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ABSTRAC@

This tﬁesis proposes and examines various algorithms fot>anafysis
of steady ideal fluid cgpi\llry flows with frée/moving boundary. .

For this <class of problems, the 1leading parameter i§ the
" capillary number C which for an establishea flow and f::;d geometry of
the solution domain is proportional to the ratio of a vefohity‘sta!e
and 3surface tension. When C <; 1 thg_groblem can be simplifiég and is
_solved using'smq11 Dgformaticn Theory (SDT). Conditions for validity
of SpT are identified. - .

_ﬁﬁ?ﬂ;C'z‘O(l) one has to seek-a s}multaneous solutgﬁn for two
debendaﬁl _variables, i.e. _a flow field and a free surface shape.
Dependihg‘bu'the order of iine;¥iiat50n of the"govérn%ng equations one
arrives ét fhe Piéard Algorithﬁ_(11nearization of the first order) and
the.1xSteb{Algbéithm (of the second order). The latter one provides

significantly falter convergence.

. -

Al] algorithms are based on a finite-difference approximation and ~

the Alternate Divltion ImpTicite (ADI) s!ﬂeme has been choosen as a
. . X . . » ‘ N R

methad of solution.” A thorough study of an algebraic stability of

‘equations of the flow fﬁeld_aﬂﬁ the free surface hag been carried

- - . @ ’ - .
©out. This is suppleménted by an analytical and numerical ana]x}is of

_existence and uniqueness of the solutions to the fiee  surface .

equation. The Wachspress optimizatton of relaxation parameters has

- .

4
‘been used in order to accelerate-convergence Qf the ADI.
. - ®

Finite differences discretization implemented, in tpé thesis s

4

T c




»

based on the Hermitian equatiqns; which generatqd compact differencinb
schemes of the second and higher order accuracy. In ‘the thesis one

can find a rigorous study of the interrelationship between the order

-

of Yifferencing scheme and the rate of"convergeﬁce of the computed
. ’

results with grid refiming. '.This' rate, called 'grid-convergence
[ ] - .

order' has .been .used as the criterion for identification of the

R ~ ’ . .
Lo minimum 'dimgnsionality\ of the computational grid. [t was found that

higher order methods require much finer grids than second order

'methods, to providg pesir;ed grid-convergence order.

. NG For higher order method, the riew fourth order compact difference

- estimate (independent.of coordinate direction) of a mixed derivative

‘'was found.  Its applicQ;jon' signififéﬁtly improved the grid-con-

vergencé‘order. ; ' ) ‘
- ‘¢ L'y -
The discussion of the algorithms is supplemented by a ‘physical

e intarpretation of <the results obtained for a number of particular
g o | - |
- cdses. .
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SYMBOL

capi]]ary\humber,

NOMENCLATURE \ ) ‘

DESCRIPTION

A

functional coefficienfs of the Newton-Raphson 11né-
“arization (Eq. (5;6.1)), )
parameters of the initial value problem (5.2.2),

functional coefficiénts of the .NewtonrRaphson line-

-

arization (Eq. (5.6.1)),

order of convergence of -the linearization algerithm,
characteristic dynamic pressure (D=9V2),

interval of feasible values of parameter A of the

initial vadue problem (5.2.2),

physical domain of the flow, _

field f defined on the grid Gk by extrapolation of . the
oo -

numerical results £f-j] computed on grids Gn,Gm,

numerical solution obtained 3n the grid Gn, of spacing

r=1/n, ‘

exact solution to agiven problem,

F(x) = -p .+ C[¥|72,

1,——

computational grid of dimension k x k, spatial increment

r=1/k,



(Y]

M. .
1]

ex

2

~
G{x,y)= - sin(ﬁx)(1-y/h(x)):,
g(x)=f:F(t)9t. . .
1’ location of the left and right contact points,
function describing shape of .the free sQrface,
Hermitian formulae centered at x, or (xi, yj),

H={h(x h(x) i% a solution to problem (5.2.2)} = set

R )
of values h(xR } of any possible salution h(x) to
(5.2.2), |
aux;liary function defined i; Sec.(5.6.5),
higher order compact differencing scheme,
second order compact differencing scheme,
length of a slot (see Fig. 2.1).,
set of indices of pivotal points of a uniform 9-point
» molecule centered at (xi’ yJ), "
external pressure exerted on the free sunface gy the
outer fluid, N
stégnation pressure -of the liquid,
static pressure’of the ligyid,
matrix of a system of linear algebraic equations resul-
ting from the ADI sQeep in x- direction,
grid spatial increment,
spatial {ncreﬁent of a grid of dimension n along each
coordinate,
surface tension,

characteristic velocity,

.

aQ




| =<

J'<

"h*Ykv

AN
™~

N
\ -

characteristic surface ve]oc?ty\;(maximum of the fluid
velocity at the free surface, V = max(illz) at y=h(x),
={u,v] velocity vector,

=[“s’ vs] normalized velocity vector at the free surface
(V= ¥V /v, at (y=h(xM, 0x<1),

matrix of a system of linear algebraic eguations resul-
timg from the ADI sweep in z- direction,

relaxation parameter,

optimal relaxation parameters of the ADI algorithm; k° -
ADI iteration counter; h,v indicator of horizontal or
vertical direction of the ADI sweep, respeétively,
constant relaxation parameters for the stream function
and for the free 5urface.equations, respectively,
éartesian coordinates,

left and r{ght boundary of the interval of arguments for
the initial value proélem (5.2.2),

z=y/h(x),

matrix of the global iterative scheme ({see (3.3.4) -

(3.3.5)).

x {1



GREEK ’ DESCRIPTION

"SYMBOLS
A computational domain, .
ax,A} grid sbacing along x- and y- coordinate axis,
Y stream function,
a order of grid-convergence of discretization error,
€ parameter of asymptotic expansion,
Q opt{mal set 4f relaxation factof;\
0 density of the fluid, P
8 - == —-retaxation— parameter of z-gradientrof stream function:

wz(x,h(x)), O<x<1 at the free surface, '/j
o
'
MATHEMATICAL DESCRIPTION
SYMBOLS

C inclusion of sets,
€ belonging to a set,
N\ subtraction of sets,
Y general quantifier ('for every...'),
3 existential quantifier ('there exists...'), -
" empty set.
[ .1 L-2 norm.

xiti -
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Order of grid-caonvergence of the stream function

equation when the analytical solution is known (ps =
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Case ps=1.§, CfZOO. .
Estimates bf thé‘érid-convergence order for the prob-
lem (3.2.2)-(3.é.3)' obtained through comparison of
results computed on grids Gk, Gl, Gm;

- )
Case ps=1.5, C=400."

Estimates of the grid-copvergence order for the prob-
lem (3.2.2)-(3.2.3) obtaineqi‘through comparison of
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CHAPTER 1
INTRODUCTION

1.1 Flows with Free Surface.

There is a variety of problems of a hydrodynamic or thermodynamic
na(?re jn which one can @®ncounter capillary phenpmgna. These by
definition are the\phenomena in which surface tension on the inater-
phase boundary plays a significant role. Among these we encounter:

- motion'of liquids in thin capillaries,

- motion of droplet; and bubblies in a’liquid,

- formation of §urface waves,

- decay of cylindrical jets, !

- motioq/gf thin liquid films, and many others.

The presence of the interface between two fluids can affect the
motion pattern when either the interf3ce has a finite curvature or
when"th surface tension is nonuniform. This suggests two possible
results-of the Surfaeé tension presence. In the case of the non-zero

-

curvaturd, surface tension contributes to the normal forces along thes

infterface. .If interfacial tension is not constant, its gradient may

act - like a shear stress at the interface and can generate flows by
' .

jtself or can modify the existing motions.

fSufface tension is a material property which depends on tempe-

rature, composition'and electrical potential. . Since these factors may
. . . &

change easily, in practice one encounters many physical processes 1in
which surface tension significantly affects the motion of the fluid
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and the shape of an interface. These are usually highly complex
phenomena. Their understanding and description requires determination
of dimensionless parameters which indicate dominant physical factors
and open the way to formulation of theoretical.éﬁa_éxperwmental
models. Analysis of limit values of such parameters may result ir
specification of some classes of flow phenomena which may be par-
ticularly interesting from physical point of view and/or due to
simplification Bf the mathematical model.

For example, when considering free surface flows, we may neglest
gravity. It appears then that surface tension is important’ with
essentially no limitations on the configuration scale. Such situation
is of interest in simulation of micraogravity conditions, which.in real
life offer the possibility of containerless processing @f materials.
Containerless processing of 1liquids or molten materials must be
preceded, however, by indepth knowledge of the dyqamic§ of this class
of phenomena. In particular, the shape of the bulk fluia under
various cenditiogg' and‘ its stability have to bé known . These
req&*rements are possibly most significant ~in  fuelimg research on
phenomena in which surface tension _is one of the major phys}cal
factors. 2
L J

Much of the research dealing with free surface flows has to rely
on numerical simylation. Formally, the effect of the surface tension
on the hydrodynamics (and possibly on heat and mass transfer) occurs

N

through the boundary conditions'on the interface. Since the interface

acts very often as the boundary of the computational domain, the

>



applicable numerical methods must be highly accurate- at the béundari.
Generally three distinct solution methads can be identified (Ryskin
and Leal [23]):
- small defqrmation approach in which the unknown interface is
assumed to jate only slightly from its initial position,
- boundary-j::i;>3T‘techniqué, restricted to Stokes flow or to
inviscid irrotatﬁona] flows, v
- universal method suitable for obtaining of the solutions for a
general class ;; problems with finite Reynolds Number.
The last case, which is the most interestind, has captured attention
of many researchers, but the results are relatively modest so far.‘
Whatever the method is, the accuracy of the numerical results is
of great importance. As mentioned above, it is on the free ‘surface,
i.e. on the boundary, where the most important dynamical or geo-
metrical effects come into play. Moreover, in the case of the surface
tension driven flows, high gradients of velocity and/or temperature
can be found in the vicinity of the interface. This need for higher
accuracy gave rise to a rapid grpwth in the research on the
higher-order differencing schemes (Hirsh [9,10]). Without ﬁighly
accurate numerical results it is often difficult to get a deeper
insight into the flow under investigation. Consequently, a puﬁerﬁc&]
study may be helpful jn achieving the desired experimental effects and
in interpreting the results. Following this, let us state, that this

work is focussed among others, on the accuracy of the computed

results. The type of flow that we have selected as a subject of the

\




research, i.e. ideal fluid flow with free surface, has a rather
simple analytical description. But its simplicity permits us to
identify important aspects of the numerical simulation and submit them

to a detailed examination. ; :

1.2 Review of Literature.

Virtually all previous work on problems of 'capillary flows has
been propelled by an intensive experimentafion. There is a large
number of phenomena with surface tensien contributing significantly to
the dynamics of the flow. They have given rise to a rather
complicated mathematical models lacking general analytical solution.
’The difficulty in obtaining exact solut%ons creates motivation for
‘detaj]gd studies of meaningful physiéa] mechanisms, and this leads to
the specification of particular classes of flow problems. A detailed

study of flows affected by surface tension can be found in works of

Levich {e.g. Levich and Krylov [14]), a review of theoretical

investigations in this field is to be found in Ostrach {16]. There

are three classes of problems which are relevant in this field. These
are thermocapillary, diffuso-thermocapi1Tary‘§nd thermo-eledtric flows
(Scriven [25]). The literature in this field:-is vast and ranges from
a special class of phenomena like floating-zone process (Hurle and
Jakeman [9], or Rybicki and Floryan [20], [21]), to more general works
(e.g. Strani and Piva [26] or Levich and Krylov [14]).

When the numerical simulation of flows with a free surface is

considered, the existing results are not so impressive. The research

-



effort is directed along either Eulerian _or Lagrangian formulation
(review paper by Floryan and Rasmuss;n [8]). As for the Eulerian
method, the.compreheﬁsive review of the subject can be found in Cheng
and Yulin [3]. The Eulerian approach and its numerical 1mplémentation
is studied in Ryskin & Leal [23,24]. The same authors contributed
extensively to the problem of tféatment of distretization of the flow
domain (Ryskin [22]). Since tﬁe flow field equatiﬁns are to-be solved
on a well defined domain,. there 1is a problem of deal%hg with the
unknown part of the boundary of the so}ution domain, i.e. with the
free .§urface., Most numefical methods for tracking interfaces are
arranged either by.fo1loding the interface as it passes ovér‘ the
reference grid, or by following the changes of the flow domain bounded
by the moving free surface (Rasmussen and Salhani [18], Hyman [12]).
If we apply the latter- method, the best way_ is to map the flow domain
ontox'the computational .region of fixed geometry. This- can be
accomplished at the expense of supplementing ﬁhe,system of governing
equations with seme additional equations which originally belonged to
boundary conditions. In this way the computationai domain is related
to the physical flow domain by transformation of variables. This
transformation +ts defined in term; of a function describing the free
surface. This technique contributed to an increase of interest in
constructing boundary fitted'orthogonal curvilinear éoordinate-systems

(Ryskin [22], Floryan {7]).

+
‘

Another problem that one encounters in the numerica) solution, is

* discretization of the governing equations. There are several methods



of accomplishing this, of which we focus on finite differences. A
sufficiently general approach 1is - provided by the Hermitian Method,
which can be used to gemerate .finite difference apﬁ?oximations of
differenti;1 formulae with a specified aecuracy. This metﬁod in its
conceptual framework is not a new one, as exp]ained' by Collatz [4],
but was applied to flow pFob]ems quite recently. A short, general
presentation of this method is provided by Peyret and Taylor [17]. An
indepth, comprehensive study of this method, alond with historical
background and an extensive list df references can be found in Hirsh

{10]. The application of a compact higher order method to the

solution of the Navier-Stokes equations is presented in some detail by

Elsaeser and Peyret [6] and by Aubert and Devitle [1]. The latter

publication contains some remarks on an a posteriori estimation of the

accuracy of computed r?5u1ts. ‘It is interesting to point out that the

accuracy of the computed results is rarely discussed. [t certainly
oL

deserves more attention, since an a posteriori accuracy estimate is

decisive in determination of the dimensionality of a computational

_gfid to avoid erratic variations of the truncation error. It may also

supply information helpful in <c¢hoosing a particular differencing
scheme, and 1in arranging the 1logical structure of the numerical
algorithm.

A numerical solution of -a. steady ?ree-bounda?y problem is
equivalent to solving an artificial time-dependant problem. So by its

very nature it is of an iterative character with advancing /?1ow

field/free surface computatfons. Ryskin and Leal [23] claim that the

-
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most effective way of dealing with this. kind of problem is the
combination of the flow field/free surface iterative scheme with
iterative solution of the flow field equation. This solution to the
flow equation can be provided by application of the Altenate Direction
Impticit (ADI) scheme of Peaceman ahd Rachford (Richtmayer and Motton
[19]). Numerical experimentation shows that separation of these two
iterative 1loops 1is computationally inefficient. This rules out
non-iterative or multigr§gd procedures for the soﬁut{on of the flow
field equations. Quite recently othger schemes have been tested, like
an incremental Block - Line - Gais - Seidel Method (Napolitar;o and
Walters [15]), which can be applied to the general class of Navier -
Stokes equations. However, its superiorizy to the ADI method for free
Soundary problems has not been demonstrated yet. Another interesting
suggestion was made by Botta and Ellenbroek [2] who proposed appli-
cation of the Successive Over-Relaxation (SOR) Method to the Poisson
equation in calculations of the flow with the free surface. This work
is 1imitéd to the second order discretization only.

pa

The ADI iterative scheme was made more attractive, when oppor-

”

tunity‘to accelerate convergence was provided by the Wachspress theory
of.optimal relaxation (Wachspress [28]). It shoula be satd that the
d1sc;etized model of the free surface flow does not satisfy formal
requirements for appl%catipn of the Wachspress optimization. It was
found, however, that for—Tfhe type qf problems that we deal with in
this work, the optimization yields good results even wheﬁ the shape of

the interface is far from flat, which is required by the Wachspress




™
Eheory. Wachspreass bpthnization'was developed only for the second
order discretization schemes (which may be solved by means of scalar
3-diagonal systems of algebraic equation).. There 1is no report

. N . - . . -
available that deals with application of Wachspress optimization to

ADI algorithms for'compact higher order discretization schemes.

[
4 ] x

1.3 Objectives of the Dissertation.

The main objective of this thesis is- to develop efficient methods

for solving 2-dimensional steady free surface flow problems, with
surface tension. The analysis is limited to steady flows af an ideal
fluid in a slot, with fixed free ;urface/solid-walls-con act points
and constant sqrface_tension. The motion is induled by impo$ing known
velocity distribution at the bottom of the slot. . Mgthematical
formu1atjon of the flow problem leads to the Dirjch]et-t e Boundary
Value Problem -with field described by the Laplace equation, and
surface tension conﬁribution described by'the nonlinear equation of
balance of normal” forces .along the free surface. The methods
presented in the.thesis can be extended to non-potenfial or viscous
;low problems. Specia! attention 1is paid to the analysis of the
accuracy of the Eomputed results. ’.. _ ;

Modelling -of the free surface flows places'ué'in a position of .
having part pf the flow boundjsy undetermined (free surface). This

difficulty s circumvented by uti 1zfng a suitable transformation of -

independent vanjables, so that the actual computationa}l domain assumes

a-rectangular shape. This however leads to a more complicated form.of

-
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the governing equations. - " 6

Numerical simulation of the analytical model is being pursued in
terms éf finite difference discretizagion._ Finite differencing sche-
mes are of the secozd or higher order. The core}of the thesis
(Chapters 4 and 5) presents résult; obtained using 2-ng order \
differences. To compare both, the higher order differencing and its
application is presented in Chapter 6. It will be shown that for the
type of problem considered in the.thesis, the higher order diferencing
scheme yields less reliable results than the tr!gitional seconﬁ order

differencing.

In computational practice it 1is very important- to make a
distinction between the two numerical parameters: g

- the theoretical g;timate of the order Pf—the error of a ffnite

~ difference approximation

- the rate of convergence af ngmerical-_solution, when grid

spacing is being decreased. - )

These two parameters are theoretically of the same value, ;nd an}
correctly formulated algorithm shou]d. possess this property. This®
property of the proposed algorithms is studied in &etai] in Chapter 3
and in cerfain sections of the following chapiers‘ .

Discretization of differential expressions in the analytical
model yields a system of algebraic equations, Qhﬁch' due to its
dimensionality is to be solved by an iteratdve proceduref' In this
work we apply the ADI iterative scheme (Sec.3.2). ADI {s- driven by
relaxation, or equivalently, by a pseudo-unsteady iterative procgss.

]

.
+
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For the second order discretization, the optimi;ation of relaxation is
arranged following the conceptual framework of the Wachspress theory.
It was found that even though the a]éorithm did not satisfy the
assumptions of the Wachspress thbeory, optimized relaxation yielded
much faster convergence compared te the pseudo-unsteady (or sin-
_gle-valued relaxation) strategy.

The main point’/}n solvi;g> the model problem is simultaneous
determination of the flow _field and the free surface shape. In
Chapter 4 the simplest case is discussed, that is when surface tension
dom{nates all other factors affecting dynamics of the flow at the free
surface. This case is described by the Sma]lyDeformatfon Theory which
makes possible decoupling of the f]ow from determination of the free
surface. This simplifies the algorithm and establishes a good
reference point for more general (Direct) algorithms.

There are two Direct Algorithms discussed in thi$ work (Chapter
5); Picard and 1-Step Algorithms. Both methods .are to work in cases
where assumptions of Small Deformation Theory-are not valid. They are
based on the concept of siﬁultaneous solution of the flow and
interface equations. In Picard Method (Sec.5.5) thé free surface
solver is sepagated from the fje]d solver and the solution is obtained
.by means of commutative use of both algorithms. This heuristical
arrangement has justification ip the first-order linearization scheme
of the dependent variables fnvolved in fieid and interface equatioﬁs.

(If this scheme 1is to. be of the second order (Newton), we arrive

naturally at the so called 1-Step‘ A]goritﬁm (Sec. 6.6). This



algorithm treats both variables, i.e. stream function and free
surface as implicitly related. The comparison of the Picard and
1-Step Algorithms shows, that the 1-Step Algorithm with appropriate

relaxation may yield a much faster convergence of the iterative

process. }
‘The mathematical model of the flow contains several physical

parameters which may be combined into two dimensionless quantities:

stagnation pressure and capillary number. The range -of vériatién of
these parameters is carefu]ly studied (Sec. 4.3, 5.4, 5.5.3). Since
their @aénitude affects the values of coefficients of the algebraic
system, they are alsodmplicitly bounded by constraints resulting from
algebraic stabifity criteria. |

Chapter 7 presents a number of physical cases of the flow for
various combinations of physical parameters. Although the algorithms
presented in the preceding chapters 'were analyzed on a model problem

with contact points at the same elevation and uniform external

b

pressure, examples show that the algorithm may be easily extended to
flows with fixed but uneven‘contact points and 'non-uniform external

pressure acting upon the free surface.



CHAPTER 2
- STATEMENT OF THE PROBLEM

The aim of t;fs work is to develop algorithms suitable for
analysis of flows with free/moving interfaces. A simple model flow
problem is selected in grder to study and evaluate the performance of
the proposed algorithms. The model praoblem that is described below
contains all the essential features of the actual free boundary
prqb]ems, and yet it retains a considerable simplicity.

Consider ; two-dimensional steady motion of an ideal fluid in a
configuration shown schematicaffy in Fig. 2.1. *The motion is driven-
by some type of external means which Jlead to a kncw? velocity
distribution at the lower bodndary of the solution domain. The upper
boundary 1is formed by an interf;ce with surface tension act%ng‘along
it. It 'is assumed that the fluid on the other side of the interface
has negligible density and viscosity. The shape of the interface is
determined by equilibrium conditions between surface tension forces
and forces arisiﬁg due to pressure jump across the interface.
Pressﬁre distribution along the external side of the interface is

considered to be known while the pressure along the interior side can
- & -

be determ{ned from the velocity field through apﬁlication of the

Bernoulli equation.



-~

external pressure p;x

.

~

free surface h*(x*)

velocity distribution f*(x*)

Fig. 2.1 Ideogram of the flow

configuration.




It *is assumed that there are no body forces present. The problem has
« the appearance of I~ standard cavity flow problem with the upper

bobndary replaced by a free surface.

L The motion of the fluid 1in the cavity 1is overned by the:

continuity ‘equation

SN

"i:§‘ (2.2)
é‘;j-';’
-
<. (2.3)

In the aboves V* = u*i + v*j denotes the velocity vector, u* and v*
< are ve1ocit; components 16 the x* and y* directions respectively, i
‘ and ) denote the uniE vectors in the x* and y* directions res-
pe:ti{er, p* stands for the static pressure, p; denofés stagnéti&n
I . 6re55ure and p is the density of the fluid.

-

The equations are subject to the following boundary conditions:

u* = 0 ' at x* = 0 * (2.4)
u* = 0 ‘at x* = L - « (2.5)
. t
> )
' 4 . R - 7 ‘




(2.8), i.e.,

198

' *
v* o= fr(x*) : at y* = 0 ) (2.6)
u* = v*h: ¥ at y* = h*(x*) (2.7)
L
PE, BT s TR J(ehEDYEat yr o= hx(xr) (2.8)

In the above, T denotes surface tension, p;x(x*) stands Tor the known
external . oressure at the interface, p*(x*) stands for the interior
static pressure ;t the interface, sub;cripts x and xx denote d/dx* and
d?/dx*? respectively, f*(;*) stands for‘the known normal velocity at
the bottom of the solution domain and h*{x*) denotes the unknown
location of the interface. Equations (2.4)-(2.5) and (2.7) describe
the no-penetration conditions at the left and right “ends of the
solution domain and at the interface, respectively, Eq. (2.9)
describes -normal velocity distribution imposed at the lower boundary
by external source; an& Eq. (2.8) expresses the balance of forces at

the interface in the direction normal to the interfaee.

Equation (2.3) permits elimination of the static pressure fronf

/

—

-~

1 uel2s 2
Pem P - 59l Vx| Thx /(1+hx2)¥ (2.9)
We. need to specify the type of contact made by the free surface
at the end walls to close the problem, We shall restritt ourselves to

the case of fixed contact points, i.e.,

h*(O) =z hL ‘. ' "L "_ » (2.10)
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* /! =

h*{L) hR _ (2.11)

which corresponds to the case of fluid sticking to the sharp edges at

the end walls.
Q .

We scalegthe problem by considering length L of a cavity as a
lengths scale, maximum of the normal velocidy at the bottom V as the
velocity scale and T/L as a pressure scale. The pressure  scale T/L,
which we refer to as the capiliary pressure scale, is preferred over

2
the dynamic préssure scale pV/2 since a balance between the capillary
forces and pressure jump across the interface must always be main-

tained. With the above scales the physical variables (marked before

by an asterisk) take on dimensionless form and equations and boundary

conditmaan be written in t)&foﬂowing'way;

-

- -

vTeV=0 . (2.12)
vxV=20 ' (2.13)
u=20 . at x =0 (2.14) 4
u =0 at x =1 . (2.15)
v = f(x) at y = 0 (2.16)
u = vh at y = h(x) (2.17)
Py - Pg-ClYI/2.= T h /(1#n3)# 3t y = n(x) (2.18)
h(0) = h T (2.19)
h(1) = hg ' ‘ (2.20)
v

In Eq. (2.18) C is the capillary number defined as
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C=y vt (2.21)

/
Equations (2.12)-(2.20} describe our model free-boundary problem.
The oproblem is completely specified if the external pressure dis-
tribution pe§x) at the interface 1is known, the normal velocity

distribution f(x) at the lower end of the cavity is specified and if

the locatiaons of the contact points hL a"thR are prescribdd. Given

these four quantities we can analyse properties of the s ion of the.

. flow problem as a function of two parameters, i.e. stagnation
‘- [ ] \ L )

gri§§53g p;{jn the inter{o;; of the cavit; and capillary number C
dg}cribing.cdﬁqitfons'at the interface. We should, add that the normal
velocity .distriﬁution f(x) hE?\Eo satisfy an obvious condition of no
net mass flow across the boungary.\\while f(x), peix), hL and hR are
in principle arbitrary (with the above qualification), they will be
conveniently selected in order to facilitaté testing of the proposed
numerical algd®ithms. .

The number of unknowns in Eq. (2.12)-(2.20) can be reduced by
iptroducing either stream function or velocity potential. We have
electea to work with the stream function formulation, since it leads
to the Dirichlet rather than NeLmann type boundary conditions; this
adds to -the simplicity of the model problem to be studied numer{cally.
We introduce a stream function ¢ defined as

-

u= 3$/dy, v = -0/dx Y ‘ ‘ (2.22)

e

4

4!
i&
Ny
| S
o
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Equation (2.12) is 1dentically satisfied, while (2.13) leads to

Ve = 0 . (2.23)

6 =0 at x = 0 (2.24)
¢ =0 at x = 1 (2.25)
b = -fo(x)dx " aty=0 (2.26)

8]
v =0 at y = h{x]) (2.274
Pex Pe- %c«mZ: h /(1+h2)3/2 at y = h(x) (2.28)
where |Vi%= (36/3x)% + (34/dy)° (2.29)

Equation(2.27) expresses the fact that the interface is also a
streamline.

Equations (2.23§-(2.2?) describe the problem to be solved
numerically and the appropriate algorithms are describ%d- in’ Chapters
4-6. The rest of this chapter is devoted to the discussion of the
qualitative properties of the\model problem. )

" There are two unknowns involved in the equations (2.23)-(2.28),
i.e. field variable %(x,y) and boundary variable h(x).- The Eq.
(2.23)-(2.27) can be therefore interpreted as a system of equations
for $(x,y) and h(x). °It should be noted that while h(x) is explicitly
coupled with $(x,y) through Eq. (2;28), Y(x,y) is only implicitly

coupled with h(x) through Eq. (2.27). The second coupling occurs
) *
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because of the dependa;be of P(x,y) on the Tlocation of the boudary
condition (2.27), i.e. because of the presence of the ‘moving
boundary. There are two sources of nonlinearity in the problem The
first one, which 1is explitit, 1is associated with the nonlinear
boundary condition (2.28), and the second one, which is implicit, ig
associated with the presence of the moving boundary. The second
nonlinearity appears explicitly after transformatioﬁ of variables has
been introduced (Chapter 3}. It is worth pointing out here that the
mQving boundary problem is always nonlinear even if the field equation
and all the boundary conditions are linear. The oprinciple of
superpasition is therefore not applicable and the analyt}cal solutions‘
to the‘ problem at hand cannot be _found:éxplicitly, excépt for a
certain number of special cases. This justif§es the search for an
efficient numeriqal algorithm. "

Equations (2.23)-(2.28) have an elliptic character and form
together with the contact conditions (2.19})-(2.20), a closed system,
i.e. 5 system which contains a sufficient number of conditions to
determine all the unknowns. There exist theéretica] questions re-
garding whether this is a well posed problem and the existence and
uniqueness of the solution. We do not address these 1ssues hére. Qur
primary objective 1is to develop methods to determine the solution of
the problem assuming that it exists. We demonstrate in €hapter 5 that
solutions do not exist for certain combinations of parameters C and

p_; we propose and implement an algorithm to diagnose such condittons.

S

TheQ only comment that we can make regarding the issue of uniqueness is

-




(e) h(0) = h{(1) =1

26

Equation (3.2.2.a) is the field eguation, Eq. (3.2.2.b) 1is the

boundary condition deécribing the

balance of normal forces at the

interface. The above form of the governing equations, i.e. grouping

together of the field equation and normal stress boundary conditian on

one side and the remaining boundary conditions and the contact

conditions (3.?.3) on the other side, illustrates very well the

A4

character of the problem. The problem consists of a system of two

nonlinear coupled equations for ¢ and h, with the boundary conditions

on the known domain A (no undefined "free boundary"). The domain

consists of a wunit square for

the field variable ¥(x,z)} and unit

interval for the boundary variable h{x). Here the wunit interval I

(the image of the free {:::jce),is the part of the boundary of the

domain . The nonlinearity ocCewrring

due to the presence of the

moving boundary (unknown h{x)) is explicitly visible.

Transformation (3.1) 1is very

simple, and therefore preferable.

We must however bear in mind complications resulting from such a-

mapping. The first one 1is associated with the mixed derivatives

appearing #m the governing equation.
B I

Another complication” is of a

geometrical character. The counter-imade of a uniform square grid

defined on 1is not uniform in B. It
grid is denser towards the free
curvature is positiQe and sparser if

expect a better accuracy of the

can be easily seen that such a
surface in the 2 plane, if its
negative. We might therefore

numerical solution in the case of



e

a1

forces and 1is unaffected by the dynamic effects associated with the
motion of the fluid. We discuss this case in details in Chapter &.
When the dynamic ef%ects are strong as compared to the static effects
(C == =, "weak" surfdice tension), Eq. (2.28) displays a singular
Timit. We note that in order to have a capillary surface, the

right-hand side of the Eq. (2.28) must be retained. An increase of C
on the 1left hand side of Eg. (2.28) has an eff;ct simi]af to the
Y .

increase of the pressure jump lpexfp that has been discessed in the

sl
previous paragrdbh. If C is sufficiently large,the solution of the

problem may ;ot exist. It will be shown in Chapter 5 that .given. a

<

particular f(x) and pex(x), , the solution exists only in a boundedL

regiongin the (psft) parameter space. Since velocity field V depends
iy?1ic1t1y on p, and C, the general explicit bounds for (pélC)

-~

igéyfing existence of the solution are not available.




CHAPTER 3
ALGEBRAIZATION OF THE PROBLEM

3.1 Treatment of Irreqular Geometry. >

. - Since the solution domain described in Chapter 2 has an irregular
geometry a}ising from the presence,of the free suf}ace, one has to
devise a special procedure to handle such‘geometries and to track ;he
location of the free surface. We may aporoach this problem by .
carrying o;t the solution directly in the physical domain 2) shown on
Fib. 2.1, or by having this domain mapped onto a domain ot a simpler.
geometry. We intend to discretize differential equations using finite
difference method and, therefore, the isﬁue of apbropriate selection

of the computation domain is important. If Dis non - rectangular,
discretizat’bn may require unnecessarily complicated interpolation
schemes in order to represent location of the free boundary. Repre- ‘:
-séntation of'the,boﬁndary conditions can pg simplified by mapping of D
onto a computational domain A,which is taken to be in the form of a

cube (rectangle in 2 dimensions). The mapping can be arranged in a
variety of ways. One of the most common approaches “nowadays is the
numerical generation of boundary fitted orthogonal curvilinear‘co-.
ordinate systems {(e.g. Ryskin [22]). Numerical coordinate ge-
neration is a very effective tool 1in dealing with a variety of .
internal or extérnal flows of highly irregular bondaries, 1like the / '
flow of a gaseoug bqpble through a fluid, or the flow around an

~ airfoil.
a2



Y~-COORDINATE

[ =8
[}
[ ]

¥ 4

Z-COORDINATL

V380 i
1213 [~ D :
' 080 .\'t\"\
ves i ] \\r\
\\\ [
810 \ [ ——
— - — - _r L\ "V-\
073 4 _ 47 T-4 I
T -4 —
ceo '.\\_‘ b
403
270 >
135 - —_ _qn—qpv-qp-—w._<. - — o —_-
000 T+ T Y ~ T T 1
o 1. 2 3 ry K- [ 7 -] 9 1

&

X —COORDINATE

f(x,z)=f(X.z(i.y)5 = f(x, y/h(x))

SRR

A

10
9
s {
-1 b
?
[ I s IR A I B e SR -'.'_ﬂ"-"‘
.3
-l
Py 2
-
.3
-
2
-
1 — — 4 — 4 — 4 e - — -4 - — -
Y T T T T T Y T T T
.0 | .2 J .4 .8 .8 .7 8 9 10
X -COORDINALE
{=1 {fesn

»

’




In our case, however, the solution domain D has the form of a cavity
with only one side (free boundary) having an irregular form, as is
shown in Fig. 2.1. This particular geometry permits us to avoid the
numerically generated boundary-fitted orthogonal coordinate system
through application of a simple analytical mapping shown ﬁn éig. 3.1.
It is intended to explore in the present work the capabilities and
lTimitations of such a mapping when applied to the 'Enalysis of the
moving boundary problems. The mapping as shown in Fig. 3.1 has
obv{ous lTimitations, i.e.

