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In this present study, entropy generation for an unsteady MHD Casson fluid flow through an oscillating inclined plate is investigated.
Here, along with reaction by chemical and thermal radiation incorporation of Soret effect is also analysed. The solution of the equation
which governs the flow problem are obtained by finite difference method (FDM). The features of flow velocity, concentration and
temperature are analyzed by designing graphs and their physical behaviour is reviewed in details to study the impact of different
parameters on the fluid problem. The skin friction, the rate of heat and mass transfer of the fluid problem also has significant impact
under the influence of the parameters. The results indicate that Soret effect and other parameters has considerable impact on an unsteady
MHD Casson fluid and on the total entropy due to heat transfer and flow friction.
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1. INTRODUCTION

Conservation of energy to produce thermodynamically efficient heat transfer processes has been a topic of interest.
The past few years we observed a growing interest in thermodynamics of heat transmission and heat exchange
equipments. Heat transmission can be accompanied by entropy generation or thermodynamic irreversibility.

Entropy generation may be due variety of sources such as viscous effects and heat transfer down temperature
gradients. It has its huge applications in heat engines, heat pumps, freezers, power plants, and air conditioners. A. Bejan
showed how entropy generation rate can be reduced in simple components for heat exchange with an objective to how to
reduce useful power. This study will lead the way in which a flow geometry may be selected to reduce generation of
entropy. In the intervening years, research work on entropy generation has received considerable attention. Many
researchers have contributed their work on entropy generation for a MHD flow. Bejan [1] analyzed the origin of entropy
distribution and production for convective heat transmission. Bejan et al. [2] extended entropy generation through heat
and fluid flow. Abu-Hijleh [3] numerically analysed the entropy generation for convective flow from a rotating cylinder.
The analysis of entropy generation for various physical configurations has been able to draw attentions of researchers and
were investigated by many researchers like Baytas[4], Mahmud and Islam [5], Oliveski et al. [6], Hooman et al. [7],
Abdelhameed [8], Khan et al. [9], Mansour et al. [10], Sharma et al. [11]. Khan et al. [12] have deliberated the entropy
generation of a flow through rotating cone with Dufour and Soret effect’s impact. Shit et al. [13] examine the entropy
generation for an unsteady flow of nanofluid. Afsana et al. [14] have analysed the entropy generation for a ferrofluid in a
wavy enclosure. Qing et al. [15] analysed generation of entropy over a stretching/shrinking porous surface for flow of
Casson Nanofluid. Aiboud and Saouli [16] analysed entropy over a stretched surface when a magnetic field is present for
MHD viscous flow. Hussain et al. [17] analysed the entropy generation for a double diffusive convection in staggered
cavity. Yazdi et al. [18] analysed the entropy generation of parallel open microchannels which is embedded with
continuous moving permeable surface. Yazdi et al. [19] extended it for permeable micropatterned surface. Rashidi et al.
[20] numerically investigated the generation of entropy over a porous rotating disk with influence of slip factor presented
the MHD flow and entropy analysis of heat transmission in a square cavity occupied with Cu—AI203.

The present study of entropy generation for an unsteady MHD Casson fluid flow through an oscillating inclined
plate is investigated along with reaction by chemical and thermal radiation and incorporation of Soret effect is also
analysed great importance in various fields of energy storage systems and minimization of heat transfer. Heat transfer can
be accompanied by entropy generation which has its various applications in different engineering process. Hence, from
the literature and its wide applications has motivated the present analysis. The novel aspects of the present analysis are as
follows:

e To examine total entropy generations of MHD flow through an inclined plane in addition with the features of
flow velocity, temperature and concentration.

e The entropy generation for a free convection is associated with transfer of heat and flow friction of the fluid.
e Along with reaction by chemical and thermal radiation incorporation of Soret effect is also analysed.
e The non-dimensional governing equations are solved numerically by finite difference method in MATLAB.
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2. STATEMENT

We consider an incompressible one-dimensional unsteady MHD free convection flow with mass and heat transfer
of a Casson fluid flowing through an oscillating inclined plate. We consider a viscous fluid with the influence of thermal
radiation and reaction by chemical. We consider a coordinate system, where the x’-axis represents the vertically upward
direction and y’-axis is normal to the plate in the direction of the fluid flow. All the existing fluid properties except the
influence of density in concentration and temperature are considered to be constant. The induced magnetic field in contrast
to the applied magnetic field is considered to be negligible.

