supervene on physical states, in the
sense that computational theories of the same physical system may
differ only in their assignment of representational content to
computational states. We do not thereby sacrifice the explanatory
power of computational explanations as long as we require that
within a theory there are no differences in representational content —
and accordingly no differences in truth values -- that do not
correspond to a difference between physical states of the system.
Fodor is quite right in conceding that "teleological” arguments that
justify the selection of one computational description over another are
nonsolipsistic. But the claim that teleological considerations affect how
we describe the system, including the individuation of mental states,
does not preclude the possibility that computational descrip .ons of
behaviour are entirely solipsistic.

In a discussion of Marr’s theory, Kitcher gives the following

argument against the conclusions of this section.
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Most directly, if Marr is right, then a theory of vision must
incorporate information about the environment, both in describing
the representations produced by the system and in describing the
constraints that it uses to disambiguate information in the grey-
level array. Thus, Marr’s project violates Fodor’s canon of
Methodological Solipsism, because it does not confine itself to
syntactic or formal features of internal representations; rather it
makes essential reference to factors beyond the subject’s skin in
characterizing psychological states. (Kitcher 1988, pp. 13-4)
Kitcher’s argument is clearly directed at Fodor's extension of
methodological solipsism to a denial of the relevance of semantic
properties in psychological theories generally. Notice that, as Kitcher
understands it, methodological solipsism is the assertion that
psychology must restrict itself to the "syntactic or formal features” of
representations. On her reading, methodological solipsism denies a
place in psychological theories for a computational level of
description; thus Kitcher maintains that methodological solipsism is
inconsistent with Marr’s explanatory framework for computational
theories.

Kitcher is correct in her claim that Marr’s theory is shaped
by facts about the environment. But as we have just seen, the
explanation the theory gives of the computational behaviour of the
system appeals only to nonsemantic properties of representations. Like

Burge, Kitcher fails to distinguish the use of environmental regularities

to explain the success of visual mechanisms from the description of



those mechanisms in the theory itself. Marr’s commitment to

methodological solipsism is manifest in his insistence on the latter.

4. Summary.

In Section 1 we saw that Burge’s argument against
individualism identifies two important features of Marr’s theory: (A)
The theory is designhed to explain the success of visual perception so
that representational content must be assigned so that representations
are true in the normal environment; (B) according to Marr, the
veridicality of visual perception depends on contingent facts about the
physical world. In Section 2 I argue that Burge’s argument is sound;
that is, for the reasons he cites, there are explanatory reasons for
assigning different computational interpretations to systems 1n
different physical environments that are physiologically identical.
Fodor's argument against this is based on an incorrect understanding
of the nature of computational theories. According to Fodor,
computational theories specify causal properties of representational
states; but the correct point is that the explanatory generalizations of
computational theories assert that different physical systems are
equivalent under a computational description. However, there is a
danger in placing undue emphasis on the issue of individualism. And

here it is important to see that methodological solipsism captures a
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crucial constraint on computational theories: While there are distinct

computational descriptions of the same physical system that differ

only in the interpretations assigned to its computational states, within
a theory there can be no differences in content for which there is not
a corresponding difference in neural states. Fodor (1980) generates
unnecessary opposition to this point by extending methodological
solipsism to a restriction or the explanatory goals of computational
psychology. It this is this restriction that Kitcher's criticism attacks,

and not the real point of methodological solipsism.



CHAPTER THREE
AUTONOMY AND REDUCTION OF PSYCHOLOGICAL THEORIES

0. Introduction.

In Chapter 1 I argued that there is a specific sense in which
the computational level of theory constitutes an autonomous
description of the behaviour of the visual system: The computational-

level decomposition of the relation between the image and the final

representation is determined by relations among properties of the
stimulus, and is unaffected by the steps carried out in the
computation of that relation by the mechanisms of the system. And in
Chapter 2 we saw that, while supervenience of representational
properties on neural properties is an essential feature of computational
theories, there are explanatory grounds for assigning distinct
computational-level theories to systems that have identical

neurophysiological descriptions. In this section I will use these points

to argue that reductionism, i.e., the claim that psychology is reducible
to neurophysiology, is false. Although the details are not clear, in the
broadest terms we will say that a special science is reducible to a

more basic science just in case (1) the properties of the special science
are identical to, or correspond in some law-like way, to properties of

the basic science, and (2) the principles of the special science are
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consequences of the principles of the basic science. I will refer to (1)
as physicalism.

My arguments will be directed primarily at recent
discussions of reductionism by Churchland (1986) and Kitcher (1988).
Before turning to these discussions I address in Section 1 a common
argument against reductionism based on a denial of physicalism. This
argument, I believe, is not sound. The point I wish to highlight in
Section 1 is that reductionism ought not be treated as a metaphysical
issue, but rather as one of explanatory method. In sections 2 and 3 I
look at an argument by Kitcher against reductionism, based on the
explanatory role of Marr's computational level of theory, and at a
contrary conclusion of Churchland’s. Kitcher's argument, though
incompletely stated, is sound; Churchland’s assertions are insufficient
to establish reductionism, partly because Churchland sees
antireductionism as based on a denial of physicalism. In the closing
section of the chapter I extend these arguments to the claim of Kitcher
and others that Marr’s theory depends on the view that vision
employs "optimal” strategies to solve perceptual problems. I argue that

this claim is based on a misunderstanding of the autonomous

character of the computational level.
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1. Reduction and physicalism.

Functionalists argue from the multiple realizability of
functional states that mental states do not correspond to neural states,
and hence psychology is not reducible to neurology.' The most
articulate version of this argument is by Fodor. According to Fodor,
reduction implies that the following two conditions are met:

(1) For each property S of the special science there is a "bridge
nrinciple” of the form,
(x) (Sx <—> Px),

where P is a {;roperty of the basic science. The biconditional

must cover all possible realizations of S by properties of the

basic science. In the most straightforward case, the

properties will be identical, otherwise the biconditional is a

contingent law.

(2) If (x) (S, —-> S, is a law of the special science, and
(x) (S; <—> Py),
x) (S, <> Py

are bridge principles, then (x) (P, —> P,) is a law of the

basic science.

Given this analysis, the argument against reduction is this: Mental
states are functional states, determined by their causal relations to
specified inputs and outputs and to other functional states. But the
same functional state is realizable in very different neural structures.
The set of neural structures that may realize a single mental state will
be capturable in neurophysiological terms only by an indefinite
disjunction of distinct properties; hence mental states will not

correspond to any "natural kinds" of neurophysiological theory.

1. See Putnam (1967), Davidson (1970) and Fodor (1974).
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Moreover, even if we were to possess a complete list of the neural
properties with which a mental state co-occurs, such a list would
never be sufficient to establish that the co-occurrences are lawlike.
Thus physicalism is false, and hence reductionism is false also.

It is possible to extend functionalism, and hence also the
argument just described, to embrace computationalism, i.e., the
assertion that mental processes are computations. Recal' from Chapter
1 that a mechanism M computes a function F just in case there is a
physical-state transition map P:C > C, where C is the set of states of
M under the interpretation function I, such that for c € C,

I(P(c)) = F(I(c)).
A formal representation of the state-transition diagram of a system
yields a functional description of a class of mechanisms that are
isomorphic with respect to their state-transitions diagrams - the states
are defined in terms of their relations to one another and to inputs
and outputs. Thus computationalism can be seen to support the
functionalist rejection of physicalism. It is an analysis of this sort that
supports Fodor’s view, discussed in Chapter 2, that mental states are
representational states with causal properties.

However, there is an effective reply to the functionalist

argument against physicalism. A closer look at scientific practice does

not easily support the claim that a multiplicity of neural realizations
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of functional or computational states is inconsistent with identity of
properties.’ It is incorrect, so the reply goes, to suppose that
physicalism demands a one-to-one mapping from mental properties to
physical properties. Reductions between scientific theories are
commonly specific to a domain of phenomena. For example, whereas
opponents of physicalism cite the relation between thermodynamics
and statistical mechanics as the best example of successful reduction,
temperature in thermodynamics does not correspond to any single
microscopic property of substances - the description in statistical
mechanics of the properties that correspond to temperature is an
indefinite disjunction of precisely the sort described in the
functionalist denial of physicalism. Churchland (1986) adds to this
reply the claim that if the reduction of mental states is specific to
humans then it is not likely that mental states will be correspond to
very different neural states. Given our common evolutionary history,
it is to reasonable to expect that any particular mental state will have
a common set of neurological properties across individuals at some
level of organization. Those that don’t are likely to be dispensed with
in favour of more successful explanatory kinds.

The defence of physicalism just described reveals a general

flaw in the functionalist denial of the reducibility of psychology tc

2 See Wilson (1985), Patricia Churchland (1986) and Paul
Churchland (1984).



neurophysiology: Functionalism and computationalism are best
advanced as theories of explanatory method rather than as

metaphysical theories. In Chapter 2 I argued that, contrary to Fodor’s

analysis, computational theories are not causal generalizations, but

rather assertions that there are good explanatory reasons for assigning
a particular computational description to a physical system.
Computational properties are not causal properties, and thus it is
incorrect to identify computational states as explanatory kinds distinct
from physical states; computational states are physical states under a
computational description. It is Fodor's mistaken understanding of
computationalism that supports his view that computationalism is
inconsistent with physicalism. Functional properties, on the other
hand, stand in causal relations by definition; but the argument that
functional properties are physical properties is very strong. So there is
evidence that a denial of reductionism on grounds of the falsity of
physicalism is inconsistent with scientific practice, and the extension of
the functionalist argument to computationalism rests on a mistaken
analysis of computational theories. However, in the following sections
I argue that reductionisr- is false on other grounds. In the next
section I consider an argument of Kitcher’s, based on Marr’s

explanatory framework, that neurophysiology is explanatorily




incomplete. If this is correct then psychological principles are not

consequences of neurophysiological principles.

2. Kitcher’s argument from explanatory incompleteness.

According to Kitcher, psychology is not reducible to
neurophysiology because of the explanatory incompleteness of
neurophysiology. Kitcher agrees with Marr that neurophysiological
research has a significant part in explanations of visual abilities. But
on Kitcher's view, reductionists such as Churchland and Searle take
the stronger position that only neurophysiology can provide scientific
explanations of mental phenomena. Her discussion is thus directed at
what she refers to as "the hegemony of neurophysiology”. The
argument that Kitcher offers against this form of reductionism
assumes without argument that providing computational-level
descriptions of visual processes is outside the scope of
neurophysiological theory. It follows that, on her view, reductionism
is inconsistent with the claim that a computational level of description
is essential to explanations of vision. Thus, according to Kitcher,
reductionism can be rejected if it can be shown that a computational
level of description is needed to explain visual processes.

Kitcher’'s argument that a computational level of description

is necessary makes two assertions:
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(1) The computational level of description specifies the "information-
processing tasks" performed by the system; i.e., the computational
level describes the information about the stimulus that each
computational process extracts. Models of the system not based on a
computational-level description may mimic the behaviour of the
system over a limited domain but will not succeed in explaining why
the model is successful, or why it fails outside of its restricted
domain.
(2) Determining the solutions to information-processing problems
implemented by the system requires a description of the properties of
the environment — the natural constraints — on the basis of which the
system obtains information about the world. Here Kitcher appeals to
the influence of Gibson’s notion of stimulus information on Marr’s
approach to vision. Isolating natural constraints is not a
neurophysiological task, but rather a part of the computational level
of theory.

Kitcher is correct that algorithmic models of visual processes
alone will not explain vision. As we saw in some detail in Chapter 1,

we can explain the success of visual perception only by providing a

computational-level description of relations among properties of the
stimulus. But Kitcher offers no explanation of her view that a

recognition of the role played by computational-level descriptions is
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inconsistent with the understanding of neurophysiological theory held
by reductionists.

Some support for Kitcher's understanding of
neurophysiological theory is found in her comparison of Marr’s
approach to vision with the feature-detector theory, a theory that was
an important antecedent to Marr's work. The feature-detector strategy
is based on the discovery that responses of single cells in the
neuronal structure of the visual system signal the presence of patterns
of light intensities in specific regions of the retinal image. Thus
individual cells can be seen as performing complex tasks that extract
specific information about the stimulus. From this organization in the
neural structure of the system it is argued that (in some not fully
specified sense) higher-level cells detect specific features in the image,
and that recognition of objects in the distal scene is carried out by
identifying collections of image features. According to Barlow (1972),
the methodological import of the feature-detector approach is that
much of perceptual psychology can be carried out directly by
neurophysiological investigation: If perception is accomplished through
selective response of individual cells to features in the image,
modelling visual abilities can be accomplished by direct observation of
the relations between features of the retinal image and the behaviour

of single cells.
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Kitcher's characterization of reductionism is similar to Marr’s
description of the limitations on the feature-detector program. Part of
the failure of the feature-detector approach lies in the fact that
interesting properties of physical objects do not correspond to
collections of image features, contrary to the assumptions of the
program. Marr’s solution to this problem is the use of natural
constraints in extracting information from the image in a succession of
modular computations. But, on Marr’s view, a deeper flaw in the
feature-detector studies is a lack of attention to the information about
the stimulus that an image configuration carries. In these theories, the
term "feature” is applied indiscriminately to both the image and the
distal stimulus, thus ignoring the question how features in the image
relate to properties of the distal stimulus. Marr argues that the
complexity of the relation between the image and the physical world
is such that we can specify precisely the image patterns to which a
cell is responsive only if we know what information about the distal
stimulus such a pattern is interpreted as carrying. Hence we cannot
extrapolate from recordings of cell behaviour to a computational
theory of the system without a knowledge of how patterns in the

retinal image correspond to properties of the physical world. The
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feature-detector program does not have a framework for investigating
these relations, and so it fails to yield clear results?

