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ABSTRACT

Numerical methods for a class of free and moving boundary problems are considered.
The class involves the solution of Laplace’s equation on a domain which is changing
shape with time. The position of the boundary is described by an evolution equation. With
the time fixed, a boundary approximation method is employed to solve the potential
problem. The boundary location at the next time is determined from the evolution equation
using standard techniques and the process is repeated.

Two boundary methods are examined. Both are characterized by representing the
approximate solution of the potential problem as a series of known basis functions, choscn
from a complete set of particular solutions to the Laplace equation. In the first approach,
the parameters, to be determined from the boundary data, appear linearly in the trial
solution. The basis functions are closely related to the well studied harmonic polynomials
and this permits an extensive analysis of the linear method. In particular, convergence of
the method is demonstrated and some estimates on the degree of convergence are derived.
In the second approach, the parameters appear nonlinearly. This approach is new, but
derives from classical results on complex rational approximation and may be interpreted
as an acceleration of the convergence of the linear technique.

The linear method is applied to a number of electrochemical machining examples
and performs well for relatively smooth boundaries. A nonlinear approach is tested on
the inverse machining problem with excellent results.

Both the linear and nonlinear methods are applied to several challenging examples
of Hele-Shaw flow. In all instances, the nonlinear scheme outperforms the linear. The
ease of programming, efficiency and concomitant accuracy of the nonlinear scheme make
it an attractive choice for the numerical integration of a class of free and moving boundary

problems.

iii




ACKNOWLEDGEMENTS
I would like to express my appreciation to Dr. H. Rasmussen for his patience and
support over the course of this work.
I have had numerous fruitful discussions with Jake Greydanus and I thank him, in
particular, for lending a helping hand with the use of the word processor.
I thank Michel Pettigrew for hours of enjoyable discussion on many topics and for
sharing some of his boundless enthusiasm for the subject of mathematics.

A special thanks to Penny for help with many of the splendid figures in the thesis.

iv




TABLE OF CONTENTS

Page
CERTIFICATE OF EXAMINATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF APPENDICES X

CHAPTER 1 - INTRODUCTION 1
1.1 General Introduction 1

1.2 Approximation Methods 2

1.3 Objectives 3

1.4 Outline of Thesis 3

8

8

CHAPTER 2 - THE BOUNDARY APPROXIMATION METHOD
2.1 Introduction

2.2 Best Linear Approximation to Boundary 1 .ata 11
2.3 The Choice of Norm 15
2.4 Existence of a Best Approximation 17
2.5 Completeness of the Set of Basis Functions 18
2.6 Degree of Convergence 24
2.7 Characterization of, and Algorithms for, Computing the B.A. 30
2.8 Best Approximation by Nonlinear Functions 35
CHAPTER 3 - ELECTROCHEMICAL MACHINING PROBLEMS 43
3.1 Introduction 43
3.2 Review 47
3.3 Steady State ECM 49
3.4 Uasteady ECM 57
3.5 The Inverse ECM Problem 68
3.6 Discussion 77
CHAPTER 4 - HELE-SHAW FLOW 78
4.1 Introduction 78
4.2 Review 81
4.3 Cusping Solution: Linear Approximation 85
4.4 Saffman Finger: Linear Approximation 112
4.5 Hele-Shaw Flows: Nonlinear Approximation 125
4.6 Stability 153
CHAPTER S5 - CONCLUDING REMARKS 156
APPENDIX A.1 THE LOGARITHMIC TERM 158
APPENDIX A.2 THE LEAST SQUARES ALGORITHM 161
APPENDIX A.3 EXACT SOLUTIONS OF SOME HELE-SHAW PROBLEMS 164
REFERENCES 167

VITA 171




LIST OF TABLES

Table Description Page
3.3.1 The Ratio m:n 53
33.2 Convergence for Increasing n 54
3.33 Effects of Proximity of Singularity 55
334 The Coefficients (n=30,p=15) 57
3.5.1 The i"arameters (n=9) 73
35.2 Errors in Computed Cathode Coordinates 74
4.3.1 The Ratio m:n 93
4.3.2 Convergence 95
433 ‘Convergence 96
154 Collocation - 97
43.5 Comparison of Exact and Computed Values of g(0,t) 105
44.1 Comparison of Cusping and Saffman Solutions at t=0.0 115
44.2 Convergence 116
443 Convergence 117
44.4 Comparison of Exact and Computed Values of g(0,t) 122
4.35.1 Convergence - Cusping Profile 126
4.5.1(b) The Nonlinear Parameters 127
45.2 Convergence - Saffman Profile 127
45.2(b)  The Nonlinear Parameters 128
453 Comparison of Exact and Computed Values of g(0.,t) 137

454 Comparison of Exact and Computed Values of g(0,t) 145

vi



Figure
2.1.1
22.1

25.1
25.2
2.6.1
33.1

34.1
34.2
343
34.4

345

3s5.1
35.2

43.1
4.3.2
4.3.3(a)

4.3.3(b)
4.3.4(a)

4.3.4(b)
435

LIST OF FIGURES

Description
Definition Sketch - Physical Plane
Transformed Plane (§ = EXP(-iz))
Simply Connected Case
Doubly Connected Case
Semi-infinite Domain - Physical Plane

Definition Sketch
Time Evolution of ECM (aa=1,a =0.25)

Time Evolution of ECM (a=2,a=0.25)
Time Evolution of ECM (=3,a4 =0.25)

Time Evolution of ECM (=2.5,a =0.5)

Time Evolution of ECM (a =2, h(x) = EXP(-4sin’(x/2)) )
Inverse ECM (0 =3.0,a =0.71)

Field Lines (=3.0,a2=0.71)

Definition Sketch

Exact Cusping Behaviour

Cusping Profiles Using a Linear Eulerian

Approximation (n=15,m=60)

Comparison of Exact and Computed Profiles (n=15,m=60)
Cusping Profiles Using a Linear Eulerian

Approximation (n=30,m=60)

Comparison of Exact and Computed Profiles (n=30,m=60)
Error Growth (n=15,30,45)

vii

Page

100
102

103
104




4.3.6(a)

4.3.6(b)
4.3.7

438
44.1
4.4.2(a)

4.4.2(b)
4.4.3(a)

4.4.3(b)

44.4

4.5.1(a)

4.5.1(b)

4.5.2(a)

4.5.2(b)
4.5.3(a)

4.5.3(b)
45.4
4.5.5(a)

Cusping Profiles Using a Linear Lagrangian
Approximation {n=30,m=60)

Comparison of Exact and Computed Profiles (n=30,m=60)
Reduced A, t=0.31

Smoothed Cusping Profiles

Exact Saffman Finger

Saffman Profiles Using a Linear Eulerian

Approximation (n=10,m=20)

Comparison of Exact and Computed Profiles (n=10,m=20)
Saffman Profiles Using a Linear Eulerian

Approximation (n=20,m=40)

Comparison of Exact and Cornputed Profiles (n=20,m=40)
Error Growth (n=10,20,25)

Location of the Singularities in the Nonlinear
Approximation of the Cusping Problem - t=0.25

Location of the Singularities in the Nonlinear
Approximation of the Saffman Finger - t=0.50

Cusping Profiles Using a Nonlinear Lagrangian
Approximation (n=3,m=29)

Comparison of Exact and Computed Profiles (n=3,m=29)
Cusping Profiles Using a Nonlinear Lagrangian
Approximation (n=5,m=15)

Comparison of Exact and Computed Profiles (n=5,m=15)
Error Growth (n=3,4,5)

Saffman Profiles Using a Nonlinear Lagrangian Approximation

vili

Page
107

108
109

111
113
118

119
120

121
123
129
130

131

132
133

134
135
138




4.5.5(b)
4.5.6(a)

4.5.6(b)
4.5.7
4.5.8
459
4.5.10(a)

4.5.10(b)
4.5.11

4.5.12
4.5.13

Comparison of Exact and Computed Profiles (n=3,m=38)
Saffman Profiles Using a Nonlinear Lagrangian
Approximation (n=5,m=38)

Comparison of Exact and Computed Profiles (n=5,m=38)
Error Growth (n=3.4,5)

The Particle Trajectories Between t=0.0 1dt=1.6

Local Error t=0.00(0.20)2.00

Saffman Profiles Using a Nonlinear Lagrangian
Approximation (n=5,m=38)

Comparison of Exact and Computed Profiles (n=5,m=38)
Saffman Profiles Using a Nonlinear Eulerian
Approximation (n=5,m=40)

Error Growth - Cusping Case

Error Growth - Saffman Finger

ix

Page
139
140

141
142
144
146
147

148
149

151
152




LiST OF APPENDICES

Appendix Page
Appendix A.1 The Logarithmic Term 158
Appendix A.2 The Least Squares Algorithm 161

Appendix A.3 Exact Solutions of Sorac Hele-Shaw Problems 164



The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/




CHAPTER 1

Introduction

1.1 General Introduction

Free and moving boundary problems comprise a wide class of mathematical models
in the applied sciences. In broad terms, a boundary value problem is free if it involves the
solution of a partial differential equation on some domain for "vhich at least a portion of
the boundary is unknown and is to be deterrined as part of the solution. If, in addition,
the model is a time dependent one, with the boundary continuously ch:aging, the problem
is called a moving boundary probler, or MBP for brevity.

This work is concerned with the numerical integration of a subclass of free and
moving boundary problems. Numerical schemes will be presented and applied to several
interesting examples from the class. Each member of this class possesses essentially the
same mathematical description. The field is governed by a potential equation and the
evolution of the free boundary is described by a nonlinear partial differential equation.

The list of MBP whose field equation is the Laplace eguztion is long and includes:
Hele-Shaw flows, flows in a porous medium, electrochemical machining and
electroforming, injection moulding of plastics, Rayleigh-Taylor and Kelvin-Helmholtz

‘nstabilities, and nonlinear water waves.



In general, analytic solutions to MBP are rarely available and numerical schemes
usually difficult to employ owing to the arbitrary and ever-changing naturc of the
boundary. As far as the numerical integration is concerned, it will be assumed that we
may proceed in a step-wise manner, first calculating the solution to a potential problem
for a given time and on a known region and then advancing the boundary position
according to the evolution equation’. The process is applied repeatedly. In this prescription,
the evolution equation usually reduces to the solution of a system of ordinary differential
equations. The bulk of the effort then, resides with the manner in which the potential
portion of the problem is treated. It is the method of solution adopted for this portion

which characterizes the overall scheme and is central to this work.

1.2 Approximation Methods

In the past many diffzrent numerical techniques have been implemented according
to the above step-by-step format. The potential problem has been solved by finite
differences, finite elements and various boundary approximation techniques. The latter
methods have not figured prominently in the class of MBP, with the exception of the
boundary element method, which has seen extensive use.

Approximation methods involve the approximation of the true solution ¢ by a

function ¢, which depends on a finite number of suitably chosen parameters. It is the
choice of function ¢, and the manner in which the parameters are determined which

properly defines the scheme. Thus we inay choose
¢u = ¢n(b]vb2’ ey bn;x)

such that, for arbitrary choice of parameters b,, one of the following options holds:

1 A notable exception to this division of labour arises in variational incquality
formulations. See Elliott and Ockendon (1982), for example.



(i) ¢, satisfies the differential equation exactly
(ii} ¢, satisfies the boundary conditions exactly
(iii) ¢, satisfies neither the diferential equation nor the boundary conditions exactly.

The b; are then chosen so that ¢, approximates, in some norm, the boundary

conditions or the solution of the differential equation or both.

The first option is called a boundary approximation method and is the choice of
scheme to be employed in this work. Options (ii) and (iii) are referred to as interior and
mixed methods, respectively.(See Collatz, L. (1960) or the more recent work of Gottlieb,
D. and Orszag, S. (1977) for example.) The latter authors refer to such schemes under the
general heading of spectral methods, wherein they define a spectral method to be any
scheme whereby the approximate solution to the boundary value problem is represented
as a linear combination of known basis functions of the independent variables only. The
definition only encompasses linear approximating methods and ignores the rather
important area of nonlinear approximation. What is more, the term spectral method usually
implies application to regular geometries. The basis functions are then chosen from a
standard orthonormal set. Finally, these same techniques have often been referred to as
methods of weighted residuals (see, for example Ames (1965)). We shall stick to the more
general term, approximation methods.

In any event, each of the approximations (i), (ii) or (iii) provides a closed form

expression representing the solution at all points of the given domain.

Each of the boundary, interior and mixed methods is properly characterized by
formulating them as problems in functional approximation. For example, let D c R?

represent the domain with boundary 0D . Let X (D) and X (3D ) be two normed linear spaces




of functions defined on each of D and 9D . Let £ be an elliptic operator and B a given
differential operator. With given functions! € X(D)andb € X (3D )we have the following
boundary value problem:
Lé(x)=I1(x) , xeD (1.2.1)
Bé(x)=b(x) , xe€dD (1.2.2)

Define X(D),D =D waD to be the normed linear space of functions ¢ defined on

D waD such that Ly € X(D) and Bp € X(aD). The type of approximation problem is
characterized by selecting amanageable subsetM c X (D) and choosing functions ¢, from

this subset which minimize the error functional
E@,)=clLé,~N p+PiBo, - bl 2 (1.2.3)
a,B 20, where | 4 5 and | § 3 are suitable norms for the linear spaces X(D) and X(dD).
Boundary methods correspond to a =0, interior methods to f§ = 0 and mixed methods to
both o, # 0.
Now, as already mentioned, the solution to the MBP will involve two steps:
(a) the solution of a potential problem on a known but irregularly shaped domain,
(b) the solution of the evolution equation for determination of the boundary position
at the next time step.The approximate solution of step (a) by way of a boundary method
is most reasonable in light of the fact that
(1) at least a portion of the boundary is not likely to be coincident with a coordinate
direction let alone coincide with a regularly spaced finite difference mesh, and

(2) the shape of the domain changes with time presenting a new potential problem on

a new domain every time step.




1.3 Objectives

This work began as an investigation of a numerical method used by Rienecker and
Fenton (1981) and Fenton and Rienecker (1982) in their calculations of nonlinear water
waves. Their scheme (essentially a linear boundary approximation method) is presented
under the guise of a Fourier technique. Properties such as convergence are therefore
accepted as a matter of course, relying on the extensive knowledge of the convergence
properties of Fourier series. And their excellent computationa! results provide solid
evidence of numerical convergence.

But there is much more that can be said if the method is properly formulated as a
method in the theory of best approximations. This then, is the first goal of this work.
Convergence of ihe sequence of best approximations is established and some error
estimates are obtained.

Over the course of these investigations it was found that the practical applications
of the linear boundary method were somewhat limited. This was largely due to the poor
conditioning of the least squares matrices for the choice of basis functions used and is
typical of this type of numerical scheme. To effectively deal with this, a related nonlinear
approximation scheme was developed which accelerates the convergence the linear
method. This then, is the second objective of this thesis, to numerically investigate the
effectiveness of the nonlinear scheme and compare the performance of the two methods

on practical problems.

1.4 Outline of Thesis

In chapter 2, the approximation methods for the potential problem are formulated
as extremal problems within the theory of best approximations. The convergence in norm

of the linear boundary method is established and several error estimates are derived.

Practical means for computing the best linear approximation are discussed. The nonlinear




approach does not lend itself readily to the same scrutiny and we suffice to establish the
existence of a best approximation and to suggest a method for its determination. In both
the linear and nonlinear cases, the possibility of approximation icllows from classical
results of Runge and Walsh.

Chapter 3 is intended to assess the performance of the linear method on a typical
member of our class. Examples of both steady and unsteady electrochemical machining
are considered. The treatment of the time-dependent portion of the moving boundary
problem is discussed at this stage. The unsteady machining problem is a physically stable
process. This means that any irregularities in the solution behaviour can be confidently
attributed to the numerical scheme, thereby making this an attractive test choice.

On the other hand, the inverse free boundary problem of electrochemical machining
is not well posed and can present subtle difficulities when its solution is attempted
numerically. In chapter 3 we present a scheme which is accurate and widely applicable,
provided a sufficient amount of data is available. In the event that this is not the case, a
nonlinear approximation scheme has been proposed, the results of which appear quite
promising.

In chapter 4, both a linear and nonlinear approximation method are applied to the
unstable problems of Hele-Shaw flow. Such problems present a considerable challenge
to any approximation method, as the physical instabilities of the flow pattern will feed on
the accruing computational errors. This makes it difficult to isolate the origins of any
irregularities that might arise in the solution behaviour. For example, is the observed
phenomenon to be interpreted as normal physical development, or is it simply a
manifestation of numerical instabilities inherent in the chosen approximation scheme?

Two Hele-Shaw examples are examined in this chapter. The two problems share
almost identical initial conditions and yet the flow pattern which develops in each case
is quite different. Thus, not only are the flows unstable, but the problems are ill-posed.

This means that the computational errors committed enter the solution as small




perturbations and may well lead to a result quite different from the exact solution. Both
the linear and nonlinear schemes are applied toeach of these examples and both an Eulerian
and a Lagrangian description of the moving surface are experimented with. Analytic
solutions are available for comparison purposes.

We find that both numerical methods are able to simulate the flows for short periods
of time, but only the nonlinear method is able to accurately follow the exact solution for

large times.

All computations have been performed in single precision on the University of
Western Ontario’s CDC Cyber 170/835. The machine uses a sixty bit word together with
a forty-eight bit mantissa, representing roughly fourteen digits of accuracy.

All plots of the free surface have becn generated by straight line interpolation

between data points.




CHAPTER 2

The Boundary Approximation Method

2.1 Introduction

The class of MBP considered in this work is described by

Vi(x,t) =0 , xe D@t)cR® (2.1.1)
Boé(x,t)=b(x) , xeaD(1) (2.1.2)
f(x,1) =-Vo(x,1)- VF(x,1) , xe () (2.1.3)
fx0=£x) , xeTl,0) (2.1.4)

I',(¢)is that portion of the boundary of D that is changing in time according to the evolution

equation (2.1.3). f(x,t) =0 describes the positicn of I',(¢) .
For the purposes of the present chapter, the domain in question is restricted to a
two-dimensional subset of the complex z-plane (z =x +iy). Furthermore, it is assumed

that the solution ¢(x, y, #) is periodic in x of pericd 27 and defined on the infinite periodic

1" - "

strip
h(x,1)Sy<g(x,t) , —oo<x<oo

Both h and g are periodic functions of x. D(t) corresponds to one period of the strip, as

shown in figure (2.1.1). That is, for given t,




- e e gy = am wm >

R

Fig. 2.1.1 Definition Sketch - Physical Plane




D@)={(x,y)|h(x,t)cy<g(x,t) , -R<x <R}
Fixing the time 1, , let us consider the problem posed by equations (2.1.1) and (2.1.2),

where dD (%) is assumed known.

Vio(x)=0 , xXeD (2.1.5)

By(x)=b(x) , x=(x,h(x)) 2.1.6)
x=(x,g(x))

¢, y) = &(m, y) 2.1.D

The approximation method is applied to this situation.

As outlined in section 1.2, the boundary approximation proceeds by first selecting
trial functions ¢, = ¢,(b,, ..., b,;x) which satisfy the field equation, in this case (2.1.5).
The parameters b; are then chosen so that ¢, approximates, in some norm, the boundary
conditions (2.1.6) and (2.1.7). Now, we distinguish between two types of approximation,

namely
(i) linear approximation, and
(ii) nonlinear approximation.
In the first case, the trial solutions are represented by linear combinations of known

functions u,(x),
¢‘ = jgl blu,(x) .

