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- ABSTRACT

' L
N 4
- e The primary objective of this work is to analyze the steady two-
. . . - ¥
dimensional flow of a viscous incompressible . fluid past a conformally-

mappable cylinder in an unbounded field. The main concern is thé correct

s : . .
satisfaction of the boundary conditions at large distances from the

cylinder. It is shown that.the steady-state asymmetrical flow problem
. - .

e "'needs careful examination, particularly with regard to the satisfaction
- . - -

- -

" ! * of these conditions. A gederal method is developed to solwve this class
- . . - : . °

. of "problem, under the 'aséumption that flow is governed by the Oseen
LETY . . .
C-linearized equations'of motion. The method is based on. satisfaction of

the bx?opcr conditioning for the vortiogity of integral type. This is

considered as a very important part of the solution procedure since the

) integral conditions ensure both the correct. decay of the vorticity at

. . '

1a:q;~distances from the cylinder and satisfaction of the -physically

essential results for the existence of the flow. For Oseen flow.the

method enables one to 'vobtain the vor, qity separately from' the stream.

‘,

function. Once the vorticity can be/{pproximated on the surface of the '
' . - .

. cylinder many properties of the ﬁ.qﬁ can be dete'nn.i.ned"for low Reynolds

0}
-

number.

’ . &s an example of the applicatioq of the method, the uniform flow P o~

-

past an elliptic cylinder at an arbitrary ang'le_of incidence at low

Royno;.?.!‘s number Re is considered. An an;lytical exprossion. for ‘gh.e
. vozticir.y"pn -‘thc surface of the slliptic cylinder is obtained correc¢t to
‘the order of [ Re ]‘[~1nm: ]",. the lowest order term being 0[[ lnre)”? )

. ) 20441 , i « - .




-

v
.

The leading terms for the asymptotic expansions C.for the 1lift, drag

\\

coefficients and the circulation round a large contour surrounding the
. <

‘elliptic éylinde: are déi-.emined in terms of Rr. These approximations

are based on Oseen linearized theory and are valid in the case of

.

extremely small Reynolds number Rr as indicated by consideration of the

pressure. In this case the Reynolds number Rt is based on the length of

the major axig of the ellipse. The method is also applied to the cases

of 'syxmnetrical and asymmetrical flows past circulg: cylinders. Results
.' . o - .

are also given for symmetrical flow in terms of low Reynolds number.” A

paradox is obtained. for asymmetrical flow generated by a rotating
cizcular cylinder. The paradox may be Mdtated-as
[ 4
. ] -
" No steady two-dimensional asymmetrical Oseen flow of a viscous

incompressible ‘fluid past a éotatiifg circular cylindér is possible ™.

v

It is found to be impossible to obtain a solution in this case in which

the gi:culatiof\ is non-zero. Comparisons with existing analytical

’

results have been made, wherever possible, the overall agreement jin these

comparisohs is quite satisfactory.
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1.2 BASIC-EQUATIONS GOVERNING THE FLOW
Consider a cylinder of infinite length and constant cross-section
. | L o
in a wiscous incompressible fluid in steady motion. We consider a

Cartesian co-ordinate system {x,y,2z) with origin inside .the éontouz (o
of the cylinder and the z-axis being the axis of the cylinder. The

«

fluid moves with uniform velocity U inclined at an angle a to the

positive x-diréction of the Cartesian co-ordinates. A typical situation

is shown »n figure 1. The fluid at la‘r—ge enough distances from the

- T

cylinder is a!sumec;'._ to

~ -

5n undisturbed with uniform velocity (Ucosa,

\ - -

tokés equatién togepher with the equation of -
v 5 ¢ e 3 '

dy cage, ghg_gl propriate boundary conditions

Usina, 0). The 'Nav._ie.z-

1
continuity, for the s

-

{ L .', * - * .
are assumed to govern t‘%e mot,\,é’x/u of the fluid. Thé flow is also assumed
" ) <.
to remain two-dimensional within the xy-plane.

- -

The Navier-Stokes equation describing the steady motion of a
viscous, incompressible, fluid is, in terms ofy the dimensionless

pressure p, the dimensionless velocity vector .q and the dimensioniess
P ® - . 4

vorticity vector @ = curl q, . 7 .

- -~

.

qz)-qu--gradp—%culcurlq,, (1.2.1)
~ - C ' /E‘\

[N 313

grad (

where R“is_i Reynolds number based on some typicé};;ingth and typical

<

velocity in the flow field. The equatior of continuity is N

s

divge=20. (1.2.2)

N
w2 -~ - f"'" ,“‘:\.

Dimensional variables would be given by

x' = dx, y' = dy, z'= dz;

2 , .
ql - Uq' Pl - p U p. (1-2.3)
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CHAPTER I

FORMULATION OF THE GENERAL PROBLEM

 1.1 INTRODUCTION .
The'probleﬁ to be considered is that of the steady two-dimensional
flow of a viacous incompressible fluid past a cylinder in an unbounded
field. The Navier-Stokes equations, which mathematically describe these

and other flows in terms of non-linear differential equaticns, were

formulated in the middle of the last century, and they have been

investigated ever since with varying degrees of success. }n the present
work the basic governing equations for the stream function and vgrti;ity_,‘
are given in a curvilinear co-ordinate system. Most previous work has
employed this type of formulation:

One of the major difficulties encountered in dealing with viscous
incompressible flows in two dirmensions by means of the equationa'of the
vorticity and stream function is to specify proper vorticity boundary
conditions® to solve the vorticlity transport equation. In fact, the

velocity boundary condition provides two boundary conditions on the

»

stream function and its normal derivative whereas none on the vorticity.
This formulation makes any uncoupling of the equations difficule. 1f
the solution of the two second order problems is preferred, as ;n the
subsequent analysis, an attempt shou}d be made to provide each equation
with its own conditions. It is shown that the boundary conditions for
two aoc;nd order partial differen3;31 equations can Qﬁ separated in the y
sense that the boundary conditions given for the stream function can be

used to provide boundary conditions on the vorticity where nonexisted

@ 1




‘4

in an e@licit form. As it turns out, the proper conditioning for the «
vorticity is of an integral (global) type instead of the usual boundary .
(local) type. The intggral conditions for the vorticity are obtained by
making an asymmetric generalization of a method first ;;roposed.by
Dennis & Chang [9] for symmetric flows, and used by Gollins [3], Badr &

Dennis [1], Staniforth [43]. The problem of establishing appropriate

conditions for the vorticity transport equation is considered oy

Quartapelle & Valz-Gris [36] from a concepzual point of view.

There are nuperous investigations in existence of two dimensional

i ?

symmetr'ical }:‘lows, both steady and unsteady, about various types of

cylinders in an unbounded field but relatively few in the case of

-

asymmetrical flows. Only the steady-state problem is considered in this
study. The steady-state problem is in some ways less complicated but in
the case of asymmetrical flowd needs ca;eful examination, ;artiCulatly
with regard to satisfaction of the boundary conditions at .large

distances from the cylinder. Se¥&ral authors have realized the
importance‘ of enforcing an accurate " boundary condition at large
distances fvom the cylinder, e.g., Chang [5], Dennis [8], Fornberg {13},
Ingham [23]. In the pape: by Dennis [8] he 1looks at the steady

asymmetrical flow past an elliptic cylinder using the method of series

truncation to solve the Navier-Stokes equations with the Oseen

approximation throughout the flow. He found, by considering the
asymptotic ratire of the decay of the vorticity at large distances, that
for asymmetrical flows it is not sufficient merely that the vorticity

shall vanish far from the cylinder but it must decay rapidly enough.

This is achieved by suitable adjustment of the leading term in . the

asymptotic expansion for the vorticity. The problem does not arise in




behaviour of both ',v and { is known as infinity is approached. However,

the important point here is that two conditions are prescribed for the

stream function ¥ on C and none for tr;e vo:tivcity {. The appropriate

b'oundary conditions for the dimensionless stream function V¥ in the case

of steadg two-dim;ensiohd'\flo‘w of a.wviscous incom;;:ea:'ible fluid past a
. W

fixed arbitrary cylinder and a rotating circular cylinder in an unbounded

.

field are

(1) for £flow past anQ’r\bR{ary fixed cylinder

oy ' ¥ ’
, w--a—- 0 on C, 1 (1.2.10)
n

(ii) for flow past a rotating circular cylinder

oy . )
y=0, —m=-Q on C, : t (1.2.11)
on
and .
N .
L)
B_V 4 cosa’, a_v 4 - sina  as x2+y2'-0e-°. t1.2.12)
Ay dx : ’

Here the parameter Q which gives a measure’'of the rate of rotation of
the cylinder relative to the velocity of thé undisturbed stream is
defined by = aa, /U, where @, is the constant angular velocity with
_w“hich the cylinder rotates about 2ts centre E’i.n a counter~-clockwise
sense _and a is the radius of the cylinder. Conditions (1.2.10) and
(1.2.12) are the mathematical statements of no-slip on the boundary C
and uniform flow at infinity. Implicit in condition (1.2.12) is that
Cix,y) » 0 as x4 yz 4 o (1.2.13)
‘which is c-:bt.ained from the asymptoéic form of the stream function at

~

infinity i.e., ¥y = ycosa ~ xsina .

:




using complex variables. He showed that in principle no essential
difficulty is ‘in‘plved in this p:oceéuée, and obtained explicitly a
large nw: cf terms. However, his p:oceduré is unduly complicated.
Williams [S50] in 1965 reduced the problem of Cseen flow past an
arbitrary obstacle tc a set of integral egquations and the approximate
scolution of these equations for low Reynolds numbér is obtained without
use of special function theory. The only other technique which seems to
have been effective for arbitrary bodies is Kapiun's method of matched
asymptotic expansions which has been used, e.g., by Chang [S] in 1961,
to treat: crelated problems for any fixed Réynolds number. It is a
characteristic, however, of the expansions devised in these latter
works, that the successive approximations used soon becoge very complex
and the development must Dbe terminated due to the analytical
difficulties involved.

There is, however, some interest in carrying out the calculations
for elliptic cylinders as these approximate the problems of the circular
cylinder ana flat plate as limiting cases. Expansion formulas in terms
of Reynocl.s number were first obtained using Oseen approximation for a
fixed circular cylinder by Lamb [27] in 1911, later by Bairstow et al.[ 2],

’
Harrison [18], Filon {12], Faxén [11], Griffith [17]}, sidrak [40],
Tomotika & Aoi [ 46] &[47] and Yamada [ 1] : an elliptic cylinder by Berry &
Swain [3] in 1922, later by Harrison [18], Meksyn [33], Lewis [ 28],
Sidrak [41), Tomotika & Aoi [47), Hasimoto [19], 1Imai ([22] aAd
Williams [ 50]. , | ‘ Y
As an application of the method proposed in this study, the urn'form

flow past an elliptic cylinder at an arbitrary angle of incidence is

)
considered on the basis of Oseen approximation. This problem was first
-,

d




treated by Meksyn [ 33] in 1937 usiné Mathieu functions. Later Lewis [ 28]
p;inted out that Meksyn's solution is physically unacceptable on account
of an infinite ci:culat‘sn and gave a formal method to give a correct
solution on the basis of modified Oseen approximation due to Southwell &
Squire [42]. Hasimoto [19] treated the same problem using elliptic
co-ordinates and Mathieu functions. Finally, it may be added_that the
same problem has been investigated .by Imai [22] and Williams [50] by
means of the methods which were pointed out earlier. Their réSults
coincide perfectly with those of Hasimoto's analysis. The uniform flow
past an elliptic cylinder at an arbitrary angle of incidence, where the
flow is assumed to be governéd by the linearized equations of motion of
Oseen, has been left untouched except in thesg latter works., However, it
should be.men;ioned that all these investigations were mainly concernéd
with discussions on the drag experienceg by the elliptic c¢cylinder at an
arbitr;ry angle o{ attack. .

—— ——

The main motivation for this work is to deveiop a general method
involving integral conditions f;r solving Oseen linea:i?ed equations for
a two dimensional steady flow of a viscous fluid past a cylinder. This
method is based on tha fact that the vorticity for the Oseen flow
problems can be obtained ,separ;tely from the stream function, the
determination of which from the integral boundary,  conditicns can be
effected by successive approximations in terms of Roynoids number
provideq that the Reynolds number is sufficiently small. In this sense
our method is quite different than the other methods of its kind. The
method enables us to oktain many properties of the flow in terms of

Reynolds number by using an approximated vorticity on the suyrface of the

cylinder. Satisfaction of the inéoqral conditions is considered as a very




~

important part of tMe solution procedure because these conditions ensure

-

the correct asymptotic d;cay of the vorticity at large distances from the
cylinder and satisfaction of physically essent:al results for the
existence of the flow. This method 1s app.:ied o the case cf un:ferm
flow past an elliﬁ:;c cy.inder at an arbitrary arg.e of .rcidence and

alscys to the cases c¢f symmetrical and asymmetrical flows past cirrcular

- v -

cylinders. The method 18 in effect appl:cable ¢ flow arcund any cyiinder

P

whose beoundary can be mapped conformally cnt¢ & straight .ane, although

the details may be mcre complicated.
The analyt:cal :invest:gations c¢f the steady two-dimensgcnal flow
of a wviscous £fluid past a cyi.nder a: a small Reynclds numter have
L]

hitherto been restricted tc the case of a f:xed cylinder where the {low

b
is assumed ¢ be goverrned by the linear:zed eguaz:ions of moticn of Cseen.,

In this study an analytical treazment cf the asymmetr:cal flow which :i8
generated by a :o:a:iﬁg crrcular cylinder in a uniform visccous fluid for
a small Reyneclds number 515 first carr.ed cut on the.bas;s ¢f Oseen
app:oximatkon by means of the same techn:gue. The numer:ical sciution of
this problem is obtained for small retat:ien :a:iF and mccerate values
of Reynolds number by Inghaﬁ [23] and Loc [2¢]. Shxadswva [39] calculated
the drag and lift in the problem of flqu of a wviscous flu:d past a
:otafing circular c¢ylinder, by solving the Navier-Stckes eqguations
numerically, for Reynolds numbers 10S RS 100. Glauert [14] investigated
»
the same problem for\large values of the Reynolds number and Moore [ 34}
for a rapidly rotating circular cylindef. Both of these investigators

used analytical methods. The significance of the results obtained in the

present study will be commented on later.

.




1.2 BASIC -EQUATIONS GOVERNING THE FLOW

Consider a cylinder of infinite length and constant cross-section

4

in a viscous incompressible fluid in .'steady moti..on. We consider a
Cartesian co-ordinate system (x,y,z) with origin inside .the contour C
of the cylinc;qz and the 2z-axis being the axis of tbe cylinder. The
fluid moves with unifonﬁ veloscity U incl:ined at ;n angle a to the

positive x-diréction ¢f the Cartesian co-ordinates. A typical situation
L) . .
hY

is shown 3sn figure 1. The fluid at large enocugh distances from the

*
Ed -

cylinder i3 asdsumed to femaSn undisturbed with uniform velocity (Ucosa,
- ' : . ’ \—\
Usinr.x,_ 0) . The Navier- tokés equaﬁ toge;;her with the equaticn of
. B L 4
continuity, ©&for the s d‘y case, &d .afpropriate boundary conditions
g TS R : -
are assumed to govern the motip/n of the fluid. The flow is also assumed
- - . . ,.. s
to remain two-dimensional within the xy-plane. -~

The Navier-Stokes equation describing the steady motion of a
viscous, incompressible, fluid is, in terms of- the dimensionless

pressure p, the Jdimensionless velocity vector .q and the dimensioniess

P e - >

vorticity vector w = curl q,

N -~

2
grad ( q’ ) -qu--gradp-;cm‘l curl q , , (1.2.1)
-~ - - ' ’ {{/_?\‘

|

where R ‘is.i Reynolds number based on somm typié&.};géngth and typical

[

velocity in the flow field. The equation of continuity is

5

divg=20.

b -~ . -

Dimensional variables would be given by

r—

x' = dx, y' = dy, z2'= dz;

2
q' = Uq, p' =p Up.

-




u_\

+

In these equations, d i\a typical dimension, U is a representative
velocity and p is the constant floid density. The Reynolds number can
be defined as R= 2Ud/v, where Vv ig the coeffigcient of kinematic

viscosity of the fluid. Since the flow is assumed two dimensional ‘in

the xy-plane, the equations (1.2.1) and (1.2.2) in Cartesian co-

ordinates are therefore, -
. .
. "
ué_Li+k'a_\:__a_E+2R-'V}:, ) X
—ox dy ax .
' T ‘ (1.2.4)
u_a_i+v§1.—_?£-¢2R-1.V‘v: .
ox oy dy - 1., ' )
and . . -
du dv ] g (1.2.5)
— + — = 0, p
dx _ dy B . .
-1 2 2 » )
R o °
where qgq=(u, v, 0), = —T + T
- ox oy

It may be noted at .t);/i{s'-\ st’aqe that - the set of equat:ons (i.2.4) and

-

(1.2.5) for tuo-dim;n ‘onal, i,nc_ompressible\flo. has. three unknown -

. .,,'L'r‘ ’ ] N
dependent variablesd, namely two velocity components and pressure. The
b . T - ~
+ ﬁl r.f .

e Il N

,disadvan’ta‘:gé" c}'this férmulation is that the presence of the pressure

geim:‘?fritro%uces significant difficulty because there are no simple

-
XA

specified boundary conditions for the pressure. In addition, a method

of solution of the equation (1.2.5) is difficult to férmulate. The most

widely used method of solution of two-dimensional incompressible flow

problems such as (1.2.4) and (1.2.5) is by means of the stream function.
In this case equation (1.2.5) can be satisfied by introducing the
dimensionless stream function W(x,y) which is related to the velocity

components by the egquations




( ) av { ) (2.2.6)
.uix, - — r wix,y) ® - — - .2.
YT oy ax -

- B . -—— \

As a consequence of two-dimensional flow, the dimensionless vdrticity
vector is given by
m-CUZIQ' (olor'.'C)l°

>

where {(x,y) is the Jdimensionless (negative) scalar vorticity defined

" by

du 9v
Sy e -

(1.2.7)
. dy dx

Also, if we eliminate the pressure from equations (1t2'4" the equation

~

which results can‘be expzéssed in terms of v ahd {. Thus £rom (1.2.4)

and (1.2.5) it is found that the equations gobernipg v and [ are

[y

oy 3] dv o{ ’

vy -8 [ P ] v T (1.2.8)"
¢ -2 \ 9y 3x ,9x dy B ' _ '

Vya=(. : * (1.2.9)

.The formulation (1.2.3) and‘(&.Z.S) for the stream function ¥ arid the

scalar vorticity S is now regarded as equivaleni to using the momentum

equation (1.2.1) and the continuity equation (1.2.2). The advantage .of

using a coupled pair of second-order partial differential equations

L4
~ -

will be noticeable in th%‘andlytlcal method of solut;on to be ;dopted.
Theé necessary boundaiy‘cdnditions-are-gs foliows.
v and dy/dn_ are . known oA the contour C of the cylinder,
where 5/3n is diff,:entia;ion in the gormﬁl direction to the cylinder.
Since ‘gh;_ flow. field is unbounded, conditiond at infinjty must be

. - - .

imposed. Generally these reduce to the fact that the asymptotic
-

”




v,
x

behaviour of both ‘,y and { is xnown as infinity is approached. However,

the important point here is that two conditions are prescribed for the

stream function ¥y on C and none for tr;e vo:ti.city {. The appropriate

b.ounda:y conditions for the dimensionless stream funct‘i,pn ¥ in the case

of steady tuo-di:ﬁensioha“lctw of a._wviscous incom;;zess’ible fluid past a
; _ e

fixed arbitrary cylinder and a rotating circular cylinder in an unbounded

4

field are

— -~
(i) for flow past ank}i“t/rary fixed cylinder

dy - ‘
. V'a—'o en C, 1 (1.2.10)
n

(ii) for flow past a rotating circular cylinder

oy : :
y=20, 5—--9 on C, : o (1.2.11)
n
and’ .
s L ]
L]
a_v 4 cosa’, 3y L - 8in@  as x ¢+ yo 4 oo . (1.2.12)
dy ax : ’ :

Here the parameter {) which gives a measure’df the rate of rotation of
the cylinder relative to the velocity of thé undisturbed stream is

defined by Q= am, /U, where @, is the constant angular velocity with

°

which the cylinder rotates about $ts centre in a counter-clockwise

sense _and a is the radius of the cylinder. Conditions (1.2.10) and
(1.2.12) are the mathematical statements of no-slip on the boundary C
and uniform flow at infinity. Ir.nplicit‘ in condition (1.2.12) is that

{ix,y) 20 as x4y 4= (1.2.13)

‘which is obtained from the asymptotic form of the stream function at

-

infinity i.e., ¥ = ycosa - xsina .

E —

10




For future purposes it is advantageous at this point to consider

!’
a conformal transformation of the form

x o iy = F (& + in) (1.2.14)

which maps the region outside the cylinder onto the semi-infinite strip

- shown in figure 2. In the present case it is supposed that the surface
of the c;linde:. (o'ai?c'd in figure 1) .—..ap;x to a curve of constant §, say
§=§, (ocabcd in Ei:gure 2), the Tegion outside the c¢ylinder corresponds
to §>&_,, and that | is an angular co-ordinate which varies from‘n- o
to ﬂ-.ZR as t$e wgole flow field outside the c¢ylinder is dgsc:ibed,
with x and y as‘periodic functions of M of period 2x. It is also
assumed that as & + o the _c_:o.‘i.ncideat curves M= 0, M= 2% ultimately

approach the direction of the undisturbed stream, and that the mapping

(1.2.14) has the asymptotic form given by the equations
. . .

x - ket'cosm-*u), Y = ke

.

where Xk is a cofstant depending c¢n the transformation, i.e., the

sin(n+a) as £ 9 =, (1.2.15)

particular cylinder shape. A “typical situation is illustrated in figure
2 by the ellipt;ﬂ:‘: co-ordinate sys:em; but there are a number of
transformations of Telated. type havirg these properties which can deal
with different %yiinders. Transformations having the above  mentioned
properties have beén used extensively in the literature‘., Denrn:s {8) has
used the tran'sformations

x + iy = exp(ﬁ + in) (1.2.16)
and ' ’

x + iy =.cosh(& + i(m + a) A | ' (1.2.17)
‘in his computations of the steady 'ﬂ?‘" around a circular cylinder and

an elliptic cylinder, respectively. Tomotika & Aoi [45] & [47) have

considered variations of transformations (1.2.16) and (1';2.17) in their




analytic investigations. - .

The questipn of a proper choice of co-ordinate system is important.

“
From a study of the low Reynolds number Oseen approximations, it is

-

seen that an appropriate ' system of curvilinear co-ordinates enables
S or
one to obtain the solution \by sep_ar‘ation of variables.

Another purpese of chSosindd such a transformation (1.2.14) is to
create a domain which enables us o derive appropri;te global
conditions for the vorticity, i.e., to prov:de boundary conditions on
the vorticity wh?re none existed in arn explicit form.

if (9, vy) generally denote the dimensionless velocity component

in the directions df increase of (£,n) then

L]

19v : 18y
U{-Man ’ ) vﬂ-'-Ma§' - - (1.2.18)
[ 3
and _ )
1 a [ ! ’ a L :
C-—z'[— (Muy ) = — (Mv“)] ’ - (1.2.19)
M on ? a§

o[ 2T [ (T 220

3 1 H . .
— + - - 2R —_— —_— (1-2.21)
3t (peza])-s T
.y 9§ oy
1 2 1
—_— + = - - 2R -— +{ — , (1.2.22)
an (przd) 3& " am _

-~
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F
the tr;nsfotmation (1.2.14) equations (1.2.8) and (1.2.9) become
respectively
[
dy 9 dy o
v’c-ﬁ['—!—c-—!—clr (1.2.23)
2 L 3n a3t 3 am
Vy=ug, ~ (1.2.24)
where
v 3’ 3t
- T + T
a¢ an
To complete the formulation of the problem in (§,n) space it

remains to state the appropriate boundary_d<oéonditions in the transfo-med

co-ordinate system. We use the relation between the derivatives

(1.2.25%)

Provided that the derivatives of x and y with respect to § and 70

remain finite at & = § we can take

o !

—_— (i) for flow past a ﬁifed cylinder .
oy
Y- SE -0 when § =§ ., (1.2.26)

(ii) for flow past a rotating circular cylinder

dy

o Y= 0, — =l when § =E§_ . {1.2.27)

- ' ' 8§ \ °

\ '.
.Using (1.2.12) and (1.2.15) it may be deduced that
[ J
!

ot 2! ~ ksinn , et 2! - kcosn as & 9 e . (1.2.28)

14 on




AN

As a consequence of (1.2.28) it follows that

CE.m) 20  as § 9. (1.2.29)

eThe sets of conditions (1.2.26)-(1.2.29) must be satisfied for all 1

such that 0SS NS 2x and moreover, because ¢f the choice of the co-
ordinate system all the flow variables must be periocdic functions of T
with period 2%n. Thus, in particular,

viE.m) = wiE,m+ 2nmy C&.m =C(§,n + 2nx) (1.2.30)
for n = 0,¥1,%2,
On account of the periodicity of ¥ and the fact that the transformation
(1.2.14) must obviously be chosen so that M(§,m) is of period 2 in N
it follows from (1.2:18) that the velocity components (u{,vﬂ) will be
of period 2x in 7. In.the case cf flow which is symmetrical abéut the x-
axis, (a=10), both of the functions ¥y and { ;re odd functions of 7 and
the solut&ons of (1.2;25) and (1.2.24) are required only in the reéion

0snsn with the conditions )

v, m =C¢&,n) =0 when M =20,%. . (1.2.31)

Here the‘pro:-em is more .complicated because, alth;ugh the equations
(1.2.18) ensure that the velocity 'component: u and v, are periodic
‘functions of T with périod 2, care must exercised to ensure that the
pressure in the fluid is likewi:e‘periodic in M. The pressure at large

'

distances ' from the <cylinder is taken to be uniform, and then

integration of (1.2.21) along a path of constant 7 from a given station

£ to § moo will determine a pressure p(%,m) which is of period 2r in 9.

However, it is also necesSary for consistency that integration of

(1.2.22) along a paéh of constant & over a3 complete period in n shall

give zero pressure differengce. In view of the subsequent an&lysis'no

shall consider this poipt by assuming the exptessibns




o0
v, = -21- F, (&) + 5 1 [ F,(E)cosnn + £_(§)sinnn ], (1.2.32)
ne
- o0
&, n = -;— G, (§) + 5 i [ G.(§)cosnn + g, (§)ysinnn ], (1.2.33)
ne= .

where it will be supposed that the first and second parcf?Y'derivatives
with respect to § and N of the functions on the left can be represented
by the corresponding differentiated series on the right. We wish to
point ocut that the particular assumptions (1.2.32) “and (1.2.33) are
valid because of the boundary conditions (1.2J§0) ?f th:s problem. 1If
we substitute (1.2.32) and (1.2.33) in the right side of (1.2.22) and
integrate both sides with respect to N from (§,7M) to (&, N+ 2n) we
-bbtain

p&.m+2m - p&.m =x[ 2RTG (&) - S&)], (1.2.34)

where the prime denotes differentiation with respect to & and

[ d
S(E) = ) n[ £, (816, (8) - F, (&)g, (8] . (1.2.35)
n=1

We can also substitute (1.2.32) and (1.2.33) into (1.2.23) and
integrate soth sides with respect to n from (3,Mm) to (&, n+ 2n) which
gives

G, (&) = -;- R S'(&) . (1.2.36)
Since.C must vanish as £ o o« for all M then G;(w)- 0. Integration of
(1.2.3§) and substitution in (1.2.34) thén gives
. p§.,m+ 2r) - p&,M) =-n S(°, (1.2.37)
ana hence the pressure difference on the left wvanishes only if

S(ec) = 0.
Dennis (8] showéd that cAis is satisfied only if vorticity decays

rapidly enough as § - e. His analysis is detailed in §ectron 2.2.