But an appeal to the shortcomings of the feature detector
program is not sufficient to establish the general claim that
computational-level descriptions lie outside the scope of
neurophysiology. The view of neurophysiology that is presented by
Chuichland (1986) in particular is not constrained by the assumptions
of the feature-detector theory. Churchlardi agrees that vision involves
modular computational processes of the sort described by Marr; but
she argues that computational theories of these processes are
neurophysiological theories. In the next section I address Churchland’s

argument.

3. Reduction and autonomy.

According to Churchland, it is not true that neuroscience is
restricted to constructing models of neural behaviour that instantiate
computational theories constructed by psychologists. On her view, it is
incorrect to suppose that there is a level of description of cognitive
processes that is autonomous with respect to neuroscience. Her

conclusion is based on several assertions:

*. In Appendix 3 I illustrate this point through a discussion of
Marr and Hildreth’s (1980) computational-level theory of the feature-
detector studies.
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(1) Neuroscience is concerned with specifying information-processing
tasks performed by neural activity. She says,
It is important as well to emphasize that when neuroscientists do
address such questions as how neurons manage to store
information, or how cell assemblies do pattern recognition, or how
they manage to affect sensorimotor control, they are addressing
questions concerning neurodynamics — concerning information and
how the brain processes it. In doing so, they are up to their ears
in theorizing, and even more shocking, in theorizing about
representations and computations. (1986: p.361)
(2) Any computational theory of cognition is constrained by
neurophysiological facts. For example, she says of Marr’s distinction of
levels,
[In his articulation of the parallel modelling strategy] one first had
to figure out a computational schema that would solve a problem
(say, for visual recognition) and only then could one usefully
address the question whether and how the brain implemented that
schema. Not even Marr adhered strictly to the doctrine, however,
and some of the most successful parallel models are avowedly
inspired and constrained by neurobiology. (1986: p.462)
(3) There is no absolute distinction between functional or
computational levels and structural levels of description of the
nervous system. There are many levels of organization in the nervous
system; which level constitutes the functional level, and which
constitutes the structural level, depends on the processes under
investigation. And at many levels of organization neurophysiologists
must construct computational theories defined over representations to
explain how the brain performs its tasks. Hence, it is false to suppose

that there is a privileged functional or computational level of
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description, from which psychologists can construct their theories
autonomously of neurological research.

In a sense to be made clearer below, both of (1) and (2) are
true; but (3) is false. Notice first that the point Churchland makes in
(3) is similar to the observation made in Section 1 of Chapter 1: In its
general application, the distinction between computational and
algerithmic levels of description is just the distinction between a
function and its algorithmic decomposition; which description of a
system constitutes the computational level of description depends on
the process whose explanation we are seeking. There is in this sense
no "absolute” computational level of description. However, the
conclusion of Chapter 1 is that with respect to the modular processes
of vision there is a distinguished computational level of description,
which explains the success of visual operations, and that is
autonomous with respect to the algorithmic and neurological
descriptions. Thus, in vision theory at least, Churchland’s assertion is
incorrect.

Churchland’s denial of the autonomy of the computational
level misses the point that a computational-level decomposition of the
relation between the image and the final representation is not strictly
a description of the visual system itself. It is a description of a virtual

mechanism that computes each of the relations between stimulus
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properties that are exploited in perception. The computational level is
a description of a canonical encoding function, and of a canonical
symbolic transformation function, that demonstrates how a true
representation of the stimulus can be generated by mechanical
operations. It is used to explain the semantic properties of visual
operations via a demonstration that an algorithmic sequence yields the
same output as the computational-level sequence for any given input.
By contrast, the algorithmic-level decomposition is a description of the
steps in the generation of the final representation by the system; there
is an interpretation function from neural states of the system to the
domain and range of each function in the algorithmic-level sequence.
But no such claim need be made of the computational level.

Of course, Churchland is correct that the choice of
computational-level theorv that explains the semantic properties of
actual visual processes is constrained by neurophysiological facts. A
computational-level theory only describes a possible mechanism that
yields veridical representations under certain conditions. Whether such
a description explains the semantic properties of the actual visual
system depends partially on the physical-state transition functions of
the system. But at least in some cases, computational-level descriptions

of the visual system can be confirmed independently of
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neurophysiological investigation by determining the conditions under
which visual representations fail.

Recall also from Chapter 2 that a complete
neurophysiological description underdetermines the choice of
computational-level description. In Chapter 2 we saw that there are
explanatory reasons for assigning distinct computational-level
descriptions to the same algorithmic- or physical-level sequences. Thus
the choice of computational-level theory for a system is partially
determined by the properties of the environment in which it operates.

Thus neither Churchland’s assertion that neurophysiological
theory describes computations at all levels of organization, nor her
point that the choice of computational theory is constrained by
neurophysiological facts, demonstrates that there is no level of theory
that is autonomous with respect to neuroscience. Explanations of the
semantics of vision must proceed from descriptions of virtual
mechanisms, formulated and selected on the basis of facts about the
environment, to descriptions of algorithmic sequences that yield the
same output. Hence Kitcher’s claim that neurophysiology is
explanatorily incomplete vis a vis the semantics of vision is correct.

As a final note to this section, we can see that Churchland’s
argument rests to a large extent on the view shared with

functionalists that reductionism is a metaphysical issue decided by
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whether physicalism is true. Each of Churchland’s three premises
discussed above is presented as a reply to the functionalist denial of
physicalism. For example, her claim that there is no distinguished
functional or computational level of description of cognitive processes
is offered in reply to the functionalist argument that such a level
identifies a set of nonphysical properties. However, a proper denial of
reductionism is not based on an ontology of cognitive processes, but
rather on the explanatory considerations that determine the form of

theories.

4. Optimality and idealization in computational-level
theory.

In the final section of her paper, Kitcher argues that Marr's
theory is an optimizing theory, i.e., it assumes that each computation
is carried in an optimal way. She says,

{Each computation] utilizes exactly the information needed for the
derivation. [Marr] also assumes that, in general, the visual system
is well-designed for the extraction. and representation of
information about the shape, spatial location, and orientation of
object surfaces. (p. 21)
This conclusion is based on Marr’s strategy for theory construction:
One begins with a description of the information to be extracted; one
then determines the information available and specifies a function that

yields the information sought from the information available.
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Kitcher is quite correct that computational descriptions of
solutions to information-processing problems are idealized solutions
expressed in canonical terms. She argues from this point that a
strategy of this sort will fail to explain actual visual processes if the
system does not perform computations in an optimal way. She points
to the fact that some biological mechanisms are clumsy devices
adapted for their particular purpose from mechanisms that once
served other purposes. Here she cites Gould’s (1980) description of the
panda’s thumb, an awkward contrivance adapted from part of the
wrist bone. She claims that, while it is possible to give a description
of an optimal mechanism for carrying out the task performed by the
panda’s thumb, such a description would be of little use in explaining
how the actual thumb is successful in its function. Similarly, she
argues, if the visual system is a clumsy inelegant device, a
computational-level decomposition of vision will not be as useful as
an investigation into the algorithms and neural processes of the
system.

A very similar argument is made by Ramachandran (1985).
Ramachandran suggests that, like other biological organs, tiie visual
system may "cheat”, i.e., it may use a collection of special-purpose
tricks devised by trial and error. He concludes that,

If this pessimistic view of perception is correct, then the task of
vision researchers ought to be to uncover these rules rather than to
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attribute to the system a degree of sophistication it simply doesn’t
g::lsless (Seelk(;?) g over-arching principles may be an exercise in

P
In Ramachandran’s hands this argument becomes grounds for a
general scepticism about the value of computational-level theories. He
argues that neurobiologists ought to study the structure of the visual
system and derive theories of function from these studies, rather than
beginning with coniputational-level descriptions that ignore biological
hardware. Here he compares Marr’s and Gibson’s approaches to
perception to the four humours theory of diseases formulated by
physicians who had no knowledge of internal organs.

But these claims that Marr’s theory describes the visual
system as employing optimal solutions to perceptual problems fail
completely to grasp the role that the computational level plays in in
vision theory. As we saw in Chapter 1, and in the previous section of
this chapter, the computational level describes a virtual mechanism
that demonstrates how information can be mechanically extracted. If,
as Marr claims, early vision extracts information about the distal scene
without deploying specific information about the present stimulus,
there must be functional r.lations between higl.er-order properties of
the stimulus resulting from natural constraints. The purpose of the
computational level is to give a canonical description of these relations

in a mechanically computable fashion. Thus the computational level
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describes facts that any modular process must exploit regardless of its

elegance or efficiency.

The correlate of a computational-level description for the
task performed by the panda’s thumb is just the principles of
mechanics, for it is these principles that underlie the success of the
mechanism. The actual thumb of the panda, however clumsy, is
successful because its construction exploits specific mechanical
principles; similarly modular visual processes are successful because
they exploit certain computational-level principles. Just as there is no
suggestion that mechanical devices realize the idealized assumptions
of mechanical principles -- frictionless surfaces, perfect elasticity, etc. -
-, there need be no assumption that algorithmic procedures extract all
the information available as a consequence of the truth of
computational-level theories. In each case, the idealizations serve to
generalize the truth of the principles.

Ramachandran suggests that we should compare Marr's
compiutational level to a "black box description” of the digestive
system that ignores the facts about actual biological organs. 3ut a
closer parallel to the computational level in the physiology of
digestion is the sel of biochemical principles that underlie our
explanations of the success of organs with a particular structural

description in the functions they seive. So Marr's emphasis on a clear
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formulation of computational-level descriptions has the same force as
a recommendation that physiological theories be based on a clear
understanding of mechanical and biochemical principles that explain
how specific organs are successful in their biological functions.
Mechanical and biochemical principles are not descriptions of any
specific mechanisms, yet they serve a vital role in understanding
actual physiological processes. And precisely the same point applies to
computational-level descriptions: Although they do not describe any
specific computational mechanisms, they are essential in explaining
how the algorithms employed in vision function in the extraction of
information. Thus it is an error to claim that the role of the
computational level is not justified unless the visual system employs
optimal solutions, just as it is erroneous to claim that mechanical

principles only apply to optimal rnechanical devices.

Summary.

In Section 1 I argued that there is goed reason to think that
the denial of reductionism based on a rejection of physicalism is
based on both a misunderstanding of scientific theories, and also on
an incorrect view of computational explanations. The issue of
reductionism is not best addressed as a metaphysical issue about the

nature of mental states, but as concerning the nature of psychological
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method and explanation. In Section 2 we saw that Kitcher is correct
that computational-level descriptions are essential to explanations of
early vision, but she does not support her claim that this fact is
inconsistent with reductionism. However, in Section 3 I argue that
there is a basis for this claim, contrary to arguments advanced by
Churchland on the grounds that neurophysiological theories include
computational theories of cognitive processes. The role of the
computational level is inconsistent with reduction because the
computational-leve! decomposition is autonomous with respect to
algorithmic and neurophysiological descriptions, and because
neurophysiological descriptions underdetermine computational
interpretations of perception.

In Section 4 I extend the points established to argue that,
contrary to Kitcher and Ramachandran, Marr’s theory does not
depend on the assumption that visual processes are in any sense
optimal. Computational-level descriptions are descriptions of relations
between stimulus magnitudes, forrulated in a way to show how
these relations can be mechanically computed; as such they are
essential to any explanation of modular visual processes. There is no
assertion that actual visual processes exploit these relations in an

optimal way.




CHAPTER FOUR
MODULAR PROCESSES AND THE "LANGUAGE OF THOUGHT"

0. Introduction.

In chapter 1 I compared Marr’s notion of an algorithmic
level of description to Pylyshyn’s account of cognitive algorithms
defined over expressions of a canonical "language of thought". 1
claimed that despite certain superficial similarities, the two accounts
differ with regard to both the nature of the ideas developed and the
theoretical concerns addressed. In this chapter I return to the question
whether Marr’s theories provide support for the assertion that
cognitive processes involve a language of thought. I will argue
that the considerations offered in support of the language of thou nt
hypothesis are defences of two distinct versions of the hyputhesis, one
weaker than the other. My conclusion is that the strong version of the
hypothesis is most likely false of early visual abilities. While there is a
convincing reason for supposing that the strong version of the
language of thought hypothesis is necessary to explain some
perceptual abilities, the role played by natural constraints undermines
the extension of the argument to the processes of early vision

described by Marr. However, I will also argue that the weaker version

is true of early vision at the computational level of description. In the

71
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terms developed in Chapter 1 this means that the language of thought

hypothesis in its weaker form is true of the virtual machine required
to explain the veridicality of early visual perception. The basis for this
conclusion is a version of the second argument put forward by Fodor
in the Appendix to Psychosemantics. This argument does not establish
the hypothesis as an algorithmic-level assertion; nor, I think, is there
sufficient independent evidence to warrant such an assertion. Since the
sense in which I claim that the language of thought hypothesis is true
of early vision may be viewed as Pickwickian by its opponents, in the
final section I offer some reason to think that the idea of a "language
of thought” does capture an important aspect of the modular systems
described by Marr.