In the second case, the trial solutions are nonlinear functions of the unknown

parameters and typically take the form
0, = Z] bya,,....a,,x)
l =

where the unknowns are the vectors be R" and a € R™. In both cases, the boundary

approximation method requires that the functions u4, and y, are solutions to equation

(2.1.5). As we shall see, the case of linear approximation can be developed within the

10




comfortable framework of normed linear spaces. This point of view allows for an
exhaustive analysis of the linear boundary approximation method, which is largely
unavailabie for the nonlinear case. For this reason, the bulk of chapter 2, namely sections
2.2 through 2.7, is devoted to the case of linear approximation. Section 2.8 will outline
the nonlinear case.

Although much less is known about nonlinear approximation, it is often the case
that such approximations provide superior results to those of the corresponding linear
case (viz polynomial versus rational approximation in one-dimensional approximation
problems). In some of the applications that follow in the later chapters, we will witness
the excellent results that can be obtained with nonlinear approximation, but usually at the

cost of greater computational effort.

2.2 Best Linear Approximation to Boundary Data

The linear approximation to the boundary value problem (2.1.5) - (2.1.7) is
formuiated below. The section concludes with an outline of the important aspects of the
approximation and identifies later sections where each of these aspects is discussed in

turn.

The methods of the present chapter represent, in their simplest terms, the
approximation of functions ¢(x,y) from a certain class by other known functions. For
much of the discussion which follows, the properties of the class of functions involved
are best dealt with in a transformed plane. In particular, we perform a mapping of the
domain in question to a region of the complex plane where the conditions of periodicity
are an intrinsic property of the domain involved.

Consider then, a conformal mapping of the strip,

L=e™ ., h(x)Sy<g(x) , —oo<x<oo

11
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(1
L

Fig. 2.2.1 Transformed Plane ( { = EXP(-iz))




If{=re'’, then r =¢” and 8 =-x. The curves h and g map into the inner and outer

boundaries of the annular domain D, shown in figure 2.2.1. The boundary value problem
becomes

VoEgn=0 , E&neD, 22.1)
BOE)=bEn) ., EneadD; 22
where
6, y) = 0OE(kx, y)n(x, y)
In the { —plane, the original periodicity is reflected by the fact that @ at © = 6, assumes

the same valucas @ at 0 =0,+ 2nx.

We seck an approximate solution @, to the boundary value problem (2.2.1) - (2.2.2).

In keeping with the notation of section 1.2, the approximate solution is sought from the
linear space of functions X (5;) , which is at our disposal. Specifically, the trial functions
®, arc clements of the n-dimensional subspace M c X (5¢) spanned by the linear
combinations of n known basis functions #,(§,n), (€, M), ..., 4, &), E ) e D;. Itis
assumed that the 4,(§,n) are linearly independent. This form of the trial solution is
responsible for characterizing the approximation as linear. If the field equation is
homogeneous, as is the case in (2.2.1), then the linear boundary approximatic - method
is usually formulated by choosing the basis functions u,(§,m) from a complete set of
particular solutions to this equation. We are seeking the linear combination @, € M which
minimizes the residual

E@,)=1BO,~bl ,,
where b € X(Dy) and |{ a, is a suitable norm for X (9Dy).

Formally, this is a problem of best approximation (b.a.). That is, for a given integer

nand f € X(9D;). the besi approximation &, satisfies
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iBd,-b) al:‘CSIBtb,,—bI a0,
forall ®, e M.

The linear spaces X(Q2), Q =3§ » D¢, 0D may be quite general. A natural choice

for the approximation of functions is the L,(£2) space. That is, the linear space of
p —integrable functions defined on Q and having the property

1561 ds <o0
Q

where fe L,(Q). In section 2.5, we take X(D ;) to be the space of functions harmonic

on D, and continuous on D.

The above formulation reduces the problem of exactly solving a given boundary
value problem, to the determination of a best approximation to boundary data, in a normed
linear space.

Many pertinent questions immediately arise concermning the practical
implementation of these ideas. The following considerations figure prominently in any
practical calculation of a best approximation:

(i) the choice of norm

(i1) the existence of a best approximation

(iii) the uniqueness of a best approximation

(iv) the degree of convergence for increasing value of n

(v) the characterization of a best approximation.

In the remainder of this chapter we address each of these topics in turn, as they
pertain to the linear approximation problem. Once a norm has been decided upon (section
2.3), the question of existence of a best approximation is paramount. The uniqueness of

the approximation is not a major concern from the practical point of view. All that matters

14



is that at least one best approximation can be found. Nevertheless, we shall see (section
2.4) that both existence and uniqueness follow quite simaply from the well established
theory of best approximations in which we have set our problem.

The characterization of best approximations is concerned with the finding of certain
properties the best approximation might satisfy. We are concerned with this feature only
insofar as such characterizations might suggest numerical algorithms to use (see section
2.7).

Finally, we would hope that by increasing the number of terms in the approximation,
wemightincrease the accuracy of our results. In other words, can we establish convergence
in the norm with increasing n, and if so, how fast is the solution converging? As we shall
see, establishing the convergence in norm is an easy matter (once we have demonstrated
the completeness of our basis functions (section 2.5)); but determining a useful measure
of the degree of approximation is another matter. Still, in section 2.6 we present some
rough error estimates for particular problems from our class.

The final section of this chapter (2.8) will be devoted to the nonlinear approximation

problem.

2.2 The Choice of Norm

The best approximation problem outlined ir. the last section, requires that we choose

a norm for the space L, . It is usual to norm L,(£2) by one of the following p-norms:

11,=([irors] | 1sp<e @
IA.= max [ f(s)] (2.3.2)

(The vector notation has been suppressed in (2.3.1). In fact, for two-dimensional problems
with Q =00, ds may be taken as an element of arclength and the vector notation is

unnecessary.)
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When it comes to numerical computations, it is usually the case that the expressions

(2.3.1), (2.3.2) must be replaced by their discrete analogues:

in, =(‘_'§ { £(s) I’)’ , 1Sp<oe 2.3.3)
IA .= max |f(s)| 2.3.4)
1Sitm

As the number of data poirts m is increased, it is expected that the discrete norms tend

to the continuous case. More will be said on the the connection between the discrete and

continuous cases later (section 2.7).

We have chosen the case p = 2. This choice has a number of advantages. The best

approximation problem, find the minimum of E ($,), is linear in the unknown coefficients
b; if the condition B¢ = b is linear in ¢ and its normal derivative. In this case, (2.3.3) (with
p =2) leads to the direct solution of a system of linear equations. This type of best
approximation problem is usually called a linear least squares approximation.

The choice of approximating functions can often simplify the resulting linear system.
If the approximating functions are orthogonal, the system of equations is diagonal - the
simplest case. For the problems under consideration in this work, the resulting system of
linear equations is full, having no special band structure. There is a price to be paid for
choosing to solve a full matrix. It is both computationally less efficient than any method
which exploits a band structure and the effects of an ill-conditioned full matrix can be
disastrous. Each of these questions is addressed more fully in section 2.7. But first, let us

establish the existence of a solution to our least squares problem.

16
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2.4 Existence of a Best Approximation

The theory of best approximations on normed linear spaces is well developed and
contains some very general results on the existence of a b.a.. For the case of linear
approximation, the existence follows from a standard argument. The relevant theorem on

this matter is the following:

Theorem 2.4.1 Let M be a finite dimensional subspace of a normed linear space X.

Then, there exists a best approximation @ € M to any b € X (see Davis (1975), for

example).

Inthe case of the Dirichlet boundary value problem corresponding to (2.2.1)-(2.2.2),
we have the b.a. problem: for given n, find @, such that

1D, = bl o SH D, =l 20,
for all ®, € M. That is, we must solve for @, such that
19, bl = .il:ful ®, ~ b »,.

For the purposes of this section, assume the normed linear space X to be the space

L,(0D;) defined in section 2.2 and with corresponding norm given in section 2.3.

M € L,(@Dy) is the n ~dimension:  .iear space
M ={¢, =Tbu®mn , beR , GWe ao;}.

Theorem 2.4.1 is directly applicable to this situation and hence a b.a. does exist.

It is even possible to conclude that the b.a. ®, is unique, if the norm is the L, norm.

In fact, if 1 < p < oo, then the L, norms possess the property that they are strictly convex;

and strict convexity is sufficient to establish uniqueness of a b.a. (see Clarkson (1936)).




2.5 Completeness of the Set of Basis Functions

In section 2.2 it was mentioned that the basis functions u;(x) were to be chosen from

a complete set of particular solutions to the Laplace equation. This is essential if we are
to establish that the sequence of best approximations {¢,} converges in some sense to the
solution of the given boundary value problem. In this section, we make precise the notions
of completeness and convergence and then go on to construct a complete set of basis
functions for the class of problems under consideration. More accurately, the
developement which follows pertains to the approximaion of particuiar functions defined
on a two-dimensional closed region (namely functions harmonic on a domain and
continuous on D). As such, the results obtained may be taken as applicable to the Dirichlet

boundary value problem from our class.

To begin with, a number of definitions are in order.
Definition 2.5.1: The harmonic function p(x,y) formed by taking linear combinations

of the real and imaginary parts of z* is called a harmonic polynomial. The harmonic

polynomial of degree n has the form

px.y)= ¥ ax'y’
=
i+jsa

where the coefficients a;; are real. In what follows, p,(x, y) may be simply referred to as
the harmonic polymonial in the variable z.
Definition 2.5.2: A function f(x,y) in a normed linear space X(L2) is said to be

approximated arbitrarily closely by a sequence of functions u,(x, y),i:(x.y),..., in X(£2)

if for given € > 0, there exists an integer n and constants b, b,, ..., b, such that

fle,y)- i. h,u,(x,_V)!
/

<E
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If every f € X can be so approximated then the sequence is said to be closed or complete'.

For example, we have occasion to use the maximum or p —infinity norm and shall
say that a function having the above property is uniformly approximable by the functions
{u;(x,y)} . Itis well to bear in mind that, if a function f(x, y) is uniformly approximable,
then it is possible to construct a sequence ¢.(x, y) (which is a linear combination of the
u(x,y) , j=12,...,n)) which converges uniformly to f(x,y)on Q.

If the sequence {u;(x,y)} is complete and {$.} is a sequence of best

approximations to ¢ € X , then the sequence {4,} converges in norm to ¢,

limjo—-¢) =0.

We now proceed to construct a complete set of functions for the class of elliptic
boundary value problems at hand. Once again, it is instructive to work in the transformed
{ —plane ({ = e™). We consider two cases separately. In the first case (figure 2.5.1) D,
is a simply connected domain covering the origin. This case corresponds, in the z —plane,
to the boundary value problem (2.1.5) - (2.1.7) where the lower boundary y = h(x) is
absent (ie a scmi-infinite z —domain). In the second case to be examined D, is a doubly
connected annular domain surrounding the origin (figure 2.5.2). This corresponds in the
z —plane to the usual domain already discussed.

For the simply connected case, we have the following result on approximztion of
harmonic functions. Let D, be a simply connected domain whose boundary is a Jordan
curve. Let f(§,n) be an arbitrary function harmonic on the closed region E; Runge (1885)
has established the uniform approximation of a sequence of harmonic polynomials to

arbitrary harmonic functions, on closed subsets of the domain in question.(Or at least this

1 Properly defined a sequence {u,} is closed in a linear space X if it satisfies definition
2.5.2 and is complete if L(u,) =0 implies L =0, where L is a lincar functional from the
conjugate space of X . In normed linear spaces, the two definitions are equivalent.
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Fig. 2.5.2 Doubly Connected Case
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result can be inferred from his results on uniform approximation of analytic functions by
complex polynomials.) Walsh (1928(a)) extended this result to allow for uniform
approximation, on the corresponding closed region TJ-; , by harmonic polymonials to

functions harmonic in Dy and continuous in Dy, .

Walsh (1929) has established the following generalization of Runge’s work to the

case of multiply-connected domains.

Theorem 2.5.1 Let D; be a finitely connected domain bounded by the

non-intersecting Jordan curves C,,C,, ...,C, and such thatC,, ...,C, lic interior to C,. Let
f(x,y) be an arbitrary function, continuous on the closed region b_; and harmonic on the
domain D;. Given € > 0, there exist harmonic polymonials p(§,n) , ¢(§,n)in{ and
(§-8)"Jj=1,...,p, respectively, and real constants A,, ...,A, such that

|f(§,n)—{p(é,n)+q(§.n)+j§A, log| 5§, l} I<e

for all (§,n) e_D—;. The points ; are arbitrarily chosen to reside one in each of the holes

surrounded by C,, ..., C,.(The theorem includes the previous result on simply connected

domains as a subcase.)

Thus, if X(Dy) is the linear space of functions which are harmonic on D; and

continuous on D, ¢ » and where the norm is the maximum norm, then the theorem implies

that the set
{RIC.C-L)H . logl§-¢,1 . j=1,...p,k=0,1,2,..} (25.1)
is complete for the space X (Dy).

In our case, the domain D¢ is doubly connected (ie p=1) and surrounds the origin,

so that we may take the set

{logi! , R.IC . k=0,%1,£2,..} (2.5.2)
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to be complete in the maximum norm.
Of course, the associated Dirichlet problem is not soluble on an arbitrary doubly
connected region; but if the boundary 3D is sufficiently smooth such that a solution ®

exists, then Theorem 2.5.1 guarantees the existence of a series
@, =Alog|{l+ T @R+b3N

which converges in the maximum norm to ®. The A, a,, b, depend on n. That is, for every

e > 0, there exists an integer N and real coefficients a,,b;,A such that for n > N we have
IPEM-Alogl{l- T @R+5I)Y _<e

or more compactly, writing ¢, =a, —ib, ,

1OE W -Alog 1% T LY. <e

By definition this must be true of the sequence of best approximations @} derived

from the best linear approximation to boundary data. What is more, a similar result must

hold for the sequence of best approximations @, in the L, norm. For we have the inequality
f | & P ds sf | ®— " [P ds
an; Dy

< const {max | ® - O™ [}
ab,

Note that if the maximum norm is used, the convergence is actually uniform.
Now, the above resuits pertain to the { —plane. Under the inverse mapping z = ilog{
to the z —plane we have that the set of functions
{y , RSe™ , k=011,12,..} (2.5.3)
is complete for the space X (D) of functions harmonic on D and continuous on D and

extendable in a continuous fashion to be 21 periodic on the strip
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hix)Sysgx) , —ee<x <o -
(Recall that D corresponds to just one period of this strip.)

Thus, we have a complete set of basis functions (2.5.3) (in the maximum or least
squares norm). Furthermore, this establishes the convergence in norm of the sequence of
best approximations, obtained by using (2.5.3), to the solution of the corresponding
Dirichlet boundary value problem.

For a discussion concerning the origin of the logarithmic terms in the complete set
(2.5.1), see the appendix A.1.

Finally, it is interesting to note that our boundary approximation scheme can be
interpreted as rational approximation in the complex variable of an appropriate complex
plane (plus a logarithmic term). For some of the problems to be considered, where the
domain of interest is semi-infinite, the approximation corresponds to one of polymonial

approximation in the appropriate complex plane.

2.6 Degree of Convergence

We have established the existence of a best approximation and in the last section
constructed a complete set of basis functions which guarantee convergence in the norm
of a sequence of best approximations. It is another matter still to determine the actual
degree of convergence. In general, this is a difficult task and we provide here rough
estimates for particular problems from our class.

The Simply Connected Domain

Consider the potential problem

Vio(x)=0 xe D (2.6.1)
o(x)=f(x) xeaD (2.6.2)
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where D is the semi-infinite domain shown in figure 2.6.1 and it is understood that ¢ is

bounded at minus infinity. An example is provided by the potential problem associated
with the Hele-Shaw flow treated in chapter 4. Assume that dD is an analytic Jordan arc
and that ¢*(s) € Lip c. That s, ¢’ satisfies a Lipschitz condition of order c with respect
to arclength. More precisely, if s is the arclength parameter, then ¢(x, y) is harmonic in

D, continuous in D and

Pos) )
as*  os’

SMi|s,-s,|®

foralls,,s,€ dD, M aconstantand O<a<1.

Under the transformation {, =™, -%x<x Sx,the domain D is mapped into the

simply connected domain D, surrounding the origin (see figure 2.5.2). Assuming that the
Lipschitz condition is invariant under such a mapping, we again have a Dirichlet potential
problem for ®(,n) in the {-plane, with ®¥’(r) e Lip ¢, where ¢ is the arclength
parameter in the transformed plane.

Now, Walsh, Sewell and Elliott (1949) have established that a sequence of harmonic

polynomials &, exists such that

K

n?*e

|d-O,| <

for all (§,n) € D, ¢ » Where K is a positive constant and

@, = ‘i-',o(afﬁ +b,3) .

Under the inverse mapping, then, we have the corresponding result in the z —plane. There

exists a harmonic function

6,= 3 (@R+b3e™

k=0
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such that

1o-¢.l < ﬁ, (2.6.3)
n

forall (x,y) e D . This provides an error estimate for the best approximation problem in

the maximum norm to the boundary value problem (2.6.1)-(2.6.2). As in section 2.5, we
can establish a similar estimate for the best approximation ¢ to boundary data f in the L,

norm, namely

16-¢4,< nf‘“ xe oD (2.6.4)

It remains only to establish the invariance of the Lipschitz condition under a
conformal mapping. Let s = g(¢) be an analytic function relating the arclength parameters
in the z — and{ —planes. Then, if $*X(s) exists and is bounded, so ®®Nr) exists and is

bounded. That is,
OLNe) = a,(s W' (5) + @S W (s) + ... +a, (s ®(s)
where a,(s), a(s), ..., a,(s) are multiples of the derivatives of s with respect to ¢ . Now,

if $*’(s) € Lip a, then ¢* ~"(s),9” ~2(s),...,4(s) € Lip a. This follows from the mean

value theorem

0 ~N(s) - 64" s)

3 -5

= ¢(”(so)l y 5,585,558,

M.
Therefore
16°7"6) - 0" ") IS M | 5, -5, |
and we have ¢ s)eLipl. But LiplgLipa if0<a<1. Therefore,

¢“~"(s) € Lip o and so on for the lower derivatives. By the same token, g,(s) € Lip «

forall j =1,2,...,p. That each product
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a,(s¥¥(s)e Lipa
follows from the inequality
jab—cd|da|-|b~d|+|d]|-la-c}.
We have the desired result,

P (r)e Lipa.

The estimate (2.6.4) clearly indicates how strongly the degree of convergence is
dependent on the smoothness of the boundary data. (2.6.4) by itself is a proof of

convergence of the sequence of best approximations {4,} for the Dirichlet problem (2.6.1)

-(2.6.2).

The Annular Region

We have the following result (due to Walsh(1928(b))) on the degree of
approximation of an analytic function by means of rational functions. Let I—)'; be the clnsed
annular region bounded by the two Jordan curves C,,C, with C, interior to C,, and C,
surrounding the origin. Let w = y,({) denote the function which conformally maps the
exterior of C, onto the exterior of the unit circle and w = y,(£) denote the function which

conformally maps the interior of C, onto the interior of the unit circle. Let I, be the curve
Iyl =R > 1
and I, be the curve

1
WOl =%

Suppose g (L) is given, single-valued and analytic in the closed region I" which is interior

to I’y and exterior to I', Then, there exists a rational function r,({) of degree 2a such that
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M
- <—,
[8(C)-r (O L
for all §{ € D¢, r,({) -as its only pole at the origin axd may be taken to be a polymonial
in { plus a polymonial in 1/, both of degree n. That is, we may write
< x
n@=% £,
where ¢, is complex.

