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ABSTRACT

\

The fixed charge problém extends fhe linear programming,
ﬁroblem by incorporating a diécog;inuity in the objective
function at an activity .Level of zero. The objective
function value is zero with ;n activity level of zerét“ Any

Cactivity level abbve -2PIQ has a finite non-variable
component in the objective function plus a component which
is proportional to the activity level. Other

~ discontinuities in the objective function can be represented
by different référmulations. These formulations are useful

in approaching a number of managerial problems in areas such

as facility location, {§)oduétion planning or manpower

‘\

planning.
~j "' As fixed charge éroblems become large, various methods
’ of obtaining the optimal solution have ) excessive
computational requirements. As a result, a number 9f
methods have been developed for obtaining good but not
necessarily ogtimal solutions. These lgpproximate methods

are able to solve much larger proble@g. |
~- Considerablé success has beenu*achiéved with  both
optimizing and approximafe algorithms for problems with a:
special structure. Howeyer,‘algorithms, both optimizinq qad
Js"' *_approximate, capable of solving. any fixed charge problem °

.. have been successful with much smaller problems. With many

“n aoms

iii




[

problems requiring a general formulation, there is a need

for an effective method of solving large qu?ral fixed

charge problems.

A new approximate splution technique‘will be introduced .

which will be based on necessary conditions- which must‘ be

met by a solution plus quasi-sufficient conditions~which

s
. e

will indicate either a good solution or an improvement which

]

can be made. The new technique will wuse heuristics tb

incorporate the fixed chargeé into the obiective function
through a seriES of cost allocations.

The new solutlon technique will be evaluated on a

N

number “of large general fixed charqe problems 1nciud1nq test

problems and a ,w1de variety of actual applications. In
addition, a comparative analy51s 1s made with \glternatlve
solution methods. The results. indicate thaq\ the \nev
solution technique prov{des ‘a significant impro&ement to

existing methods for solving large fixed charge‘prob;ems.

| C
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CHAPTER 1

INrRODUCTION &

The fixed charge problem as defined by Hirsch and
Dantzig [45] is an extension of the linear programming
problem to include a fixed component in ’the o?qective
function whenever a decision variable is strict}é greater
than zero. Thus, there isﬁa discontinuity in the}éobjective
function at an activity level of zero.  The obje;tive
function value is zero when the activity level is zero while
an activity level above =zero implies a finite fixed
component as well as variable component pnoportiong& to the
activity level. The Hirsch and Dantzig formulation can be
modified to include other discontinuities in the objective
function such as economie$ of scale and volume discountsg.
These formulations are useful in a wide variety of

>

manégefial applications whigh‘fequire models with var;oué
discontinuities in the objective function.

By ignoring the fixed charges, ‘a linear progrémming
algorithm can’ provide a feasible sblution to a fixed chafqe
problem. ?owever, the objective function value of such a
solution may be poor in relation to the optimal value. A
number of techniques have beeﬁ develoéed for determining the

optimal solution to a fixed charge ' problem. ~ Due to the

combinatorial nature of the fixed charge problem, the
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computational requirements of optimizing -techniques become

excessive as the size of = the problem increases.
Consequentiy, a number of techniques have been developed
which provide good, but pot necessarily optimal, solutions
to fixed charge problems w%ich are satisfactory for decision
making purposes. These approximate methods are able to

solve much larger fixed charge problems with less

—

-
. )

computationa;\effort.

' Considerable success has been reported for solution
techniques, both optimizing -and approximate, which will
solve problems with particular structpggs. These structures
are exploited by; the techniques to éain computational

efficiencies. However, current algorithms which are capable

of solving all varieties of fixed charée problems have been

.successful at consistently generating optimal or even good

solutions for problems of, at best, a modest size.t Since
many problems can not be solved by the specialized solution
techniquEET‘thé?%'is a need for a .technique which is capéble
of obtaining optimal or good solutions to any large fixed
charge problem.

A new solution gechnique will be introduced for éolvinq
all varieties of Q{xed charge probiems including® large
problems. Thg new tggﬁnique will be based first on a number
of necessarv condit;bqs 'whiﬁgNAmust be met before any

solution can be considered to be the optimal solution.

While these conditions must be met, they are not sufficient

-
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to guarantee an optimal .solution. Due to the combinatorial
nature of the fixed charge_ pgobleﬁ; Lruly sufficient
conditions which are easy to aéplyjfor large problems are
difficult to develop. TQus, the new technique will be an
approximate solution  method obtaining 'good "but  not
necessarily optimal solutions " to anyifixed charge problem.
The second part of the new tecﬁnique will introduce’ a number
of quasf-sufficient conditions which, if met, will indicate
a good solution which can not be improved with reasénable
effort. Both the neéessary aﬁd quasi-sufficient conditioﬁs
will be: based on an allocation of the fixed charges. Thus,
the acronym COAL. for COst ALlocation will be used in
referring to the new technique. The COAL technique is
intended for obtaininé good solutions to large problems from
all application areas where the fixed charge formulation is
appropriate. This focus, all and large, will be maintained
in the design prp¢es§.' ) ‘ g

The fixed charge problem formulation can be applied to
a wide variety of applica;ion areas which includes facilitv
location, production planning and manpower planning. Within
each area, all the problems would have a similar underlying

Y -

structure such .as the transportation problem. If the

-

problem‘canibe described completely by such. an wunderlying

structure, it will bhe refegéed to as a specialized fixed

charge problem.. It is theSe specialized areas where the
successful solution of relatively larae problems has been
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reported. The:various optimizing and approximate methods
exploit the basic structure to gain computational

efficiencies,

If a problem has additional features or requirements iﬂ
addition to the basic structure, such as a blending
requirement, the problem is no longer a specialized fixed
charée?prgblem. The§e problems can only be classified as
general fixed charge problems. The 'various algorithms
des%gned for the structure of a specialized problem can not

be used for such fixed charge problems. The techniques

RS

capable of providing optimal or even good ,solutions to
general fixed charge problems Are limited to much smaller
prob%ems. More dé%ailéd descriptions of both the .problem
areas. and the general and ;peciaiized solution techniques
are given in Chapter 2.

Chéﬁter 3 will introduce the conceptual foundation
under}ying the new COAL technique involving the allacation
of the fixed chargdes. Necessary and quasi-sufficient

-~

conditions must be met before a solution can be considered a
- . -
candidate for the optimal solution or as a good solution.

Heuristics will be used to modify the allocations in order
to find improved solutions. The conditions and heuristics
will be combined into folr different algorithms each

-

possibly generating different solutions and requiring

different computational effort.




The four algorithms of the COAL technique are evaluated

Ain Chapter 4 using not only test problems from the

literature but also several actual applications from the
different problem areas. As well as evaluating the COAL
techniques on their own, a comparative analysis is made with
a numbher of technigques for solvinq large general fixed
charge probleﬁs. The various techniques are evaluated on
the samé computer system. The actual implementation of
alternative algorithms is programmed as accurately " and
efficien%ly as possible. The impact of different aspects,
sqch_as ﬁroblem size, which have an effect on the difficulty
of solving a fixed charge problem is alsq {nvestigated.

The solution of fixed charge problems involves two
dimensions: the quality of the solution and the.resources
required to obtain the solution. The trade-off between the

two dimensions will be described through the use of an

efficiency frontier. Algorithms on the efficiency frontier

will obtain a certain qualitv of solution with the minimum
resoﬁrce requirement. An efficiency frontier . will be
developed for each application area allowina an evaluation
to be made of the different algorithms within the particular
area. The consistency of ‘the algérithmg across the
different areas can also be determined.

The new COAL techpique is  consistently ;n the
efficiency frontier for all application areas. Other

methods which obtain approximate solutions to fixed charge




problems do not demonstrgte‘"this consistency. For.larqer
problems, the exedution times reQuiged by the COAL
algorithms are considerably less ;han.alternative algorithms
which opﬁain the éame'guality df.solutiqn. ~In addition, the
QOAL téchnique achieve; .good solutions: with relatively
modest resource requirements-again.in all the areas tested.

Wﬁile the .COAL technique is- developed with  the
obﬁective\of_ éolving large generél fixed charge probléms,-

other possible designs or heuristics could be 'incorppfated
Mfor other | purposes. Sémé of théSe ;spects are discussed in
CHapter 5. Elements from alternative algorithms couid; be
integrated in the new COAL technique. The COAL technique
could be modified té apply to problems other than large
general fixed charge problems. The désign focusz large and
all problem areas, has an impact on the choices made in the
development of the four COAL algorithms. Different choices
in the design could be made. These include modifications to
the heuristics as well as how the heuristics are usedﬂkn the

new COAL algorithms. These aspects provide many

possibilities for further productive research.
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2.1 Overview

A wide variety of decision probléhs in management can
be characterized by the existence of fixed charges. A .fixed

charge can be defined as a finifp non-variable cost

associated with an activity leveél which is<greater than

zero. Although fixeds. charges can occur in many problem

settinés, the fixed charge prob,em_was‘defined by Hirsch and’

[# LY
Dantzig [45] in 1954 as a linear .programming. problem with
ot P

fixed charges in the cost structure. Their cost structure
Ct

P
-0

is illustrated in Exhibit 2-1 which demonstrates how the
total cost due to both a fixed chafge and a linear cost

varies with the actiwjty level of a vari%ble.

2 1

¢ ' ‘\‘t’h : “ K

Exhibit 2-1: A Fixed Charge and A Linear Cost

Total Cost

]

Activity
Level

e e s p——

A




< The problem as defined by Hirsch and Dantzig will be
referreq‘to as the "general fixed charge éroblém" which, of
course,'can be-applied to ‘all linear™ programming problems
with fixed charges. In contrast, the characteristics of
certain problems .may be repreéénted by - specialized
structures such as the tngﬁsportatiqn problem. If a ppéblem
can be described completely by sucﬁ a specialized structure
E%h with.fixed charges, it wil; be referred to as a "speciaiized
; ¢ T fixed charge péoblem". A problem which has a specialized
structure plﬁs additional features or a mixture of.
structures can not be classified as*‘ a specialized Efixed

'\ charge problem.- - . .
. ‘ The areas were the fixeé charge problem can be applied
can be classified by their structure. Problems from the
~same area will, of. course, face similar decisions and
. difficulties and hence will require the same structure.:
While not all problems in a particular area will be "pure",
,' phere will be a co&mon structural element in these‘problems.
‘ The apﬁroaché§ to sélving fixed cﬁarge problems can be

classified into thdse techniques which can handle any fixed
- AY \ -~

a charge problem (the géneral fixed charge problem)' and those
whiqh are restricted\”to a particular specialized _fixed

. ' chargé problem. These Specialized techniques gain

A

tremendous efficiencies by ‘exploitinq various structural

’

features but are more restrictive in their applicability.

4 .
The latter techniques require that the problem be 4
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specialized fixed charge prbblém. Problems having.a mixture
of structures requireca solution technique which can handle
the general fixed charge problem. 4

Before discuss}ng the applicationé and the solution
techniques of the"fixed charge problem, a:- mathematical

formulation wiil be p}esented.

2.2. Mathematical Formulation

The integration of the fixed charges into a linear
programming model 1leads- .to a -non-linear programming
formulation.” The term, (NLFCP), will be used to refer to

the non-linear gixedgtgharqe probiem formulation which is

-
«
§

given/in Exhibit 2-2.

Of course, the fixed charge prohlem can be formulated

-as a mixed integer programming problem. This formulation of

the mixed-integer fixed charge problem or (MIFCP) is bery

common and is given in Exhibit 2-3. A binary variable, Yﬁ,

is used as a means of representing the discontinuous nature

of the fixed charges. To'be consistest with (NLFCP), the

»

coeffzéient, "u", will havé to _be larger than any upper

|

limit for all Xj. However, most p}obiemé using (MIFCP) will

replace the -"u” in each equation by a -"uj" which will

represent the actual upper limit for® the respective Xj.
Unfortunately, this formulation requires an additional

variable, 'Y andbequation for each fixed charge.

jr
The original concept of a fixed charge is demonstrated

N
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Exhibit 2-2: The Non-Linear Fixed Charge Problem

(NLFCP) minimize z =2 (csX: + fjé(xj) )

i 3
subject to:
. e Zaijxj =bi ¥ i
: J
—_r-’ 3
1 if X.>0 -
. sx) =4 1wy
0 if Xj=0 ;
X,
320
where:
j = index of variable
. kj = activity level of j \
¢y = linear cost coefficient of j ‘ -
> fj = fixed éharge of j

.

’ LA
< .
[

in Exhibit 2-1 which illustrate; how the total cost varies.
with Xj..;This céncept of handling fixed charges can be
extendeé to other discontinuities such as economies of
scale, minimum threshold level, price breaks and fixed
charges at different levels. These extensions are presented
in among others Gray [37], Walker [93] and Rousseau [78] and
are discussed below. P |

Economies of scale are illustrated by the solid line in

e
03

Exhibit 2-4 wvhere a lower unit cqst' is incurred once a

certain threshold 1level (tj) is reached. This can be

e g e e f e

b - e e s h e

8

— - —— s
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Exhibit 2-3: The Mixed-Integer Fixed Charge Problem

MIFCP minimize = c.X. + Y.
( ) ‘ 2 = )0 cyXy + £5¥5) ‘
J .
subject to:.
Z ainj = bi ¥ i'
]
X.- . < ;
574 Y] < p ¥ 3
. > i
j 2 0 v j 3
Yj "_T -0,1 V J s
where: i
A - u=a large number -
T £
transformed into a fiked charge problem by uéing the

relationship xj;xj(l)+xj(2) -.to represent the variable xi

with economies of scale. As shown in Exhibit 2-4, the

variable, Xj(l), has only a linear cost. Variable Xi(Z) has

a fixed charge and a smaller linear cost representing the
economiés of < scale. Walker [93] shows that no  other
constraints are required. A technique which obtains the

optimal solution will choose the correct variable, ,either’

&

X.

J(l) or X4(2).

A minimum threshold level can also be transformed into

a fixed charge. With a minimum threshold, a variable must

be greater than a flanagerially determined minimum level or

else zero.- This 1is transformed into a fixed charge in

e e U S =
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Exhibit 2-4: Economies of Scale

4

Total Cost
L

/ N Activity
. Level

BExhibit 2-5. The variable, xﬁ, has a fixed charge and no

linear cost. The minimum threshold is denoted by tj. The
fixed charge is equal to the actual linear cost times the
minimum threshold level. Therefore, once the minimum

threshold cost is overcome, there is no additional cost to

Xj’ However, an additional wvariable is required to

represent the increased costs above the minimum threshold.
This variable, Xj(l), will have the linear cost but no‘fixed

jr will insure that the

’ variable takes on its proper value to account for the

charge. ”The constraint, Xj(l)lxj't

incremental cost above the minimum threshold level.

By combining' the ﬁrevious extensions, other
diécontinuities can be modeled. Price breaks were a, lower
unit price is charged above a certain level, tj’ wouid
}nclude both economies of scale and minihpm;threshold level




Exhibit 2-5: Minimqm Threshold Level

o

.

Total Cost -

b}
v X"
. | | 51 ‘
) X. >X.-t.
X, / 32yt
J : ) .
e e R e R e
Activity
Level g
t.
.

(Exhibit 2-6). Incorporating fixed charges aty, different
o levels is illustrated in Exhibit 2-7,.
. The Hirsch and Dantzig :[45] fixed charge variable -
. illustrated: in Exhibit 2-1 assumes one fixed charge
associéted with one variable. This could.he extended to one
fixed chérge assoé?éted with a group o§ variables by

replacing each X. with the sum of several X.. These

] ]
extensions greatly increase the flexibility and
- applicability of the fixed charge problem.

2.3. Application Areas

The development of linear programming by . Dantzig [17]
in 1947 and the advances in computer technplogy fostered the
identification and formulation of problems involving fixed

charges and their (mathematical) analysis. There exisgts




Exhibit 2-6: Price Breaks'

Total Cost

X. (1)
T .
0 XL (3)
P L%, (3)>%. (2) -t
] -] J
5.
xj(2)
X.=X. +X.
Lz . J(l) XJ(2)
Activity
- Level
t.
Exhibit 2-7: Fixed Charges at Different Levels‘
Total Cost.
X L — —
B .
= T Activity
Level




- different areas of applications the most important of which

are described in.--the following sections.

2.3.1. Facility Location

" The most common area of application for. fixed- charge
problems is in facilit& location. Iﬁ this type of probiem,
facilities may bé built or operated on various 1océzions
subject to a number of restrittions such as meeting demand
or ngf exceeding supply or capacity. Fixed charges are used
to represent such expenses as the initial Dconstruction
costs, maintenance cos£s or operating costs which are
incurred if the facility is open and operating bat are not
dependent on the volume processed. In additiqéi,a variable
cost component is used for expenses which are propogtional
to the volume processed by the facility.

The transportation problem forms the structural basis
of facility location g;oblems.. When a particular problem is
a transportation problem with fixed charges, it can be
classified as a specializeq fixed charge problenm. A
discussion_of the different special@zed problems in facility
location follows in the next section.

However, the transporﬁatig:‘ problem structure will
appear with additional constraints in other problenms.
Examples include waste disposal prqblemb. discussed by

Jenkins [49, 50] as well as Walker, Aquino and Schur [94]

with intermediate treatment centers, a coal biendiﬁg problem

g

15
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by Ravindran and Hanline [77] and the 1location of ' power
s : ) .
- stations by Dutton et. al. [21] with two types of demand.
The mathematical formulation differs from problem to problem
to.accodnt for the particular problem but follow the same
basic structure. This basic structure is outlined under the
different ‘specialized) facility location problems whicﬁ
follow. .
<

2.3.1.1. Capacitated Warehouse Location Problem
The capacitated ga;ekouse location éfoblem' or (CWLP)
Qaé introduced by Kuehn and ﬁamburg [54] -in 1963 as a new
method of formulating and solving problems in 'stfibution
systems. They address the problem of locating warehouses
throughout the United States. Demanhd is represented by a
number of concentrated centers with a limited number of
pre-determined possible warehouse locations. These problems

have been widely used as test problems. .
(CWLP) is a transportation problem with fixe&””%hérges
- on the warehouses or supply facilities. (CWLP) puts

>N
w4 AN

capacity constraints on the size of the facilities, meets a
s

specified demand and minimizes the variable and fixed costs.

Each combination of demand and supply centers is represented

i

by(an Xij and is referred to as an arc. There is no limit
on the ¢apacity of an arc.
’Davis and Ray [18] give. a formulation for (CWLP) which

is presented in Exhibit 2-8 and differs from the formulation




used by Kuehn and Hamburéer [54]. Francis, McGinnis and
White [31] suggest that this formulation for the (CWLP)

-

provides a very efficient solution with a linear relaxation
* of the binary variables. ’
Geoffrion [(33] in a discussion of distribution systems

planning includes several features which are not ghcluded in
the above formulation. Aspéctsr;hich can be ﬁof%ulated by
extending (CWLP) are several sta;es of production  and
‘distributidn, economies of scale, identification of the
point of origin and a’ minimum operatinq. level for a
warehouse if openeéf Aspects which can not be included as a
‘fixed charge problem and are more difficult to handle
include customer service from one facility and limits on the
numbher éf sites.
Geoffrion and Graves [34] present a large
multi;ommodity distribution problem which has become a
.clas§ic apblication problem in this area. This problem
includes 14 plants, 17 product groubs, 43 possible
distribution centers and 121 customer demand centers.
Geoffrion, Graves and Lee [35] report examining considerably
. larger problems with up to 100 products, 100 sources, 100
distribution centers and 400 customer 'groups. However,
their ~ typical industrial applications are considerahly

smaller.

17




Exhibit 2-8: Capac

itated Warehouse Location Problem

(CWLP) minimize

2= J] ciy%yy *+ )£y

ij i
subject to:
ZX:.=1 Vj
i
]
0 < Xij Y, ¥ i,j
xij > 0 ¥i,j
Y, = 0,1 ¥vi
where: .
i = index of a supply center
j = index of a demand center
Xi' = fraction of demand from center j
J : ; .
supplied by center 1
Yi = binary ~variable indicating whether
supply center i is open
dj = demand at center 3J
q; = supply available at center i
Cig = total variable cost of supplying
] : X
demand center j from supply center 1
> fi = cost of opening supply center i
2.3.1.2. Uncapacitated Facility Location Problem )
The uncapacitated facility location problem or (UFLP)

was introdyced by

integer programmin

Balinski [5]

This is a special case of the

-

g problem.

in 1964 as an example of an.,

18
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capacitated warehouse location problem involving the rem?val
of the capacity constraint on theksupply centers. In this
problem, there is no restriction on the capacity of a supply
facility once opened nor thé capadity of an arec. As a

result, the only requirement to meet demand involves

insuring that at least one supply facélity is open that can .
Z,

~

handle each’ demand center. Consequently, the formulation
R '

for (UFLP) is the same as (CWLP) with no capacity constraint

»

and is not given separately. . ’
““When this oroblem is solved, all Xij will be, either
zero or one. This implies that if it is worthwhile to

supply any of the demand at j from supply center i, alﬁ g&e

demand at j will be supplied from i. Consequently, one does

not need to require Xij to Ee binary although it will be.

» ' ‘ R
A number of algorithms for solving (CWLP), such as Van

Roy [89], use a relaxation of the capacity constraints -as

part of their method. This tesults in a (UFLP) which is

much easier to solve.
Nauss and Markland [71]), Stone {84] and Fielitz and

White [29], present large 1lock box location problems as

uncapacitated facility location problems. A lock box is a

post office box operated by a bank for a corporation or an
account with the bank. Payments are either made to or from
the box. Charges usually involve a fixed monthly fee* and -a
variable processing fee per check. In addition, interest

from the deposits is also considered. When making payments,

19




B interest is increased due to the float. resulting from the
i : time taken to clear the cheques. When receiving wbayments,
A interest is increased by moving the funds Uo‘*a;counts
?, Z/ earning higher interest. They discuss problems with up to‘
. 112 lock box 1locations (supply centers) and 400 customer

z0nes jdemand centers). Stone [84] indicates that the lock

‘box problem is . the most common aésignment location problem

9&

with over 1300 design studies by various banks for Fortune

1200 corporatfbns during 1977.

<
- /

2.3.1.3. Fixed Cost Transportation Problem

The fixed cost transportation problem or (FCTP) was

. also introduced bBy. Balinski . [4] in 1961. In (FCTP), the
fixed chdrges aré associated with the' arcs, or each’ Xij‘
This contrasts with (CWLP) whére the .fixed charges ;re

: associated with the 3pening of a supply facility or

warehouse or several’ Xi The formulation for (FCTP) is

i+
given in Exhibit 2—9;: .

Ravindran and Hanliﬁe [77]‘include fixed charges in the

. cost of transporting coal from different mine sites to
different coaL; fired power generating sites in his

formulation of the ‘problem. This /is in addition to the

fixed charges resﬁlting frém ‘s;tting up the coal blendiné

plants which’ afe similar to the fixed charges in the

. capacitated warehouse location problem.

" Jarvis et. al. [48] describe a problem in a wastewater
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Exhibit 2-9: Fixed Cost Transportation Problem

- v

(FCTP) minimize 2z = g} ( cj3Xiy * ﬁinij )
subject to:
- z x.' - d. ' V j ~
1 J
L ¥i5 <9 v i , ”
J
Yijc= 0,1 ¥ i3
where:
- i = index of a supply center
j = index of a demand center
X;5 = amount o0f demand of center |
J : :
supplied from center i
Yij = binary fvariable indicating that de-
mand from center *j can be supplied
© from center i -
dj = demand at”Center j. > .
q; = supply available at céﬁter i
¢ c.: = variable cost of supplying demand -

center j from supply center i
uij = min{ dj, q; }

£f.. = fixed coit ofosupplying demand center
j from sdpply center 1i.

b3
14
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system where the sewage 1lines have economies _of sgale.

Jarvis et. al. incorporate these line costs hs}ng piece-wise

S . A




linear approximations with fixed charges. The resulting
" model- has imbedded fixed cost transportation problems.

Stroup [85] uses a fixed cost transportation model to handle

the assignment of launch vehicles to space missions.

2.3.2. Production Plannfhg

Production planning problems which can be formulated as
ffxed charge probléms also appear . frequently in the
Iiteratgre. Typigal production, deéisigns involve ~ the
determination of 'work force level, scheduiing of overtime,
produqtion run quantities and their sequencing subject to
some capacity coqstraints. A production run typically
involveq a : set Gp ﬁrocess which incurs some cost. These

problems are commonly referred pg"és lot size problems.

‘The main structural component in these problems is an

inventory balance over a number of periods. « The inventory

balance insures that all the material in the. opening
‘inventory in a period plus, production is us;dato meet demand
or goes into the ending inventory.

For many problems, éépacity éonstraints are also

included. With capacity constraints, the problem is
v '

referred to as the capacitated lot size problem or (CLSP).

AN

Howevef{ (CLSP) typically includes a factor for down time
co : ; » '

‘durind® the set up opératipn which has an impact on the

capacity..fIf this down time is ipcluded, the problem is no

longer a fixed charge problem. ‘Therefore, we will restxick

22
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our discussion to problems where the down time associated
the set up is negligible which will be referred to as the
fixed charge lot size problem.

» L=

2.3.2,1. The Fixed Charge Lot Size Problem

The fixed, gharée lot .size problem or (FCLSP) is
presented in Exhibit 2-10. This problem inciudgs a number
of proddct QroPps and 1limits .on regular End overtime
éapacity‘ The costs ipglude overtime production _costs,

inventory holding costs and set-up costs. Other factors

R L VRN

23

including regular production costs. and work force payrol}»"

can be easily integrated. Typically, regular proddétiqp
. [

costs are invariant with time and the regular payroll must

be paid thus both are coh§tant,for the decision period.

'

Hax and Meal [43] present a multiple plant, multiple

product, scheduling problem with .seasonal demand. They use

-this problem to illustrate- the development of their

hierarchical production planning process which paftftions
the proﬁlem into a number of sub-proeblems. However, the
overall pgéblem as well as‘the subjproblems can be'descfibed
by (FCLSP). ‘ “ R

Hax and Golovin [42] apply hierarchical production
planning ‘problem to a problem’ in the maﬁufaétuge of
automobile tires. Falk [27] applies _the  hierarchical

2
structure to a large scale continuous flow manufacturing

operation at Proctor and Gamble. These two problems result
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Exhibit 2-10: Fixed Charge Lot Size Problem

(FCLSP) minimize z = g (c, 0, + } (hypTye + Syp¥5¢))

" subject to:

~—
- ~ P\j‘E + IJ,t-l - Ijt Vjt V j’t .
, .
§ } WiPgp T 0p < vVt i
) O < 9 S vt
Pjt - mjtht _<_ O ) ‘ v J,t
: Ot,Pjt,Igt, >0 . ¥ et
Y5y = 0,10 : v j,t ,
. where: ¢ -
N i j = product group
g , t = time periods

o
]

t overtime worked in periagat

I. .= inventory, 'group j in t

‘rg
}

jt = production, group j in t

.
-

binary variable for production of \
group j in period t

Q
1l

t overtime premium in period t ‘

o
1]

jt holding cost, group j period t

0
1

jt sef up cost, group j period t

regular time limit, period t

)\\:
[
(ud
i

q, = over time limit, period t )
’ 'wj =’ppoduction‘time reéuired/unit, group j
\\ . mjt = magimum production, group j in t ~
i Vig = dema?d, group j in t © )

; p— [, [ Bt P D VU U VOO U U
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in ﬁiked charge 'problems which may be formulated by (FCLSP).

" Graves [36] maintains the hierarchical structure in his

A

sub-problems which correspond to the Hax and Meal (43]
framework. Shadow prices for inventory costs are used as a

feedback  mechanism to avoid the problems of

-

sub-optimization. Grave's problem ¢an also be formulated by

(FCLSP) . BN

Van Wassenhove and de Bodt ([91] describe a problem iﬁ

injection moulding which is a multi-facility capacitated lot

size problem with downtime associated with the set up. "By a

-
-

series of approximations, they convert the problem to a

single facility capacitated 1lot size problem with no

downtime. The downtime was accounted for by averaging the
historical requirements for set up and subtracting this from

available capacity.

2.3.2.2. 8Single Item Capacitated Lot Size Problem

When there is only one type of 1iteﬁ in (FCLSP), the

préblems becomes a single item capacitated lot size problem.
There will be ogly one production variable in a capacity
constraint. If the pfoduétion variable is positive, the set
up time‘ﬁbst be inc¢urred and subtracted from available
capacity. Therefore, the available gapacity mus£ be reduced
by the setup requirements. TIf the production level is zero,

the caﬁacity utilization will be 1less than the available

capacity minus the set up requirements. Thus, the capacity
/ .

e R T T T
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constraints do not require an integer variable to account.
for the setup and the problem cdn be handled by a fixed
charge formulation such as (FCLSP) with one product groué.
Florian and Klein [30] work with a single item problem
with ; constant capacity. Love [59] includes an upper limit
o; the.size of the inventory levels. Jagnathan and-Rao [47]
extend the Florian and Klein problem by including a general

cost function. Baker et. al. [3] also extend this problem

by 1boking at varying capacity‘witz/time.
*

2.3.2.3. Uncépacitated Lot Size Problem

+-When the capacity constraints in (FCLSP) are removed,
the problem becomes the uncapacitated lot size problem. The
formulation of (ULSP) would be the same as (FCLSP) with no

equations for capacity constraints and of course no decision

variables for overtime. As an example of an uncapacitated
lot size problem, the standard economic order quantity
formu}a whi&E invo1ves a fixed _charge set up cost will
determine the optimum production quantitv for constant
demand and lead time. Wagner and Whitin [92] formulate a
séquential decision making problgm for uncertain demand for
the economic lot size problem. Zangwill [97] eXtends this
formulation to  include back orders and also presents the’
problem as a network flow. Blackburn and Millen (9] and

Afentakis, Gavish and Karmarkar (1] apply (ULSP) to

multi-stage production planning problems associated with

= - - ; PR - - e e .




material requirements planning. They discuss, in
particular, the dramatic increase in problem size when

incorporating this problem into MRP.

2.3.3. Manpower Planning

Problems in  manpower planning involve complex
relétionships. These may‘ involve decisions relating to
issues such as recruiting,.firing, promoting or training.
In addition, the members of the organhization are typically
categorized in homogeneous groups which are then treated as
decision variablesz

Linear progrémming provides an effective mechaﬁism for
expressing thése relationships and their interdependencies
which, using a criterion, can be optimized (Price et. -~ al.

[75], Edwards [23]). The most common form of normative

manpower planning models involve linear programming:

’

including goal programming.

There are no standard classes of problems for manbower
planning as in facility location or production planning.
However, all problems have a set of manpower balance
equations ‘similar to the inventory balance equationhs in
production planning. These insure that all individuals are
qccounted"for by remainiqg in their current group, being
promoted or lgave the system from one period to the next.-

Hax [41] includes a Yariable work force model as part
: .

of aggregate production planning. He states that the most

-
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common solution procedure is linear programming which can be

extended to a variety of situations. Since the formulation
é of the fixed charge problem is mbre flexible than linear
programming, it can be applied to manpower planhing.
Mangiameli and Krajewski [60] examine the policy
implications of different workforce strategies by extending
; a multistage multiproduct lot size problem with setub costs
to include variable workforce levels. They - eompare ‘three

"/different workforéé strategies wusing the optimgl solution

for 'each strategy to develop the appropriate' cost. The
first method evaluated 1is a "chase" straéegy where the
workforce level is varied to meet the demand. The second

v —

: . method was "level inflexible" strategy where the workforcg

Y

o 437

remains constant and inventories are used to. smooth
production. Finally, a "level flexible" strategy where the
workforce ts shifted from task to task to maintain a
constant level was evaluated.
- Haehling von Lanzenauer et. al. [38] hav; used a 'fixed
« charge formulation in a problem 1in the development of
manpower planning policies. The hiring and training
practices for the sales oforce of a 1life insurance are
reviewed and a comprehensive plan i% developed. There are
fixed charges _associated with hirimg and: training of

[ 4
employees. An optimal solution is obtained for the .current

.

& “work force. From this solution, optimal wpolicies are ‘

developed to aid decision making in the hiring and training
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. 2.3.4, Other Formulations ’
. . " \ -

Facility location :and productgoﬁlplénning are the most
common areas of gppligéﬁion of fixed charge problems ciﬁed
in the litéréture. Howéver, the fixed charge problem ié by
no means restricted to these areas.

S k\\\\\N,u—»«””‘“
} ‘ ) 2.3.4.1, Accounting )

. Manes, Park and Jensen [6l}\use a fixed charge problem
formulation for making'decisipns.op internal versus external
acquisition of services. The ﬁroblema involves a company
which produces a number of prodqépé by different divisions.
In addition, there are a num§;r of service divisions which

supply intermediate services ﬁo the production divisions and

-
N

each other. These various services could also ' be supplied
by external sources. Their model is an extension of ‘the ‘
& reciprocal cost problem and encompasses all avoidable costs,
3 8

variable and non-variable. The variable costs are based
.1"

on

LY . .
the proportiong of service department outputs utilized by

the aggregate proauction of final éoods. The non-variable

.

costs relate to different levels of production which may

entail different fixed costs. ' .

L 4
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2.3.4.2. Marketing e

In marketing, linear programming with fixed charges' is
applied to the distribution problem and the media selection
prdblem (Montéomery and Urban [69]1). However, the
distribution problem in this_ ;;s;*;;comes the capacitated
warehouse location problem discussed above. This T?del has
been criticized for rot properly reflecting .the
interdependencies between possible diséribution centers.

Linear programming ‘ha; been applied to the media
selection problem in advertising. A major criticism has
been tﬁéwv1inearity assumption required for returns ‘on
repeateé‘\yexposures (Calantong and de Brentani-Todorvic
. {101).- The diminishing returns, Exhiggt 2-11, could be
handled as a piecewise linear fJnction with fixed charges by
'Egncorporating a minimum threshold and economies of scale.
ﬁ%wever, problgms with return on repeated exposures ag well

S

as interdependencies between different media has 1led to

dynamic programming and heuristic solution methods.

2.3.4.3. Portfolio Selection
Sharp's‘[BO] porffolio selection model can use linear
programming to select an efficient portfolio which maximizes
return subject to a certain amount of risk as measured
)

against a common standard index. Return is obtained from

interest or dividends .plus capital gains. Of course, in any

investment there are costs associated with purchasing and

e
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Exhibit 2-11: Return on Repeated Exposures

Return

-
Y\a

Number of Exposurces .

selling the security such as commissions which are
independent of the’ period for which a security is held.
Transactions costs (fixed charges) greatly increase thé
difficulty of solving this problem and are usually assumed
away. Cooper and Farhangiag (14] present a portfolio
selection . problem with fixed  charges. Patel and
Subrahmanyam [74] also present a portfolio selection problem
yiFh fixed charges based on Markowigz's [63] model which
involves qﬁadraiic relati9nships in the objective fuqction
to represent a risk factor. Risk 1is determined by the

covariance between the different securities. Hence, there

are interdependencies which require quadratic relatignships.




2.4. Solution Technidues

Although Hirsch and Dagf;ig [45] defined the fixed
charge problem in 195{: they did not supply a solution
technique. Land and ﬁoig [56] ip 1956 developed a general
purpose solution method for integer programming problems
which if extended to mixed-integer programﬁing could also be
applied to the fixeé charge problem. 1In addition, solution
techniques were being developed for specialized fixehxcharqé
problems such as the lot-sizing problem.by Wagner and Whitin
[92] in 1958, the fixed cbst transportation problem by
Balinski (4] in 1961, and the capacitated warehouse location
problem b& Ruehn and Hamburger [54] in 1963. Cooper and
Drebes [13] in 1967 introduced the first heuristic for any
fixed charge problem, *

Phe classification of solution technigues for-the fixed
charge problem generally follow' the structure of the
different problems. Fixed charge problemS'which‘;equire a
general linear programming structure require a general
solution technique. Problems with well defined structﬁre
typically have solution techniques which exploit the
structure. Wi£hin ‘these two categories: are different
techniques }or obtaining optimal and approximate solutions.

