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ABSTRACT

This thesis contains new developments in various topicg in tim#

series analysis and forecasting. These topics include: model selection,
estimation, forecasting and diagnostic \checking.
. ) X

In the area of model selection. finite and large sample properties
of the commonly used selection criteria, Akaike Information Criterion
(AIC) and Bayesizn Information Criterion (BIC).‘are_discussed. In
the finite case, the study is limited to the two sample problem. The
ex"act probability of' selection is obtained for finite samples. The risk
of each criterion is evaluated in the two sample situation. = Empiri- —
//czl" evidence regarding these risks are giveq for autoregressive processes.
The asymptotic distributio.n of the h is given, where A is the estimate
of the number éf extra parameters in\ the model selected by the AIC
critefion.  This derivation is based on large sample properties of the
likelthood ratio test statistic. The uymprtqti;: ~disft.ribution of the AIC

in PAR models is also discussed.
4 4

In -est.imatjon. an explicit expresston for 'ihe efficiency of strongly
consistent estimates fox: the ARMA(I,I) mo;iei is d.eriﬁved. Empifical
efficiency and the empirical estimate are e;:axnined by simulation.

On the topic of foreéuting. the asymptotic variance of the fp'n;-
cast error is defived for an autoregressive model of "first order. In
the derivation, the estimated parameter is not usu:med to be indepen-
dent of the data. The variance of the one-;r.ep forecast error is also

derived for the fractional noise model.

iii




In the last topic, empirical results‘for portmanteau test statis-
tics are studied. It is shown that the modified Portmanteauy test
of Ljung and Box (1980) outperforms the modified test of Li and
McLeod (1981). In testing for whiteness, the modified Portmanteau
test is shown to have lower power than the cumulative periodogram

-

test against both fractiona! noise and standard ARMA alternatives.

<«
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CHAPTER 1

T _ INTRODUCTION -

Four mam topics in time séries analysis are discussed in- this Jdis-

sertation; viz., model selection, estimatior. fortcasting and wiagnostic
checking. ‘ ) ) T -

There is no question that model selection is an important tbpit'
for any statistical modeller.  Many statistical model sselection <rite- .

- -

ria have been proposed and some have been widely used. In .chapter

-

2, finite sample pioperties of the Akaike Information Criterion (A1C)

(see Akazike, 1973, 1974) and the Bayesian Information Cr‘tterit;n ’IBIC)

- ~

(see }chwarz‘. 1978) are examined. In particular,” the' investigation de-"

rives the finite sample distribution of these ¢riterin and their ‘risks for’

the two sample probilem. _In this case, it is shown that neither” AIC

nor BIC dominates. TFor the autoregressive case, empirichl evid\ence

on the performance of both criteria, in terms of their forecast ekror,

is given. It is shown that the forecast error for the AIC is large_'r/-\

than the BIC.- Next, a general result on the asymptotic distribution of
the AIC selecting a model with h extra parameters is derived. _This
fesult is a generalization of the result of Shibata, (1976). As an iflus-
tration, the &symptotic- distribution of the AIC selecting a model ‘with
extra parameters in the periodic. autb-regress]ve' '. 'R) .model.

In chapter 3, an explicit expression for the asymptotic efficiency

for a strongly consistent estimator (Hamnan, 1975) is obtained for the

-



' AR_MA(I.‘!) model. For this model, this etimatiox; technique is 3haown

to- be _.a.symptotica]ly inefficient .relative to the maximum - likelihood ‘ésti-

mator. The empirica] efficiency for this estimator relative té the max-
imum ‘likelihood estimator is examiried by simulation experiments.
Forecasting is the ultimate use of a chosen model. It is desired .

for §one' to obtained a farecast as close as possible to the value as-
sumc-;d in_ future by the process. In other words, it is thoped tha;.t
the féretist. error will be small. Many previous authors have derived
the asym_ptotic friean sqt;are error of th.e' forecastt for the general au-
- toregressive process.- The result: obtained by previous a.ut.hors.‘ such
as Akaike {1970), assumes that the pm:a.meter .estimates are indepen-
dent of daia used for forecast'mg‘ . This implies that the modei is cal-
ibrated on -one set of data and used for forecasting gn another inde-
pendent set of data. ‘ How-»vever,. “in p;'actice, the model is ‘often <cali-
brated on data z,,;..,2, and then ‘u‘éed to forecast z,,zn41,.... In
chapter &, an explicit expression of the variance of the {(-step ahead
forecast errof is derived for an autoregressive process of order one
(AR(I)).. In the' derivﬁtioﬂ, the aforementioned dependency of the
parameter est.imau.; is taken into consideration. It is 'shown that -
.the variance of the forecast error‘depends an the parameter anc.i 2
smaller variance is obtained when dependency is -taken mto account.
The variance of the one-step a.head forecut error is also derived for
“the fractional difference noise model, FARMA(O.d,O). In this case,

the variance does not depeﬁd on the parameter d in this mod-el. A



comparison of this result with those for the AR(1) mode! and for

“the autoregressive-moving avera.(ge (ARMA) model is discussed. It
is shown that the result for the AR(1) model does noy generalize to
other models such as ARMA(0.0) and FARMA({0,d4.0}).

Beveral test statistics commonly used in diagnostic checking are
empirically examined in chapter 5.7 . The means and variances for var-
lous portmanteaus statistics were compared (see for eg. Box and Pi'erce.
1970; Ljung and Box. 1978, Li and McLeod. 1981). In particular, ex-
act means for the white noise process were compared. The éerfor-

. - A ) .
mance of these statistics for autoregressive processes were also exam-
ined: in particular their means, type | errors and powers of detecting
a misspecification were considered. It is seen that the modified port-
manteau statistics of Ljung and Box, and Li and McLeod give close
estimates to the mean and type. I error. The Ljung and Box statis-
tic is seen to provide hfgher power in genéral.‘ Also, the statistic of
McLeod and Li (1983) which uses squared residuals is examined for

.

type | error and power. It is seen from this study that this statis-

-

tic does Rrot perform well in linear time series models. The modi-
fied portmanteau statistics and t‘he cumulative periodogram (C’UP) test
commonly used  in test?g for whiteness are alsovexa.mined. Iji the in-
vestigation, the AR model, the MA model and the FARMA(0,80) were
used in a simulation to determine which test statiftic perform best.

The CUP test is seen to perform better than either of the nmodified ‘

portmanfeau statistics in the ARMA and FARMA models.
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CHAPTER 2

MODEL SELECTION USING AIC AND BIC

2.1 INTRODUCTION

Consider a zero mean. stationary time series {z,; ¢ = 1,2,...}.
An autoregressive model of order k for this series, denoted by AR(k),

is defined by

ze = Oy (K)zgoy ~ -+ Sp{k)zy_x + aq, k>1, (2.1)

~>

where ¢,(k), s =1,2,...,k are real parameters {0 bev eétimated. For
stationarity, it is required that the roots of ¢(B) = O are less than
unity, where ¢(B) = ¢i{k)B -~ -  — ¢x(k)B* and whé;e B is the back-

ward shift operator such that B%z, = z_,. The sequence {a;; t =
< Vi ' »

1,2,...} "are assunted to be independent, idensically and normally dis-

2 .
a’ *

tributed with mean zero and variance o

Let {& (k); s

1,2,...,k} denote the set of estimated parame- .

ters of an AR(k) model based on n observations z,,...,z, and assume

that k& is bounded above by'K. The parameters in (2.I) can be esti- )
, ' ' : (

mated by solving the Yule-Walker equations: .

_ k

= &= ddk)e, ., J=1,2,... .k,

) 1=1 : i

where

n
Cm = *leﬂw-lzjzt-m m ? 0
C-m - m<O.




*Then an estimator of the variance of a¢ is given by,

EHOEEED DI R NG PR N PARS LN X )

t=K+1

There exist several model selection criteria.  Akaike {1969, 1970)

developed the Final Prediction Error (FPE) which is defined by

"*")ag(k), k=01,... K. e Y

-

FPE(k) = (

. n-k

where &2(k) is as defined in (2.2). In this prOcedl;xre, the model is
identified -as an AR(k) if FPE is minimized at k, for 0 < k < K.
If the true model is an AR(k), then FPE(h) is an unbiased estimate
of the one-step prediction error variance, o3{1 + h/n}, provideci that
h >k  For h <k, on the other hand, 53{h) >> 0. Thus use of the
FPE in model selection achieves a balance between ‘model adequacy
(63(h) = ag)l and model parsimony {A should be as s‘ma_ll a.n possible
wiAtho;n. viol‘ating model adequacy).

Perhaps the most widely used  selection criterion is the Akaike In-

formation Criterion (AIC) (Akaike 1973, 1974) defined by .

AIC(k) = -2 log(maximum likelihood) + 2k
. . (2.4)
= nlog{6] (k)} + 2k.
The model with minimum. AIC(k)'.is sgletted for 0 < k € K. The
minimum AIC model \Ha.s‘the m‘a.xi'tnum estimated entropy: Since
log FPE(k) . = n~ 'AIC(k} + O(1/n?), the asymptotic behaviour of

these two criteria is identical. In practice, the AIC criterion has been

widely used in determining the order of a model. However, this crite-

rion has been shown- by .Shibata (1976)'m8' subsequently by Woodroofe




-

(1982) to be inconsistent in nested modeiling situations. It is incon-
sistent in the sense that there is a nonszero probability of seiecting an
order that is higher than the true‘order_._- D:xong (1984) s;tudiéd the
AIC from the point of view of ranking and seiection procedures.
Independently, Akaike (1978, 1979) and Sc_hwarz (1978). proposed
another selection-criter_ion based on Bayesian considerations. The

Bayesian Information Criterion (BIC) is given by
BIC(k) = nlog{é3(k)} + klog{n), ‘ (2.3)

and the mode} with minimem BIC(k), 0 < k& < K is selected. The

minimum BIC model has the greatest posterior probability.

Other criteria have also been proposed. = Parzen (1974) suggested

t;l; é:riterion Autoregressive Tx:ansfer Function (CAT) which is also in-
consistent in the nested situation. Hannan and Quinn_(1979)rproposed
‘a. ;tronghr consistent criterion.  This cr‘iterion .‘is obtained by feplac—
ing 2k m (2.4) by 2kcloglog(n) where ¢ > 1. - The a.symptotfc rela-
tionships between these criteria can be found in Priestley (1981, pp. ’
372-376). - Some comments or; A;IC and BIC were.given in the paper

.

. , - N
by Stone (1979). Stone (1977) discussed the asymptotic relationship -

between AIC and cross-validation. , ) B
In t:hié chapter, the performance of AIC and BIC is of particu-
lar. interest. Section' 2.2 considers the sgall sample ﬁrop’er.ﬁes of each
criterion. A "comparison between tl':e criteria Is discussed .ba.sed 6n
- the likelihood ‘ratio . teat statistic for the pt;o sample problem; Sec-

tion 2.3 discusses the risk in using AIC and BIC in the two sampl€

.~




\

-’

problem. The empirical risk for AIC and BIC in the time series con-
text is given in section 2.4. A simulation experiment was cartied out
for the autoregressive processes. In section 2.5, the asymptotic distri-
L

bution of model selection using the AIC is derived. The derivation is
based on the likelihood ratio test statistic. Section 2.6 ciiscusses an

application of. the result of section 2.5 to the periodic autoregressive

model.
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22  FINITE SAMPLE COMPARISON OF AIC AND BIC
FOR THE TWO SAMPLE PROBLEM

-~

Let £ = {z,,...,za} and ¥ = {y1,....¥n} denote two ra.ndom
samples of ’size n. Suppose that two models are available. In model

A, the two random samples are assumed to be independent identically

normally distributed with common mean, u, and common variance, oZ.

The maximum likelihood estimators of u and o2,

————— -

denoted by. i. and

&2, are respectively,

Hi
+
<|

T
»
Il

and
- (S e o Ju-w)

In model! B, the random sa.mples‘a.re assumed to be distributed nor-

mally with different means, 4. and uy, and common variance, 3.

Let the corresponding maximum likelihood estimators be denoted by

Bz, By ‘and &g. These estimators are,

®
"

i
vHI

®
«¢

i
@l

and . '
3 ﬁ_ﬁ{Z(zi -7)? + E(!f.‘ - F)z}-

Suppose the followmg hypothem are of interest: Hy : p =

4

My versus H; : u, # py and denote the likelihood ratio test statistic’

'




by A. Then A is defined as follows:

A‘— supLa
T supLp -

¢3 -
(1+ 2(n-—l)) ’

where suplL . denotes the supremum of the likelihood function under

Q
o

o,

model A; suplLp is similarly defined a.;ld

E-9° ‘

(S -7 + Sl - 9)7) /200 - 1)

t2=2
2

It is well-known ‘that t has the Student’s t distribution with 2(n — 1)
degrees of freedom.

Both the AIC and BIC are commonly used for model discrimi-
nation In time series; The large sample properties of the AIC are
known for aﬁ;oregrgssive madels (Shib;ta, 1976).‘ but little is known
about its properties in small samples. This is also true for the BIC.
’ He.nce, it is of interest to i.nvestiga.te the small sample properties of
these criteria.

Case 1. If model A is the true model, then

Pr{AICA < AICg | A}, | (2.6)

is the probability that the AIC will select model A when model A is

» -
the true model. From the deﬂni}ion of *t AIC given in equation (2.4),




12
(2.8) becomes,
Pr{2nlog &3 + ¢ < 2nlog 62 + 6}
= Pr{2nlog(f—;\\) < 2}
%8
5 1 '
= Pr{}-g— < exp(;)}
t? 1
—— P + —
r{l 2(r - 1) p(n)}
1
=Pr{t2$2(n—1)[exp(—)—-lj}. (2.7)
n .
Note that,
nlinéo 2(n - 1)(exp(1/ri) - 1) =2 S~ o
It follows that for large n, the probability of/select'mg the correct \/
model (A in the present case) is Pr{Z? < 2} =~ 0.843, where Z is a _,'
standard normal variable. Hence the AIC is inconsistent for large n.

This agrees with the result of Shibata (1976}.fer—AR{p) models.

} Now for the BIC criffrion, an equation similar to (2.6) can be

* ~

given.

-

Pr{BIC, < BICp | A}

—

= Pr{2nlog 43 + 2logn < 2n Igg 33 + 3log n}

-




! log n
- 2 - 1} -2 ) -
- Pr{t < 2n I)LexP( = ) 1]} ‘ (2.8)
Equation (2.8) gives the probability of the EIC sélecting model ‘A
when model A is the true model. It follows from (2.8) that this

probhability is one for large n since,

Iim 2(n-1){exp(l°gn) —1} = 00. o

n— o0

Hence the BIC is consistent.

Case 2. I model B is ‘the true model, then it. can be easily shown

as in (2.7) and (2.8) that. if AIC is used f6r model selection, then

Pr{AIC, < AICs | B}

*

- gr{,"(%v'\/g)‘ < 3{n - 1){exp($) - i] },_ (2.9)

where t’ is the noncentral 't-dl"tribut'mn with 2(n — 1)} degrees of free-

dom and the noncentrality parameter is given as (n83/320%)V/3; 6, = ]

~#z — 4y Simildfly, if BIC is used for model selectioh, then
Pr{mcA < BICg IB}_

- -

S e




. e

[4

¢

From equations {2.7) to (2.10), the exact probabilities for the AIC

e

and BIC can be tabulated. Table 2.1 gives the probability of select-
ing model A for various combinations of n and 6,. The IMSL sub-
routine named MDTN was used to calculate the probabilities of the
noncentral-t distribdtion. This table shows that when 6, = 0 and

n >'5, AlIC has lower probability of selecting model A than the BIC;
however, for n < 5, the probability of BIC selecting model A is lower
than the AIC. As n increases, both.AIC and BIC attain their asymp-
totic walues. When #, > 0, the BIC has higher probability of selecting
model A r:han the AIC, indicating that the BIC has a smaller chance
of selecting the true mode! than theNAIC. For n < 5, the AIC pro-
vid‘es higher probability than the BIC. As 8, increases, it is seen that
the probabilities decrease and that each criterion selects the true model

-

virtually every tmme.

14
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2.3 THE RISK OF AIC AND BIC

The exact probabilities derived in section 2 can be used to deter-
mine which criterion provides the smaller risk.

Consider again the situation where two random samples, r and vy,
each of size n are available. In model A, & = 0 was hypothesized
where 8, = y; —u,. -In model B, 6, # 0 was hypothesized. Let 6 be

the estgmator of &,. Then the maximum likelihood estimators are as

follows:
’ hAr = T, if made! B is selected,

by =¥ if model B is selected,

I~y
2

“z:[‘yz

if model A is selected.

.

Hence, § = T — § if model B is selected and § = 0 if mode! A is

selected.
.

