Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

1986

Foundations Of Logic Programming With Equality

Kwok Hung Chan

Follow this and additional works at: https://irlib.uwo.ca/digitizedtheses

Recommended Citation

Chan, Kwok Hung, "Foundations Of Logic Programming With Equality" (1986). Digitized Theses. 1542.
https://irlib.uwo.ca/digitizedtheses/1542

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for
inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca,
wlswadmin@uwo.ca.

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/disc?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/1542?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca

Nadonal Lbrary

Bibtiothéque
ot Canada u Canada

i

K1A ON4

GANADIAN THESES

NOTICE

The qualirty of this microfiche is heavily dependent upon the
quahty of the onginal thesis submitted for microfiiming Every

effort has been made 10 ensure the highest quality of reproduc-

tron possible

It pages are mnssmgﬁontact the university which granted the
degree

Some pages may have indistinct print especially if the onginal
pages were typed with a poor typewriter nbbon of if the univer-
sity sent us an infertor photocopy

Previously copyrighted matenals (journal articies, published
tests, etc.) are not filmed

R'epn‘)ductnon in full or m part of this film 1s governed by the
Canadian Copynght Act. RSC 1970, ¢ C-30

| THIS DISSERTATION
:© HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

- NL-338(- 00/08)

Canadsan Theses Serwxce Services des théses canadiennes

THESES CANADIENNES

AVIS

La quaiité de cette microfiche dépend grandement de la quaité)
de la thése soumise au microfilmage Nous avons tout fait pour
assurer yne quahté supéneure ge reproduction

-
$'1 manque des pages. veulllez communiquer avec 'univer
sité Qut a contéré le grade

La quaité d'mpression de certaines pages peut laisser &
désirer, surtout si les pages ofiginales ont été dactylographide
a l'aide d'un ruban usé ou si 'université nous a fat parvent
une photocopie de qualié inférieure -

Les documents qui font déjad I'objet d'un droit 0 auteur (artiCied
de revue, examens publiés, elc) ne sont pas microfiimés

La reproduction, méme partielle, de ce microhilm est soumisé
4 la Lot canadienne sur le droit d'auteur. SRC 1970, ¢ C-30

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

.a

AIld(d

Foundations of Logic Programming with Equality

by
Kwok Hung Chan
>

Department of Philosophy

Submitted in partial fulflilment
of the requirements for the degree of
Doctor of Philosephy

Faculty of Graduate Studles
The Unlversity of Western Ontario
London, Ontarlo
A September, 1988

© Kwok Hung Chan 1988

-~

Permission has Deen granted
to the National Lidbrary of
Canada to microfilm tnis
thesi1s and to lena or sell
coples of the film. -

The author {copyright owner)
has reserved other
publication rights, and
neilther the theswis nor
extenslve extracts from 1t
may be printed or otherwlise
reproduced without his/her
written permission.

L'autorisatcion a 8t& acceorcse
a, la 3Bibliothdgue nationaleg
du Canada dJde microfilmerx
cette thé€se et de pré&ter ou
de vendré des exemplalres dJu*
film. .) :
L'auteur {titulaire du *aroit
d'auteur) se -réserve les
autres droits de publicatidn;
n. la the@se n1 “ce longs
extraits, ge <celle-c1 ne
doivent .8tre imprim&s oOu
autrement reprodults sans son
autorisation &crite. -

ISBN 0-315-33¢37-6

derivations from SLD-trees does not cause incompleteness.

Abstract

An obstacie to practical logic programming systems with equality is Infinite
computation. ' In the dissertation we study three strategies for eliminating Infinite
searches in Horn ciause logic programming systems and deve‘lop an extension of
Prolog that has the 'symmetry, transitivity and predicate substitutlvity of
equality bullt-ln. The three strategles are:

1. Replacing légic programs Mth‘knnnue search trees by equivalent logic
programs with finite search trees: -

2. Building !nto the inference machine the axioms that cause inflnite
search Lrees;

3. Detecting and falling searches of infinite branches.

The disaemtloh consists of two parts. General theorles of the three
strategies identified above are developed In Part 1. In Part II we apply these
strategies to the problem of eliminating infinite loops In loglc programming with

equality.

Part 1. General Theories

We lntroduce the notlon of CAS-equivalent logic programs: logle programs

with ldentical ¢orrect answer aubet.ltutléna. Fixpoint criteria for equlv'a.le'n_t.'lo:lc

» RS
programs are suggested and their corfectness is establlshed. Semantic reduction

- -

Is introduced as a means of establishing the soundness and completeness of exten-

slons of SLD-resolution. The possibility of avolding igtﬂnlbe searches by detecting -

lnpmt.e -branches is explored. A class of SLD-derivations called repetitive
SLD-derivation is distinguished. Many Infinite derivations are inftances of

repetitive SLD-derlvations. It is demonstrated that pruning repetitive SLD—'

d

“

i

Part . Extended Unification for Equality

An extension of SLD-resolution called SLDEU-resolution 1s presented. The .
symmetry, transitivity and predicate substitutlvity of equality are bullt into
SLDEU-resolution by extended unification. Extended unification, If unrut.rtct.ed..‘
also introduces inflnite loops. We can eliminate some of these infinite Ioops by
restricting SLDEU-resolution to non-repetitive right recursive SLDEU-resolutlon:
this forbids extended unification of the first terms In equality subgoals and has a
built-in mechanism for detecting repetitive derivations. The soundness and com-

pleteness of non-repetitive right recursive Sf..DE:U-raolutlon are proved.

Acknowledgements

I would ltke to thank my advisor Professor W. Demopoulos for all his kindly
assistance, encouragement and thorough guidance in completing thils dissertation.
{ am very much indebted to Professor E.W. Elcock for the financial support ob-
talned from his research funding that made the dissertation possible; his valuable
eriticlsms are greatly appreciated. [would llke to take the opportunity to thank
Mr. P. Hoddinott who has offered a lot of hel\prul and constructive criticisms that
led to many substantive improvements of the complete work. Moreover. I would
like to thank the following examiners: Professor M.A. Brown, Professor
M. Dawes, Professor A.N. Abdallah and Professor E.P. Stabler for their valuable
suggestions which led to the flnal version of the dls:;;ertar.lon. [am deeply grate-
ful to my wife Shuk-fong for her forbearance. encouragement and support
throughout my years at U.W.O. Her contribution in typing part of the
manuscript Is well taken. Last but not least, [wouid llke to thank my parents

I

for their strong personal support.

Table of Contents

Certificate of Examination

................................... 1]
A DL RO . . L e e e e e e e, th
Acknowledgements e e e, v
Table of Contents e vi
List of FIgUres e e e vill
Chapter 1 - Introduction - 1
1.1 Infinite Loops o .. . {
1.2 Fixpoint Semantlcs of Definite Clause. Locic Programs 4
1.3 SLD-Resolution 8
1.4 Refutation Procedure 10
Part [
General Theories 11
Chapter 2 - Equivalent ' Programs 12
2.1 Equivalent Logic Programs 13
2.2 Refutational Equivalence 15
2.3 CAS-BQUIVAIENCe o oo 15
2.4 Symmetric Extension o e 17
25Concluston P P 19
Chapter 3 - Semantic Reduction 20
3.1 Symmetric SLD-Resolutlon o 20
3.2 Compllation Theorem it 21

3.3 Soundness and Completenesst 24
3.4 Conclusion

... ‘ 25
" Chapter 4 - Loop Detection S IR 27
4.1 Repetitive Dertvatlonso oo v oo D 27
4.2 Non-RepetitivesSLD-Resolution i i i . 28
. 4.3 Cogﬁplebenm of Non-repetitive SLD-Resoiutlon 30
4.4 Non-Repetitive Derlvations [S 33
4.3 ConClUSION i e e e e e e e e e e e e e e e ~ 37

vi

Part 11
Extended Unification for Equality I

Chapter 5 - Extended Unification
5.1 Logic Programming with Equality
5.2 Extended Unification N e et e e e e e e
5.3 SLDEU-Resolution B
5.4 Right Recursive SLDEU-Resolutlon

Chapter 8 - Serin.ntia of SLDEU-Resolution _........ ..

8.1 The Program Transformations *and r
8.2 Concatenations of SLD-refutations and Compositions of Uniflers

8.3 Complilation Theorem for SLDEU-Resolution
8.4 Compiiation Theorem for Right Recursive SLDEU-Resolution

8.5 Least Model Theorems for *and 7
6.8 Conciuslon e e e e e e e

Chapter 7 - Non-Repetitive Right Recursive SLDEU-Resolution

7.1 Repetitive Right Recursive SLDEU-Derivatlons
7.2 Non-Repetitive Right Recursive SLDEU-Refutation o
7.3 Compleienees of Non-Repetitive Right Recursive SLDEU-Resolution
T4 Implementatlon e e e e e e e e e e e e e e
7.5 Uncaught Repetitive Derivations T

Chapter 8 - Limitations and Future Directions
8.1 Useful Inflnite Derivations o,
8.2 Summary e e e e e e e e e e e e e e e e
8.3 Future Directions

References e e e e e e e

Vita

...

38

39
39
41
43
54

List of Figures
Figure 5-1: A Fan of a node N and ansdnput clause C

Figure 5-2: Fans of a Node
Figure 8-1: A Useful Inflnite Branch

vii!

PN

The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/

C hapi:er One
Introduction

1.1. Infinite Loops ~

We will consider those logic programming systems that construct refutations
according to a predetermined algorithm. The construction of refutations lnvoives
a search through a tree of derivations. Logic programs with {nfimite search trees
cause serious problems for practical logic programming systems. For systems
which, llke Prolog. adopt a depth first search strategy. Infinite searches lead to
incompletme;s. This is bec-ause systems adopting a depth first search strategy
follow a branch! ‘to its tip before backtracking and trying other possibiilties.
Consequently, once a system has started searching an inflnite branch, It can never

fNnish the search and try other possibllities.
' [}

A desideratum of practleai logic programming systems Is a finite response
time: given a program and a query, the machine should stop and glve a correct
answer in a finite time. Accordingly, it Is very important for practical logical

programming systems to avold Infinite searches of infinite trees.

Unfortunapely. many commonly encountered theories have Inflnite search

trees. For example, a relation P13 symmetric If P satisfles the symmetry axiom:
sym: = P(z,y) — P(y.z).

The search tree of programs contalning the axtioms sym have inflnite branches.

lA branch here corresponds Lo a derivation.

-

Example 1.1:
P: P(a.b} :
P(z,y) — P{y. 1) -
Gy — P(c.d)
61: : — P(d.c)
G, — P(c.d) .

a

As another example, consider the equality relation {(==); the standard axioms
, .
for equality Include a symmetry axiom, a transitivity axiom and a set of predicate

substitutivity axioms. Thus the use of equsiity axioms may yleld Infinite search

trees,

In this dissertation we study three strategies for ellminating infinite searches
in Horn clause logic programming systems and develop an extension of Prblog

that has the symmetry. transitivity and predlicate subatitutivity of equality bulit-

In. The three strategies are:

1. Replacing logic programs with Infinite search trees by equivalent logic '
programs with finite search trees;

2. Bullding into the 'inference .machlne the axioms that yield Infinite—
search trees; A '

3. Detecting and falling searches of nflnite branches.

The dlssertation Is organized as foliows: In the rest of this chapter, we give a

summary of SLDfresolutlon on which standard Prolog Is ba.s'ed.

| General theories of the three strategies identifled a.bov; :re developed in Part
I. In Chapter £ we introduce the notion of CAS-equivalent logic programas: logle
‘programs wtth}ldenucal correct answer substitutions., Fixpoint criteria for equlv-
alent logic programs are suggested and their correctness is uubnlhed. ‘We define

a program transformation § which transforms a program P to its tymmet.ric'ex-

tension S5(”). [t is proved that §(”) is C:\S-equlv&lem‘to P {sym}. In Chapter
3 we extend SLD-resoiution to symmetric SLD-resolution: this repiaces the sym-
metry axiom by an lnference rule. We !ntroduce semantic reduclion as 3 means
of establishing the soundness and cdrrectnws of extensions of SLD-resolutlon such
as symmetric SLD-resolutlion. In Chapter { we explore the-possibliity of avolding
Infinite searches by detecting Inflnite branches. A class of SLD-derivations called
repetitive SLD-dec#ﬁ:Mdlstlnzulshed. Many infinite derivarions are In-
stances of repetitlve SLD-derivations. It s demonstrated that pruning repetitive

SLD-derivations from SLD-trees does not cause Incompleteness.

In Part II of the ’dls;nertatlon we apply the methods developed in Part [to the
problem of ellminating Inflnite loops \n’ loglc programming: with equallty. In
Chapter 5§ a.n extension of SLD-resolutlon called SLDET -resolution Is presented.
The symmetry. transitivity and predlcat.e substitutivity of equality are bullt Into
SLDEt:raolutlou by extended unificatlon. Extended unification, If unrestricted,
also introduces infinite loops. We can ellminate some of these inflnite loops by
restricting SLDEU-resclution to right recursive SLDEU-resolution; this forbids
extended unification of the first terms in equality subgoals. The soundness and
“:ornplet.enm of SLDEU-reso'lutlon and right recursive SLDEU-resolution are es-
tablished In Chapter 6 by semantic reduction. In Chapter V7 we restrict rlght;
recursive SLDEU-resolution further to non-repetilive right recursive
SLDEU -resolution; this Is rl'tht. recursive SLDEU-resolution plus a mechanism for

detecting repetitive derivations. The compleiena of non-repetitive right recur-

A

sive SLDEU-resolution s proved. A prdgram transformation n Is presented. n

compliles a program P for non-repetitive right recursive SLDEU-resolution to an
equlvalent program P’" for Prolog. -This contributes to the goal ‘or bullding
equality Into Prolog without modifying Prolog. In Chapter & we study the limita-
tlons of non—rebguu\(e right'pgcurslve SLDEU-resolution and conclude the disser-

tation by a brief discussion of some interesting directions for further research.

- -

— .

1.2. Fixpoint Semantics of Definite Clause Logic Programs
We summarize briefly. In these sectlons, the fixpolnt semantics of SLD-

resolution van Emden '.:8. Apt 82.}:loyd 84'.

Let L be a first order language. An atom Is a predlcation

where P!s a predicate In L and S ¢t are terms in L. A literal !s elther an
atom or the negation of an atom. Atoms are also called positive [itergis and

negatlons of atoms. negative (iferals.

A clause 1s a set of literals in L. A definite clause 1s a clause with exactly

-

one positive literal. A~ definite ctause
C: (Ao. "‘4‘1' —A?. e ~Am}

ls written as

- ¥

C 1s Interpreted as V((AI/\ S /\Am)—vo).z If m=0, C !s called a unit clause
and 1s written simply as AO. A program In Llisa ﬂnit\e set of deflnite clauses.

A goal (clause) Is a clause contalning only negative literals. A goal clause

G: (A, .. ~A_}
is written as
—A.,... . A _.
1 m

Each A, 1<i<m, Is called a subgoal of G, G is Interpreted as

V(—~A|V -+ V-A_) which Is logically equivalent to ~3(Al/‘\ R /\Am).3 Thus G

Is the negation of the query 3(Al/\ -+ AA_). A Horn clause s either a definlte

clause or a goal clause.

—
. ‘

The Herbrand Universe U, for L Is the set of all ground terms (l.e., v bfe

/

2V(C) ts the universal closure of C. . ' a

33C) is the £xistentlsl closure of C.

free terms) _ln L. (If there s no constant symbol In L, we add one.) " The
Herérand base B, for L Is the set of all ground atoms In L. A Herbrand
interpretation IL for L 1s a subset of the Herbrand base BL' Ground atoms in [L
are éonsldered to be true and ground atoms not in IL are considered to be false.
A substitution & 'n L !s a finite set of the form {tl/z S :n/z“} where
.. ... I are distinct variables and_ o ¢, are terms in L. 8§ is called a
ground substitution Iff each t is a ground term. Let E be an expression. E8 is
the expression obtained by simulitaneousiy replacing each occurrence of the vart-

ablez. 1< < n,in £ by the term t . A clause
C: A —A...... 4

Is true in IL Iff for all ground substitutions §, A 6 Is true In I, 1—1.9 4,6
are all true In IL' [L ls called a Herbrand model of a set H of Horn clauses {IT all
clauses in A are true in IL' H s satisfiable Iff H has a Herbrand model. Hence
we onl; need to consider Herbrand Interpretations whep we are considering the
satisflabllity of sets of (Horn) clauses. In the rest of the qmnatlo-n, referenceyto

L will be omitted when the context makes it clear which language is intended.

A fixpoint operator Tg‘ Is assoclated with each program 7in L.
Definition 1.1: (Té)
Let P be a program ln L. A runctlon”Tf,‘ o2
IC B ThenTH(I)1s "
{A € B| A=A,A Isaground Instance of
aclausein Pand A,.... A €I}

B _. 2B |3 defined as follows. Let

The ordinal powers of T are deflned as follows:

Definition 1.3: (Ordinal powers)

Let /V be the set of natural numbers and w be the first Infinite ordinal number.
TPTO = ¢ ’ - .
Totitl = T;(Tpt4) rienN - :
TPTu = U{TPTi]iGN} :

Example 1.2: Let L be a language with a constant a and predicates P and Q.
Let P be.a program with the lollowing <lauses:

P(a)

r=r

Q(z) — P(1) .
The ordinal powers of T, are as follows:

°. - ¢

T,10 = o.
T,:1 = {P(a). a=a},
T.*2 = {Pla). a=a. Q(a)}. .
T,': = T,"2 forallt >3, and
T,tw=T,%2. ~
A.
Notation: (.’WLX
Let P be 2 program in L. .WL(P) deno.tes
N{IC Bi I s amodel of P}.
.'L{L(P) {s called the least model of 7.
D
Propositian 1.1: [van Emden 78]
Let ~ be a program.
stw= MY ={AE€B]| P=4A}.
Y

1.3. SLD-Resolution

SLD-resclution s Linear resolution for Deflnite clause programs with Selec-
tion function [Kow;.tskl 71. Apt .8‘2. Lloyd 84]. It 1s a refutation proce-dure. Let °
be a pr"ogrs;.m and let ’

‘Q: HAN - ANA)
be ﬁ qyery. First the negatlon

G: [/ —A.....A e

m

of Q \s formed. Then the system attempts to show the unsat.isnabt.llty of PU{G)}

- »
by donstructing a refutatlon from PU{G}. The system wlll stop only when a
refutation has been constructed or when It has tried all possibilitles. There is
only one Inference rule: llnear resolution. We need to introduce some notion be-

 fore we define linear resotution.

\ ’

Definition 1.3: (Selection rule)
A selection rule 1s a function mapping a goal G to an stom A In G. A s called

the selected atom.
A

The selection rule used by Prolog Is the leftmost rule: always select the leftmost

atom of a goal.
Definition 1.4: (Composition of substitutions)

Let,
. / /) '
8. {rl/J:l TS Y Ly ym}
o: {tl/yl FYATERETIVE SO u, zz} .
__—be substitutions where z. TV Yoo $p0 o - - z, are distinct varlables
and r,8, ..., s . t.,.... S T u, are terms. The composition
! n 1 m 1 m 1 {
of ¥ ancdo is
= / 'z 'z, N
fo {rlo, oo Ta0(Z, 8,0/ Y 08 Oly u Sz u, ‘}
Y

Definition 1.5: Let 8 and p be substitutions. We say that § is more general
than p, or equivalently, & subsumes p (8 > p), IfT there Is a substitution o such
that p=6o.

: f . S
Definition 1.8: (=) -

Let £ and E, be expressions in L. E = E ML E 1s syntactically identical to E,.
) e

Definition 1.7: (Unlfler)

Let A and B be atoms. A unifier of A and B Is a substitution for the varlables

In A and B such that A9=DB¢. A unifier § of A and B Is called a most generai

uni fier (mgu) YT all unifiers ¢ of A and B are subsumed by 4.
‘] A

Definition 1.8: (Linear resolution)

Let R be a setectlon rule. Let

G: o—Al.....At.....A

m ']
be a goal. Let . ' .
C: A‘_Bl""'Bq

be a deflnite clause that shares no variables with G. If A, is the atom selected by

R and @ is an mgu of A and A_, then the new goal '
f. —

G- (Alo-d\o .A£_|vBlo~--|BquA"+lo-onoAm)

is said to be SLD-dertved from C and G via R using 4.

B

Definition 1.9: (Variant)
Let El and 52 be expressions. \We say that x‘_".'l and E'2 are vartants IfT there exist

substitutons § and ¢ such that El = E.§ and 52 = Elo.

. A
'S
Definition 1.10: Let 7 be a program. An input clause from ~ls a variant of a
clause in 7. N '
A

Definition 1.11: (SLD-dertivation)
Let P be a program, let G be a goal and let R be a selection rule. An
SLD-derivation from 2 U {G} !s a sequence of triples

T,.T.T, ... -

satisfying the following conditions:
. -
1. Each triple Tx.: > 0. 1s of the form <GI.C1.9=> where GK s a goal.
C‘ s an Input clause from ~and 6' is a substitution.

2. Go is G.
3. For each 1,1 >0, Gl is SLD-derlved from G:_l and C‘ via R using 9‘.

A
Since each clause C'. ls'dnlversa.lly quantifled, occurrences of the same vart-

able in different clauses are.!ndependent. It is required that the clauses
G CuCpn v ‘ .

