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A relatively simpie-analytié expression for the
.absorption spectra of a.two-level molecule or atom is
L 4

derived, within the fotating wave approximation (RWA),

which includes the effects of both permanent Hipole moments

and static electric fields. The derivation is for the R

electromagnetic field (EMF) in the semi-classical electric
dipole approximation. This "molecular® RWA ré?anagce
profile, and a series of exacgtly calculated two-level model_

spac;ra,.are used to iﬁvestigate some of the single- and -

’

mult i-photon spectral effects due to permanent dipoles and

(static electric fields, relative to the well studied atomic

problem (no permanent dipoles) in the absence of a static

;iel&. These effects can include the occurrence of even as
well as odd photon transjitions and interesting temperature

dependent orienfatijonally averaged spectra. Permanent

.

dipole moments, alone, can cause appreciable narrowing of

the spectral resonances, oscillatory fringes around the

.
- . .

:main resonances as a‘'function af frequency, and sién;ficant

’ L)

’ ﬁe6reases in the moleculéwgh? coupling, all.rélqﬁive to the

atomic results. Comparisons with the exactly éaicu};ted
two;lexpl model spectra are used to study the validity,of
the RWA resonance pr&files.and iqéicate that sévef;L

features, such as dynamic backgroundd and shifts of the

'-'.'régonance frequencies from the weak EMP limits of’

-
. .

interaction of the systeﬁ with a plane-polarized sinusoidal




L

s

_establiéh compar isons Qiyh an recent literature on the

s N

N - AE/N. N=1,2,3,....; are nissins in the RWA spoctr.

ur es. |
-

\
as Lhe molecule-BRMF eouplxng strqngths incre&se.
Perturbative corrections to the RWA abaorptiga . -

spectra, and the associated full widths. at half maxima for
the resonances, are derived, neglecting static fields, and )
used to help investigate and explain the effects‘missing in
the RWA; the RWA resonance profile is a zeroth plus fxrsL
order result obtainable from a time- xndependent Floquet
Hamxltonian secular equat ion. The usefurness and validity
of the perturbat;ve correctxons are investigated and it is
concluded that the corrections to the RWA are not useful
computationally, in general, past second order. However,
the perturbati&e qorrections are Qery useful in.understand—
ing'some of the deficiencies of the §WA. Tﬁese include Lh;
shifts of the N-photon resonance positions'to low frequency,

with respect to AE/N, that can occur for molecules with non-
. e .

; Lo .
zero permanent dipoles; it is well known that the shift 'is

always to High frequency for aLoms.'_An additional series

of exact model calculations, for "giants dipole"” moleculés,

'is also used to help discuss the effects of permanent

dipole moments on single- and multi-photon spgdita and to

aubjectﬂ:
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"di1agonal dlpale matr1x elements, or "permanent dipole

. CHARTER 1 |
| _INTRODUCTION .

\

The purpose of the research discussed i1n this thes:s

€.
S

18 to 1mvestigate some of the effects due to non-zero

3
e

———

moments”, with reépect to the single- and multi-photon
resonance praqgfiles o} absorption spectra of molecules.
Untal éome of the work developed i1n Chapter 3 was reported
in the literature, very few papers had been published that
dealt explicitly with this topic since most. of the detailed
mathematical an;IYSlS of'51n§le-'and\multl-photon spectra
haa been carried out f!! atoms which have no permanent
dipole moments. Mwest of the earlier papers d}scussed lhe
effécts of bermanent dlpoie moments using perturbation

theory\I1—4] which 1s of limited validity as a function of

time - and of the strength of the applied electromagnetic’

field 1ndué1ng thé speétral transitions. One of thgse )
papers (4) alsb discussed the problem for the two-:::QECL
molecule for certain Qery speciflc molecule-applied static
electric fleld-electromagnetic fielq configurgﬁlons which
permitted an exact solution of the t1me;depeadent wave
equation to be obtglned.

An earliér numerical solution [5]) for a two-level
mo&el-uas used to discuss some of the effects of permanent
dipoles but lafked much physical interpretation of the

’

results. Of course these effects have beeh implicitly

included 1n calculations of the absorption spectra of

> 1 o




L

the essenélal features of single- and multi-photon spectra

- » ) ‘ 2

systems p0439851ng permanent dipoles [6-8)] and there are
several technigques avalilable for solving the time-dependent

wave equation numeriéally for such problems [6-11]. These

numerical methods are not convenient for the efficient
investigation of the spectral effects arising from changing .

the various parameters which characterize the interaction

. g
of an electromagnetic field with a molecule. Part of this

thesis 1s i1nvolved with the development of -relatively
simple analyt:ic expressions for absorption spectra of two-

level molecules which are used to investigate and 1nterpret

as a function of the parameters of the problem, -and

partléularly those features arising from the presence of

-~ -

permanent dipole moments.

n this-thes1s the semi-classical-electric dipole
-~ .

approximation 1s used to discuss the interaction of light
with atoms and molecules. Chapter 2 contains ard outline of

some of the technxqués available to solve the time-

-~
»

dependent wave equation 1n this approximation, for the

o

interaction of an aﬁom'or molecule with an applied time-

-

dependent sirmusoidal plane-polarized electromagnetic °

.
tield. The.Dirac variation of constants method (12,13} for -

- ' . !
the formal solution of the problem 1s reviewed 1n Sec. *
2.1. The standard time-dependent Raylelgh-Schrodinger ' -

, : .
perturbation solutiom [13-516] for the resulting set of

first order (in time) coupled differential equations tis

4

. Q ;
discussed 1n Sec. 2.2 which also’ contains a review of the .

~

R

~
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difficulties inherent in this approximate solu;ion to the
;roblem. Some of these difficulties can be circumvented 1n
the two—;evél system through the use of the rotating wave
approximation (RWA) [15,17-20] which 18 outlined 1n Sec.
2.3. The discussions of Secs. 2.2 and 2.3 are limited to
atoms which 1llustrates the complemeptary nature of
perturbation theory and the RWA. Th; perturbation results,
which can be used to analyze‘many-lev;l problems, lead to
the concept of multi-photon tfan51t10ns {21]) when carried
out to higher order, while the RWA, which can be used for
long times and reldtively stronger épplzed fields, can

deal only with single-photon atohnéktrgﬁs1ilons. Neither
the Rayleigh-Schrodinger perturbation treatment nor the RWA
yield the Bloch—S1eé;rt shift [22,23] to high frequency, |
relative to the zero-field resonance positions, of the
absorption maxima in the resonance profiles ot.atoms.
However,this shift can be obtalaed {22,23] by using
perturbation theory, with the RWA as khe zeroth»order
problem, as will be discussed later in the thesis. The ,
analytic RWA expression for the single-photon atomic
resonance p(ofile, through its simple dependence on the
parameters characterizing the atom-electomagnetic field
interactfqpt‘has been fundamental in the understandiné of
atomic ébectroscopy (17,19,20]. The molecular RW@, whith
iﬂéqugs the effects.of permanenf dipoles, is derived in
Sec. 3.2.1¢

i | | i

1



The difficulties j3n using appr&k1mate methods for
obtaining transition probabilities and resonance profiles
can be eliminated by using exact techplques to solve the
time-dependent wave equation. The matrix formulation
(Sec. 2.4.1) of the Dirac variation of constants solution
. to the time-dependent wave equaflon 15 used, 1n Sec. 2.4.2,
to discuss how the exact jnumerlcal) solution of the wave
equation for the 1nteraction of an atom or molecule with
both static and txme'varylng applied eleétrlc fields, can
be obtained by constructing the Riemann product 1ntegral
representation ([1l1,24,25] of the time-evolution operator
for the system. The discusslon 1s continued i1n Sec. 2.4.3
for the spéc1al case of_lnterest in this work, that 15; for
a sinusoldal plane-polarized time-dependent electromagnetic
field. For such a problem the time-dependent Hamiltonian
1s periodic 1n time and, using Floquet theory {23,26], the
full solution of the time-dependence of the populations of
the states of the atom or molecule, and the absorption
spectrum, can be obtained from the solution of the
time-dependent wave eqﬁatlon over the %1rst period of the

Hamiltonian [9,10,23,27-30). This review contains the

-

Va

expressions fo; the steady state transition probabxlltfes
for the atom or molecule 1nteracting with the applied
fields, and a discussion of the computational aspects of
the Riemann product integral technique for their: evaluation
as a function of frequency. The loné‘txme-(steady state)

and (electromagnetic field) phase-averaged transition



probabllxt; as a function of frequency 1is the absorptsge
spectrum for the atom or molecule. The,Rlewanq product}
integral approach 1s used to generate the exac£ absorption
spectra or resonance profiles for the two-level problems
discussed 1in Chapters 3 and 4. These spectra,_ for example,
=

are used to help discuss the validity of the RWA results
for tﬁe absorption spectra as a function of the parameters
of the problem.

Chapter 3 contains the derivation of the rotaélng
wave approxlmatlop for the single- and ﬁultl—photon absorp-—
tion spect;a, or the resonance profiles, for a two-level
systeg with non-zero permanent dlpolesllnteractlng with
both applied static aﬂa sinusoidal electr;c fields. The
result for the resonance profiles 1s an analytic functiom
of the parameters of the problem, which include the
strengths of the applied fields, the frequency and phase of
the sinusoidal electromagnetic field, and the transition
and permanent dipoles of the states i1nvolved lnhthe transti-
tion. These 'moLecu;anr RWA N-photon resonance profiles
are used to investlgé}e the effects of permqbent dipoles
and static electric fields on the absorption spectra, ?o&h.

throu;h the analytic mature of the result and through,

—

numer ical comparison of RWA spectra with ‘exact numerical
spectra. This comparison is also used to help assess the

validity of the RWA results as a function of the parameters

-

of the problem.

LY A




Chapten 3 begins with a dlscu;sxon of the
Hamxltonlan for the two-level molecule 1nteract1ng with
static and sxqpsoldal electrlc flelds The Hamiltonian is
written 1n - a statxc dlagonalxzed representatlon which 18
convenlent for obtaining and discussing the solution for

Eﬂé problem when the static field 1S non-zero [(4]. The

derivation of:tﬁe molecdian.RWA result for the N-bhoton

resonance proéllg ls_g;Qen in Sec. 3.2. The analytic ’
expr9551o;s_for the proflleg, w%xch are mathematically

;sxﬁple,xn the absence of'an‘;ppllgd static electraic fleid,

”

are uééd to 1nvest1gate,.pred1ct. and 1ntt;pn§t some of the

effects of ermgneng dipole moments and st tic electric
fields ontthe:ibsopptlbn spect;a of molecules and atoms.
The llmxtxhg-cgﬁef in which the éérménent dipoles aﬁd.thg
static field are zero, 1s the standard atomic RWA result
discussed 1n Chapter 2 and further discussed 1n Sec.

3.3\1l. The effects of permﬁnent dipoles 1in the absence of
a static field are.diséussédlxn Sec. 3.3.2, while the
effects, both w1thout and w\gh permanent dzboles, in the

- presence of a statlc.fleld\are dlscusifd 1p Sec. 3.3.3A and
3.3.3B, respectively. The contrasﬁ between the above
results and the atomio results, in, the absence\of'stat;c

‘.

fields, 1s emphasized. For example, for the two-level }/

R}

problem, the presence of permartent dipoles or a statac

elecfTic _field can lead to even as well as odd photon

*
spectral transitions, whereas for atoms, i1n the absence of
. \ - '
static fields, only odd photon transitions can occur.



. - © . . -
v . - 7’ v .

\P ' -

Tha presence of permanent dipgles. or more

precisely, a non-zero difference between the dipoles of the - .

»

sfates 1nvolved in the transition, wan lead to very narrow
resonancé-prof;les{ with asymmetric oscillatory fringes

about ‘the main resonances, as compared to the relatively

A

broader Lorentzian profile of the' atomic case. An example N
- - - ’I‘ A

of the importance of orientationally iyeraglng\molecular
spectra, with respect to the orxentation.of the molecule
relatlve to the direction of the app"f electric fields,

15 given 1in Sec. 3.3.3B. Thls effect 1s molecular since

dependence on orientation does not arise for an isotrop o
atom. In the presence of an applied static electraic f1::;:) ’

this effect can lead to i1nteresting temperature-dependent -.
< -

absorptlon spectra which are sensitive to the magnltude and

relataiye orxentatlons of the permanent and transltlon

dxpoles 1nvolved 1n the transition. ' ’ ot

Al

Throughdﬁt Chapter 3,%the RWA resgﬁts for the

-

resomance profiles or absorption spectra for a variety of ..

two-level atoms and molecules are compared with the ¥ .

correspondlng exact spectra obtalned using the methoes

discussed i1n Sec. 2.4. The RWA expressxons for the

refonance profiles aid in the 1nterpretatzon of the @xact

y - .
spectra; the éxact results aid i1n the assessment of the ~ ) -

valxdity of the RWA.. For strong electromagnetxc fxelds,
for example, the RWA results do not account” for the shifts
in the resonances in the sxngle- and mult1 photon absorp-

tion spectra from their weak field lxmits' this shift can
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.frequency [22423]. shift for atoms. In addition, the RNA:

~choosing the RWA as the zeroth order problem, aqﬂ highef

“ .

. M .
. . \
- . . - N
3

.

.be either to lower or to higher frequency for molecules '

with permanent dlpol;s in contradistinction to the higher

» .
resonance profiles do not provide the dynamic background
. - '
\nd the oveglapplng single- and multi-photon resonances

‘ch;>§cter1$g1c of strong electromagnetic field spectra.

" The perturbation'correctlons to the RWA solution for

.

the N-photon absorption spactrum foY two-1évefl systems, .
1nclué&hg the effects of permanent dipoles but not the
effectg of a static ®lectric field, are derived 1in

Chapterjj. ‘These corrections afe used to Melp 1nvestigate

»

and explaln the effects missing in the RWA, with particular

emphasis on effects arising from peimanent dipoles. " After

some preliminary work, Floqueﬁ theory and phaée factoraing

techniques [31] are used 1n Sec. 4.2 to transform the

~N

oilglnal_tlme-dependenthwa@e~equation into a time-

‘ ). ’
1ndependent Floquet Hamiltonian matrix description of the
problem. The time-evolution 6perator for the system 1s

then constructed 1in terms of the eirgenvalues and?exgen-

-
E
-

vectors of the Floquet ‘Hamiltonian and a result for the

absorption spectrum 1s obtained 1n terms of these
quanhtities . In Sec. 4.3 almost degenerate perturbation
theory {32,33] 1is applieé to the Floquet secular equation,

order perturbative corrections to the RWA expressions fom

the N-photon rescnance profile; and its full width at half

{:ﬁaximum. are obtained. Also defived are perturbative
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expreséions for the frequency shifts from.th® weak field
resonance positions that apply.fer non-zero permanent

dipoles and for an arbitrary N-photon transition. Expan-

- siong of the results for the resonance frequency shifts,

and the full dethskaﬁxhalf ma;imum of the N-photon
urosonaﬁce profiles, are obtained in ggwurs of the cauplings
between the electromagnetic fleld and both the trans:ition
and permanent dipoles involved 1in {?e transition. There 1s

’

agreement between the expansions for the frequency shift
and the lead terms_;n the expansion obtifﬁed recently by
Hattor1 énd Kopayashi {34]: however, the;é'1s disagreement
wlth'respect tg the resultg_for the full ;1dths at half
max ima . ‘

The relatlon;hip b;tieen the perturbéélve reéglts
and the RWA results, are dlsqussga gual:itatively 16TSec.
4.3; the'apomlc results, opfained originally b;iéhirley |
[23), are obtained from both cases in the l}hlt that the
perﬁanent dipole 18 zero. The analytxcﬁl pnghrbat;on ~
results obtained in Sec.4.3, together with numerical
examples based on some of the models discussed 1n

Chapter 3, are used 1n Secs. 4.3 and 4.4.1 to Help explain

\ - "‘ '
some of the effects missirig in the molecular RWA¥£;§ its

LY .

atomic limit. The numerical examples are also used to help
discuss the validity of the perturbative corrections to the
RWA for the N-photon molecular reson;hcé profile and

related quantities. The various examples studied indicate

L 4

convergence difficu&h}és with the perturbative cérrections
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which linit their computational use as a function of the

electromagnetic field-transition and permanent dipole

couplings. Howéverx these corrections are‘very1u;eful in
updérstanding some of the important egkects missing 1n the
RWA treatment of the problem. A further discussion of the .
'spectra of molecules with large permanent dipoles is given
in Sec. 4.4.2 with 1llustrative examples evaluated using
the exact approaches to the solution of the protlem,
discussed 1n Sec. 2.4, which avoid the difficulties
associated with pertﬁi?at1ve methods. This discussion .
relStes that of Sec. 3.3.2 with recent literature material
[34,35] on "girant dipole molecules™.

'A summary of some of the more 1mp6rtant results
arising from this work 15 given 1in Chapter 5.

-Atomic units [36] are usea‘throughout this thesais.
The relevant units and their conversion factqr§ {37] to

\
»
S.1. units are listed below: ‘ \

E SON

S
/
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Atomic Unit Value 1in S.I. Units
. %
Charge (e) , 1.6022 x*10719 C
Length (aj) $.2918 x 1071l m
)
Mass (mg) 9.1095 x 10731 kg
Angular momentum (A) 1.0546 x 10734 Js
Time 2.4189 x 10717 s
Prequency 4.1341 x 10716 s71
Energy (hartree) 4.3598 x 10°18
Electric dipole moment (eag) 8.4784 x 10730 Cm
Electric field amplitude (eag~2) 5.1423 x 1011 wvm7!
A *
“ R 4
v
‘£!§~ - .
‘ L]




CHAPTER 2

GENERAL, DISCUSSION OF SOLUTIONS TO THE
TINE-DEPENDENT WAVE EQUATION -

This chapter contains a general review of various
;pproaches for sdlving;the time-dependent wave equation.
Both approximate and exact methods are discussed with
emphasis being placed on those methods relevant to the

remalnder of this thesis.

2.1 The Dirac Variation of Constantp Method for Solving

the Time-Dependent Schrddinger Eguation

The interaction of atoms or molecules with an

applied external time-dependent perturbation (e.g. electric
fields, magnetic fields) is described by the time-dependent

Schrodinger equat:ion {[13-15)

"g‘c'(;,u = H(r,t)¥(r,t) N (2.1.1)

where ¥(r,t) is Lhe exact time-dependent wave function and
H(r,t) is the total Hamiltonian operator which is comprised

of two terms

H(r,t) = Hot¢r) + Vv(r,ti) (2.1.2)

(s 2N

>

Here r denotes the spatial dependence of all the particles

in the system and t represents time. V(r,tL) represents the

interaction of an atom or molecule with an applied time -

!
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-

dopone?nt field. »

'Ho(g) 18 the unperturbed or stationary state
Hamiltonian which 1s independent of time and corresponds to
no pertuihation (V(r,t) = 0) 1n Eq. (2.1.2). OUnder this

condition Eq. (2.1.1) simplifies to :

iSE?(L.U) = Ho(r)¥(r,t) = E ¥(r,t) (2.1.3)

where E 18 the energy of the unperturbed system. Eq.
(2,1.3) 18 a differential equation, separable in time,
which 15 easily solved to give the time-dependence of the
stat ionary state wave functions [14,15]

A o
) (r,t) = gp(r)exp(-iExt) i (2.1.4)

The time-independent wave functions and stationary state-
energies, ¢x(r) and Ex respectively, are obtained by

solving the Schrodinger time-independent wave equation

Ho(r)éx(r) = Ex¢k(r) (2.1.5)
A ) . . ,—.—-"‘

-

subject ig the usual boundary condjtions of quantum
mechanics. Here k is a set Bf quantum numbers specifying
.thelallowed stationary states of the Hé};) system. ?
In what follows, the stationary state information is

often taken as given. The difficult problem of including

the time-dependent pertu;batiqn, v(r,t), in Eq. (2.1.1) was




w

first discussed using the Variation of Constants technique,

by Dirac [12-1?1.

-

written 1n the 1nteraction

In this

1ing the complete basis set

#k(r), for the unperturbed

¥(r,t)y = I

k=1

where the bk(t) are time-dependent coefficients.

Egs.

simplification,

dbi (t)
1 dt

1

Pic(r)exp(-1Ext)
K .

bk (t)dx(r)exp(- 1Ext)

(2.1.5) and (2.1.6) 1n Eq. (2.1.1) yi1elds, after some

methad, the wave function is
representation as a sum involv-
of orthonormal wave functions,

Thus

-—

stationary state problem.

(2.1.6)

Using

= L
k-

D (t)V(r,t)ex(r)exp( 1Ext)
-1 .

(2.1.7)

This equation 1s then multiplied by ¢j*(() andqxntegrated

- over all configuration space giving
4
. ’ . -y
igélit) = L bk(t)ij(t)exp( 1[Eg EJJt) ) - 1.2, , o
dt k=1
, ’ (1‘1.8)
where *
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VJK(t) (Oi(z)IV(E,t)lfk(g)X

n

fos* vz trexmar ' (2.1.9)

‘The coeffgcxeﬁts b (t) aré determined by solving the
coupled set of differential equations given by Eq. (2.1.8)
subJedthto the 1nitial céndltlons. These conditions
stlpﬁlate which sta;tpnary states are populated before the
tlme—depéndé%t perturbation V(r,t) 1s switched on at t = tg.
| The tlme»dép;ndent population of each state, given
by Ibk(t)!? and depending oﬁ the parameters which define
the molecule and on the applied perturbation, will be
discussed 1n more detai1l later for the 1nteraction of an
atom or molecule with a sinusoidal electromagnetic field
(continuous wave laégr). Further, 1f Eqgs. (2.1.8) are
solved exactly for a problem with a self-adjoint Hamllgon-‘v
1an, "the time-dependent Qavé funct'ion given by Eq. (2.1.6)

.

1s normalized for all time t,

A 5 o
¥(r,yt)lI¥(r,t)> = £ tb(t)l?2 = 1 (2.1.10)
k=1

if it is normalized at t = 0 (38]. <

-

The time-d®pendent Schrodinger equation and the
. (A ‘ ' . )
solution discussed above neglect relaxation or decay

K3

effecti. These can be treated phenomenologically

(1,17,28,39-42} by introdacing appropriate radiative

widths, 7k, for the energy levels Ex being considered.
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This is done by replacing the stationary state energy

[\

eigenvalues Bk'by Ex - §iyx where yx accounts for
spontaneous decay processes or other mechanisms of decay
that give excited states a finite lifetime relative to the
ground sgptg of the atom or molecule under cqonsideration.

The time-dependent wave function for state'k 18 then given

L 4
bby
(1, L) ~ $x(r)exp(- L(Ex-%17k]t) SIS NG ™
] - /
™~ where the 1maginary part of the "energy”, ¥k, 18 normally -

v

much smaller than the real part Ex. The time-dependent

<
wave function 1s now written as

*(r.t) - I bx(t)ex(r)exp(- 1Ext)
S k-1 )

~
-

(2.1.12)

where

br(t) = br(t)exp(-yrxt) . (2.1.13)
Y L]
Substi1tution of this result i1nto the time -dependent
wave equation, followed by manipulations similar to those
leading to Eq. (2.1.8), yields a set of coupled differ -

ential equations for the bx(t) which include decay effects;



V'/

[7R
Q.
o
o
I
nMB

Bi (t)Vyk (X, t)exp(-1l(Ek-Ej)~ 3(¥k-%3)Tt)

N

k=1

(2.1.14)

-

Neglecting.V(r,t) yields Bjkt) = constand and a state
amplitude which decays exponentia¥ly with time 1in the

absence of an externél freld

bk(t) = (constant)exp(-§ykt) ., V(r,t) = 0
(2.1.158)

and -

N J

Ib(t)12 = (constant)exp(-¥xt) , V(r,t) = 0

: . (2.1.16)
Y | N
Eq. (2.1.16) 1s the familiar éxponentlal decay law
%1[17,39] for excited atomic and molecular states in the .
Absence of an external perturbation. The system of
differeht;allequations given ;y Eq. (2.1.14) corresponds to .
a time-dependent Hamiltonian that is not self-adjoint.
Thus the solution,for the time--dependent wave function
including decay effects Will\not be unitary, and the
normalization condition gi;en by Eq. (2.%.10) no longer

applies [38]. Unless indicated otherwise, decay or

relaxation effects will be neglected in what follows.

<



2.2 Times-Dependent Perturbation Theory

Perturbat ion theory can be used to obtain approxi -
mate solutions to Eq. (2.1.1)" which are valid when the
perturbation V(r,t) and the times over which 1t operates,
are small. As a specific example we consider the perturba-
t1on-representlgg the i1nteraction of an atom or molecule
with a sinusoidal plane polarized time-dependent eleclric

field, E(t), given by {43])
‘ E(L) - & & cos(wt + 0) (2.2.1)

where 8 1s the unit vector 1n the direction of Lhe
polari1zation of the field: €, w and 8 are the amplitude,

circular frequency and phgse, respectively, of the electro-
magnel i1c f?eld, and g 18 the eleclric dipole momentL
operator for the atom or molecule.. The perturbation 1s
given by V(r:t) - -ug-E(L). In order to identify the

resonances 1n the transition probabilities 1t 18 often

converuent Lo write V(r,t) as

V(r,t) - -4 pu-ee[exp(1{wt+d]) + exp(-x[uLOOJ)]
(2.2.2)
Following the standard methods of t ime -dependent
pertirbation theory [13,f6], a'perturbatlon,expanploﬁ of

the cocefficients by(t) occurring xdighe interaction

represantat 1on expansion of the Lxm3~dependont wave

18
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function, Eq. (2.1.6), is made, -

" bg(t) = L bp(Myqety , ¢ =1,2,... (2.2.3)
n=0 . ‘

where n 18 a perturbation counte{ asstLAted:wiLh the
perturbation V(r,t) and by(N)(t) depends on the product of
n terms involving V(r,t). Sgbstxtutzon of Eqs. (2.2.2) and
(2.2.3) into Eq. (2.1.8) leads to coupled differential

equations for the b,(N)(t),

FEPe (M (L) = Jee: T uymbm(P 1) (L) [exp(10)exp(i[Egmtw]t)
m=1

+ oxp(-10)exp(i[Egm-w]lt)] (2.2.4)

where
Elm = El - Em e (2.2.5)
represents the energy separation between states t and m and

ham = <oPplplom> “ (2.2.6)
where upym is taken to be real in what follows. If 2 A m,
Eq. (2.2.6) corrésponds to a transition dipole .connecting
the two states &t and m; if 1.- m, Eq.  (4.2.6) corresponds
to the permanent dipole of state\m. Until very recently

{3], most perturbation treatments of the:time-dependent
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wave equation have been carried out with 4eg — 0 and thus
-— -

have implicaitly corresﬁonded to solutions for atoms 1in
which each energy state i1nvolved in the transition has a
definite ﬁéflty. Much of this thesis will be concerned

> with the effects on single- and multa photon spectra
arf51ng'from non- zero permanent dipole moments, ;ee
Cﬁapters 3 and «. In wha%bdlrectly follows. the permanent
dipole moments are seét equal.to zero

Consider the atom or molecule to-be 1n the purc

. ground state 1 before the perturbation 13 switched on at

t = 0. This leads to the 1nitial conditions
bm(C) - Om, . m = 1,2, (2 2 1)
e .
‘which. when 2ubst1tutcd into Eqg (2 2 3), lcads to
L 2
bm(%) - 6pm,, : Dbp'®) 0O , s » 0 (2 2 8)

Solving Eq. (2.2.4), subjcct to kEgs (2 /2 7)) and (2 7 8),

for n - 1 gives (13 15%)
. \\ )
~..
bp(l)(t) - suy, Gelexp(16) (Eptrw) {exp(riEg, rvwit) 1)

v exp( 10)(Eg, w) '{exp(1iEy, wlit) 1)}

(2 72 9)

8
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.Oftan it is the fesonant or near resonant (Ej, - W)
absorption of electr netic radiation that is of
interest. This abs”oI‘:on corresponds to the transition ‘of'
a photon of frequency w from the initial state 1 to state ¢
with Ep; > 0. Under this condition the second term in Eq.
(2.2.9) is much larger than the first term. Hence the
first term.can be discafded and G;e transition ptobaﬁility,
‘-for the transition from state 1 t?o state £t by the ,

absorption of a photon of circular frequency w = Eg,, 18

approximately given by

-

e \

Pp(1)(t) = tbg(®) + by(1)(t)12 = 1by(1)(t)12

~ Igll~e£l3(Ell—w)‘zsinz(g[Etl—w]ti
' (2.2.10)

N N
When the. absorption exactly on resonance, Ej,-w = 0, and
Eq. (2.2.10) si ifies further to
v

Pp(1)(t) =~ &lgtlzel’tz. . (2.2.11)

LY

Th% transition probability given in Eq. (2.2.11) is
directly proportional to t2 and hence tends to infinity for
long times. This is an example of the secular divergences
{13] which arise in time-dependent berturbation pheory:
they are pmesent even if all t.ermsl are retained when
qh[eulgting P.(l)(t) and Eannot be removed -by going to

.higher orders in perturbation theory {44,45). Quasi

y

L]
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r

secular divergences [45] arise when Eg; ~ w in the
denominator pf Eq. (2.2.10);and.are dnique to the.osclllat—
ing field perturbation problem. &hese divergences are |
generally handled by 1ntﬂ3dﬁéing the radiative width of the
‘excited state, see Eq. (2.1.11), and making the appropriate
modif ications to the perturbation equations (46].

. The solution for by(R)(t) becomes very complicated
as n becomes large, but by retaining only terms that have
denéminators involving (Ep;-nw) a generalized approximate

expression for the n-photon i1nduced tmansxtioy probability .

from state 1 to state & can be obtained and is given by

[1,3) ‘ \ : :

S ——

Py (L) - 4(xe)2MIC(N) 2 (Ey,-nw) 28103 [§(Ey,-nw)t]

(2.2.12)
where .
c(n) - ¢ § | i Tty V(& sy o) (8 py ) ?
K, iz.-.kn:x‘lr_g;ll‘(n‘ Jw kzl-(n__ Jw). .. kn~ll‘u

“ (2.2.13)
- . - , - - N

" Thus multi-photon transitions are predicted when perturba-
tion theory is carried Lo higher ordexs (21,47]. These .

higher order perturbation results are necassary'to help

. .

understand some of the effects observed with intense

.
-

monochrumat ic light sources. Some of these include

mult i~photon jonization (MPl) of atoms and collisionless

[ b4



L | |
. - } : - \ ' 2 3

-

multi-photon dissociation (MPD) and excitation (MPE) of
polyatomic uolecules upon interaction with intense
~< rﬁ'

electtomagnetic '‘tlelds [4849]. L

The basic types of level configurations needed to -

o

‘?bserve the n-photon non-linear transitions can be
predicted by using Eq. (2.2.1I3) and the parity selectidn )

ruléa for the dipole matrix elements, #jjy. For example, .

consider a two-level system with states of opﬁosit?

parity. The selection-rules indicate that onl;\éée

trensitions can'eccur between the two states. To observe

eden photoq transitions, one needs three states with the
initial ard final etates of the same parity and the .

remaining state with opposite parity.

.+ Eq. (2.2.12) is- useful for predicting n—-photon
transitions but ~is restricted to small couplings and small -
mes and still has the inherent problem af secular and
secu}qr dfvergences., One method for removing these

. . N
divergences ib&tp make usé ‘of -the rotating wave

:Bpteximation.' . ;
. - ./”. "‘-.

2.3 . . Rotat Wave rox tion

quas

The need‘for'more reliable soiutions, rree\of the .
problems caused by Lﬁe secular divergences_preseﬁf in
perturpation theory, lead Rabi [18] to develop a different '“§

_xgpproach for solving the time-dependent Schrodinger ~
equation. In this so-called iotating wave agproximation\

* (RWA) [1% 19, %?], all off- teeonance or counter-rotating

.-
. 6.
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terms are discarded before the differential equations are

1)

solved. Originally, Rabi déveloped the RWA to solve,

~- exactly, the problem 3% a two-level, Qpin y system ‘ o
'intBractfng with a rotating magnetic field. The RWA was

later applied as a zeroth order_approximation‘in a
perturbation treatmgn£ of the oscillating field problem of‘

3

particular interest in this thesis (22). Singe this
approximation is restricted to 1nter;ctions on or near
resonance, where Eygy ~ w, the analysis of systems with more
- than two levels becomes highly specific to the actual level
configu:étlon (31,40,50-52]. Thus onkty tge Lwégievel RWA
is examined here.
The two-level atomic system (u;,; - 0) 18 descrtﬁed
by two coupled time-dependent differential equations
obtained from Eq. (%.1.8), with j ~ 1,2 and kK ~ 1,2,

through the use of M. (2.2.2);

. . 2 ' . .
idbg(t) - - é'iEIEJK'eebk(L)[exp(_l[EkJ-uitlexP(lo)

)

+ exp(-1(Exjtwjt)exp{-10)] " . 3 - 1,2

A solution of these equations is sought for frequenciles

ear resonance with E;;, that is for w = E;; > O. The
problem of secular or quasi secular divergences QOoa ?OL

'*‘artse in an approximate solution to Eq. (2.3.1) If the

‘\ & Yapidly vgrying terms exp(ti(E;,+w)t) are neglected

\ L . ,

et
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relative to the slowly varying terms exp(ti[E;,—w]t) before

attemgting to obtain the solution. The ‘resulting

. Ve \f
differential equations arS’%&ven by ‘ )
ldbg(t) - - % Elz'e£exp(-iIE2l—u]t)exp(io)bz(t)
(2.3.2)
idbgét) - - % Lz 0Eexp(i[E,;;-wlt)exp(-18)b; (L)

(2.3.3)

and their solution can be obtuined as a special case of the
solution of a more complicated problem, which retains the
effects of u;; # 0, discussed in Chapter 3. The résult for
b,(t), subject to the initial conditions b, (0) = 1, -

b,(0) - O (see Eq. (2.2.7)), is given by

b, (t) = i[&liéeglexp(é[Eil—wjg)exp(—iO)sin(5pt)

- (2.3.4)

where | . ‘ ‘/
!

pP? = (Ez,-w)? + lu,, €12 ) (2.3.5)

"‘\ 19
and g, ;-é¢ is the coupling! between the gtoms and the -

applied sinusoidal field.