1.3 THE INTEGRAL BOUNDARY CONDITIONS FOR THE VORTICITY
The velocity boundary condition provides two boundary conditions

« -
on the stream function ¥ and its normal derivative whereas none on the

vorticity (. This occurrence poses no problem, if one considers the

- single fourth-order equation for the stream function, since conditions

on the vorticity are contained implicitly in the non-linear coupling
of the two equations (1.2.23) and (1.2.24). This formuliation makeg any

uncoupling of the equations difficult. If the soluticn of the two
L

second-order problems is preferred, as in the€ 3ubsequent analysis, an

atterpt should be made of providing each equatien with 1ts own

.
conditions, In this section we will show that the boundary conditions

for the two second-order partial d%ffe:e;cial equations (1.2.23) and
(1.2.24) can be separated in the sense that extra conditions given for
the stream function ¥ can be used to derive globaf conditionslfor the
vorticity {, i.e., to provide boundary conditions on the Yorticity
where none existed in an explicit form.
We will proceed to derive mathematical conditions eh

vorticity {, to be subsequently referred to as the integral conditions,
by making an asymmetric generalization of a method first proposed by

Dennis & Charg [9) for symmetric flcws, and also used by Collins (7]
L]

]
and Staniforth [43]). In this method, the stream function is assumed to
]

be represented by a Fourier sine series in the variable 1. As was

pointed out earlier, the generalization to the present investigation is

to assume the.following Fourier expansion for the stream function
.
v, mn = % F. (§) +‘$ [ F,(&)cosnn + £, (E)sinnn] . (1.3.1)
_ n=1
Term by term differentiation of this series with respect to N |is

justified (see e.g. Jeffreys & Jeffreys [24] ). Now if we substitute




n=0 toN=2n yields

F:-nzf‘:-;,, nz0.

the series (1.3.1) for ¥y into the equation (1.2.24)
sinnn, n21 and integrate from 0 to 2x
. ) frcm the orthogonality of the trigonometric functions,
L 2
£, - n £, =, nezl.
. Next the expansion (1.3.1) for ¥y is substituted into
., swrilar procedure of multiplying by cosnm, n 2C and In

In these equaticns the prime denotes differentiation with

and multiply by

with respect to 7N we obtain,

(1.3.2)
(1.2.24) and a
tegration from

(1.3.3)

respect to §,

(1.3.4)

(1.3.%5)

t1.3.1,

£rom

and
iR
r (&) = lju’(:innn an ,
[ ® ¢
) i
s (&) =1 M { cosnn dn
R
o}
3cundary conditions for (1.3.2) and (1.3.3) follow
(1.2.26), (1.2.270 aaqJ1.2.28). They are that at thé cylinder surface

4
(i) for flow past a fixed cylinder .
£, (E,) = £, (8) =0, n21;
Fo(8,) = F (§,)"= 0, n20, ' g
4

(ii) for flow past a rotating circular cylinder

£ &)= F (5, F=0, n2i: F (§,) ~ 0,

fn'{l.,);' F;(E;) -=0,. n21; Fo(5,) = -2Q,
\ . and as § 4 e .
| T etg, o kb -t ’ gt
- . ) e ‘h-’k"'l ’ [ -] Fﬂ "’0' nZl, e FO —)o’
g ' - '°-gfr:*k5n,; , e"r,;-ﬁo, n21; e'gr;'-yo,
’ . .

{(1.3.6)

(1.3.7

(1.3.8)

(1.3.9)

17




wvhere 8, . is the Kronecker delta symbol defined by

§, . =1 if nem, 8, ¢ =0 if n=m.
The second condition (1.3.9) in effect follows from (1.3.8), but
(1.3.8) and (1.3.9) together express the condition that the velccaity

" components shall reduce to the components of the stream velocity as

£ - o We can now obtain frem equations (1.3.2) and (1.3.3)

?E[ et (g +ne )] =, n21;
(1.3.10)
.- . -~k
d [ e (F +nF. )] =ets., n21.

di

If we integrate both of the eguations {1.3.10) with respect to § from

. to § =wo we find, after use of the conditions givern n (1.3.6)-

Je

§ =

(1.3.9), that

- .
Je trﬂ(é)dg-Zkﬁ__‘ . n21
§° -, ) .
o - | | (1.9.11)
. . J‘e-.-.; s, (Eraf =0, n21.
. %

A further conditien is necessary to determine s/ (). wWe can deduce a

suitable condition from (1.3.3) with nw= 0. In this case integration of

\

(1.3.3) with respect to § from § =§, to § =« gives
o .

! o0

Fl(e) - Fo(E,) = I s, (&) <& . (1.3.12)
L3 ‘
It foliows from the conditions (1.3.6) and (1.3.7) that

(i) for flow past a fixed cylinder

2

oo
F, (o) = J' s, (&) <& ~ (1.3.13)
¢, . .

L)
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(ii) for a rotating ~ircular cylinder

L]
F, (=) + 2Q = J s, (&) &% . (1.3.14)
e

. ] . . . .
-In these eguaticons F_ (=) 118 an unkntwn constant and 1t is given, in
terms of zhe circulation round a large contecur surrounding the cvlinder,
hd . . 3 3
by w.e eguation (I-4) in Appendix I. As 18 well kncwn :in the case of
steady-state asymmetrical flow proklems, the circulation round a circular
contour centred at the cylinder and of large encuegh rad:us 1s non-zerc.

We may then summnarize the re-specificaticn ¢f the bouncary conditions as

reing the following .

= .
Jso(é)_dé -B, . (1.3.15%)
£,
o
Je"“ s, (E) ¢ =0, n21; (1.3.16)
L
-
e "t r (&) & = 2x5, ,, n21, : (1.3.17)
L, ..
<where . - . .
I J M'{ sinnn an , (1.3.18)
0
2R ’ .
s, (&) = %J‘ M2C cosnn dn , _ (1.3.19)
o}

and B\ is an unknown constant. The definition of B in terms of the

and

4




.

eéuations {1.3.15)-¢1.3.17) will be discussed in Section 2.3.

The sets of conditions (1.3.15)-(1.3.17) effectively give.
conditions which must be satisfied by the vorticity {. These condition;
have the peculiarity of being in&eg:al (global) type instead of the
usual boundary value (local) type. The condition (1.3.15) is merely an
expression of the <£fact <that the circulat:ion round a large enough
contour surrounding the cylinder must ope non-zerxro. Mcreover, it will

subsequently be shown that the satisfaction cf (1.3.15) is the requ:ired

condition to ensure that the pressure in the £luid is periodic with
-«

L 3

beziod 2% in M. The conditions (1.3.1%5) and (1.3.17) ensure that fhe
velocity is approached the uniform stream far from the cylinder, ’3just
as the satisfaction of (1.3.18) gave this Assurance in the symmetrical
case, in which the functions sﬂji) are identically zero, considered by

Dennis & Chan {9]. All the conditicns o©f the problem are therefore

satisfied. In this sense we cons:der zhe satisfaction of the irrtegral’

conditions (1.3.16)~-(1.3.18) as a very :mpcrtant part of the  solution

-

procedure. Providing boundary conditions of global type to the

vorticity equation ‘1.2.23) can be considered "as an equivalent

substitute for the boundary conditions on the stream functi?n anrnd the
equation (1.2.24)'which afe given in the previous sectign. The problem
of finding such vorticity conditions is considered from ; conceptual
poigt of view by Quartapelle and Vvalz-Gris (36]. They.shoued that the
correct conditions on the vorticity are a consequence of Fhe theorem
stated in Appendix .

It will subsequgntly be shown that for asymmetrical flows it is not

&
sufficient to impose the necessary condition (1.2.29) &s a boundary

condition in obtaining solutions of (1.2.23) and it is necessary to

20




which is ﬁeriodic with period 28 in M and vanishes as § -+ = can be

given as

{(E,m =e' %" [

[
A K, (2) +5 [ A,cosnn +B_ sin nn}] K (z) ] . (2.1.23)

nel

- where the A, and B, are arbitrary constants. This expression gives the
approximation which is the so-called <Cseen solution of equation
(1.2.23). The arbitrary constants A,, n2 0 amrd~ B, n2 1 cannot be
determined explicitly without further information, e.g. knowledge of
the complete sclution of (1.2.23) in a domain which overlaps the,domaip
of validity of (2.1.10). In the subsequent analysis, these constants
will be determined to satisfy the integral conditions (1.3.15)-(1.3l17)
in terms of very small values of the Reynolds number so that the final
result will hold tgroughout the whole flow field. When the flow is
symmetrical about M =0 the constants A,, n20 are identicaliy zero.

As was pointed out earlier, the basic structure of the solution

for the vorticity is

N ] - - .
&) = 56, (§) + n: [ G, (§)cosnn + g, (E)sinnn | . (2.1.24)

0y

Ne can express the functions G, (§) in the series (2.1.24) in terms of
the coefficients’ o£ the trigonometric terms in tﬁe series (2.1.23).
Now if we equate‘the series (2.1.24) to the series (2Hf.23), multiply‘
éach sidé by cosnn and 1ntegrqte with respect to n from 0 to 2n w;

find, after use of a weil-knouﬁ result in connection with the theory

of Bessel functions (N

L g
I, (z) = i—_[ e"“°*" cosnnan ' (2.1.25) .
o .

and also,




CHAPTER II

- CSEEN THEORY ‘

THE OSEEN EQUATIONS

N
;A

- * < T i
A is well knowtt the scluticn ¢f the Navier-Stokes eqguation for
* . - : - - - . ¢
viscecus flow -cannot be obtained excatly owing to its nenlinearity;
- . . .

rowever its fqQrm at largeée distances may be obtained analytically. The

£low at large enough distances. from the cylindrical body is coverned by

+he Oseen 'lineapized equaticns in which the Nevier-Stckes equaticas are

linearized with the velocity of the uniform stream. To particularize
‘the problem, it 1is assumed that <he £fluid velocity is a pgperturbation

from the uniform stream. Thus the dirensionless velocity vector may be
- +

given as . *

g = (cesai + sinaj) + q' , - (2.1.1)

where g' is the perturbaticral wvelecity vector with magnitude g'« 1

such that A )

q' =+ 0 at infinity (2.1.2)

.
-~ .

ard as stated before, thé fluid at large erncugh distances frcm the

cylinder is assumed to move with uniform velocity ({(Ucosk, Usina, 0)..

Then the Navier-Stokes equations may be linearized by substituting the

eguation (2.1.1) into (1.2.1) and (1.2.2) ‘and neglecting quadratic

°
]

terms in q°'. The resulting equations in Cartesian co-ordinates are -

[ cosa %; , sina g; ](q) = - grad p - % curl curl q (2.1.3)

-~ -~
D

divg=20 . (2.1.4)

-~

These equations are called the Oseen equations. The same equations hold

22




T

for the perturbation q'. An immediate consequence of these equations,

-

which follows by taking the’aivergence of the Oseen equation (2.1.3),

is that p is a harmonic function

Vp=0. _ (2.1.5)

I A
. The corresponding, equations for the vorticity { and the stream function
[

¥ in Cartesian co-ordinates are ot
. d a¢
V;C -8 [cosa'——'+ sin@ — ] . (2.1.6)
. 2 dx dy ,
Vzv‘- T. . (2.1.7)

If we subétitutg,ifhe conditions (1.2.28) into the eguation (1.2.23)

the Oseen equations take the forms in the (§,7n) co-cordinate system

', 'ty . s ay . a3t |
+ = = Rke COSN ——m _ sinn — ' (2.1.8)
i eom G ]
2 2 '
dy dvVv 2 »
+ -M . . (2.1.9)
%

It may be noted that these equat%oﬁs are the same equations as (2.1.6)
and (}.1.7). We wis$,to point out.;hat the solution of (2.1.8) is, of
course, only asymptotically equivalent to the solution of the-equation
(1.2.23) but the'sémg symbol 18 used.

The wvalidity of the Oseen equations may be discussed from two
different points of view. Fo? any fiied Reynolds number,” ié iS to'be
expgcted that the linearized equations are approximately valid near
infinity ©because at large distances from the <cylinder the

perturbational velocity q' will be small compared to the free stream

velocity. Near the cylinder, tbe linearization is not justified for any

*

~




arbitrary Reynolds number. However, as the Reynolds number tends to
zero the Oseen's equations ﬁave uniform validity. An.explanation of this
was foundgﬁy Kaplun.;ho pointed out thag_gs_neynolds.numbef tehds to
zero the whole flow field‘may be regarded as a perturbation of uniform
flow;(detail; are given in [25] ¢ [26]). In thls work we are concerned

- with flow at low Reynolds numbers. Hence in the present investigation

the validity of the Oseen equations throughout the whole flow field is

assumed to be relevant. The advantage of Oseen approximaticn lies

.

essentially in that it becomes more and more accurate as the distances

from the cylinder increases, so that the approximation is very good

- .
over an infinitely extended region of the flow field.. Thus, the Oseen

he1

approximation is. especially suitable for the discussion of the

-asymptotic behaviour of the flow field at large distances from the

)
cylinder. This is useful in numerical work. -

\ .

For future purposes it is advantageous at this point to obtain

-

a fundamental solution of the linearized vorticity equation

14 a¢

cosn 2 _ sinp =2 }

9& on

.

subject to the boundary condition
{40 as & 2 o

-

and also,

C&.m = L&, n+2x) \ (2.1.12)
by making an asymmetric generalization of a method used by Cole & Roshko
‘[ 6], Dennis & Chang [9] and Illingworth ([20) for symmetric flows. In this

method the vorticity is assumed to be represented by

g =o' oE,m, ‘ (2,113
| ]




where the function A(§,MY¥ is chosen so that
A Ry » _ ' . (2.1.14)
& 4om ' : - :

The object of introducding the function A, in (2.1.13) is that when

(2.1.13) is substituted into the equation {2.1.10) the resulting
partial differential equation in ®(§,n) does not contain terms
;dvolying the first d;:ivati;es of this function, whiéh makes it easier
to solve analytically. Also, it foilcws from the egquatiocns (1.2.14) and

(1.2:28) that

A, - % Rke® cosn as & 4 o, (2.1.15)

®
- ]

If we substitute (2.1.13) into the equation (2.1.10) we may deduce the

:partlal differential equation for the function ®(§,n) given by

2. .2 )
.a?._a?_‘ LI RL I S _ (2.1.16)
3&’ an’, 16 . :

Tor the . symmetric flows: the function @P(E,Mm) is assured to be

-
-

:eﬁieseﬁted by a 'Fourier sine series in the variable 7n. The
generalization to the present investigatioﬁ is to assume the_ following

Fourier expansion for the function ®(&,1) :

Sk, = % H, (&) +.$ ; [ H, (§)cosnny + hatﬁ)sinnn ] - (2.1.17)
... =

' We wish to point out t%at this particular assump:ioﬁ is valid because
of the boundary condition (2.1.12), Substitution of this series into

the equation (2.1.16) yields the sets of ordinary differential

.equations for the functions H, (§) and h_ (§)

-0, : . (2.1.18)




- __—.—-ﬂ
- . 26
1 4
*
L
z -
d h, 2 1 2.2 2 :
d§; - (= + 5o Rxe *J n, =0,  n2l. (2.1.19)
7/

Let z be tHe variable defined by

1 Y L 3
z = % Rke® (2.1.20)

. -

We then obtain from the equations (2.2.9) and (2.2.10)

2

2 d H, dH, 5

2 —¥ + z - (nf+ 2% H, = C, n2¢: (2.1.21)
dz dz
2 -

: d h, dh, . \

z —¥ + 2 - - (n®+ 2%y L. =0, n21. (2.1.22)
dz dz

Al

These differential equations>~a:ea.sa:isfied by the modified Bessel.

functions of integer order n. Hence the fundamental solutions of (2.1.21)

.

and (2.2.22) are

[ 4
1 At
I.(2), K. (z) where z = Rke’ ,

LY

where I_(2) and K. (z) are the modifiéd Bessel functions of first and
- ~

second kinds of order n respectively. Definithions of these functions
and theiz'properties are given in Appendix IV. By virtue of the

asymptotic properties of the modified Bessel functions for large z, .

.
In(z)-v%_z:[ 1l + O(z-‘)],

K, (z) ;qu:x e[ 14+ Ozt y ] o
z

as z + =, only the functions K (z2), n2 0 are admissible solutions since

from the boundary condition (2.1.11), { is to remain finite as & - ee,

Thus it follows fror the basié structure of the function ®(&,n) and the

equations (2.1.13) and (2.1.15) that the complete solution of (2.1.10)

*

N

-
-
\ ‘ . D



which is ée:iodic with period 2x in m and vanishes as § -+ = can be

given as

CE,M = e cos-n [

A K (2) +5 [ A cosan + B sin nn] K,(2) ] ' (2.1.23)

nel

- where the A  and B, are arbitrar& constants. This expression gives the
approximation which is the so-called Cseen solution of equation
(1.2.23). The arbitrary constants A ,, n2 0 amd B, n2 1 cannot be
determined explicitly without further information, e.g. knowledge of
the complete solution of (1.2.23) in a domain which overlaps the'domaip
of wvalidity of (2.1.10). In the subsequent analysis, these constants
will be determined to satisfy the integral conditions (1.3.15)-(1.3.17)
in terms of very small values of the Reynolds number so that the final
result will hold tArougbout the whole flow field. When the flow is
symmetrical about M =0 the constants A,, n20 are identicaliy zero.

As was pointed out earlier, the basic structure of the solution

for the vorticity is

. 1 - ° .
&M = 5G, (&) + n: [ G, (Ercosnn + g, (E)sinnyy ] . (2.1.24)

We can express the functions G, (§) in the series (2.1.24) in terms of

3

the coefficients' of the trigonometric terms in the series (2.1.23).

Now if we equate the series (2.1.24) to the series (2.1.23), multiply

each sidé by cosnn and integrate with respect to 7 from 0 to 2r we
tind, after use of a weil-knouﬁ result in connection with the theory

of Bessel functions -

1-
I.(z) - 2 I e
x
0

1cosn

cosnt dn

and also,




2R
J.e”“" sinnp @gn = 0, ) (2.1.26)
0

\

that the series for the functions'G,(é), n20 ray be given as

o0
G,(»";)-5 Al I, (2 4+ I, (2))K (2), n20. (2.1.27M

L -]
Next expansion (2.1.24) is equated to (2.1.2j) and a similar procedure
of multiplying each side by sinnn and integration from N=0 to = 2n

yields ‘ -

* .
g, (&) -Zs, [ I.._.(z) - I ,(z)] K (), n21. (2.1.28)
-0
We propose to scolve the Oseen equafions (2.1.8) and (2.1.9) subjiect to
the boundary conditionS (1.2.26)-(112.28)'sepa:acely for the vorticity.
In this case one needs to consider‘ the sclution of the linearized
vorticity equation (2.1.8) subject to its integral conditicns (1.3.15)-
E$;3.17) since the vorticity eguaticn is linear and independent of the
streaﬁf function and the Pboundary conditiors (}.2.263-(1.2.28) are
equivalent to the integral conditions on the vorticity. The anklytical
sclution of the Osegn problem can be carried cut for wvarious cylinder
shapes (e.g. circular, elliptic) separately for the vorticity: in
Chapter III and Chapter Iv, it will be shown that all the information

about the Oseen problems for an elliﬁtic cylinder and a circular
N

cylinder can be.obtained from the vorticity.

——

]

2.2 THE PRINCIPLE OF RAPID DECAY OF THE VORTICITY
The correct satisfaction of the boundary conditiods at large

distances from the cylinder is a pargipularly ctucial matter in the

case of asymmetrical flows. Unless conditions are—satisfied properly an




- condition in obtaining the solutions of (1.2.23}. Dennis [9] found that

unacceptable solution throughout the whole domain can result. In this

secti’on- it will be shown that it is not sufficient ¢to impose the

necessary condition that the vorticity must vanish at large distances
-

from the cylinder where the flow is a uniform stream, as a boundary

by considerirg the asymptotié nature tf the decay of voticity at large

-
-

distances phat for asymmetrical flows it is not 's'ufficient merely that
the vor;icity shall vanish far from the cylinder but that the vorticity
must‘decay rapidly enough. Since a number of important _‘:es\xlts may be
extracted from his analysis, it. is detailed in this éecti:on.

As previously noted, equations (1.3.15) through (1.3.;.9) provide

the integral conditions for the vorticity. Equations (1.3.15)-(1.3.19)

.

may be re-arranged to obtain

L
J‘ e "t r,(§) & = 2x8, ,, n21; (2.2.1)
£, '
Je"'"‘ s, (§) && = B5, ,, n20, ‘ (2.2.2)
8o
whe;:e
2R .
Lo (E) -%IM’Csinnﬂ dan, . (2.2.3)
°
. IR
s, (§) - o f M { cosnn dn . - (2.2.49)
o

In o.:der to investigate the convergence of the integrals in equations
—r~

(2.2.1) and (2.2.2) it is necessary to determine the character of the

, . 2

/

~




steady-state vorticity distribution for large §. As stated before, the
’
solution of the Oseen linearized equation for the vorticity eJuation

(2.1.10) -which is valid for large § is

L, = 3 Ge &)y + [ 6. Grcesnm + g, (§rysinny | . (2.2.5)
where - -
G_(§)=5 Al .. 2 + I, (2 ] K., n20 (2.2.6)
= =0
o0
-g.,(&)-; B. [ I._..(zy - I_ _.(2» }]x., n21, (2.2.7)

with 2 -.l-RkeE.

a This solution satisfies the necessary ccnditicns

CE,m =l n+2n) and { 40 as & -+ .
From the asymptotic properties of the modified Bessel funce irns

for large z which are given in Appendix IV, we have .

I.(2)K, (2) -%z_'"‘ « Oz, : . (2.2.8)~

[ I, () + I, (@]K(=2" + Ocz")y, (2.2.9)
I {z2) - I.. ()] K(zy=mnz ' + Otz ', (2.2.10)
el bei n -

as z 4 o, Since £ is large when z s large, thre limiting behaviours of
the functions G, (), n2 0 and g.(§), n21 in the series (2.2.5) as

§ - w="are

“
==
G, (&) -—&[) Ps]e-§+ olet), ©(2.2.1D)
m =0
. oo = . .
G, (§) "T:T[; ~;L_,]e‘f+ ole?t), nz:: (2.2.12)
m -0 ;
o0 rd 1
g, (&) !.:36:? Z 1msm] et v 0(e?), n21 - (2.2.13)

then for large § equation (2.2.5) can be replaced by




-

CE.m - [,7(n)e'§ + Kme?t ][ 1+ é)(e'*) ]

(2.2.1¢4)

where ?(m and X(‘n) are functions of N alone which are given by

?(‘n)~ %[5—2—&’] [li-cosn* (c'csZ'n)].

7 =0 2
X(q) - R—;‘:—z [ 5 mag] [ sinn + 2(sin2n) ] .
B =]

In these equa’ions the existence of the sums

-TL and S-Tm%

(2.2.1%)

(2.2.16)

(2.2.17)

are assumad. I& practice they are arproximated by a finite number of

—-—_

terms. The functions ?(‘n) () are known only precisely when the

&

2 X
.‘con‘s\tanr_s A, ,m20 and B, ;?'51 are known.

We will proceed to determine the functions r_(§), n2 1 arnd s. (&),

n2 0 which are given by the equations (2.2.3) and
large. It follovs from (1.2.15) and (1.2.2C) that

(2.2.3) and (2.2.4) has the asymptotic form

Mo~ xTe’t as NE o=,

I

. . 2
If we replace { and M in equaticn '(2.2.3) and

asymptotic forms for large § which are given by the
. .

and (2.2.18), we obtain

- -

42{

r. &) - ke g,,(&)-—lf,—"- S + O[e"), n2 lg

e s, (8 ~keNG‘,(§)‘-%‘Sieg +O(e'§),
. s, ) - ket -t s et 401y, d21.

(2.2.4) when § is

. 2,
the cuantity M in

-

(2.2.18)
(2.2.4) by their

equations (2.2,14)

. (2.2.19)

t

(2.2.20)

(2.2.21)

@t follows from (2.2.20) and (2.2.21) that the flow must be adjusted

830 that S = 0. Then thHe functions
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s, (8) 2 c, as § o e, . (2.2.22)

4

where the copstants ¢, depend upon a sum involving the constants A

J/’:;d the caefficients of the next order terms in equations (2.2.11) and
(2.2.12). “oly under this circumstance will the unkgown constant B
determined from (2.2.2) be such <that the conditions (1.3.8) and
(1.3.9) are satisf:ed. Further, the :infinite integral in (2.2.2) will

then converge at the upper limit for n2 (. The necessary condition
o

) a0,

2 -c ' v .
indicates the zapid'decay of the vorticity at large distances from the

cylinder since its application eliminates the slowly decay:ing term in
©G. (59 as § - e. It also follows from (2.2.19) that

£, (§) = nc as § ~ e, (2.2.23)0

1én CoL - : .
where c=— S and iaa defin:ite constant for a given Reyncids number.
R .

.3
.

It follows from ég.z. 3) that the 1i1ntegral ir the condit:cn »(2.2.:)
v
always converges at %$he upper limit.

As previously noted, Dbecause of the choice of the co-ordinate
system all thé flow wvariables must be periodic functions of the
angular ﬁP—ordinate .n with period 2x. }t follows féom the eqguation
{1.2.37) that the pressure in the £fluid will only turn out to be

periodic provided that

5 n| £, (516, (§) - F,(§)1g, (51 ] =0 as  § 9 e . (2.2.24)

ne=tl

Thus we find, after use of (1.3.8), (2.2.12) and (2.2.13), that

o0
. k
__5n[, £, )G, (&) - F . (§rg, (&) ] 0 ‘; l__ A, . as § o e . (2.2.25)

=l -0

The condition (2.2.24) required for the periodicity is then satisfied

only if S .




L ' t2.2.26)
» *0 -
This condition must be enforced on the flow in some &nm; The
integral conditions for the vorticity at ‘leasr. in theorxy allows t!{is to
be done, although the practical difficulties are great. The problem
edoes not a:iae‘in flows which ;:9 symmetrical about N = 0 since { is
then an odd function of T. The functions G, (§)in the series (2.2.5) are
then ideﬁtically zero and the cqndition (2.2.26) is satisfied since by
the equation (2.2.13) the functions g_ (§3 always vanish rapidly encugh.
¢ Thus even if the correct conditions of periodicity are enforced
upon the governing equations for the stream fpncéion ana.tbe vorticity
(1:2.23) and (1.2.24), th; pressure in the fluid will only turn out to

be periodic .provided that the integral conditJJ.rms on the vorticity have

been satisfied. It is not yet completely clear how the necessary

L -

adjustment of the flow so that S =0 is to be made in the general case
of the Navier-Stokes equations. The central problem is the elimination
of the slowly decaying term in G, (§) as § 2 . It is not sufficient to

impose the necessary condition (1.2.29) as a bounoq condition in

obtaining the solutions of (1.2.23). The problem has been :olved in the

case when the whole flow field is assumed to be govern y the Oseen
equations. The technique will be described in the next section and some
analytical illustrations will be given in subsequent chapters.

2.3 ANALYSIS AND METHOD. OF SOLUTION
The object of this method is to reduca the par'tial differential
equations (2.1.8) and (2.1.9) to sets of second order linear ordinary

differential equations in one space variable which are integrable.

This ‘is done by standard Fourier analysis and then the integration




censtants are determined in terms of the Reyntlds number R, treating R

r as small, provided that certain necessarcy cenditions involving
. .

integrals of the vorticity [ evaluated throlzhout X

()

he flow field are

b

(7]

atisfied. In theczy each ser of eguations s an :nfinite set which is

hen truncated by setting to zero all terms after a certa:in stage. A

o

4
further cbject of this methed 1s to deal with the sclut:icon of the Cseen
crcoblem separately for the vert:icity. We cens:der the Cseen linear:zed
eguat:cn for the vortic:ity a

N < 4 r ' .
8_5 % - cosT B_"_ _ sinn _> ) . (2.3.1)
ok’ : 93 *oan’

L] .
where . €% <ea, 0S€ 28, sublect tc its integral ccndit:ons
oo R ) .
o , ‘

I j et u { cosnn an wf = =BS. . , n20; (2.3.2)
t ‘2
A

w R .
JJle° ; ML sinnn dn Qf =27k8. ., n21. ' (2.3.3)
|
S e [

In addition, the vorticity must satisfy the corditien at infinity
(EE.nm) 0 as & 4 {2.3.4)
—and alsc,
Cet,my =L (&, n+2n). ‘ (2.3.5)
Equations (2.3.1) through (2.3.5) provide tlre rr.a;.hematical fcrmulation

of the Oseen problem for the vorticity in the (2,Mn) co-ordinate system,

In this method, we assume

. : ¢
o

T, = % G, (§) + S [ G,§)cosnn + g, (§)sinnn | . {2.3.6)
nel

Substitution of-ghe series (2.3.6) into (2.3.1) yields two infinite
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Ve
sets of linear second order ordik!’ry’dif rential equations for the

a@ctions G, (§) and g, (§)

AN

, G:-%Rkeg(G;"'lev - (2.3.7)

1

s Ree'[ Gl - n-1)G,., +G... + (ne1G,., |3 n21: (2.3.8)

G: -n’Gn -

gn-n'g, '% Ree'[ i, - (n-lig.; =gl + (a*lig,., ], n21, (2.3.9)

where g, = O, and the pgime denotes differentiation with respect to §.
We note that the dependence ¢of the problem on she parameter R can

be considered to be isclated in the variable A

z-lakeg.

