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'w1th respect to that_under the inltlal loads. Apprex11

. deflections are obtained. -

. flat cable roof, a simplified solution, very well suited .

vibration of a general curved membrane surface is

ABSTRACT

-
&

- A nonlinear solution is formulated for a single hanging

'cable and flat rectangular and circular cable roofs,under'

the effect of the 1n1t1al ténsioh and the applied loads.

The solution is based on a small straln 1arge dlsplace- L7

went theory.

. Nt

The linear deflection of a curved teneion roof under
adiitlonal statlc loads’ 1s studled using the assumptlon

that the deflection under these addltlonal loads 1s small

mate analytical solutions for the initial and additional

3

3

The linear'undemped free vibration problem of ‘a flat ° //'

cable tension roof with any boundary is considered using

°

the assumption that an oxthogonal, isotropic network can
be replaced by an'eqhiialent membrane found by energy
considerations.. Free vibration is solved for rectangular,

circular '‘and elliptical boundaries. For the elliptical

L3
+

.

for practical ,applications, iz derived. . ' e

The pErtial differential eguationdof free uﬁdamped

1 , N

N 0
"

D ) ‘iii
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formulated and solved; with some simplifications, for a

-

rectangular hyperbolic paraboloid cable roof. The general

solution outlined above isLeXtended to_inclndelthe case

of thé circular hyperbolic parabcaoid cable roof.

-
1

The prbblem of a free vibrating membrane backed by
a cavity with openlngs 1s theoretlcally studled and com— )
plemented by experr?ental verlflcatlon of the theory.

Theoretlcal and experimental values for frequency reducd
RN

" &

*  The statistical theory of wind forces is reviewed

. and applied to determine the dynamic response of cable

roofs to wind 1oaaing The problem c:\air-structure‘

.lnterachﬂon is outllned and parameters. foF the aerodynamlc

and "’ d@oustlcal damplng ratlo are, descrlbed ~ The behav1our‘

-
5

tion due to inertia are given. : N 2

,

of cable roofs in turbulent w1nd is. studled in the wind .

tunnel using two aeroelastic models.‘ The similarity re-

‘ qulrements for modelllng are revxewed with spec1a1 atten~-

tlon being ‘paid to the effect of the air enclosed under

the roof. A 51m11ar1ty law ‘for - the modelllng of this

enctosure 1s‘presented and its role in iree vibration as

- -

. . . o, -
‘tunnel study of a large tension roof is described. N

L4 <
3

well  as winé‘induced vibration.is invéétigatedg A'wind ,

3y ¢
ol

The de51gn 1mp11catlons of cable tensaon roof ‘be-

haviour under turbulent w1nd load are dlscussedﬂ
' P , . . a

’ .

L. .

~ . ‘ * » . c .
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\. ‘ , .

cross-sectional area of cable

-+ area - .

amplitude of vibration

.

Ky

" area ratjo O

radius of cable roof ~

radius of a single cavity opening ° : 14 >

- dimensionless parameter °

. .

scale wind speed Kthe dispersion) v ‘ :

Pra

e———

~damping constant

.

dimensionless parameter

-‘.‘

«

-

.

-coefficient of'virtualrmass

generalized dampiné of the nmth

wind pressure coefficient

adF .

'mean pressure coefficient

maximum pressure coefficient

minimum pressure coefficient

- rms pressure coefficient

«

.

a

. A . - . .
a single aréa of cavity openings £ .. >
- + .

-

‘3 total area of cavity wall (Zna H) ce i o

in mode nm:

cable roof plan

natural mode .

» ~

the internal mean pressure coefficient

the internal rms pressure coefficient

Cv(r,s:w)=Real, co-spectrum

a cosine type Mathieu function of the first

‘kind and of order m
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a cosine type modified Mathieﬁ function of the
firet kind and of order m
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speed of sound in air

/

diameter of circular tepnsion roof: domain
) -

‘structural dampin§ ratio of natural mode ol

.the semi-interfocal ‘of ellipse -/

>

. F(XIYIZIt)'

—

arc length

modilus of elasticity

. eccentricity of ellipse

. .
central sag; stress functipn - .

= ‘fluctuating ‘force

F(x,y,z)= static force of wind

F
nm

F'
nm

—

- the symmetric generallzed force o§ thee nmth

natural mode

the asymmetric generallzed force of the nmth
natural mode

the generalized force due to radiated pressure
for the natyral mode ol ~“

the generalized force due to change in internal
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l *
ot
the generalized force due to the relative
movement of the roof with respect to wind for

the .natural mode ol

frequency in cycles per second cps (Hz)
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reduced frequency (fz/V(z))

Hho>
[l

fn = natural frequency of cable in C.P.S. (Hz) .
fnm = natural frequency of the nmth mode in C.P.S. (Hz)’
f;l = fundamental frequency in vacuo
fx = integrand
fx’f'= the drop along the x axis and the y axis in
Y Cartesian coordinates
'fl,fz=- the,drop”anq the sag of circular H.P. at
8=0,m and 6=n/2, 3n/M4respectively in polar
coordinates ) s -,
fc 3 = the coincidence frequency
g = grav1tatlona1 acceleratlon (32.2 ft/seczh
9.81 m/sec ) peak factor
H = the total horizontal' tension per unit length
under initial applied loads
HO = the initialrhorizontal component‘of applied
. tension .
s, .
AH = .the increment in the horlzontal component of

cable tension .

AHOX,AH =the initial additional hdrizontal components—of
tension per unit length in the x,y directions

AHX,AH = the additional horizontal component of tension..
per .unit length due to the additional applled
loads in the x,y dlrectlons

B = average height of cavity : : e
Hb’“1= " the Struve functlons of zero order and flrst
order ,
| (w)] 2_the mechanical admlttance functlon of the nmth
- mode . . :
h = roof thickness: '



h., ~w= dimensionless tension increment parameter
I* = Hamilton's integral
I(v) = ~ turbulence 1nten51ty (= ¢ /V10 -
) | (w)l- the symmetric 301nt acceptance function of the,
nmth mode ’
' | nm(w)]— the asymmetric ]Olnt acceptance functlon of - .
thé nmth mode
I = Bessel function of the first kind and kth order
‘ 1
jnm = roots of Bessel function J r, With argument of
order m
- k = suFface drag coefficient- subscript
) ‘K‘2 = frequency arggment in the elllpse free v1bratlon
problem (= d2m/4T)
K = air bulk modulus
Km = the generalized stiffness of the nmt}{ mode
) L = length scale” of turbulence
Lx,L ,L_= length scale:of turbulence in the longltudlnal
Y lateral and vertical difection of wind .
LS = length scale associated with characteristic

frequency £_ (= V(z2)/f)

=
i

the, unextended length of‘the cable

-
]

qthe extended 1ength of the cable .

AL = . exten31on in cable 1ength : '

4

" L = cable span

AL ., 2 gpaxlai separatlon (= Vax +Ay +Az )

g = the effecti¥e length of the air mass in. “/
Helmholtz Resonato;
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m = mass per unit length of cable: mass per unit
* area of roof material:; integer
m. = - mass per unit area ratio
mt> = sum of the miss per unit area of the roof
material and the air attached to the roof sur-
. face during vibration
. " . .
Mnm = generalized mass of the nmth mode
N = number of wall openings: life time of-structure
in years . B
[
Nr'Nt= stress resultants 1n radjal and tangential
) directions 5
N o = 'integer. .
P(>V)= cumulative prbbability“distribution
p(y)) = probability distribytion
p = acoustic pressure: point load
. . P T ;
_ Ap = changé’ln acoustic pressure
r
P = dimensionless load parameter . . .
' T~ \ ‘. .
Q(r,s:w)=_imagindry, quadrature spectrum

M g @ = tiniformly distributed static load K
. A 1
a = dimensionless load parameter- !
- ' -
qo = ‘initial permanent unlformly distributed static -

" load

. - ° - -

q(x,y}z,t) =lr%pd pressure at-point (x,¥,2) and timeut
g(x,y,z)= mean wind pressure at pgﬁaﬁ (x,y.,2)

(% 7y ,2)=dynamic head pressure (= 1/2 p VZ(x,Q,z)) .

4

4a<> ,Q
o

= . maximum and minimum pressure field

» { . .
. "net.static pressure - »
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q, = external pressure -~ .
q, = radiated pressure due to roof movement
q, = internal pressure in the enclosed volume -
. . - N
qi. = the incident wind pygssure
R = dimensionless radius:; return period
R ,R = radii of curvature in the radial and tangential
or’' ot . :
directions
R(r) = . shape function in polar coordinate r

Rv(r,s:r)=cross—correlation function of wind velocity at
points r,s with time lag 1

‘Q

ﬂ Rqrqs= cross—correlqtion of wind pressure ag;points r,s
b = polar coordiqate
S = plan area of H.P. roof ' ’
Sv(f)= longltudlnal power spectral density of wind
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S (r,s: w) =cross-spectrum of longltudlnal wind veloc1ty
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ln N v
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SV_V:(r,s:w)'= cioss-sﬁectrum'between the ith and jth
1 components of the wind at poxnts‘;,s ‘
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‘relative velocity

‘height z and timg

a sine type of Mathieu function of the first

kind and of order m

[y

a sine type of modified Mathieu function of
the first kind and of order m’

tensidn in cable: tension per unit arc length
in cable roof: ti@e scale - .
time function

kin;tic energy

time | - .
dimensionless radial displacement: modal wind
speed (the mode of extreme data)
dimensionless initia% radial. strain | a
radial displ&cemepty .
original volume of the enclosure
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friction velocity: potential énergy'

wind Gelocity at height z and time t
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gradjient wind velocity" N
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t?e convection velocity
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xxvii Mo )

.

i 14




po

X,Y 2=
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Y

dimey ionless transverse displacement of cable

dimensionless transv se displacement of
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dimensionless centre displacement of c1rcular

‘roof

v

tran€verse displacement due to additional loads

initial transverse displacement

= first derivatives -of transverse displacement with
< respect to coordinates x,y and time t

mode shape nm

the average amplitude of.displacement of the

membrane surface in the nmth mode
the total peak response
the qua51 static deflection | ..

the velocity of vibrating membrane.
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system Cartesian coordinate  axes

shape function in direction x ’ 3

.

" shape fgnction in direction y

dimensionless coordinates

Bessel function ‘of the second kind and the kth
order oo :

~

= separation in directions x,y,z

gradient heiggﬁ
roughness length (height) ' ) s

zero plane displacement

‘the symmetric generalized coordinate
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the asymmetfric generalizéd coordinate
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the acoustic damping ratio
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v

" INTRODUCTION

1.1 GENERAL °

The aesthetic appeal and small weight of cable systems

-~ 4

has led to-their #ncreased popularity in recent years.

Their ability to span darge distances and to adapt to a

wide variety of shapes has fostered this appeal.

. Of cogrse,.the 1dea oﬁ suspended structures is not a
new one; it godes back to the Arabs with the;r big tents,
ven to Biblical times\and)probably long before that. 1In

nature, the spider's web is an example of these systems.’

T e

he availabie historical evidence -suggests that natural

\

. A , . ' . -
ropes were the ‘first materials used and that the earliest

version-of tension,rqbfs was a tent. With the availability
. . ' ‘ I
of jron and steel as structural materials, the first forms

of modern suspension structures, in which high tension

ve 2

steel cablles are used, began to.take shape. 'The real

- ! o - . .
developments ip the analysis, deésign and construction of
cable roofs occurré@’only after the Raylelgh areﬁa was built

L
in the Unlted States in 1953. Thls progress has indeed

been rapid. To date, Saudi Arabia is the site of the’ world's

-’

largest roof,.a five million square foot tent roof,  under -

construction [1]. . - ‘ - .

wt
.