[
i
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The time-dependent population of state 2%is then

given by
. 2
by (L)1 % = LﬁllagEL—sxnz(gpt) (2.3.95)

which is well behaved for long times. The population of
state 1 1s Iby(t)!1? = 1 - tbz(t)12, see Eq. (2.1.10).
The RWA removes the problem of secular

.
divergences. When E;l = w, the RWA solation given by Eq.
(2.3;6), 18 bounded and oscillates with time. The fairst
order perturbation solution, given by Eq. (2.2.10) with t -
2, is not well behaved for long times, see for example Eq.
(2.2.11). If lu,,-€e! < < (Ej;-w), then Eq. (2.2.10) 1s
recovered from Eq. (2.3.6) by retaining only the first term

k]
1n the/?aylor seri1es expansion of Iby(L)!2, again

indicating that the perturbation result 18 restricted to

small couplings and small times.

whzie the BWA solution successfully treat’s the
problem of secular and quasli seculgf dlvergencés, it is
applicable in its init:ial form only for the one-photon
transition in atoms. To treat an N-photon transition, one
needs to extract resonanlL terms of the form exp(1(E;x Nw]jt)
where N - 1,3,5,.... This work is discussed more generally
for atoms and méleculea in Chapter 3, and conpglns ibe RWA

tate

for atoms as a syecial case. iy
. + P
N

Bloch and..S8i1egert [22] i1ncluded the conLr{buLths_of

the off -resonance or counter -rotating terms in z first

2 6
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arder perturbation treatment of the one-photon atomic
problem using the RWA as the zeroth order problem. These
terms did not greatly affect the shape of the observed
spectra but they did cause a shift from the RWA resonance
position, wregg - é21: The shift, through second order 1in

athe atom-electromagnetic field coupling, is given by

| -8gld
Wraes = E3, + 'gtzﬁsj‘— (2.3.7)

~

Higher order corrections have since been obtalned
[23,53-56] and will be discussed further 1in Chapt?r 4.

The problems associated with uvsing the usual time-
dependent perLurbgtioh theory abproaches to solve the
t ime-dependent wave equation, and with methods such as the
RWA for treating the secular and quasi seguiar divergences
arising in perturbation theory, can b;‘:voided by solving
the problem exactly.

-

2.4 Exact Solutjons for the Time-Dependent Wave Equation

The exact numerical calculations discussed in this
work are based on the Riemann product integral (11,24,57]
or time-slicer [58] representatioh of the evolutioé
operator for the system, aee.also (25}, coupled'with the
use of Floquet's theory [23,26] which enables sélutione to"
be obtained fo; all rekevant times from those for the first
périod of the Hamlltoniaﬁ. The use of Floquet theory

asgumes that the time-dependent Hamiltonian for the pfoblem

-




is periodic in time and is the case of interest in this
thesis. The approach outlined hererreplaceé a previous
method [27,28,59] in which a (matching) power series
:technique was employéd to obtain the solution to the

t ime-dependent wave equation over the first period of the

N Hamiltonian.

+2.4.1 Matrix Pormulation of the Time-Dependent Schrodinger

- L - — ===

Equation
In what follows, 1t 1s more convenient to use the
Schrodinger representation of the time-dependent wave

) function. Using r

.bJ(L) = aJ(L)exp(lEJt) (2.4.1)

transformsvthe Schrodinger equation from the interaction

representation, see Eq. (2.1.8), into the S;hrodinger

representation. The resulting time-dependent Schfodinger

equation for an N-level atom or molecule interacting with
~ both static and time-dependent electric fields can be

written in matrix form (60] as P
iq-a(t) = H(t)a(L) (2.4.2)
J atz ="v'= U

The corresponding result 96{~Zhe-time-dependont wave

4
equat jon, obtained by substituting Eq. (2.4.1) into Eq.

(2.1.6), is given by




Eq. (2.4.7) into Eq. (2.4.2) yticlds

[N

where &g 15 the field un:t vector and ég-1s thglftatlc

field magnitude. . . ’ .
In what follows, = deutzon to Eg. (2.4.2Y wil) be
obtained by a numerical technique based on the Riemann

Q »

product 1ntegral representation of the evolution operator.

2.4.2 The Riemann Product Integral Technique

The solution of Eq. (2.4.2) can be written'in terms’
of the evolution operator 1n the following manner (26,61]:

3 oa(t) - uctitgacty) (2.4.7)

-~

-

where' t, 1s the time the perturbation 15 switched on and
. » Q

U(t;ty) 1s the time evolution operator or, as 1t 1s often
called, the solution-or 1ntegral matrix., that takes the

solution from t - ty, to the final time t. Substituting
= A 5

o

2. 4.8)

where ;
E(t);- CIH(t) ' (2.4.9)

N,
" and .
RY -

Ultoite) ~ I : (2.4.10)



where &g 15 the field unit vector and ég-1s the/ptatlc

field magnitude. = . ’ ' ‘
In what follows, @& deutlon to Eq. (2.4.2r will be
obtained by a numerical technique based on the Riemann

Q r

product integral representation of the evolution operator.

<

2.4.2 The Riemann Product_ Integral Technique

The solution of Eq. (2.4.2) can be written'in terms’

of the evolutiomn operator in the following manner (26,611:
G
¢ <&

1 a(t) = Ultitg)alty) (2.4.7)

-
where ty 1s the time the perturbation 1s switched on and
. » Q
U(t;tg) 1s the time evolution operator or, as 1t 1s often

called, the solution-or 1ntegral matrix, that takes the

solution from t - tgy to the final time t. Substituting
< A s
Eq. (2.4.7) 1nto Eq. (2.4.2) yields .
[ =]
d - :
gtd(tite) - CetIU(tity) . - r2.4.8)

»

where

C(t) - -1H(t) 2.4.9)

-

- and

.g‘(to;to) I : (2.4.10)



,‘G“N

31

2
)

The time interval [ty,t) can be subdivided into n sub-
M .

intervals and, by making use of the group property of

g(t;fo)_[26,613, one obtains

e ~

° .
g(t;to) = g(t’tn‘l)g(tn'l’tn'z)'"g(tZ'tl)g(tl’tU)

-
P »

G
U(tkrtx-1) (2.4.11)
=

|
3
133

Kk

- s —
where T 1s a time-ordering operator that arranges the ’

a9

product 1in chrénologxcal order from right to left.

If n 1s sufficiently larée then each subinterval
[tx-1, tx)] of length Atk = tgx - tk-, 18 small and C(t) can
be assumed te be constant over this intervai with a va_iue~
g(;k') where tyx' 1s an.arbltrary point chqgqsen 1i1n thais

subinterval. The solution of Eq.J(2.4.8) for such a

subimnterval 1s ) y G, 2
Ultikrtk-1) = exp(Cltk')Atk) (2.4.12)

The arbitrary point, tk', 1n the interval (tyi,tx-;] can be

chosen, by applying the mean value theorem (62], such that
c® -
B 4

Clte) = 410 Jok c(vyat (2.4.13)

ER tk’l—

- L jJ

Using‘Eqs. (2.4.15) and (2.4.13) in'Eq. (2.4.11) yields
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_ n . . .
U(t;tg) = T 0 exp(c(k)) (2.4.14) .
= k=1 =

where ® )

c(k) - jtk C(t)dt (2.4.15)
—— ~1_

Eq. (2.4.14) 1s the Riemann product'xétrgral representation

of the evolution operator. The formal gsflnlt}on fo31 of

-

the Riemarin product 1ntegral of Q(t).over {tyg.t) 18 gi1ven by

s

n
U(t:itg) = 1im T 1 exp(c{k)) (2.4.16)
T m>»0 k-1 —‘ .

&

where m - max At 1s the length of the longest subinterval
(tk- 1 tkl and the 11mit m > O implics limit n » . The ¢

.actual number of subintervals used dcpchds on the problem,

on the nature of C(t) as a function of t, and on the
desired accuracy of the solution.
In this thesis, a typical matrx’e‘.em‘ent of C(t),

see Eqs. (2.4.9) and (2.4.5), % given b9

L 4

a

Clm(t) L l[E!D“ﬁ Kim éECOS(Ut'O) Hetm es{n]
rd L3

(2 4 17)

4

-

Substituting Eq. (2.4.17) anto F§. (2 4 15) vieldo



s

Cem(X) = Z1[(B40pm-Brm-8sts) (Ok—OK-1)

: - Bap-8E(8iNn(OKk)-8in(OK-,;))] (2.4.18)

which“can be rewritten as

Cem(K) = :é(ek"ek-x)[Elblm‘ﬁlm‘eses

—— A

- suimsscon(atonsd-)) BRGSO

(
where \$“

én = wtp + O ‘ (2.4.20)

In the next section, the Riemann product integral

represenfation of the evolution operator given by Eq.
(2.4.14) will ‘be used with ququet theory_to obtain

solutions to Eq. (2.4.2) which are convenient for the

~

evaluation of the absorption spectra for atoms or molecules.
4 M .

P

,

N\
-

2.4.3 Sinusoidal Electromagnetic Fields and the Floquet

Method - .

Since E(t), and hence H(t) and C(t), is periodic for
¢ ; = = _

all t > ty, the evaluation of U(t;ty,) and the transition

probabilities for all t requires determining U(t:t,).over

‘the time interval [0,2w/w) only where tp - 2w/{w is the

(2.4.19) °

33
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period of the electric field and we choose to ~ 0 for this
sinusoidal electric field problem. Only a brief discusslén
of the working equatioqs {?r the evaluation of the transi-.
tiod probabilities will be given in this section. Complete
derivations can be found in the literature [9,10,23,27- °
30,59]). ) | '

Since the Hamiltonian i1n Eq. (2.4.2) 1is periodic

such that

H(t # tp) = H(E) ~+ tp « 20, (2.4.21)

Floquet theory can be applied and ‘the general solution of

the time-dependent Schrodinger equation can be written as

[(26] - . ,

G(t) = Z(t)exp(1Qt) (2.4.22)
G(t) is the general solution matrix of Eq. (2.4.2), 2(L) s

a periodic matrix such that
Z(t) = Z(t + tp) (2.4.23)

and Q is a constant diagonal matrix. The Floquet form of
the solution proves to.be very useful in evaluating the
steady state absorption spectrum of an atom or molecule

(28). 1t is discussed and applied further in Chapter 4.
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By making use of the geriodicity of H(t), it can be
shown that

a(e+2sw) = U(©,0)([U(2%,0)]18¢,(0); 0 < © < 2%

(2.4.24) -

with -
©=wt +06 : 8 =0,1,2,... (2.4.25)
Co(8) = U™1(0,0)a(0) (2.4.26)

-
where 1(0) is the initial t = 0 value of thé coefficient
matrix g(t)._ It is clear from Eq. (2.4.24) that the
Pvaluation of g(t).requires knowledge of g(e,O) only on the
©-interval [0,2%]). ) -

While the time-evolution of a molecular system is

important, it is tRe steady state or long time behaviour

AY

that is considered later in this thesis. The expression

for the state amplitudes a(®), given in Eq. (2.4.24), can

be written (28], in Floquet form, as
a(e+2sw) = Z(©)exp(iA[e+287])bg(0) (2.4.27)

where

335
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bo(0) = 871gy(0) : (2.4.28)
2 2, 2.4.28)

-

\ Patnt
¢ -
g )
. \ z

S

2(®) = U(e,0) S exp(—ig@) = %(9+28w)

.

(2.4.29)

-

A is a diagonal characteristic exponent matrix that is

related to the complex eigenvalues, l}3dfmthe unytary

matrix U(2»,0) in tHe following manner [28,64]
= . -

- - -
iy = gnih(xj) ’ " (2.4.30)

- . —\I
S is a square matrix whose columns are the 6rthoanda1 »

eigenvectors (§)j oE U(2w,0), which correspond to Lhe eigen- .
values \jy; S‘l is the inverse of S. The advantage"of
working in the Schrodinger representatxon instead of 1in the

S
interaction representation 13 that in the-former the -

\yfjpharacteristic exponents correspond to dressed atom

/

energies [23 28,65, 66] .

The time— and phase- dependent p.ﬂulatlon (Lransltton.
probability) for atate j is given by Ia)(t)l2 . The phase—
averaged tempoyal, and the phase— and long time-averaged,

transition probabilities are defined by

—

TN
Py(L) - u» Ii" lay(t)12do ® N - (2.4.31)




: By - 1im T [T Fy(trat - (2.4.32) ~
Tom
respectively. The physically meaningful t ime-dependent,

.o PR Y - AP
behaviour of the transition proﬁability is normally in- ‘

dependent of the phase 0 and corresponds to Eq! (2 4.31). -
The physically observed spectrpﬁ of the- atom or molecule

often corresponds to the phase- and long time-averaged
transition probability given by Bq (2.4.32) if the effects

of the perturbati occur ,over time intervals which are

short relative Lo the important relaxation t imes 1nvolved

Ve -

in the system [1,23,66-70]. If thig;condition is not

satisfied damping effects must be included; see Sec. 2.1..-.

From Eq. (2.4.27) one obtains

. A
4 : ’ e <
R N N . »
lag(t)t2 = ¢ L[ qu(e)Bqa(e O)(ng(e))
qal s=1 . - .
| I T T (2 4. 33}
, with N being tﬁe number of enérg;'levels considered and-.
Bgs(8:0) = byq(0)(bgs(0)) exp(1(8q-4]8)  (2.4.34)
. . !,; \~.' \_/
—. . \..
$ e
Thus,\gton qu (2 # 31), the phase—averaged trans)tion
probability is -
c.f“'
- &
. / . ¢




N ¥
~-
rr' -~
\-./
-

N

. ; ;

-

‘\J. .
- 'N N N ) . .
Py(t) = L L exp(if[ag- Aa]ut)ﬁqu(ut) ST (2.4.35)
q-l s-l N - x\;}
where . ' S

Bqsl(wt) = sz If” Z3q(Wt+8) (Z35(wt+8))*bgq(8) (beg(0)) "

- x exp(i{ag-8g)0)dd ‘3 (2.4.36)
‘and, ;since Z(©) is periodic (see Eq. (2.4.29)),
i \\ —
— quj(ut) = quj(wt+28w) (2.4.37)
“\ -
Using Eqs. (2.4.35) and (2.4.37) in-Eq. (2™.32) yields the

following expfesqion for the phase- and long time-averaged

transition p{obabilxty [28].

5 N 2n
Pj'r L w7 I Bqgl (e’ )de' o (2.4.38)
3 q‘ 1 ‘-/'- : .
e .
where 8' = wt, since terms with q # 8 in Eq. (2.4.35)

average to f;yo in the long time-average; see, for example,
\"_

Sec. 3.2.

It is clear fr'om Eq. (2.4.24) and Eqs.
N A N as” P

(2.4.35)-(2.4.38) that the phase- and Lime-dependent, the -

time—dopendenk phase- avqraged and Lhé bhase— and long

4
time -aver aged Lranaitxon probabtlxtias can all be evaluated

P

once the aqg}ution operator is obtaxned over the first

perlod of the Hamiltontan

-~ .\: ..\‘ .
. . 1
e
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C tatjional cts
The calculations for a given set of parameters
defining the problem are carried out using the following

.~ procedure: .
-«

(1) The evolution ope;a%or is evaluated on thé interval
(0.27) by making use of Eq. (2.4.14). First c(K) is

diagonalized and written as

€(k) = L(K) A(K) (L(K))-1 (2.4.39)

where é(k) contain;’the eigenvectors of g(k), (é(k))‘1
is pee inverse matrlxibf'g(s), and g(k) is a diagonal
matrix containing the eigenvalues of g(k). . By using
the Taflor ser les expansioen for-exg(x), one can show

-~

that .
exp(c(X)y = ¢ L (Lk)a(K) (Llk))-1)n
_ = - n=0 n!' = = = -
[ ]
’ ‘a L(k)exp(g(k))(g(ki);l
. el (2.4.40)
T Substituting Eq. (2.4.40) into Eq. (2:4.14) y'xelds
n ‘ ' . :
' Uctitg) = T I [(L(Kexp(a(k)) (L(K))~1]
s - - ) k=1 < . - - .
‘ A (2.4.41)

»
¥ Pl

e

39
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which is used to evaluate the evolution operator.

.

X2) once U(2wn,0) 18 calculated 1t is diagonalized 1n order
y
to obtain the eigenvalues, Ay and eigenvectors (8}

p from which § and S™! are constructed.
(3) The RJ are used to SQaluate the characteraistic

exponents through [28,64,66]

833 -~ 7 tan™1[ ——3 Re XJ ] (2.4.42)

.

(4) Dbg(0) and Z(8) are determined from Egs. 4@%4.28) and

(2.4.29) respectively.

.
-

N .
(5) The various transition probabilitiles are obtained from
Egs. (2.4.33), (2.4.35) and (2.4.38).

_TﬁeJabove procedure was used to evaluate the "exact"

~ .
»

gﬁgorptxon spectra discussed 1n subsequent chapters of this
. > .
thes1s. .-When using the Riemann product 1ntegral method 1in

step (1), the [0,27] 1nterval 1n 8 was subdivided 1nto 180
. ®

subintervals. Simpson's rule (7L] with 30 quadrature

pcints was used to evaluate the phase- and time-averages

-

Sccurring 1n Eqs. (2.4.36) and (2.4.38). This lead to much i?

more than gyaphical accuracy for the resulting absorption

s

spectra (72]. The diagonalization process _was performed . ~

.using the Eispack library with the subroutines RS and CG

[75).

\ -
s



CHAPTER 3

TWO-LEVEL, ROIATING WAVE APPROXIMATION INCLUDING THE EFFECTS
OF PERMANENT DIPOLES AND A STATIC ELECTRIC FIELD

In this chapter rotating wave types of approxima-
tions (RWA's) are derived for the single - and multf-photon

absorption spectra or resonance profiles for a two-level

system, with non-zero diagona} dipole matrix elements or

""permanent dipole moments”™, 1interacting with both appl:ed

statie¢ aqd si1nusoidal electric fields (see Egs. (2.4.6) and
(2.2.1)‘respect£vely). In the appropriate limit the
results reduce to the usual atomic two-level RWZ expres -
sions discussed i1n Sec. 2.3. The analytic expresélons for

the resonance profiles derived in Sec. 3.2, which are

€

particularly simple in the absence of an applied static

field, are used to explain and illustrate some of the
)]

effbcts of permanent dipole moments and static eleciric

’

fields on the absorption spectra of atoms and molecules in

* Sec. 3.3. Comparison with exact two-level calculations,

L
carried out using the t®chniques outlined in Sec. 2.4, are

used to help assess the validity of the RWA ‘results for the

resonance profiles as a function .of the parameters

I - - .
specifying the atom/molecule-applied fields interaction.
Some mathematical preliminaries are outlined in what

follows.

41
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3.1 Preliminaries _
In the Schfodlnger representation the two-level

. - ¢
problem 1s described by the wave function

2

¥(r,t) = [ a;(t)¢,(r) such that la,(t)!12 + Jay(t)12 - 1.
1=1 .

The time -evolution of this system, upon interaction with

both static and time -dependent electric fields, 1is

determined by the solution of

-
©

d N ) < .
15, a(t) = H(t)a(t)

‘

(5 2] ceacarmceny - [£2 £3)] [2rt)

(3.1.17r

where E; and E, are the energies of stdtes 1 and 2, &, .1s

D

the unit yector 1in the _direction of the statgc field. &5 15

the magnliude of the static field, E(t) 1s the time *
dependent field and 41y 1s defined 1n Eq. (2.2.6).

Since multiples 9f. the unit matraix additeve within
g(t) do not affect th§/2rob;b111t1es, IaJ(t)lg. of finding
the system 1n state ) ag a function of time, a 31mp11f1c
ation 18 obtained by removing the traces 1in 4 and E from

the other terms (41].

By defining

m = S04, * #3;3) i d - (g, Hyy) (3.1.2)



(33.3)

&
:AE‘(E:‘EI)>01

EBg = %(E; + E;)

The Hamiltonian occurring in Eq. (3.1.1) can be written as

follows .
Eg-5AE 0 m-§d 42

© H(t) = ‘ - (eses+§(t))-[ Nt ] —

- o Eg+4AE gz, m+yd

«

- (o - (eegeE(t))-mi[y
é. N

14

+g[AE—g.(eseg+§(t))]{—é ? -[es€s+§(t)]'eiz[2 é ’

~

The substitution

“where we take g3, = 4;3-
. L _ Loy e
aj(t) = cj(t)exp(-i(Eot-egts -mt-m- ['E(LT)dL"])
0
- | : , (3.1.5)

is then made where cj(L) satisflies

d
igE s(L) -

8(t) is that part of H(t) not involving the unit matrix and

clearly
r

(3.1.7)

taj(t)12 = tey(Lyid | ;




In what follows, %(t) 1s transformed to a static Hamilton-
ian diagonalized representation following (4.
The egfectlve Hamiltonian matrix %(t) can be written

as a static f\eld dependent term and a time -dependent field

dependent -‘term agaféllows

The solution of Eq.'(3.1.6) can be further sxmpilfled by

\ 3 :
diagonalizing Hg by a rotation through an angle 6 (4,76}

R

~ defined by

- cos8 s1né 3
Rg - T (3 1.9)
- * sS1Nn6 cosé : ’ »
»
Thus 4
1 ~
He(t) - Rexlt)Ra
* Hz,9 + Vg(t) © _ (3.1.10)

The static fi€ld dependent term 13 now given by

t

&4



= RoHgRe™!
) ’

-Cc0828 sinz2é
y(AE-d-egég) - K12 €sts
s1n2é coslé

53926 cosze]

cos26 -s1n2eé

" (3.1.11)

<
Requiring Hg,g to be diagonal gives
$(AE -d-8gEg)51N28 - u,;-8gég cos26 = 0
which yields

tan26 - (2u,;, €gfs) (AE-d-&geg) 1 (3.1.13)

-

and then

cos26 = ' 1(AE-d-egEg) ; S1n28 = ¥ (2,3 €sig)

(3.1.14)

-

¥y = [(BE-d-égég)? 4 4(u;;3-e5Eg)21h (3.1.15)
. ’ . .
 Hg,o tan be simplified by using Eqs. (3.1.14) and (3.1.15)

to yield

10
1

57["0 (3.1.16)




N |
5
The time-dependent term in Hg(t) 1s then given by

U}

Yo(t) = Be¥(t)Re'

cos26 si1n’lé
- -sd-E(t) ] '
i 51N260 cos2é
= S1N28& coslé
412 ECL)
(31 17)

cos2e S1n2e

-

which can be written, using Egs {311.1&) and (3 1 19). as

] ’ 1-0]‘ [o 1] :
Vs(t) s_D_E(t)[Ol M E(t) ] g (3 1718)
where
D - dcos26 2132511286 (3 1 19)
and
- e
M - u,,cas28 + ydsinlé . (s 1 20

The ‘matrix reprecsentation ot tht coupled >

differential equations, given by Eq (3% 1 6), tn the ntat
J ' *
Hamiltonian diagonalized representation 1n

-

«

d .
ldtis(t) - (!s,ﬁ ' !s"”in"’ . t3 121



-

_ cg-(t) .
gs(t) = [c:+(t)] L. 3128

The transformation from the sehtic diagonal representation
[\

to the original (1,2) representation 1s given by

) c(t) = Rs' es(t) (3.1.23)

where Rg 1s given by Eq. (3.1.9) with the angle 26 defined
by Eq. (3.1.4). The angle 6 1s selected such that in the
limit that 6 » O (1.e. &g » 0), the state Is-> > 1> and

Is+> > 12>. Thus

= .2 (14 cos26)% >0 ; sine = --*

V2 V2

where S is the sign of siné and 1s determined from the
~

exgression given for g}nzo in Eq. (3.1.14) with

n y "o ,T .
T 5 < 6 < > [47.

Mathematically cynvenient expressions for the

speétra in tﬁe (1,2) repre’entation, that are useful for

Ebe analysis of the effects of permanent dipole moments -and
static electric fields on the single- and multj -photon
spectra of atoms and molecules, can be .0btained by using

the following initial conditions to solve Eq. (3.1.21);




Vasad

a,(0) = 1 ; as(0) = 0 (3.1.25)

These condxtxsns are such that state 2 18 not populated
before the time-dependent perturbation 18 switched on at
t = 0. More general resulis, for arbitrary initial
conditions, can be.obLalned 1n an analogous mannei;.the
corresponding results for the |aJ(L)I2 are Ledxous.and not
particularly helpful.

Sifice severgl transformat 1ons have been used 1n

obtaining Eq. (3.1.21), the 1nitial_conditions must be

-/
transformed as well. Putting t = 0 1n the transformation
given by Eq. (3.1.5) yields
c;(0) = 1 H c,(0) = O (3.1.26)
N

Finally, putting Lt = 0 1n Eq. (3.1.23) and making use of
Eq..(3.1.26) shows that [1]

~

Cg-(0) = cosd H cg+(0) - -BING (3.1.217)

The Lemporal populations associlated with {inding the
system 1n states 1 and 2 are given by Eq. (3.1.7).
Similarly the probabiliti1es of finding the syslem 1in uLaieu

- Or + aresgiven by

tag(L)12 = lcga(t)t? (3.1.28)



The populations in the (1l,2) representation are easily
expresséd as a function of the solutions to Eq. (3.1.21).

This is done by noting that (see Eq. (3.1.23)5

-

c;(Lt) = cog® cg-(L) — 8in8® cg4(tL) (3.1.29)
Ez(t) = 81n6 cg-(t) + cOs86 Cg4+(L) *\(3.1.300
. ’ b .
* ‘ o
and ~
tcy(t)12 = 5§ - § cob20(lcys ()12 - lcg-(L)12) oo
. ', ’ ) ' )
; . L -y sin2@(cg-(t)cgr(t) + c§:(t)cs+kt))
~. L]
. (3.1.31)

lca(L}12 = 5 + § co828(icge(L)12 - fcg_(L)12) "

+5 8in20(cg-(L)cga(t) + cgi(l)cgs (L))

(3.1.32)

where of course

_ / : >

ey (L)E? + ica(L)it2 = 1 ¢ (3.1.33)

The time-dependent populations of states 1 and 2 are

related to the absorption spectrum for the two-levéel atom
\ .

or molecule through the phase- and long time-averaging

procedqres discussed in Sec. 2.4.3.




»

Once cgs+(t) and ca_(t; are found by solving_&g.
(3.1.21) with the conditions given in Eq. (3.1.27), Eq.
i3.1.30) 18 used Lo conglruct the transition probab:ility
lca(t)12 for the 1 » 2 Lraﬁsitlon. However, - Eq. (3.1.21)
cannot be solved exactly 1q_closed‘torm except 1n very
speclal cases, see [4]. Reliable approximate analylic —-
exprgssions for the transition probabilities that are
capable g& éxh1bit1ng Lthe essential features of si1ngle- and
multi1-photon two-level spectra would be very us;(ul in
understanéing;and predicting some of the effects-due Lo
’sbat;c‘f;e}ds and p;}sznenL dipoles Lhat océhr 1in such .
spectra. Also, a systematLic examxpatxon.of Lthe spectLra as
a function of the parameters of tLhe proble& (1.e. AE,
Hi2°€gEE, yg,~e§, d-égzetg, etc.) 1s pésélble using closed

»

form results for the transition probability. One way of
. \ i .
obtaxhxng an analytic solution Lo Eq. (3.1.21) 18 Lo make
use of rotating wave'Lypq approximations.

S

3.2 The Static Field RWA Lgcluﬁiggngggggpq“ggfggyg!ggng_

Dipole Moments

wWhen the perturbation 18 the sum of a static
e.ecitric f1elkd and a plane-polarized sinusoidal slectric
{1eld (given by Eq. (2.:2.1)) relatively s1mple closed }orm
solutions for Eq. (3.4.21), and hence Eq. (3.1.1), can be
° -

obtalined by making an “on resonancn"br'rotatxng wave Lype

approx:mati1on for Lhose coupled differential equations.



s
VR

g

’ ‘\2’ kJ’
The resonances in the transition probabilitiesggre
located more easily if Eq. (3.1.21) is transformed to -an
~

interaction representation defined by . e

Ce(-,+)(t) = b(-,+)(Brexp(e3lyt-D-[b B(tyat' ]

x N
(3.2.1) .

-

Substitution of Eq. (3.2.1) into Eq. (3.1.21) shows that

the coefficients b(-,6+)(t) satisfy

1320 = age [pr(e)) = BB (3.2.2)
5 Q
where
Hp,--(L) = Hp, +4(L) - O (3.2.3)
and ~

[

.

Hi,—+(L) = H[,3-(t) = -M-E(t)exp(-i(vt-D-[CE(Eh)at')) .

(3.2.4)

This can be written eiplicltly, for the ‘interaction of the
two-level sysgem with a plane-polarized sinusoidal electric

field, and a 8tatic field by making use of Eq. (2.2.1),




./"\‘ s N
L s
o Hy,-+(t) = Hy ¥_(L) = -M-6gcos(wt+B8)exp(-ivt)
- ] .
&\pg x exp(lg-ft etcos(gt +0)dL’)
= -yM-6e(exp(ib)exp(-i(r-wlt)
) ) : + exp(-10)exp(-1{r+w]t))
- &, x exp(zD-JL dccos(wl '+8)dL"')
~ - (1]
$ (3.2.95)
\ )
This 1s further. expanded Yy noLzﬁg Lhal
_,_/~‘ P §
PR _
.‘i' N ' :
19-13 efcos(wlL''+0)dL"' = 3 D-eée(sin(wi+d)-31n(0) ] -
¢ v
) (3.2.6)
and thus
L : : ‘
exp(ll_)-Io decos(wt'+H)dL"’)
. ' >, .
= exp(1Y¥Ysin(wt+0))exp(-1Ys81ind) F(3.2.7)
¢ \
where .
\‘
. . . -ec .
- . Y = S (3.2.8)

By mak:ing use of the relationship ()I]

&

S2



exp(izsinx) = } Jk(z)exp(ikx)

k=-co
‘ I
where Jk(z) is a Bessel function of‘lnteger order k, one .

obtains .

S~
’

~

exp(JQ-JE eccas(wt '106)dt ')

='éxp(-1(sxn5) T ’Jk(Y)exp(1k[wt45]) (3.2.10)

K= -eoo

L]

Using Eg. (3.2.10) in Egq. (3.2.5) y1ields

]

Hp,-+(t) = Hp,§-(t) = -yM-eécexp(-iYsin®)

x T Jk(Y)lexp(ilk+1l8)exp(- ily- (k+1)wit)

0= -

¢

+ exp(ilk-118)exp(-ily- (k-1)wlt)]

(3.2.11)

-

Eq. (3.2.11) contains terms that are slowly varying

functions of time at certain frequencies. The resonances
in the transition probability ;ccur approximately at these
frequencies and these terms are identified by w = ¥/N, with’
N = 1,2,3,... The on-resonance terms occur when k = N - 1
in the first term in Eq. (3.2.11) and k = N + 1.in the
second one. All other terms in Eq. }3.2.1}) aré rapidly

varying off-resonance or counter-rotating terms that tend
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to average to zero. Neglecting these off-resonance terms

leads to a simple RWA type expression for Hj(t) in Eq.

-

(3.2.2) where Eq. (3.2.4) is replaced by

Hp,-+(L) = Hi, $t-(t) = “yM-ecexp(-iYsind)exp(iNS)

. x exp(-1{r-Nwlt)

x [JN—l(Y)'* IN+1(Y) ]

-

This 1s further simplified by making use of [IBI

CJp-1(X) + Jpsl(x) = éedp(x) ,

and by defining -

C(N) = 2M-@&eN(Y) 1Jn(Y)

-

-, £ = exp(-1{Ys81nbO-NO}) .
\ .

to obtain

Hi,-+(L) =~ H], 3-(L) = -4C(N)gexp(-1[7 Nw)L)

(3.

