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ABSTRACT

The‘orthogonally-generated polynomials proposed by'R.B.
Bhat as admissible functions for use in the Rayleigh-Ritz
meth for dynanmic and static problems of single-span,beams
and (rectangular plates are’generalized for use in the study
ofAvarious more complicated beam and plate problems. The
orthogonal polynomials themselves ate discussed intsome‘

detail + These functions are then used in the Rayleigh-Ritz

method to obtain solutions for the free Vibration problems - of

\Vslender beamsr thin rectangular plates, a box-like structure,

and thin. annular, circular and sectorial plates. Various:

¥y complicatingLEfEects are included.

g

N -

The approach presented in this thesis is- straightforward
but more general than the approaches presented previously in
the literature. The accufacy and versatility'of the approach

are demonstrated u!ing various example problems.: Npmerical
results are generated both for new problems and for problems

. o

for which compari!%n results are avaitable in the literature
. ‘ °

For 'he vibration problem of’slender beams, the analysis
is presented ‘for beams subject to complicating factors which
inClude the existence of an arbitrary number of concentrated
masses (with or without rotary inertia) and/or intermediate
simple sudborts, and subject to any combination of free,
simply supported or clamped boundary oonditions and/or

. elastic supports. The effects of constant axial loading

. . T Li4d ' ) _ ST

.
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(%itper constant directional or tangential ﬁollower‘fetce)

n_end variable cross section are also included.

For thin rectangu{ar.plates, the analysis is presented
fq; rectangularly orthotropic'plates (which include the
isotropic case) witlr eny number of intermediate fine supports
andepoint supports. (The Ea;:angian multiplier method is-

‘-used for peint supported piates.) The analysis i1s further

'extended to one type of box-like structure.-

s The analysis of annular plates includes the effects of

pplarﬁgithotropy, lntermediate concentric ring supports and

é?ialiy varying thickness By permitting the inner radius
+o become very small circular plateg are also treated

lnclpdiT? the case with .3 central point support.

. Figally>¥énnular and ecircular sectorial plates are

treated) ‘'Again the analysis inc¢ludes several comp}icating

effects such as polar orthotropy, intermediate simple
supports in bkoth ra&ial amd circumferential directions and

varying thickness in both directions.

L4 .~
. R -

iv

{7/



d

ACKNOWLEDGEMENTS

[}
It is the.pQpasure of the author to express sincere

gratitude to his supervisor, Rrofessor S.M. Dickinson, whose

_ invaluable guidance and encouragement have greatly

contributed to the completion of this work. He has also
painstakingly corrected and refined the manuscript of this

-

thes;;.

The'author is deeply grateful to his wife Hong-Im for
her consistent confidence and patience throughout the yéars.
Thanks are also extended to his daughter Shinae and his son

Ji(gng, whose love have been priceless.

' 4 B - ;
The author wishes to thank all his friends in London,

Ontario for their friendships he is indebted. Thanks are

also due to Mrs. Linda McGugan and'Ms. Joanne Lemon for their

L]

meticulous typing. ‘ ~

N\

o

N - .



——

TABLE OF CONTENTS

N . PAGE
CERTIFICATE»O% EXAMINATION ii
ABSTRACT . iii
ACKNOWLEDGEMENTS NV
TABLE OF CONTENTS - “ vi
NOMENCLATURE , viii
CHAPTER 1. INTRODUCTION 1

1.1. INTRODUCTORY REMARKS 1l
1.2. BEAM VIBRATION PROBLEMS 4
1.3. CONTINUOUS AND POINT SUPPORTED RECTANGULAR
PLATE VIBRATION PROBLEMS 7
.1.4. ANNULAR AND CIRCULAR PLATE VIBRATION PROBLEMS 13
1.5. SECTORIAL PLATE VIBRATION PROBLEMS 17
CHAPTER 2. ORTHOGONAL POLYNOMIALS .22
2.1. ORTHOGONAL FUNCTIONS s . 22
2.1.1. Défiﬁitign of Orthogonality 22
2.1.2.”_Generatibn of Orthogonal Functions 23
2.2. ORTHOGONAL POLYNOMIALS - ' 27
2.2.1. Generation of Orthogonal Polynomials 27
2.2.2. Characteristics of Orthogonal
- Polynomials <36
2.2.3. Beam Characteristic Orthogonal
" Polynomials - 42
CHAPTER 3., £ VIBRATION OF BEAMS 55
3.1. INTRODUCTORY REMARKS, 55
3.2. ANALYSIS | - . 55
3.3. BEA§S~WITH NO ELASTIC SPRING . 66 o
- 3.3:1. Beams of’Uniform €ross Section 66
3.3.2. Beams o¥ Non-uniform Cross Section 92
.!_v\
~
/ vi



-

TAB]’?BF*GOEEFNTS (continued)
. < B

3.4% ELASTICALLY RESTRAINED BEAMS ’

- 3.4.1. Beams of Uniform Cross Section
3.4.2. Beams of Noh-uniform Crosd Section.

CHAPTER 4.

Ut e W N

L - - -

~ CHAPTER 5.

uru o on
® & @
weN -
.« .

.
VIBRATION OF RECTANGULAR PLATES

o

. INTRODUCTORY REMARKS
ANALYSIS

PLANE CONTINUOUS PLATES

A BOX-LIKE STRUCTURE .

_POINT SUPPORTED PLATES y

VIBRATION OF ANNULAR AND CIRCULAR PLATES

INTRODUCTORY REMARKS —
ANALYSIS .
- ANNULAR PLATES ‘

k

5.3.1. Annular Plates of Uniform Thickness
’ 5.3.2. Annular Plates of Variable Thickness

"S.4. CIRCULAR PLATES

CHAPTER 6.
- 6-10
6.2.
6'3.
6.4.
CHAPTER T-
REFERENCES
APPENDIX A.
) 3
\ APPENDIX B.
N

VIBRATION OF SECTORIAL PLATES

INTRODUCTORY REMARKS

ANALYSIS

UNIFORM, ISOTROPIC, SINGLE PLATES

PLATES WITH COMPLICATING FACTORS ol

CONCLUDING REMARKS

VALUES FOR AN ELASTICAﬁLY RESTRAINED BEAM
EQUATIONS FOR POLAR ORTHOTROPIC PLATES

. vii

PAGE -

101

101
115

123

123
127
133
144
155

172
172

173
179

180

2193
197
204

204
205-

- 214

218
229
231
249
258




the

Eng

NOMENCLATURE -
The following is a l%st of the. main symbols used in this

sis. - Other symbols are defined in contextz

lish Symbols

a constant, a side length of rectangular
4 \ '
plates in x-direction, or outer radius of

annular, circular or sectorial plates

a constantf,a‘side length of rectangular
plates in y-direction, or inner radius of

annular or annular sectorial plates

'Cn ‘ constants in the recurrence formula for

- orthogonal polynomials
. oo ) . q:
flexural rigidity for isotropic plate,

»

D=Eh3/12(1~v2)

-

flexural rigidity in x-direction,

»

Dy=Exh3/12(1- vy vy

-

flexural rigidity in y-direction,'Dy==
Eyh3/12(1- uxy vy '

’twisting rigidity in Cartesdan coordinates,

Dyy=Gxyh3/12



Dy flexural rigidity in radial direction,
Dy=E n3/12(1-v, gvgr)

DG. flexural fﬁgidity in circumferential ‘

- direction, Dg=Egh3/12(1-u,gvgr)

Drg , . twisting rigidity in polar.coordinates, ~
Drg=Grgh>/12

E _Xoung's modulus -

El “¥flexural rigidity.of a beam

EIqg flexural rigidity of a beam at x=0 -

Ey, Ey Young's moduli in x- and y-directions,

« respectively )

E., Eg Youngrs moduli in r- and ©®-directions,
respectively

g, g(x), .o generating_functions for orthogonal -
polynomials . -

) ) |

Gxy shear modulus in Cartesian coordinates

-Grg . shear modulus in polar coordinates

h, h(x,y),... thickness of plates )

Jy -ratary inertia of the i'th concentrated mass

ix

»




cvy

G|
’_l.

ma

Tmax

non-dimensionalized parameter for Ji

31=Ji/mol3
t'th translational spring-coefficients

non-dimensicnalized parameter for Kk,

3 )
Kt=kt‘q‘ /EI

length of a beam

locatiqp of intermediate sdppbrts of a beah

- -
— -

mass per unit length

-
mass’  per unit fangth at x=0 *

"i'th concentrated mass
non-dimensionalized parameter for P, /

p=PL2/EI,

.

av

axial locad of beam

radial directional coordinate {polar

coordinates) R

a

r'th rotational spring constants

non-dimensioMilized parameter for s,,

Sy=S,4/EI :

maximum kinetic energy



L

Umax

Vmax
w, WixX,y),..:

wg, welX),...

X, ¥

Greek Symbols

5mn

;, N

e

L'

VXY’ Vyx

Yr@r VOr

- Maximum strain

~

maximum strain energy

energy stored in springs

maximum deflection with respect to time <

£

weight function

Cartesian coordinates

a coordinate normal to xX-y (cartesian

coordinates) or r-© (polar coordinates) plane

Kronecker's delta; 8pn=1 for m=n, &y,=0 for

m#n‘

non-dimensionalized coordinates

»

angular coordinate

'

’

A3

Poisson's ratio for isotropic plate

Poisson's ratios in Cartesian coordinates

Poisson's ratios in polar coordinates

material density

time



®i(%), ¥5(M)  functions; used as the admissible functions

in vibration problems

w oot radian natural frequency
Q non-dimensionalized frequency parameter
a : L

A1}

xii
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CHAPTER 1
INTRODUCTION
1.1 INTRODUCTORY REMARKS

Various approaches have been used to ;;lve the problem
of the transverse vibration of slender, straight beams or |
thin, flat plates. 1In particulari for uniform, single span
beams with any combination of free, simply supported, clamped
or slidiﬁg boundary conditions, exact soclutions to the
gerrning equation éf motion can be easily obtained [1-3],
and natural frequency parameters and corresponding normal
modes of free vibration, which are called '(vibrétion)
characteristic beam functions', have been widely tabulated
{1, 2, 4-6). Also, the formulae.for integrals coqﬁgini;g
characteristic beam functions have been given {6-8] and hawe
proven to be very useful in the analysis of dynamic systems
whose modes can be described in terms Jf the mode shapes of
uniform, single span beams. The exact solutions can also be
obtained for certain other beam and plate problems. However,

Ehe apprcach for the exact solution is limited to.some

special cases, particularly for plate problems, and is not

possible to be used for general problems. Hence, most of the
approaches for the solution of vibration problemé are

approximate in nature.

’

Among the various approximate methods presented, the




most widely used method for the vibration (and buckling,
equilibrium, etc.) problem is, to the author's knowlgdge, the
Rayleigh method (9] or the Rayleigh-Ritz method [10] (Often,
this mgthod is called simply 'Ritz's method' or 'the Ritz
method'. However, in this thesis, the term 'the Rayleigh-
Ritz method’' is used). The well ynown Ravyleigh or Ravleigh-
Ritz method is relatively simple but usually gives
satisfactory results for numerous problems (for example, see
references [11-17)). Both methods require the use of the
energy expressions (i.e. ses&gin or elastic energy and kinetic
energy) for the systeﬁ to be solved and the assumption of
admissible function(s) which satisfy at least the-geometiical
boundary condit}qps éi.e. zero displacement and/or zero

slope).

The rate of convergence and accuracy of the Rayleigh-
Ritz method depend upon the choice of the admissible
functions for use in the series representing the deﬁlection.
of the system. Probably, the most popular admissiblé
functions used for vibration problems of single rectangular
plates {and certain other plates) with any ;ombination of
classical boundary conditions (In this thesis, the 'classical
bogndary condition' means free, simply supported or cl;mped
boundary condition, as—is common in the vibration community.}
were the products of the characteristic beam functigns (for
example, see references [15-17])). These functions have very

attractive features such as the orthogonality of the

.,

3
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functions, the simplicity of the formulae for necessary
integration [6-8], etc.. The use of the characteristic beam
functions yvields very good results for plates with no free
edge, but the results obtained for plates involving one or .
more free edges are less satisfactory -due to the occurrence
of over-restraint at free edges. (This will be discussed
further in Chapter 4). In order to increase the accuracy of
‘the results, particular§ for plates with free edges, various
other sets of functions have been used. These include the
'degenerated beam functlons {18, .\bl, the functlons obtalned

L 4

v
plate functlons [22 241, .and éhéracteriﬁ??h‘orthogonal

‘from the modified Bolotln met:Zi;{Zo, 211, szmply supported
'polynomials [25 -29] and so on‘j Among thqse s/;s of >
functions, the ‘best set Jf functioaswas the<beam
characteristic orthogokal poiyﬁah&a{;; the functions;have-
some advantageous features such as the ;elative easo.of
generétion and integration, the orthogonolity {as in the case
oé characteristic beam_functions ;nd simply supported olate
functlons), and the excellence of the results, noﬁﬂoplf for

~ N .
plates with no free edge but also for plates with free edges.

* In this thesis, the beam characteristic orthogonal '
polynomials, suggested by Bhat [25-27, 30] for dyn ¢ and .
static problems 6f.single span beams or pla;es,.arefwf);
generalized to be used as the admissible furiétidbns in the
Rayleiqunitz method for various beam and plate problems

including several complicating effects. The:orthggonal




polynomials are discussed in some detail in Chapter 2, where
the generation procedure is given, together with the
identification of some impsrtant characteristics, and the
method of construction of the starting function, etc.. Then,
using the polynomials, various vlbrati?p problems of beams
(Chapter 3), rectangular plates (f€hapter 4), annular and
ciréulgr plates (Chapter S} and sectoriai Flates (Chapter 6)

are studied.

*

In the following sections in this'cgzpter.,rnf general
scope of the beam and élate problems treated in this thesis
are discussed, together with the related work presented'ln
the literature. It may be noted Fhaq, though numerous
selected references are cited in the following, there still
remains a fair -amount of related work iﬁ rﬁe bodf of the |\
literature. For more relafed studies, references are made to”
the excellent review works by Blevins [64 for both beam and
"plate problems, and by Leisia 13; g%?{fii/ijg problems

1.2. 'BEAM VIBRATION pnem:.m)ls
. V”i ’

The problem-of tﬁé transverse vihrat n of straight
slender beams%hasfteceived substantial atteﬂtion £rom .
researcberaf’particularly over the past two decades or so. .
Numerous,studie; have been conducted in which various
complicating factors have been cénsidered, chludlné the
existence of concentrated masses with.or without_rotary

inertia of the'masses, translational and/or rdtational

N
P .
.
. .

o



sprilgs, axial loading, intermediate supports (that is,
multi-span beams) and non-uhiiormity‘of cross section. Theré
appeprs,-gowgver, to have been no study in which a single

. approach has Séen put forward for the treatment of slender
beams subject to any or all combinations of these effects and
ha&ing any combination of the classical boundary conditions
and/or elastic supperts. Rather, mainly individual beam
problems have been considered, either including one or more

complicating factor(s) for a particular beam or a single

complicating factor for a number of different beams.

The problem of beams with no elastic spring has been
.greated by a‘numbér of investigators. Various methods of
solution have been presented for uniform multi-span beams
without other complicating effects [38-41l] or includiné the

effect of axial load (42-44)]. 1In particular, Gorman [41)

" presented an exact solution to the governing differential
equation from whiph he generated cppious graphical and
tabular results for beams for?whiéh the solution is
Aéplicable. Laura et al.‘[45] treated a two-span be:; with
concentrated masses at the mid-point of each span and
included the effect of agial load; only the fundamental mode
was considered, howeQer._.Single-span beams with one '
concentrated masg (particularlf tip;loaded cantilevérs)-have
reéeivéd considerable attentLof'[4é—61], the effedts of axial

load and/or non-uniform crogs section being included in some

instances. Somewhat fewer researchers.have dealt with the




et ’ ) .
. problem of beams with more than one concentrated mass

‘attached [45, 62-65].

Numerous researchers have tackled the vibration probiem
of beams of non-uniform cross section (51, 60, 66-75]. but
their attention appears to have been confined to single span

beams.

Various uniform beame\huth elastically restrained ends
have been considered by Maltbaek [56] and Goerman [41], who
presented _“@.Ct solutions for single and double span beams
and generated copious graphical orltabularlresults, the
effect of a concentrated mess being inclu@ed’in some

instances. Several other constrained uniform beams have also

A

been studied, including a translationally restrained )

cantilever beam with or without a tip mass [46, 55, 64, 76-
78], a beam with one end spring-hinged and with or 'without a
mass at'the;other free end [62, 63, 79-81], a beam with one

end spiing-hinged and subject to'a tranglational restraint at

. the other‘end [82) -and so on; each reference includes

valuable $esu1ts obtained. The effect of an intermediate

simple support.has_been considered for the beam with one end

'.éprinq;hinged and;the other end free JSB], and with .both ends

spflnq-hlnqed and subject to an axial force and with

J L] . -~
cthenfrafed masses (45, 847. 1In a more general sense, 3gaml
with any number of elastic supports and cencentrated masses
have been studied by Bapat and Bapat [(85].

L

NS

v
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?he effect,of non-uniformiéy\oflécoss section, together
with that of an axial force, hae Leen considered by Laura and
his colleagues [51, 53, 60, 83, 86]. Non-uniform beams,
subject to elastic czstreinté, have been studied also by Goel

(871. N

In Chapter 3, a simple, unified approach is proposed for
the-greaﬁment of the vibration problem of non-uniform,
continuous, slender beams having en arbitrary number of
concentrated masses (witﬁ or Wwithout rotary inertia) and any
combination of cla;sical‘bouﬂcary concitions and/or elastic
-shpports ~_Th§ effect of cons¥ant axial loading,- either
constant - directional force or tangential follower force, is
included. ‘The Rayleigh-Ritz method is used for the analyels,
with the orthogonally genérated polynomials as the admissible
‘functlops, Numerical results 3re rresented for particular
beam p}oblems, for which.comparison values are available in
the litefature[ serving.cc §llustrate the applicability and
accuracy of the approach. A’selection of results for
problems hitherto untreeged in‘the literature is also given.

1.3. CONTINUOUS AND BPINT SUPPORTED RECTANGULAR PLATE
| VIBRATION PROBLEMS. . .

bt .

For single rectanqular plates, Bhat [25- 27] showed that

LI

the use of the orthogonal polynomials as the admissible

S

functions in the Rayleigh Ritz method yields excellent

results for the’natural frequencies of several example plates

\\

N
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"' *~  having various cgmbinayions_of edée conditions. The

* applicability:ﬁf'his apprdach for' the determination of nodal
.patterns is aisb idlustrated by Kaushal and Bhat [28]. The
e#cellence of the funé;ions is further examined by\biékinson
and Di Blasio [29] wné conducte@ a convergence study and
introduced the effect of special wrthotropy and in-plane
loading, generating tesults for critical buckling load,
natural frequencies, mode shaﬂg; and .associated bending
moment and shear fofce dist;;bgkions. In the present work,
the author's generalizéd or£hogonai‘ﬂolynomials dre used td
study the vibration problem of continuqus plates, inc;uding
N .

one type of box structure, and plates with point supports.
. - B

Tge vibration of céntinuous‘plateé'has been studied by a
number of researchers,.some treating the intermediate
supports as rigid with'iespect to lateral translation and
offering no rotational gestrgi;t.(referred to in this thegis

) 4ds line supports) and othefsﬁ}ﬂcluding the effects of 4
translational and rotational.rigidity and inertia of the
supports (often refe}red_to as stringers). Rather less

attention has been given to the vibrat;on of box structures.

.

Much of the work reported in the literature has been
.concerned with plates continuous only in one direction.
Veletsos and Newmark [88] used the Holzer method for the

determination of the natural fréquencies of plates simply

supported along the continuOus edges (that is, the edges




”

perpepd}cular to the intermediate igPports) and presented
calculations for two four-span plates. A two-span, simply
supported plate was analyzed by Ungar [89] and a semi- )
graphic;I appro;éh presented. The Bolotin edge effect method
[90]) was used by Bolotin [(91] and by Moskalenko and Chen [92]
for multi-span plates, the method permitting the treatment of
clamped, continuous edges. Dickinson and Warburtoni[93] also
used the edge effect method for the study of two-span plate;,
émong other system and obtained natural freguencies for
such piétes involJi:; clamped, simply supported and free
edges. More recently, the modified Bolotin method, developed
independently by Vijavakumar [94] and Elishakoff [95], .was
used by Elishakoff and Sternberg [96] to determine the
natural frequencies of platqs with an arbitrggy number of
equal spans; numerical values were given for £ully clamped
two-. and s%x-span plates and for two-span plates hauwing
clamped continuous edges with tg; ends simply sgpported. The
receptance mefhod, perh;ps more popular for'beam vibration
work, was used by Azimi, Hamilton and Soedel [97] for plates

simply supported on the énds and results were presented for

three- and four-span plates.

*

The ﬁ}oblem of the vibration gof line supported plates
which are continuous in two directions has received ‘rather
less attention. However, Dill and Pister [98] presented a
powerful and elegané series solution which is applicablz\aot

only to plates continuous in one or two directions but also

\




to L-shaped configurations, as demonstrated in reference .
[98], or virtually any configuration which may be built up
from rectangular plates. Two such configurations are-the

\ - fivg; and six-sided box'§tructurgsk which were analyzed using

P this approach by Dickinson eand Warburton [99]; fhe series
solution was subsequently extended by Dickinson to apply‘io
specially orthotropic plates an& plate syétems [(100] and to
include the effect of uniform in-plane loads [101], although,
no numerical results were givenm for plate systems. The

-

application of Bolotin's method to two-way continuous plates

- .L and to box-like structures is also discussed in reference
{93], numerical results being givéh for the latter.

Takahashi and Chishaki [(102] presented a sine series solution\
Y —_—

for the vibration of sfgply supported plates continuous over

a number of supports in two directions and provided numerical

results for a plate having two spans in each direction.

The vibrétion of point supporped rectangular plates has
%&so received considerable attention from researchers, much
of the interest likely stemming froni the poten;iai
application of the analyses to practical problems ihcluding
t vibration of column supported slabs, printed circuit
boards and panels_in shibs and aircraft, and the selection of
optimgm hold-down peoint positions of solar panels. A survey
of tfe literature, howeQer, reveals that the majority of the
work concerns plates'having particular support conditions,

the only general study of which the author is aware being




that by Fan and Cheung (103], who used a spline finite strip
approach to treat plates having various combinations of
conventicnal boundary conditions and various numbers of

arbitrarily located point supports.

_The most widely studied point supported plate problem is
that of otherwise fully free plates. Such plates have been
considered with four corner point supports [104, 105], with
supports at the mid-points of all four edges {106, '107], with
multiple point supports along the edges [108, 109), with
supports symmetrically located at four points on the
diagonals [110-116;} with supports more generally
symmetrically located [117] and with- arbltrary numbers and

locatlons of point'supports {118-120].
- ‘ ‘ Y
The problem of plates having one or more edges

conventionally supported. (simply supported or cléﬁped) and
having point supports elsewhere has received 1ess atE\htion.
Included in those studies which have dealt with such problems
are the cases of a plate having LWOo adjacent edges simply
supported and/or clamped, the.other two free, with a point
support at the otherwise £free corner (121-125)], a plate with
all edges either simplf'supported or all clampedk‘with at’

—d

point support at the centre [107, 114, 125, 126}, a fully

simply supported p}ate with a point support on one centreline

(127] and cantilever plates‘wirh point. supports symmetrically

distributed along the free edges [128] or at arbi;rar§~

11
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locations within the plate or on its edges [129].

In Chapter 4, a general approach is presentéd for the
solution of the free Qibration problem for rectangular .
isotrop}c or specially orthotropic plates (that is, plates
for wﬁich the principal axes of oréhotropyﬂare:parallel to !
the edges)_and R}ate systems continuous over iine supports
1yiné'paxal¥e1 to the plate edges, having any cembination of
conventional edge supperts, and permitting.the treatment of

such plates subject to arbitrarily located point supports.
- »

Clearly, the finite element and finite strip methods are

-

- .
applicable to the types of problems discussed, as they are to

most problems amen;plé to classiégl soldtiéns.‘ HoweQer, the‘
author believés that there is value in pioy;ging what are

often simpler, more efficient and/or more accurate solutions -
to those problems for which such solution§ exist. The .
Rayleigh-Ritz method is employed, in conjunction with
Lagrangian multipliers when point supports are included. For

plates with no point supports, the formulation of the

L]

Rayleigh-Ritz method using the orthogonally generated

-.-‘

polynomials as admissible functions is as stfaightforward for
continuous plate problems as it is for the sidble-gpan Plate
problem and yields results of comparable accuracy with little

or no more computational-difficulty.
- ¢

. ' L R
‘Numerical results are presénted for a number of )
- .

different plate problems, ,including point suppor%ed élates

€ -—



K s
and a particular four-span plate system which forms a -~
cantilevered box. In several instances, comparisons are made
with values available in the literature and in_all the cases

~

close agreement may be seen to be achieved.
1.4. ANNULAR AND CIRCULAR PLATE VIBRATION PROBLEMS

Annular and circulaf plates subject to various
. [ -
complicating factors are frequently used in engineering
applications where gynamic excitation may be encountered,
thus it is important that their vibrational characteristics
o«

be known. As a consequence, the lateral vibration of such

plates has been the subject of numerous studies [31-37].

For isotropié, circular'platss of uniform thickness and
subject to the classical boundary conditions of clamped, free
or simple support, exact solﬁtions in terms of Bessel
functions exist, from which numerical natural fe#quency
parameters and, in some cases, nodal pattérns havefbeén
determined by several investigators. Aﬂbng these

-

inves gators are Carrington [139], who studied claﬁﬁ%d;
plates, t;;.and Cravdall 1131], whg,fébuiated natural
frequency barameters and modg s@apés for free plateé, and .
.Leissa and Narita [132], ?ho présentéd natural frequency
.parameters for simply supported p}ates. In the éaseyof polar
orthotropic circgla; ﬁlatesi‘no closed form, exact solution
ex}sts,'éQen when subjgcttgﬁ‘the classical_boundary

conditiens and no other complicating factor, and various

13
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approximate approaches are presented in references [133-

140].

For continuous circular plates, Bodine {141, 142]
pPesented an exact solution for the isotropic circular plate
continuous over a single rigid ring support, and Singh and

irza [143)] obtained an exact solution for the axisymmetrical
(iibration of an isotropic plate, elasticaliy suppérted on two
concentric rings. Continuous circular plates were also -
treated by Laura et al. [144] and Kunukkasseril and Swamidas
[(145]. The effect of radially varying thickne§§ on .the
behaviour of isotropic circular plates is sthdied for the
fundamental frequency parameters by Laura and h#s colleaéues
(146-149] using the Ravleigh-Ritz method Qith several terms
of sigple polynomials, the effect of polar orthotropy being

included in some instances.
' 4

‘For 1sotrop1c annular plates with various combinations
"of the’classical boquary conditions, Vogel and Skinner [150]
.obtained exact solutions,- from which,K they generated copious
results, both in tabular and graphical forms, for the natural
frequencx parameéters for a wide range of inside to outside »
rad{i ratios. ‘'In the case of polar orthotropic annular
ﬁlates, vafious difféfent methods of analysis have been
presented, including those by Vijayakumar and Ramaiah [151,
-152] and Narita [(153], who used the RA;leigh-Ritz method,
Lizarev et al. [154], who used a sgriés solution to the

differential equation, Greenberg  and Stavsky [155] (both

-
~
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for annular and circul&r plates), who used a finite difference
method, and Ginesu et al. [156] and Gorman (157}, who used

the finﬁte element method, &opious numerical-results being
presented in reference [(157). By permitting the inner radigfj
of the annular plate to become very small, Narita [153]

presented results for the circular plate as well. .

For annular plates continuous over concentric ring
supports, rather. fewer studies have been reported in the
literature. Kunakkasseril and Swamidas [145] developed a
series solution for polar orthotropic annular (and cirgular)
plates, elastically or rigidly supported on concentric

‘circles, but- numerical examples were presented fo; the

. isotropic case only. Narita [158] used the Rayleigh-ﬁitz

method in conjunction with the Lagrangian mulgipliers

(Lagrangian multiplier'hethod) to obtain a frequency eguation

for polar orthotropic, annular)plates continuous over rigid

ring supports and presented numerical reéults for'plates of
various, degrees of orthotropy. Again, by letting the -inner
radius becoméjvery small, results for.the eircular plate were h

also generated.
2 -
Annular plates having thickness which varies with radius

have been treated by several researchers. The axisymmetrical ——

vibration of -isotropic plates with linearly varying thickness

" has been studied by Raju et al. {159], who used the finite

element method, and g§oni and Amba-Raoc [(160]), who used the



- 1‘
Cﬁebyshev collocation method. The latter work is extended by
Gupta and Lal [161], to include the effect of ah ip-plane
force, and by Lal and Guhta (162}, to include p6lar
orthotropy. The axfsymmetricel vibration of such plates was
further considered by Sankaranarayanan et al. [163], using
the Rayleigh-Ritz technique, and by Gupta et al. [164], u;ing
a spline techhique to solve the governing differential
equation. The natural frequency parameters for both the
axisymmetrical and non-axisymmetrical modes of polar
orthotropic, annular plates of linearly va;ying thickness was
obtained by Gokman (165]), who used the finite element method.
Exact, closed form solutions have, been presented by Conway et
al. [166] for linearly tapered isotropic plates with
Poisson's ratio 1/3, and by Lenox and Conway {167) for
isotropic and polar orthotropic plates havi;g parabelic

thickness variation.

In Chapter 5, a straightforward, unified approach is-
given for the solution of the free, lateral vibration problem
of thin annular plates which may be of isotropic or polar ‘
orthotropic material, may bave radially varying thickness and
may be continuous over one or moré rigid concentric ring ‘
supports and subject to the classical boundary conditions.
Again, with the orfthogonally éenerated polynomials as thé'
admissible functions, the Rayleigh-Ritz method is used to
obtain a frequéncy equation. From the frequency equationf
dhﬁerical results are obtained for a number of particular

plates, with comparisons being made with values available in
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the literature in several cases. By permitting the inner
radius to become very small and assuming the inner periphery
free, as discussed by Narita {153, 158), scolid circular
plates are also treated. In addition, plates simply

supported or clamped at the centre, which were partly treated

in references [168-170], are discussed.
1.5. SECTORIAL PLATE VIBRATION PROBLEMS

The problem of the transverse vibration of circular and
annular sectorial plates has received considerable attention
in recent years, though far fewer studies have been reported
compared with those for beams, rectangular plates, circular
plates or annular plates. The study of ﬁhe problem is of
practical importance for a better understanding of the
behaviour of sectorial piate components; the components whose
geometry are sectorial have been widely used in ships, curved
bridge decks and panels,iand aeronautical and space
structures. Sectérial plates have two straight rédial'
bo;ndaries, and one circumferential (circular) boundary, for
circular sectorial plates, or twoﬂrcumferential boundaries,
for annular sectorial plates} In order to avoid the |
confusion of radial and circumferential béundaries, in this
thesis, the term 'edge' is used for a straight, radial edge

and the term 'periphéry' for a circumferential periphery

(circular arc).
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For uniform, isotropic plates wi£h both edges-s;mply
suppecrted, exact solutions are obtainable regardless of the
boundary conditions (pfovided that they are homogeneous) at
the peripheries, as mentioned by Leissa (31, 36). The
frequency determinants, which involve Bessel fuqctions, are
of the second order for circular sectorial plates and are of
the fourth order for annular sectorial plates. The order qf~
the Bessel functions arg,.in general: non-integer. 1In spite
of the relative simpligity of the solutioﬁs, the results
presented in the literature are scanty, and are only ‘those
fo; which the oréers of the Bessel functions are integefs and
which correspond to the higher modes éf circular or annular
plates. Westmann kl?l] presented the exact solution for a
circular sectorial plate with a free periphery. For annular
sectorial plates, Ramakrishnan and Kunukkasseril {172) and
W}lscn and Garg leB] presented the solution for the case of
f?ée peripheries. Ramakrishnan and Kunukkasseril [174] also
‘presented results for plates with both peripheries simply
supported or clamped as special cases in their study of
stiffened sectorial plates. Plates with.both radial edges
Agimply supporﬁ;d have also been treated by using the .o
Rayleigh-Riéz méthod by Westmann (171] and Ramaiah and
Vijayakumar [i75], who used simple polynomials as the

admissible functions.

Ben-Amoz [176] used an energy method to ana}yze'uniform,

isotropic, circular sectorial plates with fully clamped
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boundaries. His approach was later extended by Rubin [(177]
to analyze both circular and annular sectorial plates with

clamped edges, ;subject to other boundary conditions at the

_peripheries. The plates with clamped edges were also treated

by Westmann (171], who used the Rayleigh—Riéﬁ me;hod, by
Bhattacharya and Bhowmic [178], who used the Kantorovich
methed, and by Chéung and Cheung [179], who used the finite
strip method. (The ‘finite strip method is applicable to
polar orthotropic plates with other boundary conditions as
well.) A clamped semicircglar plate is a ;pecial case of
circular segment plates and was treated by Khurasia and
Rawtani [180], using a finite element methcd.
Experimentally, Waller [181] observed the lowest two mode
;hapes'(non-rigid body) of a fully free semicircular plate,
and Mafuyama and Ichinomiya [182] obtained frequencies and
mode shapes of fylly clémped sectorial plates (both circular
and annular). Swaminadham et al. [183] treated plates with
inner periphery clamped and the other boundaries free by

. -

using the finite element method; the analytical results were

verified by an experiment.

Polar orthotropic sectorial plates have been treated by
several investigators. The plates withAboth/gdges simply
supported were treated by Rubin [(184], who presented a series
solution (Frobenius' method), and by Ramaiah [185], who used ]
the Rayleigh-Ritz method with simple polynomials as the .

admissible functions. The Rayleigh-Ritz method was also used
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for the solution of polar orthotropic piates with any
combination of the classical boundary conditions by Irie et
al. [186], who used spline functions as the admissible
functions. Mukhopédeay [187]) presented a semi-analytic
solution (the resulting equation is solved by a finite

- difference technique) for annular sectorial plates, and
Srinivasan and Thiruvenkatachari [188)] u#ed an integral
equation technigque for fully clamped, aagular sectorial

pPlates.

L ]
Other vibration problems of sectorial jplates treated in

the literature are those £ isotropic annular sectorial
plates with rotationally restrained boundaries [189]}, for
laminated annulér sectorial piagés [190i’aqd for polar
orthotropic, sectorial plates restihg on point supports
{191]. To the author's knowledgg, no treatment is given for
plates with .variable thickness'and/or continuous over

intermediate supports, though the semi-analytic approach in

reference [187] was mentioned to be applicable to plates of

varigble thickness. - //,//ijg

14
»

. In Chapter 6, a simple approach is. proposed for the
treatment of the viﬁration probleﬁ of polar-orthotropic,~

“ sectorial plates which may be continuous over intermediate
support; and/or of variable thicknesss ﬁ&pe classical
boundary conditions only are treateq. Again, the Rayleigh-

Ritz method is used for the analyslis, with the orthogonally

—\ (-J . !
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genérated polynomials as 'the admissible functions. Results
are given for various example plates. 1In several instarces,
" comparisons are made with results available in the

literature, to illustrate the accuracy and convergence of the

approach. N
> -
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CHAPTER 2
ORTHOGONAL POLYNOMIALS

2.1. ORTHOGONAL FUNCTIONS

2.1.1. Definition of Orthogonality ([192-194].

>
Consider a function wg(x) which is non-negatiyge and

integrable on an interval a < X < b (the interval is denoted
by a < x < bor {a, b]). It is also assumed that

\

wg(x) > 0 on a< x < b . ' (2.1a)
so that
»
b ’ ’ A :
[ wetx)dx > 0. o (2.1b)
. a . 4

This is the requirement for the yeight function for

orthogonal functions.

-

Two functions ®n(x) and ¢,(x) are called ‘orthogonal’
on the interval a < x < b, with‘respect to' the weight
function (or weighting function) we(x), if

-

b .
[ wetx)optx)®p(x)ax = 0. . ©(2.2)
a ‘' .

when each member Qf a set of functions @ (x) is ortho§ona1

to every other member of the set, the set of functions is

-
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called 'an orthogorial set of functions', 'an orthogonhl
series of functions', 'an orthogonal function'sequence' or,
loosely, 'orthogonal functions' when there is no danger of
ambiguity. The orthogonal set of functions may be expresséd

as

b
[~ we()@q(x)®n(x)dX = cpbppns; M, 0 = 1,2,3,. . ., (2.3)
a

where Cqm is a constant and &y, called 'the Kronecker delta’
or 'Kronecker's delta', is defined as 0 if m # n and 1 if m

= n. In equation (2.3), an additional condition

[Pugxrofax # o

is included, and this condition is automaticgll¥ satisfied

if the weight function is defined by equation (2.1).

