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ABSTRACT

Compact finite differences are introduced with the purpose of
developing compact methods of higher order for the numerical solution
of ordinary and elliptic partial differential equations.

The notion of poisedness of a compact finite difference is
introduced. It is shown that if the incidence matrix of the underly.ag
interpolation problem contains no odd unsupported sequences then the
Pélya conditions are necessary and sufficient for poisedness.

A Pade Operator method is used to construct compact formulae valid
for uniform three point grids. A secona Function-Theoretic method
extends compact formulae to variably-spaced three point g-ids with no
deterioration in the order of the truncation error.

A new fourth order compact method (CI4) leading to matrix systems
with block tridiagonal structure, is applied to boundary value problems
associated with second order ordinary differential equations. Numerical
experiments with both linear and nonlinear problems and on uniform and
nonuniform grids indicate rates of convergence of four.

An application is considered to the time-dependent one-dimensional
nonlinear Burgers' equation in which an initial sinusoidal disturbance
develops a very sharp boundary layer. It is found that the CI4 method,
with a small number of points placed on a highly stretched grid, is
capable of accurately resolving the boundary layer.

A new method (LCM) based on local peclynomial collocation and Gauss~

type quadrature and leading to matrix systems with block

[
[
[N




tridiagonal structure, is used to generate high order compact methods
for ordinary differential equations. A tenth order method is shown to
be considerably more efficient than the CI4 method.

A new fourth order compact method, based on the CI4 method, is
developed for the solution, on variable grids, of two-dimensional, time
independent elliptic partial differential equations, The method is
applied to the ill-posed problem of calculating the interface in
receding Hele-Shaw flow. Comparisons with exact solutions indicate
that the numerical method behaves as expected for early times.

Finally, in an application to the simulaticn of contaminant
transport within a porous medium under an evolving free surface, new

fourth order explicit compact expressions for mixed derivatives are

developed.

iv
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CHAPTER 1

INTRODUCTION




Today there are a wide variety of methods available for the
numerical solution of partial differential equations. They range from
spectral methods used in weather prediction and studies of turbulence
in fluid dynamics to the method of characteristics for problems of gas
dynamics to finite difference and finite element methods for elliptic
partial differential equations.

The methods have been analyzed for simple model problems, many
variants exist within each class, and generally speaking a high level
of sophistication and refinement has been attained. Wwhile large, user
friendly software packages are available to deal w.th a variety of
problems it is true that no one of these major families of methods is
best under all circumstances. As proof of this fact it is noted that
virtually every class of method has been applied to virtually every
class of partial differential equation.

In this thesis we examine and study a genus of numerical solution
from the class of finite differences. These methods, which are
collectively known as compact methods, have sparked some interest in
recent years as a viable alternative to standard finite difference
methods. The compact methods discussed here are based on the use of
implicit compact finite differences involving a function @ and its
first partial derivatives. When compared with classical finite
difference methods these compact methods are capable of easily dealing
with a wide variety of boundary conditions and of yielding higher order
approximations for an equal computational effort. An attractive

feature of these methods is that the coefficient ma*riz of the




associated discrete system is sparse with block tridiagonal or
pentadiagonal structure. In the course of study it became clear that
compact methods are capable of extention to domains of arbitrary shape
without recourse to cooriinate or shearing transformations. While this
possiblity has not been examined in this thesis it is noted that the
popularity of finite element methods for elliptic partial differentijial
equations is due, in large part, to its ability to handle problems on
arbitrary domains.

This thesis is organized in the following manner. Chapter 2 begins
with a discussion of finite differences and their application to the
numerical solution of a second order boundary value problem. The
limitations of such classical methods serve to introduce the notion of
a compact finite difference. A compact finite difference on a set X of
n + 1 nodes is defined as a linear combination of a function and its
derivatives over ¥ resulting from a special case of Hermite-Birkhoff
(H-B) interpolation in which the degree of the highest derivative
present does not exceed n.

Questions of existence and uniqueness of compact finite differences
are first discussed and this is followea by methods for the
construction of such formulae. From the theory of H-B interpclation a
partial answer to the question of poisedness of a compact finite
difference is given by stating that if the associated incidence matrix
contains no odd unsupported sequences then the Pélya conditions are
necessary and sufficient conditions for poisedness,

Compact finite differences are then contructed by a variety of
methods and are classified according to degree and order of truncation

error. A Pade Operator method is used to obtain a large number of




explicit formulae wvalid for uniform three point grids. A second
Function-Theoretic method is also presented and it is shown that this
method extends the compact formulae to variably spaced three point
grids with no deterioration of the order of the truncation error.

Following a review of compact methods, the ocbservation of the last
paragraph is used to develop a new fourth order variable grid compact
method, called the CI4, for the numerical solution of boundary value
problems (BVPS) associated with second order ordinary differential
equations (ODES). The application of the CI4 method results in a
matrix system with block tridiagonal structure. Numerical experiments
are carried out on linear and nonlinear problems and with a variety of
boundary conditions on both uniform and variable grids. The estimation
of rates of convergence suggest a limit of four.

An application of the CI4 method is then made to the time dependent
nonlinear Burgers' equation in which an initial sinusoidal disturbance
develops a very sharp boundary layer. With a Lees three level scheme
for temporal discretization, it is found that the CI4 method, with a
small number of points on a highly stretched grid, is capable of
accurately resolving the boundary layer.

This is followed by the introduction of a new method for the
generation of high order compact methocds for ordinary differential
equations. Denoted the LCM method, it is derived from local polynomial
collocation and Gauss-type quadrature. As an example of the technique,
a tenth order compact method with associated block tridiagonal
structure is presented. Numerical experiments, on uniform grids,
suggest that this high o¢rder method is considerably more efficient than

the CI4 method.




In Chapter 3 attention is turned to the development of a fourth
order compact method, based on an extension of the CI4 method, for the
solution on variable grids of two-dimensional elliptic partial
differential equations. The method is used to investigate the nature
of the interface in a moving boundary value problem involving a special
case of the Saffman-Taylor instablity. The test case consists of the
ill-posed problem of calculating the interface, in the abscence of
surface tension, in receding Hele-Shaw flow in a semi-infinite
rectangular channel. The free surface, which is initially taken to be
analytic, appears to be capable of evolving in two fundamentally
different ways. In the first case, the interface evolves into a 2/3
power cusp at which time analyticity is lost and the model is no longer
valid while in the second case the interface remains analytic for all
finite time developing into a long protuberance known as a Saffman
finger. Exact time dependent solutions for the interface and velocity
field are available for certain initial conditions and these are used
to test the accuracy and behavior of the numerical method.
Calculations, based on the relatively coarse grids used, suggest that
the compact method behaves as predicted with rates of convergence
between 3 and 4 at early times,

Finally, in Chapter 4 an adaptation of the compact method of
Chapter 3 for moving boundary value problems is considered in a
simulation of contaminant transport within a porous medium under an
evolving free surface. Since the free surface and the velocity field
were found to be accurately computed on uniform grids, the implicit
calculation of mixed derivatives was avoided by the use new fourth

order explicit compact expressions for such terms,




All plots appearing in this thesis are based on straight 1line
interpolation. While this gives a rough appearance to plots with only a
few points, it is noted that this is a fair way of presenting results
graphically in that there is no distortion of the maximum error in the

data.




CHAPTER 2

ON COMPACT FINITE DIFFERENCES




2.1 Introduction

In this chapter we are concerned with the derivation and
implementation of higher order methods for the numerical solution of

the following second order two point boundary value problem :

Ld= AS + BF + CO = R 0 <x<1 (2.1.1a)

with the linear boundary conditions

o &0 + B F( =

o d(1) +[3R F(1) =Y (2.1.1b)

Here ® = d(x) and F and S denote the first and second derivatives of ¢
with respect to x; A, B, C and R are given functions of x and possibly
¢®, with A nonvanishing on [0,1], and o, BL' Yoo O BR and Ye
given constants.

In particular we shall be concerned with a special class of finite
difference approximations for boundary value problem (2.1.1). Methods
of this class are now generally called compact finite difference
approximations although at one time or another the terms Pade,
Hermitian and Mehrstellenverfahren have been used. Compact methods
trace their origin to the work of P.H.Cowell and A.D.C.Crommelin
(1907], C.Stormer ([1909] and B.V.Numerov ([1922) (see Hirsh [1983] for

references and problem 10.16 page 487-488 of Blum [1972)). In recent

years these methods have generated renewed interest with the result

R - S




that a variety of specialized technigques have been developed and
applied to fluid flow problems (see review section 2.3).
To motivate a consideration of compact methods let us apply a

standard higher order method to (2.1.1). 1Introduce a uniform grid:
MN - {xil xi - xo + ih, i = 0 to N, xo - 0}

where N is the number of subdivisions of the interval [0,1] and h is

the grid spacing given by 1/N. Then replacing Fi = d;(xi) and Si =

d&x(xi) by the following five~point central finite differences in @

4
i - - h L(5)
i T Ton {43-2 801 ¥ 89, dﬁ-z} 30 ® 6y
s, -—2-{- 0 __ +160__ -300 +160_ - @ }+l4¢‘5’( )
i 7 op? -2 i-1 i i+1 - P2/ T 90 My
(p) aPo
where @' (x) = P and (i-2)h < éi’“i < (i+2)h, the result is a finite

difference approximation to (2.1.la) at x = x given by

121112 -(a; - ne )¢1—2 + 82, - n Jo, ) - G(SAi - thci)d’i +
+8(2a, +nBJo - (a +mB O ¢ =R (2.1.2)

witl. a local truncation error of O(h4).
The resulting set of algebraic equaticns over the grid points of

MN is characterized by a band matrix of width 5. The vector consisting

of the solution to (2.1.2) may be computed efficiently:; the approximate




number of long operations being 11N - 16. Two drawbacks of such a

method are:

a) substantial modifications are necessary near the boundaries of
the integration domain and

b) (2.1.2) is a somewhat nonlocal approximation to (2.1.1).

By the latter we mean the following., If we consider 10 subdivisions of
the domain [0,1}, then approximation (2.1.2) should provide errors
measured in the maximum norm on the order 10'4, provided @ is
sufficiently smooth. However experience indicates that numerical
results con such a coarse grid can fall far short of this expectation.
The discrepancy is due to the fact that the finite difference molecule
on such a grid spans half the integration domain. While the solution,
in the case of boundary value problem (2.1.1), is to refine the grid,
this nonlocal effect can be of considerable importance in the numerical
solution of partial differential equations where grid refinement can be
extremely costly.

Thus we come to the basic tenet of compact methods - to seek higher
order approximations to the boundary value problem (2.1.1) while at the
same time localizing the finite difference approximation to as few grid
points as possible. More precisely, we shall define a compact method
for a boundary value problem ceonsisting of an nth order differential
equation in the variable ® as any finite difference scheme in @ and
possibly its derivatives involving no more than n+l grid points. We

shall further characterize a compact method as implicit if the

approximation requires the derivatives of the unknown variable ¢

10



otherwise it is called explicit.

In section 2 we outline several methods for the derivation of
compact relations. We shall place particular emphasis on two methods.
While the first method, the Pade operator method, is relatively well
known, the second more general method, which is capable of dealing with
the case of general Hermite interpolation, has apparently been
overlooked. This latter technique which is based on functional
considerations was motivated by a suggestion of Merz (1972). Many
useful compact formulae will be presented along with truncaticn errors,
on both uniform and non-uniform grids.

In section 3 we present a review of compact methods with particular
emphasis on those methods which pertain to the solution of (2.1.1) and
to the subsequent work of this chapter. We have found the review
article of Hirsh (1983) helpful in this endeavour.

Then, in section 4, we apply compact relations developed in
section 2 to derive a new compact implicit method, called the CI4, for
the numerical solution of the two point boundary problem (2.1.%). This
method is formally o(hq) even with non-uniform grids; a fact which is
borne out by a substantial number of numerical experiments. The CI4
method is easily applied to non-linear problems and can be extended to
a two-dimensional time-dependent environment.

Finallwv, in section 5, we derive and give numerical results for a
new compact implicit method of O(hlo) for the solution of (2.1.1).
Called the LCM method it is based on local polynomial collocation with
Gauss-type quadrature.

Discussions and conclusions are given section 6.

11




2.2 Derivation of Compact Finite Differences

A compact finite difference, in one dimension, is defined by its
application to an nth order ordinary differential equation(ODE). Let
XgeXqreoor X, form a set ¥ of n+l distinct points from the interval

(a,b] and let h = 1/n be the average spacing between points. Define a

set D of (n+l) (d+l) values by
D= {d)(p)(xi)lc <i<n,0 5p§d}

where d is some positive integer. Then a compact finite difference, on
¥ and with respect to an nt‘h order ODE, is defined as a linear
combination of a function @ and its derivatives from any subset of I in
which the degree of the highest derivative present does not exceed n.
It may be considered to result from a special case of Hermite- Birkhoff
(H-B) interpolation in which d < n. Thus a compact finite difference
involving the set # of n + 1 nodes and any subset of ) may be expressed

as

™1

P o) () =0 + o (2.2.1)
ip i

n
)
i=0

p=0

where a is an integer > 0 and the cip are constants. The construction
of a compact method, as defined in section 2.1 for the numerical

. , . th .
solution of boundary value problems involving an n order ODE, |is
based on such compact differences. In this thesis n = 2,

Now, given any subset of T, it is natural to enquire into the

12



existence of a compact finite difference relation of the form (2.2.1).
It turns out that for some subsets of 9 a relationship of the form
(2.2.1) cannot be found while in other instances the relationship is
not unique. Thus it is important to consider questions of existence and
uniqueness for (2.2.1) and the proper setting for this comes from the
theory of interpolation.

Let X be a linear space of dimension N+l and let 20, 11, cees ZN be
a set of bounded linear functionals on the dual space X*of X. Then the
general interpolation problem may be stated as follows. Given a set of
N+l values w

W W is it possible to find a unique element x €

Ol 11---'

X such that
Zi(x) - "i , 1 =0,1,..., N ? (2.2.2)

The answer to this question is yes if and only if the Zi are linearly
independent.

The following criterion for the functionals Zi to be linearly
independent leads to a method of determining the unique element x € X

satisfying (2.2.2). 1If Xgr XygeoerXy form a basis for X then the Zi €

x*, i = 0,1,...,N are linearly independent if and only if the

generalized Gram determinant (bavis [1975])

det £, (x.) ¥ 0. (2.2.3)
i3

Thus to determine the unique element X, assuming that the xi and !i, i
= 0,1,...,N form a basis for X and x* respectively, we simply express Xx

as the linear combination

13




N
X = z: cjxj
j=0

and determine the unknown coefficients c, from the linear system

3

™1z

(W)
L}
o

cjzi(xj) =w, i= 0,1...,N

Now let X = ?N denote the space of all polyncmials of degree N on
the interval I = [0,1] and let ¥ = {xo,xl,...,xn) form a set of n+l
distinct nodes from I. It is useful for the statement of existence and
uniqueness, in those cases of polynomial interpolation considered in
this thesis, to introduce, after I.J.Schoenberg [1966], the notion of
an incidence or interpolation matrix E. This interpolation matrix E =
(e

), 0 £ 1 <£n, 0 £ 3j £ N, is a matrix consisting of n+l rows

i,3

and N+1 columns with the properties -

(a) N _>_ ) ¢'Y
(b) e, , =0o0r1
i,3

(c) $‘ €, " N+l and
-_— 14
i3

(d) no row is composed solely of zeros.

Now /¥ and the set € = {(i,j)lei 3 = 1} correspond to the interpolation
r

problem of determining that polynomial P(x) € ?N satisfying

g . p(x) =0 (%), (1,9 €2 (2.2.4)
ij i

where QJJ)(xi) are prescribed values and Zi are point functionals.

3
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Conditions (2.2.4) form what is known as Hermite-Birkhoff (H-B)
interpolaticn. Well known special cases of H-B interpolation are the
following. Lagrange interpolation corresponds to a Lagrange incidence
matrix E where eij = 0 for § > 0 . 1I1f E is a Hermite matrix then the
conditions e = 1 for 0 £ i £ n imply that ei

i3 jo

the corresponding interpolation problem is called a general Hermite

= 1 for 0 < jo < j and

problem.

If, for a H-B problem , a unique solution exists for every possible
set # of n+l distinct nodes then the problem is said to be poised or
regular. TZ uniqueness can be shown only for some ¥ then a H-B problem
is said to be conditionally poised or regular . While necessary and
sufficient conditions for poisedness can be stated , see (2.2.3), a
practical means of determining poisedness for the general H-B problem
is unavailable. Fortunately, it is possible, for the cases that we
consider, to state simple, concise criteria for poisedness in terms of
the incidence matrix E = (ei.).

J
Define sj as

/]
L
'
[~
®

P
[
o

i3

and set Sk - sj where SN = N+1. The incidence matrix E is said to

Ay
o

J
satisfy the Polya conditions, Sharma [1972], if for 0 < k < N, sk >
k + 1. We shall also need the notion of odd supported sequences.

Consider the following row in some incidence matrix E :

1111001000111

15




Sequences are defined with respect to the nonzero entries. Thus there
are three sequences, two of which are odd (since they contain an odd
number of elements). The first sequence is even and is called a
Hermite sequence since it begins in column 0. A supported sequence is
defined in the following way. If (i,3) is the position of the first 1
in the sequence then the sequence is said to be supported if there
exists elements eil’jl - eiz'jz = 1 where il < i < iz and jl,jz < j.
Evidently, Hermite sequences or sequences in the first or last rows of

E are not supported. We now state two results on poisedness

(a) a necessary condition for a H-B problem to be conditionally
poised is that the associated incidence matrix E satisfy the
Pélya conditions

(b) a sufficient condition for a H-B problem to be poised is that
the associated incidence matrix E satisfy the Pélya conditions

and contains no odd supported sequences.

As an application of (b), it is easily verified that Taylor,
Lagrange and Hermite matrices are poised since they satisfy the Pélya
conditions and contain no supported sequences. For the proof of
results (a) and (b) see Lorentz et al [1983].

Thus, returning to the question of existence and uniqueness of
compact finite difference relations of the form (2.2.1) we can state
the following. If the incidence matrix of the underlying interpolation
problem contains no odd supported sequences then the Pélya conditions
are necessary and sufficient for the existence and unigueness of

(2.2.1) for any choice of n+l d.stinct nodes. This result will suffice

16




for most of the cases that we shall consider.

We turn now to methods for deriving compact differences. One
method, given a set of data O(j) (xi), is to determine the interpolating
polynomial as outlined above and to differentiate it to obtain a
desired compact relation of the form (2.2.1). Another approach is the
Hermite type collocation method of Falk [1965]). let P = {xo < x, <...<
xM—l} be a collection of M points at which are given the values of the
function ¢ and its first D derivatives. ®(x) is then approximated by a

polynomial of degree M(D+2)-1 given by
P(x) = H(x) + 0(x)O(x) {(2.2.5)

where H(x) is the Hermite interpolating polynomial of degree M(D+1)-1

(Isaacson and Keller, pg. 255-256, [1965]), W(x) is the node pclynomial

M-1
ox) = Mx-x)2*+1 (2.2.6)
k=0 k
Mol
and O(x) ',;Zoakx (2.2.7

{D+p)

By forcing the (D+p)tn derivative, p> 0 to agree with @ at the

points of P, the free parameters a  may be eliminated with compact

k
relations between Q(D+p) and ¢, d>(1) ey <D(D)

resulting. This method
may be directly applied to differential equations; a variation of which
forms the basis of the numerical scheme given in section S. A third
more direct approach is to postulate a desired linear relationship of

the form (2.2.1) between a function ¢ and its various derivatives at

adjacent points of a grid. For example, suppose a three point

17
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relationship such as

1
n {a_l @_l + ao d’o + a, ¢1} + b-l E‘_l + bo E‘o + bl l-'1

is desired between ® and its first derivative where 0_1 = @Q(x-h), ¢0 -

®(x), 01 = d(x+h) etc. Then the truncation error of this expression
can be obtained via a Taylor series expansion in the grid spacing h,
Minimization of the truncation error leads to O(h4) with the unknowr
coefficients expressible in terms of a, and bO' We now discuss in some
detail two other methods.

The first is a Pade Operator method useful for deriving results on
uniform grids. While this is a well-known approach, (see Hirsh (1975],
Kreiss [1972]}, and notably Kopal [1955],(1959]), socme of the results

have not been given in this fashion before. Introduce the finite

difference operators, Hildebrand [1987],

ED(x) = d(x + h) Shift operator
AD(x) = ®(x + h) - D(x) Forward difference operator
Vdb(x) = O(x) - O&(x - h) Backward difference operator
1/5 -1/
d®(x) = (E - E ) D(x) Central difference operator
1 1/2 -1/2
Hd(x) = E(E + E ) D(x) Average operator

and the differential operator hD = h%;, where h is a constant. The




relationships amongst the finite difference operators listed above are
summarized in Table A2.1(a) of Appendix A2.1 (from Jain [1979]). To
derive the connection between the shift and differential operators, for

example, ® may expanded at x + h in a Taylor series about x as
Oix + h) = EO(x) = e " d(x)

from which it is seen that the shift operator E is given in terms of
the differential operator hD by E = ehD. By formally expanding ehD
in a Taylor series one can obtain a useful representation for E in
terms of the powers of the operator hD. It is equally possible to
replace ehD by a rational fraction, the numerator and denominator being
polynomials of degree M and N respectively in hD. If the resulting
rational operator polynomial is made to agree with the first M + N
terms in the Taylor series expansion of ehD then one has constructed
the [%] Pade operator approximation to ehD. A table of such
approximations for 0 < M,N < 3 is given in Table A2.1(b) of A2.1. 1In a

similar fashion, one can construct, from the following operator

relationships :

_sinh'1(8/2)

hD = 3 (2.2.9a)

1 +52/4
n?p? = afsinn” &) ) (2.2.9b)
hD = 1n(1 + A) (2.2.9¢)

n2p? = 1n%(1 + A) (2.2.9d)
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hD = -ln{(1 - V) (2.2.9e)

n%p? = 121 - W (2.2.9¢£)

Pade tables for the differential operators hD and n2p? in terms of the
various finite difference operators. Pade tables for (2.2.9a-f) are
given in Appendix 2A2.1. For further information on rational
approximation see Baker and Graves-Morris (1981).

Now from the [l] entries in Tables A2.1(c) and A2.1(d) of A2.1 for

0
the relations (2.2.9%a) and (2.2.9b) we have the approximations

[z

8 8 2
hod(x ) u5(1 - 3% )Q(x) or

Fo = 12h {°-2

80 + 80 - &} + ¢“’5> (2.2.10)
and

2.2 2 4 8§ 2
h“D tb(xo) ~ &8 {1 - 3(2) }0(x°) or

n~ . (6)
s° 12h2 { ¢-2 * 16¢_1 3°°o + 16@ q>} + tb () (2.2.11)

where the truncation errors have been obtained from Taylor theorem with
remainder. Note that in these and other formulae to be discussed
below, § lies between the extreme values of the abscissas of the

particular formula involved. On the other hand, the use of the [%]

entries for (2.2.%a) and (2.2.9b) yield respectively
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5
)
i

-3
(2]
n

As they stand these formulae are of limited use. If however we
treat the first and second derivatives as unknown variables and note
that the finite difference operators making up the right hand side of
each expression commute to order h‘, then the multiplication of both

equations by

(1 + %(%)z]hro = (1 + %(5)2]—-—u8—§—2 o, = udo,
4

o

yield the compact three point polynomial finite difference relations

between F, ® and ¥, S :

4

1.2 . 1 h_ .(5)

(1 + SB)F) = 2 udd) + 755 @77 (§) (2.2.12)
1.2 1 52 ht .6

(1 +'i-?:'5 )So = h2 500 +m¢ &) . (2.2.13)

We shall frequently refer to (2.2.12) and (2.2.13) as the Simpson
and Numerov-Stormer relations respectively (see Collatz [1966], page
105),

Replacing ® by F and F by S in the Simpson relation (2.2.10) gives




4
1.2 1 h” _(6)
(1 + 38 Sy = & u&s‘o * 180 @ (&)

and on eliminating 828 between this expression and (2.2.13) we obtain

0
the following important relation

4
2 g2 1 h (6)
So = B2 S °o 5 uSE‘O * 3e0 o (&) (2.2.14)

This is the most accurate, though nonunique, O(hq) three point
expression for the second derivative on a uniform grid. 1If£(2.2.14) is

substituted into the Numerov-Stormer relation (2.2.13) then one obtaains

S + S 8

Lt Sy =g 8% + A s, (2.2.15)

Expressions similar to (2.2.14) are possible. For example, from
the [%] entry in the Pade table for relation (2.2.9c), Table A2.1(e) of

A2.1, we obtain on rearrangement that

2

h(9a% + 36a + 30)F_ (a® + 214% + 304)0

1 ~
n?(9a? + 36a + 30)s_ = u(a® + 2187 + 308)F_

1

¢

1

These two equations, together with (2.2.14) at both x = xo and x = x,

and (2.2.15) yield a system of 5 equations in 11 unknowns vhich upon

the elimination of Gb, Fz, So and S_1 results in a single eguation in 7

unknowns i.e.

s, = o (10, + 160 - 230,) + Z(F_, + oF

1 h + 6F1) +

0
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4
P '8 (2.2.16)

360
An analogous manipulation of the [%] entry for relation (2.2.9%e), Table

A2.1(g) of A2.1., or more simply, replacing h by -h in (2.2.14) reveals

that

s, =302 (230 + 160, + 70) - S(er_ + 87, + F ) +

4
h 206 (¢ (2.2.17)

*360
This then indicates how it is possible to use Pade relations to
develop compact finite differences. We note that by considering the
Hermite interpolating polynomial Ps(x) which agrees with ® and F over
three uniformly spaced points X, - h, x, and xo + h double
differentiation of Ps(x) at these points will give relations (2.2.14),
(2.2.16) and (2.2.17).

There are two inportant points to note about formulae (2.2.14),
(2.2.16) and (2.2.17). Firstly, while these.relations are compact,
fourth order finite difference approximations to the second derivative,
they are explicit in nature. This fact has important ramifications for
mathematical modelling of partial differential equations since it
allows for the simple extension of implicit compact methods from 1 to
several dimensions. We shall address this point in the next chapter.

Secondly, these relations have smaller truncation errors than the

corresponding formulae involving only functional values. For example,

a comparison of the certral difference formula (2.2.11) and (2.2.14)
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Table 2.2.1(a)
Compact 3 Point Relationships in ®and F = Ox which are

Explicit for Higher Derivatives

Coefficient Coefficient
Scaling of Scaling of
for ¢_1 ¢0 ‘Dl for E‘_l Fo Fl Error
® F
p o=, -23 16 7 -+ 6 8 1 5
o’e, %, 1 -2 1 —= -1 0 1 E,
D’®, 3o 7 16 -23 c 1 8 6 E,
Db -3 99 -48 =51 o= 39 96 15 E,
o 223 -1 0 1 —> 1 8 1 B,
Db, -3  S1 48 -99 o= 15 96 39 E
ple, &4 -102 24 78 -X3 36 120 24 E,
plo, 35 1 -2 1 &5 a0 o 2 £,
ple, 2, 78 24-102 I3 24 120 36 Eq




Leading Terms

4

Table 2.2.1(b)

in the Truncation Errors of the Compact 3 Point

Relationships of Table 2.2.1(a)

5 6

an? 6 sn° o, (8)
E1 " 360 % " 630 % 1680 %

nt (6), (8
E, = 360 % 10080 %0

an' (6) sn® . _n® &
B3 = 360 % 630 B * Tes0 B

4 5 6

nl e, 20t o 1an® e, _n° (9

By 10 % *T05s % " Teso % * Toso o
6
(1), _h°_ (9
Eg 840 % 30240 %o
3 4 5 6

b L16), 2h° (7)) 11h® .(8) _h> (9
Eg 10% *t71os% *tTeso P * Toso Do

130 6)_snd m . em® (8 37> (9 103n® (10
By 30 % a2z % *Teao % " S0a0 T * Tseco o
c . ﬁ¢(s)- nd o8 _ n (10
8 15 % “Se0 % " 37800 Do

6
_ 13n? (6), (7N, 67n? (8, 37n° (9) . 103n° (10

Eq 30 % 42 °o 2680 Y0t 5040 %t 75600 o
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reveals that the truncation error of the latter is four times smaller
than the former, yet both formulae require an equal amount of
information to construct.

It is natural to inquire into the development of three point
compact finite differences in @ and F which are explicit for
derivatives higher than two. Tab'e 2.2.1(a) summarizes all such
relations down to fourth derivatives with the leading terms in the
truncation errors given in Table 2.2.1(b). Note formulae 1, 2 and 3
are the expressions (2.2.14), {2.2.16) and (2.2.17) respectively. The
derivation of these results, which is outlined in A2.1., may be
obtained by differentiating relations (2.2.14), (2.2.16) ana (2.2.17)
with subsequent elimination of all second order or higher derivative
terms. Note, that in Table 2..2.1, all relationships except D3yo have
truncation errors larger than 0(h4). Compact three point relations
with smaller truncation errors are implicit in &, F and § and may be
constructed from Table 2.2.1(a).

It is important to note that two point formulae exist. Such
formulae are termed two point [%1 Pade expressions or sometimes "Gap"
formulae (see reference to A. B. White in Césh and Singhal [1982]).
They are frequently used, Ceschino and Kuntzmann [1966] or Lambert
{1973], in the context of initial value problems where they lead to the
so-called Obrechkoff methods. As well, Pade expressions are useful in
implicit compact methods for boundary value problems where they provide
additional boundary conditions.

The "Gap" expressions are easily derived from Pade approximations

to E = ehD. For example
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and from the [%] entry of Table A2.1(b) of A2.1 we have

1+ inp + Ln?p? + 133
& - 2 10 120 o
1 1.2 .2 1 .3.3]0
1 - th + IE“ D IEBh D
Clearing fractions and rearranging gives
h n? R 3 3 7
- = —_ - —_— - - +
d>0 ¢1 + S(E 4 F) + 105, 51) + 120(D ¢0 D ¢1) 0 + o(th')

Formally the diagonal elements of the Pade table provide the

. . N : . .
smallest truncation errors with the [ﬁ] diagonal entry yielding the

following two point compact relationship:

N
N! {2N=-1i)! i (1)
P =%t nyd ) (N-1) 111 B {‘bo -
i=1

(-1) (”tbl‘”} + o (2.2.18)

This formula is also known as a two-point Taylor series expansion. In
some applications, expressions derived from the off-diagonal elements
are useful.

We should like to mention briefly other possible approaches to
compact finite differencing. The first approach is based on the use of
optimal differentiation formulae. Almost all finite difference

approximations, including those listed above, used in the numerical




solution of differential equations, are based on the idea of using a
linear combination of data over a fixed grid of points to obtain
approximations to derivatives over a subset of this grid. If this
condition is relaxed, it is possible, at least in some cases, to obtain
compact relations with improved truncation errors. Ash and Jones

[1981) demonstrate that

1 }
F(xo) eh a_ltb(a h) + ao‘b(a) + ald’(a + h)
is a nearly optimal three point relation for the first derivative.

Here O = xo +\% ‘ a0 = 4‘!3, a = +3 - 273 and the local truncation

+1

error 1is approximately %haM where M is a bound on the fourth

derivative of ® near x = Xy The extension to compact three point
relationships involving derivatives is largely unexplored although it
is clear that this involves the solution of a set of non-linear
algebraic equations. While it is also possible to explore the use of
Gauss-type quadrature in creating compact differences of this type, in
view of the irreqular grid spacings involved, it is not clear that such
formulae could have wide applications.

A second possible approach to compact differencing is that of
Hermite interpolation using a basis of rational polynomials, The
compact expresicns which arise differ from previously mentioned
formulae in that the relationships between a function and its
derivatives are nonlinear. Rational Hermite interpolation is a subject
that has been largely ignored in the last 150 years. Recently Salzer

[1962],[1981],(1984] has presented some investigati~n3, and some

related applications to the solution of singular initial value problems
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have appeared in the work of Lambert and Shaw [1965], [1966] and Luke,
Fair and Wimp [1975]. It should be noted that compact finite
differences in this thesis are assumed to be polynomial based.

Finally we mention that integration and finite element methods can
be used to derive compact finite differences.

What is not generally realized is that the extension to variable
grid of many of the compact relations listed above is often possible
without the deterioration of the order of the truncation error. Few
attempts have been made in this direction (see for example the work of
Adam [1975]1,(1976] and Rubin and Khosle [1977]).

We therefore turn to a final approach based on an elegant method
for calculating divided <differences associated with Hermite
interpolation which, to repeat, allows the extension of the uniform
grid compact results to a variable grid without the loss of order in
the truncation error. In addition the method provides a simple means
of obtaining the truncation errors of the resulting relations and
avoids the explicit construction of the associated interpolating
polynomial, This method was suggested by a note of Merz ([1972] in
response to an article of Huddleston [1971].

Let d(z) be an aralytic function of the complex variable z in a
closed simply connected region R. Let C ©€ R be a simple closed
rectifiable curve containing part of the real axis on which are located

the M distinct arbitrarily spaced peints :

P = {xl < xz < x3 < ,.. < xM_1 < xM}

Introduce the linear functional
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-1 D(z)
(D Yy i:rh“’ dz (2.2.19)

where r&(z) is the node polynomial of degree M given by
M
I&“z) =II (z - x,) (2.2.20)
jml i

Then it is easily seen that the expression

P (z: @ = =L § Th(E) = TMEZ) gryae (2.2.21)
M-1 2xi c (t - z)l'h(t)

is a polynomial of degree M-1 in z and moreover that this polynomial
PM_l(z;tb) agrees with @(z) at the M points of P. The error

Ey,(zi® = &(z) - P (z;D

incurred by this unique interpolation polynomial is easily seen to be

given by

1 &(t)
E, ,(z;D) = { ; —
M~1 2xi e (t z)fh(t)

ae} M, (2): (2.2.22)

this being a specific case of a more general result of Hermite (see
Davis [(1975]). Now equating the Cauchy and Newton forms for the
remainder in polynomial interpolation, at n points, to a function with

an appropriate degree of smoothness we have that

] ¢(n+1) (&)

(n+1)!

d’[xl, P ,xnl Z]
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where ®D[x ,...xn,z] is the nth divided difference of @®(z) in the

arguments x ..xn,z and min(xl,...xn,z) < & < max(xl,...xn,z). From

1’
this equivalence and (2.2.22), we have, for analytic ®(z), that

(M-1)
®__&) (2.2.23)

Dlx)exysonne 2,1 = LB = =07

If we now consider the case where the number of points M in P is even
i.e. M = 2n, and where n of these points are coincident i.e. x2:‘.-1 -

i =1 to n, then we have

X4’
l'&(:) - rli(:)
so that L2(P) = L D(z) dz . (2.2.24)
2ri Cnﬁ(”

It can be shown since

l'li(xk) - —-'{l'lz(z)}z_x , for x, e P

that P, (x ;@ = L f G - n’z‘(xk)tb(t)dt and that
n-1 "k 2ri c (t - x ) ( t)

4 _ 1 (3 g - d
P (z; D ni -i:a‘z{ D(t)dt = Iz' D(z)
4

dz = 2n-1 z=x,_ (t - 2)TR ()
n

zZ=x
K k

where PZn_l(z;fb) is a polynomial of degree 2n-1. Pzn_l(z:tb) is the
unique polynomial of degree 2n-1 which satisfies the problem of simple
Hermite or osculatory interpolation.

Now just as L(d) given by equation (2.2.19) will, from the Residue

Theorem, give a relationship between the values of ®(z) at the points of
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P, we see that the case of £(®, given by equation (2.2.24), provides an
implicit connection between the values of ®(z) and its first derivative
at the points of P.

We calculate £(®, given by (2.2.24), as follows. Expanding ®(z)

and I'In(z) about z = x_ in a Taylor Series we have that

k

D(z) = ‘b(xk) + @ (xk)s + 0(82)
and

2.2 3 4
1]  § {8 }
I‘li(z) - [l'ln(xk)] d° + I'll_x(xk)l'ln (xk)s + 0(8")

with 8 = z - x. and ® denotes the first derivative of ®. Then the

P

coefficient of in the expression

;i

. te ( )
—,—1—2—2 {¢(xk) + O (xk)S}{l - g,—ﬁ 8}
[T (x, ) 148 My (x,)

is the residue of O(z) at z = xXx,. Thus we have
B (z) k
n
0 1 ' (xx)
L = ) ——p (@ (x) - S OUx,) (2.2.25)
k=1 [l'ln(xk)] ﬂn(xk)

Now from (2.2.23) it follows that since £ (® is equal to the 2:'1-1th

divided difference of £ with coalescent knots that

(2n-1)
(D d’[xl,xl,..., x ,xn] —___;(2:1-1)! (2.2.26)
where min(xl, .. .,xn) <& < max(xl, .. .,xn) ]

Now in the case ®(z) is not analytic but real and (2n-1) times

continuously differentiable, we let P (z) be the polynomial of

2n-1



degree 2n-1 which agrees with @(z) and @'(z) at the points of P. Then
relation (2.2.25) remains valid with ® and @' replaced by P, ., and
L

PZn-l . As well,

P2n-1[x1'x1' .. .,xn,xn] - 0[x1,x1, . ..,xn,xn]
so that equation (2.2.26) remains true.

We note in passing that if &®(z) were indeed a polynomial of degree
two or more less than the degree of the denominator 11‘21:, then the
Partial Fraction Decomposition Theorem, (Marsden and Hoffman [1987] pg.
257 or Hauser [1971] pg. 233) gives an identity L(®» = 0. Equation
(2.2.25), upon rearrangement, in the case of a set P of uniformly

spaced points (with grid spacing h) gives Huddleston's formulia (1971)

2n-1 2
} - h [(n-1)"', ¢(2n-1) &) (2.2.27)

n n

‘ 1
_5 ‘3‘k{"‘l> (x) - 2'”"1:)_5 x-3 (2n-1) !
k=1

j¥k

2
(n-1)!
where Bk {_—_(n-k-l) !k!} and min(xl, ceeex ) < £ < max(X,,...,x_ ).

The derivation of (2.2.27) using a function-theoretic approach
was pointed out by Merz [1972] and to our knowiedge has been overlooked
as an elegant and pratical method for obtaining those compact
relations, together with their errors, which are based on Hermite
interpolation (see for example the recent comprehensive review by
Hirsch [1983]). We note, upon setting n = 3 in (2.2.27), that we
regain the Simpson relation (2.2.12).

In Appendix A2.2 we have extended this function-theoretic method
to a more general setting and have calculated numerous compact

relations, for the special case of a variably spaced three point grid.
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These formulae, which are of importance in the numerical solution of

second order boundary value problems, are tabulated in Table 2.2.2.
Several comments on this table are in order. Given that the

underlying grid consists of the three points x_, < X, < X, where GE -

(x° - x_y y/h and Gk - (x1 - xo)lh, we note, that for all formulae
listed , the asymptotic rates at which the local truncation errcors
approach 0 are independent of the grid , provided'eh, Gh are .t most
o(l). As well we remark that the Pade Operator derived formulae
(2.2.14), (2.2.16) and (2.2.17) are regained in the case Gi - Gk.

It is interesting to note the absence, in Table 2.2.2, of an
analogue to Numerov-Stormer relation equation (2.2.13). Y.Adam (1977]

has examined the case for a variable grid analogue and shown that in

such a case, the truncation error increases to O(hs) being given by

E - 52 eLeR(ez &) & + 500, + 2883 &),
reproduced here since there is an error in Adam's derivation. This may
have important implications for the solution of second order
differential equations since a substantial number of applications (see
Collatz [1966])) are based on methods which make use of (2.2.13) on a
uniform grid.

We mention that all the results of Table 2.2.2 have been verified
with the symbolic language Reduce (Rayna (1987]) implemented on the IBM
4321, at the University of Western Ontario.