(3.

{3.2.

(3.2.

(3.

.12)

.13)

L ¥

14)

1;7\‘5;\~

.16)
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C(N) is the effective coupling between the sinusoidal fie}d
and the atom or molecule for the N-photon resonance ' ° ©
:involvdng the 1'» 2 transition. It contains the effects of
the static electric field and permanent dipole moments and
reduces Lotthe coupling g,,;ec associated wiﬂﬁ the usual
RWA for atoms (see Sec. 2.5) in the limit that £€g = 0 and’
d = 0. ‘

Egq. (3.2.2), in the RWA where matrix elements of

Hi(t) are given by Eqs. (3.2.3) and (3.2.16), represents

the following set coupled differential equations
- ~ .
i§eb- (L) = -§C(N)gexp(-1i[y-Nwlt)by (L) (3.2.17)
iGebs (L) = -§C(N) ¢ *exp (4 [7-Nwlt)b_ (L) (3.2.18) -

Solving these equations yields expressions for b-(t) and

bs(t) that will be used to construct the temporal *
populations of states 1 and 2 through the use of Egs.

(3.2.1), (3.1.81) and (3.1.32). In wha} follows several - ’
aLané&rﬁ techniques (79] are used to helﬁ solve Eqgs. ¢

(3.2.17) and (3.2.18).

To begin Eq. (3.2.17) is rearr#nged to give

.

by(t) = -2‘(£C(N))‘1exP(i[7—Nw]L)gEb-(t-)‘ (3.2.19)

'y .

L -

Substituting this expression int6é Eq. (3.2.18) yields




Sy

T R ) ,
a’ (t\)\: ;( N)S b_(E) + xC2(N)b_(t) = O
+ . arTe- 7-NFEP-(8) % -
' , (3.2.20)
r\ A

\The solutions of this second order d1ffered¥1ai—equatxon
have the form b_(t) = exp()t), where ) is {'coqﬁtant, and
Lhe characteristic equation associated wlth\tﬁls;
.dxigerential equation is gléen‘by

PN
.

A2 + 1(y-Nw)Xx + %C2(N) - O ’ (3.2.21)
~ B .

Solving Eq.(3.2.21) yxelgg the following. rootls

) F 4
N ' 'Y
\, = :é(v—Nu—p) ) “x, - -’%(v—‘uwm (3.2.22)
l .
where ,
-
pt = (v-Nw)? + cl(N)_( (3.2.23)
. , “

»~

Since the rooLs Qf Eq. (3.2.21) are dxéancL, Lhe soluLxég\

to Eq. (3.2.20) 1s

I~

bo(L) - A exp(h.L) + B exp(ial)
L = A exp(:%[v—NQ—p]L) + B exp(félviNufp]L)
, -

(3.2.24)

-

56
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. L
An expression for bs(t) is found by substuting Bq.
(3.2.24) into Eq. (3.2.19) yielding .
by (L) = -€"(C(N))"[A(Y-Nw—p)exp(z[7-Nw+p]t)
.- o+ B(v—Nw+p)exp(%[1—N¢;§]t)]
/'
(3.2.25)

The constants A and %pare found by noting that b_(0)

.

Cy-(0) and by (0) =~ cg+(0), see Eq. (3.2.1), and by making

use of the 1nitial conditions given in Eq. (3.1.27).

Hence

A = %B[(p+7—Nu)co§6 - 6(N)£q1n9]' -

-
N A

T : o S
B = IE[(p—(y-ﬁ?))cose + C(N)¢sind])- | :

-

-

-

. (3.2.26)

(3.2.27)

-

The expressqons for b-(t) and by(t) are further simplified
. ' . A ) Y - B
by def ining "
A_ =~ %(cos0-8) ¢t B_- = y5(cosé+8) (3.2.28)
: &
B} = -§(siné-a) (3.2.29)

Ay = -§(s8iné+a) °;
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where

a = :%[(7—Nu)aln9 + C(N)¢*cose] ' (3.2.30)

IS

8 = :l[(v—Nw)cose - C(N)Es1nb]}

3.2.31 .
P ( J

SN

-

Thus the solutions of Egqs. (3.2.17) and (3.2.18) are given
by

:
v

B(-s+)(L) = [A(-,+)eXp(zPt) + B(-,+)exp(-3pt)h

» RN
-

x exp((=,+)3(¥-Nwlt) c T (3.2.32)

;- ’
Eq. (3.2.32) 13 ‘easily. Lransformed back 1nto the

g - M

s};}ic Ha@xiionlan dlagénallzed tebresenLaLion by substitu- .
"ngh'an; Eﬁx (3.2.1) And-the resulting expressions are
. ., used in Eq. (3.1.32{ to give Igz(t)lf;-lcl(t)l2 is then
.pbtained~from Eq. (3.1.33). 1L is convenient to separately
examine the terms dependent on cg(-,+)(t) in Eq. (3.1.32)

when evaluating the transition probability lca(t)12.

.
* - .
* -
f
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It is easy to show that
' N

lcs+(t.)l2 = Ibe(t)13
“~——— v - 7
= 1A413 + 1Byi12 + AyBrexp(ipt)
. + AlB,exp(-ipt)
. = %(s1n?e * ia!?) + y(sin?e - tal?)cos(pt)
1 t. X
- 5(0 - a)sin® sin(pt)
.
(3.2.33)
and
fcg-(L) 13 = tb_(t)12
) 3
= 1A_12 + IB_12 + A-BZexp(ipt)
+ AXB_exp(-ipt)
= g(cos?8 + 1812) + x(cos?8 - 1812)cos(pt)
+ %(B' - B)cosé sin(pt)
‘ .
(3.2.34)
-
Further ) )
: RN
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cg-(t)cgh(t) = exp(—ig-ftd-étcos(wt'+0)dt')

-~

x {exp(iNwt)(A_A} + B_B}) + exp(i[N+p/w]wt)A_B}

+ exp(i(N-pAFwt)A}B_]
(3.2.35)

Making use of Eq. (3.2.10) ylelds

-

cs-(L)cgi(L) = exp(i¥sind)

. x T Jx(¥)exp(-ikB)[(A_AY + B_BY)exp(-1[K-Njuwt)
) \\ o
+'A:B_exp(—i{k-n+p/u]wt) + A_Biexp(-i{k-N-p/wlwt)}

= exp(1Ysinb) I Jy(Y)exp(-1k8)exp(-1{k-Njwt)

k-_-a:
x [Ba*sin?(5pl) - %¥s8in20 cos2(ypL)

+ i(d‘cose + Bsingd)sin(gpl)cos(gptL.) ]
(3.2.36)
-~
The expression f{or cs:(L)cs,(L) is obtained by taking the -
complex conjugate of Eq. (3.2.36). .
éubstltuting Egqs. (3.2.33), (3.2.34) and (3.2.36)
ihLo Eq. (3.1.32). yields an analytical, but complicated,
expression for the phase and time-dependent transltion-~

probability 'fca(t) 2. 'However, the long time- and phase-

LY

\ /!
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average of Ic,(t)!12 obtained from this result, which yields
the absorption spectra of the two-level system (see Sec.
2.4), is markedly simpler than Icy(t)t? itself. o

In calculating the phase-independent steady state
result for the popula§£5n of state 2 one can evaluate the
time-average first, gollowod by the phase—aver;ge, or vice
versa. In the deraivation ;hat follows, the long time-
ave;age is taken first since 1t greatly simplifies the
calculation. The same result has been obtained by carrying
out the analogous derivation, which is not gi;en here
explicitly, resulting frqm performing the phase-average
first. - | ’ . ~ .

Eirst consider the long time-average of Eq.

(3.2.33). It follows that

lim 1

Ty ‘i‘ o 'Cs*(t)lzdt
_ lim 1 . 1 , _ .
= Py T[s(Sane + tal2)T. + Is(sxnze lat?)sin(pT)
+ %B(a’ - a)sin@(cos(pT) - 1))

g(sin;:?>\Jalz)

(3.2.37)

since both sin(pT)/pT and ((cds/pT)-1)/pT tend to zero as

T » ». [In a similar manner, the time-average of Eq.

(3.2.34) is




. lim 1 23t - 2 2
aim 2 [T teg-(t)12at = x(cos?e + 1812) (3.2.38)

The evaluation of the long time-average of cs_(t)csi(t) is
somewhat more complicated and is most readily carried out
by using the first expression for cs_(t)csz(t) given 1n Eq.

(3.2.36). Pairst one obtains

lim 1 « ‘
T T Jg Cs-(t)csslt)dl

exp(1Y¥Ysind)

KN "
X {(exp(-21[k-N]JwT)-1) + JIn(Y)exp(-1ND)]
+ A+B-[1 E I(Y)exp(- 1k0)[Ik N+l/ T
o p/wY
x (exp(-1{k-N+p/w}wT)<1)]
- \
* = . . 1
- + A_Bs[i © Jk(Y’exP(_lko)[Ik—N-p]w]uT
= . -
x (exp(-i(k-N-p/w]wTy~1)1]) (3.2.39)

If p/w 18 an intLeger, the lasL two terms in Eq. (3.2.39)

contribute to the Lime- average when k = N - p/u in the

second term and K = N + p/w in the thrd termu ,However,

- N,

physically, p/w is rarely an'integptaand when it is the

A
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contribution of these terms is small (see.Appendix A for
more details). Thus onily the‘firat term in Eq. (3.2.28) is
carried tﬁrohgh in what follows and one obtains

' l

1 N
g [T ca-(t)cgi(rae

exp(1Ysind) (A_A} + B_B})JIN(Y)exp(-iNO)

-5 exp(i¥sind)(§8in28 - Ba™)JIn(Y)exp(- iNO)
e (3.2.40)
Combining all the results of this paragraph yields an

expression for the long time-average of Icy(t)!12:

/

lim 1 jT 2 - : 2 2 -
Tse T Jo tca(t)t4dat ot g(lal. 181 cos28)cos28

- yJIN(Y)Sin20{¢(¥s8in20 - aB®) +' &)X.} .
(3.2.41)

-

[

Eq. (3.2.41) is simplified by using Eqs. (3.2.30) and

(3.2.31) and doing some algebré;

lim 1 2

-2

*

-~ =1 2%7[(7—Nu)2c08328 - IN(Y) (v-Nw)C(N)8in26cos26]

+ 1%7‘£.+€)L(V'NU)C(N)BIDZGCOSZB

- IJN(Y)C3(N)sin220] (3.2.42)




The phase-average of Eq. (3.2.423'18 easy io'
evaluate. The first twé terms are indepa;;ent of phase an?,
therefore contribute directly to the phase-average. tg,kﬁé
last term in Eq. (3.2.42), all the phase dependence is

contained in ¢ and ¢* and the relevant phase integral is

therefore

~

.I an
< 1 =3 Io (¢

=

+ £)dd (3.2.43)

4

By using Eq. (3.2.9) 1n Eq. (3.2.15), § can be written as

C

‘ £ = I Ix(Y)exp(-1[K-N1O) (3.2.44)

K= -
and substituting this 1mo Eq. (3.2.43) gives

<

I = 2IN(Y) + - T {Jk(Y)[Eéﬁ](exp(—i[k-N]Zn)—l) + c.c.}
’ K-~
k#N k
= 2IN(Y) (3.2.495)
. ¢ :
since
exp(ris2n) < 1 , 8 1nteger. (3.2.46)

Thus Lhe phase- and long Lime-averaged transition

probability is given by '



5.N o lim 1 2w 2
PN = 1% 2 [T 27 ica(ty12atae

“ .

1} ‘ : :
= - 2—7[(1-Nw)c0529 - C(N)JIN(Y)Bsin28)2
2 2 (3.2.47)

When there is no sinusoidal time-debendent electric field,

{ i.e. ¢ = 0 and hence C(N) = 0, Eq. (3.2.47) reduces Lo

" Po(stat) = 5{1 - cos?20] (3.2.48)

L4
— §

- ’ \l
' which vanishes when the static field &g -~ 0, see Eq.

(3.1.14). This is the static background in the N-photon

resonance profile that arises from a frequenéy independen

h contribution to the transition probability (S
The absorption spectra obtained from examining §2N

as a function of frequency will be discussed next.

3.3 Examples Showing Some of the Effects of Permanent
Dipole Moments and Static Electric Fields
The features of élngle— and multi-photon absorption

spectra of atoms and molecules can depend markedly on the
presence of non-zero diagonal dipOle matrix elements
(permanent dipole moments) and/or static electr;p’fields.
This will be illustrated in this section for two-level:
syatemslwhere the use of the analytic RWA expressions'for
the resonance profiles makes predictions and/dr the jinter-

pretation of the spectra readily tractable. Comparison

. C

4 ) . j v R '
'y re a4 " ) '
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4
with exagt two-level results will be used to illustrate the
s : :

validiLy of the RWA expressions.

-

'3.3.1 The Usual Rotating Wave or Rabi Approximation (d = O,

£g = 0) )
When €g = O, cos2@ = 1, sin 20 = 0, D= d, Y = g;%i—,

vy - AE, and M = u,, (see Egqs. (3.1.14), (3.1.15), (3.1.19),

(3.1.20) and (3.2.8)) and when d = 0 as well, Y = 0. Using
~ Ve

these limits, and Eq.  (3.2.13), in Eq. (3.2.14) gives Lhe

‘following expression for the atom-electromagnetic field

(EMF) coupling

]

C(N) L12°€E[IN-1(0) + IN+1(O0)] = K,2°€EDN, )

(3.3.1)

since Jix(0)

1l

Ox,0 (78]). Substitution of this result into
Eq. (3.2.47) then yields

P »

Py
-PZ = .RI |[§12‘é£|26N']_' - (3-3.2)
where _ '

p2 = (AE-w)? + Iy, 0612

- *
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This is ihe original Rabi or rotating wave approximation
(RWA) {17-20,23), see also Sec. 2.3, for the one-photon
absorption_ spectra of two—}evel atoms and also applies to
‘ tyo—level-molecules with no perhénent dipole moments. ‘
In order to dg;cuss the validity of the RWA result

for the one-photon absorption spectra, it 1s useful to

define the coupling strength parameter

- IElgv'e£|
b - - 2 2E (3.3.4)

- The RWA is valid for weak coupling cases where b < < 1 and
under these conditions the atom-electromagnetic field

coupling is.g1ven by g;,-€&. Figure 3.1 1llustrates the

~ absorption spectrum obtained from examining Eq. (3.3.2) as
a function of w/AE when.the-coupling strehéth 1s relatively
‘ small, b = 0.2.° The peak is Lorentzian in shape with
resonance frequency wyeg = AE and the full-width at
( half-maximury (FWHM), which is the width of the absorption
spectrum when §2N = 0.25, is given by 2lu,;-€c¢€l.
As the Ebupling strength increases to b € 1 or
b > 1, the counter-rotating terms neglected in derivipg the
RWA become more important and as a result the RWA becomes -
more and more unreliable. There are many examples of exact
atomic two-level calculations of resonance profiles in the
" literature £10,E3,27~30,58,59,73;81] and comparison of them

with the analogous RWA results leads to an understanding of

the breakdown of the RWA‘expression for the one-photon

L
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Pigure 3.1.°

The single-photon RWA resonance profile for
atoms or molecules with no permanent d:poles:
§zl,ngiven by Eq. (3.3.2), versus w/AE for b =
lu,,-etl/AE = 0.2. The resonance occurs at
W/AE = 1.0 where P! = 0.5 and the profile, as
a YTunction of u/Aé, has a full w1dtﬁ at half

maximum (FWHM) of 2b.

~
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FWHM=2ly,.-é£liAE
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resonances become broader, the spectra become‘asyﬁmetric as

-

‘ - 70
a : ) )

resonance profile as a function of b.

As b increag;s, the widths of the spectral )

a function of frequency, and the FWHM is no longer given by

2lpgo-68l. In exact Lwo—}pvel calculations of the spectra

the ong—photon resonance ‘positions shift from w = AE to
higher‘frgq;encies - this is Lh; Bloch-Siegert sﬁift ksee
Sec. 2.3) - and dynamic backgrounds occur that are not
Preélctéd by the RWA. o

Expressions analogous to Eq. (3.3.2) have also ﬁsen

derived [23,68,82]) for atomic multi-photon resonances and 1‘r
comments anaiogous to the N = 1 case apply ‘for these higher

g % i
photon resonanqes. For weak fields (b ¢ ¢ }); w N = AE/N

res
for tﬁe‘N—pboton transi¥ion and for atoms N =.1,3,5,...

assuming ;he energy states -involved in the§§ransition have
a definite parity. Bloch—SibgerhgﬁhifEs to higher @

frequency and deformation of Lhe Lorentzian type profiles

"

occur, as in the N 1 problem, as b increases-

[23,28,53-56,81}).

«~— The RWA expressions for N = 3,5,..., analogous to

Eq. (3{3.2), éan be derived (23,82] by a pérturbatiod\

treatment of the Floquet secul® eguation, see Sed.-4.2. ~—

The single-photon result of Eq. (3.3.2) arises friom a first
order treatment of the sectlar equat ion around a zeroth
order energy AE; in Sec. 4.3 perturbative corrections to

Bq. (3.3.2), which include some of the effecls missing in :

the RWA result, will be discussed as a special'case_of a R |

. a N

«

. \ ‘ ,; )




. lewie = -

‘more general treatment fdr molecules. . In order to obtain
atomic RWA results fer-N = 3,5,... Shitlé} {23) debeloped
perturbative treatments about zeroth .order energies AB/N;
obtained expressions for the fiést non-zero results which
are of N-th order, and rewrote the results in RWA form.

. ' .

M [ ]

3.3.2 RWA thhJQ ¢ 0, &5 =0
When €Eg = 0 1n Eq. §3 2.47), the followxng RWA tLype

~

expresszon for the N- photon resonance proflle, thaE
is

k]

includes the effects of permanent dipole moments,

. obtained;
SN . [C(N) )2 \
L 2T IEENG)T ¢ [T N (3.3.5)
where ’ .
L
C(N)w@”-em(yrwmn (3.3.6)
. A . ,
_with T _
Y - ""f‘ > (3.3.7)

.
b4 b ]

&
t

(3:3.5) was originally [(83] obtalned by solvina

N . Ea.
(3 1.6) with ea a 0 in !(L) and a recentxderivation in

Eq.
) . the literaturq agreoa with this result for N =1 a?d 2
‘ [84].‘ This yields a simpler Hamiltbniaﬂ‘ghat doés not need
- . 1 -

o, : ,

4
i
/
- ‘
¥ ' .
’

[
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" to be diagonalized by a rotation throigh 6. However, X(t)

still peeds to be transformed to an interaction
represeniatlon and the rest of the derivation is analogous
to, but much simpler than;, that given 1n Sec. 3.2 for

&g * 0 (when & = 0, v, D, M and the states |-> and 1+> are
replaced by AE, d, g;,;, 11> and 12> respectively). When

€g * @ the explicit express&on for lb%(t)lz. the f -

&
time-dependent population of state 2, 1s tedious (see Sec.
3.2). Por €5 = 0, Iby(t)1? = lcgs+(t)1?, and using cos® = 1
and si1n8 = 0 (see Eq.( 3.1.24) with cos26 = 1) 1n Egs.
‘ [}
g (3.2.30) and (3.2.33), 1t 1s easy to show that
] . »
2 .
: Ib,Neey12 = 1CMIIT oin2 000ty (3.3.8)
p? :
——
— .
) with
N p = [(AE-Nw)2 + IC(N)I2]5 T - 13.3.9) (

-

. When d =~ 0 th atom-EMF coupling 1i1s given by Eq. (3.3.1)
and Eq. (3.3"8)>becomes . ] ‘
L -

\

|b,N(t)| --7';< ec120y, 15102 (§pt) - =(3.3.10) ;

N

\\ ,
.witﬁ p? given by Eq.\ig‘}f3). The d » O limit of the : '
: molecular d # 0 resulkt faﬁthe usual RWA expression (23N for
\ L}
\ the sjngle-photon t-ime-dependenle ‘of the population of

v ‘f:" C- . : | : - \\‘ g . . \\.
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3 long time-average yields hq. (3.3.5). when d = 0, Eq. »

state 2. The temporal populatio:\ ib,N(t) 12 is independent
of the phase of the ;lectronagnetic field and taking its
(3.3.5) reduces to Eq. (3.3.2). .

Eq. (3.3.5) is vglid for two-level atoms or (/'
'mbleculea and since molecuLgf are not 1sotr6pic theit’
spectra will depend on the orientation of the molecule
relatlye to the direction of the applied electromagnetic
field. Thus, i1n some cases, averaging:over the allowed

'orienLaLions of the molecule relative to the field
?i‘ection -] ;? Be iqcluded.in calculations of the
ébsorpt?on/2::ctra (73,85] (see Sec. 3.3.3B). Unless
ment 1oned otherwise all results discussed in what follows
will be for fixed molecule-EMF confiéurat1ons where
Liatidilélreg. .

The similarity betweenvihe'atdﬁlc RWA result of Eq.. : -

(3.3.2) and the more general molecular resonance p;ofile of

Eq. (3:3:5) is striking; the usual expression for the R
coupling between. the atom and Lhe'electromagnetic gield, )
Bya3-0E, occur;ing in the former, is simply replaced by the
new 1olecule-EMF coupling term C(N) in the lacger. The

‘coupling C(N), given by Eq. (3.3.6), dgpends on frequency
and\Xq\an oscillating function of the argument, Y, of the™
Bessel function Jy. Figure 3.2 is a plot of C(N), ad a
function of Y, f;r N - 1,2 and 3 showing this behaviour.
When pérmanent dipéle'momonts Are present the cbubling. .

between Lhe,systed and the applied time:degéndent field can :

. . *

Al . N .
’ . ¢ . - - . P
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be much less than u,,-6c¢.

When d # 0 at least one ofthe states of the system
must heve no definite (i.e. mixed) parity; that is gj; =
{$pjlulg,;> = 0 if ¢; has a definite parity since g is an odd
oéerator. Thus for a Lwo-level molecule with d # 0 even (N
= 2,4,...) as well as the usual odd (N = 1,3,5,...) photon

.
transitions can occur (35,59,86)] and the RWA supports both

for 4 # O. 4

Additional effects of .permanent dipoles on the v
spectra can be discussed q;alxtatively by comparing the
resonance profiles pred1cted.by the molecular Rwe expres-

s10n given by Eq. (3.3.5) with Lhe Lorentz:ian profile

predicted by the atomic result of Eg. (3.3.2). The “usual®

systeﬁ—EMP coupling u,,-€¢ 1n the atomic result is repYaced
by the frequency dependent EOupling C(N) for d # 0. Hence
for a molecule with d 4.9 the-N—pheton resonance profile
will not ee given by'e peye Lorentzian like that in Figure
3.1. fhe Lorentzian e;gfile Qill be modif ied by
oscillat.ing frtngee/and asymmetries as a function of w.

The zeros 6; the frinqes yill occur at the zeros of the
Besé%l'funct;on occurr.ing in C(N), see Eq. (3.3.5).

However the general molecular resault for the resonance

profiles still predicts that Lhe N-photon (main) resonance

res

value of 0.5. . ) \~<b

Eq. (37.5) can also be?used tc obtain ad -

will occur at w = w O = AE/N where B,N has its maximum

FWHM of the N-photon main

’ [ ]
N ¥ -

appraifmate expression for

76



resonance by assuming that C(N) does not vary apprecxably
over the width .of the resonance, that 1s that C(N) 1s
essentially a constant over the televant frequency range.
The r¢gsult for (FWHM)N 1s obtained by solvingas Eq. (3.3.5)»
with PsN = 0.25 for 1ts roots, w, and w;, taking C(N)
independent of Lﬂ' The difference between these two
frequencies gives the width of the main resonance at its

haif maxima. Thus when the main resonances do not vary

» appréciably with w, that ;s when they are narrow, the roots
are
\ -
w, = S[AE - IC(N)I] _ N (3.3.11)
17N L wEw T
res
and ®
*
1 i
wy = NLAS + 'C(N)']w=w N (3.3.12)
. res ) '
Therefore ) : .
/7
\ (PWHM)N = wy-w, = {IC(N)I}w_w R

res
\ +
‘ . 1] ’

\

(3.3.13)

»




This RWA result indicates that the width of the N-photon
\ ’

resonance decreases as N increases through the factor of

N™! in Eq. (3.3.13) and since the Bessel function,

IN N%éegl » often decreases as N increases. This prediction

will often be reliable but it 1s not rigorous. Por example

Nd - ee
AE

small relative to N large (typical plots of C(N) versus Y )

it is not correct 1f Y = 18 near a zero of Jy for N
are shown in Figure 3.2).

A related effect of the presence of permanent
dipoles 1s the reduction of the width of a resonance
relative to the atomic result wth d = 0. Thls\p01nt is
. best 1llustrated by comparing the FWHM for the one- photon
resonagce in the a;omic chase versus that‘for molecu%es. In
the' former, FWHM = 2lu,,-¢¢l and 1n the latter (FWHM)! -
2IC(1)IQ=“ 1 . Since, in general, the molecule- EMF coupling

res
can be sigriificantly smaller than thag for an atom, the

vvidins can be much narrower. Similar comments hold for N\
N > 1 and’examples-wxll be discussed later. The reduction

in peak width can be considerable if the argument of the
.
N 7

Bessel function JN occurring in C(N) 1s large for w =~ Weeg

and especially if the argument 1s near a zero of the Bessel

-

function. ' .
while the molecular RWA expression for the N -photon T

resonance profilé has proved and will prove to be very

useful, there are soffe obvious problems associated with

it. It is clearly not_correct as d » 0 since C(N) > 0 (see

Eq., (3.3.1)) amd hence §2N » 0 for N = 3,5,7,... and it is
v,

- N
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ot
known tha: all N odd transitions occur in a two-level atom
with no permanent' dipole moments. The éwn result also
predicts that the N-photon (main) resonrances will occur at
w = w = AE/N. Exact calculations (see what follows) show
that when d # 0 the frequencies of the main resonances can
shift to the low frequency side of w = AE/N in~contrast to
the Bloch-Siegert shifts to the high frequency side ¢ -
observed in the atomic case. . .

L;ie all RWA type approximaﬁxons, Eq. (3.3.5) is
more ;;1iable as the coupling C(N).becomés small, that is
as p;;-6& decreases, and usually as d-é&t iﬁcreases, for

f}xed AE. For molecules the RWA type expressions can be

used witg larger applied fields than one would normal}y
expect srnce'C(ﬁ}\lg general%y less than gyg,-@€€. Since th;
RWA expression ipvolves @ near resonance approx;mation it
breaks down when the N-bhoton resonances begin to overlap
appreciably. Indeed, as in the atomic case, the molécular
RWA is not capable of supporting the dynamic spectral
background characteristic of this type of behaviour as the
molecule-EMP coupling becomes large. In general, the RWA
predicts the ;verall structure of the absorption spectra

‘and is a useful analytical expression tH{t can be used to

‘1ntorpret and predict €he effects of permanent dipole

moments on absorption spectra as a function of the

parameters of the problem. I[llustratiens of its use and

»

validity follow.

-

o ~ .
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Numer ical Examples

t

In order to examine several examples of single- and

multi-photon spectra obtained from the RWA result of Eq.
(3.3.5), and to compare them with the corresponding exact

results, it is useful to define the parameters
.. .~

. N )
7(N) = Zoid-ee! 1 (3.3.14)

!

\

: - |C(N)
BN = |5t N (3.3.15)

W=Ww
res

M(N) 18 the a(gument of the Bessel functions occurring in
C(N) when w = wrgs ~ AE/N and B8(N) takes into account the
effect of permanent dxpsle moments in the molecule—éMF
coupling atrength. The parameter B(Ni is Lhe N-photon and
d 0 a;alogue of the often used aiom—EyP coupling strength
parameter, b, defined by Eq. (3.3.4). These parameters axe
.also useful in interpreting exact single- and multi-photon
speétra and in discussing tﬁe %alidity'of the RWA resﬁlt;.
In Figure 3.3 the exact spectra for a two-level
model system, both with and without d (FPigure 3.3d), are
compared to the corresponding spect®a (Figurie/ 3.3a-c)
obtained from Eq. (3.3.5) for the N = i,z and 3‘ph;ton
resonance.. In addition the d = -0 RWA "atomic” spectrum.

obtained from Eq. (Z.3.2) is included with the one-photon

- .




Figure 3.3. The absorption spectra or resonance profile,
PoN as a function of w/AE, for a two-level

model molecule specified by u;, = 1.0, d = pg,

- Ry :20.0, BE = 1.0 and ¢ = 0.5. Parts a-c
2 corres;;ond to the RWA; result of Eq. (3'.3.5).

with N = 1,2 and 3 r'espectively, and 4 to the

exact result. The relevant d = 0 results are

] - ‘
F also included for comparativé purposes.

Figure 3.4. As in Figure 3.3 except for the two-level
* ]
~ .

m?dei molecule specified poy u,, = -0.5072, d . .
g ='2.0, 8E = 3.706 x 1875 and &£ ¥ 5.0 x 1074.°" . .
‘ .
: -t
O'\ -
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RWA molecular spectrum. The pai::395rs charéctqrizing the
one-photon resonance are n(l) - 206.0 and 8(l) = 4.35 x 1073
and b = 0.5. .

Figures 3.3a and 3.34d illustrate the considerable
effect that permanent dipole moments can have on the yidthé

of the resonance profiles. For example, the d « 0

oﬁe-photen—resonances are narrow spikes whereas the d = 0
resonances are much broader. This 1s due to the -
considerable reduction in the coupling between the molecule
and the EMF caused by Lhe:presence of non—zeqo‘permanent‘
dipoles relative to the atom—EﬁP coupling; 5(1) 18
approximately 100 times smaller than b. The molecular

one-photon resonance is very narrow and is not surrounded

——

by maﬁ; oscillatory fringes. The narrowness of the
reséaance arises because the argument, 7(1) = 10.0, of the
molecule-EMF coupling is near‘thelthird zerg of the Bessel
function J,(Y) occurring in C(1l). The range of w covered
in F{gure 3.3 corresponds Lo a relatively narrow range of Y
values (6.25 € Y € 50.0) in the plot of C(l) versus Y in
Figure 3.2 and since many maxima and minima are located on
either side of Y = 5(1) one would expect 3everal
oscillatory fringes around the one-photon peak. Howevef
only one f{ringe is aigqificant'gince the heights of the
others are 'damped"through both the relati:ely small value

Q

of b2 and the factor df (AE-w)? occurring in the .
. - - »

denominator of Eq, (3.3.5) with N = 1 which, in this

example, is-usually much larger than IC(L)13 for .

f
.
| T S -
. he . 3 .

9



off-resonance frequencies. Rewritiwg Bq, (3.3.%) in the

$ollowing form aids in the understanding of these trends;

BN IC" (N} I 2b3 ;
k2 2{(1I-Nw/AE)? + IC'(N)!2b?] - (3.3.16)

) A4
where C*(N) = C(N)/(u;,-€€¢) is the quantity plotted in

-~
FPigure 3.2.

*

In the exact d

it

0 spectrum the cneiphoton resonance
occurs at w/AE = 1.06 f;ee Pigure'3.3d)‘and tpe Blocﬁ— -
Siegert shift is fairly iarge for this example. When
permanent dipole moments are prﬁsent the one-photon

resonance occurs at a value of w/AE insignificantly less

than unity in essential agreement with the prediction of
the molecular RWA. The elimination of the Bloch-Siegert
shifl is also due to the drastic reductidm-in<ehe molecular-

EMF coupling by the presence of permarvnt d1pole mome*

relative to Lhe atomic-EMF coupllng
R,
s AN analogoué dxscussionia lies for the N > 1 photon

~

mesonances. In the 4 = 0 exact spectrum the ‘two- photon -

resonance‘}g absent, as expected and the three photon .
T ,
resonance is shifted signfficantiy Lo the high frequency

side of w = AE/3 (w/AE = 1/3) and occurg at w/8E = 0.41.

.9
For d # 0 the exact two- and three- photon resonances occur

at easenLially w/AE = O 50 and 0. 33 respectively and the

r

three—photon resonance 18 very harrow relative Lo bhe
) L3

atqmic result.‘ In all caSes the presence of permanent s ™

aipoles suppresses thevdynamic spectral'packground
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associate& w{th\the atrongly'coupldd atomic resonanéé
profiles. In contradistinction to the atomic case thy RWA
pre&icts the exact molecular spectrum very well in this
exampie since the coupiing 5etween ihe molecule and the EMF
is weak. — -t

~ Two-level model RWA (N = 1,2,3) and exact spectra,
characterized.by b = 6.84, 8(l) = 6.85 x 1072 and n(l) =
26.552 analogous to those prasent;d in Pigure 3.3, are
shown 1n Figure 3.4a-3.4d. The cou;liﬁg parameters for .
this set of calculations are much larger than those for the
more weakly coupled example of Figure 3.3.