Y (2.3.10)

Thas if we consider flows at low Reynclds rumbers, 2z will be small.

*
Under these conditions we can remove the R-depepdence from the

L3

ifferential equations (2.3.7)-(2.3.9). By means

£

(2.3.10), equations

(2.3.7)~-(2.3.,9) beccme

260+ 6 =3 [z26/+5], . (2.3.11)

2G,. .+ (A+1)G,.; =26, +G, -n'z 'G,~2G._.+ (n-1)G,_,, n21; (2.3.12)

zg',,,1+(n+1)g,,,1_-zg:+g,:-nzz'1gn-zg,:_:+(n-l)g,,_._, n21. (2.3.13)

*
'

The prime now denotes differentiation with respect to z. The integral

condit jons for the vorticity (2.3.2) and (2.3.3) become

.0 2R oo > % ’
Iz'""G,(z)J‘M?(z,mcosnmdn dz +2 ; [ J.z-n-lG. (2) [M(z,M) cosmn cosnn an dz
LIPS P ° B IPL °
. X .
{ o0 22X n e ‘
apn-] 2 ‘
*J" g. (2) [M(2,0) 8 Lnem cosnn dn dz ]-[E]Zxﬂﬁa'o,nzo: (2.3.14)
TR > - ' :
] ) )

J




[ 2K oo oo K
J.z-n"Ge(z)Juz(z.n)sin amandz +2 ) [ Jz-n—lGn (Z)Jlﬂz‘z'mcosm“ sinnndndz
2 x =

RE G8, ¢ L1 I e
4 4
) 2R n
-r-t . . 4
+le g,(:)-}‘Mz(z,n)s;nmn sin-nn dz2 €N J -[ RK ] 4xk8_’.. , N21,(2.3.15)
i.L'e+o ¢
4
and alse, from the eguation (2.3.4) we have
G,(2) =0 as 2z 4o, n20; (2.3.16)
G.(2)y = 0 as z 9w, n21. (2.3.17)

Eguaz-:ns (2.3.11) through (2.3.17) provide the complete formulation
of the Oseen precklem for the steady-state vorticity. )

If we integrate the egquations (2.3.11) t‘hrough (2.2.13) with
respect to z we find, after re-arranging these equations and

multiplying 'each side of the equatidns (2.3.:2) and (2.3.13) by z,

.n21l, that

G;(z)-%G;(z)+clz'-‘, : (2.3.18)
Gn.,‘(z)-z“d_[z-nGn(z)]—Gn_._(z)+2nz"-1[zr_,:(zwcn,:], n21;: (2.3.19)
dz - o

g:‘.‘(z)-zn:_[z-ng_._(z)]-g.._-l(z)+2nz’-’.'-)[ln‘;(sz__.,..], n21, (2.3.20)
. k4

where ?.’,,,1 (z) and Zn,l {z) are the functions given by

.. +c,.., -Jz“ G,.,(z)dz , n21; (2.3.21)

L., +4q., = J. 2" g,_,(z)dz , n21. (2.3.22%

-

Here c¢,.,, n2 0 and d,,,, n2 1 are the constants of _integzation. The
functions G,,, (z), n20 and g,,,(z), n21 are then ¢only known precisely

when the functions G, (z), g, (z) and the integration constants are known.

.




In order to determine the functions G, (z) and g, (2),.we can use

basic structures of the functions G, (z), n20 and g, (z), n21

[ od h -
G, (z) = ) Al ., @+, (23] K(z), n20; 12.3.23)
e =0 '
o0 5 ‘ _
gn(z)-s B, [ I, ., (20 -I_.,(2)]K(z), n21. (2.3.24)
R 8 =1 ; [ 4

which are obtained by standard processes of analysis .in Section 2.1.
- The co;lstants A,, m20 and B, , m2 1 can be determined in terms of the
Reynolds number R, Efeating R as’ sma}l, by evaluating the integral
conditions (2.3.14) and (2.3.15). Substitution of‘ the equation's
(2.3.23) and (2.3.24) into both of the conditions (2._3.14) and (2.3.15)
yields an infi;ite se‘t of algebraic equations for the unknown constants
A, , m20;.B,, me1 and B‘ if S =0. Thesé constants a_:e. to be- found by
solving the resulting system of equations provided that the necessary
condition S =0 is satisfied. .Theoretically, the soclution of .the
resplting infinite 'set of equations is to be achieved I;y mearrs 'o.f
infi;‘iite det.erminant-s: practically to find thé app.roximate.'sglution we
solve a finite number of equations. A special technigque is used for
‘solving these equations. It is explaine'cl anld illustrated. for vari‘ous
cylinder shapes in subsequent chapt.ers.. ) ‘ |
Assuming the conatants A, , m20 and B,, m21 are known, the
functions G,(z) and g, (z) can ‘be detemined' completely from . the
equations (2.3.23) for n= 0 and (2.3.24) for n= 1 and then the
functions G,,,{(z), n2 0‘ and 9,.,1{(2), n 21 can be determined in an
alternating manner from the equations (2.3.18)-(2.3.22) . The constants
of integration ¢,,, , ;120 and d,,, , n2 1 have to be determin/ed pin

terms of low Reynolds numbers provided that the integral co.n.di:ions on




the vorticity (2.3.14) and (2.3.15) are satisfied. The complexity of
the evaluation of the integral conditions (2.3.14) and (2.3.15) depends

upon the form of M(z,n) which is determined by the cylinder shape under

consideration. The method is particularly suited for flow past a

circular cylinder in which case M(2,M) is a function of 2z alone. 1In

.
— e,

this case the inteé:al conditions are of a fairly simple nature and may
be evaluated by straight-forward analyticdl proc®dures.

Determination of the functioms G, (z), n20 and g,(2), n21 and the
fonstants of integration in the eguations (2.3.1.8)'thr<>ugh (2.3.22)
will.enabie us to find an asymptotic expansion o©f the steady-state
vorticity for R“K 1 when the whole flow field is assumed to be governed

s . .
by the Oseen equations. The final result is of the form (2'.3,.6) and
assumed to hold throughout the whole flow field since all the unknown
functions and..constan:s appearing in equations (2.3.18). through
(2.3.22) are determined by evaluating the necessary‘ conditions
.ir{vo-lvinq integrals of the vorticity throdghout the flow region. The

—

satisfaction of these conditions allows the vorticity { to be
det‘ermined on. the contour € of the cylinder v_u'.thom: using any
information ai:out the stream function ¥. The solut'iou for the vorticity
is' then complete. Since the voréicity is now known on t;_.e centour C of
the cylirtd.er as well as in the infinite domain outside the cylinder, it
is now possible*tg integrate the equation (1.2.24) subject to the
condit:.ior_\s (1.2.26)-(1.2.28). The p:rocedur-q is based on the reduction

of the equation (1.2.24) to a sets of ordinary differential equetions

in one space variable. This is done by standard Fourierxr analysis in

&

Section 1.3. The ‘appli.cability' of the method to various cylinder shapes

will be discussed in subsequent chapters. N

" .
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CHAPTER IIZ
APPLICATION OF TEE NEW METHOD OF SOLVING OSEEN EQUATIONS TO THE
ASYMMETRICAL FLOW PAST AN ELLIPTIC CYLINDER

3.1 THE OSEEN EQUATIONS FOR ASYMMETRICAL FLOW PAST AN ELLIPTIC CYLINDER"

In this chapter, as an example of the applicaticn of the new methoed
described in Section 2:3, the uniform flow past an e}liptic cylinder aé
an arbitrary angle of incidence will be dealt with. The x and y axes are
along the major azl'\d minor axes of the dimens‘ionless elliptic cylinder,
the angtg of incidence between the uniform flow and the major axis of
the dimeﬁsionless ellipse is . A typical situation is shown in figure 2.
For flow past an elliptic cylinder the approbriate transformatﬁon
corresponding to (1.2.14) is

x +iy=cosh(§ +i(M+a)}, (3.1.1)

x = coshf cos(M+a),. y = sinhf sin(n+ol. L ¢3.1.2)
The boundary § =%  corresponds to a dimenmsionless ellipse with send—umjoz
agd semi-minor axes of lengths ) —

a=cosht,’, Db=sinh§, (3.1.3)
respecgively. The dimensionleas ellipse itself is then given by

& =¢, -tann~ (2) | | (3.1.4)
where 2 >b. The corresponding value of k/in (1.2.15) is k--;- and the
function M (§,m) in (1.1.20) is

M (&, = %[ cosh2f - cos2(n+a) R i3.1.5)f
in this case. Since the dimensionless length of the major axis is 2cosh§,
we define a Reynolds number R: -ZUdcosbéolv based on the dimensional
length of the major axis.'rhe number Rt can be defined in terms of the

generalized Reynolds number R as

. 39




Re .
" coshE, . (3.1.6)

The Oseen equations (2.1.8) and (2.1.9) take the forms in the (§,M) co-

R

crdinate system

S 2 '
i_g.*ag, _BE‘ e‘(ccs'qa_c_sinn G_C_ ], . £3.1.7)
33" am dcosny, 3% on

2 2
—_— 4

3 = = = cosh.zi - cos2(m+a} g, - {3.1.8)
3t an 2 .

where §,<§<e, 0SnN<2r. These are to be splved subject to the

fcllowing conditions

1]

w 7 . }
J. e-'—g[ cosh2f - cos2(m+ )] {coshndnc; = 2rB8. ., n20; (3.1.9)
3.2 . o
. 7
o 27 .
-nt . .
er "*[ cosh2% - cos2(Mm+a)] {sinnn adndd = 278, ., n21,(3.L..10)
’0: o ’
. - | ]
- TLE,M 0 as & o oee, e (3.1.11)
oy .
yi§,M) = — =0 when § =&, (3.1.12)
a8 .
. et ﬂ_lsinn, et é\_v_lcosn as & 40, (3.1.13)
AU k2 on - 2 :
‘V(ﬁ:ﬂ) -

“

v (&, n+2m), C&,m = Q(E, ne2m). . (3.1.14)

_If we substitute the assumed expansion for the vorticity C(E,n) given

by

&, m = % G, (§) + : [ gsn}g)cosnn + g, (§)sinnn | L. (319
ne -

in equation (3.1.7) we find, after tl;e standard use of crthogonal -
functionsh, that the equations for arbitrary componehjt's G, (), n20 and

g, (), n21 of the series (3.1.15) are




© (3.
Ly = (amDG, | +G N+ ()G, ., ], m21: (3.
-«
1 . i
.gr-nlg, o« —B& __ 3| g7, - (n-1)g,_, +g... *+ (n+)g, ., ],<n21, (3.
: 8cosh§, \ - 3.
where g, » 0, and the prime denotes differentiation with respect to

variable §. In terms of the functions G, (§), n20 and g, §), n21
-

associated with the expansion (3.1.15) for {[(§,n) the integral conditions
(3.1.9) and (3.1.10) become

“ 0
Je'"g [ 2cosh2§ G, (§) -cos2a[G,., (&) +G,_, (§)] + sin2a[ g,., (§)

4
° ' -g,., (5] ] dg = 4BS, ., n20 ; {3.1.19)

-nk

e [ 2coshé§ g, (§) - cos2a g,., (3) +qg._, ()] + sin2a{ G,_, (§)

&

-G,.., (&)] ]d§-48,”;, n21, (3.1.20)

where

G.,§)«G, (&, g.. () =-g, (&) for k=1,2. (3.1.21)
Also, from the condition (3.1.11) we have

G, () =0 as E 40, n20; ‘ (3.1.22)

g, (&) »0 as & g e, n21. (3.1.23)
The two sets of linear seccnd order ordinary differen;ial equations
(3.1.16)-(3.1.18) for tge functions G (), n20 and g, (§), n21, subject
to the conditions (3.1.19) through (3.1.23) are to be solved in a manner
similar t;: that outlined in- Section 2.3. Néw let us make a Fourier

expansion of y(&,n)

vE,m - % F,(§) + Z.x [ Fn(ﬁ)co?nq + fn(ﬁjsinrn]] . (3.}.24)




Substitution of this series—in equation (3.1.8) and the standard use of
orthogonal functions yields the pair of equations for arbit:ary'components
F,o(8), n20 and £,(§), n21 of the series (3.1.24)

14

" 1
Fo(&) - n®F (&) = > [ cosn2§ G, (§) - -;— cos;u[ G,.; &) +G,. . (5]

+ % sin2a{ g9,., () -g,_, ()] ] ;o (3.1.25)

£.(8) - n* £ (&) = % [ cosh2§ g, (§) - % cos2a| g,.:4§) +g.., (5]

1.
+Esxn2a[G,_2(§) -G, ., 5] ] (3.1.26)

The boundﬁ:y conditions on the functions F_ (), n2 0 and £ (§), n21
follow from equations (3.1.24), (3.1,12) and the uniform flow at infinity
condition (3.1.13). They are at the cylinder surface
F.(§,) = F, (§,) = 0, n20; (3.1.27)
£, (8,) ~ £7(E,) =0, n21, ’ (3.1.28)

and as § 4 = -

e bt -.%am._ , ' ; (3.1.29)
1

N L . Vi . (3.1.30)

Assuminé the functions Gn(ﬁ), n20 and g.(§), n21 are known, the iinear

second order ordinary differential equations (3.1.25) aﬁd (3.1.26) for
the functions F, (§), n20 and £,(§), n2 1 are then to be solved subject
to the conditions (3.1.27) through (3.1.30).

As is to be expected, the reduction of equations (3.1.7) and (3.1.8)

into component form yields a complicated system of equations, this
Y

essentially being due toc the fact that M is a functiop of both of the

varidbles £ and 7. . . °
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3.2 THE APPROXIMATE SOLUTION.OF THE OSEEN FLOW PROBLEM FOR THE
VORTICITY IN TERMS OF LOW REYNOLDS N‘UMBE;.R

In +this section the approximation co‘the vorticity distribution

over the surface of the elliptic cylinder will be obtained correct to

the order of [ Re J[1nRe ] ', the lowest order term being O([ 1nRe ]'1) ;
The rathematical formulativn of .-the Oseen flow problem -for the
vorticity components G,(z), n2 0 and g_ (z), n2 1 in the case of the

elliptic cylinder which is described in the previous section may be

summarized as being the following

2 G, + G;-%[ 2G, +G, |, ' (3.2.1)
L]
+(n+1)G,,, =26, +@F-n?27'G, - 2G,_, + (n-1)G,_,, n21; (3.2.2)

2 G

nel

zg‘n.1+ (n+l)gq,,. -{g,','*»g,: - nzz“‘g.__ -zg;_; + (n-1)g,_;, n21, (3.2.3)

——
§ v
Rt e
where z Bcosht, and g, = 0 ;
G.(z) - 0 as z 49 for n20, . ‘ ' (3.2.4)
g, (z) 0 as z 4o for n21, Y3.2.9)

. 2
i-n Rg -3-n Re -1-n
J‘ [( z ¢ [Scoshiolz JG"‘Z)_ [Bcoshﬁo]z (cosZu[ Snez (214G, (2]
RE ogo

lco-nﬁo - 311’32&( - (z)-gn_z(z)])] dz = {EE;%E—TQBSH'o s, n20;
. °

(3.2.6)

4
1-n Re -3-n Rz -1-n
J- [( = [Scoshﬁolz )g“(z)- [8cosh§°]zz (cosZG{ n-z (D) + 9y, (2)]
RE oto ‘

bl R: Tﬂ .
B - - - |— .
tcosnd, | sin2a G,_,(2)-G,., (z)])] dz [Bcoshg‘,]z“s“- ,+» n21,
f
whe'rg g.y (2) = - g, (2}, G., (2) = G, (z) “for k = 1,2. -

As stated before, the two sets of linear second order ordinary

differential equations (3.2.1)-(3.2.3) are integrable and the functions

.




G,{z), n21 and g,(z), n22 are only known precisely when the functions
G, {2z} and g; (z) are known. If we re-atrdnge the equations (2.319) for

n=2, 3, after re-writing the equation (2.3.18), we find

_ G,(2) -% G ()] +¢C. .z, (3.2.7)

s
z

G, (2) =z 27 6, (2)] -G, (2) + Zz-ZJ-zGc(z) dz + C, z-°, (3.2.8)

2

TG, (2] ] -G, (2) 4z"jz’ (c;: (z) + :—z-[ G, (2)) ] dz

3

- %z-{ G, (z)] + ¢,z . (3.2.9)

Also, the equations (2.3.20) for n=2, 3 may be re-arranged to obtain

d - -
g,(z) =2 a;[ 27 g. (z)] + D, z 2, (3.2.10)

s . b K
g, (2) =2 3—2-[ z 2—2{ z"‘g;(z')]] -9, ()4 4g J._zz g, (z)dz+D, 27}, (3.2.11)

-
»
’

winere the C,, C, and D, for k=2, 3 are arbitrary constants.

5

.

We now proceed to detérmine the functions G, (z) and 3. (z). In prder

to determine these functions, we use Lkasic structures of the vorticity
components

G, (2) = ) A, [ I, () + I, (2)] K (2), n20; (3.2.12)

m =0

m el

o
g, (2) = 5 By [ Ip.a(zr- I, 42)] K(z), n21, (3.2.13)

which are obtained by standard processes of analysis in section 2.1.

To find the co;mstants A, , m 20 and B,, m 2 1 we substitute the
expressions (3.2.12) and (3.2.13} for the functions G,(z), n2 0 and

N -«
gn“(z), n2 1 into both of the integral conditions (3.2.6). 1'3113 gives

theé two infinite sets of linear simultaneous equations

! “




-

[}—?l‘_l-kﬁ +fAh_ -a=-] -4Bs, ., n20: | (3.2.14)

[y_b~z.-.= B + T‘TQ!.A?. ] = 455,‘. 4 n21, * . (3.2.15)

where
-
-]
. -2
. Re - [{_Re —Re | ,-3 (
R [ J [[[Scosna J= - ecoshéjz e noen o]
s . RE e L3 R
lcctr{c _ccs‘_az [I:-“-2(2)+ I-OP'Z(Z) "‘ I._ _n.z(z)
.. . + ,._,2(z)]]&(z)dz }, n20, m20, {3.2.:6)
' -
2 z \
Re -3 -
(o [ (e e o ]
AL b » - .
ucen!,e » -ccs2az : [I=_n_2(z)- I. . (2) + I (.., (2)
- ‘ /- I,.--.-;(zé]]&(z) dz ‘}. n2l, =21, ° (3.2.17)
. had . ’ i
{ Re -V . ' . <
- . 2 T e = . - - N
A’\_ s.‘.nﬂ[ecosh%éuz ) [ I:-:-_-Z(Z) Ia '.".-2(2) I::-.’oZ(z).
"+ RE abe T . St .
Teeert, 4 g ‘n_zm]&m dz, h20, m21, “(3.2.18)
IR 9
) b
» -x-- ) .
Q._‘ - slnzu shg TJ’ - .. _n.z(z) + I= +sn- 2(2) + I= _ﬂ'.z(z)

l:o o
Tcosrl, . Iz.n‘jz(z:i']K,(z)dz, n21, maod. (3.2.19)

. .
c -
.
v

A

we note that the ?:operty (IV-5) is used in obtaining the expressions _

(3.2.16)-(3.2.19). In-Appendix VII, it is shown that the secefdary

4+

“condition for the existence of the sums

- -
\. [] " o

~,
.

}:r and __5:‘]"1_&" - (132200



in (3.2.14) is

5 A, = 0. P : (3.2.21)
= ®Q

The unknown constants B, A, , m 20 and B, , m 21 are then to be found by
L4

. 3

" sclving the system of equations (3.2.14)-(3.2.1%) prcvicded that the’

necessary cendition (3.2.21) .45 satisfied. In pr the -number cf

equations that can be obtained from {3.2.14)-(3.2.1%) tcgether with the

condition (3.2.21) 1is asstred'ko"be finite, say {2N + 2} which is identical

o

to the nurber of unknawn constants. Theporetically, the solution of the
» Al

©
0

resulting infinite set of equations is to be achieved bty means cf infinite
. R ‘ 2

N ’ V".- ) " * /'

dete:minants;{;mactically. to find the agpproximate sciution in terms cf

.

. A . .
the low Reyﬁolds\pumbet Re, we solve a f{inite nytker of equations.

v

We will-p;ooeed to approxdimate the unknown cons:ants in :erms of

- -

Rr as Rs 4-0 %y Making a generalzzatzcn cf a method, used by Tcmotika &

~ -~

Aoi [GSI 5167] and Sidrak [40] s [ 41}, lv-.g a cou pled 3ystem of
j,equatlons. The twp 1nf;n;te sets cf linear s‘maitanecus equa;nons
- . '..'st«‘

(3.2.14) amd (3.2.15) zﬂvolvxng t+he ccastants B A_, m >O ahd.S , m.21

N
. e

may be re-written as’

rna A, = 4B8r o ~ L. _ ; - ; T o ) (_3'.2.23)

B el

.

-
>

2]

where thegcoefficients of the constants A, endsssiaré definéd by the

1)

equations (3.2.f6) thréugh (3.2.19). The final equation necessary to

compleﬂé these sets is gzven by theﬁcondition . ' "

)—“\.r'° . X 3, 2.24)

» -0 .
By this means we do in effect adopt a global pxoceduxe ot.adjusting

¢




g

the solution to the correct conditions at large distances. For the
first approximation, we put B, , m 22 and A, , m 2 0 equal tc zero in
(3.2.22), and s;.)lve the first equation in (3.2.22) for B, ; and then we
put A, , m 22 and B, , m 22 equal to zer:a in (3.2.23) and (3.2.24), and
solve the first two equations in (3.2.23) together with the condition

(3.2.24) for A_., A, and B by using the first approximation to B, . For

the second approximation, we put B_., m 23 and A, , m 2 2 equal to zero
in (3.2.22)~, and solve the first two equationms in (3.2.22) for B,, B,
by using the first approximation te A,, A, ; and then we put A, , m 2 3

and B, , m 2 3 equal to zero in (3.2.23) and (3.2.24), and solve ‘the

- first three equations in (3.2.23) together with the condition (3.2.24)

for A,, A,, A, and B by using the second approximations to B,, B,, and

30 on.

‘In’ thzs :pptoxmat:.on, :'.t '13‘ assuméd r.ha': .43 Re = 0 the set of

¢ohscants- A, , R 2 0. and B,, m 2 . are decreasi.ng when m mc.\eases ~ Only

. -
N -t
*

under this'cucmnst.ance we can thémme :he app):oxmx.:.ons to the

t,. -

vortxcxty components bn tha gurface cf :he cylu\der in tem of the Iow

o, - -

-

this appronmtion all the . terms .mvolv:.ng povers‘ nf Re above a certa:.n

*

o:dek’ aze neqlecttd, and all below that order are taken Jjnto account

< To 6b;tain approx.imate solutiona to thé constants B_ , m 2. 1 and A. ’
. Y
m20 we must determine the coetticients ¢f these constam:s, namely,

4

et n_z1., m21; A_,n20, m21,
Q. nz21, m20: [, n20, 2o, .

(3.2.25)

Re)molds number R: £rom the expanszons t3 2.12) and (3;»2.13Lr.Also.‘ in’ -’

by evaluating the 1ntegnl"s involving the broducg:_, of the two modified..

Y

Bessel functions in oquat‘id_n.s_._'..(3.2.16) through (3‘2..19).7-!‘9:. our'f

'. AN . ' .

present purpose, it would not be much use to qi.ve a coﬁplicgtcd ‘general




af

a
expression for these coefficients. We can obtain an appxoxima{}on to a
finite number of constants B, A, , B, by replacing the infin®te sums in
{3.2.12) and (3.2.13) by finite sums over N terms satisfying (3.2.22)
and (3.2.23) for all integer values of m, n up to m=n=N and finally
£:nding the abproximate solution to the set of (2§+ 1) simultaneous
algebraic- equations which arise from (3.2.223 and (3.2.23) together
with the conditioen (3.2.24). In Append:i:x VII, by tak:ing N=3, forty-nine

coefficients have been determined in terms of R:, treating Rr as small.

They are sufficient to enable us to prcceed to the third approximation.

The first approximation gives
PP

(R4

[~ -d

- e < cosZa) ]

(1 + e

[SY

5
Rz Re e°° ] _
B. 2cosh§°[ ln(lécoshﬁo Ty

. .[l+O({Rz];[lnR£]2]', (3:2.26)

4

T §

- - : © 1 -
B = 4e 25, §1h2a[ coshg_ ][ Re} [ ln[:é%gfgz—] + + 5(1 -e 28, cos2a

- %e-‘tg] ]-1[ ln[l_gi_:;g—:] +y - %(l_e-‘to.* JRELN cos2a) ] :
- .[1 +AO([ az]’[lnm]’]],w.z.zv)
.
A, -%e'”'o sin2a] coshi ] '] Rz.] [’ln[mp:o:;;o] 4: Y - -;-e'n° ( cos2a
+~%e-2¢°) ]~1[ 1n Iég:ﬁ;%: + Y - %(1-—e°‘tc + e %0 cos2a ] ].1

. [1 + Oft lnRz]-") ] (3.2.28)

48




(3N )
PREL TS sin2a{ cosh§ ]~ [ Re ) [ {Y%OEPT] + v + %( 1-e 2% cos2a

-} 13 -3
_1 -ag, ] [ (;R_se_" DY YT -2t ]
Se ) 1n T6cosht, + Y 2[1 e ° + e e cosZu]

. [1 « Ol re )7 1nm-.]’] ,(3.2.29)

The second approximation gives

-~ 3 - .’
B -__L_ [ n[k—éQ_-] +‘ ’. l(l¢ e-‘ee _- e'zs'o cosza) ]-:
: 2cosh§ lécosh Y°2

. [1 + Ofl 1nm}°’] ., (3.2.30)

3

.. -8 2% -8, Y g 1°2 3[-{&'-3"] v - X
B, =-3.27"e"% o (34e ¢ ) [ cosnE, ][R ]’ | in TecosnE, ) * ¥ " 2

[ Y
R 3
1 -48, -48, > 2 ][ [_..e_o] - 1 -4%,
.(1+2e + e { s¥n2a] ] ln TécoshE, + Y 2(1+e

eETT v

-e %o co;2u) ] [1 + Ol 1nre}™?) ] (3.2.31)

-2‘

i B A AL A Slad

B = d4e “7° sin2a| cosng ][ Re ]° + 7 + l( 1 -e %0 cos2a

[ ocosh§ 2

- %g-‘gol ]'1[ 1n(‘1-'—_6R:°:h;°] +v - %(14» e-‘go _‘e-3§0 c::szn ) ]‘1

)

. [1 + O([ re % lnR:]) ], (3.2.32)

TETEEWE TWVITREFTIREEEYE W

e wT W w

}
o 1 -2, - - Rt e’°® _ 1 -a23
A, 2 ® sin2a| coshg,] i[ Re | [ ln(—IGcoshE ty-Zee [cosZa

A A B A
.
.l

- * & -t
+ %.’2¢°] ] 1[ ln[l:c:o:_hzo +Y - %(14‘ e"‘g - a-:to c‘oszd) ]

[r+0(t1nre 1) ] 3.2.33

-

-




R:e‘°

Lt i ot ) [
e ° sin2af cosh§ ] [ Re ] | In l6cosh§,

A =3 ] +y - %e'z§° (cos2a

-1 3 : -1
i 'zto ] [ [..&e_c_.] - _1. -C§° - -2§° ]
+ 2e ] in 16cosh§° + Y 2(1+‘e e cosZa)

.[1 + Ol re ][ 1nre 7)) ] (3.2.34)

- s §
L _ 3 59 LI PR -3 3 [ [ Rie“i_] -3
A, 3.2 (3 te ) sin2af coshf, ] [ Re ] in 16cosh§, MR 2

(1 ette ~ e e cos2a) | [140(1nRe ] | R

t follows from the equatiomns (3.2.33) through (3.2.35) that

A,=O([re J[1nre ]77), A =O([ rReJ[1nre] 7],

A, = O([Re ]’ nme ] ).