Finally we should like to close this section with an interesting
open problem in the theory of interpolation. Consider the values of a

function £(x) defined on a set
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Table 2.2.2

Order Preserving Compact Formulae for a 3 Point

Variable Grid

1 2 1.2 (3)
F, = EE{'eﬁ o, - & - 1o + 0%} 1w

g2

(4)
12 o " (({)

2 2
So = EpThZ{“ex.‘b-l - (ef. * 6:)4’0 * “enol} '@ &IF -

h(BF, - §F_ ) -

12]:

3
fae +e)0 - ®© +0)%0 +6&w© +

2.4
- h (4)
39&"3} %;;; o' (1)

&Fr + (8 +8)F +6 2 (g’
F ( L R) F. + VFy o+ Bh R(291‘ + BR)tb_l +

R -1 0
3 3 %h? _(5)
©, +8) (@ -6)0 -8, +286)0)~ Bh o,

2 2 2 1 4
{“GR(IOGL + IOOLGR + 39R'°-1 te (39R - 291.) (SL + GR) ¢0

2
-1 7 322 3

1l 4
+ eROL(ZGL + SOR)QI}

2 1 3., 8
- B—h {zeR(zeL + eR)F-l + -éR(eL + OR) Fg + 6; Fl}

1 2.4,.(6)
* 360 ei(ei + eh) h'e®' " ({)




2

6 S, = {8‘(58 + 30)0 - (é +9)3(382 - 46 +
. R~ L R -1 L R L Len

0 2pn2
0, + OR)B h

2 4
38)0, + © (36, + 560

- —2 {-935' +2(8 -6)(0 +0,)% +835'
® +6)ph ' R -1 L "RUL R O L1
L R
2 4
e’h_ .(6)
*Fe0 O
2_[1

4
7. S 9 (59 + 28 )0 + (39 - 29R) (OL + BR) 00

1" p2p2 @ R e

- e (39 + 1090 + 108 ’°1}

3
2 (&R 1 3
+ Bh 81. F, ¢+ eL(eL + 8 )7Fy + 26 (8 + 26)F,

1 2, 44(6)
+36082(9 +e) o (D)

h 3 4 3
8. —E{z &s_, - eisl} + €2(s8, +28)F_ + (8, + 8 'F + & (20 +
3 4 5
50 )F, + ﬁ{ea(sei +406 +&)0 + (8 -6)(8 +8)°0 -

3
4 B (7
o' + 00 +s5¢)o) - Lo +inf" ()

9. e;s_ - (6 + OR)3s + eis + i{e;(zeL + OIF_, - (Oi - 9:) @ +

1" Bh
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3 4
QR) Fo - eL(eL + zeR)Fl} 2 2 GR(792 + 788 + 262)¢ -

5 5
(26 - 308 +26f)(@ + )% + &8 + 7198, + 1610 }

3.6
. B’n’ @)
20160 ©  (©)

o= OLGR
B=66:(6 +86,
¢(l)

(x) = d’x(X)

¢(2) (x) = O (x)
xX
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X = {—1 < x, <x ... < Xgop <Xy £ 1}

of N + 1 distinct, arbitrarily spaced nodes on the interval [-1,1], and
let the nth derivative of f(x) be approximated by the nth derivative of

the interpolating polynomial i.e.

(n) (n) . (n)
(x) = PV (E,Xix) = z: £x )" (x)

P
o

(0)

where lk

= Lk(x) are the Lagrange fundamental polynomials. The function

(n) N ()
Ly (X920 = Z It'k (X)l
k=0

may be termed the Lebesgue function of order N + 1 of X for f(n)(x) while

(n) n

(
(X) = max L
A+l ~1<x<1 N+

;(X:x)

(n)

could be called the Lebesque constant of order N + 1 of X for f (x) .

It is desired to choose the set X so that A;:;(X) is minimized. It is

interesting to note that while the set »f nodes which minimizes A;g;(X)
is not known, the extrema of the Chebyshev polynomial TN(x) have been
shown to form an optimal set when numerical differentiation is based on
Lagrange interpolation (see Rivlin {1969], (1974] and Lorentz [19793]).
Thus the question -~ if numerical differentiaticvcn is based on
Hermite-Birhkoff interpolation then do optimal sets of nodes always

exist and when they do exist how are they described, and are there easily

computed near-optimal sets of nodes?
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2.3 Raeview of Compact Methods for Differential Equations

The application of the compact finite difference expressions of
the previous section to the numerical soluticn of a boundary or initial
value problem results in the creation of a compact method. Here we
present a review of compact methods since approximately 1970. Most
physical applications have been in fluid mechanics and since we cannot
give all possible methods and all possible applications, we will
concentrate on those which are fundamental to later developments in the
field. Other criteria for inclusion here are elegance, ease of
implementation, accurate and efficient performance and the ability to
generalize to a multidimensional time dependent environment.

We shall examine the various methods, which can be broadly
classified into implicit and explicit (elimination) methods, in the
context of the second order two point boundary value problem given by
equations (2.1.la-b). In some cases we shall be concerned with
parabolic problems in 1 space variable in which case the imhomogenous
term, R, is replaced by g—% and the boundary conditions are supplemented
with an initial condition. Only brief mention will be made of the
extensions of compact methods to two or more space variables and then
mestly in the context of physical applications since we shall adress
this subject in the next chapter. It should be noted that, unless

ctherwise specified, all the compact methods discussed below assume a

uniform mesh.
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Implicit. Methods

a) Hirsh [1975]

It was this work which first brought to the attention of a large
audience the possible utility of compact methods. Following a
suggestion of Kreiss [1972], Hirsh seeks to avoid the explicit
discretization of the differential equation by treating becth F and S as
variables. If (2.1.1a) is regarded as an exact relation for @, and the
Simpson and Numerov-Stormer expressions as 0(h4) approximations to F
and S respectively, then at each internal mesh point we have a set of
three equations in three unknowns. There is, however, some difficulty,
in Hirsh's formulation, with the treatment of boundary conditions.
This is due to the fact that there does not exist a two point compact
relation which is O(h4) in s, Thus, in most cases, one of the two
supplementary conditions for each boundary condition in (2.1.1b), must
be a lower order two noint compact approximation. Hirsh reccmmends the
use of the [%] Pade relation(see(2.2.18)) as an O(h3) approximation to
S at the boundaries of the integration domain. There is evidence,
Peyret [1978], that such a tack does not necessarily compromise the
global accuracy of the solution ®. An alternate approach, is to simply
use three point relations at the Dboundary thus only slightly
complicating the matrix inversion or else to use the deferred
correction methed of Fox as Roache [1978] has done. In any case, the
system of algebraic equations that resvlt from thte method of Hirsh can
be arranged so that the associated matrix has a block 3x3 tridiagonal

structure.
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Applications are made to Burgers' equation, to a nonsimilar
boundary layer flow and to incompressible steady state cavity flow.
The conclusion is drawn that the performance to cost ratio of the
compact method is several times larger than that of conventional second
order finite difference method. Problems with the general boundary

conditions (2.1.1b) are not addressed.
b) Adam [1975], [1977]

In related but independent work Adam [1975] considered (2.1.1la) at
three adjacent points and used the Numerov-Stormer relation to
eliminate the second derivatives. The resulting relation in ® and F,
of 0(h4) in @, was then coupled to the Simpson relation to yield a set
of two expressiocns in the two unknowns at each interior mesh point. At
the boundaries Adam uses the two point Pade relation (from the [%]

entry for ehD of Table A2.1(b))

® - -2 ey +xn0 @) =0 (2.3.1)
to close the set of algebraic equations. If (2.3.1) (which may be used
to derive the Keller box scheme, Lam and Simpson [1975)) is used to
provide a boundary condition for F, then the relation is only O(hz).

To c¢ircumvent this difficulty, Adam refines the mesh near the
boundary, having obrained via a Taylor series expansion, the variable
grid analogues of Simpson's (see equation 4, Table 2.2.2) and Numerov-

Stormer relations. As Adam first pointed out, the variakle grid

Numerov-Stormer relation is only O(h3). However he finds that with a
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refined mesh near the boundaries, the loss of accuracy is slight.
Adam's main interest was the efficient solution of parabolic
problems. Making use of the above compact spatial discretization he

developed a two level 0(k2+ h‘) compact method for

® + £(OxX)D = vix,t) P
t x xX

He then solves the nonlinear Burgers' equation with an initial
sinusoidal disturbance, compares the compact method with a classical
Crank Nicolson scheme and concludes that the compact method is
superior.

In a subsequant paper Adam [1977] makes use of the explicit
relation, equation 2 of Table 2.2.1, to eliminate the second derivative
from equation (2.1l.1la). As for the supplementary Poundary condition
for F, Adams replaces (2.3.1) with an O(h3) two point Pade relation
Adam concludes from numerical experiments that its use in place of the
[%] Pade relation does not necessarily lead to more accurate results.
Again the general boundary conditions (2.1.1b) are not considered.

Adam applies his compact method to Buréers' equation with the

above stated initial condition and to the two-dimensional diffusion-

convection problem with constant coefficients

+ = +
dE + U1¢; Uzd; uld;x v2¢;y
Adam concludes from the results of the Burgers' equation problem
that implicit as opposed to explicit elimination of the second

derivative can lead to more accurate solutions. This result appears
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inconclusive since no attention is given to the effect that the lower
order boundary relations might have on the explicit elimination

compact method.
¢c) Rubin and associates [1973), [1976]1, (1977], [1978]

Motivated, perhaps, by the ubiquitous presence of splines in
approximation theory and numerical analysis, Rubin and Graves [1973] use
a cubic interpolating spline polynomial to obtain compact relations.
If the interval [(0,1] is replaced by a nonuniform grid with grid points
X hi - X, T %X then the required cubic interpolating polynomial
Ii(x) for the interval [xi' xi+1] may be considered as the solution of
the boundary value problem (see McCartin [1983])

4
d
dx4 Ti(x) = 0

with attendant boundary conditions

?i(xi) - d?(xi) ?i(x. )

1+1) = ¢(xi+
72
1

1

(2)
(xi) S(xi) ?i (xi+1) S(xi+1)

Forcing continuity between ?i_ {(x) and ?i(x) at x = x, gives the

1

familiar relationship

1 1 1 - 1 {
g Di-1Siy * 3 byt RS H e RS Ty R %,
i-1 1
th, , +h)® + hi—1¢i+1} (2.3.2)




A less familiar relation between ® and F,

1 1 1 1 3 2
= F + 2(- + = )F, + = F, = —— \h o +
hx—l i-1 hi-l hi i hi i hi-lhi i-17i+1
2 2 2 }
(hi_l hi)°i - hi¢i-1 r (2.3.3)
is also available. It can be shown that the cubic spline ¥(x) =

{?i(x)li = 1 to N}, which is piecewise very smooth, approximates ®(x)
at all points of [0,1] to O(hq) where h = max hi . provided ®(x) e
C4[0,1] (see de Boor [1978]).

Unfortunately the spline relations, (2.3.2) and (2.3.3), are order
two and order three, respectively, for nonuniform grids. However, in
the case of a uniform grid, Rubin and Graves use a linear combination
of (2.3.2) with truncation error and the classical relation

1 2 hz (4) 4
Si' ;28°i-.1_2-¢i+0(h’
to regain the Numerov-Stormer relation (2.2.13).

In subsequent developments Rubin and Khosla {[{1976], (1977]), [1978]
have derived higher order compact implicit relations by employing
various Hermite collocation polynomials. These collocation polynomials
together with many finite difference compact relations are presented in
Table I of Rubin and Khosla [1977].

Several comments are in order here since we believe that the
results presented in Table 2.2.2 supercede those of Pukin and Khosla.

Rubin and Khosla report that while 3several of the collocation
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polynomials yield compact relations for the first derivative F which
remain of order four on nonuniform grids, the corresponding relations
for the second derivative $§ increase to order three on nonuniform
grids.

To alleviate this, Rubin and Khosla proceed with a Taylor Series
development to obtain what they refer to as "Hermite 6" formulae, which
for a uniform grid, reduce to the Collatz relations, equations (8) and
(9) of Table 2.2.2. In Appendix A2.3 we reproduce the "Hermite 6"
formulae with the errors in the published formulae corrected and there
we also present a comparison of these formula with equations (8) and
(9) of Table 2.2.2.

Rubin and Khosla have applied their Spline-Hermite method to many
boundary layer type equations; the "Hermite 6" providing extraordinary
accuracy. As well laminar incompressible flow in a driven cavity has
been successfully modelled with their compact methods. The stream
function-vorticity system is solved with the convective terms treated
in both a non-divergence and divergence manner with claims that the
divergence form treatment allows for the solution of cavity flows to

large Reynolds numbers (~1000).

d) Wornom [1978]

Wornom's two point compact method is an extension of the Keller
Box scheme, Lam and Simpson [1975]. Recasting the time dependent
problem
¢E - ¢;x + B¢; + CO

as the first order system
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F
gx(x,t) = [‘% - BF - Cdl (2.3.4)

gix,t) = [o]
- F

the Keller Box results from the averaging (using [%] Pade relations in

where

x and t) of the space and time derivatives in (2.3.4) over the
horizontal and vertical sides of the (x,t) box :

(x,,t ) (

i% "k+l )

*141° Tkl

(xi.tk) ( )

xi+1,tk

where x, = iAh and tk = kAt. The Keller Box scheme has a local
truncation error of O(k2+ h2). Wornom's method gives an 0(h4)
correction. This is achieved by applying the [g] Pade in x to (2.3.4)

over the lower and upper sides of the box to give

1 1 h 4
-{g -g } + —{g + g } + g -g = O(h) (2.3.5)
hiZ; Si+1 2 _xi _xi+1 12 _xxi -xxiﬂ_}

where, for example, g means q(xi,t) and
= =

- ® - BE - CO
g F - (BN +C)F - (B + C)®
t 4 X
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Note that the derivatives Cx and Bx are obtained by analytic
differentiation or otherwise, Averaging equation (2.3.5) over t=nAt
and t=(n+l1)At, as in the Keller Box, results in the removal of the time
derivatives from Iy and gxx'

wornom's method, being a two-point method, is efficient. The
efficiency is independent of the grid and depends only on the number of
points. For boundary conditions of the form (2.1.1b) no modificationn
is necessary at the boundaries since, given N subintervals, there are 2N
equations in 2N + 2 unknowns with the boundary conditions completing the
number of necessary relations.

Wornom has applied the method to a variety of boundary layer
equations. The resulting nonlinear algebraic system is treated with a
Newton linearization (see Kubiéek and Hlavééek [1983], pp 89-9%94).
Wornom claims, on the basis of numerical experiments, that the method
is more efficient than either the Keller Box with extrapolation or the

Rubin-~ Khosla "spline 4" [1977].

e) Thiele ([1973], [1977]

The work of Thiele is a logical extension of the work of Adam
(1975),(1977]). Employing the Hermite type collocation method of Falk
[19FS), Thiele [1973]), [1977) constructs three point compact relations
in ® and F to the second order differential equation L® = R, equation
{(2.1.1a). Given three adjacent uniformly spaced grid points Xy =%y "

h, x, and x, = x, + h, Thiele approximates ®(x) by the polynomial

P(x) = H(x) + W(x)O(x)
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where H(x) and w(x) are defined as in sectiun <£.2 (M=3,L=2) and @(x)is
chosen to be a single unknown parameter o. P(x) 4is substituted for
®(x) in Ld=R and the resulting expression is collzted at three points

of the interval [x_l, x1]. Thiele chooses the grid points xi. and

three equations
E(xi) - LP(xi) - R(xi) ¢ i = -1, 0, 1

in the single parameter O result. Elimination of a give the two Thiele
relations. An equivalent way of proceeding is to eliminate the second

derivative S, from Lda-a

i by using equations (1), (2), and (3) of Table

i

2.2.1. For the interval [x_l,x ] we obtain

0

1 2 1
;;5{’23¢L1 + (16 + 2n°C_.1®, + 7¢3} - ;{6F_1+ (8 - hB_,)F, + Fl}

5
4n4 (6) n (7 6
Ry 366 % * 360 % O ot
and
1 2 1
02 20, -4 +nh co’db + 2¢3} + 5 {-2?_1 + 2hBF, + zrl)
4
h (6) 6
Ry ~ 360 S+ o)

Elimination of the O(h4) terms yields the Thiele relation for [x_l, xO)
with E%3h5¢é7) the leading term in the truncation error. The Thiele
relation for [xo,xll has a local truncation error of approximately
1 .5.(7)
630h ¢b .

Thus Thiele obtains a 2x2 block tridiagonal system in the unknowns




® and F. What is not emphasized in Thiele's paper and overlooked in
Hirsh [1983] is that provided the boundary conditions are approximated
to O(hs) the Thiele relations form the core of an O(hs) method. Thus
an important feature of Thiele's work is that it provides a method of
extracting higher accuracy from lower order approximations while
retaining most of the essential features of a compact method.

Thiele treats only the boundary conditions y(O)-yL and F(l)-‘yR and
derives two point compact relations in F and & of O(hq) to handle such
cases. As well, using the Falk technique [1965] he develops four point
relations, explicit in J, which enable him to treat boundary conditions
to O(hs).

Thiele demonstrates for a single constant coefficient problem
that the O(hq) boundary treatment gives rates of convergence of 5
while the more accurate approach gives 6. Nothing is mentioned about
convergence rates for F.

As well, Thiele treats higher order differential equations such as
the Falkner-Skan equation with and without surface curvature effects.
The results are excellent for such problems but the Falk approach
appears to become tedious to implement. Nothing is mentioned about
boundary conditions.

Several comments are in order. Firstly, it is easily seen, on the
basis of the results of Table 2.2.2., how to extend Thiele's method to
a variable grid although the resultant compact relations will in
general have a local truncation error of O(hs). Secondly, it is
possible to make use of the variable grid O(he) compact relations of
Table 2.2.2. If the second derivative is eliminated, almost complete

2x2 block tridiagonal systems result. The exceptions occur near the
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boundaries where three point relations of O(hs)an necessary to close
the system.

Finally the extension of Thiele's apprcach to two dimensional
problems does appear to be difficult, especiaily, in the presence of

mixed derivatives.
f) Christie [1985])

In another recent develcopment Christie (1985] has taken the nodel

linear constant diffusion-convection problem

LdP(x) = S(x) - KF(x) = 0
(2.3.6)

®(0) =1 (1) =0

with solution Dix) =

and reexamined the spatial stability of the standard block implicit
method of Hirsh ([1975], with a view to constructing an upwind compact
method for convection dominated problems.

Utilizing the model equation (2.3.6) at three adjacent points

the Numerov-Stormer relation (2.2.13)

1 10 1 1
~c = 25 = = - +
125-1 * 1250 Y1251 7 n2 @y -2 o
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and the formula

(1 - y)ud + yVv
2.3.7
Fy T, 1,752 o, ( )
6

which is a modification of the Pade operator relation used to derive
the Simpson formula (2.2.7), Christie finds that the subsequent

elimination of all derivatives yieids the following five point scheme

for (2.3.6)
{2+a-+ Y)PA}tb_d s2{2 + (5 + 41)9A}¢_1 - 206+ ¢ 2@
v2{2 - s - 4Y)PA}¢1 +2{z - y)pA}oz =0 (2.3.8)

Here the quantity PA - %? is often referred to as a cell Peclet number.

Christie analyzes the characteristic equatioa for (2.3.8). He
shows that the characteristic equation possesses 1 as a real root and
demonstrates, for the ncn-upwind case (y=0), that for all values of PA,
one of the 3 remaining roots is negative. This implies that the
standard block method has oscillatory modes; This observation was
made previously by Peyret [(1978) and Ciment et al [1978]. The latter
group suggest that the abscence of oscillations in the actual
implementation =f block implicit methods to boundary value problems, at
least for low values of K, is due to the influence of the boundary
conditionsz.

P . C o
Recognizing that e2 A is a root of the exact characteristic

equaticn, Christie chooses Y so that (2.3.8) possesses eZPA as a root.

This yields value for y of
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2pp -2p, 3
2 ) e + 4+ e PA 5
Yopt = COth By - AN =T = *+ 02;)
e + 10 + e

Y __ is 0(h>); a requirement for (2.3.8) to be O(h’).

opt

A similar upwinding of a Padé-type relation, used to supply
additional boundary conditions, is also carried out by Christie and is
shown to improve the accuracy of solutions to the model problem.
However the analysis doces not appear to carry over to nonlinear
problems.

The upwinded scheme with a Crank-Nicholson and a Newton

linearization are applied to Burgers equation,

O =@ - ¢ |,
t XX x

over the interval {0,1] with an initial sinusoidal disturbance. The

[%] Pade relation supplies additional conditions at x = 0,1. With p, =

A
%% and h = .05 damped nonoscilla*tory solutions were obtained even for e
= 1074,

We now turn to a brief examination of Elimination Methods.

Elimination Methods

a) Krause et al [1971], [1974]

The elimination method of Krause and associates, wnhich they termed
Mehrstellen integraticn, is somewhat unusual in that it is based on

. 4 ) . ; . ;
compact relations of O(h ') which express the first derivative F in
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terms of © and S. Making double use of the Simpson relation (2.2.12)

as

)
'
©

q
) + .1*;_0 oés’ &) + oth®

1 . 5.(6) 7
51) ~ 30 hoo (&) + o(h)

+
i
w
+
o~

1 -1 1

and equation (3) of Table 2.2.2 (Gi =8)

4
_at (s

6
1z % (&) + o(ny,

h
F, - 2F ) +F =2 (S, =5_)

Krause et al ([1973), [1974) obtain the explicit relations for F

L1}

4
L - _h _h (5)
Fy =35 @ -® ) -F (s, +25) - T @ )  (2.3.9a)
1 h hd _(5)
Fo =32n (@ - @) - 35 (5, = S_) +35® () (2.3.90)
1 h nt (s
F) =35 @ - @ ) +3 (25, +5)) - 5 ®71e) (2.3.9¢)

Substitution of (2.3.9) into Ldﬂxi) - R(xi) (i=-1,0,1) gives 3
equations in 6 unknowns with the Numerov-Stormer relation (2.2.13)
providing an additional relation. The four equations are then reduced
to a single equation in 4&1, db, and GH.

No treatment is given of the general boundary conditions (2.1.1b).

b) Peters [1975)

Peters derives an O(hq) compact explicit method for (2.1.1a) from




a modification of the Lagrange interpolating polynomial to ®(x) over

x x. and x., given by,

-1’ 70 1
1 2
P lx) = Z¢ili(t) + t(l - t%) (a + Br) (2.3.10)
im=-]
where t = %(x - xo) and the li(t) are the Lagrange fundamental
polynomials. Peters addresses the case of the general boundary

conditions (2.1.1b) and derives two point relations of O(hd).

Both Krause et al and Peters apply their methods to boundary
layer equations. No extension of their elimination methods to variable
grids or two dimensional problems is given.

Hirsh ({1983} points out a connection between the formulation of
Peters and the method of Krause et al. The evaluation of the first two

x, and x, lead to 6 equations in 11

derivatives of P4(x) at x_,., X, o

unknowns; 9 values of ®, F, and S, and @ and B. The elimination of «

and B give the Krause compact scheme.
c) Ciment et al [1978]

The operator compact method (OCI) of Ciment et al provides a
systematic application of elimination methods to parabolic problems in

one or more space dimensions. For the l-dimensional parabolic problem

¢t = a(x,t)S + b(x't)F = LD

on 0 £ x €1, Ciment et al [1978] introduce a variable grid
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- - PR < - }
My (0 x, < ...< xi_1< xi< xi+1< < Xe-1 g 1

and obtain, from the method of undetermined coefficients a three pcint
replacement for the spatial term L® given by

Ay 10t ALO 4 A I,

1
hz{si-loi-l + Bioi + Bi+1°i+l} (2.3.11)
where the coefficients Ai and Bi were first derived from finite element

considerations by Swartz [1974). The totality of relations (2.3.11),

which constitute the OCI method, may be expressed as ALD ~ B® or
0 - A" ls0 (2.3.12)

where A,B are tridiagonal matrices <consisting of Ai and Bi
respectively, and L® and Q@ are vectors whose components are mbi and °i
respectively. Ciment et al show that in the constant coefficient case
if the cell Reynolds number R, = Ef < V12 then the matrix A is
invertible. The local truncation error of the OCI method is 0(h4) for

a uniform grid and decreases to O(h3) on a variable one.

Some of the important features of the OCI are :

i) Relation (2.3.12) makes it relatively simple to derive an ADI
factorization of a Crank-Nicholson time differencing for two
dimensional time dependent parabolic problems (See Ciment et al

[1978) and Hirsh [1983) for details)
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ii) Stability is good. For convection dominated problems the
cell Reynolds number restriction of RA € V12 is less severe

than the second order central difference limitation of RA S 2.
iii) on the basis of some l-dimensional problems Ciment et al
point out that the OCI method is 2 times as fast as the 3x3
block method of Hirsh but only 1.4 times as fast as the Adam
2x2 block method. Indications are that for two dimensional time
dependent problems the discrepancy between the OCI and 2x2
block methods is much smaller. The block methods are somewhat
more accurate.
iv) the OCI approach has been modified in a number of ways to
obtain compact methods for boundary layer equations which do not

possess any formal cell Reynolds number limitations (See Berger

et al [1980] and Leventhal [1982]).

d) Goedhear and Pattes ([198S5])

Recently Goedhear and Pattes have given a variable grid three
point compact explicit method of O(h4) for equation (2.1.la) with the
linear boundary conditions (2.1.1b). Using the approach of Krause and
the symbolic language Schoonschip Strubbe [(1974), 7 equations in 9
unknowns are reduced to 1 equation in the three unknowns CE_l, da,

¢ﬁ+1' A similar procedure gives a two point expression for the general

and

boundary condition. The method is applied to the 1linear time

independent problem

S + a xkd)- 0




where a = 150, K = 10 and F(0) and @(1) are given. The boundary

layer near x = 1 is treated with the variable grid

. =1 - 1_1—1'“ m=1,2,3,4
i N~1 i=1,2,...,N

Rates of convergence are as expected and a comparison with a second
order method indicates that the computational effort as measured by the
number of multiplications required to achieve the same error, is
approximately equal.

One drawback appears to be the larger implementation time required
and the large number of multiplications to obtain the matrix elements

in time-varying variable-grid calculations.

e) Lynch and Rice [19890]

We close this review with a mention of the compact explicit method
of Lynch and Rice. Derived, as well, by Doedel [1978] and termed the
Hodie method by Lynch and Rice it represents tﬁe completion of the work
of Osborne {1964]), (1967}, [1974}.

Given an Mth order linear ordinary differential equation

o= f (2.3.13)

the Hodie method is an (M+1l) point compact explicit method of
arbitrarily high order. For a second order linear equation one seeks an

approximation to (2.3.13) over x4 < x, < X4 of the form
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2% 9 a0y, ;Bjﬂ&j) -0  (2.3.14)

where the Ej are J distinct auxilliary points contained in the interval

(

x J. Rather than work with (2.3.14), it is convenient to use

*¥i-1' *in

the Hodie equation

3, 1%y v ta,, - jf__lﬁj W(ﬁj) -0 (2.3.15)

The coefficients a, and ﬁj are determined so that (2.3.15) is exact on
some N + 1 dimensional linear space where N = M + J (M=2 here). This
is done by choosing N + 1 polynomial basis elements {Pi|i-0 to N} and

requiring that each element P, satisfy the Hodie equation (2.3.15).

i
The result is a homogeneous system of N + 1 equations in N + 1
unknowns., To obtain nontrival results the system is augmented with a

normalization equation such as

In practice, however, the inversion of a small matrix at each grid
point, required in the formation of the tridiagonal sglution matrix, is
facilitated if the normalization Bl = 1 is used.

Theoretical and numerical results demonstrate that if J auxilliary
points are used, then the local truncation error |is O(hJ+1). If,

however, the J auxilliary points are the Gauss B spline points which

are the zeros of polynomials orthogonal to an integral inner product

with polyncmial B spline weights, then the local truncation error is
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O(h2 See Appendix A2.6 for details.

Numerical results for second order ordinary linear differential
equations with Dirichlet boundary conditions indicate, especially for
uniform grids, that the Hodie method is among the most efficient
maethods available for the solution of linear ordinary differential

equations (see Lynch and Rice [1980]).
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2.4 A Compact Method for Second Order Differential Equations

on Non-Uniform Grids

The motivation for the development of variable grid compact methods

for the two point boundary value problem of section 2.1
LdP= AS + BF + C® = R 0 <x<1 (2.4.1a)

@ O(0) + BL F(0) = 1

a (1) + BR F(l) = Tr (2.4.1b)

comes from the fact that finite difference schemes which use uniform
spacings are often found to be impratical for the solution of problems
with boundary layers. For example, if the resolution of a boundary
layer is desired then the large number of points required of a uniform
grid method can make the computational effort enormous. On the other
hand, failure to resolve the layer properly can lead to totally
unacceptable results. Thus it is natural tc consider variable grid
formulations for (2.4.1).

We introduce the following terminology which shall be used

throughout this section unless otherwise indicated. Let

MN-{O-x°<x1<x2<...<xN_1<xN-1}

represent the N+1 grid (mesh) points which make up a variable grid
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where N is the number of subintervals, hj is the subinterval spacing
with hi -, - X, (i=1 to N), and h=l1/N. We shall consider compact
discretizations of (4.1) over the interval given schematically in

Figure 2.4.1

Figure 2.4.1 Three Point Difference Molecule at an Interior Point

1 xo and x, represent any three consecutive points of MN and GL

and GR are defined with respect to x_,0 X and x, and h by OL -(11:o -

Here X _

x_l)/h and GR = (x - xo)/h. We also use the subscript notation Fo and

1
® _ to denote the terms F(xo) and 0(1:_1), while ¢(p)(a) denotes the r.»‘:h

-1
derivative of ® at x=a. Finally we define a and B by a = GLOR and B =
m(eL + BR) .
As an example of a variable grid compact explicit method for the

boundary value problem (2.4.1), with A set to 1 for convenience,

consider the explicit compact scheme for I.d?(xo) - R(xo) given by

I&:D(xo) - R(xo)+ Bo (2.4.2)

where Lhﬁ(xo) is the finite difference approximation to m(xo) obtained

by replacing E‘(xo) and S(xo) by the easily verified expressions
F,o= i {- g0 - @ - &0 + go ) -1 ame?P (2.4.3a)
0 PBn R -1 L R0 L1 6 U
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2 1 (3)
so = per (0., - @, + 80, + 00} -3n@ - a1V m
(2.4.3b)
Since (2.4.3b) is formally O(h) on nonuniform grids it is evident that
the truncation error E. of equation (2.4.2), given by

0

E, = 3 8 - 8) ¢ m (A= 1) (2.4.4)
is not second order unless the grid MN is nearly uniform. However, a
good deal of numerical experience with the compact schems (2.4.2)
suggest that the rate of convergence for ® is second order. In fact,
De Hoog and Jackett (1965) and Manteuffel and White {1986] have shown
that (2.4.2) does indeed yield second order accurate solutions for ¢
even with the lower order truncation error.
In the case that A= 1, B s C = 0 in (4.1a), i.e.

S =R (2.4.5)

with F(0) and F(1) set to 0 in (2.4.1b) one can use 18 Numerov-Stormer

relation for variable grid Adam [1975] :

12
as_1 + bso +cs1 - 12 (ddLl + edh + f¢3) 0 + E

where

a= eRw: +08 - e;) b= (8 +8y) (9: + 30,0 + eia
c = eL(-d;‘. + 88 + ei)

d = Gk e = -(GL + Gh) f = Gi
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with truncation error E given by

3

h (5)
E - 30 eLeRd 92) (292 + 508 + ze’) o3 ()

to define a explicit compact method for (2.4.5) with a local truncation
error {(on variable grids) of order 3. In the light of the behaviour of
the previous compact method, it is natural to ask the following
question. Does the resulting compact method for (2.4.5) give third or
fourth order accurate solutions for @ Kreiss et al. [1986] have shown
that if 055)(x) = 1 and the mesh spacing is three-periodic i.e. h, rh,
sh, h, rh, sh ...... where 0 < r, s < 1 then the truncation error is
not O(h‘). Sinilar problems may possibly occur with the compact
methods of Rubin and Khosla {1977].

Thus the purpose of this section is to present a new compact
implicit method for the numerical solution of (2.4.1) which |is,
formally, of order 4, on variable grids. We shall refer to this method
as the CI4 (Compact Implicit 4) method. Some of the features of the

CI4 method are:

(a) the method results in a 2x2 block tridiagonal matrix system
from which ¢ and F may be obtained in approximately 36N
operations (assuming all the matrix coefficients have been
calculated),

(b) the method is easily implemented,

(c) the method is capable of extensicn to two-dimensional time
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dependent environmants, and

(d) using standard linearization techniques the method may be
applied to nonlinear differential equations of the second

degree with nonlinear boundary conditions in ® and F.

The remainder of this section is divided into four parts. First we
outline the derivation of the CI4 method. This is followed by the
application of the method to a variety of second order ordinary
differential equations, both linear and nonlinear. Thirdly, the CI4
method is applied to a nonlinear partial differential equation and

lastly, the section closes with a discussion and summary.

Derivation of the cor act method

Consider three adjacent pcints x_ x. and x, of the grid M, as

1’ 70 1 N

given in Figure 2.4.1 with x_ an interior point of the interval [0,1].

0
The CI4 method is based on the four compact expressions (4)-(7) of
Table 2.2.2. These relations are discussed in some detail in
subsection 2.2 and we shall only reiterate here that each of these
relations has a local truncation error of O(h‘), regardless of the
grid, provided 6, and @, are at most O(1).

The derivation of the CI° is simple. At each interior mesh peoint x

0

of MN the boundary value problem L& = R is approximated by a system of

two coupled compact relations of O(h4) given by:
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a . o

1% + aodb + aIGH + b_

r_ R, oRo

and

* * * *
a . d _ + ao‘bo + a101 + b-lF-l

-1 -1

-0 +omY

1

+ ~R_+ r R +0(h4)

+ boFo + blFl

1 (2.4.6a)

%* + *
+ boFo blFl

(2.4.6Db)

Equat.on (2.4.6a) is obtained by simply substituting expression (6) of

Table 2.2.2 for s0

being given by

ﬂe§(3eh + 58&)

a

-3 A

- g
3.2°70
eﬁ(eh + eh) n

ﬂ(39§ - 408 + 3e§)

a = C - 2 Ao
0 0 2
& &
. ) AG€(3ei + 56%) R
1 < 3270

ei(eh + G%) h
r_l = 0 rg = 1
The coefficients in (2.4.6b), which

in equation (2.4.1la); the coefficients in (2.4.6a)

-

b - A

-1 2 0
eh(ei + eh) h
0. - )
bo = Bo + #-JL———E Ao
GLth
o
o} = - A
1 2 0
eh(e + @)°h
r. = 0

is the variakle grid Simpson

relation, are easily dete: mined from equation (5) of Table 2.2.2. For

*
example, the coefficient a_1

2
Bn

of dLl is readily seen to be

3
Gh (2€£+ Gg)
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Equations (2.4.6a) and (2.4.6b) form the basis of the CI4 method
since they are used to approximate the differential equation (2.4.1a)

at each of the N-1 interior grid points of MN' It should be noted that

the coefficients ai ‘ bi ' a; and b; (i = -1,0,1) are functions not

x,. and x, as wvell.

only of A, B, and C but of the grid points X_j0 X4 1

This dependence on the grid points is not indicated, for the sake of
notational convenience, but should always be bocine in mind.

Turning now to the treatment of the boundary conditions we have at
the left boundary, »ver the three consecutive points, x, = 0, x

, - Gah

and x_= x_ + ORh the following five equations in the eight unknowns @,

2 1 0
dﬁ, d&, FO' Fl' Fz, So and 81:
LGb = Ro (2.4.7a)
L® = R (2.4.7b)
Sy ~ 9Py O, &,y Fyy Fiy Fy) +0 () (2.4.7¢)
S, =9, @ ¥, P, Fo, F,r Fy)) 70 i) (2.4.79)

and the Simpson Relation.

* * * * *
a, db + a, d& + 2, da + b0 FO + b1 F, + b, F

=0 + O(h4) (2.4.7e)

Note that expressions g, and g, in (2.4.7c) and (2.4.7d) are simply
0 1

2

510 %

equations (6) and (7) of Table 2.2.2. The elimination of so,

and F2 from this system of five equations yields a two point compact

relation in the four unknowns db, dﬁ, Fo and Fl given by




- -~ ~ Il - - 4
= + + .4.
ao °O + al 01 + bo Fo + bl E‘l ro RO rlal o¢h ) (2.4.8a)
where the coefficients are
a [ 12—59—] A b [s siﬂl] A
a - C - - -
0 0 2 1 0 0 1
eﬁh 6.h
3 [ c. + 1221 ] A 5 [s 6A1] A (2.4.8b)
a - - + F + wvma— . .
1 1 2 0 1 1 0
Gﬁh e.h
Ty = A £ = A

The boundary condition (2.4.1b)

+ - .4.
o ¢b BL Fo =7y (2.4.8c)
provides the other compact relation at x = (.
A similar procedure at x = 1 (here X = 1, xN_1 - xN-OLh) results in
the two point compact relation :
a-1B-1 A%t Pyorfaor t PyFy
r, .R + R+ oY (2.4.9a)
N-1"N-1 N'N T
where the coefficients are
- AN-1 - An—l}
a C POA A b = |8 -6 A
N-1 [ - ] - [ -
N-1 Eihz N N=-1 N=-1 eLh N
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- A -
aN = [ C. + 12;;;5] AN-I bN - [B + 6———} AN 1 (2.4.9b)

Tn-1 T Ay ™™ " Ay
Again the boundary condition (2.4.1b)

aR¢N + BRFN = Ya {(2.4.9¢c)
provides the extra compact relation at x = 1.

The resulting 2N+2 coupled algebraic equations may be arranged as a

block 2x2 tridiagonal system:

Mu = £ (2.4.10)

where

where u is the 2N+2 solution vector and £ contains the innomogenous
terms A generalized Thomas algorithm Twizell [1984] for the algebraic
system (2.4.10) is efficient; requiring approximately 36(N+l) 1long
operations. For additional details on block tridiagonal systems see

Appendix A2.4.

Applications I: Linear problems

We shall illustrate the CI4 method on a variety of one-dimensional
linear second order boundary value problems. Both uniform and

nonuniform arids are considered. We shall assume that the global



error in ® of Cl4 applied to all problems considered here is given by

E(h) = Max ® (x) —O(x)l = Iltb - d)“ = chP
T T oo
= € [a,b]

where C and p are constants independent of h as h+0; p is the rate of
convergence; and d& is the analytic solution. Assuming we have two
different grids MNI and MNzwith grid sizes hl - 1/N1 and hz - l/N2
respectively, p is easily determined (provided an analytic solution d%
is available) from

E(hy) hy
p= ‘"(s(hz)}"“‘hz’ (2.4.12)

A similar procedure is assumed to be valid for F.

In the case of a nonuniform grid, a two-sided invertible stretching
function {(x) is introduced. This function is determined soclely from
the values of %& s m(x) at x = 0 and x = 1 and from criteria described
by Vinokur [1984] and briefly summarized in Appendix AZ2.S. Once a
stretching functicn is determined it is inverted to provide a suitable
variable grid given by x = x({). This variable grid is not altered
during subsequent calculations. The determination of rates of
convergence, in the variable grid case, using (2.4.12) are carried out
with h = 1/N where N is the number of subdivisions of the interval.