Let us delineate carefully, then, the two versions of the

language of thought hyp-thesis.

1. The language of thought hypothesis.

The language of thought hypothesis is the assertion that
explanations of cognition essentially involve a mzpping from a
distinguished set of neural states to expressions of a formal language.
Fodor describes the hyputhesis in this way:

[Mental states] have a combinatorial semantics: the kind of
semantics in which there are (relatively) complex exgressions

whose content is determined, in some regular way, by the content
of their simple parts. (1987: p.138)
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This formulation has to be broadened to incorporate the idea that, in
addition to their role in bearing semantically evaluable content,
symbolic expressions may encode "programs” — sats of instructions for
carrying out an algorithm. So the language of thc ight hypothesis
asserts that there is a mapping from a distinguished set of neural
states to expressions of a formal language L, and an encoding
function that takes each member of L to a semantically evaluable
content or to a name of an algorithmic sequence of functions.

The language of thought hypothesis is often advanced as an
explication of the "representational theory of mind"; propositional
attitudes thus become functional or computational relations to
syntactically structured neural states. But as Fodor points out, the
hypothesis coes not entail the claim that the representational states it
describes are relata in p.opositional attitudes. Thus, with regard tc the
case at hand, it is possible to conclude that the hypothesis is true of
representational states in early vision without implying that we have

beliefs about the states of affairs that determine the truth-values of

those representational states, or alternatively that we have beiiefs
about the rules and procedures that are named in encodings of

algorithms. Accepting both the language of thought hypothesis and

the representational theory of mind commits one only to the claim
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that propositional attitudes are relations to a subclass of the
syntacucally structured representational states of the mind.

How, then, does the language cf thought hypothesis apply
to the processes of early vision? I have claimed that there are two
versions of the hypothesis, one weaker than the other. To distinguish
tuese two versions as they apply to early vision, it is useful to avail
ourselves of a set of distinctions among computational theories
formulated by Stabler (19.J).

Recall from Section 1 of Chapter 1 the description of a
computing mechanism. A physical system is given a computational
description by specifying an interpretation function I from a set C of
computational states oi the system to the domain and range of a
function F, the function computed by the system. Let P:C —> C be a
physical-state transition function that governs the behaviour of the
system. Then the system computes F just in case,

I(P(c)) = F(I(c)).
According to Stabler's characterization, a theory that gives such a
description of a physical system is a first-l.vel computational theory.
But in many cases a system computes a function F by computing an
algorithm, ‘.e., a sequence <F,, F,, ..., > of functions where the
value of each function F,. for 1 £1i < n, is the argument for F,,, and

such that for any argument x in the domain of F,
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F(x) = F(F,( ... F{(x)).

Stabler calls a theory that describes a physical system as computing
an algorithmic sequence a second-level theory.

The notion of a system with a second-level theory gives us
a clear formulation of the weaker version of the language of thought
hypothesis. First recall the following definitions from Chapter 1: Let E
be an encoding function, i.e., a function that maps sets of symbols to
the domain and range of a function F, and let S be the set of symbol
sets in the domain of E. Then a symbolic transformation function
T:S --> S realizes a function F if, for s € S,

E(T(s) = F(E(s)).

Now consider a mechanism M in the cognitive system that computes
a function F. The weaker version of the langauge of thought
hypothesis is true of M just in case (1) M computes ¥ by computing a
symbolic transformation function T that realizes F, anc (2) M has a
second-level theory according to which it computes T by computing a
nontrivial algorithmic sequence <T,, T,, ... , T,> for T, where each T,
realizes a corresponding function F, in an algorithmic decomposition
<F, F, .., F> of F.

Let us see .iow the weaker version of the language of
thought hypothesis can be applied to the explanatory framework of

Marr’s empirical theories outlined in Section 2 of Chapter 1. Recall
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from that discussion that, at the computational-tevel, the processes of
early vision are described as computing a sequence of functions that
yield successive representations of the stimulus. We also saw,
however, that his assertion does not entail the claim that at the

algorithmic level the system computes each function in the sequence.

Let us say that the weaker language of thought hypothesis is true of
the early visual system if the system has a second-level theory
according to which, for each function F, in the computational-level
description, the system computes a symbolic transformation function
T, that realizes F.

The stronger version of the language of thought hypothesis
asserts that a system is, in Stabler’s terms, a "program-using system".
The notion of a program-using system is defined in the following
manner. In many cases, a system computes an algorithmic sequence
because its behaviour is governed by an internal representation of a
program, i.e., a set of instructions for carrying out the sequence of
steps in the algorithm. A program can be thought of as a set of
symbolic formulae that encode a sequence <IN,, IN,, ... IN> of
instructions, where IN; is an instruction or command to compute a
function F, in an algorithmic sequence. Then a system is program-
using just in case there is a "program realization” function that maps

the encoded instructions to physical states of the system, together
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with a set of "control states” associated with the encoded instructions
such that the system computes the function F; specified by IN;
whenever it is in the control state associated with that instruction.
Stabler calls a theory that describes a system in this way a third-level
theory.

Applied to the visual system, the stronger language of
thought hypothesis asserts that (1) the weaker version of the language
of thcught hypothesis is true of the visual system, (2) physical states
of the visual system encode a program that specifies the symbolic
transformation functions that generaie the representations in the
sequence, and that (3) the system computes the sequence of symbolic
transformation functions because its operation is governed by the
encoded program.

The strong version of the language of thought hypothesis is
defended, with respect to cognition generally, by Pylyshyn (1983).
According to Pylyshyn, the appropriate mathematical model for

cognition is an infinite automaton, i.e., a computing device with no

finite upper bound on the number of distinct states in its memory.’
And this claim is equivalent to the assertion that the cognitive system

is a program-using system. Let us see why this is so.

'. The class of infinite machines thus includes among its

members both push-down automata and Turing machines.



78

The essential feature of a finite automaton is that its

potential memory is exhausted by the set of states in its machine-
state diagram; i.e., given a complete specification of the machine-state
diagram, the final state of a finite automaton is determined by its
present machine state and its unread input. By contrast, the final state
of an infinite automaton is determined by its present machine state
and its unread input, together with what is written on its tape or
register. It is the fact that it has access to a tape or register with a
syntactic structure that gives an infinite automaton an unbounded
memory; for, given this structure, the set of distinct possible states of
the tape or register is recursively generable. Hence the essential
feature of infinite automata is that their operation is governed by
internal states with a syntactic structure, and it is just this feature that
distinguishes program-using systems. So the stronger version of the
language of thought hypothesis is true of the cognitive system only if
its most appropriate mathematical model is an infinite automaton.

By contrast, the weaker version of the language of thought
hypothesis allows that the most appropriate model of the system is a
finite automaton. This version is defended, with respect to modular
systems in language and vision, by Fodor. In his response to Stabler's

scepticism over the hypothesis that transformational grammars are




79
explicitly represented in neural structure, Fodor gives the following
argument.

RTM says that the contents of a sequence of attitudes that

constitute a mental process must be expressed by explicit

tokenings of mental representations. But the rules that
determine the course of the transformation of these
representations ... need not themselves ever be explicit. They
can be emergents out of explicitly represented procedures of
implementation, or out of hardware structures, or both.

Roughly: According to RTM, programs — corresponding to

the ‘laws of thought — may be explicitly represented; but

‘data structures’ — corresponding to the contents of thoughts

-- have to be. (1987: p. 25)

He completes the point in this way:

Restricting one’s attention to the status of rules and

programs can make it seem as that the computer metaphor

is neutral with respect to RTM. But when one .inks about

the constitution of mental processes, the nnection between

the idea that they are computational and the idea that there

is a language of thought becomes immediately apparent.
This claim is explicitly asserted of vision theory in the Appendix to
Psychosemantics. (1987: p.144-145).

Although these two versions of the language of thought
hypothesis are distinct assertions, arguments for one version have
been placed alongside arguments for the other. Part of the reason for
this is that, as in the quotation above, the arguments for both are
usually applied to the question whether perceptual mechanisms are
"representation-using”, and this term is often used in a way that
collapses several important distinctions. There is a perfectly natural

sense in which the phrase "representation-using” can refer simply to a
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system that has a principled computational description, i.e., a system
for which a computationai theory has genuine explanatory value. Bu.
as we will see in the next section, according to Fodor a system is
representation-using just in case it satisfies the weaker version of the
language of ihought hypothesis. And the term is also occasionally
emp.oyed in conjunction with the term "representation-governed”,
which usually means that the system is program-using,.

There is one argument in particular, which defends the
language of thought hypothesis with respect to perceptual abilities,
that has generated just such a confusion of issues. Fodor (1986) claims
that the postulation cf mental representations is necessary to account
for our ability to respond selectively to "nonprojectible properties”, i.e.,
those properties that do not enter into natural laws. We will see in a
later section that this argument does provide an explanatory basis for
computationai explanations, and moreover that it gives prima facie
reason to suppose that some perceptual systems are program-using.
We will also see that when properly understood it does not apply to
the processes of early vision described by Marr. However, the
argument can be read in at least two ways. And Fodor’s descriptions
of the arguments suggest an unsuccessful line of reasoning to the
weak version of the hypothesis. Since I argue below that the language

of thought hypothesis in its weaker form is true of early vision at the
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computational level, it is important to distinguish the reasons for this
conclusion from the unsu :cessful version of the argument from
nonprojectible properties. This is especially so since remarks of
Fodor’s suggest that the argument from nonprojectible properties is of
a piece with what I see as the correct reason for asserting the weaker
language of thought hypothesis of early vision. Accordingly, let us
first isolate the bad version of the argument from nonprojectible
properties; we can then see more precisely why the better version of

the argument does not extend to early vision.

2. One argu:nent from nonprojectible properties.

Fodor proposes that a system is representation-using just in
case it responds to "nonprojectible” properties of the stimulus,
properties that do not occur in any natural laws. Since there are
properties of this sort that we do perceive, we can infer that some
perceptual processes are representation-using in this sense. The
question, of course, is whether this notion captures what is intended
by some natural use of the term "representation-using”. For this claim
Fodor offers the following argument: Suppose that a system S
responds selectively to a nonprojectible property O of an object A.

There must be some nomological relation between S and and a

property of A that makes this possible, but since O is nonprojectible it




82

cannot enter into such a relation. The detection of the relevant
projectible properties must eventuate in S coming to represent A as
being O, and this process must be a case of perceptual inference --
typically an inference that these properties co-occur with O.
Fodor's presentation of the argument from nonprojectible
properties is based on his general strategy for explicating

computational explanations. According to this strategy, a system is

representation-using just in case its state-transition map cannot be
expressed in terms of a nomological relation between physical
variables. The zrgument from nonprojectible properties then takes the
following form: Suppose a system S responds selectively to a
nonprojectible property O. Since there are no laws in which O
appears, perception of O cannot be explained in terms of nomological
relations between O and states of S. But a system is
nonrepresentation-using only if explanation of its behaviour is
cariurible in terms of nomological relations between states of the
system. Since this is not the case with respect to the perception of O,
S 1s representation-using.

Fodor intends this argument to provide support for the
weak version of the language of thought hypothesis. Thus, according
to Fodor, a systcm is representation-using just in case it computes a

sequenice of symbolic transformation functions. Moreover, according to
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Fodor the weaker version of the language of thought hypothesis is
constitutive of the principled application of computational descriptions;
i.e. a computational description has genuine explanatory value only if
the system computes a sequence of symbolic transformation functions.
In contrast to explanations of perception by representation-using
systems, Fodor describes what he calls a "primal scene of the first
type", the defining characteristic of which he gives as the occurrence
of "a lawful connection between a property of the ‘stimulus’ (viz. S's
coming to be O) and a property of the ensuing behavioural response
(viz. A’s behaviour coming to be C)." What Fodor seems to have in
mind is what I have called "direct detection”, where the explanation of
the covariance between a stimulus magnitude and states of the system
involves descriptions only of properties of the magnitude itself and of
the physical properties of the system.? If so, then on Fodor's view,
any perceptual system whose explanation essentially involves a
computational theory is a representation-using system in his sense.

But the strategy upon which the argument is based is not a
good one. To see this, and to see how Fodor identifies the weaker
version of the language of thought hypothesis with the principled
application of computational descriptions, let us look at the strategy in

some detail.

