Western University Scholarship@Western

Digitized Theses

Digitized Special Collections

1985

Polarization-labelling Spectroscopy Of Iodinemonochloride: The D-prime (2) And A-prime (2) States

Denis Bussieres

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Bussieres, Denis, "Polarization-labelling Spectroscopy Of Iodine-monochloride: The D-prime (2) And A-prime (2) States" (1985). Digitized Theses. 1446.

https://ir.lib.uwo.ca/digitizedtheses/1446

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.

The author of this thesis has granted The University of Western Ontario a non-exclusive license to reproduce and distribute copies of this thesis to users of Western Libraries. Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario's institutional repository (Scholarship@Western) are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:

E-mail: <u>libadmin@uwo.ca</u>

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/

CANADIAN THESES ON MICROFICHE

THÈSES CANADIENNES SUR MICROFICHE

National Library of Canada Collections Development Branch

Bibliothèque nationale du Canada Direction du développement des collections

Canadian Theses on Microfiche Service

Service des trièses cànadiennes sur microfiche

Ottawa, Canada K1A 0N4

NOTICE

The quality of this microficitie is heavily dependent upon the quality of the original thesis submissed for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior page copy.

Préviously copyrighted materials (journal articles, published tests jetc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

La qualité de cette microfiche dépand grandament de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait paryenir une photogopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30 Veutllez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

Canada

POLARIZATION-LABELLING SPECTROSCOPY OF ICL

THE D' (2) AND A' (2) STATES.

by .

Denis Bussières

Department of Chemistry

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario
May, 1985.

Densis Byssières 1985.

ABSTRACT

Todine astands as the best known diatomic halogen molecule. It is now followed by jodine monochloride. One of the three lowest ion-pair stames, namely D: (w=2), is characterized .by 4 using the Optical-Optical-Doublestate-selective polarization-labelling Resonance. technique. Data were cumulated for vibrational levels v=0and 15-28, including extensive coverage of two avoided crossings between D' and E states, at v=0 and 1. The main spectroscopic constants for D'estaté of I 35Cl are Tal == 39061.830(80), $\omega_{e} = 173.63(35)$; $\omega_{e} = 0.5572(27)$, $10^{2}B_{e}$ 5.4782(41), $10^4 \alpha = 2.019(10) \text{ cm}^{-1}$ and $10r_a = 3.350 \text{ nm}$. The Rydberg-Klein-Rees (RKR) potential given for the D'(2) ion-pair state of I 35Cl up to v=28. The D' perturbed by the neighboring p state, their electronic interaction term is evaluated at 1.860(77), 93% of the Van gVleck pure precession value. The three lowest ion-pair states in ICl, D', \$ and E, have very similar electronic energy, vibrational energy and equilibrium bond distance as it can be expected:

By extending the technique to three steps (OOTR); + ++

we characterized the first excited state A' ground state of ICl. Data from v=2 to 28 were fitted a Dunham expansion, and v=23 to 38 were fitted to a expansion. The main spectroscopic near-dissociation constants for A'(2) state of $I^{35}C\hat{l}$ are $T_{s}=12682.05(27)$, $\omega_{\rm p} = 224.57(15)$, $\omega_{\rm p} x_{\rm p} = 1.882(29)$, $10^2 B_{\rm p} = 8.648(48)$, $10^4 \alpha_{\rm p} =$ $10^8 D \approx 5.27(20) \text{ cm}^{-1}$ and 10r = 2.665 nm. The 6,48(23), A'(2) state shows some similarity with the other $(3\pi)_{\mathfrak{p}}$ case (a) signature states, namely A(1) and B(0+), their vibrational energy and equilibrium bond distance close. No sign of perturbation has been observed in A' state even if data of partial coverage go up to ~70cm-1 from the dissociation limit, 17557.57cm⁻¹, $(^{2}P_{3/2})$ + C1. ,) to which converge ten electronic states. The Rydberg-Klein-Rees (RKR) potential curve is given A'(2) state of $I^{3.5}C1$ up to v=38.

ACKNOWLEDGEMENTS

I want to take this opportunity to sincerely thank Drag.

J.C.D. Brand for his supervision. I really appreciated his skillful knowledge, his patience and his unconditional availability during all this work.

explanations and his support with the computer programs.

Of course, my wife, Hélène, deserves some special appreciation for her constant support.

I also thank my friends, inside and outside the department, for helping me easing the stress of life. Whenever my work got into trouble, I recognize the input of mamy departmental people that help me.

A Hélène

On ne peut marcher en regardant les étoiles quand on a une pierre dans son soulier.

sagesse chinoise

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION		• • • • • •	page ii
ABSTRACT	Δ	• • • • • • •	1 1.1
ACKNOWLEDGMENTS	• • • • • •		ر
TABLE OF CONTENTS	• • • • •	• • • • • • •	vii
LIST OF TABLES	• • • • • •		1 X
LIST OF FIGURES		\	Хl
LIST OF PLATES	• • • • •		xiı
LIST OF SYMBOLS		• • • • • • •	xiv
FORE WORD	• • • • •		1
CHAPTER 1 Introduction			;2
CHAPTER 2 Molecular spectroscopy			. 7
2.1 Nomenclature			7
稅.2 Potential for electronic	: state:	s	14.
2.3 Transition selection rul	.es.,	••••	21
2.4 Perturbation phenomena	· • • • • • •	 • • • • • • •	24
. a) & doubling		• • • • • •	24
b) Avoided crossing			29
CHAPTER 3 Polarization-labelling spect	roscop	y	32
3.1 Theory			34
a) Two-beam	· ; ·	۰۰۰،۰۰	34
b) Three-beam		• • • • • •	40

	3.2 Experimental
CHAPTER 4	Electronic states of IC1
•	4.1 Build-up principles 50
	4.2 Valence states
•	4:3 Ion-pair states 56
CHAPTER 5	Ion-pair state D' $(\Omega=2)$
· , · , · .	5.1 Experimental 60
•	5.2 Results
	a) Low vibrational levels
•	b) Higher vibrational levels 72
CHAPTER 6	Valence state A' $(\Omega=2)$
	6.1 Experimental/
	6.2 Results 81
CHAPTER 7	General conclusion
REFERENCES.	.,
•.	,
APPENDIX 1.	D' data for $v=0$, 1 and 2, including the
	two avoided crossings104
APPENDIX 2	D' data for v=15- to 28108
APPENDIX 3	A' data for v=2 to 38115
VITA	

A

LIST OF TABLES

Cable	Description	page
1.1	Previously known electronic states of IC	
	with their minimum energy and case (c)	
•	signature	. 3
3.1	List of dyes used in thir work, their solvent	
	and their wavelenth range and maximum	. 45
4.1	Known electronic states of ICl with their main	
	constants, case (c) and (a) signature and	
•	their dissociation limit	. 52
5.1	Dunham parameters for D' ($Q=2$) ion-pair.	
	state of I 35Cl from a simultaneous fit of	
,	the three lowest ion-pair states	· 67
5.2	Experimental and theoretical values of the	•
,	electronic interaction term, $W_{\Omega,\Omega\pm 1}$	68
·5.3	Vibrational term values and the RKR potential	
•	for D'(2) state of I 3 5Cl from the simultaneous	
•	and a simple fit of $v=15-28$. 71.
5.4	Effective Dunham parameters for D'(2) state of	•
	I 3 5Cl for v=15-28	74
6.1	List of $\overline{X_5(i)}$ constants for the long-range	
•	LeRoy theory	. 83
6.2	Atomic static dipole polarizability of I and C	1,
•	C parameters for A' ($^3\pi_{^2}u$) of I_2 and Cl_2	. 85

6.3	Dunham parameters for A'(2) state of I3 C1
•	from a fit of v=2-14
6.4	Effective Dunham parameters for a fit of A'(2)
١.,	state of I ³⁵ Cl for v=2-2889
6.5	Near-Dissociation expansion parameters for a
	fit of the A'(2) state of $I^{3.5}Cl$ for $v=23-3891$
.6.6	Term values, rotational constants, centrifugal
	distortion constants and turning points for the
	RKR curve up to v=38 for A'(2) state of I ³⁵ Cl 93

LIST OF FIGURES

Figure	Description	age
2.1	Orbital angular momentum of an electron in	•
•	a field and its projection in the field	
	direction	. 11
2.2	The electronic orbital angular momentum in	,
•	a diatomic molecule and its component along.	•
	the internuclear axis	.11
2.3	Coupling of the different angular momenta in	
	ICl referring to Hund's case (c)	13
2.4	Potential wells for an harmonic and an anharmo-	
•	nic oscillator with an example of a vertical	
	transition to an excited state	16
2.5	Perturbation of two energy levels vs. J(J+1)	` .
,	at an avoided crossing	30
3.1	Typical Optical-Optical-Double-Resonnance	
	experiment with polarization-labelling	33
3.2	Absorption cross-section vs. M, for R and Q	÷
•	branch transitions with plane and circularly	
•	polarized beam	39
. 3.3	Two schematic representations for a three-	
. 1	beam polarization-labelling experiment	41
3.4 ?	Experimental arrangements to do two- or	•
å	three-nmoton avneriments	4.2

4.1	The RRR potential curves of known electronic	
	states of I 3.5 Cl	′ 5 7
5.1	The D'(2) potential curve shown beside the	œ
	$E(0^+)$ one at bottom and the $\beta(1)$ one at	,
•	higher vibrational levels for I 35Cl	63
5.2	The avoided crossing between $D'(2)$ and $E(0^+)$	
	at v=0 for I 35Cl	65
5.3	Calculated relative intensity in function of	•
	J (J+1) for $v=0$, D'(2) and $E(0^+)$ of $I^{3.5}C1$	6.6
5.4	The avoided crossing between $D^{1}(2)$ and $E(0^{+})$	
**	at v=l for I 3 5 C1	69 [,]
6.41,	Experimental scheme of the sequence X > A > D' > A'	
•	in ICl.	79
6.2	Tabulation of the vibrational levels of A'(2)	•
_	by probing different v in D'(2) of IC1	80
6.3	Rotational levels probed in different v of	
•	A'(2) in IC1	82
6.4	Plot of $D_{V}^{-3/2}$ in function of v for A'(2) of	
	I.35Cl, and predicted values from LeRoy theory	86
6.5	RKR potential of A'(2) state of I ³⁵ Cl with	
	the other states in this region	92

LIST OF PLACE

Plate	Description	page
3.)1	Typical D'+A signal beside a strong β+A one	
	for ICl	49
5.1	Vibrational progression of D'+A signals beside	de
•	*Weak D' signal at v=27 may not be visible on Plate 5.1.	73

LIST OF SYMBOL

Description Symbol Speed of light Centimeter CM Charge of an electron Planck's constant Imaginary unit (not used as a subscript) Wavenumber in radian per centimeter Azimuthal quantum number Mass of ar licle Magnetic quintum number m q Principal quantum number n . Nanometers (10^{-9}m) nm Nanosecond $(10^{-9}s)$ ns Angular momentum in the x direction Distance of an electron from the nucleus or Distance between the two atoms of a molecule Internuclear distance at equilibrium * Spin quantum number or Second Time Vibrational quantum number or Vibrational level or Speed of a particle

Symbol	Description
À	Amp la tude
A _i	Amplitude in the i. direction
A (z)	Amplitude in function of the z axis
Be (Rotational constant at equilibrium
$B_{\mathbf{V}}$	Effective rotational constant at vibrational
	level v
В́	Off-diagonal rotational constant
D _e	Centrifugal distortion constant at equilibrium
	or Dissociation energy related to the potential
	minimum
D _o	bissociation energy related to the vibrational
	level 0
E .	Energy level or Electric field
Ei	Electric field in the i direction
F	Force
G(.y) (or E _v Vibrational energy or Term value
I -	Moment of inertia or Intensity
	Imaginary part of the following complex quantity
J `	Rotational quantum number
J ·	Total electronic angular, momentum
K	Constant
kW	Kilowatt (103watt)
L	Electronic orbital angular momentum
M	Projection of total angular momentum along some
	laboratory fixed axis

)

```
Symbol
```

Description

M₁, M₂ Function modulating amplitude of signal and probe waves due to non-zero third deder susceptibility

M_e Electric moment

MW Megawatt (106watt)

OODR Optical-Optical-Double-Resonance

OOTR Optical-Optical-Triple-Resonance

P transition Transition from Totational level J to another rotational level J-1

Q transition Transition from rotational level J to another rotational level J

R Nuclear rotational quantum number

R transition Transition from rotational level J to

another rotational level J+1

R' Constant

Re Electric transition moment

Real part of the following complex quantity

RKR Rydberg-Klein-Rees potential curve

S Electronic spin angular momentum

SEEPOL Stimulated Enhanced Emission Polarization-

Te Electronic energy of a state or its minimum energy

Wi, j Electronic interaction term between two states

Y General term of Dunham expansion

Z Atomic number

```
Symbol
                       . Description
        Variation of rotational constant with v
        Partial derivative in function of x
        Refractive index
        Wavelength
        Reduced mass of a molecule
        Dipole moment coupling the i'th to the j'th
        statė
        Micrometer (10-6m)
        Microsecond (100s)
        Pi (3.14159265...)
        Vibrational frequency
        Vibrational frequency at equilibrium
        Variation of vibrational frequency in function
       of v
        Electronic spin quantum number
            Mathematical summation
        Total wavefunction
       · Partial wavefunction
         Electronic orbital quantum number
        Total electronic quantum number
         lst order susceptibility (dimensionless)
 Xij
        2nd order susceptibility (g^{-1/2}cm^{1/2}s)
 <sup>X</sup>ijk
        3rd order susceptibility (g-1cm s)
 Xijkl
```

FOREWORD

For thousands of years, man has sought to master his environment. His efforts began by controlling fire. Then came the wheel, the land, the sea, the sky, the atoms. From, this power came all sorts of knowledge called sciences.

Today, there is a diversity of sciences which are divided into many branches and specific fields. Humanity is now probing the infinitely small, the infinitely far and the infinitely deep. The universe reveals itself as a whole well structured and able to support an organized system of numerous components. The pursuit of knowledge leads us to the elaboration of more and more complex models.

Even with the power of today's computers, one model is barely sufficient to correctly describe a diatomic molecule which stands as fairly simple compared to many organic compounds. There is still much information to be acquired from relatively simple diatomic molecules before developing a model satisfactory to describe them all.

CHAPTER 1

INTRODUCTION

A lot of spectroscopic work has been done on dihalogen and interhalogen molecules. Iodine is the most thoroughly studied molecule in that group so far; it has revealed more than half of its ion-pair states and almost half of its valence states [1]. The next best known molecule is iodine monochloride, IC1.

The interaction of two neutral halogen atoms gives rise to a manifold of 23 molecular states [2]. These are called valence states and can be identified by their Hund's case c quantum number 2. Only few of them are velieved to be strongly bound. Similarly, two halogen ions give rise to 20 ion-pair states which are believed to all be strongly bound.

Before this study, only three valence states of ICl were well known, $X(0^+)$ [3], A(1) [4] and $B(0^+)$ [5] (see Table 1.1). The B state predissociates to a crossing by

Table It Summary of previously known electronic states of ICl with their notation according to Hund's coupling case (c).

		-A-V
State	Label Tel (cm)	Dissociation limit (cm ⁻¹)
*	" 0 [†] ·∴ 0	$I' (^{2}P_{3/2})' + C1 (^{2}P_{3/2})$ (17557.57)
. A .	1 13742.9	
В	0 17375.578	and the same of th
. B *	0 [†] 18155	$I (^{2}P_{3/2}) + Cl (^{2}P_{1/2})$ (18439.9)
E	0 [†] 39059 485	(+ (3 P ₂ ·) + C1 (+ 5 ₀)
, в	1 39103.666	
f	0 44923.79	$I^{+}(^{3}P_{1} -) + CI^{-}(^{1}S_{0})$
	1 45552.805	$I^{+}(^{3}P_{0}) + C1^{-}(^{1}S_{0})$

another 0+ state, mainly repulsive, and has been the subject of studies which identified a B'(0+) adiabatic state resulting from that intersection. From the six lowest ion-pair states, four have been characterized to some extent. Otherwise, parts of spectra were left unexplained and sometimes very puzzling.

This thesis began as a study of one of the three low-lying ion-pair states not yet characterized, namely, the D'(w=2) state. By analogy with I₂, it was believed to lie quite close to the other two con-pair states which converge to I⁺(3 P₂) + Cl⁻(1 S₀) [6]. Even though selection rules for optical-optical-double-resonance (OODR) permit a sequence of two upward Δw =1 transitions, ††, these had not yet been observed in our OODR experiments involving an ion-pair state as the terminus.

Because of the proximity of the three ion-pair states, β , E and D', some perturbations arise between them [7]. Making use of these perturbations we were able to D'+A signals as a complement of stronger. β +A transitions. In so doing, the access to D' state was restricted to where the perturbations with β were sufficiently strong. Nevertheless, we have cumulated enough data to characterize the lower part (about 12%) of the potential well of D' state. At the same time, we have an extensive coverage of two avoided crossings between D'(2) and E(0+) states at vibrational level 0 and 1. A simultaneous non-linear least-

squares fit of the three ion-pair states allows us to obtain values for the interaction matrix elements [8]. The Rydberg-Klein-Rees (RKR) potential is given up to the 28th vibrational level together with the Dunham parameters for D' (Ω =2) ion-pair state of I³⁵Cl (see chapter 5).

Being the first $\omega=2$ electronic state of ICl to be characterized, D' opens the door to access other $\omega=2$ states, either lower or higher in energy than D'. Only one of the valence states not yet observed in ICl , A' ($\omega=2$), is expected to be a relatively deeply-bound state*. The other ones are considered essentially repulsive with possibly a shallow minimum. By analogy with I₂, the A'(2) state was expected to be the first excited state above the ground state X, therefore lower than the A(1) state. The A'(2) state, a natural complement to the study of D' state, makes the second part of our work.

At that point, the challenge of extending the polarization-labelling technique to three steps was even more stimulating. In a triple sequence of coptical resonance, +++, data on A'(2) valence state were cumulated to cover almost its entire potential, from v=2 tq 38 [8]. Practical and theoretical limitations, like Franck-Condon factors, frustated our efforts to obtain data for the two lowest vibrational levels of A', namely v=0 and 1. However, the

^{*} While this work was in progress, Spivey and others [1]' published a partial fit of D' and A' states.

large range covered in this rather anharmonic state enables us to determine its spectroscopic constants including its centrifugal distortion constants as a function of v for most of its potential depth. The RKR potential of A'(2) state of $I^{35}Cl$ is given (see chapter 6) with the other known valence states in the same region.

Subsequently, the above experiments helped to initiate studies of other valence states of ICl leading to the characterization of three new states [9] together with new data relative to high vibrational levels of the ground state X [10]. We now know eight of the fifteen valence states correlating with the first two dissociation limits and five out of the six lowest ion-pair states of ICl. This work has lead to a significant addition to the knowledge of the electronic states of ICl.

CHAPTER TWO

MOLECULAR SPECTROSCOPY

This chapter presents a brief outline of the nomenclature related to the spectroscopic study of the electronic states of ICl [12,13] followed by a description of the potential for electronic states. The selection rules for transition by optical resonance and a short presentation of perturbation phenomena occuring in ICl conclude the subject.

2.1 Nomenclature

As Bohr first suggested, an atom can exist only in certain discrete energy states; for example, in an atom with one electron, like H, the electron can take only certain values of energy. If the energy of the atom without its electron is set at zero, equation 2.1 is respected

$$E_{v} = -R \cdot z^2/n^2$$

where n is the principal quantum number, 2 is the atomic number and R' a constant.

DeBroglie that the motion of any particle of matter is associated to a wave motion of wavelength λ

$$\lambda = h/mv^*$$

where h is the Plank's constant, m the mass of the particle and vits velocity. This idea is now widely accepted. Let Y be the wave function which must vary periodically with time in space

$$\Psi = \dot{\psi} \sin 2\pi v^{\dagger}t$$
or
$$\Psi = \psi \cos 2\pi v^{\dagger}t$$

where ψ is the amplitude of the wave motion and ν the frequency of the vibration. These two expressions can be combined to get

$$\Psi = \Psi \exp(-2\pi v't)$$
 2.4

If the motion of a single electron is considered in the field of a nucleus, then

$$\frac{1}{m} \begin{bmatrix} \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \end{bmatrix} + \frac{8\pi^2}{h^2} (E-V) \psi = 0 \qquad 2.5$$

Here, m is the mass of the electron and V is the potential energy equal to $-Ze^{\frac{\circ}{2}}/r$. The solution of this Schrödinger or wave equation is possible only for certain values of E, so-

those of equation 2.1. The solution of equation 2.5 for several electrons in an atom gives values in very good agreement with experimental results on such atoms. At the same time, the Schrödinger equation predicts that the energy can have any value bigger than zero; which agrees with spectroscopic observations.

From the principal quantum number, n, one defines the azimuthal quantum number λ with the integral values

0 < 1 < n 2.

The equivalent of the classical angular momentum, mv, is given in wave mechanics for an electron-by

$$\sqrt{\lambda(\lambda+1)}/(h/2\pi)$$
 2.7

It can take only discrete values as can the energy. From the fact that the angular momentum of an electron has definite values, it follows that its orbit around the nucleus is not definite at all. This effect is reflected by Heisenberg's uncertainty principle which can be expressed as follows

 $\Delta x \Delta p_x > h/2\pi$ or $\Delta E \Delta t > h/2\pi$

2.8

A

From the first equation in 2.8, if the momentum of an electron in one direction, p_x , is well known; then its

position is indefinite, in order to respect the uncertainty principle.

In quantum theory, the component of the orbital angular momentum of an electron in a field direction is constant and can only take discrete values, m_{χ} (h/2 π), where $\tilde{m}_{\chi} = 1$, l-1, l-2, ..., -1 2.9

The number m is called the magnetic quantum number of the electron. From figure 2.1, it can be seen that the angular momentum cannot point in the direction of the field.

The electron also has an angular momentum of its own called the electron spin, referring to its rotation aboutits own axis. The spin quantum number, s=1/2, gives rise to the angular momentum with magnitude equal to

$$\sqrt{s(s+1)}/(h/2\pi)$$
 2.10

For one unpaired electron, the component of the spin angular momentum in a magnetic field, $m_{\rm S}$, can take only the values of +1/2 and -1/2. Whenever there is no orbital angular momentum, that is l=0, a two-fold degeneracy arises from these two values of $m_{\rm S}$. When $l\neq 0$, there is a (2l+1)-fold degeneracy.

In a diatomic molecule, a precession of the electronic orbital angular momentum, L, takes place about the internuclear axis with a constant component $n(h/2\pi)$ along it (see Figure 2.2), where

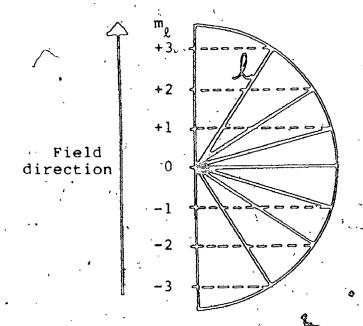


Figure 2.1 The orbital angular momentum, $\xi(h/2\pi)$, of an electron and its components, m_{χ} (in units of $h/2\pi)$, along the field direction.

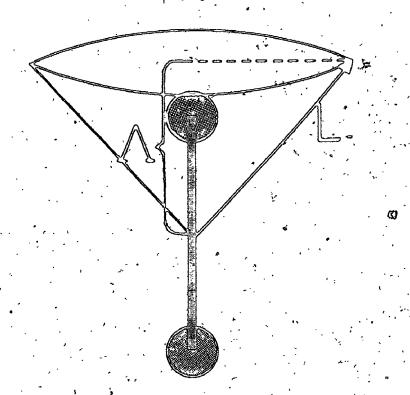


Figure 2.2 The electronic orbital angular momentum, $L(h/2\pi)$ in a diatomic molecule with its component (in $h/2\pi$ units) along the internuclear axis.

$$\Lambda = L, L-1, L-2, ..., -L$$
 2.1

The spins of the individual electrons combine to form a total spin from which we get the corresponding quantum number S which can be integral or half-integral. Whenever $\Lambda \neq 0$, the internal magnetic field produced by the electron motion causes a precession of the total electronic spin about the field direction (in this case, the internuclear axis) with a constant component Σ (h/2 π), where

$$\Sigma = S, S-1, S-2, \dots, -S$$
 2:12

The total electronic angular momentum about the internuclear axis $\Im\left(h/2\pi\right)$, is defined by

$$r = \Lambda + \Sigma$$
 2.13

In the case of ICl, the interaction between the orbital and the spin angular momenta is stronger than their individual interaction with the internal field. As a consequence, one cannot consider A and E as they are no longer defined. These two momenta couple together (see Figure 2.3) to define directly $\Omega(h/2\pi)$ as the component of the total electronic angular momentum along the internuclear axis. This situation refers to Hund's coupling case (c). In ICl, the absolute value of the total electronic quantum number, is then used to label the electronic states which are simply called 0, 1, 2, ... From now on, we will consider Ω

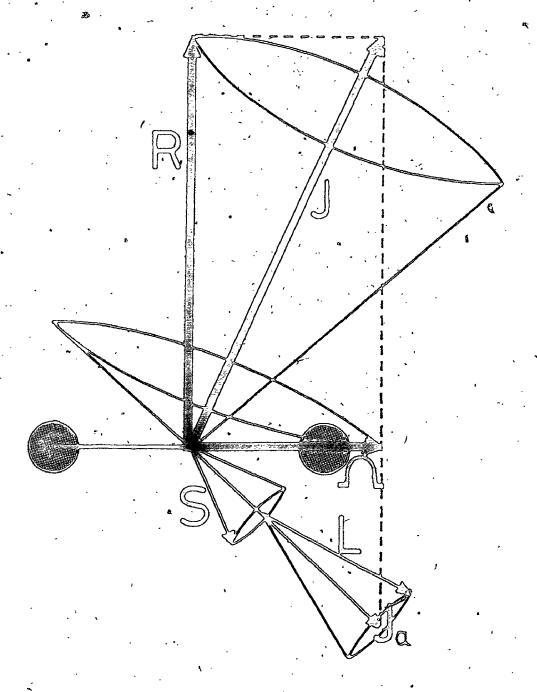


Figure 2.3 Coupling of the different angular momenta (in $h/2\pi$ units) in ICl. referring to Hund's case c.

as a positive value used to label the electronic states of ICl. A state with $\Omega=0$ is singly degenerate and $\omega\neq 0$ states are doubly degenerate.

The rotational quantum number J is then defined by the addition of the nuclear rotational quantum number, R, with Ω (see Figure 2.3). It naturally follows that J cannot be smaller than Ω ; for ICl, Ω and J are integral due to an even number of electrons in the molecule

$$J = \Omega, \Omega + 1, \Omega + 2, \dots$$
 2.14

A molecule is never at rest. Its movement encompasses three different kinds of motion: vibration, rotation and translation. With polarization-labelling spectroscopy the internal molecular motions are studied, that is the motions related to the molecular set of coordinates: vibrations and rotations.

2.2 Potential for electronic states

In nature, molecules are usually in their ground state or stable state, but they are vibrating and rotating all the time. One particular molecule can have only certain values of vibrational and rotational energy. A quantum of vibrational energy is typically much larger than one of rotational energy.