Keeping in view the assumptions made above and usual Boussinesq's approximation the equations which governs
the flow are:

ou* 1\ 02u* « * . * *
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The relevant initial and boundary conditions:
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where component of velocity in x'direction is u*,the kinematic viscosity is v,the time is 7", the acceleration caused by
gravity is g, the Casson parameter is «, the angle of inclination is y, the thermal expansion coefficient is 3, the coefficient
of mass is 8%, the fluid temperature is T*, the temperature away from plate is Ty, *, the temperature near the plate isT,," ,
the fluid concentration is C*, the fluid concentration when it is away from the plate is C,, ", the fluid concentration near
the plate is C,," , the magnetic permeability of the fluid is o, the density of the fluid is p , the coefficient of magnetic field
is By , the thermal conductivity is k, the specific heat at constant pressure is C, , the thermal radiation flux is q,.* , the
chemical reaction rate constant kr', the thermal diffusion ratio is Ky, the coefficient of mass diffusion is D,,, the mean
fluid temperature is T, the scalar constant is €, the dimensionless exponential index is w.
The thermal radiation flux gradient q,.* under Rosseland approximation is expressed as follows:

_ 6Qr* — * * __ *
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where ¢ * is the Stefan-Boltzmann constant. The difference of temperature within the flow is considered to be into Taylor's
series about the free stream temperature. Hence neglecting the higher order terms the result of the approximation is as
follows:

T, = 4T,*’T* —3T,**

We now introduce the following parameters and non-dimensional quantities:
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Where Gm is the Grashof number for mass transfer, Gr is the Grashof number for heat transfer, Pr is the Prandtl
number, Sc is the Schmidt number, K7 is the chemical reaction parameter, Mis the Hartmann number and R is the radiation
parameter and S is the soret number.

Using the non-dimensional quantities, the equations (1) to (4) reduces to:
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Here, G, = Gr cos y,G, = Gm cos y
The non-dimensional form of the corresponding boundary conditions is:
u=10=1+ee®,p=1+ce®aty=0
ﬁ—>0,§—>0,$—>0a5§—>00

3. SOLUTIONS OF THE PROBLEM
In this section, the transformed equations (8) - (11) are coupled non-linear partial differential equations. So, the

analytical or exact solutions seem to be not feasible. Finite Difference Method (FDM) is a method which is used to solve
differential equations that are quite difficult or impossible to be solved analytically. It is comparatively precise, effective
and has better stability characteristics.
The fundamental formula is:
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ay’

Ay"-0 Ay’

The equation above is used to discretise a PDE and then implement a numerical method to solve. The equivalent
finite difference scheme for equations (8) to (11) is as follows:
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4. RESULT AND DISCUSSION

The problem of an unsteady MHD Casson fluid flow past an inclined moving plate in the influence of reaction by
chemical, thermal radiation and Soret-effect has been investigated. The mathematical formulation that governs the fluid
flow problem is given in equations (1) - (4). Solving this equations, numerical solution has been obtained for the total
entropy generation, fluid velocity, concentration, temperature, skin friction, coefficient of the rate of mass and heat
transfer in terms of Sherwood number and Nusselt number. Ignoring the imaginary part, numerical results have been
displayed in figures and tables. Numerical results obtained using Finite Difference method (FDM) on the governing partial
differential equations which analysis the unsteady MHD Casson fluid flow through an oscillating inclined plate with the
influence of reaction by chemical, thermal radiation and Soret effect are displayed in graphs and tables. For our
computational analysis, we employed Gr=5, Gm=5, Pr=.7, R=1, M=5, Sc=.22, Sr=1, Kr=1, T=1.25, € = .05, = 10.
unless otherwise stated.

