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g " ABSTRACT ’

To be able to properly predict the performance of .

) electrostatic prec¥pitators, a complete knowledge of the
electrical conditions exisﬁgng is pecessary. The equations
governing such conditith are analytically solvable for the

< cylindrical geometry, but no simiiar exact sqlutiodstare -

availablé for the more common duct—tfpe geometry. S

- ’ ’ ‘:

“In ghis Qork, one of the objectiQes was to present a ¢
method based, on,the charge.simulation _technique, that
accurately evéluates the electrical paraméters in duct-type
precipitators. The method is intended to be applicable to )
variable physical dimensions of the précdbitator as well as

to account for a wide range of operating conditions,

particularly dust loading conditions.

The charge simulation_gééﬁﬁique was choosen following
a literatdr§ survéy and anaixsisJ'Eonducted by the author,
for thé different methods_ava;l;ble for evaluating the
electrical parameters of duct-type precipitators. The,
survey involved the approximate analytical method® of

P. Cooperman, G. Cooperman and conformal transformations as

- presented by Sekar. Also the numerical methods of finite

o

difference and finite element as presented by McDonald and

Hoburg respectively.
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| In choosing the charge s}mulaéion method, the author

dey

‘elqped a procedure for adapting this technique to solve

l

problem$é that in general involve space\chargé of.dnkgggﬁ;
diskributions. ' ) ¢ '

- ' -

f Canpuﬁé? models based on the charge simulation
tec%nique’are develoééd to model thg:elegtrosfagic, the g N
cqﬁqna in clean air and the corona quenchind céses in
cylindrical precipitators. These medelé'weré developed(
with the intent of checkifig tﬁg validit§”ahd the éccuracy
of applying the charge simulation tecﬁnique'to such-
conditions. Later these models were extended to the more

’

complex duct-type geometry.

4
e

For th%?duct geometry, the electrostatic model based

on the charge simulation méthod; gave good agreement to the

>

infinite'segies devglopedvby Cooperman and Béhm for th{s

RN 2

case. - ,
I4 " . v

Also the corona in clean air modely as developed by
‘the author, shows good agreement to the published
experimental work of'Penney; Felici and Tassicker.

Another objective of this work was to investigate the
enhanced performance of wide-duct spacing precipitators

(0.4 to 0.6 m) compared to standard duct spacing (0.15 to .

0.25 m). . >

<D

v
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. v ' ; Since no experimental data wasffound in the literature

f\e
concernlng the electrxcal parameters ofrylde duct spacing

T ' ’ .- ~
\\ » precipitators, it was dec1eded to des1gn and construct a

.

labofgtgry scale electrostatic precipitator ofevéxiable >

5 Y
~ . 2 , % s

duct spacing.. Experiments were carried out-to measure the

5 current density and electric field distiributions at the

-,

* %)vcollepting plates for

; -7 0.6 m. The experimentak resqlts further

¢

hree duct spacings: 0.2, 0.4 and

\

.

rconfirmed the

¢

validity‘of'bhe corona o&el.? ’

~
. g ) <>
i Flnally, a COIOna quenchln\g

\model was \developed for

the duct beometry. This nmﬁel was also\ used in the study

M

" : \
: C, 4 - ofwide duct’ sp601ng pre01p1tatQAs
\ (VY

ST \ N
- ) The réSU}ts of this study shov tQat he ltechnique is

: N 1 ] | '\\ \ .

. : suitable for éhe PurpOSe of accqrat 1y pre

electrlcal characterlstlcs of: elect 0os atl

)&tlng the

pxec1p1tators
- under variable operatlng cOndltlons T ege models

eliminate the cost and t%me needed in‘cohstructing and ,

expeerentlng with protot}pe models ‘

- - . .
’ N - ®
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\ CHAPTER ONE
INTRODUCTION

1.1 Air Pollution and Industrial Gas Cleaning

Advances in science and technology in the past twenty

v

years have lead to a rapid growth and expansion of large
industries most of .which, if not all, contribute to‘air
péllution. One form éf air bollhtion is particulate
%pissions. Although many devices are suitable for
collecting or separating particulate e@issions from exhaust
gases, electrostatic precipitators are most favoured for
this task particularly when sqall sized particles in the
micron and submicron range are involved.

‘ Electrostatic precipitators differ from other types of
particulate control equipment iﬁ that they use eleétrical.
forces to separate particulates from the exhaust gases

rather than mechanical forces such as those encountered in

settling chambers, baffle chambers, scrubbers and cyclones.

o
Electrostatic precipitators are mainly used in the
13 .
fly-ash collection%in electric-power generating stations,
steel and cement production, the processing of paper and

non ferrous metals as well as some other chemical

industries.
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The major advantages of électrostatic precipitators
are high coliect;on efficiencies {95% to 99.9%), small
pressure drops and'they handle very large flow rates and
require little maintenance.

Sane of the disadvantages of electrostatic
precipitators are:

1) High initial cost.

i1) écme materials are extremely difficult to be
‘collected because of their higher resistivity,
usually higher than 10° 2m. This is the result of
what igrknown as the back corona phenomena {1,2). 1In
ngrmal electrostatic precipitator operation, ions of
only.one polarity (usuallxﬁnegétive) are the Fufrent
carriers that charge the particles to be collected.
In the presence of back cofona, ions of the opposite
polarity are generated. This reduces the total
particle charge and thus the particle collection is
seriously degraded. . . ’

liige If the dust concentration in the gas is too high, the

corona current may be severely reduced, this is
referred to as corona quenching (3]. Under éhis

condition the precipitator efficiency may be reduced.
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1.2 Electrostatic Precipitators

The basic principle of electrostatic precipitation.is
the separation of suspended particles from gases using’

electrostatic forces.

The separation of the/suspended particles from the
gaseous media can be sus—divided into three fundamental
processesi particle charging, migrafion and collection.
Particle charging is accomplished by generating a corona
[4] in the vicinity of a small-diameter wire or any other
configuration with a sharp radius which serves as one of/j

the electrodes. The glow region (corona sheath)

- -

surrounding the corona electrode is filled with ions of
both polarity, but apart from this small region the entire
space is filled with unipolar ions. The unipolar ions
produced travel along the electric field lines, extending‘v
between the corona electrode and the collecting surféce,
and are intercepted by the dust particles, resulting in a
net charge flow to the particle. Charging continues until
the net charge on the particle reaches the‘sat&ration limit
{5]. As the gas traverses the space between the two
electrxodes, the charged particles unéer the influence of

electrical forces migrate towards the collecting surface.

The particles adhere to,the collecting walls mainly due to

the Coloumbic forces, but other forces such as Van der

[C3




Waals and image forges may also exist. The. collected
particles are removed periodically .by rapping or flushing
of the collecting surfaces and allowing them to fall into a

hopper or sumé for subsequgnt removal.

1.2.1 Basic Types of Electrostatic Precipitators
There are two basic precipitator geometries, both are

shown in figure 1.1.

Figure 1l.l.a shows the cylindrical geometry or
tube-type precipitator, the central fine wire is energizeg
by a D.C. high voltagi)power source, while the outer
cylinder is grounded. Cylindrical tubes may be packed
together to form a multi-unit precipitator. Those are

commonly used for precipitating sulphuric acid mists and

blast furnace fumes [6].

The second basic geometry is the duct geometry, in
which a set of cofgna wires are positioned half way between

N _
a set of parallel earthed plates as shown by figure 1.1.b.

Both geometries of figure 1.1 are referred to as
single stage precipitators because the charging and the
collection processes occur simultaneously in the same

stage. g
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"Two stage electrostatic precipitators, -whether of the

cylindrical or duct-type, are constructed such that the
chargipg process \takes place at the first .stage in thé
presence of corona, while the collection process takes
place at the second stage under theﬂeffect of an
_électrosgatic field:

o

1.3 Theory of Electrthatic Precipitators

The three proceéses involved in electrostatic

precipitation are presented here in more detail.

1.3.1 Corona Generatﬁén

- > ]
8]

Corona represents a stable condition of conduction in

e

: y .
gases. It gan only be achieved between asymmetrical

electrodes en a relatively large potential difference

- v
% .

exists between them. Extensive_studies .on the corona-

phenomena have been performed by Cobine [7] and Loeb‘[B].

The phenomena are also weli documented by Nasser [9].

%

.To demonstrate the corona mechanism in‘electrostatic
precipitators consider the cylindrical geometries shown in
/ s
figure 1.2. .3
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* For positi;; dorona, a posi&ive high voltage is
gppliéd to the inne£ corona . wire., As a result of the higﬁ
elecp;ic field adjacéPt to the wire, a Townsend avalanche
is initiatea and free elecﬁ;ons are produced. The free

—

electrons are pulled quickly towards the inner wire where
Ehey are neutralized whereas the positive ions are répelled

Virtually all €he

towards the outer grquhded cylinder.

current in the space external to the corona envelope is
Visually the corona appears

3

carried by positive ions [10].
as a bluish uniform glow surrounding the corona wire.
o

-, For negative corona, the wire is energized with
Again a Townsend avalanche is

negative high voltage.
initiated, this time the free electrons are repelled away

,from the wire. As the electrons travel toward .the outer

grounded cylinder some of them attach to neutral '

/ ) electronegq&iye gas molecules forming negative ions [1l].

' These negative ions, due to their reiative slowness )

compared to the free_electrons, constitute the unipolar
space‘chargé in the inter-electrode ggp: In‘negagive

boroﬁa, Ehe corona electrodes play an active role in °

producing free electrons -and the discharge process is

e
dependent on the electronegativity of the surrounding

Visually, the negatdve corona appeags as a series of

localized~tufts of discharge on the wire surface.

Nk

gas.

-

G

&
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Most industrial applications use single stage
e precipitators operated under negative corona since higher

operating voltages can be achieved prior to breakdown as
4

compared to positive corona. Two stage electrostatic
precipitators operated under positive corona are preferred
for air cleaning purposes since less ozone is generated

[12].

The critical onset field for corona was determined

semi-embirically by Peek [13] and is presented by equation
- \, “ »
: o (1)), L

B ’ .
) (1.1)

where A and B are constants depending on the type of gas.
) 1

For air, the values A=32.2x10° V/m and B=8.46x10" V/m°

EO = §(A +

~are recommended [6].

1.3.2 Charging of Particles

&

In an electric discharge, two distinct particle
charging mechanisms are present. The first is field
charding, in which the ions under the influence of eiectric
field bombard the particles and impart their charges to
them. This process continues until the particles have

acquired their saturation charges. The second mechanism is

e}

charging by -ton—diffusion+——This—-charging—process—is




dependent on the random thermal motion of ions and
particles, and is independent of the ‘applied electric
& field. ' .
It has been shown by Pauthenier [5], that the maximum
charge acquired by a spherical particle due to

ion-bombardment is given as

Apax = 4TT€0Pa2EC (1.2)
) Kp -1
where P=2(—— ) +1 (1.3)
Kp + 1
.. fhe charge at any time, relative to the saturation

charge, is given as

t
t+1T
4¢
» wWhere 1 = -0 (1.5)

Dib

As for diffusion charging, the charge acquired by a

-y particle is given as [14].
2 -
. 4neoaKT aNpe v t
q(t) =. ——————— (1 + ——— ) (1.6)
e 4sOKT )

The ion-bombardment process is predominant for
particles of size 1 um or larger, while diffusion charéing
predominates for particles of size 0.1 um and less [15].
¢ Thus both charging @eqhanisms are equally important for
J particleAsizes ingbetween these two ranges. In this case,

. Athe saturation charge acquired by the particle may still be

calculated using equation (1.2) on condition that equation



(1.37 be replaced by equation (1.7). This last equation
modifies the parameter P, as given by equation (l1.3), to

account for ion diffusion charging [3].

oy 2 Ky - 1
P = (1 + )2 + X (1.7)

a 1 +)/a Kp+ 1

1.3.3 Collection of Particles

After the particles have been charged, they may
migrate along the lines of electric field and be eventually

»

collected at the grounded surfaces. This simplistic
picture of particle collection is only true for laminar
flow., For the more realistic form ;% operation where
turbulence is encountered, there are at leasé three forms
of particulate mass transfer from the main body of gds to
the collecting electrode:
i) .Electrostatic convection under the action of Coulomb
forces.
ii) Turbulent diffusion ofvaerodynamic and electrodynamic

origin, such as electric wind [16].

iii) Inertial drift.

The migration velocity of the particles adjacent to

éhe collecting walls is given by equation (1.8). This
- .

equation is derived by equating the electrical and the

aerodynamic drag forces acting on the particle.




; t
2Pe E.E a
w = o - P (1.8)
3u N
- The migration velocity represents a measure of the

rate at which particles are collected, this is. shown by
Deutsch's efficiency equag%on [17] given below.

-1Aw/2g) ,
n=1-e¢ . (1.9}

fp
I

It is wéii“recognized that the above equation does not

completely model the collection process. Thus it has often

-been criticized and many modifications and alterations have

been introduced [17, 18 and 19].

The electric field in electrostatic précipitators, as

seen from the previous discussions, serves a three fold

-~

purpose: initiating the corona, charging the particles and

finally precipitating them. Thus it is clear that the

electric field is a parameter of fundamental impOrtance in

electrostatic precipitators.

To be able-to predic£ the performance of electrostatic

precipitators, a complete knowledge of the electric field

distribution becébmes a necessity. -

3 -
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1.4 General Qbjectives

|

The electric field in electrostatic precipitators,

whether under clean air conditions or in the presence of

dust particles, is governed by Poisson's equation (1.10).

o 8

vZV = e e— ! '(1.10)
. €O

’

The aSbVe equation can be solved analytically for the
cylindrical geometry. On the other hand it is formidaﬁle
to solve for the duct geometry. Thus the main objective of *
this study.Qas to predict the electrical conditions that
exist in electrostatic precipitators under clean Air

conditions as well as in the presence of dust loadings.

Following a review of the major approximate analytical
séiutions\and numericai methods suggested by other
researchers for evaluating the electrical variables in
duct-type precipitétors, it was decided to establish a set
of computer models, based‘on the charge simulation
technique [20,21]. The purpose of these models is to
simulate the electrTcal variables of cylindrical and
duct-type precipitatots. The charge simulation technique
Qas‘attractive because it is not an iterative procedure and
tkus it is expected to reduce computational time. 1In

addition, it has only been used ;ecently (1980) to model

space charge of unknown distribution.

’
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L,
:L, -
o
N All _programs developed, based on the charge simulation

technique, are available on file at the Seam Laboratory,

Faculsy of Engineering Science, The University of Western

Ontarid (refer to Appendix 1.

The study involved the evaluation of the electric
field, the electric potential, the current density and the
ionic (and particle) space charge density distributions in
the inter-electrode gap of the two geometries.

-

The charge simulation models were used to investigate

the importance of the value of mobi%%ty of negative and.

positive ions. g

Another prime objective of this study was to
investigate the electrical variations that occur in
wide-duct spacing precipitators (400 to 600 mm) as compared
to conventional duct spacings (150 to 250 mm). This study
was motivated by the recent increasing intefest in
wide-duct precipitators and the lack of sufficient theory

to explain‘why such precipitators perform well.

This part of the study was supplemented by conducting

-

experiments on a variable duct spacing electrostatic

precipitator laboratory model. Both the electric fieldiand
. . ’}"

tné current density distributions were measured along Qhe

collecting plate under clean air conditions. The
It
& - o

14
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experimental results were used to compare the effect of
variable duct spacing and also to verify the computer. model
developed for duct-type precipitators.

.

Particular consideration was given to the effect of

the\pangiiii\iiace charge on the electric field enhancement
at the precipitator walls in wide-duct precipitators and

standard precipitatd?é exposed to corona quenching of

different degrees.

(V2]
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e CHAPTER TWO

CRITICAL REVIEW OF LITERATURE

2.1 Introduction

The electrical conditions in electrostatic
v precipitators are primarily governed by two equations.
Those are, Poisson's equation (2.1) and the current

continuity equation (2,2).
. V2V = - — ' (2.1)

div.J

div.(obE) = 0 ' (2.2)

The above set of'equations are solvable analytically
for the cylindrical geometry,‘both in clean air and in.the
presence of dust loading. These are éresented in chapters
three and four respectively. Unfortunately, no similar
exact solutions are available for the_mofe common duct-type

-

geometry.

£

This chapter is dedicated to presenting the differenf

approximate analytical solutions as well as the numerical
[}

»procedures4proposed by several investigators for solving

equations (2.1) and (2.2) for the duct-plate geometry.
Ql




-

All the approximate analytical solutions,ang,gumerical

procedures preséﬁted in this chapter, with the'egception of
th; finite element procedurg, were formulated i;to computer
programs by the author. The results of the preceeding
megﬁéds, as evaluated by the formulated computer programs,
are compared to experimental data to check their validity

and accuracy.

2.2 Analytical and Numerical Methods as Applied to

Duct-Type Precipitators

:2.2.1 Analytical V-I Characteristics

In an attempt to approximately solve both Poisson's
and the current continuity equations, P. Cooperman [22]
proposed equaEion (2.3) for the vV-I characteriétics of a

duct-type pre¢cipitator under dust-free conditions.

. 4 meyb
J, T —— V_ (V. - V) ' (2.3)
* hzln(d/rc) ¢c © &
where Vg = rchln(d/ré) (2.4)
and d =4h g cosh{mns/h) + 1 (2.5)
n m=l cosh(mws/h) - 1 J

This approximate equation, according to P. Cooperman,
is only accurate for low current densities.
-

17



oy
o
—

EE

18

Later, P. Cooperman [23] utilized equation (2.3), for
evaluating the V-I characteristics in the presence of dust

particles, after replacing the term Vo by another term V;
. o
which is given by equation (2.6).

p.. h? .
V= v, o+ 2 _ (2.6)
2 . :

The second term in equation (2.6).represents the
apparent increase in the corona onset potential due to the
presence of a uniform particle space charge density Pp -

Fifteen years later, G, Cooperman [24] proposed
another approximate solution for the V-I characteristics .

under clean air conditions, this is given below as.

s
eob
J s = [ o+ /a2+ 192(v_ - V) (hE.)* 1 (2.7)
16h c 1 o
where a = 9(V, -V, + hEl)2 - 12(hE1)2 (2.8)
r nVo )
and | By = ——————— \ (2.9)

ZSln(d/rC)

Eéuation (2.7) was derived on the basis of imagining
an arbitrary plang placed between the array of co;ona‘
wires and the collecting plate. The purpose of this plane

'3

is to visualize the electric field as being uniform on the

plate side of the plane, thus reducing the problem to one

dimension in a direction (x) extehding from the plane to

e e ... _ ... __the collecting plate. <_ e o




G. céoperman extended his method, to account for a
|
uniform particle space charge density pp, while still
considering the problem to be one dimensional. In this

case Poisson's equation was reduced to the following form

[24]. 3
de = P3 + Pp (2.10)
dx £ €
0 o]
where P, = J/bE (2.11)

When solving the above set of equations, the electric
1

field Ex is given implicitly as a function of the current

density J and the distance x.

Equations (2.3) and (2.7) which give the VjI
characteristics under clean air conditions were
investigated. They weée both: applied to two of Sekar's
geometries [25] and comparéd to”ﬂ{s expérimental data. fhe
results are shown in figures 2.i %nd-2.2.

-

The first geometry, which is givén in figure 2.1,
\

represents a precipifator of conventional duct spacing. It

is clear that equation (2.7) gives a closer fit to the:
experimental data as compared to équation (2.3). For the -
second geométry, the duct spacing is increased and béth
eguations (2.3) and (2.7) give a reasonably’gooa fit to the

experimental data.

19
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v
, The value of the negative ionic air mobility used for

the two cases was 2.2x10 * m?/v.s.’' This valye was choosen
since the experimental data was for negative corona. It
was found that by reducing the mobility to 1.7x10 * (the
value shggested by Sekar), the difference between the
. . re;ults of equations (2.3) and (2.7) is increased. This
difference was observed for the two'duct spacings
investig%ted and is clearly illustrated by comparing
figures‘2.3 and 2.1, ‘.L . ”
In the previous cases prgsented, the experimental
value of VO was used rather thaﬁ using ‘equation (2.4). ~
This equationaalwayé overestimated the corona onset voltage

- and resulted in the shift of the V-I characteristics away

. . from the experimental data.

Equation (2l3) in conjuction with equation (2.6) was

.also used to evaluate the V-1 characteristics under' dust

loading for Awaqfs if3] precipitator géometry.'quugtion

(2.12) was used to evaluétg the particle space charge

o ¢

-

‘density oy [26].

L ] )

pp = EOPECS ' (2°_12)

\}
Acqording to equation (2.12), the particle charge

density pp is a function of the chérging fi§i3 E, which is -

variable with position. Thus to satisfy P. Cooperman's

assumption of uniform particle space charge, an assumed

valueuoﬁaavehage~changingufieldHEgvﬂwas_usedaﬁﬁlnw. is case |
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Ezy was assumed equal to 5'kv/cm.