The simplest assumption about the form of vibration is that each atom of a diatomic molecule moves away from the

other and back towards it in a simple harmonic motion. In classical mechanics, a harmonic oscillator refers to a force F proportional to the distance x from an equilibrium position acting on a mass point m

$$F = -kx = m d^2x/dt^2$$
 2.15

The resulting vibrational frequency is given by

$$v_{\rm OSC} = \sqrt{k/m} / 2\pi \qquad 2.16$$

Using the expression of force in equation 2.15 to get the potential energy of the oscillator by integration, wave mechanics gets the following expression for the energy of harmonic vibrations in a molecule

$$E_{v} = \frac{h}{2\pi} \sqrt{k} (v+1/2) = h v_{OSC} (v+1/2)$$
 2.17

Here, μ is the reduced mass of the molecule and v is the vibrational quantum number which can take integral values bigger than or equal to $^{*}0$.

The representation of the potential energy of a molecule with harmonic oscillations as a function of the internuclear distance gives a parabola (dotted curve on Figure
2.4). However, it is clear that when the atoms move far
apart they will eventually become dissociated. Therefore,
the potential curve of the molecule has the form of an
anharmonic oscillator potential (solid curve on Figure 2.4).
The eigenvalues of an anharmonic oscillator can be expres-

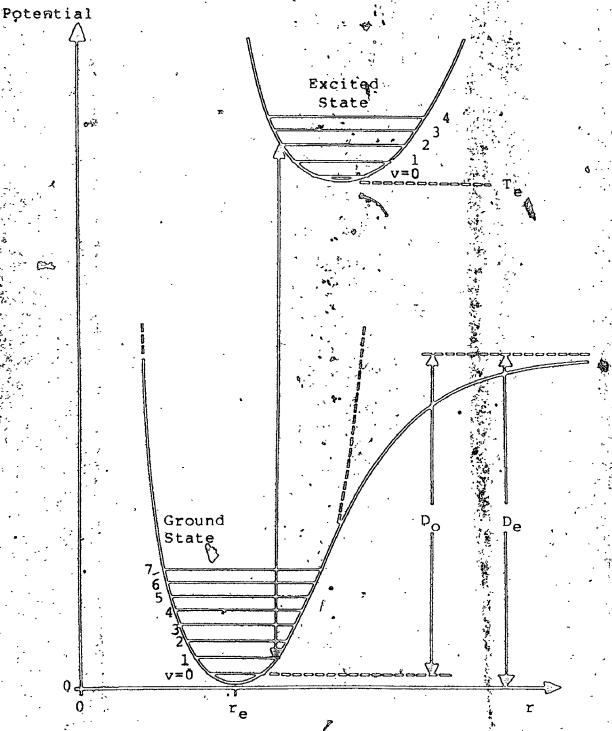


Figure 2.4 Potential energy in function of the internuclear distance; the dotted curve is for a farmonic oscillator and the solid curve for an anharmonic one. An example of a transition to an excited state is shown. De and Do are the dissociation energy relative to the bottom of the state and to the vibrational level 0, respectively. Te is the minimum energy of a state.

sed in the form of a series expansion

$$E_v = hv \left[\omega_e(v+1/2) - \omega_e x_e(v+1/2)^2 + ...\right]$$
 2.18

In spectroscopy, the Dunham expansion is widely used

$$G(v) = \omega_e(v+1/2) - \omega_e x_e(v+1/2)^2 + \dots$$
 2.19

where $\omega_e > \omega_e \, x_e$ are expressed in wavenumber units (cm⁻¹). A potential curve for a molecule in a specific electronic state is composed of mathy vibrational levels (see Figure 2.4). The symbol T_e is associated with the bottom of the potential; when the potential curve in question is the ground state of a molecule, $T_e = 0$. Therefore, in a molecule, the energy scale is positive and starts at the bottom of the ground state (usually called X state). The symbol D_e is associated with a dissociation limit and has a positive value (in cm⁻¹ or in eV) calculated from the bottom of the state. The symbol D_0 refers the dissociation energy to the level v=0. The first dissociation of a diatomic molecule normally gives the two separate atoms in their ground state.

Concurrently to its vibrational levels, the rotation of the same molecule also stores some energy in a quantum manner. The energy of a rigid rotator (in units of $\rm cm^{-1}$) is then expressed by

$$F_{V}(J) = \frac{E_{rot}}{hc} = \frac{h}{8\pi^{2} cI} (J+1) = B_{V}J(J+1)$$
 2.20

where I is the moment of inertia of the molecule (μr^2) and $B_{_{\mbox{$V$}}}$ is the rotational constant. The dependence on the vibrational level for the rotational constant is expressed by a series expansion in v

$$B_{v} = B_{e} - \alpha_{e} (v+1/2) + \dots$$
 2.21

Here B_e is called the rotational constant at equilibrium from which the internuclear distance at equilibrium r_e is easily extracted. It is as easy to compute that the rotational constant decreases slowly as v increases, α_e being positive and small compared to B_e .

As a direct consequence of the molecular rotation, a centrifugal force comes into play and affects the internuclear distance which affects the moment of inertia and the rotational constant B. Therefore, with a massive molecule such as ICl, one or several centrifugal corrections to the rotational constant must often be applied

$$F_{v}(J) = B_{v}J(J+1) - D_{v}J^{2}(J+1)^{2} + H_{v}J^{3}(J+1)^{3} + L_{v}J^{4}(J+1)^{4} + \dots$$
 2.22

Here, $\mathrm{D_{v}}$, $\mathrm{H_{v}}$, $\mathrm{L_{v}}$ are all considered as centrifugal distortion constants used to correct the rotational energy. As the rotational quantum number increases, the effect of these correction constants becomes more and more important. Again, $\mathrm{D_{v}}$, $\mathrm{H_{v}}$ and $\mathrm{L_{v}}$ can be expressed by a series expansion in v as B, is in equation 2.21.

Two isotopes of Cl. occur in a relative abundance of l:3. I³⁷Cl shows different values of vibrational and rotational energy than those of I³⁵Cl. From this difference, new mass-reduced quantum numbers can be defined [14]

$$\eta = (v+1/2)/\sqrt{\mu}$$
 . 0
 $\xi = J(J+1)/\mu$ 2.23

In order to work with integer quantum numbers, the isotopic ratio for ICl is defined by

$$\rho = \frac{v_{OSC}^{37}}{v_{OSC}^{35}} = \sqrt{\frac{\mu_{35}}{\mu_{37}}} = 0.978595$$
 2.24

This ratio is used to express the vibrational and rotational energy of the less abundant isotopic molecule, I ^{37}Cl , with the same terms as for the main isotopic molecule, I ^{35}Cl

$$G(v) = \omega_{e} \rho(v+1/2) + \omega_{e} x_{e} \rho^{2} (v+1/2)^{2} + \dots \qquad 2.25$$

$$F_{v}(J) = B_{v} \rho^{2} J(J+1) - D_{v} \rho^{4} J^{2} (J+1)^{2} + \dots \qquad 2.26$$

When dealing with I³⁵Cl data, p equals unity and for I³⁷Cl, p has the value 0.978595. The fact that the rovibrational separations are different between the two isotopes is used to validate the vibrational and rotational levels assigned to signals in an early stage of analysis. Then, data from both isotopes can be used in the model to determine only one set of parameters.

 \vec{a}_{ν}

For convenience, a Dunham expansion is widely used to express the energy of an electronic state

$$Y_{00} + Y_{10}\rho(v+1/2) + Y_{20}\rho^{2}(v+1/2)^{2} + \dots$$

+ $Y_{01}\rho^{2}J(J+1) + Y_{11}\rho(v+1/2)\rho^{2}J(J+1)+\dots$
+ $Y_{02}\rho^{4}J^{2}(J+1)^{2} + \dots$ 2.27

where
$$Y_{00} = T_e$$

 $Y_{10} = \omega_e$
 $Y_{20} = -\omega_e x_e$
 $Y_{01} = B_e$
 $Y_{11} = -\alpha_e$
 $Y_{02} = -D_e$ (not dissociation energy)

The Dunham terms Y_{ab} do not give precisely the terms T_e , ω_e and others, but are so close as to be practically equivalent.) Once the first few terms in the Dunham expansion are determined for an electronic state, some other ones can be estimated [12,15]

$$\alpha_{e} = [6V\omega_{e}x_{e}B_{e}^{3} - 6B_{e}^{2}]/\omega_{e}$$
for a Morse potential
$$D_{e} = 4 B_{e}^{3}/\omega_{e}^{2}$$

$$H_{e} = 2D_{e}(12B_{e}^{2} - \alpha_{e}\omega_{e})/3\omega_{e}^{2}$$

$$L_{e} = \frac{1}{B_{e}^{2}D_{e}}[3B_{e}H_{e}D_{e}^{2} - 5D_{e}^{4} + B_{e}^{2}H_{e}^{2} - 8D_{e}^{3}B_{e}^{2}\omega_{e}x]$$

$$2.28$$

$$2.29$$

$$2.30$$

$$2.30$$

Quite frequently, the above equations do not represent the observed values accurately but should be used only as an

estimated value for these terms. Dunham also gives a correction to be added to the bottom of the potential [12]

$$Y_{00} = \frac{B_e}{4} + \frac{\alpha_e \omega_e}{12B_e} + \frac{\alpha_e^2 \omega_e^2}{144B_e^3} - \frac{\omega_e x_e}{4}$$
 2.32

which is usually a small fraction of a wavenumber.

2.3 Selection rules.

The spectra of diatomic molecules are affected by the quantum numbers and their properties through the selection rules. Here, the ones relevant to ICl molecule with Hund's case c signature will be outlined for optical resonance transitions.

The selection rule on the rotational quantum number is

$$\Delta J = 0, \pm 1$$
 . 2.33

with the restriction that $J=0 \not\leftrightarrow J=0$. Underlying this one, there is a symmetry rule which holds quite generally for electric dipole transitions

$$+ \leftrightarrow - but + \leftrightarrow + - \leftrightarrow - 2.34$$

This positive and negative symmetry, or parity, of the wavefunctions is associated alternatively with the successive rotational levels in a given electronic state

For
$$\omega = 0$$
 $J = 0(+), 1(-), 2(+), 3(-), \rightarrow 0^+$
or $\omega = 0$ $J = 0(-), 1(+), 2(-), 3(+), \rightarrow 0^-$

for $\Omega = 1,2,3$ the state comprises two substates

first, (e)
$$J = 1(-), 2(+), 3(-), 4(+), ...$$

second, (f)
$$J = 1(+), 2(-), 3(+), 4(-), ...$$

It must be remembered that $J \geqslant 2$. Another selection rule applies to the total electronic angular momentum

$$\Delta \Omega = 0_{r} \pm 1 .$$

and
$$0+ \leftrightarrow 0+$$
, $0- \leftrightarrow \sigma$, $0+ \leftrightarrow \sigma$

From these, it can be deduced for a specific transition from the ground state in ICl, $\Omega=0^+$ to another $\Omega=0^+$ state, that there is no Q branch $(\Delta J=0)$. From the ground state to a state with $\Omega=1$, Q signals access the f substate and P,R signals $(\Delta J=\mp 1)$ access the e substate. Using the above selection rules, the observed signals characterize different electronic states and substates. In designating a given electronic transition, the upper state is always written first; a B-X transition refers to a transition between the ground state X and an upper state B.

Some other restrictions arise from the fact that the light interacts during a very short period of time with the molecule. This time scale is of the order of magnitude of the reciprocal of the transition frequency; for ultraviolet and visible light, it is of the order of the femtosecond $(10^{-15}s)$. This means that after the interaction the molecule has the same internuclear distance as before the

interaction, the inverse of the vibrational frequency being of the order of one to ten picosecond (10⁻¹²-10⁻¹¹s). From our point of view, a transition can occur vertically between two potential energy curves which represent two electronic states (see Figure 2.4). This intuitive idea is referred to as the Franck-Condon principle.

Quantum mechanics considered that the total wavefunction Y describing each of the two levels between which a transition is considered, can be separated into two parts

$$\Psi = \psi_{\mathbf{e}}\psi_{\mathbf{v}} \qquad \qquad 2.36$$

where ψ_{e} are the electronic and ψ_{v} the vibrational wavefunctions respectively. The electronic transition moment is defined

$$R_{e} = \int M_{e} \psi_{e}^{\dagger} \psi_{e}^{\dagger} dr \qquad 2.37$$

by use of the electric moment M $_{e}$. The integral over the product of the $\psi_{\mathbf{v}}$ s of the two states involved is called the overlap integral

$$\int \psi_{\mathbf{V}}^{\dagger} \psi_{\mathbf{V}}^{\mathbf{u}} d\mathbf{r}$$
 2.38

This equation translates the Franck-Condon idea into a mathematical form. Then, assuming that the variation of $R_{\rm e}$ with r is slow

$$R = \mathbb{R}_{e} \int \psi_{v}' \psi_{v}'' dr$$

where R_e is an average value of R_e . The intensity of a transition is proprotional to R^2 as long as the other selection rules are respected. Here again, quantum mechanics allows for some uncertainty or variation in the internuclear distance during a transition, according to the Heisenberg's uncertainty principle (2.8).

2.4 Perturbation phenomena

a) Q đoubling

ICl molecule corresponds to Hund's coupling (c) which refers to an idealized situation. Small and large. deviations from these cases are often observed. In ICl., an interaction or perturbation between two neighboring states, 2=0 and 1 of the same parity gives rise to a splitting of the two rotational sublevels. e and f, of the wal state. Effectively the sub-level e of 2=1 state is perturbed by the neighboring $\omega=0$ +state (non-degenerate), and its resultant energies differ slightly from the f sub-level. This effect is called Ω splitting or M doubling and is frequently of the order of a fraction of a wavenumber. This heterogeneous perturbation, Au=±1, is possible only in the rotating molecule; some refer to this as electronic-Coriolis interaction in the rotating molecule. An homogeneous perturbation operates between two states with the same w and is possible in the non-rotating-molecule [16]. In types, the upper level in question is shifted up as the

lower level is shifted down by the same amount. This perturbation is always expressed as a repulsion of two states.

The rotational part of the Hamiltonian can be expressed this way

$$H_{\text{rot}} = B_{v} [(\hat{J}_{x} - \hat{L}_{x} - \hat{S}_{x})^{2} + (\hat{J}_{y} - \hat{L}_{y} - \hat{S}_{y})^{2}]$$
 2.40

which can then be rearranged to give

$$H_{\text{rot}} = {}^{\circ}B_{V}[\hat{J}^{2}]$$

$$-\hat{J}_{z}^{2} + \hat{L}_{z}^{2} - \hat{L}_{z}^{2} + \hat{S}^{2} - \hat{S}_{z}^{2} - \hat{L}_{+}\hat{S}_{-} - \hat{L}_{-}\hat{S}_{+}$$

$$-\hat{J}_{+}\hat{L}_{-} - \hat{J}_{-}\hat{L}_{+} - \hat{J}_{+}\hat{S}_{-} - \hat{J}_{-}\hat{S}_{+}]$$
2,41

where $\hat{J}_{\pm} = \hat{J}_{x} \pm i\hat{J}_{y}$ and $\hat{S}_{\pm} = \hat{S}_{x} \pm i\hat{S}_{y}$ and where these angular momentum operators are in h/2 mains. The term in J on the first line of 2.41 gives the usual expression for the rotational term.

$$F_{\mathbf{y}}(\mathbf{J}) = B_{\mathbf{y}} \mathbf{J}(\mathbf{J}+1)$$
 2.42

The terms produced by the operators from the second line in .2.41 are independent of J and are therefore included in the electronic term value. The third line of 2.41 shows the terms responsible for the J dependence coupling between states of different ...

$$\langle J, M, u \pm 1 | -B_{V} (\hat{J}_{+} (\hat{L}_{+} + \hat{S}_{-}) + (\hat{J}_{-} (\hat{L}_{+} + \hat{S}_{+})) | u, M, J \rangle$$

$$= \langle u \pm 1 | \hat{L}_{+} + \hat{S}_{+} | u \times u \pm 1 | B_{V} | u \rangle$$

$$\times [J(J+1) - u(u \pm 1)] 1/2$$

$$= W_{Q}, Q \pm 1 \quad B_{Q}, Q \pm 1 \quad [J(J+1) - u(u \pm 1)] \frac{\ln^{2}{2}}{2.43}$$

The above equation generates the off-diagonal elements for a rotational Hamiltonian matrix. The off-diagonal rotational constant $B_{\Omega,\Omega\pm 1}$ is readily evaluated from numerical wavefunctions if the potential curve of the electronic states are known. The term $W_{\Omega,\Omega\pm 1}$ is usually not calculable and is treated as an adjustable parameter in the fit of the experimental data.

The first family of ion-pair states in IC1 consists of three electronic states, $\beta(\omega=1)$, $E(0^+)$ and $D^+(2)$, with their T_e lying in a 50 cm⁻¹ range. This gives rise to an ω doubling in both β and D^+ states. This splitting in D^+ is due to the interaction of the E state through the perturbed β state which is partly assuming the E properties. Therefore, the fit for these three states should be considered simultaneously to obtain a reasonable accuracy. The original 5x5 matrix factorizes into a 3x3 (e sublevels of $\omega=0.1$ and 2 states) and a 2x2 matrix (f sublevels of $\omega=1$ and 2 states) by symmetry; there are off-diagonal elements of the form of equation 2.43 for interaction between $\omega=1$ and $\omega=0$ states, and interaction between $\omega=1$ and $\omega=2$ states.

In a first approximation, the interaction by a vibrational level with a different v is considered negligible. If necessary, it can be included by transforming the above 3x3 matrix into a 6x6 when considering only one neighboring vibrational level, and the 2x2 would become a 4x4 matrix. The magnitude of these new off-diagonal elements are

usually much smaller than the ones considered before for the same v number and can be evaluated by perturbation theory. This is because the interaction in play is inversely proportional to the energy difference between the two levels considered.

The only term in equation 2.43 which can have some dependence on v is $B_{Q,Q\pm1}$. Being a difficult factor to calculate a priori, it is usually evaluated numerically from the wavefunctions describing vibrations in the Rydberg-Klein-Rees (RKR) potential curve, but first, the Dunham parameters are needed to make the RKR curve. An iterative process takes place by starting with an "approximate" set of Dunham parameters which then make an RKR curve, and we calculate these $B_{Q,Q\pm1}$ for same and different v's using the Numerov-Cooley method [17]. These factors can then be used in the fit of the data to get a new set of Dunham parameters. The procedure is repeated until there is convergence, usually after few cycles.

The first term in equation 2.43 can be compared to the interaction term in the case referred to as pure precession, developed by Van Vleck [18], where L+S = J_a is a defined quantity

$$\langle J_{a}, \Omega \pm 1 | \hat{L}_{\pm} + \hat{S}_{\pm} | J_{a}, \Omega \rangle = [J_{a}(J_{a} + 1) - \Omega (\Omega \pm 1)]^{1/2}$$
 2.44

The family of ion-pair states considered gives upon dissociation $Cl^{-}(^1S_0)$ and $I^{+}(^3P_2)$, then $J_a=2$ and $\omega=0,1,2$

$$W_{1,0} = [2(2+1) -1(0)]^{1/2} = \sqrt{6} = 2.45$$
 2.45
 $W_{1,2} = [2(2+1) -1(2)]^{1/2} = \sqrt{4} = 2$. 2.46

The overall magnitude of the shift due to the perturbation is function of the overlap of the two vibrational or rovibrational wavefunctions (equation 2.38) of the two states. Unless some "selection rules" are respected, the overlap vanishes. The selection rules relevant to ICl so that a perturbation can happen are

- same total angular momentum $(\Delta J = 0)$
- ∆≌ = 0, ±i.
- same parity, + + + or -

As well, there is a classical equivalent of the Franck-Condon factor [19]: "Two vibrational states belonging to two different electronic states and lying at approximately the same height will influence each other strongly only if classically the system could go over from the one state to the other without a large alteration of position and momentum".

In the case of IC1, heterogeneous perturbation($\Delta w = \pm 1$) is present and arises on account of finer interactions of rotational and electronic motion. The magnitude of the perturbation between the two states is then proportional to J(J+1) according to the basic theory. The wavefunctions of perturbed states are considered hybrid or mixed wavefunctions. Both states now assume each others properties. Then,

when one allowed transition is in resonance with the energy of the beam, extra lines can appear from the neighboring perturbed state. One may say that the extra lines "borrow" intensity from the regular lines.

This can explain the appearance of some extra lines in spectra. By considering levels from an $\omega=1$ state as not pure but hybrid levels, one can consider an $\omega=2$ state being perturbed by the $\omega=1$ state as well as by the $\omega=0$ state but to a lesser extent. This is how an $\omega=2$ state shows an ω doubling effect. By the same process, this is how an $\omega=2$ state can experience a local perturbation by an $\omega=0^+$ state in the form of an avoided crossing between the two levels.

b) Avoided crossing

When two electronic states are very close, they may show an apparent crossing of their potential curves which is formally forbidden for two electronic states with the same parity (see selection rules for perturbations). This is shown schematically on Figure 2.5. The two electronic states in such a situation have the same rotational quantum number J, and at the point of closest approach would have the same total energy. Both states are then pushed apart as in other perturbation phenomena in a way proportional to the r^{-2} matrix element and inversely proportional to their energy difference. The magnitude of the perturbation is greatest at the point of closest approach and decreases on

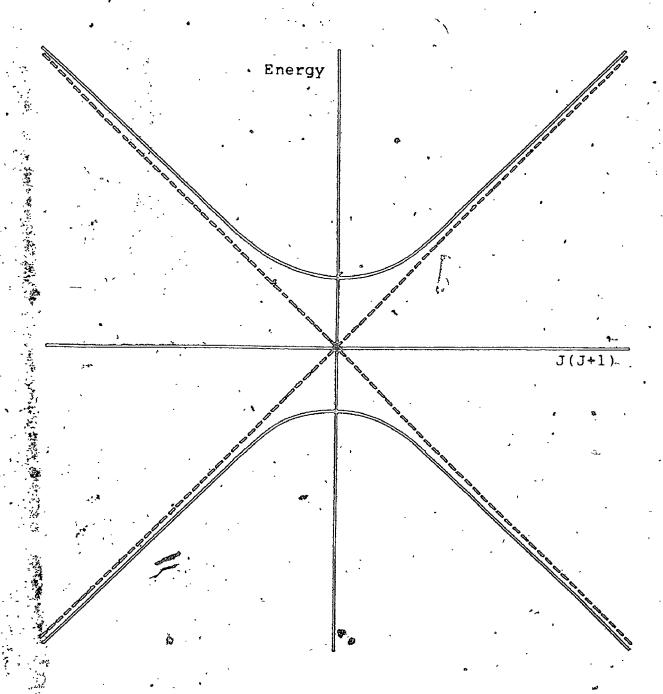


figure 2.5 Perturbation of two energy Levels as a function of J(J+1); the dotted lines represent the unperturbed levels and the solid lines the perturbed (actual) ones.

both sides (seen as the distance betwen the dotted and the solid line on Figure 2.5). Because such a phenomenon appears only at some J values in a vibrational level, it is sometimes called a rotational perturbation. The wavefunctions are assumed to be a 50-50 mixing of both states at the point of closest approach, therefore a label cannot be assigned to one state or the other.

It can happen frequently that two electronic states have the same energy but it is not common for this to occur while the selection rules for perturbation are respected. The sum of the rotational intensity distribution for the two states shows a usual dependence on J(J+1). However, on an individual basis, one state can steal more or less intensity than the other for different J values [20]. At the point of closest approach, it can be expected that both signals $(\Delta \Omega = \pm 1)$ have the same intensity, assuming a 50-50 mixing of the wavefunctions, but in practice, the distribution of intensity between the two signals has a unique behavior in each situation.

In summary, the electronic states of ICl are characterized by the value of their case (c) quantum number ω . As states of different ω approach one another, perturbations arise from this proximity producing ω doubling for states with $\omega \neq 0$. Contamination of the wavefunctions allows transitions to occur between states whose radiative combination is forbidden in the absence of perturbations.

CHAPTER THREE

POLARIZATION-LABELLING SPECTROSCOPY

This chapter gives a resume of the theory for the polarization-labelling spectroscopy which was developed in more detail by Teets [21] and Cross [22]. The experimental conditions are given later for both two- and three-beam configurations along with a typical signal.

The relatively new technique of polarization-labelling greatly simplifies crowded molecular spectra. It relies on the creation of a population of specific angular momentum asymmetric in M. by means of a narrow-band laser called the pump beam (see Figure 3.1). At the same time the pump an asymmetric M population in the ground state. populations asymmetric absorption cause an transmission of a linearly polarized probe beam at frecorresponding to transition or from quencies levels (see Figure 3.1). To find at which ∢ labelled such transitions ccur in the molecule, quencies

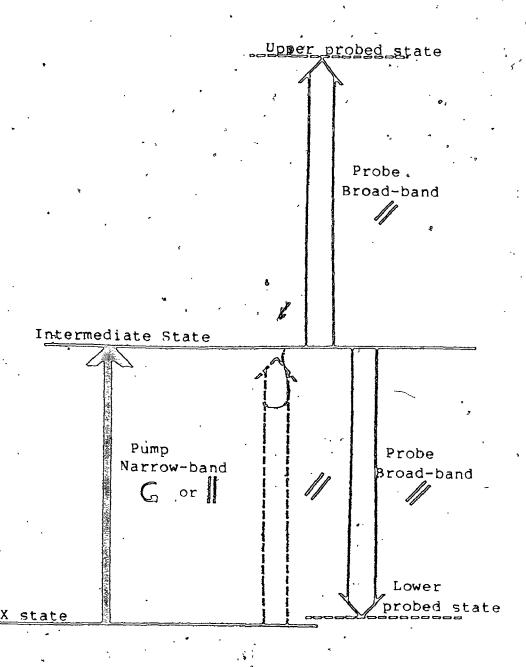


Figure 3.1 Typical optical-optical-double-resonance experiment with the polarization-labelling technique.

sample is placed between two crossed polarizers (one oriented at 90 degrees from the other in the probe beam axis). Then, the rotation of the plane of polarization of the probe allows only some frequencies to pass through the second polarizer (analyser) and to be received at the spectrograph. The assignment of these signals to specific transitions is much facilitated when the frequency of the pump is known.

3.1 Theory

a) Two-beam

Whenever electromagnetic radiation propagates through a dielectric medium, it induces a polarization of the medium. The electric field of the radiation is described by this wave equation (in cgs units)

$$\nabla \times (\nabla \times E) + \frac{1}{c} \frac{\partial^{2}}{\partial t^{2}} \{E + 4\pi P\} \stackrel{!}{=} 0$$
 3.1

where E is the electric field, P is the polarization of the medium and c the speed of light. P is expanded as a power series in the electric field, where the indices i,j,k,l refers to the x,y and z axes

$$P_{i} = \chi_{ij}E_{j} + \frac{\sum \sum \chi_{ijk}E_{j}E_{k}}{\sum k} + \frac{\sum \sum \chi_{ijkl}E_{j}E_{k}E_{l}}{\sum k}$$

$$3.2$$

For plane waves propagating along the z-axis, a solution to equation 3.1, considering P=0, has the form

$$E = A(z) e \times p i(kz - \omega t)$$

3_. 3

where A(z) is the amplitude of the wave and $\neg k$ is the wavenumber in radians per centimeter.