In addition, if a set of orthogonal functions &, (x) has

the property

- b
J‘wf(x)%(x)Qn(X)dx = 5mn; m,n = 1., 21 3' s e sy (2.4)
a -

’
- the set of functions is called an 'orthonormal' set of
functions.
2.1.2. Generation of Orthogonal Functions

If a function @;(x) is given, say ®1(x) = £1(x), a

series of orthogonal functions.pk(x),‘starting from ®;(x),

23




L= 24

)

ton the given interval a < x < b with respect to the giVen

weight function wg(x) can be generated step by step as

follows:
Let ®5(X) = a1fi(x) + azfy(x).

\
Then applying the arthogonality defined in equation (2.2)
vields

b 2 b A
a; IAWf(x)fl(x)dx + as fa we(x) £ (x)E2(x)dx = 0.

Tak{ng one of the two constants a; and a,; arbitrarily, the

other constant can be determined, and thus &5 is obtained.

~

In general, suppose ¢71(x), ®2(x), . . ., Pp(x) have
been generated, ®,4;1(x) can be assumed as
n+l
Pn+1(x) = T ajfi(x).
i=1
Then applying the orthogonality relation, equation (2.2),
gives n'simultaneous'equations with n+1 consténts vet
undetermined:
n+1 b
£ aj | welX)®p(x)fj(x)dx = 0; m=1, 2, . . ., n. (a)
i=1 a

e
-

,:
" Setting one of the non-zero constants aj~to a value ,
arbitrarily, the remaining n constants can be determined and

thus ¢,4+1(x) is obtained.

AN
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It may be desirable in some instances to obtain.

normalized functions. In such a case, an orthonormal series

of functions is given as(
,\\ ’
|

P (x) = cdk(x),

where Ek(x) and @k(x) denote normalized and non-normalized

-~

.functions, respectively,. and Ccx 1s chosen such that

o eg = (fPuptoegixax) /2.
~ )

Alternatively, the constants for the orthonormal series. of
functions can be directly determined from the n simultaneous
equations (a) anq an additional normalizing-equation

-

b : .
’ fawf(x)¢%+1(x)dx =1,

[

rathgr than fixing one of theg constants aj arbitrarily.

For orthonormal functions, a little more c¢onvenient
method, known as the 'Gram-Schmidt proecess' or 'Gram-Schmidt

orthonormalizaéion proceduﬁe', may be used [192] as follows.

Thé first orthonormal function &;(x) is given as

-

*

$l(x) = lel(k),

where cq is chosen as c; = (Ig wf(x)fi(x)dx)'l/z, so that

[P we0®2(0ax = 1.



Next let o v , N
- N

®r(x) = £5(x) - a;&(x). .

Then, L -
b - 5 (b = o (b =2 a
fan(x)@lfx)¢2(x)dx-fawf(x)¢1(x)f2(x)if-a1fawf(x)¢1(x)dx—Op

provided that a; is chosen as a; = ngf(X)sl(lez(X)dx,

-

since-

L
fg wf(x)i%(x)dx=l. With this choice of a;, then, The second

orthonormal functign is obtained as

3, (x)=({Pug(x)05 () ax) "1 20, (x) .
.
In general, suppose &;(x), &,(x), . . ., &,(x) have
been generated such that
b ER—¢ ¢ . i— =
Jowet) 85 ()8 (x)ax = 635; i, 3=1,2,3, . . ., n.
Let
n ’ —
Pn+1(x) = £h41(xd 'iE a;®;(x),
=1

— -

and the constants aj are chosen as
- -(b %
ay = [awe(x)8g (x)£p4q (x)dx.

Then,

26
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. [Pug (x)F51x) 04y (x)
a"f j n+l d§
e, -
[ 4 b _ n . _ _
= jawf<x)oj(x)fn+1(x)dx-i£l aj | Je(X)T5(x)®; (x)dx
= a;-a;=0. N
3733 . .
Therefore nsq(x) = ([Pwg(x)82,  (xax) 1 20,7 (x)
> n+l awf n+1l n+1l
2.2. ORTHOGONAL POLYNOMIALS

- »
2.2.1. ' rthogonal: ynomials
t ‘s._?_\\'

L
en a set of orthogonal functlons is constructed only

&
with polynomials and the difference of the degree (the
highest degree of each member) between any two consecutive
. L3
’ members of the polynomials is just 1, a number of

relationships are known'toggxist (192, 193]. Among theh,

\ .
one of the most important relationships is the recurrence G
. R | :
. relation which is » : .
i ' ’ ,
®n31(X)=(Apx-Bp) &y (x)-Cpdq_3(x); n=1,2,3, . . ., (2.5)

-

where A,, B, and C4 are constants, and ¢o(>} is defined as
0: ?urtherﬁ when Ay is 1 or the coeffiaient of the term
includihé the highest degree of the member is unity, the

polynomial is called a !monic' polynomial{{192]. For monic



polynomials the constants Bn and C, are given as {192, 193)

b 2 b 2
B, = fawf(x)x@n(x)dxéfawf(x)¢n(x)dx,

s 2 b 2
¢, = [Dwe(x)®Z(x)ax/ [Jw (%105 | (x)dx.

Using the recurrence formula (2.5), such a set of
‘orkchogonal polynomials can be generated much more simply

-

than by using the Gram-Schmidt process.

In this thesis, the recurrence formula (2.5) is

generalized by replacing the first term in the right hand

side of the formula with g(x),

-

Pn+1(x) = {g(x)-Bpl®p(x)-Cprdp_1(x); n=1,2,3, . . . (2.6)

" Here, the function g(x) is termed the 'generating function'.

The constants Bp and C, are given as

By (x)g(x)02 (x)ax/ [Pw (x)02 (x)dx, (2.7a)

w
]

_ (b 2 B, (x102
Gy = Swe (X)02 (x)ax/ [owe (%)@, (x)dx, ~ (2.7D)

Y

and éo(x) is again definéa as zero.

The derivations of the constants B, and C, in equation
4 . . .

(2.5) are performed in a similar manner to those for g(x)=x.
However, for the sake of completeness, the derivation is

presented here, in which 0;(21< qéx), welx), . . . are

“.
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denoted by ¢,, g, W¢,. . . when there is no danger of

ambiguity.

Considering the orthogonality relation between &,,; and.,

®n, using equation (2.6), . ~
B ax=[Dw_g028-8_[Pw eZax-c_[Pw e _ e ax=0 :
a f n+1 e W a"”t¥n n 1'n '

Due to the orgthogonality,

b, =
f¢ lG’ndx—O,

»

and thus

o+ [Pt Pugeten., | )
.

Next, consideringJ;he\grthogonaﬁitz relation between

®n+y and &p_g,

b, b N
a¥s¥n+1%n-19%" Ia £9%, P, 1dx-B Iawf¢n° 19x-C fa £® n 14x=0
Again, due to the orthogonality, ’
b, -
AP @ _dx=0,
and thus
- \/\ '
fg°n°n ldx/j n 1 ’ (2.7b")

»
Further, .
W -
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b .2, (b -
fawandx' awf¢n{(g—sn~1’°n-l-cn-ﬂfn—2}dx

— b _ b _ b
- awfgq’n@n-ldx Bn-lfawf¢n°n~ldx Cn-lfawanQn-2dx

s Y

‘o

_ b
- awfg¢n°n-ldx’

Therefore, the constant Cp in equation (2.7b') can be

rewritten in the form

R 7
— (b, a2 b 2 g
Cp = Iawf?ndX/Iawf¢n—ldx‘
Y .
-QtThéipb ials generated by the generalized recurrence
- = o o g

fbrmﬁla-(§.6§3§EIII\Qéintain the overall orthogonality ‘z
relation (équation (5.3;4: not only tﬁe‘orthogonality
relation between three con cﬁtive polynomials. The proof
is’given as'follows. ¥The orthogonality between ﬁhree
consecutive polynomials may be regarded as self proved in

the derivation of the constants B, and C,. However, for the

sake of the completéneés.of the proof itself, it is included

in the following proof.)

¢

First, the orthogopality between the starting and the
second functidons is verified. Since the constant B;, given

in eéuation (2.7a), is

_ (b 2 b 2
B1 = Iawfgﬁldx/fawféldx,

»
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[Pu e,0,ax=[Pu o ((g-B )8, rax=[Dw g02dx-B, [Pw elax=0. (1)
a¥£¥1%29 ) A%V 1 9TEL Ye9% 1

Next, consider any two consecutive members of the

polynomials,
-

b (b
[Rwe®, @, dx=[Jwed, ((g-B )& -C o )dx

(b 2. = (b, 22.._~ (b

= [Dwogofdx skjawfokdx ckjawf¢k_1¢kdx. ¢c)

Singe Bk = fgwfg¢idx/f§wf¢idx, the first two terms in the
right hand side of egquation (¢} are identically zero and

thus . .

P, @y, dx=-C, [Cw o, 0 dx (@
a"£ %P1 k) a¥g®Px-1 8%

-~

Equation (d) shows a recurrence relation (k i's an arbitrary

~

natural number), and hence can be rewritten as

b b
aWed &, L dx = -Ckfawf¢k~l¢kdx

dx] = . . . .

|
1
0

Ck- 1fa WePp-2%x-1

"
a——
|
fon
e

b
czjawfol¢2dx.

Since fgwfolozdx = 0, as shown in equation (b),
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»

b _
jawf¢k¢k+ldx = 0. ' (e)

This equation shows that any two consecutive polynomials are

orthogonal.
Furfher,

b - [P - -

_ (b _ b _ b .2
= jawfg¢k¢k+ldx Bk+ljawf¢k°k+ldx ck+1jawf¢kdx, (£)

: ' _ (b b 2
From equation (2.7b.), Ck+l = awfg¢k+l¢kdx/fawf¢kdx.

_ Substitution of Cy4q and equation (&) into equation (f)

vields

b - -
awf°k¢k+2dk = 0. (g)

Equation (g), together with equation (e), shows.that any

three consecutive polynomials are orthogonal.

Let us now assume that any n consecutive polynomials,

\
where n > 3, are orthogonal. Then,
jbw ® & dx = a_6__; k-n+l < r, s < k (h)
af'r’s rrs’ -7 =

where a, are constants and &,.g denotes the Kronecker delta.

Also, using equation (2.6),



j Wedy _ n+1Qk+rdx fa f¢k neplla sk)¢k Ch Py YAX

_ (b (b b
= [awea®y [, 19dx-B, [Jw. o Lo dx-Cy [Pwed o dx.

From equation (h), gwf°k-n+1°kdx=f§wf°k-n+1°k-1dx=0‘

Hence,

b, _(b
ave®y 041 e 19X= QW IOy i1 Odx.

J
The recurrence. formula (2.6) can be ¥ewritten as

~

g¢k-n+l = Qk-n+2 * Bk-nﬁi?k-n+l M Ck-n+i¢k-n
Thus,
[Puce o, dx=[2w (o +B o s, &, _ )@, dx
a f'k-n+1"k+1 Ja " £ ' "k-n+2 "k=n+l1"k-n+1 “k-n+l"k-n'"k
- (b b
= [V EPkona 2% *By_ 1 QWP i ydx +C, 1) 2P nidx-
Again from equation (h),
by o o dx = [Dw.® & dx = 0
a £ k-n+27k YEPk-n+1¥x . ’

and thus,

b,,
[oue®y a1 ®e1d® = ooy fow, Oy -nPydx

¢
This equation shows a recurrence relation, and, utilizing

33
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* 2

the recurrence relation, the equation can be rewritten as,

b _ b
a¥ ¥k -n+1Px 41X = Cxon+1k-nCk-n-1- - C2Ja¥e®1®ney AX-
(1)

From the assumption, or taking k=n in equation (h),

4 ‘.
Py & & dx = a_s 1<r, s<n. (3)

a“f¥r¥s r°rs’

Using equations (2.6) and (3j), the right hand integral ‘in

.. . .
equation (i) can be rewritfen as

L Y
b, . S A ) ) o
Jawf¢1¢n+ldx = jawf¢1{(g-Bn)¢n-cn¢n_l}dx | ’
B o am —n (P & wm awc [P .
;;_[awfq¢f¢n anawf¢l¢ndx cnjawf¢lwn_ldx
{..". . o= bw g®.® dx=sz (& +B,P.)® _dx . :
a £f2"1"n af£'72 11’ n

o
,

b i b _
awf¢2°ndX+Bljawf°l°n =0.

Therefore,

b

a"£®k-n+1®

s 14X=0. o - (k)

'
EQuation (k) shows thit, when any n cqnsecutive polynomials
for n > 3 are ofthogonal,.(n+l) consecutive polynomials are
orthogonal, too. . This, tqgether wiph the proof of the
orthogonality_between any three qonsgcutive'polynomials,

verifies that the polynomials generated by- the recurrence ' -



formula (2.6) are altogether orthogonal.

It may be noted that, the proof of

bf®dx'¢0

. -

is omitted here,
satisfied if the weight function is defined by equation
(2.1), as mentioned earlier.

) . .
When it is required to generate an orthonormal set of

polynomials,

since the relation is autématically- °

normalization at each step maﬁes the generation
~
procedure simpler, as follows. N -~
(x) = {g(x) - B_I3® _(x) - aX/2% - (x) (2.8a)
n+1 n° n n-1 ! i
Y- 2 (1/2) ’
n+1(x) n+1 ¢n+l(x), (2:§b)
’
. -~ (b 2 b 2 -
where An = fawf(x)ﬁn(x)dx, Bn f fawf(x)g(x)fn(x)dx,

®n(x) and &,(x) denote normalized and non-normalized

The derivation

polynomials, and ®3(x) is defined as zero.

"‘of . the constants in equation (2.8§ is shown as follows.

\

-

and then,

35




——

2

b = .. (b = b =2 b _
jawf°n+londx'fawfg°ndx°anawandx-CnJasn-lsndx—o' *

- : b _'2 —_ ' be > —
Since fawféndx =1 and‘\ a°n—l°ndx = 0,
_ (b =2 3
= Iawngndx.
Further,
b

=P =0
avt n+l¢n- dx= I fg°n¢n\3dx -B Ia f°n°n 1dx-C ja £ n 19x=0.

z -0 Tha [Py 72 o1
since [Cw.d & _,dx = 0 and [Pw B2 dax =1,
thus c. = b g¢ ) ?x - ’ -
’ n n n- .
In addition, ". .
N « o
b, (b .z T j " (b -
a f°n6ndx Iawfg°n—I n n lfa f n- 1 cn—lfaif°n126ndx
— b L ]
- Iawfg$n-16ndx'
[ ]
Thus Cnh can be rewritten as
_ (b - _ 1/2 b 1/2
Cn - Iawf°n?ndx - I f° dx = A

2.2.2. Characteristics of Orthogonal Polynomials

Among the characteristics of orthogonal polynomials, /

L]

two which may be useful for use in the Rayleigh-Ritz‘méthod




are presented here (The following may be documented in the
literature, for g(x) = X, but the author is not aware of

such).

~

Consider a continuous polynomial &y(x) defined in" an

interval a < x < b.
Theorem (1). 1If
® = d®y/dx = d2¢;/dx? = ... = dT®)/dxT=@ at x=xp, (1)

where Xp is located in the interior of the ihterval, then
the orthogonal polynomials ¢y (x) generated by recurrence

formula (2.6) (or (2.8)) have the property
>y
o = ddy/dx = a2y /ax? = ... = aTPy/dxF=0 at x=xp.
(Proof)
|

Lef us assume that ¢3_1 and ®x have the property

: < “
®x-1=dy 1 /dx=d2y _1/dx? = ... = d¥ey_;/dxT=0"at x=xp, (m)
ok,=d¢k/§x=d2¢k/dx2 = ... = dF®y/dxT=0 at x=x. (n)

From equatiod (2.6):

’

- Px+1=(g-Bx) O -CxPx-1,

and . . -
as ae ao
__k+1 _ dg - Kk _ k-1
dx - dx ¥kt (9°By) —gx ~Cx —ax .
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e 28
a0, a2g ag d20, a2e, _,
de -dxz .dxz dx2
... e e e . , (0)

are -1 &, are are

k+l1 _ df ar-1lg % - K k-1
axr _dx¥°k+rdxr—ldx+"'+(gak)dxr-dex'r .

P

At x = Xp, substituting equations (m) and (n) into equations

(o) yields -
» ~
Y
,\\\
2 r
e TS S STy T ¥ 4
iy = = 5= = ... = ——/— = 0 ay x=x_. (p)
dx dx axt P
N\

Equations (m), (n) and (p) shows that the functions
generated by equation (2.6) have the property mentioned

consecutively.

-

Tﬁeorem (2). When a starting function ¢;(x) has -
symmetfy or anti—éymmetry'about.thg-centre of the interval
a < x < b, then all the members of the .orthogonal |
polynomials generated by recurrence formula (2.6) or (2.8)
have symmetry or anti-symmetry under the following -

conditidns;
, ) -
(1) If }he generating function g(x) is symmetrical or can
be made symmetrical simply by adding or.subtracting a

constant, then all the me rs of the orthogonal

-
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polynomials have the same symmetry (i.e. all members

are symmetrical or all are anti-symmetrical). - -

(ii) If the generating function g(x) is anti-symmetricai'or
can be made anti-symmetrical simply by adding or
subtracting a constant, then all the members of the
orthogonal poclynomials are symmetrical or anti-
symmetrical alternately, provided that the ;eight

ro~

function wg(x) is symmetrical.
(Proof)

(i). Let g(x) = gg(x) + cg, ’ .
where gg(x) is a symmetrical function and cs'is a constant.

s

Then, recurrence formula (2.6) can be rewritten as

®2 = gg®1 + (cg-B1)P;,

<

Since gg is symmetrical and és-Bl = constant is again
symmetrical, ®, must have the same symmetry as ¢1..‘Further,
if any two consecutive polynoﬁials (Qn-l and ®p) hgve the
same4symmezry, then, the next polynomial (®p41) must have
the same symmetry, too, since gs; (cg=Bp) and'Cﬁ are |
symmetfical. Thergfore,‘;f él h;s a,Syﬁﬁetgy’or anti-
symmetry, thelsame symmetry is retained consecutively.

LS

{1i). Let g(x)} = ga(x) + cg,-



/ .

where g,(x) is an anti-symmetrical function and c5 a

-

Due to the orthogonality,

constant. Then, eguation (2.6) can be rewritten as
¢2 = ga<b1 + (Ca-Bl)Ql

°n+1 = gaon + (ca'Bn)¢n 'Cn¢n_lﬁ n=2, 3, ..." (q)
-
Substituting the first of equatigns (gq) into the

orthogonality rekation yields

b _rb 2 _ b 240
[owco @ ax=[2w g 8fdx + (c,-B;) [Jw e7dx=0.
Since wg¢ and ¢§ are symmetrical (®; is syﬁmetrical or anti-

symmetrical), and g5 is anti-symmetrical,
b 2 _ v
[Pweg #fax = 0. |

- b, 42
Thus (c -B;) = 0 ([jw ®7dx # 0),

and further, the first of equations (q) vields ®; = g59;.
Therefore, if ¢, is symmgtrical, ®, is anti-symmetrical, or

. /
vice versa. _\

Let us assume that & .1 is symmetrical and &, is anti

symmetrical, or vice versa. Considering the orthogonality,

}
[Pw,e_, 0 dx=[Pu.g oZdx+_-B ) [Sw s2ax-c_[Pue s dx = 0
af n+1 n a fg a f n na £f'n-1"n ‘

-
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b - —
a¥£¥n-1% 94X = 0

and also,

b 2 _
'Iawfga°n dx = 0,

since wg¢ and ¢n2 are?symmetrical while g, is anti-

symmetrical. Thus (¢3<Bp) = 0 and further, the second of

equations (g) yvields

®n+1 = 9a®n - Cn®n-i1- .

gince ®n-1 is symmftrical and ¢p is anti}symmetrical,'or
vice versa, ®n,; must have the same symmetry as & .. ..
Therefore, if ¢; has a symmot;y;isymmetfical or anti-
symmetrical), the symmetry is changed alternately, provided
that the wei;ht function is symmetrical. Additionally, it

should be noted that the constant B has alwa&s-the same

~a

value for any member of the polynomials, i.e. By = By =

= Ca. In particulaf, if the generating function is anti-

-

. symmetrical about the centre of the interval, By = B, =

= o. .

Y
A

Theorems (1) and (2) are very important in that they

efisure that the generatgd polynomials q.atisfy the chosgn

s o} a system and at

boundary conditions, both at the ex
intermediaté positi?nSv(such as afi internal supports), and

preserve the symmetry of th tem, if requiréd. : s A

81




2.2.3. Beam Characteristic Orthogonal Polyﬁ%mials

Numerous sets of orthogonal polynomials can be obtained

by using recurrence formula (2.6) or (2.8), taking different
starting function, weight func;;oA, generating function
and/or the interval. With the generating. function g{(x) = X
and starting-function unity, a number of well-known
polynomials are obtained. Some such polynomials [192, 193]

are: Legendre polynomials, obtained with weight function

we(x) = 1 on the interval -1 < x < 1l; Chebyshev polynomials®
of the first kind, with we(x) = (1-x2)(-1/2) on -1 ¢ x,_<_ 1;
Chebyshev polynomials of the second kind, with wg(x) = (1-
x2)1/2 on -1< x < 1; Laguerre polynomials, with wg(x)=e™X on
0 < X & =; Hermiie polynomials, with - .

2
wg(x) = e™® on - » < x 8 »; and so on. |

In 1985, Bhat [25-27, 307 suggested beam characteristic
orthégonal polynomials for use in the Rayleigh-Ritz metﬁod
as the admissible functions for dynamic and static problems.
of .single span beams_of rectangular plates with classical -
boundary conditions. Again, with the generating function
g(x) = x, the starti function &®;(x) was suggested to be
chosen as the simplest polynomial of tHe leést degree that
sgtisfies both the geometrical and the ﬁa%ural ﬁouﬁdary
ééndition; 6f the beam. In the present work, Bhat'g-

suggesﬁipn has been extended and applied to the problem of

.

rd

/q .. '
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the vibration of beams or plates with sliding boundary

" conditions, multi-span beams or plates, etc.

In this work, the term 'beam characteristic orthogonal
polynomials' is used for the orthogonal polynomials which
can be used as the admissible functions in the Rayleigh-Ritz
method'or such methods for beam or plate problems, and thus
satisfy at least zero displacement and zero slope
cond;tions. The (beam characteristic orthogonal
polynomials' will be abbreviated 'BCOB'. (It might be
mentioned that acﬁﬁéi beam function:, derived from the exact
solution of slender beam equatipns have been used with

cong;derable success for the study of plate problems [1ll-

17].)

[

The starting function ®;(x) is constructed to satisfy
both geometrical and natural Boundary’conditions of the
appropriate beam, as suggested by Bhat, and zero

displacement conditiéns at iptermediate supports for multi-

span beams. The boundary conditions are ®{''= @;'"'' = 0 for
free, & = ®1'' = 0 for simply supported, ®; = &' = 0 for
clamped ends, and ®;"= ®;''' = 0 for sliding ends of uniform

beams (The prime denotes the differentiation with respect to
X). On the interval 0-< x < 1, for beams with no
intermediate support, the starting functions satisfying the

boundary conditions may be written, for monic polynomials,

¢

43




¢l(X) = (2.9)

I eawm
[
]

where the coefficients aj; are given in Table 2.1.

Since the geometrical boundary conditions are the only
necessary conditions for the admissible functions in the
Rayvleigh-Ritz method, alternative starting functions can be
constructed. The geometrical boundary conditions are ®, =0
for simply supported, ®; = ¢;' = 0 for clamped and &' = 0
for sliding ends, and no geometrical boundary condition
exists for free end. The starting functions for single span
beams may, then, be given as, on the interval 0 < x < 1,

»
4
1(x) = z b.x , - (2.10)
except for clamped-clamped beam (which is the same as in
equation (2.9), since all the boundary conditions are
geometrical), where the coefficients by are given in Table

2.2.

For multi-span beams, the starting functions are given,
recurrently by multiplying the functions given by equations
(2.9) or (21&0) by the factor (x-xp), where Xp denote the

locations of the intermediate supports.
) &
For classical boundary conditions, the generating

function can be taken as g(x) = x, since all the' members of

. a '
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Table 2.1

Coefficients ¢of starting functions satisfying both
geometrical and natural boundary conditions, for single span
beams on the interval [0,1]. (F = Free, S = Simply

supported, C = Clamped, S1 = Sliding).

f—'~m;pv\\;
Coefficients
Boundary
Conditions

al ar asy as ag
F-F 1 Q 0 0] 0
F-S -1 1 0 0 0
F-C 3 -4 0] 0 1
S-F 0 1 0 0 0
S-S 0 1 0 -2 1
s-C .0 0.5 0 -1.5 1
C-F 0 0 6 -4 1
C-S 0 0 1.5 -2.5 1
c-C "0 0 1 -2 1
Sl-F 1 0 0 0 0
Sl-S S 0 -6 0 1
sl-C 1 0 -2 0 1
F-S1 1 0 0 0 0
S-Sl 0 8 0 -4 1
c-sl 0 0 4 -4 1
sl-s1 1 0 0 - o - T
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Table 2.2

Coefficients of starting functions satisfying geometrical

boundary conditions only, for single span beams on the

interval (0,1)]. (F=Free, S=Simply Suppcrted, C=Clamped,

S1=sliding)

Boundary ..

Conditions Coefficients

by b, ~ bj by
b J
‘7 ’
F-F* 1 0 0 0
F~S* -1 1 0 0
F‘C l _2 1 o
S-F* 0 1 0 0
S-S O l -l 0
s~-C 0 1 - =2 1
C-S o} 0 -1 1
S1l-F* 1 0 0 0
S1l~S 1 0 -1 0
s1-C T. 0.5 0 -1.5 1
S-S1* 0 -2 1 0
G-si 0 0 -1.5 1
s

3

.* The §£arting function is the same as that sat¥sfying bofh
geometrical and natural boundary conditions.
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the orthogonai.polynomials generated with g(x) = x satisfy
the geometrical boundary conditions by theorem (1) in the
previous section. However, for beams with sliding end(s),
it is required to use higher degree generating functions
since &; # 0,-®;' = 0 at the end and thus theocrem (1) is not
applicable. To detecf the geﬁerating function for beams
with sliding end(s), it is assumed that &pn_3 and ¢, satisfy
the boundary condition &35_1 ="®,' = 0 at the boundary, and
then, from recurrence formula (2.6),

$hs1 = 9'®n + (3-Bp)d - Cndh_1 = 9'd

at the bpundary. In order to give 9j41-= 0 at the boundary,
then, g'=0 at the boundary, sinéé ®,#0. The lowest degree
generating fuﬁctions satisfying g'(x)=0 at the boundary are
given as, for monic polynomials, g(x)=x2 for beams with a

sliding end at x=0, 9(x)=x2-2x for beams with a sliding end

‘at x=1 and g(x)=x3—1.5x2 for- beams with both ends sliding.

It is possible to choose some other generating
functions. Then, with the same starting functions, various
other sét§ of BCOP can be obtained taking different
generatiné functions. Even with the same generating
functions, again various other sets of BéOP can be obtained

tak@ng different weight functions. "The choice of weight ¢

. function is related to the mass distribution of the beam, -,

and will be explained in the following chapters.



The first five shapes of BCOP, excluding the} rigid body
modes, are shown in Figures 2.1 and 2.2, for singie span

beams with classical boundary conditions taking g(x)=x and

wg(X)=1 (which corresponds to the uniform beams). Each mode’

is arranged to make the largest value unity by multiplying
(or dividing) by an appropriate constant. In Figure 2.1,
the modes are cbtained using the starting functions (2.9)
and compared to the vibration characteristic beam functions,
which are the exact solugion of slender beam vibration
modes. In Figure 2.2, the BCOP genefated with starting
function (2.9) and starting function (2.10) are compared.
It may be noted that, when symmetry exists, the symmetricél
and anti-symmetrical modes appear alternately, as verified
in the previous section (theorem'(Z)). It is also noted
that, for the free-free Beam, the BCOP are the same as the’

shifted Legendre polynomials.

Tw Finally, to illustrate the effact of using a higher

degree generating function,. the first five members of the
BCOP were bomputed using g(x) = x3-1.5 x2 and starting
function from equatibn (2.9), for a beam with both ends
simply supported. These are compared with the ekact
characteristic beam function in Figure 2.3. The BCOP
generated here/iatisfy both the geometrical (¢®x=0) and

natural (®x"=0) boundary conditions.

4
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(a) A Free-Free Beam

Figure 2.1.

A Simply Suppdrted-Free Beam

(b)

Figure 2.1.
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Figqure 2.1. (<) Jy‘ Clamped-Simply Supported Beam
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Figure 2.1. (d) A Simply supposted-Simply Supported
Beam ] o
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; Figure 2.1. (e) A Clamped-Free Beam
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figure 2.1. (f) A Clamped-C ped Beam

Figure 2.1. -Comparison of the\shdpes of BCOP (equation
(2.9) and g(x) = x) and ex am function.
—, BCOP; . R . ’ .o e ) e e e

— °°"""T; 1lst, 2nd, 3rd, 4th, 5th modes of exact
beam function. .
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Figure 2.2. (a) A Clamped-Free Beam
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Figure 2.2. (b) A Clamped-Simply Supported Beam
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Figure 2.2 (¢) A Simply S\pported-simply éupported Beam

Figure 2.2. Comparison of the shapes df BCOP generated
with starting function satisfying both geometrical and
natural boundary conditions and with starting function
satsifying geometrical boundary conditions only (g(x)

= X). ‘e, BCOP with higher degree starting function;

L] r . r ¢ o 0 ’ . o s @ ’ ..ooo—;

lst, 2nd, 3rd, 4th, 5th modes of BCOP with lower 8egree
starting function.
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JFigure 2.3 Comparison of the shapes of BCOP generated
with g(x) = x3 - 1.5 x2 and exact characteristic
//Beam function for a beam with both ends simply -
supported. ., BCOP; . . e — '
- +esee—7 1st, 2nd, 3rd, 4th S5th modes
of characteristic beam " function. ‘
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CHAPTER 3

!

Ly
\

VIBRATION OF BEAMS

) 3f¥ INTRODUCTORY REM{FKS

As ment;oned'in Chapter 1, though numerous researchers*
have tackled the problem of‘thg transverse vibrétion of
straight, slender beams with various complicating factors,

. their attention appears to have been confined tc mainly.
"individual beam problems, and thus there appears to ha;e been
no study in which a single approachfhas begn put forwafd for
.the~ t‘eatment'of the beams s.ubject to‘any or all combinations

. . of the factors. In this chapter, a simple, unified approach

-
—

’ is presedteq for the treatment of the beams using the

: LY : .
. Rayleigh-Ritz method with the.BCOP studied in Chapter 2 as

-y

the admissible, functions. Numerical results.are presented

for particular beam problems in comparison with those in the

|-y . literature, where available.

L4

) 3.2 ANALYSIS

’ it'is assumed»that a multi;épan, elastically restrained,
slender beam, Qﬁich 1igs alorig. the x-axis and vibrates in the

-~ X-Z plane, is subject taq a éonstant, axial, compressive fof&e
P and is boqued by x=0, x=2&, as shown in Figure 3;1. The
intérmediate supports at x=R4y are assumed to prevent lateral
displacement and t;'offer no fesisténce to rotation (simble'
support). The boundary conditions are coasidered to be
» | . \
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Figure 3.1.

A multi-span, elastically restrained beam with
arbitrary number of concentrated masses under
an axial lecad.
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clamped, simply supported or free (free in the figure) a;d
thé flexural rigidity EI and mass per unit length m are
functions of X. The concentrated masses My, translational
gprings (spring ésﬂétants K¢) ang rotational springs (spring
constants s,) are attached at pcints located at Xj, X¢ and xp
(i, t, r=1, 2, . . .), respectively. Two types of.end load P
are considered. The first is that for which each lcad P acts
at all times parallel to the undeformed axis of the.beam,
}egardless of end slope or displacement (Euler column t}pe
loading); this constitutes conservative loading. The second
is that for which, where an end is permitted lateral e
displacement and slope, the force acts along the tangent to

the elastic curve at the end (a tangentiél follower force);

this constitutes non-conservative loading.

For free vibration of the biifi—gggzdeflection may be

written as w(x)sinut, where uw is the radian natural frequency

of vibration and w(x) the maximum deflection with respect to

time t. Then the maximum strain and kinetic energies

as§ociated with the beam motion, respectively, are

_ Lot 22w 240 BoR (B )2 v
Vmax = 5 josx(x)(gxz) dx- fglo ) x, ‘ (3.1)
2 2 '
Tnax = & [imoulae £ pnp? 0y B2, 02

L]

where the last term of equation (3.2)<represents the effect

of rotary inertia of the concentrated masses, .J; being the
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moment of inertia of the i'th mass about the y-axis.

Supplementary to the strain energy,for elastically
restrained beams, there is an additional strain ené?qy stored

+ . - ' 13 » .
in the elastic restraining springs. The energy is given by

k -8
= r £ ;2 r o Mw.2
Umax E w |x=xt M g 2 (ax) Ix=xr. (3.3)

-

»
The total maxjplim strain energy is, then, Vpax + Umax-

The mathematical expressions for various boundary
conditions are w = dw/dx = 0 for clamﬁed boundary, w =
d2w/dx2 = 0 for simply supported boundary and dzw/4x2 =
d3w/dx3 = 0 for free boundary (dw/dx = da3w/dx3 = 0 for
's}iding boundary for dﬁiform bé&ms). When the elastic

¢ -

springs are attached at the ends, the boundary conditicons are

\

given by éonsidering the equations relating to the shear

force and bending moment at the endg. These conditions can

<« .

_be written as ' - il
4 préiw - 20/ dn 2 _
Ix (EIS 2)lx -0 = ke w|x=0, EI déw/dx |x=0 = s, dw/dx|x=0,
dax ;
(3.4 a,b).
4 = - 2 2
dx (BI dxz)lx g = ktw|x=x' EI d w/dx.lle -s dw/dx|x=k

’»
- -

;H' (3.4 ¢,d)

It may be noted that‘the classical boundary conditions are
‘special cases for which the spring gonstants approach zero

and/or infinity such as, ky = 8, =.0 for free, ky = 8, = =

—

for clamped, and k, = =.and 8, = 0 for simply supported (k, =

’

-
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0, s,y = = for sliding). As an example, if ky = sy = «, the

boundary conditions (3.4) can be rewritten as -
1 d d2w 1 2 2
w = (EI ) = 0, dw/dx = == ElId“w/dx<c = 0,
ke dx 1x2 Sy

3

which are the clamped boun&ary conditions.

Introducing a non-dimensionalized parameter % = X/&, the

flexural rigidity and mass distribution can be éxpressed as

EI(%) = EIg£(%) and m(%) = mgh(3),- , (3.5)

where EI; and mg, respectively, denote the stiffness and mass
pex unit length at ¥ = 0(x=0). The deflection w may be

expressed as

W(Z) = EA®L(T), (3.6)
k N
where o (%) are appropriate admissible functions for the

Rayleigh-Ritz method. Then, equation (3.4) can be written as

a

1 df a2%w + ddw 2 2
[-- - = —l - = KW —nr dcw/4g - = S,dw/d3% -
£ at a2 apd 320 T Ke¥|u=0 |20 = 5 |2=0
(3.7 a,b)
1 df d%w + ddw 2 2 ;
(& 4L a°vW )| = ~KeWlp_q, dw/d% _. = =-S,dw/d3|,._., -
£ dg 4z’ qz3 l‘;l |21 3= e/ e,
(3.7 e,d)
where Ki = ket3/EIgf(Z) and Sp = sy &/EIgE(R). —~

For ‘the conservative system, substituting equations

{3.5) and (3.6)'#nto‘eﬁerq§ expressions (3.1), (3.2) and

L



(3.3), equating Vpax + Unax =~Tmax: and minimizing with
respect to the coefficients Ay, according to the Rayleigh-
Ritz procedure, leads to the eigenvalue equation

I [Fxy - R°Exjlay = 0, (3.8)
j

where the frequency parameter Q = (u2m014/EIo)1/2,

Fij = [of(3) 4k (3)05(3)ds - pf ok (3)®4(3)as

L]

+ L Re@y(5¢)®5(3¢) + £ Spdye(ip)®5(3 ), and
t r

Exj = jéh(:)@k(=)¢j(;) + Etﬁrék(<i>°j(§i)

—_ r ' '
T+ Ji%(:i)‘bj(:i)]'
in which 34§ = x3/%, Et‘= Xe/%, Zp=Xg/%, P = PLZ/EIb,

M; = Mj/mgi, Ji = Ji/mo£3. The prime denotes the
differentiatiop with respect to 3. The solution of *equation
(3.8) yields the natutkal frequencies of vibration of the beam ‘

' together with the coefficients for the mode shape (3.6).