Wheﬁ‘g ~ 0 both the bne-photon RWA and the exact
spectra (see F1gures 3.4a/and 3.44d reﬁpectivelj) are
completeiy ;alurated and Lhe resonances 1n-the ldtter
cangot be easily identified. This-is LS be expected with
such a large atomic’éo?pling strength b.\.when 4 2 0 the
effecgive coupliﬁg strengt& 8(l) 18 approximately 100 times
smaller thah b and the molecular one- and higher photon
fesoﬁgnces are markedly narrower than in §he at;mfc case.

Siﬁce n?f).? 26 .98 occurs near the fifth maximum of
the Bessel function J;(Y) contained in C(l) (see Pigure
3.2;, Lhe.one-photon resonance is relatively brbad (see
Pigures 3.4a and 3.4d). Alsp the range of w iﬁ'Pigpre 3.4
corresponds.to a large range of Y values 517 YK« ;35).in
Figure-3.2 and thus the one-photon resonance isusuirounded

by many oscillatory fringes with their zeros and maxima

occurring at the zero and maxima (or minima) surrounding Y




8§6
- B(l) =26.98. In this example b2 is quite large and :
1C(1) | 3is—ndbon—oomparable to the (AB-w)? term occurring
"in the denominator of Eq. (3.3.5) for off-resonance .

frequencies. Thus the fringes are significantly higher

than those 1n the previous example and are observable on

—

the scale of Pigure 3.4.

»

The '‘atomic Bloch-Siegert shifts, easily seen in

Figure 3.33, cannot be easily determined in Figure 3.4d
Aul i -

(d = 0) ¥Yor any of the resonances; precise numerical

investigations show they are very large. However, when

L4

d #- 0 the exact resonances are,easxly recognized anq occur
. at w/AE = 0.87, 0.44 and 9.31 for N = 1,2 and 3
;espectlvely. These are shifted significantly to the low

f requency siae of the positions predicted from the RWA;
Ww/AE = 1.0, O.S_and 0.33. Thus one of the effaects of d ~ 0
in this strongly coupled example, relative to Figure 3.5,_
i8 the occurrence of 'negativ; Bloch-Siegert shiftsg® QQ(

the molecule. Another effeét of the marked reduction of

the molecule-EMP'coupling strength, relative to the

= s

atomic~-EMF coupling, caused by the presence of permanent
dipoles i's the narrowing of the resonance profiles and the

significant suppress jgn. of the spectral dynamic backg’rqund

for the molecule relative to the atom (see the exact

spectra o%)?igure 3.44). . ) '

"A compar ison of the d » 0 exact spectrum with the

e

d » O RWA .spectra illustrates some of the features that may

. - . ‘ ,
be missing in the molecular RWA-spectra. The RWA spectra



g - | T~ -

-

have oscillatory fringes but th; heights of these frinseg'
are not in quantitive agrsement with those in the exact
spectrum since the RWA does not support a dynamic spectral
backgrounq. Also the shifiénpf the main resonances to the
law frequency %ide of AE/N-pf;;ent.;n the exact‘sbectrum
are absent in the RWA resul}s. This example illustrates a
situation where the RWA predicts the gross features of the

structure of single- and multi-photon spectra but not some

of Lhecimportant details (discussed above).

N .-

The argument of thp Bessel function Jy at w = Weoes

n(N) (see Eq. (3.3.14)), increases with N and hence the
magnitude of JN(®m(N)) occurring in C(N) usually decreases
as N increases. The usual effect of this is to decrease
the resonance widths as N increases as discussed earlier in
this subsection. This effectL is seen in the sertfes of ’
spectra in Pigure 3.4 wpere g (N) occurs near a maximum in
C4{(N) (see Figure 3:2) for N =-1,2 and 3 and as the argument
increases tLhe éoupling decreases. Howeve;, thia trend is
not observed in Figur? 3.3. The one-photon resonance is
narrower than the wa;photon resonance becaqse n(l) is near
a zero of C(l), while #(2) and 7(3) are near minima and

maxima ef C(2) and C(3) respectively. : ) ’
' In Pigure 3.5, the parameters b =~ 1.5, 7(l) -—3.25.

and B8(1l) =« 0.223 of the specfra are charactefistic of a

two—epergy level configuration in suybstituted aromatic

molecules that exhibil intense one-photon transitiopa'.

[87}). ‘b this example, pg}ta (a) and (b) correspond to the

)
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Figure 3.5 Comparison of RWA and ®xact results for the

-*

absorption spectrum or reeonance profiile, PoN—

as a function of w/AE, for a two-level model

specified by'AE = 0.1, u4;, = 3.0, u,, = 2.35,

Mz = 8.85, d = 6.5 and £ = 5.0 x 10”2, ‘RwA
resonance profiles for N = 1,2 and 3 are :
1llustrated 1n (a) ang (b), as evaluated from
Eq. (3.3:5). The axact multlvphétog.spectra 18

illustrated in (c) which also contalhs-the

d = 0 exact sbectra for comparative purpbéesr\‘
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RWA spectra (N = 1,2,3) and (c) to the exact molecular

‘(@ # 0) and atomic 4@ = 0) spectra. .

Once again the d » 0 one-photon resonance is
A :

oonsideraﬁly narrower than the d = 0 resonance, see the
% \

eaact sp\ftra. However, the molecule-EMF coupling is much
larger than that in the previous examples and as a result
the one-photon resonance -is still quite broad. A huge ~

Blocﬁ—Siegert shift is evident wheg\g;:ko, the one—ph&ton

resonance occurs at w/8aE =~ 1.50. When d # 0 this reeonance
occurs—at W/AE =~ 0. 80_provxding another example of a éhxft S,

to low frequency caused by non-zero permanent dipole

.

moments. . e,

4

OSCillaLory-fringes occur on the low frquency side’
-

of the one-photon RWA spectrum since 7(l) occurs between ' .
the first maximum and the fgral ZEero occurring in C(l) (see

Figure 3.2)4 see also the previous discussions. The

-

fringes occurring ayound the one-photon resonance ingthe
exact spectrum have been largely suppreéﬁed by the high

dynamic background present due to the strong molecule-EMF -

coupling. .o . .

anilar d;ﬁcussiobs apply to the N > 1 photon reson-
aneces. Hhen d =0 the two-photon resonance does no; OCCur

and the three photon resonance is very broad and 1s shifted

to w/AE ~ 0.69 when d v 0 the threedphotoﬁ resonance

occurs at Q/AE = 0.24 which corresponge‘to a negative ' s

a - . * 'L
Bloch-Siegert shift. 'The two-photon resonance occurs at

g -

‘w/AE = 0.38. The oscillatory fringés are partially
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suppiessed by the dynanic backgiound.asgociatOd with the
two- and throe-photon resonances. .-. \ -

k]

The uolocular RWA results do noé show the dynanic

T background on the shxfts from tho zero-field resqQnance

frequency Qres = AE/N, but‘they do suggest the o:\\llations
seen in the exact‘spegﬂra~as a function of fré&uency and

" the narrowing of the resoﬁancq wigfhs as ﬁ.increase;. The
“qpupling parameters 8(N) can vary over the widths of the
resonandes ih this strongly coupled example where B(N) =

'_\P 22.,0 28 and Q. 002$~£25_§”f 1,2 and 3, particularly for 

N = 1, and so the (?NHMAF do not necessarily follow Eq. -

(3.3.13), that is S8(N), as a function of N.

¥.3.3 RWA with &g # 0 -~ . .

7/ P
. The Schrodinger time-dependent wave equation given

bj qu. (2.4.2) and (2 4.5), and for the two-level problem

. by Bq (3.1.1), is in qhe representat!on defined by the '
stationary states ot the uq?erturbed Hamiltouian Ho., where
Ho®i = Ej®;. In the presence ofﬂz—étatic electric field
8gtg, it i convenient  to :ransform the time—dependen& k;ve
equat ion 1hLo Lhe static di&gonalizad Hamiltonian

-»
*representation.‘ This transformation was done fo the

"two-level’ problem in Sec. 3.1.by diagonalxzing the static

part oﬁ-the Hamiltonxan operator with respect. to ®, and @,
. to’obtain the eigenrunctlons, ®- and 0+, and eigenvalues.

E- and E+. for the néw repr;aentatlon. The influence of

the atatic fiﬁid cauaea the original stationary state

. \




. energies E; and E; to be shifted to E- and

‘stronger electromagnetic fields w_ N

WA SR S - - - - e -

; + by nixins;the
wave.funeyiohs‘or ind.qi to form & and ®/. Since-the
static~£iel& niies the origin‘l sthtes, -.and &, are of
mixed parity and hence hoth even and odd photon transitions
can pccur {3,59, 86] even if d - 0. In what follows the- |
basis funct iofts (01,03) and (0L,0+) are>denoted"as the
(1,2) and (-, +) representatxons respectively.

The spectra for the two-levél model System are
readily interpreted in the static diagonalized Hamiltonian,

R . . ,l.
or (-.+), representatlon in an analogous fasHion to the

i i

interpretatzon of a spectrum in the (1,2) representatlon in

the absence of a static field, w1th several obvtzk: excep-

tions (59 &6,881- ‘ These rnclude the addxtzonal static . .
5, N

éee-Eq (3 2.48), and the mixing of states of
dxfferent ‘par ity caused by the applicat1on of the static
field. In the (-,+) representation the energy level

° ~

separation is ¥ which ‘is giver by Eq.'(é.l.IS). Por weak

. .- N — ___ . ‘
electromagnetic f;elds-ures ~ y/N; N ¥f2'3"“' When .

d = 0, v is always greater™than AE and the main resonances

yill occur at frequencieé greater than AF/N even for weak_

. - ‘ ——

. electromagnetic fields. ‘However, this is“not the Bloch-

Siegert shift disoussed in Secs. 2.3 ahd 3.3.1. For. .
5 > Y/N and the
P . N
-
difforonce between w___ and 7/ contains ‘thé Bloch Siegert

shift for the static field. problam If d A.O,‘v can be

greater or less than.AE,depgnding on the or;entation of the
. . -~ -

molecule with respect to the static field ana w;zsfcan be
“ ' SR s

N 4
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g;oatq? or less than aBR/N. In addition the resonance

frequencies can be either to the low or high frequency side
of 7v/N depending on the size of d # 0 and the magnitude of
the electromagnetic field. )
' The molecular RWA expression for the rgsonance
profiles gbtained.when &g ; @ is gi;en by Eq. (3.2.47) w{th
cos28 ana sin2e, v, Y, C(N) and p? given by Eqs g (3.1.f;).
(3-1.15), (3.2.8), (3.2.14) and (3.2:23) respectively. The
(main) resonande frequencies ;;e obtained by equating Eq.
(&L2:47) to 0.5 and solving for w. Thus the main reson-
ances occur when
~ Y~
. X(w) = [(¥-Nw)cos2e - C(N)In(X)8in20] = O (3.3.17)
Q ~ - ) AN
If the applied stuatic field is non-zero the spectrum
obtained from Eq. (3.2147) comsists &f a static background °
Po(stat), given by Eq. (3.2.48), and a frequpncy-dapendépt
part given by ‘ J '

~

A

- - :
0PN = PoN - Py(stat) = 1 cos126 - —%EZX’(Q)

= —_— -

(3.3.18)

[ - .
-

The FWHM associated with the height of thé;resonance

_ profile above the static background, o(FWHM)N, is obtained

by equating Eq. (3.3fh8) to xcos328 to obéaln_

. »

X2 (w) - 5#3908220 -0 . l (3.3.19)
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-

Solving this equation for its roots w- and w; such that

w- < Qrgs ¢ Wi where w- and-w#;are the roots of Eq.

(3.3.19) lying clbsest to w = Urzs , yields
= 1 -
- wy = N[v 2C(N)JIN(Y)tan2e
I . J 2 2 .&
IC(N)I{1 + 2(In(Y))“tan‘28) ](F(‘J N
| e : res ot
‘ ' : .- (3.3.20)
. and
o(FWHM)N = w, - w. = s[l'C(N)’l'u + 2(JN(Y))2tan-229)’i] _ N
=W
[ 4 res
‘ > ) (3.3.21)
where for the moment we take tos26 ¢ 0. In obtaining wy

and w- it has been assumed, see akso Sec. 3.3.2, that JIN(Y)
and hence C(N)._ao not vary appreciably as'fﬁnctions of w
across the hain resonances. It fs interesting to note that

. - in this approx1mation O(FWHM)N - ~|C(N)]w_w N for the
res

- ‘ statig field pr;blem whereas if £€g = 0 the same approxima -

tion yields (FwHM3N = %IC(N)quw N .. The zeros of op)N
~ res -

around w = wr:s » occur for frequencies that satisfy

. X2(w) - picos226 = 0 (3.3.22)

When £ég = O Ed. (3.3.21) reduces to the expression given

94
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for the (PWHM)N in Eq. (3.3.13p.

Bq. (3.3.21) is not valid when cos26 = O which
corresponds to originally degenerate'energy levels (AE = 0)
when d - 0 or to AE = d-8&gég (see Eq. (3.1.14)). Under

this condition the RWA resonance profile given in Eq.

~ . ,
(3.2.47) reduces to \\\
] N .
Y .' \ . v
= 11
PoN = - FC(N) 12(IN(Y))?2 3.3.23
. 2N = 3 - ZpT 1CM)ITONTY)) ) (3 »
where
- p2 = (y-Nw)? + I1C(N) 12 (3.3.24)
< ,
C(N) = d-eeN(Y) lon(Y) _ (3.3.25)
-
and
Y = Lééié;ﬁi (3.3.26) )

<

The "statLic" background, obtained by settiné 5', 0 in Eq.
(3.3.23)," is 0.5. Thus the spectra consists of a saturat-:
ing background w}th a series of dips whose minima occur at
frequencies such ihat the second term in Eq. (3.3.23) is a
maximum. This will often correspond to w =~ ¥/N (w = v/N if
C(N) and JN(Y) do not vary across the widths of

©

.the "resonantes”) provided Y = ——Jﬁll-gi does not occur near

-



N

-

a zero of JN. Such resonances have beeﬁ discussed for the
one—-photon dqgenerate'case with AE - 0, d4d = 0 ané &g = 0,
and for problems corresponding to the coﬁdition‘g-g(t) = 0
in Eq. (3.1.18); both of these problpms are exactl;'eoluble
'[4>68,89-91]. Analogous efkec;s have been discussed in the
_Sontext og exact Floquet type calculat ions involving Stark-
tuning (AE # 0, &g # 0, d = 0) and magnetic resonance
problems [91,92]. The RWA resylt. given -An this paragraph
will hopefully prove to be a usefulpanalytibal exgressibn
for suggesting and interpreting such spectral effects for
more.genergl situations involving permanent dipole moments.

i

In order to discuss the single- and multi-gphoton

spectra qbtaiﬁed from the RWA type expression given by Eq.

~~(3.2.47) it is -useful to define Lhe coupling strength

-

parameter o ; ) »

__C)('N)] N : - ) (3.3.27)
W= ’

res ‘ ;

B-y(N) >

-

-

By (N) is the N-photon molecule-EMF coupling strengﬁh

parémeter, €or the static .field problem, that is analogous
-’
»

When d = 0 the RWA type expression is stiil Eiven by

to B(N) used in Sec. 3.3.2.

3.3.3A RWA with d =~ 0,64 # O

Eq. (3.2.47) where C(N), Y and r? are given by Eqs.

(3.2.14), ((3.2.8) and (3.2.23) but now (see Eqs. (3.1.14),

~

o :

36
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" (3.1.15), (3.1.19) and (3.1.20)) . ¢’
. ,cBS26 = y"1(AE) ; sin2§ =7 1(24;;- egtg) (3.3.28)
D = -2u,,8in26 ; M = g,!.;sze . (3.3.29) .
i 0'_:\0 )
and - A \
¥ = [(AE)2 + 4(u;,-€gEg)?1¥ (3.3.30)

Here the roles of D and"M 1n the coupling parameter *C(N)

are analogous to that of d and g, in the d » 0, &g = 0

-

problem of Sec. 3.3.2.
~ In Figure 3.6 tre exact spectra both with and
without ¢eg are given for an éxample that corresponds to the

J = 0-to’J = 1 rotational transition in the ground

~~_vibrational level of CsI (93]. The coupling ‘strengths are
= quite weak, B84(N) = 0.038, 0.0025, 0.00017 for Fhe N =:1,2»
and 3 pﬁoton resonancegs "The static background is 0.194
(sée Eq. (3.2.28) with cos26 = AE/v). In this example the
RWA spectra and the exact spectrum agree to much béttgrl
;han graphical accuracy; the resodnance frequencieé for both _

N. ¥Y/N > AE/N to four significant figures

c?incide with ”res_

”

(v/AE = 1.28). When £€g = 0 the exagt speciium and the one-
and thrge—pbotonuRWA_apectra also agree prec@sely: with the
main‘r;sonanc;s occurring’at Qr:s = AE/N, and the t;o—photon
{fsonance is absent as expected: For ¢g e 0, o (FwHM)N
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Figure 3.6.
.
o

/%
A%

:The apsofgfxon spectrum or the steady state
tramsition ﬁrobab111ty..§2 as a function of
‘V/AEx for _,a two-level model system character-
ized by AE = 2.151 x 1077, d = 0, u,, = )
2.6398, ¢ = 5.0 x_1Q79% .and ¢g = 3.}4 x 1078,
The spectrum with £€g = 0 13 i1ncluded for com-
parat;ve purposes. The molecular parameters

correspond to, the J = 0 > J = 1 rotational

Jtran51txon in CsI ([(93]).
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predicted from Eq. (3.3.21) are 2.07 x 10-%, 6.2 x 10”19
and 2.7 x 10-!! for N = 1,2 and 3 respectively.and these
agree precisely with those Fnasurod'from the data used to
construct Figure 3.6.

In Figure 3.7 spebtra with molecglar parameters
identical to those of the previous example are examined. ,
However the applied‘fxelds, and hence the couplings, are

. larger since B(N) = 0.34, 0.21 and 0.14 for N - 1,2 and 3.
The exact sb%ctra bogh with and without &g (Figure 3.7cC)
are compa;éd to the RWA spectra (Figure 3.7a) obtained from
Eq. (3.2.47), and Eqs. (3.3.28)-(3.3.30), for the N = 1,2
and 3 photon resonanges. The'spectrum obtained by adding
the RWA results for N = };2 and 3 is given in Figure 3.7b
togethef with the RWA one-photon spectrum with &g ~ 0. The
static background is P;(stat) = 0.25 for this problem,

In the exact spectrum with &g r_O (see Figure 3.7c)
the one;p;oton resohance is shifted to w ~ 2.4 x 1077
(wW/AE = 1.1) from the zero field predict}on of w = 2.181 x
10~7 (&/AE = 1.0). éhenﬂes # 0 the one—photon pesonance is
shifted even further to w =~ 3.44 x 16‘7 (w/AE ~ 1.6) which
is considerably greater than the weak EMP limit of v/l =~
3.04 x 1077 (u/bE =~ 1.41). The RWA one-photon resonance
(see Pigure 3.7a) islalao shifted to a higher frequency -
than 7; it occurs .at w ~ 3.36 x 1077 (w/AE = 1.56).

~

Similarly, when N> 1 the Lhrée-photon resonance

occurring in the exact &g = 0 spectrum is shifted to

w ~ 1.03 x 1077 (w/8E =~ 0.48) relative to the zero field




Figure 3.7.

Comparison of RWA and éxact resulFs for the
absorption spectrum, 52 as a function of w/AE,
for the two-level model specified by AE =
2.151 x 1077, d = O, wm;,. = 2.6398, ¢ = 5.76")’(o
10"% and €g - 4.07 x 10™%. RWA reso&ance
:prof1lés for N = 1,2 and 3 are 1llustrated 1n
(a), as evaluated from Egs. (3.2.47) and
(3.3.28)—(3.3.30); The sum of the RWA
profiles 1in (a) 18 éxven 1n (b), together with -

» N
the analogous RWA result for &g = 0. The

exact multi-photon spectra are 1llustrated 1in
(c) which contains the exact speétra for £ -

0 for comparative purposes.
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Yimit of w = 7.17 x 10~% (w/AE = 0.33). The two-photon b,
- resonance does not, occuf Qhen’ea = 0. When £€g » 0 the tuo— ’
;nd thred photon resonances frequencxes are w = 1.7 x 1077
(W/AE = 0 79) and- 1.2 x 10 Y (w/AB L) 0 55) respectively

The values of y/N are. l. 52 x 10°7 (w/AE = 0. 7)) and S
1.013 x 1077 (w/8E.~ 0.47) for N = 2 and 3. The RWA
reéonances";lgo occuf at fregquencies greater han v/N; they

Al

Ere.u ~ l..'S?x 1077 (W/AE =~ 01‘73) and w ~ 1.03 x 1077,
L3 - . . &

(W/AE = 0.48l_for-the two- and three-photon resonances.

Thus for N = 1,2 and 3 the .RWA accounts for some of the .

"shift from the*zerq EMF limit of /glthat occurs in the

.Xact spectra The 0 (FWHM)N pre;z\ted by Eq. (3.3.21) for
”thxs strongly coupled example are 22 x 1077, 6.7 x 10-

and 3.1 x 107% for N = 1,2 and 3 respéctlvely - These agree -
reasonably well with the numerical -values usedxto obta1n
Pigure 3.7; 1.6 x 10~7, 5.5 x+:10"® and X.6 x 10~ ® for the
one-, two- and three-photon resonances. The one-photon
negphabbér in éarticdlar, is quite broad and in.génaral the
assumpt ion that C(N) and hendb JN(() de- not vary across. Lhe ".

resonances 18 not particular&y 3ood

' L}
The RWA is a ngar resonance approxlmatioh and the

»

off~resenance difficulties  associated with it are evident.
o . oL
in Pigure 3.7b where the sum of the RWA rescnancd/;rofiles .

is presented:. The one-photon resanangg ia'slightly above
. ) . ~ -
0.5 and the two- and three-photon resonances arte consider- _ N

ably below 0.5. Thia'ta largely due to the resonance
. ~ . ' ) -—
over lap present ié'thih strongly coupled example (see *
/ ’ ‘ S . ' Co,




) - ’ . ' ) . .:- :.‘. l u 4
rxgure 3.7a) which 1ncludes the dips in the RHA reeonance

profxlee below the etatxc background fqr frequenciee

*.

eufficiently off—resonanceﬂ Adding the RWA reeulte.for tge

resonance profiles is not generally an accurate ' .

~'reo:z'esentation of the ecact'epectrem unleqp‘the‘epolied

fields are qutte weak (see Zne example of Figere-S.G). .
/ The effect of the static field is cleaff;

illustrated in Figufe 3.6 and is accurately redicted by b1

the RWA for this weakly coupled example. Wher .
effective coupling between the molecule or \atom.and the
applied fields is larger, as in Figure 3.7,

predicts the general structure of the exact Spectre7 and

: ]
some of Lhe shifts of the ma1n resonances from w « y/N.
J

.
-

’

3.3.3B RWA with d Oy, s * 0

v

As pointed out eprlxer (Sece 3.3. 2), molecules are
not xsot_ropuaand t.hereforh i.heu spectra depend on t.he, ) - ~.
orientation of the molecule relat;ve to the a;rection of o
the applied EMF. For molecular problem& 3L is often . .
important td average the ttansxtxon probabil}txee or ot
absorption epectra with reepect-to the mc;Lcule-applied -
field orientations. For example, many experimente are |
carried oet.in the gas phase, in the absence of applied
static fields, and in order'to relate Calculatione to euch
experiments it lb‘neceeeery to take into account the

equally probnble random orientatione ot the molecule when

calculatlng obeervablee [73] in the presence of static




T,

LU

,i thgy can be penfor analytically [3294,95} Apparontly ’

T X055
‘ : . . o N L
qloctgic'fiq}ds Aall orientations. are not equally probable

" apd the averaging of spectral observablos requires weight-
ing each orientatioélwith the_appropriatdlaolténind‘Qacto§

“(see for example (74,85)). ' °

‘.
: Orxentationally averaged transxtxon probabxlxtxes ~
have been e#aluated for petturbatxon Lheory reaults where \

4 3

liftle analogous 9tk has héen doné fogf@r;eptatxonaL .

_averages in the'axact approaches for sélving the time-
>dependent wave equatxon and im thxs secL1on we—g;Ve a’ . |
" simple example of how to.carry out such falculgtxona. Thls

comment d;es not apply iéﬂfotétiopal patqulatioés'whiéh'

involve expitcii'iﬁcluaion 6f rotdtional energy tevels, . '

such-as 'in IR mnlfifphoﬁoﬁ absorﬁtion sﬁoétrup §alohlaﬂlob§-

involéing ihe Flaquet secﬁlar eduatién appioaéh [(6,7]. ‘e ,5 
S in what tollows the rotating wave approximation

'will be uged to calculate. the absorptton.spectra for ‘a
two-level molecdlar a;stem as a function of the orientation
of Lhe molecule with respect to the applied field direg»\_

-tions. The resulting.spectra will then .be orientationally
averagpd with respect to the direction of the applied
fields. The problem selectdﬁ is such that, u;;11d defines °*
the molecular z axis and 61185 defines the dpace-fixed z
axis. The EMF amplitude is, suc¢h ih;t the Rﬁe‘resulta an?

" the exact calculations agree to far better than grapﬁical
accuracy tbrgall frequepéies in thiq example f74]: Several

- 4 : ~
fixed configuration spectra will be considered as well as
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the orientationally averaged spectra. 1: o
. e ° T
T When d # 0-and &g »'0 the RWA -type expression for

L - A

the single- and multi;photon resonances is given by Eq.
. 0 , ~

R . (3.2.57) where cos28 and s8in2e, 7.&§: M, C(N), .¥ and piiare

givern.by Eqs. (3.1.14), (3.1.1§), (3:1.19), (3.1.20);

(3.2.l4i:,(3.2.8) and(f3f2.23) réespectively. The oriedtaj
tional average <§2N>rotfrof the steady state population of -

excited state 2, via the N-photon transition, is obtained ~
' ' ' o

by weighting the contribution of each orientation by a
R Boltamann factor. The(gégggies, E_~a£q B+,qof4the molecule
\ﬁl peréurbed by thé static é{gid'are-tﬁe roots;obéainodAfrom
diagonalizing the static Hamilton}an matrix given by Eq.

(3.1.4) with. € ~ 0 (4]. Prom Sed. 3.1 it follows that_

-

Ey - g[gx;gg - (Ell+532¥“eacgf?] " (3.3.31)

\

X .
—

These énergips. and the fixedﬂgonfiguration transition

ﬁ L] -
. : p— A .
) probability, depend only ongyh? angle & betwéen the space-
" :.- I ~
and body-fixed z axes where 0 . 8 € » and . (
B12°-0E = pu;2Ex ; d-8¢ <« dex ™ (3.3.32)
e T .
Elz'ests - ulztsx- H c_l'ests'_.:jdasx (3.3.33)
. - N . ‘ -
‘" e '
.  where - o . ;
> * M
’ X = ch& . - (3.3.34) "
“ ‘l\”" . ‘\w/?
Vi .
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The orientationally averaged absorptida spectrum is given by

™

' o7 T, BN ettp[lfa‘;] sing dg. 4o

<FoMrot = I:w I: BXP[:ﬁgq siné d¢ aé .L
PN el e
- [t exp[a] ax
P
(3.3.35)

where exp :gg'ﬂis the Boltzmann weighting factpor, k is
- ’

the Boltzmann conétant, T is the absolute Lemperature and
. )

/

AW = E_ - E, N

= 5{AE - (u) +R3;)-65Eg - 7] (3.3.36)

is the interaction energy arising ‘from the interaction of

the molecule, in ground state 1, with the applied statjc

.field in the absence of tHe time-dependent osblllating

fie&d. E, is the en;rgy of the isolated moleculq and E- is
the energy of the molecule, originally 1? the ‘ground state
1, pertyrbed b; the static field. This choice of AW is
hpgropriato for initial conditions'specifying thalL Lhe
molecule }a dn’the ground energy state 1 at time t‘~ 0. aw

can be wrltten in a more recognizable form by expanding ¥

(see Eq. (3.1.15)) as follows




S

.

»
b - 1
v = (AE)[1-2(AE)"1(d-6gtg) + (AB)"2(d-&gtg)?

' + 4(8B) 3 (8,3 0gE5) )%

-] o
assuming ld-égegl and g, égégl! are small relative to AE.
Substitution into Eq. (3.3.36) gives

; AW ~ -u,,-@gEg - (AE)Tl(u,3-eg5Eg)2 + ... (3.3.38)

N

Tﬁe first term on the right-hand side of Eq. (3.3.38)
represents the interaction of the permanént dipole with the
applied static field apd the'second term is the field
induced dipole:induction energy [96,97]). The free orionta-
tionally averaggd Bpectrum is obtained when %g}i 0 and can
correséond to either fsh' 0 or to‘large T. In this.case.
all the orientatiqns ar; weighted equally, see Eq. (3.3.35).

The method of evaluating orientationally averaged
spectra described above is desigﬁed for use when the
rotational motion of the molecule is much slower ihan the \
time it takes for the transition from state 1l to state 2 to
occur. Different techniques wlll be required for calcula-
tiogékot the microwave or rotational spectra of a molecule
(6,71. .

The oqa-photqn resonance of a two-level molecular

moael representative of the (iinear) péntadienal_molecule

(2] is examined in Figure 3.8. PFigure 3.8a consists of the

. \ ‘ | (



Figure 3.@.