The economic expediency of cable roofs is well

known from the practice of their application within

-

the last thirty years in different buildings and con-

structions. The gubstantial advantages of these systems,
especially for covering o% lgrge séans,are dﬁive:éally
recognized at present. Under the existing trend of
furthepy considerable increase of sp;ﬁs for public as

well as for special industrial buildings and construc-

tions, the suspended systems will remain for a long

'period of,time as the most expedient and in many cases .

as ' the only péssible decision in this field.
1.2 AIM AND SCOPE OF STUDY

Tﬁe general aim of this work is to ine.a ﬁnifiadA
account ofyé;blg tension roofs from the Qoint of view of
é strucéurél engineer as well as researche# who has
interésts‘in both the théoketical and précbicai aspects
of the subject. The purpose of this research work is ko.'
idenﬁify £he maig~problems'o£,qypamic behaviour of tension
:oofs and to éoﬁkrfbuté to %heir solution. Thérefére,

the work in this thesis includes the following: o

.

- ] N 5

1. The descfipfion of suspen ioﬁ oof structures and

+  the review of "the development off their analysis

and design within- the last 30 years.

v
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2. The review of the 'classical theories of statics and

13

* . . dynahics of a single cable; this is hecessary because
the cable is tﬁe-main element .in cable roofs and
- some configurations of cable rqofs are similar to -
the single cable. )
‘3. The study of stgtic.analysis'of cable.tension roofs
| and formulatiop of a'theo;yffor fhe linear and non-

. L
. linear response .under’static loading for two of the

noét common shapes, the rectangular and circular type.

A

4. The review of recent developments in statistical

4

-theory of turbulent wind.

~

5. The study of freevvibration analysis of cable tension
roofs and°develbpment of a theory for the free vibra-

‘tion of the two common shapes, i.e., the rectangular . .

and?circular hyperbolic paiaboloid'tehsion roofs.

‘

, 6. 'Déyéibpmenteof a theory for the free vibration Gf cable

roofs-backed by a cavity with openings and ~ study

the'efﬁgct of the enclosure under the robf on its

-

frequency characteristics. .

7. The thédrgtibal study of stat}c and dynamic response
of cable ;ensioﬂ roofs due to wind loading.’

8. The stdﬁ§ 6f air-roof interaction and its effect on
the rogf frequehd§ response fuﬁctions. | ‘

. ' 9, Experimental study to Verify the theories developed.

10. Additional goai.oj the experimental study is to estimb&é ‘

Y

damping of the cable roof structures from all sources




: . : ] : 4 .
o and to measure the internal pressure fluctuations

within the enclosure under the roof.

In, this thesis, these objectives have been pursued and
the results of theﬂinvestigation are presented here, based

on an analytical approach for all the problems involved.

<, v

1.3 DESCRIPTION AND DESIGN OF SUSPENSION ROOFS
R A suspension structure may be defined as a structure
whose principal supporting ‘elements are tension members .

¢
i

draped betweéen anchorages, as defined by ASCE Committee

Sfate—of—the—Art [2],AButler 131 and Roland [Frei Otto

Tension Structures, 4]..

A:;able—suspéndeg roof is a suspension structure in
.which twisted.wire strands, ‘or ropes, usually of steel,
“ serve as the ﬁrimary tension members. Those members cqpsist
‘of‘g;gging cables Having little fléxural rigidity, carrying
downward vertical loading and other cables being provided
far ancillary purposes, such as to provide damping and/or

additional stif@ness; N

’ “- P '

1.3.1 Types of Suspension Roofs
Suspension roofs may be»classified aééording to their,
shape and mgtho@ of carrying ‘the decking. The shape may be
) ::fegorizad according to the number of l&yers of cable§ in

e system and the curvature of the surface formed by the

¥ cables. Suspension roa@ﬁ.may consist of single or double
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layer cable systems. When viewed in plan, the cables in a

layer may be arranged in parallel, radially or as a mesh.

The mesh arrangement, Figure 1.1, is often feferred to as

double, triple and quadruple threaded cable nets, as well

as nets of hexagonal mesh patterns.

The surface formed by a real or imaginary membrane

stretched over a cable layer may be synclastic which has
. N ]

curvatures of the same sign in principal directions or anti-
clastic, which has opposite curvatures in these directions. -
Examples of possible shapes of suspension roofs are shown

.

in Figﬁré 1.2,

For many suspension roofé, the deéking is placed

_directiy;over the cables, Figur!‘%.3a, while other hanging

roofs have been constructed with‘the roof decking attached

to a framework which 'is, in turn, supported by a cable

system, Figure 1.3b [7]. 4/////\

1.3.2 Materials and Structural Elements

Thi construction materials particularly suitable for
suspension structures loaded in tensioq with the least
possible material are those haviﬁg the highest possible

ratio' of strength to bulk density. Structural steel strands

»

and structural steel ropes, because with their tensile

2

strength of 1275 to 2137 N/mm® (185,000 to 310,000 psi),
‘ P .

they have the highest strengths-of all commercially available
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structural materials_and are generally more economical for

-,

tension members than, for example, solid'roﬁnd bars of mild

‘steel or medium-tensile steel. A strand is an assembly of

&

S

a . . < N .
steel wires wrapped helically around a centre wire in one

or more symmetrical layers. and has the cross-sections and

.-

-

schematic arrangement shown in Figufés l.4a and 1.4b.
. L 4

A rope is cémposed of a pluraiity of strands wrapped
.helicai;y around a\cére, as éhown in Figuré l.4c. A typical
minimum breaking load being 240 t for 50 mm {265 t,qu.
2'incﬁes; diameter and 530 t.;br 75 mm {585 t for 3 inches)
diame£éf ropes. As protection ggainst corrosion, steel

* - cables are gaivanized and. can additionally be sheathed with n
5 plastic.f“)

Tenslon members (cables) which form open networks and

-

< o

o~ lattice works are primary structures and have to b& covered

Qiﬁh qpntinuéﬁs meqbrane 6ribe infil;edqwith panels. Iso- a
. tropic membranes, such as pI@stié sheets, lattice sheets,
‘\"‘ g metal ﬁembranesl(gtgel or alﬁminum) sheets and rgbber mem-
P bréhes;may be'uS?d ﬁi a continuous memb;ane,ﬁéver;né'
attached tao the supporting cables, Figure 1.5.  Materials
wh%éh mayiye uéeé as ﬁ%lling panels a:é‘fine mesﬁ ﬂétting

’

. -~ (to f£fill large meshes in very coarse mesh work), flexurally
. [ “. - ' o - ‘ °

L. ;igid slabs or plates of'éhéet metal, piywooé hard-board, .

A2

\

gypsum, “insulating materials, lightweight concrete,
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plastics, thin corrugatéd Qr folded plates and sandwich
¥ . ~ "
slabs with foamed plastic insulating layers. )

.

.The slabs or plates are either suspended between the
meshes, Figure 1.6a, or are installed as long paneIS“between
parallei ‘cables, Figure l1l.6b, or they may be mounted over
‘or under the network. 1In chble-suspénsion roofs it_is some-
ti@es unec&nomical to space the cables too closély and
_Vseconda.ry members .may be used \(O‘break down the space of .
the infilling. These members are usually of convenﬁional
steei work. Both secondary members and infilling ﬁust bg
cdbable 6f accepting the large def;éction ﬁdvements which
occur in cable-suspension roo}s. )

There are éwo ways of transmitting the forces in the
cables to the grounds; by a reinforced concrete ring supported
by vertical columns at close spacing, Figure l.6a, or by
steel 'anchorages and accompanféd'fittingg, Eigure l.6b. 1In
ééneral, fittings should be capable of developing a% least
the breaking strength of éhe cables to which'they e

attached. 1In double-layer suspension roofs, the strut

ané/dr ties may be made of steel tubes.” .

P
A knowledge of the limitations of building materials

]

and qonstrucﬁlon systems is an important prerequisite for
-assessing the effect of the free span of a gtructure upon

its shape."

’ : '

10
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. These relationships play a decisive part in the struc-

tural and architectural mastery of suspension roofs.

n

. 1.3¢3 Structural and Architectural Considerations
‘. . hal ,
Many forms of suspension roofis are possible and there

’ @

is a variety of configurations of cable roofs that can be

used. If adequately treated, structural suspeﬁsion systems

a

offer .numerous forms, not only for roofs but for the entire

]
*1

building:

The.tygé of suspenégpn system selected, whether single
or double lajer, anticlastic or synclastic, étiffenqg by
flexural members or unsﬁz%fened, self-anchored or externally

anchored, is largely dependent on structural considerations

X

_and architectural requirements. The configuration of the

¢ -

~cable system is influenced to a great extent by structural

considerations such as, for example, foundation conditions
’r

which may determine whether the system is self-anchored or

‘externally anchdrgd, the method of stabilizing the roof
against undesirable responée to dynamic loading, and the
choice of dimensional parameters such as clearance, sag, &hd

. inclination of anchor .stays so as to minimize thé forces in

the cables. ) ‘ )

1.3.4 Method of Design ‘ >

The most common methods of design for single layer

J

12




.systems; stated by Zetlin [5], are:.

a. . Catenaries

This is the most elementary_structuralLsuspension
system and it requires end towers and abutments to resist
the tension in the catenary. It also requires a. stiff

structure to eliminate flutter of cables. \

S
°

b. Tents |

h‘This system consists basically of parallel cables or
cables radiating from one support point to abutments .with
the roofing méterial spanning the cables. It méy require
vertical posts within’ the covered space. The cables are
essentially sloping catenaries designed by statics only,
so that there is no attempt to solve the flﬁtter‘problem.

2

c. Prestressed Catenaries .\

\
Where a clear span unobstructed by central supports is

required, suspension roofs consisting of radial ecables with
cgntral tensidn ring and external compreséionri?g can be
\used, Figure 1.3a. As decking, precast or .poured-in-place
N‘ébhcrete paneis ﬁay'be used. . 5 »

4

a. Grid Meshes /

To avoid flutter in prestressed catenaries, without

adding heavy weight) meshes of interlaéipg cables are often

. \
v

i

4

13
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used. In some cases, these sgrfaces have reverse curves
created by cables having opposite cur%atures) Figure 1.7a.
Usually, the convé% cables ha?é an initial tension and bull
aqqinst the concave cables. Other examples of this type

are the saddle-shaped and diamond-~shaped cable-suspension

roofs, Figpres 1.7b and 1.7c.

As compared to simply suspended cable roofs, a much
stiffer design makes uée of cables in two layers. 1In order
to achieve the necessary stability, the cables in two layei
systems ére prestressed. This results inwincrgased hori-
zontaliperipﬁegal forcés togeﬁher'with an increased down-

ward loading on the sagging cables in the form of a reaction

) transmitted from the hogging cables. The‘two—layer.systems

.fall'into two principal categories {3]:

a. Lens-shaped systems which are circular or/gfliptical
in plan.

b. Systems which are rectangular in plan.

In lens~shaped systems, the peripheral héri?ontal forces
are usually reéisted by a ring beam which is stressed pri-
marily i; compression. The cableqlayoui ?an be either
radial as in the case of a‘fbicycle wheel' system, Pigure -
1.8a, or ;eotilinear in the fbrm,pf a sguare grid, Figure

1.8. 1In either case, the average resultant peripheralV

forces under uniform loading are primarily radial. The
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Sd@ddle-shaped Cable Net .