The first term of equation 3.1 becomes

$$\nabla x (\nabla z^{E}) = -\left[\frac{\delta^{2}A}{\delta z^{2}} + 2ik \frac{\delta A}{\delta z} - k^{2}A\right]$$

$$x \exp i(kz - \omega t) \quad 3.4$$

and the differentiation of 3.3 with respect to time gives

$$\frac{1}{c^2} \frac{\delta^2 E}{\delta t^2} = A \left(\frac{\omega}{c} \right)^2 \exp i(kz - \omega t)$$
 3.5

Then, equation 3.1 becomes

$$\left[\frac{\delta^2 A}{\delta z^2} + \frac{2}{1} k \frac{\delta A}{\delta z} - k^2 A + \frac{(\omega)^2 A}{(c)^2}\right]$$

$$\times \exp i(kz - \omega t) = \frac{1}{C^2} \frac{\delta^2 4\pi P}{\delta t^2}$$
 3.6

The two last terms in the upper brackets are eliminated, as $k = \omega/c$ by definition. The general form of the amplitude equation is [22]

$$\frac{\delta A_{j} = 2\pi i}{\delta z} \left(\frac{\omega_{j}}{\omega_{j}} \right) \left[\chi_{j} A_{j} + \frac{1}{6} \frac{2}{5} \chi_{ijkl} A_{j} A_{k} A_{l} \exp(iz\Delta k) + \frac{1}{6} \chi_{ij} \chi_{ijkl} A_{j} A_{k} A_{l} \exp(iz\Delta k) + \frac{1}{6} \chi_{ij} \chi_{ij} A_{i} A_{j} A_{j} A_{j} A_{j} A_{j} A_{i} A_{j} A_{j} A_{j} A_{i} A_{j} A_{j}$$

where $\Delta k = k_j + k_k + k_1 - k_i$ and i, j, k, 1 refer to the labels 1 for the signal, 2 for the probe and 3 for the pump beam.

By conservation of energy, $\omega_j + \omega_k + \omega_l - \omega_i$ is zero. The "phase matching" requirement given by $\Delta k = 0$ is needed to keep the exponential term close to unity. By doing so, the third-order susceptibility term is kept non-negligible. The polarization of the medium induces a change in its refractive index and absorption coefficient which can be expressed in term of the real and imaginary parts of the first order susceptibility

$$\eta_{i} = 1 + \frac{2\pi}{\eta_{i}} \Re \chi_{ii} = 1 + 2\pi \Re \chi_{ii} \qquad 3.8$$

$$\alpha_{i} = -\frac{4\pi\omega_{i}}{\Omega} \Re \chi_{ii} \qquad 3.9$$

where ω is the angular frequency in radians per second.

Assuming solutions to equation 3.7 for the signal and the probe amplitude of the form

$$A_{1}(z) = M_{1}(z)A_{2}(0) \exp(2\pi i \omega_{1} \chi_{11} z) \qquad 3.10$$

$$A_{2}(z) = M_{2}(z)A_{2}(0) \exp(2\pi i \omega_{2} \chi_{22} z) \qquad 3.11$$

we get

$$M_1(l) = \sin \left[\frac{2\pi\omega_1}{c\eta_1} \frac{2}{3} \chi_{1233} \right] A_3^2 l$$
 3.12

tion is small, the leading term in the expression for the signal intensity depends on the square of the interaction length of the two lasers, the square of the pump intensity

and the first power of the probe beam intensity

I
$$\alpha A_1^2(1) \alpha \left(\frac{2\pi\omega_1}{c\eta_1}\right)^2 \frac{4\chi_{1233}^2}{9} A_2^2(0) A_3^4 1^2$$

$$4x \exp\left[\frac{4\pi i\omega_1}{c\eta_1}\chi_{11}\right] 3.13$$

The above equation describes qualitatively the signal amplitude in the case of a small signal with a circularly polarized pump and a plane polarized probe beam. The approximations used to derive equation 3.13, namely steady-state solutions with short-pulse durations, a beam frequency resonant to the transition and a small intensity signal, may not be reasonable in some cases. In practice, we may not have the same pulse profile as, used in the calculations and a beam frequency well in resonance with the transition.

An equation for χ_{1233} is derived by Cross [22] who shows that χ_{1233} is proportional to the square of the dipole moment coupling the ground state and the intermediate level pumped, and to the difference of the square of the dipole moments for the right and left circular component of the probe, at a signal frequency

$$\chi_{1233} = |\mu_{ba}|^2 + |\mu_{ca}|^2 - |\mu_{da}|^2$$
 3.14

where the pump is tuned to the transition b + a and the probed transitions are c + a and d + a; pij is the dipole moment coupling the j level to the i level.

It is an appropriate time to examine the M-dependence (not shown here in 3.14) of the absorption cross-section. The allowed transition with a right circularly polarized pump beam is (M+1) + M. The absorption cross-section for R and O'branch transitions is plotted in Figure 3.2. An R branch transition shows a strong M-dependence for right circularly polarized light, giving preference to large positive M; the same is true for the P branch at large negative M. A Q branch transition is favored by a linear polarization, which can be thought of as a beam of a right(+) circularly polarized component in phase with a left(-)-circularly polarized one. A pump beam in resonance with a transition creates a population asymmetric in M in both lower and upper level of that transition:

Two different values of the absorption coefficient can be measured by using a right and a left circularly polarized beam. The same phenomenon is observed for the refractive index. The components (+) and (-) of a linearly polarized probe each see a different absorption cross-section (see Figure 3.2) when interacting with an M-asymmetric population. This circular dichroism, $\alpha_+ - \alpha_-$, introduces some ellipticity in the probe polarisation. The birefringence of the medium due to different refractive indices, η_+ and η_- , seen by each component of the probe (right and left circularly polarized) rotates the plane of polarization of the probe. This is how the polarization-

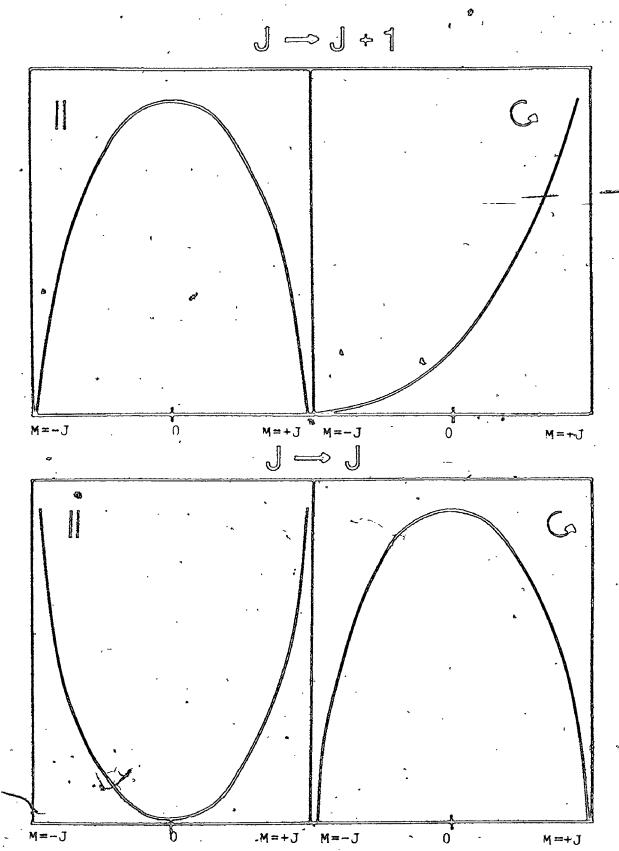
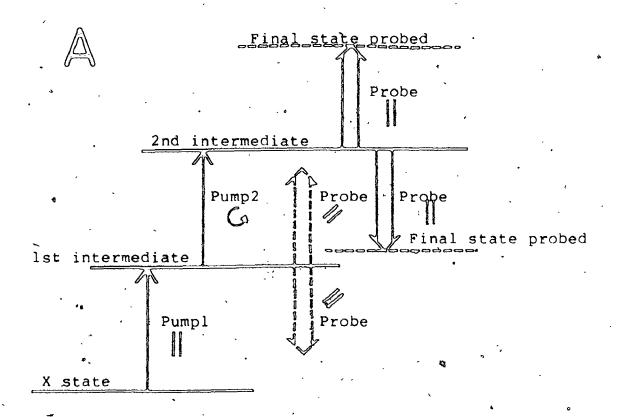


Figure 3.2 Absorption cross-section in function of Mapart A is for R transition and part B for Q transition, the left and right are for plane and right circularly polarized light.

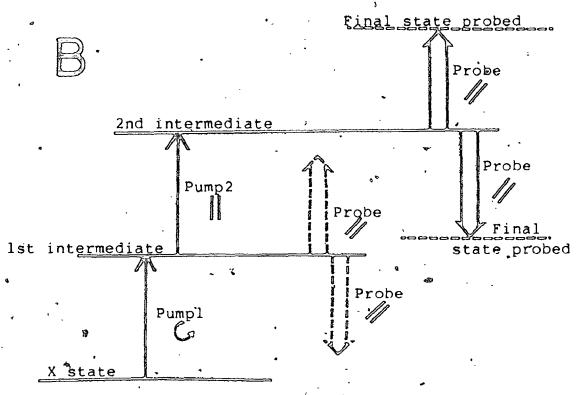

labelling technique works with a circularly polarized pump creating an asymmetric upper and lower population.

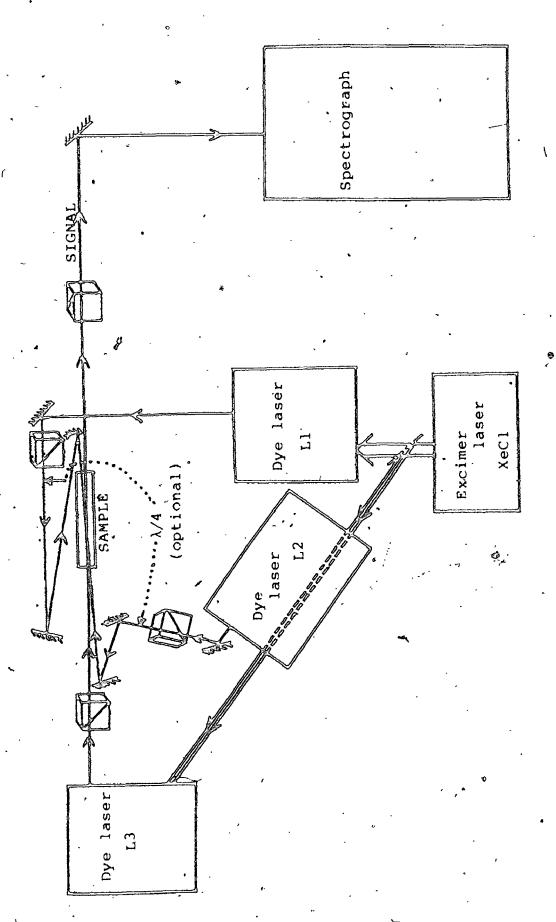
When we work with a linearly polarized pump, this one creates symmetric populations in M (or very close to symmetric) in both upper and lower states. The probe polarization is set at 45 degrees to the pump plane and is best seen as composed by two linearly polarized component at 90 degrees one to the other. One component is interacting primarily with one of the two populated states resulting in a slight rotation of the overall plane of polarization of the probe which then gives a signal.

It is worth mentioning that Yamashita [24] developed an equation based on first order result of Maxwell's equation (3.1) relating the signal intensity to the square of the circular dichroism, to the square of the interaction length in the sample and to the probe intensity. Unfortunately, in his development, he neglected the non-linear effects so important in polarization-labelling.

b) Three-beam

An experiment with three overlapping laser pulses of short duration is a non-subtle affair. The use of two narrow-band lasers as pumps is strongly recommended to sufficiently populate the upper level sought. Figure 3.3A shows the two kinds of three-photon signal produced by a first configuration of laser beam pelarization. The two




Figure 3.3 Two schematic representations for a three-beam polarization-labelling experiment; A: pumpl and pump2 are respectively plane and circularly polarized. B: the polarization of the two pumps are reversed.

last steps, pump 2 and probe, correspond to the same two steps sequence as above with the difference that, in the three-beam experiment, these two steps do not start from a Boltzmann population in the ground state. With this scheme, the f substates are probed preferentially, the selection being accomplished by the first pump. Figure 3.3B illustrates another configuration which accesses the e substates of the intermediate and final levels using circular polarization in the first stage. In the two configurations, both two- as well as three-photon signals can be recorded by the spectrograph.

The scheme of interest in this study is the one where the probe induces downward transitions from the second intermediate level. This technique is called stimulated enhanced emission polarization-labelling, SEEPOL [26], where the probe may, in fact, experience intensity gain at the frequency of interaction with the sample to give a signal. It is beyond this study to develop an expression for the signal intensity generated by the interaction of three different beams of light on the same molecule. Equation 3.13 gives a qualitative description for a two-photon signal of small intensity.

3.2 Experimental

The experimental arrangements are represented schematically on Figure 3.4. A Lumonics laser model TE-

labelling experiments. The dye lasers Ll. and L2 groduced the beams for Pumpl and Pump2 which can either be plane or circularly polarized. The probe beam (L3) is plane polarized. Experimental arrangements to carry two- and three-photon polarization Figure 3.4

861T was operated as a XeCl laser at 6 to 8 pps. The peak power at 308 nm was 4 to 9 MW per pulse of approximately 10 ns. This beam was split a few times to pump the two or three dye lasers necessary to the experiment.

The dye laser Ll (see Figure 3.4) was a Lumonics model EDP-330 equipped with an intra-cavity beam expander and a dye circulator. Its output beam, plane or polarized and having a linewidth smaller than 0.3 cm⁻¹, was used as the first pump. The dye laser L2 was a Molectron model DLII-14P giving a typical linewidth -of cm⁻¹ without etalon. This laser was only used experiments and, depending upon need, three-photon either linearly or circularly polarized. It was aligned in such a way that its beam was coincident with the Ll beam, but travelling in the opposite direction. The quarter-wave plates used were stressed quartz blocks whose pressure was adjusted at the operating wavelength. The third laser was operated in broad-band mode, with a frequency bandwidth ranging up to several hundred cm^{-1} depending upon the dye (see Table 3.1); this probe beam was always polarized. This laser consisted of an oscillator with output coupler and a plane end-mirror, and an in-line amplifier stage, both pumped tranversely.

The sample of ICl (natural isotopic mixture) from statement was distilled in the sidearm of either a 20cm or a 6cm cell equipped with flatesilica windows and was kept

Table 3.1 List of dyes used during this work with the lasing range and maximum lasing wavelength as stated by the manufacturer (Exciton Inc. or Lambda-Physics for QUI only).

· Dye .	Solvent -	Lasing wave	length(nm)	-
- <i>5</i>		Range	Maximum	
p-Terphenyl PTP	p-dioxane	336-355	342-	
TMQ	p-dioxane	344-366	356	å _®
PBD To	luene:Ethanol (1:1)	358-386	- 367	
BBQ	p-dioxane	368-393	38,7	
QUI	p-dioxane	363-395	386	
DPS	p-dioxane	397-417,	407	
Stilbene 420	Ethanol	405-467	425	•
Coumarin 440	` Ethanol	425-464	440	•
Coumarin 460	Ethanol	442-482	460	-
Coumarin 480	Methanol	461-514	480	•
Rhodamine 590 R6G	Methanol	566-610	583	. '
Rhodamine 610 RhB	Methanol	588-644	600	
Rhodamine 640	Ethanol	608-668	618	

below room temperature. The pressure of ICl under iust these conditions, was relatively high, about (27mmHg), which favors the development of collisional 'satellites' allowing more data to be gathered on average per experiment. The signal was directed through a cylindrical lens onto the slit, 30 to 70 µm wide, of a f/35 Ebert-mounted Jarrell-Ash Spectrograph. Real-time exposure ranged between 7 and 50 µs. Spectra were recorded the 13th to 17th order on a 50cm (20in), camera; Kodak Tri X-Pan film. Calibration lines from a Fe/Ne hollow cathode lamp, were superimposed just before or after 9 spectrum and their wavelength values from Crosswhite's table [26] were used.

The dyes used for L1 were Rhodamine 590 (R6G), Rhodamine 610 (RhB) and Rhodamine 640 to cover a spectral range from ~580 to ~645nm, with peak power between 0.1 to 0.7MW per pulse (~8ns). The L2 beam was generated with BBQ, QUI or Coumarin 440 to cover a range from ~380 to ~400nm and ~430 to ~445nm, with peak power of 30 to 150kW per pulse (~8ns nominal). The probe beam L3 had to cover a very broad spectral range, ~340 to ~485nm, thus a series of dyes was used: p-terphenyl (PTP), TMQ, PBD, BBQ, QUI, DPS, Stilbene 420; Coumarin 440, Coumarin 460 and Coumarin 480. All these dyes were from Exciton (see Table 3.1), except for QUI (Lambda-Physics), and had different peak power, 10 to 90kW per pulse (~8ns nominal), related to the

conditions of usage. The powers stated were measured before any polarization device and do not reflect the losses due to that process.

The signal lines and the Fe/Ne lines making the calibration were measured on a comparator with a resulting precision of ~5µm. The final term values for a two-photon experiment were obtained by summing the measured frequency of the signal and the appropriate A state term value taken from the extensive table of Hulthén and others [4]. transition assignment was made by comparing frequency to the difference between the term values for the A state [4] and the ground state [3] in conjunction to the frequency difference between P and R branches in the probed transition to the final state. In a three-photon experiment, the two pump frequencies were measured identified in relation to the P-R splitting in the A' The A' term values were given by the difference between the D' state terms (in regions well characterized) and the measured signal frequencies.

In a two-photon experiment, the pump and probe beams counter-propagated and, once L3 was aligned with the axis of the spectrograph, the two beams were crossed through an aperture of ~0.1mm. For a three-photon experiment, the exercise is more elaborate. Once the probe is correctly aligned, the two pumps are in turn crossed with the probe using the same aperture. Fortunately, in most experiments,

fluorescence intensity was monitored visually in optimizing the final crossing of the two pumps.

A typical signal of a two-photon experiment is shown on Plate 3.1 along with its assignment; it is of some interest to notice that the intensity of the D'+A signal is sometimes stronger than some collisional satellites of the very intense β +A pair.

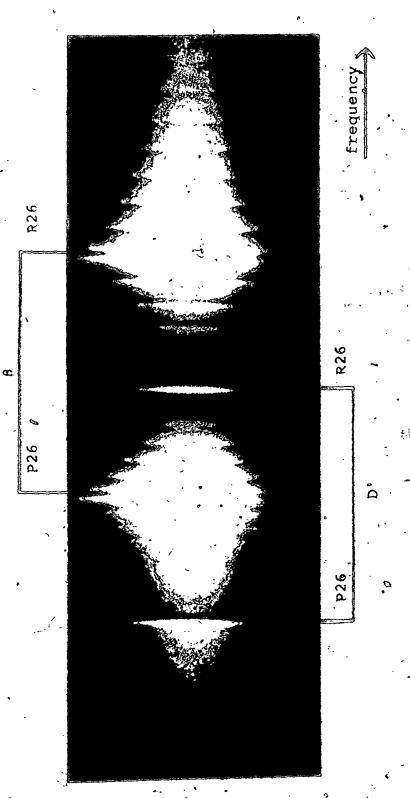


Plate 3.1 , Typical D' A signal besides A signal; the pump was tuned to a Q26 trans's tion, A(v=27) + X(v=0) at 17116.350cm⁻¹ and the probed signals are the P26 and R26 pairs going to v=25 of the D' and R states, respectively weak and strong.

CHAPTER FOUR

ELECTRONIC STATES OF ICL

The valence states of ICl show some similitude to those of iodine, I2. Therefore, the label given to the ICl states are related to the ones for iodine [2]. The manifold of electronic states leading to a specific dissociation can be obtained with the build-up principles given by Herzberg [12]. The procedure will be outlined in this chapter for the four dissociation limits leading to neutral I and Cl and the three first ionic dissociation limits which give I⁺ and Cl⁻. A brief summary of the known electronic states of ICl is given for valence as well as for the ion-pair states.

4.1 Build-up principles

In the case of iodine monochloride, Hund's coupling case (c) considers a strong coupling between L and S

4.1

Thus far, we have worked everywhere with case c signatures for ICl; for comparison with I_2 , Cl_2 , and the literature at large, Table 4.1 gives the corresponding case a signature for value states of ICl. By combination of all possible M_{Ja} for each atom, all molecular state labels leading to such atoms upon dissociation are obtained by

$$= |M_{J_{al}} + M_{J_{a2}}|$$
 4.2

States with $\Omega \neq 0$, differing only in sign of both M_{Jal} and M_{Ja2} form a degenerate pair. States with $\Omega = 0$ are labelled (+), or (-) according to the character of a reflection in a plane including the molecular axis; (+) refers to a symmetric total wavefunction and (-) to an asymmetric one. For ICl, there are always an even number of valence states 0 correlating to one dissociation limit; consequently, there are an equal number of 0+ and 0- states.

For example, the first dissociation limit gives $I(^2P_{3/2})$ and $Cl(^2P_{3/2})$; $J_{a1} = J_{a2} = 3/2$ lead to the values of x = 3, 2, i.0,1,2,3,2,1,0,1,2,1,0,1,0. The manifold is then composed of ten different electronic states labelled 3, $J_{a1} = J_{a2} = 3/2$ of ten different electronic states labelled 3, $J_{a1} = J_{a2} = 3/2$ named e and f.

With the same manipulation, five electronic states lead to the second dissociation limit: $\omega = 2$, 1(2), 0^+ , 0^- .

Summary of the known electronic states of I 3cl (in units of cm-1 and 10-1nm) Table 4.1

$X (0^{+}) ((^{1}^{-})^{-}) = 0$ $384.324 11.41546 2.32 17 ^{2}P_{3}(\frac{1}{17557.57}) + C1(^{2}P_{3}/2)$ A'(2) $(^{3}\pi_{2})$ 12682.05 224.57 8.653 2.666 TA (1): $(^{3}\pi_{1})$ 13742.9 211.0 8.529 2.685 . A'(1): $(^{3}\pi_{1})$ 13742.9 211.0 8.529 2.685 . B'(1): $(^{3}\pi_{1})$ 17338.0 32.85 3.820 4.01 B'(0^{+}): $(^{3}\pi_{0})$ 17375.58 204.271 8.6523 2.666 B'(0^{+}): $(^{3}\pi_{0})$ 18155 ~ 30 ~ 4.5 ~ 3.7 I($^{2}P_{3}/2$) + C1($^{2}P_{1}/2$) B'(1): $(^{3}\pi_{0})$ 18155 ~ 30 ~ 4.5 ~ 3.7 I($^{2}P_{3}/2$) + C1($^{2}P_{1}/2$) B'(2): $(^{3}\Lambda_{2})$ 18275.7. 31.20 3.497 2 4.19 18029.1 ~ 5.6 ~ 3.5	State Signature (e) (a)	e L	ə 3	10.48e	a	O∜ssociation Limit	Reference
(2) $\binom{3}{n_1}$ $\binom{3}{n_1}$ $\binom{3}{n_1}$ $\binom{3}{n_1}$ $\binom{3}{n_1}$ $\binom{3}{n_2}$	() (+0) x	0	,	11.41546	2.32	(2)	
(1), $({}^3\pi_1)$ 13742.9 211.0 8.529 2.685. (1) $({}^3\pi_1)$ 17338.0 32.85 3.820 4.01 (0 [†]) $({}^3\pi_0)$ 17375.58 204.271 8.6523 2.666 (0 [†]) $({}^3\pi_0)$ 18155. 30 - 4.5 -3.7 II 2 P3 (1) ${}^3\Lambda_2$ 18273.9 25.06 3.586 4.19 (2) $({}^3\Lambda_2$ 1 18275.7. 31.20 3.497 94.19	`. <u> </u>	1268205	224.57	8.653	2.666		this
$(3\pi_1)$ 1733840 32.85 3.820 4.01 +) $(3\pi_0)$ 17375.58 204.271 8.6523 2.666 +) $(3\pi_0)$ 18155 30 -4.5 -3.7 I(2 P ₃ 1) $(3\pi_0)$ 18155 31.20 3.497 9.19 1) $(3\pi_0)$ 18275.7: 31.20 3.497 9.3.7	· · · (1)	13742.9		8.529	2.685 *	*	work 26
$(\frac{3}{1}\pi_{0})$ 17375.58 204.271 8.6523 2.666 $(\frac{3}{1}\pi_{0})$ 18155 30 4.5 37 II 2 P3 $(\frac{3}{1}\pi_{0})$ 18155 31 20 3.497 6 4.19 $(\frac{3}{1}\pi_{0})$ 18275.7; $(\frac{3}{1}\pi_{0})$ 3.497 6 4.19 $(\frac{3}{1}\pi_{0})$ 18275.7; $(\frac{3}{1}\pi_{0})$ 3.497 6 4.19	('3 m 1)	1733860	32.85	3.820	4.01		. 27
+) (3m ₀) 18155 - 30 -4.5 -3.7 I(² P ₃) (3n ₀) 18155 - 30 3.586 4.14 (3n ₀) 18275.7; 31.20 3.497 4.19 (3n ₀) -3.7	المث ر	17375.58	04.	8.6523	2.666		29
) (3A) 18275.7. 31.20 3.497 4.19 18029.1 (67.7 ~ 5.6 ~ 3.4	B'(0 [†])''(³ π ₀)	18155	• 08 ~	· 4.5	~3.7	m	/2) 29.
(3A) 18275.7. 31.20 3.497 4.1 18029.1 (A) ~5.6 ~3.4	(I) q	18273.9	25.06	3.586	4.14	(18439.9)	, 6°
1 3 4 - 5.6	$b'(2)$ (3 A_2)	18275.7:	31, 20	3.497	€.	۲ ,	ው [*] -
	•	18029.1		~5.6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	•	 4

Table 4.1 (suite)

State Signature (c) (a)	E⊷ O	3 0	10 2Be	ore	Dissociation References Limit	nces
-	1 1 1				$I(^{2}P_{1/2}) + CI(^{2}P_{1/2})$	
E (0+)	39059,485	165676	5.8029	3.255	$I^{+}(^{3}P_{2}) + CI^{-}(^{1}S_{0})$	
D'(2)	39061.830.	173.627	5.4782	3.350	(~/2554·) 6 7 8	•
β (1)	39103.666	170.310	5.6707	3.292	· œ	٠,
(1)	45552.805	184.854	5.8931	3,231	$I^{+(^{3}P_{0})} + CI^{-(^{1}S_{0})} = 30$ $I^{+(^{3}P_{0})} + CI^{-(^{1}S_{0})} = 32$	
f (0 ⁺)	44923.79	184.40	5.777	3.26	I+(,3p,) + Cl-(2s,) 31	, ·

The third dissociation limit is associated with a manifold composed of exactly the same labels. The fourth dissociation leads to $I(^2P_{_{1/2}})$ and $Cl(^2P_{_{1/2}})$. Only three electronic states compose this manifold, $\Omega=1$, 0^+ and 0^- .

The electronic states giving ions upon dissociation are called ion-pair states. The first family or cluster of ion-pair states is correlated upon dissociation to $I^+(^3P_2)$ + $CI^-(^1S_0)$; they are electronic states with $\Omega=2$, 1, and 0^+ sometimes called a family of states with the same J_a complex. It is assumed that J_a (molecular or total) is defined and that one M_{Ja} (atomic) in equation 4.2 stays the same while, the other takes different values. The symmetry of the 0 state is deduced from the value of Ω for the top member (largest Ω) of the family : if even, the symmetry of the 0 state is positive, if odd, the symmetry is negative. (The rule is similar for the valence states above, but J_a would probably not be a defined quantity for them).