The orientationally averaged one-photon

resonance profiles, <§2>rot as a function of

.w/AE, for a two-level model characterized {2]

by AE = 0.1899, u;, = 2.486, u,, = 4.760,

M3 = 8.415 and d = 3.655. - The amplitude of
the oscillating electric field 1s ¢ = 1073 and
that of the static electric field 1s ¢g -
10-3: (a) corresponds to the fixed configur-
ation spectra with uy,f1ditellég(x = 1) and
k;21!'d antiparallel to &l ltég(x - -1) as well

as the free orientationally averaged spectra

with d

©3.655 and, for comparative purposes,

with d

0. (b)-(e) correspond to the

Boltzmann orientationally averaged spectra for

T = 7000-100 K.
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fixed configuration results, obtained from Eq. (5.2.47),
for the one-photon resonance corresponding ég .
(k12.9)11(8,8g) and to (u;;,d) antiparallel to (@,8g):

£ = £Eg ~ 1073. The coupling strength_para&eters for these
configurations are By(l) = 0.0137 and -0.0124 (see Eq.
(3.3.27) respectively. The resonances occuy at w = v =
0.1863 (w/AE = 0.981) and w = v = 0.1937 (w/AE = 1.020) for
the pérallel,&nd antxparallel conf igurations respectively,
éhere ¥ < AE in the former and v 5 AE 1n the latter. The
free orientationally ("T = %) aver#ged spectra, both with
and without d, are also included in Figure 3.8a and can be

-~

related Lo the fixed configuration spectra by considering

the coupling parameter for each of the configurations
'included’xn the orientationally average& specltum.‘

The coupling between the molecule.and the EMF 1s
given by C(l) ~ u,,-éz, -see Eq. (3.2.14), ard can be
explicitly written as a function of x by making use of Eq#€.
(3.3.32) and (3.3.33) in Eqs. (3.1.19), (3.1.20), (3.2.8)
and (3.2.14) . Analyzing C(l), at wreg = 7, shows that 1t
has a m;ximum value of =~V0.253 x 10”2 ;hen x = 1 (tha
parallel.configuration), decreases smoo}hly to zero atﬂ \
x =0 jwh;re (#12.9) 1 (8,85)) and then increases in size
to ~ 0.244 x 1072 wﬁen x = -1 (the antiparallel
conf iguration). IC(1l)! is almost qyrftn‘rical.abofgt x = 0;
it is slightly smaller in magnitude for x < 0 than for |

-

X > 0. The one-photon resonance occurs atl wyeg < 7 fOor any

given configutation of the molecule with respect to the

~

s |
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applxod fields and since 7 can be either greater than or
less than AE %he resonance can occur on the high or low

P
frequency side of w - AE (oxamplea are given in the last

‘paragraph) .- Each configuration included in the

orientational average will have a resonance at wrgg ~ 7
-

with a height of 0.5 and a Qidth (above the very small

static bac

Pl

that varies

round of order < 107%), given by Eg. (3.3.21),
h x essentially through C(1l). .The free

or1entationally ("T ed spectrum 1s obtained

AW

from Eq. (3.3.35) with K 0. | This spectrum is the sum of

all LBE fixed configuration spéctra divided by the number
of fixed configuraiiops used in the average; in this
example 4l values of x placed symmeiriqallf:around X :'0
were mgre than'sufficient to ensure graphical accurécy
(73]. The end points in <PoM>,ot are the pafallgl and the *
antiparallel configurations and the resonances for all the
other configuratidﬁs occur at fredquencies between thes# two
extremes agd are narrower as wellf‘p(l) smaller). Thus the
free Qrientatlonally avérage& spectru@ lies betwesn the .
parallel and antiéara;lel configuration extremes with two
maxima significantly lower than 0.5 and a mindmum located
between the maxima at w = since C(l) = 0 and ¥ = AE when
x - 0. Thipg is in qualitative agreehent with Pigure 5.8&1
The minimum gﬁat occurs in the free orjentationally

avgraged spectrum is due to the prgsence of d » 0 since the

'

term d-646g in 7,q8€e Eq. (3.1.15), causes the Yixed
*
configuration resonances to "shift" to either side of
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.w = AE. When d = 0 the fixed configuration spectra all N

occur’ at w = AE (since the maximum value of 4(u,;-0gtg)? =
2.47 x 10”5 is very small relative to (AE)2? = 3.61 x 10712
an v) and hence the free orientationally averaged spectrum
consists of a single peak centered at w ~ AE (see Figure
3.8a). . . ® |

The ;ffe;t of temperature, which occurs 1n tHKe
Boltzmann factor 1n Eq. (3.3.35?. 16 ekxamined 1; Figures
3.8b-3.8e, Qhere * - 7000, 3066,.1000 and 100—153\& ‘
respectively for fhectwo—level molecular model of Figure

-

3.8a. As T decreases tLhe attractive configurations of Lh4
g e

molecule relative to the directions of the applied f1elds,

which correspond to x > 0 and v ¢ AE, are favored by the

Boltzmann factor over the repulsive configurations where

X (.0 and ¥ > AE. Thus as temperature decreases the

Boltzm&nn weirghted orlenLaLLQnally averaged spectra

1ncrease 1in he‘;ght on the low frequency side of w @M-:.and
decrease on the high }}equqncy slide. The minimum tﬁat
occﬁrred at w.- AE 1n Pigure 3.8a evenLﬁally changes Lo a
point of inflection at T = 1000 K (see Pigure 3.8d) and
then disappears for lower temperatures (see Pigure 3.Be)
s1nce the molecule r%ts&es less and tends tlo alxgh itselfl

parailel tS the static field as T decreases. The

‘orientationally averaged spectrum obtained at T - 100 K|in

Figure 3.8e 18 essent jally the f1xed conflguratxon spectlrum

with x = 1 given 1n FPigure 3.8a.
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Tﬁe behaviour of the-orientatibnilly'averaged
spectra, asla function of w and T, can depend on the rela-
£1ve orientat;on of the transition and permanent dxpoleg.
For example'if 412 1 d, with eli1eg, the transition prob-

. ’
ability will be zero‘fo;'guff1c1ently low temperatures
where.g 1S paraliel to &g and hence g,,-¢ = 0. Thus
instead of 1ncr;351ng w1£;—Aecrea51ng temperatures as for
41211d, the resonance height will eventuélly decrease with
deéreaszng T 1f u,, 1 4 (98]1. The nature of the orienta- .
tionally averaged spectra can also depend, for example, on

3
to 5 x 104 in the ca

-

the magnitude of the :{atic field. Qecrea51ng £Eg from 1073
ulation associated with Figure 3.8

leads to free-orientationally averaged spectra with no

S

minimum [(74]. . .
. & - .A ’l * » .
3
¢
1 -y
[ 3
-
b
<
a
o
- -~
- - &



CHAPTER 4

PERTURBATIVE CORRECTIONS TO THE TWO-LEVEL RWA (d » O,

£s = 0) AND A DISCUSSION OF GIANT DIPOLE MOLECULAR SPECTRA

\

~ In this chapter perturbative corrections to the

~

two-level rotatlng'wave approximation (RWA) for the

A}

absorption spectra and 1ts FWHM, with d » 0 and ¢5 - O,

derived 1n Sec. 3./2 and'dxscussed thhxn%lustratxve

~a

examples 16 Sec. 3.3.2, w1ll be obtained to heip

—

investigate and explain the effects ari1sing 1n the exact .
spectra that are absent from the RWA spectra These eftects

include the shifts from the resonance position w :ﬂ

AE/N

eredlcted by the RWA and the dynamic backgrounds seen 1n ]

-

the exact spectra. The corrgctions are obtailred by

applyi1ng Fldﬁuet theory (9,10,73,261 to the time dependent -

wave equation given by Fq. (3.1 1) to obtain a

time- 1ndependent Floquet Hamiltorfian matrix for the
. ! —

problem. Perturbation theory 18 then applied to the

reculting Floquet Hamiltonian secular equation and the

[ 4
perturbative corrections arec obtained to th- desired order, .

the RWA result correspormds;to the zeroth plus firat order St

perturbation solution of the Floduet Hamiltonian secular

equation. - The Floquet.  gsecular equation 13 derived 1n ’

. -

Sec. 4.2 and -the perturbat.an treatment of 1t 13 discussed
-1n Sec. 4.3 where perturqé?xve correctiona to the RWA
resona\Qf profiles and full widths at half maximum are

obtained and discussed In the iimit that d. U, the ;7
, q ' .

. .
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A
results obtained here yield "atomic®” results in essential

agreement with those obtained by Shirley [23] some time
ago, see also [82]. Tﬁ;_porturbative results are also used
\1n Sec. 4.3 to help analytically explain some of the ~
effects missing in the RWA and in the d = 0 limit. This
discussion is continuéd in Sec: 4.4 by using the
perturbative corrections to explain some of the effects
absent in the RWA by using some of theé examples discussed
earlier in Chapter 3 as models. Due to the slow
convergence of the perturbatlon theory, and to difficulties
associated with the definition of the orders of the
perturbative correctiohg to the RWA results for tﬁe
spectra,. its application to problqms with large
EMFP-permanent aipole and/or EMP-transition dipole couplings
is rather limited; it is, however, useful from a ;.
qualitative boint of viaw. Sec. 4.4 includes a further
discussion of the absorption spectra of mo}ecules with
large permanent dipole moments with illustrative examples
evaluated using the exact approach to -the pfoblem discussed
in Sec. 2.4. The exact approach avoids the difficulties
assocliated with perturbation abproaéhe;: . This diécussion

relates that of Sec. 3.3.2 with recent published material

[34,35] on "glant dipole molecules”.

o
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4.1 Preliminaries
‘ Raﬁger_than begin with the original tino-dopquent'
wave egquation for lho problem, Eq. (3.1.1) with &¢g - 0, it
xis convenient to start with its interaction energy
representit}on analogu; given by Eq. (3.2.2) with &g = 0.
The Hamiltonian, in the- interaction representation, is

defined by Eqs. ’3.2.3) and (3.2.11) with &g = 0" such that

vy, D, M and the states I—)\and I+> are replaced by AE, d,

- , | .

4,2 t1> and 12> respectively. Thus, in summary
Hp,11(t) = Hyp,a22(t) = 0 (4.1.1)
Hp, raft) = (Hyp,a9(t))™ = -y(g;;-€€)exp(-1Ys1inod)
. " \

- |
x ¥ Jx(Y)[exp(i[k+1]0yexp(-1[{AE-(k+1)w]l) ¢
K- - :

+ exp(1[k-1]0)exp(-1{AE-(k-1)w]t)]
(4.1.2)

where -

d-ec¢ ’
Y - "a—— ‘ (4.1.3)

The relevant dlt’t‘_érent.xal equation 1is

d ~ ,8 [bi(v)] _- .
h 13{%‘“ :atlb,(t) HI(LIB(L) (4.1.4)

(Y



Floquet theory will be-applied to Eq. (4.1.4) and
perturbatijon theory will be uso&_to obtain the corrections

~° to the zeroth order RWA solution.

4.2 The Floquet Schlnr‘!qnation with m;i = O

In this sectidn Ehe Hamiltonian def ined by )
Egqs. (4.1.1) and (4.1.2) will be tzansfprmed to a time-
independent Floquet Hamiltonian. The eigenvectors ;n§
eigenvalues of the associated secular equation will be used
to construct the transition probabilities of inBerest.

To start, the differential equation given by

-Eq. (4.1.4) is transformed into a phase factored form {31}

™

by writing,
~R(1,2)(t) = K(1,2)(t)exp(~1[+58E+a(y,2)]t) (4.2.1)
» N N\ :

\

and ghposing a(,,z) such that it is useful in identifying
the N-pthon resonances 1ipn.the P;oquet matrix eﬁuations to
be derived what follows. The new Hamiltonigﬁ is now
back in a Schréodinger-like representation if a(l';)'r 0.

1 N

Substituting Eq. (4.2.1) into Eq. (4.1.4) and-choosing

\
a, = -¥Nw ; az - sNw N - (4.2.2)

glves - .,

d _ A [Ra(t)] .
(342 ‘at[x:(t.) HBK(L) (4.2.3)




Hy, = -ﬁf, <4 -4 ~ -5(AE-Nw) - (4.2.4)

Hya(L) ~ (H,}(t))’ - -%(g)3 €)exp(-1Ysino)

- —

x L[ Ix(Y)[exp(i[k+1]0)exp(-i[N-(k+1)]wt)

k—‘—@' ~

+ exp(i[k-1]8)exp(~1{N-(k-1)jwt)] 1
. (4.2{5)
: ) . ' J
» ) '/
Since. H(t) is a periodic Hamiltonian such that H(t) -

H(t + tp) where tp = 2n/w (see Eq. (3.2.46)), Floquet :>
theory states that the solution of Eq. (4.2.3) can be

written as ([26] ~ -

- s .

&

6L = Z(t)exd(-1gL)

N
L]
S

./‘\‘\
' i

G(t) [Gratxuattr) . g
G;‘,'(t) cz)(t) '0

-
~

R - olz“\m Zya(t]
' z:i(LJ z:;’(t.) : v

LY
(NI

T R A IR S W i P R e, i -
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+ S .
Here G(t) is the general solution matfix of Eq. 14.2.3) and

includes the specific solution of interest; Z(t) is a

- -per 1;:;@1(: matrix such thits 5’\':
. E 1 ~ | -
2 2 e ' - (4.2.8)

and q; and q, are t ime-independent comstants..

.’ Substitution of Bq. (4.2.6) into Eq. (4.2.3) yields
. i’ i
. (N’ :
MIGEZ(t) - i Q Z(E)] = H(LIZ(L) - (4.2.9)
r o /

AR

-

and using Eq. (4.2.7) results in the set of coupled

"differential equations:

- ‘ ‘\‘:: ‘2‘-’, ; L . - ‘
eZas(t) + iZ24RE) o P op o (t)Zygct) s @ 1,2, B = 1,2
_ JE e A
. , - o (4.2.10)
S .
y . . '

N

ot ‘The matrix ‘elements of H(t) and Z(t) are periodic and
" thereforg can be expanded as a Fourier series [99] in the

fo,llcying manner: .’

: - T ' ) n
. N .“ " . ' .
Zapt) ~ L Zop(Kexp(ikwt). - {4.2.11%
. k=-—o _-). .
and ) . ’ . ‘t) .
‘ ) Q‘ ) - ‘
Hop(t) = L[ -Hgop(Plexp(ipwt) - (4.2.12)
p.-—ﬂ
\ ’ !
|
— d . '1/_
. ?® /7 ‘(";' - [ Y

“

;20
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where zﬂ(g) and Hoy(P) are time-independent Fourier

s
coefficients. ‘Substitution of Eqs. (4.2.11) and (4.2.12)
‘into Bq. (4.2.10) yields -
' Y
o3
= Y [qg-kwlZgg(K)exp(ikwt) &
K= - *
ﬁ <
2 oo w
= I L L Hey(PlzyglKlexp(ilk+plut)
=1 p=—- k~-m . . BN
.. T (4.2.13)
) - ,
A ’
i which can be written as
<
~. L [qg-nwlzgg(M)exp(inwt) .
. . N —co
. " . 2 <o o -
~ & - = L L L Hay(MRz,z(Kexp(inut) ~
¥y=1l n=-= k=-w -. y
' - : g (4.2.14)
\ Resolving this into Fourier compoﬁ;nts leads to
P . \
- ' 2 oo .
ggZag{™ = L I mgy(nk)z, g(k) - : (4.2.15)
- . . 7=l k=—=
where the matrix elements’
, .
By (N"K) = Hay (N-K) 4 Wb, a0kn- (4.2.16)
¢ .
define an effective time-independent Hamiltonian matrix

Y _
C o N S
l-.q ’ .
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called the Kloquet Hamiltonian. Eq. (4.2.15) represents a
set of simultaneous homogeneous linear equations which have
’ “a non-trivial solution for thea eigenvectors Z,g(X) only it
(100} >
det IHgy (N"K) + (nw-qg)0yadkn! = O (4.2.17)
fhe rows amd columns of the Floquet Hamiltonian matrix are
denoted by the indices na and kv, respectively, wﬂbr; a and
v are the atomic indices 1 or 2 and n and k are Fourier
indices rang{ng From —= to +=. .
) The Hay(n-i), occurring in Eq® (4.5.17), can be
s

identified by comparing Eqs. (4.2.4) and (4.2.5) with
. [ 4

Eq. (4.2.12) and are given by

Hy, (%) = -H,,(0) = -4 .

| (4.2.18) =

Hll(m) = ;sz(m) = 0, m=ri-k # 0 ol

and -

. Hy2(M) = (Hy,(-m))*
) l ~— J ' e
- = -§(uyz-€€)exp(-i¥Ysind)exp(i[N¥ni]0)

. X {INtm-1(Y) + INtm+1(Y)]) (4.2.19) (.
~ . .

o’
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This expression is further simplified by making use of Eq.
(3.2.13) to obtain '

Hy o (M < (H,,("M))* = _gC(N+m) ¢ (N+m) (4.2.20)

where (see Egs. 53.2.14) and (3.2.15))

C(N+m) = 2pu,,-@&(N+m) (Y) " IN+m(Y) (4.2.21)

and

§(N+m) = exp(-1[¥s1nd-(N+m)Bd]) | (4.2.22)
.

A portion of the secular equation 18 given i1n Figure 4.1.

The eigenvalues, qg, are obtained by solving the
Floquet secular equation given 1n Eq. (4.2.17) and then the
eigenvectors, 2,4(kK), are determined for each eigenvalue'by
using the set of simultaneous homogenéous linear equationa‘
given in Eq. (4.2.15). Once the 8igenvectors are known,
the transition probability can be [ou?d by using the
fime—evolutxon operator (26,61l) (see also Sec. 2.4.2) in

witat follows.

The solution of Eq. (4.2.3) can be written as

-

= -

(t) - U(t:tg)K(ty) . ' (4.2.23)

1 Y
f 8y i,
N ‘s .
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Figure 4.1.

A portion of the Floquet secular quatﬁon, for
all N, given by Eq. (4.2.17) with the Hay (N~K)
defined by Egs. (4.2.18) and (4.2.20). C(N+m)
and ¢ (N+m) are defined.in Eqs. (4.2.21) and
(4.2.22), & 1s given by Egq. (4.2.4), and the
q's are the eigenvalues obtained by solving

the secular equation. R
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vhoro‘g(t:to) is the time-evolution o?erator and ty is the »
time the Eyr is turned on. The time-‘voiution operator.
takes the soclution from t = éo to the| final time t and can
be constructed (23] in terms of the nergl solution matrfx
G(t), . - }
4 /]

g(t;ﬁe) = G(t)G 1 (ty) (4.2.24)

N

which(implies

U(tgsitg) = 1 : (4.2.25)

~-

The time-dependent population of state 2 ié\given by

lba(t)12 = IKZ(Q)IZ (4.2.26)

"
¢

and the initial conditions are chogen such that state 1 ig

populated at t = t, while state 2 is not. This correaponds

~ 7

to a;(tg) = l.and az(tg) = O and thus, using Eqs. (3.1.5),

(3.2.1) and' (4.2.1),
' \ b}

\
~

v

K,(tg) = exp(z[(Ep+E;-Nw)tg])

x exp(-xﬁitLﬁi—(s1n(ut°+o)—sin(o)}); K, (to) ;Fb

(4.2.27)
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Using Eq. (4.2.27) in Rg. .(4.2.23) sh;rs that

k3] L4

Ka(t) = Uap(titg)Ky(tg) - . (4.2.28)

a . 3

and hence the time-dependent population of state 2 can be

written as

IKa(t)12 = 1Uz,(titg)12 " : ©(4.2.29).

where U,;;(t;:;t;) can be constructed from the eigenvalues and

>

éigenvectors of the Floquet Hamiltonian.

Since G(t) 1s a unjitary matrix (26,61], 1(g) =

G-
T where T denotes the transpose of the matrix
= _ . o

this, together with Eq. (4.2.6) in Eq. (4.2.24) yields

-

U(t;tg) = [Z(t)exp(-iQt))[(Z(tg)) “exp(iQty) )T (4.2.30)
- - o - 2 - s >

4

G. Using

-

This can be simplifi§d by expahqlng the -exponential term ir®

a Taylbr series; - ¢
= 1 [(-idt)k o
k§0 13 [ 0 (-1q,t)k]
- - exp(-iq,t) 0
' [ 0 e&p(-l‘q;t)
) ) (4.2.31)
- - .
’ 8.
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o®

[#]

a . \

where use has been made of kgjj)k - qikoij. Substitution
of Eqs.. (4.2.7) and (4.2.31) into Eq. (4.2.30) yields

explicit expressions for the matrix elements of U(t:tg).

[~
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<»

. 2 - . ' : :
U (titg) = B Z9(t)(Zy4(tg)) exp(-igy[t-tg]) - (4.2.32)
y=1 —
-and Eq. (4.2.11) then yields —
> no
s .
2 o -o0 . . . ~
Uz1(tstg) = E. L L 229(8)(2i4(P))%exp(iswt)exp(-ipwty)

y=l §=-= p=-w

. . x exp(-igy[t-tg])

. 2 cadv = N .
.= r L, Zzy(a)(217(n+8))'GXP(—inwto)
y=]1 g=- N=-x ! .

% exp(-ifqy-sw}{t-ty])

” G
. d

(4.2.33)

“Thus the time-dependent population of state-2 is

'Kz(t) '2 - 'Uzl(t,’to)|z'

2 @ Py . . -
= 2 , ,E‘ . E (zzy'(s-o))t .
Y,7'=1 n,n'=-o 8,8's—om .

-

X 235(8)z,, (n'+8%) (7, (nvaygr L/

x exp(i[(n'-njwtg)exp(-r{qy-qy:-(8-8")w](t-tg])
Co- ) PY

-

(4.2.34) °

o

b

TV vy
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In the i1nteraction of the EMP with a molecule, the

<

initial time t,, or equivalently the initial phase of the

-

ﬁeeﬂd seen. by the molecule, 1s not well defined, see

Sec. 2.4.3. The txme—aependent transition probability of

.

1nterest corresponds to Eq. (4.2.34) averaged over>to.

, -

~
while the “elapsed.- tlme t-tg 1s kept constant {(23,66]1. The
¢

in:taial time- averaged temperal traqs tion probability 1s

129

).

-

then glven by ’ .
. ’ o

.‘- - \~‘ ' 4o

- lim 1 (r -2 2
N = .
B.N(e) - 10 t 1U24(tito)) 2dtg ' 5 ‘
- S . 1
2 - -
= i exp( 1lgy qyrJit tgl)
. Y,¥y'-=1:* ©
¢
~
. 7
@ <K
x L (Zayr (870725, (802, (ntsT)(z,, (N1s)
5,5'"" ® n- o ’ .
x exp(1ls s'1lt tgyld)
(¢ 2.33)
- »

since the integral 1s 2!!0 uniess n' - n 1n Eq. (4.2 34)

-

lhe 1ni1tdal time and long time averaged transition

.

probability, which corresponds to the absorptien spectrum

(see Sec” 2.4.3), 13 given by
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. BN = 1ML [T poN(tya(t-tg)
g 2 o o
= r L L 1Z,4(8)1212,,(n¥s) 2
¥y=1 s=— N=-x

\ 2 ) o
= £ T T 12Z34(8)1212,,(P)2 (4.2.36)
. "y_—.gh S = —a p:-oaa. .
[}
since the 1ntegral ylelds zero results unless ¥ = ¥' and

s = s', see\E;. (4.2.35).

- -In the next section, perturbation expansions for the
) =

-

Zon(s)‘glll be obtained from the perturbation theory
outlined i Appendix B and the transition probability to
- the desired perturbation order will then be cogﬁtructed by

making use of Eq. (4.2.36).

4.3 Per%urbation‘Theorx . N . ‘ -
L]
To apply the perturbation thecry {32,33) discussed

. . in Appendix B, the set of linear equations given by Eq.

‘(4.2:15) is rearranged as follows

2 - ’ .
L L [%gyMK)-qgo,qdknlzyg(k) = 0 (4.3.1)
K=—eo o

- Using Eqe. (4.2.16), (4.2.18) and (4.2.20), the matrix

. . element Xgy(N"K) can be written as
> . »




A
Koy (N7K) = Eng,xy(®) + Vgy (MK (4.3.2)
N\
where ,
Ena,ky(®) =((-1)%8+nw)8,qdkn = Eng(®) (4.3.3)
and <.

Vay (MK} = —4C(N+n-k) ¢ (N+n-k) , « <

P

—gC(N—n+k)('}N-n+k) , a >y (4.3.4)

= 0 r a - ‘y

Eq. {4.3.1) 1s Lhélsame as Eq. (B.79) if the following
identifications are made: the Xgy(N~K) =~ H g, qg -~ E,, and
2yg(K) - cgr,. The r, & and L indices of the Appendix are
equivalent to (n,a), (k,;)aand 8 respectively in the
éloquet notation. N }

The desired resonances can be 1deﬁt}fled in the
Ploquet secular equation, see Figure 4.1, by settirg

-

AE = Nw, where N = 1;5,3,..., and hence A ~ (AE-Nw, =~ O.
Two of the diagonal Plééhet Hamiltonian.maLrix-elomonté,
%,,€97°0) < 1, ,(0) = _5 and %,,(9°9) ~ H,,(°) < A, will be
aimost equal. These two elements together with Lhe
cérrosponding off-diagonal matrix elements define a

2 x 2 matrix. The associated 2 x 2 sefular equation w~itll

hdve nearly degenerate roots, qg, and therefore when AE =

Nw-the zeroth order states 10,1> and |0,2) are nearly

—— e -
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degenerate.

The portu;batipn theory d;;cuased in Appendix B can
be applied to these nearly degenerate states. The Cy,:
ocigrrlng in Eq. (B.69) are identified as the 2ge(P) where
v.represents both o aéd P apd * is deﬁéted by 8. The
perturbative expansions for 2,g(K), through second order, |,
are given by Eqs. (B.71)-(B.76) and application of these to
the Ploqueé system of equations defined by Eq. (4.3.1)
yields the following with » = 1 and 2:

Zy,2(0) = (2,,,0(9))(0) 4+ (2, 4(2))(2) 4 O(3) (4.3.5)

.

(u)

2y ,% (Zy,2 (W) (1) + (2,,,,(0))(2) + O(3) ; .us0 (4.3.6)
where (Z,,3{(P))(M} {s the mth order perturbatiori term in -
the expansion of z,',(P) and only non-zero terms are kept

in these~expansions. These perturbation terms are given by

\(zy;:(°))(°) = dn?,t‘qv(d) ’
(4.3.7)
. 2
(24,:(0))(2) = dop,t?ov,p(’) .
and \ ° * .



.- (z,,t(u))ix) -

o

(Zy, t(U))(ﬂ".

where Fjy{®) and the Fjy, p(™) are the m-th order

2 dop.t?uv,pﬁ

p=1

f““

z a Ryy-
p: Ok‘t U‘Y

-

(24,4 (P))(m)

1)

u #

2),;

-
]

0

' perturbat ion coeffxcxenta in the expans ions o} the

~233

{4.3.8)

Identlfying the perturbation matrix elements

Vap and the .zeroth order energies Ea(®} of the Appendix

with the va,(n*k) matr ix" element.s- and the zeroth érder’

energies En¥(°) assoclated with the Ploqnet secuhar

equation yields

- \’-"/ pors
1(0) = Foz(o) = 1 H Ful,l(l) - Puz 2(1) =
. \ .
y - le(N+u) g (N+u)
Fui,a(?) [ Z(Z5-uw)
S
' _ [em-uye v-u)
Puz; (¥ [ T(Z5+uw)
TN ’ :
Pgy,2(2) = Py, ;(2) ='0
; C(N+s)
P°1'1(2) - Poa, z(2) - -1/8 * =2
v oz ssol (2878w)
, e’ { ~ ~'
‘ ] A _ ; - -
. ‘\.‘,-. \

0

1 (4.3.9)

(4.3.10)

(4.3.11) — -

(4.3.12)

~




134

Puz,1(2) = Py,,2(2) =0 % . (4.3.13)°

s
»

. aaa =
Py 1 (3) = [C(N+u)C(u)etu+u)e @ |

L

p!

- L

820

‘(duw) (2A-uty) s \

‘

L \ R

E [C(N+ur§)C(N 8) ¢ (N+u-s) §* (N- 5)] (4.3.14)
s20

(4uu)(2A+sw)

' . %=
Puz,2(?) = |SON-WCONE(N-u)e(N) |

duw) (ZB+uw)

C(N-u—s)CtN—s)g (N-u- 8}£(N 8)
[ (3uw) (2A+8W) } (4.3.15)

’

~
»

whare C(N+m) and £ (N+m) a;é given by Egqe. (4.2.21) and

(4.2.22) respectively. The coeftLeT?nta szﬁp(m) that are

. Z8YO ' Eéee Eqgs.

matrix elemefitg of Vyy(N"K) which, from Eq. (4.3.4), are

(4.3.9), (4.3.12) and (4.3.13)) all involve _

1
~—

2ero. Here, and in what follows, [ iﬁplies a sum gver x

ind using Egs.

/

x20 :
ranging trom - to + excluding the x = 0 term. Using
~ n
Eq. (4.3.12) in Eq. (4.3.7) yields . -
. ‘w .;“-'-
T ,
T (29;4(99)(3) = doy, 4Py, () (4.3.16)

(4.3.9) and (4.3.13} in Eq. (4,3.8) yields &

¢ e
’ 2 N/ C/ }
\ )
(;,/ - '
¢
- s

VY
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el

et

) ) .35
(zx,irﬁ))(‘l;# duz,tﬁq1,3(1) N

' ' T ' (4.3.17)

© (2 s - dox.tPuz,;(‘) ;i\\ - .

and
)

(Zy, 29 (3) = doy, 4Fuy,y(?) A (4.3.18)
-~ ‘ . ‘ \

Comparing Eqs. (4.3.10).and (4.3.11) one can show that

-

€
.
N

Fui,2(2) = =(Poys, (0" (4.3.19)

and similarly, from-Eqsi (4.3.14) and (4.3.15), one oftains

© ./- 3
! SR |
Fut;é(z) = (F-q;.z(z))’ . t(4.3.20)

4

! R .

el ) N—
.

' .
The coefficientsg dgy,6+ wWhich occur in these results, and

<

which are Laked“totbe of zeroth order, can be obtained frem

S

Eq (B 10)-(B.12) and will be discussed later.

The eigenvectors gi:en by gb}/'(4 3.5) and (4.3.6)
.
are mote easily 1dentitied in the Lsansitlon prohability if

Eq. Q(T2.36) is rewritten a8 follows:
\ e

4

P

. . o i
PoN = £ (123,500 1212, g(0)12 4+ 5. [ 12, (801212, 4(P)I

Je=- - p#0 840
+ L (1z, 5(°)c1|z1 g(Pr13 + 12, ,(P)niuz, ,(°)|3)|
PO -, N L (4.3.21)
- . ~ .__-/‘ - x'
. . ‘. ) .

-y ?\A-F‘ P ‘ a .., o - ) ) -

b

2

4

I'
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where v = .1 and 2 in Eq. (4.2.36) have been replaced by
8 - - and +. Substituting Eqs. (4.3.5) and (4.3.6) into

]
Eq. (4.3.21) and Keeping terms through second order yields

L]
P -

- . + . N
BoN = ¢ [1(2,,8(0))(0)125(2, g(0))(0) 2

. B=-

+ 1(Z,,5(0))(0) 120 ((2,,0(9))(0))((z;,6 g(0))(2})* .

t c.c.}

-

4 |(21,3(05)(0)12(((22,3(0))(0))((22’3&0))(2))* ‘ LSS

+ c.é.)

. - i .
4 L (1(2g,889)) (0121 (2, g(P))(1))2
p*0 ~ :

+1¢2,,8000) (@121 (2; gEPY)(1)12) + 0(3)]. (4.3.22)

Using Eqs. (4.3.7), (4.3.9), (4.3.13), (4.3.16)-(4.3.18)
! .. . it
and, frop Eqs. (B.10)-(B.12), the relationship

dg1,- = doa,+ ;i doiz,=> # -dol,+ - (4.3.23)

——

. in Eq. (4.3.22) then giveé fz"
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PoN = 1dg,,+121dg,+12[21Fg,(0)121p,,(0)y2 ‘

-

+

2{1Fg1(9)12Fg, (0D (Fg,,;(2))* + c.c}

+

2{1P5,(9)12F,,(0)(Fy,,,(2))" + c.c.) + 0(3)]

[1dgy,+!* + 1dga,+!*) T [|Fo,(O)|=|pp1'2(1).z
p»0

+

+ |P°1(°)|2|Fp,,1(1?|2:+ 5k3)]
— (4.3.24)
a

L]
Y

N

- ) < ,
It is easily seen-from Eq. (4.3.12) that Fg,,4(2) is real

.

. ~ N
and it can be shown, from Eq. (4.3.10) that

‘ .
~ ~,': -‘ 7
- - C(N+D) 2
™ - +p - . (2)
T tFpp, (1012 - [ [ }‘t——*} 2F gy, 5 (2 2Fg .y,
pr0 P p*0 2(28-pw) !
s (4.3.25)
and from Eq. (4.3.11)
_////F; 0
| 1 em-p 17 ° - :
Y IP 2'1(1)|3 - 1 [ - __] o —2?01'1(2) (4.3.26)
peg P pe0 2( 8+pw) .

3 .

since - < p € +m. Using Eqs. (4.3.9), (4.3.12), (4.3.25)

and (4.3.26) in Eq. (4.3.24) ylelds

-~
-
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PN - 2’dnx,44zid02,t'2[l + 4F5,,,(2) + 0(3)]

+ [1dgy,+!% + 1d9,,4+14](-4Fg,,,(2) + 0(3)] (4.3.27)

Eqsf (B.8), (B.10) and (B.ll) give

ldgy,+!121dgg, +12 = (4p2)711Eg;,g2!2 (4.3.28)

tdgy,+!% + Idgz,41% = 1 - (207)711Eg,, 0312 (4.3.29)

and by substitbting these results in Eq. (4.3.27), one
obtains the foliowing expression faor the transition

probability:

¢

PN = (2p2)"11Eg,,0212(1 + 8Fg,,,(2) + 0(3))
- 4F,,,,(2) + 0(3) (4.3.30)

L J
-

where p is giv;h by Eq. (B.BY.

Perturbative expansions for the'énergies, E,
occurring in Eq. (4.3.3d) are given by Eq. (B.15). Results
eéxplicit through third order can be obtained by
substituting Eq;: (4.3;3) and (4.3:;)‘1nto the

appropriately modified versions of Eqs. (B.19), (B.42),

~

\
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(B.63) and (B.64). _ﬁy omitting perturbation energies that -

are zero one obtains,

Eoi,02 = sox,oz(lf + Bgy,02(3) + 0(4) (4.3.31) .
and -
[ J \ Y
Eoi,01 = ~Egz,02 = Eg,(%) + Egx,01(2) + 0(4) } (4.3.32)
where * ) : : A
Eg1(®) ~ “Eg,(9) = -p - -4 (BE-Nw) : (4.3.33)
Eo1,02(1) ~ (Egz,g.(t)* “-iii)N)e(N) T (4.3:34)
' - 4 .| ca(nN
301,01(2) - 'Eoz,oz(z) -~ Zgi)[]z?%_:;_:_% (4.3.35)
€ (3) - (g (3)y* - C2(N+8)C(N)E(N) )
01,02 K (Eo2,01 ) ng 8 (23 bw) 12
e
v+ 5 5 |CN-8)C(N-s+p)C(N+L)E(N-8)E" (N-8+2)E(N+L)
’S;O 1;0 . B(Z2A-tw) {(ZAa+8w) T
{4.3.36)
®
- . %

~ 14

The fourlh order,energy; on,nn(‘)a is also required for * )

!
N
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some of the analysis that follows and can bé obtalhed from
Eq. (B.67); - .
R <
. s * s
_ .1 (N-p+r)C(N41r-s)C(N-5)C(N- p) .
Boi,e1{*) = 45 T L E[ T (2h-pw)(ru)(2msu) J

p20 r=20 s=0

N 2C(N=p+r)C(N+r)C(N-p)C(N) ) c’(N—p)cz(N+ri_ “
1 p#0 t#0 (28+pw) (28-TW) (TW) (2a+pw)?(2a-rw):
. , )
] . -
R cz(N’—r)cz(N)] |
3 ra
16 Lol (rw) (2a+rw). (4.3.37).
The expressions for 1Ep,,¢,12 and p? are
'é°1-°2'2 = 1Eg1,02(2)12 + 2Bg; 02 (1) (Bgy,0,(300"
- ‘ : ' \ ' . .
rB(6XF O(S) ¢ (4.3.38)
]
{

where Eg),02{1)(Eg;,02(3))" = (on,oz(f})*501,oz(3) has

Q

been used and. . . .
—\ - L 4
p? = 1Eg;(0)12 4 2501(0)301,0;(2) + '501,01?jf'2 + B(4) »
7

+ 1Egy,02(1)12 4 2501,02(1)(501.02(3?). + 8(6) + O(5)

* . - 3 . : (4.3.39)

%



{

1451
!