%, Chapter 1, Section 3.
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The foundation of the view that computational descriptions
provide genuine explanations of mental processes is that, in a sense
not yet fully understood, they enable us to express true
generalizations that cannot be expressed in the vocabulary of physics
or neuroscience. One way of trying to explicate this idea is to assert
the existence of a general class of mechanisms that exhibit behavioural

regularities that cannot be expressed in noncomputational terms. Any

device that operates according to physical laws has a computational
description, but in many cases such descriptions capture no
behavioural regularities that are not expressible in a physical
characterization of the device. On this view, understanding the
explanatory power of computational descriptions is to be sought by
establishing the nature of the distinction between these two classes of
mechanisms. Moreover, it is widely agreed that the behavioural
regularities that computational descriptions capture are those that are
stated over the syntactic and semantic properties of representational
states. Hence the distinction that constitutes the basis of computational
descriptions can be grasped by formulating a distinction between
representation-using and nonrepresentation-using systems.

Several proposals within this program identify the
distinction betweeni representation-using and nonrepresentation-using

systems with the distinction in computer engineering between digital



and analogue computers. The motivation for this is clear: As
commonly understood in computer engineering, digital computers
operate on discrete symbols. However, the use of a discrete form of
representation is evidently not a sufficient condition for digital
computation, for we can easily construct intuitively analogue devices
that work in discrete steps. According to Fodor and Block (1973), the
distinction between digital and analogue machines lies in the nature
of the relationship between the representing magnitudes rather than in
the nature of the representing magnitudes themselves. On their view,

the relevant feature of analogue computation is the nomological

character of the relation between the physical variables used in the
computation. Thus they call a mechanism analogue if the state-
transiiion map is a physical law, and digital otherwise. The point is
echoed by Pvlvshyn:
The significance of the nonprojectibility of the class of physical
properties corresponding to distinct computational states of a
digital computer is that the operation of the system, as a computer
rather than a physical system, cannot be explained the way natural
events typically are explained in science, by citing the value of the
property in question and showing that the state transition is
subsumed under some general, natural law. (1984: p.201)
Systems that operate on symbolic representations, it is
argued, depend on the preservation of appropriate relations between
symbols, and these relations are expressed in terms of the syntactic

and semantic properties of the system rather than the physical laws
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that underlie the symbolic transformations. Thus it is clear how this
strategy for explicating computational theories is seen to support the
view that the weak version of the language of thought hypothesis
captures the explanatory significance of computational descriptions.
For any system that uses symbolic-transformation functions depends
on those functions preserving the appropriate relation between symbol
tokens; hence, so the argument goes, a system has a principled
computational theory just in case it cor~outes a sequence of symbolic-
transformation functions.

However, as Dernopoulos (1987) points out, one cannot
draw the distinction between representation-using and
nonrepresentation-using systems on grounds of the nomological
character of the state-transition map. The behaviour — computational
or otherwise — of any machine is never simply a consequence of a

physical law, but of the law together with a description of the

constitutive structure of the mechaiiism. In the computational case this
requires the specification in physical terms of the computational states
and the transitions between them. But given its constitutive structure

every device obeys some family of physical laws. Hence Fodor and
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Block’s proposal is either vacuous or reduces to a pragmatic
distinction between simple and complex laws.?

The strategy of drawing the distinction between
representation-using and nonrepresentation-using systems along
nomological-nonnomological lines is tied to Fodor's view, described in
Chapter 2, that computational descriptions appeal to causal properties
of states partitioned by their representational content. The
generalizations that are expressed by computational theories assert
that diverse physical systems share the same computational
description. But on Fodor’s functionalist explication of

computationalism, classes of computational states that share a

syntactic or semantic interpretation are functional states. And, since on
his view functional states are not identical to physical states, it is
argued that their causal properties are not subsumable under a
physical law. Thus, according to Fodor, the explanatory value of
computational theories lies in the fact that they capture relations
between functional states, which cannot be reduced to nomological
relations between physical states. But as we have seen in earlier

chapters, the functionalist explication of computationalism, whereby

’. According to Demopoulos, the analogue-digital distinction can
be an interesting one when it is applied to classes of mechanisms: A
class of mechanisms that compute a given function is anz >gue if the
set of their state-transition diagrams has a unitary physical

description, and digital otherwise.



computational theories describe causal relations between functional
states, is a mistaken view of the form of computational theories. The
generalizations that are captured by computational theories are not
causal generalizations; rather they are assertions that a class of
physical systems is equivalent under a computational description.
However, this is not the only interpretation of the argument

from nonprojectible properties; let us look at the other, better, version.

3. A better argument from projectible properties, and its application to
early vision.

Matthews (1986) offers the following criticism of the
argument from nonprojectible properties. Matthews argues that there
are many examples of intuitively nonrepresentation-using devices that
respond selectively to nonprojectible properties. We need only
consider a device that detects a range of projectible properties P,, P,,
... Pn, where these co-occur with a nonprojectible property P".
Matthews argues that, whatever interpretation is placed on the term
"infer”, we can maintain that such a device infers the presence of P’
from the presence of P,, P,, ... P,. As an example of such a device,
Matthows offers a description of a simple mail sorter: P varies over
zip codes, and the sorter responds selectively to projectible properties

of printed characters.
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Notice that Matthews’ criticism is effective against the
. -.#ion of the argument from nonprojectible properties described in
‘«..ion 2. That version claimed that the presence of P’ is inferred
vccause there are no laws in which it occurs. But the relevant laws
that occur in any explanation of perception are those involving the
projectible properties of each instance of P’; hence in each case, given
the constitutive structure of the device together with a physical
description of the possible instances of P* to which it responds, there
are nomologicals that express the relation between the behaviour of
the device and the particular occurrence of P". These nomologicals
may well be complex and unnatural; but to base the response to
Matthews’ criticism on these grounds would render the distinction
between representation-using and nonrepresentation-using mechanisms
arbitrary.

Demopoulos offers the following reply to Matthews: The
class of properties to which the mail sorter described by Matthews
responds may have a "unitary physical description”; i.e., there may be
a single well-motivated, or natural, description of the class in the
language of the physical sciences. If the class of properties to which a
mechanism responds has a unitary physical description, then
describing its behaviour as responding to a nonprojectible property is

merely a convenience. But zip codes have many possible physical
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realizations, and the device may be constructed in such a way that
there is no unitary physical description of the class to which it is
responsive. In this case thc principle upon which the behaviour of the
device is based comes from outside physical science. We can say that
the class of properties to whkich a device of this sort responds is
"open-ended” with respect to physical sciences. And if the class to
which it responds is open-ended in this way, the description of the
mechanism as responding to a nonprojectible property is indispensable
since it provides the only generalization that covers all members of
the class to which the device is responsive.

Demopoulos’ response to Matthews is intended to provide a
basis for attaching explanatory significance to computational
descriptions. But as Demopoulos points out, response to nonprojectible
properties under an open-ended class of physical realizations is not a
necessary condition for principled application of computational
descriptions. Consider a device which, like Matthews’ mail sorter,
responds selectively to a class of stimulus properties that has a
unitary physical description. It may be that there is no explanatory
gain in a computational description of the mechanism. The properties
may be directly detected in the sense that the explanation of the
mechanism simply involves a description of the stimulus properties

together with a description of the physical processes of the
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mechanism. But this need not be the case. It may be, for example,

that the device computes a relation between the properties in question
and some other set of stimuius properties. This is precisely the
explanatory basis of Marr's computational theories. There is no reascn
to suppose that the stimulus properties represented by states of the
system under Marr’s descriptions co-occur with open-ended sets of
projectible properties; indeed they are themselves plausibly projectible
properties. The explanatory value of computational descriptions in
these theories lies in an appeal to the fact that physical-state
transitions of the mechanism belong to a class of computationally
equivalent systems that compute relations among sdmulus
magnitudes.

Neither does the argument from nonprojectible properties by
itself support either version of the language of thought hypothesis.
According to Fodor, response to a nonprojectible property must
involve symbolic transformation functions. As Fodor sees it, the basis
of appeal to computational Jescriptions in Marr’s theories is the same
as that in cases of response to nonprojectible properties. In each case,
the explanatory value of the theory is held to rest on causal
generalizations stated over symbolic representations. But we have seen
that this view rests on his mistaken account of computational theories.

A mechanism that responds to an open-ended class of physical
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properties has a principled computational description, but there is
nothing in this idea that entails the claim that the computation
involves symbolic transformation functions.

However, if the range of physical realizations of a
nonprojectible property to which a device is responsive is sufficiently
large, there is reason to suppose that the system is program-using. Let
us look at this carefully.

Consider a device that responds to a nonprojectible property
under an open-ended class of physical realizations. The responsiveness
of the device in the presence of each individual realization may not
require a computational description; the explanatory value of the
computational description may lie simply in its abilitv to collect
diverse physical behaviours under a common description in terms of
the nonprojectible property. In such a case there is no basis for either
version of the language of thought hypothesis. On the other hand, the
responsiveness of the device may involve computation of relations
between properties of the stimulus. While the account of the device in
the presence of each realizaticn requires a computational description,
its behaviour may not require greater resources than a finite
automaton. In principle, the compntational resources of a finite

automaton will not be exceeded as long as the number of distinct
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internal states of the device required to explain its input-output
behaviour for all possible stimuli is finite.*

However, if the number of distinct physical realizations of a
nonprojectible property is sufficiently large, it is likely that the system
is program-using. For when the range of factors that affect the
response of the device to a given physical stimulus is sufficiently
large there is reason to suppose that the system exploits combinations
of stored algorithmic sequences. According to Pylyshyn, the number
of distinct factors that may influence response to the perceptual
categories of propositional-attitude psychology is infinite. If this is the
case, then appeal to the computational resources of 1 finite automaton
is insufficient to model the computational behaviour of the cognitive
system. For the number of distinct internal states of the system
required to explain its response to physical realizations of
nonprojectible properties will be infinite. The intuitions here are not
completely clear, but the arguments are sufficiently strong to lend
prima facie support to the claim that human cognition at some level

of organization is program-using.

*. By this I mean only that its input-output behaviour can be
mimicked by a finite automaton, not that its internal architecture
conforms to the standard formal description of finite automata.

This can be the case, it seems, even if the class to which the
device is responsive is infinite. Here the intuition is based on the
ability of finite automata to recognize infinite languages; this is
possible when strings in the language contain repeatable substrings so
that the algorithm contains a loop or cycle.
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Let us see how this applies to early visual perception. The
role of natural constraints in computational theories of early vision is
to restrict the information accessible at each stage of the process while
ensuring the normal veridicality of the output. But the explanatory
advantage in appeal to program-using systems is to explain the
influence of a wide range of factors on the response of the
mechanism. Hence it is reasonable to expect that systems whose
explanation involves appeal to natural constraints will be those that
generate information about the stimulus without recourse to symbolic
memory. This suggests a division of perceptual processes into two
classes along the lines of Pylyshyn’s distinction between operations of
the functional architecture and program-using systems. But, as we will
see in the next section, the processes postulated to explain the role of
natural constraints and the processes that constitute Pylyshyn’s notion
of the functional architecture do not necessarily coincide.

First let us review what we have established so far. We
have seen that the question whether perception involves a language of
thought actually embraces two issues: (1) whether visual processes
compute symbolic transformation functions; (2) whether the visual
system is program-using. And we looked at two versions of the
argument from nonprojectible properties: The first claims only that

perception involves symbolic transformations, but we have seen that it
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is based on an erroneous program for explicating computational
theories. According to this program, the explanatory value of
computational theories lies in the fact that the state-transitions of
computational systems are not expressible as nomological relations;
the argument from nonprojectible properties then asserts that
perception of nonprojectible properties is not explicable in terms of
physical laws. The second version of the argument offers prima facie
reason to suppose that some perceptual processes are program-using.
We established that the processes described in Marr’s theories are
naturally excluded from this set because the role of natural constraints
is precisely to eliminate the kind of plasticity of behaviour that
program-using systems make possible.

In the next section I will consider the fact that the line of
reasoning that led to program-using systems in perception may
exclude the processes described in Marr’s theories from even the
weaker form of the language of thought hypothesis. In Section 5 I will
lock at an argument of Fodor's to the effect that the weaker form of

the hypothesis is true of early visual processes.

4. Functional architecture and symbolic transformations.
In the discussion of Pylyshyn’s notion of functional

architecture in Chapter 1, it was noted that the claim that the
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cognitive system has an internal syntax imposes a natural distinction
between two kinds of symbolic operations. There are the processes
that are governed by internal symbolic states, which on Pylyshyn'’s
view are those that are stated over the categories of propositional
attitude psychology. There must also be a set of operations that effect
the transformations among symbols, and that determine which
transformations to execute at any one time. The latter set comprises
what Pylyshyn refers to as the functional architecture of the system.
The operations of the functional architecture compute symbolic
transformation functions, but on pain of circularity they must not
themselves involve internal symbolic states. So the functional
architecture includes computational operations whose initial and final
states are symbol sets but whose most appropriate model is a finite
automaton. We must widen this description, however, to include
mechanisms that translate physical stimulus information into symbols,
and mechanisms that take symbolic output to physical behaviour.
According to Pylyshyn, the chief characteristic of operations
of the functional architecture is that they are "cognitively
impenetrable”; i.e. their input-output behaviour is unaffected by
changes in the subject’s background beliefs. And it seems clear that
cognitive impenetrability is a necessary condition for membership in

the functional architecture, on the grounds that processes can be
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influenced by background beliefs only if they are governed by internal

representations. But is there a finer-grained decomposition of the
system into primitive symbolic transformation functions than the one
generated by the stipulation that a function is primitive if it is not
governed by internal symbolic states? Some of Pylyshyn’s comments
suggest a negative answer. And so far we have provided no crteria
for concluding that a systemn involves symbolic transformation
functions except that we have reason to believe that its behaviour is
governed by intermal symbolic states. That is, the only possible

evidence we have discussed for asserting the weaker version of the

language of thought hypothesis of a system is evidence that it satisfies
the stronger version of the hypothesis.