The mean square error (MSE) of the estimator, R(8), is defined

as
R(6) = ({6 — 8,)%)
={(6 —8,)* | AYPa +((6-— 8,)* | B)Pg, (2.11)
where (-) d_ehotn the mathematical expectation. The right hand side -

of (2.11) is a conditional statement, the expectation in the first term

3

16




17

.denotes the MSE conditional on model A being selected-and P, de-
notes the probability that model A is selected. Similarly, the second
term is interpreted as the MSE conditional on model B being selected
and Pg demotes the probability that model B is selected. Note that
R(é) is also the risk of # under squared error loss function, hence the
two terms- can be used interchangeably. From here on, it will be ref-
er‘ed to as the risk. The expectations in (2.11) are:

(6 —6.)° A =82

and

(6 - 6,)2  B) -

it
g
i
|
e
|
@
o
g
)
-

p— -

The general expression of (2.11) is then given by,

~ 2 202
R(6) = 6Py, + — Pg. ) (2.12)
¢ n :
Thus (2.12) provides the risk of the estimator 4 depending—on the se- .

»
i

lection criterion used since P, and Ppg are obtained depending on the

criterion used. Note that R(.é) given in (2.12) is equivalent (see ap-’
pendix A2.1) to the risk function f-Z(fAA,ﬁg) given by
ﬁ(ﬁxvﬁy) = ((I:z - F‘z)z + (ﬁy." “y)2>'_

The point of intersection for R(§) when using AIC and BIC can

be obtained by equating R(§ | A) and R(8 | B) where R( ['A) denotes



the risk of § when the AIC is used for model selection and R(é;

B)

denotes the risk of § when BIC is used. Solving this equation imme-

diately gives 8, = 20%,n. -

~

The values of the R(é) were obtained and are- plotted in Figures

2.1 to 2.4 with plots pertaining to different n's, » = 5, 10, 20, 30,

with values of 8, ranging from O to 2; o? was set at 1.0. These fig-

ures clearly indicate neither criterion dominates the other. For n

> 5

and 8, less than 20?/n, the BIC is seen to give smaller risk, other-

wise,, BIC provides larger risk. However, for n < 5 and §, < 20?%/n,

the AIC gives smaller risk, otherwise, AIC gives larger risk. These

figures also show that the risk decreases as sample size is increased

and that as 8, becames large, both criteria have the same risk.

To examine the behaviour when #, = 0, consider the asymptotic

risk of & given " by,

. , 202
Rasy (616, =0) = lim {n{6?Ps + ~—Ps}}.
.n

1= OO

-

Suppose that the AIC is used for model selection- then,

R,,, {0 {8, =0) = 20° lm Pr(AICg < AIC, |6, = 0)

n—oo

= 2ozc,

where ¢ is some constant, ¢ >0. If 8, =0 # 0,

(2.13)




Rayy (61 6. # 0) = 62 lim {nPr(‘AICA <AICs 16, = 0)}
N — 0O -
~20% lim {1 - Pr(AIC, < AICp i 6, = a)}
n— o0 .
* | = 20°%. ‘ ' Co(2.14)
In the case of BIC, if 6, =0,

Resy(§ 6. =0) = 20 lim Pr(BICs < BIC, ' 6, = 0)

n—oo

- i}

=0, : Y (2.15)

3

and if 6, =8 # 0,

Raay(é 16, # O) = 0% lm nPl‘(BICA < BICB‘”O - 0)}

L — OO

n—oo

+20% lim {1 - Pr(BIC. < BICs |4, = 6)}

.

= 20%.. ‘ | - {2.18)

Note that nPr{AIC, < AICg |8, # 0) and nPr(BIC, < BICg | 8, # 0)
ate both zero in the limit as ‘n — oo. This'rcan be shown by center-

ing the noncentral-t (Johnson and Kotz, 1970, p. 204) with the non-

centrality parameter and by applying the Chebyshev’s inequality.

19
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2.4 EMPIRICAL MEAN SQUARE ERROR OF AIC AND

. BIC FOR AUTOREGRESSIVE PROCESSES

Thus far our investigations have been restricted to the two sam-
ple problem, byt at least some idea of how the two criteria behave in
small samples is now available. How they behave in small samples

when observations are correlated is a difficult problem. Tlii_s section

preseants some empirical evidence regarding the risks of AIC ‘and BIC

in large samples.
An AR(1) time series with mean zero and innovation variance

03 = 1.0 was generated using the algorithm described in 'McI_,eod ,and -

'Hipel'(1978). - The "random number generator Super Duper (Marsaglia,

-~
-

1976), in conjunction with the Box-Mueller method, was used to gen-

/

erate the NID(0,1) variates. The sample size, n, wag. set success:ively
at 50, 1Q0, 200 agd ;he autoregressive parameter, ¢, was _s;zt 'suCces-
A - R
sively at 0.0, 0.1, +0.2, +0.3, +0.4, *0.5, *0.6, £0.7, 0.8, :tQ.Q.
For jeach of the 10,000 reptications, autoi'egressions- of vé.rious orders ~

_were selected according to t-he two criteria, AIC and BIC. The! or-

- ~

der of the ﬁ&ted ‘autoregxesslon has an upper bound K, where 'K was
set successwei’y as 5 10, 15. The mean square error of the one-step
ahead farecast-(MSE)\, in each réplication is calculated. The MSE is

given by, .
; . 1d | 4 R . N
‘ . MSE = Zzéiéj"flt—)lv . (217) .

1=0 )-0

~

where p m the order of the fitted antoregresaxon. T = ¢* and @ ls )

3

the euuntte of ¢. of an AR(p) process ‘and 4’0 —I For the dera-- . °



tion of MSE, refer to appendix A2.2. - It may also be shown that the

average MSE is equivalent to the risk . finction,

(ﬁ)—((a BYVIHE -~ 6)

\ !

where VB is the covariance matrix of ﬁ;

X (;?,vél,, - éx) if the .mean is estimated,
8= ¢ '
. ' (Jb,,...,éx) if the mean is assumed known.
4 . - R -
If an AR(p) with. p < K is selected, then ép.y = - = ¢x =0.

Figures 2.5 to 2.13 contain different graphs .of t‘he-‘ average MSE.
In each ﬁg-ure, sli.ghtly 'diﬁ'er‘enlt .beha.viour of the MSE is shown for
various n or K These figures show that as. the sample size \in-
cre;se;;, the average MSE decreases and the difference in average MSE
between AIC and BIC, becomes small. H;'Jwever for .all n, the BXC
appears to dominate the AIC unlike the situa.tior; in the two sam:
ple problem where ‘, for some para.x.néter value, §,, the AIC was better.
These ﬁgures .a‘lso show that. if K is set too large, then AIC yields a
Iarger MSE However this is not the case for the BPC w'hich rémains
approximately the same level~for all K: Thxs is perhaps due to the
inconsistency properfy of the .A-IC. The heading IFMEAN=1 indicates
that thg sa;xx;ien mean of the tlme series is subtracted while” calculat:ng
the sample autocor‘rlelamon functions. ' For n = 50, thede figures show
some xabnprmal’ beh#ﬂéur at ¢ Qfg ‘that is, it shqu h,xgh7r MSE
than do the rebt of the parametéﬂ :

’Fsgures 21‘4 to 2;22 are bamcally the same as figures 2.5 to 2.13

with t.he exceptxbn thq.t the sa.mple mean of the time series is not

Lo

25



)

subtract;d (IFMEAN=0) while_calculating the sample autocorrelatian
f'unctions; this is equivalent to assuming either the mecan is zero or the
true mean is known and has been subtracted from the series. The
latter figures are more symmetric and easier to interpret. The inter- -

pretation of these plots are similar to the above but they also illus-

trate the importance of the sample mean. .

.26
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2.5 ASYMPTOTIC DISTRIBUTION OF MODEL SELECTION

WITH THE AIC

Consider a realization {z;,23,...,z.} having a' distribution f{(-;6),
where the pa.rameter'vector = (6,,62,...,0k4x,) is unknown. Let 0
represent the k+k, dimensional space of 8, 0 C R*¥+%  and let 1, 0,
where (1, = {8 € N1 : 8,=0,J+1§:§k+k°}._To test the null
‘hypothesis H, : 8 € 1, versus the alternative hypethesis Hnp : 6 € Q,

~—
the likelihood ratic test, A, defined earlier is,

where Ln is the maximized likelihood funct'xor; under the null hypoth-
esis arzd Lo is the maximized likelthood function under the alternative.
A weIl.~known result of Wilks (1963) is that, under a number of-regu-
larity conditions, for a random sample of size ’n, —2log A is asymptot-
ically distributed as x? with (k + k, — j) degrees of freedom if H, is
true. If H, is false, then A — 0 as n — oo and so the test is consis-
tent. In the context .of time series models, Whittle (1961) ha.s.shown
'that, under fairly general reggla,rity conditions which include, for exam-
ple, the ARMA(p,q) case, lhe likelihood ratio test is valid for nested
models.

Assume that the tegularity conditions of Whittle (1961) are satis-
fied. Let the true model consists of k, parameters, § € (1, .and let

the alternative model be the super-model consisting of (h + &,) param-

eters. Then the AIC for the model with A extra parameters may be
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written,

AlIC, = —2log(maximum {ikelihoodj + 2R ~const.., h=0,.. . k. (2.18)
T For some suitable choice of constant and for large n,

AIC, = 2]log Lg,, —logLln,_ ..1+2~h .

- =2h-x3, (2.19)

where L is the maximizeqd likelihood function with respect to the ap-

propriate parameter space. Consider fitting nested models with a pa-

rameter of dimension k, +h, A =0,1,...,k. Let h be a random vari-

-

able which takes on the value h, the number of extra parameters of -

-

“"the selected model using the AIC criterion. Then the event h =k is
equivalént to
AlIC, = min(O,AICl,...,AICg}. (2.20)

Let

J

, s, = > (2~ x.),

=1

where X, are distributed independéntly as a x? random variable. -

~
- -

4. Puh=h) =Pr(min(S, 51,0 5) = 5i)

Hence,

= P_r(So —Sp>0,8 -5, >0,.:.,5,1 — Sp >0,

-SpH.l—Sh)O,...,Sk—.S-‘h)O),_ - o (2.21)
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where So = 0. For ; < h,
] A
S, -Sn=(20-3 %)~ (26- 3 x,)
=1 . 1=1
= Q(] - h) RS Z X,,
1=)+1
and if ; > A,
3 A
S,~Sn=(2-Y x)- (-3 x,)
1=1 =1
, .
=2(y) - k) - Z X,.
- t=h+1

Hence, from the independence of X,, (2.21) becomes,

Pr(h = h) = Pr(So = Sx > 0,....Sh_y = Sy > 0)

Let

]

Then (2.22) becomes, -

-

Pr(h = k) = Pr

Pr

) xpr(sh+1--sh>ol...,sk-sh>o). (2.22)

Ar = Sh_y — Sh
Ap = Sp ~ Sy
An “Alh+_l = 5-}:4-1‘ — Sh
. ) —
An = Ax = Sy ~ Sh. . -
- ~— =
(Am >0, 1 £ m < h)
;<'P'r(A,..-A,,,'>.0-‘ h+1<mc<k)
(Am >0, 1 <m<h)
X Pr(Am — Ax <0, A+ 1< m<k). (2.23) -




Before stating the main theorem, the following lemma is useful in the
proof of the theorem. The proof of the lemma is given by Spitzer

(1956).

Lemma. Let z,,....z, be identically, independently distributed ran-

dom variables and s, = z;+---+zx, 1 <k <n. Then the probabilities

\

pn = Pr(s, >&l,...,s,1 >0) and ¢, = Pr{s; €0,....5, €£0)

can be represented as

and ‘
n 1 i
- 1 — a‘
1=1 :
where a, = Pr(s, > 0), ¢ = 1,...,n and where the summation }_
extends over all n—tuples (ry,.:.,r,) of nonnegative -integers with the

property ry +2r3 + - + nr, = n.

Now the main theorem can be stated.

-

Theorem 1. The distribution of A as n — oo is,
Pr(h = h) = prqr—n 0< h <k, (2.24)

where p;, ¢, are as defined in the lemma.

Proof. Suppose that (1*t*- is the k + k, parameter space. The AIC

for the model with A extra parameters is given in (2.18). If the true




model consists of k, p#rameters, then ‘us'mg the. AIC to select a model

with A extra parameters and for some appropriate choice of constant,
~AIC, = 2[log Lg,, - logLq, ..]+ 2A. (2.25)

By the large sample result of the likelihood ratio test, equation (2.25) -
"can be written as,

AIC, = 2k - x2.

Let h be defined as b;afore and let S, = 3 1(2 - X,), where X, are
chi-square random Yariables each with one degree of freedoni\The
probability that AIC selects a ‘mod_el with h extra parameters is given
by,

Pr(h = h} = Pr(AIC, = min(0, AIC,,..., AIC,)).

‘The result now follows from equations (2.21) to (2.23) and the lemma.

Remark 1. This theorem is seen ta be a generalization of the results

—_—

of Shibata (1976). -

Theorem 1 shows that the probability of selecting h extra parameters
is asymptotically the same for all models under. very general condi-

-

tions.

Remark 2. Letting k = 1, equation (2.23) with A = 0 is equivalent
to equation (2.6) as ni — co. That is, Pr{h = 0} .= 0.843 in this
situation.

As an illustration of Theorem 1, consider .the fractional ARMA

models of Li and McLeod (1986). If the choice is between an

49




ARMA(p,q) model and an ARMA(p,¢) with fractional differencing and
if the true model is just the ARMA(p,q) model,*the AIC will select

the correct model about 84% of the time when n is- large.

Remark 3. In the \nes,!.‘ed mode_lling situa'tio“i"x,. h, does not converge to
zero in probability a..s<€he sar;xple size, n, becomes large and hence -the
AIC may be considered inconsistent. However, while the AIC may se-
lect a non-parsimonious .model it will never.select an inadequate model
“r'hen n is large. Thig property follows.. from the consistency of the

tikelihood rajio xe;t. The consistency property was illustrated in sec-

tien 2.2 w'h.'e it was found that P, —,0 as n — oo when 8, # 0,

' ~

L3
- »
- ~
~ -
)
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26  PERIODIC AUTOREGRESSIVE MODEL SELECTION

In this section, the application of Theorem 1 to periodic autore-
gressive models is décribed. | |

Time series data containing seasonal periods often arise in prac-
tice.  Several techniques for ‘choosing an appropriate stochastic model
have been proposed. In particular, the Periodic Autoregresiive (PAR)
model is— of interest here.  Noakes et al. (1985) applied this model
i to riverflow time series.
Consider {z(t), t=1,2,...}, to be a realization of a seasonal time

series with period s. The index ¢ can, be viewed as a function of

the year and .the season. Hence ¢t can be expressed as t = (T —1l)s+m
where T denotes thevﬂi; year, -T = 1,2,"..,N and m denotes the mth -
season, m = 1,2,...,8s. " Then the proi:gss 2(-) is said to be a periodic
autoregression of period s and qrder (p,,-:..b,) if for all integers ¢,
P
* 2(t) + D als)z(t - j) = a(t) |
# 1=1

. 1.
- - .

where {a{t)} are uncorrelated with (a(t)) = 0 a.n;i' (a?(t)) = o}; and .
Pe = Peesy 00 = 0fy, and @¢(J) = aess(0}s 7 = 1,2,...,pr.  The sub-
script ¢ obeys modulo s arithmetic. , It is also assumed that z(:) is a
zero mean stationary time series. The covariance kernel is then de-

fined as

] R(k,t).= (z-(k)z(t)) = R(k + s,t + 8).

Let z(¢t) be a s-dimensional vector of an AR(p) process, then z(t)




)

is represented by
P
z(6) + D A()z(t - 5) = u(2),
J=1
where {u(t)} are uncorrelated with mean zero and cov(u(t)) =3 . De-

fine the jth .coordinate of z(t) as follows:
z;(t) = z({t — 1)s + j).

Thus the PAR model is a special case of the multivariate AR process.

Pagano (1978) demonstrated the relationship between z{:) and z(:).

One way of estimating the parameters of the periodic autoregres-

sion model, an(;) and o, 7= fffz,...,p,,., m=12,...,8, is by solv-

ing the modified Yule-Walker equations:

P

R(m,m~v) + Z am(J)R(m~j,m—v) = 6‘,00:‘;, v>0 m=12,...,9,
)=1 L ~

(2.26)

where 8,0 is the kronecker deita and R(‘) in (2.26) is the covariance

kernel defined above. In practice, one replaces R(-) in (2-_26) by -
A :

1 - . .
R,(m,v) = ;?;:lz(m ?+-Ja)z(v +Js?
where h = [n — max(m,v)/s]. Pagano (1978) has also shown that if

z(-) is Gaussian, the utimates,’ am = (@m(1),...,&mfem)),

m = 1,‘2,... ,s for am = (am(l),... ,am(p,,,))',_obtaihed ’b)} this“me;.hod
are consis;enf and the 'p'ara.meters can be est'una.tg,'d .ind?pendgntly of
the model of any other season. _ Furt‘hermbm, the information ma.tri;(_
is block diagonal;_ hence the estimated paraineters are -htatistit—:a._lly in-

dependent of any other season and one. can analyze each season sepa-

" rately. ) P
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The "idea of this pe_fibdic auto'regrm';v‘e model can be extended to
the périodic ;utoregressive—movigg avé:age' (PARMA) model (see Tiao
~ and erupe.' 1’980): However, estimating the parameters can be tedious
. due to nonl'mearitg;in‘ the parameters (Vecchia, 1983). ' -
In practice, the -'order of autozegression, Pm, may vary ffom sea-
‘sen fo se;son: ~"The order of the AR model of each season, pm, -
' m =.1.2,...,&, cal;_x be- determined. using the AIC (see Sakai, 1982, for

-the definition of AIC). The AIC for season m is given. by )
*AIC(pm) = nlog 62 {(pm) +2Pm, - m=1,2,...,3

where 53(pm) is the estimator- of 0Z(pm), the res“ayal variance of sea-
son m of order p,. Ornce the order of the AR model is determined

for .each season, the-final AIC value for the PAR model becomes:

'AIC(pl‘,...,p,)‘—.—- ZAIC(p,) .

v=i

-
-

"Let hm be a tandom variable that the AIC selects a model with

hy, extra pa.farnet.ers for- season m and let the parameter space for

om +km  Then we have the following.

season m be Nk

Corollary. For season m of a periodic autoregression, the distribution
' -

of h,, as N — oo is given by, ' \\

} Pr(i‘f" = h"‘) = PR Gk —hm 0 < hm < km,

where po = go = 1, p; and ¢, are defined in the lemma in section 2.5

with a, = Pr(x? > 2i). N

< .
Proof. The proof follows from Theorem 1 by letting N tend to infin-

ity iunstead of n.