- The value of the specific surface area of the D.O.P
particles used was 14.7 m*/m . The value of P was
evaluated using equation (1.7) which is suitable for the
D.0.P particle sizes that were used. The results of using
equation (2.3) as well as the experimentql data are
iﬁcluded in figure 3.4. It is clear from this figure that
equafion (2.3)'is rather inadequate for evaluating the Vv-I

- characterigtics under conditions of dust léading.
Equation (2.10) was solved numerically to evaluate the
V-I characteristics under dust loading for Awad's [3]
pfecipitator géometry. The value of the uniform particle
charge densit§ pb was similar to that. used for equation

(2.3) . 1t is cléa; from figure 2.4 that :equation (2.10)
gives good agreément to the experimental data for low ‘
values of linear current density, but deviates away for
higher values. Nevertheless, this equation appears to be

more accurate than eguation (2.3)*, in terms of -predicting

the v-I characteristics of duct-type precipitators in the

presence of a uniform particle space charge density Op.
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- 2.2.2 Conformal Transformations
Vershchagin [27] and later Sekar [25] proposed a
method for solving Poisson's and the current continuity
“equations for the wire plate geometry'in clean air. Their
method is based on the conformal transformation of the wire
plate geometry to the cylindrical geometry as shown by
e figure 2.5.
The equations used for evaluating the electric field
components (Eu and EV) and the charge density p (u,v) are
J - given respectivély below. (
e ™ - &
\osinhZGu S
E =V ———— 7V C; + Ciln(r? +/1 + r¥) (2.13)
u c op 2
r
gsin2ov A
E =V, ————— VG, + C,1n(r2-+1 + %) (2.14)
M ¢ 2r? -
) Cye Vco2 v 1 + 2r2cos2p + r*
p(u,v) = 2 (2.15)
/1 +r° /.C +Cln (r2 + /1 + r*)
J
where C, = 2

- 2 2
270 ECPVE
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The transformation used is: 2z = sinh ow

Figure 2.5 Conformal transformation from wire-plate
geometry to cylindrical geometry
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r? = sinh2cucos?ov + cosh?gusin?gv
tan® = cothoutanov
o = m/2s

A close look at equations (2.13) to (2.15) reveals
that they are independent of the applied potentiél,vc.
Thus for a given precipitator geometry and operating linear
corona current Jy, the applied potential Vo may be
evaluated by integrating equation (2.14) from the wire

surface to the plate.

The above method was used for evaluating the V-I
characteristics for the gegyetries as documented by
G. Cooperman (the actual experimental work was performed by
Robidson [28]). The results as well as the experimental

u

data are given in figure 2,6™and 2.7. These results

indicate that the above method ten to overestimate the

wire potential V., for a given linear corona current Jg .
The ﬁain reason for this error is due to th differénce
between the experimental and analytical onset p“tentials.
This is‘qxpected, since the anglytica; equaﬁions(do not

account for any reduction in the onset potential (or onset

field). )

The conformal transformation method was also applied
to Tassicker's geometry [29] and compared to his
experimental data for, the current density distribution at

the collecting plates. The results are shown in

0:>
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figure 2.8. Similar disagreement was observed when_
comparing the conformal transformation method to the
experimental data of Felici (30) and Penney and Matick

(31].

2.2.3 Finite Difference

L]

Solving Poisson's equation and the current continuity
equation for duct-type geometries using the finitéAh
difference method was first introduced by Leutart and
Bohlen {32] and later modified by McDonald [33]\and Sparks
[34]. ' o -

The method involves dividing the area of interest into
a fine grid as shown by figure 2.9.a. Point "O", in figure
2.9.b, is the point of interest for the foilowing

discussion. However, once the electric field, potential

and charge density are evaluated, the label "O" s moved to

a neighbouring point and-calculations are repéated. This

process is continued until all nodal points are covered.

»

¥

! Both Poisson's equation and the current continuity
equation can be written in a difference form and later
v

reduced to give the potential and the charge density at

point "O" as shown.below.




(a) Region of interest to which the
numerical technique is applied

4

(b} Partial grid

) N o
Figure 2.9. Elemental grid structure as applied to
" finite difference '
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The steps of the numerical prdcedufemm@yﬁge outlined
as follows:“ﬁ . ‘ . , / '
1- Agsign'initial values to & at every point, as well

as p at the corona ‘wire.
2= Compuge P ét every point uéiné equatio;’(2.17).
j 3- Re-éompute V at every.point using equatioﬁ (2.16).
4- Repeat éteps 2 aﬁd ﬁ alternately until the desired
. Esnvergence is achgevgd on V‘at every point.
5~ Chédkito see if the computed current density 7J=ObE)
- equals thé,ﬁeasdiéd burreng density. If tRey aé not
agree, readjust p at the corona wire and repeat all
L g the aboves . , ‘
. - ' . o (\

: The finite difference method was applied to Matick's

¥

geometry [31] and compared to his experimental data.-

.~ .Figure 2.10 gives the voltage distribution along a line
3\ \\\?Exgehdipg from wire to plate using different grid sizes. * . v

It is interesting to observe that as.the number of elements

are increased, the results tend -to deviate awéy from t:he‘3 ?

- e o

) ‘ . ‘. R ‘e
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\ ,Figure 2.10. Voltage distribution along &'line extending
" from wire to plate using finite difference
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experimental data. This .contradicts the,well known fact in
finite ‘qifference theories (35j, that the accuraéy of the
technique incrifses as the number of eléments,are . .
increased,las long as roun@—off errors are not encountered.

This deviation is believed to be the result of the
insufficient accuracy in modeling the’region next to the
corona ;ire, where rapid changes in electric field and
charge density occur. Thisiks mare clearly realized when
considering, the relatively large element sizes used
(3.7x3.7 mm for the 30x20 gxrid and E?TQXIB.B mm for the 6x4
grid), as compared to the wire radius (in this case 0.15

mm) .

This view 1s also shared by other investigators
(24°,36]. Using a successive graded mesh, with the smaller
elements adjacent to the corona wire and the successive

larger elements next to the collecting plate [371, would

probably eliminate this deviation,

The SRI computer model for electrostatic precipitators
[38] uses the finife difference method. 1In their model
they Qsed a grid of 15x10, which coincidently gives results
in good agreement to the experimental data (refer to figure
2.10). Although the developers of this package agree that
the finite difference method in its prgsent form is not

+

_suitable for modeling the region close to the corona wires,
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-they claim that it is sufficiently accurate for evaluating
the electric field at the collecting walls provided that a

-

mesh of about 15x10 elements is used [39]. This appears to

]
be the case, since when observing figure 2.11 which gives

the electric field distribution at the coiiecting pl;te
using different grid sizes, the average electric field
along the pléte for a grid of 15x10 is equal to 3.6 kV/cm.
This\valde corresponds reasonably well to the value of 3.9

kﬁ/cm evaluated by the common approximation [40] (E at the

piate= % /h) .

153

2.2.4 Finite Element 3

a3

Py

CThe finite element method was recently applied to the
duct precipitator geometry in 1983 by Davis and Hoburg.-[41]

and later in 1984 by Kallio and Stock [36].
{

£

In this ée?hnique, the region of interest is divided
intg a grid structure (usually of triangular elements), in
such a manner that the etements adjacent)to the corona wire
are small and they gradually increase in size as they
approach the collecting plate. The area ratio of the
largest element to the smallest element is in the'order of

10°.




Electric field‘(kv/cﬁ)

-
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", = 0.15'mn b= 2.2 x 107" n*/V.s
' - [ 3
b L]

. Figute 2.11. Electric field distribution along the

collecting plate using finite difference



g " : 39

The finite element procedure involves assigning
potential values to each ﬁbde, as well as assigning
conditions of potential and electric field at the
boundaries. Later the charge density at each node is

evaluated, either using the characteristic method [44] or
L
the finite difference method [36), then the potential is
L 4

evaluatéd at the same poihts using the finite element
method. Alternate calculations of potential and charge
density are performed until convergence is achieved.
Further details of the finite element and the

characteristic methods are given in Appendix 2.

As mentioned earlier, the finite element method was

the only numerical procedure not formulated (programmed) by

the author. Thus the“tééults and the conclusions cited

here are those of Davis et al. [41] and Kallio et al. [36].°

iy, P

—— ‘ -

All the results presented by Davis and Hoburg were

limited to comparing their finiﬁgxelement - characteristic

L A

method model to the experimental measurements of potential
N *

distribution conducted by Penney and Matick,[3l]. Their

model showed good agreement with the experimental data for

the different precipitator geométries and the different

- Ry
operating voltages investigated. Unfortunately, in their

work they did not present ady\other electrical
distributions, such as electric field, current density or

charge density. This makes it difficult to fairly evaluate

. . k3

I e, —
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the technique in terms of validity agdhaccuracy.

The work presented by Kallio and Stock was based on
comparing their finite element - finite difference model to
the absolute finite difference model developed by McDonald

. et al. [38]: for approximately the same number of nodal
&

points.

~In this work, they showed that their model was more
accurate than McDonald's, by comparing both of them to the
experimental results of Penney and Matick. This better
‘ accuracy was attributed to the use of higher nodal density

4

next to the corona wire.

They also showed that the computational time required
was approximately three.times larger, for the finite element

model as compared to the finite difference model.

¥
.

-Since they weag using finite difference for solvi?g
1 the continuity equation, ie. for evaluating the charge
density distribution, they obtained charge density profiles
similar to those obtained by McDonald's model. They
considered this a weak point, and suggested for future w;rk
that anot e{\gethod be implémentedafor solving the

contin ity equation rather than the finite difference

metHod. This supports the use of the characteristic method

as

used by Davis.

!
!




2.2.5 Comments

From the previous analysis presented in sub-sections.

2.2.1 to 2.2.4, regarding the electrical conditions in

duct-type precipitators, the following conclusions can be

made.

l_

s

The general shape of the V-I characteristics may be

estimated using equations (2.3) and (2.7), bearing in

-

mind that these equations are only approximate
solutions of Poisson's equation and the current
contihuity,equation.

The'conformal transformation technique is another
method for obtaining the general sh;;é of the V-~I
characteristics, but it is not recommended for
predictiné the electrical conditions in the

inter-electrode gap.

3- The finite difference method’ in its current form as

presented in sub-section 2.2.3, is not sufficiently
accurate. The accuracy of the technique may be

enhanced by using a successive graded mesh.

4- The finite element method appears to be the most

accurate and reliable technique, although further
improvement is necessary in the method of evaluation
of the charge density. A drawback of this method is

that it reqdires relatively long computational time

compared to the other methods.

41
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It is apparent from the previous discussions, that
M -
numerical methods seem to be the most appropriate approach
in terms of reliability and accuracy for solving Poisson's

-

equation and the current continuity equation for the duct

precipitator geometry. ///

However, comparing the finite difference and the
finite element techniques indicates that there are certain
limitations: )

i) Both techniques are iterative and alternate between

Poisson's equation and the current continuity

equation as opposed to solving them simultaneously.

& Fa

ii) Both techniques require the pre-construction of a
fixed grid.
iii) Both techniques regquire proper initial guesses for Y

A

quick successful convergence.
~ .
iv) Both techniques, because of their iterative nature,
- require considerable computational time, particularly

if high accuracy is sought.

To overcome the above difficulties, it was decided.tb
use a different numerical approach which is based on the
charge 'simulation technique. Although the charge
simuiation technique is basically a numerical method, it
resul'ts in an analytical expression for the potential and
field quantities of interest, expressed in terms of a

number of fictitious charge distributions. This is further

e -

~N

~




explained in the following section,

v

2.3 Charge Simulation Technique

The technigue yas orginally developed [43,20] to solve
Laplacian field prog;ems. It is based on the replacement
of the conductor surface charges by discrete fictitious
charges. These charges in Laplacian field problems are
placed outside the region where the solution is sought, and
their magnitudes are evaluated suéh that their integrated
effect satisfies the boundary conditions at a selected

-

number of points on the conductor surfaces.

The cﬁoice of the type of charges depends on the
geometry. Three major forms of charges have been found to
cover almost all possible needs of simulation [20], these
are: point charges, infinite and finite line charges and
finally uniform and non-uniform ring charges. Specific
attention will be given to infinite line charges, since
these best satisfy the boundary conditions for the duct

geometry.

/
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2.3.1 Electric Potential and Field due to an Infinite 4
Line Charge
Consider an infinite line charge of uniform charge
density per unit length (gq) positioned at a point (xi,yi)
as shown in figure 2.12.a. The potential V at any point
(x,y) due to this charge is given as [20]. =/
T V(x,y) = g 1n 1 W 5 (2.18)
41r£o

/ _ 2 _ 2
(x = x )7+ (y - v.)
Similarly the electric field components Ex and Ey at
the same point may be evaluated using equations (2.19) and

(2.20) respectively.

q X = X
Ex = " ) (2.19)
27780 (y - yl) + (X; xl)
q Yy -y
Ey = - - , (2.20)
2“50 (y - Yi) + (x - xi)

2.3.2 Illustrative Example of the Charge Simulation
Technique
Consider two’parallel infinite plates such as those

shown in fiqure 2.12.b. The upper being at potential V,
while the lower is grounded. To apply the charge
simulation technique to solve for the Laplacian field

- between the two plates, replace the upper sur face charges
by a set of discrete line charges of unknown values (ql

ceean qul)’ similarly replace the lower surface charges by

fffff — - —— - - —another set (g e ) Select a set_of .(n) boundary  ___

-

et
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[
[os

, (x,y)

]
———— . — ———
b
~
o]

(a) Schematic of infinite line charge
perpendicular to the x-y plane

+

®q

ql. L m—-1
% x* X
b
(V] \V3 AV4
N AN 7%
L o . . .qn

9m
® infinite line charges
X boundary points
(b} Location of charges and houndary points

for modeling two infinite parallel
plates

Figure 2.12. 1Infinite line charges as used in the charge
simulation technigue

45
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points on the two surfaces (a,'b ..... n). (Those points T4

|

selected on the upper surface are assigned a potential Vv

and the lower points are assigned a zero potential.

T

The potential at point (a) due to the set of (n)

charges is given as.
n v
V(a) =V = 1 Z qiln 1 (2.21)
4ﬂ€oi=l d

a-i

where da ., is the distance between point (a) and the ith

charge.

The‘potential at the remaining boundary poiﬁtsfpan be
writtén in a manner similar to that of equation (2,20).
Thus a set of (n) linear equations with (n) unknowns are -
developed. Those can be written in a matrix form as shown -
by equation (2.22), and solved by Gauss elimination [44]

for the unknown vector of charges gj.

- - - —— - -

Potential ql \ . -
Cofficient 9, \Y%

Matrix = (2.22)
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When applying the charge simulationktechnique to a =%
particular problem, the choice of the number of charges and

their locations relative teo the simulated electrode has no
4

specific rules. .

4 ©

Concerning the number of charges, one would initially
'select a small number of charges and progressively increase

the number until a predetermined accuracy level is
s . .
achieved., One method of determining the. accuracy of a

developed mode‘.is to evaluate, at several points on the
boudary, the percentage error of the calculated potential
with respect to the actual electrode potential. These

po{nts éﬁould be different than the preselected boundary

points. Another method of determining the accuracy 1is to

.

evaluate the ratio of tangential to perpendicular field
compdnents at selected points alongi}he electrode boundary.

This ratio is physically equal to zero. In the literatiure,
oy ~ ’
if the percentage error of the calculated potential éndAbr

the ratio of the previously mentioned electric field \
components isﬂleés than ;%; the model is regarded as beihg
b4 - ? i

[

successful. |
z |
I
L
As for the location of the charges, it has been found
from general experience [51], including the author, that if

the ratio of the distance between adjacent~charges and the
. N
distance between any charge and its corresponding boundary

A ]

point is in the range of 0.75 to *.25 then satisfactory'

accuracy 1is achieved.

.
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2.3.3 Modeling‘of Space Charge Using Charge Simulation

<

The idea of using the'charge simulation technique to

model space éhafge‘Was fifst introdyced in 1974 [20].. .

Initially the technique was used for moéeling a known or an
T m Y . e s ,

assumed space charge distribution [45,46]. Later in 1980

Horenstein [47] used the charge simulation technique to

model an unknown space charge distribution. " This was

perforﬁed to study the electrical conditidns persisting

e Y S e ST e E
. .

around a single D:C. transmission line. -

4 3 - - . SR
>3 ’ . - .. . T ¢

/ > - Further details of implementing the charge simulation

technique to model space Spéige are given in the following *-
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in clean gir.

. CHAPTER THREE

=

CHARGE SiMULATION TECHNIQUE AS APPLIED TO

DCYLINDRICAL TYPE ELECTROSTATIC PRECIPITATORS

-

ﬁh

3.1 Introduction =

\ /
hY
The. éharge simulation technique is used here as a
meth&g to model the electrical charaé%eristicsrpf a coaxial

type electrostatic precipitator. Analytical solutions for

- -

both Laplace's and Poisson's equation aré available in the
literature for 'the coaxial geometry. Hbwever, modéling
this geometry by the charge simulation techﬁiqug is
desirable to checklfhg validity of the te€hniqgue with the

intent of extending it to the parallel plate geometry which

does not have an analytical solution. K <
A . “ ‘_._4! e, - \:‘. "‘*‘:‘_’ - . ) - - .
Two mode¥s*will—-be presented in this chapter. The

.first representd-the electrostatic case where no space

charge exists, while the second represents the corona case




\

-—

AN E "
S
N

50

3.2 The Electrostatic Model

For a coaxial wire-cylinder geometry, if the voltage
appiied to the wire is less than the corona onset voltage;
; : then the problem becomes an electrostatic one with zero
spaée charge in the inter-electrode gap. This reduces
Poisgon's equation to Laplace's equation which is giv;n -

below. L

72v =20 (3.1)
Using cylindrical co-ordinates, and assuming an

- ) infinitely, K long coaxial system, then the problem becomes

~=

only- one dimensional in the radial direction (r), and the
solution of equation (3.1) yields [49],

t \
o E(r) = & ) (3.2)

r ln(rb/rc)

EY
. " The voltage/at any radial distance (r), is given as

% ) shown below.

‘

ro ‘A
Vc—%ﬂEUMk G'lFL

rd

: . V(r)

‘ In(r/c,), ‘
ln(ro/rc)

[

"When using the charge simulation technique td model

cylindrical ﬁype pnéé;;itanrs, the problem was so}ved i

P

#

using a two co-ordinate system V(x,y) rather than a one -~
co-ordinate system V(r). The reason for this was to be

" able to use the same moéeling technique for the ﬁarallel

—plate geometry which is physically two dimensional (in the

a—
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Xx-y plane). ~

The problem was greatly simplified due to the double

» symmetry and thus a solution was.only required in one

quadraﬁt as seen in figure 3.1. This figure is only a
schematic diagram%and does not include the‘actual.number of
liﬁe charges used in the simulétion routine, Although the
solution wés only sought in the first quadrang, the mirror
charges in the remaining three'quaérants were taken into
consideration whep,evaluating the potential or the electric
field at any point within the shaded area. ) ~
LY

In the electrostatic model deveioped, the wire surface
charges were replaced by 8 infinite lifie charges (in the
first quadrant), those were placéé inside'the wire on a
circular-circumference of radius €qual to one half the wire
radius r,. The image charges of the outer grounded
cyli;ébr, were replaced by 31 infinite line charges (in the
first quédrant) placed outside the outer cylinder. The 39
boundary points, necessary for evaluating the unknown
charges, were located such that the ratio Sl'to S; was
approximately unity as suggested by Malik fSl]. This
particular ratio was tested by comparing it to other ratios
of Higher and lower values,‘it proved, to give reasonable
accuracy for a fixed number of charges. To obtain the best
accuracy optimization bechniéues would have to be used

[52,53]). The 8 boundary poigps lggated at the wire were

/s




e

e

> i

e infinite line charges and their images in the
) first quadrant
K ~ «
infinite line charges and their images in
the remaining quadrants

x boundary points

by

N

;o

Figure 3.1. Location of line charges and boundary points
for the electrostatic model of the
cylindrical geometry . '
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assigned—a potential Vo (a value lower than the corona
onset voltage Vo), while the remaining 31 boundary points
at the grounaed cyliﬁdér were assigned zero potential. The
potential coefficient matrix was constructed using equation
(2.18), and the Gaussian elimination method was used for
solving the matrix eguation (3.4), for the unknown charges.

(PC]

[Q] (3. 4)

39x39 @39 = Vlgg

where [PC]= potential coefficient matrix, [Q]= magnitudes
of unknown charges, and [V]= potential at boundary points.

The electrostatic model was apbligd to an arbitrary
coax;al geometry and the results were compared to the~
analytical voltage and field distributions evaluated using
equations (3.3) and (3.2) respectively. The good agréemeng
of the simulation results to the analytical results is

illustrated by figures 3.2 and-3.3. -

3.3 The Corona Model in Clean Air

In a coaxial cylindrical geometry, if the voltage
;pplied to the wire is higher than the corona onset
'Qoltage, the gas surrounding the wire becomes ionized and a
space charge is created in the Enter-electrode gap as
explained in chapter one. The analytical equations

governing the unipolar redion for this case are Poisson's

_equation (3.5) and the current continuity equation (3.6),

the lattgg is given in it's integral form.
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Figure 3.2. - Electrostatic voltage distribution in a
cylindrical geometry using charge simulation
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| [o
VIV = - —= ‘ (3.5)
o)
_‘/'*. RN
§J.dn = 1 (3.6)
The gomplete solutions of equations (3.5) and (3.6),
) using cylindrical cqo-ordinates are given in Appendix 3
[52]1, from which the following two equations were
extracted.
' Iy J r o P
L
. E(r) = [ () Eg + (L - (= }1 (3.7)
r 2Te b r .
G- o]
L. .Ee€ p -
C e
py(r) = S0 0= ' (3.8)
2 2 2
yre + K; -~ rg
. JQ’ . ‘ ‘
. where - Pg = —— : ' (3.9)
217rcho
! EoeorC ‘
and K, =f —— (3.10)
p
e
Equation (3.7) gives the radial electric field
2 distribution and equation (3.8) gives ghe radial ionic
charge density (Oi) distribution. To evaluate the voltage
distribution, equation (3.3.a) may be used.
The above afialytical equations provide the means for
. checking the validity and the accuracy of the corona in

clean gir model developed using the charge simulation

technique.
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Two commonly used qssumptions were applied to the
corona model, these are: |
i- The corona ionization sheath is neglécted and the wire
is considered a uniform ion emigggmg source. This
assumption is based on the fact that the thickness of
*the ionization zone is usually only one to two times
the wire radius [4,55].
ii- The electric field at the surface of the conductor in
corona remains constant at the onset value E, [56,57].
The general shape of the V-I characteristizs for a
?oaxial geometry is given by figure 3.%.’ The voltage Ve
\\required to sustain a corona current level Ic' can be
codsidefeg to be composed of two components Vo and AVC.