Also, it follows from the equations (3.2.30) and (3.2.31)

B, = O{[ Re J[1nre ] 7'}, B, = O rRe]°) .

Without going into detail it may be shown that
gy

A, =O((re]'[1nre] '), A=O([Re ][ 1nRe]7})
A, =O((Re)[1nmre]™ ), .ol . (3.2.36)

and also,

B, =O{[Re ][ 1nre]™"), B =O([Re]’[1nre ] ],

B, = O([Re ) [tnre] "), ....... (3.2.37)

¢
As is to be expected, the solution sets of the constants A, , m 20 and

-
- .




, m 21 yield decreasing sequences as Rt -+ 0 provided that
A, .,=O[A] as Re 50, m21
AL..=O[re][A])) as R =20, m22

and also, .

B,., ~O[B,] as Re -0, m21

B,,x-O-([Rz]z[B,]) as Rt =+ 0, m2a.

We can now approximate the vorticity components G, &) m"u;'[?g1 () of
the Oseen flow problem on the elliptic cylinder surface in terms of the
low Reynolds number Re. As stated before, the equation of the surface
of the elliptic cylinder under consideration is § =§, . If we write down

thé equations (3.2.12) for n=0, (3.2.13) for n=1 and then substitute

the result (IV~-18) ihto (3.2.13) we can immediately arrive at

G, (&) = ) 2A, I, (2)K, (2) , (3.2.38)

£ =0

o0
g, () = ) 2mp_ 2 I (2)K, (2) . (3.2.39)

2 -1
If we put § equal to §, in these equations and then expand the modified
'Bessel.functions in (3.2.38) and (3.2.39) by using (IV=-2) and (IV-7) we
find, after use of {3.2.30), (3.2.33) and (3.2.34), that as Rt = 0 the
approximations to the vorticity components G, , g, of the Oseen flow

problem at § =§ are

. §
o1 -2t -1 [ [R:a“] 1 -4t
G, (§,) e ° sin2qof cosh&o-]. [Re] | 1n T6coshE, +Y 2( 1+e °°

- e % cosZu)]q[ m(—ﬁ‘—i"—] +y - L4728 ( cos2a + le.zg°) :I.1

16coshg, 2 2

N
£

. [ 1n[-1—£:‘T:g-h£—°) + 9 ][ 1+ O([ lnlm]'l) ], (3.2.40)




Re e°© -1

l16coshf

g, (8,1 = ‘4e-t°[- ln[ ] +y - %(14» e 'te - cosZag”h] ]

. { 1 + 0l re |7 ln\R:]z] . (3.2.41)

We will -proceed to determine the vorticity components G, ‘(ii), G, (&)
and gq, () by, using the results that are obtained for the vorticity
components G, (£) and 9. (). 1In order to determine these vorticity
components, we must obtain the approximat‘ions to the constants C,, C,
and D, in equations (3.2.7), (3.2.8) and (3.2.10) as Re = 0. This can
be done by the satisfaction of the two sets cf the integral conditions
(3.2.86) fo.r the vorticity components of the Oseen flow problem. Without
going into detail, it may be shown, by using the expressions (3.2.7)-

(3.2.8), {3.2.10) and the results (3.2.38), (3.2.39) in (3.2.6), that

satisfaction of the integral conditions gives

c, =0, (3.2.42)
o0 =
C, =) am' A, I, K , (3.2.43)
m =0
Re et" ;”
Dz-[—_ B, [ I, . Kp .o - oL Kuy ) (3.2.449)
8cosh§ ) o5 % : Pt
\5-
: . Re e °
where the arguments of the modified Bessel functions are ;3 ° It
- 8cosh§
can be deduced from these equations that
s
‘ .28, -2 [ [;us‘__ 1f 4-7%
c, = -e sin20'.[ cosh§ ] "[Re] | 1n Tecosht, + Y 2(e cosz’a.

]

o

-'1 . -1
1 -4t ] [ [ Rc e ] 1 -ao. _ 28, ]
+ >e °) . in Tecosh . + Y 2(1 + e e e cosza] ‘

. [1 + O([Re]® [ 1are]?) ] (3.2.45)




Rt [ R:eg°

: -1
—_—e —_— - l "go - 'zgg ]
coshk, ln lécoshég] + Y 2( l +e e cosaa )

D2 - -

[+ of 1nre]™?) ] . (3.2.46)

In order to find the approximations to the vorticity components G,, G,
and g, on the cylinder surface as Rt - 0, we put § equal to & 6 in the
equafiona "(3.2.7) and (3.2.8) and alss, use the results (3.2.26),
(3.2.28), (3.2.29), (3.2.36), (3.2.37r (3.2.38), (3.2.3%), (3.2.40)-
{3.2.42), (3.2.45), (3.2.46) in these equations and then expand the

modified Bessel functions in the resulting equations by using (IV-2)
3

- -26 %0 o3 [ {_Rt_e__] P RE LN 1
G, (§.) 2e sin2a | 1n TécoshE, +Y - Je ( cos2a + 3

and {IV-7) in terms of Re. This gives

-1 ' L . 1
LY ] [ [_Rz_e__ P Y G ) N -8 ]
. e ] in 16cosh§° +y 2( 1 e cos20 + e € )

) [1 +O(fre ][ 1nre }7) ], (3.2.47)

- L4
- - 3477 -4, 7! R [ ie__] 1
G, (§,) I (3 + e ] [cosh§,] '[R ]| 1n T6coshE, +Y -3

-1

1+t - e ocos2a) | [14+ O(f1are]TF) ], 3.2.48)

<

g, (&,) = - %(3+ e ‘to ]"[ gosh§°].°1[ m][ 14+ O 1nre ]“] . (3.2.49)

Al

It follows from (3.2.40), (3.2.47) and (-3.2'.48)‘ that
S




G (6,0 = O([Re ][ 1are ] '), 6,8, = O[1are]™? ],
G, &) =~ O re }[ 1nme ]7") .

Also, it follows from (3.2.41) and (3.2.42) that
“

96,0 = O 1nre ] 77 ), g, = O R 1) .

Without going into detail, it may be shown that

S (E..o)-O([ Re ][mRz]”), G, (&°>-O([ ;c][lnm]“] ,

G 5= O rRe 1 [Inre]™H ), oot L (3.2.50)

and also,

gs(io)-o([RE]z(lnRs]'!.], ....... (3.2.51)

.

]

It may be deduced from these equations that as Rt 5 0 the significant

vorticity component at § =& _is 9;(§°) . The exact form of the dominant

terms in the e_xpan\ions of the limited number of vorticity components

g.-r G+ G,» G, and G, at § =& are determined in terms of Rt for Rg €1,

-

They are sufficient to enable us to obtain an approximation to the
vort‘.icity distribution ovex.; the surface of the elliptic c;ylinder‘ carrect -
to order of [ Re ][ InRc ]!, the lowest order term being O([ inRe ]-1] .
. Also, from 'these approximated vortic.ity components many properties of
the Ose;n flow problem may be obtained. If we substit.uté the results
(3.2.40)7 (3.2.47)-(3.2.51) in the expansion (3.1.15), we obtain, after

putting £ =§  in (3.1.15), the following approximation to the vorticity

distribution over the surface of the cylinder as Re = 0

3




L J
- -2 -to[ 1 I.__.__R‘ oo ey -2 (1 + e“g"- - e e 2(:) ]-1
L&o7m e n Técosh§, Y 2 . s
. -28 Re e§° 1 z‘go
. [ 2sin2n + e [ sin2a][ cosn] [ in m +Y-3ge ( cos2a

¥ %eq%) ].1][1 + Ol re)) ] (3.2.52)

where N = O.(l).

Alternativelyy-the approximation (3.2.5%2) to the vorticity di:st:ibution
over the surface of the elliptic cylinder can be obtained f'rom (2.1.23)

as Rt + 0, .
The compenents of the stream function F,(§), n20 and £, (), n21
. can now be obtained by integrating the sets of differential equations
(3.1.25) and (3.5.2§) .subject to the initial conditions (3.1.27) and
(3.1.28). These functions can be expre.ssedl in terms of integrals

-~ ‘invoiving the products of two modified Bessel functjions which cannot

be evaluated by analytical methods. The form of these functions will

I -

not ‘be stated here due to their complexity.

L]
.

3.3 APPROXIMA‘.I'IONS‘TN TERMS.OE LOW REYNOLDS b'IUMBEZR

In this section, many ﬁ;operties of the Oseen flow problem under
consideration will be obtained by using the app;oximated vorticity
c_ompqnencs ?n the; surface of the cylinder.

N; will proceec! to obtain an appzoximatiqn to the circulation at a

great distance from the elliptic cylinder. The circulation round a

large contour surroundin§ the cylinder is given by

) X --xg.im[t‘;(ﬁ)] . L (3.3.1)
* . : - - : R
= Definition of circulation round a close circuit is g‘iven in Appendix I.
z , [} ) °




o ~——

If we write down the equation (3.1.25) for n= 0 and integrate with
respect to E from §, to & we find, after use of the second of (3.1.27)

for n=0, (3.2.38), (3.2.8), (3.2.10), (3.2.45) and &3.2.46), that

[}

F8) =) A [ 2 cosnt) [ R]TT(21, %, +r.,-xx.‘\/+_r,.m-'~.]

1,
£

¢°52a(1=-2& K YL KL I 0K ~:) ] + 2

-2 2 - 1 :
. c°§h§o] [ Re ] Ao[ Z'Z(onc + I:!‘:)—E(Iﬁxo + LK ¢+ IoK?}

- t 4
(1.x, + 1,%, ) —J.z-: I, (2)K, (2) dz] - 2% cosn:, ] [ re )

2

. 2

F

[=]

. T
.

.A;[IC,K; + I,K, + I-.K-.] '%( LK+ 1K, )'+ ZJ‘z'1 I, (2)K, (2) dz.]

- 27" cosni, ] [ re }? T&[ i (z.x +}—~‘ [. I K]
, . m -2 m[ ] n -2
L +_.%-m{‘m-1] In-Kl,-. ) ]-_31n2a.z_: [12-2&+Ia—‘rK=-l- I.-.l’ZKn. L4

LY

-1 x,] -3 é.im[e" I.K, ) + O(tre ), (3.3.2)
m - 7] » 8 . _.go

N N L

: c e ) . R
where the argquments of the modified Bessel functions -dre z = -—5Ji;—
: . - 8cosh§,
and z, denotes its value at ¢ =t , The limit of F_ (E) as & 4:~ can now. .

be determined b'y usix;g the necessar'y condition (3.2.24) and the
asymptotic propertie's (IV-12), ¢Iv-13) and (IV-14) of the modified
Bessel functions for large argument in (3.3.2) as ﬁ\ = e. Thus

F. (“)--%A Lim [ e} 1K)+ OfRe ] (3.3.3)
E -+ 3%, .
If we substitute the first approximat.ion (3.2.29) to the constant A; as

- [y

Re - 0 and the expansions (1V-2) for n= 0 and (IV-?) for n= 2 in

(3.3.3) we obtain =




1

g

' - -2 ° 1l -
F, (o) = 4e ?hsin2a[ cosh§ ][ Re ] {ln 16—‘3—0—:?] +y+5[1-ezto
-]

-1

-l 3
- l -8, ] [ [ Re ¢ ° ] c - i -
. cos2a 2® ] in T6cosht, +v 2( l-e

-8, 28

° cosz2a ]]

+ e

. [1 + Of{ e ]°[ 1oRe)?) ] . (3.3.4)
" It follows from (1.3.13), (1.3.15) and the first of (3.2.6) that

=0
BaF, (=) = %J- (cosh2§ G, (§) - cos2a G, (§) + sin2ag, (§) )dé . (3.3.9)
$o
We note that the approximation (3.3.4) to ;(w) as Re = 0 coincides
perfectly with the approximation (3.2.27 to the constant B that is
-~
obtained in the previous section. We can now obtain an approximation

to the circulation at a great distance from the elliptic cylinder by

substituting (3.3.4) in (3.3.1).

.

§
o -8, -:[ [R.se°] ir, _ -2t
K. ixe | ° sin2qa| cosh§ ][ Re ) in Tecosnt, +y + 2[ 1- e %% cosza

-1 ¢ -
PRl ] [ [_._____] _lf. st - 28
2°® ° ] In 16coshf, R 2[ 1-e " te ° cosZa) ]

.
-

Jr+ ot tmry) ], 36

' wWe now turn our attention to providing a ch;ck on the periodicity
of presgute' dist:ibuti.cm over the surface of the elliptic 'cfrlinde;.
Because of the choi'ce of the co-ordinate system (3.1.2), all of the
dependent variables in the flow domain must be periociic functions of 1
with perjiod 2x. Thus, in particular, the pressure in the fluid must be
.per:-iodic in n with period 2x. As stated in g;:tion 2.2, the pressure ian

%

the fluid 'will only turn out to be periodic provided that the correct

conditions at large distances from the cylinder have been satisfied.
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L]

oy

. B -
The pressure coefficient which describes the pressure varistion round

the surface of the cylinder can be used to check the periodicity. The

pressure Eoefficient p: is defined in Appendix IIl1 and is given by the

e ¢

expression (III-3). For the ptésent case of an ellipse this reduses té

n
. 1 (98
P, " PGy M - P&,/ M) = - o= 2cosny,] J. [ Py ]{:m . (3.3.7

-]

where 1,, the point taken for the base. pressure, has been arbitrarily

set to zero. . -
L

If we differentiate the Y¥eries (3.1.15) for the vorticity ( and

integrate Bith respect to 1 from'n =¢ to N=2n we find that

-

2 .
g ,
{ = ] 8 =G o, (3.3.8)
. af; -t c
Q -]
where the prime denotes differentiation with respect to §. We now
- &

Ree .
8cosh§,

then substitute (3.2.7) and (3.2.42) in (3.3.8). It is then found. that
q

replace the derivative of G, with respect to z by using z = d

<he expression (3.3.7) for n=2n, is xeblace&>by

§

. T -
p: e p(&,, M - p(«‘,o,ne)---ge ° G, (§,) . . {3.3.9
o

¢

It may be shown, by usin}y ﬂhe;approxima:ion {3.2.47) in (3.3.9), thét_

{.
1 R:e°] o _ 1 _-2%
Técosht, ) . Y e e (coSZG

° sin2a [ ln( 2

p(§°12u> - P(goro) -ne

—

-1 g N
1 -4 ] [ [_R_:z_] PSR N -4 ]
+z¢%) 1" (Tecosng, ] 7 2(1 - e’ cosza + < )

=1

. [ 1+ Of{Re )?[ lnRe ]?‘]\ N(3.3.10)

b

This gives the pressure difference on the left being of order | lgRe 17%.

The pressure distribution on the surface of the cylfndcr w}!i,turn’out to

&

be periodic only‘it tlie left side of (3.3.10) is zero. In this \ the
J ' .
* ) "




0y

result (3.3.10) indicates a slight inconsistency. Rowever, the pressure"

. -

difference kon the left side of (3.3.10) approathes to jero as Rz \0.

We may then conclude that the Oseen approximations obtained for this

2

problem are valid only for very small Reynolds humber R:.

We now proceed to describe various properties of the flow obtainable
N -

from the approximated vorticiﬁy components. The non-dimensional
coefficients of the drag and 1lift, 'C; and C., are defined by the

equations (III-SJ: and (III-10) in Ap'pendix III. We can obtain a simple

formula for the lift and drag coefficients for' Rz = 0 by making use of

.
£omui‘a which imy ‘be .-fox?g to approximate these quantitiesvas R: 5 0
* from the appr;xim;ted vorticity compbnents. For ‘the present case 6f
ll:l ellipse, the non-dimensional cqeffi:cienta .bf drag and lift can be
defined by |

< -%[ 2[ (cosmcosh§ ]’ + (sine) sinh2t, ] g, (&) - %[2{ (sina)coshd,

. :"._ + (cosa.): sinh2g ] g, (§ ) + Ks:mZu [2(cash§° y sinh2§°]
\_ [G' (§,7 + G, (§c)] +%sin2ct [cosh§° - sinhf ] p: (2r), (3.3.11)
. -]

3 .

- R . -
C, = --&[2[ (sinaycosh_]° + (cosa) sinh2§, ] G, (§,) + -x—[Z[ (cosa)cosnE_}?
+ (sina) sinh2§ ] G, {&,)- sin2a [2(cosh§ ) - sinh2§, ] [91 &, )

Ut 9 (E,o)]'+ [ (sina’ sinhf + (c:<>sa)2cosl:u',"° ] p: (2%), (3.3.12)
s ‘O

yh{o .pé(zi) - pi,,2%) - ptt ,0) and the prime denotes differentiation
L]

with' respect to §. It may ‘be nbted that the lift and drag coefficients

each comiat of the trict:ion cootticiont wbich depends on G, and g, and
N e a ;
‘also,. that the pressure coo!tici.ont which depends on G,, g, and’ |.'.~g .

- v -]
i .

* . -
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Without geing into detail, it may be shown that

X .2 N X .
Cy = g[z[ (cos)cosng | + (sina) sinh2g, } g, &) - E[Z[ (sina) cosh{Q]’

+ (cosay’ sinh2§ ] g. &,) + 0([1nm]" ) , $3.3.12)

Y

c. = -%[2[ (sina) coshE,]’ + (coso.)zsinhzé,:] G. ($,) + é[z{ tcosa)coshl, ]’

+ (sina) ginh2¥, ] G (E) + O([ 1nsz.:]"] . £3.3.140

- These expressions give the following results as Rt - 0

- S
c, =-3Z ot [2(cosh§°)’ + sinh2§e][ ln[ Rr.o ] +y - 2e e

= RE i6cosh§, ‘

- cos2ae %o ] ] [ 1+ O([ Re ]| J.n.lLr ]-:_] . (3.3.15)

/

+

: %
_2x sy, . [ 2 _ ][ [ Re_e’° 1 -2
o R © sin2a | 2(cosh§ )" + sinh2§_ in —__16cosh§° Y se ot
_-,'\ - o %
~ ‘ 1 -4d, 1 [ [RE_N 1 et 2be
s . (cosZu N 2 e ] ln l6cosht, +Y 2( 1 -e cos2a

C e %) ]1[ 1 + Ol re ] 2nme]?) ] (3.3.16)

We note that the leading t.erms‘geduced from the expressions (3.3.6),
(3.3.15), _(3.3.16) for the circulation in the counter-clockwise gsense
round a large contour surrounding the elliptic cykinder, K_, and the non-

dimensional coafficieats of the drag and life, C, and C;, are in perfect

0

agreement with the analytical ‘results obtained by Hasimoto [19]. His

’ k] * ‘- . -
analysis is summarized and also, the comparison of his results with those
of the present analysis has been made in Appendix VIII.

. { . .
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CHAPTER IV

APPROXIMATIONS TO OSEEN FLOW PAST A CIRCUZAR CYLINDER ‘USING
THE NEW METHOD

In this chapter, the method ocutlined in Section 2.3 is applied to
the symmetrical flow past a circular cylinder. For flow past a circular

cylinder the details of the transformation (1.2.14) with a=0 are given

oY \
X + iy = exp-(g + imy, - . (4.1.1)
3 oo : '
x = e’ cosm, ¥ = e sinn . {4.1.2)

Thus the (§,MN) co-ordinate system correspcnass to polar co-cordinates

with r= e* . The surface of the cylinder is at & = 0. The value of k in

(1.2.15) is x =1 and the function M in (1.2.20) is

M=e. (4.1.3)

The Reynolds number R is based on the radius a of the circular cylinder

and is given by

R = 22U . - (4.1.4)
v

The Oseen egquations (2.1.8) and (2.1.9) taxe the forms in the (§,m)

e

cc-ordinate system

3¢ 'L g 3 14
- — —_— 3 —_— » (4-1.5)
ggy + é? ) e [ cosTy ag sinf an ] .
2 2
dy dvw
+ - ’ (4.1.6)
TR

-
where 0SS § < oo ,' 0SNS K. We note that in the p:eseht case ‘the flow is

symn;etrical about M= 0 and both of the functions ¥ and { are odd,
functions of n.. The solutions of (4.1.5) and (4.1.6) are then required
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only in the region 0Ssn<x., The equations (4.1°5) and (4.1.6) are to be

solved subject to the conditions

o X
J.J\e‘z'“l'Csinnndndi -xd, .., n21, . (4.1.7)
c ¢
QM) 20 as & oo, (4.1.8)
vy
yii,n) = — =0 when E=0, (4.1.9)
\\\ N 9% '
-t 9V : -y o¥
e — ~ sinn, e ~ cosn as £ - oo, (4.1.10}
14 on
v, 00 =y, m) = L(@E,0) =g, x) = 0. (4.1.11)

Under the assumption of symmetrical flow it follows that the functions
F.(§), G.(§) appearing in the expansions for ¥y and { take the

simplified forms

C&,m = 5 g. (&) sinnm , (4.1.12)
o =1

vig,m -5 £, (§) sinnn . (4.1.13)
noe=

In terms of the functions 9n (), n2 1 associagted with the expansion
(4.1.12) for the vorticity {, the differential eguation (4.1.5) and the

beoundary conditions (4.1.7) and (4.1.8) become

L]
-

. N

gr - n'g, -%eg[g,.f.l-‘(n-l)q,,-, +gl.. +(n+lig..: }, n21, (4.1.14

.
v

Ie”'“" g, &) € =25, ,, n21, (4.1.15)
e ) :




C&.m) 20 as & 3 e, (4.1.16)

Here g, = 0, and the prime denotes differentiation with respect to §.
The substitution of (4.1.12) and (4.1.13) in (4.1.6) yields

£T(E) - n £ (E)=e b g (§}, n21. * (4.1.17)

'The boundary conditions (4.1.9) and (4.1.10) can be written in terms

of the functions f,(§), n21 by substituting the series (4.1.13) for ¥y
in these conditions. It is fiound from (4.1.9) and (4.1.10) that

£,(0) =£.(0)=0, n21, - (4.1.18)
and as § 9 e ‘

ete a8, ., etfl®)5,,., n21. (4.1.19)
The equations (4.1.14) for g, (§), n21 are to be solved subject to the
conditions (4.1.15) and (4.1.16), and then.the functions £_(§), n2 1
¢an now be determined by solving (4.1.17) so that the conditions

(4.1.18) and (4.1.19) are satisfied.

4.2 APPROXIMATIONS FOR SYMMETRICAL FLOW PAST A CIRCULAR CYLINDER
IN TERMS OF LOW REYNOLDS NUMBER

In this section approximations to the Oseen flow problem for the
fixed circular cylinder described in the previous section will be

presented in terms of the low Reynolds number R.

We will proceed to find an approximation to the vorticity

4 -

distribution over the su:face of the cylinder under consider_ation. The

mathematical formulation of the Oseen flow problem for the vorticity’

components g, (z), n2 1 in the case of the fixed circular cylinder may

A -

be given as follows

zg;,1+ (n+l) 5 ., -zq:«#q; -n'z lqa -zg,:_l +(n-1)g,., » D21, (4.2.1)

%

vhere z -!:-o and g,=0;
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et .
J‘z“'"’g,,(z) dz = [ , (4.2.2)
3
4

g.(z) 20 as z 3o for n21l. (4.2.3)

".As previously notec, the set of differential equations (4.2.1) are
integrable and the functions g, (2), n2 2 are only known precisely when
the function g, (z) is known. It £follows from equation (2.3.2) when

n=2, 3 that

gy {z) =2 g;{ 2 g ()] +d,27°, (4.2.4)

4

Trd [ -1d, 2 -3 : -3 .
g, (z) =2 d—z[z -d—z'[z gl(z)]]-g:(z)+4z jz g(z)dz+d, 2z~ . (4.2.95)

- b

where d, and d, are arbitrary constants. In order to determine the
function g, (z) we use the basic structure of the vorticity cocmponents
¢ oo .
g, (z) = ) Bl In . (2) - I, .. (2] K (z), n21 - (4.2.6)

moel

once again. .Now the B, are to be found in terms of the low Reynolds
number R ptovideq that the integral conditions {(4.2.2) on the vorticity
components g (z2), n21 are satisfied.>Thus, as in Section 3.2, to find
the constants B, , m2 1 we sgg;titute thg expression (4.2.6) ihto the

integral conditions (4.2.2). This gives the infinite set of simultaneous

equations

I, _,(2) - I,,,(2)] K (z)dz, n21, m21. (4.2.8)

¢




The conditions (4.2.7) may be recognized as equivalent to the conditions

which are used to find a similar set of constants in the various

applications of Oseen linearized theory, e.g. Tomotika & Aoi [4S] & [47]
and Sidrak [40] & [41], although the process is not exactly the same. To
evaluate the integral in (4.2.8) we use the result (V-14) in (4.2.8) for
a1 and the results (V-6), (V-7) in (4.2.8) for n2 2 and then if we
expand all tﬁe modified Bessel functions in the resulting equation as
R - 0 by using (IV-2) and (IV-7) we find, after use of (IV-12) and
(IV-13), that the coefficients ln_ are functions of the Reynolds R and

expressed as

(4.2.9)

1
Ana - E'(_n_—l)'[ln-n-lxn—l Pl K "L i K T K ]: nz2, mz21,

the arguments of all the modified Bessel functions being B. we note
4

that the properties (IV-5) and (IV-9) are used in obtaining the

-

expressions (4.2.9).

The constants B, , m 21 are then to be found by solving the system

of simultaneous linear algebrai: equations (4.2.7). Theoretically, the
-

solution of (4.2.8) is to be achieved by means of infinite determinants;,

in practice, to find the approximate solution in terms of the low

-

Reynolds number R wo'solvq‘a finite number of equations. For the first
. L4 .\ .

3

approximation we put B, , B, , B, and so on; equal to zero, and solve the

-

first equation for B,. For the second approximition, we put B, , B, , and

80 on, equal to zero, and solve the first two equations for B, and B, ,

PN

i




and so on. We note that the same method is used by Tomotika & Aoi [4S) ¢
f47] and sidrak [40] to approximate (& set of constants in their
investigations of the drag on a circular cylinder. In this method of
approximation all the terms involving powers of R above a certain order
are neglected, and below that are taken intq'account. Also, in this
approximation we assume that-as R - 0 the set of constants B, , m 21

4

are decreasing when m increases. Only under this circumstance can we

determine the approximations to the vorticity components on the surface
of the cylinder in terms of low Reynolds number R f£rom the expansion

(:.1.12). ~

To obtain approximﬁ}e solutions to the constants B, , m 21 we must
determipe the coefficients (4.2.9) of B, m 21 by using the expansions
(IV=-2) ;nd (1v-7) of modified Bessel functions as R + 0, and then these

coefficients can be expressed in an infinite number of terms. For our

_present purpose, however, which is to obtain approximate solutions, it

woulé not. be of much use to give a complicated general expression for
" L]

(4.2.9); The first sixteen coefficients have been calculated which are
sufficient to enable us to proceed to the fourth approximation. Without
éoiﬁg into detail it may be_shogn that the diagonal germs of ;he matrix
of coefficients which résult from the (4.2.7) -has the following

properties

A

A.. -O(hn] as R40, 1Snsm,

w /A, +0 as R90, 1<msSn,

and also,

l(n01)|n01} / lnn -0 as R0, n21.




The first approximation gives

~

~

R
T2(IK, + 1K)

B,

The second approximation gives

B, --g’ [ ln(

o |

B, =-2"°R’ [ 1+ O([ 1;112]'1) ] 3

Thé third approximation gives

o3 [(3) v -3] (2 s oltaitam) ]

a,--z;‘a’[1+ Off 1ar])™" ]. -

)
B, =2° 'R’ [1 + Off 1nr]™Y) ]
¥ ~

The fourth approximation gives

B, --% [ln(%J +‘7 -‘-21-]-1‘[ 1+ O R'1nr]} ) ],

B, =-2"'R ["1 + Of 1ar)7) ].