Figure (1)-(4) is portrayed to study the most significant characteristics of the present analysis that is the total entropy
generation due to the incorporation of chemical reaction, radiation parameter, Casson parameter and Soret effect. Here,
the total entropy for free convection is associated with heat transfer and flow friction. Figure (1) illustrates the chemical
reaction influence on total entropy. As the chemical reaction parameter rise the total entropy behaves inversely. Along
with it the total entropy decreases with the rise in Hartmann number. Figure (2) illustrates that the increase in the impact
of radiation parameter the generation of entropy lowers. Figure (3) shows that the generation of entropy expressed as a
function of Hartmann number rise proportionately with the rise in Casson parameter. Figure (4) illustrates that the total
entropy lowers with the rise in Soret effect.
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Figure 1. Total entropy with change in chemical reaction
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Figure 3. Total entropy with change in Casson parameter
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Figure 2. Total entropy with change in radiation parameter
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Figure 4. Total entropy with change in Soret effect

Figures (5)-(18) portray the influence of all apposite parameters on the fluid velocity, concentration and temperature.
Effect of flow parameters on the skin friction, Nusselt number and Sherwood number are also illustrated in tabular form.
Figures (5) and (6) demonstrates the variation of temperature against y with the impact of radiation parameter (R) and
Prandtl number (Pr) on temperature profile.
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Figure 5. Variation of radiation parameter on temperature
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Figure 6. Variation of Prandtl number on temperature

The degree of temperature of fluid falls with the rise in radiation parameter and rises with the rise in Prandtl number.
Figures (7)-(13) exhibit the effect of different parameters on velocity profile. It is seen from the Figure (7) that velocity
profile decreases with the rise in Chemical reaction parameter Kr and from the Figure (8) one can find that the velocity
increases proportionately with the Prandtl number. Hartmann number M is the ratio of electromagnetic forces to inertia
forces. The Schmidt number Sc differentiates the relative thickness of velocity and the concentration boundary layers.
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Figure 7. Variation of Chemical reaction parameter on velocity
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Figure 8. Variation of Prandtl number on velocity

Figure (9) and (10) portray that velocity profile decelerated with the increase in Hartmann number and Schmidt

number.
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Figure 9. - Variation of Hartmann number on velocity
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Figure 10. Variation of Schmidt number on velocity

From Figure (11) it is observed that, the velocity profile rise with the rise in casson parameter. The thermo-diffusion
or Soret effect Sr may take place due to the presence of temperature gradient. It is evident from the Figure-(12) that,
velocity falls with the rise in Soret number and the Figure (13) shows that as the radiation parameter increases, the velocity
profile decreases. Figures (14)-(18) demonstrate the change in concentration profile with the influence of different
parameters. It is observed that in the figure-(14) the concentration decreases as the Schmidt number increases. Figure (15)
and (16) shows that concentration decreases with the increase in the chemical reaction parameter and the Soret effect.
Figure (17) shows that concentration profile increases proportionately with radiation parameter. Figure (18) depicts that
concentration profile decreases with the increase in Prandtl number.
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Figure 11. -Variation of Casson parameter on velocity
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Figure 17. Variation of radiation parameter on concentration

Table 1. Nusselt Number
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Figure 16. Variation of Soret effect on concentration
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Table 2. Sherhood Number