For beams for which the -end locading P is non-
. conservative (the follower force case), an additional term
. .

accommodating the work done by force P must be included in

the Rayleigh-Ritz érocedﬁre (195]. This may be written

-
. I . :
-
. - ¢
» M ' Al
- - N
.
-
P . .
. . .
N .
.



S5[work done) = P[%g

#ly

Sw(l) - 9})1}.
Y | o9

| =

Accordingly, the expression ij in equation (3.8) includes an

additional term pl[&k(1)®4' (1) - &c(0)&4'(0)).

It may be noted that, in matrix form, equation (3.8) may

be written
[F1{A} - R2[E)J{A} = O, | (3.9)

where (F] and {E] are real, symmetrical matrices for
conservativé systems but that [F] becomes non-symmetrical
when a non-conservative, follower force exists. Further,
taking appropriate orthogonal or orthonormal functions as the
admissible functions, [E] can be reduced to a diagonal or

unit matrix, which results in computational advantage.
' b ¢

As mentioned earlier, the rate of convergence and
accuracy 6f the Rayleigh-Ritz.méthod depends upon the choice
of the admissible functions. 1In this work, the BCOP

expiained in Chapter 2 are used as the functions.

For single-span beams, the‘starting.functions may be

written
& (2) = £ a;zi7l, L | (3.10)
t=1 H

where, for monic polynomials, the coefficients a; are given

in Table 2.1, and, then, tHe function ®;(%) satisfies both
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geometrical and natural boumdary conditions of the beam with
élassical boundary conditions (and sliding boundary condiéion
of uniform beams). As explained in Chapter 2, an alternative
set of starting functions, which satisz.the geometrical
boundary coqdition only, can be used as well. However, in
this chapter (and alsé in the following chapters), the
starting functions satisfying both geometrical and natural
boundary conditions are used, since the éa;isfaqtion of the
naturgl boundary condition is a desired property,-though-it
is not a necessary reguirement. It may be noted that
‘equation (3.16), with the coefficients given in Table 2.1,
can be useé as the .starting admissible functions nbt only for

-«

beams with classical boundary conditions, but) also fgi beams
with elastically restrglned ends neglecting f _elastic
springs, remembering the effect of the.springs s included in
the energy expression. For beams with elastica iy restrained
ends, though, an alternative starting functionq ay be

constructed, considering the boundary conditions including

the effect of the springs, as in equations (3.4) or (3.7).

" Then, the starting functioh can be expressed again as in

equation (3.10), with the coefficients a; determined from

Kg 0 -2fg -6 [a; ] (0. (3.11)

0 Sp -2 0 as ( 0

4 b = =4 &5,
K& K& K&+2f1 Kk+6+6fl a3 k2f24+12f1
0 SL 252'*'2 35&4"6 l L 34 ) | 45”‘0'12 ]

where )=f'(0)/£(0) and f1=f'(1)/£(1), and

~
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taking one of the non-zero coefficients aj to’ﬁe an arbitrary
value. The subscript; 6 and { denote the left and the right
end of the beam, respectively. It may be noted that the
coefficients given in Table 2.1 are special cases for wpich
the spring constants in eqﬁation (3.11; approach zero and/or

infinity, as may be expected from the boundary conditions

explained before.

For multi-span beams, the starting functions are given,.
recurrently, by multiplying the functions given by equation

-

(3.10), with the coefficients given in Table (2.1) or

. : « .
eunFion (3.11), by the factor (%-4/8).

!
The generating function gt%}-is chosen such that t{he

polynomials generated satisfy at least the geometrical
boundary conditions (In the following sections, the simpie
polynomial ¥ is used for g(E) to obtain numerical results,
except where indicated). Then using the recurrence fﬁrmula
(2.6) or (2.8), repf&cing the coordinate x with %5, taking the
weight function wg{3) = h(3) (see the following alterﬁative
piéeedure), the desired number of BCOP are geherated. It may
be noted that, using tﬁe;e BCOP as thé a sible functions
in equqt}on (3.6), for beams with no cdpcentrated mass, the
matrix [E] becomes a diagonal or;a'unit matrix. ;ven for
beams with concentrated masses,, this can be maintained if the

following alternative procedure is used for the generation of

the subsequent polynomials.
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chsidgr the case of beams with point masses (no rotary
inertia){ then the orthogonality condition may be expressed,

qbnsidering the real vibration modes, as

femxro (x)@g(x)ax + IM;@, (x3)®g(x3) = cpbrgs r,$=1,2,3...,
. 1

}' : (3.12 a)

/

where c, is a constant and &.¢ the Kroneg¢ker delta. This

. —
. equation can be rewritten, in non-dimensionalized form, as

) | B
/ [en(nresinieg(zar + §Ei¢r(:i)¢s(:i) = Spbrs (3.12 &)

/

«

where. ¢, is a constant (¢, = ¢ /mg). Using equation (3.12 -

b), the constants B, and C, in the equation
' i
®n+1 (%) = {g(8) - Bpli®n(3) - CuPp-1(3); p=1,2,3,... (3.13)

are given as

([ihiz)g(mrea(3)as + SMig(51)0A(51))
. i

Bn = —e ,
[Iénta)¢ﬁ(:)dz+§ﬁiog(=i)1 ‘
\-
. ~—
([Thizred(zras + Eﬁi¢§(:1)1 .
| 4 cn=

([incmred-q(zran + sMyen_f(xy)]

\



The admissible functions so generated differ from those
described earlier but lead to a new [F] matrix (symmetrical -
for conservative systems) and a new diggonal [E] matrix )
(again the latter is a unit matrix, if appropriate
«normaiizatioﬂ is used). . The sclution obtained from the new
eigenvalue problem is identical to that obtained using the
original approach. In the event that rotary inertia of the
concentrated masses (and/or the beam) is to be included,
conceptually the same scort of proéédure may be used.

However, the simple recurrence formula (3.13) then vields a
set. of functions in wh;ch each function is orthogonal only to
its immediate neighbors, the overall orthogonality not-.-being
maintained.” For such céses, the;, there is no advantage in
using this formulation over the straightforward relationships

-

(2.6) and (2.8) (repléqing X with f), in which the
concentrated masses are negleeted in the recurrence formula,
since both approaches yield symmetrlcal matrices [(E] and
identical numerical !!sults. The overall orthogonality may
be maintained by using the procedt‘lre explained in sectj.ons

2.1.2 but at t2: expense of considerably more work, which

makes thdis altepnative approach unattractive for such

problems: ,/

In the following sections, in order to demonstrate- the
applicability and accuracy of the approach presented, é
number of different beam problems have been considered for

which comparison results are available in the literature. In
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addition, a selection esults for problems not previously

treated is presented, further serving gp illustrate the
o~ ’
versatility of the method and totprovide new information

which may be: of lnterest to other workers in the field.

T~

3.3. BEAMS WITH NO ELASTIC SPRING -

3.3.1 Beams of Uniform Cross Section

The first éroblem considered in this seetion is the
vibratioh problem of single span beams without any
eompliceting factors. These beams were treated asAthe
starting steg\foffﬁhe 1nvest1gatlon of the accuracy of the .
present approach. Ple values for fre q&/yjparameters, - -
displacement (w), slope (dw/dx), beZding moment (kzd?w/dxz) ‘

and shear force (i3d3w/dx3) for the lowest four non-rigia

body modes, fo?'two sample cases, are shown in Table 3.1-

3.4, in comparison with the exact solutions. The frequencjas
parameters obtalned égreed with the 'exact' parameters to!
number of figures glven, except where shown. For the )
cantilever beam, the values were obtained using 10 terms in
the deflection series (§.6), while those for the free beam
were obtained using 12 terms iﬁcluding the two rigid body
modes. The values for dlsplacement are normalized

(I% w(x)dx=4% or IO w(3)d: = 1) and, the remaining values '
are based on this normaliiation. It may' be seen that the
present values for displacements and slopes are, for all the

/

modes presented, in egcellent agreement with those from the




The values for displacement and slope for a cantilever beam.

Table 3.1

Present 0. Exact
x/L . oW Y dw/dx Ldw /dx
(1) First mode: {1 = 3.51602
..................................... o e e e ——e
* 0.00 0.000000° 0.000000 0.000000 . 0.000000
0.10 0.033547 0.684812 0.032547 0.654812
0.20 0.127742 1.2130135 0.127742 1.213035
Q.30 0.272966 1.675685% 0.272966 1.675665
0.40 0.459769 2.045180 0.459769 2.045180
0.50 0.679046 2.326109 0.679046 2.326109%
0.68 0.922269 2.525491 T U.922269 2.925491 °
0.70 1.181753 2.653224 1.181753 2.653224
0.80 1.450955 2.722313 1.450955 2.722313
0.90 1.724799 2.749032 1.724799 2.749032
1.00 2.000000 2.753011 . 2.000000 2.753011
(2) Second mode: 2 = 22.0345
0.00 0.000000 0.000000 0.000000 0.000000,
0.10 - 0.185259 3.355119 0.185%259 3.355119
0.20 0.602110 4.648094 0.602110 4.648093
0.30 1.052266 4.070100 1.052266 4.070102
0.40 1.366939 2.022842 . 1.366939 2.022841
0.50 1.427332 -0.906285 1.427332 -0.906284
0.60 1.178952 -4.038799 1.178852 -4.038798
\\ 0.70 0.634104 -6.741868 0.634104 -6.741870
//’—\) 0.80 ~0.140072 -8.575275 -0.140072 -8.575273
0.90 -1.047504 -9.419051 -1.047504 -9.419051
1.00 -2.000000 -9.561557 -2.000000 -9.561557
(3) Third mode: Q = 61.6972
0.00 0.000000 0.000000 0.000000 0.000000
0.10 0.456158 7.531075 0.456138 7.531061
0.20 1.208980- 6.236149 1.209012 6.236236
0.30 1.512511 -0.7098505% 1.512479 -0.710149
0.40 $.051852 -8.120782 1.051849 -8.119800
0.50 0.Q39332 -11.103559 0.039375 -11.103998
0.60 -0.947492 -7.581857 ~-0.947530 -7.582407
0.70 -1.314850 0.712641 -1.314852 0.713585
0.80 -0.789774 . 9.47148¢6 -0.789747 9.470843
0.90 0.4570137 14.676546 0.457015 14.676924
1.090 2.000000 15,697335 ' 2.000000 15.697332
" ””

(4) Fourth made: 2 = 120.903 (Exact = 120.902)
____________________________________________________________ e mmmm e m
0.00 0.000000 ~0.000000 0.00000 0-..000000
0.10 0.769%79 11.123304 0.77001 11.126808
0.20 1.508392 " 1.218760 1.507%81 1.211337
0.30 0.867084 -13.013771 0.867739 -12.991616 °
0.40 -0.631547 -13.9789723 -0.631119 -14.005636
0.50 -1.412769 -0.095520 -1.414237 20.090075

0.60 ~0.654046 13.680260 -0.652990 13.705161
0.70 0.7943@6 12.202196 0.794781 12.169426
0.80 1.287229 -3.670921 1.286075 -3.653560
0.90 0.103303 ~-18.442543 . 0.104067 -18.451499
1.00 -2,000147 -21.993476 <2.000000 -21.991819
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"/' Table 3.2 -
- ) -
The values for bending moment and shear force for a cantilever beam.
) Present ¢ Exact
x/% 22d%w/ax? ¢3adw/ax’ 22a%w/ax? 3a%w/dx’
(1) First mode .
0.00 7.032031 -9.6797012 7.032031 -9.679629
0.10 6.064420 ~9.665638 6.064420 -9.6656138
0.20 5.101581 -9.571634 5.101581 -9,571691
0.30 i.1 60 -9.328772 4.155060 -9.328774
0.40 3.Z42712 -8.879667 3J.242712° -8.879664
0.50 2.1387537 -8.178633 2.387537 -8.1786234
- 0,60 1.616554 -7.190883 ~ 1,616554 -7.190885
9.70 0.959752 -5.861668 0.959752 -5.891664
0.80 0.449142 -4.265045 0.449142 ~-4.,265049
OB 0 0.117952 -2.302332 0.117982 -2.302329
1.00 4.000001 0.000052 0.000600 0.000000
............ ‘.——————-———--—————-------—--——-——-——————————-——;--—-h----------—
<+
(2) Second mode .
0.00 44.069142 -210.702966 44.068983 -210.684043 .
0.10 23.081258 -207.543945 23.082:208. *-207.544009 § N
L 0.20 3.086366 -188.951948 3.086409° -188.951788 . .,
0.30 -13.972142 -148.552984 -13.972150 -148.553675
0.40 -25.977599 -88.993708 -25.971605 -88.992852
0.50 “=_.31.458564 -19.969183 -31.450528 -19.969507
0.60 -30.119771 44.572784 -30.119804 . 44.572267 .
0.70 -23.146142 89.6816172 -23.186142 ~ 89,6826)8
0.80 -13%.267219 102.419175 -13.267187 T 102.418373
0.90 -4.082035 73.927489 -4.082079 73.928343
1.00 ‘0.000161 - 0.016380 .0.000000 0.000000
(3) Third mode . . S
0.00 123.310660 ° '_-958.576320 &123.394429 * -968.48I664
0:10 28.170233 -905.549222 ~ 28.,196564 -905.525943
0.20 -48.702294 -584.254329 -48.725212 -584.324649
0.30 -81.138184 -44:382555 -81.122696 -44.026821
0.40 -58.4‘321 468.273060~ -58.459991 . 467.813366
0.50 2.448258 v 684.890951 . 2.429340 685.085750
.0.60 64.878504 500.723145 " o 64.896169 ., 500.969025
0.70 - 93.316597 44.298281 93.315724 43.814224
.0.80 74.607284 . =385.184459 74 .592669 -384.7381377.
0.90 28.121932 -464.191217 28.142432 -464.645490
1.00 0.075285 7.493549 ©.000000 _ -0.000000
_____________________ P R e
(4) Fourth mode ) ' , : .
__________________ .------_——————-—-—d--—---Ji—’———-r—-‘—————_---—‘---‘---‘---
0.00 243.372168 -2825,.382916 - 241.803832 - -2658.853096
0.10 -12.045367 -2224.720623 -12.581857 -2230.821535
.0.20 -156.000046 ~448.341298 -15%.488968 - ~441.723A47
0.30 -95.827032 1483.781153 -96.090574 T R471.306980 4
_0.40 79.21¥899 1644.779421 78.947736 16%56.980200
0.50 170.325919 -9.326997. 170.983998 -10.890197
0.60 76.763297 -1681.352099 76.303507 -1693.308222
0.70 -104.73989%4 -1587.476133 -104.9113 -1570.711281
0.680 <182.932269 158.266739 —182;332%32 146.4%3005
0.90 -92.278915% * 1332.986501 -93 30 1345.252379
1.00 2.863190 . 299.323044 v 0.000000 0.000000
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Table 3.3°

.The values for displacement and slcpe for a free beam.

. Present Exact
x/ L w Ldw/dx w Ldw /dx
(1) First mode = 22.3733 et
0.00 2.000000 -9.294551 2.000000 -9.294551
0.10 1.074329 -9.147073 1.074329 -9,147073
0.20 v 0.19%454 -8.268756 0.195453 -8.2687%7
0.30 -0.544009 < -6.341737 -0.544009 -6.34113%
0.40 -1.040495 -3.453261 21.040495 -3.453263
0.%0 -1.215644 0.000000 -1.215644 0.000000
0.60 21.040495 3.453261 ;1.050495 3.453263
a.70 -0.54400% 6.341737 “0.544009 6.341735%
0.80 0.195454 . 8.288756 0.195453 8.268757
0.90 1.074329 9.147073 1.074329 9.147072
1.00 2.000000 - 9.294551 2.000000 9,294551
(2) Setand mode: . = 61.6728
— e A e A i . = = e P @ W P W e = = e = s = s e e e W = = —
0.00 2.000000 -15.718618 2.000000 -15.718618
0.10 0.454856 -14 $H9IM3I 0.454859 -14.699364
0.20 -0.794494 -9.502577 ~-0.794499 -9.502515%
0.30 -1.324030 -0.775263 -1.324024 -0.775260
0.40 -0.966053 7.446761 -0.9§6058 7.446655
0.50 0.000000 10.800564 0.000000 10.800724
0.60 0.966053 e 7.446761 0.966058 7.446655
0.70 1.324030 -0.775263 1.324024 -0.775260
0.80 0.794494 . -9.50257Y 0.794499 -9.502515S.
0.90 --0.454856 ° ~14.699323 -0.454859 -14.699364
1.00 -2,000000 -15.718618 -2.000000 -15.718618
---------------------------- ;-—-.—.’-———‘—‘——w—-—-————--—-——_———---—-——---_------_
(3) Thlrd mode Q = 120. 906 (Exact = 130.903) - .
2".000169 -21.992493 2.000000 -21.990478
—3'103083 -38.44304 -0.103929 -18.449989
-1.287153 -3.66626 -1.285727 -3.650426
-0.793037 12.217337 -0.793862 12.178967
0.656716 .13.6$7934 0.655687 13.73483}
1.420287 0.000000 1.422381 0.000000
0.656716 ~13.697934 0.655687 -13.734831
-0.793037 - 12.217337 -0.793862 -12.178967
-1.287153 3.666267 -1.285727 3.650426
-0.103083 18.443048 -0.103929 18.449989
. 2.000169 21.992493 2.000000 21.990478
STTTTmTmmm o s o S ity St DAt b o
LY
(4) Pourth mode: § = 199.886 (Exact = 120.859)
0.00. 2.001236 -28.293%00 2.000000 ., -28.274372
0.10 -0.585793 -19.665436 -0.588020 219.613393
0.20 -1.205772 8.316857 -1.200922 #.240041
0.30 . 0.458726 18.816970 0.4513%7 18.810297
0.40 1.394323 -3.308784 . ,1.400097 -3.180009
0.50 0.Q00000 -19.830637 0.000000 - -20.012060
0.60 -1.394323 -3.308794 -1.400097 -3.180009
0.70 -0.458726 18.8t6970 -0.451357. - 18.810297
0.80 "1.20%772 - 8.31685%7 1.200922 " 8.240041
0.90 0.585793 -19.6654136 0.588020" -19.613393
. 1.00 -2.001236 -28. 2Q3soo -2.000000 ° ~-28.274372
, ot .0 F ] .
v - ! r \
. R P - e N | r

~

-
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S~ Table 3.4
The values for bending moment and shear force for a free beam.
Present Exact
< )
x/ L 2 3 %w/dx? 23w /dax’ 273l w/dx? LW wax’?
{l) First mode
0.30 0.000189 -0.020702 01000000 0.00
0.1057 4.230927 ~~6.889318 4.230869 76.888
0.20 13.857790 108.304251 13.8%7837 108.304878
0.30 24.521137 98.777722 24.521118_ 98.776659
0.40 32.563224 57.9W0740 32.863199 57.911637
0.50 35.532001 . 0.000000 35.532050 0.000000
0.60 31§ 563224 -57.910740 . 32.563199 -57.911637
0.70 24.521137 -98.777722 24.521118 " -98.776659
0.80 13.857790 -108.304251 13.8578137 -108.304878
0.9%0 4.230927 -76 889318 T 4.230869% -76.888724
1.00 0.000189 0.020702. 0.000000 0.000000
[ e e - ——— m m - Y et ettt e et e e ——- - | . N i et
(2) Secqnd mode - . R
0.00 0.014566 -1.901500 ; 0.000000 0.000000
0.10 28.110984 463.812294 28.106656 463.871279
0.20 74.419749 382.812444 . 74.4231387 382.762291
0.30 92.852392 -48.02295¢6 92.848608 -48.025449
0.40 63.801799 -509.913574 . €3.804493 -509.8%4219
0.50 0.000000 -704.22666S 0.000000 -704.31151%
0.60 -63.801799 -509.913574 -613.804493 -509.854219
0.70 -92.852392 -48.02295¢6 -92.848608 -48.025%449
0.80 -74.419749 382.812444 -74.423387 382.762291
0.9%0 -28.110984 463.812294 =28.106656 46131.871279
1.00 ' -0.014566 -1.901500 0.000000 0.000000
(3) Third mode
0.00 -3.143230 337.737863 0.000000 0.000000
? 0.40 92.135321 7 °1334.132939 93.101989 1345.3841372
= 0.20 183.151712 158.712601 18930 ] 341 146.892318
. 0.30 104.683772 ~-1589.606438 - 105.020676 “TTSYSWP.4613822
0.40 ~-76.465184 -161%.643(20 -75.971081 -1689.661179
0.50 -169.066751 . .0000Q00 . =-169.989981 0.000000
0.60 ~76.465184 1672.643420 -75.971081 "1689.661179
0.70 104 .683772 1589.606438 . 105.020676 1%69.463822
0.80 183.151712 -158.712601 182.301341 ~-146.892318
0.90 ’ 92.135321 -1334.132939 93.101989 -1345.3841372
1.00 ' -3.143230 2337.737863 0.000000 0.000000
(4) Fourthmo@e™ °~ e
0.00 -14 .055400 1800.779411 0.000000 0.000000
0.10 210.517832 . 2600.840094 214.746965 254%5.394656
0.20 267.730254 -2034.883338 263.659873 -1981,251850
0.30 -88.9091382 -3847.06525¢6 -84.47%804 ;3841.022446
0.40 -275.783345 686.764068 -278.5%06117 614.603915
0.5%0 0.000000 3889.610422 0.000000 3990.97%688 -
0.60 275.383345 686.764068 278.506117 614.603915
0.70 88.909382 -3847.06525%6 84.475804 -3%41.p22446
0.80 -267.730254 -2034.883338 -263.65987) -+~al981.2518%0
0.90 -210.%17832 2600.840094 -214.7469855% 2%45.3946%6
1.00 14.055400 1800.779411 0.000000 *0,000000
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exact solutions, buf the values for bending moment and shear
force are félati‘bly less satisfactory, particularly for
higher sodes. The trend is ;imila; for beams with other
boundary copditionsz as may be expdoted. The aéburacy will
be increased by usino increased number of terms fh the

series.

The second prokblem treated is' that of two-span .
continuous beams, again with no other complicating factor.
The positions of the intermegiate supports are considered oo
be located¥at £,/% = 0.25, 6?% or 0.75. The first five
natﬁra% freguency pafameters for the_simply supported-simply
supported-free beam Qith Ll/L = 6.5; as an example, are shown
in Table 3.5, as computed using different numbers of terms in
the serios (3.6). Comparison values from the work of Greif
" and Mittendorf [38] (who used a component mode anal&sis) are
given together with 'exact' results calculated by the writer

directly from the solution of the slender beam differential

71

equation. It may be seen that the convergence of the present .

results is reasonably rapid with quite‘close agreemént with
the comparison values being achieved. 1In Figures 3.2-3.5,
the first five Tode shapes (for the beam with both ends free,
.the rigid body rotatidn mode ‘is excluded) are shown in'
graphical form,. the ‘esults being obtainod using lﬁiterms in.
<he series. In addition:‘for the clamped-simply supported-
free béam with %1/L = 0.5, the values fo} displa&ement
&normalized), slope, bending moment afid shear force for ‘the

lowest four modes are presented "in Tadble 3.6 in comparison

»
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Table 3.5
Frequency parameters (»u,zmow?."/IEIo)5 for a two-span beam, simply supported
atx=.0andx=££2andfreeatx=i. <
No. of terms. Mcde Sequence Number
in ¢1 1 2 3 4 )
6 9.0905 46.817 83.863 185.51 471.61
N .
8 9.0801 46.692 80.000 . 173.34 264.64
- P .
10 9.075%6 86.646 79.333 172.09 238.43
12 9.0737 46.625 79.083 ®71.73  233.73
) »
14 9.0728 46.615 78.961 171.59 232.37
16 9.0723 46.610 78.902 171.50 231.83
rRef. [38] 9.0714  46.597 478.757 .- - .
Exact 9.0711 46.597 78.758 171.32 230.60
.
s ) .
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E‘igure. 3.3. Mode shapes for two span beams wigh ends clamped-and free,
and the intermediate support at .(a) !.1/9. = 0.25; , .
~ “ ) %,/% =0.5 (c) £,/b = 0.75. _ £
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‘ boundary conditions and the intermediate support at
. L,/ = 0.25, (a) free ends; (b) gimply supported ends;
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The values for displacement,
a4 two span beam;

Table 3.6

clamped at x=0,

slope,

-
bending moment and shear force for
simply supported at x=0.SL and free

at xs=L.
Present Exact
x/ 8 w fdw/dx w Ldw/dx
(1) First mode: f} = 9.8713 (Exact = 9.8696)
0.00 0.00000 0.00000 0.00000 0.00000
0.10 0.04087 ° 0.71624~ 0.04085 0.71372
0.20 0.12217 0.81006 0.12213 0.80928
0.30 0.18260 0.29185 0.18236 0.29463°¢ 4
0.40 0.161%2 -0.80802 0.16121 -0.81540
0.50 0.00000 -2.50474 0.00000 -2.50408
0.60 -0.33932 -4.20092 -0.32965 -4.19480
0.70 -0.82037 -5.33342 -0.82057 -5.313532
0.80 -1.39015S -5.98363 -1.39020 -5.98217
0.90 -2.00412 -6.24528 . -2.00408 .-6.24301
1.00 -2.63155% -6.28447 -2.63138 -6.28319 p
(2) Second mode: _§l =
0.Q0 0.00000 0.00000
0.10 0.44292 7.30899
0.20 1.17279 6€.03099
0.30 1.46325 -0.75671
0.40 1.00560 . -8.03352
0.50 0.00000 -11.09748
0.60 -0.99234 -7.6512¢6 —
0.70 -1.36017 0.79656 \\
0.80 -0.81623 9.76360
0.90 0.46721 15.10324
1.00° 2-.05469 Ts. 15050
(3) Third mode : Q = sb 988 (Exact = 88.826) _ v
0.00 - 0.00000 0. ooooo 0.00000 0.00000
0.10 ‘0.62851 9.77334 0.62674 9.81045
0.20 1.48166 5.30987 ol 1.47739 < 5.31946
0.30 1.4848¢ -5.08642 1.48716 -5.14376"
0.40 0.63723 -10.09104 0.64502 -9.84321
0.5%0 0.00000 ., -0.31638 . 0.00000 -0.33863
0.60 0.56903 9.35155. 0.57685 9.14366
0.70 1.33645 4.,0732 - -1.33739 4.10756
0.80 1.16745 -7.8538% 1.16370 -7.86923
0.90 -0.12999 -16.88994 -0.13098 -16.98474
1.00 -1.96689 . -18.89385% -1.9637% -18.84956
[y g g s . - - - - e e e e e o e = = ————— - - - ——— -
(4) Fourth mode: = 199. 86 (Exact = 199.86)
0.00 0.00000 X 0.00000 . 0.00000 0.00000
0.10 1.0757% . 12.75115% 1.07%78 12.75128
0.20 1.32076 -9.9248 1.32081 -9.92516
9.30 -0.42316 -19. 24161\ -0.42318 -19.24175 .
0.40 -1.39%12 3.08010 " ~—=- -1.39519 3.07888
0.5%0 0.00000 19.99281 0.00000 < 19.99294
0.60 1.39848 3.17%21 1.39841 3.17618
0.70 0.45083 s -18.7878% 0.45081 -18.78763 '
¢.80 -1.199%2 N -8.23047 -1.19947 -8.23011
0.90 -0.58731 19.3%9028 -0.58731 '19.%58976
1.00- 1.99766 28.24128 1.997%9 28.24031
" . . .
. : /. o
" . ’ K J
' - L} ) ,;\" ¢



. Table 3.6 (continued).

!
- Present Exact

x/2 22d%w/dx? 23awsax?: 224%w,/dx? .ladsw/dx’
(1) First mode :

0.00 9.822613 68.94051 10.23706 -62.0125%5% “
0.1¢0 4.091312 -68.53000 4.03946 -61.87182
6.20 -1.9815%¢6 ~60.3091% c=2.11507 -61.08%47
0.30 -8.26002 -54.70642 ., -d4.15238 ~-%9.56067
0.40 -14.03291 -68.53104 -14.01861 -5%.79721
0.50 -18.70039 0.83438 -19.73921 -56.87496 .
0.60 A -14.13368 64 ,481350 . -14.09992 55.35794
0.70 -8.8%130 46.08518 *- -8.80293 49.739564
Q.80 -4.23401 38.95710 -4.31242 19.08453
0.90 -1.16501 - 25.94725% -1.17963 22.57382
1.00 . . -0.15384 ~39.61264 0.00000 0.00000
(2) Second mode

0.00 . 119.58650 ~-854.49107 119.86084 -942.023239
0.1 27.29762 ~-885.50078 27.25987 -880.93909
0.20 -47.53173 -569.03054 -47.61463 -569.48974
Q.30 -79.42922 . =-43.1787¢ -79.34930 -46.46167
0.40 -'57.90628 139.22287 -57.8962S _ 446.2811%
Q.50 0.71044 686.03976 0.00000 647.29192
0.60 65.53483, » £29.843490 i 65.55757 523.86287
Q0.70 95.34627 46.81854 95.39970 49.34499
0.80 76.51278 -393.3291¢ 76.46823 -393.2789%
0.90 28.88542 -474.30827 33.87891 -476.61651
1.90 -0.10285 =33.17485% 0.00000 - 0.00000

(3) Third mode , -

0.00 193.80601 - -5551.63720 180.81 7 -1674.33894
0.10 16.665%2 -1300.9992¢ 18.2279 -1491.40943
0.20 - -97.9%686 —654.@8278 ~-93.60170 % -630.83317
0.30 -91.863865 468.86446 ~94.76493 608.87867
0.40 16.06228 1803.15721 15.43391 1481.9048S%
0.50 147.42641 -24.99001 177.6%288 1674.06873
0:60 15.70172 -1782.58391 " 14.54245% ~=1%08.68218
0.70 -100.35135 .=613.7745%8 -101.99718 -=719.5108¢
0.80 -122.3579% 3%1.263%8 -119.492923 - B|47.13178
0.90 -53.%52908 718.765%8S -52.83010 814.3555{
1.00 4.5%53%08 1461.19202 0.00000 .0.00000

(4) Fourth mode -\

0.00 400.113432 -5634.89174 400.19991 -56%7,70062
0.10 -117.6%0132 -392%.64971 ~117.6628% -3924.63913
0.20 -240.27325% 1648.90728 -240.30441 1648

0.30 90.2961 3764.6643% 90.31660 3763.939
,0.40 280.1499 -638.07984 280.15926M -636.319%8
0.%0 0.1827% -399%,62303 0.00000 -4005.41276
0.60 -278.1835%6 -612.4209% -278.170%6 -613.86342
0.70 -84.38626 3835.90016 -84.37402 3836.3948)
0.80 263 1361399 - 1978.93041 263.34220 1978.86476
0.90 214.49744 ~2%41.90024¢ 214.48823 -2%42.32786
1.00 -0.021%6 -7.06428

: _9.00000 | 0.00000

-

*



:‘
with the exact values calculated by the author.> The values
for displaeement and slope are in close agreement; t?e
agreemeﬂt for benging moment and shear force is somewhat
poorer in some imstances, especially'in the region of the
beundaries. .The.bending moment and shear force are

represented graphically in Figures 3.6 and 3.7..

.

The third prdblem treated is that of a three-span
continuous beam! again carrying neither concentrated mass nor
axial load, the support conditions at k=0 and x=3% being.
either both simply supported or both clafped, with various
combinations of the location of the two intermediate simple
sq}ports. The first three frequency parameters for each case
are given in Table 3.7, together with 'exac®' results from
the ercellent work of Gorman [41]. It may be seen tﬁat the
agreement between Gorman's results and those of the present

work, which were computed using ten terﬁé in the deflection
series, is again reasonably good; it epuld be improved by

taking more terms in the series (3.6).

~

The fourth problem considered'is that of a eantilever_
beam with.one or more attached concentrated mass(es), with or
without rotary ipertia. The case wﬁere the mass is located ‘
at th{ tip has beén studied fairiy extehsively,Awith 'eraetj
results being given by To [48],‘amongst others. It was
therefore consiqered appropriate to use the present analysis

' to calculate some'frequency parameters for this case for

. i . . :
comparison with exact valués. Such a comparison is made. in



=)
o~
o-
o
o i ‘
Q" .
=)
T-
o] : »
o
N Ll 17 L1 r L] ‘]’ 1] l’ L ] L] l' T T L l B ‘r L
8. 0.1 0.2 0.3. 0.4 0.5 0.6 0.7 0.8 0.8 1.0
Figure 3.6. .(a) First Mode
(] é //
- - ~
~
« ! .
o - ~
o -
w
} .
o 4
4 . -
c'_‘ - ’
w
i . .
Q ‘ - .
o
r:. T l LE T ¥ l’ T T T I L [ L ﬁ L ' + I L 4
1 0 0.1 0.2 0.3 0. 4 6.5 0.6 0.7 0.8 0.8 1.0
Figure 3.6. (b} . Second Mode




200

100
I

0

-100

-200

Figure 3.6. (c) Third Mode

200 400
\\

V]

L
V4

-200
!

L ¥ L ¥

" L l' ¥ l' ¥
0 0.1 C.2

-400

1 !
6.3 0.4

Figure 3.6. (d) Fourth Mode

Figure 3.6.
for a two span beam clamped at x=0,
-at* x/4=0.5 and free at x/%=1.
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Comparison of the bending moment (£2d2w/dx?)
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Comparison of frequency parametérs (w™m i /EI ) °

Table 3.7

uniform beam .(p=0, number of terms in ®i=10).

3

for a three-span

“Source of

Boundary Conditions

L./ —
2/4 Results S —s cC—cC _ *
(1) %,/1=0.125
0.2 ¢ Present 25.35 82.97 174.4 36.90 102.6 202.6
’ Exact [417 25.30 /, 82.76 174.0 36.86 102.4 202
o 375 Present 34.04 ° 112.% 218.4 49.83 139.1 241.1
. * Exact [41] 33.98  112.1 218.2 49.73 138.8 240.3
g 5 . Present 48.90 1M 0 184.6 70.60 123.3 224.0
® . ' Exact [41] 48.85 113.9% 183.1 70.54 122.3 222.6
0. 625; Present 59.65 9¢.78 200.8 66.07 132.7 211.7
) ' Exact [41] 59,60 96.33 199.4 65.93 132.3 209.7 .
0.75. { Present 44,37 124.4 198.6 46.54 131.5 249.5
T Exact [41i] 44.29 124.3 197.4 46.44 131.1 249.0,
0 g75¢ Present 33.59  94.55 188.1 34.81 97.24 193.0
’ ‘ Exact [41] 33.55  94.40 187.7 34.74 97.06} 192.4
(2) 22/2=0.25 P
0.375{ Present 36.05, 118.3 207.3 52.47  146.4 282.9
) Exact [41] 35.84 I17.5 204.5 52.26  145.7 282.2
o.s { Present 51.54 157.9 191.2 75.52  193.2 249.5
, ' Exact [41] §1.42 158.0 189.6 75.34 192.9 246.8
0.625{ Present 76.75 118.3 204.0 97.42 148.1 277.4
: Exact [41) 76.67 117.5 202.5 97.24  146.9 276.2
0.75 { Present 61.82 p157.9 201.4 66.05 184.6 282.5
. Exact [41] 61.67° 158.0 199.9 65.90 184.1 281.9
g
. (3) L,/2=0.375 . ’
o.5 { Present 55.21 96.85 184.5 80.50 140.8 228.0
. Exact [41] 54.77  95.43 181.7 80.00 139.2 225.3
© Present 81.85 94.91 226.9 118.7 138.7 251.8
0.625{ —
Exact [41] 81.74 94.40 224.1 118.6 - 137.8 247.7
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Table 3.8, wheré a brief convergence study is also given for
two particular tip mass characteristics. The convergence may
be seen to be very rapid; with excellent agreement with the
'exact' results being achieved. Alsoc given is a set of>
results for a cantilever with tip mass and subject to (a) a
conservative (constant directional) axial' locad and (5) a non- @

-

conservative (tangential) axial load. To'engeﬁder confjidence
in the results for the nog—conservative.system, Qalues are
included for the-cantilever beam with no tip mass but acted
upen by a tangential ﬁdllower quce: The aoalues givgp agree
with results computed by the authors from the exact solution
given by Timoshenkoﬂand Gere [196] (page 155), to the number

of figures presented, except for thoée mocdes for which the

rounded 'exact' decimal figures are given in parentheses.