- Thus the discrete infinite.line charges used in the

simulation were divided into two sets.
/

. The first set, whichﬁwiII‘Ben;eferred to as the onset
charges (incldding the onseg_iﬁgge charges), was placed
outside the region where ;he solution was sought (refer to
figure 3.5) and in a similar arrangemenE to that of the
electrostatic model. ‘fhe onset charges were evaluated such
that their magnitudes satisfied the following boundary

conditions.

n
<

V(r=rc)

o = Eorcln(ro/rc) (3.11)

n
o

V(rﬁro) (3.12)
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Figure 3.4. Typical V-I characteristics.for coaxial
‘ geometry




@® ionic charges

e Onset bharges and their ground images

(:)ground image charges for ionic space charges

X boundary points

Figure 3.5.

Location of simulation charges and boundary
points in the corona model for clean air



( ¢

The second set of charges was placéd inside the region
where the solution was sought aé shown by figure 3.5. These

charges represented the ionic space tharge and their

magnitudes were evaluated such that they contributed a’

potential AV, to the corona wire and zero potential to the

3 '

grounded cylinder.

¢
The integrated effect,of both set of charges had to

#

satisfy the boundary conditions given by equations (3.13),
(3.14) and (3.15) as well as the current continuity

equation (3.6). ,

/

V(ct=ry) = Vg ) (3.13)

<
V(r=r,) =0 (3.14)
@ .
E(r=1,) = E5 - " _ (3.15)
R . . ﬁ /-4 o
- LY M
To evaluate and loggte the iSHLc space charge a method -
similar to the one presented by Horénstein‘[47] was used. ///

B The method was based on finding a set of 20 eguipotential

charge shells (contours) by extending 7 trajectories or

\ , o v
litnes of field (refer to figure 3.5) from the .conductor

surface to the outer cylinder. ~
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Sincé the electric field, potential and charge density-
tend to change& more rapidly in the vicinity of the coronma
. . . ¢
wire, thus the -elements adjacené_to the .corona wire were

4 choosen to be smaller. in size with respect to those

°

— adjacent to the outer -collecting wall. This was dchieved

' by\varying the spacing between equipotential contours. The
<. ’ . P s -

first ten equipotential contours were equispaced by a
" distanceAequivalenﬁ to 3.3% of the intef-electrode gap,
+ while the remaining ten contours were equispaced by a

distance equivalent to 6.7% of the inter-electrode gap.

’ - . .
¢

. Note that because 6f the continous space charge in the

inter-electrbde gap, the electric fieid is governed by .

/ . N /!
Poisson's equation.. But since in tbhis technique the .
qu n ;

. O -

continoué space, charge ‘is simulated by discrete‘infinite , *
line charges. Then .the effect of the resultfng‘spaée

ﬂ ckarge field may be arrived at by summing t§€ potential and
electric field contributions caused by edch discrete ' . .

infinite line charge. ' , _ T ' ¥
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The f1rst equrpotentlal shell was located by using

only the: onset charges and calculatlng the voltage drop

.
-

along the trajectorles startlng from the 1n1t1al.p01nts (a,

4 [

. b'é'.... g) to the points (a 1,_.....'91) which are

equlpotgntlal w1th respect -to the wire surface.

. ) 4

Y ¢

c ) < e Vel . N ’ f
) : . ’ \ .
.. _.,§?~- “Then, 6 dlscrete charges qlm ’ representing the ionjic

@@ /’charg@é 1n the flrst shell and located at the geometrld

~ . ¢ »
[AY .
- '

centers of the elements, were calculated such that they

’ -
o ’ .

S L . sathfied,an arbitrary voltage v, at the 6 boundary polnts

1ocated mid-way'hetweén,the peints (@', b, . g g . 'The

~
-

potential V_ at any boundary point due to the six discreté -

RS RN
3 .
. > < . .
.
2>

PO charges was evaluated-using,equation {3.16)

3 . . qlm 1 - ' R ‘:@"‘. ’ CT.
SR . ‘ N (A ¥ --—-lln —_ . ‘ ' (3.16):
e e o 8 n=1 2me d . I T o
A . : . o] im s _ . Do

A Ao - ‘where d.m is the dlstance between the boundary p01nt and
' the mth 1onlc charge. . C '(”’/ .

» . -
% - ¢ . « 7 - .
¥ \ @ bd < .
A .
) >~ ., . B . « . CLk

v
-

a e ° e .
s ., - . - '
. o &

.

e ~ . Ag/pne same tlme, these qlm charges had to satisfy the

NS : cont1nu1ty quatlon in discrete form which 1s presented by

\ *

RN A _equatlon (3 17) - T e ’ - e

[ ‘ PRRE i ™ R [ - . R s , - \: ‘\ P . N

‘ .o " 9im - : « '

S T Jpj = I,J‘L = +————- b E Aslm oL (3.1
' .-‘ -, L A l Ar AS ‘l.‘ «

MO\

' ) . s - -m M < o .
B e T P Next, ‘a set of ll gr%und 1mage charges wer§ evaluated:

o« i )

~ -
W oy so as to continuously satisfy the boundary condltlon glven

~ 4

sl

by equation (3 g&) : . ‘ - A DI
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After the ionic line charges of the first shell and

r - ¢
’

-their associated ground images were found, their voltage

STYRWSFER
-
.

. . . and’ field contributions were included with the onset

. ~ “

charges -in integrating out towards the next shell and so on

A anhu A T ol
”
.
.

for each shell until the entire gap is filled with the 20

o shells. A summarized flow cha&f of the simulation program

»

I o
*
[

.. " developed is given in Appendix 4.

L s
]

s 4 ' * . s

, :
Q. ) Thg gesults of using the corona in clean air model,

N

[N

. . .for'a coaxial geometry having an inner and outer- radii of

1 mm and 0.1 m respectively and operated at an arbitrary.
. ' ° -

i&né&r corona current of 1 mA/m, are :given in figures 3.6

.

td 3.9. The onset éotential,vo for this geométfy was 27

e Ll

L e e T
]
-

KV. . < ‘ ‘ . S

. ] ' @
— _ - The analytical and simulation’ voltage distributions
_ . are'givéh in figure 3.,6. This figure indicates that tpel

N maximﬁm'percqnthge difference between the two methods of

o o o g; l_‘ib ns is 1.1%, thig was Qgggrved,gtﬁﬁhe'cgnductor

surfaci; It was observed in 51m1lar runs for the same - :
. geometry that this~ percentage dlfference decreased as the .

\ . . - M. oo . -
" z}‘b\ . .
. ‘corona currentlwas ieduc d. ‘
; i

\

‘ ° .'. ‘u; %Q' o '
. "’,".:‘(‘} . 13 ; v
niras 4 » - v v
. - b ' v
. Slﬂularly, analytlcal and slmula tion field .

e

rake T H":‘: L "\Qz«-.'\'

calculations was found to be less than 1%.‘
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Figure 3.8 shows the electric field distrib%fioﬂ.using
the simulation -routine for two different voltages. The
lower curve.represents the field when Vé = %} = 27 kV (with
zero space charge), whiie the upper cﬁrve represents the
field when VE = 46 kV. This figuFe confirms the validity
of -the model as ié\demonstrates the well known phenomenon

in electrostatic precipitators, which is the enhancement of

N v

the electric field at the outer wall due to the presence of

K

space charge, Ct g

G- A
Finally, fiqure 3.9 gives the analytical and

simulation charge density distributions. It is observed
from this figure that thé percentage 'difference between the
two methods of calculations may feach'?%. This may be
expected since the charge density in the simuiation routine

Y

was calculated using equation (3.18).

p' = -;%-‘-I-n— . . . (3.18)
im - Ar As
m m

.

Equation (3.18) shows that- the charge den%ityfis a’

function of the elemental area. Thus for smaller elements

Fl

higher accuracy can be attained. The size of the elements

<

may be reduced by either increasing the number of

equipotentiéi shells, the number of trajectories or both.

This would of course involve more computational time.

68




upper for VC

(=
.
O

«

lower for

.
o

E
B3
~
o>
A,
L
ko]
~
Q
-
Ly)
Q
-
N
ps)
Q
[0}
)
53]

‘:"‘ , - -"l .
2.0 4.0 6.0 .°

“«..« Radial distance fyom,wire ‘(cm)
P ’
{

L ;
Ve f gt ¥

3 v

’ )

"Figure 3.8. Laplacian and Poissonian field distribution.
o inTa cyiindrieaiwgeemetﬁywusingwchange
’ ' simulation

Y

s

¢




ot A
g
EREY —
g
’ ) 68
3 P
L)
‘ 1.4
(
| 1.2° |
* ! A simulation
‘ -~ — . analytical
wn
]
\ 010 | :
Sl
‘ ¥ r =1.0 mm .
* c !
. o r, = 0.1 m
\ .
e 46 kv
. RS s C \10 - 8 n
| > )
b ‘
!
| g
L} "\ q)
- g
00.6 1
3)
) H
/ Q-
g -
| 3)
0.4 4. .
& .
| |
- ‘ |
. \ )
‘ 0 .“2 v T S
Y v 1 T T T T ] T LI i )
/0.0 © 2.0 4.0 6.0 8.0 10.0
‘ + Radial distance from wire (cm) '
‘ \ { . ‘ N * N
‘(.\ Faat A aPTRN ».‘_‘\
g ‘i’ . \ 'S
\4& l,lq - ~
5 ,.‘m“( . w
‘ . 4 ~ Figure 3.9. Ionic space charge density distribution in
e TIF*‘“_*““ﬁj“‘”‘“““a“cytindricai“geometry*usinngharge~simuiation
v ¢ . ) Lt .




rneglecting the ionization zone and assuming that the corona

simulation model predicts_well the electrical conditions in

- )

LY

To invesfigate the effect of neglecting the
ionization zone in the corona model, the initial trajectory
points a, b, ..... g (refer to figure 3.5) were moved |,

further out to a circular circumference of radius equal to

3r This is equivalent to an ionization zone of thitkness

C L]
2. The electric field at this new boundary was equated
to the onset field evaluated using Peek's formula for a
wire radius of L. The final wire potential V.- was

evaluated at r =‘rc (not r = 3r_).

I

The above process gave a value of 45.47 kv for the
wiré potential V, as épposed to‘the value of 45.64 kV
optained by . the origin%l model which neglects the pfeseﬂce
of an ionizqtion zone. No variations werelobserved; wﬂep
applyiﬁg the above érocess, in the charge density and N, ,[

electric field distributions. This indicates that

wire is an ion emitting source is a reasonable assumption.

. L. )
- s R

+ It is clear from the previous analysis that the charge

»

cjean air for a cylindrical electrostatic precipitator.

t .
&

A
%

. § foor g Q, . R .
. The. details of tHé modifitations to extend this model

£o~accountLﬁon«panticléiépace“changé“ateﬁgiyanulnuthe next.
. ’ ! ., .
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CHAPTER FOUR

’

THE ANALYSIS OF CORONA QUENCHING IN CYLINDRICAL

T PRECIPITATORS USING CHARGE SIMULATION

- 4.1 Igtroducfion

g

An analytical solution of gpissoﬁ's‘eéuation (4.1) for .

a coaxial geometry in the bresence_of corona éﬁd particle
space charge ﬁgs—éi{ginally inﬁrodﬁéed by Q&utﬁenier.ISOJ

in 1932 in the erm given by e@pation.(é.Z).

S
~

" 1 \ - - ’ ' P .
« Y.E = 5; (p; + pp) ) (4.1)
, C J, 2 1. C
E’ (r) = — e&p(2PSr) - [ + - ] (4.2)
r? ) 47“6bi PSr (PSr)? Y

Some modifications to the assumptions made by

-

, Pauthenier in solving equation (4.1) will be presented in

this chapter. later, the corona gquenching model for . ’

~a

cylindrical precipitators using the cﬁaége simulation

technique will be illustrated.

-~ , ¢

4,2 Modified Solution of Poisson's Equation

[ 2Y ’ \

t

Mild corona quenching in electrostatic precipitators

- ——is-due—to_thecapture_of some_of the:ionic' charges and the

resulting charging of the dust -particles. Thus it is

- - ) . .. -~

e T - o L B U T .



density is composed of two components as given by équation
" (4.3).
Jy = 2mr(p;b, + ppbp)E (4.3)

.

g&n the classicaf solu;ion of equation kA.l) the
f?llowing assumptions‘were made by Pauthenier: °
. i) As the wire potential exceeds the corona onset
voltage, the field at ghelwire.;urface'remgins constant at
its onset value Eg. This assumption is useéd for evaluating
the constant C in equation (4.2). ‘
.ii) The particles are charged to £h§Lr limiting value
[5]1 and their charge density d}stripution is given as
op =e:<')PE(r)$ _ o © (4, 4)
iii) since the particle mobility is usualiy 2 to3
orders of magnitude less than the ion mobility [59], the
corona current was assumgd to be essentially carried by the
free gasqpus'ions only, thus eliminating the second term in
equation (4.3). Thig y&glds the following equationAfor the
ionic chargé density dis;ributipn.
° pi‘=———-—-J9' | o (4.5)
Z.TTrEbi ' o

. ‘

-

The first assumptioﬁs widely accepted in the
literature [56,57].. As f the second assumption, it can
be seen from equation (4.4) that the particle charge -

densi£y is a function of the charging electric field E(r).

)

71

'Thisweontxadicpswthe_genenallxmacceptﬁdwassgmptiQAAin

electrostatic preqipitatoré, which is/&he uniformity of the

- .. -




“believed to offer a better representatibn of the effect of

" the particles are fully charged to their Pauthenier

72

[ 4
the turbulent flow in the precipitator cross section. Thus
in this model the term E(r) has been replaced by an average

charging field E*

ay 38 shown in equation (4.6). This is

the random distribution of the charged particles.
Equation (4.4) is also based upon the assumption that

saturation limit. 1In fact, in cases where corona éuenching
occurs, the charging time constant will be significantly
larger than in clean gas conditions. Therefore, one would

expect the partibles\to be charged to only a fraction of

the Pauthenier limit. This is repnesented’b§ assuming a

scdling factor £, where 0<g<1l, A T
With Ehese modificat fons equatf6n (4.4) may be
rewritten: as._
. : : .
= €, PE* S o 4.6
Op £ey av (4.6)

1
!

As for the third assumption, this requires a closer
L . ' -
look at equation (4.3).' This electrodynamic equation

implies that the charged particles behave in a similar way

‘to ions in contributing to the current\in'the space charge

region of the precipitator. However, this_contradicts the

commonly held assumption that is aercdynamic not electrical

forces whlch govern the particle motion in the duct'cross

e e e e o4 L

section, such as mentioned earlier about the un1form1ty of

nmarticle svace charage due to turbulent remixing. Under

. ) T r ’
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’

these circumstances the particles will contribute zero net
current in the field direction in this turbulent zone and *
equation (4.3) will only have an ionic component. Thus the
second term in equation (4.3) is approximately equai to
zero.

\

Oon the other hand, equation (4.3) is valid in the
region immediately adjacent to the grounded cylinder where
the collection of the charged particles contributes a
finite current ‘component in the fieid direction. It is in
fact this cdﬁponent which constitutes the collecting action
of the precipitator.

Thus the inter-electrode gap may be divided into two
zones, the turbulent zone where the charged particles
contribute a net zero current in the‘field dirgction and a
collecting zone adj;bent tp the collecting wallé where the

charged particles contribute a finite current component in

the field direction.

In the collecting zone, the ionic charge density will
be given by‘equation {4.7) rather than equation (4.5) to
account for the current contributed by the charged
partiocles, | | .

- 27rEb

Pp ~ ' ‘
PP : (4.7)

[T



»
—

o ‘ ; 74
Sustituting equations (4.5) and (4.6) in Poisson's -

’ : . e~
equation while using cylindrical co-ordinates we get the

following differential equation for the field distr%ﬁttion

in the turbulert zone. . ) B ‘
dE 3, . E '
~— = ~——=— ¢+ LE* P§S - — (4.8)
av
dr 2ﬂrEbi€O . r . .

5
)

Similarly, substituting equations (4.6) and (4.7) in
Poisson's equation yields the following differential

equationh;;;\?hé electric field distribution in the

) [

collecting zone.

T L

dE J, by, + E
— = ——=— 4+ EE; PS(l - —) - — (4.9)

‘ ‘ dr 2TrEbj e, bp r
It can be seen that the aboVe two equations differ

P from Pauthenier's .classical differential equation which is
% given below as equation (4.10). , w.
' . ¥
dE J, ' E '
= ————— 4+ EPS - — {4.10)
’ dr . 2ﬂrEbi€o r
4‘ﬁ~ . ,
Now the electric field in the inter-electrode gap,

according to the suggested modificatiéns: is desc&%bed by
equations (4.8) and (?.9) in the turbulent and collection
zones respectively. These two equations cannot be solved
analytically, but a numerical solution‘ié possible using

Adam's-Moulton method for numerical integration [60].

- The cylindrical plane that divides the two zones was

assumed to be away from the outer cylinder by a distance /

equivalent ﬁé 6.7% of the inter-electro@e gap lendth. This o

matches the distance between the last two'equipotential
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Y
T

.corresponding electrical field distributions using

1-descr1bed‘precrp1tator us1ng both the c1a551ca1 and

contours in tzf charge simulation model.

. “

For a given lineer corona cerrentlg%,fequarioﬁeﬁ(ﬁ.BY,
(4.9) and (2.10) may -be solved numericelly for the eieqtrie\
field distribution. By inregrating this distributioe
radially from the wire.surface to the ourer cylinder( the .
corresponding wire porential Vo may be evaluated.

Using the above. méthod a qghpuﬁer program was

constructed to give‘the V—Ilcharacteristfcs and the

Pautheniér's classical equation=(4.10) and the modified
equations (4.8) and'(é.é):“The progrem was applied,to‘a
geometry having an inner and outer radii of 1-mm and 0.1 m

3. , ’ : Lo

re%pectively. The particle charge densities7pé" T i

a .

* N
investigated were: 0. 44x10™" - ;ifgg’£}410‘5 C/m . Theee
:dhange densities were evaluated- usinhg equat1on,(4 6) .

accordlng to the specxfred values of the follow1ng
parameters: partlcle mean radlus = 5 um: E* = 5'kv/cm, ’

S =_5‘m2/m3i Pp=2,§=1 and_O.l respective;y.'

4

Ergure 4.1 glves the V I characterlstléé for. the above

-~

modmfied eduatrons.‘ It "is, 1nterest1ng to obserye that

!

1ncreas1ng the partlcle chprge dens1ty ten tlmes (refer to

/

curves 1 and 2) causes a d%gor reductlon in the coroha

\ oo .
~urvant ak a2 Atuvan valFans . i s 1P
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Figures %.2 and 4.3 give the electric field '
distributions:using'both the classical and the modified
equations for two different operating modes: the first is

constant linear corona current of 0;5 mA/m, while the
second i's constant voltage of 44:5 KV.

For constant linear~corona current operation, it can
be seen that when increasing the particle charge”density
th times, the corresponding increase in potential
necessary to maintain the same level of corona current is~

. approximately 25%. Also an enhancement of 75% in the
electric field at tné-outer cylinder was observed. The
latter percentage indicates that the electric field

; enhancement is nottionly due to the increase in the apptied

potential but also due to the added particle space charge

-

density.

‘ in figure 4.2, although curves 2 and 3 are evaluated
for approximately theé same value of particle charge
density, curve 2 which corresponds to the modified solution
is significantly larger in magnitude than ‘curve 3 which
corresponds to the classical solution. fhls difference is

more pronounced at the outer cylinder whére it reaches 21§//

R | S s

¥ad
From figures A 2 and 4.3, it is interesting to observe

that the distribution evaluated by the c1a351ca1 equation

{4.10) (curve 3) lies between the two curves 1 and 2 which

”//

7
v
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are evaluated by the modified soiution for two different
values of uniform particle charge density. ‘This implies
that althoﬁgh Pauthenier's assumptions are believed to be
incomplete, ;hey reméin adequate for evaluating the
electrical characteristics of cylindrical precipitators in

the presence of dust loading.

For constant voltage operation, the increase of
particle space charge density by ten times is accompanied
by severe quenching of the current reaching about 90%.

Also a smaller field enhancement at the outer cylinder of

E

" about 33% was observed, compared to that of the constant

current case. ”

The previous figures indicate that the modified
equatjons (4.8) and (4.9) as compared to the classical
equation (4.10), are capable of accounting fof differeqt

particle charge density levels, as a result of using the

scaling factor g.

4.3 Corona Quenching Model

L ‘. : i

In the corona model. (dust-free case) presented in
chapter three, the’ calculation procedure involved

evaluating the wire potential Ve required to mainta¥n an

.assumed linear corona current density J,. The wire

Tex,,

potential was considéied éb be made up of two coﬁponents,

- " i

PO

~ “ & -
P '

2,
g, ™



" clean air corona model, the potential AV, was further split

81
%D and AV_. ‘The first component being the corona onset’
voltaéé:Vb, and the second component AVE béing the voltage
required to overcome the space chérge due to the ion flow

composing the corona current.
To include the effect of particle space charge in the

into two components, A and A%}. The first component Av, ,
represents the potential required to establish the ionic
space charge density o5 (i.e the only component present

under clean gas conditions). The second component Avb'

‘represents the added potential drop due to the particle
{

space charge pé. Thus in figure (3.5), each line charge in
t

an individual element is replaced by two line charges, one

representing the ionic charge and the other representing

the particle charge within the element.

The corona quenching model involves the following
steps for the caldﬁlation proceduré:

i) Evaluate the onééftharges (including the image
charfges) to satisfy th;; tbgowire potential is equal to (A
and that the outer cylindér potential is equal to zero.

ii) Using the onset charges, extend 7 trajectories from
the wire surface to construct the first equi;btential
contour as done previously.in the clean air model.

iii) For each element bounded by the first contour,

evaluate thé magnitude of the discrete line charge dp

g .



