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ABSTRACT

Theoretical developments in multiviarate analysis are primarily
based on the assumption‘of nmultivariate normality and ;ery little is.

koown for other cases. -The aim of the present work is to generalize -,

—_

results of multivariate analysis based on a class of elliptic distribu-
tions, more specificai1§ tﬂe subclass of ﬁhe'muitiv;riate t-distribﬁtions
with suitable p;rameters,,rather ;han the usual normalit§ assumption. -
The multivariate norm&lldiétpibutieg belongs to the class of elliptic as
»well as the sdbéiass'of é—distribution. |

- . ' The major contributions of the thesis are:

: (a) An eliiptic set-up for uncorrelated samples is br0posed..

\J

(b) The distributions of sample mean and covariance;matrix aré
derived. ] .
. (c) Classification ptobl;m is dtudied for the eiliptié bet—up; ¥
The elliptic class is further specialized to a subclass of ‘
"multivariate t-distributions, whose characteristic function, conditional
T T qistributions etc. are derived. Also tge above problems (by and ic) are
studied. In addition the following ,problems have been solved:
(1) null and non-null distrihutions of quadratic forms -
(analogue‘of non-cﬂeFral chi-square). |
(11) estimation of igcation, gcale and degrees of freedom

parameters of the t—distribution and the sampling

properties of the estimators.
“

i11




(441)

(iv)

orthogonal factor analysia when both observea err%r and

_regression model with error variable having a mfitivariate

L]
-

unoberved faetors follow mltivari\e t—diatributions

estimation of parameters and tgs;ing of hypothesia.for,a :

t-distribution.
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CHAPTER I _
. BN -
' o<
. INTRODUCTION ,
1.1 Historical Background X

* Theoretical developments in the area of clasgical multivariate
analysis are primarily based on the assumption that the underlying
distributions are multivariate normal. The unfortunate feature of chis

branch of statistics is that in other cases very little is known about

ra

the exact distributidn theory. '‘One of the ifﬁortant properties of the

multivariate normal distribution is that the distribution has constant,
¢

prabability demsity function (p.d.f.) or what are called equipfobable

surfaces on ellipsoids. This property is exploited extensively in
LJ

1)

© theoretical work. Another important property is that a suitaﬁke 1inear

transformation transforms the multivariate normal w&th elliptic contours
of equiprobable surfaces to the special case of multivariate normal
distribution with spherical equiprobable ‘surfaces or simply to the

spherical normal distributions whose components are independent In

many theoretical works this transformation is also extensively ‘used to

study distribution of statistics etc., since spherical normal distribu-

«

tions are rotationally invariant.’

In the recent 1itefature, as a generallzation of-tbe multtvariate

) normal model, considerable amount of attention-haa been focused on the

cla distributions sharing the ptOperty of having equiprobable
surfaces on hcmothetic ellipaoide These disttibutiona gre ustally
,M
ak_ f

IS4
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" ‘
referred to ?s_elliptically symmetr}E ér simply elliptic distributionms.
Thfs clags of distribution; pas been used in many theofetical‘contexta,
oespeciglly in robustggss studies wheTe 1t is of interest to know the
"behaviour of, say, saﬁe tes£s developed under no iity=assumptions.in
non-normal situations rest;iéting the nom-normalify to meﬁbers éf the
class of élliptic distributions of the con£inuous type.

Many properties of spherical distribution hsvereen studied by
several authors in connection with robustness studies. For.example,
Efron (1969).shows that Student's t-distributio;’remaiﬁs unchanéed if we
assume an underlying spherically symmetric distribution rather th&ﬁié
normal distr%bution. Box (1952) notes that the usual F-statistics hayé )

the same null distribuéion for all spherically symmetric diatributions.‘
This robust property of F-statistics has been pr8ved by Thomas (1970), ?
Kariya and Eaton (1977) more specifically in connection Yith the étudy

of linear models. Among others Kelket (1970) studies several‘lgport#nf,

Ca : ’ . N -
properties of elliptically symmetric distribution such as conditions for

the exjistence of a probability density funétion, thecmaféinal distribu- .

tions, the conditional means, and several characterizations of the 9nrmal.

distribution among ‘this class.
Eiliptic distributions have found applications in practidal as

well as theoretical contexts in several areas,. In the early nineteenth

1

century Gauss encountered ‘the so-called Gaussian distribution which
, ;o Ca
belongs to the class of spherically symmetric distributions, in connec-

tion with the study of the theory of errors of observations in astrohomy}.

Maxwell (1860) encountered the same model in comnection with the study .

of velocities of molecules [see for example Séhtion 2,1-2.2, Mathai and

~
-

'Pedrzoli (1977)]

—p




- model. in quantum theory; Gilliland (1968) éhows the use of the same

L) . L S

Many authors, for example, Haxogll (1860), Bartlétt;(1934)) and
Hartman and Wintner (1940), Kelker (1970), Thomas (1970), and Nash and
Klamkin (1976) have discussed the following important characterization
of :he normal law: IfZ = (z1 ey zn) is a sample'of n independently
and identically distributed random variabléo, thon Z has a spherically
symmetric distribution if and only if Z has a Gaussian distribution.

-

" Lord (1954) discusses the momonts, cumulants, and charactéristic

- function of spherical distributionb. He also disfusses the multiVariate

i e .
normal; Cauchly and exponential distributions. Furthermore he reported:

an applicatipn of the theory of spherical distributions in some problems

of astronomy. He notes that the projected spherical distribution omn a-

4 L
subspace of .lower dimensions is also a spherical distrdbution. Hence

the distribution of a-globular star-cluster is oftgn\sphericalwand can
-’ ' -

. be infg;red from its projection on the 'plane of the sky'.

K Box (1953) as well as Mandelbrot (1963) use the spherical digtri—

. L 3
. bution model in connection with price-change'data. Mehta (1967) uses the

e "

]

distribution model for impact distributions in bombing.

Fraser (1951) finds the probability of at leaat _ote hit wheu an

¢

automatic gun is used against a moving target. On' the assumptionltbat o
. ..)' .- ° .

-

of the traje®ory is distributed according to a Gaussian distribution-’

about the point of aim, he shows that the probability of a 'hit' as a
. o . ' - o
function of the point of aim also has the-form of a Gaussian diffuse

~

distribution., That is, it 1s a constant times a Gaussian probability

density function of the point of aim, The point of aim ia a rangom

variable in k-dimensions and is called a prediction according to bim;

the target is a Gaussian diffuse.earget (k—dimensional) and the position



N
.
- L

4t " é; . .
Moreover, values under any two diffﬁrent co-ordinates for the.k-dimen-
> :

sional predictions are assumed to be independent; and the target has

-

been assumed to have a circular outline. Thus he uses the spherically
symmetric, distribution model to find the probability of at least one hit

&
" when an automatic gun is used against a moving target. )

»

Dawid (1978) gives‘cheracterization of left gpherical, 'right

Spherical and spherical distributionq of random matrices which are sub-

?

matrices of arbitrary large arrays sharing the same othogonal invariance.

Zellner (1976) considers a single variable regression model wich,

multiyariate t-error distribution with known degrees of freedom (vo)«
Thus the response varigPle in Zellner's model has multivariate t-distri--
'bution,'which is a speciaf case of the elliptically symmetric distrihutfon.

Dunnett and Sobel (1954) also encodntered-a multivariate t-model and théy.'

encountered the model in the context of certain multiple decision problems.
b
Chmielewski (1980a,b) considers tests involving the scale matrix

L. Some cases considered are equality of k scale matrices, sphericity, *

block diagonal structure, and equicorrelatedness. In all cases the null

<

‘distributions of certain invariant test statistics are exactly those
found under normal theor&l For tests of equality and sphericity the
nan-null distributions are alsp those derived under normal theory. _
Box (1953)'§tates that thosg tests wbich are uniformly most
powerful under normality assumptions are also uciformly most powerful
for any'epherical distribution. Recently Kariya (1980, \Vol. 1) shows
that ﬂctelling's T?aceet for testing location pﬁramete:\;xgjd»in :h; one-.
semple problem is robust aéainet départures from normality. It is still
UMPI in an elliptical’class of distributions and the null distribution

. - -
undex aﬁy member of the elliptic distributione is the seme as that vnder

(3
-
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normality; In+a separate study Kariya (1981, No. 6) gives necessary and,
:éufficient conditions for the null distribution of a test statistic to
}qmain the same in th; class of éllipt;cally symmetric distributions.
Hejglso shoys that in certain special cases,.th;.usual MANOVA tests are~
still uniformly-mosﬁ powérful invariant in the class of elliptically

. symmetric distributions. s

'anﬁ of what has bee; discussed so far relates to distribution
theory, statistiéai inference,.pﬁysicél gcience problems, sconometrics &'
to the study of linéar_models. Elliptically symmetric distributions,
however, have been considered in several other aieaq such as minimax
estimatiog, sédchastic proce;sgs,_pattern recognition, fiducial inference,

and probability inequalities. An excellent bibliography on elliptically

symmetric distribution with its applications in these areds is to be .
found in Chmielewski (1981). In view of these reviews, it has not been

felt necessary to survey these areas an§ further in the present thesis.

. . ) ' > -
1.2 Elliptically Symmetric Distributions

A p-component random vector X is said &o have a p—dimensionai

elliptic symmetric distribution if .the probability density of X is

constant on every homothetic ellipsoidal surface centred around a-fixéd

point say O = (01 ..., Op)ifbee fof;example Cramer, H. (1946), p. 288].

L}

More specifically X is said to be elliptically distributed with location"

parameter © and a pxp positive definite scale matrix A (nmot neceésarily

covariance matrix), if the probability density function of X can be

_wBt\tejsi t\he form
‘ J

£x,0,0) = Kl glaa N a0 : ©a

L



[see for example Kelker (1970)], where Kp is a normalising -constant,

yT stands for transpose of Y.

., If A=114in (1.1), then X is said to be spherically distributed
around the centre O = (61, cens ép). Thus the transition from ellipti-'.
cally symmetric to spherically sfﬁm&tric and vige-versa are made through
appropriate affine transformations. The transformation A—%(x-é) = 2 in
(1.1) yields the p.d.f. of the spherically distributed random variable

/
Z of the form .

, T
£(2) = K| g2 . (1.2)

Conversely, the affine t;ansformation x =0 + Ak Z in (1.2) produces the
elliptically symmetric distribution of x‘having the probability density
function (p.d.f.) of the form given in (1.1).

The ‘elliptic- random variable X)Qith p.d.f. (1.1) and the spherical

random variable Z with p.d.f. (1.2) are absolutely continuous variable.

In what ‘follows we will confine our discussion to the case of distribu-
tion of the absolutely continuous type.-

The following are some simple examples of spherically and ellipti-

cally symmetric distributions:

(1) The standardized multinormal distribution with p.d.f.

_2
£(z) = (210%) 12 Exp{ -— 52 2 T2}

' o ‘\
(11) The standardized multivarigte t-distribution with v

. degrees’ of freedom and\g;f.f. ’

(o]

f(h) -

'x_:z vip .
7:7{ v + sz} 2 T
vy . '

Y
2
ﬂ%




(i11) The standardized multivariate Cauchy distribution with

parameter 'a' and p.d.f. .
a2
f(z) = Cp(a2 + sz) 2 ,

where Cp is a constant
(iv) The standardized multivariate exponential distribution with

parameter 'b' and p.d.f.

1-p

£(z) =1 2 (20)°P Exp{-(z2)¥/b}/ %1 ' )
. - . .

(v) The multivariate normal distribution with mean vector 6

and covariance matrix A
u '12)' T, -1
£(x,0,0) = 2m)  2|A| Exp{dg(x-6) "} (x-6) )

(vi) The multivariate t-distribution with mean vector 6, scale
L4

parameter A (not covariance patrix) and degrees of

freedom v

3] _V+p
£(x,0,0,) = L2 || v+ (x-0)TA"(x-0) }

p v
. 2|2

When v=1l, this is a multivariate Cauchy distributionm.

. Note that the distribution of Z given by (1.2) is invariant under

LY

any orthogonal transformation, i.e., if P is any orthogonal matrix of

order pxp; then the distribution of Y=PZ is identical to the distribution
3

«

of Z. The characteristic function of X whose p.d.f. is given by (1.1)

has the form

e

BCEys weres €)= Exp(1676)¥(t At)




[see Kelker (1970)], it follows that the characteristic function of Z !

with p.d.f. (1.2) has the form b

¢(tl,....,tp) =¥(|t])

‘ . X
[see also Lord (1954)], where ¥ is a function and |t| = (t12+....+tp2)

The aim of the present thesis is to study the generalization of
problems of multivariate analysis when normality assumption is replaced

by the assumption of the class of elliptically symmetric distributions

of the continuous Eype. For inferences, hypéthesis testing and for
computations of pr;babiiities etc., we consider a specific form of ahe
distributions belonging to this clasF. In particular we study the

multivariate t-distribution of the form ,

: Wp . -
£ = K |A v (e-8) TRy ) 2 - L (1.3)

which accommodates the multivgriate normal distribution by ietting Ve,

as well as the multivariate Cauchy distriﬁution by letting v;l. Heﬁce,

in the present work, primarily, we emplqz‘this subclass, ﬁaﬂely, the
muigivariate t-diétribution as a genéralizatipn.of the multivariate

normal distrngtion tather than the general ciass of elliptie. distribu- -

tions in the hope of obtaining sharper (specific) results.
- N .\‘ v
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1.3 Contributions of the Present Thesis *
The following are the contributions in the present thesis: )
1. An elliptic distribution set-up, namely, )
)
n
2. " T -1 :
ceseas = - - ' .4 ]
f(xl, »x ) = K[| gl z (fj g? A (xJ 8)} (1.4) o

j=1

is considered, with X, as the jth (j=1,...,n) p-dimensional random

-~

variable. While in the usual multivariate analysis Xj's are assumed to
be independent observations and termed as a sample of size n, in the

present work, it is assumed that they are not necessarily independent

a

- but always pairwise uncorrelated. Without any ambiguity, we will’ -

assume Xl,...,xn in (1.4) to be'pairwise uricorrelated and for simpliéity

we will still eall Xl,...,Xn a sample of size n. For this fhodel (1.4)

-

we derive 3

(i) the distribution of the sample mean vector

- - - . - T -
X = (x1’°""xi"""xp) , where x, = .

.
[T o B

1xij/rj ) .

L}

c(ii) ‘the distribution of the sample sum of product matrix
" - T
namely V =" I (x.-x)(x,-x) : :
ST s :
j=1 .
(a generalization of the usual Wishart distribution).

2. We deal with the classification problem for the general . -

elliptic class. In particular,”

(1) we deal with the classification of a sample observation
into one of two elliptically sym@etric populations with
3 known parameters, and we

‘ (i1) derive the distribution of the discriminant. function

¢

and its moments




r ., .

.(1,11) ialculate probab¥lity of misclassifications

': L - (1v) apply these resSults to the particular case of multi-

ok ) B : “‘

“ ) e a -, variate t-distribution. — -
' . - Y . _ N
‘. * N ' 3. A joint multivariate t~distribution of the elliptic type .

? ‘ " .-
. _.I_l. n - _m
A - 2 -
£(Xy5.0e,x ) =K [E] {(v-2)+ 2 (x —e)Tz l(x -8)} 2 ; (1.5)
1 no-omp 'jﬂl 3. s ] .

v?Z, with xj«héving mean 0 and coYariance.Z, 1s proposed. This model
accoméodates the usual case when-the samples X5...,X  are assﬁmed to be
independently and identically distributed according to Np(e,Z) by letting
v+, TFor, this model (1.5) we derive
g (1) the distribution of ;he'sample mean
(i1) the distribution of the sample sum of product m;trix
. : (i11) the first and second moments of the distribution of
sample sum of product mgtrix. |
(iv) both non-null and null distributions of a quadratic
fo;ni
(v) the joint distribution of thé sample mean vecsor and
sample sum of product matrix.
‘ Iq addition we - -.
(vi) estimate the parameters of the multivariate t-distri-
bution P .
%  (vii), discuss the statistical properties of the estimators.
4, PFor a particular sample, the model (1.5) has the form
has SN :
2 e .

£(x) = xplzl"‘{ (v-2) + (x-8)T2 L (x-9) }- (1.6)‘

wﬁich‘iq_the usual multivariate t-diét;iﬁution with location parameter 6,

«
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oL covariance matrix I for v>2, and v dégrees‘oﬁ freedam. For this distri- .
Ce ) : N
. butioh (1.6), we derive
.t
. ‘ (1) the conditional distribution

(11) " the characteristic function; and

(111) show some applications of the characteristic function.
5, We consider the orthogonal factor model findetf” the assumption o

that both observed errors and'unobserved'factoré fol multivariate

\
t-distribution and we estimate all parameters of the model includ

-

factor loading matrix. ’

N

6. Finally we consider a regression model with several response “

variables under the assumption that the error has a multivariate t-
'*} .‘distrihution of the form (1.5). ‘%?e foliowing éroblems have bekn dealt
‘ Qith for this regression model: - |
(i) the parameters of the‘model; namely, the fegressiaﬁ
- parametefa éé well asﬂthe scale parameters and the’

. degrees of freedom of the errdr variable are estimated.

) (1i1) the estimatiop procedure is illustrated by an actual
- e L

-

. - stock maf&et dgta tagen from the New York Stock
' Exchange.
' (111) the properties of the estimators are shown, and ; ;=
’ y \(iv)' a test for t-he régression parameters has l;een |
i T discussed. .




CHAPTER 2 - - ;

~ DISTRIBUTION THEORY FOR ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

A p-component random veetor X i;?eliiptically_distributed with
location parameter O and a pxp positive defjgpite scale matrix A (not
5T - -

necessarily a'covariance matrix), if the probability density function <

of X can be written in the form = - \ ) o
. - T - N -
£(x,8,0) = Ky || gl (x-0)"A" (x-6)} L@y
X T b : - ’
where x means transpose of x, K? is a normalising constant. Several

authors have studied this distribution. Among them we mention Kelkér

(1970), Muirhead (1982) who deal with amonrrg other things, the nargipal

RS distribution as well as distribution of linear combinations of component

.variables. In the followins‘section we state some well-known results
¥

on the above-mentioned distributions. =~ ' i

2.1 Marginal Distribution,, Distribution of Linear Combinations

The proof of ;he following-theorém on marginals of elliptiéally
symmetrié distributions is straightforward [cf. Kelker (1970) , Muirhead
(1982)]. . ' ' ..