. I4
In Table 3.9, sets of results are presented for three

more cahtilever problems, this time with the mass(es) located
at positions other tha{-at the tip. The\comparison values

ar: from the wofk'of kounadis.[GZ, 63] and from calculations

by the present author gising a commercially available fin_j.t_e. .
element package, PAFEC [157]. (The elament used in the *
calculations was the Eoﬂbentional four degree’ of freedom,
cubic displacemeht, beam bending element which, it is ~*\Q\;
believed, yieids ?pper bounds for the freqpencies. Twenty °

elements weré_used and the resulting frequencies are expected

to be accyrate to thé’numbér of figures given.) The first

.s€t &f values, those for ¥;=0.5, J;=0, show that whilst the

»

L
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Table 3.8

' . 2 s Sk
Comparison of frequency parameters (¢“moi /EIO) . for a uniform

cantilever beam with a tip mass. ~
. 1
. - No. of ) ) Mode Sequence Number
qi Ji p/n2 terms 1 2 3 4 s d
0.5 0 0 6 2.0}63 18.901 51.765 107.88 206.44 °
8 2.0163 16.901 $1.701 106.09 182.22
10 3 16.901 S1.7901 106.06€ 180.18
Exact (48] ozs3l 16.901 Sl.?O% 106.06 180.12
0.5 0.5 0 6 1.159%7 4.3307 25,144 64.956 130.81 E
8 1.19 4.3307 25.143 64.861 124.4S
10 1.1997 4.3307 25.143 64.860 124.28
Exact [48] 1.1997 * 4.3306 25.143 64.860 124.28
1.0 ¢ 0O . 10 1.5573 16.250 b 50.896 105.20 179.29 -
Exact [48) 1,5&1i 16.250 $0.857 105.20 179.23
1.0 1.0 0.7 . 10 6.86790 3.3906 ;24.019 . 63.463 122.74
Exact { 48]} 0.86790 3.3906 24;g%?, 63.463 122.74

(a) Constant directional axial force (conservative loading)

.5 0 -1.0. 10 - 4.3410 20.886 55.983 - 110.52 184.75
-0.5 - 10 3.4159 19.003 53.884 108.31 182.48
0.1 10 1.5705 1€.448 51.253 . 105.60 179.72
0.2 10 0.91229 15.982 50.802 - 105.14 179.26 -
0.25 10 0.00000 15.744 - 50.574 104.91 ° 179.02

(b) Tangential folliower force (non-conservativé loading) ' -

10 2.5651 15.064 499611 103.85 177.91

0.5 0 0.5
1.0 10 3} 4288 12.846 47.429 101.58 175.61
1.5 - 10 5.2786 9.5708 45.140 99.276 173.28
1.62737 10 7.2217 7.2524. 44.539 98.678 172.68
1.62738 10 - % - * 44.538 98.678 172.68

. ) -_/
0 0 0 10 3.5160 22.034 61.697 120.90 199.94(86)
1.0 " 10 5.1461 18.640 57.905 116.79 195.66(58)
2.0 10 9.8283 12.255 53.841 112.53 191.29(20)
2.03158 10 10.998 11.033 _ 513.707 112.39 191.15(08)
2.03159 10 - * - " $3.707 412.39 191.15(06) .
| v . -

b ]
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convergence of the present solution is still rapid, it is
slower than for the tip maSs problem, more terms heing needed
"in thefseries to obtain equivalent accuracy. Also, the. .

agreement between the results of Kounadis, PAFEC end the

present solufion is excellent. When the mass is:permitted to
have rotary inertia-(§1’= 0.5, J; = 0.5{, the rate of
convergence drops off significantlg, although_the final
reeults appear likely to be similar to that given by Kounadis
and PAFEC. The author believes that the drop-in.the rete of
convergence of the pre;ent eolution is primarily due to the
‘discontinuity -in the shear force (and bending moment)

introduced by the presence of concentrated masses (and ,

momehqg‘affihertia) not being adequately modélled'hy the

" continuously differenti&ble assumed fuhctiong.. The. effect of
the diecoﬁtinuity'in_bending moﬁent, which.requires a
discontihuitx in second derivative, .is much more drastic than
that due to the shear force, which requires<a discontinuity
in third derivative, as may be seen from the first two sets
of results in gable 3.9. 1t should beapoted however, that
the’xglue of J; ueed (0.5) with the particular;value of M;
(0.5) ggequires the concegtga‘ted mass to‘have a radius of
gyration equal to the tength of the heam; whidh .is both
'severe nd unrealistic. These values were used by earlier A

' researchers, with whose work the present results were to be T

compared. It may also be noted that the discontinuity in

shear force occasioned by the preserice of ‘4 concentrated mass
( r




~

) £ .
is similarly present when an intermediatg suéport exists.

Fortunately, the effect upon the frequencies predicted for
such a case is sma}l.. Should a rotatiopal spriﬂg\stiffnéss
be introcduced at an intermediate point along a beam (which
will be treated later), then the resulting discontinuity in
bending moment may well ﬁﬁgnificantly reduce &he rate of
.convergence of the sclution.

The next problem treated is that of a beam with wvarious
combinations of end conditions and carrying two intermediate
concentrated masses, with énd without rotary ineftia, one at
S ;28.3L, the other at x=30.7&. Results for thié“problem are e

given in fable'3.10, as obtained using ten terms in the

deflection serie;, where no account'hag been taken of
symmetry, despite itg existence for foux of the
configurafions. Rigid body modes - i.e. zero frequenqies -
for beams wiﬁh éne end free and the other simply supported or
ffee are- not included in the table. séme comparison values

calculated using PAFEC are also given in Table 3.10.

14
-

The final prohlem considered in this secéion is that of a

(M'«'. two-equal-sp#n_beam with a concentrated mass attached at.the
,'centre of eacﬁ spgn, in the presence—of a copstant axial
force. thériqal fesults-for this beam, for the three_

possiBIe’comﬁinatlons of clamped and simply supported ends,

k. ad

are given iﬁ Table 3.11.as-computed using ten terms in the

o deflection series, wi‘th no regard to symmetry considerations.

?




Frequency parggeters (u)zmoi"/EIo)

Table 3.10

masses (Egco.s, No. of terms = 10).

k . .
for beams with various concentrated

DDy Dy N O g,

Jg Source of Mode Sequence Number
results 1 2
0.3 1.0 0" Present 15.01 33.93 103.1
¥ 0.00S Rreseot 14.42 33.91 63.92
14 PAFEC 14,41 33.88 58.90
? 0 Present— 10.16 -29.31 92.87
- 0.005 Present 9.947 28.74 57.78
PAFEC 9.945 28.68 53.97
. 0 Present 2.665 17.23 38.25
0.005 = - 2.629 15.72 37.25
0 - 1.815 12.19 30.54
0.005 " 1.793 11.02 26.98
0 6.491 23.41 84.96
D 0.005 6.399 23.14 52.62
. 0 " 11.73 34.44 g4.33
0.005 — 11.04 31.98 62.57-
R R 0 " 8.369 25.16 86.31
0.00% " 7.796 22.31 43.89
- 0 20.87 41.62 107.4
0.005 " 17.92 40.59 74.69
. . 0 14.17 35.36 " 96.64
TN g.005 12.28 29.48 50.23
o " 0 Present . - 10.31 26.67 88.05
0.005  Presant 9.066 21.72 39.47
PAFEC 9.062 21.67 -38.61
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Comparison values'!!E\Gﬁé:fgndamental frequency parameters
are available from the work of Laura et al. [45] and are
shown'in the table. : g‘ ’

3.3.2 Beams of Non-uniforfm Cross Section

‘ . . ]

In the three examples treated in this sectign, the beams
are considered to be of rectangular cross section of breadth
b (in the y-direction) and depth d (in the z-directien); the
flexural rigidity of relevance (vibration in the x-z plane)
thus varies with bd3 and the mass per unit length with bd.
Based upon the earlier convergence studies, lt was considered
adequate to use ten terms in the deflectlon series for the
scomputation of the frequency parameters presented in this

-section.

The first problem treated is that of a beam of length &,
simply supﬁortea at each end, having constant breadth but
varying 1ineerly in depth from dg at x=0 to d; at x=4&; thps
da(x) = d6(1+cx/£), where slope c=(dj-dg)/dg. The flexural

rigidity and mass per unit length are then given by

EI(x) = EIg(l+cx/%)3 and m(x) = mg(l+cx/&)

I

and the functions £(3%) and h(%) in equation (3.5) by

£(%) = (1+c%)3 and h(g) = (1+c:).

-

Frequency parameters for the first five modes of vibration

for such beams are presented in Table 5.12 for various values

-

o1

, o «
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of slope’c. Comparisén results from references [66, 67] are

also given and it may seem that close agreement is achieved.

The second example treated is the cantilever beam with

linear taper and with parabclic taper, as shown in Figure

3.8.

d =

The

s

cross-sectional depth d can be expressed as

dg{1-(1-d;3/dp)x/4}, for a linear taper, and.d=dg{l-(1l-

dl/do)Jx71}, for a parabolic taper. The breadth of the .

cross-section b can ge given similarly. The stiffness and

mass functions £(3) and h(3), in eqﬁation (3.5), then become:

(a)

(b)

linearly tapered beam .

i)

£(5)"

ii)

£(3)

1ii)
£(3)

h(g)

beam with linearly tapered breadth, constant depth,

= {1-(1-by/bg)3}, h(z) = {1-(1-by/bg)3},
(3.14a, b)

beam with linearly tapered depth, constant breadth,

= {1-(1-d1/dg)&}3, h(%) = {1-(1-dy/dg)3},
(3.15a, b)

beam with linearly tapered breadth and depth,
®

{1-(1-by/bg)&3}{1-{1-d1/d¢)3}>; ' (3.16a)

]

= {1-(1-by/bg)&}{1-(1-d;/dg)%}~ (3.16b)

parabolically tapered beam

i)

beam with parabolically tapered breadth, constant
depth, '




- g ‘ T

(a) linearly ‘tapered beam

1
[
PNNNN

L3 -
i

(b) parabolically tapered beam

Fiqure 3.8. Ccantilever beams with linear @Rd parabolic tapers.

4
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“~ -
£(%)={1-(1-by/bg)s1/2)}, h(3) = {1-(1-by/bgy)zl/2},

iﬁ) beam with parabolically tapered depth, cdanstant
breadth,

£(5)={1-(1-d,/dg)31/2}3, n(3) = {1;(l—d1/do)§lf2},

iii) beam with parabolically tapered breadth and depth,
£(%)={1-(1= b1/bg)81/2} (1-(1-d;/dq)51/ 233,
h(z)={1-(1-by/bg)s+/2} {(1-(1-a;/d4¢9)51/ 2"

< In each case the subscripts 0 and 1 denote the wvalues at
the le€t- and right-hand end of the beam, respectively.

Results for the particular case of by /bg and/or 4;/4g = 0.2

~are presented in Table 3.13. For linearly tapered bééms,

“w
comparison is made with values from references (68, 71] and
again good agreement may be seen to have been Jéhieved. (It
' N\

may be noted that the results presented for the doubly
tapered cantilever < that is, both breadth and depth varying

- are also applicable to beams with certain other cross

sections, such as circuylar, elliptical and diamond shaped.)

Finally, the three span uniform and parabolically
tapered beams‘shoﬁn in Figure 3.9 are considered. For the
tapered chsés,‘the.breadth and/or depth each vary
symmetrically about the centre of the beam (£Z=1/2), with the
9entral dimenéion being half ﬁhat of the respective dimension

at the ends. The siiffnes§ and mass functions £{%Z) and h(Z%)
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(b) parabulically tapered beam

Figure 3.9. Three-span beams with concentrated masses.
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then may be written: .
Case (1) for a uniform beam
£(3) = 1,.h(%) =1,

Case (2) for a beam with parabolically tapered breadth,

uniform depth
£(%) = 1-2% + 282, h(§) = 1-2% + 2%2, (3.17a, b)

Case (3) for a beam with parabolically tapered depth, uniform
—_— .

breadth
£(5) = (1-2% + 252)3, h(%) = 1-2% + 282, (3.18a, b)

)
Case (4) for a beam with parabolically tapered breadth and
depth -

£(%) = (1-2% + 282)4, h(g) = (1-2F + 282)2,
(3.19a, Db)

Numerical results were computed for three combinations of
clamped (C) and simply supported (S) end conditions for
concentrated masses M; = 0.1, M; = 0.2 and M3 = 0.3 located
at § = 0.2, 0.5 and 0.8, respectively, concenérated moments

of inert{fa 31 = 0 and with the two intermediate supports

located”rt t =0.35 and 0.70. The values of the lowest three

frequency pa eters for all four cases of cross-sectional
uniformity and/or taper are given in Table 3.14, where it
should be noted that in the case of the C-S beam, the

1]



Tatle 3.14

»

Frequency parameters (u2m014/EIO)1/2 for three-span uniform and
parabolically tapered beams with concentrated masses as shown in
Figure 3.7

Boundary Conditions

Cases -
c-¢ - ™N € -5 S-S

(1)  76.63 134.6—.1.-50?.3 { ss 116 2 136 /2,/~\64 20 99.65 135.8
(2)  67.03 126.0 149.4 " ° 9& 16 106.8 l-fi(s /%' 37 90.¢) 120.5
(3)  40.39 90.28 105,0. 35.98 7336 83755 34.44 £1.01 80.47
(4)  34.21 84.43 ¥6.85 m;,sg 65 76.68 29,36 54.74 71.66

1v0
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clamping occurs at- the left hand end (%t = 0).
3.4 ELASTICALLY RES INED BEAMS

3.4.1. Beams of Uniform C¥ass Section

- ’

The first set of problems conéidgred in this section is
the vibration of sin ran beams with both ends elastically
restrained against .rotation and no translation, and/ with

‘" neither concentrated mass nor axial lecad. These ablems

were chosen mainly to show the effect ofrthe use &f several
‘sets of orthogonal poﬁynomials, explained in sédgaon .2, for
the. admissible functions in the Rayleigh-Ritz mey . »Four

sets of polynomials were generated:

.
-

. '

{A) The starting function was chose _;dlsatisfy only the

zero deflection condition*at eachfeud, the effect of the

~

rotational spriﬁg being neglected} thus-&l(j) is given'

by equation (3.10), with the cgé{Sicieﬁts as given in

Table 2.1. The simpﬁh éenerating unttion g(%) = § was

» . Ld
used. +7 .
Vi ad - . ° .

(B) Thé.start;pd fqhétion‘was chosen to sdtiéfy both the

slope_aﬁ&f;gfo deflection conditions at the ends; thus
e Vv -

'ZQi(yifis’given by equation (3.10), with the coefficients

as given by eguation (3.1l1). .Thé generating function

/‘j .

was again simply g(%) = 3. -
' R . .

» ‘s Q .
(C) As. (B) but with generating fu ion g(g) = 12, . :

) '.

101

A

-
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(D As-(B) but with generating function g(i) = - 38272 + %3,

AR

It may ge recognized that each member cf the polynomials~in
_case (A) sa;;sfies’only the zero deflection conditions at the
ends, while in case (ﬁ), each membex saéisfies not only the
zero deflection conditions but also the slape conditions at
the ends. Further, each member of the polynomials in case.
(B) satisfy only the zero deflection conditions at the ends
(except the starting function), and in case (C), each member
satisfieé both slope and deflection conditions aé T =0 and
only the zero deflection condition at ¥ = 1. Table 3.15
shows the results for S; = S = 10 and §; = 10, S3; = 100
(subscripts 1 ahd 2 denote the position of § = 0 and § = 1,
respectively), in comparison with the exact valuesvccmputed
by the author from the frequency equation given by Gorman
{41]. It may be seen that all the sets of polyﬁomials give
excéllent resultS'énd the polynomials generated with higher
degree generating'func;ion_yield a fastef rate of convergence
for the beam treated. Thig trend may well Se retained for
"any beam when the shape of the starting function aﬁproﬁimates
the fundamental mode shape-. Howeyer, since the starting .
function, equaticn;(3.10) with the coefficients given by
equation (3.11), is constructed to satisfy the end deflection
and slope conditions only, the intermediate shape may'not'be
hecessarily approximate to the fﬂhdamental mode and thus thé_

trend may not be retained,'iﬁfgeneral. Thérefore, in the

follqQwing problems, the simpleét poiynomials (case. (A): g(8)

’




Compﬁi:son of frequency. parameters (w:moi“/EIo)h

Table 3.15

for uniform,

single

span beams with both ends rotationally restrained and no translat:ion

(M=J3=p=0).

Source of Number

Mode Sequence Number

of Results Terms 3 4 )
(1) s =5,=10
[ & terms 17.2699 ;% 9616 102.561 177.769  555.146
case (ay 1.8 " 17.2695 (49 9601 101.338 171.930 280.215
{10 " 17.2695 '"49.9601 101.318 171.750 262.496
12 " 17.2695 49.9601 101.318 171.748 261.546
. 6 terms 17.26 49.9616. - 101.483 173.155 385.979
case (my .8 " 17.2696~ 49.9603 101.330 171.812 267.760
10 " 17.2695 49.9602 101.318 171.748 261.844
12 v 17.2695 49.9601 101.318 171.748 261.529
6 terms 17.2713 49.9664 101.418 174.745 321.367
case (C) & - 17.2703 49.9635 101.365 171.995 263866
10 " 17.2699 49.9619 101.343 171.861 261.905
12 " 17.2697 49.9611 101.331 171.808 261.712
- 6 terms 17.2702 49.9615 101.347 - 171.825 261.666
case () 1.8 " 17.2698  49.9607 101.330° 171.782  261.662
10 " 17.2696 49.9604 101.323 171.764 261.590
Exact (41] 17.2695 49.9601 101.318 171.748 261.527
(2) s,=10, 5,=100 X
6 terms 19.2728 54.5146 110.558 191.209 6£61.309
case ) .8 " 19.2722 54.5099 108.811 182.555 = 298.763
10 " 9.2722 54.5099 108.773 182.184 276.315
12 0" 19.2722 54.5099 108.773 182.180 274.921
6 terms 19.2723 54.5111 108.960 183.516 348.901
R 19.2722  54.5100 108.781 182.239  280.083
10 " 19.2722 54.5100 108.773 182.181  275.169
12 v 19.2722 54.5099 168.773 182.181 274.892
‘5 terms 19.2742 54.5154 108.867 184.673  323.351
case &) {.8 " 19.2730 54.5131 108.817 182.413  276.881
10 " 19.2726 54.5117 108:796 182.291 275.232
12 " 19.2724 54.5109 108.786 1B2.240 275.062
6 terms 19.2734 54.5136 108.844- 182.407 275.357 -
19.2727 54.5119 108.809 182.306 275.329
case (D) " 19.2724 54.5111 108.793 ° 182.254 275.145
Exact, [411 19.2722 54.5099 108.773 182.180 274.889
.k -

-t

"
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figures given,.except.for two cases of the fourth modes and

R - " -

. - O ' : 104

= § and both starting and éﬁSséquent functions neglect the
effect of the springs) are uﬁed to generate numerical
results. . ' '

Y .

The most widely studied beams subject to elastkic
sprinc(s) seem to be canﬁilever beams and thus it is natural
to consider such beamslhere. First, a cantilever beam with a
.tip mdss with no rotary in€rtia and subject to a
,translational spring at the free end is treated using ten
terms in the series f3.6{, and the frequency parameters for
the lowest five modes aﬁé given in Table 3.16 for various
valueq ¢f tip mass and spping constant., The valnee presented
are thé s;me as thoée computed by the author from the exact

. ' .
frequency-eguation'given by Stephen {76] to the number of

rall the'iifth modes, .for which the rounded exact values are
. " * . " : . -

given in parentheses.’
: X

The second cantilever beam treated is that subject to

both translational and rotatiocnal eprings positioned at the

same point with nO*concentrated mass or rotary inertia. The

B

frequency parametexs obtaian are presented in Table 3.17 in

comparison with the exact sblution given by Lau [77]. Close

_ agreement may be seen to be achieved for all the spring //’“\\

positions, qlthough the rate of convergence is significantly

'reduced when the springs are positioned other than at the

tip. Included in the table is a brief convergence study

) ’ +
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Frequency parameters (uzmoi“j/EIo)LJ for uniform cantilever beams with tip

Table 3.16

mass (no rotary inertia and translational spring at the free end.
- - L Y )

a

Mode segquence number

M — ——
L5 1 2 3 4 5
0 0 3.5160 22.034 61,697 120.90 199.94 (199.86)
1 4.0401 . 22.126 61,730 120.92 199.95 (199.87)
10 6.9639 22.980 62.026 121.07. 200.04 (199.%96)
100 13.254" 31.539 65.354 122.65 200.97 (200.89)
1000 15.193 . 47.283 91.251 142.83 212.69 (212.6M
10000 15.396 49.712 10g.12 174 .87 264.03 (263.35)
) | (174 .82)
0.2 1 3.0125 18233 53.563 108.19 182.50 (182.43)
10 5.3565 18.469 - §3.604 108.21 182.50 (182.44)
100 12.431 ~22.181 54.054 108.33 182.55 (182.48)
1000 15.182 45.314 66.252 110.06 183.08 (183.02)
10000 15.396 49,639 102.81 169.45 212.38 (212.35)
(169.41)
0.4 1 2.5017 '}7.187 52.065 106.46 18C.61 (180.54)
10 4.4811 - 17.292 52.07¢9 106.46 180.61 (180.55)
100 11.432 13.012 52.237 . 106.50 180.62 (180.56A\
1000 15.170 41.389 56.104 106.98 180.78 (180.71)
10000 15.396 49.684 102.27 147.85 - 185.04 (184.98)
0.6 1 2.1844 16.707 S1.446 105.78 179.89 (179.83)
10 3.9235 -16.766 31.453 105.78 179.90 (179.83)
100 10.455S 17.678 51.532 105.80 179.90 (179.84)7
1000 15.157 36.856 53.064 106.02 179.97 (179.91) ’
10000 15. 395 49.668 101.19 127.04 181.31 (181.25) +~
0.8 1 1.9632 16.431 ~ 51.108 105.42 179.52 (179.46)
10 3.5309 16.469 51.113 105.42 179.52 (179.46)
100 9.6096 17.015% 51.160 105.43 179.53 (179.49)
1000 15.142 33.138 - 51.942 105.56 179.57 (179.51)
10000 15.395 49.650 98.665 114.65 180.21 (180.15)
1.0 1 1.7979 16.253 50.896 105.20 179.29 (179.23)
10 3.2358 16.279  50.899 105.20 179.29 (179.23)
100 8.9058 16.637 50.930 105.21 179.29 (179.23)
10Q0 15.126 30.258 51.400 105.29 179.32 (179.26)
10000 15.395 49.629 93.678 108.97 179.70 (179.64)
2.0 1 1.3373 15.862 S5C.448 104.74 178.82 (178.76)
10 2.4097 15.869 50.449 104.74 178.82 (178.76)
100 6.7426 . 15,961 50.457 104.74 178.82 (178.76)
1000 15.008 '22.325. 50.560 104.76 178.83 (178.77)
10000 15. 395 49.366 .69.965 105.12 178.91 (178.85)
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’ Table 3.17
Comparison of frequency parameters (w? mg l /EIg )L‘for uni1form, constrained »
¢ cantilever beams with a translational sprlng and a rotational spraing
positioned at the same point.
Position of Numbet of - Mode Segquence Number
Springs (51) Terms 1 2 3 4 5
(1) K, =s,=10 ]
[ 8 terms 2.1470  -5.Q847 8.0496 11.008 14.356
| 10 - 2.1408 5.0715 8.0403 11.002 14.217
0.2 12 2.1396 5.0689 8.0388 11.002 14.211
14 " 2.1373 5.0642 8.0360 11.002 14.211
1é 2.1358 5.0613 8.0342 11.002 14.210 @
Exact [77] 2.1268 5.0431 8.0236 11.002 14.206
0.4 ; 14 terms 2.5377 4.8106 8.1113 11.324 14.147
: Exact [77] 2.5093 4.8054 8.0925 11.295 14.146
0.6 ; 14 terms 2.7722 4.9919 8.0871 11.311 14.147
' Exact [77] 2.7462 4.9737 8.0698 11.283 14.146
0.8 lzaterms 2.7463 5.6351 8.2882 11.023 14.190
: Edbct [77] 2.7386 5.5942 8.2564 11.021 14.187
1.0 ( 14 terms 2.71468 . 5.33488 8.36607 11.43754 14.52711
) Exact [77] 2.71468 5.33488 8.36607 11.43754 14.52711
(2) K =10, sl-log
0.2 14 terms 2.3338 5.6594 8.5975 11.011 14.415
: Exact [77] 2.3015 5,5280 8.4238 11.008 14.355
0.4 14 terms 2.9894  4.9339 8.5724° 12.443 14.186
) Exact [?77] 2.895%5 . 4.9005 8.4459 12.033 14.168
0.6 ( 14 terms 3.1313 5.3893 8.5465 12.394 14.187
) Exact [77] 3.0673 5.2917 8.41 12.001 14.169,
0.8 ( 14 terms 2.8487 6.3681 9.5994"  :1.159 14.365
' Exact [77] 2.8361  6.2609  9.2429  11.103 14.309
1.0 {.14 terms +2.73095 5.50295 8.60673 11.72908 14.85527
: Exact [77] 2.73095 5.50295 8.60673 .11.72908 14.85527
(3) K;=100, s, =10 .
b.2 { 14 terms 2.1484 5.1091 8.1030 11.042 14.224
Exact [77] 2.1389 5.0894 8.0906 11.041 14.219
0.4 ( 14 terms 2.6696 5.1701 8.1583 11.330 14.162 -
_ Exact [77] 2.6483 5.1642 8.1399 11.300 14.161
. o.6 ( 14 terms 3.4008 5.2275 8.1267 11.317 14.163
. Exact [77] 3.3779 5.2130 8.1096 11.289 14.162
0.8 ( 14 terms 3.8843 5.62.76 8.3056 11.052 14.201
Exact [77] 3.8831 5.6356 8.2746 11.050 14.198
1.0 ( 14 terms 3.78882 5.75618 8.48887 11.48760Q0 14.55237
Exact [77] 3.78882 5.75618 8.48887 11.48760 14.55237
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showing the rate of convergence. It is believed that the
drop in convergence rate is, as in EE? case of beams with
concentrated masses, primarily due to the discontinuity in
the bending moment and shear force introduced by the presence
of springs not being adequately hodelled by ﬁﬁe‘continuously

differentiable assumed flinctions.

The last cantilever beam problem treated is single and
multi-span, constrained beams with tip masses subject to -

axial load. The translational and rotational springs are

-assumed to be located at the tip, and the values are taken as

Ky = 87 = ﬁl = 1 and 31 = 0.2. The results are presented in

Table 3.18, where the convergence of the solution is also =

]

illustrated.
i

i

{ .
The next problem considered is that of a beam with one

end rotational spring-hinged and the other end elastically
restrained against translation, as shown in Figure 3.10. The
frequency parameters were obtained using fourteen terms in

the series (3.6) and are presented in Table 3.19 for various

combinations of spring constants.- The values presented are

. . ¢
the same as those computed by the author from the exact

frequency equation given by Maurizi et al. [82], to the

r of figures given. For the rotational. spring constant
S; £ 100 4t § = 0 and the translational spring constant Kj =
1,100, 10,000 at & = 1, the lowest five mode shapes are

presented in F;guré 3.11, where the amplitudes are.arranged to



Frequency parameters (wzmoi“/EIo)B

W

-

Table 3.18

for uniform,

constrained cantiilever

beams with a tip mass, subject to an axial_load and translational and

rotational springs at the free end (

1

K,=8 =M =1,

1

1 1

J,=0.2)

o) Number Mode Sequence Number
of Terms 1 2 3 4 5
(1) Single span beams '
©o-1 14 terms 2.0937 5.3329 24.632 63.963 123.22
-0.5 14 " 2.0063 5.2947 24.489 63.776 123.01
. (g 1.91449  5.25590 24.3460 63.5890 122.994
5 j10 " 1.91449 5.25590 24.3460 63.5879  122.809
112 - 1.91449  5.25590 24.3460 63.5879  122.807
14, " 1.91449 5.25590 24.3460 63.5879  122.807
|Exdct [78] 1.91449  5.25590 - - -
0.5 14 terms 1.8175 5.2165 24.202 ‘63.400 122.60
1 . 1.7146 5.1765 24.057 63.211 122.40
. 2 " 1.4859 5.0947 23.764 62.831 121.98
4 " 0.84982  4.9223 23.168 62.064 121.15
(2) bouble span beams (21/E=0.5) .
8 terms N 3.0483 8.9801 63.861 92.887 203.26
. 10 3.0479 8.9755 63.860 92.314 202.17
12 3.0477 ‘8.9732 63.859 92.072 202.14
14 3.0476 8.9720 63.859 91.945 202.14
-0.5 14 terms® 2.9815 8.9273 63.672 91.803 '201.92
0 " 2.9133 8.8824 63.485 91.662 201.71
0.5 " 2.8427 8.8375 63.297 91.520 9 201.49
1 - 2.7695 8.7925 63.109 91.378 201.28
2 " 2.6148 8.7021 62.730 91.093, 200.85
4 " 2.2625 8.5203 61.966  90.521 199.98
8 " 1.2104 8.1521 60.407 89.365 -+ 198.24
(3) Triple span beams (2 /%=0.4, £,/2=0.7) ™
-10 14 terms - 4.5553 17.714 110,98 167.55 239.84
-5 .. 4.2490 17.231 109.17 165.75 238.29
0 " 3.8940 16.736 107.31 163.94 236.72
5 " 3.4707 16.230 " 105.42 162.11 235.14
10 " 2.9439  15.712 103.49 160.26 233.55
15 " 2.2315 15.181 101.52 158.39 231.94
8 terms 0.97380 14.661 99.630 158.36 239.73
20 10 " 0.97355 14.658 99.627 157.03 231.83
12 0.97009 14.650 .576 156.64 230.73
14 " 0.96543(/T3\61§/”—_§g.499 156.50 230.32
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Figure 3.10. A beam with one end rotational spring-hinged, the other
end elastically restrained against translation.



Table 3.19
v N H
Frequency parameters (u:mo i“/EIo) for uniform beams with one end
rotational spring-hinged and the other end elastically restrained
against translation. ’

Mode sequence number

s K
Lt t 1 2 3 a 5

0 1 1.7156 15.549 S0.005 104 .27 178.28

10 4.9788 16.772 50.372 104 .44 178. 38

100 ' 8.9320 26.504 54.571 + 106.30 179.43

1000 9.7724 37.849 79.594 128.79 192.90

10000 9.8599 39.322 88.017 155.24 239.75

L

1 0 1.5573 16.250 50.896 105.20 179.23

1 2.3587 16.371 50.935 105.22 179.24

- 10 5.4125 17.511 51.292 105. 39 179.34
100 9.6625 27.026 55.378 107.22 180. 38

1000 10.606 38.705 80.367 129.51 193.74

10000 10.704 40.236 88.950 156.18 240.67

10 0 2.9678 19. 356 55.518 110.71 185.35

1 — 3.5318 19.455 55.553 110.73 ., 185.36

10 6.4457 20.394 55.874 110 .89 185.45

100 11.842 29.268 59.526 11Z.60 186.45

1000 13.266 42.660% 84.579 133.90 199.16

10000 13.413 44.526 94 .181 161.97 246,77

100 0 3.4477 21.620 60.570 118.76 “*®196 .42

1 3.9758 21.712 60.603 118.77 196 .43

10 6.8967 22.576 _ 60.902 118.93 196 .52

100 113.056 31.171  .76%.271  ,120.53 197.46

1000 14.911 46.487 - g9.952 140.87 209.136

10000 15.104 48.804 101.31 -171.87 259. 14

1000 =0 3.5090 21.991 61.575 .. 120.66 199.47
1 4.0335 22,082 61.607 120.68° 199.48

..10 6.9570 22.937 61.904 120.83 199.57

100 13.233 31.500 , €5.235 - 122.42 200.50

1000 15.163 47.197  91.108' 142.61 212.25

10000 15.365 4%.615 162.92 174.48 262.86

10000 0O 3.5153 22:030 61.685 120.88°* 199.82
) 1 4.0395 22.121  61.717° 120.89 199.83°
’ 10  6.9632 22.976 62.014 121.04 199.92
- 100 13.251 31.593% 65.341 122.63 200.85

1000 15.190 47.275 91.236° 142.80 212.58

10000 15.393 49 %703 ‘¥03.10 174.78 263, 30

- M N )




E‘.iqure 3.11. Mode shapes for beams with one end rotationally
restrained-hinged and the other end translationally
restrained; s; = 100, (a}) K, = 1; (b) K, = 100;

(c) Kl = 10000. 1 1




112

have maximum values of unity. It should be mentioned that
the mode shapes for beams with other values of rotational
spring constant ($71), Qith the same translatiocnal spring

3
constant (Kj), are similar to those given in the_figufa‘\and
it was not considered appropriate to include further
illustrations. Additionally, the values for displace@ent
(normalized), slope, bending moment and shear force for the
lowest four modes are presented, for some sample cases, in
Appendix A; the values are qobtained using sixteen terms

rather than fourteen terms in order to increase the accuracy,

. . &
and may be of interest to other workers in the field.

From the convergence study, when the elastic springs or
concentrated masses are attached at the inte;ior of the ‘beam
rather than at the ends, and/or the other complicating
effects, such as the existence of intermediate.support
(multi-span beam) etc¢., exist, the rate -of convergence 1is
diminished. Hence, in the followiné problems'treated in this
chapter, all the results were obtained using sixteen terms in

>

‘J
the series (3.6). §

»
.

Phe penultimate problem treated in }his section is that
of beams withe both ends simply supported and subject to one

or two intermediate translational spring(s). The frequency

parameters for the lowest five modes are presented in Table

3.20 for the beam with one intermediate spring and in Table

3.21 for the beam with two intermediate spfings where the two

-




¢

*
Frequency parameters (uzmoi"/EIo)5

Table 3.20

subject to an intermediate translational spring.

for uniform, simply supported beams

(]
Spring Location Mode sequence number
Constant of Spring
(1&) (El) 1 2 3 4 5
1 0.1 9.8793 39.487 88.834 157.92 246.74
0.2 9.9045 39.501 88.837 157.92 246.74
0.3 9.9356 39.501 88.828 157.92 246.74
0.4 9.9608 39.487 88.830 157.92 246.74
0.5 9.9704 39.478 88.838 157.91 246.74
10 c.1 9.9652 ( 9.9652) 39.566 B88.900 157.97 246.78
e.2 10.209 (10.209) 39.707 88.929 157.94 246.74
Q.3 10.504 (10.504) 39.709 88.837 157.94 246.78
0.4 10.742 (10.741) 39.567 88.865 157.97 246.74
0.5 10.833 (10.833) 39.478 88.939 157.91 246.78
L 3
100 0.1 10.730 (10.730) 40.326 89.557 158.49 247.15
0.2 12.535 (12.534) 41.723 89.870 158.14 246.74
0.3 14.554 (14.553) 41.865 88.938 158.13 247.15
0.4 16,314 (16.313) 40.436 89.223 158.49 246.74
0.5 17.071 (17.070) 39.478 891968 157.91 247.15
1000 0.1 14.245 (14.243) 45.861 95.490 163.63 250.95
0.2 18.600 (18.595) 55.424 100.90 160.56 246.74
0.3 23.445 (23.439) 62.217 90.445 160.24 250.98
0.4 30.032 (30.020) 52.736 93.402 164.18 246.74
0.5 39.478 (39.466) 39.575 101.15 157.91 250.98
10000 0.1 17.268 (17.264) 55.598 114.78 193.01 286.59
0.2 21.003 (20.997) 68.628 142.82 220.26 246.74
0.3 26.033 (26.025) 85.272 125.68 182.11 294.36
0.4 33.159 (33.1S50) 74.313 119.15 226.83 246.79
0.5 39.478 (39.478) 58.722 157.9) 166:50 298.84

] A
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Table 3.21
Frequency parameters (w:moi"EIo)H for uniform, simply supported beams

subject to two intermediate translational springs (K2=Kl, 52 = l-El)

Spring Location Mode Segquence Number
Constant of Spring ;
T . 5
(xl> (Hl) i 2 3 4
1 0.1 9.888¢ 39.49¢ 88.841 157.93 246.75%
0.2 9.9393 39.524 88.847 157.92 246.74
0.3 10.001 39.524 88.829 157.92 246.75
0.4 10.051 39.496 88.834 157.93 246.74
10 0.1 10.060 39.653 88.974 158.03 246.82 .
0.2 10.543 39.934 89.030 157.96 246.74
0.3 11.116 39.934 88.848 157.96 246.82 ®
0.4 11.555 - 39.653 88.905 158.03 246.74
100 0.1 11.579 41.160 90.282 159.06 247.55
0.2 15.137 43.788 90.870 158.36 246.73
0.3 18.869 43.789 89.047 158.36 247.55
0.4 21.265 41.161 89.637 159. 06 246.74
1000 0.1 19.104 52.080 101.83 169.07 254.99
: 0.2 31.503 69.821 109.07 162.81 246.74
G.3 48.838 69.841 91.586 162.82 255.04
0.4 52.099 53.891 100.12 169.09 246.74
10000 0.1 28.159 76.235 143 .44 230.28 322.97
0.2 44,551 123.28 215.67 223.51 246.74
0.3 79.427 123.39 130.10 224.04 331.76
0.4 23.780 76.392 215.79 231.07 246.74

« : ,
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springs are assumed to have the same spring constants and are
located symmetrically. 1In Table 3.20, the values in the
parentheses for the fundamentgl modes are those given by
Bapat and Bapat [85], who usea the transfer matrix metﬂod.

