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ABSTRACT\
Iﬁ this thesis the analytic teéhniques of
Edgéworth and Nagar's expansion ana épprqi{mate slope |
are used to exﬁmine small sample.properties of esti-
mators and égst-sﬁétistics in some common eqonbmetrip
models. The chapteré are laréély*self—cohtainédl

Chapter one provides sdme definitions,

e

hypothesis test construction methods, and a description .
of techhiques tp be used and models to be studied.
In chapter two, Edgeworth expansions are used

to ‘examine the properties of LR, W and LM tests for linear
restrictions on ré;ression parameters in the standard one-
; equation model withGStudenE's t"errors. Edgeworth. size-
correction factors are found to be more. effective than
degrees-of-freedom-based corrections.

Chaéter three,examihes tﬁree aspecté Jf the
regrgssion.model wi@h first order autoreg:gefivé err;rs.
First, it is shown that the LM test-statiézic for the .
existence of this kind of auéﬁcorrelation is numerically

‘ insensitive to whether the error terms: have normal or
Student's t distributions. Second, Nagar's expansion L -
.techniques are used’ to ‘compare the efficiency of various

estimatord® of the regression coefficients (including.

| I
b i .
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igerative). The resu{ts‘laigely suéport'thé results of
previous Monte Carlq stuéles. Finaliy, an Edgeworth '
expansion ;s used to provide a size correction factor
for the Wald test for a zero coefficient restgictign..

Chapter four deals with the test for éxistence_
of contemporaﬁéous correlqtion between'errérs of different
E;gression equations. This is a relevant pre—teét for
specification of SURE models. A variety of tests are |

a

presented, incluéing one based oﬂ the Union-Intersection
(UI) test construction principle. Rel;tionshiés‘between
the tests in some special cases ére discussed, including
a compa;isdn of their approximate slopes. The UI test

is exact, easy to use, but may have lower power.

Chapter five deals with the Cox and J tests for

choosing betwedn two an-nested.single equation models.
' - N * L}
An Edgeworth expansion for the J test under both models
-~
is obtaineé, as well as a size correction factdér. The

‘I

approximate slopes of Cox and J tests are used to explore

situations where the small sample properties of the two’

tests may differ substantiall*,

%

-
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I. INTRODUCTION . ' ‘

- J -
Asymptotic properties of statistics used in

- econometrics, bbth forparameter estimates and hypothesis

test  statistics, are generally weli known. Less is known N

about their finite sample behaviour, not to mention the

effects of relaxing the disbributional assumptions. Since

.
-

in many situations one must choose from a\group of

P

procedures having 1dent1cal asymptotlc propertles, a good.

choice should.take finite sample and robustness propertles

into account. This is especiaily true as'the number of

-

practic4l estimation methods grows due to improving
. LY ~

" computer performance, d well as a grbwing variety of

] -

hypothesis i%sts avdilable due to an increased interést

N <

.In test construction methods, partlcularly in the Wald. ~ -

(W), leellhood Ratio (LR), and Lagrange Multlpller (LM)

»

tests, which have identical asymptetic properties.

Tﬁis,thesis.examines small sample properties of .

- -e

estimators and test statisties in some common econqQmetric

models. Some attention 1s also given to robustness and

® . : .
application of testing principles. 1In the rest of this

chapter, definitions and desirable.properties“of estimators

.and test statistics are given. A discussion of methods

of hypothe51s test constructlon is next, followed by a

descrlptlon of ways of -analyzing small sample propertles.

. . . . P A Y




' case by case approach of the thesis. .

(] . - . ‘l'
v
’

.. ~ v Lo i ., . ) - L ]
Finally, the econometric models whidh will be the subject

of the following chapters are in'troduced. L)

I.1 ., ESTIMATORS AND TEST STATISTICS: DEFINITIONS AND

PROPERTIES ' _ S

; o

v e
The emphasis in this section, as in the thesis,

will be on hypothesis tests,"alt;.hough some discussion of

parameter estimates is included in Chapter III. A

L]

hypothesis test can in fact be interpreted as .an 'estimate

of an unknown value of 0 or 1; 0, say,if the null hypothesis
is true and 1sif it is false. A parameter estimate, on ')

the -other hand: could be seen as the result of a test .

involving many hypc;theses, each one corres;pon‘dihg' to a
possible ‘éoi'nt e‘stgimaﬂte. 'A c'gllgction of art';icle.s '
criticizing the itandar'd hyp'otl:hesi's 'testing-pro‘cedure

can be found i-r} Morrison and Henkel §1970) , while Leamer’"

(1977) emphasizes the importance of the researcher's
’ ' 4
motivation for performing the test. A theme of this

Pd

section i3 that many attempts to derive useful optimality

’

properties for statistical tests have been made, but in
Sactic.e‘ these properties are either so s}:’rict that no .

st satisfies them, or not restrictive enough, so that

.more than one test satisfies them. Thise necessitates the

.y bl

»
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It is assumed that the data, y,is generated

by the following.probability density function

A f(y,©),: . ) ' - ’ (1)

T

A .
where“% is a k x 1 vector of unknown parameters. In

econometiics, this density is, often conditional on some

¢ .

other data, X, i.e.) .

T OE(y,e]x), (2)

but X W1ll be omltted for now for notatlonal 51mp1101ty

The estimation problem involves--the use of the data y to

-estimate the unknown vector e, or some elements of s6.

4

The hypothesie teéting problem involves deciding whether

e 4

.or not 6 falls intc-a pre-specified subset of the set of
p0351ble values. More fdtmally, lettlng @ be the set of

admissible parameter values for 6,ewith Q c R we are

testing HO’ the null hypothesis, against Hl' the alternative,

where ‘ . .

Ho is 6 ¢ wor W cq, .
. - X ' (3)

andHl is © e.wl, ulsﬂ-wo

. The test can be defined by using the decision
'variable 6(y), where



ny) 0 == accépt Ho \(4)

' 1 ==y reject Ho

The framework so far is very general, and could

- -

be used to describe both nested hypotheses (where Hy

"involves a set of p restrictions'(p < k) on 6, and

wy = Q - mo), and some non-nested hypotheses, where

the null parameter space is not formed by placing )
restrictions on the alternative parameter space. .In manys
. - econometric testing situations, including those discussed

da

. in this thesis, the density function will satisfy the

assumptions of Wald (1943, pp. 428-9) . These are standard,

commoﬁly made regularity assumptions and will not be given

here. )
‘Some definitions and properties follow.
(i) size of a test: The maximum probability, over all "
& 8, of rejecting HO when ﬁo is-true. For a'test § of
/ < size a, then,

max prob {§(y) = 1|H0} = a (5

. d - .
/ .
-
- . -
-

-

(ii) Power of a test: The probability of rejecting

Ho when HO is false.

Since the power will depend on what particular

value 6 takes on in‘the set w; of alternatives, the

PS
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power function of § is : '

! *

8(6", 6) = prob {s(y) = /o = 6" € u,) (6

(iii) Uniformly most powerful (UMP) test. If, among

S

all tests having a given size, there exists one:
test which has at least as high a power as all
others over the entire alternative_space Wy that
' | test is UMP. | .
When'H0 and Hl are simple (that is,‘thgre is
“only one member of &0 and of wy) a UMP test for any
'}

givenr size can be constructed using the Neyman-Pearson

lemma. That is, for testing

Hy : 0 = 6 vs., H, : 6 = 8 (7)

the UMP test of size o is given by

s(y) =0 if £(y,6;) < c-£(y,0,) (8)
‘ - s

1 if f(Yfel) > c-f(y,eo)

where c is a constégi such that prob{é(y) = 1|8 = 851 = @

There are some other situations for which UMP tests can -
/ be constructed;' however, fo;-mgny hypptheses, a UMP

test does not exist. (See'foi example King (1980f,

Kariya and Eaton (1977)).




b )

(iv) Consistency. An estimator is consistent if it

approaches the true parameter value as the

Y

"sample size T grows large; that is, plim % =

» Toow

for a consistent estimator 8. Similarly, a test
1s consistent if its power approaches one against "
any fixed alternative as the sample size §rows

large.

(v) Unbiasedness. An estimator is unbiased if its

expected value eguals the true parameter value 8

over all 682, A test is unbiased if

. prob{s (y) 0|l =8 émo} >

0
(9)

i

prob{s (y) 0|8 = 8¢ ml}

.
+ we .

H
i

for all eoe QO’ ele Wy

An unbiased test, then, has a power against any

~

alternative 9ew, greater than or equal to its size.

; (vi) Invariance and similarity (of a test). It is

often seen as desirable that a test be invariant to
(i.e.. not depend on) certain transformations of the
data. For example, tests concerning parameters of the

linear regression model are often invariant to linear




transformations of the independent variables and

corresponding linear transformations of the regressidn'
coefficients. A test is similar when the test outcome

is never affected by changes in the nuisance parameters
in the model, i.e., the tést is conditioned on -sufficient
statistics for the nuisance parameters. For a brief
discussion as well as ah‘example where nonsimilar tests

are also considered, see Evans and Savin (1983).

. L} i
(vii) Locally best unbiased tests. -This is a less

’

strict optimality propgrty than UMP, and.grew out of
attempts by Neymanvand Pearson (1936, 1938), Isaacson
(1951) andwéthers, to create more widely applicable
properties than UMP. ’Th; general idea is to find an

unbiased test.whose power function is greater than that
A ’ [

of all other unbiased tests having equal size, for para-

meters in the alternative space infinitely close to the

null space w, 0of (4). ,Application'éven of this less

0
restrictive property has proven difficult, '‘especially when
more than one restYiction is being tested in a multivariate
problem.

[ 4

(vii) wald's asiﬁgtotic optimality properties. Wald

‘(1943) defines three optimélity properties and their

asymptotic equivalents, and then defines a genefally

-




AWy A A e mee e .

- s Mt e Dehig s s At A e o e & e

[y

P L

*applicable testing procedure (the Wald (W) test disqussed:
= y IR ]
oA (&

. 1 ..
in I.2) for which he demonstrates, along with the likeliw .

o ¥

LY

hood ratio (LR) test, that these asympﬁotié“propgrties V'
. . |

»

are satisfied. A brief description.of tHese three propsg-‘

. ‘ M
ties follows. ' 7

O

(viiia) Asymptotically best average power.. Defining a
family of surfaces in the pérameter space by K(8) and a
weight fﬁnction w(8), ,a test hég asymptotically best
average power wiﬂﬁ respect éd K(e) and w(e) if; as the
sample size approaches infiniﬁy, the average power over
any member of K(8) with thé iverage taken according to
w(6) 1is equal to or largér thén any other test having
equal size. *

- N i
- « - -

(viiib) Asymptotically best constant power. .A Q;Et has

asymptotically best cénstant power on the surfaces K(6) if

. its power is constant over each menber of K(ez and t@at

power is equal to or larger than the-powér of ;%y other d$
. test having_équal size and the constant powér property N
over the same family K(6), as the sample size apprbachqs
infinity.

(viiic) Asymptotically most stringent. .A test js an

asymptotically most stringent test iﬁ,astme sample size |

approaches infinity, it minimizes the maximum difference

-
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. . Co
between its own power at @ and the power of the most
powerful test of equal si;e for that ph;ticular 8,
maximized over Bew, . . - _ _ ~
Wald is able to find a family of surfaces K(8) and
a weighting funetion w(6) for which the W and LR tests

have these three pnoperpies. - '

I.2 TEST CONSTRUCTION METHODS

>

Hypothesis tests meed not ﬁe constructed using ‘ L0
a formal method. One could construct a test based on |
intuipive grounds ;hich performs acceptably. An advantage
of using a methpd suéh as LR, Wf or LM is that the ‘resulting
test will be known immediately to have certain asymptotic
proper;ies (see previous secﬁion)z + These teéts also have’ r
attractive intuitive interpretat&g;s: In fact, many tests
that were formed originain wigpout the use of formal
methods are LR, W, or LM tests, or are -at leaét very
similar. In this section the LR; W, and LM tests are -
describea. . . .

In addition, the union-intersection (UI) method,

introduced by S.N. Roy (1953), is discussed. This is

not a'pfecise method of test construction,. but is a .

3

framework for specifying a series of sub-hypotheses which

i

tgggther imply the null hypothesis. The null hypothesis

-, 'Y

s
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is‘ghen:acéepted only if each of the sub-hypotheses are .

>

xcqepfed.
The hypotheses to be considered here are baraméter

restrictions (that is, nested) in the form of p independent

L]

restrictions on the k parameters: "

H, : g(8) =0 vs. H (10)

0 1 ¢ g(e) # 0

N o
where g(8) is a p x 1 vector. The‘hefinitions will also

<.

use the likelihood function
3 :

L(e|ly,X) = £(y|e, X) (11)

where f is the density function as in (2), assumed to.

N A

satisfy Wald's conditions mentioned earlier. T

. -
The LR test determines if the

“

(1) LR test.

reduction in maximum likelihood due . to the restrictions
imposed on 6 is éignificantly large. The likelihood ratio

’

ig given by

f _ max
Gcwo

>
I

“L(e|y,X) /gag L(8]y,X) | :

L(6g |y X)/L(8]y,X)

-

" (12)

'/,‘

where w

0 R

]

the unrestricted and restr{cted maximum likelihood (ML)
. ‘ I'4 .

»

estimators, respedtively. The LR test statistic is then

.S b -
»

o H . Ve

and 9 are defined in (4), and 6 and & are termed’

e




21

LR-.# -2 log 1 (13)

[}
L

‘Undér-Ho, LR v x; asympﬂoticélly‘(see Silvey-(1970,

-

., pp. 113v14)). The likelihood ratio test is

-

)

-

Accept H, if LR < c(p,a) . ‘ (14)

0

Reject Ho.bthérwise

Y

where prob{x;'> clp,a)} = ¢, o« isé the pre-specified
. 3

nominal size of the test, p is the number of restrictions .

i

and c(p,a) %s the critical value.

The nqminélssize of the test generally does not

equal the actual size since LR ~ x; asymptotically but

not nécessarily in small ssamples.

N AN
-’,(ii). ﬁ test. The W test first proposed by
Wald (1943) determines if éA:‘restrictibn vector g(#8)
differg significantly from‘zero when evaluated at the
‘unrestricted ML eétimates, 8 of (12). It does not

require calculation of the restricted ML estimates, éRf//ﬂ\\l

The teé; is based on the asymptotic résult

. VT(8 - 8) ~ N(O, I;l(e)) asnT‘+ w ' (15)

where T is sample size and

Y .
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~

. _ lim - . X .
s \IL’(G) = ow 1(8)/T, e o (16)
I(e) = —Ey{a2 log L(ely;xﬁaeae'} - (17)

i.e.h'I(e) is the information matrix.

% The W test statistic is

-8 )
. w‘_'i» -~ b " - ';l“_ ‘_ N o , ' . - ‘
W.= g(e8) [G 1(8) 1 G ] }g(e) L (18)
where_G = 3g(b)/ae |6=é - E:,) x k mat™mix, .ahd I(é) is the

negative of the expected value of the matrix of second

~

- )

dérivativgé of the log of the likelihood function evaluated

at'ﬁ with the expectation taken over y assﬁming_its density

to be f(y,6}X). Under Hé, W~ gg asymptotically jéee

'»

Silvey (1970% pg. 116)).°

. . R o,
The W test of pominal size a is . .
. -
‘4. . ' N s . :
Accept HO if W < c(p,a) L (19)
‘Reject Ho otherwise
where c(p,x) is defined as in (14).
., ] . » ”"
) (i1ii) LM test. The LM test uses the sestricted

4

ML estimates 6, but not 8, and has two ihterpretations.’

In its "score" form first propbsed by Rqo.(1948) it

Qgtermines if the first aerivatives of the likelihood

hd .

12
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N [

’ " e
function at eé are significantly different from zero.

In its Lagrange multiplier form of Aitchison and sllvéy
(1958) and silvey (1959), it determines if the Lagrange
multipliers or "costs" Qf the restrictions are significantly

different from Zero. The LM statistic in its score form

‘is . ‘ _ o -,

’

.a LM =§é?1(§ )_l.aw' : ‘ (20)

e .
M —

.thre;d = 3 log i/aele=a “is a k x ‘1 vector. Under H

0'
: R v

W e vt e vk s eyt

Li ~ )  asymptotically ‘(see Silgey (1970, pp; E18-19)).

A b A s e

o . ..‘" ‘K .
By writinhg' the regtricted ML procedurﬁa Lagrangian

. -

’. e " . a

b A
5

,

ERRLE =3

. )
7 .

h(e,y|y,X) = log L(e]y,X) + v'g(8). , (21)

v Lo RO

e

where v is a2 p x 1 vector of Lagrarige multipliers, it is

seen that k of tﬁe fifgt order conditions for.maximiza-

Ly N T’

tion are

L3

[ .. | |
‘d+ Gy =0 . ' (22)

A S R

€

) ' where G = ag(e)/ae'|e=6. is a p x k matrix, and v is a
: ' R & Co .

vector of estimated'Lagrange multiplierb.-rUsing (22)

the LM statistic of (20) can be written in ‘'its Lagrange

multiplier form: .

IR L

T



G ¥ (23)

« Thé LM test of nominal size a is

0 - :
’ c3

Accept Hd if LM < c(p,a) : (24) -
Reject HO otherwise.

. . .
kivT'Iesues concerning LR, W, and LM tests. The

above definitiens reveal that the three tests examine the
behaviour of the likelihood function in three different
. ways. ;An iﬁtditive desqription of their differences in
f the general single parameter case is given by Buse (1982).
In that paper (see also Engle (1982)) he sRows that in
the common case Of linear parameter restrlct;ons, the "' .
three test; are’ identical when the' log-likelihood is

gquadratic in the parameters. -

Computational consid€rations may help in cheosing

t v

"a test. The LR test requires both restricted and
unrestricted ML estimation while W requires restricted

“only and LM requires unrestricted only. On the other hand,

e

LR dogs not require the calculation of I(8) or I(éR),
while W requires the former and LM the latter.
Another issue concérning I(6) is. the choice of its

consistent estimate. Alternatives to I(6) and I(eR) in
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W and LM include the negative Hessian of the log-likelihood

.

4

. . )
-32 log L(8|y, X)/36368 "(25)
evéluated at either 6 or é

-1 . © (26)

replacing I-l(é) in the Wald formula @kg), or an equivalent
-for LM, and finally, V—l(é) and V-l(éR) which are inverses
of some variance estimates and which may be particularly

appropriate in non-normal cases where the variances of

-
» -~

the estimates may exceed the lower boundu,given by the
inverde of the information matrix, by a substantial

amount. Breusch and Pagan (1979), Buse (1982) and Efron
, =
and Hlnckley (1978) have dlscussed the relative merlts

of (25) VS. I(e{ or 1(6R). In some‘:cases (26) results
in easier combutations than I(é) or I(éR) since some off-

diagonal terms in 1(8) have O(T-i) and so will §o to zero

in the limit. Some other variations gn these testing
principles-are outlined in Engle (1982, section 10%, and

Davidson and MacKinnon (1981). >

The following asymptotic results may be used to

examine individual restrictions and their effects on

.‘k.

each parameter. Under Hg,, B

l”

Tg(8) "~ N(0,T & 1.08) %6 ) Coen’




b4

a/T ~ N(O, I(éR)/T) . (28)

1 7" .

Y/T & N(O, (BI(6,)"" G ) /M) (29)°

¢
&

all as T +» =, If the test rejects, then (27)'can be

" used to examine the individual restrictions,. and similarly

with (29) for the LM test. Theleffects of the restrictions

-~

on each parameter can be studied by using (28). The
use Of formal hypothesis tests on individual parameters

or restrictions after rejection of H, using these

0

relations is not a good idea since the above distributions

under H, given rejection of H. will be quite different:

0 0
Nevertheless, (27)-(29) may help in forming suspicions-

as to the cause of rejection of HO.

There are not many general results about the

-poweﬁp of the three tests insmall samples. Some results

have been obtained by Lee (1971) and Peerst(197l), ‘for

example, but the criteria for one test having greater

power than another usually involve the parameters them-
selves, which a;é unknawn.

The effects of distributional ass tions onthe -
performance of these tests are also la gely ﬁnkneﬁn.

~
Savin (1982, p..76) points out that when testing for

restrictions on B in the non-linear regression model '
in ti
/"'""" i 4 .

T , . * K
yt = f('itrs) + ut' t=.1,...,T (30) o .



normality -of u_ is not required for LR, W, and LM

-

t
tests based on the normality assumption to retain their

asymptotic properties. This is not true in general.
For example, an LM test for heteroscedasticity proposed
by Breusch and Pagan (1979) in a regression model with
a normﬁlity assumption h;é been shown to have incorrect
aé?mptotic significance levels when the normality
assumption is incorrect (see Koenker and Bassett (1982)).
The small sample praperties of these tests generally
are 'sensitive -to the distributional assumptioen. Ullah
"and iinde'Walsh (1984) fithd that W and LM tests for
iinéar ;estrICtions“bn regression coefficients in the
stagdard one-equation model assumi;g a t-distribution for
the: error terms differ numerically from the corresponding

test for normally distributed errors cases. The LR test

is the same in both cases.

(v) ‘UI test. Consider again the hypotheses in (3)

Hy : b € wg VS, Hl : 8 e wi (31)

The union-intersection (UI) test, first égggested

-

. -
by S.N. Roy (1953), tests (31) by testing a finite or
infinite number of sub—hypotheses:

L)

. Ho : Gewo ve. Hli : e;wli, wli < wy (32) —

-

17
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A UI test for Ho vs. Hl of size ¢« is formed by

tegting each sub-hypothesis with an.LR test of size

a . The test rejects HO if and only 1f.H0 is rejected

SUB
in any of the‘tesps of the sub-hypotheses, or sub-

tests. This implies that the critical region, or set of

observations which lead to rejection of Ho,

union of. the critical regions of the sub-tests, and the °

[y

acceptance region of the test equals the intersection of

equals the

the acceptance regions of the sub-tests, hence the name

"UI test". The size of the sub-tests, is determined

*suB’
by the size of the test, a.

There are several ways in which Roy's originai
idea could be generalized. Tests other than LR could

be pifformed on the sub-hypotheses. Sub-tests of

different sizes could

be used in order to place more
emphasis,on certain- alternatives. . :

A specific infinite UI test #0°F the restrictions

hypothesis (10) can.be formed by defining the sub-

hypotheses:

H :ag(e) =0 vs. H a'g(e) £0 . (33

0,a l,a

where a is any non-null p-element vector with Euclidean

length. equal to one. This ,results in an infinite -

number of sub-hypotheses as long as r > 1. Each Hy o
- * . ’

is less restrictive than HO gince HO implies Ho a for
. ) . ’

n

4
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each "a"while a single H ' does not imply H

I
0,a n some

0
cases it is possible to define test statistics for the

sub-hypotheses which have idenﬁical distributions, and v

hence critical values, under HU" If it isia'simple .

matter to f£ind the of these statistics over a,

-
then it is possible to perform the infinite UI test,

since this maxim tistic compared with the

critical value of the sub-tests will determine whether

o The F-test for s
the 1ineariﬁypbthes;s on the coeff%gienté of a simple

or not.each of the sub-tests accepts H

- regression model is an infinite UI test: (see Morrison

L 4

(1976, pp. 176-7)). Another example is given in Chapter
IV of this thesis for testing the,independence of
equations in a SURE nfodel.

A finite UI test may be argood procedure when

the alternative hypothesis has one QF more of the following
features: (a) only a finite number of the possible
alternatives may have any useful ecenomic interpretation‘
(see savin (1980, p. 271) for an example); (b) certain -
alternatives are seen as more likely than oﬁhers a p;iori;.
(c) the con;equences of wrohély rejegtiﬁg certain ., . -
alternatives are more seriohs than others. By specifying
. <

only a few alternatiyes in the sub-tests, the,c;itical

region can be altered so. as to increase ‘the power of the

. 5 . 8 D,
) , test against some alternatives and reduce it against

others (fbr a given dize). . . . ]
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. I.3 METHODS OF ANALYZING SMALL SAMPLE PROPERTIES

$

In this section, methods of examining small sample

properties of test statistics and estimators are discussed.

(1) Monte Carlo method. The smqll sample
; «.

di;tributibn of a test statistic or estimator given
particular values for nuisance parameters and‘exogénous
vagiables can be approximated by using a random number
generator to simulate a large number of sets of data
produced by'a predetermined parameter set and exogenous
data matrix. The researcher then acts as if the true
hypothesis or parameter value is unknown and performs
the hypothesis test or estimation on each of the artifi-
cialiy produced aata sets. The cumulative probability
distribution of the statistic can then be approximated

~

by the observed cumulative frequency. 1In the case of a

test statistic one may wish to record only the proportion’

of statistics less than one or two critical values. -~

An advanfage of this approach is its simplicity,
both for the researcher to perform and for the reader to
interpret.: Its accuracy is bettef known £han that of
other methods since the approximation is the result of
a randomized experiment. .

If one wants a very accurate approximation to the

true density, particularly in the tails, the number of

20
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replications required grows so large that it may become
 j ‘

N
prohibitively expensive. This is especially true if

.

approximate distributions are desired over a wide
\ )

variety of conditions (values of parameters of interest,
nuisance parameters, and exogenous data). This last

point reflects amother problem-with the Monte Carlo

N
approach; each individual experiment reflects only a

.

particular set of conditionsa It is difficult to make

general conclusions using this approach. If the test
ox es;imator can be shown to haveiinvariance properties
with respect to nuisance parameters or even parameters
of fntere%#, the results can be generalized somewhat.

(For some invariance properties concerning regression

models, see Breusch (1980)).

N -

. L J
L]
(i1) Expansion methods. Several methods of

approximating unknown distributions have been proposed
(see Springer (1979) for a discussion). The Edgeworth

expansion has attracted some interest in econometrics,

-

both for estimators and test statistics. In the case of.

test statistics, local power properties can be examined

by aefining the true parameter so that it approaches

—1/2) ,

,the null at O(T where T is sample size. This

enables the use of asymptotic broperties since if a fixed

alternative is considered, the test statistics

L
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of the thesis would each have Op(T)/since they are
consistent. The 1:cal altérnét;ve~on.th9 other hand.
yields a test statistic of Op (1) fof theée statistics,
and so ;s of interest asymptotically since its power will
not simply approach one.

Next, the gtatistic is-represented as a series
of terms having descending orders ofaprobability

qith respect’to T as defined by Mann and Wald (1943)

(see the appendix). Usually, only the Optl), Op(T—l/Z),

-1 , .
and Op(T ) terms are retained. The moment generating
function for this truncated statistic is then obtained,

and the inversion theorem is used to get an approximétion,

to O(T_l), of the cumulative density function of the

statistic. 1In the case of LR, W and LM tests, this

result takes the form of a weighted sum of non-central x2

c.d.f.'s (or central x2 if evaluated under HO3. Formulas
for the expansion of the LR and W tests to OP(T-l/z)

for any likelihood function satisfying'cgrtain regularity -

conditions are given by Hayakawa (1975), and for the LM

test by Harris and Peers (1980). These resul®s are not

useful in many situations, however, since the ‘O(T-l/z)

term in the final approximated distribution is often
equal to zero. Extension of their results to ~0(T<l)

in the general case is difficult, so that these general

.formudas are not used in this thesis.
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Sargan (1975) proves a theorem théh establishes
thé“validity of Edgeworth .expansions for many testé and
estimators met in économetric;. His result is extended.
to include non-normal distu{banées and random exogenous
variables by Phillips (19775’and Sargan (1976). Conditions
which ensure the validiﬁy of this éxﬁansion for
asymptotically x2 tests are given in safgan (1980) .

A criticism of this method, meﬁtiong@ in Kgndaléﬁf
and Stuart (1969), is that it tends to be&{natcurqte at
the tails, sometimes giving ﬂegative densities.’ This .

is not a serious matter here, since we are most interested
iﬂ the behaviour of test statistics gver the middle range
of their distributions. It is not as important a mistake,

for example, to think'that a test has a .power of .99 when

‘it actﬁally is .98 than to think that it has a power of

.6, when‘it"actual;y‘isi.4. In addition, the results o6f
Evans and Savin (1982), in which size correcfion factors
derived from Edgeworth expahéibns by Rothenberg (1977)
are used to ﬁake.the distributions of LR, W, and LM
tests for linear Eestrictions on regression coefficients
in the standard model closer to the assumed asymptotic

distribution, are very encouraging. Other studies which

have found the Edgeworth expansion method to work well
include Fang and Krishnaiah (1982) and Tanaka (1983).
An advantage of this and-other analytic approxi-

mation methods over Monte Carlo methods is the generality .

- . L 2

<Y
y,
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.

7/

. )

of the result. Any desired value for the parameters

and exogenous data can be substituted into the resulting

formula giving an approximate distribution. Another

'constructive result is the size correction factor

»
mentioned above. .

The derivatiOﬁ of these:expansions, however, is
often very tedious and the analytic results‘hard to
interpret ﬁnless numerical examples . are tabulated. The
Edgeworth expansion mé%hod when applied to test stagygtics
.is limite§’to local alternatives, that is, alternatives
which approach the nul; asymptotically (for examplei(42)
of Chéptér II and (l75)'of.Chaptér I11), whichkmay seem
unattractive on iqtuitive gréund;, yet seems to work very '
Wéii as an approximation methed. _ . ‘

Finally, the metﬂéd-is less accurate when the
sample size.is small when expanding in orde;s of sample
size T as is done. here, since the truncated ﬁerms from
the expansion are more important in that case than in

4

larger samples.
A simpler expgnsiqq-pethqd wbich can be used to’
evaluate the'smal} samplé performance of an estimator
without considering its distribution is done. by
Eoncentfatfng s;lély‘pn ;ts mean square error, pf MSE.
The MSE is such a widespread choice of critériqn for

estimator selection that a comparison of MSE's, or
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5
approximate MSE's, is og;gn seen as satisfactorf grounds
for éstimator choice., (Such is not the case, of course,
for choice ofvtest étatisticzq

Asymptotic MSE approximations, first deveioped
by Nagar (1959), foilow.roughly the same principle'és
Edgeworth expansions. The e;timator is expanded by
orders of probability teo, say, Op(T-3/2). If the
estimator & is ugbiased, then 8 4 8 has an Op(l) term
equal to zero?, This means that terms gf Op(f-%),

op(T’3/2) and Op(T_%)‘of (5 - 6)(8 - 8) are obtainable.

For example, if

8 =a/b ) (34)

- - Vs
where a and b are both random and have Op(l),~and it is

known that plima = a and plim b = g such that (a - a)

and (b - 8) each have Op(T-l/z), then we can write

>

8 = {a + (a=a)}/(B +-(b-8))

(a + (a-a)}(1-(b-8)/8 + (0-8)2/8%1/8 + o (T 1)

(a/8) + {a=a-a(b-8)/B}/B+ab-p)2/83

- (a-a)‘(b—s)‘sz} +o, (1) . (35)

—

where the terms in (35) have 0 (1), OP(T_l/z), and op(r'l) e

—
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respectively, and the expansion could be continuyed to

»

any desired order. If 8 is a consistent estimator of
8, then a/8 = 6.

These expansion terms are typically prbduéts of
\quadratic forms consisting of the ve;tor of disturbances
multiplied into a constant ;atrix. If normality of the
disturbanses'is assumed, then standard expectatién, |

A - A
formulas can be -applied to get E(8 - 8) (86 - 8) to

O(T_z). Comparison of estimators is then a simple matter

A

if 6 is ;galar, otherwise the trace, determinant, or
some other function of this approximaté MSE matrix Ean
be used. For an application, see dﬁapter ITI. Sargan
(1974) provides conditions for the validijy of this

approximation method.

b Pl

(iii) Appioximate slope. Another method of

2
examining test statistics was first proposed by Rahadur

(1960). For a fixed alternative, a given test statistic,
and a given sample size, consider the smallest possible
significance level (br size) corresponding to.a ‘fixed
power against that. alternative. Since the power of a

consistent test against a fixed alternative approaches one

as the sample  grows large when -its size is fixed, ther the

L] r .«
size of the ‘test approaches zero when the power against

that alternative is fixed. THe approximate slope
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is defined as the limit of.the ratio of minus twice .

- the logarithm of this significance level to the sampié

size as the sample size approaches'infiﬁity when the power
is held constant against a particular, fixed alternative.f
Geweke (198la) gives a more rigoro:é 5;finition.

In that paper it is.prove; that if the asymptotic
distribution under the null is a central XZ' then its
approximate slope equals the lihit of the ratio of the
test statistic itself to the sample sizé‘under a fixed
alternative as the sample size (and hence the test
statistic) approaches infinity. -The approximate slope
in this x2 case can tnen be roughly interpreted as the
rate that the statistic approaches infinity with sample .-
size. For applications, see theorems 4 and 9 of Chapter
IV with discussion, and section V.4.

The main use of approx%mate élopes is in the
comparison of tests hav;ng identical asymptotic distri-
butions. If the ratio of their approximate slopes is
substantially aifferent than one, the tests probably
have substantially' different small sample distributions
against that alternative. (See Geweke (lQBib)).

This method, then, can be used to find situations f

,wd}thy of further study by, say, Monte Carlo analysis,

but its results should not be taken any further than

that, as it has soOme undesirable properties. For



¢ )
example, Geweke (198la, p. 1432) shows that "if one

test with known asymptotic size exists then tests with

28

the same asymptotic size but arbitrarily great approximate.f,

sloﬁe may be constructed".

This approach is most useful when the test
statistics are hard to analyze analytically. Siance
approximate slopes are usually easily derived, ip'is a
simple matter to pick out alternatives in a complex ] :
testing probleim for which the Eests may behave in a
sﬁrange manner. -Because of its non-local nature, this
method can examine a wider‘raﬁ@e of aiterﬁative§ than

local approaches, particularly in non-nested hypothesis

-
4

testing problems "(see Chapter V).

I.4 ECONOMETRIC MODELS AND HYPOTHESES CONSIDERED

“

IN THE THESIS )

In this section the topics covered in the

1Y . - .
remainder of the thesis are outlined. The ecohometric

!

models are intfoduced, the estimation and testing
problems are described, and the results are briefly

‘

outlined.