Double Curvature Cable Net

FIGURE (1, %a)

»FIGURE (1.7b)

“

.Diamond~-shaped Cable Net

FIGURE (1.7c)*
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cables can be arranged in the form of a convex lens, a con-

cave ‘lens, Qr an in erméé;ate shape (a double ring beam
. o«

'being required in the lattgr two instances) ,Figures 1l.8c

16

and 1.8d. The upper and lower layers are linked structurally.

by ‘means of struts in the convex design and ties in the con-

-

cave design. - .

For systems which are rectangular in plan, a rlng beam
'solutlbn is not often feasible and anchorages must be pro-
v1ded to resist the horlzontal perlpheral forces. The cable
layout usually differs from that of lens- shaped systems in

that the cables are arranged in parallel trusses spannlng

[

in one dlrectlon only, as shown in Figure 1,8e. However,

4n the two-layer systems, either of the two 1ayers can be

used to preten51on the other through the web members. The
cladding can be placed directly on the upper 6r the lower
_ cables.\ The cables ggprylng the claddlng are often called

the carrylng cables and’ the others are the damping and/or

¥ ~ .
pretensioning cables, Figure 1.9. In general, the double-

‘

layer systems are‘primarily used to dampen the suspension’
* roofs against‘flﬁtter and to produee a high degree of

rigidity.

1. 3 5 Method ‘of Erectlon

-~

<7
The sequence'’ of erection of cable-suspenSLOn roofs is

\

. fairly uniform, for all types of étructures.

L]

*

v




FIGURE 1.8a
{(Circular in Plan)

FIGURE 1.8b Cross—section of Convex Type Lens-shaped Roof

. . Twin
Coble Comeral age Servg ting boarst

w J;l] Pr:|><<ﬁ-=-

FIGURE 1.8c Cross-section of Intermediate Type Lens-shaped Roof

' Twin
ring beams

FIGURE 1.8e Cross-section of Truss-shaped Roaf }
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Construction begins with cable supports which.include

2

anchorages, buttresses, rings, masts, etc. Next, the cables

4

are placed and adjusted- to some preliminary position. Roof-

-

ing and oth dead loads to be supported by the.cable system

a

are then placed on the structure without tight interlocking.

<
E)

The cables are then given a final adjustment before pro-
' ' . 3 .
ceeding with t;ghtening the supported structure and fin@éhing

the roof surface.-

In net systems, the main cabies are placed and’ad—
jusﬁgs for po;ition. Aftéf the system of cross cables is
placed, the net is preétressedaby jacking a tension ﬁorée
into the cross cables. The tenéion in the main cables is
uéually not measured or directly controlled. An-alternativé
to net systems placement; the cables are partially or‘wholly

preassembled on the gfound and then lifted into poSition

together.

~In radial systéms, the load-carrying cables'reach
maximum tension prior to live load apélication under full
dead load. The scaffolding under the tensidn ring is gene-
rally set low enough. that the ring rises éff the scaffolding

as the iatter part of dead load 'is applied.

Indouble-iaYer'§ysFems, only the pféload or stiffening
cables reach maximum tension when the struts or ties are

inserted. As dead load is applied, the tehsion in the load-

e
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&

carrying cables increases and the tension in the preload

cables decreases. -

v

Practice appears to vary as to whether ,another adjust-

.

ment of” individual cables is made after the ‘dead load is in

place. 1In radial systems, where uniform %oading on “the L,

rings is important, ,a finélhcable adjustment is common.
. . r\_’ B ’

-

Precast concrete panels may be used as infilling in
.prestgeésed catenaries and gxid'@esh 'systems, forming dished ‘
shell roofs of circular or elliptical sﬁape in plan. After
the cables aré placed and édjusted to séme breliminagy
position, the panels ;re hung om the cabless then éhe cables. )
are stressed in predetermined seq ences ﬁntil tﬂe weight of
the panels is fully balanced by the upward component of the
céble, as described by Lih and Young [6]. Grout is placed‘
between the panels. This ig done in several stages, each
stage befﬁé balanced by ad@}tional_post—tensibning in the
cables. Finélly, the cables receive final stressing to

provide for live load. ' A

3

1.3.6 Difference Between Cable Systems and Shellg'

A distinguishingdifference in behaviour between pure
cable systems (catenaries) and shell systems is that the.
.former are prone to much hiéher defléction. This difference -
is‘dﬂé to "the fact that in pure cable stru9tures, deflection

- ¢

under load is related to the cross-sectional area of the
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cables“~and Young's modulus 'for steel.

In a prestressed concrete shell structure, however,

- , . . » . . =

deflection is related to the cross-sectional area of con-

crete and Young's modulus for concrete. Because the ratio
~ ' T
of concrete/steel cross—sectlonal area is usually much :

larger than the ratio of the two va}ues of Young‘s modulus,, '

the deflections experienced by concrete shells ‘are of the

prder 1/10 ef those for a cbrresponding pure cable strucﬁér%.
; A i a

1.3.7 Design‘P inciples, . ‘ . < -

¥

It is a significaht feature of cable-suspension roofs

-

that they cannot be designed,in'thé conventional sense

(i.e., as typical rlbld buildings) [2,4,5].. Ks there are

no flexurally’rlgld elements which permit a certaln amount

[

of freedom -of shape, but.only non-rigid efements (cables) ,

@erefore the shape of cable-suspension .roofs is ‘determined
by lcocading, span and sag. . - f‘

. . . - “_’4
The maln-supportlng elements in suspen51on roofs are

3

khe cables, which must be dbszgned to w1thstand ‘their own

weight, infilling and the superimposed loading. N "..ii”

g . " o !v“
_ The. principal’ causes of superimposed loading are: "

Snow:, hall or ice in cold cllmates; sand or dust 1n arid

’

climates, ralpwater bUlldup on dished roofs, w1nd forces
&
suspended services (such as rain dralnage serv1ces),




tr

maintenance loads, erection loads including: prestress forces,

“ . ¥

-and 3uch‘effécts as temperature ‘changes,’ cable stretch and
the creep and elastic deformation of reinforcéd concrete

éupporting elements. = . ’ -
|

. Regarding the effect of wind loads; this can be assessed
by wind tunnel tests especially in the case of large roofs.

4 However, it is probable that the majority of existing struc-

[y

ture i up- to 80 m (270 ft)~span have been designed only
. onxthe baéisAof code of_practice'valugs for both downward

and upward static wing@ loading.

)
-

- f The design'processfor;ﬂqg'double—cable systems

(catenaries) for symmetrical loading is as follows [3]¢

a

-

" . ) . » .
1. ‘A depth-span ratio is chosen. .’
2.) - The size and number of the top and bottom cables are

.+ - <chosen.

L}

L. 3. A prestress for the top and bottom cables is ‘assumed-.

> The geometry‘of the cable-suspension. roof is determined
under the prestressing only..

4. The dead load is applied, and the ‘alteration in cable
* Q
stress—and-9onsequent change in geometry ls evaluated.

‘5.. The superlmposed load then is applled and the changes

”~

in cable stress and geometry are again evaluated. - .
~ - . - )

6. A chegk- is to be- made that the allowab;e stresses are .

not exceeded and'that\the geometry of thecsystemdis
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*

adequate for practical purposes at each stage.

- . o

If the result is unsatisfactory, the process is repeated

- - -

until all the criteria are satisfied.

<

In a cirgular roofWith a symmeirical cable layout in

plan, the calculation for symmetrical loading .can behcarried‘
R . . T .

T C . ~ . .
out for a single truss in isolation. For nonsymmetrical
layouts, or for asymmetrical loading arrangements, it is
necessary to consider the whole roof struéture,including

the ring beams as an interrelated structural system.
+ ] , ‘.\

.

T~ The design process for a double~curvature net is basiﬂ.

'cally éimilar to that for a two-layer system. .

o] ’ )

The desigh of a shell-type cable structure is subjected

" to two entirely ‘different structural states. During the

&

.. . .
construction of the concrete shell, the system behaves as a

"pure cable structure. After the compIetiQh‘of.the shell

‘erection and application of prestress, it acts as a pre-

E-3
.

- ) stressed (concrete shell structure.-, '

7 . . .

L™ ] (.-A

The design and .construction process for tyﬁical dished

/ . °
shell systems iS'QScfollows:

- -

,J

- . 1. .A construction system ‘is chosen having regard for the
economic and other factors prevailing at the gite.
. 2. The thickness of the shell and all dimensions of any |

.ribbing are assumed. .-

1 3 ¢ v

I s
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3. A sag-span ratio is assumed and the structure is de-

’

signed as a normal shell subject to the.requirea

loading ‘conditions.

u' 4, The ring beam is designed as part of the shell struc-
.ture. ) . '
5. The size and number of égbléc necessary to give the \X

prestress required to neutralize shell tension stresses
. C .
are evaluated.

6. - The exact construction sequence is determinéd.)
7. The cable network, 1nclud1ng the ring beam, is analyzed

sequentlally for A{ery,loadlng combination durlng'con—

-

struction. =,

8. A check is made on the cable stresses and geometry at‘
each stage and -the process repeated until all the

criteria are satisfied. o
>

“
<

1.3.8 Other Design Considerations

The flexibility and light weight of very large suspen-
sion roofs make wind tunnel tests on aerodynamic models
desirable,if not essential,to establish wind loading and to

assess the dynamic behaviour of the roof.

In design practice, the' current approach to the design

of suspen51on roofs for dynamic loading is to choose cable

) arameters such that the frequenc1es of ant1c1pated exciting

.l

orces will neveﬁ occur in the vicinity of a cable natural
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1~

frequency, and if it‘océurs fhe amqlitu&e of vibrations is

to be reduced. Zetlin [5]-.stated that one way to avoid
having a ffequency w in the vicinity of thé natural frequency,
w . is to inérggse the mass sgppérted by the.cable. To in-
crease mass on a cable (catenéry)lis.to increase geometrical
stiffness, thereby incfeasiné the frequency.

<
P

The amplitude of vibration decreases fgr a given forcing
function and damping coefficient as the cable stiffness in-
creases;  Therefore, for a given cable tension, the greater
the dead load, the greéter the cable tensién,'the stiffer

3

the ‘cable and thus the amplitude of vibration is reduced.

If the cable is damped, the increase in amplitude at

resonance is lowered.

The current practice indicates that, by~providing

damping, the unpredicfability of the forcing frequency and

- - . )
the natural frequency of the .entire suspension roof need

not be a ‘concern to the designer)provided that the damping

is adequate to restrict the amplifude of vibration to an

accepéable value!

An efficient method for incréésing‘the stiffness of sus-

pension roo‘s to use two interconnected curved cables, s

Pigure 1.9. ‘ ‘ oL .o

[}

.

The 'current design practice is to-utilize a configuration -

#

- ;
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of a double layer system consisting of primary and secondafy
cables [5,16,17]. Primary and secondary:cables are usually .

. 4 .
erected in pairs, one below the other, separated by struts

-,
ol

or ties which are inserted in a manner such as to prestress

the primary and secondary cables of the pdir againsf‘each

other. “This method of
! T
frequency of the cable system due to the increase in its

.

construction will increase the natural

stiffness.

Other effects that should be considered in design in-

clude cablé stretch and support diéplacements. Cable
strétch iﬁfluenqes the configuxatién of the cable system .
and thereby the force in.it.. The displacements of the sup-
porting structural members should be considered in the Qesign'
,“of thé susﬁénsion syst%m,including the long term diSplaée-.
ments resulting from creep "and shrinkage of reinforced con-
crete members.
1.3.9 Economics

: Architects and eng%neeés have a strong interest’in
utilizing suspensiqn systems for supportihé roo{s cpvering

large areas. This interest reSults‘érimarily from two CL

factors: . The fixst is aesthetic: the variety of roof forms .

.~ S

and building shapes possible with suspenéicn systems presernts

many opportuniéies’for architectural expression, the second

o

is economic. ' .o o o ' -



For large roofs, the cost 'per unit area of a roof

-,structure rises very approximately in a linear fashion.