Pr R Sc kr Sr Sherhood Number
0.25 1.0 0.22 1.0 1.0 -0.3623
0.50 1.0 0.22 1.0 1.0 -0.5297
0.75 1.0 0.22 1.0 1.0 -0.7701
1.00 1.0 0.22 1.0 1.0 -1.1326
0.70 1.0 0.22 1.0 1.0 -0.7143
0.70 1.5 0.22 1.0 1.0 -0.6266
0.70 2.0 0.22 1.0 1.0 -0.5499
0.70 2.5 0.22 1.0 1.0 -0.4824
0.70 1.0 0.22 1.0 1.0 -0.7143
0.70 1.0 0.42 1.0 1.0 -0.7722
0.70 1.0 0.62 1.0 1.0 -0.8428
0.70 1.0 0.82 1.0 1.0 -0.9263
0.70 1.0 0.22 1.0 1.0 -0.7143
0.70 1.0 0.22 3.0 1.0 -0.9096
0.70 1.0 0.22 5.0 1.0 -1.0819
0.70 1.0 0.22 7.0 1.0 -1.2354
0.70 1.0 0.22 1.0 2.0 -1.1885
0.70 1.0 0.22 1.0 4.0 -2.1371
0.70 1.0 0.22 1.0 6.0 -3.0856
0.70 1.0 0.22 1.0 8.0 -4.9827

Table 3. Skin friction

Pr R Sc kr Sr M o Skin friction
0.25 1.0 0.22 1.0 1.0 5.0 0.5 0.6972
0.50 1.0 0.22 1.0 1.0 5.0 0.5 0.7922
0.75 1.0 0.22 1.0 1.0 5.0 0.5 0.9268
1.00 1.0 0.22 1.0 1.0 5.0 0.5 1.1235
0.70 1.0 0.22 1.0 1.0 5.0 0.5 0.8958
0.70 1.5 0.22 1.0 1.0 5.0 0.5 0.8468
0.70 2.0 0.22 1.0 1.0 5.0 0.5 0.8036
0.70 2.5 0.22 1.0 1.0 5.0 0.5 0.7654
0.70 1.0 0.22 1.0 1.0 5.0 0.5 0.8958
0.70 1.0 0.42 1.0 1.0 5.0 0.5 0.8866
0.70 1.0 0.62 1.0 1.0 5.0 0.5 0.8769
0.70 1.0 0.82 1.0 1.0 5.0 0.5 0.8670
0.70 1.0 0.22 1.0 1.0 5.0 0.5 0.8958
0.70 1.0 0.22 3.0 1.0 5.0 0.5 0.8589
0.70 1.0 0.22 5.0 1.0 5.0 0.5 0.8265
0.70 1.0 0.22 7.0 1.0 5.0 0.5 0.7981
0.70 1.0 0.22 1.0 2.0 5.0 0.5 0.8069
0.70 1.0 0.22 1.0 4.0 5.0 0.5 0.6292
0.70 1.0 0.22 1.0 6.0 5.0 0.5 0.4514
0.70 1.0 0.22 1.0 8.0 5.0 0.5 0.2737
0.70 1.0 0.22 1.0 1.0 1.0 0.5 1.9257
0.70 1.0 0.22 1.0 1.0 2.0 0.5 1.6283
0.70 1.0 0.22 1.0 1.0 3.0 0.5 1.3601
0.70 1.0 0.22 1.0 1.0 4.0 0.5 1.1171
0.70 1.0 0.22 1.0 1.0 5.0 0.5 0.8958
0.70 1.0 0.22 1.0 1.0 5.0 1.5 2.1472
0.70 1.0 0.22 1.0 1.0 5.0 2.5 2.6835
0.70 1.0 0.22 1.0 1.0 5.0 3.5 2.9814

5. CONCLUSIONS
Following are the conclusion of the present investigation:

e The total entropy lowers with the rise in chemical reaction parameter, radiation parameter and Soret effect.

e  Entropy generation rise proportionately with the rise in Casson parameter.

e The degree of temperature falls with the increasing radiation parameter and rise with the increasing Prandtl
number.

e The velocity of fluid flow is decelerated with increasing reaction by chemical, Hartmann number, Schmidt
number, Soret effect and radiation parameter and is accelerated proportionately with the Prandtl number and
Casson parameter
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e The level of concentration of the fluid rises with the rise in radiation parameter and falls with the rise in Schmidt
number, reaction by chemical, Soret effect and Prandtl number.