N
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27 CONCLUSION | .

It is shown that for the two smple problem, the BIC is not
uniformly .bet‘ter than (he AIC for a quadratic loss function although N
t.he BIC, ift general, sefects the true model more frequently than the
AIC. This investigation also suggest that BIC tends to select models
with fewer p;arame‘ters (Table 2.1). Although this investigation is ’only
based on the two sample situation, it has provided useful information
on the behawiour of these criteria in the small sample situation. For
t:.he AR model, empirical results showed BIC dominates the AIC.
This simulation study has also indicated that one should not set an
upper bound, K, too large. The larger K is, the larger the expected
mean square error of forecast.

The asymptotic distrit;ution for the m;)del selected by the AIC
was also derived. This derivation uses ihe large sample praperties of

~—

the likelihood ratio test. It is seen that this derivation is simpler and

more general than that of Shibata (1976).
.
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ABPENDIX A2.1

”

' Derivation of R{i.,j,) 1N section 2.3

»

Let 6, = u, — u, where u, and p, denqte the true mean v‘glua
of z and y respectively and denote their corresponding maximum likeli-
hood estimators by 4. and j,. Depending on the model selected, the

estimators are giveﬁ follows:

p: =% if model B is setected, (A2.1)
Sy =;§ if model B is selected, . (A2.2)
fz = hy = 1:-;- g if model A is selected. (A2.3)

Now, the risk fungtion of 4, and A4, is given by,

R(ﬁz,ﬁy) = ((ﬁ: - .;J‘z)‘z + (ﬁcy —'#y)z)

= <(ﬁ-x - F‘&)? + (ﬁy - “y)') i A>PA

.

+ (s = #a)® + (Ay — 1y)* | B)Po. (A2.4)

" Equation (A2.4) has an interpretation similar to equation (2.11) in sec-

tion 2.3. If model A is selected, then using (A2.3},

(e = a0+ By~ 1Ay = (T ) (BT )y

S 2
,/\'/ - '<= 2 ﬁ + 3_2_)
.o BRI ™ y
2 2 ) .
/ . = g£+g~. ‘ ' ' (12'5)'
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and

Bias = M2 By _ 28z _ By = Hs

: _ T 2 2 2

If model B is selected, then using (A2.1} and (A2.2),

. 207
(B2 = we)® = (By — 1) | B) = —. (A2.6)

L3

Hence, from (A2.5) and (A2.6), the general expression for the risk

function is,

. . 93 cr.z 20%
. Rz, ay) = (?a :)PA + —Pa
2 2 2
4 o
= <P+ —Pg + —
2 n n

= 2R(5) + ¢onstant,

where R{6) is as defined in secfion 2.3,




\ \
APPENDIX A2.2

Derivation of the MSE in equation (2.17)

~

The MSE denotes the expected mean square of the’ one-step pre-

-

diction error when an AR(p) model is used to forecast.
Consider the time series, z;,...,2,, which is assumed to be gener-

ated by the AR(1) model

-

2t = @2~ T+ Gy,
- .

where a; ~ NID(0,02). o Then if an A.R:(p) with fitted parameters -

o—;,...,é.p is used to make the one-step ahead forecasts, the prediction

error for the forecast of 2z, is

Then, = ' _ ) ‘ \‘

m+n

1
MSE = lim — Y (88, 12,....24) .

m—oca m

te=n+l
m+n .
) 1 - - r 3
= lim — ((ze = Srzec1 — - = Ppze—p) | 21,...,25)
m—Qo0 17
. f=n+1 . - )

P F . .
'='z: Z'¢|¢) RIRES ]

-
i
-]

L]
]
(=]

4 P
= Z Z $€$;¢‘ ‘—’J l"7 >
/‘\ 1=0 ymO

where 5 = 03/(1 — ¢3).
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CHAPTER 3 s

-~

-

0] o S ON CONSIS NT

MA MODE

3.1 INTRODUCTION"

Given the time series {z;? > 1}, the mixed autoregressive-moving
average model of order p and ¢ respectively, ARMA(p,q), is defined to

be
8(B)z: = 0(B)ay; S ERY

where ¢(B) is as defined in chapter 2; 8(B) = 1—-8 B—---—8 BY; {a:}
are assumed te be mdependent. 1dent1cally and normally distributed
with mean zero- and variance ,_vp The characteristic - roots of ¢(B) =0
and §(B) = 0 -are &ssurq;:d' to lie outgjhicglgu“thej unit circle and it is fur-
ther assumed that therevare no co:‘nm‘on roots. It is further assyphed
that the .tirﬁ; series has zero ri;ean, “e., ‘(;,‘). = 0, where () denotes

mathematical expectation.

-

Consider a realization of n observations. Let 9 = (¢1,...,¢P)'

-

md 4= (31.---,9q)'. For a pure autoregrusxon of order p, denoted

by AR(p), The vector of parameters ¢ can be determined by solvmg

W Yule-Walker equation

c « . .
Pod=p,, ' (3.2)



Then @, the YuleAWalker estimate, can be obtained- from (3.2) by sim-

ply replacing px .by its estimate r,, the sample autocortelation function

defined by

Ck
Tek = —,
- Co

R4

\ . S | n-k
where ¢, =n Zt:—Ll 2304k -

Hannan (1975) showed that in the ARMA(p, q) model the autore-

gressive parameters, ‘¢;,...,%,, estimated by solving

P S :
S b, =0, i=g+l....9+p T (38)
1 =0 . . - - .

- . - -

vd_'ngré 4'50 ="—-1, are étroﬁgly ‘consistent.. - As pointed “out by Tsay and
Tiao (1984), the estimates 5,,....8,, are asymptoticaﬂyequivﬁlent to

the iterative ordinary least squares estimates. ' In _the next section, the

asymptotic efficiency of é, in the ARMA(1,1) model is derived,




3.2 EFFICIENCY OF ¢,

»

_The ARMA(p,q) model in (3.1) can be . written as
- @12 — = d’plt-p =a; =018y — -+ — 0qat—q-

If one multiplies by 2z,_x and takes" exﬁected values, one obtains the

following:

Tk — @1 Vk-1 — - "_¢p'7k-p = '.7xa(k) - 917:0(" - 1) - —Bq'Tla(k —9)» (3-4)

where 7x~ is the ceovariance function between 'the‘seria z, and z;,_, de-
fined by x = (z¢2e—x), and ;a4 (k) i{ the cross covariance func_t‘ion be-
tween z, and a;, and is defined by 7v,.(k) = (ze_xas). Ugon dividing
by -0, equation (3.4) can be written,

Pr — B1Pr—1 — - — JpPr-p =0, -k>qg+1.

The estimate ¢ is obtained by solving this equation and by replacing
px by its sample estimate r;.

For the ARMA(1,1) model,

" - T2 c3

¢ = — = —

- r Cl._

Expanding in Taylor series ap to first order terms yields:

y 1 5ty
$r=¢ +(c2-7) - ——(e1 —n)5-
N S 51

2

~ »

It is well known (Mann and Wald, i943) that this expansion ignores

- terms of order Q,(l[n). Then

-

V(¢l) ‘——V(Cg) + : Viey) - %é—-eov(c;, c;) (3.5)

1




It is easily shown that (see appendix A3.1 and A3.2}), apart from

terms -O(1/n?),

l
ot

n

Z 'h .+'7t a—l7t+1—c}

1
Vi) = :;

uM

2 3
{70 + 2¢1’70’7‘i + 7+ N _‘7;¥ 1+ ¢>§)} . (3.6)

3|

n-2n-2 -

ZZ{% ,+‘7: - 2'7!1-1—:}“"’

tx=1 s}
1 3 2k P ;
— i ] R }

‘ -

L 1E
COV(Cx, €2) = —?‘Z Z{%-a’h—a—l * V-e-2M41-4}

and

2 ¢ \
= 2ot emtean (v ; )b e

" If one substitutes equations (3.6), (3.7) and (3.8) .into (3.5) one may

obtain- the following:

- 1 {1 2 4¢,
_ { +2¢1 é1 + 2} ,
p1 Pt

where _
- : _ o, = (L= ¢160,)(¢1 - 6,)
l — .
1+ 62 - 24,0,

Let ¢; denote t‘he maximum likelihood estimate of ¢, Box and
Jenkins (1976, p. 242) give the asymptotic variance of ¢, as follows

- . — d 3 _ 43
V(g = LRl )




Hence the asymptotic efficiency of 51 relative to &1 is

(_x)
(®i)

<
-

Eff =

<

- p}(1 - ¢:161)7(1 - ¢%) :
(61— 61)%(20} ~ 4p191 + 8] + 1) :

T ) "It follows that,

lim Eff = 1.
6[ —0 L2

Hence ¢, is as efficient as ¢; when 6, is close to zero. The asymp-
totic efficiency for various models is presented in Table 3.1. This ta-
ble shows that 4.51 is indeed as efﬁcien? as the maximum likelihood .
estimator v-lhen §, is near zero, but that the efficiency is very poor

when both ¢; and @, are close to negative one or when both ¢, and

@, are close to positive one.




0.961

TABLE 3.1
.
Asymptotic efficiency of &, relative to &1
8, C A
¢ 090 060 -030 0.00 0.30 0.60 0.90
-0.95: 0003 0.288 0908 1.000 0983 0.961 0.944
-0.75. ' 0.012 0174 0739 1000 0919 0815 0.736
-o.sd"} 0045 0.215 0688 1.000 0846 0.652 0.516
-0.25 0107 0.290 0.696 - 1000 0.783 0510  0.340
0.00 0.204 0.389  0.731 — 0.731  0.380 ©  0.204
\3.25 0.340 0.510 0.783  1.000 0.69¢ 0.290  0.107
0.50 0516 0.652 0.846 1.000 0.688 0.215  0.045
0.7 0736 ©.815 0919  1.000 0739  0.174  B.012
0.95 0.944 6.983 1.000 0.908  0.288

0.003
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3.3 FINITE SAMPLE SIMULATION OF . AR(1} PROCESS

From Table 3.1, it is seen that when the procm/is a pure au-
tore_‘g.resvsion, qS; is fully efficient asymi:tot.ica.ily. To examine the effi-
cien::y in finite samples, AR(1) processes were simﬁ}a.t.e'd‘ with pé.ra.m-
eter ¢, -successively equal to 10.3,' +0.6, +0.9 a.nd with' sample size
n suc‘cessively equal to 50, 100, 200, 400, 800. - Th; random number
generator Super Du;ﬁer {Marsaglia, 1976), in cenjunction with the Bogc_-
Mueller method was used to- generate the N(0,1) va.na.tes For each
combination of ¢; and n, 10000 realizations were simulated to obtain
: &,,. and 54,‘, 1 =1,2,...,10000. The estimated parameters were cal-
culated as ¢, = r; and®* ¢, = r;/r; and the orres-ponai.ng sample vari-

ances of J:l and J:, were calculated as,

Sy = Z{‘ﬁn 009(¢1)}

and

1 - -
Sz = 10000 Z{‘ﬁl,; - 009('151)}3.

-~

where avg(@, = Y. ¢‘>,./10000 and avg(¢, = 3, 45,,/10000. The

" efficiency is ‘then obtamed by taking the ratio of the sample variances,

- _ . Saz-




where $? = S,, + S22Ef? — 28,,Ef and S;; is the sample covariance
between (éx,; - d”ﬂ&x)) and (&l.: - 0."9(51)-)- - -

Table 3.2 shows the simulation results with the standard errors

-

-

given in parentheses. fl‘he. table shows that 4 is quitg inefficient when
¢ is near zero la.nd has\higher efficiency ne;r +1.

Table 3.3 presents the emnpirical estimates of ¢, using &si’.imators
c‘S; and &,. The results in this table are obtained from the same
simulation experiment as in Table 3.2. From this table, it is clear

that -g;, underestimates ¢, and 431 is seen to provide a better esti-

mate. Both estimators provide close estimates’ far ¢, when n is lﬁr}&

I




&
’ o IABLE ;.2
Empirical efficiency of an AR(1) process
"Number -of replications: 10000
) @)
n  -09 -0.6 -0.3 0.3 0.6 0.9
: .80 0.615 0.159 0.001 0.000 0.121 0.547
DR - (0.041) (0.012) (0.000) (0.000) (0.009) (0.Q34)
100 0.723 0.297 0.016 0.002 0.276 0.689 .
R, (0.070) (0.030)  '{0.002) (0800)  (0.027) (0.060)
. =. © 200 0.765 0.331 .0.070 0.062 0.318 . 0.756
' (0.103)  (0.047)  (0.010)  (0.009) (0.044).  (0.097)
o ;\400 0.792 0.339 0.083 0.079  0.343 0.781
.; A ~ -(0.154) (0.067) (0.017)  (0.016) - (0.069) (0.148)
800 0.794 0.356 0.084 0.086 0.344 0.801
(0.217) * (0.100)  (0.024) (0.024) (0.097)  (0.209)
-« ~ : . .
- ‘ N \
. _ N
: v "‘,‘\
‘-.\ oA | -
i - - v
: < . l . :' .(' -
] p'\ | ‘A

0
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TABLE 33

~

’”

Empirical estimates of &, of an AR(1) process

Number of replications: 10000
-3

n : ~0.9 ~0.6 -0.3 0.3 0.6 0.9
50 o&; -0.851  -0.575  -0.298 0.257 0.531 0.793
(0.001)  (0.001)  (0.001)  (0.001) (0.001)  (0.001)

. : ~ P4
&: -0838  -0.520  -0.140 0.131 0.473 0.771
(0.001)  (0.003)  (0.057) (0.071) (0.003)  (0.001)
100 &, 0874  -0.585  —0.298 0.278 0.566 0.849
(0.001)  (0.001)  (0.001)  (0.001) {0.001)  (0.001)
¢, 0869  -0.563  -0.226 0.221 0.541 0.842
] (0.001)  (0.001)  (0.007) (0.020) (0.002) (0.001)
200 &,  -0.887  -0.594  -0.299 0.289 0.583 0.876
., {0000) (0.001) (0.001) (0.001) (0.001) ° {0.000)
&y 0885  -0.583  -0.269 . 0.255 0.572 0.873
(0.000}  (0.001)  (0.003) (0.003) (0.001) * (0.000)
40 3,  -0.894 0597 0299 0294 0591  0.888
‘ {0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)
¢ 0893 0592 . -0.285 0.278 0.586 0.887
(0.000)  (0.001)  (0.002) (o_ogz) (0.001)  (0.000)
800 ¢, -0.897 © -0.598  -0.299 0.297 0.595 0.894
=  (0.000) . (0.000) (0.000) - (0.000) (0.000) (0.000)
#0897 0596  -0.292 0.290 0.593 0.894
- (0.000) ~ (0.000) {0.001} (0.001}. (0.000) (o.‘

- , - ‘
- . ‘
.
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"3.4 CONCLUSION

An explicit expression for the asymptotic efﬁcien:y of the strongly
consistent estimator @, of &, of an ARMA(1,1) mode—l is obtained.
Although the asymptotic >eﬁ°},ci'ency i one when the moving average
puaméier is zero, the finite sample simula_t.ion results show that the
estimator 51 is not as eﬁ"xcie-nt as the maximum likelthood estimator,

51. even when the sample size is as large as 800. In particular, the

efficiency is very po'or when ¢; is near the origin.

The result of section 2 also applies to the estimator of .61 in an

ARMA(1,1) model given by,

_n(2)
ri(1)’

gl

where ri(-) denotes the inverse autocorrelation function.
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APPENDIX A3.1

‘Derivation of V{ec,) in (3.6)

-

The variance of ¢; is not given since the exact method can be
used to evaluate V(c3). Denote the cumulant operator by “cum”.

The properties of cumulants given in Brillinger (1975) are used below.