&

ORY)

representing the particle charge density using equation

*

(4.11)

9 = pE’) X (ArmAS_m) : : (4.11) .

iv) Evaluate the ionic line charges qi in each: element
of the first equipotential contour such Ehat‘they satisfy
equations (3.16) and (3.17). :

v) To complete the calculations of the first
equipotential contour, a set of image charges are evaluated
such that the augmented effect of the ionic, particle and
image charges is to satisfy that the potential at the outer.
cylinder is equal to zero (equation (3.14)[.

vi) The onset charges as well as .all the charges
associéted with the first equipotential contour are then
used to extend towards the next contour. This procedure
continues until the contour before last.

vii) For the elements bounded by the last two contours,
the particle line charges qp are evaluated as before using
equation (4.11), while the ionic line charées q; are
evaluateq such that they satisfy equatiéns k3.16) and

(4.12) .

q; = p;x(ArmASm) (4.12)
where p;\ig evaluated using equation (4.7). -

-

The procedure was applied to a geometry having an
inner and outer radii of 1 mm and 0.1 m respectively, with

Py = 0.22x107"'¢c/m’ . This.chaigé density corresponds to:

S =5 mz/Ta, P=2, £&£=0.5, E;v = 5 kV/cm and the mean




particle radius = Spm.

For a wire potential of 45 kV, equations (4.8) and

(4.9) were used to evaluate the corresponding linear- corona

R

current Jg. This was performed by using an iterative

Mﬁtécedureq in which the value of J, wag changed in small
inezements. For each value of Jy the corresponding
electric field distribution was evaluated and then
integrated to give the wire potential V.. 1If the

calculated potential was different than 45 kv, Jg was

changed and the process was repeated again. Finally, after *

convergence was achieved at J, = 0.38 mA/m, the potential

-

and ionic charge density distributions were evaluated.

The charge simulation routine developed for corona
quenching, was evaluated using the above value of J . The
results of the simulation are compared to the results of
equations (4.8) and (4.9). ,This’comparison is made for the
ionic charge density distribution) the potential and the
electric field distributions as spown by figures 4.4, 4.5
and 4.6 respectively. It is clear from these figures that
the simulation gives a reasonably good fit to the results

of the mddified equations (4.8) and (4.9):"

«
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Figure 4.4. Ionic charge density distribution in 'a
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CHAPTER FIVE

MODELING OF CORONA CHARACTERISTICS IN A
WIRE-DUCT PRECIPITATOR USING THE

-~

-3
CHARGE "SIMULATION TECHNIQUE

5.1 Introduction

'

In this chapter it is intended to apply the charge
simulation technique to model the electrical conditions in
the more complex geometry of duct-type electrostatic

precipitators.

Two models are presented. The first represents the
electrostatic case in duct-type precipitators, in which the
electric field is governed by Laplace:s equation. The
second includes the condition of ¢torona discharge in'ciean
air for the same geometry, in which case, the field is
governed by Poisson's equation. The study involves the

4
evaluation of the electric potential, electric field,
current density and charge density in the inter-electrode
space as a function of corona cprrentl

Figure 5.1 shows the geometry of a simple duct-type
electrostatic precipitator. It consists of two parallel

plates and a set of corona wires positioned half way

between the plates and equidistant from each other. Due to

e ,_ugekyh e -
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Figure 5.1. Geometry of a duct-type electrostatic
precipitator
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the double symmetry in the geometry, it is sufficient to

study only the shaded area in Figure 5.1, for any number of
. .
corona wires, provided symmetry is preserved. '

5.2 Electrostatic Model

As mentioned earlier, this geometry has no analytical

-

solution for Laplace's equation, even when considering tjhe

problem to be two dimensional in the x-y’ plane.

Nevertheless Cooperman [61] was able to evaluate the
voltage distribution in terms- of a rapidly converding f
infinite series given by equdtion (5.1) .

cosh{n (y-2ms)/2h)=-cos (mx/2h)
1n -
m= cosh (nm (y~2ms )/2h) +cos (v x/2h)

Vix,y)= Vcﬁfl - - {5..1)
|=— o0 qosh(nms/h)—cos(nrc/Zh) ' .

i 1n
; cosh("ms/h)+cos (nrs/2h)

-

distributﬁon'iﬁ the absence of space charge using the

4
1

met hod ofimirror images. The electric field components
‘were givefi by equation (5.2).
T Ve Cavg

E,= Fy E. = P (5.2)
2hf 3:__ Y ‘

2hf

)

where (f)iis a form factor dependent on the precipitator

.dimensiong: and given by (5.3) and F, and F, are the field

y
Lors in the x/gnd y directions and are given by
3 . . . ‘

equgﬁions (5.4) and (5.5) respgctively.

shape fag

1)
‘
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. 4h n cosh (mné/2) +1 c (
f = 1n + 3 . _ ‘ (5.3)
LRSS n=1 cosh(rn§/2)~1
- cosh (wn/2)
F = sin z{ > 3
X 2 cosh“(mn/2)-cos“(nzg/2)
n cosh (g (n§-n}/2)
+ X >
n=1" cosh? (s (n6-n)/2)-cos?(ng/2)
n cosh(n(56+n)/2)
+ I . ~ } . (5.4)
n=1 cosh2 (1 (n64n) /2) ~cos? (7L /2)
_ { sinh(mn/2) ~ |
= COSs [ -
Y 2 cosh?(mn/2)~-cos? (ng/2)
n sinh (g (n§-n)/2) ' T .
-z - -
n=1 coshz(n(né—q)/2)-cosz(ﬂc/2)
R .. n 'sinh (7 (n§+n)/2) ‘ )
) t oz . 5 5 } (5. 5)
n= cosh“(m (nd+n)/2)-cos“(ng/2)
N  where n =x/h , ¢ =y/h

n

§ = s/h + N = No. of corona wires

Thus tﬂgsvalidity and the accuracy of the
electrostatic mbdel presented here may be compared to the

solutions presented in equations (5.1) and (5.2).,

<

The cdncept oﬁﬂthé bhardé simulation "technique was
directly applied_go this model by replacing all ghe
conductog surﬁacé charges By disc;eté infinite line charges
\VJ of the ﬁorm shown ipn figure 5.2. To médel tﬁé,précipitator

sections on the left and the right of thé cehtral corona

i

. b e e e e e e e e ek e o ————— e -

1
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wire, line charges were placed adjacent to the lines (C-F)
and (K-J) and the necessary_field boundary conditions were
satisfied along those twé lines. The potential (and field)
coefficiegf matrix was then constrﬁéted‘using the
appropriate equaéions for line cﬁargés (refer to section
2.3). . The Gaussian elimination method was used for solving

the matrix equation (5.6) for the unknown charges, such
RN

>

that their values satisfied certain pre~determined .boundary
conditions.

(pc Q1 = (V] (5.6)

n

where [PCl=potential (and field) coefficient matrix,
[Q]}=magnitudes of unknown charges, ‘and [V]=poténtia1 (and

field) values at boundarf points.

Considering only the first quadrant, with reference to
figure 5.2, which is only a schematic diagram and does not
represent the actual’ pumber of infinite line charges used

in the model, 8 charges were placed inside the circular

corona wire and another 31 image charges were placed behind :

‘the collecting plate (A—C). Fihally, another set of 3i

image charges were placed behind the ling‘(E—C) to model
the adjacent sections of the precipitator. The image
charges were located relative to the boundary points as
shown in figLre 5.2 such that the ratid S, to s, was

approximately unity.
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As in the cylindrical case, it is sufficient to store
sthe positionsdand values of the charges located in the
first quadrant only. Nevértheless, when evaluating the
elemegts of the potential coeff{cient matrix, all charges
in the four gquadrants must be ‘considered. -
o

2The boundary conditions to be satisfied by the

infinite line charées are as follows:

i) v = Vg at all points on the wire surface.

ii) V=0 at all points on the collecting plate.

v

©iid) Ey, = 0 along the line (E-C).

The above model was programmed and evaluated for a
laboratory scale duct-type precipitator as used by Awad
[64] having the following di@ensions: h = 3.8 cm, s = 3.8

cm and r, = 0.825.mm. The wire potential was 5 kV.

The results were compared to both Cooperman's and
Bohm's infinite series for the voltage and field
distributions respectively. The model gave very good

- agreement to both series.as can be seen from figurés 5.3,

5.4 and 5.5.

PO —— e
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Figure 5.3. Voltage distribution along 0-A for the
s electrostatic case.
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5.3 Corona Model '.;i‘

. \
Similar to the cylindrical case, to avoid
complications associated with the ill-defined glow region

"in both positive and negative coronas, the wire is assumed

to be a uniform ion emitting source.
- .

i

Tﬂis assumption is based on néglecting the ionization
zone as well as the faét that for small diameter wires, the
electric field is approximately uniform around the wire
surface. This was confirmed by the\électro§tatic model
presénted here, since the electric field was found tgfbe
uniform within less than 0.1 percent around ghe wire.
-\

In the presence of space charge and under steady-state

conditions, the region of interest is governed by Poisson's

equation and the current continuity equation. Unlike the

cyf?ndrical geometry the two equations here have no

\

-

analytical solutions.

"

If one imagines 'a ray or a tube formed by two lines of
/
field, the amount of current flowing through any cross

section\of§this tdbe is-constant. Thus for a set of field
- ) r .
\

“liégs émanating1ffgm a corona wire and intercepted by an
N o .

equipotential contour such as- in figure 3.5, the current
coﬁtinuity equation has to be satisfied at each segment of

the contour. ~ -
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It was not necessary to account for this physical
condiggon in the cylindrical model since the trajectories’
\25 the lines of field were identical (ie. radial) both with
and without spacé charge. Also the equipotential contours
were always circular in shape and thus segmenté of the same
contour were equal in length. Moreover, the ion%c charge
density was only a function of the radial ;istance (r) and

not also the éngle (¢),\thus ségments of adjacent contours

bounded an equal value of cﬁafge density.

When attempting to apply this charge .simulation model
to the duct-type geometry discrepancies were observed. For
example, the trajectories of the linei of field were
irregular and did not terminate at the élate. The
mggnitude and even the polarity of the ionic charges and
their images did not matéh the actual physical’
characteristics of corona iﬁ a duct-type electrostatic

precipitator. Furthermore, the potential contours did not

remain equipotential as calculations progressed.

Thus modifications were necessary for the duct
geometry to overcome the problems that were hidden'in the °
cylindrical geometry due to its.rotational symmetry.

A
-
LY

The same basic concept of dividing the wire potential

V. into two components LA and‘AVc was used. The first

&=

component being the corona onset voltage Vo and the second

98
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component AVb, being the voltage required to establish-a

" space charge equivalent to the pre-determined corona

- current I.. Thus, similar to the previous approach [65],

the infinite line charges used in the model were divided.
into two groups and‘supe:position was’used to arrive at the
overall solution.

The first group, which will be referred to as the
6nset charges (and includes the onset image charges), was
placed outside the region where the solution was sought, as
was done in the electrostatic case. The wire potential was
made equél to the onset voltage Vg- This was achie&ed by
initiflly assuming an arbitrary:wire potential‘vg . Then,
after solving equation (5.6) for .the unknown onset éharges,
the electric field Ey(O,rc) was evaluated and compared to
the onset field E, from Peek's formula [13]}. Later, the
onset charges were rescaled by multip}ying them by the
ratio (EO/Ey(O,rC)).

The second group was placed inside the region where
the solution was sought as shown by figure 5.6. This
figure is not to scale and does not include the actual
n;mber of charges.implemented in the model. These charges
represent the ionic space charge and their magnitudes were
evaluated su?h that they contributed a potential AVC to the
corona wire and zero potential to the céllecfing plate

—

while maintaining Ex = 0 along the center line between the
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corona wires (E~C)=

The augmented effect of both sets of charges‘mﬁst
satisfy the boundary conditions given by equations (5.7),
(5.8), (5.9) and (5.10) as well as the current continuity

equation (5.11).

V(g¢rr) = Vg (5.7)

E(¢r.) = E (¢,5.) ' (5.8)
mel c N

vV =-0 at plate surface - (5.9)

E, = 0 along (E-C) (5.10)

I.= 9 J.4a ) (5.11)

As mentioned earlier, the wire was modeled as a simple
ion emitter, thus the commonly used assumption [41l] that
the ionic charge density is uniformly distributed at the

wire surface was considered reasonable.

To evaluate and 1ocate.the ionic charges (i.e the
second group of line charges) a method similar.to the one
presented in the cylindrical case was used with some
additional modifications. The method was based on'finé;ng
a set of (n) equipotential contours by extending (m+1l)

trajectories or field lines (refer to figure 5.6) from the '

wire surface to the collecting plate.
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The major modification was the use of two different
processes for evaluating the ionic charges®and their
associated image charges that are necessary,for.maintaining
the boundary conditions (5.9) and (5.10)

The first process is only applicable to tﬁe ionic’
charges within ‘the first equipotential éontour and their
images. .This process may be summarized in the following

steps with reference to figure 5.7.a:

1) Select a set of (m+l) points on the wire surface
(e.g. a, b, c cev.. (m+})). Extend trajectories [47]
from these points to the corresponding equipotential points

(al, bl' Cp veens (m+l)l) using only the onset charges.

o

2) sSince all elements of the first equipoténtial
contour are assumed to hawve the.same charéé density (pl),-
then the uniform charge density may be evaluated using
equation (5.12). The ionic charges of the first contour
are positioned at the average center¥* of each element énd
are evaluated using equ;tion (5.13). The num;iator in
equation (5.12) represents the corona current éer meter

length of the wire in one quadrant.

I /4L .
o = < C (5.12)
m
.

"’Erli . b . Asli . .

*i=1 ;

*corresponds to the mean of the 4 co-ordinates ‘describing

tbq_elemental area

\
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_ 3) Due to the presence of the ionic charges, the
boundary conditions .along (A-C) and iE—C) are distorted.
Thus a set of image charges are placed behlnd the .
collectlng plate (A-C) and behind the center line between
the corona wires (E—C) Their purpose is to satlsfy

equations (5.9) and (5.10) by cbunter ~acting the effect of

the ionic charges-at these two boundaries. /

o

4) Contdur (1) represented by (al, b, veees ‘(m+l)l)

1
was equipotential with respect to the onset charges only.
Therefore the modified equipotential contour (11L‘ -

represent&d by (a%, b%, oo (m+l)i)~is iocated taking

into consideration the ionic charges and their images.
\‘ &

B

5) The new element dimensions (Ai_) and the modified
i

fields Eii (for i=1,m) are re-evaluated, together with the

-

modified charge density (pi), tﬁg'modified ioﬁic charges

(qi_) and their essociétedxmddified images.
i .

. 6) Steps (4) to (6) are repeated until the percentage

difference between pl and p? l is less than 1 percent.

~

~ L

Finally, the amount of current I, flowing hetween each

two successive trajectories is evaluated using equation

Iy

(5.14). ' o : ¢
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(5.14)

where - 4L. i . - (5,15)°

The second procegs which is used for all the remaihing
contours, is similar to the first (refer to Figure 5.7.b),

‘except for the following differences: o

——— S

a) Each element at the kth contour has its own
independent value of charge density (Dki) and subsequéntgy

charge (qki). These are evaluated using equations. (5.16)
b Qe

and (5.17) respectively.
e .

I

(5.16)

L] * A ‘ !

S TE L

Ui = Pxi - Ai .

Pri

(5.17)

b b). The criéerion for convergence at the kth centour -

- ’ 5 n ’ -
is that the percentage difference between (qki) and (q;_l)
i

[}

be léss than 1 percent. .

G

- &

1

At the end of The calculations, the integrated
trajébtoriés should terminate at the grounded plate. This .

is one method of checking the validity of the model.

*

In the corona model, the number of onset charges |

(includfﬁg the onset image charges) was 40, . Those were ™

positioned exactly as prescribed in the electrostatic case,




‘the operating conditions are included in the figure.
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ekcépt that thg number of onset image charges-were reduced
to 16 behind the two lines (A-C and E-C). The number oﬁ
trajectbrieé used was eleven (m+l=11), making the number of
discrete ionic charges per contour equal to ten (m=10).

The number of image charges per contour was 40. Twenty of
those were positioned behind the collecting plate (A-C) and
the remaining 20 were positioned behind the liném(E—C).

The contour space was graded according to distance from the

wire as measured along 0-A as shown in Table 5.1 below.

o L
®
3

Set No. - No. of Contours Percent increment
’ of (h-r )
1 5 0.1 5
2 5 0.5 i
3 17 1.0
4 5 2.0
5 o 5 4.0
v 6 10 5.0

Table 5.1 Contour spacing along O—A“starting
from the wire surface.

5.3.1 Results of Corona Model : ‘
The developed programAwas applied to a dugt—type
pfecipitator whose dimensions and Qperéting conditions were
identical to‘that used by Penney and Matick ([31]. Figure
5.8 illustrates the equipotential contours and the lines of
field which together constitute the elemental grid produced

by the simulation. The precipitator dimensions as well. as

\




107

Distance along plate (cm)
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Figure 5.8. Equipotential coentours and lines of field
constituting the grid
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!,'To check tﬁe validity of the model, the potential at
different points alopg the collecting plate was evaluated
and compared with the expected value of zero. It was found
to vary from +3.1 to -1.1 volts (or less than 0.0l percent
with respect to %:). Also the ra;io of the tangential to
the perpendicular field componéﬁ%é‘(Ex/Ey) at different
points along the plate were calculated and foun@ to vary
from +0.36 percent to -0.42 percent. Similar evaluations
of the ratio (EX/Ey) were performed along the cénter line
between the corona wires (E-C), these yielded a range from

+5.5 percent - (at the two ends) to -1.2 percent.

™
-

Several researchers [56,66] have uséd the assumption
that the lines of fieid remain unchanged in direct%pn
whether space charge exists or not for a defined set of
precipitatof dimensions. In figure 5.9 the dashed lines
and the solid lines represent the equipotential contours
and the lines of field for the electrostatic and corona
cases respectively. It is evident from this figure that
the lines of field do not coincide for the two cases.
Nevertheless, this assumption is valid for the cylindrical
geometry, since the lines of field are always radial
. whether.space charge exists or not. i\

. .

The charge density distribution along a line extending

from the wire to the plate is shown in figure 5.10. This

figure indicates the necessity of having a finer grid size
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Close to the wire, as opposed to a coarser size next to the

collecting plate, to accurately simulate the exponential

decaying function of the charge density. ' < %

The results of the model were “compared to Penney and

Matick's experimental results. This was done by evaluating

c

_the voltage distribution using the simulation routine along

(O—A) and (E-C). 'The results are plotted in figgresis.ll
and 5.12 respectively. The upper cﬁrves iﬁ'bogp figures
were the result of using a mobility valie of l.;xlo'“
m?/V.s. This value of mobility gave a';ire voltage V_ = 44
kV as opposed to the experimental value of 43.5 KV required
to maintain the pre-determined (iéﬁﬁ%) corona curren£ Jz =
0.48 mA/m. While the lower curéis in both figures were the
result of u%ing a mobility value' of 2.2x10°* m?/V.s. This

gave a wire voltage of 40.5 kV.

From both figures, it is evident that the choice of
mobility value plays an important role in the accuracy of
the simulation model; This is as it shoﬁid be, since it is
well known that the V~I characteristic for a corona
dischargé is very erendent upon the effective mobility of
the charge carriers. P

It was also found that the field at égint (A) (refer
to figure 5.1) changed from 0.33 at Vo =V, = 11.4'kV to

(o]
4.7 kV/cm at Vo = 44 kv. Similarly,-the field at point (C)

[}
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changed from 0.3 to 4.3 kV/cm for the same volt;ges
respectively.: Thus increasing the wire potential 3.9 times
resulted in the increase of the electric field by
approximately 14.3 times at points (A) and (C). This large
i;crease in the electric field value, from the

electrostatic case to the corona case, exhibits the

significant contribution of space charge in enhancing the

?—~»

The model was also applied to a precipitator whose

field at the collecting walls.

dimensions and operating conditions were similar to those
of Felici's [30], h = 0.1 m, s = 0.1 m and r, = 0.127 mm.
The corona current input was 0.6 mA/m. It is important to
mention here that the current denéity distribution graphs
presented by Felici [30]) are apparently missing a
multiplying scale factor of two. When evaluating the area
under each of Fhese graphs, the resultant current J2 was
found Eo be equal to one half the documented (measured)

value. - *

The current density distri‘bution at the collecting
plate was evaluated by equation (5.18), which:rgives the
average current density (Ji) for each element at locations

half way between the pointé (an, bn' C (m+l)n).

n,..'..
i

Ji= I3 /85,5 (5.18)
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Tbe current density distribution at the plate for
Felici's geometry using the simulation is shown in figure
5.13. It can be seen fgom the figure, that the simulation
-

curve follows a similar pattern to gLe experimental data,

but its magnitude is slightly higher. The percentége
difference between the simulation and the expérimentél data

is approximately 17 percent clpse.to point (A) directly

below the corona wire.

This difference could be the result of the mobility
value assumed here (2.2x10 * m?/V.s) and the result of
experimental error in the measurement of the linear corona
current J, which is used as an input parameter to the
model. The actual cause of this difference was hard to

>

determine because the experimental applied voltage vV, was

not documented. .

®

Another method of checking the model was to normalize
both the simulation and the experimental results of figure
5.13. The simulation results were normalized with respect
to. the value of current density at x = 0, obtained by
extrapolating’ the simulation curve to intercept the
ordinate,

The normalized results are shown in figure 5.14. ' This

figure shows that the simulation results tend to diverge

from the experimeﬁtal data as we move towards the center

e = S
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line (E-C). This was also found to be the case wﬁen
applying the model to another set of dimensions and
opérating conditions also given by Felici. The changés
from the previous set of dimensions and operating
conditions were, s = 0.2 m and Jy = 0.1 ma/m. Fiéure 5.15
shows the normalized distribution compared to the
experimental data for Feliéi's_gecond geometry.

<]

The deviation of the simulation results from the

%

experimental data is believed to be the result of
evalqgting the current density as aﬂ‘average value (Ji,
using equation (5.18)). This-'deviation is more significant
at. the outer elements (close to point E)( since those
elements are larger in size with respect to those closer to
point (A). This is also coupled with the fact that the
current density changes more }apidly along the plate .~

adjacent to point (E).

