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ABSTRACT

A unified noniterative approach to point and interval
estimation of interclass and intraclass correlations 1is
presented in the context of family studies where there may
be more than one individual in each of two classes. The
procedure involves a generalization of the Pearscn
product-moment correlation coefficient, where one permits
different weights for the pairs of scores. Unlike the
maximum likelihood approach, these estimators are not
derived under the assumption of a particular parametric form
nor do they require an iterative solution.

The asymptotic distributions of the generalized product-
moment estimator and of the maximum likelihood estimator are
derived under the assumption of normality. Subsequently{ a
Monte Carlo study is carried out to examine the asymptotic
and small sample properties of these estimators under
different weighting schemes. Also, several methcds for
constructing cornfidence intervals about the interclass
correlation parameter are discussed, and the effectiveness
of these methods is evaluated by Monte Carlo simulat.ion.

T+ 1s recommended that for family studies, the
individual-weighted estimator be used as a point estimator

of interclass correlations and the method based upon a

iii



modification of Fisher's Z-transformation be used for
interval estimation. 1In addition, it is recommended that
the weight.d pairwise estimator using the proposed weighting
scheme replace the analysis of variance estimator in the
estimation of intraclass correlations.

Although the focus of this dissertation 1s on the
analysis of familial data, the methods discussed are
applicable to more general situations, including the
assessment of correlations between any two variables where
each variable is replicated a different number of times for

each sample unit.
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"PROGRESS DOES NOT CONSIST IN REPLACING A THEORY THAT IS
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CHAPTER 1 - GENERAL REVIEW

1.1 Introduction to Familial Correlations

A major goal in the analysis of familial data arising
from studies of continuous attributes such as blood
pressure, cholesterol, and pulmonary function is to estimate
the degree of resemblance among family members. Correlation
analysis has played an important role in assessing family
resemblance, dating back more than one hundred years.
Historically, Sir Francis Galton is credited with
conceptualizing and computing the first family 'co-relation’
In his Presidential Address to the Anthropological Section
of the British Association (Galton, 1885) he used a method
he called 'reversion' ( regression } to measure the genetic
relationship between a son's stature and his father's.
However, it was Karl Pearson (1895) who derived the
mathematical formula for Galton's co-relation measure; and
thus, the Pearson product-moment correlation coefficent.

In general, familial correlations may be classified
into two broad categories. The first category consists of
correlations that measure the degree of resemblance, for a
particular trait, between two members from the same class of
individuals in a family; we refer to these as intraclass

correlations. The sib-sib correlation and cousin-cousin



correlation are examples. The second category consists of
those correlations that measure the degree of resemblance
between two members from different classes of individuals in
a family. We call such correlations, interclass
correlations; where father-mother, mother-daughter,
sister-brother are examples.

The primary interest in this dissertation focuses on
the interclass correlation. Nevertheless, the intraclass
correlation is discussed in some detail because of its

important role in interclass distribution theory.

1.2 Review of Parent-Offspring Correlations

Research into the estimation and hypothesis testing of
interclass correlations has only flourished in the past
fifteen years. Even so, most work has focussed on the
gspecial case of assessing correlations between a sole member
in one class (e.g. mother) and a variable number of
individuals in the cther (e.g. children). This type of
correlation has often been referred to as the mother-sib,
rparent-child or parent-offspring correlation. 1In a study
consisting only of single-child families, the simple
correlation coefficient is clearly the appropriate estimator
of the parent-offspring correlation, since each family
contributes only one pair of measurements.

However in practice data are collected from families of



varying numbers of children, and thus the procedure for
estimating a familial correlation becomes unclear. It has
been proposed by several authors, including Higgins and
Keller (1975), to pair each child's score with the parent’'s
score and compute a product-moment correlation over all such
pairs. This method is often referred to as the pairwise
procedure. Despite its simple approach and intuitive
appeal, the accuracy of this correlation estimator has often
been questioned. It has been pointed out by Rosner et al.
(1977) that the resulting pairs are not statistically
independent since the parent's value is repeated for all
children and because the siblings in the same family are, 1in
general, correlated. Smith (1980a), in the same spirit,
remarks that this procedure tends to disproportionately
emphasize large families.

As a consequence, alternative estimators, including the
sib-mean, random-sib, ensemble, and maximum likelihood have
been suggested. Rosner et al. (1977) used Monte Carlo
simulation to compare the relative efficiencies of the first
three of these estimators to the pairwise estimator. Their
results show that the pairwise and ensemble estimators are
more efficient than the sib-mean and random-sib estimators
in terms of mean square error. In particular, the pairwise
estimator was found to be superior in the case of low

sib-sib correlation (pss), whereas the ensemble estimator is



superior when ¢ is high. Rosner {1979), in a further

ss
simulation study, showed that the pairwlse estimator is
roughly equivalent in mean square error to the maximum

likelihood estimator for small values of p although the

ss’

former loses efficiency as Pos increases. By contrast, the

mean square error of the ensemble estimator is approximately
equal to that of the maximum likelihcod for large values of
Pss-

For equal number of siblings per family, the pairwise
is the maximum likelihood estimator. In the case of a
variable number of offspring per family, the maximum
likelihood estimator requires an iterative solution. Rosner
(1979) proposed an algorithm for finding this estimator
which involves maximization of an implicit function of two
parameters. Mak and Ng (1981) used a linear model approach
to reduce the problem to iterative maximization of a
function of one parameter. Srivastava (1984) introduced a
transformation which also simplified the function to only
one unknown parameter.

The asymptotic properties of the above-mentioned
estimators have been derived only recently. Konishi (1982)
derived expressions for the asymptotic variances of the
pairwise and ensemble estimators, while Srivastava and
Katapa (1986) derived the asymptotic variance of the maximum

likelihood estimator. Using these results, Konishi (1982)



and O'Neill et al. (1987) were able to confirm the results
from the earlier simulations of Rosner et al. (1977) and
Rosner (1979).

Weighted estimators have been proposed to provide a
more unified approach to estimation problems, so that many
of the existing estimators would be merely special cases of
a generalized theory. Karlin et al. (1981l) developed their
estimator by assigning weights to paired data points in the
pairwise estimator. Defining the weights as the reciprocal
of the number of pairs contributed by each family yielded a
new estimator, the family-weighted estimator. Srivastava
and Keen (1988) derived their estimator utilizing the method
of weighted sums of squares originally developed by Smith
(1956). A special case of this estimator for the choice of
uniform weights is the interclass estimator proposed by
Srivastava (1984).

Procedures for testing the statistical significance of
a parent-offspring correlation coefficient were discussed by
Rosner et al. (1979). They proposed an adjusted pairwise
test, in which the effective degrees of freedom is
determined as a function of both family size and sib-sib
correlation. In a subsequent Monte Carlo simulation, this
test was shown to be more powerful than three other
procedures that had been previously cited in the literature.

In subsequent research, Donner and Bull (1984)

on




recommended comparing the pairwise estimator to the value of
its large sample standard error computed under the null
hypothesis (yielding an approximate standard normal deviate)
as an appropriate significance testing method. Xonishi
(1985) provided a generalization of this procedure to test
the hypothesis that an interclass correlation is equal to a
specified value. He also recommended that hypothesis
testing should be based on the pairwise estimator if the
sib-sib correlation is small and on the ensemble estimator
if the sib-sib correlation is large.

Confidence interval estimation, based upon the
asymptotic distributions of the pairwise and ensemble
estimators, was first described by Konishi (1982, 1985).
However, Donner and Eliasziw (1988) provide a detailed Monte
Carlo simulation showing that a modified form of Fisher's
Z-transformation as applied to the pairwise estimator
produces a confidence interval narrower than ones proposed
by Konishi (1982, 1985) or those based upon maximum
likelihood procedures.

In summary, the literature tends to recommend the
pairwise estimator for both estimation and hypothesis
testing. Although the ensemble estimator, and its variants,
is preferable to the pairwise method if the sib-sib
correlation is at least moderately large, this situation

arises only infrequently in human family studies. However,



Konishi (1985) pointed out that this may not be case in
animal studies where measurements taken on litters have been

found to be highly correlated.

1.3 Review of the General Interclass Correlation

Interest in assessing correlations between two classes
of individuals was increased with the work of Elston (1975)
and Smith (1980a, 1980b). Elston (1975) considered the
special case of equal number of individuals in each class,
over the entire sample of families, and derived expressions
for the relevant maximum likelihood estimators and
corresponding asymptotic variances. Dealing with the case
of variable class size, Smith (1980a, 1980b) proposed a
method for estimation of interclass correlation coefficients
using the approach of weighted sums of squares given in
Smith (1956), also describing an iterative technique by
which one may obtain the estimates. He further showed that
under the assumption of normality, his method will yield the
maximum likelihood estimators and their variances. However,
this procedure offers no substantial reduction in computing
iatensity over the method of maximum likelihood discussed by
Donner and Koval (1981), and Rosner (1982).

An alternative approach to the above iterative methods
was suggested by Karlin et al. (1981). Their method

involvas forming all possible pairs of scores between the

~d




classes within a family, assigning some relative weight to
those pairs, and then computing a Pearson product-moment
correlation over all the weighted pairs. For a certain
weighting scheme, this estimator reduces to the pairwise
estimator derived by Rosner (1982). 1In addition, for
samples containing equal number of individuals in each
class, this estimator is the maximum likelihood estimator.
An adjusted pairwise test for the general interclass
correlation, extending the one proposed by Rosner et al.

(1979), is given by Rosner (1982).

1.4 Overview

The purpose of this thesis is to provide a unified
noniterative approach to point and interval estimation of
familial correlations. Both the interclass and intraclass
correlations are developed as generalizations to the
Pearson product-moment correlation. The effectiveness of
this approach is assessed in comparison to maximum
likelihood procedures.

The general interclass correlation model, along with
the underlying assumptions and restrictions, is defined in
Chapter 2.

Chapter 3 is devoted to clarifying the relationships
among several recent estimators of parent-offspring

correlation, specifically, the ensemble, the modified



sib-mean (Konishi, 1982), the family weighted, 2nd the
estimator proposed by Srivastava (1984).

In Chapter 4, the maximum likelihocd estimator and the
generalized product-moment estimator are introduced. In
addition, their asymptotic distributions are derived under
the assumptions of normality.

Chapter 5 deals with the accuracy of these point
estimators in a Monte Carlo study. The primary basis for
comparison are their small sample and asymptotic relative
efficiencies.

A new consistent estimator of intraclass correlation is
proposed in Chapter 6 as an extension of the weighted
pairwise estimator of Karlin et al. (1981). Moreover, the
asymptotic variance for the weighted pairwise estimator is
derived. Through a Monte Carlo study, both the small sample
and asymptotic properties are compared to those of the
maximum likelihood and analysis of variance estimators of
intraclass correlation.

Procedures for interval estimation are outlined in
Chapter 7. The quality of these methods are evaluated by a
subsequent Monte Carlo study.

Chapter 8 provides an analysis of a real data set,
summarizes the results of the thesis, and suggests

directions for future research.




CHAPTER 2 - THE INTERCLASS CORRELATION MODEL

Suppose a sample of measurements from N families is
caken, and that two classes of individuals are being
studied with each family having a variable number of

individuals in each c¢lass. Let
23 = (%31 Fyp.- - Rja ¥ig:¥izo- - o ¥ip, )’

represent the observations from the ith family, where

are the scores on the aj individuals in

xil,xiz,...,xiai
class A, and Yil'YiZ""'Yibi are the scores on the bi

individuals in class B. It is assumed that the z; have a
(ai+bi)-variate normal distribution with mean vector

By = (g, #g,-... By, Bp/By,...#p)" and covariance matrix

[ Zi11  Ei12 ]

Zi12 %i22

where Ziiq = og{(l—pa)lai+ pa£ai£éi} ;
Zi22 = “g{(l‘pb)lbi+ pb£bi£51} ;
£j12 *© Gahiai£ﬁi = paboaobgaiiﬁ- i

1
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L, = (1,...,1)" is a a;-vector of ones;
i
£y, = (1,...,1)' is a bj-vector of ones;
i
and Lai and lbi are ajxay and b;xb; identity matrices,
respectively.

In this model, it is assumed that individuals in class

2

A have common mean g, and variance 03¢ while individuals in

class B have mean and variance og. Moreover, the
interclass correlation denoted by p,_,, and the intraclass
correlations Pa and Py, are assumed to remain constant over
all family sizes. The necessary and sufficient conditions

for the covariance matrix, Z;, to be positive definite for

all a. and bi are

i
0; >0 |, og >0
a;— < Py < 1, Si%T_ < pp < i ;
and 2y < [Pa + a3*(1-p)] [pp+ b3t (1-pp)]
where a, = max{ai} and bD = max{bi} . An approximate

form of the latter condition is r3, < pup

Without loss of generality, a restriction is also
placed on the number of individuals in classes A and B so

thet aj 2 1 and bi 2 1 for all 1i.

11



CHAPTER 3 - COMPARISON OF RECENT ESTIMATORS OF PARENT-
OFFSPRING CORRELATION

In this chapter, the algebraic and asymptotic
properties of the family-weighted estimator and the
estimator proposed by Srivastava (1984) are compared tc more
traditional estimators of parent-offspring correlation, such
as the ensemble estimator and the modified sib-mean
estimator. The model adopted for these estimators is a
special case of the one described in Chapter 2 by letting
class A have exactly one individual. 1In the parent-

offspring model, Xj1 represents the parent's score and
Yi1:¥Yj2s---+¥ip aTe the scores on their bi offspring

(siblings). The parent-offspring and sib-sib correlations

are denoted by Pab and Pl respectively.

3.1 Estimators of Parent-offspring Correlation
3.1.1 Ensemble estimator

The ensemble estimator was derived by Rosner et al.
(1977) by computing the 'expected value' of the random-sib
estimator over all possible choices of random sibs from

each family, and is expressed as

12
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H
-
l

Pab,e = Ty y N 1
— 212 - 212
[ifl(xll'xm) ] [ N %1 k=1 (Ylk Fig) 2+ i (¥5-¥s) ]
N b. N
= _ 1 - =1 i 5 =1 3
where z, = § -:1 i1+ ¥is ¥ by kflyik r Yg T N iflyis

The asymptotic variance of the ensemble estimator was first
derived by Konishi (1982). Using notation given by O0'Neill

et al. (1987), the asymptotic variance of the ensemble

estimator, denoted by AV(;ab e), is

& [Bﬂ‘(l'Pgb)z + (1-Bg*) {(pp-p3p) (1-021) + ipgb‘l‘”b)z}]

-1
where b, = [ﬁ 'z _} is the harmonic mean family size.
i

3.1.2 Family-weighted pairwise estimator

Karlin et al. (1981) suggested weighting the pairs in
the pairwise estimator by the inverse of the number of pairs
contributed by each family, so as to eliminate the
disproportionate effect of large families in the final
estimate. Their estimator is of the form

S (xyy-E) B By -Tg)
X,4-X 1
jop Fi17*m) by 2, YikT¥s

~

Pab,f ~

Emn P L3, B ]
iz1 ti17%m 2 55 Wik Ts
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3.1.3 Modified sib-mean estimator

The sib-mean estimator, obtained by pairing each

parent's score with the mean of their bi sibling's scores

and calculating the Pearson product-moment correlation,

can be expressed as

N
- ;2 (Ri17%n) (¥35775)
p =
ab,m 1 1
‘ N LN L
= 2|2 - = 2|2
[ifl(xil—xm) } [ifl(yis'ys)

Lush (1947) and Konishi (1982) have both pointed out that

this estimator is not consistent for the parameter s,
since, asymptotically,

]-1/2

E(;ab,m) = [551 + (1'551)Pb Pab

The modified sib-mean estimator (Konishi, 1982) adjusts

Pab,m in such a way that the new estimator is consistent.