1

Theofem 2.1 . ' . i

If X a p~dimensional random variable has the probability density

function (p.d.f.) ~




- .. . .
. 3 e e . .
« . . - '
- y o4,

3 K
: -t .0 g:\ .

— "‘_j

-

tr

£(x,0,1) = xlAl“‘grex-e)A =)},

-

. . -
(iyhe;e 8 and A are location ahd séale parameters respectively, and if x,
* . - >
*

-, T

8 and A are partitione& as

51 .. 18 My Ay
X= % | e = {g | and A = AT A s
2 2 21 22
3

@
.

where X and X, are of order (mx1) ani (p—m)xl and All’ A22 are of order~ ‘

2
(mxm) and ‘ (p~m)x(p-m) respectively, then the marginal p.d. f of Xl,is

given by .
;5 -1 i ) ' ‘9
f£(x,) = KIAlll gm{(xl -6 ) All (xl—el)}, . (2.2)

where the function g, is determined only by the forh of g and by the
number of components in X and is independént of 8, A. B 2
The distribution of linear combiﬁation of component variables'gf i

-an elliptic diatribution is once again elliptic (Kelker, 1970). ﬁowever, .:

\

we give a precise statement and derivation - of the distribution of such

linear combinations. L a

-

¢ -

Theprem 2.2 . : ) ) ~

If X has the p.d.f. - O R

£(x,0,/) = xﬁ|A|'*g{(x-ezTA‘?(x,e)}, _ : (2.3)
and P is any mxp matrix of rank m, mSp, then the p.d.f. of Y=PX is given

D
.

by

o 7 7.1 ‘
£(y) = K|pAR"| g, (7-20) " (PAP") (y-P0)} . (2.4)




Prooﬁ:

. Let U -(3)-(5)}1 = AX, so that A -(g) is a pxp nom- .

eingular matrix. Then (analogous to the normal case) using (2.3) we -

heQe the p.d.f, of U as
3

T, T T‘-l )
£(u) = K |AMA7]|  g{(u-88) (AMAT)  (u-A8)} ©(2.5)

Now it follows" from theorem 2.1 thdt Y=PX has.the p.d.f. given by : ,
* ;5 . _1 L . N > * o . .
' ‘ f(y) -KIPAP |* gm{(y-Pe) (PAP ) (y-PB)} :- (2.6)

"
A
& - X .
; e T . : “

2.2 A proposed elliptic distribntion set—up for uncorrelated ‘sgmples
(not necessarily independent) | ’ - > .

v - . ) -.*,"‘t._ K
Consider a vector random variable where eéch component of the

random variable is a particular characteristic. ;Let therecbe n observa-

tions (not necessarily independent) such that each observation is a
\ . . -
realization of the p-component vector rahdom variable._ Also let' x

13 .

- LA N

denote the jth (j=1,...... ,n) observation of the ith A=1,...0..,p) v

characteristic. Then the jth observation containing the‘p4Eparectéristics

v,

may be written as x i(xij,...;,xpj)T. Thus we consider the vector

v " . T i +

variables Xl"""§j""'3§n as n samples, where X -(xij,....,xpj).,

; N * j‘l,....,no
{ We now assume that X, are identically dissributed for all '
j=l,....,n. However, instead of making the usual assumption.of the ‘

3

joint independence of Xl,X‘z ,....,Xn we assume that they are uncorrelated °

o

TP PRRSTIR PR TR AT R e L

but not necessarily independent. In fact we make the stronger assumption

T TR T AW T TR

that the joint p.d.f. of xl,xz,....,xn is given hy



-
n e

- n°
Al %80 2 (x,-0) "N, -0)) 2.7

~

f(x;,.00.,) =K
1 " n g=1 = .

P

where Knp is an appropriate normalising constant. In the above model,

we have introduced the location parameter 6 and the scgle parameter A

-
A

for § for all j=l,2,:..,n.

j -
Let X* be a stacked variable defined ag X*=(1{1T, cens ,§jT, oo ,guT)
T

1} and A*-InﬁbA, where the

T

with paraméters 6*-(1{;@ e), ln'f(l,l, vesy )

Kronecker product A@B of A ='[}1i} and Bsxt is defined as the (ms,nt)
: mxn ‘

gl

matrix A@B = [%11%]. (See for example Neudecker (1969)). Then the

model (2.7) can be written in the form -

-

e . L ol .
£(xx) = K [A%] gl xx-0%) A" (xx-0%)} . - (2.8)

'

1

Now it follows from (2.8) and theorem 2.1 that each xj_is identically

distributed with p.d.f. of the form

S

£(x,) = KIAl_%gp{ijfe)TA_l(xj—e)} , _

3

*

which is (2.1). o ’ L

Note that if cov(x,) = I (say) exists then L = aA, with o a .

; b
scaler independent of 6 and A [cf. Kelker, 1970, p. 419]. ¥

! .

We remark that it is, well-known that the component samples
xllxz,...:,xn, h§ving joint p.d.f. given Sy (2.7), are independent 15
and only if Xj (3=1,....,n) is distributed abcofding to the p-variate
normal distribution with mean 6 and“coyariance matrix I = A, The

famtliar case of independent samples from the normal distributiom is

thus -a member of the class of distributions having the p.d.f. of the



-

form (2.7). N

Independent ;mqles having the multivariate ‘normal p.d.f. is tb.e
usuai case considered in the literature. Howeveg, several authors, for
example, Newcomb (1886), Jeffreys (1957, pp. 64-5), Mandelbrot (1963),
Box and Tiao (1962), and Praetz (1972) have indicated the importance—of--
non-gprmal distribution in regression agalysis. Ze;lneg (1976)
considered a linear regression mddél with the unCOTfEEfffg/tﬁgt inde~
pendent) error  variables hsvipg multivariat; t-dia;ribution which is a
special case og‘the Qodel (2.7). Zellner's (1976) model arose_énong
other situations in comnection with the study of stock market problems.-
Dunnett gnd Sobel (1954) encouﬁtered a multivariate t-model in thé .

!

context of certain multiple decision problems; That model is also a

particular case of the elliptic model (2.7).

‘2.3 Distribution of the sample mean”vector

Theorem 2.3 ’

1f p-dimensional random variables X

~l,....,§j,....,§n‘has the

joint p.d.f.

2 a

28{ E (x
=1

- . .

f(xlT"‘:’ij',""xﬁT)-KanA| -e)TA‘l(xJ-e)} . (2.9)

then the probability density fﬁﬁction of X is given by’

-1 , .
£ (x) -KIA/nI‘kgp{G—G)T(%) (x-6)} - (2.10)




* Proof:

. Let X#* = (xll,}..,xpl,?lz,...,xéz,...,xln,...;xpn), and 0% =

§l"""§}"”’§n can be wrj.ttén as - . . _ .

£(x%). = K |1 @A Tal (x*-6%)T (1 @A) L (x#-0%)}
np' o n
Next we consider the linear combinations

: R i
Y’f = PX* = Y (Ip""."Ip)x* s - ,. (2.11)

. : ¢
where in (2.11) P is a pxnp matrix. The redult is immediate from the

theorem 2.2. dq

2.4 Distribution of sample sﬁm of products matrix (“3\\ '

It has been noted earlier that the distribution of linear combina-

-

tion of component variables has been studied by many authors, but there B
has been no work on the distribution of the sample covariance matiix.

The following theorems may be viewed !as ‘a generalization of the usual-

Wishart distribution. . '

4

Theorem 2.4 5 o

1f p-dimensional rdndom variables EI""’Ej""’En has the p.d.f.

-
”

1 T T n
- £(zy seeeaZy geeendy ) g( Elzj j) s, . (2,12)
o= ,

- i,

1




3

i Sin.

- . £ -

-

] / _
then the distribution of the ele;.nts of the matrix
. — ) n T . s —
= 7 : ] . .
S R : ]
n. e T
- =((Z =z ) - -
ERRRRTLY
= ((m)). (say) )
is give;n by o
flm, / 1<k, 1-1,.._.,15; k=1,...,p)}
. mep-1 ) -
- Cnp g (trace ) IMll 2

. > . ' (2..13)
® ) ' -

T ‘ . " — ,
where zj = (zij""’zgj.) . anfl“crlp is a mmlising constant sgch that-

. -«
.'A/’. —
fE(xlx]-.)dm.-l =1 . . . o _ :
m, : “ - T
?roof:' i , ’
y Consider the given matrix -
n o, n
‘1¢ 2 $'z,,.2 m, 4 . . m
j=1 1] =1 ~1j PiL 11 1p|
;Ml - : T : - (say)
. . - . _ . ’4’,./
- n n "2 :
z z z . . . N z z -"‘ ) [ ] ¢ = ‘
yo1 1% jo1 P i R _
| - - - L -

and let us find the distribution o.f éh‘u],euénts of the matrix ll1 when

zl,....,zj,....,zn ﬁgs the joint p.d.f. given by (2.12), namely,
- ' *

.
e *

.’ , —_
4

L ] -



T T T . oy
f(z1 yerensZy seenesZy )'., Knp g {jilzj zj}

This Joigt p.d.f. can be rewritten as
- o

. P _
T
f(zl,....,zi,....,‘zp) = Knp g {2 zifi 1, (2.14)

i=]1
where z, = (zil,,...,zij,..\.,zin). Since Ml is a symmetric matrix, the
total number of distinct elements in M, is'p(p+l)/2. We now wish to
obtain the joint distribution of these distinct elements.

Le us make an orthogonal transformation from z's to y's in the

following manner: -

yl = Zl -

T T, T
Yo =2 = byVp
P e s s e s et IALL OSSOSO - ' (2.15)

é T - T _ . T _ _ T
Vgoo= % T bygonyYiog Tocerer T by

= bpyyy

a -

T_,T_, T
- Yp T % TPe-1)Yp17 0

vhere 'the scalgrs b's are so determined that yile = 0 for 1 #% and for

i,4=1,2,....,p. Now for r<i, yryi'.r

b T (yrziT) / (yrer)'

* r . T ! , TA
Iﬂftbir - (yfzi) /J V¥ = bir Y e¥e

* 2 2 T ' -
so that bir = biryryr

T . T —
= yrzi - b“yryr 0, thefefore

. (2.16)

Now by (2.15) and (2.16), we get

19




o —————— oy g o vt B

rf e e s e

Iy

AN

)

1—1 i-1
'1' T T
1 = 1
i-1
T *2 .
=yy + I b (2.17)
11 ir *.

r=1

for all i and r<i. Again for i<, by (2.15) and (2.16), we can write

T i-1 p -1 T
2,2 = (yi + I bn_yr)(yl + L boaY. )
r=1 r=1 . -
= T i-1
) = Gpygyy + LR blryryr
* / T. -1 4 »
= bgi yiyi + rfl birblr . . (2.18) -

Next using (2.17) and (2.18) we decompose Ml, the sample sum of product

.

matrix as in the following:

ZT ZZT ZT
zll 12 '..ZIJ
Z;T ZT Z.ZT
P1 %% - PP 8 .




21
. L
¢ . Now by (2.16) we can write
1; * * * - *
) b = (bil"""bir""'bi,i—l) ) \\—z//
T .
y Y .
. . T BT (2.20)
. T ‘/ T : '
ey Y1-1%141
- A Y —~
t = C z, ! (say) N
! ! (i-l) Xn i B
‘ s Analogous to multivariate normal distribution, consider

T T T T :
L F] aeeeeaZiy torbe fixed, so that Y1 seeevees¥y_p 8TE also fixed.

* .
Then, each bir (r = 1,....,1i-1) can be regarded as a linear function of

*
the elements of ziT, i.e., b = CziT as in (2.20). Rows of the matrix

C in (2.20) are mutually orthogonal, because yryiT = 0 for r<i, by the
transformation (2.15). Therefore, ve may find a (n-i+l)xn matrix P (say)

such that (g)- D, where D is an nxn orthogonal matrix. Then (2.20) can

! be extended as

* T * * T
(b ’ €) = (b11, vee "bi,i"l’gi,i"gi,i"‘l'. -"’gin)

»

-Dz,t (2.21)
i :
[ = Since by (2.14) the joint probability differential for np
elements of Z = ((zij)) 1s
. i-1 P . P n ‘ -
T T
K_gl £ zz + L zz'} I 1 dz ,
wp - o TT pmg I T 1=1 =1 13

therefore, by (2.21), this probability differential is equivalent to

i

- . p 1-1 , 2 pP. n 2 P i-1 , p n
¥ . k g I b + I I £ }n 1 ddb I n d¢ (2.22)
7 i1 pel T gal ped 1T Tga] rel IF gai pej IF

-




: ¢

By the assumption that the samples are uncorrelated in the model (2.7),

it follows that Zysees

Noy a comparison of the form (2.22) with the form (2.12) implies that

.,zj,....,zn in (2.12) ere pairwise uncorrelated.

. .
bir (r=1....,1i-1) and gir (r = 4,i+l,....,n) are uncorrelated.
Next let us make the following polar transformation for all i
1

* *

bir = bir r=1,2,...... yi-1l

Lok
Sn ™ Ry 8108y, | _
=1k on — S
so that dbir dgir = Ki Ri ' Ri . dbir ’ —
r=1 r=1i = r=1
no, i
with I gir = Ri’ and R; is a constant independent of Ri but depends on
=i - .
' SJ . o
8's. Then (2.22) reduces to Q0 :
p 1-1 .2 p ) E:L%:ll -1 p i-1
CpelZ I b+ IR} IR g, T  Mdb, -, (2.23)
P 4=l =) f=1 © {=1 , - 1-1 r=1
P, )
where C = K I K, , a constant.
np np 1
i=1
- n 2 T
From (2.17) and (2.21) it follows that I g, = ygyy - Since
: re=i

n
again L Eirz = Ri’ by the abéve polar transformation, therefore, from
- =i

(2.19) it follows that
cp 1-1 .2 p p 1-1 % 2 P

} T '
r I bir + I Ri = 7 I bir 4+ I yiyi_ = trace M; (2.24)

i=1 r=1 1=l im]l r=1 i=1

22




....... \
Because N -
b n-p-1 D E:%:l n-p-1
2 T 2
t T (R,) = 1 G,y = |y |
1=l i {=1 i'1 1 ’
therefore,
n-i+1 -p-1 ~1
4 7 Lo —— 1 5
I (Ri) = I (Ri) I (Ri)
i=1 i=1 ' i=]
ppl o pet
= || 2 (R,) 2 (2.25)
=1

-

Now using (2.24) and (2.25) in (2.23), we can write the ﬁroBability

differential as

p-1i
®,). 2

n—p-1

5 p i-1

p
Mdr, I -1 db
ir

. : P
C__ g{trace M;}|M.| I
. np 17171 1= {a1 1 {=1 r=l

1

. P P i-1 % * o
Next using the identity, Il R, T I db = [3] & o, (as in
4=l 1 ga] pe1 ‘159 H

pi

- > _
the usual Wishart distribution), where |J| = I (Ri) 2 , we can write
i=1 ,

the last probability differential as

n-p-1

2 ) . - —
Cnp g(trace Ml)luli . iI‘demij “ (2.26)

which is the ﬁrdbabiliCy distribution of the elements of Métfix . =

n

M, = I

1 z,2 T . In (2.267 C_" 1is a normalising constant such that
j-l J j np

n—p-1 , .
2
Jcnp g(trace M1)|M1| 1£jdm13 = 1 . Hence the theorem.




*h B

We remark that Andersgn (1958, p. 319) gives a p.d.f. for the
elements of the sample raw sum of product matrix when the underlying

population is spherically symmetric as in the above theorem.' But his

. derivation appears to be a sketchy omne. . :

However, we now-derive the distribution of the sample corrected

sum of product matrix as in the following theorem.

-

Theorem 2.4.1

If p-dimensional random variableg 21""’33""’§n has the p.d.f.

1}

£(z, ,...,ij,. )=K L8CE ij ),
. g1
. » n _ o
then the p.d.f. of the elements of the matsix M= I (2 —z)(zj-z) is
- * j-l
given by ] .
n"-p-1 -
2
Cn,pgn,p(t;aqe M) | M| ,-
4 - - ~ .

' . n . T
where n” = n-1, and gn,p(-)a I g(jElzj zj)izld?ip"

Proof:
T T
Let V,© = CZ,°, 1’

- ‘1 1 1
matrix such that the last row of C 1is (/— N R ). Then it

where Vi = (V ""Vin)T and C 1s an orthogonal

follows that

o
f(viT,...,va,...,v ) =K pg(j 1 v, vj) i (2.27)

24
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and M = Z (z,-2)(z -:z)'r ‘ T

PG ILAEE o '

"Next it follows from (2.27) and the definition of.gn,p(-) that

. i
T 'T

f(vl ,...,vj yooosV T) =K . ( Z v v ) .

n” n’p npjljj

L3

Now.the theorem 2.4 yields the p.d.f. given by the present theorem, for

tﬁe elements of the matrix M = Z (z -z)(z —z)

=1
Thléh&f?i;/

if Xl,.:. Xj ...,Xn hag the joint proﬁability density- *
n, ¢
T ) T T
f(x1 ,...,xj seeeX ) = {jZl(f -9) A (x —6)} R (2.28)

then the distribution of the elements of

‘n
Ve I (x-%)(x —x)

ﬂr J.1~ ' j ' s‘

- ((jz (x4 i)(xkj ‘k”’ .
. P

- () (e, .

25



<

is given by 1 ) B

_ ) o _n¢ p’-p-l
vy, / 12k,1,k=1,...,p} = C o) gn,p(uacé NMlmal vl 2 @29

~]

T -
vhere x, = inj"""xpj) , n° = n-1, an@ Cn'p is a normalising constant

E)

such that

1f(v)dv = 1

v ' ’ -

Proof:

This theorem directly follows from theorem 2.4.1. We sketch the
additional steps below.

Let Z, = A';‘(xj-e). Then the p.d.f. given by (2.28) may be

3

expressed as

n
T T T
£(zy yeenerz) = Knp g {2z }

Pt

which 1s the‘same as the p.d.f. given by (2.12). The above transformation

also implies that - -

x4 - . -% —
zj z =\ (xJ X) .
. e ) ¢
. _7 ' -
Therefore M = L ( j—z)(zj—z) in the theorem 2.4.1 can be written as
. j-l -
n — ., =T
, M= I (z —z)(zj-z)
j-l . .

“n
o A7 L (x,em) (x,-x) A 7E
e Rahe

O I . S ]
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.27

-~

. ‘ n .
. because by definition V = L (x,~x)(x -x)T'

g1 3
It then follows that

trace M = trace ATV .
. (2.30)
and M| = [A7|v]

Now using (2.30) in theorem 2.4.1, we get the p.d.f. of the elements of

\

n T i
V= I (xj‘i)(xj;;) as
=1 ‘

-

_n’=p-1 n’-p-1
I

Cn'p 2% (trace A—lv)lvj 3] ,

[

where |J| stands for Jacobian of the transformation Z = A’*(x-e), which

Pl _
2 . Hence we obtain the probability density function

o -

is given by [A|

n .
of the elements of the matrix V= I (x -i)(xj—§)T as
i=1

- _n" n’-p-l
-1 2 -2
Cn'p 8o (trace A™°V) [A] “ {v] ,

2 ~

which 1s (2.29).

y



» CHAPTER 3

" DISCRIMINANT ANALYSIS

The problem of classification or discrimination arises when an
investigator makes a number of measurements on an individual and wishes
to classify the individual into one of several categories on"the_basis“
of tﬂese measurements. In brief, one may state the problem as: giver
en indivi#dual with certain measurements; if several populations exist
from which this individual may have -come, the question is, from which
pOpulatign éid it arise? | .

There is a vast literature on classification and discrimination.
In order to classify an observation into one of the populations, Fisher’
(1936) suggested as a basis for classification deéisions the use of a
discriminant function linear in the components of the observation.
Other bases for classification have included likelihood ratio test;
(see for instance, Anderson, 1958), information theory (Kullback, 1959)
and Bayesian techniques.(see, for eihmﬁle Getigser, 1964)., In all cases,
sampling theories have bee considered under the assumption that the
populations involved are multivariate normﬁl.