(i) - it is limited to a single valued function h(x) describing

the location of the interface, and

(ii) - it becomes singular when the slope of the interface

becomes Qertical.

One can however devise other mappings of a similar form-to deal with

the problem at hand, | for example mépping onto a unit circle, or
° -

mapping of only a part of the solution domain. These mapping are not

general, i.e. they cannot deal witﬁ completely arbitrary geometries,
however they can deal with a sufficiegtly large Elass' of problems to
make it worthwile to explore problems associated with their numerical-
implementation. The advantages of such mappings can be summarized as
follows:
) (i) - they are given analytically,

¢(ii) - they avoid numerical coordinate generation; -

(1ii) - they 1lead to a simpler form of the goverﬁin§ equations

when compared to the form appropriate for the general curvilinear

\




coordinate systems.

After
unit square
following

derivatives

transformation

the mapping,

The mapping

29

N &
the computational domain has a form of a -

described in: Fig. 3.1 results in the

of independent variables and the relevant

z = y/h(x)
i SV T (zh /) by (3.2.1)
=y /h 7 T\
Wy WZ ) \\ 2
Yex T Vet (th/h) Y22 +2('th/h)wxz ¥, Z(Zhjthxh)/h )’
2
Vo, =¥ _/h »
yy 22
\
The governing equations transform to the following form:
a 2
. T+ 2 hx 22hx . '
2 wxx + WZZ(T_) - ¥ ( h ) (3.2.2.a)
2 1 ;.
h
h — 1 h; +
— X = -p_ + 7 C (——ET__) Yy (3.2.2.b)
(1+h ) :
X
- with the boundary conditions: (3.2.3)
.
(a) y(0,z) = 0O 0<z<1
(b)  w(1,z) =0 0<z<1
() w(x,1) =0 0<x< _/
(d)-  w(x,0) =0 0 sx <1

-~ 3
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(e) h(0) = h(1) =1

Equation (3.2.2.a) is the field equation, Eq. (3.2.2.b) 1is the
boundary condition deécribing the balance of normal forcés at the
interface. The above form of the governing equations, i.e. grouping
together of the field equation and normal stress boundary condition on
one side and the remaining boundary conditions and the contact
conditions (3.2.3) on the other sidé, illustrates very well the
character of the problem. The problem consists of a system of t;o
nonlinear coupled equations for ¢ and h, with the boundary conditions
on the known domain A (no undefined "free boundary"). The domain
conéists of a unit square for the field variable ¥(x,z) and unit
interval for the boundary variable h{x). Here the unit interval [
(the 1image of the free surface).is the part of the boundary of the
domain . The nonlinearity Séburring due to the presence of the
moving boundary (unknown h{x)) is explicitly visiblé.

Transformation (3.1) 1is very simple, and therefore preferabie.
We must however bear in mind complications resulting from such a-
mapping. The first one 1s associated with the mixed derivatives

appearing #n the governing equation. Another complication” is of a
. | .

geometrical character. The counter-imade of a uniform square grid

defined on is not uniform in D. It can be easily seen that such a
grid 1is denser towards the free surface in the D plane, if its
curvature is posit19e and sparser if negative. Wer might therefore

expect a better accuracy of the numerical solution in the case of



concave free surfaces than in the case of convex ones. This s

discussed later in Sec. 5.6.5.

3.2 Algebraization of the Model Problem.

The foundation of a numericaL solution of a differential equation
is a discrete simulation of continuous relations in the given domain
A. The algebraization of the problem consists of three steps:

(i) - discretization of the computational domain (grid

generation), .

(i1) - discretization of governing eguations,

(iii) - generation of the closed system of algebraic

equations simulating the model problem. ’

ThE first step in discretization consists of specification of a
grid, which is to cover the computétiona] plane . Pivotal points (xi
. zj) = (iax, jaz) of the grid system are the points at which we wish
the governing equations to be satisfied. The next step of dis-
cretization is simulation of derivatives by algebraic formulae. In
this thesis we confine ourselves to the& finite difference schemes
based on TayJor expansion in the vicinity of pivotal points of a grid.
These schemes can be more or less sophiéticatéd (e.g. box intégration
method < Wachspress([28] ), but we shall restrict ourselves to the
gimplést compact schemes with Lagrange residuals. of truncated -Taylor
series of at least 0(ax?,az?) order. By "compact" we understand here

those schemes, in which Taylor expansion around a fixed point (xi. zJ)

does not involve terms defined at nodal points which would be located
. \ 3
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outside the circle of radius (axi*+ay?) with the centre at (Xi’ zZ.).

J
Appiication of compact schemes has two advatages. The first one 1s

associated with the fact that the Taylor expansion is used only in a
small neighbourhood Of ax, az) of a pivotal point (xi‘zj) and its
truncation, therefore, results in a small error. This distinction

becomes 11mportant when con Jjng the higher order discretization
\ .
scheme which, in the case of the non-compact method, may wequire

LY

Taylor expansion over neighbourhood 0(2ax, 2az) or biggér. The second
advantage consists of the (block) tri-diagonal structure of the

algebraic equations resulting from the discretization:;or which very

<

efficient solution algor{thms exist. This 1is important  when con-

-

éidering block relaxation or other implicit solutian procedures.
N L

- . Let for future reference Mij denote the set of indexes of pivotal
points belonging to the molecule with centre at (xi, Zj)'
. : The governing equations are defined on the " continuous  domain A

and the wumit. interval I. Discretization of the governimng equations

. ; . . Q
involves a change of the domain from continuous onto the discrete one

(pivotal points of grids covering 4). This results in generation 6f
a system S of (n x m + n) equations, each of them to be satisfied at

. the nodail boints of *the grid. These equations have a form of

algebrait egquations, with values of . dependent variable and its

derivatives unknown ~and treated as se
algebraic system, we have to suppl t S with additional “algebraic

gquations; so that’ the new sy§tem has a unique.solution. Those
. :

addi:ional equations relat es of function and its derivatives

rate variablgg. To closé the



within the compact molecule. There are several methods of obtaining
these relations, like Hermitian, Mehrstellen OC! and others (Collatz
(4], Peyret and Taylor [17]). We shall implement only Hermitian

. ——

methods in the present work.

o

Fig. 3.2 Finite Difference Molecule for Compact Methods.

In the following discussion the symbol f will stand for the
dependent variablé, i.e. stream function W(x,2). The discussion

applies also to the functiol describing interface h(x), which is a

-~
4

function of a single variable.
The Hermitian method considers as unknowns at each grid point fhe'
vatue fij of the function, and its derfvatives. Let us assume, that

these unknowns/jpe fiI fijand f;j, where primes denote derivatives in



a fixed direction (either x or 2z). Our compact molecule will thus

)

reduce to 3 consecutive points. By definition (Peyret and Taylor
[17]), a general three - point Hermitian formula for the function,

first and second derivatives is given by

H.

i + b f: +¢c fr!l ) =0 - (3.2.4)

kK 1+k kK 1+k

12

R
k=-1

Here, fpf simplicity, ?unction and its derivatives are single 1ndexed,
which corresponds to the selected direction of'gifferentwation. It is
easy to generalize the above definition by extending it to the whole
9-point c?mpact molecule with the centre at (x., Zj)' In Eq. (3.2.4)
coefficients 3 bk’ ck are constants which are'to be' determined by
requiring the formula (3.2.2) to be wvalid with respect to the
relationship existing between any analytical function and its two
derivatives at three consecutive nodes of a grid. Here we follow a
standard practice and make use of Taylor expansion of terms involved

in (3.2.4) around the central point of a molecule. When these

expansions are substituted into Eg. (3.2.4), we obtain condition

-] .]
] oF.4f - (3.2.5)
j=0 J dxd

-

where Fj= Fj({ak, by € }) with k=-1,0,1, If we wished the condition
(3.2.4) to be exactly satisfied, we would have to solve the infinite
system of equations FJ-O, J=0,1,... In practice it is required that

only a finite number of these coefficlents are equal to zero:

-

)




' F=0 T =01, | © (3.2.6)

which means that Eq. (3.2.5) and in consequence thé Eq. (3.2.4) are
satisfied with an accuracy of order O(AxL ), where 1 is to be examined
separately.

The formutla (3.2.6) generates a homogenous system of J+1 linear
equations with 9 unknowns {ak, by Ck} :=_1. This system has always a
trivial solution, which 1is of no interest for the intended appli-
cations. If J+1 < 9, we have an l-parameter family of solutions, ]>1. —

If J+1 > 9, the existence of a non-trivial solution is uncertain, and

depends on a particular formulae relating function and j}; de-

rivatives. It is worth mentioning that there exists a theoretical
possibilily of obtaining a non-trivial solution of Eq. (3.2.6) for
large value of J. This means that it is possible to obtain highly

accurate Hermitian formulae based on a nine point molecule. This

issue, however, requires a separa{e investigation and is not pursued

here.

-

Below we present an illustrative example of the implementation of
the Hermitian method.
Let us assume that we wish the Hermitian formula to be of a

special form; )

”~

Hi = a4 Fiqr ao®y + a f b fy e fy (3.2.7?

Equation (3.2.7) is a special form of (3.2.4), with b.1-b1=c_1 *C, =0,



1.8, it contains derivatives only at a central point of a molecule.
Let us expand fi_1and fi+1into the Taylor series and substitute them
into (3.2.7). Assuma, that we want J in (3.2.6) to be equal to 3. It

can be easily shown that

i1= -a_; x tay x ¢ bo
F2= (a 1t a1)Ax /2. + .
Fys (ja_1+ a,lax /6.
If we require (as in (3.2.6)) FO=...=F3=O, we obtain a system of 4

equations with 5 wunknowns, which yields a solution dependent on one

parameter, say A. Setting A=a_T Teads to the following:

H.(A) = A(f, .- 2f. + .

i i-1 i e firax?) (3.2.8)

It follows from the construction that Hi(A) = 0 is accurate up to the

order 0(Ax4).

If in our example (3.2.7) we substitute J=2 and require ck=0, we

would end up with:

H(B) = B(f, - f, i- fi2ax ) o . (3.2.9)

which is of‘accuracy O(ax?).
From (3.2.8) and (3.2.9) we may qﬁsily obtain second order

‘-
.
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A

accurate finite difference representation of first and second de-

rivatives, which are well known, i.e.

eq-2f, +FL_)/axt + 0(ax?) (3.2.10)

- fL_q)/2ax + 0(ox?)

-
"

(f
(f

i i+1

-
]

The above example was intended to show that (3.2.8) and (3.2.9),
and in cgnsequence (3.2.10), represent only particular solutions to
the discretization problem. What makes them important, is the way
they affect the algebraic structure of the system S.

The hermitian formula (3.2,7) is a special case of general
definition (3.2.4). It makes use of the values of f at all three
points (along the selected coordinate) of a l}tnear molecule, and of
the first and second derivatives at the central point (xi, zj) only.
If we drop this restriction, we may derive a whole new family of
difference formulae, in particular expressions of the higher order
than O0(ax?). We have utilized this approach to construct higher order
algorithm. Particular Hermitian formulae of the higher order are
lTisted in the Appendix. [t seems that determination of Hijof higher
order for mixed derivatives #s of special interest. Such H1J is
spanned on the entire 9-point molecule of Fig.3.1 (see Anex).
Performancé of the higher order algorithm and its eomparison to the

second-order method are given in Chapter 6.

The, algebraization process of the given analytical problem o is
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completed when the computational domain is discretized and analy-

tical problem

A=A (x,2,f fx,...) =0 - for (x,z2) € A “(3.2.11) .

is replaced by an algebraical problem :

H,.= 0 : (3.2.12)

"J - . -
He = 0

ij

w20 *
ij

Assume that gﬂg is a limear equation (if not, linearization is

-1 Co : .
required) of L-unknowns, H&,...#ﬁ are Hermitian formulae which are

j

linearly independent. Therefo;L the_analytical problem (3.2.11) is
replaced by a system of linear equations. This system consists of (n
x m) blocks of the form (3.2.12). Each block is of U equations, where
L is a number of dependent variables in the top equation of system

(3.2.12).

EXAMPME 3.1
Let . us suppose, for illustration, that we want to solve the flow

problem (3.2.2)-(3.2.3) with (=0 and P, 20.  Then the analytical

s
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problem is reduced to the Laplace equation for ¢ , while free surface

is flat (h=1). In this case ok = ¢4 (x, Yy, L Yyy ). Algebraization

of this system results in a system of linear equations:
-

N

70‘,1'}: mxk)?j * (w._yy)ij '

Hlf (—Wxx)ij- C oy g7y Wy i)/ (ex®) = 0 (3.2.13)
Hfj= (wyy)ij- ( ua]._m--Zw1J WM’J-)/(Ay’)* 0

i =1, m, Jj=1, N

If we were to solve our analytjcal problem with h # 1, the model
equation fo; the stream function would also show ,the_ presence of
d2¢/dxdz and aw/dz, and in consequence, the system would have to be
enlarged by two additional Hermitian Formulae: the -first one involving
mixed, the second one - the z-derivative. Difference approximation of.

the second order for the mixed derivative can be found for instance in

Smith [27]; the higher order-difference estimation is explicitly given

in Anex.

SEPARABILITY
" If the grid consits of (n x m) points, then the system (3.2.12)

consists of - (L x nxm eduatibns with (L xn x m) unknowns. [t is

natural to think about reduting . dimensionality of (3.2.12) before

v P N
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attempting "a numerical solution. This could be achieved through
I 4

manipuiations with the equations constituting the system. In par-

ticular, let us assume that we can find a linear combination of

equations within each block of (3.2.12), so that the resulting system
]
reduces to the form

"~
.= M (xoozg, Fooo, FLo foL., s oo
O‘;J ‘/[13(’(1 Z5 f13 xij® 'zij fxxu 221j )
Then we can restructure system (3.2.12) into the form:

~

d’;}; 0 i=1,...n, j=1,...m (3.2.18)
W' =0 (3.2.15)
ij -

He = 0 '
ij
H =0 i=1,...,n, j=1,...,m
ij

Since when solving (3.2.14)—(3.2.1%) we<®re interested primarily

'1n obtaining estimatés of fij’ not of its derivatives, we may attempt
to .separate (3.2.14) from (3.2.15) and solve jusf (3.2.14). This

separatibh, if possible, is of great numerical significance, since. it

yields \U-fold reductiom of the dimension of the original system
* »

. (3.2.12).
It can be shown that the systems (3:2.12) supplemented w%th

Hermitian formulae of the second order accuracy of type
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L, oz, {f} 95¢ |
’ axr 'azt k]

j k1§ )

Al

?

are separable. This is easily seen from analysis of (3.2.12) of

Example 3.1. Here, we can eliminate second derivatives using Hlj and
\ ~ \ . -
2 and the equivalent equationc#;j=0 is of the form: v

- ,_/

H
1J

f af .. + f. . ,+F

ISTS R FIRMRRTE RS MR TR I LR TR W Rl

-

As we can see, "/rij

of n x m equations with n x m unknowns fi

contains five unknowns, but ;ince (3.2.14) is made
T the system (3.2.14) s
closed.

Systems (3.2.12) supplemented with~Hermitian formulae of accuracy
higher than 2, are generally nonseparable. ;n this case there is no

known general algorithm ﬁor separat107!§{ the system (3.2.12). The

-

ecial cases, like boundary
\ .

layer equations (Hirsn [10]). Some researchers are vigorously in-
. :

separation has been obtained for certain

vestigating the problem of Separability for the class of Navier-Stokes
equations (Dennis [5]). For our problem (3.3.2)-(3.3.3) we have not
succeeded in separating higher order Hermitian formulae from the field .
equations.
Y
The above discussion points out the important difference between
* . 4 <
the 2-nd and higher order methods. 2-nd Qrdef’(;ethods provide easy
4

Separation, thus considerably reducing computational efforts. In the



case of higher order methods Separation is not assured and theréfore,
the cost of computations may become considerable. This issue will be

discussed again in Chapter 6.

v,
-

4

.
3.3 Alternate Direction Implicit Method of Solution.

The discretization of analytical problemok results iq a‘system of
linear equations (3.2.12), which usually is fairly large ((n x m)>>
1). If the system were small, the inversion of the matrix would be
tﬁe appropriate way tb have it solved. Since n x m is large, we must

use an iterative scheme. There are many known schemes availtable, of

\
RS

which we have selected ADI. It is an implicit scheme, hence it is
preferred, becaugg of.its stability properties. It also léads to
tri-diagonal (scalar or block) algebraic systems which can be effi-
ciently solved.

Let us assume that system (3.2.12) has an a]gebraic form:

o

-~

where A is a matrix of coeffitients of the system; v is a vector of
. -» Lo

unknowns and s is a vector known from governing equations and boundary

“condition®:- ‘To organize the ADI scheme, we must first ‘subdivide A

' 4 . “
into the matrices, so that

A=Q+W+B " (3.3.1)

-
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where B might be a null matrix, matrix Q is related to the horizontal
X . . 4 . . .
iterative sweep and W to the vertical sweep. A single ADI iteration

[}

consists of two half-steps defined as follows:

Koo geB e 1T (s

- kh

K (s - (Q - Tw W (3.3.2)

[}
=
+
(es)
+
X

Index & is the ADI itgration counter, fractional superscript indicate
sweep of the algorithm in one direction, which must be followed by a
-

sweep in the orthogonal directon to complete one single iteration.

The w, are relaxation parameters, which generally may vary along with

K.
the ADI advancement (subscript k) and may depend on the direction of
ADI sweep (subscript h \for horizontal direction, v for vertical
direction). If we assume B=0, this is the well known Peaceman L
Rachford scheme (Richtmeyer- & Morton [19]).

A

Let us return to the problé; (3.2.2)-(3.2.3).~ For simp]ici}y let
us assume that we have a fixed interface h(;) (not ne&essar11y
constant), and we seek a so]uggon for the stream' function. Equatiqn
(3.2.2), when discrétized, takes on-the form of a block:

{ ¥, * +22(1+z=h;)/h=

+ v, z(2nd - Hxxh)/h‘ } ={w,,2zh, /n}
//4; (x5 zj) o/ at (xy, Zj)

2



W ((Gai-1)0 (5.1). (G.841)) = 0 X (3.3.3)
HE((3,1-1), (§.1), E.i+1)) = 0

(31,10, @), (5+1,0)) = 0 g

HY((3-1,1), (3.1), (3+1,1)) = 0 -

v

where Hk, defined hefore by (3.2.4), have here an abbreviated notation
in order to show indexas of the nodes of a specified grid molecule of

three consecutive nodes centered around (xi, zj).; Hermitian formulae
K

1 2

H* are to be independent. H'and H® relate values of y, wx and wxx in

3 4

three consecutive points of a grid in x direction, while H” and H

relate ¢, wz and'q.;Zz in three points of a molecule inj

direction.‘

"Mixed derivative, due to its particular difference fepglesentation, is

catculated independently of the ADQI half-steps ({see for instance

components of the higher order finite difference approximation of the

L}

‘mixed derivative (A.4) in Anex). .

3

The partition (3.3.1) of a matr‘i,*of a system (3,2.12) 'can be”
' arrengeﬁ by: -

- (a) Setting B=0.

(b) To get matrix Q: leave in matrix A only those terms which are

associated with vy, by s and wxx' . . .

i(c) To get matrix W: leavé in Watrix A only those teems which are

s\f‘--iﬁsociated with y, ¥, and L

The partitioning, 'after some rearrangements, .results in a block
- tri-diaéonal structure of matrices (Q+Iwkh) and (N+I"kv)‘ of (3.3.2).

Tri-diagonal structure results from line-iterative scheme, in which



J1

* . N | . ‘

a1l unknowns alomg a given line (x or z coordinate) are solved for

[ .
simultaneously. Since the governing equation is expressed at each

pivotal point by algebraic formulae involving values of variables at, ¢

»
this point and its right and Neft neighbouring points, the eypressions

at left and right neighbours —<Tonstitute lower and upper -diagonal,
while expressions at the central point of the molecule constitute the
central diagonal. If we app]y'in {3.3.3) Hermitian formulae of :the
second order, 1kke (3.2.8) and (3.2.9), we ma; simplify the matrix
structure-evep,further, by, Sepsration. In effect, _ye get system
(31?.2) of much smaller dimensionality and of scalar tri-diagonal
stru;tuti: If Sepafation cannot be achieved, the resulting system of
ggggtfg;s (3.3.2) is of 3x3 block tri-diagonal form. A]d.kighms‘for
solving both kinds of trifdiagonal systems are well known (Thomas
ngorigbms). ; . ® _

" can  be shown, that for the ADI scheme (3.3.2) the iterative
errsr e¥= !F'V (v 1s exact algebraic solution), is:

K - _

e = mze° ¢ {3.3.4)

) i
where 7 = (w+wkv1)'1(o-wkvr)(o+wkhr)"(w 1) (3.3.5)

“kh

Assumiﬁg( at Q and W have constant coefficients (for our flow problem

(‘

this would mean fixed shape of the free surface h(i)), 2 is ohly a

function of LI and w ‘Therefore the question that arises is: how

Kh *
to determine a set of parameters {w} so that the spectral radius of ~

-1 is minimized. In other words, how to establish {w} to assure the

L[]
- -
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3

P
G

- -

fastest convergence. This problem has been formulated and succesfpl1y

o

. solved by Wachspress [281. The solution «is restricted however?to the
'Model Problem Conditions‘: -
- (a) The real matrices Q and W are symmetric, apd A=Q+W s
positive definité,
(b) Q and W commute, i.e. QW = WQ.
These conditions are not in general satisfied by our prablem (3.2.2)-
- (3.2.3).  Nevertheless, it was suggested by Wachspress, that even

though conditions (a) and (b) are violated, the algo®thm that he -

developeg to ‘et'ermine optimal (w ) and (w ) may provide relaxation
’ _ _ parameters which cause faster convergence compared to the single fixed
vatue of w. The Wachspress algorithm has been implemented in the 2-nd

®rder algorithms presented in this work. Results of a particular .

2
* study of the effects of optimization are presented in Sec.” 4.2.1.
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3.4 Analysis of Discretization Error

L]

Finite difference discretization of- a differential equation
consists of approximating each derivative by a finite difference
expression. Every such approximation is biased by the error wiijh
depends on grip spacing and on the behaviour of a solution in vicinity
of pivotal points of the grid. In consequence the finite difference
discretized approximation of a differ?ntia1 equation is characterized
b; a superposition of all particular errors. Numerical ‘algorithm
based on discretization may introduce also some other errors. The-
refore we deal with two different issues:

+

- the é&ror of difference approximation of derivatives which
t 4

cgnstitute‘a differential equafion, ‘
- the global error Sf the algorithm solving the discretized
equation. .

In this section ;e intend to examine in details the global error,
in particular its convergence rate with the grid refinement (grid-con-
vergencé property) and its practical implications. We will work out,
among others, a criterion for selecting a grid-size to keep the global
-error, dependent on the grid spacing only and we will discuss the

possiblity of obtain{ng highly accurate results throuwgh application of

the concept of extrapolation.
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In any numerical solution of an analytical problem we deal with
three -distinct mathematical entities:

. . » .
fa : analytical solution, which is usually unavailable 1n an

explicit form,

f, exact solution of a numerical mode]pof the discretized
problem (which 1s also unknown),

f actual computed solution, which 1s a certain approximat%on .

of f,.

.

We may define discretization error as ﬂfN - fa] and global rounding
error as lfN - f].
Any a]gorithm which is supposed.to yield a reliable numerical

solution, should posses two properties, i.e. stability and con-

vergence. Stability is assured when cumulative effect of error of all
the roundings 1is negligibie, that 1is, when in the effect of the

computational process the difference ﬂfN- f] is kept small compared to

discretization error.
In our approach we model the governing differential equations
with a set of finite-qifference equations resulting froh discreti-

zation process. The solution algorithm is convergént by definition 1f
v
[fN - faﬂ --= 0 with ax, ay ---- 0. This property will_be called

hereafter grid-convergence to avoid confusion® with the concept of

convergence of the iterative process utilized to solve the system of
algebraic equations resulting from discretization. In this section we
intend to elaborate on the problem of grid-convergence, which due to

its 1mportance.requ1res a separate discussioﬁ,



In computational practice stability means, that an a1gbnithm
provides some solution; grid-converggnce means that solution§ computed
on grids of aecreasing spacing, form a Couchy - convergent sequence
yith the rate of convergence depending asymptoticallx on some po-
wer-function of the grid spacing. The conjecture s _that this

sequénce is convergen to the exact solution of the analytical

problem.

Let wus consider now, how we can analysé the above stated
grid-convergence property. In the following discussion all arguments
will be presented in the context of second order finite difference
apprbgimations, but it is understood that they are ap?]icable to
approximdtions of any other order.

As was shown in Sec. 3.2, the difference model of the diffe-
rential equation is a superpésition of difference formulae involving

values of function and 'its derivatives at-pivotal points of a grid.

For simplicity, let us consider the following operator :

Ao fyqofor) = 1050 = g (R0 )= (xy ))
= - L)+ (e,)] (3.4.1)

L3
»

w1th‘arguments .916_(xi,x1+1) and 026 (x1_1,xi), where Xig1® X3 2 T
The last formula of the above expression is a superposition of

Lagrange residuals of appropriate Taylor expan§?ons of fi 1 and f1;1

-

around f1. If we set r sufficiently small, we can make vqr%ations of

49
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-

the third derivatives negligible, and the Langrange residual in

(3.4.1) becomes in effect proportional to r? This qeans that

_ld(fi*1.fﬁ_1,f% . r1)| ] trﬁ\f"'(g1)| - ri . (3.4.2)
}d(fi+1,f1_1,f£ . r2)| ’r; f"'(92)| r% .

Formula (3.4.2) is reflecting proportionality of d to r? and leads to
the conclusion, that d -0 as r » 0,'whiph is the grid-convergence
condition. Power of the ratio r1/r2 is by definition the grid-con-

vergence order of the difference scheme used to approximate derivative

\
in (3.4.1).
Ne.wou]? like to note that:
a) Residual involving r? in (3.4.1) is of a 1oc;1 character,
since it comes from thé Taylor expansion around a fixed point X5 -
b) fi and f; are exact values of a function and its derivative
at pivotal points of a grid (F, = £(x,)).
A Locality is not a big concern, in spite of the fact that the
higher order derivatives,  associated with r may vary from .point to
point. In the 1limit, as r —» 0 they approach a constant and their
ratio in the vicinity of the fixed point is close to 1. Observation’
b) ‘Powever , is a perp]ex;ng one, since we never deal with Fhe exaét
values, but rather with their numerical approximates.. Practically we
equate*® difference formulae like (3.4.1) to zero, consciously entering

® .
the error in the form of Lagrange Residual hoping that this error will

not be worse, i.e.* of'Q'1owgr brder for any of the componen‘i of the
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difference formula. If it were, then by contraposition it would
violate the accepted observation that the operator d goes to zero at a
quadratic rate. This s an essential statement, since it makes
possible a conclusion about the order of function and its derivatives
on grounds of the order of the Difference Scheme.

Now we can approach the problem of grid-convergence of the
finite-difference algorithm. Let us assume, that in a geéneral case,
when f is a functibn of two variables, the grid consists of (n x n)
pivotal points uniformly distributed in a computational domain (i.e.
Ax=oz=rn). Let f" be a numerical solution computed on this kind of
grid determine& by the sbecification of r_ . A necessary and

n
sufficient condition for the algorithm to be grid-convergent is that

[fa'fNﬂ—OO as r — 0
or in a weaker form:

(f, - '] — 0 as r,—>0 (3.4.3)

>
’
L]

The difficulty we fJEe at this poiht is, that we are unable to
provide any analytical briter1oﬁ which, for a particular algorithm,
wgﬁld yield evidence that cogdit%on (3;4.3) is satisfied. Therefore
we are bound to look for a criterion which iﬁ not equivalent to the
dgfinﬁtion of grid-convérgencg,‘bu§<gives sufficiently strong gupport
for the statement that (3.4.3) is valid. At this point we ﬁay make
use of the concept of fhe Ordér of Qifferenc: scheme and rémarks made

earlier. The criterioh which we can practically accept as evidepce of .

.
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fhe grid-convergence property is as follows:

n
[F, - £ 1 (r.° C(3.4.9)

L a - -
1{\ <] | (rnz) as ny, n, —

Let us make the following observations here:

a) a is’ by definition the Order of Grid-Convergence of an
algorithm.

b) Formula (3.4.4) says that the numerical solution approaches
the exact one as we perform computations on finer and finer grids
(nise).

c) Tondition (3.4.4) implies that {f"} is the Cauchy convergent
sequence, wh}ch for practical purposes may be understood as
convergent to fa' ®

d) The P(aEtical test of (3.4.4) is always carried‘out on a
finite set of grids.

e) Sjnce (3.4.4) is derived from the concept of the order of
error of thé truncated Taylor expansion around the pivotal point
of a grid, it originally applies to -the point values of the
computed and exact solutions, with norm [.] being a simple
modulus. In publications like for example Aubert & Deville [ 1 ]
we ‘may find this kind,,ivé. point-estimation approach. It is
understood, however, that(global estimation of order, applied to
the - computationai domain iJs more valuable tﬁan the information

about thé grid-convergence order.at few selected pivotal points

-
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of a grid.

If we pursue the global estimation, the norm f.] might be the
Euclidean-type norm on (n x n) dimensional space. a f which is the
exponent in (3.4.4) may be of anyg positive value. In fact, as will be
demonstrated, @ is about the same as the Order of a differencing
s;heme imptemented in a given algorithm. So, if for some algorithm we
apply differences of the second order, then the Order' of grid-con-

vergence of this algorithm should also be 2. In Sec. 5.6.5 we

present numerical results, which illustrate this statement.

Approximate Estimate

of the Order of Grid-convergence#

It is very wuncommon in numerical modelling, that .an exact
analytical solution is known. Practically, however, we might bhe able
to simplify the o;iginal problem, so that an exact solutioni is
available, and estimate the order of grid-convergence with the help of
(3.4.4). Nevertheless, this will be only. a partial- test for the
.

original algorithm. If we do not have an analytical solution, the

following criterion, known from literature (Aubert & Deville [1 ]) can

be applied:
n n
lf 1- f 2] _ rn: 8 o rzz (3.4-5)
ny nj a a ’
[f ¢ f°] r-- r as ny, Ny, N, —» @

ny n3 . . .

if the above‘fondition is fulfilled, @ 1is by definition the Order of

“a
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Grid-Convergence of the a1§orithm. For clarity, let us assume here,
that the computational grid is of equal spacing in x and z direction,
[f?j] bejng the matrix of values of function f computed on, grid with
Ax = A2 =r . .

Equation (3.4.5) can be easily referred to (3.4.4) if f de-
generates to a scalar and [.§ is a modulus. Iﬁ such a case we have
equivalence of both conditions provided that a unigue analytical
solution f exists. In general case, because norm [.} is not
necessarily additive, we cannot conclude the vatjdity of (3.4.4) from
(3.4.5) or vice versa. It will be shown in the following discugﬁion
that @hen some special requirements are imposed on the norm, we may
relate directly point-wise order of grid-convergence with its global
estimate. In Sec. 4.2.2 we present numerical results, which show
experimental (numerical) equivalence of (3.4.4) and.(3.4.5). This may
authorize us to use (3.4.5) also for'cases,‘where (3.4.4) cannot be
applied due to unavaﬂ,abilitny an exact solution. _

It happens in computational practice, that exponent a changes
initia]]y.rhén we move computations from coarser to finer grids. Then
it gradually stabilizes and becomes constant. This means that resu}ts
obtained on coarser grids show uncontrollable disere tion error due
to the variation of highery derivatives in the Lag qg; residual.
Stabilization of the value éf @ means that the grid is fine enough to
make Lagrange residuals depehdent_on r only;'therefore, we may assume

that the disretization error is proportional to a certain power of r.

Another problem is the value J? a . {t was shown that o should be

\



close to the discretization order. If it is not, it may mean that
there are some errors in the algorithm, which may result either from
inadequacy of the method or, more trivially, from-misiakeg of a
programmer. This issue is illustrated ﬂ‘,exmnp1es at the end of thif
/Séotion. ‘

‘ In the following discusston a proper choice of & norm will be
analyigd. We confine our attention to the L-2 type norm, since we
deiy' with discretized values of the function. These values are

defined at pivotal poiffits of a grid Gn which is of dimensjon (n x n).

The L-2 norm may be defined as follows:

. - ‘ 2
{ f }(Gk) :2—( Z £;) (3.4.6)

where Gk is any subgrid of Gn (GkCGn). In particular, Gk may be a
single point of a grid Gn and in this case the norm is reduced to a

modulus. .