However, all fixed charge,probiems share the underlying
formulation of linear programminél Therefore, many of fhe
prbperties of ‘1inear programming also apply to the fixed

charge problem. A brief‘review of the relevant properties

-
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of linear programming follows in the next section.

2.4.1. The Associated Linear Programming Problem

By- definition, there is a close relationship between a
fixed charge problem and its associated linear programming

problem (ALP).

Exhibit 2-12: The Associated Lineay Programming Problem

(ALP) minimize 2z = } cjxj
subject to: -~
Eainj = bl ¥ i
J ~ .
X. > i
j 2 0 ¥ j

Both (NLFCP) and (ALP) share the same feasible region. Any
linear programming problem 1is a special case of a fixed
charge problem with all the fixed charges being zero.
Hirsch and Dantzig [45] have shown that thgﬁpptimum to the
fixed charge problem 1lies at an extfeme point of the
feasible region. Of course, the optimum of the associated
linear programming problem is also at, an extreme‘ point.

4
Many of the properéies associated with linear programming

problems are applied to the fixed charge problem. -

3‘3\




Since (NLFCP) ‘and (ALP) have the same feasible region,
then the following can be applied to the fixed'charge
problem. If (ALP) has no feasible solution, €Hen neither

does (NLFCP). Similarly, if the objective function of (ALP)

" is unbounded, then the objective function of (NLFCP) is also

unbounded . Since.,the problems of infeasibility and
unbounded optimum are 'easily recognized in. linear
amming, they do not create prpb%éms in solving éhe
fixed charge problgm. For the foilbwing discussions, it
will be asduymed that the fea;}b~e region ‘for the fixed

-~

charge problem i%ts and the optimal solution to the
associatéd linear prégramming problem is nSE unbounded.

As both the fixed chargg problem .and the associated
linear programming problem have their optimum at an extreme
point within the same feasible region, ié is.pot, surprising
to see algorithms developed for ligear programming
incorporated into the algorithms for solving fixed charge
problems. In particular, the simplex method, which moves
from extreme point to extreme point, forms the basis of most
approaches to solving general fixed charge problems. |

.

2.4.2, Solution Techniques for

General Fixed Charge Problems

The current approaches to solving fixed charge problems
include the use of standard mathematical programming for

mixed integer or mixed zero-one problems which can produce
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optimal solutions. Various enumerative and éutﬁiqg plane

approaéhes specialized for the

o 2

fixed charge proplem have
been developed. Heuristics designed for obtaining féood?

/ - .
but not necessarily optimal solutions have been developed.

2.4,2,1. Optimal Solutions ¢

The standard approach to obtaining an optimal solution
to a “fixed charge problem is to use one of the commercially

available mixed integer programming packages such as MPSX

for IBM mainframes. These packages use variations of Land '

and ‘Doig's [56] origiﬂal branéh and bound algorithm. As a
result of it's popularity, this method will be discussed
first. Various branch and bound'techniqugs have also been
developed specifically for iNLFQP). Cutting plangs, both
for ZMIFCP)_gnd (NLFCP), have. also been used to solv; fixed‘

charge broblems. While branch and bound implicitly

L]

enumerates all the poésible combinations of Ffixed charges;
vertex generat?on, the final technique for finding the
oplimél solution, implicitly enumerates all the vertices of
(ALP) . |

[

2.4.2,Fk.t. Branch and Bound for

LY
“

Mixed Intéger Fixed Charge Problems

The fixed éharge broblemnfis formulated ‘as a pmixeq
integer problem in (MIFCP). This . fgrkmulation could be

solved using wvarious commercfélly available @ packages.

>
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’Unfort&a?télg, theré 1is  an additional equation added" for
- . each £ixed charge’ variable. Thesé equations are used to

account for the fixed charge with .a binary variable and may -.
. ‘\- - G) M R ’ ’
- also be used to impose an ,upper 1limit on a variable.

AlthoughLgenefalized'ubper_bounding can be used to constrain
Xjfto its upper 1limit, 'Yj must still be relatédcyo Xj to
account for the fixed chargg. ’

.

The commercial mixed-integer. mathematical, programming , .
<; {56] branch:

S .- ecodes-use variations of the basic fLand and Doi
“ A and ' bound approach. - fhese algorithms partition the problem

into two sub-problems by the coﬁétraintsthﬁo'and szl. ' 4

N —

.The essence of branch and bound . involves - fﬁ%}*

.

N calculation of a lower bound oé each branch which enables

-

. - W . ¢
. s & the tree to be fathomed-when the lower bound exceeds the

i : upper bound .for minimization problems.' The lower bound is

- “»

obtaihed by -a linear relaxation oﬁuéﬁe binary Yj Varihbles,' ———

Therefore, the size of any fixed chargé incurf¥ed by this

. - - relaxation is proportional to the ratio xj7U?jr~‘JL%qgQQd"
[ .

. estimate on the upper Jlimit for each variable will help )
P v i A . ¥
o “~thege—programs evaluate alternative solutions and speed up
& . o - . ’ - - 4 1 o
- - e the algorithm. '

Generally, the commetcial codes which are not designed

h o spécifically _ fbr fixed charge problems may" take an
. . [‘ . "-K “ /I

¢ . inordinate amoynt of computer-stime to sdlve even . moderately

sized problems. Mangiameli and Krajewski [60] took 34

* minutes before stopping MPSX withoqt érowing the
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solution optimal. This problem has 100 binary variables.
The problem from Haehling von Lanzenauer et. ai. [38] with
30 binary variables reqﬁires\45 minutee on a Cyber 170/175
.fo solve. These times . of course represent the central

processor time. Actual elapsed time would be several hours

to allow the disk operations required to proceed. Clearly,:
k)

the general mixed integer branch and Eound tecﬂﬁique while

-~

quite flexible has difficulty with large problems.

2.4{2.132. Branch and Bouﬁd for the .

Non-Linear Fixed Charge Problem \

branch and bound approach usked in most mixed—-integer
programming codes. Although both appfoaches use the same
tree structure with the ‘same nodes, Stelnberg 8, app{each

solves (ALP) which is smaller than the correspondlnq vers1on

o

of (MIFCP) with continuous and binary varlables. At each

node, the appropriate Xj is either constrained to zero or

allowed to .be greater than zero. Therefore; there‘is no

need, for Yi'and the large number of equations relatingryj to

X oo . P
jl .‘ M A

Gtelnberg estimates a lower bound for eabh branch as

the sum of the lower bound on the contlnuous portion of the
A Y

fixed charge problem plus the 1ower bound on the fixed

charge portion of the fixed charge problem. Thé lower bound

for the ‘continuous pertion is' a straight forward linear

Steinberg [82] presents a modification to the Léhd—Dd?g ]

37
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programming problem from (ALP). Howe;er, the fixed charge-

portion, (FC?F) (Ex@ibit 2-13), is as difficult to solve as
the.original problem. Steinberg estimates a’ lower bound for
the fixed costs by determining which fixeg charge variablés
could be driven to zero. The fixed charge v;riables which
can not be driven to zero represent a min}mqp value for the

fixed charge portion.

Exhibit. 2-13: The Fixed Charge Portion
" = Fixed Charge Probhlem

w9

FCPF minimize z. = Y.
(FCPF) | £ g £5Yy

subject to: ’

) 2i5%5 = by ¥ i
]

S B *

Yj=6,1 v j

v

McKeown [66, %7] has a:similar approach in his branch
and bound algorithm for the fixed charge problem. He has
the same tree structure and the, lowé; bound 1is estimated
from the 1lower bound of the, continuous problem plus the

lower bound for the fixed charge portion of the problem.

Lo

J . . .
His bounding mechanism for the fixed charge portion 1is given

¥
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by (FCPM) in Exhibit 2-14. (FCPM) provides a lower bound on

the sum of the fixed charges andhis a set' covering problem

which i& relatively easy to solve.

v

-
Exhibit 2<%4: The Fixed Charge Portion -~ McKeown *
FCPM = Y.
(FCPM) minimize zg % f]YJ '
subject to:
L d;45¥5 > 1 v i
. ]
) 1 if a,.>0
a;5 = M v ij
0 if aijio
Y= 0,1 " v
£
McKeown and Sinha (68] have ° extended McKeowqié

algorithm to more efficiently solve fixed charge problems in
wh&ch all the coegficienté vin‘ the constraint matrix ‘have
zero or positive coefficients. With this property, (FCPM)
provides a better 'representation of the fixed cﬁarge

portion.

In addition to the advantage of fewer constraints than
Land-Doig, these algorithms exploit the feature that any
feasible solution to (ALP) is also a feasible solution to

(NLFCP) and (MIFCP). Altﬁough the Land-Doig approaches have
\
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these fedsible solutions as part of the solution to the

continuous problem, they usually fail to recognize them as a
feasible solution to the mixed-integer problem. Thus,
Steinberg and McKeown generate feasible solutions and upper
bounds .much more quickly than the Land—Doigﬁgpproach.
Steinberg [83] reports in 1976 that the exact ‘methods
appear to be impractical for most moderate or large fixed
charge problems. These methods have difficulty if the

impact of the fixed costs were significant. Steinberg and

o

Mckeown both wuse randomly generated problems with five
eqﬂations and ten fixed charge variablés originally created
by Cooper "and Drebes \[13]. Larger - problﬁms with up tb
fifteen equations and 30 fixed charge variables are created

by concantenating the smaller problems as in Exhibit 2-15,

-

Exhibit 2-15: Creation of Large Random Problems

McKeown modifiéd these problems by changing the .
constrgints to ">" and setting all the af% positive for an
. . additional set which were also used by Mckeown and Sinha




,f

[68]. A final set of strictly "pure" fixed charge problems
is created by Mckeown by setting cj=0 for all j. McReown
[67] reports some improvement over Steigberg [82]. However,
he confined his testing to these small problems.due to
computatidnal limitations. As Steinberg [83] notes, lthe
effort required *to solve a problem grows disproportionately
with the number of fixed charges and the size of the
problem. Thus,; other approaches to solving iarge fixed

/.

charge problems is necessary.

2.4.2.1.3. Cutting Planes

Since (MIFCP) is a mixed integer proéramming problen,
any=of the .variéus cutting plane techniques developed for
mixed integer programming can be applieé to ik, Rousseau
[78] develops a cutting plane algorithm séecialized for the

s A
fixed charge problem. Rousseau's algorithm generates cuts
for minimizing a concave function. He also incorporates two
Qgrtitioniﬂg schemes, one similar to Steinberg“s branch and
bound process. Rousseau's approach is similar .to a branch
and bound technique. by Taha {86] which gt}i}zés cutting
planes to identify local minimum of a concave function over

a convex polyhedron. Rousseau compares his cutting plane to

Benders cutting plane. Although Benders has an advantage of

-

a finite convergence, Rousseau's algorithm has more
. "

.

efficient cuts.

As there is 1little computational experience, it is

41
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*difficult to generalize about the effectiveness of ch££§hg
planes in solving the general\ fixed charge ~ prlegm;
Although the algorithm proposed by Taha [86] applies to any
concave objective function, he reports results f&r the éixed

f charge problems_describéd above. He indicates his algorithm

W/ . -
ﬁ . will have problems with degeneracy. Rousseau (78] reports

good results with two random problems with ten équations and
fifteen fixed charge variables with upper, bounds. However,
he reports more-difficulty with a fixed cost transportation
-~

problem with 7 supply centers and 5 demand centers resulting

* in a problem with 35 fixed charge variables and 11
equations. Rousseau requires the use of a partitioning
meéhod in aQ@ition to his 'cuttihg planes to solve the
problem. Roégseau has more difficulty with a capacitated,
warehbuseﬂloéation ‘problem with 4 demand. centers and 7
supply cégters. This problem has 30 variables with 7 fixed
charges and and 1l equations. Extensive computations eould
- ‘not be carried out for this problem ‘as diffiéulties with
'numerical aécuraby were encountered. Rousseau [78] suggests

using a combination of apprqgima@e,Aenumerative and cutting

plane methods for solving fixed charge problems.

2.§.2.ll4. Vertex Generation ‘ 1
|

Murty [70] and McReown [65] present methods for solving

<9 X
the fixed charge problem by ranking the extreme points of

(ALP). Initially /the optimal solution to (ALP) is obtained

R e N e R e - ‘




which provides a solution to (NLFCP) and an upper bound on
- AN

the objective Ffunction. Vertices are generated by pivoting

away from the optimal solution to (ALP) and ranked. in order

t
of increasing objective function value. A lower bound on

* P

the fixed cost portion of (NLFCf) is estimated from"thé
smallest sum of fixed charges required to satisfy the
constraints. The a}gqrithm terminates ﬁhe search for
Qertibes when the continuous objective function plus the
lower bound for the fixed costs exceed the best solution to

the fixed charge problem obtained so far. These .algorithms

face the same problem estimating lower bounds for the fixed

3

‘cha;ge portion of (NLFCP) as is encountered in the branch

o

bound techniques.

‘The coﬁputational results for these algorithms are
limited to the small . Skl0 random oroblems generated by
Cooper and.Drgbes [13]. Vertex generation works best when
the fixed Eharge optimum is close to the optimum solution of
the aésociated linear programming problem and the size of
thé fixed charges 1is small relative to the continudﬁs

charges. A large number of vertices may be required, even

for small problems. Wnless the bounding mechanism for the

fixed charges works well or the fixed charge portion is
small, vertex generation appears to be impractical for even

moderate sized problems.
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- 2.4.2.2. _Approximate Solutions

The difficulties associated with solvinq large inte;ér
programming problems in general and the fixed charge problem
in particuIér have led to the develogmenﬁ of a numger of
methods for—eﬁtaining approt}ﬁgte solufions to the fixed
charge problem. These solution techniques oht;in "good" but
not necessarily optimal solutions. A number of authors have
given heuristics for solving the fixed charge problem with
approximate methods (Balinski [4], Cooper and Drebes [13],

Denzler ([19], Hiraki '[44], Steinberg [82], Walker ([93]).

{

The simplest heuristic for solving (NLFCP) was obtained

2.4.2.2.1. The BalinsKi Approximation .

by solving.(FCPB) in Exhibit 2-16 (Balinski [4]). (FCPB) is
equivalent to the 1linear relaxation of (MIFCP) and its
solution is the same as the initial solution generated by
|$Dst mixea integer~ programming algoritﬁ%s. Consequently,
(FCPB) provides a lower bound tof(NLFCg). TO wérk_at all
well, a good estimate for uj must be available. The
Balinski approximation‘ will provide good solutions to the

formulation of (CWLP) given in Exhibit 2~é as well as

(FCTP). In bhoth 'problems, an all integer or nearly all

e

integer solution is often obtained.

-
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Exhibit -2~16: The Fixed Charge Problem
- Balinski Approximation

]
(FCPB) minimize z =.) c 4%
< - j

.
v

subject to:

J
" X‘
j >0 ; ¥ j
where: N -
C. = .4 £ .
j =yt £5/u ¥ 3

s

2.4.2.2.2. Adjacent Extréme Point Heuristics

The remaining heuristics for {NLFCP)- are termed
adjacent extreme point heuristics as they use the simplex
method to go from extreme point to extreme point in (ALP)

looking for impréved solutions. These heuristics generally

. use a three step procedure. The first step(és:

' &
.
.

Step 1. Solve (ALP). "

» -
!

—

Any feasible solution to (ALP) will suffice. All the
heuristics use the optimal solution to (ALP) which ignores
the fixed charges. Although the Balinski apéroxiﬁation is
also suggestéé, none of the heuristics actually use it.

The appropriate Qeuristic is applied in Step 2. Cooper

and Drebes’, Denzler, Steinberg and Walker all obtain
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’ improved solutions by checking all extreme points within one

pivot from the current solution. This solution is referred

to as a fixed charge local optimum.

: Step 2. Obtain the fixed charge local optimum.

¢

A fixed charge Zlocal optimum is a solution in ghdch all
s solutions within one pivot are inferior. Step 2 enerally

improves the solution from Step 1. The initial fixed charge
local optimum is always obtained relatively,quickly.

After Step 2, a test phase is entered. Step 3 moves

—_
N

away from the solution of Step 2: T

Step 3. Move more than one pivot from the current

solution. If an improved solution is found

¥
/ 2

! / return to Step 2.

“The algorithms cycle between Steps 2 and 3 until a

solution is obtained which can not be improved upon with

"

.practical computational effort. Hiraki does not use - the
relatively fast Step 2 in his heuristic. Rather, he has a

one step slow procedure similar to the Step 3 in the Walker

A -t
LY

heuristics.
When a fixed charge local optimum is reached (all
adjacent extreme points have inferior objective function

-values), the test phase is entered. The.test:phase tries to

R
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move away from the local optimum by.inserting variables into
the basis in wvarious combinations. Several methods are
suggested for  bringing in combinations of variables. The
" differences between the Cooper and Drebes, Denzler, Walker
and Steinberg heuristics consist of the different methods of

bringing in combinations of variables. The methods inciude:

1. All combinations with randomly selected variables.
(Denzler)

2. All combinations with the non-basic variables which
if brought into the basis, increase the objective
function the least. (Steinberg)

3. All combinations with the non-%i%ic variables which
if brought into the basis, increase the objective
function the most."(Steinberg)

4. All combinations of pairs of non-basic variables.
(Walker)

5. All combinations of three non-basic variables.

.

(Waiker) .

r

-

The objective behind many of the combinations is to get
away from the current local optimum. There 1is a natural
tendency to move directly back to the current local optimﬁm.

% The numberk of possible combinations of variables to
introduce iAEB the basis may become quite large. For

example, if a problem had 100 equations and " 250 variables,

e e e e - = ;-
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there would be 150 non-basic variables requiring 22,350
combinations for all possible pairs of non-basic variables.
This would include all variables with no fixed charge as
well as the fixed charge variablés. With many problems,
there can be a very large number of variables with no fixed
charge. As a gesu&t, the test phase can become quite
lengthy.

It is assumed in these algorithms that there 1is no
degeneracy. There 1is no rule analogous to the "rate of
greatest improvement" rule in the simplex method in linear
programming. If a variabl; is brouqﬁf in ét the 0 levey,

there is no way of inferring if there has been an

improvement. In order to get around’ degeneracy, these

"

methods must enter the more time consuming test phase and

bring variables into the basis in various combinations.

Generally, with large problems, there is more degeneracy.

Céoper and Drebes [13] propose a method that develops

48

surrogates for the reduced costs 1in an attempt to

incorporate the fixed charges into a 1linear programming
formulation. The coefficients in the objective function are

modified by:-

4fL /X i . 1y
c' ) cJ fJ/X.J if X3>0 oy (2.1) ,
i if X.=0 ’
3 thAyT
The reduced costs are recalculated. Potential
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Ecapdidates for entry into the basis.are generated from those

variables with pegative reduced: costs. These candidate

. , . v
variables ar® brought into the,solution and the resulting .
. > . % .

objective function value 1is compared with the current best’

solution. If a new "best" solution is found, the costs are
recalculated and the process is repeated. By reduc}nq Ehe
number of variaples investigated asg can&idafes for entry
into the basis, the computati.al effort is reduced.
Steiﬁberg states that thg Denzler, Walker and his own
heuristics (which. he says ;differ 5nly in the Egst phase)
prOViée better solutions in terms of obtaining the (ogtimuﬂ
than the Cooper and Drebes heuristic. This is logical since
the former héuristics consider all the non-basic zgfiéblgs
while Cooper and Drgbes consider only a subset. Cooper and

in

Dré&bes aévantage lay in a faster computational algorithm.
Obtaining A,fiked charge' local .optimum .has several
‘computational advantages DarticuiérIY.rwhen the rggplar
simplex method is used. There is ﬁo ingrease in memory
requirements over lipear programming. Thg infofmation
required to dalculate the objecfive function value at any
;djacent extreme point is available in, the cu;rént sfﬁpiex

tableau. ‘ ) l ‘

Unfortunately, when the revised siﬁplex method is used, .

more”compgtational effort is__required to calculate the
e, ‘

objective function value at each adjacent extreme point.

With the revised simplex, each column in the current. tableau

049.
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has to be generated by multiplving the inverse of the

I «

ourrent basis’ by the orlganal columpn in. the constraint

-~
s

‘matrlx resultlng 1n an increase in computational effort.

The revlsed s;mplex method using the product form af the

inverse it thetﬁmost .practical method . for solving large

linear programming problenms. I

Although ‘obtaining ,a fixed charge local optimum'
o< . @
requires no additional storage over linear programming using

the simplex method, . the test phases require the storage of

R d .

information relating to the'best solution obtained. If the
regular simplex method is-used, the complete tableau has to-
be stored. The cbmputational dlfficulties involved force
the. restoratlon of the tableau‘ of. the = loc¢al optimum as

accurately as posslble. \However, these ~tableaus could be

stored on perlpheral dev1ces suéh as a disk.

" The prrmary set " of test problems by the adjacent

~—

‘extreme wint heuristics are the sames random problems

generatg& by Cooper and Drebes [13].. §teinberq [82l

comblnes up to ten of these problems creatlnq problems w1th
ldQ equatlons and lSG»flxed charge variables. ‘The solutions

obtalned that were sub-optimal have objedtive function .

,values that are very close ito the optimal solution. 1In

addltlon, a humber of 5x7 and 6x8 flxed cost -transportationv
problems have -been used as test problems by Walker [93] and
Stelnberg [82] Good results are reported in tergs of " both

obtainlng "good" solutlons and executlon times.’

T : i Y

.
.
. ~ .
. . -
PRAEN ~ N ¢ k]
s .
H . -
r
. .




’
Ly

]

ApATT RPN ¥ Ll

e R

i3

Ve

2.4.3. Solution Techniques for
——

SQec1allzed Fixed Charge Prpr“ﬁs

Y

In general( themethods outlined under solution to thé

»ay

general fixed charge problem will have dlfflculties as the |
size of a problem increases.“ By taking advantage of special

structures, various solution techniques obtain. significant

. e . . . \
efficiencies with respect to solué;on ‘times. . These

techniques must be classified by the type of problem as they

°

are very specific. \
~ ‘ ' rd

The techniques which obtain optimal solutions can solve

,proglems considerably 1larger than an equivalent problem

using a solution method for the general fixed. charge
problem. "‘Methods which obtain approximate solutions to

specialized fixed charge problems are used for very large

S

problems. ‘

2.4.3.;1. Capacitated Warehouse Location, Problem

. / ¢

Several surveys of solutlon technlques fof (CWLP)l are

8

given in Geoffrlon (331, McGlnnls [64], Erlenkotter [26] and

l_,..‘

- Francis et. al. [317. Sa [79]~ flrst developed a branch

and bound algorithm to solve (CWLP) which'ié " later refiﬁéd
by.Akinc énd Khumawala [2].. Their algorithm uses a linear
relaxation to convert the ﬁpraglem into\‘a transportation
problem. Naus [71] and Christofides énd,Beasley‘[ll] aﬁply

a Lagrangean relaxation to the demand - constraint resulting




in a knapsack problem.: Geoffrion and Graves [34] use

; . ‘Benders decomposition to solve their classic distribution
problem. Van Roy [90]. uses a Lagrangean relaxation of the a
capacity constraint to’ generate an uncapacitated facility

. 'S
location problem. He uses Erlenkotter's [25] dual based

procedure fo; solving the wuncapacitated faciliﬁy location
problem. Van Roy's results! for solving the “Kuehn and

HamburgEr [54] éest problems are the best reported.
. i - Jacobsen [46] reviews a number Of heuristics for (CWLP) -
- with some computational results. The .methods évaluated
——— include the ADD heqristic and SHIFT heur}sﬁié;by Kuehn and
Hamburger [54], DROP by Feldman, Lehrer and R;y [28], the
> ‘ Alteénate Loéation“Allocation method’ by Rapp [76] and Cooper
' 127, thg Vertex Substitution Method by Teitz and Bart [88!
. plus composite heuristics by Sa [79] and KhumaWalaa [53].

Jacobsen also extends the ADD heuristic to an ADD-LO which
@e repérts as performing better than others on probleps with
éight capacity constraints. As a rule of thumb, _he states

*that exact algorithm; can solve medium scale probiems (100

locations and 100 customers) while heuristics are. required

for = large scale problems (1000 locations  and 1000

i
.

customers).

-

2.4.3.2. \Uncapaéitated Facility Location

» ¥

. Several algoriEhms have been developed which solve the

uncapacitated problem wery quickly. Van Roy and Erlenﬁagter
I B - e e,

a
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[90], Naus and Markland [72], and Fielitz and White [29]
provide special burpoée atgorithms which will' solve the
uncapacitated facility location problem specifically. The

authors report solution times of 'severaiq seconds for

‘problems which wolld be considered quite lérge and require

lengthy computer runs %f théy are formulated and solved as a
more 'general facility location problem. Francis
et. al. [31] also review the solution methods available for

the uncapacitated facility'prob%em and conclude this problem

is considerably less difficult than (CWLP).

. “er
2.4.3.3. Fixed Cost Transportation Problem

_ Gray ([37]_ provides the first exact ‘algorithm for

solving (FCTP). Subsequent branch and bound approaches were

developed by Kennington and Unger [52] and Barr, Glover and

Klingman [7). Barr e;l al. review the algorithms available

for the ‘fixed cost transportation problem and introduce one

-t

of their own. They'test these algorithms on large randomly
generated sparse networks. The algorithm wgiven by Barr
et. al. which uses a very efficient ‘methpd for solving

-

transportation problems appears to be superibr to the

others. It solves problems with 3,000 constraints and 1,200.

fixed charges in nine seconds on a CDC 6600, N
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2.4.3.4. Capacitated Lot Size Problem ,

.4

Since (FCLSP) is a special case of the capacitated lot
size problem, (FCLSP) can be solved using an algorithm for

(CLSP). Manne [62], Dzielinski and Gomorvy [22] and Lasden

¢

,and Terjung [57] solve the capacitated lot sizé problem by

generating a variable for each possible combination of
different set ups énd treating (CLSP) as a 1ing§r problem.
‘This solution, which Vis typically ‘Pgarly integer (Manne
[6?]),'is “then rounded to a feasible solution. Newson [73]
proposes a he@ristic which decoﬁp&ses the problem into an
aggregate glanning problem and a detailed scheduling
ﬁiobiem. He includes the work force as a .variable for
capacity decisions in the aggregate planning problem.
Eisenhut (24] uses a period by period 'approach with
production lofs assigned on the basis of a p;iority index.
This index is a\peaSUre of the viabililty of producing the

Pa

'%ot now or postpéning production. .Lambrefht and Vanderveken
-[55] and Dixon andV“Silver {20] introduce a number of
refinements which leqq to improved cost performance.

Van Wassenhove aﬁa de Bodt [91] apply the capacitated
lot size heuristics from Eisenhut [24), Dixon ‘and Silver
[20] and Lambrecht and Van;erveken [55] to their problem in
injecpion modeling. He ﬁakes four approximations to convert
the problem into a fixed charge single machyﬂé capacitated
lot size problem. The heuristics use little computer time

and perform fmuch better than a simple EOQ formula.

—— N e S “‘&*-
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2.4.3.5. The Fixed Charge Lot Size Problem

Graves [36] divides the problem (FCLSP) into two

o
sub-problems similar to Newson's [73] approach to (CLSP).
Graves develops an aggregate planning model which minimizes

overtime costs .and a disaggregation sub-problem which are

linked with Lagrange mdltipliers representing the inventory
costs. This proVidés a feedback mechanism between the
aggregate model and the:sub-problem which are. then solved

iteratively. Using the production schedule at each

iteration, a fegsible solution is generated with a simple

heuristic which assumes unlimited overtime.

Graves solves a number of problems with 240 binary
variables in 90 to 364 seconds (average, 236 seconds) and
480 zero-one variables 147 to 405 seconds (avérage, 311
seconds) on a PRIME 400. His solétions come within 4.4 per
cent of a lower bound on the optimum.

Barany et. al. [6] add a number of additional

constraints to make a tighter fbrmulaﬁién for (FCLSP). The
additional constrainés:[;llow a\ standa;d . mi*ed*iﬁteger
prégramming to be more efficient although the number of
constraints is greatly increased. For example, the Graves'
problem with a small set up cost was solved to optimality in
approximately 200 seconds on a Data General MV8000. The
problem has approximately 1100 cbnstraints'* altﬁouqh. a

formulation using (FCLSP) would require 252 equations.
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’ However, the ﬁroblem wiéh a large set up cost required
-approximately 9,000 seconds to solve to ogtimalit§. .
Hax (42] suggests that the algorithms presented” by
Balinski [4], Cooper and Drebes‘[13], Denzler [19], Rousseau
[78] and Steinberg ([82] proviae effective heuristics for the
capacitated lot size problem when the downtime associgted
with a set up is negligible.
The Hax and Meal (4317 hierarchical framework . for:
producggon planning solves (FCLSP) 'ignoriﬁg the fixed

PRYRY

‘in_the set up. This provides an agqregate plan over
L

need for forecasts for typeg'of products rather than
A

re detailed level. ‘ The aggregate “—-plan is
disagggegateisto account for the fixed charges ifi the set up
andcggévide a detailed opefational plan. The detailed plan
is implemented and ,the process is repeated next period witﬁ
a_rolliné planning horizon. This procedurg obviously works

best when the fixed charges on the set up are relatively

small.

-

Hax and Golovin [42] use a problem similar to Graves
with 65 binary variables and éonsiderably‘Smaller set up
costs. For the ggtailed schgduling sub-problem, they apply
heuristics from Hax and Meal [43), a Knapsack method from
Bitran and Hax (7], Winters [95) method and an Equalization
6f Ruh Out Times method. These heuristics provided good

As. Hax and Golovin mention, high

!

-,




£
L

fixed charges on the set up will affect the performance of

these methods.

2.4,3.6. Uncapacitated Lot Size Problem
1) o <

The uncapacitated lot size pfoblem, (ULSP), 1is much

easier to solve, both optimally and heuristically, than an
equivalent size capacitated 1lot size problem. Afentakis
et. al. [1l] review the algorithms available to solve fhe

uncapacitated lot size problem in muiti—stage assembly

system as well as presenting a new formulation and

al. use a branch and

optimization,algogithm. Afentakis et.
bound procedure -Qith’ a lagFaﬁqéan"re;axaéion to'oﬁtain a
;hortest_route problem. By comparison, Blackburn«agd«Mill;n
(9] evaluate three single. level algorithms applied to a
multi-stage problem. These are the Minimum—Cost-per—Periéd
from Silver and Meal (81}, Péﬁt-Period-Cost-BaIancing and -
', Wagner and Whitin's algorithm [92].5 Blackburn and Millenv
extend these methods to heuristicaily handle vmuléiple
levels. ' c

‘ Afentakis et. al. [1l] solve ‘a number of randoml?
generated problems with up to 50 items in 15 stages i;.lB
periods. These require up to forty'seconds on an IBM 3033
for the longest solutions.

Blackburn and Millen present a problem with five stages.

in the production process and a lé period planning horizon.

The structure of such a.problem would be similar to (FCLSP) -

L3




requiring 60 binary variables. Additional constraints are
required for the different stages. The constraints on
production capacity would be removed aﬁd there would be only
one product group. Blackburn“and Millen use a dynamic
programming approach from C;owston,aﬁd Wagner [16] to obtaid
the optim;l solution requiring 3.3 seconds-on a DEC-1099.
The various heuristics solve the problem in orders of
magnitudé less time.

.
2.5. Summary and Research Objectives

The fixed charge problem can be applied to .a very
general set of problems which have a linear programming
structure but also contain a significant fixed cost

R &
components. This cost structure can be applied to a number

o

~

of related costs such as economies of scale, price breaks or

) minimum 1levels of production. This provides more
flexibility than is first apparent.

The. fixed charge prob}gms~are classified by application

area which include facility location, production planhing,

4kﬁahpower planning, media selection or portfolio selgction.

Within these application areas, the problems” are further

specialiéed by differenl characteristics. Therefore the

fixed charge problem, as a general problem, can be broken

;down into many different épecialized areas (Exhibit 2-17).

These specialized areas have been developed. for

basically two reasons: their® structures adequately.
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" Exhibit 2-17: Classification of Fixed Charge Problems

7

Q
[ ]

5

General Fixed Charge Problems

Facility Location Production

(CLSP)
(CWLP)

Accohntina Y\\
Portfolio

(FCLSP)

(UFLP) (ULSP)
¢

Manpower p

}

represent a particular problem; and sofﬁtibn~ﬁechfiques are
available which will solve $1arger speci?lized:‘problems.
Solution techniques which solve. the g;ne;ai_;ixed charge
problem” can also be used for the sbepiaiizéd structﬁres.
However, these general techniques - have diffigulty as
problems get large. : o .

The relationship between large and difficult is not
straight forward. . While ordinary continuous variablés may
contribute to the size of the problem, they have much leés

impact on the difficulty. As well, the size of the fixed
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charge component in the value of the objective function is
important (Kennington [52] and McGinnis [64]3. Francis,
McGinnis and White [31] state that QCWLP) with wvery small
and very large fixed charges are easier to solve than those
in between. There is a rather broad relationship Setween
difficulty, number of fixed charges, size of the fixed

charge component and the number of continuous variables.

While the number of fixed charge vaf}ables is the most :

important factor 'in determining difficulty, the other
factors ére not insignificant. A solution technique will
have to be able to‘%olvé problems of a significant size and
difficulty within reasonable 1limits in order to be

-

effective.

2.5.1. Evaluation of Solution Techniques

L 4

The s?lution techniques .for general fixed charge
problems appear to have difficulty as problem size
increaées.

The general purpos?’lbranch and bound mixed ‘integer
programming techniques are Gery flexible and find the
optimal solutions to small ﬁroblems well. However, as the
problem size increases, they become impractical. They are
hampered by the fact that they are not designed specifically
for the fixed charge problem. L

Branch and bound techniques for the general fixed

v
charge problem are extensions of similar techniques from

0 -

e e e ———
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.plane and vertex generation methods discussed.-

s -
mixed integer programming. There is an absence in the
literature of  test results for ' larger problems.

: &
Consequently, it would appear that these techniques suffer

similar problems with size increases as most branch™and.

bound methods. This would also applv to.the various cutting

, — :'J

The approximate methods developed for the generalifixed
charge gigblem are intended, in particﬁlar, f?r large fixed
charge %roblems; However, the results so far have not
proven their effectiveness. The test problems used have
been limited to the fixed cost transportation problems and
the concantenated random test problems. There cquld be some
question as to the difficulty of the latter problem.
Jenkins [49] reporté éhat the Walker algorithm requires
lengthy computer runs and obtains poor-solutions to waste
disposal problems.

An analysis of the heuristics indicates that ordinary

continuous variables with no fixed charge must be treated

61

the same as fixed charge variables. Typicallﬁ, large_;

.

problems will contain many continuoys variables with :no

fixed charge as in the waste disposal problem. However, the

i : ‘
adjacent extreme point algorithms handle these problems as

if all .variables were fixed charge variables. The standard

test problems from Cooper and Drebes ([13] and the ffxed,

" L]

costs, transportation problem are pure fixed charge prqbiems.l
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The techniques for specialized probieﬁs exploit more
efficient“ aléorithms than linéar programming for ° their
solution. “As a result, solutidn techﬁiques have been
deve loped épecifically for specialized problems which are
considergbly more efficient. However, %heir appliéation is

generally restricted.