The purposé of this section is to examine the classification
problem for a wider class of distributions, namely, fér elliptical class

of distributions. We assume that the location and the common scale

parameter of two elliptically symmetric populations are known.

~
Y

28




29

4 ) . 3.1 Classification of_an observation into one of two elliptically
! symmetric populations with known parameters ,

3.1.1 Classification criterion

. Consider the p.d.f. (2.1) of the elliptically distributed random
¢ variable X given by

-~

(

£(x) = KPIAI';’g{ (x-8) AL (x-0)} , (3.1)

where A >0 is a positive definite matrix, 0'<(x-6)TA_l(x—6) <«  and
g{(x—e)TA‘l(x-e)} is a monotonic decreasing function of (x—e)TAgl(x;G).

1 We think of two specific (known) elliptical populations ™ and “2

(say) with parameters (61,A) and (GZ,A) regpectively, from any of which
our individual X = (xl,xz,....,xp) may have coﬁe. Theﬁ{ our prgblem is
to find out the discrimination criterion to assign x to a populhtiog of
the two namely ™ and My

Since trrespective of the form of the population we know a genera{\

rule for discrimination that assign the individual X to T if

&

{plfl(x) - pzfz(x)‘} 20 ’

otherwise assign x to T, [see for example, Anderson (1958)]. Here pi

and p, are priori probabilities of m, and m,. If we assume p;=p,, then

the discrimination rule says to assign the individual to T if

£, 2fzﬁx). Consequently, in the present case, we assign the observa-

tion x to “1 if

gl (x-el)TA’l(x-el)} 2.g{(x-0,) A" (x-6,)} .

Since it is assumed that g(-) is a monotonic decreasing function of

_(x—e)TA—l(x-e), therefore, the assignment of the observation x to m is

LI

N




satisfied if 7

(x-07) A"} (x-0)) $ (x-0) TN H a8
After a simple algebra (3.2) reduces to
. T -1 5., T,-1

Hence, we |assign x to 7, if

.

o 2 Tp-1 T,-1 .
(656, "A xz%{(el-ez) A (61+62)} ,

otherwise assign x to LPY

1 (3.2)

(3.3)

From (3.3), (el-ez)TA'lx is a‘ linear function

in X and it is termé&d as linear discriminant function.—k‘l'he purpose of

LY

‘the following theorem is to show the distribution of this linear .

<5

discriminant functionm.

Theorem 3.1

If X has a distribution with the p.d.f.
w =2 T,-1
£G) = K [A] gl (x-0)"AT (x-0)} -

‘then the distribution of the linear discriminant function
(81-62)TA—1X-PX-U (say) has the distribution given by

T, 7% T 7,71
f(u) = K |PAP" | g, {(u-PO) "(PAPT)  (u-PO)} ,

where

T,-1
PG = (91—92) Ao

. T T,-1,,-1

- (8,-0) A" (0,-8,)

v

e

(3.4)




ke

Proof:

1

The theorem directly 'follows from the theorem 2.2.

°

-

Mean and Variance of the Discriminant Function Cs 3

e

Analogous to the corresponding multivariate normal set-up, we

calculate the mean and variance of the quanmtity

T,-1 T,-1 L ‘
XA ($61-92) - %(91+92) A (61—92) U1 (say) .

If X has come from the pOpulation.nli then the p.d.f. of X is given by

~

f(x) = Kp|A|-5ig{(x—el)TA_l(x-.el)} .

Then A-k(x—ei) = Y has the spherical distribution whose p.d.f. is given

by
T
f(y) = Kpg(Y bR

If follows from the p.d.f. of Y that E(Y) = O aéd covariance matrix of

~

the form
rﬂ -1
o2 ceeran O
T, 2 0 g° 0 2
.E(YY ) =0 -Ip = et Le" >0,
0 0 ...... 02'
L -

then it follows that

‘ E(X) = E(A%Y+61)

-0, , o | (3.9

<«




o ) | ' . - ' 32
e and.’c.’:v(x).g-s(x-el)(i-el)?:. —
e D mray | o
- 02!\ -~ - ~ ' ’ (3.6)
- ; Thex"efore, -
) ’ . -7 A

x(ul*) - r.{xTA"l(el-ez) - k(elwz)TA‘l(el-%z)} - - -

. 2
T,-1 T,-1 ¢ .7
N = 8; A (91-62) - *1(61+62) A _(_el-ea) )
. . T T, T -l
L = e e, (88 |
T,~1 .
-% (say) , | ' ) - )
" and T
. ) — ]
L4 N * T —1 ' - .
o cov(ly ) = cov{X A7 (8,-6,)} -
o SR Je | -1 _ , ) -
- o - : : - . -
. 2 T,-1.. _ . ~ =
) ) . ‘ . = g (el_ez) A (Ql 92) ’ by ‘(306? i _ ' . {J“
' . 2 . . . ) R
. 9 . . . =0 O ‘ o .
.- . .. 3.1.2 Probability of Misclassification -
» ’. Consider the discrininntton:rigeriop (3.3) that classify X 4n
. ' —_ 'Y [y \ .
™ if . . - .
' \ e

.8 " - -
R . . T - . T -1. - _
S RAR Y - u(0,-0 ™A 090 2.0,




and 1in T, otherwise. Let the probabiliiy of misclassifying an individual
from 7) into 7, be e, and the i:robability of misleéégifying’ an individual
fro‘m'nziin %, be e,. If the distributions 7, and m, are multivariate
nomal with parameters (6 .3%) and (92,2) respectively, where I is the
common covariance matrix, then it is well-known that probabilities of

:misclaasificat}ons e and e, are same [see for example Anderson (1958),

Srivastava and Carter (1983)] and they are given by

-1 ¢ _
e = ez_ Q‘E”{(e ) 2 (e "92)} 1 - . '

where ¢(x) = L e-;"'ty dy . -
vym , : _

B} ‘ ) - _ -
In the present'case, when the underlying distributions are N
elliptically symmetric; the probabilities of misclassifications are -

given as in the following theorem.

Theorem 3.2 - ' L et . o _

~

If X (pxl1) has the p.d.f. . . -

£, @) - xp|A|'i’§{ (x;el)TA‘I(pel) boo

—1 H L \.
[ when it comes from a population Tl and 1f X has the p.d.f.
-y - g N
“given by -
; : £,00) = K_[A] Mg{x-0,)"A " x-8,)} ,
\ A —. P 2 2 )

®

vhen it comes from another population T, ; 4nd if e;, e, are the

ppbnbiﬁ.ty of niochuing an individual from 11':IT into 112 and 1\'2 1nto 'n;
<5

£

respectively, then e, and o, are same and given by —




D o _
. T )
o e, = e, = [ Kgi(z z)dz ,

-~ C 2 T Tl
where D (elqez) A (er 62)

" Proof:

1 _ By definpition ey and e, are

e - Pr[{(el-ez)TA‘lx - 35(61-62)TI\-1(91+92)}$o|x£1rl:[ :

and

o .v{u—,——r7 Al Cianns MG S

: ’ e, = Pr E(el-ez)TA'lx - ls(el-ez>TA”'(el+ez)}<o|xev2:l .

E | - o T 1, ¢ a1
: Thus, &, Pr{}el 62) ATX 5(91 92) A (61+92)|x£ﬂ;] .

e Let (el-ez)TA'l = P, then we write

f ~ T, -1 -
,~ e - Pr[}x S !5(61-62) A (61+62)|xe171:l .

Next by (3.4), this probability of misclassification, namely, e

-

can be written as

T,-1
5(0,~6,) A7 (8,+6,) _
T e T T -1 s
= | K |PAP”| g, { (u-P8,) " (PAP") (u-?el)}du

e
- 0



X
Put Z = (PAPT) (U—Pel) in the last equation. Then it is readily seen

that

where D = %(GI—GZ)TA-I(SI-OZ). Similarly, it can be shown that

o©

Kgl (sz)dz
XD e

Therefore, by symmetriness property of the distribution of Z, we obtain

e, = e,. Hence the theorem. - oo

Ay

3.2 GQlassification of an observation into oﬁeﬁof two multivariage
t-populations with known parameters -

Now we shall use the géneral proceddfe outiined above, as an
example, to the case when the two underlying distributions are multi-
variate. Let :p(el,z,v) and tp(6232,\0 are the two multivariate t-
pgpulations, where ei = (611,....,911))T is the mean vector of the ith
(L = 1,2) population; £ is the covariance matrik and V is the degrees
of freedom for éoth populations. The p.d.f. of the above deécribed‘

ith (i=1,2) population is given by .

V F

(v-2)2 3%2 i | . '2';2
fi(X) = -—T I | {€v-2) + (x-e ) E (x-ﬁ )} , 3.7) -
Vv
2

by (4.2). As before we name these two populations as my and m,
. "

respectively.



is a decreasing function of (x-el)Tz'l(;-e;), therefore, it follows from -

- (3.1) through (3.3) that x should be assigned to m if-

- i %
_ ‘ - 4p
‘ Let x dehote an observed sample of wise 1. Since {-} 2 4n (3.7)
; 0.-6.)T 57 % > 4{(6.-6.)7 1o 40,0} , : (3.8)
E : 1 72 - 172 1 72 ’ -

s otherwise we assign x to Mye

- 7

Distribhution of the discriminant function

- -tpeorem 3.3°7
? . ] If X is distributed accor@}ng to tp(el,z,v); then —
- u e x5 e, -0,) - %(6.+0,) T (8 ~6 )-h he distrib £ the £
b ( 1782 119, (. 197) has the distribution of the form

B

£,$3,0,v), vhere a = (8,-8,)"E(8,~6,) for v > 2. -

Proof:

*

Since E(X) = 6, it is readily verified that E(U; ) = 5 and
* “ ) - ,
cov(Ul ) = o, where o is given by a = (91-62)TZ 1(61-62). Now, the

- theorem follows directly from theorem 3.t. - --

——
K

Probability of Misclaasificatibns_

Theorem 3.4 - -

Let X has the multivariate t-distribution with the p.d.f.

vy |2 vip
v
2

. ACK ; 27 w-2) + 8T o) 2,

when X comes from population %1 (i-1,2). Also let ¢, and e, are the
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probéﬂllity of misclassifying an individual from ﬂl-in;o ™, and “2 into —

N
LAY respectively. Then e, and e, are given by ,

- 1 2
- ™y
B . (\)--2)2 2+2—J= 9 _leﬂ .
e, = e, = T {(v-2) + 2%} dz , B (3.9)
) - [E
2 -

2 T.-1
where D*" = (61—62) L (91-62).

Proof:

This follows from the theorem 3.2.

A Numerical Example on Probability of Misclassification:

Af:Rao (1948a) considers three populations consisting of the Brahmin

caste (nl), the Arttsan caste (nz),‘and the Korwa castq_Cw3) of India. .

. The measurements for ‘each individual of a caste are stature ('xl),

sitting height (xz), nasal depth gx3), and nasal height (34). From Rao's
example, we now consider two populations namely the Brghmin caste (ﬂl) .
and the Artisan c;ste (ﬁz). The means of the four variables in the two
populations—énd the matrix of correlatioms among four variables for.all

the populations are given as follows:

. Means

' ‘ Brabmin (r,) Artisan (T,) -

Stature (xl) ) 164.51 — 160.53

Sitting height (x,) 86.43 . 847 -

Nasal deptl;—(x:,) 25.49 | — 23.84 B H

Nasal height (x,) . 51,24 ' 48.62 . A
. . e




AR A Sl B

and correlation matrix R (say) _ ' N

1.0000 0.5849 0.1774 0.1974
1.0000 0.2094 0.2170
1.0000 0.2910

1.0000

?he standard deviations for four Qariables Xl, XZ, X3 and X4 are giﬁea-

as 0, = 5.74, 0, = 3.20, ©

1 2 3
using these standard deviations and the correlation matrix R, we have

= 1.75 and O, = 3.50 respectively. Now

the common covariance matrix for all populations.as

1 32.9476 10.7434 1.7820 3.9569
10.2400 1.1726 2.4304

' - 3.0625 1.7824
12.2500

' ~Now ‘we assume that T, refers to :p(él,z,v) and the second popula-
tion T, refers to t (6,,5,9). Then 6,-8,)" = (3.98, 4.96, 1.65, 2.62).
By using (3.9), we obta;é the following'probabilitieaiéf misclassifica-

tions for different degrees of freedom.

‘~ -

v 5 10 - 15 ' 30 ® (Normal case)

0.160 0.176 0.184 0.1901 ~ 0.1949
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CHAPTER 4

MULTIVARIATE t-DISTRIBUTION
. - - L]

- *

t .
It has been mentioned earlier that the class of elliptic distri-
butions of the continuous type.could be a suitable generalization of the

multivariate normal model. This class has the p.d.f. of the form given

by
Y > ) ’ '

f(x) = K1A|'*g{(x-e)TA‘l(x-e)} .

L4

This elliptic class of distributions is a wide one ané it’is'reasonable
to expect that distributional results would usually depend on the form
of the function g(-). Hence, for the purpose of Inferencés, hypothesis
testing, computations of probabilities etc., it is appropriate to put
further restrictions on the form of g(-). In particular, in the present
thesis, we havg ;estricted ourselves to fhe subclass, namely the multi-
variate t-distribution, as a generalization of the normal model in th?
hope‘of obtaining sh;rper results. The p-dimensional multivariate

t-distributfon of g(pxl) has the p.d.f. giien by

vip
2

N <

\Y

£(x) =

. 3

m

'hﬂCl

-~

[cf. Cornish (1954), Dunnett and Sobel (1954)] where 6 is the location

.

parameter, A is a scale matrix and v is known as. the degrees of freedom.

po

39 .

- emmimm s e e e -

-—-2—‘|A|_;’{v + (x-0)"A"1(x-0} , (4.1) -




This subclass of multivariate t—distribution cbntains at one end
the multivariate cauchy distribution when v=1 and at the other end the

multivariate normal distribution when v+,

It is readily vefified that [see Cornish (1954)] the multivariate .

t-distribution (4.1) possesses second order moments for v >2 and has the

following mean vector and covariance matrix: -

-

-

E(X) = 0, cov(X) = ;%E A =1 (say) -

We therefore reparametrize A in (4.1) by the covariance matrix I = ;2— A

and obtain

V

3 [V - : _vp
£(x) = -("—';—).—-—2— 1217 v-2) + x0T ) 2 @)
2 P '
LN

In what follows, we will denote this distribution (4.2) in short by

. tp(B,Z,v), where 6 will be referred to as the centre or mean, L the

covariance matrix and v the degrées of freedom of the t-distribution.

-

4.1 Marginal and cohditional distributioms

~

In notation of theorem 2.1, g(:) in (4.2) is given by g(-) =

{(v-2) + (x*e)TZ-l(x-e)T' ; . By direcf integrations, it is readily
verified that gm(-) hits the similar form as g(-) for the multivariate

t-distribution. Therefore, we have the following theorem:

Theorem h.l

-

If X'vtp(e,z,v) and 1f X, © and I are partitioned as

L X3




"

where X, and X, are of order (rx1) and (p-rxl), 91, I

1 2
and (rxr) respectively, them Xl’Vti(el,le,v)-

1 of order (rxl)

Among others Cornish (1954, pp. 535-47)? Raiffa and Schlaifer
(1961, p. 528), Johnson and Kotz (1972) discuss the marginal and
conditional t-distributions. Johnson and Kotz (1972) discuss the -
conditional multivariate t-distribution for the special case when
xﬂ:tp(o,Ip,v). Cornish (1954) derives a conditiona} distgribution _
funétion and uses that function to calculate the mean ané the covariance
matrix of a conditional t-distribution. .

-Raiffa and Schlaifer (1961) claim that if X’htp(e,Z,v) and 1if

X, 6, and I are partioned in a manner similar to that in theorem 4.1,‘
then the conditional distribution of Xl given X2=x2; is a mulFivariate
t-distribution with appropriate mean, variancei and the degrees of
freedom v (same as the Jegrees of freedom of X). We now show that this
claim is incorrect and tﬂe correct version is given in the following
theorem 4.2.

Furtﬂermore we note that the mean and covariance matrix of the
conditional t-distribution [which were derived by Cornish (1954) from a
conditional distribution’ function in a laborious way] directly follow

ffom the form of the conditional distribution gi§en in the theorem 4.2.

Theorem 4.2

If X 18 distributed according to tp(e,E,v) and 1f X, 0, Z and 2-1

are partitioned as

41
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X
F
»
3
!
'v
:
.
v

S T T R TR T T T

. 42

where both X, and 91 are of order rxl (say), and both of le and 11

are of order (rxr), then the distribution of X, given X has the form

1 2%

' T-1
=1 v=-2 + (x.,-6.)7Z . (x.-6.) -1
e 0~ Px,8,), 22T gt (wpen))

- V=2 + p-r
Proof:

f(xl,xz)
By definition, f(xllxzfxz) = —?T§;Y—_

For simplicity suppose 9;9. Since by theorem 4.1, Xz’btp‘r(o,zzz,v),

therefore,
i e T P
3 (vt ‘
T 2
Vip-r . T M
x [{v-2) + 2,753 ) 2 {(v-2) + Xz tx) 2 (4.3)
2 “22%2 _
In (4.3), -1
Inn 2 ! ]
iy - (%, xz)T
. 5 % X
21 22 2

- - ' ]

TZZIX +x TZZZx

2 1T 2) (4:4)

T 11
- (X1 z X) + 2

-1 21.T,.11, "1 12

22 ) E) L

non~-singular [see for example Press (1?72),‘p. 25-26]. Using this

Since ZZ_l-Ip,so iz , provided I'" and I,, are

identity in (4.4), we get

-1 T ,,, -1
rlx 1 ke + x4 @ ) 2k + Gt

12
5 Lgp I7x,} (4.5)



Substitute X1 + (le) ,lexz =W,

Then by (4.5), it follows from (4.3)
that

. !‘_‘P—r

f(w/xz) = 2 {(v=2) + x

2 22 2} 2 {(v-2) + x Ty-1

h. 9N

2 72272

T.11 -
+ w i w} 2

This is because

_ _ Y
2178, = 127 L, )

% T 1, e
- Izl%zzz C eyt g2 L gy gty 12
R
k
- 2

-1
(v-2) + x, 222x2
v=-2 + p-r

Now reparametrizing I~ by {

} (le

) , we obtain

[vre
2

Vip-t x _p
2 T .11

(V-24p-rtw' I w)

* L ,
12t | v-24pr)

£(w/xy) = —

T
3 }Eg:E

(4.6)
m

which is the p.d.f. of a multivariate t-distribution

t {(0, (zll ) =, (Wp-r)}. Therefore, by linear transformation, we -

obtain the distribution of xllx =x, as in the theorem.

We note that it immediately follows from the above theorem:

-1
11,71 12
B /Xpmxp) = 6 = 7)) I7(xp=65) , end

11% 1

- n (-2) + (xy78,)7; 72 (x,-6,)}
2

Wp - -2

v(xllx2

(zll)—l .

o —

sl
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4.2 On a conditional distribution considered by Raiffa and Schlaifer

Raiffa and Schlaifer (1961, p. 256) considered the student -

/

density functiom given by ~
-
fs(r)(z|m,ﬁ,\)) z J fN(r) (z|m,bH) £, , (h]1,v)dh N CN))

[o]
" VT
%- V-2 _ T2 L.