For comparison purposes, the values pPpin and Ppay, which are the

minimum and maximum values of

% (x(04) - x (§4-9)) , i=1¢toN (2.4.13)
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are given.
Finally we note that before a calculation is started and after the
arid has been chosen, the coefficients in equations (2.4.6), (2.4.8) and

(2.4.9) are determined and stored.
Problem 1:
Over the interval [®/,4,®/,] we consider
sin(x) S - cos(x) F - sin3(x) o = sina(x) cos {x)

with the boundary conditions

n 1 n
¢(4) =7z QNZ) = 0

The analytic solution is

sinh(cos(x))
P (x) = - cos(x)
T 1 sinn(l)

V2 V2

Problem 2:
On [0,1] we consider
, 2 3
cosh(x) S - (s1nh(x) + 3cosh (x)) F + 2 cosh™(x) &

_ e-s;nh(X)cosh3(x)(6 sinh(x)~5)



with boundary conditions

&) + F(0) = -1 cosh(l) &(1) - F(1 = &> PNV
The analytic solution is

d&(x) - Clesinh(x) + CzeZSinh(x) + sinh(x) e-sinh(x)
where a = esinh(l) and

1 ( 1 1 . }
- —————— —_— hll -
c1 l1-a 2a + a cosh(1) az(SLn (1) L

C2 = - 1 = 01/2

In both Problems 1 and 2 uniform grids were chosen. We see from
Table 2.4.1 that the rates of convergence for both ® and F approach 4
as h-0 even in the case of Problem 2 whose boundary conditions are not
simple. We note that while the rates of convergence for the first
derivative F are monotone (this has almost always been the case), the
same is not always true for ®. It is not uncommon for the CI4 method
to provide better than expected rates of convergence for a two point
boundary value pr-oblem on cocarse grids. The reason for this is not
clear but we note that as the grid is refined the rate of convergence
decreases, in this case to ~ 3.5. Upon further refinement, the rate of

convergence approaches the asymptotic limit of 4.
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Table 2.4.1

Calculation of Error and Rate of Convergence of the CI4 Method

Step

size h

1/4

1/8

1/10

1/16

1/20

1/32

for Problems 1 and 2

Problem 1
ool | [[r-=q]l
.1704(-4) .4834(~3)

p=4.72 p=3.81
.6457(-6) .3296(-4)
p=4.87 p=3.95
.2176(-6) .1365(-4)
p=4.53 p=3.97
.2586(-7) .2112(-5)
p=3.32 p=3.98
.1233(-7) .8681(-6)
p=3.58 p=3.99
.2289(-8) .1331(-6)
p=3.79 p=4.00

Step

size h

1/8

1/16

1/32

1/64

1/128

Problem 2
|lo-or|l.  []e-rllo
.3049(~-2) .1400(-1)

p=3.71 p=3.41
.2328(~-3) .1319(-2)
p=3.83 p=3.68
.1633(~-4) .1028(-3)
p=3.91 p~3.84
.1085¢(-5) .7199(-5)
p=3.95 p=3.92
.6998(~-7) .4768 (~6)



1/64

1/128

.1651(-9)

p=3.90

.1102(~-10)

.8342(-8)

p=4.00

.5220(-9)
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Problem 3:

On the interval [1,2) we solve (on uniform grids)

x°s+4x7r+¢-i3

with boundary conditions
1 1 1
cos (=) d(1) + sin() F(1l) = cos(3)
3 3 3
F(2) = - 3 (1 + cos(g))

16 8

where the analytic solution is

1 1 1
G&(x) C1 cos 3x3) + c2 sin(axa) + 3
where
oL - 1
C1 = 331n(3) c2 3cos(3)
Problem 4:

Here we consider Problem 3 but on a fixesd nonuniform grid generated
from a two sided stretch { = [(x) where m(1) = 5, m(2) = .9, and ppin ~
.033 and Ppax ~ 1.9 (i.e near x = 0 uniformly spaced grid points are
pulled apart while at x = 1 they are slightly compressed;; see Appendix
2.5. There is no specific reason for choosing this grid; it is used
purely to illustcate the capabilities of the method. The results from
Table 2.4.2 indicate that while the error residual is smaller in the

uniform grid case, the rates of convergence for both ® and F in the
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Table 2.4.2

Calculation of Error and Rate of Convergence of the CI4 Method

for Problems 3 and 4

1/128

.1564(-7)

.1489(-6)

Step Problem 3 Step Problem 4
- - ||
size h ”o'o'r”w ”F FT”- size h ”M'r”-o ”F Frlle
1/4 .1615¢(~1) .782%(-1)
p=3.58 p=3.44
1/8 .1346(-2) .7231(-2) 1/8 .7416 (=2) .2142(-1)
p=3.99 p=3.72 p=4.11 p=4.11
1/16 .8445(-4) .5491(-3) 1/16 .2307(-3) .1244(-2)
p=4.14 p=3.90 o=4.05 p=4.05
1/32 .4783(-5) .3691(-4) 1732 .2602(-4) .7516(~-4)
p=4.15 p=3.97 p=4.02 p=4.02
1/64 .2695(-6) .2363(~5) 1/64 .1600(-5) .4621 (-5)
p=4.13 p=3.99




variable grid case are nearly four.

Problem 5:

Here we consider the singular perturbation test prob.em given by

Berger et al. [1980]

€ S + b(x) F = £(x,¢)

where

b(x) = (x+1)3

12¢e_ exp{- i%{(x + 1)4 - 1]) + % exp(-x/Z)(z - 2(x + 1)3}

fi(x,e) =
(x + 1)5

and the boundary conditions are

D(0) = 2 P(l) = exp(%) + % exp(-15/4e)

The analytic solution is

1 1 a _
¢E(x) " B0 exp{- 48[(x + 1) 1]} + exp(~-x/2)

We choose &€ = 10-3.

At x = 0 d&(x) develops a boundary layer of width
C(e) in which FT(O) - - 1.0035'104. A nonuniform grid was generated
(m(0) = 100 and m(1) = 1/m(0). It was found that monotone grids gave

best results (here Ppin ~ 10~ at x = 0 and P, ~ 3 at x = 1),

In Table 2.4.3 the rates of convergence appear to be approaching



Table 2.4.3

Calculation of Error and Rate of Convergence ¢of the CI4 method

Step

size h

1/16

1/32

1/64

1/128

Problem S
ool [le=c] |
.1816(1) .9785(3)

p=10.02 p=8.86
.1748(-2) .2107(1)
p=3.92 p=3.90
.1156(-3) .1415(0)
p=3.99 p=3.88
.1268(-5) .9579(~2)

for Problems S and 6

Step

size h

1/5

1/10

1/20

1/40

1/80

1/128

1/256

Problem 6
|[o-oxfl.  [|e-ra |
.1768(-5) .4385(-4)

p=4.70 p=3.65
.6825(~-7) .3505(~5)
p=4.31 p=3.83
.3445 (~-8) .2468 (~6)
p=3.417 p=3.91
.3106{-9) .1637(-7)
p=3.78 p=3.96
.2257(-10) .1053(-8)
r=3.89 p=3.98
.3631(-11) .1625(-9)
p=3.94 p=3.99
.2368(-12) .1025(-10)




The solution with h = 1/16 exhibited a small oscillatior near = = 1
which was eliminated wuen a grid ¢f 24 subdivisions was chosen. We
note that on a grid of 32 subdivisions the largast error in the first
derivative, which occurred at x = 0, was only 1 part in 5000.

We now summarize the results for the linear problem. Firstly, the
global e-timates of the rates of convergence indicate that the
asymptotic errors of the approximate values for ¢ and its ¢first
derivative F are no larger than O(h‘). Extensive numerical experiments
indicate that this is the case regardiess of the grid used, provided
the analytical solution is sufficiently well-behaved. Secondly, the
CI4 method is easily implemented and is capable of dealing uitl'; a
variety of boundary conditions with equal sase. The results of
examples 1 to 3 and other numerical experiments suggest that in the
case of Dirichlet boundary conditions at both ends of the interval of
interest, better than erpected rates of convergence for & often occur
on coarse grids. Finally, as example 5 indicates, the CI4 method
appears to be a useful computational tool for the investigation of
problems possessing solvtions with sharp boundary layers. A unifor
grid calculation based on a standard second order central difference
method would experience oscillations throughout the interval [0,1) when
the cell Reynolds number Re, = 2 oxagy X * 17 = &% 45 less than 2.
For the choice of parameter € = 10~3 this implies that a uniform grid
with h S 2.5-10'4 must be used. However, emplocying the CI4 method with
an appropriately chosen grid, very satisfactory result: are obtained

with only 32 subdivisions of [0,1].
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Applications II: Nonlinear problems

Problem 6:

Here we consider, on the interval [0,1), the one dimensional

Liouville equation, see Davis [1962],

with boundary conditions

Q(0) = O(1) = O
The exact solution is

c 1
¢T(x) = -fn2 + 2&n (Csec[z (x - 2)]}
where c = chosc%), (C = 1.3360556949)

A simple iteration was performed on the inhomogeneous term with an

initial guess of

0 4
O (x) 10 x(x - 1)
+1 =2 9
The stopping criteria chosen was ”d‘ - 0““,, < 10 "h . PRates of
convergence from Table 2.4.3 approach 4. Again we encounter better

than expected convergence rates for ®(x) on coarse grids,
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Applications III: Burgers equation

In our final problem we consider the time dependent nonlinear

Burgers equation, see Benton and Platzman [1972], given by :
°t =g $ -0OF a L) (2.4.14a)
subject to an initial sinusoidal disturbance over the interval [0,1]
@(x,0) = sin =nx (2.4.14b)
with boundary conditions

¢(0.t) - ¢(1rt) = 0 (2.4.143)
The parameter ¢ is chosen as 10-4.
The solution of this in.tial boundary value problem develops a very
sharp boundary layer of width O(€) at x = 1 about t = .5. There, the
value of F(x,t) is approximately 5-104.

Introducing a time step k = At and a nonunifcrm grid

MN-{O-xo<x1< ....<xN_1<xN-1}
with h = 1/N, where N is the number of subdivisions, the spatial
discretization of (2.4.14a) at t = nk and at X s where %, is any point of

MN with (i # 0,N) is given by



n n n n
Bt = oA, G, v e+ a9,
+b_  Fi_, + by Fy + by Fl (2.4.15)
n n n n
T %t % Y T %y,

where the coefficients a?, b?_ and rg etc. are determine. from (2.4.6a),
and d{ denvtes, for example, 0(xi,nk). A second set .of algebraic
equations, at t = (n+l)k and over the interior points is provided by
the Simpson relation (2.4.6b).

For the time differencing of (2.4.15), rather than consider a
Crank-Nicolson procedure with a Newton linearization of the resulting
nonlinear algebraic equations, we prefer a Lees three level scheme,
(Lees [1966], Smith [1985])). The nonlinear coefficients in (2.4.15)

are considered at t = nk and the spatial derivatives are evaluated over

three consecutive time steps, i.e.

n

n n
nfl .n+l -1 ri-1 ry Ti4y
l'h{s“’n + o + & ’} - S5 8.8+ 8.4+ 5 acd;n

where thq - d:u - J’i-l. Upon rearrangement we have

n +1 n +1 n +1 2k _n_ n+l

£i-1 g+ fp O+ ey °I+1 T S

n n n 4 .n -1/2
SRR AL AR AL VPR (K R (2.4.16)

-1/2 1 -1
where utdz > (dz + d’? ).

A analogour procedure, leading to equations similar to (2.4.16), is
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carried out at the boundaries x =0,1 using the two point compact
ralations (2.4.8a) and (2.4.9a). The boundary conditions ®(0) = 0 and
(1) = 0 complete the system. The scheme is stable and has a

truncation error of O(kz + h‘).

The time step was taken to be k = 4h2. A nonuniform grid x = x({)

was generated from a two-sided stretch where m(0) =1/50 , m(l) = 300.

The ratio

I {x(ﬁk) - x(Ek_l)}/\;{ “&yy) s Py= O

was monotone with Ppin = 3.4x10-zand Pmax = 38.6. The first 5 and last
20 points of this grid using N = 160 are given in Table 2.4.4 and a
plot of { (uniform grid) vuersus x (nonuniform grid) is found in Figure

2.4.2.

At t = k an explicit Euler method is used to calculate ® and F:
1 _ .0 ( 2 o} 0 2
d& d& kiex~ + F, ca + O(k")

1 0 {202 2.0
Fi Fi + k\® (03) ex Fi

- (rg)z} + ocd

The evolution of the sinusoidal disturbance is presented in Figures
2.4.3 and 2,4.4 for N = 40 and N = 160, respectively. Since these figures
cannot show the excellent reproduction of the steep gradient near x =
1.0, we present the solution with N = 160 for .9982 < x < 1,0 and for t
= .5 to 1.0 in Figure 2.4.5. Mitchell and Griffiths [1980)] calculated a
solution with 18 uniformly spaced subintervals and their solution at t

= 1.0 agrees very well with ocurs up to x = .95, They do not have
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The expression (2.5.11) is then evaluated at the S5 points of T to

yield the following matrix system for the unknown parameters A, :

k
DA = £ (2.5.12)
where D is the 5X5 matrix given by
D = (ij) = {Lek(‘tj)} , 0<k,j <4 (2.5.13)
and A and £ are the following 1X5 column vectors
A= (A,A ,A A A" (2.5.14)
- 077177277374

3

t
= {RLH(tO),RLH(tl),RLH(tZ),RLH(T3),RLH(T4)} (2.5.15)

where RLH(x)

R(x) - LH(x). Letting D"l = (D;i) denote the inverse of

D, we have, then, that the unknown parameters A are given by

k

4
_1{
A = > D ., {R(T.) - LH(t.)!{ , k =0,1,2,3,4 (2.5.16)
k L kj 3 J}

J=

o

We now extract from P(x), where the Ak are given by (2.5.16), a pair of
three point compact relations of high order in ¢ and F. This is done
by utilizing the 5 point quadrature rules described in Appendix AZ2.6.

From the integral relation for divided differences, in terms of

B~splines BN

o given by equation (A2.6.11) of Appendix A2.6, we

have that




i
0.5
uniform grid &

Figure 2.4.2 Two-Sided Stretch with m(0) = .02 and m(1) = 300.
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.9 0.1 2 9.3 0.4 0.5 0.6 0.7 ) 0-9

Figure 2.4.3 Numerical Solution of Burgers' Equation (¢ = 10°

on Variable Grid with N = 40

4

)
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t = 312510

Figure 2.4.4

Numerical Solution of Burgers' Equation (g

on Variaple Grid with N = 160
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Figure 2.4.5 Numerical Solution of Burgers' Equation (€ = 10-4)

on Variable Grid with N = 160: Last 40 Points




enough points to obtain an accurate solution for .95 < x < 1.0. The
maximum of the disturbance, which initially is at x = .5, very slowly
advances in the downstream direction. Then at about t = .45, the
acceleration becomes increasingly large and the maximum comes to a halt
within 1.6°1074 of x = 1. At this time the acceleration has decreased
sharply to zero, with d%ax ~ .9995. The maximum remains near this
location with a slightly negative acceleration developing, and the
steep front slowly subsides with @ becoming ~ .7354 at x = ,998717 at t
= 1.0. We note that the solution ® at t = 1.0, to the left of the
maximum, is not quite linear.

Using dﬁ i.e. the N = 160 solution, as accurate, we calculate

60’

rates of convergence at t = 1 as

Table 2.4.5

Three Grid Estimates of Errors and Convergence Rates of the

CI4 Method for Burgers' Equation

”°N - °1so”~ ”FN - F160H°°
N = 40 .13228(-1) .62585 (2)
N = 80 .10098 (~2) .16899 (1)
R = 3.71 R = 5.21

There is a slight bend in the 420 solution at t = 1., This is due to

the fact that there is only one grid point at ~,55 between x = 0 and x

= .6. Even on the N = 160 grid there are only 3 interior points to the



left of x = .5.
We turn now from these considerations to section 5 in which an

interesting procedure is given for deriving higher order compact

methods for the numerical solution of (2.4.1).
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2.5 A High Order Compact Mathod

In this final section we consider, in some detail, a new compact

method for

LD(x) = S + B(X)F + C(x)®P = R(x), 0 <x<1 (2.5.1)

which is based on the Hermite type collocation method of Falk [1965].
Some of the features of the method, which is termed the LCM(local

collocation method), are:

(a) in the version considered here ® and F are approximated to
O(hlo) ; verified by numerical experiment

{(b) the matrix system is 2x2 block tridiagonal and consequently @
and F are efficiently computed

(c) in terms of desired accuracy, the computational cost of the LM
method is significantly less than that of a lower order scheme
such as the CI4 method of section 2.4

(d) the LCM method is extendable to linear differential equations
of the Mth order, and in principle to nonlinear equations

(e} the LCM method appears capable of providing compact methods

with arbitrarily small truncation error (at least for smooth &),

To derive the LCM method we first impose a uniform grid, with N
subdivisions and grid spacing h, on the interval [0,1] and focus our

attention on the subinterval I :
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where the origin has been translated to x, 30 that x, = ~-h, xl = 0 and

x, = h. Introducing the node polynomials

TT{x)

2 k
IN(x) = kgo(x - xk) and [II(x) = (= - xk) , k=0,1,2 (2.5.2)

the Lagrange Dbas.s functions Ek(x) for gquadratic polynomial

interpolation are given by :

k
IT(x)
Zk(x) " ' k 0,1,2 (2.5.3)
n(xk)
The Lk(x) possess the property that
Lk(xj) - akj ' 0 <k,3 <2 (2.5.4)

where skj is the Kroenecker delta.
We now define the Hermite basis functions Uk(x), Vk(x) for

osculatory interpolation over I by -

2
Vk(x) = (X - xk)lk(x) ;s k 0,1,2 (2.5.9)
U()=12()-Mv(x‘ Kk =0,1,2  (2.5.6)
” X k X n(l) (Xk) Kk ’oor 3y =

where Iﬂm)(x) denotes the m@h derivative of [Il(x), see Issacson and

Keller [1966]}. Uy (x) and Vi (x), both polynomials of degree 5 or less,
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satisfy :
U, (x.) =85 . v, (x.) =0
k3 k3 k3 (2.5.7)
(1) (1) -
Uk (xj) 0 Vk (xj) skj

With these preliminary definitions, we now approximate over I the

solution ®({x) by the polynomial P(x) of degree 1 :
4
P(x) = H(x) + } A 6 (x (2.5.8)

Here the Ak' k = 0 to 4, are 5 unknown parameters, the functions G&(x),

X are :

which vanish at xo, xl, 27

1 x k

and H{.) is the Hermite interpolatory polynomial on . given by :

2
Hix) = ) U (& +V (0F, (2.5.10)
k=

o

where @, Fy, k = 0,1,2 are the values of ® and F at Kor X0 XK,

To determine the parameters Ak in (2.5.8) we first substitute P (x)

for ®(x) in (2.5.1) to obtain
4
) AL, (x) = R(x) - LH(x) (2.5.11)
k=0
A set T of 5 collocation points is then chosen: here we take

h
J = {tklxo + kE r k = 0,1,2,3,4}



The expression (2.5.11) is then evaluated at the 5 points of T to

yield the following matrix system for the unknown parameters Ak :
DA = ¢ (2.5.12)
where D is the 5X5 matrix given by
D= (D = {Lek(tj)} , 0 <k, 3 <4 (2.5.13)
and A and £ arxe the following 1x5 column vectors
A= (A,A ,A,A,A)" (2.5.14)
- 0f71772"73" e
£ = {RLH(TO),RLH(‘tl),RLH(‘IZ),RLH(t3),RLH(T4)}t (2.5.195)

where RLH(x) = R(x) - LH(x). Letting D~1 = (D;i) denote the inverse of

D, we have, then, that the unknown parameters A, are given by

k

4
A z: Doy \R(T,) - BH(TOf, k=0,1,2,3,4 (2.5.16)

u
o

We now extract from P(x), where the Ak are given by (2.5.16), a pair of
three point compact relations of high order in ® and F. This is done
by utilizing the 5 point quadrature rules described in Appendix A2.6.

From the integral relation for divided differences, in terms of

B-splines BN

0 given by equation (A2.6.11) of Appendix A2.6, we

have that




x,.=h

2
1
¢[x0.x1.x21 = f Bo (t)sS(t)dt (2.5.17)

xo-—h

The integral in (2.5.17) is approximated by the 5-point B-spline
quadrature rule, given by equation (A2.6.18) of A2.6. This results in

the following expression for the second divided difference

4
Dlxy x,,x,) = )3 ©,S(E,) (2.5.18)
i=0
where
0, =0, =0, o =0, =a 0, =%
(2.5.18a)
‘50 = §4 = hﬂz ‘@1 = §3 = h31 52 = BO =0
and the ai,Bi are given in A2.6. Upon replacing S(Ei) by R(§i) -

B IF(E,) - CEI®E,) and then substituting p(4,) and 2 (&) for

¢N§i) and F(&i) we obtain
. (1)
Dlxy,x,,%,] = _7_;"’1{‘”&1’ - BEHP T (E) - c<§i)p(§i>} (2.5.19)
l!

If the defining equations for P(x), given by (2.5.8) and (2.5.14) are

utilized in (2.5.19), we obtain after some manipulation the following 3

point compact relation in ® and F

4
2 . }
I, F, = 20" ) {coia(ii) - oR(T)
i=0

(2.5.20)
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4
- 2h2 -
v, =2h _}__{miuuk(gi) O‘iI.Uk(ti)}
i=0
(2.5.20a)
, &
r, =2n Zo{miuvkcti) - O'iLVk(‘ti)}
im

In (2.5.20a) the operator M is defined by M = B(x)éi + C(x) and

(2.5.20b)

A second compact expression is determined in the following way.
Approximating the integral of F(x) over the interval [-h,h] with the 5-
point quadrature relation (A2.6.19) of A2.6 we have the following

relation(valid for uniform grid only) :

- &(-h) = @_nr(-E © @ 3 24 - s¢(-
®(h) - &(-h) = @ hF(-§.) + coom?(Eo) + whF(§,) +h m?_{S(Ez) S¢ 52)}
(2.5.21)

where

(2.5.21a)

and ai,ﬁi are given in A2.6. The replacement of S(x) by R(x) ~ MO(x)
in (2.5.21), followed by the substitution of P(x) and its derivative

for ® and F yield the following compact relation
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4
= @,h2 ) G.R(t,) + &,n?(REyH - R(-E) (2.5.22)

where
- 4 - -
Y, = @h2 ) OLU(ty) + mth{MUk(Ez) - Muk(-Ez)}
(1) (1), ¢
- mlh{Uk (El) - U (—E;l)}

(2.5.22a)

4
[, = @n2) oLv(c,) + 62h2{uvk(52) - ka(-E?_)}

and Ei is defined by

- 4 - _1
G; = Z A Dy
k=0

(2.5.22b)

>

1 (- (1) M,z )
" o {mlh[ek Ep + 8 7 -E))

- 2 =
@,n” (M8, (£, - Mek<-§2)}

It is noted that the application of quadrature formulae with multiple
Gaussian nodes, of which (2.5.21) is an example, to the numerical
solution of ordinary differential equations is a subject which has

received little attention.




We now provide some computational details and an example, The

compact relations (2.5.20) and (2.5.22), which are locally O(hlo), give

rise to a block 2x2 tridiagonal aystem. The matrix coefficients,
determined from (2.5.20a-b) and (2.5.22a-b) require the evaluation of
the Hermite basis functions Uz(x), Vz(x), (. = n,1,2), and the
functions G&(x), (k = 0 to 4), together with their respective
cdarivatives, at the collocation points J and the two sets of quadrature
nodes. For the case of a uniform grid, UL(X)' Vt(x’ and Gi(x) are grid
point independent and so, at the beginning of the computations, these
functicns and their derivatives are evaluated at all collocation and
all node points, and the results stored. This brings about a
substantial reduction in the number of computations.

All calculations have been performed in double precision on the
Cyber 170-835. At each grid point a 5x5 matrix D must be inverted and
LinPack double precision routines DGECO and DGEDI have been used to
obtain the inverse matrix elements Dyg.

Two point compact boundary relations have not yet been worked out
so that analytic boundary values for @ ond F were provided in all test
problems.

The results presented for the following problem are typiz=al. In

equation (2.5.1) we set
B(x) = -~(tanh x+ 3 cosh x)
C(x) = 2 cosh?2(x)

R(x) = e~3inh X (¢o3h2(x) (6 sinh(x) - 5)

The boundary conditions are




O(0) = -1 + % F(0) = -1

®(1) = ap - a2(1 + %) + sinh(1)/a F(l) = 1

where

a = e3inh(1l)
p={2a+—2— 4L (sinh(n) - Ha - a
a cosh(l) a2
The analytic solution d&(x) is given in section 2.4.
In Table 2.5.1 columns 1 and 3 display the results obtained with
the O(hé) CIl4 method of section 2.4 while the remaining columns are the

corresponding results with the LCM method. The execution time for the

LCM 1rethod was found to require approximately 2k CPU seconds on a grid

h
with hk - —% . ho = 1/4. In contrast, the CI4 methced took 7 CPU
2
seconds with h = ié%: . Tf we examine the results of the O(hq) method
with h 15;4 we see that approximately 1.75 times the computational

effort was required o achieve a max-norm error in ¢ over 2 orders of
magnitude larger than that obtained from the LéM method with h = f%. As
well, it should be noted that while the code for the lower order
compact method was highly optimized there is a good deal of room for
improvement with the LCM method.

The results of Table 2.5.1 suggest that both ® and F are globally
approximated to O(hlo). It would appear that high order methods for

(2.5.1) are worth the effort.
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Table 2.5.1

99

Comparison of the Errors and Coavergence Rates of the CI4 and

Step
size

LCM Methods for a Second Orxder BVP

CI4

”°'°T|L,

.7868 (-2)
R=3,42

.7338(~-3)
R=3_81

.5223(~-4)
R=3.86

.3560(-5)
R=3.94

.2321(~6)
R=3.97

.1480(-7)
R=3.99

.9341(-9)
R=3.99

.5867(-10)
R=3.996

.36761(-11)

LCM

[lo- o,

.3748(-7)
R=10.24

.3090(-10)
R=10.78

.1753(-13)
R=10.26

.1425(-16)
R=10.03

.1360(~-19)

le - =

CI

.7585(-1)
R=2 .83

.1068(-1)
R=3.36

.1038(-2)
R=3.67

.8157 (~4)
R=3.83

.5728 (-5)
R=3,92

.3797 (-6)
R=3.96

.2444(-7)
R=3.98

.1550(-8)
R=3.99

.9759(-10)

4
Al

LCM
1
e - e,

.1389¢(-5)
R=8.65

.3463(-8)
R=9.34

.5325(-11)
R=9.68

.6471(~14)
R=9.85

.7016(-17)




2.6 Discussion and Conclusion

In this chapter we have examined the notion of compact differences
and developed a large number of formulae for uniform and variably
spaced three point grids.

A new method of compact type for the solution of second order
boundary value problems with mixed boundary condit.ons is presented.
Numerical experiments with the CI4 method have been described, for both
linear and nonlinear problems and on both uniform and nonuniform grids.
In all cases the global estimates of the rate of convergence yield a
limit of four. 1In uddition, we have successfully extended the method
te a time dependent nonlinear partial differential equation. The
potential accuracy of the CI4 method, the ease with which it may be
implemented, its ability to treat a variety of boundary conditions, and
its flexibility in the choice of grid, suggest that it could be a
useful tool for the investigation of problems with sharp boundary
layers.

The CI4 method is capable of extension in several directions.
Firstly, compact formulae analogous to those presented in this section
have been derived which possess truncation errors of O(hs) regardless
of the choice of the grid. See, for example, equations(8)-(9) of Table
2.2.2, Consequently, a compact method in & and F of O(hs), on variable
grids, is possible for equation (2.4.1). The slight difficulties which
present themselves at the boundaries are overcome with a deferred
correction or the use of noncompact approximations. Secondly, the CI4

method is extendable to two-dimensional problems. Moving boundary
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value problems goveraned by general time independent elliptic partial

differential equations have been successfully treated both on uniform
and variable grids. This is the subject of the next chapter.

Finally we have developed the LCM method - a high order scheme for
the solution of boundary value problems for second orxder ordinary
differential equations. Comparisons with the CI4 method, on uniform

grids, suggest that the method is efficient and accurate.




CHAPTER 3

A COMPACT METHOD FOR MOVING BOUNDARY VALUE PROBLEMS
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3.1 Introduction

The unstable displacement of one fluid by another in a porous
medium is commonly termed the Saffman-Taylor instability. Such flows
are characterized by the development of long fingers of displacing
fluid. Since the mechanism governing the growth of these fingers is
often linked to the difference in viscosity of the interacting fluids,
the instablity has been appropriately described as "viscous fingering".
This terminology is used even in those cases where a gravitatioconal
field plays an integral part in driving the instability.

The Saffman-Taylor instability is not only of theoretical interest
but of practical importance as well. This is due to its occurrence in
a number of fields ranging from secondary and tertiary oil recovery to
the atudy of the salt-water interface in coastal aquifers. As well,
the underlying mechanism is thought tc be relevant to the understanding
of other phenomena such as pattern formation in crystal growth, Langer
[1980].

In recent years the Saffman-Taylor instability has been the subject
of much numerical investigation, a brief synopsis of which is given in
Appendix A3.3. Some of the most successful numerical simulations have
taken advantage of the harmonic nature of the governing field equation,
Our purpose in this chapter is to develop a new compact method for the
solution of two dimensional moving boundary value problems which are
governed by rather general time-independent elliptic partial
differential equations. This new compact method which is kbased on an

extension of the method described in section 4 of the previ-us chapter




will be develcped and applied to a speci' case of the Saffman-Taylor
instability. It will be seen that the new algorithm is not only
accurate but reasonably flexible in that calculations may be carried
out on nonuniform grids. The compact method is capable of
generalization to moving boundary value problems involving an
incompressible fluid governed by surface tension and the Navier-Stokes
equations. We shall also see that the new method treats the boundary
and evolution equations describing an interface in a natural manner, in
sharp contrast to the difficulties encountered when standard higher
order finite difference methods are used.

The general outline of this chapter is as follows. In section 2 we
formulate the problem of the Saffman-Taylor instability for two
immiscible fluids in contact. In section 3 we outline the new compact
method as it applies to a special subcase of the Saffman-Taylor
instability. In section 4 we present and compare the results of the
new method with some exact solutions. In section 5 we conclude with a

discussion and summary.
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3.2 Formulation of the Problem

We are concerned here with flow in a porous medium, a brief
description of which is given in Appeidix A3.1. Consider an infinitely
long, two-dimensional, porous, vertical channel of width 2L with
constant effective porosity O, and permeability K. Let the channel be
fully saturated with two immiscible fluids of constant but distinct
fluid properties. Let fluid 1 occupy the upper half of the channel,
with fluid 2 taking up the lower half, Consider the displacement of
one fluid by the other fluid due to uniform pumping cx suction at y =
—o0, This two fluid porous flow problem exhibits an interesting and
much studied instability known as the Saffman-Taylor instability.

The forces usually included in driving this instakility are those
of gravity, viscosity, and surface tension. The horizontal and
vertical components of the velocity v; = (uj,v;) (i=1l,2) of each fluid

are from Darcy's law (A3.1.7)

vy = -1 v, (3.2.1)
Ce

where the velocity potentials &®; are defined to be

- Pi
O = Kily + g2 (3.2.2)

- XY

i
the hydraulic conductivity of each f£fluid. Assuming that changes in

with Py Yi = pig, and Ki the pressure, the specific weight, and

fluid volume due to compressibility of the fluid and/or solid matrix




are negligible, as discussed in Appendix A3.1, the equation of

continuity (A3.1.8) becomes
V:.cguv. =0 (3.2.3)
8
with the result that each of the velocity potential. satisfies

Vztbi =0 . (3.2.4)

Along x = %L we assume periodic conditions in which case the

horizontal velocity components ui satisfy

w, =% 9% _ 4 oL (3.2.5)
1 Oe ox

At large distances from the interface between the two immiscible
fluids the fluid motion is taken to be uniform with the velocity

potentials given by

D ~ -Gy asy o e
(3.2.6)

¢2 ~ ~Cg¥y as y —-c

where ¥V = sgn(¥)V is the pumping(suction) velocity and sgn(¥) and V are
the sign and magnitude of the pumping(suction) velocity.

The interface y = f(x,t) between these two immiscible fluids is
assumed to be sharp and of period 2L. Taking the normal vector n to
point into the region occupied by fluid 1, we have on the interface

that the normal velocity components are continuous:
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The kinematic relation for the motion of a free surface is given by
(A3.1.11) which together with (3.2.7) require that the free surface
f(x,t) simultaneously satisfy the pair of first order nonlinear

hyperbolic equations

1 1 .
ft -oe(day - fxﬁax) - -Ue(dby - fx¢bx) (3.2.8)

As well, there exists across the interface a pressure 3jump given by

de
- - “I —
Py 92 s ds PC (3.2.9)
where Ys is the effective surface tension (Davidson [1983]) and Pc is a

constant capillary pressure due to the microscopic structure of the

solid matrix. The curvature %g is given by

a0 1 2. -3/2
el S ¢ SR (3.2.10)

with R the radius of curvature, © the angle between the slope fx and

the horizontal, and s the arc length. Without loss of generality it is

convenient to set Pc in (3.2.9) to zero. Using (3.2.2) the pressure

jump condition may be expressed in terms of the velocity potentials as
de

1 1 a8
g{Klplda - szzda) - gf(p1 - pz) = Y5 4s (3.2.11)

Finally there is an initial condition given by




f(x,0) = fo(x) r - L<x <L (3.2.12)

Equations (3.3.1-12) complete the formulation of the rectilinear
displacement of two immiscible fluids in a porous channel. The fluid
porous system is depicted in Figure 3.2.1.

To nondimensionalize the above system we introduce a characteristic
length of L and a characteristic time of L/V and define dimensionless

variables (indicated by asterisks) by :

x = Lx” y = Ly" t = Le*/v (3.2.12a)
@, (x,y,£) = GgVLO, (x*,y*,t") ,i = 1,2 (3.2.12b)
f(x,t) = LE*(x*,t™) £,(x) = Lfa'(x*) . (3.2.12¢)

The nondimensional formulation is given by tae following set of

equations(dropping asterisks) -

on -1 < x <1, £(x,t) €y < oo:
V2¢1 =0 (3.2.14)
v, = -V (3.2.15)
d& ~ -sgn(¥Y)y as y —ee (3.2.16)
on =1 < x <1, =<y < f(x,t) :
Ve, =0 (3.2.17)
v, - —VHE (3.2.18)
db ~ -sgn(¥)y as y — - (3.2.19)

on x = +1 :

4&x(x,y,t) =0 ,i=1,2 (3.2.20)
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§1~_°o"y

K = aigx
Hq

V4, =0
=0 b =0

-1‘,:(+,,-f,¢,,o=f.=--‘?.(+z,—f.+zo

g 0—14’1 - -Q—’-¢z}—9(0y—02)f=r.‘§-

K, K. ds
$x =0 $x = 0
V%4, =0
K, =, Ox
)
v — 0, Dy
x=-L x=L

Figure 3.2.1 The Saffman-Taylor Problem for Two Immiscible

Fluids in Contact
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and on the interface y = f£(x,t) :

--(@ - - - - .2.21

fm (@ - £ ) = (B - £ ) (3.2.21)

Ya+ne + a-no}-Ls s+ e gz
2\ (A e ¢ 2 Ca "xx x T

The three parameters in (3.2.22) are (Tryggvason and Aref [1983] and

Homsy [1987]) -

2
x(Py - Py) 1y + Hyyvr B, _ M
- V(l +2g; ca = g —= i A=—2"v2 (3223
oV, + M, e T, TR

G is a modified Darcy-Rayleigh number, Ca is a modified capillary
number and A is the viscosity ratio or Atwood number.

Since our purpose in this chapter is to describe a new compact
method for the solution of moving boundary value problems in a porous
medium and to examine the behaviour and accuracy of a computer
algorithm based on the method, we have chosen as our model test problem
a simple subcase of the Saffman-Taylor instability. It is the two
dimensional rectilinear displacement, in a .porous channel, in the
abscence of both gravity and surface tension, of one fluid under the
influence of uniform suction(sgn(¥) = -1) at y = -oo., This subcase is
obtained from equations (3.2.14-22) upon setting the modified Darcy-

Rayleigh number G to zero and letting

p1 -0 ul —0 and ys -0

which together imply that Ca — 9o and A — -1. The description of the

i1



model test problem is presented in Figure 3.2.2. In the numerical

results presented in section 4 we have chosen, for convenience, to
limit our attention to those cases where the free surface evolves
symmetrically about the line x = 0. This means that the initial free
surface fo(x) is symmetric about the line x = 0 and that the domain can
be restricted to 0 < x < 1 with identical conditions applying on x = 0
as on x = 1.

We shall from now on refer to this test problem as the Hele-Shaw
model, sirce as was noted by Sir Geoffrey Taylor in 1956 (Saffman
[1986]), two dimensional porous flow is approximately modelled by a
viscous fluid in a Hele-Shaw cell, which consists of two closely spaced
parallel glass plates, when the flow is averaged over the gap 8§ of the
cell. The cell acts, in effect, as a porous layer with permeability
82/12. Some exact solutions of the Hele-Shaw model may be found in
Appendix A3.3.

In order to cbtain some idea of the difficulty of numerical
approximation of the Hele-Shaw model, we summarize the results of a
linear stability analysis performed on the scaled Saffman-Taylor
problem (3.2.14-22). The analysis is due, in essence, to Chuoke et
al [1959]. Let a perturbation, with wave number n, of an otherwise flat

interface be represented by
A(e,B,t)exp(infx), -1<x<1, t>0 (3.2.24)
where A(e,B,t) = gexp(Bt) is the amplitude of the disturbance, P is a

dispersion constant whose sign determines the growth of the

perturbation in time, and A = 2/n is the wavelength(considering the




fo=—(¢, — fx$v
=0

Vp =0

X =L ¢~y

Figure 3.2.2 The Test Problem: The Hele-Shaw Model

$=0
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full channel)of the disturbance. It may be shown that B satisfies the

dispersion relation

3
]

B = sgn(¥)(A + G)n' - %a- (3.2.25)
where n' = xn. In the limit of zero surface tension, Ca - ¢, and the
amplitude of the perturbation is given by

A(e,B,t) = eexp{sgn(Y)(A ‘r G)n't} (3.2.26)

Thus the perturbation is unstable if sgn(V¥) (A + G) > 0, or equivalently
if

XY + (uz - ul)sgn(V) <0 (3.2.27)

This implies that any small disturbance will grow in time if a heavier
and more viscous fluid is displaced upwards from below. This statement
remains true of a fluid driven downwards by a lighter less wviscous
fluid if the magnitude of velocity is sufficiently large. In the case
of the Hele-Shaw model, where A-4-1, Ca-»< and G-0, condition (3.2.27)

reduces to
sgn(¥) < 0 (3.2.28)
Thus, suction from y = -o is unconditionly unstable with the property,

from (3.2.26), that the shorter the wavelength of the disturbance, the

faster the growth in time. This basic tendency is ameliorated with the
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introduction of surface tension which has the effect of damping out
short wavelength disturbances. Specifically, it can be shown, from

(3.2.25), that a flat interface is stable to perturbations whose

wavelength A satisfy

1
2
A< Ac - n{Ca(A + G)} . (3.2.29)

With regard to instabilty, there is a preferential mode in that

perturbations of wavelength

A* = V3 lc (3.2.30)

achieve the most rapid growth.
In closing, we remark that in the two fluid formulation the
gravitational field may be removed by a translation of the driving

velocity. This is accomplished by applying the transformaticn

£ =f + sgn',l’)% t
- G .
dk = dﬁ + sgn(V)A Yy , i=1,2 (3.2.31)

to the scaled equations (3.2.14-22). The resulting system in f and
&E(i = 1,2) describe rectilinear displacement in the absence of a
gravitational field and is virtually identical to the system given by
equations (3.2.14- 22), except for the abscence of a Gf term in
(3.2.22) and the fact that the driving velocities vi(x,twﬂ = 3gn(¥) now

become
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- G
vi(x,t-o) - -Oiy(x,:tu) - sgn(‘lf){l - -A-}
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(3.2.32)

Finally, we mention that there are no dimensionless parameters in

the limiting case of the Hele-Shaw model in contrast to the three

parameters G, A and Ca of the more general formulation.