~If the number of elements per contour was to be
increased, by increasing the number of trajectories, then

it could be expected that the .simulati results should

v

éive better convergence to the experimental data. On the

other hand, in doing so the computational time would

increase substantially.
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The drop off in the magnitude of the experimental
data, as we approach point E, is physically because the

-

charge density at that point is equal to zero. Therefofe,
if one visualizes an infinitesimai area at that point and
measure thewéurrenf flowing through that infinitesimal
area, it shogld be equal to zero. ' This is difficulit to

.
achieve experimentally because of construction limitations

- - of the current detection device.

To investigate this, the model was applied to )
Tassicker's [29] geometry and operating conditions.
Tassicker useé a microprobe for measuring the-cérrent

.density at the collecting plate, thus his technique of
N . 3

/
measuremerit is probably more accurate than the segmented

electrode technique adopted by Felici. 5%?

- .

sitive corona for ' Tassicker's geometry and operatin
po .

conditions which were as follows: h =0.1llm, s = 0.1 m,

-

r, = 0.15 mm and Jz = 0.1 mA/m. The ion mobility used was
l.éxlo_“ mz/v.s. It is evident from this figure that there
is a closer fit of the simulation results to the
experimental results as compared to figure 5.13 (Felici's
geometry), since the percedtage difference between the two
has dropped to less than 0.5 percent close tolpoint (a) .

Fof Tassicker's geometry under negative corona, the

¢ simulation results gave good agreement to the experimental

Figure 5.16 shows the current density distribution of '
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data as for the positive corona. It was also found that
the simulation results are higher than.the experimental
data as we approach the center line (E-C) as was the case

in both of Felici's geometries.

5.3.2 Sensitivity of Corona Model

b

- The sensitivity of the model is:@efinéd here as the
variations that occur in the output gésults when changes
are made to the input parameters while maintaining the
pre%ipitator dimensions constant. Two important input
parameters weré iﬁvestigated independently, those were the
ion ﬁbbiliti b; and the linear current density Jo. It was
also of importance to investigate how the model is affected
by neglecting the finite thickness of Ehg corona ionization
zéne and the assumption that the corona wire is a uniform

ion emitting source.

The following precipitator geometry and operating

linear current density were choosen for the above

investigation: £, = 0.127 mm, h = 0.1 m, s = 0.05m and Jp

s

= 0.34-mA/m, these values correspond to the conditions used
P

in the experimental work that will be cited in chapters
)

seven and eight.
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The assumed value of ion mobility that was used as a
reference was equal to 1.8x10 * m2/V.s, in which case the
wire potential Vo s evaluated by applying the developed

model to the above conditions, was-equal to 37 kvV.

To investigate the sensitivitf of the model to
variations in the magnitude of ion mobility, the ion
mobility was incréased from 1.8 to 1.9 and 2.2x10"* m?/V.s,
these correspond to a percentage increase of 5.6% and 22%
respectively. The result was that the value of Ve
decreased to 36.2 and 34.1 kV respectively. This is
expected since ‘it is a well known fact that the higher the
ion mobility, the higher is.the current, provided that the
voltage is maintained constant. It was also found that the
electric field at the collecting wall was reduced by 2.8%
and 9.5% for the increased value of ion mobility, although
the corresponding reductions in the wire potential V. were
only 2.2% and 7.8% respectivef;. This difference between
the drop in the electric field at the wall and the wire
potentiai is probably due to the non-linearity of the

problem.

To investigate the sensitivity of the model to

“

variations in the linear current density, the ion mobility

was assigned it's original value and the value of J, was
- -

L
increased once by 10% and the second time by 30% from 0.34

mA/m to 0.37 and 0.44 mA/m resectively. This resulted in
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the increase of V. by 4.0 gnd:IO;?.percent, from 37 kV to
‘ 38.5 and 41.2 kV resﬁectivelyu The increase in pogential
was accompanied by an increase in the electric field at the
collecting wall by about 4.6 and 10.6 percent reépectively;

Again the non-linearity is observed.

To investigate the effect of neglecting the ionization
zone in the developed model, a process similar to the one
used in the cylindrical case was used. . fhé process ié
based on initiating the‘fielé line trajectories from a
circular circumference of r = 3r, rather than r = r.. Also
the electric field at this new boundary is equated to E, at
r =r, as evaluated by Peek's formula . Finally, the wire
potential V. is evéluated.at r=or..

The above process gave a value of 36.99 kV for the
wire potential VC as opposed to the value of 37 kv obtained
by the oriéinal model which neglects the presence of an
ionization zone. No variations weré»gbqerved, when
applying the above process, in any other electrical

parameters.

The preceding analysis indicates that the output
results of the médel are sensitive to variations‘in the
s magnitude«of the ion mébility and the linear Eprrent
density, which are input parameters to the model. Actual

variations in the ion mobility value may be encountered
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during ekpérimental work due to variations in temperature,
pressure and humidity ({67]. Also variations in the
magnitude of the.corona current may occur as a result of
corona instability. Such variations are in the range of

+10%.

The aboye analysis also indicates that neglecting the
ionization zone and-assuming that the corona wire is an ion
emitting source is a reasonable assumption.
¢

Thus the developed model is believed to be suitable
for the purpose of predicting the electrical
characteristics of duct-btype precipitators. It also
eliminates the cost and time needed in constructing and
experimenting with proto-type models to measure similar

electrical characteristics.
<,

k)
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CHAPTER SIX

PRESENT STATUS OF WIDE-DUCT

ELECTROSTATIC PRECIPITATORS

6.1 Introduction

In recent years there has been increased interest in
the use of wide-duct precipitators, particulérly in Japan
and Europe. Some authors [68,69] have shown that the
precipitator efficiency in¢reased or remained unchaﬁged as
the duct spacing was increased for the same precipitator
volume. This was under the condition that the applied
voltage is correspondingly increased to maintain a constant
average gap field, E,, = Vc/h. This appears to be in
contradiction to the Deutsch equation (6.lfl‘

n o= 1= exp(-Au/v) ‘ (6.1)

Since the collection area is decreased with the
increase of duct spacing, these results would seem to imply
an increase in the magnitﬁde of the particle migration

, velocity, w. Although it is known that the effectiveb
migration velocity is governed by a number of factors
including electr{cal, mechanical and aerodynamic, the

classical value ‘for this term may be calculated using

equation (6.2).

v - | 126
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2Pe E_E.a
w = orc : (6.2)
3u
’

Frqg“eguation (6.2), it can be seen that the migration

veloéity;is proportional.to the precipitating field Ep at
the collecting wall as well as the charging field Ec' This
equation has long been considered to be independent of the
duct spacing, but the recently observed enhanced
peffermance of wide-duct spacings, suggests that the
migration velocity is a function of the duct épacing. Many
theories and experiments have been presented to explain the

so called wide spacing effect and are discussed in the

following sections.

6.2 Proposed Theory and Experiments for Wide-Duct

Electrostatic Precipitators

Heinrich [69,70] proposed a theoretical explanation
based on the classical Deutsch equation. According to his

theory equation (6.1) can be written as follows.

3

ek ’ (6.3)

n
[
1
2]

. n

where k Aw/vg = c%:/vg_ , @ (6.4)

c being a constant that is determined experimentally.

White [71] suggested another relation in which k is
given below as.

k =C’P/vg - (6.5)
\’"“\
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where c¢” is also a constant to be determined

éxperimentally.

In both equations (6.4) and (6.5), the collection area
no longer appears. It is interesting to observe that in
equation (6.5) the efficiency is expressed as a function of
power inpqt per volume rate of flow, whereas in equation
(6.4) the efficiency.is expressed as a function of current

input per volume rate of flow.

Misaka et. al '[68] made experimental investigations

-

using, fly ash samples and changing the spacing from 0.25 m’

to 0.75 m, while keeping the wire to wire spacing constant.

The applied voltage V., was changed proportionally with the .

spacing h, so as to preseFvewf const?nt average
inter-electrode field Ejy = Vo/h. They observed that the
migration velocity w increased with the increase of duct
spacing. Another important observation was that the
electric field at the collecting walls also increased with
the increase of duct spacing, this was stated to be the

result of the added space chard® in the larger spacings.

Noso [72] carried out experimental studies which were
based on constant current density operation for all the
duct spacings investigated. He showed that the performance

of wide spacing is not always superior to the conventional

C O\
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spacing in duct-type electrostatic precipitators, but
rather depends on the gas and dust conditions.

Furthexmgre, wide-duct spacings are not suitable for high
dust concentrations because of the“excessive sparking.

Thus it is recommended, for cases where wide-duct spacing
is economically justified but high dust concentrations are
involved, to use a conventional spacing in the first field.
where the concentration is high and use wider spacing for
the following fields where the concentration is less due to
égecipitation in the first field. More recently, this view
has been shared by Lindau and Matts [73]. Finally, Noso
recommended an optimum spacing of 0.4 to 0.6 m from the

. view points of- performance and cost. -~

s Matts [74] showed experimentally and by developing a

formula for the precipitator efficiency, that increasing
V'

the duct spacing would give better performance only if the

prec}pitator efficiency is originally high at the

PV

conventional spacing. He_ also observed that for low gas
velocities, increasing the duct spacing does not enhance
the precipitator performance. This‘was thought to be the

result oE the reduced turbulence.

Masuda and co-workers [75) conducted experiments in a
wet-type electrostatic precipitator for the following two -
duct spacings: 0.25 and 0.5 m. When doubling the spacing,

while maintaining a constant average electric field (Eav =

0

)

I e EEEEEEEE,——— =
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V,/h) for the twg/spacings of 3.2 kV/cm, the migration
velocity was more than doubled (2.16 times). When further
increasing E,y, to 4 kV/cm fog the larger spacing a further

rise in y was achieved (2.51 times).
7

Golkowski [76) developed a simplified electricdi model

Y

for the duct-type electrostatic Q;ecipitator/ué%ng lumped
parameters, He showed that the migration véiocity w is

proportional to the duct7§§acing through the following

¥
-~

equation. : s
K 2

cw o= —— I ) " (6.6)
cRg ) c( ).’

a ~

4

where K is’ a scaling factor that is determined -
egperimentally and Rg is the resistance of the ‘
inter~electrode gap excluding Ehe resistance at the two
electroées. Sincé Rg, according to {761, s proportional

13

to h, therefore w is-also proportlonal to.-h?

6.3 Characteristic Features of Wide~Duct Precipitators

(3

. {
The increase” of duct spacing at a constapf

‘precipitator volume results in cost reductions for the

discha;ge and collectiné'electrodes, rapping elements and
construction. On the other hand, the higher voléage '
. s
required‘reéults in cost increases for the power pack,
insylators, bushings etc. Therefore the magnitude of the

duct spacing, providing the maximum economical advantage,
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is léfgely aependent'on'the.precipiiator size. It is
recommended 175] not to resort to wide spéqing if the gas
volume to be handled is Iess than 1000 m®/min.

. . ! . A . a

N \

A distinpt advantage fs the egse 'in maintenance work

B
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enabled by theniﬁgreased gap. For wet-type precipit§€%rs —

. \
the quantity of. irrigation water needed and the capacity of

o ~

- the water treatmént system are reduced. The wide-duct

.spacing is pakticularly'attractive fo} roof-mounted

. 0 v N .
precipitators because of the reduced’ total weight.

- o

Ay ‘ i L2
L el * ’
-
h .
~7

. - F - N

The technical optimum value of duct spacing lies

usually in the range of 0. 4 tS{O.G m {75]. . The ,

-

borrespondiné voltage is 80 - 150 kV. v -

< "

13
k)

-~ -

6.4 Electrical Characteristics of Wide=Duct Precipitators

- e by . o
” L,,,- ?

It is evident, ffom the above discussions, that

IS

wide-duct precipitat®rs- are gaining wide popularity

primarily because of the cost reductions achieved without
T .o
.sacrificing performance. >
g .

-
2

« - N

Most .of the studies perfornied on wide-duct

.

: - @
f . péqgipitators, as presenteé‘in égction’ﬁ.Z, éeem to .
% . concentrate on the performance 6{ such precipitators and
) iitgle attention, if hné, is given to thg electrical .
! chatacﬁeristics persisting in such‘precipitators. It is *‘_
. -~
'/ (] 5 3
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proposed that a comparative study of the electrical :
- ’ ! -~
characteristics of wide-duct precipitators to those of

conventional spacings, can give some insight to the so

called wide spacing effect. . '
é R . [

% —

This can be readily achieved by implementing the
deﬁeloped corona model [77) for duct-type electrostatic

precipitators. This model is expected to be more accurate

- when applied to wide—ducttspgcing, as opposed to standard

: < .
spacing, since the increased spacing is more compatible to

-
-~

the assumptions used in the model.

T

No experimental data was found in the literature for
-~ : \ > o a )
the electrical conditions in widefduczigrecipitators. Thus

experimeﬂts were carried out on a laboratory scale
electrostatic precipitator. Details of the exper imental

set—-up and the mepsuring techniques are given in chapter
. L o a

3

-~ ‘seven.
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CHAPTER SEVEN

o
EXPERIMENTAL 'SET-UF .

7.1 General Description of the Appafatus

-

!

The experimental set-up is given schematically in
figure 7.1. It consists of a section-of a duct-type
electrostatic precipitator, which had one fixed plate while
‘the other was movable a;a could be adjugfted to achieve
plate to plate spacings of 0.2, 0.4 and 0.6 m. The>corona
wires used were 0.25 mm in diameter and made of chromel-A.
The wire to wire. spacings could be varied in multiples -of

P

N . 0.05 m. The wires were energized from a common bus bar

2o

connected to a high voltage D.C. power supply. The two
plates &ere grounded, either directlyior through an
ammeter. .A current probe similar in concept to that of
Tassicker's [78] was used for monitoring the .current

densiti distribution at the fixed plate along the

x - direction. An -exhaust fan was placed at one end of the

. &
N precipitator to prevent the build-up of ozone

concentrations due to corona discharge.

&
) \
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l. High voltage D.C. supply
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4. Fixed plate
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6. Slots for movable Elate
7. Probe and probe support
8. Electrometer

9. D.C. power supply .

10, Ammeter

Figure 7.1. Schematic top view of the experimental set-up
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7.2 Power Supply

3

4 -

The{power supplyeused was a Upiversal Voltronics high
voltage D.C. power supply, model BAL 100-18. The output
voltage was continuousiy adjustable from zero to 100 kv
with a maximum output current of 18 mA. The output voltage
was measureqd using the meter provided on the control panel

of the power supply and was calibrated with respect to the

potential drop measured across a 100 M{ high voltage

h .
resistor immersed in an oil tank and grounded through a

* digital milliammeter.

7.3 Measurement of Plate Current ¢

The ground wire from each plate was connected to a
switching board which allowed for the measureﬁent of the
total' corona current or the measurement of each plate
current independeﬂtiy. For the thrge duct séacings
investigated, it Qas fqund that the percentage Jifference
between thé two piate currents was less than .3%. This

indicates that\for‘all the duct spacings, the c%gona wires
iy . ®

8 : .
were reasonably aligned half way between the two plates.

" ¢

—y
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7.4 Design of Current Probe and Mobile Support

*
A’ special current probe was built and mounted on a

mobilé‘support. ‘The latter was then mounted on the fixed

plate‘through a slot such that it could be moved

brorizontally (in the x-direction), along the center line of

the fixed plate, a.distance of 0.1 m to the left and right
of the central corona wire.

A schematic diagram of the current probe and it's
support is shown in figure 7.2. The probe support consists
of, a rectangular galvanized steel plate to which was glued

a rectangular plexi-glass block.

The current probe consisted of a short length of
magnet wire that was soldered at one end to a panel mount .-

B.N.C. female connector. The other end, was set flush wi;h

{
e

the probe plate surface as shown in figure 7.2. The
AN

B.N.C. connector was fixed,td\gpe plexi-glass block-using .

S

}\\

four screws. < Ak

7.4.1 Measurement of Current Density .

-

The probe®current, in the order\Eﬁ nano amperes, was
measured by a Keithley Instruments electrometer model 602.
To evaluate the current density the value of the measured

current was divided by the probe surface area which was

» ?
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(1{ current probe
* ~ - -
, (2) probe insulation
a (3) probe plate
(4) fixed plate surface
>
\ »
RN

V///
||

PR §

- b
4 péh&é mounted B.N.C.
E: :]'female connector '

A\

= . ) e (not to'scale)

~

dimensions:

»

(1) , probe diameter = 0.126 mm

‘

(2) insulation thiginess of probe = 0.05 mm ¢
(3) thickness of probe plate = 1.6 mm

(4) thickness of fixed plate = 3.2 mm

(5) thickness of plexi-glass = 25.0 mm

Figure 7.2~Schematic diagram of the current probe
fter Tassicker [78])




equal to 1.28x10"°% m?. ,
7.4;2 Measurement of Electric Field

The technique developed by Tassicker [78] was adopted
here to evaluate the electric field at the fixed pla%e.
Thé complete details of Tassicker's technique and related

theory are given in Appendix 5.

7.5 Experimental Difficulties

¢

The major difficulties that were encountered during

experimentation are discussed below. ——

»

7.5.1 Effect of Exhaust Fan

. :_'\.0

» ‘: LAY

. . Y
When measurements of the current density distribution;;?*ggtu%

I3

were performed, it was found that the corresponding LA,

o o0 s,

. LS
readings to the left and the right of the central wire were ¥t

not identical. The higher values were consistently
observed at the plate portion nearer to the precipitator."
outlet. This was determined to be the result of the ion
drift by the: action of the exhaust fan. This was overcogg
by turning the fan "OFF" during measurements and later

turning it "ON" between each experiment to allow for the

ozone removal.
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7.5.2 Choice of Polarity

When measuring the probe currents under negative
corona large'fluctuatioqs were observed and in some cases
* the current would drop tz/about 10% of it's nominal
expected value. Thié was because the current probe had a
relatively small surface area, thus it was very sensitive
to the cbrona localized glow points or tufts that appear in
rapid motion on the wire surface in negative corona [9].
Thus it was found necessary to use positive corona to
obtain more stable readings from the current probe.

[}

7.5.3 petermination of Linear Corona Current

Initially only three corona wires were used. For the
three duct»spacings: 02, 0.4 and 0.6 m, the average
linear corona current density Jg (later referred tdﬁ;§>
Jz(average)) was held constant at 0.1 mA/m. This was
achieved by increasing the applied voltage until the total
corona current measured from the two plates was equal in

: &,
magnitude to.the vdlue calculated by equation (7.1).

(.

~

Itot = Jz.(No. of wires x length of a single wire) (7.1)

»
ghe three precipitator geometries were applied to the
charge simulation model using a mobility value of 1,8x10"

m?/V.s, a wire to wire spacing of 0,1 m, while maintaining

%m

(3
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a value of 0.1 mA/m for the linear corona chrfent. The
output voltage Vc evaluated by the model showed very good
agreement to the “corresponding experimental value for the
smalles£ duct spacing of 0.2 m. This was not the case for
the larger spacings. It was found that the‘;odel gave
values of‘VC'greater than the experimental values by 7% and

19% for the 0.4 and 0.6 m spacings respectively.

~When the number of wires were incfeased to 5 while
maintaining the same value of 0:1 mA/m for the average
linear corona current, the above percentage differences
dropped to 2% and 6.5% resepectively. It should be noted
here that only the experiments were repeg;eﬁ“while it was
hot necessary to repeat the computer runé since they are
independent of the, number of wires dé‘fbng as symmetry is

preserved.,

From the above results and from theoretical
expectations, it is clear that if an array of corona wires
are energized frém one bus bar, each corona wire will
emanate a different value of corona curreﬁt per‘unit
length. The outer wires, which are subjected to lesser
opposing electric fields, will contribute the 1arge§t)ﬁa1ue
of linear corona current, whileithe central wire will
contribute the smallest value of linear corona current.
Th;g phenomena has also been observed and investigated by

4

Lawless and Sparks [79].
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In the case considered here the corona dﬂéet voltage
Vo predicted by the model for the increasing order of duct
spactng was 10.9, 15.1 ané 19.5 kV. These values are
slightly higher than the experiﬁental values of 102;k,;475=ﬂ;’*’
and 18 kV. This is as expected, since the corona model
assumes a constant onset potential for all corona wires,
whereas for the experimental set-up the effect of end wires
is to cause the outer wires to readﬂ.bg;ona at .a potential
lower than that of the inner wires. Since the experimental
onset potentials documented here correspond to those of the
outer wire, thus it makes sense that their values should be
lower than those predicted by the corona model.

To evaluate the corona onset potential for the central
wire, the formula developed by Lawless and Sparks was used
[79]. Aapplying this for%ula to the three duct spacings:

h =0.1, 0.2 and 0.3 m, ié was found that the corona onset
potential at the central wire was equal to 10.8, 16.1 abd

22.4 kv, while the corona onset potential at the outer

wireé was equalato 9.9, 13 and 16.3 kV respectively. It is | '
interesting to observe tha£ the value of onset potential
bredicted by the corona model, lies in between the values

of onset potential predicted for the central and outer

wires using Lawless and Spark's relation. This was found

to be the case for the three duct spacings investigated. .
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Accorg;ng to the precééding analysis, it is clear tth
for an array of wires connected to the same bus bar, the \
onset potential for each wire is different. THis
difference approaches zero for an infinite number of wires
such as assumed in the charge simulation médel. Thi's
explains the better agreement observed between the corona
model results and the experimental results for five wires
as compared to three wires. Based-on this, further
agreement may be achieved by increasing the number of

corona wires in the experimental set-up. This was not done

because of construction limitations.

Since the appargtd%as constructed without the
provigion for measuring the corona current emanating from
each wire independently, it was considered sufficient to

evaluate the linear corona current Jz of the central wire

by integrating the measured current density distribution
along the plate from a point below the central wire to the
center line between corona.wires, as shown Ey equation
(7.2).

s
J, = 4 J J.dx ) (7.2)

2
o

The value of Jz evaluated from equation (7.2) was used
(later referred to as Jl(integratéd)) as the input
parameter to the charge simulation model, rather than the
average experimental linear current density that was

evaluated by equation (7.1). Using this new value of J2 in

—_ D vy S

b

4

<
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the developed model gave good agreement to the experimental

data for all the.duct spacings investigated. This is

2 -

clearly seen from Table 7.1.