»
’l,n"i'dei-‘lvat.lon do not share their variables, l.e., variables In an input clause C, do
o L
not occur tn G nor in any other input clause Cj. J7 .

o Definition 1.12: (SLD-refutation)

Let R be a program, let G be a goal and let R ‘be a selection rule. An
SLD-re futation from PU{G} Is a finite SLD-dertvation

<G, C,8,>. <G .C.0,>.....<G,.C.0>
from PU{G} such that G Is the empty clause 0. .k.is sald to be the length of
the refutation. 6.6, --- 8, Is sald to be the substitution of the refutation and
the substitution obtalned by restricting 0‘82 -« - @, to the variables in G 1s sald 7
be an SLD-computed answer substitution for P U {G}.)
' a
The empty clause (] is'interpreted as a contradiction. The existence or\m SLD-

refutation from P U {G} demonstrates the unsatisfiability of U {G}.

[

Definition 1.13: (Refutational completeness)
A loglc programming system is &ald to be refutationally complete ff for all
programs 7 and all goals G there is a refutation from PU{G} It #_{G} is un-

satisfiable.
oy

Besides unsatisflabtlity, we are also Interested In correct substituttons for the

variables in a qQuery.

Definition 1.14: (Correct answer substitution) -
Let Pbe a program Iin L and

G: — AL A
a goal. An gnswer substitution § in L for P_{G} is a substitution for the varl-
ables in G. @ 1s called a correct answer substitution T
o Plm V(AN - AA).

A
Definition 1.15: (CAS-completeness)
A logle programming system Is sald to be CAS-complete Tcomplete with respect to
correct answer substitutions) Iff for all programs P and all goals G every correct

answer substitutlon for PU{G} ls subsumed by a computed answer substitution
for PU{G}.

A
SLD-resolution ts both sound agd cémplet.e:
Proposition 1.2: (Soundness and completéhess, SLD-resolution) iCIark 79]
Let Pbe a program and let G be a goal.
1. Soundneses: all computed answer substitutions of P _U{G} are carrect -
answer substitutions. N :
2. CAS-Completeness: If ¢ Is a correct answer substlt.ut.lon of PU{G}.
then there Is a computed answer substitution p and a substitution o
such that 8§ = po.
- Pa Y

n

10

1.4. Refutation Procedure
A refutation"pfoccdure is an algorithm for constructing refutations. We can

organize the set of all SLD-derlvatlons from 2 U {G} !nto a search space called an

SLD-tree:

Definition 1.168: (SLD-tree) -
Let P be a program, let G be a goal and let R be a selectlon rule. Then the SLD-
tree for U {G} via R is defined as follows:

4

1. Each node of the tree ls a goal.

2. The root node 1s G.) =
3. Let
N -—Al....,Al,..T.Am (m>1)

be a node and A!. be the atom selected by R Then .V has a descen-
dant for each program clause

such that 4 and A‘ are uniflable. Let & be an mgu of 4 and A.' the
descendant is

—(Ap. ... A_.B.....B_.A A8 .

-1 1 [R m
4. Nodes which are the empty clause have no descendants.

A

-

A branch of an SLD-tree corresponds to an SLD-derivation. Branches cor-
‘rapondinz to SLD-refutations are called Juccess branches, other branches are
called failure branches. A search strategy 's a rule for searching SLb«Lre& to
find SLD-refutations. Prolog uses a dei;t.h first backtracking search strategy
which follows a branch to its tlp before buktfacklng and .trying other pos-
" siblifties. The order In which program clauses arestried is the textual ‘orderlnz of
the clauses In the programs. .The depth nrst‘ strategy leads to Incompleteness:
once the system starts searching an inflnite branch, It can never try e'che'r pos-
sibliitles which might lead- to the construction of 3 refutation. However, for most
practical applications it is possible to avold mnh;u ‘foopo by reuranclhg the order

of the clauses |n a2 program.

Part I
General Theories

11

\

s ~ Chapter Two
Equivalent Programs

-

-

A virtue of logle programmlnzx Is that the language of specification may be
used-a.s the language of -lmplementauon ivan Emden 77, Elcock 81). Hence we
may use theortes In first order languages that lucidly formulate our intuitive un-
derstanding of the problem domalins as programs. However, the use of such
programs {requently leads to logle progra;mmlnz systems with unacceptable per-

formance. As we shown In Chapter 1, although the symmetry axlom
sym. Pl{z.y) — P(y.x)

formulates our intuitlve understanding of symmetry. the inclusion of sym In a
logic program introduces Infinlte loops. A well known solution to this problem is
that we begin with a loglc program ~ that glves a lucld descrlption of the

problem domaln !n question; we then replace 7 by a program A’ that Is equlvalent

to 7 but with better perforgnance."'

We'study in this chapter the fixpoint foundations of equivalent programs. In
Sectlon 1 we Introduce-the notlon of CAS-equivalent logic programs: loglc
programs with identical Correct Answer Substitutlons. Examples are given which
show that the notlons CAS-equlvalence, refutational equivalence and logical
equlvalen.ce dp not coinclde in the case of definite clause logic programs. In Sec-
tions 2 and 3 fixpaint cr_lLerla for refutational and CAS-equivalence are suggested
and thelr correctness s proved. Ir: Sectlon 4 a program transformation cajled

symmetric eztension ls deflned. It \s shown that the symmetric extension of a

- progzam 7 13 CAS-equtvalent to Pu{‘gy}w}.

)

Loqlc yroqrommmg s uoed here as » gcneru Jderm which covers any qyucm that uses a lan-
guage of'rormu loglc t m lmple_menuuon luuuue .- . A

See itfogger 84. Ch-\pler Vvij rqt an npo-ll.lon of formal program syothesls and for l’urthrr
references Lo the literature. . > ’

[y -

- P . v
.

2

13

2.1. Equivalenﬁ Logic Programs | g

[N

There is more than one way !n which two programs ~ and ' may be equiv-
alent to each other, Firstly, 2 and 7* may be logically equivalent. Secondly. 7
and P’ may be refutationally equivalent to each other In the following sense: for
all goals G. P_{G} 1s ufsatisfable T & J{G} is unsausflable. If G Is any sen-
tence In the language. l.e.. G is not requiréd to be a negatlve clausé. the two no-

tions of logical equivalence and re futational equivalence coincide:

Proposition 2.1: Let L be a frst order language. Let P and 7 be two fnite sets
of sentences in L. 2 and ” are logleally equivalent Iff 2 and 7 are refutationally
equlvalent.

Y
Proof: (=) Stralghtforward.
(=) Let G be the negation of the conjunction of the sentences in 7. 2 {G} Is
unsatisfiable, hence #’_{G } is unsatisflable and we have

P b =G = P
P = 7’ may be proved In a similar way.
Q.E.D.

However. the notlons of logical equivalence and refutational equivalence do
not coincide in the case of Horn clause logic programming where logic programs
are sets of definite clauses and goals are negative c¢lauses. There are definite
clause loglc programs which are refutationally equivalent but not loglcally equiv-

alent. Conslder the following progrﬁms:

Example 2.1:
P: P(a)
Q(d)
”: P(a)
Q(b)
Q(a) — P(b)

4

S

P’ jee 2. but P P Nevertheless, they are refutationally equivalent because they

r

have the same least modei: the set of ground atoms implied by P is the same as

-

the set impiled by » (see §2.2). Note that If two programs P and P’ are logically

equivalent, then, of course, P and P’ are refutationally equivalent.

| ¢

. 14

In logic programming. we are more interested In computing answer substitu-

tlons than in Just establishing the unsatisflability of a goal relative to a program.

Based on the notion of Correct Answer Substitution we introduce the notlon of

CAS-equiralence:

Definition 2.1: {CAS-equivalence) ' e
Let P and ' be loglc programs. 7 and » are sald to be CAS-equiralent
(equlvalent with respect to correct answer substitutions) iff for all goals G. the set

of correct answer substitutions for P _{G} Is identlcal to the set ol correct
answer substituglons for 7' U{G }.

S

Note that CAS-equivalent definite clause programs are_refutationsily equiv-
alent. It Is Interesting to observe that deflnite clause logic programs with the
same least model may not have the same set of correct answer substitutions.

Consider the following programs in a language L with a as the onl?ponsta.nt

symbol..

Example 2.2:

P P{a).

) Q (a).
A P(z).

Q(a).

a

P and P have the same least model: {P(a), Q(a}}. However, {} Is not a correct

answer sabstitution for P {— P(z)}. although [t is a correct answer substitution

for 7' U{—P(n)}.

The notlons of logical equivalence, CAS-equivalence and refutational equlv-

alence are reiatéd as {ollows:
Proposition 2.2: Let P and be definite clause logic programs.
Pand P are logically equivalent © -

.= Pand are CAS-equivalent
-= Pand 7 are refutationally equ\va.lem.'

15
t

In the rest of the dissertatlon we will concentrate on definite clause logle

programs unless otherwise stated.

2.2. Refutational Equivalence

The notlons of least modei and refutational equlvalence are related as follows.
Theorem 2.1: Let Pand be programs. P and # are refutationally equlvalent
Irr M(P) = M(P).

A
Proof: (=)
M(P) = {A€ B| PuU{—-A} Is unsatisflable }
{A€ B| PPU{—-A} Is unsatisfadle }

M(?)
() Let G be a goal of the form
—A. .. AL

Suppose P U {G} is satisfiable. Then there is a Herbrand model [/ of 2 in whlch
every ground instance

(~AV - V-A)8
of G s true. Hence there Is an 3, 1<i<m, such that A§ & [. Since
M(PYC I. A8 € M(P). It follows that M(P) Is a model of G. Stnce M(P) =

M(P), M(PH s also a model of G. Therefore M(P") Is a model of P'U{G'}
* Q.E.D.

2.3. CAS-Equi(ralence T

We lllustrated in Example 2.2 that programs with ldentlcal least models may
not be CAS-equivalent. Although P and P’ have the same least model, they are
not CAS-equlvalent. The cruclal point Is that we canﬁot. infer VP(z) from the

fact that every ground instance of P(z) is In the least mqdel of the program,. -

In studying the sjmumu of logic programs, lt. Is a common practice to focus
attention on the la.ntuue LP of the program P under couaiderat.lon the sets of
constant, function and predicate symbocls In LP are p;ecisely the sets of constant,
function and predicate symbols In P (except in the case where £ contains no

constants). If we relax this restriction and consider finite extensions of L, we

1

18

have a fixpolnt criterion for CAS-equlvalence. The notlon of a finite extension is

defined as follows.
Definition 2.2: (Finite extension)
Let P be a program. A finite extension of L, is a language L identlcal to L ex-
cept that the sets of constant, function and predicate symbols In L are C,UC.
FUF and Q,UQ where Co. 7, and @, are the sets of constant, function and
predicate symbols In P and C. 7and Q are Nnite sets of new constant, functlon
‘and predicate symbols not occurring in 2.

Y
Notation: ([A])
Let A be an atom In a language L. [A] denotes the set of all ground Instances of
Ain L

A
A
We have the following
Lemma 2.1: (Generalization)
Let P be a program. Let Ax’ e .Am be atoms in L, Let - TN & be the
variables In Al Am. If there is a finlte extension L of LP‘ with at least.n
new constants and (A]. ..., (A, © M(P). then Pl= V(A A - ANA).
A

Proof: (By reductio ad absurdum)

Let L be a finite extension of LP with at least n new constants. Suppose

[Ado. o (A © M (P). Assume that Ppe V(A A- - NAL) Then
PU{TV(Al/\ cee /\Am)} Is satisfiabie. HV(AI/\ v /\Am) Is logically equlvalent
to 3(—'A1V s VDAL Let {cl Crv v v v s Ck} be the set of new constant
symboils In L. Let @ be the substitution {e/z. .- .. c./z.}

PU {(-Alv s V-Am)0} is satisNable® Accordingly, there is a Herbrand model
I of P In which (*A V---V-A)8 Is true. It follows that there is a 7
1 < 7<m, such that A8 & [, D ML(P) Hence A0 € M (P), contradicting
“the assumptlion that [A] - ML(P) ‘ -

Q.E.D.

*

Theorem 2.2: (CAS-equlvalence)

Let Pand A be programs in Ly (=Ly). Pand P! are CAS-equlvalem. if for every

non-negative Integer k there Is a flnite extension L of LP with k new constant,
symbols such that :

3See. e.g.. [Loveland 78, §l.51 or any standard logic text on Skolem lunctions.

Y

't!L() = ‘VL’\ :w.\.

- A
Proof: Let
G. —AL 2 o
be an arbitrary goal. Let T T be the variables In G. Let L be a Nnlte ex-
tenston of L, with n new constant symboils such that .\»!L(P) = .\{L(). Let @ be

a correct answer substitution for 7 _{G}. Then
P = V((Al/\ SR /\Am)ﬁ\..
Hence
(AlG’I. BTN :Amﬂ - A{Li AV = M, 7.
By the Generallzatlon Lemma.
P=Y(AOA - AA B
= V((AIA R /\Am)&.)
Hence & 1s a correct answer substitution for ~'_ {G } By the same argument, If ¢
s a correct answer substitution for #’_ {G}, then 8 Is a correct answer substitu-

tlon for 7 U {G}.
- Q.E.D.

We have the following corollary justifying ixpolint proofs of CAS-equivalence.
Corollary 2.1: Let ? and 7 be programs In L,(=L,). - P and P are CAS-
equivalent If for every.non-negatlve integer k there Is a Onlte extension L of L;.
with & new constant symbols such that)

Tf;fu.; = Té; P
i A

Proof: The corollary follows from Proposition-1.1 and Theorem 2.2.
Q.E.D.

Proofs of CAS-equivalence using T;, are relatively stra.lzht.rorwa:rd. This is be-
cause we need only consider least models and T, determines, In a canonical way,

the ieast model of 7.
- “
2.4. Symmetric' Extension
In this sectlon we defilne a program transformation ca}feq symmetric
extension and prove that the symmetric ext{enslon of a program \F.‘ iIs CAS-

equivalent to P U {sym}.

18

Definition 2.3: (Symmetric extension)*

QLet‘ 7 be a program. The symmetric extension of 7 with respect 1o a predlicate P
is

SpiP)y =2 _{Plrw)—B..... Bqﬂ Pluv)y—B. ..., Bq ¢ 7.
\SP s abbreviated as § when the predicate P can be determined from the
context.)

~

Q

Observe that ${7) and 7 _ {sym} are not logically equivalent. Although
°_ {sym} implles § 7, 7 _ {sym} I3 not implled by § 7. Consider the coun-
terexample where 7 is the empty set ©. $(0)!s ¢ and © = o {sym}. However,
S$(”) and P U{sym} are CAS-equlvalent, because .\JL(S(?)) equals

M, (P L {sym}) for every finite extenslon L of L.

Theorem 2.3: (Least model theorem for &)
Let Pbe a program. For all Mnite extenstons L of L

M (PU{sym}) = M (S(P)).

Proof:
P U{sym} is abbreviated as 7§ in the proof.

(2) M(PS) 2 M(S(P))
It is stralghtforward to show that PS k= S(7). It follows from Proposition 1.1
that M(PS) 2 M(S(P)).

(<) M(PS) C M(5(P))
Consider an arbitrary finite extension L of L, Since M(PS)=T:,ST..; and
N[(S(P)):TS(P) T w. It suffices to show that T,sTd - TS
duction that for all n <w. Tpein & T 5 Tn.

(p)!‘..;. We prove by In-

Base case: n=0.

Inductive step.

Assume that the result holds for n=k%. . .
Consider a ground atom A € TPST k+1. There |s a ground lnstance
’ A._Bl'.""Bq '
of a clause C'ln PSand B,qu Tpg1 k. Elther C€ Por C s sym.

4"I‘he notlon of a symmetric ext\o‘ a program Is introduced in [Cox 8S|.

The case where C € P ls trivial because 7C §(”) and Bl B eT..*k
by the inductive hypothesis.

Suppose C s sym. Then A is of the form P(s.t),
P(s.t) — P(t.®)
ls an Instance of sym. and P(t.s) € T,s’ k. By the "inductive hypothesis
P(t.s) e TS(P lc Hence there is a clause

C’: Plu.v) — AL 4q
In §(P”) and a ground substitutlon # such that (Plu.v)¥¥ = Pt and
Ab . A48 € Tg o "k—1. By the deflaition of & ?)
cC”: P(v.w) — A A ¢ ‘
ls also a ci&use In §(7). Hence
T P(s.t) — A8 ... Aqe'
Is a ground Instance of C'”. Sincg A 6. .Af €T k1

P(s.t) € T 5"k C Tsmrk*x
Q.E.D.

" Corollary 2.2: (CAS-equlvalence. symmetric extension)
Let Pbe a program. P U {sym} and $(7P) are CAS-equlvalent.
) - A

Proof: The corollary follows from Theorems 2.2 and 2.3.

Q.E.D.

2.5. Conclusion

We have distinguighed three notlons of equivalence for loglc programs: logical
equlvalence, refutational equlvalence and CAS-equivalence. Flxpolint criterla for
refutational equlvalence and CAS-equlvalence of loglc programs have been sug-
gested and their correctness proved. The fxpoint approach has been lilustrated
by a {ixpolnt proof of the CAS-equivalence of loglc pfograms and their symmetric
extensions. The transformation or - loglc program to a3 CAS-equlvalent program
provides the roundat.!on for semanttc reduction; this Is a general approach for
reducing the semantlcs of extensions of‘ SLD-resolution. Detalls of the semantic

reduction approach are developed In the next chapter.

Chapter Three
Semantic Reduction

-

In the previous chapter we showed how the symmetry axiom for a predicate
P can be subsumed by transforming = loglc program ° to its symmetric extension.
In this chapter we consider an aiternatlve solution: replace the symmetry axiom

by an inference rule.

SYM: Let
G. —-P(s.:)..-l_:. A
be a goal and let
C: Plu.,v) — Bl. C. ,Bq
be an lnput clause. Then the new goal
G’ '--(Bi Bq-"l«; 4m)8

1s derived from G and C using the unifler § via the teftmost selectlon rule
Iff § s an mgu of the palr <P(s.t). P(uv)> or aof the palr
< P(s.t). Plv.u)>.

We call an ‘extenslon of SLD-resolutlon by the rule SYM., symmetric
SLD-resolution. In this chapter. we develop a general approach, ca.iled semantic
reduction, for reducing the semantics of such extenslons of SLD-resolution to the
semantics of SLD-resolutlon. We reduce the semantics of symmetrlc SLD-
re‘solutlon by showing that the program transformation S compiles .a program 4
for symmetric SLD-resolutlon to an equlvalent program S{P) for SLD-resolutlon.
Since S(P) and P U {sym} are CAS-equlvalent, symmetric SLD—ré-oluL\on # both

sound and complete.

1

3.1. Symmetric SLD-Resolution

Symmetric SLD-resolution 1s ilke SLD-resolutiof except that subgoals with
predicate P are processed according the the rule SYM. The notions of aclect:oﬁ
rule, answer au:bsti.tution. " symmetrnic . SLD-derivation, symmetric
SLD-refutation and computed answer substitution. are identical to those which

occur in SLD-resclution. The notion of a derivation step is extended as Jollows:

20

Definition 3.1: (Derivatlon step. symmetric SLD-resolutlon for P
Let 7 be a program and let

G: —AL A
be a goal. Let

C: A-—B..... B,

be an lnput clause sh&rlné no variables with G. Then the new goal
G': -—(BI.....Bq.A,z.....Am)G

1s derived from G and C using the unlifier & via the leftmost computation rule Iff
one of the foilowing conditions holds:

1. .41 and A are In the form P{s.t) and P(u.v). respectively, and & Is an

mgu of the palr < P{u.v). P(s.t)> or of the pair < P(v.u), Pls.t)>:

2. otherwise & is an mgu of A and Al.

3.2. Compilation Theorem

We can view an -SLD-machine as a machine In which symmetric SLD-
resolution is implemented and consider the program transformation § as a func:
tion that compiles a program P for symmetric SLD-resolution into a program
S(P) for the SLD-machine. The compilation 1s accomplished by simulating In
S(P) the effect of symmetric SLD-resolutlon on P. We have the following lemma

for symmetric SLD-resolut!lon:

Lemma 3.1: (Compilation, symmetric SLD-resolutlon)
Let P be a program and let G be a goal. There Is a symmetric SLD-refutatlon
from PU{G) of length n with substitutlon & Iff there !s an SLD-refutatlon from
S(PYU{G} of length n with the substitution .

A

Proof: (By induction on n.)

Base case: n=0.
G is 0 and 81s {}. The result holds trivially.

Inductive case. Assume that the result holds for n.
Consider a sequence

to
(]

<G._._>'<G.C.8>. ..., <G __.C__.8 > =
(=))
If sequence (*) Is & symmetric SLD-refutation from :’U {G} of length n~1, then
the subsequence

<G.C .8 >..... <G C >

net’ n+l‘en+} ‘\.n
ls 3 symmetric SLD-refutatlon from P {G } of length n with the substitution

8,93 ce e Bn-l. By the tnductive hypothesls there !s an SLL-refutation

<G,._._> <G.CLe,> <G . C .8 >
from S\P}L,{Gl} of length n with substitution 8768’ - . - 9,"‘1, which 1s equal to
9'283 n-1i
Suppose G I1s — P{st)L A, 4 n:C BP’uv}-—-B Bq; Ol 1s an
mgu of P{s.t) and P(v.u); and G, s —(B..... Bq.A,,. .48, . By the
definition of §. the clause
P(v.u) — Bl Bq
1s in $(A). The sequence ' -
<G. _._>.
<GI.P(v.u) — —Bu'Bq. 01>.
<G,.Ch.0,>. ¥ 4
<Gr,1-*l C:a+l nol>
s an SLD-refutatlon from S(PYU{G} of length n+1 with answer substitution
Olﬁéﬁg ce 8"1“, which is equal so 919283 N Bm_l. -
Otherwise
<G, _._>,
<G.C.8 >,

<G;.Cé.8,; >,

<G:1+1'Cr:.+l e:l-f-l>
is the required SLD-refutatlon. L.