Now, this result can be used to derive an error estimate for the approximation of
harmonic functions on 5;. If £(©) is the analytic function formed from the single-valued

harmonic funct- .. ®(€,m) and its conjugate, then we can express
JQ=8@+Alog®) (2.6.5)
for some real constant A and where g({) is a single-valued analytic function (for a proof,

see the appendix A.1). Since log| (| is bounded in the closed region I, we can find

constants A,, M,, and M, and a rational function r,({) such that
M
1ReQ-Rr, QI <22

and

M.
41031 L1-A,log | LIl s =

forall { € D . Thus, we have

| RACY-A,log | {| -Rr (D) =1 Re(QD+Alog| | -A,log| { | -Rr, (O}
SIRg Q) -Rr, Ol +1Alog| L | -A,log| LI

<M
RJ

forall L e 5;. That is, we have




|BE,M) - 4,log | § | ~r,&T) s% , &mneD, 2.66)

r.(€,n) is the rational function formed from the sum of a harmonic polymonial of degree
n in { and a harmonic polymonial of degree n in 1/,

The larger the region for which @(E,n) has a harmonic extension, the greater the
rate of convergence. This result is applicable to the Dirichlet problem on the annular
region D where the solution ®(£,n) has a harmonic extension to the larger region I,

Of course, under the inverse transformation to the z -plane, we have the degree of

convergence estimate

¢(x,y)-Ay-R ti c, exp-ikz S%.

The above result (2.6.6), 1s included in Walsh (1929), but the nature of the rational
function r,(§,n) is not clearly dilineated. We prefer the above simple proof which makes

use of the existing theory on analytic functions (once the relation (2.6.5) is established).

2.7 Characterization of, and Algorithms for, Computing the Best
Approximation
Best approximations in different norms can be characterized by certain conditions

they must satisfy. Once discovered, these conditions often suggest numerical algorithms

to be used for determination of the b.a..

For the class of problems at hand, the best approximation problem outlined in section

2.2 leads to minimization of the error residual
E@b)=1B¢,-MN »

where the norm is the L, norm
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1BoJ o = ( [ @o. -f)’ds)' 26.1)

and the boundary oD is made up of the curves y = g(x) and y = h(x) (see fig. 2.1.1).

Define the L, norm of a function f(s) on the finite pointsetS, ={s; , i=1,...,m}

11.=(§, 15600 @62)

Then for given n, the problem of b.a. becomes one of finding

min| Bo, - A1 ,
b;

1
- 2
= min{‘ZI(B LACH) -f(si))’} , mzn (2.6.3)
where the points s; are coordinate points along the aD.

Now, it is the continuous approximation, minimization of (2.6.1), that we wish to
solve; but for computational purposes, we must solve the discrete approximation problem
(2.6.3) instead. Nevertheless, it is hoped that for m sufficiently large, the discrete problem
is a close approximation to the continuous case. In fact, Rice (1964) has shown that for
suitablely chosen point sets S, , the b.a. on a finite point set converges to the b.a. on a
continuous interval in the limit as m — oo, Davis and Rabinowitz (1961) believe that a
value of m that is two or three times that of n (the number of basis functions) is sufficient
to reflect convergence of the discrete to the continuous cases. It should be noted, moreover,
that Davis and Rabinowitz did find examples of poor approximation of their trial solution
to points not in the point set S,, when m was taken equal to # . This problem was overcome
when m was two or three times that of n . (We will have more to say on this important
point shortly.)

The best approximation problem (2.6.3) can be expressed in matrix notation
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minj i} ;= minjAb-f, (2.6.4)

where A is the matrix of coefficients Bu;(s;) in the expression

Bou(5) = 3, b,Bu(s)

b is the n-dimensional vector of unknowns b; j=1,...,n,fis an m-dimensional vector
of known data values f. = f(s.),i =1,...,m. It is, of course, an equivalent process to
minimize the quantity I rf ,*.

In matrix form, a simple characterization is available, one which immediately
suggests a numerical approach. The vector b € R" which minimizes | Ab—f§ » does so
if and only if

ATr=0
That is,
ATAb=ATT (2.6.5)

The equations (2.6.5) (ic one equation for each i = 1, ...,m) are referred to as the normal
equations.

Unfortunately, the solution of the normal equations is not the recommended
approach. If the matrix A is ill conditioned, then the product ATA is only much more so.
In fact, if the condition number of A is cond(A), then that of A TA is (cond(A))? (see Golub
(1983)). A badly conditioned matrix can drastically affect the approximate solution of a
system of linear equations.

An alternative algorithm (see Golub (1983), for example) for the solution of (2.6.4)
which avoids the formation of AA and thus reduces the effects of ill conditioning, is

outlined in Appendix A.2 and has been programed in Fortran 5 and implemented in the

examples of chapters 3 and 4.
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It should be noted that one could attempt to solve the overdetermined systemAb = f

directly, using Gaussian elimination, but this would not necessarily correspond to a best
approximation problem. In fact, there may be no solution if f is not in the column space
of A. However, the discrete least squares problem (ie the best approximation problem

in the 2-norm) always has a solution.

Whatever the choice of algorithm, the numerical solution of a system of linear
equations is subject to roundoff errors. It is always advisable to pre-condition the matrix
A. This can be done by scaling the rows or columns. Row scaling is equivalent to solving
a weighted least squares problem where positive weights are added to the definition of
the least squares norm. The choice of weights can be very problem dependent and they
alter the least squares solution. Column scaling, on the other hand, can be used without
altering the solution and is easily applied. If the column vectors a; of A are scaled by
§aj 7', then van der Sluis (1969) has shown that the condition number of A is within a
factor of n% of the minimum that is possible with this type of scaling. This form of

pre-conditioning is used in our numerical experiments.

Let us consider the case m=n once again. In this case, the b.a. problem is solved
directly by finding the b € R" such that
Ab=f.

This corresponds to interpolation (or collocation) to boundary data by the function ¢, .

Under the conformal mapping {=e™, this is just interpolation to boundary data by

harmonic polynomials (plus a log term).




Now, although interpolation may be the simplest and most natural approximation
to implement on a finite point set, it is by no means the best. In fact, it can lead to entirely
erroneous results. This is often most graphically illustrated if derivatives of the
approximate series solution are required, or values of the approximate solution are

computed at non-collocation points.

What is more, convergence of the series of approximating functions ¢, as 1 — e

can not be expected for all sequences of sets of interpolation points.(The classic examples
of Runge can be alluded to for the one dimensional interpolation by polynomials.)

Curtiss (1960) has examined the convergence question for complex and harmonic
polynomial interpolation to boundary values on the unit circle. It is possible to find
sequences of interpolation points on the unit circle that guarantee convergence of the
polynomials. He concludes that, for a general smooth boundary T, it is most probable that
sequences of sets of interpolation points do exist for which accompanying polynomials
converge to the solution of a Dirichlet boundary value problem; but to determine these
sequences would require knowledge of the proper placement of the interpolation points
on the corresponding unitcircle. That is, the unit circle could be obtained under a conformal
map, but in general such a map would not be known and in the event that it was, an
alternative method of solution would undoubtedly be employed.

Since the present method is essentially approximation by harmonic polynomials in
the appropriate complex plane, it is expected that these same conclusions apply to

interpolation in our case.

In short, the simplest approach, that of interpolation to boundary values, should be

used with some caution.
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On the other hand, Fenton and Rienecker (1982) solve a water wave problem using
interpolation to harmonic functions and do not report any difficulties with differentiating
the series that they obtain. even though such derivatives are used in subsequent
calculations.

Levin (1980) has also noted the difficultics encountered with collocation
approximations of harmonic functions and has suggested a means of computing the best
interpolation set. Unfortunately, the techn ,ue requires knowledge of the Green’s function
for the given domain, and cannot therefore be of assistance in the present situation.

In the following chapters we will present some results which dramatically reveal
the gross errors that can be incurred with the naive use of interpolation. We shall see that

even a slightly overdetermined (m > n) system leads to perfectly acceptable behaviour.

2.8 Best Approximation by Nonlinear Functions

Introduction
In this section, a nonlinear approximation scheme is examined. This time, the

approximating functions take the form
0.0 =bo+ 3 b1b;..%) @28.1)

where v is a nonlinear function of the parameters b, ,,. For (2.8.1) to represent the trial

solution in the boundary approximation method, the functions ¥ must be particular
solutions of the Laplace equati~n. (And of course, we impose the restriction that they be
2n —periodic in the variable x.)

Unlike the linear case, a general theory of best approximation by nonlinear functions
islacking. Thequestions of existence, uniqueness and degree of convergence of a sequence
of best approximations are not readily answered. In this section, the trial functions (2.8.1)

are considered to be a logical next step to the preceding work on linear approximation.
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As such, it is hoped that the discussion herein provides motivation for (if not rigorous
justification for) the choice of functions ¥ to be used. The numerical results presented in

chapter 4 speak for themselves.

The particular choice of functions yis suggested by the following example. As usual,
it is instructive to work in the complex { —plane (§ =exp(-iz)). Let D; be a simply
connected domain, covering the origin and having boundary aD;. Consider th. Dirichlet
problem

VoE =0 , EnebD (2.8.2)
OEN)=bEm), (Emn)edD; (2.8.3)

This corresponds to a potential problem on a periodic semi-infinite domain in the

(x,y) —plane. A worked example is provided by the time-dependent Hele-Shaw problem

given in chapter 4.

Recall that a linear approximation of the solution to (2.8.2),(2.8.3) assumes the form
‘bu(é’ Tl) = mjzo cjcj°

That is, the analytic function f({) constructed from @ and its harmonic conjugate, takes

as an approximation, a complex polynomial in {:
fi=Ecp.
=0
Runge (1885) has established the following: Let 0D, be a Jordan curve and let £()

be analytic on 5; . Given € > 0, there exists a rational function

a A
RO =A,+ X+

2.8.4
1"C'C/ ( )

whose poles lie exterior to B; and for which

IAQ)-R©)I <&
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forall{ e D;.

This is a special case of the more general rational approximation

i a,-C’

R, @G =5"—

£
In one dimension, the merits of rational approximation are well known. For many
problems the results are superior to those obtained by polynomial approximation, both in
terms of accuracy and efficiency. For analytic functions of a complex variable, the rational
function R,, constructed from the power series of a known analytic function is usually
referred to as a Pade approximation, and often exhibits striking convergence properties.
The success of Pade approximation may in part be due to its interpretation as a means
of accelerating the convergence of the given power series. For example, Shanks (1955)

has established the following. He defines a sequence of operators €,(A,) to be applied to

the sequence of partial sums of given power series,

An = i aigi'

i=0
(For the definition of e,(A,) for general k, see Shanks (1955). Note, however, that for
k=1,

(AtH-lAn—l _AE)

“aU) =+ A, —24)

which is the well known Aitken acceleration. The field of numerical analysis is replete
with examples ‘where this expression is used with considerable success as a means of
accelerating a sequence’s convergence.)

Now, Shanks goes on to show that

e,(A,)=R,,
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for k2n,n=1,2,.... Of course, it'is the real part of R,, that would be used as an

approximation, since we are given information about ® only, in the form of a boundary
condition. In addition, a particular choice of degree of the rational function would have
to be made.

The expression (2.8.4) is the partial fraction decomposition of a rational function of
two polynomials of degree n, having simple poles only. Itis the real part of this expression

which is taken as the nonlinear approximation for the harmonic function @ . That is, let

_ % _4 }
¢,-9‘{Ao+’_§ =5 2.8.5)

If the original problem is symmetric about x =0 then the poles {; lie along the real
axis in the { —plane and the constants A; are also real. Furthermore, if we restrict the

singularities to lie along 8 = 0 only, then we can choose {; = exp(b; , ) and the expression

for ¢, has a particularly simple form in the (x,y)-plane. We have, after some

simplification

_ < Sinh(bj +8 " y)
% =bo+ ,-?; bj(cosh(b,- a=y)— cosx) (286)

For D defined by -t <x <®, -0 < y < g(x), the only singularities in ¢, are along the
y —axis at the points y = b, ,,,j = 1,...,n. We can restrict the singularities to lie outside
D ifb;,,>g0foreachj=1,...,n.
Existence of a best approximation

Hobby and Rice (1967) have studied the problem of best approximation by nonlinear
functions of the form (2.8.1). In the context of the problem just discussed, let the

approximating functions take the form (2.8.6) with

o sinh(b - y)
Wbix) = cosh(b —y)-cosx
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A y~polynomial of order n is defined to be any element of L,(3D) of the form (2.8.1)

with (x,y)e oD anda $b,,, <b,,,,... <by, <P. Denote by P,,, the set of all
y-polynomials of order n. Then, given f € L,(3D), the best approximation problem
becomes: find ¢" € P, such that

1¢°-A1,= inf 10,-11,.

Now, the existence of a Y —polynomial of best approximation does not immediately

follow, as in the linear case, for the set P,, is not closed. For example, let

Yl :'Yze P’,n .'Y1¢72Whel'c

. sinh(b; - y) 12,
* cosh(b; —y)—cosx ’
Clearly
-Z:—_%zz €P,,
but
ﬂ Y=Y _ 1-cosh(b, —y)cosx

= li =
db, s,‘-tg, b,-b, (cosh(b,-y)~-cosx)

which is an unlikely candidate for P, ,. That is, there exists a sequence of Y—polynomials

whose limit is not contained in P, , and therefore P, , is not closed.

This difficulty is circumvented by enlarging the set of y—polynomials in an
appropriate way to include derivatives of the polynomials up to order n-1 (see Hobby and
Rice (1967)).

The set extended in this way admits of a best approximation, but the usefulness of
the result remains ir question. For example, the set of singularities b, , ,,j = 1,...,7 would

not normally be restricted to the closed set [, B], but would in fact be chosen from the

set (2 (0),00).
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The above discussion should at least provide some indication of the complexities
of a nonlinear approximation problem.

Computation of a best approximation
Most of the work on y-polynomials has been confined to a discussion of the

characterization of the best approximation in the maximum norm. None of this is
applicable to the case at hand, as we have chosen to use the L, norm. Nevertheless, some
excellent algorithms exist for the solution of the discrete least squares problem. In the
examples of the following chapters, it is assumed that a best approximation exists and we

attempt to find one using a general nonlinear solver.

The function to be minimized in the least squares sense is f(b) where
£®)= 0,00 =5y~ £ b1, %)
fori=1,....m ,m22n+1andx; € dD. That is, we wish to find be R**' which
minimizes
F(b) =11} * =T

The minimum of F (b) is usually found by an iterative procedure. Assume b* is an

approximation for the minimum at the k® step and find a correction vector h* so that
b**'=b"+n'.
Expand F(b) in a Taylor series about b (dropping the superscript k),
F(b+h)=e* “F(b)
and retain terms up to second order in the components of h . Now, h should be chosen to

minimize the quadratic expression F (b + h) and a necessary condition for this is that

F -
=0 » i=l2.2n4l
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Hence, the current correction h is the solution to the linear system

(J’J+ 3 f;H‘)n=-J'f 28.7)

where / is the Jacobian matrix of first derivatives and H' is the Hessian matrix of second

derivatives,

Now, most nonlinear solvers are characterized by the way in which the second
derivative terms of (2.8.7) are treated. If these terms are omitted altogether, the method
is called a Gauss algorithm. It is a first order method only. If the function f(b) is given
explicitly, as it is in our case, the second derivative terms may be computed directly at
each step of the iterative process. This can be a time consuming business, but the
convergence is now second order.

A method which works very well is the Levenberg-Marquardt algorithm (Levenberg
(1944) and Marquardt (1963)). It involves solving for a new direction vector h from the

linear system
(T +Mh=-J"f (2.8.8)
where A 2 0 is an arbitrary parameter. The inclusion of A introduces a bias in h toward

the steepest descent vecjor —=2J7f of the function being minimized, F(b). The only
difficulty with this method involves a suitable choice of the parameter A. Apart from this,

equations (2.8.8) are seen to be just the normal equations for the residual

'=[\IJXI]" +[(|;]'
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This means that the nonlinear solver reduces, at each iteration, to the solution of a system
of linear equations which can be solved in a stable manner using the Householder algorithm
outlined "1 the appendix A.2.

In the computations involving the nonlinear approximation method which appear
in the later chapters a Levenberg-Marquardt algorithm is used. In fact, routines were
written in Fortran $ to solve the Gauss method, the more accurate method with the second
derivatives retained, and the Levenberg-Marquardt scheme. When tested on a sample
potential problem, the Levenberg-Marquardt algorithm proved to be the more robust,
provided a "good" choice of A was used. In view of this difficulty with the choice of A,a
packaged routine was eventually adopted. The MINPACK (Argonne National Laboratory,
1980) routine automatically adjusts the parameter A as the iterations proceed. The
numerical results for the nonlinear approximations presented in chapters 3 and 4 are
generated using this MINPACK routine. It is required of the user to supply a subroutine

which computes both J and the residuals f;.

The proposed nonlinear scheme, to the best of our knowledge, has not been tested
on a potential problem in the manner outlined and certainly not incorporated into a
calculation of a moving boundary problem. However, Menikoff and Zemach (1983) do
make use of a partial fraction representation similar to (2.8.4) in connection with their
calculation of a Rayleigh-Taylor instability. In that paper, they solve the accompanying
potential problem via conformal mapping to a canonical domain (the upper half plane)
and a Green’s function approach. They do not use the partial fraction representation in

the time-dependent calculation. Rather, it is used only as a model for approximating

interior values of the potential, stream function, velocities etc. once these quantities along

the free boundary have already been found by alternative means.
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CHAPTER 3

Electrochemical Machining Problems

3.1 Intreduction

Electrochemical machining (ECM) is the name given to the process of machining
one metal part by another using electrolysis. The cathode is a shaped tool and the anode
is the workpiece from which metal is being eroded. The two electrodes are separated by
a small gap which is filled with an electrolyte and an electric potential is applied across
the gap (see figure 3.1.1). The electrolyte is pumped through the gap to assist in removal
of the eroded material. In addition, the workpiece (anode) is fed toward the tool at a
constant rate to maintain a small gap size. Eventually a steady-state condition is reached
whercafter the two electrodes maintain a fixed position relative to each other.

There are actually two different processes associated with just the steady-state. The
direct free boundary probiem involves the determination of the steady anode shape for a
given cathode or tool shape. The indirect or inverse free boundary problem involves the
determination of the tool shape required to produce a specified steady anode shape. The
inverse problem is ill-posed, and in general, the more difficult of the two steady-state
problems to solve numerically.

The mathematical description of the unsteady process is amoving boundary problem

from the class considered in chapter 1. It is one of the simplest MBP from our class. The

43




feed
direction
—/\md.

electrolyte

cathode

Fig. 3.1.1 Definitior. Sketch
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potential is constant along the boundaries and the problem is well posed. In addition, the
steady state conditions can be ascertained a priori, given suitable initial conditions. This
provides an excellent example for illustrating the full time dependent numerical scheme.

In this section, we present the precise mathematical description for two-dimensional
ECM and in the following section, previous work on the problem is reviewed. Section
3.3 addresses the potential problem related to the steady-state problem. Since it is possible
to derive an analytic solution, this provides a quantitative means of testing the linear
approximation method discussed in chapter 2, before incorporating itinto a time dependent
calculation. An example of the full time dependent ECM problem is treated numerically
in section 3.4. The numerical solution of the evolution equation is outlined there.

The potential for application of boundary approximation techniques to the
difficult inverse problems cannot be overlooked. In section 3.5, we briefly examine the
numerical solution of the inverse ECM probiem.