The methods _which obtain _the optimal! solution “to
specializéd fixed charge problems 'will handle pgoblems with
relative ease which would be considered very large if
applied to a solution technique for solving genééal fixed

) charge problems. For example, %he methods which generate an
optimal solution for the fixed cost transportation problem
perform/better than the methods for obfaining an approximate
solution to general fixed charge problems (Kennington aﬁd
Unger [52]). Methods éor obtaining approximate solutions ¥o

specialized fixed charge problems will handle 'ﬁuch llarger

problems than the corresponding techniques for optimal -

solutions. »

’ % :
5 -

2
.

2.5.2. ‘Research, Objectives
The solution tecﬁﬁiques for the fixed charge problem '
can be classified by the type 6f problem they solve (general
.or specific) and by éﬁe typg of sblqé%on they are capable of
prodqéing (Pptimal or approximate). These can be evaluated
by how well they go on small and large, general ‘or

e \, ; ‘ F
' specialized problems (Exhibit 2-18). While performance is

\




good quuall clas
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algorithms have been shown to work well for large problems.
Of course, if a problem has any other features, ib is no

longer a specialized préblem and a more general technique

LY

must be used.

»

-

s

[ 4

<
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} d

ses of small problems, only'thé specialized

ExhibiE'Z-lB:,Perfo:zﬁnce of Solution Techniques

.

blem -

Pro

Small

Large

Algorithm
General ‘ Specialized
Optimal, Approximate
General good gocod n/a
Specialized good - good -good
General p&br ? n/a
Speciélized poor ? 3 gobh

4
.

The major‘problem hrearislla;geé qghéral .fixed' chérge~
problems. Results for optimizing téchniques for-the general
fixed charge "pPoblem have not been encouraging due”to the .
nature of branch and bound methods.
béen done on developing Heqrigtics for the éeneiél“fikéa
charge problem, this work has been quite. limited in scope

and requires additional testing.

/

Although some work has

The ﬁost promising area

63
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. for research appears ,to .be’. the tésting  of  the current
ke L y heuristigs and the development' Gf new heuristic methods for

solving large general fixedﬂbharge;broblems. .~ The research
& . €

l ~ S e
- . objectives cafi.be summarized as follows: )
: ® e ' s .
N - ‘ ~ "
! ' ¢ v > . PRSP . .
X .o, ) 1. Develop a new solution techniqpe for solving 1large
1 . ’ 19 7 N “ e © ! - - ’ ‘
general fixed charge problems - - - . . -
. .. e 2. Evaluate the new., solution technique, on " a
7 P g ’ " cross-section of fixed charge problems.
. B . ‘ . . -, . . (‘, N .
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ol . ) N .ot \
. " methods for esolving larbe fixed Sgatge problems.
3 » [ e, T ' -
i . ~*. . 4 4, Evaluate the current /;;proximate_.algorithms on a
:; ) cross section of figed charge problems. . . ’
X e L . s o L. T . g L
> R IS . . °
. A $ - N
. . > * ’ < N - 1} .
o ’ k. . . ) < N Q/\Z-.- .
- N L . :
b * k‘ - . 'm ‘)
N
<, [ R -
P * .
. - ) . . e
- ’ ) '.. '
- - ¢
A o H . W
& ' - * v ) ﬂ\ ’
N 0 ¢ - s
- . 8 ’ ..
: a ’ t. . a R
Y . ' - “(\‘
- o : .
3 . ‘. . . \, w— P
) .
AY - “
. ] ) .
o b
) 3 - ,
\_.




o A -
) - = 8 - — —
) * N » n‘ 4
'&i . . - _ ‘ . .
%&‘ ’ A NEW-APPROXIMATE:SOLUTION TECHNIQUE FOR LARGE -
% - GENERAL. FIXED CHARGE PROBLEMS
o ,
%;EF ) N ° ' . ’ L
% - .
-::Q; - “« ™ :
% ’ - -
. -3.1. Overview . S “ )
‘? - 0‘ - 4%
R : © As identified in the-  reseaXch objectives’ in “the
y previous chapter, thére exists a need for a method of
2 R :
? - solving large’ fixed charge problems which do not have the

s}xﬁ;ture tequired for the efficieptuspecialized techniques

Exhibit 2—18{: " The technigues which can provide the

optimal solutions to fixed.- charge problems appear to work
. . F . N

well only with small probilems. narger'

require large amounts'of computer tinle.

x(

Eroblems quickly

" The most promising

area for exploratlon is the:denelopment of 1technigues for

obta1n1ng approx1mate solut1ons for these problems. The

-

current approx1mate methods, prlmanulv the adjacent extreme

& i

- p01nt heurlstlcs,: have had lgmlted success. Their major

L 4 .
moderate size‘*ﬁrobiemS'

.

.. success has been repor ted on some

- -which have~spec1al’structures-*‘~— e

e
[

.~

Although the new algorlthms to be deveioped for solylng

v

-
'flxed charge problems ylll be approximate methods,

some
F\"»‘ 3
features will be bor rowed from \optimizationv approaches.
v ‘*;N_:d:;y e \‘,"1 o
Necesgsary conditioms *f%; a solutiOh= to- beq-qn optimal
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-y solution will be developed. Since sufficient conditions are

difficult  to develop, heuristic rules will provide

“

R quési-s&ﬁficient conditions for' an optimal solution. In

I3

» * = - ~“addition, these heuristic rules will indicate how to improve
) e .. .

. .

the solution.

s

sThe new algorithms will 'exploit features found in the
; ‘ revised simplex method using the product form of the inverse

which .is the standard method for solving large linear o

&

‘ programming problems. Continuous variables without a fixed

-

charge will be ignored by new algorithms with their values .

’ determined by the  linear programming™ alqoriéhm. ~ In
. N - . ' I
. R : , cohtrast, the adjacent extreme point heuristics treat all

. variables ,as fixed chargeﬁzfriables and work .best on. the

; 2 "~ regular simplex method.éhich maintains a full tableau
[ . ! N b .

N . a

B / 3.2, ‘Conceptual Foundation S 8

} - ) R Hirggi and ﬁanfzig [45] show that the cpﬁiﬁum of a
. . fixed charge problem exists at an extreme L point of the
- : associated linear programming bro?lém (ALP) (Exhibit 2-12),

« . All algorithms, developed for ﬁhe'fixed.charqé problem use
- N &
) this feature. Vertex generation, in particular, implicitly

o -

’

* - —_ énuﬁéfatéé all the vertices of (ALP) .
R .
. \ ‘ o . ?he adjécent egtreme‘point heuristics mgée‘from extreme
| ' . point 'to extreme point until, by ug{ng'hégristic rules, ﬁgév
terminaté\their search. Although all Ehé feasible extreme

points of (ALP) could be examined, these methods only look

x,

¢
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_at a subset of all the extreme points in (ALP). This subset
* . e
is"developed as the algorithms progress using various

> &
(ks

heuristic rules. . -
The new solution technique examines a subset of the
extreme points ~of *(ALP). which is defined a priori. This

subset is defined | by the necessary :conditions' for

.y

optimality. Heuristics rules are subsequently introduced to
4 _develop quasi-sufficient’ conditions for -optimality. These
quasi-sufficient conditions if not met will indicate how to

M N - - . 9
improve the solution to -"(MIFCP). <In the  following

-

discussions, (MIFbP) will be used for’simplicigy. However ,

~ s

, ‘the discussion can-also be applied to (NLFCP) "as well.

<, - <«
b\’

2 -~

3.2.1. Necessary Conditions for Optimalit - .
. ¢ Q ‘ . - - .
- 3.2.1.1. Definition - “ \\\ et

: As will be shown, it is only necessary’ to examine a

subset of the feasible extreme points in (ALP). If the_Yj,

.

kl

which represen£ the actual fixed chargé,'afe set to either
. . ‘zero or wone for all 3§ in (MIFCP), then the term in thé__
’ .

ENY

> “‘ . I3 * K3 -
i gkjectlve function given by; : #

- T
- .
N . . . B . “
_— . .

‘wbuxa be constant.. If a feasible solution "exists, the

N N

o ¢ . ; .
optimal sOlution to (MIFCP) can be obtained by solving the

1

-
N ",

.

. . fixed charge problem, with' the gpntinudhs costs only or

(FCPC) (Exhibit 3-1).  (FCPC) is, of course, a simple TTnear
;o N . . A

.
5y - !
P - L

* -
v, . . P)




'

°

a1,

68

at
“

e

programming problem. Therefore, once all the Yj have, been

determined, it will be reiatively easy to determine the Xj .

-

Exhibit 3-1: Fixed‘Chafée Problem Continuous Portion

FCPC i i = /
( ) minimize 2z % 4% (
subject to: -
2 aijxj = bi ¥ 1i
]
X. . 3
3j su Yj ¥ 3
X, >0 ¥ 3

u = a large number

.

*

For a facility location problem,- determining the value

= : 2, cn s s
for Yj 'is* equivalent to deciding a priori which facilities
will be openﬂor closed and then minimizing the variable

costs. For examplé, if it was decided, with out respect to

>

the optimal solution, which warehouses to have open and

closed, the capacitated warehouse 1oca¥§on problem becomes a:

“standard traﬁépoktation‘préblem.» - e T ,

A 1ag;angéan relaxation of the constraints in (FCPC)

involving Y, .for all J would shift thes? constraints into

' the objective function.™ If m. is defined as the lagrangean -

J
multiplier, the Ruhn-Tucker conditions require that eqdatiqn

. . i
Y
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before

(3.1) holds a solution can be considered. an optimal

solution to (FCPC).

mj (X5 -4 ¥5) =0 v (3.1)
Ay : —

Since by definition, X. than u,

]
equation. 3.1 can be

is strictly less the_ two

-

components of treated  independently

requiring -both equations (3.2) and (3.3) to hold.

R . Y

MiTKg =0 - _ ¥ (3.2)
Y.

m =0 ¥

§ ¥y , o (3.3)

-

If equation (3.§f'holds, it implies that equation 13.3) also

holds. Therefore, the term involwving Yj can be removed from

.the objective function of the lagrangean \?éigxation of

2 ' :
(FCPC). An equivalent formulation tp (FCPCﬁ;for3801ving

(MIFCP) would. be given by solving the associated linear
programming problem with modified variable cost§ or (ALPM)
given in Exhibit 3-2. The lagrange multipliers, ms, must be

selected acéordind to equation  (3.4) which isg*bqnsisﬁenﬁ

o .
. *

N . > - »
. . i : .- {
with equatjon (3.2). P . N
e, it -
LA d ,\;‘

RIS re 8 ‘

LT 4o 1 s
I X . s"‘\
f‘” }f( VS ks =
*
% :

«g“flu ',I
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p - &
4

5 0 if Xj>0 (3.4)

m ) R I
¢> gs > 0 if X;=0 had
-_— J — J .

where: )
qj =

critical quantity required to keep X out
of the solution. .

¢

The critical ® quantity, q. iéself, is not explicitly

JI
required as mg is sufficient to solve for X3 . Since m is a
rande, it is easier to determine than an exact value for qj.
0-' -
The mj's can be selected such that solving (ALPM) will
generate the optimal solution to (MIFbP).
S -
Exhibit 3-2: The Assoc1ated Linear Programming Problem
w1th Modified Variable Costs
?
- -
ALPM inimi z. = < 4me . . s
( . X m anlze c Zj(cJ mj)x1 . 2
subjegi to: - V::;:\\
- > 2 aijx;i = bi ¥ 1
J
1 ' ¢ -
X. >
) 32 9 ' ‘ ¥ 7
<

,f‘ SN EW
"

{For given;values of m:l .(however selected), the\ikg _can . T

' " | . > =
be detetmlned from the 1Qnear programming solution to
Y N l ' - s
(ALPM).. " The Yj can be determined by a simple inspection:
. o . o Tt

if Xj507"then Y;=1; if X4=0, then ¥;=0. ) Ve
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Therefore, a solution to (ALPM) which also Sat?sfies
equaEion‘(3.4) will be a member of.the subset_idenﬁified
above . _Every'member of the subset could potentiallvy be the
ogtimal solution of the original problem. However, theé
optimal solution must be é membér of thg suhset._ Thus,
permissible valueé must be determined for.the m; such that a
" solution to. (ALPM) constitutes a.meﬁber of the subéet. The
following précedure will accomplish this task.” -

v L4

3.2.1.2. Test Procedure " -

-

Consider J to be the set of all fixed charge variables.

>

Exhibit 3-3 defines three mutually exclusive subsets of J.

All Vvariables must belofig to one of the subsets. 3in, gout ..

gfree eor the .solution to meet the necessary conditions for
optimality. ‘Define Jfail as the set of variables |

{j|xj>0,mj>0} not meeting the necessary ‘conditions. Then

for all solutions, J=gify gouty gfreey yfail, /

If X4>0, the fixed charge, is not relevant -to small

changes in Xj and hence need not be considered, a small

change being any change which does not alter’ anz/ of the

fixed charges.. ' Since X;>0, the only change which would

affect the fixed chafgg would be to séq ijo. :Any othéf
. change has no &mpécé on the fixed charge. ' Therefore, the
inc:eﬁental coggxof‘thése changes wou )
only. 1If Xj=0;'mj ‘ ¥ :;bst of ;bsggp}ng the

fixed charge resulting from any small change (inérgaée) in -
S S8

oo, e U
repreésents the unit

1d be the variable cost” ’

3 : I T - - Do e e P
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Exhibit 3-3: Necessary Conditions of X. and m.
for Optimality J J

~ M - r%

1.3 = {51%5>0, my=o} ,
T2, Tgout o

{j|Xj=O,.mj90} - . -

3. Jf,ree = {jlxj=0, mj:O}

® -

x\j“‘fr}y change in the value of X; must bring the variable

into the solution and incur the fixed.charge.

e .

However, if X%>O and mj>0, thé solution to (ALPM) is
: {

not optimal for (MIFCP). To restore necessary conditions’

.

’

for optimality will reguire that the values for mj be
(ALPM) must be resolved to
ﬁ '

changed. ,After modifying the my,
obtain new values ‘for Xj,

Restricting the discussion to the single variable i

‘where Xj>0 and mj>0, two poséible changes to my can be ‘made:
. ’ “

1. 1Increase my such that X, is forced to zero) or
"2, Set m_.=0.
J

"

Any other changes to m; will result in a solution to (ALPM)

¥

.that still violates the necessary conditions for optimalitv.

For example, increasing mj such that Xﬁ is still greater o

than zero will not meet the necessary conditions %nd mj must

‘be increased further. Decreasing m but not ﬁo/’iero will

LI )

-
v meeeen S e —— — -




of the 'subset’ of extreme points of (ALP) which can be
- [vg

determine if a solution is a "good" solutipn to (MIFCP).
N ) - . 2 - .
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also result in Xj>0 and mj>0 which continues to violate the

. necessary conditionsg for optimality.

-

The initial procedure for solving (MIFC?) involves
selecting ms for all j, solve (ALPM) .and then possibly
modifying the mj to meet; fhe necessary conditions and'
resolving (ALPM). . Except for special cases which will be
discussed later; all the m, for the wvariables in the set
Jfai} will be set to zero and is outlined in Exhibit 3—4.

Since ,there are a finite number of fixed charge variables,

. the procedure must ‘converge although it ‘will qeneq?fiy

.require one or two iterations.- This identifies one member

-

considered as an optimal solution “to (MIFCP).

" -
- Al . N

N

ey

3.2.2. Quasi-Sufficient Conditions for Optimalitf

3.2.2.1. Definition . -

The conditions outlined in EXhibiE~ 3-3 specify
necessary conditions_,for- optimality but 'Ehey do not
guarantee an aoptimal solution. Rules will be developed to
Since dgterminiﬁg if, in fact, a"ﬁdfgtion is optimal {is ’
difficult, these rules will' not gu‘tee an optimal
solution and will ‘be refequd to - as quasi—égffiéient
conditions for'optimalfgy. ) »w .

Sgért?ng with a solution which meets the conditions in

Exh&Bif 3-4, changes wi-ll be made to various m; and (ALPM)

-

i v At -




Exhibit 3-4: Testing for Necessary Conditions

I
 Initial Conditions, my ¥ jEJ |

&>

Solve (ALPM), Redefine Jfair' :

J

fail

Set mi=o ¥ jeJ

-

_( End of Necessary Conditions)

/ =

will be re-solved in an effort to find solutions to (MIFCP)‘
. by . i

with improved objective function values. If a better

solution is found,, the procesé is repeated. If the changes

A}
to various m fail to find a solution with an improved

objectiveé. function value, then the current solution will be

deemed to meet the - quasi-sufficient conditions  for
. h - LNy
optimality.

Clearly, the number of possibilities for < changing

N

various mj is enormous. The number of possible simultaneous

changes is .the \facgérial of the number of fixed charge

.
[
’
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L}
-~

.variables. 1In additioﬁ,,the’actual value for each mj must

be specified. - -

« 4

If the discussion is restrlcted to changing one m. the

number of p0581b1e changes is equal to the number of fixed

ﬁ.

charge wvariables. Uéing.‘the iestriction of changing only

one m., there are only two types of changes which can occur

(Exhibit 3-5). These ‘ehanges are  ‘referred to as an

Allocation for increasing mj by allocaéinq the- fixed charge,

and a Deallocation for eettihg mjho and removing a previbus
allocation. For clarity,  the wvariable which will have an
allocation made, w1ll be referred to by the 1nd%x i and the

variable which will have a deallocation will be referred to
by the index k. * : )

All other changes .either prodﬁﬂé »solutions which

-

’ violate the necessary condltmons (Exhibit 3- 3) or actuallvy

L 2
result in no change to the solutlon. For example,
increaeing mj if xj=0 will abviously. not - chépqe the;

i solution. ‘Decreaeing mj, bit not to zero, wpeq Xj=0 Qill
eitper leave Xj=0 (i.e. no change) or.éliow‘xj to increase
which violates the. necessary conditions+~ If Xj>0 and mi is
increased, X. nmust be changed to zero otherw1se a necessary

o ]
. " condition is v1olated ) ‘ -

o
{
{
’.
\s‘
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Exhibit 3-5: Possible Single Changes to mj

Status of

P Process Change - Possible
; X. . Yon
i . 3 & WJ Conseq%gnce
a)‘Allocatiqn Xi>° (mi=0f - ‘increase force '
coM Xj out
b) Deallocation  m, >0* (X,=0) set allow
k k - :
i ) mk—O' Xk in
) - ’ ) ' ¢
¢ . e .
"a) . The first single change in Exhibit 3-5 \;Etempts to
. _ force variable 1 out of the solution. If, after
: re-solving - (ALPM), Xi>0 then the necessary
2 conditions will be violated. 1In order to meet the =
necessary conditions, ms will. have to either be
: r.

i . .increase® further or set back to zero depending upon
the procedure beirlg used which will be detailed
below. )

b) The second single change in- Exhibit 3-5 allows
k\—ﬁv//’ Vérlable k to come into the so}ytlop. The 'necessary

conditions for the variable k would be met by

definition after re-solving (ALPM) sincewmk would be
zero. .

ra
. .

¢
-
‘4

Allowing two variables to change their values of mj

(number of fixed charges) *{number of fixedj

uld result in

“possible qombinationé. In addition, there would

e many possibiiiﬁfes for the value of the mj for each

2 . .

A
i
!
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change. Due to the large numbe;s, examination - of)‘mdltiple

restricted.

b

are two types of changes.

changes will be With the single chghgé, there 7

mhe first change, an Allocation

which' increases m, out of the
o i
The second change, a Deallocation setting m, to

L)

force X

; 3attempts to i

solution.

2zero, allows

Xk to come into the solutlon. The comblnatlon«

’ P

change will combine the two single changes by comblnlng each .

Allocatlon with allipossible Deallocations.

A solutlon to (ALPM) will - meet the quas%rsufficiehcy
592§z€10n when \all the 'éinéle«(combination) changes to mj
- ‘ T, - - .

along w1th subsequent changes " to meet the necessary

=

°

conditions ﬁg{ optlmallty fall to produce a solut;on with an

1mg:oved objeqe;%e function value for (MIFCP). A solution

t

which prodjices a better objective function value £or (MIFCP)

also indicates how- to improve the valué of different m_i to
- v A -
obtain the new improved so1\.1t:i<>i’:—.-/z‘j"//§~ .f ! -

Although the

-

quasi-sufficiency _ -conditions.’ _for, -
- - )

optimality- will show how to improve the solution, it is not

- s

i 2
‘solution is

o Ll
obvious what to dé as soon as a new improved

found when a qua51 suff1c1ency \condltlon 1s not met. Oﬁe

approach would to be to use thlS new

1mproveg solution as

the basis for furﬁﬁégﬂotesting: Unlike lin€ar programming

where any changes whiéhhcpnsistentiy improve thev ebjngiQe

L ;} b ". ’ RN o .

function will eventually (lead to the 6ptimumf the order in
£ ‘ . -

07
which changes are ‘made is jimportant faor -the fixed charge’
. N ~ ,J B
problem. i 6 .
s - '\ ° ’L
“ .
) S .

AEN
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" Primarily due to its. intuitive appeal, it was decided
to'select the cégnge which made, the best improvement. Of

course, determining the change‘ which  makes the best

\

improvement implies all the possible single (combination)
changes must be made in order to evaluate them. Clearly,

this is not the only rule that could be used. Th&s would be

»:_3,
-
R

an aréa for further research.

Pt )

The next task is to define the specific test fors the

quasi-sufficient conditions.
1 . o

3.2.2.2. Test Procedure
3

The previous section outlined the two types of

quasi-sufficiency § conditions: a single change and a
combination change. Each type of condition will require a

test procedure. For each test, the best improvement in the

t

objective function -of (MIFCP) is used, to generate the next
solution. If no improvement is found, the quasi-sufficient

conditions for optimality are met and the test terminates.

-

~.

~

3.2.2.2.1. OQuasi-Suffigiency Test for a Single Change

The quasi~sufficiency test for a single change involves
selecting ongoof the bhanées given bin Exhibit 3-5 and
solving (ALPM). The 'test for necessary conéitions is made
(Exhibit 3-3) which mav require a modification to the value

of ,some mj and resolving (ALPM). This process produces a

[N

new solqtion whose objective function value for (MIFCP) |is

cee oy e e VP, © e e e e oA - U U ke e
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determiﬁed and compared with the objective function value of
thé current best solution.

A different procedure is‘required for each of the two
types of changes; an Allocation and a Deailocation. The
allocation of a fixed charge is described as~follow§. If a

a
H

variable i with X:>0 ‘and m;=0 is to be tested, the only

change that can be made is to increase m . After the

change, (ALPM) 1is solved, the test for necessary conditions

performed with subsequent changes to various mj, if

required, and the resolving of (ALPM) as outlined in Exhibit
3-6. The vector containing a solution is referred to as X

with no:subscript.

The initial increase in m; is calculated by allocating

the fixed charge with fi/xi. This increase represents the
prorated change in the objective function if Xi is forced to
zero. After making the allocation  and solving (ALPM), a

test for the necessarv conditions must be made. First, all

*

variables other than variable i are examined to insure that

there is no. variable j where both Xj>0 and mj>0. If any

are, the appropriate my is set to zero and (ALPM) is

resolved.
CIf X; 1s still greater than zero after the allocation,
there are two possibilities which can occur. These are

determined by comparing Xi to x;, the previous value of Xi

which was saved. If Xi<x;, the allocation has succeeded in

decreasing X; but not to zero. The ailocgtion process is

79
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(1] t Ko \\
. Exh1b1t 3-6: Quasi-Sufficiency Test - for Slnqle Change
- Allocation of Fixed Charge to Variable i
\
|
|
\

]
Start, set X =X

s —

set m£= fi/xi

|
< Is X still optimal >¥ yes Set X=X , End

nol .
} F
Solve (ALPM), Redefine gfail l
|
. fail |
10 1 set my=0wjeg-2* b—]
J
/ bl
<i<1Jfai1—{i}=g:>Jﬁl_ Set mj=ovjleail—{i}
) yes| e

( End of Allocation) .

repeated with & new and higher allocation.

If Xi=x;, the allocation produced no change to X, . It
is deemed that there will be no improvement to the objective
function of (MIFCP)' by removing variable i from the

solution. Although it would be possible to increase the

e st e e e e e mw o e o e o x e o



value of m, further to attempt to remove the 'variable i from
the solution, this 1is not.done. Thus, the effort fequired

to remove 1 from the solution is npt incurred.

The deallocation of the fixed charge is described as

follows. If a variable k,» with mk>0 and Xk=0' is to be

81

tested, the only acceptable change is mk=o_ Obviously,'

increasing mk, will not change the solution. A decrease in
my to a value larger than zero mav, after solving (ALPM),

result in X >0, However, this would violate a necessary

condition for optimality.’

The deallocation procedure involves removing a previous
allocation and solving (ALPM). A test is made for necessary
con@itions. Possible changes may be made to various mj and
(ALPM) resolved. The new solution to (MIFC?} is evaluated
by determiming objective function value of the ﬂéw solution
and comparing it to current solutions. This procedure is

outlined in Exhibit 3-7.

— 3.2.2.2.2. Quasi-Sufficiency %est

for a Combination Change . .,

The combination change,invol&es one ailocgfidh;%nd one
deallocation. This test attempts to bring”in*eaéh43ariahle
which is being kept out of the solution with an allocation

while at the same time remove any fixed charge variable

currently in the solution.




#

"Exhibit 3-7: Quasi-Sufficiency Test for Single Change.
- Deallocation of Fixed Charge to Variable k
<

fail |

 Set mj=0VjeJ

yes . /

End of Deallocation )

-

If variable i, with Xi>0 and mi=0, and variable k, with
X,=0 and m >0, are to be tested jointly, then variable k can
be aliowed into the solutioﬁ by a deallocation (set m,=0)
and variable i can be forced out of the solution by\aﬁ
allocaEion (set, m.>0). This procedure is outlined in
Exhibit 3-8. The combination test attempts to replace
variable i with variable k, although ~with the necessary
‘conditions to be met, other variables may also change their

- status. The allocation and deallocation procedures are

identical to those found in the test for a single 'change

e

[ e i e cm e h e e s e e — e e T R e e s mm i e e e
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(Exhibits 3-6 and 3-7). The deallocation procedure is-
implemented first in order to avoid the problem of variable
J 1 coming back into the solution following the deallocation

~

to variable k. ' -

3.2.3. Synthesis of Necessary and ;

Quasi-Sufficient Conditions

The basic procedure for solviﬁ&% the fixed charge R

\

problem will be to select some initial Yalue for ms; for all

‘ j, solve (ALPM), test for necessary condf%ions with possibie

s v

changes to various mj and resolving (ALPMf‘and then test for
\ ) quasi-sufficient conditions which will also show how to
improve the solution, if required. '
Some choices will have to be made wiéh respect to-which

initial;conditions to use. Also,  different initial

conditions will in most cases 1ea§ to different solutions; {
This will require some means of evaluating the differené
solutions in order to exploit thenm,

However, these cons}derations are less of a theoretical
nature and relate more to operational implementation.
There fore, the discussion of initial coéditioﬁs and

different solutions is deferred to the next sectibﬁ}

- o

3.3. Operational Implementation

" The two components outlined above, the initial wvalues

of m%”“°°hpled with the test for necessary conditions, plus
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Exhibit 3-8: Quasi-Sufficiency Test for a -
Comblnatlon Change - Deallocation on k
- Allocation on i

Start o SR

Deallocation on Variable k (Exhibit 3-7) 2 .
. T ~

Allocation on Variable i (Exhibit 3-6) : ) N\

prs
-
-

(—End of Combination Test )

the repeated application of a quasi-sufficiency test, will
be combined to form a phase.. Each .phase may use différent
quasi-sufficiency tests. The phase with a single change
" involving both an allocation and a deallocation is shown in
Exhibit 3-9. The phase involving the combination change is

shown in Exhibit 3-10. Combinations of différent phases

. will make up a part of the new algorithm. Finally, 'since

the different combinations of phases will generate different
solutions, a comparison and. evaluation of the different

solutions will have to be made.

- s . . '
- R
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Exhibit 3-9: A Phase ~ Quasi-Sufficiency Test

for a Single Change

Obtain Initial Solution, X, z |

Set i=l, 2%=2'=z,X*=x"=X, Redefine Jin, gout ‘

A

Allocgte i (Exh.3-6) —}—a

Deallocate 1 (Exh.3-7)

set. Xx*=X,z2%=z |

bl

4 N
. RN 1 ]
. . [ ]
i=i+l,X=X ;
- \ | 2
no \ K
\
yes Set ‘z=z*,x=x"

~N
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Exhibit 3- 0 A Phase - Qua31 Sufficiency Test
for a Combination Change

-~

86

\ ' -

Obtain Initial Solution, X, 2z

Set k=1, z*=2'=2,X =X =X, Redefine J°Ut ‘J

e

) i |
R ke;;;z—>f—295——- Deallocate k (Exh.3-7) |
A ]

I

. bt : in
Set i=1, X =X, Redefine J l

* Prmn—

- Y ‘ .
{ iQ{Ef::>}_XE§__. Allocate i (Exh.3-6) ‘

é i x .
) z<g* es set X =X,z*=2 ]

, NN o

-

Set z=z*,X=X"
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Each phase begins with an assumption with réspeét to mj‘

for 'all j developed either exogenously or from a previous

phase. Then, through a process of allocation and’

4
deallocation within the quasi-sufficiency tests, improved

solutions will be found. When the quasi-sufficiency

conditions are met, no new improved solutions can be found.

\

At this point, the algorithm terminates or new assumptions
\

can be made with‘rgspeCt to m. for all -5 and the process

-

repeated. o, \
« " \\4 ) ! .
The different initial conditions, which will be

introduced in the \folléwing section, represent solutions

dominated by "either the continuous costs or the fixed

-

charges. Other 1initial conditions will include corrections

4
to these two.

3.3.1. . Initial Conditions

Two methods are used to obtain.initial conditions. Thé

first method éxogenously selectsfvalues for all mj which

represent suitable values. The - second method takes a

solution from a preceding phase and adjusts the value of

some of the mj and continées.

3.3.1.1. Initial Conditions

Dominated by the Continuous Costs

The initial default value for all mﬁ is set at zero.

of course, this simply. solves the associated linear

87
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programming problem (ALP) wusing the continudus objecbive.

function. By definition, this solution meets the necessary
conditions for optimality in Exhibit 3-3. These initial
conditioﬁs provide a promising area for search for problems

in which the continuos costs are more significant.

-

3.3.1.2, Initial Conditions

Dominated by the Fixed Charges

The initial conditions in the previous section are
dominated by the continuous objective function. 1In this

section, initial conditions dominated by the fixed charges

will be developed by quickly incorporating the fixed charges .

into various m; after initially solving (ALP). The fixed
chérges are allocated to all positive wvariables using

equation (3.5) and (ALPM) is solved.

' max{ my, £./X: } if X:>0 (3.5)
o LIRS T 770y

The process is repeateé with Equation (3.5) applied to each
solution and (ALPM) solved until the solufion stabilizes.
Although the process will usually require two or three
iterations, an arbitrary limit is imposed to prevent
excessive looping which will not accomplish 'significant
improvements. At this point, the solution will violate the

necessary conditions for optimality as a number of variables

will have X.>0 and ms>0.  In order to meet the necessary
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conditions, the® value for my for these variables will be set
to 0 and (ALPM) resolved. This procedure 1is outlined in

Exhibit 3=-11.

3.3.1.3. An Adjustment to the Initial Conditions

At the end of any phase starting with one of the
initial conditions previously given, the fixed charge

variables can take on thpee possible states depending on the

‘\

values for X: and mj' xhibit 3-3).

The first condition, set JM, is for variables' in the

solution. If Xj>0' my must be zero. The second condition,

Jout, results from variables which were in the solution

set

at one point but were driven out. Since mj>0, an allocation

4 ®

of the fifed charge must have been m;de which forced.the

variable out of the solution. The third condition, set

gfree, with both X;=0 and my=0, represents variables which

have never been in the solution. )

Variables in the third condition quite often have small
continuous costs with large fixed charges. When these
variables come into the solution, they are rejected because
of the large fixed charge. However, because of their small
continuous cost, they may 5e keeping other variablesrfrom

coming into the solution in their place. The initial

allocation of the fixed charge (mi=0) is a poor estimate and
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consequently will be increased to infinity. Therefore, the -

initial condition for this phase will modify the m; from a
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Exhibit 3-11: Initial Solutién Dominated by Fixed Charges

H

) rd

‘Set mj=0 ¥ j eJ, k=0 l

Solve (ALPM)O i '

T -

Set m.&
:9_ mj if );-=0

. max1mum(mj,t‘j/xj) if x@BO,

vV jed

»

7

Set mj=m; ¥ jed, kek+l A B
[ .
< Is X still optimal f
yes
Redefine Jfa,il o Solve (ALPM) l&
yes| 1 d
(End of Tnitial Solution J N
- \
- "\-5\\[,
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previous phase by:

Set my=infinity ¥ je{-jlxj=0,mj=0} (3.6)

The necessary conditions for the current solution are by
N .

definition met and testing for the quasi-sufficient

A
" . -

conditions can begin.

., 3.3.2. Multiple Changes from Different Solutions

.
\w

’ - ‘
* The different initial conditions outlined lead to .

basically two different solutions to (MIFCP). The initial

conditions dominated by continuous costs produces one
solution while Ehe initial conditions doﬁinated by the fixed
cnardes produces another. The third tvpe of. initial 1
céndition is only a modification to the initial assumptions
made by the previous two metﬁods. The fact that there are
two different solutions to (MIFCP) requires some resolution
of which solution to use and what to do with the other.
Picking the best solution and discarding the othér would bé
one option. Alternatively, information from both solutions %
could be used in orger to improve the best solution.
Consequéntly a procedure is developed to compare these two
solutions and atteﬁpt to produce mpltiple changes which will
improve the best solution:found so far.

As a result of thé:aiffe;ent initial solutions, there
will be two solutions to -(MIFCP): the best soiutign found
so far, design;ted by the vector x2; and an alternative

solution designated by. the vector X'. In order to improve

™
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on the solution given by tbe Xz, multiple changes to the
solution must be made since the quasi-sufficiency-conditions

. have already been met.. Therefofe, the problem becomes how.‘
to heuristically make selective multigle changes io the best
solution found so, far that will lead to further improvement.
This heuriséic will make wuse of existing information

encompassed(,in the two solutions represented by Xl and Xz.

© T The heu;istic begins by developing a set of variables
which have a different status in the two solutions kExhibit
3L12). The status in a solution relates.to a'variable being
strictly greater than zero (and'iﬁcﬁrrinq the fixed charge).
If the set of variables with dif%erent status.is empty, the

solutions are the same. If .not, the set represents a

multiple change to the best solution found so far. - -

I

Exhibit 3-12: Set of Variables with Different Stdatus
in Two Solutions

2

set S = | j|x§>0, xg—-o bl j|x§=0, x5>0 }

‘ ®

The multiple change above, represented by the Xl, leads

to a "good" solution as opposed to a multiple change picked
at ‘random which may lead to a bad solution. Since this

" multiple change does not lead to an improved solution, a new
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multiple change will be generated ieading to a a third‘
solution which will be fepresented by the vector X’.. The
values for X are created by forcing a restricted single
changé on the solution represénted by xl. The single change
will be accomplished by either an allocation (Exhibit 3-6)
or a deallocation (Exhibit ?—7) on the set of wvariables

-

defined in Exhibit 3-12 which are differené in the two
solutions represented by Xl, a "good" solution, apd Xz, the
best solution found so far. The single change will generate
the solution wh%ch has the bgst objective function value .
given that a single change must be madé.