V(Cl) = cum(cl. C;)

n-1n-1

1
=< ) D eum(zezenr, Zazesa)
n

ta=l =1

n—-in-1

1 - -
=;—,—§ ) {cum(zg. Zee1s Zay Zawi)

+ cum(zy, 2z,)eum{zie1, 2as)

+cum(z,, 2,41 )cum(z:4,, z,)} . (A3.1)

Equation (A3.1} follows from the fact that (z¢) = O for all ¢t =
1,2,...,n. Note that cum(z,, z,) = 71_, where “1,, is the theoretical
autocovariance function at lag k. Also, since nc;rmality is assumed, .

all cumulants of order higher than two are zero. Hence, (A3.1) is re--

-
et

duced to

1 ) - 4
- {7!2-. + '7‘-0-1'7!4'1‘—0}' (A3.2)

. a e




- Now, the first term on the right side of (A3.2) is

nlnl n-1
BN S {zz z}

t=] o=1 t=1 t=1

1
= ;—2—{(71— 1)‘73 + 2(n —2)'712 +...+2."2‘_2}

n-1, 23 2
. = + = -2)+(n -3 +
. D n? Yo n? (n ) (n )¢l
N <
+ o 3’} : T (A3.3)

n-1,, 2 [(n-2)0 - 8" )
n? T 19! .

#3{1 = (n - 2)61" " + (n - 3)¢i "7V
) (1 - ¢%)?

(A3.4)

Equation (A3.3) 'is obtained from the fact that./:?k = ¢f"*n, k> 2

Ignoring terms with ¢7 and 1/h? in (A3.4), then

n-ln—-1
R Pt T I o [ (A3.5)
. F Y .
e n? = = {1 e])
The second term in equation (A{Z)

n-ln- ) \

ZZ"Y: -1 Tt+1v0 ) -

t=] o=} : .

//

(2 3! t=1} t=1

= Al {Z‘h 27 + Z'Yt 31+t Z'Tt—n'h n+2} -
/

s

R e ) l
L F ,?{(" =17 +2(n - 2)1073 + 2(n ~ 37 +- . 3'7.._1}




n—1‘7§+2(n—2)¢1'}°'h | )

n? n3
2 -
i‘"‘ {(n— 3) + (n —ﬂ)vﬁf + -+ éf(" ‘)} '
2.2 3(n-3)
_nZlya, 2n- 2107 26771 ) (0 - 3)(1 - ¢, )
n? ! n? n? 1 - ¢?
n- n-—38). .
_ A0 - (=367 + (n—4)ei" V| (A36)
(1= »

Now, if terms with ¢7 and 1/n? in (A3.6) are ignored, then

n—~1n-— 2 1.2
T 170 2011y
E E _ e = — +. . A3.7
n’ Tt-a—-1TVt4+1-0» n + n n(l — ¢¥) ( )
t=1 a=1 .
Combining (A3.5) and (A3.7) gives

£

1 242 - 2¢3+2
Vi) = =443 + L +~43 42 + —LL
(*1) n{"lo | 1= ¢f | T f:‘?o‘h o 4’3

v Ealit! +¢?)}

Yo + 261707
{0 17071 1_¢?

DI'-

which is equation (3.6). Equation (3.7) can be obtained similarly.

L3
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APPENDIX A3.2

Derivation &f cov(e;, ¢32) in (3.8)

A technique similar to that used in appendix A3.1 is used in the

following derivation.

cov(cy, c2) = cum(ey, ¢3)

1 n-1n-2
= = cum ztzt+lv zlza+2)
n
t=1 1

3

n-l1n~2

1
= ;2— E E cum Ziy, Zt4tn Za, zl+2)

t=1 =1

+ cum(2,, z,)eum(zie1, 2,42)

+cum(z,. z,_,_;}cum(z,, zt+l)} N

. | . , ) 4
I~y Z 2{7'-'7¢~441 + '7t-a-2'1t+1—-.}- (A3.8)

(A3.8) is obtained because (i,)'= 0 and because of the Gaussian as-
sumption. Now the first term in (A3.8) is

-ln2

Z Z 'n s Tt-e-1

t=1 o=1

= ‘E','{Z Y1-sT-o + Z Y2-sV1-0 + -+ + 2 Tn-1-sTn-2- a}.

sm] a=] sz

-

.. 1 ’
= ;—’{g(n- 2}y + 2(n — 3)"7:‘7_1 + o+ 2‘7!\——27'!—3}




’/I,-

n? n?

, . . ; . .
- 2(n — 2)vom + 2617y {(n —3)+(n - 4)¢? C+ ¢3(" 4)}

_ 28 = 2vwm | 2614 { (n = 3)(1 — ;")

n3 n? 1 - ¢?
$H1 - (n = 36179 + (n - )9 """ ”} A3
- (=D (e
If one ignores terms with 1/n? and ¢7 in (A3.9), then
n-1n-2. ’ B
_ 27 291y -
-1 = ' ST 3.10) .
") ; .z_:l‘n —eVt—a-1 T n (L — &) (A3.10)

The second term of (A3.8)

n-1n-—2

n2 Z Z‘W s—-2Tt+1—a ’ .

t=1
»

L2 / n-3. / n-2
= :;{2 Y-e-172-0 F Z Y-oT3—s + - + Z 'Tn—a—o'Tn—-c}
=1 =1 =1 .

o1 - L
= n—,{(n =2)mr2+(n =303+ (n —4)n e + ---+‘r.._n..-;}

.

20,(n = 2)9] 20} (n - 3)vom
= <+ - .
nd X %3 -
2¢m '{(n -4) +(n-6)7 + -+ ¢""’5’}
nt . i

- -

— [N ~

26 (n ;2)*7?_ +'2ﬁ(." — 3)‘70‘71 - ;‘7. (n - 4)(1 - 2(""")
'."2 . . n3 n2 - l _ ¢2

N —(n — 4678 L (n _ 5143 ' o
_ei{n - ( 4)¢(1_¢2;~2( 5)9, l} - (A3.11)

T



T8 .

¢ \ If one ignores terms with ¢7 and 1/n3, one obtains
/s . .
. m—1n-2 s 2
Lo 1 1 3~ .
3 Z Z Ve-a-2Vt+1-0 = ;{2451"7;3 + 2637071 + N _1@512} (A3.12)
t=1 o=1 T 1

If one puts (A3.10) and (A3.12) together, then (3.9) is obtained -as

follows: a

(
COU(CI ] CZ) =

2
n

¢17% 3 +2
{‘70'71 + 2 + ¢17? + ¢¥']0'11 +l—:—¢}—2
! - 1

1-¢

}

{4’:7? +1(1 + ¢f){vo +

Je

')
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CHAPTER 4

- TIME SERIES MODELS R

1

41  INTRODUCTION i
A -
For a given stochastic process, the structure is generally not

known. e way of estimatix{g this structure is by the use of finite

pu‘ameteﬂ models Based on a set of observations, the number of

pa.runeten can be deterrmned and utunated Estimation techniques

* such as ma.ximum likelihood and least squares methods are generally
'txsed to esumate the panmeters Both methods are known to be -
uymp\otxcal]y eqmvalent. 1f the pfocm is Ga.usuan The ultimate tise

.. e

of the chosen’ mod'el is for forecastmg.

The hnea.r leut—squares theory of pred:ctton assumes that obser-

-

vations from the mﬁklf&‘ put are amlabie In pruttce. this is not
a realistic assumption. However, as pomted out by Whittle (1983)
the hneu’ lmt-squue predlctor remains vahd for the autoregreaslve

s — process in the ﬁmtg sanrple is:tuatnon, provxded the order of the autore-
gression is smaller than. the nnmber of - .observations. |

) Sevenl raeuchen have denved the uymptohc .:ean squue

) ‘error (a.m g.e). of the forecast for eltzma.ted ﬁnlte puameter nmd - .

- -gh, Akaike (1970) chmd that for u.utoregrmwe modeh of order. p

o (AR(p)), the viriance of the one-step forecast is, 0_3(1 + p/R) +.0,(1/n2),°




where n is the gumber . of observations and o3 is the variance of the
innovations:  Bloomfield - (1972) discussed ‘aspects of nonl;mmetriq and -

parametric procedures for forecasts of .tigme series and derived their~

a.mg.e. of forecasts for a’ lxnea.r time series “molEl. Using a Taylor .

series expu.xsion, Bhansali (IAQB\).' derived the a.m.s.e. of forecasts of

more than ex\e-step -ahead for "a general autoregressive .model.- For the
) same model, Yamamoto (1976) provides an expression for tl;e “agnsee.

of the forecast. _In the multivariate case, Baillie (1979) derived the -

-

a.m.s.e.” of the férecests of more than oae—eiep ahead for the general

4 a

vector autoregrive ‘model. The am.s.e. of a multistep forecast for
ecqnometrxc modets wa.s given by Schmidt (1974); this was followed up
by Schmidt (1977) in 3 ﬁmt.e sample study. The effect of using non-

pmlmomous time series ‘smaodels for forecasting was studied by Ledolt._er

and Abraham {]981).

“ All the above -studies of the a.m.s.e. of forecast are based on
the assumption that she parameters of the model are eﬁtimated from

an independent set of observations which have a similar covariance
e, i - -~.

structure to the realization in which prediction is to be made. Such

asymptotic results are important but it is also important to investigate
™ i
the effect on the forecast error when this independence assumption is

not made. Hence, when deriving ‘the a.m.s.e., ope should incorporate

the dependence on the eetimazed parameter in the for'ecut.. _Phillipe" )

a (1979) has exammed the effect of this dependency on the sampling

-

'd‘utr:butxon of the forecast errors when the innovation sequence of an -

.




-

. ~ AR(1) process it; ‘independent, ideptic;ily distributed wjt.ﬂ,méui gero
o and variance ol.  Phillips siloweq that the cqndiﬁond d:i.st.;ib;xtio\n‘ of
‘the forecast errors give;x the final period observation is tkewed Ful]e‘rA
and Hasza (1980, .1981), and Yamamoto '(1981) lh_sive.k llso gxm'xined:'thia _ ,

dependency. -

Let z,,..:,2. be a realization of n oﬁsgrvatiq.m of a tiume series

and -consider"the_ forecast error for the ‘autoreg'teasive-moﬁng' a.v?tage

-

model -with- Both p and ¢ being zero (ARMA(0,0)). This- model is

given by - S

’Zg =.“+a‘ «

P - -

Then the one step ahead forecast is : .

v;hen:. i=n"'3 2z, The one step ahead forec't.s't, erros m -

-

v . én(l) = a4l T 2-(!,)_

~

> - A




B \ - N o
. “f
"Then, the variance s . )
- * L . A} . . . . N N . -,-\.‘,.-,..
. N
- Viek(1)) =Vis—a) +o %
ra . ’ 13 2
\ : . a 2
‘o : =, f‘.?‘ Ie- L
- ) “ . -‘ . ‘~ v ..'
. o ‘ - :a“(l+ -—) oo . .

—~ It7ix clear from this last equation - thn there is no dtﬂﬂence at all be-
tween e two situations. However, Nt iy ahown r_n_ the ‘n_qx't section

that this is) not the case for the AREI) "procm: and m~e§f;licit~¢x-

RS \prmlon for the variance of the (fatep (¢ > IL lhetd forecast error is

denved. In section 4.3, t.bg one-st.ep ahead—foruul error for the” Tuc-’
uonal noise mode] is also exumned e
< A -
.‘ . : ’ - -
. . A “ ] :
‘. P - <.‘.3 hd .. »
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4.2  VARIANCE OF (STEP AHEAD FORECAST ERROR
OF AN AR(1} PROCESS

-

In this section, an explicit expression for the variance of the ¢-
step ahead forecast error of an AR(1) process is obtained. The effect
on the variance of; the forecast error when the parameter is estimated
from the same data set upon which the forecast is based is taken into
consideration.

Consider a realization of n observations {z;,...,z,}. An autore-

gressive process of order one (AR(1l}) is defined by the equation
z — Q2 = ay ,

¥
where the elemnents of the sequence {a;} are assumed to be indepen-
dent, identically and normally distributed with mean zero and variance
oZ. It is assumed here that the process is stationary, i.e., |¢| < 1.

The forecast error can be written as follows:

2 -1
ee(l) = apy g + Phtre-1 + O rye—2 + .0 "are

-1
= Z&at+l-1 ’ (4'1)
=P )

2

where e;(f) denotes the {-step ahead forecast error at origin time ¢,
t >n. Let ¢ be some arbitrary value of ¢ and let é be an asymp-
totically efficient estimate of ¢ based on n observations. Let é.(¢) be

the value in (4.1) when ¢ = ¢ and e‘f")(t) be the estimate of ¢,(¢),

<
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obtained by setting ¢ = é. Then the Taylor expansion uy to first

order about ¢ = ¢ and evaluated at ¢, is given by

dN () = e(l) - (6 - a)(a—é‘—(:—’> . v (4.2)
3

where (8/85)(2,(6)) is the derivative of é,(¢) with respect to @ in

(4.1).

Define the auxiliary time series {v:} by the equation
>

Ve - QUi = —ay

Then (8/8¢)(a:) = vi—y. Hence, the derivative of e,(f) with respect to

¢ Is
™y o E 3 .
T=£(G:+¢)+£(¢a:+z—1)+'”+gg(é ag.y) ¢
= Uptoy FBepeo » PUryg3 + 2004403 + -
+ (€= 1)¢ %agey + 470, -
= (vt+t—l +Pvipe-z2 + - + ¢£-th)
+ (Btae-1 + 208e0g-a + -+ (L - 1)6° T ay)
= At + Rg (43)
- -1 4, -3 k
where A = — ¢ Ug.’.(_l_t and R¢ = h=0(k +\1\)¢ Qt4t-1~k- It can

be shown that both A, and R, are O,(1) (appendix A4.1). From a
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lemma given by McLeod (1978),
- 1 1
o—o =1 "c*'op(;) R (4.4)

where [ is the large sample information matrix per observation and s.

18
n
1
8. = —; E QeVe_y
t=T .

Now from (4.3) and (4.4), equatian (4.2) can be rewritten as follows:

n - o 1 .
e () = e(€) + Al Vs + R Vs, + O5(=) - (4.5)

Note that for an AR(1) process, I~! = (1 - ¢?)/02. “. Hence, apart from
terms of order Op{1/n?), the variance of (4.5) is

V(@) = v (ertey » 20 Rell —¢Bse

4

= ‘?_(Cg(l):).“*‘ (_1__;"’_2)_2_;/.(,4‘,:); (—1——;;&\/'(12,3:)

L) Aa -
. 2 I —_ 2\2 . 2 1 - 2 ‘ e
L+ —'-q——( ‘¢ ) cov(Aes., Res ).+ —(——-If_)'cov(e‘ (€), Rysc)
LA ao ag ¢

' 42
L, 20 -7

._a§. ) _

It is easily shown that the last two terms on the right side of (4.8)

cov(es(l), Acs.) . . (4.8)

" e



are gero since

&
-1
cov(e(l), Res.) = cov(}:é’aeu_,.
1=0

:

- n
21 z Z(k + 1)¢kaf¢l-1—kadvd—!)
k=0d=1

t—-14£-2 n
E k*'l )&* \Gtalmy Gt mkCdld—1)
3=0 k=0d=1"

JIH

»

The above equsalon is obtained by the fourth moment result a.n‘d the
fact that (aqvg-;) = 0 for all 4. Similarly, it can be shown that the

last term in (4.6) is zero. Hence, (466) becomes .

- ' _ 42)2 '
/VES (O = Vet + EE v (4,)

1 - 2 2(1 - ¢%)?
/_\_) +(—%)—V(R, e) + —L—;c:_)COU(AgJC, Res.) . (4.7)

Each term on the right side of (4.7) can now be evaluated individu-

ally. The first term in (4.7) can be easily shown to be

t-1
Vien) = VL3 Farre, )
. -3=0.

— ¢2;a: -
> .
v — 43¢
= 03(11 f#:) . (4.8)
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The second, third and fourth terms on the right side of (4.7) are eval-

uated in appendices A4.2, A4.3 and A4.4 respectivelyy, From the re-

.

sults in the appendices, the second term may be shown to be

t-1
(1 — #?%)? ol 1 - 9% 201 2
——_a; V(A‘sc)—:(l_é2)+ ~ g:é
- 20353 $31-2n+3E-2 (| _ 43n
N il T N
' 8(20.2¢2t—2m+2¢(1 - ¢2n—2)
- ni(1 - 67)
803 (n — l)a:d:’“’“"";
_ — —
243 3 42t~2n+2¢ _ A2n
o e (1= &™) (4.9)
n?(r - ¢?) .
Similarly the third term of (4.7) may be shown to be
-t-2 -2
(1 —9%)? ol (1 - &7) 2,2k ax , 1— @20
TV(R:8¢)=—°——R——(Zk¢ +2Zk¢ +——1——_—;?-—)
. k20 k=0
(4.10)
Finally thq last term of (4.7) may be shown to be
- 2(1 — ¢%)? 20(1 - ¢%)0d (TN k1 - 3D
er el Reg = T (Y ket - ST
(4.11)

Expressions (4.8), (4.9), (4.10) and (4.11), may be used to evaluate

equation (4.7) as follows: .