It is written as

_ - 1/2 -
Pab,mm = [5h1 + (1‘5h*)9b] Pab,m *

~

where p,, may be estimated by any consistent estimator of

intraclass correlation.



3.1.4 Srivastava's estimator

Srivastava (1984) proposed an estimator which is given

by
N s Vs =
) lfl(xll'xm)(yls Ys)
Pab,s ~ LN 1
Eb[N—l]z {.zl(xll-im)z]2
i=
N
where §¢ = ‘
~2 ~a2
Py = % ~ 7b
~2 1
[+]
b
. N b i} N
and ¥ = oz kf;(yik'yis)z / E (bj-1)

Substituting Eb into the above expression for ;ab s results

in the form of the estimator given later by Srivastava and
Keen (1988):

N

z, (®i1- Xp) (¥55-¥s)

i=1

Pab,s ~

N

N = y2
[ifl(xin‘xm’ ]

i=1 k- i=1
N
where N = (1-Bp*)(N-1) /igl(bi-l)

Srivastava & Katapa (1986) showed that the large-sample

N b N =
[N > (Ylk ¥ig)? +.2 (g ?s)‘]z



variance of Pab,s is

WGap,s) = & [rd + sdofte® - 20 - 2} o]
where
(1-Bp*)*
c® = 1 - 2(1-py)(1-Bg') + (1- z[l —h ]
(1-pp)(1-Bg*) op)* IR %;} )
- 1 N .
A= 1 - (1-pp)(1-Bp*) , and b = £, b; is the mean
i=

sibship size.
It is shown in Appendix 6 that ;b is just the

estimator of intraclass correlation based upon unweighted

group means, as first proposed by Smith (1956) and
explicitly expressed by Donner & Koval (1983). Thus, ;ab s
is algebraically identical to the modified sib-mean

estimator, given by e, nn . When pp is estimated by Pp-
I

3.2 Comparison of Estimators
3.2.1 Equal sibship sizes

It is easily shown that when the number of siblings per

family is the same (i.e. bi = b for i =1,...,N), the

~

estimators pab,e ¢+ Pab, £ and Pab,s have large-sample mean

and variance equivalent to those of the maximum likelihood



estimator. Thus if bi =b; 1i=1,...,N, all the estimators

mentioned above are asymptotically efficient. It is also
noted here that whereas the ensemble and the family-
weighted pairwise both reduce to the Pearson product-moment
correlation coefficient in the case of one child per family

(i.e. bizl, i=1,...,N), Srivastava's estimator is undefined.

This is because Pab.s is a function of the intraclass

correlation based upon unweighted group means, which cannot
be computed for this case.
The subsequent sections consider the case of unequal

sibship sizes.

3.2.2 Comparison between ;ab £ and ;ab e

Using the definitions in Section 3.1.1, it is noted that
bi - _ _

and

N

b, N b. b.
z X (yi-¥g)% = E [zl( i ¥ig)? + EMI -7 )‘]
i=1 %1 k=1 ik S) i=1 %1 k=1 Ylk YlS) k=1 Yls YS

N b.
i 5. 12 c _g )2
ity %i kfl(yik'yis) + (¥i5-¥5)

Using these results, the family-weighted pairwise

estimator can be written as

17



N - = -
ifl(xil'xm)(yis‘ys)

1

N L TN b. N 1
- 1 1 -~ 2 = = 212
zx--x)”[z 2(-*Y*)+2(Y--Y)]
[i=1( i17%m ] i1 Pi k=1 Yix7¥is j=1 " is ’s

Presented in this form, it is observed that the
family-weighted pairwise estimator is essentially the same

N-1

as the ensemble estimator, since = in p tends to unity

ab,e
as N increases.

Thus, the asymptotic variance for ;ab £ v under the

assumption of normality, can be taken to be the same as for

the ensemble estimator. That is

AV(;ab,f) = & [551(1‘P§b)2 + (1-B3*) {(pp-p2p) (1-£2p)

1.2 2
+ 2Pap(1-rp) }]
3.2.3 Comparison between ;ab s and ;ab e

The asymptotic variance of ;ab s’ given in Section
3.1.4 can be equivalently written as

§ [sﬁ*(1-p§b)3 + (1-55‘)(pb-pgb)(1-pgb) + gpgb(l-pb)zr]

B,-1]2
where T = 352 + [_B__] « 2 ana
By |  B-1

2 1 N -1 -1 2 . .
s = N igl(bi - Bh ) is the variance of family

size reciprocals.

13



The difference between the asymptotic wvariances of
Srivastava's estimator and the ensemble estimator, given a

particular probability distribution for bi and values for

Pap: Pp: can be expressed as:

A(bi’pab’pb) = [Av(Pab’s) = AV(Pab’e) ' bi'pab'pb]

Zp

[4p2p(1-pp0% (T - (2-Bp*)}]

]
2

Bb-l B—Bh
[%p;b(l'Pb)z{six - %2 }]
5‘1 Bh

Srivastava and Keen (1988) have shown that this difference
is always negativ( without, however, evaluating its

magnitude. In the section below, the asymptotic variances

of the two estimators are compared.
3.2.4 Comparison of asymptotic variances

A Monte Carlo simulation was undertaken to compare
AV(Pab,s) to Av(”ab,e)' In designing the simulation
study, the truncated negative binomial distribution was

used to generate the bi given by

(m+r-1)! Q"™ (p/Q)t

Pr(bi=r) = Q =1+, r =1,2,...

(m - 1) rt (1 - @M’

Brass (1958) has shown that the above distribution fits the

.bgerved distribution of sibship sizes very well in a
variety of human populations for appropriate choices of

paraneters m and P.

19



Estimates of m and P were derived by Brass (1958) for
29 different countries, based on data available in the
United Nations Demographic Yearbook. These estimates
correspond to values of mean family size ranging from 2.55
in England & Wales to 7.27 in Brazil and Malta. For each of
the 29 countries, 500 sibship sizes were generated on each
of 1015 independent runs. On each of these runs, the
percentage reduction in variance associated with
Srivastava's estimator was calculated, and is given by

A(bi'Pab'Pb)
AV(r,p @)

A(bi:pablpb) x 100

The median of these values over the 1015 runs was selected
as an appropriate estimator of the percentage reduction in
variance for a particular sibship size distribution and

parameters Pab’ Pb- The results are shown in Table 1.1.

The U.S. sibship size distribution (m=2.84, P=.93) is
considered first since it is the one most often cited in the
literature. It was found that the largest reduction in

variance over all parameter combinations of s,y and P, Was
0.9%. This occured for Pap = 0.6 and Py = 0.4. For the

same family correlation parameters, and the remainder of
countries listed in Brass (1958) Table 1.1 shows that the
reduction in variance ranges from 0.6% (England & Wales) to

1.7% (Brazil and Malta).



3.3 Summary

In summary, it has been shown that the family-weighted
pairwise estimator is, aside from a factor of (N-1)/N,
identical to the ensemble estimator. Thus, Karlin et al.'s
(1981) criticism of the ensemble estimator not being a true
correlation, in contrast to the family-weighted pairwise
estimator, is not merited. Further, it was demonstrated
that the estimator proposed by Srivastava (1984) is:

a) identical to the modified sib-mean estimator when the
sib-sib correlation is estimated by the method of unweighted
group means, b) is only slightly more efficient than the
ensemble estimator, and c¢) is undefined when the data
consist of one sibling per family. Thus, the results
indicate that the asymptotic properties of the above-

mentioned estimators are essentially indistinguishable.



TABLE 1.1

Mean sibship size and percentage reduction in variance for
the 29 countries reported by Brass (1958)

Mean 4% Reduction in
Brazil 7.27 1.74
Malta 7.27 1.74
Puerto Rico 6.69 1.73
Venezuela 6.26 1.72
Jamaica 5.73 1.68
Windward Islands 5.72 1.66
Ceylon 5.62 1.49
Italy 5.44 1.48
North Borneo 5.43 1.54
Mauritius 5.32 1.53
Japan 5.29 1.43
Hawaii 5.26 1.54
Trinidad & Tobago 5.21 1.58
British Guiana 5.18 1.55
Sarawak 5.04 1.52
Leeward Islands 4.93 1.51
Canada 4.77 1.45
Barbados 4.65 1.46
Czechoslovakia 4.21 1.24
Mozambique 4.21 1.21
Bermuda 3.95 1.23
Portuguese Guinea 3.70 1.02
Singapore 3.51 1.09
Switzerland 3.29 0.94
Australia 3.19 0.87
U.S.A. 3.13 0.90
Scotland 2.94 0.78
Norway 2.68 0.64
England & Wales 2.55 0.63

(88
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CHAPTER 4 - ESTIMATORS OF INTERCLASS CORRELATION AND THEIR
ASYMPTOTIC DISTRIBUTION

The remainder of the thesis deals with the general
interclass correlation model introduced in Chapter 2, as
characterized by a variable number of individuals in each
class. Two methods for estimating the model's interclass

correlation parameter are discussed first.

4.1 The Maximum Likelihood Estimator
A well-established approcach to estimating the

interclass correlation is the method of maximum likelihood

(ML). 1If 2,,25,.-..Zy denotes a sample from the model, the

conditional likelihood (L) of this sample is given by

L(&i:§1|§1:§21 L] rENrai:bi)

N
_ Ak -1/2 r N -
= (2m)~E(aj+b;)/2 l_||§i| expt-é ifl(zi'ﬁi)'zix(zi'ﬁi)}

The estimates of s,, Ay, ag, og, Pa+ Pp and p,, are then
obtained by maximizing L, or equivalently minimizing -2logL.

In the case of varying aj and bi' the maximum

likelihood estimates cannot be expressed in closed form, but
must be obtained through Newton-Raphson iterative methods.

The ZXMIN subroutine from the International Mathematical and

23
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Statistical Libraries (1977) and the method of Atwood and
Foster (1973), to handle the complication that five of the
seven parameters are bounded, is a standard procedure for
function minimization. It is noted that the ZXMIN
subroutine is based upon the quasi-Newton method of Fletcher
(1972), whereby the first and second derivatives of the
likelihood function are not supplied but are approximated at

each iteration. The maximum likelihood estimates of the

correlation parameters will be denoted as ;a ML ‘ ;b ML and
14 1

Pab,ML
It follows directly from the properties of maximum

likelihood estimation (Cox and Hinkley, 1974, pgs. 294-295;
Mood et al., 1974, pg. 359) that (pup wp- Pap) is
asymptotically normal with mean zero and variance

Av(;ab,ML)' Furthermcre,

Pab.ML ~ Pab

[AV(Pay M) 12
is an approximate pivotal gquantity (Mood et al., 1974, pgs.
393-394)j. Inversion of this quantity leads directly to

confidence interval construction about the parameter Pap-

Tha asymptotic variance is derived by the usual method

of inverting the information matrix for the parameters

2 2 . .
Bar Bp: Ox. Op, Pa. Py and Pab - The computations required



s

2%
for obtaining the elements of this matrix are shown in
Appendix 1.

If we let
Vl = 1 + (ai-l)Pa
Wl = 1 + (bl‘l)Pb
p—ag — 2 . .
Tj = VWi - Papaiby
N N P2 N N a.b. P2, N N a.b;
%, = Ta; =b; + BB 54, 11, -8 7, A1
i=1 i=1 2 i=1 i=1 Ti 2 1=1 i=1 Ti
2
¥, = L N a;(a;-1){W;Pa=Papb;)
1/2 .2
2 (1-Pa) i=1 Tl
2
'D3 , 1 gbi(bj:l)(vipb”pabai)
i/ 2 : -
2 (1-pp) i=1 Ty
1 if a; = 1 for a1l i =1,2,...,N
u = - 2 2 - - 2 2 2 h.
1 N (a;-1){ri Wilay 1) (1-ry) 1 E’z{ ¥y Zan Y alb]}
Li=1 2(1~pa) T3 2, li=1 2 1i=1 Ti
2
uy = Pab { g (ai_l)(bi'l)aibi _ 'I'z'Pa g ajbj}
.~ 2 =
2 i=1 Tl ‘Il 1=1 Tl
N W.a;b.(a;-1) ¥ N N a;b. N a;b.)2
ug = —p pff £ AL, ‘W%_[ T by T —ads {,,ab z_LL} ]
1 if bi =1 foralli =1,2,...,N
Ug = | N (b;-1){T3+ VE(bi-1)(1-p,)2} [ N p2. N a;b.
N 1bi-1){Ti* Vitby b __;{ga.+_¢b__z_x_:.}
i=1 2(1-pp)*13 gli=a b 2 i=1 7,




N bi(b;-1) @ N Najb, N a;b.
ug = ‘pabﬂ-z 1i 1 "+ 1/2 [ Za; = >3 {p p T, —2—%
fli=1 T3 2t/2g, [i=1 ti=1 Ty 4% =1 Ty
2 _
v = Najbi(ViWy + rapaibs) ﬂ;_[ Nay b_;']
6" inx T2 ¥ li=1 T,

then the asymptotic wvariance of ;ab ML is

2
U1U4 - U.g
UB(U1U4 - u;) + 2“2113“5 - u§u4 - ulug

AV(Pap ML)

4.2 Generalized Product- ti o)

A reasonable noniterative alternative to the maximum
likelihocd estimator is given by a generalized form of the
Pearson product-moment correlation coefficient, as proposed
by Karlin et al. (1981). This estimator is defined

analogously to the simple correlation coefficient, as

~ 0
4 = —-3-2—
ab,GP 040y
h s T w, i ) 21( )
where o = W Xy y v..
ab i=1 13_1 ik~
- N
g2 = T w:b. zl(x -%..)%
a 1 1 1 1]"
- N b

j=1 1 1k



H X = Z ws;a:b.kx X, = i %ix-- :
ere X. . - i:l 1 l l 1 ’ 1.- ai j:l 1] [
_ N _ _ bi
= ZWiiPi¥i 0 Y4S 1]3.1 ooy Yik
and the weights, Wi, are chosen so that the constraint,
3 i isfied
iflwiaibi = 1, is satisfied.
- . N -~
For example, if we let Wi o= 1 /iflaibi then Pab,GP

takes on the form of the pairwise estimator proposed by

Rosner (1982). 1If aj = 1 for all 1 =1,2,...,N then Pab,GP

is the usual pairwise estimator discussed in Chapter 1.2.

-

In tl.c case where a; = bi = 1, Pab,GP reduces to the simple

Pearson product-moment correlation.
Another choice of weights that satisfies the above

constraint is Wi = 1/ Naibi . When these weights are

substituted into Pap Ggp + ©One obtains an estimator which is

analogous to the family-weighted pairwise in the
parent-offspring case.