In obtaining this result use has béen made of the fact that

- Eg,;{%) = -4(AE-Nw) 15 small and

8(4) = @Foa(®)Boy,01(4) ;5 8(6) = 1Eg,,02(3)12 (4.3.40)

Finally, the transition brobablllty given by Eq. (4.3.30)
*\

4
becomes

PoN = [2p21 1U1Eg,,p3¢1)12(1 + 8Fy,,,(2)4
N

- PR

+ 2501.02(1)(EQ1.02(3))' 1.08(6) + 0O(5))
- 4Fg,;,(2) v 0(3) ' \5\ :
S (4 3 41)
\ . ‘
“»
- e L]

\ In-much of the work that folqbws. 06(4) 1s considered
to be of higher order and therefore not retained 1n°

numerical computdtions 1nvolving Eq. (4.3 41); for .
L4 ‘ -’ \

frequehcies around @ , which are of most sagnificance

res

here, AE -Nw 18 of second order 1in the coupling (4, 6¢) and

‘therefore E4,(°%) 1s actually of the same order ac

“1Eg, 02(1)I2. The s1xth order term, 8(6), has been
——— h r

. S~

includet 1n Eq. (4.3.41) for the purposc of compariscon~with
N .
the 11ter;ture; this result 18, i1n general, a¢curate émly
throu;h fourfh order 1in perturbation theory.

The relevant eigenvalues of the Floquet secular

equation are (see Appendix B, Eq (B. 7))

~
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[

9: = %(Eg1,01 * Bo3,02)2P = 2p : (4.3.42)
¢

?
and _are the characteristic exponents or dressed atom

o
energies of the system [9,10,23,27-30,59,66) referred to in
Sec. 2.4. By using the result Yor p given by Eq. (4.3.39)
one can show that the transition probability given by Eq.

-

(4.3.41) can b; written as -

BoN - [1-4(3p/a(AE))?] (4.3.43)

’

/ ,
To obtain this result only terms through fourth order of
(3p/3(AE)) have been retained. Eq. (4.3.43) has been
der ived ;n general for the d - 0 problem by Shir;ey [{23,31].

Perturbation correctioqa for the fdll width ut half
maximum for the N-photon resogance profiles can also be
obtained from the perturbation analysis of this section.-

-djyen Eq. k4.5.41). the derivation is analogous g% that
diécuseed in Sec. (5.3.2) for the RWA resonance profile and
involves the assumption that thé perturbed energies of
order greater than zero and Fg,,,,(2) occurring in PN, do
not vary appreciably with frequency over the width of the
main N-photon resonance. The result for the (PWHM)N-is

given by
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v g :
hy 4¢(N)(E (3)y*
(PN ~ 2 C(N) (2)__[1,16,“'1.(3) Y .)(_ 01.02¢3))
- N 1(1+16Fp, , " )" . . C(N),
gg_g;_] | (4.3.40)
W -

- res

‘and using Taylor series expansions y131ds

(FwHM)N "'{?3 C(N) - 8C(N)Fq, ,(2)

§ .
S N2E(N)(Egy, 023N e ¢ 0(4) (4.3.45)

raes

The firslL term i1n this expreseion is the RWA resullL for Lhe

]

FWHM of the N-photon transition discussed in Sec. 3.3.2

-

The Rotating wWave Apprqoximation

The RWA expression for the N-pﬁoton absorptiion
spectra with d « O, dlscuased_?n Sec.. 3.3.2, corresponds Lo
the perturbation solution through zerolh order Iin the
Zy,+(P) and through f;rut order in the energies, Epg, ky-

Retaining orfly zeroth order tLerms in Eq. (4.3.24) yields
‘ - . . ~ - '

. poN. - zedo,,,lhd“ﬁ.tH'r,,i('*’)|‘2|r,,(°.)|2 .

.- - i (4.3.46)

)
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Using Egs.. (4.3.9) and (4.3.28) then gives

[ 4

f -
§2N = (292)-1|on,32'2 (4.3.47)
where \
/-
P2 = x(Bg2,02 - Eo1,01)% + 1Eg1,02!'?%. (4.3.48)

19}

and through first order. in the energies

Eoa,02 - Eg1,01 = -2Bg,(°) + ?(2)

(4.3.49)

Eo1,02 = BTy,02(1) + 0(2)
Then

p? = (Eg;:(9))2 + 1Eg,, ¢2(1)12 (4.3.50)
and

_ 1Egy,02(2) 12 '

. PaN = — e M -
-~ 2[(Eq149))2 + VEqy,02(1)12) ‘ (4.3.51)
p o '
- S )

which, wﬁenjusing ’he expreasions for Eg,(%) and Eg;,02(1)

- given Q? Eqs. (4.3.33) and (4.3.34), ééfe?s wltp the RWA
ﬁbeorption spectrum giv?n by Eq. (3.3.5). Eq. (4.3.51)
predicts the overall quai;tatiﬁb features of the absorption

spectra of two-level molecules such as peak heights, the
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full width at haif maxima ((FWa)N), and oscillatory -
fringes (see. the discussion in SQC; 3.3.2). Houuver._tho’
RWA fails to presdict either the shifts of fhe maln'

. Tesonances to the'ﬁigh or .low frequency side of w = AE/N! or
the background observed in speetra obtained from exact
caléul#tions. |

Using Eqs. (4.2.4), (4.3.33), (4.3.34) and (4.3.50),

1t 18 easy to show that

N . -

3p  _ 1 . _ ’
saEy " 2! E0r (")) _J (4.3.52)

NN
and substituting this 1nto Eq. (4.3.43)'y161da tLhe RWA

result for PoN. Setting Eq. (4.3.43) equal to 0.5

<
, >
indicates™that the resonance maxima occur when
ap 1 ap2 .
- - - 0 4.3.53
9 (AE) 2p J(AE) ¢ )
Using Eq. (4.3.52) in Eq. (4.3.53) then yields Eq,(°) - 0
and the RWA result for the resonance frequency (d ¢ 0)
/ .
Wres * SE hd (4.3.54)
4

a; expected. The (PWHM)N correupondlng~to Lhe RWA, which
is Lh§ first Lerm in the pO(turbatxon‘oxp-nuxon of Eq.
- (4.3.45), has been discussed in nono‘dotatl ¥n Sec. 3.3.2-
. The limit of the RWA molecular results for the.resonance:

profile and FWHM as d » O has also been discussed i1n Lhis

P
-
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section and in particular in Sec. 3.3.1. PFor 4 = O the R§A -

supports only the one-photon resonance.

v

Perturbative Corrections to the RWA -

Perturbative corrections to the RWK, through second
order in the Z,,3;(P) and through third order in the
energies En¢’¥7 lead to the ﬂ?ansitioé probability given by
Eq. (4.3.41). It ;s interesting to note.that theré is no

solution through first order in the 2,’ :(P), see

Eq. (4.3.22). The perturbation corrections Pon;ain
. | -y :
contributions to botR the shifts of the main resonances

*the batkground- seen fh the'exact

from w - AE/N as well as
spectra. Limitations of the perturbabion solutiors will be
discussed later with the use of model calculations.®

An expression for the resonance frequency can be—

P

obtained from Eq. (4.3.53). Making the expression

for p, given by Eq. (4.3.39), yields .

e
0 - ap  _ 1
AfAE) 2Zp

——

!‘snx(n)‘ Eg1901$2)- Egy,01(%)- 4€¢,(0)Py,,,(2)

- 4Bg,,01(¥Pg,,,(2) + 2301,0:(‘)a(sgft§§(3)) + 0(5)]

a4

where use ﬁas been mage of

\ -
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. . _ . . ¥ . N~ 1 4%

e (9) (1) : . (2)
Sy -2 TRl -0 Tl — - e @

(4.3.56)

C2(N+8)C(N) £ (N)
4(AE - [N+sJw)3

Q3(E
——nf(u)—— L
o€ . s8¢0

_C(N—S)C(N—B+2)C'¢(N+t)£'(N-s){ (N-s+12)¢* (N+1)

S M 1 [ - e
. . s%0 !‘0{; 8 (AE TN+!]¢.¢)(AE Tfl B)w)

: . . | :

2 .
L oo {((BE - [Nttlw) ! + (AE - [N-s]u).“]l
} - -
PN (4.3.57)
“ A\
? " B i

vy Not ing Eu,(,") ~ »I..('AE:—Nw). and rearranging some ol the
) derms in Eq. (4.3.59), nges the following 1mp11c‘y .

expression {or the resonance frequency,,

~ u“%-Eh%EOI,OI(z)'- 'NZEOK,OI(‘) ':‘(AH M)POI,I(Z)

Pl
L}

(3)
%Bol.ox(z)Pol,x(z) M sgox.oz(‘)a(8°$7géy ) 0(%)

, R (4.3.58)

-

~

Since most of the terms on' the right-hand side of this "
result are functions of C(N+m) and w (see Eqs. (4.3.12),

(4.3.35), (4.3.37) and (4.3.57) respectively), an iteralive




! ~ e
T 1
‘, s )
technique must be used to obtain the-final solution for the
resonance frequency correct through a given order in -
perturbation tReory.' ' : B
- L h . N
b While it is possible to solve Eq. (4.3.58) for W os

iteratively in a numerical mannery it is more instruc;ibea
from a qualitative point of view to carry out this s

\ * S
procedure analytically and obtain an expression for
urzs .. and hence obtain the shift of the resonance frequency
from the RWA limit of AE/N, in powers of the couplings

N

res will be obfained

B12°06E and glee* The result for w
"fhrodéh féurth order in the product of the two couplings;
_that is to terms of order (g,;-ét)Ntd-e¢)™ where n + m < 4,

To begin, the right-hand side of Eq. (4.3.58) is
expanded in powers of the couhlings assuming initiailx that

AE-Nw is of unknown order in the couplings'and that w is

fixed. This is accomplished by making use of the expansion

(78} for the Bessel functions in ﬁhe molecule-EMF coupling

-

parameter C(N+m), see Eq. (3.2.21), which occurs in the

spoctfal results for the various quantities in Eq. (4.3.58):
f

-

o : ‘ ,
In(x) - ynp | (CLE vt .y - 98¢
2-0)22t+n g1 (n+2)1 @
(4.3.59)
3 ]

. 7/ .

The result through terms of fourth order overall is' *

R [N LX [ i
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S M R W

_( og)4 1 _ 1 e 1
Hiix (ZO) (AE-w)? ~ (2w)(8E+w) "~ (BE-w)?

1 1
vt (BE-wYT(AEvw) | (EEIGiTZAE;DT}ln,l

‘Eﬁfh—ﬁ—;‘; L&*ﬁ“—?z‘“‘""” [[1 2, = ] ][(EE:_JY‘Jln..l

* ABN.) ] [d ea] [(WIN,Z * (?@Tzl‘arl”
\ -
* %ﬁﬁ—ié—l&vln'_l‘?‘[ e L ' Biu)
¢
o el ¢ o]+ ocma®
) . " (4.3.50)

e
where (xd)% indicates terms of fifth or higher order

overall in the coupling farameteru KHyz-0f and d-6t. Eq. -
>

(4.3.60) can be used for all N » .1 Dut it simplifies for

higher N values. For example

’

NEe1. 02D Eagygyt) - uﬁflr‘i%;vl '

(4.3.61)

\
if N > 1 through fourth order.




To proceed, w = AB/N is used as a first approximation

on the right-hand side of Eq.°(4.3.60). In the second

.
res ' obtained from the first jiteration

approximation, w
accurate through second order overall in the couplings, is

& ’ .
used for w on the right-hand side of Eq. (4.3.60). The

\
iteration involves. Taylor series expansions of terms of the
. -~ .- -
' form (AE+cw)”~ !, where c is a constant, in powers of the

. PR S
coupling parameters. This procedire can be repeated until

. through any required overall order, is -

- N
a resuit foi W o8

obtained; two iterations are sufficient for our purposes.
It was found to be more convenient to treat N = 1, N = 2
and N > 3 separately. The resulting expressions for the

resonance frequencies are

1 (EI%-Q;)z T, p-e€)2(d-e€)2 (slf-es)‘
Ures = AE + A A — A yr
+ O((ud)S) ; N ~ 1 (4.3.62)

+

.

w 2 _ AE 2( -8g)2  13¢( -8g)3(d-ec¢)2
d res 2 AE) fZ(Sﬁj" -

4

_ 10(§ag-ec)‘ + O((ud)®) ; N = 2 (4.3.63)

and for N » 3
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N _ 2aE ee)2 . ( ¢ -0g)3(d-08)?
Wres g ! AF T1 —Ell—TKIT,-—————TZ
( .éc)‘
. + —Efl—ys——TB + O((ud)?®) (4.3.64)
‘\‘s 1 AE .

¢

where '
N
Tl = ag-v : T2 = 3N ! ' (4.3.65)
L R LS A(NT-T) (NT-4) )
N3 (7-3N2)

. T3 a'(w (4.3-66)
These results agree with those in the literature for

certain special cases, mostly those involving d -~ 0. ¥or

N =§l, da =-6, Eq. (4.3.62) agrees with‘the original work of
Bloch .and Siegert (22), Shirley (23) and others (53-56].
‘For N > 3 and odd, and 4 -~ 0, Egq. (4.3.64) agrees with our
invbision of the resulls of Hoie [10l], who has expressions
for AE as a function of w Chrough owu®), and’ with olher
literature re;ults (31,42,68) 6f~lower order in Lhe
coupling u,;e¢. wWhen d -~ O Lhe;e are no even photon
Lransitions for Lw&—level systems, sBee Segs. 3.3.1 agd
3.3.2 and Lﬁé discussion of Lthe d ~ 0 lme:‘:?~Eai (4.3.4))
that follows. Finally, for d » 0 our expressions ngroo-
with what are aﬁparantly Lthe only analogous literature
results (34) which are available for N = 1 through O((ud)4)
and for N > 2 through only O(u?). Por all N, when 4 v 0,

p)

it {8 clear from Egqs. (4.3,62)-(4.3.66) that the shift in
. a8 * ]

LA




[

<o

urga from the weak field or RWA rqsdﬁance frequency of

AE/N can be either to high or low frequency, depending on
the magnitude of the coupling d-é¢ relative to M) 8E; for
d = 0 the shift ‘is always to high fgfquencyl Thus these

results give analytical and qualitative support to the

. ,
negative shifts from wrﬁs - %E observed in the multi-photopn

-

molecular spectra discussed earlier in this thesis (see

Sec. 3.3.2). It is important to note that the results for

the shift from the zero field resonance frequency given
here are val{d only for small couplings u;;-6tf and d-ec¢;

or large couplings the higher order terms, uld™, in these
power ser}es results can become larger than the lower order
terms leading to divergent results for the shifts. This
divergence is not unexpecégd, see for example Eq. (4.3.59).

It is also interesting to compare the perturbative

results for the resonance profile given by Eq. (4.3.41)
with the results in the literature which are available for

d -~ 0. The limits of Ep;,02(!), Fg,,1(2), Eg,,0:(?) and

Eo1,02(3) as d ¥ 0 are required to take this limit. A
. c »
useful result is given by -
-

1im Bapx) = w0p,1 . p>r o
x>0 )

b3
.

- gop,-l . p <O (4.3.67)

"hich can be obtained from Eq. (3.2.13) and the result i?B]
Jk(0) = 8x,o- = ’_

>
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' Using Eqs. (4.2.21), (4.2.22), (4.3.34) and (4.3.67),
y*olds
v
.t
lim Eg;, 021} = —%u,,-€E0N, |€XpP(1IND) (4.3.68)
+ d»0 . . : .
W ,

Mak\ng use of Eqgs. QE;T:I), (ﬁ{Z.Zl) ahd (4.3.12) gives

L d

_ <&
A. - _ ‘2
. _ 1 21,2 OE(B+N)Y 1T, 4N(Y)
v Fn:n,x(:‘lT B é?h[_ (AE ?*T3+NT57B“~M
. - £4.3.69)
&
which upon using Eq. (4.3.67) yields
: L |
N—- -
o 1 -6c}?
lim Py,;, . (2) ~ ; [?Ll—- , N -1
d_')o B AE"’UY : <
s
v . [Euifﬁ]z ’ [Eu_'e'?]’ N > 1
' , 8 (AE -w) (AE+w) ’
a : P '(4.3.70)
Only one term occurs in Lthe N = 1 limit 3<nce'u + N ~ 1

implies 8 = 0 for N ~ 1. Similarly, iU can be shown thatl

’

[ ;.9:_)3] N -

AE+w

1
4

Iim on'ol(z)l'
d-»0

-~

-
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o

v
/

00! s

lim Eg; 07(?) -
d»0

\

0of 1~

L. v _ 1 [tugz-eeyzexpzioy] L,
| R T |

[
o
.

b}
-
\ <~ N - -

-
-~

—
L4

in Eq. (4.3.41) yields.

>

1}

where from Eq: (4.3.39)

‘ ) ) . ‘
p? = [g(AE-w) + Lifiﬁgé%_]z + y(u,5:0£)3
. ‘ ,
L) "

.'? . )
1 j{ -0s)2 ( -0£)2 '
Ce -k | et v

-

S8 " 454 -

\ “(4.3.71)
N~

€

-

'(g,,.ec)Sexg(ib) - -
. (AE+w) ] » N 1

» N=2, N > 3

(4.3.72)

Using Eqs. (4.8.68) &nd (4.3.70)-Y4.3,72) with N = 1

’

-~ ]

a
.
-
o
“
.
’

.ée)s = !

Bl - (20717 [kimiaeer [1 - Wag-80)?) _ 12:80)° + o) |

B
(4.3.73)

]

(4.3.74)
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The terms 0(4) and 0(6), see Eq. (4.3.40), are not included
in these results since they are of "sixth" order and the
dxpression.%ewiyeé for PN is reliable only through fourth
order in the main resonancé.term. If AE ~ w is used in the
dgnbninator‘of the terms in Eqs. (4.3.73) and (4.3.74), oné

>
N \

o

' ‘ . 2 - . 4
[ xGaggreny? [1- Maggfl] - Lag Se)o s ocs)

Y | (R VLI L) LN PRI (TPEL I LIPTPYY

(4.3.795)

R O] \

, *

bue to differences in the typé of perturbation theory used,

and in ‘the ‘ordering 8f terms, Lhis result is sligHLly

dxfterqL than that thaxned by thrley [23,31] which is

- . a
Prsa(t) = (_&1&',9;_2.-

i

. ;(212 ee)? [1 - —hi—-?—“—’] '
2[[5(AE—w) + _&Jjééﬁlil [1 (Et%agili] + k(éxz'GS)—T

(4.3.76)

Eq. ‘4.3.76) has been obtained by abg}ying Brillouin-Wigner

berturbation theory [3jf to the Floquet secular equation

with d = 0, and agrees with Eq. (4.3.75) through 0(u?), in A
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the numerator and through O(x&*) in the deﬁSninator of the

main resonance term. This approach was initially used ;ith

d « 0 and Qifficulties were enaountered in ord§r1n3 the

term;T- Tﬁhs, Brillouin-Wigner p;rturbat;bn theofy was not

used when d * 0. In addition, if one follows the work of
Shirley {28,31], but with d 4 0, a very different Floquet
. secular equation is obtained. Appendix C contains the

-

derivation of this secular equation and clearly 1llustrates

the problems associated with the d # 0 case.

For N even one obtains

PoN = y(u,;-€€)2[(AE-w)~2 + (AE+?)’2G + 0(3)
(4.3L77)
? -«
Thus the transition probability consists of a dynamjc
background only, with no resonances, when d¢-- 0 ;s expected

(see aiso Sec. 3.3.2). When N > 3 is odd,

PN« [2p2)71(8(6)] ¢+ %(i12-8£)2[(8E-w) 2 + (AE+w)~2] + 0(3)

(4.3.78)
b

[
where p? is obtained f;qm Eq. (4.3.39) with the d = O

limits given by Eqs. (4.3.68), (4.3.71) and (4.3.72).
\ '.n
Also, from BEqs. (4.3.40) and (4:3.72) one obtains

0(6) - é;‘}ﬁxz'et)‘(bﬁ'w)"bu,3 (4.3.79)

)



N

‘Thus to this order of approximation, the transition prob-
ability for N > 3, N odd, will consist only of a background
term since 0(6) = 0 unless N = 3. Higher order

perturbation corrections are necessary to obtain the

"results for odd photon resonances when d = 0 and N > 3.

Finally, it should be noted that the 0(6) term can be
included rigorously in the numerator of the first term of
Eq. (4.3.78) when N = 3 since the only other possible sixth
_order term, (Bgy,o02(!))*Eg;,02(5), is zero when d = O.

Thus when d = 0, the transition probability for the
three-photon ressﬁanée is given by Eq. (4.3.78). If one
§et§ AE = 3w 'in the denominators of terms of the form

(AE+cw), where c is a constant, i1n Eq. (4.3.78) and

neglects both the small background term and 0(4) in p?, the
result obtained agrees preciselxhwith that of Shkvirley ([23].

Expansions in' powers of the couplings (u,;-€t) and

~

(d-&¢), analogous to the results for wrzs given by Eqgs.

(4.3.58Y and (4.3.62)-(4.3.66), can also be obtained for

the (FWHM)™. sSince the major'effects of d # 0 on Lhe FWHM -
isScontained within the RWA, see Sec. 3;3.2, and expansions
of this type are of limited validity, only a limited set of

rusults are presented here. Using Eq. (4.3.45), and

techniques similar to those used to'derlvertha power series

N

efpansions of W o

. 1t can be shown that
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]
-

(rwra)N = |2g,,-0¢ - l _(B,5-0£)(d-6€)2 + oud)|, N
YT IR .
-

= |aguia-ee) (d-06) + O((wa)*) : N -2

Igf%gjz(éxz‘eﬁ)a - IT%§T7(512'98)(Q’68)3

+ 0((ud)s) | , N =3

- |§(§ES3(EII'°E)(Q'°5)J - §T%§71(212'65)3(g-e£)

+ o((ua)s) | o , N -4
(4.3.80)
Lgfgeneral, when deriving expressions of this type the pdwer

series exbansione for wrN derived previously and expansions

es
of terms like (AE+cw)” 1 in powers of the couplings are
required. Eqgs. (4.3.80) are sufficient to analytically
demonstrate that two of the effects of @ ~ 0 are to reduce
the widths of the resonances and to induce even, as well as
odd, photon transitions relative to atoms (d = 0) as *
discussed previously (Secs. 3.3.1 and 3.3.2). The
expresslone.for th§ (FWHM)N, for N = 2,3 and 4, agree with
those in the literatGre [3;] only for N = 2; those results
for N = 3 and N = 4 differ by multiplicative factors that

depend on N. PFor N = 1 and N = 3, Eq. (4.3.80) wagrees
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precisely with well known literature results }23] when
d = 0.
4.4 Numsrical Examples of Perturbative Corrections to the
RWA and a Discussion of Giant Dipole Molecular
Spectra

As discussed previously, there are difficulties
associated with the brdering'of tﬁp perturbative correc-
tions to the RWA expressions for the resonance profiles,
and their full widthk at half maxima; and with the converg -
ence of the pe;turbation expansions for these quantities
and the (u,d) expansions arising from them. 1n this
subsectién these problems are discussed in more detaitl
ﬁhrough the use of model calculations, some of which are
related to the spectra of molecules with "giant”
differences between the permanent dipoles of the states
involved in the Vransition.

L} -
4.4.1 Numerical Examples of Perturbative Corrections td tLhe

RWA

Here the modelf'associateé with th‘gxaci two-level
mult i-photon spect(a‘disdqsbed in Sec. 3.3.2, for é # 0 and
¢g = 0. are used to help discues ;ome of the perturbative
corrections to the RWA. éx(ensiV; calculatidng h;ve b?en
carried out ior these corrections for the model systems

L] .
involsed in the multi-photon.spectra of Figures 3.3-3.5. '

Detailed discussions of Lthese. {igures, with respect to the:
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effect of permanent dipoles in the'spoctra, can be found,in
Sec. 3.3.2 which also includes compar isons between the
exact and RWA single- and multi-photon Jpectra. The
p&rpose of what follows is to extend the earlier discus-
sions Cz—inéiude the effects of the perturbative
correctionse to the RWA.

The quantities used in the perturbation expgnsion of
the steady state transition probability given by Eq-
(4.3.41), and in the analogous‘expressions for the (FWHM) N,
involve single or double infinite sums ovor molcecculo-EMF
couplings 1nvol§ing Bessel functions of argument

’

d-ee » 8@ for example Eqs. (4.3.12), (4.3.35) and

w
(4.3.36). The various terms in Lhefe sums can be either

negative or positive dAepending on the values of the
parameters involved in the problem, including the frequency
w. In the evaluation of the‘sums the positive and(;eg;tive
contributions were summed separately to check for roundoff
errors and the convergence of the sums was investigated by
systemat ically increasing the numﬁer of terms included in
the sums. For the two-level models studied here it was
found that truncations of the summation iﬁdiéies to
—? < ¢t < +m, with m ~ 90, were sufficient to guarantee much
more than graphical accuracy for the resulting spectfa;
The Bessel functions were computed using tﬁe subroutine
MMBSJN from the IMSL ([102] package.

The calculated absorption spectra obtained‘from the

perturbative expansion given by Eq. (4.3.41) are not well




. behaved in genferal. .For the cases studied here, thé third
order energy Eg,,02(3) as a function of w often becomes ‘
large compared to the first and second order energies .and
as a result the values of the spectra can become much too
large (>>0.5) and/or negative. éor-the strong molecule-EMF
coupled example of Pigure 3.5; even the s;cond order energy
misbehaves relative to the lower order energies and so the
perturbat ive bqrreqtions to the RWA ;re,not discussed for
Lthis case in any detail in what follows; only the RWA
itself, discussed in Sec. 3.3.2, is meaningful for this
example. Thus the absorption spectra are ca%culated using
the following expression, obtained from Eq. (4.3.41) by

setting Eg;,2(?) equal to zero,

PoN = [2p2)71[1Eg,,02(2)12(1 + 8?0},1(2)}] - 4F,,,,(2)

(4£d.4.1)

where

p2 - 1Eg,(0)32 4 2301(0)303,01(2) + 1Ep,,01(2)12

+ 1Eg;,0z2(1)12 a (4.4.2)

Similarly, the (FWHM)N is also adversely affected by the

third order energy in general and, from Eq. (4.3.4%), is

now taken to be
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)
(PN = 2 Jo(N) - 8C(N)Fg,, (D) | _ N
res

! (4.4.3)

¢

In what follows, the absorption spectra will be .

discussed with the aid of the parameters b, ' = 7(1l) and

_B(N), defined by Eqs. (3.3.4), (3.3.14) and (3.3.15)

respectively. The physical significance of these coupling

strength parameters has been discussed in Chapter 3. In
evaluating 8(N), and (FPwHM)N through Eq. (4.4.3), urzs is
L 4

taken to be that which corresponds to the spectra generated

from the second order perturbation result for PN given by

- Eq. (4.4.1). 1In Pigures 4.2 and 4.3, the N = 1,2 and 3

photon absorption spectra or resonance ofiles, obtained

from the second order per ation expression

(Eq. (4.4.1)); are comp to the RWA spectra for the
two-level models associaled with Figures 3.3 and'3.4 of
Chapter.3. The relevant.moleculat and field parameters are
summar ized in the captions to Pigures'4.2 and 4.3.

In Pigure 4.2, the tﬁo-lgzgl model system is char-
acterized by b = 0.5 and 7 = 16.0; and by 8(N) = 3.07 x
1073, 1.51 x 10~2 and 1.37 x 10~2 for 5be one-, two- and
three-photon resonances in the second order perturbation
spectra. Since the B8(N) are small,:the peaks are narrow
and from Eq. (4.4.3); (FWHM)N ; 0.0062, 0.0165 and b.00922
for N = 1,2 and 3, in good agreement with those obtained

from the RWA and exact spectra, see Figure 3.3, and from
Y

x



Figure 4.2.

-

Comparison of the RWA and the second order
perturbation resultsufor the absorption
spectra, PN as a function of w/AE, for the
two-level model characterized by u;, = 1.0,

d = 20.0, AE = 1.0 and ¢ = 0.5. The second
order ﬁerturbatlon resonance profiles for N =
1,2 and 3 are illustrated in a, b and ¢ and
are calculated from Egs. (4.4.1), (4.4.2),
(4.3.12) and (4.3.33)-(4.3.35). d, e and f ,
contain the correspéndlng RWA resonance ~
profiles for N = 1,2 ang 3 and are calculated
Jfrom Egs. (3.3.5)-¢3.3.9). In this example b -

= 0.5 ang\n = 10.0. The corresponding exact

sﬁectrum is glvén in Figure 3.3.

"
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Figures 4.2a,b,c, namely 0.007, 0.02 and 0.0l respectively.

The resonances in the sec&nd order perturbation
spectra occur at w/AE = 0.995, 0.4976 and 0.3317 for
N = 1,2 and 3 respectively and are shifted slightly to ihe
low frequency side of the RWA resonances which occur at
wW/AE = 1/N = 1.0, 0.5 and 0.333 for N = 1,2 and 3. In
addition, a very low background is pr;eent:in the
perturbation spectra that is not present in the RWA.

The effect of inéluding second order worrection
terms, Eg;,0;(2) and Pg,,,(2) (Lhe latter term requires
Q?ih the first and the second order wave functionsl see -
Egs. (4.3.25) and (4.3.26})), has beeQ to proviQe both the
small "negative Bloch-Siegert™ shift and the slight
background present in the exaclL spectra of Figupe,3:3.

Figure 4.3 is an example of a mor e strongly coupled
two-level syetem with b -~ 6.84 and 5 = 26.98. Here, fOr
the perturbation spectra, B(N) = 6.31 x lOf’, 5.71 x 1073
and 3.40 x 10°2 for N - 1,2 and 3 ;eapectively and the
" (PWHM)N, from Eq. (4.4.3), are tm x 10-6, 1.85 x 10-7 and
1.07 x 107% for the one-, two- and three-ﬂhoton resonances
whereas those measured from Figure 4.3 are 2.63 x 1076,
6.31 x- 107 and 3.15 x 10-7. The RWA predicts (FPWHM)N -
4.26 x 10°%, 2.01 x 107§ and-l.09 x 107® for N = 1,2 and 3
(see Eq. (3;3.13)) while thosé'leasured from the exact ’
spectrum in Pigur; 3.4 are 2.22 x 107¢ and 6.30 x 1077 for
N - 1 and 2. -It was not possible to oLtaiﬂ the width of

the three-photon resonance because of the occurrence of an




+
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Figure 4?3. Comparison of ‘the RWA and the second order
perturbation results’ﬁor the absorption
spectra, PoN as a function of w/AE, for the
two-level model characterized by u;, = .
0.5072, d = 2.0, AE = 3.706 x 10~% and ¢ =
5.0 x 10°4. The second order pé{tu;?gtlon

i \
resohance profiles for N = 1,2 and 3 E?e;

1llustrated in a, b and c and are alculated

from Egs. (4.4.1), (4.4.2), (4.3.12) and

(4.3.33)=(4.3.35). d, e and f contain the
Correspondiﬁg RWA resonance profiles fo; N =
1,2 and 3 and are calculéted—from Egs.
(3.3.5)-(3.3.7). Here b = 5584 and 7 -=
26 .98. The‘corresponding exact spectrum 1s
given 1n Figure 3.4. The perturpation
correction term; occurring in Eq. (4.4.1)
_,gbntgin terms of the form (AE-cw)~!, where c

and [ are positive integers. When w = AE/cC

these terms tend to infinity. Thls occurs

when w is small in the examples bresented here

and” in FPigure 4.2. Thus'the frequencyr;weep
is not extended to smaller frequencies in

these cases.
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oscillatory fringe close to ihe main resonance, seée Pigure
—_— ‘ .

3.4d. In general, the second order perturbation exp?ession
for the FWHM appears to be an improvement over the RWA
expression given by Eq. (3.3..13). However, it does not
successfully predict the widths of the eﬂPCt spectra since,
in this examﬂle, the resonances are relatively broad agd
the frequency vaﬂges significantly over them.