(=)
If sequence (}) s an SLD-refutation from S(P)U{G }, then subsequence (}) Is an
SI,,D-rerut.itJou from S(P)U{Gl} of length n with the substitution 0203 -- -8

n+t’

By the inductive hypothesis, there Is a symmetric SLD—refutaLion
<G,._._>. <G}.C}.0;>.....<G, ..C] >

n+t’ “n+t’ n+l
-

__"Is used 33 an anonymous variabie.

s T o

23

" or

from PU{G } of iength n and the answer substitution 6387 -- -8 . which 13
equal to 9293 P On__'.

Suppose G s o—P(a.H..-t2 4 Cl is P(u.r.‘%—Bl Bq: 6, 1s an
mgu of P{s.t) and P(u.,v); and Gl Is -—\Bl Bq.A2 1 \6‘. By the
definition of § elther

Pluvy—B,.,.... Bq [al

P{v.u) — Bl B,'2 ') b)Y
1s tn 7. Let Cl‘ be clause (a) If \a) I1s In 7 otherwise let Cx' be clause (b). The
sequence

<G._._> ;

<G,.Cr* 8 >]

<G;.Cl.0;>. .

<G’ o8t > ’

n+1""n+l1'""n=i
Is 3 symmetric SLD-refutatlon from 2 U {G} of length n+1 with answer substuu-

tion 918395 . é' -l which Is equal to @ 8.9 Gnﬂ. .
Otherwises.
<G, _._>, :
<G’ C' 0 >, .
<G'.Cz'.a;
<Gr'|+l'cn+l a:s+l>

s the requlred symmetric SLD-refutation.)
Q.E.D.

In general, the form of the Complilation Lemma is different for different ex-
tensiorns of SLD-resoiution. We obtain the following theorem from the Complla-

tion Lemma.
Theorem 3.1: (Compllation, symmetric SLD-resolution)
Let Pbe a rbgraxn and let G be a goal. These is a symmecrlc SLD-refutation
from P {G} with computed answer substitution § Iff there Is an SLD-refutation
from S(P)U{G} with computed answer substitutlon §.

- - A
The Compliation Theorem is weaker than the Compllation Lemma and we need

-

the Compliation Theorem, rather than the Compllation Lemma, In subsequent

steps In semantic reduction.

3.3. Soundness and Completeness

We have shown that the program transformation § compiles a progra.r?\ F tor

v

symmetric SLD-resolution to an equlvalent program S(/7) for SLD-resclutlon, and
that $() 1s CAS-equivalent to 7 {sym}. We will now complete the semantlc

reduction of symmetric SLD-resclutton by establishing the soundness and coumi-

pleteness of symmetric SLD-resolution. The results obtalned In this sectlon are
completely general. They apply to any extension of SLD-resolution f»r which
there is a program transformation with a Compliation Theorem and a CAS-

equivalence Theorem. The notlon of correct answer substitution !s extended as

»
-

follows.

Definition 3.2: (A-correct answer substitution)
Let A be a set of definite clauses and let ” be a program. Let

G.' .-_‘41' e e . ..4m
be a goal. A substitution & for the variables in G s sald to be an A-correct
answer substitution for PU{G} iIf P U R = V((Al‘/\ cesAAS.

‘ A
Theorem 3.2: (A-correct answer substitution) -
Let A be a set of definlte clauses and ~ be a program. Let -
G:* —A. A '

m
be a goal. A substitution & 18 an sA-correct answer substitution for 7 U (G} 1rr)

is a correct amwnutbn tor P UAU{G }.

a
Proof:
8 1s an A-correct answer substitution
iff PUA = ‘V((AIA e ANA NS
Iff 8 1s a correct answer substitutlon for P URA U{G }.
s ' Q.E.D.

A=)

We fiow show the soundness and completeness of an extension of SED-''

resolution based on the Compllation Theorem and the CAS-equlvalence Theorem.

Theorem 3.3: (Soundness and completeness)

Let X be an extensfen of SLD-resolutlon that aims at the subsumption of a set A
of definite clauses. Let r be a program transformation such that (a) for all
programs 7 and all goals G, a substitution ¢ is an X-compubed answer substitu-
tlon for PU{G} Ur 8 I1s an SLD-computed answer subetitution for r(MU{G}

S ' 25
[ad

{compilation), and (b) for all prédgrams P, r{”) and 2 _ A are CAS-equivalent.
Then for all programs P and all goals G .

1. every X-computed answer substitution for "L {G} s an A-correct
answer substitution (soundness);

2. for every A-corréct answer substitution & of 7 _ {G}. there Is an
X-computed answer substitutlon p for »_{G} and a substitution o
such that § = po (tompleteness). -

Proof:

1. Soundness
Suppose # is an X-computed answer ;ﬁbstftutlon of AU {G}. Bx candtition (a). §
is also an SLD-computed answer substituttan of r(2)i {G}.2 By the soundness of
SLD-resolutlon, # Is a correct answer substitution for r(P)iu{G}. By conditlon
(b). & Is also a.correct answer substitution for P {s& U{G}. By Theorem 3.281s
an A-COrrect. answer substitutlen for ’L;{G}

~

2. Completeneu :
Suppose § 1s an A-correct answer substitution for P {G}. By Theorem 3.2 48 1s a
correct answer substitution for P UK U{G}. By c¢ondition (b) 8 is alsc-a correct
answer substitution for r(P) U{G }. By the completeness of SLD-resolution. there
is an SLD-computed answer substitution p for r(P)U{G} and a substitution ¢
such that §=po.- By conditlon (a). pls a.lso an X-computed answer substitutiof
for P U{G).

| - QEDP.
Corollary 3.1: Symmetric SLD-resolutiorr Is sound@.nd compiete with respect to

*

sym.

v _ 'A

Proof: The result follows from Corollary 2.2, Theorem 3.1. and Theorem 3.3..)
Q E.D.

3.4. Conclusion S

-~

We have presented an approach for reduq!ng pﬁe semgantics of extensions of
SLD-resolutlon to thgf of SLD-resolutlon. "Given' an extension X of SLD-

resolution that bullds In a set A of axioms, we need to show that there is a trans-

-

2lu this proof we ignore the fact that # may onry'-_be s vartant of the SLD-computed anawer
substitution. [t Is straightforward o generaitze the proof Lo cover such cases.

1

. . : ©28

formation r on defintte ¢lause programas such that (1) there is a refutation d‘om a

program 7 and a goal G acclordlng to X |ff there Is an SLD-refutatin from the

. .
transformed program r(F) and G: (I1) r(”) and P U £ are CAS-equivalent. It then
follows that X 1s sound and complete relative to A.

Y
3 ’ .
; . y ’ . _
FY
B ; : ’ / . ™
* -
L .)
, - '
. LY
< . i
. A
- - .
. ’ » .
- e
B S . .
* v) - o
- - .
- '.
. . Lo
-~ . M »
- E .
P ’ . -
v - . . /6
' -~ ’ - ’ i : Y
~ - N Lt~ - .
- J.' » - -
- r : . ‘ - b
-~ .» "~ -~ >
i - < s -~ _
- -~ - ‘ - ~ L
L - i .
4(”) -
- - h - ’ ~ ’
- - - .
. ’
- A": . [N) ‘.'_ 1) i

Chapter Four
Loop Detection

\

The computational behavior of a logic programming system dgpends .on two
factors: the search space and the sear\gh strategy. The slze and the structure of a
search space Is determined by the program and the selection rule. In Chapter 2
we lntroduced the notlon f C.-\S-equh;ﬁent programs. A loglc program with In-
finite search trees may be replac.ed by a CAS-equivalent program with finite
search trees. Axioms causing Infinite searches are deleted and the remalning
program Is transformed into a program which 1s CAS-equivalent to the orlginal

'pr'ogram. In Chapter 3 we st.u&led the possibliity of subsumlr;z axioms causing
: »
Infinite search&o_ by extending ake inferdnce machine. Semantic reduction has

been ;'j_ut.roduced as a general method for providing the semant.lcs'of such exten-

sions of SLD-resclution. The methods presented In these two chapters alm -at
'reé@nnmte search spaces by flnlte search spaces.

In this chapter we wilill Introduce a - general strategy i‘or ses;rchmz' Infinite
SLD-trees. “We wolld need such a sea.rc%? strategy If infinite branches were un-
avoldable. We &lstlngulah a type of SLD-de-lvations called repetitive derivations

"and prove that pruning repetition derivations from an SLD;tree does not lead to

!ncomplet.enrs. o

4.1. Repetitive Derivations .

Intuitively, an lofinite loop Is a computation in which 4 subgoal is generated
repeatedly. :
Example 4.1: .-

sym: R(z.y) — R(y.i)

GO; . =~ R(a.d) \
G, ~ R(b. a) ' . .

G, — R(a.b) . i

a

In Example 4.1, the subgoal R{a.b) Is generated agaln and agaln, at every other
step. We can prune dertvatlon.s with recurﬂnz subgoals without losing compiete-
ness. This Is because whatever substltutlong obtalnable from remt.atlo.ns with a
\ recurring subgoal are subsuﬁed by substltutlor&s from refutations witho'ur. recur-

/ ring subgoals. .) .. -

4.2. Non-Repetxgve SLD Resolutxon -

We record the history of a subgoal by an ancestor list:
Definition 4.1: (Ancestor llst)

Let P be a program and let G-be a goal. Ancestor llst.s of subzoa.ls In an SLD-
dertvation from P U {G} are defined as follows:

1. Subgosdls In Go(= G) have ﬂlé empty list [] as thelr ancestor list..

" 2: Let
’le o—.‘ill....:A'-.....Am ,
be a goal with A.‘ as the selected atom. Let
CkH: Ao——Bl. c. .Bq
be an input clause. Let ak be an mgu of A and A... Then the goal
Gk+x' '_(Al' Tt 'Ai-l'Bl B AH»l : A)ak-n
Is SLD-der{ved from G, and Ck uslnz 0., Let L 1 <7< m, be

the ancestor llst. of the sué"oa.l A In Gk. The ancut.or list of the new
subgoal Bp&k_” .1 <p< ¢. In G [At.l L‘.]Bk_‘_l.‘ The ancestor
list of the lnherited subgoal AJG 1<j<i=1or1+1<y<m, In
G 13 L3)

Ty k+1

k+1"'

' R : A

Defimt.lon 4\2. (Repem’.hre subgoal) ' '

A subgoal A In an SLD-dertvation s sald to be repetitive Ifr A ls syntactlcn.ny

ldentlcal to & member In its ancutoc list. : : P
‘ . Lo : A

L

x -

\

{HITI is & Hst with }/ ss ita first cicmcnt and T denotes the :sublist obtained by deleting H
from L.

. f;:,‘

Definition 4.3: (Repetitive SLD-derivatlion)
An SLD-derivation is sald to be repetitive IfT it contains repetitive subgoals.
A

In Example 4.1, the ancestor list of the subgoal R(a.b) in Co s {] and the an-

)

cestor ilst of the subgoal R(b.a) In Gl 1s {R(a.b)]. The ancestor list of the recur-
ring subgoal R(a.b) In G2 is {R(b.a).R(a.b)]. Accordingly the subgoal R(a.b) in

G.J Is.repetitive and any SLD-derivation of the form
S: <—R(st), _. _> <—R(ts) _. _> <—=R(s.b), _. _>.

s a repetitive derivation.

‘éuppwe there is a repatitive SLD-refutation of the form S. Then there-is an

SLD-refutation without the repetitive subgoal.

Example 4.2: ‘

P R(a.b) (1)
R(z.y) —R(y.z) . (2)
— R(a.b)

GO:

Glz — R(b.a)

GQ: ‘—‘R(ﬂ. b) . ~
63:

u) | (by 1)
° A

We can shorten the refutation In this example by deriving G3 directly from G0

and dlause 1. -

The following search rule restricts the system so that oanly non-repetitive

derivulbns are coanstructed.

Rule 4.1: (Non-repetitive SLD-resolution)
Fall all repetitive subgoals.

- fay
SLD-resolution restricted by Rule 4.1 is called non-repetitive SLD-resolution.

A system that sdopts Ruie 4.1 does not construct repetitive derivations such aq}S.

»

4.3. Completeness of Non-repetitive SLD-Resolution
.\'on-'repetm\re SLD-Resolution is complete because every repetitive SLD-
refutation can be shortened to a non-repetitive SLD-refutation with a more

general substitution.

: The completeness proofl presented below-is based on the MGU Lemma which

we state as follows:

»

Definition 4.4: An unrestricted SLD-rcfutat:on 1s an SLD-refutation. except
that the uniflers in the refutation need not be most general unifi:rs.

-

D
Lemma 4.1: (MGU)? -
Let P be a program and G be a goal. Suppose that PU{G} has an unrestrieted
SLD-refutation S. Then P U {G} has an SLD-refutation S’ of the same length.
Furthermore, If 8 1s the substitutlon of S, and 8’ iIs the substitution of §’, then
9’'>4. ‘ -

-

Y

First we prove a lemma which enables us to delete subgoals from a goal with-

out losing completeness.

Lemma 4.2: (Deletion)
Let P be a program. Let

G: —.4l,....Ak,Bl.V..Bq.AkH.....Am
and -
G': o-Al....,Ah

be goals. If there is an SLD-refutatlion from P U {G} of length { with substitution
8 via the leftmost selection rule, then there Is an SLD-refutatlon from P {G’} of
length {’ <! and with substitution €’ > @ via the leftmost selection rule.

- A

Proof: Let.S be an SLD-refutatlon from PU{G} of length { with substitution

01 - 91. S 1s of the following form:

23ee [Lioyd 84].

<—AL 4, B1 Bq'At-! A > -
<Gl. C:' § >
<G|—I'C 1'8: l>
S=(Bi BpAc, A0 0. Clb>
<=4, 1.8 -6 0.C.6>. >
<G ..C &8 >
-1 J= -l
<Z.C,. 86>
Let Gr". 1< n<1—1, te the goai obtalned from G’1 by deleting B‘, . 'Bc
The sequence
S’ <—A.... . A >
<G 'Cr 8 >

< —(A

<. Cl . 91 > . .
is an unrestricted SLD-refutatlon from {G J} of length

['=1+(l—))=1—-(y—1) <. The substitution of S’ Is 9 - 8. By the MGU

Lemma, there Is an SLD-refutatlon from 2L {G'} of lengt.h U an!wlth substitu-
tlon §' >80 ---80,.
Q.E.D.
Lemma 4.3: (Shortening)
Let P be a program and let G be a goal. [f there Is a repetitive SLD—rerutatlc_)n
from PU{G} of length ! and with substitutlon § via the leftmost computation
rule, then there is an SLD-refutation from P U{G} of length ' <! and with sub-
stitution 8’ > 8 via the leftmost computation rule. "

a

Proof: A repetitive SLD-refutatlon from PU{G} via the leftmost computation
rute is of the following form:

< -—Ao.A: CI: 91>.

<—(B,B.A¥ _, ---6.C.8> >
<°—(D.B.A)9N --9‘!:H~—D:9'__ >,

. 1 ; t

<3.C.6>
where .4, B and D stand for {possibly empty’' sequences of atoms and

B, -8, =Af_ -6,

Pl

By the Deletlon Lemma. there s an SLD-refutation.
St < —(D.A_ 0 >

1 Fadl —_— J—

<G;.C;.9;>.

— ’ 14
<C. CL. 0. >

of length k <![—(+1) and wlith substitution 91' ... 6r>80 ,---6. If Bls an

empty sequence, then k is {—(J+1). Since
Hex*—l T oj-'-l E Boaxol o 8,"4-! = '40914—1 S 8}#['
the concatenation

S”: <G. _. _>.
<G.C,.8>.

< -—AO.A: Cﬁ 91>.‘
<—(D.AY,_, ---0_ H—=D:6_, - .-8_ >
t [4
<G|.C|.8/>. ~_
<Qd. CL' 9.>
is an unrestricted SLD-refutation. The length of §” I1s (1+1)+k. The substitution
of S”1s

»

8, -8, , - ghl)o; R

>89 - a)iug}‘“2 .8,
By the MGU Lemma, there Is an SLD-refutatlon from PU{G} ol length 1 ~1+k
and with substitutlon 87 > @ ---6(0 _, - - 9}4_')8; .- 8,240 ---8. Slce
k < {—-(+1),

i+1+k < -+ D)+ 06+1) ==
Hence 1+1+k < [, because j>1. .

Q.E.D.
. ™~ .

R | ¢

Theorem 4.1: (Compieteness, non-repetitive SLD-resoluticn}
Let 7 be a program and let G be a goal. If there 1S a repet'iive SLD-refutation
from 2L {G} wrh substitutiom &, then there is a non-repetitive SLD-refutatlon
trom 2 U{G} of length m < { with substitution ¢ > 6.

D

Proof: Let S be a repetitive SLD-refutatlon from 7 _ {G} of length ! with sub-
stitutlon §. By Lemma 4.3, there Is an SLD-refutatlon §’ from 2 _ {G} of length
I'<! and with substitution §'>68. If S’ is non-repetitive, then we are done.
Otherwise repeat the argument and obtain another SLD-refutatlon §”. Aler a
finite number of repetitions, we get & non-repetitive SLD-refutation frem 2 (G}
of length m < (and substitution ¢ > §. This is because (Is finite and In each

repetition we get an SLD-refatation of shorter length.
Q.E.D.

‘4.4. Non-Repetitive Derivations
We study In this section several natural generallzations'of Rule 4.1. We show
that the resulting systems o d are Incomplete If we replace the notlon of

repetitlve derivation In Ru)f 4.1 by some stronger notlons.

Strictly Repetitive Subgoal

First, observe that the notion of a repetlitive subgoal Is distinct from the no-
tlon of a strictly repet:itive subgeoal where a strictly repetitive subgoal Is a subgoal
syntactically Identical to one of its ancestors. A repetitive subgoal Is syntactically
ldentlical to the current instance of one of its ancestors. Let B be a subgoal In

goal G, and let A be an ancestor of B in goal G.' The current instance of A4 In

goal G}- s Ad - - 8}.
Example 4.3:
P: P(a) — P(a)
G: — P(z) .
G — P(a)
A

The ancestor iist of the subgoal P(a) In Gl iIs {P(z)|{a/z} = [P(a)]. P(a) s a
repetitive subgoal because it Is syntactically ldentical to the current Instance of
its ancestor P(z){a/z}. P(a) 3 P(z), hence P(a) Is not a strictly repetitlve sub-

goal. We consider next generalizations of Rule 4.1.

U-Repetitive Subgoal
Let us call subgoals which are unifiable with members of their mancestor llsts

u-repetitivd subgoals. Consider the [ollowing generallzation of Rule 4.1:
Rule 4.2: Fall all u-repetitive subgoals.

Y
The system obtained by restricting SLD-resoiution by Rule 4.2 1s Incomplete.
Example 4.4: ’
s Pla) -

P& — P
G — P
G,: P — P(z), - @
G.: - _
g A

The ancestor list of the subgoal F(z2) In Gl Is (P(b)] and P(z) Is unma.ble.wlth
P(b). However, If we fall the subgoal P(z), we cannot construct any refutation
from 7 _{G}. The incompleteness is caused by the fact that P 1s r(.\ore
general than P{b) ax;'d we need L\o Instantlate P(%) later to an atom which 13 not

unifiable with P(5).

I-Repetitive Subgoal
Let us call subgoals Which are lnstances of members of their ancestor !lsts

1-repetitive subgoals. Consider the following generalization of Rule 4.1:
Rule 4.3: Fall all I-repetitive subgoals.
Fa

Rule 4.3 1s stronger than Rule 4.1 but weaker than Rule 4.2. Nevertheless, the

system obtalned by restricting SLD-resolution by Rule-4.3 Is not CAS-complete.
Example 4.5:

P P(a) : . (1)
Q(b) (2)
Q(z) — Q(b) Y (3)
S1; —Q(z)
| —Q(b) {} (by 3)
ol {} (by 2)

Se: — Q(z)
o {b/Z} - P by 2
A

SI1 is an SLD-refutation with computed answer substitution {} establishing the
implication 7= VQ(x). However, the ancestor list of the subgoal Q(b) 1s Q)]
and Q(b) 1s an instance of Q(z). Pruning S! jeaves S2 as the only refutation.

The correct answer substitution {} Is lost.

For systems such as Prdlog In which the selection rule Is fixed, the loss of

CAS-completeness ieads to the loss of refutational completeness.

Example 4.8:
p: P(a) | ' (1)
Q) (2)
Q(z) — Q(b) (3)
S1: —Q(1). P(z) , :
—| Q). |P(5) - - (by 3)
— P(z) | (by 3)
O | : {a/z} (by 1)
Se: — Q(2). P(z)
— P(b) ' {(b/7} (by 2)
fails
> A

As in Example 4.5, the subgoal @Q(b) Is an Instance of a member of its ancestor
list. Pruning S! leaves S2 which Is a fallure derivation. There 1s no refutation of

—Q(z), P(z) It S11s pruned.