Two other weights, not considered by Karlin et al.
(1981), that are plausible and also satisfy the above
constraint are:

N N
Z b, and w; =1 /b, Z

i aj

1 1._._11'

The first of these de-emphasizes contributions from families

27




with large class A sizes, whereas the latter de-emphasizes
those with large class B sizes.
In the subsequent chapters, the following weighting

schemes will be considered:

Weighting Scheme Value cof Wy
.y N
Individual (IND) 1/ -zlaibi
i=
Family (FAM) 1/ Naibi
N
Class-A (CL-A) 1/ a; Z bi
i=1
N
Class-B (CL-B) 1/ by I ay
i=1

From the work of Krewski and Rao (1981), it can be

established that (;ab,GP‘ Pab) is asymptotically normal with

mean zero and variance AV(;ab GP)' Similarly,
P -p
ab GP ab
[AV(rap,gp) 1" °
is also an approximate pivotal quantity.

Here, AV(;ab gp) 1s the first-order approximation to

the asymptotic variance of ;ab,GP , derived through a linear

Taylor series expansion. This procedure is discussed in

detail by Wolter (1985), pgs. 222-227. The & (delta) Method

28



(Rao, 1973 pg. 388) that is often mentioned in the

literature is practically equivalent to that of Krewski and

Rac (1981).

From the computations in Appendix 2A, the asymptotic

variance of Pab GP is given by

- N
- .- 2 2.2y 2
AV(Pap,gp) = (1-#gp) i2,¥121P3

N
2

+ (l-Pa)(l—pb)iElwiai(ai-l)bi(bi—l)

3 2 1 2 NZ 2
+ (1—pa){gpab - 2PapPa - 1}i§1wiaibi(ai-1)

3 2 1 2 sz
+ (1-pp){3r3p - $#30Pp - 1}i§1“iaibi(b1°1)

For completeness, a first-order approximation to the

bias of ;ab,GP is derived in Appendix 3 as

. -~ N
Blas(”ab'GP) = - ‘;‘Pab(i"P;b) E wia;bg

i=1

- 1o p(1-p,)(3p,-1) z W bi(a;-1)
+Pap'tTPal 3P 7] 2 W1RiD1184

- & (1-p.)(3Pn-1 g 2a?p. (b.-1
+Pap(1-Pp)(3pp=1) E wjajb;(b;-1)
It is clearly seen that Bias(;ab GP) is a negative value.

Thus on average, ;ab GP will underestimate Pab*




CHAPTER 5 - ACCURACY OF THE ESTIMATORS OF INTERCLASS CORRELATION

5.1 Asymptotic Relative Efficiency of the Product-moment
Estimator

The accuracy of a point estimator may be assessed using
a number of different criteria. One important criterion is
the asymptotic variance of the estimator, under which the
estimator with the smallest asymptotic variance is
preferred. 1In practice, the asymptotic relative efficiency

(in percent), defined in our case as,

AV(Pap M1
—— D il

ARE(P,p gprPab M) = 1imN,,{ } x 100

AV(Pap,Gp)

is a ratio measure frequently adopted because of its
boundedness property. In particular, since it is implied by

optimality properties of maximum likelihood theory that

~

Pab ML has the smallest asymptotic variance of all possible

estimators that can be constructed, it is clear that the ARE
is a number between zero and one hundred.

Although explicit expressions for the asymptotic
variances have been derived in Chapter 4, the mathematics
for computing this limiting ratio analytically are for the
most part intractable. Thus the only recourse is to perform
a Monte Carlo simulation.

In designing the simulation study, one immediate
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difficulty is the selection of aggregate class sizes
{ai+bi}; in any given investigation, there is an infinite
number of combinations that could be considered. This

difficulty is overcome by generating the {ai+bi}' at random,

from a distribution of aggregate class sizes which are
reflective of those found in human populations. The

negative binomial distribution truncated below 1, given by

(m + R - 1)! 9™ (p/)R

Pr(ai+bi=R) = Q=1+, R =1,2,...

(m - 1)! R! (1 - QM

has been shown by Brass (1958) to fit the observed
distribution of sibship sizes very well in a variety of
human populations for appropriate choices of parameters m
and P.

This simulation study was performed with parameter
values m=2.84 and P=.93, that correspond to the U.S.
sibship size distributions in 1950 reported by Brass (1958).
It is noted that only families with aggregate class sizes
greater than or equal to two were included in this study,

gsincn it has been assumed previously that aizi and b121 for

all i. Under these conditions, the mean class size is 3.83.

Given an aggregate class size, R=ai+bi, the a; was then

generated from a binomial distribution with probability
one-half. This implies that the occurrence of a male or

female offspring within each family is of equal probability.
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Uniform pseudo-random deviates were generated using the
RANDOM algorithm written by Wichmann and Hill (1982).
On each of t=1015 independent runs at N=300 and for

selected values of Par Ppr Papr the ARE was computed. The

median of these values over the 1015 runs was chosen as the

estimate of relative effectiveness of the non-iterative
estimator ;ab GP to the maximum likelihocd estimator in
large samples. The values for Par Pp and Pap Were selected

to satisfy the model constraints. PFurther, the sample size
cf 300 families was chosen on the basis that it was well
within the range of large sample theory (Donner and Koval,
1983).

All computer programs were written in FORTRAN and
executed on three SUN 3/50 Workstations under a UNIX
overating system at the University of Western Ontario.

The results «re shown in Table 5.1 for the case when
the two intraclass correlations are assumed to be equal.
The individual-weighted (IND) estimator performs very well

at py = Py = 0.0 but declines rapidly in relative
effectiveness as Pa and Pp increase. In contrast, the

family-weighted (FAM) estimator's relative effectiveness

increases with increasing intraclass correlation. At

Py = Pp = 0.3, the AREs are similar. It is also noted that

a

for values of intraclass correlation greater than 0.5, the



family-weighted estimator has the highest relative
efficiency.

The class-weighted (CL-A, CL-B) estimators are, in
general, less variable in terms of relative effectiveness.
Except in the case of independent observations, the ARE for
both class-weighted estimators lie in the range of 80-90%,
reaching a maximum when the intraclass correlation is around
0.3. 1In addition, their relative efficiencies are higher
than those for the individual-weighted estimator at all
intraclass correlation values greater than 0.1

In Table 5.2, the intraclass correlations are allowed
to be different in each class. It is evident from the
results that the relative effectiveness of both the
individqual-weighted and family-weighted estimators are
dependent upon the average value of the intraclass
correlation between the two classes. For example, the

ARE at pab=0.1, pa=0.3, pb=0.5 is similar to the ARE at
Pap=0.1, p,=0.4, Pp=0.4 in Table 5.1; alsc in the case for
pab=0.5, pa=0.5, pb=0.7 and pab=0.5, pP,=0.6, pb=0.6.

It is also observed that the relative effectiveness of
the class-weighted estimators are influenced by the size of
the intraclass correlations. In particular, the class-A

weighted estimator performs better when Pa is large, whereas

the class-B weighted estimator is more efficient when Pp is
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large. However, for the parameter combinations shown in
Table 5.2, the class-weighted estimators do just as well or

better than the individual-weighted estimator.

5.2 Empirjical Relative Efficjency and Bias of the Product-

ome timato

The variances presented in the previous section are all
first-order approximations to the true mean square error.
In the case of sufficiently large sample sizes, these
expressions provide reliable results. This does not,
however, necessarily mean that these results hold in small
samples. The Monte Carlo study was therefore extended to
calculate the small sample relative efficiencies and biases
for the estimators.

Adding onto the Monte Carlo study in Chapter 5.1,

observations x and v., for each family were generated from
ik

ij
a multivariate normal distribution with covariance
structure as defined in Chapter 2, using the GGNRM subroutine
from the International Mathematical and Statistical

Libraries (1977).
On each of t=1015 independent runs at N = 25, 50, 100

and for selected values of Par Pht Pap:s the values of each

of the estimators ;ab,GP and ;ab,ML were computed. The

number of families, N, was chosen to reflect a range of

sample sizes commonly encountered in practice. If for any




reason the maximum likelihood procedure failed to converge
in a particular 'run', themn that ‘'run' was completely
replaced by another.

The estimated small sample relative efficiency (in
percent) of the generalized product-moment estimator to the
maximum likelihood estimator will be defined as the ratio of
mean square errors. That 1is,

M5B fab.mn) 100

SRE( p P ) =
ab,GP'"ab,ML MSE(Pab,GP)

-~ 1015 ~
- 2
where MSE(eap wi) = 1015 ¢21¢Pab, MLt ~ Pap)

- 1015 -
and  MSE(rap gp) = TOTS (I, (Pab,Gpt = Pap)”
Here. Pab,MLt * Pab,GPt 3re the values of Pab,ML  ?ab,GP

on the tth iteration.

The bias of ;ab,ML and ;ab,GP are defined respectively

1015~ 1015~
as, {IU%B tflpab,nLt - Pab} and { ¢Z;7ab,GPt ~ Pab}-

Preference is given to the estimator with largest SRE
and smallest bias.

The patterns of the relative efficiencies in Tables
5.3-5.6 are not unlike of those for large samples. One
observes however, that in smaller samples the generalized
product-moment estimator gains efficiency over the maximum

likelihood estimator, and at times exceeding 100%. This is
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particularly true for the individual-weighted estimator.
As expected, this gain in efficierncy is dampened with
increasing sample size.

The small sample biases are presented in Tables
5.7-5.10. In general, the biases are small and negative,
with the estimators becoming less biased as the sample size
increases. There is no clear pattern for the biases,
although the estimators tend to become more biased with
increasing intraclass correlations. Overall, these results
affirm that estimator bias encountered in practice is

negligible.



TABLE 5.1

Asymptotic relative efficiencies for estimators of

interclass correlation when Py = Py

Pab Pa Py IND FAM CL-A
0.0 0.0 0.0 100.0 47.1 70.3
0.0 0.1 0.1 94.7 61.0 82.7
0.0 0.2 0.2 85.2 71.6 88.9
0.0 0.3 0.3 75.7 79.9 90.9
0.0 0.4 0.4 67.0 86.3 90.4
0.0 0.5 0.5 59.5 91.2 38.2
0.0 0.6 0.6 53.0 94.8 85..
0.0 0.7 6.7 47.5 97.3 81.5
0.1 0.1 0.1 91.9 59.7 80.9
0.1 0.2 0.2 84.3 70.8 87.9
0.1 0.3 0.3 75.4 79.3 90.4
0.1 0.4 0.4 67.0 85.9 90.°"
0.1 0.5 0.5 59.6 90.9 88.2
0.1 0.6 0.6 53.1 94.6 85.2
0.1 0.7 0.7 47.6 91.2 81.6
0.3 0.3 0.3 71.4 73.9 85.2
0.3 0.4 0.4 66.4 82.2 87.17
0.3 0.5 0.5 60.2 88.4 87.4
0.3 0.6 0.6 54.1 93.1 85.3
0.3 0.7 0.7 48.5 96.4 82.1
0.5 0.5 0.5 58.6 80.9 82.7
0.5 0.6 0.6 55.3 88.3 84.1
0.5 0.7 0.7 50.4 93.8 82.7
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TABLE 5.2

Asymptotic relative efficiencies for estimators of
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TABLE 5.3

Small sample (N=25) relative efficiencies for estimators of
interclass correlation when Py = Py

Pab Pa Py IND FAM CI.-A CL-B
0.0 0.0 0.0 118.4 56.2 85.5 85.7
0.0 0.1 0.1 110.5 62.4 86.3 87.1
0.0 0.3 0.3 106.8 75.3 95.2 91.5
0.0 0.5 0.5 93.9 87.3 97.5 94.4
0.0 0.7 0.7 77.17 95.4 93.4 90.4
0.1 0.1 0.1 110.0 64.5 88.7 87.9
0.1 0.3 0.3 105.1 77.2 95.8 92.9
6.1 0.5 0.5 94.4 88.8 98.0 95.7
0.1 0.7 0.7 78.9 94.9 93.7 91.5
0.3 0.3 0.3 94.1 82.1 94.1 95.4
6.3 0.5 0.5 88.4 89.8 96.4 95.9
0.3 0.7 0.7 78.3 95.8 93.3 92.9
0.5 0.5 0. 74.9 94.3 90.6 94.6
0.5 0.7 0.7 71.9 96.6 89.8 91.5
0.7 O. 0. 56.6 100.4 82.6 85.5
0.7 O. 0. 55.9 98.8 77.5 82.9



TABLE 5.4

Small sample (N=50) relative efficiencies for estimators of
1nterclass correlation when Pa = Pp

Pab Pa Pp IND FAM CL-A CL-B
0.0 0.0 0.0 115.9 45.3 70.8 74.0
0.0 01 0.1 118.3 57.3 82.6 85.1
0.0 0.3 0.3 110.4 76.2 96.4 95.7
0.0 0.5 0.5 93.2 88.5 97.6 97.5
0.0 0.7 0.7 76.0 96.1 93.3 93.1
0.1 0.1 0.1 114.6 61.2 87.9 89.3
0.1 0.3 0.3 105.2 77.1 94.4 97.4
0.1 0.5 0.5 91.4 88.6 96.3 98.3
0.1 0.7 0.7 76.6 96.0 92.6 94.5
0.3 0.3 0.3 89.3 81.0 94.3 96.7
0.3 0.5 0.5 78.2 91.1 91.8 93.9
0.3 0.7 0.7 69.4 96.9 88.7 89.8
0.5 0.5 0.5 67.1 88.6 86.0 89.7
0.5 0.7 0.7 63.4 96.1 84.5 88.9
0.7 0.7 0.7 49.4 93.2 77.2 80.6
0.7 0.9 0.9 49.1 99.1 73.9 78.1



41

TABLE 5.5

Small sample {N=100) relative efficiencies for estimators of
interclass correlation when Pa = Py

Pab Pa Py IND FAM CL-A CL-B
0.0 0.0 0.0 111.0 42.9 70.3 71.9
0.0 0.1 0.1 111.4 53.8 80.2 80.1
0.0 0.3 0.3 102.5 76.1 90.5 96.9
0.0 0.5 0.5 82.9 89.0 91.6 96.3
0.0 0.7 0.7 66.1 97.3 86.6 89.5
0.1 0.1 0.1 108.6 57.3 84.1 84 .4
0.1 0.3 0.3 96.4 76.1 92.2 93.6
0.1 0.5 0.5 82.6 88.7 90.7 96.2
0. 0.7 0.7 68.5 96.8 86.8 90.5
.3 0.3 0.3 77.9 79.1 90.4 91.3
0.3 0.5 0.5 69.7 88.1 86.5 92.7
0.3 0.7 0.7 63.6 95.4 84.6 88.7
0.5 0.5 0.5 58.7 86.7 81.4 87.3
0.5 0.7 0.7 55.1 94.8 79.0 86.3
0.7 0.7 0.7 55.1 94.8 79.0 86.3
0.7 0.9 0.9 43.8 89.9 72.9 77.5
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TABLE 5.6

interclass correlation when Pa * Pp

Ph IND FAM CL-A
0.3 114.3 66.3 86.0
0.1 117.2 65.7 94.0
0.5 102.9 82.0 94.4
0.3 101.9 82.1 101.0
0.7 84.8 92.4 93.1
0.5 85.4 91.6 98.9
0.3 109.4 67.2 86.1
0.1 109.9 71.1 97.0
0.5 98.7 82.5 92.3
0.3 99.4 82.9 99.2
0.7 84.8 92.1 91.7
0.5 85.3 92.4 98.3
0.5 82.5 87.9 89.1
0.3 85.9 87.2 97.1
0.7 73.8 93.5 88.7
0.5 74 .2 94 .4 93.3
0.7 64.5 92.6 88.2
0.5 66.6 93.2 88.3
0.9 50.3 96.7 74.6
0.7 53.0 98.0 78.7
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TABLE 5.7

Small sample (N=25) biases for estimators of interclass
correlation when p_ = pp (x10%)

Pab
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TABLE 5.8

Small sample (N=50) biases for estimators of interclass
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TABLE 5.9

Small sample (N=100) biases for estimators of interclass
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TABLE 5.10

Small sample (N=50) biases for estimators of interclass
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CHAPTER 6 - CONSISTENT ESTIMATORS OF INTRACLASS CORRELATION

Use of the asymptotic variances of Chapter 4 for
hypothesis testing and confidence interval construction
requires that the value for the intraclass correlations,

Pa and Py be known. This will generally not be the case

and thus these parameters will usually be estimated
empirically from the sample data. This chapter discusses

two such estimation procedures.