PPN
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(1) Standard Regressioﬁ Model

L

Consider the one-equation regression model

’igﬁgp +u (36)

where X is a known T x k matrix, B8 is an unknown k X‘p'

vector, ye.is a known T x 1 vector, u is a random T x 1

vector assumed to follow the multivariate normal distri—A

2

.butiqn, u v N(0, o IT), there 02 is unknown and u is

L]

assumed to be independent of X. -

A commonly tested hypothesis in this model is

7

o f RE = r vs. Hy - §B #' r (37)

\\

often referred to. as the linear hypgthesis. This is

H

perhaps the most thoroughly studied tes£ing problem in
econometrics. In Chapter II, tRhe robustness of the LR,
W, and LM tests to the normality assum;tion is ‘examined
by approximating ﬁheir small sample distributions both
under normality and student's t erroré by an Edgeworth

-

expansion.

(ii) Standard Regression Model with AR(1l) Errors

v
®

Another model commonly used in econometrics

is similar to (36) except the error terms are assumed to

follow a first-order autoregressive process. The

1

29



corapns orfl e

b L

L 4
difference from (36), then, is that now
. - g
wunv N, 2] 7 (38)
‘where
{-5
D= toggne egy = el o),
.‘ ’hp'l.]:nknOWl'i, h i,j = l'-...’T . I -

-

An important hypothesis to be considered here is

’

H0 :p = 0; vVS. - Hl ? o # 0, . (39).

4

- and this hypothesis too hé% been the subject of much :

-

research (see King (1984) for a sufvey), with the Durbin-

Watson test being the most popular. It is shown in

Chapter III that the test based on the LM Erinciple for

v

{39) in this'modél is the same as for the case where ~—

‘?ghe cerrors have a multivariate student's t distrgbution

with the same covariance. structure, .and that this test
is slightly different from the LM test as sgfn in the

literature (e.g., in Engle (1982, sec#ion 8.2)).

]

"Estimation methods are also an issue in this
moded since there is in general no best linear unbiased

estimator for' B.beécause p is unknown. A brief discussion

LY

of some previous studies is followed by an evaluation of

sgyéral methods using asyhptotic MSE approximations.

» . —"

30
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X Finally, a special case of the linear hypothesis,
\‘\ L]
Ho : B, = 0 vs. H, : B; £ 0 (40)

where Bi is some element of B, is examined. The t-test,
which is a Wald test in model (36), also has Wald test

- v ..
characteristics in this model for any consistent ™.

v

asymptotiqglly normal estimators (see Stroud (1971)).

In Chapter III, the smgll.sémple distribution of'the
Wald test using estimates from a Prais-Winsten procedure
is derived by an Edgeworth expansion, and the size

correction factor is derived.

~

(iii) Seemingly Unrelated Regression Equations

(SURE) Model

Consider the SURE model associated with

T e .

zellner (1‘9"52)

-

Ay

.4

where X; is a known T x k; matrix, B; is an unknown

L] N

19
2
"
N
w
2
+
3

\ ’

ki'} 1 vector, Y; is a known T x 1 vector and u; 1is an
]

v

~ unknown T x 1 vector with u, v N(O'wiil i=1,...,N.

)

’
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v . .
L.a particﬁiarﬁui 1s not correlated with any other u, ,

 the X;'s are not all the same, the approximate slopes

32

A

In addition, it is assumed that the N x 1 vector u.t =

. th
(ult, u2t""'uNt) formed by taking the t element
from each distqrbance vector, has the following distri-

bution

o

4.. * N(0,Q) T (42)

3
-

for each t = 1,...,T. * & is an-unknown positive definite

-

symmetric matrix with dimension N x N.

The hypothesis considered in Chapter IV is that

i# j.. Several tests are'présented, including one

which uses the infinite UI ﬁ:inciple defined in section
. ' . ) t .
I.2. The$e tests are shown to be monotonic functions o

a giﬂﬁ&e statistic in the case where X, X, 1=1,...,N,
which cqrresponds.to the reduced form system of a -
simultaneous equations model, for example.' This mean§
that éh;se tests are equivalent when their exact distri-

a = . N
butions are used in this special case. In the case whare

of the tests aye compared.




U

(iv) Tests for Non-Nested Regression Models

/’ ~
Suppose yhat there are two competing linear

regression models

vs. .(43)

where X and 2 are T x k0 and T x kl known matrices,

y ig a T x 1 known vector, B8, and B8 are unknown

0 1
ko x 1 and kl,x 1 vectors, and uoxand u, are T x .1
‘gnknown vectors, with Uy v N(O,a0 T) and u; v N(0,o0 ?T),
2/ .
o unknown; i = 0,1. ’

Suppose also that the hypothesis (43) is non-nested

in the sense that no restrictions on By

&
]

or 8, exist which

would cause the two models to be identical. Several
tests for this hypothesis have been proposed. One
which seems to have good power properties but whqQse small

sample distribution often differs from its hsymptotic

‘ dxstrlbutlon pnder the null is the J-test proposed: by

Dav1dson/and MacKinnon (1981b) InlEhapter Vo

Edgeworth expansions for the distribution of J under

33




both HO and Hl are derived, along with the size
correction factor, under the local alternative‘es
defined in Pesaran (1982). ‘ |
Edgeworth expansions for these non-nested
hypotheges are not valid fqr all possible alternatives
encountered in practice. (See the inequality imposed
~on the number of régressors in the competing models
after equétion (12) of chapter.v.) These caﬁ be

explore§‘uSing a non-local method such as approximate

slope. The J-test is compa¥ed in this way with the Cox

- o
oI '

test as'modified;fégithis application by Pesaran (1974).

&
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APPENDIX I.

ORDERS IN PROBABILITY

The definitions for order in probability were

formalizgd by Mann and Wald (1943).‘ For the specific

case of orders in probability in powers of sample .size

T for a random variable x(T} which is a function of the

sample of size T, they become

(1) - x(T) has op(Ti)
(2) x(T) has Op(Ti)
any arbitrarily

finite Ae.

In this thesis,

multiple of 1/2.

if plim {x(T)/T%} = 0, and (44)

1

if Pr{|x(T)/Ti|<A€f l-¢ for

small ¢ .> 0 and corresponding

i is some positive or negative

The corresponding order definitions for non-

stochastic functions of the sample data, say z(T), are:

(1) 2(T) had o(Tl) if lim-{z(T)/T*}.= 0, and (45)
! \ T+
(2) z(T) has 0(TY) if lim {(z(T)/T*} is finite but "
T+

not equal to zero for all possible sample values.



Sufficient conditions for orders in probability
involving means and variances are very useful in -

practice and are used often in the thesis. These are:

(1)-  x(T) has op(Ti) if lim E(x(T) /T

T-»o

= lim Var(x(T)/T") = 0  (46)
e <«

C(2) x(T) has.Op(Ti) if lim E(x(T) /1)

T

and lim Var(x(T)/Ti)

Tox

are both finite and at least one of these two limits does

not equal zero for all possible sample values.
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II. THE LINEAR HYPOTHESIS IN A SINGLE REGRESSION -
EQUATION .
I1.1 INTRODUCTION R

The model considered in this chapter is the
sfmple one equation regression model with disturbance
terms that are énéorrelatedand‘;deﬁtically‘distributed
across observaﬁions. The hypothesislto be tested is the -
validity of oné or more linear restrictions on the unknown
regression cééfficienés. This is a well studied problem,
particularly in the common case where the distrubances are

assumed to b¢ normally distributed. - :
. B Iﬁ the next section, the model and competing
hypotheses are‘presented} along with the LR, W, anda LM
tests for the normal disturbances case as well as for the
case where the disturbances have a Student's tvdistribution.
ig the following section the swgll sample distributions of
the three tests -under Student'slt are approximated by Edgeworth"
expansion. The normal cése, already examined by Rothenberg |,

(1977), then falls out as a speciai case. These results

are then discussed.




II.2 THE MODEL, THE LINEAR HYPOTHESIS, AND THE

TEST STATISTICS

(1) The Model !

Consider the one equation regression model,
, y = X8 + u (1)

where y is.a T x 1 endogenous vériablé vector, X is a T x k
matrix of exogénous'variables, B is an unknown k x 1 vector
of regression coeffiéients, and(u is an unknoﬁn T % 1
disturbance vector. The distributional assumption concerning
the distu;bance vector u is of central interest in this

chapter.

Assumption. The T x 1 disturbance vector u is distributed

as

u/o '\J‘MStY _ . (2)

where MSt; refers to a multivariate Student's t'distributionl

with y degrees of freedom (d.f.), and ¢ is the dispersion

_parameter, with a spherical covariance matrix.

It will be useful to represent this multivariate
Student's! t vector u in the following way, as in Srivastava

and;Khat‘ri (1979, p. 70, 2.21(1)):.
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1/2

u = ga y /9 i=1,...,T (3)
where
a ~ N(0,I) T4
ang
2 2
q Xy (5)

A

where a and q2 are independently distributed.
Some general remarks concerning this distribution :

follow:

1) . The limiting distribution of u in (2) is

u v N(O, 021) as y + = oy (6)
N ")

One way of seeing this well knawn result is by noting that

-1/2

1 - v%/q nhas o ) . (7

plY
ﬁsing the order in probability notation of Mann and Wald-
(1943). This result (7) is discussed,in more detail in

section 3(i)* Theiefoie,from‘(3) we see that

plim a

Y

= oa . ’ (8)

which along with (4) implies (6). This property ‘allows
us to obtain results for the more familiar normal distri-
bution assumption by taking the limit of any result as

\ .

"y approaches infinity.
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. 2) .It can be shown that the marginal distri-
bution of each element u, i=1,...,T of u has a
distribution ) \
3 ui/o v tY . | - (9)

where tY is a univariate Student's t distribution with

Y d.f.z. Although &

[ ]

E uiuj = 0 for all i # j, i,3 =1,...,T (10)

‘holds for all positive integer values of y, the elements
of u are not distributed independently of each other
except for the special (normal) case where y goes to

infinity.

3) Sinceuthe variance)of ui_in (9) does not

equal 02, but rather

E(d) = (y/(v-22}e%,  y>2 (11)

we refer to o (or 02) as the dispersion parameter rather than

p " standard deviation (or variance). Using the independence of

. aand q in (3), it follows that : . : . .
E(u) = 0 S : " (12)
and _
E(uu') = o2{y/(y-2)}1, vy > 2 (13)
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(ii) - The Linear Hypothesis

The hypothesis of interest in' this chaptéT s the
familiar "linear hypothesis", a set of p independent linear
restrictions on g of (1), where P < k. 'Stated formally,

the compq}ing hypotheses are

. H RE = r vs. H RB # r (14)

0: l:

where R i1s a p x k matrix of constants agd has rank p, and
r is a fixed p x 1 vector. . It will be useful from a
notational viewpoint to transform moaei (1) so that the
restrictions can be expressed in a simpler form. Let

J = | --- (15)

be a k x k matrix where R is from (l14) and S is any (k-p) x k
matrix such that J is non-singular (i.e., has fu\l rank) .

Then define

6 = JB ” : (16)
and

z = xJ°! . (17)

Then we can write model (1) as

y = 128 + u (18)

f



o

o= [0 E ezj (19)

where 91 is (k - p) x 1 and 6, is p x 1, and noting

that

9 = R8, ‘ _ (20)
we can rewrite hypotheses (l4) in the simpler form

H, : 86, =1 vs. Hl : 92 £ r (21)

(ii1) The Test Statistics: Normal Distrubances

The problep of testing (14) in model.(l) or,
equiValently, (21) in (18) under the normality assumption
(taking the limit as vy ;pproaches infinity in (2)) has
been studied fairly extensively in the econometrics

literature. The most commonly used test is the F-test ’

.

where the test statistic.is

F = (y (M~M)y/p}/(y My/(T-k)) (22)

ﬁ!*’hére

M = I - Z(z'Z)'lz' - (23)

42



' -1

Ml = I - Zl(Zl Zl) zy (24)
and we have partitioned Z so that

- | \
. z = [z2; 2,] . (25)-

where Zl is T x (k - p) and Z, is T x p.

2

Under the null hypothesis, F of (22) follows

P,T-k (26)

-

so that exact critical values can be selected from tables
of the F distribution. S
a,b .
The LR, W, and LM tests for (21) under the

normality assumption (see e.g., Breusch (1979)) are

] 1
LR = T log (y Mly/y My) (27)
_mn vo,22 -1 4 P '
W = T(8,-r) (277) “(e,~r)/y My .- (28
_ A~ 3t .22, -1 8 '
LM = T(8,-r) (Z2°7) “(6,-r)/y MY
where
~ ] - '
8 = (z2) 'z y _
and is: partitioned as
o . P Al ~ ]
6= [eo; o,] .



where él is (k - p) x 1 and‘lé2 is p x 1, 222 Yefers

' -
to the lower right hand p x p matrix of (2 Z) 1

which is partitioned d&s

o

11 12
— Z Al N
(z 77t - : . * (32)
Z21 Z22 ‘ - |
> S~
LIS .
so that le is (k - p) * (k - p), 212 is (k =~ p) x p,
21 12, ' | ’
and 2" = (2°7) ,. and M and Ml are from (23) and (24),
. ‘ . . v
respectively. ‘ e
e These,ﬁests are -all asymptotically distributed
agr x; under the null hypothesis. They have all been -

shown to Be monotonié fun&tions of the F statistic (22)
by vandaele (1981) and Fisher and McAleer (1980, pp. 7-9).
These expressions are not given .here, but‘pre speciél

‘ ’ Y

cases of similar relationships (38), (39), and (40) given |

for the Studept's»i case. This proggﬁg; implies that when’

- exéét critical vé;ues are useg, the F, LR,", and LM tests

i

will give the identicalxdeéision, i.e., they are equivalent.

" If asymptotic critical values are used 'for LR, W, and LM,

however, they won't always give the saméfaecision. In

fact, an inequality exists between these tests in this

case, given by - ' , ' o »

LM < LR. < W (33)

/




*

wf‘% ;trict inequalities when the three test statistics \\\\\
do not egual zero. This result (33) has been. shown in
various ways by Savin (1976) , Berndt and Savin (1977),

Breusch (1979), and vandaéle (1981).

. (iv) The Test Statistics: Student's t

Disturbances

"+ When assumption (2) is'made, allowin§ for
4 .
finite y, the results of theprevious section are

slightly altered. It is shown by Ullah and Zinde-Walsh

—
- (1984) That the statistics of (27), (28), and (29)
~ . become :
LR, .= ' LR - (34)
-l
LM, = A LM . (35)
W, = W (36)
where : - . . .
. -
AE (T + Y)/(T 4y + 2) ' (37)

L4

. - ‘ .
7Fn that paper it is also shown that these test statistics

-

are monotonic functions of the F statistic (22), where

o
-



LR, = T log (1 + {pF/(T-k)}] o (38)
. / ‘ ! ‘
T W, =T xp F/(T - k) : (39)
and .
LM, =T p F/A(T - k + pF) (40)

Hence, in*this t disturbance case F, LR, wt, and LMt

are still equivalent,” in the sense that when exact
critical values are used, they each give the same
¢ decision. It has been shown (see, e.g., Zellner (1976,

pg. 40L) and King ®1980)) that the‘exact distributional

~
result for F Gnder’ the null given in (26) for the mormal y
2 % v .
case also holds .for the t-disturbance case, therefore the
F test is still exact. Note, however, that the‘inequalitY.

result (33).does not carry over to the t-disturbance case P

, . [ .
E ) (§ee Ullah and Zinde Walsh (1984)).

II.3 EDGEWORTH APPROXIMATIONS3 TO THE DISTRIBUTIONS

OF LR, W

£ and LMt

(i) Large - T and y Bxpansions of LR_, W _, and LM,

t t

Large T and y approximations to the digtfi-

butions of LRt, W and LMﬁ, are derived here by :‘@xpanding A

t'
3
these statistics in orders of probability of T and vy.

o

\jp ' - The'followiné notation wili be useful: L ' .

[ 3N ' ! b . ’ “ar




=

>

!
OP(i) refers to a term of Op(TJYR(T + y)m)

and i = § + &L +m . (41)

The expansions will be undegtakén under a local
alternative, qu;e the true paramegérs'approgch parameter
values which satisfy the null hypothesi;uwith O(T-ll/z).°
Specifically, v

T

®1 ‘
o = ' ' (42)
r + E/Tl/2

where ¢ of (18) has been partitioned as in (19), and ¢
is a p x 1 non-null preselected vector of constants.‘
This sequence of values for & ensures that the test

statistics will not approach infinity as T grows large,

"while still allowing for the examination of distributions

under an alternative using asymptotic properties. We

can use the fac£ that LRt' W and LMt have Op(O)

t'

under (42) to express _.the expansions of LR, and LM

t t

to:Op(-l) as functions. of the expansion of Wt to Op(-l)

- N ) - ! .
using the relations (38), (39), and (40\y’yhere the
. v

order in probability notation is defined in (41).
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Lemma 1. If we denote the expansion of W of (36)

t
under (42) in orders of probability of (41) by

We = g ¥ n_ysp ¥ ny *o(-1) (Qé)

) .
where N refers to a term having Op(i), then

_ _ 2
LR = ng *n_g/p * (n_y *+ 2ng/(T + v) ng/ 2T)

+ o (- 44

op( 1) (44)

and
. . 2

LM = ng *n_y,p * (n_y * 4ng/(T.+ ¥)=ny/T)

+ o, (-1) (45)

i

Proof. Substituting for F from (39) into (38) and

{40) and simplifying, we have

LRt

T log {1+ (W /T\) v (46)
. s |
- and

&

(T-K)W /AL (T-K) A+ (1- (k/TVIW,]  (47)

Noting from (37) that

-




L

A=1-2/(T + y) + o(-1) (48)

vl =1+ 2/(0+ ) ‘ (49)

and using the following Taylor series expansion results:

1

log (1+¢.)) =2y - €2,/2 +0,(-2)  (50)
and ? ’ ‘ 1

- ™ = 1 vo -l (5
where B £ -1 is any term having Oé(-l), zf have

.

LR, = W, + 2W /(T4y) - Wo/2T + o (-1 (52)
and

LM, = W, + 4wt/('r+y) - w"f_‘/fr +‘op(-1) (53)

Substituting (43) in for W, in (52) and (53)
yields (44) and (45). S : - Q.E.D.

Using lemma 1, an expansion of W_ will lead

P

t

easily to expansions for LMt and LRt'

L

Theorem 1. The large'T and vy éxpansions of Wt, LRt

and LM, of (34), (35), and (36) for test#ng,the Ii?ear
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hypothesis (21) when the true parameter values are giveﬂ by

the ‘local alternative (42) under the student's t distribution

assumption (2) in orders of probability defined in (41l) are

given to 0(-1) by (43), (44), and (45), respectively, where

Ny = wy - 2m2 + w3 (54)
n_1/2 = Samg T Sqlup T wp) (55)
N o={82 = 2(T + v) Yin. - 6 6. (wimwa)
-1 * Y Mo g *'¥17v2’ -
+ 624 /8 (56)
) q 2 ~ _
and ) -
wy =€ (222)-l e:/To2 (57)
which is a constant }
) ] [} \
- wy = € B z'a/'r_l/zc (58)
' )
wy = a'782%%8'z2 a , - (59)
-1
Z11 %12
B = | 7777777 , (60)
-1
L P

which is a k x.p Qstrix

v




= 1= /v (61)
§, = b~-_a'Ma/T ~ (62)

- —

with the distribytions &f the random variables given by

a~ N(, I) as in (4), (635

v (64)
Yy
[} ~ ,
'.a Ma = q% ~ xé—k ) (65)

and a,q?, and éz are distributed independently of each

w

other. :

Proof. We need an expansion of W_ to Op(-l). The results

t
will then folJlow from lemma 1.

<

for LRt and LM

k3

t

_From (36) and (48) we see that

W, = W-2(T+ )t

t W+ op(-l) (66)

so an expansion of W to 0(-1) will give the result.. -

- From (18) and {(30),

. 5 =0+ (2 20 'z u (67)

Therefore |, '

51



82
A 21 ' 22"
62 =08, + Z Zlu.+ Z Z,u (68{
: .
_using the partitionings of 2 in (25) and.(2 2z)~' in (32),
and so under alternétive (42) we have
A ’ T 1] ] *
6. - r = e/T4% 4 (2212 + 22220 (69)
2 . 1 2 <
"y ' _ ’
By partitioning Z Z in the same way as (Z 2) l, so that
o 211 . %2 | | '
Z 7 = ) .- ’ ) ) (70)
- a2
-and using the partitioned‘inverse formula (Theil (1971, .
pP. 18)) to show
S 7 S | - SR
/ = -2772,,27 ‘ i (71)
we have" : o " , - _
-~ ) ‘ ' 'o ». i )
62 -r = e/Tl/Z_-‘ZZZB Zu - . . ) (72) N
where B is defined in (60).
Let
' 2 L ' .o T e
8, =1 - uMu/To", - (73) o
L -1/2, . : . L
which has .0(T "") so that we can write
T " a - R ) ) ,
‘ ) N




1 (u‘Mu/T)-l

(v My/m”

1

it

(6?1 -6}
g

- 2 2 -
= (1 + 60 + 60)/0 + op( 1) (74)
Substituting (72) and (74) into (28), we have
: (| ' -
W= {(e/T/% - 2228’y u%/{zzz) L rt/2
v ) .
- 2%28' 2 WL + 5+ §°) /02
- ¢ o
+ -1 15
- op( ) (75)
Using (3) we have
4 ]
[] - [ T )
W ={¢ (Zzz) ls(Toz - 271/25 B Z'a/Tl/zqo‘
- L ' [} T
.-+ ya Z 82228 Z a/qz}(l + 6. + 62)
. ] g g
. - +o0-(-1 ' 76
. ) . Op( ) . ( )
'A‘\-_
: . , ‘=1/2
. Now consider Gq of (6l), which has Op(v )
sinée — - ) N
. ) . .,2 ) - B 2 . o .
- ' E(g") = v and Var (g7) =.2y o ~ (17
-1 . T : o S Lo
" 2, ’So that ;\ C . - ,
e JEJE £ Q - and —.. é\ar.' 5 =2 ‘
S q =07 T var &g /Y 4;8)
,‘. : ~ --,: - ' ——
L | - T
" - - - P N

~
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/

1 -

/ We can then expand y/qz’in powers of
\ '
(qz/Y)-l by a Taylor series expansion:

P

2

2
=1+8 + 6
v/4q q q

+ o (-1 79
p( ) (79)
Since q follows a chi distribution which is -
not as simple to work with as a chi~square, we make the

following conversion. From (61) we have

o (1-(a/yY?)y o+ /et .

which yields

o

/2 5/ 11 + (a/y%))

l-(q/Yl

r

!
}

1/251/21

eq)z[l-{l-(q/Y

2, .
Gq/? + 6q/8 + op( 1) (80)

by a Taylor series expansion about Gq/Z. Therefore,

—_ -

2 = 1+ =(a/H) + -4

.
- - 2
+ op( 1) .1 + 8 /2 + 35q/8

+0_(-1) . (81)
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S Also;"by-substituting (3 and (79) in (73), we have

60 =1 - ozy a'Ma/quo2 . } <
. ] 2
=1 - ya Ma/Tq
=1- (aMa/T)(L+ 6 + a;’) + g, (-1) (82)

'
., °. - We cah use the well known result that a Ma is

N . 1
d%stributed independently of Z a and that

] ‘ 2 ‘..‘; A
a Ma ™~ xp_p \ ‘ (83)
to define
2 .
q* = a Ma -(84)
Fd
and '
5, = 1=q°/T (85)

where &, has Opé-l/Z) and is distributed independently

M ]
of § and Z a. et
. g /

Using (82), (84), and (85), we can show that

.io = (8, - 5q) + éq(ﬁ* = Gq).+ op(*l) _ (86)

Substituting (79), (8l), and (86) in (76) and then

substituting (76) into (66) and simplifying, we have

N
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where Ng’ n_l/2 and n_, are as in (54), (55), and (56),

respectively. Now, using results (35) and (36) we can

easily obtain similar expansions for LR, and LMt.

t :
- Q.E.D.
] & :

(ii) Edgeworth Expansions

'y '

Given the approximations of LR,, W,, and LM

t t t
to 0(-1) of Theorem 1, we can derive Edgeworth approxima-
tions to their distributions. In this section the.

results are stated in theorem 2, followed by their derivgtion.
¢

g

Theorem 2. The Edgeworth expansions for the distributions

of W_, LR and LM, of (34), (35), and (36) for the

t'
hypothesis, parameter values, distributional assumption,

and orders given by theorem 1, are given by

Pr(W, < x)= pr(x;(v) < X) S

-1 3 2
+ T 120 Twipr(xp+2i(w) < X)

2

+ Y-l 2 ¢ipr(x
i=0

2

p+21(w)_i *%

3

2] ot
+ (T+y) ~ ) e .PE(X () < x)
120 wiP p+?i

.+ o(-1) (88)
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o }
. . 3 *
pr{LRt‘i *) = pr(x;(m) < x) + pl iEO T Ri Pr(x;+gi(“9'i x)
2
+ oy Lo pr(x2,,; (W) < %) + o(-1) (89)
. &
3 : N
4 :
pr(lM_ < x) = Prix2(uw) < x—+ 1 L T Mi pr(x2+2i(w) < x)
P .~ i=0 P
¥ . 2
-1 2
+ v .Z N pr(xp+2i(w) < x)
i=0 : .
y
2 5 i
AT+ ¥) izo“LMi Pr(Xgypi (W) < %)
+ o(-1) - ‘ (90)
— . ,
where |

———y-

x;(w) refers to a non-central x2 variable.with p

d.f. and non-centrality parameter w,

-

> ? -~
w = Wy . (91) ~
where wy is given by (57),
[ ] ¢ )
Two«. = -p(Z/kJ 2 -~ P)/4 ’ twl = P(k“P)/Z-w (k‘EL/Z -
T4 = p(é + 2)/4 + w(2k + m-4p;4)/4, BN \\\\\\\\\\ﬂ
tgy = 6(p¥2-u)/2, Taq = 02/4 )




. - . -
- -
) " ' ’ /-‘-\_/
. .
.

r‘ ’ r

Trro = ~P(2k + 2-p)/4, T Ry = P(2k+2-p)/4 -w(k-p)/2
i o = w(2k + o -2p)/4 a = —wl/d ey
TLR2 T w ( w -2p}/4, TRy - W/ (93)
. -
T1.MO = -p(2k + 2-p)/4, TrMl = p(k+2)/2 - w(k-p)/2
Tim T -p(p+2)/4 + w(2k +u+4)/4, . .
_ | __.2,,
M3 S wip + 2)/2, T1.M4 w /4 ] (94)
- 3 .
. 2 2 -2
¢0"= w 7/4' ¢l 3 -w /2, ‘¢2 = w /4, ¢ L . (95)
. Owo T Pr gy ¥ WPy sy T te | (36)
Mo T TPr Gpmy TP TWe epypy T (97)
where p is the number of linear restriétions, and k is
‘the number of exogenous variables.
;Note =% These results can be put back into the origimal
.notation of model (1) and the restriction (14) by noting
from (17) that . N \ v
‘. v _1 t _ ' - )
g (27t = (@h ' x@r Tt
@ . v -1_" o i -
L = J(X X) °JF . : (98)
// . ) ’ ‘
1/,'}/// * - \ 4 ¢
/’_ I - .



therefo:ei the partitionings of (15) and (32) give
.‘ ’ \ - i
22 ro.-1"

, °° = RIX X R o o (99)

and so using (57) we get

T e = e (RX'X)TIR e/ @ . (100)

. S S N :
-Prodf.* The expansijon'is derived by obtaining the moment

generating function .(m.g.f.) to 0(-1) and then inverting.

Beginpnihg witﬁiwt,“the m.g.f. is given by
o . e

f

E{exp(t W, )} : b m

n

Mw(t)

‘Elexp{t{ng + ng,p *+ n_1)} )+ ol-1)

Ef{exp( £ ng) }d1 + €n_y » + tn_;
' -~}

1

22 /1 + o-1) - o)

+ t W;l/z

- - "

where we hrave used a Taylor series expansion abcut
exp (t'no) to simplify the calculé%ion, and t is used

- here as the ‘m.g.f. argument.' . . T

LY

This will involvé a transformation of the random vector

)

z a whlch will greatly simplify the integration of the

”remaining terms. From (54), (57),,(58), and 659), and
letting , . Lo ‘ L e -

It will be ugeful to evaluate E exp (t 1) first.

-



b=23a o (102)
~ & ’ .
which iniplies that b, a k x 1 vector, satisfies

' " ) -
b N(O, 2 2) (103)

‘Q

due to (633, we can write

{
' 22

- - e ’ ] [ ]
ng = e 12°%) o/me? - 2¢ B b/ %0

' 1 - oe
+bB2?% 'y (104).
. . : s 2 *2 -
Noting that ng is not’a function of s or s ©, we have
L .

E €xp(t ng) = [exp(t ng) £, (b)db (105)
b L

where fb(b) is the normal density function for b implied

- by (103), with n; as in (104) .

By completing the square in the expoﬁen; term

]

of (105) and making the transformation

b =0 V2% 4 5k 0/ 2pe 1t/ 2, (106)
- ’
* where . . ’
o™l = (2'237! -2¢ B2?%" , (107)
énd o o . '

[
’

-1, ’ ' ’ .
« " .D#x (1-2t) [z z - 2t 2 zaz z] _ (108)

4

-----
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where
L Y . ' ’;:
ja ; . . - l . , '
le >0
A= I . , a k x k matrix, (109)
0 0 )

the integral (105) becomes

<

. ' 1 t : ] - .
E exp(t ny) = exp{tw+2tze B DBs/T92}|D|l/2[Z z| /2
: ffz(z)dz (110)
; z
i : where |D|l/2 is the Jacobean of the transformation, and

£, (z) = (102) %2 exp(-2'2/20%) (111)

(Y
This is the p.d.f. of a set Jf independent normal variables,
each with mean zero and variance oz, which enables.us to

treat z in the integrations as if zZ N N(O,ozi).

i
[

Using

L

v - o '
Bz 28 = (229 YanaBzza=0 ., . (112)-

we have

¢ B DBe = (1 -2t)°1 e'(zzz)‘lg (113

Also,

‘ |p| = (1‘-'21;)‘k |z'z||1-2t Az'zl ‘ (114)




.

_'7101),Jpote from (116) that, for example, v

62

Since AZ 7 is uppeﬁ/friangular, we see that.

|D| (1= t)_k]zrzl(l-Zt)(k-P)

.

12" z)\(1-2¢) 7P . (115)

Now, substituting (113) and (115) into (110) and

simplifying, using the fact that fz(z) of (111) can be 5

interpreted as a p.d.f., we have ' voe .‘ﬁ‘
« . /;
E exp(t ng) = exp{t(l-28)"tu} (1-26) P/2[f_(z)az
' . a z

exp{t(1-2t) Ly} (1-2t) P72 (116)

Al
-

which is the m.g.f. for a non;ceﬁtra} x;'wifh non-

centrality parameter w given in (91)4’5.

For evaluation of the higher order terms in

. T '-
E{exp(t no)}n_l/2 = E}exp(t no)f [ n_l/zfz(z)f 2(qz)
T df e 9
) £ z(qz) dquidq2 - (117)

g -
L2 2 2 - 2 2
where £ 2(q ) and £ 2(q*) are the x~ p.d.f.'s for q and D
q dy ¢ ¥ ; : ' .

[N

implied by (64) and (65). All that is required for thesé

L4
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T

note that n

discussion following (117) by E, i.e.;

S el ®

' . v
higher order terms.. then, is the triple integral in

(117), which can be interpreted as an expectation taken

over z (as if z ~ N(dgl)), qz, and qi.

* For this "expectation" of n_1/2 of (55), we

o @nd w, are functions of Zz'a (hence of z)
only, not of q2 or qi,\éhd we can take expectations over

the three stochastic terms separately due 'to their .

independence. From (102) and (106) "we have

' 172

2 a=Db=0>D 2

z - 2t DBe/T % (118)

Expreséing (54) as a quad}atic form, substituting (118)

and simplifying using (112), we get

?

' ' ) - .' ' 1/2
ng = (2228 e/ 20) (223" H(2* B bme/T o)
= ¢ (2%%) "1 . (119)
where | ’ .
.o =12%%'pY%, - (1—21-.)’12//'131/20 , (120)

-~

Denoting "expectation” in the sense of the
6

-

ﬁ g(thziqi) = { I f g(z,qz,qiffz(z)f 2(q2)f'2(q2)
‘ ‘ 3 2 2 ‘ .

q d, d 9a

4

dq? aq? az -.(121)

63




\

BZ°“B D + (1-2t)

.t
for some function g, we have

-~ y t
B ooy = tr p1/2,,22. " 1/2

where we have used

” E v'Qv = tr Q
wbgn >
v v NKO,I)
Since us}ng (112) we have

L -
B D Bz2Z = (1-2t) lxp,

¢

equation (122) becomes -.
¢
2

lp + (1-2t) “ou

E ng .= (1-2¢)
Q‘ .

» Similarly, wéAhéve

é
- -1
E g = =2¢(1-2t) "w
us¥ng (77) and (61), we have
Eé =0
q r
T ,
"and siwnce, from (62) and (65), s
) » -y ’
L3 . ’
- . I - .