A background of appfoximat$® 0.15 is present 1in all
Lthe secohd order perturbation speéﬁra’of Figure 4.3. As
well, the resqnangés in the perturbation spéctra are
shifted siénificantly to the low ffequency s1de of Lhe/kWA
resonances; thiey occur at w/8E = 0.88, 0.43 and 0.59 as .
opposed to W/AE = 1>§ = 1.0, 0.5 and 0.33 for N = 1,2 ;nd 3.
’ In this example, the effect of igcluding ihe second
order correction terms has been ;o introduce, relative to
the RWA, a substantial baquround in the spectra and large

negativg shifts in the resonance frequencies in agreement

with the exact spectra of'Pigure 3.4. The second order

perturbation resonance frequenc1as are in good agreement

with those of the exatt spectra, namely w /AE = 0.87, 0.44

res
and 0.31 respectively for N = 1,2 ahd 3.

. In the examples considered here the results for the
-resonance frequoncios obtained from the (x.,d) expansions ot

&

Eqs. (4.3. 62) (4.3.66) are essentially meanlngless- the ‘ -

noters b and 3 aro'large and the perturbation expansion in
-

4 and d does not convgrge. 81m%lar comments apply for the .

3

%



4 and d expansions for the (PWHM)N given by Eqs. (4.3.80).

The implicit perturbation results for w b

éq. (4.3.58), withaut making a (u,d) expansion, can. be used

given by

iteratively to obtain meaningful results for ”rﬁs' This

method has been tested using Eq. (4.3.58) with terms of

* third and higher order set equal to zero. For example, one

obtains values of w N 0.88, 0:44 and 0.30, N = 1,2 and 3
v ~ -res .

respectively, for the spectra of Figure 4.3 i'n this way.

In summary, the second order perLurbatloﬁ expr&hsion
for Pg“, generated by applylng the near degenerate perturba-
tion Lheory of Appendix B to the‘Floquet secular' equation, )
appears to not be particularly useful for calculational
purposes. In some problems, where the molecule-EMF
couplings are relatively weak, the result through second
order given by Eq. (4.4.1) agreé?équite uel;.yith(the exact
calculations for two-level specira; even for these cases -
the perturbation boriectione'can become unreliabde tor'soﬁe
ffequencies (see the capLion.of;Pigure 4.3). In éﬁherst
where the coupling between the molecule and the EMF becomes .
‘larger, the perturbation corrections to the RWA are not
: reliable. An example of thiB unreliebility is furnished py
the tw0<%2;:1 model problem associated with Pigure 3.5

where t 1t i-photon resonances are oveslapping and are

becoming quite saturated.

' The perturbation treatment of these problems is not
. - ‘ ¢ »
'easily\;‘ne. Not only are the zeroth order energies naar .
I Vi . <N :
degenerate but they can also be of the same magnitude as



.proof of the existence of negative shifts from w_»

- . | v -

: . a?0
the second order energy since Eg,(9) = -g5,(9) = -5 =
~%¥(AE-Nw). PFor frequencies around ur28 » ABE-Nw |8 related

to the shift of the resonance frequenfy from the RuWA result
of AE/N and is a emali quant ity (see Egs. (4.3.62)-

(4.3.68)). As pointed out in Sec. 4.3 this makes the

ordering of the terms)in order of smallness difficult in

the perturbation expansion of P>N. This difficulty is
compounded by the fact that the perturbation, and the
perturbed energies and wave functions, are functions of the
fr ency as well as the couplings u;,-8t and’d-et. As
poinged out earlier, the perturbation theory can epﬁear to
conve ge for certain frequencies in a given problem and
then misbehave as w is altered.

In general, the usefuleess of the perturbation
corrections to the RWA appears to be in the more

- . L. 3

qualitative and concep&ual understanding 8% the differences

between the RWA and the exact results for multl -photon . ﬁ\\

spectra. qTﬁ; best example of this is given by the

expansion of tpe”resonance frequertcy shift from the'RwA

result of'Ah/N, in powers of .the couplings gl;-ee and

d-e¢. This reeult Eqa‘ (4.3.62)-(4.3.66), is obtained by :

making an’ iterative expaneion of ghe result for Wyeg

obtained through perturbat ion bheory b It gives analytical
res " OE/N.

obeerved in the numerical exact spectra of Sec. 3.3.2,

\/' "‘

wblch are 1n contradietinption to the usual poaltive .

Bloch-Slegert shifte for the atomic -problem. Tbeee (u,d)'
- . yd T

4




3
»

expansions, and the analogous egpansions for the (FwHM)N

8iven by Eq. (4.3.8Q), are not useful computationally if
the couplings, and coupling strengths, become aé all large.

w1th considerable numerical investigation it may be
poésiéle ta de&élep perturbétion expansioqs for thq'
resonépce-profiles, basbd on Eqﬁ‘(4.3.ﬁl).and extensions of
it, that are computationally viable.for well.dgf}ped

classes of two—lav;l problems. Such developmént would

g require invéstigations of the terms involving the fourth

order energy, Eoj, 0i ‘l "ahd other hlgher‘order effects not

examxned in detall in this thesxs. If these higher order

terms were-requ1red to obtain reasoﬁable'rasults, the

eipressioﬂs for the fesonance profiles would clearly become

LY

r
very complxcated and the Vi&bil)ty of perturbé&xon theory
\

for this Qurpose.bgcoqgs-quest1onable. “The use of Lhe
perturbation theory analysis of' the Ploquet.sécular problem

is not analytically Lréctgble for more than three levels.

,'. . . L N )
. The difficulties with perturbation theory can be

avoided by using the exact methods for Lhe solution of the
L4

two- (or many - ) level problem disdbssed in Sec. 2.4.2.
This 13 the approach’used to complete the diacussion of the

effects of 4@ & 0 in mulg}—photon spectra . in the next sub-

~

section.

RN
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4.4.2 A Discussion of the Multi-Photon Spectra of Giant
- Dipole Molecules “

This section further discusses, relative to Chapter

3, aspects of the spectra of molecules with 1argé'permanent
dipoles that are, in part, related to recent papers ([34,35)
on 'giant,dipole molecules®. These papers appeared after
much of the work’discussed in éhapter 3 was published and
are concerned, more precisely, with the spectra of mole-
cules possessing large or "giant" differences between the
perﬁanent dipole momeﬁts of Lthe states involved in the
transition. In addi‘tion té the parameters b,n = (1) and

B{x) used to help discusé the éxamples considered in Sec.

4.4.1, the parameter a is also used i1n the present N
discussion; .
id| y !
a FITTeLl (4.4.4)

This parameter is reléted,to Lﬁe diffe;ence in the perman-

ent dipole moments involved in the transition, normalized

to the tranaition dipole, and was. uaed by Hattori and

Kobayashi (34]). 1n their discussion of the spectra of giant.

dipole molecules. The physical rational for/the trends in

the two-level ;pectra to be discussed in 1llows, as a
8 to Jiq\‘

functxon of b,n, B(N) and a, are analog

,discusaod, and applied, in Secs. 3.3 andM.4.1.

The - Lwo level model chosen is based on thekground

N

and 1owoat excited singlet states of the - -[- o,

C e
v,
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i-(p-(N,N-dimethylamino)phenyll-4-(p-nitrophenyl)-1, 3~
butadiene molecule andliﬁ\ffaracterized by AE = 8.56 x 102
and d = 11.80 (35]) with u,, taken to be 3.93 (93] and
dlilg,,11é. Various multi-photon spectra, as a function of
b,n and a can be generated by varying the field strength ¢
and £he value of d. 1In Figure 4.4 the exact two-level
absorption spectra labelled with a, b and ¢ correspond to «a
= 0, 1.1 and 1.5 respectively. In addition, each spectra
labelled'@xth f, 2, 3 and 4 correspond to b = 0.2, 0.6, 1.0
and 1.8. The values of wrzs/Ag, N=1,2,...,6, for each
spect}um are summarized 1in Tabfe 4.1.

To begin, con51dgf the spectra corresponding to a
fixed value of a. When a = 0, = 0.0 fof the spectra in
Flgﬁ;e 4.%a-1 to a-4. Ag b lncreaseé on going from a-1 to
a:4 the spectr;'become more saturated as is expected and as
1s-gvidgnt from the increasing background; the resonances
shift significantly to higher values of w/AE (see f;ble
4?1)T’ only the.odd photon resonances occur as usual sin;e

d = 0.
.

When a = 121, 7 = 0.44, 1.32, 2.20 and 3.96, and b -

0.2, 0.6, 1.0 and 1.8-for‘Figure 4.4b-1, b-2, b-3 and b -4

respectively. 1Initially as 7 increases, some of the

-*
.

resonancesgs approach each other and éventually overlap very
_sﬁrongly. This effect 1s evident when 7 = 1.32 and b = 0:6 *

(Pigure 4.4b-2). Here, the~ope4 and twé—photon resonances

\ .

are very close and appear as one large, broad resonance

with two maxima separated by & very slight minimum. The

: .
. \ - . ’ ,
L .



Figure 4.4

L 4

Comparison of the absorption spectra, ?2 as a
i \
function of w/AE, obtained from exact calcul-

-

ations for the two-level syu.tems specified by.
Kiz = 3.93, AE = 8.56 x 1072 and d = 0 (a-1 to
a-4), d = 8.65 (b-1 to b-4) and d = 11.80 (c-1
to c-4). In a-1, b-1 and c-1, ¢ = 4.36 x 1073
and b = 0.2 while ¢ = 1.31 ¥.10"2 and b - 0.60

o~

for 4-2, b-2 and c-2,'¢ =~ 2418 x 10”2 and@ b ~

1.00 for a-3, b-3 and c-3 and £ = 3.92 x 10-2
a =.0

and b = 1.80 for a-4, b-3 and ¢c-4. Also,

and

n

+1.32,

and a

for c-

2

1

0 for a-1 to a-4, @ = 1.1 and 7 = 0.44,
.20 and 3.96 for b-1 to b-4 respectively

1.5 and n = 0.60, 1.80, 3.00-and 5.40

-

to c-4:.
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- Table 4.1. Summary of the values of Eﬂﬂm\bm for the exact spectra given in Figure 4.4.

These spectra correspond Lo the two-level sysilems specified by u,;,°< 3.93, AE = 8.56 x

1072 and @ = 0 (Figure 4.4a-1 to a-4), d = 8.65 (Figure 4.4b-1 to b-4) and d ~. 11.80 -

i

./.\/k .
. "(Figure 4.4c-1 to c-4). b, 7 -~ 7(1l) and a ar2 defined in Bqs. (3.3.4), (3.3.14) and
L d
(4.4.4).
1 2 3 . Y 3
a b n Wy gg/OE Wres/bE Wreg/AE Wres/AE Wy gg/AE Wres/AE
2 ..
0.0 _ : °
0.20 0.00 1.01 - 0.35% - 0.21 -
0.60 0.00 1.09 - - o.M - 0.26 .=
. 1.00 0.00 1.25 - 0.56 - 0.34 -
S 1.80 0.00 1.73 - 0.79 - 0.51 . -
. H.H . | - Al
0.20 0.44 1.01 . 0.5%2 ormﬁ 0.26 0.21 0.17 -
0.60 1.32 0. 99 0.65 0.38 0.29 0.35 0.22
1.00 2.20 0.76 0.37 0.28 0.24 70.21 0.20
1.80 3.96 0.7% 0.37 0.26 0.24 0.19 s 0.18
1.5 K
0.20 0.60 1.01 0.52 0.35 0.26 0.21 0.18
0.60 1.80 0.92 0.43 0.30 0.27 g.26 0.21
1.00 3.00 0.85 0.42 V.28 0.21 0.17 0.15
1.80 5.40 : o.ﬁﬂ 0.42 ., &V 0.28. 0.21 0.17% 0.14
\- .
i . hmﬂ\lJ.
= .
- - .
| g
1 / . .
s - o , . 4 .
WT} . & *
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‘of w/AE while the two-photon resonance has shifted

one-photon resonance has shifted slightly to a lower value

significantly to a higher value of w/AE relative to d = O
(see Table 4.1). The three-, four-, five- and ﬁix-phéfaﬁﬁa—v
resonances shift slightly to higher values of w/AE as

well. When n = 2.20, the large, broad resonance qf the n =
1.32 case, has been replaced by a pne-photon resonance‘with

a large oscillatory fringe on the high w/AE side. The

one—, two- and Eﬁree—photon resonance positions have

undergone large negative shifts from those associated with

the n = 1.32 caléulation and an oscillatory fringe

associated with the two-photon resonance 'is also clearly .
present. An increase in 7, Figure 4.4b-4, Eurther

complicates the‘spectra for low frequency. There is an
interesting interplay between increasing b.and intreasing 7n

in proceeding from b-1 to b-4 in‘Figure 4.4. Increases in

b tend to broaden and saturate, while increases in 7 tend

to narrow and sharpen the absorption spectra as discussed

in Sec. 3.3. Por d » 0 the appearance of even, as well as

~s
odd, photon resonances is clear and this can add to the

q
crowding of 4the resonances, relative to the d = 0 spectra
of parE a of Figure 4.4, as a function of w and 7.

Figure 4.4c-1 and c-4 correspond to the absorption

spectra of 1l-(p- ('N N-dimethylamino)phenyl}+4—(p-nitro- '
/ .

" phenyl)-1,3-butadiene (35), as 4 function of £, where a =~

1.5. Here n = 0.60, 1.80, 3.00 and 5.40, and b = 0.2, 0:6,

1.0 and 1.8 for Pigure 4.4c-1, c-2, c-3 and c-4 respec-
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tively. In this example, éo merging of the lower photon
resonances is ohserved; for each b value, the value of 7 is
larger in this example .than in FPigure 4.4b. The four-,
five- and .six-photon resonances shift to slightly higher
values of w/AE when b = 0.6 and 7 = 1.80. In genetal
though, all resonances shift to lower values of W/AE as b
and 7 increase, illustrating again the negative Bloch-

Siegert shifts due to the presence of 4. . 451:%P
Now consider the spectra for fixed values of b. N\ .

When b = 0.2, Pigure 4.4a-1, b-1 and c-1 correspond to 7 =

0, 0.44 and 0.0 respecbggglyq“\ihe resonances occur at the

same positigns in each spectra for N = 1,3 and S (see Table

4.1) and, when d # 0, for N' = 2 and 4, as well. The

coupling.sf}engths are quite similar for each resonance.

-

For example, when N = 1, B(l) = 0.20, 0.195 and 0..191 for

a-1l, b-1 and c-%_ espect.ively and 8(1) =~ b. The effect of

d « 0 is minimiz for the small values of 7 occurring in

see Sec. 3.3). L . .o

-»

this example

The spéctra characterized by b = 0.6 correspond to v

0.60, Figure 4.4b-2 where -.

"

Figure 4.4a-2 where 7 = 0, 8(1)
- - e 3
~up

n = 1.32, B(1l) * 0.48 ané Figure 4.4c-2 where.psf 1.80, )
B(l) = 0.36. As 7 increases the pn;:phogpn-tasonance
shifts to lower values of w(AE. As discussed previously,
the N > 1 resonances shift ts high frequency when 7 = .

1.32. However as 7 increases furthé} ton =~ 1.8 the

overall effect of increasing d from zero becomes clear in

~ that it tehds to induce shifts in the resonance frbduency

s S sy
- e
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to the low frequency side of the zero field or RWA limit of
AE/N.

Pinally, Pigures 4.4a-3, b-3 and ©t-3 correspond to b

= 1.0 and to the parameters 7 = 0 and 8(1) = 1.00, n = 2.20

L}

and A(1) 0.26 and 7 = 3.00 and B8(1) = 0.071 while Figures

4.4a-4, b-4 and c-4 correspond to b = 1.8 and are character-
ized by 7 = 0 and B(1) = 1.80, 7 = 3.96 and B#(1) = 0.24 and
N = 5.40 and B(1) = 0.11. Both these examples illustrate

the effect of d # 0 on the absorption spabtra of

molecules. Wheﬁ d = 0, the spectra are highly saturated

and the resonances are quite broad; when d # 0, the

¢  background is greatly reduced, and the rasonances are

narrowed appreciably, and oscillatory fringes occur in tpe

spectra as explained and discussed in Sec. 3.3" For fixed

& -

b, as n.Tncreases. the "real™ molecule-EMF coupling 8(1l)
differs more appreciath}ftom b. i

The spectra given in Figure 4.4 can also be used as -
models to help analyze the validity of the wvarious

- (4
perturbation expressions derived in Sec. 4.3. Ror example

.
-

- ~ 7 the (u,d)'éxpansion& or wrgs given by Eqs.(4.3:62)-(4.3.66).

yield results in ‘agreement with Table 4.1, only for N € 3

and b = 0.2, and 7 ~ 0.44 and 0.60. |
Hattori and Kobayashi [34) carried out frequency

sweep absorption spectra for a system characterized by a =

0.3 and b ~ 0.2, 0.6, 1.0 and 1.8. Solving for the

corresponding n values, one obLainéln = 0.12, 0.36, 0.60,
1.08. ‘Hencp these calculations showed only some of the t

> 8
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effects discussed in this thesis, for example oscillator}
fringes assocjat with-main resonances were not observed.

Also, the analysis given of the effects of d » 0O on the

[ ]
absorption spectra was carried out using a Flogquet secular

equation, see Appendix C, which is not derived from the
interaction representation used in Sec. 3.2. The use of

this representation led to a discussion of the molecule- EMF

interaction in terms of the importan;,moleculé— coupling

given by C(N) defined in Eq. (3.2.14). The form of the
~

Floquet secular equation used ;n'[34] is the d # 0 analogue

-

of Shirléy's result (23] and‘leads to results like those of
Eqgs. (4,3.62)—(4;3.66) and Eq. (4.3.80) which, as discussed
previously, cannot be used to analyze spectra like those of
Figure 4.4 reliably. For d » 0, these (u,a) expressions

correspond to making a power series expansion of the Bessel
function occu;ring in C(N), see Eq. (4.3.59), and therefore
canﬁbt account, f%r exampl:: for the oscillatory fringes ih.
the absorption spectra discussed in tﬁis work. gyrther,

the RWA arising from the Floquet secular equation of

Appendix C corresponds to the usual atomic result of Eq.
(3.3.2), and not the C(N) result of Eq. (3.3.5). The
effects of d » O in this approach arise from higher order

r

perturbation terms in the treatment of the secular equation.




- dipole moments and/or qf -staf1c electric fields on the

. . . ~ ~
exact two-level calculations of the absorption “spectra.

~3
*
L]

w SUMMARY AND CONCLOS IONS

—— N

One of the most ;hportant aspec2§ of thxé work is
the derivation, and application, of analytic expresblogs
for the phase- and long tlme—averaged transition probabil-~
ities (absorption spectra)-fqr the fwo;level model '
mplecular system that .includes 9t:he effects of permanent ©
dipole moments.and/or of'static electrio fleldi. The
spectra are assumed to be induced by a plane-polariged
s1nuéo1dal eledtromagnetlc field (ﬁMF)..

The generalized (molécular) rotating wave approxima-

tion (RWA) result for the single- and multi-photqn

absorption spectra, der ived 1n Sec. 3.2, 1s a closed form

< ) v .
analytic expression that is very useful .n gslplng.io

understand, 1imterpret and predict the effects of permanent

[ ]
spectra. The RWA 'regult for the qo‘.xng between the

electromagnetic field and the molecule, Eq (3.2.14), plays'

4 central roﬁgzln these lnterpretatlons and predictions.

N -

The usefulness, reliabilyty and range of-validity of the

generalized RWA expressions d?'a'fgpction gf the:paraméters
specifying the two-level moleghle and the applied fields

are discudsed in Sec. 3.3, with the help,offéeveréi sets of

e
3

model calculations where RWA results are compared with

. . . I

when the applied.statit electric fleld js Zeéro the

. - . * .
RWA expressions for the absorption spectra and the molecule-
. . - o . i : f -
* ’ FA S i
L) " 4 8 1 - " E
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EMF. coupling are particularly simple functions of the

transitaion dipolé, A1z, the difference between the

.

permanent dipoles of the states involvéd 1in the transition,

d = g,; - 4,,, and the magnitude, £,* and direction of

~

polarization, &, of the EMF .(Sec. 3.3;2). The effects of ..

permanent dlpolés are'relatlvely easy to understand using
the RWA. In general,’compared with the d = 0 atomic
problem, theipresence of permanent dipoles (where d * 0)

~

reduces the qoup}xng between the molecule and the applied
EMF and cad%és oscillations to otcur,'as a fﬁnctlon’Sf'
frequency, 1n the mo lecule-EMF coupling. These effects Are
ev1denp.1n the,qften draétle reduction of both reson&ﬁce
widths and dynamic backgrounds, which are seen when the

da = 0 spectra<ar§ contrasted.w1;h the analogoué d =0
spectra. The effects of 4 = O are furthe{ evident 1ﬁ the
oscillatory frlﬁges surrounding the resonance positions;
these fringes are absent 1in the atomic case. Since the
presence ofsperﬁanent dipoles reduces the molecule-EMF

coupling relative to the atomic problem, the molecular RWA/

expressions for the resonance profiles have a wider range

~

- ~
of validity as a function of the parameters of the problem,
’
- -
than do the corresponding atomic results. This molecular
RWA can be expected to play an analogous role in the

spectroscopy for species wi{h permanent dipoles to that

played by the usual RWA in the spectroscopy of atoms.

rPinally it is interesting fo note that as the coupling

strength parameter d-&:&/w increases, the RWA predicts the
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molecule-EMF coupling will eventually decrease with

increasing field strength; this prediction 18 in agreement
" with the gLsults obtained from the axact two-level
calculations discussed 1in Sec. 3,3.2. The possible

. .

~experimental implications of this are relevant: 1n some

cases applied EMF's with large magnitudes actuaily interact

weakly with molecules! In practical applications of this
prediction; the effects of neighbouring states on the

two-level transition’ under 1nvestigation will have to be
b ) o
taken into account, especially for intense appliea fields.

L4
The generalized RWA results for the two-level absorption
spectra, and for the molecule-EMF coupling, have recently

been. used by Jensen and Susskind {103] to help explain some

of the effects associated with the 10onization of highly
excited state hydrogen atoms by intense microwave
electromagnetic radiation. .

As 1n any RWA-type solution to the time-dependent

Schrodinger equation, the generalized (molecuiar) RWA be- .~

comes more reliable as the coupling between the transition
‘ .
dipole and the applted oscillatory electric field becomes

small. _In tbese‘cases the RWA accurazely predicts the
structure, resénanca widths ana the overall behaviour  of
the Qbsorptiqn spectra as‘a function of frequency.

Although £;:‘RWA is a 'respnance‘1fpproximation, it does
very wel} off resonance when the éouplihg strengéhs are rot

too'large. For stronger molecule-EMF coupling stréngths

the RWA d&n provide reasonable qualitative, but not
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quantitative, predictions for two-lewsl transitions as some
of the examples in Chapter 3 1llustrate.

The generalized RWA 1s not acceptable when the

static electric field 18 zero and the difference between
the permanent dipoles i1nvolved in the trangition'becomes
very small. 1n thlé limit the generalized RWA supports

2

only the one-photon transition, as do the well known atomic

N/

reéults, whereas physically all odd photon transitions can
occur. Further, the exact calculations 1ndicate that the
resonance pogltlons in the single-"and multi-photon .

absorptlon spectra are generally shifted from the RWA

~
predictions of ur:s = AE/N 'and that for d4d 2 0, this shift

can be to low frequency relative to the well known
Bloch-Siegert shift to high frequency that always occurs 1n
gtoms for larger atom-EMF coupling strengths. Also the
generalized RWA canno£~satlsfactor11y treat the dynamic-
backgrounds ;n.the absorpglon'spectra and the overlapping
of the gingle— and mﬁlti-phd;on resonances which are
characteristic of very stirong molecule—EMﬁ coupixng
strengths. The developﬁent of pertunbative eorrections to

the RWA can help in the understanding and in the analysis

of these deficiencies in this model (Chapter 4); the exact

calculations‘in Chapters 3 and 4 contain these corrections

. - -

through all orders to the RWA”
\ . . X
" The RWA expressions for the absorption spectra and

molecule-EMF coupling are more Ggomplicated when static

-

electric fields are’ taken into accéunt (Sec. 3.3.3). The



-

~ , .
? » .

_ - -
interpretation of the results i1s analogous to that for zero

statjc field if it is carried out in the representation
that diagonalizes the static part of the Hamiltonian for
the problem and if qddxtibnal features due to the static

background and the péssib%}ity of the mixing of states of

difserent parity are taken into account. Thus, for

example, both even and odd photon transitions can occur for
two-level systems with energy states of definite parity

(atoms for example) 1f there 1s a static electric field

‘present; this effect arises for a two-leve{ molecule with

perﬁanent dipoles :1n the absence of a static fi8ld, since a
non-zero permanent dipole 1Rplfes a state of mixed parity.

- Perhaps the most interesting example involving -
static electric fields considered in'thls thesis-1s that- of
Sec. 3.3.3B which examines the interaction of a two-level
dipolar molecule with static and sinuéoid&i electric
fields. 1In this example, the Boltzmann orientat1onall§
averaged absorption spectra for a two-level model -based on
the pentadienal molecule is evaluated as a fuhction of
temperature. For finite teﬁperatures theﬂmolecule is
hindered in its rotations relative to the directions of the
applied fields, by the interaction of the permanent dipole
of the initial state with the static electric field. As
the temperature increases Pach molécule-field configuration
becomes equaliy probable and the problem corresponds to a:
gas phase:;g}ecule freely roEating in the presence of the

applied fféids. Of particular interest is the effect of

.

-




g

: | 186

thedgermanent dipoles ich cause a minimum in the
< .

Boltzmann orientationally averaged spectra for high tempera-.

tures (free rotation) which 1s removed as the temperature
is reduced. The minimum occurs et the frequency w = AE

where AE 1s the energy level separation in the 1i1solated
mblecule. As the temperature 1s decreased the absorption

maxima on the high frequency,side of w = AE 1s reduced, and
the maxima on the low frequency side of w = AE 1is

increased, until finally for sufficiently low temperature

the spectra corresponds to the fixed molecule-static field

. conf rguration spectrum,where d 1s aligned with thé appl;ed

static field. The analysis and prediction of such spectra

can be carnied out by using the RWA results for the fixed

molecule-field configurat:ions required fég the orientation-

ally averaged spectra and'by us1ng ideasg as;oc1ateh with

the two-level transitions occurrfng in the static diagonal-

1zed representation. As pdinted out 1n Sec. 3.3.3B, the
spectra can\depend on the relative orientation of the

traﬁgition and permanent dipole moments and they also

~ v

depend ‘ofy the relaﬁive orxentations of the applbed static

and sinusoidal electtic ftglds [1041. These sort of ‘
spectra, as a function of temperatute, frequency and
o

relative applied'}ield dirgctions, give informat ion about

the magnitude and relative orientations of the permanent

o~ /

and transition moments inyolved,in the transition [104]

. ‘.J .' (
Perturbative corrections to the generalized RWA are

-

obtained’in Chapter 4, aasuming Eg-~ 0, and used to help’

P . -
- . .
’ . . ) »
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investigate and explain some of. the effects observed in the

exact two-level spectra but missing in those obtained from

the RWA. Correction terms to the RWA result for the

absorption spectra are obtained tﬁrough "third order" 1in

- [ d
perturbation theory in Sec. 4.3. The perturbation treat-
. . i A

ment for the problem considered here 1s difficult since the _

zeroth order energies are nearly. degenerate and, for

- example, they are of the same magnitude as the second order

energy, particularly around the'resonahc? frequency which,

in principle, 18 where the theory shoulg\BEhave‘best. It

——

was also found numerically that for model calculatxons

(Sec. 4.4.1), the €h1rd ordor energy, whlchﬁalso occurs 1in

e
the perturbative result for the resonance profiles, ‘was not

well behaved and it was removed from the result 1n order to
obtain a uxable perturbative expression for the resonance
profile. The resulting "gecond ordetr" expression fqr=the

N—photon‘resonancé‘profiie\isfcapable of introducing both

. i . ”

low and high frequency shifts of the resonance frequencies
° (relative to AE/N) and the dynamic spectral batkgrounds

absent 1n the RWA results for the spectra. This expressioﬁ

is relatively uéeful-qumericaily as 1063 as the molecule-

EMF couplings are not too large and thé.frequengies>of

interest are not too far from resonance. For st}ong

camplings, where the various resonances begin to over lap

significantly, the perturbativeé results for the spectra,

aside from qualitative results obtained from the RWA, are

.
~

not méaningfulu

|>)

-~
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bility, if 4 » 0, of low frequeggx/éhtfts in the resonance
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. . It seems, in gendral, that the usefulness of the -

perturba;iyq corrections to the RWA lieé in the-qualitatﬁye
and conceptual understanding of ghe’differencee between the
RWA and*exact slngle- and multl-photon spectﬁh An example
of thxs appllcat;on is the expansion of the shxft of the
resonance frequencies, from the RWA result of AE/N, in

powers of the couplings between both the transition and the ’

d-8¢ respectively, obtained in Sec. 4.3. This Tesult 1s

obtained by iteration from an implicit result for the

N-photon_ resonance freguency obtained by.the?'pérturbation '
theory treatment éf.the~prob19m_and.gives an analytical

proof, see also.ﬁattd?i and Kobayashi (34)., of the possi-
- -

frequencies rélative to w = AE/N. These 'nega€1ve Bloch~

res‘
Siegert™ shxfts are in contranstxnct1on to the usual . N

L3

shifts tp B1gh frequency seen in atomic spectra. The

N » and the analogqus

(@308, d-6¢) expansions of W oes’ . /

h]

-expansions for the fuli width at half maximum (FWHM) for
o . . o LY , R

the N-photon resonance profile, ’te not useful computa-

-

tionally if the coupling a;rengthg (gl}-eg/AE) and -

(d:.ee/AE) are at jall large:

It s very likef; that theause of ‘the Bbrturbatﬁ;n_

- .

theory analysis of the Floquet secular aquation for the ‘_
d # 0 problem will not yield computationaljy useful results
in general. ' If the effects of the fourth order energies

Epp(*), and other hlgher order effeg&s, not examined in
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detaxl in thxs theels are requlred to obtazn reasonable .
N\

results, the use of perturbation theary for this purpose-is

doubtful. Indeedflt would probably be easier to perform

/ . .
exacﬁ\semputatiens of the spectra w?qob-avoid the difficul- .

1 £ . ’

ties associated with perturbation theory and which are

relatively inexpensive coﬁputatienally for few-level

L)
*

systems.
. -
Most -of the conclusions summarized in the last two

paragraphs are supported by the calculations involving

I

giant dipole molecules discussed in Sec. 4.4.2, as well as -

those in Sec. 4;4.1l - The discussion of the gingle- and
( - v .
v multi-photon spectra of giant dipole molecules links the

rece’nt literature [34,35] with that of Sec: 3.3.2 and with.

P

- 3

> the use of the general;zed RWA to 1nterpret such- speect I

The analysis by Hattori and Kobayashi [34] of the effects

L

. ' B

of d # 0 oh the absorption spectra was carried out using a .
' ' <

.Ploquet secular equat ion not ‘derived from ‘theginteraction

representation developed in Sec. 3.2 which leads to the -

Floquet equations (Sec. 4. 2) used in this work. Their

-~

,procedure, which is a direct d » 0 exteneion of the d = 0
:approach used by Shirley (23], leaQB to the.glz-ee and gfgi.
expansions of the reseénance frequency shifts and the (PWHM)N
diécussed earlier, and cannot be used to analyze spectra

- like those—discussed in Chapter 4 and Sec. 3.3:3. The
molecule-EMF coupling C(N), given by Eq. (3.2.14), is essen-
tial in interpreting such apectta and it arises naturally

. A ~_ 5 .
. -in the treatmert of the probBblem discussed i!/this thesis .-

i
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K

The two-level system in the dipole approximatidn

studied here has long provided a basis for the study of a

e .

wide variety of linear and non- i1near interactions between
electromégnetic radiation and atoms and molecules
(3,17,19,105,106]. While two-level calcﬁlatisns are
certglﬁly relevant and important 1n understamding the
interaction of radiatxon and maFter, tﬁey should be
regarded as médel calculaglons unless veri1fied otherwise in ¥
explicit applications. The limitations of the two-level
sysbem As an _approximation for "real” atoms and molecules
have been discussed prev1ously, see for example -

[19 Eé)45 86,107]. The valldxty of a two-level transition

1n a many-level system can often be estimated by combaring
thsntgo—level RWA full wldths;at half makimé for the -
va;ious possigle transitions arasing from the. lnitlal’sﬁate
~//v‘to the flnal state of 1Qterest\tand to all nearby

nelghbouang states of the {inal state, witth the energy

separations between,the final ‘and 1its nelghbour1ng states.
}

ThIS idea, and the ‘RWA results.of Chapter 3, have recently

been used to help interpret the spectra of two- and

. many-level moleculegs which are adsorﬁeé-oh a surfacé
[98,108] ar -intéracting with applied'htatic and electric_
fields [lBQ]i . . ] ; Do

-

Fiﬁally, mogt-of tﬁe results in this thesis are

r

ap lzcable, within the limitations dlscussed ‘above, for
P

both strong and weak electromagnetxc field strengths. In

I -
.