6.1 Analysis of Variance Estimator

The analysis of variance (ANOVA) estimator of
intraclass correlation has been most frequently recommended

and adopted in the literature to estimate Pa and Pp (e.q.

Rosner, 1982; Konishi, 1985; Donner, 1986; Donner and
Eliasziw, 1988). 1In a Mcnte Carlo simulation study, Donner
and Koval (1980a) demonstrated that the ANOVA estimator

tends to be as effective as the maximum likelihood estimator
(;a ML) for values of intraclass correlation that arise

naturally in family studies. 1In addition, the ANOVA
estimator is computationally simpler than the iterative
maximum likelihood procedure.

Por class A, the ANOVA estimator will be denoted by

47
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;a,AN and for class B, by ;b,AN . They are defined and

described fully in Appendix 4.

6.2 Weighted Pairwise Estimato

An alternative to the ANOVA estimator has been proposed
by Karlin et al. (1981), referred to as the weighted
pairwise estimator. It is written in its most general form

as (for class A),

N 3 5
W, zi zl(x -R. ) (x5 ,-%. )

i=1 +j=1 t=1

~ j#e

Pa,w =
N aj 5 2
T W. (a -1) z (x j ~X..)
i=1 j=1

h ¥ gw -1 21 d i
where TR (a ) zZ Xj; + an the weights W; are

N
chosen so that the constraint, zlw a. (a -1) =1, 1is
1—

satisfied.

This estimator has several advantages over the ANOVA
estimator. First, o, 4 is presented directly as a form of

Pearson's product-moment correlation coefficient. This is
in contrast to the ANOVA estimator, derived through equating
moments from a compornents of variance model (Searle, 1971,
pgs. 376-472). Secondly, in the case of constant class
sizes, the weighted pairwise estimator yields the maximum

likelihood estimator of intraclass correlation; a property



not inherent in the ANOVA estimator. Therefore, the
weighted pairwise estimator of intraclass correlation
suggests a more unified approach to the analysis of familial
data, in that the procedures and properties closely resemble
those for the generalized product-moment estimator of
interclass correlation.

For the weights Wi, Karlin et al. (1981) suggested

three possible choices. 1If the weights are taken to be

N -
1/ izlai(ai-l), then Pa,W is just the simple pairwise

estimator of intraclass correlation (Donner and Koval,
1980a). This is also referred to as the sib-pair method.

In the family method, each pair of observations is assigned
equal weight, but independent of the number of observations.

This is done by setting W; =1 / Nai(ai-l) . An

intermediate method, known as the individual method, weights

each pair according to the number of pairs that an

N
individual appears. In this case, wi =1/ (ai-l),zlai
1=

In examining each of the above weighting schemes,
severa! points arise. As described by Fieller and Smith
(1951), the sib-pair method tends to give too much weight to
large-sized classes. Futhermore, Donner and Koval (1980a)

have shown that the relative efficiency is poor for values

of intraclass correlations that are likely to arise in
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family studies. For these reascons, the sib-pair estimator
is rarely used in practice. It is also cbserved that both
the family-weighted and individual-weighted methods are
limited to family data with class sizes of at least two.
This is because whenever a family has only one individual in

either class (1.e. aizl or bizl), Wi is undefined.

The following weighting scheme is proposed to

alleviate the aforementioned problems. The weights are

N
defined as : W; =1/ a; I (aj-1). This choice of weights
i=1

de-emphasizes contributions from larger classes and yet are

valid when some of the class sizes are equal to one.
An estimator, Py W is obtained in an analogous way by

replacing j with k, a. with bi' X.

i lj with Ylk,

Py With pp in

the expressions of Chapter 6.2.

6.3 Accuracy of the Weighted Pairwise Estimator

A Monte Carlo study was conducted to determine whether
the weighted pairwise estimator with the proposed weights ic
comparable to the ANOVA estimator of intraclass correlation.
For completeness, a further comparison was made between the
ANOVA estimator and the other weighting schemes.

The random samples were generated following the
algorithm in Donner and Koval (1980a). In particular, the

observations were generated from a muitivariate normal



distribution. Class sizes were generated from a negative
binomial distribution (m=2.84, P=.93) truncated below at 2
to assure that each of the weighting scnemes were defined.
Truncating below at 2 instead of below at 1, as in Donner
and Koval (1980a), leads to no loss of generality.

For eaci: of t=1015 independent runs at N=50, the wvalues

-~ -~

5f each estimator Paw ' Pa AN and Pa ML Were computed at

p e2gual to 0.0 thru 0.9 . It is noted that negative values
of intraclass correlations are usually not considered
plausible in human studies and therefore the estimates were
truncated (set to zero) if their computed values resulted in

a negative quantity. Truncated estimators will be denoted

“m» ;) » .
as pa,W ' pa,AN and pa,ML' respectively. As a measure of

the effectiveness, small sample relative efficiences and
small sample biases were computed.
In addition, the large sample (N=300) properties cf

these estimators were examined by computing the asymptotic

relative efficiencies. The asymptotic variances of ;a AN
and ;a ML Were derived by Smith (1956), and Donner and Koval

(1980b), respectively. The large sample variance of ;a w is

derived in Appendix 5 and is given by

AV(py ) = 2(1-p) T Wiaj(a;-1){1 + (2;-1)0,}



h
[N)

A closed form expression for the asymptotic variance of Pa W

also lends itself naturally to hypothesis testing and
confidence interval construction about the intraclass
correlation parameter.

The small sample and asymptotic relative efficiencies
are given in Tables 6.1 and 6.2, respectively. As expected,

the sib-pair (simple pairwise) estimator performs well at

Py = 0.0 but declines rapidly in relative efficiencies as Pa

increases. Donner and Koval (1980a) found an identical
result. The family-weighted estimator, or the other hand,

does poorly at Py = 0.0 and 1increases in relative efficiency

as », increases. The relative efficiencies of the

individual-weighted estimator mimic the pattern of the
ANOVA estimator, but tend to be lower than those of the
latter.

Provided that Pa € 0.2 , the estimator based upon the

proposed weighting has relative efficiencies greater than

those of the ANOVA estimator. As Pa increases bevond 0.2,

the difference between the relative efficiencies of the
proposed and ANOVA estimator slowly increases, but at no

point is this difference greacer than 10%, provided Pac 0.7.

The biases of the five estimators are shown in Table

6.3. It is observed that the ANOVA estimator is the least



biased provided Py > 0.2 , whereas the simple pairwise
estimator is least biased when.pa £ 0.2 . The other three

methods of weighting yield estimators with similar biases.
Overall, the size of the biases are negligible in practice.
The preceeding resulte indicate that the esetimator
based upon the proposed method of weighting is a reasocnable
alterrative to the ANOVA estimator of familial intraclass
correlations. Although the estimator using the individual
method of weighting is also quite satisfactory, its use is
limited to samples with class sizes of at least two
indiriduals each. Relative efficiencies were also computed
when the negative binomial distribution was truncated below
at one. The results shown in Table 6.4 remain supportive of

the conclusions above.



TABLE 5.1

Small sample (N=50) relative efficiencies for estimators of
intraclass correlation with negative binomial distribution
truncated below at 2

P Sib-pair Individual Family Proposed  ANOVA
0.0 111.5 84.6 62.3 97.3 80.3
0.1 99.9 94.5 74.4 102.3 92.9
0.2 91.3 96.8 79.6 101.4 99.4
0.3 84.0 101.0 87.3 100.9 102.8
0.4 75.8 99.8 89.2 97.1 102.6
0.5 70.6 98.7 92.2 93.8 101.8
0.6 64.6 97.7 94.1 90.7 101.4
0.7 59.2 95.1 94.3 86.5 99.6
0.8 54.6 93.6 94.9 83.8 98.8
0.9 50.6 92.4 95.8 81.7 98.5



TABLE 6.2

Asymptotic relative efficiencies for estimators of
intraclass correlation with negative binomial distribution
truncated below at 2

P Sib-pair Individual Family Proposed ANOVA
0.0 100.0 59.2 29.8 76.6 68.6
0.1 86.9 83.4 48.8 95.7 91.9
0.2 72.5 92.1 61.0 7.1 98.5
0.3 62.2 94.3 69.2 93.7 98.9
0.4 54.8 93.6 74.8 89.2 97.0
0.5 49 .4 91.7 78.6 84.8 94.3
0.6 45.2 89.5 81.2 80.8 91.4
0.7 42.0 87.1 83.0 77.2 88.7
0.8 39.3 84.8 84.3 74.1 86.1
0.9 37.2 82.7 85.2 71.4 83.7

on
()



TABLE 6.3

Small sample (N=50) biases for estimators of intraclass
correlation with negative binomial distribution truncated
below at 2 (x10%)

P Sib-pair Individual Family Proposed ANOVA
0.0 362.8 436.2 308.5 403.1 458.5
0.1 47 .4 88.2 102 .4 81.1 154.2
0.2 -105.3 - 53.9 - 62.9 - 57.1 23.1
0.3 -172.1 -102.3 -115.3 -109.4 - 22.2
0.4 -204.7 -115.3 -123.6 -126.8 - 36.7
0.5 -203.9 -106.3 -112.5 -119.7 - 33.9
0.6 ~-234.5 -127.2 -127.9 -143.2 - 61.5
0.7 -292.5 -103.1 -100.9 -119.2 - 48.0
0.8 -171.9 - 86.6 - 81.2 -101.2 - 46.8
0.9 -106.7 - 52.5 - 47.2 - 62.2 - 31.1



TABLE 6.4

Small sample (N=50) and asymptotic relative efficiences for
estimators of intraclass correlation with negative binomial
distribution truncated belcow at 1

Small sample Asymptotic

P Proposed ANOVA Proposed ANOVA
0.0 113.8 64.6 79.9 59.2
0.1 112.0 83.3 96.5 85.2
0.2 105.5 92.9 96 .4 95.2
0.3 98.9 101.9 92.1 97.9
0.4 92.1 108.8 86.8 97.2
0.5 83.2 111.6 81.5 94.7
0.6 72.4 108.3 76.4 91.3
0.7 62.2 103.2 71.7 §7.6
0.8 §3.7 97.9 67.4 83.7
0.9 46.1 93.1 63.3 79.9

(1]



CHAPTER 7 - ACCURACY OF INTERVAL ESTIMATION

The pivotal quantities defined in Chapter 4 are

inverted to construct approximate 100(l-«)% two-sided

confidence intervals for Pab- Prior to inversion, the
variances AV(;ab ML) and Av(pab,GP) are replaced by their

consistent estimators ﬁ?(pab M) and iV(pab gp)+ wWhere the

unknown parameters are replaced by appropriate estimators.

It is known from normal theory that the accuracy of the

asymptotic distribution of pivotal quantities 1is not

appreciably affected by substituting consistent estimators.
Three general methods for obtaining two-sided

confidence intervals for Pap are described, followed by an

assessment of their quality. It is noted that quality is
measured in terms of coverage probabilities and interval
widths, where the method yvielding the narrowest interval

with an acceptable coverage probability is preferred.

7.1 A Method Based on Maximum Likelihood Theory (Method ML)

A consistent estimator iv(pab,ML) of AV(Pab,ML) is

obttained by replacing Pab' Pa and Ph by the maximum

~

likelihood estimators Pab , ML’ p;,ML and p;,ML' respectively.
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Again, p; ML and ;; ML dencte truncated (non-negative)

estimators.
Thus, from the pivotal quantity method of constructing
confidence intervals, an approximate 100(1-«)% two-sided

confidence interval for Pab is given by

~

. /
Pabue * 2i-a/a{B70ap p0)} 2]

where z, is the 100(1-«/2) percentile point of the

-a/z

standard normal distribution.

7.2 A Method Based on the Standard Error of the Generalized
Product - ent Estij Methods IND, FAM, CL- CL-B

Similar reascning to above leads to confidence

intervals based on the estimator ;ab GP’ given by

- . - /
[Pab,Gp * zx-a/z{AV("ab,GP’}1 2]

A consistent estimator of ﬁv(;ab GP) of AV(;ab GP) is

obtained by substituting ;ab GP for Pab’ and ;: AN and ;; AN

A” Q" ‘
or p, w and Ph.W for p, and py, respectively.

7.3 A Method Based on a Modified Fisher's Z-Transformation
(] CL- -~

Following the methodology of Donner and Eliasziw (1988),

an alternative confidence interval can be constructed by
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considering a generalizaticn of the well-known variance
stabilizing transformaticn for a simple correlation

coefficient propcsed by Fisher (1921). That 1is,

1 + ;
1 ab,GP
Elog — eI

2{fap,gp)
~ Pab,GP

is approximately normally distributed with mean Z(pab) and

variance 1/(D-3); where D is defined as the aggregate
degrees of freedom over N families (Rosner, 1982), given by
i=1 {1 + (ag-1)e }{1 + (by-1)py}

D =

’

where P, and py, are replaced by consistent truncated

estimators. Moreover, the quantity

-1/2

- 1
{Z(pab,GP) - Z(Pab)}{b_‘g‘_ }
is pivotal and has a standard normal distribution.
Therefore, an approximate 100(1-a)% two-sided

confidence interval for Pab is given by

- /
I[Z(Pab,ep) * zz-a/z{ﬁ‘%"?}1 2]

where I denotes the inverse transformation

I(0) = &5——
) e e + 1




7.4 Evaluation of the Methods

In order to assess the quality of the intervals
constructed by the various methods, a Monte Carlo simulation
was conducted since it was not possible to obtain exact
coverage probabilities using analytic techniques. The
simulation study was conducted as part cf the algorithm for
investigating the accuracy of the point estimators in
Chapter 5.

For various combinations of the parameter values (pab'
pa,pb), 95% two-sided confidence intervals were calculated

for each of the three methods and four interclass weighting
schemes. The number of runs, t=1015, was chosen so that a
reduction to 0.925 of the true coverage probability for a
nominal 95% interval could be detected with 9% power
(two-tailed}.