Excellent agreement may be seen to exist.

The final problem treated in this section is that of a
two-équal—span beam with the ends simply supported and/or
clamped, subject to translational springs at the centre of
each spad. The results are given in Table 3.22 for various.

" combinations of the two spring constants.
3.4.2 Beams of Non-uniform Cross Section

In the three examples treated in this section, the beams
are, as in section 3.3.2, considered to be of rectangular
cross section of breadth b {(in the y-directicn) and depth 4
. (in the z-direction); the flexural rigidity of relevance ,
(vibration in the x-z plane) thus varies with’bd3 and the

mass per unit length with pd.

The first problem treated is_that of a cantilever beam
with linear taper, subject to translational and rotationa}

springs at the free end. The breadth Engn be expressed as

b = by {1-(1-by/bg)x/1}

and the depth d of the cross section can be given similarlﬁ(

The functions f(%) and h(%) in equation (3.5) for the
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Table 3.22

Frequency parameters (mzmoi"/EIo)H for uniform, two-equal-span beams
subject to translational springs at the centre of each -span.

116

Mode Sequence Number
Spraing Constants u e

X Ky 1 2 3 4 5
(1) Both ends simply supported *

1e 10 39.982 62.082 157.91 200.64 355.36
100 41.989 63.685 157.91 200.72 355.62
1000 49.017 83.274 157.91 201.52 358.13
10000 - 51.569 157.91 166.81 216.49 377.58
100 100 44.239 65.023 157.91 200.79 355.87
1000 © 52.334 83.453 . 157.91 201.60 358.39
10000 54.997 157.91 166.81 216.58 377.95
1000 ~ 1000 73.577 88.351 157.91 202.42 361.04
10000 80.842 157.91 166.28 217.5% 381.67

10000 10000 157.91 - 165.00 170.30 232.07 418.14

(2) Both ends clamped

10 10 . 62.010 89.886 199.88 247.57 417.03
100 53.424 91.192 199.95 247.57 417.21

1000 70.499 106.64 200.78 247.57 419.02

10000 75.066 181.71 227.63 247.58 433.92

100 100 4 64.956 92.376  200.02 247.57 417.40
1000 72.780 107.05 200.85 247.57 419.21

10000 77.681 181.83 227.63 247.58 434.20

1000 1000 g 88.310 113.93 201.63 247.57 421.12
10000 99.302 183.18 227.67 247.58 436.99

10000 10000 164.87 220.57 230.99 247.59 463.57

(3) Clamped at £ = 0 and simply supported at £ =1
10 10 ° 46.500 80.060 171.50 231.32 375.92

100 49.658 80.464 171.51 231.39 376.29

1000 67.731 88.861 171.70 232.09 380.01

10000 " 74.991 163.92 181.98 241.94 417.69

100 10 .- 47.025 82.239 .171.59 231.33 375.99
100 50.236 82.579 171.61 231.40 376.35

1000 69.454" 89.791 171.80 232.10 380.08

10000 77.601 163.93 182.09 241.94 417.85

1000 10 . 49.536 101.88 172.76 231.44 376.65
100 52.936 101.98 172.78 231.51 377.02

1000 77.465 103.64 172.99 232.21 380.79

10000 99.166 164.07 183.38 241.95 419.44
10000 10 $1.626  160.38  213.99  235.80  382.45
100 55.053 160.38 214.06 235.83 382.85

1000 80.900 160. 38 214.77 236,12 386.86

10000 160.13 _ 168.89 - 223.44 242.29 431.47

R
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stiffness and mass per unit length of the beam are, then,
given as in equations (3.14)-(3.16). The results for the
particular cases of bj/bg and/or d3/dg = 0.2 are presented in

Table 3.23.

) The next exaﬁble treated is that of two-equal-span,
simply supported beams with linearly varying cross sectional
depth (constant breadth), subject to ;otational springs at
the left hand end. ??he functions f(l)fand h(%) in equation
(3.5) are then given by £(%) = (1+c%)3 and h(%) = (1 + c%),
where the slope c @is giveh by ¢ = (dl-do)}do. The first five
frequency parametérs are’resented in Table 3.24 for various

combinations of slope (¢) and spring constant (S;p).

Finally, three span parabolically tapeéed beams with

both ends translationally and rotationally restrained, as
shown in Figure 3.12, are considered. The breadth and/or
depth are'assumed.to vary symmétrically about the centre of
the beam, with the central dimension being half of the
respective dimensioh at the ends. The stiffness and mass
distributioq function £(%) and h(g§) are thén given as
équations (3.17) - (3.19). The intermediate supportds are-
assumed to be located at &1/4& = 0.35%and %2/4 = 0.70. The v
results are tabulated in Table 3.25 for various combinations
of the spring constants K; and S;, considering the spring
constants at each end to be the same as those of the other end.

(

\ _

~ . y




Table 3.23

Frequency parameters (uzmoi."/EIo)H fof,cantllever beams with linear taper
subject to translational and rotational springs at the free erd.

Spring Constants

Mode Sequence Number

K, s - 1 2 3 4 S
(1) bl/bo-o.z, d,/d_=1
‘o 10 6.9377 31.123 74.829 137.94 220.52
100 7.0375 31.655% 76.042 140.09 223.83
1000 7.0482 31.714 76.180 140.34 224.23
10 0 10.775 28.869 67.164 126.03 204.90
16 10.780 32.646 75.549 138.36 220.79
100 10.781 33.033 76.667 140.44 224.05
1000, 10.781 33.076 76.794”  140.68 224.45
100 o -t 15.566 43.321 80. 344 133.85 209.58
10 18.113 43.656 82.492 142.37 223.37
100 , 18.492 43,712 82.830 143.82 226.15
1000 18.537 43.719 82.869 43.99 226.49
1000 0 16.410 50.221 102.20 70.13 251.02
10’ 20.403 56.386 108.55 173.64 251.18
- 100 . 21.065 57.879 110.54 174.87 251.23
' 1000 21.143 58,068 110.81 175.04 251.24
(2) bl/bo—l,.dl/do—o.z -
0 10 4.7425 17.906 ‘41.189 74.758 118.64
100 4.%7456 17.924 41.234 74.841 118.77
1000 4.7459 17.926 41.238 74.850 118.79
10 0 8.5865 21.641 40.942 70.481 111.07
10 9.2093 21.688 43.171 75.864 119.34
100 9.21861 21.688  43.195 75.932 119.46
.. 1000 9.2168 21.688 43.19 75.939 119.47
100 0 9.6597 27.342 53.5%9 86.667 125.82
10 11.474 30.282 55.837 86.843 126.82
100 11.497 30.333 5%.885 86.898 126.83
1000 11.500 30.338 55.889 86.898 ' 126.84
1000 0 . ©9.7854 28.150 $6.553 94 .909 143.05
.10 11.778 32.185 '62.628 102.69 151.86
. 100 11.804 32.257. 62.765 102.91 152.16
1000 11.807 32.264 62.779 102.93 152.19 -
{3) b, /b =0.2, d,/d =0.2
1" "o 1" 7o .
o] 10 6.5152 200,071 .43.481 77.125 121.07
100 6.5158 "20.074 -, 43.490 77.142 121.10
1000 6.5158 20.075 43.491 77.143 121.10
10 o] 10.362 , 27.371 51.230 81.391  120.21
10 11.419 28.430 51.280 82.452 124.55
100 ii.-Szz. 28.434 51.280 82.456 * 124.56
1000 22 28.434 51.280 82.456 124.56
14
continled
~
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Table 3.23 {(cont'd)

100 0 10.752 29.417 57.721 95.502  142.34
10 12.270 32.660 62.497 101.04 147.20
100 12.275 32.660 62.522 101.08 147.23
1000 12.275 32.66} . 62.524 101.08 147.23
1000 0 - 10.794 - 29.638"%  s8.444 97.348  146.40
10 12.365 33.146 64.131 105.26 ~ 156.47 ’
100 112.371 33.161.  64.160 105.31 156.54 _
1000 12.371 -~ 33.162 64.163 105.21 156.55

L 3
Table 3.24
X L J
Frequency parameters (wzmoi“/alo) for two equal-span, simply supported 1
beams with linearly varying cross-sectional height, subject to a

rotational spring at £=0.

Slope Spring MOde sequence number
Constant -— '
(C) (sy) 1- 2 3 4 5
-1.0 1 10.832  28.248  38.647 64.911 104.58
10 11.097 30.381 45.252 65.898 106.17
100 11.215 ~ 31.060 51.316 67.542 107.56
1000 11,231 31.138 52.308 67.968 107.80
10000 11.233 31.I46 §2.412 68.017 107.82
-0.5 1 29.141 48.009 109.46 158.28 . 240.91
10 30.821 55.565 111.13 168.13 242.65
100 31.685 63.854 113.20 184.93 . 246.40
1000 31.806 65.501 113.65 189.29 247.64
10000 31.818 65.681 ¥13.70 189.79 247.80 .
0 1 40.360 62.763 158.86  201.61 356.27
10 43.594 68.857 1€3.95 208.72 0362.34
100 45.713 77.534 170.12 225.28 372.88
1000 46.028 79.528 171.34  230.62 375.55
/’—_“39990 46.061, 79.752 17r.47 231.26 . 375.85
0.5 1 9.748 78.072 192.62  255.75 427.14
p 10 54.204 82.877 201.31 259.60 438,31
100 - 57.964 91.147. 215.53  270.73 465.14
1060 58.587 93.308 “®18.94 275.21 474.21
10000 58.653  93.557 219.32 275.78 475.29
1.0 1 - 58.208 93.648 219.84  313.79 483.01
10 63.432 97.581 229.94  316.54 495.40
100" - 68.862 105.23 ° 249.82  324.40 $29.19
1000 69.879 107.46  255.67, _ 327.76 542.75

‘ 10000 . 69.989 107.72 ., 256.36 - '328.20 544.47

-
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Figure 3.12. A parabolically tapered, three-span-beam with
elastically restrained ends.
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Frequency parameters (w m, < /EIO)

Table 3.25

R 4
for three-span parabolically tapered

beams with both ends trahslationally and rotaticnally restrained, as

shown in Figure 3.103K2=K

11

2°Sye

Ll/L=O.35, 12/Q=0.7O).

Spring constants

Mode Segquence Number

Kl sl 1 2 3 4 5
(1) Beams with parabolically tapered breadth, uniform depth
0 10 25.690 34.506 121 .88 185.70 244.36
100 28.007 39.581 127.31 209.35 277.07
1000 28.481 40.329 128.10 213.78 283.58
10 0 17.485 24.439 110.10 156.54 209.2%
10 26.234 35.896 122.01 185.92 244.55
100 29.264 40.621 127.38 209.49 277.18
1000 29.691 41.324 128.17 213.89 283.68
100 0 34.844 40.997 112.52 159.37 211.57
10 37.452 46.301 123.21 187.91 246.31
100 38.573 48.882 128.09 210.69 278.22
1000 38.740 49.284 128.81 214.96 .284.58
1000 0] 72.489 90.373 135.49 193.34 239.39
10 76.348 91.864 136.44 209.86 265.31
100 78.925 92.873 137.08 223.95 289.24
1000 79.383 93.054 137.20 226.74 294.14
{2) Beams with parabolically tapered depth, uniform breadth
0 10 17.850 25.217 71.667 129.33 172.83
100 13.743 28,321 73.795 145.12 182.90
1000 19.976 28.723 74.077 147.54 195.96
10 0 12.730 16.640 64.874 100.51 138.77
10 19.793 26.881 71.805 129.59 173.05
100 21.319 29.617 73.894 145.28 193.01
1000 21.510 29.975 74.170 147.68 196.06
100 6] 30.940 35.611 67.700 104.76 142.20
10 31.572 38.252 73.172 132.06 175.05
100 31.754 33.148 74.879 146.69 194.04
1000, 31.778 39.272 75.108 148.95 196.95
1000 _ ‘0 51.279 69.168 91.327 151.82 181.87
) 10 57.443 74.857 92.991 158.33 195.99
100 60.537 78.349 94.094 162.7% 205.09
1000 61.019 78.944 94.289 163.52 206.62
(3) Beams with parabolically tapered breadth and depth
0] 10 16.825 23.640 73.997 129.73 172.66
' 100 18.372 26.293 76.002 146.20 194.20 -
1000 18.555 26.622 76.250 148.60 197.37
10 0 12.483 15.381 65.528 96.272 132.90
10 19.156 25.607 74.122 130.00 172.89
100 20.335 27.877 76.088 146.35 194.32
1000 20.427 28.162 3H6.331 148.74 197.47

continued




Table 3.25 (cont'q)
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~
100 0 32.352 36.555 + 68.850 1Q0.87 136.64
10 32.600 38.515 75.370 132.54¢ 174.99
100 32.659 39.080 76.953 147.77  195.37
1000 32.666° 39.154 77.153 150.01 198.38
1000 0 .51.860 69.321 92.442 153.81 181.94
e ‘ 10 60.875 774613 95.243 160.33  197.54
100 64.643 82}263 97.029 164.53 207.08
1000 65.184 83.024 97.334 165.25 208 .64




CHAPTER 4

A

" VIBRATION OF RECTANGULAR PLATES

4.1. INTRODUCTORY REMARKS .

As mentioned in Chapter 1, the most widely used method
for the solution of vibration problems of rectanguiar plates'
is the Rayleigh-Ritz (or Rayleigﬂ\ method. The formulatioﬁ'
of the method requires the assumption of the admisﬁible
functions, which satisﬁy at least the geometrical boundary
conditions (i.e. zero displacement and/or %ereislope
conditions) of the plate concerned. The naburai boundary
conditions (that is, zero bending moment and/or zero
Kirchhoff shear force) gcan be neglected in the consideration
of the admissible functions; the minimization proceduie
causes convergénce towards the satisfaction of these boundary

conditions.
[ ]

For uniform, single, rectangular plates with classical
boﬁndary conditions, many researchers,.including Ritz .
him;elf, have used the products of vibration characteristic
beam functions as the admissible functions (for example, see
references [15-17]). The use of the ﬁeam.functions gives, -
for plates with no free edge, very good'results for the -
natural frequencies, ahd associated mode shapes, benainq
moments and shear forces. However, when one or more free

4

edges are involved, the results are less satisfactory for the

123
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frequencies and mode shapes, and are unsatisfactory for
bending moments and shear forces. This is due to the fact
timat the nétural boundary condithons of plates at the free
edges include the effect of Poisson's rat;; and thus the use
of the beam functions, which are free\from P?isson's ratio,

results in the imposition of an over-res®™waining effect, as

shown mathematically in .the following.

Consider here an isotropic plate lying in the x-y plane,
with the edges parallel or perpendicular to the coordinates.
The boundary conditions at the free edges are given at zero

bending moment (Mg) anf zero Kirchhoff shear force (Qg)- 1In

X-direction, for an e, the’gﬁﬁﬂltlons are eXpressed as .
s-""

-.’-3
2
W) = o, (4.1a)
72
-v) 9’3W =0, (4.1b)
oyl . )

where D is the plate flexural rigidity and v is Poisson's
ratio When the admissible fﬁnc@@ons‘fbr the displacement w
are assumed.as the products of the characteristic beam )

thé displacement can be expressed as

w = f B Aj3®5(x)¥5(y), . ¢4.2)
‘ 3

where @;(x) and ¥;(y) denote the beam fung§dons in x- and y-

I~ - '

124

3 ,
‘funct%Pns satisfying the equivalent beam boundary conditions,\
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directions, respectively, and

d2¢i d3¢i

"y

(4.3)

7 .

Substituting equation (4.2), together with equation (4.3), -

into the expressions for Mg and Qy vields

92w 93w

" Mg = - D\ , Rk = -D(2-.) ,
3y ax 3y 2

which cannot be zero along the edges except for some special
points. Hence, the use of the beam functions results the
inclusion of additional constrained conditions (Mg +

Dv 3w/ 5y2 = 0, Qx + D(2-v) 33w/ 35y = 0). These conditions . ~
cause greater stiffness and higher frequencies to be

génerated; (The effect of the terms including Poisson's

ratio is, in fact, very small and thus the frequencies and

mode shapés obtained are reasonably accurate.)

It may be noted that, an alternative to the b?am '
functiohs used are simply sugpprted plate functi6;; (23, 24),
which are the mode shapes ©of plates having two parallel edges
simply supported. : The results obtained are very similar to 4
those obt;ined with the beam functions. - Also, for clamped
plates, the products of functions obtained fram the modified

Bolotin's methed [20, 21] have been used.

1

In order to release.the'qverfrestraining effect involved

in the beam functions, Bassily‘égﬁiDickinéon (18, 19)
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int¥oduced the concept of 'degenerated beam functions'. The
concept is based on the relaxation of the unnecessary beam
end conditions imposed. The degenerated beam functions,

]

then, permit the tisatment of plates with‘free edges with
equivalaent accuracy to that obtaihed for plates with no free
edge using the cha;apteristié’beam functions. Other
* functigns, which are free from the cver-restraining effect,
proposed for the admissible funé;ions in the literature are
- polynomial functions. Such include simple polynomials .used
by Na;}ta (118, 129], who studied free and cantilever plates
(with point supports), by Laura and Grossi [198, 199], who
studied plates with free edges while the remaining edges are

Al
elastically restrained agajnst rotation, and by McIntyre and

%iEEhouse (200], wh$ studied fully free, orthotropic plates,
and orthogonal polégbmiéls by Bhat {25-27] as explained
earlier. Since the degenerated beaﬁ'functions are not
orthogonal, and are trigonometric‘ana hyperbolic, polynomia;
functions are more attrac;ive coh#idering the evaluation of
integrals involved in the Rayleigh-ﬁitz procedure. In-
particular, the BCOP studied in Chapter 2 have more
attractive features, which include their orthogonality,

superiority of the results for.lower modes, ahd their

applicability to plates with various complicating effects.

| x | “n
In the following sections, the BCOP are used to study

L' 4
the vibration problem of continuous plates with any .

coffination of classical boundary conditions, including one
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type of box-like structure conbtructed with rectangular

plates, and plates with arbitrary numbers of point supports.
Similar to vibrating beam 'problems, various complicating
effects gan be ingluded without any formal difficulty; for
the sake of brevity, however, these complicating effects are

omitted here.

4.2. ANALYSIS .

¢
It is assumed that the plate undér consideration lies in

the x-y plane, is bounded by edges x=0, x=a, y=0 and'y=b and

1lis af uniform thi;kneSS‘ rectangulariy orthotropic material
kN - e
'w1th the symmetry axes of the material lying orthogonal’go “

. «
+
»

thre pléte edges., Tne intermediate line SuUpports are also‘ s.“; -
assumed to lie ortho;éqil'to the plate edges and to prevenf/
motion in the z-directioh but to offer no resistance to

normal rotations.

Por small'ampiitude, simple harmonic vibration of the
plate, the deflection may be expressed as w(x, y)sin wt,
where w is the radian natural frequency of free vibration and
w(x, y) the maximum deflection with respect to time <. Then,

- L]

the maximum Strain and kinetic energies for the plate during

vibration are given, respectively, by [201 beﬂﬁ\& \\\\WJ

\"2 29 5 O
Vmax = 2[21Dy (;x“’)2 b 2upyDy (222 “')(;y“') . ny(-;;ﬂ e

»

2 ' : ' :
+ 4 ny(axey’ Jdy dx, (4.4) .
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_ Phw? .arb
Tmax = 35— [of ow?dvdx, (4.5)
where £ is the material density, h the plate thickness, vy
and vyx‘apisson's ratios, and Dy = Exh3/12(l-uxyqu), Dy =
‘. DxEy/Ex and ny = nyh3/12 are flexural‘r;gidities, in which
Ex'and Ey are Young's moduli in the x- and y-directions,
respectively, and ny is the shear modulus. The isotropic
~case is obtained by writing Vxy T Wx T v Dy = Dy =
Eh3/12(1-12) = D and Dyy = (1-v)D/2.
Introducing non-dimerrsionalized parameters, ¥ = x/a and
N = y/b, the deflection w may be expressed .
w=1511%L Aijéi(E)Wj(n), o “44.6)
i3

in which ¢; (%) and wj(n) denote appropriate shape functions
in 3- and Nn-directions (x-.and y-directions), respectively.
Typical shape functions used in the literature for single
plates are characteristic beam functions, simply supported
plate functions and polynomial functione, as discussed
before. Among these functions, the BCOP usually yvield the

best results for the lower modes. )

For continuous platésm it is worth briefly discussing
ﬁge choice of functions. Cdnsider a plate, as an example,
bounded by elamped edges at x=0, a and y=0, b and p;ssing-
over a line support at x=aa, where a<l. The functions of

concern are those for the x-direction or Z-direction in non-
e
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dimensionalized fo;ﬁ, ®;(3). Appropriate admissible
functions might be the vibration mode shapes ¢f a uniform
beam of length a, clamped at each end and passing over a
knife edge support at x = ca(i=a). Such functions would
satisfy the rgquired boundary conditions for the plate and
are relatively easily\determined. However, the subsequent
use of these fuhctions in the Rayleigh-Ritz procedure would
require the tedious and error-prone evaluation of integrals
involving products of trigonomqiric and hyperbolic functions.
For plates inveolving more than two spans, the appropriate
beam functions themselves become rather more difficult to
determine. (The simply supported plate functions are much

-

more difficult to determine.) In these fespects, the BCOP

-,

are much more attractive, ;ompafed with the beam functions,

for continucus plates than for single plates.

»

. - The generating grocedure for &; (%) and Wj(ﬂ) is the same
as that in Chapter 2, the functions being obtained simply by
. replacing x by § and y by ", énd taking the weight function
wg = 1, since the plate is of uniform thickness. The choice
" of the gener&ting function depends upon the type of plate
being considered and is given with the discussion of each
éfstem. The starting functions for plane plates are chosen
as those satisfying both geometrié;i and patural boundary
conditions of the equivalent beams (equation (2.9) for single

span plates). For a box-like structure, the starting

function will be given in section 4.4.
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After substituting equation (4.6) into equaticns (4.4)
and (4.5), and equating energies, the Rayleigh-Ritz procedure
requires the minimization of the functional (Vpayx-Tmax) wWith
respect to tne undetermined coefficients Aijr for plate§ with
no point support. However, when point supports are involved,
equation (4.6) must also satisfy the constraint conditions at
the supported points (xp, yp). These éogitrgints may take
the form of w=0 at §=§p, W=ﬁp, for a simpléhgbint support™
which offers no resistapce to slope, or may include slope

, L)
constraints such as /3% = 0 agd/or W/ = 0, in which Ep =

xp/a and p = Yp/b- These may be expressed:

I L Aj4Qi(5p)¥5(Np)7 = 0, (4.7a)
i3 .

for'a simple point support, plus

L L Aj40;'(5p)¥4(Np)=0 and/or T T Aj4®;(5p)¥5'(Np)=0,
i3 i3 :

(4.7b,¢)
for point supports offering slope restraints in the x-and y-
direction, respectively. Although the analysis given heﬁe
can easily accommodagé any or all of the constraints
mentioned, the numerical results for point supported plates
have been confined to simple point suppofts, thus only
constraint equation (4.7a) is retained in the formulation of
the fregquency é&uation. The minimization procedure ié

performed after the introduction of Lagrangian multipliers
'

into the constraint equatidn (4.7a) and yields the following
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expression:
L Chnij - Q2 Eil(o Qg jj(O'O)Aij + ENp®i (%p)¥4(Np)=0,
mn P
(4.8)
where Q = (ohu2a4/H)§ and
‘ .
Dy Dy
- (2,2) (0,0) a (0,0) (2,2)
Cmnij = §- Emi Fny / + —f (804 Emi Fn3
D N .
' -
“&‘ ,
. X Dx .
. Y a (1,1 (1,1) :

»

in which,H = VXYDY + 2ny(=D in the isotropic case);

‘k i
' (r,S) * -
2 Emi = Jg(d¥@y/AsT)(ase;/dzS)az, .
) and S\ :
Foy (7' S) = [} (dgp/an) (4S¢4/dnS)an. > .

R

Thq first two terms of equation (4.8) yield{\ipr the plate
with.na point support (the third term then does not exist), a
standard eigenvalue equation, whose solutjon givés the

; natural frequencies of the plate. For the platé with point
supports,.equations (4.8) an& (4.7a) yield an eigenvalue
determinant, the zeros of which give the natural frquencies
of the plate. Then, back substitution of the values for the ‘
frequencies yields the coetficignz/veétor, sﬁbst#tution‘of

L4
L
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wﬁich into equation (4.6) gives the plate mode shapes.

For plates with point supports, the direct solution of
equations (4.8) and (4.7a) by seeking the freguency i
parameters for which the determinant becomes zero can be
hazardous, since the detection and extraction of multiple, or
even close, eigenvalues is very difficult. The .algorithp
presented by Sehmi [203], which permits the detection and
extraction Sf the zeros of.the determinant systematically and
infallibly, was therefore ﬁsed in the computation.of the
present numerical results for point supported plages. The
order of the matrix_equation (4.8 and 4.7a), in g%heral, is

the product of the number of terms éénsidered for the assumed
shape function in the %- and N-directions plus the number of

constraint conditioﬁs; where symmetry exists, however, this

may.be used to reducq the order of the matrix equation.
\

It may.be noted that, for the calculations .of the‘f
numeficql results, the functions ¢;(3%) and Wj(ﬂ) in equatioﬁ
(4.6) were both normalized }Arthénormal poiynomials); the
second term in equation (4.8) then geducing to QzAij. This
gives same computational advaneegeﬁ; as discussed in
refQ%énce (204], fqr thé solutiqgn ;f the Qfandard'eigenvalue

prcbléh which is utilized in Sehmi's algorithm [203].
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4.3. PLANE CONTINUOUS PLATES .
)

The generating functions used for the problems treate&
in this section, for‘plates with no point support, are g(g%) =
¥ and g(n) = N. For plates with simply sgpported edges, —
higher degree generating functions may be of interest, which
will be discussed briefly in sectiocon 4.5, ﬁor point supported

plates.

- e P}

The first problem treated is the three-span, continuous
plate shown in figuré 4.1. The plate is simply supported
along edges y=0, y=b% pa%ses over line sﬁpports at x=a/4 and )
3a/4 and has aspect ratia a/b=4. Thr;;’:;mbinations of )
boundary conditions on edges xXx=0 and x=a aré considered:
both edges simply suppérted'(S-S), both edges clamped (C-C)
and one edge clamped, the other simply sqpported (C-S) .
Exact solutlgns for this problem have been glben by Azimi et
al. {97]. The frequency parameters for' the ]pwest six modes
of vibration are presented in Table 4.1 and are compared with
the exact solutions. When describing the mode type for the
S-S and C-C cases, the first S op A indicates symmetry or
antisymmetry, respectively, about the x=a/2 axis and the
second the symmetry or antisymmetry about the'y=b/2 axis.
(This convention is used in latgr tables in thiéuchapter
also, except for box—lixe struc;ure.),_For‘tge C-S c?se, only

symmetry or antisymmetry about the-y=b/2'axis can exist. It

may be seen that for all three cases, the present resul¥s are

. 4 -
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Fiqure 4.1. Thwee-span continuocus rectangular plate, simply
supported along each of the two continuous edges.
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in close agreement with the exact solutions and the partial
converéence study for the S-S case suggests that the rate of

convergence is reasonably rapid.

The second problem treated is the two-way, twéiépan
plate shown in Figure 4.2 which is simply supported on edges
X =0, aand vy = 0, b and passes over line supports at x = aa ]
and y= Yb. Results for a plate of aspect ratio a/b = 1.5
with a = ¥ = 1/J/3 and for a square plate witg'various values
%5 a and Y are glven in Table 4.2, as computed using six
tef‘f in each of the series ®j (%) and ¥3(N), without regard
to symmetry, even though it exists fbr the case of @ = Y =
1/2. For the rectangular plate, comparlson ‘results obtained
by Takahashi and Chishaki [102%} are given and reasonably
close agreement may be seen to exist. For the case of a = Y
= 0, the system essentially becomes a plate clamped along x =
O,ny = 0 and simply supported along x = a, y = b, and
unsupported elsewhere. When a = Y = 1/2, the system may be°
treated as a plate bounded by x = 0, a/2 and y = 0, b/2, the
x =0, vy = 0 edges being simply supported while the x = a/2,
aﬂﬂ the vy = b/2 edges are ‘either clamped or simply supported,
depending-upon the symmetry 6& antisymmetry of the mode of
vtpr;tion of the original plate. Comparison results, from the
work of Leissa [17]), are therefore given for the square
plate, where appropriate. It may be seen that claose
agreement is obtainéd for the case of a = Y = 1/2 but poorer

agreement is achieved for a = Y = 0. The latter may
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~

Figure 4.2. - Two-way, two-span plate, simply suéported
all around. .
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be éxplained by the fact that as a and ) gend to zero, the
assumed starting functions ®7(%) and ¥;(N) satisfy the zero
deflection and second derivative conditions of the simple
support plus a zero normal slope condi;ion enforced by the
proximity and ultimate coin&idence of the line suppeort and
edge. Thus, insteaa of satisfying only the zero slope and
deflection conditions of the clamped edge, a third, zero

curvature, constraint is applied.

-~

As a third problem, "the first six fregquency parameters .
for the square, two-way contindﬁus plate shown in F{gure 4.3
are presented in Table 4.3. The line support positions are’
given by @ = 0.35 and @ = 0.7, thus no symmetry exists.
Three combinations of edge conditions are considéred: all
edges clamped (CCCC); two adjacent edges clamped, the other
two. simply supporteq.(CCSS); and two opgpsite edge§ ¢lamped,
the cother two simply supported (CSCS). for the fully clamped
case, results are given fé; an orthotropic plate and a brief

convergence study is presented for the isotropic plate; the

convergence may be seen to be reasonably rapid.

Table 4.4 shows the first six natural frequency -

parameters for .t six~-equal-span, clamped plate shown in.
Figure 4.4, for:§rb§ a/b = 6. Comparisdn results, obtained
by Eiighakoff and Sternberg (96] using the modisied Bolotin
method%ﬁwhich tends to yield 1ower?bounds, are also given.
The aéreement achieved between the present results (upper
’// 8

~ '
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Table ~.4.

b
Frequency parameiers (phuzbq/D) for the six-equal-
span plate shown in Figure 4.3(i x 3= 6 x 6),

Source of ' Mode Type _
Result AS-1 SS-1 AS-2 $S-2 AS-3 $S-3
Present 29.322  30.411 32.157 34.377 35.986  36.898
Reference [96] 29.244  30.102 31.438 33.045 34.494  35.112
N
{
v A
A /////{//////4////A@ﬁ/////{QOC&//{QQQGC/;, .
7 l l i ! . 4
B f | o 1 | 1 g
| 1 ! ! ! 4
TIT TR T 7777777777077 77 7277 77 77777
H X
b

Figure 4.4. Six—eqhal-span, clamped rectangular plate.
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bound) and those of the reference (possibly lower bounds) is

again very good.

The last problem treated in this)section is a square
plate having sixX equal spans in both the x- and y-directions
and either clamped on all four edges or simply supported on
all four edges. fhe lowest six frequency parameters in each
symmet}y group are presented in Table 4.5, as obtained by
using six terms in the series for each of ¢;(3%) and ¥5(N).
Confidence in the results may be engendered by recognizing
that the frequency of the first mode of the simply supported
plate can be obtained by considering that mode of a single
span, simply supported plate having six half-waves in each
direction. The 'exact' wvalue that results for the frequency
parameter is thus 36 x 2 n? which is 710.6115, whereas the

present approcach gives 710.6144.
4.4 A BOX-LIKE STRUCTURE

The open box strucgure shown in Figure 4.5 is

considered. It has side lengths a, b and ¢ and is ciamped at
its base and free at the top. If in-plane stretching of the
constituent plates is neglected, as is permissible for lower
modes of vibration,, the vertical corners act essentially as
line supports since the lateral motion is then res;rained,
while continuity of normal slobe is prqseréed, through the ’
corners . remaining right angles.’Since the bpx is symmetrical’’

‘"about the two planes X = a/2 and Y = b/2, the structure can
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Figure 4.5. Box-like structure. - .
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e considered -to vibrate in four families of modes:

Type 1: Modes symmetrical about bdth X = a/2 and Y = b/2,
the lowest of which is illustrated in Figure
4.6ka), where the box is viewed from above; v
Type 2:. Modes symmetrical about X = a/2 and antisymmetrical
. about Y = b/2, as illustrated in figure 4.6(b),
Type 3: Modes adtisymmetrical about X = a/2 and symmetrical
about Y = b/2;‘and

Type 4: Modes antisymmetrical about both X = a/2 and Y =

b/2.

It is tempting to describe the displacement variation in
the X- and ¥Y-directions in terms of polynomials in a
coordinate x whiéh is zero at X = 0, ¥ = 0, and follows
-around the perimeter of the box, arriving b“k at the origin

2(a + b). the conditions to be satisfied by the

when x

starting and subsequent fhnctions are zero deflection at each‘.
corner and continuity of slope at the origin, the form of the
starting function being illustrggked in the top part of Figure
4.6(a). Considering x to follow the perimeter in a clockwise
direction, it is required that ®;(%) = 0 at % = 0, a/(2a +
2b), 1/2, (2a + b)/(2a + 2b) and.1, and @;'(0) = @;'(1), in
which 3§ = x/(2a + 2b). It shoulé be noted that such a

' function doogbnot give'é deflection shape which is

symmetrical about the X = a/2, Y = b/2 axes; even

satisfaction of equal or opposite.slopes at the corners does
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not enforce this symmetry condition. While the satiéfaction
of symmetry is not a requiremeng for the method of scolution,
it is a desired property.for the shape functions. Also, the
use of the generating function g(%) = E.does;not preserve the
slope continuity coqdition at the origin. A;higher degree‘
generating functien can be\}aken so that this condition will4
be preserved but the symmetry (or- antisymmetry) of the
subsequent functions Jenerated will be furﬁhe} diminished.

L]
Iﬂstead, it is advantageous to consider only sections of the
box and to include its properties'éf symmetry ip the
conditions to be satisfied by the polynomial starting and

subsequent functiows.

\

For modes of type 1; it is necessary to consiaer only
one quarter of the box, bounded by X = 0, a/2; Y =0, b/2 and
2 =0, c. In choosing the admissible functions for the'X—
®* and Y-directiohs, it is convenient to consider the two
:constituent half platés as folded oﬁt to form a plane plate,
apaSSing over a line support (the corner) and to intro&uce the
coordinate X, as shown in the bottom part of Figuré 4.6(a).

The .starting function @®; is chosen toe satisfy zero slope at x

-

. = 0 and /2 and zéro deflection at x = b/2, where % = a + b.