From what we have seen, it does not seem likely that
program-using systems are required for any of the computations in
early vision. So if the set of primitive symbolic transformation
functions of early vision is the set of functions that are not governed
by internal symbolic states, it is likely that the entire sequence from
the grey-level image to the final representation is a single primitive
step. On the other hand, Pylyshyn suggests in some places that it is
the individual functions in the computational-level sequence from the
grey-level image to the final representation, rather than the sequence

itself, that comprise the functional architecture of early vision. (See for
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example 1984: pp. 214f.) But so far we have no basis for this

assertion.

5. A language of thought at the computational level.

There is an argument by Fodor (1987: pp. 143-147) that
offers one good reason to assert that the weak version of the language
of thought hypothesis is true of early vision. Fodor's point is that if
we assign the representational content of computational states to sets
of symbols, then manipulation of the symbols provides a mechanical
way to generate one representation from another. Here is how Fodor
puts it.

Mental symbols constitute domains over which mental processes
are defined. If you think of a mental process — extensionally, as it
were — as a sequence of mental states each specified with
reference to its intentional content, then mental representations

provide a mechanism for the construction of these sequences; they
allow you to get, in a mechanical way, from one such state to the

next by performing operations on the representations. (p. 145,
emphasis in the original.)
There is an important sense in which this argument is sound. In
particular, the argument can be applied to early vision as the
assertion that we can only arrive at descriptions of physical processes
that generate true representations from other true representations by
basing the description on a computational-level description of a

sequence of functicns defined over symbol sets. By devising formal

schemes we give precise descriptions of the information-content that
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representational states are held to carry. Then, as long as the symbolic

transformation functions appeal only to syntactic properties of the
symbol sets, we know that the mapping from one representation to
another preserves (by physically realizable operations) all the
information claimed for it. This is in fact just a restatement of
methodological solipsism.

From what we have seen in earlier chapters, it is clear that

Fodor’s argument succeeds in establishing that at the computational

level, visual processes can be modelled only on the basis of a
decomposition of the relation between the grey level image and the
final representation into a sequence of functions defined over symbolic
representations. But this does not preclude the possibility that at the

algorithmic level the function from image to final represenation is

primitive in the sense that there is no algorithmic decomposition of
the relation into operations on symbol sets.

However, in favour of such an algorithmic-level
decomposition there are the kinds of prima facie considerations
offered by Ullman (1980) based on the complexity of the relation.
Ullman points out that the most immediate difference between Gibson
and Marr on the correct form for theories of perceptual abilities is
Marr’s incorporation of an algorithmic level of description. According

to Ullman, visual perception is direct in the way Gibson intends only
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if the pick-up of information is psychologically primitive in the sense
that there is no decomposition of the operation in terms of how the
information is represented by internal states of the system. If Gibson
is correct, for each stimulus there must be a mechanism tuned to it
that produces a specific percept, where the algorithmic decocmposition
of this mechanism is possible only in neurophysiological terms.

To demonstrate the implausibility of Gibson’s theory, Ullman
compares Gibson’s and Marr’s theories to alternative explanations of a
computing device that performs integer addition. If the number of
calculations such a device is designed to perform is small, the
calculator may simply use a direct pairing of inputs and outputs. In
this case there is no decomposition of the cperation in algorithmic
terms; describing how the function is computed is simply a matter of
providing an interpretation of the circuit diagram. But if the device is
designed to perform additions over a large number of input pairs, the
operation may implement the standard algorithm which breaks the
operation into a sequence of sums of powers of a base number.
Understanding how such an operation is implemented in the physical
structure of the calculator requires knowledge of how the integers are
represented as well as knowledge of the algorithm defined over the

representations.
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Ullman argues that the same considerations apply to
understanding visual perception. In vision theory we want to explain
how neurological processes generate sensory representations, or
percepts, of the external world from changing states of the retinal
image. According to Ullman, given the complexity of the function
from stimulus patterns to the final representation it is unlikely that
the visual system uses a direct pairing of initial and final states in the
manner of the simple calculator. It is much more reasonable to
suppose that percepts are computed by implementing a set of
formation rules, defined over primitive symbols, that construct
complex representations. In this case we can only understand how the
visual system operates by determining the representations and
algorithms involved.

But given the increased interest in the computational power
of parallel distributed architectures, it is not well established that there
is an algorithmic level decomposition of the kinds of sequences
described by Marr. It is these concerns that cause doubts about the
language of thought hypothesis in its weaker form. So while Fodor is
perfectly correct about the need to characterize perceptual processes as
symbolic transformation functions in order to establish the possibility

of mechanical realization of mappings with the right semantic
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properties, we must not confuse this point with a claim about the

actual realization implemented in the system.

6. Why a language of thought?

Before closing I would like to address the question whether,
given the considerations above, there remains any natural sense in
which the processes described by Marr employ a "language of
thought”. As its name suggests, the language of the thought
hypothesis makes two distinct assertions. One is that there is an
internal language, and the other is that it is a language of thought.
The problem with asserting the first claim with respect to early visual
processes is that the formal schemes framed in the theories are not
very much like languages; in particular, they do not have the usual
recursive properties of natural languages. Recall that a formal scheme
involves only a mapping from neural states to sets of symbols and
the specification of a symbolic transformation function; the class of
symbols sets that such a scheme employs need not need be
recursively generable, nor need individual strings of symbols contain
embedded expressions of arbitrary length, as one finds in natural
languages. But as long as we are clear about the differences between
formal schemes and languages in the usual sense, this is perhaps not

so important. Does the reference to thought have a natural
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motivation? Despite the fact that the language of thought hypothesis

does not entail that we have beliefs about the states of affairs
represented, it may still be objected that reference to a language of
thought in early vision implies that mentalistic terms, like "inference"
and "reasoning”, apply properly to modular processes where they are
clearly inappropriate.

The aversion to the use of mentalistic terminology is that
appeal to these terms is sometimes taken to rest on the fact that states
of the system are representational. The argument moves from the
claim that vi: .al states are representational to the assertion that the
processes that generate them can be seen as realizing relations
between intentional states. But this argument leads us, by parity of
reasoning, to the conclusion that mentalistic terms apply to the
explanation of thermostats, paramecia and servomotors. This kind of
concern is apparent in Matthew’s criticisms of Fodor's program.

Against this concern, it is usually argued that mentalistic
descriptions apply more naturally to program-using systems. For in
descriptions of these systems mentalistic terms apply to features of the
behaviour of the system that do real explanatory work in the theory:
There is evidence that a system is governed by symbolic internal
states when the appeal to inference captures behavioural

generalizations unavailable to other theoretical descriptions. The
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problem with applying mentalistic terms to thermostats and paramecia
is that there is no aspect of their behaviour, to which the terms might
apply, that plays any role in explaining the covariance between states
of the system and the represented magnitudes. But since we cannot
rule out the possibility that all of early vision is carried out in a
single algorithmic-level step, on this line of reasoning the use of
mentalistic descriptions for these processes seems misleading.

However, the use of mentalistic terminology is not without
any basis in early vision. My argument here is that there is a natural
sense in which such systems are susceptible to error. Thermostats and
paramecia are systems that "directly detect” the magnitudes with
which they covary; i.e., the covariance is explained by appeal only to
properties of the magnitudes represented and to the physical
properties of the system. For these systems, failure of covariance
occurs only when the system fails to operate normally. The failure is
explained by the fact that the nomological relations between states of
the stimulus and states of the mechanism are different than they are
when it truly represents the stimulus magnitude. In such a case, there
is no natural sense in which we can say that the system infers, say,
the temperature of the room from the state of a bimetal strip. For
there is nc possibility that the system would behave in the same way

and fail to represent the magnitude in question. Thus we can describe



105

the system in representational terms only in circumstances in which it
operates veridically; there are no cases in which the system can be
said to falsely represent a particular magnitude.

It is more reasonable to describe the operation of modular
computational systems that exploit natural constraints as inferential
because they compute functions from representational content to
representational content where failure to represent veridically is
explicable as a consequence of the normal operation of the system.
Circumstances in which the system fails to covary with the relevant
stimulus magnitudes are specified over the relations between states of
the system that define its computational behaviour; the system need
not malfunction in crder to fail to covary with a stimulus magnitude.
Hence we can assign representational content to states of the device
independently of whether the representation is true. So computational-
level descriptions of the sort described by Marr are perhaps the
simplest cases in which we can meaningfully apply the notion of

error.

7. Summary.
We can now summarize the conclusions reached in this
chapter with respect to a language of thought in early vision. Of the

two versions of the language of thought hypothesis, there is no basis
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for claiming that the stronger version is true of early visual processes;
*hat is, it is probably false that the early visual system is a program-
using system. In fact, modular processes of the sort described by Marr
are those that are designed to avoid the kind of plasticity of
behaviour that makes program-using systems useful. However, there
is a theoretical justification for claiming that the weaker version -- the
claim that visual processes compute symbol transformation

functions - is true of early vision at the computational level. While

there is an argument, based on the complexity of the relation between
the image and the final representation, to the conclusion that the
weaker version is true at the algorithmic level also, the current
evidence is insufficient to draw firm conclusions.

Since there is not enough evidence to assert even the weaker
version of the hypothesis to early vision, it appears unreasonable to
claim that there is a language of thought in any interesting sense in
early vision. This conclusion is justified, I think -- especially with
regard to the claim that the symbolic transformations of vision
constitute a language. Yet the fact that the notion of error has a
genuine explanatory role lends some support to the use of mentalistic

terminology in descriptions of the modular processes of vision.



APPENDIX ONE
GIBSON'’S THEORY OF DIRFCT PERCEPTION

0. Introduction.

In Chapter 1 I noted tne close relation between Gibson’s and
Marr’s use of global properties of the natural environment in
explaining the veridicality of perception. In Section 1 of this appendix
I discuss Gibson’s arguments against computationalism, which he
bases on this feature of perception theory. I conclude that Gibson's
anti-computationalist claims are based on a misunderstanding of the
significance of higher-order vuriables in perception. In Section 2 1
argue that Gibson’s claim that perception theory should not be based

on experimentation involving illusion is similarly flawed.

1. Mentalism and higher-order variables.

According to Gibson, the important aspect of the idea of
higher-order variables in the ambient light is thai it demonstrates how
perception can be explained in terms of relations between physical
variables.

The inhomogeneities of the retinal image can be analyzed by the
methods of number theory and modern geomeiry into a set of
variables analogous to the variables of physical energy. This says,

in effect, that the order or pattern of the retinal image can be
considered a stimulus. (1955: p.9)
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The basis of this claim is that values of higher-order
variables need not be computed from first-order values but can be
directly detected by an appropriately constructed device. By analegy,
Gibson points to the manner in which radio receivers are tuned to a
particular frequency; there is no sense in which the receiver internally
represents the frequencies of incoming signals and selects the correct
one. Gibson suggests that in a similar way the visual system is
"tuned” to pick up the values of higher-order variables in the ambient
light. There is no need for the system to calculate higher-order values
from the values of light stimulation at individual points on the retina
as, on Gibson’s account, classical theories have traditionally assumed.
According to Gibson, once the information content of patterns in light
stimulation has been determined, all that remains for a complete
theory is the isolation of neurophysiological structures that respond to
appropriate patterns.