As summary statistics over the 1015 independent runs,
for each parameter combination, the empirical coverage
probabitility (converted to percentages) and mean interval
width were computed.

Estimated coverage probabilities for N = 25, 50, 100
are given in Tables 7.1-7.3, respectively. Corresponding
mean interval widths are shown in Tables 7.4-7.6.

As would be expected, the coverage levels for all
methods are as close or closer to nominal with increasing

values of N. In larger samples (N=100), all methods eXcept



oJ
1)

ZIND and ZFAM provide coverage levels close to nominal
for all parameter combinations. Method ZIND provides

acceptable coverage levels at values of ParPp € 0.3,

whereas ZFAM yields acceptable coverage at values of
Pa'Pn > 0.3.

At N=50, method ZFAM no longer gives overall
acceptable coverage probabilities, in particular at values

of Pap = 0.1, PaiPy 2 0.1.

In smaller samples (N=25) there is a general tendency
for all the methods to underestimate the nominal coverage
probability. Moreover, none cof the methods give adequate

coverage at p_,.= 0.3, p_.,Pn £ 0.5.
ab a'"

In terms of precision, methods based upon the modified
Fisher's Z-transformation have mean interval widths as small
or smaller then their corresponding methods based upon the
standard errors. In addition, the widths are very similar
to method ML. Method IND yields mean widths very similar

to method ML for parameter combinations Par Py € 0.3.

Methcds FAM and ML provide similar mean widths at values

of ParPy > 0.3. On the other hand, methods CL-A and CL-H

give interval widths that are consistently wider than those
of method ML.
Turning now to the case of unequal intraclass

correlations, Tables 7.7 and 7.8 show the estimated coverage
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probapilities and mean interval widths at N=50. These
results are found to be similar to those in Tables 7.2 and
7.5, in the sense that the respective <ocverages and widths
are fairly robust to departures from intraclass correlation
equality.

It 1s noted that the results for the above simulaticn

study were reported solely for the case where the weighted

N
pairwise estimator with weights w, = 1 / aj Zl(ai
i 1=
used to estimate the intraclass correlations. The reason
for this is that confidence intervals employing the ANCVA

estimator as an estimate of Pa and N yvield, on one hand,

very similar coverage probabilities but on the other hand
consistently wider intervals. This observation provides yet
a third advantage in favour of the weighted pairwise
estimator, in addition to those mentioned in Chapter 6.2.
For illustrative purposes, Tables 7.9 and 7.10 have been

enclosed and may be compared to Tables 7.2 and 7.°



95% two-sided confidence intervals for the interclass correlation
(Pa = Pb)

L
o
e g

o O O o o

© O 0O OO0 0OV 0 o0 o o o

o O ©O o

W W W e

w

TABLE 7.1

Coverage percentages at N=25 with Pa W and Po,W °

N O W e O

O 0O © OV 0O 0O O O O o 0o o

Q QO O 9

~N OV W e

~ W

w

C O 0O O 0 OO0 © o 0o o o

QO O O O

. . -
N W N W R 9w e o

~ o

~

<4
e

94.
94.
91.
91.
91.

94.
92.
91.
91.

90.
90.
91.

92.
91.

93.
93.

W O 0 O 2O UMW O »

[T TR V-TY N

IND

o v
w (3}
O O W N N YU W W e = w ;

Y-}
(8]
N O YN

FAM

93.1
92.6
92.4
91.7
91.7

93.3
92.2
91.5
91.8

91.6
91.0
90.4

93.0
91.1

93.6
93.1

CL-A

96.1
95.0
93.8
92.9
91.7

94.4
23.5
93.3
92.2

91.7
92.3
92.2

92.9
93.0

94.5
94.3

CL-B

95.
94.
92.
91.
91.

93.
92.

91.

92.
91.
92.

N O O WWYW R O U N D,

93.7
93.2

95.4
95.4

ZIND

96.8
96.8
95.0
93.2
90.2

95.9
94.4
93.5
90.6

91.6
91.6
90.5

90.3
91.5

89.7
92.5

64

ZFAM ZCL-A ZCL-B

87.
87.
90.
921.
93.

88.
90,
92,
93.

@ & N O W W

~N N O 0 =

- W N

94.5
94.6
94.3
94.4
93.5

94.4
94 .1
94 .4
94 .4

91.6
92.2
94.1

93.2
94.5

94.6
94.4

94.
93.
9z.
93.
92.

93.
92.

93.

91.
91.

93,
93.

94.
95,

W 2 00 O 0O M N VWY oW




k)
Q
o2

= = = O 0O 0O O O

Q0 O O QO © O 0O O 0 o o 0 o o 0 o

95% two-sided confidence intervalx for the interclass correlation
Pb)

N o W W W

~J

TAET.E 7.2

Coverage percentages at N=50 with 5, ., and Py yw

~N Ut W = O

cC QO O O O 0 O O O o © o oo O O o
-~ N W

O O O O o

O O O O © O O O o o o

2]
N YW R 9 W e O o

w

ML

95,
93.
92.
92.
93.

93.
92.
93.
92.

92.
92.
92.

94,
Q4.

95.
93.

@ O B U0 O N O 3O O W N WO N

IND

97.
97.
96.
96.
95.

96.
95,
96.
95.

94.
94.
95.

95.
96.

97.
97.

W WO N DN =R NWN e

A P N b W

FAM

93.
93.
92.
92.
92.

92.
92.
91.
91.

94.
92.
92.
G4.
93.

94.
93.

& O O & W O NNy WO N

CL-A

94.
94.
93.
93.
94.

94.
93.
93.
93.

94.
93.
93.

94.
94.

95.
94.

= O O

o O NN W W,

o

CL-B

96.
94.
93.
92.
93.

95.
94.
94 .
94.

94.
94.
94.

95.
95.

95,
96.

QO O R W YW 0N 9N

Ll N - A T B N &

ZIND

97.
97.
95.
93.
89.

96.
94.
93.
90.

92.
91.
90.

91.
90.

89.
88.

N A N O

O W v w

Ll S | B3

W o w;

{rg =

ZFAM

82.
84.
89.
92.
94.

86.
89,
91.
93.

91.
93.
93.

95.
95.

95.
95.

O O N W Oy~

N ke

[« TS |

65

ZCL-A ZCL-B

93.
g2.
93.
93.
93.

92.
92.
93.
93.

93.
93.
94.

93.
94.

94,
93.

N bR W e YU e W~ NN O

93.
93.
92.
93.

93.
93.
94.
93.

92,
94.
93.

95.
4.

94.

~N P w0 0= N W

T W N =

w




95% two-sided confidence intervals for_the interclass correlation
(Pa = l’b)
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TABLE 7.4

95% two-sided confidence intervals for the interclass correlation
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.44
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TABLE 7.5

95% two-sided confidence intervals for the interclass correlation
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.34 .34
.35 .35
.40 .40
.46 .46
.53 .53
.35 .35
.40 .40
.45 .45
.52 .52
.36 .36
.41 .41
.48 .48
.34 .34
.39 .39
.26 .26
.31 .31

ZIND

.30
.32
.28
.43
.48

.32
.38
.43
.48

.35
.40
.45

.35
.39

.29
.31

(Pa = Pb)
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Z2FAM ZCL-A ZCL-B

.30
.32
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.43
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.32
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.34
.39
.44
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.37

.26
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TABLE 7.6

95¢% two-sided confidence intervals for_ the interclass correlation
Mean interval widths at N=100 with Pa,W and Pb W
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.23 .23
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.33 .33
.38 .38
.24 .24
.28 .25
.33 .33
.37 .37
.26 .26
.30 .30
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.18 .18
.22 .22

ZIND

.20
.23
.27
.31
.35

.22
.27
.31
.34

.25
.29
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.24
.21
.20
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(Pa = Pb)
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.20
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.22
.27
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.22
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TABLE 7.7

95% two-sided confidence intervals for the interclass correlation
Coverage percentages at N=50 with Pa,W and Pb,W ¢ (pa # pb)

Pap *Pa v ML IND FAM CL-A CL-B ZIND ZFAM ZCL-A ZCL-B

0.0 0.1 0.3 2.7 97.2 92.6 94.0 94.6 96.7 86.2 92.5 94.1
0.0 0.3 1 92.8 96.5 92.2 93.3 93.4 95.8 86.4 93.0 92.5
0.0 0. 0.5 93.2 96.4 92.5 93.8 93.3 94.8 91.5 93.6 93.7
0.0 0.5 3 91.4 96.4 92.2 92.8 92.9 95.1 90.5 93.2 92.4
0.0 0.5 7 92.6 95.5 92.6 93.7 93.3 91.6 93.0 93.2 93.7
0.0 0. 0 93.1 96.1 92.4 94.5 93.9 91.5 93.4 94.8 93.0
0.1 0.1 0.3 92.7 96.7 92.7 93.2 95.3 96.0 87.4 92.8 94.1
0.1 0.3 0.1 93.0 96.2 92.7 93.8 94.2 95.6 88.0 93.2 92.8

1 0.3 0.5 92.7 96.2 92.6 93.5 93.8 93.9 91.5 93.0 94.2
0.1 0.5 0.3 92.2 95.6 92.6 92.8 93.8 93.7 91.0 93.3 93.0
0.1 0.5 0.7 92.8 95.8 91.8 93.5 93.8 91.6 92.5 93.1 94.3
6.1 0.7 0.5 92.7 96.3 91.7 93.3 93.7 90.6 92.4 33.7 93.3
0.3 0.3 0.5 93.5 94.9 93.8 92.9 95.0 92.0 92.9 93.1 94.4
0.3 0 0.3 92.6 95.3 93.9 93.8 95.6 92.0 92.9 94.1 94.0
0.3 0.5 0.7 93.3 95.5 92.4 94.0 94.3 91.5 94.0 93.9 94.3
0.3 0.7 V.5 92.3 94.6 92.1 93.0 93.8 90.6 93.1 924.1 93.1
0.5 0.5 0.7 94.6 96.3 94.3 94.7 95.6 92.2 95.7 94.6 95.2
0.5 0.7 5 94.3 95.8 93.7 96.0 93.7 90.5 94.9 94.3 95.1
0.7 0 9 93.8 97.8 93.2 95.4 95.6 90.3 95.9 94.2 95.¢

7 0.9 7 94.5 98.2 93.9 95.3 96.0 91.1 95.9 94.5 95.0
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TABLE 7.8

95% two-sided confidence intervals for the interclass correlation
Mean interval widths at N=50 with o, 4 and Prow t (Pg # py)

Pap Pa Fp ML IND FAM CL-A CL-B ZIND ZFAM 2CL-A ZCL-B
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TABLE 7.9

95% two-sided confidence intervals for the interclass correlation
Coverage percentages at N=50 with Pa,AN and P, AN (pq = Pp)

b ML IND FAM CL-A CL-B ZIND ZFAM 2CL-A ZCL-B

Pab fa
0.0 0.0 0.0 95.2 97.9 93.7 95.3 96.2 97.8 84.4 5353.3 94.8
0.0 0.1 0.1 93.5 97.5 93.2 94.9 94.9 97.4 86.5 93.5 94.1
0.0 0.3 0.3 92.3 97.1 93.1 94.5 94.3 96.0 91.0 854.0 93.7
0.0 0.5 0.5 92.6 96.8 92.9 94.2 93.4 94.1 93.0 94.2 93.7
0.0 0.7 0.7 93.2 95.5 93.0 94.5 94.3 89.9 94.5 94.0 93.8
0.1 0.1 0.1 93.9 97.2 93.1 94.8 95.4 97.1 87.2 93.5 94.2
0.1 0.3 0.3 92.5 96.7 92.8 94.1 94,8 95.5 91.2 93.7 94.8
0.1 0.5 0.5 93.0 96.8 92.1 94.2 94.2 93.9 92.4 94.0C 94.3
0.1 0.7 0.7 92.7 95.7 91.9 94.2 94.5 90.2 94.3 94.1 94.1
0.3 0.3 0.3 92.6 94.8 94.5 95.3 95.1 93.2 92.2 94.7 94.3
0.3 0.5 0.5 92.7 96.2 93.7 93.5 95.7 63.0 94.1 94.1 94.7
0.3 0.7 0.7 92.6 95.6 %2.7 93.9 95.0 90.5 94.2 94.7 93.6
0.5 0.5 0.5 94.5 9€.6 94.8 95.6 96.0 92.4 95.6 94.8 95.8
0.5 0.7 0.7 94.1 97.0 93.2 94.8 96.0 91.8 95.4 94.8 95.1
0.7 O 0. 95.0 97.7 94.4 96.3 96.0 90.3 96.1 94.9 95.5
7 .9 0.9 93.8 97.8 93.5 95.2 96.3 89.0 95.6 93.8 94.5




TABLE 7.10

95% two-sided confidence intervals for the interclass correlation
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ML

.30
.33
. 38
.44
.48

.31
.38
.43
.48

.34
.39
.44

.31
.36

.23
.27

IND

.32
.35
.44
.54
.65

.35
.43
.53
.64

.40
.49
.60

.41
.50

.34
.42

FAM

.40
.41
.44
.47
.49

.41
.43
.46
.49

.39
.42
.45

.34
.37

.24
.27

CL-A CL-B
.34 .34
.36 .36
.41 .41
.47 .47
.53 .53
.36 .36
.41 .41
.46 .46
.53 .53
.37 .37
.42 .42
.49 .49
.34 .34
.40 .40
.21 .26
.31 .31

ZIND

.31
.33
.39
.44
.49

.33
.39
.44
.48

.36
.41
.45

. 36
.39

. 29
.31

Mean interval widths at N=50 with Pa,AN and Pb,AN

(Pa = Pb)
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.26
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.36
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.34
.38

.27
.30

.31
.33
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.44
.49

.33
.39
.44
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.36
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.34
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CHAPTER 8 - DISCUSSION

8.1 An Example

An application of some of the methcds described in the
thesis is obtained by analyzing data taken from a study of
familial aggregation of blood pressure reported by Tishler
et al. (1977), as previously analyzed by Donner and Koval
(1980). One relationship of interest in this study is that
between the daughter's diastolic blood pressure and her
brother's. The blood pressure for a given individual is
standardized for age by computing a z-score; This quantity
is defined as the difference between the individual's blood
pressure score and the mean score in his/her 1l0-year age
group, divided by the value of the corresponding standard
deviation. There are 88 families with at least one daughter
and at least one son. The distribution of daughters and

sons 1is as follows:

Number of Number of Number of Aggregate degrees
daughters sons families of freedom*
1 1 48 48.00
1 2 11 22.00
1 3 2 6.00
2 1 15 22.90
2 2 4 12.21
2 3 4 18.32
3 1 2 3.7¢
3 2 2 7.41

N = 88 D = 140.54

* gee Chapter 7.3 for definition
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The estimated correlations and corresponding variances

are given as follows:

Type of Correlatiocn Asymptotic
correlation value variance
sister-sister, ;;TW 0.23101 0.0265
sister-sister, ;a,AN 0.3521 0.0256
sister-sister, ;a,ML 0.3545 0.0231
brother-brother, sy y (-9-9990, 0.0297
brother-brother, ;b,AN (_8:82gg) 0.0523
brother-brother, sy i 0.0651 0.0299
sister-brother, IND 0.1659 0.0068
Sister-brother, FAM 0.2619 0.0075
sister-brother, CL-A 0.1979 0.0068
sister-brother, CL-B 0.2141 0.0074
sister-brother, ML 0.1796 0.0069

**x using proposed weighting scheme

It is observed that the individual-weighted (IND) and
the maximum likelihood (ML) estimators of the sister-brother

correlation yield similar estimates and asymptotic variances.