Notice that If P(z) Is the selected atom In Go..we obtaln a refutation:

S8: — Q(z),| P(2)

—Q(a) {a/z} (by 1)
— Q(d) , (by 3)
O (by -2)

However, the search space would Increase tremendously if we need to consider al-

ternative selection rules.

-~ -

Quasi-Repetitive Subgoal
Let us call subgoals which are varlants of members of thelr ancestor lists

quasi-repetitive sub%zls. Can we generallze Rule 4.1 to quasl-repetitive sub-
goals? -

Rule 4.4: Fall all quasi-repetitive subgoals.

Although Rule 4.4 1s weaker than Rule 4.3. the system obtalned by restricting

SLD-resclutlion by Rule 4.4 1s also not CAS-complete.
Example 4.7:

2 a>b , . i)
b>c . (2)
ID>Yy— > >y (3)

S? — x>y
- {a/z.b/y} (by 1}

S2: —z>y v .
= . {6/x.¢/y} (by 2)

S3: — >y ‘

—I>I>Y (quasi—repetitive) {by 3)
—b>y {a/z.b/z} (by 1)
0 {e/y} (by 2)

A

In order to get the correct answer substitution {a/:.c/y}. we need 1O generate
the quasi-repetitive subgoal z>z, which is a variant of its ancestor z>y. There-

fore pruning S8 leads to Incompleteness.

However, quasi-repetitive subgoals may lead to Infinite derlvations.
Example 4.8:

P z>ye—z>2.2>Yy

S4: —z>yY
— z>z|.z|>y
—Zz>2,.2,>2.22>Y

fa

lnchidlnz a transitivity axtom in a program causes inflnite loops which pass the

37

test agalnst repetitive derivations. This expialns why in Part II the transitlx’1u"

of equallty s subsumed by an extension of SLD-resolutlon.

4.5. Conclusion
In this chapter we have introduced a general strategy for searching (Infinite?
SLD-trees. We have distingulshed a type of SLIFWerivations called repetitive
SLD-derivations and we have shown that pruning repetitive derivations from
SLD-trees does not sacrifice completeness. However, there are non-reﬁetltix'e in-
finite branches. We have shown that generalizations of Rule 4.1 which prune
&

non-repetitive inflnite branches by falllng u-repetitive, l-repetitive and quasi-

repetitive"subzoaﬂs.\ respectively, lead to incompleteness,

iy I '

Part Il ‘
Extended Unification for Equality B N

Chapter Five
Extended Unification

| 5.1. Logic Programming with Equality —
Many first order (anguages have a predicate symbol = for equallty. which s
Interpreted as follows:
; For any palr c_)t’ terms ¢ and ¢, s=t IfT s and ¢ denote the sa.me‘ object
In the problen; domalin.
We ean distingulish two components gf the use of tha equaiity predlcate: a iogleal

3

component and a language specific component. °
The loglical characteristics of equallty are captured by the following axioms:
ref: =z v

SYym: I=ye— y=I ' .

tran: ¥y — r=z =y

B‘Cd.’ {P(Il. CEEC I 'In) -— P(yl- L 'yn)'ytz‘z" e 'ynzrn
Ps an n-place predicate symbol In L}
Fun: {f(zl. C. .zn)=f(yl, Y= =YL s =Y,

[!s an n-place functlon symbol in L}
ref. sym, tran, Pred. and Fun are the reflexivity. symmetry, transitlvity. predl-
cate substitutivity, and function substitutlvity axloms, Pespectively. We use ¢ to
denote the set {ref, sym, tra_n}‘u Pred U Fun. Axioms In & deflne the logtcal
characteristics of = which are shared by the equality symbois in all> ianguages —

an equivalence relatlon with substitutlvity (l.e.. a congruence relatlon) [Loveland

78, §5.1). .

In addition to the logical axloms for equality, there are language specific

equallty a.xloms.‘ In a language L. different terms may denote the same object.

39

t) ' . 10

Language specific equallty axioms determine the relatlon of co-reference among
terms. For example. the equality between ratlonal numbers may be defined by

.

the following axiom:
. .
Example 5.1:
rat(N,.D S=rat(V,.D,} — D XN, =D, X.V,
S
where rat(.N,D) represents the rational number with numerator .V and

- *
denominator D. :

-

Although £ Is a set of definite clauses. inciuding £ In a logle program * causes
inflnite Ioops.‘ \;\'e have lllustrated tn Part [Infinite loops caused by sym
(Exaxﬁple' 4.1) and tran (Example 4.8). Including Pred In a logic program also in-
troduces infinite loops. If we include sym. tran and Pred In the same iogic
program. we lose fMnite fallure as well. This s becausi every subgoal

t) 1s matched by the head of a clause In Pi{sym, tran} U Pred. If P

n)
Is =, t =t, s uniflable with the head of sym and (ran. If Pis not =, there is a

predicate substitutivity axicm

for P and P(tl.t,) and P(rt. e .zn) are uniflable. Hence.every fallure

branhch is infinite.

‘We have l1llustrated In Examples 4.7 and 4.8 that Inflnite derivations intro-
duced by tran are quasi-repetitive derivations and w; lose complieteness If we
prune z}ll quasl-repetitive derivations. Infinite derivations introduced by Pred are
also §uasi~repetltlve derivations. Consequently, pruning repetlitlve derivations
cannot ellininate Infinite loops In logic programming with equality. In thls chap-

ter we will present an extenslon of SLD-resolution that bulids In

{sym. tran} U Pred by extended unification.

41

. 8.2, Extended Unification . .

" Extended unification has been used In many logic programming systems for
buliding In equallty. In s system with extended unification, two terms are unifil-
able If and only Hf they are equal according to the equality theory In the program.
The challenge Is 1o design a practically feasible logle programmlng\system with

extended unificatlon that is both sound and complete with rapeét to P U ¢

Previous foundational work on extended unification, such as {Plotkin 72, van

Emden 84, Jaffar 84], concentrates on a form of extended unliflcation In which the

’ equality theory that determines the unification algorithm can be Isolated from the

rest of the program. We say that thls form of extended unificatlon is separable.
For example. in Prolog II the unification algorithm and the corréponding
equality theory are flxed and Independent of the programs supplied by the users
[van Emden 84|. Another example s the framework d.nnclrlbed in [Jaffar 84]. A
logle program is partitioned Into two parts: a definite clause loglc program D and
a definite clause equallty t.hgory E. D contains no equations and all atoms |n EF

are equations. Extended unification is defined with respect to £ alone.

However, in zener.a.i _an equality theory cannot be 1solated from the rest of the
progra;n. Let us call program clauses with equations as thelr heads egquality
clauses; the set of all equality clauses in a program is the equality. theory of the
program. In general, equality clauses have predlcations other than equations in

their bodles, and non-equality clauses also have equations in their bodles. For~ex-

-ample, there 1s an equation ia the body of the following non-equality clause.

Example 5.2:

brother (X.Y) — father(X)= father(Y), male(X)., male(Y).
A

Another example is the deflnition of equality of finite sets listed below. Let
set([E|. Ce .En}) represent a set with EI En as elements. The following

program defines the relations €, C. and =

e

p -
Vs «

/s -‘ RTI FE - / @
Example §.3: .. Lo
X € set({HIT)) ~ X=H - .
XE set(HT)) — X € se(T) -

sct(gfﬂ'fl\};S — HeE S set(TYCS
set({HCYS . : ‘

set(L)=setiL,) — set(L)G set(L,).set(L,’ < setiL "

-

In this example, Lvne'_equalny between two sets Is deflned In terms of the relatlon
€. while € !s deflned in terfns of = Equalilty theories In which = is defined In

terms of non-equality predicates {whlle some non-eduallt.y pr'ed‘.cates are In turn

defined tn terms of ==) are called recursive equality theories. These examples il-.

lustrate that recursive equality theorles are commonly encountered in appltegtion

~domains.

In general, Lheorlesj'o.n the foundatlons 'or separable extended unification do
not cover extended unlnéatton"\.ﬂth recursive equality theorles. For exampie, the
general procedure: Introduced in van Emden and ‘Lloyd {84] s deflned for
programs in which = doés n.o't. oceur; it is Lh‘,e.rerore not <1'1rectly appilcable to
recurslve equality theories. In the case of Jaffar et al. [84]. the framework ls
based on the existence o.r a Mnest congruence ,oi-.e‘i' the set of ground terms deter-
mined by the equa.llty"meory alone. However. recursive equallity theorles Ly pl-
cally do _not have such a flnest congruence. because the extension of = depends
on t/.)(e deflnitlon of non-equallity predicates as well. l-'{ence these {rameworks are
/r)& adequate for naturally occurring systen;s..w"m:r_x permit the use of recursive

equality theories in determining the un‘lﬂ‘catlon of tetms.

In this chapter we present an qxtenstdn' of SLD-resolution called
SLDEU -resolution that has equality butlt-in by extended uniflicatlon. [t Is a

generalization of mechanisms which, llke Kornfeld's {83]. attempt to bulld

-
-

’ 4

i3

“equality into the system by modifying the unification algorithm of Prolog. Our
target !s a general system that allows a user supplled equality theory (possibly a
recursive equality theory) to der.ermln'e the unification of terms. The sysiem !s
sound and complete with respect to the user supplled programs and .‘?

The rest of Part Il is organized as follows. In the next section we generaijize
Kornfeld's system to obtain SLDEU-resolution. In Sec{!o‘n 4, we restrict SLDEU-
resolution to right recursive SLDEU -resolution in order o eliminate a source of
'nfinite loops In the mechanism of extended unification. The soundness and com-

~-.. pleteness of SLDEU-resolution and right recursive SLDEU-resolution are es-
tab‘n’s‘hed in Chapter 8 by sems;ntlc reduction. In Chapter 7 we apply the method
developed In Chapter 4 to right recursive SLDEU-resoiutlon, restricting it further
to non-repetitive right recursive SLDEU-resolution. In Chapter 8 we show that
infinite detivatlons are still possible In non-repetitive right recursive SLDELU-
resolution and expialn why it Is impossible to eliminate all Infinite computations.

We conclude the dissertation by a brief dlscussion on some Interesting dlrections

for further research.

5.3. SLDEU-Resolution

K-Resolution
In Koryfeld [83] the uYﬂﬁcaLIon algorithm of Prolog Is modifled’ as follows:
Al .

1. Glven two terms s and ¢ to be unlhed. the systerm flrst attempts to
compute an mgu of s and ¢ and uses the mgu as a variable binding.

2. If (and only If) step 1 falls, the system attempts to establish
—s=t'

from the program and uses the substitution as a variable binding.

~

'The predicate symbol equals is used In (Kornfcld 83 Lo denote equality.

44

.~

3. If rand only if) steps 1 and 2 fall, the system attempts to establish

—_l=s

from the program and use the substitution as a varlable dbinding.

4. The unification of s and ¢ falls T steps 1. 2 and 3 fall.

We call the unification specified by this algorithm K-um fication. Extensions of

SLD-resolution based on K-unification are called K -rgsolution.

Let us tllustrate how K-unification works.
Example 5.4:

2 flay=g(d)
‘ P(f(a))
G — Plgtz). A, 4

‘ hy

Standard unification of f(a) and g¢tz) fails.because f(a) and g(z) have no unifler.

So the system estabilshes the goal

— fla)=g(z)

from 7 and uses the binding {b/z} to generate the new goal
— (A, .- A {b/z}

This exampfe illustrates how predlcate substltutlvlt.y Is subsumed.

Example 5.5:

P g(b)=f(a) >
P(fla))
G: — Blgtz)

A

As In the previous example standard unification of ff8) and g(z) falls. so the

system attempts to establish
— fla)=g(z)

from R However. since 3(fla)==g(z)) "does not follow from P. the system

generates another goal

G': — g(z)=fla))

45

"

In which the terms are switched around. G’ 1s then established from £ with the
binding {b/‘z}. Symmetry Is subsumed by generating a new equality goal !n

rhlch the terms to be unified are switched around.

Transitivity is subsumed by generating new equality goals recursively

Example '5.8:
P a==b
b=c¢
c=d
G —a=d \

K-unification of a=b and a=d generates the new goal
— b=d.

Then K-unification of b==¢ with b=d generates another new goal

—c=d.
Finally standard unificatlon of c=d with the program clause c=d succeeds. es-
tablishing the goal «— c=d. Hence K-unification of b=c with b=d succeeds, es-
tablishing the goal — b=d, and finally K-unification of a=b and a=d succeeds,

establishing the original gosl — a=d.

Generalization to SLDEU-Resolution .
Reflexivity and symmetry of equallty are not treated uniformly by K-
resojution. Kornfeld {83] has not considered the case where an equatlon occurs in

a goal or the body of a program clause. Equallty goals are generated only by

K-unification.? In SLDEU-resolution. equallty subgoals may occur \n goals or in

2!-' Korn 83| equations (expressed as equals(s.t) In his system) occur only In the heads of
program c It s equations expressing syntactic equailty s® ! (expressed as s=? in his
system) Lhal occlir in goals or bodles of program cisuses. Although it s aot explalned In
{Kornfeld 83|. it could be the case that sEE! qgd s=! are both Interpreted as equallty and the
reflexivity and symmetry ol equailty are subsumed as (ollows. 3 is defined as usual by ra= r.

When a subgoal of the form s#EEt Is resolved with zSE z. z Is Instantiated to 2. Then the sysbem’

sitempts 0 K-unify z{e/z} (which Is s) with {. If s and t are unifiadble. then the binding
generated (s an mgw of ¢ and {. Otherwise, the system will attempt to estabiish the goal +— smet.
if this falla. then the sysiem atiempis o establish the goal —tmms. We prefer to make this
mechanism explicit in our system.

16

bodles of program clauses. A program ~is supplemented by the reflexivity axiom
r=1z1, and when an equality subgoal s=t 18 resolved with r=z an mgu of z=z
and s=! Is computed. Extended unification does not apply to resolution with
r==x. Symmetry of equallty is subsumed by the ruie that extended unification of
an equailty subgoal s=t¢ with the head u==v of an equality clause succeeds i el-
ther I ~— u=—s and +— v=! are established. or (1) e— =8 and —u=! are
established.’ Symmetry in the extended unificatlon of terms Is then subsumed by

symmetry in the extended unification of equations.

K-unification does not subsume function substitutlvity of equality. In
SLDEU-resolution a progrém iIs supplemented by the function substitutlvity
axtoms Fun. Also, there Is no backtracking !n K-unification and this causes in-

completeness. . ~

Example 5.7:

P: J(a)=g(c) - | (1)
f(b)=gq(d) (2)
Q(b)

P(f(z)) — Q(2)

G. — P(g(y))
A

Using clause (1), K-uniflcatlon of P(f(z)) with P(g(y)) results in the binding

Ya/z. ¢/y} and the new goal
S~ —Qa) -

which cannot be established from the program. If the system can backtrack and

use clause (2). then G will be established with the binding {b/z. d/y}. However.‘

since there is no backtracking in K-unificatlon, the system fails Lo estabilsh the

goal G. Bacgktracking in unification is all/\owéd in SLDEU-resolution.

3Thls description is not quite accurate. See Definition 5.2

Formal Definitions
SLDEU-resolution ts SLD-resolution with the following modifications:
e A program 7 is supplemented automatically by the equality theory
Fun_(ref}.

w Standard syntactic unification is replaced by extended uniflcation.
Definitlons 5.1 to 5.8 define SLDEU-resolution by simultaneous recursion.

Ve first define the notlon of extended uni fication for terms.

Definition 5.1: (Extended unification of terms)

Let P be a program. Let s and ¢ be terms. A substitution 8 i1s an E-untjier of
the palr <&, t> Iff & 8 the computed amgwer substitution for an Egrefutation of
P{—s=t}.

A
Example §.8:
= fla)=b
fle)=b

{a/z} and {b/z} are E-unlfiers of the palr < f{z). b>. since the goal — Azr)=b
can be establlshed with the computed answer substitutions {a/z} and {b/z}.
s A

In general. there may be many computed answer -substitutions for a goal — s=¢,

'

hence there may be many E-untﬂg;_s !‘s:;a pair of terms.

Next, we extend the nc-)!.lon of extended uni fication to equations.
Definition 5.2: (Extended unification of equations)
Let s=t¢ be a subgoal: and let u=v — Bl, . .Bq be an equallty clause. A sub-
stitution @ 1s an E-unifier of u=v and s=t Iff § Is the composition § 8, of 8 and
0,3 satisfying one of the (ollow\ng condltions: -

~ -

l.'Ol is an E-unifier of the pair <u,s> and

‘ 8, is an E-unifigr of the palr <v0|.t01 >; ‘
. . ‘..
or .

2. 4, 1s an E-umlfler of the palr <v,s> and *
9, !s an E-unifteg of the pair <ud .td >.

Symmetry ls bullt Into the E-unification of equations.

-

48

r

Example §.9: .
2 Ca=b
a= flc)
b=g(c)
G. —gy=A2) .

{¢,/z} !s an E-unifler of a=b and g(r)=f(z) because {c/z} Is an E-unMer of
<b. g(z)> and {} is an E-unifler of <a. flz)>{c/z} = <a., flc}>. The com-
position {¢/z}{} I8 {¢/z}.

o

Finally. we extend the not.ionv of extended unification to atoms other than

-

equations.

Definition 5.3: (Extended unification of atoms)

Let }"(tl t.) be a subgoal and let _P(al. o 8) — B‘. .. .Bq be an input
clause. A substitution 8 is an E-uns fier of P(s1 s yand P(t,.t)T é
'1s the composition 8,6, -6, of the E-unifiers 8.6,0, where d Is an E-

unifier of the palr <s ..t >. and for each 1, 2<:<n, 8l Is an E-unifler of the
pair

<sB88,---6_,. ‘xenf: e 8 _ >
2
Example 5.10:
P: P(d.o(y).f(y)
a=d
f(a)=gqtb) Y
fb)y=c
G: — P(z.f(2).c)
8, = {a/z} Is an E-unifler of the palr of rerius ~d.zx>.
8, = {b/y} 1s an E-unifier of <g(y}6,.f(x)8 > = <g(y). fla)>.
8, = {} s an E-unifler of </f(y)6 0,.c6 8, > = <[ib). ¢>. and
§ =600, = {a/z.b/y} Is an E-unifler of P(d. gy). /' (v) aad P(z. f(z).c).
- - a

The notion of selection rule 1s identical to that used In SLD-resoclutlon.

The notion of derivation step ls extended by supplemenung'the standard syn-

tactic unification by extended uniflcation.

»

Definition 5.4: (E-derivation step)

Let G;’ be —A ... A ... AL Ct¢l Bq: ‘and let R be a
selectlon rule. Then G 15 E-derived from G and C using the unifier 9!.l
via R Iff the following condlt.lons hold. :

1. R(Gl) ls A

2. a. If C!’l Is z=z, then 8“1 Is an mgu of z=z and 4_
b. otherwise GHI ls an E-unifler of 4 and A4

3. G, isthegoal —{A...... 4 B .,Bq,.-& R

Note that condition 2a in the above definition stops the recursive generation
‘of equality goals (Induced by extended unification) by enforcing the standard syn-

tactic unificatlon of an equality goal with the axlom r=r=r.
Example 5.11: -7)
Gy —a=y. P(y)) R

C[: =z

Gl=o—P(a) 1s derived from G and C using the mgu {a/z a/y} via the

leftmost selection rule.

fa¥
Example 5.12:
Gy — P(z. f(z).¢
C: Pd.gy f(y))

If Pis the program in Example 5.10, then G =0 ls derWed frem G and C

using the substitution {a/z.4/y}.
ro A

Next we extend the notions of derivation and refutation to E-derivation and

E-refutation. ' ’ L

Definition 5.5: (E-derivation)
Let P be a program, G a goal and R a selection rule.) An E-dersvation from
PU{G} VIz Risa sequence of quadruples A

T, T, T,
saustylng t.he followlng condmons

1. Each T, i > 0. 1s & quadruple

<G.C.l.a>
where G‘ \s a goal. CI s an tnput clause from ~_ Fun _ {ref}, L 1s
an n-tuple of substitutions <9|.9,.,. . .9n>. and .A‘ is an m-tuple of
E-refutatlons <& .,8_>.

2. For each 1 21, T‘_l and T‘ satisfy one of the following conditions:

a. R(Gl_l) s s=t,
C s r=z.
. L' 1s <§>. where # 1s an mgu of ref and s=t¢.
A, is the null-tuple <>.

~ b. R(Gx—l> 1s s=¢,)
Cl s an equallity axiom

other than z==r,
L" 1s <6|‘9-2>' and

A ls <5:'52>‘
They are related as follows:

I. 8,¥1s an E-refutation from P& { —u=s) with the substitu-
tion 91 and
6,_, 1s an E-refutation from PU{—(v:t)Gl} with the sub-
stitution 82;

or

I1. §, 1s an E-refutation from P U{—v=2s} with the substitu-
ton & and 'S
6, 1s an E-refutatlon from PU{—(u=t)8 } with the sub-
stitution 4,,. '

N - e R(G.'—n) 1s an atom P(tl. R 2 2
CsP.....s)—B.....B. L . .
U, s <0|.82....,3n>.a;\d .
4, s <4§l 6n>. where 6l s an E-refutation f{rom

PU{~—s =t } with the substitutlon ¢, and for all 5, 2 <3<,
61. s an E-refutation from P U { —(a}::}.)a‘a, e Oj_l} with
the substitutlon 4.