Part of Gibson’s argument against internal representations is
based on his identification of computations on interpreted states with
unconscious inference from momentary sensory states. Thus, on his
view, the appeal to representations in perception theory is a species ot
"mentalism”, i.e., the claim that cognitive processes should be
explained in terms of the categories of rational thought. Gibson argues

that historically the failure to recognize the role of global regularities
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in the physical environment in fixing visual information led both
empiricists and nativists to search for processes that supplement the
meagre information supplied by two-dimensional point-stimulation at
the retina. As he sees it, the only premise supporting mentalism is
that three-dimensional properties of objects cannot be determined from
momentary point-stimulation, and so must presumably be inferred
with the aid of background knowledge, either innate or learned.
Hence, recognition of information carried by higher-order variables
eliminates the support for mentalism. A theory of visual perception,
as he sees it, has only two components: (1) a description of the
information available in the spatial structure of ambient light, and (2)
a neurophysiological theory that explains how this information is
picked up by the visual system. There is no need on this view for a
description of how the information is represented and processed by
the organism. On his view, it follows by the same reasoning that

descriptions of perceptual processes as computational operations on

representations are fundamentally misguided. He says for example,

Not even the current theory that the inputs of the sensory channel
are subject to "cognitive processing” will do. The inputs are
described in terms of information theory, but the processes are
described in terms of old-fashioned mental acts: recognition,
interpretation, inference, concepts, ideas, and storage and retrieval
of ideas. These are still the operations of the mind upon the
deliverances of the senses, and there are too many complexities
entailed in this theory. It will not do, and the approach should be
abandoned. (1986: p.238)



110

However, Gibson’s argument against internal representations
in computational theories rests on a misunderstanding of the true
significance of higher-order variables. The role of higher-order
variables does not eliminate appeal to computational relations among
representations. Rather relations between higher-order variables in the
stimulus permit the use of modular computational systems. As we
saw in Chapter 4, Gibson’s claim that early vision does not have a

decomposition into representational processes may be correct at_the

algorithmic level. But this is not for the reasons that he cites in his
criticisms of the computationalist program. On Gibson’s view, internal
representations are postulated to explain how impoverished stimuli
are supplemented by background information from memory to
produce veridical perception. Once this requirement is dropped, he
argues, the appeal to representations is without basis. But questions
concerning the veridicality of early perceptual processes are
computational-level issues involving the information-processing
problems involved in explaining perceptual behaviour. Considerations
involving the character of internal representations and processing are

algorithmic-level questions which concern the realization of

computational-level functions, and not the supplementation of

impoverished stimuli as Gibson supposes.
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2. Illusions and natural constraints.

The discussion so far reveals the error in Gibson'’s insistence
that theory construction should not be based on experimentation
involving perceptual illusions. According Gibson, the two
requirements: (1) that a theory specify the conditions under which
perception is nonveridical; and (2) that it provide explanations of
these perceptual failures, are both misguided. Gibson argues that
theory construction should be an attempt to uncover higher-order
variables in the image that are correlated with properties of the
physical world, and thus serve as channels for information about the
distal scene. On his account, experimentation involving illusions is
based on the assumption that illusions reveal the nature of the
internal representations involved in unconscious inference. These
representations, he claims, are hypothesized on false grounds. Hence
perception theory ought to concern itself with the conditions under
which perception is successful. Experimentation involving illusions, so
the argument goes, only leads to failure to identify these conditions.

While Gibson is correct that the first task of theory
construction is to identify the stimulus relations utilized in obtaining
information about the world, knowledge that a given variable can
provide information about the distal scene must be coupled with a

confirmation that the variable is used in this way by the system. Thus
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even at the outset, experimental procedure must involve removing
potential sources of information to isolate those that are actual sources
from those that do not affect the performance of the system.
Discovering the conditions under which illusions occur is the only
way of ascertaining the particular computational-level theories
implemented in the operation of the system.

Gibson's standard reply to arguments of this form is that
illusions are situations in which the full higher-order variables of
normal perception are not presented to the system. Hence, he argues,
illusions do not properly identify those variables. For example,
stereograms give illusory perceptions of depth cnly because some part
of the complete stimulus array is absent; hence veridical binocular
perceptions of depth are the effect of a more complex variable in the
stimulus than that available in a stereogram.

A problem with this reply was first formulated in
Chomsky’s (1959) critique of Skinner; that it applies to Gibson’s theory
has been observed by Fodor and Pylyshyn (1981).! The problem is
that without constraints on descriptions of higher-order variables,

explanations become trivialized in the sense that whatever stimulus

'. As Fodor and Pylyshyn note, Gibson does not commit the same
error that Chomsky attrigutes to Skinner. According to Chomsky,
Skinner collapses the distinction between controlling stimulus and the
property perceived. By contrast, Gibson does distinguish distal
properties from their corresponding stimuli, but his argument is
nonetheless similar in form.
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array causes veridical perception of a feature of the stimulus serves to

define the higher-order variable for that feature. According to Fodor

and Pylyshyn, we need an independent criterion for what counts as
an appropriately bounded segment of the stimulus array. (1981:p. 171)
But while interesting, this line of criticism misses the critical error in
Gibson’s theory. For, as we saw in Chapter 1 and in the last section,
Gibson’s emphasis on the identification of higher-order variables is a
red-herring. The task of perception theory is not just to identify the
variables exploited in veridical perception, but also to supply a
complete explanation of how the response to such a variable produces
veridical perception. According to both Gibson and Marr, perception
of most features of the distal stimulus depends on a relation between
it and some other feature of the stimulus — one that is a consequence
of a specific set of natural constraints. Experimentation involving
illusions is necessary to identify those natural constraints, and thereby
to identify the relations between physical magnitudes that support

perception of the distal stimulus.



APPENDIX TWO
STEREOPSIS AND THE MATCHING PROBLEM

In Chapter 1 I argued that the computational level of
description of early vision is autonomous of the algorithmic
decomposition of the system in the following sense. The functions that
appear in a complete computational-level description of the relation
between the image and the final representation are determined by the
relations between stimulus magnitudes upon which the success of
visual operations depends. In this way the set of functions in the
computational-level decomposition is not determined by the functions
that specify the steps in the algorithmic realization of the computation
by states of the system. In this appendix I illustrate this point by a
discussion of Marr and Poggio’s (1979) computational-level theory of
stereoscopic vision.

The two eyes receive slightly different views of the world
due to their different positions in the head; stereopsis is a process
whereby the difference between the two views is used by the visual
system to determine the relative distances of objects outward from the
eyes. The basis of stereopsis is the trigonometric relation between the
distance of an object from the eyes and the angle formed by the two

lines of sight to the object from each eye. In Figure 1, the two points
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P, and P, lie along a single line of sight from the left eye. As the
illustration shows, the relative distances of points along a line of sight
are a function of the differences in the values of a at each point. This
difference is generally called disparity. Most importantly, disparity is a
measure of the difference in angular distances between points in the
right and left images. Thus in Figure 1, the difference between o and
a’ is equal to the angle ¢.' Hence the relative distance of objects from
the eye is recoverable from the relative distances between tokens in
the two images.?

Since the slope of a plane surface is the integral of its
distance, this principle can be extended to determine the orientation of
plane surfaces in the distal scene. The relationship between disparity
and distances along a line of sight illustrated in Figure 1, varies with
change in the direction of the line of sight. But since this variation is

regular, the orientation of a surface in front of the viewer is

'. To see this easily for yourself, close your right eye and place
your two thumbs one behind the other in front of your left eye. Now
close your left eye and open your right eye — the distance between
the two thumbs in the view of the right eye is disparity. Notice how
the disparity varies with changes in relative distances of the two
thumbs from the left eye.

2, Following Marr, I will use the term "token" to refer to any

mechanically identifiable feature of the image. Although its use by
Marr is tied to his particular theory of the primal sketch, its use here
without such connotation maintains terminological continuity. As we
have seen in Chapter 3, the term "feature” has its own theoretical
associations.
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recoverable from the rate at which disparity changes across the
surface. Thus in Figure 2 the horizontal angle 6 of the line L at P is a
function of the rate at which a varies with change in the direction §
of L away from P. Accordingly for a plane surface we can define
disparity in this sense as the instantaneous rate of change of o at a
point on a surface. In Figure 3, disparity at P can be approximated
from the difference in relative distances between 1, 1, and 1, in the lef*
image and r,, 1, and r, in the right image.

Stereoscopic vision, then, is asserted to be based on the
relation between disparity and distance from the eye. Accordingly,
part of the explanation of stereoscopic vision is the assertion that
perceived depth is the result of the computation of a function frc
disparity. As a description of a relation between variables in the
stimulus, this assertion makes no claims about how that relation is
computed. Notice, however, that the assertion that depth perception is
computed from disparity entails the claim that disparity is available to
the visual system in the sense that the system must first somehow
derermine disparity values across the field of view. Since disparity is
simpiy a difference between relative distances in the two images, it
might appear that disparity is directly available to the system in the
sense that there is a purely neurological description of a mechanism

that compares the variation in distances across the two images.
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FIGURE TWO



FIGURE THREE
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However, the determination of disparity involves a distinct
information-processing problem, the solution to which requires a
computational-level description of a functional relation between

stimulus variables. The problem, referred to as the matching problem,

is to determine which pairs of image tokens should be matched in
measuring positional discrepancy between the two images. Let us look
more closely at the problem and at Marr and Poggio’s (1976) solution
to it.

It is only possible to determine disparity from relative
distances in the right and left images if there is a way to match those
tokens in the two images that are formed by the same points in the
distal scene. Thus in Figure 3 there must be a way of matching each
}; with r,. Notice that the correct matching — that is, the matching that
yields true disparity values across the field of view — is one that
satisfies a particular relation between the matched tokens of the
images and points in the distal scene: A matching is correct if the
matched pairs of image tokens are those formed by the same points
in the distal scene. But this relation is not directly available to the
system in the sense that there is a purely neurological description of
how the system selects the pairs that stand in that relation. The
mechanism cannot match tokens in virtue of the fact that they have
the same distal origin. The problem, then, is to find another way of
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matching tokens that selects the same pairs but that refers only to
some property P of the two images that is detectable by a mechanism
in the system. So in_addition to the neurological description of the
mechanism that selects pairs on the basis of P there must also be an
explanation of the fact that the selection yields the correct set.

The matching problem is one of a group of similar
information-processing tasks referred to collectively as the
correspondence problem. Just as in stereopsis, the stimulus variable
from which distal properties are determined in the computation of
shape from variation in two-dimensional projections is change in
relative distances between image tokens with variation in viewing
position; and there are other processes that utilize the same relation.
In order to exploit such a variable in any of these operations the
system must be able to determine which tokens in the image at
different viewing positions are those formed by the same features in
the distal stimulus. Notice that in all of its instances the
correspondence problem is a matter of determining relations between
tokens in the image and features of the distal scene. Thus whenever
variation in spatial relations in the image is used to calculate spatial
relations in the physical world, the system must somehow obtain
prior information about the relation between the retinal image and the

world.
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Of course the matching problem in stereopsis is soivable if
each object or marking in the distal scene is qualitatively distinct
since, in such a case, there need only be a mechanism that matches
identical tokens in each image. But this cannot be assumed to hold in
the physical world; moreover, we know from an elegant set of
experiments devised by Julesz that the visual system is able to solve
the matching problem on the basis of the discrepancy in distances
between tokens in each image. More precisely, from the difference in
relative distances between tokens in a given region of the right and
left images, the visual system determines a disparity value chat is
correct for images produced under normal conditions.

Marr and Poggio’s (1979) solution to the matching problem
is based on the fact that false matches produce descriptions of the
distal scene that are inconsistent with certain global properties of the
normal physical environment. Notice that each possible matching for a
given region of the image determines a set of disparity values for that
region, and thus also determines a set of surface orientation values for
the region. Marr and Poggio’s solution exploits this fact to eliminate
those matches that yield descriptions of surfaces that do not occur in
the normal environment. According to Marr and Poggio, the correct
matching is described by three rules restricting the set of possible

correct matches; each rule eliminates certain matches that cannot be
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correct in virtue of a specific global property of the physical world.

The three rules are,

COMPATIBILITY: Only qualitatively similar tokens in the right
and left images can be paired.

UNIQUENESS: Each token in ore image can be paired with at most
one token in the other image.

CONTINUITY: The disparity of matches varies smoothly; that is,
disparities at adjacent points in the image will usually
be nearly equal.

The first rule reflects the fact that only qualitatively similar image

tokens could have been produced by the same distal feature. The

second is based on the fact that only one point in the distal scene is
visible along a single line of sight -- matching any token in either
image with two tokens in the other image is presumably inconsistent
with this fact. The third rule is suggested as a consequence of the fact
that surfaces in the world are relatively smooth in comparison to area.

Marr argues through an informal proof that a set of matches that

satisfies these three rules is a correct solution to the matching

problem.
Given the existence of the matching problem, stereopsis
involves the computation of two distinct functions: a function F, that

determines disparity values from distances in the two images, and a

function F, that determines perceived depth from disparity. Yet we

can also see that in one sense it is unnecessary to claim that disparity
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is computed by the system at all. For it is possible that the
computation of depth from the positions of tokens in the two images
is performed in a single step that has no algorithmic decomposition.

Given the function F, from distances across the two images
to disparity, and the function F, from disparity to depth, there is a
composite function F, F, asserted to be computed by the system from
distances between tokens in the right and left images to perceived
depth. The point to notice, then, is that the computation of F, F, need
not have an algorithmic-level decomposition such that the system
computes the sequence <F,, F,>. That is, the algorithmic-level
explanation of the computation of F, F, may not involve a mapping
from physical states of the system to the values in the range of F;; the
interpretation function I may simply be a mapping from the
computational states of the system to the union of the domain of F,
and the range of F,.