Since in determination of the order of the grid-dnvergence of
the algorithm we work with finer and finer grids, we can-see that it

P ' \\ .
would be useful to generate grids in such ¥ way, that coarser grids

.~

are embedded in finmer ones. This seems obvious when locking at

", n, ny
(314.6). JIf we consider (3.4.5), we see, that f , f S and f are

-

computed on grids with decreasing spacing "n ( r ( Yo, * The question
1

‘

arises how to define norms in nominator and denominator on the left

hand side of (3.4.5). Certainly, "arbitrary application of (3.4.6) may
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lead to incorrect results. In order to explain this issue, let us
introduce the concept of order-consistency off a couple of norms
[.B(Gk) and.[.}(G1). Before we define this concept assume that

c
Gn.ICGnZCGn3 and also GkC an, Gl anl
Definition

The pair of norms [.1(Gk), §.0(G1) 3s order-consistent if and

only if
33 "2 @ PP LY e
13- £.50 r: - rd If %- f “J(Gk) o= T
Mo, T R o np N - 2
| £.6- f. ] r--r ff c- £ 'R(G1) ro-r
ij o] n, N, _ n, n,

Now, recalling definition (3.4.6), we may make the following S5ta-

tement:

Proposition 3.1 N

The pair of norms [.§{(Gk)} and [.3(G1) is order-consistent if and only

S

if the subgrids Gk and Gl are identical.
o

—

This is not a trivial propgi}tion, since if we try to make a practical

use of the criterion (3.4.5), we may easily make an error by utilizing

inconsistent norms: [.I(an) for nominator and |.](Gn1) for de-
nominator. The above statement demands that subgrids used to define
norms of nominator and denominator of formula (3.4.5) must be the

same.




The idea of the proof s based on a simple statement that if
point-wise grid-convergence is of order a for every single value fij s
so the aggregated grid-convergence should be also of order a . -

& ’

Evidence of the Proposition can be demonstrated as follows. * Let

Gk and G1 be subgrids of dimensionality k x k and 1 x 1, respectively.

n
Let us assume (see Def.3.1) that at each point of matrices [f11],
n, ns - #‘ J
[fij] and [fij] we have:
' '
n : n
f.3 r& f.g r&
1) o n3 ' LI ng
fn2 r& f"n1 r&
ij n, o " .
e
4

Let us consider first the ratio: .

3 a
ij __ 'n3
i r&
1] n1
n n .
£33 - f%r s 1%aq -
ij 1§y’ nyt
n n n n .
£33 - f 2o 262 /e )% 0
ij ij0 i3 iitng e,
and finally s
n n n :
I _f2.¢2 a,
fa) 3 -2 6 20, sr %)
3 2
By 'similar argument:
n n n
1 2_ ¢ 2 a
(b). fij --fij fij[(rn1/rn2) 1]

™~
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Suppose the differencg ratio is of the form:

n n
If 3- f 2)(ck)

- 12 "1y .
. n n n n
For nominator we have: if 3. ¢ 2E(Gk) = F; (9 (fiﬁ- f 3-)2)§ =
n B n
R T N R RS LI

and ;imi?ar1y for denominator. Evaluating ratio of both expressions’

one gets:

ij
[£"2- f"1p¢61)

n3 ﬂ‘z 2 I'I2 , %

If °- £ “J(6k) _ {r’?’& v rg'z'n-l ( EGk fn ) )§
(o 8 2

& flka Le(F1D)0)

2 1
Here we see that the norms in the difference ratio. are order-con-
sistent if the expression in sqhare brackets of the last term is equal
to 1. Iﬁ‘the general case this conditibn is satisfied only if 1 = Kk,

which completes the proof.

Conclusions . " : ‘)
1. The Proposition 3.1 is valid if we compare the estimated

sotution f"'and the exact one, i.e. , ,
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A
3 a
ff °- faﬂ(Gk) _ r"i' '
n a
[f72- f, D(6k) n,

2. Gk can be any grid insofan_@s it can be embedded in Gn
3 ' ,/”

3. In particular, Gk can be a single point. In this case the

1 anv

Gn

norwrig reduced to the modutlus and a®is a point-wise order of

grid-convergence.
The Proposition 3.1 yields practical suggestions on how to Obtain

the global estimate of order of grid-convergence. As was mentioned

_earlier, this estimate is of vital importance if we want to make sure

that the humerical algorithm provides solutions which are convergent

to analytical so]uiiqn. Practically it may also provide some in-

~

dicatijon as to how fine the grid should be in brder to obtain ‘results
. . . 4 . -~ 4{' . ., .
which are not ﬁiased by an excessive ‘error of dfscretization. It is

often very inconvenient @o investigate the.erder of convergence _-point

by points In some papers (E]éaessér’édd Peywet [%Z]) one can find

S \

poiM@ - wise order estimation for a few 'salécted points of a grid '_
(e.g. in:the céntre of the solutioh gomain)g Since' information about .

. other points is'not‘dyailable, the -argument qbﬁug order of convergence’

" is of lTittle value. Global order estimate on.the other hand,fproéides

aggregate information abput the function in the entire domain. But ff

‘we do not satisfy the conditions imposed by Propositiondjgﬁ, we may

end up with wrong conclusions.: Because it is npt a trivial {issue, we

-~ .'

~



wanf‘to'j11ustrate it in the example below.

Suppose we want To—selve. the following boundary-value problem:

-

r .
froo+ 2f' = 4(gqosdnmx - nisin2ax) (3.4.7)

f(0) = f(1) = 0, x € {0,1]

-
.

The second order difference chgme, which woulild simulate.1eft-hand

side differential operator, is of the form:

1 1 1ri 1 1 ¢
— - —} - % + - O(r? - 1
f1'.1(r' r)z “r? * fi+1(r5 r )t (F.) _fi

The solution was computed on grids G10, G20, G40, G8C, where

Gk in

this “case is a grid of dimension k. The respective solutions are

enoted &s f1p. fzo; f40, f80. There is an.exact solytion avaitable:

sin{2 nx). Results of the qpalysis of the'accuracy'of dis-

A

crattzation are presented in Tab]es 3.1-3.4.

<)

L |



TABLE 3.2 : Aggregate estimation of the order of grid-convergence

with the use of three grids (Example (3.4.7))

N\
-* ’ 87
N )
' .
TABLE*3.1 : PSﬁntwise estimation of the order of grid-cenvergence
* .
;- of discretization error
’ ., -
. T
X . >
1
. grids 0.1 0.2 0.3} c.4| 0.5| 0.6 | 0.7} 0.8 0.9
- G10/20/40- | 2.03 | 2.03] 2.04] 2.04| 2.06| 1.85| 2.0 { 2.0} 2.02
620/40/80 [2.01 2.01 2.01 2.01 2.02| 1.97] 2.0| 2.00| 2.01

L]

Y

——+

Difference [f]o-fzol(G‘lO) lfm; (610) 1£29-¢409(620)
Ratio 1£29-£%%)(610) (+20-¢80)(G10) [¢°0-¢39)(620)
a: order )
estimated '2.03 2.01 2.01
a4
M Y
]
& -

d
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TABLE 3.3 : zggregate estimation of the order of grid-convergence
»ith the use of three grids (Example (3.4.7)) ,
and nbrms with inconsistent reference grids . ’
- pifference | [£20-£%0](610) 110299 (610 (£20-£%Cy (G20
Ratio 1£49-¢80] (G20) 1720-740p (G20 1740807 (640)
a order
estimated 3.69 3.66 - 3.58
. =
’ 4
i “ i
,. . TABLE 3.4 : Aggregate estimation of order of grid-convergence
by reference to the exact solution (Example (3.4.7)),
L4
LT y
Difference | [f10-f 1(610) 1¢2%-¢_ 1(610) . lf“o-fa 1¢610)
Ratio '[fZU-fa 1(610) gfdo-fa §(610) [fso-fa 1(610)
a order
estimated 2.03 - 2.01 2.00
| .
Comments: i}

\

1. Tables 3.1, 3.2, 3.§ yield very similar results. This means

& i

that point-wise and aggregate éstimat1on_of the order of con-

3

-

/. vergence are numerically equivalent. N

C. 2. Exponent a is approaching the value of Z,uh{ih is the order

-~

.. » Al
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of the applied difference scheme.

3. a— 2 as discretization of the doMain of the independant

variable becomes finer. '

4. In Table 3.1 the order at the point x=0.6 is the lowest one.

This may indicate that variapion of higher derivatives in the

Lagra;ge residual is ;ti11-}onsiderab1e. The other suggestion

arisjng from this fact is tﬁat results obtained on a grid of

r=0.7 may not be sufficiently, accurate and' one should pursue

computations on grids o? r i .ds. >

4, Table 3.3 shows an essential discrepancy from what we find in

Tables 3.1, 3.2 and 3.4. This is due to the fact, that the norms

are not order-consistent. This is an,evident illustration that
[

N one may end up with very misleading results if inaopropriate

norms are used.

Applications of the grid-convergence property.

.
If the computational algorithm is qf iterative nature, there is

a]w;ys‘a qugstion about the criterion of termination ?f the iterative
proééss. Usually -there are two indicators of advancement.of ifé-
rations. These are:_chénge 6f the field from one .ftératibn to the
next jteration and the value of <the residuum (which says how
accurately the discretized éoverniﬁg equations ar s;tisfied). Both
'cr}teria are expressed 5§ absolute gquantities, Ideally, we ma}
jterate as long-és these quantities are of the order of computer

accunacy. Th1s,'hoyever. is very'costly, ‘and practically we‘terminate
-~ Py . A}
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itérations sooner. To make sure that assumed level! of accuracy is
sufficient, we may cﬁgbare results computed on grids of decreasing
spacing r. If the grid-convergence order is found to be of expected
value, we may accept the assumed limit of iterative procesg as
sufficient.

This criterion can be justified by referring to thé Lagrange
.residual of Taylor expansion. Namely, if the brder of the gﬁid-con-
vergeq;e is close to the order of discretization, it .means that
variation of the higher order derivatives in Lagrange residuals is
negligible. If so, further iterations do not have any signifiéant
_influgpce 0N thé‘“ﬁalues'of higher det:vatives and in conseguence on
the computed estimates of the function. ®
‘ As was mentioned before, the analy;is of the Accuracy of the

,

L
discretization may be helpful in detecting errors which otherwise ey

pass unnoticed. These errors may result from inadequacy of the
algorithm, or thej m!} occur on the level of the logical structure of

the algorithm, or its implementation. Some errors thn be faéa], ‘but

'
some are difficult to detect and remain unnoticed, because no evident

obtrusion in the algorithm's performance is observed. In what follows
: [+]

we present results of the analysis. of accuracy for the problem

discussed in the last Exdmple. The only difference is that there is-

3

an error introduced by changing a sidgle index in the Thomas

~ .
Algorithm. ' » .
Pointwise order estimate is as follows:
. * -
Ve
. T -

o
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TABLE 3.5 : Pointwise estimation of the order of grid-convergence
when computed solution is erroneous .
, \ ‘
X . . :
j
grids 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
G10/20/40 .42 .95 .96 .93 .94 .99 1.09 1.22 1.33
G20/40/80 1.22 1.16 1.11 1.07 1.07 1.09\\3.14 1.21 1.30
~

4

TABLE 3.6 : Aggregate estimation of the order of gridiconvergence
with the use of three grids (Example (3.4.7)) -
when coﬁputed solution is erroneous.
. ‘
‘Difference | [f"0-fP0)e10)  Tre0-r*0uar0) 1720-¢4%) (620)
} .
Ratio (7<°-¢%%)(610) 1£°-¢%%1(610) 17 °-¢%%) (620)
a: order | ' . - .
estimated 0.93 11,12 - 112
) -
s LI o
- cf'
. ‘i' - ‘L..
< . -
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TABLE 3.7 : Aggregate estimation of the order o#:gr{d-convergence
with the use of three grids (Example (3.4.7))
° and norms with inconsistent reference grids.

pifference | [F20-r40)(G10) [£10-¢207(610) §720-¢407(620)
Ratio [£°0-#80} (620} [£20-¢40p(c20) [£49-¢8% (640)

a: order

estimated : 2.59 2.71 . 2.69

‘ L 4

Tables 3.5 and 3.6 show much smaller oo than the expected value
of 2. On the other hand Table- 3.5 gifes evidence of rising values of
a when finer grids come into play. This is the right trend, but in

this case it can lead to the false conclusion that all we need to do
is to use a fiﬁer grid. Defin{;e1y it is not a matter of a grid size,
since as we may -  see, computgiions on a grid of 80 points should be
quit;.suffic1ent for the function‘whiéh is the splution to the example
prob1eﬁ.' This is rather evidence of having an error ip the program.
fable 3.7 shows estimate ‘of ‘the order when the norms are

inconsistent. These results ‘are higher than the expected value of 2.

Theoretically 't is not alarming. The ﬁ%bnetization error is a ’

’ ’ ' ~
result of«% superposition of errors, each "~coming from a distinct

. . [ . '
difference estimator. Thus the Jjoint distretization error can be

lower than the component ‘errors, since some of these component errors,

<

B '

\

S 4
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when added together, may vanish. In consequence,'the overall error
m?y be of a hié%er order than expected. Therefore, as we may see, the
results shown on Table 3.7 are very misleading. They are computed
using an erroneous a]gor1thm/ but still, beacause of the application

of the inconsistent norms, we may not realize that the numerical

estimate of the unknown function is wrongf\\\

Extrapolation.

-

It is_known (Smith [27]) that thé knowledge of the order of
grid-convergence say lead to a h1gh1y accurate approx1mat1on of the

. unknown anQJytiqal solution. This may be accomp1xshed by extra-
polation provided that wé have numerical solutions computed on’
different grfds. Let us briefly state what in this case is understood

by extrapolation. ‘Buppose that there are available numerical results

on three grids: Gl, Gm, Gn, and for each .point of the embedded -

reference grid GK, the foll'owing is valid: ] o
- ) !
|f iy 1J|(Gk) _ ry-rs » ~
\ |f‘“-fIJ (6k) m " T

a is constant and does not depend on x.,

\ .
Gk. The above means, that f!J £m jand fijlie along a straight line . as

the ‘pivotal point of grid

shown on Fig.3.3 beloqf Therefore, we conclude that the analyt1cal
* v sglution is located on the same line (dotted . l1ne) and can be

-de.termined‘ as r ~=0. T . d

L X
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Fig. 3.3 Hypothethical,cbnvergence of the computed

values to the exact solution with mesh refinement.

Let us now focus on the effectiveness of extrapolation. For

illustration we take -the boundary value problem defined in example
. - .
stated by (3.4.7). We take the grid of r = 0.1 as the refernce grid

Gk. In Table 3.8 we show results for x,= 0,+ ir. The first three

rows show the distance of .the exact sotution from results extrapolated
from pairs of grids, In the [isb row, for compafison, the distance of

the solution computed on a very fine grid G80 from the exact solution

is shown. . - . ' ’ . R
. ~

. N
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Among resulitg computed on grids G10, G20, G4G, G80, those obtained "on
the last ape are certainly closest to the analytical solution. As is
seen from the lastgrow of the table, the error is not larger then 0.1%
of the maximum value of fa= sin{(2 nx). Yet the extrapolation yields
better results for all cases listed in the table. This 1is the case
even with the extrapolgiion based on results taken from computations

on grids G10 and GZ20.

Let us close this Section by summarizing 1mport$ht developments.
In this Section we have examiﬁed the concept of Accuracy of Dis-
creti%!%ion, as expressed in terms of the order of the grid-con-
vergence. We have addressed the problem of practical computations and
stressed the requirement of the proper choice of particular norm £-2
to get useful results. Three important‘reasons for the order estimate
were discussed. The first one is the opportunity to’deéect errors in
the algorithm. The second one is the determina;ion of the maximal
grid .size, which Gan pro&ide reliable results. Grids sparser than .
this one, when”involved in‘the order computation, lead to inconsistent
results. There is no sharp criterion, thougﬁ: In the éase of eiamp]e
3.1 (Tab. 3.1) we may have doubts about results obtaine& on grid G10
(point- wise order est1mat1on), but ‘one may f1nd them acceptable if we
look at tﬁb aggregate resu]t (global est1mat$on - Tab. 3,2)‘ which fs
very close to the expected value of 2. ﬁrnally, the. availabilijty of
Extrapolation -as meads to obtain highly accurate results with.

moderate cost was discussed. Sample coTpUta(ions ,for the problem-

Y
- -



defined by (3.4.7) indicate that there 1is a great potential for '
cost-saving and—for gaining high accuracy by the application of

Extrapolation. Needless to say,. however, the extrapolation can be

used only after the examination of the order of grid-convergence has

been made, and only those results which were computed on sufficiently

fine grids can be utilized.

The discussion has beeén carried out in the context of the Problem
defined by, (3.4.7), which is an ordinary differential equation with
Dirichlet boundary conditions. It should be noted, however, that the,
general concepts and remarks are valid for any algorithm based on .
finite difference discretization and aimgg_g;_ﬁgjving partial as ﬁi:%i :

- s T

as ordinary differential equations. T~



CHAPTER 4
SMALL DEFORMATION THEORY

.

4.1 Construction of the solution in the asymptotic Timit .

of a small capillary number (C ~ Q).

Let us recall the mathematical model of the flow that we are

interested in:

Ld

. governing equations: ,
’ vy = 0 (4.1.1)
hxx 3 2 Y 2
= -p+ c((_l_ax )+ (5 ), (4.1.2)
(1 +h 2)%k Y
boundary conditions for functions y(x,y} and h(x): (4.1;3)
\
\.\ ‘#:0 atx=0
g =0 ' at x =1
. .
p = - cos(2xx) ‘ Rt y =0 .
.“ ——
¢ = 0 at y = h(x) : \
h =1 at x = 0 9 .
h =1 at x =1 .
~ \\ wherne [-(3w/ax), faw/ay)] = V is the velocity of the fluid at the free
. .

surface (Eq.4.1.2).

L 4
' The solutfon of (4.1.1) - (4.1.3) consists of détermination of the

-



two debenﬁant variables: stream function .y and function h describing
. \ '
the- shape’ of the free surface. The main feature of the Asymptotic

Algorwthm is ﬁecoup]wng of the flow field and interface, so that  they

can be determined separateTy in a kequence of algorithmical steps.
] .

Direct Algorithms on the other hand, will seek to determine the flow

and interface simu]tanéous]y. The distinction between these two types

of algorithms is not merely of a togical character. It will be“xhown

in thi.s Chapter that the Asﬁktic Algorithm is applicable to a
specific class gf flows only, . i.eﬁr when surface tension has a
decisive influence oﬁ the sﬁape o; interface (C <« 1fl

The asympﬁot;c method 13 clesely related to tHe physical under-
standing of the dnalysed flow. .phenomenon. Let us' assume that
parameters C ‘and p are f}:ed. First,.Iet us consider-a st:tic case
fno motion).\ Stagnation pfessure becomes a static pressure and free
surface, if it esttif takes on the fo#ﬁ %{ the !egment of "a c1rc1e

(see Sec.2.2). This witt happen also with any non-trivial flow fieldt

‘but Jinfinitely large surface tension. In both cases C is at its

ff:::1ng value, i.e. C=0. In this limit, the shape of the #hterface,*
- e . .

as can be _seen from the systém (4.7.1) - (4.1.3) above, Qecouples
- ¥

from the fﬁeld equation and is.determined from conditions of static
id v ’
equilibrium. The #low field can be determined subsequ.tly by solving

thé field equations with the predetermined (and fixed) location of - the

. . [ S
" “interface. Lo . - P (\
When C << 1 .,the- shape of tﬁ:/?Pundary is domimated by the
-surface tensjon and .dynaﬁic effects e, of the lower order of .
v J: )
- ‘ - . \‘
» '
s & ' © - ;

%e
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magnitude. In this approach, therefore, we seek a solution which, to

the leading order of app;oximation, reduces to the_case C=0. Let us
note, that large surfgce tension combined with curvature of the free
surface; g;neré}es a large sgaticf;ressure;component. which donfinates
the normal forces Eaused by'the motion of the flugd. In consequence,
flow of the fluid results in a small deformation of the free surface.
‘Ne use asymptotic series expansion of the variab]es %, h and
velocity to construct the solution. The:velbgity term“;s retained for

convenience in_order to simplify discussion of the  dynamic boundary

condition..

L]

Vs, t € e+ 0(E2)

>
1]

ho + € h, + 0(€?%) _ ' (4.1.4)

/
+ €V, + 0(E*)

| =<
(1}

v
—0

Velocity in Eqg.(4.1.4) is the vector [u(x,h(x}),v(x,n(z}]. Let us

iq}roduce the surface velocity scale defined as ‘
S
Vo= max { (ut(x,h(x)) vi(x,h(x))} , x € [0.1]}. (4.1.5)

)
»

The surface velocity of the fluid can be expressed as follows: V = ngs
where V_ is scaled surface velocity. Since V #s of order 1, we can

define a parameter € as cv;xz.

- o

! | i

}



J1

Relation between C°V and € 1is an fimportant oné. The Small

Deformation Theory , which makes use of Jsymptotic expansions (4.1.4)
is valid if results. are biased by the eryor of order O(E? ). This
/ .

happens, as will be demonstrated, if 9/15 sufficiently small. On the
other hand, this theo;y is referred tq/the physical concept of small
deformation of the free surface. Since this deformation depends on
the value of the Capm_aﬁy'r:umber C and the velocity of the fluid at
the free surface, the scaling (4Vﬁ.5) provides the necessary linkage
betwéén parameter € of the asymptoéic series expansion (4.1.4) and
physical parameters of the flow: the capillary number C angd the.
velocity scale V. AN

’
. /

Substituting expansions (4.7.4) inty, equations (491.1)-(4.1.3)

-

e
-and equating coefficients of the same power of-€, we obta%n the

following sequence of problems:

Problem of order g9

’
’ A\
h, e
___Qx_x_;.+ p, = O ’ (4.1.8)
2
.(1 * hox) -
2 - ’ o
vip =0 . (4.1.7)
boundary conditions for functions wo(x,y) and ho(x): (4.1.8)
¥o© 0o at x = 0
vo= 0 ' at x =1
Vg™ " cos(2mx) ‘ at y = 0

. | jé::; .
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T e
~ L 0 at ¥y = h{x)
ho= 1 , at x = 0
= 1 " =
h0 at x 1
Problem of order C : *
|
1 - h 3hoxxh1x - |2 (4.1.9)
- 1XX(1+ha )32 1X(1+h3 )&2 —s0
, ox (e3¢ -
boundary conditions:
° »
h1= 1 at X = 0
- h,= 1 at x = 1

)

Equations governing LB and higher order terms in the asymptotic
series (4.1.4) could be derive§ in a_similar” way. The present
analysis is limited to the determination of the leading drder
approximation of thqéflow field and surface deformation only. o R

. In the first problem (of the order 6°) we solive first for static
interface and then for the flow ;1e1d which would develop if infinite
surface tension wAs 1@posed. In the‘§econd one we solve the -ggquation
for correction _oﬁ’ the free surfac; shape ﬁ1. The ampTitudé‘of the
actual correction Eh depends on the'magnitude‘of the model par;meter
o and the veloczty of the fluid along the static 1nterfzig*\~?oth

factors contaibute to the value of the new mode)l parametér: G (see

4.1.5). - It is tg_be remembered, that this algorithm {s justified only

for’ small €. It is one of the objectives of this chapter to find
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‘ é
\

out what is " the range of €, for which the metﬁod “is ‘valid. The
answer to this question will be provided through ;nalys1s of the
quadratic accuracy of the truncated asymptotic series (see (&4.1.4}).
The.sequence of computational steps leading to the determination
of the field and free surface through application of the Small
Deformation Theory, & be referred to as the Asymtotic Algoritm. It
is schematized in the form of -the flow chargd given below: .

-

)
SCHEME OF THE ASYMPTOTIC ALGORITHM

e ]

.

1. Seleet static pressure psand flow across the bottom of the

boundary.

2. Determine shape of the static free surface h0 by solving
Eq. (3.1.6). B
v . . . ¢

3. Find the first approximation of the flow in the domain
by solving £Eq. (4.1.7). _,J/

4. Determine surface velocity scale V_.

s ) -

5. Find free surface correction h, solving_Eq.' (4.1.9). -

Define final shape of the free surface és h = h0+€h1,

. - .
- - N .
- - . . o]

h ' Y . \C
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The material presented hereafter consigts of three sections. In
the f?%%t one (Sec. 4.2) we describe in detail numerical procedures
employed in this case; we are inte#;sted in the determination of
static interface, field convergence characteristics and examination of
order of grid-convergence for field and free surface. In Section 4.3 1

. we address the issue of the qualitative effectiveness of the Asymp-

"totic Algorithm. :1; was eﬁp]aiﬁéd earlier, the ;alidity of the

asymptotic approach depends on the smallness- of the ¢( paramete}.
Therefore the attention™® focussed on the criterion that detérmines -
whether the parameter is sufficiently small in order for the ré;ults
to be valid. In Section 4.4 ;e discuss the property of the
Algebraical Stability of the problem.  Algebraic Stability require-
ments will be found to im;ose constraints on nuperical parameters: r
- séatiél increment of a computational grid, and w - ADI relaxation
° parameter. 'In th_e last Section {4.5) we pronde‘ the physical
. “interpretation of results. The discussion there will be focussed on a
. descr%ption +of the. variations . of 1nterf;ce dqformation caused by

change 6f capillary number C, stagnation pre%sure P "and scale of

surface velocity Vs' -
;- \
o -
-
-\'\
.2 . .
- . . - N * . .

¥ T . ‘ s ! .jé
D e o T T e PO T Tt L T ..;.h',_.‘;.;;‘;.t'a_w LN s v ....ii
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4.2 Discussion of the numerical algorithm

4.2.1 [terative solution of the flow field and interface equations.

‘As shown on the flowchart of the preceding'Section.'the fiest
step in the computational procedure is to find static interface ho.--
This is done by solving the following egquationi__

Moxx = ) ‘ .
. (1 + h;x),& s . (4.2.1)
:|psl .2 .
h05 1 . at x = 0 .
‘. i 4;"‘f'c“go= 1 ‘ Lo atx = )
) ‘7°If P, = 2, the static surface forms the complete semicircle. In
. . £hié'cqsg hx is undetermined at the bouﬁdaries of therunit interval.
Betause max( |hx|) is approaching infinit} as Pg approaches the wvalue
+2,” the numefical integration of Eq:(4.2.1) will be diffdicult if Pg is
. *in  vicinity of +2. In the following disucussion the static surface
e having'u;!shape of the fu!l semigt}cle (corresp9nd1ng to p53:2)' will.
) &° referred;tc_) . as t.he‘.'reference surface'. For a gi;/en case we may
T ;elate static éurfaeg tp.;he reference one.by'the _pércentage‘ of ‘thé- .
semicircle aréa. en;}osed by the_actual stat12 §qrf;¢e curie.; fhis
estimate is.used as é‘measure of how close is the given sQrfPEe'toltne
- geference “one. - For instance 0% will mean, that'fhe gi;en su}fécé is

flat, 100%, that it is a full semicircle. . %




- -

.

The Eq.(4.2.1) may be easily solved analytically, yielding the
solution in formlof'a segment of a circle with constant curvature
equal -Pg- However, for the sake of computational completeness, this

equation was solved numerically. First it was linearized:

. L4
RSN n+1(h N +(}c\)x)z)ips=_ps(1 '..'(y-.gx)z)i - (4.2.2)

oxXXx

. ) .
s

——

where superscripts n.n+] refer to subsequent approximations of the

solution in iterative procedure. Equation (4.2.2) 1s discretized

using central differences. of the second order, and sclved as a.

boundary value probiem using blnck- scheme resulting in 3-d1aggna1

system of algebraic equations. For all cases cons1dered (with |p | <

© -1.85) re1axat1on does not seem to be necessary to assure convergence

Below we present tﬂe table relating value®* of Ps to the number of
iterations nequired. To avgéy ambiguity, the 1£erations were haleed
when the change of hofrom jteration to 1tera£10n was of the order .of
macnﬁne accuracy.‘ This yielded residuals of the free §urface egnafion

of about 1.E-10.

L]

uess for the shape of interface was ho- 1.

. R 1 D .
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TABLE 4.1 Number of iterations for the static interface.

. % ' ' :
P # its
1.5 |15-(43) , c
-1%5 |15 (13) - ‘
1.85 |25 (17)
-1.85 (25 (17), . :

)
‘ Two numbers of %terations are presented for each ps. The first'one,

when computations were done on a grid with spatial increment r=0.1,

and the second one (in brackets) for r=1./60. Number of iterations

for intermediate r values behave monotonically. Generally, with Pg

increasing, the number of iterations required increéases, which is due

L to stronger nonlinearity effects in Eq. (4.2.2). Generally it takes

less iterations to conferge on a fiher grid. ‘
£}
FIELD CONVERGENCE B

As was~said in Sec. 3.2 , the iterative procedure is driven by
pseudo-tiﬁb\derivagive, or relaxation, which are equvalent. [t was
also said, that we intend to employ an optimal sequence of relaxation
- par;meters, wit; which we expect the convergence to be .fast." There
are however conditions, which are sufficient to make Hachspres§

optimization efféct#ve. These conditions corraspond to the so ca}led

» - Model! Problem assumptions (Sec.3.2). In our case these assumptions

P et

are fuifilled in one case only, that is, dhen,ps= 0. When p =0, h is g

A

e ) L s
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constant, equal to 1., and we -can solve the model equation on a
physical grid Kjthout the necessity of using transformatjon. But if pS
= 0, the transformation becomes .non-trivial, the field equation loses
its canonical Laplacian form, and the resu]tihg algebraic scheme of
ADI procedure no 10n§er satisfies the Model Problem reQUiréments.
Practice shows however, that even though we depart from the Model
Problem assumptions, we may still—expect the optimal set of relaxation
parameters to work effectively.

In our computations we determined the optimal sequence of
relaxation parameters WyseooW as if the free surface was flat (h0=1).
Subsequently, the iterations were performed in cycles, each cycle

making use of the same sequence Q = (w Ca W,

. ). The following

1 e
observaiions have been made:

13 The autohatic set-up of relaxation sequence 0 worked for all
cases up to max{ho(x2}=1.31 (min{ho(x)}=.69), which is over 60% of the
reference static surface. (p = *+2).

2. When pgrforming'computations on finer and finer grids we might be

forced to drop some of tHe biggest w's to assure convergence of the

‘iterative -scheme.

3. In all cases considered, application of tﬁe optimal Wachspress
sequence § (opgimal when referred to'ps= 0) was mucﬁ' more eff¥ctive
than search for an~;ppropr1ate single gldba] rélaxation factor.

f. Let' us take for example the case of ps=1.85, which s close to
the referenée shr;ace{ and has large gradient hx compared to the .flat

interface ps = 0. (Assume that we perform comput$t1ons on grid of

/
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spacial increment r=0.1. If we determine a sequence Q as for the case
P = 0, the iteratfve procedure with this set @ is divergent. This is
) due to the fact that we_are far away frop the requirements of the
Model Problem.s Nevertheless, if the computatiooa} cycle is made
shorter by cutting off the largest w, the algorithm is convergent, and
it takes 89 iterations to get to results compatible with machine
accuracy. On the other hand, if we were to rely on a /sing]e global -
relaxation féctor (or time increment in a pseudo-unsteady setup), the
number of iterations would be much greater. Furthermore, a small
departare from the optimal w would yield a ;apid increase in the number
of iteratieons requi#ed to achieve the same accuracy of results. This
’. makes computations potentially much more expensive. Below there is a
graphical presentation of how the number_ of iterations depends on a
choice of a single global relaxation factor (Fig. 4.1). If we
applied optimal'sequence of relaxation parameters Q to the case
presented on Fig. 4.1, we would obtain convergence after 26 ite-
- rations, which results in the saving of 46% of computer time.
To gain a more detailed insight into the effectiveness of the
iterative procedure governed by automaticaily generated sequencé Q?.
Tet us consider the Table 4.3. In this table, for each tested grid
size, the following information is given: number of iterations, and a
set of a priori (ps=0) computed vglues of Q sequenée. Computations
were carried on.up to machine accu}acy. Three cases are presented:

A) siagnation pressure P™ 0 (flat 1h}erface)

8) Pg =1.5 (convex static interface of about 40% of elevation when

\




referred to full semicircle).

C) ps=-1.5 concave interface, of the same percentage as above.

\

Vet C 7S,
70.
s,
80.

ITERATIONS

'S8,

Y3

50.

45.

40.

NUYBER OF

3s.

sl b by b st by il

30. R LI L. SN2 SR AL AL NN SR AN AN SN S g |
000 .004 .008 .012 018 .020 .024 028 .032 038 040

QPTIMAL SINGLE RELAXATION ,FACTOR

Fig. 4.1 Number of ADI iterations v$ relaxation parameter;

grid spacial increment r=0.1, pS-1.§.
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The time required for a single ADI iteration (sweep in x and a sweep

in z directions) is as follows (Cyber 825):

TABLE 4.3 CPU time required for a single ADI step

with increasing grid dimension.
. X

‘Ax=pAz=r 1./10. 1./720. 1;/30. 1./40. 1./60.

time(sec) | .08 .35- - .75 1.4 2.6

g ¢

- =
-

It :might be interesting to have a Tlook at the history of,

iterations, as reflected in values of rasiduals. By re§jdua1 we
- .

understand the value of discretized field operatom 4%y = (Axxw

.