This gives, for a monic polynomial,

4 .
®1(3) = '8 ajsT. o,
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whefé T = 2X/%, a1 = 3p2/282-b3/83, a5 = 0, a3 = -3/2 and ay
= 17 The uwthe simple generating function g(%) = 3 for
the subsequent polynomials does not preserve the zero slope
condition at x = 0 and X = &/2 (theorem (1} in Chapter 2},

and thus, in this case, a higher degree generating function

g(g) = £3 - 352/2 is used. -

-
-~

For modes of type 2, one half of the bgx is considered,
as illustrated in Figure 4.6(b). The function ¢; is cho#en
to satisfy zero deflection at the axes of'antiéymmetry (x =
o, k)—éhd—at the line supports (x = b/2 and x = &-b/2),
together with symmetry About X = &/2. A similar starting
function is used for modes of type 3, this time with the liﬁe
supports (éqrners) loéated at x = a/2 and x'= -a/2.

Assuming the line supports to be at x = ai and x = i(l-a),

the starting function may be written

(52-8) (3-a) (3-1+a) =
1

aiﬁi-l,

¢
.l 1

L hawm

where § = x/l, a; = -a+a2, azg = 1+a-a2, ag = =2 and ag = 1.
v \ . ) .
For modes of type 2, @ = b/2% and for type 3, a = a/ZA. The

subsequent polynomiaIs generated.with g(g) L are
antisymmétrical or symmetrical agout X = /2 alternately
(theorem (2) in Chapter 2). ' The functions &;(3%) fof the
modes of type 2 and 3 are obtained ;etaininglqnly the odd
nuﬁbéfed functions, ®;(3), ®3(%), &c(%), etc.. The even

numbered functions, ®o(%), &4(3), bs(l), etc., generated



using either starting function, are the appropriate functions

for modes of type 4. - s,

The starting function ¥;(N) for, the Z-direction is that
for the clamped-free beam, taking N = Z/c, and the subsequent

functioﬁk are generated with g(m) = n.

Natural frequencies for modes of type 1 for a 4\‘
cantilevered open box of djimensions a = 203 mm, b = 152 mm, ¢
; 30 mm, h = 1.5 mm and made of aluminum having properties E
= 68.95 Gpa, o = 2710 kg/m2 amd. v = 0.32 ﬁave been reported
in the literatu?e [205-207{. The réported values are
summarized in Table 4.6, together with results calculated
using the present analysis. The values given by Dickinson
[206] were obtained using Bolotin's mezzzévand are ,ikely to
be lower bounds. fhose given by Irie, ada and Kobavyashi
[207] were obtained using a Rayleigh-Ritz solution but
including membrane stretching effects; thus they may not be
upper bounds for the idgelization used in this work. Also,
it should be mentioned that Irie et al. obtained three extra
frequencies (158, 226 and 375 Hz) which were not obtained by

the present or other authors. The agreement between the

earlier and present results is excellent.

For completeness, the first six frequencies for the

other three types of modes for this box are given in Table

4.7, as compdéed using six terms in the series for each of

®;(%) and ¥4(N).
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Further,. the frequency parameters fo; the lowest six
modes of each type for cantilevered open boxes of side ratio
a:b:c = 1:1:1 and 1:1.5:1.25, with v = 0.3, are présented'in
Table 4.8, as obtained using six terms for each of ®1(3) and e
¥5(N). For a = b, modes of typés 1 and 4 can-bg obtained
from consideration of single plates having the vertiéél edges
both simply supported or both clamped; results for such
plates, as obtained from Leissa's work [(17], are included for ..
comparison. Also included in T£§}§ 4.8 are resélts for a
five-sided, open box of side ratio 1:1.5:1.25, requiring )
continuity of slope bet;een the vertical sides and a bottom
plate of the samé th%giness, the base no ionger being

\ .
clamped. These values were computed using the series

solution of Dill and Pister (98] and are reportéd, in E&rt,
in reférences [99] and [208]; the values in parentheses have
~not hitherto béén reported. The values are not strictly
. cpmparable with the results from the present analysis but
they are included for interest. Reasonably close
correspondence may be seen to exist, although in two cases;
-two frequencies are givén for the five-sided box where oﬁly
one exists for the cantilevered box. This is believed to be
due to the existence of modes for which the bottom plate ' .

vibration is predominant.




154

an|ea 32ex3 +

/w [802°66]
(vo-801) (vev s6) (sp2 ¢8) (196" L1} {8E°€S 9/2" 5S¢ X0q papis-¢
v IEl  9vL°86 29576 601°6! 686° 65 229°6¢ 1U3SAUg P
69,765 . (802'66]
(996°16) (0£S°9¢) 082718} €S2°1v bOb° OV 506 22 x0q papis-g  adk}
68Y° (6 ° 919°18 160°09 68(' 2 91¢° 2t 018° 22 jUasaud ¢ .
IPOK T
_ (802 ‘66]
(¥59°98) (v1p €8) GVS €9 008 19- 091°62 £29° €1 X0Qq papis-g
£16°¢6  920°68 065°0L ¥89°¢9 (£6° 1€ 818" €1 JUdsaIq 2
»
£96° €€ ) [802°66] * .
(926°€L) (£S€°99) 9€8°€y 958712 b56° 62 bo 1 11 X0q papLs-g
860" G £22°0¢ 1L(S°Sv  2b1*1E 612" 82 $29° 11 . juasadd 1
* ' 62'1:6"1:1 = 2:q:® .
08911  L91°€01 €1/°08 6EY €9 +510°€9 42007y [z1] 23eqd aybuig
15 811 62°€01 029°18 0£1°H9 910" €9 £0L° 1% JUasadgd} b
EUL0T  6S°%L E9Y° 1L 69072 01" 9¢ (s L1 Jasadggz  adk)
S50° £ 916°¢L  SPI°0v  990°€f p10° b2 689" 21 (UELENY 3poW
194°9¢  ,86E°2¢ £0°0F 4590°f€ 020° v2 +(89°21 [(1] ?3e1d 3|buts) 1
9 S b € 2 1 1:1:1 = d:q:®

Jaquny 3duanbag apoy

9 x99 =0x  pue grg =& butrsn pajndwod se SOLPeJ IPLS OM) 4O
$axo0q uado paJsaad||jued Loumao\:n~3:av sJajawesed Aoyanbasy gy ajqe;




4.5. POINT SUPPORTED PLATES

In this section, a number of plates with point supports
[
and having variocus combinations of classical edge conditions

’
aré treated. In those cases where symmetry exists about one
or both centrelines, this has been used in ;he computations
and thus the number of terms indicated as being taken in the
series ¢;(3) and Wj(ﬂ) are only those contributing. Also,
with the exception of the convergence studies, six terms weré,
taken in all cases for each‘dfféi(l) and ?j(“). The order of
each matrix equation to be solvéd was thus 36 plus tﬁé number
of contributing point supports. The latter yill vary
depending upon the symmetry of the plate (for example, half
the total number of point supports will contribute in the
event of symmetry about one centreline only) énd the'symmetry
or antisfmméiry of the modes quer consideration. Should a
simple point support lie on‘a‘centreline of symmetry, then,
for those modes antisymmetrical about that liﬁe, it makes no

contribution and is thus not included in the order of the

2

matrix.

It should be ﬁoted that the analyses by Narita [118,
129] for point supported plates of otherwigse fully free and
- cantilever plates are particﬁlar cases of the present
analysis, siﬁce the saﬁé Lagrangian multiplier method is used

and the simple polynomials uged by Narita for the two -
’ V] ¢ F X .

particular plates combine to be equivalent to.the BCOP with




the stérting functidns satisfying the geometrical boundary

conditions only. -

The first set of problems considered is that of
centrally peint suppor;ed, square ;;otropic plates having
various combinations of-simply supported.and clamped-edges.
These problems were chosen primarily to illustgyate the effect
of using the first and higher degree generating functions
(g(3) =%, 52, £3-352/2 and g(M) = N, n2, n3-3n2/2 when
dealing with plates inVOlv}ng siﬁply supporteq edges;
comparisons are also made with those results availablg in the
literature which are applicable to tﬁese problems. Table 4.9
shows sample results (first six frequency parameters for

doubly symmetrical modes) from a convergence study conducted

on a fully simply supported plate (SSSS) with and without a

central point support. It may be seen, remembering the uppef

bound characteristics of the method emploved, that in both
cases the tgega is for the higher order generating function
to yield more accurate results than the first order function;
this is especially prdﬁounced for the higHer modes when using
small numbers of terms in the series (4.6). Similar results
were‘obtained gor the first six.Symmetrical/antisyrmetrical
and doubly antisymmetrical modes of such plates. Also shown_
in Tgble 4.9 are sample results computed fér a plate simply
supported along two adjacent edges and clamped along thé‘
other t@é,'with and without a central point support. For

this case, symmetry about x.= a/2 or v = b/2 does not exist.

| o
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Table 4.3
Comparison of frequency. parameters (;;)fu.aza.«"/o)lf2 for square, isotropic
- plates as obtained by using single degree and higher degree generating
functions
Generating No. of :
function terms Mcde sequence number
in each
9(8), sln) o 1 2 3 4 5 6
Oi.‘vi
S$S8S-plate with no point support
3 19.7392 99.3042 99.3042 178,532 461.779 461.779
- e 4 19,7392 68.7013 98.7013 177.660 270.153 270.153
&0 S 19.7392 98.6961 98.6961 177.653 257.193 257.193
6 19.7392 98.6960 98.6960 177.653 256.620 256.620
3 19.7392 98,7022 98,7022 177.661 257.776 257.776
g3-38%/2 4 19.7392 98.6971 98.6971 177.654 256.633 256.633
ni.3n?/2 5 19.7392 98.6963 98.6963 177.653 256.614 256.614
oo 6 19.7392 98.6962 98.6962 177.653 256.611 256.611
Exact [17] 19.7392 98.6960 98.6960 177.653 1256.610 256.610
SSSS-plate with central point support '
3 58.7130 99.3042 161.056 402.156 461.779 501.6686
£.n ’ 4 55,6246 988.7013 155.308 234,330 270.153 322.802
v 5 54,4766 98.6961 151.923 216.963 257.193 307.225
6 53.8896 98.6960 150.212 213.078 256.620 303.762
3 ‘§4.8579 98.7022 153.127 220.163 ,L257.776 309.936
£3-3£2/2 4 3.8807 98.6971 150.119 212,718 256.633 303.626
3.3n2/2 S 53.4126 98.6963 148.887 210.887 256.614 301.146
n--2n 6 53.1700 98.6962 148,201 209.816 256.611 299.980
SSCC-plate with no.point support :
&,n 6§ 27.054 60.539 20.787 92.838 . -114.85 115.00
£2,n2 ‘ 6 -~27.055 60.540 0.787 92.837 114,56 114.7}
Leissa [(17] -27.056 60.544 60.791 92.865 114.57 114.72
. SSCC-plate with central point support . o
£,n 6 53.113 60.539 78.367 92.986 114.85 144.98
£2 n? «6 52.88L 60.540 92.970  114.56 144,71

77.316
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Again the trend is for the higher degree generating
functions, £2 and N? in this case, to yvield slightly'better
results, particularly for the point supported case. The
higher degree generating functions were therefore used where
applicable throughout the remainder of thé problems treated

in this section.

In Table 4.10, frequency parameters calculated using the
present analysis are‘éiven for several centrally point
supported, square plates being clamped (C) or simply
supported (S) along edges x = 0, y =0, x =a, y = a,
respectively, together with those values available from the
literature. For those plates for which symmetry exists about
X = a/2 or y = a/2, or about a diagonal, certain modes of
vibration will occur which are antisymmetrical about a line
onﬁlinés passing through the central point swpports,
whereupon the plate behaves.in exactly the same manner as one
withoﬁt the central support. This permits comparisons with
appropriate frequency parameters for non-point supported
‘plates, such as those given by Leissa {17]. To the authors'
knowledge, the only point supported plate results available
in the literature which are appropriate fq; comparison with
the values in Table 4.10 are those by Nowacki (126, 127],

- obtained using an energy approach, those by Johns and
Ngtaraja {107}, %glﬁg the finite difference method and those
- by Venkateswara R;o et al. (114], using the finite element

method. All apply to the fully simply‘supported plate with a
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central point support and each~purports to give the
—fundamental (lowest) frequency parameter. .This occurs for
the mode with cne no&al liné through the éentre of the plate,
as pointed out in reference [107], which corresponds to the
second mode of vibration of a simply supported blate without
Ia point support and for which the exact Galue is known. The
value given by Venkateswara Rao et al. (114)] is for a modes
with no nodal line, which is thus not the fundamental but
rather the first fully symmetrical mode. The agreement ?f
the present results with those from refgrences (114, 127 and

17] is excellent. . R

®

The second set of problems considered is that of'square
isotropic plates having point supports at various yscations
on the edges, all edges being otherwise free. The problem ih
this category which has received the most attention ffom
researchers is thét gf the plate having four point supports,
one located at each corner of the plate. This problem has
‘been treated in feferences [103-105, 107-110, 113-115, 118
and 119) and is one of the two for which the present solution
yiélds aﬁ equivalent frequency equati;n to that given by
Narita [118]) an& thus, for like numberg of terms in the
series, identical frequencies resulf. Numerical Yalues for
this ﬁrobleﬁ are summarized in Table 4.11. T;; further.
problems considered in this,set are those of an otherwise

free plate, point supported at the mid-points of all four

sides, and a plate point supported at all four corners and at
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the mid-point of each s;de.‘ Comparison results are available
in the literature, for both problems, and are given in Table
"4.12, together with results from the present analysisz éiose
agreement may be seen to exist betwken the present results
and those of the other authors,~the methods of solution used
by the latter being the finite difference method by Cox [106]
and, for the first mode, by Johns and Nataraja [107], the.
finite element method by Venkateswara Rao [108], the finite
strip method by Fan and Cheung [103) and the Lagrangian
multiplier method by Drake et al. {109]. The frequency for
the mode SA(AS)-I by Johns‘and Nataraja was obtained using
the Rayvleigh-Ritz methed. included in Table 4.12 are results
illustrating the rate of convergence of the present solution,
which may be seen to be fairly rapid for both types of

support conditions. convergence studies on other praoblems

showed similar results.
' . e

The third set of problems is that of square, isotropic
Q
plates having twg'adjacent edges simply supported and/or
clamped, the remaining two free, with a point support.\ncated

at the otherwise free corner. For such plates, symmeéry
about x = :72 or.y = a/2 does’not exist. Results computed
for the three pgésible combinations are shown in Table 4.13,
ﬁogether with comparison results from the literature. The
results by Cox [121], obtained by dsing the fini;e}difference
method, appear to be somewhat low, while those by Kerstens et

.al. 1122), from the modal consfraint method (computed with

) h ’. [
IS 1 ’ - ‘ h { ) ’ = B ’
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,// M x .
=,0.33?), and by faura and Cortinez [124), from a Rayleigh-

Ritz solut;o§4 are rether high. The remain&er of the
results, calculated using the finite element method [123 and
125] and the finite strip method [103]f and those from the

~ present analysis are in close agreement and are thus believed

NS
to be more accurate.

-
4~

The fsy!th set of §£oblems considered is that ot
rectangﬁlar cantilever plates bounded by x = 0, a and y = 9,
"b, with the claﬁped edge at x = 0, with point supports

-1ocateq

. . < N
(a) at x = a/2, vy = 0 and at x = a/2, y = b, or
\

{(b) x =’a, y = b/4 and at x = a, y = 3b/4, er de

(c) at x = a/2, y =0 and y = b afid at x = a, y = b/4

and y = 3b/4.

Fre&uency parameters forx isotropic plates are éiven in
Table 4.14, togetber with{ébmperisog values available-from.._Q_
the literature, and for'oft;otroﬁie\plates, for which ‘no
comparison ysultsar,e: available, in Table 4.15. The values
given by SalibavLIZéj weteldalcubate%pusing the superposition
method pioneered by Gorman [117] and those by Narita [129}
were obtained using the Lagrangian multiplier method, which
again gives an equivalent freqﬁency equation o that of the
present analysis (with‘starting function satisfying
geometrical,bounQary conditions only) for the above

conditions. Narita used eight termS‘i:’}he series for the x-

¥

LY - -
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direction and six for the y-direction, thus his results are
slightly mo!g accyrate than the present results which were

ot®ained usimg only sixXx terms in each direction.
.
1. p)

The final problem.considered is that of,the plate shown
in Figure 4.7. 1t is free along all four edges, point
supported ét each corner and is continuous over two
perpendicular line supports, as illustrated. The 1line
supports provide restraint in the transverse direction (w =
0) but offer no resistance to normal slope. The starting
funct¥on for the x-direzéion for this plate is &®;(3%) = (%5-a)
(see Chapter 2) and the subsequent functions are constructed
u;ihg:recurrencé formula (2:6) with the generating function
g{(%) = §. The functions for the y-direction are obtained

simply by replacing % with N. 1In Figure 4.8, the nodal

patterns and frequency parameters (0hu2a4/D)i for square

168

e

isotropic plates with 9 = 0.3 are shown for several values of

a. It shquld be notgd that for a = 1/2, the pairs of modes
symmetrical about one central axls and antisymmetrical about

the other (SA-1, AS-1 and SA-2, AS-2) are identical in

frequency and their nodal patterns are %imply rotated through

90°; only one nodal pattern is shown for each pair (3x3 terms

in each tfbe are used iq calculation); For a = 0,'at first
sight, thg prob‘em appears Eo become:that of a square plate
simply supported along two adjacent edges, free along the

other two and point supported at the otherw;ée free co;nép,

for which frequency parameters age éiven under case (ay,

N a T  §
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Table 4.13. Hoyever, it éust be recognized that ﬁhe
coincidence of tﬁe line supports Qlth the point supports as a
tends to zero causes the extra restraint of gzero normal slope
at corners x = 0, vy f'a gnd X =a, v = 0. The frequency
parameters are thus somewhat higher than the correspanding
‘values given in table 4.13. Also, for the équare plate with
a=1/4 and a = 3/8,;the-poles and zeros of the freQuency.
determinant 6btained using Sehmi's algo;ithm.become
coincident for certain modes (values in parentheses) and,
while the frequency‘paramete;s m;y be cobtained, the mode
shapes, and thus nodal patterns, are not readily
determinable. ' Instead, the nodal patterns shown €for the
modes were obtained for the almost square plate of aspect
ratio a/b = 0.999, for which the poies and zeros are
distinct; the coﬁreséonding frequency parameters are also

given.

Lol
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CHAPTER 5

-

VIBRATION OF ANNULAR AND CIRCULAR PLATES

5.1. INTRODUCTORY REMARKS : .

As discussed in sgction 1.4, exact solutions for
circular and annular plates exist for isotropic cases. Né
exact solutions exist for polar orthotropic plates with the
only exception of the annular plate with par?bolicglly
varying thickness in radius, even‘when subject tB the
classical boundary conditions and no other complicating
factor;, and researchers have uséd various diffgrent methéds
of analysis for such plates. Nevertheless, the works in the
literature are liﬁited to-some individual plate problems and
no general approach has been presented for polar

orthotropic, contiﬂuous:platés with radially varvying

thickness.

"In this chapter, a simple, unified approach is

-
*

presented for the solution of the free, lateral vibration
v i '
problem of thin annular plates which may be of isotropic or

éolar orthotropic material, may have thickness which var1e§

with radius and may be continuous ower one or more .rigid

concentric ring supports and subject to any (combination) of
- 5 o .

the classical bbundary conditions. The Rayleigh-Ritz ipthcd
P .

~

- I ]

is used, with the BCOP as the adhissible functions. | -
4 E] 4

'lllpstrate_the versatility agg accuracy of the present

approach, numerical results are presented for a number of

. . ' :
example .plates, in comparis%n,wixh.the values given in the
a ' 172

-



- ' _ | ' 173

literature, where available.

A

Although the present approach is primarily concerned
with+annular plates, the case of the solid circular plate is
briefly treated by permitting the inner radius to become
very sma%l. Ifi&he very small inner periphery is treated as
free, this is essentially equivalent to a solid_plate with
no central support. va it is treated as simply supported,

then this approxirates a claNped point at the centre.

5.2 ANALYSIS

qusider a thin annular plate with concentric ring
suppoits ana a combination of classical boundary conditions.
It is assumed that the material of the plate is of variable
thickness along the radius, uniform in the circumferential
direction. and is ‘polar orthotropic.. The intermediate ring

supports are assumed to prevent transverse displacement but

to offer no resistance to normalyrotation (simple- supports).
» .

- -

g
Far free ivibration, the displacement may be written as

w(r,8)sinut, where w is the radian ngzural fre&ﬁéncy and w
\ the maximum deflection with respect to time x. The'maxiﬁum
strain and kinetic energies expressed in polar coordinates"‘

ar%, respectively (see Appendix B): )

2 | 2 2
w1l W 1l 9w
Vmax = } qué (D, ( ) +2vgrDy grp_(r,ar * 2 {92) _

-




™ 1 w2 5,1 M
+ Dol % + 35 D) el ae” Jrdedr,
Tmax =  «2[2[2%on(r)w2raear, (5.2)

where a and b denote the radii of the outer and inner
periphery of the plate, ¢ the material density (assumed to
, be constant), hir) the thickness of the plate, D, = ¢ <
Eh3/12(1- v gvey), Dg = DyEg/Ep and Dpg = Grgh3/12, in which
E;y and Eg are Young's moduli in the r-and ‘di.rect:.ion,

respectively‘ Grg 1is QQ; shear modulus, and ur9~and ueg are

Poisson's ratios.

Introducing a nonJéimensionalized parameter § = r/a,

the thickness h tan be expressed

h(%) = haf (%), o (5.3)

-

where h‘ dénotes the~thickness at the outer periphery snd
£(%) descrlbes the variation in thickness It\ma& be noted
that for plates with uniform thlckness, function f£.(3%)
becomes unlty.- For plates for which the thlckness varles

with some power, p, of the radxus, fr(z) may be ‘written

174

£:(3) = 1-{1 hp/h,) (1-8P)/(1-(b/a)P}, (5.4)

. where hy, denotes ﬁhe thickness at the inner periphery. For

. L
linear variation, p =1 ang for parabolic variation, p = 2,
etc-a ’ o -

. . )
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The deflection w may be gexpressed in the form

w(%,8), = Wa(3) cos ne; n=2=90, 1, 2, «.vve. , (5.5)
where n denotes the number of nodal diameters e
(circumferential wave numbér). The mode shape Wp(3) in the

o
radial direction is taken as

Wh(3) = ? Ain®i(3), ) ) (5.6)

~

where ¢; are the assumed admissible functions which satisfy

at least . the geometrical boundary conditions of the blate.

Substituting equations (5.3) and (5.5), tdgether'with.
equaticn (5.6), into the energy expressions (5.1) and (5.2),
and minimizing with respect to the coeffitients Amn: : -

H

’ X -
according to thg'Rayleigh-Ritz procedure, leads to the

eigenvalue equation (frequency equation) ot

S (Cny - Q2 GgilAj, = O, : (5.7)
. ' \ ) \\

where @2 = u2phza4/D .y, m,i = 1, 2, 3,

/I

D
(1,22 8 (-1,11) (-2,01) (-2,10)
Cmi %u )+5;{%u ‘nhﬁm\ * Emi )
n4Em 3, 00)} + vgr { 0i12) + E&g,ZI) Z(Em 1,02) e

- : D _ _ _ ‘
+ Eéil'%P’)} + 4 Efg n2{8$i3'00) _ ‘5&12'01) + EéiZ,IO?)



.+VET$‘;1,'11)}’ ' -

VoD ) - f5/a tPEdRde/atd) (aSe; /d3S)ag,

Gmg = [b/a 3E(Z)On@;as,

and Dy, denotes the values for D, at the outer periphery.

For axisymmetrical modes, there are no nodal diameters, thus

n = 0<and the eigenvalue equation becomes .independent of the

parameter Dre/Drw Since the isotropic plate is a particular

case of the‘orthotropic plate, equation (5.7) also applies to
» .

the isotropic plate, for which v.g = vgy = v, Dp = Dg = D and

Dyg = (1l-v)D/2.

The solution of equation (5.7)yields the natural
frequencies of vibratiocn of tne plate, together with the

coefficients for the mode shape (5. Gﬁ The validity and

Y
‘.

accuracy of the solution depends upbn the choice of the
-admissible functions Eﬁ(z). In this work, the BCOP explained

in the following are used.

-

The starting functions ®, (%) are chosen-so as to satisfy
both the geometrical and natural boundary conditions orrthe'

\EEEiZiieét;ggam, and zero displacement conditions at
intermediate.supports where .such exist. In addition \where
simply supported and/or free peripheries are involved,
slightly simpler starting functions, neglecting the natsral
boundary conditions, could be used; it'is.anticipateo.thet 4

i

17
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*very similar results would be obtained, as was demdénstrated
for rectangular plates [29]. The present functions are psed
simply for consistency. Since the interval is b/a < 3§ < 1
< r < a), the starting functions for plates with no

intermediate suppoft may be written

®1(%) = ajei-l, . (5.8)

.
ne1wm

1

where/aj are giveﬁ in Table 5.1. In the table, C, S and F
denote clamped, simply supported and free boundary

| conditions, respectively, the first denoting the condition on
the inner peribhery and the second the condition on the ‘

outer. (This designation is used hereafter gp%}pis‘chapter.)

i

fér plates with concentric ring supports, the starting
functions are obtained b§ multiplying the appropriate
functipns given by equation (5.8) by the factor (3-3%,),
recurrently, where 3, denotes the location of the
;, intermediate supports. The subsequent polynomigls are
generated by the recurrence férmﬁla, such as equation (2.6).

-

The eguation is rewritten here:

°k+l(g) = {g(5)-Bi(8) Ik (5)CyPyp_1(8); k=1,2,3, ..., (5.%).
wl'iere ) ' .. N
By = [b/a we(Bla(n)ef(21dz/[}/a we(s)10f(1)az, »

-

fé/a Wf(‘)°k(%)d§/fé/a Wf(§)¢§-1(§)d§.
; ’."‘\/ -

7 ' . A

-

g
r
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_ "t - The weight function.ﬁf(ﬁ) is determined.by considering

—~ -
- -
-

. . \ . ’ P
" .. the orthogeonality of the vibration modes. Recalling the

- -

_ kinetic energy expression (5.2), the orthogonality can be

~

expressed, in terms of the non-dimensionalized parameter, as
s . .

< [B/a Er(3)®n(2)@1(3)dE = Gpibmi. ‘ (5.10)
‘ .

where Gpj is a constant and 5mi~ the Kronecker delta.

Therefore, the weight function is wg(§) = §§é§7. The

generating function is chosen as g(%) = §, ﬁﬁgch makes the

. subseqﬁent'p&{;ngmggis (k > 1) generated satisfy only the
\! . .

; - ) . »
geometrical Boundary &dnditions. (As discussed in the

pfe&ious chapters, the higher degree generating function may
be %§ed, but it has not been used 'to obtain the results
presented in this chapter.) _ ] .

. * &
It is woiih noting that, as in Chapters 3 and 4, the s

; ‘ r : . ..
first and segond terms &f frequency equation (5.7) yield

L B L -
symmetrical and diagonal mat’ices, respectively. When the

V4 *

ponnomiglé-generated by equation .5.9) are appropriately

normalized, the second term of equation (5.7) yiefﬁs an - .
. /

Jdantity matrix; this gives some computatiocnal advantag

\ . . .
~— ‘
,5.\3. ANNULAR PL&?E'S / : ' -
® . !‘ » . \ ’ : . -
In order tq demonstrate the appf!cabiliﬁy and- a&uracy

af the apprcach presentéd, equation (5.7}).was used to; —_—

, ” . ¢ ' ‘- . [ 'z
gemerate numerical values for some illusgrative(plates'whicﬁ
may be of polar Prthotiéijy méterialﬁ'haae radially varyinq

-t
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thickness and be continuous over concentric ring supporfs.
With the exeeption of the convergence studies, seven or eight
terms of series (5.6), depending upon the rate of
convergence, were taken fSE each of the ngdal diameters, and
thus the frequency equation (5.7) yields 7x7 or 8x8 matrices.
For isotropic plates, Poisson's ratio is taken as 0.3 except
for one comparative study. .Throughout the tabies for the
resylts, the heading of the values (the numbers in the
parentheses) denotes the number of .nodal dl!meters (n} and
nodal circles (s), excluding the supportd at the peripheries
and intermediate rings where such exist. As mentioned '
before, for axisymmetrical modes, there are no nodal
diameters (n=0) and the frequency parameters appear to be
independent of the parameter D,g/D,. Hence, in the case of
polar orthotropic plazes, the frequency parameters presented_
" for n=0 are applitable to any value of D,g/D, rather than
only the values iqdicated. In other words, the values given

for D,g/Dy apply only to the non-axisymmetrical modes.

5.3.1. Annular Plates of Uniform Thickness

\

The first preblem considered in this se®tion is
isotropic annular plates of uniform thickness with no
intermediate support, in order to show the accuracy of the.
present approach. The frequency parameters were Obtained
using seven terms in serie;‘(S.G) for each of the nodal

diameters, for plates with inner periphery clamped and outer




181

periphery having each of three diféerent boundary corditions,
clamped (C), simply supported (Sh@and ftge (F). The
[P frequency parameters for the lowest nine modes are é}esented
-in Table 5.2 for the hole size (b/a) 0.1, 0.5 and.,0.7, in
"comparison with those of exact analysis by Vogel and Skinner
-[150]. Close agreement/hay be seen to exist between the
present results and those o§ the exact soluticon. However, it
) h‘y_be noted that, the pre;elt results obtained by using the
-—tayxieigh-Ritz method are uppef bounds and thus the smaller

.

quoted values of the exact solution, in some cases, séem to

L]

include numerical round-ocff errors; this is believed to be

due to the conversion of the rarameter given in the r ferenég

—

-~ A

to fhat used in this work. .
, , . ) P

- y e

The second problem considéred ls that of orthotropic
plates of uniform thickngss with no intermediate support.
The boundary conditions are chosen to be inner periphery
simély supported and‘ou%er periph c ped (S-C), both
peripheries simply supported (S-S), and i n;?‘sériphery free
and outer periphery simply suppgrted (F-S). The orthotropy
is chosen to be that given by Dg/Dy = 5, Dpg/Dy = 0.35 and
vgr = 0.3, and the hole size (b/a) 1s taken as 0.5. The
_ldaest ten frequency parameters are presented in fable 5;3,
together with those obtained by Gorman .[157], who used the
finite element method, and those by Narita [158], who used

the Lagrangian multiblier method. The agreement achieved

between the present results and those by other researchers is

-




| . 1) .
- - - - - 0" 1L 9°¥9 0°0L ' B8°6S oex3g
. . _ . $-2
89°9ST  LO'TET GL'OTT 886°L6 Z08°08 LOT"TL T1t9°¥9 L86°09 028°6S 3UIS3IId
fosT])
- - - - - 0°66 b E6 2706 768 3oexyg
: - : 2-2
78°8L1 €€°66T 09°GET O0L'6T11 LS'LOT 876°86 TZL 6 0€C 06 162°68, 3uU3sald
(0‘8) (0°L) (0°9) (0°S) (0'v) (o’¢g) (0'2) (0’'1) (g'0) .
- e S'0,= ©/Q (2)
. -o [osT) ’
- 0°LE £°Le £°6¢ - | ATA 79°6¢ AR L XA A oexg
‘ . d-2
Cey- €€ LG6°9€ €B9°LT L9Z°ST 9EB 1T TIS¥PTT €ST9°S 108V "¢ 8LETZ 'Y QU381 ) .
. . '
: : {osT)
- L°vL A 1°09 - 0°0Y 8°9¢ mmmﬁ 8°LT joexyz
' : S-2
€0Z°9L  6¥9°vL TSZ°t9 8BYT'09 gv8°9S v90°0Y ZCL 9T ' L6E°6T cmh.mm juasaid
. . lostl
- 5°06 g 8L £ oL - (A §° L79¢t ¥-8¢ £ LT Ioexd
. . J-2
0v.L'06 €9¥Y°06 2v9°8L 69€°GL 6L9°69 TZZ°1S TZ9°9t 816°8¢ 182°LC U39 .
(0‘’g) * (1'2) (1'1) (1'0) (0‘vd (0°'¢) (0‘2) (0’19 (0’0) v
. ' ) 1°0 = p/a (1)
: ? N .
. (s‘u) ' 83INS3ax SUOTITPUOD
970170 TepPOU pue SI333WeIp [epou jJo °"ON Jo adanos KAxeptnog

(€°0

‘

= A) 310ddns 9ILTPIUIIIUT OU YITm mmmchﬂnw .

wiojtun jo sajeld rernuue d57doIjosT 103 ¢(Q/,®Ud. M) sI333wered Aouanbaij jo uosTiRdWO)
L4 .

r

7°S atqel

‘. .



183

: fostl - . -
A2 A 1 0°LE G'LE  3oexd

Z16°v6 167°6L 0LT 99 088°GS 1L0°8V ¥G9°C¥ LLT 6L B6b "Lt £96°9¢ juasarg -

. . (ost]
- - - - - . 8'9LT  8°TLT Z°0LT.  §°BIT joexy
: s . L . . S=D
CCLEZ GET0ZT 58607 G6°€6T TS V8T - 8ERLLT Tvtzel  6Y 63T 757891 3UISAI y
L _ - 7 [ost] -
- - - - - 1°96¢ 1°1SC G6ve . 8LV 3oexa :
X . *. 2-2
96750t OT°167 78°8L7 ?6°897 0Z°19Z ¥¥°55Z 8V TISZ  9T°6vZ OV 8YT 23UISAIF
(0‘8) (0‘L) (0‘9) (0's) (o'y) ' (o'e) _(0'2) (0'T) (0'c) .
. . - .. L0 = ®©/a (¢)
. - ; : : (os1]
- - < - - - G 81 Lyl € ET 0°€1  3o¥xz
. r ) » . . d4-2
901°28 S8T'V9 €L9°8Y OEL ST 965°ST 795°81 ¥OL°YT 06Z°ET  ¥Z0°€1 23UIsSaid
(o‘g). -(0o‘t) (0°9) (0o's) (o‘'v) (o’'¢) (0°2) (0'T) (0’0)

(penutauod) 60 = °/a (Z)

. N . |
// N S . SuoTy

T . (s'u) ga(ngalr  -TPuQEd
S310170 [PPOU pu® SI1333UWeTp [epou JO ‘ON Jo aoinos Aievpunog

| (€°0 = ) 310ddns 51PTPaWILIUT OU Y3ITM SSIUNOTYI
. wiojjun jo sajeld zernuue 07doi130ST 103 4(A/,BUd.") s1ajoueied Aouanbaij jo uos Tiedwo)

Lo ( Panutiuod) z°g °19qel .

L)



, . \ sSuxay (
[V 0LT LE'¥Y 66°Z9T O0T°6ST 6L°0ZT 890768 . LPS°SI 02€°TS . ¥9T°S¥ ﬁ.o~h.mv u:wnouﬂ
: 8ST)] -
. 91°GY L' ey BITION
‘. _ - [LsT)
8y°0LT 8€°¥9T 967791 - N 9$6°G9 , 0ZE€'IG  G9T°Gy  O0TL €y  UwwIOD
(1'2)  (1'1) ~(1'0)  (0'9)  (0°S) (o'v)  (0'¢) (0°2) (0'1) (0'0) s-s (2)
720°€1Z 8LE'LOT 9L9°G0Z T06° 18T SLL T¥T TVS 60T 6LIB°98 v¥88°€L O0SPYP°89 €xyI°L9 SWI3I 8
ZZO0°'€T1Z 6LE"LOZ 9L9°G0Z 206181 SLL TVI ZvS- 601 6.28°98 ©vv88 €L O0SvP 89 ERYI'LY. suI9ly [
7Z0°€1Z 6LE"L0Z 9L9°G07 €06° 18T GLL T¥PT ZVS 601 6.278°98 ¥v¥88° €L OGY¥°"89 EYVI'L9 Suwlal 9
70T €17 ¥S¥°L0Z 0SL°G0Z €06°T8T SLL TYT Z¥S 60T TBZB 98 oygg €L .Z2GhF°89 SYPI°L9 SWIN G
80T €17 9LV L0Z BLL"S0Z 0T6° 18T T6L TYT 8657601 ZBEB°98 PO068-CL . T6YV"89 6LYI'L9 SWI ¥
6L€°12Z 0ST°91Z 8LS V1T 6vE°Z8T LvO CTYT 8997601 64L8°98 B868°€L CISY §9 1T6¥V1°L9 SWIN ¢
- . " ‘ U983 1g
~
{8e1])
. Sk 89 v1°L9  e3ITAEN
: . [LsT)
GT°€1Z 1v L0 1L°%0C - . - - 628°98 €88°tL 9v¥°89 GPT°L9 uRwIoy
(1'z)  (U't)  (1'0)  (0'9) (0°S) (o°V) (0°¢) ';Q.N, (0°T) (0°0) .k
: . ’ : 93-S » (1)
ay, (8'u) . _ g3 NS
v : . JOo 92IN0S
S9TOXTO TRPOU pue SIIJaWeTp [epou jo °"ON
. . . (S0
= e/q ‘€'0 = *° ‘g0 = *a/”7a ‘g '= *g/®a) 110ddnsg 930 TPAUIIIUT OU YITA SS3UOTYI wiojiun

30 sajerd 1ernuue 57doxjoyiro Ief

€'g oTqel -

od 103 .ﬁua\.msausv_mumuosmuwa Kouanbai13 3o uosytredwo)



185

{ . <
, . z
. \ * )
. , ‘ " ) °
— . . . , . » -
[ . .
- | s
oo . .
L. \.y n. . -~
i . . ' - SWII] (L
80°0ZT ZL'6TT 06L°€6 0SPG8 9L 8L 65V €L TTS'9S  G6L°EL  GVO'8T  GOE'TI ucwweuw
| . | i L 8sT
. I S0'8T ,0€°TT  e3dfIeN
. | : . . o [LSt)
80071 - V6L €6 - 6EV 8L TIV EL' 1ZS°9S 08°€€.  G0°8T , - 0€°IT  uewzo)

(1'¢)  (0's) (T’2)  (o'y) (T'1% (1°0) “(0'¢t) 1o.~. (0'ty - (9'1T). s-4 (¢)

» e

: (s’'u) - 4 §3INSax
: ° Jo IdINOS
S3[D1T10 [epou pue mumuoemﬁtAmco:.uo..oz

. | oo . | (5°0

4 . .
= 9/q ‘€0 = **N ‘Gge0 = "a/®*a ‘S = 7a/°q] 310ddn$ $IBTPAWLOIUT OU YITM SSAUYDTYI wiojfun
jo saje(d iernuue ojdoijoyirio xefod 103 ,& *q/yeyd,N) siajaweipd »o:ﬂaouu 3o uosggeduo)

. (panutaudd) ¢°g a1qel - \ .