-
20 (122)

(128)

(124)

(125)

(126)

~

64
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'E §, = k/T, | ; © T (129) o~

/

we can apply (126), (128) and (129) to (55) to give

1

(1-26) "Ykp/T + (1-26)"%ku/T (130)

-

En_y/2°7

To complete'our calculation of Mﬁ(t) in (101), - ’/;)

~

-1

~we still need E n and E n-1/27'

For E n_y’ using the fact that for any x ~ xi,
: : .
E(x%) = n? + 2n, (131)
® ° .
we can show that from (62) and (65),
L 2 N
E 8, = 2/T + o(-1) ) © (132)
and from (61) and (64),
e 2 _ )
E 8" = 2/y (133)
q
We can use (126) to (129), (132) and (133)
3 : q
along with (56) to show that . -
Eon_y = 2(T 1 ~(m+v) "Ht1-2605p
a + (l-2t)—2w}-t(l-2g;ilw/y (134)

. '

-

. N §
For E-"El/z we need E ng and E(wl-wz)z. Note

from (119) that .
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' - \l 1_" . L]
:ng = c (222) 1 c-c-(Zzzl lc. ., (135) ,

with ¢ as in (120). To evaluate the expectation of :this,
we can use the result . =

E(v gv)2 = (tr Q)% + 2tr @% |, (136)

when v/~ N(0,I) and Q is symmetrje, aloﬂé with (125) to

show that ' . h
E(z Dl/zBZ g pl/2 )275/75j;;?“292.'
s , -
: . + 2(1-2¢) "%p )

o

"Using (137). along with (122) and noting that

"expectations" of odd powers of Z are zero, we can show

&

.that ) -

E ng*= (1-2¢) %p(p+2) + 2(1-26)"3 w(p + 2) - ¢

va 4+ (1 - 2¢)74 2 (139)

Similarly, we have
y E(ug-uy) 2 = (1-28) 2u? 4+ (1-20)7L (139)

v,

Using (128), (132), (133), (138), and (139)

along with (55),'we get

*

v ot

-~




B4
L4

- ....l i—z * (T4
= 21 -((1-2t) “p(p+2) + 2(1-2t)

.

3w (p+2) ? ‘

2

En’y1/2

. N ’ + (1-28) 4% leY’l{(l-zti'fmz ‘

+ (1-2t) Yo} + o<1y (140)

From (101), using (130), (134), and (140), and .

‘simplifying, we see that’ )

- L
~aﬂ5 M (t) = {E exp(tng) (1 + £E n_j '+ tE n_y
. [ ]
: ’ - - N "\ »
. + t2E 02 ./2) +p(~1)
. o ‘ n-1/2 el=L
, -1 ep/2,i.-1 %
= exp (t(l«2t) Twl(1-2¢) P/ (14T * ]~
. ’ .. " - i=0
~ -i, -1§ -
: 1. (1=28)" Y + vt L ¢, (1-2¢)
s wi PR
) =0
_p 2 o
F (T 7L ey d-2E) 13
_ i=0%
\ g
¢ N ' \‘ h
+ o(-1) ! R T (141) .
- . i ,

where the t_.'s are given in (92), the ¢;'s in (95), and

~

the L g in (96).

From (44), we observe that the m.g.f. for LR,




E-Al

is

M p(t) = M (£) + {E exp(tng)} (2t Eng/(T+n)

-tE ng/ZT) + @(-1)

<

M, (6) = exp{t(1-20) "Lu} (1-20) P23

. -1 g -
. | - + T T .. (1=2t)
i-0 LR1

i

-1 2 -i
) Ay T ) 6;,41-28) T} 4+ o(-1)

L. , : wi=0

¥

LRFLN2 el

where the ¢i's are-giyen in (95) and the'TLRL

—

shew that ' . .

. / . 2 .
. \\ . - tE no/T) + 0 (-1).
N ' |
e - TN
This, along with (l2§<l\jl38) and (1l41) yields
1 ] \
) . \
\
\

Using (126), (138), and (141), we have

‘
.

(142)

(143)

™~

's in (93). -

For the m.g.f, of M., M_,(t), we use (45) to

? ‘ M (t) = M (£) + (E exp(tn)}(4LEn /(T + v) .

(145)
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. ) .
exp {t(L-Zt)'lw} (l_zt)-P/z{l-_i_T-l 2 TLMi(l'Z--t)
i=0

i -i
)

-1 % . - -1 % -
+ v o, (1-2t) + (T + vl a. .. (1l-2t
i=0 * . - i=0 LM1

+ o(-1) (146)

L

where the 1 's are given in (94), the ¢i's in (95), and (:\

LMi

the & Mi s in (97).

Given the m.g.f.'s of (141), (143), and (146),
and noting the non-central x2 m.g.f. result of (116) and

footnote 4, we can, apply the Inversion theorem (see Kendall

- and Stuart (1969, pp. 94-95)), to obtain the approximate

cumulative density ﬁunctibns (c.d.f.'s) of Wt’ LRt; and

L ]

LM which are given in (88), (89), and (90). This is a o

t’
simple matter since the Inversion theorem involves integrating
the m.g.f. over't to obtain the c.d.f., so that this can

be done term by term.

[ ] ) QchDo

»

4

* The Edgeworth abproximations (88), (89), and
(90), are expressed as a weighted sum of c.d.f.'s, as
in Peers (1971), Hayakawa (1975), and Harris and Peers

(1980), for example. It is also possible to express these

o



L 4

o

approximatibns as a sum of theasymptotic c.d.f.‘(;he

0(l) term) and a weighted sum of probability density

. functions (p.d.f.'s) as i$ done in Rothenberg (1977).

~

“For an example of this in thé W, case, see the appendix
o g

t-
to this chapter.

L

_Corolla;x (to theoréem 2). When the disturbance vector u

of model (1) is normally distributed with a spherical
— v ‘ T

covariance matrix as in (6), the test statistics of

theorem 2 are approximately di8tributed as

: 4
- 2 ' -1 :
PrW, < x) = prix;(u) < x) o T iEOTWi PriX, 4 (0)<x)
+ o(-1) L (147
2, . 1‘ 3 7 2
Pr(LR. < x) = prix,(w) < x) + T iZOTLRi.pr(XpHi(“’)
< x) +o(-1) : (148) -
| 2T 18 2
prilM, < x) = prix (w) < x) + 1T iEOTLMi PT X5y p4 (w)

< x) + o(-1) . g (149)

]



a?l

‘s, and t_..'s are given by (92),

[}
where the t_..'s, LMi

Wi "LRi

- (93), and (94), respectivell.

Proof. This result follows directly from theofém 2
by notlng that dlstrlbutlon (6) is a limiting case of the

assumptlon (2) in that theorem, asg, y » =, which causes

certaln terms in .equations (88), (8?), and (90), to

LY

‘ dligppear. : - ‘ B
4 S )
N ¥ \— e ,
- ) v ‘;' ,"‘ ‘QQE-DQ
\ ) T - ’
3 19 ;
- l ! e ,' ; Lo
. ‘\' ‘ . . B ‘, .
" 4 . IIJ4 °©  COMPARISGN OF ACTUAL SIZE AND ASYMPTOTIC SIZE
L‘I E‘ ,‘.‘ ‘..’u.:‘;' < ' '."‘ ‘q“ - -'/. ! : "' / ;°' . {P \.y : | . . -
- f'_", . , ‘4",'. ., .- 4 ) " ; . . o ) '
* ,;;f o (1T‘ Introﬁuctlon R A 1
': ’ -'a : . ! ' i Tr’ . " :
t AN Ln this_ section the behaviour of ‘the test o
’ '.l o1 1 . * e
ﬂn\ St?tlﬁtlcs Wt, LR and Lut of (34)\ (35), and (36) under . -

!/
? the<nul% hypothesxs H of (l&), or gqulvalently, (21), is

1) - .

% "gexamlned Under thé null the JF, test statistic (2 = °-
satlsfles (26) even when the dxsturbances have a t oo

distribution (see Zellner (4975 Pg. 401) and King (1980))

L3
This fact allowg us ta-calculate ‘the exact rejectlon
. ,
probabilities under the null (i.e., the actual size) of"
- ‘<

~»
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’

. . - i

4

.
- ‘
- .

these test statistics as well as some altered versions

¥

of these tests which are*attempts to geff}he actual” . .

size of a test closer to-its as%ﬁétotic size (which we

will take to be 5%). These "size-corrected"” testsﬁgre .

considered in the next section, followed by a numerical
ne , SR vee. Sttt
eomparison. v ~
o - C T
R

(ii) Size-Corrected Tests

-
~

r o

y We know from general statistical theory that

" under the nuli'hypothesis the Wt, LR, and LM tests are °

£ 20 e _

a§ymptoticaily disFFibuted as x; where p is the number of

restrictions (see €.g., Harvey (19%1 ;7 pp. 159-175), or
. ‘ R - N

Silvey (1970)). The .goal of correction factors is to

adjust the statistic or critical value by a monotonic

¢

transformation so that its small sample siz?’will correspond -

more closely to its ‘asymptotic size. This should make -the

" actual size of the test closer to the agsumed qrrn?minal B

ARl . c -
size which is fixed by selecting a critical value ffsA the
asymg;otic distribxﬂion;é& the test statistic,

P

. "7‘,. 'q.&. v'

(iia). Coirection Based on Degrees of Freedom.

-

-
&

A common and intuitively plausible way of

correcting the W and LM statistics in the normal case, - -

(28)‘&na'(29), is tc.cbrrect for the bias-.in the estimate
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\ ..

of the error variance.which appears in the denominator
/s ) :

1when they are written in the following way:

3

- -

W= (8, - r) (zzz)'l(éz-r)/c‘;2 (150)
; L, - . )
22014 2 .
M = (8,-r) (2°%)7H(B,-r) /62 (15gg
and '
A2 ] »
c- =y My/T - (152)
52 = y M.y/T ©(153)
- R l ’ . .

where the .notation is déscribed in section 2(iii).
Whilg (152) and (153) are the unres%ricted and restricted

ML estimates of the erroy variance, respectively, tﬁby are
. . -

L )

biased since T
X PR S
‘B.g” =" (T - kK)o~ /T - ® (154)
' .- , . ' \ '.| )
4nd : ' \ )
' -2 - 2, - : ,

, ) T E'cR = (?S- k + p)c./T under Hy . o (155)

. . )
e '
- * \,

2

o

Replacing .0 and Gi,hy unbigsed estimates in (15@; andy

' ‘ &
(151) would yield the

followéﬁg_gize-corrected tests ig’

,'IA . ]

v

»
;he.normal,case:”

" : Ty - " - -
Wit - wmw [ o - (156)
a . . . U_‘ Pl , c' o R 'I' ’ . . | ‘

; 9% & (1% (k-p)/T)IM s o Yasn,

[ . .
L
v N . - . . »
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Due to the close linear.relationship between
W and LM tests in the normal and t cases given by the
definitions of W_ and LM, in (35) and (36), one could

t t
extend this argument to those tests by defining

df _ - |
wt ’— (1L - k/T)wt . | (158)
i :
\w R .
af .
LMt = (l—(k—p)/T)LMt . (159)
‘ / .
‘ .
4 (iib) A Revised Degrees of Freedom Correction.
. _ Tt could be argugd that it is not appropriate:

to correct for the bias in 52 ana o2

R in (150) and (151)

because they appear.,in the denominators of W and LM

respectively. Rather, one might wish to correct for the

bias in’(éz)’l and (ai)_l directly. Since 52 and-&i

under the null follow x° distributions with T - k and
T-k+p 4d.f. réspectively, we gan‘apply the result:

* A

“E[(@ 7] = (v W) 7! when o v (160)

» ’

to show that

E(62)"1 = 1702 (T-k~2) : (161)



(4”4'
Wz
-
‘ ,
and e
’ "2 P’l _ 2 7’
E{op) = = T/0" (T-k+p-2) wnder H, (162)
'~‘ %2 .

a These results suggest therfollow1ng'51ze—
correcte?fzgzis which are sllghtly dlfferent %;dm (156)
and (157): - ¢

daf, o :
W = (1-(k+2)/T)W (163)
. R |
. df, ’
LM = (1 - (k+2-p)/T)LM (164)

e .
and for the t case,

af, i i A

: Weo o=(1- (k+2)/DW, . (165)
df, i . ‘
M, = (1-(k+2-p)/T)LMt_ (166)
, o af
It can be seen immediately that wt and
df, . : .
"shrihk" their respectiVa original statistics more. ' .
df- e: > R
than do wt and LMt . 'and so the latter tests w1ll have )
- , . > b .

llrger sizes than the c0rrespondingj former tests.
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-

—_ . Wic) Edgeworth Correction (Test Statistic)

' The Edgeworth correction factors are chosen so
that the distributions of the'stﬁtistics are the same as
‘their asymptotic distribution (which is xg here) to 0(-1).
They areipresentéd.and derived"in the following corollary.

-

Corrollary (to theorem 2). The Edgeworth size-corrected

test statistics based on the approxifiate distributions
t . .

¢ of (88), (83), and (90) are '
a2 PO ‘ oy -1
&3 - Wo = (1-T " (k+1c(p/2)4W, /2) + 2(T+y) " IW, (167)
.‘ . e -/‘4 - . p ) .
| LR_ = {1\— (ke # 1 - (p/2))/TILR, - (}68)
L = (1-T Mkele(p/2)-18,/2)-2(TH) ThiM . (16)

~

" 80 that the dlstrlbutlon Qf each of .these statistics

under the null szothe51s (14) is xg + o(—l).7‘ .

\/
-~ ‘.
e, v,

« - PEooft’ Under the null ve have u % 0 where w of (91)
is tgg non-centrallty parametet of the x2 dlstrlbutlons
v ~in ‘the expansions (88), (89?, and*(90) . This also . .

sxmpllfies the coeff;clents of (92) to (97) and .




o

consequently the m.g.f.'s of (141), (143) and (146).
By setﬁipg w = 0 in (141) and noting from

(126) and (137) that

- R -1 ' . .
E ng = p(l=-2t) and -
' ' '

ng = p(p + 2)(1-—21:)_2 under HO (120)'

-~

E
;)

3
¢

we can write the m.g.f.:of W, under the null, setting

cw =0 in (130), (134), and (140), as

M () =(1-26) P2 (1417 [~ £ (p-2k-2)E ny/2

L4

PEngf+o-1 7 amn

+t E ng/Z]-Z(T+y)-
Seen in this form, it is a simple matter to construct a

revised statistic for which the 0(-1) terms are zero by

noting that

o9

We/T = ng/T + o (~1) and W/T = n2/T*+ o (~1) (172)

Using (170) and (171f, wé see that by adding appropriate

multiples of wt/? and wi/T to Wt

we can eliminate the

0(-1j part of (171), and this method yields (167).

and LMt under

-

: -~
PO We can write the m.g.f.'s of LRt

the null in a gimilar way to (171) as

’

‘




4

-
LA

(1-26) P 21017 -t (p-2k-2) E ny/2]+ 0(-1)  (173)
_ 2

&
-]

e

i

=
[
z"\
c
)

= (1-2¢) P2 (1477 [t (p-2k-2) E ng/2

SEE n2/2] + 2(T4) TE ngld + o(-1), (174}

from which results (168) and (169) sfigllow.
4  The adjustments (167), (168), and (169) remove
the 0(-1) terms from the above m.g.f.'s, so that the

e e -
m.g.f.~ for wt, LRt and LMt is

ME(t) = (1-2¢) P72 4+ o(-1) (175)
\ O

which is the m.g.f.'to 0(-1) of a central x2 variable,
that is, it is the same m.g:f. to 0(-1) as that of the

corresponding asymptotic distribution of the test statistic.

] ‘ ' 'Q.E.D.

- A test having'a critical value based on its

¢ . , '
asymptoti x; distribution should have a small-sample

.8ize that is closer to its chosen asymptotic size if it

)

has been corrected in‘the above manner. -. Unfortunately,
) . .

: - : €
.Wi is not a monotonic nondecreasing function of W, .

A8 a result; there can Be situattons wherg‘wz will never

-

reject the null, i.e., it has a size of zero. .This can

be seen from (167) by noting that .

78
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e = [
awt/aﬁt = 0 when
a
<k
WE = W£ = T-k + l-p/2 + 2T/(T + ¥) (176)

into (167) and verifying the

N

second-order condition yields

Substituting Wt of (176)

X WS = (T/2) {1-(k+1-p/2) /T + 2/(1+0) 1 (A7)
v t 1 -

4

Thus a test using wi and critical value x will never reject
" the null when
e _ :
max Wt = < X . (178)
] ) ) *

e

The non-monbtoniqity property of Wt can be corrected by

re-defining it as

¢

. } .
WS = /{1-(k+l fp/Z? + wt/z)/T {52/(T+y)}wt‘

if W < W
R Ry 2 W

e .. * .
max W ifw > WT P . (179)

-
L
e

. t
problem implied by (178).

This revised W

-

. ¢

» however, does not solve the non-rejection
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‘in the’appendix,_wftb the result given by equations (AlQ)

(i2d) Revised Edgeworth Correction.

[

(Critical Value)

The Edgeworth expansions can be used to
construct size-corrected critical levels rather than size-
corrected test statistics. In other words, the original
sta;istics 5; aefined in (34), (35%), and (36) are still
used; butythe asymptotic critical vai;es are"adjusted in
an at%emp!btﬁ get the acpﬁal size Of the test closer to
its asymptotic size. This procedure does ﬁot result in a

non-rejection problem for W_; however, it can result in a

t

‘nop-acceptance problem for LMt (i.e.,.;ﬁé adjusted critical

- .
LR

value can be zero Qr\negative(’caUSing the actual size to
be'looé). The condition for the existence of this problem,
however, is less strict than cdﬁdition (178}, as we shall
see. (These critical value cbrrections‘are.derived from
a method outl{ped in Botﬁenberg (1977, pp. 11-12)3j.
First, ?e require the Edgewarth expansions of

W ‘
densigy functidn form. ' Thi® qonversion is done for wt

LRt,\and LM

¢ in (88), (89), and (99), expressed in

-

to (Al3). By similar methods the following expressions
* &

for LRt &

appéndix):

and LM; can be derived (using the notation of the



AERSETAE T TRAETERR RS YR T PR

o A

-1 3 x
pr'(LRt < x) = F(x,p,w) +.T 1 Z rLRff(x,p+2j,w)
j=1
T2
-1 & =« )
+ v ) o5 E(xepr2jow) + o(-1) (180)
(] ' J=l '
Lt 4
pr(Lgt‘i x) = F(x,p,w) + T jzltLMj f(x,p+2j,w)
._l 2
’ +y © ) ¢, f(x,p + 2j,0)
j=1 7
-12- * .
+ (T+y) } o . E(x,p+2j,w) + o(-1) (18l)
j=1 LMj ' '
y
where .
ﬂ‘ - .1/ ¢ x _
Rl - P 2k+2-p) /2, TTR2 w(k-P)’
* 2 v
trpy = W /2 , (182)
) * ! , * »
M1 T -p(2k+2-p)/2, Ty = p(p+2)/2-w(k-p)
' L a(pt2) + w2y T, = wi)2 (183)
LM3 ' ’ LM4 ¥
* * ’ . ’
'¢1 = ‘wg/zl ¢2 = -“fz/zl (184)
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= -2uw, (185)

and F and f represent a x2 c.d.f., and p.d.£f., respectively
(see appendix). .

We are interested in the distributions under the:

null, so that w = 0, We can then write the c.d.f. of

LM, , for example, as ) | ¢
pr(LM_ < x} = F(x,p,0) (
woet ) ‘+ jzl((LMj/T)f(X:P+2]IO)

+ o(-1) (186)

*

.
and ¢ terms with subscripts' greater than

sincé the 1

twé will equal zero, and similarly for LR_ and wt

“

-

Now using the.following result which holds

when w = 0, (Rothenberg, (1977, p. 11)),

x £(x,p+i,0) = (p+i) £(x,p+i+2,0), (187) .

DY

we can express the p.d.f.'s of (186) as functions of

f(xrp,0) by noting that .

]
L]

f,(x:P + 2,0) = x f(x,p,O)/p (la)

£(x,p :;b xzf(x,p,0)/p(p+2)' (189)

~

and

82



et S Al TR §

STTTRTRTTT A MR Y M o

B TR TR TR W T TR

4‘} 83

Using these relations we.can write (186) in

the LRt case as

* .2 *
pr(LRt < Xx) = F(x,p,0) + {erRl/Tp + X TLRZ/T pfp+2)}f(x,p,0)

9 + o(-1) (190)
*
where the rLR's are from (182).

By another approximation to 0(-1) we can express

this c.d.f. of (190) in terms of a single x2 p.d.f. by the

following manipulations.

Note that

. S .
F(x,p,0) = [ £(x, p, 0)dx (191)

0 ’

and
X+C .
f(xrplo) ﬁ dx

Cf(XpPyO)
X

x+c _
] f(x,p,0)dx
1Y . N x

- 1

X+C, o _
f ff(xlplo)-{f(xlplo)
X

- £(x,p,0)}]dx ' (192)
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where

2

T *
e = erRl/Tp + x rLRz/Tp(p+2) (193)

stituting (191) and (192) into (190) gives

X . 3 x+c N
pr(LR, < x) = [ f(x,p,0)ax + [ [f(x,p,®) + {f(x,p,0)
0 X
: ) - f(x,p,0)}]dx + o(-1) (194)
1
’ = -1
; - Noting that c¢ has 0(T 7), we see that
] ) o X+C ) _
E [ {£(x,p,0) - £f(x,p,0)}dX =0 + o(-1), (195)
: X
: N
therefore,
X+C ) N
pr(LRt <.x) = [ £(x,p,0)dx + o(-1)

: ,4

i . 0
; F(x+c,p,0) + O(-1) (196)
A

. keeping in mind that we are assuming that the null hypothesis

ek e

is true. Now, since has O(T-l) we can.write - ,

- /

! : : Pr(LR_ < x~¢) = F(x,p,0) + O(-1) (197)

£ . Thus, if x represents the critical value which yields

the degired‘asymptotic size, then (197) suggests the use
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of the following adjusted critical value for small
samples:
N ‘ o
Xpp = x-c=x{l+ (k+1-p/2) /T} (198)
»
By following the same procedure as above WgAcan derive
critical value adjustments for LM  and Wé{ which are
» * + ' , . Y
i X = x{1+ (k+1+(x-p) /2) /T-2/(T4¥) } - (199) -
, .
and ‘ .
* - . f
XM = x{1+(k+1-(x+p)/2) /T + 2/(T+y)} . (200)
] v :
»
3 It is clear from (199) that the non-rejection i

e
t

critical value adjustment is used. It can be shown from

problem of W discussed previousty will not occur when the

‘o

(200), however, that ' ¥

©

x;M < 0 when x > 2T{li(k+l-§72)A§

+ 2/(T+y) L, (201)

in which case the LM test using LM% and critical valudew

8

. . :
X1 M will always reject the:?ull even when it is true ..

Casual inspection of (177) and (20l1) would suggest that

-

-

. Y y
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this non-acceptance problem will occur in’ a smaller set L.

of T, p, k and vy valués than the non-rejectioﬂ case Of W,_.

- 4
(iii) Numerical Comparison of Size Corrections

~

Earlier in this chapter it was noted that the:
a8

F statistic (22) has an F, ,_, distribution’ under the null
N - r

- s

for all values of vy, that is, for the entlre class of

7

Sphérlcal student s t dlstrlbutlons (lncludlng the normal)
&
-for the dlsturbances. -Thls, along with relatlons (38),

(39), and (40) can be used to calchlate the exhct eizég

N A t t
adjusted statistics given in the previous section, for a

of the test statistics, LR,y LM, , W, as well as:the gize- ) .

spec1f1ed asymptotlc size (whlch in thlS chaptgf is the

usual 5% ) . The exact sizes are calculated by convertlng
]

the critical value for a given test into the grltlcal value

for the F test which would have the same exact sizé. This
is done by expressing F as a .function of %he given statistic.

The small-sample knowledgé of the F-test in this situation
] ’ -

can then be usedhto'dbtain this exact.size. - yoe
8 2 ~

Denoting” the critical Value for one of the tests o\

by x, and 1ts correspondlng F—test small sample critjcal. _ -

. value by h(x,LR ), say, for the LR; test case, we can begln

t

7 . . : = "

by qéiaF (38) to (40) tq‘obtain" : ‘ /
. - [y - ' N

.’ (Y ;

. . o .
I . .
- . . N \ o
B h .
. , .
. . s
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and

h(x,LRt> = (T-k) {ew®(x/T)-11/p (202)

h(x,W,) = (T-k)x/TAp ' B . (203)

h(x,LM) = (T-k) Ax/p(T-Ax) (204)
q ~

Similar functions can be obtained for thdPstatistics

daf
Wt + LM

(166) bw using those relations to express these statistics

df,
t

df

t ! W

af,
and LM_ ~ of (158), (159), (165), and
L .

as functions of the F statistic and then solving for F,

giving

)

and

h(x,W

h(x,L

.

h(x,W

h(x,L

) = % (205)
daf, _

Mt ) = (T-k) Ax/p(T-k+p-1ix) (206)
af, ‘

¢ ) = (T-k)x/(T-k=2)rp ] (207)
af,

Mt- ) =(T-k)Ax/p(T-k+p-2-2Ax) . (208)

. ”

Phe.desired functions for the Edgeworth size corrected

t

statistics Wi, LR:, and LM% 0‘(167); (168), and (169)

are solved in the same fashion, although the expressions

for Wi

e
and LMt

-

are somewhat complicated since they are

~
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. 9
each nonlinear functions'of F, and‘in each case the ‘
derivation of h invodves solving for the roots of a

quadratic. The results are

h(x,LR7) = (T-k) {exp ((x/(T-m))=-1)}/p (209)
h(x,wi) = (T-k)(T—m)[l—{l-ZTx/(T-m)2}1/2]/Tkp
' (210)

h(x,LM]) = (T-k)A$/P(T-2¢) (211)
where

6 = (T-m)[{1 + 2Tx/(T-m) 2}/ 1] (212)
and

m=%k+1-p/2- (213)

\
.

The appropriate h function for the tests which
use the Edgeworth corrected critical values (198), (199),
{ ,
and (200) are found by substituting those adjusted

critical values in, place of x in the h functions . for the

-

unadjusted test statistics given in (202), (203), and

(204) . Denoting the use of the adjusted critical values

*
with LRi by LRi and so on, we then have

\ h(x,LRi*) = (1-k) {explx o/T)=1}/p  (214)

88



e* _ * - )
h(x,wt ) = (T—k)xw/Tkp I (215)
L
and
e* _ * 26
h(x,LM_ ) = (T—k)AxLM/p(T—xx) (216)

¥

[;Qgre the x*'s are the adjusted critical values given by -
(198), (199), and (200).
We can now find the exact size of any of these

tests, say LR, for example, by using

t

< h(x,LR.)} (217)

A

pri{LR_ < x} = pr{Fp,T—k
which holds under the null, and similarly for the other
tests. Each of these h functions approaches x/p as T
approaches infinity, which is to be expected since each of

the test statistics is asymptotically x; while pF

” pIT—k

becomes a x; variable asymptotically.

The table which follows compares exact sizes of
these tests for T,p, and k values taken from Tables I and
11 of Evans and Savin (1982) with an asymptotic size of
5%. The normality (y = ») case and the y = 5 case are
considered. The h functions given above are used to get

critical values for the F variable as in (214), and

. p,T—k
the proggbility Qf’gejection is found by using the

aﬁbroutine MDFD from the MATHLIB packége.

.also
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TABLE 1

Exact Sizes of Various Test Statistics When the Disturbances are Nprma]
and Student's t with y =5, andk =8

Exact Size (Asymptotic Size is O.OS_L~

TP v LR oo wd wdf w:f* LM:f*
33 1 =  .091 .l00 .082 .061  .048  .052  :.03%
33 1 5 .09 .092 .09 .055  .054  .046  .044
58 1 «  .070 j.075 .066 .05  .049 -.051  .044.
58 1 5 ,.070 .071 .070  .052  .053  .048  .048
33 8 = .10 .218 .024  .098 .024 .074 .0M4
33 8 5 .10 .192  .037  .083  .037  .061  .022
56 8 =  .078 .129 .03  .075  .036  .063  .029
586 8 5  .078 .116 .04  .066  .044  .055  .036
106 8 -  .064 .087 .043  .062  .043  .057  .038
108 8 5  .064. .081 .048  .058  .048  .052  .043

Top v LR WS T LM
331 = .05 045 .052 .058 .062 055
33 1 5 .050 .049 051 .058 .060 .056
8 1 = 080 .049 .051 .053 - .054 .052
58 1 5  .050 .048 .047 .053 . .053 .052
338 = .062 .000 .041 .059 .083 .048
33 8 5  .062  .000 . .044 .059 .080 - .046
58 8 = .05 .036 .047 .053 .061 .049
58 8 5 .05 .037 .048 053 .059 .049
108 8 = 050 .047 .049 .051 7053 .050
108 8

5 .050 . .048 .050 051 . .053 .050



The following remarks concern the reésults of

Table 1. - : .

o
1) The values of T, p, and k for y = =
correspond to the cases considered 1in gvans and Savin
~{1982) in their Tables I and II when the null is true
jt; their notation, when the non-centrality parameter d
is zero). The only tests tébulated heré that are *
, £xactly comparable to the'ﬁests that they considér'are the \6;

unadjusted tests, LM LRt and wt,(in the normal case)

v

and LRi. The results- here correspond with theirs except

tl

e
t

obtain an exact size of .052 while the method described

‘for the (T,p,v) = (33,8,») case for LR_ in whgfh they
: AN
here yields Yo62. L
.In their tables they also give power comparisons. -

. £
In the normal case'this involves the non-céntral F distri-

A Y
bution for which they have computational procedures. In
fhe non-normal .case considered here (y = 5) the exact
distributions are not so simple. Since all of the tests
in this '‘chapter involve test statistics which are monotonic
nondecreasing functions of F of (22) (when ipe'revised Wi
of (179) is used), then the test having larger size will

also have larger power in these approximations under any

local alternative.
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2) The sizes of the unadjusted tests are

generally quite different from .05. The LR,  and W,

tests are larger than .05 in every case while the LMt

test has sometimes a larger size and sometimes smaller.

The sizes of three tests when y = « follow the same
inequality as that of the statistics themselves given by
(35) since the éame crit{fal value i§ used for each test

(x = 3.84 when p = 1 and x = 15.511 when p = 8). ‘These

.sizes are particularly far from .05 when p is large relative
to T; 1in the table, see the p = 8, T = 33 case.

The most notable difference between the y = =

and y = 5 casqs is that the unadjusted W_ and LM, tests

‘

t

$ .
have sizes that are more similar in the latter case than

t

ences between the three test sizes, then, seem to be

the former, while the LR_ test is unaffected. The differ-

lessened by departures from normality to student's t. This
result is backed up by inspect;on of the expansion
formulas of (88) and (90),.where the a's whed“% = 0 have

signs opposite to th® cowresponding t's of the same

subscriptlo.

3) The degrees of freedom corrections reduce
the sizes of Phe testé, which is cleaf from the formulas

for those statistics since the adjustments make them

>

smaller in every case. The revised d.f. corrections reduce




the sizes by a larger amount than the original d4.f.’
-
corrections. In the LMt test cases where the unadjusted

size is already less than .05, these d.f. corrections do

more harm than good. The ng* test sizes tend to be-
closer to .05 than the Wif test sizes since the latter

adjustment often does not reduce the unadjusted test size

enough.

4) Both types of Edgeworth correction are more
—effective than the d.f. corrections, with the critical
value adjustment tending to give a larger test size than
"the test statistic adjustment, and with no’'one dominating

the other invproximity to .05
The (T,p) = (33,8) cése is an example of a

situation where the inequality (178) holds since x = 15.51
L J

» .

and max wi = 11.88, thus the wi test has a size of zero.

There is no non-acceptapce problem, however, and in fact

* . . .9
;he»LMi test has a size which is very close to .05 for

all parameter values considered here. . )

93



" | 94

- II.5 SUMMARY

»

In this chaptér tﬁe Edgeworth expansions for
the W, LR and LM tests for the linear hypothesis in the
‘simple regression model in the case of student's t
disturbances given by Ullah and Zinde Walsh (1984) are
derived. These are then used to obtain ;ize correction
ﬁigtors, and the exact sizeg of thesg and other size

. ‘corfected tests based on degrees of freedom adjustments
‘are‘lfmpared in some specific cases.

The sizes of the unadjgsted W, %R and LM pests
differ more under normality than in the student's t with
d.f. y = 5 case, and so the same can be said for their

powers, since all are monotonic functions of the F

statistic (22). The Edgeworth size correction factors

work better than the\degrees of freedom correction factorg.
Both Edgeworth‘factors, one which operates on the tgst
,statistic itself and one thch operates on the critical
value, are about equally effective, although when the
number of parameters to be estimated is laFge relative to

. - v
the sample size, the crjitical value deustment_may be

P

preferred.
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APPENDIX

In this appendix the approximation to the
c.d.f. of wt given in‘ (88) is expressed in®*a for.'m
involvin‘g&veighted sums of p.d.f.'s (as in Rothenberg
(1977)), rather than c.d.f.'s. We introduce the

. following nQtation:

F(x,v,8)

| v
o

prix>(s) < xJ X (AL)

\ ]

f(x,v,8)

]

oF(x,v,8) /3% x>0 (A2)

hence F(x,v,8) is the c.d.f. of a non-central X2 variable

and f(x,v,§) is 1ts corresponding p.d.f.
Note that the characteristic function of a
non-central X2 having-aﬂc.d.f. of F(x,v,8) 1is

¢ , . .

C(t) = explit(l-2it) Y6} (1-2it) /2 (A3)

L4

where we have simply replaced t in the m.g.f. fermula
(110) by it, whexe i in this context ig the complex

1/2. Using the Inversion theorem formulae

" number i = (-1)
given in Kendall and Stuart f1969, p. 94-95), and our,
knowledge. of the “distribution that cofrespd!aé to C(it)

in (A3), we have:
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F(x,v,8) = (20 Y2 c(e) ((1-e ¥ /itrae  (ad)

-0

and

£(x,v,8) = (2m)~1/? [ c(t)e t¥tat (A5)

-0 .