3. G‘ is E-dertved from G".-
the substitutions in U .

. and C‘ using the composition 9|02 -8 of

S
Definition 5.8: An E-refutation is a finlte E-derivation
To.Tl.T,.,, Y
where the goal Gk in Tk s C.
We say that the E-refutation has length k.
Let o, be' the composmorr&le_., ce Gn of the substitutions In L'l. The com-

position g.9,"
tlon obtalned by restricting the substitution of the E-refutation to the vartables
In Go ls called the computed answer substitution of the E-refutation.

| a

-+ 0, I8 called the substitution of the E-refutation. The substitu-

An E-refutation from P _{G} 1s a formal object that demonstrates the un-

satisflabllity of P U{G}. The property of being an E-refutation is decidable.

_Example 5.13:

P a==b.
P(a).
Q(c) — P(b).
Al to A8 are E-refutations from F:
1. AL <3, _. _._>
2. 42: <+—a=a._._._>. 0. z=z. <{a/z}>. <>>
3.43: < —b=b, . . > <Oy=y<{b/y}>. <>>]
4. Ad: <—a=b._._._.>. <0Oa=b <{a/1:}.{b/y}—>, <A2.A43> >
5.A45: <« P(b), _._._>.<0Pa)<{a/z.b/y}>. <A4>>)
8. A6: < —Q(c) _. _._>.

< — P(b), Q(c) — P(b). <{c/z}>. <A2'> >,
<0.P(a). <{a/z}.{b/y}>. . <A4>>
where A2’ Is an E-refutation from Pt {—c=c} simlilar to A2.

Definition 8.7: (£-Correct answer substitution)
Let P be a program and let

G: o—A.. N _
be a gosl. A substitution @ for the variables in G is called an £-correct anSwer
substitution for PU{G} T P UE = V(A A - - - AA O

-~

w
[&)

>

The soundness and completeness of SLDEU-resoiution are proved In the next

chapter.

Search Space

We call the search space of E-resolution an E-tree. E-trees are more complli-

cated than SLD-trees. For each palr consisting of a goal
G. —.4l 4

C: A—B..... B_.

there may be many descendants, one for each E-~unifier of A and the selected

atom of G.

Definition 5.8: (E-tree)

Let 7 be a program. G a goal and R a selectlon rule. Then the E-tree for
P U{G} via R 13 defined as follows:

1. Each node of the tree is a goal {whlich may be).

2. The root node 1s GG

3. Thé descendants of a node .V are the goal clauses E-derivable from .V
In one step. Each arc from .V to a descendant 1s labeled by a palr
< C.0>, where C is the Input clause and & the unifler used in the cor-
respondling derivation step.

4. Nodes which are the empty clause have no descendants.

A

If there are Iinfinitely many E-uniflers for A and the selected atom of G. then
the descendants of G and A ~;-B| B, form an Infinite fan. There Is a fan
for each Input clause whose head is E-unifiable with the selected atom of G. See

Figures 5-1 and 5-2.

A3 In the case of SLD-trees, each branch of an E-tree corresponds to an E-

&

/
rd
’
4
(4
Ve
7’
’
,V
c
’
e Y

N
/ N \
/, /' ; \ \\
’ ¢ ’ " \\ \\
J / / | : .
'l I’ | \ .
/ ! { \ \
’ I l \
/ ! | \
/ 1 1 \
Y { : .
/ \
[) '. \
- " . \
S3 L \ee annn-
S
Figure 5-2:

Fans of a Node

54

derivation from P U{G}. Branches corresponding to successful, infinite and

falled derivations are called success, :nfinite and faslure branches, respectively.

An E-refutation procedure 1s a procedure for searching E-trees for E-
refutations. An E-refutation procedure has two components: a selection rule.
whiéh determines the search trees and a search strategy which determines the

way In which a tree Is searched.

5.4. Right Recursive SLDEU-Resolution
In this section we conslder a source of inflnite computations that is bullt Into
SLDEU-resolution: we Introduce a restrictlon on SLDEU-resolution that

eliminates this kind of Infinite computations.

In SLDEU-resoiution, transitlvity 1s subsumed by the recursive generation of
/4

new equallty goals in the E-unification of equallity subgoals.
Example 5.14:)

P: a=b
b=c¢c
c=d "

G: —a=d

A
a=>H is E-unifiable with a=d because — a==a can be established using r=z and

o
—b=d’can be established as follows: after the goal
— b=d i v-é

Is generated, E-unification of b=c and b=d generates the goal
L — C—_—d

which can be established using the clause c=d.

" However, the recursive generatlon of equality goals In E-unification ls also a

source of Infinite computations.
Example 5.15:
P: a=b

w
[#]]

G: —c=d

<

A
c=d s not a theorem of 2 and all E-derivatlons from P U{G} are Infinite. Con-
sider the terms a and ¢. A sequence of equallty goals generated by the E-

unification of a and ¢ Is llsted as follows:
—ag=c; \—
— a=a (succeeds), b=c:
— a=b (succeeds), b=c¢;
— a=b (succeeds), b=c:

This is an Infinite loop. The problem {3 completely generai: equallty subgoals

never fall.

Exampie 5.14 suggests a way of avolding such Inflnite loops. Note that in the
example the frst t,errns' of the equality subgoals are always unifiable with a term’
in the head of an equaljty clause. Recursive generation of equality goals is needed

only for the second terms of equality subgoals. On the other hand, ! we rule out

"E-unification of the first terms In equality subgoals, the goal «—c¢=d In Example

5.15 falls because c Is unifiable with nelther a nor b.

We propose the following restriction on the_ E-unification of equality subgoazls.

Rule 5.1: (Right recursion)
Let s=! be a subgoal and u=v ~ B:' e .Bq be an equality axiom. A substitu-

tlon @ Is an R-unifier of u=v and s=t Iff § i1s the composition of 81 and 92 satis-
fying ¢ne of the following conditlons:

1. 0‘ s an mgu of the palr <u,s> and
82 Is an E-unifier of the palr <v01.t01>:

or

2. Ol s an mgu of the p'alr <v,3> and

vl

58

¢, is an E-unifer of the pair <u€l.t8f1 >4

A

&>

The version of extended unification obtained b'y modlh}‘nz E-unification by Rule
5.1 1s called R-unification and.the system obtained by Imposing Rule 5.1 on
SLDEU-resolution s called right recursive SLDE'U-reaolutio_n. A proof of the
soundness and cc;m.ple’tenom of right recurs}ve SLDEU-resolution is given i the
next chapter. Here we will explaln lnfo_cmally how the symmetry and r.rs.nslttvh;y

of equallty are subsumed in right recursive SLDEU-resolutlion.

The subsumdption of the symmetry and transitivity axioms is based on the
ldea of an E-chain. Since equallty Is reflexive, symmetric and transitive, It-1s an
equlval'en'g:'e reiallon. We have the following resuit, which* holds for all equlv-

alence relations:
Notation: o)
We use r,'s, £, u, vand w, with or without subscripts, for termas.

_ S A
Proposition -5.1: A ground equation s=t 13 a theorem of P {ref, sy-m.trah} ier
there 1s a’ sequence of ground terms
3 Tor Tvvv e Tr L
satisfying the followinz‘ conditions: . -

1. s ls ro,tZS e

2. for each 1, 1 <1</, there is a clause
C: s=ve—A, ... A]
In P and a substitution @ such that A6,A @ are ground atoms
logically Iimplled by PU {ref,sym, tran} and elther
a r._

l:—.-:'u&a.nd r‘.EvG. or

4Rule 5.1 Is not equivalent 10 Kornfeld's restriction that equality axioms can only be used one
way {Kornfeid 83, §6}. Kornfeld's restriction corresponds to the requirement that the unifler for u
must be an mgu. This causes Incomplieteness. Con_ﬂ_t!gr the following program: ‘
P buma. -
! bamme, -
Both — as=¢ and — cmma will fail because there is no mgu for <a.b> nor for <c.b>.

~4

b. r_,=vdand r,_=-'.ru8."’

D

We call the sequence S an E-chain for s and ¢: each palr <r r.>ls called an

-1’

E-link.

Consider the simple case where all pfogra.rn clauses are ground umit clauses.

Suppose a ground equatlon s=¢ Is a theorem of ” U ¢&. Then there s an E-chalin

linking s and ¢. <, > is an E-link, so there Is a clause

C: u==v -
in P%and either (1) s=u and r,=vor (1) s=v and r=u. In elther case s Is
uni figble with a term in the head of an equality clause In P and R-uniflcation of

s succeeds. The system then ghenerates the new goal

_ —r, ={.
The proof of s=t Is reduced to the proof of an equation (rl=t) with a shorter E-

.chain. The sequence of goals generated by R-unification of u=v and s=t Is

listed as follows:

—r ={ =—r =t ..., —r, =l —l=L,

1 2 ’ -1

The goal « {=(succeeds by z==x.

sTi\b result may be casily proved by‘uducuon on TPu{re/ sym ,mn}ﬂ-

oThe presence of Fun is ignored for the moment.

— Chapter Six
Semantlcs of SLDEU—Resolution

In this chapter the semantics of SLDE _resolution Is reduced to the seman-
ties of SLD-resolution. In Secr.‘ion 1 we deflne two program srans'rqrma.uons .
and r, * complles a program ” for SLDEU-resoiution to an equivalent pl:ogram‘
P* for SLD-resolution. while r complles a progra;n P for right recursive SLDEU-
resolution to an equivalent program 2" for SLD-resolutlon. In Sectlon 2 we .
prow;'e some useful results concerning cgncafenatlons of SLD-refutatlons and com-
positions of unifters. The Compllation Them:ems for * and r are ﬁroved in Sec-
tions 3 and 4. The CAS-equivalence Theorems for * and r are proved in Section
3. _ ‘ -

The Compilation Theorems are proved for SLDEU-resolution and right recur-

sive SLDEU-resolution with the leftmost selection rule. What follows are the
- ' .

definitions of an E-derivation and an E-refutation for SLDEU-resolutiom using the

-

leftmost selection rule..

Definition 6.1: (E-derivatlon, SLi)EU-raolut.lon)
Let P be a program and G a goal. An E-derivation from PU{G} via the
leftmost selectlon rule Is a sequence of quadruples)

To' TI’ Tz'
satisfying the following condltions:

1. Each T'. t > 0. Is a quadruple

<G C U A >
where G is a goal, C is an !nput clause from PUFunyU({ref}. U Is
an n-t.uple of substitutions <0|'02' .9"). and Ai la an m-tuple of
E-refutations <§,,....5 >.

L

2. Foreach 1 2> 1, T.._I ‘and T‘. satisfy one of the following conditlons:

a. (Reflexivity)

G,_ I8 —s=t,A, ... A, . o _
C; ls ref, ’
U ls <0>, where 8 h an mgu of s==t and re]

58

‘3; Is the null-tuple < >,

0. (Symmetry and predicate substitutivity for =)
\Gl__l Is —s=t.A, A
C. is u=v — Bl Bq. an equality axiom other than ref,
L,1s <91.9:>. and
A 1s <6 .4,>.
G! is -—(Bl B A, . .. A }Olﬁ.,.

They are related as [ollows:

.6 Is an E-refutatlon from 7 _{~—u=s} with the

S substitution § and
§, ts an E-refutatlon from 7 {—(v==t)¢ } with the sub-
stitution 67
or
.6 is an E-refutation from PU{—v=s} with the
substitution § and
- 6, 1s an E-refutation from 7 {«—{u=t)d } with the sub-

stitutidh @ .

[N

c¢. (Predicate substitutlvity)
G_, s —Pt.....t)A,.. .. .2

t=—1
C1 lsP(s‘.....an)o—B B

3 .-+ B
U,1s <0,.6,.....0 >, and _
LA I8 <hL L, 6,>. where § Is an E-refutatien (rom
Pu{o-s =t } with the substitution 8 and for all j, 2<)< n,
6 4s an E-refutat.lon from Pu{c—(s =:t)Q g, :_l} “with
l.he substitution 8
G s -~(Bl. . .Bq.A.z. ce.A 9B, -8
. p S
Definition 6.2: An E-refutation is a fnite E-derivation
A T, T, T, T,
wheret.be(ouG urT is 0. We say that k Is the lengthor/t Leto, 1 <:<k,
be the composition Old -0, or the substlt.utlons In U(=<8, 0,0,>).

The composition 0,0, - - -0, Is ca.lled the substitution of the E- refutatxon
a

-

‘\ | .
A

The defNnitlon of R-deriwvation for right recursive SLDEU-resoiutlon is \den-

tical to that of E-derivatlon except for modificatlons In condition 2.b. These

changes are highlighted by vertical bars at the left margin.

Definition 8.3: (R-dertvation, right recursive SLDEL’-rsqu(&on)
Let 7 be a program and G a goal. An Rdderivalion from 7 _{G} via the
leftmost seiection rule 1s a sequence of quadrupies -
Ty Ty Ty ..
satlsfying the following conditions:

1. Each T‘. 1 > 0. Is a quadruple

<G;,C;.L'l,._\‘>

where G s 3 goal, C, Is (a_vartant of} an Input clause from

P@Funy{ref}. L is an n-tupie of substitutions <# .8

]
-

and 3 Is an m-tuple of R-refutations <5|' LY. .6m>.

2. Foreach : > 1. T _

] " a.

, and T[satisfy one of the following conditlons:

(Reflexivity)

C, s ref.
U 1s <8>, where 6 Is an mgu of s=! and re/.
z_‘.‘ 1s the null-tuple < >,

Cl is -—(Ag. C .Am)ﬂ.
(Symmetry and predicate substitutivity for =)
- G s —s=¢A......4A .
1—1 2 m
C‘ Is u=v — BI Bq. an equality axiom other than re/,
Ul Is <9..8',>. and .
4 s <4,>.
C‘ Is -—(B‘. Ce ,Bq.A,.,.Am)Glﬂz.

They are related as follows:

1. @, 1s an mgu of u and s and
- 6, ls an R-refutation from PU{—(uv=t)d } with the sub-
stitutlon 8,
or

ll.ﬂI Is an mgu of v and s and
6, Is an R-refutation from 7 U{ —(u=¢)d } with the sub-
stitution &,)

~
L s

81
¢. (Predicate substitutlvity))
G _,1s—FP.. ... t) A, - A
C| Is F‘(sl 8) — Bl Bq.
U, 1s <89, .8,>. and
A s <5 6 .>. where & 1s an ‘R-refutation from
PU{—s =t} with the substitution # and for all ;, 2< ;< n.
6} s an R-refutation from Pu{-—(s}=t}}8 a, - 9}_1} with
the substitution 6}.
G s -—(Bl,.‘..Bq.A2 4.8, --6_
D

The definitlon of an R-refutation is essentlally the same as that for an E-

refutation. -

Definition 6.4: An R-refutation (for right recursive SLDEU-resolution) Is a
finite R-derivation

£ T T.T,.... T,

where the goal Gk in Tk is). We say that k ls the length of .{. Let 0.1 <1<k,
be the composition § 6, - - - 8 of the substitutipns in L (=<8 .6,0 >).

The composition 0,0 o, 18 called the substitution of the R-refutation.

g
a

\

6.1. The Program Transformations * and r

The * Transformation
Programs for SLDEU-resolutlon are rompiled into equlvalent programs for

SLD-resolution by the foflowlng transformation *.
Notation: In this chapter we use a and (3, with or without subscripts, for varl-
ables introduced by the program transformations * and r, and z, y, z, for other
variables,

- PN
Deflnition 6.5: (P*)
Let A be the transformation mapping a definite clause

C: Q... ...t J—B.....B,

to its homogcncoua form)

rC): Ha,. ...an)o—t.=a|.....tn=an.8|.....Bq
L

\

82
-
where a . a are distinct variabies not occurring In C.!
Pr={refIU{RO CES_(PUFun)}
where §_(P U Fun) is the symmetric extenston of 7 Fun with respect to =.
D

We will motivate the transformatior * In Lwo‘ steps. First, we introduce
some modifications on a standard interpreter for SLD-resolution uslné a leftmost
computation rule. We can consider the new interpreter so ogt.a.lned as an inter-
preter for SLDEU-resolution. Then we show that we may implement these

modifications by the program transformation, *.

We need the following modificatlons on standard Prolog Interpreters:
1. Supplementation of the program:

a. Supplement a program P by Fun.
b. Extend PUFunto §_(PUFun). -
c. Supplement §_(P U Fun) by re/f.

2. Modifications of the refutation procedure:

Let G‘._lbe '—Ar C .Am. Then Al 1s the atom selected by the
leftmost computation rule. Let C'. be an Input clause from
S_(PUFun)U(ref}.

a. A s s=tand C‘ s ref.) ’

1. if there Is no mgu of s=t and ref, then the derivation falls
and the interpreter backtracks:

il. otherwise G'- Is
--fA2. cee AN,

where 6 Is an mgu computed for s=¢ and ref.

IThil is & variant of Lhe homogeneous form transformation first introduced in {van Emden 84].

The homogeneous forms of logic programs are siso used In similar coatexts in (Ficock
88. Hoddlinott 86a. Hoddinott 88b, Demopoulos 88. Chan 86a].

——

Cﬁ

'y

83

b 41 1s P(t.,.... t,) (P may be =), and Cl Is not ref, and C‘l is
P(.sl s) — B‘ B .
q
Then Gl Is
—s=t.... .sn=cn.BI Bq..-t_: 4

Let us expiain how SLDEU-resoiution Is implemented !n this modified sys-

tem:

e In an E-derivation. an auxillary clause may come from the program *
or from FunuU{ref}. This Is accomplished by supplementing the
program by Fun and {ref} (step la and 1c).

e Symmetry is taken care of by extending P U Fun to S_(PU Fun) (step
1b).

e In an E-derivation, {f C‘ is ref. then § has to be an mgu of the
selected equation and ref. This Is accomplished In step 2a.

e If. in an E-derivatlon. C is not ref, then o, 1s an E-unifier of the
selected atom and the head of C. The new goal Is then

o—(Bl. .. ‘Bq'A*z'A_)o . This s enforced In step 2b. Accord-
ing to the definition of an E-unifier, o, Is the composition 8 ---48_of
the B—unlners' 01. Ce .Bn where 81 is an E-unifler of the palr of terms

<s.t >, and 9], 2<7<n, is an E-unifler of

<.s)0l ce 91._l zjal s OJ_I >. Moreover, a substitutlon § is an E-
unifler of a palr of terms <u,v> Iff § is an E~-computed answer sub-
stitution for — u=v. [t Is easy to see that a substitution o Is an E-

computed answer substitution for ot

) °—s|==tl. .- .3n=tn
Iff o is an E;-unlﬂe_r of P(.sr.an-) and P(tl. C e .tn). Now In the
modifled system, the new gosl is
—s=t.... .sneztn,Bl. . .Bq.A.z. c e .Am.

There Is an E-unifier ¢ for P(al. .+ +.9.) and P(tl. .+ ..t) I there
ls a derivation from

‘-.9|=,ll. . "'n=‘n'Bl' C e ’Bq'A'Z'A";
to

o-(B.. e .Bq,A,x. .. .Am)a
In t._he modiflied system.

84

The above modifications may be implemented in SLD-resolution by trans-

forming §S_(”_ Fun) Into its homogeneous form. The effect of adding

..

s=t.... .8 =tl. o the new gosl 1s achleved by replacing each clause In

P Fun_ S by 1ts homogeneous form. However, ref Is not replated by its

homogeneous form because the substitution used for the resolullion of a subgoal

with ref has to be an mgu.

The r Transformation
Programs for right recursive SLDEU-resolution may be compiled into equliv-

alent progr@ms for SLD-resolution by the following transformation r.

Definition 6.8: (P7) »
Let a program P be partitioned into two sets D apd E where D ls & set of non-

equallity clauses and E 1s a set of equality clauses. Let k" be the transformattion
mapping an equallty clause

C: u=v——B|.....Bq
to Its right homogeneous form
.h(C;: u=d o——,v=a.Bl..‘...Bq'

where o Is a variable not occurring In C.

PT = {ref}U{h(C) CEDIU{A (O CES_(EUFun)}
) a

Note that the term u In C Is not replaced by a new variable. This forces the
unifler for the left term in an equality subgoal. s=t¢, to be an mgu of u and s.

See Chapter 7 §7.4 for some examples that lllustrate the operation of A",

8.2. Cdpcatena.tions of SLD-refutations and Compositions of
"Uniflers
'In this section we prove some useful results concerning concatenations of
SLD-refutations and compositions of unifierss The proofs of the Compllat.lor_l

Theorems are based on t.hgse results.