The next two ion-pair states, $_{a}$ =1 and 0 $^{-}$, correlate upon dissociation to I⁺($^{3}P_{_{1}}$) and Cl⁻($^{1}S_{_{0}}$). The dissociation leading to I⁺($^{3}P_{_{0}}$) and Cl⁻($^{1}S_{_{0}}$) is correlated with only one 0 $^{+}$ state.

4.2 Valence states of ICl.

Of the states correlated with neutral atoms upon dissociation, the best-known are the $X(0^+)$ and A(1) states.

The X state is characterized by a large vibrational frequency, 384.293cm⁻¹, and a small equilibrium bond distance of 0.232nm (2.32Å) [3] (see Table 4.1). The first dissociation energy has been determined to be at 17557.57cm⁻¹ [5]. The A state dissociates at the same energy, but its minimum is at 13742.9cm⁻¹[26]. It has a Smaller vibrational frequency, 209.1cm⁻¹, and a bond distance at equilibrium of 0.269nm (2.69Å).

The next state characterized is the B (0⁺) state which dissociates adiabatically into two neutral atoms in their ground state (1st dissociation) due to a crossing with an \$2 = 0⁺ dissociative state [5] (in iodine, the B state is correlated to the 2nd dissociation limit). This crossing gives two minima to the B state in ICl and generates another state (adiabatic) labelled B' correlating to the second dissociation.

A weakly-bound state with $\omega=1$ leading to the first dissociation has been identified by Brand and others [7,27]. It has a characteristic electronic energy of 17338.0cm⁻¹, a vibrational frequency of 32.85cm⁻¹ and a potential depth of only 219.6cm⁻¹. Out of ten electronic states correlated to the first dissociation, only four had been observed and more or less characterized before this work. Only recently, Spivey and others [1] have published a partial fit for A' ($\Omega=2$) state, which is dealt with in more detail in this thesis.

The second dissociation limit relates to a manifold of five electronic states. The diabatic B state would correlate with this limit [28] but, as mentioned earlier, is restructured into adiabatic B and B' states by an avoided crossing. The adiabatic B' state has been characterized with a $T_{\rm e}$ of 18155 cm⁻¹, an $\omega_{\rm e}$ of $\sim 30 {\rm cm}^{-1}$ and $r_{\rm e}$ of $\sim 0.37 {\rm nm}$ [29]. Two other states, ω =1 and 2, have been observed in our laboratory with a large internuclear distance at equilibrium, 0.42 nm and a small well depth, $D_{\rm e} \sim 160 {\rm cm}^{-1}$ [9].

None of the electronic states correlated with the third and fourth dissociation have yet been observed. Figure 4.1 represents the Rydberg-Klein-Rees (RKR) potential curve of the known electronic states for I $^{3.5}$ $\mathring{\text{Cl}}$.

4.3 Ion-pair states

The previously known ion-pair states of the first family, lying lowest, were E (0^+) and p (1) whose potential minimum lie within the remarkable narrow range of 39059 to 39104cm⁻¹ [6]. These states are strongly bound, have similar internuclear distances at equilibrium, 0.326 to 0.329nm, and only slightly different vibrational frequencies, 165.7 and 170.3cm⁻¹[8]. Even if the first 6000cm⁻¹ are characterized in both states, much more data are needed to cover the entire potential depth of ~35000 cm⁻¹. With so many similarities, it is not surprising to find that these states perturb one another. The third

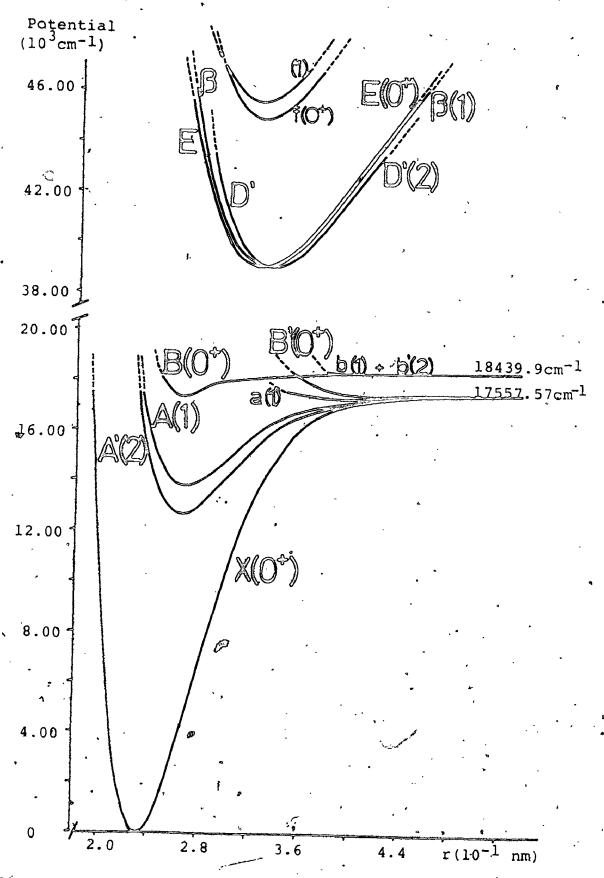


Figure 4.1 RKR potential curves of known states for I 35Cl.

member, D' ($\Omega=2$), by comparison with I₂, is believed to lie very close to the other two and perhaps be perturbed by them too. The ion-pair state D' makes the other subject of this thesis.

The second family of ion-pair states has revealed only the Ω =1 state, the 0° state being inaccessible with our technique. It has a T_e of 45552.8cm⁻¹, a vibrational frequency of 184.9cm⁻¹ and an equilibrium distance of 0.32nm (3.2Å) [30].

The only member of the third family, the f. (0^+) state, shows a T_e of 44923.8cm^{-1} , a vibrational frequency of 184.4cm^{-1} and internuclear bond of 0.326 nm (3.26Å) at equilibrium. In spite of the relatively small energy gap between the f state and the Ω =1 state, ω doubling has not been detected in the latter (in the portion observed) [31].

In summary, of the six lowest ion-pair states of ICl, four were rather well known in the region near their minimum. Characterization of the third member of the first cluster of ion-pair states, namely the D' (2=2)state, is described in chapter 5. The allowed transition from this ion-pair state to the lowest excited state A' (2=2) enables us to characterize that state, extending the technique of polarization-labelling from two to three steps.

CHAPTER FIVE

Ion-pair state D' (Ω=2)

The third member of the first cluster of ion-pair states is called D' (ω =2) by analogy with the physically similar D'(2g) state of molecular iodine (I_2). This state is very strongly bound as to be expected by its diabatic dissociation channel into ions. The three members of that cluster lie within a very narrow range of 50cm^{-1} (see Figure 4.1) [8]. This situation prepares the ground for the only way currently available to access the D' state from X by Optical-Optical-Double-Resonance: by heterogeneous perturbation with the neighboring $\beta(\omega=1)$ state.

The fact that these three states all lie in such a narrow range is very interesting and is a beautiful subject of study by itself. Before this work was undertaken. Di state was not characterized and one of the other two states showed difficulties to fit a Dunham expansion. A better knowledge of the third member of the family was sought to help clarify the situation. As D' is the

lowest ion-pair state in other halogen molecules, it has a prominent role as upper, level in fluorescence experiments [32]. The same phenomenon is expected in ICl. A good characterization of D' potential may then be of great help in fluorescence studies.

The experimental conditions used to access D' are first stated, followed by a description of the results and a discussion of the two avoided crossings observed. A comparison of the constants for rotational-electronic coupling within the cluster of three ion-pair states is made with the Van Vleck pure precession case.

5.1 Experimental

All spectra were recorded by Optical-Optical-Double-Resonance (OODR) using the polarization-labelling technique. The apparatus and procedure involved were described in chapter 3. The different dyes used in the pump were Rhodamine 590 (R6G) and Rhodamine 610 (RhB) and in the probe were BBQ, QUI, DPS, Coumarin 440 and Coumarin 480 (see Table 3.1).

The access through β made use of a heterogeneous perturbation which is the result of fine electronic-rotation interactions. Theoretical calculations by Dr A.R. Hoy[11] showed that there is a good mixing of wavefunctions between β and D' at the bottom of the potential with a fast exponential decrease as ν increases. In this

matrix element between β and D' (see equation 2.43) and dependent on the value of the rotational quantum number J which rendered low J data difficult to get. When v_D , is in the range v=15-30, the r^{-2} matrix element is unfavorable but this is more than compensated for by the fact that the energy difference between vibrational levels of β and D', with $v_\beta \equiv v_D$, is getting gradually smaller. The signal strength in this higher region is mainly inversely proportional to ΔE between the same v's of β and D'.

5.2 Results

With restrictions mentioned above, data were recorded for v=0-2, where two avoided crossings between D' and E states at v=0 and 1 are well characterized. As predicted, signals with small intensity were photographed for v_D , =15-18 and stronger ones for v_D =20-28. We were unable to distinguish D' signals from collision satellites of the strong β -A signals when v_D , > 28.

a) Low vibrational levels

The bottom of the D' potential shows a very interesting phenomenon: two avoided crossings occur at different J for v=0 and 1 between $D'(\lambda=2)$ and $E(\lambda=0)$. But direct interactions between states with $\lambda = \lambda > 1$ are strictly forbidden by the selection rules for perturbations (see section 2.4.a). Consequently, there should be a crossing of the

two potential curves in a first approximation. Examination of the experimental procedure facilitates the understanding of the situation. Whenever a strong signal results from probing the β -A-X sequence, satellite signals representing $D^{\tau} \leftarrow A$ and $E \leftarrow A$ appear to the red of the $\beta \leftarrow A$ transition signals. This means that both D' and E states their wavefunctions mixed with that of \$\beta\$ by heterogeneous perturbation resulting from an electronic-rotational interaction. From that, D' and E wavefunctions are longer considered pure but are hybrid or mixed functions and can interact together through "acquired poproperties".

The fact that the probe gives P and R signals means that the transitions recorded by this technique are of $\Delta \Omega = 0$ nature. Then from the intermediate level $A(\Omega = 1)$, the second transition leads to a state of $\Omega = 1$ character. This is also supported by the fact that the intensity ratio between. D' and β stays the same for the same J and same v regardless of which vibrational level is pumped in A state [7]. Therefore, the perturbation must happen in the final state, D'.

when two states have equal energy, the same J and same parity, there is an avoided crossing (see Figure 5.1) [12]. This means that, if these conditions were not met, there would be a crossing of the potential curve of the two states without interactions between them. As in this

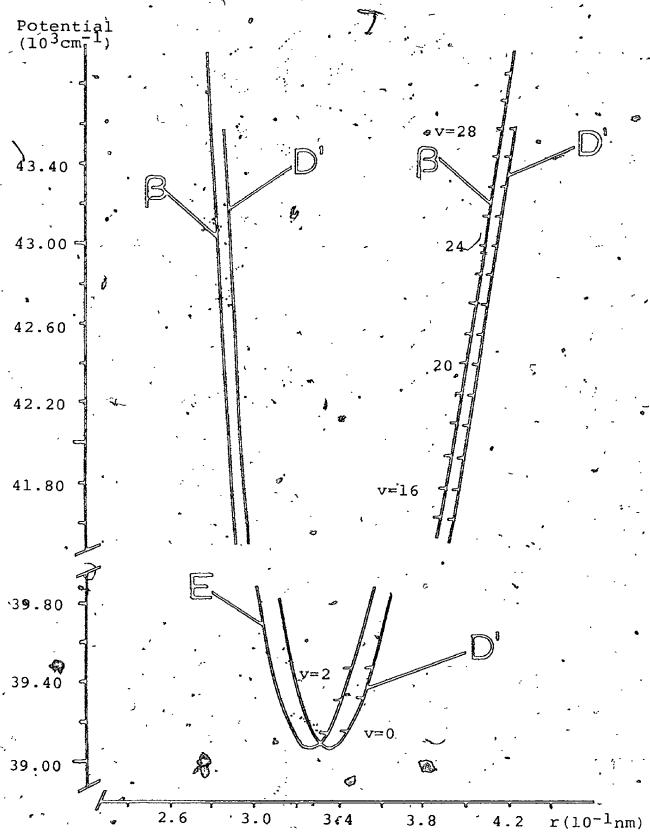
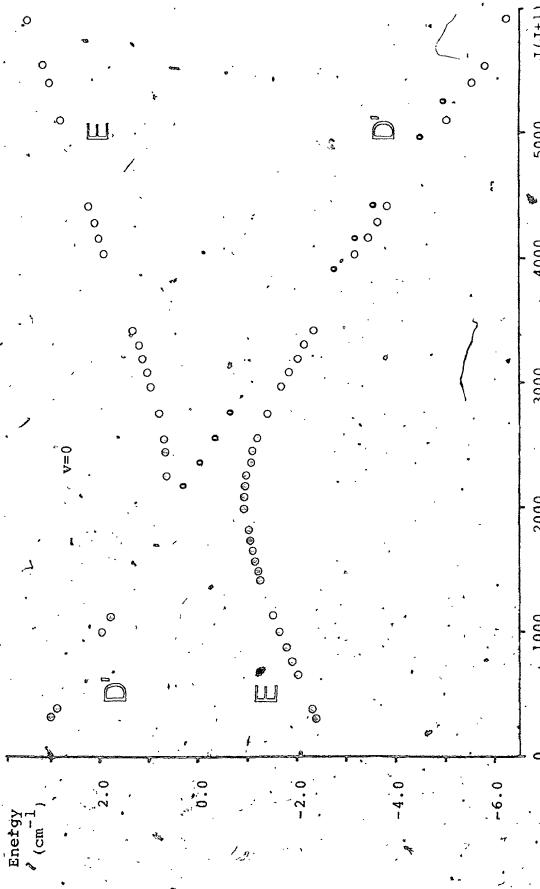



Figure 5.1 The D' potential curve is shown beside the E one at the bottom and the β one at higher v, for I $^3\,^5\text{Cl}$ (energy relative to the ground state miximum).

case the conditions are fulfilled, the crossing is avoided (adiabatic situation) and the rotational-vibrational energy levels are not readily fit by a simple Dunham expansion. This is probably the main cause of trouble in trying, to fit the bottom part of E state with its higher vibrational levels.

Enough data were cumulated at v=0 and 1 to show the two avoided crossings between the e sublevel of D' and the E state. The f sublevel of D' is left unaffectthe heterogeneous perturbation as shown by the straight line which goes without deflection through the avoided crossing region (see Figure 5.2). The $E(0^+)$ state has only an e sublevel and therefore does not show unperturbed level. For v=0, the point of closest approach is J=46 where the coupled levels are ~1.5cm-1 apart 'Frgure' 5.2). The total intensity stolen by E and signals from β increases with J instead of with J(J+1) as predicted by simple perturbation theory (see section 2.4). The distribution of intensity between the two signals follows a pattern of its own where, for a particular "J value, the upper root (higher energy term) of E,D' pair is mixed with β and therefore has no intensity (see Figure 5.3). This is explained by looking at a 3X3 matrix where E,D' terms are degenerate. It factorizes into a 2X2 and a 1X1 matrix, the latter being unmixed with β .

. 0 . 1000 . 2000 . 3000 . 4000 $^{\#}$ 5000 . J(J+1) Figure 5.2 Differential energy (G_{VJ} -39145_-0.056J(J+1)) as a function of J(J+1), at vibrational level 0 for D' and E states of I 35Cl; o for e sublevel and o for f sublevel.

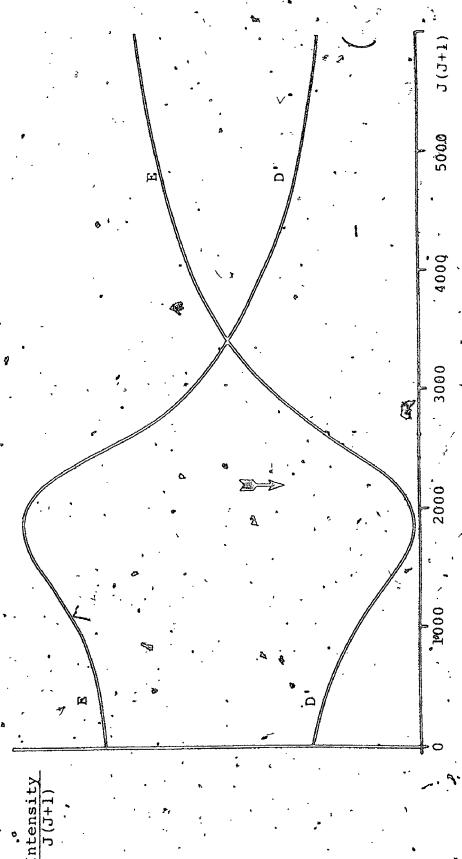


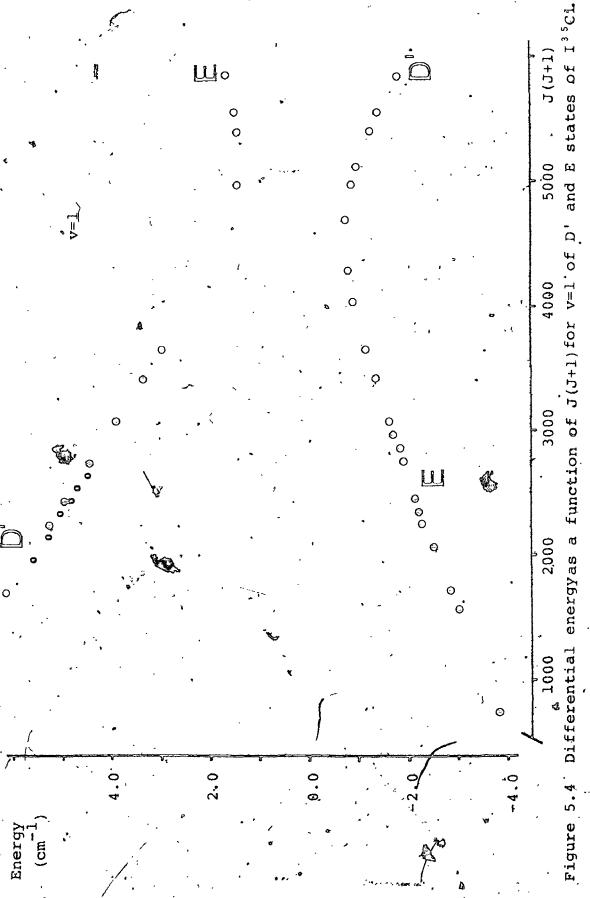
Figure 5.3; Calculated intensaty divided by J(J+1) for, vibrational level 0 of D' and E states of 138Cl. The arrow marks the point of closest approach.

Table 5.1. Dunham parameters for D' ($\hat{z}=2$) ion-pair state of I^{3.5}Cl from simultaneous fit with β and E states up to v=30, including the interaction parameter W_{1,2} (all-in units of cm⁻¹)^a

$Y_{0,0} (= T_e)$	39061.830 ^b (0.080) ^C
$Y_{1,0}(=\omega)$	-173.6275 (,
$Y_{2,0}^{(=-\omega_e x_e)}$	-0.55722 (•
$10^4 Y_{3,0} (\approx \omega_e Y_e)$	9.169 (0.56)
e sublevel	9	, a r
$10^{2}Y_{0,1}(=B_{e})$	5.4782 (•
$10^{4}Y_{1,1}(=-\alpha_{e})$	~ -2.019 (0.010).
$10^{8}Y_{0}, 2(=-D_{e})$	-2.03	(0.56)
₹ sublevel		* A.
$10^{2} Y_{0,1} (= B_{e})$	5.4786 ((0.0065)
$10^{4} Y_{1,1} (\approx -\alpha_{e})$	-2.054	(0.028)
$10^{8} Y_{0,2} (\approx -D_{e})$	-2.21	(0.12)
W _{1,2}	.1.4860 ((0.077.).
$r_{\rm e} (10^{-1} \rm nm)$ s	, 3.350	

a) Stated to reproduce the fit within its standard deviation [33]

b) Relative to the ground state minimum.


G) Errors stated are 30.

This occurs for a J just below the J of closest approach. Exactly the same thing is observed for v=1, with a J of closest approach around 70 (see Figure 5.4).

With D' state now characterized, that region of the potential is better known and t is possible to do a simultaneous non-linear least-squares fit of the three states to three Dunham expansions including an off-diagonal rotational constant of the form of equation 2.43 [8]: Table 95.1 shows the Dunham parameters for D' from the simultaneous fit (up to v=30 for E and p). The parameters $W_{\Omega,\Omega\pm 1}$ are quite well determined and can be compared to Van Vleck pure precession values for Hund's case c (equation 2.45 and 2.46) which assumes that $J_a = L+S'$ is defined (see Table 5.2).

Table 5.2 Theoretical and experimental values of the electronic-rotational coupling element for $\alpha=2$, 1 and 0.

4			Theory	• ,	This work	· .	¢,	
•	•	W _{1,2}	2.0		1.860	8	*	:
	•	₩ ₩ , 0	2.45		2.384	•	•	•

W_{1,2} and W_{1,0} obtained from the fit of our data are respectively 93% and 97% of Van Vleck pure precession values. This shows that the three states of the first cluster of ion-pair states of ICl are very similar to the pure precession case determined by Van Vleck and are close to the ideal situation of Hund's coupling, case c.

As a strongly bound electronic state, D' is expected, to be strongly harmonic at the bottom of its potential. By comparing the α_e determined by the simultatneous fit, $2.019(0.010) \times 10^{-4} \rm cm^{-1}$ and $2.054(0.028) \times 10^{-4} \rm cm^{-1}$ (see Table 5.1) to the α_e^M of a Morse potential, 2.27×10^{-4} cm⁻¹ (equation 2.28), we see that they are very close to one another. The first centrifugal distortion constant, $D_e = 2.18 \times 10^{-8} \rm \ cm^{-1}$ (equation 2.29) falls within the error margin of the two D_e 's of the fit, $2.03(0.56) \times 10^{-8} \rm \ cm^{-1}$ and $2.21(0.12) \times 10^{-8} \rm \ cm^{-1}$, confirming the harmonic character of the lower portion of D' state of IC1.

Table 5.3 lists the off-diagonal rotational constant $B_{1,2}$, the term values and the RKR potential up to v=28 for D' state-of I³⁵Cl. It was necessary to include another rotational constant off-diagonal in state (as above) and in v (not listed in this table) to have a satisfactory convergence of the fit [8]. Their estimation by perturbation theory, were accurate enough in this situation.

Table 5.3 Vibrational term values and RKR potential for D' state of $I^{3\,5}Cl$ from simultaneous fit of the three ion-pair states and from a simple fit of v=15 to 28 of D' state (in units of cm⁻¹ relative to the ground state minimum, and 10^{-1} nm).

•••		· 0 - 30		.15 - 28
۷	10 ² B	G V	rmin rmax	$G_{v}^{'}$ $10^{2}B_{v}$ r_{min} r_{max} .
0 1 2 3 4 5		39321.0 39492.4 39662.8	3.177 3.556 3.148 3.597 3.123 3.634	
7 8 9	-25 -73 -112 -143 -167	40333.1 40498.0 40661.8	3.083 3.701 3.066 3.731 3.050 3.760 3.035 3.788 3.021 3.815	
12 13	-184 -196 -203 -205 -204	41146.9 41306.5 41465.1	3.008,3.841 2.996 3.867 2.984 3.892 2.973 3.916 2.963 3.940	
17 18 19	-199 -192 -183 -172 -160	41934.6 42089.0 42242.5	2.953 3.964 2.943 3.987 2.934 4.010 2.925 4.033 2.916 4.056	42089:0 5.096 2.937 4.013 42242.5 5.077 2.928 4.036
22 23	-133 -119 -105	42696.8 42846.3	2.908 4.078 2.900 4.100 2.892 4.122 2.885 4.144 2.877 4.166	42846.2.4.998 2.895 4.124 42994.7 4.978 2.887 4.146
26 27 28		43434.3	2.870 4.187 2.863 4.209 2.857 4.230	43288.7 4.938 2.872 4.189 43434.3 4.918 2.865 4.210 43579.0 4.899 2.858 4.231

b) Higher yibrational levels

were photographed for v_D , =15-18 and progressively stronger signals for v_D ,>20. With a peak intensity around v_D ,=25% as predicted by Dr. Hoy's calculations. The gap from v=3 to 14 is not serious as it is situated in the lower portion of D' state which is not very anharmonic. At the present time, it is not possible to obtain signals in this gap, due the restrictive heterogeneous perturbation with $\hat{\rho}$; the difference in energy between these two states keeps increasing as v_D , decreases lower than 15 and permits no more observable signals. Even if signals extend to v_D =28, only the lower part (~12%) of that strongly bound state is covered in this work.

For convenience, we made a Dunham fit from $v_D=15$ to 28 which is essentially equivalent to the simultaneous fit in that region (see Table 5.3 and Table 5.4). While the e and f sublevels were treated separately in the procedure and the fit, the two sets of rotational constants were averaged together to make the RKR potential curve.

In the low 20's, the R branch of D'+A signal lies practically beneath the P branch of the β +A pair. This makes the data quite sparse and hard to get practically. The P and R branches of both states get closer and closer as vincreases in the range of v_D = 22-28 (see Plate 5.1). This

*NOTE Weak D' signals at v=27 may not be visible on Plate 51.

Table 5.4 Effective Dunham parameters for D' state of $I^{3.5}Cl$ for v=15 to 28 (in units , (2≥ =2) of $cm^{-1})^a$

		,	•
0,0	•	39056.614 ^b /	(3.1) ^C
Y ₁ ,0		174.3908	(0.44)
, Y ₂ ,0	ò	-0.594116	(0.020)
$10^{3}Y_{3,0}$		4.50167	(0.30)
e sublevel .			, , , , , , , , , , , , , , , , , , ,
•		•	•
10 ² Y _{0,1}		5.4625	(0.011)
10 ⁴ Y _{1,1}		-1.979	(0.043)
10 ⁸ Y _{0,2}		-1.350 .	(0.61)
f sublevel	-	*.	• 4
,	١.	•	
10 ² Y _{0,1}	·` /	5.4420	(0.012)
10 ⁴ Y _{1,1}	م مو م	-1.922	(0.047)
10 ⁸ Y _{0,2}	•	0.813	(0.82) -
-		_	

a) Stated to reproduce the fit within its standard deviation [33].
b) Relative to ground state minimum.
c) Errors stated are 30.

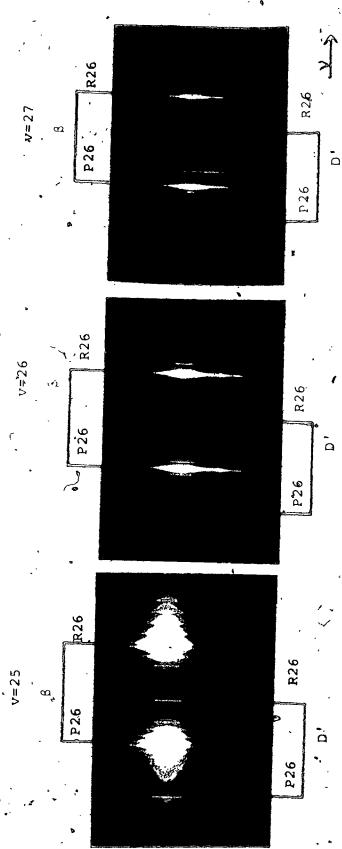


Plate 5.1 Vibrational progression of a two-photon experiment to v=25,26,27 of D; and β state, PZ6 and R26 pairs. As v increases, the D' pair yets weaker and closer

7 &

provides an experimental confirmation that the energy gap between D^* and β is getting narrower (see Figure 5.1). A short extrapolation indicates that an avoided crossing, is expected near $v_{D^*}=31$ between D^* and β states. The isotope shift holds everywhere confirming a good v numbering.