Mathematical Description of ECM

The complete description of the machining problem must derive from Maxwell’s
equations governing the electromagnetic field. McGeough and Rasmussen (1974)
provide the details. Briefly, the curl of the electric field is taken to be zero so that we

may define a scalar electric potential ¢ such that

E=V$
which together with
V-E=0
gives
V=0 3.1.1)

between the two electrodes. The potential is prescribed on the two electrodes,

o=V on the anode (3.1.2a)

$=0 on the cathode (3.1.2h)




In addition, an equation relating the dissolution rate of the anode and the electric

field is necessary. Faraday’s law and Ohms law together yield

X =Moo (3.13)

wherexis apoint on the anode surface and M is a constant referred toas the electrochemical

machining constant. The term @j is due to the fact that the anode is fed toward the cathode

at a constant rate o.
Finally, we assume periodicity in the x-direction, the period being 2L. The

description can be nondimensionalized as follows. Let

._xm ._0 -_ oL
=T ¢ =y O =MV
._ym o TMV:

y —L - Lz

The equations (3.1.1), (3.1.2) and (3.1.3) become (dropping the starred notation):

V’q, =0 (3.1.4)
0=1 on the anode (3.1.5)
¢=0  on the cathode (3.1.6)

%’tf =Vo-aj on the anode 3.1.7)

together with an assumed 2x —periodicity in the x-direction.

The equation (3.1.7) yields immediately the two equations

“_, a1
d
—=0,-a (3.1.9)

representing the velocity of the x, y coordinates of a point on :he anode surface.

Alternatively, we may express the evolution equation in the form:




8=9,-84¢-a (3.1.10)
obtained from the total derivative of y = g(x,t) with respect to ¢ and using equations

(3.1.8) and (3.1.9).(The function g represents the anode profile.)
Yet another form of the free surface equation is possible. From¢=1o0n y =g(x)

and on taking differentials,

0%, 0¥
_¢:-¢xdt+¢ydt

4, =0, +¢}-ap, .

This can be expressed succinctly in terms of the complex potential, w = ¢+ iy . That is,

()%

we may write

2 3
-05(—-) (3.1.11)
dz

3.2 Review

The early work on ECM was applied to the direct time independent problem and
almost always pertained to two-dimensional problems. Collett, Hewson-Browne and
Windle (1970) obtained some semi-analytic solutions in series form for restricted cathode
tool shapes. Hewson-Browne (1971) extended the method to cover a wider class of
two-dimensional tool shapes. A complex variable technique was applied by Nilson and
Tsuei (1975) and again a similar approach was considered by Hougard (1977). Both of
these latter techniques involved an iterative numerical scheme for computing the required
anode shape by working in the plane of the complex potential as opposed to the physical

plane. The transformed domain is rectangular and consequently many of the difficulities

associated with the free boundary are avoided.
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Sloan (1986) also makes use of a coordinate transformation. The physical domain
is mapped onto a square and the transformed equations discretized by finite differences.
The result is a system of nonlinear equations which are treated by a Newton like iteration.

The full time dependent ECM problem, as formulated by Mcgeough and Rasmussen
(1974) has since been treated by a variety of numerical techniques. Some two-dimensional
annular machining problems were computed by Christiansen and Rasmussen (1976) using
an integral equations approach. A Kantorovich method was used by Forsyth and
Rasmussen (1979) to compute some two dimensional problems. Each of these methods
is front-tracking. That is, the shape of the workpiece is followed from time step to time
step via the evolution equation for the free surface. The potential field for a new domain
is computed at each step of the process.

A finite element approximation of a variational inequality formulation is provided
in Elliott (1980) (The existence and uniqueness of the solution of the general ECM problem
are included in this paper). The approach has considerable appeal since it provides a fixed
domain method for the computation of a moving boundary problem. Forsyth and
Rasmussen (1980) use a similar derivation of the variational inequality method and
compare their numerical results with a conventional front-tracking calculation (Forsyth
and Rasmussen (1979). If a high degree of accuracy is required, the two approaches involve
comparable computing times. However, the variational inequality requires a zero feed
rate which represents a significant disadvantage in planar machining problems.
Furthermore, the variational approach is not readily adapted to electroforming problems,
unlike the front-tracking methods. They conclude that the front-tracking approach is the
more flexible of the two and consequently is the preferred method.

The two dimensional inverse problem of ECM is solved exactiy by Krylov (1968),
for some simple geometries. Nilson and Tsuei (1974) present a general method for

obtaining exact solutions to the two dimensional case. They go on (Nilson and Tsuei

(1976)) to provide a numerical method to be used when the data is available only indiscrete




form. Lacey (1985) provides another analytic approach to the inverse problem, which the
author then extends to the three dimensional case. Finally, we mention that there ar¢ a
number of other areas of applied mechanics where inverse problems arise having a similar
mathematical description. We note in passing, the applications of porous cooling and
radiation melting treated by Goldstein and Siegel (1970) and Siegel (1973).

3.3 Steady State ECM

The example which we consider is related to a steady state electrochemical

machining problem for which an analytic solution exists.

Let y =g(x) and y = h(x) be the anode and cathode surfaces, respectively, of an
electrolytic cell. Then the steady state electrochemical machining problem consists of
finding the electric potential ¢(x, y) and either g(x) or A(x) such that

V=0 , hx)<y<g®)
=0 , Yy=h(x) (3.3.1)
6=1 , ¢,-g9.=a , y=g(x)
h(x) is given in the direct steady-state problem whereas g(x) is known in the inverse
problem.

Suppose that g (x) is given. Then, together with the two conditions along y = g(x)

we have a Cauchy problem for ¢, which can be readily solved by a complex variables

approach (see Nielson and Tseui (1974)). The second condition can be expressed more

compactly as
Y = -0
where y is the harmonic conjugate to ¢ . This follows from the steady form of the free

surface condition, (3.1.11). If we interchange the dependent and independent variables

by mapping to the plane of the complex potential,
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w=o+iy
then both x and y are known functions of y along ¢ = 1 . By direct analytic continuation

in the w-plane, we have

, ilv= l)+ig(i (w- 1))
o

L* ]

For example, if

1
8(1)—acosx+a

_aN
z= i[1+ a c:osh(W ! J] (3.3.2)
o a

= 1 v

h(y)=a cosh( )cos( )
=Yy 1Y (W

x(y) = +a smh( )su\( )

In this section, we assume that both A(x) and g(x) are given as above and then we

then we have

Along ¢ =0, then, we have

(3.3.3)

calculate ¢ . It is an easy matter, then, to check the accuracy of the solution obtained by
the boundary approximation method.

The approximate solution may be written in the form
p=1
6, =b,+b,,y + X [b, sinh(jy) +b,,  cosh(jy) cos(jx) (3.3.4)
=1

wheren = 2p . Because of the symmetry, we need only considerQ < x <x. Alongy = g(x)
we use the uniform x-grid

O=x,<x,<...<x,=T.
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Along y = h(x) we use a uniform y grid, which because of equation (3.3.3) leads to a

nonuniform x grid

= e KX =K.
0 x;*'<x§n< X, =n

With this notation, n represents the total number of unknowns and m is the total number

of boundary points.

The results are mainly presented in the form of the root mean square error between
the calculated solution and the analytic solution as given by (3.3.2); we compare not only

¢ but also ¢, and ¢, . We define the root mean square error

_|L$ - 1§
E,= [m .-§.(¢‘(x") d(x,)) ]
where x; is a pointon y = g(x) or y = h(x), and ¢(x;) is the exact boundary value of ¢ at

x, . Expressions for the root mean square error in ¢, and ¢, are defined similarly with the
computed values of ¢, and ¢, determined from term by term differentiation.

We also calculate the maximum error defined by

Eps= m:xl d.(x,) — o(x,)|

where the points x; are the m boundary points with an additional one hundred points on

the boundary at uniform intervals of x . These additional points are not used in the
determination of the series coefficients. They serve only to test the usefulness of ¢, as a
functional approximant.

An interesting feature of the exact solution (3.3.2) from the computational point of
view is the existence of singularities outside of the domain. We have shown in chapter 2
that the rate of convergence should decrease as a singularity moves closer to the boundary
of the solution domain, and our numerical calculations confirm this. There are singularities

. ' . d '
in the solution, corresponding to the zeros of ;;';. These are given by




—ﬂ
o=1 —asinh"(%) , y=0
o= 1+asinh-‘(£) , Y=3x.
If a.decreases or a increases, the singularitiesmovecloserto¢ =1 . Whena = 1/ sinh“(%) R

the singularity corresponding to y=O0 resides on the cathode y=h(x). For
a>1/ sinh“(f) , the singularities remain outside of the domain of interest and their position

in the x-y plane is given by
y =—l-—sinh"(l)+‘h +a*,x=0
o a
y =é+sinh"(%)—\/l +a’,x=%x.

The linear system was solved using a singular value decomposition to minimize the
effects of ill conditioning on the computed solution. However, when the computations
were repeated with the Householder algorithm and with m 22n, no difference was

detected in the results to the significant figures shown in the tables.

In table 3.3.1, we use a2 =2.5 and @ =0.5, which places the closest singularity a

vertical distance of 3.52 from A (x) . The results in the table show that for n fixed (n =50),
an increase in m gives a rapid decrease in the errors for ¢, and ¢, . However, we sce that
m:n = 2:1 is sufficient. As expected, the errors in ¢, and §, are larger than the errors in
¢ . The results of the collocation approximation are unacceptable and may well be suffering

from the effects of severe ill conditioning.




0.283 E+00

Table 3.3.1 The Ratio m:n

a=25,a=05

0.382 E-08

0.181 E+01

0.787 E+00

6.56 E+11

0.104 E+00

0.809 E-05

0.624 E+00

0.129 E+00

2.82 E+10

0.845 E-04

0.279 E-04

0.493 E-03

0.507 E-03

1.63 E+09

0.839 E-04

0.278 E-04

0.495 E-03

0.503 E-03

1.62 E+09

0.277 E-04

0.495 E-03

0.501 E-03

1.53 E+H09

0.834 E-04

Another important issue is the convergence of the approximation with increasing
number of terms in the expansion. For table 3.3.2, we used & = 3.0 and a =0.25 which
places the singularity further away from A (x) (at a distance of 4.52) than in table 3.3.1.
A constantratio of 2:1 (m:n) was maintai 2d and the corresponding results for collocation
are given simultaneously. In both cases, the convergence of the method is clearly
demonstrated. For all choices of n the overdetermined system performs better than
collocation. As n grows larger, the condition number of the matrix equation is enormous
and the results of collocation in particular may become suspect. The condition number of
the overdetermined system is in all cases less than that of the corresponding collocation

system.,




Table 3.3.2 Convergence for Increasing n

0.248 E-02
| 0.742 E-02

x=3.0,a=025

0.107 E-02
0232 E-13

0.485 E-02
0.121 EO1

0.612 E-02
0479 E-02

1.23 E+01
242 E+0!

0.172 E-04
0285 E-03

0.70S E-05
0496 E-13

0.642 E-04
0.804 E-03

0.675 E-04
0.224 E-03

2.50 E+02
1.72 E+03

0.167 E-06
0254 E-04

0.687 E-07
0.902 E-13

0.941 E-06
0.102 E-03

0.966 E-06
0233 E-04

6.75 E+03
2.15 E+05

0.198 E-08
0.927 E-06

0.793 E-09
0.957 E-13

0.145 E-07
0538 E-O5

0.148 E-07
0.979 E-06

1.89 E+05
1.08 E+07

0.254 E-10
0492 E-08

0.100 E-10
0.100 E-12

0.230 E-09
0420 E-07

0.233 E-09
0632 E-08

5.37 E+06
1.30 E+08

0.343 E-12
0348 E-09

0.174 E-12
0.137 E-12

0.376 E-11
0.238 E-08

0.383E-11
0536 E-09

1.54 E+08

8.16 E+09

-t

In table 3.3.3, we present some results showing the effects of the proximity of the
singularity to 2(x) . With n =30, m =60 and a = 0.25, we calculated solutions for three
different feedrates ¢ . The results show that the accuracy of the solution deteriorates as

the singularity moves closerto y = A(x) . This is in agreement with our error estimates of

chapter 2.




a=025,n=30,m =60

0.333 E-03

0.117 E-03

0.139 E-02

Table 3.3.3 Effects of Proximity of Singularity

0.143 E-02

1.60 E+07

0.177 E-05

0.449 E-06

0.603 E-05

0.618 E-05

494 E+04

0.167 E-06

0.687 E-07

0.941 E-06

0.966 E-06

6.75 E+03 |

Ay represents the vertical distance of the singularity from A(0)

The series coefficients for the two cases o= 1.0, 3.0 are presented in table 3.3.4.

As expected, they show a steady decrease in magnitude as the series index increases. The
convergence is somewhat stronger in the case o = 3.0, where the singularities are further
from the boundary. For large series index j , the coefficients of the hyperbolic sine (b;)
and the hyperbolic cosine b; ., are very close in magnitude and opposite in sign. This is
quite apparent in the case aa=1.0. It is, of course, a consequence of the nearness in

magnitude of the two hyperbolic functions for large argument. If the approximate form
p—1 .
b.=c,+cp,y + Zl [c,e” +c;, ,e7"] cos(jx)
I =
had been used instead of (3.3.4), then

1 1
5 =5(bj+bi*r) v Crep =_-2'(b1 =b,.,)-
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In this case, the coefficients of the growing exponential (if y > 1) are very small, as is
necessary for rapid convergence. In practice, the matrices proved to be better conditioned
when the form (3.3.4) was used.

This behaviour in the coefficients does, however, raise an interesting point. Could
we manage with fewer terms in the expansion when summing the series? That the larger
number of unknowns gives better convergence is clear from the table 3.3.2; but could we
truncate the series ¢, if it is to be re-evaluated at some (x,y) point or if the derivatives of
the series are to be used? It was indeed found, that for some (x,y) values this was the case.
However, the difficult questions of where to truncate the series and for what values of

{x,y), made this process impossible to automate.



a=1.0

b, =0.296E +00

b,=0.120E +00

b,=0.608E —-01

b,=0.374E - 01

b, =0.251E -01

b, =0.179E - 01

b, =0.130E -01

by =0.950E - 02

by = 0.665E —02

b,,=0.425E - 02
b, =C 233E -02
b, =C.101E —-02

Table 3.3.4 The Coefficients (n=30, p=15)

a =025
b, =-0.389E +00
b,,=-0.116E +00
b,y =—-0.611E -01
b,y = ~0.374E - 01
by, =—0.251E -01
b,, =-0.179E -01
b,, =-0.130E -01
by =-0.950E -02
b,, = -0.665E ~02
b,s =—0.425E -02
b, =-0.233E -02
b, =-0.101E -02

b,;=0.301E -03 b, =-0.301E -03

b,=04572~04  b,y=-0457E —04

bs=—-0.484E —05 b, =0.100E +01
3.4 Unsteady ECM

a=3.0

b, =0.257E +00

b,=0.118E +00

b,=0.214E -01

b,=0.833E -02

by, =0.260E - 02

b, =0.101E — 02

b, =0.375E -03

by =0.150E ~03

b,=0.601E - 04

b, = 0.246E - 04
b, =0.981E -05
by, =0.359E -05
b,; =0.1G3E -05
b,,=0.168E - 06

b, =—0.358E - 08

a =025

b, =—-0.798E +00
b, =-0.686E —01
b, =-0.281E -01
b,y =-0.725E -02
by =-0.279E - 02
b,, =-0971E - 03
b,, = 0.382E - 03
b,; =-0.149E -03
b,, =—0.604E - 04
b, =—0.245E ~ 04
b,s =—0.982E - 05
b, =~-.0358E -05
b,s =-0.103E - 05
by =—0.168E - 06
b, =0.300F +01

An example of the unsteady ECM problem is provided in this scction. The numerical

solution of (3.1.4)-(3.1 7) proceeds in a step-wise fashion as follows. The anode and

cathode profiles are assumed given initially and the new ano-e position after a time Ar is

determined by numerically integrating the evolution equation :+ the form (3.1.10). The



potential problem is then solved by the boundary approximation method at the new time
(using (3.3.4)) and the entire process is repeated. Since we have the opportunity to express
derivatives with respect to x and y at given points explicitly in terms of known
functions at those points, it is preferrable to approximate the evolution equation by a
system of ordinary differential equations. Thus, if the x variable is discretized
-KsSx,S...8x,_,SXx .S,

the equations (3.1.8), (3.1.9) reprcsent a coupled system of ordinary differential equations
for each point (x;(¢), y;(¢)) on the free surface. Alternatively, (3.1.10) represents a system
of ordinary differential equations (uncoupled) for each coordinate g(x;,t) on the free
surface. In either case, the evolution equation may be approximated by the system of
ordinary differential equations having the form

u, =f(u,r) (3.4.1)

We have chosen to soive this system using the following predictor-corrector format:

U = gV 2AL @ (34.2)
u;(""=u,-(')+% &+ (34.3)

where u® represents the solution at x, and after k time steps with Ar =¢**" - (®) The

second equation resembles the Crank-Nicholson method for iteratively solving (3.4.1),
but with the starting ve'ues predicted according to (3.4.2). (3.4.2) is called the Midpoint
formula and (3.4.3) is the Trapezoidal formula. As we shall see in chapter 4, the ordinary
differential equations may well be stiff and use of an implicit scheme is therefore
recommended. The second order trapezoidal method is well suited for solving such

unstable systems.

A variable stepsize Az is incorporated in an attempt to control the truncation error

T, of the scheme. The truncation error of both predictor and corrector formulae is O (At ¥




for fixed Az , and one could simply perform repeated applications of, or iterations on, the
equation (3.4.3) until a desired error tolerance is met. This could prove costly, however,
as repeated evaluation of the functions f; is time consuming. It is preferrable to adjust the
stepsize in such a fashion that one application each of (3.4.2) and (3.4.3) produces a
satisfactory truncation error. The algorithm which accomplishes this is bviefly outlined
below. The details may be found in Atkinson (1978).

An error tolerance 1t is specified and the stepsize Ar at each stage is chosen to satisfy

the condition
5—4& qT|<tA (.4.4)

The calculation proceeds with a given stepsize Ar , making one application of the predictor

(3.4.2) and one application of the corrector (3.4.3) until the condition (3.4.4) is violated.
At this stage, a new stepsize is chosen such that the error tolerance is maintained and the
calculation is then restarted. Since the predictor equation requires two starting values (ie.
solutions at two prior time steps), we must have a process of restarting the calculation

when the stepsize is altered. The single step Euler method
u‘_(n-fl) - u‘-(.)‘i'AIf‘-(.)
is used to restart the calculation. It is of lower order (O (A?)) and twc iterations in (3.4.3)

are necessary to meet the required error tolerance (3.4.4) (again, see Atkinson (1978) for

the details).

The first time dependent example to be considered has the steady state solution given

by equation (3.3.2). That is, the cathode tool shape is given by




—_ﬁ

=¥ asinhl L lsinl ¥
x(y)= a+asmh(a)sm(a)

ol

Initially, the anode workpiece is a flat plate represented by g(x,0) = constant . The exact

steady profile is given by
=aCcosx + 1
4 o

Three cases, corresponding to different & ,a , and already examined at steady state

in the last section, are presented in figures 3.4.1, 3.4.2, and 3.4.3. In each case, we have
taken n =30, m = 60 and the amplitude a =0.25 . In figure 3.4.1, the feed rateisax = 1.0.
The initial anode profile is g (x,0) = 1.5. The lower curve represents the given cathode
profile and the upper curves correspond to the anode shapes at selected times. The
maximum error E_,, between the computed tine dependent profile and the exact steady
profile was monitored at each time step. A steady reduction in E_,, was observed. After
a time of about t=3.2, the value of £_,, was 0.638 E-01 and by t=10.0, E,, = 0.892E -C4 .