This new solution represented -by X may have an
objeqtive value that is 1less than fhé objective function
value of the solution represented'by the xt. ;bHowever, it
represents a solution which has more similarity to the

solution represented by xz. The solution represented by X'

replaces the solution represented by Xl. The process is
repeated with the two solutions, determining the best and
making a single restricted# change to the other. Although
the process initially proéuces inferior solutions,
occasionally better solutions are found 1in subsequent
iterations. Eventually, the two solutions become identical
§ and the heuristic terminates. N
The process of comparing - two  solutions will

_occasionally start cycling as the heuristic attempts to move

back to the solution represented by the original Xj. To
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prevent cycling, two numbers for ceach solution are
determined. The objective functien values offthe solutions
represented by 'xl and X', represented by. 2l and 2!
respectively, are determined.” Each of the two solutions is,
compared to the best solution found so far (represented by
x2) to determine the set of wvariables with a different
status (Exhibit 3-12). A count of the number of variables
with a different status 1is made for ,each solution and
designated by k1l and k'. If zl<z' (an inferior- solution)
and kl<k', the heuristic may be cycling and is terminated

2

with the solution represented by X chosen as the best

solution to the problem. . )
Tﬁe heuristic is summarized in Exhibit 3-13. . 1ﬁi€heugh

it does not alwaye produce better solutions, it is

relatively fast and occasionally produces good results.

*

3.4. The Cost Allocation Algorithms

The conceptual foundation and various components of the
new cost allocation algorithms have been presented. It is

now redquired to present the overall description of the )

K

. .
algorithms. The basic cost allocation algorithm, COAL-b,

will use the quasi-sufficiency test for a single change, two
initial solutions and a comparison of the two results with a
multiple chanée. This basic alqorithm will be extended with
COAL-x to include the quasi-sufficiency test for e

combination change. 1In addition, two ‘algorithms, COAL-c and




Exhibit 3-13: Multiple Changes from Two Solutions

Obtain two Solutions, zl,xl,zz,xZ_J

Re-order such that 21>22, Redefine S, Set k"=$$l

Py @

S=g yes {4istop, Solutions the same )

/- \

Set i=l,z=z”=zl,x=xl,z'=infinity, Redefine Jiﬁ—l

no

i

. l
ies j.Xes ﬂ €S | Allocate i (Exh.3-6) }—1
<__ J
' I
|
_ |
|

no no
o )]
L¥Deallocat<-:‘ i (Exh.3-7)|
l

rd

\
!

1]
es set X =X,z2'=2

1

Set zl=z2',X =X', Redefine S, Set k'=]|s§| ‘

<k'z_k" z.tzzn>__1§_5____(8top, Cycling )

no| ] .
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COAL-f, are derived from the basic algorithm COAL-b and

included for problems which exhibit special conditions.

3.4.1. The Basic Cost Allocation Algorithm - COAL-b
The Basic COst ALlocation algorithm, COAL-b, consists
of two different initial starting solutions representing the

continuous cost’ dominated solution and the fixed charge

dominated solution, five différent phases to- improve the

96

initial starting solutions and a comparison of the two final -

solutions. This is outlined in Exhibit 3-14.

3.4.1.1. An Initial Solution Dominated

by the Continuous Costs - Phase 1

Phase 1 begiﬁg by selecting initial conditions with
mj=0 for all j. This essentially solves (ALP) and is "an
initial solution dominated by the continuous costs. Since
there are no fixed charges allocated, the . first
quasi-sufficiency test with a single change 1looks at the
allocation test only. The allocation process continues
until further improvements can not be made. !

At tﬁe end éf Phase 1, the current best solution will

have a number of fixed charge variables which are not in the

solution and have mj>0; The‘facﬁ that mj>0 indicates that
at one point, this variable was in the solution and has been
removed. The allocation in mj is keeping the wvariable out

of the solution. However, this is not an absolute



Exhibit 3-14: COAL-b -
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Basic Cost Allocation Algorithm.

+

- — e =

- e ] e e e e -

Initial
Conditions
(Continuous)

Q-S. T.
Single Change
Allocate

- we em | em ew e e

Initial
Conditions '
End of Phase 1

Q-S. T.
Single Change
" Allocate

“Deallocate

- e ] am e e . -

=

Correction to
Initial

Conditions

End of Phase 2

Q-S. T.
Single Change
Allocate
Deallocate

Initial |

Conditions
(Fixed Charges)
Exhibit 3-I1) _

Q_So Tn
Single Change
Allocate

Deallocate

l

Correction to
Initial

nd of Phase.4

l.
L_ Condi-tions
E

e

Q—So T. .
Single Change

Allocate

Deallocate |

-— e e e

Changes

[' Multiple

(Exhibit 3-13)




restriction. The " requirement to meet the necessary.
conditions would allow a variable to come into the solution
provided the additional allocation can be overcome.

a

3.4.1.2. Continued Search - Phase 2

The -initial conditions.for Phase 2 follow from the end

of Phase 1 wiéh no change, Since there are now several
#variables with mj>6, it uses both the allocation and
deallocation procedure as part of the qugéi-sufffciency test
for a single change. Again this continues until further

A

improvements can not be made.

3.4.1.3. Correction to Initial Conditions - Phase 3 ..

In Phase 1, the default allocation for all fixed
charges was set at zero. As a result, at the end of Phasé
3, many fixed charge variables which remain out of the best
solution will still have an ‘mj=0. Vari;QIe% with a
relatively loﬁ contindéus objective kungzibn coeffigient and
relatively high fixed charge will come into the solution as
a result of another variable being forced out through an
allécation. However, thé solution appearé poor because of
the large £ixed charge. These variables may prevent another

variable from coming in and providing an improved solution.

The initial allocation for this phase identifies those

fixed charge variables which have never been in the solution
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and sets the default value for m; to infinitv. The .

.o ]
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allocation and deallocatjon procedure is then repeated until
further improvements can not bée made.

A the quasi-sufficiency condition _for a single

change is t, the solution 'is saved in order to be used
later. This sO{ution represents a "good" solution when
sttarting with the assumption that the continuous costs are

dominant.

PRl

3.4.1.4. An Initial Solution Dominated

by the Fixed Charges - Phase 4 -

99

Phase 4 restarts the algorithm with an initial solution

that is dominated by the fixed charges. The three steps of
the initigl solution (Exhibit 3-11) incorporate the fixed

5

charges into the m, for a number of variables very quickly.

]
In contrast, phases 1 through 3 build up the allocations of
the fixed charges slowly, one vaéiable at a time.

The initial solution of Phase 4 has a number of fixed
charge variables with mi>d?' Consequently, Phase 4 continues
with an allocation and deallocation procedure €for the

quasi-sufficiency test until further improvements can not be

found.

3.4.1.5. Correction of Initial\cénditions-— Phase 5
- . LA

This phase 1is a repeat of Phase 3. The initial

conditions for this phase identifies those fixed charge

yariables which have never been in the solution and seﬁé the




or m;  to inffnity. The allocation and

deallocation procefure of t%g quaéi—sufficiency test for a

default value

single change is repeated until further'imprbvem;HEs\ean not
be made.

This solution is then saved in ofder to be Qsed later.
This solution represents\ a "good" solution when starting
with the assumption that the fixed charges are dominant.

Typically, the solution at the ehd of Phase 5 is different

from the solution at the end of Phase 3.

3.4.1.6. Compare Solutions :

Finally, the_golution generated by the Phases 1 to 3 is

compared with the solution from Phases 4 and 5. Using the

procedure outlined in Exhibit 3-13, a search is made for a

multiple change which will improve the best solution found.
Thig phase while not always obtaining improved solutions is

always relatively fast.

3.4.1.7. Summary of COAL-b

This completes the description of the basic cost
allocation algqrithm. It consists of two approachés to
solving a fixed charge problem with a meéhod for
synthesizing the two final solutions to look for a better

.
solution. The first approach assumes that the continuous

costs Yominate and the second ‘assumes the fixed charges

dominate.

100
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3.4.2. The Extended Cost Allocation Algorithm - COAL-x

The previon algorithm changes one mj at a time in a
localized search for imp;pved solutions. With the
quasi-suffiéiency test for a combination change, this is
extended with two simultaneous changes in the m, (Exhibit
3-8). An allocation- on a variable in the solution is
combined Qith the deallocation on a variable which currently
has an allocation. ‘This heuristic follows a'similar format

to COAL-b with a Phase 3x and a Phase 5x added (Exhibit

. 3-15).

The quasi-sufficiency test for a combination change
will result 1in a large nu&%er of pairs of variables being
tested. As a resulf, COAL-x will take considerably longer
than COAL-~-b. Since COAL-x does take so long, testing of
further combination; of wvariables 1is not «carried out.

Although the extended cost allocation algorithm, COAL-x,

101

does take significantly longer than COAL-b, it consistently

generates good solutions which are always as good as aﬁd

usually better than solutions from COAL-b.

3.4.3. Cost Allocation Algorithms for Special Cases

Both COAL-b  and COAL-x generate two solutions
independent of each other. With problems of a particular

type, one of these solutions may be consistently better.

The second solution may add little benefit to the overall
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Exhibit 3-15: COAL~-x - Extended Cost Allocation Algorithm

-

Solve
(ALP) s
R |
|
Phase 1 Phase 4
COAL-b . COAL-b
e
Phase 2 Phase 5 .
COAL-b COAL-b
. Phase
Initial 5%
Phase 3 Conditions
COAL-b -{ End of Phase 5
T —
. [
Q-So Tc
Combination

3x Initial B
Conditions
End of Phase 3

l
g Multiple = |
Q-S. T. ) Changes
Combination (Exhibit 3-13)
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solution. In these cases, it may be gpp?Bpriate to use ‘only

<

part of the complete heuristic.

3.4.3.1. A Cost Allocation Algorithm Dominated by the

Continuous Costs - COAL-c .

Since the first three phases of COAL-b start with an

_initial solution dominated by the continuous charges, they

tend to generate better solutions for those problems which

are dominafed by the continuous costs. In these cases, .a

algorithm consisting of these three phases would be

appropriate broviding\ good soluﬁions faster than COAL=-b.
» (Exhibit 3-16). ’ - -

P

3.4.3.2. A Cost Allocation Algorithm Dominated b§ the

Fixed Charges - COAL-f~

In a'similar fashion to COAL-c and Eheﬁ_éaninuous
costs, Phases 4‘and 5 of COAL-b start with a solution which
is dominated by the fixed charges. Therefore an algorithm
consisting of these two phase would be appropriate for Sas T
problems which are aominated by the fixed ‘charges (Exhibit

3-17).

3.5. Cbmquhtionai Aspects -of the New Heuristics ’
rd

In Eﬁg'preceding discussion, the algorithm for solving

'(ALPM) was not specified.” Since the cost allocation

dlgorithms work through moéifying the objective function,
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COAL-c - Cost Allocation Algorithm
Dominated by @bntinuous .Costs
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Exhibit 3-17: COAL-f - Cost Allocation Algorithm
. ) Dominated by Fixed Charges

-

Phase -
. Initial 4
o Conditions
. (Fixed Charges)
(Exhibit 3-11)

s —o-8. ™. _ |
Single Change
AlZocate '
eallocate | -

S R L *

Correction to 5
Initial

Conditions

0 End of Phase 4

0-S. T.
Single Chanae
Allocate
Deallocate

any algorithm which solves (ALPM) will work. However, the
new cost allocation algorithms .are intended for ~ 1large

general fixed charge problems which require the flexibility

of at linear programming formulation. Therefore, the

appropriate tool for solving (ALPM) will be an algorithm
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suitable for large linear programming problems<¢
B - -

\ ’ 3.5.1. Solution of Large Idnear Programming Problems

K. . Large linear programmfng problems are typically very
sparse with-the number of noh—zerg coefficients usually less
. than 5%. The obvioué choice for these préblems‘is to use
‘ ' the revised simplex algorithm with the product form of the
\ inverse.
\ The revised simplex algorithm format allows the storage
‘ of the original constraints in a very compact form. The
‘ product form of the inverse constructs the inverse from a
\ series of eta-vectors; one for each simplex pivot.  These
eta-vectors maintain the sparse nature of the ;riginal
problem far better than the explicit inverse itself.
’ Sinte an eta-vector is required for each“simplex pivot,
the space used by the product form of the inverse would soon

become enormous. However, after a certain number of

iterations, the inverse is re-generated with a new set of

eta-vectors representing only those variables currently in
the basis. An efficient re~inversion routine (Lasdon [58])
will dramatically reduce storage requirements, maintain

computational accuracy and reduce the number of computations

required.

~—




‘obtain the inverse if needed. Therefore, the memory

requirements are increased by 4*m42*f over linear

. © 107
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3.5.2. Interface with the Cost Allocation Heuristic

1

The cost allocation algorithms will exploit some of -the
features of ghe prodhct‘form of the inverse iin order éo
efficiegtly solve * a problem. ' In order for the cost
allocation algorithms to determine the best operation at
each step, a change must be made to (ALPﬁ), the problem
solved and evaluated. Then the originél solution must be
restored. The inverse of the original solution is stored
with a series of eta-vectors. The solution frgm modifying
the objective function can be obtained by adding a few
eta-vectors. The'invérse from the originaI solution is

restored by resetting pointers- with out requiring anvy

calculations. . -

—

’Periodically, some solutions are saved. However, only
the solution itself is required and not the inverse or the

simplex tableau. The re-inversion routine can be used to

progra@ming (m=number of equations and f=number of fixed
charges). A

In the development of the new algorithms, no mention is
made of ordinary continuous variables (i.e. variables with
2ero fixed’charge). These variables are essentially ighored
by the cost allocation . algorithms and their‘ values are

determined by the more .efficient linear programming .

algorithm. As such, problems with large numbers of ordinary
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continuous variables become similar to linear programming
problemé with large numbers of such variables. 1In tﬁe case
o; linear programmingﬁ although it certainly makes a problem
more difficult, it is not considered a major-difficulty. It
would be quite feasible -to include a column generation
‘ﬁechnique or a decomposition method in the cosé allocation
algorithm as part of the‘proceduré'f;i solving (ALPM) .

‘The integration of the revised simplex method using the
proauct Eorm of the inverse results in .- very efficient
algorithms for golving the fiXed charge problem. - The
algorithms are able to solve problems quickly with 1little

increase in memory requirements over ordinary  linear

prograﬁming.

e

‘3£. Summary
h }he algorithm used by Cooper and Drebes [13] makes an
al}ocatioh'of the fixed chafggs to all j where xj>0' The
Bflinski (4] method “allocates the fixed charges to all
variables on the béﬁis of their upper bounds. By
comparison, the new cost alloéation élgorithms essentially
allocate a' fixed charge when the variable is, zero. This is
consistent with the necesséry conditions re&hired for a
solution to (ALPM) to be oﬁtimal.‘
The new cost allocation alqorithms‘fest only svecific

fixed charge wvariables. ,Other ©positive £fixed charge

\
variables are allowed to increase with no additional
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penalty. 1If, for. example,. a waréhopsé was cloéea and-its
customers were haddled'by other warehouses already open,
f . _ there wauld be no fncféase‘gn their Ffixed charges.

The c@ét allocaiidn~ algorithms provide . a mears of_
‘solving the ‘fixed charge problem which is consistent with
the nature of the probleﬁ. . The algorithm will work well fér
mixed fixed charge problems as it leaves the task of
caléulating the wvalues for ordinary variables to.linear
programming. The algorithm is intended to be used with the
revised simplex linear programming algorithm with the
product form of the. inverse. This is suitédi to large

A

problems which are typical}y very sparse. There is minimal
increase 'in the stérage- feguirements of .thé new cost
allocation algorithm over 'the requirement of the linear
programming algorithm. As a result, the néw.cost aliocation

algorithms are very efficient for solving _large general ‘\

fixed charge problems.

¢




CHAPTER 4

* RESUETS

4.1. Overview

Within the different .areas of application’ defined in -

Chapter 2, fixed charge préblems can be classified into a
number of types with wvarving degrees of specialized
structures. Considerable success has been achieved at

solVing problems which can be described completely by a

specialized structure. However, many problems include

additional features which require a general formulation ande

solutién technigque. While a number of techniques are
available for_ solving genéral fixed charge problems, the
appiicationé of the general solution techniques are limited
to small problems. The new cost allocation algorithms
(coaL), dre’ developed specifically “for large and general
fixed charge problems where there has been’ a 1lack of
successful applications.

In order to demonstrate the success of an algorithm in
copiﬂg with problem structures, sample problems will be

taken from different application areas. The different types

of'problems within an application _area have similar

structures. Th%ﬁg structures are best exemplifieé'by the -

specialized formulations such as the capacitated. warehouse

110
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location problem, (CWLP), or the fixed cHarge lot size ‘

proble&, (FCLSP). However, problems requiring a general
o . ‘formulatigy due to additional complexities retain the nature
of" the specialized formulations.
Thé evaluation of an algorithm should examine the ]
impact of other"featureé which have been repor®ed in thé
' literature to cause’ difficulties. These include  thé
magnitudg of'the fixed charge Eomponeht, the number of fixed
charge variagles, the tightness of capacity constraints, as
well"as the size of the problemn. The abilitv‘ to
ébnsisiently,generaté L;ood solutions to problemé allowing i

. for variations in these features with different structures

will demonstrate the robustness of a particular algorithm.

The main.objective of this chapter is to evaluate -the
' : new cost @1location algorithms for solving large general
fixed charge proBlems. Also, the evaluation will compare
the different methods used for solving generai fixed charge
problems outlined in Chapter 2 and the cost allocation
alqorithys presented in. Chapter 3. The alternative -
approximate algérithms are - implemented as accurately and
efficiently as possible on the same camputer as the és the
new COAL algorithms. The testing of the alternative
approximate algorithms available for’®solving large general

7
fixed charge problems has not been carried out for a large

variety of problems.




. . .6
The ‘selection of the test problems 1is of critical

. importance to the evaluation in order to avoid any biases.

112

The test results can be used;to'evaluate the robustness of

an algorithm- across the different problem‘types.' Further, .

the evaluation 'should assess ‘the - conditions .when an

al§0rithm will perform well.

4.2. Selection of Test Problems

The new éosﬁ allocation algorithms. are intended for

large and general fixed charge problems. However,: the area

deséribed by large general fixed charge problemé inciudes a
wide variety of problem types with a number of different

structures. A pariicular structure often . makés a problem

more difficult for a generai purpose algorithm.’ ?roblems N

which have other feafures as wéll as .a special structu;é
gwill retain the difficulties inherent in the special
structure. Therefore, testing of general purpose alqoritﬁms
must not be restricted to a particulap tvpe of‘.problem but
should investigate as many types as ‘is practical. Any
biases which consistently favour "a vparticular algorithm
ﬁﬁhould not be allowed.

Following the above guidelines, the t€%t problems used
are summarized in Exhibit 4-1, Due to the overlap between
the different areas, a categorization of the problems to

different areas can not be precise. However, the problems

are classified in the following areas: random, 'facility




‘Exhibit 4-1: Test Problems - Basic Structures

Problem Source " Structure
Random Cooper & Drebes [4] Random
Faciiity Location

-Waste Disposal Walker et. al. [94] Transshipment

~Warehouse Rousseau [78] (CWLP)

Location
-Routing Problem| Rousseau [78] ~ (FCTP)
-Power Station Dutton et. al. [21] Transportation
Production o - o
-Hierarchical Graves [36] (FCLSP)
Production Hax & Golovin [42] (FCLSP)
Planning : . ‘
Manéower . - . )

~-Variable Hax & Golovin ([42] & (FCLSP) &

Workforce Mangiameli and Manpower 7
Krajewski [60] Balance

—~Sales Force Haehling von Manpower

Planning Lanzenauer et.al.[38}| Balance

&

L

location, production planning and manpower planning. While

a detailed description of each problem is presented in

appropriate section, an overview relating the problems to

each other fblldws,
where the

attention.

as interesting,. are

demonstrations of

The problems are selected from areas
fixed charge problem has received the most
Applications in other areas, while potentially

the use of integer

programming concepts in new areas and quite small.

the




The standard fixed charge problems used for testing the

different algorithms are the random problems generafed' by
Cooper and Drebes [13] in 1967. These problems have no’
structure and the coefficients are selected randomly with a
50? densit&. The randém problems are vervy small and not
reél. 'NéVérgheless, they are used as sample problems due to

their historical use. Cooper and Drebes method of

concatenating the small problems to create larger random

£
,problems is also used (Exhibit 2-15).

Fixed charge problems occur in the literature most
frequentlg with facility location and ;roductionaplanninq.
However, problems from these areas are qenerally' not used-
for ‘test purpqées for: evaluating algorithms for general
fixed charge prdblems.\i“éince ﬁégese problem; have wide

'applicability, they will be used as test prqplems. -
B Facility 1location problgws include  two actual y

K
applications in waste disposal_and power station location.
. .

To further investigate the impact of different parameters
and structures, a number of (CWLP) and (FCTP) problems are
included. ' )

fwo problems from production plaﬁning are included.
These 'éroblems use aﬁ inventory balance and capacity
constraints as their basic structure thus di%ﬁeren£iating
them from facility location. -

In addition, two manpower planning problems are tested.

One problem’ involving a production-manpower planning problem
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I includes constraints for the manpower balance in addition to

the inventory balance and capacity constraints. The second
prob;em has multiple manpower levels which creates different
i structural propérties.

The impact of other factors in addition to the
different structure from v?rious problem tvpes 1is also
investigated. Problem charaéteristics which have an impact
on the difficulty of a fixed charge problem‘are evaluated as
to their impact on the performance of differentlalgorithms.
Factors which ;re related to’the particular problem include
§ige, capacity .and fixed charge component. A final factor,
wﬂich relates to differences between problem types, 1is the

significance of a simplex pivot with respect to the fixed

charges.

> The-size of a problem is the most important factor in
making a problem difficult to solve. ‘Size can be measured
by such factors as the numger of equations, fixed <c¢harge
variables and ordinary ‘continuos variables. Ge;érally,
increasing the number of fixed charge variables makes a
problem much more difficult to solve. In contrast,
‘increasing the number of ordinary continuos variables (with
out a fixed charge) should not have the same degree of
impact on the difficulty of solving a problem.
Care must be taken to insure that solution methods that

appear to be practical with small sample problems remain so e

when considerably larger problems are encountered. It is




important £o avoid.an exponential growth in solution times
;s the problem size increases (Zanakis and"Evans[96L,
Haessler[39]).

To measure the impact of ‘size by itself, changes in the
number of equations or Qariablés should not be due to other
fgctors such as a change in the strlcture of a problem or
capacity constraints. For example, problem size is changed
in the waste disposal problem and the warehouse location
problem by creating additional demand centers énd

facilities. 1In addition, the fraction of feasible arcs or

demand center-sipply center combinations is wvaried. Both

116

the number of fixed charge variables and ordinary continuous

variables are varied and the impact measured. Hqwever, it
is important that the utilization of capacity remains the
same for the different sizes.

Frances et. al. [31] Idiscuss the impact of excess
capacity on the difficulty of solwing faéility location
problems. When there is little excess capacity in a systenm,

a fixed charge problem 1is actually easier to solve.

. Increasing capacitxalegds to more fiexibility in the problem

and it becomes more difficult to find the optimuﬁ solution.

However, as capacity becomes excessive, the problem becomes

easier again :and approaches the uncapacitated facility
location problem or the uncapacitated ldh\size problems.

The impact of capacity is examined“by varying the

production capécity with the same demand in the hierarchical

e e A e e e e S
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production planning problems and the size of demand with the
AN

same capacity in the pbwer qeperatihg problem. The ratio of
~ ©

the fixed charge portion to the v#?iable cost portion wille

be changed which will affect the difficulty of solving.

_ However, this impact is expected to be minor.

The next dimension of difficulty is described by the
size of the fixed . charge component. Both Kennington [51]
and McGinnis [64] indicate that problems with large fixed
charge components are more difficult to solve. However,
Frances et. al. [31] state that as the fixed charge
component gets increasingly large, eventually, tMe Droéi?m
becomes easier to solve. Changing the fixed pharge
component is accomplished by increasing the size of the
fixed charges while keeping the other factors constant. The
fixed cﬁarge component is varied in the production planning
and manpower‘planning problems. . The impact of a large fixed
charge component can also be observed in the random
probleTs.

The significanﬁe of a simplex ;ivot with respect to the
fixed charges is a structural feature which often has a
major impact on the performance of different algorithms.
For example, a simplex pivot 'in (FCTP) 1is usually very
significant as it exchanges one fixed charge variable for
another. However, 1in the very similar (CWLP), several

simplex pivots\ may be required to close a warehouse and

shift demand to another warehouse. The impact of changing
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the significance of a simplex pivot has to be evaluated

across‘problem types. b

These different dimensions of difficulty are summarized
Exhibit 4-2 including thé problem sets where thé impact -of
the particular aspect is tested. To be effective, a
solution technique for large general fixed charge problems
should perform well across these different classifications.-
The test problems which have been selected will enable an
evaluation of an algqorithm along the different dimensions of

[

difficulty. )

The different factors will have an impact on .the -

performance of different algorithms. Other factors which

~

contribute to performance—-_ such as computer speed, -

programming ianguage aér methods of manipulating the
equatigp§ should be controlled when evaluating differént
algorithms in order té isolate the impact of such facgpgs as’
size) capﬁcity utiliéation, fixed charge component‘ or

structural differences.

4.3. Selection of Algorithms

Solving a general fixed .charge problem “involves a
choice between techniques which .can/‘produce én" optimal
solution or techniques which‘ produce a good but ndt\\
necessarily optimal solution. ‘

Since all the "aigorithms are based on 1li ea;\d

programming, results will be reported for " a linear -

¥
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.. Exhibit 4-2: Dimensions of Difficulty

Problem Measurement Evaluation
Characteristic (Problem Set)
- Size Number of’ -Random
-Fixed Charges -Waste Disposal
- -Equations -Warehouse
-Variables . Location
Capacity ' | Ratio of Demand ~Power Station ,
] . to Supply { —Production
~ ) .
w Planning
- ¥
Fixed Charge Size of Fixed ~-Random
Component Charges ~-Production
Planning
-Manpower
, Planning
- Significance of Problem - (FCTP) vs.
- Simplex Pivot Structure (CWLP) vs.
: Waste Disposal
-Production L
Planning vs.
, ‘ - Manpower
: Planning
%
- s programming algorithm which solves the__associatéd linear

programming problem, (ALP), and can be used as a guide for
the evaluation of other algorithms. The linear programming

aigorithm will use the revfggd - simplex method Qith the

e x

K -8 most of the algorithms used.

g
g ’ .

2?% ' product _form of the:inverse which will be incorporated into
% .




120
] Solution techniques developed specifically for fixed
charge problems and capable of generating aﬁ optimal
solution include branch-and bound, vertex generation and
,-gutting planes. In addition, the various techniques for
mixed-integer programming can obtain the optimal solution.
However, the standard approach for obtaining an optimal
solution to general fixed charge problems is to use a branch
and bound mixed-integer programming algorithm. Therefore,
the branch and bound mixed integer programming alqori:Lm
(BBMIP) from the Multi-Purpose \Optimizatioﬁ System, MPOS
. [15], is wused for a number of éroblems‘to.generate the
optimal solution. This ;lgorithm is selected due to its
avdilability and used to measure the performance of the most -
widely used optimizing technique for general fixed charge
problems. ’
The other option for solving fixed charge problems is
to use an approximate method including the Balinski [4]
appfbximation or one of the adjégent extreme point
techniques developed by Cooper and ‘Drebes ([13], Denzler
[19]1, Hiraki [44], S&einberq [82] or Walker [93]. The | .
\ Balinski approximation— is suited to those problems which.

A -

have a good estimate for the upper limits. Since® problems

. ‘e . ‘
B with good estimates ﬁTr upper bounds are specialized fixed
charge problems, the / Balinski  approximation is not

evaluated. The approximate methods are selected from the

adjacent extreme'point algorithms. a
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The first phase of the majority of the adjacent extreme
point methods involves obtaining the initial fixed charge
local optimum (F.C.L.O.). Starting with the solution to

associated linear programming problem (ALP), F.C.L.O.

.examines all adjacent extreme points (within one simplex

pivot) and selects the best. This process is repeated until
no further improvement can be md%e. F.C.L.O. is included
to demcdhstrate the performance of thg first phase of the
adjacent extreme point methods.

Steingerg 1831 recommends gyo of his own ailgorithms,®
Heuristic 1 and 2, and two gf Walker's [93] algorithms,
Swift 1.and 2, as providing the best methods for solving
}érge fixed charge problems. The four algorithms will be
evaluated. The Walker, Steinberg and Hiraki [44] algorithms
are also the most recent. Ebweve;;. Hiraki's approagh
appears to be less suitable for large problems than the two
similar Walker  algorithms .and is excluded. The two
Stéinberg algorithms are given in Appendices A and B and the
two Walker heuristicé are given in Apoendices C and D. ,

*  Of course, the four differento variations of the new
cost allocation technique, the basic COAL~b, the extended

COAL-x, and the sgpecial cases COAL-¢ and’ (COAL-f, are

included. Each algorithm represents a particular

-ciffiyation of compohents from the overall cost allocation

technique. Results from these four methods will allow an

-~

evaluation of the different components in the cost

P U Qﬁ O | . ¢ e N e
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‘allocation techhique. . :

Ed

. The algorithmé which will be used' for solving the
different test’ problems are sghmariéed in Exhibit 4-3. The
.algorithms aré proérammed in Fort;én-77 to run on a Control
Data Cyber 170/173. Fortran is the obvious choice for

o

implementing a mathématical algorithm. With the - exception

of BBMIé, all the algorithﬁs use the same routines for -
various matrix operations based on the revised simblex‘
method with Fhe product form of the inverse. The revised
simplex using' the product form of lthe inverse “is the
standard procedure for "~ solving la;ée linear progra@m{nq
problems. Evefy effort is made to program the different
algorithﬁsdas efficiently as possible. However, the fact
that the different algorithms use the same basic routines
for matrix manipulation as well as themsame programming
language and Eomputer makes a‘moré valid comparison.

However, measurement of the performance of an algorithm
is not straight forward. Performance of ap@fo;imdte and
optimization techniques involves a trade offugetween the
qualit§ of a solution and the resources required to obtain
the solution. Tﬁis trade-off requires the devéiopment of a
performance criteria.

+*

4.4. Performance Criteria

The purpose behind any solution technique is to obtain

a good solution to a problem with a reasonable expenditure




.Exhibit 4-3: Algorithms for Solving Test Problems

1

Linear Programming ....c.ceeoeeeneessss L.P,
Optimal Solution

Branch and Bound
Mixed Integer Programming ........ .. BBMIP
b PN

Approximate .Solution Techniques
Adjacent Extreme Point Algorithms

Initial Fixed Charge
Local Optimum ..eeveveesesrsnesees F.C.L.O,

Steinberg -- Heuristic l ......... *Bfg H
Steinberg -- Heuristic 2 ......... DIS H

Walker - SWift 1 DI RN I SRR S Y :'o.- . SWift l
Walker -- Swift 2 ........... ce... Swift 2
é B

Cost Allocation Algorithms

Basic Cost Allocation ..... +eseess COAL-b
Extended Cosgt Allocation ......... COAL-x
Special Case -- Continuos Cost ... COAL-c

Special Cdse -- Fixed Charges .... COAL-f

of resources. Typically, a trade off must be made between

improving the quélity of the solution and the* effort

required. Clearlv, the optimization techniques develop the

best quality for their solutions. Howevér, the resources’

required for large problems may rule optimization techniques

out as an effective means of solving the problem. = On the

other hand, solving (ALP) will provide a solution to asfixed

»

charge problem 'while usin a minimum of resources but the
p g .

/
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quality of the solution is typically poor.

The evaluation process is complicated by different
problem structures and other factors which have an impact on
the performanée of a solution technique. The evaluatiog
process should identify which techniques work best for the

different problem £ypes.

4.4.1. Quality

Quality of a solution refers to the wvalue of the

¥

objective function obtained by an algorithm relative to the
optimal value of the objective functibn; The comparison is
typically measured as a per cent deviation from fhe optimum.
Of course, the perlcént deviation from thé optimum can not
be used to develop an absolute criteria to define "good"
which must be evaluated on a problem by problem basis.

The optimal solution is used, provided it is available.
If ‘not, either a lower bound on the objective function or
the best solution obtained will have to suffice. While the
optimization techniques generate a lower bound on the
objective function, the approximate methods do not. Since a
lower bound wiil notAbe available for ali problems, the best
solution available will be used for those problems for which
the optimal solution is not available.
Another measure of the quality of the solution would be

-

the relative frequency of obtaining the optimal solution.
Yy . - :
However, both these measures would tend to rank the various
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e
algorithms the in a similar fashion. Good per formance on
one measure usually implies good performance on the other
measure. Therefore, oply the per cent deviation £from the
objective function value of the optimal_solution’will-be
used.

_ Algorithms should be relatively consistent within the
problem types for which they are intended. Iéeally, there
should not be some problems where good quality solutions are
obtainggnand others where poor solutions are obtained. One
method for evaluating éhe consistency within problem types
is to examine the maximum deviations for problems within a
type. Normally, algorithms which perform well when using an
average over a number of problems will have a low maximum
deVTéEEon as well. :However, an evaluation of an approximate
aigorithm should provide some indication of the maximum

deviation likely to be encountered. ~

4,4.2. Resource Requirements .

-

The second factor for evaluating,the performance of an

n*

algorithm involves the resources reéuired to obtain a
solution. Two components are involved ‘ in determining
computer resources required: ~the first involves central
processor time and the Sféond involves memory requirements.
The first component,
significant. Normally, 6 the methods which produce

approximate solutions are much faster than the methods which

n
central processor time, is more.
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produce <an optimal solution. The approximate methods
provide satisfactory,K solutions to lagqe"problems while

minimizing resource requirements. Unless stated otherwise,

.. all times reported are on a Control Data Cyber 170/173.

The second component involved 1in computer resources

relates to the memory required}toxgtoré the problem. This
: }

is relevant when the memory rgéuire@entS’ effectively
lengthen the solution times to impractical levels or exceed
available ‘space. The different methods selected for
obtaining approximate solutions have memory féquirements
which are slightly laréer than the memorv required‘by linear
programming and do'not need. to .be evaluated separately.
However, some of the ‘optimizinq algorithms and BBMIP, in

particular, can require an enormous amount of memory.

Although much of this memory can be on a peripheral device,

-this may result in dramatically lengthening the elapsed time

to get a solution.

4.4.3. Efficiency Frontier

In summary, two factors will be used to méasure the
performance of the different algorithms. The first factor,
representing the qualitx .0f the solution, will be the
deviation from, the opfimal + solution. The second factor,
representing rééourcé requiﬁements<‘will be the central

brocessing time required for each algorithm. There will be

- L3

a trade off bgtween obtaining a better quality solution

"

9.
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versus the computer resources requireé.

For each problem set, the aléorithﬁ; which produce a
better solution using less comp&Zer time will be referred to
as efficient.. This will define.an efficiency frontier for a
particular problem set (Exhibit 4-4). Algorithms on the
efficiency frontier would be appropriate for solving the
particular type of problem given a desired limit on the
expenditure of computer resources. However, the
non~efficient algorithms would not be appropriate as other
algorithm will produce an equal or-better quality solution
aﬁd require less ‘computer time. Particular algorithms which
produce solutions 1ﬁuickly with lower quality will be on the
upper left part of the efficiency frontiér. Other
algorithms will require more.time to obtain better quality
and will be on the lower right portion of the efficiency
frontier. Non-efficient algorithms will be to the right and
above the efficiency frontier.

The results for each problem set will consist of the
quality of the solutions and the resource requirements. One
representative efficiency frontier will be constructed using
the quality‘ and resource requiremeﬁts. The efficient
algorithms across the problem set will also be identified.
An evaluation with in each problem type can be made
Eggicating where particular algorithms are efficient by the
positioning with respect to the efficiency frontier.

Finally, an overall evaluation of the consistency of the
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Exhibit 4-4: Efficiency Frontier

Deviation

Non-Efficient Algorithm

Efficiency
Frontier

Time

algorithms across the different problem tyves will be made.