At v_D, larger than 28, it is no longer possible to discern D' signals in the face of interference from the collision, satellites of the strong 3+A pairs. The '2-doubling, which distinguishes the e and f sublevels, is of the order of or smaller than the standard deviation of the fit throughout the range of observation (see Table '5.1). However, we have kept the distinction between them for a matter of consistency.

The centrifugal constant, D, 1.35(0.61)x10⁻⁸cm⁻¹, used in the fit from v_D = 15 to 28, e sublevel, is only slightly smaller than its value at equilibrium, 2.03(0.56)x10⁻⁸cm⁻¹. A range of more than ten vibrational levels is covered by that D and there seemed to have no need for a vibrational dependence. These two points provide further evidence for the harmonicity of D' state of IC1.

In summary, the lower portion of the D' (2=2) state of ICl is now well characterized bringing to five the number of known ion-pair states out of the six lowest ones. The D'(2) state is very similar to $E(0^+)$ and $\beta(1)$ states which are members of the same cluster of ion-pair states; they

all hame similar values for electronic energy, wibrational energy and equilibrium internuclear distance (see Table have gathered extensive data to map two avoided crossing between the D' and E states, and helped fitting problems associated with the first cluster of ionpair states of IC1. The characterization of D' ($\Omega = 2$) state great help in fluorescence experiments οf is one of the lowest ion-pair state where because it ICl molecule will most likely start to fluoresce excited (if enough energy is given to it.). The transition D' → A' is believed to be more intense than $E \rightarrow B$, $E \rightarrow X$ or $\beta \rightarrow A$ in IC1, as it is the case in I_2 and Br_2^{V} [34]. The three ion-pair states are very good examples of the Van Vleck pure precession case with Hund's coupling case (c).

CHAPTER ŞIX

Valence state A' (2=2

With the ion-pair state D' ($\Omega=2$) well characterized, it becomes possible to look for valence states of $\Omega=2$ signature (case C). The only one believed to be moderately bound [2] is the A' ($\Omega=2$) state which is the first excited state above the ground state. By analogy with the iodine molecule, A' is expected just below the A ($\Omega=1$) state. The D'-A' transition is considered as a parallel transition ($\Delta\Omega=0$) and therefore fully allowed. A lasing action has been observed particularly for that same transition in I₂.

This chapter first gives the experimental conditions for gathering A! signals, then presents the results and their treatment by different fitting methods, the Dunham expansion and a near-dissociation expansion. A long-range theory by LeRoy [35] is also used to evaluate the behavior of the centrifugal distortion constants near dissociation.

with the help of the C_5 constant.

6.1 Experimental

All spectra were recorded by Optical-Optical-Triple-Resonance (OOTR), in an +++ sequence, using the polarization-labelling technique described in chapter 3. In pumpl, Rhodamine 590 (R6G), Rhodamine 610 (RhB) or Rhodamine 640 were used; in pump 2, BBQ, QUI and Coumarin440 served as dyes; in the probe, we used p-Terphenyl (PTP), TMQ, PBD, BBQ, QUI, DPS, Stilbene 420 and Coumarin 440. The three lasers were adjusted to be resonant with chosen rovibrational levels in the sequence X + A + D' + A' (see Figure 6.1). The three-photon signals were generally as strong or stronger than their two-photon counterpart. It is probable that the conditions were sometimes fulfilled for the sample to amplify the probe at signal frequencies.

The A' term values were obtained by subtracting the measured signal frequencies from the D' term value of the specific v,J level populated by the two pumps. In so doing, we have to keep in mind that the term values of D' come from a fit with a standard deviation of 0:04cm⁻¹.

By using the vibrational levels 21 to 27 of D', we have recorded signals terminating on the levels v=2-14 of A' by vertical transitions from the inner wall of D', and signals in v=20-38 by vertical transitions from the outer wall of D' (see Figure 6.2). Via v=0-1 of the ion-pair

n

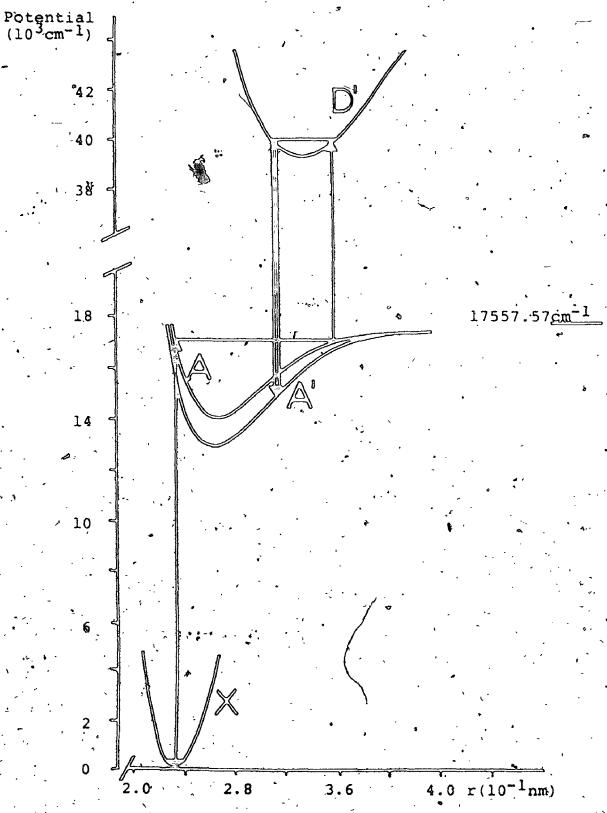
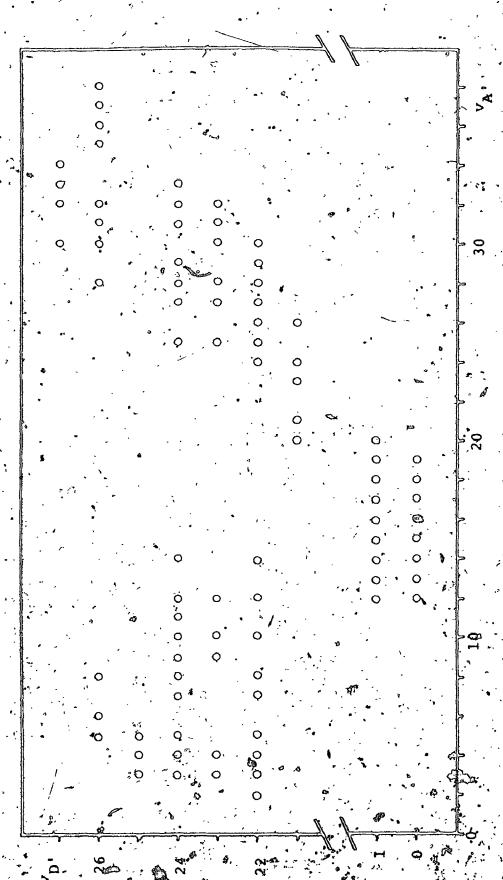
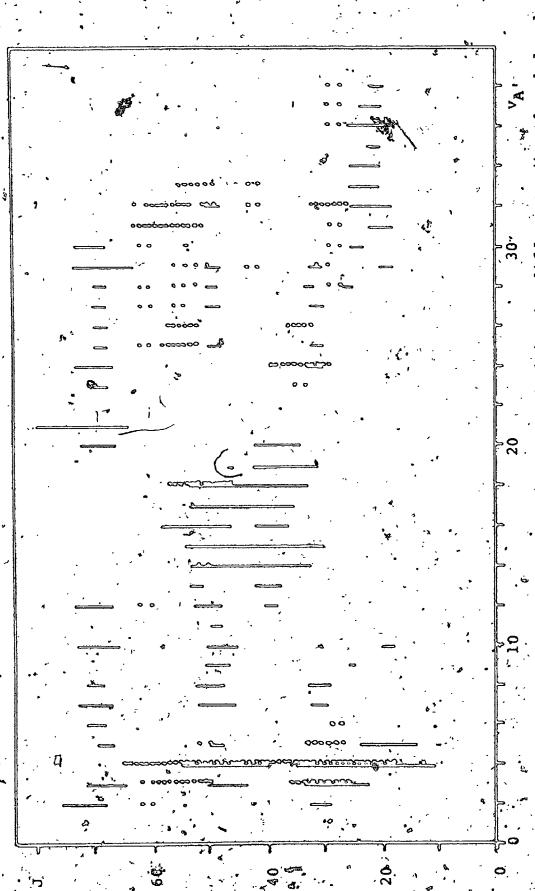



Figure 6.1 Experimental scheme of the sequence X+A+D'+A' in ICl.


state by probing the Tabulation of the vibrational levels accessed in A' vibrataonal levels of B's state in I35Gl Figure, 6:2

state, we photographed signals to v=12-20 of A'. Unfortunately; we were not able to record any v=0 and 1 signals in A' due to inherent technical limitations. Figure, 6.3 shows the range of J covered in each vibrational level of A' state of IC1. The lack of low J values was compensated for by a deliberate search for high J values, even though this put some stress on the determination of the centrifuqual distortion constants.

\$6.2 Results

The A' (Q=2 or 3 m2) state of ICl is very anharmonic. This makes it difficult to fit all levels to the usual Dynham expansion, and at the same time requires, the use of centrifugal distortion constants D. H. and L. We have determined the centrifugal constants via a partial RKR potential, v=0-36, using it as input to a set of Schrödinger equations solved for five different J values. This led to stable results for centrifugal distortion constants up to v=32, but results were judged to be unreliable at higher vibrational levels.

It is possible to estimate the value of the centrifugal comparts near dissociation with the LeRsy long-range
theory [35]. This theory assumes that the two atoms liesufficiently far agart that their electronic clouds
overlap negligibly. Therefore, their interaction energycan be expressed as a sum of inverse-power terms.

levels of the rotational levels probed in the different vibrational dots, f e sublevel data and the ayailable in Appendix solid lines represent Tabulation in I35C1; state

$$V(r) = D_e - \sum_{m} C_m / r^m$$

where D_e is the dissociation energy. The nature of the atoms produced by dissociation determines the values of mappearing in equation 6.1. For the A' state of IC1, giving the two atoms in their ground states, the coefficients maparticipating in the potential are m=5 for quadrupole-quadrupole interactions (first order), and m=6, 8, and 10 for the always present dispersion terms. (second order interaction). The leading term, m=5, of this expansion is used to determine constants X₅(i)

$$X_{5}(i) = \frac{X_{5}(1)}{[\mu^{5}(C_{5})^{2}]^{1/3}}$$

where μ is the reduced mass, C_5 the leading term in the expansion and $\overline{X_5(1)}$ is a constant which can be evaluated for all m (see Table 6.1).

Table 6.1 List of X₅(i) constants for the long-range LeRoy theory [35].

$$x_{5}(1)$$
 $x_{9}170.9$ x_{5} 1178.3 -15.377 -0.17742 -5.3435 x 10

The near-dissociation behavior of the vibrational term values and the rotational constants can be expressed as follows, for m=5 as the leading term

$$D_{e} = X_{5}(0) (v_{D} - v)^{10/3}$$

$$B_{v} = X_{5}(1) (v_{D} - v)^{4/3}$$

$$D_{v} = -X_{5}(2) (v_{D} - v)^{-2/3}$$

$$H_{v} = X_{5}(3) (v_{D} - v)^{-8/3}$$

$$L_{v} = X_{5}(4) (v_{D} - v)^{-14/3}$$

$$6.7$$

The vibrational index at dissociation, v_D , is determined by a plot of vibrational spacing to the power 3/7 versus the vibrational number

$$\Delta G_{V}^{3/7} = \frac{X_{5}(0)^{3/7}}{0.3} (v_{D} - v_{D})$$
 6.8

where $\Delta G_{\rm v}=E_{\rm (v+1)}-E_{\rm v}$ By using the data for v=35-38, J=20 (e. sublevel), we get $v_{\rm D}$ equal to 51.1. We must consider this as a preliminary estimate of the vibrational index at dissociation to be used hereafter only as a guide.

We need another parameter, C₅, in order to calculate the behavior of the centrifugal constants near dissociation. The use of a simple combination rule [36] can provide a fairly good estimate

$$C_{ab} = \frac{2 C_{aa}^{\alpha} \varepsilon_{bb}}{[(\alpha_a/\alpha_b)C_{bb} + (\alpha_b/\alpha_a)C_{aa}]}.$$
 6.9

where α_a and α_b are the atomic static dipole polarizability for Cl and I [37]. C_{aa} and C_{bb} are respectively the C_5

constant of A' ($^3\pi_{2u}$) state for Cl₂ and I₂(positive values in respect of equation 6.1) [38,39]. The estimated C₅ for A' state of ICl is then 1.18 ax 10⁵ 4 cm⁻¹.

Table 6.2 Value of atomic static dipole polarizability for I and Cl, and C₅ parameter of A' $(\frac{3}{\pi_{2}}\pi_{2})$ state of Cl₂-and I₂.

	I or I2	d Cl or Cl2	íci .
a (Å ³)	3.54	2.61	
$C_5(10^{5} \text{Å}^5 \text{cm}^{-1})$	2.09	0.704	1118

According to the LeRoy theory, each centrifugal distortion constant should be linearly related to the appropriate power of (yD-v). With the data available, it was not possible to determine D. H and L at these high vibrational levels and so check their behavior. Instead, we used the predicted value of these constants near dissociation to guide our extrapolation to vibrational levels larger than 32 (see Figure 6.4).

We must keep in mind that we have assumed that C_5 is the leading term in the long-range expansion (equation 6.1) of the A' potential and that this condition still holds where we use the long-range theory. Should this not be true, possibly because the C_6 concribution is larger at medium-long-range, the relations 6.2 to 6.8 are no longer

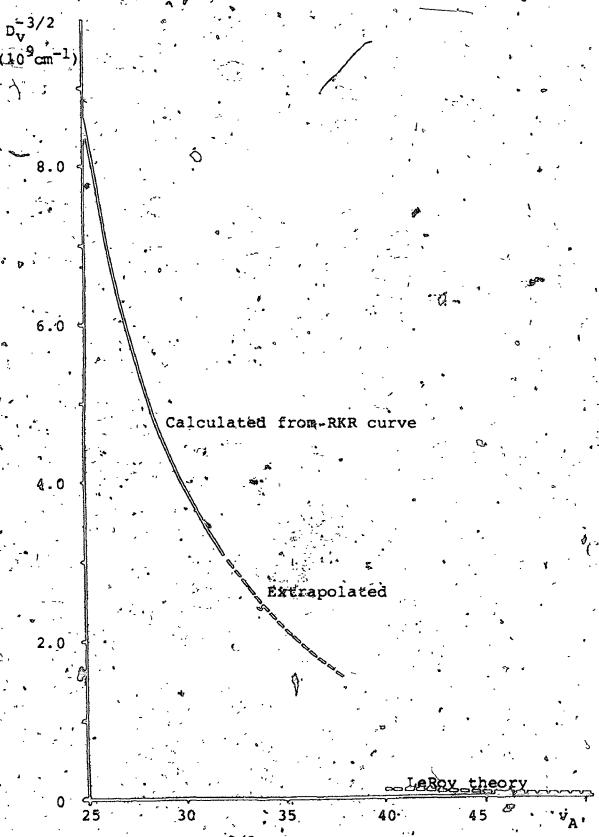


Figure 6.4 Plot of $D_{\nu}^{-3/2}$ /from equation 6.5) in function of the vibrational level, up to v=32 and the predicted values of $D_{\nu}^{-3/2}$ by LeRoy theory for v=40-51.

completely satisfactory. We must be careful about the confidence of our extrapolated values of D_V , H_V and L_V because our extrapolation is in a region where the $D_V^{-3/2}$ curve changes greatly; at medium and small internuclear distance (v < 32) the curve shows a pronounced slope and in the long-range region (v > 40), the curve has a small slope (predicted by theory):

In order to have the best estimation of the Dunham parameters near equilibrium, we made a partial fit of levels from v=2 to 14, encompassing both e and f sublevels (see Table 6.3). In so doing, the range covered was approximately 46% of the potential depth, and the standard deviation was kept to a very acceptable level (v=0.04cm⁻¹). These equilibrium values were used to anchor T_e and B_e in further fits. Next, we made a fit of the data, including e and f sublevels, up to v=28 with a reasonable standard deviation of 0.05cm⁻¹ (see Table 6.4). New trials to extend the Dunham expansion further dramatically endangered the value mof the fit. We then opted to attack the problem from the other side, by using a top-down near-dissociation expansion (NDE) [40]

$$D_{e} = (v_{D} - v)^{10/3} \exp(a_{0} + a_{1}(v_{D} - v) + a_{2}(v_{D} - v)^{2} + \dots)$$

$$-(v_{D} - v)^{4/3} J(J+1) \exp(b_{0} + b_{1}(v_{D} - v) + \dots) \qquad 6.10$$

With the help of the extrapolated D_v , H_v and L_v , the data from v=23 to 38 were fitted to this near-dissociation

Dunham parameters for the A' (2) state of I $^{3.5}$ Cl from a fit of v=2-1.4 with 388 lines and a $\sigma = 0.04$ cm⁻¹ (all in units of cm⁻¹)^a

$Y_{0} = T_{e}$	12682.05 ^b (0.27) ^c ;	•
$Y_{1.0}(\simeq \omega_{e})$	224.5705 (0.15)	•
$Y_{2,0}(=-\omega_e x_e)$	-1.88153 (0.029)	
10 ² Y _{3,0} (~w _e y _e)	-1.0684 (0.24)	
10 ⁴ Y ₄ ,0	-3.228 (0.70)	
		\$
e sublevel	. , e	
$(10^{2}Y_{0,1}(=B_{e})$	8.6475 (0.048)	·/
$10^4 Y_1 \hat{1} (= -\alpha_e)$	-6.483 (0.23)	
$10^6 Y_{2,1} (\simeq Y_e)$	· -6.914 (3.2)	,
10 ⁸ Y ₃ ,1	-3.161 (1.3)	•, •,
f sublevel		•
$(10^2 \text{Y}_{0,1} (= \text{Be})$	8.6594 (0.038)	
$10^4 Y_{1,1} (=-\alpha_e)$	-7.011 (0.10)	
106 Y (= Ye)		•
10 ⁷ Y ₃₋₁	-5.842 (0.41)	

a) Stated to reproduce the fit within the standard deviation [33].

b) Relative to the ground state minimum.c) Errors stated are 3σ.

Table 6.4 Effective Dunham parameters for a fit of A' (2) state, $\sqrt{2}$ -2-28 including 710 lines, for I³⁵Cl ($\sigma = 0.05$ cm⁻¹, all parameters in units of cm⁻¹).

Y _{0,0} (=T _e) ^b	12682.05 ^C	(0.27) ^d		
¥1,0 ^{(≃ω} e)	224.6526 \	(0.013)		
$Y_{2,0}^{(\alpha-\omega_e x_e)}$	-1.92809	(0.0030)		
10 ³ Y ₄ ,0	-1.52127	(0.041)		
10 ⁵ Y ₅ ,0	6.62881	•	سعر	Ų
10 ⁶ Y ₆ ,0	-1.52420	(0.085)•		1
10 ¹⁰ 4 _{8,0}	3.6767	(0.20)		c
e sublevel				• ,
$10^{2} Y_{0.1} (= B_{e})^{b}$	8.6{\75	(0.048)		•
$10^4 Y_{1.1} (\simeq -\alpha_e)$	-6.4877	(0.032)	, •	•
$10^{6} Y_{2,1} (= \gamma_{e})$	-8.51,9	(0.42)		•
10 ⁸ Y _{4,1}	-1.4034	(0.14)		
10 ¹¹ Y 5,1	4.55	(3.6)	. •	
f sublevel	,		•	~
$10^{2} x_{0.1} (= B_{e})^{b}$	8.6594.	(0.038)		
$10^4 Y_{1.1}^{\prime} (= -\alpha_e)$	-6:9724	(0.057)	•	
10 ⁶ Υ _{2,1} (= γ _e)	-2.281	(1.4)	ç	,
. 10 ⁷ Y 3,1	-3.2597	(0.96)		
10 ⁹ Y _{4,1}	7.067	(1.9)		

a) Stated to reproduce the fit within the standard deviation [33].

b) Fixed to values in Table 6.3.

c) Relative to the ground state minimum.

⁻d) Errors stated are 3o.

expansion (see Table 6.5). As the NDE fit overlapped quite well with the Dunham fit, we did not attempt further adjustments on $D_{\mathbf{v}}$, $H_{\mathbf{v}}$ and $L_{\mathbf{v}}$.

We merged the two fits by averaging the rotationless term values and rotational constants for v=25 and 26, dropping the extreme two vibrational levels of each fit to avoid the stress on the fit produced by the end-levels. Then we had an explicit list of $G_{\rm V}$ and $B_{\rm V}$ from v=2 to 38 of A'(2) state. As the 2 doubling was of the order of (or smaller than) the standard deviation of the fits, we averaged the rotational constant of the two sublevels in each vibrational level. It must be remembered that the A'term values were determined from a fit of D' state which carried its own standard deviation (0.04cm⁻¹). The RKR potential covering the entire range of our data of A' for $I^{35}C1$ was calculated (see Figure 6.5 and Table 6.6).

We said earlier in this chapter that the A'(2) state is anharmonic: in other words, the outer wall of the RKR potential is much less steep than the inner wall, as also reflected by the magnitude of $\omega_e x_e$. Thus for A', $\omega_e x_e = 1.8815(290) \text{cm}^{-1}$ is more than three times larger than $\omega_e x_e$ for D', $0.5572(27) \text{cm}^{-1}$. The fanharmonic factor" [13] $x_e = \omega_e x_e / \omega_e$ is $3.2 \text{x} 10^{-3}$ for D' and $8.4 \text{x} 10^{-3}$ for A', the latter being more than two and a half times larger than the former.

From equations 2.28 to 2.31, we can estimate the equi-

Table 6.5 Long-range expansion parameters (LeRoy) for a fit of A' (2) state of $I^{35}Cl$, from v=23 to 38 including 250 lines (σ =0.04cm⁻¹ and parameters in units of cm⁻¹)

CARTON				
, v _D ,	, c 2	51.1	•	
ָ ס	•	17557.57 ^b		aist)
e å		-1.501312	(0.76) ^C	,
10 a ₁		-8.8062304	(2,2) °	, A
. 10 a ₂	ত্	1.14651304	(0.279)	•
10 ³ a ₃		-7.81725662	(1.7)	
10 ⁴ a ₄		2.91272582	(0.60)	٠ ٠
10 ⁶ a ₅		-5.61003682	(1.1)	•
10 ⁸ a ₆	•	4.3674797	(0.87)	,
e su	blevel		,	•
b ₀		-6.006643	(0.11)	
.10 b		-1.165460	(0.14)	· } :
10 ³ b ₂		4.43974	(0.61)	• .
105b3	•	-6.51045	(0.85)	
f su	iblevel	. •	,	
, p ⁰ .		-6.04077	(0.086)	
10 b		-1.124376	(0.12)	· 1
10 ³ b ₂		4.281719	(0.52)	•
10 ⁵ b ₃	•• •	-6.31658	(0.77)	•
_				

a) Stated to reproduce the fit within the standard deviation [33].

b) Relative to ground state minimum.

c) Errors stated are 30.

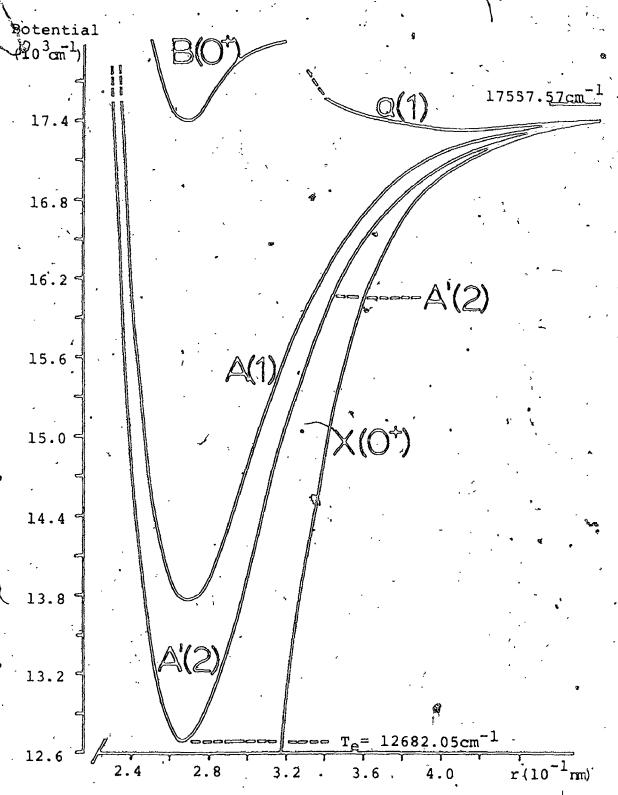


Figure 6.5 RKR potential curve of A* state and other states in the area for I36Cl.

Table Effective term value rotational constant, centrifugal distortion constants and turning points for the RKR potential up to v=38 for the A' (2) state of $I^{3.5}$ Cl. The equilibrium bond distance is 2.665×10^{-1} nm. (in units of cm⁻¹ or 10^{-1} nm).

V	G b	10 ² B _v	10 ⁸ D _v -	10 ¹⁴ H _v -1	0 ¹⁸ Lv	rmin	rmax
0	12793.90	8.6196	5.27	;		2.596	2.744
1	13014.68	8.5512	5.31	•	,-	2.550 '	2.809
2 3	.13231.58	8.4815	5.44	6.0		2.520	2.857
	13444.51	8.4105		7.0		2.497	2.899
4	13653,42	8.3377		., •7.6		2.479	2.938
5	13,858.20	8.2633	6.99	9.0.	, .	2.462	2.974
6	14058.75	8.1868	6.18	10.0	,	2.448	3.010
7	14254.96	8.1081	6.39 ·	10.8	•	2.436	3.044
8	14446.70	8.0269	6.64	12.2	*	2.424	3.078
9	14633.85	7.9430	6.91	1,3.8		2.414	3.112
10 '	14816.27	7.8558	7.22	15.8	Ť	2.404	3.145
11	14993.83	7.7653	7.57	18.2		2.395	3.180
12	15166.38	7.6709	7.97	21.5		2.387	3.214
13	15333.77	7.5723	8.42	25.5		2.379	3.249
14	15495.85	7.4692		30.6		2.372	3.285
15	15652.43	7.3610	9.49	36.8.	;	ā.366	3.322
16	15803.36	7.2473	10.12	44.2		2.360	3.361
17	15948.45	7.1278		52.9		2.354	3.401
1'8	16087.49	7.0019		63.1		2.349-	3.442
19	16220.29	6.8688		75.0		2.344	3.486
20	16346.65	7 283 7	13.85	88.8		2.339	3.532
21	16466.35	6.5799	15.23	105.4	18	2.335	3.582
22	16579.19	6.4225		125.0		2.331	3.634
23	16685.00	6.2567	18.75	147.8		2.328	3.690
24	16783.59	6.0807	20.95	176.9		2.324	3.751
25	16874.90	5.8912	23.55	219.0		2.322	3.817

Table 6.6 (suite)

V	G b	10 ² B _v	10 ⁸ D _v	-10 ¹ 41 _v -	-10 ¹⁸ Lv	r _{min}	r _{max}
26	16958.76	5.6919	26.56	261.9	نظيري	×2.319	3.889
27	17035.24	5.4760	•			2.317	3.968
28	17104.30	5.2579			., 169	2,315	4.056
29	17166.29	5.0350	•			2.313	4.151
30	17221.67	4.8094	40.30	467.4	<u>`</u> ,289	2.311	4.2,56
31	17270.94	4.5829	43.73	559.9	506	2.310	4.370
32	17314, 67	4.3571	47.2	679.3	777	2.308	4.493
33	17353.37	4.133	51.4	874	1120	2.307	4.627
34	17387.52	3.911	55.8	1170	•	2.306	4.771
35	17417.52	3.692	61.5	1540	•	2.306	4.929
36	17443.70	3.476		2000		2.305	5.101
37		3.26		:2400 -		⁴ 2.303	5.292
38	17485.70	3.053	6	2800	‹	2.301	5. 506
:		1				•	- @

a) Stated to reproduce the fit within the standard deviation [33].

librium value of some Dunham parameters given the value of ω_e , ω_e is and α_e . First, α_e from the fit of the lower part of A' state can be compared to its predicted value in a Morse potential

$$a_{e}^{M} = 6(\sqrt{w \times B^{3}} - B_{e}^{2})/w = 7.3 \times 10^{-4} \text{cm}^{-1}$$
 6.11

This value of α_e^M is beyond 3σ from the observed α_e for both sublevels, $6.48(23)\times10^{-4} \text{cm}^{-1}$ and $7.01(10)\times10^{-4} \text{cm}^{-1}$, but is nevertheless quite close to their values. Concurrently with the size of $\omega_e \times_e$ and \times_e , this confirms the anharmonicity of the A' state.