Using the fact that

. oo =1 =1 )

it(l-2it) = (-1+(1-2it) ")/2, (Af)
and )

1= Ot (A7)
along with

£(0,v,8) =0 S (A8)

we can manipulate equations (A4) and (A5) to show that

F(x,v,8) - F(x,v+ Z,6) = 2f(x,v+2,6) (A9)

o«

‘Applying result (A9) t¢o/ (88), we can write the approximate

c.d.f. of wt in the following numerically equivalent form:

, — 4 *
pr(Wt < X) = F(x,p,w) + T 1 Z rw.f(x,p+2j,w)
s N J=l J

- 2 *
+ v 1 z ¢-f(xlp+2jrw)
j=1

1

+ (T+y) a

1

[gae N (]

wjf(x,p+2j,w) + o'(-1)

¢

(A10)

* *
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’
- [ i
e
where
* ! 7k ) *
T = ~P(Zk+2-p)/ Ty2 = “P(p+2)/2-y (k-p)
. % ' ] :
!
*® * 2 .
T3 wlw=2p-4)/2, Tyg = TV /2 (All) :
* ) * 2 . . !
b = w /2, b, = —w /2 (Al2) ‘
1 2 )
and . i
* * ! A ':
agy = 2p, Qg = 2w (Al3) :
where the variables p, k, and w are as in (88).
The choice between (88) and (Al0) as representa-
tions for our c.d.f. approximation is not crucial, but one
, S ¢

may be handier than the other when the formulae are -used
to approximate sizes and powers in particular numerical
examples, as well as for construction of size-corrected

tests.
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. FOOTNOTES - - e
(Chapter LI)

¢

The density function of u/c = v is

£(v]o) = Er(T+y)/21/0(v/2) (I 21w v/ S(THy) /2

It turns out, however, thgt a different representation
of this den51ty given in éqguation (3) is much easier
to work with in this context. ~

There is more than one way to -construct a mulfivariate
distribution in which each variable has an identical

marginal distribution that is Student's t. (See
Johnson and Kotz (1972)). The one specified here in
(3), (4), and (5) is the one on which the LRt,'Wt and

LMt tests of Ullah and Zinde Waish (1984) are based,

‘and is the one most dommonly used. C o

S . . ,
Sarga‘nﬁ980 p. 1108) gives condltlons which are .
sufficient for validity of Edgeworth expan51ons of

asymptoti‘c X2 test statistics. These conditions are
not strict and are met by the statistics whose distri-"
butions are approximated in this way in the thesis.

This can be seen, for example, by using the m.g.f. in
the form of equation (4.2) of Peers (1971) and noting
that

A

e /(50 ,
0

e~ 8

]
-~ » - .
In some sources the non-centrality parameter is given

as w/?® rather than w, for example, Graybill (1961,
pp. 74-76). :

If g(z qz,qi) of (121) is not a functlon of z, then

the E opérator ,is an expectatlon in the usual sense.

However, E will.still be used for notational consistency.

Since LR Wt and LM& are each monotonic functidns of

the F statlétlc, their power functions:would be equal
'if their sizes were made equal by monotonic correction
factors. 1If the Edgeworth approximations of the power

S

p
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functions of ORe ‘i and LMi are derived, it is -

found that they are also equal, as would be expected,
to 0(-1). ¢

This point is raised in connection with a similar
LM test for this hypothesis in the normal case by
Evans and Savin (1982, p. 743). ,

The practice of having a‘test size chesen independently
of sample size, and especially of having a test size

as large as 5% for a large sample &s criticized dn
Leamer (1977).

For some inequality results for LRt’ W't and LMt,
see Ullah and Zinde Walsh (1984).
*
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o

8 + T 120
+ op( ) f )

=0t 8 4,2 -1

O

1

where a term 6, has O(Tl), we can write the corresponding

expansion for B(p), i.e., the Aitken-type estimator of B8

using (15) with p replacing p, by

) -1 L v oamd
B =18 + (X} ,xa X V u (121)
and from (38) we can write //"J
-1 -1 ‘
2 _ 2 '
(1-p%)] = (1-09)] + 8 1,2 R
+ (8 R + 92 D)
-1 -1/2
" " -1 6
+ "o (T ™) {122)
P !
where
D = diag(0,1,...,1,0), a T x T matrix (123)
and
R =

2(pD - A) - (124)

~-1

where A is defined in (102). Now by expanding (X Y x)~1
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and is‘slightly different from the usual form. In
the third section, the mean square errors‘(MSE) of
various estimators of the regression coefficients are
approximated by an expansion method first exploited by
Nagar (195;). Included here are MSE expansions of

iterative estimators using a general technique which

could be applied to iterative estimators in other models

. such as the SURE model of chapter IV or simultaneous

equations models. Finally, the distribution of the t
Nl
test for significance of a regression coefficient,

discussed by Park and Mitchell (1980), is approximated

by an Edgeworth expansion, which leads to a size correction

which may remove the marked over-rejection of the null

noted by those authors.

-

- I1I.2 THE MODEL AND ESTIMATCRS

-(1i) The Model

The model in this chapter is the same as in
chapter II<’éxcept there is‘now a first-order auto-
regressive brocéss in the disturbances, and these will
be assumed to be normally distributed except in section

II1.3. We then have
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XB + u ' . (1)

y =
where
4
y = [yl. .yT] (2)
Xyq oo Xy Xy
X = . = : (3)
. <,
Xp1 Xk X
) \
u = [ul ... uT] (5)

So we see that y and u are T x 1 vectors of dependent

variables and disturbances, respectively; g is a k x 1

vector of unknown regression coefficients, and X is
a T x k matrix of observed independent variables. The
model becomes different from that of chapter II because

now we make the following distributional assumption:
Xe , t=1,...,T (6)

where

e, ~ N(O, oi), t=1,...,T ‘ (7)

t




The error process is assumed to be stationary

by assuming that

u, v N(0, o) (10)

0
where
of = o2/ - o) (11)
| ' so that
ug =N, %),  t=1,...,T (12)

We can express these assumptions compactly as:

ASSUMPTION

un N0, o2 §) (13)
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i.e., the (i,j)th element of ) equals pll_J!.

(1ii) The Estimators

The fact that we may have é # 0 has implications
for estimation of g and hence for significance tests.
The value of p is not known. If it were, we would have
the best linear unbiased estimator at our disposal by
applying Aitken's theorem (see e.é., Theil (1971, p. 238))
which yields the generéliied least squares (GLS) estimator

Blo) = (x Tl x oyl (15)

The variance-covariance {arld MSE) matrix of B(p) is given
L)

by
E{B(p) - 8}{B(p) - B} = o’a (16)
where

- T '_-l\
)

Q = (X =1

X) (17)
This éstimator is not operational since o is unknown,

but -we can define a class of estimators for g based on
result (l15) by replacing p by an estimate. Some of these
estimates of p are summarized by Judge et. al. (1980,

pp. 182-3), and are given below:

)
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1) The "standard" estimate,

. g % 2 2
o = e_e_ ./ e - (18)
s £=2 t t-1 tel t . )
<
where
e = [el. e, eT] = My = Mu, (19)
\
-1 — l T ‘'
M=1-X(XX) <X (20)
1Y

so that the ei's are the residua}s obtained from OLS
regression on (l). There are some slight modifications
oﬁhﬁs also in use. For example; Park and Mitchell (1980)
use a summation from 2 to T-1 in the denominator of (15)

instead of 1 to T. This changeE the OP(T_l) term of the

asymptotic expansion of 65 and leaves the Op(l) and
S -1/2 .
OP(T } terms the same, and as we shgll see, this has

no effect to O(T_l) on the MSE approximation.of the

resulting estimator, which is
y (21)

where Zs is simply § of (14) with p replaced by Bs' and

we denote,é(ﬁs) by‘és for notational convenience.

105

V- RS Wt

RE: o

P S i

- Al Ly g,

PO L T]

A

PRI W RO IR SRR 1

parr




it e L A4 ahatiy e adthin

where BS is given in (18)

2) The Theil (1971) estimate,

by = (T - KB /(T - 1), (22)

3) Tbe estimate based on the Durbin-wWatson

. s -«
(1950) statistic, . .
Pow = l.— a/2 . (23),
where . . ' ‘
i 2 e
d = (e, —e_ )7/ e (24)
g2y Ot t-17 Tl Tt :

and d is the familiar Durbig—Watson statistic used to

test whether p equals zero.

4) The Theil-Nagar (1961) estimate,

2

2 - 2, .2
Py = (T Py + KI/(T k™) (25)

’

- 5) The Durbin (1960) estimate, which is

given by the OLS estimate of p in the following equation:

106
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+ €t . o ’(26)

where 80 and 80 are coefficient vectors compatible with xg

o' o' th

and x, _,rand x_ 1is the t° row of x with the constant term

l(l ~ p)

deleted if it was originally in X, otherwise the 8
term.$s deleted. The estimated coefficient for the Yo

ferm is o, the Durbin estimate. Egquation (26) is

DI
dé}ived by‘subtracting p times the (t - l)th row of

model (1) from its tth row, and it can be seen that OLS
edtimation of (26) ignores soﬁé\implied parameter

restrictions.

. 6) The maximum likelihood estimate of o, 6ML'
A
is appropriate here because the maximum likelihood

~

, estimate of 8 given OML

is

Gy = A s L 0T x Ty (27)
‘ ML ML .-

(/——‘\Where I is ] of (14) with p replaced by p,.. Thus, the
. ML » o P ML .
'

ML estimate of g is also an Aitken-type estimate. ‘The -
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2%

is a function of 8

estimate 5 ML’

ML, however, so that a

closed form solution of BML and PML 1s_unavallable“

~
.

Beach and'MacKinnon (1978) point out that SML is given

"by the solution to the following cubi® polynomial equation:

»

-3 -2 - ) |
P ML + apML + bpML + ¢ =20 (28)
where
T ’ g 2 2
a=-(T-2) ] o, u__,/0(T-1)( } 4, _, - 49)]
g=y tt-1 pop t1 1
(29)
|
T T T
- ~2 ~2 ~2 -
b =[(r-Duf-77J 0 - 1 uwl/ler-1( ] u
= A T g=2 =1
- &%) (30)
.l‘.
i et [, -
c="T73u u_./[(r-1)( ] aZ_, - a0 ] (31)
£=2 t t-1 =2 t-1 1
- . [N '
and ut = yt - xtBML . | (32) )
From (32). we see thgt P ML, and BML must be solved

iteratively, but it is found by those authors that such
a procedure converges satisfactorily in only a few

itefations (see also Harvey and McAvinchey (1978)).
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Any one of the above six estimators of p

can be. used to form an estimate of ) in (15) and

1

hence an estimate of 8. This approach was first

s oL .
suggested by Prais and Winsten (1954) using Py and

the estimator és of (21) is termed the Prais-Winsten

*

- -

estimator. .

énother class of estimator, f;fst suggested':

by Cochrane and Orcutt (1949)}‘Qas based on a different

-fl;ne of thought but is very closely relatéd togthe \~
Aitken-type estimators described abové. In Cochrane-
Orcutt type estimation the‘modgl‘ig transformed, in an

attempt to remove the autocorrelation from the disturbance
term. If p'wgre known, (6) suggests sgbtrqcting p times

[}

the (t - l)th row from the tth row‘gf model (1) so ‘that

the transformed model consists of the t-1 g¢quations:

.
. > ¥
. - 3

Ye T oeYe_y T {xg - oex ) B'+ Epr o (33)

t=2,...,T

The'disturbanqes in this transformed model arg independent

so that it is appropriate to estimate B in (33) by 8LS.

The resulting estimator, B8(p), is given by -

- *t k7 *t % ) ,
B(p) = (X X ) X vy (34)
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where
* N
X = Q X, (35)
x * .
' = QY (36)
and o o !
-0 "1 0 .. 0 ]
" ‘-’_0\ -o. 1 ..... 0 - ‘ ) -
s Q.=" . t (37)
” 0 " v
. . <X o
"0 o -0 1
— . * -
, . o 'J' : }
a (T-1)x T matrix. The estimator (34) can be  made

opefationglyin the same way as the Aitken-type estimator
v(lS) by replacing o inQ:tqrgﬂ éstima;e, such as one of
the six descriLed above. |
The similarity between Aitken-type estimators

and Cochrane-Orcutt types .can be seen by noting that

} of (15) is

(1 =p + 0 eeven. 07
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This can be written as
‘;} -1 2 k! ko -
. o 2 = (1/(1 = p7))Q Q (39)
-,
whére
- -
(1 2)1/2 0 ... 0
* % -
Q = | mmmmmmmmooeso e , @a T x T matrix
. .
. Q J (40)
Now é(p) of (15) can .be written as
. ' k1 kk _] kk! k%

B(p) = (X X ) "X Y (41)
where )
(l—oz)l/le

C k% * % ) i
X =Q X = | =-mmmm——————- (42)
' *
i X .
(1-0%) /2y,
’ * % PR (43)
y TR Y= \
1 *
R o i
and the similarity of (41) and (34) is clear. We can
also ekpress {34) in a form similar to (15) by mnoting

o~
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that

Q@ o = ) =D JRCTY

.where DO is a T x T matrix of zeroes with a one in the

upper left corner. Thus, we can write B8(p) of (34)

as
- 1 -1 -1 ' -1 .
Blp) = (X (I = DyX) " X (1 ™Dyy, (45)

e

from which the similarity .with é(p) of (15) 1s evident.
These relations will be useful in section 4
where approximate mean square error matrices pof some of

’
these estimators are compared.

The maximum likelihood estimate of o2 is given
- : R
by :

-2 ~1 G ~ .
Oy, = U y  u/T - (46)

where

ﬁ=y—XéML (47)

¢
."

and ], is as in (27) with 8ML as in (28). The more +

|

commonly used estimate, however, is the mean 2quare of

~. .

the estimated residuals,




5% =4 /T - ' (48)

e

: v

where the u's are residuals resultiﬂg from whatever
estimate is used for 8. This estimate can be adjusted
for degrees of freedom, giving .

.2 '
92

=0 u/(T - k) _ (49)

-

In the next section it is shHown that the LM
test for the existencé of autocorre%ation is a function
of Es of (18) both in the case of normal disturbances

and the case of multivariate student's t disturbances.

LII.3 ¢ THE LM TEST FOR p = 0 WITH STUDENT'S t -

' DISTURBANCES

-

In this section the normality assumpiion is
temporarily relaxed, and we consider model (1) when the
disturbances follow a multivariate student's t distri-
bution with the following density function:

f£(u) = (const.) (¢2) /277121

v -1 - »" * .
+u ) uyedy /2 (50)




- kY
¥
Cor B
where (const.) is a normalizing constant, y is a degrees

2. . . .
of freedom parameter, ¢  is a dispersion parameter, and
e .
Yy is a T x T variance-covariance parameter matrix as in

the normal case. As in chapter II, the normal case of
(13) is obtained in the l1imit as y approaches infinity.
The u vector still has zero mean and its variance

covariance matrix is

Euu /T = [v/(v - 2) 1o} (51)

We consider the hypothesis that the elements of u are not

éorrelatedz, that is

HO:p=0 vSs. H, : p #-0 . (52)

Theorem 1. - The LM test for (52) in model (1) when fhe

disturbarnces are distributed as multivariate student's t

with density (50) is given by !

= 12 /(- 1) (53)

where Bs is given in (18). This statistic does not depend

,on the degrees of freedom parameter y, and so the LM

.
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1

statistic (53) is also appropridte for the normal case

of (13).

Proof. From (50) we can write the log likelihood

function for the unknown parameters g, 02 and ¢ as

2 = log L{(p, 02, Bly,X) = {const.) - (T/2) log 02
- (1/2) log |J| - ((y + T)/2) log {1
¥ glo, 8)/vo(l - 0%} (54)
where ’ ) ' 1
gle, B) = (1L - p%u §. wu
T T-1 ‘.
= 3 ui ) uﬁ‘— 20fuu,_;  (55)
t=1 t=2 t=2
= g -
and
U T Y, - xtB - (56)

M =416 L3 - (57) °



where

d = aﬁ/aelé {58)

(59)

6 = (sl o%/ ’ (60)

with éR referring to the restricted maximum likelihood
T

(ML) estimates.
N

Taking first derivatives of o of (54) we have

38/30 = (T = 1)/(1 = 0%) = (y + T) (20 g/(1 - p°)-

+ ag/ap)/Z(Yoz(l - 02) + g) (61)
38/30% = -T/206% + gy + T)/26%(yo2(1 - p%) + g)
(62)
and
32/38 = -(y + T)0g/38/2(yo2 (L = p2) + g) (63)

We can now calculate éR by noting first' that

s .

=0 . (64)

-
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due tq the restriction of H0 in (52). The first order o
conditions then become

~1/26% + g (v + T)/263(v82 + ) = 0 (65)

R R R R R

and

3g/98l; = X (y - xéR) =0 (66)

R

Equation (66) yields the familiar OLS estimator

<+

..H) ' -1 '

Bﬁ = b = (X X) X v, (67)
and (64) and (67) substituted in (55) give

T .

~ 2

gp = L e (68)

R 21 8 :

<

where : s

e, = Y, - xtb (69)

as in (19), so that substitution of (68) into (65) and

simplifying yields

~2 '
Sn = e e/T, - (70)

~

so that o; is simply the mean square of the OLS residual

vector.
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We then have

d = (0,...,0, -T e_; e+l/e e,0) (72)
where
)
e_; = (e, r€qp_q) (73)
and )
1
e, = (eyreiiiey) (74)

since the first derivatives with respect .to the unrestricted
parameters are zero at their ML values and éhe first
derivative with respect to p is found by substituting the
restricted ML estimates in (61) and simplifying.

Next, we show that I(éR) is block diagonal such
that we need only‘consider the diagonal element corresponding
to p for the caiculation of LM. Taking second partial

derivatives, we find
2 2 2
5%0/30%30= (v + T) v(1 - 02){2g0/(1 - 0%)

+ 3g/90}/2(yo2(1 - %) + 12 (95)

and

2
3 Jz'/883;‘) = (y + T){(3g/3p - 29702)89/38

- (vo?(1 - p2) + graZg/eBan}/2(ya2(1

- 0% + g2 (76)
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Evaluating (75) and (76) at éR we find that

022/30%00 |, = -v e ; e, /(y + T)(65) (77)

R

and

-

_ ~2
L/ 3 aoléR = (X_; e, + X,y e )/ 2 (78)

-

1

where X_; and X, are (T - 1) =k matrices obtained by

1
deleting the last row and the first row respectively
from X.

-

Taking the expectations of (77) and (78) using

P

eR as the true parameter values we have

‘1
'E azﬂ/aozapl~ =0 (79)
8
R
and

E azz/aeaplé =0 _ : (80)
R ‘ ‘

All we need, then, for calculating LM in (57& is the

expectation of the following second partial:

3207302 = (T - 1) (1 + 02)/(1-p2) 2

- (v + T {(2g/(1 - 0%)) (Yo?
+ 3v0262 ¥ gl + 02)/(1 - %))
+ 20(y0? - g/(1 - 0%))2g/%0

.. .continued



]
- (39/86) % + (va2(1 - o) + @)3%g/30°)

2

/2(vo% (1 - 02) + )2 (81)

Evaluated at éR this becomes

320/302 5 = T - 1-(y + D2TT + ¥} (62 Ga
R 3
| 2 2, 2 i
+ (v + T)oy 3%g/00" - (3g/20) 7}/
"2 ) ‘
2((y + Mmég)? (82)
Using
2 - 22 _
Eet[e = op t=1,...,T (83)
R
and
[} L}
E etet,léR = 0 t#t, t,t =1,...,T
(84)
then we have, after some simplification,
E 2%e/20°; = ~(T - 1), (85)

R -

- [
so that the required element of I(GR) ts equal tp T - 1.
Usiﬁg this result along with the block diagonality of

I(@R) and (72), applied to the LM formula (57) yields

the result (53) of tHte theorem.

a -

Q.E.D.
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Since there is one parameter restriction
beihg tested by (53), it; asymptotic‘null distribution
is xi and sé an aéymptotic critical value for the LM
test can be chosen accordingly. This tesg statistié is

slightly different from that which is usually used in

this situation, which ip

which results from the discussion in Breusch and Pagan
*
(1980, pg. 244) for example. LM of (53) and LM of
(86) are asymptotically identical and take on very similar

+

values in small samples as well, since

-

IM = T LM*/(fI‘ - 1) (87)

This result is also applicable to the LM test for MA}I)
errors since Godfrey's (198l) results imply that the LM
test for hypotheses (52) which tests against a first
order autoregressive processffn tﬁe disturbances is
identical to fhe test that would result if the alternative
was a first order poving average process, i.e., if (6)

. . -
was replaced by

-

vee,T co (88)

ct
]
N
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”~
Although the LM test statistic (53) is not a
function of the vy paraﬂeter which helps to define the
distribution of the disturbances, its small samplé'
distribution may very well be, but this issue is not-
examined here. In the rest of this chapter, we again

r

impose the normality assumption (13).

~

III.4 COMPARISON OF APPROXIMATE MSE'S OF ESTIMATORS

In section 2, six proposed estimators for o
and two estimators for B using a p estimate were given.

Five of the six p estimators can be used in two-stage

-

estimation (excluding 6ML’ which would no longer be an ML

estimate if (29) to (31) used e instead of ﬁ). Five of the

six p estimators can be used in iterative estimation

(with p_ being the exception) as mentioned in footnote 1.

D
This- leaves twenty possible estimates for 8 after accounting
for the three choices to be made: first an estimator for

o, next an estimator for g given 5, and finally, whether

to iterate or to stop at the first iteration. The most .-

important decision of the three in most cases is the
choice of estimator for MPgiven o, despite the analytic

similarity between g of (15) and 8 of (45) discussed

-
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earlier. Since B\seems to perform betﬁer3 than’é in

previous studies/mentioned below, onl? one variant of

§ is considered in this section.

’ The Aitken-type estimators are considered

in more détail here, including all of. the possible »

estimators in the two-stage proéedures and two 1iterative

estimators. The method used is Nagar's (1959) expansion

and a subsequent approximation of the MSE matrix of the

B estimate to.O(T-z). It turns out that this approxi-

mation gives an identical result for many of the estiﬁators.
A brief literature review is hext followed by

the derivation of the MSE .approximations and 7 numerical

comparison. ~

\
.

\\‘ ’ g

(1) Literature Review

The use of OLS in model (1) can be a good idea
in some situations even if p # 0. Kadiyala (1968)-énd
Maeshiro (1976) demonstrate analytically that OLS‘out—
performs Cochrane-Orcutt (CO) with p known and ce;tain
prespecified values for x.4 Taylor (1981) argués that
the poor performance of CO in those studies is due to the
fixed nature of the X.matrices. 1In Monte Carlo studies

of Rao and Griliches (1963) and Spitzer (1979) where a

separate drawing of X from a prespecified stochastic process
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is used for each replication, CO performs better than

in the fixed X studies, although Spitzer recommends

OLS when |p| < .2. Hoque (1980) shows analytically that
CO 1is better thah OLS when X caﬁgains no constant and a
‘linear or geometric trend.

Tillman (1975) discusses a class of X matrices
introduced by Watson (1967) consisting of certain linear
combinations of eigenvectors of 2 for which the performance
of OLS is especially poor. One might then want to avoid
OLS when X is in or close to this class.

In the comparisons between Prais-Winsten (PW)

estimators (with either és or 8_ or both being considered)

D
and CO estiﬁators, PW generally has lower MSE. Maeshiro
(1979) finds this analytically in the known p case

(which is to be expected, since pw is then BLUE due to
Aitken's theorem), especially for large p whgn X is
trended and for small (in magnitude) p when X is non-
trended, ‘even for sample sizes as large as 100. Park

and Mitchell (1980) recdmmend PW, especially the iterated

version, and Spitzer (1979) recommends PW when .2 < [p| < .5.

The relative merits of SD and BS in PW estimation

(i.e., B. vs. és) has also been considered. Rao and

D

Griliches (1969) favour éD as they find that SD is less

biased than SS. In Monte Carlo studies) however, Harvey
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. Monte Carlo simulations or are anlaytic with

and McAvinchey (1978), Spitzer (1979), and Kramer (1980)

find that és tends to have a lower MSE than éD;

The maximum likelihood estimate éML is found
to be very efficient by Beach and MacKinnon (1978), who
also present an efficient algorithm for its calculation.
Harvey and McAvinchey (1978) find it especially effective
when p is close to one, and Spitzer (1979) recommends its
use when [p| > .5, all of the above results being.based
on Monte Carlo studies,

The studies cited here are based either on_ -7~

peap—_——

e/gssumed

known. In the following section these estLﬁétors are
compared analytically without assuming that p & &Fown

’ ‘ T~
by means of asymptotic approximations to their MSE matrices

using Nagar's expansions.

(11), MSE Approximation55

In this section it is shown that the MSE

approximations of the two-stage éS of (21), the converged

A

: : 5 I S
iteration of Bg (denoted Bs), two-stage BTH'BDW’ B as

TNI

well as 8 are identical to 0(T %). In addition, the

MIJ,

MSE approximations to O(T—z) for éD and BS (which is

‘ealculated by using (34) with 5s in place of p) are derived.

1235
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X

Since the OLS estimator is also useful in
certain cases, its MSE will also be considered. The

OLS estimator is \

~
' -1 v . -
b = (X X) Xy (89)
Its MSE is given by .
" .
¢ ] 1] _1 1 [} 1 _l ‘
MSE(b) = E(b-g) (b-g) = E(X X) "X uu X(X X)

o2yt x'Ix x'x7t (90)

due to the normality assumption (13) and its unbiasedness.

Next, we present approximatibns to OP(T_l)

for the various estimators of p given in section (ii).
] .
These will be required for the MSE approximations which

will follow.

Lermma 1. The expdnsions of the estimators of p of section

1/2

(ii) in orders of probability of T are given by:

S S

1
9_1/2 + 6_1

- 91
+ op(T ) , (91)

by = Pg = (k= Lp/T + o (17 (92)

i



where-

~ A 2 52 o0 2. -1

oow = Pg *t (8] +'éT2/2Tc + op(T ) (?3)
5 =% + o (r™ 1) S (94)
TN DW p

~I ~ ' -1 oL - 2
b5 = pg + (2e APQ) u + u ) pPBPQZ u) /To
-1 P
+ T - 95)

o, (T ™) ' (93)
~ I 2 2 2 2 S B
Pur, = Ps + p(el + eT ¢“)/Toc™ + op(T ) (96)
- D D 21
Py = P + 6 + 8 + op(T ) (97)

-1/2 -1

»

¢ -

S

efl = l/2((e e/T)— o2y /0% ) (99)
. \
D _ ] ] 2
9—1/2 = u CleCpu/Tg- N (100)
D _ _gD -
0_; = 1/2((u cl ,C19/T)- o )/o 8 (101)
A= ((a;.)) - (102)°

9_1/2 = e'Be/Tc2 6iﬁiﬁ
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a T x T matrix with

1/2 if |i-3] =1

i) 0 otherwise
' .
1% -
P = X(X X) IX (103) -
Q=) - X8 X (104)

where ]} is from~(14) and @ from (17),

B =A - oIT (105)
. = : . | "\
oc=1lo:1,,] (106)
\ a (T - 1) x T matrix -
A -
-
Gy = [IT_l : 0] (107)
a (T - 1) x T matrix
Cp = C - pCl . (108)
[ LN -1 ¢ *
MZ =1~ 2(2 2)-"2 (109)

(T - 1) x (T - 1) matrix with

€

jo
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7z = [22, . ,ZT ] ‘ (110)
and
_ o' o'
z, = [1 Xeo1 ¥p ] (111)

where the xo's are defined in (26)

t

when X contains a constant term (e.g., a column of ones),
A

arrd

z, = [xt_l X ] (112)

&
when X does mat contain a constant term, so that Z is

(T - 1) x (2k - 1) when (11l1) holds, and 2 is (T - 1) x 2k

when (1}2) holds,. and e is the OLS residual vegctar

defined ;E (19).

Proof. Considering first 55 of (18), note that it

can be written as

.
~ 1

p. = e Ae/e e (113)

where A is defined in (102). It can be verified that

1/2

(e BRe/T - pozlﬁand (e e/T - 02) have OP(T- )+ since

e'Ae = Tpc2 + Op(Tl/z) and,efe = To2 + Op(Tl/z) so that




55 = {002 + (e'Ae/T - 002)}/{0'2 + (e'e/T - 02)}

(114)

and expand the denominator to giwve the result (91) using

Nagar's method.

The result for 5., of (22) given in (92) follows

TH

from (22). For ¢ note from (24) that the Durbin-Watson

DW'’

statistic d can be written

' ES) - (ei + ei)/e e (115)-

and combining (115) with (23) yields the result for 5Dw

of (93). From (25) it is clear that 6TN and SDW equal

each other to Op(T-l);

For op from the regression equation (26), we
write those regression equations in matrix form as
Yy T Y P Y2 + e : (116)

-~

where y,."and vy are (T - 1) x 1 vectors. equal to y
+1 -1

with y, and y, deleted respectively, % is defined in

-

(110) to (112), and
‘ -,

¢ = legrernreg) a1

130
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N

where the et's are from (6), (7), ahd (26) . Now we

can write the QLS estimate of o from (ll6) as

7
/

/
!
!
1

. i
°p = Y_p Mpy /Y Mgy 4 (118)

from which one can show that

Pp = Uy Mpupy/uny Mpuly

t T

. ' . u CleCuAu Cigzclu (119)

<

where u;l and u,, are defined in the same way as Yo

and Yy of (l116), and MZ"C' and Cl are from (109),

(l06), and (107), respectively. Using Nagar's method
as in the derivation of the expansion for 55 of (113)

and (114), we arrive at the result (97) for 5D'

Since the iterated o estimates of the theorem,

BML I,are functions of their respective iterated

and 6D

estimates of 8, B and é;, their expansions require

ML
expansions of the corresponding B estimate. In

this instance we proceed by:
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1) expreséing the Aitken-type estimator g
using any consistent estimator of p as a function of the
terms of the expansion of that estimate of p (given in
(120) for the general case) so that the 8 expansion in

this general case is given by (125) to (128):;

2) expressing the particular estimate of p in

question as a function of the corresponding g from step

(1) with which it is iterating, namely, 5; of (130)

and (131) and aML of (133) and (134);

3) using the fact that we are considering a
converged solution to equate the general expression for
p in (ﬂ‘gl; which can be thought of as the'p estimate
after, say, i iterations, with the o expression of step
(2), which cén be thought of as the p estimate of the -
particular method after i + 1 iterations having used the

o of (120) from the ith iteration;

4) solving for the terms of the expansion of
the converged o using the result from step (3).
Given any consistent estimate of p, say p, and

its expansion as



vy e g VS e

133
S
1

= p + + 8 + op(T_ ) (120)

O

®.1/2 -1

q

where a term 6, has O(Tl), we can write the corresponding

expansion for g8(p), i.e., the Aitken-type estimator of B

using (15) with p replacing p, by

) ~=1 1 =1
s=s+(x2,x) X )Y u (121)
. Vaanad
and from (38) we can write //
=1 -1 , ‘
2
(1-0%)] = (1-0%)  + ©_1 5 R
2
+ (8_) R+ 08 ) , D
" " —16
+ "o (T ™) (122)
p .
where
D = diag(0,1,...,1,0), a T x T matrix (123)
and
R =

2(pD - A) : (124)

~-1

. . ' -
where A is defined in (102). Now by expanding (X | X) l
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ERS

-around ¢ of (l7f we have a general expansion for some 8

based on a consistent p estimate from (120):

-

~ _ . _yz
B = B + C_l/z + Cfl + 5_3/2 + OP(T ) (125)
where
v -1 .
Gy 2= 9% Y .. (126)
[ -1° 2 ’
1 = f_1,p X RO w/(l-e) (127)
=ax (8 . R + 82 D) Z_l /(1 - o2
*-3/2 -1 -172 D)@ u %)
_l -
2 ' ' : 2,2
871 /2 9% RXEX RQ) "n/(1-0") (128)

and Ly has Op(Tl).

Now for 5I

g’ expressed in expanded form as

SI SI 1

©>
v -

= o + 6_1/2 + 62 +op(T ) (129)




and é; is given to o(r~ 3% by (125) to (128) with the

8's replaced by the eSI's. We can now solve for the

SI

SI

and express it as a function of the 6 7's by using (131)

along with tﬁe,expansion for é;, which when applied to

(131) giwves

N -1 ST . =1 2
u = Mu+ PQ} u - 621/ XoX RQ) u/(l-p“)

{132)

By substitutiné-(l32) into (130), expanding in a Taylor

series about p, and equating the terms of appropriate

N ——

order of (129) and (130), we arrive at the result for

~T

Pg of (95) .

For pML

(125) for éML with the 68's replaced by‘e

we use (28) along with the expansion
ML, '
s

terms for which we need explicit solutions. Thus, we

replace a, b, and ¢ in (28) by their expressions of (29),.

(30), and (31) and with the ﬁt

{
ML

: ; SI ‘
as (132) with 9_1/2 replaced by 9_1/2,

A
(28) by its expansion

e

- " 's by expanding Bé of (130) about p in a Taylor series

and replace BML in

135

, which are the

's replaced by the expansion



- _ ML - ML -1
Pyp, = P + 6-1/2 + e_l‘+op(T ) (133)

Equation (28) then becomes, to OP(T)' after mulEiplication

by the common denominator of a, b, and c,

b

3 2 ML 2 ML

{p + 3p7 8 2

ML
-1/2 +'(3p 6_1 * 39(9_1/2) }

A~ ~2 ~2 2 ML
{(T - 1)u u - T(ul + uT)} - {e” + 296”1/2

T

ML,

ML : 2 ‘ A~
+ (20877 + (627 5)7)(T - 2)u Ad

1

136

ML ML At oA ~2 ~2
- {o + 6_1/2 + 6 JH(T + 1)u u - T(u] + ug)}
Al ~ " Y
+ Tu Au = 0 . (134)
: ML ML > '
By setting 6_1/2 and 6_1 to satisfy (134) to Op(T) we

obtain the result -(96).

Q.E.D.

The results of Lemma 1 can be used tosderive
the MSE approximations, which are given in the following

theorems.
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L
-

Theerem 2. If the disturbances are symmetrically
distributed then the Aitken-type estimators éS' éTﬁ'
B ow BTN, Bgr Byp and B, are unbiased if their meén

A\

vectors exist, and their mean square errors (MSE's)

to O(T_z) are equal under normality assumption (13),

and are given by

MSE(8) = 520 + {02(1_ - 02)/Tp2}nx'QxQ + O(T—z)

. (135)

when p # 0, where Q is defined in (104).