V(ég")(t)) _ a:(l _ ¢z¢)‘+ o? (1*._ ¢,2t) . 201 t—zls‘d”'

1-¢3/ n\1-¢3 n ~
. N 2£a:¢2¢—-2n+2¢—2(1 _ ¢2n) . 8(203¢2t-2n+2!(1 _ ¢2n—2)
n3 _ n3(1 - ¢2)
; slia:¢2t+2t—-2 N 2t203¢2‘!-2n+2[(1 _ ¢2u)
2 w11 - ¢7)

-




+ 2l ( k2 123 ket 4+ s )
-3 _
_ 2¢(1 - é’)ag ( path 1 — o3 1)) .
) n 1— &3
k=0
If one ignores terms which are O(1/n?), then
_(n | 1 - @2 02 (/1 — @3¢ . -
V (&} ’(l)) = 03( 1- ¢ ) + :“{( o7 ) _ g2 p3t+3e-1
i = =3 _ 42(2-1)
2 1@
+2) i + (1 —¢2)(Zk2¢zk 23 ket 4 —T&_)
1=1 k=0 k=0
N , -3 - 1 - ¢2(£_1) _
Ca-en(L ket I} (4.13)
k=0 A

KR can be seen from (4.13) ‘that if n increases to infinity, (4.13) yields

the. same expression as given by Box and Jenkins (1976, p. 151)

a{n l—ézl - .
Ve (o) =a§(1_¢2) >, (4.14)

and as ¢ increases, (4.14) achieves a constart variance of o2/(1 — ¢?).
Letting £ =1"in (4.13), gives

2 ; i
V(EM (1) = a2 + %(1 - 84%) . (4.15)
»
Equation (4.15) is obtained due to the fact that Y. _! kg2,

im0 k¢ and Y L% k24%* are zero when € = 1. Clearly as ¢ tends
to infinity, (4.15) becomes

| vEN ) =al(iv D), o

r

which agrees with the well known result of Akaike (1970)=. However
, :
for small ¢ the varlance as given in (4.15) is slightly smaller.

-
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43 VARIANCE OF THE ONE-STEP FORECAST ERROR
IN THE FRACTIONAL NOISE MODEL

Fractional ARNSA models have been studied by authors such as
Hosking (1981) and Li and McLeod {1986) and are useful in modelling
riverflow time series. @ This model is similar to the ARIMA(p.,d,q)
model except that d is allowed to take on nonintegral values. When
the pa.ran:eter d lies in 0 < d < 1/2, the process is capable of mod-
elling long-term persistence. Hence, d is assumed to lie in this range.

Consider the Fractional Noise model, FARMA(0,d,0), given by
Vng = ag,

or equivalently by,

zy = V—da,,

where V¢ = Zl - B)d and B is as defined in chapter 2. Expansion

into moving-average form yields the following:

= ~d
R oL
1 . J=° J .

Jimenez and McLeod (1986) showed that for some finite m,
g

S z,=§(-1y(j’)af_, +0,(=br).

1=0
If only 'n observations 2z,,...,z, are available, then, the one—steb ahead

forecast is

=1

ze(1) = z":(—l)’(;d)¢¢+l_) + O,,(n—lll?),' ¢t >n,




ol
——and the corresponding forecast error is
) 1
Cg(l) = Gt T Op(nl/ﬂ)
Let éf")(l) denote the estimator of e;(1) given observations zy,...,z,.
If one expands in Taylot series up to first order terms .and neglects
terms which are smaller than O,(1/n'/?), one obtains )
- &M (1) = ee(1) + (d - d)(———-a“‘“ )
‘ ad
_ Oa
=ae.y + 1 ‘sc(—j‘f—l-). (4.16)
It can be shown that (8%/3d*)(a;) = O,(1) (see appendix A4.5).
From Li and McLeod. (1986), & = (8/9d)(a:) = (log V)as¢s1: logV =
-ip?_1p3 ... and V(&) = 1x%02. Hence, I"! =6/(x%c2). Li
2 3 . 8 a a
(1981) shows that s, = —n~! 3 @36,_,. Hence (4.16) can be rewritten
as follows: o © -
V(ég"}(l)) = V(a:+1) + (mr 0’2) (Z apby_ 16;) (4.17)
Now V(ai4,) = 0! and we may write s
L
'V.(Zabéb_lég) Z:Zcum(abéb 16¢, a.b._ 16,) (4.18) .
. b b=1c=1
The following results are useful in the .derivat.ion of the variance.
(i) _ )
(8¢} = — Z ;(%atﬂ—k)
kwl -
1 2

Tr+1-boe | )




(iii)

=~
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{(6y—16¢) = (Z %ab—h Z %C‘t#x—;)
k=1 =1
=§k(t+l‘—-b+k)a:
s 1 1 -1
=—§t+1—b(t+1—b+k—;)o:
1 1 1
- s )
2
(&) = —
= 1 =1
(bc—16e) = (Z Eac k Z: —Gtri—y)
* k=1 )=I.J
— 2
‘Zk:k(zu—wk)‘z“ ’
l ’
:t+1—c(1+§+ :+1—c)°‘3'
(@cbooi) = = 3 placasn)  b>e
k=1
~— %(acab—k>‘
k=1
1
zcb-caz' ‘
. . on b-1
Z(&._,ac_n = Z (68) +2D D _(bs6e)
b,e b=32 e=1
_Z(Gb)+2§§- (1+—+%+--+bic)o§:



If one applies both the above results and the results from appendix
A4.6 and neglect terms which are smaller order than O(1/n), one ob-

tains the following:

5 2(n) _ !
v (™M) = 0\3(1 + ;). (4.19)
Remark: Equation (4.15) shows that V(é‘g")(l)) depends on t in the

AR(1) model but equation (4.19) shows that V(éi")(l)) does not ‘de-
pend on t in the FARMA(0,d,0) model (neglecting terms which are

smaller order than 1/n).
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4.4 CONCLUSION

Section 4.2 demonstrates that in the first order AR model, the
variance of the one-step ahead forecast error is shown to be affected
by the estimated parameter when the parameter is estimated from the
same data set~upon which the forecasting is based. The effect of es-
timating the paramreter is a reduction in the variance of the forecast

e}

error. It 1s shown that wh‘x the forecast origin is increased (¢t — oo),
the usual asymptotic result remains valid. Essentially, the case of
t — oo is similar to that where an independent data set having similar
characteristics is available for estimating the parameters. The normal-
ity assumption was assumea; if this assumption had not been made,
then one would be required to consider all product moments of order
larger than two; the derivation then becomes intractable. An exten-

. -
sion to the case of AR(p) or ARMA(p,q)‘ models using this method
is :?.lso seen to be intractable. It is seen that in the fractional noise

LY

model, the variance of the forecast error does not depend on the pa-

rameter d.



APPENDIX A4.1

Derivation of the result A, = O, (1)

~

Since (A?) involves only squared and cross product terms, hence

(Al) < 0o. It follows by Chebyshev’s inequality that

N
Pr{| 4 > C} < &L

Let ¢ = (A2)/C? and g, =1. Then
Pr{| A, |> M,gn} <,

where M, = {(A])/€}!/?. Therefore A4, is O,(1).

!
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APPENDIX A42 ° . .

Derivation of the second term in (4.7)

L 4

To evaluate (4.7), one requires the properties of cumulants

(Brillinger, 1975). Denote the cimulant operator by ‘;i:um"', and note

that cum(z,y) = cov(z,y): Then

’

(1 _— ¢2)2
——0_4——-‘/(‘4‘3‘)
: .
-1 n
1-— ¢2 2 ,
= (—nz-;')"'_ Z Z '+ cum(veypg—1-,84Vd-1, Utyo-1-y ayuy-1){A4.1)
p ; .

1,7=0 bd=1"

Using Theorem 2.3.2 of Brillinger and note that only those indecom-
posable partitions with elements of size two need tp be considered,

since the, -process is Gaussian and (v,) = (a;) = 0. Therefore,.

Cum(”wt— 1-s8dVd -1, Vt4t—_1-38pYp- )

-

= cum(Vips—1_,, ad){cum(vd_l, ab)cum(vg.,.g__,}f, Up_1)
b

+cum(ud—la vb—l)cum(ut-i»t—l—j! ab)}
+cum(vt+l—l—u vd—l){cum(ads ab)Fum(vhf-l—i—Jv vb—l)
. +cum{ag, vp—i)eum(vese_1-,, ub)'}

4 cum(Vepeo1-1, Vige—1—;)cum(aq, ap)eum{va_y, vs_1)

L 4 .
+Cum(vt+t-1-n ab){cum(ad, V¢+¢—1—-;)C""ﬂ(vd-1» vo—1)

. + cum(ayq, vp_;)eum(vyg_,;, v..,.;-;-,}.}

+ cum(vese_1—4, vs-x){cum(ad. Vere—1-5)cum(va—y, as)

+ eum(ag, ap)eum(vg_,, v¢+¢_.;_,-)} . . " (A4.2)




After gathering terms, (A4.1) becomes

(1 _ ¢2)2 -1 n
= D@ Tieoulticeiioiy vieeo1o,)cov(ag. ay)
1 3

XCOL‘(t‘d_h Vd—1 )

~
|

-

3

-
: Teov(viig—1-.. apleov(ag, tiog_q_.)
’\/‘J‘—‘Ob.d:l
\ xcov({vg_1, ve_y)
-+ 4 & T eov(viie 1oy ay)cov(ay, vho1) --

xcov(vd_ 1v Veszl1 o)

’

e-1
+2 Z Z¢‘+Jcov(vt+l—l—n v4_y)cov(ay, ay)
. 1.0=0d=1
. x cov(vg-y, vt*l—l-,')}' (A4.3)

The first term on the right side of (A4.3)

-1 n
> D @ eou(vistmror, Viae1_,)cov(ay, ag)eov(va_y, viy)
10=0d=1 «
-1 n
= Zé"cov(v:+¢-x-., Vtse-1-)cov{ag, aglcov(vg_y, vg_;)
1=0 d=1
Z-113v—=1 n
14 o
+2 @' T eov(Veprar—y, Vise-1-,)cov{ag, ay) —
1=13=0d=1 ' - -

xeov(vg_y, v4—y)

A
'

L] 2 -1 1-1 n —3 2 2

ST e () S B eer (21 ()

'1=Q dm} s=1 =0 d=i




g ¢-1 8 -1
no 20
— é.‘ -~ ____—6_2'¢2|
1—o2‘z=;3 (1 — &2)2 —~
8 2¢ a8 L1 - .
* naa(l - Q ) «N0o, 2
2 212 Z 1 (A4.4)
(1 - o2p (1-0%)? = .
The second term of (A4.3) is \
l'—l n »
2 Z Z &' Tleov(vecem1-0. as)eov(ag, teeg—i-,)cov(vgoy. tp-y)
,)=0bd=1}
-1 A
=2 Z Zc””cov(v“l_l_“ 84)cov(@q, Vewg-1-;)cov(vg_y, v4-1) d
1 g=0d=1 .
[ n d-1 -
1-4 Z ZZ¢ “leov(ryo¢—1-., ap)cov{ag, Utd—l-l-;)
1,)=0d=2 b=1 .

xcov(eg_y, vy_y)

) . )
2
=9 Z Z ¢l+]( t+l—1—-d- 102) (_¢(+l—)—d—la

a
1,)=0d=1

Y T o (e

d-b 2
_at*l—y-d-1 2 @ Os
D) (e ) (T=%%)
s, d=2 b=1

o

2[202452“’2‘-2 n 1,d 4t206¢21,+2l-2 n d-1 11\ ‘ -
1 — ¢? Z(;—i) N ;_¢2 ZZ(?)

-~
d=3 b=1

2£2ag¢2t——2n+2£—2( _ ¢2n) . 4£202¢2t——2n+2¢(1

_ ¢2n—2) '
. (1 — ¢2)2 (1 - ¢2)3 &
4[2(’1_ 1)02¢2‘+2l—2 . '
- (1 — ¢2)3

(A4.5)




The third term of (A4.3) is

,.
3
o
|
-

c- -
4 é'*’cm'(t'we-x-n Gb)¢°’-’(°d~ 1'5-1)501'(1'4—1‘ t‘:-e-x—;}
1 0=048=24d=1

x(ot-rl—l-)—d«-lo.z)
1 - 0%

’? b¢2z+zz—z ) d -

= 0;—¢2 (51?>

b=2d=1 <

) 4l2ag¢2t—2n+2t(1 _ ¢‘2n—2) 4[202(11 - 1)¢2t¢2l—2
= TPHE - TEwDE : (A4.6)

The last term of (A4.3) is

—

-
2 E E &l eov(Verr—1o1, Va-r)cov(ay, agleov(va_y, teigoq-,)
1, 0=0d=1 \

¢t+l—l—|—d+l -2 ¢t4—l—l—-1—d+1

(-1 n
2ZZ¢'+J(~ 1 - ¢? da)q.:(- 1 - 0?2 03)

1=0d=1

2[2 6¢2£+2[ n

(1—¢) (81_)

2[202¢2l—26+2((‘1 _ ¢2n)
= T . (A4.7)

If one substitutes (A4.4), (A4.5), (A4.6) and (A4.7) into (A4.3) one
obtain equation (4.9).
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: APPENDIX A4.3

Derivation of the third term of (4.7)

The method of evaluation of third term in (4.7) is similar to the

method used in appendix A4.1. ) §

*2)2
V{R,s.)

4
UQ

= (k= 1)(i + 1)¢* " covfarre—1-k, Geer—1-.)cov(aq, as)

XCOV(Ub_l, vd-l)

= — (k +1)2¢% cov(arse—1-x, @rre—1-k)cov(aq, as)
a k=0d=1 ]
xcov(vg_1, vd_1)

-2 n
(1 - ¢%)? 2,2k _4 ol
= (k+1)°¢""0 3
nio} k=0 1=1 (1 a ¢ ) i
T2y a2y (-2 ¢-2 . L2(L-1)
— ac(l ¢ ) szzk +2 k¢2k + .I__L.___ (A48)
n 1 - ¢2

Hence, equation (4.10) is obtained.
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APPENDIX A4.4

Derivation of the fourth term of (4.7)

A similar technique to that used in the previous appendices is

used in the following derivation.

2(1 _ ¢3)2

COU(AgSc, Rgsc)
o]

2(—1[2 n

ZZ Z k"‘l COb(bue-x_‘dgtd 1. l'z*l—x—kabvb—l)
&

1=0 k=0bd=1

t-12¢-

[N

n

2(1“¢2 32

1=0 k=0 d=1

= —?{‘— Z k+1)8 " %cov(viae_1-1, Gret—1-x)cov(aq, aq)

xcm’(?d—l. v4-1)

2(1 _ ¢2 2 €1 ¢ n _ 2
= — ) - (k + 1)¢;+k(_¢k 102)03( Og 2)
. e 1=0 k=0 d=1 ' 1-9
1 - 2 2 £-2
_ n" )% 3 (k+1)p%
k=0

2 - ¢’ Z kot 4 Lo p3e-1)
: 1-¢2 J°

which is equation (4.11).
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APPENDIX A4.5

Derivation of the result (8%/3d?)(a¢) = O,(1)

-

To show ,that the second .derivative of a; with respect to d is a

bounded quantity, note that .

82 Qe
ad?

= 1
. .‘ . :.‘UOSV)(-ZZQQ_&)
[= =]
.= Z CkQtek

where -

= (log V)?a,

Since (ag_,a}_k) = 0 for £ # j and (a?) = o032, then {ignoring the

constant quantity),

and Y F°(log k/k)? is a convergent series. The resylt follows ffom

Chebyshev's inequality.
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APPENDIX A4.6

Derivation of the wvariance in (4.18)

In the derivation, results (i) to (vi} in "section 4.2 and Theorem
2.3.2 of Brillinger (1975) will be used. First, note that all those
\
nonzero cumulants of order two are given and that cum(z, y) = \TY".

Hence,

P

cu;_'n(ab 66- 1 6!0 acéc—l 6!)

= (a86:) [(6s-10) (81 60) + (65-16.21) (ac6)]

+ (ay0e) [(Bo-1 6 {621 8) + (8- 1 6c_1)(6:60)

-

+ (Bs-180(86c_13)
A L+ @b (BB (a8 + (G180 (Gan)]

"4 (a6 (B 8ei)(biad) + (Bimrac(Bben)].
< s

If ofie incorporates the sums and evaluates each of the terms individu- *
ally using results’” (i) to (vi) in section 2, the following résults“are ob:
tained.

1

Y (aabe) {8y 10N (B 1 6e)

be

n ihl 1 1 1
='Z-Z(z+1—b)(b—c)(:+1—c)(l+2+"'+'t+1—-c a

| B
—
N’
Q
00

dbm2 cm]

163




N (asbe )b 18.-1)(ac )

8.2
9,

-*-20

;(

1 2
t+1—b)

bz—:l(t*l—b)(wi—c)(bic)(“%*'”‘

2c=1

Gbac/ {6y -1 8¢} (5c 15e
b,e

1 1 1 2
=§{m(1+5+---+m)} %

-

D (asac) (651 6e-1)(bebe) = no:(%i)z.