) + Y -%]-1[14» O([Rz][lna]] ],

{(4.2.10)

where the arguments of the modified Bessel functions are again %

Expanding all the modified Bessel functions in (4.2.10) as R 4 0 yields

€4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.15)

(4.2.16)

(4.2.17)/1

(4.2.18)




B, =27’ &’ [ 1+ O 1nr]™}) ] . . (4.2.19)

B, =-3-2 "% [+ 0Oft 1:‘]"] ]- V (4.2.20)

It may then be shown that '

V4

/ B,., =O[R""'] as R20, m21. (4.2.21)
4
Thus the solution set of the constants yields a rapidly decreasing
> 4
sequence as R =+ 0 provided that
B,., =O[B,] as'"R=20, m21, (4.2.22)
2 .
- B ., ~O([R1[B.1) as roo. m22, (4.2.23)

We can now find an approximation to the vorticity component gl(é)
of the Oseen flow prokblem on the fixed circular cylinder surface, ; = 0,
in terms of the low Reynolds number R. As previously noted, the voéticity

component g, (§) in (4.2.6) may be written as

o

o0 <
g, (&) = ) 2mB, z | I (2)K, (2) . : ' (4.2.24)
m -1 i

' If we put & eqd!f'tv’ie;; in this exp;;iion and then expand the modified
Bessel functions i;: (4.2.24) by using (IV-2) and (IV-7), we find, after
use of (4.2.12) and (4.2.13), that as R = 0 the approximation to the
vorticity component g, of the Oseen flow problem under consideration at

E=0 is

g, (0) --2[,1:;(%) +q -%]?1[ 1+ O([ R} lnRU . .z

The vorticity components g, (§) and g; () can now be determined by using

(4.2.4) and (4.2.5). In order to do this, we need to approximate the




-~ -

~

constants d, and d; in (4.2.4) and (4.2.5)-as R » 0. It may be shown,

by using the expressions (4.2.4), (4.2.5) and result (4.2.24) in (4.2.2)

~

for n=2 and n=3 that satisfaction of the integral conditions give

4, = % g, (0) . . (4.2.26)

3

d, '_-ZR[ g, (0) —Z mB, (I.‘IK, - I=K,_z) ] - %[ g, (0)

h -l

+ ;.: Bm( Ln .o vy ~ 5.2 -1) ] . (4.2.27)

where the arguments of the wdified Bessel functions are R . It may be
N 4

deduced from (4.2.4) apnd (4.2.5), by using the results (4.2.25), (4.2.26)

and (4.2.27), that as R 4.0 the‘approximations to the vozticitil components

g, and g, at é-o are _
g, (0} ..--?- [ 1+ O([;lna]"] . (4.2.28)

: 9;‘(0’ ol g [1n( ) + v -%]-1[ 1+ Qt[ inr]!) ] . (4.2.29)

Without going into detail it may be shown that

.

9,01 (0)=O[R"] as R=20, n21. - (4.2.30)

" Thus the approximations g (0), m 21 to the vorticity components yleld

a decreasing sequence as R - 0 provided that . .

Gne1 (0) = O g, (0)] as R0, n21, (4.2.31)




mTs T
2 . 0
- . ' 4 .
‘ AN y 4 ’ .
. gn.l(O)-O([R]'qn(O)) as R20,. n21. . (4.2.32)
. ' . o

» R R . * N
The significant vorticity component at § =0 is then g. (0) as R = 0. We ™

can now_ dbtain an approximation to the vorticity distribution over the

.
.

surface of the fixed circular cylinder, by using approximated vorticity

compcnents g., g,.and g; at § =0, correct to the crder of [ R]| InRr}7Y,

the lowest order term being C)u inr)™} ). It follcws from (4.1.11),

- (4.2.25), (4.2.28) and (4.2.29f that as R » 0 the approximation to the
vorticity distribution over Ynhe surface of the fixed cylinder is
. Lo,m) =- [2 [ln ( % ) vy - % ) sinn + % sin2n ][ 1% O(p.)]. (4.2.33)

where 1N =0Q(1).

Alternatively, an approximation to the vorticity distribution over the’
\

—

surface of the cylinder under consideration may be ‘obtained from

-
—

00

E,m =e " [ ) B, K, (z} sin nn] (4.2.34)
n =1 ‘
p as R - 0. The result (4.2.33) is the same as that obtained from (4.2.34).

We can now obtain an approximation to the non-dimensional drag

coefficient C, as R + 0. For the present -case of a fixed circular

cylinder the non-dimensional drag coefficient is defined by

2 . :
G = R [ 9 (0) - gy (0) ] / _ (4.2.35)

where the prime denotes differentiation with respect to {. We note that
this formula is given by tBhd equation (III-21) in Appendix III. It may be
shown, by differentiating the series (4.2.6) for n=1 with respect to z

and noticing :-%e‘ , that




g, (&) =- g (thzn.‘[r..zx. -k, - (4.2.36)

e}

Using the results (4.2.25), (4:2.35) and (4.2.36) we obtain the résult

for tfhe drag coefficient

cp_--%[ln(%] +y-%]‘-1[1'+ off R’])]. | (.4.2.37.)

* e ”~

This is the well-known formula obtained first by Lamb in 1911 ( see e.gh.

Rosenhead [37] p.180).

. , . ) '
'4.3" CABCULATED RESULTS FOR THE DETERMINATION OF CRITICAL VALUE OF THE
‘REYNOLDS NUMBER R

Expetimenti‘l observations on the flow past circular. cylinders

.o .

~ indicate that for very low Reyr_xoldé numbers it is possible to obtain

flow patterns in which no separation of the .fluid from the cylindecr

- » °
takes place before it reaches the downstream generator. As the Reynclds
- rd

-

number is increxsed, a critical value is reached at which separation

does occur and a pair of attached eddies forms behind the cylinder.
. » ) . .
‘ ' /"

. Dennis & Chang [10]‘\ made a very careful numerical calculation on r.he/’

basis of the full Navibr-Stokes eqfutibns. Ih their work the critical

,value of R is estimated at R=3.2 which is in good agreement with the -
experimepntal results. On the other ‘hand, in a theoretical study of
Oseean's ' linearization of the Navier-Stokes equations of motion,

Tomotika & Aoi [45] found that the attached eddies arxe formed even, for

Reynolds numbers ‘as small as R= 0.05, "in dlrect contradiction of

BN experimental fact. Such a conclusion is worthy of comment, for it is

.
.

generally accepted that the Oseen oqua:jf_gr “q:ve an adequate,
. - . 7 ’ — )

X representation of the theoretical flow for small .nouqh values of ft.

4 This certainly appears ‘to .Kso far the drag coefficient. As stated




¥

before, a value for. the drag based on these .equations was given as

early as 1911 by Lamb.

On account -of this discrepancy between theory and observation and
"also, to be able to provide a useful check™®n the validity of 't‘he
approximations, obtained in the previous\ section, based' on low Réynolds

number expansions, we will now proceed' t0 present the results, qf a

further investigation of the Oseen equations for Reynolds numbers

R=0.05%, 0.5, 1, 2, 3. In this investigation the finjite sums in ‘(4.2.6)

and (4.2.7) are replaced by finite sums over four terms. As was poin;og

3

out bgfore the Oseen equations are only a low Reynolds number

approximations to the full Navier-Stokes equations so that thé exyra

terms retained in the full Oseen ezzuations are probably not justified

» -~ , )
to the order of approxination of

A

the “Navier-Stokes equatiqns. The

first sixteen coefficients of the constants B, in (4.2.7), given by

Y a

the expressions (4.2.9),°

have been determined using the calculated
[ 4 -

values of the modified Bessel functions in these expressions at z--‘- for

R=0.05, 0.5 1, 2, 3. o .

The calculated results based on both expanded and non-expinded

follows.

A

forms of thé Oseen equations may be'\ summarized as

Ld

(i) for R=0.05

-~

<
)

&

B, (full Oseen)

3 (9) (analytical) -

.B, (analytical) £, (0} {full Oseen)

0:5002 % 10°° 0.5004x 10" °

6.40020‘ - 0.4000-

-

-0.1953x10 %" >

- Q.1854x10 "

L )

- 0.0250 -0.6213

0.3815% 107"

- 0.7816%10°°
P

0.3630x 10" *°

T s pr. 4
0.8023x 10 .

- 0.2484%x.10° %

0, 8x10"’

pp—

-90.2311x10" %

0.2927x 10" '«

-

— le

[y

-




(ii) for R=0.5 )
‘ T -+ —
m} B, (analytical)] £ (0) (analytical)| B, (full Oseen)| £,(0) (full Oseen)
i} 0.9275x107" { ®©.7420 0.9467 x 107" 0.7283
12| - 8.2953 x 2¢*% | - 0.2500 -0.1820x10°% | -0.1856
13| . 0.3815x10™* | o0.1449x107° 0.3596x10"° | 0.1647x 1072
4} -0.2484x167" | 0.3019x107" 0.2361x10:* | 0.3160x 10"
- '—:’ - . '
\
. <
T
» . ° Py [
' (iii) for R=1 . - -
' m| B, (acalytical)| £7(0) (analytical)| B, (full oseen)| £(0) (full oseen)
1| 0.2497 0.9989 " * - 0.2654_ - - bass
0 . -1* - c -1,
2] - 0.156320°" | - 0.5000 -0.1ed2x 107" | - 0.3453
. 13} o0.122:1x10°° | 0.p078. 6.1241x20”* | 0.0070 -
¥ [) - A 2 b
;1- 0.3179x10° | 0.32s2x10°0 | -0.3014x107" | 0.1508x 107
) .
TN ’ '
) ~ (dv) for R=2 N /
’ - ) . . -
re i - . . -
a| B, (analytical)| £, (0) (analytical)| B, (full Oseeqn)| £, (0) (full Oseen)
11| 0.7639 1.5278 '0.8992 12866
‘ 2] - 0.1290 -1.000. - '-0.1333 . _[-0.63:¢ |
[ L - ° - . - - —
4 3f 70.3906x10°% | o0.4774x107" 6.3636x 107" {-0.2121x 207
) . . M . M
| I 4] -0.40%0x120"" | 0.3979x107° - |-o0.3398x10" |  o0.2825x107"
) ‘ . »
. . : . . - '
. © - ‘ ~ ! r. \ *
. . ‘ . - ,
- . . ~
]
’ .\ - R [ 3 * -
- * M e > -

e .

"




-

(V) for R=3

~

m| B, (a;ialytical) £2¢0) (analytical) | B, (full Oseen)| f_(0) (full Oseen)
1] 1.6600 2.2133 2.1654 1.5842

2| -0.4219 -1.5000 -0.5338 -0.8991

3] 0.2966x107" 0.1556 0.3102x 10} 0.6416x 10

al -0.6952x 107" 0.1945 107" -0.6994x10"° | -0.1.93x10"°

~

—"

We note that the approximations obtained in the previous section

for the low Reynolds number R are used in obtaining .the analytical
results which are presented in the tables, by substituting the indicated

values of R into the approximations. The apﬁroximations to the constants
» .

B

. in (4.2.6) and the vorticity components g, at § =0 for m=~ i, 2, 3, 4,

based on low Reynolds number expansions, may be summarized as follows.

L4

R R, P
51"‘5[1“(3)*‘7‘2] ' (4.3.1)
. B -2 R, : . 14.3.2)
B~ 2 "R, (4.3.3)
s - -1.27%R, (4.3.4)
4 3 ‘e
and- also,
R 171!
9, (0)--2[ lr_\(s) ol § -E] ' ‘ (4.3.5)
92(0) ~ -3 (4.3.6)
2 , _ ,
R 1
93 (0) - -2°*R? [ 1"( 3) Y -5 ] ' (4.3.7)
s . -1
g 0 - -2+ 2@ [1a(B) 4y -3] . . (4.3.8)
. . . ‘. . '4
. A
L ] ~




It may be also noted that the estimated values of the second derivatives
of the s¥ream function components f: (§) at the cylinder surface for the
indicated values of Reynolds number which are presented in the tables
are determined by using the result

£2(0) =g (0), m21. (4.3.9)
This result follows from (4.1.17) and (4.1.18). It may then be deduced
from t'e calculated results for flow past the circular cylinder at
R=0.05, 0.5, 1, 2, 3, contrary to the view put forward by Tomotika & Aci

’ [45), that the standing vortex-pair is not formed for very small Reynolds

numbers. In fact we estimate the critical value of R ut which separation

does occur to be around R= 2 for the approximations to the Oseen flow
. problem under consideration based on the low Reynolds number expansions

and around R =3 according to the investigatiop of the same prcblem based

. - - )
on the non-expanded form of the full Oseen equations, at the same time

admitting that it is debatable whether Oseen equations can be applied at

L]

Reynolds number as high as these. We note that the separation first occurs

[ d
when R is such that E mf: {0) =0 . These estimated _critica‘l values °§

| I

the Reynoc.ds number R are quite reasonable. The improvement that is obtained

. ,
. for the critical value of R in the latter investigation is due to the fact
that the first 4 terms of both series (4.2.9) for n=1,2, 3,4 and

(4.2.6) are taken into account for m=1,2, 3, 4, in this investigation, , ™

. .
whereas only the dominant terms of these series are considerea in

obtaining the corresponding analytical results. ~Ne also fote . that

- [ ] ®

Dennis [ 8] exhibits the streamlines of t.;u-*motidn under the consideration
- L N . . ' - -
according to Oseen theory for R=1 and R=5 in his m'm.:icgl investigation.
Ths diagrams verify thst separation dh?not start .to tako_placc between

R=1 and R=S (see e.§., figured). N




CHAPTER V

T . ~

NON-EXISTENCE OF OSEEN FLOW IN THE CASE OF A ROTATING CYLINDER

-

) s.1 THE OSEEN EQUATIONS FOR FLOW PAST A ROTATING CYLINDER
In this chapter, the as)'-.nme:rical flow which is generated by a

retating circular cylinder in a uniferm viscous fluid will be discussed
T
cn the basis of Oseen approximation for l%: Reynolds number using the
i .
new method described in Section 2.3.

The problem considered is that of a c:ircular cylinder of radius a

4
rotating about its axis with constant angular velocity ®, in a uniform

13

stream velocity U. It- is assumed that the rctation is -in a counter-

.Clockwise sense. We use the modified polar co-ordinates (§,n) defirded by v

(4.1.2), where £ =1n £ ). . Thus the cylinder is situated at £ =0 and the
\ a ¥

derain of the solution is 0 < E<oo, 0SS 2%, with =0 the "downstream

direction. . . . - . . N

Fhe O:een'equatior.s of the moticn in the (§,M) cé-’ordiqétje system’

P

can be expres;e'd as the t<o equations . ‘ .’. .

2. % .2 . ’ .

ST K a % 1 R :

" + = —@a’ | cosn ™ -~ sinn —. v (5.1.1.) R

& "o 2 A T ™ ~

2 2

dy oy 28 ¢ T .
I rme (. ' (5.1.2)
- . : ' . _\

Rere R is the Rcynold.s number defined by R= 2aU/vg These aquhtions are

to be solved subjoct. to the' followinq condit:ions

-
. . . . .

*

S S




oo 2K
N f e’ Lcosnmandg = aBS, . n20; (5.1.3)
. 40 0 -
ek .
J‘e”"“‘c sinnmmAMdf - x5, ,, n21, (5.1.4)
¢ 0 . , . *
&, M +0 as & o e, (5.1.5)
ay
wi,n =0,. —=-0Q when &E=0, {(5.1.6)
14
1" ) s Oy .
. et Y osinn, e - cosnm as &, *(5.1.7)
o an
' v viE,m =y, n+21), ‘Cté,m =&, n+2m) . (5.1.8)
.

The rotation of the cylinder enters through the parameter £, which
gives a measure of the rate of rotation of the cylinder relative to the
undisturbed stream,” in the bcundary conditions {(5.1.3) and (5.1.6), and

.“,~¢

ds detined by 1= aw, / U. We note that the pa:aret.er B in (5.1.3) cdepends

on the circulation round a large enough contou: surroundmg the rotating

cylinder and the parameter ) and is given by the equation (I-5) in

Appendix I. .
in the present case, the Fourier series for ¥ and { arg 'of the

-

-

form . ) o ‘ \
. e ' . ¢
by l - '
{g,n) = 3 Gy (§) + g.x[ G, (§) cosnn + S ¢)sinnn ]}, (5.1.9)
oe .-w ' ¢ . *
- . . 1 . 2
. wi§,n = E-E‘o () + 5 [ F,(§)cosnn + £ (E,)sinnq ] . (5.1.10)
. =1

" The equations for the functions G, (§), n20 and q,, ), n21 in (5.1.9)

a obuinod by substituting the series (5. 1. 9) in the equation (5.1.1).

It) is found that




-
)
L] R * L] ‘
GJ (§) -Ee‘[cléec,] , ‘ (5.1.11)
» 2 R & ;" '
G, (§) -n'G, = Je [Go.i- (R-1)G,_, +6G,,, + (n+1)G,,; ] , n21; (5.1.12)

" R ] [}
g, (&) -n’gn - :e§ [ gn_y1-tn-l)g,_; +g,.; +(n+l)g.., ] ., n212, (5.1.13)

-

where g, = 0, and the prime denotes\'d.j.fferentiation with respect to the

variable §. Boundary conditions for (5.1.11)-(5.1.13) follow from

(5.1.3)-(5.1.5) and are given by

o

fe‘"“" G, (§) a5 = B8, ., n20; ©(5.1.14)

o A -

o0 ° .

Je(z'h’g g,(§)adf =28, ,, n21, . ‘ (s5.1.15)

0 A '
and

G, (8) 0 as & s+, n20;: - (5.1.16)

g, (&) 2+ 0 as § 2, n20. (5.1.17)

1] .
-

If we substitute the assumed expansions- (5.1,9) and (5.1.10) in equation .,

(5.1.2) we find, af:zer the standard use of orthogonal functions, that

FT(€) - n’ F (E) = e° G, (§), n20, 3.1.18)

T ETEy -ntf, (B) = et g (&), n20.  5.1.19)
. .

The boundary <¢onditions for these cg@ons tonbw. from (5.1.6) ar‘xd 1

(5.1.‘}) . They a;zc"l'r. the e.ylinder surfalce ‘ . -

) " F,(0) = F (0) =0, n21; F,(0) =0, s (5.1.20)
2 - o }
£,(0) = £,(0) =0, n21; £,(0) =-2Q, (5.1.21)
.and as § + = ‘ To. ’ T
e, S, ;e 5.1.22)
e £, 48 ,, ¢ F, 40, n21; e F, 20, (5.1.22)
ot f: +8,,1¢ ot F, 40, n21; ot F,+0. (5.1.23) .
’ - .

—_— N

L)
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‘ 5.2 A PARADOX ! NON-EXISTENCE OF OSEEN FLOW

AL =

'rn; functions F,(§) and n2 0, £,(§), n2 0 can now be determined by
;Blving (5.1:18) and (5.1.19) subject to (5.1.20)-(5.1.23). We note that
the reduction of equations (5.1.1) apd (5.1.2F into component form
yields a system of equations simpler than those obtained in Chapter 11X
for flow past an elliptic c'ylinder because of the fact that M is a

functioh of only the variable .

As stated before, the correct satisfacetion of the bouhc;.ary
conditions at large distances from the cylinder is a particularly
crucial matter in the case of asymmetric§l flows and .unless conditions
are satisfied properly a;x unacceptable solution t'hru'dghout the whole

domain can result. In this section, & paradox that is obtained as

a result of correct satisfaction of the boundary conditions at large
) . -t

distances from the cylinder under consideration will be presented and
discussed. By a paradox we mean & plausible argumenc‘which &i:elds
concl)usiéna at variance with.physical observation, as it is in this sense
of an appa:;nt inconsist‘enéy .that the term is most used in hydrodyﬁamice.
The importance of hydrodynamical paradoxes are discussed by Birkhoff [ 4]

from the practical, the mathematical and the philosophical points of

i
.

view. T - : v
!’ » -

In the present case formulation of the Oseen flow proi:lem for the
. - ~

vorticity componof:ts assoclated with the symmetrical and asymmetrical
L - v :

part of the problem can be separated as follows .

4

v .

- ‘

. (1) The set of differential equations for the vorticity

components ¢, (z), n2 1 associated with the .ymmetrical part of the

.
-

* . ' .
N
N\ 3 .




problem and the boundary conditions on these components are

zg,.,+ (n+llg,.,, =zg, +g, -n’

.

where z = R eg

z'g, -z2g. ., +in=llg,., . n21, (5.2.1)

3 . and. go= 0
o R -n %
fz“""g,,(z)dz- [;T 28, ,, 'n21, (5.2.2)
R
T
g, (2) 40 as z 40 for n21. (5.2.3)
(ii) The set of differential equations for. the vorticity

components G, (z), n2 0 associated with the asymmetrical part of the

L} LY
Oseen flow problem-and the boundary conditions on these functions are

ZG:"'G;'%fZG;*lev

{5.2.4%)
z2G,.,+ (N+1)G,,, =2G, +G, ’nzz-lsn -2G,_,+ (n-1)G,., , n21l, (5.2.5)
where z = Beg:
4
oo . R -n '-
J.z(l-ﬂ)(gﬂ(_z)dz-(-Z]2 Bé, o » n20, (5.2.,6)
R
Iy
G‘(z) - 0 as .z 2o for nel. . (5.2.7)

L4

The separation is ’ essentially
(4.1.3) depends only on the
differential: equations (5.2.1)

associated with the symmetrica

! £l

due/_t.o the fact that the function M in
variable §. We note s{hat the set of
] A4

for the vorticity components g, %), n21

- v

1 part of the Oseen flow problem under

consideration, and the conditions (5.2.2) and (5.2.3) on these functions,

’

are identical to the set of oql_ntions (4.2.1) and the conditions (4.2.2) '

]
-




81

and (4.2.3) that were given, in the previous chapter, for the vorticity
components g, (§), n21 for :he case of symmetrical flow past a circular
cylinder. Thus we only need to cons.ide: the solution of the set of

equations (5.2.4) and (5.2.5) for the vorticity components G, (€, n20
" associated with the asymmetrical part of the Oseen flow problem subject

to the conditions (5.2.6) and (5.2.7). As pre‘viousﬁ no-ted, the funct:on

G, (§) may be determined by using the basic structures of the vorticity

components

* -

%

(5.2.8)

-

Git8) =) A [T .02+ L., (2] K () .

a =5
The constants A, , mz\(li}ythis expression have to be determined
provided that the integral conditions (5.2.6) on the vorticity
components G, (§y, n20 are satisfih. If we substitute the expression
(5.2.8) for the functions G, (§), n20 into the integral conditions

(5.2.6) we obtain the infinite set of linear simultaneous equations
Pl . - .

} p’nn A, .Bsn/,z-; n20 ) (5.2.9)
R =0 } .
where
< ' h
©0 ' .

-2 . .
u“-[%r Iz""[ I .nf2) + I, . (2)] K,(2)dz,«n20, m20. (5.2.10)
. .
4

If we write the equation (5.2.9) for n=0 we immediatelﬁ arrive at the
. ’ [

result
: o o

2-.:; A, Jzz f;.(z).\\(z) dz = [% rB . ' - (5.2.11)

}

N .

.l-

It may be shown, by subst t\iﬂ (Vv-5) in  (5.2.11) and then using the

.
~
. . s .

.




, ] . ’
result (IV-2), (IV-7) and (IV-14) in the resulting equation, that if

*

o0
}_a =0 | ’
" =0 -

the consequence of (5.2.11) in terms of low Reynolds number R is

ra,, [1,&, +-;-[1,,1x,,"+ I, . K -] ] - -, . £5.2.12)

E: §
o

where the arguments of the Bessel functions are B . The expréssion
: ‘ , 7

(5.2.10) for n= 1 may be substituted in (5.2.9) by using (IV-18) to
. . N

obiain
Py o
5 A

B - 4

o |

21.(2)K (z) dz = 0. _ (5.2.13)

[ ]

L
[ J

If we substitute the result (V-3) in (5.2.13) and ther usiné‘the results

(IV-2), (IV-7) and (IV-14) in the resulting equation we find that if

L]
Y

“I

Ah =0

N h -
.

the consequence‘of (5.2.13) is

ALK 20 ' y (5.2.14)

]
o

T

We now consider the integrals P

| L : | "\
b - (2]

-

271, ., 2) + I, . (2)] K, (2) Az, "(5.2.15)

o

in (5.2.10) for n22 :nd m 20 . Thase integrals may be ovaluatoq exactly
by using the results (V-6), (V-7) in Appendix V. It may' be shown} by

substituting these results in (5.2.15) and then using the asymptotic
N

properties (IV-2), (IV-7), (IV-12) and (IV-13) of the modified Bessel
‘ »

4




functions in the resulting equation, that

1 -
pn.- - 2(!\-1)[ In-l -lxn-l +In-- &u +In0l -IKI +1 +(In‘- 5-]' n22

where m 20 “and the arguments of the Bessel functions are %. we note '
that the properties (IV-5) and (IV-9) of the modified .Bessel functions

are used in obtqin'ing the above expressions. The necessary condition for

~

the existence of the sums

-

rpol A, and :Lh: A, | (5.2.16)

» -0

in {(5.2.9) is then
oo -

Z A, = 0. B : (5.2.17)° °

n =0

The system of equations (5.2.9) can now be written as

A

T

r!n- A =-BS, ’ o (5.2.18)

n e

]
»
L]

wheée'the coefficients ln_ are functions of the Reynolds, number .R and

are expressed as it
- . . -

1 : ' o .
zo- - I-_K- + 5 [ In i Kooy + 1 1K - ]: . v : (5.2.19)

ll. - o In K, ’ " ’ , - (5.2.20)

4
. Y .

, 1 N . ) N N . = .
!nl - 2(n _’1, [In-- -1& -1+ In-l Kl + Ino- -IKI *1l ‘+ In,. KI ],,DZZ ’ (5'2‘21)
. . - ' . : )
the arguments of all the modified Bessel functions being: R . 1In these
. . 4

formulas m 20 . We note that in practice -the numrer of _gc';uations,that )
.can be obtained from (5.2.18) togethec with ~tho\condi£ion (5.2.17) is

[ | .

. fini:'o, say (2N+'2) wh:‘Lch*"is identical _to the number 9! unknown

constants. The unknown cdnatan_ta..h..‘,‘ m 20 are then to bo' found by

.,




solving the simultaneous ‘linear algebraic equations (5.2.18) provided
that the necesaar.y condition (5.2.17) is ;ar.is'fied.'

We will proceed to approximate the unknown constants 8, A, , m 20 in

. terms of the low Reynolds number R, by solving (5.2.18) together with

the necessary conc'lit:':on (4.3.12). Thus, as in Section 4.2, to find the

- fizst approximation wé put A, , m 2 2 equal to zero in (S.i.le). and

solve the first two equations in (5.2.18), together with the condition

]

(5.2.17), for A,, A, and B. For the second appreximation, we put A, ,

A

. i m 2 3 equal to zero in (5.2.18), and solve the first three equations in

-

&5.2.19), together with the condition (5.2.17), ,for A,, A,, A, and B,

and so on.

»

To find the first approximation we equate A,, A,,... to zero in

(5.2.18) _and then solve the first two gesulting equa:ions in (5.2.18)
. ~— )
for A, and A, . This gives: :
) 2B (1,K,)
o T I_K, (2I,K, + I K, +I,K ) -2, K. (I_K, +I,K,) (3.2.22)

. ]

2B (I, K,) : .