+ Azzw). ¥t s obvious, that-A%b = 0 only if ¥ is.an exact solution
of the discretized field equation. The following plots pre57nt two <

cases, j.e. Pg= 1.5 and Py = -1.5, each show1ng the h1st?ry of
b
residuals for iterations pursued with the best single relaxatmon
' )
factor (see -1e§end) and separately, when sequence f of optima]

k]

— -relaxation parameters are employed. Results presented were obtained

»

by computations on grid with r=0.1. .

-y,

. - 4
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4.2.2 - Acuracy of discretization.

As was discussed n Sec. 3.3, discretization of the differential
equation always produces an error. This discretization error depends
on the spatial increment of the grid r and on tﬁe varjation of higher
derivatives in- f%e neighbourhood of pivotal points. ¢ With grid
refining this variation is decreased, and the discretization error is
dominated by a power of r. With r decreasing, the error decreses to
zero. The rate of convergence of error to zero will be referred to,
in accordance with convention of Chapter 3, as tﬁe order of grid-con-
vergence.of the algorithm. 4

We are going to present the results in two ‘steps. First, the
attention will be  focussed an a particular case, i.e. when P = 0.
This case has an analytical solution. We will examine the order  of

grid-convergence by comparing the numerical solution to the exact one,

and also by comparing numerical solutions obtained on three grids with
_decreasing spatial incremént r. The purpose of this test is to find
out whether both methods yield simi1ar results. Similarity of results
is éxpected ‘to take place in a 1limit, i.e. " whenr —= 0. In
practice, we always opérate on small, but finite yalues of r. Hence,

it depends on the particular difference model how smatl r should be to

to assure that the 3-grid order estimation is valid. Having es-
tablished the order of convergence, we will address the issue of
extrapolation and its effectiveness in providing a highly accurate

approximation of the solution. -

In,- the second part of this section, the estimate of the order of




8s

.
grid-convergence of discretization &rror will be presented for cases
with an —trreqular surface, when pS# Q.

The mathematical model of the flow takes on the simplest form
when Ps= 0. In this case the static inferface iF_flat (ho=1); Since

&

the %10w domain is of a rggular, square shape, the transfo%matioh is
trivial and the field equagiOn is in the canonical Laplac1qn"form.
With boundary congitions specified as in Sec. 2.1, the field equatjon
has an analytical solution: ¥ =sin(mx)sinh(w(1-y))/(nsinh(7)). The
Table 4.4 ‘(below) shows the distances of computed values from the

exact solution and the appropriate estimate of the order of grid-con-

vergence. For the sake of completeness we show data for the function

as well as for 'its second. derivative.
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TABLE 4.4: Order of grid-convergence of the stream function equation -

when the analytical solution is known (ps= 0).

Computational

grids fv_- ¥1(660) | [v_ -¥ 1(610) tv,,, %, 2610

G10 5.4E-5 4.1E-4 | 4.1E-4

620 1.4E-5 1.03E-4 1.03€-4

G30 6.06-6 4.56E-5 4.56E-5

G40 3. 4af 2.57€-5 2.57€-5

G60 1.5€-6 1.14E-5 1.18E-5

P |
Order of grid-convergence (see formula (3.4.5))
rijables wo woxx *ozz

grids .
G10 : G20 1.99 1.99 1.99
G20 : G30 . 2.00 2.00 2.00
G30 : G40 | 2.00 1.99 1.99
G40 : G6O 12.02 2.00 2.00

In the above tabie and in the following discussion, ¥ is the
numerical estimate of the stream function. Computations were carried

out on five grids: 610,...,G60, woxxand wozzare finite differencé

[}
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estimators of respective derivatives of v, - As is seen, boyy 2Nd

wozz are equally djstant frém its analytical counterparts. [t 1is an
interesting effect, since boundary conditions in x and z direction are K
quite different. To make sure that results are independent of the \\

method of solution, the computations were repeated using point
cimplic?t Gauss-Seidel method, which yielded virtually the same results
as the ADI method+

The distances® of secénd derivatives from the appropriate finite

difference approximations are, as one may see-in Table 4.4, of one

order 1argér than they aregfﬁn the function. This is due %@ the fact,
- A\
kivative estimator 5}315 the superposition
} * i

1 . . ; g J o
of discretization errOﬁgred and égroors of componen¥ function es-
. B N “a Y

that the total error of de

« .

=y

timators e.: oy -/

Clyy g% ey_q) - 2(vy +eg) + (v,

B wkx- wxxz ed

N _ )
¢ + (e, - 2 e, ¢+ ei+1)/r=
Regardless of this difference, the order of grid-conggtgehce is about
2 for function as well as for derivatives. Sincefihe order that has
been est1mated through computations on grtds 610 and 620 1s 1.99, it

_may be reasonable to assume, that results based on these two grids.can

" be used for extrapolation.’ In fact, extrapolation yields the fol-

. e © X, a
“ A *

- N " n . - .



lowing; . - ‘

‘.
(€, 200) - ¥}(610) s 2.32 €-8 |
[Eqg 208 x0) - Y xD(610) = 2.13E-6 (4.2.2)

LY - ¥ : . -
IE10‘20(AZ;Q) ¥ __1(G10) = 2.13€-6 .

z2
which shows, that extrapolated field E(¥) is better than the field
computed on grid of r=i./60 (cgmpare Ta?le 4.4).

Data present‘ed in Table 4.4 'were obtaineb in an idealized
situation. ,‘that is when we have had an analytical solution avai]db]e
for comparison. In general, we are not in this comforteb;e position
and the griq-convergéncg QrdEt is computed exclusiyely from numerical
solutions. Let us look into Table 4.5. There we may find that the

..Order estimated on grids G10~G20-G40 ¥S 1.95 fpr‘w and 2 for Wxx and -
wz (we still consider the'case of p'-O) Now, usjing these estiMates,

[y

we may again look on the quality of ext(apolation
) - ¢

R I ¥
[E. 0, zo(w ‘?l(GﬂO) = 5.24 E-B .
) (Ewyzogy W) ? J(610) = {.76-6 . ' - (4.2.3)
: ;;1{10 ZO(AZZ ) - wzzn(ew)\= 2.7€-6
Tl ’ N | 3

-
-~ <

" which is worse than the one shown in (4.2.2), but still, extrapolated

. values are closer to the exact ones than those computed on the very

fine grid of r=1/60.- . ‘ oL

Wheh dealing with capillary flows, we might be interested in the
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h%gh accuracy of.some of the field derivatives at the free 'durface.
Since we discuss extrapolation- as a possible method for obtaining more.
accu;dté results, one might ask how we Should carry oqt an. effective
extrapolation for gerivaﬁives. Obviously there are two ways of do%ng
this: either by using the ;cheme E(Axxw) or Ath(w)' The first oﬁe iS
extrapolation of the derivative estimate, while the second one is
expressing derivatives as the appropriate finite difference of extra-

polated valdes E(v). Here we . confine our attention to the.second

derivatives. If extrapolation is performed using results obtained on

gfids G10 and G20, we obtain what follows:

7.6E-4 (4.2.8)

IAXXEW) - \i‘xxl(Gio) =

IAZZE(w) - WZZI(G‘IO) = 7.5E-4

lexE(w) - AXXYI(G10) = 1.17E-6 , ‘ (4.2.5)
lAZZEN’) - Azz\l‘](Gw) = 3.6E-6

L4 hd -
-

~ ~

-

We should recall tﬁat [E10’20(¢) - %l = 5,24 Ei]' ‘Thig resu]t;'
in high accuracy in ({4.2.5). But what we want is accurate estimate
of the derivative not 6f the differenceé formula Axx;' Results shown
in (4.2.4) are worse than those in (4.2.3). This is.a consequence of
truncatton error, which- for grid G10 may be relatively high. It
follows, therefore, that extrapotition of derivatives may yield better
results than eﬁﬁimating ¢Er3vatfves using extrapg?ated ;tream funétion

values. This ebservatidon -seems "to be of the general character,

L)
-
4

.,
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applicable to anx,finjte-djffereﬁce algdrifﬁm, not oh1§ the Asymptotic
one. Sincg computations of the stream function are decoupled from
determination of'tne interface, we ma; proceed- as foTlows:

a) Make sure that the order of grid-convergence is as expected

from the thegry. 4 . _
b)‘Compute field on two grids, say G10 and G20 and extrapolate
i N

c)_ Substitute extrapolated Azw~‘into equation (4.1.9) describing

s correction of the intérface. . :

This procedure may provide a highly accurate estimation of lhe sﬂape
of the _interface withouls the necessity of performing'cost1y compu-~

tations on fine grids.

IRREGULAR GEOMETRY

The first part of this Section was restricted to the case of the

.flat static interface (ps=0). Now attention will be focussed on the

genéﬁallcase, when stagnation pressure p

% is not equal to zero. The

, first ocbservation which is to be made,vis that the flpw field equation

“is losing its canonical Laplacian form and has a more complicated

structure (4.2.6). This may cause deterioration in the behaviour of

the truncation error because of the variable coefficients of ' the

. differential equations. In the equation for the stream function, the

coefficients are expressions 1invalving ‘funcéiog h(x) and 1its de-

_rivatives (see Eq.(4.1.9). Before we comment on this equation, let us



.
e v - m b s

"

1nter10r of the computationai domain.

’

present results, which‘are'aiven in Tables 4.5-4.8. Each table shows
the order ¥ grid—conyergeﬁce of the discretization error. This order
js estimated on the basis of results computed an three grids Gk c Gl1C
Gm. For the sake of completeness we show data not only for the stream
function and interfaée,' but also for all derivatives appearing
expiiéiteiy in the qoverning equations. Each table has a 9escriptive

head. identifying a’perticular cazs by specification of Pg> C and €,

For all cases € = _.05, which, as will be shown in Section 4.3.4 ,

" satisfies assumptions of the Small ‘Deformation Theory. '‘Interior'

‘e -~

here means that we tiﬁe into account only values in the interior of

the solution dqmain. When using 2-nd order' discretization for

'Dirichiet -type bOundary conditions we compute only the values in the

S

DESCRIPTION OF TABLES ANS COMMENTS

1. The tables pfe&%nt results for the following values of Pe

-1.7,-1.6,-1.5,- 0., 0.4, 0.8, 1.3, 1.5. On the graph below we show
respective.static interfaces from the lowest (ps=-1.7) to highest (pS

=1.5). ¥

A

2. For ailt ;éases considered, the grid-convergence order for the

strean function EStimate w— is not worse than 1 95, and in al] but one
case (p =1, 5} W is of order 1.95 or better. We pay attention to woz
because this derivative enters the equation determining correction of

the shape of the inﬁerface.
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Therefore a proper ordér °%~woz might be decisive in obtaining desired

accuracy for the final numerical estimate of the shape of the free

surface h(x).

~

3. Best resulfs. were obtained for.psz*o. The further we go from

this static intérféce, the worse are the results for the fixed triples #

>
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-

of grids Gk, ,Gl, Gm. This is reflected in particular in worsening of
the grid-convergence order for higher derivatives of Yy and h. But,
what seems interesting, the deterioration of order is not the same for
convex and concave domains. The results for p . > 0 (convex free
surface) seem to be worse than for Py <0 (concave free 5urface).' In
fact, for computations on concave domain, denser grids are required to
) maintain the desired grid-convergence order if the stagnation press@re
is P ™ -1.7 or lower. On the other hand, when;the static surface s
convex, this requirement comes into effect when psi1.3. As one can
see, the curvature of the static free surface with P =1.3 is much

smaller than the curvature of the concave one, when ps=-1.7. Another

observation that may be stated s that when considering V only,

computations with ps=-1.5 or ps=-1.6 provide results which look better
{order=2 for all triples Sfjgrids), than in the case of P =0. This
suggests that numerical computations yleld results less biased by
discretization errors for coﬁcave static interface than for the convex
ones.. The reason for this is probably transformation of the var-
iables. Regard1?ss of the physical case considered, we always apply
uniformly distributed grid spanned on thg square domain which is the
image of the physical domain through transformation (Fig.3.1).N9w, if
the inverse transformation is applied to the discretized domain, the
respective physical grid is much. denser in the vicinity "of the free
.surface for concave interfaces than for the convéx ones. This gives

some explanation why comﬁutations on a convex domain need denser grids

to yield the order of grid-coﬁbergence comparable to that estimated on




concave domains of similar curvature of the free surface.

Sl

Another explanation for the better performance of the algorithm
on concave domains can Dbe provided by analysis of coefficients of
z-derivatives of function ¥ [see (3.2.a)).

- .
These coefficients for ¢ wz , and sz are as follows:

- Cz(x) = (2 h2 - hxxn)(x)ﬁ
= 2p2 + 1
» c,, (x)= ziﬁ he + 1)(x) o (4.2.7)
sz(x)= B h .

For simplification let us omit mixed derivatives as being computed
outside the actual ADI scheme. Consider two-geoﬁetricéiTy symmetric
(symmetry with re#pect to ps=0, or equivalently, h=1) case p = 2 and,pS
=-a, O‘ <a < 2. Since this symmetry is reflected in function h(x) and

its derivatives, we may state the following:

C (X,a) s C (%a-a) ’

4 2
2zh - ; .
= —X + X n : 4.2.
c,(x,2) vl | . | (4.2.8)
22zHh

~ x Z *
\\\ ) cZ(X. a) T T h L
from the above it follows that the inequality cz(x,a) > cz(x.-a) holds

- at the left and right boundaries of the unit interval [0,1], and hence

in their yicin%ty. This 1inequality may grow stronger ‘with the

* [ ]

N

. o aed
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increase of the parameter 'a'. Further on, 1in the' process of
discretization of (3.2.a}, ¢, fx,a) is multiplying the Lagrange
residual of the discrete approximation of WZ . Therefore, since
cz(x,a) > cz(x,-a), the variation of the residual is enhanced if pP= a
{convex static free >surface), compared to the case P =-2a. This, in
turn, may result in a lower estimate of the grid-convergence order for
pe = 2, compared to p.=-a, if in both cases (convex and concave) the
same grids ar; utilized.

4) Let us examine tables with ps=-1.7, 0.8, 1.{, 1.5. fFor these
cases certain derivatives of ¥ apd h{x) are of lower grid-convergence
order. It means that in order to have this order increased to the
expected value of 2, we Qou1d have to perform computations on finer
grids than those already employed. We cannot use extrapolation with

—~—

the grids presently employed. , -

- N hd 5
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4.3 Qualitative Effectiveness

of the-Algorithm based on Small Deformation Theory ~
“In this subsection we shall consider the problem of determining
the 1limits of. applicability of the Small Deformation Theory. As is
. ]

seen on the Flowchart (Sec. 4.1), the final shape of interface is
h(x) = ho(x) + (ah)(x) = hy(x) + €h,(x) (4.3.1)

Computation of she static free surface défonhationvis decoupled from
the field, i.e. h 1(x) is being determined after the first appro-.
ximation of flow fieldfis found. Hence the Asymtotic Algerithm
depends actually only on a single parameter, i.e., on the assumed
stagnatﬁbn pressure ps. The Elgorithm .does not use the capilTary
number C; this information is uséd only during the last step, when we
formulate estimate (4.3.1), where C is implicitly present in € (see
Sec. 4.1). Below we will analyse approximation (4.3.1) and try fo
determine range of € values for which the Small Deformation Theory fis
valid. Sinceﬂ smallness of € is fundamental, this issue will be

discussed first. : N

Let us recall the dynamic boundary con@ition:

* .

(hO + h),, o ’ .
+p - (CV2)|V]2= 0 (4.3.2)
(1"'(h°+ h);)ya s .S

. { Co
By assuming ah =.Eh1 + e‘h2+..., v o= wo 4+ € byt and applying the

appropriate series expansion we obtain the following:

o7

":
, 4
FI)
o
+ ,"iﬂf
-
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1 30 5 xxMox -
1xx—+' - h1x——-v:—)'+ €*... = EJV|?* + €*... (4.3.3)
. 2 ¥z 2 - ) .
(1-+h3,) (1+h2.)
Some terms in this equation were dropped as contributing to the static
surface equation, and C(0.5 V;) was set equal €.

We kno® very little about the magnitude of terms associated with
€2, €3, etc. But if we assume that C << 1, then due to the assumption
that deformation of the static surface is small, we may assume sthat

P {

magnitude of terms muitiplying €° is negligible when compared to €.

In effect all terms on both sides of the equation -(4.3.3) containing

second and higher powers of € can be dropped Therefore we may feel

justified when assdming the final solution to ke in the form h = ho' +
Eh1 ‘for. small €. The above reasoning may be\stated formally in the
following: way:

€* is small if and only if h - (ho + €Eh is 0(€%), i.e.

’ 2
h-hor §hy)
2
s (nge Egny) €, (4.3.4)
- for 6, 6 < E* | .

To give a precise account of how the éoncept of small € works in our

prottlem, let us start from the table of‘distaﬁces [hd -h ], where h

. D

is a total free surface shape obtained from the _Small Deformation
Theory, and hd is the actual interface computed by a Direct Algorithm
(éee CHApter 5). Hff’ the Direct Algorithm results ‘are -used as

-

reference for values obtained by application of the Small Deformation

-~

.\1
3
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TABLE 4.9 Distance between the free surface solutions -

computed by the Asymptotic -and Direct Algorithms.

(S : Direct Adgorithm does not converge)}

1086

A
€ 5 4 .3 2 1 @ .05 .025
pS .

. 0. 9.6E-3 5.86-4 3.1€-4 1.3E-4 3.1E-5 7.6E-6 1.9E-6
1.5 | 4.26-3 2.36-3 1.2E-3 ;A.BE-A 1.1E-4 2.6E-5 6.4E-6
1.85 | 3.9€-3 1.9€-3 8.96-4 3.3E-4 6.8£-5 1.6E-5 3.8£-6

1.5 | 3.16-3  1.76-3  8.6E-4 3.56-4 7.9E-5 1.9£-5 4.7E-6
-1.85 3 $ 6.6E-3 1.9€-3 3.76-4 8.2€-5 “1.9E-5

- v
Now, let us try to find the biggest €* for which relation (4.3.4)

holds. For the sake of clarity instead of examining (4.3.4) we

—

1n(a,(n -(h_+€_h 1) - In(a,lh -(hofendn1])

Jook at equivalent formula:-

-—

had 0

[N

4

ln(a1€n) - 1n(a26n+1) .

will

where éubscript 'n' is the index of dé&reasing sequence of E's, and

constants a, and a, are set arbitrarily for convenient presentatidn of

the numerical results (g1=e/1.8765-6, a2=e/6.255e4).

We expect the

above ratio to approach a constant pfopor;ionality factor as € s

.




decreased. Below we present the aggregate table
proportionality factor converges to a constant

different € and ps.

TABLE 4.10

Small Deformation Theory-

Examination of the criterion (4.3.4) for smallness of parameter €,

for selected values of stagnation pressure Ps-

showing how

value of 1

107

the

for

p.| O 1.5 -1.5 1.85 -1.85
5
0.5 0 0. 0 0 0.
0.4 1.104  1.349_  1.361 1,53 ' 5.159
0.3 1,127 1.175 1.184 1.365 43.359
0.2 1,073 1.112 - 1.126 1.25 1.542
0.1 1.031  1.062 1.063 1.131 1.18
0.05 |1.017  1.022 1.028 1.048 1.083
0.025 |1.007 1.025  1.008 1.032 1.029

Let us assume that if the proportionality ratio is smaller that

1.1, we " accept roéggctive € as sufficiently small. From this we may

see that for different cases of stagnation pressure we have

a

different maximum acceptable Ef . Generally, the bigger the static

- e m s e



free surface curvature is, the smaller is acceptable C*, as
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~ -

shown on

the following diagram:

.20
.18

16

12

10

FEASIBLE €

o8
o8

MAX.

0a
02
.00

Y

Aa bbbt ta o latatty

1 T 7T
-2.0~-1.6 -¥2

rrrrrr r 1T T
-8 -.4s .0 .4 .8 1.

STAGNATION PRSSURE

-

Fig. 4.5 Maximal feasible value €* of the asymptotic

parameter, as a function of a stagnation pressure.

. From the Table 4.10 it may be also seen, that the in the case of the

concave static surface (psk 0) the restriction on € is stronger . than

in the case of the convex one with the same curvature.

Let us ‘- now turn our attention tpfthe problem mentioned earlier,

that is the problem of limitations which must be imposed on the model
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~
parameters to make the solution consistent with requirements of the

Small Deformation Theory. .
Let us recall that the . structure of the Asymptotic Algorithm
requires selecting the stagnation pressure first. Having done this we
find static interface and the first approximation to the flow field.
From this we may estimate the maximal speed of the fluid along the
interface (Vs- which dis the surface velocity scale). We are unable to
p;ovide an analytical expression for the péxima] value of the €
parameter? But exper{mentation documented in Table 4.9 may provide
some estimates of acceptable € for a given case. Data presented so
far provide basis for the estimate of the upper bound qf acceptable €
for various values of ps. Having estimated maximal value of the
parameter 6*, and knewing suxface velocity scale V , we may set  upper
bound for feasible values of the capillary parameter C. The table
below shows experimental estimates of C*, and. in consequence, the
restriction on the value of C for different stagnation pressures p
The above procedure provides bounds on paraneters of the phys1!il flow
so that an applicqtion of the Small Deformation Theory is justified.

TABLE 4.11

Feasible values of capillary number C for Small Deformation Method

pS -1.85 -1.5 0. 1.5 1.85 s
ox .05 - . .2 . .05

C< 1.25 2.63 27.5 80.6 113.6
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Despite the geometricdl symmetry (with referﬁhce to static surface
h=1, or equivalently, ps=0) of the presentéd cages, bounds for
capillary parameters do no; d?sp!ay a similar behaviour, Therefore
application of the Small Deformation Theory implies stronger bounds on

-~

feasible values of the capillary parameter when static free surface-is

.

more concave. This constraint is aglaxed with the“increase of ps.

4.4 Algebraic stability

When dealiﬁg with the equation of flow fie]?,‘ﬁe have confined the
discussion to a numerical solution when the static interface is fixed.
This follows from the methodology of the Small Deformation Theory. We
do not use, however, the exact algebraic solve; for the .resulting.
system of algebraic equations, but an approximate iterativ® scheme of
ADI. Therefore it is impqrtant to examine the algeBraic stability of
equations to rule oﬁt a possibility that round-off errors couldeaffect
the final numerical results. The convenience of pursuing the analysis

for the fixed free surface is, that the coefficients of tha stream

function equation do not depend on the index of the ADI iteration.

Although the static interface in our case is of a circular shape
only, we will pursue stability ana1ysi§ for a sinusoidal shape: which
may be generalized to any free surface of " a polyharmonic represén-
tation.

Let us consider free surface of a harmonic character:

-

e e
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- h(x) = 1. + A sin(2nx) (4.4.1)
b . . - . . . .
The subsequent anaiysis will impose restrictions aon the grid spatial
A increment r and relaxation factor w, Ws sufficient condition for the

Algebraic Stability of the finite dM™ference model of the stream

function equation.

For the 3-diagonal system of equations of the form:

[

¢ -a.u. +b.u. ~c.u... =4d. a.4.2
a5us g% bju; €{Y541 ; ( )

J*r

the sufﬁicient’tond1t10ns to avoid 1ill-conditioning of Thomas Al-

-3
gorithm are (Smith [27]): é;?%é%?

Ny

(4.4.3)

. If one takes into &onsideration the discretized form of cur field

equation, it is known that it genera?z;,ui&ﬂip the ADI procedure two

systens of linear equations. The system constifuting. the x-ADI sweep

>

has constant coeffickents, which trivially satisfy all the above

requirements. ™ is in the z-ADI sweep, where coefficients resulting

from change of variables come into play. These coefficients. are:

3h3+“'

ay® -2—,,;-.1(211' - h_h) *‘T(—Jﬁ'——)
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b_=_2_(_.]x_} +ow (4.4.8)
rz hz

ry

z. 1 Z2.h? + 1 -
c.= —l(2h% - h h) + (X y

Vs J oppz X XX r? h2 .
) -

Condition (i1) is trivially satisfied, if only the relaxation

factor w is positive. :

’ Let us consider requirement (iii). The coefficients in question_

are as follows:

Z.+r 1 (z.+r)2%h2+]

a. = - —d_(2hz - h h) + ( X ) -
J 2rh? XX r? h?

2 23h? )
B: = £ —lX 4+ (4.4,5) -

- J r h2

Z.-r (z.-r)?h3+1
c. = -l _(2n® -h h) ¥ b (—d S
J 2rhz X XX ] h? )

L ]
i + 113 = = in:
By adding aj+1 Cj-]’ anec{eca ling that Az Ax r, fe obtain

2.h? + 1
X

Eha !
= o 1 2 _ 2 X
TSRS g UML) h? ) 25

Q

j-1
Therefore the requirement (4.3.3-iii) results in the following:
2h, 1
- a .
" ThT T hT (th hex) < w

or simpler:

-~
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h .
XX W (4.4.6)

which is the condition 1mposing;the lower bound for the relamation

coefficient, or time increment.\vg-we set At~ 1/w.

For the function h(x) defindd by (4.4.%} tmé condition requires

smgller 1/w with 1ncreasing amplit A.

This 1s shown on the table

below: .

TABLE 4.12 Constraint on the field relaxation as a functioﬁ

of the amplitude (for harmonic free surface).

2

* Amplit. .30 .35 .40 .66 .8

- 1/w ;< .059 .048 .038 .013 006 |

G

~~ -
It is worth noting that whenever h > 0 and nxxg_o (1ike all static

free ﬁurfaces of cbnvex shape), conditfon (4.4.6) is satisfied éhd,
therefore, requirement (iii) impqsﬁs no restriction on the relaxation
factor w. ) . &

_ Let us examine now the condition of aj, bj, Cj being positive.
Certainly, bj is positive, but examination of aj and Cj is more
involved. As we will see, this cbnditjon will lead to a restriction

on' the spatial increment r.

Let us consider the expression defining aj(see (4.4.4)):

L 4

-

-
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)
1 23h% + 1 z (2h = h h)
X _ X XX
r? h? 2 r h?

s~ N
If Zh: - hXXh > 0 then aj> 0; hence this is interesting only when we

want to assure that cj> 0. If 2h; - hxx h > 0, then cj > 0 (see

(4.4.4)), but the sign of aj must be examined.

Examination of a.> 0
v .

Index J is th mn index. We want to be sure that a.> O for ever
J ?/CB*Q j , y

-J -

/

. column, or in the limit, for any argument x € {0,1]. We should =also
“‘remember that 235 [0,1]. Consider the interval Jc [0,1] suﬁﬁ;that

. o . g 2

M~

'  §

. -~ S
v(xEJ)(a(\-nxxh>o} A

In general, if J # @, it is obvious, that aj>0, and only condition cJ

- ?

>0 is left for consideration. But for the function as defined by
?1.1.1), J is non-empty which can be easily shown.

As is seen from'(4.4.4), coefficient aj is a function of horizontal
and vertical variables;.aj=aj(x,z). Given the definitien of a we may

state first the following:

Proposition 4.1 .

a.> 0 for sufficiently 'small x_.,, j=t,...m,

A J

where m is a number of columns in z-ADI sweep.

Proof: Let us assume, that for some real B>0 the following holds:
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Z
|-z} + Zh hj > B

Lét us determine r so that
. 1850
- vor
If so, we have the following:

_1_+(-zh3+£h h ) s ~ -8B 0
r X 2 xx -
On the other hand:
z23h3i+] 1 1
X __-zha + Zh h > 4+ (-zh2 +%2h n)> 1 -B>0
- X 2 xx - r X 2 xx

which shows, that having.assumed boundedness of the express%on in the
first step of the proof, we may always find sufficignt]y-sma11 r such
that aj> 0 for all j and for z € [0,1]. ~ :
In the same way it may be demonstrated that cj> 0 for sufficientiy
small r. ’ . |

The above Proposition is the way of assuring aj>0 prdvided r is
sufficiently small:

aj> 0 iff r<?
l‘
z(2hx hxxh)

z‘h; + 1

= g(x,z) (4.4.7)

Examination of g(x,z) easily leads to the observation, that for fixed
Yy ’
X;E J, g attains minimum at z:

f. .
1
if [ho(x )] 21 .

. h
z = ,J | "(x°” (4.4.8)

1 if [h (x )M <"1

e
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1 9
If minimum is at z=1/hx, we get the following upper bound for r:
2 a dpa :
< 2(1/hx)hx + 1 ) 2(z h: + 1)
F - 2 _
(th hxxh)/lhx! z(nx hxxh) (4.4.9)
and after simplification:
4in_| (4.4.10)
X -
r <
2h? A h h x €J, h> 1,
x XX X—
If x €J and hx <1, g(x,2z) is minimal if z=1. We therefore get:
. h? + 1 - .
9(x,2) = 2—F——— > 1 (4.4.17)
2h_-h " h
\X XX ~
The§e results may briefly §fated as follows:
Proposition 4.2
To assure aj> 0 it is sufficient to have:
f'
4in_|
X for |h_|>1
2 ht - h__h X (4.4.12)
r < < '
2(h; + 1)
for |hx|£1 .
2h? - h h :
L X XX
. 4
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h=h+¢€Hh
0 1

where hois the static interface and h, is the correction which is the

1
solution to the following differential equation:

i Ink

S X oxXx .y |

XX (1 +hz )F2 VX (142 )Y o8
ox 0X

T

C(0.5 V;), whétg\c is the capillary number, V

Let us recali, that € .
is a maximum of the f]ﬁid speed along thHe free bounlary. VS depends
on the stagnation pressure and selécted flow across the bottom section
of the slot.

The first remark concerning the above equation is that if speed
along the free surface Js zero, then correction h1 is zero too. This
is obvious, since when there is no flow, the interface has a static
character.” The second observation is that when assuming positive
speed along the intérface; we always get non - positive gorrection h1.
This is not to be wondered at, since with a non-zero velocity field,
static pressure decreases compared to stagnétion pressure (as can be
sgeﬁ from the Bernoulli equation). Further on, decrease of the static
pre;sure causes the interface to subside below its static position,
provided surface tension T is kept constant. _Th1s effect {s shown in

Tables 4.13-4.17 below.;//}he tables are intended to demonstrate how
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To assure cj> 0 we need Eo consider only these values of arguments x,

for which 2h; - hxx h<0, i.e. x € [0,7]\J. The condition e 0
implies: |
22h? + 1 .
g(x|2) = 2 J X i r 3 ‘. .
z(h _h - 2h?) {(4.4.13)
XX X R

It may be shown, as before, %that g{x,Z) reaches its minimum with

. ) «
respect to z if - -
*
$ - ,
.h y’
. ' 1 for jh_|> 1
x— -
] z = Ih| (4.4.14)
f 1 for |h_|> 1
N X' =
-
» . T .
VT Minimization of g(x,z) with respect to z and x yields similar results
L Y
as before: -
r
4|h | for {h |> 1
- 2
X < < hxxh 2 hx (4.4.15)
2
Z(hx + 1) . fo.r [J1x|_>_1
L h. h -2 h? ’
XX X

Combihing together formula (4.4.12) and (4.4.15) we arrive at the

following statement:

<o

.

B I -t P T L I



118

Proposition 4.3
To assdre aj > 0 and cj > 0, space increment Ax =Az = r of the

computational finite difference grid should satisfy the following

constraint:
L ]
C ain | for [b, 1> 1
- ]
. |h h -2 h?
- < 2
2[hx_+ 1. for }hx|3_1 . (4.4.16)
[N 2 '
IhXXh -2 hxl
.
* EXAMPLE 4.2

The table belaw shows the upper bound for r when both aj and c. are
required to be positive. Hére we refer to function h(x) as defined by

(4.4.1)

[

Amplit.] 0.3 0.35 0.40 0.66 0.80 ' ’

r< | 0.13 0.107  0.091 0.046 0.035

[t is interesting to have these estimates compared to results
obtained from examination of the grid-convergence of discretization
error. If A=0.3, from the table above it foilows that r should be
smaller than 0.13. It means that computations on grid 10x10 +are not

exposed to algebraic instability. In fact, the grid-convergence ordgr

© of discretization errorc;hen computed on grids 10-20-30, ha7 the value

2.
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|

\, |
> . /

. r,"
[f A=0.6, the restriction is r < 0.98 which meard fhat grid 10x10 may
be insufficient to.provide stability. In fact, the order computed on
grids 10-20-30 is 1.85, while when finer grids are used: 20-30-40, the
order is 1.95. In the former case it is likely that the 1lower order

is caused by excessive round-off errors of computations on grid 10x10.

EXAMPLE 4.3 ' .