3.3 The Numerical Method

Free boundary value problems are often described by elliptic
partial differential equations. On the other hand, moving boundary
value problems such as Stefan problems, are usually governed by
parabolic differential equations. Tha% this is not always the case is
seen from the Hele-Shaw model in which the governing equation is
elliptic. The time dependency of the velocity potential &(x,y,t)
arises from the changing position of the free surface f£(x,t). This
degeneracy, as Crank [1983] calls it, is nevertheless of great
usefulness. Here it allows us to deal with our first numerical
difficulty - namely the matter of the velocity potential & becoming
unbounded as y — -oo,

Since the field equation is harmonic, we have that the Cauchy-
Riemann equations are valid for each and every instant of time.
Consequently, this allows us to reformulate the Hele-Shaw problem in
terms of a conjugate variable, a stream function ¥, which is seen to be

well-behaved as y —»-o. Introducing a stream function ¥ by

v\
%o
AV
< e

QJlQ)
< lg
]

[}
QJlQJ
% I

the Hele-Shaw model, with symmetrv aboutr x = (, becomes

on 0 < x<1, ~o < y < f(x,t) ;
V¥a= 0 (3.3.1)

on x = 0
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Y= 0 and ‘l’y = 0 (3.3.2)

on x =1 :
VY= -1 and ‘Py - 0 (3.3.3)

and as y — -« we have on physical grounds that
Y~ =x, ¥ ~=«~land ¥ ~0 (3.3.4)
x b4
As well, from (A3.1.20) and (A3.1.21), taking note that K = 0 and that

all the variables above have been nondimensionalized, that on the free

surface y = £(x,t), 0 < x <1

b 4 - f ¥ (3.3.5)
Y x x

2
£ = {1 + £)¥ (3.3.6)
t x x
£(x,0) = fo(x) (3.3.7)

Several conditions given in (3.3.2-4) appear to be superfluous but as
they are needed in the compact scheme to be discussed below they have
been included here. We also remark that the quantities of physical
interest, namely ?;, 1; and f(x,t) are all independent of a constant in
the stream function ‘F.

Our second preliminary numerical concern arises out of the need to
provide an effective computational domain over which to carry out the
finite difference calculations. To this end we introduce the shearing

or coordinate transformation




E=x, n=exply - f(x,0)) , T =t (3.3.8)

which is discussed in Appendix A3.2. This transformation which maps
the infinite region onto a unit square is appropriate since most of the
computational effort over the unit square will be devoted to
determining the behaviour of the fluid in the vicinity of the free
surface. Under this transformation the Hele-Shaw model, (3.3.1-7),

becomes (with the help of Appendix A3.2)

on0<§<1 0<n<1
YW, +2B¥,_ + C¥ _+ E¥ =0 3.3.9
34 &n m n ( )
onf =0, 0<Nn<1
¥ = 0 and \l’n =0 (3.3.10)
on§ =1, 0<nn<1:
Y = -1 and ‘I‘n = 0 (3.3.11)
on0<§ <1, n=0:
¥ = -t , ‘!’§ - -1 and ‘l‘n = 0 (3.3.12)
or 0 <& <1, =1
£
| 4 = ——g—‘i‘ (3.3.13)
n 1+£2 &
£ - ¥ s 3.3.14
t 3 (3.3.14)
£(5,0) = £,6) . (3.3.15)
The cocefficients in the governing equation (3.3.9) are
B = -qu (3.3.16a)
cC = 112(1 + fé) (3.3.16b)
2

E = 1 +f£ -f£ . 3.3.16
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We remark here cn the s=imple form of the evolution equation (3.3.14)
that has resulted from the use of a stream function ¥ and the shearing
transformation. We summarize the problem in Figure 3.3.1.

We begin the description of the numerical method. First we must
distinguish between solutions of the continuum model and those of an

approximate model. So we shall denote solutions to the continuum model

(3.3.9-15) in the region
G=RxT

where R = {(g,n)l 0<§ <1 0<Nn< 1} and T = {tlo £t < Tf} by the
subscript s. For example, q;, Us' Vs, Ps' Qs and Ws shall represent,

on G, the values of V¥ ?&, qh, q&&' q&ﬂ and 1&n which satisfy the

continuum model.

A

Next we construct a computational domain G. A set of M + 1

distinct, arbitrarily spaced points

;o {0 alTIRIA PURIEERIL LV 1}
is used to divide the § interval into M subintervals with average step

size h = ﬁ . Similarly the M interval is divided into N subintervals

with a set cf£ N + 1 given by

Iﬂ = {0 = no < nl < ... < nN-l < nN = 1}
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£
Y = ———é——‘P
n 1 4+¢£2 §
13
n=1
ft-‘l’g, £(§,0) =f°<§)
Y= Y =
‘y= \Pao
n 0 n
Y, + 2B +C¥ + E¥ =0
33 &n m n
=) ¥Y=-t, ¥ =-1, ¥ =0
" % 1
E=0 E=1

Figure 3.3.1 The Hele-Shaw Model After Coordinate Transformation:

A Stream Function Formulation
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with a average step size k on In defined as k = %. For the T interval,

0<t<T

£ the points of partition are

A

Tf
T = {Tkltk = kAt, k= 0,1, ..., P; At = 1;} .

A
Then the computational domain G is the set of lattice or grid points
covering G given by

A
:

A A
G -{(gi,nj,tp) (gi'"j) ER 0<i<M 0<j<N T &8T 0<pc™L P}

p 2
A A
where R = Ig x In. It is on G that mesh functions ?{?’ - §%§1,ﬂj,tp)

and the like are defined as the solutions to a discrete approximation
to the continuum model.

The remainder of this section is in three parts. In part one we
treat the field equation (3.3.9). There we introduce discrete
approximations to (3.3.9) whizh collectively form the basis of a new
compact method with local truncation error of degree 4. We provide a
description of the iterative procedure used to solve the resulting set
of algebraic equations. This is followed by'a discussion of how the

boundary conditions and the cross term W are treated in a compact

fashion and incorporated into the iterative procedure. 1In part two we
treat the free surface equations (3.3.14-15) and discuss the
ir.:eresting conservation of mass property of the evolution eguation f1
- q&, Finally, in part three we present details of the computer

algorithm.
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I - The Numerical Treatmant of the Field Equation
(A) - The Basic Approximation

Let (&i,nj), as pictured, in Figure 3.3.2 below,

GyrMiyy)
€k

GyqeMy) & emy) Gi41rMy)

Sk

8h=%8 -8,
B 3~ M52

Oh =8, -8

Bk =My - Ny

(gilnj_l)

Figure 3.3.2 The Five Point Difference Molecule at an Interior Grid

Point

A
represent an interior grid point of R. The following discrete

A
approximations to the second derivatives P and Q, at (&i,nj,tp) e G,

form the backbone of the new method




() _ 1 ® _1 (P

Bij = p2 M) o g - DB ULy (3.3.17)
(P 1 (p) _1 (p)

Q5 " 2 ML ¥ e T P Vi, e (3.3.18)

In these expressions a summation convention has been adopted with
respect to the indices m and n both of which take on, in turn, the
values -1, 0 and 1. These expressions are, of course, the explicit
variable grid compact approximations to the second derivative discussed
in Chapter 2. The coefficients Aﬁm(i), B&m(i), Ann(j) and Bnn(j) are
easily derived from formula 6 of Table 2.2.2 and are reproduced in
Table 3.3.1. Note that the dependence of Gi, Gh, Gh and Gk on the grid
point (§i,nj) has been suppressed.

The discrete approximation to the governing field equatton (3.3.9)
at (&i,nj,tp) € & is obtained by substituting (3.3.17) and (3.3.18) for

P and Q, an” is given by

1 : (p) _ 1 . (p) P)Jj1 (p)
{h2 Agm(l) q&+m,j h Bgm(l) Ui+m,j} + Cij k2 A'ﬂn(j) ql,j+n
-1 (p) (Y, (P _ _,n(P) (D)
X Bﬂn(j) vi,j+n} + Eij Vij 2Bij Wij (3.3.19)

We note that the cross term W has been taken to the right hand side and
its treatment is discussed in (D). Now (3.3.19) must be supplemented

by two auxiliary relations in ¥, U and V. The expressions are

1.1 (p) 1,0 4P
N A§ (i) ¥im, 5 * B§ (i) Usom,3 = (3.3.20)
1 a4y wiP) 1 P
N an_(3) qg,j+n + Bn_(J) vi,j+n 0 (3.3.21)

123




124

Table 3.3.1

Coefficients in Compact Formulae (3.3.17-18)

[N

4
(i) = —_—s 0 (50 + 30))
A§_1 (eL + GR)BZ R L R

. 3 )
A% (4) o+ o @, +06,)° & - 488 + 36)

4
—2 &8 +50)
©, +e)p? L L R

AE. (4)

BE (i) = - ——=—— @
51 (8 +6,)8 R

2
(9R - GL) (QL + QR)

BS . (i) —————
% e + 8,)B

BE (1) = 2 & {p -96.(0 + 93’}
1 L -
(@, + 6P B 6,6,(8, +©,)

4
AN . (9) — . 858+ 30)
-1 QA)g?- A'"'B A

0. +

3
A -
M, () A)BZ (8, + 8, (3e§ 19,8, + 3e§)

(0. +

. 4
AN (3) = €.(38_ + 58 )
1 ) “GA’BZ BB A

2
B (§) = - —2 g
.10 (6, + eA)ﬁ A

2
BN, (3) = (8, -8)(0 + 86)
0 (8, + QA)B A B"''B a

'
+

BN, (3) e
1 ® +0)5 B



Note that these two relations are the Simpson relation, formula 4 of
Table 2.2.2. The coefficients Aﬁ;(i), etc, are given in Table 3.3.2.
Equations (3.3.19), (3.3.20) and (3.3.21) represent three coupled
equations in the unknowns Qig), Uig)and Vig) at Tt = 1P over the
interior points of ;. These three relations, which form the basis of a
new and practical compact method for general second order elliptic
partial differential equations, are valid for variable grids which are
consistent with the computational domain &. It may be shown that the

local truncation errors for (3.3.20), (3.3.21) and (3.3.19) are,

respectively, 0(h4), O(k4) and 0(h4+ kq).
(B) - The Iterative Procedure

In two dimensions the first work on compact methods to gain wide
exposure was that of Hirsh [1975]. His method may be summarized as
follows. For a time independent elliptic problem in the variable Y,
subsidiary variables U = q; , VU = 4; , P = “;x r, Q= q;y are introduced
and the field equation is then expressed in terms of these five
variables. In addition four subsidiary equations must be defined at
each point of a grid in ord=r to close the system. Leaving aside
details of the treatment of the boundary conditions, Hirsh and
subsequent workers have employed an ADI type iterative procedure in
which, in a horizontal sweep, the variables ¥, U and P are updated.
This is then followed by a similar sweep in the vertical direction to
update ¥, V and Q, and the whole procedure is repeated to convergence.
As {3.3.19-21) would suggest the subsidiary variables P and Q are

generally not needed in a fourth order discretization of a second order
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Table 3.3.2

Coefficients in Compact Formulae (3.3.20-21)

2 3

- B Gh(ZG& + Gh)

- ﬁ- ©, + 8y ® -8y

- - ﬁ 8l + 26,

. 4

- ©, +8y° {g : ZLER::L : :R:
B A B A

.
- é € (28, + 8,

- % ©, +0,)° (@, -8,
- - % 8@, + 28,

-

= (SB + 8}\)2

- G

}
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elliptic partial differential equation, and in any event, the inclusion
of P and Q result in a large increase in the number of calculations
undertaken at each grid point.

A similar ADI procedure was developed for ¥, U and V based on
(3.3.19-21) and was tested on a variety of grids. It was found that
while the iterative procedure worked well on uniform grids, Wachpress-
type parameters, Wachpress {1966], designed to accelerate the
convergence, were found to be highly sensitive to the choice of grid.
As a result, this approach was abandoned in favor of a vertical line
SOR procedure in Y. Subsequent comparisons with the ADI method,
carried out on uniform grids, revealed that the latter procedure was
more than twice as efficient as the former, Furthermore, it was found,
for the SOR procedure, that the optimum relaxation parameter ® was
relatively insensitive'to variations in the choice of grid. It is this
iterative method which we now describe.

At tp = pAt, suppressing the superscript notation, (3.3.19) may

be expressed in terms of the variable Y as

A.. ¥ . B =R,, (3.3.22)
ij i3 i3

where

2 . .
A= {p AL, (L) + NG () (3.3.23)

3 . 2 . )
Riy = {80n M, Ciy ¥, gen t {x Bon Byy = KB, () Cyy vi,j+n}
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+ p 8 o A (1) im 5" Pk BE (i) Uom, 4 k Byy Wiy (3.3.24)

and p = % e P= % (3.3.25)
1 4if i = 3

sij 0 if i # 3 } (3.3.26)

=1-385,. (3.3.27)

ij ij

Denoting the sth iterates by a superscript s a vertical line SOR is

defined with respect to the variable ¥ by

¢S gl | (D) | g(9)

‘2 s A (3.3.28)
ij ij ij ij

In (3.3.28) ® is a relaxation parameter defined with respect to the

variable ¥ and qg;’ satisfies th. equation

AR S (3.3.29a)
ij "ij 1]

where

ij ij 1 j+n i, j+n

=(s)_ _ (& . g(8+1) _ : (s+1)
R, {50n an_(3) ¢, ., {k 8, Eij kBN (3) cij}v }

+ pz SOm AL (i) iﬁ;) - Pk B§ (i) u® v k%, W™ (3.3.20m)

i+m, j ij 1]
and the term pz § A§ gis) in (3.3.29b) is given by
Om 1+m,j T
(s) 2 (s+1) (s)
5° S o A (5 \vumj—p AL (i) ¥ ',+p R, +1’ .(3.3.29¢)
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Multiplying (3.3.28) by A,, the resulting equation becomes

i3

(s+1)
Ay (¥

- _ (z(s) (s)
19 ¥ ofR A, ¥ (3.3.30)

13 7 i3 43
which may then be rearranged as

2 (s+1)
abn{p Som Mo td) + AN () Cy ¥l

2 (s+1)
+ w{k 8, Biy~ k B () cij}vi'jm (3.3.31)

_ 2 (s) _  ==-(3)
(1 m){p A&o(i) + Aﬂo(j) cij \Pij ®Rh

ij
where EH;;’- p° 5, AE_(i) ié:;'j
Pk BE_(i) Ui(i:n'j + K2 B, w;;) (3.3.32)
and B, =0 Sij + aij (3.3.33)

Note in (3.3.31) the estimation at t =(p+1)AT of the coefficients B, C
and E of the elliptic field equation (3.3.9) is required. This is

briefly discussed in part II - the numerical treatment of the moving

boundary.

The subsidiary relations (3.3.20-21) are incorporated into

the iterative scheme as

(s+l1)
i,3+n 0 (3.3.34)

1.1, (s+l) b
k Aﬂn(J) ‘l‘i,j+n + Bﬂn(J) v
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1 (s+1) _ _ 1 .1 (s+1)
a&mm Uiﬂn,j " A&m(i) "'im,j (3.3.35)

Note that the indices i and j in (3.3.31) and (3.3.34-35) range from 1
<i<M-1,1<3<N-1.

Equations (3.3.32) and (3.3.34) for the stream function ¥ and the
"vertical" velocity component V are arranged into a 2x2 block
tridiagonal system, the numerical solution of which has been described

in Chapter 2 and Appendix A2.4. The vertical line SOR, then, consists

A

of a left-right vertical sweep over R yvielding the next set of iterates

(3+1) V(s+1)

b 4 and for Yand V at T = tp. Note that in the vertical line

SOR the latest iterates in W and V from a previous line are utilized as

(s+1)

soon as they become available. The use of ¥ in (3.3.35), produces

a fresh iterate for the "horizontal"™ velocity component U from a simple

v(s+1)

qﬂs+l)' U(s+1) and

tridiagonal matrix inversion. Convergence of

give approximate values for 1;, Us and Vs at T = pAt.
(C) - The Numerical Treatment of the Boundary Conditions

At the lower boundary M = 0, ¥, U and V are known. See, for

example, equation (3.3.12). Hence, in the vertical sweep we set

wi“;” = W(ih,0,pAT) = -ih (3.3.36)
r
{
vi“’;“ = V(ih,0,pAt) = 0 (3.3.37)
4

On the interface M = 1, we have the first order hyperbolic relation
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between ?& and 1& given by (3.3.13)

£
+1 §
vist) o — :2 ulS (3.3.38)

However, the situation on the free surface is complicated by the fact
that, on N = 1, ¥ is not known. What is needed on N = 1 is an

appropriate discretization of Q ia

CQ+EVs=-P-BW (3.3.39)
Three possibilities have been examined :

(1) the [—g—] Pade approximation (2.2.21)

2
g LT

kN
- — +
b 4 L + (v, Vi 2 i,N-1

i,N-1 - i, T YN Nt

- - 5
Q ,n) 0 + O(kN)

i

14

where kN - “N - "N—l'
(2) the exrlicit expression for Qi N 2% given by formula (7) of
r

Table 2.2.2.

1 R 1 4
Q. = %2 An_(N) ?g + + O(k ) (3.3.39%a)

R
i,N N-14n k Bnn(N) M

i,N-1+4n

where the ccefficients An:(N) and Bﬂi(N) are listed in Table 3.3.3(a),
(3) the order 4 compact boundary relation (2.4.9) used in the

treatment of general boundary conditions in the CI4 method of section

4, Chapter 2.
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Table 3.3.3(a)

Coefficients in Equation (3.3.39a)

ot
R 2 A
An_,(3) = Ez e (58, + 26,
B
a
0. + 6.
AN (3) = %2 —B-GB—“ (38, - 20,
U NETIE é—z & el + 108,8,+ 108))
3
e
R 2 A
SR 25
3
R 2 (Gh * Gk)
By () = £——g—
B B
{5-60,0 +6))
R 4
Bnl(j) - 3 GB(GB + ZGA)



Treatments (2) and (3) lead to discretizations of the field
equation at T = 1 with a local truncation error of 4 while the use of
the Pade relation as a local approximation to Qi,N involves an error of
order 3. On the other hand, both treatments (1) and (3) are compact in
the sense of yielding two point discretizations of the field equation
while treatment (2) results in a three point approximation in ¥ and Vv
over the grid points (Ei,nN_z), (Ei,nN_l) and (&i,ﬂN). Numerical
experiments with all three approaches have indicated that, over the

A

grids R considered (% < h,k < i%) treatment (1) was only slightly less

accurate than approaches (2) and (3). Nevertheless, in keeping with
the compact philosophy we present below the implementation of

treatment (3) .

Given equation (3.3.39), we have on replacing A by C, B by E and C

by 0 in the two point relation 2.4.9) of Chapter 2, that

) ¥, + a, + b, , +
3 n-1 B on-1 Y2 n Y TP N1 Vi -1 Y Py N Vi, N

i, N { “Pin T BinYin } (3.3.40)

where the ccefficients ai N’ bi N etc. are given in Table 3.3.3(b).
I [

Utilizing (3.3.17) we express P,

and P, in terms of ¥ and U over
i,N~1 i
84

N

¢+ N ) and (&,

N-1 1+m’nN)' {m =-1,0,1). The resulting expression is

i+m
then incorporated into the vertical line SOR procedure in a manner

similar to that which led to (3.3.31). The result is




Table 3.3.3(b)

Coefficents in Compact Formula (3.3.40)

12
@52 Ci,n-1 Ci,n

12
)2 “i,n-1 Ci,n
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“’{‘i,u-1 0% Ty,n-1 Mgt ’)W;S;nl {ai,N + Pz (1)} ’*“

(3+1) (3+1)
+ -
ta; ey Vion-1 Y ®5 0w Vi,N

2 . (s) o (s)
(1 ‘”){ai,n P N"go(”}q’i,n @Rh, -~ (3.3.41)
where Rh(S) - (p 8oy Pop (i) s -peet (b u® )
/N-1 i+m,N-1 m i+m,N-1

2 (s) . (s)
* l:J'.,N{‘5 S A§ (1) \P+m N - Pk Bam(l) Ui+m,N}

2{ (s) (s)

k Ti,N-1 Bi,N—l wi,n-1 + ri,N Bi,N W (3.3.42)

and the terms ‘{-‘ N-1 2nd ‘l’ N 2re defined as in (3.3.30). As well, we
1, i,

remark that (3.3.31) and (3.3.41) which constitute the left-right
vertical sweep portion of the iterative method are solved only over
lines i = 1 toM -1 sinceonf = 0 and § = 1 both ¥ and V are known at
each instant of time (under the working aséumption of a symmetric
initial profile fo(-é) = fo (8)).

When we come to the treatment of the boundary conditions in the
horizontal upcting of U, we shall make use of the various symmetries

along £ = 0,1. Denoting by subscripts L and R, points to the left and

right of the lines § = 0,1 the symmetries are

U, =1u V = -V (3.3.43)




THe skew symmetry in V across § = 0,1 implies a jump discontinuity in

Y given by

11 = 2¥, - ?k (3.3.44)
where the subscript * denotes § = 0 or 1. Thus we have the boundary
equations

U(s+1) + U(s+1) - 3 (§+1)

2 03 13 hl‘“ﬁj - oj) (3.3.49)
(s+1) (s+1) _ 3 _ (s+1)
2021, 3 * Uny hM(‘{’Mj M-1, 5’ (3.3.46)

- - - - . 3 h
where h, §1 §o and h, §M §M_1 These two equations together
with (3.3.35) form a tridiagcnal matrix system for U over each line nj,
j = 1 to N. On N = 1 the following possibility has also been

considered. Expressing the field equation {(3.3.9) as

P=-CQ - EV ~ 2BW

compact discretizations in ¥ and U, and ¥ and V have been used to
replace P and Q respectively. The moving boundary condition (3.3.13),
relating V and U, has then been utilized to eliminate V. The result is
a compact relationship in both ¥ and U, Subsequent experimentation
revealed that the additional updating of ¥ along M = 1 which resulted

in the horizonatal sweep did not improve the overall convergence rate
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of the iterative procedure nor was any improvement in accuracy

detected. Since the additional complexity decreased the efficiency of
the computer algorithm this approach was not used for tiie numerical

calculations reported in section 4.

(D) - The Treatment of the Cross Term W

In Appendix A4.2 are given explicit, compact expressions for W in
terms of ¥, U and V. These relationships, which have been derived for
uniform grids and have a local truncation error of O(h4) where h is the
grid spacing, allow for an explicit treatment of the cross term W.
While undoubtedly, these formulae possess nonuniform grid analogues
their derivation is lengthy and therefore has not been carried out.
The alternative is to treat W implicitly, making use of symmetries
where possible to preserve the compact nature of the overall
discretization. After the vertical sweep, updating ¥ and V, we proceed

*
to update W , denoted W( ), by making use of the equation

1 (*) 1 1 (s+1) ;
R - - < < - . »
B§ (1) W im, 3 - AR (1) Vitm,j 1Sisml (3.3.47)
which results from the differentiation of the Simpson relation (3.3.20)
with respect to 1. In addition we have along the lines § = 0 and § =

1, from the fact that W is symmetric and V = 0 there, the boundary

equations

(*) (*) 3 (s+1)
Moyt + A - V13 (3.3.48)
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)y @t ol 3 st (3.3.49)

2Wy-1,3 ¥ Py h VM-1,

Equations (3.3.47-49) form a tridiagonal system for W along 1 = ik,
j =1 to N-1. On j =0, Wij = Q.

Along N = 1 the following strategy has been adopted. From a
consideration of the total differential of equation (3.3.5) which is q;

- fxﬂ; = 0, it may be shown that on the free surface

1-£5% +26¥% -f£ ¥ =0
x' "xy X'yy X% x

Under the coordinate transformation (3.3.8) this relation becomes

2
1 -£)¥_  + £, (1 + f 1’ £ ¥, =0 -1,
(17 5 %n ¥ ) { 3 °n 1

T+ fz}
§
Consequently, at the points (§,n) = (0,1) and (1,1) we have

(*) (s) ) (s)

W and w u 3.3.50
§E.. §§ MN ( )

Thus for j = N (3.3.50) provide the boundary conditions required in
{3.3.47). Finally we remark that the horizontal updating of W is
performed in the order j = N to j = 1.

After the horizontal sweep in which U is updated, it has been

observed that an additional updating of W both decreases the number of

(3) {s)

iterations required to bring qﬂs),u and Vv to convergence and

increases the overall stability of the algorithm. The updating of W is

+
cuiried out by sclving (3.3.47) for wfs 1

iN along j = N having first set
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T
v$a+2) - i U(s+1)

iN 1 + f2 iN
§1
(s+1) - (s+1) (s+1)_ (s+l)
WON f&EOUON and NMN f§§MUMN

This is then followed by a vertical sweep across the domain from i = 0

to M utilizing the equations

Loy gistl) 1 01 (s+1) -
BN, (3) W, iin . A (D) Ui, 44n 2 <j £N-2 (3.3.51)

(s+1)
i,N=1+n

1 (s+1)
& Bn (N-1) W i,N-1+4n

1 1
1n = -3 8, -1 U

1 {(s+l1) 1 1 (s+1)

BN, (N-1) wi’N X AN, (N-1) Ui'N (3.3.52)

1 {s+1) 1 1 (s+1)

5-ln Bnn(l) wi,1+n k s-ln Ann(l) Ui,1+n
La (mu (3.3.53)

x AN_g i,0 -3
*
Thus the sequence w(s) -;w( ) ~9w(3+l)marks the completion of a full

iteration in W,

II - The Numerical Treatment of the Moving Boundary

hHere we seek to determine the position of the free surface at t =

(p+1)At from the evolution equation

f = W& - U (71.3.14)




and its attendant initial condition
£(§,0) = fo(E) (3.3.15)

From a variety of approaches considered for the integration of (3.3.14)
the following method has proven to be the most satisfactory.

Supposing that U and f are known at T = pAr, the integration of
(3.3.14) over the interval [pAT, (p+1)AT] by the trapezoidal rule
generates the following one step second order scheme

At ={(p+1)

Z(p+1) _ _(p) , At [ (p)
£ £+ 9 (Ui,N+Ui,N (3.3.54)

= (p+l) a

commonly known as the Crank-Nicolson method. In (3.3.54) f£ nd

=(p+ © o as . sa s

U(p 1) are used to indicate unconverged iterates of the quantities
+ +

f(p l)and U(p 1)r:e:'.pect:ively. We attempt to keep the error in the

Crank-Nicolson method of the same order as the error in the approximate

solution of the field equation by selecting At to approximately

min(hz,kz).
Once E(p+l) has been determined, Eép+1)and Eg§+1) are estimated
from
1,:, T (p+l) 1 1,., F(ptl)
B - - =
§mm f§i+m ) A&mu) £ em (3.3.55)
< ({ptl) 1 . =(p+l) 1 LT (ptl)
and f - (1) £, - = (i) £ 3.3.58
39 h2 Mo i+tm h B §im ( ‘

Boundary conditions are obtained by exploiting the symmetries in f§ and
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f§§ about & = 0 and 1 as stated in (3.3.43).

E(p+1), fép+1) and §é§+1) have been determined the

Once
coefficients B, C and E in the field egquation (3.3.9) are then updated.
A mass balance calculation is performed at each time step and
provides a passive check on the accuracy of the computation. The

demonstration of mass balance is particuliarly simple since ft - ¥

§

U. Appying Green's theorem to the rectangular region R with boundary C

(&0.1‘ ) (E.M,tp)

(§0,to) (ﬁu,to)

where tp denotes pAt, we obtain

_[L (‘-I’g - ft)dﬁdt - i(fd& + Wt) = 0

The evaluation of the line integral gives the following statement which

is proportional to the mass balance

1

0

or in terms of the original dimensional variables
L

j (f(x,pAt) - f(x,O))dx + VpAt = 0
0




To perform the integration of £ at T = pAt on nonuniform grids, a cubic

spline ¥ is first fitted to f using first derivative information at § =

0 and 1, and then ¥ is integrated to give

1 1 N
f £(8,pAT) A8 = fﬂ&)d& :-21-)_ nimgph fg”l - )‘h (f(m+ fé P,
0 0

™ + =0 i+l

which for a uniform grid becomes

1

J £(&,pAt)dE = f F(&)at = —h{f‘p’+ f‘p’} Y ip’ +E
0 1=1
The error E is given by
P21 Zi (2i-1) _(p) _ (2 (p) (2m)
Z {x:>‘5 £ } prL L (8, pAT)

where 0 < 8 < 1, Déi) denotes the ith derivative with respect to & and
Bi is the ith Bernoulli number. This clearly shows the relationship of
the cubic spline to the Euler-Maclaurin formula, Burlisch and Stoer
(1980). It is clear from the form of E above that if f were calculated
without error on a uniform grid, the calculation of the mass balance
would be accurate to within roundoff error since from the symmetry of
the model problem

(2i-1) (25-1)
D £(0,7) =D
5 &

f(l1,t) =0 for i = 1,2,3.

III - Aspects of the Computer Code

Here we would 1like to make some general comments about the




organization of the computer algorithm., First of all, the § and 0
grids that determine the computational domain ; are chosen along with
an appropriate time step At. Then the coefficients required in the
various compact relations, see Tables 3.3.1-3, are calculated once and
for all and stored in an array of approximate dimenalon 4M + 5N where M
and N are the number of subdivisions of the { and N grids respectively.
Note that in a uniform grid calculation the array size is negligible.
Next, the boundary and initial conditions are set and with the free
surface £(£,1) fixed at T = 0, we solve for the variables ¥, U, V and W
throughout ;. A convergence criteria between the s and s+l

iterates of ¥ of the form

max A 14§t%ZpAt) - 14€3q,pAt) < ERP (3.3.57)
§,n €R -

is demanded where ERP is set to Kﬁ‘ where h = min(h,k) and .01 < K <
.001. A value of ERP in this range has been found to be sufficiently
stringent to ensure that iterated values of U and V have converged as
well. If condition (3.3.57) is not met within a maximum number of
iterations, denoted by MAXY, program executioﬂ halts. Setting MAXY to
a number not less than ERP_'35 has worked well.

Once the variables have been determined at T = 0, a first estimate

of the free surface position, f(l) at T = pAt, p = 1, is determined .

From f(l), fél) and fég)are obtained, the coefficients B, C and E in
; . (1) (1) (1)
the field equation (3.3.9) are found and ¥ ', U and V are
calculated via the iterative procedure. A second iterate for the
1
positicn of the free surface f(z)is computed with the new iterate U( ).

The iterations in f are checked for convergence with the following test
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(L+1) (L)

max A £(E,pAt) - £(E,pAt) | < ERP (3.3.59)

Ee R
where the superscript L denotes the lth iterate. If convergence is not
met a new cycle begins. The maximum number of iterations in f is set
at MAXF. Again, if the iterations exceed MAXF, program execution is
terminated. A value of 20 for MAXF has been found to be adequate.

As noted in Greydanus ([1983) a considerable savings in iterations

in ¥, U and V per time step may be achieved by the simple device of

linear extrapolation. Thus for T > 2At we set
(1)
W&, n,t) = 2¥E,n,t - At) - WE,n,T - 24t)
(1)
u,n,t) = 20(,n,t - At) - UE,n, T - 24At)
(1)
vig,n,t) = 2v(€,n,t - A1) - v, n,t - 2AT).
We summarize the basic computer algorithm as follows -
(1) Set ERP, MAXY, MAXF and ®. Choose grid. Calculate and store
coefficients needed in compact formulae. Initialize the
coefficients B, C and E in (3.3.9).

(2) At tn = nAt set X = 0 and L = 0 and

LY 2¢{?) _ gin-1)

gt 20 g
vi®) oy _ (n-1)
() e _ c(n-1)
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(3) Lt +1

(4) If L > MAXF then stop

else continue

(S) Calculate :

(n) (n)

f(t)from £ . U ‘

£ ana £ from (3
X XX

Update coefficients B, C and E in (3.3.9)

(x+1) (t)
viN from fx LU
(6) Set max f(z)- f(t—l)

If DMAXF < ERP then

née&n+1

if ¢ T,
. n = final

else go to (2)

U(K) and (3.3.54)

.3.56-57)

(X} and (3.3.38)

= DMAXF

then go to (9)




Else if DMAXF > ERP continue

(7) Set X &% + 1 and calculate :

W& ) foom Vertical Line S(R (3.3.31,34,36-38,42)

*
w( ) in a downward horizontal sweep using V‘K) and (3.3.47-50)

o™ from ¥ and (3.3.35) and (3.3.45-46)

{(x+1) (L) (x)
viN from fx , U and (3.3.38)

(x+1) (x)

(x) N ¢ U and (3.3.51-53)

w in a vertical sweep from vi

AL R e N

(8) Set max
1f DMAXY > 102 then stop
Else if x > MAXY then stop
Else if DMAXY > ERP then go to (7)

Else if DMAXY < ERP then go to (3)

(9) Stop 'Calculations successfully completed!'




3.4 Numerical Results

Je should like to preface the results with some remarks of a
general character. In order to test and evaluate the compact schame
outlined above, we have applied the method to two special cases of the
Hele-Shaw problem for which exact analytical solutions are known. The
first, denoted Case(a), is a solution in which a given analytic curve

of the form

y = - % cos (nx) + 0(62) (3.4.1)

is preascribed as an initial free surface. This free surface |1is
followed until at a fixed known time, denotea t', the free surface
develops a 2/3 power cusp singularity. This solution will be called
the cusping solution. In Case(b), a different analytic curve |is
prescribed initially. This initial free surface, which is identical to
0(22) with that of ~ase(a), remains analytic for all time and develops
into a long protuberance occupying a fraction A of the channel width,
This solution will be called the Saffman finger. The derivation of
these solutions is given in Appendix A3.3. For the equations of the
free surface, its slope and second derivative as well as the fluid
velocities in the channel, one should consult equations (A3.,3.27-42) in
Case(a) and equ-.tions (A3.3.43-60) in Case(b).

It is noted that the normalized suction velocity ¥ is -1. In all

numerical experiment: reported here we have taken £ = .2, With regard

to Case(a), the time to cusp is
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t* - %{% €% - 1) - log a} - .359511253 (3.4.2)

with the form of the singularity given by

2y

® 3 1

£(x,t%) = (7= - =(1 - log €) (3.4.3)
{qzn) r

where £(0,t*) = -.830609884 (3.4.4)

For Case(b) we have set A = .5. It is noted that as t - o, the tip of

the Saffman finger assumes a steady profile given by
exp (-ny)cos(nx) = 1 (3.4.95)

with the finger taking up half the channel width and the nose moving at
a velocity of Y/A =

In the (&,m,t) computational dcmair (see section 3.3), numerical
experiments have been carried out on a variety of grids. Generally
speaking, while the number of subdivisions of the & and 71 intervals,
given by M and N respectively, have usually been set equal, the
distribution of the points of the respective grids has varied widely.
The number of subdivisions has ra..ged from a minimum of 4 to a maximum
of 40. With regard to the time wvariable t, the time step At has
generally been kept constant ranging from a low of .0005 to .05. As
has been previously noted, AT i3 restricted to the order of Min(:%;;%).

For Case(a) it has been found that the optimum value mbpt of the

relaxation parameter ® is near 1.075 regardless of the choice of grid,

For Case(b) @ _~ 1.15. It is noted that there is a tendency for uz

opt pt
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to increases slightly as the grids becomes more and more uniform.

We begin by illustating the basic instability or ill-posedness
inherent in receding Hele-Shaw flow. To demonstrate this we consider
the evolution of a flat interface. A uniform grid with M = N = 10 was
chosen and At was set to h2 - M-z. ERP was taken to be h‘. The free
surface £(§,0) was set to zero and the computed solution, at t = 1.0,
was compared with the exact solution -t = -1.0. Several facts emerged.
Firstly, the error in the computed solution exhibited an oscillation of

wavelength 1 and an amplitude of approximately .01, This |is

illustrated in Figure 3.4.1(a). Secondly, the growth of initial errors

was approuximately exponential as is indicatec. in Figure 3.4.1(b). The
maximum absolute errcr at T = .1 was found to be 4-10-5. If we assume
that the

Maxi-t - £(,1)| = 4-10_s exp{K(t - .1)}

then K ~ 6.1. This agrees roughly with a value of 5.7 computed from
the linear stability analysis given near the end of section 3.2 under
the assumption that the errors generated by the compact method possess
a short waveleugth of A = h. Thirdly, we note that if the evolution of
the flat interface is attewptad cn a finer grid with spacing h, a fixed
number of iterations MAXW(h) and MAXF(h) and error tolerance ERP(h),
then the final *ime to which the surface can be tracked with any
accuracy at all, is roughly proporticnal to -hlog(h). Finally, it is
noted that the time step At had little effect of the accuracy of the
computed results provided it was sufficiently small.

We turn now to Case(a), the cusping solution. Sim;lstions were
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f (x.t)

= 1.01

X = -1

=1.01

Figure 3.4.1(a) The Evolution of a Flat Interface in Receding

Hele-Shaw Flow
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Figure 3.4.1(b) The Growth of Errors in a Flat Interface in

Receding Hele-Shaw Flow: {fs(o.t) - f(O.t)}'IOZ



first attempted on uniform grids. It was found, for M < 14, that it

was possible to run the compact scheme substantially past the cusping

time t" before the convergence test failed. Increasing M past 14

appeared to increase the accuracy of the solution for early times,

However it was found that the numerical solution could not ke continued
4

-4 =
to T* unless one relaxed the tolerance parameter ERP = K-Max(M ,N ),

.01 £ K € .001. The compact method, for all uniform grid cases tested,

failed to
(a) suggest the formation of a 2/3 power cusp
(b) estimate the time to cusp.

These facts are indicated in Figure 3.4.2 where the numerical solution
has been computed orn a uniform grid with M = N = 10 and At = ,008975.
The free surface is drawn at intervals of .01795 up to T = .359 and it
is noted that the numerical sclution ran well past t* failing to
converge at approximately T = .45. At t = .359 the exact locaticn of
£(0,T) is -.8050098 indicating an error in the computed surface of
-.1649. It is interesting to note, that on uniform grids, the check of
the conservation of fluid mass indicated that the total mass was
preserved to within an error very nearly equal to the single precision
unit roundoff of the computer used. 1In this case simulations were run
on a CDC Cyber 835 which has a unit round of approximately 10-15.

The solution has also been computed with a time step of At = .01

and in Figure 3.4.3 the errors in the computed free surface at t = .1,

-2, .3 and .35 are shown. The maximum errors occur at £ = 0, and at 1 =
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Figure 3.4.2 Cusping Solution Computed on Uniform Grid N = M = 10,

At = .008975
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fe (x,t) — f(xt)

Figure 3.4.3 The Error fE(x,t) - f£(x,t) in the Cusping Solution

Computed on Uniform Grid N =M = 10, At = .01




.35 is approximately -.093.

In Figures 3.4.4(a)-(c) the exact free surface has been drawn
against the computed solution at T = .30, .31 and .32. The fact that
the compact method is able to accurately model receding Hele-Shaw flow,
at least for short time intervals, is indicated in Figures 3.4.5(a)-(d)
where again M = N = 10. Here the exact values of £, fﬁ' £§¢. ¥, U and
V at T = .3 are used in computing the solution to T = .32 in steps of
At = .001. 1In Figure 3.4.5(a) the exact and computed free surfaces are
plotted with a close-up of the region about & = 0 indicated in Figure
3.4.5(b). When compared with the solution begun at Tt = 0 the maximum
errors are approximately an order of magnitude less. However, whereas
in the former case, the computed free surface near § = 0 lags behind
the exact surface the reverse is true of computations begqun at T = .3,
In Figures 3.4.5(c)~- (d) the first and second derivatives of the free
surface have been plotted against the corresponding exact values.