-- 22 ' (5.2.23)
I, K, (21, K, + I K, + I,K ) - 2I, K (I K, + I, K, ) :

A,

N\
- [
L]

\ - where the argument:-. of the modified _BeSael functions are again R, . The

B . constant B in (5.2.22) and (5.2.23) has to be Zetermined by applyinq.

the neces-ary condition (5.2.17). By .this means we do in effect adopt

LY

i

" a global procedure of adjusting “he solution to the correct conditidns .
- i

at large distances. Equating “he con:tants A, ,°m 22 to zero in (5.2.17),

the necessary candition reduces to

© A, +A =0 . . s .. "-'(5.2._?4)':

for the first approximation. It may be shown, by using (5.2.22), (5.2.723)




and (5.2.24), satisfaction of the necessary condition (5.2.24) gives

3

B=o0. C « (5.2.25)

Thus, the first appfoximation gives the trivial solution to the constants
_. . R ’
A,e A e B=0. - (5.2.26)

£ we proceed to find the second, third, and so on, approximaticns to

—

the constants it can be shown that B appears as a common ‘factor in all

the constants A, , m 20 and then application of the necessary condition

*

{5.2.17) in each approximation gives
4, =« B =0 for alq m. (5.2.27)

It follows from this rg;ult and (5.2.8) that the vorticity coﬁpqnenta

G.(§), n20 associated with the asymmetrical pact of thé Oseen prob!}n

under consideration are identically equal to zeroc. Due to this the

]

7"\\‘expansion {5.1.9) for the vorticity ('takes the simplified form

®©

&) = 2:: g, (§) sinnn

n =1 4

(5.3.28)

ere the vorticity components are identical to th;\base of symmetrical

flow past a circular cylinder. Thus we get the symmetrical solution of -

L .

the fcrm (5.2.28) for the vorticity { which contradiéts the assumed form
. of the expansion (5.1.9) for the steady-state vorticity. The result

- «(5.2.27) in this sense is thus an apparent inconsildtency and:indicates

non-existence of the Oseen flow in the case of the rotating cylinder.
™ ! ot ’ /

[ 4

From a mathematical point of view, the reason for not being able

- to approximate the constants gssociited with the asymmetrical part of

the Oseen flow problem under consideration in terms of the low Reynolds
number R may be analyzed as follows. As previously noted, determination
of tha unknown constants acponds on satisfaction of éhe 1nteq£a1

-

conditions. 'In the present case, thesé~conditions are aimgio: than thode

" : 0D “~ . -




e d
'

.
A

t

. problem

-

obtained in‘Cha'pter 111 for "l_g-’: Past an elliptic oylimeter. This is due

o the fact that the fiuhction M defined by the equation (4.1.3) dépends

variable &.

-

dependency, satisfaction of the integral conditions (5.1.15) and (5.1..16\)"

- M -
N

,only on the single Because of the single variable &

-

enables us 'to obtain an uncoupled set of equations for the constants

-associated with the symmetrical and asymmetricalYpart of the '‘Oseen flow

v

in the case ¢f the cylinde-z. "As

rotating” a result
.
uncoupling of two sets of equations, the unknown" constant B det.med by
¢ L )
equat:.én (I.6) in &ppendg 1 -appears as a common ‘factor in all the

v .

approximat.ions to‘:ﬂé"‘constants A.“_ ’ 2 0 related with the asymmetrical

part of the problem underscensideration.”
. ’
in each approximation determines ‘the comfmon

Finally, satisfaction-of the

necessary condition (5.2.17)
) &

factor B as being zero. This gives the trivial solution (5.2.27) for all

the .constants

+ [

of t.r'xe ,

'associated with the asymmetric part of, the Oseen flos:\'

problem, As a result of the appfication of the new method to the Oseen

-
.

£low Yproblem under consideration, the paradox that is obtained may be

( > . » ‘ ’ .

stated as follows

<

1Y
, . , 4 , , L
e« " No steady two-dimer-ional §symmetrical Oseen flow of a viscous -
: ) : ) . M
incompressible fluid past a rotating cylinder is possible,““.' .
N » - N + rl
’ d ' . . . ’ | .
. N " . ... )
. S . .
¢ . ea .
- O .
' ) .
v ' -
A -
. , » v A e .
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! CHAPTER VI’

SUMMARY AND CONCTLUSION -

The object of this thesis is to shoq\hcw the twe-dimensional Navier-

Stokes equations, describing the steady flow ¢f a viscocus incompressible

fluid past a cylinder in an unbounded £ield, can be analyzed and

~

‘conveniently sclved using methods invelving :ntegral condit:ons, where

the flow is assumed to be governed by the linearized equations of Oseen.

‘
It is shown that satisfaction of correct corditicns 1s a particularly

.

crucial matter in the case of asymmetr:ca. flows and that unless
conditions are satisfied properly an unacceptable soclut:ion throughout
the wﬁole domain can result. \

We give the basic governing equaticns fcr the stream function and

vorticity in a curvilinear co-ordinate system. A necessary boundary

.~ -

condition is then that the wvorticity must vanish at large distances
from the cylinder where the flow is a unifcrm stream.- It 1s shown that

for asymhetrical fiows it is not sufficient merely that the vorticity

shall vanish far from the cylinder but it must decay rapidly enough.

-~
~

As it turns out, the proper conditioning fcr the vorticity has the

peculiarity of being integral (global) type instead of the wusual

boundary value (local) typql

- .
A general method of\solving the problem of two-dimensional steady
{
flow of viscous liquid\f;hst a cylinder wusing Oseen's method of
approximation is developed. The method is based on satisfaction of the

proper conditioning for the vorticity of integral type. We consider

this is a very important part of the sclution procedure since the

87
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integral conditions enaure both the correct decay of the vorticity at

large distances from the cylinder and satisfaction of the physically

essential results for the existence of the flow. It can be pointed out

that in numerical work nobody - seems to realize the %mportance of
satisfaction of these correct conditions because :hey. take the
Boundaries at finite distances.

As an applicati.on of the new l'method, the unifom‘flow past an
elliptic cylinder at an arbitrary angle of incidence is considered on
the basis of Oseen approximation. The correct condition of periodicity
of the _pressure_in the fluid gives a uséful check on the validity. of
the Oseen approximations. The fully-analyticalknetﬁod enabl;s one to
obta&g many ﬁroperties of the flow past an elliptic cylin@et in a
straightforward and systematic manner. The results cbtained in terms

of low Reynolds number are in excellent agreemeht with those of

Hasimoto's analysis. The new method is also, tested by applying it to

the case of a fixed circular cylinder. Good agreement is found between
these results and the results chtained for the same pfoblem previously.
Also, according to our solution for the Oseen flow problem in the case

of a fixed circular cylinder we féund, contrary to the view put forward

by Tomotika & Aoi [45], that the standing vortex-pair is noi-formed for

\
very small Reynolds number which is in a,/ggy agreement with the
. - L,--\/‘;a—
experimental findings.

An analytical treatment of the asymmetrical flow which is generated

'by- a rotating cylinder is first carried out on the basis of Oseen

»

.

approximation by means of the same technique. As a result of this the

first paradox is obtained for Oseqp fiow

?'— B




v [ ]
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" No steady two-dimensional asymmetrical Oseen flow of a viscous -

incompressible {}uid past a rotating cylinder is possible.™
We note that the Navier-Stokes equatigns in the case ;: the rotating
ci:cula:-cylinde? are investigated for small rotation rates and moderate
values of Reynolds numbé: by Ingham [23] and Loc {29]. Both of these
investigators used numerical mnethods, éut there are wide discrepancies
. between the :esufis of these works for the lift and drag coefficients.
These différences seem to depend upon the conditions assumed.atASiﬁite
distances in these works. One of the object c¢f considering the Useen
flow for the rotating circular cylinder in our work was to attempt to
resolve the differences in these workers. This .ié dcne by means of
fuilx-énalyc}cal method and as a 'febult of the application of this
method it is shown that there is no.sati;factory Oseen solution for the
rotating circular cylinder.
The uicimate aim of this investigation was to 1indicate an

effective method of cbtaining approximate solutions of the Navier-

-

tokes equ:zwions for steady asymmetrical flow past cyl&nders'in terms

. of Reynolds number expansions, but this far the ‘work has not been
. N i ‘ . -
advanced to this stage. It may be noted, however, that only step which

remains to be completed is to find a satisfactory technique of solving

. *®

the equation (1.2.23) so that the. correct decay of ‘the vorticity as

& - o is enforced. The method of solution of (1.2.24) by means of the
sélution of the ordinary.differential equations (1.3.2) and (1.313) once
\ e’ , * .
the functions rn(g), n21l and sn(ﬁ), n2 0 have been determined and the
L . :
* conditions (1.3.15)-(1.3.17) are satisfied, together with the additional

condition con so(ﬁr; remajins valid in the general Navier-Stokes case.

e
a Y ]

g
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* - APPENDIX I

Kelvin) [44] in 1869. It is defined (see e.g. McCormack & Crane [ 30]

-_—— —

’ p.198 ) as the line integral of the tangential coxr.pone:;t of the velocity

round & closed contour C. Thuys
1

circulation « K= ; q.dr , - (I-1)
.w ) : - C = s = . -

where gq is the velocity vect.p;ﬂ.and

-~ .

r is the position vector. The

circulation is a scalar, but has directional properties in so far its

sign depends on the sense of the ‘circulation.

- " -If we choose the closed path C in (I-1l) as a circle C, centered at

§

the cylindei .and of very large radius R - ke’ as & o = and substitute’

the second of (1.2.18) in (I-l)- we find, after the integration arxound

’

. C, in the

‘anti-clockwise sensé and lafter use .¢f the asymptotic property

-

. (2.2.18), 'tr{at- the ci'r.cu,lation round a large contour surrounding the

cylinder is given by

-

- 2K -
: dy .
K. =~ lim —]d‘n - (1I+2)
B N TR
90 .
It folliows f#om the -expression (1.2.32) for the stream function that
- ' . .
. 1“ . “
e v RS ' . :
i , E - ';- Fo(8) + [ Fo(§) cosnn + £ ¢§)sinnn] . . (1-3)
n el .

* If we substitute the)result (I-3} in (I-2) we immediately arrive at

. . '

. K. = -x2im [F, . T . I-4
/) - K. K dim [ F,(51] (1-4)
. The constant B in (1.3.15). can now be defined in terms of the

ci:culatioz round a large contour sugrounding the cylinder by using

~trn?

The concept of circulation was first introduced by Thompson (Lord_

L
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»

&h-3.13) /7 (1.3.14) and (I-4). Thus
ol .
{i) for a fixed cylinder

1
p.s';(-)-—;l( . o

{ii) for a rotating circular cylinder

v i
¢ BerF (e +20=--K_ +20.

(I-5)°




APPENDIX II.

b

"l;he prablem of aestablishing appropriate conditions <Yor the

vorticity transport equation is considered by Quartapelie ¢ vafz-Gris

[ 3¢] from a conceptual peint of viey.,‘rhey showed that the cBrzecr.,

conditions of an integral type on the vorticity are a.consequence of

tha following theorem.

. ’

- . ° N
THEOREM A function {, in R, exists such that { = V?v, with ¥|g=Q

N 3 - . .
' and '—V'IS- 1), if and only if )

Hms-a‘m a*)

(II-1)

-

for any harmenic function, ¢ in R, i.e., such that V' § -0 in' R: Her® h\

is a simply connected domain of the plane with boundary S; 4 and b a:e

and ds is the line element of S.

on
The proof .df this

two functiéns defined on §, is

takep in the normal direction to the boundarv S.

- - »

theorem £01l8ws by a trivial application of Green's formula.
k)

As a simple appldication of the above
S

d&mensional, steady, symmetrical flow of "a viscous incompressible fluid

"
remark we consider, two-

’

-

past a circular cylinde: in an unbounded field. Let us consider a large -

te

# . circle, surrounding the cylindet, drawn in the £luid, say S, . The-}pmain

_R can be taken as the region between the contour S, of the cylinder and

> S,. The boundary of R may then be given as ' §,+S,. For the symmetriceal

Te

flow past a circular cylinder we have used the following expansions and
A . - .

the conditi.ono

»




‘ - . h . . » . ’
’ o— . ‘

.. . ’ . - ‘-
= ___5 g, (§) sinnm, V- __551_1',7&) sinng, (11-2)

n =1 i B - - <~
£,(0)=£)(0)=08, n21 o (11-3)
et £, 8)2 8, , , et 8., as § = e, _1r-a

C. -
If we choose the harmonic.functioh 9 in (11-1) as s -
Q-e’"g sinan = ¢ . . o (1I-5)
and use the expansions (I\{-Z) and the. cénditions (11-3) and (II-4) in
R (II-1) we find, after use of Vg t Woq ™ ezg {., that
m(g) ak =25, , .n21. YL oar-6)
e o V. c
This condition’is identical to tHe condition (4.1.15) which is obtained
for the case of thrical flow past '; circular cylinder in Section 4.1.
- oung—
'y ) '
L ) . .
- . - :
« .
L]
. ) N
. . )
. * - ‘
Lo . . ’
, xk‘, . . v ‘




<« APPENDIX III
' ' ' -
. - )
The dimensionless pressure coefficient p m) on .the surface of
O

the cylinder is defined to be - : s : ‘A

g M) = p(§,, M) - p(§,.ﬂ°) ’ T (IT
° ' -

where p(§.,M) is the non-dimensional pressure ori the surface of the

cylinder and N, is some base point on the surface.

The pressure distribution over the cylinder may be obtained from
the component equations (1.2.21) and (1. 2. 22) of momentum. If we take

the component . equation (1.2.22) in the n-di:ectxon on the surface of

-

the cylinder, & =%  where q=0, we can show that

’.-a—p --2 (EE ‘ - - ’ (iII-Z)
lan]"gog ag";., . - .

The dimensionless pressure distribution over the surface of the

" gylinder may be obtained by integrating (IIT-2) round § = §, from n=1

to a given station 7; which gives

: r4
p‘o\(m - p(§,, M) p({o.ﬂ.) - - I [ 3t l an . - (III-3)

R ]
Alternatively 1:»g {(n) may be obtained.in t.erms of the uniforh free-stream

pressure p(e,7,) by integrating the ocomponent equation of momentum-

v (1.2.21) in .thc §-d.i:.cction along =1, from §=§ 6 to § = . Thus

.

\

a . ’ .
p(t..n,) - pleo,n,) = 5 -I [ +{ ;E]dﬁ . ‘ {IIX1-4)

a

Proasu:o va:iatiga may then bo expressed in terms af the pressure

Ran

coefficient -

PO = PR, M) - Ple=n,).

-94




A S

which is obtained by addition of (III-3) to (III-4) giving
. . . .
Cem et [ (B)] [ a ane
27r) Lok g Ron ' 3% A
Mo ° ° .

[

When employing either (IIX-3) or (III-S) to express pressure variations

for symmetrical flow past a circular cylinder and also, for asymmetrical

flow past an elliptic cylinder, the value 7, =0 was c,h-osen in which for
the case of symmetric flow the second integral in (III-5) is zero.
We will proceed to calculate the coefficients of drag and 1lift

experienced by tbefyl,indets considered in Chapter III and Chapter 1IV.

Let C. be the contour of the cylinder corresponding to §=§  in the

t.:ansformat.:ion (1.2.14) and le™X and Y be the resultant non-dimensional

'

forces applied to the cylinder by the fluid in the x and y directions

-~

respectively. The non-dimensional forces X and Y exerted by the fluid:

98

- xR

>
on the cylinder are defined (see e.g. Schlicting [38]: p.58) by
A 5 L
X = - fdy += dx |, 1I1-6
§(p¢a y n[“g-go ) | { )
C ! i .
) " N . -~ .
Y = - " dy I11-7
. ; ( Ploox mR LBl ). - ¢ )
. Cc

"where the fi\rst integral in each gives the pressure contribution to the

for'ce and the second gives the frictional contribution. The egquations

which ':e'lat.e the dimensionless forces X and Y to the co:zcspc;:dihq

(primed) dimensicnal forces aAre

*-puidy x, ' (pu’d_) Y. (111-8)
In t,é:ma 'gt X , Y and the angle of incidence @, the non-dimensional drag
coef.ficient Cn'and lift coefficient C; on the cylinder in the directions

parallel and normal to the free stream, respectively, are given by -

——
L]

i
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C,'= Xcosa+ Ysina, ) (I1II1-9)

.q = Ycosa~- Xsina . (IX1I-10)
In the case of an clligtic cylinder we have used the t;ansfom:ion

x = cqshf cos(n+a), , y = sinhf sin(n +a) . (III-11)
For the elliptic cylinder, edquations (III-6) and (III-7) becqme in the

(£,M) co-ordinate system

PZK PY 4 [ ]

X.=-sinhf | p’ cos(N+a)dn + 2 (cosh&o)z EC] sin{n+a) 4an, Y
- ” ‘O R': g - go .
° . 0

Y 1%

[ 1

Y =-cosh§, | p’ sin(m+a)an - —_—sinhzt;ej [C] cos(M+a) dn .

J Fe, : R L.t

] [*] .

’

We can evaluate the integrals in>thes~e equations us:‘uﬁg the series (3.1.15)
for the vorticity [. The first integral in each of thesd equations is
evaluated directly while the second of each is evaluated by integrati&n~

by parts and then us.ing’ the result (III-3). Thus we obtain

X = %f- (cosht, ) [‘-‘-05‘1 g, (§,) + sinag;, (&,)] '%Sinh2g° [cosa 9; o)

+ sinaG, (&o)] - (sina)sinhf, [ p: (2r)] , (I1I-12)
o

)

¢ =- -%ainhzﬁo [co-scns1 (§,) - sinag, (&o)] + % (cosh§, y [cosaG; o)

- ~g

- sinag,' (ﬁ,)] + (cosmcosh® [ p’ (2x)] . (TTI-13)
[-]

The non-dimensional coefficients of drag and lift, C, and C,, can now be

determined using both of the eq{ntions (I11-12) and (11I-13) in (I1I-9)

and (III-10)




A

' - ~" . -

. : . »
Co> %[ 2[ (cosmycoshE |° + (sinay sinh2¥_ ] g, (§,) - %[2[ (sina) cosnt_ )?

+ (cosa) sinnzk, ] g; &) + ==— sin2a [2 (cosh®,) - sinh2}; ]

-

2Re

) o [G. (&,) +'G, (§°~)] + -;-sinZu [cosh&o- sinh&a] p{' (2%), (III~14) —_
! . °

.
-

n = '
C, = --;R-Z-[ 2[ (sina)coshi ] Iy (cosmz'sinhzf,c ] G. (§,) + :—5[2{ (cosa)coshf ] :
t : .
. 2, v e . N . .
+ (sina)” sinh2&, ] G, (§,)~ SRe s:.nZa{ 2 (cosh§, Y - $inh2§ ] [g1 (§.)

+ g." (ge)] + [ (;ina)?sinhic + (cosu)zcoshé_h ] p: (2%) o (ITII-15)
) ‘ [}

-

. L2
.

For symmetrical flow about the x-axis, we have =0, Y=0 in which case’

_ C, = X, , " (III-16)
. -, (
C. = 0. (III-17)

. . .
In the case of a gircular cylinder we have used the transformation

: A\

X = e’ cgan., y = e sinm . . (115.-18)
Thus equation (III-6) and (III-18) give
R . x
2 . *
C; =3 {, sinndn - p, cosndn . . (I11-19)

°
Integrating the second integral by parts and using the result (III-3), -

[ 4
§

C, may be written as v
.9 , ] N 1
Cy =ag [gz (0) - g, (0)] : : : (111-20)

The first term on the right hand side of (I1I-20) gives the friction .

drag coefficient and the second term gives the pressure drag coefficient.

Making use of the symmetry property C, can be written as
: ’ -

2x[. e
C, = ?“[g, (0) - g{w)] . . (111-21)

“ ) *
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. APPENDIX IV .
‘e
Bessel's modified differenti#il equation is given by
dy dy
2’ — +— -[n® +2’]y=0, n20. (IV-1)
dz . dz -

One solution of this equation (see e.g. MzLachlan [32]) is

n -k 2k
In(z)-[%] ) iz . . (IV-2)

v k!'TIn+k+1]
. whic.h is known as the mcdified Bessel's function of the first .kind of
order n. HeXe the Gamma Function [ n+k +1] is introduced instead of
(n+k)!, with which it,, is identical when n is a positive integer.
Throughout this appendix it will be 'sﬁpposed, unless the c;ht.rary is
expressed, that.the parameter o1 is a positive integer ‘or zero. The

integral representdtions' of the function I_(2z) are given by the

following equations

x . n
~ s -
’, 1, (2) -%J‘ei"‘”e dae -%Icuh(cose)dB, ¢ (IV-3)
o] [+] [}
[} ) x
I,(2) = % e*“°*® cosnd a6 . (IV-4)
o
An obvious deduction from these equations is the following property
* I_,(z)=I (z), n=0,1,2,... (IV-5)
The function defined by )
' x
(z) = 1lim '—-[I_ (z)-I(z)] ne=0,11, 2,.... (IV-6)
Ka . pen 28inpx P P ’ e .
L] . -
which is a solution of the differential eq@ation (IV-1), is kfAown as
-, ] SN .
- the modified Bessel function of the second kind of order nT Taking the
o - -
a8

R L e . .
Y ¥ A A ., B R S e S L o,



-
.

limit in (IV=-6), using L'Hopitals rule, yields

n-1

K (z) = [-1]n°11n[i] I, (z) + %[i]-n Y q[eyiieck-10d [L]R:

2 2 e k! 2
- .
"1 _z_]" ) [ ] ettt (IV-7)
+ [-1] 2[2 L_ ¥k Wnek+ 1) | o
C s ) )
~where = W) =-7Y, Wy ==Y+ )k, n22. (IV-8)
X =1
Here Yy = 0.5772156.... is Euler's constant. The ‘function K. (z) then
satigfies
Q
K_,. (z) = K, (2) . . - (IV-9)

The limiting forms of the functions I_<(z) and R;(z) when n is fixed

and z 4 0 are—

-0 . n

-2 2z ., n20; — ‘t1v-10) -
SRR FYYy .
1 2 -
= K,(z} - -1lnz , K, (z) ~ El"[ nj [7] ’ n21. ' (Iv-11)
3 ' ‘

The asymptotic expansions of the modified Bessel functiocns I, (z) and

-

\
K. (z) for large argument z when n is fixed and V= an’ are given by

- —
. )
e Y-1 (¥Yi1)(¥-9) 7
I_(z) =~ [1- +
i 2z 8z 21 8z}°
(V-1)(Y-91(¥-25) , ..., ] (1V=12)
3! 8z . .

.1 -:[1+Y°l+(7"1)(7-9)

8z 21( 8z]? ’
(Y-1)(¥-9)¢¥-25) . . ..... ] (1v-13)
——
3!{ 8z]

and also, it follows from these axpansions that .



‘ . g
) 4
‘ 1 1 ¥-1 1.3 (¥Y-1)(Y-9) :
I(z)Kn(z)-—[l-— + -] (IV-14)
" 2z —2 [21]3 2.4 [ 22]‘

The recurrence formulas for the modified Bessel functions are given by
z!},"(z) “n¥ (z2) + z¥ ,, (), (IV-15%)
2¥'(2) =-n¥ (2) + 2%, _, (2 (IV-16)

where ¥, (z) e I,(z) or ¥, (z)a[-1]"K, (2).

An obvious deduction from these equat:ions by addition is
2% (z) = F,_,(z) + B (2). (IV-17)

Also, it follows from the equations (:v-lS) and (IV-16) by subtraction

that
Q?‘,,(z) - F _.(2) - & ,.(2). (IV-18)
z . L -

The formulas connected with the werivatives of modified Bessel

functions are

.
. -
: [%:—z] [2"F) =2 "% %, x=0,1,2.... (IV-19)
, [%g—z ]k[ 2 "F) =2V "F _ (z), k=0,1,2.... (IV-20)
‘\ . .

\ and also; we note that

I (z) = I, (2), x;(;) =-K (2) . . (IV-21)
The Wronskian of I,(z) and K_ (z) is given by *

I,(2)K, (z) - I (z)K (2) =-2"', n20 and z=»0. (IV-22)
» This m;y be expressed in another form by using thé recurrence forimulas

-{IV-15) and (IV-16)

I, (2)K,,, () + I_.,(2)K (2) = 2 . ) (I1V-23)
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APPENDIX-V

In this appendix indefinite integrals involving the product of two
modified Bessel functions of the integer order and the same argument
are evaluated. The results are referenced in Appendix VI,

We now consider the integrals .

JI;(z)&_(z) dz, m2¢, (V-1)
where the prime denotes differentiaticn with respect to z. Applying
integration by parts formula to the integral (V-1) yields

4 4

J I, (z2)K (z) dz = I_(z}K_(z2) - J’.I:(z)&_'(z)dz ) (V-2)
It fcllows from the Wronskian relation (IV-22) of the mod:fi1ed Bessel
functions and (V-2) that

2
- 17, ;
I_(z2)K,. (z) dz = > |2 (2)K. (2) + ln2 | . (v-3)
To evaluate the integrals involving the two modified Bessel functions
of the same integer order of the form ‘

JZI,(Z)K,(z) dz , mz20

we use the result .

v

— [z° (14 (21K, (2) + I,., (2K, ., ()] ] - 2”7 [[p+q+r] I, (2)K, (2)

+[p-q-:]Iq,1(Z)K,.;(z)]l (V-4)

where p, g and ™ are any integers. This result is given by Watson [ 48]
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for the cylinder functions but it is equally valid for the modified

Bessel functions.

that

J zI (z2)K (z)dz =

(S Y[

2’ [I= (2K, (2) +

By suitable choice of p, g and r in (V=4) it follows

~ -

(1. ., (o .. (2

+ I, .. (DK _._(z)] ] . (V-5)

It follows from (V-4), after suitable chcice of p, q and r, that

Jz""" I, ..., (2)K_ (z) dz

-t

k4
I, -n(2)K, (2) Az -EL——I—:—n—]- [Il= LMDIK (2 + I, L (2K _:(z)] . (V-6)

2-n

-- r4
I, . (2)K (z2) dz -2[1__!_1] [I= Lal2YK (2) + I ,=_}(z)1’£_ ,-_(z)] ;D AV=T)

I, .. (2)IK (2) d2

I- -1 (Z)K‘ . (2) dz = -

I, 1 (2)K _, (2)dz = -

2

2

-

Z

- T ‘
2[ 1+n] [ I: -3 (Z)Kr(Z)-

+ In-'-.-}(z)&-__-;(z)]' (Vv-8)

-n
4

- -m [ I, ... (DK, (2)

+ 1, .n,IQZ)K,.,‘(z)] ; (v-9)

[ I, (D)K., (2) + I (2)K, (2) ] . (V-10)

[ I_.,(:)K._l(z).fll‘. (2)K, (z) ] ; (V-11)



’
S . .
-3 1
z I, (2K () dz = - 2 [ I (DK (2) + I (2K, _,(z) ] ' (V-12)
J .
et 1 - .
2 I, L {2)K (2) dz = - 3 [ L (2K (2) + I, . (2)K ,.(2) ] . (V=13)
o .

We now consider the indefinite integrals involving the produc:t of

two modified Bessel functions of the form

2

Jz-‘ I.(z)¥ (z)dz, m21.
L4 . .
In crder to evaluate these integrals we need to consider particular
cases for m*= 1, 2, 3, . .. . after suitable choice of p, g and r in the
fogmula (V~-4) for each case, we obtain
T

. - L -.--Z
Jz I (2)K (2) dz = - —— [ I, (2)K, (z) + 2 5 : { I, (2K (2)]

. + I (2)K_ (2) ] m21. (V-14)

1

We note that there 18 no simple formula for Jz': I, (z2)K (2) dz

We will proceed to evaluate the integrals involving the modified
Bessel function of the same. integer order and the same argument of the
form

’
Jz" I\ (2)K (2) dz, m20. (v-15)

It follows from (V-4) by suitable choice of p, q and r that
. .
1
_ I,z" I (z)K, (z)dz = -7 ° [ I, (2)K, {z) + I, (2)K, (2) ]
-
[ ) 2

. -2 J 2’ I, (z)K, (z) dz .  (V-16)

N |
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The integral on the right can be written by using the formula (IV-18)

: ‘ for n=1, as

° -

L3 z

J'z" I, (z2)K, (z) dz = J.z-" [ I (2)K, (2) +I,(2)K, (2) - I_(z)K_(2)

P

-‘Iz (Z)K2 (Z) ] dz . (V’17)

The iﬁteg:als on the right can be evaluated by using the resul:s '(v-12)

for m= 2, (V-13) for m= 0 and alsc, the result (V-14) for m= 2, Thus
. - ; \

N

we obtain
. ~.
. I T — )
K \ . /. \ -
N I 1 » "
, Jz L(2)K §z)dz == o [ 1.€T)K, (z] .+ I, (2)K (2) + I, (2)K, (2) ]
3 ; E\‘ . =
1. £ . e OF 1 -1 ¢
. *s3c [;‘;‘zo(z)x_ag) + I,(2)K,; (2) ] ~7 ]2 I (K (z)dz . (V-18)
h.‘-‘-‘ i " .