7.6 Experimental Procedure and Results

. Prior to each set of experiments the corona wires and
the probe plate were cleaned with petroleum solvent
(varsol). Weights were aéded to the ends of the corona -

wires.to ensure straightness and minimum vibration. all

experiments were conducted at room temperature and

-

pressuré. The ambient relative humidity ranged from 40 to

65 percent. - \,

» —

A

The experiments were repeated a minimum of four times

- >

for each geometry and for each operating condition. The
Reproducibility achieved ranged from 3% to 12% for
moderate and low values of linear current density

respectively. -

//
e

e

R /
From these results, the validity of the charge

2

simulation model can be confirmed for wide duct

electrostatic precipitators. fThis is performed in the next

chapter together with an analysis of some important

1

electrical characteristics of wide duct precipitators.
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CHAPTER EIGHT

-«
»

ANALYSIS OF WIDE-DUdT PRECIPITATORS .IN fe

.
T . . ¢

» CLEAN AIR CONDITIONS

€ © K _t

8.1 Introduction NN )

2 . +
{ ) ’ “ ’ ‘ \> > ) b
Lo ‘ The .objective aof Rhis chapter is to determime the .

changes in the electrical conditions that occur in

-

duct-type precipitators as the—duct spgqihg“ie increased.

This involves the evaluahiop'of_the electric field, the
potential, the -current density end charge density

' - e

mdlstrlbutgbns in clean air condltlons:
, , ® - . . - ..
o 4
« The corona model [77], presented in chaptenxflve, is

@ “ /
» used her€ along with the experimental measurements that
é@ .., ¢ were performed on- the experxmental set-up presenteq in
chapﬁei‘seven. i ‘
1 ) " ¢ e & ' L .
- 8.2 Wide~- Duct Spacing in Clean Air ) ’ ’
:_ R t '::1\’,.u .5
_ . - ®
- L et In this study the only geometric, pagameters are the
e C wire to plate spac%ng*(h), and the wire to wire spacing

-

(2s). The corona model is applied.to a duck precipitator
with variable duct spacing under the follobing two gener'al

. operating conditions: °

2

-}
Qj

constant—l-inear—corona—current Jz.

» : t 1 ‘45
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b) Constant wire potential V .
-~ ¢
The results of each operating mode are presented

¢

separately in the f6llowing sub-sections.

o
2

-

. ' 8.271 constant Linear Corona Current Density

For a variable duct spacting precipitator the following

two Cases were investigated under the condition of constant
" \ . LT .
linear corona current density JQ.

-~

« 1) Constant spacing between cdrona wirea_(Zs).

ii) ‘Constant ratio of wire to plate and wire

- . . . -

to wire spacing (h/2s). '

-

A\

In both cases,-the corona wire radius was equal to
0.127 mm {as’in the experimental éet—up), the 1ineai corona

' , current JQ was’ held constant at 0 1 mA/m and’the ion
- < <
’ mob111ty was assumed equal to 1. 8x10 “ m2/V.s cerrespondlng

- < -~
: tq the,condltlon for pesitive corona. (_i\
N [N .

»

In the @??Zi”éése, the wrre to w1fe spa01ng ‘was held :

constant at 0.1'm., It is'impoytant to mention here that

:
- H -,

-  this case corresponds to constant current density at the

VT 'collectlng walls. ‘The three wire to plate spacings
1nvestlgated were 51m11ar to those achleved experimentally,

b
h E 0.1, 0.2 and 0.3 m, ¢ .

1
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Figures 8.1 to 8.3 give the experimental and
simulation results for the current density distribution at

. the collecting piate for the three duct&spacings. The

corresponding electric field distribut{%ns at the plate are

given in figures 8.4 to 8.6.

As expected, usfng J2 (integrated) gives better

o

agreement to the experimental data for the duct spacings of

7 0.2 and 0.3 m. For. the smallest spé%ing both the average
and integrated linear current densities were equal, as seen

from fiqures 8.1 and 8.4.

-5

N . Since, in this section it is only intended to

investigate the operational mode of constant linear corona

-
]

current, then only the simulation results which used’

Ji]average)'= 0.1 mA?@ will be considered in the following
L »
discussion. :

It can be seen from fiqures 8.1 to 8.3, that the”

potential necessary for maintaining a current of 0.1 mA /m
was 23.4, 53.5 and 92.2 kv for spacings of 0.1, 0.2 and

0.3 m respectively. This corresponds to an average field

-

(E = V./h) of 2.3, 2.7 and 3.1 kV/cm. Thus an increase

av’

s X o o,
in the duct spacing by a factor of 3, required an increase °

» .
<

’ of potential by a factor of 3.9 to maintain the same

*

current.

' /

ar //
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% experimental
LN

i}
sl
0]
o
(]
L]

— simulation

Current
[
[82)

Distance along the plate (cm)

= Jy (integrated) 0.1 mA/m..
h =0.1 m. J ¢ (average) = 0.1 mA/m
s =0.05 m. V., = (integrated) = 23.4 kv

V. = (average) = 23.4 kv

Vc(exp)='22.5 kv

B Figure 8.1. Experimental and simulation current density
distributions at the collecting plate for

h=0.1nm.
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¥ — simulation (using Jz(integrated))
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g --- simulation (using J, (average))
i

O 1.5
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0.0 1.0 2.0 .0

e = 0.127 mm

h =10.2

3.0
>

Distance along the plate (cm)

Jl(integrated)

m J, (average)

0.08 mA/m

0.1 mA/m

Ve

(integrated) = 49.2 kV

v (averaéé) = 53.5 %V

Cc

Vo (exp)= 49.0 kv

Figure 8.2, Experimental and simulation current density
distributions at the collecting ‘plate for

h—=—0+2—m-=
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Figure 8.3. - Experiment;l and simulation current density
‘ distributions—at-the-.collecting--plate for-h-=.0,3-m

clexp)= 77.0 kv

0 2.0 " 3.0 4.0

Distance along the plate (cm)

Jg(integrated)

0.066 mA/m

]

Jy (average) 0.1 mA/m

Vo = (integrated) = '76.7 kV

<
]

(average) = 92.2 kV
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h =0,1
s = 0.05
. E
Figﬁre 8.4.

r. = 0.127 mm

Distance along the plate (cm)

0,1 maA/m

Jz(integrate&)

-~

0.1 mA/m

o

(integrated) = 23.4 kV

\,Jl(average)l

]

Ve

Vo = (average) = 23.4 kv

Vc(exp)= 22.5 kv

Experimental and simulation electric field
distributions at the collecting plate for
0.1 m

h =
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Electr%g field
O
1

¥
0.0 T T T T T T T 1 1
0.0 1.0 2.0 3.0 4.0 5.0
Distance along the plate (cm)
. . r, =0.127 mm J, (integrated) = 0.08 ha/m
h =0.2 mnm Jz(average) = 0.1 mA/m
s =005 m v =

c £ (integrated) = 49¢2 kV

]

Vc (average) = 53.5 kV

VC(eXp)

49.0 kv

Figure 8.5. Experimental and simulation electric field-

distribution at the collecting plate for
h=0.2m ‘
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% experimental

-

_ sﬁmulation (using JQ(integrated))

-~- simulation (using J, (average))

Blectric field (kV/cm)
o
“©
\

0.0 — T T 7
0.0 1.0 7 2.0 3.0 4.0 - 5.0
Distance along the plate (cm) ‘
ry = 0.127'mm Jg(integrated) = 0.066 mA/m -
h =0.3 m B J, (average) = 0.1 mA/m
s =0.05 m ' Vo E(inte,grated)"= 76.7 kV

V. =(average) = 92.2 kv , .

o V_(exp)= 77 KV

Figure 8.6. Experimental and simulation electric field

distributions at the collecting plate for
h=0.3m -
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From figure 8.1, it is seen that the current density
distribution drops off in magnitude towards the center lipe
between corona wires. This is in agreeﬁent to the h
experimental observations of FeliéiQ@}O] and Tassicker
[29). Incregsing the wire to-plate spacing from 0.1 to 0.2
and 0.3 m, gfsin figures 8.2ﬂand 8.3 respéctively, resulted-s
in a more uniform current density distribution at the
collecting walls. This is due to%ihe increased uniformity
of space charge adjacent to the collect%ng walls, as
indicated by thé results of the corona model for the three
duct spacings, while ﬁaintafning the linear cgzona’current
constant.

<

Although the experimental results for the electric
field distribution at the collecting plate vary within a
relatively large range (see figures 8.4 to 8.§), the

simulation results'(pérticulériy when using Jz(integrated))
give a reasonably good«}it-te;thgm. “From these figures, it
is seen‘tbatmfor a consténg_ligggr corona current of 0.1
mA/m the electric field at a point directly below the wire
was 2.5, 3.5 and 4.3 kv/cm for the inc?easing order of duct
spacing. The wider the duct spacing the more is the
decrease in the electric field near ghe center line between

corona wires. The field drops to 2.4, 3.3 and 3.8 kV/cm at

this center line for the same increasing ordsr of duct

1

spacing.

[<4

7
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From figurg 8.7,’it is also seen that the charge
density at the walls decreased as the duct spacing waé
increased. This is expected, since for the three spacings
invest{gated the linear corona current JR was held
constant, thus a reduction in the charge density had to

exist to counteract the increase in field as the duct

spacing was increased. ' B

It was also of interest to notice that the point of
minimum field, along a line extending from wire to plate,
was alwayé approximately 2 cm away from the corona wire
regardless of the duct spacing and that the field
distributions along that line were similar for the three
spacings investigated. This is shown in figure 8.8. It is
interesting to compare these results with those of
Sekar [25]. Referring to his figur& 7 it can be seen that

he also showed ghat.the point of minimum field, along the

same line, occured approximately 2 cm away from: the corona

. {
wire. However, the field distributions were different in

'magnitude prQBably because he had different durrent levels

for the éhreéhspaéipgs. This phenomena could be a possible
explanation to the'éxperimental observations of Inculet

et. al [80]. In . their work, they were charging pellets by
shooting them in a direction parallel to a corona wire in a

cylindrical geometry. This was performed for the, entire

4 a

- [ ‘_! ; N
inter-electgode space in the radial diréction. They

observed-that—adjacent. to.the wire the charge acquired by
>

‘
i
i
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Figure 8.7 Ionic charge density distributions alongd the
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linear current density.
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the pellets was relatively high and dropped to.a minimum at

A ]

about 2 Cm #way from the cofona wire and then increased

' C 4 ‘ ¢
again further out in the gap. According to the previous
analysis, it is most likely that thevpoint where minimum’

charging occured (adjacent to the wjire) corresponds to the

point of minimum field.

»

*

.

5y

In the second case, the ratio of wire to plate and ¢

wire to wire spacing was held constant at 2:1, while

keeping Jy = 0.1 mA/m. The three spacings investigated

were similar to those of the first case.

-
-

The, potential that was required to maintain the ’
prescribed -current was 30.4, 53.5 and 76.6 kV for the duct
spacings of 0.1, 0.2 and 0.3 m respectively. Thus for a

constant ratio (h/2s), the increase in potential to - °*

s

. N
maintain the same current level was a factor of 2.5, when

o

Eripling'the duct spacihg. This is coﬁsiderably lower than

-

that for the first case (constant s), where the factor was

@
—~

3.9. ) -

i [

: .+ s aoe
The field distribufions along the plate for the three

spacings are shown in figure 8.9. It is interesting to

observe that all the distributions have nearly the same

value along the ‘plate, with the smallest spacing having the

b

highest magnitude.

. .

»
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5. << From® this table it can be seen that for a constant
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It was also found that for the three spacings, the

PR AT Y
N :
.

, ) o. point of minimum field along a line extending from wire to
' " hd ) ’ " v . o : N ’
. : plate was at about 2 cm away from the corona wire.

* . -4 . .

.

[ 4

‘Taple 8.1 includes some of the significant data for-

» et

the prev1ously presented precipitator dimensions operated
J T . at a constant 11near .corona cugrent of 0.1 mA/m. In the
table‘ the ratio of the electric field at tbe ‘plate (E ) to

e N - . the average electric field in the gap (E = V_/h) is
S e .
- deflneqeag the €lectric field enhancement factor.

. ~
. <. .
5 . - : ot
»

W '

-

wire to wire spacing the field enhancement factor increases

from 1.1 at h =.0.1m to 1.4 at h = 0. 3m, but'what is more

51gn1f1cant ‘is that the absolute value of the average §1e1d
) is 1ncreased by 35% and 51m11ar1y the value of the
field at the plate is 1ncreased by 72%. ‘This 1mp11es

. - > bétter precxpltator performance,'51nce the partlcle ] =
“ charg1ng and prec1p1tat1ng fields are both 1ncreased
T Con51der1ng that the m1grat10n verbcxty w, 1s proportlonalb

e A e

to (EavEE)' then fon,tﬁe above percentage anreasee the'

ay

R <

‘predlcted 'increase in mlgrat1on veloclty would be, 132% or

»
. -~
A

. N LA .
¢ more than doubled;fr 5 ce . N .
- A L e Y, "oy N

. . : ) Y ""'3"-?.@.,, - : 7%

0 4
4 - . . . P 4, ,s? . "
3 :

A d - e N -
- kS W‘ e b L]

PR v
- e & .

b T@*aehleve theeabOYM"percentage 1ncreases, the appl1ed
' ' - §\.\ § .
. . potential had to be inpreas d by a factor wof four, whlle B

2 -

the collectipg anea wa rngded only by a factor of three
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(assuming constant precipitator volume). This fepresents a

hd
I3
hE

typical situation where the economic factors governing the
capital and operating costs of the precipitator have to be

carefully considered to justify the increased duct spacing.

For a conséant ratio o‘ (h/2s), the field énhancemgnt
factor increased from 1:2 at h=0.1m to 1.4 at*h = 0.3 m.

-~ This was not accompanied by an' increase "in the average
- field, but rather‘a reduction was observed. Similaily, the

.+ field at the platé was insighificantly changed. Thus
o .
: compared to the case of constant wire to wire spacing, one

< t

would not expect any enhanced collection in the

precipitator performance. ~

From table 8.1, it is also observed that reducing the

4

L wire to wire. spacing by one half while keeping the duct
|

.

spacing constant, would require'an increase of about 30% in

. . ' potential to maintain the same current. This is
- ' .accompanied by an increase of 30% and 44% in the average
-y "~

L ]

, .and plate fields respectively, or rather an increase of 87%

> -<dn’the migration velocity, L s

S | “ ‘
Y . CoL B . ‘
l“mnéj ' From the analysis of table 8.1, the following

N 1

conclﬁsions can be made for an operating mode of constant-

. ., - «/ . N
lineaf corona current. , ‘ y ‘ ‘ ’




s

g ARt

163
i) For a given precipitator volumg; increasing the ~
duct spacing while keeping the wire to wireespacing
constant,'can enhance the precipitator performance.
For this case, capital cost reductidns are achievable
" as a result of reducing the nnmber of corona wires,
collecting electrodes, supporting members, rapping
elements etc. On the other hand, as a result of the
higher voltage needed, cost increases are encountered
in the power supplies, insulators, bushings etc. As
' ' for the operating'costs, the corona power per wire is,
increased while the total number of wires  is decreased
and thus the net change in costs will depend upon the
relatlve magnltudes of these factors. -Furthermore,
¢ost reductions may be expected in maintenance. Thus
"this approach&#&or perﬁbrmance enhancement, has also
to Se studied from the econqmical point of view.
11) Fcr a glven prec1p1tator volume, 1ncrea51ng the
;  . duct spacing while keeplng (h/2s) constant, w111 not
| lead to any enhancement 1m the pre01p1tatcr
performance and may also~result in cost 1ncrease. The

cost increase 1n this case wbuld probably be less than

that for case (i), since the increase of duct spacing
. . . N ;

oo is also-accompanied by.a decrease in the number of
.. corona wires between each tWo‘shccessive plates. This

in turn reduces the amount of necessary accesscrles -

- —— +

Such as bushlngs, power supplies etc.
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iii) Finally, for a given precipitator volume within the

range of experimental pérameteés studied here, the
results suggest that reducing the wire to wire spacing'
while keeéing Ehe duct spacing constant should enhance
the precipitator performance. However, this method of
performance enhancement is accompanied by increase in

costs.

8.2.2 Constant Wire Potential

o

For this' mode of operation,/ the wire to wire spacing

was held constang,ae 0.1 m, the cogoha wire radius was -
< -

0.127 mm and the potentjal was fixed Et“§§ KV. The three

duct spachgs ;nvestigatea were 0.1, O.Z\epd 0.3 m.

N LT

The valde of -the lineag cur@eneﬁaensity J, at the

central wire, corresponding to V, = 35 kV, was evaluated by
o ' - .
” integrating the measured current density distribution at

the plate (refer to equatlon (7 2)) These integrated

values for Jg were found to be-equal to 320 ig p 34+§ g

and 77 -0. g pA/m for the duct spacings of 0. l, 0.2 and. 0. 3 m

Yomg :J ‘«"‘f's .

respectlvely ‘ P Lt
P“/f‘“ 'ﬂ’fsi ’ . {'/‘?A ‘:.
g 5.”‘ & { \“((:ﬁ, sty
i & § R Lo . s
e o8 ?
k(‘%

2~ Prom the above experimental ranges, it can be
concluded that for a more Stable corona, such as for the
‘smallest duct spac1ng, the exper1menta1 error is relatlvely

¢

decreased.
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B4

The above values of Jy were applied (as input
%
parameters) independently to the corona model along with

their respective geometrical values. The value of ion

N

mobility used was 1.8x10 ' m?/V.s corresponding to positive

I " B

corona.

, £

Results of the model indicated that the potential Vg
necessary to maintain the above values of linear curteént
densities was 36, 35 énd,33kv for the increasing order of

duct spacing. The reason for the slight deviation of the

calculated'poéentials from thé experimental value.of 35 kV;" -

is probably due to the éxperimental efror in measuring the

current density-. {

1 3
»

) ‘ ' e,
- - . ‘\-“‘.1 ) :
+ The electric field distributions at the collecting

plafe for:the three'spacings, asAevaluaEed by the model and

measured experimentallY® are shown in figure 8:10. -
- PO N K . //

. Figures 8.1lvto 8.13, givesdthe current density

-

distributions at the collecting plate for the three duct

spacings . . "

.
. u -

- P s
<. =, g ~

It was“of interest, in this case, to find that the
average ionic charge density along a line extending from ,

wire to plate was reduced to 50% and 7% for h = 0.2 and 0.3

‘m respectively, as compared to h = 0.1 m. The -

v T : 1
corresponding reductions jif -the average electric field AR

W

= o ag e S v

w7 ‘ Lo MR
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f . Figure 8.11. Experimental and simulation current density

£ ¢ distributions 'at ,the c¢ollecting plate for

3 N ., constant applied potential and h = 0.1 m
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7

’

(Eav) were 51% and 28%. The large difference between both
percentage reéuct;qns for the 1arge££,duct spacing is N
érobably'becaﬁse the électrostatiqﬂf%gld (at 35'kV) is
comparable in.magnitude to the eiectfic field due to ion
space charge: This is more clearly understood by
evaldating Ehe'ratib of the.- average electrostatic field
(Vb/h) to the average ionic field (Vé/h) forvthe three duct
spacings. When this was performed the results were: 31,
43 énd 55% for the increaéing order 6f duct spacing.

Y . i
. o e _Table'8.2 includes some of the significant data for )

the préViousiy presented precipitator dimensions operated

at a constant potential of 35'KVC.

k)

.. It is clear from -this table, that incréasing the duct

. , spacing while keeping the applied potential constant will
i : . . p
result in the dggraqatipﬁ/g;,the precipitator performance.

. e . [
: This is simply because of the reduction in both the average

and the plate fields (ﬁav and Ep respectively), which leads

to, a reduction in the migration veloocity w.
|

‘So far the corona model only accounts for ionic space

N

éharge. It is of significant practical interest to observe
the changes in the electrical conditions. if space charge

effects due to charged particles were also considered, for
. ’ . ‘ ~
ek - . .
both the conventional and widepduct spacings. This study
1 Q‘ * :
is presented in the following chapter.

Ly ,
. ¢ \ - £

- - P
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CHAPTER NINE -~ Ve

&

b

VMODELING OF CORONA QUENCHING PHENOMENA FOR

CONVENTIONAL AND WIDE DUCT. PRECIPITATORS ° . ‘

Y * -

9.1 Introduction

’
- -
o .

L5 » s

This chapter describes tq§ results of an investigation
: ¥, N
of the corona quenching phenomena in conventional and,

wide-duct®precipitators. The Corona mddel presented in

chapter five is modified here to accéunt for particle'sPaqs

24

charge in the intér—electrode gap. The study inGolves the
evaluation of the Qorential, the e%ectriqﬁfield,.the ionic
and particle space charge degéities as well és the éhrrent’
density distributions. éérticular consideration/is given

to’ the effect of particie space etffarge on the field'

.enhancement at the precipitator walls in wide—-duct . e
e} ?

precipitators and standard.precipitators expdéed‘to ¢orona

. \' o s
quenching.

-
s, £ . -

#

9.2 Charge.simulatioh as Agpiied to Corona_ Quenching
. ] . , PR

Vo - > -
» A ‘ v - ¢ . ‘
—

)

An approach sfmilar to the one used for the

& e M -

'cylind}icd} geometry was jadopted here to.include the effect

Co . e - .~ o¥
of patti¢le space charge/in the corqQna model developed for
’ , Y

L -

. ’ o
duct-type precipitatorg. - .