But while this is true, we can also see that the

computational-level description of stereopsis must decompose the

operation into two functions to explain the dependence of the success
of depth perception on contingent facts about the physical world.
Each rule in Marr and Poggio’s solution to the matching problem is
based on the assumption of a specific global property — a natural

constraint -- of the world. As we have seen, part of the explanation of
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stereopsis must be an explanation of how the properties of the image
used by the system to solve the matching problem determines the
correct set of pairs. Hence the theory must include an explanation of
how the solution to the matching problem depends for its success on
the natural constraints. But this is possible orly if the description of
the relation between image and percept is decomposed into two
operations: (1) calculation of disparity from relative distances in the
two images, which involves matching pairs of tokens in the images,
and (2) calculation of depth or surface orientation from disparity.
Hence the perception of depth in stereo vision must be seen as the
product of two operations independently of whether or not the
realization of these operations has an algorithmic-level decomposition.
Of course, the point does not depend in any way on ‘he
specific content of Marr and Poggio’s solution to the matching
problem. There must always be some description of the pairs over
which disparity is determined; hence if Marr and Poggio’s solution is
not experimentally confirmed, there is some other function that
describes the pairs from which disparity values are taken. (In fact
there is evidence that the uniqueness constraint is not obeyed in
human vision. See Weinshall 1989.) And there must be an explanation
of how this matching is veridical under normal conditions. Whatever

the solution to the matching problem turns out to be, then, a
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computational-level theory of stereopsis must decompose the operation
into solutions to two distinct information-processing tasks, regardless

of the number of steps in the algorithmic-decomposition of the

operation.



APPENDIX THREE
NEUROPHYSIOLOGY AND IMAGE INTERPRETATION

In Chapter 3 I argued that neurophysiological theories of
visual processes are explanatorily incomplete. Understanding vision
requires a computational-level theory which, as we saw in Chapter 1,
is autonomous with respect to the algorithmic level of < escription,
and hence also with respect to the physical level. The role of the
computational level is to describe the relations between stimulus
variables upon which the veridicality of visual representations
depends, and to do so in a way that specifies precisely how these
relations can be mechanically computed. This task, we saw, is
logically prior to, and unaffected by, the question how the relations
are actually computed by the system. In this discussion I described
Marr’s criticism of the feature-detector theory of vision which,
according to Marr, is unsuccessful because it ignored computational-
level theories in favour of neurophysiological investigation. In this
appendix I illustrate this point by describing how Marr and Hildreth’s
(1980) theory of edge detection provides a clear computational-level
interpretation of neurophysiological observations, and thus explains
these observations in a way that is impossible without such an

interpretation.
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Recall from Chapter 3 that the feature-detector strategy is
based on the fact that the responses of single cells in the neuronal
structure of the visual system signal the presence of patterns of light
intensities in specific regions of the -2tinal image. It was
experimentally discovered that the behaviour of higher-level cells in
the visual system is determined by the individual responses of
collections of receptor cells in different regions of the retina. Since the
firing of a receptor cell may either inhibit or excite the firing of a
higher-level cell, the latter can be thought of as responding selectively
to specific variations in light intensity in the grey level image.

The idea here is quite simple. In order to detect changes in
light intensity in the grey level image it is necessary only to compare
the intensity at one location with that at another. The simplest way to
do this is to subtract one from the other; the difference will be a
measure of the intensity gradient across the spatial interval separating
the two points. A simple mechanical way of doing this is to weight
the two values by -1 and +1 respectively and take the sum of the two
results. Thus the excitatory and inhibitory cells may be thought of as
weighting the light intensity values at different points by a negative
and positive factor; the higher-level cell will fire if the difference in
value across the region is within a certain interval indicating a

gradient within a given range. The initial work in this domain was
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Kuffler's (1953) discovery of the centre-surround structure of the
receptive field of retinal ganglion cells': Receptor cells in the central
region of the receptive field provide excitatory input to the ganglion
cell while those in the surrounding region provide inhibitory input
(and vice versa).

From these discoveries it is argued that higher-level cells in
the system perform complex information-processing tasks the results
of which carry specific information about the stimulus. The inference
is supported by a number of subsequent studies. For example, Lettvin
et. al. (1959) conclude that signals of nerve fibres in the retinal
ganglion of the frog indicate four specific features of the image
independently of general illumination: local sharp edges, dark objects
with convex edges, moving edges, and sudden reductions in
illumination. And Hubel and Wiesel’s extensive study of the receptive
fields of cells in the lateral geniculate nucleus and in the visual cortex
suggest that cortical cells are sensitive to bars and edges at different
orientations in the image.

According to early theories, these results indicate that visual

processes detect specific features of the image, collections of which are
correlated with properties of the distal stimulus. This idea suggests

that understanding vision can be accomplished by determining,

!. The receptive field of a cell is simply the area of the retinal
image to which it is responsive.
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through direct neurophysiological investigation, the features to which
cells in different levels of neurological structure are responsive. Yet it
proved difficult to extend the initial results. Part of the problem is
simply the difficulty involved in specifying the image features to
which higher-level cells are responding. Thus Marr argues that the
range of stimuli to which cells as described by Hubel and Wiesel
would respond is not specific enough to be interpreted as indicating
the presence of any particular feature in the image; for example, those
with bar-shaped receptive fields would respond equally to the
presence of a bright edge or a dim bar.

But this difficulty is symptomatic of a deeper problem. The
method of theory construction suggested by the feature-detector idea
is to describe the extraction of information from the image by
describing the behaviour of neural units. But as we have seen,
understanding the role played by perceptual mechanisms is not
obtained solely through descriptions of their behaviour; behaviour
must be explained by specifying the information-processing problem
for which it provides solutions. Even if it were possible to specify
precisely the image features to which a cell is responsive, such
knowledge can be used to explain the working of the system only if

we also know what information about the stimulus such a feature is

interpreted as carrying. If, as Marr contends, visual processes exploit
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relations between higher-order variables in the stimulus that result
from natural constraints, providing interpretations of neural activity
will require a precise description of these relations, and of the natural
constraints upon which they rest. To see this clearly, let us look at
Marr and Hildreth’s (1980) interpretation of the results obtained in the
feature detector studies.

Recall from Appendix 2 that the correspondence problem --
for example, the matching problem in stereopsis — is the question
how to match items in the image at different views; but what are the
items to be matched? Any solution to the correspondence problem
that does not employ specific information about the distal scene will
depend on some set of global natural constraints to reduce the sei »f

possible matches to one. But such solutions are possible only if the

items that are matched reflect properties of the distal stimulus, such
as shadows and edges. So solving the correspondence problem
presupposes a means of locating tokens of the image that are, as Marr
puts it, "physically meaningful". The work begun under the feature-
detector program has a precise formulation as a computational-level
problem: What operations on the image will specify the locations and
descriptions of items in the geometrical structure of the image that

reflect properties of the distal scene? This is the task of generating the
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primal sketch from the grey level array. The reasoning of Marr and
Hildreth in describing the raw primal sketch is roughly as follows.

A glance at any two-dimensional, black and white image
will show that properties of physical surfaces, such as shadows and
edges, are often reflected in the image by changes in the level of light
intensity. So the first part of the task might be to find the locations of
changes in light intensity in the grey level image; this possibility
receives support from the structure of receptive fields. Moreover, there
is a natural way to locate these changes in the image. Changes in
light intensity from dark to light, or vice versa, are indicated by
critical points, i.e., points in the image at which variation in intensity
gradient in a particular direction changes from an increasing to a

decreasing gradient. If we think of light intensities in_a single given

direction across the grey level image as values of a single-valued
ditferentiable function, these points are indicated by peaks in the first-
derivative of the function or by zero-crossings in the second-
derivative. The task of locating intensity changes in the image is thus
equivalent to locating critical points in the grey level image — finding
the peaks the first derivative or zero-crossings in the second-derivative
-- in any direction across the image.

However, according to Marr and Hildreth, two features of

the physical world impose conflicting constraints on the task of
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accurately locating and describing changes in light intensity that
reflect properties of the world:

(1) The changes in light intensity that the operators are required to
detect occur at a range of scales. Evidently a range of operators is
required, where each operator responds effectively for a narrow range
of scales. For if intensity levels are compared over a very small
interval, the difference in intensity levels for very slow changes in
intensity over a large area may be too small to be detected by an
operator. And, on the other hand, if the intensity levels are compared
over a large interval, small sudden changes in intensity will be missed
altogether.

(2) The tokens that the operators are required to detect are "spatially
localized" at their own scale, in the sense that they do not consist of
repeating patterns like ripples on a beach.

The difficulty that Marr and Hildreth point to is that we
cannot sim*ltaneously minimize the range of scales to which the
operator is sensitive and maximize the accuracy with which critical
points are detected. There is now a clear formulation of a
computational-level problem: Find an operator which, when applied to
the image, achieves the best possible results in both range of intensity
changes and spatial localization. To see how Marr and Hildreth’s

solution to this problem provides a computational-level interpretation
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of observations of neural behaviour, let us look at the problem and
their solution in more detail.?

First notice that locating critical points in the image at a
given scale is equivalent to finding the critical points in the image
after it has been blurred by a smoothing function. The value of a
smoothing function for a point in the image is an average of intensity
levels in the surrounding region; the larger the region over which
intensity levels are averaged, the greater the blurring of the original
image. Such a smoothing function has the effect of wiping out
intensity changes below a certain scale. We can combine such a
smoothing function with an operator that produces an approximation
to the second-derivative in a single direction by an operator whose
weighting function has the graph illustrated in Figure 4(a). The
horizontal axis of the graph represents a set of points along the image
in one direction; the value of the graph at each point along the
horizontal axis indicates the weighting factor applied to the intensity
level at that point in the image. The value of the operator at a point
P in the image is the sum of the weighted values. We can think of

the neuronal structure of the system as having a collection of such

2

. The problem described in the following paragraphs has a
formal similarity to the uncertainty principle in quantum mechanics
although it is not a quantum mechanical effect. The problem
discussed below that arises in d.scribing an appropriate operator to
detect intensity changes is a consequence of the fact that the output
graph of such an operator is its Fourier transform.
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(a)

<+

(b)

FIGURE FOUR
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operators in different directions across the entire retina.

Now if, in engineering terms, we think of light intensities
across the image in a given direction as a signal varying in space
rather than in time, then a smoothing function can be thought of as a
filter that allows only a specific range of "spatial frequencies"? In
these terms, the operator depicted in 4(a) is a filter whose output
indicates zero-crossings in the second derivative at certain spatial
frequencies but not others. We can represer.t the response of such an
operator by another graph where the horizontal axis represents spatial
frequencies, and where the values of the graph represent the strength
of output of the operator at each spatial frequency. Then an operator
described by the graph in 4(a) will have a response graph of the
shape illustrated in 4(b). Clearly such an operator is not ideal in the
sense that it responds to a narrow range of spatial frequencies, and in
fact it will miss some critical points in the image. On the other hand,
if we define an operator that responds only to a narrow range of
spatial frequencies as illustrated by Figure 5(b), the weighting function
of such an operator has a graph like that illustrated in Figure 5(a).

This second operator is not suitable since the side lobes in the

®. The spatial frequencies of a signal are the components of its

Fourier transform, where the Fourier transform is a representation of
the signal as the sum of a set of sine and cosine waves.
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weighting function will produce echoes in the form of responses in
the output profile that have no correlates in the image.

Although the conflict here arises from mathematical facts,
Marr and Hildreth point out that the conflicting requirements on
operators are dictated by the structure of the physical world. Marr
and Hildreth’s solution is to blur the image by applying a weighting
function with the form of a Gaussian or normal distribution.
Combining such a weighting function with an operator that produces
an approximation to the second-derivative yields an operator with a
graph of the form depicted in 6(a); the output profile of this operator
is that depicted in 6(b).*

The operators we have been discussing apply only in a
single direction at a time so that we have been considering only the
detection of intensity changes in a single-valued function in one
direction. But the grey level image is a two-valued function where the
visual system will need to detect critical points in any direction. We
might solve this problem by using a collection of operators at
different orientations, a solution first tried by Marr (1976). However,
Marr and Hildreth argue that the isotropic second-order Lapiacian
operator ¥2 will detect intensity changes in any direction, given certain

assumptions about the image. Hence they conclude that the ideal

!. The basis of this solution is the fact that only a Gaussian
distribution is its own Fourier transform.
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(a)

(b)

FIGURE SIX
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operator is the Laplacian operator applied to an image blurred by a
Gaussian weighting function. These two operations can be combined
in a single operator V2G, the weighting function of which has the
"Mexican hat" form of the profile depicted in Figure 6(a) rotated
around its centre.

But notice that, as a computational-level result, the V2G
operator describes only the relation between the image and the
perceived intensity changes, not the computation of this relation by
the system. Marr and Hildreth point out that the V2G «perator is
closely approximated by a function obtained by taking the difference
between two Gaussian distributions, -- a function that closely
resembles the form of the centre-surround receptive fields of cells in
the early visual system. There is, then, neurological evidence that the
system determines the result of applying the V2G operator to the
image by taking the difference between the values obtained from two
Gaussian weighting functions. Here, then, there is a clear distinction
between the computational-level demonstration that the computation
of a particular function solves an information-processing problem, and
the description of how that function is computed by the system. Thus
the computational-level account provides a clear interpretation of the
behaviour of the neural units that is lacking in the feature-detector

approach. Marr’s defence of the computational level is precisely that it



provides a clearly defined set of information-processing tasks

performed by the visual system to serve as a basis for computational

modelling,.