\Y 2 T Y *

e {v + (z-m) "H(z-m) }|H|® ,

7 |v=2
i 2

- < gz  ®
-0 <y < ® |

v>0,H>0

(r)(.) is the p.d.f. of a r-dimensional multivariate nord?l

- where fN
distribution and fYZ(-) is the p.d.f. of gamma variate of a second type.

They considered the following partitions ‘

L Y vy ¥ Y

2 m, B, &
Z = z , M= n s, H= " H. s
2 | 2 21 B2

hwhere zl, m1 11

obtained the marginal distribution as

are of order qxl and H.., is of order (gqxq). Then they have

(r-q) -1
B (zylmy, Vi)

- [ £, (r-q) (zzImz,h('ﬂzz-ﬂnnziulz))sz(h|l,v)dh

0

- £ V(g |n By,-B HH V)

ol mysHpp-Hy ) 10y

L]
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and the conditional distribution of Zl/ 2'2-22 as
(Q | -
£ (zllml Hliulz(zz-mz),ull,v) .
[ - ~
- (@) - C ' )
5 .
; f (q)(z |m +V an(z -m,), (V,,-V V-lV )-l )
R T T e YRS PR T A PAF L
- n Y :
where VZH ~, and V was partitioned as V ={ " ) with V_, as a
- \') \'A 22
. 21 22
positive definite matrix of order ér-:q)x(r-'q)
We now rewrite (4.7) as
O P () SN . -
fs (zIm,H, ) = rfN (zlm,hH)sz(hll,\))dh ‘ o ™
o
G . Y o B -
, .| e @ - ’ L .
/ ~ _ J‘[%N (z) ml-HI}HIZ(ZZ mp) o hHy )~
! )

x fN(r“q)(=2|"z’h(ﬂzz‘uz;uii“12)'fﬁ2(h|1’v{]dh

= _ o ' (4.10)
Since the expression in (4.10) cannot be equal tol the product of the two
right hand expressions given by (4.8) and (4.9), t;hérefore their method

in obtaining conditional density is defective.

We also cite a siﬁple example. Let us assmé that in their

derivations H = ( g g) and Z = ( 213 , where Z 18 a two~dimensional
‘ 2 ) . ‘

variable. Then (4;8) yields ' N




3

“then X = 0 + z”zmcp(e,z,v), of, in gemeral X =6 + nzmcp(e,-ns",v), :

- ‘whetre B is a positive definite matrix of rank p. We now derive the.

= v VL ¢

Vs .
. vzﬁ-\’; 2, 2 . - ’
w {\7 ‘ y N -
z . B

and by (lt.B)A_f(.z]_/z_z) is given by ’ Lt \

‘\) _ .

v—z- \H.Tl 2- 2

. ,‘E N

2 ‘\‘
Now because \
. ¥ ‘v+i"\ W2
£(z,)£(z,/z,) # £(z é') = _lfi_ et 2,2 2.
2 172 1’72 ) S zg_ 2/ ’

LI o

) .
- . \

therefore tk_neir derivation_fof‘ conditional density is defective.

4.3 Distribution’of 1i;mar copbinations

If xmt (0,z,v), then it is readily verified that the standardized
variable z"‘(x-e) = Z is distributed according to t (0 1. v), 80 that sthe
density function of Z is given by | -

. N = -
_ 7 [ p ,- .
L2 {(v-2)+ Iz y - (46.11)

2 .1_11
|2 ‘

-
-

The @istribution of Z given by (4. 11) is apherically symmetric and Z 1is

invariant under any orthogonal transformation. Thus nZ'\at (o, I.P,v),

&

vhere ‘H_is any (pxp) orthogonal matrix. ° Conversely, if Z'\-tp(O,Ip,v)

distribution of linear cosbinations ss in the following theorem.

L]
» .
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Theogﬁn 4.3 (standardizationm) ) . ~

\ ., —

\ - -

Let xﬂwtp(e,z,v) and A be any qxp matrix'(qSﬁ?iof rank q, then

. R : = : g
(AZAT) A (2-8) £ (0,1 ) | |
_ ) ‘\‘. N qi q .
.‘—\\ . " - . T -
Pi'oof: ‘ kY - '
L .

{
. ~ -
Set Z = z"’(x-e). Then Z'\atp(O,Ip,v). From' theorems 2.2 and

. !

4,1 it follows that ) : .

3
T
(LL") Lz~ cq(o,Iq,v) s

where L-Azk. L‘is a matrix of order gxp with rank q, Pecause by
hypothesis A 1s a qxXp matrix of rank q and'L is 4 px? non—singular
matrix 5} rank p. Hence the theorem. . ’ -

We note that from the above theorem it follows that the linear
combination AX hgs the @Istributioe of the form AX'btq(Ae,AEAT,v)T
where A is a.qxp matrix of rank q. '(‘ .

3

4.4 Characteristic funetion

Fisher and Healy'fl956) gave a polynonial.expresg}an’for the

characteristic function ¢,, of the univariate t-distribution with odd

degrees of freedom oniy. They developed the funttion using recurrence .

relations. Ifram (1970) ha# given results for ¢, of the t -diarribution

L.
I

-

|
-




but they are found incorrect by Pestana (1977).

In this gection we obtain the characteristic funcgion of the
ﬁhltivériate;;—diatrib;tion and show that the c.f. has the pedagogical
vi?tue of reducihg the multi§ariate probleam to the case of anp;nalogous
univariate problem. Furthermore we discuss some applicatidna of the

characteristic function.

-~

4,4.1 The characteristic fumnctiop of multivériate t-digtribution

‘Theorem 4.4

1

If X has a p-dimensional multivariate t-distribution with the

p.d.f.
R Ca.s ]
= Te-1 2
£(x,8,L,v) = KplZl {(v-2) + (=-0) "(x-6)} ~ ,
\ v
2 | Y2 ‘
where — ®* < X < ®, v > 2, and Kp = (vfg? 2 ; then the characteristic
v
2 3

function of X is given by

(a) for odd degrees of freedom v

S [w1 it 9~\/(v-2)t It 1
ﬁ . 2m-1-r

Ogltyseeenty) = V-1

{2V (v-2)t Zt} :1
(r—l)l -

N|

TGF?I
7
2]




(b) for even Vv . —

¢ (f;l,_ eyt ) = I Vi 2 1l °3 _LL""Z t It . : ~
- p . .
D r (wHe-1) °‘°
=1

- -— 4 o 'x 1 mﬁl(n_j){ m-z.l 1 + lo ((\)-2) tTZt\_ Lﬂ“'_l}
(ah)? 3=0 3=0 =3 4 =T

where m = % and E igs the logarithmic derivation of the gamma function
. |n+1

ln+1 L1 ]

(c) for fractional v

V_ =T ) '

E_m 2-+-]= m T
o_(t t) = (v-2) 2 _(-1)" T St 9
b Sl R P S g o ol | . sing‘rr .
3=1 '
(J( v=2)t z“.t-,)z
n-O
m-1 ' mn-1 :
: _ 0 by (tlin® @ @D , o
_~- ' ’ { j-o _r _'L-O . }
V¢ [HE 25 [oFiFE
B | - where £ = 32’- - E%J-El = % - m, with [x] as an integral vélue of x.

1




Proof: ‘ - - - — T
. .2 4 .
" Given f(x,6,L,v) = KPrZI_%{(v-2)+(x—62?22}(x-6)} 2 , where
Y e )
(\)-2)2 2 .
= ~w< x<®, v>0, We wish to derive

P ’ '
i ) _

- T T -
¢x(tl,t’2‘,...,tp) = Exp(it x), where t” = (tl’tz’“‘,’tp)' ’

%

Let us make the transformation X-;i(x-e) = Y, then

p -
g(!) = KP{ (v=-2)+1% yiz} 2 and the c.f. of Y is given by .
i=1 . ] '

VP

iuTy P . 2772
Pgluyseee,uy) =Ky | e {(v-2)+L ¥y } dy. To evaluate the last

i=1

integral, we make an orthogonal transformation Yle = I‘P <P Zle, with

first column of the orthogonal matrix rPxP as the vector

u u
1 2 “p ‘ T
T—l—u ’ T—l—“ sesesy TT“ » where |u| = (u u)k. Then
~ .
2 dz, which again can be

P
(v-2)+ I 2.)
1wl

i|u|zl

¢Z(u1,u2, cen "“P) - K J e

written as

di(ul,....,up) -Kp e .ldz1 EP-MPZ] ) dzz.;.dzp,. (4.12)

L]

- p_l 2
where - (v-2) + L z,
im=]




'”

et

dz . N

R O .

3 Let~1p Sl v On gubstitutins Jcp tanB_E?r 250 we get
2, 2 '

(c_*z ™) — . -

P P

after a little algebra, 7 —

1 2 1
Tip-1 —
% A v z'-_étL -Jx_:
p 2 p

r VL
. | Hulzg 27
¢z(u1,ou-,up) = hd p’lp_l' son '23'22' e ((\)—2)+Zl ) dzl
-l
= %'zp’zp_l. oo "E3'£2.J1 (BaY) . (4.13)

C8se (a) when v is odd

For odd v we evaluate J, as follows: Let us consider a contour

consisting of the segment [;R,%] of the real axis and the upper seﬁi—

circle |w| = R, Imw 2 0, and also consider the function

ilulw
e .
vil

e —

2 -

f(w) = . Now, for R > (v-2), the contour encloses the

2
((v=-2)+w")
pole of f(w) at‘wo = 1/(v-2), this pole is of mth order, where 2%l = m

and Vv is odd, the corresponding residue being

m-1
C 1 Lim . [3 1 {(YTI r(—”_zu )m

-1 T @1 v 1/v-2) !

eilulw '

x

)
(=2 (et T "'".”"szl




52

v

Differentiating the function (in 2nd bracket) (m-1) times end putting

w = 1/0=3), we getc_7

= I -1
. . :lul \)_2) ? (2‘&_':_}1) \!’. - . B
T [l =1 e

Since, by an elementary residue theorem

R co
i S ilulzl
f(w)dw) = ; - = dzl = 211, C-l’ ag R+, therefore,
(zl +/(v-2))
-R R
ve get )
i - 2D e WA o=
1 (r=1)!
2/0-2) :
' Now, -using J1 in (4.13), we obtain
g I r—o—m [ 2m-1-r
[ (') ¢., (u ,...,uP) -i-—z——lélul v-2) ¢ (2| A=
Y f27 V-1 E _ i\ ap )T GDT

(4.14)
Next substituting back X = 6 +'Z;’Y, we obtain’ ‘

T
1'%
9x(tyseenstp) Ee

1:Te 1tTZ%Y
Ee

= e

“

T r— mn [2m-l-r ’ T rl
eitﬂ_m)- tht I 2¥(v=2)t' It

(x-1)!

¢(t,-t)-__
X*'1 2P v r=l -

TR
N l“'él

(4.15)

.
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a

which is the characteristic functioﬁ of the multivariate t-distribution

when \ is odd. Hence the case (a) of the theorem is proved. Note that

. T
this characteristic function is_of the form e1t ewl(tTZt), vhere

[wl ' - f 2m-1-r

e L o=
¥, () _1_1?_1 2 /D= § 2/(v-2)x)

2\)— P =l m-r (t—I) !
2

1

(4.16)

" Case (b) when v is even

2.

quantify. Let 2%& = mtq, where m is the integral—part_énd q 1s the ‘ )

fractiénaliparf. In this-case, the pole of the fraction f(w) considered

Whefher“v is an even or a fractionm, s is not an integer

in case (a) is of fractional order. We evaluate the integral

’ Jl = [ff(zl)dzi'as fol;ows:

~

# »

Suppose f(z ) has pole at #1/a(v-2), where 'a’ 1s a variable such

- that 1-hSa s1-+-h aid h 1s very small positive quantity. Also, guppose
iIU|zl 2- v+1 B . ) e
J2 - {f; (z1 +a(v-2)) dzl, and J2 is differentiable with respect

A -0

to 'a'. Then, J2 can be demonstrated very easily as

' 1 am ilulzl 2 - - ) :
J, = - - e Jt.J{a+zl / (v-2)} ‘.q da..dadzl
(v-2)"" 35" : ~
v - S - -
m . m - co
3y = L), ) 2 iIulzl Pz2+a(v-2)} 1 dzy
=D T (wrg-g)  2a" L -
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Next let q = £ + ) so that |£]| < %, we immediately obtain
5 4—1)“ a"‘ lgj( (Valv- 5lul) 18
2 a® E 1 ! R
(-2® 1 @) 22 2 ("z" 5) &+
j-
A= )’- z Jt (az) .
because 7 2% V-la\) ,a>0,2>0, |v] <k
(x“+a™)...
— -m .
(see q 24, p. 63, Grobner and Hof;eéter, 1961), where g(') is a
modified Bessel function of the second kind, and}E(/aZ\)-ZS |u|) is given
by‘kg(JaZv-i)lul) - (-1)10(;/32\)--25|u|)log<———-l—1--Ia (\)'2'2 ju)
2 ?
n=0 ('n ) ,
v (
for § = 0, where
‘ - . ; - . f—c—)- 2n
.j o I,6av-2) |u]) = Z‘ a(v=2) lu]
S o n=0 (n)
i i and ¥(x) = iFy is the logatithmic derivative of the gama function.
) Note that E-O 13 our im:ei‘est now, becauae §-0 mplies q=}, which in
b - 3 T,
. turn mplies v i{s even an‘l ig given by v-Zm whete n-is an’integer
- quantity. ) .
i Pytting‘_g-.O',__(lo_._IS). can be i‘é-irt‘itf.en &
- . o R , UL i .
] , o~ (_l)m' - ) an }-(h(\).-z |u| -
P I JZ- ; o) ) L . _(4.19) .
’ - (v-"l)"‘ﬂ(mﬁ,a' | c{z “’, . L
=t . 31 - e . ol
LY - - - ? - t~ 1.1.-? " )




Now, we need

m -~
_3;1_ {IO(JaZ\)-ESluI)}
da

n o 2 :
-a_m. (-1) % Ya(y 751 1 . log a(v-2)|u|
da 0=0 (n! ) *
N' + ; ln+1 /ai\)-zil \2
=0 [ (ah)? ' | .<
T . (-1) 2 ; UTHITI\ Sl
da™ |n=0 2 (ng)z
{(a)n . log hﬂ n+ ()"}
n+1
‘, = (_1) _a’_n_ ('( i;lu 2n 1
[ﬁ da™ n-O (ng)z
i ~~ {an 103/; + 108 @J_‘il_ - E (a)lL} «
. . 2
: [+l
w -
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" “"Now
m . J
a— (a 103/—) . ._" c
a C e
- am n “ ' . o ~, B
=X -a—m (a loga}
a
T im=1 ‘m~-1 : m-1 _
=% (D@D + T@P+...+ T (@PNla®™
%0 ¥l j#(m-1)
‘m-1 T ‘
+ I (n-j)loga A (4.20)
3=0
and ’
a‘“ n
~— (a) = n(a-1)(o-2)....(n-mtl)a" "
4 oa m-1 .
= I (a-§)a" ™
§=0
Therefore, using (4.20) in (4.19), we obtain
m
3, =21,
3a" a=1 . - @) B .
" . ™ (»’( =2) 1\92“ o D m-nlcn-j) T L
-3 - - n_j
-2)"1n (nH-g-j) n 0 ( v? 3=0 3=0
m=

+X% n (n-J) 1os<“"zll“l) n (n-j)}
n+1 n=0
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_ mtl — 2n m-1
(nll) VZ\) 25|u| {.2 T (o)
(-2)" 1 (mq-3) ° nit o 3=0
j=1
m-1 o 2 g
(gL 4 103((_\)-_2_)_3) _ e,
3=0""3 ¢ [T

Hence, by (4.13), we obtain . -

L 0u 500 esup) = Kpelpe wen oyedy

LY - .\i - _
) (v-2)° —\%I—’ "t v+§—1 if—i ;
| i E wz
™ {2 2 2
3
] y _ I
‘ (v-2) et w-2)" L
g ‘ - —.
,. | Ry DY |
i.e. ¢Y(ul,...,uP) - q)z(ul,.-..,u.P)
o+l [Vl
(-1) — m-1 m-1 ,
2 A ”“l) I =
rrn (w+is-1) n-O (n!)” 1=0 j-O
- ' 2 »
+ log (\)-2‘. L - o1 } s (4.21)

L

- ¢

because q=} for even V.

Next as in case (a) substituting back I= 6+2le ve obtain ¢x(t1, ..,t )

as in case (b) of ‘the theor-. Note that for even v, tbe characteristic

<

function is of the form

¢ . ‘ "c




T 496 e e TR
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£ 2y,
(-1)= vl ’(T m-i
where ‘l’z(x) = - 2 A4 22 X I (n-9)
12T (atete) =0 " @b’ =0
2
- =r
1 e =
! x {mg 1 + log (\""42)1‘ - iml e
3=0 = [a+l
Case (c) when v is a fraction |
vl ‘
We set —— = mt+q = m+E+k, where |§|<!5, and m is the integral
part of % Now - if v is a fractional quantit;, shen £40 but 1€ ] <.
In thi‘s case, when £%0 }E(-) in (4.18) is given by
N
‘J‘- (Yaf\)- |u|) 2oieEn ing‘n I g(y’a(\)—Z)]u{) - Ig(/a(\)-Z).luD R
' s va(v- ZHu &+2n .
where Ig(v’_T_Sa v-2)|u|) = L , 18 a modified A
: n=0 °° [ote+L "’“‘\g‘
Besgel function of the first kind (cf. 6robner and Hofreiter, 1961,~
pp. 192-193). Therefore, by (4.18), ' ) ‘
J. = (‘l)mﬁr_lulg ) am {}E a(v-2 turl)} (4 23) .
2 m : _ m 13 :
w-2)" Hl(m+q-J)-2£ /oot 6% e /2) ,
=1 N -

We now simplify

90 }E(Ja(v-d) Iul) }

3a" (/;)§

B




{I (v‘aZv—iSIul) g(v’ialv-ZSIuI) ’ ’,"
( /a)° ) " 28ingTW

o _ﬁ_ ; 1 (/alv—zilaQ §+2n
28inf® om0 n! [oFERT (/‘ )¢

4

) ; 1 1, Ya(v=2) |u] §+2n’
2
n'O'n! m_(ﬁ)g

.t °§{ /=2 lu] Nesze e
28188T 10 ! n—§+ 2™

E+2n 3™ Nt
. (mw s

m
Since % an"'E

da

‘.
- (0-E) (n=E-1) .... (n-E-m1)a? o1
< "
a"‘ n - ,° n-mtl ’

and —— a = n(n-1) ... (n-mtl)a  ~, therefore the last equation can

a& N ) t (e

.. {
1

be written as '

/(\z-ﬁlu 2“, 1 (BT % Lkt n n-;-éu
ZSiDETT n! ‘\’ ﬂ-£+1 j.o

-3)a }
2§ | +1 §=0 \

S
) .