*

vt

I I R



-excellent. For the S-C case, a convergence study is also
included in the table, which shows that tﬁe rate of
convergence is fairly rapid. Similar trends of convergence

{
were observed in the other cases.

- The third probleh treated is that of polar orthotropic
Elates of uniforﬁ thickneqi with one intermedi;te ring
support. Five differenr composite materials, whose

‘groperpies have been. given in reference [155], are
considered: the ortnorropic'parameteré Dg/Dy, Dyg/Dy and vgy
' are 0.02, 0.01323 and 0.0052, for ultra-high modulus graph}te‘
epoky [UHMG); 0.04, o.bglss‘and 0.012, for high-modulus .
graphite epoxy [HMG); 0.0517, 0.02648 and 0.01551, for PRD
' 49-1I1 epoxy (PRD); 0,08306, 0.04435 and 0.02243, for high-

strength graphite epoxy (HSG); and 50, 0.66129 and 0.26, for
) :

ultra-high modulus graphite epoxy inverted (UHMGI). The hole .

size (b/a) is assumed to be 0.3 and the intermedla%e ring
support ie chosen to be located at %, = 0.5 (ﬁalf the outer
redius). with the exception of the convergence study, the
numerical. results were‘ootained\using seven terms in the
series (5.6) for three different boundary conditions of both
oeripﬁéries-free (F-F), élamped (C-C) and simply supported
»(s-8). For the F-F case, the lowest six frequency parameters
_and the second axisymmetrital frequency parameter (the lowest
;7-sezen frequency pa%ameters for UHMGI) are presented in Table

5.4, in comparison with those ‘given .by Narita [158], who used

L - LN

the Pagrangian multiplier method. Excellent agreerhent may be-'
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Seen to be achievéd. (It may be méﬁtione& that, though the
present results and those by Nagita are for .the same
orthotropfc material, the numerical values used for the
orthotropy are not exactly the same as each other due ‘to the
round-off involved iﬁ different parameters used.) Included in
Table 5.4 are results illustrating a rate of boqvergence of
the present approach; which again shows that the rate of
convergence is fai;ly rapid. For the remaining two cases of':
boundary conditions, for which no comparable results are
available in the literature, the lowest seven frequency '

parameters are presented in Table 5.5.

Thé last problem considered in t¥ris section is thgt of
isotropic and orthotropic annular plates of uniform thickness
with one to three intermediate ring supports. The results
were obtained for the hole size of b/a = 0.2, using eight
terms in series (5.6) for each of the circumferéhtial modes.

For isotropic plates, the frequency parameters for the lowest
. ¢

! - —

seven modes are presented in Table 5.6, for the cases of ‘the
inner periphefy free and the outer periphery clamped, simply
supported or free. ' The lpbations of the rings are those
‘given in the table. For plates with both peripheries free,
the lowest six‘frequency parameters ahd the second -
axisym@etfical'frequeqp§ parameter ware presented in Table
5.7 for polar orthotropic material of high-modulus graphite

eﬁéky (HMG) . Thé locations Qf the rings were assumed to be

the same as those for ﬁhg isotropic plates.
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-~ .
5.3.2. Annular Plates of Variable Thickness

- -

ime first problem considered in this section is a set of

plates with linear variation in thickness along the‘radius.

~

The lowest six frequency parameters and the’second frequency
parameter for the axisymmetrical vibration (0,1), or the
lowest seven f:equenc; parameters when the second
axisymmetrical frequency parameter is nct greater than the
seventh frequency parameter, are presented in Table 5.8 for
isotropic material and in Table 5.9 for orthotropic material.
The values for the hole size (b/a) and the thickness ratio
(hp/hg) are those given in the tables. For isotropic plates,
the results for the axisymmetrical modes are compared to the-
exact solution for v = 1/3, from the work of Conway et al.
[16?], those by Sankaranarayanan et al. [163], who !Led the
Rafleigh-éitz method with simple polynomials, ahd thoséhby
ﬁaju et él. [159]), who used the finite element m;thod.

Though the rate of convergence is relatively slower for smail
values of hole size and thickness ratic (b/a = hp/hy; = 0.1),
as shown in the table,.the agreement between the present
results and those by others is very good. In some cases,.the
values of the exact solution are larger than the present
upper houn§ results, and this may be due to the round-off

errors in conversion of the parameter used in the reference

to the present paramgtef and/or, as pointed out by .

.Sankaranarayanan et al. {163), possibly due to numerical

«

Errors in the evalyation of the Bessel functions in the exact
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solution. In Table 5.9, the orthotropy ‘has been taken as the
one for the ultra-high modulus graphite epoxy inverted

(UHMGI) .

The next problem considered is that of polar orthotropic
annular plates of parabolic variation in thickness with and
without intermediate ring supports. The orrhotropy taken is
again rhe one for the ultra-high modulus graphite epoxy.
dinverted (UHMGI). The hole size (b/a) and thickness ratio
(hp/hy) are chosen to be 0.3 and 2, respectively. The power
p in equatlon (Suh) for the thickness yariaticn is given as 2

\d
.

. . -~
for the parabolic variation. Tﬂe resulte/yere obtainedfusing

-

eight terms in series (5. 51{fnd are prgﬁ;nted*ln Table 5.10

‘)

for the lowest six frequendies and the’éé&bnd frequency for
the axisymmetrical mede. The‘ggpﬂﬁary condltlons were
considered to be both peripheries clamped and the locatrons

of the intermediate supports chosen are given in the table.

3 ~

5.4. CIRCULAR PLATES

» 4

As m&ntioned before, by letting the inner radins become
very small, tne present approach. for annular plares can be .
applied to the solid circular plates. To shoew the validlty
of the approach, several example plates are treat?d in this

‘section. ' ) . . R

‘Eirst, isotropic, solid circular plates with uniform

' thickness are considered taking the values for the hole size .
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3}3 = 9.001. The inner periphery is aseumed to be free,
which then approximates very closely the solid circular p a;e
with no central support. Tﬁé results were obtained for tiie
diffetent classical boundary conaitions of the outer
petipheries and are presented in Table 5.11, together with

those of the exact solutions [130-132]. Excellent agreement

may be seen t¢o be achieved for all the cases of the boundary

conditions. It should be mentloned here that, for the
clamped circular plate, the frequency parameters 9f the exact
solution do not depend upon Poisson's ratio, though the

present results were obtained for v = 0.3.

_ The second ‘example considered 1§ uniform, isotropic
solid circular plates sihply supported or clamped at the
centre with classical boundary conditions on the periphery.
As mentioned by Leissa [31), it is obvious that for two or
more nodal diameters (n 2 2) the resultant frequencies‘and
the mode shapes for plates simpig suﬁpo;ted or clamped at the
centre are identical to those for plates with no constraint
‘at the’centre. This is-dueuto the fact that, at the
intersection of two nodal.lines, the slopes in all
directions, as well as the deflection, are zero. In the case

of one nodal diameter (n-l), the frequencies and mdde shapes

for central point supported plates are, as shown by SOuthwell

f168) for a plate. with the Pree periphery, identical o those'

for* the plates with no central point support, since the

For axisymmedrical

displacement on the nodal line is zero.-
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modes (n=0), the plates sim?ly‘supported at the centre behave
in exactly the same manner ae,éhe plates clamped at the
centre. This is due to the Fact that the continuity of the
axisymmetrical moees at the centre constitutes zero slope, as
well as the zero displacement. Then, from the above
discussion, it is-neceseefy only to that for the central
clamped plates for n =(0 ahd n = 1. Such can be treated by
gssuming the inner.pe:Lpherf to be simply supported with very
;mall value of the radius,'sinée the simply supported
condition saEiefies tﬁe zero displacement condition at the
centre and the very.smal{ value of‘the radius approximates
the zero slope. The numerjcal results were obtained{ -

" however, ogly for the axisymmetrical modes (n = 0) for v =
0.3,~taking\b/a‘:.0;opl and seven _terms in series (S.Gf. The
llowest four,freqﬁency paf;meters are presented in Table 5.12,
in COmparison wich those\by Southwell (168] for an otherwise
free plate and by Sakﬁarov [170] for the pla#es with simply
supported and,clamped,peripherles. It may be seen that close

agreement is achieved between the present results and those

obtained by others. = ..

..

L

Fihelly, in addition the frequency parameters for the
axis?mmetrical modee f uniform, polar orthotropic eircular
‘ plates subject to either central point clamped or no central
”constraint are preseﬁted in Table 5.13. The outer periphery
1s. assuped to be elampéﬁ: The orthotropy is that for the

ult;a-hiqh modulus gfaphite epoxy inverted (UHMGI). The

. 4

kY
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. ~Table 5.12 - " —
Compairson of frequency parameters (uzoha4/D)§'for
N axisymmetrical- modes of uniform, isotropic circular plates
simply suppqrtéd or clamped at~the centre (v = 0.3)
Source of o ~ Number of nodal circles h
results . 0 , 1 2 3
. ? ,/
(1) plate-with free periphery .
present 3.7525 20.927 60.703 120.78
- Southwell 3.752 20.91 60.68 119.7
[168) 4 ”
(2) plate with simply supported pefiphery
present 14.820 ° -~ 49.519 103.88 179.66
Sakharov .14.8 49.4 - -
[(170]
o« ~(3) plate with clamped periphery ‘
present 22.744 61.993 : 121.30 201.29
Sakharov 22.7 - y 61.9 . - -
[170] ) ] * ’ ’ - )
- [ ]
' 4
] . L
- ¢
~
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results pere obtained taking b/a = 0.001 and eight terms 'in
AN ‘ P -
series (5.6), and may be of interest to the other researchers

. Table 5.13 ’ ‘ -

Frequency parameters (uzoha4/D )é for polar orthotropic
c1rcular plates of un;form thlckness clamped at th Periphery

\ -
Conditions Number of nodal circles
at the 0 1 2 3
centre ' ) ~
No 28.972 93.691 174.90 276.69
constraint
point - 59.717 ) 131.81 222.19 335.83

clamped . . -

203

.




L/ CHAPTER 6 ——

VIBRATION OF SECTORIAL PLATES -

!

N
6.1 INTRODUCTORY REMARKS

As mentioned in section 1 S, the problem of the
transverse vibration of.c1rcular and annu;ar sectorlal plates
has recelved considerable attentlop in recent years.

However, the study of the problem/is limited to single plates
< with uniform thickness:; it appears that no study has been
performed for sec;érial plates which are continuous over
AN

intermediate simple supports or of non-u orm thickness.

‘ _ In this chapter, a straightforward, general approach is
presenﬁed for the solution of‘the vibration-proﬁlem'of polar
orthotropic sectori%l plates which may be of contindéﬁs over
radial and/or circumférential intermediate supports, and of
variable thicknéss. The boundary conditians are coﬁsidered
to be any combination of classical boundary conditions. The
Rayleigh—Ritz method is used for the,ana;ysis with tﬁe BCOP
as the admissible_functiqns. Numerical results are presented
for a number of example plates. Though the aﬁ;lyéis is given
for polar orthotropic plates, the majority of tﬁe»zesults

\\gresentgb are for the isotropic éase;'it was not considered
prac;ical to present éopious resuits for varying degrees of
orthotropy. 1In several instances, convergence of the

sdlution is demonstrated and, where possible, comparisons are
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made w}th results available in the ;;;E??ture.' The present
approach is ®ssentially for annular vescbrial plates, and
circulary sectorial plates are treated by allowing the inner

radius to become very small.
6.2 ANALYSIS

Consider a thin, annular sectorigl plate with radial and
concentric supports, bounded by two radial edges e = 0,

@ (radian) and two circumferential peripheries r = b, a, as.
shown in Figure 6.1. It is assumed that the material of the
plate is af variable thickness both in radial and
circu@ferential directions, and is polar orthotrop;c. the \ ‘
intermediate radial and circumferential supports are- assumed
to prevent transverse dispi;cemeﬂt but to offer no resistance

--t0o normal ro€ation (;imple supports), and the boundary

"conditions aYe classical (i.e. any coinbination of 'free,

simplyvsupported and/or clamped).

For free vibration, the displacement may be J?ltten as

w(r,8) sinut;;where w Is the radian natural frequency and w

- the maximum deflection wiéhf;espect to time t.. The maximum
strain and kinétic energlies in polar coordinates are,

respectively (as in Chapter 5, see Appendix B):

. -

o _ L [ara 92w 2w 1w T W, —
Vmax -_Ubfo [Dr‘;'z‘)z *+ 2verDy ‘Lrg Tt 2 o2 -

9
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1 1 2 1 =
1 ™ 1 7w, 2 : 31 My,2 '
*Deir 3t 3 3923 + 4Drgl32(5 212 )raedr, (6.1)
Tmax = 2 Jplo oh(r,e)w2rdeqr, (6.2)

where h(r,8) is the thickness of the plate and all the other
parameters are the samé as those given in Chapter 5,

respectivelly. .

Introducingenon-dimensionalized parameters ¥ = r/a and "M
= 8/a (® and a (radians) are non-dimensional values), the

thickness h can be expressed
h(z, M) = hof . (3)Eg(M), (6.3)

where h,, denotes the thiékness at r=a, ©=0(%=1, M=0) and
fr(3)fg(M) describes the.variation in thickness. It shoulq
be noted that the thickness variation tgeateg'in this work is
only for the case where the variables are separable. ’It’may
also be moted that for plates with uniform thickness, both
fugctions £ (%) and fg(M) becnme unity, respectiveiy. For.
platds ™ which the thickness varjes with some power, p, of
the radius, and q, of the ang%e, f.(%) and fg(M).may be

written, respectively,
) [ ]

£.(8) =1 -(1 - hp/hy)(1 - gP)/{1 -(b/a)P} - . (6.4)

fg(8) = 1 -(1 - hg/ho)nS, _ . (6.5)

wheré hyp/h,; denotes the ratio of the thickness at the inner

-
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-
periphery to that at the outer periphery on any radigl-line ‘
and hgq/hg the ratio of the ;hickness at 8 = a to that at 6 =
- . 0 along any concentric circular arc. For linear variation in
r:dial direction and uﬁiform in circumferential direction, p

1l and @ = Q0; for linear variation in each direction, p = g

= 1; for parabolic variation in each direction, p =g = 2,

(‘ etc..

The deflection w may be expressed in the form

w(%,n) = L. Aj5Pi(3)¥5(M) (6.6)
i] ) .
where &; and ¥; are the assumed admissible fuqftions in the

radial and circumferential directions, respectively.

Substituting equations (6.3) and (6.6), together with
equations (6.4) and (6.5),,into the energy expressions (6.1)
.and (6.2), and minimizing with respect to the coefficients
Aﬁh,'according to the Rayleigh-Ritz procedure, leads to the .

* ~eiéenvaIue equation (frequency equation),

L E(Cppij - R%GpiBnglAyy = O, o (6.7)

i3
’ - ?
- where Q2 = (?ph,,a%/Dpag, m, n, i, 3 =1, 2, 3, ..., -

L4 N ’

rre -1,11 00) 1 (-2,013).(20)
"Fnj * oo {Eéi ’ )Féj "+ == (Epyi Fnj
r . al

-

(-2,10)_.(02)
+ Bpj Fnj

(=3
) + 4E'|'|'li
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(0,12) (00) {0,21) (OO) (-1,02)..(20)
+ *er{Eml Fnj + Eml Fnj + a% (Emi Fnj
+ glil 20)F(02))} -
~—
D - - -
+ 2 BEQ{EéiB'OO) ~(gl72/01), g(-2,10), .
- a? “r
(-1,11) (11)
+ ETT\J. }Fnj ’

Eé?'qS) = fé/aipfg(;)(dQQm/d:Q)(dséi/d§§)d§, .
FiF) = féfg(n)(den/an)(dSwj/dnS)§ﬂ,

1 .
Gmi = [p,aifr(3)ondids,

Hnj = [efe(M¥n¥idn,

andADrao denotes the values for D, at r = a, & = 0. As in
Chapter 5, the isotropic plate is a pa;ticuiar case of thé
orthotrop{h plate and thus equation.(?.7) also applies to the
isotropic plate, for which vrg = wvgy = v, Dy = Dg = D and Drg
= (1-v)D/2. ' » 2

L J
For plates with both radial edges simply supported, with

no intermediate radial support and ¢f uniform thickness in
t . “ ]

circumferential direction, the ‘exact solution can be

expressed in the fofm .




w(%,MN) = Wp(3) sin nmn, . (6.8)

where n denotes the mode sequence number in circumferential
direction (i.e. (n-1) 1is Epe number of nodal radii excluding
the supports). In this case, when using the Rayleigh-Ritz -
approach, the exact variation in displacement with 6(or M) -

may be retained and WL(%) can be expressed as

where @i(a) are the assumed admissible functions.

Remembering the uniformity of thickness in circumferential

direction, the thickness h can be expressed as

h(%) = ho£.(%), (6.10)

where h, denotes the thickqsss at r = a(% = 1). Using
equations (6.8) - (6.10) the Rayleigh-Ritz procedure gives .an

alternative eigenvalue equation
ElCpy - 9%GpilAmn = O, (6.11)
i

where Q2 = u2phza4/Dp,, m, i =1, 2, 3, ...,

2,01) (-2,10)

1,22 -1, ll) nn )
Cmi = Emi’ )“"""‘{Ernl (82)2(Eq} + Emio 0
+ )4Em 3,00), )
-1,2
+ “Br{Emo ,12) + Eég'ZI)- ( )2(2; 1,02) + Eéil 0)}

\
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D
+ 4 ge(gg)z{EéiB,OO) - (EéiZ,Ol) + Eéiz,lo )
r -
+ Bb71 1Y ‘
and Dy, denotes the value for Dy at r = a (3 = 1). This

alternative equation allows better estimation with smaller

matrices.,

The\solution of équation (6.7) (or equation (6.11) for
plates with both edges simply supported) yields the natural
frequencies of vibration of the plate, together with the
coefficients for the mode shape (6.6) (or (6.8) for plates
with boﬁh edges simply supported). The validity and accuracy
of the solﬁtion depend upon the choice of the admissible

fanctions in each direction, ®;(%) and Wj(n)u In this work,

again the BCOP are used. The BCOP ¢j(%) in the radial -
direction are ‘exactly the saﬁe as those given in Chapter 5
for annﬁlar plates, and thus, only the BCOP in the
_circumferential direction Wj(ﬂ) are explained in thé .

following.

« . . .

The starting functions in ;he circumferehtial direction
¥3(N) are chosen so as to satisfy the equivalent beam
boundary conditions, both geometrical and natural; and zero
displacement conditions at intermediate supports where such

exist. The starting functions for plates with no

intermediate support may be written
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(M) =
]

e wm

asni-1 \ (6.12)
1 .

where ajy are the same as those given in Table 2.1, in which
Fge first F, S or C denotes the condition at & = 0 and ﬁhe
second the condi£ion at ® = a. Again, the lpwer degree
starting function, such as those in equation (2.10), which -
satisfy only the geometrical~boun§ary conditions could pe*
used and would vield very similar.results. The presént
functions are used 'simply for consisténcy.“ For plates with
radial supports, Ehe starting functions are'obtarned by -
multiplying appropriate functions given by equation (6.12) by
the factor (n - Ng), recurrently, ;here Ng denotes the
location of the intermediate radial supports. The subsequent
polynomials are generated by the recurrence formula, such as

equation (2.6). The equation is rewritten here:

Wiee1 (M) ={g(M) "= Byl¥p (M) = Cye¥peo1(M: k = 1,.2;3,..., (6.13)

r

By = JL wetmigmiggman/ [Luemgkman,

Ck = Jo wgMegan/ flueneg ) (nyan, SN

>

The wéight function Wf(“k is detefﬁined considering the
orthogonélity of the vibration modes. Recalling the kinetic
energy ékpression (6.2) and the orthogonality condition in

the radial direction,equation (5.10), the orthogonality of
‘.}.

circumferential modes may be expressed
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1 - ’
a [ Efe(M¥n(M¥5 (M)A = Hyy8n3, ‘ (6.14)

where Hpj is a constant and &pj the Kronecker delta.
Therefore, the weight function is wg(M) = fg(M). the
generating function is chosen as g(nh) =N, which makeé the
subsequent polynomials (k > 1) generated satisfy only the‘

geometrical boundary conditions. Again, higher degree

generating funcgions.may be used for plates with simply .
supported edée(s) (as in rectangular plate problem), but such
have not been used to obtain the resulfs presented in this
chapter. It may also be noted that, yhen both edges have the
same boundary conditions and the thickness along any circular
arc is constéht, the BCOP are symmetrical and antisymmetrical
about M = 1/2°(® = a/2) alternately, by the theorem (2) in

Chapter 2.

It is qﬁrth n&ﬁing again that, the first and second
terms of frequency equation (6.7) or (6.11) yield symmetrical
"and diagenal matrices, respectively. When appropriately -~
nqrmalizgd-ﬁolynomials are used as the admissible functiog;
-~ in equatéon (6.6) or (6.9), the second term of equation (6.7)
or (6.11) yields an identity matrix: this gives some

computational advantage.

In order to illustrate the accuracy and utility of ‘the

approach described, numerical reéults are presented in the

following sections for a number of specific plates! Where
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p%ssible, comparisons are made with greviously ﬁublish?d—
results. Although the calculatjions were performed makinbouse
of symmetry, where it existed, the number of terms-indicated
in the following sections denotes the whole number 6f terms »
used; when symmetgy exists, only half the number of terms

indicated actually contribute to the solution. '

6.3 UNIFORM, ISOTROPIC, SINGLE PLATES

The first problem treated in this section is that of
uniform, isotropic, annular sectorial .plates with both radial
edges simply.supgzrted. Two cases of the boundary conditions
are considered for the ‘cumferential peripheries; both f_'ree s
and both simply supported. The 1o§es€ six frequency
parameters for b/a = 0.5, a = n/4, obtained by using
equations (6.11) and (6.7) respectively, are preséntgd in
Table 6.1, in comparison with the exact solution by
Ramakrishnan and Kunukkasseril {174]. Poisson's ratio is
taken as'0.3. In the table, the heading of the values

dénotgs the number of nodal radii (k) and nodal circular

arcs(s), éxcluding the bounaary supports. Close agreement

may be seen to exist. ‘However, remembering the ubper bound
characteristics of the Rayleigh-Riti method employed }n the
present adalysis,‘the cases whére the présent resulté aré'
lower than those in t.he reference requires some comnent;

Where the approxi@ate solution is only very slightly lower

Vthan the exact result (eg. case-(2), mode (0,0)), this may be
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attributable to the conversion of the parameter used in the
reference to that in the present table. For the }grger
discrepancies (eg. case (1), mode, (0,1)), -the author can only
offer the explanation that hé. suspetts that the quoted
'exact"values include some numerical errors which may have
eccurred'in the evalua%{on-of-sessel functions or that there
‘ is some slight error in the present fesul@s.which he has been
unable to discove;. Iﬁcluded in the tabM™ are brief )
convergence studies which‘showyfairly rapid ragz of

-

convergence. ) -

The secend problem considere@i&s that of uniform,
isotropic, circular sectorial plates with fully clamped
boundaries. As mentioned before, the present ahalysi% i§4
essentially for annular sectorial plates and circular . -

‘s ' »
sectorial plates are treated by taking a very small value of

inner radius. The lowest five freéuency parameters are
presented in Table 6.2 taking S/a = 0.00001. Fdr»a =n/2, v
= 0.3, the results obtained with 4,?5 and 6 terms in each .
direction in the series (6.6) are/cqmparea wi?h those by
Srinivasan and Thiruvenkatachari [185], who used an {ntegral
equation technique. It méy'be seen éhat clo§e agreement‘is
'achievgd between the present results and those in the
reference for béth cases, and the-cate of convergence of the
preSent analysis is fairly rapid. Far v.= 0.33, taking six
terms in each direction in equation (6.6), the results were

obtained for various values of the ahglg_subtended and are

~
’ . .
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-5gﬁpared with experimental results by Maruyama and Ichinomiya

(182]. For a n/6 and n, the values obtained with 5 x 6 and
6 X 8 terms, respectively, are also included in the table;
the results with 8 x 8 terms were identical up to the figure
presented. In addition, the error percentages based on the
experimental results are giyen in parentheses. The
agreement, while not being excellent, is typical of that

which may be expected between experimental and theoretical

results.

The last problem treated in this section is that of
uniform, isotropic, annular sectorial platéé witﬁ fuliy
clamped boundaries. The problem immediately preceding this
is a special case of this problem. The results are p}esented
in Table 6.3. For a plate with v = 0.3, b/a = 0.5 and a =

n/2, the present results are compared again with those by an

integral equation technique [188]. The agreement achieved is

very good. For v = 0,33 and @ = n/3, the results are
presented for varioué values of b/a in comparison with those
f%g@ experiment [182]. Again, error percéentages are given in
parentheses. With the exception of a few of the lower modes,
the agreement betweeﬂ the theoretical ana experimental

results is quite good.

.

6.4 PLATES WITH COMPLICATING FACTORS

In order to demonstrate the vérsatiiity of the present
)

analysis, several example plates with complicating factors
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such as polar orthotrbpy, intermediate suppo}ts or varving

*thickness are considersd. The complicating: factors can all

be included s;multaneously, however, in the following
examples, each factor is considered individually since, with
the exception of one case, there exist no comparable results
in the lite}ature. From the earlier convergence study, it
was decided to take 6 x 6 terms for equation (6.7) and six
terms for equation (6.11) to obtai?‘the results presented.
The first problem treated in this section is Qnifo;m,
?olar orthotropic, sectorial plates with fﬁlly simply
supported boundaries. In Table 6.4, the léweg& five
frequency parameters for b/a = 0.05, the angile éubtended
100°, vgy = 0.3 and three combinations of Dg/Dy and D,g/Dy
are presented in cgmparison with those b} Irie et al. [186]
and Ramaiah [185], who used the Rayleigh‘éitz method with

: .
spline functions and simple polynomials, respectively, as the

‘admissible functionst The analysis in reference {185] is fn

fact equivalent to that of equation (6.11). While the

present results were obtained with 6 x 6 or 6 terms, those in

- v

reference (186} were obtained with five terms and in
reference t185} with eight terms. Excellent agreement may be
seen to exist for all the modes presenied.
> 2 . .
) ) e
The second problem treated is that of uniform, polar
orthotropic sectorial plates with both circumferential

peripheries simply supported. The lowest six frequency
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parameters obtained by usihg equation (6.7) are presented in
Table 6.5 for all'thg combination of classical boundary

conditions for radial eddes. The values for Dg/D, are

consi ed to be 0.1, 1 and 10, while the® other values are
taken as constants (b/a = 0.3, a = n/3, Dpg/Dy = 0.35, .gy =
0.3). There 1s no comparable results in the open literature.

In the table, the edge condition F, % and C denote free,
sim;ly supported and clamped boundaryfconditions at 8 = 0 or
a. For the plate with both edges simply éupporged, the
results obtained with equation (6.11) are also given in the

parentheses.

The third problem is that of uniform, isotropic,
sectorial plates with or without intermediate simple
supports. For plates with both radial edges simply
supported, thé lowest six- frequency parameters obtained by
ggsing equation (6.11) are presented in Table 6.6 for all the
combinations of classical béundary conditions at‘
circumferential peripheries. For plates with b/a 0.2, a ="
n/3 and v = 0.3, tﬁree cases of support conditions are

considered;
. ’ P-4

(A) a plate with no intermediate support,
(é)- a plate with one intermediate support at r = O.Ga} and
(C) a plate with two intermediate supports at r = 0.5a and

0.8a. .. '

In the table, the first F, S énQ Cskh the first column denote

~-
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free, simply supported ahd clamped boundary conditions at the

inner periphery and the second those at the outer periphery.

In Table 6.7, the results obtained with equation (6.7)
are presented for plates clamped at r = Db and e = 0, and the
other two boundaries simply supported. Three cases of
support conditioﬁs are considered for plates with b/a = 0.2,

a =1n/3 and v = 0.3;

(A) a plate with no intermediate support,

.

(B) a plate with one intermediate support in each direction
(r = 0.6a and 8 = 0.5a), and

(C) a plate with two intermediate supports in each

direction.

-
-

The results may be of interest to other workers in the field.

TPe last probiem is that of isotropic, fully-clampéd,
sectorial plates with linearly and parabolically varying
thickness. The first six frequency parameters for plates
with b/a = 0.2, a = n/3 and v = 0.3 are pr;sented in Table
6.8. The thickness at the outer periphery is taken as one
half of that at the inner periphery and the thickness at tHe
edge 8 = a is one half of that at ® = 0. The values for the
thickness variation given in equatioﬁs (6.4) and (6.5) are p

= 1 and/or q = 1 for linear variation, and p = 2 and/or q = 2

for parabolical variation.
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CHAPTER 7
CONCLUDING REMARKS

It has been demonstrated that the use of the beam
characteristic orthogonal polynomials (BCOP), generalized by
the author,‘in the Rayleigh-Ritz method (in consunction with.
Lagrangian multipliers fbr piates with point sppports)‘ .
pgrmits the study of vibration problems of various slender
beams or thin plates subject to several comblicating effects.
Numerous illustrative examples have been examined and ’
npmerical resulés generated both for new‘probleqs and for
problems for which comparison results are available in the
literature. Therapproach can be adopted gor any dynamic and
static problem where the energy expressions are known and the
coordinates are separable in the farmulation of the
agfroximétg’soluéion. Though only the Rayleigh-Ritz method
is used in this thesis, the BCOP can be used as admissible
functions for other methods such as the Galerkin heth;d, the

\
Kantorovich method, etc..:

~>

The approach presented in this thesis is simple but more
general than most of the other approaches presented
previously in the literature. Numerous problems have been

treated in this work, but many more problems could be treated

using ;he approach described. Some further plate problems

. /

which méy eagsily be tackled are:
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(1) plates subject to elastic springs or having elastically
. restrained boundarie$§, which requires simply adding the.
energy stored in the .springs to the strain‘energy
expression éiven, in a manner similar to thgt used for

the elastically restrained beams in Chapter 3;

—

- (2) plates with concentrated masses, which requir ¢ the
addition of the effect of the masses to the kinetic
energy expression given, as for the beams with

concentratq@ masses; and

v’

(3) plates subject’ to inplane force, which réqqire the
subtraction or~addition (depending upon the direction)
. . —_———"
of the effect of the force to the straip energy

expression given, as for the beams subject to axial

lcad.

I'd

Though the effect of point supports was‘considered on&y for-

* o ‘ v -
rectangular plates, their inclusion is straightforward for

.

other plates such as circular, annular and "ectorial plates.

Tapered plates could also be analyzed.

The approach for the box-like structure treated is

applicable to those structures which can be folded out to

form a multi-span beam or plane plate.

It is believed that the present'hpproach may be used to
study various shell problems, such qf ¢ylindrical ghells,

shallow shells of rectangular plan form, etc.. These may
. /

again involve various complichtin§ factors. .4

4

e A
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- ' APPENDIX A
3

The values £or displacement, slope, bending moment amn® sEgar force for
beams with one end rotationally restrained-hinged and the other end
translaticnally restrained (sl=l, K, = 1) .