The evaluation of the centrifugal constants at equilibrium is more interesting in the sense that it should
tell us if their computed values are in the correct range
and show the right trend at the bottom of the potential
well

$$D_{e} = 4B_{e}^{3} / \omega_{e}^{2} = 5.13 \times 10^{-8} \text{ cm}^{-1}$$

$$H_{e} = 2D_{e} (12B_{e}^{2} - \pi_{e} \omega_{e}) 3\omega_{e}^{2}$$

$$= -4.2 \times 10^{-14} \text{ cm}^{-1}$$

$$L_{e} = \frac{1}{B_{e}^{2}D_{e}} \left[3B_{e}H_{e}D_{e}^{2} - 5D_{e}^{4} + B_{e}^{2}H_{e}^{2} - 8D_{e}^{3}B_{e}^{2}\omega_{e} \times_{e}} \right]$$

$$= -3.9 \times 10^{-19} \text{ cm}^{-1}$$

$$6.14$$

Clearly, the expectations are confirmed. The trend of D $_{\rm V}$ and H $_{\rm V}$ as listed in Table 5.6 is parallel to their

equilibrium values estimated by equations 6.12 and 6.13. The same point is confirmed for $L_{\rm V}$, even though the effect of $L_{\rm V}$ is insignificant for the low vibrational levels, where it has not been determined.

A correction is given in equation 2.32 for Te

$$\frac{Y_{00}}{200} = \frac{B_{0}}{4} + \frac{\alpha_{0} \omega_{0}}{2B_{0}} + \frac{\alpha_{0}^{2} \omega_{0}^{2}}{144B_{0}^{2}} - \frac{\omega_{0} x_{0}}{4} = -0.109 \text{ cm}^{-1}$$
 6.15

This correction has not been applied to the values given in tables throughout this thesis because it is smaller than the quoted uncertainty (equivalent to 3σ) for $T_{\rm p}$.

An estimation of T_e at $12680(20) \, \mathrm{cm}^{-1}$ and ω_e at $226(4) \, \mathrm{cm}^{-1}$ by Spivey and others [1] must be considered as an inspired guess. In our calculation of the equilibrium Dunham parameters, it would naturally be better to have access to data down to v=0, but limitations imposed by Franck-Condon factors put these levels out of reach. It would be necessary to pump of brational levels of D' in the range v=30-40, and to use probe energies of about 35000cm ($\sim 285 \, \mathrm{nm}$) in order to access the v-0 level of A'. These requirements are beyond the capabilities of our equipment.

In an attempt to discern perturbations in the higher part of the A' potential, we purposely sought ³⁷Cl data at high vibrational levels. As nine other valence states converge to the first dissociation limit, it is more than bikely that perturbations will occur. From our data of A'

however, we did not discern any sign of such effects. This may be due to the fact that, using state-selective spectroscopy, large regions of v and J are not observed. The isotope relationship (equation 2.23 and 2.24) holds at the bottom and the top (up to v=34) of the potential, confirming the vibrational numbering and giving no evidence of perturbation phenomena.

lower electronic states of I2, Cl2, Br2 and ICi are organized in qualitatively the same manner [2,41]. In the ICl case, A^* (Q=2) is the first excited state, lying: .1061cm⁻¹ below the well known A (Ω =1) state. It is characterized by an electronic energy of 12682.05(27)cm-1, a vibrational frequency of 224.57(15)cm⁻¹ and shows a pronounced anharmonic character. Its vibrational energy and equilibrium internuclear distance show some similarity with the other relatively bound states having ($^3\pi$) case-(a) signature, namely the A(1) and B(0^+) (see Table 4.1). With data covering 89% of the potential depth, the RKR been determined, along with the centrifugal D: H and L. The bond distance at equilibrium constants, evaluated at 0.2665 nm (2.665 Å). No evidence perturbation was observed other than the expected small Ω doubling.

CHAPTER 7

GENERAL CONCLUSION

successfully characterized the lower part of -ion-pair state D'(Q±2) of ICl, using a two-step, ↑↑, polarization-labelling technique in an Optical-Optical-Double-Resonance (OODR) experiment. Transitions to D' state we're allowed by heterogeneous perturbation with the $(\hat{\Omega} = 1)$ state. The main neighboring spectroscopic constants and the Rydberg-Klein-Rees (RKR) potential up to the vibrational level v=28 for the D'(Ω =2) state of I³⁵ Cl were determined. At the same time, extensive data we're cumulated to map two avoided crossings between D'(2) and $E(0^+)$ state at v=0 and 1. We have evaluated the electronic interaction term $W_{\Omega,\Omega\pm 1}$ between these states. paring them to the pure precession values, we. conclude. that the three lowest ion-pair states of ICl, D', \u03b3 and E, are good examples of Van Vleck pure precession case with ase (c) signature.

enabled us to probe the downward transition D'A' The main spectroscopic constants and the centrifugal distortion constants were determined for the A' ($\Omega=2$) state of I³⁵Cl, with data up to $\sim 70 \text{cm}^{-1}$ from the first dissociation limit, I. ($^2P_3/_2$) + Cl ($^2P_3/_2$). The anharmonicity of the A' state necessitated the use of two expansions to fit the data: the usual Dunham expansion and a "top-down" near-dissociation expansion (NDE). The merge of these two fits provided us with the terms needed for the RKR potential up to v=38 for the A'(2) state of I³⁵Cl.

This thesis brought a significant addition to the knowledge of the electronic states of ICl, initiated the characterization of three previously unobserved states, a(1), b(1) and b'(2), and the acquisition of data on high vibrational levels of the ground state $X(0^{\frac{1}{2}})$. The data for A' state may be useful in studying the long-range potential and in determining the C_m constants in the equation

$$V(r) = D_e - \sum_{m=5}^{\infty} C_m / r^m$$
 7.1

medium to long-range region.

REFERENCES

- 1'- J.David Spivey, J.Gail Ashmore and Joel Tellinghuisen, Chem.Phys.Lett., 109, 5, pp.456-461 (1984).
- 2 R.S. Mulliken, J. Them. Phys., 55, pp. 288-309 (1971)
- 3 E. Hulthen, Nils Johansson and Ulla Pilsäter, Ark. Fys., 14, 3, pp.31-48 (1958).
- 4 E. Hulthén, N. Järlsäter and L. Koffman, Ark. Fys., 18, 35, pp.479-512 (1960).
- 5 G.W. King, and R.G. McFadden, Chem. Phys. Lett., 58, pp.119-121 (1978). King, I.M. Eittlewood, R.G. McFadden and J.R. Robins, Chem. Phys., 41, pp.379-386 (1979).
- 6 J.C.D. Brand, U.D. Desphande, A.R. Hoy and S.M. Jáywant, J. Mol. Spectrosc., 100, 2, pp.416-428 (1983).
- 7 J.C.D. Brand, D. Bussieres, A.R. Hoy, S.M. Jaywant and D.B. Miller, Opt. Comm., 48,3, pp.185-199 (1983).
- 8 D. Bussières and A.R. Hoy, Can. J. Phys., 62, 2, pp.1941-1946 (1984).....
- 9 J.C.D. Brand and A.R. Hoy, private communication.
- 10- J.C.D. Brand, D. Bussières and A.R. Hoy, Molec. Phys. (preliminagy communication), 53, 2, pp.525-529 (1984).
- 11- A.R. Hoy, private communication.

- 12- Gerhard Herzberg, Molecular Spectra and Molecular structure, Vol I, Spectra of Diatomic Molecules, Second edition, D. Van Nostrand Co. Inc., 658 pages, 1950.
- 13- Jeffrey I. Steinfeld, Molecules and Radiation: An introduction to modern molecular spectroscopy, second edition, M.I.T. Press, 348 pages, 1974.
- 14- W.C Stwalley, J. Chem. Phys., 63 7, pp.3062-3080 (1973)
- 15- R.T. Birge, E.C. Kemble, W.F. Colby, F.W. Loomis and L. Page, Nat. Res. Counc. Bull. 57, (1930).
- 16- Jon T. Hougen, NBS Monograph 115, 52 pages, (1970).
- 17- J.W. Cooley, Math. Comp., 15, pp.363-374 (1961).
- 18- J.H. Van Vleck, Phys. Rev., 33, pp.467-468 (1929).
- 19- ibid ref. 12, p285.
- 20- I. Kovacs, Rotational structure in the spectra of diatomic molecules, New York, American Elsevier, 320 pages, 1969.
- 21- Richard Earl Teets, Polarization labelling spectroscopy of molecules, Ph. D. Thesis, Stanford University, 130 pages, 1978.
- 22- Keith John Cross, <u>Visible laser spectroscopy of Nitrogen</u>
 dioxide and <u>Todine</u>, Ph. D. Thesis, <u>University of Western</u>
 Ontario, 197 pages, 1980.
- 23- Wolfgang Demtröder, Laser spectroscopy: Basic concepts

 and Instrumentation, Springer Series in Chemical

 Physics, Vol.5, Springer-Verlag, 964 pages, 1981.

- 24- Akira Brian Yamashita, <u>Theoretical and experimental</u> studies in visible laser spectroscopy, Ph. D. Thesis, University of Western Ontario, 260 pages, 1983.
- 25- J.C.D. Brand, K.J. Cross, N.P. Ernsting and A.B. Yamashita, Opt. Comm., 37, 3, pp.178-182 (1981).
- 26- J.A. Coxon, R.M. Gordon and M.A. Wrckramaaratchi, J. Mol. Spectrosc., 79, 2, pp.363-379 (1980). J.A. Coxon and M.A. Wickramaaratchi, J. Mol. Spectrosc., 79, 2, pp.380-395 (1980).
- 27- J.C.D. Brand, D. Bussières, A.R. Hoy and S.M. Jaywant, Can. J. Phys., 62, 12, pp.1947-1953 (1984).
- 28- Weldon G. Brown and G.E. Gibson, Phys. Rev., 40, pp.529-543 (1932).
- 29-'Robert D. Gordon and K.K. Innes, J. Mol. Spectrosc.,
 78, 2, pp.350-352 (1979). and J. Chem. Phys., 71, 7, pp.2824-2839 (1979). Steven G. Hansen, J.D. Thompson, Richard Akumedy and Brian J. Howard, Chem. Soc., Farad. Trans. 2, 78, pp.1293-1310, (1982).
- 30- J.C.D. Brand, U.D. Desphande, A.R. Hoy and E.J. Woods, Can. J. Chem., 61, 5, pp-846-849 (1983).
- 31- J.C.D. Brand, A.R. Hoy and S.M. Jaywant, J. Mol. Spectrosc., 106, 2, pp.388-394 (1984).
- 32- M.S. DeVries, N.J.A. VanVeen, T. Baller and A.E. DeVries, Chem. Phys., 56, 2, pp. 157-165 (1981)
- 33- James K.G. Watson, J. Mol. Spectrosc., 66, 3, pp.500-

- 34- A. Sur and J. Tellinghuisen, J. Mol. Spectrosc., 88, 2, pp.323 346 (1981). Joel Tellinghuisen, J. Mol. Spectrosc., 94, 2, pp.231-252 (1982).
- Scattering and Spectroscopy, Chapter 3, pp109-126, M.S. Child editor, D. Reidel Pub. Co., Boston, 1980.
- 36- H.L. & Kramer and D.R. Herschbach, J. Chem. Phys., 53, 7, pp.2792-2800 (1970).
- 37- R.R. Teachout and R.T. Pack, Atomic Data, 3, pp.195-214 (1971).
- 38- M. Sauté, B. Bussery and M. Aubert-Frécon, Molec. Phys., 51, 6, pp.1459-1474 (1984).
- 39- M. Sauté and M. Aubert-Frécon, J. Chem. Phys., 77, 11, pp.5639-5646 (1982).
- 40- J.W. Tromp and Robert J. LeRoy, Can. J. Phys., 60, 1, pp.26-34 (1982).
- 41- K.P. Huber and G. Herzberg, Molecular spectra, and Molecular structure, Vol.4, Van Nostrand, Princeton, 1979.

APPENDIX 1

D' ($\Omega=2$) data for I $^{3.5}$ Cl at low vibrational levels for v=0 and l, e sublevel (lower root)

f sublevel

e sublevel (upper root)

v=2, e and f sublevels

Ø

	-1 -~	بخصيسها			
ŲD	JD	JX	PUMP	PROBE	G(V,J),
0	17	19	15406,651	23136.959	39159:742
ŏ		19		23141.112	
	19		15406.651		39163.895
0.	25	27	15242.821	23277.825	39179.382
0	.27	27	15242.821	23283.882	39185.439
0	27	27	17556.930	20969.806	39185.472
. 0	2.9	27	17556.930	20976.324	391^1.990
0	зſ	33	15374.922,	23123.790	39198.909
0	33	33	15374.922	,23131.219	39206.338
0	37	39	15496.592	22976.060	39222.451
Ō	39	39 .	15496.592	22984.786	39231.177
Ö,	38	38	16024.761	-22841.526	39226.756
0	40	38	16024.761	22850.510	39235.740
. 0	38	40	•		39226.772
			15353.143	23114.772	
0	40	40	15353.143	23123.738	39235.738
0	× 39	39	16021.532	22840.309	39231.184
٠ 0	41	39	16021.532	22849.539	39240.414
0	39	39	15368.050	23113.401	39231.250
0	41.	39	15368.050	23122.551	39240.400
0	40	40	16018.199	22839.067	39235.710
0	42	40	16018.199	22848.467	39245.110
- 0	46	46	15996.365	22830.964	39265.144
. 0	48	46	15996.365	22841.534	39275.714
· /0-	45°	47	15466.596	22964.798	39259.981
ő	47	47	15466.596	22975.183	39270.366
0.	. 47	45	15348.460	23114.429	39270.425
0	45	45	15348.460	23104.035	39260.031
	47	49		•	•
0		•	15970.360	22829.471	39270.393
0	49	49 -	15970.360	22840.210	39281.132
0	47	.49	15458.250	22961.678	39270.470
0	49	49	15458.250	22972.431,	39281.223
0	50	52 °	15445.107	22956.367	39286.638
0	52	52	15445.107	22967.677	39297.948
0	52	52	15971:359	22821.242	39297.950
0	54	52	15971.359	2283,2.947	39309.655
0	53		15455.856	22950.861	39303.873
0	55	57	15367.753	23380.061	39315.668
Ö	57	57.	15367.753	23392.380	39327.987
Ŏ	56	56	15442.529	22944.762	39321.774
	" 58	56	15442.529	22957.345	39334.357
. 0	64	64	15442.329 1⊳5353.290 ,		39374.539
			•		
.0	66	64	15353.290	23370.660	39388.810
0	. 63	65	15242.757	23066.226	39367.599
. 0	65	65	15242.757	`23080.2'48	39381.621
0	71	73	15459.469	22782.556	39426.258
	, ⁻ 73	73-	15459.469	22798.294	39441.996
.0	74	· 74	15473.553	22775.492	7 39449.989
0.	76	74	15473.553	22791.977	39,466.474
1	27	27 "	17556.930	· 2113.4 . 877	39350.543
		_	•	9	

αV	JD	JХ	PUMP	PROBE	'G(V,J)
1	39 [.]	39	16021.532	23005.462	39396.337
1	41	39	16021.532	23014.697	39405.572
1	45	47	17485.157	21111.651	39425.395
1	4:7	47	17485.157	21122.321	39,436.065
. J	48	46	15996.365	23007.321	39441.501
1	47	49	15970.359	22995.109	39436.030
1	49	49	15970.359	23006.152	39447.07.3
1	52	52	15971.359	22987.736	39464.444
1	54	52	15971, 359	22999.920	39476.628
1	53	. 53 ¹	16090[]961	22862.101	39470.459
1.	55	53	16090.961,	22874.502	39482.860
1	5,8	58	16066.336	22854.918	39502.288
1	60	58	16066.336 [,]	22868.416	39515.786
1	63	65,	16010.082	22847.178	39536.882
1	' [{] 65	65	16010.082	22861.737	39551.441
1	· 68	68	16010.044	22838.690	39573.995
1	70	68	16010.044	. 22854.163	39589.468
1	71	73	15459.469	22953.588	39597.290
1	73	73	15459.469	22969.561	39613.263
1	74	74	15473.553	22946.908	39621.405
1 Ó	76	74	15473.553	22963.416	39637.913
	46	47	15473.288	22964.411	39266 286
0	48	47	[#] 15473, 288	22974.739	39276.614
0	50	51	15456.825	22957.155	39287.378
0	52 '	51	15456.825	22968.368	39298.591
0	62	. 63	15348,411	23362,303	39361.039
0	64	63	15348.411 🥄	23376.085	· 39374.821°
0	64	65	15388.455	22927 <i>.7</i> 71	39374.842
0.	66	65	15388.455	22942.034	39389.105
0	70	71	15353.989	22913.368	.39418.840
0	72	,71	15353.989	22928.916	39434.388
, 1	30	· 31 ·	16287.401	22779.332	39371.444
1	32	31	16287.401	22786.193	39378.305
1.	44	હ્યું 5	16119.177	22881.962	39428.492
1 ' 1	46	45	16119.177	22891.855	39438.385
1	48	49	16102.076	22870-120	39448.758
1	50	49	16102.076	2:2 4 4	39459.502
· 1		· 50	16097.571	22 59 22885 12	39454.061
1	51	50	,16097.571	22885 12	-39465.014 A
, - 0	17	19	15406.651	` 2314 2, \$422	'39165.205 '
. 0	19	19	15406.651	23146.442	39169.225
0	31	33	15374.922	23127:466	39202.585
. 0	33	33	15374.922	23134.561	39209.680
. 0	47	47	15466.595	22976.832	39272.014
U	49	49	15458.250	22974.127	39282.919
Ð	49	49	15970.360	22841.960	39282.882
0 ,	50	52	15445.107	22958.242	39288.513
่อ	52	52	15445.107	22969.874	39300.145

· `~~a

APPENDIX 2

D' (Ω =2) data of ICl for higher vibrational levels from v=15 to 28, e sublevel

f sublevel

NOTE An asterisk (*) in the last column marks data for isotopic molecule I 37Cl.

. '					- •
VD,	JD _a	JX /	→PUMP	PROBE	G(V,J) 3.7CL
15	30	32	16901.132	244.57.261	41670.388
•					41676 027
15		3.2	16901.132	24463.804	. 41676.931
15	., 47 -	4.7	16836.054	24454.222	41738,780
16 `	19	19	17006.028	24557.518	41798,590
, 16.	21	19	17006.028	24561.730	41802.802
16	23	23	16995.578		41807.381
		~2.3 ~2.3			
16	25	,23	16995.578		. 41812.432
: 16	;30	32	16,901.132	24613.597	41826.724
1.6	32	32 .	. 16901.132	24620,109	41833.236
1.6	34	34	16836.141	24676.765	41840.150
16	43	43	16903.703	24565.398	41876.210
16	4.7	. 47	16836.054	24610.374	41894.932
16,	49	47	16836.054	24620.378	41904.936
1º 17	23.	: 23)	16995,578	24712.552	41962.757
17	32	. 32 🗀	16901 132	24775.431	41988.558
17	4.7	47	16836.054	24765.322	42049.880
18	19	1930	. 17006.028	24867.304	42108.376
18.		19	17006.028	24871.501	42112.573
	• •				42117,151
18	23	23	16995.578		
18	[41	43	16903.703	24865.881	42176.693
18.	41	41	16,903.723	24833.000	42112.111 *
20	26°.	26	16522.553	25636.097	42430.353 *
. 21	21	21-	16631.682	25693.567	42569.629
21	· 27.	29	16604.284	25689.356	42584.466
		28	16580.564	25659.248	42516.029 *
21	28				
21	29-	29	16611.619	25687.756	42590.201
21	29	31	16597.733	25687.734	42590.178
21	3.2	3.4	16587.114	25685.180	42599.538
21	41	41	16568.937	25676.366	42633.075
21	71	69	16622.939	25439.542	42803.406
22	27.	_	16604.284	25839.615	42734.725
	_			25806.773	~
2.2	, 28 , 28	28	16580.564		
22	29	31	16597.733	25837.984	42740.428
22	29 、	<u> </u>	16611.619	25838.039	42740.484
22	31. +	- 29	10071.077	25844.154	42746.599
22	30	30 31 31 34	16575.058	25805.142	42669.280 *
22	`31 ⁻	31	17018.130	25423.634	42746.475/
22	33	31	17018.130	25430.137	
22	3 4	24	16587 122		42756.428
2.2	3.3	3.6	16587.122	25743.444	42763.443
. 44	. 36	. 36	16676.596	23/83.444	
· 22	'.38	38	``16668.738	25741.803,	42771 2010
22	40	3.8	16668.738	25749.696	<i>4</i> 2778.903
. 22.	67	69	16663.083	25520.986	42924.994
22	69	6.9	16663.083	25534.758	42938.766
22	69	69	16622.939	25574,874	42938.738
22	71	Řφ		25588.958	42952.822
22	· 72	70	16668.134	25535.094	
		# 10		1 4 J J J J J 0 U J 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#4500.044 : 4000 #00
23	30	″ 32 °,•	16683.190	25897.397	42892.582

	1		,		
VD	JD.	JX.	PUMP	PROBE	6(V,J) 37CL
23	36	36	16676.596	25892.637	42912.636
23	67	69	16663.083	25669.629	43073.637
23		69			
	69		16663.083	25683.274	43087.282
23	70	70	16668.134	25669.284	43094.232
; 23	.72	70	16668,134	25683.540	43108.488
24	15	15	16684.875	25721.440	43006.580
24	18	20	17050.734	25721.374	43011.706
24	19	19	17057.236	25721.262	43013.542
24	21	19	17057.236	25725.310	43017.590
24	19	19	17057.236	25721.287	43013.567
24	21	19	17057.236	25725.324	43017.604
					43017.657
24	21	21	17052.050	25721.227	•
2.4	30	30	16629.592	25669,930	42961.328 *
24	31	31	17018.130	25721.184	43044.025
24	33	31		25727.654	43050.495
24	31	33.	16622.652	25721.220	43044.069
24	33	33.	16622.652	25727.686	43050.535
24	33	33	16767.891	25963.094	43050.491
24	35	33	16767.891	25969.956	43057.353
24	34	34	16836.141	25890.466	43053.851
				•	
24	36	34	16836.141	25897.526	43060.911
24	35,	37	16966.441	25669.623	4297/7.022 * .
24	⁻ 37	37	16966.441	25676.582	°42983.981 *
2 🜮	39	39	16933.209	25769.713	43072.265.
24	41	43	16848.937	25824.183	43080.229 🐣
24	43	43	16848.937	25832.649	43088.695
.24		46	16933.011	25722.348	43093.174
24	46	46	16933.011	25731.394	43102.220
25	18	20	17050.734	25868.787	43159.119
25	19	19	17057.236	25868.757	43161.037
25	21			. 25872.818	43165.098
		19	17057.236		
25	19	19-	17057.236	25868.749	43161.029
25	21	. 19	17057.236	25872.761	43165.041
25	19	19	17057.236	25868.682	43160.962
25	21	19	17057.236	25872.746	43165.026
25	21	,21	17052.050	25868.642	43165.072
25	22	24	16863.980	26043.188	43167.259
25	24	24	16863.980	26047.831	43171.902
25	23	23	17090.579	25824.340	43169.546
25	25	23	17090.579	25829.178	43174.384
25	. 23	23	17129.127	25785.830	43169.584
25	25	23	17129.127	25790.685	43174.439
					43090.338 *.
25	24	26	_	25768.417	-
25	26	26	17057.696	25773.238	430790237
25	28	- 30	16966.229	25918.573	43182:457
25	. 30	3.0		25,924.374	43188.258
25	. 28	28	17111.064	25787.104	43182.392
25	30	2,8	17111.064	25792.940	43188.228

				•	
VD .	JD	JX,	PUMP	PROBE	*G(V,J) 37CL
25	30	32	17051.022	25825,244	43188.261
25	34,	34	16836.141	26037.733	43201.118
25	36	34	16836:141	26044.753	43208.138
25	36	- 38	17057.519	25790.158	43208.146
25	, 38	38		25797.589	43215.577
25	36	38	17057.519	25790.192	43208.180
25	38	38	17057.519	25797.613	432125.601
25	39	39	16933.211	25916.930	43219.484
25	41	39	16933.211	25924.951	43227.505
25	44	46	16932.977	25869.447	A3240.239
25	46	46.	16932.977	25878.456	43249.248
25,	45	45	16847.307	25970.096	43244.756
25	47	45	16847.307	25979.315	43253.975
. 25	47	47	16836.048	25969.401	43253,953
25	49	47	16836.048	25978.999	43263.551
25		48	16830.224	25969.091	43258.735
25	50	48	16830.224	25978.887	43268.531
25	55 ⁻	57	16854.903	25872.019	43294.776
,25	57		16854.903	25883.200	43305.957
25 25	56	58	16846.926	25872.371	43300.331
25	-58	58	16846.926	25883.735	43311.695
26	15	15	17184.652	25896.872	43300.627
26	17	19.	17201.117	25867.572	43303.733
26	18	20	17050.734	26015.284	43305.616
26	19	1.9	17057.236	. 26015.164	43307.444
26	21	19	17057.236	.26019.195	43311.475
26	19	19		26015.243	43307.523
26	21	19	17057.236	26019.250	43311.530
26	19	19	17057.236	26015,206.	
26	21	19	17057.236	26019.230	43311.510
26		24	17184.032	25869.591	43313.714
26	23	23	17090.579	25970.726	43315.932
26	2 _. 5	23	17090.579	25975.543	43320.749
26	29	31	17153.512	25873.337	43331.560
26	30	32		25971.599	4,3334.616
26	32	32	17051.022	25977.823	43340.840
26	.31	31	17181.751	25851.226	43337.688
26	33	31,	17181.751	25857.633	43344.095
. 26	· 36	38		25936.491	43354.479
26	38	38		25943.875	43361.863
26	36	38	17057.519	25936.468	43354.456
26	. 38	38	17057.519	25943.846	43361.834
26	39	39	16933.209	26063.128	43365.680
26		39	16933.209	26071.110	43373.662
	50	52	16847.280	26061.922	43414.551
26	52,		16847.280	26072.063	43424.692
26	53	53,		26005.599	43,341,.303 *
26	· 56	56	16829.603	26061.689	43446.193
26	58	5 6	16829.603	26073.050	43457:554
				_	