The actual computing cost for the run to t=10.0 was approximately 344 seconds of CPU

time.
In figure 3.4.2, a = 2.0 and the initial profile is g(x,0) = 1.0 . The value of E,,,, was
observed to be 0.143 E-02 by a time of 2.0. By t = 4.0, the difference between computed

and exact profiles was only 0.609 E-06. The actual computing cost for a run to t =4.0

was approximately 140 seconds of CPU time.
Finally, the case of feed rate oo =3.0 is shown in figure 3.4.3. With this value of
o, E,,, =0.363E — 06 already by a time of ¢ = 2.0. The value is not significantly improved

by running the program longer, the limitations in accuracy being governed by the spacial

and temporal errors committed.
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In each of these cases, the error tolerance in the o.d.e. algorithm was t=0.01. A
minimum time step of A,, =0.001 was imposed. For the two cases, ®=1.0,2.0, the
maximum time step chosen vas k., =0.05 and in both cases, the calculation proceeded
to the times shown without requiring a reduction in step size. The same values of g (x) to
five decimal places were observed in each case when the maximum time step was reduced
by a factor of two. On the other hand, when h,,, was increased by a factor of two,
oscillations developed early in the anode profile and persisted through later times in the
calculztion, clearly showing up the dangers of employing too large a time step.

For the case au=3.0, it was necessary to reduce the maximum time step to
h,., = 0.025 . This was reasonable, in view of the fact that the larger feed rate produced
a more rapid change in anode position.

In figure 3.4.4, the same example is recomputed for a greater value of a . With

a =0.5 and a = 2.5, the aspect ratio is close to the allowable limits for this problem and
this type of numerical scheme.(We define the aspect ratio as the ratio of the change in y
to the change in x for the cathode profile.) Twenty-four terms in the series (n = 50) and
m = 100 boundary points were used. The initial anode shape was takentobe g(x,0)=1.0.
By a time of ¢ = 3.0, the value of E_,, was 0.343 E-05. The results are very good, but the
computing effort was substantially greater, owing to the elevated cost of solving a large
linear system at each time step. The execution time for a complete run to ¢ = 4.0 was 995
seconds of CPU time.

Each of the above examples has been compared with an exact steady state solution.
However, when an analytic solution is not available for comparison, another measure of
numerical accuracy must found. Let £, and E; be the maxi mum error and the root mean
square error, respectively, between the computed value of ¢, and the given boundary data.
It is a simple matier to calculate either or both of these quantities every time step, and in

this way. the accuracy of the potentia! model can be monitored. Bear in mind, that for a



Dirichlet problem with known boundary data, a maximum principle is in effect. That same
principle applies to the boundary approximation and so the maximum error in the
computed results is attained along the boundary.

For example, in the calculation with a =0.25 and a = 3.0, the value of E, afterone
time step was 0.682 E-07 and never exceeded 0.940 E-07 over the entire run. For the case
a =0.5 and a=2.5, the initial value of E; was 0.329 E-04 and remained on the same
order for the entire calculation. Of course, this is a very stable problem and this sort of
consistency should be expected of any respectable numerical routine. However, in an
unstable physical problem, simply monitoring the growth of E,, or E, will at least give

an indication of when the results of the potential calculation can no longer be trusted.

As a final test of the limits of the scheme, we have taken the cathode tool shape

h(x)= cxp(—4 sinz(%)) .

The aspect ratio is comparable to the last example, but the profile is more sharply peaked
nearx =0.

In figure 3.4.5, the machined profiles are shown for a number of time steps. Without
an exact solution for comparison, the accuracy remains in question. Certainly, the
computed profiles are smooth and exhibit the correct qualitative behaviour. The root mean
square error between the computed solution and the correct boundary data was observed
to be on the order of 107 throughout the entire calculation. The maximum difference
between the last profile shown in the figure and the c..mputed profile one time step earlier,
is less than 0.001, indicating that steady state has effectively been reached. Running the
program again with a larger value of n would allow for further comparison. However, we
are already close to the limits attainable for this problem. With n =40 for example, the

effects of ill conditioning are manifested in small corrugations in the free surface profile.
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3.5 The Inverse ECM Problem

The inverse problem is perhaps the more significant of the electrochemical
machining problems. A specified shape is to be produced by machining and we must
determine the shape of the tool required to accomplish this. In this section, we outline
two methods we have developed for the inverse problem &nd report the results of the
superior scheme.

The situation is described by equations (3.3.1), where this time, the curve y = g(x)
is specified and y = h(x) is to be determined. Two boundary conditions are given along
the curve + =g(x). This is a Cauchy problem and is ill-posed in the sense that small
changes in the given data can lead to large changes in the tool shape. What is more, for
given g (x) , there is an infinite family of admissable tool shapes, all of which can be used
to machine the desired cathode shape. We will seek the cathode shape corresponding to
the zero potential.

This problem has been solved analytically in two dimensions by Nilson and Tsuei
(1974) and by Lacey (1985). The latter approach requires knowledge of a special function,
the Schwarz function, which is not always available for the given anode geometry. Even
at that, it is not always the case that the anode shape can be given in analytic form. We
may have only a table of data representing the workpiece profile. In these circumnstances,
a reliable numerical approach is necessary.

The two conditions,
o=1 , y=-ox 3.5.1)
along y = g(x) provide given information about the analytic function w = ¢ + iy along a

curve. In the usual way, then, we could expand w in series form. The truncated series for

the real and imaginary parts of w take the form

p-1
6,=h,+b,, + EI [b,sinh(jy) +b,, , cosh(jy)| cos(jx) (3.5.2)



v, =-bx- ff‘,:[b, cosh(jy) + b, , sinh(jy)] sin(jx) (3.5.3)

The convergence of the series for points (x,y) away from the boundary is not guaranteed;

but we might expect that the series would perform well near the given curve.
The coefficients in the series could be found in the usual way, by descretizing x and

y = g(x) and applying conditions (3.5.1) simultaneously. Having found the coefficients,

we could then solve for the shape of the curve y = h(x) using the condition
oG, h(x)=0 , i=1l,....m (3.54)

This represents a set of nonlinear equations, one for each A; . Each equation in turn could

be treated by Newton’s method t « finding the roots of a nonlinear equation of a singie
variable.

All this is possible in principle. In practice, we have found the above procedure to
be moderately successful at best. For example, we have tested the approach on a variety

of cathode shapes of the form
g(x)=acosx +—
o

For amplitudes less thar 0.2, the agreement with the known analytic solution was good.
However, for larger amplitudes, the disagreement between computed and exact solutions

was substantial ard the approach was a.2andoned.

The above approach to the inverse problem lends itself to applications in three
dimensions; but its usefulness is clearly limited. However, an excellent approach, albeit
restricted to the two dimensional design problem, is described below.

By working in the plane of the complex potential, it is possible to numerically predict
highly distorted cathode tool designs. Recall, the analytic solution could be expressed in

the w-plane in the form



z = f(w)

where, in particular,

x=-¥
a
y=g8(x)

on the anode potential ¢ = 1. g(x) is periodic in x and assumed to be symmetric about

x =0. Consequently, g(x) is expressible in terms of a Fourier cosine series,
gix)=A,+ ‘i‘ A, coskx (3.5.5)

Again, by analytic continuation away from the surface ¢ =1, we have

z= i[(w; 1)+A,,-t- i A,coshk w=1)

k=] o o

(3.5.6)

Givern the tabulated function g (x) , the series (3.5.5) can be truncated and the coefficients

solved for by conventicnal means. Once the coefficients are known, any of the
equipotential surfaces corresponding to ¢ < 1 can be determined from (3.5.6). It should
be noted , however, that the series (3.5.6) may be very slowly convergent, foralongé< 1,

the series coefficients behave asymptotically like

=

Ae

If a sufficient number of boundary points are available, then fast Fourier transform
techniques can be used to efficiently determine the coefficients, even in the case of
extremely slow convergence. However, an alternative approximatiua has proved
remarkably successfully and does not require a large bank of data, nor does it involve

large numbers of coefficients. The approximate form of the solution is taken to be

- . cosh&=2
2, =i (“’a Db+ T b, a (3.5.7)

-1
=1 " | = by, ,cosh™"

L]



This form has the required periodicity and along ¢ = 1, reduces to

e
o
(3.5.8)
. cos?
yu = b0+ 2 b&

t=1 "] ~b,,, cosT
Foragivenvalueof y =g(x;),i =1,...,m 22n + 1, the parameters b, ,, are determined

by minimizing the corresponding least squares residual, using the Levenberg-Marquardt
algorithm referred to in section 2.8.

The method is illustrated on the following example, chosen for its sharply spiked
profile. Let

gx)=In(1 -2acosx+a®) , O0O<a<l

If this is expanded in a cosine series, we obtain

k=1

- 2ak
In(1-2acosx+a’)= 3 (——-k—-)coskx .

The exact solution of the inverse problem takes the form

z =i[(“"1)+1n(1-2acosh(””l)+a2)] (3.5.9)
o a
or in series form
- o _n %k -1
z=i[(w D, z( 2a )coshk(w l’] (3.5.10)
o b=\ k a

Note that the series does not converge when ¢ < 1 unless

[1 particular, along ¢ =0, we must have

1
ac*< 1.




This is precisely the condition that the branch points of the logarithm remain outside of
the domain O < ¢ < 1. The branch points are given by those values of ¢ and y for which

coshf &1 _1+ad
a ) 2
y=0

That is,

1
¢—liuh{;) , y=0.

Ifae* <1, the singularities reside outside of the domain of interest. However, for

values of a and a such that ge® is very nearly 1, the series (3.5.10) is very slowly

convergent.
We consider the case a =0.71, a =3.0. For this choice of a and o, the machined

cathode is the sharply spiked profile shown in figure 3.5.1. The parameters of the
approximate solution (3.5.8) appear in table 3.5.1. We havechosenn =9 and m =4,, s0
that there are only 19 unknowns. More data points were placed near ¥ =0 in order to
resolve the proper anode shape (see figure 3.5.2 for the field pattern). With this choice,
the root mean square error between the computed and exact values of g(x) is 0(107).
The only singularities in the appr. -ximate solution correspond to ¥ =0 and values of the
potential beyond the domain 0 £¢ < 1. A branch point in the exact solution resides at
¢ =-0.0275 , very near the zero potential.

The required tool design (¢ = 0) is the very steep trough shown in the figures and
was computed using the already determined parameters b, and equation (3.5.7).

Agreement with the analytic solut: “nis very good for valuesof x 2 1.5 . The accuracy

in the trough is somewhat poorer owing to the presence of the branch point. The root

mean square errors between the computed and exact solutions are shown in table 3.5.2.




To achieve comparable accuracy with the series approximation (3.5.10) would involve
on the order of two hundred terms in the series and at least as many boundary points. Also
included in the table are the results for several different values of n to illustrate the

convergence of the proposed scheme.

Table 3.5.1 The Parameters (n=9)

Linear terms Nonlinear terms
b, =0.408E +00 b,,=0.940F +00
b, =-0.112E - 01 b,; =0.918E +00
b, =-0.314E -01 b,, =0.875E +00
b, =-0.638E ~01 b,;=0.782E +00

b,=-0.113E +00

b, =0.651E +00

by =-0.171E +00 by, = 0.439E +00
be =-0.203E +00 by =0.255E +00
b, = -0.17SE +00 b,; =0.356E +00
by =-0.205E - 01 b,s =0.628E 01
by =—0.155E +00




Table 3.5.2 Errors in Computed Cathode Coordinates

0.242 E+00 0.385 E+00

0.620 E-O1 0953 E-01

0.182 E-O1 0.171 E-01

For larger values of n, the computation of the nonlinear parameters can be costly,
especially if the initial estimate for the parameters is poor. it is generally recommended
that the search for a minimum begin with a small value of n and a large error tolerance.
(The error tolerance in the MINPAK routin. must be supplied by the user. When the
difference bet een successive iterates meets a specified criterion depending on the
tolerance, the routine is terminated.) The error tolerance can then be gradually decreased
in stages until further improvement is impossible. At this stage, a larger value n (and again
a crude tolerance) may be chosen with the parameters just calculated being used as part
of the initial estimate for the new value of n. In this way, a calculation involving clos= to

twenty param :rs can be performed reasonably efficiently (less than ten minutes of CPU

time).



-SOJ

Fig. 3.5.1 Inverse ECM (a=3.0,a=0.71)
g(x) = In (1 - 2acosx + az)
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Fig. 3.5.2 Field Lines {a=3.0,a=0.71)
a(x) = In (1 - 2acosx + f)




3.6 Discussion

The linear boundary method presented in chapter 2 has been examined as a viable
candidate for approximation of the potential problems associated with electrochemical
machining. The convergence of the method has been confirmed numerically for a number
of steady state configurations. When applied to the unsteady problem, the method is seen
to be an efficient and accurate technique for simulating the dissolution of rei..- vely smooth
anode shapes. The largest aspectratios tested are comparable to those examined by Forsyth
and Rasmussen (1979) and Sloan (1986), although the former article does include
examples having more sharply spiked cathodes, for similar aspect ratio. For these sharply
varying shapes, the coordinate transformation of Forsyth and Rasmussen (1979) would
be recommended. For smooth profiles, however, the present method is almost certainly
more efficient and the programming effort is considerably less.

As the unsteady ECM is physically stable, any numerical instabilities in the time
dependent portion should be revealed by reducing the time step. No such instability was
observed. The only numerical difficulities arose in the spatial portion of the scheme. There,
the matrix systems were often badly conditioned. This is typical of linear boundary
methods and it is this feature of the method which limits its applications to relatively
simple geometries.

Aneifective numerical approach to the inverse problem of ECM has been developed.

The method, as it stands, is restricted to two dimensional problems, but is capable of

handling extremely distorted electrode shapes.
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CHAPTER 4

Hele-Shaw Flow

4.1 Introduction

In 1898, Hele-Shaw devised an experimental arrangement whereby an
incompressible viscous fluid is constrained to move between two close parallel plates. If
the plates are made of glass and a dye is introduced into the fluid, then .he flow pattern
is easily observed. The apparatus is referred to as a Hele-Shaw cell.

Recently, interest has grown in the mathematical description of Hele-Shaw flows
for its own sake. Some analytic solutions have been obtained, providing one of the few
examples of a nontrivial MBP having a known solution. This permits a quantitative
comparison with a numerical simulation of the mathematical model.

Lamb (1945) provides a derivation of the equations governing the flow. If the gap
width between the plates is b and the z —axis is taken perpendicular to the plates, then the

components of velocity of the flow are

1o, .,
= Zuaxz(b z)
1o . _
y= Zuayz(b z)

The x and y axes lie in the plane of the plates. | is the viscosity of the fluid and p

is the fluid pressure. If the velocities are averaged over the gap-width, we have
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__blap
12 dx
_bop
°T 12udy
Then,
U = Uge, + V2,
and the equation of continuity is
V.u=0.

This permits the introduction of a velocity potential

2

$=1
such that

u=-Vo
and

Vi =0.

Thus, the mean velocity in a Hele-Shaw cell can be taken to represent the motion
of an ideal fluid. Indeed, it was this observation which lead Hele-Shaw to conduct his
experiments. By placing obstacles in the flow field and a dye in the fluid, Hele-Shaw was
able to produce a visual representation of the flow pattern around the cbstacles. If two
immiscible fluids are introduced into the cell, the moticn of the interface between the
fluids provides a unique opportunity to observe a moving boundary problem.

There is a close analogy between flow in a Hele-Shaw cell and a number of other
physical processes. This allows the Hele-Shaw cell to be used as a feasible laboratory
model of a variety of pheiilomena. For example, the motion of an incompressible viscous
fluid through an isotropic homogeneous porous medium is governed by the equatior of

continuity
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V.-u=0

and Darcy’s law
K
u=—V
m p

where u is an average velocity, p is the pressure and X is the permeablity. Clearly, then,

the description of flow in 2 Hele-Shaw cell is identical to the flow in a porous medium
of permeability X = :—: The tlow of a viscous fluid through a porous medium has long
been a study of both practical and theoretical interest. The practical applications are
numerous and include the areas of petroleum eéngineering, groundwater flows and filtration
processes. And once again, the mathematical model of such flows is often a nontrivial
moving boundary problem. For example, when one fluid displaces another in a porous
medium, the interface between the two fluids is a moving boundary. This occurs in oil
reccvery processes whereby oil is driven through porous rock by another fluid, usually
water. This can lead to the phenomenon of fingering, where the less viscous water rushes
into the oil in the form of long fingers of fluid. This of course reduces the effectiveness
of the recovery process and is therefore a major concemn.

The Hele-Shaw cell c1n also be used to model the injection moulding of plastics
(see Richardson (1972?). It can even be thought of as a model for the bacic tv o-dimensional
electrochemical machining problem (see chapter 3). The injection moulding and ECM
problems are both examples of what are sometimes referred to as injzction problems.
These problems are weil-posed, and as we have noted, existence of a unique solution has
been established.

On the other hard, the suction problem, where fluid is extracted from a Hele-Shaw
cell is ill-pos=4 (see Elliott and Ockendon (1982)). Existence and uniqueness have not
yet been established in general; but several exact solutions have been constructed in

specific cases. It is such a problem as this that we choose to examine in this chapter. In



particular we wish to monitor the interface between two fluids in a Hele-Shaw channel,
where suction provides a pressure difference which drives one fluid into the other.
Depending on which fluid is the more viscous, the phenomenon of fingering can occur.

In section 4.2 we present a review of the Hele-Shaw problem together with some of
the numerical schemes that have been previously implemented. In sections 4.3, 4.4 and
4.5, several examples are presented for which there exist known analytic solutions. We
compare the results of linear and nonlinear boundary approximation methods with these
known solutions. In one example, the interface between two fluids is followed in time as
the instability or fingering process evolves. In another example, the initial free surface
profile is slightly perturbed and the ensuing flow is seen to diverge dramatically from that
of the first example. This clearly indicates the ill-posedness of the suction problem, and
provides a severe test of the numerical technique.

Lastly, in section 4.6, the stability of the time dependent portion of the numerical

scheme is briefly examined.

4.2 Review

The mathematical description of the instability of the of the interface between two
fluids in a Hele-Shaw cell (or porous medium) was first examined in the classic paper of
Saffman and Taylor (1958). Two immiscible fluids occupy a vertically positioned
Hele-Shaw cell chosen to lie in the (x, y) ~plane. The initial interface profile is a small
sinusiodal displacement

y = ge

of wavelength 2n/n. The sign of o determines the relative stability of the interface. Fluid

2 (the lower fluid) is driven vertically upwards with speed V > 0. Saffman and Taylor

used a first order perturbation analysis to show that the interface is unstable for small




initial disturbances of any wavelength if fluid 2 is the less viscous of the two fluids and
the effects of gravity and surface tension are neglected. If the effects of gravity are included,
the same conclusion holds for sufficiently large V.

The following condition on & was derived by Chuoke, van Meurs and van der Poel

(1959), when both gravity and surface tension effects are included:
o]
n W+ 1) = (P, = P)2K + (1, ~ W)V —n™K

where K is the permeability of the medium, here assumed to be the same for both fluids.

M, , K, are the corresponding viscosities, p, , P, the corresponding densities and y is the

surface tension parameter. g is the acceleration due to gravity. We have 6> 0 if
1
n® <7—K«p' = PJgK + (11, — 1))

Thus, the flow is still unstable beyond a cutoff value of the wavelength which depends
on the parameters of the problem. If the surface tension is small, the interface is unstable
to smaller and smaller wavelengths.