Approximate 95% confidence intervals about the true

sister-brother correlation, Pap for each of the three

methods discussed in Chapter 7 are given in the following
chart. The weighted pairwise estimator using the proposed
weighting scheme is used to compute the intraclass

correlations required in the interval estimates.

Lower Upper
Method Limit Limit Width
IND 0.0036 0.3283 0.3247
FAM 0.0918 0.4320 0.3402
CL-A 0.0361 0.3598 0.3237
CL-B 0.0452 0.3830 0.3378
ZIND 0.0003 0.3226 0.3223
ZFAM 0.1007 0.4097 0.3090
ZCL-A 0.0334 0.3520 0.3185
ZCL-B 0.0503 0.3667 0.3164
ML 0.0169 0.3424 0.3255

These results show that methods ZIND, ZCL-A, ZCL-B
and ML provide interval estimates for the sister-brother
correlation that are very similar and slightly shorter than

those provided by the other methods.



8.2 Summary and Recommerilations

The main objective of this dissertation has been to
present a simple noniterative procedure for estimating
interclass correlations in the context of family &ata, where
there may be more than one individual in each class.

The procedure involves a generalization of the Pearson
preduct-moment correlation coefficient, where one permits
different weights for the pairs of scores. Unlike the
maximum likelihood approach, this estimator is not derived
under the assumption of a particular parametric form nor
does it require an iterative solution. However, for the
purpose of this thesis, it was assumed that the attributes
of interest were normally distributed. On the basis of this
assumption, the asymptotic distribution of the generalized
product-moment estimator and of the maximum likelihood
estimator were derived. Subsequently, a Monte Carlo study
was carried out to examine the properties of these
estimators.

For sibship size distributions typical of North
American populations, the simulation results indicate that
the individual-wzighted (IND) estimator 1s preferred for the
estimation of interclass correlations when the average value
of the intraclass correlation between the two classes is
small to moderate (<0.3). It is further noted for this case

that the relative efficiency of this estimator exceeds 100%
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in small samples. In terms of interval estimation, the
method based upon a modification of Fisher's
Z-transformation (ZIND) is recommended since it yields
interval widths very similar to those for the method of
maximum likelihood, while being far simpler to compute.
However, neither method is valid for sample sizes smaller
than 50 families because of poor coverage levels.

If the value of the average intraclass correlation is
known from previous studies to be fairly large (>0.5), it is
recommended that the family-weighted (FAM) estimator be used
for point estimation and the corresponding modified Fisher's
Z-transformation (ZFAM) for confidence interval
construction. Nevertheless, the family-weighted estimator
will have fairly limited utility in family studies, where
large values of intr-aclass correlation are uncommon. For
values between 0.3 and 0:5, the IND and FAM estimators
appear equally effect_ve.

The class-weighted estimators (CL-A, CL-B) were found
to have fairly high relative efficiences and to produce
confidence intervals comparable in quality to those yielded
by the other two estimators. However, the small sample
properties are slightly inferior to those of the individual-
weighted estimator, and it is on this basis that the latter
is recommended for family studies.

Although interval estimation is often an important



aspect in the analysis of family data, significance testing
is also of interest. Tests of hypotheses of the form

H : Pap = P, where P, 2 0 may be easily derived from the

approximate pivotal quantities, sirca they follow a standard
normal distribution. Because the testing of hypotheses is
closely related to the problem of interval estimation, 1t is
felt that whatever recommendations are made pertaining to
the methods of confidenca interval construction would alsc
be appropriate for the corresponding testing procedures.

It may be argued that the results for the Monte Carlo
study may be influenced by the magnitude of the mean
aggregate class size. To investigate this, the simulation
study was repeated with parameter values m=2.82 and P=2.13
for the truncated negative binomial distribution. These
values correspond to the distribution of sibship size¢ found
in Venezuela, as quoted by Brass (1958). This alternative
distribution was chosen because the mean sibship size 5.69)
is larger than for the U.S. (3.87);. Again, aggregate class
sizes equal to one were excluded in the study. Selected
small sample (N=50) results are sihown in Tables 8.1-8.4.

All the findings reported for the U.S discribution are
confirmed in the samples from the Venezuela distribution.

Alternative estimators of interclass correlation could
also be derived as generalizations of the ensemble estimatcr

and weighted sums »>f squares estimator of a parent-
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offspring correlation. However, it would be expected that
these generalizations wculd have properties very similar to
the family-weighted estimator (FAM).

Among the consistent estimators of intraclass
correlation, the weighted pairwise estimator using the
proposed weighting scheme is recommended as a replacement
for the analysis of variance estimator in family studies.
As a generalization to the Pearson product-moment
correlation, the weighted pairwise estimatcr together with
the individual-weighted estimator of interclass correlation
yield a unified noniterative approach to point and interval
estimation.

Although this dissertation is directed towards the
analysis of familial data, the methods discussed are
applicable to more general situations, including the
assessment of correlations between any two variables where
each variable is replicated a different number of times for
each sample unit. For example, these variables could be
replicate cholesterol and bloocd pressure readings
ascertained on the same individuals at one point in time.

The properties of the estimators were evaluated under
the assumption that the attributes measured are normally
distributed. It would be useful to investigate the
appropriateness of the various methods in the non-normal

case, more specifically when the attributes have a discrete



distribution; for example, a S-point ordinal scale.

Likewise, 1t may be of interest to consider distribution-
free measures of interclass correlation. One such estimator
was proposed by Shirahata (1982) for the parent-offspring
case, as an extension to Kendall's measure of dependence.
Other estimators could also be developed, specifically if
one regards a Spearman Rank correlation coefficient to be a
nonparametric analogue cf the generalized product-moment
estimator discussed here.

As a final summary, the algebraic expressions for the
noniterative estimators of interclass and intraclass
correlation are once again presented, along with their
asymptotic variances and recommended weighting scheme for

family studies on the subsequent pages.




Generalized Product-moment Estimator of Interclass
Correlation and its Asymptotic Variance
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Weighted Pairwise Estimator of Intraclass Correlation and
its Asymptotic Variance (Class A)
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TABLE 8.1

Small sample (N=50) relative efficiencies for estimators of
interclass correlation when Pa = Pp using the Venezuela
sibship size distribution

Pab Pa Py IND FAM CL-A CL-B
0.0 124.6 42.5 78.2 83.7
0.0 111.0 65.3 29.4 98.9
6.0 85.1 83.4 100.1 98.2
0.0 68.1 93.7 93.5 91.7
0.1 116.2 44.2 87.2 86.7
0.1 98.9 65.3 98.5 96.8
0.1 78.3 84.7 98.7 95.8
0.1 66.8 94.3 92.4 90.7
0.3 68.1 76.1 93.7 95.8
0.3 63.2 87.7 90.7 89.7
0.3 . 55.1 95.1 84.4 84.3
0.5 48.1 85.1 79.9 81.4
0.5 46.9 95.6 78.5 78.2
0.7 33.3 91.2 66.7 68.7
0. 38.3 99.8 68.8 69.4




TABLE 8.2

Small sample (N=50) biases for estimators of interclass
correlation when »
size distribution (x10*)
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TABLE 8.3

95% two-sided confidence intervals for the interclass correlation
using the Venezuela sibship size distribution
Coverage percen*ages at N=50 with Pa,W and Ph,W ¢ {py = pp)

ML IND FAM CL-A CL-B ZIND ZFAM ZCL-A ZCL-B

-
+']
o
k)
s
o
on

6.0 0.1 0.1 93.9 97.2 91.8 91.4 93.3 95.9 73.9 88.3 89.7
0.0 0.3 0.3 94.3 97.9 92.4 95.2 94.7 95.0 86.1 94.4 94.2
0.0 0.5 0.5 93.3 97.5 92.5 94.6 95.1 93.0 92.0 94.1 94.9
0.0 0.7 0.7 94.0 97.0 92.9 95.7 95.0 88.8 93.9 94.5 94.2
0.1 0.1 0.1 94.4 95.6 94.2 94.2 95.0 94.8 76.6 91.4 92.5
0.1 0.3 0.3 94.2 97.5 92.2 95.1 95.1 94.7 86.9 94.8 93.8
0.¥ 0.5 0.5 93.8 96.9 92.7 95.0 94.2 91.6 91.9 94.8 93.2
0.1 0.7 0.7 93.7 97.0 93.1 95.4 94.9 89.6 94.0 94.0 93.9
0.3 0.3 0.3 92.8 91.2 95.0 92.9 94.6 86.0 90.5 91.7 92.7
0.3 0. 0. 94.0 94.9 93.8 94.2 94.6 88.0 93.4 92.9 93.4
0.3 0. 0.7 94.1 96.6 93.4 95.5 95.0 87.1 95.0 93.1 94.0
0.5 0.5 0.5 92.2 92.5 93.0 91.8 93.4 83.3 92.8 90.4 92.1
0.5 0.7 0.7 94.0 96.6 93.5 94.5 95.0 85.7 94.4 92.8 92.5
0.7 0. 6.7 93.9 95.6 94.2 94.3 94.9 83.0 96.2 92.1 92.2
0.7 0. 0.9 93.6 98.7 92.8 96.0 95.7 84.0 95.1 92.1 1.9
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TABLE 8.4

25% two-sided confidence intervals for the interclass correlation
using the Venezuela sibship size distribution
Mean interval widths at N=50 with Pa,W and pp y : {(py = Pp)

fa Ph ML IND FAM CL-A CL-B ZIND ZFAM ZCL-A ZCL-B

"ab

0.0 0.1 0.1 .21 .22 .31 .23 .23 .20 .20 .20 .20
0.0 0.3 0.3 .30 .35 .35 .31 .31 .29 .29 .29 .29
0.0 0.5 0.5 .38 .49 . 40 .40 .40 .37 .37 .37 .37
0.0 0.7 0.7 .45 .63 .45 .49 .49 .44 .44 .44 .44
0.1 0.1 0.1 .21 .22 .30 .23 .23 .20 .20 .20 .20
0.1 0.3 0.3 .29 .35 .34 .31 .31 .29 .29 .29 .29
0.1 0.5 0.5 .37 .49 .39 .39 .39 .37 .37 .37 .37
0.1 0.7 0.7 .44 .63 .45 .49 .49 .44 .44 .44 .44
0.3 0.3 0.3 .27 .32 .31 .28 .28 .27 .27 .27 .27
0 0. 0.5 33 45 35 36 .36 34 34 34 34
0.3 0.7 0.1 .40 .58 .40 .45 .45 .41 .40 .41 .41
0.5 0.5 0.5 .27 . 37 .28 .29 .29 .30 .28 .29 .29
0.5 0.7 0.7 .32 .49 .32 .36 .36 .36 .34 .35 .35

.24 .33 .21 .24 .24 .27 .23 .25 .25

o
~3
o o
~
o Q
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APPENDIX 1 - COMPUTATION OF THE ASYMPTOTIC VARIANCE FOR
THE MAXIMUM LIKELIHOOD ESTIMATCR

In order to simplify the notation in the following

appendix, we partition the vector z. such that

=i
Z2iy = (gl:zi)’ ; where Xy = (xil,xlz,...,xiai)
and ¥y = (Yilfin""’Yib-)' In a similar way, gy is
i
partitioned as g; = (efigd)’ = (g ,m,, .. mginging, o omy) .

We define a vector 3; as the difference between z; and g;;

ie 3 = (2411242)'= (%i-ellyz-ui)'= (Ei'ﬂaiaiixi‘“bibi)'-

For the model of Chapter 2, the inverse of the

covariance matrix, I may be written {Graybill, 1983,

il
[ 1
1 Zi11 Zi12
pgs. 184,190) as gi = ., -
Zi12 Zi22
1 W.p.~p2 b. T
where Zji; = — (La-' L-a—abiy el
a(1-p,) L°°1 T, 1791 ]
i Vi:pPn=-P 2
Eizz = o |Ip,- =220y, 1
cb(l—pb) L1 Ty i
p .
., = - —ab.,
""112 aaabTi~ai~bi
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and Vi = _1 + (ai—l)pa]
wio= [1+ (bi-l)pb]
[ - .
Ty = |ViWi pabaibi]

The determinant of Z; can be expressed (Graybill, 1983,

Pg. 184) as I;il = ogai ogbi (l_pa)ai-l (l_pb)bi-l Ti

Using the above results, the log likelihood function from

Chapter 4.1 can be written as

logLh = - *log(27) g (a;+b;) - 2loge? g a. - Z*logo? g b.
g - 2 g : i=1 1 1 2 9 a i:]. 1 2 g b lzl 1
. N . N
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The partial derivatives of logL are computed as follows:
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The following ecualities are useful in simplifing the
calculation of the informetion matrix:

E(’-"-n) = 2 ; E(Eiz) =2
where @ is the zero vector.

Next (Graybill, 1983, pg. 303),

N N
E{ifléilgi%il} = ifltr{§13(511%il)}

I
u-Mz

N
E{ifléizﬂi%iz} = 1tr{513‘512212)}

where tr is the trace of a matrix, and G; and H; are

1

matrices of the form G; = 9,41

I, + g,:2 t. and
aj 21 aj~aj

Hi = hqilp. + hoilp by, - respectively. From the model,
i i1

' 2 ' .
E(zi12i1) = Zi11 Ua{(l'pa);«ai+ pagaiiai} ’

B(zi2812) = 122 = oB{(1-rp)Ip * Pbibiiéi}
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E{ g z!,H.z = g2 E bi(hy;+ hoiW.)
li=1=i2%1%i2] © "b ;571711 2171
Also, E{zji%a.2i2L = £5 E(z2412i7)L
{ il a; i2 bl a; 112312 bl
= 2! p_yo_ o L_ &S R
~a;"ab"a bra;=b;~b;
= Pap%a’p2iPy

The information matrix for the maximum likelihood

~ -

estimators, 2

a' ®p: %ar Gg, Py, Pp a@nd p,p is defined by the

following elements:

E{_ 3zlogL} . E{_ 3210 L} _ E{_ azlogL} . E{_ azlogL}

2 2
aoaapa acbapa apaapa apbapa

= E{_ QilggL_} - E{- 2210 L} - E{- iilggk} - E{_ gflogL}
2 2
apabapa aoaapb aobaub apaapb

1]
1}

)« of ) o ) - of )

2 2
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Inverting the information matrix, one obtains the

asymptotic variance-covariance maxtrix for the maximum

likelihood estimators. In particular, an explicit form of
the asymptotic variance for the estimator ;ab M1, can be

expressed as:

2
ul‘J4 - uZ

AV(rap, ML)

ug(uquy - ug) + 2u,ujug - u§u4 - uyui

where uy thru ug are defined as

1 if ay = 1 for all = 1,2,...,N
41 = 2 40top 2 2 2
E{— 3 logL} + a’b E{- 3 logL} E{— i) ;ogL}
3p 30, c apaaog aagaog
3_3
U = E{- gf;ggg] + [paboaob E{— aziogL} E{— azlogL}
2 apaapb C apaao; apbaog
g E{_ azlogL}]
a“aa”b

2 202452
ug = E{_ 221o0qL } 3 ab[pf_ 21oar | ¥
2{.%,”i
apabapa I C Bpabaob i=1

- 20,02 E{- m}z]g{_ a_‘_mn}ﬂ

1 if bi = 1 for all =

u = + & 2
4 E{_ éflggL} . 103% E{_ QilggL} E{_ ai;ggh}
2 2 2



[N
[ ]
[

N N
u E{_ a-zl-ogL}+ i’ing{_ m}[c_ Y a, 2b.