In terms of the direct structural costs, therefore, long-
span roofs may not prove more economlcal than shorter spans
but their constructlon may well affect the usefulness of
the covered space. ‘For example, in countries with severely
hot or ‘cold conditions, uncovered sports stadia‘cannot be
used during the sevefe seasons. If these stadia are
cove;ed[ it could lead to gteater interest in sports as
well as increased economic'gain. Furthermore, suspension
" systems may be less expensive than other structural sys-
tems for supporting la%ge span roofs when hlgh strength
cables are used. The ﬂlgh strength cable is approx1mately
six times as strong as structural steel, which results in
less weight of structural material but costs only about
twice es'much per-kilogreﬁ. yFurtheerre, it is as easy

to string a 100 m cable as a 10 m one.

.

In a suspension‘rqof, the cables themselves and their
erection represent tné smaller/pgrtion of their cost} the
larger portien is in the fittlﬁé} their connections, and
the anchorage members. Because/of this, suspension raofs
'are'not likely to be econemical tor spans-less than ébout
122 m, Table 1.1, [8], unless the design and method of
»enection eliminate fittings and anchetage at the end of

* each cable, as when a ring beam system is used instead of

27
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cable truss systém or when a continuous cable is used to
transverse - (across) a smaller span. seVeral times. With
large spans, however, cables become\éxtremely economlcal
since the cost of fittings per.unit area covered is re-

duced. This emphasizes an important potential of long-
. .
span suspension roofs: their cost per unit covered area

tends to decrease, if truss cables are used, and increase
slowly if ring beam systems are used. On the other hand,

: .1 . .
the cost of conventional framing increases more.

The variation of the guantities of materials in cables
and ring beams ss well as the overall cost of rooﬁ per
unit area wi&h spans are shown in Figures 1.10 to 1.12.
These qusntities were oollectcd by Butler t3]; The cost

is based on prioces.in England in the 1970s. It should be

-

‘ noted that the cost per unit area of many of,ﬁhé major .

‘»

elemeénts such as cladding, waterprdofing, flnlshlng, fire

protection, pumps and foundations remains roughly constant

N «

Because of the felatively\io:r::st.of the cables as
a proportion of the whole, the. ov 1l cogt increases
slowly iﬁ relation‘to the span. In the cable truss systems,
'i\

the cost of anchorages and foundatlons is much hlgher than

the column and foundatlon cost fogﬁrlng beam Systems.

This factcpas to be borne in mind whenacon81der1ng the

’ ¢

. uhit weights shown in Figure 1.11.

14
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TABLE 1.1 Comparison of Costs of Various Roof Systems [8]

i

Span Cable Arch Truss Plate Girder

305m . 100% 82% 92% 118

(100 #t) . .

61m 100% 82% 100% -

(200 1) . -

NS5m 100% 4, - -

(300 ft) . \

12 m 100% — - — :

(400 ft) | 1l
- | !

.

———— e et

N\
i

Estimated Cost of Dished S

.to Span [3]

¥

*

b

hell Roof in Relatjon

v

29
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FIGURE 1.11 Weight ot Steel in Cables in Relation to Span [31]
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.
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‘The cost of ventilation, heat and air qdnditioning;

essential in sports stadia, must be considered and some-
¢ &

times'it is relatively high compared to the cost of the

roof structure.
The cost information available indicates that cable

T roofs are strikingly economical for spans of 120 m to *
170 m. Emensions made from existing data show that tHis
economy is likely to continue up to spans of 300 m and

-

more.
*

1.3.10 Advantages:and Disadvantaées

— -
Suspension systems may have .aesthetic and economic

advantages for long span roofs. However, becausé of their s
¢ flexibility and light weight, some factors must be con-
sidered in design which may be neglected for roofs having
. ¢ . R

more conventional framing.

[

Erection nges are quite short in cable roof construc-

tion. A roof ébout 7,000 square ﬁetres,area'has,cpm—

. pleted in four weeks'[2]. The time rgquired'to placé the
decking was the major porﬁion of the total,-while actual

cable placement time was much less, )

»

¢
Y

. . Another great advantage in erecting cable roofs is
‘ . \ :
the small amount of scaffolding required. Cantilevers;

f\\, N A
Rt ey,
: n ‘
.. .
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parallel systems and nets can be éonstructed with no

-

temporary support for the roof. Radial systems require

>

 temporary sypport only for the tension ring.

-

In light roof structures, especially those with low

inherent stiffness, gusts and turbuience-may cause vibra-
1
¥

tion or flutter of a local portion .of the roof or JSf the
roof as a whole. This tendency is common in cable-
suspension roofs and in some cases the resulting gscilla-

. ,
tions may be destructive. -

-

A quaiitative analysis can be conducted on relatively

@

simple models using rather crude’ equipment to investigate

tendencies to flutter? If flutter is anticipated, it is

<

usually possible,for very little added initial cost,to

e

provide a stiffening system which will damp such oscilla-

tions. ‘ ,
. 4 L }

N .

In large covered stadga, a high degree of natur%%

P t "$
lighting can be achieved by using a pure cable structure

-

and by subsfituting transparent roof cladding for the more

usual opaque type. L]

. .
With shell sysfems, partial natural lightiné can be
achieved by pfovidiﬁg a large central opening which is

. : oY SO
roofed by a pure cable structure incorporating transparent

roof cladding or by being left uncovered.
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The type of roof cladding can have an iméortant
) ' , R .
effect on the heat gain or loss in a building. For example,

-

the use of large areas of transparent cladding can lead to

a substantial buildup of heat within the building.

By providing an opaque roofing material having reasonable
insulation properties, a standard of spectator comfort
‘appropriate to sports activities can be achieved at low

services cost.

1.4 vDEVELOPMﬁNTS‘IN CABLE-ROCF. ANALYSIS
Most, of the developments in the analysis of cable~
roof systems have taken place aftérI1950,although somé work

on the subject‘was reported earlier as‘well. Two points,

most relevant to theoretical analysis are to be emphasized.

‘ﬁ‘cable exhibits a marked nonlinear behaviour wheh.

’
. ¥

loaded and the degree of nonlinearity varies with the ~ -

i . ¢ , -
typéﬁof cable structure as well as loading. It is neces-

sary to distinguish this nonlinearity, which may be called

.

geometric nonlinearity, from possible material nonlfﬁearity.

.

In order to sustain lBads,’a cable has to follow the funi- o

cular curve of the loads and undergo large geometric ad- -
k2
justments, particularly when the loading is concentrated
' . it
or«asymmeffic.“ Geometric nonlinearity will therefore occur -

’in cable behavidur‘irrespective_of whether the cable

4

4 ° R,




material has .a linear or nonlinear stress-strain curve.
Nonlinearity is~more pronounced in roofs where cables are
not pretensioned.. The other prob%em that :demands analy-
tical skill is the génerally high *degree of'iggeterminacy
of%these systems. S \ | ~

a
¢

The problem of analyzing cable systems can.prove to
be qulte complex. 1§ general but 51mp11fy1ng assumptiohs ’
can be made to reduce ‘the. effort required, partlcularly
for prerlmlnary desrgn~work. There are two oroad cate-
gories into which tife Qevelopment of cable-roof anaiysis‘
can be placed, Adepeﬁ&iug _upon whether"the'networkﬁfs"
treated- as’a\contlnuous membrane, or a ﬁlscretiggystem.i
In almost all analyt1cal procedures publlshed for cablei

roofs the contribution of the claddlng to- the stlffness -

of the network 1is dlsregarded.-.That belng the case, hhe

bare network is in fact a- dlscrete system and 1ts treatment o "

~

) as a contlnuum is an approx1matlon Analytlcal procedures

on the basis of the contlnuum approach have q»;n used to '_,

produce 51mp11f1ed approx1mate formulae for computations
0f cable systems:

. e T AT -
If the structure ig treated asy, 4 dlscrete system, any

x» .
x4

' method of ana1y51s muSt ba51cally 1end 1tself to the solu—,,

tion of stlffness or, flex1b111ty matrlces set up for the

structure The contxnuous approach leads ‘to a set of

)




LY . ! » 1 °
. [ 4 .
¢ ’ . .

s .

-

. nonlinear preblem.

’

) g N
nonlinear differential equations.

. _ procedures becomes imperative for the‘so}ution of this

The use of ite}ative
’ ,

-

4

[y

“

Most of(thg)analytical studies on ‘cable systems have

"+~ assumed the supporting structuge of the roof to be rig%dd

»

Howevef, evaluation of the effect‘of the support flexibi-

- A

lity, which can be conSidered has engaged the attention

i) ._O'f .

A better uﬁderstandlng

@

researchers also (9,10, l;]

of the cable roof and the supportlng structure, in relatlon

'to each other, ‘is leadlng to a graddal departure from the

‘early practicé of maklng maSS}ve supportlng béams. .

v 3

It can be sald 1n general ‘that. the problem of analyzing
AN 1/ .

. K

-

Cable networks for statlc effects has been adequately met

dhrlng the 30 years of thelr development after the 19505

. but there is only a meager amount of information available
L Y r --’ o
on the dynamic analy51s of suspen51on roofs.

« - ° N ' -

Cakble roofs axe flexible, long-gpan ;quctures.and as

such are prone to significant .aerodynamic excitation. Some

»

existing roofs of this type have shown a tendency to

-

. flutter, but there is %ittle work reported on the assess-.

#
ment of aerodynamic¢ behaviour of cable roofs [12 13,14]
- Y :
Cable roof structures belong to.the c%ess of llght

L J ’ y
o T and flexlble structural 5ystems which are sen31t1ve to \\
'

A v




. b. ,the'analysis of the stru

- -

N ' ‘ o el S . N ) '
vibrations. . Therefore, the~de81gn and construction of

o ., -
-

thesecstructures requlre an examinatlon of the dynamic *

behav1our.v An examlnatlon of the dynamic ‘behaviour of

-

cable roof structﬁges is necessary to ensure a safe and o~

]
-
ey

serviceable” strpcture_design. The examiﬁafion can be
separated ifito two parts:
D) L4 . g .

a. ’fhe detehpineﬁion of th

-

-
°

" Today,, the development of cgmputing methods has

made p0551b1e caléulatlons of great é%curacy Neverthe-

less,,there 15 a lack of 1nformat10n about the load cond1~

0 q @ . RO

"tion and there is a need to éxamine - the assumptlons under -

Y

which the calculétlons are made. » An 1nteract10n between

. - ¥ . P
theoretical and experlmental methods is, therefore, of

L

importance. A p0551b1e way - to ex&@}ne the’ %Vnamlc problems
of cable rogﬁ structures is shown 1n<%1gure 1.13.- Theofe—
A -

tical reseaqpb 1ncludes the developmeht of /pﬁlytlcal and

"'-—-v; g

‘numericai methods toenalyze cable structures.” On the

L

6ther hand, £he experipeﬂtal work has? to prove the'assump—

Py 2

tion on which & theoretical calculation is Hased, “and to

T e . : .
verify theoretical considerations. . . 5
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CHAPTER 2

\ . @ STATIC ANALYSIS

2.1 STATIC ANALYSIS OF A SINGLE CABLE

2.1.1 Introduction. . . -

" Cable roofs are by their definition composed of

- cables having different shapes in plaﬁe and many possible
arrangements.‘ The main element in the system is the -

BIRY

single cable.. _ \ : ' ' : e

<

Géliled’in "Discourses On Two New Scienbes", published .