L
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v’ 5 . A . o > |{lu 2n 1 )
-2 2 *al

(v-z)m-«m‘zg 2=0| W ~
ELNN = o -

'.- . s . ‘ 2§ n (n‘g j)an-g"ﬂ'.'l i ' '2f («ﬂ"i) .
- .. x { j-Q - —EJ—} . .
, - . (v-Z)» l +F 2° [t
Now.Jl - Jz:l . Putting Jl in (4.11), we finally obta
a=L . ) 7
v e
. (\)-2)2 1;& . i . | =
¢‘z~.(u1_,...,up~)' ——“gl—v-—!— . Jl . . . 7 R r
BRTTER o g
‘. y o . | -

¥

. (V—Z)z -5 (-L-].)“l

T .
N : n *. SinET _ : :
' E-z?lﬁ& I Gbg-9) ' .
s jul . . )
4
3 25 13 T
. (u--z)‘*‘E [o1-E Lo ?)
' |n}2€ n I (a-t) o
: . } C (h.20)
: . # r'Tr B

s

'Nexr. substituting back X = 6+21! ve get the c. f. ¢ (tl""’t ) as 1a

case (c) of tho theotenm. T'!h:l.i ¢x(t1,...,tp) can bd vrittcn as . .




T .
18 9y (T
., e ¥ (tpt) ¢ : ‘ o )
S |
. . i -m _V’Ll_ (_1)!1‘
vhere ¥,(x) o L-2) 2 . I
) . CINLLEr o, v8:'.115;1\'
. E-?- [E+7% jnl(mq—:) i
. o ET ey A% e
. x I ____'Z\’-le) LA __3=0 - J=0
e |\, 2 " -t W 20 [

v ~

4.4,2 Special case - the characteristic fun;:tidn of the
univariate t-distribiution '

Putting u;=u, and. uz-ua-....-u?-o in (4.14),°(4.21) 3}“‘1, (4 }4)'

we.obtain the cHaracteristic gunctim of the univariate t distribution

as follows: g

(1> PFor odd v r
, /m E S (v- j 2p-1-r -1
o (u) = Ee:I.nx 12 2u V=2
X 2\)—1 \) (r-1)!
' -
_ where (W1)/2 = m , i 5
.~ ,
(ii) for even v
. e |5= -1
oyl = et o D 12 L (1)
F"_“"'” @h? 3= -




[

(111) for fractional v

v ) N
' R a2
fux _ (v2)" | 2

\ o
I-?,;-zg-réfs N (wkg-3)
" gm0

1r
q’X(“) = Ee " fioEn

25 nlc £ 2 ™!
n-£-j) u (n-1)

(Q)Z“ (=0~ T

u-o o )b e 2 [

Moments of t-distribution. using characteristic‘fungt‘ion
3 B

All odd moments of multivariate t-distribution are zero. If, in

(4.2), 6=0 and I=I, identity matrix, then the p.d.f. of X is

v .
f(x) = —— {(v-2) + T X, }
ERA im]
™ 12

It follows from Johnson and Eotz (1972, p. 136) that the even moments

of the above spherical t-distribution, if they exist, is given by

v P I p E
;—)/7 " . 2 r‘i 2 1'
U, (v-2) i=]1 2 "
2, 32F ., 00,20, = II r.+%; they exist when
2 .

P ,
2L «r g <V This result can be verified using any of the equations
i=]1 ‘

w] for
;0,...’0

. all types of V. This moment namely Uy A 0 is in fact the second
- ’.ll’

(4.14), (4.21) and (4.24). For simplicity, we prove M,

moment of'“the univariate student's t-distribation.

» . . e

L4

&




~ Case 1) Vv odd T

. uz-u3-...-uP-0 in (4.14) and then collect the coefficient of (1u1)2[2.

23

-~

To prov.e ].12’0,””0-1 in this case, we put ul-u,

From (4.14), it follows that

4l v;l oy 0 [l ouwentl
¢(u’0,¢o.,0) » ———— {e T (:—\]).)' }
2\)—1 v r=1 m-r . )
2 .
AR s o 3&2)%
C e {(1- V—2+u K -4 5T + .'_.)}
2\)—1 v
2
x{ + -1 . Quyv-2)
m-1 m-2 -
) 2m-4 2
' + ﬂ@ + il -
S ) -3 2!

a
A

Now, coefficient of u2 from the last expression i1s given by

[Vl
- 2m-4 2m-3 2m-2
-/1?——2—{ . 2(v-2) - - 2{v-2) + 1;—2- },
V-1 P n-3 m-2 o1/
2 i

where (v+1)/2 = m., After a simple algebra, this coefficient of u2

(1) 2

reduces to -%. Thus, coefficient of 7 - p2,0,...,0 -],

[

Jid
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Case 2) Vv even - . .

- .
. . .
. - -

For ewen Vv, from (4.21) it follows thae

. A~
R 7 3,"
~ o™ 7 (u/v-z")'z‘“ 1: —
-¢(u,0,...,0) = A . 2
- l_/_ H ( '! j) (n-.)
- m-1 m-1
’ x I (n-j) {z (o lj) +1°8(u(v2-2) ‘I: }]
=0 j=0 fot
Thus, the coefficient of u? is given by
[+l
1) 2 (22 (a(a-2)(a-3)....a-wtD)) ),
/m l— T (wHe3) .
J'l
S mel . ‘ .
because 1 (n-j) = O for n=1l. This quan'tity reduces to -¥%, proving that

4m=0 . ' .

-

“z,...,o = ] for fven V-

Cage 3) when vV is a fractional quantity

Now we put u,=u, uz-us-...,.-'up-o in (4.24) and obtain ,

Y_n WL n '
(v-2)° 2. (- - T_ -
: sinkm

$(u,0,....,0) = —=—
£ [3 8% B e-n)
| ' gm1

- , W=l
2* 1 (n-£93) w2

R nl
X ¢ - -—;—1——-—— e}
n-O[ ne @-‘})T fatl-f 2% [oHIFE . ]




S . Tha
- "'{ﬁ ‘
Now, because FE A
! ,
n-1
I (n~j) =0 forn =1,
j-O ' r

g = (V1) /2 = whg, i.e. m = §-g

the coefficient. of u2 from the last expression for ¢(u,0,...,0) 1is givén -

<+

by ¢ ‘
‘ v '\5)- £-1
£ oL, 275 I Q-&-3)
-2" |15~ D LT (v-2) _ 4=0 ‘
‘ m "singn 4 ,
v-2)% [—‘_’2- % 1 &r-p ‘ [2-€
2 .
i=1
It can be shown that in the above expressien
. i1
Tl gy -l2
2 ?
i=1 [E+%
\
Vv -_——
2-8-3 n? "2 : -~
I (@Q-g-3) = )
§=0 E-1
1 Y . \
. T - _E_[E for -d<E<ls . ]
' sinén m . ; .
: ' - LY
"Us.ing tixese results we simplify the coefficient of uz,aa % which .'
Y ) ]
implfes that also -for fractional‘v, “2,0,..;,0 = 1. -
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4.4,3 A Remark on C.F, by Awad (1980)

-

LY

Avad (1980) has made a remark on the characteristic function of
the univariate F-distribution and mentioned.similar arguments for the

c.f. of the ynivariate Student's t-distribution. But as examined in the

‘sequel, Awad (1980) is in error.

The series for the c.f. of the univariate F-distribuéion, in

equation (2) of Awad's (1980) paper is not uniformly convergent. The

bl

series can be written as

1 ® ¢ (40)F ® (j+1)(j+2)....(j415€b

B(3, 3) =0 r!(r-3)! =0 (44243

*

for r'>%u Now the later sum converges to «, because.for large j,
(3+rb%)/(j+r+%) is of unitpofder. Hence the characteristic function of

the univariate F and t-distribution explained by Awad (1980) are
defective. However, the c.f. for the univariate F-distribution has .

already appeared’ in the literature due to Phillips (1982).
é N .

4.4.4 Another application of the c.f. of multivariate
t-distribution

Theorém 4.5

1°72

Let X X',....,xp-be p scalar random variables and Yl’YZ""'Yn
. . .
be n linear combination of the X's related as follows:

‘ »
.
Y=AX .
-~ ~

where A 1s a matrix of order nxp. Now 1if the‘joiné distribution of the

Yo' 1s n-dimensional multivariate student t, then the joint diltributss;

of the p-scalar random vaciable xs' will be p—dinénsional multivariate

‘student t with appropriate parameters. ) ] P

'Y ' -

rd
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* Proof: 3
t + .s
Let us consider the linear combination Y y - j ixl a 3 2X2+ +a jPip
e T -
for at-least one ajhﬁo (j-l,...,n; k-]f,’...,g’) ," where fj - (ajl"," ';’ajp).
is the jth row of the matrix A in the theorem.. Then the characteristic
function of Yj ig given by ' o 2
. 7 ‘ .
* : -
¢Y(t)=Eeitajx ‘ .
3
it (ajl l . .+ajp%)_ " (4.26) -
S - - ' e g
" As it 1s given that the joint distribution of Ys' is MVSt, therefore, by
the theorem 4.1 and 4.4, we obtain the c.f. of Yj in the form . '
- 3, ) ‘ ‘
. TCR TN . S S »
1 ¥(e zntQ s (4.27)
. as in (a) or (B) or (c) fo,f th¥ theorem 4.4, - o=

Now n:lf X= (xl,.. .,XP) has mean 1 and covariance Jmatr:lx L, then

by (4.26) and (4.27),

it:ap x2

) g ‘
¢a Tx(t )= e ‘l’(t a Zaj) . X
\ |
' - .Putting t* ; 1, we thea obtain q
T
ia, 'y
eed yt
¢a Txu) e "V(a.lj La,) .

. , o | _ .
vhich in turn 1s equal to ¢ (a;,....,a;). Therefors, XVt (W,I,V),

-




CHAPTER 5

SAMPLING THEORY FOR MULTIVARIATE t-DISTRIBUTION

n

N

AT

5.1 A projosed sampling set-up from a multi§ariate t-population

Consider X,,....,X

Xioerees

Xn as n samples, where each of

&

Xj (j’-l, ..osn) 18 a pﬂdi:mensional vector random vartable defined as -

oy B
uncorrelated with p.d.f.

T' . -
X -(le,....,ij) . We assxme._chat ﬁ"""gj!"""gn are pairwise

- A

(‘\S

1

) .

. wnp

VZ"\ m - n T -1 -

Al % (vt T 0xy-0) AT (-0} N (5.0)
» Jﬂl ~ = ¥

~r 'ﬁ& : l \ ‘\_/ s’

. : )
where g is a location parameter and A is & scale parameter.

Njs

T T,
f(gl yereesX ). =

——

.EP.
2
m

hﬂcl L
<

The joint distribution of X;,....,X ’considered in (5.1) is
elliptically symmetric belonging to the class of distributions given by

(2.7) and is termed multivariate t-diatribution-.[cf . Cornish (1954),

N

Dunnett and Sobel (1954)1.
~ The univariate version of this model has been considered by
Zellner (1976). The p.d.f. in (5.1) 1s a direct multivariate generaliza-

tlod of Zellner's model as shown below. ’



Let i
] . '"-:

ST A E(xij) = 9i for allﬁi,j

02 -

c e B0y

021\ii for all j, and i=1l,...,p

2 ~
E(X 19 61)(X 2) = g Ail for all j and 1i,%=1,...,p

" and

E(X,,0,) (X, -~6) = 0 for all 1 and £ and {¥]°, where A

ij i j 1j are

unknown parameters. .
. - LY
Furthermore following Zellner (1976) we agsume that for a given O,
thé component variables X ,....,xn are indepentently and normally

A

) distfibﬁted and the distribdtiqp of X -(le,....,XPj)T is NP(G,GZA)

? v

for alle-l,....,n ; while'o is assumed to be a random variable having

an inverted gamma distribution with probability denmsity function given by

v e
=
| g<c>-2""’2§2’ -Exp -5 ,0>0,v>0,
i (v/2)1[§ 0
2

where Vv 18 an unknown parameter.

L

Clearly, the distribution ef §l,....,§h is then given by -

—_— -

© ' -~

f(xlT,....,an) = [ f(xlT,....,an 3 0) g(o)do y )
o ' o o, .
© " .
. ' ’ l n I e . R
. - th Exp | - ;;5{ jZ Xy~ 9) A (x -9)}
N
. . :




[y

-

where Knp is thé_normalizing constant. Upon.direet.integration, we’

obtain the p.d.f. given by (5.1). TPFor the model (5.1), when v>2, it is

readily verified that " -
., M -
¢ B(X,) = 6, E(X,~8) (x

Lt~ v )
24 g N j-e)¥ "

for all §, and E(xjfe)(xz-e)T = 0 for j#2,j,%=1,...,n [see Cornish (1954)].

Hence, by reparametrization of A in (5.1) by the covariance matrix T

= ;giﬂ, we finally obtain

¥ [ .2 -vimp
£(xg ,....,x Ty w-2? [ 2] 2 {(v-2)+ I (x.-0)T5" (x -9)}
“*%n mp oo i =1 h |
.23
(5.3)

which we propose as the joint distribution of the samples §1,....,§n.

‘We remark that
E(X,) =0
&) -

T
E(xj—e)(xj-e) - K, \

and . : ' q
E(§ —e)(gz-e)T =0, j¥2,3,8=1,...,n ;

so that it is appropriate to call 0 as the location (or mean) and'L as

- the scale (or covariance) parameters of the model. Vv in (5.3) 1is

4

-

referred as the degrees of freedom of the distribution. Also, it is

seen that X X are pairwiae uncorrelated while they are not

~l’..l¢’

L
necessarily independent. Independence implies that xl.....,x are
normally distributed (c.f. Kelker, 1970). Finally we remark that when

v+®, the limiting form §5.3) is n‘ltivntiato normal, so that

~




id

proposed model accommodates the-usual case when the gamples xl,....,xn

are assumed to be independently and identically distributed according
to Np(e,Z): ‘ V -

k" -

5.2 Distribution of the sample mean vector

71

The.following theorem.is a direct consequence of theorems 2.3 and 4.1.

~
~

Theorem 5.1

Let the p.d.f. of 51"""§j"""§n be

‘.

%
vV —
. - (vinp n .
AW T T, (v-2)2 |72 ) DAl T -1, o2 .
£, Y, ..., ,.e0,X ) = 2] “{(v-2)+ ¢ -0) g (=)} % -
1 . 3 n 222_ "\")" o~ j’l 3 h | .
. m 2

Then

the p.d.f. of X = '&1,...,.,X1,....,EP)T is given by

[}

V p———
%.6.L ._(l’i_z_ |Z/ |";5 t/z\-1 2
f(x’ ’ ,\)) _P_ v n {(\)—2)+(x—6) (;) (x—e)} »
R ~
T 2 : ‘

This result follows from theorems 2.3 and 4.1 by letting

IS

v
- -2
np np
2
i

, and

Tld "’|§|

*

: . vimp
(T (x.-8) Tz 1(4,-0)} = {(v-z)«ri}.l x.-0) Tz xpal)} 2
8 §=1 3 J . j-l 3 ].ﬂ))* ’

A

in (2.9). ) " o

-
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5.3 Distribution of the saqéle sum of prdduct matrix

“l

The generalization of the Wishart distribution in (2.29) was based .

on the assumption that the\underlfing distribution belongs to the class
of the elliptic distributi&ﬁs of the contiﬂnous type. In . the following
theorem this result is specialized to the case when the underlying
distribution is assumed to belong to the subclass of multivariate t-
distributioﬁs. It is finaliy shown. that the usual Wishart matrix

distribution is a special case of this theorem.

3

\ \

Theorem 5.2
If xl"""xj’°""xn has the p.d.f.

v
(v-2)2
-~ mp

- 1T2

Alzl (v—2)+ L (x,-0)Tz" (x -0)}
j=1 3

H

- iup
2

., T T
f(xl ,...,xn) bl

ol ™

i
&

 then the p.q.f.'of_the elements of ] ) o

V= Z (x —x)(x —x) .
=1 - . :

- z T %) (x4 xk>)) ' S

L

= (V) say,

* /\\/ ‘ p .

T

72




L

- ¢ ttl 2 vl 2L (d-reerace 27V
. o o '
where Caup is ‘a normalizing comstant such that

3

[

is given by

f(vik/iﬁks A=lieee,p

‘——-_,.—

(o2 12| 2

2
Ivl .

where X ~j

Proof:

{=

1 LI "‘stpj

A
N

Substitute K np =

» 2

gl ) - {(V-2)+ Z (x

of the theorem 2.5.

31

n -1+1
1|4 2

K3

.

’ n

L

- n-lc

g

(v-2)

=!N Fg

-e)Tz‘lcxj-e)}

tich, it then follows that

1 -

f(viklisk,

9

ﬁE .evaluate C

-

{(vfz>+ ;

i

_n" n’-p-1

7/

nofe

i<l ‘

Y
\

, and

_viop
2

v

1-1,...,13 > k-lo"'Dp')

*

_Mvn'p

{ (v=2)+trace i-lvii -2

in the p.d.fx of Kiseeos

- .

€ S,

(3,'

f)dv=1.. .

Moo

e

X

N - 3

(5.5 -

<

9---’§n

From (2.29)-and the marginal property of t-distribu-

np first. In doing th:l.s we wr:!.te the analogour form to the .
equation (2.23) as

i-1
I b»
1-1 ral

*2 &
+ ZR} IR
ir  gepl

“

-
-

~

&

V11,
&, I N
11-»11:-1 i

(337)11



;._[1_1 °'i.

- the first kind,’we get .

. by

.. =1 ]

L. b
i : TR W

We naote that :l.n (5 7}, b
spherically around th‘é“aentre 0.

No‘gwe i.ntegrar.e over b

&
IR
that .".‘ <>
’ &
o < x
- '\_.- ﬁ\s

11

o8 | ' Ttk 2
. Cap. ...;(y-z)+z I b +

8 - Low2+ I Gx,-0) o) 2

- .o o . : - ' .9 -
| This is because {n the pr'nsg)t case

i _

v

'ytminﬂﬁ)b

was distributed

. -

and RI"s of (’05.7) to evaluate cnp such

-

P _V?Ep _(__)_n-;.-l -1 -
Z R} IR drR, - .

L IR B R T I SRS B 1
! . - « - '1_1 * *
& <, . © X* II I dbi =1, . © e
* - .- i-l 1"1 ~ e
- -

Wex integrate out R RP 17°°° ,R

. P i-l
‘ a= {(v—2)+n b
oo 1-1 r=1

% (R ) .