VD	JD	JХ	PUMP	PROBE	G(V,J) 37CL
27	15	15	17184.652	26042.348	43446.103
27	16	16	17259.661	25965.227	43447.635
27	. 18	16	17259.661	25968.662	43451.070
	18	20	17050,734	26160.752	43451.084
27	20	20	17050.734	26164.581	43454.913
27	19	19	17057.236	26160.634	43452.914
27	21	19	17057.236	26164.671	43456.951
27	. 19	19	17057.236	26160.669	43452.949
27	21	19	17057.236	26164.687	43456.967
27	21	21	17052-050	26160.553	43456.983
· 27	23	21	17052.050	26164.956	43461.386
27	22	24	17184.011	26015.083	43459.185
27	22	24	17184.011	26015.083	43459.185
27	24	26	17057.696	26055.108.	43377.029 *
	26	26	17057.696	26059.912	43381.833 *
27 28	29 15	31 15	17153.521 17184.652	26018.727	43476.959
28	17	15	17184.652	26186.885 26190.052	43590.640 43593.807
15	31	32	16904.482	24457.061	41673.538
16	31	32	16904.482	24613.431	41829.908
16	33	3 2 ₁	16904.482	24620:078	41836.555
16	43	42	16913.376	24565.398	41876.101
16		50	16911.072	24511.793	41904.796
17	. 31	32	16904.482	247,68.694	.41985.171
18	- 41	42	16913.376	24865.881	42176.584
18	49	50	16911.072	24820.715	42213.718
21	28	. 29	16607.863	25688.514	42587.203
21	33	34	16591.295	25684.222	42602.761
21	38	39	16659.812	25591.767	42620.922
22 .	28 33	29	16607.863	25838.770	42737.459
22	· 33	34	16591.295	25834.463	42753.002
22		54	16838.313	25472.132	42840.117
23	39 41	40	16904.411 16904.411	25574.965 25582.760	42845.831 * 42853.626 * •
23	46	47.	16867.428	25573.658	42874.641 *
23	48	47	16867.428	25582.805	42883.788 *
23	48	49	16871.987	25620.988	42963.537
23	50	49	, 16871:987	25630.905	42973.454
23	48	49	16871.987	25621.008	42963.557
23	50	49	16871.987	25630.909	42973.458
23	50	51	16858.931	25620.975	42973.433
23	52	51	16858.931	25631.306	42983.764
23	53	54	16838.313	25621.044	42989.029
23	55	54	16838.313	25631.971	42999.956
23	56	57	16816.430	25621.183	43005.467
23	58	57	16816.430	25632.676	43016.960
· 23	61	60	16743.649	25683.377.	43035.098
23	62	,63	16768.826	25622.107	43041-258
23	64 .	63	16768.826	o 25634.825	43053.976

			÷		·*	
. VD	. JD	JX	PUMP	PROBE	G(V,J)	37CL
22	62	e A	16760 202	25622.290	,	
23 24	. 63 18	64 19	16760.383 17055.266	25622.299	43047.542	
24				25721.363	43011.673	
		22	16911.102	25784.966	42938.92	
24 24		. 22	16911.102	25789.258	42943.216	
	25	26	16653.210	25721,073,	43026.901	
24 24	27	26	16653.210	25726.324	43032.152	
	28	29	16973.008	25771.121	43034.95	
24:		29	16973.008	25777.024	43040.858	
24		29	17023.058	25721: 057	43034.951	
	30	29	17023.058	25726.958	43040.842	
24	37	38	17117.924	25586.092	. 43064.485	
24		42	17002.018	25689.439	43088.784	
24	43	44	16949.345	25722.269	43088.73]	
24	45	44	16949.345	25791:129	43097.591	
24	45	46	16922.631	25669.757	43015.705	
24	47	46	16922.631	25678.649	43024.597	
	48	49	16871.987	25769.050	43111.599	
., 24.	50	49	16871.987	25778.919	43121.468	
24	48	49	16904.538	25669.933	43029.152	
24	50	. 49	16904.538	25679.418	43038.637	
. 24	49	50	16911.072	25723.458	431,16.,461	
24	51.	50	16911.072	25733:528	43126.531	
24		, 50	16865.519	25769.002	43116.452	
24	51	50	16865.519	25779.072	43126.522	? .
24	53	54	16838.313	25769.022	43137.007	
24	· 55	54	16838.313	.25779.894	43147.879	
24	56	57	16816.430	25769.115	43153.399	
24	62	63	16768.826	. 25769.825	43188.976	,
	64 :	63	16768.826	25782.512	43201.663	3
24	63	64	1676🗘 383	25769.979	43195.222	2
24	6.5	64	16760.383	25782.848	43208.091	
25	18	19	17055.266	25868.785	43159.095	5
25	19	20	17078.035	25768.321	43079.834	†
25	21	22	17046.987		43165.042	
25	2.3	., 22	17046.987	25873.160	43169.537	7.
2,5	25	26	17078.107		43174.352	2
25	27	26	17078.107	25829.805	43179.619	5
1 2 5	25	26	17116.350	25786.346	43174.399	•
25	27	. 26	17116.350	25791.622	43179.675	5
25	25	26	17116.350	257/86.325	43174.378	
25	27	26	17116.350		43179.674	1
25	~ 28 ~	29	16973.008	25918.458	43182.292	
25 →		29	16973.008	25924.336	43188.170) 1
25	28	29	17023.058	25868.426	43182.310	
25	30	2,9	17023.058	25874.291	43188.175	
25	38	39	17004.729	25769.797	43132.264	Ŕ
25	40	39	17004.729	~25777.307	43139.774	
`25	.38	39	17054.945	25791.325	43215.613	3.
25	4.0	39	17054.945	25799.162	43223.450)

				•		4
QV	JD	JX		PUMP	PROBE	G(V,J) 37CL
					0.017 030	43219.484
25	39	40	٠	16924.002	25917.038	43227.488
25	41	40		16924.002		43249.271
25	46 `	47		17004.610	25796.157	43258.707
25	48	47	٠.	17004.610	25805.593	43168.989
25	47	48		16910.705	25814.275	43263.455
25	49.	50		16911.072	25870.452	43273.497
25	51	50		16911.072	25880.494	43263.515
25	. 49	50		16865.519	25916.065	
25	51	50		16865.519	25926.080	43273.530
25	50	51		16858.931	25916.030	43268.488
. 25	52 .	51	•	16858.931	25926.217	43278.675
25	53	54		16838.313	25915.978	43283.963
25	55	54	•	· 16838.313	. √25926.762	43294.747
26	13	14		17111.670	25970.382	43297.739
26	15	14		17111.670	2.5973.272	43300.629
26	18	19	•	17055.266	26015.297	43305.607
26	21 .	22		17046.987	26015.119	43311.496
26	23	22		17046.987	26019.579	43315.956
26	2.5	26		17116.350	25932.763	_43320.816
26	27	26	, .	17116.350	25937.997	43326.050
26	27	28	ro,	17052,926	25912.389	43241.532 * *
26	28	29		17023.058	26014.824	43328.708
26	30	,2 9		17023.058	26020.669	43334.553
2.6	28 .	29	,	16973.008	26064.885	43328.719
26	30	29	٠,	16973.008	26070.744	43334.578
26	30	31	•	17115.625		93243.702
26	32	. 31		17115.625	25844.266	43255.729 *
26	. 38	39	•	17054.945	25937.585	43361.873
26	40	39		17054.945	25945.395	43369.683
26	38	39		17111.877	25880.622	43361.842
26	40 -	39		17111.877	. 25888.444	43369.684
26	. 39	40	•	16924.002	26063.292	43365.738 .
26	41	40		16924.002	26071.291	43373.737
26	•	- 51		16858.931	26062.052	43414.510
26		51	,	16858.931	26072.255	43424.713
27	13	14	•	.17111.670	26115.901	43443.258
	15	14		17111.670	26118.766	43446.123
27	25	26		17116.350	26078.208	43466.261
27	27	26		17116.350	26083.422	43471.475
27		28		17052.926	26055.263	43384.406 *
27	·29	28	•	17052.926	26060.654	43389.797 *
27·		30		17019.125	26166.320	43483.100
27	38	, 39		17111.877		43507.126
41	50					

5";

APPENDIX 3

. A' (u=2) data for ICl from v=2 to 38, e sublevel

f sublevel

NOTE An asterisk (*) in the last column marks data for isotopic molecule I³⁷Cl.

			•				•
VA	JA ø	JX	UPPER	TERM	PROBE	$G(V_{\iota}J)$	37CL
. 2	30 -	,31	4-2746	492 .	29436.074	13310.418	15
			42746		29425.410	13321.082	
4	_32°	31			_		
2	31	32	42749.		29434.100	13315.600	
2 2 2	68	69	42938.	.738	29310.481	13628.257	
.2	70	69	42938.	. 738	129287.036	13651.702	2
2	71	70	42945		29282.086	13663.656	·)
2 2	68	67	42925		29296.771	13628.258	
, ₂	69.	68	42931.		29291.961	13639.873	
					29277.088	13675.758	
2	72	.71	42952				
2.	73	72	42960		29271.994	13688.054	
2	74	73	42967.		1, 29266.848	13700.502	
2	75 ·	74	42974.	751	29261.577	13713.174	
3	22	23	42873	. 787	29386.770	13487.017	!
3	23	24	42876		29385.305	13490.878	} '
3	24	25	42878		29383.769°	13494.910)
2 3 3 3 3	26	25	42878		29375.202	13503.477	
			•		29380.479	13503.492	
3	26	27	42883				
3	28	27	42883		29371.211	13512.760	
3	27	28	42886		29378.718	13508.049	
3	29.	28	42886	.767	29369.134	1,3517.633	
3	28	29	42889	. 663	29376,901	13512.762	2
3	30	29	42889		29386.956	13522.707	
333333333333333	25	28	42881		29382.110	.13499.165	; ;
, 3	27	28	42881		29373.204	13508.071	
. J	23	26	43090		29617.164	13473.147	_
					29609.282	13481.029	
3	25	26	43090				
3	30	31	42746		29223.792	13522.700	
3	32	31	42746		29213.192	13533.300	_
	31	30	42898		29370.977	13527.97	
3 3.	33	30,	. 42898	.951	29360 <i>2</i> 076	13538.875	
3.	27	• 28	42737	.471	29229.436	13508.035	5
3	28	29	42740	. 378	29227.611	13512.767	7
3	32	33	42753		29219.785	13533.224	
_	29	30	42743		29225.760	13517.625	
2			42743		29215.437	.13527.948	
3	31	30					
3	31	32	4 27 49		29221.808	13527.892	
3	33	32	42749		29210.816	13538.884	
3	48	49	43116		29474.518	13642.030	
3	50	49	43116		29457.918	13658.630	
3	43	44	43093		29489.735	13603.442	
3 3 3 3 3 3 3 3	44	45	43097	.653	29486.818	13610.835	5
	. 45	46	43102		29483.859	13618.367	7
3 3 3 3	46	47	43106		29480.817 *	13626.08	
2	47	48	43111		29477.721	,13633.95	
2			•		29461.447	13650.228	
<u>ح</u>	49	48	43111				
3	49	50	43121		234/1.20/	13030.427.	
3.	51	50	142171		29454.363	13667.157	
3	50	51	43126	.590	29467.945	13658.649	•

۷A٠	JA	JХ	UPPER TERM	PROBE	G(V,J) 37CL
3 3 3	68 70 65	69 69 66	42938.738 42938.738 42918.323	29100.881 29077.676 29114.111	13837.857 13861.062 13804.212
3	66 `	67	42925.029	29109.774	13815.255 13837.840
3 3 3 3 3	68 67.	67 68	42925.029 42931.834	29087.189 29105.357	13826.477
3	69	68	42931.834	29082.457	13849.377
3 3	69 71	70 70`	42945.742 42945.742	29096.393 29072.791	13849.349 13872.951
3	70	71	42952.846	29091.819	13861.027
4	18	19	43013.596	29331.642	13681.954
4	·20 11	19 · 12	43013.596 43002.462	29325.157 29338.057	13688.439 13664.405
4	12	13	43002.402	29337.288	13666.466
4	13	1,4	43005.146	29336.556	13668.590
4 4	14 15	15 16	43006.636 43008.227	29335.719. 29334.801	13670.917 ° 13673.426
4	16	17	43000.227	29333.825	13676.092
4	17	18	43011.706	29332.795	13678.911
4 4	19	18 20	43011.706 43015.584	29326.674 29330.438	13685.032 13685.146
, 4 ,	19 21	20	43015.584	29323.658	13691.926
4	22	21	43017.673	29322.057	13695.616
4	23	22	43019.861 43022.148	29320.377 29318.653	13699.484 13703.495
4 4	24 25	23 24 (ለጋበጋለ ፍጋፎ	29316.882	13707.653
4	27	26	43029.609	29313.116	13716.493
4	29	28	43035.080	29309.077	13726.003
4	30 31	29 30	43037.965 43040.950	29306.972 29304.800	13730.993 13736.150
. 4	32	31	43044.034	29302.552	13741.482
4	33*	32	43047.217	29300.239	13746.978 13677 580 *
4	23	26 26	43090.311	29412:731 2 9404 .920	13677.580 * 13685.391 *
4 4	25 19	22	43081.749	29417.926	13663.823 *
4	20	23	43083.747	29416.749	13666.998 *
4	21	24	43085.840 43085.840	29415.448 29408.195	13670.392 * 13677.645 *
4 4	. 23 22	24 25	43088.028	29414.131	13673.897/ *
4	24	25 ·	43088.028	29406.632	13681.396 *
4	24	27	43092.690	29411.284	13681.¢06 * ¢ . 13689.537 *
4 4	· 26 25	27 28	43092.690 43095.163	29403.153 29409.796	13685.367 *
4	27	28.	43095.163	29401.335	1,3693.828 *
4	28	29	43097.732	29399.401	13698.331 * ° 13702.953 *
4	2 9 30	30 31	43100.395 43103.154	29397.442 29395.414	13707.740 *
4	31	32	43106.008	29393.281	13712.727 *

VΆ	JA	JX	UPPER TERM	PROBE	G(V,J) 37CL
44444444444444444	335571386 412344568791023480415 5555518045	33 44 5 30 3 4 9 4 1 2 4 3 4 4 4 5 5 5 5 5 1 9 1 5 1 6	43108.956 43112.000 43118.372 42881.275 42881.275 42898.951 42898.951 43116.548 43116.548 43080.346 43084.524 43089.3177 43097.653 43102.228 43106.902 43106.902 43111.675 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520 43121.520	29291.135 29388.934 29384.268 29173.637 29164.806 29162.788 29152.002 29267.332 29250.888 29290.326 29287.686 29285.001 29282.195 29279.382 29279.382 29276.462 29273.481 29257.631 29270.449 29264.141 29247.377 29260.896 29243.790 29240.112 29236.416 29127.125 29120.691 29131.079 29130.213	13817.821 * 13723.066 * 13734.104 * 13707.638 13716.469 13736.163 13746.949 13849.216 13865.660 13790:020 13796.838 13803.800 13810.982 13818.271 13825.766 13833.421 13849.271 13849.271 13849.271 13849.271 13849.271 13849.271 13886.471 13882.800 13891.648 13900.613 13886.471 13892.905 13875.557 13878.014
555555555555555777777	20 14	19 15 16 17 18 18	43013.596 43006.636	29120.691 29131.079	13892.905 13875.557

VĄ.	JA	JХ		UPPER	TERM	PROBE	[®] G(V,J) 37CL	CL (
7-	47.	. 48		43111		28674.096	14437.579	
7	49	48		,43111.		28658.379	14453.296	
7	49	504		43121		28668.264	14453.256	
7	51	50		43121		28651.898	14469.622	
. 7	52	51		43126.		28648.544	14478.046	,
7	68	, 69		42938.		28304.728	14634.010	
	70	69		42938.		28282.360	14656.378	
≈7 7	67 60°	66.		42918		28295, 269	14623.054	
. 7	68°			42925.		28291 0 26	14634.003	
7.7	69	68 30		42931.		28286.734	14645.100	•
	69			42945.		28300.631	14645.111	
7 74	71 72	70		42945.	7.42	28277.949	14667.793	
7				42952.	040	28273.473		
8	73	7.2		42960.				
8	30	31		42746.		28225:185	· · · · · · · · · · · · · · · · · · ·	
8	;32 29,	31 *		42746.	49Z			
8 · {	3.1	· 30		42743.		28226.916		
آم Ω	48		D	42749.		28223.412	14526.288	
8 ⁵	50		. '	43116.		28481.407		
٥	47·	+ 48		43116. 43111.		28465.556	14650.995	
, 8	49	50		43121.		28484.228 28478.529 \	14627.447	
8	51	50		43121.		28462.395		
8.	52	51.		43121.		28459.091	14659.125 14667.499	
8 *	68	69		42938.		28116.897		
8		69		42938.		28094.746		
∞ 8	71	70		42945.		28090.481		
.9	25	28		42881.		28195.723	14685.552	,
9. 1	48	49		43116.		28296.263		•
9	50	49		43116.		28280.610		
9	47			43102.		28289.501		•
9.	46	47		43106.			14805.197	
9.	48	47		43106.		28286.569	14820.333	-
	47	48		43111.		28299.022	14812.653	
9.	49	48		43111.		28283.581	14828.094	
9 .	51	50		43121.		28277.485	14844.035	
9	50	51		43126.		28290.689	14835.901	
10~	18	19	•	43013.		28170.469	14843.127	1
10,	20	19	-	43013.		28164.337	14849.259	
10	48	49		43116.		28115.927	15000.621	
10,	50	. 49	•	43116.	5 48	28100.449	15016.099	
10	45%	46	•	43102.	228	28123.757	14978.471	
10	46	47	ş	43106.		28121.240	14985.662	, <i>j</i>
10	48	47		43106.	902	28106.264,	15000.638	
1:0	49 :			43111.		28103.383	15008.292	
10	49	50		43121:		28113.295	15008.225	
10	51	50	•.	43121.		28097.444	15024.076	
10: 1	50.	51	•	43126.	590 .	28110.544	15016.046	
.	ا					•	. ,	•

VA	JA	JX	- UPPER TE	RM PROBE	· .	G (V, J,)	37CL
10 10	-68 70	69 69	42938.738 42938.738			15183.246 15204.868	
10	67	. 66	42918.32			15172.660	
10	· 66	67	42925.029			15162.208	
10	68 ·	67	42925.02			15183.226	
10	67	68	42931.83			15172.675	
10	69	68	42931 .83			15193.976	
10	69 •	70-	42945.74		•	15193.979	
10	71	70	42945.74			15215.908	
10	70	71	42952.84	5 27747,991		15204.855)
10	72	71 -	42952.84	27725:736	•	15227.110	
. 10	. 73	72	42960.048			15238.459	
11	48	. 49	43116.548			15175.960	
11	`50	49	43116.548			15191.278	
12	38	39	39405.79			15279.989	
12.		39	39405.79		-	15292.036	
12	48	49	43116.548		. •	15346.365	
12	50	49	43116.548			15361.463	
12	51	52	39297.96			15369.274	
12 12	53 68	52 69	39297.963 42938.738			15385.254 15524.402	
12	70	69	42938.738			15545.544	
12	67	68	42931.834	, 2,3,3,3,2,3		15514.072	
12	69	68	42931.83		`	15534.861	
12	69	70	42945.742	-		15534.881	
12	/71	70	42945.742			15556.280	
12	\$ 70	71	42952.846			15545.510	
12	72	71	42952.846		•	15567.191	
12	73	72	42960.048			15578.261	
13	38	39	39405.79			15445.794	
13	40	3 9	39405.79	23948.083		15457.711	
13	38	37	39397.426	23951.607		15445.819	•
13	37	38	39401.556		•	15440.091	
13	39	38	39401.556			15451.713	
13	. 39	40	39410.143	-		15451.712	
13	41	40	39410.14		(T)	15463.932	
1.3	40	41	39414.597			15457.744	
13	42	41	.39414.597		`	15470.259	
13 13	51 53	52 52	39297.963 39297.963			15533.969 15549.777	
14	53 38	39	39405.794			15606.290	
14	40	39.	39405.794			15618.036	
14	32	33	39381.994			15574.639	
14	33	34	39385.689			15579.540	
14"	. 34	35	39389.493			15584.568	•
14	36	35	39389.493			15595.150	
14	35	36	39393.405		1	15589.821	
14	37	36	39393.409	•	AL.	15600.671	

VA JA JX UPPER TERM PROBE G(V,J) 14 36 37 39397.426 23802.252 15595.1 14 38 37 39397.426 23791.078 15606.3	ė.
VA JA JX UPPER TERM PROBE G(V,J) 14 36 37 ι 39397.426 23802.252 15595.1	ė.
14 37 38 39401.556 23800.854 15600.7 14 39 38 39401.556 23789.425 15612.1 14 39 40 39410.141 23797.998 15612.1 14 41 40 39410.141 23785.946 15624.1 14 40 41 39414.597 23796.508 15618.0 14 42 41 39419.161 23794.950 15624.2 14 43 42 39419.161 23782.327 15636.8 14 42 43 39423.834 23793.380 15630.4 14 44 43 39423.834 23780.467 15643.3 14 45 44 39438.507 23776.642 15650.0 14 46 45 39438.506 23774.652 15663.8 14 46 49 39270.388 23613.431 15656.9 14 48 49 39270.388 23599.338 15671.0 14 48 49 43116.548 27445.555 15670.9	48 02 31 43 95 89 42 11 34 67 65 57 60 50 31
14 46 47 43106.902 27450.023 15656.8 14 48 47 48106.902 27435.980 15670.95 14 47 48 43111.675 27447.830 15663.8 14 49 48 43111.675 27433.471 15678.20 14 49 50 43121.520 27440.918 15678.20 14 50 51 43126.590 27440.918 15685.6 14 51 52 39297.963 23604.715 15693.2 14 53 52 39297.963 23644.570 15761.23 15 38 39 39405.794 23632.979 15772.83 15 30 31 39374.930 23654.107 15720.83 15 31 32 39381.994 23651.962 15730.03 15 32 33 39389.493 23649.628 15730.03 15 36 35 39389.493 23649.628 15750.26 15 36 37 39397.426 23637.693 1575	79 245 245 245 245 245 245 245 245 245 245

VA ·	JA	JХ	UPPER TERM	√P ROB E	Ġ(V,J)	2701
16.		3			•	37CL
15	4.2	43.	39423.834	23638.793		
15	44	43	39423.834	23626.065	15797.769	
15	46	49	39270.388 ·	23459.147	15811.241	
15	48	49	139270.388	23445.264	15825.124	
15、	46	49	392 7.0 . 388	23459.168	15811.220	
15	45	48	\39265.151	23460.688	15804.463	
15	47.	48	39265.151	23447.079	15818.072	
15	50	51		23441.535	15839.602	
15	51	52	39286.649	23439.585	15847.064	
1,5	52	53	39292.257	23437.635	15854.622	
15	53	54	39297.963 8	23435.568	15862.395	
. 15	54	55	39303.768	23433.510	15870.258	
15	46	49	39270.388	23459.251	15811.137	: /.
15	48	49	39270.388	23445.324		
15	48	49	43116.548	27291.566	15825.064 15824.982	*
15	51	52	39297,963	23450.935		
15	53	52	39297,963	22 825 620	158 47:028	
15	51	52	39297, 963	23435.629	15862:334	٠,
15	53	52			15846.978	
15	51	52	39297.963.	* 23435.590	A\$862.373	
15	53	52		23451.021	15846 42	٠
16	38	39	39297.963	23435.677	15862.286	-
16	40	,39	39405.794	23495.313	15910.481	•
16			39405.794	23483.936	15921.858,	,
16.	36	37	39397.426	23497.769	15899.657	
	38	37	39397.426	23:186 752	15910.474	
16	39	38	39401.556	23485,456	15916.100	
16	39	40	39410.141	23493:997	15916.144	•
	41	40	39410.141	23482.346	15927.795	
.16	40	41	39414.597	23492.674	15921.923	
16	42	41	39414.597	23480.738		
16	46	49	39270.388	23310,757		
`16	48		39270.388	23297.073	15973.315	
16	47	44	39265.151	23298.734	15966.417	
16	47	. 46	39275.717	23309.268	15966.449	
16	49	46	39275.717	23295.347	15980.370	
- 16	48	47	39281.137	23307.813	15973.324	• '
16	50	47	39281.137	23293.576	15987.561	
16	49	48	39286.649	23306.246	15980.403	ø
16	51	48	3928 6. 649	23291.748	15994.901	
16	50	49	39292.257	23304.671	15987.586	
16	5 2	49.	392,92.257	23289.884	16002.373	
16	51	50,	39297.963	23303.034	15994.929	*
16	53	50	39297.963	23287.973	16009.990	
16	54	51	39303.768	23286.025	16017,743	
16 ,		52	39309.674	23284.030	16025.644	
16	56	53	39315.683	23282.039	16033.644	
16	57	54	39321.797	23279.943	16041.854	•
16	58	55	39328.015	23277.814	16050.201	-
	•					

			*		1		
VA	JÀ	ĴΧ	UPPER	TERM	PROBE	G(V,J)	37CL
16	46	49	39270	388	23310.730	15959.65	в .
16	48	49			23297.055	15973.33	
16	46	47	39260		23300.451	15959.55	
16	45	48	39265		23312.118	15953.03	
16	47	48%	39265		23298.795	15966.35	
16	49	50	39275		23295.334	15980.38	
16	50	y 51	39281		23293.574	15987.56	
16.	52	53.			23289.896	16002.36	
16	53	54	39297		23287.943	16010.020	
16	46	49	3927.0		23310.733	15959.65	
16	48	149	39270		23297.069	15973.31	
16	51		39297		23303.116	15994.84	
16	53	52	39297		23288.011	16009.95	
16	51	52	39297		23303.122	15994.84	
16	53.		39297		23288.019	16009.94	
.16	49	-5.0	. 39286		23306.338 '	15980.31	
1 6		51	39292		23304.737	15987.52	0 🚠
16	52	51	39292		~ 23289.917 /	16002.34	
16	52	53	39303		23301.398	16002.37	0 .
16.	54	53 ·	39303	.768	23286.012	16017.75	6
,16	53	54	39309	.674	23299.704		
16	- 55	54	39309	•	23284.018	16025.65	6
16	56.	55	39315		23281.980	16033.70	3
16	51	52	39297	.963	23303.182	15994.78	1 `
16	53	52	39297	.963	23288.093	16009.87	
17	38	ن 39	39405	.794	23351,924	16053.87	
17	40	39	39405	.794	23340.708	16065.08	
17	38	39	39405		23352.060	16053.73	
17	40	39	39405		23340.854,	16064.940	
17	35	36	39393		23355.429	16037.97	
17	37	36	39393		23345.057	16048.34	
17	36	37	39397		23354.350	16043.07	
17	38	37	39397		23343.685	16053.74	
17	37	38	39401	.556	23353.199	16048.35	
17	39	38 .	39401	.556	23342.300	16059.250	
17	39	40	39410		23350.865	16059.27	
17	41	40	39410		23339.371	16070.77	
17	40	41	39414		23349.611	16064.986	
17	42	41	39414		23337.871	16076.72	
17	43	42	39419		23336.348	16082,81	
17	. 44	43	39423		23334.768	16089.06	
17 17	46 · 48	49	39270 39270		23168.334 23154.863	16115.52	
17	46	49 49	39270		23168.272	16102.110	
17	48.	49	39270		23154.862	16115.52	
17	48	49	39270		23165.570	16115.56	
17	50	49	39281		23151.609	16129.52	
17	51	52	39297		23161.222	16136.74	
17	53	52	39297		23146.364	16151.599	
* ' _				-,			-

.