Using this result in (V-16) yields

& - N 1 - :
'[z T (2K (2) dz = =527 [ I, (2)K, (2) + Iy (2)K, (2) ] + % [ I, (2)K, (2)
v i : - 1 -
. , 0 I AIK, (zh 4 I (2)K, (2) ]_:- n [ I (2)K (2) + I,(2)K,(2) l
. ) . Ll
[] l -3
+ 2 2z I, (z2)K, (2) dz . . {V-19)
: S
If we consider (V-15) for m22 and by s\{itabl,e choice of p, g and r it
- * [ » i
follows from (V-4) that - . . .
< £
- -f 3 2z’ VJ 2 ] %‘»'
f: I, (2)K, (2) dz = ~ ——F—— [ I, (2)K, (2) + n [ I, (2K, (2)] A
. m[ m -1] n -2

q:"%;nh'n- 1] 1, (2) K, ¢z) ] , m22. (V-20)

If we apply integration by parts formula to the integrals (V-'IS): we

find after use of (IV-22), that




T

Jz" I. (2)K, (2) =

-2

N -+

z’z‘I_ (2K, (2) - %z

z

.. s
» o+ J.z L (23X (z)dz , m20 (Vv-21)
where the prime denotes differentiation with respect to z.

We will proceed to evaluate the integrals given by

i
4
~

J’::.E I(2)K_ (zydz, m20. Y < (v-22]

It follows from (V-4), after suitable choices of p, -8 and r, that

-1

Jz's I, (2)K, (2) dz = :iz" [ I, (2)K, (2} % I, (2)K, (z)']
_ ( .
. - 3 -t .
> L -5 |2 I, (2)K, (2ydz , (V-23)
. ) 2 * ’
: . s '
-0, LN 1 \,l"
Jz I (2)K, (27 dzom =24 [ I, (2K, (2) = I, (z}K, (%) ]
: J.'. \ N -
-—;' i‘q\ . z. .
-~ ! -9
v . -8 Jz I,{(z2)K, (2) dz . -(V-24)
"“ y A ' s °
;/J“ < ) ' -
I r-" ",' ) T
Using the result' (IV-18) for n=2 yields -
,:;:‘:’" < . . -
4 z

jz-s I,(2)K, (2) dz = IJE Iz" [ I, (2)K, (z) + I,(@)K, (2) - I, (z)K, (2)

- I, (2)K, (2) ] : (V-25)

If we evaluate the integrals on the right by using the result (v-6) fbr

n=4, m=3, the result (V-7) for n=4, m=-1 and also, the result (V-20)

both for m=1 and m= 3, we may then obtain
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. . -2
Jz" I, (2)K,(z) dz = ;—27 [ I, (2)K, (2) + 4 I,(2)K, (2) + 3 I,(2)K, (2)

Y

- 4( I (B)K; (2) + I (2)K (2} + I (2)K;(2) + I, (2)K,(2) ] ]

B 21 [ IQ(Z)KQ (2) + I2 (Z)K? (z) - 2( I: (-Z)KG (z) + I: (Z)K: (z)

4
+ I, (2)K, (2) ] ] + 2‘6 Jz" I, (2)K (2) dz . (V-26)

Using this result in (V-23) yields

H
Jz" I, (2)K, (2) dz --%z" [ I (z)K, (2) - 21, (2)K, (2) -31I,(z)K, (z)]

-2 ~
+ -:;— [ I, (2)K; (2) + 41, (20K, (2) * 3I,12)K, (2) - 4 I, (2)K, (z)

+ I, (2)K (2) + I, (2)K, (2) + I, (2)K, (2) ] ] - —23— [’,Io(z)xc(z)

- 4 I, (2)K,(2) - 2 I, 12K (z) + I (2)K, (2) + I_(2)K, (2)] ]
T ' ..
. 2 Jz-l I, (2)K, (2) dz , (V-27)
2 )
N
and also, using. the result (V-26) in (V-~24) gives \ .
. ' . . - I’
-y 1 -a z ° '
2« I, (2)K; (z) dz -'—'2-2' [ L (DK (2) + I,(2)K; (2} ].- 3—"2—, [ I, (z)K; (2)
* ‘. 4

+ 4T,(2)K, €2) + 3T, (IK, (e} - 4] I, (2K, (2) + I, (2)K (2) "+ I, (2)K, (z)

LY
. -

r ok he 2| LK ¢,k @ - 2[ 1, (2K (2)
2 2 2 (-

- -

’ - z -
- f '
. + I, (z)K, (z) ¢+ I 6 §2)K, (2) ]] - -1—.' Iz ! I,(2)K, (2) dz . (v-28)

s

. ' f

e
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°
Also, it follows from (V-4) for suitable values of p, q and r that -
z -4 ® -2
-5 4' 2z
z "I (DK (2) dz = - [ I,{2)K, (z) + 5 a, I (2)K (2)
J =. K 2m[m2-4][m2-1] 2 2 £— % e K,

\ ‘+%m'{.m-z][m’-1'] I, (2K (2) ] , m23  (v-29)
- ’

where a, =6, a, =20, a, =50, a, =105, a. =196, a, =336 . . ... ..

~

If we apply inte_gﬁ\"qx/by parts formula to the integrals (V-22), we
find after use of (IV-22), that S .

t

I

Jz"xg(z)!gcz) dz -%z":r(z')xg(z) -%z" .

2

+ ZJ.z'SIa(zHg(z) dz, m20 (V-30)

—

: ° where the prime denotes differentiation with respect to z.
- .

L]
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APPENDIX VI
f

?in this appendix infinite integrals involving the product of two
modified Bessel functions are evaluated. These integrals are referenced

.in Chapter II1 and Chapter IV. Throughcut this appendix it will be

suppos;d that the parameter R:r is small i.e., Rt €1,

To exaluate the integral

-

Jz" I, (2)K, (2) dz ,

RE o‘o‘ "

IcothEo

we expand I, (z) and X, (z) in powers of their argument by using both of
the formulas (IV-2) a (Iv-7) and integrate term by term. Thus we
Pl

find, 4qfter use of the asymptoti_c properties of the modified Bessel

functions (IV-12) and (IV-13) for large z, which gives

-1 9 1 -2 . !
2z I (z)K, (z) ~ >z as Z 2 oo, (Vvi-1)
for m 20 and n20, that
<~ -.
L]

$

2 §
-1 _- 1 Re e’° Re e’ ©
J"z I,{2)K,{z) dz = 2 [ ln[_8cosh§ ] ] +.[ Y-1n2] [ J'P[BCO:I’:ﬁ ] ]
RE .go

Scosh -;’ + O([ Re lzi‘ lan:] ) . (VI-2)

Using the rezults (V-14), (VI-1) and also, both of the formulas (IV-2)

<

and (IVv-7), yields

N : - ,
J.llll(z)!g(z)dz --%[ln(l—:":ﬁ] +( -%)]
RE o‘o ) °
leolh!, . + O([ Rt ]2[ lan:] ) , (VI-3)
- - 108
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o0 . t
12! --i _Rre ® -3
J‘z I,(2)K, (2) dz p [ 1“(16cosh§°] + (Y 3 ) ]
RE oge .
aco‘thzo . + O([ R}:]z[ lnR:] ) . {VI-4) .
-1 21 Rt e’ ° _ 5 ] 2 _
Jz I, (2)K, (2) dz =~ [ 1n[16cosh§°] « (v 3 ) 1+ 0([re)?). (vi-s)
R E cgo
8cosnd, ~N - -

-

S— » ’

I1f we use the result (V-12) for m=0, 2, 3 and alsc, the formulas (IV-2)

and (IV7) we £ind, after use of (VI-1), that

» .

o0
. . 28 L3
Jz YL 0K, () dz = —p - —2 —[re )? [ ln[l—?‘e—hé]
. e 2 [ coshg,} - coshg,
RE ev0 ‘ -

8cosnd,

* (y-%.) ] + Ol re}'[ 1nRe ) ). wi-e

. o
o0
- Jz" I (2)K, (z) dz = 2° e **°[ cosht | [Re] P+ 274
RE ebo . ) ) ,; /
8cosnds, oo : . + O([ Re )} in Re |} ), (VI-7)
-]
. X J'i'.' I. (2)K, (2) dz=2’e 00| coshE |’ Re ] 42704 O([ Re | ] . (VI-8)
RE cgo
. 8cosnl .
Using the results (W13) for m=2, (VI-1) and also, both of the
formulas (IV-2) and (Lv-7), gives
= . 28, o
- 1 (-]
Jz‘l‘(z)Kz(z)dz*- l .= —(Re ]’ + v .
‘3.2 [ cosng,] 15.2 [ cosht,]
RE ebo '
lcoshz
° AR} + O([Re )M 1nre] ). (vi-9)
If we use the result (V-7) for n=3, m=-1 and also, both of the
- L ]



formulas (IV-2) and (IV-7) we find, after use of the asymptotic

properties of the modified Bessel functions for large z, which g:j.v'es

z.z I, (2)K (z2) ~ %2-3 as zZ 9 oo, - '(VI-IO)

P

form20 and n20, that

> 3
-2, S § [ [J-_e__] P ]
J’z ., (2)K, (2) dz s LI l6cosht. ) (Y P) ]
RE ogo
!conhEo . O(lm]zllnpé]] N (VI-11)

To evaluate the integrals

Jz" I, (2)K, (2) dz

RE ogo
8cosnf,

for m=1, n=0 and m= 0, n=1 we expand the functions I. (z) and K, (2)
in powers of their argument by using both of the formulas (IV-2) and
(IV-7) and integrate term by term. Thus we find, after using the

asymptotic property (VI-10) for large z, ‘tha;

- L
-2 i | R: e 1
Jz I, (z2)K,(2) dz = z [ln[m] [ [Bcosh§ ](Y- ln2] ]
Q
RE .{0 *
8cosh

+ O([RrRe ) 18R ) ), (vI-12)

Jz" I, (2K, (z) dz = 2° e *%[ cosng ] [ Re ] - 1 rm ecosh§ ] ]

RE o‘o

2

fcostl _% [1“[::‘::;;, [7_ mz] ] + O[[ rRe ][ 1ame ) ] . (VI-13)
AN

If we use the results (V-19%), (VI-2) and both of the formulas (IV-2)

and (IV-7), we ﬁ.né, after use of the asymptotic properties of the

,

11
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11
modified Bessel functions for large argument, which gives
-3 1 -4
z I (2)K (z2) - Pl as z 3 oo, (VI-14)
for m20 and ne20, that
o
27’ 1 (21K, (z) dz = - 2" e ?%0[ coshE_}’[ Re ]_2[ ln[Lé;]
° ° ] ° l6coshf
RE .ﬁo
Reernhe + (v- 32 ] . L [ m{ﬁeg—°] ]2+ Ol 1nR:] . (vi-15)
2 4 8coshl,
Using the results (v-18), {(VIi-2), (VI-14) and also, Dboth of the
formulas (IV-2) and (IV-7), yields !
oo e
-3 « -2% 2 -2 1 Rze!'° 2
- o * < - 4 - = LA
z "I . (z)K, (z)dz= 2 e [ coshg ] [ rz ] 3 [ ln[Ecoshic] ]
RE ogc
8cosnf .

+ O 1nR: ] . (vi-16)

If we use the results (V-2C) for m= 2, 3, (VI-14), and both of the

formulas (IV-2) and (iv-7); we.  obtain

0o - . §
-3 - 3 -25‘5 e 2 - -2 1 [ y {_BL]
Jz I, (2)K, (2) .d)z 27 e [ cos=i, ] [ R ] + 3.2 in T6cosnt,
RE edo : .
' nE ) '
L R - DR R (T S Rt B e ey
@:"’1 (z)K, (z) d 2 '“"‘[ he ) [ re ]t 2 [m‘[ aze‘°_‘
. 4 3 z) 3 z z 3 e cos go 3‘25 16C03h§°
RE al'o . ’ 2
8coshl, . - 25 2
' +v(y--2—4-]]+O((Rz][lnRz}).(VI-\B)

Using the results (V-9) 'for n=2, m=-1, (IV-14), and also, both of the

formulas (IV-2) and (IV-7), yieids

I
-



= :
-3 - - 1l Rt @'° - l ]
J.z I, (z)K, (z) dz _3.2. [ ln{—lscoshﬁa] + [ s ]
RE .{,
.ccnh!o

+ O([R:]z[ lnRe ] ].J (VI-19)

—

If we use the result (V-=7) for n= 4, m= -3 and the formulas (IV=2) and

(IV=7), we find, after use of (VI-14), that

N 3
-3 -2t a8 s )17 - : [ ( P }
J'z P, (K, (z) dz =27 e Pe[TcosnE, ] [ Re ] 3.2 L ™ |Tecosnt,

RE c‘o
8cesnd

s (v %) ] + Ofl ke )?[1nRre ] ). (vi-20)
’

. 7
To evaluate the integrals -

]

J'z" I, (2)K, (z) dz ,

RE e o
Scoshi,

’ »
form=0, n=1; m=1, n=0; m=1, n=2; m=2, n=3; and m= 4, n= 3 we

expand the functions I, (z) and K_ (2} in powers of their argu.ma‘\t by

using the formulas (IV-2) and (IV-7) and integrate term by term. Thus -

.

we find, after use of the asymptotic properties of the modified Bessel

—

functions (IV-12) and (IV-13) for large z, which gives

2! 1, (21K (2) =22 % a5 z 4 =,

) 5 (VI-21)
for m 20and A2 0, that ’ -
. - ————
POy N i .
Jz" I (2K (2) dz = 2'° e ‘Ye[ cosnt ]*[ Re ]7* + 2' @ %[ cosn,}’
Rt ebo ’
,lconh!o - ¢

o .[Rz]'z[ln[é:e

16cosnt ) * (7.* ] ] + O({ 1n Re ]’] . (VI=22)

=N
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«Q
. d
. e -2t 2 -z[ [&]
Jz I, (2)K, (z) dz 2 e ""°[ cosh§ ] [ Re ] 18| Tecosnt,
RE 8530 !

+ (y«r%) ] + Of1 1nm-]'). (VI-23)

(2]

Jz" L (2K, (2) dz = 27" e *Pe[ cosny ][ Re )7 - ae te[ cosnt,)’

RE OE
8cosnt, | s ]" + O([ in Re ]2] , (V1-24)

[\¥]
«

Jz" I,(z)K, (z)dz = 2°° e—‘h[ cosht ][R ]™* - % e-”"’[ a::os,hﬁal2
b )

) ArRe) T+ Ol 1are] ), vi-2s)

§ | ,

Jz-‘ I, (2)K,; (2) dz %e—\%[ cosh |7 Re-]7? 4 O([ in Re | ] . (VI-28)

z
RE e>0
Bcosnf

-

If we use the result (V-17) and (VI-2) and also, both of the formulas
(IV-2) and (IV-7), we find, after use of the asymptotic properties of

the modified Bessel functions (IV-12) and (IV-13) for large z, which

gives .
-5 1 -6 .
z I (2)K, (2) ~ 52 as z 4 eo,‘ (VI‘Z‘N\/
for m 20-and n 20, that .
13
"~ : "t
-8 _'_ 10 _-4%, . '-n[ [ Rr @'°
Jz I, (2)K, (z) dz ) 2 e [ cosh§, ] [ Re ] in _1scoshl;°
RE ¢%0o o
8cosnf, v .

+ (y-o- %) ]-249‘2%[ c‘;Shgo]zt Rt ]'? [ 1n{ﬁ] + (7- %) ]

+ Of(re) 7). (vi-20)
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Using the results (V-28), (VI-2) and (VI-27) and also, both of the

formulas (IV-2) and (IV-7), yields

.

J‘z's I, (z)K, (z) dz = 2’ e-'§°[ gosh&o]‘[ R: ]7 o+ 2° e°2§°[ cosh&o]z
AL ogo \
[--¥ ] E gc
- ' eente ~[N]'2[ln[L}¢y]+O([R;]'z]. (VI-29)

l6cosh§,

If we use the results (V-295), (VI-2) and both of the formulas (IV-2)
— and (IV-7), we find, after use of the resul:t (VI-27), that

- J.z" I, (z)K, (z) dz = 2°

e-d’°[ cosht ][R ] - %e°”’°[ cosht ]’
RE otc

Toosnk, IR O([nre ]7) . (vI-30)

Using twns (V-29), (VI-27) and both of the formulias (IV-2) and
. »

{IV-7) yields. .
r e ;
had L]

9 R ]
Jz's I, (2)Ky (2) dz = g—-e"h[ cosh&o]_‘[ rR: )7 - %.o;s_'uo[_cosh&o]2

re obo ) . .
Scosntb, . . ) - [Rg]-f + O([ lnRz] ) (VI-31)

v
oy 4

N .

-

We now uBe the result (Vv-7) fior n= 6, m= -4 and also, both of the

formulas (IV-2) and {IV-7). Thus we find, after use of the asymptotic

property (VI-27) for large z, that ‘ .
\ ': . : - ‘
*z-’ I, (@)K, (2)dz = 23[ 2'% e *he cosht ][ Re ]'1 + -l—lge'”"
ne olo .
‘ . .. veoenl, _ ‘[ coshg, )i [ Re]™? + O{2nmre] ). (vI-32)




To evaluate the integrals

J'z's I, (2)K, (2) dz ,

RE ote
scosrld

for m=0, n=2; m=1,

n=3 and m= 6, n=4, we expand the functions I_(2)

“of their

arguments by

intefrate term by term.

o
i Jz-sIo(z)K:(z) dz -%
RE oga '
8coshi
w
Jz'sxl(i)xs(z) dz -%
Rt ebo .

f I,(2)K, (2) dz

n= 3;

using the

Thus we find,

18

m=2, n=C; m=3, nel; me 4, n=2;: me?s,

and K (z) in powers

formulas (IV-12) and (IV-13) and

after use of (VI-27), that

[2:3 e'u°[ coshg ][ Re ]7° ]
+ O({re ] [ 1nre ] ), (v1I-33)

c27% eTRbeg cos.hf,o]‘[ Re] S+ 2e 't [ cosng ]’

.[Rz]"]

« Ol mre )7}, (vI-34)

2

¢
2- -2 2 -2 RE e °
-2 e g.°[ cosni ] °[ Re ] [ lntlscoshﬁ ]
s v+ 1) ] + Of[1nre)?), (vi-35)

L]
) 2L, 13 ?
-3 : -2 2 Re odo ]
Jz I,(2)K, (z) 4§z = 3 270 [ coshg } "[Re] - 5 2 [ ln(ecosh§°]
RE cgo
ecoshd *V.O([ l‘nR.l:] ) , (VI=36)
[
-5 - 24728 2 -2 1 [ Re obo ] ]
J.z I,(2)K, (2)dz, i °[ cosng, ][ Re] "+ 15.2% in 8cosh§,
RE -‘o ¢ '
Scosh

¢ O((re ][ 1nme] ), (vI-37)

1



&
-3 __]._[-zg 2 -2 1 [R:e°]]
Iz I, ()Ky(z)dz = 75 | e "ol cosng ][R ]7 + 3.2 "8cosht,
¢
RE e’ o
tcosnb + O([ RE ]? ] . (VI-38)
LJ
I (K () dz = 4e” to[ cosng ][ Re]TT & 22 [ln[me“]]
: ¢ (VK (2) dz e [ °l coshs, PXEY 8cosh§
RE ed0
ER fcosnb + O([ Re ]2 ] . (VI-39)

To evaluate the integrals

L4
o0

Jz" I (2)K_ (2) dz ,

R E ogo
8coshi,

for m=0, n=3; m=1, n=2; mwl, n=3; m=2, n=1; m=3, n=0; m= 4,
n=1; m=95 n=2; m=6, n=3 and m= 7, n= 4§, we expand the functions
I,(z) and K_(2) in powers of their argument by uSing (IV-2) and (1iv-7)
" and integrate term by term. Thus ‘we find, after useé of .the asymptotic
properties of the modifieq-Bes;el functions (IV-12) and (IV~-13) for
large z,-which gives

,

. 1 -
2" (2K, (2) - Sz as  z o o, y (VI-40)

for m20 and n20, that

e te coshﬁgl.‘[ Re ]_-.‘f % 27 et coshg_]°

Jz" I, (z)K,(2) dz = 2°°

rt oo
scoenls re ]+ O Re)TY) L, (vitay

. - . 4

Jz" I, (2)K, (z) dz = % 2"’ e-‘g°[ cosht [ R ] - 2 e'.‘t°[ cosnt_|*

k]

Ilo‘o
veesnl, " (e} O([Re)[InRe] ), (vI-42)
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17
- :
Jz-‘ I, (z)K, (2) dz = 3.2° e *¥of cosnt_|* [ R ]™" + % - 2" & %
e obc )
scosnt, [ cosnt J°[Re )"+ O([R;]"], (VI-43) -

.J.z's I,(2)K (z)dz = 2 e ‘“o[ cosng ][ R ] + 2 %0 coshg %

itcge
Scosrl, 4
. -2 f Rr e ¢ ] 1 ]-‘ 2 _
[ Re ] [‘n[—ljcosh&: +(y+6] O(f 1nre 17}, (vi-4aa)
2
z % I, (2)K, (2) Q2 -.- £e %0 cosht ]:{k]-z[ln{ﬁi]
? e 3 ° 16coshf
RE lgo .
8cosrl 1 2
«(r+3) ] + Ol mre }7), (vi-ss)
Jz-e I, (2)K, (2) dz --ll—ze':‘°[ cosht ] [ Re ] 77+ Of[ 1nre J7) . (vi-46)
RE .§ .
8cos~§
oo * g
-6 L2 -2 £ 12 F 1 [RI e °']
J z  I,(2)K,(z) dz 5T e [ cosn§ ][ Re ] ° » > 3 "8coshE

+ O([rRe}(1are] ), (vi-am

Re e{°
8cosh}

° Jz":,(z)x,(z) dz -%e'””[ coshg,]*[Re ]77 + 2¢5 1“[
! 7

« O re)?), (vi-a8)

‘[z" I, (z)K, (z) dz -;—?e"“[ cosh, ][ Re ] "+ O([ 1are ] ). (vI-49)
RE ogo
lcosh!o
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To evaluate the integrals .

- -0 ’

J-z-’ I. (2)K, (2) dz,

RE -go
lcelhze

*
-

for m=0, n=0; m=0, n=4; m=1, n=l; m=1, n-3;‘m-2, ne 2 ' m=3,

-

nel: meS, nwl;: mug n=2; mmu7, n=3 and m=8, n=4, we expand the
functions I, (2) and K (z) in powers of their argument Dby usin (IV=-2)
and (IV-7) and integrate term by term. Thus we find, after use cf the

asymptotic properties of the modified Bessel functions, which gives

-7 l -»8
z I (2)K. () ~ Sz as zZ = oo, (VI=50)

formeo a_nd ne 0, that ‘
4 ‘ «

¢
L al L | [_L_s_]
2 e [ cosni, ] [ Rre ] in l6coshy,

W)

‘[z-7 I, (2)K, (2) dz = -

clyed) ] e ollr ) Tanre ) ) wiosy)

C] -
J-z-v I, (2)K, () dz = % 533 e-::gc[ coshgc]::[ Re ]-:c . 2% e-egc
Rr ebo
lcOlf‘-§° .[COSh:’,Q]![RE]-!*’ O([ R.-‘.]-e), (VI-52)
“_, ;' 416 _-68, s -6
2 I, (2)K (21 dz = 32 e o[ coshg ] [ Re]

+O([Re] ™[ 1nre] ), (v2-53)

Lo d

- - . o« 1~ 8 -« 4

Jz ’ I, (2)K, (2)dz = 2" e "t coshg )" [ Re ]™° + % 2" e '°[ cosng,]
ne olo
scoshi,

AR+ O([Re ] [ dnre} ), (vI-54)

-



I, (2)K, (z) dz = 2

IJ (2')!(._ (Z)'_dz - % .2

»

19

3

1
Ig(z)K, (z)dz=—Te

6!

-

e-“°[ coshE,e]s[ rRe ) * - 2—3-e"!‘°.[ co;h&,o}'

fre )T O(’[R.:]'Z[ lr;R:] ] (VI-55)

6

e,_.”’f'[ coshE J'[ R 17" %e

-25

3

:=°[ coshﬁcl2

o re )77 ln[mé:] s (v+2) ]+ o1 ln;s]z)., (VI-56)

-

°[ coshi ] [ Ra] * + O[[ ln Re ]2) , (VI-57)

§

Re e’ °

. . 2 L -2% e 12( o 1-2" [
I, (20K, (2) dz = =5 e 7 [ coshi ][ Rre ] + PO 1n

I, (z)K, {z) d

£
z-ete

-

8cosh,

+ O([r}7), vi-s9)

"ol eosnt, ] [ Re ]+ O[[ 1nRe ]

}.

(VI-60)
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APPENDIX VII

—

In this appendix, the infinite set of eguations which result from

" the system of equations (3.2.14) and (3.2.15) for the unkndwn constants

B, AL, m20and B, , m 21 will be presented in terms of the Reynolds
¢
number Re as Re 2 0. ’

The system of equations (3.2.14) and (3.2.1%) can be re-written

as

L. B, = ad_ . -Y-Q= AL, n21: : (VII-1)

R,

-

. e =% _/7 - ® =0
oo A oo - )
: P 455n,° - _jlk,ﬂ B, , n20 . (VII-2)
® -0 * ® -

If we substitute both (3.2.17) and (3.2.19) for n=1 in (VII-1), we

- "find, after use of the formulas (IV-17) and (IV-18), that

o0 o0

= .. . 2
‘ S -1 Re -2
! -xB‘ [ijz I,, (z)}K, (z)dz -cosZu[——-—ecoshgq] [ Jz (I_1 _3(2? - I, .3(2))!&, (z)dz.
RE -go RE ng
8cosni ] Ecoshf .
“-a : - Re Y[ .s Re
- Zsz I,(z)lg(z)dz] +2m[m] J'z I_ (2)K, (2)dz| = m - sinz2a
AT . RE b0
Scoshi, 8cosnf - ' e
2 PN o0 (- -] .
Rt s' -2 _ -2
.[Scoshﬁ‘,] H .OA_ [ZJz ¥ (2)K, (z) dz +Jz (Im S (z)+ I,y (z)dz ]] . (VII-3)
RE cgo _ E ogo
lconhfo Scshl
4.
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Nithout going into detail it may be shown, by substituting both of the
- ' .

formulas.- (V-6) and (V-7) for n= 3, the result (V-21) and also, the
expressions (VI-3)-(VI-5), (VI-16)-(VI-18) and (VI-29)-(VI-31) for the

integrals in (VII-3) and then using (IV-2), {(Iv-1, (IV=-12)

»

and
(Iv-13), that the consequence'of (VII-3) in terms of the Reynolds

number Re, treating Rt as small, is

¢ - o :

- R}:—e"_ - _l 1 -8, oA P -1 & ]
B..[ ln[lécoshf,c} (7 > ] “Se [ e cos2a] +O([ R: | [ lnRe | )
v, [-1 (__R:L]_( S3) s lete L o((re ) nne 1) ]

2 "{T6cosht, Yo%) T2e =

- >
’ §
_ a7 4 2 -1 Rr ®’° _ _ 5 1 -2t

+ BJ[ 2 e °cos2af coshf, ]| rRe ] ln[——lecosh§6J (y 3 ) v qe e

.(Ze'2§° + cos?a.] + O([ Re ]2[’lnRz ] )] + O(B‘[ Re ];2]

+

O(BS[R}:}-J] + O(B‘[Rzl-z) b o e e e e {

- ._R'E— 4_A -2§° . 2 Pl ] . [ -8 ,
2coshE. + Ao[ >e sin2a + O([ Re ]| lnRe ) + A, | 277 sin2a

[ cosng,] [ Re ] 1n ‘s%:%%g_] ¢ O(lRe ) { 1nre] )] + [ Lot

" . sin2a +“O([ Re ][ lnRe ) ] | + AJ[ 2" e ‘%o sin2qgf cosh§Q]2[ Re j-

+-}e’°+0([m][1“9~5])] -;- °sin2u[f;%] =

+ O(AlRre )7 ) +O(a[re]?) + O(afme]™ )+ ovvvv (viI-4



122
. Substituting both of (3.2.17) and (3.2.19) for n=2 in (VII-1) gives
[ . d o " : had
5 -1. Re - i
L .; B-[ J.Z (I- -tz =1, oz(Z)]Kg(Z)dZ +[8C03h§°]‘"{z (I- PLES Rt 02(2)]
¢ 2t e30 xt oo
. Scoshl, lcolb{o
o0
RE -3
‘ K (2)dz - cosZu[ecoahéor J.z (I= 2y -I, ,,(z)]lg (z)dz ]
7 ) RE cgo
scosnd
. hiad >
. Rt -3
‘ - sin2a [8cosh§°T 2 _ &_[ Jz (1. @+ (2= 21, (2 )k, (z)dz ] . (VII-S)
‘ RE .§°
R * 8cosnl, .
Inserting the expressions (VI-3), (VI-7), (VI-B), (VI-15)-(VI-18),
(VI-20), (VI-29), (VI-33)'rand (VI-34) in (VII-S5) yields
- B'[-.i [ln{ﬂg—c‘—-]i»( -i]]+}-"§°+0([&]2[1 c ]]
2L72 16coshE, 172 g ¢ n Re |
+ B,[Zs e’u°[ coshg ][ Re [ (1 s Lot ] v 222 os2a :
: . 3 4 8
+ Ofl re}’[ 2nre ]]] + s,[z’ e %ol cosnt ][ me ] (14 %e"’-o
1 2% 1. iy 2 ‘ -1
—Ee'jcoﬂa]*-a*-O([RF][lnRs]]]+O(B,[Rz] ]
+ O(pg[re}™*) + O(Bgl R )+ ----n-
. -a [,-n,mza(m[“‘—g"'] . ( -'l]]#o([m]"[mm]’]]
° l16coshl JT2 3 .