An examination of the analytical free surface, which is plotted in
Figure 3.4.6 in intervals of At = ,01795 up to t = .359, revealed that
while fé(o,t) remains 0 for Tt < t%, fgg(o,t) at first grows slowly in
magnitude and then, as 1 -+ 1", rapidly becomes unbounded. There is an
inflection point on the free surface, located at -%(ao(t) + azl(t))
(see Appendix A3.3 for details), which moves steadily toward (0,£(0,t))
and finally coalesces with this point at t*. The vertical component of
velocity at £ = ¥ = 0 on the free surface is given by

1

v(0,£(0,17),%7) ~ -I_:_;;T;)

and becomes unbounded as T + 1* since al(t) 9 1. The errors generated
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Figure 3.4.4(a) The Exact Free Surface fg(x,t) and the Computed

Free Surface f(x,t) at t = .3: “niform Grid
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Figure 3.4.4(b) The Exact Free Surface fs(x,t) and the Computed

Free Surface f(x,t) at t = ,31: Uniform Grid




158

10

Figure 3.4.4(c) The Exact Free Surface fE(x,t) and the Computed

Free Surface f(x,t) at t = .32: Uniform Grid
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Figure 3.4.5(a) The Free Surface f(x,t) Computed to t = .32 from

Exact Data at t = ,3: N= M = 10 and At = ,001
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Figure 3.4.5(b) Close-Up of Figure 3.4.5(a)
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Figure 3.4.5(c)

fx(x,t) Computed tvo t = .32 from Exact Data at
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o e (03), Ty (%,.3)

Figure 3.4.5(d) fx' (x,t) Computed to t = .32 from Exact Data at

t = .3: N=M= 10 and At = .001




Figure 3.4.6 The Analytical Solution: The Cusping Case aO(O) = 0,

a,(n) =¢ = .2
pe
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by the compact method, on uniform grids, were found to increase
exponentially in time with the result that the growth in fég(o,t) and
the vertical component of velocity were sharply attenuated. Any
attempt at refining the uniform grid so as to increase the solution
in the region near § = 0 was met with convergence failure at times
whi~h were generally well short of t*. This failure must be viewed as a
consequence of the inherent ill-posedness of the problem and not as
evidence for an inherent deficiency in the compact metnod.

With these facts in mind it was decideZ tc see if it was possible
to obtain some indication of the cusping behaviour and time to cusp by
carrying out computations on nonuniform grids while restricting the
number of subdivisions in the & and N directions to no more than 10 to

16. The criteria usea in rejecting a grid were the follcwing :

(a) the computed free surface should be monotone for all times

{b) the computed fgg(o,t) should increase monotonically in time

(c) the computed fgg(o,t) should be as large as possible at

the time of convergence failure

(d) the time of convergence failure should be as large as

possible.

Under these conditions it was observed that convergence failure

occurred when the monotonicity , over 0 < § < 1, of the second

derivative of the free surface was vio _ed. Specifically, this
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occurred very near the time that f&ﬁ(glt) > fga(o,t) whare {1 denotes
the first grid point over from § = 0. Taking these competing effects
into account it was possiple to find a set of grids which produced
results which were more satisfactory than those generated with uniform
grids.

After considerable experimentation it was found that a one-sided
stretch in %N coupled with a two-sided stretch in § produced the most
satisfactory results. To generate a one or two-sided stretch two
parameters are required. Briefly, given two variables &' and &, on the
interval [0,1), the specification of s0 = & and sl = =y

d lzap af lpay
determines a two-sided invertible stretching function § . £(§*,s0,sl)
In the case that a one-sided stretch at & = 1 is required, a lifferent
stretching function is generated with s0 zet to 0 and 31 specified,
For the actual stretching functions used and other details of
systematic variable grid generation consult Appendix A2.5.

With regard to the one-sided stretch in T, points were shifted
toward M = 1. The general feature of the two-sided stretch was to
strongly shift points into the neighborhood of & = 0, thereby allowing
for increased resolution of fgg(O,T), with a less severe shift
occurring at the other end & = 1. The shif: at & = 1 was found
necessary to keep the free surface monotone. Generally speaking, sl
was set equal for both the one and two-sided stretches. Examples of
one and two- sided stretches, for M = N = 10 and 30 = 3.25, 3] = 2,25,
are given in Table 3.4.1 and have been plotted in Figure 3.4.7. The
third column of the table is the variable-to-uniform grid ratio.

It was found, on the basis of the criteria listed above, that the

"best" grid was sensitive to the number of 3ubdivisions of [0,1]




Table 3.4.1(a)

Two-Sided Stretch (30 = 3,25, sl = 2 25)

é'l

0.00000E+00
0.10000E+00
0.20000E+00
0.30000E+00
0.40000E+00
0.50000E+00
0.60000E+00
0.70000E+00
C.B80000E+00
0.90000E+00

0.10000E+01

¢.00000E+00

0.39234E-01

0.10010E+00

0.18924E+00

0.30934E+00

0.45416E+00

0.60718E+00

0.74786E+00

0.86157E+00

0.94430E+00

C.10000E+01

Ratio

0.00000E+00
0.39234E+00
0.60869E+00
0.89140E+00
0.12009E+01
0.14482E+401
0.15302E+01
0.14067E+401
0.11371E+01
0.82735E+00

0.55700E+00
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Table 3.4.1/b)

One-Sided Stretch (s0 = 0.00, s1 = 2,25)

n Al Ratio
.00000E+00 .00000E+00 .00000E+00
.10000E+00 .14259E+00 .14259E+01
.20000E+00 .28123E+00 .13864E+01
.30000E+00 .41242E+00Q .13118E+01
.40000E+00 .53337E+00 .12095E+01
.50G00E+00 -64227E+00 .10890E+01
.60C00E+00Q .73822E+00 .95956E+00
.70000E+400 .82119E+00 .82365E+00
.80000E+0¢ .89175E+00 .70565E+00
.90000E+00 .95094E+00 .59385E+00
.10000E+01 .10000E+01 .49061E+00



10 F

&n One Sided Stretch Two Sided Stretch

00
00 10

E'n'

Figure 3.4.7 Examples of One and Two-Sided Stretches for

M=N= 10, s(0) = 3.25 and s(1) = 2,25
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although the range or window of values of s0 and sl from which it was

selected remained fairly constant. For M = N = 10, which was found to
be near the optimum number of subdivisions, the window was

approximately

2.4 < 30 < 3.4 : 2-sided stretch in §

1.0 < 81 < 2.5 : l-sided stretch in 1

We summarize the results obtained with four sets of values for s0
and sl in Table 3.4.2 below. Computations, which took an average of
380 CPU seconds on the CDC Cyber 835, have been carried out with M = N

= 10, ERP = .oom’4, At = .008975., MAXS = 350 and MAXF = 20.

Table 3.4.2

Summary of Experiments for Cusping Case

Set s0 sl £(0,t%)
(a) 2.95 1.75 -.853 .395
(b) 3.10 2.10 -.867 .395
(c) 3.10 2.00 -.854 .386
(d) 3.25 2.25 ~.845 .38¢6




It can be seen from this table that the time to cusp has been over-
estimated with a relative error of 7 to 10% while the relative error in
the location of the cusp is between 2 and 4%.

Plots of the free surfaces at intervals of .01795 to a time of T =
.359 are given in Figures 3.4.8(a), 3.4.9(a) and 3.4.10(a) for sets
(a), (b) and (d) of Table 3.4.2. In Figures 3.4.8(b), 3.4.9(b) and
3.4.10(b) are given the absolute errors in the computed free surfaces
in intervals of .0359 to T = .359; the exception being Figure 3.4.8(b)
where plots begin at T = ,30515 in intervals of .01795. The error in
£(0,.359) for sets (a), (b) and (d) are -.07411, -.06315 and -.05582
respectively. There does appears to be a general trend, away from £ =
0, toward larger errors in f(§,t) as the error in the position of the
cusp is reduced.

In Figure 3.4.11 we have, over the interval 0 < t < .359, compared
the error in £(0,T) produced by a unjform grid with M = N = 10, with
that of the variable grid case of 80 = 3.25 and sl = 2.25, Figure
3.4.12 repcats the comparison with fgg(o,t). For £(0,t) it is seen
that, at each time step, the error is not only greater in the uniform
grid case but the computed surface lags behind the true position., 1In
contrast, the variable grid free swrface lies ahead of the true
position for all but the latest times. As for fgg(o,t) the errors are
of opposite sign up to .32, with the variable grid error being smaller
except in the interval ~.25 < t < ~.29,

Cumputations with the compact scheme were also carried out with the
coordinate transformation 7 = exp{a(y - f(x,t))}, a > 1., Thus, Figure
3.4.13(a) was generated with M = N = 10, At = .008975, a = 3.0, a two-

sided stretch in §(s0 = 3.1, sl = 2.0) and a uniform grid in M. The
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Figure 3.4.8(a) The Free Surface f(x,t): Cusping Case - Set (a)



fe ) — 1)

Figure 3.4.8(b) The Error in f(x,t): Cusping Case - Set (a)
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1
0.20

Figure 3.4.9(a) The Free Surface f(x,t): Cusping Case - Set (b)
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Figure 3.4.9(b) 7. Error in f£(x,t): Cusping Case - Set (b)
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At = 01795

Figure 3.4.10(a) The Free Surface f(x,t): Cusping Case - Set (d)
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F t= 359

'E (X,!) - '(x-t)
At = 0359
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Figure 3.4.10(b) The Error in f(x,t): Cusping Case ~ Set (d)
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Figure 3.4.11 Error in £(0,t): Uniform Versus Variable Grid (Set (d))
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Figure 3.4.12 Error in fxx(o,t): Uniform Versus Variable Grid (Set (d))
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Figure 3.4.13(a) The Free Surface f(x,t): Cusping Case with Coordinate

Transformation M = exp{a[y - f(x,t))}, a =3



error in the free surface i3 given in Figure 3.4.13(b).

ther subdivisions, rotably M = N = 8 and 16 have been thoroughly
investigated on a wide variety of grids, and of these, none was found
to yield results as satisfactory as those discussed above. It 1is
interesting to note that with 16 subdivisions, simulations could not be
run past T ~.26 on a uniform grid and in no variable grid case tested,
with an error tolerance of ERP = .01-16—4, was it possible to run past
cusp.

in Figures 3.4.14(a) and 3.4.15(a) we have plotted, over 0 < t <

.36, the vertical velocity components v(x,t) along x = 0 and the outer

wall x = 1, against the corresponding exact values of

1 1
v(0,£(0,t),t) = '1 - a. (%) v(l,£(1,t),t) 1 + a(t)
1 1
The errors are depicted in Figures 3.4.14(b) and 3.4.15(b). The error
in v(0,t) become significant about t = .21 becoming large only ir the

last time step T = .359. Alternatvely, the error along the outer wall
remains small until the end when it rises to .012.

In Figure 3.4.16 we have plotted the streamlines under the free
surface at T = .359 for the last entry in Table 3.4.2. ¥ runs, in
steps of A¥Y = 1/15, from 1l at x = - 1 to ¥ = -1 at x = 1.

Finally, we note in the variable grid simulations, that by the time
of convergence failure, the absolute error in the total fluid mass had
increased an order of magnitude froni an initial value of appproximately
10-5. These observations concerning the type of grid and the
conservat.on of mass hold equally well for Case (b), the Saffman

finger.
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Figure 3.4.13(b) The Error in f(x,t): Cusping Case with Coordinate

Transformation 1M = exp{a[y - f(x,t))}, a=3
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Figure 3.4.14(a) Vertical Velocity Component at x = 0: Computed
Solution V (Table 3.4.2-Set (d)) and Exact
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Solution E
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Figure 3.4.14(b)
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Error in Computed Vertical Velocity Component V

of Figure 3.4.14(a)




Figure 3.4.15(a) Vertical Velocity Component at x = 1: Computed
Solution V (Table 3.4.2-Set (d)) and Exact
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Solution £
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Figure 3.4.16 Streamlines for Cusping Solution at t = ,359 for

Set (d) of Table 3.4.2




We now turn to estimates of the spatial global error and
correspending asymptotic rates of convergence of the compact scheme.
The determination of errors in say, the variable ¥, have been carried
out in the following way. Choose a computational grid R where the
average grid spacings in the § and 1 directions, for example h and k,
are set equal. Let qﬂgi-ih,nj-jh,t), i and j integers, denote the
approximate computed solution and let qk(ih,jh,t) be the corresponding

exact value. Then the quantity Eh given by

Max , ‘l’(giﬂlj,t) - ‘!’T(Eiﬂljrt)l = Ilw(gi,ﬂjﬂ) - WT(gl:ﬂj:T)H”
§i,njen

is called the maximum norm error in ¥ on orid h with respect to the
analytical solution.

The calculation of the asymptotic convergenca rate p has been
performed in two distinct ways. In the first, the errors Eh, in the
stream function ¥ or say the free surface f, are assumed to behave in

time as

E = a(t)nP (3.4.6)

where a is a function independent of the grid spacing h and p is the
spatial asymptotic rate of convergence of the compact scheme. Then,

given the errors on two grids h1 and h2, p is calculated from

= log\E_/ E_ (/1o {El} (3.4.7a)
p g hl h2 ghz- .2./8
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In tests of the compact scheme on model elliptic problems in a
rectangular domain with smooth boundary data it was found that
asymptotic convergence rates for V¥, W; and 1; were nearly 4, provided
the grids were sufficiently fine. It is expected here, at least for
early times, that the determination of p from the above two grid
estimate should be nearly 4 as well. Eventually, however, it 1is
expected that the error should begin to show an exponential growth with
a resultant decline in the order of p, in view of the linear stability
analysi< of section 3.3.2.

The other method of calculating p is useful in that it takes into
account temporal errors. Using three grids h, h/2 and h/4 we determiry

p from the expression

p = log{(Eh - E)/(E - Eh)}/log(Z) . (3.4.7b)
z 2 q

In (3.4.7b) Eh denotes the maximum norm error on grid h with respect to
the computed or exact solution on the finest grid. When p is
calculated at a fized time and with a fixed At as h is varied, *+ b a
three grid estimate removes the temporal error from consideration.

We have conducted runs, on uniform and variable grids, with two
sets of subdivisions M = N = ZkI, k = 0,1,2,3 and I = 4,5. The
variable grid examined was set (d) of Table 3.4.2. Tne time steps
chosen were AT = .,001795 and .001 for I = 4 and S5 respectively,
although it was noticed that larger time 3teps did not appreciably
affect the results. The error tolerance ERP was set to .OIM-4 and

comparisons were made every five time steps. The analytical solution

was used in starting the simulations. Due to the ill-posedness of the
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problem most comparisons were made at early times. The errors in ¥ u
- qt, V = qh, £, f§ and f§§ were checked.

Tables 3.4.3(a) and 3.4.4(a) list the maximum norm errors in ¥, U
and V over the computational domain, for variable and uniform grids
with I = 4, Below each column of errors is given the two grid estimate
of the rate of convergence p as determined with respect to the
analytical solution. Tables 3.4.5 and 3.4.6 perform the same duty for
I = 5. These errors have been found to occur on the free surface. It
is seen that aside from several exceptions in ¥, generally speaking,
the rates of convergence, given by p, rise as :the number of
subdivisions M increase. A tentative conclusion is that, at early
times, the rate of convergence for V is nearly 4, while for ¥ and U it
approximately 3.15 and 3.5 respectively.

There are several possible reasons for the apparently lower
convergence rates of ¥ and U. Firstly, as has been noted in the one-
dimensional time independent work of Chapter II, it is not uncommon for
the convergence rate to approach its asymptotic value only after a
sufficient number of grid refinements. It was not possible to verify
this as computations became prohibitively expensive due to the fact
that the number of iterations required to achieve the error tolerance
of ERP, seemed to increase in a nearly exponential fashion. A second
possibility, which may be connected to this last statement, is that the
inherent ill-posedness of receding Hele-Shaw flow has an effect on the
numerical results, even at early times. The third possibility, is
related to the Runge phenomenon, Davis [1975]. For Case (a) there is a
singularity, initially located outside the domain but at a distance %(e

- log(e)) ~ .5760 from the free surface. In view of forthcoming
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Table 3.4.3(a)

Error and Convergence Rate (I = 4) for ¥, U , V:

Variable Grid(s0 = 3.25,81 = 2.25), T = (08975

I A R A [T A
4 .6753(-3) .63961(~-2) .3121(~-2)
p=3.5 p=3.34 p=3.34
8 .5988(-4) .6884(-3) .3083(-3)
p=3.07 p=3.74 p=3.97
16 .7139(-5) .5149(-4) .1962 (-4)
p=2.90 p=2.98 p=3.74

32 .8587(-¢6) .6546(-5) .1472 (-5)




191

Table 3.4.3(b)

Error and Convergence Rate (I = 4) for ¥, U, V:

Variable Grid(s0 = 3.25,s81 = 2.25), t = .008975 (3 Grid Estimate)

Three grid estimates with M = 16

LA A I

4 .6693(~-3) .6910(-2) .3105(-2)

8 .5397(~4) .4411(-3) .2919(=3)
p=3.63 p=3.97 p=3.41

Three grid estimates with M = 32

M H‘I‘-\I‘TIL ”U'UTI Ioe ”v—vT”“
8  .5906(-4) .6870(-3)  .3072(-3)
16  .5704(-5) .4424(-4)  .1535(-4)

p=3.37 p=3.96 p=4.32



Error and Convergence Rate (I = 4) for ¥, U , V:

Table 3.4.4(a)

Uniform Grid, T = ,008975

RIES AN

4 .7358(-3)
p=2.88

8 .1003(-3)
p=3.35

16 .9828 (-5)
p=3.08

32 .1162(-5)

|U-UT||°°

.1311(-1)

p=3.03

.1609(-2)

p=3.29

.1644(-3)

p=3.23

.1750(~-4)

[[v=v4 |

.2379(-2)

p=2.43

.4410(-3)

p=4.17

.2445(-4)

p=3.69

.1891(-5)
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Table 3.4.4(b)

Error and Convergence Rate (I = 4) for ¥, U , V:

Uniform Grid, t = .008975 (3 Grid Estimate)

Three grid estimates with M = 16

i [l louglle (vl

4 .7301(-3) .1295(-1) .2378(-2)

8 .3558 (~-4) .1444(-2) .1353(=3)
p=4.36 p=3.16 p=4.14

Three grid estimates with M = 32

n el [ovgf ol
B .9911(-4)  .1591(-2)  .6090(-3)
16  .8593(-5)  .1469(-3)  .2939(-4)

p=3.53 p=3.44 p=4.37
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Table 3.4.5

Error and Convergence Rate (I = 5) for ¥, U, V:

Variable Grid(s0 = 3.25,31 = 2.25), t = .00S

- II
S | B R

5 .1976 (-3} .3614(-2) .9274(-3)

p=2.67 p=3.39 p=2.80
10 .3101(~4) .3458(-3) .1333(-3)

p=3.18 p=3.82 p=3.99
20 .342.(-5) .2455(-4) .1962(-4)

p=3.09 p=2.89 p=3.42
40 .4019(-6) .3317(-5) .1827(-5)
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Table 3.4.6

Error and Convergence Rate (I = 4) for ¥, U, V:

Uniform Grid, T = .005)

|
M H\F-\PTH‘» HU—UTHm IlV‘VTH”
5 .4515(~3) .7079(-2) .1807 (-2)
p=3.28 p=3.17 p=3.29
10 .4652(-4) .7890(-3) .1842(-3)
p=:3.56 p=3.47 p=4.22
20 .3957(-5) .7117(-4) .9878 (-5)
p=3.01 p=3.19 p=3.49
40 .4909(-6) .7799(-5) .8792(-6)




results for Case (b), the Saffman finger, it would appear that this
singularity has little effect, at early times,. on the higher order
polynomial based compact scheme.

In Tables 3.4.3(b) and 3.4.4(b) estimates for the rates of
convergence are given using three different grids, as would be done in
cases where the analytic solution was unavailable. Here, the solution
computed on the finest grid is used as a standard and the temporal
errors are subtracted as the maximum norm is computed. The p values
are nearer to 4 than those computed from the two grid estimates.

In Tables 3.4.7 and 3.4.8 are listed the corresponding results for
the free surface and its derivatives for I = 4 and t = .008975 and
.1077. For the times listed, it is seen that the errors are generally
smaller with the variable grid, this being especially noticable for f,
although by T = .1077 the errors in f§§ have grown quite large. The
rate of convergence estimates appear to be much better in the variable
case.

We turn now to Case (b), the Saffman finger. It was found, for the
compact scheme, that the optimum number of subdivisions was again, near
M =N = 10. However, it was possible to increase the time step to AT =
.025 with 1little qualitative difference in the results of long time
runs. Most calculations were carried out with At = ,025 and with a
error tolerance of ERP = .OIM-4 . It was observed that the number of
iterations required to reach ERP at each time step was considerably
less than in the cusping case.

Again s3simulations were first carried out on uniform grids. 1In
Figure 3.4.17 the free surface profiles are plotted in intervals of At

= .05 to a time of T = 1.25. The results agree well with the analytic
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Table 3.4.7

(L)

Error and Convergence Rate for f, £ P f(z):

Variable Grid(s0 = 3.25,s1 = 2,25)

(1) (1) {2 (2)
N I LN I | | M A S 1

4 .5256(-4) .2980(-2) .1010(-1)
p=4.36 p=3.29 p=5.69

8 .2563(-5) .3047(-3) .1956(-3)
p=2.55 p=4.30 p=5.47

16 .4370(-6) .1508(~-4) .4419(-5)
p=3.27 p=3.81 p=3.38

32 .4530(-7) .1075(-5} .4245(-6)

4 .1215(=3) .3765(-2) .4283(-2)
p=4.22 p=3.64 p=2.45

8 .6504(-5) .3028(-3) .7832(-3)
p=3.71 p=3.59 p=5.54

16 .4960(-6) .2510(-4) .1679(-4)




T

.1077

M

16

Table 3.4.7(cont'd)

”f°f'r“eo

.1879(-2)

p=4.76

.6948 (-4)

p=7.06

.5200(~6)

(1) (1) (2) (2)

[le®- e[l |[e2- <.
.2428 (-1 .1673
p=3.61 p=2.35
.1985 (-2 .3288(~1)
p=4.12 p=1.63
.1139(-3) .1060(-1)
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T

.008975

.01795

Table 3.4.8

Error and Convergence Rate for £, '(1), f(2):
Uniform Grid
(1) (1) (2) _ (Z)II
S | R | o | | S T
4 L1116 (-3) .3885(~2) .1720(-1)
p=3.15 p=2.90 p=4.10
8 .1256(-4) .5190(-3) .1004(-2)
pP=4.48 p=4.06 p=2.61
16 .5630(-6) .3143(-4) .1644(-3)
p=3.01 p=3.33 p=3.18
32 .6989(-7) .3125(~5) .1814(-4)
4 .2545(-3) .4644(-2) .2962(-1)
p=2.84 p=2.67 p=2.88
8 .3050(~-4) .7300(-3) .4017(-2)
p=6.93 p=3.70 p=2.57
16 .2504(~6) .5600(-4) .6768(-3)
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Table 3.4.8(cont'd)

(1) (1) (2) _ (2)||
M ”f'f'r“n “f D) ”eo ||£ £ lle
T = 1077 4 .3120(-2) .1792(-1) .2960
p=2.45 p=1.36 p=1.47
8 .5695(-3) .6978 (~2) .1067
p=2.84 p=2.26 p=1.70

16 .7948 (~-4) .1456(-2) .3291(-1)
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Figure 3.4.17 Free Surface for Saffman Case: Uniform Grid N = M =

10, At = ,025 (plotted in steps of 2At)



solution out to a time of approximately T = .65. Soon after this time,

the surface begins to develop a negative curvature near £ = 0 and as
the computation proceeds, this leads to a splitting of the nosa ¢of the
developing finger.

Again, a search was carried out in an attempt tou locate a grid which
would lead to the development of the Saffman finger described in
Appendix A3.3. Unlike Case (a) where one and two-sided stretches in 1
and & led to surfaces with cusp-like behaviour, it was found tkat the

most satisfactory grids resulted when the coordinate transformation

n= exp{a(y - f(x,t))} s, 00> 1 (3.4.6)

was used and an interior stretch in § was coupled to a uniform grid in
n. The stretch was used to cluster points about an interior point
usually taken to be .5. The description of the interior stretch is
given in Appendix A2.5,. Three interior stretches used in the
simulations discussed below, are given in Table 3.4.9 and are plotted
in Figure 3.4.18.

To begin with, the above calculation on a uniform grid in § and n
was repeated but this time with a = 3. The evolving free surface is
plotted in Figure 3.4.19. The profiles are very similar to those
computed with o = 1.0. A second set of calculations, see Figures
3.4.20(a)-(b), were carried out with 3(.5) = 2 and a = 2.0 and 3.0. The
free surfaces are similar and suggest the interesting possibilty of
secondary finger development. Computations are given in steps of AT =
.025 and could not be extended past t ~ 1.0. The results for a = 1.0

are ncot included as they present no qualitatively new features.




Table 3.4.9(a)

Interior Stretch: s(.5) = 1.15

é.l

0.00000E+00
0.10000E+00
0.20000E+00
0.30000E+00
0.40000E+00
0.50000E+00
0.60C00E+00
0.70000E+00
0.80000E+00
0.90000E+00

0.10000E+01

0.00000E+00

0.11930E+00

0.22543E+00

0.32206E+00

0.41254E+00

0.50000E+00

0.58746E+00

0.67794E+400

0.77457E+0C

0.88070E+00

0.10000E+01

Ratic

0.00000E+00
0.11930E+01
0.10613E+01
0.96635E+00
0.90482E+00
0.87457E+00
0.87457E+00
0.90482E+00
0.96635E+00
0.10613E+401

0.11930E+01
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Table 3.4.9(b)

Interior Stretch: s(.5) = 1.25

il

0.00000E+00
0.10000E+00
0.20000E+00
0.30000E+00
0.40000E+00
0.50000E+00
0.60000E+00
0.70000E+00
0.81000E+00
0.90000E+00

0.10000E+01

0.00000E+00

0.13007E+00

0.23934E+00

0.33396E+00

0.41925E+00

0.50000E+00

0.58075E+00

0.66604E+00

0.76066E+00

0.869393E+00

0.10000E+01

.00000E+00

.13007E+01

.10927E+401

.94621E+00

.85287E+00

.80748E+00

.80748E+00

.85287E+00

.94621E+00

.10927E+01

.13007E+01




Interior Stretch:

él

.00000E+00
.10000E+00
.20000E+00
.30000E+090
.40000E+00
.50000E+00
.60000E+00
.70000E+00
.80000E+00
.90000E+00

-10000E+01

Table 3.4.9(c)

.00000E+00
.18237E+00
.30354E+400
.38687E+00
.44840E+00
.5000uE+00
.55160E+00
.61313E+400
.69646E+00
.81763E+400

-10000E+01

s(.5) = 2.00

Ratio

.00000E+00
.18237E+401
.12118E+01
.83329E+00
.61535E+00
.51595E+00
.51595E+400
.61535E+400
.83329E+00
.12118E+401

.18237E+01
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s (5) = 1.15

8 (5) = 200
s (5) = 1.25

00

EI

Figure 3.4.18 Three Interior Stretches
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-2.60

-3.00

Figure 3.4.19 Free Surface for Saffman Case: Uniform Grid and =

exp{a[y - f(x,t))}, a =3
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a/t=10

Figure 3.4.20(a) Free Surface for Saffman Case: Interior Stretch

(s(.5) =2) in & and | = exp{Z(Y - f(xrt’))
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a =30

1/% st = 025

Figure 3.4.20(b) Free Surface for Saffman Case: Interior Stretch

(s(.5) = 2) in § and N = exp{3(y - f(x,t))}



Simulations were also run cn a uniform grid in N coupled with an
interior stretch in & of s(.5) = 1.25 and N = 10. Figures 3.4.21(a)
and 3.4.21(b) depict the results for M = 12 and 16 respectively. For M
= 12 calculations could not be extended past a time of t = 1.5 and
required approximately 380 CPU seconds while, for M = 16, the
respective numbers are T = 1.3 and 690 seconds. In both cases the
termination of the simulation is caused by the appearance of a
nonphysical oscillation near the base of the finger. Again, we note
the possible formation of secondary fingers. It is clear from these
figures that the free surface is sensitive to the choice of grid and to
the number of subdivisions chosen for that grid.

The analytic form of a Saffman finger is given in Figure 3.4.22 in
steps of At = .2 to T = 2.0. Our most satisfactory approach to this
Saffman finger was achieved with a = 3.0 and s(.5) = 1,15, Figure
3.4.23(a)- (b) plot, respectively, the evolution of the computed free
surface and its error, in intervals of At = .05 to T = 1.,25. It is
seen, near the time of convergence failure, that the error rises
significantly in the region of .425 < & < .675 to a value of
approximately .25 . The last profile in Figure 3.4.23(c) is the
computed free surface at t = 1.3. Previous simulations suggest that
the free surface is about to develop a negative curvature near § = 0
and this will be followed by a bifurcation of the nose.

In Figure 3.4.24 we have plotted the analytic vertical velocity
components v along & = 0 and the outer wall & = 1 to a time of T = 2.0.
At a time of approximately T = 1.0 the free surface along the outer
wall has become stationary while the nose moves steadily at a velocity

of -2, 1In Figures 3.4.25(a)and 3.4.26(a) the computed values of v,
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Figure 3.4.21(a)

Free Surface for Saffman Case:

(s(.5) = 1.25) in & (N = 10) and Uniform Grid in

n (M= 12)

- f(x.y

At=1
--':o M=12

Interior Stretch

211



212

Figure 3.4.21(b) Free Surface for Saffman Case: Interior Stretch
(8(.5) = 1.25) in & (N = 10) and Uniform Grid in

n (M= 16)




B P Py e g e
=
E

Figure 2.4.22 The Saffman Finger (Exact Solution) in Steps of At =

2 tot =2.0
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Figure 3.4.23(a) Free Surface for Saffman Case: Interior Stretch

(5(.5) = 1.15) in £ and 1 = exp{3(y - £(x,t))}
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Figure 3.4.23(c) The Free Surface of Figure 2.4.22(a) to t = 1.3
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Figure 3.4.24

Exact Vertical Velocity Components V_ at x = 0 and

X =1




218
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Figure 3.4.25(a) Computed Versus Exact Vertical Velocity

Components at x = 0
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Figure 3.4.25(b)

Ve (Ot) — V (O)

Error in Computed Vertical Velocity Component V

at x

0

- A
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Ve (1,0)
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Figure 3.4.26(a) Computed Versus Exact Vertical Velocity

Components at x = 1




Ve (L) - V(1)

.~/

Figure 3.4.26(b) Error in Computed Vertical Velocity Component V

at x = 1




over 0 < T < 1.3, are contrasted with the analytical values. The
corresponding errors are given in Figures 3.4.25(b) and 3.4.26(b). It
is seen that v along the outer wall remains quite accurate until 1.175,
when it becomes slightly positive. Along £ = 0, v begins to deviate
substantially near T ~ .7. The magnitude of the computed v steadily
decreases to a low of 1.59605 at t© = 1.15 whereupon it begins to
increase and just before convergence failure reaches a value of 2,2702
at T = 1.3.

Finally, ian Figure 3.4.27, we have plotted, at t = 1.25, the
streamlines under the computed free surface in intervals of AY = .1
from W= 1 at § = -1 to W= -1 at Y= 1.

When we turn to estimates of the global error and asymptotic rates
of convergence of the compact scheme we find that the results are
similar to those obtained for the cusping case. Tables 3.4.10-11
compare the errors in ¥, U and V on a variable grid (s(.5) = 1,15) with
those of a uniform grid. Again, the errors are generally smaller for
the variable grid and the corregponding asymptotic convergence rates
are better. Note that in these calculations three grid estimates were
employed with the exact solution on the finest grid used as a standard.

Tables 3.4.12~13 give the variable and uniform grid estimates for
the free surface at the early and relatively late times of T = .025 and
1T = .6. Again, it is seen that the errors and convergence rates are
somewhat better on the variable grid although by T = .6 the errors have
grown quite large. At T = .6 it is noticed that the convergence rates
have begun to deteriorate on the uniform grid whereas they remain quite

good on the variable mesh.
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-.281 T
y
W= 1 v=1
P
y= =272
x= -10 x =10

Figure 3.4.27 Streamlines for Saffman Case at t = 1.25




Table 3.4.10

Error and Convergence Rate (I = 4) for ¥, U, V:

Variable Grid (s{(.S5) = 1.15), t = .02%

M H\F‘q"r”eo HU'UT”w ||V'V'r”oe
4 .3365(-3) .1917(-2) .2155(~3)
8 .2868(-4) .1743(-3) .3087(-4)
16 .2302(-5) .1130(-4) .2015(-5)
32 .1735(-6) .7261(=6) .1250(~6)
p=3.54 p=3.42 p=2.68
p=3.63 p=3.95 p=3.93
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Table 3.4.11

Error and Convergence Rate (I = 4) for ¥, U, V:

<

32

Uniform Grid, T = .025

H%‘P'r“w ”U'UT”w ”V'VTH«:
.7281(-4) .6373(-3) .4203(-3)
.8389(=5) .9849(-4)  .6430(-4)
.1072(-5) .1048(-4)  .7168(-5)

.1195(-6) .9975(-6) .6340(-6)

p=3.14

p=2.97

p=2.61 p=2.64

p=3.21 p=3.13




.025

Table 3.4.12

(1)

Error and Convergence Rate for £, £ ' f(Z):

variable Grid (s(.5) = 1.15)

O L e M | Rt - |
4 .3270(-4) .3458(-2) .4017(-2)
8 .2581(-5) .4935(-3) .6194(-3)

16 .3216(-6) .3257(-4) .4192 (-4)

32 .8431(-7) .8535(-6) .2781(~6)
p=3.74 p=2.69 p=2.56
p=3.25 p=3.86 p=3.79

4 .1815 .2082 L2734 (1)
8 .1461(-1) .2411(-1) L2736
16 .1487(-2) .4552(-2) .4973(~1)

p=3.67 p=3.23 p=3.45




Table 3.4.13

(1)

Error and Convergence Rate for £, £ r f(z):

Uniform Grid

| | I e 1 | PO I ) |
.025 4 .4816(-4) .3322(-2) .7625(~2)
8 .4467(-5) .5803(~3) .8306(-3)

16 .9120(-6) .6241 (-4) .6281(-4)

32 .1003(-6) .2659(-5) .5793(-6)
p=3.47 p=2.40 p=3.15
p=3.26 p=3.12 p=3.63

.6 4 .1941 .2394 .3107(1)
8 .2814(-1) .3706(-1) .6239
16 .3725(-2) .5931(-2) .7249(-1)

p=2.76 p=2.70 p=2.17
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3.5 Discussion and Conclusion

At this point we would like to briefly mention other numerical work
on receding Hele-Shaw flow and to make some comparisons. In Tryggvason
and Aref [1983] the motion of the interface between two fluids in a
Hele-Shaw cell is recast in terms of the evolution of a vortex shaet.
This allows them to study the behavior of many competing and
interacting Saffman fingers. Unfortunately, they do not compare thsir
method with any exact solutions. Degregoria and Schwartz [1985), take
advantage of the potential flow and use a boundary-integral method
together with a smoothing technique to investigate the 1long term
evolution of a Saffman finger under conditions of very low surface
tension. They find that under such conditions the developing finger
bifurcates. Again comparisons with exact solutions are not made. In
several papers [1983], [1984] and [1985] Davidson develops an integral
equation for the normal velocity of the interface in a Hele-Shaw cell,
Since the time rate of change of the free surface can be expressed in
terms of the normal velocity, this allows Davidson to develop an Adam-
Bashforth~Moulton scheme to follow the evoclution of the interface,
Davidson makes use of smoothing and notes that spatial refinement
accelerates the onset of instablity. Some comparisons are made with
the Saffman solution although there is insufficient detail to allow a
comparison to be made. 1In addition a great deal of numerical work has
been carried out on the possible shapes of the limiting (T -+ o) state
of the Saffman finger.

Aitchison and Howison [1985) have used a variant of the boundary-
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integral method to determine numerically the conformal mapping, and
hence the free surface, which maps the fluid region onto a unit circle.
As they provide some direct comparisons with exact solutions it is with
respect to their work that we make some detailed comparisons. In
general, Aitchison and Howison find that the time step(they employ an
explicit Euler method in [1985]) has little effect on the gualitative
behaviour of their results; an observation which has been noted above
for the compact scheme,. Furthermore, they note that attempts at
reducing the error in their numerical method by using higher order
elements, is met by an earlier onset of instablity. There is an
implication here that the most simple and basic of schemes is to be
preferred to the use of higher order schemes in the investigation of
unstable Hele-Shaw flow. It is felt, in view of the compact finite
difference method presented in this chapter, that higher order methods
have their place. What appears to have more effect on the onset of
instablity in these problems is the choice and refinement of the
computational grid.

For the Saffman finger case presented above, Aitchison and Howison
find that computations proceeded to a time of T ~ .4 at which point
instablity made further progress impossible. The shape of the free
surface was marked by oscillations in the region of the developing
nose. No comparison with the exact solution is made. 1In contrast, the
compact method was able to proceed to times of nearly T = 1.3 at which
point finger development ia largely complete. It is interesting to
note that the interface calculated by the compact method was free of
oscillations although the shape of the interface was found to be

dependent to some extent of the cheice of grid. We noted also the




possible evidence of secondary finger development and the bifurcation

of the nose. In [1986]), Howison has presented some new generalizations
of the Saffman-Taylor solution which exhibit both these features in the
absence of surface tension.

Far less numerical work has been reported on the cusping case:; the
work of Aitchison and Howison being a notable exception. For the
cusping case reported above, Aitchison and dowison find that the best
results are obtained with the theoretically least accurate solution.
The boundary-integral method with constant elements gave a best
estimate of the time T* to cusp of approximately .347, which under
estimates t* with a relative error of 3.5%. In contrast, the compact
scheme yielded a best time of ~.386 which overestimates t* with a
relative error of 7.4%. On the other hand, the compact method
determined the position of the cusp at -.845 which gives a reiative
error of -1.7% whereas the relative error (determined from measurements
of Fig.3 in Aitchison and Howison ([1985]) in the boundary-integral
method is approximately 17%.

In summary then, we have developed in this chapter a new and
relatjvely accurate method for the numerical solution of rather general
elliptic partial differential equations on both uniform and variable
grids. The method, which is based on an extension c¢f the compact
method of section 4 of Chapter II, has been applied to the difficult
problem of calculating the interface in receding Hele-Shaw flow.
Comparisons with exact solutions indicate that the numerical method
behaves as predicted at least for early times., The ability to carry
out computations on variable grids without apparent deterioration of

the globai error has been found useful. It is somewhat surprising, in




view of the fact that no advantage has been taken of the potential
nature of the flow nor of the viability of the shearing transformation
for small to moderate distortions of an interface, that the results of
the compact method compare well with results from other distinct
numerical methods.

Finally, it is felt that the numerical solution of moving boundary
value problems with this vype of compact finite difference method, on
variable grids without the use of shearing transformations, is both

desirable and possible, and should be explored.
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CHAPTER 4

SIMULATION OF A PROBLEM OF CONTAMINANT TRANSPORT WITHIN

A POROUS MEDIUM UNDER AN EVOLVING FREE SURFACE
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4.1 Introduction

A problem of increasing global concern is that of groundwater
contamination and the subsequent migration of pollutants into existing
reservoirs of fresh, uncontaminated groundwater. In this chapter we
shall deal with only one small aspect of this large and interesting
topic. Here, we present the results of a preliminary investigation
into some of the numerical difficulties associated with the simulation,
by finite differences, of a two-dimensional problem involving the mass
transport of trace amounts of a solute in flowing groundwater. The
exact problem is the following. Hydrocarbon products such as gasoline
are notorious for their ability to affect the gquality of drinking water
even when present in trace amounts such as a few parts per million. A
storage depot, located at groundievel and near a municipal water-supply
well field, contains just such a hydrocarbon product. The walls of the
reservoir develop a fracture. The hydrocarbon escapes and makes its
way down to the water table where it forms a source of contamination.
Under the influence of pumping, the pollutant is dispersed into a large
volume of groundwater.

In section 2 an simplified model of this problem is formulated.
The underlying mathematical structure is given and consists of a flow
equation for an incompressible fluid and a transient transport
equation. While these two equations are in general coupled, most
usually through the velocity profile dependence on the physical fluid
properties of viscosity and density, which in turn depend on the local

contaminant concertratica, the ideal tracer model allows us to decouple
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the governing equations. While much microscopic{and interesting)
physical detail is lost, this simplification allows us the opportunity
to investigate more clearly some of the underlying numerical problems.