2y
11'}

%

p-1 " Viwp
. (a + L ‘Ri) .
a" N 1‘1 [

s . ; /t'~ ".
.- Ve q . -

< ) o
- Pufting xi,/{# -
NN - L - i=l

- 3
E - Lo - B N

~N

R

»

- ' ) - ’,

. &

1- One by one. Let,_

. Then the above @quation can be written as = . -,

= u and tpérf,btﬁ'i;;g .the 'Betdjﬂtntegraiia‘g of -

- . L. ° . . Lt
. - ‘-"". . . £ -, L ’
‘\” . - ’ L h ". . -

i*»
1 f . . a

|74

< " -,

!.:LL _1
4’1’ o,

) m;—x
{&z ll K ”5 '

1"1 * .
H db:'l.r'

t-,,

_1 ,',‘ "
'

o 4 P .
- y . e - o B

N - B PR '
Coer e ,\; : VDT e el Tl e [



~

. Hakiag smilar suhstitution aﬁd petfomq:l.ng the in’tegrat:[on over

N . ‘ p-].’R 2’ *es e ,Rl we Obtain ‘ . : . V'%j‘ -
K <
N - c B vinp-ntp-1 n-ptl’ 8 ap-2n+2p~-3.  n-p+2 :
- ¢ np . z ’. 2 2 A t 2 LR B 3 BN
4, 2 2 » ' " ‘
Sx B (\H'P -(P"+P)/2 n-pip gn 1: -1 ;
. sa B 2 ; s 2 -
: : - - {(u-z)nz " hi * 2R
. i=1 t-l
v . LI ' 9 . (3-8)
K C . » \
Since bir " t(0,1), it-then follows that o _ *
\ ‘ " p(P-1
- _Vutp(P-1)
‘. 0 p 1-1, 2 2‘ ' ':‘1.7 -
w2+ I b —°
el 7=l dh’“"” 3 PRC-DZ .
e T ot
) ” ' | |
Us:;.ng this integration result in (. 8), a simple algebric calculation
ylelds the c op as : ' : - .-
V——" | ,
7 |vmp '
(2" L2 ‘ " (5.9)
S 1_]‘ <2 ‘ '\. '
. . f » ) c -
QG- ‘ ’ cnp given by (5.9) 1is ﬁ- normalising constant in the p.d.f. of the e "
‘ . . } ) " b+ . ‘I . . o * a )
-, L elements of M = Z-xxT, where X, (px1) vt (0,1 j_l.‘ndx,x (jt‘) are
;. : ym17371 ~1 P D S Tt
’ L . . S
’ ~ungorrelated. | r o ,
Lo~ : I
e, Next by (2 29), the mr-dlicing couunt in ﬂm P d. f of. the

,eluﬁnofv-zu-xruq) wonldbaC,,vhaun-n-lmdc“ ‘
. * j‘l 14 p o ..

1szivtnby(59) le-ch-namnbyn u(59),woobw.n v

..

) -
. M ' ' ) ’-'

» * . .

. N ' . . » . . <
LI i ' . s - ’. N
. a . - ) . L M ‘ . *

. ‘. - N .
N ' . R . . .
B - . B . " '
- v




1

\)..ﬂ_

(v-2)

Hence, from (5.6) the theorem follows.

the form

-~
»

_n° nl-pl -
2] 2191~ 2 Exp(-Y (trace ©"1w)}- \
n-p p(P-1) »p :

, 2 I [&@™=1-1)
T 1-1

We note that when v+, the p.d.f. given by (5.5) converges to

<

- which is the p.d.f. of the usual central Wishart matrix distribution.-

. ‘\
~ 4..{ Q

L
NN

5.3.1 Moments of the sum of product matrix

A Y

, In this section we derive the first and second moments of the .sum -

~

) n-
of. product matrix, namely, V = I (xj-x)(xjix)
~ . Fy j-l

by 65.5)

3

[ ] R
, whose p.d.f. 1s given

[
o

éonside; gl";"'gj’;'3”gn’ with p.d.f. given by

N ( z)-\21 mz"P‘ =3 e
- V=
'-f(zl"':’zh') 9:2 " ' I {(V‘lz)"’jflzj
. 2 |5
e s[;

*

*

whep 4#% for j,i=1,.:.,n". Then from (2.26)- 1t:follows that

»

3’

e

R
Tg-1 j} 2.

L

“so thgf each of zj'u:p(o,z;b) for j-;,..;,i ana z yZ ate nncorralatod

4
..

.
. the p.d.f. of the elements- of the matrix vy~ L. '3’1 is the same .as
) . . J-l e
PR ‘ g,
! thnﬁ‘of the p.d.f.. of V = 3‘3)(‘3" )T 3£v-a.hy (S 5). L.
. o ' ' .. ve j-l ) . t'..
. 'o¢ . [ ad
d - . ': . . -

’

(5.10)
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n
Therefore, finding the moments of V= L (xj-x) (x -x) is o,
. j-l ' - . "
. ¢ = n’ ‘
" -equivalent to find the moments of Vl . L 2,2, where zl,....z . has
‘ j-l j j

. the p.d.f. givex by (5.10). For simplicity of Aca’lculations, we defive

the first and second moments of V., which are also first and second

1’
moments of V, as in the following:

First moment of V - a e ;

E(V) =.E(V;) = n"I,®

where V and Vl are defined as in the above..  This result can bé shgn

as follows: =~ . oowd . .

S

»

Let v'm be the (i,a)gx element of the matwix v, for 1,0%1,...,p.

Now,. because. from (5.10) it follows that E(Z.2 T) = E7 therefore we have

h g
n 4 N T . .
. E(V ) =Ef L zijzmj } . R
. J-l B - 4
- T : * 27 - L™
) .= q E(zij o] y
. R T ' , . (5.11)
~ . - L > ) . ‘9 )
where g, is the (1,°a)th’element of I matrix! Thus E(V,) = n’L
b ’ . 0
. " Second moments of V- ° 4 -
. We simplify second moments of v,' nanmely, °°v(via’vke) and then
ap.cialize the ruult to obtain the well-knwn second moments of 91;
‘."'. L. —Wishart dietrihucinn . < T Lo L "
. - . 4 | - ;
- ‘£ ' ] 1

- . ~a ¢ . \ -8

.'.'-‘. A
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C . Cov(¥y, W e) = BV, -n"g, VO omnap )
- x(v‘ y - a%s, g (5.11)
. g ‘1078 \) )
becepse Py €5.10) E(‘Vm)\- ng, We now calculate E(VkaB). By
: definition,
n‘ . n’ -
E(V = E
® 1a"%p) {jfl Fflzijzajzkr’?r}
. n’ - n” . ) L
= E{ I z + I z,,2 z-} (.12)
ot Jzkj 3" goe 13 o) "k gr X
Substitute ZJ’Zj g :Ln (5. 10) for all j=1,...,n°. Then it follows
’ tha"t\th.a/mrginnl density of Y 3 is given bi N
v p—— L]
T . f .\’_+2 P _m
_ (v-ZI 2 2, .2
' f_(yj) - e L= {(v-2)+ yij }:
7 v i=1 ’ \
T oy2 .
' hence from Johnson and Kotz (1972), it now follows that ’
5 i . ’
2ry 2rp
E(yyy, -~ Ypy ) s )
- ) N ,
i . . LG .
. uZtl, . -.' Y 2‘!1.;0 ."’th * ]
P ) S
p “
Vv ., . .
(”_2)151 iy 27 T o . . R
" % r FEJ; .. Ga13)

PR

i

*>

*

from the oubu‘:ltution we have 2

>

3

Let I° = ((n o)) such f.hat z"z”-z for i,u-l,....,p. Bmuu

- 2”! ﬂutoforc we cau mu




- - g m . | ‘\<’/

2
'ij usl 1u uj

Now by (5.14) the first term 1-54(5:12) can be simplified as

i BCeyytugngty
. P p-
= E(Z L A Z m o7 Z n.k mB '
u=l j uj u uj u.l u uj t .

P
.= E {ufl“‘iu e u I z(’"n:’"czv*"‘fw'i"‘mu)’uj v

x uilmk“ By’ j * ﬁ<§mkum§v*nk;n8u)yujyvj }:[

-~

* p 4 s, .
v [“Elniu au TBuyuj . - 0 .
+ f:xqzr{ (m o.u v Bv 1vaavmku Bu)yuj j} -7
o )
, + f(ﬁ{(m iv au)(mku Bv + IIIkv Bu)yuj j} :

. '-ff‘

+ {other terms containing odd powers of yuj}:[ " (5.15)

Any odd moment of ¥ " is zero and in addit:lon 1t follows from - B

- - k]

(. 13) that
.' - 3 ' '. ' . - .
E(y j) ) - | .
. ) ° * : t - .
) z 2 . B ' * . . n— ’ ,‘ _ »
B(ryy75y) = v_,. ,/d '(Vuj) 1. T -

'Y
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Using these results in (5.15){ we obtain
BCiy%ashasy - '
\
V-4 3 Z m aumk,umBu ‘ . o ’
+ {Z«Ti (mium mkunsv iv owmk ' ’ Toer
' +L £(n1umw iv au) (qkunBvﬂkvnBu)}] . (5.16)«
Next'; wve evaluatéd the expectation of the second 't.erm, in (5.12). |
v . ‘ ;
A ‘as fallows:, e
; S ! © -
9 ‘ EL 2 z . ' ,,
| e 1 aJ’kr Br .
. | - | ' '
- rElr i Hemy bmy}
jﬁrz. ued 10783, o0 a2 “y,“’]

. » » . 2 3 4
-0 (n.\-l)![{uifiu'anyvj Ev(ni“nav v ““)y“jyvi‘}

: . I 2.
. x { “Elnhl‘Buyu E (‘ku Bu.hkv )yury vr}
. ' “(n’~1)E 22
’ v (a’ ) Emyy o7 gV ur -
/_' . -+ § {hiu‘aumkv'Sv iv"nv'ku Bu)yujyur} ‘-

« T - + {other taru hm?:lng odd povara of yrj}} : ' (5.17)




A It can be shown that

¢+ ® @
A ez [ 2 2 P '
. g(y f!,“l?___@_ | T1g¥vr Y11 Tvr _v-2
i P , g WEL v
T |5 2 ‘
2 - =% { (\"'2)"71:“‘7“)

Si.milarly E(u o r) 2 for jér. Using these results in (5.17), we

obtain “

n° " _ ' .
E j::‘ .rzij zaj zkiizer:

N P g
.

-

-' n‘(n“'l) .-v——-z— g n
v=4 .u_ln:l.u ou ku"Bu
. 1

Ev(‘i Pou kv Bv'h‘:l. cvnku Bu

(5.18) -

First ve use (5.16) and (5.18) im (5.12), then by: (5.11), we finally

obtain - -

Cov(VysoVyg) -

)-—nza g

- B(vm kB* ia k8

v-2[7 P .- et (n
, = ﬁ[(ugl-iunau‘k“.ﬁﬂ)-{an +n”(n"-1)}

v

¢

+ (@) {nqv :lu au‘kv.B 1V.av‘ku-6u

+ n‘{u}év('iu'avhiv'au)'%%u)}:l I '

7o ' 7
[ SN

(uzl-iu au)( Z .ku Bu’ o




o v‘r(vm) ) .

t

I 1=k, a=8 in'(5.19), we get the variance of vi a which is given by

- 2
E(vm-n Gm) | -

T e p p )
-3—.%=”<>=n>+2nfiu% y
usl yal U O

5

L2, P
+ 0 §v(niu av :I.v au)] - (uflmiu au) (5.20)

Limiting case when v+
Under this situation when V »w, (5.20) reduces «to

. Var(vm)

2 2 9 N ’ _—
— L
n Zu): lmiumuu + u<sv (miumavﬂivmau) '

ke

R 2 2 2 2

) Ilm * .
2L ‘:I.umu.u u<vniumav + u<v 1vmau : ‘
[ u=1 . -

I
+2 40 1u‘av‘au‘1v:l

ul:l.uau u<v iu usv lu q

’ -

. .
. LY

P P22 2 2 2 2
=-,n'(zmm)+z + La‘n + Joinm
I v t ok u

e P2 P2
" n (Z n @ ) + an En(m :
L_u-l ,  usl u=l .

Now because L% = T 1.e. ((nij))(( )) = ((9,)), therefors the last

al
equation can be written as

”, 2 : ’ |
Var(vm) = n’|oy +0,, Gm] ’ . _ . (?-217



4 .
which is the variance of the (i,j)th ele-gnt of the usual Wishart matrix y
[cf. Anderson, 1958, p. 161].
{ - .

- 5.4° Distribution of a Quadratic form ) ‘l_ _ . (

For the normal cage, it is well known .that the distribution of

' . ',

the, quadratic form ie non-central chi-square. In éhe following theorem
PN 3 ] T, N ,

L

we gene;al;zé this result by assuming the underlying distribution to . </

ﬁave a suitahle multivariate.t-distribution”
¢ . H .
4, . . . i " * ,E/ -

Theorem 5.3 ) ) .

. - - &

* -

Let Y (yl,...,yj,...,y ) Hhere yj-(ylj,...,y le.' Let‘Y* be‘the

..

stacked random variable corresponding to Y so that . .

~

‘T, . L
Y (yll""’ypl’ylZ’""yp2""’yln""’ypn) e If Y '\‘tnp(}n Ll,lnp..\))

- T penw =Y v Ty% e Y F
where lnxl (1,1,... :1)’ , then W V-3 Y'Y \)-2 X z Y':lj has the
) - . . v . i=1 j=1
distribution given by. . g -
v op-1 Y SR - . ’ .

) = ¥ —— iz L2 (w)? (mw) .
v =0 P-D-l'j ‘—‘ " R ) ‘ . ,

-V 2
where A = — ¥ u, . . .
« v-2 im1 i ; .

In the special case when A:P, W/np 1s distributed according to the ususal

F-distribution with degrees of freedom up and v.
. ‘ o




Proof:

By hypothesis '

. & »
‘f(yll’yI_Z"“'ynp)
Y v Vinp
(v-2)% "“M? P 2. 2
' = {(v=2) + T I (y,,-4,)7}
L e jm1-4e1 1371
72 |2

_Let us set (\)--2);‘(1ij - v!’Yﬁ. and (\"2,)%"’1 = v!"'ui ‘so that
(va)%(Uij-mi) - vk(xij:ui). It follows that

V _\)+'DE
2 Y P 2
f(u, pe00,u_ ) = {(v¥% L Z(u -m)}
1 P 522 Y f=] ju=l W,
. ‘ L 2
v P2 2 P D0,
Then W = —-3-2 Iy 1 = 7 T U,, has the distribution function F(w)
3 iJ
i §=1 i =1
~ F
given by
. : Plw) =

f(ull,...,u p) g;duij | | : (5.23)

’ 2 .o : ’
. = . Z?uijﬁw T . \c i

It is readily verified by direct integration over 2 that -

N
<0

-

22 ' |
o 2 _-np 1. P n ' 2
- ] z Exp {-'-—5 R (uij-mi? }
. . 22 1-1 j-l
0
+1

[

V. -k o
xz(|—> & < ) 2 Exp(= 2yas
) : _ P ztz .




- J.G(uij,mi,z)dz (s&y)
.0 ’

= f’(ull’u12’ Cene ’unp?

~

Substituting the ahjve integral in (5.23) for %611‘]‘1,.. "“t;p) and

[ 4

changing the order of integration we then obtain

]

0

F(w) = G(u ,mi,z)dz Mdu -

2 )
lo%uﬁ%
The simple transformation uij = zvij then yields
® - &
: ﬂ .
Fw) = (|_) f 25 2) ? e~ ) n ez, (5.24)
. 2z z- . : B
0
v;here
o
‘ _mp -
Bl = |7 2 Bpi{% I I (v, -E)z}ndv1j
‘ 1m1 jm1 127 T4y
2’
ngijsx

which is the distribution function of the usual noncentral x with np -

-

degrees of freedom and noncentrality parameter

.

. v_ . f“ ~

1 ) | |
i Z n /z -yt (T ui)/z - A/z where X 1is defined in the o
i=1 i=1 .
'theorcn.




-

Hence from (5.24), it follows that

‘ v
o +1 o~

£ = S . j'zc[%“l(%)"’(z—"p P Em-Yp5nacpa, T,
0 ‘ z 2z z g .
where )
. _i‘l". © | P‘L*j—l 3
Ry BE o5 2 gy aenn/a?) x 2 2 (/2 )
: o A T R 1= o
[See Johnson and Kotz (1970)], so“that ‘
e R, MR 4 : v
£(w) = v2 w? (E)'l 2 2 0 o®
j = ¢ . 2 ___v-’:g.B-A.. 210 .
(%) 1 (29) 2 - Exp -'%l§(l+w+9)dz

o

| . j"’I—___["T-z - 2=

Upon direct integration ovér z, we finally obtain the p.d.f.: bf W given

by (5.22). This proves the first part of the theorem. For the apegial

case when A=0, we have from (5.22)

Ld \) e——— ! el . . -
o . 3 v+;2 mp _, _Mop
IO R
» i v jnp
. 2.2
- .
n
' (n /v)—ip- 922"l n _v+2n
, —2—— W (_1 'i-'-'\’2 W) s ’
B(z)! 2) ’
ch 1is the probability demity of the usual central r-di.tribution with
’
degrees of freedom np;‘nd V. N

-

\J [N "' .
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|
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5.5 Joint distribution of X dnd V

‘Fro.nf(s.‘,‘!), ve have thg p.\d'.f.o of xl,..., j,...,x ‘as .

. -%

T ._.
f(xl veeeaX, x Balz] {(v-2)+ zl(xj-e)fz x -8))éx ,
. i-
s .
~- where X denotes a matrix now dnd is given by ,
— . . — '} -
5 B VIR P ,
*21 %22+ ¢ v Xy RN
AR A :
. e .
X1 X2 ¢t Xpy . )
Let Xl -::xr,‘, - N 0,
vhere I' is an oi:thogonal matrix given by
2 1/Vn Yy ¢ 0 Yqg .
o
1/vn Yag + = = Yo . ) ,
r - ’ B
* nxn . . . . - , “
- L] ‘
) VLN RN | .
L * .
" A
s e [
- )
Y : px(n-1) | (say) . -
. l, -'.
. : R
o ) [ ‘ ‘ .. ]
i M & )
, v

(5¢ 25)
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Now xi: - XIFTX? \
: T v '
5% _ . :
‘ = aXX" + YY' by (5.26)
-‘{r ’ T T ’ T— .
- Therefore, YY = XX - nXX . Jacobian of the transformation is given
by

” N

JE>X) ‘= J(X+/2 X, Y) = 1

At e I ittt AL

o -
- Since in (5.25),
3 ‘ \
| 1 n - 1 - n )
I (x,-0)"27"(x,-6) = trace I (x,0)L 7 (x,-6)
C m | jm1 3
-1 2 T
. = trace L z (x,-9)(x,-6)
< . [
1" , - -1, 2 oo T
- - : ) = trace I { I (x, -x+x-0) (x -x+x-0) }
'. ) e 1
F n \l'
~ ) * trace Z—l{ I (x,~x) (xj—-)T + n(x-0) (i-e)T}
. —— . de - j-l ;
\ - trace £71(r¥") + trace (2-8)" & (z-0)
| , . = trace £l () + 0" TG0
‘E ) t * ‘ \\
‘ from (5.25) it follows that . .
3

’

n

. ° . "
E L, £Gy) = KIZ|, H-2+G-0) T ES L G0 + u’ ey 2,

RO R et Sl



vhere K is a normalising constant such that ¢

J I £(x,y)dxdy - 1. ) : -

'We now apply theorem 5.2 and obtain f(x,v) from f(x,y). After some
' i
algebra, it can be shown that the associated normalising constant is

given by .