_ G,_, (Ge

85

Concatenations of SLD-Refutations

®
Definition 6.7: {Concatenation of goals)
Let h
G: —AL A ..
G’ —Al M .
be two goals. The concatenation of G and G'. written as G~ (', is the goal
—AL A LAL Al

. A
Definition 8.8: (Concatenation of SLD-refutatlons)
Let
S: <G, C,.8,>. <G .C .0 > <C.C.6.>

’. ’ ! ’ ! ! 4 [and ’ !
S’ <G,.Ch.8,> <G|.CL.é/>. ..., <G.C|.6, >

be SLD-refutatlons. If G is G868, - - - @, then the concatenation of $ and s,
written as S S’ Is the sequence ‘
<Go G.Co.90>.
<G, ~(G8)).C,.0, >,
<G,=_l~(cal 8,
1}
<GO.C,‘. 0k>.
<G!.Cl.0!>. | :

).Ck_ e >

1" k=1 '

<G.C..8. > -

Theorem 8.1! (Concatenation of SLD-refutations)
Let P be a program and let

S: - <G,C0,>. <G .C .8 >, ... <0.C.0> .

S <GLCLeL > <G 8IS, L, <O.ClLe > g
be SLD-refutations from PU{GO}'and PUY{Gy}. respectively. If- G| s
G944, ---40, then the concatenatlon § S’ Is an SLD-refutation from

AJ{G°~G} of length k+n with 8102 ~--8,08!8] ---8 as the substitution-of the

A C

k172

refutation.

Proof: . -

For all 1.1 <1 <k-Y. GG, -- -0, 1s SLD-derlved from G,_ ~G8, ---0,_

and C; usihg the mgu .. Since G, s & G, (%G8, - - -0,)1s SLD-derived from

+0,_,)and-C, using 0,;.

- |
- Q.E.D.

P

86

Compositions of Unifiers

Theorem 8.2: (Composition of uniflers)

Let 01 = {r‘/:::l P T Yy S Y }

g, = {t‘/yl. Y UL u /3, }

n, = {v/a. ... vp/ap }

n, = {w/3,..... wq_/ﬁq }
where r, Teo Yyooo ¥ I 5 I TERRRL . 3 .3q are dlstinct
variables. If the varlables 3l 3q do not occur in the terms of the substitu-
tlons §, and n,, then i

(6l o ql)(a_., uon,) = 9192 U {vIB,_,/al vp&z/ap }u n,
S

Proof:
4 -

We prove the result for the case where k=m=n=p=—¢g=1. Generallzation-to the

general case is stralghtforward. In this degenerate case)

8, un, = {r/z.3/y. v/a}, e
9, Un, = {t/y. u/z w/B}.
Since 3 does not occur in r. 3 and v,
ré,un,)=ré, -
s(0,Un,) =94,
v(8,Un,) =1,
Hence
(8, UnX8,Un,) = {rf,/z. s0,/y. v8,/a. u/z. w/3}
{r02/z. a@z/y. u/z} U {ve..,/a} U {w/3)
= 8182 U {ve._)/a YU Ny

Q.E.D.

6.3. Compilation Thgox;em for SLDEU-Resoliition

In this sectlon we prove t.h; EompllaQ!on Lemma from which the Compllatton
Theorem for SLDEU-wesolution follows. The proor‘of the Compilation Lemma for
SLDEU—r&olutlon is much more complicated than the proofl of the Compllatlo‘:i‘
Lemma rér symmetric SLD-resolution. This Is because E-refutatlons are fairly

complex formal objects. Except for derivatlon steps In which the Input ciause is

=1z, every step In an E-derivalion incorporates a tuple of E-refutations which

~

N

87

deménst:rates that the substitution used in the step Is in fact an E-unifler of the

atoms resolved"upon. In general, each of these embedded E-refutatlons contalns

- other embedded E-refutations.? In what follows, we first deflne a function I from

E-refutations to natural numbers; this function measures the complezity of E-

refutations. We then prove that there 1s an E—refutatlon of complexit}, m from

PLU{G} it there 1s an SLD-refutatlon of tength m from P*U {G}

Definition 8.9: (Complexity of E-refutations)
Let .1 be a E-refutation of the form

<G, _._._>. <G.C.U.4a /><G.C. U, a>
where 4, 1 <1<k Is <6:.5:. C ,5'"‘>. The complexity [{A) of .1 is defined
as follows:
0. If Ais an E-refutation of length O:
F(A) ={) -
Z (1+‘7(A)), otherwise,

where 7(4 } I1s the sum.of the complexities of the E—-refut.a.t.lons In ._\ and 7 ls

defined as follows:
¢ 0, If A. is the null tuple <>
.f(A‘) = {)

]
Z]=|F(6). If A isan n-tuple. .

Each step In A contributes oné unit of complexity and F(A) 1s the sum of the
con‘xplexlty of each constituent E-refutation In A plus the complexity of each step

in A~
Example 8.1:
P . a=b.
P(a). , : -
. Q(c) — P(b).

LA <Q,_._. _>
rA1)=o.
because the iength of A1l is O.

]

aDel'hrulocu of SLDNF-renolution are formal objects involving the same kind of compiexity. A
Nnitely falted SLDNF-tree & embedded in each step in which the sclcewed Nteral of the previous
goal ls a negative literal [Clark 78, Lloyd 84, Chaa 88b|.

2. 12: <—a=a. _. _._>. <C.r=z.<{a/z}>. <>>
FA2)=1+~3(<>)=14+0=1

I A3: < —=b=b, _ . _._ > <Cy=y <{bry}> <>>
1‘(.13)=‘!; :
A4 <—a=b, _ . . >, <Qae=b <{a/z}.{b/y}> <A2.43>>

FA4) =1+ (< 243>)= 1+(1+1)=3.

wn

A5 < =P, _._._>. <O.Pla).<{a/z.b/y}> . <l4>>
FAs)=1+v(<Aa>)=1+{A4)=1+3=4.

- 8. 418: <’—Q(C)._._-_>. A
< — Pb).Q(e) — P(b). <{c/2}>. <. 12> >, - i
<QO.P(a). <{a/z}.{b/y}>. <H4>>

where .{2’ Is an E-refutatlon from PU{ ~—c=c} simllar to .12.
[‘(AB)=zf(x+7(d‘))=(l+F(A2’))+(1+1’(A4))=(1-+-1)+(1-+-3)=8.

A

Notation: We use 7. with or without subscripts and primes, r& substitutions of
variables introduced by *. and we use ¢, 8. for substitutions of other variables. '
a

Lemma 8.1: (For SLDEU-resolution vla the leftmost computatlon rule)

Let P be a program and G a goal. There Is an E-refutation from P U{G} of com-
plexity m with substitutton o Iff there is an SLD-refutatlon from P*U{G} of
length m with substitution ¢ Un where n Is a substitution for varlables introduced
by *. '

A
Proof: (By Induction on m)
(=) Let o
A: T(=<G. _. _. _>)

’ T(=<G,, C‘.U|.A|>).

Tk(;_? <D. Ck’ Uk'Ak>) -
be an E-refutation from PU{G} of complexity m. Let o, 1 <i <k, be the com-
. position 0192 ce On ~of the substitutions In U‘.(a <0|.02. C .Bn >).

o=0 0,0, is the substitution of A

Base case: m=0.
Then G Is O and {} Is the substitution of A. The sequence
<d._._>] '
Is an SLD-refutation from P*U{G} of lerigth O with the substitution {}.

»

89

Inductive step.. -
Assume that the result holds for all 1 < m. Consider the subsequence

A T. TQ.....T,‘.
9,05 O {s the substitution of A’. Let I'(A") be m'.
m=1+'7(dl)+m’ N .

Hence m’ < m. By the Inductlve hypothesis, there 1s an SLD-refutatlon S’ from
P*U{G,} of length m’ with a substitutlon o,0, - -0, Un. There are three

cases:
1. Cl Is ref. N
2. C| !s an equality clause other than ref.

3

3. C1 s 2 non-equality clause.

Case 1.

Gls —s=t A,A:
C 18 z=z:

4,18 <>

Ul is <a'l>. where g, Is an mgu of s=! and r=z: and

Giis —(MyA)o,.

Since 7(41)=7(<>)=°' .

m' = I'(A)—1 = m—1.
Let S’ be the sequence

Wo. 'I’l. 'P,). SN A
Let S be the sequence

<G|_o_>' <Gl'(:;l'al>° "'l. ¢20 LI) twﬂ_ll
G| is SLD-derived from G and C|(§z=z) using the mgu ¢,. Hence S is an
SLD-refutatlon from P*U{G} of length m. The substitution of S'is

al(a,zan-/' c o U n = 00, 0U n' (by Theorem 8.2)

= oUr.

-

Case 2.

G is haz.t.A.‘. e "Ap;
Cthu—vo-B‘....,B:
Alu <6‘.62>.

U. is <’|' 02>. .
and

G,is —(B, ... B A,A)08,

L . % .
A R R S S B . .

There are two cases:
(1) 4, is an E-refutation from 7 {+— u=s} with substitutlon § and
6, is an E-refutatlon from P U { —(v=t)§ } with substitution 6
or

(1} §.1s an E-refutation from P {— v=s} with substitution , and

8, 1s an E-refutation from 2y { -—(u=t)81} with substltution §...

]
Consider case (i) where § is an E-refutation from PU{ — v=s} with sub-

stitutlon 8 =g, - ¢, and &, Is an E-refutation from Pu{h(u=t)8l} with

substitution #, == 7, ... 7.

l e

Let I‘(_&l)'be m and I'é,)be m,. Then
m = f14m +m,)+m'.]
Hence m,i.“’m2 < m. By the Inductive hypothesis, there is an SkD-refutation S!
with the substitution 8 Un, from P*{«— v=s} of length m, and there Is an
SLD-refutation S2 with the substitution 02Un,, from P‘U{«—(u=’t)8l} of length

mz.

Since 7, Is a substltutlon for vartables introduced by the transformation *,
Gl: «—(Bl. c. .Bq,Az. Ce .Ap)ale2
s ldentlcal to '
°_(B|' R .Bq.Az. Ce s .Ap)&l(02un2).
Hence S27S’ is defined according to Definition 6.8. By the Concatenation

Theorem 5278 Is an SLD-refutatlon from
Pru{—(u=t.B,. ... ,Bﬂ.AT e .Ap)al} of length m,+m’ with the substitu-
tlon (8,Un,No,0; - o, Un). Simllarly, S17(S2789) s defined and is an SLD-
refutatlon from P*{— v=s, u=t.Bl. ... ,Bq.A,z, e .AP} of length
m‘+m2+m' with the substitutlion (Blun:)(azu%)(azas BRE- MY 7).

Because Cl Is u=v — B|' e .Bq. there is a clause
h(C,): a=f— v=a,u=AB,.8, -

"‘In P*. Let SI”(S27S") be the sequence
V. ¥, . ¥,.....¥

m_ +m_+m"
1 3

Let S be the sequence
<G, _._>,
<—v=su=tB..... Bq.Az. - .AP: h(C,): {s/a.t/B}>.
V. 12. R 4

.
71
.

—v=s,u=t.B..... B A? A is SLD-dertved from G and A(C)) using the

mgu {s/a.t/B}. Hence S s an SLD—rerutatlon from P*U{G} of length
1+ml+m2+m’(—-m)

The substitution of S'is
{s/z. t/y}8, UN X8, Un X000, - -0 UM -
={s/z. t/y}o 8 GUN UMNo,0y - -0, Un) '
={s/z. t/y}(ﬂ,ﬂ,agas e Unl'UnL U
"0182"2’3 cropUngUnitung U
=8 8, 0.0 “o,Un

1°2°2%3 "

where n Is a substitution for variables introduced by *. Since 919_, ls o,. the sub-

stitution of SisocUn.
Remalning cases may be proved in the same way.

(=) Let
S: v (=<G. _. _>)
"'1(5<G|' C,.£|>).

¥ (=<0.C,. £ >) .
be an SLD-refutation from P*U{G } of length nt with substitution cUn.

Base case: m=0. .
<0O. _._> Is the only member of S and {} Is the substitution of S. The se-
quence

<'D' . . >

is an E-refutation from PU {G} of complexity 0 and substitution (}.

Inductive step.
Assume that the resuit holds for all 1+ < m. Consider Wo and 'I'l. There are three
cases: .

1.C, I8 ref. .

2. C s the homogeneous form of a clause In P U Fun.

3. C Is t.ho homogeneous form of a clau.sé In S (PUFun)—(PU Fun).

Case 1.
C, is z=1;
Gis —sml A,AP;

§, |s an mgu of z==z and s=={, and
G' Is —(A,A')E'.

The subeequence

-4
"°

v.V.,....V¥
T2 m .
Is an SLD-refutatlon from A2*U{G,} of length m—1 with substitution
62 [N fm —3 aJUﬂ'_

By the Imductive hypothesis, there is an E-refutation
A
A To’ Ti.....Tk
from PU{Gi} of complexity m—1 with ¢’ as its substitution. The sequence
A <G, _._._>, \
<G, z=I1.<§{>.<>>,

]
is an E-refutatlon rtom P {G} with substitution E)_,Ci
FA)=©1+0)+(m—-1)=m
oUn=¢§¢&, &,
£ (um
= {,ouUn (by Theorem 8.2)
Hence a(=£|a") Is the answer substitution of .1’

We wlill prove case 3. Case 2 may be proved In a similar way.

Cl: =3 — v=a.u=3, Bl Bq
s the homogeneous .form of a cfause C in S(PUFun)—(PUFun). G Is
0—3=t.A2,AP._)
Gl Is ~—v=s.u=t.Bi. e ,Bq,A,z, - .Ap and &, Is {s/a.t/B}. Let G’ be
—~u=t.B.....B A, ... A and G"be —B..... B.A, A, The se-
quence of goals'in S'Is :
G, : -
G, 7 G = ~.—v=s“"o-—u=t.8l Bq..»i;. .. .-.AP)
G;“’G'E . | .
GGG 6 (=G | o
) —(u=t.B,.Bq.A’. . .AP)Efz e)
Grer G &y C= (=06 - 6,
"(Bl"“'Bq'A‘z AP)E,J--'Q“)
GL+2~G"€2 T €k+2' ! - -
GZ+I~G"€2 o g "
G Gy (BB BuAy AN G

]
It Is obvious that

]
- . P
. .
-) .. L

-

Y

St: <G|._._>.<G.C.(>. _<:’-Ck,|-5k-|>
ts an SLD-refutation from P*U{G|}. N
§& <Gi > <G G &> <CCivinrSenin>
is an SLD-refutation rrom Peu{G;_, } and
S’ <G”£2.~--£b‘_|. _ >

<Cheiez Chmier Skeins™

o €

<Z.C,.¢&,.>

is an SLD-refutatlon from 2*_{G", - & .}

-
.

) G" is ~—u==s and S! Is an SLD-refutation of length k with substitution

G S = 4o,
G! is —-(u=iﬂ£_: ce - Skﬂ (Eo—(u:t)(eluql) 5-—(u=t}8l) and S2 Is an

k-1

A *SLD-refutation of length { with swbstitutton §,_, - -~ &, ., = 6,01,
G"é,’ o &gy 18 "(Bi """ BQ'AI """ Ap)s'.‘ " Lgey., AN S'is an SLD- °
refutation of len‘t\h m—(k<+{+1) with substitution §, 2 {-=0oC7.

~

By the Inducuve hypothesis. there are E-rerut.a.uons 6 6, and” .’ such that

() 6 Is an E-refutation from Pu{-—v—-s} or complexlt.y k and substitution 8
() 62 is an E-refutation from 7'U{—(u=t)d } of compiexity { and subsututlon
« 8, and (1)

- A T T Tn. .)
s an. E—reruuuon from P { -—(B‘ Bq. A)q; Ca £k’[‘l} of com-
plexity m—(k+!{+1j;and sgbsl.ltutlon a‘.) ‘\\
Let q' be {u /a,.....u /a,} and n] be {uv 8, /a. ucﬂ?/ac}.
- = 0 0 un L_Jr'y2 oLy ‘Theorem 8.2) -t
Since q; -and 7, Lre iubautuuons. for varizsbles not occurrlnz in
— S8 ' e :
Bl Bq. -\,3 Ap. . e
—(B,..... Bq--*r----Ap)Q"'Et.m
is ‘ . \ i
—(B,..... Bq.A,z »1.’)6‘492
itis snrugbtforwud Lo check that the sequence - .
A: <G. _._._ o S
< -—(B| B A,) 02: u‘-w-—B'. c. ,.Bq; .
<9 .0 >: <6 6 >>, d
T‘. . . Tn

is an E-refutation with substitution 0‘920‘.

4

[= (1+1(<8,.6,>N+ T -
= (1+(k+{))+m—(k+{+1) p
=m ,

§6 &, =60 un X8, U X um)

£,(0,6,Un! UnXo'u

= {,(8,0,0UnTUn UM

=480,000§ Unun,Un
for some substitytions E;. ’71 . zy,2 for vulabla introduced by.the transformation
* by assoclativity and Theorem 6.2). Hence o is 018,.,0" and #is uno n, <.
‘A is an E-refutation from P {G} of compiextty m and substitutton o.

o o Q.E.D.

The Compllation Theorem follows from the Compllation Lemma.

Theorem 6.3: (Comptiation. SLDEU-resolution)

Let P be a2 program and let G be a goal. There 1s an E-refutation from 7 {G}
¥ with computed answer substitution é T there s an SLD-refutatlon from

P*{G} with 9 as the computed answer substitutlon.

A

-

6.4. Compilation Thec;rem for Right Recursive
SLDEU-Resolution

The proofs of the Compllation Theorems for SLDEUsgesolution and right
reculj'slve SULDEU-resolution are simitar. The function [Introduced In Definition
8.9 also applfes to R-refutations of right recursive SLDEU-resolution. What fol-
.Iows ls the Compllation Lemma for right recursive SLDEU-resolutlon™\with the

jeftmost selectlon rule. . s

Lemma 6.2: (For right recursive SLDEU-resolution via the leftmost computation
.- rule) Let P be a program and G .be a goal. There Is an R-refutation from
PU{G} of complexity m with substitution o Iff there is an SLD-refutatlon- from
P U {G} of length m with substitution oum. .
. . - | a
Proof: {By lnducuon opm) - . T ‘
(The parts of the proof that are dlfferent ‘from the proof of the Compliation
Lemmzsa for SLDEU-feaolut.lorl are h];bllght.ed by vertical bm at the left margin.)
(=) Let - .

~4

(1}

A T(=<G. _. _. _>)
T(=<G,.C.LU .3 >)

T(=<C.C.U,. 4.,>)
be an R-refutation from P {G} of complexity m. Let 0, 1 <1<k, be the com-
position 9,02 e 8 of the substitytions In U(= <6.8, g >
o=0,0, 0, s the substitutien of 4L

Base case: m=0.)
Then G is O and {} s the substitution of A. The sequence
<0._._>
is ap SLD-refutation from P U {G} of length O with the substitution {}.

. Inductive step.
Assume that the resuit holds Tor all : < m. Consider the subsequence .
A" T'. T,J. N TL-

0,0, -0, ls the substitution of 4. Let F{A" be m’. Then
m = l-+-7(./.‘\l Y4+ m'
Hence m'< m.-
By the inductive hypothesis, there is an SLD-refutation S’ from PTU{G,} of
lengith m’ with a substitution o g, O U 7”. There are three cases:
1. C: Is ref.
2. C‘ Is an equality clause other than ref.
3. C, is 2 non-equality ciause.

3

Case |.

Gls — s=t.A,. .. .-.AP:
C s z=z:

A| Is <>~

U, s <o, >. where o, Is an mgu of s=¢ and r=z: and
G s —(A,A)a,

-

Since 1(Al)=‘7(<>)==0. 4
m = [(A)-]l = m—1.
. Let S’ be the sequehce
Vo Vi Wy - NI \
Lat S be the sequence '
<G._._>. <G‘.C|.Aa|>. fl. #2, AT v

e
s l
. ‘ -

-

-

78

G| is SLD-derived from G and C‘(EJ:=:) using the mgu o . Hence S s an
SLD-refutation from P" U {G } of length m. The substitution of S is

crl(cr,zo3 S akuq’) =00, " deﬂ' (dby Theorem 8.2)
=oJr.
Case 2
Glils — .9-—.—!..4,2 -1p;
C s u=v — Bl Bq:
14, 1s <§,>:
\ U s <8, . 8,>: and
G,is —(B,..... Bq..-iz 4P)o|8_,

- * wa

There a?e twO cases:
M 91 1s an mgu of u and s and

6, Is an R-refutation from P U{— (v=t)d,} with substitution @,
or
(i) Gl Is an mgu of v and = and

6, 1s an R-refutation from P U {~-(u=t¢)d } with substitution 4,

Consider case (11) where 52 1s an R-refutatlon from Pu{-——(u=t)0|} with

substitution 8,2=x X, ...

12 e’
Let 1"(6,:) be m,. m=(1+m,)+m'. Hence m, < m. By the inductive

hypothesis, there Is an SLD-refutatlon S2 with the substitution ¢, Un, from

PTU{—(u=t)8,} of length m_.

Since 1, Is a substitution for variables introduced by the transformation r,

G —(B..... BLA,ANS0,
@ |5 identichl to
. -—(Bl. .. 'Bq'Az' C .AP)OI(G,:Unz).)
Hence S27°S' Is deflned according to Definition 6.8. By the Concatenatlon
Theorem Se~ s is an SLD-refutation - from
P U{—~(u=t.B,Bq.A,. e .AP)Jl} of length m,+m’ with the substitu-

tion (OQU"-JX"-)"J e U 7).