Section 3 is devoted to details of the numerical scheme and its
implementation. A shearing transformation, the second of two given in
Appendix A3.2, is used to effect a convenient computational domain.
The potential problem, arising from the flow equation, is, after
transformation, approximated wusing the compact implicit scheme
developed in Chapter 3. Much of the attendant numerical detail remains
unchanged, so that most of the exposition will center, instead, on the
numerical treatment of the transport equation. Since this equation is
time-dependent and nonlinear under the shearing transformation, the
discretization of it was carried out with conventional second order
finite differences. Attention will focus on the accurate modelling of
the early time evolution o¢f an instantaneous point source of
contaminant.

In Section 4 numerical results are presented and some conclusions
drawn. The remainder of this introduction is devoted to a brief summary
of mass transport in a porous medium. The material is drawn from
standard references such as Bear (1979}, [1988)], Bear and Verruiit
[1987] and Fried [197S].

The mass transport of a pollutant(solute) through the interstices

of a fully saturated porous medium is caused by two main phenomena :

(1) convection of the pollutant at the macroscopic fluid velocity and
(2) hydrodynamic dispersion in which the spreading of the pollutant, at

the macroscopic level, results from the effects of both mechanical
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dispersion and molecular diffusion.

We briefly discuss the latter phenomenon in more detail.

Mechanical dispersion is the influence on the pollutant resulting
from the interaction of the fluid with the porous structure of the
medium. It is clear that the local fluid velocity profile is highly
nonuniform. While this is Jdue large part to the geometry of the porous
matrix itself, another contributing factor is the maintenance of a
velocity gradient near a solid surface as a result of the no-slip
condition. The local streamlines fluctuate widely with the mean
direction of fluid flow and cause any initially close group of solute
particles to disperse in time. Mechanical dispersion is further
classified into - (a) longitudinal dispersion which occurs in the
direction of the mean velocity and is due to differences in velocity
components along this direction and (b) lateral or transverse
dispersion which occurs in the plane orthogonal to the direction of
mean velocty and is due to velocity differences in that plane.

Molecular diffusion which results from the creation of a chemical
potential gradient within the fluid due to the presence of solute,
takes place regardless of fluid motion and makes the phenomenon of
dispersion an irreversible process. If the fluid is imagined to be
composed of streamtubes, the action of molecular diffusion may be
divided into two basic effects - (1) a longitudinal effect arising from
the tendency of differences in concentration within a streamtube to
disappear and (2) a lateral effect occurring between adjacent
streamtubes and involving mass transfer in order to smooth out
differences in concentration.

While it is clear that a microscopic description of the mass
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transport of a pollutant in a porous medium is desirable, it is not
feasible for many applications of interest, and so Bear and Bachmat
[(1970] and others have used the concept of spatial averaging to obtain
a macroscopic description. One form cof the equation of mass transport
commonly used to describe miscible displacement in a fully saturated

isotropic porous medium, is given in cartesian coordinates as :

a(gic) - V- {oeDh . Vc} -V . {oe! c} (4.1.1)

where

O = effective porosity
C = mass concentration (ML-3)
v = area averaged velocity = [Vi’vj'vk]

Dh = coefficient of hydrodynamic dispersion tensor (LzT-l)

The tensor Dh is the sum of two symmetric second rank tensors D + p*. D

which is the coefficient of mechanical dispersion tensor is given by

v v
D =a v § + (a, -~ a ) mn (4.1.2)
mn T mn v

where 8mn is the Kroenecker delta and

v {s . o}

aT = transverse dispersivity

a, = longitudinal dispersivity.
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The dispersivities in (4.1.2) (which are constants) represent the
influence of the geometry of the void space. The other tensor, D*, is
called the coefficient of molecular diffusion tensor and is given by
(4.1.3)

* *
- T
Dmn Dd gmn

Here Dd is the coefficient of molecular diffusion of the particular
solvent-solute system, T* is the tortuosity, see Bear [1972], and is a
scalar for isotropic media and In is the metric tensor which reduces
to Smn for cartesian coordinates.

In addition to convection and hydrodynamic dispersion which is
governed by equation (4.1.1), other phenomena affecting the mass
transport of a solute include radioactive decay, chemical reaction with
the fluid, and adsorption or deposition onto the surface of the porous
matrix. The mathematical description of these effects will alter the

form of (4.1.1). For details on this and other topics see the

references given above,




4.2 TFormulation of Problem

Consider an isotropic porous layer of infinite extent and of
constant permeability ¥ and effective porosity °§' This porous layer of
depth H is fully saturated with a viscous incompressible fluid of
constant viscosity B and density p. It is bounded from below by an
impermeable layer of bedrock and from above by a phreatic surface y =
f(x,t) which forms a sharp line of separation between it and an
unsaturated layer. An instantaneous source located on the free surface
injects a pollutant into the porous layer and the resultant
contaminated fluid is removed from below by a horizontal series of
wells, each of maximum pump velocity 5/0é, spaced at regular intervals
along the porous-bedrock interface. We shall only consider the case of
the convective-dispersive transport of this contaminant in a vertical
cross-section of length 2L under the assumption of periodic cenditions.

Thus, the horizontal and vertical components of the velocity ¥ =

(u,v) of the homogenous fluid are from Darcy's law (Appendix A3.1,

equation A3.1.7)

v =1 (4.2.1)
Oe
where the velocity potential ¢ is defined to be
P
O = K(y + ) (4.2.2)

¥

with p, ¥ = pg and K = ;; the pressure, the specific weight, and tne
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hydraulic conductivity of the fluid. Assuming that changes in fluid
volume due to compressibility of the fluid and/or solid matrix arxe
negligible, as discussed in Appendix A3.1, the equation of continuity

(A3.1.8) becomes

v . G ¥ =0 (4.2.3)

with the result that the velocity potential satisfies

Vo =0 (4.2.4)

Along x = *L we assume periodic conditions in which case the

horizontal velocity component u satisfies

oY
%o

1
u = -z =0, x = %L (4.2.5)

e
Along y = 0 which forms the porous-bedrock interface, we have that the
normal component of velocity is zero except for the presence of a pump
of maximum velocity &/6y and width 2w placed symmetrically and

horizontally about x = 0. This is described by

- _§_4(x - w)z(x + m)z,lxl < ®
vix,0,t) = S £ 20 (4.2.6)
0 x>

Turning to the free surface, which is isobaric, we have from

(4.2.2) that on y = f(x,t)

®-Ky =0 (4.2.7)
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Furthermore, surface tension and/or capillary effects are ignored so
that the interface evolves in time according to the kinematic relation

(A3.1.11)

1
ft - oe(¢§ - fxck)

Finally, the initial position of the free surface is taken to be an

even function in x i.e.

£(x,0) = fo(x)

fo(-x) - fo(x)

and so the free surface will evolve symmetrically about the line x = 0.

The governing equation for mass transport is assumed to be

C =D V2C - uC = vC (4.2.10)
t h x Y

where Dh is a scalar coefficient of dispersion. This quantity, as
mentioned in the introduction, is in general a tensor quantity
possessing directional properties dependent on the velocity field and
the geometry of the porous matrix so that our assumption here of a
constant Dh approximates the physical situation, The boundary
conditions for (4.2.10) are of the form

o

{1 c - Dth} -n= 5;-50. n (4.2.11)

which states that the convective and dispersive mass fluxes in the




direction of the inward normal to the boundary are due to the presence
of a known convective mass flux on the boundary. In (4.2.11) 30. n is
the normal component of a known Darcy flux.‘gb and C0 is a known
concentration. Along the lines x = %L and over the entire length of
the impermeable-bedrock interface including the interval containing the
horizontally positioned pump (4.2.11) is assumed to reduce to a Neumann
zero-flux condition. This condition along the aforementioned
boundaries is justified in the fonllowing way. Along the impermeable
part the normal component of velocity vanishes while along the
remaining portions the Danckwerts condition (Danckwerts [1953]), of no
further mixing of the contaminant into the fluid has been assumed to be
valid. On the free surface y = f(x,t), the total mass flux across the
interface into the unsaturated zone is assumed to be negligble.

For the initial concentration profile we take

Clx,y,0) = Coexp{-[aoxz + bo[y - fo(x))z]} (4.2.12)

where ao and bo may be adjusted to give a realistic instantaneous point

source and C0 is a reference concentration.

Finally we remark that the fluid properties of viscosity and
density have been taken to be independent of the contaminant - a valid
assumption when the contaminant concentration in the porous layer is
sufficiently low. This decoupling of the flow and transient transport
equations, which forms the basis of what is known as the ideal tracer
model, has been found to be adequate in a number of environmental

pollution studies (Fried [1975]).

Prior to nondimensionalizing the above system of equations we find




it convenient to proceed as in section 3 of Chapter 3 and reformulate
the potential problem in terms of a conjugate variable by introducing a

stream function ¥ through the equations

(4.2.13)

we introduce the normalization

x = Hx"
£(x,t) = HE*(x*,t%) £,0x) = Hf;(x*) © = Ho" (4.2.14)
¥ = yKHW (x*,y*, t%) C = coc*(x",y*,t*)
where the dimensionless variables are indicated by asterisks. Thus,
the following formulation is obtained where we have taken note of

symmetry about x = 0 and dropped all asterisks :

v < fix,t)

Vo =0

C -inc-‘Pc +¥cC
t Pe Y x X'y

< f(x't) :
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on 0 <x<a y=0,1¢t2>0:

I(x, lw) ’ X<
(4.2.20)
I(mr ,(!)) ’ xg_(n
"_4(2(‘0)) (x+m)2: x < ®
(4.2.21)
’ x>
C =0 (4.2.22)
b4
onx=0a, 0 <y< fix,t}
¥ = I(0,8,0 (4.2.23)
Y =0 (4.2.24)
Yy
C =0 (4.2.25)
X
and on y = f(x,t)
¥, = £ (¥, +;;-; (4.2.26)
(e -tclrefocedo)no 4221

The kinematic condition (4.2.6) for fix,t) undergoes the

transformation

f fz
X

+ (1+fz)‘i‘
X X

1
t , 0<x <@ (4.2.28)
£

{(x,0) = £_(x)

0

while the initial conditicon for C over 0 < x < @&, 0 < y < f(x,t)

becomes
Clx,y,0) = exp{-[a(;x2 + bé(y - fo(x))z]}. (4.2.29)

It is noted the tangential derivative boundary conditicns for ¥

along the three lower sides of the domain have been .integrated to




provide a set of values for W. Thus in (4.2.20) the quantity I(x,8',w)

is given by

1
I(x,8', 0 = - %Jx(s - @2(s + @° ds (4.2.30)
0

The dimensionless parameter

pe = LT (4.2.31)
e“h
C. Peclet number appearing in (4.2.16) is proportional to the ratio of
the average time for dispersion to that of convection and provides an
indication of the relative importance of the two processes as
mechanisms of mass transport. The form of the convective-dispersive
equation, as given by (4.2.16), is appropriate for moderate to large
values of the Peclet number (Roache [1982]), since the normalization,

as indicated by (4.2.14), has been carried out with respect to a

H

convective time scale of g7 .
(8 + K)

In (4.2.13) «a represents the aspect ratio of the domain while JB,
formed from the ratio of the pump velocity to the hydraulic
conductivity, provides a measure of the pump strength to the ease with
~nich fluid is transmitted through the porous layer.

'

Finally, the parameters s, aa and bo appearing in {(4.2.15-29) are

(4.2.32)

(4.2.33)
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4.3 The Numerical Msthod
To effect a convenient computational domain we define, as in the
previous chapter, a coordinate transformation this time given by
E=x,n=y/f(x,t) , T =t (4.3.1)

This mapping, which is discussed in Appendix A3.2, takes the region

fR={(x.y)| 0 <x<a 05y§f(X.t)}

).

Under (4.3.1) system (4.2.13-29) becomes (see Figure 4.3.1)

into the rectangular region

R'= {(&,ml 0

‘

£a 0<mn

1A

on 0 <§ <@ 0<N<1:

h o + 2BY + &Y + &¥ = ( 4.3.2
EE gn * S t & (4.3.2)

LC = aC + 2bC + cC + dC, + eC = C 4,3,
ACee gn * oqp * I t oG = G (4.3.3)

¥ =0 ' (4.3.4)

¥, =0 (4.3.5)

Ce =0 (4.3.6)

on0<§&<a n=0,,1t>0:

1,8 w . E<o

¥ = (4.3.7)
I(m,s',m) ’ éZO)

]

-%q(é—w>2(§+m)2, E <o

¥ - (4.3.8)
0 , £ >0

C_=u (4.3.9)



£ - w&, £(,0) = fo(a)

n=1
£f £f £
\p ,——;—[\ll +£)' C --—$—-C +pe—\l§-—c
N7 4 208 Y n 1+¢£2 & 1+ £2
3 § E
0 = ¥ I1(w,8 ,0) = W
0 =W 0= ¥
n n
/ 0 =CcC 0=C¢C
{ g g
Y. + 2b¥ + ¥ + 8Y =0
33 gn " “tm T ST
Cee + 2bC,  + cC__ +dC, + eC_ =C
33 gn © “*m £ T "t
v 1e2 [ A
C(,n,0) = exp{-[aoﬁ + bofg(ﬁ)(n - IJZ]}
Vv o= I(E,5', 0 ¥ = 1{0,0',
5 2 2
1& = -6 -wTE o 1& =0
=0 cC.= 0 C. =0
" n N n
E=0 E <o ¢=w E > 0w E=a

Figure 4.3.1 The Ideal Tracer Model of Contamiaant Transport
Under an Evolving Free Surface After Coordinate

Transformation




¥ = I(,8',0) (4.3.10)
¥ =0 (4.3.11)
(4.3.12)

and onmnm =1

(4.3.14)

The kinematic condition (4.2.28) is rendered

ft = q%

£(£,0) = fo(ﬁ)

while the initial condition for C becomes

c(,n,0) = exp{-[aégz + b(')fz[n - 1) ]} (4.3.16)

The coefficients in (4.3.2-3) are

5 - - N& - _1 2.2

1 n 1

We note that the boundary conditions along the lower three sides have

remained unchanged under the mapping (4.3.1). This follows from the




assumed symmetry about the lines £ = 0 and a and from the fact that

partial derivatives in R and R' are related by

_ i
£

QJ'Q)
»®
QJ'QJ
A
QJlQJ
=

9

-l
£ dn

CHLY
2

Finally we take note of the various symmetries along § = 0 and a.
Denoting points to the left and right of § = 0 and a by subscripts L

and R we have

Y., = -¥ Y_ =Y Y = Y
L R L R G§, &E, &n, &my M
f

TR Ty TR fay T feey

We turn now to the numerical treament of the above problem. Since
an ideal tracer model of contaminant dispersion has been assumed, the
equations of flow and mass transport may be consiuered separately.
We begin with the potential problem.

Define a temporal step as k and a uniform spatial grid by

g
]
iR
[}
zZ |-

where M and N are the number of suddivisions respectively in the § and
: . ; . n "y

7N directions. Then scripted variables such as Ci. and i denote the

value of the concentration and stream function at § = ih, N =jh and 7 =

nk where 0 < i <M, 0 < 3 <N,

For numerical approximation of the potential problem we have used
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the compact finite difference scheme in S = ¥, U = q& and V = ﬂa of
Chapter 3 since the Hele-Shaw problem and its attendant boundary and
initial conditions are similar to the problem at hand (although here
v{(0,M,1) must be computed). Since this method has been discussed at
great length, we shall only stop to point out any significant
differences.

The main difference follows from the observation that the errors in
the free surface and in the velocities (excepting, of course in the
immediate vicinity of the pump) were found to indicate rates of
covergence of order 4 when comparisons were made on uniform grids.
Thus the necessity, on variable grids, of using implicit compact
formulae for the mixed derivative W&n = W which then require the
solution of a tridiagonal system can be avoided entirely (see section 3
of Chapter 3 equation (3.3.47)). New compact formulae for q&ﬂ which

are explicit in S, U and V have been derived in Appendix 4.1, They are

N Lo 1o N
Woo===2(0 0 0|+ 3-l0 0 of #3511 0 12
3 4n"|.; o 1 s 0 -1 of, 0o o of,
(4.3.18a)
Lfroe -3 N R 1 0 -1
W, . .==—l0 o ofl+==l0o 0o of+—=—]12 -32 20
2
i+1,9 4h 1 -4 3 S 16h 1 -4 -9 v l16h 1 0 -1 v
(4.3.18b)
L |3 0 3 Lf-5 20 7 L 1 -8 7
. ==, 8 -8 o +=|8 32 -8 +=|-12 32 -20
+1,3+1 2
11 N R 1 ] 5 8hl 3 g -5 v

(4.3.18c)




In these formulae the local truncation errors are O(hq) while an

expression of the form

E18) + 4U + U -9

i+1, 541 i,j+1 i-1, 341 Usivr,4-1 ~ 4

Yi,3-1 ~ Yi-1,3-1

is indicated by the stencil

1 4 9
0 0 ol .
-1 -4 -9

There are 6 remaining relationships and they may be obtained from
(4.3.18b-c) by noting that an anticlockwise rotation by % results in
U4 v
V-9 -0
W o -W.
For further details see Appendix A4.1.

While symmetry in problem (4.3.2-16) dictates that W is an even
function in & across the lines & = 0 and «a, equations (4.3.18) for W
are especially useful along the free surface and che porous-bedrock
interface. The incorporation of these formulae into the implicit
compact algorithm is as outlined in Chapter 3 where we note that W is
updated after each horizontal or vertical sweep. The important
difference, however, is that now the computation of the cross
derivative is explicit and therefore significantly more efficient.

The calculation of S, the velocities U and V, the free surface
f(€,1) and its first and second derivatives remain unchanged from
Chapter 3. The treatment of the kinematic relation (4.3.15) is by the

one step second order scheme (trapezoidal rule) given in (3.3.54).

Thus the computation of the coefficients (4.3.17) is accomplished with

. 4 2
a scheme whose truncation errors are O(h') + O(k'). We turn now to the




treatment of the mass transport equation.
We consider here discretizations of the mass transport equation
(4.3.3) by standard finite differences. Define the finite difference

operators

1
T T VPP
2

C..
§743

2
., v, utﬁt and 51 . Then the

with similar expressions for V_, unsn, 82 .

n n
spatial terms LC of (4.3.3) are approximated by

e = L2 4 omd) . (4.3.19a)

n2¥15%i5

n

ij

The operator F,_, in (4.3.19a), defined over 0 < i < M-1, 0 < j £ N-1,

is given by

r:j - {azjéz + szjuésiuqsn + cgjsi + hdzjugﬁg + hezjunsn} (4.3.19b)
As can be seen the approximation (4.3.19) is taken over the whole of
the domain R'. This includes the lower three boundaries given by the
lines £ = 0, 1 = 0 and £ = a. Along these lines values of C appearing
at fictitious and exterior points are removed from (4.3.19) by the use
of the bcundary conditions (4.3.6), (4.3.9) and (4.3.12). Thus, the
conditions

on§ =0 e = c 5 + O(hz)

on N =20 . i + O(hz) (4.3.20)




2
on§ =a Ce =0 = Cuuy,j = Cyor,y * OO
ield for rn Cn the expressions
yie 135513 pressi
on§ =0, 1 <j<N-1
n ._n n n n n 2.n n n
F..C = =23 . (C..-C.,) +¢c,, &°¢C + he d ¢C 4.3.21a
0303 03035 7 C137 ¥ oy %%y * Po0sHn°n%0y ! )
at (§,n) = (0,0)
n _n n n n n n n
FOOCOO ZaOO(C00 - Clo) 2c00(C00 - C01) (4.3.21b)
onl<i<M1l, n=20
n _n n 2. n n n n n n
FiOCiO aiosécio - 2c0j(Cio - Cil) + hdiounﬁncoj (4.3.21c)
at (E,m) = (1,0)
n _n n n n n n n
Fuo®m0 = 22m0 Cu-1,0 ~ Mo’ ~ %m0 ‘Mo ~ w1’ (4.3.21d)

on§ =a 1< 3j<N-1

e’ - 23" (c” ™)+ 83", +n

n
. a . . . . e .ud
M3 Mj M3 ' M~1,5 © M3 M3 M3 Mit'n

n
C 4.3.21e
n<03 ( )

Tc complete the system of unknowns the zero-flux condition (4.3.14) is

discretized as

n n
£f £
lV+lV2-—-—§-Zu5 _Pe__qu_z I cr_‘ = 0 +O(h2) (4.3.22)
h 2 1+ £51668 1+ £2], iN
gl §11N

where a three point backward difference for C_ has been used and I is
the identity operator.

To advance the solution in time (4.3.3) is considered at 1t =
{n+1/2)k. Averaging the spatial approximation of LC and treating the

temporal derivative CT as a central difference over the times T = nk

and (n+l)k we obtain a Crank-Nicolson discretization given by
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n+l n+l n+l

n n _n
Cij cij + > 'chij + rij 15 (4.3.23a)
p = %2 (4.3.23b)

Equations (4.3.23a), together with the approximate boundary conditions
(4.3.10-21) are then arranged with the unknowns 02;1 ordered along
vertical lines to form a coupled set of tridiagonal matrix systems.
This set is solved to convergence in an iterative manner with a left to
right vertical sweep. The details of the iterative procedure at the 1t

= (n+l)k time level are as follows. We have

- _(p) =S (=) B -} R { g .n } n p .(p)
AjiCiTiy ¢ BsCs *Cue T s AT B EL S 5 65 (a.3.24

where the coefficients Kij' 5..

and E.. are
ij ij

(4.3.24Db)
’
= n+l h n+l
E + —
Cij gicij 2 %ij }
(p) .
and Gij given by
(p) n+l/ (p) (p-1) 1l n+lf (p-1) (p)
G,, =a, "\C. . + C, Ot . . ) - . -
ij al] i-1,5 C1+1,j 5b13 i+1,35+1 i-1,3+1

+ -
Ci+1,j_1 i-1,3-1 + Edij ci+1,j Ci-l,j {4.3.24¢c)

In (4.3.29) C(p) represents updated values within the present left to

{(p-1)

right 3sweep while C denote the values from the previous sweep.




13 has been defined in (4.3.19b), the coefficients l:;l,
n+l

bij etc, are given in (4.3.17) and equations (4.3.23) are assumed to

n
The operator F

hold over ®' i.e. for 1 < i < M-1, 1 < § < N-1. At the porous-bedrock

interface equation (4.3.24) takes the form

- (p) - (p) 1] } (p)
BiOCiO + (Aio + {I + 2 riO C10 + Gi (4.3.25)

while on the free surface the zero-flux condition becomes

n+l n+l
3 - 2hre — 2o cP) o g P . 2h___£L o (P
1+ €2 iN i,N-1 L+ £2 i+1,N
& i,N 5
(p) _ ~p-1) . )
Ci-l,N} Cinez + 1Sism1l  (4.3.262)
n+l
1+ fé *N *,N-1 «,N-2 -3
*, N

where , denotes either 0 or M. The values of Gi?’ along the various

boundaries are

on § =0, 0< j < N-1-:
(p) - n+l (p-1)

S0 22,4 ¢4 (4.3.27a)
on 1_<.§..<.M'11 n=20:
(P) - (n+1){ (p) (p-l) n+1{ (p-1) _ (p) }
%10 Cil1,0 * Cisr,of * P \Cipy o 7 €1, 0f (4:3.27D)
on § = 0, 0< j < N-1
6yt = 2apiic,P) (4.3.27¢)

Mj M) "M-1, 3




Briefly, the numerical algorithm for the overall problem is as
follows. At T = 0 the initial concentration profile is set according
to (4.3.16), the pump is turned on and the initial free surface with
its derivatives are specified. The potential problem is solved for the
velocity profile throughout ®' using the compact finite difference
scheme outlined in Chapter 3 with the modification in the treatment of
the c¢ross derivative given above. Thus the coefficients in the mass
tranport equation (4.3.3) are known at T = 0. Then the position of the
free surface, its derivatives and the velocity field are calculated at
T = k. With this information at T = k, the mass transport equation is
then solved iteratively for the concentration profile at the .ew time
under the evolving free surface. Along a vertical line equations
(4.3.24-26) form a scalar tridiagonal system which is solved with a
Thomas algorithm (see Appendix A2.4). The vertical line left to right
Crank-Nicolson procedure for the concentration is considered to have
converged at time T = nk if the following convergence criteria on
successive iterates is met -

p-1)

max c® (&,q,0k) - ¢! (¢,m,nk) | < ERP

E/n e

’

(4.3.28)

p < NCMAX
-2, 2
where ERP = 10 "h and NCMAX = 20.
When the algorithm was implemented the following numerical p:oblems

were detected :

(a) the appearance of spatial oscillations -f wavelength 2h when
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the grid Peclet number PeA = |vlhPe , where lvl is the velocity

magnitude, exceeded a vaiue of approximately 2.

(b) in the early time evolution of a sharply localized source, it
was found that the time step of the Crank-Nicolson iterative
sweep had to be kept below a critical Peclet number dependent
value in order to avoid oscillations and to prevent a sharp
loss in the total amount of contaminant present. This critical
time step varied inversely with the Peclet number and resulted
in long and expensive simulations. For a value of Pe = 10, the
critical time step was approximately 5°10-‘.

As is well known the cell Peclet number restriction in (a) can be
met by either increasing the spatial resolution of the grid (the
practice adopted here, or else by replacing the central differencing of
the convective terms in the transport equation with upwind
differencing. There is a vast literature on this subject to which we
refer the reader tc the following articles of Hirsh and Rudy {1974),
El- Mistikawy and Werle ([1978), Stoyan [1979]; Leonard [1979], [1980],
Griffiths et al [1980), Smith and Hutton [1982]), Patel et al [1985).

When we turn to the second problem it can be argued that the
oscillations, which are manifest at early times if the time step is not
sufficiently small, disappear in time and in any event probably result
in errors of no serious consequence in long term simulation since a
tracer model of contaminant transport has been used. However, since
one of the objectives of the present study was tn nuncover numerical

problems that lay in the way of adopting a more :calistic model of




contaminant dispersion in a porous medium, including, say, nonlinear
effects arising from the dependence of fluid properties on the
concentration of the contaminant, it was felt necessary to understand
and to remove this source of numerical error.

The source of the problem has been analyzed by Lawson and Morris

(1978]) for the archetypal diffusion equation

c, =C
T Xx
C(0,t) = C(1,T) =0 14.3.29)

C(x,0) = f(x)

over the interval 0 < x <1, T > 0. Defining Ax and At as grid steps
in x and T where Ax = 1/(N+1), an approximation of (4.3.29) as a system
of coupled first order differential equations in t is given by

Loac, co -2 (4.3.30)

gt T T Ax
where A is the N x N matrix resulting from the central differencing of
th spatial term, and C = C(tr) is the column vector with components

C(ih,t), i = 1 to N. The solution of (4.3.30) at t" = nk is given by

ctt™ = exp(-ra)ct® - 1), & = %%2 (4.3.31)

which, if C(0) is expressed in terms of the =2igenvalues and

eigenvectors lkand LN of A as

N
£=) bw (4.3.32)
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becomes

N
gty =) bk{exp[-rlk))n!_k (4.3.33)
k=1

The Crank--Nicolson method arises frxom the use of the [%] Pade
approximation (Appendix A2.1) to the amplification matrix exp(-rA] i.e.
b

exp{-ra) = (I + %rl\)_ (1 - %rA) = R(rA) (4.3.34)

We cbtain the one step scheme for gjtn) given by

{I + %m}_c_u“; - {x - %rA}Q(tn-l) (4.3.35)

and for (4.3.33) the approximate result

N
ca™ =) bk{a(rkk)}n!k (4.3.36)

Now the Crank-Nicolson is a unconditiosnally stable (Ao—s:able)
scheme (Smith [1985]) as can be seen from the fact that the
amplification factor R(rlk) in (4.3.35) is < 1 in modulus fnr all
positive values of rkk. However, norsmooth initial conditions in
conjunct.on with large v_lues of rlk can pose difficulties for the
method. This combination of circumstances can occur as follows,
Discontinuities in the initial profile mean that the coefficients bk of

the high frequency components in the representation (4.3.31} are not

small in magnitude. The corresponding eigenvalues are large and tlk




will, for fixed At, be large if Ax is small. Under these circumstances
R(rlk) is ~ -1 and as the evolution of C is followed in time via
{4.3.35) we see that high frequency componerts oscillate in sign and
ohly slowly decrease in magni.ude.

It is commonly observed that to prevent oscillatory behaviour the
time step should be taken to satisfy At < % sz. Lawscn and Morris

[1978] state that this restriction is too severe and suggest that

oscillatory behaviour be permitted provided high frequency components

are more rapidly dampened to zero than low frequency components. They-

propose that schemes which satisy this property be called Lo-stable.

They observe that the backward Euler method is always stable with a
positive amplification factor and thus can give rise to no oscillatory
behaviour. From this observation they develop, {rom the backward Euler
ana extrapolation, a second order accurate LO- stable scheme which is
superior to the Crank-Nicolsor method fc: cases of nonsmnoth initial
conditions. Other schemes with similar properties have been devised by
Gourlay and Morris [1980] and Mercer [1982].

The scheme of lawson and Morris {[1978] and other second order
methods such as the Dufort-Frankel (Smith [1985]) have been implemented
on a vaoiety of spatial-temporal grids. The experiments suggested that
*hile oscillations were reduced, the results were sufficiently
inaccurate in the vicinity of the source at early times, on realistic
grids, to warrant a search for methods with smaller temporal truncation
errors.

We now present and briefly summarize the main details of an
algorithm which was found, for the range of Peclet number considered,

Lo to remove all trace of oscillation from the early time solution of
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the mass transport equation. Introduce two spatial grids hc ard hq,toz

C and ¥ respectively. The iterative Crank-Nicolson procedure discussed

5 to 10-‘ and chosen

above, with an initial time step k = ko of 10
according to the value of the Peclet number, is used to advance the
concentration C to a time of t# with the solution at each time step
being stored.

These stored solutions are then extrapolated to a new time t‘ + 2k.
Expressing the mass (ransport equation (4.3.3) as Ct = ILC we first
predict CI;Z with a third order Adams-Bashforth (Atkinson (1978)) which
is expressed symbolically as

Vtc’i"‘;2 - 2kL{I + 29 4 -I%Vf}ctj + ok (4.3.37)
This is corrected with an unconditionally stable scheme of '"numerical
aifferentiation" type (Jain [1979%9]), given by

%+ 12 4 AL st onh s
We note that in (4.3.37-38) the spatial terms LC are approximated as
above .n equations (4.3.19-22). Furthe.more, on the basis of this
(3,4) predictor-corrector pair the initial "doubling” time I' is 10k0.

The set of equations described by the corrector are then arranged
with the unknowns ordered along vertical lines and are solved in the
same iterative manner as described for the Crank-Nicolson procedure
above. Criteria for doubling the time step tc k1 - 2k0 include (a)

meeting a maximum norm error tolerance as in (4.3.28) within a

prescribed number NCORMAX = 20 of le¢ft to right vertical sweeps of the




corrector and (b) checking that 0 < C < 1. If these conditions are met

then the algorithm proceeds with the new time step and again attempts,

. 2
after a passage of time equal to 10k1, to doub.e the time step to k =

Zkl. If and when the time step reaches an optimum value of say kopt

.0032 the doubling stops. Once the optimum time step has been reached
the solution proceeds but now with the iterative Crank-Nicolson. If
the doubling criteria are not met then the algorithm proceeds with the
old value of the time step and attempts to double at the next time.

The determination of the concentration profile is preceded, at each
new time, with the solution of the potential problem by compact
differences. An optional feature with regard to the potential problem
is that calculations zarried out with the compact method allow the use
of coarser grids (hq‘> hc). The free surface, its derivatives and the

velocity field are then interpolated, with cubic splines, to the finer

grid needed for the transport equation.




4.4 Numarical Results and Conclusions

Calculations have been performed on the CDC 170-835 for Pe = 1, 15,
40, 50, and 62.5 and with a variety of initial concentration profiles
and pumps. We present some graphic results for the following parameter

set

H = 20m L = 60m o =3
o, = .3 K = .0125mhr  D_ = _066Em/hr
B =4.0 Y = 5.0 Pe = 62.5 Pe, - 3.125
1 1 [ ]
) 8 a0 b0 = 5§
0 -4
h, = .05  hy= .1 k¥ = 10

Initially the free surface was taken to be horizontal(in dimensionless
variables y = £(x,0) = 1). Typically it is found that 39 steps were
required to obtain an optimum time step kopt- .0032. A CPU time of
approximately 1000 seconds was needed to reach a time of T = 4.0028
which corresponds to dimensicnal tire of 16 da&s.

In the first case pumps of width 200 = .2 have been placed ar x =
+.2. In Figures 4.4.1(a) and 4.4.1(b) the streamlines have been
plotted at times of T = 2.9028 and 4.0028 in intervals of AY = .00869
from a low of q&IN = ~,08695 to a high of QQAX = ,08695., In Figure

4.4.2(a’ we have the correspcnding concentration profile at T = 2.0028

_4 -4 - 3
i J = . - - .RS- 0 . T
in intervals of AC 1.5-10 from C IN 10 to C 3 1 he

maximum, which was initially located on the free surface, is now

positioned at y = .704 and is seen to have moved ahead of the free




263

820C°2 = 1 :8d0anog arburg pue

dung arqnog ® 3o ase) ay3l 103 SBUTTWEDIIS

(e)T°'p v »anbra

00-2-
)

4
00-2 Si-t 0S°1 g2 ! 00t S.°0 0s‘0 S2-0 00°0 S2-0- 0S:0- SG2°0- DO°I- G2<1- 0G°l- Gz°1-
L 1 1 1 ] i ] 1 ] 1 1 1 1
SE980 - = h S6980° = h
69800 = v
82002 =)
(x) =4



264

§200°% = 1 :3dancy; 21burs pue

dumg aTgqnog e 3O ¥se) 9yl I03F SIUTTWEdIIS (VT v ¥ 510671

X
002 L TAR 051 Se't 001 GL*d 0S°0 G20 00-0 S2°0- 08°0- S2°0- 00°1- 62°1- 0S*1- G2°1- QQ-2-
| . 1 1 1 ] 1 1 | ] 1 1 1 1 ]
G690~ = 4 S6980° = 4
69800 = hY
8200F =) \
Wx)y =4




265

8200°2 = 1 :@8danog arburs pue duma ayqnog

e JO @sed 9yl 103 syi1aTdos] UOTIEI JUSOUOD

X
om.q TAL 050 se+0 cm.a wwuan omua|

(e)Z2°'v'p @anbra

Sl+0- 00¢1- Ge-1-
1 1 1

05*1-
i

LTAN
1

) )=A

©

002-
]




surface by a distance of approximately .l4. At t = 4.0028 we have, in
Figure 4.4.2(b), that AC = 1.5-10-4 with CMIN = 10-4. The contaminant
has been dispersed over a larger vertical area. The maximum CMAX has
decreased to approximately 1.56-10-3 and was located at y = .436 with
the gap between the free surface having increased to approximately
.259. It is also apparent that lines of equi-concentration have become
elongated with tapering occurring along the y axis in the direction of
flow. This results in the following way. As the contaminant diffuses
outward the fluid has a tendency to convect the contaminant downward
and toward the line x = 0. <“hus the contaminant aligns itself along
the y axis giving the elongated appearance of the contours. It is
noted that the contours tend to narrow in the vicinity of the pumps.

In the second case a single pump of width 20 = .2 was centered at x

= 0 and two instantaneous sources of contaminant were placed on the

free surface at x = %.5. In this case the potential problem was
calculated with h? = .05 s0 as to allow for sufficient resolution of
velocities in the vicinty of the pump. In Figures 4.4.3(a) and

4.4.3(b) the streamlines are plotted at times of t = 2.0028 and 4.0028,
. -3

in intervals of A¥Y = 4.31-10 from “&IN .0431 to q&AX .0431. 1In
Figure 4.4.4(a) the corresponding concentration at 1T = 2.0028 is
plotted in intervals of AC = 3.3-10-4 starting from a CMI of 10-4. The

N
free surface at x = 0 has been lowe:ed to .924 while a CMAX of .0067
was found to be located at (£.491,.861) which was a distance of .086
below £(+.491,2.0028). Thus at T = 2.0028 there has been little

horizontal movement in the position of the maximum concentration. 1In

Figure 4.4.4(b) the concentration is plotted at t = 4.3028 in intervals

266




267

8Z00°F = 1 :9d1nog ayburs pue dumg argqnog

e 3O 8se) ayl 103 sYIDTdoOSI UOTIRIJUSOUOT

00-1 SL°0 050 520 00:0 mwuau omwau

(A)z'v v @2anbra

SL-0- 00°1- G2°I-
) 1 1

0S- 1~
1

SL1-
1

00-2-
)

x)1=4




26

dumg a1burs ® FO 3sed 8YI 103 SIBUTTWEdIIS

8200°C = 2

:221IN08 ITQNOQ pue

(e)g v v axnbra

002~
1

) §
00-2 S 081 ST 00l €0 080 G20 00-0 S2:0- 08:0- S0~ 00°1-  S2-1- 081~ SLo1-
L 1 1 L 1 1 1 ] A ) i 1 1 1 1
Y0~ = 1/ IEY0 = A
IEY00° = AV ;
82002 =}

x)}=4A




269

8200°'F = 3 :32In0§ ATqnog pue

dung oT1buts e JO &SED BYl) 103 SIBUTTWRIIS (Q)c "y % 21nbTa

b 4
cm.m Si-1 051 se-t 00t SL+0 0s°0 mm.a 00°0 mwucn om“eu mnwan aoﬂnu mmw_n amwju mn“gn cauwu

IEV0 =

IEP00 = 4V
8200'% =)

——

W) )=4




270

8200°Z = 31 :@dInog arqgnog pue dung 2TbuTs

e 30 9seH a9yl 103 sY3IAdTdOSI UOTILIIUADUOD ()b b b BInbTy

X

po-e  SL°1 0s-t §2-1 001 Si:0 0S50 620 000 nwﬂau amuon mwwcc ==u~| mmw—u emuds wsu_- acuwa

1 1 [ 1 L 1 i ] 1

g29 =°d

o -7 T =
il (I

x)y=4




271

8200°% = 1 :@dInog ayqnog pue dumg atburs

e 3o ssep ayy 103y syiatdosy uorierjusduocd (A v'b aanbtya

X
QJMN mm.~ cm.~ mm.~ :m“_ m».e nch mmme :m.c mmwcu owucu mnwcu oaﬂﬁn mwwﬁl omu—n wn“~| oouwl
,§-o\\
§29 = °d \/ \\
6200 = ™o )

1000 = OV

8200 = O Z2\ o

1

:.Kv = A




of 10"4 from a CMIN of 10—4. The position of the free surface at x = 0

is .848 and a CMAx of .0029 occurred at (.458,.737) which was a
distance of .135 below £(.458,4.0028). The contaminant has spread to a
substantially larger portion of the porous layer and the lines of equi-
concentration, in the vicinity of the maxima, have begun to take on an
elongate’l appearance as a result of convection due to the large
vertical velocity components along x = 0,

In conclusion, the following may be stated. The vertical component
of velocity near the free surface, as determined by the compact method
of Chapter 3, was found, in every case considered, to be monotone. The
calculation of the velocity field on different grids for large pumpimg
rates showed excellent agreement outside the immediate vicinity of tha
pump. There was conservation of fluid mass to within machine roundoff.

While compact schemes have been only rarely employed in the
compuﬁation cof fluid wvelocity profiles ssociated with problems of
contaminant dispersicn, the appiication of such a scheme here suggests
that tneir use can lead to an accurate and efficient nethod of
approximation with excellent interpolatory capabilities.

The examination of resulcs from different spatial and temporal
choices of grid for several sets of parameters suggest rites of
convergence of order two in hc and k for the concentration C. The
calculation of the total mass of the contaminant, from the trapez.idal
rule, remained within .1% provided the Peclet number was not taken too
large. For values of Peclet near 300 it was found that the zero flux
boundary condition for C on f(x,t) was inaccurately approximated and

that the error in the conservation of contaminant mass rose to ~ 1%.

rhe (3,4) predictor-correctcr did not remove oscillations

272




o

e 22
ol £
| 183 ]36 | &L

L
Il = 2
= I

[ it e

[rerEr

Z

o SRR e oSl

% R T Ry S
n o ERBRSRS G S R



associated with large values of the Peclet number although it did
retard the appearance of such oscillations until the cell Peclet number
PeA was approxzimately 5. The (3,4) predictor-corrector scheme together
with the time step doubling algorithm was found to be effective in
removing oscillations from the early time evolution of a sharrly
localized source.