. i 1
apabapab C Pap apaapb i=1 i=1
210gL ‘
2 2.2 3€°le
ab"a"b
al‘aaﬂb
N N 2 N
and C = I a; I by - 02 ey E{- a_Lo_q.I_';}z ay
i=1 i=1 apabada 1i=1

2 N
- og Pab E{— Q_lQSLZ}.z by

2 2
) 2 2
In the above expressions, E[- 9-l1o L} means [E{- g_ligL}] .



APPENDIX 2A - COMPUTATION OF THE ASYMPTOTIC VARIANCE FOR
THE GENERALIZED PRODUCT-MOMENT ESTIMATOR

For computaticnal considerations, we express the

components of Pap gp 2aS feollows:

R N } . N

%ab ~ { zlwlalbl( i. 'x°‘)(Yi.'Y")} / iflci

0% = Z w;a:b. (x =X )2+ g w:b. Zl(x . )2% g C;
a - j=1 19171 v ij=1 * 1J_ X5, j=1 1

- N N b. N

o2 = { I wia;b;(¥y -F..)2 + T w.a: THy..-¥. )2} / = %4
b i=1 1 1. i=1 i lk ik 1. i=1

N
where C. = w;a.b., and _chi =1
1=

One component of the Taylor series method is computing

the covariance matrix of the parameters Oab- o; and cg. For

example, the variance of ;ab can be computed by the standard

method of 'taking expectations'

-~ it N _ _ _ N 2
var(o,,) = Eﬂ[{ zlwlalbl(x -x..)(yi.—y..)} / iglci] - “abﬂ

Tr N .. . N _j®
= Eﬂ[i‘:‘l{wiaibi(xi.—x..)(Yi'-y..) - Cloab}] / 1§1C1ﬂ

N 2 2
1§1E{w1albl(x -'..)(ii_—?..) - Ci“ab} / {iflci]

where E[-]}2 means {E[-])}2

103




Similarly,
- "2
cov(oab,ca)

X {wsa;b;(R; -%..)23+w.b. %i(x---i- )2 - c,02 / { g C‘\2

s Gab Tt A RAS R 171420713 71 ia lj=1 1
In order to simplify the notation in Appendix 2A, the

following expressions are defined to replace the terms in

the above variance (,covariance) formulas.
Let tl wiaibi(xi.—x..)(yi.—y..) - ci()'ab

2j12i2 - Ci%p

ai _
+ wibi-f (x; ;-X;

)2
j 1 1] 1.

aibi(xi.—x..

2 2
2j1 * %3 - Ci%
wiasbi(¥; -¥..)% + w.a, gi( 0 -¥; )2 - cjo

R Rap RS DK S8 11,0 Yik~¥i. i"b

2 2
Zjp * 2j4 - Cy9%

(wiazhy)t/2(x; -
= (wiazb;)*/3(F;

a.
= w;b, Z}(x

17142, F137R

- i -G,
wlalk__z.l ( Ylk Yl .




Under the assumption of normality, z;, and z;, are

distributed as bivariate ncrmal variables, independently of

Z53 and Zi4 with mean vector (2 2)' and covariance matrix

k2 o
> - a ab

cov(249,252) = €4 ‘s

9%ab °p
. where &2 = w-b-{a- - (a;-1)(1-p )}02 ] C.
a 171 1 1 a a 1
a &2 = . {b- - (bi-1)(1- )}o2 /] C
ancé % = VidiPy i ’b’ )% i

In addition, the moment generating function of Ziq and Zio
. *x *x
is : m(sy,s5) = exp[C§{§sio§ + 89850, + ésgag ]

The wvariables 253 and Zi4 have a bivariate chi-square

distribution, independent of Zi1 and 29 with mean vector

{wibi(ai-l)(l-pa)o; : wiai(bi—l)(l—pb)ag}' and covariance

matrix
2. 2 2. %
COV(Z:a,Z:4) = rZ(ai-l)wibi(l-Pa) ‘a ?
i3:“14’ ~ 2 2 2 4
"] 2(b1-1)wla1(1-pb) Gb
For large N, it can be shown that E(ti) = E(ui) = E(vi) =

(see Appendix 2B), and

2 - 2 2 2 .2
E(tj) = E(zj,2355) - Cio,p
E(u;) = var(uy) = var(zil) + var(z,;)
E(vi) = var(vy) = var(ziz) + var(zj,)

10




>3 o I S 3 -
E(tju;) = E(2j1255) + BE(231252%53) - Cywy b1°ab0
E(tl l) = E(leziz) + E(lezlzzl4) - C. W a bloabob
E(ugvy) = E(zijzi;) + E(2312;4) + E(z{;23)

+ Blz33254) - Cyw;ja;byo3og
Using the moment generating function of 231 Zj729 the
joint moments, E{z§12%2}r are obtained by differentiating
m(sq,S,) p times with respect s; and q times with respect to
S, and then setting Sq and s, equal to zero in the resulting

expression (Mood et al., 1974, pgs. 159-160).

Now,
B(23122,) = {528} + 202, }c?
var(z%,) = Zwai{a - (a4 1)(1-Pa)1
Var(z; ;) = 2(ay -1)w2b2(1—pa)2o;
var(z?,) = 2wfai{by - (b;-1)(1-s,)} o}
var(z;,) = 2(bj -1)wza (1- pb) ap
B(2]1255) = 3Ci0,493
E(231255253) = CjWib;(a;-1)(1-py)0,,07

3 - 2 k2
E(z31212) = 3C1955%,

B(231232214) = Ci¥;25(b;-1)(1-p )0qp05
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wia;bi{a; - (aj-1)(1-p )} (by-1)(1-py)0Z0}

w2a;b;{b; - (b;-1)(1-pp)}(a;-1)(1-p,)030]

E(Zi3zl4) = Wialbl(al—l)(bl-l)(l‘Pa)(l‘Pb)GgGg
Hence,
2y _ 2%2% 2_2
E(u?) = 2w?bZoifa? - 2a;(a;-1)(1-p,) + aj(a;-1)(1-0,)%}
2y _ 2. 2_4f{2 - - _ 2
E(vZ) = 2wialop{b? - 2b;(b;-1)(1-py) - b;(b;-1)(1-pp)?}
_ - _ - 2
E(tiul) = Z{Ciwiaibi Ciwibi(ai 1)(1 Pa)}dabca
_ _ _ _ 2
- 2 _2
Thus,
(0.4) }z‘E(tz)/{bz'c}z
var(o = : :
ab’ " yop e i=11
- % [w?a.p { ~(a:-1)(1- ‘}{b -(bi-1)(1- )} 6202
= 42 MifiPiaiTiey PaiJ1Pi7 P4 Pp/J|%a%
N
2_2y.2 2
* ;I,Yi2iPi%p
(52) gg(z)/{gc}z
var(o = s .
a i=1 % i=1 ?t

20}

N N
2,22 2 2
a{_z wiaib] - 2 I wja;bj(a;j-1)(1l-p,)

j=1 1174 jo1 191719

N
+ (1-pa)zi§lw§aib§(ai—1)}



in3

n

"2
var(ob)

g E(v2) / [ g c }2
V N .
i=3 1 i=1 1

1]

M=

N
2cg{i§1w§a§b§ - 2 2 wiafb;(b;-1)(1-pp)

i=1

N
+ (1—pb)zi§1w§a§bi(bi-1)}

(5,5,62) = 2 E(tiu,) { 3 c }2
covio ., g = s U ) .
ab’'"a i=1 i 1

=1
= 2 T uzazpe - z wia;bi(a;-1)(1-0,) {0, 02
= i=z1 i°171 7 ;Z,Wi34i05(ay ?a’({%ap%a

A~ A, N N 2
cov(oab,ab) = EIE(tlvi) / iflci
= 2 g w2a2p? - g wiadb. (b:-1)(1-ppn) to., 02
= j=p 19171 7 ;5,Wi319i(D4 Pp’ {%abb

~2 "2 N N C z
cov(oa,ab) = Z B(uyv,) /¢ 2%
i=1 i

ivVi =1
N
= 2 T w2a2p2,42
j=1 1%1%i%b
. _ apab | apab y 9P - P b l- 14 b l- pag '
Letting d = ' 2 ! ——%9 —ap ! —3; | 2
acab aoa acb %ab Zoa Zab
var(o,,) cov(cab,o;) cov(oab,og)
and cov(gab,gg,aﬁ) = cov(éab,S;) var(gg) cov(ag,gg)

cov(o,,,08) cov(cg,cg) var(of)

then the first-order approximation of the asymptotic




variance of Pab . GP is given by
1

AV(bap,gp) = &' cov(9gp.03,0%) 4

N
2 2 2.2, 2
(1-pap)” E ¥iaibj

N
+ (1-pa)(1-pb)izlwiai(ai—l)bi(bi—l)

N
3 .2 1 2 2 2
+ (1'pa){3pab - 2”abfa "~ 1}i§1wiaibi(a

N
3 2 i 2 2.2
+ (1‘Pb){;Pab - Epabpb -1 1§1wlalbl(b

i-1)

;1)



APPENDIX 2B ~ FIRST MOMENTS OF THE COVARIANCE AND VARIANCE
COMPONENTS FOR THE GENERALIZED PRODUCT-MOMENT
ESTIMATOR

From Chapter 4.2,

3 Y v, Fx, %) Bilyip-7..)
g = W X:i-%.. Vin-Y..
ab i=1 lj=l 1) J=1 ik
- N a.
2 -— . . 1 -.-- 2
oy = iflwlbljfl(xlJ X..)
- N b.
2 _ i _ 2
0‘b = 15 wlalkzl(ylky )
where b4 = T w;a.b.X. X: = 1 %ix
T4z 117171 ! i. 7 oay j=1" 13 !
7 N oab.§. i §. =L By
Yoo = ZWiaibi¥i, ¢ ¥ T by oYk

N
and the weights are chosen so that I wjajb; = 1.
1=1

For the variables x4 j and Yik: We adopt the one-way

random effects model (Snedecor and Cochran, 1980, pgs. 238-
248) given by

X

p+Ai+e-'

a 1]

Yik = #p * By + ik
respectively. It is assumed that the family effects {Ai},

{Bi} are normally and identically distributed with means

zero and variances oi and og, respectively. Further, the
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residual errors {eij}, {eik} are normally and identically

distributed with means zero and variances o¢?

respectively.

Also, the {Ai}, {

2
e and g%,

eij} are completely

independent; along with the {Bi}, {eik}.

Thus the variance of x.

2 _ 2
Ua = GA
and Ylk

We

M
n

13

2 2 _ .2 2
+ og and op = 0 + 0%.

is denocted by Oab-

define the means of the

Pp * By + &5 i

(]

and Yi) are respectively,

The covariance between x. .

model as follows:

g
w.a
i=1 1

jbyluy + A4 + @

N
2‘. wia

is1 lbl(Pb + Bl + z

~

Consider the first moment of o2. That is,

a
[ N a.
1 = 2

[ N a. N a.
= E| 2 w;b; Y&, -%..)%> + T w.;b; =l(x,.-%. )2]

[i=1 L 1527 71 izl 1 l3zp 13 71

[ N ai - N - 2
= Eblflwlbllfl l-la + Al + ei‘- lflwlalbl(l‘a + Al + ei.)

: 2
+ E iElwb- By + Ay + e j

1 13;1

{
—
*®
V)]
+
»
H
+
(7]
H.
'
—
N
| SEE———

1)
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N N
= - 252p2 .a.b. 252p21 52
= 151[{wiaibi 2“131b1 + wjajby iflwla1b1}°h
+ {- 2w?a.b? + w.a.b. g w2a.b? + w.a.b, to?
19171 19171 j771%101 i%i¥i( Ve
N N
= - 2,2,2| 2 - 2, n2l.2
= {1 li:lwlalbl}oA + {1 iflwlalbl}oe
Thus,
2) = - 232p2i42 222p2 _ 22.b2}g%
E{oa) = {1 izlwlalbl}aa * {iflwlalbl iflwlalbl}oe

Noting that the w;'s are of order N~ 2 implies that
limN9wE(8§) = ¢2. An identical procedure can be adopted for

the variable y;, to show that limN,wE(ag) = og.

Ia determining E(;ab)' we define E(xijyik) = Oap




and proceed with the computations, similar to the ones for

E(;;). In the end,

E(o,,) = {1 - g w?a?bi o
ab’ ~ j=1 17171 ab
and thus limy, E(0,p) = 0,y

Defining as in Appendix 24,

By = Wi33P(Ry ~X)(Fy <¥-.) - Cy0p
u; = w;a;b;(X; -%..)% + w,b. %i(x--—i- )2 - c;02
1i- 191%1 1. & 1714557 713 71, 1 a
v, = wi;a;bi (¥ -¥..)% + w;a, gi( =% )% - Ciof
i WigiPilYy ~Y.. i3 2 Wik¥i, i%
where C; = wjaj;b,, it is straightforward to show, by

summing both sides over N and using the above results, that:

0

limN_,wE( tl)

limyg,, E(uj) = 0

1]
o

limN*mE(vi)

P
[@¥]



APPENDIX 3 - COMPUTATION OF THE ASYMPTOTIC BIAS FOR
THE GENERALIZED PRODUCT-MOMENT COREELATION

The bias of an estimator is also found by a simple
linear Taylor series expansion of the estimator. In

particular,

~

Bias(r,p gp) = %g'g-cov(oab,o;,og)g
where ¢ =[1111]1" |,

D is a matrix of partial second derivatives given by

r -

az"ab a2“’::11: a2"ab
2 2 2 2
9 Uab Boabaca aoabaob
p = 3%rap 3%rap 3%0ap
- 2 2 _4 2, .2
3oabaaa 9 Oa aaaaob
azpap 3%0ap 3%5ap
2 2 2 2 _4
L aoabaab aaaaob 5] oy
p p ]
0 - __QD_; - ——éb_i
29,p%2 20,19
! P 3p P
- - ab ab ab
2 2 2.2
Zoaboa 4oa 4°a°b
_ _Pab _Pap 32ap
2 2. 2 +
] 2°ab°b 4oaob 4ob ]

and cov(oab,oa,ob) is the covariance matrix given in
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Appendix 2A. Here, = signifies a Hadamard product of two

matrices (Rao, 1973, pg. 30).