-

in 1638, muses on the shape of a hanging chain and con-
cludes that it is parabolic. Bernoullis-(James and his
brother John), Leibnitz and Huygens more or less jointly

discovered the catenary [18], the word coming from thg

_ -Latin for chain and meaning universally the form*of a

‘chain hanging between two points: ' * ' .

. : © In the diséovegy of the caﬁena;y different approacﬁes
* were employed, with Huygens relying'o; geometricélbprin-

ciples and Leibnitz and thewggrnoullis ﬁsipg‘;he calculus,

then &a“comparatively-recent invention.

hal

The nature and applications,af the exact and apﬁroxi— .
. - ' .

0 * mate claggjcal solutions for the static response of a ' o

. single .cable are expldred first.

4 -
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2.1.2 The Cétenary

A uniform inextensible cable, or chain, that hangs
‘between two fixed points that are at the same level assumes

the shape of a catenary.

The elements of the cable are assumed to be perfectly

bl

flexible, with no fiexural rigidity: the cable can sus-

tain only tensile foérces. An elegant way of describing |

this pure cable behaviour is that attributed to James

Bernoulli [18], "The‘actioﬁ of any part ef the line ﬁpon~

=

its neighbour is purely tangential”.

5 1 (N

By applying the second' law of Newtonian mechanics

to an isolated segment of the cable, located at (x,z) in

o
s

Figure 2.1, and récalling that the downward force foi each

sedment of length is proportional to the arc length ds,

given by the geometrical constraint , ~\'
dx, 2 dz,2 _ :
Qag) + (327 =1 (2.1)

ds
the vertical equilibrium of the segment yields

d dz

dz dz L P
mgds + T 3= # gz (T )88 = T == 0 -
. . i . ) #, ' .
Th@s equation reduces to 5 )
d. dz, e ‘ ol
L o(r &) g | oL 22
where T is the tension in the cable, %g ig the sine of the




(T+AT)

FIGURE 2. STATIC EQUILIBRIUM OF CATENARY

%

Distance of catenary below parabola

FIGURE 2.2 DIFFERENCE BETWEEN THE ORDINATES OF A
& PARABOLIC CABLE ARC AND A CATENARY
.. "HAVING THE SAME SPAN AS WELL AS CENTRAL
* SAG (FROM [20] )
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angle (6) subtended to the bbrizontal.by the tangent to
the curve, and mg is the self-weight of the cable per

unit length. Horizontal equilibrium of the segment yields

dx _ ., dx d dx
Ta's"—T.d—s—*\‘a—g(Ta—s')‘AS

which reduces to

a dx,. _ . L ‘
3s (T —g) = Ov since As # 0 (2.3)
where %g is the cosine of the angle of inclination 0.

Equation 2.3 may be integrated difectly to give

~

< T dx _ T cos6 = const = H (2 ;3
h ;Q' dS i o . )

A}

;yﬁ%re HO is the horizontal component of cable tension
which*is constant everywhere, sincenn?j;bng;tudinal'loads

LN .

are actihg:; substitute Eq. 2.4 into Eg. 2.2 and rearrange.

We §e£ . _\ ' X

2 . ¢
B, $2% - ng L (2.5)
4 dx‘ .
1 . -.
Substitute Eq. 2.T into.Eq. 2.3, giving
2 ot
d“z _ , > »
H E;f = -mg 1 + (F-k ‘ . (2.6) ‘

> *

This is the governing diff;rentiai eéﬁqtion forathq déble .

h \" L. P
. hanging under its/own weight: the same équation ‘appliges
. R . 1 . - t 3



’

for any permanent superimpgpsed load uniformly distributed
along the whole arc length with mg replaced by (mg + q),
where g is the permanent uniformly distributed load per

unit length of arc. ‘ .

-

Equation 2.6 could be obtained directly if Newton's .
second law is applied for the whole cable in the vertical

direction and differentiated twice with respect to x.

Integrate-Eg.. 2.6 twice, substituting the boundary

¥ . Yo
conditions ) o \ :
z=0 atx=0 S , (2@)
and. N ‘ .‘ ’ > .
z=0 atx-=21 . ) ‘. (2.7Db)

\

. N
= o

It can pe‘geen'that a solution that satisfies Eq. 2.6 and _

. . . ' N
the pouhdgry conditions (2.7) gives the equation )
L . -
_ mgt, _ Loemg &y
'z = ng {cosh (5£7) cosh # (5 @x)} A (2.8)
. ' o o : .
as the response of the cable for uniformly dﬂ%tributed :
. ‘ N .
load, along its arc. . ’,f‘
This gquation also could be obtained directly by
applying the gnergy app;oaéh, by mipimiging the potential
enérgy consistent wiﬁhgits constraints (;yl. ’ .
+ From eqUatfons 2.1 and 2.8, the 1eng£h'of a portion* v
h ‘ ) ‘ . ’b . . < . , - .‘

- . -

-
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of the cable is given by ?
o “O ‘ ! ' '
L4 H ., L4 oL
= O §oas mgl - _. mg 2 _ . . :
c g {31nh 5%; sinh Ho (2 x)} ’ (2.9?; )
5 .

For x = ¢,

2H

_ Yo . M : ‘ ' ~ -.\’.
L, = mg sinh (577) (2.10)
s, i c . ’_\l._j ’ T E N
swhere LO is thHe length of the cable. If a sable of length
[ . : o - s , - .
i - . . . . .
LN ’Lo is used to span between twd fixed points at a distance ;o

. 2, the horizontal component of cag;e'téhéion,may be "found “'
) : w )

by solving Eg. 2.10. The ten51on T. in the cable at any

- p01nt with abscissa x, is determlned from Egs. 2.2 and ;
2.9 as
= I_n_i &_'_ . . - ¢ ..
T =H, cosh g (2 X) (2.{}) €

o
' k Y, - . )
Also), the maximm sag F is determined for x = ¢/2 in
4 . , . , X <, { ] 4

Eg. 2.8 as

H
- .o -
F‘ = I_ﬂ.a. [ cOS . (_9_. l]

a
ey

o (2.12)

¢

2.1f3 . The Parabola

When the sag/span ratio of the cable ls‘shall (1:8
or less), simplifications can be made; this often corres-

pagds to the situation where cables with relatively low

sag ar uqed for cable roofs.
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The weight of a freely hanging cable of constant

-cross section 159 in fact distributed unlformly along

o .

its length As stated in the pré/(hcs analy51s, the
catenary is the exact solutlon to the differential equa-

tion for response due to self we;ght.‘ However,‘the
approx1mat10n is to assume the welght mg .to be dlstrlbuted

uniﬁprmly along the horizont%l lengph mfrspangbetween two

supports. vy e
. 4 ;

P
i -
’ a

This approximate theory"prbv?des explicit., consistent

LT

methods for flndlng stat{c response accurate to the thlrd

-

N\;drder of small quantltiéf5 ~BY follow1ng a 51m11ar treat-
.. ment to that in the analy31s of the catenary, the dlffe-
rential equatlon governing equilibrium of a segment of
uthe cable in the Qerticalﬂis_acchrately sbecified by -

2 | | : o
H —5 = -mg N ‘ ' (2.13)

' . . ‘ ‘
> dx _ H < . . (2.14)

The exact equation for the yertical direction is N

. |
d‘z . _ dz,2,1/2
Ho 7= 7mg {1+ ()7
x B
75

so, in assuming the profile is almost flaﬁ, we are choosiné'

to ignore (dz/dx)zein comparison_po unity, or in other

’



words, we assume ds & dx in Eq. 2.5, as the load acting

on the cable is projected along its horizontal span.

-

Int{gratiﬁg Eq. 2.13 twice and applying the boundary

.conditidn from Eq. 2.7, the geometry of the cable reached
R . A "

st ¢ )

2 .
- = _.mg X :
z T o + Clx + C

o f 2

f d D " 2
where C, afid C, are
- >

-

- . . ;' +* . ,,Q' .
, * [from the boundary conditions,

A

"%

e

’

.8 b

, for z = 0 at x = 0 C2 =0
. _ " . _ mgh
for z = 0 at x = C1 = >h
e}
gives ' ,
_mgt . _ mg 2 : ‘ ;
} o 2 = 3h X TR ' (2.15a)
O EY ¢ O ~
In nondimensi%nél forh -
. —l ' '.. , -
Z = 3 X(1-X) y (2.15b)
. . ¥ . -
wher¢x=.%., Z‘=_Z._2_.
o] Lt . 2

. AW N o v .
The complete geometry of the cable can be_defined if the

. .
value of Ho is specified or .,the coordinates of any point

on the parabolic curve are known.

o
= @

integration constants’ to be determined:

45
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The horizontal bompqnent of cable tension is easily
obtained by considering half of the cable spanvas a free

body. Taking moments about one of the supports,

H = g% . (2.16)
where F is the.sag. The cable length is

L =

. dz,2,1/2
Lo]

(1 + (a; ] dx (2.17)

0

5

Substituting the valu® of 2 from Eq. 2.15, expanding the

exbression binomially and integrating the expression for .

-~
-

the lengtg L_, we obtain

o

- 8 F.2 . 32 ,F. 4 | '
L= 2l 3 @ E @i @28

e

T

In these calc)&ations, the effect of cable stretch can be

assumed to have been accounted for.

The difference between the catenary and the parabola

for different values of F/% is shown in Figure 2.2, [20].

3 -
r

The difference in'geometry is almost neéligible for F/%

- -

ratios within practical range. It is sufficiently accu-.
rate, therefore, to treat the curve of a freely hanging

cable as parabolic in order to ascertain its geometry.

’

2.1.4 %Memmmubn

' .
If the two ends of a cdble.are fixed in space with



'

span £ and sag F, and it hangs under its own weight, the

-
A

.cable length LO; between those two ‘points, can be changed

for the following reasons: [20],

-

1. cable extension_ due to its tension
2. temperature change:
3. slip of the cable at a support. ¢

[ - *

In any case, if the changé ih phé sag of a cable due to

change in the léngth can be computed, it is possible to -

4

set ub the ne&dgeometry of the cable.
. - . . )

iFrom Eg. 2.14, the tension .in the cable aélanproint
is '
64F°x%.1/2 *
—73 )

T =‘H;(i + ’
Q", 4
and the change in 1ength ALb, due to elastic stretching,:

’
- ’ -

is givén by

Lo ',IdLO ‘ h : ” .
AL0 = I AE ) . (2.20) -
(o] . . .
By integrating Eq.2.20, we get ’
H L 2 : C
2+ O 0 &F 3 o .
’ ALO - TEA (1 + 3 '2'7), ] )(2.21)

+

cable cross section and E = itS'médulus_of

where, A
elasticity. Similar treatment could be followed for

temperature chqﬁge and slip of the cable at the support.

o

-
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t0 cables that are -initially taut and flat:}“ln either

3 5‘\
2.1.5 Nonllnear.Repponse of’Cable to Vert;cal Load

Al ’ P

Around. the mlddle of the nxneteenth century, theorles

N ¢ )

_were developed propcs1ng appnox1mate unalxses for the

PRV

behav1our of . a heavy pﬁrabollc Clee under. varlous types
of applied loadlng, partly by Ranklne in 1858 but malnly
by anonymous wrlters in 1860 and 1862 It wau reallzed

at this time that the‘responsevof_the cable,wae nonlinear.