LV n-p-2 p
5 [vmp =
s vl I

5 P . Pp(PHL)
E I %=1 - 7 &
i=1

Hence, the joint density of X and V is given by

n=-p-2 n

Wl 2 gs)? -

v
(v-2)2

f(x,v) =

v, & P
2 .1 [%(a-1)
\d‘:-l
’ Vvinp . ' ’
2

x ((v-2) + G-0)TE 1 (x-0) ¥ trace 17V} (5.27)

—
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CHAPTER 6

ESTIMATION OF PARAMETERS OF MULTIVARIATE t-DISTRIBUTION

6.1 Estimation of Parameters

Consider the proposed model (5.3) given by ' .

vV ——— ' .
T T, _( 2)3- vﬁ? -2 iy T 2

\)—.
£(x)"y .00k ) = o [Z] “{(v-2) + jEl(xj-e) z ( j-e)}
2 =
. m 2 .

¢ - , (6.1)

where X x as before are n'samples uncorrelated to each other.

1’ ey j’o-c,
We recall that for v > 2, E(Xj)" 8, E(X -9)(XJ-G)T = 1, and

E(X —9)(X2—6) = 0 for j#%; 3j,2 = 1,2,...,n. In (6.1), 6 is a location

3

parameter, I scale matrix for X, (j=1,...,n) and \ is termed as the

3

degrées . of freedom of the multivariate t-distribution. ,

We exploit the so-called method of moments for estimation of the
parémegers 8, £, and v. We propose the sample mean X and the sample

covariance matrix V/n as estimators for 6 and L respectively, where
*

- - - - T
X = (xl,....,xi,....,xp) e
(6.2)

n
Via =3 I &-DQE-B

NAAs Rt

T %- 12 '
with Xj (X 130 0%y j,....,xpj ,/ - " 1 ij' and V a sum of product

matrix,

. ——~—~—
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We assume v > 4 so that fourth moment of xij

propose moment estimator for v based on the fourth moment of xi

[
4 v=2, 2 - '
E(xij-ei) = 3(\)_4)0'11 . ’ : *
¢ L N
whereioii

. [ 4
The fourth moment of X

1]

the transforma@%gn*(xj-e) = Z%Uj for j=1,....,n in (6.1) and then

}
. \ .
integrate out ul"""uj-l’uj+1""°’un so that we obtain

L

v — t
w22 7 P, P
f(uj) = —-——E;—?:—f— {(v-2) + iElUij}
2 [3
It follows then from Johnson and Kotz (1972, pp. 135-36) thét

<3
3

E(uij) =0, E(uijurj) =0, E(uijurj) =0 ,

ECu, u2,) = 0, E(ut,) = 3(v=2)/(v-4)-

S5 B o M 137 ’
ECupug,) = (-2)/(v-4)

[

for &11 i=1,....,p;.j=1,....,n and i¥r.

Now let-Zgi - ((aisj) so that
DT =L - ((0y)

and

is easily computed -as follows:

1

3

exist. We thien-

given by

(6.3)

1s the ith diagonal element of the covariance matrix I. -

We make

(6.4)

(6.5)



-
-y y
Hence, E(X, ,-0 )4 = E{ g a, u }4
‘ ’ ij-1 is sj .
. s=] - ‘N-:
- ’ : P - P
. . : 4 4 3
2 +
Efsilaisusj 4 E ig" jair“rj
- '
2 2 2 2 )
+ 6% a, u.,a, u,+42L a  u }
a<r is 8} ir rj a<r is sj ir ry
<
2372 (1232, by (6.4)
Y gmy 187 7 yoAnea. )
- P 2 2 '2 s .
Since by (6.5) (L ais) =0;y» 1t 1s'now readily seen that
.- g=1 - ,
R A -
E(xij-ei) 3(;:3) 14 which is the f?urthimomentlof xij' .

3
-

Hence, we have

iy 2 4 v=-2

E jE (xij i) = 3n(;:ZJGii and finglly summing over i=1,....,p,
we get .
E'EZ(CI ‘3")52 (6.6)
x. x -n 0 L]
1m1 4=l ij ¢ Q= oy i1 .

-
Thus, we propose a moment estimator for v as the solution for v

of the equation

L ' {v-2)/ (-0} = 5 { 1 (243801 : i}, (6.7) ;
3 im] j-l l .

where éi and 811 are given by (6.2).




A2 2 A\ 4
) 2(3151011 -3 i §(xij-ei) } ' _ ‘
Y V= (6.8)
(3882 -1 5(a .94
qmy 11 D j i 1

6:2 Statistical properties of the estimators-

from theorem 5.1, if §1”:"’§n has the p.d.f. given by
6.1), thenrg’vtp(B:Z/n,v). This implies that X, the ;stingtor of

given by (6.2) is an unbiased estimator of 6. Also when n-—, i/n-*o,

therefore, X is a consistent estimator of 6.

.
»

Next, from (5.11) it is known that E(V)=n“"I=(n-1)L. Therefore,

by%(6.§), it follows that

j )

| E@E) = (1-%)2', .

which implies that the sample covariance matrix {s a bfaged estimator of

L (the covariance'patrix-of X,, for j=1,...,n). However for large n,

j!
2 is unbiased for I. Furthermore, as in the following, we show that E

is a consistent estimator of I too. ,

In order to show the consistency of I we exbress the (i,r)th

element of I, namely, air as

~ _1 o - - (6.9)
Cir n jil(xij-xi)(xfj_xr) ’ )

by (6.2). Now (6.9) can be rewritten as

934




I3

o5 _1.- Y - ) -
CIE - jEl{( 13 i) (Gy-0pH(x 4-0.) - (x58,))
' <
1 2 _ "
" 321( 13790 (x4-6)) - (x;-6,)(x -6 ),
8o that , : ~ ‘

A 1 )
Plim Oyp ™ Plim = Z (x j-ei)(xrj-er)

n->© n-+o j

- Plim (xi 61) + Plim (x -6 ) (6.10)
n3wo n-+ow o R
1
Now, Plim j).'. (xij 81) (xrj-er) =0 because
E(x ij 1)(xrj ‘r) =0 the (1,r)th element of I, for all j=1,....,n.

N

The last term in (6.10) is zero, because X 1s consistent for 6 implies

that ii is consistent for ei, also ;r is consistent for Br. Hence it

follows from (6.10) that

Plipd,_ =0 ) €6.11)
0o ir ir °

¢

N ’ Y -
which implies that I is a considtent estimator of I.

'F‘inally we show that V given by (6.8) 1is a consistent estimator

6f v. 1In order to prove this, we examine Plim 2'. I(x 15” 1)4_..
ny je

n >+

- -
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1 P n ~ 4 .
' ) n-+o i-l J'l ' ¥
=Plim< I T {(x

L F (G0, - B0} *
n-e B ogal g=1 1 2

- 1 2 ¢ b 4 N3~
=Plim|= I I (x,,-6,)' - <L I(x,,-68,)7(x.-6.)
\n+°°[n R €A S e

fal j=1 11 1
+gz z(xij-ei)chxi-ei)2 -'A.E }:‘(xij-e )G, -0 ) -
14 Dyl §=1
. A¥n T
] TN (ii-ei)" (6.12)
i=1 =1 : .
Now Plim L 2 T(x. =6.0% = 322 b o2.. by (6.6). while the probabili
wn+mnijx1ji (vl‘ilii’y , while eproa ty

limit of each of the remaining terms in (6.12) is seen to be equal to
zero.

‘Consider for example

1 p n 2 ‘ - N N
Plim = I .Z(xije)(x i) ’
n+w U ga] j=1 K

4 e 1
= I Plimlxi-eil - Plim < z (xj ) .
1 !

=] pn-+oo N n-+>wo
¢ . . - 3
Since Plim x .= 9 and Plim-l Z (xij 1)2 =0,y » an application of
n+o 4o j=1 ' . . “

Slutsky's theorem (cf. Cramer, H., 1946) readily shows that the righ?

hand side of the last equation reduces- to O (zero). . , .

[ . . . o "/
We then apply Slutsky's theprqm to (6.8), and obtain the followiag

result for Plim v by (6.11) and (6 12)

ne+w ) N . . . )




' P A2 1P2 - |4
2{3 Plim L 0, - 2Pl =1 I (x,,-x,)}
Plim v nro gl ase®gy H
. P A - . :
n>e {3Fum 15} -Pualz zcxﬁ-xi)"}
n+o i=]l nr+e 13
p o D
23 1ot - 23D 1ol
- i=] & im]-
P P
2, v-2 .2
30 -39 1o
ST Q=% T
- = V i

~ Therefore v given by (6.8) is a consistent estimator of v.

.
(6.13)
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digtributional assumptioﬁé:

CHAPTER 7

FACTOR ANALYSIS WITH MULTIVARIATE t-ERRORS
AND UNOBSERVABLE FACTORS —

7.1 The orthogonal factor model

T
Let ng(ylj"""yij""”ij) be the jth (j=1,....,n)

observation vector, where each element of Y méy be thought of as having

3

been generated by a linear combination of orthogonal unobservable ..
3
factors (f,) upon which some error (£,) has been superimposed. Let

]
Epgreeafpgreeeorfy

f=(
j . .
factors and €j=(€lj,....,epj)‘be the error vector variable with following

) be the vector random variables of the m

v

Asgsumptions- - '
(1) fjmtl;(o,lm,v) , mp .
(i1) Ej’VtP(O,Wz,v) ', where WZ-Diag(WlZ,....,YPZ)
(i#i)- Ej and fJ afé‘%ncorrelated, havigg the joint p.d.f. given by
et
£(e,,£,)= K|\P2.o IG%{(\)—z) peTe v e T e }.\)4+ o
3’3 0 I .37 3 ]

Also let ©6=(8 8 )T be a vector of unknown. parameters usually called

TLRERET,
location ‘parameter and Q-((qir)) be a pxm matrix of coefficient parameters,

14

uguvally called as the factor loading matrix. Taking into account all the

above coﬁsidergtioné, we now formulate and hence deal with the following

97
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1inear a@odel .
’
Y, =06 + Qf, + -
3 Uy *ey
| " X ) .
" j = l’~-09n ) 4 (7.2)

This model (7.2 1s an orthogonal factor model as it has been

assumed in (1) of (7.1) that fj (mx1) ’\-«tm(O,Im,\)), which implies that

.

factors fl,.... ,fm are orthogbnal to each other. Also by assumption (i)

it follows from the theorem 4.3 that ij '\atP(O,QQT,\)).- Hence, by

agsumptions ({i) and (iii), it now follows that

- .

J r

where~Z-QQT+\l’2. Ffurthermore, in accordance with (5.3), we assume that

Xl"""gr; are palrwise uncorrelated and they have the joint p.d.f'.
given by *
v ‘——- n
f'( T L g\;-z)2 2 JQQ +‘P 2
A SRR A — op
¥ 9
VA
‘ ®
- T, 7.2} '\H? L
x {(v-2) + I -(yj—e) (QQ +¥%) (yj-e)}-. (7.4)
IR
\ Y
We note that in (7.4), for v>2
E(Y,) = ©
() = 8
T 2
Var (Yj) =Q +Y
E(Y “6)(Y2“-e) = 0 for j*z’ j’ 1-1,....,n- ’ -

3 .

YIve(8,0,v) | C O .3)

98
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7.2 Estimation of the parameters

~As the p.d.f. of Yl,...,Y

.o ;’Xn given by (7.4) is similar to

¥

1Y
N - Y
8=y, Y .
A s o~y 1 B - T *
L=QQ +¥' === Z(yj-y)(yjy) ,
j=1» -
, .-
and . (7.5)
S’
p H
A 2 4
2{3L 0, -=L I(y,,-8,) } .
A {=1 i1 =n i ij "1
vV = ry Y
i=1 13- .' .

s
It then remains to estimate .the factor‘loading matrix Q, and the P

diSpersion matrix ¥~ (of the error random variablé) such that the second

equation in (7.5) is satisfied, hamely,,QQT+W2 =V/n. .
2

for I, it follows from (5. f}) that the joint
. distribution of Y and V is given by

Substituting QQ +W

v — n-p-2
" Pl hac ) 2’ .
£G,v) = =2 2 |v] ToQ l |
¥V | > (P+1) ] \
3 T Fg(n-:l) % o
ifl
. Gy e T @.Tﬂ’z._l. - “VL;P'
. x {(v-2) + trace (QQT+w2) v+ (y-6) (o ?. (y-0)}
¢ . | ) (7.6)

The last term in the second.parentﬁesis in {7.6) may be set equal to zero

by noting that it vanishes 1£ B=y.

-~

“Moreover V in (7.6) 1s.estimatéd by
.,‘VQ . ' ‘ '




V as in (7.51. For the estimation of Q and ‘Vz, we prqpose the general-

¢

ized least squarel method due to Jgreskog and Goldberger (1972).

; . . N N . ‘
| 21, T, 2,72 .
In this method, % trace [IP-S (QQ +Y )] is minimized in

) a . .
ohtaining the estimates for Q and"{’z, where S = V/n -_% L (yj-§) (Y:!*j-r)T.‘
_ o B R

e

Let R = (r ) be a correlation matrix, where r, Siu/ (s "), and 8y

»

is the element of S matrix in the ith row and uth column. In many
‘\ -
épplications both the origin and the unit in the scales of measurement

Fs

are arbitrary or irrelevent and then Snly the corrélation mtrix R.1s of

- any interest (see p. 126, Enslein, alston’, and W‘ilf, 1977). In. such
.(' A . N l'
cases, we take S to be a correlation matrix R in whgt~follows. For

computational purpose, we summarizg the generalized least square estima-

tion technique due to Joreskog from Enslein et al. (pp'- 127-136) "as in

¢ the following: ] o ) ' - . .

\; N

) (1) set \!‘i = + eai i=1,2,...,p - ‘
(2)", The stdrting point ai(l) 1s chogen as

- . ' ‘ ' .

i - -
0.1(1) = log-|:(l-1g/2p)/si] o | :'r . ' o AP

11 . -1
where s is the ith diagonal element of § .
\ &) Using (2) 1ia (1) we hmqe ¥ (1)_. Check the matrix

‘l’ e} = Diag (‘i’ (1) ¥ (1).....\9 (1)) whether 1: ia non—singular or

. 2

not. We consider the case when ‘i’ ia non—singular only as :I‘ happm

‘mostly in practical situations. 'l'hcn we find out the eigenvaluss : -

P . .
f
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-fl<72<y3<...'.<ym<y n-i-1<""'<Y‘P of the matrix Y5 1y, Next we

calculate'wl,wz,....,vm,wh+l,.a..,w? the correspdnding orthonormal

- . . . T .
eigenvectors of the matrix YS'TY. Let wi-(wil,....,yik,....,wip) .

(4) Now calculate

s 9 .2 2 4
h(l) = 2% = T (Yua-vL)W
3"‘1 1 r’k ik
anda - , B
a p . m Ykllz-z ' i
B, =8, =B+ I ywow,.{Ly wooWio + 8 Y Y},
ij i3 Bai ) kik ik =1 L Yie~Yg i27j8 i3

and CoL /i- ,

. b /
W =% I o DF L /.

e+l _ . ’ <
. A .
(5) Let h(l)(i) and uij(l) be the values of ‘h(i) and Hij respectively .
. o ] ]
deﬁending on ai(l). Now the Newton-Raphson iteration procedure is

g, W@ @

13

. 51

, whare is a8 column vector of corrections.

(2 L@ W

Once we obtain a(z) we go from (1) throgEh\icllto get a(3) and so on. The

convérgeﬂéé criterion is that the largest sbholute correction be less than
a prescribed small number €. Thus,"i’i is estimated by,

./;&' n i{a .
+Ye 1, i.e. ?i " e 1 . —_—

?




i

S | * v ’ no2 .
~/\)b and dgy = 4y Jziqij ’

-

. Finally Q is estimated using the equation Q-?Q (F -Im)Li R

v

(see pp. 129-130, Enslein et al ) where

3 '

Ty = dlag (v5Y5500005Y) . e
and

i = (wl,:..,wm,.;.,wp) be partitioned as Q = E%lﬂz with 91

consists of the first m vectors. Thus we obtain the estimetes ¥ and Q
for ¥ and Q respectively

Once ve obtain the estimate of the pripcipal factor loading

‘matrix Q, our next effort iq to find significence in patterns detected

in the factor loading matrix. In doing so, more often, the primary

estimate 6 for Q is not sufficient to interpret the factors. 1In such

cages, often the elements of factors in a are rotated orthogonally (see
Press (1972), Morrison (1967)). But, due to these rotations, often the
ambiguity arises in factor analysis solutions. However among various’

procedures'prog%sed for eliminating the ambiguity, the varimax rotation

- procedure of Kaiser (1958) is widely used. Kaiser's (1958) suggestion

is to gelect the elements of the orthogonal matrix so that 's', the

LY

normalized total simplicity is maximized; where O "
m, - N .
- -z h 7‘7
e S - N
4=1 .
2
1 P oy
with s,. P1§1q13 ?(ZQH)

_ qij is the (1,j)th element of the factor loading matrix Q.

14
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-

Upon considering a single pair of factors at a timé, factors are

rotated until all dm(m-1) pairs of factors have been rotated. The

iterative solution for the rqtation proceeds in the following fashion:
Consider rth and sth factors as lst and 2nd factors in general.

- .
Now, the first and 2nd factors are-rotated by an angle determined from

the expression

P w9 x2 % # * 2 * 2
tan4d = l}{Zpizl(qir —q4g )qirqis - izl(qir g )}

P % = x 2
x (21 qirqis)}] [:iz {(qir -qis ) - (Zqu i ) )

i=]1 1
[
P %9 %2 2 * % 2
- {02 (qg "-q; 7)) - 2(2qy q,) } ) (7.8)
i=]1 : &
and the following table
Sign of numerator in (7.8)
- + b ) -
" + I: 0°<4¢<90° IV: -90°<4¢<0°
Sign of .
denominator
in (7.8) - II:e 90°<64<180° III: -180°<4¢<-90°
L]

[see Morrison (1967, p. 285)]. The new first factor is rotated with
the original third factor, and so on, unt 1;a11 Mm(m-1) pairs of factors
have been rotated. In this way, finally we obtain a rotated matrix,

sk *k \
say, Q = (qij) for m factors each fad{or containing p elements,
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CHAPTER 8

-

REGRESSION ANALYSIS WITH MULTIVARIATE t-ERROR VARIARBLE .

A regression model with a vec.tor response variable under the
assumption that the error has a multivariate t-di#tribution was
congsidered by Zellner (1976) f?r a single response variable. This
Thapter is a direct multidiﬁensional generalization of the above-
meﬁtioned model to the case of se;eral respon;e variables. The pard-
meters of the model namely the regression parameters as well as the
scdle parameters and the degrees Bf freedom of the errbr variable are
estimated and the estimation procedure is illustrated by an actual
stock markefydata taken from the New York Stock Exchange. Also the

¢ -

properties of the estimators and tests for the regression parameters are

L

d}scﬁssed.

8.1 A stock market problem and the regression model

\  An important problem in the area of stock market ahalysis is-the
study of ;he performance of all atocks of some selected firms relative
.to the ovérall performance of all stocks trading on a particular (or

“ geveral) stock exchange(s). For example,'consider the price change data

N

in Table' 1 (included at the end of the chapter) for the stocks of four

sefgcted firms -
1. General Electric,

2, Standard 0il, o -

104 N >
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3. I.B.M., and
4. Sears ; ‘

trading on the New' York Stock Exchange, in relation to the performance of

the New York Stock Exchange as a whole (or perhaps in conjunction with

several other stock exchanges).