- . (\S‘Qﬂn o

3
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Thus, the célculation procedure involved evaluating
the wire potential Vo required to ma%ntain an assumed
linear corona current Jy. The wire potentiaf was éésumed
to be made up of three components Vo’ AVi and AVp. The
first component being the corona onset potential Vo the
second Avi represents the potential required to establish

the ionic space chiarge (pi) and the third Avp represents

"the added potential drop due to the particle space charge

e ] -
0. Thus in figure 5.6, each line charge in an individual

p
element was replaced by two line charges, one representing
the ionic charge and the other representing the particle

charge within the element.

As in the cylindpical case, it is assumed for the duct
géometry.thét turbulent remixing maintains a uniform
digtribution of the particles across the duct. Therefo;e,
the éarticles contribute zero net current in the field
direction in this turbulgnt zone, in which case the curreng
density in the turbulent zone is given as,‘\\ ~

J = 0b.E CL(9.1)
on the other hand, in the region immediately adjacent
to thé grounded plaée, previously referred to as the
collecting zone, where the collection of the chargéd
particles contributes a finite current component in the
field direction, the current density is given as,
J = (p;bj + pgb,)E " - (9.2)

The value of the uniform particle space charge
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density; pé, is calculated as for the cylindrical case |
us{ng equation»(9.3).!

“ pI; = geoPSE;V - (9.3)
The corona quenching model differs from the corona in
clean air model in the following respects:
i) Each element in the new model includes an extra
\line charge to account for the particle charge density.
The magﬂitude of the line charge (qp) is evaluated
according to equétion (9.4), which assumes a uniform
partigle space charge density, Dé, according to equation

(9.3). AN

°

qp = pp(area of element) (9.4)
ii) The current contributed by the chéfged particles
according to equation (9.2) is only considered in the set
of elements bounded by the last two equipotential contours

(refer to figure 5.2).

o iii) In carryihg out the calculations in the simulation
routine, the electrostatic case is first evaluated as in
the previous model. Later, the uniform particle space
chargé density p; is evalua;ed according to equation (9.3).
For each congour , the particle charge (qp) wi&hin eacP

element is evaluated ug}ng equation (9.4), while thelionié

charges (q.) within the.same elements are evaluated such
E i

that they alone satisfy the current continuity equation.

»
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Also for each\contour the image charges that are required
to preserve the boundary_ponditions takg into consideration
Ehe added effect of the charged'pargiclég. In extending a
trajectory out from one contour to the other, the particlé
eharges (qp) are treated in the same manner as the ionic

<

charges (qi).

9.3 Corona Quenching in Conventional Duct Spacing

S

- In both mod corona in clean air and corona
~quenching,‘the in€af corona current J, is‘defingd as an -
input parameter and the wire potential V_ is obtained as

one of the output parame£ers after the computer run has

been completed. Thus a cpmparisoq of different

precipitator geometries opérated at the same current lével

is easily achieved. Compar ¥sons based on constant voltage

operation would be very costly in terms of computer time.

To obtain sbme’insight as to what values of linear
coroha current J, should be used under conditions of dust
loading to apgroximagely achievé a céhstant operating -
voltage, several runs of both model's were performed on-a
conventiopal duct spacing precipitator having the followiné

dimensions: h = 0.1m, 2s = 0.1 m -and r, = 0.127mm.

“
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Wwhen using the corona in clean air.model, two linear

current densities were investigated, 0:1 and 0.5 mA/h.
' y -

»

When using the corona quenéhiqg model, three wvalues of
3, were investigated, 0.01, 0.3 and 0.5 mA/m. For these
three cases the dust loading p; was assumed equal to
‘ﬂ.44x10'“ c/m’ . "From equation (9.3)‘this corresponds to,

S=5m/m, E;V =5 kV/em, P=2,¢ =1 and a = 5 um.

o
.&‘ .
Results of the five runs were collected to approximate

the two V-I characteristics shown in figure 9.1. From this
figure‘it i§ obvious that predicting the corona suppression
ratio .,necessary for maintaining a constant wire potential
is a very difficglt task and requires some iterative

scheme.

It was of "interest to observe the total charge density
distributions (ionic + particle) along a line extending
from wire to plate, these are given in figqure 9.2, For the
1owe;t current the ionic charge density was on the average
about 9‘percent of . the total charge density, this increased

to about 70 percent for the highesp current. .

Using the same predipitator geometry and holding J2
constant at 0.5 mA/m, runs were performed using the corona
quenching model for the following values of pé = 0.0, 0.44,

0.88 and 1.76 x10 * Cc/mf .

Y T
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Figure 9.1. V-I characﬁerisﬁics for a conventional duct
spacing precipitator under clean air and dusit
loading conditions
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Figure 9.3 shows the voltage required to maintain this

current for the different values of pé. It is interesting

s s .

to observe that this rélation is linear indicating that the

voltage drop AV_ due to particle space charge is directly

P
proportional to the particle charge densityf

The electric field at the plate at a point directly
below the corona wire was 5.0, 8.6, 12.8 and 21.8 kv/cm for
™~ the increasing order of p;. Such high values of electric
field at the collecting wall would cause the precipitator
- to.go into breakdown. This* indicates that the assuméd
charging level for the particles cannot be.attskned
physically. Thus either the linear corona current or the
particle charying factor & or both have to be reducedvto
match real life operating conditions.

9.4 Corona Quenching in Wide-Duct Precipitators

To investigate the quenching phenomena in wide-duct
precipitators, the three sﬁacings pLeviously presented in
clean air were studied, those were 0.1, 0.2 and 0.3 m. For
the three spaciﬁgs, the: wire to wire spacing_was 0.1 m and

L Ia f 0.127 mm. )

The” above three spacings were investigated for the

. following two cases:

e
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-

i) A uniform particle space charge density is held
constant at 0.44x10" " C/m3 and the current JZ is reduced to
one tenth its value compared to the clean air condition (J;

= 0.01 mA/m).

r . }

/

ii) The linear corona current was held at 0.0l mA/m and
the particle charge density pé is reduced by one tenth to
0.44807° ¢/m’.

For the first case, it was found that the potential
required to maintain a current of 0.01 mA/m was 36.8, 119
and 253 kv fof spacingé of 0.1, 0.2 and 0.3 m respecti:ely.
Again the last two values of potential represent -

t
unrealistic operation presumably because the assumed value

of particle charge density is too high.

.m‘ -
For the second casé%“more realistic operating
conditions were achieved since the wire potentials were 15,

31 and 54 kV for the increased order of duct'spacing.

Once more'it'can be observed that an increase in the
duét spacing, corresponds to an increase in the magnitude
of the electric field at the collecting wall. This is
shown in figure 9.4. When the duct spacing was increased
by a factor of 3, the electrfc field, at the'plate at a

point directly below the corona wire, was enhanced by a

factor of 2. This is even a larger enhancement than that
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which was observed for clean air (1.7) for the same ratio
of duct spdcing but for only one tenth the amolnt of -
current. This gxtra ;nhancement is due to the presence of

—

the particle space chargé.

Some of the significant data associated with the two
particle space charge densities investigated, at consggit
linear co%ona current of 0.0l mA/m, are given in table 9.1.

It is of interest to observe that the field
enhéncement'factor (Ep/EaV) increases as the duct spacing
inqreases. When the partigle charge density was increased
teg timeg while maintaining the value of J, constant, a
significant increase in the field enhancement factor was
observed for all the spacings as EOmpared to the lower
value of particle charge density. This illustrates the
contribution of particle space charge to the.electric field
enhancement at the collecting walls, It should bg noted
ﬁere that £he last two values in table 9.1 represent
unrealistic operation, since the electric fields at the
plate are higher than 6 kV/cm, in which case breakdown
would prob&bly occur.

5

For the case where .= 0.44x10" C/ms, increasing the

1%
duct spacing by a factor of 3, caused an increase of 20%

and 100% in the average and plate fields respectively.

This corresponds to an increase of 140% in the migration
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velocity, if one assumes that w is proportional to (%NJEP)'
This percentage increase inw is large than that obtained
for clean air conditions (135%), particﬁlarly when
considering that the linear current density Jy and éépliéd
voltage V. for this case were oaly 10% and 60%,

e

respectively, of those values used in clean air.

It seems, from table 9.1, that anfappropgiatefmaximum — e
particle space charge density lies in the mid-range of
0.44x10-" and 0.44x10."5 Cc/m®. This result is confirmed by
the recent work é{LLindau and Mat£s [73]. In their work
they showeé that if the particle charge’éensity is less' ,
than 107° ¢/m?3, in conventional duct spaé}ngs, then the
effects in terms of corona qugnching and h%gh collecting
plate‘field strgngh (causing breékdoyn) are limited. For
larger values of particle space charge degﬁity;Athese .-
effects become more significant. They also observed. that

increasing the duct spacing enhances these effects.

Finally, from the abobe analysis, it cén be seen that
the corona gquenching model is a convenient method to
evaluate the electrical effects causedﬁﬁy changing |
experimental parameters such as,'duct width, wire to wire

spacing, wire radius, linear current density and particle

space gharge.




CHAPTER TEN

CONCLUS IONS

-

This chapter elaborates on the main conclusions,
recommendations and suggestions for future studies. These
are summarized as follows: : -

-

A. Preliminary Study

.Initially, a study was performed.on the major
analytical solutions and numerical methods‘[22, 23, 24, 25,
33, 3§ and 41], suggested by other researt¢hers, for solving
.Poisson's equation and the current continuity equation
which govern the electrical conditions in the duct-type
geometry. The following conclusions were made from this -
study: - ‘ -

i. The V-I cha;acterisiics for duct-type precipitatorg
may be evaluated using P. Qooperman's and
G. Cocperman's suggested relations, bearing in miﬂd
that they are both approximate solutions. These
relations can give good agreement to experimental
,méasurements under certain S}réumstances.

ii. The use of conformal transformations is another method

"by which the general shape of the V-I characteristics

*

may be obtained.“ But this yethod is not recommended

for evaluating electrical parameters, such as

= Y- Ty e e e o
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potential, electric field and charge density;'in the

inter-qlectrode gap because of 'it's refatively pobr

accéfacy. )

iii. The finite difference techniqﬁe is not sufficientlyc
accurate particularly when ;sing a grid where all the

_elements are of the same size. The technique could

probably be enhanced b; using a successive graded
grid, but this would require considerable effort for -

setting-up the problem as well as increase the

computational time.

hY

iv. fhe finite element method appears to be the most
j accurate ané reliable technique currently availaBle in
the literature, but still further improvement is
) desirable in the method of evaluation of the charge
density afstrﬁbution; The draw-back of this technique
is that it requires excess computational time as

N compared to the other methods mentioned above.
B. Cylindrical gigyetry

The charge simulation technique was successfully
adapted to model the electrical conditions that exist in
cylindrical precipitators. For Ehis geometry, three models

?

were developed.
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| o . Thé first model represented tﬁe elgg%rostatic_caSe,
i i o where no space charge exists. The resuii; of the model
| were in good agreement to the voltage and field - o
distributipn;’askevaiuated by the anal?tical solution of
Laplace's equation for this geoﬁetry.
, ”
The second model represented corona in clean air.
These results also showed good agfeemgnf to £he voltage,
‘ field and cha{ge density distribution; as eval&ated by the
analytical soluti'on of Poisson's equation for this

geometry. o 7

The third model predicted the potential, electric
field, ionic and particle spggé charge density
distriputions in the presence of dust loading (corona
quenching). This model showed good agreement to the
results of the suggested modified solutioﬁ of ‘Poisson's

equation in the presence of uniform particle space charge.- ),

The modified solutionAmentioned above di}f;rs from

that of Pauthenier's classical solution [52] in that it

¢

—— assﬁmes that the inter-electrode gap is divided into two
zones. The first being the turbulent zone, which )“
constitutes the main volume of th;hprecipiQator. In this
zone the corona curreﬁt is essentially carried only by the
ions while the charged particles contribute a net zero

component in the field direction. 1In the second zone, * .
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which is adjacenz/fo the collecting walls and is referred .
to as the collecting zone, both the ion and particle space
charge act as current carriers. A‘furéher modification was
introduced with the intent of accounting for a uniform
part@cle space charge density as well as allowing for
fractional charging of the particlgs to their Pauthenier
limit, a situation of particular significance in the case
of corona quenching.

>

C. Duct-type preéiptators in clean air

The charge simulétion technique was succeésfﬁlly
extended to model the electrostatic and corona conditions
&
under clean air conditions for the duct-type precipitator
geometry.

$

The elect;bstatic model gave very good agreement to
both Cooperman's (611 and BOnm's 162] infinite series for

the voltage and electric field distributions respectively;

The results of the corona model, showed good agreement
&

to the experimental data of benney and Matick [31], Felici s
(30] and Tassicker {29]. The results of figure 5.9 also

showed clearly that the commonly used assumption that the .

-

space charge affects only the magnitude but not the

direction of the electric field is incorrect in general.
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In the corona model, the cdrona'discharge is assumed |
uniform akong the high voltage electfode, thus the problem
is reduced to two dimensions. This assumption is
approximately tgue for-positive corona. Whereas for
negative corona, the corona takes the form of locali zed
tufts of random distribution ‘along the electrode surface.
The fact thaé these emitting spots are in continous motion
along the surface, tends to make the corona discharge
uniform. Hence, the assumption is also approximately true
for negative corona. This is even more true for the corona
quenching case’, where éhe charging time constant of the
particles may reach a féw seconds.

To simul ate more accurately the case of negative
- corona, a three dimensional model would be required. In
- doing so the infinite line charges are to be replaced by®

finite line charges and possibly point charges. As a

_risult, the number of simulating charges would tremendously
increase and a super computer may be required. Considering
these facts and for the reasons presented above, the use of

a two dimensional model is sufficient.

The sensitivity analysis performed for the corona

model showed that for an error of 10% in the wvalue of

l,.

linear corona current density, the corresponding error in
the estimated wire potential V. and the plate electric
13

field Ep is 4% and 4.6% respectively. Similarly éz;error,

L
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of about +20% in the value of ion mobility, leads to errors
of -8% and -10% in the estimated value of wire potential

and plate electric field respectively. This part of the

study also confirmed the validity of the éssumption that
the corona wire may be considered an ion emitting source
and that the thickness of the ionization zone may be
neglectea;

. . .

.

-

The drawbaék of the corona madel is that it requires
. much computational time. The author was unable to compare *
5 the C.P.U timézrequired for running the charge sim&lation

model to that required for running the finite element model
‘ . developed by Davis and Hoburg (41], because their computer

coding was unavailable. Nevertheless, the distinct

advantages of the charge simulation model over the finite

element model are: »

i.. Both Poisson's equation and the current continuity

equation are solved simultaneously rather than being

solved alternatively using am iterative process.

-

ii. The charge simulat;og method does not require the

N -
pre-construction of a fixed grid, rather the grid is

constructed as the calculations proceed.

¢ § -
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iii. The grid constructed by the charge simulation
technique represents a plot of the lines of field and

equipotential contours.

iv. The charge simulation technique does not require any
initial guesses.

.
-~ . .

D. Wide duct precipitators

The literature survey conducted on wide duct
precipitators revealed that all the studies that were

performed on wide duct precipitators were mainly concerned

with the performance of such precipitators and little
attention has been giGgB to the electrical conditions that
exist in such precipitators.

Thus an experimental épparatus was constructed to

i

measure the electric field and current density
distributions at the collecting plate of a variable duct

spacing laboratoyy scale electrostatic précipitator.

The experimental results shéwed that for a finite
array éf corona wires operated at the same potential, the J
coron;‘current emanating from each wire is different. The
outer wires had the highest linear corona current density,

while the central wire had the lowest. Similarly, the

corona onset voltage for such an array of wires also®
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varies, with the outer wires exhibiting corona at a lower
potential than the central ones. These results confirm the

observations of Lawless and Sparks [79].
In addition the experimental results showed good
agreement with the results of the charge simulation model

and further confirms the validity of the developed model.

The study conducted to investigate the electrical

-conditions of wide duct precipitators as compared to those

of standard duct spacing yielded the following results:

i. For constant linear coropa cdfrent, if th

spacing is increased while keeping th¢/wire to wire
spacing constant, the electric field enhancement
factor (Ep/Eav) is also increased. This is also
accompanied by an increase i the magnitude of both
the plate field (Ep) and the average field (E, ), thus

persumably increasing the 'collection forces.

.fi. For constant linear corona current, if the duct
» spacing is increased while keeping the ratio (h/2s)
~ .
constant, there is practically no change in the
electric field enhancement Eactor. There is also no-
increase in the magnitude of both the plate field and

the average field. Thus one would not expect any

enhancement in the precipitator performance. However,

 n———
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this approach’ may result in construction and

-
\

operational cost reductions.

()
iii. For constant applied voltage, increasing the duct
spacing while keeping the wire to wire spacing

constant, resulted in the decrease of the electric

field enhancement factor, the plate field and the

average field. Thus this approach“is not recommended.

It was interesting to observe- in this study that for
all the geometries considered and for all the operating

conditions, the point of minimum electric field along a

line extending from wiré'Eo-plate-was always approximately

2 cm away from the corona wire.

[y

E. Corona quenching in duct-type precipitators

Thé™corona in clean air model, for duct-type
&
precipitators, was modified to account for a uniform

particle space charge density. The same assumptions used

for the corona quenching model in the cylindrical geometry

.

4 -
were appliedito the duct geometry.

~ 9
: .
Results of the &or6ona quenching model indicated that

for a constant linear corona current and constant uniform

» -

particle space charge, the increase of the duct spacing is

accompanied by an increase in the electric f%gld —
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enhancement factor. This increase is significantly larger
than that observed under clean air conditions. This
indicates a strong contribution of particle space charge to
the enhancemen; of the electric field at the precipitétor
walls. It is suggested that an appropriate maximum
particle space charge dénsity lies in the mid-range of
0.44x10"% and 0.44x107° c/m3.

- Tﬁe cérona quenching model was shown to be a
coﬁvenient method for evaluating the electrical effects
caused by changing experimental parameters, whether they be
changes in the physical dimensions or changes in the

operating conditions.

F. General
Pt ;
The charge simulation models presented here eliminate
the cost and time needed in constructing and experimenting
with proto-type models to predict the electrical

characteristics of electrostatic precipitators in clean air

as well as under dust loading conditions.

Finally, the successful ﬁse of the charge simulation .
technique to predict an unknown space charge dist;ibution
is of significant'fhportance as it opens the door to
invéstigate similar characteristics of other geometries,

such as those used in high voltage switchgear, transmission

_.—*
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the charge simulation techhique, is accessible by attaching

to the User File Directory (UFD) entitled "ELECTROSTATICS"

Appendix 1

Classification of Computer Models Based

on the Charge Simulation Technique

~

The Fortran coding for the programs developed based on

and later to the sub-UFD entitled "PRECIPITATORS" on the

Prime 400 mainframe available at the Seam Laboratory,

Faculty of Engineering Science; The University of Western

Ontario.

3.

The files available in this sub-UFD are listed below:

HELP: a help file that contains instructions for
running the files that follow.

CYL-STAT: used for evaluating the electrical
conditions that exist in cylindrical precipitatots

under Laplacian fields (electrostatic case).

'bYL—COR:‘ used  for evaluaging the electrical

conditions in cylindrical precipitators in the

presence of corona discharge in clean air.

- - o7 C e . —_
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CYL-COR-QU: wused for evaluating the electrical
~ .
conditions in cylindrical precipitators in the

~

presence of corona quenching due to dust loading.

-

DUCT-STAT: wused for evaiuating the electrical

. 198

conditions that exist in duct-type precipitators under

Laplacian fields.

DUCT-COR: used for evaluating the electrical .

conditions in duct-type precipitators in the presence

of corona discharge in clean air.

DUCT-COR-QU: used for evaluating the electrical

conditions in duct-type precipitators in the presence

of corona quenching due to dust loading.

-




E T T Yy

Appendix 2

Finite Element and Characteristics

Methods

Finite Element Method

- Use of the finite element method to determine the

~

potential distribution Vv, for a known charge density ¢ is
based upon a principle of variational calculus [48],
whereby the solution of Poisson's equation is equivalent to

by

minimizing the function.

F(V) = 0.57 (e |VV|? - 2pV) dVol (A.2.1)
vol ©

The variation of V over each element is approximated
by a linear interpolation function.

V(x,y) = ap + apx +;a2y. : ’ (a.2.2)
with a resultant constant elecﬁric field within any’
particular element. .

E=-2% ~ a9 ) (A.2.3)
Representation of the variation of Vv over each element
in terms of the nodal values of V and imposition of the
minimization condition 3F(V)/3V = 0 forhthe entire set of
elements leads tO’é set of simultaneous equations for
values of V at the nodes.

©

-
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- Method of .Characteristics

» -

The method of characteristics is based on a technique
whereby the partial differential egquation governing the
evolution-of‘éharge density becomes an ordinary
differential along specific characterist{c space-time
frajectories

. In the inter—electrodexregion, the current continuity

equation, written in terms of charge density p and current

ﬁ\\(} density J, requires: . »
V.J=V.0bE = 0 ‘ (A.2.4)

Also the electric field is related to the charge

s

, »density by Gauss's law [49].

V.E = — . " (A.2.5)

Combining equations (A.2.4) and (A.2.5) leads to a
partiél differential equation governing the evolution of

h i

charge density as follows. ) e .
52 é@f ; . .
- E’Vp = - € ' ) (An2-6)l
Along the space-time trajectory defined by dr/dt = bE,
the lef-t-hand side of the above equation represents the

convective derivatiwe of charge density. This equation

t ~{(A.2.6) 1is reduqed to an brdinary differential equation.

-
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dp bpz 3 - .
_—-= - — ' (A.2.7)

dt €o

~

along [the characteristic line

ar. . - _
. — .= bE , . (a.2.8)
at

The solution of gquation (A.2.7) yields the following

equation. . , T .

1 bt _3 ‘ i
— — ] o (Al‘z. 9)
~ '. [N po !E

where Q) is the charge density at the starting point of the

charactetistic line.
'

The c¢haracteristic line is presented as a set of

straight line increments drawn across individual triangles

of the finite element grid. Since the electric field

within each element is constant, then the time 4t required

toftraverse the triangle boundaries dr along ‘the
o

characteristic line may be evaluated using equation

~(A5.2.8). Then the value of t is used-to évalgaté the

u

charge density p from equation (A.2.9).