¢

Let us return to to the static interface of a,.circular shape, which is

the -case for the ideal fluid flow. The equation of this type of- free
. . \ M

surface has the following form:

S

hXX
. = -p

+ ha)¥2 S
(1+ n2)

¢

o P
*
- -

Let us examine algebf%ic stabi]ity_condigiqn§ for this.case:

. -

i b. a. +c. if onl w>20
{,‘ ) j > j ¥
d (ii) bj > a. .+¢

i1 j-1‘f hxx <0 (or equivelently ps>0):

..
\
If hx‘;js positive, (copcave static interface), relaxation parameter w

must fulfill the following inequality: °

w > =X for all x 6 [0,1]

A

This constraint is illustrated in the table below: 7‘_ Vs
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TABLE 4.17 : Deformation of the static interface,
when stagnation pressure p =-1.85 (€=-0.62).
, 5
- x, |01 0.2 0.3 0.4 0.5 -
- h{x;) | 0.842 0.756 0.703 0.674 0.665
AR = € hix,) |.1€-2  -4.0E41 -4.61E-1 -4.96E-1  -5.08E-1
curvature ~——24E-0 - 39E-1 .23E-1 .23E-1 . 24E-1
of Ah , A .- :
) . &>
. TABLE 4.18 : Maximum Speed along the Free Surface
(magnitude of scale V;, for digferent static prssures.
Py |
- P 0.0 . -5 1.85 -1.5 -1.85
L TV 7.25€-3 T.24€-3 8.80E-4  3.80E-2 8.E-2

. . . 1% can be seen from the above tables™and the following figures
- . ‘'» -

-"I(Fig. 4:6.a; 4.6.b), that except for the flat surface, the correction

ah changes fastest near the solid boundary of the interface.‘ This is
reflected in the curvature of the correétion Ah (see Tables 4.13 -

‘ ;.17). Another interesting feature is, that deformationt Ah are much
. .greaté? if the static fhterface is cencave (ps=-1.5, -1.85) compared
to. the convex cases (Ps-1.5; 1.85). Th%e may be exblefhed by the fact

. . .
| " that for the concave static interface the velocity of the fluid at t

free surface is larger (and so is z-gradient of the stream functio
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where hois the static interface and h1 is the correction which is the

solution to the following differential equation:

1 3h kK
h1 + h1 OX (¢2. 9.8 - | V ‘2
XX (1 4+ pz )F2 X (1 + hz ¥z —0s
ox ox

h,= 0 at* ¥ =0

Let us recall, that € = C(0.5 V;), whétg\c is the capillary number, V
~N

s
is a maximum of the f]ﬁid speed along t free boungz;y. VS depends ———
on the stagnation pressure and selécted flow across the bottom section
of the slot.

The first remark concerning the above equati?on is that if speed

along the free surface Jis zero, then correction h, is zero too. This

1
is obvious, since when there is no flow, the interface has a static
character.” The second observation is that when assuming positive
speed along the interface, we always get non - positive correction h1.
This is not to be wondered at, since with a non-zero velocity field,
static pressure decreases compared to stagndtion pressure (as can be
}geﬁ from the Bernoulli equation). Further on, decrease of the static

pressure causes theg interface to subside below its static position,

provided surface tension T is kept constant. This effect is shown in

Tables 4.13-4.17 below.;//]he tables are intended to demonstrate how
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corrections imposed on the static interface depend on initial surface

shape ho' A1l results are obtained for the same capillary number

the assumptions of the

£=0.62, which satisfies Small " .Deformation

Theory. It may be demonstrated that with this value of C, for all

cases presented below, € is not larger than 0.05, and this value was

found to satisfy the criterion for validity of the asymptotic method. ~

J

TABLE 4.13

: Deformation of the static interface,
when stagnation pressure Pe* 0 (C=0.62).
X 0.1 0.2 0.3 0.4 0.5
h(xi) 1.0 1.0 1.0 1.0 1.0
h = € h1 -5.6E-5 -1.1E-4 -1.566-4 -1.88t-4 -2.t-4
curvature L21E-3 .76E-3 .15E-2 ..ZE-Z .22E-2
of* Ah
TABLE 4.14: Deformation of the static interface, (
when stagnat}on pressure p=1.5 (C=0.62).
X 0.1 0.2 0.3 L 0.4 0.5
h(x.) | 1.092 1.154 1.195 1.218 1.226
h = € h1 -4 .1E-3 -6.3E-3 -7.48E-3 -8.09€E-3 -8.28E-3
curvature .20E-2 .97€E-3 .55E-3 .42E-3 -+ 38E-3
of Ah

; - - - ’ g - - . N .




N

L N
TABLE 4.15 : Deformation of the static interface, ’
R when stagnation S}essure Pg=- 1.5 (C= 0.62). ' ¢
X 0.1 0.2 0.3 0.4 0.5
h(xi) 0.908 0.846 0.805 0.782 0.723
h=€h, -5.4E-2  -8.9E-2  -1.15E-1 -1.30E-1  -1.37E-1
curvature .19€-1 .96E-2 ~.88E-2 .11E-1 J12€E-1
of ah
TABLE 4.16 : Deformati.on of the static interface,
when stagnation pressure Pg= 1.85 (C= 0.62).
X 0.1 02 0.3 0.4 0.5
h(x;)| 1.158 1.244 1.297 1.326 1.335
- b
h = € h1 -6.9€E-3 {8.4E-3 -9.00E-3 -9.30t-3 -9.37€-3
curvature .54E-2 ' .86E-3 .34E-3 .19E-3 .16E_-3
of &h
»
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TABLE 4.17 : Deformation of the static interface,
' when stagnation pressure p_=-1.85 ((=-0.62).
, ¢
) x. |01 0.2 0.3 0.4 0.5 -
~ h(x,) | 0.842 0.756 0.703 0.674 0.665
| an = ¢ hix.) J1E-2 -4 .0E=1 -4.61E-1 -4.96E-1  -5.08E-1
curvature ~——24E-0 -.39E-1 .23E-1 .23E-1 .24E-1
of Ah \ ..

. &
. TABLE 4.18 : Maximum Speed along the fFree Surface

(magnitude of scale Vg, for digferent static prssures.

e
’ P | 0.0 . Q.5 1.85 -1.5 -1.85
A © V. | 7.25%E-3  T.24E-3  8.80E-4  3.80E-2  8.E-2

-

. . . It can be seen from the above tables™and the following figures
- . - [ Y -

-.‘f(Fig. 4:6.a; 4.6.b), that except for the flat surface, the correction

Ah changes fastest near the solid boundary of the interface.‘_This is
reflected in the curvature of the corre&tion Ah (see Tables 4.13 -

‘ ;.1?). Another interesting feature is, that deformationt Ah are much
L- \greatéF if the static ihterface is concave (ps=—1.5, -1.85) compared
to the convex cases (PS-1.S; 1.85). Th%e may be exblefhed by the fact

T d L]
Rt that for the concave static interface the velocity of the fluid at t

free surface is,]arger (anmd so is z-gradient of the stream&functio
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- , .
compared to the convex interface. It is of course assumed that the

. boundary conditions of the system remain unchanged, and that al)

results presented are referred to the same velocity scale V and length
scale L. This implies that fix%ng the value of capillary number C
(C=0.62) is equivalent to fixing the surface tension T for all cases
selected for the numerical experiment. T;é correction Ah shown in
tables and on Fig. 4.6 a-b, describes the deformation of the static
free surface having constant surface temsion, but different flow
field. Changes of the flow field are entirely dependent on the shape_
of’ the static urface. We may conclude, as a consequencg. that the )
same -surface tengi

on allows 1arggr deformation of the free surface

when the initial static interface is more concave.

. LEGEND 2
t -8-P, =-1 8%
-O-P‘ ==13

O0E + 00
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~ 12€-02
~ 18€£-02

- 24€-02
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w e bt b ba g talala

~ 30€-02
- 38€£-02
~ 42€-02
~ 48€-02

~- 34€-02

.
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Fig. 4.6.a: First asymptotic correciioq Eh{

(pS=-1.85,IpS=-1.S) .
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CHAPTER § ’
DIRECT ALGORITHMS

5.1 Introduction

As was stated in Sec.2.1, the analytical model of the physical
flow under consideration, consists of the flow field equation and
boundary equations, one of which is the balance of normat forces along
a fr;; surface. There are two unknowns in this system: the flow field
and the free surface shape. In the preceding chapter, based on the
Small Deformation Theory, we have separated the flow field solving
algorithm from the one determining the free surface. In the Direct
Method we solve.the system for both unknowns simgltaneously. [t makes
the computational scheme more complicated, but we evade restriction,
which limits the asymptotic algorithm to cases showing only a small
deformation of the static free surface.

The problem of simultaneous solution for Y and h, generates the
mathematical problem of finding a solution to a system of nonlinear
coupled differential equations. Both equations contain fwo unknown
variables. For the sake of clarity, let wus recall that the ma-
thematical model of the flow is formulated as presented in Sec. 3.2
by Eq. (3.2.2)-(3.2.3). T )

) If we choose Matrix Algebra as a vehicle to solve the above
system, we have to arrange linearization. Therefore the resulting

algorithm will be of . iterative character. A particul§¥ method of

linearization gives rise to specific algori;hmﬁ; We will discuss two

.

138
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of them: the Picard Method (Sec.5.5) where linearization is of the
first order, and One;Step Algorithm (Sec.5.6), which - comes from the
second order, Newton Raphson Linearization of thé governing eguations.
Apart from non-linearity of the system (3.2.2)-(3.2.3) we have
mentioned also another problem: the number of algebraic equations.
Since this number is excessive, we will not solve the discretized
system by matrix inversion, but jnsfead. by application of the
approximating iterative scheme of ADIx This introduces another -
iterative procedure into the algorithm. As a result, the direct
algorithm will consist of 2 iterative loops: the external one for

nonlinearities, and the internal one for thédapproximate solution of

the linearized system. These two loops may be logically implemented
in a number of ways, and we will discuss this problem when discussing
Picard and 1-Step Algorithms. The general scheme of direct algorithms

is eresented in a flowchart at the end of this section.

As was mentioned, the mathematical model consists of two equa-
tions.' Whenever the algorithm is found to diverge, it was either by
divergence of the flow field, or it was due to diJergence of £he
solution to the equation of dynamic equilibrium at the free surface.
The problem with convergence of -the field equation is dealt Wwith in
subsections devoted to algebraic stability. The equation of the free

surface deserves also a special attention and we elaborate ort it in

the first three sections of this chapter. Section 5.2 discusses- the

problem of the existence of the solution to this equation. To make

{
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that question tractable, we confine ourselves to the assumption that
the velocity of the fluid along the free surface 1is known. The
existence of the solution will be found to depend on this velocity,
and values of the parameters p and C. In Sec.5.3 we elaborate on the
numerical implementation of the existence conditions stated analy-
tically in Sec.5.2. Since the existence of the solution of the free
surface equation depends on assumed stagnation pressure P and
capillary number C, we investigate in Sec.5.4 the range of thes pair of
5 feasible parameters (ps, C). It is assumed, that the vetltocity of the
fluid along the free surface is established as if C were set at zero.
Therefore estimates of maximal feasible C for given Pe gives e;r
-perimental upper bounds for the capillary number that assures the
existence of the solution. When bursuing computations using Direct
Methods it is Ffound that C has to be smaller than the 1limiting value
determined from the abovg estimation. This is discussed in a
following chapter (Ch.7), where it is shown that interface s always
beneath the static one, and the velocity of the fluid along the free
surface 1is larger, compared to the flow with the static interface.
Therefore, to keep the product C|v|* small enaugh to assure the

existence of the solution to the free surface equation, we have to \V

decrease (. More detailed discussion of this topic can be also found

in Sec.5.5.
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35 € (-2,0): ¥x € [x .xg] : (g(x) € [s,5+2]) (5.2.5)

Therefore the problem (5.2.3) has a solution if and only if (5.2.5) is
satisfied. The above condition can be expressed in algorithmical fd}m
as a Z2-step procedure:
4 .
1) max {g(x)} - min {g(x)} < 2 for x E-EXL, xR]
2) min{g(x)} > -2 : (5.2.6)
max{g{x)} < 2 for x € [xL, xR]

The above criterion is the necessary and sufficient condition for the
existence of the solution to (5.2.2). When referred £6 our original
problem (5.2.1), it 1is only the necessa}y ,condtion, since the
exf%tenée of a solution to (5.2.2) does not imply the existence of the

solution to (5.2.1). This observation gives rise to the following:

Proposition 5.1

If (5.2.1) has a solution, then

1) max {g(x)} - min fg(x)} < 2 for x € [xL, xR]
2) minfg(x)} > -2 ,
max{g(X){ < 25 - = for x € [x, xp]
K where g(s) =‘£-F(x) dx for s € {xL, xR]-

-Now we may go one step further, and ask about the sufficient

conditton for the existence of a solution to (5.2.1).
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Q
unique solution in the interval 1 =_[xL, xR]. In consequence it will

be possible to establish conditions for the existence of the solution

to (5.2.1). / .

Let us note that

h

[ XX d '&
— XX =& (p (1+h?
Ty T ax DT
X
» ." . X
If we assume that’ ?(x) is integrable, we define g(x) =/ F(x)dx .
. X
Certainly, g(xL)=0. Therefore: -
X h
f dx = ""% -8 T (5.2.3)
(1+h ‘ (1+h2) (1+a?)
X X

4

Let A= 3 by definition. From a€ (- , o ), the following

(1+a?)
constraint is imposed on A: -1 < A < 1.
- -
When solving (5.2.3), one obtains:

)




= - Vo Ale

g(x.+A
My = I
X (1-(g(x)+A)?)

-
Note again, that hx(xL) & A 3= @
(1+A2) B >
Finally we obtain: )
~ X - .
h(x) = h(x ) + jR g(x)+A ) dx ’ (5.2.4)
] X (1-(g(x)+A?)

This formula yields solution h(x) if and only if there is a value A,
-1 < A < 1 such that for every x & [xL, xR].the following holds:

1 - (g(x) + A2 >0

~

. » '
or, in other words: ’

A e [-1,1] : ,x E {xL, xR] (-1-A < g(x) < 1-A)

N

which, after solving the two inequalities:

lg(x) + A} < 1

|A] <1

*

.can be siwplified further on to the following form:

e S T . S e W e
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Is € [-2,0]: ¥x € [x xg]  (a(x) € [s,5+2]) (5.2.5)

Therefore the problem (5.2.3) has a solution if and only if (5.2.5) is
satisfied. The above condition can be expressed in algorithmical f&rm
as a 2-step procedure:
4 .
1) max {g(x)} - min {g(x)} < 2 for x E~ExL, xR]
2) min{g(x)} > -2 . (5.2.6)

max{g{x)} < 2 for x € [xL, xR]

The above criterion is the necessary and sufficient condition for the
existence of the solution to (5.2.2). When referred £6 our original
problem (5.2.1), it 1is only the necessa;y .condtion, since the
exi%ten&e of a solution to (5.2.2) does not imply the existence of the

solution to (5.2.1). This observation gives rise to the following:

Proposition 5.1

If (5.2.1) has a solution, then
1) max {g(x)} - min fg(x)} < 2 for x € [xL, xR]
2) minfg(x)} > -2 ' '
max{gtx){ < 2 . » . fcr‘x € [xL, xR]
where g(s) = i’?(x) dx for s € [iL, ij,

Now we may go one step further, and ask about the sufficient

conditton for the existence of a solution to (5.2.1).
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Let wus \l"l'ﬁer problem (5.2.2) again. Suppose it has the solution

for some real A, say A € D . This solution can be written as follows:

X
n(x,) + jB 9(x) +-A ,dx (5.2.7)
X, (1-(g(x)+A%)

n

*hix)

Let us fix our attention on X=Xp which is the right boundary of the
domain of argument «x. We may gasiiy .notice that h=h(xR,A) is a
continuqus function of A € DA . let H = { h(xR,A): 'A € DA} by
defiq;tion. Now, if hR of (5.2.1) belongs to H, then certainly, the
probiem (5.2.1) has a solution. OQObviously it can not Happgn that
(5.2.1) has a solution and yet hRE H. This provides the basis for the

following statement:

Prposition 5.2

If H, which is the set of all possible values of h(xy,A) (A € D))
-
contains the -preassigned boundary value h , then (5.2.1) has a

solution. ) \ .t

NOTE
1) Assuming g(x) is continuous, from condition -1-A<g(x5<1-A we may

understand, that Dpis a single interval DA=[A13 AZ]' It is also easy

to show, that A2=1-max{g(x)}, A1=-1-m1n{g(g)}.

2) Furthefmore,.continu1ty of h providéd (see (5.2.7), we may
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conclude that H is a single interval too. . %,

3) Proposition 2 is based on the ihea of sweeping the region {(x,y)/
X SX<Xps Y real} with integral curves h(x,A) for all feasible A to
detfrmine H = [min{h(xR,A)} max{h(xR,A)}],and determining whether hg€

H. This is graphicaly displayed on the figure below:

Fig.5.1 Family of solutions to (5.2.2)

From the fact that hRE H we conclude that a solution to (5.2.1)

exists.
e .
It may also happen that the necessary condition is satisfied,

j.e. DAf @ (non-empty), but still (5.2.1) has no solution. This case

is presented in Fig.5.2 below.

-

Having established the problem of the existence of the solution

to (5.2.1x; we may now address the issue of uniqueness of the

solution,.if it exists.
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Fig.5.2 Family of sq)gf?bﬁs to (5.2.2)
/. . * "\
when there is no so1u$1on to {(5.2.1) '

“

Proposition 5.3

-

If the solutior of (5.2.1) exists, it is unique.

Proof: - .-

/// Suppose the solution of (5.2.1) exists. Let this ‘be h(x). Thergforg,

because h'(xL)=a for some real a, then h issalso a solution to (5.2.2)

with the specified initial condition h'(% )=a . Now we will prove

~ that (5.2.2) has a unique solution. : . . -
First, 1et.us notice, that A = A(a) iz’ a monotonic (increasing)
function of a: \% '

\_./
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‘ — = —— — = > 0
' da da (1+a‘)’J (1+a2)¥:

\

Secondly: Let wus note, that for the fixed x € [xL, xﬁj the ratio
(g(x)j-A)/(1-(g(x)+A)’)s is an increasing function of A, hence an
incréasing function of a.
Indeed:

d g(x) + A 1+(g(x)+A) ~

- — & = i > 0

dA L1-(g(x)+A)’) 1-(9(x)+AJ‘)

-

Suppose now, that (5.2.1) has another solution, say t(x). Then either
t (xL)=a or t (xL)=at RN # .a . If t (xL)=a , then due to
monotonicity t(x)=h{x)_is a unique solution of (5.2.7).

If ‘t'(xL)=at # a ,. it is also a solution to (5.2.2). But due to

monotonic dependence of solution of (5.2.2) on initial slope t'(xL)=at;
value t(xR) will 'not be equal to h(xR)=h . Therefore t is not a
N " *

solution to (5.2.1). This contradiction dBmpletes the proof.

thmical criterion ° .

or existenge of solution to (5.2.1)

In the course of the numerical integration of the systef (3.2.2) -
(3.2.3), we have transient .estimates of unknown functions, and these .
e;t1mators are determined on a discrete set of .arguments. Therefore
we canndt make use  of analytical criteria for thé existence of a

solution.’ In’pd+t1cular we cannot apply dtrectly Proposition”5.2 as a

\ ~
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suffiéient condition, since the analyticél estimate of interval H is
unavallable.
Therefore the logical arguments developed heretofore about the exis-
tence of the solution ,should be interpreted so as to provide the:
decision algorithm tailored to a numerical procedure ;or. integrating‘
the system of the governing equations.
This decision algorithm will consist of the following steps:
(A) Check max{g(xi)}-miﬁ{g(xi)} < 2 ;}j
(B) Check min{éixi)} > =2 3 max{g(xi)} < 2. )
(C) If (A) or (BY is not satisfied, we conclude th3§/}5-2'1) does

not have 4 solutien. .

(D) Define DA=\(A1, A,). where 'A1 = -1-min{g(x1)}
A2 = 1-max{g(xi)}

: L - _ ~
(E) Discretize DA so that DA-(A1,...,A2) .

(F) Determine H = {h(xR.A ): A€ DA}along the formula (5.2.7)
performing the numerical integration

X
R g(x)+A

f idx -
X 1-(g(x)+A)?) : )
L

(G) If for the preassigned value h(xR)=hR the following holds:

infinum(H) < h subremum(H)

R
then the probliem (5.2.1) h&s a solution.

The decision steps expressed by (C) and'(G) are biased by treating

continuous problems wifh_ discrete variables. There is no other way

e d

around, and this risk must be accounted for when performihg 'compu-

tations.

L] A}
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4

5.3 Numerical [mplementation

of the Existence Condition.

The existence of a golution of the stream function equation
(3.2.2) depends on the funciion describing freé surface, as the
function and its derivatives constitute coefficients of the stream
function equatidn after arranging the transformation of 'coordinates.
These coefficients must be bounded in order to be tractable by the
algorithm solvind flow field. The coefficients are funztions of h, hx

and h . We actually have to focus on h.- -If h is bounded, then h is
bounded too (on .the closed interval [xL, xR]), and h o 15//bounded

provided F(x) is bounded, which can be inferred from Eq. (5.2.1):

= + 2#2 *
h s F(x)(1 hx)

It was -found from numerical experimentation, that if F(x)=const
=-p, and x, =0, xp=1, the Laplace equation solver works for |°5|.i1'96;
which is acceptable when taking.into account the absolute limitation
§pS|<2. The numerical parametef. say B, limiting the variability of

p may depend on the intermediape and actual surface shape h(x), so

SI
in what follows, we will keep it as symbglic quantity h. Having this

-

-

limitation in mind, we will repeat briefly® the results of the previous
section to come up finally with a* decision rule regarding the
existence of a solution to (5.2.1).

We remember‘ that the solutiun of the interface equation is as

stated by (5.2.7). To assure that h(x) does not have singularities,




the argument of the ‘square root must be positive. Next, to assure
that h(x) is finite, we demand that the integrand, i.e. dh/dx is
bounded: ,
[g(x)+A].
[(1-(g(x)*A)?)? |

n
e

vy

Analytically, the integrand may be singular without affecting its
integrability. The numerical integration however is exposed to major
difficulties if the integrand 1is very large. The above stated
condition is to prevent such & situation occuring. This inequality,
when solved, yields the following necessary condition of existence of

h(x) satisfying (5.2.7):

max{g(xi)} < 1+8
min{g(xi)} > -1-8

mai{g(xi)} - min{g(x,}} < 28
R

} (1+R')§
provided A € (-1,1) and g(x) =X}F(x)dx.
This in turn gives rise to theL following constraints on A: A €
[-8-min{g(x;)}, B-max{g(x;)}] = (A}, A,].

. We are' now on the way to determining the sufficient condition for

L}

the existence of the interface boundary value problem.

Let us determine H = [H1, Hzf: which pfovides the estimate of the
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interval of:possiblé values of function h at xsz:
x ) )
H :b f g(x)+Al i'x -
N S CETTEI T R -
L ' (5.3.1)
M = h +* \\Q_LX)+A1 dx
2t [ etataean)? .
ol
If h(xR) € H, then we may conclude that the solution h(x) expressed by

(5.2.7) does exist..

EXAMPLE 5.1

Let us consider the following boundary value problem:

h
. =-p
+ h2)¥2 S,
(1 +h2)
h =1 at x = 0
.
hoaz 3 at x = 1 ’
0£Xi1

We know that the‘analytica1 solution is a segment of a circle and it
exists if ‘]p5|< 2. We will show in this simp}e Example‘how‘our
decision rulg.works.

First, due to the boundedness of P, we set B=0.96. Function

g(x)--psk. Suppose ps<0 (ps>0). If so, then

L o

-




P
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max{g(x)} (=0)

(=-DS<0)

" 1]
O ]
. o

min{g(x)}

Therefore the necessary condition of the existence of the solution is

fulfilled, if
-ps < 1+B = 1.96

Let us assume for simplicity that ps<0. If so, -B-min{g} = -B,

B-max{g } = B+ps, that s A1= -B, AZ B+ps. Therefore the range of

values of h{1) is H = [H1, H2] where H1 and H2 are defined along

(5.3.1) as below:

hoo 1 o[0s8t | (-(esem)n)?
- : L Ps Ps _
o b

Hp = 1 + (T'Ba)i - (1"([75*3)2)i ’

" From the above we can see that h{1)=1 € H , which is the interval
symmetrical around the valye of 1. This comfortable situation comes
from the fact, that  function F(x) is cbnstang. In cases i1ke that
whenevé; the necessar; condition is satisfied, so 1is the sufficient
condition; It yiil be found later on, that when F(x) is not constant,
this is not.true. '

>

5.4 Selection of the Initial Conditions

for the Numerical Solutions

As was pointed out, the Direct Iterative Scheme allows us to deal

- - - ’
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with cases in which C is not necessarily small, as is required fhen
Small Deformation Theory is applied. But it is understood that we can
not admit the Direct Algorithm will work for any real C. In the
preceding section it was proved, that the existence of an analytical
solutton of the free surface equation depends on a function F{x),
which for our problem is F(x)=-pS+C{1|2 /2. Given non-zero velocity
along ®!he free surface we may easily see that for sufficiently large
€, function f would violate the necessary or/and sufficient condition
for the existence of the soclution. Therefore for analytical reasons
wé must have constraints imposed on C. These constraints are bound to
be strengthened when using the numerical algorithm, which may produce
unfeasible intermediate results. The actual range of feasible values
of parameter C is dependent on the following factors:

1. Iterative scheme, i.e. how we arrange alternation of field and
interface‘computations. h
.2. Parameters of the stream function solvin§ algorithm (relaxation),
3. Iterative approximation of the ve1ocify at the interface,

4. The way we linearize the interface equation, _ '
5. Relaxation applied to the interface equation,

Numerical experiments show, thag it is in the interface equation
that "instability occurs first. This is evidently caused by the
intermediate estimation of the surface velocity coupled wjtﬁ large C.
It is too cém:fei a task to establish an explicit relation between a]}

the above factors to-yteld meaningful constraints on C. Therefore,

instead of looking for general criterion of feasibility of C, we will
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try to establish experimental upper bounds for C with regard to the
other control parameter, which 1is stagnétion pressure P This
estimation will be done for the .first approximation of the stream
function which is obtained if a,sgatic interface is assumed (C=0).
This is what we might call the start-up constraints on C. Rext,
keeping the flow field constant, we get deéermined right hand side
function F(x). Now we may ask what is.the maximal feasible C so that
the. interface equation has a solution. In other words,'for fixed ps. o
and the resulting static flow field with the static free surface, we
want to dete;mine the range of C so that the first correction of the
static interface does exist. Of ‘course it does pot mean, that for
this _ ranger of C assumed, all subsegquent equations for interface, as
generated by the”iterative procedure, will be solvable. This 1is why
we say that we want to determine the upper bound for C given p_. The ™
experimental estimation of maximal feasible .C (and respective €

.

values) are presented on Table 5.1 below.
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‘ TABLE 5.1 Upper bound for the capillary qumber C as a function
of the stagnation pressure value (for the flow with the

fixed free surface of constant curvature).

max C € max C

P (exper.) | (theori) ¢
1.5 60 0.47 40 .
-1. 240 ©1.53 199
20.5 540 2.67 500 .
0. 1010 3.71 990 -~ | .
0.5 1750 4.51 1750

1. 3040 5.2 3100 \ .
1.5 5650 5.8 6050

The results 'preséhted above are accurate up to 1%. The maximal
value of C pﬁEfented\ in the second column of the table (with
respective €) was obtained for each value”of Py by {rial and error,
which for each case required several computations to eliminate doubt
about the convergence or divergence of the free surface solution. The
estimations of maxim;l C given in thi;::G?Th column were obtained by
'gppliqstion of the criterion of Existense of thé solution. .
Therefore no 1férat{oﬁs on the free surface were executed. Prac-

" tically, for given b; and. the appropriate flow field, we were

estimating interval H. From arguments developed in the Section 5.3 we
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know that if h(xR)G H, then sufficient condition for the existence of
solution 1is satisfied. With C 1increasing, the range of H Iis
decreasing. If C is sufficiently large, the value h(1)=1 is no more
contained in H. By increasing C furthet we ‘may come to the péint,
wnere H=9, that is t eoretically we-can speak‘of the inexistence of
solution to the initial value problem {5.2.2) and in consequence to
the boundary value problem (5.2.1). The reasoning is exemplified on
Fig.5.3 for the case pf ps=0. Fig.5.3.2a shows a convex Hu11 of
intervals H=H(C). For a cfearer presentation of extreme values of.C,
we shaow H'ipterva1s on Fig.5.3.b. 1t can be seen, that when C is

V.
about 990, the value of h&R)=h(1) is no longer in H (within the convex

hull). It is understood then:dihat (5.2.1) has no solution. For
C>1025 intervals H are empty, and we cannot even think about 2
solution to (5.2.2). These numbers of C which we take as terminal
criteria of existence, were obtained by numefical implementation of
theoretical criteria. They are therefore biased by numerical errors.
It is due to these errors, that in rga?ity experimental maximal C is
not exactly as.‘maximal C computed from existence criteria. . The
biggest discrepanﬁy is seen for strgiply concave static interfaces,
like for ps=-1.5 (see Table 5.3). This may be explafneg by the fact
that with 'decreasina“pg, variation of speed along the free surface
incF!ﬁggg, and so happens io -integrals like g(x) or estimates of
boundaries to H interval. B

It 1is interesting to note that if we pursue computations of the

free surface with prohibitively large C (existence conditions vio-
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parameters p and C. Having a complete scheme of the method we will
compare the performance of the Picarg Algorithm with the Asymptotic
one. The last baragrapn is devoted to the algebraic stability of the
interface equation. Since the algebraic stability of the ADI scheme
for the stream function solver has been already accomplished (Sec.
4.4), this will complete the analysis of algebraic good conditioning

of the’ﬁicard Method.

&
5.5.2 Linearization scheme .
of the free surface equation. )
Let us remind ourselves that free surface eguation is .
- : - [
h (1+h?) o <+ (1)
_____L=_ +E.2 X =‘x :
O ) Pe * 5 ¥; —hHT ,fl )
X -
]
The right hand side of the above formula is assumed to be known. We

treat velocity  term (|!L?=‘wz=(1*h;)/h=) as given fram the precedihg

approximation of the flow field. &n what follows we apply the Newton

Raphigp Tinearization scheme.
———— @ - . -

Suppose h -is an: exact solution to (i). Let h" be some

approximation of. K . Assume also, that h = hM+ dh, dh< 1 ((dn)" = o0

for ns1). If we put h = h"+ dn into (i), we will -get:

Rt FOO (T ap1e(nlsdn yalt (1)
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5.5 Picard Method

5.5.1 Introduction.

The mathematical model of the flow consists of two equations with
two unknowns: the stream function and the shape of the free surface.
the Picard Method of solving this system is based on treating it as  a

" transient or - pseudo unsteady process in which the initial flow field

pi- )

and initial free surface shape are assumed, and with 'time' elapsirg,
.both flow and free surface , evolve towards a steady state. I[f one
understands this evolution as the alteration of flow corrections .upon
interface corrections, this is what ‘historically is known as the
Picard Algorithm [8]. The scheme of alternating corrections can be
derived more formaly froﬁ the analytical point of view. The two
equations are nqnlinear with respect to two unknown functions and
h. As was shown in Sec.5.1, we can separate the flow field equation
from the free surface equation by appropriate linearization: in the
former one, the free surface is treated as known, while in the 1attgr,
the velocity along the interface 1is assumed to be known. This
aprroach - disconnects both equations and allows for separéte com-
putatgons on eéch of them. Nevertheless nonlineariﬁy is still present
- it is a free surface equifion, wh;ch is nonlinear with respect to
unkhown h(x). Therefore the first topiceof this sect%on will be about
linearization of the free surface equation? Further on we pass to the
problem of establishing the most effective flow field - interface

A}

iterative scheme and . determination of ° range of feasible values of
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parameters p and C. Having a complete scheme of the method we will
compare the performance of the P1cay’ Algorithm with the Asymptotic
one. The last paragrapn is devoted to the algebraic stability of the
interface equation. Since the algebraic stability of the ADI scheme
for the stream function solver has been already accomplished (Sec.
4.4), this will complete the analysis of algebraic good conditioning

of thePicard Method.

‘ -
5.5.2 Linearization scheme .
of the free surface equation. ) :
- . hY
Let us remind ourselves that free surface eguation is .
- ‘ . 't_
(1+h?) ’ e (i)
XX C .2 X - A .
=-p, *t 5V —r— = Fix) '
(1 + hg)y pS 2 p4 h “f
x [}
The right hand side of the above formuia is assumed to be known. We

treat velocity term (|V|2= ¥ 2(1+h*)/h=) as g1ven from the precedwng

approx1mat1on of the flow f1e1d «3n~what follows we apply the Newton
Raphigp linearization. scheme.
— @ - K e \
Suppose h is an: exact solution to (1) Let h" be some
- ]
approximation oﬁfﬁ . Assume also, that h = h"+ dh dﬁ< 1 ((dﬁ)" = 0
for n>1). If we put h = h™+ dh into (i), we will get:

~

h* F(x)(1+(h:+dhx)a[1+(h:¥6hx)a]i

l'.



1383

L]

By expanding, square root into power series:

hn
ay ¥, i,
(1+(hg+dn,) )= (1en) ) ddh, (1+?hn)z)§* (cﬁk)__‘:‘;~
) .

L4

and substituting it dnto (ii), we obtain:

3 .
-

hy, + dh = F(hi+dh ) (1+(h:)=*p: + F(1+(h:)21* : (i31)
+2Fdh AT (1+(hT)5)} + 0(dh2)

~
-

- + '
Finally, putting dh=h""'- h" we obtain the following iterative scheme:

P L4

a1 L a T ER ey e (1-200)3) (e(nl) ) (5.5.1)

This ‘inearizatioh séﬁgme theoretically: is of the order_0(dw?).
Obviously, it may_be'relaied on grounds of assumption, that dh— 0.
Therefpre, dropptng the last term.bn the right hand side of (iii), we

obtain a simpiifiedhlinear scheme of the form, which also easily could

have been obtained heuristically:

. e -
p+1”  n+l,c.n nyayi_ SUUTUEPRS |
W = N (th(1+(hx)‘) = F (1+(h ) ) (5.5.2)
J s ) : .

.