Proof.. Note from (121) and (122) that the stochastic

~

part of the Aitken-type estimator is an odd function of
u for the p estimates considered here, since the 6's are
even functions of u in every case. Thus, when u is

, symmetrically distributed about zero we have
E(g - B) =0 (136)

which proves the first part of the theorem.
For the result (135), we use the expansion
(125) to-give the general formula for the MSE of an

Aitken-type estimator of
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MSE(8) = E(8 = 8)(B = 8) = E(i_),5 & )

*E(o_y p oy ooy bo10)

» *E(e_y,p to3/2 F So3/2 S-1/2

Yol + o (T %) (137)

The MSE for a particular Aitken-type estimator is then
found by replacing the 6's in (127) and (128) by the
particular exéansion terms from the results of&lemma 1,
then taking the expectations in (137). The following
expectations for u under the normality assumption (13)
will be useful, and can be derived from reéults in a paper
of Srivastava and Tiwari (1976) for any non-random T x T

symmetric matrix G; \
E(uGu » ua) =" (tr 3&)§ + 2 JGI (138)

E{(u Gu)2uu } = {(tr IG)2 + 2tryG)G})
o

+ 4(tr¥ae)JG) + 8 YG)G) (139)

Since C—l)Z of (126) is not a function of the 8's we know

\
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that for any Aitken—type estimator which uses a consistent

p estimate,

' -1

= 0 Q (140)

Next, considering.the particular estimate és, we use

the expansion for p_. of (91), substitute these 8's into

S

(127) and (128), and calculate the expectations (137).

Denoting c_l and §_3/2 in the és case as ;fl and g§3/2,

and using

1

MX =0 and Q) X =0 (141)
we find that
] L} L}
S S a S S _ S S ,
E(C_l C-—l/2) = E(r,_l/2 ty) = I-:(t;_3/2 c_l/z) i ,

S S

=0 (142)

Using (139) and eliminating higher order terms we have S
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140

S s 2 ///;f’f~\\\ 5
E(z_y t.y) = {20 (trEMBMz@B@léz\iiJ:/ﬁ?) }
_l’ ’

QX'RQZ/ QRXQ © (143)
~

A
- '

—

This can be simplified by noting that
\ tr)MBM)MBM = tr)B)B + o(T) (144)
where B is from (105). Next we note that
trz2 = T(L + 04 /(1 = 0%) + o(D); T
tr)A} = 2pT/(1 - o) + o(T) ;

erfala = TUL + 08 /(1 - 0% - (1 - 0D/ 2) + o(T)

{145)

which yields

tr)MBM)MBM = T(l - 02)/2- + o(T) (146)

»~

In addition, we can use (141) and

-1
Q] Q=20  (147)




141

2. 71
{(1 =05} + J}/p (148)

el
]

I - ¢ D (149)

o
1]

to show that .

oL 2,2, 2.
X RQ} QRXQ = {(1 - p“)“/0“}aX QX0

+ o(r™h) (150)

| ‘ e

N . .
“cgbining (146), (150), and (143) to simplify E¢>, o,

-and substituting this alon% with (142) and (140) into the
general MSE formula (137), we obtain the result (135) for

B -
s y .

For B

~ A ,,I -~ #
BDW’ BTN' BS’ and}B observe frqg

TH ' ML*

(92) to (96) that the corresponding p estimate differs

from 58 by‘a,term of Op(T—l). From (125) it is seen

-3/2

that the resulting é estimate‘is only affeqted at Op(T )

" and higher. Thus, the resulting MSE.of any of these B's
-~ . ’ ' ' ' ' .
can only differ from g5 in the E(c_l/2 ;_3/2) or E(;_3/2 ;_1/2?

terms, particularly in the term of c_3/2 involving e_l.

[
A
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.95

TABLE 2.

Efficiency Measures of Estimators for M2

R S i e e

42
110

T R A i e

(o]

o
N

.007
.026
.113
.284
.594
.170
.322
.923
.064
.226
.978

.003
.012
.053
.137
.292
.584
.180
.626
.519
.269
181.

808

SAMPLE SIZE:

10

€

1.286

1.297

1.325
1. 356
1.381
1.383
1.348
1.266
1.154
1.048
1.013

e i i i i i

€5

.448
.462
.492
.522
.539
.528
.472
.363
.219
1?
1.

080
029

I SR S T i el e i

[
w

SAMPLE SIZE: 40
P

€

1.033
1.039
1.054
1.072
1.093
1.117
1.144
1.168

1.162
. 1.091

1.035

e e i i e R T R ST

€3

.072
.081
.102
127
.155
.184
.214
.235
.217
121
.051

O NN

L
o>

.003
.013
.054
<125
.241
.428
. 745
. 329
.582
.475
. 309

.002
.008
.036
.089

180

. 329
.576
.017
.978
. 381

.026

.

L I S e R I i T o S

1.130
1.123
1.111

T = TR

.106
.108
.112
.107
.087
.053
.017
.005

.023
.026
.034
.042
.048
.052
.054
.056
.054
.032
.012

.185
175
.156
.146
.144
.143
.135
.110
.069
.026

S T e S R e e S R S S

1.038
1.043

1.052

1.061
1.067
1.071
1.071
1.072
1.067
1.040

1.017

.009

153




the case where G is non-symmetric: r

/
(tr )G)) + J(G + G')Z (154) ¥

[ ]
. E(u Gu - uu )

and

f(tr 1612 + tr TGV (G + G )}I

)

E{(u'Gu)zuu'}
+2(tr Jo)T(6 + G
+2J(G+G)J(G+G))  (155)

The result (151) can be simplified by dropping terms of

higher order.' 1In add!kion, it can be shown that

RS
tr N =0 + o(T) | (156)
2 ' )
tr N° + tr {NlN = 2tr JB)B + o(T)
_ 2
= T(1 - p°) + o(T) (157)
and °
' 2 ! -1
QX JQIXQ = (1 - p“N2X 0Xa + ofT ) (158)
-?' , so we can simplify (151).to-yield (135) for éD.
v
Q.E.D.
¥
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Corollary. The MSE of éS and the other estimators of

theorem 2 is greater than or equal to the MSE of the

GLS estimator B(p) of (15) in the sense that the former

exceeds the latter by a positive semidefinite matrix to

>

0(T"%).

Proof.  The MSE of 8. exceeds the MSE of £(p) to

. - : '
0(T 2) by a positive scalar times 04X QXf, thus the

e COrollary is proved if Q is positive semidefinite. To

see this, note that Q = QE-lQ from (147), and that E—l

* %

T kK 2 kk
= Q Q /{1 - p7) from (39) where Q is” from (40). We
then have

-

¢

k% ' * % . 2 ‘
Q=(Q Q) (Q Q/(1 <« 07) (159)
from which it is clear that Q ispositive semidefinite

. Q.E.D.

" Next, the MSE of the two-step Cochrane-Orcutt

type estimator és which results from using (34) with 58

of (W8) replacing o will be considered.




Theorem 3. I1f the disturbances are symmetrically

distributed then the Cochrane-Orcutt type estimator

BS is unbiased if its mean vector exists, and its MSE

to 0(T %) under normality assumption (13) is given by

MSE(éS) = MSE(éS) + oZQX DOXQ + o(T—Z) (160)

where MSE(éS) is given by (135) and D, is defined in (44).

Proof. We can expand és to O(T—B/2
was done for the general B in (125) by using és as in

v-1

(45) and the expansion for ) ~ of (122). This yields

+

Bg = Bt Ny, vy T3,

where

N1z T Sz (162)

- QX D,u ‘ (163)

) in the same way as

+ op(T'3/2) (161)

1

145



) /7 ' 146

"_3/2 T %32 + QX [6_1/2{Zp + RXQX }Dou/(l - 02)

+ DyXeX Y (164) )

and the ;'s are defined in (126) to (128). Now, taking
the expectation of (8 - B) (f - 8)' as in (137) and

deleting higher order terms, we obtain the result (160).

-~

v

Corollary. The MSE of és to O(T—z) is less than or

equal to the MSE of éS to O(T—z) in the sense that the

latter exceeds the former by a positive semidefinite

matrix.

Proof. This follows from comparing (135) and (160)

1
and noting that QX D,XQ is positive semidefinite since

0

D0 is positive semidefinite.

- ——

Q.E.D.

J




(111) Numerical Experiment

In this section the performances of four
estimators are compared by evaluating the approximate
MSE's of the last section at particular p and X values7

The estimators are

1. the OLS estimator b of (89) whose exact

MSE is given in (90),

2. the GLS estimator B(p) of (15) whose

exact MSE is given by (16),

3. the two-step Prais-Winsten (PW) estimator
BS
(135) of theorem 2, and

of (21) whose approximate MSE to O(T_z) is given by

- 4, the two-step Cochrane-Orcutt (CO) estimator

és of (34) where 58 replaces p-whose approximate MSE to
O(T"Z) is given by (160) of theorem 3. '

The GLS estimator is not operational since o
is unknown in practice, but it will be used as a benchmark
here, since it is known to be BLUE. The comparisons‘arg
done by taking the traces and dgtérminantS'of the MSE

matrices of the opeyational estimators b, ﬁs and BS

and dividing each by the trace or determinant of the MSE

<

147




matrix of é(p)'.~ .
| ‘ éi;ce B(p) is BLUE, we already know that

the resulting ratié corresponding to b will exceed one
due to propertfeé of traces and Aetermigants. It follows
from the corollaries to theorems 2 and 3 that the MSE

ratio for és will exceed one, but will be less than the

MSE ratio of és. Nevertheless, the numerical comparison

will shed some light on the relative merits of b vs. és

and és, and also on situations where és will perform
particularly poqrly.

Since many other estimators were found to have
MSE's equal to that of és to O(T—%) in theorem 2, the
resglts given below for és can be taken as results for
those-estimators as well.

Four mddels or specifications of X, are

considered, with sample sizes of 10 and 40 for each model

and a range of positive p values considered for each model

and sample size. The models for fhe T = 10 case are
) Ml : X = ‘[l X, X, ] ' (16“5)
M, : X = [xl x, ] ‘ (166)
M3 :°x = [1 X4 ] (167)

148




(168) g

where X is the matrix of exogenous variables of model

(1) and
' .
X, = [1.723, .022, 1.157, .504, 2.832, .902,
.853, 1.816, 2.898, 1.019]
x; = [.482, 1.376, 1.01, .005, 1.393, 1.787,
.105, 1.339, 1.041, .279]
x, = [1.809, 2.309, 2.691, 3.191, 4.0, 5.191,
6.691, 8.309, 9.809, 11.0]
f and v '
_ 1/2 _ ] /2.
X, = (Al + AT)/Z ' Xg = (kz + AT_lz/Z p
A B 1/2
x6 = (AB + AT_Z)/Z
and A; refers to the normalized characteristic

, vector corresponding to the i th largest characteristic

R ’ *
_root of a certain approximation to }, call it | , where

-

=1t ~te ~ 01/ - 2%, (169)

-

--and D1 is a T x T matrix of zeroes with a one in tﬁé'uppé;_

- -~_O\




left and lower right hand corner (see Tillman (19?5,

p. 960)).

- M4 is chosen because the X matrix of (167) is

known as"Watson's X" (Watson (1967)) and is known to

be a model in which OLS is particularly poor. The

characteristic vectors Ai can be easily derived using

formulas given in Tillman (1975, P. 965)8. M1, M2, and

M3 are chosen to correspond with the vectors used in a
study by Raj, Srivastava and Upadhyaya (1980). Note that

are non-trended while x

and x 3

X1 2

1s strongly trended.

For the T = 40 case in M1, M2 and M3, the models

given above were modified by using each observation from

the x vectors four consecutive times. For example, when

T

40,

1
x; = [1.723, 1.723, 1.723, 1.723, .022,
) .022, ..., 1.019, 1.019]

This approach was used rather than appending'compiete

L

vectors so ﬁhat ﬁhe "shape' of each vector (particularly

the trend-in x3) was preserved while sample size was

N

: ) .- -
increased.. For M4 the Ai's cdrrespohding_to*{ when

40 are used..

-

T

.
[

.1ESQJj



The notation for the tablas is:

€1

det (b) /det (8 (p))
det (és)/det(é(ph))

det(és)/det(é(o))

tr(b)/tr(R(p))
tr(Bg)/tr(8 (o))

tr(és)/tr(é(o))

(170)

where det(b) and tr(b), for example, represent the

determinant and trace, respectively, of the variance-

covariance (MSE) matrix of b, the OLS estimate of §.

>
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TABLE 1.

Efficiency Measures of Estimators for Ml

PO R S S N i i o i =

N R O T I i I SR S =

w
[

.005
.021
.084
.193
. 360
.607
.971
.505
.269
.292
.874

.004
.019°
.082
.209
.440
.857
.631
.162
.603
.807
.244

N e S S T I o R o =

S = = = T T T R i o

SAMPLE SIZE: 10
eé e3
215  1.431
.199  1.419
.167  1.397
.139  1.384
.121  1.386
.113  1.408
115 - 1.455
122 1.528
.118  1.628
.075 -1.756
.032  1.845
SAMPLE SIZE: 40
€2 €3
.052 1.102
.060  1.115
.077 | 1.142
.093  1.170
.104  1.193
.105  1.209
.094  1.217
.078 1.228
.075 1.278
.116  1.450
132 1.634

Y S =

.002
.007
.026
.055
.093
.134
.170
.192
.182
.124
.072

T = = = = e = I I Sy S

.002
.008
.034
.083
.162
275
.423
.581
1.662
1.511
1.313

1.066

1.060
1.047
1.036
1.030
1.032
1.045
1.068
1.088
1.067
1.030,

1.022
1.026
1.032
1.037
1.039
1.036
l.028
1.022
1.031
1.091
1.122

1.112
1.106
1.097
1.095
1.105
1.138
1.204
1.315

1.477

1.684
1.811

1.035
1.039
1.047
1.055

1.060°

1.062
1.063
1.078
1.145
1.365
1.591
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TABLE 2.

Efficiency Measures of Estimators for M2

w N H H P

W N

o o]

-5
[\S)

.007
.026
.113
.284
.594
170
. 322
.923
.064
42.
110.

226
978

.003
.012
.053
.137
.292
.584
.180
.626
.519
.269
181.

808

SAMPLE SIZE:

10

€2

1.286

1.297

1.325
1.356
1.381
1.383
1.348
1.266
1.154
1.048
1.013

€3

. 448
.462
.492
.522
.539
.528
.472
.363
1.219
1?2080
1.029

e i i i i o o o

1.003
1.013
1.054
1.125
1.241
1.428
1.745
2.329
3.582
7.475
15.309

SAMPLE SIZE: 40
P

€,

1.033
1.039
1.054
1.072
1.093
1.117
1.144
1.168

1.162
. 1.091

1.035

€5

.072
.081
.102
.127
.155
.184
.214
.235
217
121
.051

L T o T S R I S S

1.002
1.008
1.036
1.089
1,180
1.329
1.576
2,017
2.978
6.381

14.026

vy
»

1.130
1.123
1.111

1.106

.108
112
.107
.087
.053
.017
.005

T e e ™

.023
.026
.034
.042
.048
1.052
1.054
1.056
1.054
1.032
1.012

I I R T S

.185
175
.156
.146
.144
.143
.135
.110
.069
.026

e T I S SR R S R N

1.038
1.043

1.052

1.061
1.067
1.071
1.071
1.072
1.067
1.040

1.017

.009 |
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»”

.05
.10
.20

.40
.50
.60
.70

.80

.90
.95

.05
.10
.20
» 30
t.4
.50
.60
.70
.80
.90
.95

.

TABLE 3.

Efficiency Measures of Estimators for M3

T I i i i e i i i o ]

W N = = H = P e

.001
.005
.018
. 040
.069
.106
146
.184
.209
.201
.176

.000
.002
.009
.021"
.041
.075
.133
.242
.482
.165
.016

<

SAMPLE SIZE: 10
ez 63.
1.055 1.323
1.063 1.354
1.079 1.423
1.098 1.504
1.118 1.595
1.137 1.697
1.150 1.806
1.152 1.910
1.133 1.988
1.075 2.007
1.030 1.994
SAMPLE SIZE: 40
€2 €3
1.006 1.072
1.007 1.080
1.011 Y.099
1.016 1.124
1.025 1.158
1.039  1.205
1.062 1.274
1.102 1.382
1.166 1.550
1.216 1.757
1.169 1.820

.001
.002
.009
.019
.032
.046

.063
.058
.039
.023

T I R I S e S N e =

1.000
1.001
1.005
1.012
1.025
1.045
1.080
1.142
1:267

1.512°

1.584

.057

1.277
1.301
1.354
1.413

_1.479
'1.552

1.633
1.722
1.821
1.918
1.956

1.067
1.074
1.090
1.112
1.140
1.179
1.234

1.314

1.430
1.583

1.706
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TABLE 4

Efficiency of Estimators for M4

P el
.05 1.020
.10 1.082
.20 1.370
. 30 2.025
.40 3.472
.50 6.859

.60 15.542
".70 40.626
.80 126.944
.90.. 552.844

.95 (*)
P &
..05 1.029
.10 1.121
.20 1.576
.30 ©2,785
.40  6.209

.50 17.733
.60 67.173
.70 362.582

.80 (*)
.90 (*)
.95 (*)

(*) indic;tes a number exceeding 1,000

€,

1.980
1.950
1.839
1.681
1.509

1.349 .

1.215
1.115
1.048
1:011

1.003
-

€2

<

1.309
1.300
1.270
1.228
1.181
1.135
1.093
1.057
1.029
1.009
1.002

SAMPLE SIZE: 10 .
* * *
e3 ‘\\ el e.2 e
2.686  1.007 1.258 1.401 ,
2.635 1,027 1.252 1.390
2.453 1.111 1.228 1.354
2.203 1.268 1.191  1.304
1.931  1.527 1.149 1.247
1.674 ™' 1.942 1.106 1.188
1.455 2.626 1.067 1.134
1.282 3.838 1.037 1.086
1.152 6.354 . 1.015 1.048
1.061  14.049 1.004 1.020
1.027  29.526 1.001  1.009
SAMPLE SIZE: 40
' * 3 *
° 93 el 92 .e3
1.397 1.010 1.094 1.118
1.387 \T$Q§g\\-l.092 1.115
1.359‘\\\\;;EE;_ 083 1.105
1.299 1.407— 1.071 1.091
1.241._ 1.839 1.057 _1.075
1.183  2.610 L7043 1:058 .
1.130 4.075 1.030 '1.042
1.084 7.180™- 1.019 1.027
1.046 , 15.105 1.010 1.015
1.016  44.708 1.003 1.005
1.006 109.573 1.o001 1.092

-

¢33



27

Some remarks gollow:
- .

~

e 1) OLS is better than PW for small values
of p; roughly for o values less than 0.2 or .0.3, whila
PW is better for higher o values. This agrees with®
.Moﬁte éarlo findings of Griliches‘and Rao (1968) and
Spitzer (1979).

. . 2) The performéhce of OLS for large g\values
is\particularly bad whén there is no constant term (M2
and M4) while PW and CO become almost as good‘as GLS in‘
those casés: These remarks hold tfue especially in‘the

Watson's X (M4) case. Th; OLS result agrees with an
ahalxtical finding of Kramer 11980).
3) CO performs ®orse in models where there is

a constant than in those where there is not. It is

particularl& poop in M3 where there is a constant and a

156

trended -variable which supports a result of Maeshiro (1976).

. 4) The fact that the approximate MSE method

used here cannot distinguish between the two stage”PW,

-

iterative PW, or ML estimators is not a severe shortcoming

&ince these estimators typically give‘similaf results in.

Monte Carlo studies. The case in which they tend to differ

most in those studies is when p is close to one (e.g.,
v r

Harvey and McAvinchey (1978)). This is also the case in
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107

'which the MSE approximation method used here is likely
to be least effective since as E approaches singularity

the deleted terms of the expansions become more important.

-

III.5 AN EDGEWORTH EXPANSION.FOR DISTRIBUTION OF

A_TEST FOR, 8, = 0 .

Park and Mitchell (1980) nqte that the conven-

-

tional tests for the significance of an element of the

coefficient vector B of (4) tend to reject the null when

da

it is true far too often (that is, the type I error is

~actually -much larger than the stated value which is based

on asymptotic results). The test statistic which will

be considered here is the following:

oy 12,2 te-1,.-1 v
W= (Bg) /s [ Icho™h, (171)
where:
4 s‘ y . \ . - R
I T <g" = e e/(T - k) (172) .

~

wﬁeie e is the OLS res;dual vector from (19), (BS)1 refers

-~ ' 4 -— -
to the first element of B, and [(x Tg'X)71), refers

1

. o . v 28 -
to the upper-left hand corner element of (X ES}X) l,

L4 a K

e A - . o

e N a b s s it P lm . 1B st B ¥ e M inn @ s
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‘also consider the iterated Prais-Winsten estimator 8

where XS is formed by replacing p in ) of (14) by 58

of (18). ;he statistic is denoted by W sinoé'it is a
variant of the Wald statistic and in fact, is a Wald
statistic, using a more general definition given by
Stroud (1971), and shares it asymptotic properties.
The W statistic (171) uses the two-stage

Prais-Winsten estimaton»és. Park and Mitchell (1980)
~I

S

and the maximum likelihood estimator BML and decide

that éé is the best, althohgh their Table 6 indicates the
three resulting statisLics give very similar results for
reasonably low o values in a Monte Carlo study. We have
decided to use the éS variant here due to its analytic
simplicity as well as the similarity of the Monte Carlo

results mentioned above and the equivalence to O(T’z) of

- ~
the MSE's of the three estimators demonstrated in theorem 2.

Additionally, the variance estimator 52 in (171) has

-

replaced the corresponding estimate using the second-stage
Prais-Winsten residual vector. This substitutidﬁJis made
because the expansion resulting from W as in (17]) is

even more cumbersome than that of theorem 4 which follows.
Since the motivation behind this expansion is to derive

the Edgeworth correction factor for testing (174), any

additional bias in the test, resulting from the use of 52
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3
i
i
§
- !
. i
instead of og should be erased to 0(T~l) by the
correction factor. It seems unlikely that this
substitution of variance estimators would have much
\ .
effect on the powers of the size corrected®test. For
notational simplicity the S subscripts of (171) will
be dropped for the remainder of this section, so that
(171), along with the variance estimator substitutibn, N
N N Y h 3
can be re-written as
[ 4
_ 22,2 voe-1 -1
W= 8y/s [(x YT X) 111 ) (173)
(i) The Expansion b T ' ' ‘ o
In this section we present an Edgeworth . .
expansion for the distribution of W in (173) to O(T-l)
fofakestigg the hypotheses: v g
. C 3 g
i
Hy By = 0 vs. Hy : 8 #0 . (l?ﬁ)

under ‘the digtributional.assumption (13) and the alter-

native: 3

By = e/Tl/2 "‘ . - (175)
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'

-

Theorem 4. The Edgeworth expansion for the distri-

bution of W of (173) to O(T-l) under local alternative

(175) is gjven by '
Pr(W < x) = pr(xy(s) < x)
. .
+ T_l y T pr(xi+2i(6) %)
i=0 o
+ o(T 1) (176)
where - N
5 = Wt (177)

. - . . t
1s_the non-centrality pagameter, w1 is the (1,1) h

element of @ of (17),

= e - (178)

’

where ¢ is a non-stochastic pre-specified scalar,

Tg = T01191/2 * 3up;ey/4

- Loy 7 ) ey/2

16¢C
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$.

(wll - Y)¢l/2-— 3(wll - Y)¢2/2
‘ o -
+ (0yq = 2Y)¢3/2,
i -1 2
Y¢l/2 +(3wll - 12y + W yY )¢2/4 + Y¢3/2:

[}

-1 2
(3y - wyyY )¢2/2,
-1 2 .
wyyY ¢2/4 (179)

+

T—l{wli(triP ¥ (60 - 2)/(1 - p%) - k
*
+ tr)MBM/p) + mIl Q,.X Xa. (5 - tr)MBM/p)
-2 2 ' re-1l, -1.° 2
SECT{ESUEIRE I E S sy % X0, /0%
(180)
= 1 W3 + a0 #3002 - 0P
- ' 2 2
*owpq 8-X xg.lesp - 2)/p
- ' 2,, - .
+ wlSka, X xa. 2 < 0% /7] (181)

L

i61

v

ey
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= o1 -2 ' 2 N
¢3 =T 7 w;] %.X RORXQ.,/(1 = ¢%) (182)
Y Sy
P = X(X X) X (183)
' ~
X. is the T x (k - 1) matrix consisting of X with the )

G
first column deleted, Ql. is the first row of ¢ and Q.l ,//

its first column, Q is defined in (104), B in (105),

R in (124), and M in (20).

Proof. This proof wuses the same expansion technigue

as the proof of theorem 2 of chapter II. First, we

require an expansion to O(T—l) of Wof (173). The

’apprdach'used here will be to express the expansion of o

W as a product of the expansions of éf, (52)-1, and
T -1~ . *
L(x ) 1 X) l]li. For Bi we can use the expansion for

the B vector given in (125), substituting in 631/2 and

85:

-1 of (98) and (99) to give i

=b_, + +b_, + o (%) (184)

8 -1 7Py Y P

2
1

where . . )

‘5
.
B




-
= 1/2 2
by = Gy, ¥ /TN
= 172
b3z = 2g,102, t /TN
= l/2 2
b_2 = 2C‘3/2[l(c-l/2,l + E/T + C..l'l
" (185)
//\ ,
and | - N
- ‘vl . 4
C']-/211 - Ql'X z ui s
‘ P2
= -1 _
- 11 = 01/ % RoIMw/(1 - 0%y,
— ! 2 l 2
\ C_3/2,1 = %X (B )R+ l/ZD)Q{ Wil - 0%)
2 . ' ' rot L 2.2
621, % -¥ RXQX RQL "u/(1 - o)
- ‘ (186) .
—
where the ¢, ,'s are the first elements of the ¢ vectors |

i,l

of (126), (127),

been dropped from the ¢'s

163

and (128), and the S subscripts have

43
For expanding (s ) l, we can use S 4

]

2

G

2

+ (u Mu/T - 02) + k u'Mu/T2 + op(T-l),

(187)

T T

P T
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l

and expand (52)-l about (02)-1 using Nagar's method

i to give
) A
2.-1 _ -1
(s®) © = c0‘+ 12t c gt op(? ) (188)
4
where
c,. = l/o2 o) = (u|Mu/To - l)/o2
' 0 rT-1/2
% [} ) t .
c_l = (u Mu/To2 - 1)2/02 ~ ku M'u/Tzc.v4 ‘(189)
-‘
»
Finally, we note that *
c-1,.-17-1 re-1 el 'e-1, -1
[ox 17707717 = x 17 7x = X 17 7x, (%] Xg) ‘
xGZ X; (190)
3
P o

" having partitioned X into T * 1 and T x (k-1) suBmatrices
xl and XG' respectively.  Now we can use the expansion
(122) to expand (190) which after some simplification

- .
yields .

o=l -1q4-1 _ 0
[ 17077357 = 2 +ay 5 + 3 + oy (T)

N (191)
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4 ., '
a = o L a = 5 X. RX. /(1 - 2,
17911 832 T 8 1/2%1 6®¥ g )
a = 6% .h/(1 - 0%) + 6 .X _RX..
o~ 8_1/,2 -1%1.6™1.6
(192)
L
‘and
. teml o =1.'c-1
X, ¢ = % xG(xGZ XG)‘ Xgl X, (193)
h = X. DX - X . RX (x'Z'lx ) 1% Rx
1.6"%1.6 7 *1.6 Me¥gl X XRX) g
(194)

B " Ar )
_Using these expansions (184), (188) and (191) we can

write the expansion for W as

_ ) -1
Wo=ng*n_y,p+n_) +o (17 (195)
where
Ng = a3b_1Cqi n_y,p = aylb_je 5+ b_5,56,)
-
t 2y 9b_ 16
> ' /
n.p = aqlb_jc q-+ b 5,505, + b_5¢)
+ al/z(b_lc_l/2 + b_3/2?0) + aob_lcp

(196)




As in (93) of chapter II, we require the

moment generating function (m.g.f.) of W to Q(T-l)

which is given by

Mw(t) = E{exp (tW)}
= E[{exp(tng) J(L + tn_y 5 + tn_,
2 2 -1
tt nZy,p/2)1 + o(T ) (197)

We first require

E exp tng = iexp{t wii(c—l/Z,l + e/m%)2 /6% £ () du
(198)

where f(u) is the density function for the disturbances
resulting from the distributional assumption (13),
which is
)
2,-T/2 -1/2 ‘e
f(u) = (20c7) T/ | 1/ exp(-u ) lu/202)

¢ (199)

Make the following transformation of u:
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’ . “ .
)
1/2_ _ -1 -1, 1/2 . _ *
H %2 =X ) "u- {2t ew /T (1 Zt)}ll’k
(200)
X = Cu ' (201)
where
-1 -1 _
H - Q—Zt wll Q.lﬂls ,\
N (202)
H=oat+ (2t/(1 - 2t)) -1
BT “xr P11 "Lk
Cis a (T -~ k) x T matrix which satisfies './//// Ve
ccCcC=M;, " CC = IT-k; CX =290 (203)

(for example, the matrix used by Theil (1971, p.206)

in the construction of BLUS residuals), is a k x 1

R *
1,k
vector of zeroes with a one in the first element, and

x -
Il K is a k x k matrix of zeroes with a one in the
, .

"

upper left hand corner, and z and x are k x 1 and (T - k)x 1
stochastic vectors, respectively. Furtnermore, x and z
are independently distributed. )

By completing the square in (198) if was,acne

in the proof of theorem 2, chapter II we find that
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E exp tn, =kexp{54} - 2t)-ld}(1 - 2t)-¥/2
/ £,(z)az [£_(x)ax ' (204) )
z x
where f (z) and f (x) are p.d.f.'s g% if
. : o
A . o '
z v N(O, 021) and x v N(O, oZCEC ) (205)
so we have - :
" Blexp tng = explt(l - 26) te}(1 - 2)71/?
. A ,
7 : , ' . (206)

4
, \ ! - N v F
'where 6 is from (107) This is the m;g £ for a non-,

central xi(d) whlch 1s the asymptotlé dlstrlbptlon of
' ! ' " ' >
° ﬁ under local alternatlve (175). In obtalnlng (205) we ;
! ; . h . I
have,uséd ! ' . ’
fuses y
R S .
: b Y .
/2| = japt/ % 2 2672 < (207)
LI ’
‘vo

The higher-order texms in the m.g.£. (197)
are now obtained " transforming the R's from functions

of u to functions of -x and z and then integrating over
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<

those variables weighted by the £ and fz‘functions.

We will again use E to denote this integration as in ,

a

chapter II. The transformations use the following

[y

relations: ~ »
}
u = xert/ 2z + 3¢ (clc ) ik
: T »
i * ~
| -
t + {2¢ tuw l/Tl/zel - 2t) }XQ.
| ¥ 11 1
t
- - 1/2 1/2 ol 12
! C1,0,1 * ¢/T = Q.H %z + (1-2t) ¢/T
? r
! L 1 .
t - | | I
? o Tu = @ (CIC) “x ’ (208)
; ! 1 L] L [] -«
' ) u Mu = x x, u MBMu = x CBC x
; ,/ The expectations will yse the following formulas for a
; : ,
random N x 1 vector v ~ N(0,V) and Bymme{riéﬁhpnstochastic
. g s
. o, C
’ N x N matrices, Fl, sz and F3: o \_//
] . ’ R
E v ﬁlv = tr VFl .
' ' ' ) ’
E v Flv.v sz = tr VFl tr VF2 + 2 tr VFIVF2
4+ - : .
. , Oo. [] . T 3 i
E v F,v -V sz -V FJY = (_n tr VFi)
‘ - i=1
oo ‘ ' (continued.;)




he )

+ 2{t¥ VFlVF2 tr VF3 + tr VFlVF3.tr VF2

» 1 _ —

+

+ tr .VF2 VF3' tr VFl}

+ 4 tr Vﬁl VF2 VF3 + 4 tr VFl VF3 VF2
' (209)
Keeping in mind that
r's
- - Eg(xz) = [ T.gix,2) £ (2) £ (x) dx dz (210)
X z

€ L A

. for any function g(x,z), and asing thq‘independence of
| J

z and #, the zero means of the distributions in (205),

and the follawing table 4 L
' ’ ' L]
expansion terﬁ', powers of ¥ ‘ " powers of z
. \ . =
a 0 \ : 0
y 1 ; .
a even 0
- ¢ 1/2 ..D' . ¢ L] .
.‘! ao' \ x ~~ even ‘ ..0 .
b_, - R - 0 . even, odd
. b_3/2 . - even, odd
p_z . ) . : .even, odd_
co ‘ ' L4 .0- i
€172 . * . 0,
0 o

170

" -
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we evaluate the expectations of (197) required for the

approximate m.g.f. of W.
For E N0 We can use thé above results to

obtain

"Lty Tp/T; Ea, by

U R N I U B! 1 Py G =0
_ r .
- - 3 _ ! . . - 2 -
‘ L Eap b ey = X o RX) ootr IMBM/T(1 - o°)
‘ (211)
7~ ) '
. |
q = w0y (=207 + v - 26)78 (212) »
so that , -
-~ , - -l '
By T (@/Tie] tr [P+ Xy oRX) o
. ) )
tr JMBM/(1 - p“)} - (213)

The expectations required foiNé n_, are

4

Eap by’

N (g w]1/MA2(1 + 021 /(1 = o) -k}

- (214).

where the tr J° formula of (145) hae been used, -

o
.
:




| 9
Bap b g™l
Fa.b .c (wit/T1 - 0?) 1, .X RORXA
7 17=-270 11 , 1 "1
' (215)
which has used the tr fMBM{MBM formula of (146),
5

Eay, by Sy T (729)/T) 0X) oK) /(L - 0n)

(216)
. .

which follows from application of (145) to show that

*
€

\

tr [MBM{M = Tp + O(T) . - (217) \\
‘D
Baj,ba,c=0 - | (218)
. o _ . ' - 2
. | E ag b_1 cy = (ql/T){h p.o) Xl.GRxl.G/Ql p )}
- . ; ¢ . (219)
B - ' » .
Usihg (@14) to (219), we have - >

£ . T S g e

E n_y = (ql/T){wll(Z(l + p°)/(1 - p7)-k)+ h

_ ' P 1 -1 e 2
4o X gRX) /(1 = 0D} + o /T(4= 9]

WX RQRG., - 42200

v - - ‘,, * . *

A

odB .U o aw L "

B I PO T
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- . .
We also réquiﬁé E “31/2 which involves the follewing

.

terms
- 2.2 2  _ 2 -2
E aj b_l c—l/2 = {2wll(l + 07)/T(1 P )}q2
k ]
B 2a) by by, S5 Cyy; T
~ L _ - 5
' _ E 2alal/2b:lb;3/2co = 0,
[}
« . ~ 2‘*\' '2 2 -2 ' » : 2
o E a) blg p S = 4(qy/Twyy 8y X RQRKA., /(1 = o)
.q’ -" : ) h’
b2 c c ., = {-4p X, .'RX
. . -170 “-1/2 P %16 i.a
\ V2 TORR S B
. 2 .2 2 _ -1, 2 2
Eaj p bly = fwgy (¥ R%y gl /T — o) ey
I ) | . ) T (221)
) * where - .
s 4 N L
o IR R W
Ay = 3wy (- 207 ¢ 6yl - B
) ) 1- 4 . - ,/
y +ull Fu- 297 (222)



: =2

_ ) ' 2 .
= {4 w ] nl.x RQRxn.l/T(l p )}ql

2. v T
+ [{2&11(1 + ) -_Apxl.-axl.G -

-1

te X6

2., 2
RXy ) “H/T(L - o) ],

(223)

[

For the mig.f. of (197) we use (213), (220) and (223)

along with

- ' - »
" © LX) GRX

_ o2 =1 -2 Voo
1.g = L F et (e wgy )X X24,)/p

+ o (Tf o (224)

-2 .. 2 2
11 Ql.x XQ.l wyq

-~

h =w 1

- , . 2 ] .
XG XQ.l/p + q(T) (22?)