4.5. Random Problems

»

Cooper and Drebes [13] use a number of small randomly
generated fixed charge problems with five equations and ten
fixed charge variables. The Broblems have no other
structure. Tﬁé, equg;ion coefficients are randomly selected
in a range of 1,20 with a 50% density. These problems ére
also used by Steinbe%év [82] and Walker [93] to test their
'qigo;iyﬁms_as well as Denzler [19], Murty [70] and McKeown
[65, 66, 671 for their alggfithms. Fifteen of these
problems are used as sample problems and are given 1in

Appendix E. Cooper and Drebés create largef problems by

128




concantendting smaller problems as illustrated in Exhibit
2-15. Three larger probiems are crea}ed each consisting of
five sub-problems. Also, three ﬁrobﬁems are created each
with ten sub-problems and one Pproblem is created with all
fifteen sub-problems.

Each problem is solved with greater than constraints
( ">"7J, equality constraints ( "=" ) and less than
constraints ( "<" ). The. problems with > and ="

constraints are -used by others. However, the problems with

"<" constraints which are maximized have not been used by

- others and adds a new dimension to the random problems.

BBMIP is not wused on these Eroblems. The optimal
solution for the small problems with five eduations is
obtained by inspecting all possible solutions. The optimal
solutioné for the larger problems is easily derived frém the

Eoblems. Conseduently, the results

solutions to the small p

for BBMIP are denoted as -na- or not available.

4.5.1. Random Problems with ">" Constraints
=

The quality of the solutions for the ">" problems is

" given in ExhibBit 4-5 which shows the average - per cent

deviation from the . optimal solution plus the max imum
deviation from the optimal solution for the four different
sizes of problems. All the algorithmé obtain the same
solution for each small problem in the different sizes. The

small variation is caused by the averaging process resulting

129
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from the concantenating of the sub-problems. With the

fifteen problems in the 5x15 size, the average devfépion is

calculated by summing the per cent deviation for each
) broblem and divid%ng by_fifteen. qu the oﬁe 75%225 size
| problem, the average deviation is effectively calculated by
’ summing the fifteen objective function values of the,
L solutions obtained b§ the algorithm and dividind by the sum
t of the fifteen objective function value of ‘the optimal .
| solutions. The averaging process also aceounts for the
: reduction in maximum deviation with increasing problem size.
The averaging procedure has problems with this problem seg.
Since it is the standard procedure, it will still ﬁgfused.
These problems are not encountered in the other problems in
facility location, production planning or manpower planniné.
COAL-x is the only algorithm to successfully solve -all

the ">" problems. The other approximate methods are close

to the optimum while the I1in rogramming solution is
\\\w:?‘ poor . The same relative standing for \thg\\ different

algorithms on quality of solution is obtained by the-average
deviation and the maximhm deviation. h
The average solution times requiréd by the ﬂiffereﬁE
algorithms for the 2>” ﬁroblems are given in Exhibitﬁﬁ-G..
Aé expected, COAL~x takes considerably longer than COAL-b
o whicL, in turn, takes longer than COAL-c and COAL-f. U.P. °
and the initial fixed charge local optimum, F.C.L.O., are

respectively the fastest and second fastest. The increase
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in solution time is roughly propogtional to the square of
the size.

A representative efficiency frontier using the 50%}50
size, 10 concantenated sub-problems, is constructed in
Exhibit 4-7 using the average deviation from Exhibjt 4-5 and

the average solution times from Exhibit 4-6. The efficient

algorithms include L.P., F.C.L.O., COAL-f, COAL-c and
. m . -
COAL~-x. Although COAL-b combines both COAL-f and COAL-c, it

is not efficient on its 5wn. COAL-c usually produces the
better solution in each case and COAL-b does not improve the
solution for this problem set. ‘mlthou;B\&is. is not showfi
on the grabh, it £§ always "efficient" far in the upper left
as it takes less time than any othe; algorithm,

Efficiency frontiers for the other sizes would be

similar and are therefore not presented. However, a table

of efficient algorithms for each size is given 1in Exhibit

4-8 with similar results for each size. For the small

problems, COAL-c is faster than COAL-f. Thus COAL-f is not

on the efficiency frontier.

The new cost allécation algorithms clearly dominate the
Steinberg and Walker alqorithms?for this problem set. The
initiél Fixed Charge Local Optimum, however, does produce an

_efficient solution 1in «the upper left segment of poor

quality. COAL-f and COAL-c have a large increase in quality

‘with a increase in solution time with respect to F.C.L.O.

COAL-x has a smaller increase in quality with a large

O . N




_Exhibit 4-5: Random Problems with ">" Constraints - .
¢ -- Quality of Solution
Average Deviation from Optimum-(%)
Size 5x15 25x75 50x150 . 75x225

L.P. 41.37 39.85 39,75 39,72 |-

BBMIP -na- -na- -na- -na-

F.C.L.O. 2.10 2.28 2.23 2.21

4 . ’

DIS H 1. 1.66 2.28 2.23 2.21 S

DIS H 2 1.62 1.34 1.31 1.30 :
© Swift 1 1.66 1.82 1.78 1.77

.Swift 2 1.66 1.82 ‘1.78 1.77

COAL-b .53 .56 .55 - .54

COAL-x .00 . .00 - .00 .00

COAL-c - .53 .56 .55 .54

COAL-f 1.68 1.76 1.78 1.79

Maximum Deviation from Optimum (%)

Size | . 5x15 25x75 50x150 75%225
L.P. . [130.01 47.748 42.42 39,72
BBMIP -na=- -na- -na- -na-—
F.C.L.O. 14.64 4.47 3.42 2.21
DIS H1 .| 14.64 | 4.47 3.42 2.21 :
DIS H 2 14.17 2.36 2.01 1.30 |- -
Swift 1 14.64 3.10 2.73 . 1.77°
Swift 2 14.64 . 3.10 2,73 1.77
COAL-b 7.89 - 1.67 . .84 .54
COAL-x .00 .00 .00 .00
COAL 7.89 1.67 .84 .54
COAL- 14.22 2.69 2.60 1.79 <
Problems 15 3 3 1
Size~-Equations 5 25 50 75
. ~Variabhles 15 . 75 150 225
-Fixed Charges 10 50 100 . .150

“
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- Exhibit 4-6: Random Problems with ">" Constraints
& -- ResBource Requirements
N a
_ Solution’ Times (cpu sec.) -
Size 5x15 25x75  50x150 75%225
L.P. .06 .81 4.17 .5.08 | - ©
BBMIP -na- -na- -na-— -ha-
F.C.L.O. .13 2.35 . 24.05 35.54
DIS H 1 .23 7.68 73.04 107,40
DIS H 2 .69 38.09 559.33 898", 39
" swift 1 .40 . 18.94 303.66 493.04
Swift 2 .42 21.72 304.73 492.14
. AN - ’)
COAL-b .39 12. 00 143. 44 14.75 , -
COAL-x .56 30.52 ~ 55L.55 05.86 | / /
COAL-c ~ .20 6.04 78.52 - 109.08 |/
COAL-f .22 5.90 63.90 93,73
B roblems 15 3 3 1
'Size~Equations 5 25 50 75
-Variables 15 75 150~ 1225
-Fixed Charges 10 50 100 150
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Exhibit 4-7: Random Problems with ">" Constraints
- Size 50 °'x 150 -- Efficiency Frontier

/
$ Deviation

* Efficient Algorithm =
FCLO + Non-Efficient Algorithm °
* _ +DIS HL . ‘
2.0 .
*COAL-£f +Swift 1l&2 .
, . y PIS H2
o+
1.0
COAL-~c .
*~_ +COAL-b e
COAL-x
0.0

. Dk
1 1 . [ '
0 200 400 . |

Time (sec.)
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Exhibit 4-8: Random Problems with ">" Constraints -
, . == Efficient Algorithms using Averages
-
é Size 5x15 25x75 50x150 75%225
) L.P. , * * * ' *
/////‘ BBMIP -na- -na- -na- ~na-
F.C.L.O. * 9 * * *
DIS H 1 o= - - - -
DIS H 2 - - - -
Swift 1 - - - -
. Swift 2 - - - - -
COAL-b - - - -
COAL-x * * * *
. COAL-c * * * *
. COAL-£ - * * *
* Efficient Algorithm (Best Quality for Solution Time)
- Non-efficient Algorithm (Alternative algorithm
obtains a better quality solution in less time) ’
Y ' ¢
- | z

/

ﬁ -

o
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increase in solution time with respect to COAL-c.

4,5.2. Random Problems with "=" Constraints

A similar analysis is carried out for -the "=" _problems
with” the quality of solutions reported in Exhibit 4-9. Both
Walker algorithms, one Steinberg algorithm and COAL-x obtain

the qptimum solution for all problems while the other

136

approximate methodsvare relatively close. -As in the ">" .

problems, the éame solutions are found for all sizes of
problems. of the approximate algorithms,_ COAL-c has the
largest deviation from the. optimum. The 1initial search
procedure gor COAL-c which examines one fixed c\irge
variable at a time often leads it to a poor solution.

CoAL-f, with a more ‘global perspective initially, often

avoids such solutions.

y }

The resource requirements measured in cpu seconds is
-4

given in Exhibit 4-10. COAL-x takes considerably longer

than other algorithms. Steinberg's Heuristic 2 and the
Walker algorithms take 'much less time for the "=" problems
than the ">" prob}ems. Inm order to handie the’ slack
variables, the ">" problems hav; 50% more variables than the
"=" problems. Since the adjacent extreme point algorithms
do not differentiéte between continuous and ‘fixed charge

¢

variables, the solution pimes afe affected significantlyv by

the additional slack variables for the ">" equations.

COAL-x is hampered by requiring an extra effort to improve
u
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the solution d%ve}oped by COAL-c. The quasi-sufficiency

test for a *combination change is considerably slower than

-

.the single chahge test and 1is required to do extra

improvements to the solution developed by COABZC.

A represeﬁtative efficiency frontier is sh@wn in
Exhibit 4-11 for the 50x100 size with 3 problems, each
generated from 10 sub-problems. The efficient algoritﬁms
are L.P., F.C.L.O., COAL-f and DIS H 2. Of the cost
allocation algorithms, oniy COAL-f manages to be efficient
and is only marginally better- than F.C.L.O. XA table of
efficient algorit;ms is presented for the different sizes. in
Exhibit 4-12. The Swift algorithms, which are quite close

to Steinberg's Heuristic 2, are on the efficiency grontier

for the smaller sizes.

4.5:3. Random Problems with "<" Constraints

The quality of solutions for the final set of random

problems usiné the "<" eqﬁations is given¢in Exhibit 4-13.

137

Only the &wo Walker algorithms obtain the optimal solution

for all problems. The other algorithms are relatively close
with COAL-c being the furthest from the optimum. Again, the
improvement in quality éf*solution as sizeaincreases is an
illusion. With the fifteen small problems, there are
solutions with a small -absolute wvalue for the objective
function. Hence, deviations are very large andg when

arithmetically averaged, severally degrade the performance
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Exhibit '4-9: Random Problems with "=" Constraints
: -= Quality of Solution

. Q Average Deviation from Optimum¥(%)
. Size 5x10 25x50 50x100 75%x150
- L.P. 19.52 19.33 19.35 19.35
BBMIP - =hna- -ha- -na-— -na-
F.C.L.O. - .37 .42 .42 .42
pIS H 1 31 Y a2 .42 .42
DIS H 2 .00 .00 .00 .00
Swift 1 .00 .00 .00 .00
Swift 2 .00 .00 .00 .00
COAL-b .39 Y .38 © .38
COAL-~x .00 .00 .00 .00
COAL-c 1.23 1.27 1.26 1.26
coaL-~f .39 .38 .38 .38
I

Maximum Deviation from Optimum (%) -.

Size 5x10 25%50 50x100 75%x150
“L.P. 57.97 24,48 21.40 19.35
BBMIP -na- -na- -na- -na-
F.C.L.O. 5.62 1.26 T .63 .42
DIS H 1 5.62 1.26 .63 .42
DIS'H 2 .00 .00 .00 .00
E % . -
Swift 1 .00 00 .00 ' .QQ
Swift 2 .00 .00 .00 .00
o COAL-b 1.25 .92 .57 .38 %

. COAL~-x .00 .00 .00 .00
COAL-c 8.41 1.77 1.73 1.26

COAL-f 4.53 .92 . .57 .38 '
Problems 15 - 3 3 1
Size-Equations 5 25 * 50 . 75
-Variables 10 50 100 . 150

~-Fixed Charges 10 50 100 150
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Exhibit 4-10: Random Problems with "=" Constraints
- -- Resource Requirements
7

- Solution Times (cpu sec.)

Size 5x10 25x50 50x100 75x150
* s

L.P. .06 .67 3.44 4.21
BBMIP -na- -na- -na-"’ -na-
F.C.L.O. .12 1.86 18.06 26.40
DIS H 1 .20 4.49 49.85 72.05
DIS H 2 .40 11.53 - 133.61 202.35
Swift 1 Y “T 921 146.81 239.3L
Swift 2 .30 9.93 146.86 238.65
COAL~b .32 10.60 128.90 196.22
COAL-x .49 35.48 806.01 1397.54
COAL-¢ .16 4.66 57.20 86.87
COAL-£f .20 5.97 68.27 102,28
Problems 15 3 3 1
Size-Equations ' 5 25 50 75
-Variables 10 50 100 150
-Fixed Charges 10. 50 100 150
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EXhlblt 4-11: Random Problems with "=" .Constraints

- Size 50x100 -~ Efficiency Frontier
$ Deviation”
1.5
" +COAL-c
' * Efficient Algorithm
1.0 | \
*  + Non-efficient Algorithm
0.5 )
*FCLO +DIS H1 _
.. *COAL~f +COAL-b
, DIS H2 Swift 1&2  [COAL-x=809]
0.00 , x4 . :

] - ] 1 ‘|
0 100 - g 200
‘ Time (sec.)




Exhibit 4-12: Random %%oblems with "=" Constraint5‘§
-- Efficient, Algorithms using Averages

Sizd | 5x10 - 25%50 50x100 75%150
L.P. / * * * *

BBMIP -na- -na- -na- -na-
F.C.L.O. * x * *
"DIS H 1 - - - -
DIS H 2 - - x *
Swift 1 * * - -
Swift 2 - - - -
COAL-b - - - -
COAL~-x - - - -
COAL~¢ - - - Nl -
* * *

COAL-£

* Efficient Algorithm (Best Quality for Solution Time)

*

- Non-efficient Algorithm (Alternative algorithm
obtains a better quality solution in less time)

%
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> - '
on very small problems. With . the 1larger .problems, the

objective function wvalues are added before the deviations

are calculated. Those problems 6 with large per cent

-

"deviations have quite small absolute deviations. Hence, the -

-

- apparent improvement.
v . .
The solution times required for the "<" problems are

given in Exhibit—%-14. Steinberg's- Heuristic 2 and Walker's
two algorithms require more time with the "<" prqblems than
with the ">" proble;;: However, the cost allocation -
algorithms require 1less time. Even COAL-x is considerably.

—

faster than DIS H 2, Syift 1 or Swift 2. The fixeﬁ/'éﬁarge

. component for the "<"'pr6bl§é§/iswqﬁfEé small_wi;h respect

e ‘to the continuos component.  While the adjacent extreme
point algorithms éésentiail§ ignore-theﬂimpact of changes in

N size of+ the fixed. charges, tﬁe cost allocation algorithms

implicitly exploit low values for the fixed charges.

The efficiency frontier for the 50x150 size probieﬁs.is-
plotted in Exhibit 4-15. The efficient algorithms are L.P.,
F.C.L.0., |COAL-f and Swift 1. 'Steinberq's' Heuristics are
dominated by others. COAL~c, kélthough not reqﬁiring much
computer time, gets.a poor solution. COAL-b ané COAL-x  do

not improve on COAL-f. Similar results are obtained for

efficient algorithms for the other sizes of "=" problems

(Exhibit 4-16).
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Exhibitl4-13: Random Problems with "<" Constraints
-~ Quality. of Solution

‘ Average Deviation from Optimum (%)

Size 5x15 25x75 50x150 75%225

L.P. 185.09 6.19 6.05" 6.05
BBMIP -na- ~na- -na-’ -na-
‘ F.C.L.O. .95 .75 .50 .45
DIS H 1 <56 .75 .50 .45
DIS H 2 .95 e .39 .26 .23

‘ . v
Swift 1 .00 .00 .00 .00
Swift 2 .00 .00 .00 .00
COAL-b - . .38 .29 19 .17
COAL-~-x .38 .29 .19 ..17
COAL-c 1.32 1.18 1.33 1.40
COAL—&H .38 <29 .19 .17
Maximum. Deviation from Optimum (%)

Size 5x15 2575 50x150  75%225

L.P. 2576.30 7. 40 6.71 * 6.01
BBMIP -na- ~-na- ~na- -na-
F.C.L.O. 8.45 2.26 .83 - .45

4
DIS H 1 8.45 2.26 .83 .45
'DIS‘H 2 8.45 1.17 .43 .23
Swift 1 .00 .00 .00 .00
Swift 2 .00 .00 .00 ,00
. k - )

COAL-b '5.76 .87 .32 .17
COAL-x 5.76 .. .87 .32 W17
COAL-c 14.09 2.66 2.12 1.40
COAL-f 5.76 .87 .32 .17
Ptoblems 15 3 3 1
Size~Equations 5 25 50 75
-Variables 15 75 150 225
-Fixed Charges 10 50 100 150
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Exhibit 4-14:

Random Problems with "<" .Constraints
-- Resource Requirements

Solution Times (cpu sec.)

Size 5x15 25x75 50x150 75x%x225

L.P. 07 .63 2.90 3.51
BBMIP -na- -ha- -na- -na-
" F.C.L.O. 12 1.59 13.21 18.81
DIS H 1 .21 4.66 49,19 69.78
DIS H 2 .88 63.77 1386.59 2389.46
Swift 1 .47 25.31 408.75 669,33
Swift 2 .58 41.18 452.93 692.03
COAL-b .24 4.68 51.51 78.38
COAL-x .32 11.97 147.70 223,52
COAL-c .12 1.93 23.69 37.52
COAL-f .15 2.87 28.09 %0‘98
Problems 15 3 3 1
Size-Equations 5 25 so 75
~-Variables 15 75 . 150 225
-Fixed Charges 10 50 100 150
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Exhibit 4-15: Random Problems with "<" Constraints

- Size 50x150 -- Efficiency Frontier
$ Deviation
1.5
J| +COAL~c -
1.0 * Efficient Algorithm
+ Non-efficient Algorithm
FCLO )
0.5 t +DIS H1
COAL '
fl b [DIS H2=1390]
*+ — _+COAL-x Swift ’ .
0.0 * 4
) P | t ] 1
0 200 400 600 800

Time (sec.)




. Exhibit 4-16:

Random Problems with
—~ Efficient Algornithms using Averages
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"<" Constraints

25x75

Size 5x15 50x150 75x%x225
L.P. * * * *
BBMIP ~-na- -na- -na- -na-
F.C.L.O. * * * *
pDIS H 1 - - - - 7,
DIS H 2 - - - =
. . —
- ) — )
Swift 1 * * . V
Swift 2 - - - -
/ 1
COAL-b - - -~ [ =
COAL-x - - - - R
COAL~-c -~ - o - -
. COAL-f * * ok *
* Efficient Algorithm (Best Qdality for Solution Time)
- Non-efficient Algorithm (Alternative algorithm -
. obtains a .better quality solution in less time)- S
R
~ -
b - ~~h\\‘\

~

-
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4.5.4. -Evaluation - Random Problems

e

« A summary of the.efficient algoriﬁhms for. the three€

N ¢ -

‘t§§es of random problems given in >Exhib§t 4-17. L.P.;

F.C.L.0., and COAL-f are efficient for all types. . L.P. and

. ] Nt
F.C.L.O. obtain sotutions quickly but of low quality.
2 . | .

COAL-f obtains relatively good solutions for the three iypes‘

of random problems. Steinbérg's/Heuristic 2 1is efficient

~

. - - SRR
for the "=" problems with the two Swift algorithms very

close. The Swift algorithms are efficient for the "<"

. e )
’problems but take considerably more time thgn the «cost

allocation algo;ithmsn
The eost allocation algo:iéhms clearly = dominate

Steinberg's Heufistic 2 and the two Walker alqprifhms for

N §

- .

<

is\dgfarred’to the next section: While an ahalysis could %F

the\"a" equatlons. For ' the ™=" equations, .the ' cost

allocatlon aTéorlthms are quite closé in perfformance to DIS

©

H 2 and %yift 1 and 2.. For -the problems with the "<"

equatlons, the“tg?t alchatlon alqorlthms are in the center

of the eff1c1ency?§ront1er. The Walker algorithms obta&p a

A -

small. increase in: quality OVer the ' cost allocation'

algorlthmslg}th a 1arge 1ncrease in tlme.

»

~

The number of contlnuous varlables and the size of the
fixed charge compoﬁent .as well as‘the“51ze of the problem.

. have an impact on- the" per formance of the different

-

algorithms.- Further analysis of the impact of these factor’s

. cakried - out for the random problems, the ‘process ‘ of
) i e -4

&

‘w

4 ~ .

.
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generaﬁing larger problegs would raise ‘‘doubts about thé
validity of any results produced. - B
i - Te E .

The cost allocation algorithms perform on or close to

2

¥
the efficiency frontier for all the-differedt.random prqbgem
types. While the random probiems are useful for evaluaﬁing
the performance oft different algorlthms, they are not actual

applications. In the following sectlons, various proélems

derived from actual applicatione“will be used to insure that

the algorithms are not inhibited ,by the structure inherent
. e ‘

in a'applied problem. . , b ‘
N . . A s
Exhibit 4-17: Random Problems -- Summary
‘ -- Effigient Algorithms
- . ’ : ,
- hd ) . ~ \’-’r'o'
g ‘Random Problems g -
nyn non men
‘> L.P. * | * *
BBMIP . -na- -na- -na-
F.C.L.O. L * *
- ) 4 ¢ ;
DIS H 1 - - - -
DIS H 2 - * -
Swift 1 - SRS SRS SR A
SWift 2 » . - > - . B r"..—, A
COAL-b - - -,
COAL—X * ) - - i
COAL-c * - -
COAL-f * * ¥ .
-5 : A

5 IR SEESIPRERIER SR8l L

148

<




.‘ R o, . , t e
i 4.6. . Facility Location

I : &

L

! « Facility location problems are common applications of
fixed charge problems. A waste disposal problem from Malker
) . \ P

et. al.[94] is used as an example of such a problem and
- L% B ‘ -
compared with a capacitated warehouse 1location problem,

(CWLP) , and a fix&® cost transportation problem, (FCTP). IR
addition, an applicat{on in the location of power generating

Q
stations is examined.

4.6.1. Waste Disposal Problem Q%%

Cn The waste disposal problem (WDP) from Walker

et. al. [94] is given in Exhibit 4-18, 1In order to insure

-

that the resulti are not due to the particular parameters of
the problem, similar problems are generated with the same

cost, demands-’and capacities. However, the locations of the

demand centers and the tredtment centers are'varied within

- the same "size -area. , Larger problems dare generated by
e ‘ déubling (Size 2) ‘and ;ripl%ng (Size53) both the nqmber of
wasxé_§enerating.lcente;s, and intermediate and final

treatment centers within the same size area. The number of

\ 5 <

vatiables in'the~p;obleﬁs is changed by varying the number_

N *
of feasible generating center-treatment center combinations

. ¢
from 40% to.100% of the possible combinatiQns (Appendix G).

The quality of the solutions is given in Exhibit- 4-19.
. .

The results are ‘organized into three columns corresponding

e e T
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- Exhibit 4-18: Waste Disposal Problem
\
< (WDP) minimize 2z = J¥ CisX.: + J) buaTuq + L Fi¥a '
‘ i3 3713 k1 kl’kl 5 7373,
_ subject to:
L X;5 = 4y . v i
] = .
‘ -~
: g'xik 2 ¥k ¥k .
L E ik = ] 2Tkl ¥ ok
3 - 5 : ) .
T I Xip +# LTy < qqY v 1
L 241 k1 2 91ty ~ .
i k
Xi3rTe1 2 0. ~g irdrkel T
Yj = 0’1 v 3\\
where: .
1 = index of a waste generating center —
- j = index of a treatment center
k = index of an intermediate treatment center
1 = index of a final treatment center .
Xij = amount of waste from center i shipped
. to treatment center j. :
T, 1 = amount of treated waste from interme-
: - diate center k shipped to final
' treatment center j. <
Yj = 0-1 wvariable indicating if treatment
center j is operating.
d; = waste generated at center i.
qj = capacity of treatment center j.
a, = fraction of treated waste sent’ to a
final treatment site from intermediate
treatment center k.
_ G4 = variable cdost of shipping and treating

waste from i to treatment center j.




. y

bkl = variable cost of shipping and treating
waste from 'intermediate treatment
center k at final treatment center 1.

fj = fixed cost of treatment center j.

to the number of times the demand centers and treatment
centers are repeated. Steinberg's Heuristic 2 requires
extremely long computer' runs to solve these.pfbbleﬁs and is
not used for the Size 2 and Size 3 problems. 1In order to
reduce execution time for the Walker algorithms, the Size 3
problems ha&g an arc density of only 40%.

BBMIP, of course, has the best quality with no
deviation from the optimum. However, the cost al;ocation
algorithms provide better quality solutions than the
adjacent extreme point .algorithms. As problem ~ size
iﬁcreases, the deviations from the optimum of the solutions
of the approximate algorithms become larger.

The average solution times are given in Exhibit 4-20.
The cost allocation algorithms are considerably faster than
the two Walker algorithms and Steinberg's Heuristic 2. The
small increase in execution time ‘for the Walker algorithms

‘between Size 2 and Size 3 can be attributed 'to the low

density of the Size 3 problems and the small increase }p.the

number of ‘variables (304 to 329, respectively). BBMIP
\ ﬂ’}
solves (WDP) in léss time than DIS H 2, Swift 1 or 2. -7




’ 8

As ; result, the efficiency frontier for the Size 3
problems is dominated by cost allocation algorithms (Exhibit
4-21). Again, L.P. and F.C.L.0. are on the upper lefp
corner using little time but "obtaining poér# solutions.
BBMIP is on the lower right always obtaining the optimum but
requiring more time. Similar results . for the efficient
algorithms for Size 1 and Size 2 are also observed (Exhibit
4-22). COAL-c generates better solutions than COAL-f while
COAL-b does not improve on COAL-c. (

In the preceding discussion, changes in execution times
for different algorithms have been attributed to changes in
the size of the problem as well as to the( number of
variables. The relationship between the two factors and
execution time can, be analysed by developing equations to
relate the solution times to the namber of equations and the

number of variables. (Note that the number of equations,

the number of fixed charges and the size are all directly

e e SRS

152

proportibnal); The equations are presented in Ekhibit,4—23.

The Walker algorithms are dfématically affected by the

number of ordinary variables in a problem with an exponent

of over 2 while the exponent for the number of equatipns,

s

(representing équations and fixed charges) is than 1. Thus,
the solution times required by the Walker algorithms are
very dependent upon the number of variables (with or with
out a fixed charge) in tﬁe problem. The cost allocation

algorithms show no relatgonship with the number of variables

e e e s — e e e e e e e —————— e J——




Exhibit 4-19:

Waste Disposal Problem
-- Quality of Solutjion

Average Deviation from Optimum (%)

Size 1 Size 2 Size 3
L.P. 4,19 9,97 7.90
BBMIP 0.00 0.00 0.00
F:C.L.O. 1.08 }.36 2.75
DIS H 1 .92 3.36 2.75
DIS H 2 .77 -na- -na-
Swift 1 .01 1.41 1.63
Swift 2 .01 1.41 1.63
COAL-b .00 .62 .95
COAL-x \ .00 .62 .71
COAL~c .01 .62 .95
COAL-f" .00 1.31 1.34

Maximum Deviation from Gﬁtimum (%)

Size 1 Sizé 2 Size 3
L.P. - 9,90 11.77 10.68
BBMIP - # . 0.00 0.00 0.00
F.C.L.O. 9,15 4.99 4.53
éxs H 1 9.%5 . 4.99 4,53«
DIS H 2 9.15 -na- -na-
Swift 1 .07 1.70 3.03
Swift 2 .07 1.70 3.03
COAL-b .00 1.48 2.14
COAL-x .00 1.48 2.14
COAL-c .07 1.48 2.14
CoaL-f .00 3.Q7 2.14

S
Problem 12 7 3
Size-Equations 30 60 90
! -Variables 88 304 329
-Fixed Charges 7 14 21
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Exhibit 4-20: Waste Disposal Problem
-— Resource Requirements
Solution Times (cpu sec.)
k-
Size 1 _ Size 2 Size 3
L.P. 1.07 7.42 17.73
BBMIP 1.82 40.00 720.47
F.C.L.O. .68 5.43 ¥2.95
DIS H 1 3.99 37.42 69.88
DIS H 2 45.90 -na- ~-na=
Swift 1 23.13 838.36, 1172.01
Swift 2 23.'80 713.73  1154.88
COAL-b 124 10.59 55,29
COAL-x 1.92 22,58 _. 155.20
o COAL-c W71 5.81 26.13
CoAL-f .51 4,73 24.51 )
":Nl_ﬂj—
Problem 12 7 k¢
Size-Equations 30 60 90
-Variables 88 304. 329
-Fixed Charges 7 14 21

O
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Exhibit 4-21: Waste Disposal Problem - Size 3
~-- Efficiency Frontier
1 $ Deviation .
* Efficient Algorithm
- 3.0 [FCLO + Non-Efficient Algorithm
o ' * +pIS H1
2.0 .
- Swift 1l&2
+
* f
c COAL
1.0 *+ b -
f ' \*COAL“"X .
.
; " BBMI
’ 0.0 § - ' ¥
| - - r
’ 0 500 . 1000

Time (sec.)
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Exh1b1t 4 22: Waste Dlsposal Problem
: -~ Efficient Alqorlthms using Averages
 Size 1 Sizg 2 Size.3 g
. L.P. * . * *
BBMIP - * * X
FoCo_Il'olOo hnd - *
DIS H 1 - - ~
DIS H 2 - -na- -na-
Swift 1 - - -
Swift. 2 - - - -
COAL-b_ - - -,
COAL-x - - *
COAL~-c - - * *
. COAL-f ¥ - * *
* Efficient Algoriéﬁhy(Best Qualitxffor Solution Time)
- Non-efficieht Algorlthm (Alternative. algotithm
obtains a better quality solutlon in less time)
\_/ _
-q‘r -..“ - ‘~

.....
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e + Exhibit 4-23: Waste Disposal Problem --
- Relationship Between Size and Solution Time
A . 3
. .Algorithm Equation 2
- ’ . Logged Original
Data Data
Linear -
Programming  t£=0.000167 n-539 pl-73 994 .88
BBMIP _ £=0.0971 e-0193n o.0805m 435  gpp
Initial Fixed ’
Charge Local t=0.000686 n*’°0 pl-71  9gg. .799
Optimum ’ a
Steinberg : L
Heuristic 1  £=0.000311 nl-16 pl.22 - 977 955
Heuristic 2° _ ~na-’
Walker )
Swift 1 £=0.0000449 n2+46 630 g75  gog
. (
% Swift 2 £=0.0000638 n2-23 n-823 967 702
COAL-b £=0.0000127 m3:32 . 974 656 ;
COAL-c "L £=0.0000119 . m3-2l 975 768 _
D
COAL-f £=0.0000040 m3-4l 973 638
’ ' v -
COAL-x £=0.0000032 m3-8% 976  .659
t ='t1me(seconds) m = number of equatibns
n = number of variables(fixed charge + regular)
Trz = coefficient of determination s
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and the number of equations have én'exponent of over 3. The
marked increase in computer time required by the Walker
algorithms can also be attributed®to the number of variables

being proportional ﬂo the équare of the size.

All the élgorifhmé with the excepﬁion of BBMIP have

12 / - \"
solution times as a polynomial function of size. J'ﬁy

l
4

comparison, BRMIP hag an exponential relationship indicating
that solution times will increase dramatically with size for

“»

largef brébleﬁs. o

(WDP) has of course a particular structure. Any
cohclusioﬁs 'méde with respect to the performance of-
difgerent aigorithms do nét necessarily apply to other
broblem typés with ‘é different structure. In order to
insh}e that the results 6b§grved*with (WDP)"épply with other
problems with aiffereﬁt structures, other problem types B are

¢ —

analysed. , ' &

©

4.6.2. Capacitated Warehouse Location Problem g'
The basic structuré.fpr many‘facility‘location problehs
" is represented by the capacitated warehouse locéﬁion pnqgiem
(CWLP). Although there are preferable means -Ebr solv;nd,
the capacitated warehéusg location préblems are as difficult
. to solve by the algorithms for the general fixed problem as
ahfacility‘ locééion problem which requires a linear
prograﬁmihg fosmu;aﬁiop. Since %pere are fewer- variables in

t

this type of problem than the waste disposal transshipment

. 8

¢
)
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problem (WDP), the Walker and,‘Jhopéfully; the_'Steinberg

¢ valgorithms will have less difficulty in 'solving these
X T . » . .
i problems allowing further analysis. A number of capacitated

warehouse location problems are generated from a problem

<

ﬁ;om Rousseau [78] (Appendix<>G)., Largér pyoblems are

.

. created in the same fashion "as in -the waste disposi:)°

problems for Size 2, Size 3 and Size 4 while the arc densi

is varied from 30% to 100%. o o ¢
© R .

The quality of“the solutions (Exhibit 4-24) are similar

D to the results from (ﬁDP). The cost allocation algorithms

do siénificantly better than the adjacénéf expreme/ggint”’”’“”’“_
algorithms. For these problems, COALZf has a lower
deviation than €OAL-c. COAL-b obtains solutions which are
‘ © an improvement over both COAL-£ and éogL-c;

The solution times (Exhibit 4-25) also have results

similar to (WDP) although the - adjacent extreme point

algorithms use skightly less time. However, the efficiency

Jfrontier (Exhibit 4-26) 'is again dominated by the cost

2 . . v
N a110ca§ion algorithms with L.P. and F.C.L.O., R the upper

*

right and BBMIP on: the lower left. As the problem siie

LI v

decreases, BBMIP becomes dominant as it always obtains the

optimum and its solution time becomes léss than the cost

allocation algqrithms’for small problems.
; ek ’ :
A similar analysis is made to relate solution times to
size and the number of variables allowing further

comparisons of the algorithms. The equationg are given in
8 )

!
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Exhlblt 4- 24 Capacitated Warehouse Location Problem

- Qualltyggg Solutlon

[4

Average Deviation from Optimum (%)

. Size 1 Size 2. Size 3 Size 4
L.P, 13.62 19,30 °  19.46, 21.36
BBMIP 0.00, 0,00 0.00 0.00
F.C.L,O. 7.23 8.30 10.55 11.41
,DIS H-1 . 3,82 .02 ©° 9,38 10.00 .
DIS H 2 * 3.09 89 4.40 7.05
swift 1 2.87 . 4.56 . 4.87 6.31
Swift 2 3.15 3.70 . 4.89 5.88
- COAL-b .00 . 1.44 1.47 1,21
COAL-x .00 ©1.17 . 1.01 ¢ .50
COAL-c .13 . 2.22 3.07 4.12
~ COAL-f 1.48 . 3.61 2.33 1.75
. \ d
‘ Maximum Deviation from Optimum (%)g '
) Size 1 ‘Size 2 Size 3 Size 4
. L.P. 29.54 32.84 >30.78 '36.02 .
'BBMIP 0.00 0.00 - 0.00 ++ 0,00 - .
F.C.L.O. 16.75 13.61 . - 20.50 18.40
DIS H 1 15.72 12.05 20.00 15.59-¢
DIS H 2 13,42 11.28 9.94 12.58
swift 1 |  10.88 8.49  10.72 9.27
- Swift 2 © 13.42 8.i3/ 14.04 8.84
COAL-b - .00 ‘4,42 6.92 3.90°
COAL-x =~ [~ .00 4.42- 4.08 1.47
COAL~-c 10.88 6.67 8,04 8.74
COAL-f 8.09.~ . 7.38 8.71 r;490 | ’
0 t .
Lo ¢
Problem A 12 18 18 ~/ .
Size-Equations 18 36 - 54 72
-Variables 39 117 225 373 -
~Supply Centers 4 '8 Lel2y 16 °
*  (Fixed Charges)
; ) Y
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Exh1b1t 4-25: ,Eapa01tated WarehouSe Locatlon Problem
~- Resgource, Requlrements ’ : .