Labora /-y experiments confirm this instability in the Hele-Shaw problem. (The
experimental apparati:s is confined to a rectangular channel of fluid sandwiched between
two parallel glass plates. The entire apparatus is surrounded by a rigid frame to contain
the fluid. In this way, the apparatus can be rotated to a harizontal or vertical position (o
test the influence of gravity.) Saffman and Taylor (1958) include the results of some
experimentation which reveal the eventual growth of a single finger of less viscous fluid
emerging from a group of initially smaller unstable fingers. They analyse the shape of the
steady finger and find that it should grow to occupy a fraction A of the channel width.
Saffman (1959) actually obtains an exact solution describing the shape of the unsteady

finger in terms of the parameter A. Comparisons with the laboratory experiments seem to

suggest a value of A =172, but there is no satisfactory explanation to account for this




choice. Pitts (1980) repeated the Saffman-Taylor experiments and also found that a single
finger would grow to occupy one half of the channel width. He has suggested that, since
a film of displaced fluid must remain on the walls of the apparatus, the phenomena should
properly be treated as a three-dimensional problem.

In a more recent paper, McLean and Saffman (1981) perform a singular perturbation
analysis to test the effects of small surface tension on the steady finger profile. Again,
they find an infinite family of finger widths are possible. What is more, Vanden Broeck
(1983) has established the exi-. ..ce of countably infinite families of steady-state solutions
for each value of the surface tension parameter.

McLean and Saffman (1981) also discuss the stability of the steady finger to small
disturbances. Once again, the analysis is linear only. Itis found that the fingers themselves
are unstable to small disturbances, both with or without the inclusion of surface tension
effects. This is in complete discord with experim=nt, which as we have noted, shows only
the development of a long finger reaching a steady profile.

Thus, the theory predicts an infinity of possible solutions, all unstable to small
disturbances, whereas experiment has revealed only the development of a unique and
stable finger. It is these disagreements between theory and experiment which have
prompted a recent interest in the numerical simulation of the Hele-Shaw prcblem. Perhaps
if an accurate numerical scheme were able o foliow the developinent of a finger for a
long enough time, we might be abie to discern the growth or not of the predicicd linear
instablities. It is a challenging undertaking, as the numerical perturlations that are
introduced must also be subject to rapid growth.

Meyer(1981) presents a method of lines simulation of the time dependent Eele-Shaw
flow in a bubble of fluid. Neglecting the effects of surface tension, he was able to find an
exact solution using acomplex variabies approach, thereby permitting a direct comparisop
with the numerical results. An interesting feature of the exact solution involves the

development of a cusp in the free surface in a finite time. Using similar techniques,
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Aitchison and Howison (1985) find exact solutions to several Hele-Shaw flows in an
infinite channel. In particular, two solutions are presented, the unsteady solution of
Saffman (1959) and one for which the free surface forms a cusp in a finite time. They
preseat comparison of both solutions with a boundary integral simulation. Although
efficient, the algorithm is unable to follow the development of the Saffman finger very
far in time.

Davidson (1984) includes the effects of surface tension in the numerical solution of
a boundary integral equation. The accuracy of the routine is determined by dinuct
comparison with the analytic Saffman solution for the special case of zero surface tension.
A saw-tooth instability develops in the computed free surface profile due to the rapid
growth of numerical perturbations. This causes the approximate solution to break down
well before the steady Saffman profile is reached. The solution is coaxed along by
artificially smoothing the instabilities at every time step.

A boundary integral method is used by Degregoria and Schwartz (1986) to simulate
channel fingering. The calculation is performed in a transformed plane and for a variety
of nonzero values of the surface tension. They are able to produce laige steady fiagers by
applying a sophisticated smoothing technique every few time steps. No comparison is
made with an analytic solution for the case of zero surface tension. However, for a very
small value of the surface tension paramcter, an interesting feature is observed. Instead
of a single steady finger developing, the, finger tip actually splits in two. The authors
attribute this to numerical noise which eventvally dominates in the absence of the
stabilizing influence of large surface tension.

Finally, an excellent review of viscous fingering in porous media can be found in

Homsy (1987). The article also includes some of the morc recent experimental

observations.
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4.3 Cusping Solution: Linear Approximation

Consider an infinite Hele-Shaw cell containing air and a viscous liquid separated
by a sharp interface (see figure 4.3.1). Gravitational effects are ignored. This corresponds
to an experimental cell that has been rotated to a horizontal position. The viscosity of the
air is considered neglible compared to that of the fluid. The initial shape of the interface
is a small sinusoidal disturbance of wavelength A. Then, if the imposed periodicity is in
the x direction, we can concentrate on the region corresponding to one wavelength

A A
—ESx 5-2-.

The air pressure is a constant, assumed to be zero, while the pressure in the liquid
is a function of position at any given time and remains to be determined. The average

velocity u in the liquid is related to the pressure via the equation

2

b
u—-'l—z'rLVp (431)

b is the gap width between the plates and p is the viscosity of the liquid. Together with
the equation of continuity
V-u=0 4.3.2)
we have
Vip=0 (4.3.3)
At the interface, ignoring surface tension effects, continuity of uressure implies that

the liquid pressure has the constant value zero. As a consequence, the material derivative

of the pressure vanishes along the interface giving the kinetic condition
—=—VpVp (4.3.4)

Finally, we assume thatliquid is being removed at aconstant velocity far from the interface.

That is, we have the condition

85



86

<IN

b —— e e e e e e e wm e

<N

air
liquid

Fig. 4.3.1 Definition Sketch




voa-Vasy ——oo (4.3.5)
where ¥V > 0 is a constant.

The governu., squations can be putinto a standard form by introducing the following

dimensionless variables.
x"=kx u =%
. z . . v
¢=p =1zwv? y =ky v=y
r=kVt k= 2%‘
Equations (4.3.6)
In terms of the new variables, then, we have (dropping the star notation)
V=0 , xeD 4.3.7)
¢=0 , xedD (4.3.8)
¢, lasy ——o (4.3.9)
together with the free surface condition and the initial condition
%?i =V¢-Vd (4.3.10)
folx,y)=0 (43.11)

where (4.3.11) describes the initial position of the free surface. D is the domain bounded

by the interface and the lines x =+ and D denotes the interface itself.
The evolution equation can take several alternative forms. For example, if the free

surface can be represented by a functionof x and ¢,
y=g(x,r)

then differentiation with respect to ¢ gives

8,=80,-9, (4.3.12)
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This is the usual Eulerian description; the solution of (4.3.12), for a given value of x,
represents the vertical position of the free surface as a function of time. The actual
trajectories of marked particles on the interface are quite different. The values of ¢,,¢, to
be used in the numerical calculation are obtained direc..y from the series approximation
for ¢ from term by term differentiation. In order to avoid a finite difference expression

for g, we can differentiate the condition (4.3.8) with respect to x to obtain the expression

for the derivative of the free surface. The evolution equation becomes

_ 6i+4)

gl - 4,,

Of course, this form has its limitations, for in a complicated flow problem, ihe

(4.3.13)

interface may cease to be representable by a single-valued function g (x,?) of x. This

difficulty can be overcome by using the Lagrangian description of the moving surface

dx
E - _¢x
(4.3.14)
dy _
dt 4

The coordinate pair (x(¢), y(¢)) describes paramet-ically the path of a specific free surface

particle originating at a given coordinate in the x-y plane. This particular formulation has
definite advantages. In the first place, experience has shown that the Lagrangian
description of the moving surface permits the numerical simulation of an unstable interface
to proceed further in time than the corresponding Eulerian description (see for example,

the Rayleigh-Taylor calculation of Menikoff and Zemach (1983)).This may largely be

due to the fact that the explicit calculation of g, is avoided. Secondly, it is easily
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implemented using the present boundary approximation, an advantage that is not readily
available to a finite difference calculation, for example. In the calculations which follow,

both the Lagrangian and Eulerian descriptions have been used.

Once the initial condition (4.3.11) has been specified the problem is well defined.
The two examples chosen in this section and the next admit of an analytic solution. In
both cases, the initial profile of the interface has the form
y=—-ecosx+0() , 0s<e<l

but their subsequent flow developments are strikingly different. In each example the flow
is assumed to be symmetric about the line x =0, so that the computations may be restricted

tothe domain0<x <m.
The first example is taken from Aitchison and Howison (1985). The analytic solution
may be expressed as

z =i(w —bylt)—b,(De”) (4.3.15)

wherew = ¢ + i yis the complex potential. The time dependent coefficients b,, b, are given

by

bo—%bf =t —%s’

together with the initial conditions
b, (0)=0

b(0)=e , O0<e<l

€= 0.2 is »sed in the following calculations.
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The solution (4.3.15) may be interpreted as a conformal mapping to the plane of the
complex potential. This is a slightly different interpretation than that of Aitchison and
Howison, but is in keeping with the notation used in our steady state ECM examples. For
a discussion of the general procedure whereby analytic solutions to the Hele-Shaw
problem may be obtained, see the appendix A.2.

The mapping (4.3.15) ceases to be conformal when a zero of dz/dw reaches the

boundary. Howison, Ockendon and Lacey (1985) have shown that a singularity in dw/dz
resides outside of the domain D at t =0, but that it steadily approaches the boundary as
time advances. In a finite time, critical values of b, and b, can be found for which the free
surface has developed a cusp at x = 0. The vertical flow rate increases dramatically in the
vicinity of x = 0 as the cusp time is approached and the slope of the free surface assumes
a steep profile (see figure 4.3.2).

It is an extreme test of any numerical scheme to follow the analytic profile as nearly
as possible for times close to the cusp time. The linear boundary approximation method
has been applied to this example. As in the last chapter, a trial solution is used to determine
a best approximation to the boundary data of a potential problem. Then, cither (4.3.13)
or(4.3.14) isused to advance the solution one time step. The system of ordinary differential
equations generated is solved according to the predictor-corrector scheme outlined in the
last chapter.

Test of potential problem

Before presenting the results of the full time dependent flow, we test the validity of
the approximation method as a model for the potential portion of the problem. By fixing
the time ¢ , the numerical solution of the potential problem can be directly compared with
the known analytic solution at that time. The approximate solution in the linear method

takes the form

a-|
6, =Ay +R p Ck(,’ﬂ‘n

k=n-1
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The form of the approximation which satisfie - the symmetry conditions and the asymptotic

boundary condition is

a-1 R
o, =y+ X be’” cos jnx (4.3.16)

j=0
Note the few changes in notation from that of chapter 2. The upper limit of the summation
is (n — 1), so that ¢, refers to the fact that there are exactly n unknowns. The x,y and ¢
variables have all been scaled by an additional factor o 1/x. A uniform x —grid of m
values is used in the calculations. Tables 1 through 4 are designed to test the convergence
of the approximation method as » is increased and to suggest an appropriate ratio of m:n.
In the tables, the root mean square errors of ¢, ¢,,$, and g, are monitored along the curve

y = g(x,t). For example, the root mean square error in ¢ is defined to be
1 m 1
Ey={— (0.(x) - 6x))}’
where x, is a point on the curve y = g(x, ). Expressions for the root mean squa.e error in

o,, 9, are defined similarly, with the computed value of ¢,,¢, determined from term by
term differentiation of the series solution ¢,. I the case of g,, the computed value wa.

determined from the ratio

a¢l /a¢ﬂ

“ox 9y’

The tables also inciide the maximum error

Epu= m:XI . (x;) — 6(x)l

where the x, are the m boundary points plus an additional one hundred points placed along

the boundary at uniform intervals of x. The additional points are not used in the
determination of the coefficients, but rather serve as a check on the uniformity or

smoothness of the boundary fit.
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Table 4.3.1 The Ratio m:n
Cusping Profile - Linear approximation, t=0.25, n=15

0.434 E-12

0.458 E-02

0.168 E-02

0.448 E-02

0.166 E-02

| 0.442 E-02

0.165 E-02

0.432 E-02

0.163 E-02

| 0.441 E-02

0.162 E-02

0.161 E-02

| 0.449 E-02

In Table 4.3.1, we have chosen £ =0.25,n = 15 and selected a range of values of

m 2 n. For n =m, the errors in the derivatives ¢,, ¢, are unacceptable, even though the
series ¢, itself reproduces the boundary data quitz well (as should be the case if
ill-conditioning is not a factor). The error in ¢ itself at off-grid points (points along the
boundary other than the m data points) is very great, as indicated by the maximum error.
As m is increased slightly to m =20, the errors in the derivatives are already much
improved. As m is increased still further, a modest improvement in the root mean square
errors is achieved. A ratio of m:n of about two or three to one would appear to be more

than adequate.
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In tables 4.3.2 and 4.3.3, convergence with increasing n is illustrated for the

approximation along the interface at the times ¢ = 0.25 and ¢ = 0.3 respectively. In both
cases, the ratio m:n is three to one. Convergence of the method is clearly established, but
there is no doubt that the convergence is slow and only g\ .5 worse as time is increased.
This is undoubtedly due in large part to the encroachment on the boundary of a singularity
in the analytic solution. The error analysis of section 2.6 suggests that the degree of
approximation will be poor if the solution cannot be harmonically extended well past the
boundary; and in this case, as time increases, the singularity steadily advances toward the
boundary. More and more terms would have to be included in the series approximation
as the cusp time is approached. However, ill-conditioning rapidly becomes a factor,
limiting the size of n. For example, the condition number for n = 60 in tables 4.3.2 and

4.3.3 is already O(10"). The accuracy of results for n > 60 would certainly be in question.
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Table 4.3.2 Convergence
Cusping Profile - Linear approximation, t=0.25. The singularity is a
vertical distance of 0.067 from the boundary.

0.979 E-02

0.404 E-02

0.0893

0.0939

0.105

0.432 E-02

0.163 E-02

0.0512

0.0529

0.0347

0.214 E-02

0.752 E-03

0.0303

0.0311

0.0347

| 0.111 E-02

0.373 E-03

0.0183

0.0187

0.0209

0.602 E-03

0.195 E-03

0.0112

0.0114

0.0128

135 § 0.107 E-03

0.327 E-04

0.00272

0.00275

0.00308

180 § 0.296 E-04

0.840 E-05

0.135 E-02

0.139 E-02

0.184 E-02



Table 4.3.3 Convergence
Cusping Profile - Linear approximation, t=0.30. The singularity is a
vertical distance of 0.0345 from the boundary.

0.242 E-01 | 0.797 E-02

0.970 E-02 | 0.279 E-02

0.478 E-02 | 0.127 E-02

0.320 E-02 | 0.823 E-03

The shape of the boundary itself must play a role in the approximation. As the time
to cusp is approached, an inflection point in g (x) drifts rapidly toward the origin. Now,
the inability of approximation schemes to reproduce a sharp inflection point is typical of
polynomial approximation in one-dimensional cases where the approximation is not
performed piecewise. This difficulty is often lessened in one-dimensional cases if a
rational approximation is performed. As we shall see in section 4.3.5, a similar observation
may be made for the case of nonlinear approximation in our two-dimensional case.

In table 4.3.4 the efforts of straight forward interpolation or collocation are tabulated.
The root mean square residual in the potential is O(10™'%) (based on the computed
coefficients and resumming the series). The condition number is 1.24 x 10° so that ill
conditioning is not expected to be a factor. Without question, if the series derivatives are
necessary (as they are in the full time dependent approximation), then collocation must

be used with some caution.
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Table 4.3.4 Collocation

Cusping Profile - Linear approximation, t=0.25, n=m=135

0.0

0.0

0.194 E+01

0.193 E+01

-0.620 E+00

-0.480 E+00

0.119 E+01

0.120 E+01

-0.455 E+00

0.163 E+01

0.868 E+00

0.105 E+01

-0.266 E+00

-0.591 E+02

(@93 E+00

-0.374 E+01

-0.102 E+00

-0.463 E+03

0.683 E+00

-0.538 E+02 §

-0.549 E-14

-0.382 E-09

0.674 E+00

0.958 E+02

Time dependent cusping problem

We now turn to the numerical integration of the full time dependent problem. The
results are intended to assess the ability of the numerical scheme to monitor the moving
boundary and are presented in graphical and tabular form for a variety of parameters. In
the first place, the computed free surface profile is plotted for a number of different times
and for each of several values of n and compared directly with the analytic profile at the
same times. These plots are generated by joining the boundary points by straight line
segments. Symmetry is used to display the entire profile on -1 Sx<1. A precise
comparison of the computed and analytic values of g(0) is given in tabular form, clearly

indicating the accuracy of the most rapidly varying component on the boundary. Finally,
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the growth of the global error with time is compared graphically for each.of several values
of n . This is contained in plots of the maximum error between the »2 numerical and
analytic boundary points.

Computations were performed with both the Eulerian and Lagrangian descriptions
of the moving boundary. The Eulerian description was used to produce the interface
profiles shown in figure 4.3.3(a). Fifteen unknown coefficients were included in the
approximate solution ¢,. The approximate and analytic profiles are compared in figure
4.3.3(b). The analytic profile is indicated by a dotted line. The two prcfiles are
indistinguishable at early times, but differ significantly as the cusp time ¢ = 0.35945 is
approached. The numerical solution shows a noticeably rounded trough nearx =0, where
a steep cusping behaviour should be developing. More detail on the behaviour of g (0) is
provided in the table 4.3.5.

The time stepping procedure has a step-size control (discussea in chapter 3). If the
estima:_1 truncation error of the scheme exceeds a specified tolerance, then the time
step-size is decreased. A typical value of the tolerance in these calculations is T=0.01.
The maximum time step was taken as hy,, =0.05 . For the calculation shown in figure
4.3.3and table 4.3.5, after about ¢ = 0.26 the time step is steadily reduced by the automated
routine until a minimum value is reached (unless stated otherwise, the minimum time step
was chosen as Ar = 0.001). It is this stopping criterion which determines the overall run
time. (It should be noted however, that if the time step is deliberately fixed in the o.d.e.
algorithm, the numerical solution will continue further and may even exceed the cusp
time.) For the case shown in figures 4.3.3(a), (b) the minimum time step was reached at
approximately r=0.33. The last profile shown in the figures is £ =0.32. The total

computing effort was less than ten seconds of CPU time.
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Fig. 4.3.3 (a) Cusping Profiles Using a Linear Eulerian Approximation
(n=15, m=60)
t=0.0, 0.05, 0.15, 0.20, 0.25, 0.27, 0.31, 0.32
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Fig. 4.3.3 (b) Comparison of Exact and Computed Profiles
(n=15, m=60)

t=0.0,0.10, 0.20, 0.27, 0.32




Notice that corrugations have appeared in the free surface profile by a time of about
t =0.25 . This is a typical feature of many numerical solutions to unstable flow problems.
What s particularly interesting in this case is that the instabilities or corrugations manifest
themselves quite early.

Now, we have already seen that n = 15 is inadequate to accurately follow the true

solution (cf tables 4.3.2, 4.3.3). But, by increasing the value of n, the numerical scheme
only reaches its minimum Az at an earlier time. For example, with # = 30 the routine
reaches the minimum time step at approximately ¢ = 0.31 . The computed profile for a
number of times and for the case n = 30 is shown in figure 4.3.4(a) and compared with
the analytic solution in figure 4.3.4(b). Both of the cases n = 15 and n = 30 were generated
using the same number of boundary points, m = 60, placed at equal x intervals along
0 <x <1.Thecase n =30 exhibits a less rounded trough than #n = 15 and the onset of the
corrugations is delayed to about r =0.27 . Nevertheless, once the corrugations have set
in, the growth of error is more rapid in the case n =30 . This is partially responsible for
the increased reduction in step size; but even with a fixed time step, the oscillations in the
profile are so great that the routine cannot proceed much beyond ¢z =0.33 . This calculation
took about 25 seconds of CPU time.