After some matrix manipulations, we get
. = R - 2_2p2
Blas(pab,GP) = 2pab(l pab)iglwialb1

1 N . 2
- Tpab(l'pa)(3pa‘1)iz wia;bj(a;-1)

- 1o (1-p.)(3pp-1) ng 2b.(b;-1)
+Pap't7Pp/ A 2PpT ) 2, Wi831D1104




APPENDIX 4 - THE ANALYSIS OF VARIANCE ESTIMATOR OF
INTRACLASS CORRELATION

The analysis of variance (ANOVA) estimator of
intraclass correlatiocn is based upon the one-way random
effects model given by

X;; = B

ij + Ai + e,

a ij

(discussed in Appendix 2B), and defined as

Noting that og 2 0 and og > 0 implies that 0 < p_ ay < 1.

Since this model focuses on the estimation of
components °i and a:, it is also referred to as the
components of variance model.

Unbiased estimates of oi and o; are computed from the

following ANOVA table

Sum of Mean
Source d4.f. squares square Expected mean square
2
Amon _ SSA 2, [22i- Zaj/2ay] ,
SubJects N-1 SSA MsA = §2% °e+{ N1 oA
Withir - _Ssw 2
sup’.cts 2a;~N  SSW MSW = Za,-N Oe
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h SSA ¥ (%; -%..)% d SSW N $i %. )2
wihere = 2 a:ilX: -X.. an = 2 X. +.-X
i=p bt i=1j=1 13 1
ith ¥ 1 i a g : R / 3
Wl X, = X, - an X..= s s a.
1. 3§ j=1 1J i=1j=1 ¥ i=11

They are given by SR = MSa-MSW and 3; = MSW, respectively.
0

Therefore, the ANOVA estimate of Pa is

; - MSA - MS¥
a,AN - M + (a,-

h T [ 3 { a2/ 3 }]
where a_ = a. - as a.
0 -l li=1? i=1 *  i=1 %
Donner and Koval (1980a) provide additional discussion

of this estimator, which is consistent for Pa and

asymptotically normally distributed. 1In practice, ;a AN is

set to zero if MSW > MSA, since negative intraclass
correlations are inadmissable in the context of a random

effects model.
An estimator, ;b AN is obtained in an analogous way,

by replacing j with k, a; with bi' X.

i lj with Ylk' #a with I‘b,

A; with By, e;y with £, og with og, o2 with og, Py With

P, and a, with b, in Appendix 4.



APPENDIX 5 - COMPUTATION OF THE ASYMPTOTIC VARIANCE FOR
THE WEIGHTED PAIRWISE ESTIMATOR OF INTRACLASS
CORRELATION

From Chapter 6, the weighted pairwise estimator of

intraclass correlation is given by

Paw = %c/ 03
where o_ = g Wi 21 zl(x ~F. (% e-%. )
c iz1 lj=z1 g=1 1] it
hE
02 = (a i~ Zl(x -¥..)2
v i= 1 )
e N el
and .. = = Wia, (a 1)2 : X, = l 21
i=1 i.73; 52,%13

Following the methods for linear Taylor series

expansion, (similar to those in Appendix 2A) we first

~ ~

re-express o_ and 03 as:
- N N N . N
o, = £ Wia;(a;-1)(%; -¥..)% - = Wy zl(x 2} / T D,
¢ {1-1 i=1 1j=1 %) i=1 1
o2 = { g Wia (ay “1)(F, -¥ )2
v i=1 i.7*..
réw( 1)21( )2}/ I
+ aj X4 -
=1 1. i=1 %
n _ N
where Di = Wiai(ai-l) and iflni =1
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We now let,

r. =

5 ai 2 2
i Wiaj(ay 1)(2 -i..) - W, JEl(x 17 ii.) - DypP,a93

Zig
2
a; -1 Dirada

‘sr = W;a

1 3 i(

5 ¥ 2 ai ¥ 2 2
ai—l)(ii_-i..) + Wi(ai—l)jfl(xij-ﬁi_) - D;o

2 2
2i5 * Zjg ~ Djo;

where

o~

[W;a;(a;-1)1/2(F; -%..)

2is
Z.. = W.{a;-1) %i(x -%. )2
16 - Tit“i j=1 ij *1i.

Under the assumption of normality, 25 is distributed

as a normal variable, independently of Zig- with mean zero

and variance wi(ai—l){ai - (ai-l)(l-pa)}og . The variable

Z;¢ has a chi-square distribution with mean

2 2 : 3eg2 2 _*
Wi(ai—l) (l—pa)aa and variance Z(ai-l) Wi(l—pa) o3

Noting that E(ri) = E(sj) = 0 for large N,

E 2
E(ri) = E(zfs) + ( i; + D2 2 4 _._IE(215216)
2Djpa05E(235) + EZ_TD Pa%aE(Zi6)
E(s?) = var(s;) = var(zfg) + var(zyg)




- " 2 4 2 _ 3 2
E(rys;) = E(zig) + E(2is23¢) - 3,718(215%16) - 7,-1F!%ie’

- p_W.a.(a.;

4
ai%i 1_1)Di°a

Similar to the methods of Appendix 2A, we obtain

var(zig) = 2(aj-1)%Wi(1-p,)%0]
E(z{s) = 3W§(ai—1)z{ai - (ai-l)(l—pa)}zo;

E(z3525¢) = W2(a;-1)%(1-0){a; - (a;-1)(1-p,)}0}

E(zg) = Wi(1l-05)%(a;-1)7(aj+1)e]

Hence,
B(r?) = 204[Wi(az-1)2{1 + (a;-1)p,) + Wi(a;-1)(1-p,)?]
E(s%) = 20;[w§(ai-1)2{1 + (ai—l)pa}z + wz(ai—l)a(l-pa)z]
E(rys;) = o;[3w§(ai-1)2{1 + (aial)pa}z

+ (a3-2)W3(a;-1)3(1-p) {1 + (a;-1)r,}

e W2 (Aa.-1Y2(1- 2 _ 2.2 12
wl(al 1)<(1 pa) (ai+1) pawiai(ai 1)

]



Thus,

(5.) §E(2)1{§D}2
var(o A .
¢ i=1 1 i=1 1l

N N
* 2 2.2 2 .
an{if Witaj-1)%af - 2 % Wia;(a;-1)7(1-2,)

N
+ (1"93)2.2 Wiai(ai-l)(ai - 3ai + 3)}

(02
var(o,)

N 2 N 2
I E(s3) / {iflni

1=1

: N
o 2 2,2 2 )
zga{if1wi(ai'1) ai - 2 T Wia;(a;-1)7(1-p,)

N
* (l—pa)aiglwiai(ai-l)a}

(6.,02) g E( ) / { g D }2
coviag.,oO r.s. .
¢ v i=1 171 i=1 1

q 2
4 2 2
Ga{3iflgi(ai'l) {1+ (a;-1)r,}

2

' ifl(ai-z)wi(ai’l)z(l‘Pa){1 + (a3-1)p,}

N
- E Wi(aj-1)%(1-p,)%(aj+1)

i=1
N
2.2 2
- iflpawiai(ai'l) ]
- _ 2 "2y _ .2
We note here that E(oc) = P05 and E(ov) = 03 . and

therefore, 4

{ aPa ; apa ]-
3o, ! 3o

i
LP

.—l
S8}
[



. ~ oy var(og) cov(oc,oé)
Letting cov(oc,qv) =

2
)

cov(o,,o var(oé)

then the first-order approximation of the asymptotic

variance of Pa W is given by
1

~

AV(ey ) = & cov(o,,05) d

N 2
2(1-r,)% % Wiag(a;-1){1 + (a;-1)0)

The asymptotic variance of ;b W’ AV(;b w), is obtained

in an analogous way by replacing j with k, aj with bi' xij

with Yik: Pa with »y in Appendix 5.



APPENDIX 6 - THE UNWEIGHTED GROUP MEANS ESTIMATCR OF
INTRACLASS CORRELATION

From Chapter 3.1, an estimator of intraclass

correlation derived by Srivastava (1984) is given by

~2 ~2
5y = % - ’p
~2
)
N
_z (?is_?s)z
2 i=1
where oh = P
[v-1][B* + (1-B3*)7y)]
N b. N
~2 1l - 2
¥y = I ZHYs,-¥ic) / 2 (b;-1)
b " iz g=1 1k 1S i=1 1

N o b; N
and by = {1 P> } y Yie = Sly.. , Fo = i = 7
h N ;Z, by is %i ko1 ik s =N ;I,%is

Upon substituting 7y into 3;, one gets:

~ N _ -
52 = gir ifl(yis-ys)2 + (1-Bp*)7g

A subsequent substitution of Jp and 7§ into 5y results in:

N - -
N-j ,El(Yis-Ys

1

)2 + (1-Bp')vg - g

sz

N
A1 L Z (Fig77g)% + (1-BR*)7f
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Defining,

N N b, N
| . o 2 _ gt iy _a 42 -
V= RoT I, (Fis¥s) Bp' I, B (FikTag)® / Z (b5-1)

i=1 k
b. N
E(¥y-Fig)® /2 (g1

one obtains the expression of Eb that appears in Donner and

Koval {1983), namely,

Vl
Bp = oo
Smith (1956) was first to derive this estimator using a
weighted sums of squares approach. It was later referred to

as the estimator of intraclass correlation based upon the

unweighted group means by Donner and Koval (1983).

124




REFERENCES

Atwood, G.R. and Foster, W.N. (1973). Transformation of
bounded variables in simplex optimization techniques.
Industrial and Engineering Chemistry, Process Design and
Development 12, 485-486.

Brass, W. (1958). Models of birth distributions in human
populations. Bulletin de L'Institut International de
Statistique 36, 165-~179.

Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics.
London: Chapman and Hill.

Donner, A. (1986). A review of inference procedures for
the intraclass correlation coefficient in the one-way
random effects model. International Statistical Review
54, 67-82.

Donner, A. and Bull, S. (1984). A comparison of
significance-~-testing procedures for parent-child
correlations computed from family data. Applied
Statistics 33, 278-284.

Donner, A. and Eliasziw, M. (1988). Confidence interval
construction for parent-offspring correlations.
Biometrics 44, 727-737.

Donner, A. and Koval, J.J. (1980a). The estimation of
intraclass correlation in the analysis of family data.
Biometrics 36, 19-25.

Donner, A. and Koval, J.J. (1980b). The large sample
variance of an intraclass correlation. Biometrika 67,
719-722.

Donner, A. and Koval, J.J. (1981). A multivariate analysis
of family data. American Journal of Epidemiology 144,
149-154.




}-n
to
h

Donner, A. and Xoval, J.J. (1983). Variance-component
estimation from human sibship data. Bicmetrics 39,
599-605.

Elston, R.C. (1975). On the correlation between
correlations. Biometrika 62, 133-140.

Fieller, E.C. and Smith, C.A.B. {(1951). Note on the
analysis of variance and intraclass correlation. Annals
of Eugenics 16, 97-105.

Fisher, R.A. (1921). On the "probable error" of a
coefficient of correlation deduced from a small sample.
Metron 1, 1-32.

Fletcher, R. (1972). FORTRAN subroutines for minimization
by quasi-Newton methods. A.E.R.E. Report 7125.
Harwell, UK: Atomic Energy Research Establishment.

Galton, F. (1885). Presidential Address, Section H,
Anthropology. British Association Reports 55, 1206-1214.

Graybill, F.A. (1983). Matrices with Applications in
Statistics. Belmont, California: Wadsworth, Inc.

Higgins, M. and Keller, J. (1975). Familial occurrence of
chronic respiratory disease and familial resemblance in
ventilatory capacity. Journal of Chronic Diseases 28,
239-251.

International Mathematical and Statistical Libraries (1977).
IMSL Library Reference Manual. Houston: IMSL

Karlin, S., Cameron, E.C. and Williams, D.T. (1981).
Sibling and parent-offspring correlation estimation with
variable family size. Proceedings of the National Academy
of Sciences 78, 2664-2668.

Konishi, S. (1982). Asymptotic properties of estimators of
interclass correlation from familial data. Annals of the
Institute of Statistical Mathematics 34, 505-515.



127

Konishi, S. (1985). Testing hypotheses about interclass
correlations from familial data. Biometrics 41, 167-176.

Krewski, D. and Rao, J.N.K. (1981). Inference from
stratified samples: Properties of the linearizationm,
jackknife and balanced repeated replication methods.
Annals of Statistics 9, 1010-1019.

Lush, J.L. (1947). Query No. 44. Biometrics 3, 54-55.

Mak, T.K. and Ng, X.W. (1981). Analysis of familial data:
Linear-model approach. Biometrika 68, 457-461.

Mood, A.M., Graybill, F.A. and Boes, D.C. (1974).
Introduction to the Theory of Statistics. New York:
McGraw-Hill.

O'Neill, M.E., Prasetyo, L.H., Kirby, A.C. and Nicholas, F.W.
(1987). A comparison of parent-offspring correlation
estimators in terms of large-sample mean squared error and
bias. Biometrics 43, 37-44.

Pearson, K. (1895). Regression, heredity and panmixia.
Philosophical Transactions of the Royal Society Al87,
253-318.

Rao, C.R. (1973). Linear Statistical Inference and Its
Applications, 2nd Edition. New York: John Wiley.

Rosner, B. (1979). Maximum likelihood estimation of
interclass correlations. Biometrika 66, 533-538.

Rosner, B. (1982). On the estimation and testing of
interclass correlations: The general case of multiple
replicates for each variable. American Journal of
Epidemiology 116, 722-730.

Rosner, B., Donner, A. and Hennekens, C.H. (1977).
Estimation of interclass correlation from familial data.
Applied Statistics 26, 179-187.



Rosner, B., Donner, A. and Hennekens, C.H. (1979).
Significance testing of interclass correlations from
familial data. Biometrics 35, 461-471.

Searle, S.R. {(1971). Linear Models. New York: Jchn Wiley.

Shirahata, S. {(1982). A nonparametric measure ciZ interclass
correlation. Communications in Statistics All, 1723-1732.

Smith, C.A.B. (1956). On the estimation of intraclass
correlation. Annals of Human Genetics 21, 363-373.

Smith, C.A.B. (1980a). Estimating genetic correlations.
Annals of Human Genetics 43, 265-284.

Smith, C.A.B. (1980b). Further remarks on estimating
genetic correlations. Annals of Human Genetics 44, 95-105.

Snedecor, G. and Cochran, W.G. (1980). Statistical Methods.
Ames, Iowa: Iowa State University Press.

Srivastava, M.S. (1984). Estimation of interclass
correlations in familial data. Biometrika 71, 177-185.

Srivastava, M.S. and Katapa, R.S. (1986). Comparison of
estimators of interclass and intraclass correlations from
familial data. The Canadian Journal of Statistics 14,
29-42.

Tishler, P., Donner, A., Taylor, J.0. and Kass, E.H. (1977).
Familial aggregation of blood pressure in very young
children. Cardiovascular Disease Epidemiology

Newsletter 22, 45.

Wichmann, B.A. and Hill, I.D. (1982). An efficient and
portable pseudo-random number generator - AS 183.
Applied Statistics 31, 238.

Wolter, K.M. (1985). Introduction to Variance Estimation.
New York: Springer-Verlag.




	Western University
	Scholarship@Western
	1989

	Contributions To The Analysis Of Familial Data
	Michael Eliasziw
	Recommended Citation


	tmp.1410232156.pdf._H3R6