-

D (apac)(bs—16:)(6e6cy)

b,c

B 1 1 - 1 :
DR b e (R e e R

D (asbe i ){8s-16:){acby)

b.c

n c¢c—1

c=2 b=1

> a6y ) (-1 60) (brac)
d,¢ .

S5) (=) () (e g e )
c—-b t+1-~c/\t+1-2% 2 t+1-5% %a-

\

() (=) (=) (o )
c—b t+1—-c¢ t+1-5 2+ ' t+1—bo°'
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D (a8 6e)(Ey—18c—1)(brae)
5,¢c

Y (anbe)(Bs-rac)(bebcr)

b,e

ulg 1 \/ 1 1 1 1
=§§(t+l—b)(b—c)(t+l—c)(l+-2-1.'.'+t+1—-c) .

Hence combining 1 to 9 and collecting terms, one obtains the following

result:
Y _cum(asbyi b, acberbr)
b,e
3. [xz 1 )2 . ™\
1 1 1 :
*;{"—*(1+5+"'+m)}
n bl o 1 1 )
*?ZZ(;,-C)(:H_:,)(:H_C)(”5*“'*r:‘l—_;)

‘

b=l ex=1
n ol 1 1 1 1 1
+2ZZ(:+1-—c)(t+1-b)(b-c)(lj+§+'”+b—-_~c)]'

b2 c=1
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CHAPTER 5§

EMPIRICAL POWER COMPARISON OF PORTMANTEAU
GOODNESS — OF — FIT TESTS

5.1 INTRODUCTION \

Consider n observations, 2z;,2z3,...,2z,, of a stationary

autoregressive-rnoving average mode| T

¢(B){z¢ — u} = 6(B)ay,, (5.1)

where ¢(B) and 6(B) are as defined in chapter 2; u = (z) and {a;}
is a sequence of independent and identically N(0,02) random wvariables.

The modelling strategy of Box and Jenkins (1976) is comprised of
three 3tages: identification, estimation and diagnostic checking. Once
a model has been selected and calibrated, the estimated residuals, {&},
obtaix‘d should have the property of beix;g white noise provided tha\ .
the @bdei is adequate. The sequence {a,} is unknown in general and |
hence one is required to examine the estimated residuals. An over'- ~

all test of model adequacy was proposed by Box and Pierce (1970).

These authors obtained the distribution of the residual au_tocorrelations

e

;k - :.,k+l afaﬂ— k

where M is some upper bound, M < n, and suggested thé’ well known

k=1,2,...,M ,

portmanteau test statistic defined by

Q= nz i . . (5.2)
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*of Q" was repprted in' a paper by Davies and Newbold (1979). 'In ~
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It was shown by Box and Pierce (1970) that the portmanteau statistic

Q, ungier‘ the null hypothesis that the selected model is adet'quate. is
asymptotxcally dmtnbuted as x3(M - p — q) provided that M and n
are sufﬁcxently large (see also McLeod, 1978). Davies et al. (19"77)'
reported evidence that the test statistic Q does not provide aatisfacto;-y
solution to model diserimdnation. In particular, Davies et al. showed
by simulation that the test statistic Q gives lower significance leveis

than its preset level. A modified version of the Q statistic was then

A
proposed by Davies et al., and it is given by

¢

M
Q =n(n+2) Y i2/(n-k) . (5.3)

k=1

The asymptotic distribution of Q° is x?*(M — p — ¢). The statistic
Q" was al;o independently studied by Ljung and Box (1978) a.nd it
was shown by simulation that Q* does provide a much better. fest
of model adequacy. Although the mean of Q° is much closer to its
asymptotic mean,. the variance of Q° is shown by Ljung and Box to

be much larger than its adymptotic variance. A study of _the'power'

~their. -paper, sihnu—lat.ion studies showed that the power of Q° increases

ks

‘as the variance of forecast error incre*es'. Li and McLeod (1981)*

proposed another form of the modi.ﬁed portmanteau’ statistic, namely,

PR mf_l_)

k=t

' (5.4) !

It was shown that Q°° is a}so uymptotlcally dutnbuted as

’ 2(Ii'{ ~p—4q). The sxgmﬁca.nce level of this modified portmanteau

<
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|
statistic for the multivagiate model was shown in their paper to be
. %

better than that of Q.‘,‘j This modified “statistic is known to have
mean \clqic to the true value and a variance that is smaller than Q°.
Hence it is of interest tQ compare the performance of Q°* and Q° in
~ detecting model misspecification.

Other tests of model adequacy have been proposed. McLeod
(1977, 1978) ,and Ansley and Newbold (1979) suggested examination

of the first few residual autocorrelations by computing the statistic
4

ty = 7 /st. err(fp) k=1,2,...

-

where 7} = {(n + 2)/(n — k)}!/?#, and st. err. denotes the estimated
standard error. McLeod and Li (1983) discussed another test statistic

based on tNe squared-residuals; this statistic is:
M
Qaa =n(n +2) ) 72, (k)/In — k) |

z=k+1(ag = 67)(53_* - &2)/Z:=1(&3 - 52)2 and:

&% = Y i.,8}/n. It was shown by McLeod and Li (1983) that Q.. is

where fqq(k) =

asymptotically x?(M). It was_ indicated that this test statistic can be

used in nonlinear time series modelling (see references therein); a test

statistic based on the I.:agrangc multiplier procedure was proposed by

Godfrey (1979) but this test procedure was shown by Newbold (1980)

to be uymp‘totically equivalent to exam'mi-ag the first few residuals.

Other studies of tests of adequacy are given by Clarke and Godolphin
: 3

(1982).
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In the next section, comparisons of the means of the three statis-
tics Q, @° and @Q°° will be discussed. The exact means are tab-
ulated By assuming that the time series are Gaussian white noise.

Cgmparison is also carried out by simulation for autoregressive mod-

els. Section 5.3 presents the empirical significance level of the three
test statistics. The simulated time series are of autoregressive type.
Section 5.4 exarhines the empirical power of these three statistics. In

section 5.5, an examination of Q,, is given; both its significance levels

and power are examined. Section 5.6 presents some empirical results

on the test statistics Q°, @°° and the cumulative periodogram when

they are used in testing for whiteness.

-~

.
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5.2 COMPARISONS OF MEANS OF Q, @° AND @Q°°

It is of interest to compare the means of the test statistics ‘Q. ‘
Q* and Q°°. Dufour and Roy (1985) obtained exact results for the
sample autocorrelations for both normal a‘._nd nonnormal time series.
In particular, equation (2.3) in Dufour and Roy (1985) can be used
to compute the exact means of the portmanteau statistics proposed.

This equation is

1 { '
7y = z -n3 + (k + 3)n? - k(n + 6k :
e e TE e LR LR CR LN
+ {n*(n — k — 4) + 3(n — k) + 3k{n + k)}} . (5.5)
where () denotes the mathematical expectation. Assuming that the
elements of the time series z;,z;,...,2, are normally and indepen-

dently distributed, then

(-\,—;—) :‘.S_Ln_—_.ll ‘ (5.6)

s3 n{n+1)’
where s, = Y 7| k> L Equatior:z (5.6) is also given by Morhh
(1948). If one substitutes (#.6) into (5.5), an expression for (r?) can
be obtained.. Table 5.1 shows the exact means of Q, Q@ and Q"
for different values of n and M when the time series is white noise.
Under this assumption, the a.symptoiic means for the statistics Q, @
and Q** are (x3,) = M. The exact means of Q and Q° were also
. given in Dufour and Roy (1986). It is clear from the table that the
finite sample mean of Q is much lower than M. The statistic Q° is

cleatly seen to be consistently greater than A while the statistic Q**




|
|

{

is seen to be consistently lower than M. However, these differences

are small for both Q° and Q°°.

Table 5.1 provides only a picture of the situation when the time

-~

series is white noise. This model is generally not realistic in prac-
tical situations. It is more realistic to examine models such as the
autoregressive models. Table 5.2 presents the empirical means and

variances of the thre€ portmanteau statistics Q, Q° and Q°°, for the
autoregressive model of first order. The random number generator
Super Duper (Marsaglia, 1976) in ;onjunction with the Box-Mueller
method was used to generate the N{D(0,1) variates. The algorithm
of McLeod and Hipel (1978) was then used to generate the AR(1)
procéss. For each of the 1000 replications, different combinations of
nl, ¢ and M were used. For various simulation experiﬁxents: the sam-
ple. size n ranged over the set 501, 100, 200 and 500; the parameter
) assume;i values 0.1, 0.3, 0.5, 0.7 and 0.9 and M was 10, 20 or 30.
The parameter ¢ was estimated by solving the Yule-Walker equations.
In this. case, the asymptotic mean and variance of the statistics are
M — 1 and 2(M — 1) respectively. Examining the column of empiri- -
cal means in this table reveals that the statistic @ has finite sample
means generally much lower than its asymptotic means. From the
s.ame table, Q° is seen to overestimate the means more often than
Q. In many iﬁstances, Q" is seen to prcvidel estimates that are
close to the asymptotic means of Q°*. But as n increases, both Q°

and Q°° estimate the means fairly accurately. The variances of Q

114
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and Q°° are exactly the same, since Q and Q°° differ only by a con-
stant. Clearly, the variances of Q® are larger than Q°° in all cases.

The variance of Q°, is seen from the table to be nearly twice as large
as Q" when n is small. However, they improve with increasing sam-
ple‘size. [t can be noted that Q°" underestimates the asymptotic

variance and Q° overestimates it.



TJABLE 5.1

Exact means of Q, Q° and @Q°° ‘for white noise

n M Q Q" Q-
10 1 ..0.81 1.08 0.91
3 2.16 3.25 2,76
5 3.20 5.50 4.70
20 1 0.90 1.05 0.95
3 2.58 3.13 2.86
5 4.03 5.22 4.78
.10 6.91 10.50 9.66
30 1 0.93 1.03 0.97
3 2.70 3.09 2.90
5" 4.34 " 5.15 4.84
10 7.88 10.30 9.72
15 10.65 15.51 14.65
50 1 0.96 1.02 0.98
3 2.82 3.06 2.94
5 4.60 5.09 4.90
10 8.71 10.18 9.81
15 12.33 15.27 14.73
25 18.14 25.51 24.64
100 1 0.98 1.01 0.99
3 2.91 3.03" 2.97
5 4.80 5.05 4.95
10 9.35 10.09 9.90
15 13.66 15.14 14.86
25 - 21.52 25.23 24.77
. 50 36.88 50.51 49.63
200 1 0.99 1.00 1.00
3 2.96 3.01 2.99
5 4.90 5.02 T 498
10 9.68 10.05 9.95
15 14.33 15.07 14.93
25 23.25 25.12 24.88
50 43.39 50.23

49.77
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TABLE '§\ .2

Empirical means and variances of Q, @° and Q°°
for AR(1) process with o2 = 1.0
Number of replications: 1000
MEAN VARIANCE
n 6 M Q Q° Q** Q Q° Q"
50 0.1 110 7.551 8.928  8.651 13.318 18.543 13.318
20 14.027 18.709 18.227 27.661 48.491 27.661
30 © 18.534 28.288 27.834 35.604 75.690 35.604
.03 10 7.511 8.871 8611 13.335 18.538 13.335
20 14.042 18.707 18.242 28.924 50.909 28.924
- 30 18.626 28.414 27.926 - 37.271 78.788 37.271
0.5 10 7.541 8.891 8641 15.448 21.319 15.448
20 13.904 18.481 18.104 31.935 54.948 31.935
30 18.475 28.168 27.775  39.971 81.743 39.971
0.7 10 7804  9.204 8.904 16.268 22.751 16.268
20 14.424 19.167 18.624  33.588 58.333 33.588
30 19.028 28.920 28.328 42.419 87.636 42.419
09 16 8021 9402 ‘9121 18.009 24.83¢  18.009
20 14543  19.227 18.743 35.594 61.154 35.594
30 18.994 28.671 28.294 43.241 87.004 43.241
) /s

3




TABLE 5.2 (continued)

MEAN

VARIANCE

4

n é M Q Q. Q‘. Q Q. Q..
100 01 10 8299 9.007 8849 16.560 19.518 16.560
20 16.494 18.899 18.594 36.583 47.692 36.583

30 23.800 28.904 28.450 55.585 80.750 55.585

0.3 10 8.247 8950  8.797 14.858 17.556 14.858

20 16.585 19.013 18.685 32.653 42.972 32.653

30 23.684 28.728 28.334 53.726  79.396  53.726

0.5 10 8.248 8940 8.798 16.669 19.571 16.669

20 16.191 18.528 18.291 35.883 47.048 35.883

30 23.330 28.305 27.980 $8.067 85.763 < 58.067

0.7 10 8584 9.301 - 9.134 20.092 - 23.573 - 20.092

20. 16.802 19225 18.902 . 41.521 53.827 41.521

30 24.133 29.255 28.783 63.468 ©91.706 63.468

09 10 8.714 9426 9.264 18.689 21.947 18.938

20 16.978 19.398 19.074 39.249 51.280 39.249

30 24.352 20.501 29.002 65.250 96.072 65.2560
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TABLE 5.2 (continued)

MEAN VARIANCE
n ¢ M Q Q- Qoo Q Qo th’
200 0.1 10. 8.645 9.002 8920 16.964 18.402 16.964
20 17.563 18.768 18.613 35.620 40.724  35.620
30 26.318 .28.903 28.643 58233 70.440 58.233
03 10 8734 9.000  9.009 18.250 19.755 18.250
- 200 17.792 19.011 18.842 36.171 31.100 36.171
30 26.437 29.017 28.762 61.586 74.282  61.586
0.5 10 8677 9.03t  8.952 18.408 19919 18.408
20 17.861 19.087 18.911 40.644 46.328 40.643
30 26279 28.830 28.604 56.554 67.284 56.554
0.7 10 8.474 8.816  8.749 16.852 18.224 ~ 16.852 -
20 17.639 18.849 18.689 39.577 45.189 39.577
30 26.352 28.928 28.677 63.627 76.410 . 63.627
09 10 8878 9225  9.153 18.262° 19.714 18.262
20 17.892 19.005 18.942°,  39.314 44.606 39.314
30 26.462 29.017 28.787 63.781

63.781 76.518
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- . - TABLE 5.2 (continued-),

- -~

MEAN VARIANCE

n o M Q e . Q- q Qe Q-
500 0.1 10 ©9.086 9.234 9.196 18.149 18.750 : {8.149

20 18.558 19.049 18.878 34.213 36.052 34.213 »

.+ .30 728.313  29.369 29.243 55.745 60133  55.745

e

- T . g g &

- ..+ 1 ox 10 8911 9053 9.053 17.662 18.321 17.662
20 18.439 18.981 18.913 36.552 38.475  36.552

.30 ,28.074 ’-’29.31415 39.004 54.484 58.509 54.484

- L}

0.5. .10 8947 9.083% - 9.057 . 17.262 17.807 °'17.262 .

. . - 20 .18.685 19.1789 ‘19105 _ 36.556 38,507 - 36.556 -

.o .-, 80 28256 129:.306 29.186 i 550673 59.855 55.673

- , S~
07 10 8.898 904t  9:008 18.687 19.304 18.687 /

-

- 20 18281  18.762 118.701 40338 42.466 40.338

30 . 27.564 .28.583- 28.494 62.746 67.382 62.746
. s * . «,’ ’ ) - .. /

-
r

,
,

09 10 8986 . 912§ 9006 . 16987 17.527- 16.987
27 X 020 18589 T9.085- 0 19.009 - 38.418 © 40.508  38.418
AR A :

. 30 7.2/3-.1_40"' ‘.1;9‘.179 29.070 56.549 60.797 56.549 '

e

L4 -~ -
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5.3 SIGNIFICANCE LEVEL OF Q, Q° and Q*°

The empirical significance levels are examined in this section.
The results ax:e given in Table 5.3. A similar simulation technique
as in section 2 was used to simulate an AR(1) process with o2 = 1.0.
The sample size n was set at 50, 100, 200 and 500, ‘the 'parametér
o was set at 0.1, 83, 0.5, 0.7 and 0.9, and M w:as set _at 10, 20 .
and 30. One thousand replications were performed. Both 5% a.nq
10% levels of significance are Provided in the table together with their
standard errors enclosed in parentheses. . From Table 5.3, as is ex-
pected, Q provides a rather low level of significance apec;iélly, when n

is small. It ia'clea.n from this table that at _the preset -levels of sig- '
nificance, @Q°* does not estirnate the préset levels accuratély when n is
small but it improves for larger sa.mple size.  For small n, Q' overe;-
timates the preset levels at few instances and in’ several cases the es-
timata®s are exceedi;gly lagge.  Again, the estimates imprave as sample

size increases.