©
'




Appendix 3
/
Solution of Poisson's Equation and the
Current Continuity Equation for a

Cylindrical Geometry

<

When'using cylindficél co-ordinates the divergence of

a vector A is* given by equation (A.3.1), while the //(k

3

Laplacian of a function f is given by eguation (A.3.2).

—(ra) + -~ — + — (A.3.1)
or T r 3¢ . oz :

3 of 1 32 9%f X
—(r—) + — — 4+ — (A.3.2)
dr  dr r? 5¢? 3z2 )

-Applying the above two equations to Poisson's equation

o

" ‘and the current contiﬁuity equation respectively, for an
infinitely long,cqaxial'cylindrical system, yields.

14 av .
- = —) =

p
- (A.3.3) -
r dr dr €,

1d av _ .

- - _-.—(rp-—-) = , (A. 3'4)
r dr dr .
o '

From equation (A.3.4) it is clear that the ‘term in

between brackets is a constant. Since at r = L, s the

L3

electric field is equal to E and the charge density is

equél to Pe, then this constant is equal to réﬂaE From

o.
the prévious analysis, 'it can-:be concluded that -
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av r p E
<& 0 (A.3.5)
dr Lp

‘

When substituting equation (A.3.5) in equation
(A.3.3), the following équation for the charge- density

digtribution i’'s derived.

N o
JEDPE T
p(r) = Le oc (A.3.6)

fl(r)

< o

h = /r? + K* ~ r2
where fl(r) Y > p

ig(A.3.7)'

E€. r_
(4]
and K =/ _9__(}.

. . , - (A.3.8)

e

The potential at any radial distance (r) is given as

de
P('— ) .ar (A.3.9)
c dr

.. A R )

Substituting equations (A.3.5) and (A.3.6) in equation

(A.3.9) and solving, yields the following equation for the

wire potential V..

-

\

. = Kl{ fl(ro) - K2 + K3[ln(rc/ro) + 1n(K3 +K2)
- 1n(Ky + f3(r5)) 1 } ' (A.3.10)
i "y -,
’ Eoefc
where Kl =/ —
€
o}
i ¥4
- 2 _ .2
?nd K3 = /Kz L.




Appendix 4
é' Flow Chart of the Corona Model for

Cylindrical Precipitators in Clean Air

Read dimensions and physical properties
of gas '

SBecify Voltage VC

I

Specify initial corona current I
Calculate onset voltage

¢a1: onset charges using equation (3.4)

I

Find first equipotential shell
due to the onset charges

1

Cal: ionic charges dip using
equations (3.16) and (3.17)

l

Cal: ground charges using equation (3.14)

yes
If last shell‘

Find next shell due to all charges

Cal: conductor ' voltage Voo

yes

Increment Ic to ICC

Print: Value of charges, V.. and I..
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Appendix 5
Measurement of Electric Field Using a Biased

P Current Probe

2

As shown in figure A.5.1 the probe is connected in
series with an ammeter and a variable d.c voltage bias
source. The ammeter used had to be operated in a floating

mode when the bias voltage was applied.

When determing current density, thg bias vol?age:is
set to zero, the probe then causes neither mechanical nor
electrical perturbation. The current density is simply _
evaluated using equation (A.S.l).'

Io

J = —— (A.5.1)
(ﬂ/4)Di2

With negative bias apélied to the probe, while
positive ions flow into it, theé probg current I is larger
than I_. With positiv; bias, the curent decreases. This
is plotted in the manner of figqure A.5.2, as I/IO against
Vo, - This typical characteristic always shows a straight
region about the origin. Tassicker [78] has shown that the
slope of this straight-1line régien is proportional to the

ambient electric field Eo"

T 205
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Consider the following two cases:

i) The bias voltage is equal to zero and the electric
field EO; in the presence 'of space charge, is uniform
just at the probe and the area surrounding it. This
case is presented by figqure A.5.3.a, from which the
electric flux at the probe surface may be calculated

]
as. '

Y, = BE.E, (A.5.2)

where A is the surface area of tge probe.”
ii) In the second case, consider that the electric field
-EO is not- present and the probe is.biaéed with a
negative voltage, as shown by figure A.5.3.b. 1In this
case the flux arriving at the probe surface may be
calculated as.

;’1 =s{1rfaDc.edA =Q=CV, (A.5.3)
where Co represents the cépacitance between the top
surfaces of the probe and the surrounding plate. Here
the capacitance of the gap is neglected.

o
Superposition of the above two cases is acceptable
provided, the distribution of the space charges in the
former is not altered by the application of the latter -
field and also if the field in the region of the probe is

-4

locally .Laplacian.

o o,




‘ EO = external uniform
field

\\\\i ﬁo external field
- - -——-- +

(b) Vb = negative bias

* Figure A.5.3. Lines of field at probe surface with and
without bias voltage '




~

By superposition the total current entering the probe

may be given as.

R

I =>bp (A.5.4)
€o
where the total flux ¥ is equal to

By dividing both sides of equation (A.5.5) byrpo, the
followiﬁg equation is attained.

I C, V .

.14 2B (A.5.6)
I Aec E
o 0 o

Equation (A.5.6) gives the straight-1line ref%tionship

shown by figure A.5.2. Since for a given probe, Co/Aeo is
a fixed geometrical constant, the _ambient electric field

may be determined immediatelyt

l

i
1

The value of C, is eQPluated using equation (A.5.7).

- -~

C, =2Dje,{1.079 + 0.5ln(1 + D;/4G)} - (A.5.7)

0

209

I



(1]

(2]

(3]

(4]

REFERENCES

-

G.W. Penney, "Electrostatic Precipitators of

High-Resistivity Dust"{ AIEE Tech. paper 51-201, 1951.

G.S.P. Castle, "Mechanisms Involved in Fly Ash

Precipitation in the Presence of Conditioning Agents -

A Review", IEEE Trans. , on Industry Applications,

vol. IA-16, No. 2, March/April 1980, pp. 297*302:

M.B. Awad and G.S.P. Castle, "Corona Quenching in

Electrostatic Precipitators", Industry Applications

Society Conference Record, 1974, pp. 945-954.

‘C.F. Gallo, "Corona - A Brief Status Report", IEEE

" Trans. on Industry Applications, Vol. IA-13, No. 6,

[5]

[6]

[7]

(8]

[9]

Nov./Dec.

1977, pp.

550-557.

M. Pauthenier and M. Moreau-Hanot, "La Charge des

Particules Spheriques dans Un Champ Ionise",

J. Physique et Radium , 3, 1932, pp. 590-613.

A.D. Moore (Editor), Electrostatics and it's

Applications, Wiley Interscience, 1873, pp. 197.

J.D. Cobine, Gaseous Conductors, Dover Publications,

New York, N.Y.,

1958.

)

L.B. Loeb, Electrical Coronas, Their Basic Physical

Mechanisms, University of California Press, Berkeley,

1965.

-

E. Nasser , Fundamentals of Gaseous Ionization and

Plasma Electronics, Wiley Interscience, New York,

1971.

4

\ -——

210



[10]

[11]

[12]

[13]

- [14]

[15]

(16]

(17]

(18]

[19]

211

W. Strauss (Editor), Air Pollution Control, Wiley

Interscience, New York, Part I, 1971, pp. 234-238.

ﬁ.H. Malik and A.H. Qureshi, "Breakdown Mechanisms in
Sulphur-Hexafluoride"”, IEEE\?rans. on Electrical >
fnsulation, vol. EI-13, 1978, pp. 135-145.

M.B. Awad and G.S.P. Castle, " Ozone Generation in an
Electrostatic Precipitator With a Heated Coron; Wire",
Journal of Air Pollution Control Association, Vol..25L .

No. 4, April 1975, pp. 369-374.

F.W. Peek, Dielectric Phenomena in High-Volatge

Engineeriné{ McGraw-Hill, 1929, Chaptér 4,

A.D. Moore, op. cit., pp. 200-201.

H.J. Lowe and D.H. Lucas,'"The Physics of
Eleétrostatic Precipitation", British Journal of
Applied Physics, Supplement No. 2, 1953, pp. S40-S47.
M. Robinson, "Movement of Air in the Electric Wind of
the Corona Discharge", AIEE Trans., Part 1, Vol. 80,
1961, pp. 143-150.

. . o . .. Y. :
H.J. White, Industrial Electrostatic Precipitation,

Addison—Wgsley Publishing, 1963, Chapter 6.

M. Robinson, "A Modified Deutsch Efficiency Equation
for Electrostatic Precipitation”, Journal of
Atmospheric Environment, vol. 1, l9§7, Pp- 193-204.
G.W. Penney, " Some Problems in the Apz;;cation of the
Deutsch Equation to Industrial Electrosﬁat;c

Precipitaion", Journal of Air Pollution Control

Association, Vol. 19, No. 8, Aug. 1969, pp. 596-600.




(20]

[21]

122]

- pp. 47-50.

(23]

(24]

212
H. Singer, H. Steinbigler and P. Weiss, "A Charge
Simulation Method for the Calculation of High Voltage
Fields", IEEE Trans. PAS, Vol. PAS—9§, Sept./Oct.
1974, pp. 1660-1668. =

A.A. Elmoursi and N.H. Malik, "Field Uniformity of a
High Voltage Test Electrode System®™, IEEE Trans. on
Electrical Insulation, vol. EI-18 (1) ; Feb. 1983,
pp. 89-92.

P. Cooperman, "A Theory for Spac;—Charge—Limited
Currents With Application to Electrical
Precipitation", AIEE Trans., part 1, Vvol. 79, 1960,

4
p. Coopérman, "Dust Space Charge in Electrical

A ]

Precipitaion", AIEE Trans. on Communications and

Electronics;, Vol. 82, 1963, pp. 324-326.

G. Cooperman, "A New Current-Voltage Relation for Duct

oo < .
Precipib&tors valid for Low and High Current

[25]

[26)
[27]

Densities"™, IEEE Trans. on Industry Applications,

Vol. iA-17,. 1981, pp. 236-239.

S. Sekar and'H. Stomberg, "On the Prediction of N
Chrrent—Voitage Characteristics for Wide-Plate
Precipitators", jburnal of Electrostatics, Vol. 10,

-

198L, pp. 35-43.

7

W. Strauss (Editor), op. cit., pp. 245.
V.I. Vasyaev and I.P. Vereshchagin, "Method of

Calculating the Field Strength During Corona

Discharge", Electric Tech. U.S.S.R, Vol. 2, 1971,




213
pp. 91-102. ' , s

(28] M. Robinson and J. Shepherd, "Preliminary Report on
Wide Plate Spacing", Research and Development,
Research-Cottrell, 1977 (in-house report).

[29] 0.J. Tassicker, "Aspects of Forces on Charged
Particles in Eleétrostatic Precipitators", .

Ph.D. Thesis, Wollongong University College, %
University of New South Wales, July 1972, pé. 159-161.

[30] N.J. Feliéi, "Recent Advances in the Analysig of
D.C. Ionized Electric Fields", Direct Current, Vol. 8,
No. 9, 1963. . ‘ \

[31] G.W. Penney and R.E. Matick, "PRotentials in
D.C. Corona Fields", AIEE Trans., Vol. 79, May 1960,
pp. 91~99. ' :

{32] G. Leutart and.B. Bohlen, "The Spatial ?rend of
Electric Field Strength and Spacg Charge Density in
Plate-Type Electrostatic Precipitators", s
Staub-Reinhalt. Luft, Vol. 32, No. ‘7, July 1972,

PP. 27—33.: - | '

{33] J.R. McDhonald and L.E. Sparks, "A Mathematical Model
for Calculating Electrical Cond%tLons in Wire-Duct
Eleétrostatic Precipitation Devices", Journal of L.
Applied Physics, Vol. 48, No. 6, June 1977,
pp. 2231-2243. ‘ \

[34]“?.A. Lawless and L.E. Sparks, "A Mathematical yodel .

~ for Calculating Effects of Back Corona in Wire-Duct

. . 3
Electrostatic Precipitators", Journal of Appkied




‘ 214
Physics, Vol. 51, No. 1, Jan. 1980, pp. 242-256.

[35] G.D. sSmith, Numerical Solution of Partial Differential
Equations, Oxford University Press, '1971.
[36] G.A. Kallio and D.E. Stock, "Numerical Computation of

~ the Electrical Conditions in a Wire-Plate
) D
Electrostatic Precipitator Using the Finite Element

L3

Technique”, The Fifth Symposium on the Transfer and

Utilization of Particulate Control Technolog&, Kansas

\ City, Montana, Aug. 27-30, 1984. 7

[37] A.wW. Baird,,"The Use of Graded Nets in Computer
Modeling of Corotron Fields", IEEE Trans. on ;ndustry
Applications, vol. IA-12, No. 5, Sept./Oct. 1976,

RpP. 524-526. P

[38] J.R. McDonald, "A Mathematical Mgdel of Electrostatic
Precipitation", Vol: I, U‘S: Enviromental Protection

. Agency Report No. EPA-600/7-78-1lla.’ '

[39] Discussion at the Fifth Symp051um on the Transfer and
Utlllzatlon of Particulatg Control Technology, Kansas

city, MissoWri, Aug. 27-3

*

[40] G.S.P. Castle, private communica ions, 1982.
{41] J.L. Davis. and J.F. Hoburg, "nge;ﬁucﬁ Precipitator

Eﬁeld'aﬁa Charge Computation Using Finite Elemént and.

’ Characterlstlcs Methods", Journal of Electrostatics,
. g -
yol. 14, 1983, pp. 187-199.

e[42],J.L. Dav;s, private. communications, Oct. 3, 1984.
[43] M.S. Abou—Seada and E. Nasser, "Digi£a1 Computer

Calculatlon of the Electr1ca1 Potential and Field of a

[




(44]

[45]

[46]

[47]

[48]

o

b
[49]

. [50]

[51]
[52]

A. Yializis, E. Kuffel 'and P.H. Alexander, "An .

) Co. . ' 215
Rod Gap", Proc. IEEE, Vol. 56, 1967, pp. 813-820.

C.F. Gerald, Applied Numerical Analysis, Second

Edition, Addison-Wesley Publishing Company, 1973, L=
Chgpter 2.
M. Abdel Salam, A. Zeitoun and M., El-Ragheb, "Charge
Simulation Technique for Calculating the Field due to
Ionic 5pace‘chargé", Industry Applications Society
Conference Recoré, 1976, gp. 654-659.

M. abdel Salam agd A.A. Ibrahim, "Digital Calculations
of Electric Fields in the Vvicinity of Protrusions from
H.V. Condactors"™, IEEE PES Winter meeting;"New York,
N.Y.; Jan. 30-Feb. 4, 1977, paper No. A 77 131-6.,
M.N. Horensteiﬁ, "Computation of Coéona Space (Charge
and V-I Chararcteristics ﬁsing Equipotentiial Charge -
Shells",  Industry Applications Society Conference:
Record, 1980, pp. 1081~ 1086.

-3

0.C. Zienkiewiez, The Finite Element Method in \

[

M. Zahn, Electromagnetic Field Theory: a problem

solving dpproach, John Wiley and sons, lQl%i\;
pp. 72-83.

.M. Pauthenier and M. Moreau-HEnot, "Ettouffement de la

Decharge Couronne-en Millieu Trouble", J. Physique et .

Radium, 6, 1953, pp. 257-262.

.N.H.‘Malik, private communications, Feb. 1982.

Optimized Charge Simulation Method for the Calculation

Eng ineering Science, McGraw-Hill, 1971, pp. 26-29. ‘

«



S =
,\5\{}('\)“:

A

&

-—

(53]

[54)

[55]

216
of High Voltage Fields", IEEE PES Winter Meeting, New
York, N.Y., Jan. 29 - Feb. 3, 1913}'paper No. F 78
179-4.

&.R. Iravani and M.R. Raghuveer, "Accurate Field

Solution in the Entire Interelectrode Space of a
Rod-Plane Gap Using Optimized Charge Simulation", IEEE
Trans. on Electfical Insulation, Vol.\tl—l7, No. 4,
Aug. 1982, pp. 333-337.

G, Gelagy "Computation of Ionized, Fields Associated
with Unigolar D.C. Transmission gystemé",

Ph.D. thesis, Department of Electrical Engineering,

University of Toronto, April 198d.

-

F.B. Irwin and I.I. Inculet, "A Mathematical Analysis

. of the Glow and Dark Space Regions in Positive

[56]

Corona", Industry Applications Society Conference
Record, 1984, pp. 992-996.
M.P. Sarma and W. Janischewskyj, "Analysis of Corona

Losses on D.C. Transmission Lines: I =~ Unipolar

- Lines", IEEE Trans. on PAS, Vol. PAS-88, No. 5, May

[57]

KN

.[58]

[59]
[60]
[61]

q

1969, pp. 718-731. ' -
M. Khalifé and M. Abdel—Sélam,-"Improved Method for
Calculatin§ D.C. Corona ﬁbsses", IEEE PES' summer
meeting, July 15—20, 1973, paper No..T 73 410;8.
A.D. ﬁooge, op. cit., pp. 191-193. . y

W. Strauss (Editor), op. cit., pp. 309-31i¥>

C.F. Gerald, op. cit., pp..266—274. e

P. Cooperman, Report No. 46, Research Cottrell Inc.,

2



/ - Bound Brook, NJ, 1952.

[62] J. thm, "Back Discharge in Electrostatic Gas
Cleaning", Staub-Reinhalt. Luft, Vol. 30, No. 3, March
1970. -

‘ 1631 J. Bohm, Eleétrostatic Precipitators, Elsevier

Scientific Publishing Company, 1982, Chapter 2.

[64] M.B. Awad, "Mechanism of Corona Quenching and
Sparkover Phenomena in Electrostatic Precipitators”
Ph.D. thesis, The University of Western Ontario, June
1975.

[65] A.A. Elmoursi and G.S.P. Castle, "The Analysis- of
Corona Quenching in Cylindrical Precipitators Using
Charge Simulation”, Indus;ry Applications Society
Conference Record, 1983, ;p. 974-981.

{66] J.R.G. Pude, J.F. Hughes and P.F. Coventry, "A Stﬁy

of Electrostatlc Precipitation Processes Calculation

s e

of Electric Fields due té Slngle Unipolar Source“
" - Journal of Electrostatlcs, Vol. 14, 1983, pp. 241—254

[67] P.A. Lawless and L.E. Sparks, "Measurment of Ion .
mobilities in Air and Sulfur Dioxide Air Mixtures as a
Function of Temperature", Atmospheric Environment,
vol. 14, 1980, pp. 481-483.

[68] T. Misaka, K. Sugimoto, H. Yamada, "Electric Field
Strength and Collection Efficiency of Electrostatic
Precipitator having wide Coliecting Plate Pitches",
CSIRO Conference on Electrostatic Precipitation,

Leyra, Aug. 23-24, 1978, paper No. 1l1.




[69]"

’

218

D.O. Heinrich, "Review and Some Practical Aspects of

Wide Duct Spacing", Proceedings of the First

N .

International Conference on Electrostatic

[701]

171

©172)

(73]

[74]

[75]

[76]

Precipitatioq, Moﬁtérey, California, Oct. 14-16, 1981;
pp. 638-653

D.O. Heinrich, "Electrostatic Precipitator Collector
Spacings ", Atmospheric Enviroment, Vol. 13, 1979,

pp. 1707-1711. ,%' ‘

H.J. White, op. cit. , PP. 198-209.

S. Noso, "Performance Characteristics of Eleétrostatic
Precipitatoés with Wwide Spacing", Proceedings of the
First International Conference on Electrostatic
ﬁ;ecipitdtion, Montérey,‘California, Oct. 14-16, 1981,
pp. 654=667.

L. Lindau aﬁd S. Matts, "Some Space Charge Problems
Encountered Wiph Lérge Electrode Spacing", Proceedings
bf.thé Second International Conference on
ElecErostatic:Precipitation, Kyoto, Japan, Nov. 12-15,
1985.

S.A. Matts, "Some Experiences with Increased Electrode
Spacing", CSIRO Conference on Electrostatic V
Precipitation, Leura, Aug. 23—24{ 1978, paper No. 13.
S. Masuda, "Present Status of Wide-Spacing Type
Precipitator in Japan", EPA Symposium, Denver,. 1979,
pp. 483-501.

C. Golkowski and M. Chojnowski, "The Role of Electrode

~ * .
Spacing in the Performance of the Electrostatic




El Quw*@&"%“m
=

219

Precipitator", Journal of Electrostatics, Vol. 14,
1983, pp. 339-348. |

[77) A.A. Elmoursi and G.S.P. Castle, "Modeling of Corona
Characteristicé in a Wide-Duct Precipitator Using the
Charge Simulation Technique®, Iﬁdnstry Applicatfons
Sopiéty Conference Record, 1984, pp. 1192-1200.

[78] 0.J. Tassicker, "Boundary Probe for Measurement of
Current Density and Electric Field Strength - With
Special Reference to Ionized Gases", Proc. IEE,
vol. 121, No. 3, March 1974, pp. 213-220.

[79] P.A. Lawless and L.E. Sparks, "Prediction of
Voltage-Current Curves for Novel Electrodes, Part
I. Wire Electrodes", presented at the fifth Symposium
on the Transfer and Utilization of Particulate Control
Technology, Kansas City, ﬁissouri, Aug. 27-30, 1984..

{80] I.1. Inculet, Z. Kucervosky and M. Suzuki, "Electric
Charging of Particles Near the Corona Glow Redion in

Air-Cco Mixﬁures", IEEE Trans. on Industry

Applications, vol. IA-15, No. 3, May/June 1979,

pPp. 276-287.

[PV






	Western University
	Scholarship@Western
	1985

	Charge Simulation Technique As Applied To Electrostatic Precipitators
	Alaa Abdel-azim Elmoursi
	Recommended Citation


	tmp.1410230184.pdf.jE9DU