- - @
The problem of analyzing a freely‘suspended cable
w1th level supports has~been treated_ln numerous papers
[18 20,21,221 but a 51mp11f1ed solptlon can be developed

as follows. We w1ll con51der the case.of 51ngle load to’

understand the behaviour- of the cable. thlS wxll be neéded

later in the understandlng of the behablour of cable roofs

3

under statlc loadlng

The equations of equilibrium were solved in thi§~

] "

" "work in a straightforward.manner and compatibility of dis-

placements was satisfied by ‘cable equations in which all’
%

-
°

iﬁportant terms were retained. SN -

) AY

-~

v ‘7\“'7»«_ .. ’ . R‘“‘( ) ) ' £,
Simplifications can then be made to the general ‘e-;

i

,sult. The solutions may be linearized or adapted to apply

&

. : KV ..
case, the results are considerably simplified.
The cable AB, shown in:FigureAZ.j, has a dead,Weipht

\
-
R

W

? ’ ‘ ’

e
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(mg + q) per un1t length of span and is hanglng 1n1t1ally

_in the shape of a p”raboiat_ Thé geometfy of the cable is
r 5 R
% - descrlbed by Eq. 2 15 and the horlzontal component, of )

' ' —cable ten51on H is glven by Eq 2.16.° A point load P. ;”

. ., 4
& . is applled at a dlstante xl from the ‘left hanP-support.

)

Prov1ded/that addltlonal mouements of the caldle are small,

v e

-

.o and the proflle ﬁamalns relatlvely shallow and in the -
deflected 9051t10n, the cable can nf cofisidered to conx

& 51st ‘of " two parts, curves AC and CB, w1th flrst derlvatlve

» "y . L]

dlscontlnulty at.C.' Vertlcal equlllbrlum of a free.body

at a croas sectlbn X, of the cable requlres that
’ H L]
- . t"\ 3 _‘ . . t )
- M FR 3 x m ‘Q 2x - .
4 ., +AH) (Z+W)w— P(1.- —-y + —%h(l - £ (2.22)

. A ®
oLt - R . . R . »
[ . . B - . y -
« .

A . < e '
. _ v for 0.< X < xq R v -

a LR . . ‘. N 4 R L o
’ ‘ N & e . . , N [}
- . . ‘ s -

R f,vwhere w 1; the add1t10na1 @ertlcal cable deflectlon and .

AH is the lncrement in the horlzontﬁl component of cable

L]

-~ v
o ' -~

Le * ) L‘ Y e * bb ' ;\_ \
e The right-hand side of "By . ?.22 T logous,to the .

> 2

.~ © tension, owing to the point ioad N ( LT

-

.o f shear force in a951mpxy supported beam of uniform welght

“'ﬂrf; ‘,pl ynder*the actlon of a p01n; Loada : . o~
- % - "c' . ) ) i e . L . 1 ) 2 .,

‘ . . 3
. . .

Y oo e hegffanging Eg.'2;22T§ives‘ .




\
-

-
-

tlons,_ =

¥

(‘!
3 . N "~
4 mg¥ . :
) H0 Ix vV = —%— - mgx = shea; at C
t
. o - ,
in which E%& = Reaétion at A, mgx = load up to x
+ . Q“ ) .
Therefore, '
.‘ &
i am - p1 - 2D L gy d2
o dx 2 dx
‘Similarly, for X, < x <4 .
Px, ° " .
“n dw 71 dz ) !
,(H0+AH)dx‘F 2 AR dx ——— Y

o (2.24)

e 4
ﬂIntegratlng Eq. 2. 23Qand satlsfylng the b‘dary condi—

0-at x =0, for 0 o X L xl, the - d1menszonless

equations for the addltlenal vertical deflection are

W= [(L = X% - B x(1-x)]
1+h 2P
o »
for 0 < X < X,, and ’
W i [(1-00%) - - A ya-nr
| 14h 2P

férx'l-fxil R

. ‘(

. w/(Pz/H yooT
aB/H_ o

B/mgs ..

L]
’

-

(2.25)

'¢2. 26)
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>

"vertical deflgption pnder'ﬂg; point load, at x = x

- s l'. TO
Complete the solution, h must be evaluated. As in static

» g

response under self weighﬁ, the horizontal component of"

thé tension increment: may be caltulated using,geometry,
' o

as\a condition of compatib

Ly ¥ ALy = Lpe' ¥+ Leg

!

AL =

o h
Y T { !
. ’ tension EQ )

—

AC CB

ility as -

-

where L, = the ori@inaﬂ length of table
. |

[J

%

(2.27)

extension oﬂ‘the cable due to increment in

L. and L. ‘Q;e-the_extended lengths under the point

s

applied load.

““From Eq. 2.18 »

- i

‘,
- * 8 ,F, 2 ,
L, = 2[1_+ 3 (2)_; {?.28)
From Eq. 2.21 and dhe-to AH, ’ ‘ .
AHL . B
. - o - 16 F,2 s
4Apo = E 1+ 5 @ q (2.29)
From Eq. 2.17 and Eq. 2.25 ’ e oy,
) « .'J ' . LY . " \:
Ly = LT+ mg) 2 (1-3x; + 3x§)] (2.30)
: B4 (H_+4H) |
From Eqs. 2.17 énd‘2.26' . e
e = [ (m (1 2 -
Lpe = 411 + ——9)-—; x; (1-%,) (1+28) %] (2.31)
. 8(46+AH)! e, ' % . L.
e - - .
/ : "' 1 S .



" Substituting Egs. 2.28, 2.29, 2. 30 and 2.31 1nto the

compatibility equation (2 27) gives

’x
16 ,F, 2 b 8 F,2
A\ T - 53
o {2 +° [ 1} R2r 122 gpn-E-22 =0
a a a
- | o (@.32) ,
- B Le 3 : L
where ' a =“’ EK —2"— . sar . | (2. 33)
\ _ _ l _ . _ . - ‘
C = }1%:) [24 3 X (=X P (1+P) ] (2.34) - .

L, is the extended length of cable ( = L, X.0 where L,

is the original unextended length of the cable and n is

the extension factor). !

~

5 . .
'3 o ) .

To'evaluate ( T /a, substltute for a from Eq, 2.33 LB
. y .

and for F from Eq. 2.16 for the parabola giving

v e . -

%(%)2/5'5 ;i»ké, whe?e o L o & 
L . HL . : - y
22 = BEH2 0/ (-2 : e (2.39)
"o . . . ‘ /

. ‘ - - - P -
: . f .

73 %, (1-X)F (149
' &

Substltutlng for 3 11)2/3 and C/a inéo‘Eq. 2.32, gives the |

‘ "

flnal equat;on of hormzontal ‘tension 1ncrement 1n the

cab;e ‘due to applieﬁ concentrated 1oad as ‘

.‘ e +

. 5
. . ! - H . ’ 7 .
. .’ - - . -
’ e T . ,
. e , e .- ! f
a * . ! B¢ L O ! .
S . .




=3 1,2

ot (24X /24)h + (1+2 /12)h = =k X (1~ X )P(1+P) E‘O

h” 2

e ‘ (2.36)

The'same'equaéibﬁ‘hes‘ebtainedEby frvine [lF] using a °
completely différeht apbr?ach in which he reelized the'
'impo;téﬁde of the nopeimensional parameter Xz.‘ Basidallf,
this parameter qqeognts for geometric and elastic effects

and is of fundamental imporfance in the static and also *

%

dynamic response of suspended cables. _
1 . i . . .
I ' N . \

From the theory of polynomials with real coefficients,

»

the cubic equation fof h has only one real pdsitive rovt. -
Irv1ne [18] presented in table form the solutlon for the
case of mldspan loading for dlfferent values of: AZ and
. . . N L4

P. o , T,
) ’ .

7 - ‘ ‘ ’ ’ y~ ’
2.1.5.1 Taut Flat Cable e .

. '\‘ _ 3 “

Whén a cable is initially‘flgt, or very shallow, we

may set z(x) in equations.of parabolic-cable response ] .

" (2.25) and (2.26) to zero .and the‘equatien for additional

»
L

displacement regmices 'to .= =
W ="—l’?£1-xl)x o S .- d2.37)
1+ Lo . .
) ’ o AN o T
. for 0 < X < X, and . Yoo
LW x0T Geae
11+E ‘ . b .“" R T
; T . N



!

"

The compatibility equation (2.27) reduces to

. g+ AL= QAC + Q’CB AP ' (2.39)
Substitute for £ and -AL-from Eqs. 2.18 and 2.21 and put
iy .
F/L = 0 for the taut cable. The foflowing equation is

" obt‘a 1ned-

(14 2R = 3 2% X, 1-x)B(1+P) T (2.40)

A

'The same equation can be extracted from the generalfcubic
: . . 2 2
jequation (2.36) when Az is very small and then %E and %%

can be neglected. ) : , . P

L

For a massless taut, string 1oaded at its mid-span,

*

a Very 111ustrat1ve force-deflectlon\relatlon can be de--

rlved from the con51derat10n of equlllbrlum. U51ng the

‘Taylor s®series this'relation becomes (e.g. Novak [58])

, ~
2H
. O EA 3 _ 3 EA 5 - K
P—Twc+-—3-wc q scwc +7,.. (2-4;)
PR, 2‘ 9‘ .
, P ‘ . . .
in which P = the concentrated applied fq;ce,'Ho = original
tension in the string, & = original span and W, = string'

3

défleétion at mid-SpanJ 'it is plear from Eq: "2.41, that

the nonlinear terms of response a;e,dependent on the

s B

v

55



nonlinearity of the cable. .

e

The mid-span response under point load is presented

in Flgure 2.4, which shows the extent to which géometric

‘nonlinearity can affect response even when the loaded

- . ;
profile is still relatively shallow.

=

2, 1.5 - Llnearlzed Solutlons g

'4 The p01nt load problem is 11nearlzed by neglectlng
3

i all second-order“terms which appear in the dlfferentlal

.equations of.equ1llbr1um ‘and 1n-the compatlb;llty equa-

Cay
«tiop. This necessitatés the removal of Eﬁe term AH g¥

from. Eq. 2.23 and Eq. 2.24 and ALo‘from Eq. 2.29. This

‘reduces Eq. 2.25 to

——

W= (1-x)% - L x(1-x) 4 T (2.41a)
L 2 o Lo :
¢ 3‘ l‘ " N ! .
for 0 < X < Xy and Eq. 2.26 to - .
. ' ,‘. . . - a 1

.ow= (iexx, - L x(1-x) ‘ © (2.41b).
2B | , ~
| N . "
for X, < X< 1. )

————— o — O v '., E - - - ; , .

- * -
. . . ' P

‘ Substltutlng thls into the reduced compatlblllty equatlon S

N L]
" \ »

yields ‘:" . A - : ; /3 . A
o ﬁ-*‘i—-5§1“1;; 1(1—x N e )
v 141225 4 L o




hg ¥

V

‘of 1nte3§1ty g per unit length, applled from x = x

For‘taut flat cables, A% << 1 and h + 0. ‘Hence, the

cla551ca1 llnear theory of the taut strlng is recovaﬁed

" When Az >> 1, hk+ 6P X (1-X ), whlﬁh is a result typical

for hrldgg cables. Ehls result wag produceq in the mid-

nineteenth cen;ufy for just that purpose [18].

a

L]
-

2.1.6 Nonlinear Cable Response to a Unlformly
Dlstrlbuted Load .

;

A parabollc cable is fixed between two supports ‘at
[ [ )
the same level and loaded by a uniformly distributed load

2t0

X = X4 (Figure 2.5). By explorlng the analogy that exists

-

. with simply supported beams,‘expre551ons may be written

for the vertlcal equlllbr;um in the three dlffgrent re®ions
q;‘the span. ‘ v , \ .