₿					. •	
VA	JA	JX		UPPER TERM	PROBE	G(V,J) 37CL
47	51	52		39297.963	23161.303	16136.660
17	53	52	•	39297.963	23146.456	16151.507
18	38	39		39405.794	23214.806	16190.988
18	40	39		39405:794	23203.788	16202.006
18	33	34	Ø	39385.689	23219.847	16165.842
18 '		35	G	39389.493	23218.931	
18	35	36		39393 .405	23217.950	16175,455
18	36	37		39397.426	23216.944	16180.482
18	37	38		39401.556	23215.924	16185.632
18	39	38		39401.556		16196.352
18	39	40		39410.141	23213.752	16196.389
18	41.	40	• `	39410.141	23202.443	16207.698
18.	40	41		39414.597	23212.603	16201.994
18	42	41		39414.597	23201.077	16,213.5/20
18	41	42		39419.161	23211.465	16207.696
18	42	· 43	-	39423.834	23210.277	16213.\$57 · · · ^
18		-44	٠	39428.616		
18 -		44	•	39428.616	23196.685	, 16231./931
18	46	` 45	,	39433.507	23195.197	16238/310.
18	46	49	_	39270.388	23032.053	
18		49		39270.388		
18	48 ,	49		39281.137	23029.615	
·18	50	49		39281.137	23015.896	
-18	51	, 52		39297.963	230 25 . 614	
18	5 🕯	52	. ,	39297.963	23025.654	
18	5.3	52	•		23011.084	16286.879
19	38	39		39405.794		16321.822
19	40	39		39405.794	23073.197	16332.597
19 19	31 32	32 33.		39378.408 39381.994	23090.158 23089.390	
19	3.3	34.			23088.591	
19	34	35	2	39389.493	23087.695	16301.798
19	35	36		39393.405	23086.827	16306.578
19	36	37 ⁻		39397.426	23085.930	16311.496
19	38			39397.426	23075.692	16 821 . 734
19	37 ·				23085.008	16/316.548
19	39	38	•	39401.556	23074.477	16327.079
19	39	40		39410.141	23083,055	16327.086
.19	41	40		394'10.141	23071.992	15338.149
19	40	41		39414.597	23082.006	1/6332.591
19	42	41		39414.597	23070.699	
19	41	42		39419.161	23080.955	<u>,</u> 16338.206
19	46	49		39270.388	22902.104	16368.284
20	38	39		39405.794	22959.725	16446.069
20	40	39		39405.794	22949.179	16456.615
20	34	35		39389.493	22963.055	16426.438
20	35	36		39393.405	22962.301	16431.1044
20	37	36		39393.405	22952.509	16440.896

. '	•	, •										-	
VA	JA	JΧ	UPI	PER '	TERM		PROB	E	G ((V,J))	37CI	L ·
20	36	37	393	397 <i>₹</i>	426	22	961'.	476	164	35.9	€50		
20	37	38	394	401.	556	. 22	960.	6 48	164	40.9	80		
20	39	38		401.		22	950.	366	164	151.1	90		
20	39	40		110.		22	958.	880	164	51.2	261		
20	41	40	39	10.	141	22	948.	051	164	62.0	90		
20	40	41	39	414.	597	22	957.	995	164	56.6	502		
20 "	. 42	4.1	39	414.	597 🐈	22	946.	902	164	67.6	595		
-20	- 41	4.2	394	419.	161	22	957.	091	164	162.0	70		
20	42	43	39	423.	834	22	956.	127	164	167.7	707		
20	68	69	42	789.	236	26	130.	106	166	559.	130	•	_
20	70	69 ·	42	789.	236		111,			577.4			
20	67	66	42	768.	740		118.			50.3			
20	66	67			472			193		41.			
``20	- 68			775.			116.			59			
2 Ø.	67	68		782.				159		50.			` #
20	69	68			304			064		68.		•	•
	69	,70		796.			128.			68.			,
20	· 71	70		796.				452		86.8			•
20.	72			803.				093.		96.			
21.	68	69		789.		15		634		771.0			
21	70	69		•	2363		999.			189.4			. 1
21,	64	63		7.49 .			011.			7,37°.2 7,45°.			`
21	65	64		755.			009.			7.54			0
	66	65		762. ⁻			023.	893		45.			•
21	65 67	66 66		768. 768.			005.	000 A.	. 16				
21	66	67.		700 775.			021.			754 .			
21 21	68	67		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			003.			771.			
21	67	. 68'		782.			019.			762.			
21	69	68		-	304		001.			780.			
21 21	69	70		796.		•	015.			78'0.			•
21	. 71	70		796.			997.			798.			
21	70	71		803.			013.			789.			
21	72	7∗1	1 12	803.			995.		່ 16ຄ	307.1	811		
21	71	72	42	810.			012.			798.			
21	7.3	72	42	810.			993.		168	317.	169	-	
21	72	73	. 42	817.	961	26	010.	130		307.			
21 -		73	42	817.	961	25	991.	309	168	3,26.	652		
21	7.3	74	42	825.	391	· ·	008.			317.			
	75	74		825.			989.			336.			
21	74	75	•		921		006.			326.			
´21 ′	76	75		832.			5986.			345.			
21.	· 77·	7.6		840.			984.			855.			•
21	78	77		848.			5982.			865.			
21	79	. •		856.			980.			875.			
21	8.0	79		864.			977.			886.			
23	68	69		789.			814.			974.			
23	. 70	69	4.2	789.	236	. 25	778.	071	То.	991.	ŤΦ 3	,	
•										•			
	- ,	-	•										
	-												-
			•			•							

, **@**

X.

VA	JA	JХ	Ĭ	JPPER	TERM		PROBE		·G(V,J)	37CL
24	30	31		42746	492		25906.489		16840.00	3
24	32	31		42746			25898.896	•	16847.59	6
24	68	69		42938			25874.600		17064.13	
24	70	69		42938	_	-	25858.302		17080.43	
24	67	66		42918			25862.183		17056.14	
24		67		42925			25860.910		17064.11	
	69	68		42931			25859.644		17072.19	
24		70		42945.			25857.024		17088.71	
						•	25855.706	•	17097.14	
24	72	. 71		429.52			25854.354		17105.69	
24	73 ·	72		42960			25725.150		17064.08	
24	68	69		42789		٠,			17089.00	
*24	70	69		42789			25708.833			
25	30	31		42746			25816.957	•	16929.53	
3 5	32 -	31		42746			25809,627	•	16936.86	
25	4.8	49		43116			26104.364		17012.18	
25	- 50	49 4		43116			26092.942		17023.60	
25	68	69		42938			25792.791		17145.94	
2,5 4	70	69 •		42938			25777.093		17161.64	•
26	68	69		42938		`	25718.992		17219.74	
26	70	69		42938	. 738		25703.908		17234.83	
27	30	·31 ,		42746			25660.645		17085.84	7
27	32 +	- 31		427.46.			25653.807		17092.68	5
. 27	48	49		43116		٠.	25954.099		17162.44	9, 3
27	50 '			43116			25943.529		17173.01	.9
27	68	;69		42938			25653.232		17285.50	6
. 27	70	69		42938			25638.758		17299.98	0
28	25	. 28 [°]		42881		•	25743.036		17138.23	
28	27	28		42881			25737.500		17143.77	
28	31	3Q		42898			25742.751		17156.20	
		. 30		42898			25735.975		17162.97	
28	33	49.		43116			25890.326		17226.22	
28	48						25880.273		17236.27	
28	50	49		43116			25595.119		17343.61	
28	68	69	•	42938			25593.119	•	17357.32	
.28	70	69		42938			25830.068		17183.52	
29	18	19		430.13					17187.44	
29	20	19		43013			25826.156			
29	30	31		42746			25533.754		17212.73	
29	32	31	•	42746			25527.488			
29	48	49		43116		•	25833.812		17282.73	
29	50	49		43116			25824.168	•	17,292.38	
29	68	69		42938			25544.433		17394.30	
29	70	69		42938			25531.470		17407.26	
29	√ 71	72		42960			25546.217		17413.83	
29	73	72		42960	•		25532.797		17427.29	
, 29	. 70	71		.42952			25545.599		17407.24	
29	72	71		42952	.846		25532.355		17420.49	
29	69	70		42945			25545.016		17400.72	
29	71	70		42945	.742		25531.941		17413.80)1

VA	JA	JX	UPPER	TERM	PROBE	. ~	G(V,J)	37CL *
29	67	68	42931	.834	25543.845		17387.98	
29	69 [°]	68	42931.		25531.088	']	17400.74	6 '
·29	66	67	42925	.029	25543.343	•]	17381.68	6
29	68	67	4.2925	.0-29	25530.736]	17394.29	3 .
29	65	66	42918.		25542.841	3	17375.48	12
29	67	66	42918		25530.389	3	L7387.93	4
29	64	·65	42911		25542.367]	17369.35	· 0
29	66	65	42911.		25530.069		17381.64	
29	63	64	42905		25541.935	•]	L7363.27	'5
29	65,	64	42905		25529.773		L7375.43	37
30	23	26	43377		26164.647]	17212.37	6 * '
30	25	26	43377		26160.035]	L7216.98	18 * ·
30	68	`69	42938		25500.510]	L7438.22	28 -,
30	70	69	42938		25488.263		17450.47	
30 '	73	72	42960		25490.760]	17469.28	88
30	72	71	42952		25489,916		L7462.93	
30	71	70	42945		25489.077		17456.66	
30	69 -	68	42931		25487.526		17444.30	
30	68	67.	42925		25486.775		17438.25	
31	18	19	43013		25726.983		17286.61	
`31	20	19	43013		25723.432		17290.16	
31	· 20	21	42112		24822.411		17290.16	
31	22	21	42112		24818.497	•	17294.08	
31	27	28	42881		25575.987		17305.28	
32	18	19	43013		25684.047		17329.5	
32	20	19.	. 43013		~ 25680.679		17332.91	
32	20	21	42112		24779.683		17332.89	
32	22	21	42112		24775.987		17336.59	
32	23	26	43377		26068.468		17308.55	
32	25	26	43377		26064.277		17312.7	
32	48	49	43116		25702.031		17414.5	
32	50	49	43116		25693.888		17422.66	
33	20	21	42112		24741.909		17370.67	_
≆33	22	21	42112		24738.412		17374.16	
33	23	26	43377		26028.361		17348.66	
33	25	26	43377		26024.385		17352.6	
34	20	21	42112		24708.646		17403.93	
34	22	21	42112		24705.343		17407.2	
3.4	23	26	43377		25992.916		17384.10	
34	25	26	43377		25989.205		17387.8	
35	20	21	42112		24679.637		17432.9	
35	22	21	42112		24676.462		17436.1	•
36	20	21	42112		24654.353		17458.2	
36	22	21	42112		24651.431		17461.1	
36	20	19	42108		24650.198		17458.2	
· 36	19	20	42110		24653.602		17456.8	
36	21	20	42110		24650.796		17459.6	
36	21	22	42114		24655.192		17459.6	
36	23	22	42114	•	24652.125		17462.6	
20	43	44	47774	.020	240760427		~ / 1 0 & 10	

>	VA	JA	JХ	UPPER TERM	PROBE *	G(V,J)	37CL
	36	22	23	42117.162	24656.041	17-461.121	•
	36	23	24	42119.606	24656.932	17462.674	
	36	24	25	42122.152	24657.873	.17464.279	
	36	25	26	42124.799	24658.861		
	37	20	21	42112.580	24632.597.	17479.983	
	37	22 ,	21	42112.580	24629 854	17482.726	
	37	20	19	42108.405	24628.415	17479.990	
	37 37	21	20	42110.442	24629.116	17481.326	
	37	23	22	42114.820	24630.687		•
	3 <i>1</i>	20	21	42112.580	~ 24614.Q44_ '	17498.536	
			21	42112.580	24611.519	17501.061	
	38	22			29493.750	13541.288	
	2	60	60	43035.038	29472.997	13562.041	
	2	62	60	43035.038	494/4°33/	13503.523	
	3	26	28	43032.228		13512.730	
	3	28	28	43032.228	29519.498		
	3	27	29	43035.012	29527.003	13508.009	
	2 3 3 3 3 3 3 3	29	29	43035.012	29517.422	13517.590	
	3	28	30	43037.895	29525.161	_	
	3	30	30	43037.895	29515.265		
		29	31	43040.878	29523.272	13517.606	
	3.	31	31	43040.878	29513.034		
	3 3 3 3 3 3 3 3 3 3 3	30	32	43043.960 -			. 9
	3	32	32	43043.960	29510.740	13533.220	,
	3	31	33	43047.142	29519:298	13527.844	,
	3	33 -	33	43047.142	29508.376	13538.766	
	3	32	34	43050.424	29517.213	13533.211	
	3	34	34	43050:424	29505.968	13544.456	
	3	35	35	43053.805	29503.481	13550.324	
	3	[*] 36 '	36	43057.285	29500.920	13556.365	•
	· 3	50	50	43126.532	29467.945	13658.587	ъ
	3	52	50	43126.532	29450.703	13675.829	
	· 3	50	50	43116.480	29457.893	13658.587	
	<i>,</i> 3	51	51	43121.456	29454.315	13667.141	
	3	51	53	43131.708	29464,558	r3667.150	
	3	53	53	43131.708	29446.965	13684.743	
_	3	54	54	43136.984	29443.192	13693.792	
-	3	55	55	43142.360	29439.342	13703.018	
	3	60	60	43035.038	29283.399 '	13751.639	' • · ·
	3	62	60	43035.038	29262.826	13772.212	
	` 3	54	54	42999.950	29306.164	13693.786	
	3	55	55	43005.547	29302.526	13703.021	
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	56	56	43011.244	29298.854	13712.390	•
		57	57	43017.042	29295.083	13721.959	
	ე ე	5 <i>7</i>	57	43017.042	29275.494	13741.548	
	3 3	58	58	43022.940	29291.247	13731.693	
	3 3 3 3 3	60	58	43022.940	29271.338	13751.602	
	3 2	59'	59	43028.939	29287.352	13741.587	
	3	61	59 ·	43028.939	29267.121	13761.818	
	-5	OT	27	マンリムロ・フンブ	676010461	201011040	

٠ ،

Ø

VΑ	JА	JХ	UPPER TERM	P ROB E	G(V,J)	37CL
, 3	61	61	43041.237	29279.384	13761.853	
	63 ′		43041.237	29258.475	13782.762	
3	62	62	43047.537	29275.293	13772.244	
- 3				29254.048	13793.489	
3	64	62		29271.135	13782.803	
3 3 3	63	63	43053.938			
3	· 65	63	43053.938	29249.559	13804.379	
4	29	31	43040.878	29314.948	137-25.930	
4	31	_31	43040.878	29304.798	13736.080	
4	18	20	43013.540	29331.669	13681.871	
4	19	21	43015.528	29330.437	13685.091	
.4	20	22	43017.615		13688.374	
4	21.	23	43019.802		13691.895	
4	. 22	24	43022.088	29326.529	13695.559	
4	23	25	43024.474		13699.389	
4	24	26	43026.959	29323.577	13703.382	-
4	25	27	43029.544	29321.990	13707.554	
4			43032.228	29320.342	13711.886	
. 4	26 27	29	43035.012	29318.636	13716.376	
. 4	29	29	43035.012	29309.106	13725.906	
4	28	30	43037.895	29316.848	137 .047	
4.		30	43037.895	29307.018	13 0.877	
4	30	32	43043.960	29313.085	13730.875	
4	32	3.2	43043.960	29302.590	13741.370)
4	31	33	43047.142	29311.126.	13736.016	
4	33	33	43047.142		13746.871	
		34	43050.424		13752.523	
4	34		43053.805 :	29295.439	13758.366	
4	35	35 ^		29292.923	13764.362	
4	36	36	43057.285	29292.923	13770.514	
4	37	37	43060.866		13776.844	
4	38 .		43064.545			
. 4	39	39	43068.325		13783.323	
4	40	_e 40	\43072.204	29282.231	13789.973	
4	41	41	43076.183	29279.393	13796.790	
	4.2	42	43080.261	29276.468	13803.793	
4	^ 43	43	43084.440	29273.505	13810.935	
4	44	44	43088.718	29270.453	13818.265	
. 4	45	`45	43093.095	29267.348	13825.747	
4	46	46	43097.573	29264.185	13833.388	
4	47	47	43102.150	29260.949	13841.201	
4	48	48	43106.827	29257.640	13849.187	7 4
4	52	50	43126.532	29243-203	13882.735	5
4	41	41	43084.440	29287.679	13796.761	L
4	42	42.	43088.718	29284.979	13803.739	•
4-	43	43	43093.095	29282.197	13810.898	
4	44	44:	43097.573	29279,379	13818.194	Į
4	45	45	43102.150	29276.442	13825.708	
. 4	46	46	43106 827	29273 469	13833.358	
4	47		43111.603	29270.432	13841.171	
*8	~2 /	47				

VA	JA	JX		UPPER TERM	PROBE	G(V,J) 37CL
4 4 4 4 4 4	48 49 53 54 56 58 59 60 61 62	48 49 53 54 56 58 59 60 61 62	3	43116.480 43121.456 43131.708 43136.984 43147.836 43159.088 43159.088 43164.863 43170.739 43176.715 43182.791	29267.335 29264.169 29240.165 29236.464 29228.846 29220.984 29216.953 29212.875 29208.702	13849.145 13857.287 13891.543 13900.520 13918.990 13938.104 13947.910 13957.864 13968.013
44455555555555555	60 62 27 29 29 31 27 29 28	31 29 29 30		43328.780 43328.780 43040.878 43040.878 43035.012 43035.012 43037.895	29077.156 29056.761 29408\$048 29398.68\$ 29110.857 29110.774 29114.385 29105.003	14010.210 13957.882 13978.277 13920.732 13930.093 13930.021 13940.104 13920.627 13930.009 13925.232
		50 50 29		43037.895 43043.960 43047.142 43047.142 43126.532 43126.532 43328.780 43328.780 43035.038 43035.038	29096.317 29058.017 29041.061 29208.049 29198.745 27588.988	13945.368 13940.135 13950.825 14068.515 14085.471 14120.731 14130.035 15446.050
14 14 18 18	50 52 53 52	500 500 512 523 534 555 555		43035.038 43126.532 43126.532 39470.675 39476.436 39476.436 39482.305 39482.305 39488.284 39488.284 39494.371	27570.265 27440.880 27425.614 23183.774 23196.839 23182.033 23195.358 23180.295 23193.832 23178.512 23192.227	15464.773 15685.652 15700.918 16286.901 16279.597 16294.403 16286.947 16302.010 16294.452 16309.772 16302.144
18 18 18 18 18 18	57 56 50 52 49	55 56 50 50 49		39494.371 39500.566 39465.023 39465.023 39459.479 39459.479	23192.227 23176.621 23190.722 23199.783 23185.350 23201.161 23187.160	16302.144 16317.750 16309.844 16265.240 16279.673 16258.318 16272.319

		_		•	
VA	TA	JХ	UPPER TERM	PROBE	G(V,J) 37CL
18	48	48	39454.044	23202.568	16251.476
18	50	48	39454.044	23188.825	
18	47	47	39448.7 <u>1</u> 8	23203.873	16244.845
18	49	47	39448.718	23190.468	
18	46	46	39443.501	23205.137	16238.364
23	33	35	42606.202	25851.221	16754.981
23	35 35	35	42606.202	25842.643	
23 24	33	35	42606.202	25754.619	16851.583
24		. 35		25746.286	16859.916
24		29	42587.193	25750.720	
24	29	30		25750.720	
-24	30 31	31	42590.110 42593.127	25749.379	16840.022 16843.748
24	30	32·	42596.244	25756.263	
24	32	32	42596.244		
24	31	33	42599.463		
24	33	33	42599.463	25747.857	16843.735 16851.606
24	32	34			
24	34	34	42602.782	25755.179	
24			42602.782 42609.722	257.47.086	16855.696
24	34	36 36	42609.722	25754.030 25745.470	16855.692
24	36 25				16864.252
24	35	37 37	42613.344	25753.425	16859.919
24	37	38	42613.344	25744.622	16868.722
	38 39	39	42617.066	25743.742	16873.324
25	. 39 54	54	42620.889	25742.873 25952.248	16878.016
25 25	56	54	42999.950 42999.950	25939.475	
25	52	5 2	42989.057		
25 25	54	52	42989.057		
25	53 _,	53	42994.453		
25	55°	53	42994.453		
25	55	5.5	43005.547	25951.506	
25	57	55	43005.547	25938.516	17067.031
25	56	56	.43011.244	25950.783	17060.461
25	58	56	43011.244	25937.554	17073.690
25	60	60	43035.038	25947.677	17073.090
25	62	60	43035.038	25933.63	17101.407
26	33		42606.202	25583.908	17022.294
26	35	35	42606.202	25576.138	17030.064
26	32	34	42602.782	25584.218	17018.564
26	34	34	42602.782	25576.646	17016.364
26	34	36	42602.782	25583.541	17026.131
26	36	36 ·		25575.600	17034.122
26	54	54	42999.950	25874.555	17125.395
26	5 6	54	42999.950	25862.283	17125.595
26	52	52	42989.057	25875.554	17113.503
26	54		42989.057	25863.673	17125.384
26	5 5	\$2 523	42994.453	25862.982	17131.471
26 ·		55	43005.547	25861.568	17143.979

			*	. •	
VΑ	JA_a	JХ	UPPER TERM.	PROBE.	G(V,J) 37CI
26	56	56	43011.244	25873.561	17137.683
27	54	54	42999.950	25804.651	17195.299
27	56 ∼	54	42999.950	25792.915	17207.035
27	60	.60	43035.038	25803.226	17231.812
27	62	60	43035.038	25790.335	17244.703
28	27	29	43328.780	26184.948	17143.832
28	29	29	43328.780	26179.019	17149.761
28	50	50	43126.532	25890.270	17236.262
28	52	50	43126.532	25879.803	17246.729
28	54	54 /	42999.950	25742.343	17257.607
28	56	54	42999.950	25731.153	17268.797
28	60	60	43035.038	25742.627	17292.411
28	62	60	43035.038	25730.309	17304.729
29	29	31	43040.878	25831.024	17209.854
	31	31	43040.878	25824.966	17215.912
29	41	41	43084.440	25832.465	17251.975
29	43	41	43084.440	25824.130	17260.310
29	50	50	43126.5.32	25834.196	17292.336
29			43126.532	25824.139	17302.393
29	52	50	42999.950	25687.271	17312.679
29	54	54	•	25676.600	17323.350
29	56	54	42999.950	26070.947	17257.833
30	27.	29	43328.780 43328.780	26065.547	17263.233
30	29	29		25638.936	17361.0,14
30	54	54	42999.950		17392.381
30	60	60	43035.038	25642.657	17403.433
30	62	60	43035.038	25631.605	17305.344
31	27	. 29	43328.780	26023.436	17310.485
31	29	29	43328.780	26018.295	_
31	54	54	42999.950	25596.714	17403.236 ; 17412.791
31	56	54	42999.950	25587.159	
31	51	51	42983.761	25594.359	17389.402
31	52	. 50	42978.565	25584.615	17393.950
31 .	52	52	42989.057	25595.113	17393.944 17403.204
31	54	52	42989.057	25585.853	
31	53	53	42994.453	2559.5.901	17398.552
31	55	53	42994.453	25586.485	17407.968
31	55	55	43005.547	25597.599	17407.948
31	57	55	43005.547	25587.863	17417.684
31	56	56	43011.244	25598.461	17412.783
31	58	56	43011.244	25588.596	17422.648
31	57	57	43017.042	25599.376	17417.666
31	5 9	57	43017.042	25589.351	17427.691
31	58 ,	58	43022.940	25600.270	17422.670,
31	60	58	43022.940	25590.120	17432.820
31	59	5 9	43028.939	25601.249	17427.690.
31	60	60	43035.038	25602.177	17432.861
3,1	62	6 0°	43035.038	25591.743	17443.295
31	61.		43041.237	25603.186	17438.051
31	63	61	43041.237	25592.632	17448.605

The state of the s

VA .	JA -	JX	UPPER	TERM	PROB E	G(V,J) /37	ĊL.
31 32 32 32 32 32 32 32 32 32 32 32 32 32	517968809129113029113467890021302809 5455455555566641302809	5999880011211110099114456780011008889 5999880011211110099114456780011008889	43028 43328 43328 43326 43331 43331 43334 43337 43040 43084 43121 43121 43121 43121 43121 43121 43131 42999 43005 43011 43022 43035 43084 43084 43126 43126 43126 43126 43126 43126 43126	939 939 939 780 018 018 0642 060 060 060 060 060 060 060 06	25601.204 25590.922, 25981.456 25976.576 25980.989 25976.270 25981.911 25976.837 25982.377 25977.144 25977.515 25688.639 25688.639 25688.969 25703.792 25695.343 25702.831 25696.185 25696.185 25551.027 25552.006 25555.152 25557.448 25671.035 25661.384 25671.035 25663.691 25669.836	17427.735 17438.017 17347.324 17347.324 17345.029 17349.748 17349.731 17354.805 17352.225 17357.458 17360.145 17352.239 17357.441 17422.740 17431.189 17426.923 17426.923 17426.923 17426.923 17426.923 17426.923 17453.541 17458.223 17453.541 17458.223 17453.541 17458.223 17467.788 17467.806 17477.590 17423.056 17429.799 17455.497 17463.441 17447.815 17455.456 17451.620	CL.
33 33 33 33 33	41 43 50 52 48 50	41 41 50 50 48 48	43084 43084 43126 43126 43116	.440 .532 .532 .480 .480	25661.384 25654.641 25671.035 25663.091 25668.665 25661.024	17423.056 17429.799 17455.497 17463.441 17447.815 17455.456	
33 33 33 33 33 33	51 51 53 52 54 53 27	49 51 51 52	43121	.456 .708 .708 .984 .984	25662.089 25672.262 25664.204 25673.536 25665.354 25674.830 25859.171	17459.417 47459.446 17467.504 17463.448 17471.630 17467.530 17469.609	
36 37.	29 27	29 29 29 29 29	43328 43328 43328 43328 43328	.780 .780 .780 .780	25855.358 25838.151 25834.610 25820.427 25817,141	17473,422 17490.629 17494.170 17508.353 17511.639	•

nal levels of the ground state, Preliminary communication, Molec. Phys., 53, 2, pp.525-529 (1984)

8- Brand J.C.D., Bussières D. and Hoy A.R., The A' ($^3\,\pi_2^{}$) state of IC1, submitted to J. Mol. Spectrosc.