TABLE 53

Empirical significance level of Q, 'Q* and Q°**

for AR(1) process with az.z 1.0

122

Number of replications: 1000
\ 5% 10%
j M [ ) e a L .6
n_ o M Q - @ Q Q Q Q
SO 0.1 10 '0.018  0.050° 0.028 0.047  0.097  0.058
" (0.004) (0.007} (0.005) (0.007) (0.009) (0.007)
20 0013 0066 0.031 0021  0.108  0:057
. {(0.004) (0.008) (0.005) (0.005) (0.010) . {0.007)
30 0.004 0.065 0.028 0.007  0.104 - 0.050
-(0.002)- (0.008)  (0.005) (0.093) (0.010) {0.007)
0.3 10 0020 0.050 ° 0.027 0.072  0.117  0.095
(0.004) (0.007) (0.005) (0.008)° (0.010) (0.009)
20 0019 0057 0.037 0.044  0.103  0.082
(0.004) (0.007) (0.006) (0.006) (0.010) (0.009)
30 0015 0.080  0.049 0.040  0.129.  0.086
‘ (0.004) ({0.009) (0.007) (0.008) (0.011) (0.009)
0.5 10 0.027 0.063  0.040 0060 0108  0.075
(0.005) - (0.008) (0.006) (0.008) (0.010) (0.008)
20 0014 0074 0.033 - 0023 0.117  0.068
. (0.004) (0.008) (0V6) (0.005) (0.010) (0.008) .
30 0.003 0.066  0.022 0.007  0.120  0.052
" (0.002) (0.008) - {0.005) (0.003) (0.010) (0.007)
0.7 10 0035 0072 _0.048 0.065 0.123  0.082
(0.006) (0.008) (0.007) (0.008) (0.010) (0.009)
. 20. b.017, - 0089  0.051 0.040 0.136  0.085
‘ ; . (0.004)  (0.009) (0.007) (0.006) (0.011) (0.009)
v 30, 0.004 , 0.089  0.037 0.012  0.128  0.072
) . (0,002) (0.009) ' {0.006)  (0.003) (0:011) '-(0.008)
, . - L 4 ', . k‘( ’/‘, J‘
. l_(/}fl ' \ | }
N . ., . + ‘ . '.‘ . ,‘ "\‘
.\‘ J ‘ . ) ' N
R S S



- * TABLE 5.3 (continued)

’ 5% 10%
n_ ¢ M Q Q° Q" Q Qe
50 0.9 10 0037 0.086 0.047 0.062 0.106 0.077
(0.006) (0.008) (0.0Q7) (0.008) (0.010) (0.008)
20 0.018 0.074 0.042 "0.032 0.125 0.071
' (Q.004) (0.008) (0.006)  (0.006) (0.010) (0.008)
30 0.006 0.069 0.032 0.012 0.110 0.060

(0.002) (0.008) (0.006) (0.008} {0.010) (0.008)

100 0.1. 10 0.034 0.057  0.038 0.070  0.107  0.087
' (0.006) {0.007) (0.006) (0.008) (0.010) {0.009)

20 0.032 0.061 06.047 0057 0.107 0.074
(0.006) (0.008) (0.007) (0.007) (0.010} (0.008)-

30 0025 0.069  0.048 0.039. 0.118 ~ 0.084

- (0.005) (0.008) (0.007) (0.006) (0.010).. (0.009)

0.3 10 0020 0.050 0.027 0.072  0.117  0.095
(0.004) (0.007) (0.005) (0.008) (0.010) (0.009)

~ 20 0.019  0.057  0.037 0.044  0.103 0,082
(0.004) (0.007) (0.006) - (0.006) (0.010) {0.009)

30 0.015 0.080  0.049 0.040 0129  0.086

(0.004) (0.009) (0.007) (0.006) (0.011) (0.009)

0.5 10 0.040 0.051  0.043 0.067 0.098  0.082
(0.006) (0.007) (0.006) (0.008) (0.009) (0.009)

, 20 0.028 0.064  0.041. 0.054 0.092  0.076
(0.005) (0.008) (0.006) (0.007) (0.009) (0.008)

30 0020 0.065  0.044 0.038 *0.121 '0.075

(0.004) (0.008) (0.006) (0.006) (0.010) (0.008)

0.7 10 0.052 0.077 0.063 0.097 0.133 0.113
: (0.007) (0.008) (0.008) (0.009) (0.011) - (0.010)
20 0.040 0.085 0.065 0.075 0.127 0.099
{(0.008) (0.009) (0.008) (0.008) (0.011) (0.009%

30 0.030 0.086 0.056 0.048 0.140 0.097

(0.005) (0.009) (0.007) (0.007) (0.011) [0.009)
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] TABLE 5.3 (continue;i)
5% 10%
n ¢ M Q Q. Qoo Q i Qo Qo‘
100 0.9 10 0055 0080 0065 0096 0128 0.114
(0.007)  (0.009) (0.008) (0.009) (0.011) (0.010)
20 0.036 0.084  0.061 - 0.072  0.14¢  0.111
(0.006)  (0.009) (0.008) (0.008) (0.011) (0.010)
30 0031 0100 0064 0.055 0.152 -0.112
(0.005) _ (0.0689)  (0.008) (0.087) (0.011) {0.010)
200 0.1 10 0.038  0.047  0.045 0.074. 0.093  0.084
(0.006) (0.007) (0.007) (0.008710.009) (0.009)
20 0028 0052  0.042 0.065  0.098  0.091
(0.005) (0.007) {0.006) (Q.008) (0.009) (0.009) -
30 0.026 ~ 0061  0.050 0.059  0.118  0.094
(0.005) (0.008) (0.007) (0.007) (0.010) (0.009)
0.3 10 0.044 0.057  0.051 - 0.089  0.106  0.097
(0.006) (0.007) (0.007) (0.009) (0.010) (0.009)
' " 20 0.040 0.057  0.047 0.066  0.100  0.083
‘ - (0.006) (0.007) (0.007) (0.008) -{0.009) (0.009)
30 . 0.034 0062  0.048 0.05¢  0.113  0.093
y (0.006)  (0.008) (0.007) (0.007) (0.010) (0.009).
0.5 10 0.040 0.057  0.047 0.093  0.106  0.008
(0.006) (0.007) (0.007) (0.009) (0.010) (0.009)
20 0.041 0.068  0.050 0.077  0.114  0.096
(0.006) (0.008) (0.007) (0.008) (0.010) (0.009)
30 0.032 0.060  0.045 0.056  0.094 ~ 0.078
(0.006) “(0.008) (0.007) (0.007) (0.009) (0.DOS)
0.7 10 0044 .0.052  0.047 '0.080 0.0905  0.085
" (0.006) (0.007) (0.007) (0.009) (0.009) (0.009) -
20 0045 0.061  0.051 0.081 °0.115  0.096 ' _
(0.007) (0.008) (0.007) (0.009) (0.010) (0.009) * .
i 30 0.040 0.075 0.064 0.074  0.133  0.111

(0.006) (0.008) -(0.008)  (0.008) (0.011) (0.010)




TABLE 5.3 (continued)

5% 10%
n ¢ M Q Q° Q" Q Q* «Q°
200 09 10 0047 0059  0.055 0.104  0.125  0.115
(0.007) (0.007) (0.007) (0.010) (0.010) (0.010)
20 0.050 0.069  0.064 0.080 0.116  0.102
(0.007) (0.008) (0.008) (0.009) (0.010) (0.010)
30 0.037 0073  0.063 0.071 0.127  0.111
(0.006) (0.008) (0.008) (0.008) (0.011) (0.010)
500 0.1 10 0.046 0.050  0.048 0.110  0.116 0.112
(0.007) (0.007) (0.007) (0.010) (0.010) (0.010)
20 0.032  0.041 0.039 0.081 0.096  0.090
(0.006) (0.006) (0.006) (0.009) (0.008) (0.009)
30 0.041 0.057 0.054 0.079 ~ 0.115 0.096
(0.006) (0.007) (0.007) (0.009) (0.010} (0.009)
0.3 10 0.050 0.051  0.050 0.094 0.105 0.100
(0907) (0.007) (0.007) (0.009) (0.010) (0.009)
20 0.039 0.048  0.043 0.085  0.101 0.094
(0.006) (0.007) (0.006) (0.009) (0.010) (0.009)
30 0.043 0063, 0.057 '0.085  0.107  0.097
(0.006) (0.008) (0.007) (0.009) * (0.010) (0.009)
0.5 10 0.051 0.058  0.054 0.096 0.099  0.097
(0.007) (0.007) (0.007) (04b9) (0.009) (0.009)
‘20 0.052 0.059  0.055 0.093 0.104  0.100
(0.007) (0.007) (0.007) (0.009) (0.010) (0.009)
30 0.047 0.060 0.057 0.096 0.117  0.110
(0.007) (0.008) (0.007) (0.009) (0.010) (0.010)
0.7 10 0.051  0.054 0.052 0.095 0.101 0.096
(0.007) (0.007) (0.007) (0.009) (0.010) (0.009)
20 0.043 0.052  0.049 0.084 0.100  0.094
- (0.006) (0.007) (0.007) {0.009) (0.009) (0.009)
30 0.053 0.061 0.059 0.083 0.100 0.095
~ (0.007) (0.008) (0.007) (0.009) (0.009) (0.009) .
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TABLE 5.3 {(continued)

5% 10%

n & M Q Q’ et -~ @ Qr Q'

500 0.9 10 0.043 0.049 0.045 0.089 0.097 0.092
(0.006) (0.007) (0.007) (0.009) (0.009) (0.009)

20 0.043 0.053 . 0.047 0.089 0.103 0.095
(0.006) (0.007) (0.007) (0.009) (0.010) (0.009)

30 0.053 0.069 0.062 0.091 0.115 0.103
¢ (0.007) (B.008) (0.008) (0.009) (0.010) (0.010)




5.4 EMPIRICAL POWER STUDY

An important question is, how do the statistics perform under the
alternative hypothesis? This section provides some empirical evidence
regarding the power of the three statistics.

Tithe series- data were simulated from several autoregressive-moving
average modéls. and autoregressive models of either order one or four
were— fitted. The autoregressive parameters were estimated by solving
the Yule-Walker equations. The number of replications is 1000. For
each of the 1000 replications, the test statistics 'Q, Q" and Q°*° were
calculated. The proportion of times that the three statistics correctly
rejected the null bypothesis that the true order of the model is one
or four was recorded at the 5% and 10% levels of significance. The
value of M was set at 20 and the sample size was set at 50, 100 and
200.

Table 5.4 provides the powe.r of the~three statistics. The table is
arranged -in increasing order according to the magnitude of the mean
square error of one step ahead prediction (MSE) b;/ using the incorrect

model. If the fitted model is of order p, then the MSE is given as

P P
MSE = Z Z 5:&)’7[ t—2

t=0 ;=0
where -~ is the lag k theoretical autocovariance function. The - deriva-

tion of the MSE is similar to that given .in appendix A2.2 at the end
of chapter 2.
From Table 5.4, it can be seen that the powers of Q are lower

than those of Q° and Q°° in most models except when n and MSE
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are large. Table 5.4(a) shows that the power of Q°° is considerably

lower than that of Q° in most models but that the differences become

small as MSE increases. :l‘able S.4(b) shows that the powers for both
\i: and Q°° are much closer. In Table 5.4(c), it is shown that as n

d the MSE increase, both @° and Q°° vxorrectly detect inadequacy

of the fitted model virtually the same number of times.. Hence, both

@° and Q@°*° performed "equally well when n and the MSE are large.

,,Je'




TABLE 5.4

Empincal power of Q, @ and Q*°

Number of replications:

1000

(a) n=>50 M=20
- Model 5% 10%

¢ ¢1 6 6 ARMSE Q@ Q@ Q@ Q@ Q@ Q-
000 000 -060 -040 4 1094 0033 0.103 005 0052 0.151 0.104
' ' (0.008) (0.010) (0.007) (0.007) (0.011) (0.010)

080 000 020 040 4 1.095 0047 0.103 ~ 0074 0.082 0.158 0.113
(0.007) (0.010) (0.008) (0.008) (0.012) (0.010)

030 000 075 €00 1 1.118 0068 0201 0.143 0119 0274 0.202
_ (6.008) (0.013) (0.011) (0.010) (0.014) (0.013)
0.40 000 -0.20 -0.40 1 1127 0.088 0235 0172 0.148 0312 0.248
(0.009) (0.013) (0.012) (0.011) (0.015) (C.014)

090 000 -0.25 0.00 1 1.158 0.164- 0308 ‘0242 0.212 0382  0.318
. (0.012) (0.015) (0.014) (0.013) (0.015) {0.015)

000 000 -020 0.40 1 1201 0.157 0.338 0263 0.224 0.438  0.362
(0.012) {0.015) (0.014) (0.013) (0.016) (0.015)

000 000 -0.90 -080 1 1412 0267 0502 0413 0374 0603 0.540
°  (0o014) (0.016) (0.16) (0.015) (0.015) (0.016)

160 -090 -080 000 4 2290 0651 0.792 0.782 0.738 0.864 0.849
(0.015) (0.013) (0.013) (0014) (0.011) (0.011)
080 -040 -0.80 0.00 ! 2340 0810 0930 0918 0852 0966 0.960
(0.012) (0.008) (0.009) (0.010) (0.006) (0.006)
9
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TABLE 5.4 (continued)

(b) n=100, M =20
Model 5% 10%

o o 5 6 ARMSE Q@ g QT Q@ Q Q-
000 000 -060 -040 4 1044 0027 0073 0053 0059 0128 0103
. (0.008) (0.008) (0.007) (0.007) (8011) (0.010)

090 000 -0.25 000 4 1.067 0.113 0.175 0145 0O'161 D246 0212
(0.010) (0.012) (0.011) (0012) (0.014) (0.013)

08 000 020 040 1 1069 0.145 0240 0206 0.238 0.346 0.311
(0.011) (0.014) (0.013) (0.043) (0.015) (0.015)

040 000 -0.20 -040 1 1109 0.294 0.390  0.355 0388 0507 0468
(0.014) (0.015) (0.015) (0.015) (0.018) (0.018)

030 000 075 000 1 1111 0188 0297 0.247 0285 0409 0373
(0.012) (0.014) (0.014) (0.014) (0.018) (0.015)

000 000 -020 040 1 1195 0494 08607 0584 0610 0721 0700
(0.016) (0.015) (0.016) (0.015) (0.014) (0.014)

000 000 -090 -080 1 1390 0695 0808 0770 0806 0.888 0.878
(0.015) (0.013) (0.13) (0.013) (0.010) (0.010)

160 -090 -080 000 4 1718 0755 0808 0804 0817 0873 0873
(0014) (0.012) (0.013) (0.012) (0.011) (0.011)

080 -0.40 -080 000 1 2.326 1.000 1000 1000 1009 1.000 - 1.000
. (0.000) (0.000) (0000) (0000) (0.000) {(0.000)
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TABLE 5.4 (continued)

(c)

n=2QO,M=2O

Model 5% 10%
@ & & 6 ARMSE Q @  Q* @ @ @
000 000 -060 040 4 1024 0053 008 0067 0102 0148 0137
(0.007) (6.008) (0.008) (0.010) (0.011) {0.011)
090 000 -025 000 1 1.063 0374 0427 0416 0495 0550 O 537
(0.015) (0.016) (0.016) (0.016) (0.016) (O O1€)
080 000 020 040 1 1.064 0352 0420 0399 0479 0549 0.534
(0.015) (0.016) (0.015) (Q.016) (0.016) (0.016)
040 000 -020 -040 1 1.101 0631 0690 0678 0735 0776 0.770
(0.015) (0.015) (0.015) (0.014) (0.013) (0.018)
030 000 075 000 1 1106 0530 0590 0576 0671 0737 0725
(0.016) (0.016) (0.016) (0.015) (0.014) (0.014)
000 000 -0.20 040 1 1.191 0907 0926 0924 0958 0975 0972
(0.003) {0.008) (0.008) (0.006) (0.005) (0.005)
0.00 000 -0.90 -0.80 1 1.384 0.995 099 099 0997 0999 0.999
(0.002) (0.002) {0.002) (0.002) (0.001) (0.001)
160 -0.90 -080 000 4 1449 0909 0982 0927 00945 0956 0.957
(0.009) (0.008) (0.008) (0.007) (0.006) (0.006)
080 -040 -0.80 0.00 1 2.320 1.000 1000 1000 1000 1000 ".000
(0.000) (0.000) (0.000) (0.000) (0.000) ﬁ_ooo)
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5.5  EMPIRICAL SIGNIFICANCE LEVEL AND POWER OF Q.,

An empirical investigation of the statistic Q,, is pxlaenﬁ in this
section. As mentioned earlier, this statistic was recommended for di-
‘ agnostic checking in nonlinear time series models. It is empirically
shown below that this statistic does not perform well in detecting mis-
specified linear time series models.