[

- 3

-
- t

Solution Times: (cpu sec.)
. 3, -

‘Size 1 Size.2 Size 3 __Size 4

L.Bo | .. ..30 . 1.6  _.2.95  6.38
BBMIP .55 ' 10.48 ° . 62.28  791.96
FCCQL.OI . ' L . 36 - 1./86 R .‘ 4. 98v 13.37

-y

pIs H1 | : 1.72  ‘el3.64.. . 45.72-  153.67
DIS H 2 ". 3.B4 <. 76,83  436.84  1887.37

Swift ‘1 P ..4.12 .69.22  588.87 1877186
Swift 2. ' “3.41 - 73.07° 536.92  2183,51

COAL-b 1.77°°, 13,58 - 52,05 136.09
COAL-x- _ 2.68 30.72.. 172.81 673.61
cOab-c | .58 15.36 15.84 .*48.49
-COAL £ 1.04 6.68 29.41 - 64.70

problen's 12 - '18 . 18
Slze—Equatlons 18 . 36, © - 54

. =Varjiables . 39 o117 ".225.
<Supply - Centers 4 - 12

- {Eixéd Charges) .

-
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« EXhibit 4-26% Capac1tated Warehouse Location«Problem
Co - Slze 4 —— Efficiencberontier .

~ - o d

v
e
. R N > B
.

% Deviation

>

.. - *'BEfficient Algorithm
*FCLO ‘ { - ;

N . .+ Non-Efficient Algorithm
+DIS H1 S

o

pIsS H2'. %

+ . - ¢

+Swift 1
+

A Swift 2
*COAL~c’

COAL
‘4b ) COAL>x
TS« UBBMIP
S .
w * ¥
1000
Time (sec.)

Kl
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Exhibit 4-27:

Capacitated Wazehduée quation ?goblem

!

; -- Efficient Algorithms-using Averages
- R : N .
e — N
a - '
Size 1 Size 2 Size 3 Size 4 |
L.P. L * * * & *
_BBMIP * * * *
F.CIL.O. - * * *
. M
DIS H 1 - - -~ -
DIS. § 2 - - - -
. Swift 1 - - - -
Swift 2 - - - -
COAL-b - - * Tk
COAL~x - - - *
COAL-c " T - * * *
COAL-f -. - * *

<

* Efficient Algorithm (Best

Quality for Solution Time)

- Non-efficient Algorithm (Alternative algorithm
obtains a better quality 'solution in

less time)

163
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Exhibit 4-28. As in ' the waste disposal problems, the
solution times:of the Walke; and Steingerg algorithms are
very dependent on the number of variableé. These solution
times are displayed graphically on a logarithmic scale
aséuming an 80% arc density (Exhibit 4-29). 1In particular,

the graph demoﬂstrates the impact of an exponential
relationship on the solution time for BBMIP.

Wiﬁg,the cépacitated warehbuse location problems and
the waste disposal proBlems, the relationships between

Y
g
solution time, number of equations and number of variables

. for the initial fixed charée local optimum (F.C.L.O.f are

v

very siQilar to the relationships for linear programming but
very different from thf‘ relationships for Steinberg's
Heuristic 2 and the th Walker algorithms. The~adjacent
extreme point search haintains its‘ efficiency while using
the . revised simplex method. The 'marked increases in
solution.--time of the Steinberg and Walker algorithms is due
to the nature of these algorithms.'

. The resulég fof.(WDP) and (CWLP) are very similar.

4

Qince the basic structure of the two problems is similar, it

N
Y

is not surprising that they produce similar results. In

order to evaluate the algorithms with different ' structures,

problems frgm (;@&?) are analysed. o ‘

. gy ¥
N . N PRI
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Exhibit 4-28: Capacitated Warehouse Location Problem —-
Relationship Between Size and Solution Time

b

_ Algorithm Equation * r?
v . Logged Original

Linear /
Programming  t=0.000142 n+989 p-576 .995  .976

BBMIP . £=0.1126 ¢-0926ny.00538m 435 935

Initial Fixed . :
Charge Local t=0.000841 n}-16 616 976 gsg
Optimum T

: Steinberg .
. Heuristic 1 t=0.000677 n

-~
v

ml-21 970 .828 B

Heuristic 2  t=0.000248 n2-71 p=-102 999 . 944

Walker . .
swift 1 £=0.000166 n2:°1 p+285 ‘975 784
Swift 2 £=0.000837 n2-44 n:556 91 787
- v ;
o COAL-b £=0.000486 n*211 pl-66 98¢ 957 ’
. ) ~
COAL-c . £=0.000125 n* /04 p2.01 ..946  .870
‘ COAL-£ £560000301 n-719 nl-87 955 . 797
~  COAL~x £=0.000099 n!+23 pl-92 980, .857 ..
t =°time(seponds) m = number af equations
n = number of variables(fixed charge '+ regular)

r2 = coefficient of determination’




‘Exhibit 4-29: Solution Times — C.W.L.P. - 80% Arc Density

o
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-
o
‘v

Lenanl

1

T ime (seconds)
, 10" 10!
lllllll l‘Llllllll 1

1

10°
1
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Swift 2
Swift 1

DIS H 2

BBMIP
COAL-x

‘ 6 5. 10°
Si1ze (Number of Equations)
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4.6.3. Fixed Cost Transportation Problem

The fixed cost transportation problem represents ™a

[ g

structure which is different from the capacitated warehouse

-

location problem. &(FCTP) has fixed charges associated with
the arcs while (CWLP) has the fixed charges associated with
the facilities. As in (CWLP), the fixed cost transportation

2
problem can be solved more effectively by special purpose

algorithms. However, the authors of the other appr;ximate
algorithms use (FCTPJ for test purposes Qggken primarily
from Gray [37]) althodgh.. they do pot :do as well as the
specialized algorithms. In order to compare the impact of

-

the two different structures, two fixed cost transportation
problems are taken ffom Rousseau [78]. As in the previous
sections, additional problems  are generated with similar
§roperties. The fixed cost transportation problems have the
same number of variables as the’Size 1 capacitated warehouse
location problem;;generap?d pré%iously with aﬁ‘daéc density
of 80%. The ‘two set ofﬁproglems are roughly the same size

although (FCTP) has four times as many fixed charges. An
. \ -,

. ' 1
attempt was made to solve each of the (FCTP) problems with

BBMIP. However, this proved to be,quite difficult and BBMIP

was terminated before proving the final sofﬁtion optimal.
- 4.\ - ‘ o

However, BBMIP -.did w%ot find a solution that is better than -

" i

the best solution obtained by at least one of the

heuristics.




e e -

T »
) The quality of the solutions for (FCTP) is much better = °

for the adjacent extreme point algorithms than for (CWLP)

{Exhibit 4—50). Although COAL-x still obtains the beét
solutions, Fhe other approximate methodg are relatively
close. The solution times (Bxhibit 4-31) are similar
between (FCTP) and (CWEP).' COAL-x has the'largest.incré;se‘“

due to the substantial increase .in the npumber of fixed
acharge vargables. In spite of the improvemenht " in
performance, none of the_cSteinberg' or Walker ™ algorithms.
appear on the efficiency frontier (Exhibit 4-32 and 4-33).

The notion of an efficiency frontier caA be used as a
guide énly ;hen the results of éiffefent élgorithms afé
‘close. QAithoubh one a}gorithm may appear better on ' an
'averdge basis, results may be different for individual

problems. Swift 2 d4id obtain the best solution for -some of

the proﬁiems qlfhough;E on average, it did not per%orm as
- ) ° by
N < .
well as the cost allocation algorithms.

The performance of - the adjacent extreme point
heuristics improves as they implicitly take advantage of the
structure inherent in the fixed cost transportation probiem.
In (FCTP), each decision wariable has a fixed charge
assogiated with it. One simplex pivot. typicalIy"involves f -

l gxchang@gg‘the fixed chagﬁes when,oﬂé variable enters the .
basis ahd‘rémoveé anatheifhawith fhe‘ (CWLP) g£9plems, the K

fixed charges are associated with a grouﬁ\ of - decision .

variables. One simplex pivot typically involves shifting?»v‘
. s

»
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Exhibit 4-30: Comparison of

Fixed Cost Transportation Problem &

Capacitated Warehouse Location Problem
-~ Quality of Solution

Average Deviation from Optimum (%)

- FCTP " CWLP
L.P. . 1.06 13.70°
BBMIP - -na- 4.00
FIC‘L'O. .12 7.16
DIS H 1 .12 4.29
DIS H 2 .10 3.48
o - ‘
'K&’Ft_ 1 .10 3,00
Swift 2° .10 3.00 |
, COAL-b , . .10 .00
COAL-x .02 .00
COAL~-c . .35 1.81
COAL-f. 10 1.9
Maximum Deviation from Optimum (%)
- FCTP CWLP
L.P. 2.46 26.21
BBMIP ‘—~na- 0.00
F.C.L.O. .59 . 16.75
DIS H 1 v .59 15.72
DIS H 2 .59 10.88
Swift 1 _ .59 10.88
Swift 2 .59 10.88
COAL-b : .50 .00
COAL-x .11 .00
COAL-c .92 10.88
CQPL-f .50 8.09
Problem 6 6 .
Size-Equations 12 18
-Variables 28 29
~-Fixed Charges 28 7
-Demand Centers ) 4

»

e e s e ey
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g : Exhibit 4-31: Comparison of- Cou -

H Fixed Cost‘Transportation Problem & .

P Capacitated Warehouse Location Problem -

. - ‘Resource Requlrements

. Solution Times (cpu sec.)

) FCTP CWLP
L.P. - ) .21 .27
BBMIP. -ha- 2.40.
F.C.L.O. .48 .34

. DIS H 1 .96 1.50
DIS H 2 " « 10.26 3.01 e
Swift 1 . 3.44 2.88
. Swift 2 3%5? 2.40
COAL-b 1.82 S 1.67 )
- COAL-x . 4.30 2.45 " ,
COAL-c - ¢ .60 .56
. COAL~£ ~ 1.29 .93 -
Problem 6 6 v
. Size-Equations 12 18 _
o -Variables 28 29
~Fixed Charges 28 7 . -
~Demand Centers 5 4
.} ’
| &
kad -
N !
L Lo i
- '
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? Exhibit 4-32: Fixed Cost Transportation Problem
- -- -Efficiency Frontier
l o % Deviation '
0.4
+COAL-C .
0.3 * Efficient Algorithm
. + Non-efficient Algorithm
- © 0.2
S " "FCLO DIS Hl T swift
- , * __+ COAL 12
0.1 Il m\ﬁ (DIS HagfO]
R . . *COAL-x
0.0 ) - . .
L ] :
0 2 : "4 ' » o
/ Time (sec.) _ ) e
“ i
-
< ’% ) X R
s (a—]' - Y ,
¥ I Z t T
. ‘e
N . s
»
. ‘ o )
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Exhibit 4-33: Comparison of

Fixed Cost Transportation Problem & -
LI Capacitated Warehouse Location Problem
~~ Efficient Algorithms using Averages

. ek e

’

FCTP CWLP

L.P. Cx *
. BBMIP -na-. -na--
- F.C.L.O. *

H 1 ‘ - -

s DIS - - .
> .r .

p Swift 1 . - -

’ Swift 2 ; - -

COAL-b
COAL-x
COAL-c
CoaL-f

I %1
* 1

*
!

-~
-

‘ ‘ , - .
* Efficient Algorithm (Best Quality for Solution Time)

- Non-efficient Algorithm (Alternative algorithm _>
obtains a better guality solution in less time)

.




demand from one facility to. another and does ng} always

involvebexchanging‘ fixed cﬁérges: To shift from one

& 8

. facility to another will .usually require several simplexa

v -~

iterations.

P . . >

In spite of a structure which 'is favorable to the
adjacent extreme point. algorithms, the cost allocation

algorithms outperform Steinbergfs Heuristic 2 and the Walker .
b

algorithms on both dimensions of quality-. of ‘solution and

solution”fime. The cost allocation! algorithms maintain a

good position on the efficiency frontier obtaining "good"

N

; solutions with relatively modegt\requirements for cpu time.

" To further confirm the results for facility location

¢

problems, paféicularly " with large- problems, an application| -

in the'locqfion of power generating stations is-analyzed. "

) 2
4.6.4. Power Station Location Problem

; ’ ‘ d

An additional problem involving, the location of nuclear

power generating stations, (PSLP), 1is taken from Dutton

0 " et. ai§ [21] (Exhibit 4=34). (PSLP) -'is too large to be

<

solved by BBMIP. However, the optimal solution is given by "
Duttaﬁ\~et{/al. who decompose (PSLP) into transportation
sub-problens whiéh are much easier to solve. Since Swift 1 .«

" and Swift 2 are very similar, only Swift 2 is used. As

*

observed in (WDP) .and (CWLb), DIS H 2 would require lengthy

computer runs to solve the Power Station’nocation problem

a

and also is not used. .

b e A e e Nk e e e e e e g = —— s e M e e e e —
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Exhibit 4-34: Power

Station Locétion.?ropiem‘ :

o - -

<

.
W v
[ENN. BN

1] o
e

(PSLP) minimize 2 = € i B T f.ve

( n 2 %g (C35%;5 + a35235 ) + _Z] £5Y;

c ) . T e ‘4,
subject to: Ff R N . e -

i

3

E]
1

s
l

- Q
=
]

[N

0- -7~
. ©
]

3

)

J »— i) ) ) ’ k4
§)

i

= amount\pf annual power generated. at ..

‘.
’ ' 8
\ . ’
. .

)Xy : ° ¥ i .

1]
fle]
. e
rs
ey
¢
3\

Z = p‘ ° Vn:i .-

x
1A
7]
<

0 - . .
Xij 2 a Byy ‘V 3'j
)iij>->_"s zij ° . ¥ i,j .

,xij'ezij‘?r- 0 W4,

K -
Yj bl 0'1 < v '-j =
. £ T ‘
a L=

ndex of a demand ‘center’
index of a power generatlng center

»

generatlng station®j fdr demand _
center i (kilowatt-hours).

amount of peak poher generdted at
generatlng station 3 for demand >
center i (kllowatts)
0-1 varlable rpdicat1ng if power
stat1on 3 1s oper&tlng. -

EX

demand for annual poVer atocenter i. -
.

demand for peak\p0wer at center i,
R

annual generating capacity of power
station j.

Yy

P
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LY . ’ .
) > fj peak generating capacity of power
statlon j.
N ~
a = minimum amount of annual ‘power in
kilowatt-hours which must be used for
. .each kilowatt of peak power used.
b = maximum amount of annual power  in '
v kilowatt-hours which must be used for >
each kilowatt of peak power used.
. ) . Ciy = variable cost of generating and trans-
> mitting annual power from qeneratlng
; .. station j to demand center i.
;J di' = varidble cost of generating and trans- ;
b J ] . - .
¢ mitting “peak power from generating
"1 station j to demand center i.
§ fj = fixed <cost of operating generating
¥ . station j. ‘
;

The problem is solved.assuming a 4%, 5% and 6% growth
in demand. Only COAL-x achieves' the optlmal solution in-all
three problems (Exhibit 4-35). Since only- one problem is
used, maximum deviations are not included. Tha other ' cost
R allocation algorithms are close while the adjacent extreme
point algorithms have larger deviationg: Steinberq}s
- - Heuristic 1 improves the solution found by F.é.L.O. for ‘the
4% and 5% growth and obtains a better quality solution than
Swift 2. The solution times given in Exhibit 4-36 again
demonstrate the .difficulty ‘the aéjacent extreme point
algorithms have with a large number of variables. L.P.,

v

F.C.L.O., COAL-~c, COAL-f and COAL-x are on the efficiency




S

]
*

frontier for the 4% growth (Exhébit 4-37). For the 5%
growth, COAL-c and COAL-x dre on -the efficiency frontier.
For 6% growth, COAL-c finds the opfimal solution with the
smallest soiutionitime ana is on the efficiency frontier.

*(Exhibit 4-38).

176
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The problem with a 6% growth rate has tight capacity -

constraints End is rélatively"eésy to solve. Only one of
the possible power stations is not built. Of course,‘the 5%
and 4% growth rates have more excess capacity and are more
difficult to solve. As a result, the solution time for
COAL~-x doubles as it improves the solutions found by COAL-b.
The solution time for DIS H 1 also increases as it finds
imp;dved solutions from FiQ.L.O. Ho@ever, the time required
for COAL-b, COAL-c, COAL-b or Swift 2 are not increa;ed
significant%gﬂby the effective increase in capacity.

However, the quality of these solutions deteriorates

slightly.

4.6.5. Evaluation-- Facility Location

The results for the 'facility location problems are
summarized by the efficient algorithms for each type in
E#hibit 4-39, The cost allocation algorithms are efficient
for all problem types in facility 1oc§tion. L.P.,
F.C.L.0. and BBMIP are alsq efficient for the different
problem types. ‘The Steinberg and Walker algorithms are“not

efficient for any problem type.

2
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Exhibit 4-36: Power Station Location Problem
-~ Resource Requirements
2

Solution Times (cpu sec.)

4% Growth 5% Growth 6% Growth
-

L.P. 44,77 .45, 46 54.59

BBMIP ’ -na- -na- -na-

. F.C.L.O. 40,37 26.91 27.25
DIS H 1’ o 2026.28  1098.24 814.50

DIS H 2 -na- -na- -na-

; N Swift 1 - -na-  =-na="‘ ~na-

- Swift 2 2371.01 2758.75 2410.30

COAL-b 392,47  344.66 338,54

COAL-x 756.89'. 677.79 354,02

COAL-c 86.51 . 80.72 157.47

"COAL-f 266,62 \\g62.36 178.47

. AN
Size-Equations ~263 N

~-Fixed Charges 13
~Variables 1}71

v

— o
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Exhibit 4-36: Power Station Location Problem
-~ Resource Requirements
2

Solution Times (cpu sec.)

4% Growth 5% Growth 6% Growth
-

L.P. 44,77 .45, 46 54.59

BBMIP ’ -na- -na- -na-

. F.C.L.O. 40,37 26.91 27.25
DIS H 1’ o 2026.28  1098.24 814.50

DIS H 2 -na- -na- -na-

; N Swift 1 - -na-  =-na="‘ ~na-

- Swift 2 2371.01 2758.75 2410.30

COAL-b 392,47  344.66 338,54

COAL-x 756.89'. 677.79 354,02

COAL-c 86.51 . 80.72 157.47

"COAL-f 266,62 \\g62.36 178.47

. AN
Size-Equations ~263 N

~-Fixed Charges 13
~Variables 1}71

v

— o




Exhibit 4-37: Power Station Location Problem - 4% Growth
~-- Efficiency Frontier

el .
o !

$ Deviation

. 15.0° ‘ -
*FCLO . ) °
)
10.0 * BEfficient Algorithm
+ Non—Efficientlﬁlqorithm‘
5.0
* Swift 2
+
COAL ’
*c b COAL~-x . /+DIS H1
0.0 * o p——
1 ]
0 1000 2000 °
Time (sec.)
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Exhibit 4-38: Power Station Location Problem
-— Efficient Algorithms

4% Growth 5% Growth 6% Growth

L.P. * * *
BBMIP -na- -na- -na-
FICQLI 0' i * - ‘( -

0
pIS H 1 - -

. DIS H 2 C;;- -na- -na-
Swift i : . -na- -na- -na-
Swift 2 - - - 3
COAL-b - ~- -
COAL~x ’ * * -
COAL-c * * *

v gCOAL-f * - -

A

* Efficient Algorithm (Best Qualitv for Sollition Time)

-

\3 - Non-efficient Algorithm (Alternative algorithm
obtains a better qualitv solution in less time)

-
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The general relatiépéhip between quality of solution ’
and resource requireme;t is, Aemonstrated by an efficienc§
frontier for facility loeation problems in general (Exhibit
4;40) L.P. and F.C. L 0., altheugh fast, provide
relatively poor solut1ons. The different cost allocation.
algorithms are in the center providing qreatest improvement ‘

) N ~ “«

in quality for the smallest increase in solution time.
BBMIP is on the lower right providing a.small increase_iﬁ’
quality of solution at Epe expense of a large increase in

execution time.

-

(WDP),‘(CWLP) and (PSLP) have simiggr structures with .
fixed charges on facilities and maey continuohs.variablee'
without a fixed charge. The Walker and Steinbefg‘algorithms
handle all variables as if they Were flxed charqe varlables
Consequently, they run into dlfflcglty as the number‘ of
continuous variables with ¥no fixed charge iszoﬁteﬁ quite
large. In the analysis relating size, number of Yariable%“
and solution times, th® cost allodation algorithms héve a
higher~exponent on’the size component with a lower expenent
on the number of continuos 'Variebles.ﬂ The Walker ‘and
Steinberg algorithms have the reverse. ; In', contrést, the"*
Walker and Stelnberg alqorlthms prov1de ‘better solutlons to
the fixed cost transportation problem (FCTP), in which most -
of the variables have fixed charges."However, the adjacent

‘-exfreme ‘point algorlthms:are still not efficient.-

t . A

»
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\ , Exhlblt 4- 39 -Facility Location Problems -- Summary
' ’ - Eff1c1ent Algorlthms s e

! - . 1 . (WDP) (CWLP) (pstp),  (FctR) | - \
‘ ’ \- L.Po v M . * ' * * *-
BBMIP 1 - *x -na~ ~na-
5 FoCoLoOo * - * * M , *
"DIS H 1. - o - -
DIS H 2 —na- - - _ -
Swift 1 - . - -7 -
SWift‘z - - ~ -
COAL-b - * - -
- COAL-X ' R * * * . .
) " COAL-c * * " *
~ Py -t ‘
COAL-f % * * *
. ! ¢

* Bfficient Algorithm

'Exhibit7§-40:'Efficiency Frontier - Facility Location

swift 1 & 2 .DIS H 2>.

o Y

N

__BBMIP
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Execution time is a polynémial function of time for all

< \l.'
the approximate algorithms and linear 'pfogramming. . Only

BRMIP has an exponential growth in:execqtioh time as problem

size increases. As problems become large, BBMIP w}i;\ﬁoon

hgzi\Zifficulty with’ lengthy computer runs.,

he new cost altocation algorithms consistently

N

generate good solutions to-facility location nroblems which

are real, large ‘and general fixed charge problems. The cpl

- requirements of the new cost allocation algorithms are

4

significantly less than BBMIP, Steinberg's Heuristic 2 09

the Walker algorithms. Both, the quality of solution and

sqlutionvtimes are consideraBlv better than the solution .
K :

obtained by the Walker and Steinberg algorithms. 8-

4.7. Production Planning’
¥

Production planning problems with set up costs also

£

occur fneqhently in® the 1literature. These problems are
classified as the fixed charge 1lot -size problem (Exhibit
2-12). Two problems are used as samples ?f prodthion
planning problems: one éroblem from Graves [36], and .a

‘smaller problem from Hax and Golovin [42].

4

.

4.7.1. Hierarchical Production Planning~Graves

Graves [36] uses a hierarchical production planning
problem which 1is a fixed charge linear programming prbblem

similar to (FCLSP) except there are no restg}ctions on the
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‘seasonality in demand (Set 1), .moderate seasonalitv (Set 2)

A

’

: ~ . B .- . 9]
. . P ¢

. . ;
M

amodnt of 6vertime. A problem of ghé size used bv Graves
requires 240 fixed charge variables (or 240 binarv
variables) plus 264 continuous - variables  and ‘252

: 3 .
constraints. Following Graves, one problem has- - 1little

and a h;gﬁ Eegree of seasonality (Set 3). The capacity is
increased.by 20% for Set 1 to generate a fourth probiem
(LooseICapébity). The final problem divides, the fixed
charges for Set 1 by % (ée; Up * 0.2). ‘

'Swift 2 is cﬁosen to gépresent the Walker algorithms.
The Walker algorithms require lengthy computer runs before
tﬁey'terminate. Since Swift 1 produces results similar to
Swift 2, it is not wused. These problems’ are too time
consuming to be reasonably solved by Steinberg's slow
Heuristic 2 'or*COAL-x and'much too large to be attempted by
BBMIP. While COAL-b runs are very lengthy as well, the
additional time beyona’COAL—f and COAL-c is minimal.

‘ Since the optimal solutionais‘nét known, the .deviation
from the best solution obtained by the algorithms tested is
used for the measurement of qualiéy (Exhibit 4-41). Swift 2
obtains the best dolution for 3 out of 5 problems while
COAL-f (and COAL-b) obtains the best solution for the other
two problems.

Of.the algorithms tested, Swift 2 requires the‘ longest
execution  times ‘(Exhibit 4-42). The cost allocation

algorithms® require less time while F.C.L.O. and L.P. require

184

P

}




-

even less. The cost allocation algorithms ‘exploit the
‘smaller  Fixed charges for the "Set Up * 0.2" to
significantly redhce their execution times.

The efficiency frontier for Set 2 demonstrates th;
extra time required b;ﬂg;ift 2 to obtain a bettef solution
(Eghibit 4-43). The efficient algorithms for the different
problems given in Exhibit 4-44 indicate that all the
algorithms tested, from time to time, are efficient.l

The increasing §easo;ality generally makes the problem
easier to solve és it in éome sense makes it smaller. The
out of season demand for these problems is set to zero which
in effect reduces the size of the problem and Ehereﬁore the
time required to sélve for the cost allocation algorithms.

The "Loose Capacity" relaxes the constraint by

increasing the capacity. Since there is 'already a fair

degree of excess capacity particularly with no restriction

on overtime, the problem becomes easier to solve.

1. By comparison, Graves requires an average of 236 cpu
seconds for the five problems on a Prime 400 to come
within 5% of a lower bound. GrhAves states that*a PRIME
400 is 3 to 8 times slower than a 370/168. A Cvber 173
would also be slower than a 370/168. Although
comparisons are difficult, it would appear that the
Graves algorithm would be faster for this particular
type of problem and below the efficiency frontier for
the algorithms tested. Of course,’ the fixed charge
linear programming formulation is more flexible than the
Graves algorithm would allow.
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Exhibit 4-41: Production Planning Problem-Graves
—- Quality of Solution

Deviation from Best (%)

Set 1  Set 2 Set 3  Loose Set Up |
' . .Capacity * 0.2
(Set 1) (Set 1)
L.P. ©27.37 25.80 22.23 28.93 2.68 )
BBMIP -pa- -na- -na- . -na- -na-
F.C.L.O. .89 8.30 1.72 ° ° .AQ .57
— ) _ . |
PIS H 1 1.75 3.58 1.71, .40 .57
DIS H 2 -na- -na- -na- -na- <na-
Swift 1 ~-na- -na- -na- -na- -na-
Swift 2 .21 .00 .00 .00 .37
COAL-b .00 - .42 .20 .10 .00
COAL-x -na- -na- -na- -na- -na-
COAL-c 3.98 |, 2.86 .37 .40 .17
CoAaL-f . .00 .42 .57 .10 .00
.,
Size~Equations 252

_-Fixed Charges 240
-Variables 504




"Exhibit 4-42:

Production Planning Problem-Graves
-- Resource Requirements . '

-

7 S
) , - Lo
Solution Times .(se&.)
| S b
Set 1 Set 2 Set 3 Loose  Set-Up
Capacity * 0.2
(Set 1) (Set 1)
NS
L.P. 25.0 - 29.0 35.1 23.2 24.1
BBMIP ~-ra- -na-- -na-~ -na- -na- | &
E.C.L.0.| 617.0 294.2 209.4  7i6.0 71.5 |\ /
DIS H 1 | 1503:8 1858.7 1590.2 1453.3. 1079.0 f
-~ DIS H 2 -na- -na- -na- -na- -na-

: T ) \
Swift 1 -na- -na- -na- -na- ~na-
Swift 2 9136.3 13140.7 5590.0; 4841.8 4831.5

port F]
COAL-b 7381.8 4809.8 3251.1:- 4640.3 ~ 604.0
COAL=-x -na- -na- . _~ha= -na- -na-= 1.t
COAL-c¢ 3240.3 2273.6 1550.5 2101.5° 247.$§ . .-
COAL-f 3755.4 2356.7" 1635.2 2644.4 330.3 |
Size-Equations 252 ) . ﬁﬁ' .
" =Fixed Charges _ 240 ) -
-Variables 504 = .
o
<2
K3
]
A . e
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Y
N
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Exhibit 4-43: Production Planning Problem-Graves-Set 2
" -~ Efficiency Frontier

. $ Deviation -
. -
8.0 |*FCLO ) ’ ‘
) * Efficient Algorithm
600 - ,*T N
i -+ Non-Efficient Algorithm
4.0 ..
QIS H1 .
g *COAL-C :
’ 2.0 . -
. COAL-f . )
. * e +COAL-b ___ . Swift 2
- " 0.0" 2 ' *
- . : T 1
» 9/ * 500} 10000
S Time (sec.)
! : o \ - ) M-
W \ - -
s
. Bl
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Exhibit 4-44:

Production Planning Problem-Graves

-~ Efficient Algorithms

-

Set i

=Set 2 Set 3 Loose Set Up
Capacity * 0.2
(Set 1) (Set 1)
L.P. * * * * , *
‘ BBMIP -na- -ha- -na- -na- -fa-
F.C.L000 ’ * 0 * * * *
DIS H 1 * * - - -
DIS H 2 .| —-na- . -na- -na- -na-~ -na-
Swift 1 -na- ~-ha- -Ra-~ ~-na- -na-
Swift 2 - * * * -
COAL-b - - * - -
COAL-x -na- -na- ~na- -na- -na-
, COAL-c - * * - *
.COAL-f * * - * *

* Efficient Algorithm

- Non-efficient Aléorithm (Alternative algorithm

3

(Best Qualitv ‘for Solution Time)

obtains a better quality solution in less time)

4

&

189

z/‘




190

These problems are dominated by the fixed charges..

"Set Up * 0.2" divides the fixed charges by five and makes

the prob}em considerably easier for the cost allocation

"~

algorithms to solve.
All the algqrfthms tested appear on the efficiency

.frontiér for some of the problems. Swift 2 is on the far

right taking much longer than the others with a slight ‘

improvement in quality over COAL-f. Steinberg's Heuristic 1
ﬁanagesyfo improve the solution found by the initial Fixed
Charge Local Optimum but is still 6n the upper %fft of the
efficiency frontier. The cost allocation algorithms-tes;ed
are in the middle showing good improvement in ‘quaiity with

small improvements in the time-tequired. -

N
[

4.7.2. Hierarchical Production PlanniTgEHax and Golovin

Due to the difficulty in solving the problem from

Graves and thus making comparisons, a similar‘problem,with

the same structure as (FCLSP) including a 1limit on the

amount of over time but only 65 binary variables is selected

k]

from Hax and Golovin [42]. ‘

The basic problem (Base Caséﬁ%has a seasohaf&ty similar

/
to Set 2 from Graves with an intermediate amount of

-

) . » .
seasonality. The fixed charges are similar in size to the
j . '

"Set  Up * 0.2%.case from Graves. The size of the fixed

charges is wvaried ,for two ‘ﬁroblems. "Set Up Case I" has

Ty

fixed charges in betw;en the Base Case and the problém from
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Graves. The fixed charéés in "Set Up ‘Case II" are =
comparable in size to the Graves problem. “The impact of
capacity constraints is tested by tyo addi;ionai sensitivity'
analyses. "Tight CapaE}tv" represents a reduction in the
production capacity available wﬁile "Loose Capacit?"
represents an increase in the produétiop capacity. Hax and

y Golovin state that the parameters of the Base Case represent

a production planning problem in tire manufacturing. These

- problems can be golved wlthln reasonable time limits by all

algorithms except BBMIP, o ‘ :i‘

Since the optimal solutions for these prqﬁiems are not
known, the quality of a solution is measured with respect to
the best solution found (Exhibit 4-45)., COAL-x obtains the
best §olution most frequently followed gy Steinberg;s
Heuristic 2, - Swift 1 and COAL-b. Hdwever, all the

. approximate methods achieve relatively low deviations.

COAL-x and Steinberg's Heuristic 2 have long solut%on.
times.for éome problems (Exhibit 4-46). COAL-x requires
lengthy runs in order to improve some of the solutions
obtained by both COAL-f and COAL-c. The two Walker
’algorithmé are generally faster than COAL-x or DIS H 2.

~COAL-c, COAL-f and COAL-b take .less time than the Walker

algorithms. The increase in set up costs ¢ slows down the

cost allocation algorithms for "Set Up I" and "Set Up II".
The relative posifioning of the different algorithms on

the efficiency frontier is deménstra;ed in Exhibit 4-47 for

—

- .
. /
‘.
A .

I d




192

b
the Base Case. As in Graves' problems, all of the

algorithms are efficient for at least some of the problems
- (Exhibit 4-48). .

An attempt was made to solve the "Base Case" and the

"Set Up Case II" of the Hax ;nd Golovin problem; with BBMIP.

The program ran for approximateiy 4 hours of CPU time before

the program was stopped. In the "Hhse Case", the best

solution is the same as given in Exhibit 4-45.  With the\

"Set Up Case 1II", the best solution found by BBMIP is

inferior to the solution in Exhibit 4-45. Although BBMIP

‘was allowed to run for approximately 4 hours of CPU time ;or

N each problem, the eiapsed time *was 36 hours on a éuiet

Christmas weekend. The extra time is required to save and

restore various tables on the disk. Since none of the
approximate methods require disk storage, an équivalent )

amount of cpu time could be obgpined during such low use

periods in approximat;ly 4.5 hours elapsed time. The large

increase in both cpu time and elaésed time demonstrates the

problems associated with branch and bound miiéd' integer

. > * . »
programming as pfoblem size increases.

-

o

4.7.3. Evaluation =-- Production Planning

Ah assessment of the efficient algorithms for the two
sets of problems with the sensitivity analyses are
summarized in Exhibit 4-49. Essentially, all the algorithms

! tested are efficieﬁt. Only Swift 2, which is dominated .by

. ) o




< »
Exhibit 4-45: Production Planning Problem-Hax & Golovin -
, == Quality of ‘Solution
Deyiation from Best (%)
‘Base Set Up Set Up Tight Loose
Case Case I Case II.Capacity.Capacity
L,P. .43 8.84 20.65 .36 1.05
BBMIP -na- -na- -na- -na- -na-
F.C.L.O. .21 4.08 3.52 .15 .18
DIS H 1 .21 4,08 3.52 .15 .00
DIS H 2 .00 1.23 1.74 .00 .00
" Swift 1 .00 2.18 .00 .07 .00
Swift 2 .05 2.18 1.74 .07 .00
COAlL-b .00 1.28 .71 .00 - .16
COAL~-x .00 .00 .16 .00 .16
COAL-c .21 I.28 .71 .01 .23
COAL~f 11 1.82 -1.51 . 00, .23
‘ Size-Equations 91 ¢ )
-Fixed Charges 6%
-Variables 169
‘ /
™~
N C
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Exhibit 4-46: Production Planning Problem—Hax & Golovin
-- Resource Requirements '

, ‘Solution Times (cpu sec.)