Further simplifications are also possible,'but all of them lead to a

decrease of the order of the resutlting scheme. The Pighest order is

) prov}ded by (5.5.1). "In ‘fact, when compar ing ;hé convergencé.raf? of -

(6.5.1) with thatgof (5%5.2), we may find that (5:5.1) provides much

-

- H 23

N - W s
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faster convergence than (5.5.2). This s shown in the following
t ab~1 e: N
. ' )

‘TABLE 5.2 Experimental comparison of rates of converge& o
d order.

for lThearization schemes of the first and s

—
. Case param. # of iterations
‘ P o | scheme (5.5.2) | scheme (5.5.1)
0. 990 Lo 7 )
0. 500 _ T g 4
1.5 5650 . 83 8
. 1.5 4000 - 8 5
-1.5 40 ’ 18 5
-1.5 10 13 - 4

The fast cdnvergence of (5.5.1) is due to keeping all terms Of..

the power series .expansion but those with (dn)", n>2. This ob-

: aeﬁvation leads to the following:

Péoposition 5.1

Scheme (5.5.1) provides quadratic convergence, i.e.:

Y

lhn+1_ hnl _
AL P =_0(‘1)

\i~.. ) . ‘
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Kk
To demonftrate the above statement, let us note that '« f h = h =+ JBR

‘1 ~
@ then (5.5.2) is accurate up to O(cﬁ\;). Therefore rﬁ“ = h + O(cﬁw; ) =
; + 0(65:_1)which by induction yields: *e

<

n 2n-1

h'= h + 0(dh )

In consequence we obtain:

lhn*r'Z _ hn*lﬂ ) gpn*Z - h ) . (hn*l - h )ﬂ
ST TR N ST} £
7
B R S B C OB TCOS B o)
. R - ()™ (dh) (R g

s

as n —

To bllustrate this, let us look at the three following tables,
which present successive iterative approximations of free surface for -
three different flow fields. Each flow field was computed separately
. ‘ for distinct values of ;tagnation‘pressure (ps=-1.5. 0., 1.5). Values
of capillary parameters C were taken as extremal feasible ones for

each of

?distinghished pg cases. Convergence rate, ¢, which in limit
1
should be of value 2, s calculated as

¢ & (nlh™ - W1 Onle"- W13y,
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g " TABLE 5.3

TABLE 5.4

1586

: Order of linearization of thg interface equation

when ps= -1.5, € = 40.

o
iteration gh"- h”+1|
number
1 L21E-1 -
2 51E22 1.37
3 .21E-3 1.6
<4 .34E-6 "1.76
5 .85Eg12 1.86

when ps= 0., g = 990.

: Order of linearization of the interface equation

X
iteration [h"- A"ty
number
1. L72E-1 -
2 - J54E-1 1.1
"3 31E-1 1.2
- 4 81E-2 1.4
5 40E-3 7 . 1.6
6 71€-6 1.8
7 .115-11 1.9




TABLE 5.5 : Order of linearization of the interface egquation

when p_= 1.5, C = 5650.

.
iteration in"- A"ty ¢
&
number ’
1 .81E-1 -
2 .54F -1 -
3 L22E-1 -
3
4 .80E-2 -
. 5 .16E-2 - )
, -
6 .79t -4 1.47
-~ v,
7\ .29E-6 1.6 ,
[ Y
8 RETRE 1.83

-

L)

Where ¢ vajues are not disb1ayed.A the corresbdﬁﬁing results are
irrevelant due to the magnitude of initial dh . It is important, as
pbintéd out in Propoé?fion above, that to get quadratic convgrgence,
or nearly, we have to.be close to the ultim;te sélution (dﬁ<<1). In
real computations, as shown in the tables, an initial guess for h may
.be fairly far away from the actual solution, therefere at the outset
of thg 1ter§t1ve process we can not expect ¢ té be clogg to 2.

- «For the sake of completeness, we present below,tﬁ% Eesults~<p'the

iterative solution of the.problem of similar analytical structure as

(5.5.1), but with a known analytica?l solution. . This .5¥ob1em has a

constitutive equation as follows: |
-

.
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h -2n sin(2wx)
XX .

(1+h;)*° (1+cos (2nx)) 2

0 < x <1 (I

h(0)=h(1)=1. -

The .exact analytical solution has the form: h{x}=1+sin(2mx}/(2m).

Results are shown in the following table:
PN
\
TABLE 5.6 : Distance between .the'numerical solution and the

)

exact one; order of convergence of Newton Raphson

- Tinearization.

_iteration | [h"- Rl |hf- UMY ¢
ggmbér -
1| L7 .28E-1 - ,
2w | .26€-3  .TSE-2 | 1.37 -
30| .276E-3 .426-¢ - 1.6
. 4 .277E-3 . .10E-5 RS
. o 5 .277€-3  .56E-11  “_1.88 .
: « 6 L277E-3 S9E-14 S .

A1t results presented on tables 5.3 - 5.6 of this section were

. ) _ .
obtained by computation on a grid of Ax=0.1. . '

4

The distance of the computed value from the exact solution : lh"-

%l fs a diqbregizatibn error, which depends on grid:size. This‘ error

- -, '..
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is contrasted with data shown in third column, which shows how results
converge to the exact numerical ;%1ution of difference equation'.%é%th
grid spacing fixed). We have included the data of column two to make
a clear distinction between the cate of convergence of the iterative
process <(column 3) and discretization error (column 2). Limit values
of column 2 would converge to zero if finer grids were wused for

”

computations. | . . "

Table 5.6 indicates there were ogly 6 iterations of the interface
equation needed, to obtain cesu1ts up to computer accuracy; 'I? is
wocth mentiGhing, that if we applied the simplified linearization
scheme (5.5.2), this would. result ip an iterative run four tiﬁes

longer.

Conclusions.

In this Section the Newton Raphson linearization of the free
« o~

?

‘'surface equation was developed. The resulting scheme (5.5.1 ) is more

1nvolved than the heuristic linearization (5.5. 2) but provides'éuch
faster convergence of the resu1t1ng jterative scheme The convergence—
of the iterative prccedure was shown to be asymptotically quadratic.
A1l examples presented were referred to the fixed Flow fjeld computed

separately with “preassigned stagnation pressure Pe So far we were

not considering commutative 1terations on flow and interﬁ;ce, but

focussed attentjon on severaT feaxures of the firee bound’;y equat1on

It was the. . problem of the  existence of solution Sec.S.é), im-
be ) , .
plementing numerica]l criteria of solvabitlity of the equation (Set.

A




180

533), and finally tuning the algorithm by determin{ng the Dest
I{nearizatidn scheme. In the preceding Chapter we accomplished the
analysis of the algorithm which solved the flow field (ﬁart of thé
Asymptotic Algorithm). In this Chapter we were studying 16 detail
algortthm solling the free surface equation. Now we proceed, and

putting these two parts together, analyse the” algorithm solving

jointly flow field ard inte}jce.

5.5.3 Capabilities and limitations of the algorithm.

As was stated in Sec.5.1, the Picard Method is & particular
optlon of the.Direct A1g0fithm. Its main feature is that the origina}
pPoblem is split into two components: the flow fie1d’ and the free
surface. Tﬁé actual performance of tpe Picard Method is commuting of
ﬁéomputatiops on the flow field and interface. This js the iterative
procéahre, which was discussed in Sec.5.2. " Determination of the
iterative scheme is the first endeavour, which we will address. Next,
we wiJl try to determine the range of femible parameters‘bsand cC.
This wéf partially accomplishgq in Sec.5.4, but for interface only,
since the flow field was kept constang! Now we will characterize the
raﬁge of nsand C for the gengral algorithm, solving jointly qhe flbw
field and lhe free surface shape.. We will address also the qu ion
: i of how the <cost of computations depend on the vald%s of .these

parameters.

-
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Iterative Scheme.

In the 'ﬁrecedjng section we found that computations of the free
interface equation, if separated from the flow field, were very fast.
For the cases presented in Tables 5.3, 5.4, 5.5, the algorithm yig]ded
a highly accurate solution within no moré than 7 iterations, while
flow field computations take no less than 21 (see Table 4.2 gf gction

4.2). It may indicéte, that the overall convergence rate 1is more -
‘ dependent on the efficiency of the flow field solver, than bn the free
surface. In Table 4.2 og Sec.4.2 we ,hav;.‘li§§ed .a nymber . of
iterationsf required t obtain solution for the stream fﬁnction
*o. ~equation, if the free syrface was kept fixed. We may observe,  that
the }ate of convergendge of the flow field.is essentially thé same for
any fixed static interface. Therefore, the actual field/interface
iterations depend on how we arrange thé iterative scheme, aHE.Bn the
initial guess and'pa(ameters of the free surface eduation.' It was
ifouna thét assuming the fnﬁtial guess for the stream function =0, the

algorithm converged slightly better if initial h was set constant

- equal to 1 compared with setting h as the appropriate static

interface. *

‘ As for the itefativé sch;me, i;iis dif?icult fo determine the
unique procedure which would always yield the fastest convergence. It
was suggested in l{terature (Ryskin & Leal [23]) that the scheme
.consisting of 1;}teratfon on the ffow field followed by one iteration

) on the interface is most esgnomical. In our experimentation with the
: —

Picard Algorithm this was generally found to-be valid. There are,

1 4
. . .

.
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N
however, situations, in which the  other scheme was found to work

!

better. For example, if-ps=1.5, and C=55Q, the one-to-one iterative
scheme took 105 iterations to get to the accuracy of the machjne. But
when we employed two runs on the flow field followed by a single run
on the free surface, computations were completed withif 81 Yiterations,
which is an 1mprovemént'of about;20% ~{hese numbers were obtained on
the gr1d of spacing 4x=0.05. Cap111ary parameter (= 550 is. about its
max1ma1 value assumed Pg= =1. 5 for wh1ch the algor1thm is convergent

With the decrease of the value of C, the advantage of the 2/1 scheme
aver the 1/1 scheme diminished, and at moderate values of C (e.g.

£
C=100), scheme 1/ 1 was more effective. For negative Pg » the 1/1

scheme was always better than any other cne.

’ » ’
Domain of Convergence

This concept is referred to feasible values of - parameters Pg and

C which are decisive in the existence or nonexistence of the solution.
It was stated in the chapter devoted to er Asymptotic Algor1thm that
the stream funct1on in the domain bounded by fhe static free surface )
can be numerically computed for psg [-1.96,1.96], which is very tlose

to the theoretical range of variation of : pSE (#2,2). Also, assuming

~

this flow field computed, we found bounds for parameter C so that the
interface equation could be numerically solved. These bounds were

presented in Sec.5.4. In establishing these bounds;, use was made of

A4 ”

theoretigal conditions of existence of theﬁso]ution to the equation of

free surface. Now, the numerical implementation of these conditions

. 'S
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was also placed in the Picard Algorithm. Whenever the algorithm moves
from filow field to interface computations, with neg}ﬁgib1e expenditure
of time we check the validity of these conaitions. If the necessary
or‘fufficient condition is vio]aﬁed, the execution 1is halted. This
may save a lot of computational time, since the instability effect,
1ike increase of residuals, may be significantly delayed in  time.
Thus aépiica;ion of this Automatic Stop routine may inform us well
ahead that the algorithm is not about to converge.

It was experimentally confirmed, that whenever Automatic Stop
.gave ' the warning iabout violation fof the existence criterion, the
algorithm eventually was found go be divergent. On the other hand, it
was also established, that close to the maximal value of C, the
criterion was fulfilled, but the algorithm was yielding npnconverging,
oscillating residuals. In these cases sufficient condition for 3
existence,was satisfied; but was very close to violation. As an
example, let us consider the case:»when L -1.5, and C=20, Ax=0.05.
The residual; of the stream function equation were oscillating around
zero with mgximal amplitude of 0.6. The interval‘H (see formula
(5.3.1)) had the lower bound oscillating ‘about 0.9+0.07, while . the
upper one stabilized at 1.03. It ‘was sé}d, that to have the
sufficient condition satisfied, we mgst hdve h{1)=1 contained in the

o

interval H. This is provided, but thg upper limit of H is, so close td
1, that Qg cannot be certé{n whether it s coincidental due to
numerical errg?t in the {mplementation of the gxistehce condition, or

fo inherent oscillg}ory instability of‘ the flow field - " interface

-
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numerical solver.
Below we present the table of experimental upper bouﬁds of C fand
resultant C), as determined by computations or a grid with space

increment Ax=0.1:

L]

TABLE 5.7 : Upper bound for the capillary number C as a function

of the stagnation prassure value.

interface Picard
s equ. only- Algorithm
C (6) c (€E) # of its.
\ -1.5 60 (.47) 19 A w) 103
. 1. 240 (1.53) S é:) 116
-0.5 540 (2+67) 100 (1.02) 228
0.0 1010 (3.71) 160 (1.07) 72
0.5 1750  (4.51) 260 (1.43) 128
1. 3040 (5.21) 400 ("\28) 350
. : 1.5 ) 5650 (5.8)' 600 (1.65) 204

-
the second column presents for comparison the results coming from
computatfons of interface ohly. In this case the stream function was
kept constant as deterﬁined by Pe and C=0. In the Picard Algorithm
" the stream function is computed along with :the Interface, and this

causes significant decrease 1in the feasible values of C.' It s

partially due to-the fact that actuil‘iﬁterface is always benesth the
ﬂ —




static one, (see Chapter Z), therefore the actual velocity of the
fluid along the free surface is.larger than in the case of the static
free surface. This in turn causes the term C|V|?2 to increase.. -
keep this-term iﬁ limits imposed by exjstence conditions, the maximum
feasible C must by adjusted downwards. \

— <

5.5.4 Algebraic stability

of the Picard Method.

The algebraic Stability of the system of ejguations resulting from
thé ADI routine was discussed earlier (Sec. 4.4}. The Picard
Aldorithm solves iteratively not only flow field equations, but also-
the equation of the free surface. - Hence the sufficient condition for
the algebraic stability of the Thomas Aiggrithm (for the free surface

. .

equation) should also be addressed.

Let us remind ourselves, that the iterative scheme for the free

surface equation is ) -
' + + n+1 n n n n n
~wh"* 1= h:x1+ 3n, F(x)hx[]+(hx)f]£ = F(x)[{(hx)z-1][1+(hx)z]£+ wh

where: F(x) = C w; [(h:)’+1]/2(h:)2 | \

b, =¥, (x,2), z=h(x)

z
w : relaxation pgrameter (1/w = pseudo-time increment)

Discretization of‘the differential equation like the one above, leads

to the following 3-diagonal system of linear equationsd
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-a;h. + b.h. + c.h. = d: : j=2,...n=1 i -
351 T PN T SN T Y J : : ~

~ ~

The first stability condition is that aj, b;, cyare all positive

{see in Smith [27]). It can be proven, that this restrict}éq} when

-

" referred to equation g?.5.1), yjelds the following limitatigh. on a

> .

spacial grid increment: o

2 L 3
Ax < -
/»\: 3|thl(1+h;)* % (5.5.3)

N

_ The next condition 1is, that bj> aj+ ¢ This is satisfied if e
- .
relaxation w is nonnegative.

¢

The Tast cohdition: bj> a.

+ c..yieldseconsti aing on relaxation ’
jfr .

factor w: &

\

’

s . -
’ X )
’ i ~ a .
'r(ZAx) > 3hx(xj_1)[1ﬂlx(xj_9] F(xjdg | . (5.?.4)
2 i = . -
-3n (x,, IE+h3 (2T Flxg j=2,...,n-1
‘ - EXAMPLE 5.1 L . -

 For the physical problem with parameters: ps-1.8. C=180,” the free
surface is gghown on Figt7.4.e of Chapter 7. eThe constraints

o > I
calculated in accordance with -the above given conditions are as

follows: _ ’ Co. (\ .

- . " _
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r < .18

w > 59 (1/w) < 0.0%7

For another problem, widh pS= -1.43, 5;1?. the interface-.is of concave

-y
_shape, as on Fig.7.2.c and the restrictions are:
r < .315 -
w > 27 (1/w) < 0.036
- - . ) * "
'

The relations discussed_ above, constitute sufficient copdition
for algebraic stability. The resulting constraints (5.5.3) and
(5.5.4) relate ta the algebraic model of the free surface equation.
To close the considerations on a]gebraiq stability, the appropriate

—constraints resulting from the 4lgebraic model! for the ADI routine
(flow field equatidn) should be attached. 1hg§e constraints were

v
the free surface equation, , the application of the Picard Method

derived in Sec.4.4. If w,_ is to de#ote relaxation for Y-field, wh for

impbses the following constraints to assure algebraic stability:

Wy > T hx(xj‘1)g1 + h;(xj_1)J F(xj_1)
. ~»
\ s h (x, 01+ he(x, )1 Fx . ) ¢ (5.5.5)
2r x T j# x' i+ j*1 T
IR T .
’ w > 0 “for j = 2,./,n-1
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2 H
r for x = Xo,...X%
213 T n ’
3|‘th|[1 fhx]
Y 4thI
y lh.h - 2h] for |h |>1 ¢
‘o< XX X X =
2j1 + h |
|h. h - 2h?| / for |h |< 1
XX X x =
i o
EXAMPLE #2 *

Let wus consider physical flows with fixed physical stagnation

. pressure p*sr=0.1 and the dynamic characteristic pressure 0=gv== 38, but

r and

. \

w for 3 different values of 7. The actual free surface (which is/
. - -~

' - .
convex in this case) vy plotted on Fig. 7.1.a,b,c of Chapter 7.

variable surface tension T. The table below shows estimates of

TABLE 5.8 : Stability constraints with surface tension

decrease, for a convex solution domain (p*s*:.‘l, D=38).
s [
Linterface flow field Yy
T wh ) ww> r < r <
i 1.00 - .42 .042 - -
/ .10 2.66 .42 - - ”
| .04® | 88.00 - .44 13

»

For comparison we present below the table of constraints for

flows of distinct geometry (concave interface}. As before, pressure

—




and dynamic parameters

surtate tension T is being changed.

are kept

constant

The shapes of interface for

respective flows are shown pn Figures: 7.2.a,b,c.

-
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(p;= -1, D = 12), while

the

TABLE 5.9 : Stability constraints with surface tension
decrease, for a concave solution domain.
interface flow field
. T w2 Wy rs< Q=
1.00 5.35 1.33 - -
.80 12.66 2.61 .55 -
.70 27. 4.49 .31 .)13
=
. P
5.5.5 Comparison of performance of the Asymptotic
. and Direct Algorithms.

This comparison may be pe&ormed for ‘only those values of
parameters. for which both 'algorif‘hms are valid. It is the Asymptot.ic
Algorithrﬁ, which is mo}-e restristive in clhoice of parameters psand C.
Hence, quite naturally the Picard Aljorithm has one«decisive advantage
over the ﬁisymptotic Algorithm’ i this respect. Tl)e second criterion
is the rate of convergence of the iterative process. Below a table is

shown, in which we produce the number of iterations required to get to

¢ -

[ R
machine .accuracy for both algorithms. C 1{s assumed sufficiently

small, so that € < 0.05, whic we recall was the general restriction .
N ‘ ° '

* - . ) 1 3
» - .
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S

for‘Picard Algorithm may be slightly different, since we are unable to

predict the final value of velocity V before completion

-

computations of the stream functioq.

. 4
TABLE 5.10 : Comparison of the number of iterations for

~Asymptotic and Picard Algorithms, r = 0.1. ¥

Asympt. Alg. " Picard Alg. |
| . ' G
P # of its (€=0.05)| # of its C €
-1.5 27 - 127 4.0 Q.048.
. ; ) -“ -
0.0 22 21 13.8  0.053
1.5 26 - 29 ©50.0 - 0.048

TABLE 5.11 : Comparison of the number of iterations for'
N ) ‘ e . -
Asymptotic and Picard A190r1;hm; v = 0.05.

+

.

Asymptotic Alg. Picard Alg. —+
Pe # of its (620.05) | # J;.igs 6 €
1.5 a8 % . 4.0  0.048
0.0 - 22 *21 13.8 0,083 | ..
s | a3 39 50.0 "0.049.|

,

of
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for-Agymptot?p Algorithm if -1.5 < P 1.5. The resultant values of C

the
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r
-

¥ tasLe 5.12 - Comparison of tNe number of iterations for

Asymptotic and Picard Algorithm, r = 0.025

.
. . -
As.tjﬂg. | Picard Alg. /
P, # of its (6=0.05) | # of {ts c €”
1.5 89 90 4.0  0.049
0.0 26 25 13.8  0.053
‘1.5 89 105 50.0 0.05

‘As can_be seen, the rate of convergence of the two algorithms is
practiéallx the same and this simi}\arity does not change when the grid
~ step size r -is changed. Therefore a'lt'eratiqns of flow field and

interface iterationm, as in the Picard Method, do not affect the speed

-

-

of convergence. - As for the time cos?, we show in the table below the

v CPU time required for the single 1.ter&tion~-\c:n flow field and

- -

- interface: .- P K ) < ~

-
~

. o~ ' - \.~ ~ -

. -~

. N » PO N
.: . N
- - .o
Ta

TABLE 5,132 CPU (CiBER 825) time per single 1teratio_n on -

- . \
-+ 'the equation of free surface and one full ADI {teratjon:

-

> . : ~ = S~ .
. ~grid spacing ¥. . . _
Ao .4 0.17 .p.os 0.025 0.0167 A >l
flow field -| .08 | .35 1.4 W R
free surf. | .003 | .006 013 | - .02 .
~. . : A

V ®
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When using the Picard Algorithm, generally we perform as many
iterations on the flow field equation as on the . interface. Compared

to the Asymptotic Algorithm, this implies additional costs of multiple

iterations on the free surface. From the Table above we see however,

that this cost is practically negligible, thus the Asymptotic Al-
gorithm is just marginally superior in this aspect to the Picard
Method. ) This cannot offset however the strong .limitations dmposed on

the Asymptotic Algorithm by the requirement ef using only small values

of parameter C (€E). ,




5.6 Direct 1-Step Algorithm

t

5.6.1 Linearization of the governing equations. -

In the presentation of the performance of the Direct Algorithm,
we refsrred heretofore to .the Picard J§ethod. This method is ;:ased on
separating the flow field and interface equations as distinct algo-

.QRthmical units. In consequence, we can iterate independently on the
flow field or the interface, transmitting information from stream

. funct%on solver~ to interface solver or vice versa, whenever the
assumed MMGrative cycle was Fomp]étgd. " The Picard Method .is con-
venient also because of the other reason: the; analysis of the
t?esulting'glgorithm can be broken down into the analysis of the stream
function so1:ér (discussed in.Chapte; 4) and {nterface solver, which
was accomplished in this chapteéi Heuristically howeve;, the Picard
"Method 1is the simp]ification of a more general approach, which-we
-called 1-Step Algarithm. Its conceptual framewqu was presented in
Sec. 5.1.° .let us remind ourselves, that in the 1-Step Algorithm,
both‘equationé of .the matﬁematica? model ~(flow field and interface

>

equations) .are treated as an 1nseparabie pair_inasmuch as use {s made
“of them in defermining two variables: stceam functfon ¥ and free
surface’ shape h: [In what follows, we will present the algorithm for

solving the mithematical model using the 1-Step Hefhod: F{r;t'we will

. | X ;
. appkcoach"the ‘problem of non-linearities, and in the fo]}qwing

sub-section the rdsuiting ADI algorithm will be formulated. ’

Let us recall the govetniﬁg equations :




¢
~-
~J
-9

/

the flow field equation

' zh -2zh ,
. - 2 = i
. \\ ) - wxx + wzz ‘xz 5 + wz 7T (th - hxxh) 0 (y)

The'egua%ion resulting from balance of forces along the free surface

A}

XX € 1+h; )
——————— = o + 2 ..
& (1+hz)¥a pS 2 WZ h? ‘ ; (1.1)
. X .

Linearization of the Free Surfacé Equation
The §1m61ffied form of {ii) was analysed 1q the case of the
Picard Method (Sec. 5.5.2). Simplification consisted of treating the
right hand side as known function F(x). This was justiféé& in the
context of the Picard Method, but at present we wi]i not follow this
idea, ;;nee~we treat (ii) as an eqﬁation,of two variables: h and ¢
In dddition, we may notice an increase of nonlinearities, which are to

» 0 be, found in term F(x). In an ettemt to linearize equation (ii) let us
?

assume, thatn

= h + dT} 5
=h +dh N\ _ -
X X

= Mt dﬁxx

Nez ::r} x:rz T ?

’wl*dq,l

.where dashed are exacg—solutidns, h, hx’ hxx and y are approximations

to the éxact solutions with accuracy of d terms (which are assumed té

-

+
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be sma1i). Having term of the form f + df substituted into (ii), and

expanding power expressions into power series, we get:

h *dh = A+ A () + Az(énx) + A3(&bz ) + 0(d?) (5.6.1)
¢ (1+h3)%e
. T - 2 >~ 2
v where: A pS(T + hx) t3 > w3
— . ) C(1+h2)¥2
: AR )
h® z - .
o A, = Cy2 h (1-+ ha)¥ S~ - 3p.h (1 + h‘)i
2 z x X ZhT s X X
N C(1+h;)5” ‘ . .
A3 : na v,

Linearization of the Field Equation:
As before, assume that we are given some approximation ¢ of the
exact solutions v of ({Y, and that it 1§ within small distance frdm

v + 4y into (i):

T. Let us put the expression of the form §

v
7

-—

2 a
22(h, + Jhx) +

Yex * d;"xx_* (wzz ¥ dazz' (h + dh)2 !
N -22(h_+dh_) o ' .
(wxz * d;"xz) hx‘ . o, '
T (w, + G, d2th )t - v dh (b e )] —2 0

»

¥ ) . .
Expanding power terms into series, and.dropping all terms containing
\ } .

,
4

-
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~ad ':_g( . )
products of increments .(Pproducts age assumed to be of negligible

magnitude), we arrive to the following equation:

- . ‘- p;

]

Yux B1“'22 t Byt By, * d¢x§+ B1szz +_826¢xf * By,

%Jh + Bsd'hx + gthxx + 42y =0

(5.6.2)
z*h? + 1 .
where B1 = X
hz
7/
-22hx
B, =

L] xx J—
, z‘h; + 1 T 2zh 1

= o - - a

By = szz ha = Yy, ha Y, z(h,h 4hx)FT . -

z*h 7 4zhx

Bg= 2¥,, ha 2t Y he i
= -y Z

BG wz h

Linearized Iterative Scheme

Equation; (S!gi1) and (5.6.2) were developed by fhe use of
heuristic aSSumption:--$' = + 6@ . Since we actually do not know
ﬁ, nor 6}, we put instead approximate relation: w"+1= w" + Jb and hn+1
= n" + dh, whieh . define the iterative algorithm for solving the
original problem. Using this formulation, we may put (5.6.1i< and

>

(5.6.2) in the following way:
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Flow field equation: -

N N+l \ N+1 !‘rl+
Yex T 8P;wzz Y %:wxz ¥ ngz

N+l N¥l N+l :

Byh" T+ Bgh T« Bghl -t e | , (5.6.3)
N+! N+l N+l _

-Bjh T BhCt Bgnt's 0

Interface equation: : . . A
AT ANGNT N N Ang+1= AN ANN _-:Nh: N Ang (5.6.4)

XX 1 2 x z 0 1 2

) ‘ —
&is 1is a system of linear‘partia1 differential equations with
respect to ¢ and h, and their derivatives, N. being the index of

lTinearization iterations; A?g B?

are.de%ined.aslin (5.6.1) and (5.6.2)
with their arguments taken fFom”the N-th iterative step. '
Now we will briefly refer to the effectiveness of tgis 1i-
nearizﬁtion scheme, &nd we will try té estimate the rate of its
convergence. The Eoncept of order: of the cénvergence of the 1i-
_ nearization scheme was presented earlier in Sec. 65.5:2, so let us
oqu mention that it informs us aboui the rate of convergepce of ' a

particular scheme. TBy definition, ¢ 1is an order of the iterative

scheme, if: -
[fN*J_ fN|
= 0(1) .
(N - Ny . ]
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4

Since the linearization was arranged according to the Newton Raphson
method, which is of accuracy of 0(d?), we may expect ¢ to be close to
the value of 2. In the table below we show results for the scheme
(5.6.3) and (5.6.4). The solution for each linearization step is

assumed to be obtained by inversior of the matrix {in fact sequence of
R

ADI iterations of the internal loop, as described in Sec. 5.1). The

parameters of the exemplified problem are: pg = -1.5, C = 5,

computations were done on the grid of r = 0.1.

TABLE 5.14 Performance of the joint linearized iterative scheme,

. FIELD INTERFACE
N l¢N+1-wN ] residuum | HhN+1-hNH )
2 .012 .075 .048
3 .0022 077 .012
a 2.1E-4 .002 2.2E-3
5 3.0E-6 ‘4963 9.0E-5
6 6.6E-9 .30E-10 2.4€-7
17 3.5€-14 .10E-12 1.5€-12
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TABLE 5.15 : Order of converdence of the iterative fscheme of - .
linearizatipn. ‘
N 2 .3 4 5 -
FIELD 1.39° 1.38 1.5 1.48 °  1.64
.~ - . ‘ .
RESID. - - 2.42 1.96 - —
INTERF. 1.46 1.38 1.52 1.63 1.78
< l As we see, with advancimg N, ¢ approaches the value of 2. “The ‘!

Qegt result is for residuum (on the flow field). This is an important

teature, since i computatigna1 practice we want to ‘bring the

residual vwajue to zero, that is to approach the exact numerica

-

solution as closely as possible with the computed solution. Some ¢
values are not shown, either due to computer accuracy, or large c's in
the initial iterations. Here again, as in Sec. 5.5.2, we see very

fast- "convergence. It takes 7 iterations of this highly nonlinear
\: system to get down'to a solution wihiéh is of order ‘of machine

-

accuracy.

—-—

5.6.2 Alternate Direction Implicite (ADI) soluti:n procedure.
In the 'preceding paragraph we focussed on the.effect1veness‘of
‘tﬁe linearization. I[f we had a one-step solver for the system of
linear equations generated by the f@mite-difference model of (i) anr

- . )
(it), it would take only abeut 7 iterations on nonlinearities to

- . e .
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~
achieve a solution. But we do not have this solver due to the

~

dimensionality of the problem./égg_;; have to use the approximate

iterative saut{'on (1nternal loop, see Sec. 5.1). This appronma-te
solufion §cheme is provided in our case by the ADI algorithm.

. In the example referred to 1naTab1es 5.14, 5.15, 1t took up to 30
ADI iterations to increase tmhe linear iteration 1ndex N by one. _

Overall performance was about 150 ADI/linearization iterations, which

exceeds several times ‘the number of iterations required by the Picard

Method (28 iterations for the same parametérs). This means that the

-
' scheme jn which the ADI loop is entirely nested within the external
lineaFization toop, is not economical and must be arranged so that the
ADI and' ext;rnal loops overlap. This was found to be much more
cost-effective. . .
) For the sake of «clarity and as a reference for the fh]w
) algorithm, we show below the linearization and the nested ADL scheme
~igtu4. ) \
: Assume we have performed N loops of linearization and i - ADI
" steps in an attempt to e;timate variables for. the N+1 step. Therefore
the next ADI step is defined asefo110ws:
L J -
2 - ADI sweep . | (5.6.5) S
“for the flow field: ' - ]
E ORI AL AL
ST T i il sl ) - e

'y )
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\\~\ > .
for the interface : -

ANhW\s + AN 1*§.

1 sz -
b ) NT1 N N NN NN
hxx - Az(hx -h) - AO + A.lh1 +-A3wz
- ]
x - ADI sweep
for the flow field: ~.
i+1_  ON i+d N 1+4 N 11 N i+4
. ka B1sz Bsz Bwaz B4h
N, i N N, . N NN
—Bs(h - hx) - 36(hxx -h,) + B4h i
for the interface:
b 41NN e
XX 1 2 'x
) N NN NN N i N
Ry T AT - Aghy + Asly, ¥ )

- The above model is an AD! implementation of the scheme given by
(5.6.3) and (5.6.4). Now, if we want to break down the internal
nestiﬁg of ADI and make ADI / linearization loops overlap, we may
accomplish this by changing in the scheme (5.6.5) index N into ADI
index retarded by one full or half-step. The algorithm defined in
this way; was f0unq to be twice as fast compared to performance of*
(5.6.5), but ébout the same’'rate slower when referred to the Picard
Method. Since it was expected that the 1-Step Algorithm should be

superior to the Picard Method, we tried to modify the implementation
\

‘ to improve the rate of convergence. The actual shape of the ADI /
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linearization scheme that we propose is as follows:
z - AT sweep - (5.6.6)
for the flow field:
®
PRES ioiey pipive
-B1wzz . - B3wz 84h
i + Biwi+§ _ Bi i
. wxx 27x2 Ih'
for the interface:
i i+d i i+t - _ i i i1 _ i1
ABwZ + ATQ Ao + hxx + A3wz A1h
x - ADI sweep
for the flow field:
il _ itk itk i+t 1+d i+d i+d
wxx BI wzz * BZ wxz * B3 wz P
for the interface: N
hH1_.M+§ Ritl altd m+1= -
XX 1 2 X
~
it vk itk
Ao ¥ A3 _ (Wz wz )

If one comparés the scheme (5.6.6) to the original linearized
formulation (5.6:1) .and (5.6.2), one may see, that 16 (5.6.6) we™
actually make use of these increments o, which are associated wjth
dependent variables at the current ADI sweep, and of increments ov, in
the free surface.equation. All other increments are droppe&. The-
refore we may lose theoretical o accuracy at a single ADI half step,

but we are close to 'maintaining this accuracy 1{if complete ADI’
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iteration is considered.- The only increment which does not appear in

(5.6.6) is dh . N ‘ -

\ .
In the table below we compare the rate of convergence of the Picard

-
———

and 1-Step Algorithms: .