'S

' 4
X RQRXA., = (1 - ¢%)% 2

-

L 2 o
l.x QXﬁwl/p + o (T

R
(226)

’

' ¥ I
0 After some simplification we have

¥

1

)

‘ ' voe-l, -1
(1 - p“)0..X XG(*G ) Xg)
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‘&
t E(n + 0 ) + t2E ot /2
-172 ¥ o -1/2
- 4 .
vt ] -0t sorh (227)
i=

: L
where the 1's are from (179). Therefore,

%

Mg(t) = exp{t(l - 207ty - 20720
T, (1= 26) 71y 4 o(r7h

(228)

~which can be inverted to give the approximation of

(176) . -

A
+ . -
‘ |

. .

(ii) A .Coxrection Factor

The result (176) ‘can be used to derive an

VEdgeworth‘size correction factor for W. Because there

can be a non—mbnotonicity éroblem here as for-Wt of

section 3(iic) of “thapter II, the critfcal-vglue

¢

cof&ectign method of section 3(iié) of chapter,iI will

be used instead. First, we set.y =6 =0 since we &re



$+

)

»

“

LY
*

conqprned here with the null distribution of W. The
expansion (176) must be written in terms of X2 p.d.f.'s

as in the appendix of chapter II1. Using the notation of

that appendix, with F and f\fepresenting a %2 c.d.f. and
i

under H_.

p.d.f. respectively, 0

1

i

F(x,1,0) + T

e~N

x ,
T f(x, 1+42i, 0)

»

pr(W < x) =
) 1

1

+o(T ) (229)

where

* . y .
Ty = wll(—z ¢1 + 3¢2 - 2¢3)/2
. : . 3.

(230)
* .
Ty = “3uy) ¢,/2

and the ¢'s are from (180), (lﬁl), and (182).

By follawing the same procedyre as in section
3(iid) of chapter II, we arrive at the following critical

value adjustment given the initial critical value x which

is based on, the asymptotic distribution of W, (so that
x = 3.841 for a tdst of asymptétic size 5%):

o

x K K .
X = x{l-(31-+ xr2/3)/T} (231)

N
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I ) i ,
|’ T, are constructed using any consistent
‘. v

and T
estimate of p. For large p values when the over-
rejection problem is most severe, one would hope that

* .
X > X so thag the adjustment reduces the nominal

/

size of the test.

-

Th@ test statistic (173) is not often used;
. 4

“However, the results of this section are pétehtially

valuable for two reasons:

, 1) The application of the Edgew%fth expafision
method to a regres;ibn problem with autoregressive
errors is.new.‘ The step which makes this poésib;e, and
which could probably be used in ather cases with similar
error str&cture, is tﬁe transformation of the erra;
vector u of (200{ and (201)l' Extension of this method
to expansions in cases Qf more general covariance.
struttures ocould be ;one by‘replacing~2 and 2 in (200)
and (ZOZl with the appropriate error covariénﬁe matrix
ana 9}8 éstimator covariance mat;ix, ;espectively. - '

2) This test statistic (173) is not used
since-it is constructed using an inefficient variance
éstim&éor. However, this enables a size correction
)facéon,to be derived which, while algebraically lengthy,
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[

is considerably less cumbersome than it would be when

the efficient varian;e estimatog is used, as in Park

and Mitchell (19805. With more attention being paid

to small sample sizes, tests such as (173) for whicﬁ (/’
some small sample information is known, may be

considered more often. The issue becomes chobsing
between "inefficiency" along with (presumably) a loss

~in power, 'and knowledge of small sample size. A

similar kind of choice is involved when choosing between

the K test of (128) in chapter IV with its local optimality

property, and the EFT test-of (132) of that'chapterikith
its exact small sample distributional property. Another

example is the non-nested situation, of chapter V for

“/

which an exaét kest could be performed by drtificially
constructing a nested hypothesis and usiné the F
statistic of (22) in chapter II, which is strictly less
powerful thaﬁ'the Cox and J tests.of chapter V in the
asymptoticllocél sense of Pesaran (1982), but which

possesses a much simpler small sample distribution.

NI 1 P OOV o < o
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I1I.6 SUMMARY

In this ch;pter some estimation and.testing
problems in the regression model with autocorrelated
disturbancesAare considered. First, it is shown that
the LM test for the existence of the autoco@relation
is numerically robust to the t distribution in the
errors: Next, the{pe;fdrmance of various estima;ors

of the rgg{ession coefficienfs is ¢tompared by approxi-

'hqting their MSE matrices using Nagar!s expansion. ' The

.

results largely support previous-analytical and Monte
Carlo studies. Finally, the distribution of a test
for“significance of a single regression coefficient is

approximated by Edgewo;th expansion, and. a size-corrected

critical value is offered.

B ks
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FOOTNOTES

Chapter III

The use of p requires iteration since it is
a function o?Lthe final B estimate. Four of the
other five estimates, BD excluded, could also

be used in an iterative fashion, with the p

-estimate from each iteration being formed by

replacing e in the appropriate p formula by

the residual vector formed using the B estimate
from the previous iteration. This new p
estimate can be used to form a new B estimate,
and so on. The iterative ﬁS estimator 1is
considered in section 4.

In the student t case, ] = I does not imply that
the elements of u are independently . distributed.

"Better" in this context means "lower MSE".

It is not always optimal to use the correct p
value when estimating by CO. An extreme counter-
example is when X is a column of ones as in
Kadiyala (1968). See Magee (1982, section 5).

Some of these results can be found in Magee, ‘4%
Ullah, and Srivastava (1984).

The "orders" of T here refer to the orders of the

individual elements of the T x T matrices.

Since all MSE's and approximated MSE'!s considered

heére .involve 02 only as .a scalar multiple, the

resulting comparisons .will be invariant to the

trde o2 value as long as it is greater than zero.
—TN e N

Tillman (1975, p. 970) defines Watson's X in

a slightly different way. His definition includes

a constant term while Watson's own definition does

not. (A, is a constant vector.) Consequently;

the markedly poor performance of OLS in M4
reported here is not nearly as severe when

Tillman'® definition is used. .
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Iv. . TESTS FOR INDEPENDENCE IN SURE MODELS

AN
Iv.1 INTRODUCT-ION

-

The Seemingly.Unrelated RegressiontEquation
(SURE) model developed by Zellner (1962) is useful when
a set of regression equations have error terms which
could be contemporaneously correlated and the right-hand
side yariablesmére distributed independently of their
correspomiing®rror terms. An e#ample of such a situation
is a series of aggregate factoﬁ,demand equations, where
each factor.demand is a functioﬁ Bf inpu§ and output ’
prices and output levels (Kokkelenberg (1983)) .

The problem considered in this chapter is testing
for correlation between the residuals of one equation and
those of the remaining (N-1l) equations. If the hypothesis
of no correlation is rejected, then the equation in question
should probably be included with the others in a BSURE

system, Tests are developed and discussed for the two

equation and general N eqnation cases, and the approximdte’

slopes of some of these tests are compared.




Iv.2 THE MODEL-AND ESTIMATORS

(i) The Model g
The model is v »
Yy, = X8 +u
.
! Y; ='XiBi +tu i
"

YN T XN YU ' ‘ BTy

N - ’

where xi is a T «x ki matrix of exogenous variables, Bi is

e

-
. P

an unknown k. x 1 vector of regression coefficients, Y is
. |
i
a T x 1endogenous variable vector, and u i is Pn unknown
. . ’: .l

T x 1 disturbance vector, with

- 4 - 99
*i11 7t Miakg | i1, ]
X, = . . = ' (2)
ity " XiTk, *ir.
" ) X i
: C s
B LSS Yi1 | Y3
. BiTh o pYym | r Jandu T (3)
) Bik . u,



~ ' * . , N
. Where Xigeo t=1,...,T in (2) represents .the tth row
vector of Xi'

Consider a‘? x N stochastic matrix U whose-ith

column is given by‘u.i, defined ‘in (3). We then have,

-

‘l_»ul_l B B S B

th

[ ] . .
where u is the t row of U. - . .

t.

Notice that u.. isafT™x1 column %ector of
regiduals from the ith eguation.acrogswthe T observations,
Y . . . . ;
while u,. 1s an N 1‘1 column vector of residuals frgm

the tth.observation a&rosé'each of ‘the N equationsf It

will be useful in following sections to use both of these -
‘vectors, and so their distinction is'fblbg carefuliy-
» . . _»

noted §£'i?is point.

hd Y . . :
S : - (.
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The following distributional adsumption is

made.

ASSUMPTION
The rows of U are independent identically
distributed (i.i.d.) miltivariate normal with o -
uto Y N(O,Q)’ t = l’--o"I“, (5)
— 2 ' - A
and
wll - lj P wlN
L LSRR ST BT (6)
le .o wNj .. mNN_ .
where Q2 is an N x N positive definite symmetric matrix.

It is useful to write the set of equations (1)

in the following stacked form:

Y = X8 +u N (7)

where N '
] ] vl \‘ .
\ Y = [Yl""’yi""'yu] o, (8)

a TN x 1 vector,




' ' ) s ) ‘
B = [Bll---,ﬁi:---rSN] r (9)

a K x 1 vector with K =

It 2
b3

xlo . 0 .o . 0
X= 0....-:-0x o * e o'e 0 'S (10)
.0
0 ....... . & & @ & 0 OXN .
. -
a TN x K matrix, and
] [ ] 1 L]
u = .l,...,u.i' e e o g —l!}N] I} (ll)
a T™N x 1 vector.
The assumption of (5) implies that .
|
un~ N(0, R @ IT), (12)

where ® represents the Kroneker product. .

185
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|
(ii) -~ Unrestricted ML Estimation
»
Given (12), we have the probability density
function of u as
- - ]
£(u) = (21) NT/ZIQOITl 12 pi-u (981,)u/2}  (13)
We can now write the likelihood function for § and Q:
[
log L(8,a|y,X) = £ = -(NT/2) log 2T
- (1/2) longGITI
: - -1 .
- (1/2) u (QGIT) u (14)
where u = y-X8 as in (7). Using (l1l) and the alternate
Fd

partitionings of U in (4), we can show that

1

uf(nezT)'lu = u (a”

8L )




»
RN
i=l  j=1
*
v T N N
= ] '3 u, . woCu, )
t=1.i=1 j=1 °©* tJ
[
o
= u_. Q u, . (15)
£=1 t t
J
b o
where w> 7 refers to the (i,j)th element of o L.
The log likelihood (14) can then be written as
g = -(NT/2) log 21 -(T/2) log |&]
¢ T ' -1
. - (1/2) } u. @ Tu. (16)
' g=1 ¢
T N T .
where we have used IQGITI = |q| IITI = |Q2|" (see Theil

+ (1971, pg. 305)) and from the definitions in (2), we have

U, = [ylt-xlt.

B - x.. .8

170 Y it Pire Yyt

- th'BN] (17)

Noting from (15) that the first derivatives of

£ in (1e6) are1

. N _—
pe/08y = %, (1 W ug, im0, (18)
j=1

-
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4
and that .
A dii]
az/awii = ~T 7 /2
T o ii '
+ (1/2) ¥ ue 277 a7 u. ! (19)
t=1
) i = l'o.o,Nl
i3 . 7 ' oei g3
32/3w; 5 = =T +'t£1 u e 277 877 u. (20)

i#3,41i,3=1,...,N

where 2'! refers te the i column of n-} and 2% to its

. th
i row.

, Setting the derivatives of (18) to (20) to zero
P

and simplifying, we can show that the unrestricted ML

estimates, § and Q& , satisfy the following first order

condit®»ons:
-1

x [277 @ 1,1y - XB) =0 (21)
B Ot S U S (22)
i=1 ¢ ¢

These conditions (21) and (22) can be written

as

=[x (8! e IT)x]'l x (a1

™

® Iy (23)

o3

N (24)

where

i88



6= [{l.l,...,a.i,...,a. ]l

= [ﬁl.,...,u;.,...,uT.] (25) .

is a T x N matrix of unrestricted ML estimates of U in

(4) , and

Q.. =y, - X.8., i=1,...,N (26)

The above solution is not in closed form, and '
so it is usually evaluated by an iterative procedure.

For example, one could start by using OLS estimétés:

b, = (x;xi)'Ax.y., i=1,..0N (27).
Then equation (24) could be used to estimate @ and the
resulting Q@ could be used in (23) tb get a new estimate

of g. This resulting B is known as Zellnercs two—step-
estimator. If one continues to ﬁse (23) and (24) until
the parameters converge, then the resulting iterative
Zellner estimator can be interpreted as the‘ﬁnrestricted
ML estimatez, and is equivalent to another iterative methoa
proposed by Telser (1964) (seé Kmenta aﬁa Gilbert (1968)) .
There is evidence that in some‘gituations the efficiency |
(in terms of mean square error) of the two-step estimator

of B is'gréater‘than the iterative estimator (Kmenta and




Gilbert (1968), Conniffe (1982)).

It should be noted here that Rao (1974) has

shown that the OLS estimates (27) are more efficient than

the SURE estimates (23) when the cross equation correlation
of the residuals is due to a common omitted variable rather

than due to non-zero off-diagonal elements of @ in (5).

(1ii) Restricted ML Estimation

If it is assumed that the residuals from the
first equation are distributed independently- of the’
residuals from the remaining N-1 equations (which is the

hypothesis to be tested in the next section), then the

»

implied parameter restrictiQn is

-~
L

g1 = [w2l""'wil"‘:.'le] =0 (28)

Y]

where the matrix @ from (5) has been partitioned in the

: following way: -

q = ' (29)
Sl 88

where QS.I i_s an (N-1) x 1 vector, “15 =31 due to the




symmetry Qf f, and Qgg is an (N-1) x (N-1l) positive
definite symmetric'sub-matrix.

It will be useful to partition the variables
from the stacked system (7) to (11} to conform with the

partitioning of & in (29):

1] ' Y1
< B8 = ' y = | '
Bs Ys
(30)
Xl u. g
X = u =
0 X u
- S s ]
where the S subscript refers to the variables from ,
equations 2 through N.
In a qimilar way, partition U in (4) as
U= [u.l US] (31)

Imposing restriction (28) on the log likelihood
function (16), we see that the'réstricted log likelihodd .

function (of the remaining unrestricted parameters) is
s ’ '

L, = ~-(NT/2) log 2n -(T/2) log “11|“ss|

R .
J 11, T s
-(1/2) (ujua e+ i'“se"?ss“sm-." - (32)
., T R t-l . .
' ' e pth ]
‘) ; where u., . refers to the t™ row of Ug.




have from

and //

ahd

wherxe n'i
re llgg

ith‘tow.
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Proceeding as in the unrestricted ML case we

(32),
_ 1l ,
3Lp/3B; = wTXyu (33)
' ‘ ‘
< .
38 /38, = xi(jz2 Wil ueg), 1=2,... 0N, (34)
From (32) we see that
~ ]
BER/amll = -T/2 + (l/2)u.lu.l (35)
_ o ii
32.R/8wii = =Ty " /2
T v i,
+ (l/z)tZl“St'“SS”ssuSt. . (36)
= N
‘ L §
. i = 2’.--’N'
{= i
BER/QH’J'.j Tw
T i3 »
+ z Uges figg  flgg Yge- (37)
t=1
. 1,32 2,...,N; 1 #4, ° v

refers to the i™ column of a-1 ang ot: to its

sS Ss




It can be seen from (33) to (37) thatAthe
derivatives with respect to the parameters of the first
equatign do not depend on any of the other parémeters,
and vice versa. Thus, the restricted ML estimates for

the equation 1 parameters can be written from (33) and

(35) as

n _ ' -1." )

BlR = (Xl Xl) Xl Yy (38)
and

N .\' - .

®11R = Y 1R u'lR/T | (39)
where

and the R subscript refers to restrict ML estimates.
These are simply OLS estimates.
Comparing (34), (36), and (37 with equations

(18), (19), and (20), it can be seen that the restricted

-

‘ML estimates for the parameters Sf equations two through

4 .
N are the same as unrestricted ML estimates treating—

these equations as a SURE system sebarately frém equation
one. In the N = 2 case, then, this would result in OLS
estimates of the parameters of equation two. - Proceeding

in the manner of eguations (21) to-(24), we have

£93
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. . , %
i - l@loe roxo ixlazt
Bgp = (Xglfiggp @ Ip)Xg) "Xglfggp @ In)ye,
. (41
. < (41) )
and
~ At -
25sr = Ysr Usr/T (42)
where
Usp = [u'ZR"'°’u'iR""’u'NR] (43)
and
. ’ ™~
U.iR = yi - xlBiR, 1 = 2,...,N. (44)
1v.3 TEST STATISTICS IN THE N EQUATION CASE

(i) Introduction and Statement of the Hypotheses

As indicated previously, the hypothesis tests
discussed in this chapter are designed to determine
whether or not the errors from a particular equation
(say equation one without loss of'general;ty) from‘the set
of equations (1) are contemporaneously correlated with
the errors of any ofithe other equations. The hypot&eses

are' then ’

=0 v?. Hl : Qsl~# 0 (45)
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- . A
usihg the partitioning of'n given in (29).
In this section the tésts for (45) which result
from application of the LR, LM, and UI principles in the

general N equation case are presented along with derivations.

- -
S

(ii) LR Test

N . :
Theorem 1. The LR test statistic for testing hypotheses

(45) in the SURE model (1) under assumption (5) is given-

by
.
llRlﬁSSRI - .log ) (46)

¢ Q

LR = T(log w

where “11r’ %ssR and {i are given in (39), (42), and

v {24), respectively.

Note:  The outtome of the test with asymptotic size «

is determined by the following decision rule:
’

0 if LR < c(N-1,a)

Agcept H
s . - (47)
if LR > ¢(N-1,a) '

* Reject HO'

4

where

B . - c(N%1,q) satisfies 'prob {xg_lgi c(N-1,a)} = 1-a




This decision rule follows naturally from the discussion )

in section 2(i) of chapter 1.

v

B ]
Proof. Letting 6 = {8 , (vec @) } represent tHe set
of umknown parameters, the LR statistic given in equatior‘(.

(27).0f chapter 1 can be used:

.

»
rs

LR = 2(2(8) - 2(8p)) -~ - '(48)

- - R R .
where 8 and eR represent the 'restricted and unrestricted

ML estimates, respectively. Thus, the derivation of the

t 3
LR test statistic simply requires the evaluation of the .

log likelihood function (14) or (16) at & and at éR,
For thegevaluation of 2(8), note that
- 4
TA“-A-—]_.\ - A ,,_1,! ¢
y U 9T u.. =Ttr OlUU] U
t=1
= TN . (49) 2
by uging (24), (25), (26), and (4).
Substituting f49) into (16), we have
2(8) = -(NT/2) log 2I'- (T/2) log |a|

: - (1/2)NT. - - (50)

¢

o' Similarly, for £(é;), noting that under the




restrictions we can use the restricted log likelihood

(32), which gives

T : (51)

s cLIR
U.lR .lRw- =
and
T R | "_l - ~ O PN _l !
tzl Yse.r fssr Yst.r - T Y Ugr(UspUsp) "Usw
= T(N-1) (52)

by using (38), (39), and (42).

Substituting (51) and_(52) into (32) yields -

~\\iifR) = -(NT/2) log 201 - (T/2) log wllR1922A
- (1/2)TIN (53).
Now substituting (50) and (53) into (48), we obtain o
result (46).
Q.E.D
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(iii) LM Test

The LM test in this section tests hypothesis
(45). The stronger hypothee€is of independence of errors
in each equation from each other equation can also be

tested using an LM procedure as in Breusch and Pagan

(1980). When N = 2, these tests become identical. .
\
Theorem 2. The LM test statistic for testing hypothesis

(45) in the SURE model (1) under assumption (5) is given

by

4 -

LM = T R (54)
where

~2 A N A -~ -1 -t R M N

R™ = U.jp UgplUgg Ugp) = Ugp U-jp/U-jp Uegp

(55)

is the multiple correlation coefficient from the regression

-
-~

£ G.,p on 0 .. ‘and OU._ are given in (40) and (43)

= SR’ “*1R 25 “sr
respectively.
Note. The outcome of the test with asymptotic size a

is given by the following decision rule:
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Accept H_ if LM < c(N-1,a) ' '

0 .
(56)

Reject H

0 if LM > c(N-1,a)

where c(N-1,a) satisfies prob{xé;i‘i c(N-l,a)} =1 - ¢

~

Proof. From (33) of chapter 1 we have
~ ! -~ _l “~
IM =4 I(s.) d (57)

i
\
| whe;;“\\ v

d = az/aelé (58)
Py R

and

I(éR) = -E(2%1/3038 ) (59)

Ll

with the expectation taken using 6. as the parameter

R
values. The elements of d will be zero except for those

terms corresponding to the restricted parameters, i.e.,

the elements of QSl' From (20) we have

li

T
¥ 88/3wy, = -Tw = + Z u . Q (60)

i=2,...,T

- :

- . - = &S1
Evaluated at eR' noting that Qis QR

= (), we have

A WRR iR B Nt s

BT R R TN IR WY S A ORI N - @ S

Ao



38/3w, .|z = % a JLgie g
li'8g  ,2; tIR“R "R "t°R
3 ‘ ’
_ ~11 A ~i.
= U.1r U-sr 9SSR (61)
. _oAl1 -1 8
L. az/anslleR = wh fggp U-gg Y-1R
= d : (62)
p

<

where &p defines the (N-~1) x 1 vector of non-zero elements

-~

of 4.

We are interested in the block of I((SR)_l

.

corresponding to the elements of Q First, consider

S1°

the elements of I(eR) corresponding to second derivatives

of %2 with respect to one element of Q and another

Sl

element of 6 which is not an element of QSl'

can all be shown to be zero, then we need consider only

If these

the block of I(éR) corresponding to the elements of QSl

only in our calculation of LM. This turns out to be the
case, and is shown below.
From (20), using the derivative rules of

footnote 1, we have

, N L
3 =-xi jzl(wil wld + o] wlq)u.j |
. (63)

- 322/3813w

j=2,...,N

200



ST T T R T AT RN e e R T T e TR AR T T T e R R

Skt sl e badin o aets 4 SAndb A Aehiiin adib o sl Adnnenl aatial ol A

¢
so that
—Eazz/as du,:|2 =0 j =2 N (64)
17713 eR ' resss
Using (20) and the rules of footnote 1,
le/awljawkl = T(mlk wJE + wli wjk)
T k12 .2 1k, 3
- ] a - {6877 w77+ 2T e e
t=1
+ Q l(ka a4 w3t Qk )}ut.
(65)
for j #1, and k # &
. AS1
Since QR = 0, !
220/, e, |« = - g o . okl ik i
“15%%ke I gl tl “R ‘YR *R
. ~j2 ke o oon
+ we QR )ut', (66)
for j,k,2 # 1 and k # 2 a
Noting that ;;l = &;1 = 0, and that, taking

expectations assuming parameter values of 5R,

<201




Eu u, . =0’ i=‘2'o.-'N' (67)

tl "ti

we have ¢

-E le/awl = 0, ' (68)

oW [»
J kit eR

for j,k,t # 1, and k # 2

By procedures very similar to the above, it

can be easily shown that

2
~-E3 E/BwljawkkléR = Q for 3,k # 1, (69)

and

-~

|
11's,

rEazl/awljam 0 for j # 1. . (70)

Using (64), (68), (69) and (70), and denoting

'the block of I(éR) corresponding to elements of QSl by
I(éR)p, we now have: g
(b ™hy, = (e 37 (71)
We can then write
' R -1 =
LM = ap (I(bg) 5} d ‘ (72)

iy
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.4 Where ap is defined in (62) and

A 2 '
I(6p), = ~E3 z/anslaqslléR (73)
To evaluate I(éR)p, we have from (65),
azz/awliawlj = T((.ullm:LJ + wll wlj)
. *
T . j 11, i
- 2 ut.{(w°l 13 + w w )w
t=1 -

+ w J(wll w3+ wij wl')}ut.
(74)
1,3 # 1, ;
sSo that at 5 we have
N R
2 A11 ~i§ . A1l % v .5 i
3 E/leiawljlaR = Twp wp” < wp .Z Up. wp” wp Upe
t=1
L )
, _ ol % (aligie galigd
“ROLE YelVURUROTUR YR Ve
“ij ~11 '
+ “’RJ R A R (75)
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’

Evaluating gﬁe'expectation of (75) using

A

6. as the parameter vélues and noting (67), we get

R €,
2 ‘ o <11 Aij
~11 Y | :
we T wp QR wg
~11,2 ~ij
. (wp) " wg™ (Tey; )
“‘ﬁ
;- = -7 le 6x, LiiA1 (76) ‘
!
’ |
i
This gives the result ~
' %
, _ ; |
A A1l a-1 ‘ ' |
I(6p), = T up fggp . (77) |

Substituting (62) and (77) into (72) and using (39) and ’
(42), we have the pésults (54) and (55). The decision

rule (56) follows from the discussion of chapter 1.

.

Q.E.D'

'
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A test for hypotheses (45) can be constructed

L3
:

by using the infinite VI procedure of chapter 1, section
. [ ]
2(v). This test w;l{ have a known small sample distri-

bution when it is based on the OLS residuals from the

following regression equations:

Y, = Xy, + vy, i<=l,...,Nv "(78)

k]

* * i L
where X is a T x K matrix which includes all of the

—

columns of X;s xz,...,xN with no column appearing twice.

*' % ., *
* We assume that X X J;s non-gingular and that K < T,

which will be the case in most econometric applications.

The OLS residuals from the equations (78) are:

3

>

o, ‘
vi = My, S i=1,...,N . (79)

where

=
]

oo xR 80)

The advantage of using the Gi's is that the
resu;ting variance-covariance matrix has the following

exact distributional property under assumption (5):
»




where

and wi refer

analog to x2

Lal...&i..wqx] [ol...éi...GN]/T

~ T a “

vV - s . (82) S

s to the Wishart distribution,the multivariate *

» (for properties, see Muirhead (1982)), with

T-K* degrees of freedom, Q has a mean of @, and v
v = [vl.. Vi VN]’
[vl VS] (83) v
) ]
Theorem 3. Applying the infinite Ul test procedure of
section 2(v) of Chapter 1 to test hypotheses (45) using _"
the matrix 2 of (82) yields the following test statistic:
0 .=] o~ < a4 .
UL = Tig) 855 851/v1) . (84) ~ .
where & has been partitioned identically to @ in (29). ¢

Note: Unlike the LR test statistic of (46) or the LM

stati

~

stic (54), this UI statistic has a known exact

-

LINEY




small sémple distribution under H, (see Srivastava

0
and Khatri (1979, pp. 223-4)). Critical values

can be taken from these distrigutional results or
more conveniently from tables and'graphs in

Morrison (1976}.

Proof. As in (46) of chapter 1, form the following sub-.

FO N .
- hypotheses of the main“hypothesis (45):

] | O

HO’& : a QSl =0 vs. Agl¢q :?a QSl-fip (85)

F]

where a is any fixed non-null (N - 1) x "1 véctor.

To test (85), consider the statistic

-

v

_ [ . 2 l., ' i ) '
UIa—’I‘(a 951)/("11(3 sta)‘), . (86)

which is T times the sample correlation coefficient of Gl
w2 ‘ ’

~

- ‘ ~
and [V2"'Vif"vN]a' Under H, we have

E vi([vz...vi...vN]a) =0 . | (87)

where

«
V. ==yi~ - X,

i 1 Yi T Y3 - X8y = ou.y (88)

since, if the equations (l) are correctly specified,

207




then the coefficients of Yi corresponding to columns of

'x; which are not in X, are zero. This fact, along with

the normality assumption (5) implies that the tes;
statistics (86) have identical distributions for all a

under thérnull. We can then proéeed to find a UI statistic

by finding the maximum of the UIa's in (86) over a. This

maximum is ] .

] =1

Ul = T sle Qgg Qsl/ (89)

Vi1

Q.E;D.

(v) Remarks

1) From the discussion in chapter 1, section 2,

we see that under Ho

2 2
LR~ xg 1 @ T > = and LM v x4

] - ‘ag T + = (90)
A
| ‘
/

While this does not provide any criteria for
choice between LR, LM on asymptotic grounds, it 'does
allow for a rough comparison of rejection probabilities
by comparing approximate slopes. ’Calculation of the

approximate'slopes ASLR, ASLM is simple due to the

208
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asymptotic x2 results (90). .

Theorem 4. The approximate slopes of LR in (46) and

IM in (54) are, respectively,

_ 2
AS_, = -log(1-R%)
2
AS., = R
where
2 v -1
R™ = fg; Qgg fgy/wy)

4

(91)

(92)

(93)

and the variables in (93) come from the partitioning of

Q in (29).

Proof.. Due to the asymptotic x2 distributions of LR

-
and LM, we can use

ASLR = fim LR/T
T

(94)

and similarly for LM, using a result of Geweke (1980).

Since wy)ps Hggp

we have

) , and Q are all consistent estimates, -




-

210

ez -~ -~ - I : »
AS o = 2im {T(log wy;plfggql log|a|)}/T
) , T->c0
= log.mlllﬂssl - log | &
= -10g(|ﬂ|/wlllﬂssl). (95)

Using a result in Muirhead (1982, p. 581), we
have

_ RS |
la] = laggl(uyy - gy 8g5 gy) (96)

By substituting (96) into (95), we get the result (91).

For AS we note from the consistency of élR in

M

(38) and BSR’in (41) that ¢

U 6/T=n+op(1) “ (97)

where

~

Ug =.[u.15 Uggl &98)

and u.,, and Uy, are defined in (40) and (43), respectively:

Applying (97) to (55) we have

/% = r? +.op(l)' St " (99)

[ 4
.

Therefore, wsing-(54), Ca
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= gim 'rfzz/'r
T

&

Q.E.D.
Corollary. Under Hl (i.e., when R2 > 0),
. ASLM < ASLR.' : (100)
Proof. This follows from noting results (91), (92),

and the following inequality from Korovkin (1961, p. 40,

inequality (23)):

1/(n + 1) < log(l + (1/n)) (101)

-

where one can substifute (1 - Rz)/R2 for n to give (92).

r

]
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This result suggests that when asymptotic
critical values are used, the LR test (46) will tend to

reject H, more often than the LM test (54).

0

} = = = = =*
2) The special case Xl = ,., = Xi = J.. XN( X))

>

is sometimes of interest. This case corresponds to the
reduced form system of a simultaneous equation model3
as well as occurring in‘some other contexts (e.g., Abel
and Mishkin (1983)). First, we note that in this case the
restricted ML, unrestricted ML, and Ons\sftimates of the

Bi's coincide (see Kmenta and Gilbert (1968)). It can

also be seen that the regression equations (78) will now

be the same as the equationf of the original model (1l).

©

These observations imply that

-~

« V=0-= Ug ' (102)€

where these matrices have been defihed in (83)a (25), and

(98) , respectively. The result (102) implies that.

L+ and és = Q (103)

11R _ “1 SR SS

Theorem 5. When X, = ... = X, 0= oo = Xyr the following

o

’

results hold:




-

LR = -T log(l - R?) | (104)

IM = UI = TR ' (105)

Ul (106)
- ’/ \

1

i

LR > LM

where R® is. defined in (55), but can HBe written in a

variety of ways due to (102). \\\\~,///

Proof.  Noting (103), (55) and the definition of LR
in (46), the appropriate substitutions and the manipﬁlation
of (95) and (96) give result (104).

Result (105) follows from noting {(102) and (105),
which imply the equivalence of LM in (54) and UI in (84),

and (106) follows from inequality (101)4.

3) The tests given in this section can be
extended to the case where the hypothesis concerns'the
independence of the residuals of one gset of equations

from those of another set. The hypotheses are now still

ANV '
/ Fo P gy = 0 ve. Hl P Rgy ¥ 0, (107)

Q




-

but QSl is now an M x (N-M) matrix, 1 < M < N, and so

we have repartitioned & from (29) as

11 1s

(108)

Lo
!

Sl SS

1

where Qll is an M x M matrix and @ is an (N-M) x (N-M)

SS
matrix, both being positive definite symmetric. We will

use this partitioning for ﬁR and @ in the definitions of

the test statistics.

The restricted ML estimation will now involve
the estimation of two separate SURE systems by unrestricted
ML corresponding to the first M and remaining (N - M)
equations. |

The LR test is

LR = T(log|® - log |&]), (109)

11r! 1 9ggrl
which has an asymptotic null distribution of

2
LR ~ XM (N-M) under H, as T + = (110)
from which criticél values can be taken.

The UI statistic for testing (107) is

214
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where chl(D) refers to the largest characteristic root
of D. An exact test for (107) using UI can be constructed
using the distributional result given in Srivastava and

Khatri (1979, p. 224).

4) If V of (83) is replaced by ﬁR of (98) in
the calculation of the UI statistic (84), then we have -
instead the LM statistic (54). The advantage gained by
using V from the artificial regfessions, then, is a known

small sample distribution for the resulting UI statistic.