APPENDIX FOUR

THE ROLE OF EMPIRICISM IN HELMHOLTZ'S
THEORY OF VISION

The purpose of this appendix is to suggest a reading of
Helmholtz’s empiricism in perception theory. On this reading
empiricism is the only possible methodological principle that will
yield explanations of perceptual phenomena. Properly understood, the
function of empiricism in Helmholtz’s explanations of vision is similar
to the role of Marr's computational level of description.

My argument will rest on a description of a particular

theory in The Treatise on Physiological Optics. The theory is selected

to make a specific point. Helmholtz's empiricism has been criticised
for its mentalist features, i.e., for its appeal to unconscious inference
in perception. But much of this criticism is based, I believe, on
incorrect understandings of the methodological and explanatory roles
his empiricism plays on his theories.

Gibson argues that Helmholtz’s empiricism, and his
mentalist descriptions of perceptual processes, result from the fact that
Helmholtz attempts to find the image correlates of properties of the
physical world in a momentary, static image. Thus, according to
Gibson, Helmholtz's empiricism is based on the underdetermiration of

three-dimensional properties of the world by momentary static cues.

142
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But in the particular example that I will discuss, there is no such
underdetermination. Rather, Helmholtz’s theory is intended to explain
how properties of a monocular image — viz., straight lines -- are
detected by visual processes when they are not directly detectable in
the sense described in Section 4 of Chapter 1, that is, when an
explanation of the response of the visual system cannot be given just
in terms of the stimulus property arid neural processes of the system.

Meyering (1989) argues that Helmholtz’s mentalism derives
from a methodological conservatism: since inference is a familiar and
well-established psychoiogical process, it is preferable to seek
explanations of mental abilities in terms of unconscious inference
when there are no other well-understood explanations. But I argue
that Helmholtz's empiricism, and thereby his appeal to unconscious
inference also, is not based on assumptions about the mechanisms by
which the solutions to perceptual problems are implemented. Rather,
like Marr’s computational level of description, it has a methodological
role in uncovering the relations between stimulus properties that
provide the basis for perceptual abilities. Helmholtz’s solutions to
visual tasks thus provide a basis for computational theories just as
readil-- as they do for theories of unconscious inference.

Let us look first at how Helmholtz understanas his

empiricist» Certainly part of Helmholtz’s empiricism is the assertion
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that the correlations between properties of the image and properties of
the world which are used in visual perception must be learned
through experience. But a better understanding of its methodological
role is gained by taking empiricism to be the more modest claim that
the psychologically primitive contents of the mind in perception
specify only states of the sensory system and not the spatial locations
of features of the world.

It follows that the perception of direction and distance are the work
of the intellect. This interpretation is suggested in the third volume of
the Physiological Optics where he gives as the fundamental principle
of empiricism the "theory of signs".
The sensations of the senses are tokens for our consciousness, it
being left to our intelligence to learn how to comprehend their
meaning.
(1867, Vol.3: p. 533)
In Helmholtz’s view, the theory of signs is an extension of Miiller’s
doctrine of specific nerve energies. For example, in the opening
section of the second volume of the Physiological Optics he says,
Whether the sun’s rays will be perceived as light or heat, is simply
a question of whether they are perceived by the optic nerve or by
the cutaneous nerves. But whether they will be perceived as light
that is red or blue, and dim or bright, or as heat that is mild or
intense, depends both on the nature of the radiation and on the
condition of the nerve. The quality of the sensation is thus in no

way identical with the quality of the object by which it is aroused.
Physically, it is merely an effect of the external quality on a

particular nervous apparatus. The quality of the sensation is, so to
speak, merely a symbol for our imagination, a sort of earmark of
objective quality.




145
The first two sentences of this passage are Miiller's doctrine; the last

sentence is Helmholtz’s theory of signs.

Intuition theory, to which Helmholtz’s empiricism is

opposed, is described in the following passage from the third volume.

The cardinal fact about [all intuition theories] is that the
localization of the impressions in the field of view is derived
through some innate contrivance, and either the mind is supposed
to have some direct knowledge of the dimensions of the retina, or
it is assumed that, as the result of the stimulation of definite nerve
fibres, certain apperceptions of space arise by virtue of an innate
mechanism that cannot be further defined. (1867, Vol. 3: 541f)

So empiricism is contrasted with the view that the perception of

spatial location is either a matter of direct knowledge or the

immediate result of nervous activity.

Why does Helmholtz believe that spatial perception requires
the operation of the intellect? He gives several reasons in various
places, but in his discussions of specific perceptual phenomena he
almost always claims that intuition theory is unable to account for
these phenomena without ad hoc revisions. So his constant view is
that empiricism is the only methodological principle that will yield
explanations of perception.

My example for this claim is Helmholtz's discussion of the
relation between ocular movements and apparent size and directior. in
the visual field. To this end let me describe two laws of ocular

movement discussed by Helmholtz.
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Consider the eye first in its natural, or primary, position
looking straight ahead. Any change in the direction of the line of
sight can be described by the elevation and azimuth of the secondary
position as measured from the primary position. However, as well as
changing the direction of the line of sight the eyeball may also rotate
around that line. Let us call rotation of the eyeball around the line of
sight, the torsional rotation.

The first point to note is that there must be some torsion in
the movement of the eye. The eyeball will move to a new position
with no torsion only if it rotates about an axis that lies in the plane
perpendicular to the primary line of sight, roughly the plane formed
by the two eyes and the chin. But any movement from a secondary
position that does not return the eye to the primary position involves
some degree of torsion. Using only rotations about an axis in this
plane, the eye can move from one secondary position to another only
by first returning to the primary position, which we know is not the
case.

The two laws of interest for us are Donder’s law and
Listing’s law. Donder’s law is that the eye always adopts the same

amount of torsion for every line of sight. Listing’s law tells us what

the amount of torsion is for each line of sight. Listing’s law is as

illustrated in Figure 7.
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The amount of torsional rotation of the eyeball when the line of
sight moves from the primary position to a secondary position is
the same as if the eye rotated around an axis perpendicular to
both the primary and secondary lines of sight.
It follows from Listing’s law that there is no torsional rotation when
the eye is simply raised or lowered, or moved to one side, from the
primary position since the plane of rotation in these cases is
perpendicular to the primary line of sight. But there is clockwise
rotation when the eye moves toward the upper left or lower right,
and counterclockwise rotation when it moves toward the lower left or
upper right.

The importance of these laws for estimations of the visual
field is that a line that appears horizontal when viewed directly from
the primary position will be tilted from the horizontal whenever there
is torsional rotation of the eye. Thus a horizontal line will appear
tilted when viewed in any of the four corners of the field of view. It
will appear tilted counterclockwise when viewed in the upper left or
lower right extremes of the field of view, and will appear tilted
clockwise when viewed in the lower left or upper right extremes.

There is one last point to make with respect to eye
movement. Let us call the arc traced in the field of view by the line

of vision when the eye moves in accordance with Listing’s law, a

direction line. We can show that every direction line, if continued,

meets the point in the visual field directly behind the line of sight




Listing’s Law

The amount of tortional rotation of the eyeball when the point
of fixation moves from O to P is the same as if the eyeball
rotated around an axis passing through the centre of rotation C
and perpendicular to the plane OCP.

FIGURE SEVEN
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when the eye is in the primary position. When the eye is raised or
lowered, or moved to one side, from the primary position, the
direction lines will be great circles in the field of view; otherwise they
will be circles of smaller diameter.

So much for eye movement; let us now look at
determinations of size and direction in the field of vision. In
particular, I want to look at an illusion that occurs in the perception
of straight lines in the two-dimensional monocular field of view.

We can consider the visual field without depth to be a
sphere with its centre at the centre of rotation of the eye. If we ignore
the difference between the centre of rotation of the eye and the point
of intersection of the rays of light in the eye, we -1n imagine the
eyeball and its field of view as concentric spheres. As the eye moves
in its socket, a point in the field of view will be projected onto
different points on the retina.

Since the visual field without depth is a sphere, straight
lines in the visual field are great circles. And since the visual field
and the eye can be considered concentric spheres, great circles in the
visual field are projected onto great circles on the sphere of the eye.
Hence, we would expect that lines that appear straight to the eye are
great circles in the visual field. But this is not the case. Lines that

appear straight are the direction lines along which the eye moves
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according to Listing’s law. As we have seen, these will be great circles
only in the case of movement up or down, or to one side, from the
primary position. In the periphery of vision, lines that are great circles
in the visual field will appear concave inward. Conversely, lines in
the visual field that are convex inward will appear straight. Thus the
lines of the checkerboard in Figure 8 will appear straight when
viewed close to with one eye. We can also notice this illusion by
looking down at a point cn a table and arrangi..g three pieces of
paper in what appears to be a straight line in the extreme periphery
of vision; the papers are in fact placed in a convex arc. As Helmholtz
points out, the effect is as if the rays of light entering the eye
intersect at the back of the eye rather than near the centre of the eye.

The question is, what is the reason for this particular
illusion? Helmholtz contends here, as he does in every case like this,
that intuitionists can give no explanation for this phenomenon. I
believe his meaning is that, for the nativist, since the order and
distance of points in the stimulation of the eye is precisely the same
as that of points in the visual field, all that is needed for the
determination of distance and direction in the visual field is for this
information to be carried to the sensorium.

On this view, there is no particular reason why the apparent

direction of lines should be different than the actual lines. Once the
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FIGURE EIGHT
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illusion is noticed, it is always possible for the intuitionist to describe
the nervous mechanism accordingly; but this will be an ad hoc
manoeuvre rather than a genuine explanation.

Let us look at the illusion from what I think is Helmholtz’s
perspective. I have rearranged the order in which Helmholtz makes
the points 1 describe, but 1 do not think this alters his point.

One of the things we wish to explain is our ability to
estimate with reasonable accuracy when a set of points lies along a
straight line. Given the correspondence between points in the field of
view and points on the eye, this is possible if we are able to
determine great circles in the order of stimulation on the retina. The
problem is that we need some way to determine these great circles
locally. It is not directly apparent in vision that a line lies on a circle
whose centre coincides with the centre of the eye. In the terms
developed in the discussion of Marr’s work, great circles are not
directly detectable by the visual system.

The solution Helmholtz suggests is based on the fact that
straight lines in the world are such that every part is congruent with
every other part so that they can be moved along themselves. The
only other lines that have this property are circles, but circles are
congruent only when superposed in a certain way. (1867, Vol 3: p.

176) Accordingly, we can determine straight lines in vision as those
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that can be shifted along themselves. But given the nature of eyr
movements, the lines that have this property in fact are not great
circles but the direction-lines. Thus the illusion above is explained if
we assume that this property of lines is used to determine straight
lines. He says,
Now in the field of fixation there is only one species of lines
which require only a direct act of sensation for us to tell whether
they can be shifted along themselves and are therefore congruent
with themselves all over. As shown by the preceding investigation,
on the assumption of Listing’s law, these lines are the direction-
circles. It is true that there may be other circles in the field of
fixation which must be admitted this same property, but we
cannot prove it except by measurements and deductions, not by a
direct act of sensation.
In the field of view, instead of having a ruler that can be shifted,
we have the central place where vision is most distinct ... We shift
the gaze along this line, thereby shifting the line itself and
indicating to ourselves the continuation of this direction.
(1867, Vol 3: pp. 176f)

The point is that even when information about the world is
available in the image projected onto the eye, there must still be an
explanation of how it is extracted.

In the case described above, this is possible only if the visual system
assumes, implicitly or explicitly, that straight lines are those whose
parts are everywhere congruent. Because of the restrictions on eye
movement, this assumption is false; hence the illusion. But if the eye

moves according to Listing’s law there are lines in vision that are

congruent with themselves everywhere. And as Helmholtz
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demonstrates, movements according to Listing’s law minimize the
errors caused by torsional rotation so that the illusion under this
principle is the least possible.

Here is what I think this example of Helmholtz's
explanations of perception illustrates. The task of perception theory is
to explain perceptual abilities - we need to explain how we arrive at
a knowledge of spatial relations from retinal stimulation. This ability
involves extracting the information from available properties of the
stimulus array. The question in the case of each perceptual ability is,
what assumptions about relations between stimulus properties makes
this ability possible? The theory is confirmed when perceptual
illusions are successfully predicted by the assumptions that connect
retinal properties with spatial relations. Intuition theory skirts this
issue, and thus cannot predict illusions or veridical perceptions from
principles established on grounds independent of the phenomena to
be explained. It can account for perceptual phenomena only on the
basis of ad hoc principles designed solely to accommodate the
observed regularities. So, according Helmholtz, empiricism is the only
genuinely explanatory methodology.

Helmholtz's explanation of the perception of straight lines in
the visual field shows how specific perceptual illusions can be

predicted on the hypothesis that a certain relation between stimulus
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properties is exploited in monocular perception. On Helmholtz's view,

relations between stimulus properties can be exploited in this way

only by unconscious inference based on experience. But the theory

itself is independent of this view. The explanatory value of the theory
lies in the framework it suggests for uncovering the relations in the
stimulus that underlie perceptual abilities, and not in the descriptions

of mechanisms by which these abilities are realized.
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