1
x/2 _ wN Ldw/dx 1°a% /ax’ e sax’
(1) First mode: {1 = 2.3587 .
0.00 0.0000Q 1.45515 1,4551% : -3.01191
0.10 0.15229 1.58564 1.15534 -2.97015
0.20 0.31614 1.68650 0.86406 -2.84032
0.30 0.48864 1.75904 0.59040 -2.61678
0.40 0.6670§ 1.80549 . 0.34396 -2.29551
0.50 0.84898 1.82907 0.13465 -1.87389
0.60 1.03227 1.83399 -0.02733 --1.35060
0.70 1.21533 1.82550 -0.13207 © -0.72534
0.280 1.39713 1.80983 -0.16911 0.00144
. Q.90 1.57730 1.79427 -0.12843 0.82892
. 1.00 1.75626 1.78707 0.00000 1.75626
*
. (2) Second mede: (. = 16,371 .
o A i = = = = = = A e e o = m = = e e . =~ — - ————— . - = - —— [
~$ o.00 0.00000 . 4.86767 4.86767 -104.02392
0.10 0.49388 4.83982 -5.31417 -97.39916
0.20 0.93571 3.84872 -14.18412 -78.01960
0.30 1.23779 2.08596 -20.57773 -48.49845
_ 0.40 ° 1.33683 -0.15726 ~ -23.69962 -13.49456
- 0.50 1.20185 -2.53559 -23.29129 21.05795
0.60 0.83662 -4.70909 -19.71362 48.86124
0.70 8.27611 ~-6.40445 -13.93757° 64.15174
0.80 -0.42317 -7.47256 -7.45259 * 62.41943
0.90 -1.19793 -7.93311 -2.11850 40.79158
. 1.00 ’ -1.99655 -8.00338 0.00000 -1.99655

. 0.00 ?.00000 -9.37655 + -9.37655 543.35822 e

, ‘ 6.10 ~0.89601 -7.69885% 40.91981 423.45912
' 0.20 -1.40190 -1.94999 68.83847. 112.83601
.0.30 -1.24923 4.88589 61.84897 ~245.97341
- 0.40 -0.50463 . 9.36590 .0 23.761397 -483.25269
. 0.50 0.46687 . 9.21242 -26.90853 -487.82088
~ 0.60 1.17918 4.37642 -66.04191 -263.76145
0.70 1.25610 : -3.00446 -75.98901 68.21679
0.80 .. 0.59974 . . -9.76765 -54.,96807 323.66330
0.90, -0.59373 . -13.50304 -19.565%Ll5 . 332.52571

1.00 -1.99?84 -~14.,20275 0.00000 -1.99621 -

........................... e P
¢4) FOurch mode: Q = 105.22° -
. . 0.00 0.00000 13.78500 13.78513 -1591.99946
, ¢.10 ° 1.19468 7.82817 ~120.77667¢ -874.%59138%
0.20 1.28817 -6.17881 ° ~133.82199 631.34223
0.30 0.15824 -14.42335 -16.17393 1509.42438
0.40 »1.11932 . -8.85873 117.55316 - 925.17418
0.50 -1.42106 5.16828 -137-.83511 -55%7.39835
.b.BO -0n 26217 14.08128 “28.14157 - -1517.51149
6.70 . *1.01468 9.07242 ~116.43630 -1054.02258
0.80 1.21726 -5.6715€6 ~-155.08556 319.62029
0.90 . -0.02342 -17.73306 -72.878%2 1092.96656
®» 1.00 ~1.99728 -20.46833 -0.00035 - ~2.08498
DI
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, , (§, = 1,.x, = 100
X/ x w tdw/dx *atwsdax’t ) Vdadwiax’
(1) First mode: T = 9.6625% &
0.00 0.00000 3.42798 3.42798 -42.64318 .
. 0.10 0.35286 3.55862 -0.78199 -41.00613
0.20 0.69817 3.28256 -4.66312 -36.07816
0.30 0.99739 2.64795% -7.89602 -28.1134¢
0.40 1.21843 1.73427 -10.20384 -17.69833
0.52 1.33838 0.64495 -11.38199 -5.67775
0.60 1.34554 -0.50065% -11.3194! 6.94058
0.70 1.24055% 1.57724 -10.0093% 19.09686
0.80 1.03643 46407 -7.54882 ( 29.79540
0.90 0.75763 3.05486 -4.12649 38.21650
1.00 0.43815 -3.26586 0.00000 <" 43.81513
(2) Second mode: i.'l. =__2_7_ 026_ . . )
0.00 0.00000 5.05721 5.05721 -166.06197
0.10 0.50364 . 4.74815 -10.92861 -147.47868
. 0.20 0.90104 2.99291 -23430035 -95.10492
0.30 1.07088 - 0.30464 -29.23182 -21.44504
0.40 0.95486 V -2.59627 - -27.51779 $4.30988
0.50 0.56942 -4.96977 . -18.99541 111.42804
0.60 -0.00255% -6.25901 -6.42871 | 132.91723
0.70 -0.63884 . -6.25691 6£.08020 109.48952
. 0.80 -1.21820 ~  -5.19779 13.9%901 4 1762
0.90° -1.665135 -3.76004 13.02309 .-6%.17765
. 1.00 -1.99239 -2.99708 0.00000 *  -199.23907
. "'""'"“""""’ """"""""""""""""""""""""""""""
- Y
(3) Third mode: ¥ = 55.378
.............................. ;e e m e e M e e mem e mmmmmacemmammmammm—ma—————————
N 0.00 0.00000 -9.13686 -9.13686 572.84960
0.10 -0.86624 -7.30297 43.50602 435.27785%
0.20 -1.31918 -1.29926 70.67301 84.67652
0.30° -1,09851 5.51873 59.15596 -303.63927 -
0.40 -0.31386 9.43881 15.43354 -530.32622
8.50 ' 0.611723 8.29237 -37.52801 -480.85703
.60 1.18850 ‘ 2.54522 -72.50370 -189.15589
0.70 1.06450 -5.03004 -72.85301 175.83243
0.80 0.23856 -10.9740% -42.39118 390.92464
. 0.90 -1.005%6 -13.28599 ~-5.69065 279.17528
. 1.00 -2.33234 -13.14340 0.00000 -233.23468.
(4) Fourth mode: () = 107.22
.............................................. m e e e cmcecccmem—aan
0.00 0.00000 13.71309 13.71328 -1612.5%225%
- 0.10 1.18412 ., 7.66659 -122.11404 -872.69%561
0.20 1.25672 ~6.39971 -133.07781" 667.68305
. 0.30 ° 0.11477 -14.38140 -11.85626 1533.96430
0.40 -1.13511 -8.35324 ™ 121.46621 888.6196%
0.50 ~1.27527 5.78868 135.51576 -634.94621
0.60 -0.17822 14.11581 15.47358 -1551.7554%
0.70 1.05699 8.22914 -123.63973 -989,27427
0.80 - 1.15318 -6.79293 -152.69874 427.46231
0.90 ' ° © -0.17194 -18.1779% ,-63.39504 "1101.725%01
1.00 ~2.14951 -20.25330 -0 Do044 -215.06018
”~ ]




(s, =1, K, = 10000
x/% w idy/dx i a*w/ax’ ¢ id v ax’
(1) First mode: & = 10.704
0.00 0.00000 3.90783 3.9078% -54.6365%6
0.10 0.4012% 4.02733 -1.47986 -52.34944
0.20 0.78809 1.62715 -6.409%26 -45.49822
Q.30 1.11159 2.77545 -10.4418¢ ~34.53485
0.40 1,33172 1.58103 -13.21089 -20.42465
0.50 1.42102 0.18388 -14.46680 -4.52256
0.60 1.36689 -1.25833 -14.10847 11.58587
0.70 1.17319 -2.%8588 -12.19746 26.26370
0.80 0.85852 -3.65132¢ -8.95398 - 38.00398
0.90 0.45513 -4.34407 -4.7354% 45.59504
1.00 * 0.004813 -4.58306 0.00000 48.25267
_(2) Second mode: Q2 _=_40-236 -
0.00 0.00000 8§.22187 8.22387 -383. 50
0.10 0.80077 7.186%52 -27.86237% -316.85%90
0.20 1.33360 3.07610 -51.35468 -138.50280
0.30 1.3706% -2.37847 -53.93998 87.80810
0.40 0.88654 -6.98665 -35.08315 276.78051
0.50 0.061371 -8.92004 -2.28024 356.32693
0.60 -0.78108 -7.40892 31.49379 296.206095
0.70 -1.32132 -3.63437 53.04193 120.0818
0.80 -1.34873 2.5005%9 53.90476 -103.56893
0.990 -0.85506 7.03315 33.64989 -288.11578
1.00 -0.03626 8.77814 0.00000 -362.63639
(3) Third mode: N = 88.950
0.00 °0.00000 -12.52850 -12.5284¢ 1232.54377
0.10 -1.11827 -8.02652 94.58981 759.94679
0.20 -1.36234 3.56216 119.27442 -298.99200
0.30 ‘-&.50090,/ 12.38932 43.8006¢ -1095.192230
0.40 0.76646 11.05776 -68.50273 -981.22844
0.50 1.39785 0.62176 -124.54848 -55.16806
0.60 0.87321 -10.32611 -717.96776 916.55552
0.70 -0.37519 -12.76944 32.71223 1129.93272
0.80 -1.32051 -4.73095 115.79981 405.29547
0.90 -1.19239 7.05733 101.81689 ~667.74679
1500 -0.122%2 12.61900 % 0.00002 -1225.22123
&
(4) Fourth mode: 2 = 156.18
0.00 0.00000 16.72068 16.73626 -2824.05108
0.10 1.31883 5.93121 -201.18378 -986.26494
0.20 0.88068 -13.57986 -136.16851 2103.56947
0.30 -0.74914 -14.67594 117.38504 2287.14529
0.40 -1.34964 4.26628 210.87099 -668.12486
0.50 -0.10187 17.35.06 15.85183 --2711.28614
0.60 1.28476 6.67048 -200.95659 -1045.93294
0.70 0.90972 -13.18183 -143.17%88 2045.02153
*0.80 -0.72160 -15.12936 108.8%%579 2314.74156
0.90 -1.402386 3.14875 205.85285 -659.30439
1.00 -0.29943 15.43063 -0.01606 -2998.16786
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(§, = 100, Kl = 1)
N ~—
x/ w Ldw/dx £°d%w/dx? t2a’w/dx’
[]
(1) First mode: {) = 3.9758
0.00 0.00000 0.07043 7.04339 -10.%2190
0.10 0.04081 0.72218 5.99184¢4 -10.49847
0.20 0.14094 1.26903 4.54748 -10.36227
0.30 0.29086 1.71243 3.92604 -10.02683
0.40 0.48009 2.08578 2.95111 -9.42203
0.50 D.69888 2.30519 2.05245% -8.49135¢0
0.60 0.93830 2.46996 1.264%513 -7.20171
0.70 1.19048 2.56304 0.62510 -5.52043
0.8 1.44907 2.60125 0.17393 -3.43473
0.90 1.709%9 2.60%546 -0.04815 -0.93830
1.00 1.96986 2.60063 0.00000 1.96986
(2) Second mode: L = 21.712 )
0.00 0.00000 0.41095% 41.09511 -204.28622
0.10 0.21256 3.50132 20.77148 ~200.48974
0.20 0.63371 4.60028 1.53143 -180.97304
0.30 1.07265 3.9073% -14.71443 -140.47809
0.40 1.36865 1.82480 -25.96100 -82.11282
0.50 1.41039 -1.07181 -30.85669 -15.46662
0.60 1.14905 ~4.12732 -29.22397 46.06%549
0.70 0.59995 ~6.73833 -22.28856 88.131926
0.80 -0.16970 -8.49250 -12.61208 ©99,15042
0.9Q -1.06616 ~-9.28841 -3.78%26 70.33101
1.00 . -2.00467 -9.41740 0.00000 -2.00467

J(3) Third mode: Q = 60.603 ..
0.00 0.00000 ~1.11643 -111.64337 935.99315
0.10 -0.51470 -7.64728 -20.14990° 861.43048
0.20 -1.24687 +5,78914 51.8039% 532.08857
0.30 -1.49864 1.21810 79.50322 6.20099
0.40 -1.00044 8.32469 54.53981 -474.71440
0.5%0 0,01309 , 10.93415 -5.93445 -664.10923
0.60 0197162 7.23045 -65.29683 -471.84681
0.70 1.30626 -0.97518 -91.33705 -28.20%30
0.80 0.76658 -9.49301 -72.14954 378.72045
0.90 -0.47186 -14.51038 ~26.98783 448.23480
1.00 -1.99490 -15.48502 -0,00001 -1.99671

{(4) Fourth mode: = 118.77 .

------------------ by 2ttt il i it e et e il el i
0.00 0.00000 ° 2.Y2300. 212.30001 -2565.90219
0.10 0.85208 10.84745% " -29.82576 -2066.59659
0.20 . 1350498 0.10125 -154.78478 -274.08361
0.30 0.78105 -13.38464 -84 .81091 1500.%123%
0.40 -0.70242 -13.38141 85.80146 1556.04934
0.50 -1.40715 0.66885% 167.02838 -100.485%40
0.60 -0.60063 13.728901 68.618413 ~1674.11844
0.70 0.82411 1122479 ‘=106.78234 -1491.84099
0.80 1.27380 -31.93680 -178.03181 175.43364
0% 90 0.08606 -18.30036 -89.82576 1305.80631
1.00 -1.99332 . -21.70789 -0.00040 ~-2.0980%

- e D e e e e s e = m R WD W R e e e A s S am S D M P = e e R = e . = = = — —
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L J
L 4
LS
. (s 100, Kl = 100}
x/1 w Ldw/dx ifafwsax’t R3g3wax?
(1) First mode: { = 13.056
0.00 0.00000 0.22201 22.20056 -81.44609
0.10 0.1196% 2.03529 14.07687 -80.6839S
0.20 0.38022 3.04458 6.17713 -76.56679
0.30 0.70312 3.29249 -1.06566 -67.36816
0.40 1.01536 2.87137 -7.11133 -52.65238
0.50 1.25992 1.92778 -11.43447 -33.11643
0.60 1.39093 0.65574 -13.62601 -10.34116
0.70 1.38764 -0.71877 -13.46572 13.53730
0.80 1.25P66 -1.95893 -10.95901 36.20966
0.90 1.00787 -2.8397¢ -6.33409 85.59397
1.00 0.70216 - -3.16866 0.00000 70.21619
L[]
£2) _S.eégé- mode: & = 31.171 -
0.00 0.00000 0.46300 46.30028 -275.83297
0.10 0.23192 3.71912 18.95709 -267.20105
0.20 0.65535 4.33262 -5.97852 -224.5%58660
0.30 1.02428 2.73472 -24.59319 -141.68195
0.40 1.1555%0 -0.25822 -33.45203 -33.34572
0.50 0.96147 -3.58681 -31.35138 72.21080
0.60 0.46163 -6.22214 -20.16000 143.49176
0.70 -0.23612 -7.47254 -4:64525 155.46154
0.80 -0.98226 -7.22842 8.53700 96.06435
0.90 -1.65095 -6.08193 12.24177 -32.80819
1.00 -2.210%7 -5.31286 0.00000 -221.05683
(3) Third mode: ! = 64.271° ¢
0.00 0.00000 -1.124137 -112.43744 972.89067
0.10 «0.51343 -7.55614 -17.52335 888.94543
0:20 -1.21997 -5.34842 55.55429 $23.11711
0.30 -1.41234 1.91232 80.09223 -45.88578
0.40 -0.85149 8.77952 48.97996 ~537.38375%
* 0.50 0.17040 10.56901 -15.65971 -684.30245
0.60 1.04138 5.87154 ~73.79169 -417.69578
0.70 1.20945 -2.80552 -91.39774 77.34998
0.80 0.50414 -10.80479 -62.13337 459.03%00
0.90 -0.80%86 -14.58047 -14.1%948 409.68774
. 1.00 -2.28537 -14.75%60 -0.00001 -2268.53924
{4)_ Fourth mode s o= 120.53 - e
0.00 ‘0.00000 .o2.12771 212.77053 -2592.38467_
0.10 0.85067 10.77682 -31.56363 -2078.29463
0.20 1.48751 -0.13514 -155.64700 -244.08626
0.30 0.74181 -13.51421 -81.62821 1540.82963
0.40 -0.73357 -13.06019 90.69828 1541731654
0.50 -1.38720 1.28680 167.01795 -176.34603
0.60 -0.53198 14.01912 61.24355 -1727.69252
0.70 0.87369 11.10338 -114.70298 -1443.59776
0.80 1.2335%6 -4.96132 -177.11450 285.06481
0.90 -0.03540 -18.76495 -81.06418 1324.64438
1.00 -2.122%7 -21.54228 -0.00052 -212.39379
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L

(s, = 100, Kl = 10000)

1
%/ w 1dw /dx %33 /ax? t1diw/ax’
(1) First mode: {! = 15.104

0.00 0.00000 0.28893 28.89315 -116.73043
0.10 0.15392 2.59%538 17.296234 -115.41314
0.20 0.48070 3.75286 6.00351 -108.39379%
0.30 0.86844 3.83287 -4.14116 -93.01887
0.40 1.21642 2.99022 -12.31231 -69.07593
0.50 1.44357 1.46245 -17.73157 -38.44199
0.60 1.49615 -0.44699 -19.89096 -4.54450
0.70 1.35264 -2.40272 -18.67463 28.324953
0.80 1.0249S -4.07976 -14.40770 55.76548
0.90 0.55512 ~-5.20686 -7.82968 74.00429
1.00 0.00805 -5.60378 0.00000 80.50410

. e e e e - = e e e e e e Y T @ W W e T e e e e e o e e

T T e A e T e o N e e = e e - e = e % e e = e e e = . . = = e = o = - -

0.00 0.00000 0.90308 90.30770 -674.99437 '
0.10 0.42979 6.58353 23.92921 *-635.07250
0.20 1.10757 6.03975 ~31.73048 -450.84452
0.30 1.48982 1.10444 ~61.62208 -131.61409
“0.40 21.28501 -5.12596 ~57.22843 211.32700
0.50 0.53305 -9.34345 -23.34368 436.29024
0.60 -0.44192 -9.38063 22.78252 447.22123
v.70 -1.19768 -5.12886 58.82829 243.45075
0.80 -1.38855 1.45722 67.49614 -77.72882
0.90 V.0.93158 7.29442 44.40894 -369.71983 .
1.0 -0.04871 9.61681 0.00000 -487.11418
o e e - . . e e e e e e e A e B = e = - - =~ - —
(3) Third mode: ¢ = 101.31
_____________________________________________________ o m e mm—m————-
0.00 0 00 -1%1077 -181.07624 2005.96159
0.10 -0.755 -10.09209 10.39265 1688.54369
0.20 -1.4721% ~2.30354 124.95174 476.78163
0.30 -1.06137 10.06928 98.67468 -931.27%46
0.40 0.24813 13.96456 -28.40546 ' -1382.60126
0.50 1.29401 . 5.18955 -132.37625 -514.86500 .
0.60 1.12309 -8.30466 114.48319 - 842.96693
0.70 -0.09980 -14.05590 9.21264 1418.14198
0.80 -1.23885 -6.78825 - 123.42387 667.89668
0.90 -1.24617 6.59646 120.68222 -723.90611
1.00 -0.14987 13.2B602 -0.00011 -1498.70656
(4) Fourth mode: Q = 171.8% .
_________________________ L
0.00 0.00000 2.96032 f’f/f 296.05951 -4396.29422
0.10 1.06143 11.52877 ~102.64537 -3027.73348
0.20 1.34980 -7.58440 -210.48%84 1021.37130 .
. 0.30 -0.15113 -18.2686% 31.76546 3064.01691
. 0.40 -14136906 -2.56781 236.8465%7 420.37129
0.50 -0.53670 16.73930 92.580%2 -2883.5215%6
. 0,60 1.09671 11.10123 -188.69979 -1913.84695.
0.70 +1.Q9809 -11.09349 +189.87848 1891.908106 .
0.80 - «0.%4412 ~16.95949 . B9.16144 2857.36030
0.90 ~1.42154 1.802%1 228.1%055 -522.10648
1.00 . -0.34936 . 15.74608 -0.013349 -3591.60376 '
.................................................... fmmemmmc e
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($l 10000, Kl 1)
5 252 2 3.3 3
x/% w Ldw/dx L 3 w/dx L7d w/dx
(1) First mode: Q = 4;0395 e e e e
0.00 0.00000 0.00073 7.31351 -10.85256
0.10 0.03483 0.67783 6.22874 -10.8333%
0.20 0.13196 1.24669 $.15050 -10.70S501
0.30 0.28060 1.70866 4.09449 -10.37470
.40 0.47024 2.06712 3.08482 -9.76699
0.50 0.69078 2.32819 2.15231 -8.82332
0.60 0.93294 2.50135 1.33280 -7.50095%
0.70 1.1888S 2.59983 0.66570 -5.77144
0.80 1.45099 2.64085 0.19264 -3.61851
0.90 1.71%888 2.64625 -0.04364 -1.03513
1.00 1.97990 2.64155 0.00000 1.97990
ittt o gy
(2) Second mode: {1 = 22.121
0.00 0.00000 0.00441 44 . 08161 -211.2598%
0.10 0.18567 3.35793 23.03725 -208.08438
0.20 0.60249 4.64402 2.99553 -189.32317
0.30 1.05174 4.055%97 -14.0852¢ -148.60535
0.40 1.36440 1.99739 -26.07609 -88.64489
0.50 1.42183 -0.93921 -31.49564 -19.27033
0.60 1.17006 -4.07237 -30.08494 45.42858
0.70 0.62217 -6.76778 -23.07045 90.38266
0.80 -0.15392 -8.58685 -13.10504 102.58220
0.90 -1.06171 -9.41497 -3.94639 73.17451
1.00 -2.01329 -9.54964 0.00000 -2.01329
. *
(3) Third mode: 2 = 61.717 .
0.00 0.00000 -0.01233 -123.28295 968.52217
Q.10 -0.4%681 -7.53221 -28.0879% 905.36389
0.20 -1.20930 -6.22802 48.75685 583.74008
0.30 -1.51170 0,72202 81.1195% 43.17159
0.40 -1.65004 . 8.12716 58.,37572 -468.49527
0.50 -0.03734 11.10042 -2.5%340 -685.14256
0.60 0.94861 7.56742 -64.98748 -500.27703
) 0.70 1.131411 -0.73337 -93.312388 -42.74402
, 0.80 0.78721 -9.48%934 -74.49500 385.46976
0.90 -0.46043 -14.67971 -28.02436 $64.23595
1.00 -2.00323 -15.69287 -0.00001 -2.00536
(4) Fourth mode: I = 120.89
................ R = e o e e e e e e e e e m—— e
0.00 d.00000 0.02415% 241.48564 -2658.08258
. 0.10 0.77097 11.12354 -12.79482 -2229.18301
D 0.20 1.50746 1.19656 -155.49670 «419.54729
0.30 0.86643 -12.99791 -95.93683 1472.08847
0.40 -0.6§3225% -13.99616 79.07543 1655.76%72
0.50 -1.41401 -0.07567 170.94609 . =12.62742
0.60 -0(65178 13.70882 76.14993 -1693.66314
0.70 0.79%561 12.15%901 ~105.01107 —1569.41694_
0.80 1.28561 -3.66651 -182.21906 147.81854,
‘ 0.90 0.102713 -18.45476 -92.97994 1345.03103- -
1.00 -2.00120 -21.98777 ) -0.00p36 -2.09884
T
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o
(S, = 10000, K, = 100)
1 - 1 -
x/L w 2dw/dx 2aw/ax” 23ddw/ax?
{1) First mode: & = 13.251
0.00 0.00000 0.00234 ¥ 3 36214 -83.36503
0.10 0.10316 1.92297 15.04178 -82.74021
0.20 » 0.35689 3.01717 6.92439 -78.861113
0.30 0.68039 3.32804 -0.55614 -69.79898
0.40 0.99933 294575 -6.84264 -54.99458
0.50 1.25130 2.01781 -11.38424 p -35.09762
. . 0.60 1.39125 0.74182 -13.74508 -11.70854
0.70 1.39578 -0.65018 -13.68286 12.96612
0.80 1.26552 -1.91345% . -11.18954 36.51798
0.90 1.02521 -2.81433 -6.49020 56.76306
1.00 0.72149 -3.15167 * §.00000 . 72.14894
{2) Second mcde: O = 31.535
0.00 0.00000 0.00498 49.82727 -282.85242
0.10 0.20256 3.57721 21.72589% © =275.74003
0.20 0.62411 4.42092 -4.18048 -235.32829
0.30 1.00902 2.94733 -23.91309 -152.889139
0.40 1.16310 -0.03114 -33.80656 3 -42.39871
- 0.50 0.98865 -3.43398 -32.41018 67.43080
0.60 _ 0.49821 -6,19078 -21.44770 143.65932
0.70 -0.20264 -7.56190 -5.70697 159.49504
0.80 -0.96238% .\ -7.40030 3.97071 101742985
0.90 -1.65011 -6.28545 12.14236 -29.40997
1.00 -2.23019 -5.51688 0.00000 -223.01874 -
(3) Third mode: Q2 = 65.341
B e e e e e e o e - - = - - - = - - L e crec e e e - ———-—-
0.00 0.00000 -0.01244 -124.41629 ¢ 1005.76463
0.10 -0.45635 ©~7.46376 -25.70431 934.82291
0.20 -1.18630 ~5.82138 52.58625 578.11034
0.30 -1.43197 © 4.40180 82.04040 -6.86098
0.40 -0.90723 8.60617 53.20511 -532.15764
0.50 . 0.11791 10.78892 -12.51589 * -708.52500
0.60 1.02194 6.26197 .« -73.64229 ‘-448.93935
4 0.70 1.22504 -2.53686 -93.70711 62.33530
0.80 0.5335% -10.80187 -64.74300 467.39107
. 0.90 -0.78715 - -14.77183 . -15.27653 427.3%901
1.00 © -2.28880 -14.98883 -0.00001 -228.88349
__________________________________________________ 1......__.__._.—J-._-_--—_
(4) Fourth mode: = 122.63 )
0.00 0.00000 © 0.02422 242.19107 -2684.92663
0.10 0.77016 11.06729 iy, =14.42848 -2243.50436 .
«0.20 1.49204 0.96972 -156.55972 -412.14679
0.30 . 0.82891 . -13.14493 -93.02265% 1513.93928
0.40 -0.66436 -13.70564 84.01695 1644.96738
0.50 -1.39728 0.%3301 . 171.27224 -87.30547
0.60 -0.58558 13.96180 69.01336 -1750.04383
0.70 0.84570 11.56822 -113.01493 -1523.97576
0.80 1.24817 -4.67786 -181.%51349 ’ 257.79%96
0.90 -0.01552 -18.92190 -84.29830 1365,53412
1.00 -2.12766 -21.82686 : -0.00049 -212.89708
4 .
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(S-l = 10000, Kl = 10000)

x/% w 2dw/dx 22a2w/ax? 23g3%w/ax’
(1) First mode: § = 15.393
0.00 0.00000 0.00307 30.7?794 -120.71736
0.10 0.13389 2.47385 18.69429 -119.61906
0.20 0.45499 3.75324 *7.00479 -112.89517
0.30 0.84705 3.91102 -3,59277 -97.50090
0.40 1.20485 3.10145 -12.19035 -73.03203
0.50 1.44312 1.56763 -17.95711% -41.35850
0.60 1.50465 -0.37671 -20.33987 -6.05M5
0.70 1.36574 -2.238231 -19.19753 28.34965
0.80 1.03755 -4.10910 -14.85698 57.16256
0.90 0.56282 -5.27235 -8.08730 76.35185
1.00 0.00832 -5.68243 0.00000 83.19912
(2) Second mode: = 49.703
0.00 0.00000 0.00989 98.94791 -698.10625
0.10 0.37969 6.43223 30.01624 -864.41980
0.20 1.06756 6.33824 -28.91146 -485.40565
0.30 1.48809 1.51737 -62.04402 - -159.70178
0.40 1.31841 -4.87038 -59.66773 200.22396
0.50 0.57877 -9.35479 -25.92847 443.87447
’ 0.60 -0.40840 -9.56002 21.58448 465.41003
0.70 -1.18800 -5.36540 59.44597 259.45904
0.80 -1.39718 1.33512 63.16370 \ -73.78466
0.90 -0.94302 7.34497 45.76662 -375.29576a
1.00 -0.05030 9.74053 0.00000 -502,96292
(3) Third mode: Q@ = 103.10
------------------ h-_——_———'———-—————---———-——--—---——-——‘-——----—-——--_-—_—
0.00 0.00000 -0.02042 -204.24155 2075.87966
0.10 -0.6798% -10.21604 -31.89449 1804.56495%
0.20 -1.45903 -3.21828 123.62373 603.91991
0.30 -1.12765 9.55127 106.54226 -886.30884
0.40 0.17234 14.27818 -21.32217 -1436.78151
0.50 1939376 5.86049 2132.70224 -592.30719
0.60 1.15714 -7.97828 -120.04111 824.48653
0.70 -0.06086 -14.25503 5.35032 » 1463.74913
0.80 -1.23060 -7.11467 124.72687 712.92422
0.90 -1.25847 6.54533 123.95661 -733.24973
' - 1.00 -0.15466 13.43139 -0.00015 -1546.60763
14) Fourth mode: 2 = 174.78
0.00 0.00000 0.03435 -4553.98096
. 0.10 0.97490 12.33381 -3366.42414
) d.20 1.40343 -6.16978 755.42802
- 0:30 -0.03773 -18.62664 ; 3169.72254
0.40 -1.35645 -3%86929 238.79699 652.85413
0.50 -0.61287 16.48663 107.49628 -2888.62246
0.60 1.05850 21.91442 -185.20163 -2088.48293
0.70 1.13208 -10~67984 -199.02817 1850.67775
0.80 -0.51281 -17.33578 85.15710 2970.42193
0.90 -1.42964 1.54581 233.09201 -492.34580
1.00 -0.36045% 15.85745 -0.03782 -3613.63813
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- APPENDIX B -

4

EQUATIONS FOR POLAR ORTHOTROPIC PLATES

Though several researchers have used the strain energy
expression for polar orthotropic plates, the full derivation
of the expression is not readily available in théwliterature,
while that for recéaqguﬁ‘s orthotropit plates is present in
various books treating thin plate theory. 1In this appendix,
a reasonably rigorous derivatigg in'terms of the cylindricalj
coordinates (r, 8, 2z) is presented for the energy and related

bending moments, shear force, etc..

iy

The assumptions involved in the ®€assical thin plate

tﬁedry'are [quoted from reference Bl]:

(i) points which lie &n a normal to the mid-plane of
the undeflected plate lie on a normal ﬁd the mid-

plane of the deflected plate;

.(ii) the stresses normal to the mid-plane of the plate,
arising from the applied loading, are negligible in
comparison with the stresses-in the plane of the

plate; A

(1i1i) the slopé oéqtﬁe.deflected plate in any direction
"\.

~ is small so that itq square may be neglected in

comparison with unity;

~—~
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(iv) the mid-plane of the plate is a 'neutral plane'’',
i.e. any mid-plane stresses arising from the
deflection of the plate into a non-developable

- L4

surface may be ignored. .
. .

It may he noted that, the assumptions have, as mentioned
in reference [Bl], their counterparts in the slender beam
‘theory; for example, assumption (i) corresponds to the dual

!

assumptions in the beam theory that 'plane cross sections

remain plane' and 'deflections due to shear may be

neglected’.

9. ‘ "Now consider an annular sectorial element cut out of the

plate by two adjacent axial planes fbfming an angle d® and by

_two cylindrical surfaces of- radii r and r+dr, respectively,

and of uniform thickness h in z-direction, as shown in Figure'
Bl(a). The bending moments and shear forces per unit length

acting on the elenent gre also shown in the figﬁre.'

. e L -
C R .
Applying the assumption (ii), the strain-stress

relationships (g%oke's law) in terms of plane polar

coordinates are given by the equations -

E‘r ﬂor - vreOQ)/Er,
- .

eg. = (0g.# Leror)/Eg, (B1)

"Yre = trg/Grg-




=

-

'Figure Bl. An annular sectional element. The direction of the
-4 moments (double head arrows) are defined by the s
conventional ‘'right-hand rule'.
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Here, o, and Og aré normal stresses in radial r- and
tangential ©-directions, respectively, 1,9 shear stress, e
and €eg normal strains, Y,g shear strain, E, and Eg Young's

moduli, G,g shear modulus, and v,g and vgr Poisson's ratios

(Ervgr = Egvre!-

On the basis of the assumption (i), the deflections u
. and v in r- and é-directions at a distancé z fmom the mid-

pldne (From assumption (ivJj, the mid-plane is a neutral

»>
»

‘plané) are given [B2]

- - R - - 2 M : ,
u = z . v = r % . ' (B2)

where w = w(r, 9) denotes an arbitrary small deflection=of

N — L] <~
thq mid:;IAne in z-direction.

~
-
¥

: \V/’\W Appl ing the assumption (iii), the linearized strain-.

. displacrément equations are given as [B3]:

-
er gr ’ - -
€g = % %\*‘ %.’ (B3Y)
1 %u vV 4 o
re *r @ * ik T T

<

Utilizing the.strain-str§§s relationships (Bl1l),

-~ kinematlc rglatio;§hips (B2) and straig-displacement

relationships (831, which are based on ;Le assumptions for

thin plate theory, the equations for strain energy, beﬁding

3

. . *

.
- - " “~
' L B .
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o Y - .
moments, shear foyes etc. are derived. ~
Equé.tio (’"Bl) can be rewritten. és
- ] Ve | ’
* r * Egvrece:
Tre = Cre¥ge:
‘where E} =/?g/(1-urever) and E§ = E§/(l-vrgugy)-
Substitution of equations (B2) into (B3) yvields .
- 4 P
Ey = = 2 'azwr * ) :'
3r2 .
L ] \
A ee = ;Z(""—l- .._gzw + l ﬁ) \ ‘ \> : i(BS)
= - i_,z %2 r or . FO
. - o3, 31 |
‘re = -2z (T 3g)- _ '
Thé strain energy stored in the plate during élgstic
deformation is giben by . A . - ,
) ' S & . \
V =4[, (are, + OgEg + Trg¥rg)d(vol), ¢B6)
@ . LT D .
where the integral is taken over® the volume- of the plate.
- @ Substituting equations (B4) into (B6), recalling érder =
Egure, yields - -
v = 4,0 (Efel + 2B g + Eged + Gravie)E(vol) (B7)
= 2)yo1'Erer rver€r€e e€Q refre ol). A




Q

using equations (B4) and (BS):

>,

Further,'suhstftutiqg equatioﬁ; (BS) into (B?7), the strain

.

energy can be expressed as

sl rE 2w v %w e Pw 1oy
v = 4,0y (Ep2 (grz) 2E_ vgr?z (er)(rZ o )

2-‘
2L Py L y2 . g o0422) 12 Eyr21avor)

W+ =
= if [Dy (—)2 + 2D ()l o, L 22w, (BS)
= Aren Gr r-er 9r2 r ,.or <2 962
1w, 1 3%wy 2. 2
- + Dol 7 * 22 392) + 4 Drei (r 98)} ]d(Area),

where Dy = E h3/12{1-urev9r) Dg = Egh3/12(1-vpgugr) and Drg .

= Greh3/12 Here, the 1ntegratlon.'

»

(h/2 24, B3 T : - .
-n/22°42 =13 . -
is useq.
v

'-
LY

The moment-curvature relations are obtained by
+ . - - \ -

_ 5
integrating the inplane stresses over the plate thickness,
¢

Jrh72 1 w1 32w
My = -h/ZCerz Dt@L— + Ver(r o + ;5 ;gi)q,
.Me = h/2 UeZdZ =‘-D.8 (l ™ + ....i _9.3_"1 +‘V es.e_z.ﬁ’
-~ -h/2 .i. r ar rz wz r_ 9r2 - O
- LY . )
h 1 Rr
. -
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z The transverse shearing force expressions are obtained
. by taking the moment about point 0 (see Figure B2); Figure B2
is the top view of Figure Bl{a). The summation of moment‘ in
@-direction, in Figure .B2, yields *
«? 5
(M, + ey dr)(r N dr)de - M,rde -(Q, + 39£)(r + dryae &£
r or r r or 2
s . i
'S ) :
-Q,rde %—5 —(‘Me + % de)dr sin g—e - Mgdr sin d—g
L - .
. . o) - ' ,
L +(ge + 2 de)ar(p+55) §2 sin §8— 0g ar(r+95)(8F)5in9S
+ | M g + Tro de)d d—e— a8
(Mrg - )dr cos =5 - Mpgdr cos=;
) - M.drde+ —Iq (r+dr)de-o, rdedr-g,draedk + Br s driae 9L
= HpdrdSt et r r 2 r 2
. < .
M ' 2, - :
- . a8 (2] .. de =] dr .48 _. de
> ¢ -2 Mgdr sin .= —x deédr sin =5 t —2 dédr(r +=5 )= sin =
- 77 7® z458 99T T2 02 2
- -
- .re de _
+ —g—dedr cos =5 = 0.

Since d8 << 1, sin d€/2 = d6/2 arnd cos d6/2 = 1. Dividing by
rdrd® ‘and neglecting the terms including sma}ler quantities,
Qr is given in terms of the moments;

-

M | ,
_1 M1 1 Mo . .
Qc = ¢ M * 3 T % '{’6~+r . S (B10)

v
.
* . . ‘
.
.
- [l
. . .
- . . - . L .
E » B -
M .
-
= ~
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© Similarly, taking the summation of moments in the r-direction

gives
&
1 2 Mg ‘ ’ '
ch = -i_- .T%_ + ; Mre + ‘é‘r—. , ' (B11)
Then, substitution of egquations (B9) into (B1l0) and (Bll)
vields
¢ ‘ 3 D 2 .2 '
1 W 3°W e , W 1l 94w H 2 1l
Qr = - (Dy(Z — ) - — (= + = /=) + = = (= =)},
r r'r sr2 a3 ) 5r I 92 r sréd 'r ¥
o "
D "2 3 )
0 = ~(—= (42 iy B 3w,y (B127
. - r? A 392 . 328

where H = Drvgr + 2Dre.

Finally, the governing differential equation of motion
'is obtained from the transverse force equilibrium equation
[ J

(se2 Figuré Bl):

R, )
(Qp +5p— dr)(r + dr)de - Q,rde

+ y QQG dr
Q¢ + - de)dr - Qedr + g(r + 3—)d8dr’
- \ P

o)
= Qrdrde + ——gdr(x + dr)de +

[
o’

339 dedr + qfr + Qg)dedr
4 . J
, . _Since dr << r, this equation yields,'after dividinq by rdedr
. and neglecting the terms includimq'smaller quantities,
N b o




—d
- A
aglae
/77
/H .rde'\
. ro
’ / \ ae &
e
-
ar.ag M rdé 30
—) —— 3]
Qgar (x + 3 Qg+ —58—9 agrar (r+ I
M,
M_gdr (M_+ —55= a8)dr

8
(Met —35. d8)dr
!
- aM *
= (M + —= dr) (r+dr)d8
. r ar .
aQt ) dr
- ‘ (‘Qr + 3 dr) (r+dr)d6-—2—-
2 ~3Mr6
(M + dr) (r+dr)de .
- 9 or -

‘

.

, The top view of the plane element. The direction of the °

. Figure B2.
moment vectors is defined by the conventional 'right-
. hand rule’.
. * . * * .
:
- N . . - .




.
{

*

10

g

°r , 2 1 %
r or 2]

Lad L]

+q=o0, . " (B13)

where q igythe force per unit area.

Substituting equations (Bl2) and g = -0 ( 32w/ 3t 2) into -

equation (Bl3), the governing equation of mofion can be

expressed as

o (w2 Bw D_( 1 dw . 2 3%w 1w 2w,
d 9r4 r ar3 rée 2 04 r 382 r o 9r2
]
a4, 3 2 2 '
s 2B 9w 1 w1 3w, | W _ o (B14)
ré sr2 02 sr @l r2 .2 st e =
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