5) When V is used instead of the first-stage
U matrix of (25), which is composed of OLS residuals using
the bi estimates of (27), in the calculation of the two-
step Zellner estimator of section 2(ii), the change in the
mean square error of the estimates of B is smaller than
O(T_l) (see Srivastava and ppadhyaya (1978)). While this

fact concerns an estimation problem rather than a testing

problem, it may be an indication that the loss of efficiency

in the estimation of § caused by the misspecification
involved in the calculation of § may be small enough to
justify the resulting gain in distributional knowledge of

UI over LR and LM.
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IV.4 TEST STATISTICS IN THE TWO EQUATION CASE
The SURE model with two equations is of
special theoretical interest since it is analytically
simpler to deal with, and is of some practical interest
as well. 1In this section, tests are presented for the
two-equation version of hypotheses (45), which involves a
single restriction ,
"
¢
Ho wyyp = 0 VS, Hl :‘w21 # 0 (112)
where the partitioning of @ in (29) now consists of four
scalars:
“11 “12
Q = (113)
“21 w22
In this case, restricted ML estimation simply involves |
two OLS regressions. { ’

(i) LR Test

Corollary (to theorem 1). When N = 2, the LR test
statistic for nypotﬁeses (112) is given by

-y
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LR = T(log @

11r “22r = 109 [e]) - © . (114)

Note. To perform a test of asymptotic size a, -

Accept H, if LR < c(l,a)
‘ (115)

Reject H0 if LR-> c(1l,qa)
where

c(l,ay satisfies prob{xi < c(l,a)} = 1-a
Proof. By setting N = 2 in (46) and noting the
partitioning (113), we get result (114).

’ . :
Q.E.D.

(ii) LM Test

Corollary (to theorem 2). When N = 2, théM test

statistic for hypothesis (112) is given by .
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a2 A " -~ 2 AT ' at A
b —,(u’lR u.2R) /(u.1R u.lR)(u.2R u.zB) (117?

is the squared -correlation of ﬁ'lR and G'ZR of (40) and

(44) .

Note. For a test of asymptotic size a using LM, follow

the decision rule (115), replacing LR with LM.

Proof. Since N 2, the inverted matrix of (55) is

a scalar since

U._ = u. ‘ | (118)

and so results (116) and (117) follow.

Q.E.D.

(iii) UI Test
Corollary (to theorem 3). When N = 2, the UI tést
statistic for hypothesis (112) ig;given'by )

‘ o
At A 2 At A P . ) .

?I * T(vy Vz) / vy vl)(vz vz) ' (119) ’

where the Gi's are defined in (79). A : N

-



j»

Note. The selection of a critical value for the exact

X

test can again be taken from Morrison (1976).

Proof. Setting N = 2 and noting (82) and (83) makes the

result clear.

(iv) W Test

’ By applying the Wald test principle described
in chap‘%(iii) "to the N = 2 case of model (1) we

arrive at the following theorem:

Theorem 6. When N = 2, the W test statistic for

hypothesis (112) is given by

Cw w22 s on .2 ,
W =T wlz/(wll wg s + wlz) - (120)

where the w's come from the partitioning (113) of & in

(24). .

e
Note. For a test\aving asymptotic size a.ising W,

-

"follow decision rule (115) replacing LR with W.
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Proof. We wish to calculate the right-hard side
elements of the formula for W given in equation (31) of

chapter 1, repeated here:!
)
La' 1t g (121)

L o

W= g(e) [G I(8)
where detailed dgefinitions of these elements can be found
in chapter 1, section 2(iii).

Since the restriction of H, is o = 0, we have

0 12

.
and i bj
-~ N _1 A ~ ...1
G I(8) - G = [1(8) ]p, (123)
- ) e
where [I(é)_l] refers to the diagonal element of (8"t
corresponding to wige . B
The calculation of (123) is simplified by
noting that
E 2%2/2 38, = 0 i =1,2, (124)
“21 “Fi BT Ses .

where ¢ is given in (16), and the derivative formulas
of footnote 1 are used. This result allows us to consider

only the 3 x 3 diagonal block of I(8) corresponding to the

-
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elements of @, which we wil} denote by 1(6)9. Taking
minus the exbect the second derivatives of ¢
with respect to the elements of 2, evaluated at i,

we have

- X —2) ~2 .2 e e e
1), = TI&| 7| d22 6i,/2 ~iy 505,
2 ~2 .
. 81272 w)y/2 “u1g ¥y
015 byy "B, &11 @ o il )
8 11 22 12’}
(125)

[I(é)-l]p is the (3,3) element of [I(é)n]-l. Usiné the

partitioned invef;e formula (Theil (1971, p. 18)) and

noting that v
F “22 T¥12
‘ ol =1a7t (126)
Y12 “11

it can be'shown that
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[I(é)'l]p = (&11 &22 + &iz)/T (127)

Substituting (127) and (122) into (1l21), we arrive at

the result of the theorem.

(v) K Test
b

A test proposed by Kariya (198l) for the N = 2
case was shown in that paper to be locally best invariant5

unbiased, and is based on the statistic6

_ _ _ 22 _ _n2
K = {(T-k;) (T-k,)/T}r {(T-k)/TH(1 - R|)
- (T - ky)/T} (1 - R2) (128)
where'R2 is the R2 from a regression of u on X Rz
I " ""1R 2’ 72

is the R2 from a regression of u. on X,/ and £2 is

2R
given in (117).
Kariya (198l1) gives some approximations to the

null distribution of K. An asymptotic critical level

could be selected by noting that

im Ri = 0" under H i=1,2 (129)

T4

OI



{
g X
so that A
. . ~2
£im K = 2im T r~ - 2 3 .
Tow T e
= tim LM - 2 under Hj (1367“\\
T *

. /

-

where LM is defined in (l16). We could then use (K + 2)
in the same way as LR in the decision rule (115) for a

. test of given asymptotic size.

4

*
(vi) LR Test

-

Suppose the likelihood ratio test construction

principle is applied to the Wishart density result (81),

-

instead of the overall density (12). We can treat Q of

(82) as the data and 9 as the nowh parameter, use

(8l1) to obtain a likelihood function fgr Q@ given 2, and
proceed. It is a standard statistical result that the
unrestricted ML estimate of 2 in this framework is & while.

the restricted ML estimate (subject to w = 0) is simply

12
@ again only with 512 = 0, due to a property of marginal
Wishart distributions (see Muirhead (1982, p. 92, theorem

3.2.7)). Application of the LR érinciple in this setting

1

yields

223
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‘ REF -
S y ) N
LR = T{log w;; wy, = log| @]} (131) :
where decision rule (1l15) is used.
(vii) EFT Testr
- ’
In a recent paper, Harvey and Phllllps
(1982) propose a test for (112) which is also based on
elements of Q@ of (82). This proposed test is kr‘awn to
have an F distribution under the null, hence is called the
"exact F test". The statistic is
] ’ -

[ Y

EFT = (T - K - 1) a5,/14] (132)

and it is known that

EFT ~ Fl,T-K*—l under H, (133)

(viii) - Remarks

1) It is easlly shown that the ‘three tests

based on Q of (82) given abova, ul, LR ’ and EFT, awe

monotonic functions of each other. From their definitions

. e

e ' . . R )
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in (119), (131), and (132), some algebraic manipulation

>~ . reveals that

i

LR -T log(l-(UI/T)) (134)

(T - K° - 1)UI/(T - UI) (135§

-

EFT

This implies that these three tests will result in the
same decision if exact critical values are used. . Since
the exact distribution of EFT is well known and tabulated,

it would be the best of the three to use.

2) The asymptotic null distributions of all of

the above tests are easily derived from previous results.

~ i MY

9 Theorem 7. The asymptotic null distribution of each of

* .
LR, LM, UI, W, (K'+ 2), LR , and EFT of sections &) ._ h

A T
through (viif~ is xi.
- S) .
o . Proof. This result follows naturally for LR, LM, and

W from the discussion in section 2 of " chapter 1. The
result for K then follows from (130). ) j

The result for EFT follows since we have

(136)

™
e
8
]
o)
i1}

*
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(see Muirhead (1982)), so that

2

llm‘Fl,T—K*-l = X3 (137)
T
For UI and LR*, note from (134) and (135) that under
HO' when UI has 0_(1l), we have
P .
&
. gim LR® = gim EFT'= gim UI (138)

. T T+ | T

et

From (137) and (138), we get the result for UI

*
and LR . RV

3) Consider the special case xl = xz. The

following theorem expresses the seven tests (i) through

(vii) as monotonic functions o¥ each other in this case.

- &

Theorem 8. When N = 2 and X, = oo which implies

1
k, =k, = K*, the following results hold:
8
\
%* ‘2 .
LR=LR = -T log(l - r"™) (139)
W=t %/ + % ] (140)
M = UI = T 2 - (141)
T~ K = ¢(0 - K)2/m122 - (142).
- : 52 A2, /
EFT = (T - K* -1)xr“/(1 - ) - (14 3)

«
) L ’ -
”~ ,



-

where 2 is defined in (117), which yields the following

- inequalities when fz > 0:

*
W < (LM = UI) < (LR = LR ) (144)
K < (LM = UI) (145)
. , . * ~2
IM < EFT if and only if K + 1 < T r (l146)

* * -~
W < EFT if and only if K + 1 < (2T - K -1)£°
(147)

Proof. Note that, as in the N equation case, xl = x2

implies that (103) holds. Thus, using (24) and (117),

we see that

~

-2 _ - /a
L = wi2/¥11 “22

Al oA At A

(v v,) 2/ (v vp) (v, vy (148)

so that simple manipulation of the test statistics yields
(139) to (143). Result (144) follows from inequality
(101), while (145) to (147) follow from simple manipulation.

-y

Q.E.D.

22
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These inequalities can be used to form inequali-
ties for rejection probabilities when asymptotic critical
values based on the result of theorem 7 are used. One
would want to use EFT in this situation due to its simple
small -sample null distribution, since (139) to (143)

imply that the exact tests are equivalent.

5) Theorem 7 allows a comparison of the

approximate slopes of some of the tests for the general

-

case X, # Xy which are given below.

<

Theorem 9. When N = 2, the approximate slopes of the

tests (i) to (vii) for hypotheses (112) are given by

2

AS__ = AS = -log (1 - r%) (149)

LR LR*
AS. = AS.. = AS, = r2 (150)

LM UI K

_ 2 2
ASW =r /(1 + ") (151)
_ 2 _ .2
ASEFT = r /(1 r’) | (152)
where
2

(153)

r° = 2 /
ST W127911 Y22
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from which it follows that

AS . < (AS = AS

W M ur = ASg) < (ASpp = AS;.,)

R

< ASEFT s (154)

underx Hl.

Proof. Under Hy, P # 0, and T » », the unrestricted
ML, estimates approach their true values, as do the

restricted ML estimates apart, of course, from alZR = 0.

-

This implies that

, At - 2,, " ~ ~t - _ 2
zlm(u.lR u'ZR) /(u.lR u.lR)(u.2R u'ZR) = r

T J——

(155)

A

Also, since V1 and Gz'approach their true values, .
we have

1

st e 02,5 st oa 2
vim () ¥ )%/ vy V¥, V) =1 . (156)

Tre

Since theorem 7 allows us to calculate the approximate

slope of each statistic, take LM for an example, by

/



AS = ¢im LM/T, - (157)

it is simple to verify (149) to (152) using the above
results.
Using the inequality (Korovkin (1961, pg. 40,

(23))) -

l/(nv+ 1) < log(l + (1/n)) < 1/n, n > 0, (158)

‘and letting n = (1/r®)-1, inequality (154) is established.

Note that (154) also indicates a possible
ordering for the. rejection probabilities of the wvarious

tests in small samples at a given asymptotic critical

level, as discussed in Geweke (1980).
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FOOTNOTES

Chapter 4

The following matrix derivative results were used:

3 log[Ql/Bmi. = o, ale/awkk = = wlk ka and

J . .
amlJ/awk2 = -wlk wzj - ulz wkj when k # 2 and & is
symmetric (see Rogers (1980, pg. 80)).

Zellner (1962) origiﬁally derived this estimator in
a generalized least squares framework, but the

. iterative Zellner estimator is also ML due to the

normality assumption (5).

Usually, however, the reduced form coefficients will
be subject to overidentifying restrictions.

This uses the sameAgrocedure as for proving (100),
replacing R? with RZ.

Invariance here refers to invariance to the group

of linear transformations of the dependent variables
and corresponding linear transformation of the
regression coefficients (see chapter 1, section 1. (vi)
for a fuller discussion of invariance).

The statistic given in Kariya (1981) is actually TK,
but it is presented in a form here that is more
comparable to the other statistics. ‘

331




\\
N\
~
~
~ .

V. - TESTS FOR NON-NESTED REGRESSION MODELS
. . 1]

t

V.l INTRODUCTION

The hypotheses considered in earlier chapters
are nested in the sense that the null hypothesis is a
special (restricted) case of the alternative hypothesis.

In this éhapter the two hypotheses are each single

AN

s

‘regression equation models of the simplest kind with

the same dependent variable, as considered in chapter I1I,
but neither is a restricted case of the other. The
linear hypotheses tests used in that chapter then, cannot
be used here without some modification.

Several tests have been proposed for this kind
of non-nested hypothesis (see Fisher (1983a)). The
three tests that are considered in this chapter are the
Cox test, first proposed in this context by Pesaran
(1974) , the J test of Davidson ‘and MacKinnon (1981), and
the F test, which is the same as th;t of chapter II after
the hypotheses have been altered so that they are
artificially nestedl.

In the following secFioh the hypothéses and
tests are déscribed formally, and the local alternative

concept used by .Pesaran 41982a) is presented. The
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Edgeworth expansions for Jz are derived under the null
and alternative, followed by a correction factor which
could alleviate the over-rejection problem noted by
Davidson and MacKinnon (1983) and Godfrey and Pesaran
(1982) . Finally, the small sample behaviour of the

Cox and J tests are coﬁpared using the approximate slope

ratios.
V.2 THE HYPOTHESES AND TESTS .
(1) The Hypotheses *
The hypotheses to be tested are
Ho ty =X 80 + u0 vs. Hl Ty = Z,Bl + U,
(1) B
where )
- 3 .
X =[w Xl 1, Z = [w len . (2)

and X is T x k., Wis T x kc' X

0

1 18 T x ky, 2 is T:x k

1’
_Zl is T x kz' and | oo §

A

2

u; v N0, of I (3)

)y i=

’o,
-
-

T . -

L34
-




For the hypotheses to be non-nested we

require that kx and kz exceed zero, that no column of

xl can be expressed as a linear combination of the

columns in Z, and similarly, no coluwan of Z1 can be

expressed as a linear combination of the columns in X.

(ii) The Cox Test

b

.This test was first proposed by Pesaran (1974)
and was based on suggested procedures for more gengral

non-nested cases by Cox (1961, 1962). The ‘test statistic

is
_ "2 ,.2 "2 At A .4 .1/2
N —“T log (ol/olo)/2{00 . eox Mlmomlx Bo/°1o}
(4)
where .
- io= x0 'y 82 =y My 6% =y Moy/Ts
0 d 1 14/ = 0 0 '
.2 3 ,.2 Al t -
%0 = % ‘+ (BOX MlXBO)/T; M0=IT~P0, Ml = IT-Pl
|} _1 ] ' _l [] , . .
Py = X(X X) "X ; P, =12(2 2) "2 (5)

1

It can be shown-that asymptotically under the

null, N ~ N(0,1). The asymptotic test procedure, then,

-

¢
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is a two-tailed test for N having mean zero or,
equivalently, a one-tailedtest for.N2 being‘an
observation from a central xi, since asymptotically
under the null, N2 " xi. The }atter form of this test

will be considered here. -

(iii) The J Test

This test was frfst proposed by Davidson

and MacKinnon (198l1). The test statistic is

B ~ ] a o at ' N
J = B,2 M.y/c (R zmze)l/2 (6)
1 0 1l 0" "1

where

B, = znlzy -

' | \

and Gzis the mean square residual from the following

'
+

~

regression:
: | y = %8 + A(Z §;) +u (8)

The J test can be interpreted as a test for
the significance of the regreéssion coefficient corres-
ponding to the vector of predicted y from OLS on the



alternative model when included along with X in the
null model. As in the Cox test, asymptotically under

the null, J ~ N{(0,1), and so J2 v xi. The asymptotic

test, theﬁ, would be the same as for the Cox test with

J {or J2) replécing N (or N2).

(iv) The F test $

Another approach is—+e.combine X and 2, and

1
regress y on them all. The null hypothesis would then

imply that the coefficients on the Z, vectors are zero.

1
This can be tested by using the F test discussed in

-

chapter II. The test statistic is

' ]
F={y (M; - My/k,}/{y My/(T - k5 = kj)}
(9)
where
DU RV I ) ~ - )
M=I-2(227 8 z=[x 2] (10)
is a T x (k0 * kz) matrix ‘
Under the null hypothesis, F ~ FkZ'T-kO;kz.
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An advantage of this test, then, is that its exact

null distribution is known®™ For comparison with N2
2 : el .2
and J , the asymptotic result lim g F H

can be
NE o) q,v Xq .

used to show that kZ F xi under the null asymptotically.
Z

Al

(v) Asymptotic Distributions Under a

Local Alternative

Pesaran (1982a) derives the asymptotic distri-

butions of these tests under the local alternative3

—l/2A'

[nN]
I

XB + T (11)

where

A = [0 AZ] (12)

is a T x k, matrix, B is k., x k

1 A, is T x kz,

0 1’ A

and the ineguality kl < ko has been imposed. He

considers the}LM test instead of the F test since

they are eqéivalent here, as in chapter'II. The

/7 ) . 5
asymptotic distributions of the three statistics under

the local alternative (11) are non-central xz, with

237
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where

] [} - . 2
12 8z Mg by 815/To)

is the non-centraligy ga?hmeter, and
) vV e

(13)

(14)

(15)

where Bl is a kZ x 1 vector partiitoned conformably

with AZ'

Using (6) it can be shown that when kz > 1

then the F test is asymptoticdlly less powerful than the

Cox and J tests4.

In thq\iipe'paper, a Monte Carlo study"

confirms that the Cox test is more powerful than the

F-test in small samples.: Davidson and MacKinnon (1983) -

and Godfrey and Pesaran.(1982), find that the J test has

good poﬁer properties, but rejects too often in small

samplés.

23
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V.3 APPROXIMATE DISTRIBUTION OF J2 AND A

2

SIZE CORRECTION -

-

- -

In the case éf nésted hypbtheseé (such as
the artificially,nested hypotheées tegte,d'by the F
test) it is only mecessary to perform one
expansion since the null is jﬁst‘a restricted version
of the general case. In a non-nested test such
as the 3 test, however, t&o expansions are required,
one gor éach hypothesis. These\two eﬁpansion approxi-

-

“mations are given below.

-

(i) Distribution of J2 Under the Null

Theorem 1l. The Edgeworth approximation £o the

cumulative density function of J2 of (6) under Ho

when testing against local alternatives(ll) is given

i

by

pr(J2 < x) ='pr(xi < x)

~

| 122 -1
o) P s Prlxgpy s X+ 0l ),
' N i-o . o - \\»“- .P




v

where

9 = -(2k0 + 3)/4, Ty = k0/2, T, = 3/4 (17) /

A
Proof. From (6) we have
L
2—A|l 2..2*" - .,

J = (812 %OY) /o (BlZ MOZ Bl) (18)
where

y = X By + uyi Z = XB + A/Tl/zr

8. = (z2) tz'y s (19)

1 : L
. ) ;;} :
First, the numerator and denominator of {18) will be
expanded to OP(T-l). For the numerator we have _
1‘,2 2 :

(y MOZ Bl) = (uo Moply) (20)
with P, defined in (5). A

Expanding P,/ we Rave

’




= -1/2
Py = Py + T TIMRQ, 5 + Qg aMys)

-1 2 2
T TIME0, My - MypQy w5 T Qun aMys

) ' : -3/2: 2
g, aMye%,xal * T [oxs, s My59, , xB

2

* QXB,A%CB’ * (MXBQA,XB * QXB,AM)CB)QA,XB

- QXB,AEIXBQA,AMXB = MypQ, 2%, 4 Mxs

&\ - My 58, M T MXB,AQA,AMXBQA,}CB]

+"0 (120 -

_ _ ] _ -1 '
Mgy = I - Pygi Poo = XBAT'B X ;
_1 1 ] []
Quxg = 82 B X7 Qpy \ = Q ypi
_l " ] ]
Q  , =6A 8 ; A=BXXB
14

and B and A are from (11) and'(12). Using

L

(21)

&



we can show that

-~

. -

. -1 ~ 2
071 (M0, gl + T EMy (0, M o - Q7 )]

32, 3 \
+ T“ LMO(QA,XB QA:A(QXB,AMXB

\There fore,
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)

o1 =T * MO(QA 2Mxs -

Mo(Qy, a%as,a * 9,x8%, 2" Mxp*80
X B (27)

v

. and 0; refers to the term having Ob(fl) so that the

numerator can be written

. 2 2
(8,2 Mgy) = 8, + 20,8 2172t 2846_;

2 -1

+ o2y 5+ o (1Th (28)

For expansion of the denominator of J2 of (18), we have

2 At

a” (8 7 MOZB ) & ' (29)

Q>

where

.2 "ok * ko k1 ko L] kY
o =yMy/T; M =1-X (X X) X

. ~ -~ L] t L - .
’ X =[x 2 8;): o= élz MyZ B, =y P{MPiy -

(30)




Using (24) we can write

1

&= ¥g Yoyt to (TTh (31)

where i
-1 '
Yo =T " Bg X Qup, aMgQy xpXBg = ©
-1 vt -
Y_o172 = 2T TBoX @y WMglQ, 4p Y
. p1/2

BoX Mxa94,aM0%, x8%

rd
-
Q Bo X Mep9y, aM0%9%, aMx X80

-3/2,'" _ a2 -
+ 277 % % 0 M0, My - yp)
' _2 [ ] « ’ /
* 2T "8oX Qyp, 4Mo (9, 4%, s
s
* Q,x8%, 2 MpX B _ 32

For 82 consider



<
-
]

-{33)

al

8y

' JRN
ZZﬂl

and using the formula for a partitioned inverse (Theil

(1971, p. 18)), we have

x1 ok
(x" %)L =
[ - ] - [ R R | ' - . [ v . .
(X X) l+(x X) lX ZB]_BlZ X(X X) l/a -(X X 1X ZBl/ka
AV v -1 . N
-B;Z XX X) "/a 1/a R .
| (34)
Therefore, M* of (30) cén be written as
*_ PO R | ~ '
M = My - M,28,8,Z Mo/a (35)
This gives, after.some simplification,
' ok ' ' a2 ,A
y My = uMu, - (ugM,28,) "/a (36)

2

and so the denominator of J° of (18) can be written as -




_-—..,—-—--‘-—-—v.v_m__._v..._.....-.w“»,_.vv.”

.2._,.' -"l " 2
c’e = a uOMOuO/T (uOMoZBl) /? {37)

Now by using

' 2 2 '
goMouo/T = 9 + 006 (38)

where

_ ! 2, _
§ = (quouo/Too) 1

and noting that ¢ has OP(T_l/z), we have, by substituting

(28), (31), and (38), in (37),

¥ a2 2
. g a = oo{yo + (Y—l/Z + 6 YO)

2, 2
RS ST A 7 N 8,/ Tog)}

-1
¥ o (1) . (39)

¢

-

By inverting and ueing a Tayler series expansion about

2 , we abtain - -
On Y . ) »

0 0

e



-1

&= (Logvg) (L = 1ot (v_y 0% 8 vg) -

2 2
- Yq (Y_l + 4 Y_1/2 GO/TOO)

+yg iy * 8 vty + e Ty

1

(40)

Now the expansion ‘for 3% can bé found by multiplying

(28) and (37) to giwve

2 -1
#
where
L2, 2 )
: o = %7% Yo -
n ‘=% (1/0%y) {268 - ezy?l(v-. +‘é Yo)}
-1/2 (%70’ *“%07-1/2 0o ‘Y-1/2 0
> 2 2 2 o o=l . ”
L oy (l/ooYo){6?1f2f+ 2?09_1 ¢.2x0 806_1/2(7_1/2.
' .2 -2 | .2
. P ovg) o+ 8gvp Yoy gt 8 vpd :
. 2.:1.:': . r’. *"2 2 '".‘-.- o
T 8gve vap * 8 viyyp v 8gFogdt . -
S s T e T (42)
, _ ,":.l
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Q

. Next, we want the moment generating function‘(m.g.f.) of

3% to Op(T-l). By Taylor series expansion about t n/ as =
in (93) of chapter II
! 2) = t 1+
E exp(t J%) = E{(exp(t nj))( ton_y/2
2 2
-1
+ O (T 4
) p( ) (43)
First, consider
E exp t ny = [ exp t ngfluy)du, (44)
u
0
where
_ 2. -T/2 o
f(uo) = (Znoo) exp ( uouo/Z) (45)
-
and
- 2 2 = ' ~ 2 T‘oz ‘ .
no = 90790 = (UMeQy,xpX8) /00" (46)
where o is defined in (32).
The integral (44) is found by making the
U following transformation of SR ' .

- . i o : 3
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o ol/2, e ) .
¥4 D Cuo, v = X uo (47") .

.  wherxe v is a k0 x 1 vector, z is (T - ko) x 1,

Cis a (T - ko) x T matrix satisfying

-
L] - 1

CX=0; CC =1 CC=M

. (48)
T ko,

0

similar to the matrix introduced in (201) of chapter
4

III, and

-1

o™t = 1-2t ¢ g, c /Ta (49)

1 [ ]
,x8Xf0B0% Qup,a

is a (T - ko) x (T - ko) matrix.

Since CX = 0, v and z are independently

" distributed so that
;

2 ATkg) /2 1,5 -1/2)-1/2

E exp t ng, =f(2nco) ID CCD

z

' 2 2. ko/2 v
exp{-z z/Zoo}dzf(znoo) | X X|
v
exp{~v'<x'x)'1v<2ag}dv‘

= 0|2 J£ (2142 [£ (viav = |p|*/2
4 v

(50)




where, as in (198) of chapter III, £,(z) and f_(v)

are p.d.f.'s as if

2

z A N(o,ogx) and v ~ N(0,02X X) (51)

<
For evaluating |D]l/2, using

D= I+ (2t/(1-28))(C Q, 4pXB(B(X QXB'AC'/a)

(52)
P4
it can be seen that & has T - ko - 1 eigenvalues equal
to one, corresponding to T - k0 - 1 linearly independeht
eigenvectors, say hi’ i= l,...,T-kO-l, satisfying
' ' ) . /-l
30x QXB,AF hi = 0., The other eigenvalue is (1 - 2t)
di i tor h, = C Q, X
correspon ing to the eigenvec T QA,XB BO'
therefore
.- -1
ID| = (1 - 2t) (53)
and so from.(50),
Eexptn, = (1-20)71/2 (54)

" which is the m.g.f. of a variable distributed as central

-
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There are other easier ways to show that the
asymptotic null -distribution of J2 is xi, but this

method enables us to derive an approximate distribution

which is accurate to Op(T_l). 'For evaluating the

.

remaining terms of (43), it can be seen from (50) that
1/2

Ef(exp t nglt n_y )} = (1-28)7

£ £ € n_y pf, (V) £, (2)dvaz

1/2

I

(55)

with the E notation used in the proofs of theorem 2

of chapter II and theorem 4 of chépter III.

4

After transforming,u0 to v and z in the

terms comprising n-l/g and n_,, we have

- g 1/2,'p1/2 X8

90 C QA,XB ‘0 o .

L

_ =172 '01/2 .=l t 172
012 =T /f2 0% v 1z 0 00, X,

251



-1 -1

_ 1/2 '
8, =T D C[QA‘A{X((X X) © - BA "B )v
. ' -
1/2_, _ -1.' =12 .
. + ¢ pt/%z} Q) ypt» BV -T (QA’AMXB
a2 -3/2_ ' 1/2 :
QA’XB)QA,XBXBO]+ T z D C(QA'AQXB'A
* Q, x89, ) MxpX8o
-1 ] [} *
Yo = @ = T 7 BoX Qup Mg, xe*Bg
(56)
L]
— )
which is non-stochastic,
:— _l | ] ~ . 3/2
Yops2 T 2T TBoX Qup, My v ¥ 2T B0% O, a%
9, s Mxs¥*Bo

-1-' = 3/2
T "V Myv + 2T BOX HXBQA Aubv
L -.3/2 N ' ) '

+ 2T BOS\QXB'AMO[{QA,Ax(x X)

>
/

-1

_ -1 oLt 172
(Q), xpb ¥ Q,,,PIA }B}v +Q, ,C D%z

\
-

' /2,
..~ T (QA A”xa A,xn)oa xaxao]

v .a.onntihund



. y
&
[Nd
Fy . :2 " '
+ T _BoX MnQA,AaoQA,ﬁmxso
. -
. y
L8 _2 k) [ ] N
. * 2T T8oX Qup aMp(Qy, 4%, 0 T %, x6%, 4
i e A - . . F
- Myp¥8
. \ ' 2
§ = (z Dz/Tco)—l
v ’ b ‘® ! . ‘ ; Pl
- _ )
- ¥ = AA 1'B v - T l/zQi XBXBO
1 . N ’

- -

The expectaéion formulas for quadratic forms
given by (209) of'chapter III are used to evaluate the

expectations of the terms in (42f which form 3_1/2 and

n_q-.

Define the scalars

vy = oMy (Q, juy = Q) ypeyli

* .
Y2 = ©91M99,, s Movr-

~a ’

-

<

-
)

. r
+ (03 vp = 9 aMyp)¥y)
A ’ XB A ’ A : 1 " .
Ch . 38O continved

d 3 o - ‘;f-l_:::' .
, : | R

s

P ‘f:‘“: M

)

(56)



)

vy = 919ap, aMoQa,xB “1 T 2Q4,4%2
+owyQ, AMoQp av2
¢ = tr MOQA,A
(57)
l'— (
where
wy = QA,XBXBO and wy = MXBXBO {58)
The wi's each have 0 (T) while'¢ has 0(1).
The expectations to O(T_l) for the n_1/2 term are
. _ 2 . ,.3/2,.
E 6y8_),, = 05 /777701 - 2¢)
~ 2 o5 2 3/2 _
E 8y Y_1,2 = 205 ay,/T | (1 - 2¢t)
- 2 2 2
i E 606 = 04 a{3'- (k0+l)(1-2t)}/T(1-2t)
N ‘ N ‘ (59)
‘ ' : .. .
So using (42), we obtain
- - . ¢ Py
i -1 . , -2 % (1
Eon_yy = (1-26) 7 (KoL) /% - 3(1-26)"7/T & o(T )

L, . (60)

. 4 ’ ‘ )




For the n_y term, we need

.

. o2 2. oo = 2.2 2 _

E 0,6_; —&00w3/T (l-2t); E 0g8" = 2oou/T(l 2t)
. _ 2,2 2 _

E 6081 ,,7_1 /5 = 208(Togu, + v3)/Ti1 - 2¢)

. ~ _ AL - 2 - n. ~ 4 _ 4 2 _ 2
E 909—1/25 =0; E 85y y,,6 =0; E& = 30,a"/(1-2t)
- 22 .2 2 2 3
E SOY—1/2 = 4ooa(Toow2 + wl)/T (1 - Zt),
.2 _ 2 2 2,
E eOY—l = ooa(T00¢l + w4 + 2w3)/T (1 - 2t)

(61)

Using (42) we then have

Eon_, = 2t(1-2t)71[rzo§a{(w2/Ta) - 0y}
+ 2+ ) I/re? 4 200 - 2071 :
o
+ 31 - 28) " %/T + o(T7 Y (62)
- 2 !

The E n_1/2 term is also needed, and from (42),

!

.



Y . 4 P -
-2, 4,,,.2.2 _ , =13/ .
n_ys2 = (rg/og) {4848, 5 — 4y e09{/1/2”-1/2

' -2 2 '\\ .
+ 670) + 7, 63(7_1/2 + ZYOY_j\/ZG
\

£
+ vis%) L (63)

The expectations required for E nfl/Z are

~. [ 4

E %92, . = og{Ta¢l(l-2t) + 2w2(1+t)}/TZ(l-2t)2

E 606_1/2

+ odiray, (1-26) + 262 (1ee) /T (122092

- 3 42 2, 03, 2
E-850_) 27 327 Boqa(Togy, +47) /T (1 - 2t)
“ .
= .3 > s 4 - a. 4.2 _ . 42 ey 2
E 856_ /8 = 0; E 03Y_y,p8 = 0 E 6,6 605a"/T(1-3¢)
- 4.2 4 2 2 2, 3 2
E 907_1/2 = 12000 (Toow2 + wl)/T (1 - 2¢t)
(64)
Now from .(63), we have

- 2 -1,.¢2 s
E n_j/2 4(1-2t) “{Toy(Teja =¥,)

Q .

+ Tay, - ¥21/1%% + 6(1-20)"%/2 + 0(t™h)

~ , S (es) .
-y
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s
' *
-
-
-

Combining (60), (62), and (65), after many cancellations,

we find that
ny
* i L ]

2 “31/2/2} = t(}—2t)-}(ko+8)/T

é{t n_l/z + t n_1 + t

+ 3e2(1-26)"%/7 + o(tY

(66)

C L 2 -1

This gives the m.g.f. of J  under HO to Oé(T )
2 -1/2 -1 2 -i
E(exp t J%) = (1-2t) ~“%{1 + T = } 7 ,(1-2¢) ~.
i=0

. +o(rh - | (67)

where the—ri's are defined in 17).