8some cases, however, intense fields and even pulsed rathep

. e
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than continuous wave lasers may be appropriate. For |
example,'to invest igate some of the effects of d »° 0,
namely those nee&ing rather large values of the argument
(d-ét/w) of the Bessel functioﬂs occurring in the
molecule-EMF coupling given by.Eq. (3.2.14), large f1ield
amplitudes may well be usagul'[34]. The availability of”

. .
lasers of high power has recently been reviewed by New

- {109), see also [110,11l1]J.
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APPENDIX A
EXTRA- TERMS IN THE EXPRESSION FOR THE TND—QEVEL ABSORPTION

SPECTRA WHEN p/w = IRTEGER

If p/w i5 an integer then the following terms, see
Eq. (3.2.39), should be considered in the derivation of the

+ phase- and long time-averaged transition probability PpN:

A - exp(1Ys1nd) _ i
" -
* lim, ., = 1
x 1ALB_ J(Y)ex ik0
Tl 1A+ = L k(Y)exp(- )[IK-N+p/UTDT o
kaN-p/w

x (exp(-i[k-Ntp/w]wT)-1)

By making use of Egs. (3.2.¥5) and (3.2.28)-(3.2.31), Eq.

(A.1) can be written explicitly as ‘
. : [ 4

) * iA_ B} b')i Jk(y)exp(-iko)[Tk_N_‘l)/Um—j
k#N+p/w
- x (exp(ii[g—w—p/u]uT)—l)
+ AYB_IN-psw(Y)exp(-i[N-p/w]d) ) | —
+ A-B:JN+;/ugx)exp(—itN+p/qjo))
- exp(iYsind) [A.:B-JN_p/w(Y)e‘xp(—i[N-—p/w]O) )
T A—B:JN+p/u(Y)3xP(“i[N+P/U];;]
q - ‘ ¢ : (A.1)
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’ o

&= %§7f9pr/w‘Y)°!P(i§°)[ZC(N)(p-(v—Nw))coaze

~ ((p-(7-Nw))2¢* - C2{N)§)sin2e]
7

—Jn+pK<(Y)( iBs) (2C(N) (p+7-Nw) cos26

l

+ ((p+v—Nw)’€ - C2(N)¢)sin26]}

° : (A.2)

-

~

The terms in Eq. (A.2) dependent on phase involve exb(-i%b),
(exp(-iﬁb), £’exp(—i£6) and their complex coﬁjuga@es.' Using

/
the expansion fr §{ given by Eq. (3.2.44), the relevant

phase integrals- are (p # 0): “\.\
1 an . :
1. : 5= |27 exp(-iEojas - 0 (A.3)
I 1 Jzn .Ps ° E
2 " 37 Jo €9KP(jlw )ao
= %ik-ngk(Y)[Efé757a][exp(ki[k—N+p/u]2n)—1] +JN_§/Q(Y)
k#N-p/w
= IN-p/w(Y) . _ - (A.4)
and
3, . ,
1l fam _x _iP =
I = 35 [37 e*exp(=1B8)ds = Inypw(¥) (A.5)
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Using Eqs. (A.3)-(A.5), the phase-average of A is given by

— =1 -fan ®
AT In A ds - ' . -

- v g

= g5l (P+Y ) INep (1) - (PT(¥-Nw))IN-p/w(¥)1?5in2e

:qu (A.6)

3

* -

-

Thus, see Eq. (3.1.32), the'Eontributxon of the integer p/w
Y

terms to the phase- and long time-averaged transition

probability PoN is

aPoN - ysin2e{a + AY)

= :%5;[(p+7—Nw)JN+p/w(Y)-(p-(Vij))Jn—p/w(¥)l’sin’ZB 4
R ‘ A N @an T
; \

AP,N was calculated for the e&émples discussed in
Sec. 3.3.3. The results corresponding to Pigure 3.7 are
summar ized in Table A.1l énd_it can be seen, for this
.example, that appN is insignificant relativé® to PoN except
for frequencies far off resonance where it can be as large
ds 11% of PoN. However, at these frequencies the RWA
expréésiona for the N photon resonance érofile are no
longer reliable. Thus the contributions of APoN are not
“included in the‘éalculqpions of PN in the main text of

this thesis. For the other examples cons idered 1n_Chaptbr 3

1
2
-




‘\

[

4

..’

aP,N is insignificant for all relevant values of -w. %

¢

Table A.l1. Values of PN and aP,N, given by Eqs. (3.2.47)
and (A.7) respectively, for values of u;AE -
corresponding to integer p/w and relevant.to . ¢
the spectra of FPigure 3.7. The RWA resonance
< . .
values for w/AE, for N 7'1;2 and 3, are 1.5587,
0.735 and 0.481, respectively (see Figure 3.7).
N p/w 'W/AE PoN AP,N ) ’
1 1 0.763 0.1827 -0.003944
' °
2 0.485 0.1851 -0.004619
.3 0.356 0.2262 . --6.002873
2 1 0.517 . 0.2671 -0.0001764
. > -
1 1.403 0.2571 -0.027b64.
2_ 0.375 0.1962 -0.002161
"3 1 0.382 0.3109 -0.000002919
. .
1 0.702 0.2601 °* -0.01118
s
- 1.413 0.2498~ -0.02750 ¢
£ 3 —- )
Q »
. / C
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* — APPENDIX B

\*\ ALMOST DEGENERATE PERTURBATION THEORY

The almost degenerate perturbation theory used Lo,

derive perturbation solutions to the Floquet secular

- \
3

equation 1n Sec. 4.3 is that of [32,33] and 1s summarized

here in a form suitable for this application. It 1s -
designed for use when a.sei of states of a quantum
mechanical‘system interact strongiy ag the résult;éﬁ near
degeneracies or of complete degeneracies. This Lréatment
redubes to the usual é;;leigh-Schrodinger perturbation
equations [13,141112] in the limit of complete degeneracy
(113]. The follbwing discussion pertains toztw;i;lmost
degenerate energy states which is the problem of in;erest.
in Sec. 4.3. The energies are obtaiﬁed through fourth
ordir and the wave functions through second order from éhe
perturbation theory. -The'results for all orders of

perturbation theory\eag;be obtained by applying'generai : .-

results and procbdures_iﬁ the literature [32].

[

-

To begin, consider the following Schrodinger wave

equat ion ~ .

(H - Eg)¥p = 0 t = 1,2 ‘ (B,1)

where H is the Hamiltonian, and Ej and ¥ are the energies

and orthonormalized wave .functions, respectively, of the

two almost degenerate energy‘stgtes t. The ¥, can be
] . .

3 >

2196 -

7/
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»

‘written as a linear combination of another set of two

or£honormaI basis functions °P such that
~ . AN

2 )
¥y = Y dpg - (B.2)
p=1 = P ,

- —

®Using "Eq. (B.2) in Eq. (B.l) and then multiplying by ®

=

b
and integrating over all coordina&e space yields Lhe
< .

/

frllowing
' i B
2 ) .
21[<OblHl0p> - EpOppldpr =0 , b =1,2 (B.3)
p= ¢

.

The ® can be written as linear combinations of the ¥,,

2 -
® - 4 , = 1,2 B.4
P z§1 tSep P , : ( )
)
>
where the square matrix d is the inverse matrix of €. The
- atisf ’
P s y )
2 'y
HO = 31 ¢ _E B.5
i I (B-5)
Substitution of Eq, (B.5) into (B.3) yields
— ‘ N
2 .
L [Ep--FeOpbldpy = O © (B.6)

p~1
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. The eigenvalues, Ep, and the eigenfunctions, ¥y, are

obtained using standard techniques [4,82,114].

eigenvalues are

Ey = %(Ey +Ez7)2p

\ \

where
P~ [%(Ez3-Ey )2 + 1E;12)%
The eig?nfunctions are given by
T ¥y = d;, 9, f dz,f?z

where

- L |
dy,- - dy,» - [8_1_i£§%%_§LLlJ

- - s .
dl": - exp(ial*)[g,‘_"—(%ﬁlﬁ] : exp(j_ol+) -

- - % '
d, _ = exp(io,_)[P '*(ggz Exgl] ;exp(idy-) =

The

(B.7)

1B.8)

(B.9)

(B.10)

S1E Q0

E,,

(B.12)

O
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Hhoﬁ‘513 is real the results given above are analogous to

those used in Sec. 3.1.

r

In order to obtain the °p and the Ebp’ perturbation

theory is applied to Eq. (B.5) by writing
H = H(®) + av , (B.13)

where X 18 a perturbation parameter, which can be set equal

to one at the end of the derivation, and by expanding &

£
and Ebp a? follows
f-" ~ .
{ > - ; alel”) (B.14)
P~ % P :
‘ 3
and
w -
E, = 1 a8g(®) _ (B.15)

bp 8~0 bp

!
-

Here, and in what follows, the indices b and p are def ined

! <

to take on thg values 1 and 2 only. The unperturbed (self -
adjoint) Hamiltonian has a complete set of known ortho-

normalﬁzed eigenfunctions which satisfy

q q q

H(Pglo) "o gl0)el®) g 21,2, . ., (B.16)



S

\\!Subatltution of Eqs. (B.13)-(B.15) 1nto.sq.'(s:5)‘yiexﬁs
~ . L

-

-
~

2 =

H(0) E lmo(m) + Vv E xm+1°(m) - T ¥ E xmo(" (m—#j
m=0 _ - m=0 P b<3, m=0 10 bp
- . ‘ : ' (B.17)

The pertiurbation equations for tﬁé various orders of wave  ~
\

functions and energies are obtained by equaﬁ;ng th® terms

of order m on the right-hand s:ide of Eq. (B.17) tb those on,
the left-hand side. v

~ -

Thus the zeroth order Qavg\equation 18

e - o
H(0de(®) . (0)g(0) . B
P JEIEJP J . . B-18)
t
It follows from Eq. (B.16) that o
() = .(0)s " S
®op’ - fp bp (B-}?) .,

The first order wave equation is given hy

a2

. 2 '
. (0)4(1) (o) _ (0) (1) (1) p(d)
Mo %7 T V% j§1 (93 "E3p” * %5 "Fip’]

., . , ‘ o/

- (o) (1) (o). (1)
3§1 oJ Ejp + Ep op. TN

~

(B.20)
Multiplying Eq. (B.20) by déo).y and integrating over all

.




L] ) . ) - *

space, yjields . .

. 2,
@(®)1g(9001)y L 0l®)viel®)y & T (0f®)1g(0)yElt)
q P . q p ~ 3a1 g 3 Jp

< : .- + ) (0l8) 19(1)y
: p q

. (B.21)
) s
. . | L
An expression for the first order energy is obtaimed by
using

-

X
'(0)' (o) = ,3 )
.(O .Oj > Dj | (B.24&) ',

<@ () 101y o (g ()g(0) o(1)y o p(0) g(0) g(1),
@y IH o N N = Eg <o " 1oy .
* (B.23)
and by defiriing ' . )
. _ -
' '
(o) (o) ' -
Vi - V. : B.
<@g \ ®, >. " Vap | (B.24)
Using Egs. kB.ZZ)-(Ba2§1 in Eq. (B.21l) with q‘-hl 6; 2°
7 yields " - . -
- - ’.
- . ! . ' , ry ) ’,_
. Cop(1) _ c(0) | (), a(0) o(1) -
gbp . (Eb: sp ) <@ {¢p ’_*'pr .- (B.25)

Similarly the second order waye equation is

o



N }‘.. " B . t : 4 1 . Te ’ N . - .
.. .;-‘ :-‘ . - . . . &_Q_
. e i 2 “ ' he . .
(e),(2) () _ () (2)y . .a(1) (1) (0)g(2)
"_ '°p * vfp j§1 [°j Ejp * °j ij 1 sp_ °p
e ' : (B.26)
< N

and maﬁépulatiops analogous to those used. to derive Eq.

(B.25) yield the following expression {oij}hg second order
: R N _‘s i .

. o
energy .
o . .
. (2¥ _ (8) _ (o) (0) , .(2) (v) (1)
Ebp o= (B Ep ) <@y »op > +. <o TMvIe >
N - .
2 i * ‘ (e *
-1 e(1) 0l 5(1), (B.27)
SRR LN .

;
-

LY

Using the differential equation for the third order wave.

it .can be shown that the third order énergy is

equation,

(3)  _ . e(0) _ p(0) e(0) 0(3) (0} m(2)
E (B, E, 0w 19 70y 4+ @ P iviey ‘>

e bp p’
;':‘. .- -; '1;(:)20(°)|¢(’)) + E(;)€°(°LT°(1)>]
‘ g%y e e b B %
3 , . _ (B.28)

» . -
. ° .

Eqs. (B.2S), (B.27) and (B.28) can: Be further

-— —

‘simpliT isd by making- use of full normalization (32,33) to

complete the specification of the og“’. This is dode by

" requiring S .
.requirp | . )

s = <@ 10> ' Y (B.29) _



~One of the advantages of this type of normalization is that

L g;p if H is hermitean [3@]2_.Using'8q. (B.14) in Eq.

" (B.29) yields - o o o~
L' e . . ’
2. . E~ E' x“(@‘?'J)nc(j;>‘ ' - (B.30) .
pb WO. j=0 P ) b . ’ T

| ey, - \<cé°){§é°) : . (B.31) .
— : | o | | ‘. ( p
. Thgrefote the coefficiénts'of all Lhe olher powers of the
pefturbation.bh;ameter A arge equal to zero in Eq. (B.30)
giving : '-_ - | .

. \
- m

r <o‘“’3)|oéj)> = 0. (B.32) -
j=0 P . o
.‘ . - ‘ ’n
L Y .
When m = 1,2 and 3 respectively one 3Ptains
. : . )
¢ .
- (1), o(0) (0) , (1) - . -
) @ 19,20+ <@ 1ot o (B.33)
e a n ea(20,0(0) (1) 1 0(2)y '+ (o9 gl2) '
) A AL A S I RS LA IR ML\ |
. - : (B.34)
hf and Ps




: _ ' 04
- (3 m(0) (2) , a(1) (1), 4(2) (0) ,a(3)
0 . <cp\#}ob > +.<op 1o, "> + <op 1@, *"> +.<op LA
(B.35)

S -

The condition of Eq. (B.32i only detemiqes' the real part of

<o(°)|¢ém)> since ST o . : '
| - Y
<¢(°)|¢(&)> 3 @™ e, o M5 <;(J)|o(m'j)$
p b "~ p b 2 5=1 p b .
a -
. IRy (0) , q(m)
p ‘ < T2Re(«o " Tre ™y)
~ . (B.3%)
The imaginary part of A(o;()o) Igém)) is fixed by the condit ions
(33] ' '
(0) gam+1)y, _ 0 (3) g(amt1-3)
@ % 1oy .> jgl <°p,.f°b- > (B.37)
3 .
\
and )
¢ . -
“p b P b SOUEANS TS |
A ol
‘ (B.38)
: )
'..
¢

’

which are consistent with Eq. (B.36). Using Eqs. (B.37)

-
- N . . . e : S

k]

and (B.38) ln/qu. (B.33)-(B.35) yields the following

(0) (1)) ..
f°p AR 0 (B.39)
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<oé°’:oé”> - —g(@é"l@é") : " (B.40)
and !
<o;°)|gé3’> = -<oé‘)|oé”> " (B.41)

Eqs. (B.3S)-(B.41l) can be used to simplify Egs. (B.25),

(B.27) and (B.28) to obtain L ~
. (1)
Egr Vop ’ (B.42)

(2 _  _ (0)_ (o) (1), (1) (o) (1)
E g(Eb‘ E 1D |op >+ () tvnop >

bp [o] b
. _ (B.43)
and R
(3) _ _o(8)_ _(o (1), o(2) (o) (2)
Egy) = (B Ep.))gob 105> + <oy P iviar?)s
’ 2 (2, a( 1)
; + y ¢ g <ob"ro§ > ~  (B.44)

yoy P

<. Explicit expressions for the first and second order

wave functions are obtained by . expahding in pge complete

v s

sel of zeroth order wave functions defined by Eq. (B.16)

(m)o(n)

o(™)
sp 8

p

= T c , m=1,2,... (B.45)
. B8 .
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_ This result is the so-called spectral expansion of the m-th
order wave functions and in what folléws we wi1ill also derive

spectral expansions for sbme of the perturbed energies,

g(m)

bp )
Using Eq.‘(B.4S) with m = 1 1n Eg. (B.20) gives
u (1), (0) (0) 2 o0, (o) _(1)g(0)
Dy (Dglo) | ve - £ o %k ; y c (Vg
o SP ®s P ;51 2 ip Fp sp s
. (B.46)
Multiplying by ¢é°)* and then i1ntegrating over all
coordxnaée space g1ives -
£ oel2ol®) go) g0)y | (@l®) yial),
s °P q S q P
z 1) ) ( (0
- 5 M@0 ety | glo) ¢ ccl)<®( °) gl0),
j=1 Jp q ] - p S p q 5
(8.47)

Using manipulations similar to those used to obtain Eq.

(B.25) yields

, .
(0) (1) _ (1) (0) (1)
E \"4 = E: 0 £ B.4

a ap ' Vap L Ep®ia " Fp Cop (B.48)

when q = p, Eq. (B.48) becomes

(1)
= -V A
€pp . PP (B.49)
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whichAagrees with Eq. (B.42). When q # p andeq < 2, i.e. -
\
q = b,
- .. ) (l)
£ -V
(1) | bp  bp - )
® (o) (o) ° . kb (B.50),
(Eb ] Ep ) he

\ which follows from Eq. (B.42). If q # 1,2 i.e. 4> 2 .

-V \

(1) - qp (B.51)
qp (e{®7_ glo),

q P

C

An expression for c;;) is obtained by using Eq. (B.45), with

m = 1, in the normalization condition giyen by Eq. (B.39)
N \ : -
with b = p. Thus . ! 5

-

(1) ,0(0), ,(8) _ .
T csp <op tos > = 0 . _(3.52)
and since <@(“)l0(°)> =0
p 8 , sp
(1) .
= 0 . .
“pp (B.53)

T

Using Eqs. (B.50), (B.51) and (B.53) in Eq. (B.45), with

m =1, yields

o ol . _yp sp ol°) (B.54)
P 8)
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%

v 8
Similar manipulations of Bq. (B.45) in Bq. (B.26)
for the second order wave function gives the fcilowing
express1on
) e (1) 2 [ (2) (1) g(0) yg(1)
(92 L @ yielt)y - ¢ [Ee, + E(Y (%) 10(2))
q qQp q. p 3-1 Jjp 39 Jjp q J
(o) _(2) ‘
+ E B.55
p “ap ( )
when q -~ p, Eq. (B.55), wikth Eq. (B.39), yields
() - @ vielt)y (B.56)
PP P P
Py
which agreeg with Eq. (B.43). When ¢ # p and q ¢ 2 1.e.
q - b,
g0 g(o)) () _ (2) | g(0) (1)
(Eb Ep )cbp Ebp (<Db I\/I.<bp > ’ b 2 p
; o (B.57)
Using the expression for Eé;) given by Eq. (B.43) yields
’
S——
(2) _ _ (1), 4(1)
bp _F @, lop >
: /
g = VvV, V \
bs sp ,
= o E "“l r b 2 p
B)Z (E(OT‘ E(U))(ezo)__ g(u)) L ]
8 b 8 p ®
< (B.S8)
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When q > 2 ) RN
: <% viel1), 2 (el ol1),
C(z) - p + . E Jp q J
. qp (3(0)_ s(n))e j~1 (810')_ ETO))
q p q p
&
w v v
= 7 : gs sp .
8)2' (E(u)_ E(o))(g(u)’_ E(o))
. q p 8 - P .~ '
¢\
2 VquJp ] .
.= C © (B.59)
Bt (0)_ L(o0) (0)_ (o) i
i=1 (Fq Ej )(E'q fp )

Using Eq. (B.45) with m = 2 in Eq. (B.40) with b = p yields 4

the following expression ‘&
(2) 5(0) ,(0) (1) | (1) - ~
@ 1® > = -5 <® 1® > . B.60 -
. L CSgp ®p 1% ¥ O ey )
" 3
v

which gives

(2) _ Yo (1), (1) "
pp " <¢p. wp > (B.61) &

o]
.

Using Egs. (B.58)) (8.59) and (B.6l1) in Eq. (B.4Sj, with
' <

‘'m = 2, yields % ' j

- . A
2 .= V.V
(2) N rs sp (o)
® - -5, L [ l -—]o
P ‘- (0) _ g(0), (o) _ ,(o) r
- r=1 s>2 ; (E8 Er )(88 Ep )
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- e @ v Vv
. . ¥ > [ rs' e ] ' o
r>2 [ 8>2 (55”— sg"))(sg")— s‘()ﬂ) _

2 V v - o
. -7 [ ry Jp _” o(9)
¢ 3-1 (E£0) g0 ))(E(o) (0, r

Ey ®p o -
(B.62) .

Substltutlng Egs. (B.54) and (B.62) into Egs. (B.43) and

(B.44) gives the spectral expansions for Lhe second an§§¥
)

third order energxes,

{2 o (el E(d)) ; o __zggvgp__ ]
bp ‘ b p : {o) _L(0) (o) . (0)
¢ 822 l(E £,°) (&, £,°7)
d o0
3 bs 3_8p ) y
RS 38 * (B.b3)
. 62 (E“’) z-:;”)
O —_—
and ’ ," “ \\
. \ an @ v \"4 v
(3) (0)_ ,.(o0) bs 81 tp ' ]
E (E ) 5 — oy .
bp PP Ty e5al (e("T z—j)(etj (3)(P(°5 (”)
. (
. - 2 V., V.V

(o) (o), . . bs 8 : )
- € non e ). - l

“b Po " w2 j-alcel)- eé“j) T") %”)(e 5::)”) /

¢ 2 o v Vv
br re o
-x.F L - ¢ ]
N r-1 8>2 (er (ﬂ)(b(” ‘é”) N
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3=l 832 L(B;""- By T)(Bg - ByT) :
e .
, 0t ; [ ; A __VorVrsVsp ]
(0)_ (o) (o)_ o(0)
r>2 leyz Lg®- %)y~ ("))
T e
2 vl ] (o.00
=1 Ll el elet- el

.Also required for part of the analysis of Sec. 4.3 -
of the main text, is the spectzal expansion for the fourth

order energy Eé;). This can be obtained in an analogous

fashion to LRe derivation of gqs. (B.63) and (B.6%)

.following the work of Hirschfeldef f32)}. It can be shown

-

that

. - . Sy
: ~ -
. 2 .
(¢) _ (o) (3), _ (3) ;(0), (1)
els) = ol ivield)s = gp) @l ieft)
. o
-~
CE el aD)y S GINON
-1 P 2 p-1 P
(B.65)
)
where from [32] ' ©
o (9) u1e(2)ya(0) ] °
= [segtlivief?hse! 2 (1) (3)n(0)
®x L (0)_ g(o7, A B A
p>2 (g~ ")) Y .

’
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2 ({® IO pL + E {® IO >®
AR Elk E GO e .
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p>2 t=1 . Ek - Bp )
' N (B.66)
Substitution of Eq. (B.66) ingo (B.6S), followed by
.substitutly of the spectral expansions for the perturbed
wave functions i1nto the resulting expression, ylelds
E.'(‘) - -y ; ; ;: vlrvravipvpt ]
PP 152 52 r=1l¢eC®)- (°))(E(°) )y (gle). glod,
= P T B P
+ E ; ; [-\ vlrvrs sp p! .._]
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- 3 \ m
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Perturbatiye expressions for ¥; can be obtained from
Eq. (B.9) by making use Pf the expansions for the Op,'given

" in Eq. (B.1l4), with A-1l. Keeping terms explicitl* through

!,

second order #ields

v, - é dps (08%) + (1) +‘o(” + O(3F] (B.68)
p=1 FT. P P P

where 0(3) represents third or higher order terms in Op.

Eq. (B.68) can also be written in terms of the complete set

of eigenfunctions of H(®) to obtain

13
.
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ve=1
where
- e ’
= am) ‘ )
cv't = mgo cv't (B.70)
' —/

aﬁd Céml 18 the m-th o?her contribytion to Cq s

Expressions for the Cé ), through second order, are obtailned

by substituting the expressions for 0(1) and 0;2)

r

Biven by -

Eqs. (B.54) and (B.62), into Eq. (B.68) and then .compar ing

the result with Eq. (B.69):

ci?i =.d,,s ; Ci“l dy, s (B.71)

=

(1) LAY
c,ly -0 ; Cplp = 0 (B.72)

(1) 2 -Vr ]
c = ¥ dp, ¢ |- ., r A 1,2 (B.73)

r,t p~1 P (E£°§ . E(o))

(2) [ oy vlsvux
) o |53, Lot

’ 8>2 L(E, o) \

+ d ) ‘5 - <_V18V82
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V. Vv
rs sp
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j=1t(8, 53 Y (B, sp )
(B.76)

The coefficients dp,t are given by Eqéﬁ (B.10)-(B.1l2) and

the required energies Ebp arq given by the perturbation

/

. expangion of Eq. (B.1l5) where explicit results for the

eflergies through third order are given by Eqs. (B.44),

'(B.63) and (B.64). In obtaining Eqs. (B.71;-(B.76), the

dp,: are taken to be of “zeroth-order”™ overall.

The perturﬂg—;ve solutions given above are used in
Sec. 4.3 to help solve the Plogquet secular equation
perturbat ively. 'The relationship between the Floquet
secular equation, which is a special case of the general
secular equation with near degenerate energy roots, and _the
perturbation Lreatment of two almost degenerate states

fo118ws. ) , .
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The Schrodinger uave,eﬁqntion is <

<

He, - Ep?y, , L =~-1,2,...,= '(8-13)

* A\ 3
where the ¥, are the eigenfunctions ol H with energies Ey,-

The wave functions can be expanded using the complete set

of eigenfunctions of H(9) such that

;‘
o - T cero'®’ ' (B.78)
8 . .
s=1
. ) .
Using Eq. (B.78) in Eq. (B.77) yields
E1[”°éq) - B {*) Jeqr. = 0 ' - (B.79)
s =
(o)* e

ﬁult1ply1né by °r and 1ntegrating over all space gives

the following system of equation.:

.

-
F
E [HrB-ELOBr]CGL = 0 ¢ L. - 1"2‘7;..,“’ (B.GO')
8w]
-
where
Hrg = <o:°)lnto;°’> . , (B.81)
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Porturbution‘expansions of Eq. (B.80) can be-used to obtain

the ¥, and Ey, (31,112,1158-117]. 1If two of the ené%sy

r.<><.:$ts~, E, and E, say, are almost degener\a\t'e‘when v - ‘H;i{(°5"—'
is small, the perturSatio& theory derivoa in this Appendix
can be applied to obtain {esults for ’{/and ¥, and theair _

eigenvalues. The corresponding 2 x 2 near degenerate

PR
— - S

portion of the secular equation ariélng from Eq. (B.80) ia¢f

identifiable with the states (1,2) or (-,+) of this

- —

_Appendix. : - .
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"gd‘ i SECULAR TION

“A ver* different type of Ploquet secular equation is
obtained if the transformations leading to thé "Bessel
function solution® (see Sec. 3.2) are not used. In what
follo@g, the ngguet secular equation obtained by following
Shirley (23}, with d's incld;;d: will be derived 1in order
to illustrate thé drawbacks i1nherent in 1t for d »,0 |
problems. .Tﬁis Ploquet approach is that used by Hattorl‘
and Kobayashi (34], see the d1scqss16n of ‘Sec. 4.4.2.

. To begin, the Hamiltonian given by Eq. (3.1.8) with

&s‘OlS

<10 01
#(1) - sE-d- B[ 9 - wiE[9 ] ..
ey @
and the relevant differential equation is
d - .
dges(t) - M(v)c(v) . (C.2)
This differential equation is transformed into a phase
facto form (31}, see also Sec. 4.2, , using r
\‘\J. — [}
'C(l,:)(t) - K(;,; (Lyexp(xyiNwt) (C.3) ,
. ~18 : ' -
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where N = 1,2,3,.... Substituting Eq. (C.3) into Eg. (C.2)
yields
- iE—K(t) = H(t)K(t) (C.4)
dat= = =
where
Hya(t) = -Hgaa(t) = -A+yd-E(t) (c.sy ,

where A = %(AE-Nw) and

Hia(t) = (Hap(£))* = =giz-E(t)exp(~iNwt)  (C.6)

E(t) is given by Eq. (2.2.1) and can be written as

=~ ' °
E(t) - y6t[exp(ifwt+D]) + exp(-i[wt+0])] (C.7)

» Substituting Eq. (C-4) into Egqs. (C.5) and (C.6) yields

Hy1(t) = -Hga(t) = -A + xd-ee[exp(iwt)exp(id)

-

+ exp(-iwt)exp(~id)]}

(C.8).

P
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Hpz(t) = (Hz(t))" = -yu,;-eclexp(-i[N-1)wt)exp(id)
+ exp(—1[{N+llwt)exp(-10)]
(C.9)
F |
The FPourier coefficients, Ha,(n“k)[ occurring in Eq.
(4.2.17) are easily identified by comparing Eys. (C.8) and
(C.9) with Eq. (4.2.13) and are given by
’
H{Z) < CH{9) - -a - —g(BE-Nw) ; 1¢c.10)
MY - oY) - kd-ecexp(10) (C.11)
[ 4
. H$TY) - -u{3') - wd-ecexp(-108) . (C.12)
s
HIM™ - wd™ 2 0, m - n-k 0,21 ' (C.13)
|
and =
T L T O L P A Lo (C.14)
-(N-1) (N-1)

Hya . ~ (Hzy )" = su,,-ecexp(10) (C.15)
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As an example consider the one-photon transition

with N = 1. Using Eqs. (C.lD)-(C.lG)-iﬁ Eq. (4.2.17)
yieldé the secular equation fbr the one-photon resonance,
see Figure C.1l. When AE ~ w, the stateé 0.1 and 0,2 are
almost degenerate. An RWA solution can be obtained by
solving the 2 x 2 secular equation defined by these

states. Thus, one obtains

~ fpyo-0e12 ,
P2 ~ (a0 T T eeTIT (c.17)

-

which is the usual RWA, see Sec. 3.3.1, and does not

" contain the effect of the ' d. When N > 1, the off-diagonal

elements in the 2 x 2 secular equation are zero (see Eq.
(C.i3)) and hence the' RWA solutions_are Zero. Since’tgz
effect of d can be obtained only by applying’perturbation
theory to Figure C.1 to determine ‘higher order corrections

to the RWA, PFPloquet secular equaﬁions in the form given by

Figure C.1l were not used in the main text of this thesis.




Figure C.1. A portlon_of the Flogquet secular equation, for

N = 1 only, given by Eqg. (4.2.17) with the

Hay(N"K) defined by Eqs. (C.10)-(C.16). Here

c = —5g1,-e£exp(}6) and-D = yd-éftexp(10), & -~
-~

.5 (AE~-Nw) and the gq's are the eigenvalues

obtained by solving the secular equation.
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EMP. coupling are particularly simple functions of the
transition dipolé, g12. thhe difference between the

permanent dipoles of the states involved in the transition,

d = i, - 4;,. and the magnitude, ¢&,* and direction of

~

polarization, ‘&, of the EMF .(Sec. 3.3;2). The effects of .
permanent dxpolés are‘relatlvely easy to understand using

the RWA. In general, compared with the d = 0 atomic

problem, the.presence of permanent dipoles (where d = 0)

~

reduces the coupling between the molecule and the applied

EMF and cad%és oscillations to occur, as a function of
frequency, 1n the molecule-EMF coupling. %hese effects ére
ev1denp.1n theﬁqften draétle reduct ion of both resonéﬁce
widths and dynamic backgrounds, !h1ch are seen when the

d = 0 spectra.aré contrasted.WL;h the analogous.g =0
spectra. The effects of d = O are further evident 16 the
oscillatory frlﬁges surrounding the resonance positions;
these fringes are absent 1in the atomic case. Since the
presence ofspermanent dipoles reduces the molecule-EMF
coupling relative to the atom1g.problem, the molecular RWA,
expressions for the resonance profiles have a wider range“
aof vél1d1ty as a funéEion of the parameters of the problem,
than do the correspondxné atomic results. Th1:lmolecular
RWA can be expected to play an analogous role in the
spectroséopy for species wi{h permanent dipoles to that

played by the usual RWA in the spectroscopy'of atoms .

,Pinally it is interesting fo note that as the coupling

-

strength parameter d-ét/w increases, the RWA predicts the
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