Because C' Is u=v — B.. R ‘.Bq. ;here s a clause
R'(C,): v=a — u=a.B,..... B
in P7. Let S27°S’ be the sequence
- ¥ ir,'.‘\l',..l .. ""2-"'“

Let S be the sequence

<G._._>
<= (=8, B A, AP)G R(C.) 8 {t/a}>
V... . erm,.
Since a does not cccur in — (u=t.B,. Bq,A,_, AP)Bl.
— (u=t.5|. e ‘Bq'A'z' C .Ap)al =
— (u=t.B..... Bq.A_z,' . .Ap)6|{t/a}
and — (u——-t.B| Bq.A,2)8, s SLD-derived from G and A" (C) using

the mgu & {t/a}. Hence S I1s an SLD-refutation from 2" U{G} of length

{+m_+m (=m).

2

Let n, be {t/a}. By Theorem 6.2, §,n, =8 Un,. The substitution of Sis
8,n,(8,Un Xogoy -+ o UM : .

= (0, Un fhUnXo0; -0, UT)

=144 un’Un,)(d.,a:, o UM

= (80,00, - -0.Un'Un Un)

= 0'820203 o Un

w’tere n is a substitution for variables introduced by r. Since ala,z is o . the sub-
stitution of S'is clUN.

Remalning cases may be proved In the same way.

g

(e=) Let -
S: V(=<G. _. _>)
¥V (3<G,.C.&>)

v.(=<0.C . § >) .
be an SLD-refutation from " U {G} of length m with substitution g\Un.

Base case: m=0. ' >
<0, _. _> Is the only member or S and {} s the substitutioh of S. The se-
quence ‘

<D' —. [>

ds an R-refutation from P U{G} of compbxlty 0 and substitution {}.

Inductsve step. ' ' .
Assume that the resuit holds for all 1 < m. Consider ¥, and ¥,. There age three

cases: .
1.C, 1s rcf.’)
1 a Ci is the homogeneous form of a clause in D.

3. Cl is the right homogeneous form of a clause In §_(E o Fun).

Case 1.
C s z=z,
Gls —s=t.A, A .
El 1s an mgu of r=1zr and s=t.
and h
G s —(A, 1€, .
The s\.lbsequeﬂce
Wl. lPJ 'Y

. m .
s an SLD-refutation from P"U{G } of length m—1 with substitutlon
£, - §,=o0urn. >

2 Sm

By the inductive hypothesis, there Is an R-refutation
A T.T..... T
from PU{G} of complexity m~1 with ¢’ as Its substitution. The sequence
A <G._._._>.
<G‘.1:=r.. <{,>.<>>.
TI. R i
. 1s an R-refutauion from P U {G} with substitution § o
F'A) = (1+0)+(m—-1)=m
oun = €& €, .
= £(FUM
= fla'Un’ v (by Theorem 8.2)
Hence a(=«$la') Is the answer substitution of A’

- &

-

We wtll prove case 3. Case 2 may be proved In a similar way.

4Cl: u=ao—v=a.B|.....Bq o ,
Is the right homogeneous form of a clause C In S(E U Fun). G s
— =t A,.Ap. , :
Let Ol be the mgu computed for <u.s>. -
G-l Is - (v=t.Bl.Bq.AQ. .. .'.Ap)?fl - where £ Is Gl{t/a}. Let G’ be
— (Bl. ce 'Bq'Az' e .Ap)fr The sequence of goals in S'is -

G.

'- G/ TG = —(v=0§~—(B,.. ... B.A,)€
G ¢ :
G.”GCE & (=G~

—(B,..... BoA, A6 &, &

G'e€y &, (=—(B.. ... BLAy . . ADEE &)
D :

It is obvious that

Se: <G!._._>.<G}.C,.6>. ..., <C.C,_, &.,>

Is an SLD-refutatlon from P’ U {G,}. and

|5 <Gee, €. _ _> <Gy yp Coop Eary™ - - <C.C,. ¢ >

Is an SLD-refutation from P U{G"§ &, - - &}

G; Is o—(v=t)€[(a '—(v=t)0') and S21s an SLD-refutation of length k& with
substitution '52 R U = 82U N,y

G€&, - &y ls —(B..... Bq'A‘z' o A6 Ek“. and S’ is an SLD-
refutation of length m—(k+1) with substitution 6‘“2 g =o'y 7.

By the Inductlve hypothesis, there .are R-refutations 6,2 and .1’ such that eS,2 is
an R-refutatlon from Pu{o—(v'=t)0l} of complexity k and substitution 0,2. and
A" Té. Tl.....Tn

ls an R-refutation from PL{—(B,.Bq.A?. e ADE S €.} of com-
plexity m—{k+1)and substitution ¢’

| Let n, be {t/a}. Then
€& &y, =0 {t/a}X8,Un,)
= (8,Un X0,Un,)
_= ‘D‘OZU n*
‘where n* Is a substitutfon for vpriables not occurring In
-—Bl.....%.A.z.....AP.‘Hence -

=B BLA, AL &

s - .
" ._(B‘j..‘..Bq.,:t,),....Ap)ola2 .
Suppose . . i
IC: | vmue—B..... B;"’)
1s in £ U Fun. It is straightforward td check that the squ:ené_e_

-

-
N

§

A <G. _._._>.
<—(Bl..._.Bq,.-L: 4p)8162; C; <81.8__,>: <6,_,>>.
T..... T :

is an R-refutation with substitution 8 6,0
re) = a+4(<8,>N+ 1

= (1+k)+m—(k+1)
=m

,n
n

, €, =1(8,8,Un* U
= ale,zd’u n
(by assoclatlvity of substitution composition and Theorem 8.2). Hence ¢ Is Gla_,a’.

A 1s an R-refutation from P {G} of complexity m with substitution o.

Q.E.D.

The Compllation Theorem follows from the Compllation Lemma.

Theorem 8.4: (Compilatlon, right recursive SLDEU-resolution)

Let P be a program and let G be a goal. There Is an R-refutation from AU {G}
"~ with computed answer substitutlon @ Iff there Is an SLD-refutation from

PTU{G} with @ as the computed answer substitutlon.
A

[

6.5. Least Model Theorems for * axé r

We prove, In this section, the Least Model Theorem for the program transfor-

matlons * and r. *Let P be a program and let L be an arbitrary finite extension of
\ :

LP' -Flrst, we will show that
M(PUE) D M(P*) D M, (PT).

Then we complete the circle b; show\ng~ that
M(P) 2 M (PUE.
" 1t follows that for all finite extensions Lof L,
| M (PUE) = M(P*) = MP).
Lemma 6.3: Let P be a program. For all finite extensions L of Lj.
ML(P'UE) 2 M,'(P‘) 2 ML(P'),
o X
.Proof: It Is stralghtforward to show that P UE p= P* = P, The -result then
follows from Proposition 1.1.

Q.E.D.

y

81

The cruclal steps In the proof of M(P") D M(P U&) consist In showing how
the symmetry, transitivity, and predlcate substitutlvity axioms for equallty are
subsumed In. 7. The subsumptlon of the symmetry and transitlvity axioms is

based on the notions of E-chain and E-link.

Definition 6.10: (E-link)
A pailr of ground terms <s.t> 1s called an E-{ink \ff there Is a clause

u=ve—A. ... A
in 7 and a substitution 6 such that®™ 4.. ... 4 6 € T,r Tw and elther
1. s=uf and t =14,
or
2. s=vé and t=ub. -

Definition 6.11: (E-chaln)
A sequence)

S: Por Tir o Ty

of ground terms is called an E-~chain for Lh’g palr of terms <re. 7> \ff { >0 and

r

for each 1,1 <1 <!l <r _ .r > is an E-link, We say that the length of 5 1s /.

(Note that any ground term standing alone is an E-chain of length 0.)
. . - Ya
~

The following propositions regarding properties of E-links and E-chains follow
directly from Deflnitlons 6.10 and 6.11 and do not depend on any property of 7

or P’.
Proposition 8.1: (Symmetry, E-Hnk)
Let s and ¢ be ground &pfs. <s.t> Is an E-link T <t.s> Is an E-link. -

A
Propoeition 6.2: (Concatenation. E-chain)
Let o)
ro,rl.....r‘
uo(azr‘). UTTIRI '
be E-chalns. Then the conecatenation
. 'o"':"".' l'“n"“.".‘m
is also an E-chaln.
o _ a
Proposition 6.3: If the sequence '
Por Tiv o2+ 2 1y ‘ ™ *

is an E-chaln, then the reverse sequence

82

is aiso an E~-chain.

Proof: The result follows from Proposition 8.1.
Q.E.D.

The following lemmas reiate E-links, E-chalns, and M(”"); recall that

M(P")ls \denttcal to Tyr T w

Lemma 68.4: If a palr of ground terms <s.t> s an E-link., then
s=t.t=s € Tpor T w.

S
Proof: By the definitlon of E-link. there Is a clause ‘
C: u=ve—A.,. .. A_
In P and a substlitution & such that AIG Ame € Tpr Tw and elther
1. s=uf and t =l
or

2. s=vé and ! = ub.
By the deflnitlon of P",

cn u=z~—v=z.A|.....A .
m ’
and
Ccm v.=zo— u=::.Al Am
arein P".
Case 1: s=uf and t=¥. .

s=t — t=t¢, 4 9, AL

Isa grounénstance of C'. Since z=z Is!n P", t=t ET r11 C T r! w. Hence
s={ € T rlw.
“The clause E
=3 — 3=3, A 0 AL]
is a ground Ipstance of (7’ Hence t=s € T,k T w.
Case 2. may be prgved in a simllar way. - \ .
. ’ ‘ Q.E.D.
Lemma 8.5: (ﬁ-chnu) _
Let s and ¢ be ground terms. If s=t € Tpr fw. then u':ere are B-chalns}or the
i .palrs <s.t> and <t.a>. : - - o '
. . . a
Proof: sm=t € Tpr 1< HT there is a k such .x’t :—t € Tyr Lk, We prove t.he
result by lnduct.lon on k. .

Base case: k=0.

83

Tpr 10 = ¢@. The result is triviaily true.

Inductive step.
Assume that the result holds for k. Conslder s=t¢ € T',r tk+1. There are two

cases:

1. s=t s an instance of z=—=. Then s=!¢. and
s
. 1s an E-chaln of length 0 for <gs,t>.

2. There Is a clause
C: . U=z - v=1.4

Ln'P' jand there Is a substitution # such that s=uf, t=zrf and

vO=jt.Al' S .Am8 € TPr T k. By the inductive hypothesis. there {s an E-chaln
ro(E ’). LTI .rl(Et)

for <vd.t>. By the definition of P either

C’ u=v—A..... A'm. :

or . ‘

Cc”: v=u —A.... . A

Is in . Hence <uf,vd> is an E-link and
(= u&).ro(=), .. r(=1¢)

'1s an E-chaln for <s,¢>. By Proposition 8.3
r(=t) ro(EUO).a(Eua))

Is an E-chaln for <t.s>.
Q.E.D.

The following lemma (which is the converse of the E-chain Lemma) Is she
“crucial lemma on which our proofs of the Least Model Theorems are based. Sym-

 metry and transitivity of equality i’ollow lmmedlat.e'ly from thils lemma and the E-

» .
chaln Lemma. . ')
Lemma 6.6: Let s and ¢ be ground terms. If there Is an E-chain for <s.¢>.
then s==¢t, t==2 € Tpr [w. . ™Y
N ~ : -

A
Proof; (By 1ndgc;lon'qn'§.he |éngt.h of the E-chains.)

Base case: {mm0,
Then sEgl. s=={ and (a=g are instances of z==zx.

. - . - -
. .

84

'S

Hence s=t, t=s € T,r 1 - TprTu.

Inductive step. -
Assume that the result hoids for E-chains of length {. Let

ro(‘=‘3). LTI r“l(st)
be an E-chaln for <s.t>. Then the subsequence
LTI rl+|(5t)

is an E-chaln of length /. By the Inductive hypothesis, r=t € Tortw
Conslder the E-link <s.r >. By Lemma 8.4 s=r .r =s € TyrTw. By the
definitton of E-link, there !s a clause
C: u=v+—A..... A
In P and a substitution & such that .4l0 4m9 € TP" 7w and either
l. s=u# and rlEvG.
or
2. s=uvf and rlEuO.

By the definitlon of P’

C’ Uu=3x — 0=sz| """ Am
and
Cn: vV—x — u=z..‘\l 4"‘ -
areln P".
Case . s=ufandr =
S={ — rl=l.Ala ----- A 9
m

is a ground instance of C'. Hence s=! & Tyrtw.
Case 2. s= 18 and T = ub.
s=t rl=t,A‘9 A 8
. m
is a ground Instance of C”. Hence s==¢ é’ Tpr fw. By Propositton 8.3 there is an
E-chaln for <t.s>. By the same argument, t=3 € T, rlw.

-~

Q.E.D.

Lemma 8.7 (Symmetry)
Let s and ¢ be ground terms. If s=t € Tpr fw. then t=s € TPr Tw. ‘

. Fa
Proof: By the E-chain Lemma, there Is an E-chaln . , '

ro{ M) 7. r(=:L))

for <s.t>. Hence t=as € T,r w by Lemma 6.0« .
' Q.E.D.

Lemma 6.8: (Teansitivity)
Let s. t and u be ground terms. If s=et. tmu € T,r fw. then smu € Tortw.

- a

Proof: If s=t.t=u € T,r [w. then by the E=chaln Lemma. there are E-chains

Tl 8T, .. r(=) ' g
Yy =t). Ve o e - vm(Eu)
for the palrs <s.,{> and <!, u>, respectively. By Proposition 8.2, the sequence
ro(Es).rl.ri(st).vl. .. .vm('=‘
is an E-chain for <s,u>. By Lemma 8.8. s=u € T,r w.
’ Q.E.D.

Now we are ready to prove the major theorem of thls section.
Notation: P U £ Is abbreviated as P£.

A
Theorem 8.5: TPET“’ - Tpr tw. ‘ -
. | A
Proof: A ground atom A G'Tprw Iff there Is a k such that A € T, Tk We
prove the result by induction on k. - .

Base case: k=0.
Tpel0 =0 C Tyriw |

Inductive step.
Assume that the result holds for k. Conslder a ground atom A € Tpgrk-H. ¢
There Is a ground Instance
A-Al.....Aq)
of a clause C In PUE such that A, A € T;,{Tk Since £ 1Is

{ref.sym.tran} U Pred U Fun, theregre five cases: C ls (1) ref, (2) sym. (3) tran,

(4) a clause In Pred, or (5) a clause in PU Fun.
—

(1) A ils a ground Instance of z=z. Since z=r € ?'
AETPPTIQTPPfU. -

(2) A ls s==t,

smml — [(ams
Is an instance of sym, and (mms € T tk By the Inductive hypothesis,
tmms € Tyr 1w, \ Hence sm=t ET,rtwbdy r.bo Symmeutry Lemma.

\

(3) Atls samt,

suml{ — gumy, ym=(
Is a ground Insténce of tran, and smmu, wmmt € T,;Tk-
By the Inductive hypothests, ssmu, uamt € Tyrtw chce sm{ € Tpr lw by the
Transitivity l.cuun; d

() A P(e,..... L) -~)
P(t| t) — P(.sl s,)..sl=tl s =t_
Is a ground !nstance of an axiom In Fred. and -
¥
P(.vl s)s =t.. ... s =t € T._.,{Tk.

By the inductive hypothesis, there Is an m < . such that

‘P(Jl ----- -’n).\’l—'tl. =tn e Tprfmg‘r,r!’u}.
Hence there Is a ground Instance
J P(sl 3,) r= r,=3 B| Bq
of a clause C'in #” such that
r{=‘,1"'"rn=3n'BI""'BqE T,r tm—1.]
For each i, 1 <iSn, r=s.3 =t € Trrim. By the Transitivity: Lemma
r=t € Tprrim, for some m <.w. Let p be the largest number In -
{m.m' m_ }. Because those variables introduced by the right homogeneous

(5) Als Ptt)

C”: P(sl.....s)-—Bl Bq _ - .
is a clause In 7 and there Is a substitution # such that B9,B?O € Toetk
and forall 1.1 <1< n, ¢t =s 8 Hence

eee,. ... t,) — s 0=t. 0=t B8 ... Bqa ‘
iIs- a ground Instamce of A(C™ In P". By the I[nductlve hypothesis.
BIO Bq@ € tp' ? m for some m < w. For all I.IS ' S n. s'0=t. € T’r t“.
‘Hence .

s 8=t.....30=t BOBoET, tmsl
and P(ll. .. .In) € Tpr tm+2 C T,r Tw.

Q.E.Q.'

What follows is the Leut Model Tbeorem for r.be tnmfonnulon . las‘! r.
Theorem 6.8: (Least Model)
Let 7 bewa program. For all Nnite extensions L of L,

MUPUE) = M (Pe) = M (P"). o

= F

"FERE

EEEFE

= [l

I

=
mM
O
-
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARCS
STANDARD REFEREMNCE WMATERtAL *O'0m
{ANS! and 1SO TEST CHART Ng &

Proof: It follows from Theorem 8.5 that .V[L\: 5 C .'L{U 2"y The result then
fellows from Lemma 6.3

Q.E.D.
Theorem 8.7: . CAS-equlvalence, °* and ~ "
Let " be a program. - _¢ . *and 77 are CAS-equivalen:.
.
Proof: The thecrem follows Theorem 8.8 and 2.2.
Q.E.D.

[t follows from the Compllation Theocrems. CAS-equivalence Theorems and
Theorem 3.3 that both SLDEU-resolution and=right recursive SLDEU-resolution

are sound and complete:

Theorem 6.8: Soundness and completeness)

For all programs ~ and all goals G.
* -
1. every answer substitution computed by SLDEL’-?soluLton or right

recursive SLDEU-resolutlon Is £-correct (soundness);

tv

. every Zf-correct answer substitutlon !s subsumed by an answer sub-
stitution computed by SLDEU-resolution and right recursive SLDEU-
resolution (completeness).

68.8. Conclusion
We have established in this chapter the soundness and completeness of

SLDEU-resolution and right recursive SLDEU-resolutlon by reducing thelr seman-

tics to the semantics of SLD-resolutlon.

Chapter Seven
Non-Repetitive Right Recursive
SLDEU-Resolution

7.1. Repetitive Right Recursive SLDEU-Derivations
Rule 5.1 {p. 35) is not strong enough to eilminate all infinlite loops. Constder

the following example:

Example 7.1: >
P a=b

C=d '
G. — a=d

A
The sequence of goals generated by right recursive SLDEU-resolution are listed as

follows:
— a=a (Succeeds), — b=d, .
— b==b (succeeds)., —a=d.
— a=a (succeeds), ~— b=d,

This I1s an Infinite loop. The goal —b=d Is generated recursively ad

infinitum. This is an example of repetitive derivation.

In this chapter we restrict right recursive SLDEU-resolution further to non-
repetitive right recursive SLDEU-resolution. This Is accomplished by Incorporat-
Ing a mechanism that detects and falls repetitlve derlvations generated by E-

uniflcation.

’

7.2. Non-Repetitive Right Recursive SLDEU-Refutation

We record the history of N equality subgoal by a list of terms. These !lists

\
are called the history of the equality subgoals.

Definition 7.1: (History) ‘ s
The history of equality subgoals in an R-derivatlon Is defined as follows:

8o

1. Equality subgoals without hlstory are assigned the empty list ' as
thelir history.

2. Let s==t¢ be an equallty subgcal with history L. Let
C u=v-—Bl.,...Bq

be an equality clause other than r==z.

a. If uis unifiable with s with the mgu 8. E-unificatlon of u=rv and
s=! generates the new goal
— =88

with Lheﬁhlstory s L§.

b. If v is unifiable with s with the mgu 8. E~unification of u=v and
s=! generates the new goal
—(u=1t)8
with the history [s'L}6.

A
Definition 7.2: {Repetltive goal)
Let «— s=t! be an equallity goal with history L. +— g==¢ Is called a repetitive goal 4
Iff s Is syntactically identlcal to a member of L. '
A
Definition 7.3: (Repetitive R-derivation) '
A repetitive R-derivation Is an R-aérivattpn with repetitive equallity goals.

A

4 .
Non-repetitive right ;écurs'.ve SLDEU-resolution !s right recursive SLDEU-

resolutlon restricted by the rqlloWInz rule:)
Rule 7.1: (Non-repetitive right recursive SLDEU-resolution)
Fall all repetitive equ%lty zo&ls.'

. fay
Example 7.2: ,: . ‘
P a=b . v. . T :)
b=c.
c=d .
G. "-—a=¢.1‘ o : . history: (]

The E}-c"haln for a and d s .

'Rtilc 7.1 Is motivated by similar ruled used In (iSlteck B8, [loddinott fgb, Hlaridi 88

g. b ¢ d.

':'-
a _
The sequernce of new goals generated by right recursive extended unification is:
Goal History
—b=d al
—c=d (b, a)
~—d=d . b.a ’

1

In example 7.1, the original goal Is —a=d with ' as its history. and the se-

quence of new goals generated by right recursive SLDEU -resolutlomis

Goal History
G1I: —b=d . ‘ai
G2: —a=d : b, aj

Since the left term a In goal G2 is a member of the history of G2, ieneratlon of
- Ky A

G 2 \s forbldden according to non-repetitive right recursive SLDEU-resolution. G

then finitely falls. Consequently the original goal finitely falls.

/2

7.3. Completeness of Non-Repetitive Right Recursive R
%U-Raolution

/—Wbluh the completeness of non-repetitive right recursive SLDEU-

resolution via the completeness of non-repetitive SLD-resolutlon.