Inverting the above gives the c.d.f. of J2 under

H, to OP(T-l) given in the theorem (equation (16)).°

L
»

& . !

to. - Q-EoDo
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(ii) Distribution of Jz Under.a'Local Alternative’

7 o
Theorem 2 . The Edgeworth approximation to the c.d.f.

of 3 of (6) under the local alternatiwve (1l1) is'given
£

by '
pr(J2 <x) = pr(xi(eo) < x) .
4 4
+ T ] pr g (eg) < 0
. i=0 .
+ ot h (68)
¢
> ¢
N where
T = :(Zko + 3)/4 - ¢/2 + el/2€0 "
. ! Tl = ko/z - koeo/z + ¢/2 - (g/Z)El/CO
L ] . » \2 -
. T, = 3/4 + (k0 -3)60/2 + 50/4 + 451/50
" 1,0= 3¢./2 - 22/2 - 2¢e./ T, = e2/4/
o 3. 0 0 1/ €o T4 0 |
* (69)
and | : LT
’ ' ‘ 2 . «s &'’ - ! '
€ = B8 MgdB,/Toyi 8y = Blf‘ 54& 4 Mgh,
* ’ . v 0 ‘ L I
’ ’ tr HOQA'A, A = B,xu N = - :‘ L !‘ : "
. T L e e
. . 'Y ’ e L i
» . ] . S . . l . [




with Q as in (22), and x%(e ) refers to a
—— Ay, — —_— J 0

non-central }? variable with j d.f. and non-centrality

Earameter Eo .

Proof. The proof will be similar to the proof of
theorem 1 and so will be outlined in somewhat less

detail. We have

2‘_ P l‘ 2.2 A1 8 ~ )
J —-(BlZ MOY) /a (Blz MOZBI) (71)
where ' ' 5;
y-= zsl + uy; Z = XB + A/Tl/2
(72)
- ] _ll ~2 1 ®
81 = (2 2) Z ¥y, - =y My/T
8 ,
as in (30). !
For expansion of the numerator, note ﬁhat
k Y a2 v o ‘ P ‘
Ay Mozsl) = (By2 My2Z8; : 8,3 Mju, (f
) )
" s ‘ a ' 2 ’
+ slz MOPlul uluoPlul) (73? -

4
L

L . -
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o

Using‘§19), (20), and (72), we can show that

(y MgZBy) " = 0% + (2856_) p) + (20450 3 + 65,50
_l ’
+ o_(T 74
) p( 3 (74) .
where .
* _ -1/2 0 ’ P e et
80 = T_ BlA Moul, . .
o* _opmlz2 00 .
6 172 = T 7 9 Qp,aMo% .
.5y
S C 02 MG -
=T "uy (MypQ, 4 ~ Qyg,alMo™1
(75)
and .
-1/2 . (76)

= u, +.7 ABl

o
o
b
I
1]

For the denominator, applying (72) and (35) .
to (23) we see that 4 ) §.

v <
. v

~

2~ _ A a2 '
o a = °u1M1M0M1ul/T - (ulanozel) /T (77)

where a is from (30).

A



-Expanding a using (24) yields

NN o1

e amm3/2.0 _
+ 2T Uy (MypQ, 4 = Qup, o) Mgh8y

r

A iy 1
}dXB,AMOQA,XBul FopT ™)

‘

+ vty

under H; of (1) and (11). Using (22) and (23) it

also be éﬁ%wn that

v t -1
ulMlMOMlul/T = ulmoul/T <+ op(T )
_ 2 * . 1

= o] + 016 + op(T )

where
- s* = (u, 2y 1
= (ulMoul/Tol) -
-
14
and
! c 2 ' 2,2 -1
(QIMIPOZBI) /T = (0 M88,}°/T" + opr )
""'
It will be ugeful to define )

» *

') ’ - . C e
a = B,8 MOA-BI/T ., ‘

(78)

can

(79)

(80)

(81}~

(82)




Substituting (78), (79), and (81) into

(77),

A2~ _ -1
where
* 2 * x
wg =g ol; w—l/2 = 20%;1/2/T + oiu )
2! . *
woy = (o791 Qup, aMp/T) (28 887 + Q) ypuy)
2 ' 2, .2
+ zolco/T - (ulMOABlé /T | (84.)
Q'.\ .
and .
' | —_—
C1/2 = %19%g, 2 Mol8)
_.-1l/2." 2
8 = T ul(MXBQA,A QXB,A)MoAsl (85)
Inverting (83), we obtain 7
A2+ _ =1 -2 -3 2 =2

Ada
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where

-

* * 2. * . * 2 2 * 0 k-
Yo = l/a cll Y_l/z = ( /u ol) (- ;l/z/Tu - 8 ) ‘

* *2 2
vIy = /me o) (e p/1et w26%0y

' *2 & -
- ulQXB,AMOQA xBul-)-TtS a {

! 2 2
3 (ulMOABl) /Tol - 2&0) (87)

Multiplying (73) and (86) gives, under Hl

2 * * -1
Jo = ng ¥ ny, t gt op(T ) (88)

where
* ¢y L2 * 2 %2 % 2
no = (BlA Moul) /& o] = OO%G o
* *) ok * * 2
- . "l_l/2 = {29 1/2 - eo (6§ + 2;1/2/'1‘“ )}/Q 0'1

*

* *Q *
Ny [9_1/2 + 2e0 -1 20 8 1/2(6 + 2;1/2/'1‘« )

4

*2 2 * * "’ -
. : v 0g (4ey pfTa + 26 ?i;z " N0g, sM0%, ™1

« s sCORntinued

A

o
. Z
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The m.g.f. of J2

o

*
n 's replacing the n's.

of uy is used:

* ' ~ 2 2
SRR CNEREZ

2;6}/T;*]/a*c§

- (89)

is as in (43), with these

The following transformation

13

S o*1/2 L =172 ¥1/2
v = X ul, z D Cul 2t T , D CABL*
(90)
where C is as in (48), and
*_1 [ T | *
D =1 - 2t CABlBlA C /Ta (91)
-~
is a (T - ko) x (T - ko) m;trix.
We have assumed that
u, ~ N(0, o21) (92)
1 : M |

- . i 3 L3
so that v and z have the appropriate independént normal

distributions.

bl
=
»
\\\\\\\\\\\\\\\\\ 'y

By completing the square in the'expoﬁént term

* .
of Eexp t Ng, we have
’
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¢ * * * .
* E ‘exp tno = |D ]1/2 expla t/oi(leZt)}

[ £.(z)az [£_ (v)dw ~.
z 2 v S (93)
: . : .

where f (z) and f (v) are the same as in (51) and will
-be used in the samef:way.‘ A

By a similar argument to that between (52) and .
. o ‘ o

(53), using * b . - o

,

QiA'Ci/Ta* (94)

1

|
o
0

I+ l2t/(1-2¢) ]Jcas
we again. have e

a

° L . ’ o . . Fa
° ) * i, r".- - .“".. . .
D | & (1= 28)7 % Co- . (95)

N L, ," 7 $
»

. N . .
- - ’ . '
. .- ;e

v

and so Y ' .'f'

@
4

¢ -
- . . - L .
’. A .

'

L

= (1-20)712 exgha"t/0l (m20)1

) '

. *

E. e;:p ’tno

. (96)

which is the m.gif. for a non-central )‘with ‘non- - - g
' - 7 * - o ’ .
centrality pa;a{mter a /oi. This corresponds with -

the result of Pesaran (1982a). -
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SN ’ The remaining tegms of the m.g.f. will be

evaluated as in ghe first proof, py transforming v, to v

o+

. R " o

. x “ * *
and z and integrating n_1s2° M-1 and “-i/z over v and
z weighted by £ (v) and f_(z) given by the distribuﬁiégé' T,

&

of (51). This integration will again be depoted by E.

The Bxpectation formulas (ZOQ of chaP.tEi' I11 {

wild be\used again here. In addition, formula. (2.2)

from Srivastava and Tiwari (1976) is used to show that

1 *1/2 ]

* ‘ E(z D 1/22)2(z'D*z)2

’ "y ] ‘*
48,878 C D

- [3T3a*zof/(1-gt)2][T-2k0 + 10/ (1-R) ]

’ + O(T3) - (97)

[

i L ! L. %4 %2 .. #2
which is required for'the E 90 6§ 7 term of E ”—1/2 e
'\‘ e ’ R ‘

. .
To transform uy to v ang\ihij the n 's, (90)
. . \ R
' .

can be inverted, diving
R °

-

- " ' - /
u, = ¢ D Y% 4+ 2er 1/2M0A31/(1-2t) + X(X %) "Ly

1
2 L " (98N

3

[T




PR S \ .9 s ’
. .
. :
UL 2 1 . * l . ¥
L. B C D "CABy = Ta /(1-28)" li=1,2,3 (99)
. . R,
-~ ,‘ T TTTT— ’
) _ THe expectations to O(T 1) required for .
» * -
_ n_1/2 a;re‘ X ) .
. e '
:‘.'-i: *o" = 0 B 6. 2r. = 0
- 60 _1/2 = ’ E 60 cl/2 = *
o .
L
*2 % Toow Coen—2. S |
E 0,78, = [o70 {3(1-2¢) (k0+1)({ 2t) 7}
ﬁ_ . ! l*z A _3
{(1 + 8t + 4t ) (1 - 2¢) |
\ ) . - , ~
AT e —2 3 . .
- (kg + 141 -2¢t) “} + ol)
, : ) \ - 4 .
- ‘ {4t (1 - 2t)’4)1/T (100)
n. e _ . . ; B} - "‘
so that, using (89) . Y
s y N )
. L ]
* - * ' -Fz' ) . ., R "l P [
N 1 N E(n_l/z = —{3:—21:) ‘-.(ko 't' 1) Sl - 2t) }/T .
. :‘ \ a .". - ' b ' . 4 . '
* ‘ .ot - *
o ot + e vatdha -7 -
-~ - * .\ .
. 8 s , . S -
* . ‘ - ) x - L
- . . kg + 1) (L - 2t)‘2}/ma2
:" . - ' 0 . e 1
\ . ) L ‘ . , ® ; ‘.
- V ] " )
: T L - {432(1
SUSR TR )
-‘. ” 2 ’ - “" '; ‘:-4
' .'u'. ( ' - ;: .., o ! "_": ,4'\
. . . ' s - %
o . y L3P '
- .. - ' 1,, - * i ‘_i
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For E "-l we need

*2 4 2 2 * * o=

.m‘

7

[es 1

8_1/2 = 1 $/T + (glsl/T(let)){Ztol/Tu
- + 1/T(1 - 2t)})
-~ * * 2* ‘
E 808_1 =Aila ¢/T(1l - 2¢t) # Glel(l“+ 4t)/T (l~2t)
~ x* Xk % .(— ~ %2 * _
E 6000y, = 0i - Beoy” 675y, =0
* * 3 _ 2 é
808_1/2%1/2 = olel/T(l 2t) + oja "e /T(l 2t)
- o *2,2. _ 4t i 2 *2 Cen 2
E 0 ;1/2 g 0 el/(l 2t) + oy Ql/{l 2t)
B o0 %u.Q.l . ‘ —{:3' 2t) } (a2
E 6, uquB,AMOQA,XBul = {oJa ¢/ (1=2t) (ol
. ' *. o
+a /(1 - 2t)")
- ‘_ N
- %2 %2 " 2 *
E 6,76 = {2a /T(l-Zt)}(di_f « /(i-2t))

’ A 9
A
. - A s
. . ‘v ‘A .

f ’ * ’ et re

- 1} . o - “. et '
L} . . 'y - tiu L,

f ’

. . . -’.‘..’Cf .- [
. e



Ah"); i -
/
N 2 _ 4 *é _ p 2, *3,,
Ef,’ (ulr:!oABl) 30,Ta /(ert)‘_+_olTa (1 o
[ 4 ) > ;
- + e;/fV1€2)/(1 - 2¢)3
, <
+ 470 Y%/ (a-2004
' *2 2 % 2
E 90 tg = 201a e:l(‘l + t)/T(1 - 2t)

(102).
o . :

-

whex:eqel-and ) are:defined in (70). Now using (89) we

obtain ) . . '
® \\ ' ~ )
L - . '_ ]
, . _ 2 * 2
E n = -2to;¢/Ta (1-2t) + ¢(1-4t)/T(1-2¢)

- ’ « ’ , ’ -

. .
+ 2tade,/1%a"2(1-20) - e U1-at) /TR0 (2-20) 2

,
+ (5-ay/1(1-26)2 +. o  (3Maeraed)/rod
: * . - ’ . . )
-z;)3i'4t?a 2/r o200 . aed
From (89), i L | ) .

N3
-

. ’ .*z'*2 . _ ’3 -« . .? : ‘ ‘q ’ .-'-
R Y R LD DY A

e P .
S R
.




&C

. ’ *4 *2 *. * * 2' 2 *é -
+ eo (s + 4§ cl/lea f 4;1/2/T.a )?

*2 4
/a clv
(104)

4
*

E n_i/z requires the following expedétations:

. .
-~ *2 *2 _‘ 6
B8y 0127 °1°

', - T

' . *
o 4 aves 2e42) /71-202 +oodate (5

\i lel

“l - ) * '
. ‘ + Zt{/Tz(l-Zt)3 + ia 2.§1/T2(l—2t)4
, p ' . _
\ | | Vo | .
*3 * * - *g : |

*
60 6_1/26 = 0; E 60 § Cl/} =0

* 4
¢/T(1-2¢t) + o

*2 2
1¢ .¢/T(l-2t)

e

x1'® * . .0
g3 = 3554 el/-r(;.—zt)2 S .

, 6
o °-1/2%1/2 9y

3

.
.

N . * ’ . .
.+ Goia zel/ng{—Zt)3 .

L 4 »

e

- T o -
N .o . +_oiu 3,el/T2(l—2t)4

. . .
N - . -
N . . ,
- . .
- -




y
¢ ‘.
’ - - 3871
' AN
: ‘ L
= a*4 2 _ 2 °%2 TRY- 4 2 *
i éo °1/2 {OI“ el/T(l 2t) }{301 + golu /(1
*2 2 L .
‘ -2t)+a T/(1-2¢) 7} (los) =
C o~ k4 kD . ) '
where E 6, ¢ has. used the expectation result (97).

2

~

Substiftting these in (10Q4),

~ *2

2 i iy 2
E nly,, = 407¢/Ta  (1-20) + £4/T(1-2¢)
* .
- 4ciei/T2a 2(1--21:.) R
. 2 * 3 e .2
+a€1(8t120)/‘1‘ a (1-2t)° + Q/T(lfzt)
* ) . ] * - N
+ 12a" /102 (1-26)} + 20" /m0d (1-200 4
o, 1 ‘ :
+ o(T ™) ’ - (106)

Usiné floi), (103) -and (106) and simplifyiné _‘

we have T, s

- . .
he N . . * .

.0" L4




t ~ * ' . ~ % 2.., *2
(E n_l/z + En_l)'+ t En_l/z/z

~

= (3t - 3%y /26002 + Kgt/ (1-20) /T

x 3 2 2 o
+ a"(3t/(1-2003 4 kg t/(1-20%1/T 6

1
%
v o 2% =200y oi + t/T(1-2t) .

2 1

- &y (t+4t +4t3)/T20*(l-2t)3 +o(T ) | (107)

A ]

This, along with (96), yields a m.g.f. for J2 under‘Hl
to O(T-l) of , ‘ | T

t

2

E exp t J° = (1-2t)-1/2 exp{h*t/oiel-Zt)}[l

‘o .

. 4 : .
v+t § -7 4 e(rTh
© i=0
4
(108)

where the ri's are defined in (69)..

‘ Inverting ghé above gives the approximate
c.d.f. for J° of tpeorem 2 (equation (68)). ° -

~ ‘*

4

P ;
- -
IR ' | B ‘
VA e _.Q.B.D.
P .
. . . A S, .
« . a . - .
. .
i
. N .
.
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(iii) Edgeworth Size Coirections for 32

As noted in thé introduction to this chapter,
the actual sizé of J2 in small samples has been >bund to
exceed its asymptotic size by a substantial amount in
many cases in Monte Carlo studies. In this section,
the Edgeworth size corrected statistic is presented
aléng with its approximate distribution' under the local
alternative. The @eritical value correction usga in
chapter 1II, section\4(iid) and chapter I1I,; section 5(ii)
is uséd again here to provide a size corrected test which

avoids the nqp-rejection problem discussed in chabter 11

section 4jiig?.

Corollary (to theorem 1). The Edgeworth size-corrected

statistic J° based on the approximate distribution of J2

of (16) under H, is
2 2 T

S (1—&'1(k0 + 3/2 +.3%/2)13 (109)
e L

the distribution of ¥2 18 x? + o (17!

) .

80 that under HO'

-

a
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) Proof. Under HO'

\ 2 _ -1
s J = no + n-—l/2 + [n_l T {(ko + 3/2)5\0

.
+ nd/21] + oé(T’l) ' (110)

A

where the ni‘s are defined in (42). Using v‘and(z from
| ‘ .

-~

(47) and fv and fz from (51) along with the E notapion*'

described in (55), we have,
. ’ ' - n ..
: . ~ ey -1 =2 S-) “
E ng = (1-2t) and E ngy = 3(1-2t) (111)

N . <
-’
- " .

From (110) the m.g.f. of 3% to 0(T ¥) under H, is given
by '
) ~
- } N ' - . _ -;
Eexpt 3 =Eexptdl-e@-2t)" 2 i,
' T ' ;V ‘\ ‘ v | . —

-
. , + 3/2)é.n0 + E ng/2} on(T_l)
. - o (112)
Substituting (67) and (111) into (112) and simplifying
yields . ' Lo

LE exp t 32 = (1-2¢) Y2 4 g(27Yy,

. . -’
.




which the m.g.f. to O(T-l) of a ii variéble.

.

" . \ ) Q-E-D-

Unfortunately, 3% of (109) is not a monotonic

nondecreasing function of J2~which,leads to a possible
pon—iejectidn problem similar to thét of wi in chapter I1I1.
Maximization of (109) withQresbect to J° yields the
follﬁwing necessary and sufficient condition for non-

rejection of 32, i.e,, 52 has a size of\zero, when a

critical value x is used: ‘ , . y L
T{1-(k, + 3/2)/T}?/2 < x a (114)

L

-~
-

When the asymptotic size is 5%, the critical value is
¥

X = 3.84 so that (114) can be adjusted to give a non-

rejection condition of

r
1/2

k‘>T-2.77T

0 --1.5 q (115)

0
below: . . o . .

Some T, k ‘combinétions which satisfy (115) are given

2 p

‘\
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- [
l‘ ’ ) )
TABLE 1.
Boundary Points for Non-Rejectidn of 32 :
T Ko 2
10 0
) ' 15 3
) p
- 20 7
30 13
40 20
100 “ 770

Thus if the sample size is ‘10, 32 would nevér
reject H, regafﬁléés-of fhe number of variables in the
null model, kg- Some"oé these (T, ko) combinations could
arise in practice so that the criticai value correction
method is a better approach.. First, we require the
Edgewortp expans%cn for_J2 under HO expresgeq in terms of
central xi,p.d:f.'s, dhiéh ére.denoted'bf‘f(x,i,ﬂ} as in ‘ .
the appendix-to chapter II. Usihg .the method of that ' ‘o
‘apbeﬁéfx along with the expans;dn result (16), we can |

write the expansion as

s . .. . _ 2' * ) .
pr(d? < x, =pr(x2 <x + TF ] 1 f(x,1

. . ' ) =] )
S : +21,0) + o(r7 %) “ﬁ"“iswn (116) '

[ J

”

-
by
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where
* _ i . * _ I
Ty —-ko - 3/2 and T, = -3/2 _ (117)
Using (188) and (189) of chapter II we tan rewrite
(116) as
L)
’
- *
pr(J2 < X) = pr(xi <x) + T l(x'cl
2 *
+ x 12/3)f(x,1,0) (118)
Proceeding agaip as in chapter II equations (191) to
(197), the size-corrected critical value is
* *
x = [ i@y + 3/2)+x/21/7]x (119)
' . : . .
For example, the asymptotic size of 5% is obtained
when x = 3.84 which results in a'size_corrected critical
value of -
Tk H N
x = {1+(k0+3/2)/T}3.84 +7.37/F . (120)
Since the two size-correction‘methoas are



équivalent to O(T-l), expansion of 32 under Hl

can be used to estimate the\power of either size-

corrected test. This corollary is givén below.

“w

Corollary 2. The statistic J° in (109) has the

following approximate c.d.f. under‘ﬁl:

.

N g
pr(i < x) = pr(xi(so) < x)

4
+ 71 y

2
T.Rr(X . (eq) < Xx)
j=0 1+21°°0

4 o(T_l)

where

Tg = ~8/2 + e /2eqi 1y = ~kgeg/2 + ¢/2 —(5/2)c1/eQ

£

2
(ko - 3)50/2 +180/4 + 461/50

3ey/2 —'eg/Z - 2¢ /¢, Ty = 53/4

and ¢,eqff c; are defined in (70) .

—

(121)

(122)
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S L .
Proof. The proof is very similar to that of Corollary 1.
Under H,, 3° is as in (110) with the n's being replaced

. i
by the n 's of (89). Using v and-z from (90) along with

fv gnd fz from (51) and the‘é notation we can show that

-

1

-~

& 2

= 3(1-2t) "% (123)

*_'2... d~*
ng = (1-2t) an E No

+

The m.g.f. of 32 under H, is given by .
.

E exp t 3% = E exp t g% - (1--21:)-1/2

P
s
‘

expla t/o2(1-26)} ti(k, + 3/2)En

«
Y a4

+ E ng/2}4T + o(T_l) 1124)“

2

. ,
where o« is defined in (82). Substituting (108) and

(123) into (124) and simplifying yields . ’ "
' Q
’ . _ . \
E exp t 3° = (1-26) /% expia’t/o? (1-2¢)}

&

-1 4 -3 -1

{1+T ) 7,(l-2t) "} +o(T ")
. 1 . -

- . 1i=0 "

. | "(125) [

-
. -

where the t,'s arg/defined-in (222). ‘Inverting this
--‘ ]f )

- yields the approxj te c.d.f. of corollary 2.
Q.8-D.

’,




This result can be used to dapproximahe the

power of both the test statistic adjusted test and the
rltlcal value adjusted test by substltutlng the unadjusted
critical value ‘in” for X in (121), which will be the subject

~-

of future research.

<

V.4 COMPARISON OF J TEST:AND COX TEST BY -

APPROXIMATE SLOPE

- !
Since Pesaran (1982a) has shown that the Cox -
and J tests have identical dlstrlbutlons asygptotlcally
under both the null and local alternatives, it may be
useful to compare their approximate slopes to look for
non—local alternatlves for whicg;they differ. . An advantage
of thlglnon—local method is that there is no restridtion
required on the alternative unlike the results of the *
previous section where kl < ko was required in
de&ining the loca} alternative in“secﬁioﬁ 2(v). ?he“ "

4 > “ ‘
general formula for the ratio of approximate slopes of L

‘.

';he Cox and J tests (ASR) is derived, aﬁa’goﬁb special

G * - . ) - { ‘
cases, are discussed. 1 . . .
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(1) Derivd%ion of Approximate Slope Ratio (ASR)

-

As was mentioned in chapter I, a test having an
asymptotic central x2 distribution unde} the null has an
approximate slope equal to the limit of the ratio of the
test statistic to sample size as the sample approaches
infinity { Geweke (1581)). For i'fix?d alternative and
sample of size T, this limit is interpreted as the limiting
value of ;the test statistic when ' the parameter estimates

Jtake on their asymptotic values (which may not be their
true values since the estimation is performed undef the
false hypothesis) diviaed by T.

The followinyg definitions will capdense the
notation required for the result in theorem 3. Consider
these four regressions which can be performe&d in sequence:

Regression: ) !

~

[ . C
1) 2Z,8, on W; gives prediction PleBZ

residual szlez . ‘ .
2) M, 2.8, on.wal; gives prediction PxMleBz

. . = PyL

182

residual MXMWZIBZ

~

.. .COntinued
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s R '

. ‘ ‘ . ¢
3) PXZIBZ on szl; gives prediction PZPXZIBZ

residual M;szlsz
4) PZPXZlBZ on wal; glygs prediction PxPszZISZ

residual MXPZPXZIBZ

(126)
and Px is defined in (131), where
' _ll
M,=1I-P, and P, = WIWW "W (}26a)
Now define §7
. Ri = (sum of.squares of prediction vector
., from regression i)/Tci
E, = (sum of squarés of error vector from
‘ .
regression i)/Toi
‘ (127)
Theorem 3. The approximate.sloge ratio (ASR) of the

Cox test statistic N° and the J test statistic J° is .

given by



G

. o
]
_ *im 2 _- - 2
ASR = 10 N°/3%= (log(l + E;-R))}2(1 + E)
-
2 N
- Ry “/4E,E, (1 + E,)  (128)

where Ei and Ri are given by« (127).

Proof. For the Cox test, we need
2im .2 2im ~2 A2 2 .4 A2
Tow N /T = 2 o Tllog(ay/a7)] (61079g)
0 - -1 )
(Box MlMOleO) /4 (129)
which results from-distributional result N2 m,xi and
P4
squaring N of (4).
For notational simplicity, ;if a = b will be

represented by a » b.

. First, we have

~ ' -1
XBO = Poy and PO = X(X X) X = Pw + Px

where

283
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_ t 1. . _ v - ]
PX = wal(lele) Xle, Pw = W(W W) lW

and the partitionings (2) are used, and similarly,

wbere

Also,

Using

Pl=PW
PZ=

Since H
3% o)

"2 ' _
9% Y Moy/T =

l 1

M2 (2)M2)) 7 "2 M ;

1 1l

s true

] [} ] L )
(sww + szzl + ul)M0

(W8 + 278, + ) /T = (8,2, + u))M,
(z2,8, + u))/T
I - P, - Px = (I-Pw)ﬂI—Px)(I=PQ)

(131)

(132)

(133)

(134)

(135)

284



which holds since

pwa = Psz =0 (137)
wé have
A2 2 ] 1
oy = 9] + (szlewaszlez)/T (138)
Using
= ° {
POMlPO PXMZPX (139)

then we have

L 4

P PN '
BoX M X8 /T > y P M;P y/T

L} 1]
-+ BzZlPxMZPXZlBZ/T | (140)

and so using Gio\of (5) along with (135) and (137)

“

we get

~2 2

-

L] ]
0o T o1 t B (MMM, + P .M PIZ8, /T  (141)

But since -

. [
MMMy + PM Py = My - PP Py (142)

then
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~ 2 2 ] ] )
610 * 01 t BpZiMZi8,/T

| I ] :

- ezZlPxPZszlez/? (143)
Finally,

L . '

BoX MMM XB, = y‘POMlMOMlPoy _ (144)
and using

MoMlPo = MXPZPx (145)
then

R - _'t

(BoX. MyMM X8, T/T + 8,2, P P MPPyZy8,/T

(146)

Using the Ei; Ri notation of (127) we can use
»

(138), (143), and (l146) to write

52 5 o231 + Ey)
~2 . 2
01 O'l .
. .2 2 )
010 > 91 (1 * B} = Ry

.. .Continuad
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eox M MOM.}.XB /T + E, (147)‘
Inserting these limits into (129) yields
N?/T + {log(l + E, - R,)}°(1 + E, - R )5/43
1 3 1 3 4

(1 + E2) (148)

The approximate slope of,‘J2 is still required
and from (6)

Ty

2 zlm

J /T ~» (B Z Moy) /c (8 Z M ZB ) (149%

‘Using (132) and (136) we have

3 . -

! ] t
BlZ Moy/T 5 ¥ PlMoy/T

).‘

l L
2 iyl 8/

4

BpZi M2y (2 My29)
= Byl MMyZi8,/T = 8,2, MM M2 8,/T
= ¢°E ’ ‘ (150)

. and

N—
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1
L]

~at o Ty ' T
B)Z MyZ8,/T = y P MyP y/T = y P) MM MP y/T

2
> 8, lewaMwZ B,/T = oJE,

(151)

Also, noting that 32 is from regressibn (8) gives, under

Hy

~2 2
1 (152)

Substituting these llmlts into (1491/' lds

(

J2/T > E2 . \ . (153)

and taking the ratio of (148) and (153) gives the result

of the theorem in (128). .
Q.E. D.

' . " . > ’ -
(ii)‘ ASR Values in Three Special Cases

-

- ’

If ASR exceeds one for-particular’parameter
values and data, one'might suspect that the Cox test'is
more likely to reject:the null (i.e,}féive a correct
decisioﬁ) than the J test when -both use the samé critical

.



~
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Value, and vice versa. This may be due to a difference
in power or a difference in actual size, or both. In

any case, an ASR which differs substan}ially from one

may indicatg a situation where the small sample behaviour
*sf the two tests is substantially dfffergnt. With this
in mind, we examine the behaviour of ASR of (128) in

-

three special cases.

Case 1. Zl and Xl are both vectors. In this

sase the Ei's and Ri's of (127) reduce to

2(1i-2) 2(i-1)

- 2, = =
Ei = Elpl (l—ol), Ri Elpl , i=2,3,4
(154)
where A .
2 _ (& /% M X2 M Z
; , Py = (XyMyZy) /X MX 21 MeZy (155)
. is, the squared correlation bétween MX, and M.Z).
Substituting (154) in (128) yields
_ 1l 4y, .2 _ 4,2
\\ ASR1 = {;og(l+El(l pl))} (1+El(l pl))
- * . . >
. 2 - 2
/4E20 ] (1-p3) 2 (14E] (1-0])) (156)

from which we can derive the following limiting cases:
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(1) . ASR, = 0

>

0

-
|

-
1

(ii)

(iii) ASR, =1

(iv) *5™ Asr =

(157)

1 is very small compared

with the additional explanatory power of Zl (given W)

in explaining vy, J2 may reject more often than N2.

Result (i) indicates that when 02

Result (iv) suggests that when the contributions of Xl

and Zl (given W) to explaining y are not very correlated,
N2 may reject more offens, while (iii) suggests that when

their contributions are very correlated (either positively
or negatively) then the tests behave similarly. ‘

-

Case 2. . Zl is a vector. In this case the’
results of case 1 still hold, except that now pi is

replaced by

2 _ ! ' -1 ’ ' .
P T EMgK (X MgX)) TXI MG B M2y (158)
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g
which is the R2 of multiple correlation one would

-
.

obtain fiom regressing szl on wal. Interpretation

- % of this result is similar to that in case 1.

Case 3. X, 1s a vector. Now the Ei's qnd

1
Ri's of (127) become

L 20i-2y_ 25 L _ .2 2(i-2)
El = ElY (1 93)1 Ri ElY 93
) i=2,3,4 .
~ ‘.
where
2 1 | 2 ] [} 1
voo= (B2 MUX) ) /X MUX,) (8,2, M7, 6,
L
2 _yx'moz (z' V/ )'lz' x;/x' X (160)
Py = X M2, (2, M2, MR R Xy :

and 72 is the squarea correlation between wal and

. 2 . 2. .
szlsz.whlle P3 is .now the R” from regres§1§g Mle on Mle.

This yields

- . 2 2...2
ASR3 = {log(1l + El(l - P3Y )) T {1l + El(l

2 2..2,,.22 2 2 2
- p3Y )} /4EjpP 3y (1 - p3)(l - y) .

(1 + B (1- %)) | (161)

(159).
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Since Py = 0 implies that vy~ = 0, it can
be shown that (157 iv) still holds, with the same.
interpretation as given in case 1. Other limiting
values of ASR, require care in interpretation since there
is clearly a close relationship between yz and p§ of
(160) . v .

The importance of o2 of (¥53), o) of (158),
and y2 and pg of (131) in determining ASR indicates
fhat their values might be of interést when evaluating
the twg tests in Monte Carlo studies when the hypothe;es‘
fall into one ;f thg ﬁhree’cases. 'For ?x§mple; Davidson
and Macﬁinnon\(ldbﬁ; table 1) find that‘the Cox test
rejects the null more often than thé J test in an experi-
ment which falls into case 3 of this section, and this

may be explained by the p2 and yz values of their data.

V.5 CONCLUSION

In this chapter some small sample issues

.

- concerning the testing of non-nested hypotheses are

4

considered. The distribution of J2 under both alter-
» . : .
natives is approximated by an Edgeworth expansion, and a

size correction factpr based on these approgimations is

29

[}

[



proposed with the aim of 'reducing the :'over—rejection

of the null in small samples. The approximate slope
ratio t;chnique is used in order to isolate céses where
the small samplg-behaviour of the Cox and J tgsts may
differ substantially. It is f?dﬁd that in certain cases
this ratio depends on the correlation between the contri-
butions of the non-OVQ£}apping columns of the two
matrices of exogenous variables correspond;ng to the

two models after removing the éffect of the ove;lapping

columns (common to both matrices).

~
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'8. 'This result relates to a suggestion of Godfrey
and Pesaran (1982) that the Cox test may reject
. too often, especially when "the explanatory
variables of the rival models are not (highly)
collinear". Over-rejection is a possible source
bf a relatively high approximate slope.



SUMMARY

The principal results are summarized along

with possible directions for future research.

Chapter II. The small sample distributions of

LR, W, and LM tests for linear restrictions on the
regression coefficients in a model with multivariate
Student's t errors are approximated by Edgeworth
expansion. Edgeworth and degrees-of-freedom based

sigg correction factors are examined, and the Edgeworéh
corrections perform well. Similar results‘for other
error distributions would be of interest.

Chapter III. The LM test statistic for the presence

of f;rst—order autocorrelation in the disturbances is
identical under normal and multivariate Student's t
disturbances. Nagar expansion techniques are used to
;nalyze mean sguare errors of various estimators when
this a&tocorrelation is present. 'Many are found to
have identical mean square errors to the selected o;der
of approximatiOp. The results correspond largely with

previous analytic and Monte Carlo studies. Finally,

the distribution of a f—type statistic is approximated
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by Edgeworth expansion and its’ size correction factor
derived.

'The expansion techhique introduced for
iterative estimators could be used in many.other
contexts. A simple size corrected t-test in this model

would be very useful.

Chapter 1IV. Several tests are proposed for determining

whether the errors of a regression equation are correlated
with errors from N-1 other eguations in a SURE model.
Their approximate slopes are compared and relationships

in special cases are given. Future research could

involve analysis of small sample properties of these
statistics, and also a study of various pre-test

estimators.

Chapter V. The null and alternative distributions of

the squared J test statistic for model selection are
approximated by Edgeworth expansion and a size correction
is proposed. The approximate slopes of J2 and the
squared Cox statistic are compared. The corrected J

test shouldﬂbe evaluated by Monte Carlo simulation, and

a correction for the Cox statistip wéuld be of use.

Power comparisons by simulapiGn'éould examine cases

where the approximate slope ratios indicate that fhe

Cox and J tests may differ greatly.
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