If the number of series terms is increased even further to n = 45, the situation is

hopeless. The minimum time step is reached at approximately ¢ = (.26 with greater error
than both previous cases. A comparison of the growth of the maximum error with time
is given in figure 4.3.5 for n = 15,30,45 . Due to the exponential growth of the error, we
have chosen to plot log,,(£,,,) versus time. Although it is clear that the larger value of n
yields a decreased error at early times, the exponential growth is more marked as n
increases and ¢ approaches the cusping time. This is believed to be a consequence of the

basic instablity of the physical model and not so much a feature of the time dependent
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Fig. 4.3.4 (a) Cusping Profiles Using a Linear Eulerian Approximation
(n=30, m=60)
t=0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.27, 0.31
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Fig. 4.3.4 (b) Comparison of Exact and Computed Profiles
(n=30, m=60)

t=0.0,0.10, 0.20, 0.27, 0.31
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Fig. 4.3.5 Error Growth (n=15,30,45)

Cusping Case - Linear Approximation




numerical scheme, since a lesser number of time steps is taken to reach minimum A; as
n is increased. A direct comparison of computed and exact values of g(0) is provided in

table 4.3.5. After about z = 0.30, the numerical values begin to deviate from the analytic.

Table 4.3.5
Comparison of Exact and Computed Values of g(0,t)

Cusping Profile - Linear approximation - Eulerian Description

When the Lagrangian approach is used to advance points on the free surface, similar
features as above are observed. After ¢ = 0.3, the analytic cusping solution spikes sharply
in the vicinity of x = 0.0 and yet this is poorly represented by the numerical routine. In
fact, the trough is more rounded than the Eulerian case (compare figure 4.3.6(a) where

n = 30 with figure 4.3.4(a) where n = 30) . However, the Lagrangian approach does permit

105




the routine to proceed further in time before the minimum time step is reached (itcontinues
beyond the actual cusping time to about r =0.37). What is more, the undesireable
corrugations do not appear until ¢ = 0.35, very close to the cusp time.

The case n = 30 (m = 60) is shown in figure 4.3.6(a) and compared with the analytic
solution in figure 4.3.6(b). The unusual bubble formation in the trough is strikingly
different from the true cusping behaviour. The error in the trough by ¢ = 0.358 dominates
the error produced by corrugations in the shoulder regions. Unlike the Eulerian case, very
little difference was observed between n =15 and n=30. All of the Lagrangian
calculations were made with the same error tolerance 1 (0.01), h,,, (0.01) and A, (0.001)
as the Eulerian. Once again, it was found that attempts at improvement by increasing to
n =45 terms only resulted in the routine reaching its minimum time step at an earlier
value of ¢ (about ¢ =0.27).

The exponential behaviour of the error growth with time is similar to the Eulerian
case and is not repeated here.

It might be thought possible to improve the accuracy of both the Eulerian and
Lagrangian descriptions by placing more severe restrictions on the error tolerance toron
the maximum stepsize h,,, . This is not the case. While the Lagrangian approach does
permit run times comparable to those of figure 4.3.6if small changes aremadein<t or hA,,,,
both descriptions contribute larger corrugations in the shoulder regions if T or A,,, are
reduced. This feature is illustrated in figure 4.3.7, where the Lagrangian case of n = 30
has been recomputed with the same tolerance T, but 4, reduced to 0.01. The figure shows
the computed and analytic profiles at ¢ =0.31 and the corrugations are noticeably larger
than those of the corresponding time shown in either figures 4.3.4(a) or 4.3.6(a). This is
believed to be a feature of both the numerical method and the unstable physical problem.
By forcing the routine to perform a larger number of time steps, the error accumulated at

each step is magnified.
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Fig. 4.3.6 (a) Cusping Profiles Using a Linear Lagrangian Approximation
(n=30, m=60)
t = 0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.28, 0.31, 0.33, 0.358
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Fig. 4.3.6 (b) Comparison of Exact and Computed Profiles
(n=30, m=60)

t=0.0, 0.10, 0.20, 0.28, 0.31, 0.33, 0.358




109

9(x,t)
02 l x
-1.0 £.0 Q6 Q4 0.2 0.2 0.4 0e 08 1.0
1 1 [ Il I ﬂ [ J 1 'l ]

0.8

Fig. 4.3.7 Reduced h,, t = 0.31




Presumably, if the perturbations in the free surface profile were kept in check, the
routine would have a better chance of emulating the correct cusping behaviour. Now, the
magnitude of the corrugations can be artificially damped by smoothing the free surface
every few time steps. We have taken our best case (the Eulerian approach with n =30)
and smoothed the free surface by fitting it with a cubic spline in the least squares sense.
The smoothing was performed every five time steps with the results shown in figure 4.3.8.
The profile at the time of about 0.31 can be compared directly with the corresponding
profile at £ =0.31 in figure 4.3.4(b). The obvious effect of smootking is an improved
quality of computed free surface; but this is all. The same bubble shaped trough develops
as the time advances. At later times the spatial accuracy simply isn’t sufficient to model
the correct behaviour.

Conclusions

While it is true that the numerical results do suggest a steepening of the free surface
profile in the vicinity of x =0, it is clear that the numerical scheme fails to reproduce the
true cusping behaviour as the time to cusp is approached. There are several reasons for
this. First of all, the presence of the singularity in the analytic solution has a negative
influence on the accuracy of the potential approximation. The only recourse for
improvement involves increasing the value of n ; but this only contributes to the basic
instability of the flow pattern. That is, increased spatial accuracy leads to an increase in
the number of roundoff errors, which may in turn be interpreted as an introduction of
smaller wavclength instabilities to the initial perturbation. The linearized stability analysis
of Saffman and Taylor (1958) predicts a rapid growth of such errors. Also, the numerical
solution of the ordinary differential equations involved requires a steady decrease in the
step size as the time to cusp is neared. This is largely due to an increasingly unstable or
stiff system of ordinary differential equations. More will be said on the stability of the

time dependent scheme in section 4.6.
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Fig. 4.3.8 Smoothed Cusping Profiles

t=0.0,0.10, 0.20, 0.31, 0.349
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Aitchison and Howison (1985) have tested a boundary integral method on this
problem and report much the same findings. That is, they observe a breakdown in the
numerical computation as cusp time is neared (for a direct comparison, their times must
be divided by &.); and increasing the number of boundary elements only hastens the
breakdown. They do however, appear to follow the correct analytic behaviour for longer
times (for a direct cormparison, their times must be divided by x ) . For example, their best
numerical calculation involves only sixteen boundary points, yet proceeds to a time of
t =U.34. They do not present a direct comparison with the analytic solution, but only a
s;raphical illustration of their numerical results.

We point out one advantage that a boundary integral method might possess. It is
possible to interpret the discretized form of boundary integral methods as linear
approximation schemes of the type discussed here, but with the basis functions being

fundamental solutions of the Laplace equation. These solutions take the form

u(x,y;a,n)=log(})

r=N@ -8+ -ny
where the points (€, n) are fixed points on the boundary of the domain. The fundamental

solutions are singular solutions and its probable that this is a desirable feature if the solution

to the boundary value problem itself has a singularity near the boundary (cf section 4.5).

4.4 Saffman Finger: Linear Approximation

The Hele-Shaw problem is looked at once again in this section, but with a slightly

different initial condition. This time, the initial free surface profile is given by
y =~In(ecosx +V1 —&sin’x) (4.4.1)

To first order in € we still have
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y(x) = -gcosx.

In this example a cusp does not develop, but instead a long finger forms, projecting
into the fluid (see figure 4.4.1). Eventually, the tip of the finger assumes a constant profile,
filling one half the channel width. The analytic solution takes the form

z=i(w-d@)-In(1+a()e™))

where
d(r) =t+-;-ln(l - +6e?)

a(t)=( g 2
(1-ede® +¢2

€£=0.2 is used in the following calculations. This solution was discovered by Saffman

(1959) and is commonly referred to as the Saffman finger.

Once again, the example represents a severe test for the numerical method. This
time, the free surface profile distorts without limit. And once again, we would expect that
the usual attempts to improve the accuracy of the numerical results (ie an increase in the
number of series terms and boundary points) only accelerates the growth of errors.

Test of potential problem

The trial solution is of the form (4.3.16). Before presenting the full time dependent
results, the effectiveness of the potential portion of the numerical scheme is examined.
As before, we fix the time and solve the potential problem on a known domain (using the

analytic free surface profile) and compare with the analytic solution.

Results of the potential problem for given cusping and Saffman profiles at ¢+ =0.0

are compared in table 4.4.1. Even though the same number of unknowns are involved,

there is a remarkable discrepancy in the accuracy of the two approximations. Bear in mind
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that the two profiles are virtually identical at this time. Il conditioning is clearly not a
factor. The only explanation can be the closeness of the singularity to the domain in the

cusping case.

Table 4.4.1 Compa: a1 of Cusping and Saffman
Solutions at t=0.0

Condition |

Number

0.153 E-06 | 0.754 E-07 | 0.326 E-0S | 0.333 E-05 | 4.87 E+01 |

0.788 E-12 | 0.511 E-12 | 0.233 E-10 | 0.237 E-10 | 6.15 E+01

Tables 4.4.2 and 4.4.3 demonstrate convergence of the approximation scheme for
the potential problem of the Saffman profile at times 0.25 and 0.5, respectively. Clearly
the convergence properties are superior to those of the previous cusping case. Once again,
this is largely due to the absence of any external singularity in the Saffman case. For
comparison purposes, some collocation results are included in table 4.4.2. The condition
numbers are reported to indicate that ill-conditioning is not expected to have influenced
the numerical results. Although the coliocation results are acceptable, the corresponding

overdetermined solution is superior in all cases.
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Table 4.4.2 Convergence

Saffman Profile - Linear approximation, t=0.25

{ 0.550 E-05

0.337 E-05

0.960 E-04

0.985 E-04

Condition

Number

1.04 E+02 |

| 0.422 E-07

0.257 E-07

0.110 E-05

0.112 E-05

1.91 E+03

0.150 E-04

0.949 E-14

0262 E-03

0.725 E-04

| 0.364 E-09

0.220 E-09

0.126 E-07

0.128 E-07

3.56 E+04 |

| 0.153 E-05

0205 E-13

0333 E-04

0.778 E-05

5.07 E+06 §

0.332 E-11

0.201 E-11

0.144E-09

0.146 E-09

6.73 E+0S

0.105 E-06

0.196 E-13

0282 E-05

0579 E-06

3.73 E+08 }

| 0.746 E-13

0.196 E-13

0.166 E-11

0.167 E-11

1.28 E+07 |
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Table 4.4.3 Convergence

0.181 E-02

0.105 E-02

Saffman Profile - Linear approximation, t=0.50

0.246 E-01

0.252 E-01

0.213 E-03

0.122 E-03

0.423 E-02

0.431 E-02

0.276 E-04

0.156 E-04

0.722 E-03

0.731 E-03

§ 0.378 E-05

0.214 E-05

0.123 E-03

0.124 E-03

0.303 E-06

0.208 E-04

0.536 E-06

0.210 E-04

Time dependent Saffman finger

The Saffman profiles computed using an Eulerian description, are shown in figures
4.4.2(a) and 4.4.3(a) for the cases n = 10 (m =20),n =20 (m = 40), respectively. The
constant reductions in stepsize neccessary in the cusping calculations were not observed
here. In fact, witht = 0.01 and A,,,, = 0.01 , the solution could be comput :d to aboutt = 0.7
without the routine decreasing Az . The results shown in figures 4.4.2 and 4.4.3 are the
result of running the program with constant Az = 0.01 until the routine requested a stepsize
reduction. For both of the cases n = 10, 20, the programs were terminated in this way
shortly after r = 0.7 . If the stepsize was permitted to decrease after this time, it reached
a value of Ar =0.001 within only a few time steps. This was due to the rapid breakup in

the free surface near the time of ¢ = 0.7, as can be seen from the figures.
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Fig. 4.4.2 (@) Saffman Profiles Using a Linear Eulerian Approximation
(n=10, m=20)
t=0.0,0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70
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Fig. 4.4.2 (b) Comparison of Exact and Computed Profiles
(n=10, m=20)
t=0.0,0.10, 0.30, 0.50, 0.70
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Fig. 4.4.3 (a) Saffman Profiles Using a Linear Eulerian Approximation
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Comparisons with the analytic profiles are made in figures 4.4.2(b) and 4.4.3(b).
Precise values of g(0) are presented in table 4.4.4. Both of the cases n = 10, 20 perform
quite well on this problem, following the exact solution closely until about £ =0.6. As
with the cusping case, corrugations eventually appear in the shoulder region, but at amuch
later time. The results produced with n = 20 are an improvement over n = 10 and the onset
of corrugations has been forestalled a few time steps.

Just as with the cusping case, however, there is a limit to the benefits that can be
achieved simply by increasing n . For example, with n =25 (m = 50), the free surface
breaks up sooner, the run being terminated by ¢ = 0.5 ; with n = 30 (m = 60), the run was
terminated by ¢ =0.3. ‘I'he growth of error with time is plotted in figure 4.4.4 for
n=10,20,25.

Table 4.4.4
Comparison of Exact and Computed Values of g(0,t)

Saffman Profile - Linear approximation - Eulerian description

-0.181343 -0.181343 -0.181343 -0.181341

-0.453424 -0.453441 -0.453441 -0.453435

-0.768663 -0.769947 -0.770530 -0.769968

-1.10902 -1.12631 -1.12958 |
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Fig. 4.4.4 Error Growth (n=10,20,25)

Saftman Finger - Linear Approximation
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The computing costs for these runs varied from less than 10 seconds of CPU time
for the case n = 10 to just over one minute for the case n = 30.

For comparison purposes, the problem was recomputed using a Lagrangian
description. For the most part, no appreciable difference in the two approaches was
observed. In the Lagrangian description, the points on the boundary drift away from the
trough region and upwards along the steepening sides of the Saffman finger. This effect
was not very large in the cusping problem, but over the increased time span of the Saffman
case, points initially near x =0 have migrated a substantial distance. In order to produce
arespectable profile, a large number of boundary points is required. Alternatively, points
could easily be clustered in the vicinity of x = 0 initially, in hope of producing areasonable
profile of the surface at later times. However, when this variable grid was employed, it
was found that the simulation did not proceed nearly as far in time as did the Eulerian

Cascs.

Conclusions

It is possible to accurately follow the Saffman profile for times much greater than
thoseinvolved inthe cusping profile. This must in part be due to the lack of any singularities
near the boundary and the more smoothly varying free surface. Of course, the usual
difficulties are reported when it comes to attempts at increased accuracy. The basic
instability of the problem and the increased ill conditioning of the linear systems being
solved, prevents the calculation from proceeding much beyond ¢ = 0.7 . Nevertheless, this
is a substantial improvement over the boundary element calculation of Aitchison and
Howison (1985) and is almost certainly more efficient. They are able to reach a time of
about ¢ = 0.4 only, before the boundary breaks up. Once again, they do not present a direct
comparison with the analytic solution, but only give their computed results in graphical

form.
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4.5 Hele-Shaw Flows: Nonlinear Approximation

The results of the last two sections indicate that the linear approximation method is
merely adequate for solving the potential portion of the full moving boundary problem.
For example, tables 4.3.3 and 4.4.3 indicate that a reasonable number of terms (less than
one hundred) in the series solution is sufficient to accurately solve this portion of the
problem on the time scales used. However, the inherent instability of such problems and
the poor conditioning of the matrices involved, makes the choice of anything more than
fifteen to thirty terms prohibitive. If more terms are included, the errors incurred in the
calculation are magnified at an alarming rate.

The results do however suggest, that if a means of accelerating the convergence of
the linear method were available, then the zolution might be accurately followed for longer
times. The nonlinear approximation outlined in section 2.8 may be interpreted as such an
acceleration of the linear method. In this section, the nonlinear boundary approximation
is applied to the cusping  nd Saffman solutions.

Following the notation of section 2.8, the trial solution takes the form

G =y +by+ T bt ) @50
where

_ sinh®(b;,,—y)
~ coshn(b;,,—y)—cosmx

‘ij-rn;x)

and we have been careful to include a factor of & as the range of x valuesis-1<x 1.

As usual, the parameters b; are solved for in the potential portion by first discretizing

(x,y) and then applying the boundary condition (4.3.8). The nonlinear least squares
problem is solved using the Levenberg-Marquardt algorithm outlined in section 2.8.
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than 2n + 1.

unknowns = 2n+1 .

0.165 E-03

Preliminary estimates of convergence of the nonlinear scheme, in application to the
cusping and Saffman solutions, respectively, are presented in tables 4.5.1 and 4.5.2. There
should be compared directly with the tables 4.3.2 and 4.4.3 for the corresponding efforts
of the linear approximation. It is clear that the nonlinear approach provides mruch stronger
convergence properties and with a lesser number of parameters. Note that the presence
of the singularity in the cusping case is still a factor, this despite the fact that a singularity
exists in the approximate solution as well. Thus, even though the Saffman finger is at
least as distorted at ¢ = 0.5 as the corresponding cusping profile at ¢ = 0.25, the Saffman
profile yields better convergence. It should also be noted that no appreciable difference
was observed in the case of collocation. Nevertheless, in the calculations which follow,

we have made it a practice to always solve the Izast squares problem with m strictly greater

Table 4.5.1 Convergence - Cusping Profile

Nonlinear approximation, t=0.25, m=24, number of

0.460 E-02

0.196 E-04

0.559 E-03

0.230 E-05

0.114 E-03
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Table 4.5.1(b) The Nonlinear Parameters
n=5, m=24, t=0.25, g(0)=-0.435, g(1)=-0.127

Coefficients Singularities
b, =-0.124 by,=0.614
b, =0.276 b,=0.098
b, =0.083 by =-0.146
b, =0.032 b, =-0.279
b,=0.011 b, =-0.347
bs =0.002

Table 4.5.2 Convergence - Saffman Profile
Nonlinear approximation, t=0.5, m=24,

number of unknowns = 2n+1

E,

0.202 E-04 | 0.368 E-03 | 0.380 E-03

0.864 E-06 | 0.203 E-04 | 0.209 E-04 |

0.367 E-07 | 0.105 E-05 | 0.108 E-05 |



Table 4.5.2(b) The Nonlinear Parameters
n=5, m=24, t=0.5, g(0)=-0.770, g(1)=-0.217

Coefficients Singularities
b, =-0.182 by =0.594
b, =0.408 b, =0.067
b,=0.178 b =-0.209
b,=0.107 by =-0.377
b,=0.064 b, =-0.467
bs=0.027

The series coefficients and the nonlinear parameters are also recorded in the tables
4.5.1(b) and 4.5.2(b). The linear coefficients exhibit a steady decrease in magnitude with
increasing index. The nonlinear parameters are the singularities in the approximate
solution and are nicely distributed along the y —axis outside of the domain D (see figures
4.5.1(a),(b)). It was found in practice, without exception, that if the initial values of the
singularities in the iterative scheme were placed outside of the domain of interest, they

remained outside.

Time Dependent Results

Both the cusping and Saffman calculations were performed using an error tolerance
of t=0.01. In order to minimize the time spent in the nonlinear solver and to forestall
possible divergencies, the maximum time stepsize was reduced to A,,, =0.005. In this
way, the coefficients in the series approximation at one time level could be accurately
used as first iterates in the nonlinear solver at the next time level. The nonlinear

computations proved more robust than the linear in that the smaller time step did not
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Fig. 4.5.2 (a) Cusping Profiles Using a Nonlinear Lagrangian Approximation
(n=3, m=29)
t=0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
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Fig. 4.5.2 (b} Comparison of Exact and Ccmputed Profiles
(n=3,m=29)
t=0.0, 0.10, 0.20, 0.30, 0.35
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Fig. 4.5.3 (a) Cusping Profiles Using a Nonlinear Lagrangian Approximation
(n=5, m=15)
t = 0.0,0.05,0.10, 0.15, 0.20, 0.25, 0.30, 0.33, 0.359
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Fig. 4.5.3 (b) Comparison of Exact and Computed Profiles
(n=5,m=15)
t=0.0, 0.10, 0.20, 0.30, 0.33, 0.359
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cnhance the onset of numerical instabilities. In fact, with this value of _, , no corrugations
appeared in the computed cusping profile and developed in the Saffman profile only after

very lengthy runs.
The results of a Lagrangian description of the cusping profile for the case n = 3 arc

presented in figures 4.5.2(a) and (b). Twenty-nine boundary points were used with more
points placed near x =0. The calculation proceeded beyond the cusp time using the
maximum time step. The run was terminated eventually (¢ =0.365 ) by an unacceptable
growth in the coefficients of the approximating function. Possibly a smaller time step is
needed to prevent these divergencies. There is some improvement over the linear
approximation method, but there is still a significant deviation from the exact solution.