A method of simulasion similar to that in section 54 was used.
One thousand- replications of AR(1) process were computed. For vari-
ous simulation experiments; the parameter of,the autoregressive process,
o, were: 0.1, 0.3, 0.5, 0.7, 0.9; sample sizes were: 50, 100, 202),
500, sizes of M were: 10, 20, 30‘.5 The empirical aigniﬁc‘ance lev-
els at each combination . of n, M and ¢ are given in Table 5.5. This
table clearly indicates’that the preset levels are not closely estimatec’iu
when n = 50 but it improves for n larger than S50. -

Table 5.6 summarizes the empirical'power. of this statistic. Sim-
ilar models to those in Table 5.4 were used to generate ‘the time 'e&
’rics. [t is clear that this statistic performs very poorly in all the
models selected. Despite the improvements for large sample size, the
power is low even for n = 200. As mentioned .above, this statistic was

introduced for nonlinear rather than linear modqls. . Thus, it is not

surprising that it did not perform as well as the other portmanteau

statistics discussed in the previous sections.
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‘TABLE S

Empirical significance level of Qg

Number of replications: 1000

—

n ool M 5% 10%
50 0.1 10 0.640 0.086
(0.006) (0.009)
20 - 0.044 0.074
(0.006) (0.008)
30 0.037 0.077
. (0.006) (0.008)
0.3 10 - 0.035 0.075
(0,006) (0.008)
20 0.050 0.088
(0.007) (0.009)
‘ 30 0.041 0.080
' (0.006) (0.009)
0.5 _ 10 , 0.041 0.067
\ o (0.006) (0.008)
20 0.052 0.088
(0.007) (0.009)
30 0.046 0.076
(0.007) (0.008) -
0.7 10 0.036 0.069
(0.006) (0.008)
20 0.046 ) 0.078
(0.007) ' (0.008)
30 0.048 0.073
(0.007) (0.008)




TABLE 5.5 (continued)

n o M 5% 10%
5Q 0.9 10 0.036 0.072
(0.006) (Q.008)
20 0.048 0.076
(0.007) (0.008)
30 0.043 0.072
(0.006) (0.008)
100 0.1 10 0.044 0.088
(0.006) {0.009)
20 0.069 0.108
(0.008) (0.010)
30 0.073 0.110
(0.008) (0.010)
0.3 10 0.046 0.076
(0.007) (0.008)
20 0.039 0.071 .
(0.006) (0.008)
30 0.044 0.078
(0.006) (0.008)
0.5 10 0.057 0.093
(0.007) (0.009)
20 0.049 0.090
(0.007) (0.009)
30 0.054 0.091
(0.007) (0.009)
0.7 10 0.048 0.091
(0.007) (0.009)
20 0.050 0.082
(0.007) (0.009)
30 © 0.049 0.085
(0.007) (0.009)
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TABLE 5.5 (continued)
n ¢ M 5% 10%
100 0.9 10 0.033 0.073
-(0.006)- (0.008)
20 Q.052 0.096
(0.007) (0.009)
30 _ 0.053 0.085
(0.007) (0.009)
200 0.1 10 . 0.039 0.075
. (0.006) (0.008)
20 0.042 0.053
(0.006) (0.009)
30 0.053 0.078
) (0.007) (0:008).
0.3 10 0.046 0.088
(0.007} ' (0.009)
. 20 0.055 0.096 |
(0.007) (0.009)
.30 0.048 0.082 -
) . (0.007) (0.009)
0.5 10 0.047 0.095
(0.007) {0.009)
: 20 0.048 0.099
. (0.007) (0.009)
30 - 0.065 0.097
(0.008) (0.009)
0.7 10 i 0.047 0.099
(0.007) (0.009)
20 0.044 0.082
- (0.006) (0.009)
30 0.043 0.086 e

(0.006) (0.009)




TABLE 5.5 - {continued)

10%

n @ M 5%
. 200 0.9 10 0.055 0.088
(0.007) (0.009)
20 0.051 0.083
; (0.007) (0.009)
30 0.057 0.089
(0.007) (0.009)
50Q 0.1 10 0.047 0.094
~ (0.007) (0.009)
20 0.055 0.099
. (0.007) . (0.009)
. 30 0.065 0.108
(0.008) (0.010)
0.3 10 0.087 0.102
‘. ' (0.007) (0.010)
20 0.061 0.117
(0.008) (0.010)
30 0.062 0.106
X (0.008) (0.010)
0.5 10 0.043 0.084
: . (0.006) (0.009)
20 Q.048 0.091
(0.007) (0.009)
30 0.050 0.088
(0.007) (0.009)
/ 0.7 16 0.049 0.091
; ‘ (0.007) (0.009)
S 20 0.060 0.109
7 (0.008) (0.010)
30 0.054 0.097
' (0.007) (0.009)




TABLE 5.5 (continued)

5%‘
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n ¢ M 10%
500 0.9 10 0.051 0.092
(0.007) (0.009)
20 0.059 0.089
, (0.007) (0.009)
30 0.059 0.095
(0.007) (0.009)
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TABLE 56

Empirical power of Q.4

Number of replications: 1000

(a n=250, M=20

@1 b2 8, 4, AR MSE . 5% 10%

rs

0.00 000 060 040 4  1.094 0037 .  0.063

(0.006)  (0.008)

. - L N

0.80 0.00 0.20 0.40 4 1.095 0.040 0.078

(0.006) (0.008)
0.30 . 0.0 0.75 ¢« 000 1 1.118 0.060 - 0.092

(0.008)  (0.009)

0.40 000 020 040 1 1.127  0.044 0.075
' (0.006)  (0.008)

090 000 -025 Q00 1 1158  0.053 0.083

' (o.ob'_ﬁjﬂ (0.009) .
0.00 0.00  -0.20 040 1  1.201  0.062 0:090
® S (0.008) (0.009)
0.00 000 -0.90 -080 1 1412 0065 0.1100 4 4

‘ (0.008) .(0.010) )

160 -0.90  -0.80 000 4 2200 0200 0.277
(0.013) . (0.014)

080 040 080 ° 000 1 2340  0.089 0.138
. (0.009)  (0.011)

(8 -
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TABLE 5.6 (continued)

(b) n =100, M =20

6, b3 8, 6 AR  MSE 5% 10%

0.00 0.00 060  -040 4 1044 0.064 0.100
L (0.008) (0.009)
0.90 0.00 . -0.25 0.00 4  1.067 0.043 0.088
(0.006)  (0.009)

0.80 oég 0.20 040 1  1.069 0.055 0.091
- ‘ (0.007) (0.009)
0.40 'o.bo . -0.20 -0.40 1 1.109 0.059 0.095
B ) (0.007)  (0.009)
‘ 0.30 0.00 0.75 000 1 1.1l 0.069 0.117
(0.008)  (0.010)
0.00 0.00  -0.20 040 1  1.195 0.095 0.138
(0.009)  (0.011)
0.00 000 090 080 1  1.390 0.080 0.123
(0.009) (0.010)
160  -0.90  -0.80 000 4  1.718 0.217 0.296
) (0.013)  (0.014)
080 040  -0.80" 000 1  2.326 0.199 0.278
(0.013) (6.014)
S



TABLE 5.6 (continued)
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(c) n=200 M=20

&) &1 8, 82 AR  MSE 5% 10%

0.00 0.00 -0.60 —0.40 4 1.024 0.045 0.082
(0.007) (0.009)

0.90 0.00 -0.25 0.00 1 ~1.063 0.060 0.104
(0.008) (0.010)

0.80 0.00 0.20 0.40 1 1.064 0.065 0.104
(0.008) (6.010)

0.40 0.00 -0.20 ~0.40 1 1.101 0.074 0.116
(0.008) (0.010)
0.30 0.00 0.75 0.00 1 1.106 0.070 0.113 -
| (0.008) (0.010)

0.00 000 - -020 0.40 1 -1.191 0.159 0.221
(0.612) (0.013)

0.00 0.00 -0.90 -0.80 1 1.384 0.172 0.261
(0.012) (0.014)

1.6Q -0.90 -0.80 0.00 4 1.449 0.257 0.335
(0.014) (0.015)

% 0.80 —0.40 -0.80 0.00 1 2.320 0.472 0.558

~ .

(0.016) (0.016)




TABLE 5.8

Empirical power for @*, Q** and CUP in testing

2

for whiteness: AR(1l) process, o = 1.0
Number of replications: 1000
5% 10%

n o Q" Q" CUP Q" Q** CUP
50 —0.3 0.286 0.220 0.323 0.358 0.302 0.442
(0.014) (0.813) (0.015)  (0.015)  (0.015)  (0.0h8
~0.1 0.114 0.071 0.043  0.165 0.113 0.079
(0.010)  (0.006)  (0.014)  (0.012) (0.010)  (0.009)

0.1 0.088 0.054 0.058 0.136 0.090 0.120
(0.009) (0.007}) (0.007) (0.011) (0.009) (0.010)

0.3 0.275 0.219 0.385 0.362 0.296 0.510
(0.014)  (0.013) (0.015} (0.015) (0.014)  (0.016)

100 -03 0.440 0.412 0.695 0.555 0.524 0.805
(0.016)  (0.016) (0.015) (0.016) (0.016)  (0.013)

~0.1 0.100 0.080 0.081 0.162 . 0.128 0.143
(0.009) (0.009) (0.009) (0.012) (0.011) {0.011)

0.1 0.100 0.081 0.119  0.160 0.129 0.191
(0.009) (0.009) (0.010) (0.012) (0.011) (0.012) "

0:3 0.456 0.428 0.719 0577 0.545 0.839
(0.016) (0.016) (0.014) (0.016) ~ (0.016)  (0.012)
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»

of n and 8. In general, the CUP test is seen to have higher power.
H.owever, for n = 50 and 100, CUP shows lower power than Q° at
both 5°€ and 10%% levels of significance when 8 is near =x0.1.

Table 5.8 provides the ncwer of the three statistics when the
generated process is an AR(1) with parameter ¢ = =0.1, +0.3 and
n = 50, 100, 200. A similar picture to that for the MA(1l) process
can be seen from this table; @Q° has higher power than @*° for all
the combinations of n and ¢ and the CUP test, in general, has the
highest power. ~

The underlying process in Table 5.9 is the’fractiona.l noise model,
FARMA({0,d,0). This model is defined in chapter 4 (see also Li and
McLeod, 1986).

To simulate the fractional noise model, the algor;thmv given in
Jimenez et al. (1986) is used. Briefly, it involves the following steps:

1. Calculate the partial linear regression coefficients, ¢x ., where

[l 4 ¢ee = d/(t - d)

and

6 . = ¢, +1,4(J +1)(t — ) - 4d)
7 G-1-d}(t-j) °

2. Generate a; ~ N(0,T]}(1 - ¢;‘J)).

;3 =t-—-1,...,1.

3. Compute the time series recursively using the relation

- Zg=a+ 10201+ + P20

In Table 5.9(a), d was set equal to 0.2 and in Table 5.9(b), d

was set equal to 0.4. Table 5.9(a) indicates that both portmanteau
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A}

statistics do not perform as well as the.CUP test. Again, the CUP
test gives higher power than Q° and Q*". This is also true for the
results in Table 5.9(b}). Both Q° and Q°° are comparable for suffi-

ciently large sample size.




TABLE 5.7

.Empirical power for Q°, Q°° and CUP in testing

for whiteness:

MA(1) process, o2 = 1.0

a

1000

Number of replications:
5% 10%
n 6 Q* Q" CUP Q" Q CUP
50 -0.3 0.238 0.187 0.323 0.304 0.249 0.455
- (0.013)  (0.012)  (0.015) (0.015) (0.014) (0.016)
—0.1 0.081 0.044 0.040 0.128 0.081 0.088
(0.009)  (0.006)  (0.006) (0.011) (o:oog) " (0.009)
0.1 0.107  \0.05§  0.035 0.146 0.102 0.062
(0.010)  (0.007)  (0.006) (0.011) (0.010)  (0.006)
0.3 0.238 0.178 0.243 0.319 0.246 0.366
(0.013) (0.012) (0.014) (0.015) (0.014)  (0.015)
0 -0.3 0:368 0.331 0.665  0.467 0.436 0.801
(0.015)  (0.015) (0.015) -(0.016) (0.016)  (0.013)
—0.1 0.111 0.087 0.095 0.166 - 0.135 0.165 -
(0.010)  (0.008) (0.006) {0.012) (0.011) -(0.012)
01 0107 0072 ~.0.085 -0.156 0.131 0.129
(0.010) (0.008) (0008) (0.011) (0.011)  (0.011)
0.3 '0.350  0.306  0.597 0453 0425  0.731
(0.015) ~ (6.015) (0.016)  (0.016) - (0.018)  (0.014)

144




TABLE 5.7 {(continued)
5% 10%

n ; Q- Q" CUP Q° Q" CUP
200 -0.3 0.657 0.643 0.960 0.752 0.747 0.981
(0.015)  (0.015) (0.006) (0.014) (0.014)  (0.004)

-0.1 0.115 0.099 0.201 0.196 0.179 0.319
(0.010)  (0.009) (0.013) {0.013) (0.012)  (0.015)

0.1 0.124 0.109 0.170 0.190 0.176 0.262
(0.010)  (0.010) (0.012) (0.012) (0.012)  (0.014)

0.3 0.642 0.627 0.949 0.753 . 0.743 0.975
(0.015)  (0.615)  (0.007)  (0.014)  (0.014)  (0.005)




TABLE 5.8

Empirical powér for Q'. Q°* and CUP in testing

) for whiteness: AR(l) process, o3 = 1.0
Number of replications: 1000
5% 10%

n o Q" Q" CUP Q- Q- CUP
50 -0.3 0.286 0.220 0.323 0.358 0.302 0.442
| (0.014)  (0.013)  (0.015) (0.015) (0.015)  (0.06
—0.1 0.114 0.071 0.043  0.165 0.113 0.079
(0.010)  (0.006)  (0.014) (0.012)  (0.010)  (0.009)

0.1 0.088 0.054 0.058 0.136 0.090 0.120
(0.009)  (0.007) (0.007) (0.011) (0.009)  (0.010)

0.3 0.275 0.219 0.385 0.362 0.296 0.510
(0.014) {0.013) (0.015) (0.015) (0.014)  {0.016)

100 -03 0.440 0.412 0.695 0.555 0.524 0.805
(0.016) (0.016)  (0.015) (0.016) (0.016)  (0.013)

-0.1 0.100 0.080 0.081 0.162 . 0.128 0.143
(0009) (0.009) (0.008) (0.012) (0.011) (0.011)

0.1 0.100 0.081 0.119  0.160 0.129 0.191
(0.009) (0.009) (0.010) (0.012) (0.011) (0.012)°

0:3 0.456 0.428 0.719 0.577 0.545 0.839
(0.016) (0.016) (0.014) (0.016) ~ (0.016)  (0.012)
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TABLE 5.8 (continued)

10%

5%
n @ Q" - Q" CUP Q* Q™ CUP
200 —0.3  0.750  0.743 0966  0.8290  0.827  0.985
(0.014)  (0.014) (0.006) (0.012) (0.012)  (0.004)
-0.1 0.128 0.108 0.191 0.198 0.183 0.275
(0.011)  (0.010) (0.012) {0.QI3)  (0.012)  (0.014)
0.1 0.104 - 0.093 0.213 0.177 0.159 0.325
_ (0.010) " (6.009) (0.013) (0.012) (0.012)  (0.013)
0.3 0.1‘2 0.755 0.965 0.846 0.843 0.987
(0.013)  (0.014) (0.006) (0.011)  (0.012) to.ogq)'

'

1]
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TABLE 59

Empirical power for Q°, Q°° and CUP in testing
for whiteness: FARMA(0,d,0) process, 03 =1.0

Number of replications: 1000

(a) d =0.2
5% 10%
n Q* Q" CUP Q° Q" ' CUP
50 0.179 0.121 0.202 0.249 0.188 0.288

(0.012) (0.010) {0.013) (0.074) (0.012) (0.014)
100 0.336 _  0.307 ;0463 0.412 0.382 0.579
(0.015) (0.015) . (0.016) (0.016) (0.015) (0.016)
200 0.635 0.620 0.809 0.707 0.700 0.871

(0.015) (0.015) (0.012) (0.014) {0.014) (0.011)
(b) d=04

50 0.587 0.532 0.720 © ~ 0.642 ‘ o.éo7 0.793
(0.016) (0.016) _ {0.014) (0.015) (0.015) (0.013)
100 0.897 0.889 0.968 0.926 0.922 0.981
(0.010) (0.010) (0.006) (0.008) (0.008) (0.004)
200 0.996 0.996 1.000 0.997 0.997 1.000

(0.002) (0.002) (0.000) (0.002) (0.002) (0.000)



5.7 CONCLUSION

Several propertieﬁ of portmanteau test statistics were discussed in
this chapter. It was shown that the mean of Q is generally under-
estimated, the mean of Q" is overestimated and the mean of Q°° is
slightly below the uéptotic mean. This result was established for
white noise and AR(1) processes, but it likely holds more generally.

The type I error and the power of the three statistics were also
examined. It was seen that @ underestimates the preset level of sig-
nificance but that @Q° and Q*° provide a fairly Jp'recise estimate of the
type I error. In general, ths power of Q° for detecting misspecifica-
tion is the highest. The power of Q was observed to be very low.
The statistic Q°° was seen to have low power for small MSE, but it
improves as the MSE increa;‘es. This was disappointing since if was
hoped that Q°* might perform better than' Q® due to its smaller vari-
ance. However, the power of Q° and Q“' are comparable for large
sample qi;; and large MSE. i

The type I error and the power of Q,, were also examined. As
was expected, this statistic, which was designed mainly for nonlinear
time series, did not detect misspecification very effectively.

The statistics Q°, Q°° and the cumulative periodogram test weére
investigated for their performance in testing for whitene;a., In both

the ARMA and ‘fractional models, CUP was seen to perform better

than both Q°* and Q°*°. Again, Q° provided higher power than Q°°.
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