Base Set Up Set Ué Tight Loose
Case . Case I Case II Capacity Capacity

L.P. 5,35 5.32 5.36 6.32 3.91

BBMIP  _~" =-na-  -na- -na- -na- « —na-

F.C.L.O. 5.98 10.43 16.95 7.05 7.92
. DIS H 1 38.29 46.59 59.54 45.20 49.87

DIS H 2 636.48 - 500.34 707.28 2871.12 271.48

Swift 1 | 163.69 396.78  466.57 "255.11  159.46
Swift 2 | 255.75 190.12 326.74 '148.61  175.51

~

CoAL-b° | 43.79  57.38 196.02. 44.99  48.38
COAL-x 130.49 608.76 1111.99 170.77 114.89
COAL-c 13.33 ' 23.29 100.03  17.71  20.11
COAL-f 23.25  29.15  98.48  21.39  18.58
Size-Equations 91

-Fixed Charges 65
-Variables 169
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Exhibit 4-47: Production blanning Préblem—Hax & Golovin
~ Base Case -= Efficiency Frontier

$ Deviation

\

FCLO
*4 +DIS H1
0.2 COAL-c

* Efficient Algorithm -

+ Non-efficient Algorithm

, *COAL-~f i
0.1 - .
- +Swift 2
COAL-b COAL-x Swift 1 [DIS H2=642]
0.0 * " + + :
P ! . 1 1 ]
0 100 200 300 =

Time (sec.)
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Exhibit 4-48: Productioh.Planning Problem-Hax & Golovin
-- Efficient Algorithms

Base Set Up Set Up Tight Loose
Case Case I Case II Capacity Capacity
P s
“L.P. * * * * *
. BBMIP -na- -na- -na- -na- -na-

= F.C.L.O. * * . * * *
DIS H 1 - - - - *
DIS H_2 - * - - -
Swift 1 - - Tk - -
Swift 2 - - - - -
: ’ . o )
COAL-b * - Y- v *
COAL"X - * - - -
COAL-c - * * * -
COAL-f o - * * -

* EEficient Algorithm (Best Quality for Solution Mime)

- Non-efficient Algorithm (Alternative algorithm
obtains a better quality solution in less time)
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its close relative, Swift @Jfféygot effivient for oﬁé set.
Since BBMIP
‘evaluated. .While each algorithm is not efficient for-eévery
'préblem, each élgorithm_ is~ efficient for some. of the
variations.  Also, the algogithms are close to the

efficiency frontier for each problem. Therefore, each

algorithm is assessed as bei?g efficient. The relative

positions of each algorithm on ﬁti//efficiency frontier is

shown in Exhibit 4-50.

Agaih, L.P. and F.C.L.O. are on the upper left with

fast solution timés:  and poor quality.- DIS H 1 obtains

improved solutions with an increase in solution time. . The

3

cost allocation algorithms, COAL-¢, COAL-f and COAL-b, are

-

on a good position on the efficiency frontier obtaihihg

better solutions with relatively modest increases in

execution times. The other adjacent. extreme péint

algorithms, Swift 1 and 2 and DIS H 2, sometimes pbtain
slightly better solutions but require lengthy computer runs.

COAL-x, which also occasionally obtains the best solutions,

requires more time than the Walker algorithms hut-}ess than

DIS H 2. Steinberg's Heuristic 2 has the longest execution

times but has little if any improvement in quality.

When the size of the fixed charges 1is decreased, the.
. e Y .
sdlution time of the cost allocation algorithms improves:

4

However, the execution time of .the adjacent extreme péint

algorithms is independent of the size of the fixed charges.‘

.

197

is not t%sted, its efficiency can not be '

‘%3
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Exhibit 4-49: Production Planning Problems - Summary
-~ Efficient Algorithms

Graves Hax &
Golovin
N L.P. * *
BBMIP -ha- -ha-
F.C.L.O. o .k
DIS H 1 * *
DIS H 2 ) -na- *
. Swift 1 -na- *
- Swift 2 : * -
COAL-b * *
COAL-x -na- *
COAL-c - * _ ‘
COAL-£f * * )
I L)

* Bfficient Algorithm (Best .Quality fér Solution Time)

Exhibit 4750: Efficiency Frontier - Production Planning

s\

M -

Deviation - Ly

Swift 1 & 2 COAL-x  DIS H 2

. Time
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In (FCLSP), a simplex pivot is often quite significant.
A simplex pivot can result in the production from one month
being shifted to another month thus avoiding the setup
costs. Consequently, the adjacent extreme point algoritkms

generate good - solutions. Never the 1less, the cost

199
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allocation algorithms, particularly COAL-c, COAL-f and

COAL-b, are very efficient in producing good solutions to

the fixed charge lot size problems.

4.8. Manpower Planning

Two problems from manpower planning are selected. to
further investigate the performance of the different

algorithms in solving problems with different structures.

"One example involves the integration of manpower planning-

into a production-planning problem by allowing the $ize of:

the work. force to be a variable. This approach'is used by
Hax [41] with his variable work force problem and by
Mangiameli and Krajewski [60] in their study of the effect
of diffe;ent work force strategies. These problems have a
single var;able represenpinq the siZe‘of the work force. A
second multi~period manpower planning problem in sales force
management is wused which has a number of variables
N

representing different 1levels of experience and training

thus adding additional complexity to the problenm.
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4.8.1. Variable Work Force Problén °

The variable work force problem, (VWF), is an extension
of production planning where the size of the work force is a
decision variable as well as the decisions involving
production level. Controlling the sige of the work force
involves<e§uations for a manpower alance as well as
decision variables for the number hired and fired in each
time perigd. The formulation for (VWF) is given in Exhibig
4-51,

By definition, (VWF) and (FCLSP) are related. Although
simildr, (VWF),is more complicatgd than (FCLSP) involving
the interaction of two sub-problems for the production level
decisions and for the manpower level decisions. Since there
is such a close relationship‘between (VWF) and (FCLSP), more
insight into ;he performance of the. various algoritﬁms can
be achieved by using the Hax and Golovin [42] problem as the
basis for the variable work force problenm. However, the
structure for hiring,ﬁ training and firing is taken'f;om
Mangiameli and Krajewski [60]. The hiring cost rebresents a
two week training period while the firing cost represents
two week severance pay. In addition, a sensitivity analysis
is performed on a fixed charge assigned to training which'is
set at 0, $1,000 (two weeks pay for one instructor) and
$5,000 (a large fixed charge).

The quality of solutions for the Base Case for the

(VWF) problem (Exhibit 4-52) is very similar to the results
/
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Exhibit 4-51: Variable Work Force Problem

)

(VWF) minimize z = ) (CLRy + d Oy + agHy + beFy + 9pl¢
t .

+ % (U5 I4p + S3e¥5¢) )

subject to:

8]
Psg + I35,e-1 — Ige = Ve ¥ j,t
- ,g ( ijjt ) = O < Ry ¥t
R ~ H, + Fy = Ry :\%‘?t
Otfqth ; ¥t )
He - n2, <0 ¥ 3,t
. Pyt T Mye¥ye 2 0 a Yt
OprPspiTipr 2 0 ~§ ¥y,
Zt'?jt # 0,1 - ) QS ¥ j,t ~
where:
j = product group K i
t = time periods R i
. Ry = reqular workforce in perlod t

0t = overtime ﬁofkgd ig pé}iod t

H%.= additional housrs hirgd in period t

Ft = Hours laidvoff in period b
_Z.,= binary variable for training in period t

_ Ijt = inventory, groB? j in t

; Pjt = production, group j in t .

) th = Binary variable for production ofi
group j in peflod t

¢, = regular pdyroll in period t

dt = overtime payr&ll ih-period t
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a, = hiring cost/hour in period t
bt =‘fitihg cost/hHour in period t
9, =:fixed training cost in period t -
ujt = holding cost,‘group 3j pe:iod t
éjt = set up cost, group j period t
dy = over time limit, period t
w5 = productioh time requifeg/unit, group j
T Vig = demand, group j in t .

m;, = maximum production, group j in t

~ ’ n, = maximum training, period. t”

obtalned with the origlnal Base Case from Hax and Golovin.
Swift lf\\(j 2 obtaln the best solution for a11 three
problems. Stelnberg S Heurlstlc 2 obtains the best solutlon
in two problems and a large deviation in the other. COAL-£
obtains the ‘best solutlon in one and low dev1at10ns in the
other two problems. COAL-b and COAL—x obtaln the same
soiut%ons as COAL-f._.COAL—c obtains one best solution, ‘one

[}

low deviation and one high deviation.
The Swift algerithms and DIS H 2 take much longer with
(VWF) than with (FCLSP) due to the increase in the number of

Avarlables (Exhibit 4-53). COAL=x takes con51derably longer

in one case. The long execution time for COAL-x results
from the effort requirea to improve the solution obtained by

COAL-c. COAL-x takes'considerably longer when the solution '

from COAL-c (or COAL—f)éis poor.

-
-
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The efficiency frontier- for theé problem ‘'with $1,000

o [}

> fixed training cost demonstrates the extra time required by

the Walker algorithms . to obtain an improved:- soJution

(Exhibit 4-54). As in the production.planning problems, a

number of algorithms-éfe efficient for different problems

(Exhibit 4-55).
The wvariable work force problem involves ~ ‘the

inferaction of two sub-problems: one for the production

" level decisions, and one for the work force level decisions.

. The fixed charges on the prodhction set up  are relativel&
small when compared‘ with thekfixed charges on ‘the training
costs, particularly with ., the $5,000 fixed 'charqe:
CQnsequently, the base run variable work force probBlem with
fixed ‘training costs is dominated by the work. force level
éroblem.

5. In order to make the production level ?ecisions‘ "more
important", a second problem usin§ "Set Up Case. I" is used.

The interaction of the two sub-proﬂiems with "Set Up;Case I;

a

makes the problem more difficult for the adjacent extreme
£y * .

&7

point -heuristics as shown by the poor quality of solution
i ¢

they obtain (Exhibit 4-56). The Walker algorithms have high =~

deviations in all three problems.” Steinberg's Heuristic 2
manages a -low deviation in ope proSlem.’ COAL~£ ébtains the
best solution for all three problems. COAL-b obtains the-
best solution in two with a IOWuQeviétion‘in-the third. )
COAL-f obtains the best solution in one probleh and low

3
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Exhibit 4-52: Vatiable Work Force Problem - Base Case

-

- Quallty of Solution

Deviation from Best (%)

/

Fixed Training Costs ($)
0 1,000 5,000
“L.p. .10 0 .994 7.560
BBMIP -na- -na- -na- 3 S
F.C.L.O. .056 .083 3.027
DIS H 1 .056 .083 3.027
DIS H 2 .000 .000 1.495
swift 1 . 000 - .000 L000
Swift 2 .000 .000 .000 ~
COAL-b ~.000 . .027 . .028
COAL~-x .000 - L0227 .028
COAL-c .000 . .027 2.406 /
COAL~f . 000 027 .028
Size-Equations 104 q 104 104
-Variables 195 g/ 195 195

-Fixed Charges 65 , 78 78

204




R NN,

- LS " - " .
A

Soh o

R
AN pew

Exhibit 4-53: Variable Work Force Problem ~ Base Case
-~ Resource Requirements:

o s TR TR S
.

~ L . . v
’ Solution Times (cpu sec.) ~
. . 'U"
Fixed Training Costs‘ (§i7 . .
h \\‘\ 0 1'000 5'000 .
’ _L.P. .. 10.07 9.74  10.0Q0 S
v BBMIP -na-  -na- -na-
S F.C,L.O. 5.10 7.16 . 7.41
DIZ-H 1 62.22 . 64.31 64.09 N
DIS H 2 | 911.03  2157.44 749,23
] E swift 1 | 402.09  331.61  323.46
k ’ ~Swift 2 291, 2§ 352.09- . 423.63 §
COAL-b 33.05 42,95 88.75
COAL-x 117.82  -187.32 1194.86
- COAL-c | 15.57. 24.97 33.77
0 . COAL-f 16.56 ~ 17.67 . 39.60
Size-Equations 104 104 T 104
-Variables 195 195 195
) ~-Fixed Charges 65 78 78
: s
. #
t “gg ‘
@ p
™
" o
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Exhibit 4-54: Variable Work Force Problem - Base Case
- Rj&ked Training Costs $1,000
-- Bfficiency Frontier

% Deviation

FCLO
* +DIS H1

* Efficient Algorithm

+ Non-efficient Algorithm

+COAL-x

TDIS H2=2165]

[ - i []
200
Time (sec.)
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Exhibit 4-55: Vafiable Work Force Problem - Base Case

B e

-~ Efficient Algorithms

Fixed Training Costs g§3
0 1,000 5,000
L.p. * o *
BBMIP -na- -na- _ —na-
he FoC.LoO. * * *
DIS H 1 - - -
DIS H 2 - - -
Swift 1 - * *
Swift 2 - - -
COAL-b - - -
COAL-x - - =
COAL-c * - *
coaL-f - * * g, .

* Efficient Algorithm
3

(Best Quality for Solution Mime)

. - Non-efficient Algorithm (hlﬁernative algorithm
obtains a better quality solution in less time)
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deviations in the other two. COAL-c obtains one best, one
low and one high deviation. This problem demonstrates the
inability of the adjacent extreme point algorithms to handle
situations which have relatively complex relationships
between the fixed charge variables.

The solutions times with "Set Up Case g" are similar to
the (VWF) problem using the Base Case (Exhibit 4-5P.  The
two Walker algorithms and Steinberg's Heuristic 2 require a
large amount of computer time, COAL-x again requires a

lengthy computer run to improve the one poor solution from

COAL-c.

Consequently, the cost allocation algorithms udoginate
the‘AWalker and Steinberg algorithms on the efficiency.
frontier (Exhibit 4-58). Swift 1, 2 and DIS H 2 do not
appear as efficient algorithms for any of the three problems
(Exhibit 4-59).

The second variable work force problem illustrates the
diLficulty the adjacent extreme point‘ algorithms have in
coping with compleg. relationships between fixed charges.
‘Tﬁe cost gllocation algorithms obtain qooq solutions in both
problems yith modest cpu time réquirements. The difficulty
the adjacent extreme point heuristics have evaluating
complex models 1is further demonstraged in the next section
suing a multi-period mult?—level manpower planning in a
sales force problem with fixed charges on groups of

s "

variables.
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Exhibit 4-56: Variable Work Force Problem - Set Up Case I
-- Quality of Solution

Deviation from Best (%)

Fixed Training Costs ($)

0 1,000 5,000 °

L.P. 3.394 4.277  10.091
BBMIP ~na- -na- ~-na-
F.C.L.O. 3.174 3.377 6.193

~ DIS H 1 417 1.888 6.193
DIS H 2 ) . 966 .160 .1.774
Swift 1 1.629 1.763 3.383
Swift 2 1.628 1.763 3.383
COAL-b .000 .000 .055
COAL-x ' .000 .000 + .000
COAL~-c .000 .252 2.139
- COAL-f .097 .000 .055 -

Size-Equations 104 104 104
-Variables 195 195 195

~-Fixed Charges 65 78 78

¥
-
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Exhibit 4-57: Variable Work Force Problem - Set Up Case I
. -- Resource Requirements.

Solution Times (cpu sec.)

Fixed Training Costs. (S) |
0 1,000 5,000
L.P. 9.99 9.73 9,73
BBMIP -na- -na- -na-
F.C.L.O. 7.27 8..20 8.20
pIS H 1 186.61 87.36 60.95
DIS H 2 718.20 1192.70 900.27
Swift 1 402.09 331.61 323.46
Swift 2 283.57 316 .84 306.64
COAL-b 131.04  144.92  125.67
COAL-x 341,37 385.77  1579.07
COAL~-c - 70.40 82.75 57.93
COAL-f 62.57 53.56 47.73 qqﬁﬁk
Size-Equations 104 104 ° 104
~Variables 195 195 195
~-Fixed Charges 65 78 78
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Exhibit 4~58: Variable Work Force ProBlem - Set Up Case I
- Fixed Training Costs $1,000 :
-- Efficiency Frontier

o

% Deviation <\
4.0 {* LP ,‘ . 7
* FCLO
* Efficient Algorithm
3.0
+ Non—-efficient Algorithm
2.0 +DIS H1 Swift 2
+ +Swift 1 ..
ll‘o
-\ . ¢ COAL [DIS H2=1200]
f + b COAL-x
0.0 * + +
[ k)
0 200 ! 400
Time (sec.)
-
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Exhlblt 4-59: Variable Work Force Problem - Set Up Case I
-- Efficient Algorlthms

’ -

Fixed Training Costs ($)

0 1,000 5,000
L.P. * * *
BBMIP -na- -na- -na-
F.C.L.O, * * *
DI§ H1 - - -
DIS H 2 - - -
Swift 1 —: 1 - -
Swift 2 - - -
COAL-b - - -
COAL-x - - *
COAL-c * - -
COAL-f * * *

* Efficient Algorithm (Best Quality for Solution Time)

- Non-efficient Algorithm (Alternative algorithm
obtains a better quality solution in less time)




BT

P A T

gt

< 0 PR
B AR A ORLITANN o, oy e 0 it on b ot n i - -~ a e haad s

SANURU UGS JOEPIASES STREOE S g A

.

13

4.8.2. Strategic Manpower Blanning

Haehling von Lanzenauer et. al. [38] have used a fixed
charge formulation in a problem in the development of hiring
and training ‘policies for a sales foice in a strategic
manpower planning problem, (SMP) (Exhibit 4-60). The fixed
charges are associated with hiring and training of
employees. However, the emplovees eligible for certain
training may have different experience levels. Thus, the
fixed charges for this problem apply to groups of decision
vafiables rather than a single variable as in (FCLSP). i

A sehsitivity analysis on the impact of the size of the
fixed chargeg'is included with (SMP) . Results are presented
with the fixed charge yultiplied by 2, 3 and 4. The qptimal
solution %s obtained for the Base Run and "Fixed Charges *
4" by all the cost allocation algorithms and Swift 1
(Exhibit §-6l). Swift 2 obtains the optimal solution for
the Base Run. COAL-c obtainsu the ‘best solution by an
approximate method for Fixéd Charge * 2 and Fixed Charges _*
3. algorithms. As the fixed chafges increase the problem
becomes more difficult. However, further increases make the
problem easier toksolve. - .

The performance of the Walker and Steinbegg algorithms
with respect. to so}ution time is relatively poor (Exhibit
h—62).. The adjacent extfeme point algorithms are- hahpgged

by the relatively large number of continuous variables which

are handled as <1f they were fixed charge variables. In
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Exhibit 4-60: Strategic Manpower Planning

©

°

P - -~
(SMP) maximize z = JI] (FyX;5p-cyyTi5¢) + Ll £5¥7¢

ijt 1t
subject to:

Xi,541, 641 = 335 ( Xyqe-TiqetTion,9¢ ) ¥ it

v Eg Xije S My | o ¥t
% Tije —u Yjp <0 | ) C ¥ it
3¢S (3) § Tage <L % "13%15t v
| XijerTije 2 0 ) v it
Y, = 0,1 v it
where: v

i index of training classification

j = index of experience classification

t = time period

Xijt = numbet* &f salesmen of experience j
training i in period t

Tijt = number of salesmen of experience j
training i in period t sent to a
training course. ‘

Yit = A 0-1 variable indicating a training
course for class i 1is given.

Lj4 =.revenue produced by a salesman in
class j, experience 1i.

cij = variable cost of training a salesman

in training class j and experience 1i.

fi = fixed cost of training salesmen in
training class i.

" ' 854 = attrition rate of salesmen in
in training class j and experience 1i.

214




’

s gy AP RPN v e S BT
.

‘
B
!

Pha! . ) B

O
N . . X

4

&

ey o, .
my = maximum number of salesmen in period t.

<
u = upper limit on salesmen in a course.

* j€S(j) = set of experience classés requir-'
. . ing supervision.
’ 0
.ieQ(i) = set of training classes capable-

of supervision.

sij = number of salesmen that can be
supervised bv a supervisor.

. .‘.“"
x
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~contrast, the cost allocation algorithms are very fast.

COAL-x is faster'than DIS H 2, Swift 1 or 2. _

. Consequently, the Steinberg and Walker algorithms :do
not appear on the éfficiency frontier for any brobleif The
cost allocation algorithms dominate the slower_ Steinbe;g
algorithm and the ‘two Walker algorithms. SiQCe:CQAL-c and

COAL-f perform will with résbect‘;o the deviation from the

optimum, COAL-b and COAL-x do not improve on them and do not .

«appear on the efficiency frontier (Exhibit 4-63 aﬁd 4-64).

The adjacent extreme point algoritnmg‘do not get good
solutions‘wheg fixed charges. are qssoci;ted‘wiéﬁ:gibﬁps of
variaBles: in (FCLSP) and }VW#%, the fixed chargeg are
associéted with a.single variéble; A'simplex_pivot is more
significant in the context of fixed charges for (FCLSP) than

for (SMP).. The‘gébisipn to shift production in (FCLSP) from

one period to another and save a-set-up is accomplished by

\
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Exhibit /4-61% Strategic Manpower Planning )
—-- Quality of Solution '
: ’ Deviation from Optimum (%) ™~
Base Fixed Fixed “Fixed
Run Charges Charges .Charges
, | s * 3 % 4
- L.P, .56 2.38 . 4,62 7.32
BBMIP .00 ) .00- 00 .00
F..C"IJ.,OQ .02 c57 1.46 2! 77
piIs E1 | .02 .28 .69’ 1.54,
DIS H 2 1 .02 .24 ‘ “ .47 .87
; Py T ,
Swift 1 .00 - .08 .06 .00
Swift 2 .00 .. 247 . «55 .78 °
, COAL-b .00 .06 .03 .00
, -COAL-x .00 .06 .03 © .00
COAL~-c . .00 .06 .03 - .00
CoaL-f |- . 02 .08 .25 .00
Size-Equations 120
s -Fixed Charges 30 '
- S, -Variables 240 .
Tw . b el
v
§ :6". ¢ ,ﬁ,

(b}
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% . Exhibit 4-62: Strategic Manpower Planning
¥ #-~- Resource Requirements )
5 ' Solution Times (cpu sec.)
i — " u
e Base Fixed Fixed Fixed
B Run Charges Charges Charges
£ ° Tk 2 * 3 ‘x4
; L.P. 8.14 8.15 8.45 ~8.20
: BBMIP 2755.00 - 2270.03 2056.70 3278.60
. F.C.L.O.| 14.00 17‘18,l’ 17.83 17.18.,
1 DIS H 1.| 151.36 231.87 .,  235.55 210.66
% PIS H 2 500.40 395.17 1878.26 972.33
1 "swift 1 | 615.70  614.99°  873.75 867.07 :
~§ ) Swift 2 447.92 294.04 498.06 -602.92
| COAL-b_ 33.27 51,50 55.99 69.34
COAL-x 98 .03 162.80. 270.60 133.22
COAL-c 17.35, . 25,73 34.75‘ 4070,
‘< COAL-f 16.30 /22.5§ ©19.69 < 29,27
. + : | 5
! ' Size-Equations, - 120
' -Fixed Charges’ 30 o
—Variablgs - - 240 .
\ *
= -.—:—% .
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Exhibit 4-63: Stratégic Manpower Planning
- Fixed.Charges * 3 -- Efficiency Frontier

¢

$ Deviation -~ - ,
- A
1.5 [*FCLO
. * Efficient Algorithm
) + Non~Efficient Algorithm
1.0
£
+DIS H1 % o ) °
0.5 . +swift 2 , +DIS H2
R 7 ™\
| coa . ' BN
cb X . +Swift 1 . . BBMIP —
0.0 *d e 4 T . *
;:' ] L [ ] e L
0 T 1000 ° 2000

Time {(sec.)
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.Exhibit 4-64: Strategﬁc Manpower Planning
-- Efficient Algorithms

Py

Fixed

£

Base -Fixed Fixed

Run Charges Charges Charges
) * 2 S * 3 J* 4
, L.P. * * *
BBMIP - * . -
F‘C.L‘o‘ * * *
DIS H 1 - - -
DIS H 2 - - -
Swift 1 - - -
Swift 2 - - -
COAL-b - - -
COAL-x - - -
_ COAL-c * * -
' COAL-f - * *

¢
H

- Non-efficient Algorithm (Alternative algorithm
obtains a better quality solution in less time)

* Efficient Algorithm (Best Quality for Solution Time)
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one simplex vpivot. In (SMP), shifting training from one /

period to the next to save a set-up usually requires many /
A

§ simplexbpivots;

As was obser%@d in the results with the facility

z ) location, problems, the Walker and Steinﬁerg 'algorithms
performance is not par;icularly good when the problem does

not correspond well to a simplex operation. However, the

" new cost allocation algorithms do very well. The solution

time is very short and the quality of the solution is very

good . " /

Pl

4.8.3. Evaluation -- Manpower Planning

A %ummary of the efficient algorithms féf the manpower
: planning problems (VWF) using the Base Run, (VWF) using "Set
Up Case I" and (SMP) is given in Exhibit 4-65. The cost
allocationf;igor}tﬂms are efficient for all three problems.

o EE . L.P. and F.C.L.O. are also efficient for all  three

ﬁ%w»: problems. Walkern's Sﬁift 1l is efficient for #VWF) using the

Base Run: BBMIP is efficient f57 the one problem which is |
small enough to allow testing to be carried out.

_ The position of the algorithms on the efficiency
frontief‘fér (VWF) wusing the Base Run is very similar to
(FCLéP) (Exhibit 4-49). However, the positioning of the
algorithms for -(VWF) based on "SeF Up Case I" and (SMP) is

0

shown in Exhibit 4-66 with L.P. and F.C.L.O. in the upper

left, the cost allocation algorithms 'showing significant

.
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improvementiwith a small increase in ti%e and BBMIP having a
small improvemént with a large increase in time. The
adjacent extreme‘point heuristics, DIS H 1 and 2 and Swift 1
and 2, are ‘up and to the left indicating a relatively poor
pé:formance. The performance of the adjacent extreme point
algorithms is better with (VWF) than with (SMP). Of course
(VWF) has more similarity to (FCLSP) where the simpiex pivot
will make a significant chanée to fixed charge v;;;;gies
which is exploited by the ad}%cent extreme point algorithms.
However, as additional complexity is introduced in the form
of anofhér fixed charge sgb-préblem ,or. groups of fixeq

charge variables, the performance\\of £he adjacent extreme

. . % - S
point algorithms deteriorates. The additional complexitv

which is handled by the 1linear programming algorithm has

little impact on the performance .on the -~cost allocation

algorithms.

4.9. Summary -

The efficient algorithms for all the éifferent problem
types are qummar;zed in Exhibit 4-67. In order to bg
included in  the efficient set, an algorithm _should
demonstrate the ability to generate good éolutions faster
than othér algorithms for some, but not ali, of the problems
and being reasonably close to'efficient algorithms for other

© ~.

problems in the same type.

o~ H
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. Exhibit 4-65: Man Power Planning Problems -- Summary
’ ~- Efficient Algorithms

" (VWF) (VWF) (SMP) |
Base Set Up 1
L.P. * ’* *
’ BBMIP -na- -na- *
" F.C.L.O. * * *
DIS H 1 - - -
DIS H 2 - - -
l
Swift 1 * - - |
-3 Swift 2 - N - -
= COAL-b - - -
COAL-x - * -
COAL-c - * * *
COAL~f * * *
. ‘ * Efficient Algorithm
o

&S «
H

Exhibit 4-66: Efficiency Frontier - Man Power Plannihq

Deviation -

*

DIS H 2
Swift 1 & 2

BBMIP

Time
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3
? Exhibit 4-67: Summary -- Efficient Algorithms
.; -
% ‘ Random Facility Production Man Power
¥ Location Planning Planning e
Ed . a ry
7 L.P. : R * * * -
) BBMIP -ha- B .~na- *
':' F.C‘L.o. * . ~ * &k R * ¢
& DIS H 1 - - * -
DIS H 2 * - o -
¢ Swift 1 * - - * - ‘
§ Swift 2 - - - -
< COAL-b - * *x - =
. COAL-x £ * * - ™
g COAL-C * * * *
! COAL-f * ¥ * *

* Efficient Algorithm )

-

L.P, and F.C.L.O. are efficient across all pr;b}em
types. BBMIP. is efficient for those problems . for whiqﬁ aré
"small enough for BBMIP to solve. :There‘are efficient hdoét
éliscétion gléé;ifhms for.each AE the progi;ﬁ tyﬁe;‘tested..
However, the adjacent extreme point algorithms are efficient .
only for the produc;ion planning problems.

The position on the efficiency frontier for the

different algorithms is relatively consistent across problem

RS A .
types %%khibit 4-68). Linear Programming and the initial

’
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Fixed Charge Local Optimum consistently obtain solutions
with the lowest expenditure of cpu time.  However, the

quality of the solutions is low.

-4

Exhibit 4-68: Efficiency Frontier - Fixed Cﬁarge Problem

>
»”%

Deviation
E 3
f’
{
FCLO
* pIS Hl
4 . Swift/1% 2 DIS H 2
/
COAL-c > production
planning

BBMIP

Time

The Edstﬁﬁgllocation algorithms, COAL—c,‘ COAL-f and
COAL-b, consiskently obtain the greatest improvement - in
quality of solution with a small:inqrease in solution time
required té solve the problem. This consistency is observed

-~ across all different problem types. COAL-x, while improving
the solutions from COAL-b, hay require a large increase in

computer time to solve the problem.

2}
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The adjécenp extreme point heuristics, Steinbérd“s
HeurisEic 1 and 2 and Walker's Swift 1 and 2, are dominated
by other algorithms which produce an equal or better quality
solution using less cpu time for both facility location and
manpower planﬁing _problenms. However, the adjacent extreme
point heuristics provide effective solutions fof the

production planning pﬁoblem with solutions on the right

’showing some improvement over the cost allocation algorithms

with a lérge increase in cpu time. The adjacent extreme
point algorithms, DIS H 2, Swift 1 and 2, generally take
much longer than the cost alloca;fon algorithms. For
facility location problems and manpower planning problems,
the Walker algorithms and Steinbe;g's Heuristic 2 obtain

poor solutions in spite of the lengthy computer runs. Only

!

in production planning do these three algorithms obtain a ‘ﬁ

small improvement over the cost allocation algorithms.

Steinberg's Heuristic 1 usually .takes a similar amount of
v . '

time as COAL-c or COAL-f but‘usually does not improve the
solution found by its initial phase 'represented by the
initial Fixed Charge Local Optimum. Steinberg's Heuristic 1
ggnerates'éignificang iﬁprovement only in the production

planning problems. . .

Of course, the branch and bound mixed-integer.

programming algorithms, BBMIP, consistently generates good
il !
solutions for the smaller problems. However, the cpu time

require by, BBMIP for °the moderate size problems is

¥
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prohibitive. Many of the pfob;ems tested are much to large
for BBMIP to solve. F

The quality of the solutions of the Steinberg or Walker
algorithms, based oh the adjacent extreme point éearch, is
"good" only when the ©problem structure is such that a
simpléx iteration is significadt as in the fixed 'cost
transportation problem, the production planning problem or
any sma;l probleﬁ: ﬁhen this is not the case, as' in the
capacitated waf?house location problem or the manpower
planning prqblem, these algorithms generaté poor solutions.

The solution tiﬁgs for the Walker and Steinberg
algorithms are; dramatically effected by 'an increase in
contfnuous variables with out a fixed charge. As a result,
DIS H 2, Swift 1 and 2 have execution times that are much
longer than the cost allocation algorithms for all the

applied problems which typically have any continuous

variables with out a fixed charge.

226

The solution times for the Walker and Steinberg}

algorithms are relatively -independent of the size of the-

fixed charges. The solution times for the cost allocation
algorithms are consistent with the tobservations by
Kennington [S51)], McGinnis [64] and Francis et. al;‘[3l] that
solution times ;ncrease with ﬁhe size of the fixed charges.
Or stated another ' way, the Steinberg and Walker algorithms
do no; take advantage of the small size of the fixed charges

to improve their speed. The solution times decrease
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sigﬁificantly for the cost allocation algorithms when the .

size of the fixed charges is decreased.

Solution time is a polyhomial:function of problem size
for the cost allocaiion algorithms which avoids problems of
exponential growth which limits the effectiveness of branch
and bound methods. Memory requiremenés of the new
algorifhms aré\nélightly larger thén required by 1linear
programming. COAL-c and COAL-f require storing one extra
éolution. COAL-b and  COAL-f require two  additional
solutions. Therefore, memory requirements of the cost
allocation algorithms do not pose a serious problen.

For the problems éésted so far, COAL-c -requires less
time on average than COAL-f although the solutions generated
by COAL-f are better on average than COAL-c. The maximum
deviations by COAL-c are mﬁch larger than thé max imum
deviations  with COAL-f which could accouffit for the
difference in.average deviations. COAL-c with its éingle
change can result in a poorer solution which is difficult'£o

improve. Due to .its initial phase which has a global

perspective incorporating many fixed charges in one step,

‘COAL-f avoids these . solutions. However, COAL-f 1is not

consistently better as COAL-c sometimes produces the better

solution. The relative performance of COAL-c versus COAL-f
is a function of the paraméters of a probleg.as well as its

N 4 s :
structure. On the basis of the results to date, it is
LY 13

difficult to predict the conditions under which COAL-c will
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perform better than COAL-f or vice-=a-versa. Since COAL-b is

combina;ion of COAL-c¢c and COAL-f, it alwavs produces

solutions as good as and sometimes hetter than either at the

expense of essentially solving the problem twice. COAL-x is
similar to COAL-b with an extended local search which may
find better solutions. However, this improvement can be
expensive particularly when gisher (or both) COAL-c or
COAL-f generate ©poor solutions. The problems inherent in
the combinatorial nature of the search procedure in COAL;x
become apparent. 3
For all the problem types tested, the cost ;llbcation
techniques _produce an algorithm in:-the center of the
efficiency frontier. One or more of the algorithms, COAL-c,
COAL-f and COAL-b, is on the center portion of ‘the
efficiency frontier. Any of the three, COAL-c, COAL-f or
COAL-b, which is not on the efficiency frontier is -still
relatively close. These algorithms producé "good" quality
solutions while requiring modest amounts of computer time to
oétain the solution. COAL-x  produces . better quality
solutions but increases the execution time. ' This, 'of
course, keeps COAL-x on the efficiency frontier bhut ¢6n the
sright hand side. COAL-x, on average for each problem type,

‘Gbtains the best quality solutions of all the approximate

methods. The cost allocation technique is very robust

228

capable of efficiently solving a ,wide variety of large,

general and applied fixed charge problems.
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5.1. Review

[4

The fixed charge problem, originally defined by Hirsch

and Dantzig [45], réfers to a linear prograﬂﬁing problem

with one discontinuitv in the objective function at an

activity level of zero (Figure 2-1). Other discontinuities,
’ \

such as economies of scale, price ‘breaks, minimum threshold"

levels or fixed charges at different levels, can be

by re

modeleé

ulating the single fixed charge cost structure and

thus addi relevance relevance to the fixed charge

The application areas for fixed charge problems

discussed include facility location, production planning and
1 . )
manpower planning.

\

Facility location problems involvé%thg'

selectionm of facilities

from a number of finite and

@

predetermined possible sights. A number of constraints are

A

imposed on the problem such ‘éé meetiqu deméﬁé énd? not

Associated with the various facilities
is a fixed charge which will Se incurred if the facilitv is .
open and a cost which is a.functionlof the volume ;rocessed.
Faéiliév location éan be sub-divided inFo specialized fixed

. > :
charge problems such as the capacitated warehouse location

’

229 oo
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problem, tge“uncapacitated‘facflity location problem and the’

fixed q@ft transportatlon problem. The fixed cost

transportatlon problem has fixed charges associated with:

«
PO

operating or * using' a particular "oute rather than a
- - ’ & '

ffacility. While all fac111ty locatlon problems " have these
basic structures, many problems will have additional

. features or‘constraints and' thus ¢an not be classifieﬂ as

4

one of the: specxallzed flxed{gharge problems. !