Lemma 7.1: Let P be a program and let G be a goal. If there 1s a repetlitive

R-refutation from P U{G} of complexity m with substitution §, then there is a

repetitive SLD-refutation of length m from 77 (U {G} with U n as substitutlon.
. A

Proof: According to the definition of history, only equality goals generated by

extended unificatlon have non-empty ligts as their hlstories. A repetitive R-
refusation .1 has a sequence of recursively generated equality goais:

Goal lnpt.zt Clause History
o—aozt _ ' L
—(s, =08, u=v ¥ B 3,1 L18,
t—-(s,‘zt)o‘a_.l u,=v, o [sl.sol L]ela_z
~—(sq=t)0l S Gq uq=vqo—-Bq ["q—n s, | Lo, - - - Bq

<

91

where s, 31 2>1. 1s v (or v) & 1is an mgu of $,_, and v or u) and

38 .. 8 =a8 ---Gq. Letr;bevxlral1su:andletrlbeu‘lfs‘!svt.
“
Conslider the SLD-refutation S constructed In the proof of the Compllation

Lemma Ter .1. S has a corresponding sequence of goals:

Goal Ancestor List
o-—gozt,_-‘ L’
o—(sl-——t.Bl.A\Bl - 130=ZIL";9[
~—’\3.,=t.82.Bl.A}919,€ e =t.s =t L84,
-— == D) — _ " -

(s, t.Bq B ., 9q S = s,=t L8 Gq
Silnces 8 -- -8 =38 -.--0,

g ! q 0t q
(.sq=t)9l R Gq = (30_—_c>al - 9q.)

S 1s a repetitive SLD-refutation. -

Q.E.D.

Theorem 7.1: Let P be a program and let G be a goal. If there I1s a repetlitive
right recursive SLDEU-refutatlon from 7'J{G} of complexity m and substitutlon
0. then there Is a non-repetitive right recursive SLDEU-refutation of complexity
[< m with substitution p > 8.

a

Proof: Let A be a repetitive R-refutation from P U {G} of complexity m with
substitution §. By Lemma 7.1 there hlsﬁa_;epetmve SLD-refutation from P U {G}
of length m with substitution & Un. By Theorem 4.1 there is a non-repetitive
SLD-refutation S’ from P"U{G} of length [< m with substitution

7 > 8uUn By the Compilation Lemma, there !s an R-refutation A’ from
PU{G} of complexity !’ < m with substitutlon &’ > 8. A’ Is non-repetitive,
otherwise S’ is repetitive. |

Q.E.D.

7.4. Implementation \

-—

Non-repetitive right recurstve SLDEU-resoiution may be Implemented by.the

following variant of the right homogeneous form transformation:

Definition 7.4: (P")

Let P= D U E be a program. Let eq. mem and non—mem be predicate symbols
not occurring in P. Let h" be a variant of r.he right homogeneous form transfor-
mation mapping a clause)

C: u=v—RB.,.. .. B -

92

AT (COY): equ.z. L) — non—mem{v, [uil),
eq(v.z.iu| L), '
B.. .. ;Bq.

1
’.I‘he non-repetitlve right homogeneous form of s

P = {eq(z.z. L)}
< {MO) C€ D}
C{ATO CE S_(E L Fun)}
< NONMEM
where NONME M 1s the following program:
NONMENM.: 1=y —eq{z.y.).

non—mem(z, L) — mem(z. [, . j’azl."’
non—mem(z. L.

mem(z. (HIT)) — z = H.
mem(z, H!T)) — mem(z.T).

* The clause

=y — ¢q(2.y.1])
assigns the empty list [|-as the ancestor list of an equality subgoal without an an-
cestor list., The Lra.nsfo‘rmqtlon A" transforms an equallty clause to Its right
homogeneous form adding the test non—mem which detects and falls repetltive
derivations. Clauses in NONMEM define the test non—mem In terms of mem

which is Identlcal to the .standard deflnition of member 'eicept that syntactic

ldénuty = s used Instead of uniflabliity.]

Let us lllustrate how fon-repetitive right recursive SLDEU-resolution works

(3

by a few examples. Predlicate substitutivity is subsumed by E-unificatlon of non-

equallt.y‘subsoa.ls. or In terms of program transformations, by the homogeneous

form transformation of non-equality clauses: P /.
Example 7:3: T,
P: P(a)

a==)H [}

25& [Clocksin 81| §4.3.2 for an expianation of the use of *!, fail® in Prolog.

93
P(z) — a=zx
eqia.x. L) — non—mem(b.(a Li).eq(b.z..a' L
eqb.z. L) — non—mem(a.biL}).eq(a.z1.(a; L})
=y — eq(z.y.{))
eq z.z. L)

— Pb,

— a=b,

— eqla.b, 1),

— non—memb. ad.eq b.b. a.

— eq(b.b.lai),

D

Symmetry of equallty Is subsumed by the symmetry bullt into the R-

unificatjon of equality subgoals. or in terms of program transformations., by the

symmetric extension transformation $=.

Example 7.4:

P:

pn.

a=b

eq(a.z. L) — non—mem(b,aiLl). eq(b.z.{aiL])
eq(b.z, L) — non—mem(a. [b|L}) eqla.z.[b|L])
r=y — eq(z.y.{})

eq(z.z. L) \ y
-— b=a. 2N .
— eq(b.a.[]). ‘ .

~— non—mem(a. [b]).eq(a.a.ib]).

eq(a.ﬁi {613,
O
a

Tr‘anslt.lvlt,y of equﬂlt.y is subéumed by the recursive generation of equality

goals in the R-uniflcatlon of equality subgoals, or In terms of program transfor-

mat.ion.lby the right homogeneous form transformations of equality ‘clausa.

L]

94

Example 7.5:

P a=bH
b=c¢ ¢
c=d

PN eg(a.z. L) — non—mem(b.la|L]). eq(b.z.(a! L))
eq(b.x. L) — non—mem(a.[b| L]).eq(a. z.[b|L})
eq(b.z. L) — non—memic.[b|L]).eq(c.z.{b| L))
eqlc.z. L) — non—mem(d.{c| L]).eq(b.z.c| L})
egic.z. L) — non—mem(d.{c!L]). eq(d. z.{c'L}) .
eq(d.x, L) — non—mem(c,[d|Li.eg(c.x.[di L}

S: — a=d.
— eq(a.d.(]).
— non—mem(b. a]). eq(b.d. {a]).

— eq(b.d.[a]).
— non—memc, [b,a]). eq(c.d.[b.a]).

— eq(c.d.[b.a}).
— non—mem(d,[c.b.a}).eq(d.d.[c. b.a)).

°— c'q.(d. d.[c.b.a)),
C
Aa

The test non—mem controls the search for refutations. Derivations with in-
finite loops generated by R-unification are detected and falled.‘ There Is no E-

chaln linking the terms a and d In the following example. "
Example 7.6:
P: a=b
c=d
PN eq(a.z.L) — non—mem(b.[a | L]). eq(b.z.{a|L])
eq(b.z.L) — non—mern(a, [b|L]).eq(a.z.[b]| L])
eq(c.z. L) — non—mem(d. [c|L]).eq(d. z.[c|L)])
eq(d. z, L) — non—mem(c,[d| L].eq(c. z.|d| L))

4

95

S: — a=d.
— eq(a.d.{}).
— non—mem(b. (al), eq(bd. d.[a)).

— eq(b.d.).
— non—mem(a. b.a}).eq(a.d.[b.al).
fails

7.5. Uncaught Repetitive Derivations

Non-repetitive right recursive SLDEU-resolution does not catch all repetitive
derivations. This Is because non-repetitive right recursive SLDEU-resolution has
butllt-in tests only for repetitive equality subgoals generated by R-unification.
Such tests are needed in order to stop inflnite loops generated by R-unificatlon.

Without such tests, the system would run Into infinite loops most of the time.

I[f the need arlses, we méy extend non-repetitive right recursive SLDEU-
resolution by addling tests for other repetlt}ve s‘ubgoals. H;wever. since such tests
are expensive to carry out, it Is more desirable to minimize their use. On the
other hand, uniike those Infinite loops generated by R-unification. other repetitive

derivations are caused by user supplied programs. They are thus under the con-

trol of the user.

~— Chapter Eight
Limitations and Future Directions

~

We conclude with a study of the {imitations of non-repetitive right recursive
SLDEU-r&oluh&c& together with a brief discussion of interesting dlrections for

~
further research.

8.1. Useful Infinite Derivations

Non-repetlitlve right recursive SLDEU-resclution does not have a built-in
mechanism for stopping non-repetitive Infinite derivations. And we have shown
In Chapter 4 that generaiizations of Ruile 4.1 which prune non-repetitive Infinite
branches by f&llln'z‘ u-repetitive, i-repetitive and quasi-repetitive subgoals, respec-
tively, lead to itncompleteness. There Is = -theoretical limit to the goal of pruning
lnfinlte search trees. Some inflnite subtrees gre useful or necessary: they are
needed for the computation of all correct snsw'er substitutions. Let us illustrate

this point by the following example (for SLD-resolution).
Example 8.1:

P: a=b
(z)=Ry) — z=y A
G: — =y
A

The SLD-tree for PU{G} s shown in Figure 8-1 below. The pecullar thing
about this SLD-tree is that the Infinite branch Is needed for the generation of all
correct answer spbst.lt.ut.ioqs. Let us call a correct answer substitution & a
mazimal correct answer substitution ll"r for all other correct answer substitutions
p. p>6 only If ézp. There are l’nnnlt.ely many Independent maximal correct

answer substitutions for PU{G}:
{a/z.b/z}. {Na)/z. fib)/y}. {AAS@))/z. LSO/ y}. . ..

We need the Infinite branch to generate all .6f them. We have the following

general result. ’ .

-

o7

{a/z.b/y} —I=y —_

{fla)/z. f(6)/y}

0
!

H
l

<

{AAfa)y/ z. LSO/ y} c

Figure 8-1: A Usefu! Infinite Branch

'4

-

Definition 8.1: Let X be a loglc programming system that computes one answer

substitution per success branch. Let P be a program and’let G be a goal. A

subtree of a search tree for U {G} is sald to be complete IIT every correct answer

substitution for PU{G} Is subsumed by the computed answer substitution of at
least one success branch In the subtree.

a
Theoreor 8.1:
Let X be a logic programming system that computes one answer substitution per
succéeds branch. Let P be a program and let G be a goal. If PU{G} has In-
finitely many Independent maximal correct answer subst,lt.ut.lons. then all com-
plete subtrees of the search trees of P U{G} have at least one infinite fan or one
Infinite bra.nch

a

Proof: Each independent maximal correct answer substitution needs a separate
success branch. Therefore a complete subtree has infinitely many nodes. [f there
IS no Infinite fan, tlvn each node of a search tree has only fihitely many arcs, the
subtree has at least one inflnite branch. otherwise the subtree is finite by Kdnig's
Lemma [Loveland 78, p. 69].

Q.E.D.

— 98

Consequently, it is Impossible to prune all infinite subdtrees without sacrificing
completeness. This result is not surprising in view of the undectidability of = in
first order Horn clause languages.'! Supplementing a program P by Fuh causes
non-repetitive inflnite dertv{t.ions. However, leaving out Fun causes incomplete-
ness. In view of Theorem 81 it 13 impossible to eliminate such useful Inflnite

branches without Eosln'g completeness. -

8.2. Summary

We have presented (In Part [} three strategies for avoiding iInflnite computa-
tions In Horn clause logic programming systems. In Chapter 4, we introduced
ndn-regctitwc SLD-resolution as a general method for stopping repetitive com-
{:utatlons In SLD-resolutlon. In a repetitive d-e'rlvatlon. there are subgoals which
are syntactlcally identlcal to the current instances of one of thelt ancestors. It
was shown that pruning repetitive branches of SLD-trees 13 not strong enough to

—— ——

stop all Infinite computations. Infinite der_ivs‘tlons Involving axioms such as the
transitivity axlom are not repetitive. In Chapter 2. we Introduced the notlon of
CAS-equivalent programs and presented a flxpoint criterlon for CAS-equivalence.
It was shown how transformlng a program P Into Its symmetric extension S(P)
eliminates the need to supplement P by the symmetry axiom. S(P) and
P U{sym} are CAS-equivalent. In Chaptér 8 we studled the method of replacing
axioms by Inference rules, thereby eliminating the need to supplement programs
by axioms which are a source of infinite loops. We also Introduced semantic

reduction as a method to establish the soundness and completeness of such exten-

-stonsof SLD-resolution.

llll (Tarnlund 77] It is estabiished that languages of first order Horn clsuses are rich enough to
deecribe the operations of Turing machines. (t is shown In [Boolos 71| that = is an undeccidable
relation in languages rich enough to describe the operations of Turing machines. !

99

"In Part I1 we applled the strategy developed'm.Part. 1 to the problem of
avolding infinite loops In logle programrmhing with equaﬁty. We developed an ex-
tension of SLD-resolutlon called non-repetitive right recursive SLDEU-resolution
which has symmetry, transitivity and predieate substitutivity of equality bulit-in
by extended unification. Infinite loops caused by extended unification are
detected by Kkeeplng ancestor lists for equality goals generﬁted by extended
unification. The soundness and completeness of non-repetitive right recursive
SLDEL‘-reéolution were established by semantic reduction. The program trans-
formation n complles a2 program 2 for non-repetitive right recursive SLDELU-

resolution to an equivalent program 2" for SLD-resolutlion.

Nevertheless, Infinite con.aputatlons are still possible In non-repetitive right
recursive SLDEU-resoiution, and Iit7is Impossible to prune all inhnlte subt:rees
‘without losing completeness. This Is due to the fact, that some inflnite (sub)trees
contaln infinitely -many Independent maximal correct answer substlcutlong. and
we require an Infinite fan or infinite branch “to generate them all. Theorem 8.1
sets a Lheoret.lc-a.l limit to systems that alm at a.- complete lmp'lementa'!on of

Ve
equality: If any program and any query are permitted. no com\:rt"et.e system can

avold inflnite computatlons. One plausible direction Is to limit the queries and/or
the programs In some principled way. We need formal restrictions on queries
and/or programs that rule out goals with infinitely many Independent maximal

correcmanswer substitutions. Another plausible direction Is to allow condltlona!“J

answer substitutlions.)
Y ’ Iy

100

.

8.3. Future Directions
P

Restricting Correct Answer Substitutions
A caube of Infinite computation !s that there may be (nfinitely mary terms all
referring to the same Individtal. For example. the terms

1. 2—1, 0=1. IX 1, 3X4—11, 2=3F8_ .

all dencte the number one. Consequintiy there are [nfinitely many correct
answer Ws for the goal — 1l=zx. We may dlstinguish the term 1 as the
ca.nonlcal\ form of these co-referring terms. and require the system (0 compute
only correct answers in canomical forms.

I

Confluent and Noetherian term rewriting systems such as van Emden and

Yukawa's [88] contribute toward thls end. Howgver. what has been achieved is
only a simulatlon of functional programming In a loglc programming system: the
syste.m reduces ground terms to thelr normal forms. Such systems are too
restricted. Very often lm.uit.lve!y appealing ‘equality axioms are not canocnical

L4

term rewriting systems. For example. the axiom

rat(NI. D[)=rat(,\’.,.D‘,) —_ Dl x .\':= Dgx .Yl
for the equality of ratlonal numbers i3 not a canonical term rewriting system. [t
1s desirable for the user to be allowed to specify Intultlve axioms and to specify
the canonical form of the terms involved. Secoqdly. such systems do not In-
tegrate logic programming and ;‘unctlonal programming. Instantlating varlabies
in gosals Is a distinctive feature of Io_glc programming. However, such systemesixe

- - —

incomplete for goals with uninstantiated variables.

Restricting Queries and/or Programs
A system 1nte¢ratf‘ng loglc programming and functional programming shopld
accept goals with uninstantiated variabies because (t Is typlcal for logic programs

_ to have varlables In the body of a clause that are new to the head of the clause.

101

However, unrestricted querles and. or programs lead to lncompleteness. What we
need are formal restrictions on queries and programs ‘vhich lead to complete and

practically useful systems.

Conditional Answ'er Substitutions

-

Another possibllity 1s (o extend the notlon of correct answer substitution o

a.low conditionag! ansuer sudstitutions.

Example 8.2: — -
> a=h o
o=/ yp—1=y
G. —z =y,
A

The set ot‘.:‘-_cerrect answer\substkutlons are fInltely described by
{aiz, by} (b/z ary) {z /2. 2.y}

and
{fiz,) .z, fly,)/y,} where ,=y,.

Kornfeld's work 83| on partially specified objects is a contribution along this

-)

dlrection.

References .

CADpt 82 Apt, K. R. and van Emden. M. H.
*Contriputions to the Theory of Loglc programming™.
Journal of the Association for Computing Machinery
29(3):841-882. July. 1882.

‘Boolos T4} Boolos. G. S. and Jeffrey. R. C.
Computability and Logic
- - - Cambridge Unliversity Press, Cambridge. 1974.

‘Chan 88a,; Chan. K. H.
“Equivalent Logic Programs and Symmetric Homogeneous

Forms of Logic Programs with Equallty”
19886. <

Chan 88b' . Chan, K. H.
"Selective SLDNF-Resolutlon: A Loglc Programming System for
Representing Negative and Incomplete Information”.
1988.

(Clark 78| Clark. Kelth L.
Negatlon as Fallure®.
Logic and DataBases N
Plenum, 1978, pages 203-322.

Clark 79| Clark, Keith L. -
Predicate Logic as a Computational Formalism.
Technlcal Report, Department of Computing, Imperial College.
London, 1979. ‘

[{Clocksin 81] Clocksin, W. F. and Mellish. C. S.
Programmaing 1n Prolog.
Springpr-Verlag, New York. 1981.

[Cox 85] Cox, P. T. and Pietrzykovw;skl. T.
"Incorpora.t.lnﬁ Equality Into Loglc Programming via Surface
Deduction®. .
Annals of Purc and Applied Logic . 1985.
To Appear.

[Demopoulos 86| Demopoulos. W. _
*The Homogeneous Form of Loglc‘Progra.msi with Equaiity”.
1986. .

102

‘Elcock 81°

lcock 88

‘Harid! 86

‘Hoddinott 88a,

‘Hoddinott 88bj
‘Hogger 84
(Jaffar 84}

(Korn{eld 83]

{Kowalskl 71]

[Lloyd 84]

103

Elcock, E. W.
Logic and Programming Methodology.

" Technical Report 80, Department of Computer Sclence. The

Unliversity of Western Ontario. August., 1981.

Elcock. E. W. and P. Hodd!inott.

*Classical Equallty and Prolog”. * s

in Proceedings of the Canadian Art: ficial [ntelligencs
Con ference. 1988.

Haridi. S.. P B. Sheldan. and E. P. Stabler Jr.

*An Implementation of Equality Theorem Prover in Prolog”®
1988.

Hoddlnott. ?’ and Elcock. E. W.

“Prolog: Subsumption of Equality Axioms by the Homogeneous
Form*.

in . [EEE, 19886.
Symposﬂxm on Loglc Progra.mmlng - 88.

Hoddinott, P.
*Loglc Programming and Equallty®.
Master's thesis, The Unlversity of Western Ontarlo, 1988.

Hogger. C. J.
Introduction to Logic Programmang.
Academlc Press, London. 1984.

JafTar, J., Lassez, J., and Maher. M. J. .

*A Theory of Complete Logic Programs with Equality”.
The Journal of Logic Programmaing 1(3):211-224. October, 1984.

Kornfeld. W. A.

*Equality for Prolog”.

In Proceedings, Seventh [nternational Joint Conference on Ar-
ti ficial Intelligence, pages 514-519. ., 1983. !

Kowalski, R. A. and Kuehner. D.
“Linear Resclutlog with Selectlon Function®.
Arts ficial Intelligence 2:227-260. 1971.

Lloyd. J. W.
Foundations of Logic Programmang. »
Springer-Verlag, New York, 1984,

104

‘Loveland 78i Loveland. D. W.
Automated Theorem Proving. A Logical Besia
North-Holland, New York, 1978.

‘Plotkln 72] Plotkin. G.
*Bullding-in Equational Theorles™.

Machine Intelligence 7
John Willey and Sons, Ltd.. 1872, pages 73-90.

‘Tarnlund 77! Tirnlund., S. A.
"Horn Clause Computabllity ®.
Bit 17:215-228. 1977.

‘van Emden 78] Qan Emden. M. H. and Kowalsk!l. R. A.
*The Semantics of Predicate Log!c as a Programming
Language™.
Joutnal of the Association for Computing Machinery
23(4):733-742, October, 1976.

(van Emden 77] van Emden, M. H.
) *"Programming with Resolution Logic*”.
Machine Intelligence 8.
Halsted Press, 1977, pages 226-299.

(van Emden 84] van Em M. H. and Lioyd, J. W.
, *A Logital Reconstruction of Prolog I1*.
The Journal of Logic Programmang 1(2):143-150, August, 1984.

(van Emden 868] van Emden. M. H. and K. Yukawa.
Equational Logic Programmang.
Technlcal Report. Department of Computer Sclence, Unlversity
of Waterloo, Waterloo, Ontario, Canada, 19886.

	Western University
	Scholarship@Western
	1986

	Foundations Of Logic Programming With Equality
	Kwok Hung Chan
	Recommended Citation

	tmp.1410230825.pdf.iaP5k