TABLE 5.16 : Comparison of the rate of convergence (iterations number)

-t

for Picard and 1-Step Algorithms.

parameters: C 18 10 100 500

Pe -1.5 -1.5‘..~W.5 ' 1.5

Picard Algorithm | 71 31 32 60

1-Step Algorithm 62 35 27 39
T -

—_—r

For the convex flow domain (ps> 0), the 1-Step Algorithm is
definite]y faster. As for the neggtive ps, this advantage is not soO
obvious. € = 18 is close to the extremal feasible value of C (for Pe®
-1.5), hence the advantage of the 1-Step Method might be seen as a
result of a better algebraical structure, but for smaller C (l{ke
C=j0), we generally observe the Picard method yielding faster con-
vergence. The question about poﬁsible further impro;ements of the
1-Step Algorithm is addressed in the following paragraph.

5s6.3 Relaxation strategy.

As was mentioned before, the scheme provided by (5.6.6) 1{s the

fastest ADI algorithm. If we think about the owverall imprdvement of

—




the algorithm, we do not think about the ADI, but rather about the
rate of informatioﬁ. transfer in frames of_ the general ADL / 1i-

nearizatton aigorithm. Thi$ 1is .relaxation, i.e. damping or am-

plifying some factors. It was found 1n_tﬁé Asymptotic Method study,
that tge flow field equation is converging fast, even for large p;‘:
Since we observe an essential slowdown for Direct Algorithms, we may
attribute this to the.presence'of the interface equation in the the

numerical model. In what follaws we refer to the examination of two
features: re1axat}on of the omputed 1ntg\face and damping / am-
plifying of the term d@ -in the free surface equation. - Results are

exemplified for two cases -_Case T P gg 5, C 18, Case 2 : P* 1.5,

. .. R " \
C=500. , BN ' < ; ,
) . . 1 . ‘é :;‘\ . . /: >
A) Relaxation of interface is of the form: RS o
H s - 7 ‘
v S
hitdapi 4 w(nitio pl) ‘ ’ )
new

It was found, that effectiveness of w depends on p. For negative»ps.
it is desirable to have small overrelaxation, for positive - _under -
relaxation. For “example, for Case 1 the besg is w=1.1, yielding 57
iterations, which is 8% improvemeﬁt compared to 62 (see Taﬁ]e 6.16).

In Case2, for w=0.9 we have 5% improvement (37 iterations. versus 39,

when w=1.). ' ' ~
B) Speed factor. The,éfream function field affects free surégég—
equation (5.6.1) by coefficients Ak and the term A3dbz > This is one

of the memoryﬁterms in the iterative procedure, and it ‘decreases to



. -
- -
-
' .. B

aero with the iterations advancing. It was observed, that multiplying -

this term by owzvnAy eéssentially change the convergence rate. For
Case 1 there was an improQémentnhy 405'( 37 iterations vs 62), but for

Case 2 it brought slowdown-by 48%. C(Certainly this is connected with

.the magnitude of stream function gradient at the interface. W_ is

z
» =~
much bigger in Case 1 (wz <0.179), than in Case 2 (*zi 0.059), but in

A}

4

.bpoth cases % < 1 . This seems to suggest the application of

underrelaxation, which could depend on-'pS . Underrelaxation was
arrangéd by multiplying the term A3a@z'by a’re1axq;ign constant, say
8. It was found, that for Casely 6=0.1 brought aboyt a 48% gainP(32

" iterations vs 62 when 8=1), and for Case2 8=0.9 resulted in a slight

improvement (37 vs 39). . .

The two relaxations A) and B)L yﬁéﬁ< applied jointly, ;ﬁereq
results very close to those of B). Therefore the 1-Step Algorithm,
when relaxation is ébp?ied, yields definitef} faster;fconvergence. as

shown on the table below:

.
a 14

~
v v .
TABLE 5.17 : Comparison of the rate of.'convergence - '
. J'“ ! \ . e i '
for the Picard and 1-Step/Algarithms withsrelaxation.
N .. ,/"" T , ’ .
:./“ =8 . S
parametexs® ¢ | 18 500 ) : T
. ‘,_/_,".',» e . N . >
- 7 e |15 s _—
. A S -
=l Picard Algorithm .| 71 60 .
" 1-Step Algorithm 32 37
% improvement g1 -, 38% .
\\ ’.': B -

T T




All ;Esults‘presented in this paragraph come_?roﬁ compuiations on
grid 10x10. The relaxation factors for -interface if finer grids are
used may be essentially different. Mo;over, it was found that if w=1,
8=1, we may have prob]éms with stébiIft;'on finer grid%. ihey can be
overcome by underrelaxation on the intérface, as was checﬁed. There-
fore although it seems that reléxat%on of o is more effective

b4
computationally, the interface relaxation 1is decisive in terms of

providing numerica]‘s;abi1i;y of the algorithm.- It is worth men-
tionihb- that thik_ instability dependsQ\pn a particular iterative
scheme. IFor example in Case 1, r=0.05, the algorithm defined by
(5.6.5) is stable, but (5.6.6) with w=1, 8=1 is unstable_un]ess w is
decreased to 0.5. This suggests that the gains in rate of con-

vergence, as shown on Table 5.17 are to be paid for by appropriate

relaxation of the interface equation to avoid numerical instabiﬁity.

5.6.4 Différences in implementation

of the Picard and 1-Step Algorithms.

Conceptual distincfidh and perforqance'ﬁiffe;ences between.these
two methods were addréssed Earlier. 'Also imlementation for eachgef
them was discussgd in appropriate parﬁgraphs. To close this section
on Direct Methods, we want to'expoée difference; in g%e implementation
qf these two algorithms. fhey are as follows:

A) -nIn the Picard Method, the interface equation is solved with
respect - to “only one variaple; i.e. free surface function h(x), thqr

flow field equation with respect to *function y. There. is no
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difference bétween4the two methods "in the implementation of the x;ADI
"‘$cheme. It comes into play in the z-ADI scheme.' as the 1-Step
A1§orithm solves ‘both equatioﬁs with respect to two unknown functions
h and 4. This difference ¢an be seen in formula (5.6.6). Here, fdr a
single comlumn (fixgd xi)’ apa;f from the ¥ variable we have present
unknown h(xi) in the flow field eqation. This spoils the three -
‘diagonal structure of the fesulting system of algeﬂraic equations. To
make this system closed, we mus; Ha?h\gné equation attached 'to the
system.  This is the interface equation, iﬁ which h(x;) and v; (x,)

i
are unknowns. The algebraic structure of the system is therefore as

follows:
— A K W - N T
b1 C1ct-0‘:, ---------------- ...._...q1 B wi‘] d1-A1¢11
a2 b2 c2 ........................ q2 wiz d2 .
T ceeececesctonnsoecsenocvsecns ‘e e o0 s 08 ‘. . (5‘6.7) «
............ .";’.-.......ll.l.l‘
......... z................an bn qn v | %p 'cnwi,n+1 _
.......... Ceveceosonannases en n Cn+l —h*- N n+1 i .
_ 4

*

where for i-th columnm (x=0 +ir) and line index k; i,k=1,...,n:

.. 81(k,1) 83(k,1)‘ . o
a z + o
ra ) 2r - -

b, = -84(k,i)+?86(~k,1)'/(r') ‘ . .
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| J a ; B1(ka1) . 'Ba(k’1) ,‘. )- *
k r2 2r
qQ -84(k,1') + sz(k,i)/r‘.

d ~ = tbxx'* 81(k,'i)h1. - Bs(k,’i)(Zhi)/r‘+ B‘,’(k,i)}‘tﬂ.-‘> Bz(k,i)wxz

- .

" Coefficients B=B(k,i) as defined earlier in (5.6.2) can be here
treated as functions of geometrical argugents defined on computational
grid , ¥hus B(k,i)=B(Q.+kr , 0.+ir).

The Tlast equation of the abbve'system (5.6.7) is the algebraical

'formg1ation o% the free surface eeu}tion, so in accordance with

. (5.6.6), we have:

. ’
€y = - Kslidier =
. . 2As(i) ‘ -
3+ r - : . -
. - 2
iy, * Aptt) -
g e A (1) < A (1 - AL(i)e®e 1.3t
n+1 0 o1 i 9 zi : 2
- ,. r
Rieg * Nyq s e
rl

coefficients A=A(i) are deftfdd by (5.6.1) and are exclusively
functfops of the column 1ndé§£i.-' : 4
Aslhhs'ﬁbnt;one& q;fpré;gﬁé-resdltiﬁg system of algebraic equa- -
tionsgiis .no longe; of a 3jd19gon;1 structure, but this can be dealt
with easily. It s more %iﬁbor;ant that apart from solving ' the

L4 .

. o
interface equation along with the X-ADI sweep, we solve it in 3p the

£
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z-ADI sweep too. Thi§ fwo-step free 5urfaée solving procedure can be
Jooked at as a kind of Predictdh (from 2-A0l sweep) Corrector (x:ADI
syeép) method. [f-was gound, that if. hoeizontal iteration on the
interface (corrector) %s ;emoved from the algorithm, the overall
iterative scheme provddes'§'cqnvergence rate that is several times

. .
slower. This comes from the fact that verfical solver of the interace

. {Predictor) is essentially the point-wise method, which is not quite

- ..
appropriate for a boundary value pioblem. On the other hand, if we

remove the Predictor,  and use the Corrector, i.e. line-iterative

-

- scheme for h, the convergeﬁce rate is very' much the same as that for

the Picard Method. "It s -‘the joint application of Predictor -

Corrector, which essential]y accelerates convergence, at least for
L 3

positive values of p_. L. ’

B) - The second differenée beéween phése two méthpds comes from
linearization. In the Picarq_Method the f]ow field equation is iinear
with respect to function w: hence it -ig 0(8) with respect to unknown
h. In the interface equatidn we arrangé 0(482) 1inearizatiop of the
curvature term only, so it is 'again. line;rization of global order
0(8). In the 1-Step Algorithm we ‘linearize the flow field and

interface equations with rggard to ¥ and h in the same instant.

Although in the final form- we do not make use of all incremental

expressions in x.éhd Z sweeps of ADI, we have the increment dwz .

which when appropriately relaxed, may cause essential acceleration of
convergence. This is an 1mpqrtan.t__ﬁvaqtage of the 1-Steb Method over

the Piéard Method. It may happen, however, that when C is close to

4
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N its extremal feasible value (with resp. to P J, we may encounter

stablility problems. As we reported, these can be dealt with by

suitable relaxation of interface solution h(x).

-

Ve

5.6.5 Accuracy of discretization. ,

In this chapter we have been concerned hitherto with several

- aspects of inmplementation which would yield an effective numerical
algorithm for the solution of the ideal fluid flow. When discussing

the ;1card. and 1-Step Methods we were interested in the rate of
convergence of the iterative scheme. This was found to depend on the
1iggarization and ADI-relaxation. Another problem was deter-

mination of the range of feasible parameters ps and C. Be )addresseq

also the question of the existence o% a solution to the free surface

equation of our model problem. All these points were dea1in§ with the

] ‘ availability of a numerical solution. Now we put forth £he questién
of the quality of numerical results. As was discussed #n Seq. 3.3,
the eff{cient tool to pursue this question is the analysis of the
grid—convergéﬁce of - the error of dtscretization. ® This ' analysis was
applied a}réady in the case of the Asymptotoic.Method. We estimated;
the order of convergence of the ¥ Arfield with the interface beihg
assumed as  known (static interface). Now, when we deal with Direct
Methods, we are interested in the estimation of the order - of
convergence for both - interface and flow fjeld. This is a mucﬁ

different situation when compared to the Asymptotic case, since

equations for both variables are non-linear due to stream function -

~

-
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f(ee surface coupling. This différence, coming frgm nonlinearities,

raises again the gquestion of the validity of the convergence order

egtimation based on results obtained on a sequence of 3 different

grids (Sec. 3.3). Therefore to make sure that the 3-grid estimator

is of value for Direct Methods, we will start from order estimation

- . .
for the mathematical model with the known analytical solution, similar
in structure to our system describing ideal fluid flow. In a further

subsection we will examine results for the original system of

-~

equations. ~
Analysis of model with known_anqutical solution.
‘ Let us consider the following function: )
\ 6(x,y) =1 sin( m)(1 § L) | (1)
H(x) = H1(x) + HZ(x) (ii)

\

where: Ho(x) €1 - s(=k - 0.25)} + s [=+ - (x-0.5)2]%, s=sgn(p_/[b_|)
1 _ps P . s''7s
Hz(x) = 0.05sin(2n-x)

Function H1(x) is a segment of a circle of radius 1/|pS|. x €
[o0,1], rwhich is the counterpart of the static interface 1h the _

original model. TFunction H2 (x) 1is a small harmonic disturbance

suﬁéffm osed on H1. ) . g . )

- a——T . .

Let us formulate the problem:

" Fine-function ¥(x,y) and h(x), so that:

—
'
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4
hxx ) E [Btb ]2 . (aw ]Zi . Hxx (5.6.8)
(1+h;)g¢ 2 Bx By B (‘1+H;)3’2

hold for x € [0,1], y € [1,h(x)], and:

gy =0 at x = 0

v =0 at x =1 -

¢ =cos(nx) aty=20 ‘
& =0 at y = h(x)

h =1 at x = 0

h =1 at x =1 -

Let _us note that the above problem is defined in the same terms
as the original physical problem. We have the elliptic equation ®or
thé field (though it 1is not Laplace, but Poisson-type), ordinary

differential equation for the free boudary h(x), and Aboundary con-
“~

ditions, which are brecisely the same, as in the formulation of the

————

model an for ideal fluid flow. The above problem has an analytical
solution, which is (i) and (ii).

Let us remind ourselves, that o is an order of grid-convergence

if (Sec. 3.3):

1- - ’ —

SRR
[f - f}(6n) r @ _
Ek=| (1i1)

x

[F%2- F1(Gn)
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where f is an exact analytical solution (¢ or h), {.])(Gn) is L-2 norm

defined on a subgrid Gn of grids Gk1 and sz, e is spatial incremént'
. of grid of dimension k x k. Let us discuss Tables 5.718, 5.19; §5§.20.

Each table consists of two parts. The first one lists [fk - ?i(G10). )
the second shows the respective values of a, which is the order of
convergence 7 of numeriga1 squtién ta_ the analytical one with the grid
refinement. Three table cover three cases: ‘static free .surface' H,
being convex Cps =1.5}, flat (ps=0.) and concave (ps=-1.5). A1l 3
cases show =2, a% exdéEted, beginning from results computed. on grid

10x10.

>

Tables 5.21, 5.22, 5.23 show results obtained from the same.

cogputed fields, but wusing reference estimation of the grid-con-

\‘;wergence order. That is, assuming f s unavailable, we approximate
(111) by (iv):
K Kk
[ - ¢ 2PTek) Iy - el
. u 2
.. [z %] (6k) Ird -l (iv)
. ka [
A W
These three tables show again results'Very close to a=2. This means

that for the type of problem we consider here, fo?ﬁuJa (ii11) can be

approximated with (iv) starting from grid 10x10.

Analysis of model with unknown analyticaf solution.
Let us return to the numerical model of the ideal fluid flow.

Order estimation ?§‘ esented for the same stagnation pressure values

/ ‘ : |
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as tested abote: p5=1.5,PpS=O., ps=-1.5. Results are displayed on
Tables 5.24, 5.25, 5.26. E;ch specified case is’identwfied by a
couple of parameters: psand Q;,/Lt{}s worth mentioning §h0ugh, that
for the problem (5.6.6) the value of C is of small importance. It i
* due to the fact, that (6w/;3x)‘+(&w/ay)2 goes to zero as the grid is

made finer. Therefore the coupling of (i) and (1i) is dominated by

the surface —.inserface influence, while the field affects equation

(i1) by the relatively small and in limit zero-valued term C((3y/dx)%+

L J
(3W/3x)?)/2. It is not tihe same in our original problemy where

velocity does not vanish on the surface. Therefore C is of importance
as a factor amplifying or damping the influence of velocity on the
shape of the interface. Large value of C=9V3L/T (see Sec. 2.2) in
physical interpretatidn means a sm§11 surface tension. Evidently,
this makes free surface more sensitive to the distribution of velocity
'along the free boundary. Converse]}, small C means strong surface
tension and in consequence the interface is expectedto be less
-dependent on the mot%on pattern along the free surface.

In Sec. 5.5.3 we have addressed the probleff of bounds on the

-

value oK C for fixed P, These bounds were established on grbunds of
- : : ’

. " the existente condition for interface equation;' Néw, we can put the

question, whether the order of convergence is sensitive to the value ,

of capillary number C. ]
. -
Let us consider case with pg=1'5‘ It was found, that the e range

of feasible C, when p_=1.5, i€°0 < C. < 600. On Table 5.24 we have

T ' . ..
‘- listed values of a for the flow field function y its derivatives and
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for free surface funcfﬁon along with 1its firdt derivative and
curvature of the interface. Curvature is pointed out as a factor ~
« ® directly dependant on the balance of forces at the free surface. We:
see that with grid refinement, we get better results for ¢, h and
curvature. As for derivatives of field function ¢, we are apt to
think that the results are not satisfactory. ,This 1s comment on the
g;se with P =1.5 and C 1s=100; in this é is far from its limit of
feasiblity (which is 600). Now, let us look at Tables 5.25 and 5.26
which contain resuits for ps=1.5 as before, but C=200 and C=400, resp.
We can see gradual deterioration of o%dey @, in particular for ¢, h, hx
. and curvature. It means that to provide results which would SAOH the
second order  of grid-convergence, we should either pgrform com-
putations on finer grids than those listed in the tables, or restrict
the mcdel to gaaH1er values of C. Let us mention by the way, that if
=100 (pS =1.5), the asymptotic parameter € is 0.11, i.e. only twice

as bi§ as € for‘which the Asymptotic Method can be applied. This

cohpq}iéon may suggest that to obtain valuable results (a close to 2) -
- : for* larger C (€> 0.05), we may use the Direct Method, but N&Pe choice

of the computational grid is not a trivial problem.

Deterioration "of the order of convergence for convex domains was P
already observed in the case of the Asymptotic Method. It was

L suggested, that- this poor behaviour may be theQ resu]i of the

4

- ’ B
transformation of variables. The physical grid as a countér image of

-

. the transformation becomes sparser <close to free surface, if ps>0.
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Therefore Lagrange residuals in difference approximations may by mo}e

difficult * to séabilize. If they,are multipliied by large C, they may

contribute even more to the deterioration of the order of grid-con-
* vergence unless we use very fine grids.

These were comments on the case of ps=1.§. When we look at Table
5.27, pg= 0., C=100 (€=0.47), and table 5.28, where p,=-1.5 and €=10 .
(€=0.133), we see that order estimators converge to the desired value
of 2. What is more, € asymptotic parameters are larger compared to

the cdnvex case, and C are closer to the maximum feasiblgavalues.

Therefore the order of grid-convergence depends on the parameters ‘of
the problem. [t was shown that for convex physical gomains. it may
require much denser grids to obtain the desired order of .grid-con-

vergence, than for concave ones.

> .
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In solving the analytical model us{ng a finite;;ifference si-
msation, we always wonder how distant the actual numerical solution

« is from the exact analytical one. This distance is degisive in terms
. of the validity of the algorithm. Since the di nce cannot be given
explicitly, we may try to investigate the characte™of copvergence of
numerical “results to the exact solution with r — 0. When we use
second order finite difference approximations, we have grounds to

expect that starting from some small-r, the numerical solutions form a

sequence which is convergent in accordance with formula (iv) above.

Here we arrive at the concept of extrapolation. We gave the
background for this idea in %§ec. 3.3. In Table 5.29 we show
. %
extrapolated values from the solution roblem
P f’“ﬁ-s ; (p

€ Ty '
woﬁciges: ps=-1.5, C=40 and

5.6.8). Extrapolation was performed for t
pS:H.S and C=400.

Let us consider case ps=1.5, C=400. In the first column we have
distances of the exact solution and ‘soTutions obtained by ex-
trapolatibn og variables computed on grids 10x10 and 20x20. If we
coppare” the distance of the exact solutgon from that computeqmon grid
G60 (Tab]e-5.20) we can see.that extrapolated values are closé; to the
<{/—\;;3Et solution than those from grid G60. This 1is an important
observation, since it suggests that we may considerably .decrease the
time of ﬁomputations. by running the algorithm on coarser grids and
then extrapolationg results. This oberat{oﬁ ig Justified, howeve},
only if there is confirmed information on the order of grid-con-
Qergence, and grids involved in extrapolation fall within the range of

- . "\

R
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dimension required to prove this order.
When speaking about extrapolation as a cost-saving vehicle, let
us mention t&at the time-gain resulting from extrapolation in place of

compuiing qpf'f1ne grids is considerable. For the exaﬁb1e formulated

by (5.6.8):

a) . total time required to get solution on grid GI0 is 1.62 secs..
r

(24 iter.)

b) total time required to get solution on grid G20 is 10.8 secs..

(36 iter.)

Joint time cost of obtaining extrapolated results : about 13

5€cs..

-

c) total time required to get solution on grid G60 is 320 secs.
(320 iter.)
On top of the cost saving, comes higher accuracy of extrapolated
values, as we mentioned above. This can be seen in the two following

columns of Table 5.29 showing the distance of the exact solution from

values extrapolated from finer grids. The results are far super46r to

those obtained on grid G60.
The same conclusions may be applied to the sec99d~case, i.e. pS=-1.S.
€=10, which is presented in the lower part of Table 5.29.
)
Table 5.29 with resulting comments and conclusions apply directly

to the simplified case (5.6.8), when exact solution to the problem is

2
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.available. It may be shown, however, that it is possible to have some
information about.the distance of numerical sodution from the ana-
lytical one, even .though the latter one is not available. We wil]
stay for a while with the example (5.6.8). Let us suppose we have
done computations on grids G10,620,...G60. Let us fix as a reference

60 whQh are values computed on grid G60. Now, let E . (f) be an

rapolation of values of f computed on grids Gk, ana Gi. If we take
L]

60
(B, 20! - fsoﬂ
. 60 .
LE30,60F) .- 70 '

-

constant. This 1imit constant m e understood as an estwmate of the

we may *”e (Table 5.30), Q\bit is fast convérgi’ng to some

distance of 60 from the unknown analytical solution. Table 5.30
lists this sequence for several variables. This table is referred to

problem (5.6.6), therefore we may examine va]}dity of the statement

. formulated above by comparison to the exact solution. 'Although each

of the sequences is short, they show rapid stabilization. What is

60 from the exact solution, we

GOH:

more, when we consider the distance of f
see that this is very close to {530,60(f) - f The value of tnis
norm is therefore a good estimate of how far from the exact solution
is the result f60'

The same effect can be observed in Tables d5.31$.b,c, which are
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referred to our original model of an idal fluid flow. Here, as for
problem (5.6.6), we observe fast stabilization of the sequence for
each variable. Assuming E30 6O(f) is close to the ultimate solution,

we may treat [€36 60 (f) -\fsol as an estimation of the distance of

60

f from the exact unknown solution. Detaited listing eof the

{E KT (f) - fsoﬂ is presented in Tables 5.31.a,b,c. For the sake of
completeness we show data not only for ¢ and h, but also for their
derivatives and curvature of the free surface. Table 5.31.a is
referrea to the case p.=1.5, C=100, Table 5.32.b to the case P =0,

C=100 and Table 5.31.¢ to the <case p_ =-1.5, C=10. Other cases

s
Hdis%éssed :jh precéding segtion, like =200, or C=400, are not taken 3

A .8 OJ‘
LRI ~ . - ¥ . . . .

) here inte aecount, since within.the range of grids used in this work, <..
the grid-converence is not ofithe desired order. Therefore we can not by
arrange extrapolation for thes;\hqses.

' -
~

L o mwaEl
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TABLE 5.29 Distance of extrapolated values from the exact solution
- r3 =1.5, =400; =-1.5, =1
'lEk,l(f) f ] for pS 5, C=400 ps 5, C=10
(example problem (5.6.8)
A
pe= 1.5, C = 400
f)-f -f f)-f
IE10,20( )-f1 [E20,40(f) ] ﬂE40,60( )-f1
variables A
v .653E-6 .414E-7 " .821E-8
wx .382E-5 .275E-6 s .570€E-7 "
¢z N .367E-5 .228E-6 .456E-7
wxz .139E-4 .106E-5 .233E-6 -
Vyx ’ .189¢€-4 .138E-5 .332E-6
wzé .163E-4 .118E-5 .268E-6
h .543E-4 .364E-5 * .731E-6
h .138E-3 .877€-5 .174E-5
h .834E-3 .526E-4 .105€-4
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TABLE 5.30 Distance of extrapolated values from the solution
computed on grig‘GGO: lEk {(f) - f60];
(Cases ps=1.5, C=400; ps=-1.5, C=10, example prob.
(5.6.8)). '
Pg= '1’5L C = 10 60
0
IEg 0P lE20,40(”‘fs i lEo,o,tao(f"#6
variables :
i .362E-6 .379E-6 .389E-6
Yy .114E-4 .115E-4 .115E-4
wz .733€-5 .749E-5 .750E-5
Yoa .275E-4 .281E-4 .282E-4
oy .262E-4 .252E-4‘ .252€-4
wzz .748E-5 .591E-5- .595E-5
h .230E-4 .Z41E-4 .241E-4
hx +.107€E-3 .825£-4 .813E-4
h .248E-3 .155E-3 .151¢€-3
XX
pe= 1.5, C = 400
' .163E-5 .108E-5 .105€E-5
'™ .779€-5 .892E-5 .903E-5
v, .914E-5 .953E-5 .853E-5
wxz’ .472E-4 .359E-4 .353€-4.
wxx .223€E-4 .180E-4 .182¢8=4
Vs, .408€ -3 .266E-4 .259E-4
h .762E-4 .275E-4 ,.249E-4
h, .138E-3 .787€-4 .804E-4 ’
hxx .793E-3 .140E-3 .145E-3
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TABLE 5.37.a Distance of extrapolated values from the solution
computed on 'grid G60: lEk,T(f) - fsol;
(Cases ps=1.5, C=100; example prob. (3.2.2) -
(3.2.3)).
(610 20 (N1 HEyg .00tz P1  HEgg go(N)-f01]
variables ~
" .433E-6 L INE-5 © 7 L119E-5
v, - 766E-5 .623E-5 . .657E-5 T
v, | -174E-4 . .194g-4 S .195E-4
v, .976E-4 .284E-4 .291E-4
Yo .590F -4 .171E-4 .236E-4
v, . 100E-3 .192E-4 .307E-4
h .226E-4 .685E-5 .111E-4
h, J191E-3 .629E-4 .538E-4 .
! Curv. 413€-3 .631E-4 - . .311E-4 )
7
[




g

TABLE 5.31.b Distance of extrapolated values from the so1ufion"
comp;ted on grid G60: [Ek’](f) - f
(C?ses pS=O, €=100; example prob. 1(3.2.2) -
(3.2.3)).
‘ | 60
[E10,20(F)- (€50, 40(f)-f [Eqy_go(f)-F ]
varjab1es
W 1 .138E-5 .151E-5 .151E-5 .
v, I .985E-5 .987E-5 991E-5
wzﬁ; :ﬁOSE-4 .114E-4 .115€-4
‘v Vyz .135E-4 111E-4 ANE-ET -
b .143E-4 .142E-4 .186E-4
v,, .944E-5 .950E-5 .928E-5 )
h .698E-5 .578E-5 .624E-5 -t
h, .305E-4 .342E-4 .369€E-3
Curv . 158E-3 _101E-3

.122€-3

LI
R T T O
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TABLE 5.31.c Distance of extrapolated values %rom’fhe solution
computed on grid G60: [Ek’1(f) - fsol;
(Cases ps=-1.5, C=10; exampfe prob. {(3.2.2) - ,
(3.2.3)). ' ’
S Y2 bkt N PSP O R o B CAPYICo R
variables
T A172E-5., .166E-5 .165E-5
v, .205E-4 .196E-4 196E-4
6, .719E-5 710E-5 .711E-5
Yoy .586E-4 .235E-4 .264E-4
Vo % .532E-4 .326E-4 .339E-4 .
v, . 254E -4 .125E-4 .136E-4 '
h . .186E-4 .152E-4 .150E-4
h, . 152E-3 .966E -4 L9aaE-4
Curv. .142E-3 .475€-4 .717E-4




CHAPTER '6
HIGHER , ORDER METHKODS

The—fléw of an ideal fluid, as defined mathematically in Sec.
2.1 is determ?neg by the‘flow field and the shape of the free surface.
Since the flow patfern is coupled with geometry of the free surface,
the accuracy of the numerical soTution is of primary 1@port@nce. High
accuracy is desirable in }articular in the vicinity of the free
surface. In finite difference discretization, accuracy of the nu-
merical solution depends primarily on the accuracy of the différgncing
scheme, 1i.e. on the magnitude of the truncation errqr of dis-
cretization. For the fixed grid-size parameters, the trupcation error -
depends on the order of Lag;ange residuals resulting from the
Taylor-series approximations. In Chapter 3 we have .Hiscussed di;-
cretization of the mathematical model of the f]°'c?9d,;°ve !o;hu1afed
discretized models of the second and higher .order .of aca-lséy._ In
Chapt;rs 4-5 we have discussed algorithms 1mp{emented algebraically by
dscretization of the 2-nd order. In this chapter we shall disc;&s
the higher order methods. First we will point out differences in
implementation between second and higher order methods. Next, having
a particular differencing scheme, truncation erroﬁ and.tne rate of 1;5
convergence to zero will be examined. Finally we- wiiﬁ compare. 2-nd
and higher order methods ‘in ;ermé of their cost-efficiency. |

All computations using higher order.differenéing schemes'haye

been carried out using the Picard Algorithm (see Sec.5.5).

317




218

-

6.1 Description of Implementation.

There are three major differences in.implementation of the higher
order discretization schemes when combared to the 2-nd order methods.
These are:

(a) Algebraic ADI procedure,

(b) imptementation of the boundary conditiens,

(c) iterative strategy and selection-of relaxation coefficients.

We shall discuss each of -these issues separately.

*

(a): In Sec. 3.2 we have defined the algebraical model of the’

analtytical problem as:

H.. =20
LN
/ "

¢ , -

-1 - g _

13 -

i = 1,...,Nn

J = 1,...,m

where 4/ .. is the governing equation specified in a pivotal point
ij 9

(xi,zJ) of a.-grid and H}j are independent Hermitian formulae. [t was

shown in Sec. 3.2 that for second order discretization we may arrange‘

-

separation of a modified governing equation from, the associated
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Hermitian formulae (see (3.14)). In consequence; systems of algebraic
equations defining x and z ADI sweeps are in a scalar 3-diagonal form.
In the case of higher order Hermitian formulee, we are unable to
arrange the separation, and the ADI procedure is defined in terms of

systems of algebraic equations of 3x3 block tri-diagonal structure.

Therefore the dimensionality of the systéms resulting from higher
order discretization is much higher, and this is the first dis-
. advantage of the method.

.
(b)" Higher order Hermitian formulae {like (A.1) and (A.2) in

Appendix) provide ag implicit relation between .the values of the

function and its derivatives at 3 consecutive hé&nts of a grid
- T~

. Y .
molecule. Therefore, when setting up a system of algebtaic equatio#!,

we hdve to consider‘the first and second part;a1 deri«etives on the
boundary ' as unknowns. The required boundary reiations will be
expressed by the Pade difference formula (A.§ in Appendix), whieh s
of ‘the order 3. This in turn may cause a reduction in the overall
accuracy of the algorithm.” Here we are at a point of particular
importance, since high accuracy at the boundary is of major importance
in numerical simulation of flows with free Surfacé. There also used
to be a problem with accuracy due to mixed.derivatives difference
estimators. This was, however, successfully solved in thi$ work by
developing planar estimates of the 4-th order of accuracy on the
compact molec;le 1n\£P£~?ﬁ\Frior of the domain as well as at éhe
boundary (see appropriate\ Hermitian formulae A.4, A.5 and A.6 in

y | R
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"Appendix).

-

(c) AD! is driven by pseudo-time derivative, or eqﬁivalent]y, by
relaxation. It has been shown in Sec. 4.2 (Figs. 4.2 and 4.3) thag-
in the case of the 2-nd order method, application of Hachspres;
optimization yielded Q considerable acceleration of the iterative
process. Unfortunately, this optimization has been developed only for
the separated systems, that s for a case when resulting’algebraic
systems are of a 'scalar 3-diagonal structure. For higggr order
methods we can apply only a single relaxation factor, and this makes
the iterative process considerably longer. In addition, we have to
rely on a trial & error procedure in order to determine the opti&a]
value of the relaxation factor.

A1l three factors listed above, contribute to the worsening of
the performance of the higher order algorithms. Below we provide a

_Quantitative comparison of the second and higher order methods.

-

6.2 Comparison of Performance

of Higher and 2-nd Order Methods.

If we operate on the same grid, of say (n x m) points, the higher
* order ‘discreéization (HOD) algorithm requires more storage locati;ns
than that of the 2-nd order (the 2-0D). Nheﬁ applying tﬁé ADI scheme,
HOD needs about (6 x n x m) Etorage locafions (fo; function, its first

and second partial derivatives). When using 2-0D, only (2 xn x m)

———
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memory gpits are requifed. This difference becomes important, when

using HOD on fine grids, 1ike 100x100, which may exceed memory
availability on a medium-size computer 1like CYBER-825. The above
estimate of storage required is certainly very approximate. It does
not take into*account, for instance, the intermediate memory demand to
store arréys resulting from the Thomas algorithm operation. We may
take these inaccuracies %s insignificant, though.