-~

- AIV[ .;-.‘u" sin2a + O([ Rs ]2[ lnRe ]2 ]] - A,[—a-'”° sin2a




O([ rRe] | 1nRe ]]] + A;[ einZa( 2° e"§°[4coah§°]2[ rRe |7?

- %e'”"]fr Ol re } [ 1nml)}+ O(afr 1™} + O(A,t Re ] 7))

- -

+ O(AG[R:]-‘) + O_[A,[R;]"] B (VII-6)

Both of the expansions (3.2.17) and (3.2.19) for n2 3 nay be

substituted in (VII-1l) to obtain

-

\\ -_—

oo o0
R£ no-2 - , R; on 3-n
gB,— [ [ecoshg_c’] z ( ‘= -r(Z) - Ig ~,—,(2))&(z)dz+ [B-r:,o.s_hg—o]" Jz
RE cgo RE cgo
Bcoshi, ‘y 8coshi
. ( - ‘p(Z) - I- .v-(z))&__ (Z)d'z - cos2n 8cosh5°] J -n-:(:) - Ig— cn-z(l).l
ﬂEc
8ce

3

. I,_n,ztz)-Iﬂ,n_,(z))&\lz)dz] = sin2a [:‘— ) Aﬂ[ Jz
. . - Do/ m -0

aE obo
ecoshd,

Ia caim A1) - I, () - I, L, (2) K (20 dz ] ) (VII-T)

It may be shown, by substituting the results (V-6) through (V-9) in

‘ L]
(VII-7) and then inserting the expressiocns (VI-22)-(VI-26), (VI-41) and
(VI-42) for the integrals in' the f.esulting equation for n=3 and also,

using (IV-2), (IV-7), (IV-12) and (IV-13), that the consequence of

(VII-?) for n= 3 in terms of the Reynolds r;umbot Rz, treating Rr as

small, is ' )
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'BI[-Ze"h cos2a| cosh§, ][ Re 17+ O([ Re ][ lnRe ) ] ] + B,[Ze'“"

. cosh [ Rt ]'1(24» %e-“"’ - cos2ae ‘%o ] + O([ Re )[ lnRe ] ) ]

+ 33[2’ g"‘c(z + et )[ coshg ][ Re 17 + O([ Re ]"') ]

\

+ O(B‘[Fu:]':) + O(a,[nz]‘s) + O(BGIRS]-S) b e e e e e

3

- - . - RE' [-] l
- AQ{Z * e %o gin2af coshi,] [ ore ][ ;n(lécoz‘z& ) + [‘y + —2~) )
nS. ,

/
+ O([ Re }'[ InRe ]2) ] - Ifk..[Ze"go sin2al cosh§ ][ Re 17"

¢ Offrellnre]) ] - a,[2e7*%e sin2of cosnt,]l Re ]
+ O([ Re |( lmRe ]2) ] - M[%‘Z'B e ite sin2a[cosh§°]—1[ R: ]

+ Off R 1’ 1nre]) ] + O(alre1) + Ofafre 1)

¢+ Ol Rre) )+ | ' (VII-8)

without going into detail it may' be shown that the consequence of (VII-T)

for n=4 and n=5, are respectively

Oft e, )+ OB, re]™" )+ O(e,{re)?)+O(rre]") +O(m[ 2 ]™")

e o= O(alre] anre] ) r O((A)) + O(ml®e} )

AS
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+ O(alre]™?) + O(Alre)7) + Ofal Re)7Y) e e (VII-9)
and .
O(B;‘[R:]]+O(B:[Rz]::)+0(83{Rs]_3)+0(8‘[R£]'3]
+ Ofe[re)?) + o(as[a;]") o - O(a,[ rRe }’[ 1nRe ])

+ Ofalre]) » Ofa(r] ")+ O(afr]’) + O(alr]?)

+ Ofalre ] ) + Oal Re TP ) 4 (VII-10)

Both of the expressions (3.2.16) and (3.2.18) for n= 0 may be

substituted in (VII-2) to obtain

LS —

;"' = -2 al 3 had
N 5 Rt Rt -3
£ -oAﬂ [ [__Bcosh§°] J’z I_(2)K, (z) dz + [_8cosh§°} .J‘z I, (z)K_ (z) dz
RE ed0 RE cto
gcosnf, tcasnl,
o0 oo o0
-1 . : -
- cosZan (Im _at2) v I ,z(z)]K,,(z)dz = 2B - sin2a E-lau [_ J-z I(Im .3 (2)
RE ogo RE o{o
8coshl, ecoshl,

e

- 1, ., (@)K, (2) dz] . (VII-11)

If we substitute the expressions (V-5), (V-12) and (V-13) for the
integrals in (VII-1ll) and then insert the expansions (IV-2) and (IV-7)

for the modified Bessel furtttions, the expressions (VI-15) through

—



-

(VI-18) £J8r the integrals in the resulting equation, we find, after use

of (IV-12) and (Iv-13), that if

—

[ d .
) A, =0 (VII-12)
B =0
the consequence c¢f (VII-l1l), in terms of the small Reynolds number R:,
~
is
§
Re e’° _ 1 _1 2 2 ]
Ao[sinhzia( m[lscosh§°]+(7 > ] ] 2c<33\2a+ O(LB:] [ InRe ]

§

s 2 -2 1 Rc e'° 3 1 .
+ Al[-Z [ cosng ][R ] ° + 2c032a[ ln[lécoshio] + (7- 3 ] ]—Zsznh2§°

+ O([ Re | 7] lnRr]z) ] + A,[*Zs[ cqghge]z[ Re )7 (1+e_”'° cosZQ)

- %sinhzio - §coszu +Oflre )7 tnre ]) ]u.,[-z’[ cosh ][ Re "7

-2% ; "3 1 . 2
. (3 + 4e ‘°c032a) - Tg cos2a - Es;nhzﬁc + O([ Re ][ InRre ]) ]

+ O(A‘[R}:]'z) + O[As[m]'z] + O(Ae[m]'zl e e e e

sin2a[ ln[—BL-ej—o—-]‘P(’{-%] ]‘f O([mlz[ 1““’-1] ]

l6coshf

- 2B + B,

N

- a,_unza(z‘e'”o[ cosht ] [ Re ] + -}] + Offre )’ 1R ]) ]

- B, ainZa(Z’e-”W[ cosh&olz‘[ rRe )77+ .ILS ] + O([ Re ]2] ]

.

+ O(Bylre]™®) + O(Bg[Re]™*) #+vvnnn. (VII-13)

-

Ne note that (VII-12) is the necessary condition for the existence of

the summation

12



: 127
o had »
) A, Jz I, (2)K, (z) dz ] (VII-14)
= RE ogo .

scoshl

in (VII-11). It may be shown, by substituting (V-5) into (VII-14) and
also, using (IV-2), (IV-7) and {(IV-14), that the integrals in (VII-14)
diverge to infinity- at the upper limit for all m. Thus,K the summation

(VII-14) can be approximated in terms of Rr only if (VII-12) is

. , -
satisfied. -

If we substitute both o0f the expresswions (3.2.16) and (3.2.18)

for n=1 in (VII-2) we find, after use of (V-17) and (IV-18), that .
oo oo ' L -
.1 .
5“ R ] ' RE -2
_— 21I_(z) {(z)dz - 2cosZa(—-—] Jz I_(z2) (z) dz
;—:;A’ [ (Scoshé° f = (215 i 8coshf, = (211G
RE ogc RE ed¢
8coshl 8coshl
(-] ot
Re -4 t Rt -2
——— I - ——— +
(ecoshgor JZ: s (2)K, (2) dz °°32°[ecosh§°] Jz (1o .yt 1, ., (1)) .
RE ego RE tgc
Bcosnhf, 8coshrl . .
Rz oo oo - o0
K, (2) dz] - - sin2u[—ecosh"§'°]5 .Ba [2:11'172'J I, (z)%, (z) dz 4:[:-2 [1, .y ()
T -,
RE ebo . .

- fcosrio \

”

I, ., (2))K, (2) dz ] . (VII-18)

It may be shown, by substituting both of (V-6) and (V-7) for n= 3, (v-3)

(Vv-21), (v-30) and also, the expressions {(VI-16) through (VI-18) in
. S

{VII-15) and then inserting :he expansions (IV-2), (IV-7) for the

modified Bessel functions, the expressions (VI-28) through (VvI-31) for

~
thes integrals, and using (IV-12) and (IV-13) in the resulting equation,
!

.




t.t;at if

Pon o

the consequence of the equation (VII-1S) in terms of the small Reynolds

number R, is

{ Re et ©

== e - 23
chosh&c] ¥ ( Y

l - & _l -4§° ]
2e cos2a 4e ]

A [ 270 cosnt, ) [ Re ]“( 1n

+ O([ Re J[ lnRe | ]] - 51[4{ coshE [ Re )" - 2" % cos2q] cosht_] [ Re ]

.‘L11:18<:Os‘.1€l‘1J [R:][lnR.s]]]-A2[[cosh JIRe ] ( 28,

. So
cos2a + % ) + %-2' cos2a| coshi_ ] [ Re ] 1n[%°:h§:] + O[[ Re ]]]

- AJ[Z:OQ-‘=° cos2a| C°3h€,]2[ Rt ]-2 + 4f cosng ][ re ];1'( % + %e

. cos2u\] + O(l)]- + O(A‘[ ﬁ;]"] + O(As[ RE]"]‘... .......

. e
--B, [4sin20’( L coshE J{ rRe] ™' - 2-7['cosh§o ] 7 Rre.) (ln(::o;"hgo]]: )
+ O([ Re J{ lnRec ) ]] -aB,[89°”'° sin2af coshE J[Rc ] ° # O([ Rt |
- [AnRe ] ]] - B,[Bsin2a(27e-“°[ cosh&ol-l[ re |77 4+ %e-u"

 [cosnt ][ Re ]+ O] + OBl me]”) + OB,f re]™*)

+ O( B#R ) ) 4+ - (VII-16)

Wé note that the necessary cendition for the existence of the
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r», [ J.I,:(z)&,(z) dz ] (VII-17)

IEQ‘Q
8cosn,

- -]
EA A, = 0. (VII-18)

It may be shown, by substituting (V-3 into (VII-17} and also, using
(Iv=-2), (IV-7) and (IV-14), that the ;n:ggzals in (VII-17) diverge to
infinity at the upper l%mit for all m. Thus (VII-17) can be approximated
in terms of Rt only if (VII-18) is sa:ié?;ed.

If we substitute (3.2.16) and -#.2.18) in (VII-2) for n= 2 we

)

immediately arrive at the result .:
Bad had 4 \ad
;‘ -t R -5
A z I, L2+ 1, (2K ()% [——-——] Iz Ip o ()+ I, ,(2)
" [ I ( = e 2 ] 8cosh§° ( e -2 s o+ ]
Re ebe RE ebo
8cesnd Bcosnf,
o0
) K (2) dz - cosZa[———EE-—-r st[I (z)+ 1 (z)+ 22 (z)]K,(z) dz
- 8cosh§, = -4 =4 "
RE 850
8cosrf,

- oo
, RE -3 N _ .
--) 8 [ ’mza[—scoshtj Jz (1, . (212 1. . (2K (D) az ] . (VII-19)

Re abo
8cosh °

’

Without going into detail it may be shown, by substituting the
. . ~
expressions (VI-3), (VI-7), (VI-8) and (VI—15)-(YI-20) for the integrals

in (VII-19), that the consequence of (VII-19) in terms of the small

e .

Reynolds number Re, is




“n[coszao':h[ln[l::o:;;e] :(7 - % ]) + Off ;ﬁ.]’[ xnm] )]

+ - —[ in [lscoshﬁ ] -;-(1'» Ee"“} - cosZue'zg"] + O[[\Rl ]2

e
'
o W

{inre ]’ )] + %[Zee'zh[ coshic]z[ Re ]'2(1 + %e"{o] +

-

3

. e ?%e cos2a + O([ Rt ]’} 1nRe ] )] * 53[2 e‘”‘el cosng ] *[ Rre } 77

=28, 1 1 -2%, 2
cosZa) i cos2a + O[[ Re [ 1n R:] }]

- 5. [ 127 sin2ef cosnt,] [ e ]’[ m[l:;oigo] f(v-& ] + Of[ re]*

@ |y

.{ InRre ] )] - 82[ e % sin2a + O([ R;S 1r Re } )] - 53[26e—'=°

. sin2q] cosh&c]z['m]-: + Off rRe]7Y lnR:]E)Jr OBl r} ")

+ OB rRe]™ ) + O(B[Re]™ ) 4 cv v (VII-20)

Both of the’ expansiéns (3.2.16) and (3.2.18) for n2 3 may be

substituted in (VII-2) to obtain

-]
- -o [ QCOShg I J a -nlZ) + I, ,,,(,Z))K. (z)dz + (Bcoshﬁ T j
RE o‘o AL o‘o
Scosh ‘ Rcoshl



) Re -1-n
. [IB W (z) v I ,,(z)}x, (z)dz - CQSZQ[Scosh‘;oI j‘z (I, ca-af2) - I, ene3f®)

RE -ge
Scoshy,

(Vii-2z1)

o~ .
\may’ be\sQwr_u, by subs:;tyting the results (V-6) through (V-9) tn

(VII-21) and then inserting the expressions (VI-22)-(VI-26), (VI-41)
and (VI-42) for the integrals in the resulting equation for n= 3 ard
also, using (Iv-2), (Iv=T7), (IVv-12) and (IVv-13), that the consequence

of (VII-7) for n=3 in terms of the Reynolds number Rz, treating Rr 23

small, is

-}

3
e .- -2t R: @' ¢
A [2 [ coshg,} [ Re ) (e ° °°’2a(> }n[lecoshio]

+ QR 1nRe ] )] - A.‘[Ze-‘g“ cos2af cosht,}| Re] T+ O[ Rre]

.[ 1nRre) ) + A,[Ze-”"[ cosh ]| Rre ]-: (2+ -za-e'u‘c' -e'”°cosZG]

+ O([ rRe ][ InRe ] )] + A,[Z’ e"‘°(2 + e'““)[ coshﬁo]’[ rRe ]’

e ofime))] ¢ O(nre) )+ O(arml )+ O(AlR]T)

- --BX[ZQ"hsinZa[ cqshf,,][ Re ]t O+ O([ Re] | lnm)) ]

t
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2}

\\’/

> - - a,[z.-'h,mza{ cosht | [ re ]7' +\o([m][ e}’ ) - 53[§.2
. sin2of coshb,] [ Re] + O((Re1’(1nre]) ] + O[5, [re]7?)

+ O(s,[ Rs]") + O[ss[m:]"] o e (VII-22)

Without .going into detail it may be shown that the consequence of

(VII-21) for n=4 and n=5, respectively, #xe

O(a e ]’ 1are ) + O a)] + Oalre]™) + O(a[re]?)

+ Of{alre]) )+ O(ag[Re]™ ) ¢ - oo oh - Ofts,1)+ O(B,( re ]7)
+ O{y{re ] ") + OB (Re]?) » OBy Re}™*) + -1 (VII-23).
and N

O(A:e{:m]’[ lnRe | ) + O(A1IR5]] + O(Azlaz]-l] + O(“’:[ a;]")
+ O(alr]”) + O(a[re]™?) +'O(A6[RE]-“]' i
- O(efre]) + O, (R ]7") + Oaire]™”) + O(pfre]?)

L]

¢+ O(Bg[re]™*) + OBl Re)®) #-vvn--. (VII-24)

&




APPENDIX VIII

In the paper by Hasimoto [19], the steady flow of a viscous fluid
past ap elliptic cylinder at an arbitrary angle of incidence is
discussed on the basis of Oseen linearized equation of motion using

elliptic co-ordinates and Mathieu functions. He obtained the expansion

formula for the lift and drag in powers of Reynolds number by using

-

~

the fundamental solutions of Oseen equations due to himself. In this
Appendix, we will summarize Hasimoto's analysis to be able to compare his

results with those of the present analysis.

Fuspaxeerar Eqguarioxs Aup Irs Sorvurioms
Using a stream functiof ¥, the Navier-Stokes equation for “the two
dimensiconal steady motion of an incompressible viscous fluid is expressed

as follows 4

¥,
AA\y__.Jza_(_ﬁ, (VIII-1)

V d(x,y) .
where A=3°/3x? + 3°/3y’, and v i3 the kinematic the viscosity.
Let us assume that a cylindrical obstacle is placed in a uniform
flow of velocity U streaming parallel to the x-axis. W:iting.

YeuUy + 6, (VIII-2)

and using the Oseen approximation which neglects terms of the second

] 1 90, &%)
order in ¢, i.e., - 7 T + we obtain
Voix, ¥
- - o VIII-
a(a 2"%; Jo = 0. ( 3)
2k =U/v . - (VIII-94)
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4
The solution of (VIII-3) can be written in the form
=¢;, +Q, g (VIII-5)
AQ; =0, . (VIII-6)
(a-xr(e "o,y =0, (VIII-T)

According to Filon [12], the solutions satisfying (MRII-6), (VIII-T7)

and the condation at infinity are P .
. o0
O, =A lnr + B8 + Y ety A, cosn8 + B_sinnB] , (VITI-8)
. n =1

-

! ) | /—_/
“* K, (k1) + b, Jkr[ K, (K£) + K, (kr) &2 up
o]

°2 -ao e aYy
- oo { L *
- et ) K, (kz)[ a_ cosn® + b_sinn@] , (VIII-9)
n =1
where
b,=-B,, . x=rcosl, y =r sinf, (VIII-10)

and K. (kr) is the modified Bessel function of crder n which tends to
zero when kr + e. Then the lift L and drag D experienced by the cyiindg;
. are, respectively, given by . .

L= (¢rpula, =pul, . . (VIII-11)

D= (2rpU)B, = pUm , _ (VIII-12)
where p is the density cf the'fLuid; m and ' are, respectively, the
inward flow in the wake and the circulation in the clockwise sense round
a large circle surrOunding the cylinder. (VIII-10) is the condition for
the stream function ¥ to be continuous in the field of flow.

Introducing elliptic co-ordinates £, N, related with x, y by the

equation
i

[ x+iy =ce ' cosr(E +im) (VIII-13)
!

, x = c[ (cosa) (cosht) (cosn) + (sina) (sinhE) (s am)] ,
: , (VIII-14)

Y = ¢[ (cosa) (sinh&) (sinm) - (sina) (coshi) (cosm)] ,

v

-t —
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we obtain from (VIII-€) and (VIII-T),

- R &

[ '5-;-2- + a—'?‘ )01 =0, . (VIII-15)
Z .
az az 2 2 2 - -k x ' :

[ 3’2 + 3 -~ XK ¢ (cosh § - cos‘ a)][e 0,) = 0. (VIII-16)
S n

- — hd -

The surface cf the elliptic cylinder is given ty § =§_, the angle of

incidence between the uniform flow andghe m:ajc: ax:s of the ellipse ,

15 @ .
i . If we take
Gmele c =20, . C(VIII-1T)
the half lengths cf the majcr and minor axes are, respectively .
a=c(coshi ) =1 +o’, < - . (VIII-18)
b=c(sinhg ) =1-0 . (VITI=19)

Making § 4 e in (3.1) we see

- 3
-n -
e

E~iInr or r ~ . . (VIII-20)

.~ 0+a. o .- (VIII-21)
1

Trerefore, taking acccunt of (VIII-8) and (VIII-38), we may take as the
general solutions satisfying (VIII-13) and (VIII-16) and the condition
at infinity,

' 6. =AE + B + ) ;ll-e"”g'“’[ A, cosnm - B. siann] , (VIII-22)

n o=l

- o0
6, = 5 [a,F, &,m + b, G, (§, W], , (VIII-23)
n =90 T

where

F.(§,m =e" " FEK (&) ce, (M),

~ n L]

3 ax _ d . éx(§,n°)
Gn(gyﬂ)' [5’;-2ka—§')Fn(§,n)—dﬂ- [a'—n‘- Lk—a_n-—

"o : ¢

(VIII-24)
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ce, (N) are proper sclutions of the Mathieu equation (see e.g. Mclachlan

. [31] or whittakezr & Watson [49])

2
d A 2 2 2
—3 + (A, + kK'c'cos"n)|ce, (M) =0, ; (VIII-25)

which are periodic and even in 7

oo -
ce,. (M) = (=1)" S aig cos2pmn , ' (VIII=-26)
~ ° =0 .
o
Znel

ce,p.. (M = (-1)" ) ajo.; cosRp+ 1IN . . (VIII-27)
P =0

;ﬂ FEK, (§) are solutions of the associated Mathieu equation, corresponding

to the characteristic values A 's of (VIII-25)

’

= - (A, + kK’c’ cosh’E )] FEK,_ (§) = 0., (VIII-28)

)"

and tend to zero as § tends to infinity. According to McLachlan [ 31]

&__‘
b o
1 L tzn)
FEK;, (§) = —/ 57 ) A" I(vOIK (vy) (VITI~29).
A, B =0 . . ’l{
_ ‘
1 5 {2ne1
. FEK; . 1.(8) TerAnen L Baper [ Tptvi K. (vy) - I (v ) Ktv) ], (VIII-30)
1
t2n) . 0P _(2n) tan+1) S Asp _(2Zns1) 1 -
] where A (=1) a, Bipe1 (-1) 8501 ¢ \? -3 kce
and v,-%kcé. ;

—Taking into account (VIII-8), (VIII-S), (VIII-20) and (VIII-21)

: we see that the lift L and drag D experienced by the elliptic cylinder

-
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4
are expressed by (VIII-1l) and (VIII-12) using the same A, and B, . Also,
circulation at § = e takes a finite value 2%A_.

The constants a,, b,, A, and B, in the stream function ¥ have to
”~
Be determined from the following boundary conditions

(1) _ ¥ is one-valued and continuous in the field of flow.
(ii) u=v=0 on the surface of the cylinder, or in terms of normal

and tangential velocities

uﬁ-ha—-\y-o. u --h—a:P-O at & =¢§_, h'z-cz(coshsz—coszn)
on 3 a3 °
kg ¥
{(11i) u —ay-aU aml:! v -a—.-»O as X,y = oo,

~

-

These coefficients are determined, by Hasimoto [19] (p.656 & 657), in

powers of Reynolds number

R=2aU/u=2(1+6° )U/u=4dka=4ak(l+6 ), E (VIT1-31)

treating R as small. For our present purpose, howevar, which is to

compare his results with those of the present analysis, it would not
be of much use to write d®wn the laborious and long calculations in

obtaining complicated expansions for these constants.. We will only

present results for A, and B, which .are'sufficient to enable us to
L d

determine the leading terms in the expansions .for the circulation at a
great distance from the «cylinder, [_, and the non-dimensional
coefficients of the drag and-lift.,"lcu and C,. The expressions for A,

and B, are . . ’ -7

A, = x L@ [ 1+ 0k’ ] , ‘ (VIII-32)
. : '
B, k' (By(1+0cx*y). . (VIII-33)

In these expressions a and B are given by



T~

& = (20°Usin2a) /D, , P = 2u[2s - (1 +c’cos2a}] /D, , (VIII-34)

where

D, =4s’ - (1 +20°cos2a+c") . (VIII-35)

Hasimoro's Rzxsoirs
It may be shown, by using (VIII-1ll), (VIII-1l2), (VIII-30), (VIII-32)
®
1)
and (VIII-33) that the lift and drag coefficients can be expressed in

terms of the constants A, and B,, as -

-
C, = 2RA_, / Ua, C, = 2%B, /Ua . (VIII-36)
We note that the formulas
C, = L/(pu’a), C5 =D/(pv’a), (VIII-37)

are used in obtaining the above expressions. Hasimoto [19] shows that

the circulatiop, I'.., in the ilockuise sense, round a large circle
surrounding the cylinder takes a finite value

L = 2xra,, ‘ # (VIII-38)
by using the well-known formula

2R

- [3) |
T. = lim_ P dn . (VIII-39)

Here ¥ is the dimensional stream function related to the non-dimensional

) - f
stream function ¥ by the equation T

v e=W¥/Ua. ' \’\J (VIII-40)

It may be shown, by using (VIII-32)-(VIIIT36) ana (VIII-40), that
Hasimoto's results fo; FL.,C, and o are.. . )
iR -20, Re*° - -

C, - R ® (ainZa)[ ln[IEE;;;E:] ] . {(VIII-41)

C - - %‘[ ln[ﬁ%:%ig_, ]-z. _ (VIII-42)

13



- 8o -2 .
r, -~ %e 8o UsinZQ[ .Ln[—p'e——] ] . (VIII-43)

16cosh§

Coxraniscm or t3t Reosvirs

It follows from equations (3.3.6), (3.3.135) and (3.3.16), in

Chapter III, that our results £for the circulation, in the counter-

clockwise sense, at &=, K_, and the non-dimensional lift and drag

coefficients, C. and C,, are
2% -3% 2 Rse§° -2
C. - STe ° [2(cosh§°) + {(8inh2§ )][ ln[———-—————} } . (VIITI-44)
- Re ° l16coshf, =

- L3 -2
c, ~ - %e So sinZa[Z(cosh§°)2 + (sinh2§°)][ 1n[1—%§1€—] ] , (VIII-45)
Q

: -2
~ -4me ?he sy ,,--.[ [_ss_e_]] -
K. it e sin2a(cosh )’ Re ] in T6coshE, ' (VITII-46)

where Rt =2Ud(cosh§,)/v . (VIII-47)

We note that the formulas

G. =L /(pud) , C. =D /(pud) , (VIII-48)

and also,

2R

dy ’
K, = lim J [ — }dn / (VITII-49)
- - ag

0
are used in obtaining the expressions (VIII-44)-(VIII-46). In (VIII-49)
tpe non-dimensional stream function ¥ related to the dimensional stream
function® y¥' by the equation o

y=y'/ud. ~ (VIII-50)

Noticing the differences between the formulas (VIII-37)&(VIII-48),

4 -
(VIII-39)&(VIII-49) and (VIII-40)&(VIII-S50) pnd taking d« 2e ‘°, it may




be shown that Hasimoto's results are in perfeqt agreement with those of

the present analysis as expected. We note 'that only the leading terms

are taken into account for comparison of the results. This is due to the

fact that, as stated By Hasimoto, his method is very laborious, and

-comparison with other results is not easy.
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Fig. 1l Orientation of Cartes.an axes.
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Fig. 2 Transformed domain.
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Fig. 3 Elliptic co-ordinates.
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Fig. 4 Streamlines for Oseen flow past a circular cylinder.

( from the paper by Dennis [8] : p.168)
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