The value of n was increased to 4 and S with the re,ults of n =S shown in figures

4.5.3(a) and (b). The lower bound of Ar = 0.001 imposed on the time step was reached at
about ¢ =0.34, but the calculation was permitted to continue at that fixed time step. It
was not found possible to bunch the boundary points near x =0 for this larger value of
n . Indeed, if points were clustered about x =0, the calculation would come to an early
end. That is the calculation of the coefficients would proceed normally for a short time
and then rapidly they would begin to grow in magnitude each time step until the nonlinear
routine could proceed no further. This must in some way be attributed to attempts to
accurately follow the sharp inflection point near tox = 0. Asiitis, the calculation presented
in figure 4.5.3 is devoid of boundary points near x =0 (m = 15 equally spaced points at
¢t =0) and as such the finer structure of the true profile is not imposed on the calculation.
Inshort, the numerical solution corresponds to a slightly different problem than the analytic
solution of Aitchison and Howison. Still, it is remarkable that the calculation exhibits the

correct qualitative behaviour and indeed advances the point (0, g (0, 7)) most accurately
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(see table 4.5.3). A comparison of the error growth with time is shown in figure 4.5.4 for
the three cases n =3,4,5. The computing cost for the longest simulation (n =5) was
about seventy seconds of CPU time.

The results of incorporating an Eulerian description into the nonlinear method were

much less impressive and have not been detailed here.

Table 4.5.3
Comparison of Exact and Computed Values of g(0,t)

Cusping Profile - Nonlinear approximation - Langrangian description

-0 194847

-0.194856

-C. 194857

-0.194854

-0.345052

-0.345362

-0.345429

-0.345403

-0.432371

-0.433940

-0.434609

-0.434609

-0.530673

-0.536811

-0.543274

-0.543775

-0.595028

-0.607521

-0.645615

-0.631304

-0.637931

-0.654662

-0.708224

-0.718882

-0.648919

-0.667067

-0.723087

-0.754038

-0.657728

-0.677061

-0.734415

-0.807569

A Lagrangian treatment of the Saffman finger for the cases n =3, 5 is presented in

figures 4.5.5(a),(b) und 4.5.6(a),(b), respectively. A comparison of the values g(0) in the
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Fig. 4.5.5 (b) Comparison of Exact and Computed Profiles
(n=3, m=38)
t=0.0, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60
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Fig. 4.5.6 (a) Saffman Profiles Using a Nonlinear Lagrangian Approximation
(n=5, m=38)
t = 0.0, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60
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trough for the cases n =3 , 4, §is givenin table 4.5.4, and the error growth for these cases
is depicted in figure 4.5.7. As with the cusping case, we witness a steady improvement
in the accuracy as n is increased. For n = 3 (figures 4.5.5) we have plotted the profiles at
intervals of 0.2 up to a time of ¢t =1.6. Irregularities have appeared in vertical walls of
the finger by a time of about ¢ = 1.2 ; but still the calculation has accurately followed the

analytic profile almost twice as far as the linear calculation of the last section.

The results for n = 5 are in excellent agreement with the exact solution and proceed

to a time of over four times that reported by Aitchison and Howison (1985). Corrugations
do not develop until a time of about ¢ = 1.7 . The calculation proceeded to the times shown
in the figures without decreasing the time step below 0.005. The actual computing cost

for this case was only about 200 seconds of CPU time.
Since the boundary points in the vicinity of x =0 move rapidly in the direction of

increasing x as the moving surface stretches, it was necessary in the case of the Saffman
finger to begin the calculation with many boundary points clustered near x = 0. In fact,
for the Saffman profile and the results shown in table 4.5.4 and figure 4.5.6, the calculation
was begun with 20 points bunched in the range 0 S x £0.01 . For example, the boundary
point initially located at x = 0.0001 , eventually reached a position of x =0.25 by the time
of t =2.0. The migration of the boundary points for this case is depicted in figure 4.5.8.
Some experimentation was done with the initial placement of boundary points to produce
a respectable distribution at later times. Clearly, much of this could have been avoided
by making use of spline interpolation and deftly placing points as the calculation
proceeded. Degregoria and Schwartz (1986) use such an elaborate scheme to advance
their Langrangian description in a boundary integral approach 1o the Hele-Shaw problem.

However, this provides artificial smoothing to the free surface and it was decided to avoid
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this if at all possible and to present the calculation with its natural growth of errors. This
rigorously tests the full capabilities and limitations of the nonlinear scheme in direct

comparison with the analytic solution.

Table 4.5.4
Comparison of Exact and Computed Values of g(0,t)

Saffman Profile - Nonlinear approximation - Lagrangian description

-0.312507 -0.312506 -0.312506 -0.312504

-0.605724 -0.605739 -0.605739 -0.605722

-0.944816 -0.945360 -0.945422 -0.945305

-1.31407 -1.31892 -1.32022 -1.32019

-1.68649 -1.70169 -1.70792 -1.71184

-2.04747 -2.07810 -2.09272 -2.10935

-2.39449 -2.44287 -2.46909 -2.50862

-2.72533 -2.79558 -2 83578 -2.90842

Finally, with regard to the local errors incurred with the nonlinear Lagrangian
calculation of the Saffman finger, refer to figure 4.5.9. The error between the computed
and exact solutions is plotted on the domain =1 <r <1 and every 0.2 of a time step up to

t =2.0. The largest errors are found near x = (1.5 instead of in the shoulder region or the
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Fig. 4.5.10 (a) Saffman Profiles Using a Nonlinear Lagrangian Approximation
(n=5, m=38)
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trough, as was the case with the cusping profile. In figure 4.5.10, the n = § calculation is
carried to a time of £ = 2.0. The corrugations are clearly evident in the vertical sides of
the finger and the trough is beginning to widen more than the exact solution. The widening
is probably due to artificial surface tension introduced at later stages of the calculation.

TheEulerian description also worked effectively on this problem, although a breakup
in the free surface is evident at earlier times. For example, with n =5 again and m =40
equally spaced x-values, some irregularities show up in the free surface profile by
approximately ¢ = 1.4 . This is depicted in figure 4.5.11. The difficulty would appear to
lie with the calculation of g, . Recall, in the Eulerian description, this derivative was
required in the evolution equation and was computed using a ratio of ¢, and ¢, . The
situation was not improved by replacing the calculation of g, with a second or even fourth
order central difference molecule.

Conclusions

The nonlinear approximation is vastly superior to the linear one when applied to
both the cusping and Saffman problems. In both problems, the nonlinear calculation
proceeds farther in time than either of the calculations of Aitchison and Howison (1985).
In particular, the Saffman profile has been followed longer than any other calculation that
we know of. Although the computing times are greater, none of the calculations are so
long as to warrant concern. The growth of error with time for the two methods is compared
in figures 4.5.12 and 4.5.13.

In each of the examples presented here, a good first estimate of the nonlinear
parameters was found before beginning the time dependent run. The preparation time
required to find this first estimate can be comparable to the computing effort of the entire
timedependent run. The following procedure was adopted for determining a good estimate
to be used at t=0.0. A guess is made and a crude tolerance is specified in the
Levenberg-Marquardt routine. The tolerance is then sharpened, and the minimum is

looked for once again, using the values just computed as new estimates of the parameters.
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The process was repeated until 2 near best approximation was found, typically accurate
to within 107° or better. The situation is not as bad as it may appear, since that very first
estimate can be made with some measure of confidence. After all, we do know that the
nonlinear parameters appear along a straight line only and lie above g(0).

Once a good initial estimate has been found for the parameters, the method proceeds
quite efficiently, provided the time step is small.

In general, the linear method has proven to work best with an Eulerian description
while a Lagrangian approach was preferable for the nonlinear method.
4.6 Stability

The stability of the time dependent scheme is strongly dependent on the system of

ordinary differential equations being solved. Consider the Lagrangian description

dx
dt - —¢8

&S

=—¢,

or in vector form

%:F(x,t).

We can linearize the system, expanding F in a Taylor series about the solution at¢ =¢" ,

X

—= X+
X+cC

whereJ isthe Jacobianof F(x,t)atr =¢*, and cisaconstantvector. If/is nonsingular,

“en letting

u=x+J""¢c




gives du_ 4.6.1)

- ¢n ¢4l’
= ¥

1‘, N\
a e + a ¢
u=[ 11 12

where

The solution of (4.6.1) is

a €% + ay %)

where A, , A, are the cigenvalues . the Jacobian matrix and

)‘1.2=i\l¢i+¢§y .

The solution of the linearized system (4.6.1) is dominated by an exponentially
growing component. This is as expected, since both the cusping and Saffman profiles
exhibit this behaviour. More importantly, from the computational viewpoint, the system
(4.6.1) may be stiff. Loosely speakirg, a sysiem of ordinary differential equations is stiff
or unstable if the magnitude of the largest eigenvalue is large compared to the time scales
involved (1T if the interval is [0,T] - see Miranker (1981)). A stiff system of equations
can be very difficult to solve numerically. In the present case, we might expect stability
problems in the numerical scheme if | A | should be large or i{ very long run times are
required.

The magnitude of the eigenvalues can be computed from the analytic solution in

each of the cusping and Saffman cases. We have

2

d2
=0, +9, .

w
dz?

Yor the cusping case,

hi

_(l—2h,c0_sw+bf)"

12




Now, b, approaches 1 as rapproaches cusping time, so that for ¥ near zero the eigenvalues

are quite large. For example, consider the point with x coord‘nate x=0 (ie ¥ =0). Then,
¢., =0 and the solution of the linearized equations is

]
x= c,e—"

y=ce

where ¢, >0forO< b, <1.1f b, =0.6, corresponding to ¢ = 0.3, then

AZ=¢% =88,
On the other hand, for the Saffman case, we have
AZ=a*(1+2acosy+a’)
andasO0<a(r) <1 forall 1 20, the eigenvalues are never large.

The above linearized analysis suggests that the system of ordinary differential
equations associated with the cusping case becomes stiff as (imes near the cusping time,
while the Saffman case is not stiff unless exceptionally long computing times are required.
This accounts for the necessary decrease in time step size observed in the case of the

cusping profile.
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CHAPTER §

Concluding Remarks

Two closely related numerical methods designed for use on a class of MBP have
been examined in detail.

The linear method is, in principle, applicable to a greater variety of problems from
our class. In practice, it is limited to problems with relatively simple geometries. The
nonlinear method, as it stands, is restricted to two dimensional simply connected domains.
The obvious expansion, by way of more general rational functions, would extend the
methcd to more complex domains, but the formulation would not be as straight forward.
Nevertheless, for the problems to which it pertains, the nonlinear scheme has proven to
be an efficient and accurate computing tool. It has performed admirably on some badly
posed problems of Hele-Shaw flow.

We have been fortunate to have an analytic solution for comparison. We have found
thatan increase in 7 in the nonlinear method consistently led to an improved approximation
in the time dependent calculations, something that was not strictly observed in the linear
case. Furthermore, the computed free surface profiles remained quite smooth for long
simulations of an unstable flow. These findings should permit the method to be used with
some measure of confidence on problems for which an exact solution is unavailable. In
this regard, some future directions might include applications of the nonlinear method to
the Rayleigh-Taylor instability and to Hele-Shaw problems with surface tension effects

included.
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Another nonlinear trial function was tested on the inverse ECM problem, with
promising results. If a more robust means of computing the nonlinear parameters were
available, a larger number of unknowns might be more manageable than with the present
technique. For example, the rational function in cos(x) might be best expressed as a
continued fraction in the variable cos(x). There are very efficient algorithms for dealing

with this type of rational approximation. In any event, with the present interest in inverse

problems, there is ample scope for future work.
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APPENDIX A.1

The Logarithmic Term

Many of the results on the approximation of harmonic functions can be readily
inferred from already established results on the approximation of analytic functions by
complex polynomials. This area has been well explored by a number of mathematicians,
notably Runge, Walsh, Keldysch, Mergelyan and Curtiss.

Suppose the function f({) to be approximated is analytic on a closed region. Then,

the corresponding results on completeness and degree of convergence for the case of
harmonic functions can be deduced by taking the real parts of f({) and its approximating
functions. However, the results for analytic functions are restricted to single-valued
functions, even on multiply connected regions.

This represents a limitation if we are to apply the results on analytic functions to
general harmonic functions (assocciated with a boundary value problem) on multiply
connected domains. The reason is the following. Although the harmonic function ®(§, 1)
is the desired solution to our boundary value problem and, as such, is assumed to be
single-valued, there is no reason to believe that the complex function f({), constructed

from @ and its harmonic conjugate, is also single-valued.

As an example, we consider the case of a doubly connected domain D¢, bounded by

the two Jordan curves C, and C, with C, interior to C,. Assume the origin lies interior to

C,. Let ®(E,n) be harmonic on the closed region 5;. Unlike the case for simply connected

domatins, the integral




o)
J:!.n)e ands (A.1.1)

(n,s being the outward normal and tangent) is not independent of path. However, if C is
any simple closed contour surrounding the "hole", then

oD

cm =

is independent of the contour C. Let

Any two functions ¥, ¥, of the form (A.1.1) differ at most by an integer multiple

of p. Thus, the harmonic conjugate to ®(§,n) may be expressed as the multi-valued

function

YEN =¥,E+mp , m=0,%],12

—y s s s

The multiplicity derives from the number of circuits about the hole. This is precisely the

multi-valued nature of the function

; =P
Alogl if A =or

That is,
Alog{ =£—Logl;+imp
2n

where Log{ is the principle branch of log{.
Thus, it follows that we can write
fQ=g)+Alogl
where g ({) is single-valued. What is more,

OE. M) =RAC)
=Re(D+Alog| L. (A.1.2)
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A final note is the following. It appears that it is a well known fact that the logarithmic
terms must be present in the complete set of harmonic functions for multiply connected
domains (see Davis and Rabinowitz (1961), for example). However, its origins and the
proof of this fact are more difficult to come by, as is the expression (A.1.2). Axler (1986)
mentions this very point and references Walsh (1929) as the only location where a proof
was found. Axler refers to the result (that a harmonic function on a multiply connected
domain can be expressed as a sum of logarithmic terms and the real part of an analytic
function) as the Logarithmic Conjugation Theorem. He provides a proof of this theorem
which makes use of the Cauchy Integral Theorem and without recourse to the notion of

a multi-valued complex function.
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Appendix A.2

The Least Squares Algorithm

In what follows, the matrix is m x 2 and assumed to have rank n. The method

proceeds by repeated application of Householder transformations to r=Ab-f. A
Householder transformation applied to a vector ve R™ will produce another vector
w € R™ where v has been "rotated in m-space” tc coincide with the direction of w, the
vector length being preserved. The Householder transformation can be represented by an

m X m matrix U. In this way the columns of an arbitrary m x n matrix A can be reduced

to a simple form.
For example, let a,,a,,...,a, € R™ be the column vectors of matrix A, so that
A=[aa,...a].
A Householder transformation U, can be found such that
b, =V, a,
where

Ibd =laj

and

b, = (b,,,0,0,...,0)".

The vector norm is the usual Euclidean norm

2 2 2 2
Il “=v,+v,+...+v,.
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Thus, in the first steo toward simplification, we form U,A. In a like manner, the

column vector a, could be transformed by a Householder mawrix U, ,
b;=Ua,
so that
1Bb) =]aj
and
b, = (b;. by ....b;,0,...,0)".
Thus, at the j* step we would form

U

J

- UA
so that in n steps (or less) we should have reduced A to upper triangular form. Of course,

if at the j* step we are not to undo the simplification already acheived in the first (j - 1)

columns, we could partition the matrix U,,

I 0
U:‘[o U,']’

lisa(j —1)x(j —1)identity matrix and U, is an (m - (j = 1)) x (m = (j = 1)) Householder

matrix. U,” is chosen to reduce the last (m — j) components of a, to zero, with the j*
element nonzero. The result is the matrix

UlUk-l R UIA =QA

where k < n and QA is upper triangular.

Now, if U, operates on the column vector a, to give




where u is a unit vector in the direction of b; — a;.
With this form, itis easy to see that each of the matrices U,, U,, ..., U, isan orthogonal
matrix (ie UJU; = U;U] =) and the product
Q=UU,---U,
is also an orthogonal matrix. Orthogonal matrices have the property that
iod =id .

It is this feature of Householder reductions which permits us to conclude that the above

algorithm can be used to solve the best approximation problem

minjAb-§ .

or ] o or[]

where T is n X n upper triangular, ¢ is an n X 1 column vector and d is an {m —n) x 1

To see this, we write

column vector. Then

In =104
=1QAb-n

)
31
Bl

is minimized when {t] =[0]. Hence, | i is minimized when b € R" is found such that

where

Now,

Th=c.
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Appendix A3

Exact Solutions of Some Hele-Shaw Problems

The exact solutions presented for the cusping and Saffman finger profiles of chapter
4 can be found (expressed in different coordinates) in Howison and Aitchison (1985).
Similar techniques were used by Meyes (1981) to derive an analytic solution. The method
is briefly outlined below. It involves a conformal mapping of the given problem in the
x-y physical plane to an auxilary plane. For our purposes, we consider an interchange of
dependent and independent variables so that the mapping is to the plane of the complex
potential. (In the following, values of x, y and t must be divided by 7 to agree with the

dimensions of chapter 4.)

For the case of the cusping profile, the mapping

satisfies the boundary conditions and it remains only to find b, , b, satisfying the free

ow
”‘(iaTl,o‘

This may be written in the form
9z 0z
R —— =-1.
(aw ot ],=0

surface condition,
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Application of this condition to the mapping function leads to the coupled ordinary

differential equations
bn' - blbl' = l
bl' - bo'b' = 0 .

These can be solved, together with the boundary conditions b,(0) =0, b,(0) =€ to yield

bo-%b,’=t-%e’
b,e-"=e.

‘

Now, the cuspdevelops in a finite time when a zero of % reaches the boundary ¢ =0 .

We have

dz _
ﬁ::n-b,(z)e 1

so tha ‘—:- =0wheny=0and ¢ = ln%l . Therefore, the singularity reaches the boundary at

a value of t for which b,(r) = 1 . From the expressions above for b, and b, we find that the

cusp develops by a time of

tz-;-(ez—l)-lne.

For € =0.2 and t properly scaled by a factor of :; R

Loy = 0.35951 .

It is shown in Howison, Ockendon and Lacey (1985) that the cusp is of the form

y=x.
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In a similar manner, the mapping which produces the Saffman profile is given by
z=i[w-d()-1n(1+a(t)e™) .
Substitution into the free surface condition leads to the coupled ordinary differential
equations
d’=1+a*
d'a+a’=2a.
Again, these may be integrated, together with the boundiary conditions a(0) =€,d(0)=0

to give

2 _ 6282‘
T 11—+

a

d=t+-;—ln(l—e2+e’e”).
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