W
~

After integration and adjustment for the"requifed
boundary conditions, the following dimefiSionless equations

. ' 't ’
are obtained for the additional vertical cable response:

.57

PN ,
W= {[(x3 X)) - 3 (X3-X2) 1% - L x(1-g))
(1+R) - S22 g ;
. Co o (2.43)
for 0 < X < X1 | L
W=..—_-{['-—21-.X§+X3X-%-X2 - %(xg-xgix] A S
“1+h | ST
. SR gaaoy 2 i

. © 29



for X, < X < X; and
\ " BN . .
W= —— 3 2xd) -xn - & x-x) (2. 45
(1+h) - ~ 29
for X < X < 1. '
. 3 — - ’ '
€ {“ *
" Here ;
W= zw -"~ ’ H - IA{__I'l ’ ‘
(qe /HO) 'O

O

The increment {p the horizontal component of cabls tension

is found from thé‘compatibility equation
2 ‘ .

’ o o
L, + AL = Lyp + Ly + Loy | 52.46)
) Y |
The resulting dimensionless cubic equation in h is
B+ (24 AR + (1 + 2R -ékztikxé—xzf-l(x3-x3>1“-
< T2 12'0 T 7 iz\R3TR T3 A3TA N A
321,03 .3, .2 L2 227
- T35 Ky (XyXp) g (¥y=Xp) Tla 5.0
. T lj" (2,47)

. . ‘ 1 2 ) 4 .
When ¢ is positive., there is: just one positive real root,
which is what is required. .~ . " a

-
S
M ]

when the load is extended over the wholé'span,‘the
. . [
response and the increment in tension are given by these

xpressions:

]

58




o -

. o ‘
; .
w=—t <o Y -
. 2(1+R) g
S S 2 2 o L
_3 ) 2 a2 _ g ‘
h_+(2 + ﬂ)h t(l ﬂ"-—z—)h 17 g(l 4:.2) = 0 ’(2.48)

*

3 &

Different cases betweeh h and g .are discussed by Irvine
] o . L T ) . .

[18] who presented ‘tabulated sdlutions for different cases

[ 3

of uniformly diétributed‘load. w8 ' " ,

3 : \ R . “"

. .
. - H 1

2.2 STATIC ANALYSIS OF CABLE ROOFS - *

"~

2.2.1 Introduction | = . , -

A suspé@nsion structure may, be defined as a struéfgre

whose principal supporting eléhents"aré members driaped

. L]

between anchorages. A cable-suspended structure, is’ a sus-

4

pension structure in network form irr which twisted wire

4

strands or ropes, usually of stéél, serve as the brimary

members. The €ables have liqtlewfiexural rigidity and

exhibit a marked nonlinear behaviour when-loaded: the._

a
-

-

degree of nonlinearity varies with the type of .cable struc-

ture as well as thi loading. It is necessary to distif-

guish this nonlinearity which may be.galled geometric
nonlinearity from po§§ib1e materiai noniinearity‘also p

v

L ‘ "

vpreéent due to cable twist.

A
]

/ In general, the static response of cable rodfs is
difficult%to“predict due to this geqﬁetric nonlinearity.

L]
.

. The nonlinearity in cable roofs arises because, for, g

-

A ]



Ll

~ 3

¢

equilibrium to..be satisfied, the cable network must de-

flect under applied load, and.in deflecting, the lengths

of the cables change suff1c1ently for the cable ten51ons

'x
to change appreciably. T erefore, in its new pos:.tlon ’of j‘-"

/

’\J
equilibrium, both the gedmetry of the surface and thep f%;

\Hngtwork tensions have changed. If the networks are e-

tensioned, and the pretensions are large and the applied

load is small, the additional tensions are negligibly
small and the deflection is linearly related to the load.
For large values of applled load the additional tensions

begin to become important and the load~-deflection relation

.is no longer linear. Such a change in the load-deflection

A

. . : .
characteristics represents a nonlinear stiffening effect

due to the darge imcrease in the cable tension. Therefore,

the structural analysis of cable roofs under statlc loadlng

»

may b% considered as comprised essentlall ~of two steps.

1!

3

1.- Det%£m1n1ng the shape of: the network under the initial

“ loadlng, with regard to the nonlinear load- ..

’

v ? - ' b

| displacement relat&on.

Y

2. Computing the linear response of the, curved surface
) ° ) | 1
that results from change of loading, tempefatuxe or

support p051tlon based on the assumptlon that the

deflectxons under these ‘additional loads or effects

”

" are small with.respect to that under the 1nit1alQload5u




, :
® . . .
. . o ’ ’
.

Q‘

A
Cable roofs may be“treéted mathematicaliy'és discreté
or continuous systems. In the d;écréte approacﬁ, the
creal structure is represented by an éséeﬁblagehof_elqmgnts
iﬂterconnecting a finitg number of nodal points at which

'

the loading is assumed toncentrated. At each node, equili-

brium of forces, and cémpatibixity of displacements must
be satisfied. Matheﬁatically, this model may be repre-
sented by a set of aifference~éQuations. When.expandedf 

these yield a set of simultaneous algebraiclequations.

S

In the continuous approach,.simultaneous prdinary or

- partial differential equations are utilized to represent

the real structure, assumjng that the g;ructural properties .

may be adequately represented as uniform or slightl&ﬁ‘

T

varying.

2,2.2 Review of Existing Approaches

Numerous;gtudies of the behaviour of cable,nétworks

_ have been published with the vast majority of the theore-

r \ (] L] . ’
tical work ,belng.:computer oriented. '

N

5y L

‘A revieﬁ*feport by the ASCE subcommittee on cable-

suspended structures {2}, cites many references to numeri- ;'

cal;,work ppb;ished up to 1971. “More recent numerical -
*studies are thoéé by Clark [23], Mollmann {24], West and

Kar ~251]. L . ’

Te



There have been very few analytlcal studies publlsan

Because of the mathee7é1cal dlfflcultles that arise, “,
.numerical methods are by far the mos# populer; However,
some analytical work was published by Shore and Bathieh
‘(26], Trostel [27],.Schleyer [28], Dean and Ugarte [29],

and recently by Irvine [18,30].
) : . » ¥ ‘ L .
Analytically, Dean and Ugarte [29] obtainedfa closed

form mathemetical solutiom for the deflectiog of struc-

tural nets loaded by a éingle cancentrated .nodal load or

-

a uniform nodal load. Their solut}oﬁ was based- on the

L]

ﬁodal‘equilibrium equation developed and solved ﬁumerically

8
by Siev and Eidelman [3]]. - Dean and Ugarte's solutiqn is

-

valid only for a net which has constant elewvation around
- . , o=
t{§ boundary.

]
-~

L)
»

: §Qhore and Bathish ¢f26] utilized double Fourier series

-

to transform the intedro-differential equations into a

- N f \ '
‘set of ndnlinear algébreic eqdations " The described .
experlmental work in their paper and verified thelr numerl—

4
cal results based on nonllnear theory. N ] : gi\

‘ Irv1ne [18,30] presented analytlcal solutlons for the

- -

c résponsé of certaln pretensioned networks, based on the

same assumptlbn made by Shore and Bathish [26], by re lac1nq
\

.

the netwerks by edulvalent mbmbranes ;nvIrv1ne s work,
. . . [
the_govern;nq equatzpns‘are rearranged to be simple and

. L X ‘_“ M - . e a .



IR ! :
., . ' ) - - , ) .
oo B - " gL ’
i . A ‘

” = » ’ '
' . :‘P - > ® R -
: J . . s . '

yield acgcurate expressions.fdr the(static'response of
. some types of networksa o " .«

) : Most *of the pre&uous work i% based Qn the assumpt:.on 4

<

VIR

. . " a

<

that the relatlonshlp between the dlsplagement angd applied

statlc loadlng is nonllnear. Tﬁis nonlinear behaviodr is o
. a \ L 4

', typlcal of cablevsppporpgd structures although fov most
ptactlcal shspenslon structures,,the behaviour is not so

- . a

strongly nonlinear. ‘ ‘ ~ .

N L 4

- . . Y
v

’ ' ‘ » - -
v ’ The gpverning equations for-displacements of cable

roofs can be derrved utlllzlng elthe% a d;screte or con-
* ! . . .
tlnuous mathemat1ca1 representatlonﬂAQ!!Te structure. -

b

{

. # .
If a discrete approach is utiliased, ;he.formulatidh
results in a set of noﬁiinear‘algé%iéic’equations.' The

[ 2 s

simpler dlscrete problem can be selved by numerical pro-

'S

-

‘@édures. A contlnuous approach léads to a set of non-

\

11near dlfferentlal equatlons.

- *
¢

&) 2.2.3 Ideallzatlon of Suspeanon Cable Roof By a 7 .
Contlnuous Membrune "

v @

P i Fabric membraﬁbs, from the point'ef view of struc;
-
tural des1gn, §an be treated as very fine-meshed networks.

- sanl

-Hence, there is no fundamenth:;uathatlve dlffefence ‘

& L

bexween fabrlc m anes and cable networks, only a quan-
. .. t1tat1Ve dlfferenc w1th regard to mesh sxzet14] In a
* [ Py
L . " . 4 ~)’ . .9 va ‘ ¢ - ‘_, " .
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few very recent Fablé roofs under design [32], a membrane

PR i \ N
g . . . \
v analogy’is realized by forming a concréte membrane by

grouting thg lightweight concrete papels to the preten-

sioned sugbended cables to form a monolithic membrane.

e T

The approach used in this work for'thg compqtatiln

‘of the initial and final shape of suspension cable roofs

v

is to treat the structure as a continuous system by re-

\]

placing the cable network by equivalent/thin elastic

Frs

membrane without shear rigidity.

[V .
- .
B S -

2.2.4 §.§§i04£oading o

\ » " ‘The static loads used in the determination of the

- . " initial shaiz of the structure are: self weight of cables,
L < _ : ,
! initia} tension .in canes, weight of continuous membrane

or we%ght of doncrete panels, used as filling, thermal

] . insulation and waterproofing, if ary.

-,

. The static loads used in the determination 6f tHe

‘ .

final shape are static external and internal wind pressure, -
. / ~ .

.rainwater, spow or hail, sand or dusf\anﬁ maintenante
loadings as well as dynamic wind loading and ground motion

4

Ydue to earthquake excitatiocn. /oo ‘
’ ]

A nonlinear theory is used herein for’determining

the response of ‘practically shaped cable roofs,  subject

4 .

’

to static loading and the appliéd initial tension which

o

4

' ' “
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_mode of" Qrder n,and rank m, given as

B=0 - B : * (4.54) )
) ) % - . ‘ ~
Finally, since w and hence R(r) must vanish on the boun-
daries r = a, ’
it N oy
w,a ' T ,
Jn(T) = 0 _ — ‘ (4.55)

Denoting the mth posifive solution of‘this equation by

" w__, gives

nm’ , , o .
Ypm? 1 o , | o :
I 0L = 1,2,3, ) (4.56),
' . . | e a -
“The roots“of‘J , designated by j = ?? are given 1p .

Table 2.1, and the natu'al c1{cular frequencies of ‘the

" circulgr membrane follow as

- ——

Wom = ?r;m /;\;—-2- o ' } (4.57) .
: 1}

Sﬁbstituting all the‘reSults obtaihed and making the neces-
sary notatlon ad]ustment 1n Eq. 4. 47, we get the mode '

shape of the dlsplacement w.at (r 6) and time 't for the

i
!