The fact that a sharply localized source can lead to oscillations
is an important consideration when the equations which comprise a model
of contaminant transport are coupled. Pandit and Anand ([1983] have
considered the phenomenon of contaminant transport in a porous medium
consisting of a two-dimensional, saturated, rectanguler, confined
aquifer. The pollvcant discharges continuously from the fixed top
boundary of the confined aquifer. The mathematical model consists of a
flow equation that is a modification of Darcy's law and a mass
transport equation of the form (4.4.1-3). Using a Galerkin finite
element formulation together with a low order temporal discretization
they found that, for certain extreme values of the nondimensional
parameters involved in the problem, the spatial 1locations of the
concentration profiles varied strongly with the choice of time step.
They attributed this nonphysical behaviour to the appearance of
oscillations in the corntaminant concentration during the first few time
steps. While they were unable to remove the source of the difficulty,
the scheme considered above could prove useful.

Finally it is remarked, with regard to time dependent parabolic
problems in several dimensions and involviry a parameter ®, that a
compact method which is effective over a wide range of £ still awaits

discovery.
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Appendix A2.1

Pade Approximations to the Differential

Operators hD and th2

The purpose here is to tabulate, in terms of useful and well known

finite difference operators, Pade approximations to the differential
22 d . .

operators hD and h D where D = ax and h is constant. Introducing the

finite difference operators (Hildebrand (.987))

EdD(x) = d(x+h) Shift operator
AD(x) = P(x+h) - D(x) Forward differenc= operator
VO(x) = ¢(x) - O(x-h) Backward difference operator
1/5 -1/»
Sd(x) = (E - B ) D(x) Central difference operator
1 1/> -1/
pd(x) = E(E + B ) d(x) Average operator

the relationships amongst these finite difference operators are

summarized in Table A2.1(a) (from Jain [1979]). From this table ve 3see

that the shift operator E is expressible in terms of the differential
hD . hD .,

operator hD as E = e . Now by formally expanding e in a Taylor

series one can obtain a useful representation for B in terms of the

powers of the operator hD. It is equally possible to replace ehD by a
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rational fraction, the numerator and denominator being poslynomials of

degree M and N respectively in hD. If the resulting rational operator

polynomial is made to agree with the first M + N terms in the Taylor
. . hD M .

series expansion of e then one has constructed the N Pade operator

approximation to ehD. A table of such approximations for 0 < M,N < 3 is

given in Table A2.1(b). In a similar fashion, one can construct, from

the following relationships

sinh 1 (8/2)
1 + 82/4

2.2 , .~19 }2
hD = 4{31nh (5)
nD = 1ln(L + A)
2
h'D" = 1n (1 + A)

hD = =-1n(1 - V)

th2 = ln2(1 -V

Pads approximations to the differential operators hD and h202 in terms
of the corresponding finite difference operators. Such approximations
form Tables A2.1.{(c)-(h),

Further information on rational approximation can be found in

Kopal [1955],(1959]) and Baker and Graves-Morris [1981].
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Table A2.1(a)

Relationships between Difference Operators

E A
B 1+A
E-1 A
-1 -
1-E 1= (1+A)
1 1
EZ -B 2 _A__ l.
(1+A)2
1 L
E2-E 2 1+A/2
1
2 (14A)T
1nE 1n(1+A)

1

(1-v) 71

-1+ (1-V)

v

1-_‘7/21
(1-V 7

-1ln(1-V)

1
14562+8 (148%)

1
26243 (1+482)

-%82+8 (1+§2)

4

1
2

4

L
2

4

2sinh”

[ N Y [=]

L
2

2pn?-1+2 (u?-1)

2nZ-2+2p -1

2-2p2 +2p (u?-1)

2cosh—1u

L
2

i
2

L
2

276

2sinhhD

COSHEE



Table A2.1(b)

Pade Table for E = @, z = hD

277

0 1 2 3
i 1+z 1+z+-]=z2 1+z+l22+%z3
1 2 2 [
1 2 12 3,12 13
1+Ez l+3z+sz 1+4Z+4Z +24z
1-z 1 1 1
1 2: ;-32 1-42
1 1,12 3.3.2 13
1 1+3% 143%+- 5% 145%420% +50°%
12 2 12 11 2 21 2
1 z+zz l-3z+gz 1~2z+122 1 5:+Eaz
1 2. 1.2 112 1 3
1 143% 1435%420% 142%470% +120%
121 12 1 3 3 3 2 1 3 1 1 2 1 3
- —— - ——— T - - owem PR
1-z472 42 1-3%43% 24 1752420% "50%  173%*7% ~120%
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Table A2.1(c)

1

Pade Tanle for hD = uainh 8/2
1l + 82/4
M 0 1 2
8 85 2 852128 8 4
us (1- () s (1—3(4) =0 Jud
88, 163 5 6 3,4
1 l+15(4) 1+21(48) - 105'¢
5 oMo 5 oMo 5 —ud
1+§(—)2 1+"ﬂ(—)2 1+2(—)2
3'4 154 21'a
88 § 56 § 2 128 § 4
1 5 1-i05(a) o o104 315 5
1+g(§)2_§3(§_)2“ 1192 8.2 1.28(_8_)4’1 1,112 82,1920 5 a*
3'4° T45'4 7105 '4 35 ‘4 21 '4 315 ‘4
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Table A2.1(d)

Pads Table for h°p? = 4{s1nn”t (&)

0 1 2
2 4.5 2y.2 43 2.128 5 4).2
8 (15 °)s (5% “as @ )8
12 8.2 26 8.2 184 & 4
152 ETAYL 52 1% 315D 52
4 2 32 8.2 18 § 2
13 RAETAVY LYY
124 § 2 196 § 2.5056 & 4
1 52 475 () 52 1479 ) Y3245 %! 52
i 0 2 48 8 4 208 & 2,1472 § 4 96 6 2 2752 6 4
3 s 3 Q) Yags () 1430 *tgos &




1
+=A -
12A

1
12A

2

Table A2.1(e)

Pade Table for hD = 1ln(1+A)

A+a?

1+A+%A2

1,2.1,3
A-5A%+3A
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Table A2.1 (£}

Pade Table for h°D> = 1n2(1+A)

M 0 1 2
N
0 A? a%-a3 A%-A3EEp0
12
2 21,3 2.1,3.1 ,4
A A -5A A -A A
! 1+A 1+1_1_A— 1+12A
12 11
233 1.4
, A% e T
1.2 1.2 2, 1.2
1+A+IEA 1+A+I5A 1+3A lsA




1-—

[ SRE

lo. L
1-2v-12v2

Table A2.1(g)

Pade Table for hD = -1n(1-V)

1
V+2 V2

v.l

1-ZV

1
V—2V2

1-V+%V2
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7 1
V--ﬂ)'vz %VB

6 3
l'sv"Tsz



Table A2.1(h)

Pade Table for hznz = 1n2(1—V)

M 0 1 2
v Vv Ve i;v“
1 1 1 4
v V2+T2'V3 vz"ﬁvs'nzv
1-V 11 _10
1 127 1 uv
3.3 1.4
v2 V2 V2+5V3+2—0'V
1-V+-L VP 1-V4t VP 1-2y--L

12 12 5 15
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Appendix A2.2

On a Function-Theoretic Method for the Calculation

of Divided Differences

Here we extend the function-theoretic method for the calculation
of the divided differences associated with Hermite polynomial

interpolation suggested by Merz [1972). Consider the point set :

consisting of M arbitrarily spaced points lying on the real axis. Let

q of the points be distinct and N times coincident with M = gN. The
M

node polynomial qM(z) = I (z-x.) is therefore given by

i=1

Mz = I
q
Consider the linear functional

£(f) = %; —f= g, (A2.2.1)
Tld (z - x)TN(z)
p
where xp € P (we have dropped the subscript q on Il(z)). To calculate
the residue at z = Xy o £(z) and Il(z) are expanded in Taylor series
about z = x, to terms including SN-Iand SN respectively; i.e.

n-1 £ (x )8t
N
£(z) = ) ————— + ()

l_ it
i=Q
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where § = z - X, and H(xk) = 0. Then

(z-xp)l'lN(z) -

(z-xp){ﬂ'(xk)}N sV {bo +b8 + b252 +

(i+1)
n (xk)

L]
n (xk)
I1' denotes the first derivative Iﬂl)of Il The above expression may

be recast as

1 N N
(z-xp) rF(z) = (z-xp){ﬂ (xk)} 6 s (x ) (A2.2.2)

(N-1)N %k

(N-1)N

- 3
Sn-nn™ = L A, (x,)8 (A2.2.3)

j=0

and the Aj(xk) are obtained from the multinomial expansion.

Expressing z - xp as
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3
z - xp - mk(l + )

(A2.2.4)
T . N-1
where T xp and retaining terms in (A2.2.3) to & we have
after some calculation that
N-1 N-1 .
Residue f‘;’q S Yoo et Py 2209
z X (z—xp) {(z) (11 (xk)] i-o
where
. i 1P
D (1) 5&1__—(1)%(.‘) 0 < i< N-1 2.2.6
(x, ) 1 ’_ N-p-1i P < i £ N- (A2.2.6)
p=0 m
and
p-1
=2 - < -
c, (x,) _}: A g (%) Cq (x,) , 0 <p< N-1 (A2.2.7)
£=0
and C0 - 1.

= X ’

To calculate the residue at z

f(z) and II{z) must be expanded
. . N
to include terms in &

+
and SN ! respectively.

Then the left hand side
of (A2.2.2) becomes

(z - xp)ﬂN(Z) = ' (x )"

N+1
17 Sy.n %) (A2.2.8)
where
3=N° |
S . (x) =Y A, (x)8’ A2.2.9
won %o _}___0 505 ( )
J=

.. N
Retaining terms to §

in the sum (A2.2.9) an easy calculation reveals
that

Residue £(z)
Z -x (z-xp)fﬂ(z)

N
- ) < 0 e ) az.2 10)
[ e N = P

o8




where
qg-1
Cq(x ) = =) Aq_z(xp) Cl(xp) r 0 S gS N (R2.2.11)
L=0
and C0 = 1,

Summing all residues we obtain

N=1 A (1)N'1 1)
L(f) —_— (x )f (x )
Z )T 7 %
1=0 k=1
k#p o
N
-1 (i) £ 8
+ T (x )N Z Cy-g (BIE T () oy (A2.2.12)
P i=0
where min (x, ... xq) < § < max (x; ... xq).

th

We see that (A2.2.12)is an explicit representation of the N

in terms of the lower derivatives of f over

derivative of f£(z) at z=xp
th

the points of P. Note (A2.2.12) is a representation of the M divided
difference of £ i.e.
N N N+1 N
f[ x1 . xl ’ x2 . x2 ‘ ’ xp . xp ‘ ’ xq . xq ]

In the calculation of the coefficients Aj(xi)' xie P, the following

result on the ratio of derivatives of the node polynomial Il(z) is

useful. If r%(z) = (z - xl)(z - xz)...(z - xn), then for n > 3 and 2

<m<n
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(m)
(x ) n
n k - m'Y‘ y- S- .e
n 1 )
5‘ (x - X )(x - X ) (x - x ) (A2.2.13)
Pr-1>Pr-2 K 1 k 2 ko Pp

where 1 < k < n.
To illustrate these results, consider the subcase with g = 3 and

M = 3N with the distinct points of P given schematically as

Then it is easily shown, letting x, denote any distinct point of P

that
N N & k
Mz = (1" 8" ) A (x,)8%, 8 = X, (A2.2.14)
k=0
where
A (x,) =) @ by biN‘ZL'k b;+k+N (A2.2.15)
i
where
2
ﬂ( )(x*) n(3)(x*)
bo = 1 bl P — b2  ——
2IT' (x,) 61" (x,)
and
N! .
% T TN - 21 -gr koM

and the sum in (A2.2.15) is over all values of i, 0 € i £ N which yield




only nonnegative powers of bl and bz.

For the case N = 2, the Ak(x*) are easily calculated; the ci(x‘)
follow immediately from (A2.2.7) and (A2.2.11]) and the Di(x*) are then
given by equation (A2.2.6). 1In Table 2.2.2 of Chapter 2 equations (5),
(6) and (7) are the results for p = 1,2 and 3 respectively. In Table
2.2.2 the subscripts -1, 0 and 1 are used interchangably with
subscripts 1. 2 and 3 respectively. We note that the remaining
equations of Table 2.2.2 (equations (1) through (9)) are the result of

the determination of the linear functional

1 f(2)
L(£) ri i"——m(z) dz

where the dencminator w(z) is respectively (z - xz)ﬂ(z), (z - xz)zﬂ(z),
(z - xl) (z - x3)I'I(z), (z - xl) (z - x3)l'12(z) and l'l3(z). Equation (4) of
Table 2.2.2 was derived in section 2 of Chapter 2 for an arbitrary
number of grid points.

Finally, we should like to indicate a procedure for dealing with

M
the most general case. Let 1&(2) be defined as I (z - x,) and
i=1 1
set
n n n
= - 1 - 2 - M
w(z) (z xl) (z x2) v, (2 xM) (A2.2.16)

M
where T n, = #. Then given that the linear functional

pae
-

£(£) -ﬁi—}—f—‘?-’— dz (32.2.17)

l'h(z)

has been determined, we may evaluate the general linear functional




1 f(z)
2 (f) E;I § 67;7 dz (A2.2.18)
from the relation
1 a”'M
Z(f) = T T o L(£f) (a2.2.19)
9 1x 9 2x 9 Mx
M (n, - 1)! 1 9 v M
i=1 2

The use of a symbolic language such as Reduce, Maple or Macsyma would

facilitate the use of this formula.
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Appendix A2.3

The "Hermite 6" Compact Relations

of Ruben and Khosla

Given a function @, define F = Qx and § = Qxxand let @ have a
sufficient number of continous derivatives. Then the "Hermite 6"
compact relations of Rubin and Khosla ([1977] over three consecutive
points x_., X, and Xy where GLh = x, - x_, and SRh = x, - x, are given

by:

2
e (6L+8R)
q-(76i+59LOR-59§) E‘1+2 (492-799 +92)F0
% ¢ & Be” & &
+ q- (7 R + SBLGR -5 L ) F-l - hGRZ ( 3 + GLGR - R ) 01

15 3 .
+ S 8, - 8 (8 + 8 & - 8.6, + &) o,
LR

156,2 kL
- eR(ez+ee-€32)<b - —e—f‘(262+ee-82)s

heg R LR O ) LR T %R 5
3h 3 hef
t7 O, v 87 B -@) s+ 6+ 68 - &) 5.1
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0

where x -GLh<§<x +9Rh,and

0

) 8, (38, +56%)
n? \@y3(8,+6p) et

. 6 (56,,+36;) }
o Opey

<9L(46L+58R) .
6?2 (B +6p) 1

) & (56,+468y) . )
828 +8y) 1

5
2520

h6

20106

- <1< + .
where x eLh N < x ORh

0 0

b _ 2 . (7)
e e (GL GR) (9L+9R) ¢ (x.)

(9L+8R)

(8, +6) 2 (36, 2-48; 8;+36:2)

' 7
f - 1886 + eﬁm (€)

66,3

5 (8, +6y) 2 (8;,-6y)
91‘2%2 1:‘0

0

2 2 2, ,(8)
(39L 49L9R+39R O m

(A2.3.1)

(A2.3.2)
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We see that compact formulae (8) and (9) of Table 2.2.2, Chapter 2,
correspond to relations {(A2.3.1) and (A2.3.2), respectively. It is
clear that the local truncation error of relation (9) of Table 2.2.2
remains O(h6) on nonuniform grids while that of (A2.3.2) increases to
O(hj). The other pair of formulae are both of O(hs) for the first
derivatives regardless of the mesh. A comparison of the truncation
error of (8) of Table 2.2.2 with that of (A2.3.1) reduces to a

comparison o7 the following two terms

(8, + @) (6.6, and |49L9R - (ei + ei)l

If Gk is the larger of Gh and G&, then setting Gh - aek , asl , the

following strict inequality ,valid for all Gh <1,
> < %)
a(a+1)€h < {3 (2 a) Eﬁ
is easily obtained between the two terms. As well we note that the

Rubin Khosla formula (A2.3.1) requires the value of S at three adijacent

grid points.




On Block Tridiagonal Systems

Compact implicit methods for the solution of ordinary and partial
differential equations generally lead to block tridiagonal systems of
the form

(A2.4.1)

where A is the M x M block tridiagonal matrix:
({A2.4.2)

En-1 EN-I
N N

where each Di' Ei' Fi is an m x m matrix with M = mN,

t
x - [5(13 <2 E(N)]

is the solution vector consisting of N vectors 5(1) of the form

£ o [ol) B x(i)]t
-y 1 ’ 2 14 «es 7 m

and £ is the vector consisting of inhomogenous terms given by

t
£ - [5(13 £ , £(N)] (A2.4.4)




: : . qt
(1) _ [ () (9 (i)
£ [fl,fz,...,fm]

Much can be said about the numerical process of computing the

solution vector x given the property of biock diagonal dominance.

An M
. C s 2 .
¥ M block matrix A consisting of N blocks, each of sizem x m ,

is said
to be block diagona’ly dominant if (in some matrix norm |-|)

-1 N
< i =
Aii ; IAijl 1 i 1 to N
jEi

where it is assumed that each diagonal block is invertible.

Suppose we solve (A2.4.1) with a

block LU factorization:
p— T - -
I U, F
11
L2 I O U2 F2 O
A= .. (R2.4.5)
0 .o 0 .
L I U
L N L N ]

Setting Ul = El' each Li' Ui' i =2 to N, is determined from

Setting 5(0)

. i=1+¢%toN
iz

and the solution x is determined from the following back substitution




296

JULES R S Fis(u-l) ‘

g z = N to 1 (AZ2.4.6)

(N*l)- 0. Them x m linear systems in (A2.2.4) and (A2.2.5) are

where x
determined from Gaussian elimination with pivoting.

An algorithm based on this block LU factorization stably
determines the solution x provided At is block diagonally dominant.
For system (A2.2.1) the details are provided by Theorem 5.5.1 in 3olub
and Van Loan {1983].

Isaacson and Keller [1966] have shown that this blozck LU
factorization has an operation count of approximately

(3N - 2) (%3«» m?)

Explicit algorithms for 2x2 and 3x3 block tridiagonal matrix

systems are provided by von Rosenburg [1969] who refers to these

systems as Bi and Tri-Tridiagonal.



On Stretching Functions

Marcel Vinokur [1983) has considered the class of one-dimensional
stretching functions used in finite difference calculations in which
solutions possess a highly localized region of rapid change.

Introducing a normalized set of variables x and £, both ranging
from 0 to 1, let § = &(x) define an invertible stretching function.
Calculations done in the {-transformed space are usually carried out

with a uniform grid

; ; 1 }
&, = §y* ih, i = 0 to N, § =0, h=y

M (5) = { 8,
The corresponding grid points in the original space x i.e.

x, = x(§i), i =0toN }

Mh(x) = { x,

form a non~uniform grid. Vinokur has developed criteria which ensure
that most of the grid points of Mh(x) are concentrated in the ‘ocalized
region of rapid variation, with a sufficient number of points left over
to span the remaining portion of the interval.

In Chapters II and III we make considerable use of 2-sided
stretching functions. The simplest such class of functions is obtained
from two parameters s, and 3. which are the slopes s = < at x = 0 and

0 1 dx

x = 1, Vinokur states that a general 2-sided stretching function § (x)
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may be derived from a scaled portion of a universal function ®(z) where
z is the complex variable z = x + iy. The function ®W(z) is odd and the
simplest <candidates which yield monotonic, readily invertible
stretching functions are sin z and tan z , and their hyperbolic
siblings.

Vinokur then proceeds to develop a stretching function based on
w(z) = tan z for arbitrary values of s, and s, .

0 1

Setting Az = z,- z, and A® = tan z, - tan Zyr where z, and zy
refer to the values of z at the left and right ends of the interval

(0,1], the normalized variables £ and x are given by

zZ -2z tan z - tan z

E = -—Z;—g and X = 20 0 {A2.5.1)
Introducing
= {3 -
A V o/s, and B qsosl (A2.5.2)

we may easily derive from 3 = & that

dx
sin Az

B = Az (A2.5.3)

cos z
A= E;;*;; = cos Az + tan z, s8in Az (R2.5.4a)
and

1 .
' cos Az - tan zo sin Az. (A2.5.4b)
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Defining an intermediate variable u as

tan(Az(E - %)

u = % + 2tan(Az/2) (A2.5.5)
Vinokur derives that
* " T O T RS (A2.5.6)
from which u is given as
g (: I (A2.5.7)
A A

It is seen that both u and its inverse are scaled portions of a
rectangular hyperbola. Since (A2.5.5) and (A2.5.6} are invertible then
so is the desired stretching function § = §(x).

The calculation of the actual 2-sided stretching function depends
on the size of the geometric mean of the slopes e and s, -
Vinokur has given the following results:

a) if B > 1 then setting Az = iAy in (A2.5.3), Ay is determined as

the root of

sinh Ay
Ay " B=0

Once Ay is known then u(f) is calculated from

1 tanh[ay (€ - 3)
u@) = S 4 T rann(ay/2)
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x = x(§) is obtained from (A2.5.6) and

1 1 -1
E = 5 + 26y tanh ((Zu - 1)tanh(Ay/2))

b) if B < 1 then taking Az = Ax, Ax is determined from

from which

1
&) = 1, tan(Ax(& - 2)
u 2 2tan (Ax/2)

1.1 -1
E = 5 + 55z tan ((2u - Dtan(ax/2))

and x is obtained from (AZ2.5 §6).

c) if lB—ll < 10-3 then Ax and Ay >0 and to first order in B-1 we

have

E(1+2B-1E - .50 -8)

[
3

ult -2 -Dw- .51 -w)

Je
113

and x from (A2.5.6).

One-sided stretching functions § = §(x) with s, specified and zero

curvature at x = 1 are developed as well:




a) if sy > 1 then Ay is determined from

sinh 24y - s =0
2Ay 0

tanh(Ay(E - 1))
tan Ay

x =1+
E =1+ tanh-l[(x - l)tanh Ay)/Ay

b) if so < 1 then Ax is obtzined from

sin 24x
2Ax 0

tan(Ax - 1))
tan Ax

x = 1 +
£ =1+ tan—l((x - 1l)tan Ax)/Ax

c) and if so ~ 1 then

1
x=8(1-36s, -1 -82-8)

1
E=x(1+3s, - -82-xn)

For a general intericr stretching function, as
details, see Vinokur [1983] and references contained therein.
computer program based on this class of one dimensional stretching

functions was created and extensively used throughout Chapters II and

III.
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The possibility of adaptive mesh refinement and redistribution

occurring concurrently with a numerical solution leads to a set of
coupled nonlinear equations and has been considered, for example, in
Carey [1987). The concept, it would appear, has not been considered in

the context of compact finite differences.




Appendix A2.6

On Divided Diffazrences, B-Splines and Multiple Node Quadrature

Let S(x) be a function defined on the interval I = {a,b], and let X

be the set

K - {a =8y <8 <. B < b}

Then S(x) is said to be a polynomial spline function if, on each
subinterval [gi_l,gi], i =1,2,..K+1, S(x) is a polynomial of degree
at most N, and S(x) is contained in the space CN-I[a,b]. The set of
all spline functions of degree N with prescribed knots Ei, 1i=1,...,K,
forms a linear space A[N,a,b,él,...,éxl. Since each member 5(x) € A

can be expressed as

3 +
j=0 j=0
where
n (x - t) if x> ¢t
(x t) 0 if x < t

and the cj, dj are constants, it is evident that the dimension of A is
(N+1) + K.

B-splines are nonnegative spline functions used to form a basis for
the spline space A. They are convenient for many numerical purposes.
We shall denote by Bg(x) the B-spline whcse finite support is the

interval (§L,§R), R = L + N + 1. It can be shown that the ith
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derivative (i = 0 to N-1) of Bﬁ(x) changes sign exactly i times in
(&L,ER] with

i i
a N d N .
- — - ’ < N
dx BL(gL) dx BL(gR) 0 .

The B-spline Bg(x) has a number of equivalent representations, two

of which are

N L+N+1 N
B (x) = Zdi(x—gi)+ —0 < X < oo (A2.6.1)
i=L
where
L4+N+1 1
d, = I1 - % -, 1=1L,L+1,...,R (A2.6.1a)
1 j=1, (g- - g-)
3=t j i
j?l

and the recursion relation
N 1 N-1 N
B, (x) € - E) {(x §.)0B, ~ (0 (x §R)BL+1} (A2.6.2)
In order that the set {Bg(x)IL =0,1,...,K - N + 1} provide a basis

for A we must supplement their number by 2N. This is done by

prescribing a set of arbitrarily chosen knots outside [a,b] given by
{éjlj =-N, -N+1,..., =1; j=K+1, K+ 2,..., K+ N + 1}

and then the extending the set {Bg(x)} to {B?(x)lj = -N,...,K}. Then

for any member S(x) € A we have



K
S(x) = 7— (x) + a<x<Db

For a detailed account of B-splines see de Boor (1978].

We now establish an integral relationship between Newton's divided
differences and B-splines. This connection appears to have first been
given by Curry and Schoenberg [1966] although Osborne [1967] (without
knowledge of B-splines) establishes a related integral identity.

Let M(f) be a linear functional (quadrature formulae provide an
example) with the property that M(f) is zero when f(x) € PN' where PN
is the space of polynomials of degree N. Then if £(x) € CN+1[a,b] we

have from Taylor's theorem with integral remainder that, for x € [a,b],

Nl

N
£ =) 5 - a2 e a4 —"—r - ot g 40 (A2.6.3)
k=0 a

Now if we apply the linear functional to (A2.6.3) it is seen that M(f)

(N+1)

may be expressed in terms of f In fact, if we define

1 N
K(©) = F!Mx(x-9)+, a<®c<pbp (A2.6.4)

where Mx means that the linear functional is applied to the x variable

in (x - E»T, then intuitively we have

M(E) = jbx(af(N*l’ () a8 . (A2.6.5)
a
K(® is known as the Peano kernel and (R2.6.5) is known as the Peano
Kernel Theorem. For a careful treatment and a precise statement of

this theorem se¢ Burlirsch and Stoer [(1980], Davis [1275], de Boor




(1978] or Powell [1981].

Now the relationship

] -t e () g,

(N + 1) (A2.6.6)

f[xo,xl,...,xN+1

exists between the N+2th divided difference and the N+1th derivative of

), provided £ €

f, where min(x ) < & < max(xo,xl,..

e AR T cr X4

(N+1)

CN[a,b] and £ exists for x € (a,b). Since f[xo,xl,...,x +1] is a

N
linear combination of the values f(x), i = 0,1,..., N + 1, it may be

considered a linear functional M({f) which is zero if £(x) € PN. From

the method outlined in Appendix A2.2, it is easily shown that

N+1 f(xi)
Xl T §H

i=0 j;&(xi - xj)

M) = f[xo,x (A2.6.7)

17"

Now from the Peano Kernel Theorem, with the additional requirement on f

(N+1) c C(N+1)

that £ fa,b]), we have that

M) = fbx(e)fmﬂ’ () de (A2.6.8)
a
where

N+1 N
R (x5 - 6),
K(O) = N!}_ ey ) (A2.6.8a)
i=0 jgi(xi - xj)
N

. . N
Substituting (x =- 9)+ = (x - 8 + (-1)N+1(9 - x)f in (A2.6.8a) we have

1
K(© =_N_!{'ﬂx(x'8) +Z N+1
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Upon noting /l(x(x - G)N- 0 we have from (42.6.1) that

1

N
K(®) = N!BO(Q) (A2.6.10)

where Bg(éh is the B-spline of degree N with finite support (xo,xn+1).

Thus

1 [C_N_(N+1)
Elxgrx o oenoXy 1] = N!JjBOf (©) 40 (A2.6.11)

is an integral identity for divided differences in terms of B~splines.
This formula, which has important practical applications, may be
compared to the classical Hermite-Gernnochi formula for divided

differences (Atkinson [1978])) given by :

(N+1)
f[xo,xl,...,xN+l] J e J f (sox0 + ... + sN+lxN+1)d80 RPN dsN+1
v
where
N+1
Y osp=tasp20
i=Q
and
; N+1
V = {(31'32""’31«4-1) s, 2 (),...,:3n+1 > O,Z s, < 1}.
iw]
It is convenient to normalize B-splines. This can be done by

defining a normalized B-spline ﬁgte) as




é;‘(a - (N + 1)33'(9) (A2.6.12)
+1,
Then, if £(@ = & "lin (A2.6.11), we would have from (A2.6.6) that

J.bég'(e)de -1 (R2.6.13)
a

The fact that the B-splines are nonnegative allows for the
development of Gauss-type quadrature. For example, define the inner

product
1

(p,q) = j Bo (%) p (%) q(x) dx
1

Then the determination of the polynomial PM(x) of degree M which

satisfies the M + 1 conditions
k
(PM(x),x ) =0, k=20,1,...,M

leads to the development of B-spline Gauss quadrature. The orthonormal

B-spline polynomials ﬁM(x), together with the weights Bi and nodes ai

o W

have been tabulated for éé(@) and B.(® with equally spaced knots on
{-1,1]) by Hanson and Phillips [1979].

For the work of section 2.5 we require very accurate values for the
weights and nodes of the 5-point rule with weight function ﬁ;(e).
Unfortunately the data of Hanson and Phillips is tabulated to 14
significant digits, so that it was necessary to perform the following
calculation.

Consider the interval ([-1,1] and place a single knot él at 8 = 0,

Then the normalized B-spline 53(9) is given by




B (A2.6.14)

{1+6 -1 <0<y
1 —
0(9)-

1 -0 0 <8<

We seek a 5-point quadrature rule for

1 ~1
1 -J 3l (e £ (@a0
0
-
of the form

IzB yfla ) +B_ fta ) + Bfla) + B gl + B flay) (A2.6.15)

which would be exact for all polynomials P(x) € Pg.
Using the method of undetermined coefficients, the replacement of
£(0) by GF, k = 0 to 9 in (A2.6.15), leads to ten algebraic equations

which are nonlinear in the nodes &, and linear in the weights ﬂi. If it

i

is assumed that

then the following 5 equations are obtained

BO + ZBI + ZBZ -]
1“5 * Bz"g = TIE
1a: + Bza; = é% (A2.6.16)
Bl“f * 32“26 = 31_6'
1“? * Dzag = 9_16
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This system may be simplified to a set of two equations

(A2.6.17)

where p = ai and g = ag. From (A2.6.17) the nodes al and az and

subsequently, the weights BO' Bl and Bz may be accurately determined.

Thus we obtain

f: é;(e)f(e)de = Byf(-ay) + BoE(-a) + B £(0) + B f(a)) + P f(a,)
(A2.6.18)
where to 27 significant digits

@, = .44992 03524 59841 96334 94472 92

o, = .82144 05997 38381 52787 20002 86

Bo = ,41773 70030 58103 97553 51681 96 (A2.6.18a)

Bl = ,23947 32407 05457 39044 15019 10

32 = _05165 82577 65490 62179 09139 92

The substitution of these values into equations (A2.6.16) yields a
. . -30
maximum residual o. 3.9-10 .

The other quadrature formula employed in section 2.5, was of

the form

I

-1

1
£(6)dO = Blf(—al) + Bof(O) + Blf(al) + ﬁZ{F(az) - E‘(-dz)}

(A2.6.19)




where F(x) = f(l)(x). (A2.6.19) is exact for f(x) € 99 with values for

the nodes and weights to 20 significant digits given by

@, = .84822 03415 19356 07207
@, = .69578 56713 51984 20905
Ho = .62635 89901 30950 83293 (A2.6.19a)
Bl = .68582 05049 34524 58354
Bz = .11504 92641 06317 15186

The method of undetermined coefficients led to the system

By + 2B, =

19 + B0, -
3
18y + 4B0; -

5
18 GE2“2 =

(A2.6.20)

+

u
18 + 82, -

+
Ol e v We N

and a simple algorithm employing the Newton-Raphson determined the
values in (A2.6.19a) with a maximum residual in (A2.6.20) of 3.3-10 21,
It was subsequently discovered that (A2.6.19) is known as a quadrature
formula with multiple Gaussian nodes. 1In this case the multiplicity is
2(see Strand and 3tancer [1965]). Such gquadrature formulae, but with
odd multiplicities, were first investigated by Turan [1950]. A search
of the literature, which included the article by Golub and Kautsky

(1983) and the book of Ghizzetti and Osscini (1970], did not uncover

formula (A2.6.19).
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The Equations of Porous Flow

This appendix provides a description of £fluid flow in a porous
medium. The work of Bear ([1979] and [1988], Fried [1975] and
Schiedegger [1960] have been found useful.

A porous medium is composed of two distinct parts - (1) a solid
matrix, occupying a volume Vg, consisting of consolidated or
unconsolidated materiral, often capable of elastic deformation , and (2)
interstices which make up a void or pore volume Vp. We shall be
concerned with a saturated porous medium in which the interstices are
fully occupied by a liquid phase. The (volumetric) porosity © ias a
dimensionless quantity defined as the pore volume per unit total volume
of porous medium. It is a measure of the fluid capacity of the medium.
In flow calculations the porosity O is replaced by 0, < O, the
effective porosity, defined to take into account the effects due to a
significant number of dead-end interstices and/or adhesion of the fluid
to the matrix in a fine textured medium.

In order to examine the macroscopic behavior of porous flow it is
necessary to average the relevant microscopic physical properties over
some representative elemental volume. This elemental volume is defined
in relation to the porosity. It is the smallest volume for which when
several interstices are added or subtracted, the global variation in
volume leaves the porosity invariant.

The (instrinic) permeability X is a measure of a porous medium's

ability to transmit a fluid through its interstices. It has dimensions
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of lengch2 and is solely dependent on the medium,. For clay x =~
10'17cm2 while for gravel x ~ lo'scmz. A porous medium is said to be
homogenous if its permeability X is the same at all points while it is
said to be isotropic at a point if its permeability is independent of
direction.

The macroscopic description of porous flow may be simply summarized
by the statement that flow takes place from a state of higher to a
state of lower fluid energy. The precise formulation of this fact is
embodied in Darcy's law and we shall state it once we define the
specific digcharge q and the piezometric head .

The specific discharge q is the volume of fluid flowing per unit
time through a unit cross sectional area normal tc the fluid flow while
the piezometric head @ is defined as the sum cf the pressure and
potential energies of a fluid per unit weight of fluid. 1In the case of

a compressible fluid under isothermal conditions, with the specific

weight yY(p) = pg a function of the pressure p, the piezometric head is

defined as

*x
O =z «»J’p ~1_ dp (A3.1.1)
- Y@

wnere z is the vertical distance above an x-y plane assumed at Py - 0.
(A3.1.1) is also known as Hubbert's potential (Bear [1988]).

Darcy's law is now stated as

q =0, v = -KW (A3.1.2)
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Kpg

where v is an area averaged velocity and K = _"Z is the hydraulic
- H
conductivity and U is the dynamic viscosity. The hydraulic

conductivity K reflects the ability of the medium to transmit fluid. K
has dimensions of a velocity and is often measured in terms of a darcy
which is 9.613.10" 4 cm/sec for water at 20°C.

There are several facts to note about Darcy's law, Bear [1979]:

(1) for an isotropic medium Darcy's law states that the velocity ¥

is normal to an equipotential surface @ (x,y,z) = C.

(2) in Darcy's law the velocity ¥ is the velocity of the fluid
relative to the solid matrix. In cases in which consolidation cf the
matrix is an important factor, such as in land subsidence, the velocity

of the matrix wgs must be incorporated so that (A3.1.2) is replaced by

Co ¥ =0y Vg - KVD*

(3) Darcy's law is the macroscopic expression of a very viscous
flow. This is apparent from the fact that fhe piezometric head &*
assumes that the kinetic energy of the fluid is negligible. It is
important to know the conditions under which inertial effects may be
neglected and this is quantified by defining a measure of the ratio of
the inertial to viscous forces acting in a porous flow. Such a measure

is provided by a Reynolds number :

Re = uVx
v
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where u is a representative velocity, v = WW/p = kinematic viscosity,
and ¥ is the permeability, and Vx is taken as a length scale indicative
of the effective pore diameter of the solid matrix, Bejan [1984].
There is much experimental evidence to support the validity of Darcy's
law under conditions for which Re ~ 0O(1).

In order to solve porous flow problems in 3-dimensions, Darcy's law
must be supplemented since it yields only 3 relations amongst 4
unknowns. The supplementary relation is provided by the equation of

continuity

d(GeP) + V-(0epw) = 0 (A3.1.3)
Jat
Using Darcy's law and the equation of continuity we shall now
derive the basic equation describing 3-dimensional flow in a porous
medium. We shall do so in terms of the specific storativity S, of an
aquifer. Consider an isotropic aquifer in which the overhead burden ap
lies in the vertical plane z and is constant. We may then write
Og =0, +p

where p is the pressure, and 6, is the intergranular stress, Now in
such an aquifer , especially if it is confined, the compressibilities f

and o of the water and solid matrix, respectively, given by

p=2139p o=-1 dvs . 1 d%,
p dp Vs doz  1-g, dp

play an important role since they regulate the release and storage of
water in the aguifer. This can be seen from the fact that since Oy is

constant we have that
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do, = -dp

i.e changes in the water pressure result in an opposite change in the
stress borne by the so0lid matrix. Consequently, if the pressure is
reduced by say, pumping, then the resultant slight expansion of the
water and the small reduction in porosity cause an amount of water to

be released from storage in the aquifer. The quantity

So = pg(a(l - Og) + ceB)

is known as the specific storativity and is the volume of water
released or added to storage due to a unit change in the piezomteric

head ®". Consequently, since p =p(p) we have

9% + o, 9P =
P ot "% 5 TP o ot ap It
= (p %% + o 20) e
op Jdp’ dt
=p(a(1-oe) + Og B)g.g

Using equations (A3.1.1) and (A3.1.3) we obtain finally
]
V. (pOw) + PSg g_‘b_ =0 (A3.1.4)
t

In principle (A3.1.4) and Darcy's law should allow us to solve for ¥
and .
It is often convenient to eliminate the velocity ¥ from (A3.1.4)

and this nay be done, in many cases of practical interest, provided the




following assumptions (Bear [19688)) about the fluid-porous medium are

valid

(1) the velocity v4 of the solid matrix is negligible,

(2) in an inhomogenous medium the hydraulic conductivity K is
considered a function of x,y,z but is taken to be independent of
variations in p and MU due to pressure,

(3) 956 and 9K are both 0, and

dcg oG
(4) spatial variations in p are much smaller than temporai changes

Cedp >> q- V¥
ot -

Consequently for an isotropic, inhomogenous medium we obtain, from

Darcy's law (A3.1.2), the following relation for the piezometric head :

V. (kW) = 5, 29" (A3.1.5)
at
Further simplification results if (a) the flow is steady in which case
g%’*. = 0 or if (b) S, = 0 as cccurs in the case of an unconfined
aquifer, where changes in the fluid volume due the compression or
expansion of the s0lid matrix are small compared to those changes in
fluid volume due to the variation in the free surface elevation,.