Algebraic structure rgsu]ting from applying a particular diffe-
rencing scheme also affects the number of \élementary computer ope-
rations (operation count). It is known (Hirsh,1975) that on a (n x m)

grid:

(12 x n x m)

for 2-0D0 - ops

for HOD - ops

(216 x n x m)

which }eéns, that HOD requires qbout 18 times more operations to
complete two ADI sweeps, than the ¢2-0D0 ailgorithm. In reality,
however, this difference . can be substantially decreased by opti-
mization of the Thomas Algorithm for block 3-diagonal systems. In the
Table below'Ce present CPU time (CYBER-835) for a single ADI iteration

L J

(2 sweeps) required by HOD or 2-00D meth&d:
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TABLE 6.1 - CPU time (seconds) for a single ADT™ iteration

\\\
Comparison of second and higher order algorithms. g

-

rid spacing
0.1 0.0% 0.025 0.0167
algorithm
)
. 2-00 0.036 0.152 0.634 1.45
HOO > 0.124 0.463 1.79 4. ,
Vg

The first observation is that in both caseS, time is proportional
to the number of points in a grid. Next W& may observe, that ;time
required for a singlg grid point is for 2-0D about 4.2E-4 secs., and

e -for HOD about 1.2E-3 sgfs., which makes HOD performance worse by only

,'a factor of 3. Let us remember that those partigular‘relations tome

. from‘optimization of Thomas Algorithm by simplifying quressions
wherever we have zero in 3x3'blocks resulting from Hermitian formulae -

(A.1), (A.2) and (A.3) or governing eduation.

There is glso another comparison to be made, i.e. iterative

effeciiveness of algorithms b;sed on_discretization of the second, or

higher, order. The rate of the convergence of th% iterative . scheme

™

depends on the relaxation_scoefficient. In the casea of 2-0D0 we .

employed Ha;hspreSS‘oﬂti ization. In Sec.4.2.1 (Figs. 4.2 and 4.3)
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we have compared the rate of iterative convergence with and without

optimization for atgorithm based on 2-0D. [t was demonstrated that
optimization yielded much faster convergence. Since the Wachspress
optimization is unavailable for ADI block 3-diagonal systems, ite-
rations of HOD method are driven by é single relaxation parameter,
(optimized by trial and error procedure). This, however, takes many
more iterations when compared to the optimized second order algorithm.
For example, ;f stagnation pressure is zero, C=10b, and computations
are carried out on the gr)d 60x§0, HOD algorithm requires 275
iterations to reduce resj down to machine -accuracy, while the 2-00

method yields convergénce after 30 iterations.

in this Sectiof we discussed 3 criteria of algorithm performance:

®»

a) memory storage requirements,

b) time of a single ADI iteration,

c¢) number of iterations of ADI scheme.

It was shown, that thé®2-0D algorithm is superior to that of HOD.
in all tHree aspects. The only one remaining is the accuracy of a
computed solution. This topic is.discusseg in the following section.

[t will be shown, that should <the rigorous analysis af truncation

error be performed, we may apply extrépolatibn of results obtained by

the 2-0D algorithm and aChie‘i‘zlzh accuracy with much smaller cost
comparEF to the performance HOD. For 1instance, " in the case

presented in Table 6.4 (next Section) we may see that extrapolation

from the 2-nd order results obtained on grids 50x10 and 20x20 is more
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accurate than results computed on grid 10x10 using the HOD atgorithm.
ﬁoreover, the overall time required for 2-nd order computations with
extrapolation included, was about 8 secs., while for the HOD algorithm

it was 19 seconds.

6.3 Analysis of the discretization error.

The ’concept of discretization error was explained in Sec. 3.3.
It was shown, that the .accuracy of discretization (Sec. 3.2) s
reflected in: the rate of convergence of the truncation error to zero
(grid:convergence with ax,4z —= 0). This mate of grid-convergence
associated with the order -of discretization, has bégn examined
thoroughly for the second order methods (see Sec. 4.2.2, 5.6.5). It
was stated theoretically (Sec. 3.3), fhat the,grid:convergence order
depends on a differencing scheme. It was shown, that 'the use of a
differencing scheme of the order 2, yjelded second ordef (0(r?))
grid-convergence of discretization error.

When app}ying higher order discfetization, we make use of the
Hermitian formulae which are not of the same accuracy (see Append;x).
First of all, the Pade formula ({A.3) in Appendix) is O0(r®), while
difference expr?jfions for the interior grid points are of higher
accuracy (of the ‘order O0(r®) and O0(r®), 'reSp.). Secondly, the
expressions for the 1nterior points are also of uneven accuracy: (A.1)
is 0(r3) and (A.2) is O(r®), while differences for mixed derivatives
for the interior and boundary are O(r*). Therefore it is not quite

clear what the aggregated order of the resulting algorithm will be.

L4
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We may “speculate, however, that the overall giscretization error 1is
dominated by the lowest accuracy element. Taking only the interior of
the computational domain into account, this error shou1é be dominated
by residuals o% mixed derivatives estim®®es, which are of O(r"). On
the other hand, our algorithm is implicitly utilizing the Pade formula
of the 3-d order accuracy on the boundary. Therefore, we may expect
the overall order to drop below O0{r*), since the error of the
differences containing the boundary points may affect the accuracy of
computations in the interior of the domain.

The method of estimating the order of discretization error has
been described in Sec. 3.3.: Since this method is va]%d asym-
ptotically, i.e. as .r —> 0, we feel that it is necessary to check
whether for our type of algorithm (HOD),  the numerical agproximate
estimation of the order of grid-convergence is valid. In other words
we want to make sure that the asymptotic justification of the
approximate order estimation is valid. In order to do that, we solve
the problem which was stated by (5.6.8)r;} Sec. 5.6.5. This problem

has a known analytical solution:

G = (1 - y/n(x))?sin(nx)/n (6.1) -
H(x) = H1(x) + Hz(x)
where H1 is,a segment of a circle of curvature‘ps,

; H2 is small harmonic deformation

%
At this point we are interested in estimating the order of truncation

4
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error by direct reference to a known solution. Later we will carry
out tge comparison of the order of discretization estimated by
.reference to the exact analytical solution (formula (iii) .of Sec.
5.6.5) with estima;ion based on L-2 distance of results computed on
three consecutive grids ((iv) of the same section).

wWhen comparing the numerical so1u£10n to the analytical one, we

will consider the three following cases:

. (A) - computationdl domain Ais almost flat (H1=1) : Tables 6.2
a,b,c, -
(B).-A is convex (curvature of H1 is 1.5) : Tables 6.3 a,b,c,

(C) -4 is concave (curvature of H, is -1.5) : Tables 6.4 a,b,c,

1

Each of the cases is represented by three tables. Tables 'a' and
'b' show order estimation when interior, or interior and boundary
. grids points, respectively, are taken into account. Each of these
tables consist of two parts. The upper one list Ifk- 7 J(Gk) , i.e.
L-2 distance betwedn the field computed on a grid Gk, and exact
solution f. The lawer one shows estimation of grid-convergence order
usin§ results obtained on 2 consecutive grids when referenced to the
exact solution. Tables 'c' show order estimation when the exact.
solution is ignored and numerical results computed on three grids o;

increasing density are invoived.

Conclusions are as follows: o - ] °

-

(1) Far all 3 cases (A),(B) and (C), with grid refining, the order

'

*



&
of the truncation error is approaching the value of 4, but with some

exceptions it is considerably lower than 4.

(2) Comparing tables 'a' and 'b' with 'c' we may see that relative
order estimation (tables 'c') show underestimation, and is not
stablized for the range of grid sizes we tested. This variability
means that truncation error is still influenced by 1large changes of
higher derivatives in the Lagrange residuum. The numerical solution
is usually meant to be valid if discretization error depends primarily
on some power of a grid constant r. In view of this principle, our
results, §xcept for the case (A) are not satisfactory for any of the
grids tested. If we take results for the same case, obtained By the
algorithm of the second order (Tables 5.20, §.21 and 5.23), we see
that the variability of the truncation error is vanishing starting
from grid 10x10. This is confirmed by ﬁniformity in the estimation of
the grid convergence order also for the finer érids. In view of this
argume;t, the second order method yields results of better numerical
quality. -

Due to the unstabilized order of convergence we cannot apply
extrapolation. Therefore in order to get results of high accuracy we
must compute on fine grids.

(3) A comparison of tabli% *‘a' and 'b' <can inform by how much
comﬁutations of boundary derivatives affect overall grid-convergence
order. One can observe that there are negligible differences except
for w,,» Ex, and hxx,:whiEh show higher ordér if their boundary values

are dropped. This is due to high gradients of these functions at the

boundary.

L J
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In Sec. 5.6.%5 we-have examined the concept of extgrapolation of
results computed on diffetent grids. This analysis was pursued on
grounds of the 2-05 method. Now we can compare results of 'the
extrapolation with those obtained by the use of HOD method. For
convenience;.we collect data in TABLE §. at the efd of the Section.
The distance of an exact solution from extrapolated values %or the
2-0D method was displayed before in Table 5.29. The Case Codes of
Table 6.4 are to be understood as follows:

- I,IL,II,IV ;re for the.- HOD method. They present the dif%g;ce of
exact squtioqxszm the ones computed on grids G10, G20, G40, G660 with
space incremendy’ respectively: r=1/10, 1/20, 1/40 and .1/60.

- V,VI,VII are for theLZ-OD;méthod. Here we have di%tances of the
exact solution from the field ;btained by pairwise extrapolation of

the results computed on grids of r=1410 and r=1/20; r=1/20, r=1/40 and
r=1M\ r=1/60. .

»

~ -

~ ' As is shown; the results obtained by thé HOD algorithm on grid

10x10 are worse than those coming from extrapolation from grids 10x10

and 20x20. .Simiiar1y, extrapolation from grids 40x40 and 60x60 15
- ' cloggr to the exact solution than higher order results computed on
grid 40x40. From this comparison, one may see that extrapplation is a
very efficient tool to get highly accurate rg/y%ts The second
observat1on is that even though it might seem that app11cation of the

higher order method is a more straightforward way of obtaining highly

accurate results, we must acknowledge that in view of experiments




presented heretofore, the second order method with extrapolation is a
much cheaper way of getting accurate resutlts.

For the sake of completeness, we present below 2 tables (6.5,
6.6 ) presenting o}der estimations for HOD computations of our
original physical flow with ‘free surface, As we can noticé. the
increase of grid density causes 4n increase of the order of
discretization error. This suggests that the differencing $cheme (see
Appendix) yields 4-th order (or close to) convergence. Unfortunately,

variability of the order of grid-convergence estimates (with grids

refining), makes extrapolation unfeasible in the range of grid spacing

examined in this work.
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CHAPTER 7
PHYSICAL INTERPRETATION OF THE RESULTS

In this Chapter we intend to show how the free surface depends on
parameteﬁs of the flow. Because the shape of the free surface is
interrelated with thg resulting static preésure along the free
boundary, we will examine the variation of this pressure when -flow
parameters vary. We confine ourselves te the investigation of the

effects of changing the stagnation pressure p;, tﬁe externa{ pressure
p;x , the velocity scale V, the surface tension T and the 1length
scale L. As in Chapter 2 asterisks are used to denoye dimensional
quantities. We use in this chapter dimensional parameters, because
they make physical interpretation of the results easier.

In the'first section we assume that the extana] pressure acting
upon the free surface is zero. In the following section ‘F present
results for nonuniform external pressuré and when liquid- sol1d contact
points are of nonequal hight.

.

7.1 Case of z2ero external pressure.

The original form of the Dynamic Boundary Condition is:

. h* i
Vd * * XX
p* = px - T (7.1)
] o ()

. [

p* is_tﬁe static pressure at the free surface, exerted from the
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H
M ) interior of the fluid. Let us asgume that the outer pressure p* is

. Zero. We know from the Bernoulli equation that the following is valid

in the whole domain (boundary included):
o - -
pr + §1V|’- p; = const ] . (7.2)

where pg is the stagnation pressure. The stagnation pressure is equal
to static pressure if there is no motion of the fluid. After having

appropriate scaling done (Chapter 2); and (7.2) put into (7.1), we

L

get:
- hgx
- = p* - C|v|3/2 . (7.3)
- (1 + h;)Jh
where Pg =p;L/T is dimensiﬂ%]ess stagnation pressure, C is the

capillary number and V2 is the square of the fluid speed along the
free boundary. ) .
Let D=pV3/2 by definition, so C=DL/T. D s thé character}stic
) dynamic pressure. Let P=p_ -Cv3/2 , which we will call the charac-
» teristic static pressure along the free surface’ ?rom (7.3) it
.follows, that actual shépe of- the free surface depends on the
. distribution of P(x) along the freer surface. Let us make ‘few
statements about P as a function of pgrameters p;, L, T and D. )

- ]

Proposition 7.1.

a) P 3 pEL/T.
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b) P is a decreasing function of T.

c) P is a decreasing fungtion of dynamic pressy?e p.

d) P is aﬁ increasing function of pg.

e) P is an increasing function of L.

/

REMARK:
Property of monotonicity should be understood as a functional mono-
tonicity, i.e. if 'a' is some parameter of the function P, then:
P is monotonic witﬁ regard to 'a' in interval I if and only if

2, §a, ={ [P(a)) 5 Pla,)] .,‘.;, X1 [P(2,)(x) § P(ay)(x)])
- . .

A1l the statements of the above-Proposition are easy to demon--
U
on grounds of formal definition of P(x). But each of these
\
points have an interesting physical interpretation with reference to

the free surface eqﬁation: P = -hxx/(1_* h;)Nh. This interpretation’

is presented below.

2
=05 - D= pe &

(a) P =p - ClV|/2 xp= R F | _ .
This inequality is visualized by the fact that the dynamic

(actuq})' free surflce is always either equal to or is lacated beneath

the static surface generated by the stagnation pressure P = p;L/f.

This feature can be observed on Figures 7.1 7.4, Therefore the

-

_ fluid motioﬁ, and resu}ting dynamic pressure, results in subs®dence of

-

free surface when compan‘ﬁ to its static shape.

-~




b)‘ P is decreasing function of T .

Let us consider éaéLs presented on Fig. 7.1.a, 7.1.b, 7.1.c.
Stagnation pres;ure 'p; is set constant as 0.1, similarly the dynqﬁic
pressure D=38, but the surface tension is set in decreasing segquence
(T=1.0, 0.1, 0.048). According to the " statement b) of the pro-
_position, decrease of T fis cadsing iqirease of P.  The pressure P
" .consists of stagnation and dynamic components. Let us discuss’them
gne by one. Nondimensional stagnation pressure ps; p;L/T ts rising
no;linear]y as 1/T,-and so is the curvature of the static interface.
what follows, the stapic interface, which occures. when dynamic

, effects are absent, will be referred to as ‘shadow“interface, since

what we'physicijly have, is only dynamic free surface. In all three
cases (fFigures 7.1.a, 7.1.b, 7.1.c) decrease of T is causing the
capillary. number to change.at' the raie of 1/T. Therefare, when T s
being -decreased, the actual dyﬁamic interface is rising, but ne-
verthéless it is trailing behind the 'shadoQ' oqé (which was de-
monstrated in the statement (a)).

. An interesting case is shown on fig. 7.1.c. Here, surface
tension is sp small that at the given p;, a stdatic free surface would
not exist, i.e. the liquid woﬁld be pushgp @t of the cavity.
However, because of the presencé of dynamic effects, overall .pressure

2

"o distribution s such ﬁhat‘théigz;?TTaray surface may exist. It was

———.

found though, that-~further decrease of the surface tegsion (T<0.048)

»would cause the dynamic free surface to break up.
’ Let us consider now the tase of the negative stagnation pressure.

A -
- -~
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Assume p;=-1., 0=12, while T is variable, with va]ues‘ 1., 0.8, 0.7.
This case 1is shown on Fig. 7.2.a, 7.2.b, 7.2.¢. With decreasing T,
the 'shadow'’ frge surface lowers down as pS= p;L/T is being decreased
(p;<0). . Dynamic interface, as was stated in &), is located beneath
the ‘shadpw' interface. Here again one can observe an interesting

phenomenon (Fig. 7.2.c), when T is too small to maintain dynamic free

-

surface, and liquid is being sucked into the cavity. However, if the
motion of the fluid was stopped, the pressure P would increase

5ufficienf1y to provide existence of the free surface.

c)' P is decreasing function of dynamic pressure D.

. In this point we analyse the physical results .of increasing dynamic

pressure D=@V?/2, or physically, quadratic increase of velocity of the
fluid. Let us fix p§=1., and T=1. At the outset, we assume D=0, i.e.
no motion, which resuits in the buidup of static free surface.- Next

we set D=300 and D=380. This is shown on Fig. 7.4.a. Increase of O
. e’ -
causes free surfage to subside gradually., It is worth to mention,

that increase of D to the "1ue 382 would result in collapse of the

" free surface (liquid is sucked into the cavity). _

d) P is increm®ing function of p%.
Let us aséaﬁe, that all parameters except p; are kept constant, i.e.
D=150, T=1. Fig., 7.4.a - 7.4.e display cases with p; ranging from
negative values to Pigh positive (p;e { -0.1, 0., 0.75, 1.5, 1.85}).

ACtuT(’ i.e dynamic free surface is seen to move gradually upwar&s.
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The same with 'shadow' interface. The interesting thing ig: that with___
pg increasing, the distance between dynamic and ‘sﬁadow' interfaéé is .
diminishing. This means, that the deformation of static interface due
to the fluid motion, depends on the velocity scale, but also on the
value of the stagnation pressure. The higher pf, the biggér must be
the velocity scale to bri;;/ free surface to the proportﬂoqal de-
formation. Establishing of the exéct relation between p; and D in

this aspect is difficult, since the static pressure P depends also on

the fluid speed along the interface, which is notjinown a priori.

.

The last case we discuss in this section is fhe liquid surface in,
different geometries (variéb]e length scale L), all other parameters
(T,' D, p;) kept const}nt. ‘For simplicity, iet4)=0, i.e. we will
investigate only static 1iquid free surface of variable span. Having
T and p% fixed, we find that moving apart contact points of the liauid
with solid walls, causes the curvature of the meniscus to increase.

If the' contact points are too far away from each other (e.g. L=3),

there is no meniscus of the circular shape, which would have the

preassigned curvature (=Lp;/T) It means the surface tension T +s
unable to counteract the internal pressure p; and the liquid bridge is

pushed out of the cavity. For the example gresented on 7.5, the

maximum feasible L ishg;f;- . } J
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7.2 Case of variable external pressure.

If the external pressure along the free surface is not’ constant,

than the interface equation takes on the following form:

-n% * . 2 2
e PR eyt L (gl

(1 +n2)w T T 2 T (7.4)

Despite the fact, that p;x is a linear term on the right hand side of
(7.4), it certainly has nonlinear effect on the final shape of the
free _surface. This problem was partially covered in the preceding
paragraph, when we-discussed the outcome of the vahiation of the
d;namic scale D=9V2/2 (see point (d)). In two examples which follow
(Fig. 7:§ and 7.7) the same exgernal pressure p;x =Ol1sin(2i:S?9l is
combined with different flows:

(1) : p2=-1., D=12., T=0.8 (Fig. 7.6). The deformation intro-
duced by p;x is very small. In fact the stagnation pre?sure is of one
order higher then p;x.

(2) : p2=0.1, D=38., T=0.1 (Fig 7.7). The effect of pt, $e-much
largeys compared to_the preceding case. This time pg“ s of order -of
pg. In addition, both cases d?ffer in the values of .the surface
%ension T. T .s much smaller in case (2).> It is certainly affecting
dyﬁamic pressure term, and iﬁ case (é) the actual interface is frar
.away from the 'shadow' free surface, when p;x is 0. The statiﬁ

interfaces for cases (1) and (2) are plotted for comparison on Fig.

7.2.b and 7.1.b.
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. »
fktbg. 7.8 demonstrates the free surface of the montionless fluid

with uneven elevation of the contact points (h(0)=1., h(1)=0.75}. The
stagnation pressure p; is assumed zero. Since no bédy fortes are
present, the static surface is flat. Thg plot shows the deformation
of the static free surface undér the action of the external pressure
p;x=0.2$in(2nx) with decreasing surface tension (T=1., T=0.75). \

Fig. 7.9 presents free surface of the field with noﬁrggﬁg_ilew;
with zero and non-zero outer pressure. It can be observed, that
decrease of surface tension may cause disruption of the free surface

due to large h,  at the right boundary.

d
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CONCL U‘S I1 0ONS
. ! é
The reifarch presgﬁéed in the thesis 1is Tocus§ed on deve]Bping
algorithms for ana1;§45'o% dynamics of an ideal fluid with free/moving

»
., boundaries. Particular attention was paid to the methods of providing

» high computational efficiency and verification of the accuracy of‘ the

numerical solutiorr. The ideal fluid has been chosen because of

simplicity 6f the governing'équation; yet, it was complicated enaugh

to retain all essential features of a typical moving boundary problenf.

A computational model of the governing equation is of iterative

) cﬁaracter. Quring the iteration‘ process, the "'flow domain evolves

towards the final form. At each ﬁsedé-time level thig¢ area is being
transformed onto the unit,square which constitutes the actual com-

putational domain. The transfqrﬁation x=x, z = y/h(x) (see Sec. 3.1)

.

] //Las the simplest one ‘to implement. It seems however, that this
part%cu]ar transformation is responsible for the drop & the accdracy
. of results for flows with the large convex meniscus .(seé Sec.5.6.5)..
] For the concave meniscus, conversely, the accuracy was 1anpved.
Should the boundary fitted _orthogona) mapping been applied, this
assymetry would ;}obably be removed. - The transformation of the
‘ coordinate system resulted alsa in a change of the form of the
\\\f\‘ governing eQuati?ns, inciud3ng introduction of @1xed derivatives and
. variable coeffikfepts°1nto the flow equations. The’presence of.'meea

derivq;ives might pose a problem in higher order differencing appro-

. ximation, but this was successfully resoiVed by developing compact

I
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planar E;th onder mixed derivative estimates.
6iscretization‘§bf the analytical mode! reﬁglted in ystem of
a1gebraiz equations. It was decided to so1ve it 1t:rat1v ly using the
ADI method. The two types of algorithms were analysed: ptotic and
Direct. The Asymptotic Algorithm, based on the Small Deformation
Theory, 1is designed to solve flows with expected small dynamic
- ? deformation of the static free surface; such situation is expected to
occdr when surfaée tension dominates over the d}namic effects. The
formal criterion of smallness of def;:mation was formulated (Sec.
4.3) lgnd constraints on flow parameters were given, so0 that the class
of flows which could be solved through application of the As&mptoiic
Algorithm was determined. ‘

Applicabildty of the Direct Algorithms is not restricted to smyl)
interface defnrmation - 'D!rect"means that the numer1cal calculations
are carr1ed 0ut jointly for the flow field and interface. equations.
The non11near equation for the free‘surface is treated J‘!h particular
attention. In Sec. ‘ 5. 2 aJd 5.3 conclusions regarding the existence

a—

and uniqueness of the solution to this equation are described. The\
study of the algebrai

stability of the ovena11,50f scheme iSéc. 4.4 "
and 5.5.4) supplement these conditions to determine ;he constrafints on -
*apn1ica6\jity of the algorithm. }In Sec. £.5.3 the range of feasible
. pafametérs of the mpdel probtem is analysed. This provi?es the
1nformat:10n gbout capabilities and Hmi‘t':artions of the algorithm.
- . There are two Direct Algorithms: presented: Picard and 1-Step

-

method. The difference betweern the two 1is 1in the order of - line-

h L
. . ~—
-
V. ‘ | ; .

7



-arization ‘and, thermefore, this distinction is reflected in iterative
‘effeciiveness. The 1-Step algorithm, which results from the 2-n&
order linearization of the 'governing equations 1§ showmm to be
significantly faster for all physical cases ‘coﬂgidered.‘ Another
contribution to the iterative performance was provided by acce{eﬁ&tion
of %he ADI solving procedure (for all algorithms involved), which was
. accompl%shed through optimization 6f7Fé1axation (following the Wachs-

" press algorithm). )

Particular attention was paid to the accuracy of the n;ierica1
regults. As we discretize the anaiytiéal mode usjng finite diffe-- —
rence approximation, we focus on the _bqﬁavjouri of tﬁe truncation
error. Principles of the analysis are\preggftedtih*§ec. 3.3.° It was
found that the 2-nd order d;;cnetization, f0r' thé' type 6f 4 1ows
analysed in this wofk prévided'resuIts wﬁ{ch‘hsve rglative grid-c;b-
vergence of the 2-nd order, as expected. Duélyo'the'smoothness of the
grid-conyergence-?with the grid refining, the extrapolation of results
computed on coarser'grids:is fully justified. Extrapolation was found_
to .yield highly, accurate’ results. Hhen.discregizatidn wifh‘higher
order differences was used (Chapter 6), the the gring%nvergence rate
of the results computed on finer and ‘;1ner grids approached the:

-

expected value of 4, but it was not as smooth as in the case of the
2-nd order differencing Hence .extrapolation was found "to be u;-
justified for the grids used in this work . It was shown f1né1jf.‘that
At takes much less computer -time_ and' gemory resources .to obtain

results of a certain accuracy using second order algorithm with



. ma———
-

extrapoiation, compared to the 4-th order algorithm.

The detailed analysis was carried out" for a simple(ppysicaI
model: uniforﬁ‘external pressure and fixed contac£ poipts of equal
eiévation.— ~Tﬁesq restrictions, howngqf‘ane not relevant, and 1£,
is shown iR Chaﬁier 7 that we may use the same algorithms to deal with

. W
f]owg, with non-uniform external prassure along the free surface,

_and/or uneven elevation of the contact points.. -In the same chapter, a

number 'of. theoretical properties of the free surface is derived by

analysing the dynamic boundary condition and investigating effects of

the physical 5arameters of the Flow. ‘ﬁlk these results are confirmed.
by computations- and are presented ‘graphically. Among‘ the 6ost
; -

interesting features is the existence of the free surface which would

not have existed shou]d.fhe flow be halted. <In such cases it is the e

dynamic pressure that contributes to the decrease of the effectize

——

) .
static ﬁ;QSSure permitting the surface tension to maintain the normal

force balance at the free surface. L .

L] ' ——
v
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\;\ OF COMPACT HIGHER ORDER METHOD

APPENDIX
FINITE DIFFERENCE IMPLEMENTATION o

Assume, that the\ computat'ional domain is covered by a grid of

—square cells mth spat1a1 increments Ax = Az = r. Let the function tox'

.be determined on pivota] poin;s of a gr1d be denoted by 'u', and its

first and second derivative by 'F' and’* 'S', respectively. For .
sim;‘-?ic-ity of notati‘on, we will use ‘single indexation (except for
mixed derivative). This will not cause any ambiguity, since in the

ADI method, one of coordinate directions {(column or row index) is

.fixed.. The discretization scheme is ﬁmited to the Dirichlet “type

boundary cohditions. /
L}

. A >

A-1 Hermitian formulae 1n§!}3ng 1-st and 2-nd derivatives
- . 7 .

(1) 1in the interior of the domain (Hirsh [10]):

— (u

1 2,1 1,4 .
IOETRVERL WL T &) T N (A

+1K2*,|—*-j V) FF g Fia) e

6 .
h"V‘iji . ) .(A.Z)

855+ S447 7575 ¢

+35

.11‘
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(i) - on the boundary (Padé formula}):

-
-~

1, ] 1 oy
Uy muy) g (Fagr Fy) 2 (85000 55) = g7 (A.3)

A-2 Mixed derivatives.

. ;: is a common practice to derive Hermitian formulae in one

dimension. It is understandable that these formulae being'1inear may

. be superimposed 1in order to approximate expressions in the governing
partial differential equations. This eventually may lead to se- .
paration; of,'a11 différence expreésions and 1n'consequepc? to the
reduction of dimensionality of the algebraic syste&. The presence of
mixed derivatives makes the discretization more involved, though.
There are suggesfions of utilizing formula (A.1), in which we ™ might
set u=fx ard F=uz =§1(Agbert‘and Deville [1]). This however‘js not a
unique formulation .and was found by ﬁ&merica] experimentation- not to
be éatisfactory.' When mixed derivatives were estimated alternatively

by z-differentiation of x:def{:atives, followed by x - differentiation

of z-derivatives (successive® application of (A.1)), the convergence

was found to be véry slow and oscillatory. ‘The reason for that is
< - '

probably uneven disiribution of respective Lagrange residuals in

formulae“utilized in x- and z- directions. - ) ' {

-
L

To make the mixed derivatives ‘estimation - independent > of the :

-

direction, we have solved the Hermiitian formula defined -on the entire
. ' . ¥ ’ .
9-point compact grid molecule. The"resqlts are described_ below.

" ¥Perivatives Jare denoted‘ by the appropriate subscripts and the wodes

a
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Fig. A1 : 9-paint compact planar molecule.

For the interior of the domain we have:

1 .
(u ;)= sgrr(-up* ug= ue* up)

+u .+ 6uxE-6uxG)

“Uya T YxY Uct Yo

1
i ?ﬁF(uZA- U Yz T Yppt 6uzF- 6qu) < 0(r?)

On the left and right boundaries:

' (uxz)H -'%(UZF - qu} * (uxz)F+ 4Suxz)O < O(TS)

- ugn) * (U )yt Hugzlg = 0(r?)

- 3
(uypde - 7 lugr
/

(A.4)

(A.Sia)

(A.5.b)




374

9 . — -

On the upper and lower boundaries:

¢
(UXZ)E B é(u G uxE)~+ (u Z)G (UXZ)O < 0(r*) (A.B.a)
(U2 g -'%(uxG sup) o lu et 8 )y 2 00r?) | (A.6.b) "
~_

In'particuIar, kA.S) estimates mixed derivatives if the edges ﬂﬂg or
BFC of the fxﬂecule.bé1ong to the boyndary. (A.6) covers cases when
either AEB or DGC are on the boundary. There were also other boundary
adjusted estimates of a mixed derivaive found, but those listed above
have been found to work satisfactorily.

Formulae (A.4), (A.5) and (A.6) were found by solving ?pbropriate
Hermitian expressions on_the asumﬁtion that the resulting difference
formula is at 1e;st'ofithe order 3 (see Sec. 3.25. It can be checked

-

[ L]
however, that all three formulae are of the order 4. For clarity we
<4 v
will demonstrate this in detail.
Let us consider the function:

>

u(x,y) = sin(3x - y?) )

Differentiating u in pivota} points of a molecule centered around
(x,y)=(4.,4.) and putting appropriate values into (A.3), we get the

following éequence ofﬁresiduals:

-
Y



§r1d spacial - " residual
:
increment r. Ri
' 1/10 ' 1.86-3 - )
©1/20 1.15E-4 -
1/40 ) 7.2E-6
1/80 . — 4.5€-7 .

Obviously residuals are going to zero as r is being decreased. If - we
“ ~ B
relate the ratio of this convergence to r, we make use of the relation

(compare definition (3.4.4) of the grid-convergence order):

R o - '

. T.
1 e
L
Rier  Tiw

-

Solving it with respect to 'a', we get:

T 1 a
] 3.97
2 4.0 )
3 .| a0

‘ S

which demonstrates that (A.3) is of the order 4. The same can be

shown for the boundary estimations (A.4) and (A.5).

793
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.- .
A-3 Block 3-diagonal structure. 3

Mixed derivatives are ¢omputed:* point by point, prior to each
half-step of ADI. If'Hermitian formulae are not used to eliminate any
of the vawiables from the governing equations, and the governing
equations contain first and second partial derivatives, than at eac?
grid point we have 3 equations (having ADI direction specified). For |
the interior point of a grid we have thus generated three blocks
(forming the lower, central and upper b}ock-diagqpal) of the following

structure: <
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(4 ¢ . =
\ - - ’ 1 = - r—— —
|
1 )
. X X X (PR X
. J-]
. “1/r|-1/3] O4 O |-4/3| C |1/r -1/3 (0}l ! F. it 0
. 1} ﬁF\J- -
24/r| 9/ri 1{-48/r|. 0 |-8 |24/ -9/r|] 53-1 o *
. > - - u. -
J
. F.
P J . '
) - S, -
. ‘ J
A} - uj+1
§ / F.
» +1
' ., LSJ
. 1,
) N
<
. - . A ' I - L .
. N >
) — . ) .
First line is filled with terms (X) of the governing equation. Lines
[ .
second and third come from (A.1) and (A.2). s :
®
1] ( i
‘,
’ - l'. -
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<

The block structure for the point at the lower (left) boundary is as

fo]}ows:
X X X 0 0 0 u, X
)
11 0 {0 |oO 0 0 - | F, _ u,
“1/ri=1/72r =171 1/r | =1/2r|1/12 S1 0
Y2
Fa
SZ

and the block structure for the upper {right)} boundary:

’

- . ) u1
Yn-1
o Fn-1 -
) Sn-1
. 0 0 0 X X X u, X
o [ o [ o 1| o] offf u
“1/r {-1/2r[-1/712) 1/r | -1/2r (1 /121 L n - L 0

. .
First line of the block contains terms (X} of the governing equation,
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]
- " the third one 1is the Pade boundary formula of the third order (see

(A.3)), and the second rgw comes from the boundary condition imposed
Vs
by the model. In the above scheme the Dirichlet boundary conditions

have been implemented, but it is obvious. that the Neuman boundary

conditions can also be implemented in a straightforward manner.
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