e  Skin friction coefficient increases proportionately with Prandtl number and casson parameter.

e  Skin friction is decreasing with the increasing Hartmann number, radiation parameter, Schmidt number, reaction

by chemical and Soret effect.

e  The rate of heat transfer rise with the increasing Prandtl number, whereas it is reduced with the increasing

radiation parameter.

e The rate of mass transfer rise with the increasing radiation parameter, whereas it falls with the increasing Prandtl
number, Soret effect, Schmidt number and reaction by chemical.

v = kinematic viscosity

o = casson parameter

y = angle of inclination

& = ratio of viscous to thermal entropy

B = thermal expansion coefficient

* = mass expansion coefficient

g = acceleration due to gravity

C' = species concentration

C'oo = fluid concentration far away from the wall
T’ = temperature of the fluid

T’ = fluid temperature far away from the wall
o = electrical conductivity

p = fluid density

Bo = magnetic field

Cp = specific heat at constant pressure

Dm= mass diffusivity

K1’ = chemical reaction rate constant

Nomenclature
Kt = thermal diffusion ratio
T'm = mean fluid temperature
q'r = radiative heat flux
u = dimensionless velocity
6 = nondimensional temperature
¢ = nondimensional concentration
Gr = Grashof number for heat transfer
Gm = Grashof number for mass transfer
Pr = Prandtl number
Sc = Schmidt number
M = Hartmann number
R = radiation parameter
Kr = chemical reaction parameter
Sr = Soret number
T = skin friction
Nu = Nusselt number
Sh = Sherwood number
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YU CJOBUI AHAJI3 TEHEPALLL EHTPOIIL MI'] IOTOKOM PIZIMHA KACCOHA
YEPE3 NIOXWJTY IIVIACTHHY 3 EOEKTOM COPE
Xipen Jleka, Ilapicmira IIxykan, Ilyxxa Xanoi
Daxynemem mamemamuku, Yniseepcumem Kommon, Accam, Inois

VY 1poMy JOCHTIZDKEHHI TOCTIIKY€EThCS TeHepanis eHTporii 1t HecranionapHoro MI'J] nmoroky piznan KaccoHa yepe3 KoJIMBaIbHY
MOXMity riactuHy. TyT, HOPsA 3 peakiiclo XiMIYHNAM i TEINIOBUM BHITPOMIHIOBAHHSIM, TAKOX aHAJi3yeThes BKIoueHHs eekty Cope.
Po3B’5130K PiBHSHHS, SIKE Kepy€e MPOOIEMOIO MOTOKY, OTPUMAHO METOI0M KinieBux pisHuibs (FDM). XapakTepucTUKH MIBUAKOCTI
MMOTOKY, KOHIIEHTpAIlii Ta TeMIIEpaTypu aHAI3YIOThCS IUIIXOM OOYA0BH rpadikis, a iX Gi3nyHa NOBEAIHKA AETaIBHO PO3TIISAAETHCS
JUTS BUBYCHHSI BIUIMBY Pi3HUX MapaMeTpiB Ha poOiieMy pinuHu. TepTs mKipH, DIBUAKICTH TETJIO- T MACOOOMIHY PiINHH TAaKOXK MAalOTh
3HAYHU{ BIUIMB IiJl BIUIMBOM NapameTpiB. Pe3yibraTi 1oka3yroTh, o epekt Cope Ta iHII mapaMeTpyu MarTh 3HAYHUI BIUIUB Ha
HecranioHapay MI'/] kacCOHOBY piuHYy Ta Ha 3arajbHy EHTPOIIIO Yepe3 TEIIO0OMIH 1 TepTs IOTOKY.

Kurwuosi cinoBa: enmponis, Kaccon; MIJ]; epekm Cope,; meniose eunpominioamHs.