Let us consider, in some detail, the case of a two-dimensional
unconfined aquifer with constant fluid and matrix properties. Let the
phreatic surface y = f(x,t) divide the poroua layer into two parts -
(1) a fully saturated region bounded below by impermeable bedrcck and
above by the phreatic surface and (2) an unsaturated region lying above

f(x,t) and extending to groundlevel.
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Since the fluid properties are constant, we have from (A3.1.1) that

the piezometric head is given by
O =y +P
b 4 ¥

For the following, it is convenient to introduce a velocity potential &

defined by

® = KO* (A3.1.6)
3o that now Darcy's law becomes

q=0,v=-Vb (A3.1.7)

In addition we shall assume that changes in fluid volume due to the
compressibility of the fluid and/or solid matrix are negligible
compared to wvolume changes due to wvariations in the free surface
elevation so that we may set B = a = IVl = 0 , Thus the equation of
continuity (A3.1.3) becomes

V-gq=0 (A3.1.8)

while (A3.1.5) simplifies to

Vo= (a3.1.9)

The conditions which apply on the free surface require special




consideration (Todsen [1971]). Since the free surface is an isobar wve

have that the velocity potential satifies
O(x,y,t) = Ky ony = fix,t) {A3.1.10)

To describe the motion of the free surface denote by x = x(zo,t), y =
y(zo,t) the Lagrangian coordinates of a point on the free surface whose
initial position at t = 0 is 20. Recalling that a fluid particle on the
free surface must remain there we have that the motion of the free
surface is described by the particles that make up the free surface.
Therefore, with u and v the horizontal and vertical components of v, we

have

v=3Y =D f(x,t)=¢f + £ dx
dt Dt : t X dt

where D_ is the material derivative. From (A3.1.7) u = = a}— d and v =
Dt e

- El- (Dy « 80 that the motion of the free surface is given by
e

(A3.1.11)

Further kinematic relations may be obtained in the following way.

Since the free surface is isobaric we have d{(® - Ky) = 0 or

(o, + (@, - K Jax +(@ + @ - K)E )dt = 0

from which the isobaric conditions




® + £ (® -K) =0 (A3.1.12)
x Xy

GE + ft(d& -K) =0 (A3.1.13)

follow. Equation (A3.1.12) together with (A3.1.11) may be used to solve

for the velocity components d; and d} in terms of the free surface as

£
& = —XE— K+ Ogf) (A3.1.14)
x 1+ fi

L
® =K- —= (K + 0gf ) (A3.1.15)
Y 1+ £2 e

Equation (A3.1.15) together with (A3.1.13) yield a kinematic relation

for dz in terms of f

1
4% =0 (oet, + )£, (A3.1.16)
X

Alternatively, the expression (A3.1.11) and the first isobaric
condition (A3.1.12) can be solved to give ft and fx as functions of the

velocities; the relation for ft being

2 2
1 D, + d& - K¢&
£f = - = (A3.1.17)

t Oa ¢§ - K

On comparing (A3.1.17) with (A3.1.13) we obtain an expression for ¢z in

terms of velocities

¢ = 1 (¢2 + ¢ - ko ) (A3.1.18)
t Oa X b4 Yy

Finally the kinematic relation (A3.1.11) may be expressed in terms of




the slope fx of the free surface and the vertical velocity component by

simply rewriting (A3.1.15) as

£, = & £2 -1l fi)Q’y (A3.1.19)
e e

We remark here that although the velocity potential ® is a functien

of %, y and t, the governing equation, being Laplace's, is time

independent. We shall find it convenient to introduce, in Chapters 3

and 4, a stream function ¥, conjugate to the velocity potential ®. The

isobaric condition on W on the free surface is from (A3.1.12)
W = £ (¥ + K) (R3.1.20)
Y X x

while the kinematic relation for £, given by (A3.1.19), becomes

£ =K 411+ £y (A3.1.21)
t G, x e X X
e e




Appendix A3.2

The Coordinate Transformation

Coordinate or shearing transformations can be useful in finite
difference calculations involving a free surface, Yeung ([1982]. The
shearing transformation used in this thesis to map certain time

dependent regions onto fixed regions is a transformation of the form
E = x n=T(x,y,t) T =t (A3.1.1)

This transformation is invertible provided:

dEMT) = 40
a(XIYIt) ¥

Under this transformation a partial differential equation involving

d(x,y,t) of the form
GO =AD +2B0 +CP + DO + EO + FO (a3.2.2)
t xx xy Yy >4 Y
where A, B, C, D, E, F and G are functions of x,y,t becomes

cb = ad, + 2B + CO
T 133 d’&n €

+ DB + ED + FO a3.2.3
m *O% *ER (r3.2.3)

where B = Ar\x + Bny (A3.2.4)
C = an° + 28n.n + cn’ (A3.2.5)
x X'y Y e
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E=an,*+28M, +Cn +DN +EN -GN (A3.2.6)

and A, B, C etc are now functions of £, 1, T.

The two basic regions considered in this thesis are:

(a) R1 - { (x,y)l -L < M, ~0 < y < f(x,t)}

A
®
IA

A
»
A

and (b) RZ - { (x,y)l -L < <M fi(x,t) £y < fz(x,t)}

where L and M are positive constants and f, f1 and f2 are single

valued functions of x.

For R, we have taken

1
n = expfaty - £)) (A3.2.7)
where a is an adjustable parameter. The partial derivatives of 1
needed in (A3.2.3) are
n, = -omg, n, = om n, = -omf,
2 2 2
= (£, - £,,) = - nf =- O
Mo T MM T Teg) Ty e Nyy n
For R2 we have set
n=1(y- fl) where Af = 22 - fl (A3.2.8)

Af

For this case the relevant partial derivatives of 1} are




X

Af y Af Af

My = 288 (MAf + £,) - 1 (MAfey + £0p)

(Af Y At
- - Afg
My Af
n - 0

n = - 1AL +£,) n - 1 N, =-1MAf + £ )
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Appendix A3.3

Some Exact Solutions for Unsteady Hele-Shaw Flow

in a Semi-Infinite Channel

The material presented below has been cnrlled from a variety of
sources, references for which are given at the end of this appendix.

Hele-Shaw flow, in a 2-dimensional channel of width 2 and extending
to infinity along the negative y axis, is briefly summarized in Figure
3.2.2 of Chapter 3 with further details given in section 2 of that
chapter. For the purpose of deriving exact solutions, it is convenient
to recast this potenti2l problem in terms of an analytic function.
Introducing z = x + iy, where i = V-1, a complex potential @ = w(z) may

be defined as

©0=-(d+ i¥P (A3.3.1)

Then, in terms of ®, it is easily shown that

Re(w(z)) = 0
2f ony = f(x,t) (A3.3.2)
(retw2n), = |9% - |.g£x’|
Im(w(z)) = %1 .
Re(mz(z)) - 0 } on x *1 (A3.3.3)
®w~ iz
® =u- iv ~ i } as y ~ - (A3.3.4)

In (A3.3.4) u and v are the horizcntal and vertical components of

velocity.
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The next step is to conformally map the semi-infinite domain onto a
convenient region which in this case we take to be the unit disk. Since
the mapping z = % log N, where the principal branch of log is used,
takes a vertical semi~infinite channel onto the unit disk, we seek a

conformal mapping of the form
z = % {109 n- h(ﬂ,t)} = F(N,t) (A3.3.5)
where, in the T-plane, the analyt.c function h(n,t) satisfies

hm,t) = 0asn-+0 (A3.3.6)

h(fl,t) = h(q,t) (A3.3.7)

Two important consequences of (A3.3.7) are : firstly, h is a real
analytic function on the real TN-axis and secondly, the mapping (A3.3.5)

is symmetric in the sense that if no corresponds to z, then ﬂo

0

corresponds to -~ Z Thus the conformal mapping (A3.3.5) is appropriate

0
for the description of free surfaces which are analytic curves and
which evolve symmetrically about the line Re(z) = 0.

Now from the perspective of a unit disk in the mM-plane, it is easy

to see that the analytic function satisfying conditions (A3.3.3-4) and

the first of (A3.3.2) is
1
w(n) = -7 log M (A3.3.8)

Thus it follows that the determination of the position of the free

surface y = f£(x,t) reduces to the determination of the analytic
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function h(n,t) from (A3.3.8) and the second condition in (A3.3.2).

This is accomplished as follows. First we differentiate

(A3.3.8) with respect to t to obtain

do _ _1 oy
ot M atz (A3.3.9)
Then making use of the relation
an| 2ef az| _ _
3t z| 1 (A3.3.10)
z
mt is written in terms of the conformal mapping F(n,t) as
d 1 JF{ ,0F
Se = atL/a““ (R3.3.11)

The derivative of  with respect to z is also needed and for that we

have
dw 1
dz - - aF (..4.3.12)
nngh
t

Combining (A3.3.11) and (A3.3.12) in the second of (A3.3.2) we obtain

the following condition on F(n,t)

9e| 9r| _ 1 _ ) 9F| 3E| 1 }
nanLatL ® {“ aqLatL u} on nff = 1 (A3.3.13)

or in terms of the analytic function h(m,t)

%%{HQ% _ 1} + = _{%%{n%% - 1} + n} on N = 1 (R3.3.14)




Before we proceed with the various solutions we should 1like to
point out the following observation which considerably reduces the
effort required to obtain the conditions that must be satisfied by a
solution to (A3.3.14). The observation is this. Consider two
functions G(T,t) and H(M,t) to be analytic in the variable T and

erpress their sum as

—_—

GM,t) + HM,t) = ) a, (t) R~ (A3.3.15)
=0

Further, suppose on 7Mff - 1 that
Gm,t) + H(N,t) = %%{n%% - 1} +r (33.3.16)

Then, since h(m,t) satisfies condition (A3.3.7), equation (A3.3.14)

becomes

G(n,t) + H(f,t) = -{G(ﬂ,t) + H(n,t)} on i = 1

G(M,t) + H(M,t) = -{G(ﬂ,t) + H(ﬂ,t)} en MM = 1 (a3.3.17)
Thus G + H is identically zero on the real mM-axis and so we have that
all the coefficients a, in (A3.3.15) are 0.

The first of two classes of solutions that we consider are those

which arise when h(n,t) is taken to be a finite polynomial in 1 i.e

N
hm,t) = ) a (t) n* (A3.3.18)
k=0




where it is noted that the coefficients ak(t) are real since h(n,t)
satisfies (A3.3.7). From (A3.3.14) and the observation of the last
paragraph, the following set of coupled differential equations in the

coefficients a, are easily obtained :

N
d 1 2 )
= {ao - 3 z: ka, } =-x (43.3.19)
k=l
N d
MaMa0 - aM + z: k E;(akak-u) - Mak_M ak = 0 (A3.3.20)
k=M+1
and Na 4, -~ a_=20 (A3.3.21)

where 1 < M < N - 1 and ék denotes differentiation with respect to t.

While the integration of (A3.3.19-21) for the coefficients a, in

terms of a0 is difficult for N > 1 it is easily shown by adapting an
argument given by Howison [1986] for radial Hele-Shaw flow, that

the free surface cannct remain analytic for all time. This is done by

integrating equaticns (A3.3.19) and (A3.3.21) to obtain, respectively,

N
1 2 2

ag(t) =a (o) +mt + 2 ) k[ast) -a ()  (a3.3.22)

k=1
ag(t) = aN(O)exp{N[ao(t) - a0<0))} (A3.3.23)

From (A3.3.22) we have that
N( 2 2 oo

a,(t) > a (d) + mt + S(al(cy - at(0)) - ) kal(0) (A3.3.24)

k=1

If equation (A3.3.23) is substituted into the above expression, the




following inequality is easily derived

2 N
ao(t) - ao(o) > Rt + aN(O) 2 {exp{zn(ao(t) - ao(O))} - 1}

N1,
- ) ka, (0) (A3.3.25)

k=1
From this inequality it is clear that a contradiction arises as t - oo,
The source of this contradiction lies in the fact that a zero of the
conformal mapping F(mn,t), initially located outside the unit disk and

on the real mn-axis, moves in time toward the boundary until at t = t*

Fn(n,t*) =0 onnf=1 (A3.3.26)

Thus at t = t* the mapping is no longer conformal with the free surface
having developed a cusp. Furthermore, it follows from Weierstrass®
approximation theorem (Davis [1975]) that any analytic free surface
which does not develop a cusp can, initially, be uniformly approximated
by a finite polynomial which does develop a cusp as a consequence of
the above argument.

A complete description of the solution to equations (A3.3.19-21) is
easily given for N = 1. If we assume that aO(O) = 0 and al(O) = € then

(A3.3.22) and (A3.3.23) reduce to

a (t) = eexp(a, (t)) (A3.3.27)
1 2 12
ag(t) - S a,(t)y =mt - S ¢ (A3.3.28)




and the conformal mapping is given by
{log n- ao(t) - al(t)ﬂ} (A3.3.29)

If al(t), given by (A3.3.27), is substituted into (A3.3.28}), a

nonlinear equation for a,(t) in terms of t results,

0

The zero of Fn(q,t), determined from

n= - % exp(—ao(t))

1
al(t)

satisfies {1 + 2 ao(t) + log(e)} (A3.3.30)

and reaches the unit disk when N = 1. It follows from (A3.3.28), that

the time t* to cusp is
t* = %~{% (82 - 1) - log e} (A3.3.31)

Returning to the z-plane it is possible not only to give
expressions for the position of the free surface but to determine the
fluid velocities throughout the semi-infinite channnel. From (A3.3.8)
we express TN in terms of the complex potential w and substitute the
expression into (A3.3.29) to obtain

z = % {nm +a (t) +a (t)exp( ﬂw)) (R3.3.32)

0

from which x and y are expressed in terms of ® and Y as




X = -¥+ 7 a (t)exp (xd) sin (1Y (33.3.33)

y= ®- % a,(t) - % a, (t)exp (Rd) cos (x'Y) (A3.3.34)
As well, since mz = u - iv, a short calculation from (A3.3.32) reveals
that

1+ apg(t) +x(y - D

v = - (A3.3.35)
1+ 2a,(t) + ai(t)exp(an» + 2r(y - @)

2 2
aj(t)exp(2nd) - [n(y - O + ag(t)
and u2 - L [ 0 ] v2 (A3.3.36)
[1+a,e) +n(y - &)]2

It is noted that expressions (A3.3.33-36) reduce considerably on the
free surface since, there, the velocity potential ¢ vanishes.
The evolution in time of the free 3urface and its first two

derivatives is given by

y = £(x,t) = - 3 {ao(t) + al(t)cos(nqﬁ} (23.3.37)

aj{t)sin(n'¥
1 - al(t)cos(nqﬁ

fx(x,t) (A3.3.38)

nal(t)(al(t) - cos(n“ﬁ)
(1 - al(t)cos(nqﬁ)3

and =
n fxx(x,t) {A3.3.39)
It can be shown that the equation of the free surface is, initially,

y ~ -% cos (xx) + 0(82) (A3.3.40)

while a Taylor expansion about | = 1 of z = FMM,t), as given by
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(A3.3.27- 29), reveals that a 2/3 power cusp of the form

2,
x 1
y ~ {72_} 3 - % (1 - log &) (AR3.3.41)

develops at t = t*. It is noted that while £,(0,t) remains 0 for t <
t*, £, (0st) at first grows slowly in magnitude and then, as t - t*, rapidly
becomes unbounded. There is an inflection on the free surface, located
at -%(ao(t) + azl(t)), which moves steadily toward (0,£(0,t)) and

finally coalesces with this point at t*. The vertical component of

velocity at x = ¥ = 0 on the free surface is given by

1

v(0,£(0,t),t) = -I-:-;;Tg)

(A3.3.42)
and becomes unbcunded as t -+ t* since al(t) -+ 1.

Finally we note that in many of the above equations the velocity
potential ® and its conjugate ‘Y are required. Given any pair of values
(x,y) tne corresponding pair (®,'¥) are determined numerically from the
set of coupled equations (A3.3.33-34)., When it comes to the position
of the free surface, ® is set to zero, a value of x is chosen and
equations (A3.3.33-34) are s>lved for (y.¥.

Moving from this first set of solutions we turn now to the Saffman-
Taylor class. Solutions from this family are distinguished by the fact
that they remain analytic for all finite time. 1In this case, h(m,t) in

(A3.3.5), is taken to be

hm,t) = a (t) + 2(1 - A)log{l + al(t)n} (A3.3.43)




where A € (0,1) is an arbitrary parameter. From (A3.3.14) the

coefficients ao and a, can be determined to satisfy

(1 - A)(2r ~ 1):—t{ai(t)} + {(21 - 1)af(t) + 1}éo(t) - 1:{1 + ai(t)}
(A3.3.44)

(1 - l)al(t) + lal(t)ao(t) = ma, (t) (A3.3.45)
Subsequent integration reveals that

aglt) = mt - 2(1 - A 2106{1 - al(t)} + (1 -20( - Mlog(l - g2

(A3.3.46)

ayg(t) [ 1 - g2 |20
= exp (xt) (3.3.47)

and
€ 1 - a%(t)

where ao(O) = -(1 - AMlog(l - ez) and al(O) =g,

Again, expressing M as exp(-n®), we have from the conformal mapping

2z = F(N,t), with h(n,t) given by ((A3.3.43), that

w4 2 A -1] ap(t)exp(rdsin(n'P 3
* - g {1 - A) tan 1+ al(t)exp(nd»cos(n10 (A3.3.48)
and
ap(t) -
y = - O“ P 3 A log{l + 2a1(t)exp(nd»cos(nqﬁ + ai(t)exp(anﬁ}

(A3.3.49)

From wz = u - iv the velocity components can be found and assume, for A

= %, the simple closed form

1 ;
u = BTSET;IT;T;T {al(t)exp[—(ny + ao(t))sln(nx)} (A3.3.50)
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1
v = D(ao.al.x.y) {al(t)exp(-(xy + ao(t))coa(ux) - exp(-z (Ry + a, (t))}
(A3.3.51)
2
where D(ao,al,x,y) - exp{-Z[ny + ao(t))) + al(t) -
(A3.3.52)

2a, (t)exp(-(ry + a,(t))cos (xx)

Along x = 0 and x = 1 the vertical velocity components reduce to
-1
v(0,y,t) = {al(t)exp((n:y +a e)) - 1} (A3.3.53a)

-1
vil,y,t) = -{al(t)exp((ny + ao(t)) + 1} (A3.3.53b)
For A = %, which is the only value for which numerical solutions are
computed in Chapter 3, it is possible to express the stream function ¥

directly in terms of x and y as

- exp\~-lny + apg(t) | {sin(nx)
¥ =21 tan 1{ {-(oy + 2002)} } (A3.3.54)
al(t) - exp{-(ny + aoft))}cos(nx)
On the free surface with A = % and ® = 0 we have that
ag(t) 1 2
y = - T - o 109{1 + 2a1(t)cos(nqﬁ + al(t)} (AR3.3.55)

where W in (A3.3.55) is determined by choosing a value of x and

solving the nonlinear equation

g o 1 2nitisinE® 4 (R3.3.56)
m -2 1 + altt)cos(n¥5 e
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The slope and second derivative of the free surface are

aj(t)sin(x't)
1+ al(t)cos(nqﬂ

£ (x,t) = -tan(n(x + 9] = (A3.3.57)
X

(al(t) + cos(nﬁﬁ)(l + 2aj(t)cos (¥ + a%(t))
(1 + al(t)cos(n¥5)3

and £ (x,t) = ma_(t)
XX 1

(A3.3.58)

. 2 . ; .
Initially, the free surface is, to O(€”), identical with that of

the cusping solution
3 2
Y = - 5 cos(nx) + O(e") (A3.3.40)

while as t - o this initial sinusoidal perturbation develops into the
familiar Saffman finger whose width spans a fraction A of the channel
and whose nose moves steadily at a speed of U = 1/A. Noting that as t

- oo, ao(t) - %t and al(t) <+ 1 the conformal mapping becomes
z = %{log n - 2(1 - A)log %(1 + n)} (A3.3.59)

where the moving finger has been rendered motionless by shifting the
origin to the tip of the Saffman finger. Since the motion of the nose
is steady, the normal component of velocity of the fluid must be equal
to the normal component of velocity of the interface. It follows, chat
on the interface, V¥ = -%. Using this fact and that ® = 0, the steady
profile of the Saffman finger is easily determined, from (A2.3.59), to

be



(oo
eXP\"2(1 - 1) cos(zy) = (A3.3.60)

This, then, completes our catalogue of solutions needed for the
numerical work in Chapter 3. We should now like to briefly mention
some of the history and origin of the two classes of solutions
presented above. A good source of this material has been the review
articles of Saffman (1986] and Homsy ([1987]. The steadily propagating
finger represented by (A3.3.59) was originally discovered in 1957-58
and is described in detail in a now celebrated paper - Saffman and
Taylor ([1958]. While this finger is symmetric, Taylor and Saffman
[1959]) have also examined asymmetric fingers. The formation of a
stable symmetric finger from a sinusoidal perturbation of an initially
flat interface was first derived by Saffman [1959]. These unsteady
solutions have recently been generalized by Howison [1986].

An puzzling feature of the Saffman-Taylor formulation oi Hele-Shaw
flow is that the width of the finger as a fraction A of the channel
width was not predicted by the theory and in fact it appeared that a
dense se* of values was permissible. This degeneracy was attributed to
the absence of surface tension T. This observation was further
strengthened by the experimental work of Pitts {1980] and others, which
showed that the width of the finger is a function of the capillary
number Ca = NU/T where U is the finger velocity and M dynamic
viscosity. It was noted that A - % as Ca <+ = and the nose profile, as
given by (A3.3.60), matched the experimentally observed profiles very
well whereas for small values of (a, A was appreciably greater than L

2

and the analytical shapes calculated differed measurably from those




observed. Recent numerical work of Vanden-Broeck [1983] suggests that
for each fixed nonzero value of a modified capillary number 63 there
exists a countable infinity of steady solutions. As to how nature and
surface tension select a particuliar solution from this set appears to
be unanswered at this time.

Cusping solutions were first noticed, though never published, by
Saffman ard Taylor in an investigation of the stability of a steady
symmetric finger undergoing a small symmetric perturbation Saffman
(1986]. They found, under certain conditions, that the finger bulges
out, the nose develops a negative curvature and 2/3 power cusps develop
off the center axis. More recently, cusping solutions in connection
with unsteady radial and channel flow have been discussed by Richardson
{1972), Meyer [1981], Howison et al [1985] and Howison [1986]. It is
believed that cusps do not appear for nonzero surface tension although
no proof of this has been given. It is interesting to note the
experimental work of Nittmann et al {1985]) which showed that the
injection of dyed water into an aqueous polymer solution (the surface
tension thus being reduced to () resulted in the formation of fractal-
like fingers. The cusping solution presentea above, (A3.3.27-29), is

given in Aitchison and Howison [1985].
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Compact Formulae for Mixed Derivatives

In the decade since the appearance of the paper by Hirsh (1975)
interest in compact implicit finite difference methods has been quite
strong. Applications to physical prohlems have appeared, many of which
have been concerned with the solution of the Navier-Stokes equations at
low to modera.e Reynolds numbers. In particular most of these
investigations have centered on 2-D incompressible flow formulated in
terms of the stream function ¥ and vorticity §. Examples are flow in a
square cavity with a steadily moving 1lid -~ Hirsh [1975]), Rubin and
Khosla ({1977], Peyret [1978) and unsteady flow past a circular cylinder
- LeCointe and Piquet [1984]. Of the numerical treatments of these
problems, based on compact methods, many have centered on the five
variable approach i.e. (¥, ¥, ‘W, ¥yx, Yyy). There are, of course,
substantial modifications on this basic theme for which the reader is
referred to the comprehensive article by Hirsh [1983],

However, far fewer applications, see for example Xavier and DeVille
[1983) have appeared for regions with nonorthogonal geometries created
by the presence of irregular boundaries and/or a free surface y =
f(x,t). Typically, finite difference approaches of higher order have
made use of a transformation x' = x, 7' = f{(x,t)/y or boundary fitted
coordinates to map the region into a rectangular domain. The resultant
field equations are considerably more complicated and are -.ften of the

form (A4.1.1) with mixed derivatives present. Other areas in which

339




mixed derivative effects are present include

(a) the early time evolution of turbulent diffusion in the
environment - Sullivan and Yip [1985]

(b) the modelling of pollution in groundwater flow - Bear [1979]

{(c) the Goursat problem in hyperbolic differential equations -
Moore [1961]

(d) an equation of the Monge-Ampere tyre known as the Balance

Equation found in meteorological studies - Fox [1962]

A search of the literature on compact methods did not locate
explicit compact relations for mixed derivatives. Thus, the purpose of
this appendix is to provide new and accurate expressions for mixed
derivatives which may be easily and efficiently incorporated into
existing compact methods for elliptic partial differential equations of
the form (R4.1.1) and (A4.1.2). An example of their use is given in
the compact treatment of the potential problem of Chapter 4. The
compact relations for mixed derivatives given below are explicit in
that cnly functional and first derivative data are needed. This means
that the incorporation of the formulae into implicit compact schemes of
the form discussed in this thesis require no special consideration at
boundaries of the integration domain.

Consider a domain
R = {(x,y)l 0<x<1l, 0<y<« 1}

with boundary dR. A solution to the second order elliptic partial
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differential equation

92 92 92 ) d
L=A——+ 2By ==+ C— + Da= + Ex— +F
9x2 9xdy Ay2 ox oy

82 ~AC<O0 , A,C %0 for (x,y) ¢ R LUJIR

is sought satisfying the boundary conditions

MDP = H for (x,y) € oR (A4.1.2)

M=a+ bg— + cg—
dy

Jx

where A, B, C, D, E, F, G, H, a, b and ¢ are continuous functions of x
and y. Consider row, the compact treatment of the mixed derivative
term.

We impose a uniform grid of mesh spacing h on the iegion R w dR and
use the standard Southwell notation, Smith ([1985], for the small square
consisting of the 8 points surrounding lxo,yo), 3ee Fiqure A4.1.
Dencoting by

%0 d 20

ax2 ' M= dxdy '

we introduce the following operator notation:




Figure A4.1 Nine Point Difference Molecule: Southwell Notation




) = O(x

lxﬁb - l£00x

0" Yo o *hiyy) =9

O, = B ®xq.v0) = Blxy,y, + h] = &

5 /2 -1/2 1 1/2 0 -1/2
x - E: - zx ux = 2“: + 'x )
1 -1 2 -1
“51 - 2(2: + zx ) 5: - Ex - 2I + 'x (A4.1.3)
S =E +41 +B ! T =L + 10I + E_°
x x x x x

with similar definitions for Sy, uSY etc. I is the identity operator.
. n
We rotate the grid anticlockwise by :-tu> a new reference frame

(x',y') and use the definitions

E @ = ®lx, + h',y)) = Dlxy + VZh,yO; - o

= ' - -
zy,cbo Ox,y, + h') = Blxy,y, + v2h) @,

with similarly defined operators as in (A4.1.3).
As well, the following compact formulae from Chapter 2, section 2

are needeq:

%[93 +ap, + e) - Elh-(ol - ¢3) + 1—:% 0;5'0) (A4.1.4)

1—12(L3 + 100, + Ll) = hiz[t»3 - 20 + ¢1] * 2—’;% ¢és'0) (A4.1.5)
Ly = ;;—2(-234’3 + 160 + 70) - o(er, + e + 2]

. %%% d>(;6,0) (A4.1.6)




2 1 nt  (6,0)
Ly = ;3(¢5 - 20 + ¢3] - Zh(pl 93] * 3o @ (A4.1.7)
1 Py
L, = 5;5(7¢5 + 160, - 230) + (e, + 8py + 62, )
4 4nd 06,0 (A4.1.8)
360 0 T
{ m+n
where 141} (m, n) = _"""—'a )°0
m n-
0 dxy dyg

Similar formulae are given in the y direction.

Now Aubert and Deville [1983] have given numerical solutions to
steady viscous flow in lkouundary coordinates with a view to future
developments incorporating free surfaces. A standard five variable
compact implicit treatment is given with the mixed derivatives treated
in an impliecit manner. Details are few. However it is possible that
after each full sweep, say in the x direction of an ADI type procedure
for (®,P,L), the cross term M is updated from the solution of a

tridiagonal system consisting of the Hermitian relation (AR4.1.4)

o |

My + amy + ) = o=(0, - o)) (A4.1.9)
with a similar treatment performed after a full sweep in the y
direction.

No mention, however, is given as to how boundary conditions
for M are incorporated. While periodic boundary conditions may
present no problem, the general case requires consideration.

One possible approach at, say, a vertical left boundary, is to

consider the (2,2) Pade relation (see Chapter 2 for details)
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2 h
- - - + = - + 4 1.
Pis " Pisn,g hf¢3+1'j qﬁj) S(Li+1'j Lij) 0(h%)  (A4.1.10)
at three consecutive vertical boundary points. Differentiation of

(A4.1.5) with respect to y at each of these points, followed by the
a3
dIx2dy
relation for M on the vertical boundary in terms of the three adjacent

elimination of terms in Ly results in a 3 point implicit
values of M in the interior. Similar treatments can be given in the
corners.

It is possible, however, to develop a more convenient approach,
based on explicit expressions of o(h%) for M. Defining the operators

0, ® and () by

Ody = & + Pg + O + Iy
B =& - B + & - By
Oy =@ + D + O3 + Py

the following is a nonunique set of 13 o(h?) relationships between M

and P, Q, L, N which, except for the first, are implicit:

1 1 1 4
My in emb + 5 "sypo t 5 “sxoo + O(h%) (h4.1.11)
s =2 ud p. + o(h%) (A4.1.12)
y1 h y1l

+ . .




-2 4
SM, =+ ud 0o, +o(h? (A4,
SM, =2 us o + o (A4
x4 h x4 '
1 252 _ 4
ZquMo an a>0 * 5 6; Q, uayx,o + 0(h%) (A4,
1 252, 4
zuaymo - &)0 * 4 SY P, uaxno + 0(h%) (A4,
S M ==ud (P, +Q) - 1 S (L. +N_.) + 0[(42h)4] (A4.
x'"0 h'x'"0 0 2 x''70 0
- f 524 _1 4]
T M, 2 8% - 3 T Ly + N+ o[(«sz (A4.
3 02 2 3 .2 2
a1, = - 2n‘5y P + sy Py) - SR8 0, + 8 Q0+
821 + 862N _+0hnd (A4,
y 0 x 0
su=§u8 . +0) +38 (L +N)+o[(\12m4] (A4
y'0 h 0 0 2 %y 0 )
.. 8 g2 1 4]
T M, 2 8y,¢0 +2 Ty + Ny + o[(wlzh) (a4,
6 6 1.2 2
€) + 8My = L WB By + M8 Q) - o8R-8 Ry
1 2 2 1
-2 - . L 14
Shtﬁy Q, Sy Q) - 75 O, + Ny + oind) (4.

.14)

.15)

.16)

.17

.18a)

.18b)

.18¢c)

.19a)

.19b)

.19¢)

The derivation of these relationships is briefly sketched.

Equation (A4.1.11) is obtained by taking a linear combination of three

0(h2) expressions for M . Equation (A4.1.12) to (R4.1.15) are derived

0
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by taking the derivatives of (A4.1.4) and its y analogue at the points
(xl,yl), (xz,yz), (xa,y3) and (x4,y4) . Equations (A4.1.16) follows
upon rearrangement of (A4.1.11) after it has been differentiated with
respect to x. Equation (A4.1.17) is similarly derived.

Equation (A4.1.18) is obtained as follows. The relations

1
dd, = E(oxx + oxy)

1
R, = 5 (Ryx + ¢yy)

are integrated along the diagonal from (xe,ya) to (x6,y6) using
Simpson's rule. This yields two different expressions for the same
implicit relationship between MB’ Mo and M6 . On averaging these

expressions (A4.1.18a) is obtained. Equation (A4.1.1%a) is similarly
derived.
; . . i d
Rotating the reference frame anticlockwise by 2 to (x',y'), we get

1
¢ = VE((DX + &Dy)

xl

1
¢y' = - VE(‘DX - ‘by)

and hence ¢ = l(@ + 20 + @ ) (R4.1.20)
x'x 2 xx xy YY

By using the Numerov-Stormer expression (A4.1.5) along the diagonal
from (xa,ye) to (xo,yo) the expression
1 1

(@ + 100 | + &
XX

12 x'x'e '0 x'x'6) = (\/211)2(‘98 - 2¢0 * °6)

30




+ o{(dzh)4} (R4.1.21)

is obtained. Substitution of (A4.1.20} into ({(A4.1.21) yields
(44.1.18b). The derivation of (A4.1.19b) is similar.

Equations (A4.1.18c) and (A4.1.19c) may be obtained in the following
way. Twice differentiating (A4.1.7) with respect to y yields

2 4f . 2 2 }
2 = - - - 6
4h ¢;xyy 85_'N g{SY P, sy Py @1, + 0(hé) (ad.1.22)

0 0

while twice differentiating

2
No =12 5, @, - 1 udy Q,
with respect to x yields
) - 2 _1{2 _2 _ 6
4h ¢;xyy0 eay L0 b 8‘ Q2 5x 04} GMO + 0(h® (a4.1.23)

The differentiation of (A4.1.11) with respect to x and y shows that

2 - 4 [.2 _s2 4f.2 _ 82
ah ¢xxyyo 3&40 * h—Z‘{Sx Q2 8x Q4} + h2{5y Pl sy P3}

+ 0(hb) (A4.1.24)

The average of expressions (A4.1.22) and (A4.1.23) followiag the

elimination of terms in hzdkxyy via expression (A4.1.24) yields

(Ad.1.18c). Finally, the differentiation of the standard five point




difference formula for the Laplacian i.e.

2 - - - -
2 V2 o e[()¢° a0, ) h us_ P 4hu8yq°

0
6
UTART S

with respect to x and y, followed by the elimination of terms
such as G&x via (A4.1.6-8) gives (A4.1.19c).
It is noted that (A4.1.11) is an explicit expression(involving no

second order derivatives) for ¢;y at the point (x ). what is

0’ Yo
desired are similar expressions for the cross derivative at the other
points (xi,yi), i = 1 to 8, of the Southwell grid. This can be
accomplished in the following way. Equations (A4.1.11) to (A4.1.17),
together with one each from (A4.1.18) and (A4.1.19) yield a nonsingular
system of 9 equations in the Mi, i = 0 to 8. Results are presented
only for the case where equations (A4.1.18¢) and (R4.1.19c) are used to
close the system, although it is noted that the results for the other cases
exhibit truncation errors proportional to h? as well.

In the subsequent formulae for the Mi, i = 0 to 8, all terms
containing second derivatives are eliminated using the explicit

expressions (A4.1.6) to (A4.1.8). This yields the following explicit

relationships for M, and M_ with the expression (A4.1.11]) for M

1 6 0
included for completeness :
1 1 0 -1 1 0 1 0 1 9 0 0
Mg = — 0 0 0 -+5K 0 0 0 -+5; -1 0 1 #Eo (R4.1.25)
4h°l.1 0 1 0 -1 0 0 0 0




-1 4 -3 1 4 9 1 0 -1

1 1 1
M =——=0 0 o|]+—=—] 0 0 oO0]+=—=—f12 =32 20
1 a2 1 -4 3, 16h| _, -4 -9 P 6h1 o a1 Q
+ E (Ad.1.26)
L3 0 3 L5 -0 7 L 1 -8 7
Mg = __E 8 -8 0 -+§g 8 32 -8 +E; -12 32 =20
2h“i_.5 g -3 ® -3 -1z 1, -3 8 -s)
+ Eg (A4.1.27)

In these formulae Eo, El and E6 denote local truncation errors while

. . _ _ _ : R
the expression 9?6+ 492 P7 9Ps 4P4 Pe is indicated by the

stencil

(s
0 0 0
l-l -1 -9,

The remaining 6 relationships are easily obtained from (A4.1.26)

and (A4.1.27) by noting that an anticlockwise rotation by % results in

Q = =P

M9 =M.

The leading terms in the truncation errors are :

ht (2,2
E, = 3¢ M, (R4.1.28)
n (4,0) (2,2) (0, 4)
E, = By = 255(-3M, 40M, +3m°7) (me.1.29)




M(2.2)

- 40 0

- 3M

___(3M(4.0) :

720 0

L)
¢ &

nd
360

(4,0)
0

(2
+ 40M0

(3m

) (0,4)
+ Mg ) a4.1.30)

A compact 3 variable method in (®,P,Q) for elliptic problems of the
form (A4.1.1~2) incorporating these new explicit expressions for M; has

been successfully implemented; details of an application to free

surface problems and pollution in unsteady groundwater flow appear in

Chapter 4. Numerical experiments comparing these explicit expressions

with implicit relations such as (A4.1.9) indicate a gain in efficiency

with no significant change in the number of iterations of the overall
compact algorithm.

To give some indication of the numerical behaviour of these

explicit expressions for Mi' i =0 to 8, the following typical results
are given., Consider ®(x,y) = x3 cos(2nxy) + y3 sin(2rxy) on 0 € x, y S

1. The mixed derivative d&y is calculated at (.8,.7) using (AR4.1.25-27)
h

on 5 different grids h K k = 0 to 4, hg = .1. In each case

k

analytic values for ¢, P and Q are used in the coempact expressions and
the results are compared to the exact value for d;

The error EfJ on grid hk is

incurred by the compact expression Mi

denoted by

:(0
xyanalyt

The rate of convergence Ri

successive grids h, and hk+

k

(k

ic

for i = 0 to 8

Mi’x-.8,y-.7

)is determined from the errors in Mi on two
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(k)

(k)
) _ ‘nlﬁi /Ei41

i tn2

R

Results are presented in Table A4.1 where the upper result is the error
E{k) and the lower is the rate of convergence R{k).

Calculations have been performed on the Cyber 170-825 at the
University of Western Ontario in both single and double »>recision,
although the results above are in single precision.

It is not difficult to derive implicit expressions for M with
smaller truncation errors. For example, it is easily seen that linear
combinations of the above explicit expressions for Mi, i = 0 to 8,

yield 0(h5) implicit relations. 1In fact the following expressions

21 s 32 5
48M0+B()M0+[1M0-—-2-8b0+H 0 0 0
h -5 =32 -5
P
1|5 0 5
+3]-32 0 32] + E! (A4.1.31)
-5 0 5 1
Q
8M, + ()M -—3—8b+11P-'rp
0 0 H2 0 2n\"x2 4
+i{ro -20}+E" (A4.1.32)
hl7y™ 1 y 3 2 T
1 -2 1
4 2f/.2 2
M = —l-2 -4 =21 - —{8 P §°p }
0 h21_2 hy1 3

2fs 2 2 '
- H{Bz Q, - sx 04} + E (A4.1.33)




Table Ad.1l

Error and Rate of convergence for an Example

hg hg hg ho
hy= By hy= 2 hy= 3 he" 8 he= 16
-.12 -.76(-2)  -.48(-3) -.30(-4)  -.19(-5)
3.97 3.99 4.00 4.00
.12 .14(-1) .96(-3) .62 (-4) .99(-5)
3.69 3 3.95 3.98
.18 .13 (-1) .85 (~3) .55(-4) .35(~5)
3.00 3.91 3.96 3.98
.24 .17 (-1) .10 (~2) .65(-4) .40 (~5)
3.86 4.01 4.02 4.01
.26 .16(-1) .95 (~3) .58(-4) .36(-5)
4.06 4.06 4.03 4.02
-.53 -.33(-1)  -.20(-2) -.13(-3)  -.80(-5)
4.01 4.01 4.00 4.00
-.24 -.25(-1)  -.18(-2) -.12(-3)  -.78(-5)

%3




-.55

.33(-1)

.01

.35(~1)

.01

.20(~-2)

.00

.22(-2)

.04

-13(-3)

4.00

=.13(-3)

4.03

-.80(-5)

~-.81(-5)
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are of 0(hb) since the leading terms in the truncation errors are

v _ =h8 (4,2) (2,4
e 45[M° + My ) (Ad.1.34)

+  =hb¢ (3,1) (1,3)

E; = Tog(M +u ) (A4.1.35)
«  -h® (2,2)

E3 7;; Mo . (Ad4.1.36)

(A4.1.31) and (A4.1.32) may be combined to yield the following 0O(h8)
implicit expression for d&y, in which the appearance of Simpson's Rule

for double integration over a square region is noted:

16M,. + 4()M° + DMO -

0
(A4.1.37)
S 3 3 LT
2 %% ¢ R S0 Syoa) 300 Mo

a this appendix useful explicit expressions for mixed derivat.ives
have reen derived. In addition to the ease with which these relations
may be computed and incorporated into existing cumpact methods, the
expressions are fourth order accurate and require no special tieatment

at the boundaries of the computational domain.
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