Production plannlng dec151ons often requlre .various set

‘

up'procedures enta}llng a fixed charge WhlEh ‘must  be

incurred before any -quantity can be produced. Within

production plaugigg, specialized fixed charge problems are

the fixed charge lot size problem, Epe single item lot size

4

—

problem_and the uncapacita@é& lot size problem; An overlap:

b
.

abetdeen productdion planning and manpower planning is created

_when the size .of a work force becomes a decision variable.

. ™

Hiring, training and firing of emp ees become decisions

which may include 'fixed charges in their - costs. The

’

W’.production/manpower planning problems typically have one

variable reﬁ?esenting, the§~manpower level per period.

P

However, many problems Tequire ' different categories of

. 4 R
manpower to represent different levels of experience and

tra1n1ng. Tﬁese features add additional complexity to

o Standard manpower problems.

P

A

Theﬁgixed ch%;ge problem ma§ be applied in ¢ther areas

such as 'accountingh, distribution planning and  media

~
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selection in mafketing or portfolig selection. %%e standard
procedure is to apply a mixed-integer formulation to_'such

. “
problems and ~the fixed charge nature of the problem is not @
’ . ‘ ¢ Y )

recognized or exploited. >
A common procedure for solving a general fixed charge f
problem is to formulate as a mixed-intgger problem and’?fsolxge{L

with a commercially available package. “'These packages

employ branch and bound alqorithms based on Land and Doig's

v

[56] -ortginal work. B;anch and ‘bound algorithms have aiso’
béen developed specifically for the general fixed . charge - .

problen. ' The algorithms involve enhanbeﬁents to the basic

¢

Land and Doig method. "While some improvement is notéd,,test

results, indicate that branch and bound algorithms for the

fixed charge problem face the same difficulties as other

-

2
branch and bound algorithms _as problems become large.

Optimal solutions to the gener&l fixed éhargelproblem ha

also been obtained by algorithms using cutting planes and-
vertex generation.' However, limited ‘success in solving
larger'problems has been reported. ‘ ‘ ’ g
| éohsequently, 4 number of approximate algoritﬁms h;vg

beep devglppéd 7for sélviné general fixed charge,prleems.

The basis of most. of these-aﬁgoiithms is "an adjacentlextreﬁe
point search. The test re%ults for the lﬁépproximate
algorithms, while 'promising,? have been limited to a number

of rather specialized éroblems. . )
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f, . In contrast to the lack of .success for the general

fixed charge probféms, suich as the capacitated warehouse

location problem or the fixed charge lot-size problem, have

N

met with a considerable success. Techniqueé which obtain

the optimal solution are able to solve in reasonable time
very larée problems. Approximate algorithms far obtaining

» "good" solutions are also available for solving extremely

large problems. A number of successful applications in

industry are reported for both optimizing and approximate

o

methods.
: ‘ Hdwever many problems have features which make ‘it
o~ o Nimpossible to use a specialized algorithm. While the
methods available for solving a qengral fixed charge problem

" are adequate for small problems, difficulties arise as the
N —~ v ’
problems become large. While size is strongly dependent on
a, .

the number of fixed ci;;jfs, other lfactors such as thé

number of equations a ordinary variables will® have an

for a method of solving large qenéfal fixed charge problems

pérticularly:in light of the wide applicabilitv of such' a
férmulgfion. 3
. 7
The new COAL solution technique 1is developed as an

. . a3
approximate method for solving large general fixed charge

problems. The COAL technique involves an allocation of the

.. fixed gharge to the continuous coefficient in the associated

<

.
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' ) fixed charge problem, algorithms for solving specialized:

impact on size ‘and problem difficultv. There exists a need
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algorithm. As a result, each algorithm may

N

- &

linear programming ‘problemluwhich can be solved by ordinary

linear programming. A particular set of - allocations will
produce a solution  to the associated linear programming
_problem and the fz;ed charge problem. A set of allocations

éhd the resulting solution must meet necessary conditions

for-optimaiity. . ’ |
While the neceséary conditions define ; set of possible

solutions which could be optimal, sufficient conditions are

‘required to prove a particular solution is optimal. Due to

the combinatorial nature :of .the fixed charge problen,

sufficient conditfbﬁs which can be easilvy applied'to large
probléms are difficult to develop. Therefore, a number of
quasi-sufficient conditions are developed. These

\
conditions, if met, will indicate that a particular

solution, while not necessarily an optimal solution, is at

~least a good solution. The quasi—sufficiegf conditions, 1if

»

not met, will indicate an " improvement to be made to the
E . :

current solution. o

The necessary conditions and the quasi-sufficient

conditions with a number of heuristics rules for calculating
. g . .
allocations are combined to form four different COst

ALlocation (COAL) algorithms. Different aspects of fixed

charge problems are incorporated into the design of each .

generate

different solutians with - different _ computational

requirements and will be useful‘ip different circumstances.

3
Ry
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. An evaluation of the new COAL algorithms is carried out

on a number of fixed charge problems. <These include “not

only: sample problems commonly used in the literature but, as

weii, a number of applied general and specialized fixed
chargenproblems. A’number of factors which cause difficulty

in fixed charge problems, such as problem size, are varied

to determine their impact on performance on the algorithms’

tested. A comparative analysis of the performance of :the
COAL algorithms with other algorithms used for solving large
general fixed charge problems _on the sam? computer is
preseqted. ~All algorithms aré implemented as accurately and
efficiently as possible. ', .
Aﬂ effiéiency frontier is developéé for <Fach of the

problem areas to evaluate the various solution methods. The

efficiency frontier aisplavs the trade off between the

quality of the solution and the computational effort

required. The new cost allotation technique falls in the

center of the efficiency frontiers for all different
g .

application areas producing a substantial increase o

&
quality with little additional requirement for resources.

5.2. Contribution

A

% -
The methodology underlying, the cost allocation

technique is a significant departure from ° the current
approximate methods of obtaining good solutions to general

. (37
fixed charge problens. It is developed in a manner

234 —
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consistent  with the nature of the fixed charge problem. The

e

various steps involved in the new cost allocation technique

apply only to the fixed charge ~variables. The value of any
. _ %
continuous variables without a fixed charge are determined

by the more efficient 1linear programming algorithm. 1In

addition,.the standard method for solving large 1linear

programming problemE, the revised simplex with the product

form of the  inverse, is  exploited in the actual

implementation of the algorithms.

As well as evaluating the. performance of the COAL

techniques on its own, extensive testing of other

approximate algorithms based .on the adjacent extreme point

search is carried out. Results

.

point algorithms on a variety of applied problems have not

for the adjacent extreme

been reported in the literature. Thus, the appropriateness

of these approximate methods for a number of application

areas can be evaluated. This evaluation is made across a

number of different problem areas which are large and

applied.

&

The new cost allocation algorithms, COAL-b, COAL-c and

. N -
COAL-f, consistently generate good solutions Jto the

different problems tested. The four COAL algorithms' are

consistently on a very good position on the efficiency
frontier. The algorithms obtain significant improvements in

the quality of the solution for the.increase in time.

AR
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The cost allocation algoritqﬁ, COAL-x, ‘uses more cpu
E . v .
time to obtain a smaller incremental improvement in the
I Y

quality of ‘the solution. Since COAL-x is an extension “of

COAL-h, COAL=-x 'always improves .the solution from (or at

least obtains as good as) COAL-b.
Both linear. programming and the first phase of the
adjacent extreme point heuristics which obtains the initial

«  fixed charge local optimum are fast but the quality of the

solution is poor. Branch - and bound mixed integer

programming (BBMIP), _.when it is capable of solving a
problem, produces optimal solutions. The solution time for
BBMIP fé an exponential function of problem size.
Therefore, as size increases, branch and bound techniques
become impractical. For all other algorithms, solution time
is a polynomial function of size. S

For facili%y location problems, the cost allocation
algorithms, COAL-b, COAL-c and COAL -f, generate high§
quality solutions for the cpu time required. Thé COAL

algorithms dominate the Steinberg and Walker adjacent

’

extreme point algorithms obtaining better quality solutions
in less time. BBMIP, while‘*ye{éy éffective for small
problems, has solution times which are an exponential
funct;on of size and becomes impractical fér larger

P

problems. \

In production planning problems, the cost allocation

algorithms are again in a central position on the efficiency
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frontier. The problems used for production planning aré‘too
large to be solved within practical limits by BBMIP. The

adjacent extreme point algorithms obtain good quality

imBE IR
|

solutions to production planning problems. However, the
execution time required for a marginal improvemeﬁt',@in
quality over the cost allocation algorithms is very large.

Manpower planning problems disﬁlay more- complexity in

¥ 4 ) .
their structure thah production planning. Very good

solutions are obtained with reasonable computational effort
by COAL-c and COAL-f. As such, it is difficult for COAL-b
and COAL-x to improve the quality in these particular
“ " problems. However, the COAL algorithms are again on the
efficiencx frontier. The additional complexity of | the
manpower planning problems create difficulties for The
adjacent extreme point algorithms. Again, the cosf
allocation algorithms dominate the Steinberqg and Walker
v, adjaceht extreme point algorithms. BBMIP, which obtains
‘optimal solutions for the smaller problems requires very
long solution times. The larger manpower planning problems

could not be solved by BBMIP within practical limits.
The cost allocation algorithms are consistently on the
efficiency frontier for all different problem areas.
COAL-b, COAL-c\ and COAL-f obtain good solutions with
reasonable exécution time. COAL-x, while requiring more

execution time, generates the best solutions by an

oo . _ __ approximate _algorithm for ngarly_éllﬂthe_p;oblems.
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5.3. Further Research

Several heuristic rules are‘employed in the design of
the neWw COAL algoriéhms. These heuristics rules involve
choices which';i}l affect the pegﬁormance of an algorithm.

: The choices made keep in migd/the intent of solving large
and general fixed charge.problems. However, these choices
" could be the subjeét of further research.

»

A modification in the design of COAL-x may result in an

quasi-sufficiency test twice: once on the solution at the
end of Phase 3 and again on the solution from the end of
Phase 5. . The very lengEhy runs occasionally required by

COAL-x arise when a poor solution from either Phase 3 or 5

intent of COAL-x is to obtain the best possible solution and
places a high priority on quality. In order to maximize the
iikelihood of obtaining an improved solutionf&COAL—x applies
the combination quasi-sufficiency test twice. An algorithm
using bne combination quasi-sufficiency test on the solution
from COAL-b S;ly would take less tiﬁe than COAL-x with a
small decrease in the quality of solutions.

COAL-c uses an initial solutién dominated by the
continuos costs while COAL-f uses an initial solugion
dominated by the fixed charges. In_spife of testing on a

Lk . L
wide variety of problems, it is ‘not shown conclusively that

238

increase ‘in efficiency. COAL-x applies the combinationa

must be improved with several iterations: However, the .

] e
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CCAL-Q per forms better on'problems dominated by continuous
costs or that ~COAL-f performs better on problems dominated
by fixéd char;es. However, the combarison of COAL-c and

. COAL-f is not the squecp.of the testing. Further research
could be productive in identifying the conditions when
COAL-c (or COAL~f) would be the betéer choice.

In another heuristic rule, the largest improvement with
each quasi-sufficiency test is used to generate an improved
solution. The choice of the largest improvement at eaéh
iteration has considerable intuitive appeal and consequentlv
is selected. The testing of one allocation in the new
algorithms requires a considerable effort. The testing of
all single or combination changes to find the 1érgest
improvement ééquires ‘a major effort. . An improvement ini
efficienqy cohld”be made by 1iﬁiting this effort in a

»

‘logical fashion. For example, quasi—sufficiency\tests could
be restricted to tgose changes which produced a positive
improvement in a previous iteration. For Athe ’ COAL-x
aigorithms,' which mav be required . to apply - tbe

—— +

.quasi-sufficiency to maﬁyA combinations of/ fixed charge

k-

.- £

variables, ' of Fixed | arge variables, the potenfial gavings
of such an approach cSEZQ be substantial. e

There are many p ;;ibiliéies for examining "multiple-

- changes. For Exampl , the ainitial solution dominaped'by

fixed charges (Exhibit| 3-10) performs a series of mditiple

changes to the first{ solution from solving the associated

N
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. linear programming problem. A similar alloqation could be
made during other phases simultaneously to all positive

»

fixed charge variables. Since this process seems to be
counter to the nature of the ﬁixed charée problem as
outlined in the nécessary conditions, it is only ugkd to
obtain the 1initial solution dominated by fixed'charges.
However, several cost aliocation iterations could be
combined into one iteration with a possible g 11
eff‘iciency. The process could prove effective in acan
a multiple change.

Another possible area for further research deals with
different initial conditions. For example, the Balinski
approximation could be be used as a starting point- for
either Phase 1 or 3. Since the éalinsgi”épproximakion works
we&l only with good upper bounds, which a;gdagf“;vailable
for most of “the problems examined, it ‘does not seem
appropriate and is not used in the current algorithms. For
appropriate problems, it could be very productive at 1little
cost for ‘computational requirements.

The initial fixed charge local optimum is alwavys
obtained relativély quickly and -én adjacent extreme poinf
iteration is faster than an iteration in one of thHe cos£
allocation algorithms. - Thus} k\EEE____Eggsibility of
incorporating the adjacent extreme point searcﬂ into a _cost

allocation algorithm could be considered, varticularly when -

the structure is suitable, e.g. the fixed charge 1lot size
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problem (FCLSP). The primaryv. reason for not incofporating
an adjacent extreme boint search was to differentiate the
cost allocation algorithms and evaluate them on thegr‘own.
Incorporating an adjacent extreme point search into the cost
allocation techniques has the potential for generating
further improvement. However, this improvement will be more
difficult than first appearances would indicate. The/cost
allocation algorithms require a positive allocation on many
fixed charge variables ig\\QQSfr to keep them out of the
solution. The adjacent - extreme point search does not
produce such an allocation which will have to be created.
The solution of the associated Ilinear érogramming
problem with the cost allocations is curreptly being handled
by the .revised simplex method using the Zegéucf form of the
inverse. However, there 1is no specific requirement to
always use a linear programming algorithm as a/method of

solving the associated linear programming problem. For

example, a more efficient network algorithm'couid be used if

-

241

the structure is appropriate. Other methods could also

include non-linear solutioh methods such as duadratic

programming. However, the actual implementation would vary
» v

from problem to problem in order to. exploit the structure

thus becoming a specialized algorithm.

5y

e g
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The four cost allocation algorithms developed -in this

13

thesis are consistently on or close to the efficiency
frontier for all the problem areas tested. The three

algorithms, COAL-c, COAL-f and COAL-b, provide  good

solutions in al application areas. They significantly .

improve the quality OE& the solutions obta@ned by simple
linear programming or the initial'ffxed‘charge local optimum
with modest increases in execution times.’ The adjacent
extreme poin% algorithms require mgch longer execution times
but achieve a marginal imptovem;nt in quality for production
planning problems only: Branch and bound vmixedJinteger
programm%ng, while achieving the optimum solution,; required

much longer -execution times for the moderately large

problems and proved impractical for the lafgest problems

tested. '

”

COAL-x, by design, consistently shows an improvement

over the other three cost allocation algorithms. However,

[y
¢

this is achieved at the expense of lengthy computer runs for

*some probiems. Overall, COAL-x achieves the best aqualitv
. }

so%utions of the approximate'algorithms te%tea and should be
used whenfﬁﬁélity ié of prime importance. \

COAL-c is, on average, fa§ter than COAL-f while COAL-f
produces, on avefage, better solutions. COAL-c ‘occasionally

produces. slightly larger ‘déviations which result from*its

single change search procedure. - However, COAL-f 1is nodt

>

S [




g
RS G T

-

. sy Al At W IR AN NN
R Sk S i 2

g ‘
243
consistently better than COAL-c. While the: results tend to
indicate that COAL-c performs better with problems dominated : \\
by the continuous cd%ts, this is not conclusive despiﬁe the i

o

extensive teéting on a wide variety of problems. COAL-b

combines both COAL-c and COAL-f and therefore has a gquality,
& N :

>

, of solution as gooé as or better than the best of COAL-c ok °

COAL-f. However, COAL-b has ap roxigatelg twice ‘the
computational reguiiements of COAL-c Qr COAL-f on their own. |

|2
. The new cost allocation algoggthms have demonstrated a

robustness, in solving a wide variety of -large generaiéffxaffx\\\;> -

charge prbble%é. The flexibili%y inherent in théi fixed

. ' A . . . . b M‘b
* charge formulation gives the technique wide applicabil

ity.
The cost allocatigh method is a significant departure from :

other apprdximate ‘methods for solving general fixed charge
. .

L3

prbblems, The four new COAL algorithms demonstrate a-~

significant improv§gsg;, over current methods 6 for solving

large general fixed charge prdblems.
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. “‘Pﬂr > : \ Appendix. A: Heuristic One -~ Steinberg < :
b - : N 'f' . X
ot L2 s ’ v * had
-..2 - o . . f v .
k ¢ .;3;,{ ! ° .
v .. .7 1. Obtain an initial solution of the associated linear
. . “progigmming w:pfoblem (ALP). - Set control parameters
- . - . e v, )
, e *a =m/2,¢and bd;m/Z. A M ’ . , -~
P T2, Find the fixed  charge’ local ‘optimum ‘8f the curpent .
' * . 'solutlon. , Call E&e . resulting. solution - Xgr with
- ‘ ., . ‘., - ‘.’ g ’, ¢ ’ -
. dbjéqﬁive,function value zg- Proceed to Step 3.
- 3. Find the rion-basic wariable 3j ‘which will yield "the
. smallest increase din _the objectlve functlén ze« Insert
,:{ - . ) oL ) . - R
g ) the corresponding xj 1nto the basis. Set a;=1 and b,=l.
~ Go to Step 4 -,“ ot ot o
4, Select any . non—ba51c variable j whlch w1ll decreese the
o . H . o
' , T~ objectlve functlon. Insert " the correspOndlng xj 1nto
. . the bas1s, ‘-Call the resﬁifing~ solutlon il" with,
g obJect:gg functlon value 2zg. Proceed to Step 5.
s . i MALAN” - : -
' ' . .5.” Compare. ith 2;: o . . L
” : Y 1 - -
o el If ‘ble' ¢eturn to Step 2. . ’ “
: . . b. If z -zl ‘but xofxl,.set al—al+1 If al<a0, return to .
: % o Xg Step 4; otherw1se,,term1nate. ' .
¢ .- 7 c. Iﬁ~20—21 and x5=x;, set al*al+l and bl—bl If v
. - * )‘
# . : al<a6 and bl<b0,\ procéed to Step 6; otherwise, .
e terminate. B L
"’c - . " - ~r . ' ) . X [y
AT ’ '[1*q7.If*zsz1,,'set ‘al#al+l. If aj<ap, {retprn to 4;
’J o : otherwise, terminate. . D I
A ¢ . . - .




Appendix A:pHeuristic Oné - Stei

ﬁbegg (continued)‘
) . . . . .

Per form bl consecutivessterations ig;saéh of which the

. . . R Y e
variable which vyields . the . largest increase in the
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objective function z is inserted into the basis. - Return
to Step 4. ’ .
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Appendix B: Heuristic Two -~ Steinberg

a ! h]
¥

¢ 1. Obtain‘gnAinitial solution of the assaciated linear
programming problem (ALP). Set contfai\ parameters

a0=m/2, and b0=n—m.f <

2. Find the fiked charge local optimum of the current

-

solution. Call the resulting soldtion XO: with ,

objecé}ve function value 29-, The entire simplex tableau

& corresponding to X, is saved. Set, bf=l. Proceed to
. Step 3. . ' '\ .

. -4
3. Beginning with the tableau corresponding té x;, €ind the
variable j . which will" yield the (by) "th y'smallgst

increase in the objective ‘function =z. Insért the’
1 A@'ﬁ ]

cor responding X3 into the basis« Set by=b;+l. If.

b,<by+1l, proceed to step 4; otherwise terminate.

)

4. Select any variable j which will decrease the objective .

*

~funétipn and insert the corresponding X5 into. the basis.

Call the resulting solution Xy with, objective function
a

Jvalug 2. sét ai=al+lh If al<éo, then proceed to step
5; othgiﬁiée, regarn>t0'step 2. .

an

&
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Appendix B: Heuristic Two - Steinberg (continued)

5. Compare z, with 23
a. If 2p<2;, return to Step- 4.

b, If 24524 butnxo#xl, return to Step 4. &

e IR S g TN

If 2y=2, and xofxl, set al=1f Return to Step 3.
If 24>2,, return %o Step 2.
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) _ Appendix C: Swift 1 - Wa}ﬁer

; h 1. Obtain an initial solution of the associated linear
programming problem (ALP).

‘ , 2. Find the fixed charge 1local optimum of the current

b solution. Call ‘the resulting solution x5, with
objective fumction value 2g. Proceed to stepl3.

. 3. Force a currently non-basic variable, not vet tried,

in£o the basis, yielding a new solution, Xy with

; J ’objective function value 2y>2¢. If all non-basic

' vafiables in solution Xq @ave been tried without an

improvement, stop and call Xq the (approximate)
solution; otherwise, go to Step 4.

‘ 4. Iterate as in Step 2, until a fixed charge ldcal optimum

is found. Cal’ this solution Xy .

; - a. If Xp=X; (i.e., no iterating was possible), return to
v solution Xp. Return to Step 3.

B. 1f 20>27, a bétter solution has been found. ‘Renamé

this solution Xq- Return to Séep 3.

c. If Zp<zy, return to Step 3.

.
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Appendix D: Syift 2 - Walker

e

v

Obtain an initial solqtion of the associated linear
programming problem (ALP).

Find the fixed charge local optimum of the current
solution. Call the resulting solution Xgr wi?h
objective function value 243. Proceed to Step 3.

Force a currently non-basic variable, not yet tried,

o

into the basis, vielding a new solution, Xq with

objective function value 2 320. If all non-basic

variables in solution Xq have been tried without an

improvement, stop and call Xq the (approximate)

solution; otherwise, go to Step 4. 7

Iterate as in Step 2, until a fixed charge local optimum

.

is found. Call this solution X .
.

If x3=x; (i.e., no iterating was possible), return to

3
solution Xy. Return to Step 3.

b. If z4>z,, a better solution has been found. ° Rename

i

this solution Xy. Return to Step 3.

c. If zoizi, return to solution x; (the best solution so

far). Go to Step. 3.

L]
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Appendix E: Random 5 x 10‘Problems . e

) 1 -

maximize z =) ( cj?j v EgYs )

¢

subject to:

ainj = bi R ¥ i »
1 if xiéo

Y. = o ¥ j

J 07if X;=0

Problem 1l: Used in "=", ">""and "<" types

£ 17 676 220 729 152 183 595 942 759 _139
§ cy 14 11 16 10 20 19 20 12 1 18
i bi éij
1 500 15 6 16 9 17 -13 5 20
; 280 3 5 -8 -18 13 11 " 2 -2
; 466 7 ) 3 0 0= T 19
; 308 -10 13 -6 .- ~0
; 52 11 19 20 20 8 -4
i -
;oL Problem-2: Used in "=", ">" and "<" types -
. . Q - )
e - £, - 738, 198 826 33 68 646 797 688 833 629
) el 13 011 10 19 2 13 7 20 4 1
:‘MN ot . J t

a® ) i i j ° ‘

A
).
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Appendix E: Random 5 x 10 Problems (continued)

Problem 3:

fj 581
cj 5
St
257
829 15
563 3
323
177
Problem 4:
cj~ 15
bi aij
130 18
454 2
105 -
607 17
492 12
ﬁioblem 5:
£... 94
g 944
cj 14
by aj5
266
20
953 6
23 13
489 14

Used in "=", ">" and
194 219 137
° o
3 4 8 15 .
13
6 14
16 8 10
3 2
-7 17
Used in "=", ">" and
487 252343 519
18 g ‘14 11 -
2 =18 =17
7 4 -1
-=16 1 18’
.. -5 -6 7
15 -8
5
Used. in "=", ">" and
.940. 193 118 551
20 15 4 ¢
19
. 8 =11
13 15 4 14
=19 -6 -2 -
-1 16

<" types

301 369 345 860

1s 17 5
2
14 .
-5 14 =2
-8 -7
"<" types
74 842. 415
1 117 5
LA
19 14
13 15 -14
_ 3
-4 12
ne? tyé%s
33 " 629 290
4 11 14
.4 5
- 15 13
15
-4

200 380
20 17 °
-1
15
5 7
543 411
127 16
-10 14
g .
16 - 10
-11
517 198
213
13
-18

25

~)

1

A
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Appendix E: Random 5 x 10 Problems (continued)

Problem 6:
fj 916
cj 11
by aj4
833 18
351

44 5
583 . ~19
549 -7
Problem 7:
f.

j %?9
cj 15
?i 2i 4
2 -15
254
580
486
848 19
Problem 8:
fj 420
C$ 7

by aj5

44
459
495 17
276
486 10

Used

920

Used

334

-15
16
15

Used in "=",

600
9

-18

-20

in
340
15

19
-18

in

402

11

15

935
8

U= MSM apg g types

608 28
13 5
-19 18
-16

20
' -1

U=h o Msn oapg e types

414 190
11 1
-11
2

-4
20 4
-8 15

661 801
4 15
~-17 5
~15
12
10

)

160 542
18 4
15 9

4
2 13
15

-

757 77
8 18
16
11
16
11

nsnoang "< types

373 862
20 18
9
19 12

-14

-18 -9
19

561
6

19
-15
6
12

845

7

10
~4

246

7

11

11
18
10

229,

11

¥t

W N

16l

17
16

19

375

19

11

11

20
15

671

252




Appendix E: Random § x 10 Problems (continued)

)

Problem 9: Used in "=", ">" and "<" types .

1

£y 506 953 951. 116 557 647 858 751 766 352?2
cy 9 7 19 .8 5 14 8 3 19 716
b‘l aij o -

183 8. 5 14

316 10 - 18 9 2 10 -8 14

589 17 3 14 .19

253 13 ©o1 -18 -3 7
290 -18 : 12 1 17 10 =
Problem 10: Used in "=",,">" and "<" types

fﬁ.r 421 615° 965 327 991 720 547 362 -62 888
;. 18 4 15 8 1 q}l 18 "1 17 2 e
IS B .

306 3 9 ~12 10 3 16 1 .

47 2 =11 =7 17 - -13 16

391 5 6 -10 19 14 13 17 -1
101 -8 19 -2 -5 -

65 , S22 “2 ) . 9

| . e

Problem 11: Used in "=", ">" and "<" types - -~

£ 836 267 611 436 744 674 540 922 (225 501
e 10 18 11 , 1 -20 2° 8 14 1 6
'bi ) aij

28 -13 -9 R 5 R B
208 5 5 16 16

300 19 -18 19 8
194 -18 -4 9 13 9 14 .

237 13 16 10 3 -6 -8 -6 14

(X



Prob;em fz: Used in "=" and ">" types ,

223
486
68

Problem l2a:

223

486

68

R e

 Appendix E: Random 5 x 10 Problems (continued)

121

121

Used in "<" types

460

-11

460 968
12 14
- ~18

9
-12

968

-13

18

-12

950 439

7 15
-4 18
-7

17
17
12 -16

G

950 439
-6 -14
-4 -18

o7
A
17

12 -16

650 916
3 6
3
g 8
7
9
650 916
-2 -5
3
8 8
7
9

Problem 13: Used in "=" and ">" types

397

598
16

866

12

10

554 451

—_—

571 310
10 13
-6 3

16
315

. 13
4 -8

334
20

665
18

777

11

11

598

14
11

L d

[N

137

-9
11

425

254 .

A
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Appendix E: Random 5 x 10 Problems

)

. &
Problem 13a: Used in "<" types

£ 397 598 866 554 451 S71 310

cy . -15 -15 -1 -2 13 -9 -12
b ayy

314 12 8 13 . =6 3

5 2 3 16 16

14 2 -20 315

290 1 13

83 - 10 9 4 -8

Problem 14: Used in "=" and ">" types

fj' 103 486 586 741 5604 923 464
cj 12 1 13 6 1 8 20
bi 4 aij -

398 -3 4 16 -3 ' -5
289 ~13 15 1 8

38 -5 -7 7
365 . .15 -11 -2

531 Y -2 15 6 12 -4

Problem l4a: Used in "<" type

fj 103 486 586 741 560 923 464
E;L' -11 -12 -5 -7 =19
by a4

398 3 4 16 -3 -5
289 13 15 1 8

38 . -5 =7 7
365 15 -11 =2

531 17 -2 15 6 12 -4

(continued)

665 ° 598 425

-17 -6 -6
_ 14 14
s 11

14

1

921 906 651

4 19 -9
20 1
17 18 _

~14 .4

7 18 -9
2

921 906 651

-3 -18 -8
20 1
17 18
14

4
7 18 -9
2

255
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Appendix E: Random 5 x 10 Problems (continued)

Problem 15:

£,
; 536
cj 18
by aj 4
126

112 13
300 8
308 8
321 17

-

Used 'in

332 307

18 14

-11

2 17

, 14
-1

ll._.:"' ">" and "<" types

879 586
1 17-
2 5
13
5 4

371
11

4
-11

388
6

15
11

41
33

-13
17

307 - 136

17 19
4 ,
13
‘17
-20
17 -11
&

256
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Appendix F: WastexDispgsal Problems

. Waste’Gene;atf;b Centers
Center . Demand Haul Cost ) Yo :
(tons/day) ($/ton/hour) T
1 L2722 2.85
X 2 . 305 2. 85
3 2077 . § 2.85°
4 2499 2.85
’ 5 ... 95 2.85 ,
.6t 904 2.85 .
- © 7 2750 .2.85
'8 - 968 . 2.85
’ 9 5181 0.85
10 '\\¥/’ - 5976 0.85
‘ Waste Treatment Centers.,
- e} .
Type Capacity Haul Cost Fraction Fiked Variable ‘
(tons/day) ($/ton/hour) Left ($) ($/ton)
1 Ints 20000 1.14. + 0.32 11000 3.50 °
2 Int. -8000 1.14 0.10 9000 0.92
3a Int. 7 9000 0.85 0.30 0 10.17 .,
3b Int. 9000 0.857 0.30 14530 2.91
4 Int. 8000 o 1.14 0.05 20000 1.75
5 Int. A 8000 0.85 0.25 . 4400 5.79 ‘ v
6 Final 6000 - - : - 50000 104.85 \
7 Final - 8000 > - - 50000 104.85 .
- . Problems -
Size Number of Generating ™reatment ~ Arc
Problems Centers Centers Density ’
1 3, 10 .7 1008
L 37 10 © 7 . . 80%
2 1 - 20 14 . 100% ¢ ,
2 %3 20~ .14 S 80% - - e
2 3 20 < 14 60% :
3 3 30 21 40%

Notes -Variable dost of héuliné and treating waste is
calculated from haul cost times hauling time
plus the variable treating cost.

—~—Distance—ismdeéérmined'by rqnddmly plac%ng - each
center . on a grid 3.5 hours by 3.5 hours hauling
time. ' ’ -

. [ . :

' . * o s,
: AN, : 0 ,
4//\\“*257 : s .

L =
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z ’ - - - * - '
Loy .o - - . .
: 1% N N ~- L oA ’
g ' : L » 5 - .
. - _ : Appendix F: Wasgte Disposal Problems (continued), ..
; R ‘. . L * RN e * ALY ) . ) . - v
- - : . ) . ~.”‘ :—-—-“.L\. < . R
:1 -_~ . t.‘ - . . §
o .-, - —Treatment Center 3 is modeled ~using econom1es of i
B » e S.Cale- ) i ‘- ‘ . . ) ’ goor ’
. . <« 3 * s LI ‘
R o o -For .Sizé- 2 Problems,~ the generatlng centers and
U € ® ‘treatment - centersh ‘given above are repeated -
- : < twice. For Size 3 Problems, they are repeated
L - . three times. ° - e . . o
. . =Bach possible arc (generatlhg center-treatment  °
o - . A cenggr ‘or .intermediate treatment center-flnal s
treatment center combinatlon) has ‘a probability
A N . . of belng 1nfea51ble (1.0 - Arc Den51tv). Y
< N <. s » o * - \
. " ‘ ._ 4 - # - . _
T - . ° . B . 7-’ . P - * * o~ - L3 - )
. ‘:.-1' T - . . - - L4 ) ) - ) - 3
;,' 3 » ‘ ~ ? . . )
S = " o> te M
‘ . a .J .- . R . , - . « ~ >
» » :“ s\a ; » . o « ) ) w . . ) » ;
-q: - ) ) O \ . . . . . “.‘-
- _,. o . 3 L h. -- < - B -~
. T ) * T - : - w .

. LI . & . -
[ : . PO 1
<
S - N
. . - r ] R - - .
.
.'. s, . s . N Py »~
3 L] .
< .y H " © ” ° > -
.
. Lo~ . - 4 & . .
~ hd ] . N - .
"
- s ° - - ° - AN
. - - a ~ '
o v ey P A phmg e n e e L ORI IVCIUEE . “ L - l - /
- * ~ . . * v “
. ’ RS . . .
- - > # -
¢
~. . {-"" . - . -
. :
- 2 2 - - - i °
. . v . - . & ..
) ~ M v :
. L e Je) \
- -, Fy - ¢
- ral L] - * ~ -
" - -
C .- . ' Ve Y z wt .
w N L -
2 ] PR o 3 + — te N ® '\
. A -
e e L -4 h . * - *
- . : v - . -
¢ ' ° . IN .
o ' . 1
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Appendix G: . Capacitated ﬁarebouse Locét{.on Problems s
) . d . Demand Centers - \ e ,
. . -: R .- . . ‘\ - . o
i -Center Demand "N
. 1 R 10 e N\ .
' - 2 © .20 DN -
-3 710 - N -
.4 30 .- \
) : N Supply Centers \ . ’
P “Center,- Capacity -
e 1 " Zg :
2 AP |2 ‘ .
) .3 20 N
. 4 15 - k2 ;
O 5 ETERY .
: 6 . - =20 ,
. 7 . " 25
v , i : > .
. < o "+ -Problems = - -
Size . Number of Demand. ) S‘upg.l{( Arc )
ys Problems- . Centers Centers ; -Density
A IR 4 7 - 1008
1 6 . 4 7. 80%
2 6 .8, .~ .14 1008 .
=2 ., 6 o 8., " . - 14. 808" ‘.
L2 6 8 ST . 603 .
I 6 - R : 21, 100%. A
3 6 12, . 21 80%. e
‘ 3 6 - 12 .. . 21 . . 408 - — e
ey 3 .16, e, 28 - - 100% =~
T4 3 . 16 . .28 .80 -~
4 -3 16 ‘ 28 30% " :
Notes ~Variable cost is a randoﬁ?ly chosen integer num- '
‘ " ber between and 1nc1uding _ang 9 - ' o -
1] PR
. —Fixed Cost is- q randomly chosen integer\ numb,er_,_:.,' .
- between 70 and 140. \o o P O \,__,; -
« ' -For Slze 2 P.roblemsg - the “supply centers uand . o
demand centers’ giveh;above are repeated twide“' X 5
For Size 3 Problems, they are. repeated three e ..
. times. For Sizé 4 Problems, . thev are a»repeated, - .
' --four times. R R %‘“\% Bt D
o - oz ot P :-"»?.”? 2 g, " ’» 3 ‘%‘ -
) -Bach p0551b1e arc (demand center-—su‘pp]{*}" centerﬁiﬁ o ,
combination) hase,#a probabilmyu of % being :
) infeasible (L. 0;- Ag;: Density)z:@“*“ - i‘j st "‘ ,
5 R ) 7
¥ 259 : .
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