:

3 . . :

S Let Yij denote the monthly return on $100 of capital, invested on
i: . .

@ the ith.stock during the jth month, Yij = 100{(Qij-P1j) + Rij}/Pij’

; where Pij is the price of the ith stock at the beginning of the jth

S, month, Qij the price at the end of the jth month anﬁ,&ij the dividends

-

: earned. during the jth month. Let mj denote the weighted average of these

returns during the jth month for the aggregate of all stocks‘trading on
the New York Stock Exchange, called MARKET for‘shért. The primary

objective is to study the linear regression qf the joinf monthly returns

Y

of the selected stocks on the corresponding ménthly return of the

MARKET as a whole.

4

For example, an appropriate regression set-up for the data shown
N\

. ‘ -
in Table 1, of Y,, and m \gf the 4 firms over 20 monthly periods wowld be:

i] |

1 . L |

Y = Q

13 -!-.Bim + €

. j o . - N

.

A= 1,2, .0.,b; 3= 1,2,....,20,\ ¢

\
Y

,
3
3
v
g
-

and we would be primarily iaterested in oﬁtaining estimates ,of thg

parameters (al,.Bl),....,(aa, 84) undér suitable distributional

. assumptions on the error variable eij' .
‘A.straightforward generalization of the above model would be the

case when there are k markets (say NYSE, AMEX, TSE) 1nste§d of one and

we have data for Yij’ mrj {of p firms, 1=1,,...,p and k MARKETS"

r=l,....,k and n periods j=1,....,n.

LI o

» ¢
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: =, 00106
R +a 1 ) y
The resulting regression set-up would then be oy
k o - R
Ty ™ % rflsirmrj €49 ° 8.1 -

[ V4

. o
for i=1,2,....,p and j=1,2,....,n, the regression parameters of irterest

being oy and Bil’ 812, ceeey Bik for i=1,2,....,p. .

We therefore comsider the more general model (employing matrix

o

-

notation) give by:

T(pxn) = ® exi)Xaam) * € (pxn) . (8.2),

where ® is the parameter to be estimated, X ig the design matrix and €,

an error matrix with suitable di&tributional assumption to be discussed
3

later, »

We remark that this model accommodates (8.1) with 6=(a,B) and

- T T T T
x = [ln,M ], where a-(al,az,....,aP) s B(ka)=((BiY)),'3n (1,1,....,1)",
. T . -
and M(kxn) ((mrj))’ where X atands.for the transpdse of X-. R
N . In dccordance with Zellner (1976), we now make the following . /
assumptions on the error variable e-((eij)):~
E(eij) =0, for all 1, J i )
E(€2 ) = ézA for all 'y, and 1 = 1,2,....,P
. iJ ii ’ t Bt 4 L
2 . )
E(eijelj) o] Ail for all j, and 1, 1’2’°""Pf ’ 4-
and E(Eijelj’)- 0 for all 1 and £ and™44)
where Aij are unknown parameters.
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) .Furz?a we assume th¥t for a given 0, the errors €13 Egs ereny en .
ég « are independently and normally distributed, the distribution of - -
F -9 Ey®(E, 50e0r,E )T being Nw(O,ozA) for j=1,2,....,n; while 0 is assumed -
- ~3 1] pJ 14 S ’ R : -
1 to be a random variable having an inverted gamma distribution with
. probability density function given by ) _ > S
: |
2 \Y v, 2 . :
g(o) -——-——;Exp.{,-ls(—)} - (=) “,a>0v>0,
Yo o2 207
2 *2 :
where vV is an unknown parameter. ) . ' I
» Then similar calculations to (5.2) through (5.3) yields
' T ’ T T T -
f(e1 serees€y ) = J f(el secees€ s )g(o)do -
:. | o
i ¢ -
: );\" Vinp  _n n . _Mmp
Q2P L2 15 2 vy + 1o STk, 2
2 —_—
m 2 . .
3 . : L (8.3)
f v Lol
3 vhere L = =2 A. |
' — We propose (8.3) as the distribution of the error vaﬁiabie of the ’
3 'regresaion model (8.2). It follows then [see for example Cornish (1954)]
G that ‘ : : ’ »
’ﬁ . » )
E ] E(e,) = 0 ; : .
3 . 7
1 . T
E(e e = 7
| (egey0)
and ' : ) ‘

E(eje;T) =0, ids, 1,3-1,2,...2,n.
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In this model it’ is to. be noted tﬁat while el,....,e are pairwise
- ¢ ‘

uncorrelated they are not necessarily inaependent. Independence implies

A}

that el seee0sE are normally ‘distributed [c.f. Kelker, p. 423 1970].

Finally we remark that the proposed model accommodates the usual case

when the errors el,ez,... ,e are assumed to be independently and '
LY
identically distributed according to N (0,Z) by letting v+« in (8.3).

\

..8.2 Estimation of the parameters

" Consider the proposed model (8.2) éiven by: " \\\

Y = 60X + ¢, ‘ ‘ . (8.4)
. \ P .

‘I-

. where Y as before is (Pxn) responde variable, 6 a (Pxk) matrix of unknown

parameters to be estimated, X a known design matrix of order kxn and

. ' - T
e-(el,....,e ...,en) an error variable where ej (eli"""epj) , and

h
p.d.f. of € 1is gidbn by the multivariate t-distribution:

' N
.oy . o .
w-2)* e T N = .
- f(g) = - B 12! {(v-2) + ji €5 pX ej} (8.5)
n? |2 . .
‘We recall that fer Q:Qz, E(ej)-o, E(sjejT)-Z, endJE(ejesT)-O for j#s;"
\ i .
j,8=1,2,....,0. o
-.'.Q-
To estimate 8 we minimize Z (yj—exj)T(yj—exj), where

3=1 . .

B g R T" '
yj'-(y]_j,.'..».;ypj)'r and xj'(xlj”f"’xkj) . with respect to 6 and obtain

the following least square estimate of 6:

A -1 ’
o - (xx') xy: o . (8.6)

L o)
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Next we propose the following momeant estimator for the covariance :"a I

Yo r

matrix : . ‘ ‘ ‘ . A

o~
(]
ER

n : - ' . ‘~ . »

A - A T \
Z (y,-8x,)(y,-6x,) . , . (8.7)
goi LT R |

. L4
’

- ! ‘\ : - - -
where«® 1is determined by (l8,6).l In order to estimate Vv by‘ the method

of moments we :now consider the fourth moment of € .. Similar calcula-

; 13 : e
'tions'to;(G.“%) through (6.7),*]ields the equation
| {2 /¢ 4)} 2 xz s, 1 |

V- V- = o
~3n 1 #ij

e .
/x 85, s . (8.8)

i rj) i .

!
\<

where 6,_ and o are given by (8.6) and (8.7) respectively. In what

ir it .
follows we will depote the so-called 'estimated residual’ by éu where
k, - .
“13 T V43 " Zl 1r¥e§ 8.9)
k Y E
in analogy with e 11 (yij r e =3 ) by virtue of (8.4). Then, from |
r'l '
(8. 8), we obtain the estimate of v as ¢
P 2 2. . 4 A2 1 oon bl -
Sm203I6) -2028,/GI8, -2L28" | . (6.10
g4 13 i=1 By

A Numerical Example

Let us copq-ider the stock market problem of section 8.1 relating

¥

to the four ‘selected firmg, having the regres'sion model

+B8m, +¢

=y + B, +e, 1m1,2,000,45 71,2,...,20. (8.11)

Y
#i
where the error variable is assumed to have a t-distribution of the

form given by (8.3) with the unknown parameters v and.I.
p .
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* o We illustrate the estimation of all unknown parameters of this .
model namely a 1% B ~for 1=1,2,3,4; Z and V.
.‘.~ -‘ ‘ .":;.' . ) N .
O, G, T, 0, \" T o
Put 1 273 4\- 6% and set : ’
B, By By B, -
- - ﬂ_
1 1 1\ T - ] ST
X = a, m, g , ?}(y;,....y4) , where yi'(yil"‘f"inO) for B :

~ &

- s
< . ~
B

iél,....,é.‘ Then (8: ll)~éan be rewritten as Y = OX + €, which reduces

. )

- ' to the model (8.4).

The values for ml, 2, esvey M, and the Y,, are

L ™20 13

listed in Table 1. Since the error variable in (8.11) is asstmed to

‘ ' ) : > "%
have a thdistribution of the form given by (8.3), therefore direét o .
~
application of the equations (8.6), (8, 7) and (8.10) yields the
following estimates for 9, E and V. Co- e o
G.E. (1)  STAND (2)  I.BiM. (3)  SEARS (4). .
S ‘G, | -0.27489 | -0.89038 0.21585 -2.00951 "
éi 1.18155 1.01322 0:95128 1.11962
7.8015 6.0205 ~4.0967 -0,8160 | )
E = 12.3595' . =1.1775 | -3 6845 and G~;-21.32
13.6160 - 9 5150 . B

22.6845

-




.

8.3 Properties of the egtimators

In this section, it is shown that the estimates 8, £ and v given

by (8.6); (8.7), and (8. 10) are consistent estimators (as n+x)-for the

respective parameters. It is well known that § in (8.6) is an unbiased

estimator for 6. This i1s because by (8.4) §T tan be expressed as*

[

6T = (axM) lxy T—(XX)]'X(XB +e)
so thae . . ‘ .
87 - o7 & by Hel C o R N Ty

I . C - .
e " %

but E(ET)=O. However, £ and V. are not unbiased and no attempt has been

made to remove the bias.- 1t is of-great iptereat to study the conver-

gence of the estimafors to the corresponding pogslation parameters, We-

recall that X is a design metrix of order (kxn). Then, as n becomes
R | .

infinite so does the order of X. Thefegore, in order to examine the

agympptic behaviour (as n->¥) of the“eséimates we now assume that
lim (%XXT) exists so that lim @%XXT)—l also exists.
oo n>o B .

R

Consistency of 6: . ' : - +

- _1‘ '
It follows from'(8.12) that 87-6" = Gxx") Ize". Next by (8.5)

4

it is readily verified that cov(%XEiT)-(oii/n)ib(%XXT) so that

COV(%XET)x- (%Z)ED(%XXT), where ei-(eil,....,ein)L Therefore,

o
4

cov(@T) - (%XXT)-IED(Z/n). Since by assumption lim g%gxr)'l exists}’ :
o

and L is a finite dimensional with bounded elements, it follows that

1lim cov(éT)-O. Therefore 8 is a consistent estimatoy of 0.
o .

111



Consistency of E :

—p—

By (8:7), the (i,r)th elemeft. of ﬁ, namely au can be expressed’

as
1l A
= —-n eigr ., - (8-13)

where s'i = (sﬂ,...‘.,ein).

Also'by (8.9) we have El-(Yi-éiX), which in turn by (8.12) noting that

_Yi-elr'ei’ can be written as

CH =.ei[1-x?(xx:)’lx] £ (8.14)

Us'ing' (8.14) in (8.13), a simple cslculation shows that

A 1 T 1 T T.-1 T
oir ifr T Eeix (Xx) (xer .) *?
gso that : - . M °
A . T 1 .T.
plim Oy plim (-ﬁeier ) - {plim (Er:i&)

n-ro n-rw N+

lim (%xxT)‘l plin @xe ) - (8.15)
ne, n<ow n .
1T 1T, o
Now z];i: ("r-f'ier ) 0y because E(Eeier )' oir'

The last ter;n in.(8.15) is zero, because E(ei) = 0 and 1lim (%XXT)-l

e
exists by assumption. N -
Hence, g]f: Oip & Oyps o : . %16)

which implies that £ 18 a consistent estimator of L.




-

Consistency of V3

. ’ . k
. ‘ From (8.9) and (8.4) it is seen that €,,—€,, = - I B, -6, )x
_ % e & =1 1T AriTrd
k
1 ad 1 4
. gso that = LX e,, = = II {¢ T (9 -6, )x 1}
, n 11 ij n 11 ‘ ij r=1 ir’ ']
: =155 ;4 -4z il {‘; ® )x,,)
n 11 1} 13 n 1] r=1 ir~ ir
k
1 2 a
+BZZE€ij{Z(ir ir)x }'
r=1
: . 1 { .
3 . - 41T = E (8 ) }
3
3 . ,
i + I %-{ % (61 -8, )% }4 ' (8.17)
; 13" =1 T rj
.
!
] Now it foliows from (573) that
v—2 2 ’ -
3(\) 4 , therefore )
p n .
STEE S :j 3&2 § 2,
n->w i=1 j=1- ' i=1

-while the probability limit under the assumption that [xrjl < M for all

r and j, of each.of the femaining terms in (8.17) 1s seen to be equal
. < ]

to zero. Conslder for exéméle »

{ Z C }

plim —-ZZ e 1
13 1oy 1r Oy )%

n-+e. U

2
< plim zz {z (e -6,.) }
ﬂ-*m ij ij r-lI i3 xrjl




-
’ L}

P ko 2 . B q
< M z|}11m{z|eir—e [} plim X = S =0

f=l|n+® ral It e gmi® 1
since plim 8 = @
noe ir ir i . C =
K

Applying Slutsky's theorem .(cf. Cramer, H., 1946) to (8.10), from

(8.16) and (8.17) it follows that plim v = v.

S ¢ S - -] v t

8.4 Hypothesis teét{g&

Consider the -model Y=6xte given ﬁy (8.4), where Y is a (pxn)
response variable, 0 a (pxk)’matrix of unknown parameters estiméfed by’
(8.6), x a (kxn) known des?gn matrix of rank k < n and €, a (pxn) error
matrix which}has a multivariate t-distribution given by (8.5). The

model can be rewritten as:

. R * . T * * )
" . . Y = (Ipax )8 +e& (8.18)

* * ' T -
where € 'btnp(O!Z(iln,;)'by (3.2). In (8.18), Y -(yl,....,yi,....,yp) .
* T * ) T .
3] -(91,....,6p) y € =(€1,....,€p) , where yi-(‘yil"""yin),’
-

ei-(eil,...,,eik), and ei-(eil,....,ein) for 1=1,2,....,p.

) * %
We wish to test the hypothesis u:e-eo (or equivalently © -Bd)

: T k&
S versus the alternative hypothesis 31:8#60 (or 6 #60) for the cases when

V, L are known and when v, I' are unknown but n is sufficiently large.

e .
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] /
Case 1 v and I knim
' In notation of (8.18), from (5.69 we obtain
A4 4+
* T.=1 . *
8 - [ng(xx) xJY (8.19)
Therefore, by (8.12) we can write
x % s T .-l 4 % il
-6 = [1@@=)"de (8.20)
: ® ’ - . - B AR *.
vhere € mtnp(o,zaln,v). Now, let B-Z@(xxT) ! and u-s"’(e'-eo), where
AR &
8 -is given by (8.19) and eo‘is the value of 9* under the null hypo-
thesis iio. We now propose ‘(in. analogy with the corresponding problem
when the error is assimed to have multivariate mormal set up) the test
statistic D given by '
: - v T , .
RRE= L o
P - ’
- . B
W ,\*_*T_]_'h*_* :
: \)—2~(e 90) B T 90) , R
>
LV Ak kT ~T.-1,-1 Ak K y
5=3.® 99) {I@Gx") 1T -8)) (8.21)

’ B

Obviously lower values of the test statistic D will favor the Ho while

the higher values will direct the rejection of H . -

[

L4

- 1

-

Distribution of the test stati_.stic D:

By assumptfon Rank (x)=ksh, so that the rank of [Ip@ (nT)-lx] ie‘
R B . . . " - Y ) [ .
kp, whereas the rank of (ZQIn) is np. Since € Vvt np(O,ZGIn,v) while
A * ) . * ', . ’
from (8.20) (8°-0") 1s a linear function of €, straightforvard ap-

plication of theorem 4.3 shows that B""(@*fe*)‘w c_kp(o,l.-kl-,,vr, vhere

. e N ,.‘ . -, ..°
P

Lae

L XS
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B'Eqb(xxT)‘l. *It now foilowa that
L

. U= 8T s"’[@*-eﬁ £ (e*-e:{l v, BTHO -0, 1w

Hence from theorem 5.3, it follows that D = > U'U has the demsity

1

given by

w  |VHkP
2 s 12 *2d gy

- vikp
I'% Jolg'z +J'“—+T(A+m) 7 +2)

(8.22)

' v * % T -1 * %
where A v_z(e -eo) B ~(® -60).
* *
We note that under HO:B = 60 so that A=0, D/kp has the usual

central F-distribution with degrees of freedom v and kp by virtue of

‘theorem 5.3. //

’ 4
Case 2 v, L are unkngbn, n 1s large ¢

-

We recall from Section 8.3 that f and V as determined by (8.7) and

’ : . .
4 . #(8,10) are consistent estimators for ¥ and vlrespectivelyn‘ Hence the

4 ~

V T . -}i Ak %k '
F-test based upon D = -2 U'U, where U= B “(0 -eo) may still be

L)

approximately valid with v in place of v. .
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Table 1: A Monthly Return Data _,a//'
v
FIRM
Month l. General 2. Standard 3. IBﬁ ' 4, Sears
3 MARKET (m,) Elﬁctric 011 (yyy) (y44) (¥ 43
Y15

1 | -3.9597910 | -4.9438201 ' -6.2893093  -1.3882671 -9.4202876
2 | -1.6576912 | -4.4917259  -5.3243849 1.1807449  2.0000000
3 | -1.0816958 | -1.8316831 -2.6315790  0.1811394 -4.3650795
4 10.4112013 9.6692085  5.4054055  -6.4195275  —4.7717843
5 | -1.2405984 0.6960556 -1.3519812  -4.154589% -3.3551198
6 5.1096663 5.1612902  2.8708134 7.5356424  5.4545455
7 -1.5521422 | -3.7610620 -0.6976746 1.5625000  0.4310343
8 | -1.4268629 | -1.8390805 -8.1498802 1.0256410 °  7.6909840 -
9 .0.0679950 | -2.9508196 -1.5503876  -2.7480204 -3,2128513
10 | -3.9339226 | -2.1951221  0.2624672  -1.4367813 -3.7344400
11 4.2175182 1.0972567 -2.0418849 3.5957240  4.7068965 .
12 0.5467556 | -0.4987530  7.3170722 3.5984848  -7.0539415
13 | -5.7218745 | -8.2706749 -7.0707083  -2.9250458  -9.8214269
14 | -1.2142301 | -2.1857925 -2,2826087  -4.2824857. *-2.2574261
15 3.1896032 5.4189943  3.3898305  -6.2686563 -7.7319562
16 8.3155274 | 12.0643440° 12.2950790  12.9511650 = 15.6424580
17 '1.8877115 1.1961721  0.6326035 . -1.8308274 -4.2318844
18 | -1.3075344 | -3.2624114 -5.3921569  -0,3872217 -5.6122448
19 | 5.6815811 6.1881188  3.6269430 9.2322648  3.2432433
20 3.7603755 4.8950177

1.1655010 »-0.6000001

-2.4921466

F

Source: The Monthly Stock Returns file of Centre for Research in

Business, 1101 E. 58th Street, Chicago, IL- 60637

» Security Priceé, University of Chicago, Graduate School of
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