;
. L {7
wﬁmr - ‘\ _ .
)[(anmcesne b alnne)QQSQnmt\
+. (C cosne + D s:Lnne)s:an t] /(4.58‘ 4
. A i . .

an(rlelt) = 'n(

The'order'of Beséel function determines tﬁ%~nﬁmber of

nodal dlameters in the mode of v1brat10n, whlle the rank

. of the Bessel functiOn zeroes’ determlnes the number of

1)

nodal c1rc1es in the mdde, including the,edge c1rcle.




q

TABLE 4.1 Roots of Bessel Functions, Iom

]

n/m. 0 1 2 3
1 2,208 3.832  5.135  6.379
- 2 5.520 7.016  8.417  9.760

. | S,
A, 3 . 8.654 10.173 .11.620 13.017
' 4 11.792  13.323 . 14.796  16.224
4
N\
)
N\
/
{




Typical mode shapes are shown in Figure 4.6.‘? -

L U . S X
From the general egpansion theorem [74] the different

modes give the displacement as ]

~
7

I

- nm . .
wlx, ,t) i i Jn( S )[(anmcosne + bnm51nne)cos¢f)n t | .
+ (CnmC?SnB + Dnm51nne)51nwnmt] (4.59)

~ -
S

7~ n=0y1,2,3,... 5 m=1,2,3,.., P

L N
< . ‘ "
as stated before, may be

The amplitude of vibfatioh;
obtained from the initial conditions where the eigenvalues
(4.57) and eigenfunctions~(4.58) aré obtained from the
boundary conditions. Let us assume that, in additioﬁ to’
the boundary conditions (4.46), we may.be giVen'twé initial

conditions which prescribe the deflection w and the velo-

city,%% as functions of r and 8 at an initial time t=0

w(r,8,0) = £, (£,0) (4.60a)
. . ) o “. .':" e
w(r,8,0) _ Lo 1 ‘ s
—f——ggLf- = fz(rfe) . (4.60b) ,::>
i ! , * }
. . . , ‘
Substituting Eq. 4.60a into Eg. 4.59 gives
, -
: ) o . oW T
) fl(r,e)(f g z ( nmcosne + bﬁms;p?a)qn( S ) (4.61a)
! s (/ ' ) , g wnml' ¢
£,(r,0) = g iﬁqnmtc. cosné +.Dnmsinn6)Jnm( S ) . |
o ' . (4.61b)..

. ' .

Where 0<1r < a, 0 < 9 f_:ZTT, n= 0,1,2,..., m = 1;.2,3’00u-
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‘* PIGURE 4.6 Modes shape 'bf Circular Menbrane o [36] -
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\ - A‘Tbg\determlnatlongof the ‘cgfistants a ' Prms Cqm 204 D

a w e

o is.ékg;aihedcin detail elsewﬂere~[74lL' For simpliciéy,
- let us consider only the‘speciél case where fl is ‘inde-

K ‘ pendént of -6 and f2 = 0; that is, we:assume that initially

iy
’

"+ ‘. 'tHe ‘membrane is deflected intd a.radially symmetrical form.
e ~and jis released from rest, - In this ease, onLy'symmetrical
., v . “ e oo . c

-

modes indbpendent‘of ‘9 occur, for which n = 0. Further-
. . ! s ’ ’ - 4 .
.‘mo;e,'the~initial velocities of ‘alk fhe points.in the

membrane vanish (4.61b), if the constants C__ and ﬁnm are

: : set equal to zero. Hehce;;Ea. 4.59 reduces .to the” form :

¢
¢

. w_ T
w(r,t) =.L A J ( om ) rcosw__t - C (4.62)
g om .o v om |

' . L]

Om\is the mth positive sqluiidn o
. , e x | ST
. il s ]

' - Jo( ,o\) ) = 0 (m=1’2'3,-..)
. | o ) . .

.

where w o

(4.63)

cot

" and Eq. 4.6la reduces to

' ow_Tr ' .- ,
A3 (2B, 0<r<a ; m=1,2,3... (4.64)

z
m oMo WV ,

| f(r) =

.+ Réference to procedures detailed in [65,74] and similar
. e to those ‘for the reciaﬁgulér membrane leads to the deter-

» inati £aA_ as, .
, m;patlon of A, as, | .

-

s S ' '. . . “2‘ ’ Ia | y womr ‘ ‘
: A = - - rif(r) I (-2ar . (4.65)
‘om womq)JZ o A o' v’ e

.v .

4

. . azlJl(

w The frequencyiqf vibration @nﬁ is obtained from Eq.’4.57;-~

“the mode shapes, determined by the houndary conditions,

‘

-



. .
Erch q. '4.58, and the constants A,B,C /D which determiné

the amplltude of v1brat10n, from the 1n1t1a1 conditions.

. The displacement at-ghy location (r,e) on the vibratlng

= circular membrane, at any tlme t, is completely descrlbed

<

by Eq.459 oL T , o

- . < . . Yt:
‘ © 4.2.2.4 Free Vlbratlon of an Elllptlcal Membrane
+

Consider an elllptical mémbrane, stretched over a

plane*elllptlcal frame under an all—round tensxen, w1th.

fiXed edge and hav1ng the major and minor semi-axes a, b

[ % ’

.respectively, Figure 4.7. -Let m be its mass Rer . uhit area .-
and T the uniform tension per unit arc length,applied to ’

the membrane. . . T w s
' , . . . k) o 4

¥ 7

The solution of the two-dimensional general equatioﬁ>)/ .
-‘of' yibrating membrane (4.32), for elliptical region is

most easili’obtained‘by expressing the problem.iff ellip-

tical coordinates, Appendix A, [75,81].

3

In transforfiing the coordlnates in Eq. 4%32

i

elllptlcal coordlnates g, n, thd® follow1ng relatlons are- [  -
‘applied: = - oy o A
PP //// ,/
x ="d coshf cos N g = d sinhf sinn ©  ,{4:66)
) ! - N .'A‘ =
The Laplacian operator is given by, A;pendix A,
‘ » ' , . I i SRR AR
o o2 02 ‘ - , ~
. | 2k an® 4" (cosh2f - cos2n) :

* . ’ ks
1 . .’.)
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. r
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4
-
~

.in whlch d is the semi- 1nterfoca1 dlstance of thg elllpse
= Ya —bz. Equatlon 4, 32‘becomes
I R NP _ 1 3%
AN I L = e = T elZ
3¢ .9n° d%(cosh2g - cos2n) vT®tT"

in which vi =X 1f w(E,n,t) varies sif;usoidally" with

-

t;mg. t, we may 1’:ake N -

. P
L L ]

wiE,m,£) = w(k,n)etvt

. (.4.69)

Substituting Eq. 4.69 into Eq. 4468 and the equation of -

free vibration in elliptical coordinates becomes
. o = .
©o . { S :

8% 4 2k%(cosh2g < cos2n)w = 0

Applying separation of varisbles,
wiEm = YIE)odn) (4.7

where )] ls a functlon of § alpne, and ¢ a functlon of n™

: alone.. Substltutlng Eq. 4 71 :Lnto Eq. 4 70 we obta:.n,
52 ) 32 | . L . - )
¢-J£- + ;ﬁe—%— * 2k (oosh2g - cosan)w ‘ "(4.72)
dE ‘ .- .
‘ B ) '

- L

Dlv:Lding by W and z:earranglng 1eads to, »
EEY 82 DU
3 _—g + 2k cosh2€ $ + 2k% cosin- (4.73) -
E . : .- 4 B d.n ) ’ ) L

Kd

Since the 1e:Et-ha;nd s:,de of Eq &._7'3 is ,iﬁdepen@ent of n i
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’

and the rlght hand 51de~1s 1ndependent of £, each Slde
must be a constant Denotlng ‘this constant by o, and

substltutlng into Eq.- 4.73, we obtain the following two

- . .

diffetential equatigns:

.
-

3 ' \ o -

' X
Q_% + (a- 2k2c052n)¢ N (4.?4) o
. an~ . . _ S, . . .
DR . ~ '
ST and
' &Y - (a-2k’cosh2E)v = 0 TS

Ceoa
Equations\4.74'and 4.75 are the canonical ‘forms of o .

S . .Mathieu's equation and called the Mathieu and modified
Methieu equations respectively. ' These Equat;ons are

> 'iinear,an& of the second order with periodic~coefficients.
" Their solutions take different :forms according to the et

values of o and k. o Y o
. L. . N , ." e ~-
The soiution for Eq. ’4.70 comprises the product.of

two functlons whlch are solutlons of Eqs 4 74 and 4.75 ’f

A

e L.reSpectlvely for the same values of o and k. Since a,'T .
S e ‘ ) . o
’ the sepa’ratlon constant, may have .ny value, the number .

oo ,_of-solgtlpns is unlimited. ' o~ PO
Lo L ‘ . TR , ’ - . .
ST L g C ' J \o‘ o F 5 PR N

e 'Forthe free v1bratlon of the elllptlcal membrane jd;,_%'
r%’under 1nvest1gation the dlSplacement from the equlllbrlum o

posatlon is a perlodic functlon of one of the coordlnates.

W

.’ v

4_, . Thls lS sﬂ.xlar to a c1rcu1ar‘membra$e53for whzch the _
' . / [
s dxsplacement at any radiwa depends upon cosme and sinmé

Lo .




owhich.are periodic fhnctions &f the polar coordinate 8.

The displacement of an elliptical membrane islperfodic o L
v/ ';,',’:ﬁ,‘ .o PN

.in the ellipticalucoordinate n« Thus, if_k is assigned, '

the dlsplacement w will have, perlod T or 2m in 7, pro- . s

V1ded o has one of an infinite sequence of partlcular L,
numbers. Those particular .numbers are called charadc- ,
teristic’ numbers, and in order for the solution of Eg.

4. 74 to be perlodlc with perlod ki or;2ﬂ, o ang/k must be

interrelated: a 1s a functlon of k such as // o

1 Ls

‘ ~.

o = m? + ajk + ak? & u3k3 o ; (4.76)

L3
J - -
L

in which m is an integral and the o's are constants to

. ‘ be determined. The desired form o = m“ for the circular .'3fi;

menbrane is obtained when k 0 and the periodic solu~

-

tions cosmb, sinmd are achieved

. .y . . -

The solutlons of Eq. 4 74 are called (ordlnary) .

ks

Mathleu functlohs, being perlodlc in n w1th period T or .

ﬂ: the corresandlng solutlons of Eq. 4 75 for the same

‘ o as in Eﬁ. 4. 74, are known as mpdlfled Mathleu functlons.

4

‘ T In ﬁfactlcal appllcatlons, the approprlate solutlons are

usually glven by ordlnary and modlfled Mathleu functlons'

\ s

@zpf 1ntegra1 ordera By assumlng the amplltude of dlsplace—

hent is unlty, the solutlons of. Eq. 4 74 are, {75],




H) = cem(n,k) or sem(n,k) . (f.??).
. for m =.0,1,2... )
and for Eq. 4.75 _
_W(E) =.CefE,k) or Se (k) (4.78)
oy ) . ., | !
tr ' for m = 1,2,3... . ‘ -
A\ ' p
Here, . '
. ce = x cosine type Mathieu function of the first
. . ”kind and order of integral m, k > 0 Lot
. "? N '” , ! i i
T ose '=a sine typé Mathieu function of the first kihd .
-,
';- and order .of 1ntegral m, for k >0 '
Cem = a cosine type modifled Mathleu functlon of

/ +

the - fLrSt kind and order of bqtegral m, for

- I

{

“k > Qe .‘j-“"‘" o E T
SeQ = a.sine type medlfled Mathleu_functlon of- the .Jl
A / :
- flrst k1nd and order of lnﬁegral m, for k F,0.

o ; ' :" - "“m" ‘ ’
The'notation ce Se is an abbrevxatlon of cosine- -

A

elllptlc and SLne elllptlc respectluelyn Those functlons

'reduce to a multlple af cbsmn and 51nmn when k = 0,_as.ﬂ

.

-

s

‘Stated brlefly earller,, Slnce m may. be any poeltlve xnte-

ger, there ls an znflnlte number of solutlons. The func-

: . ] 9 \ . Y . -
' L N SEEEPIR T
; The%gadlfled Mathleu functlons Ce ;8 ’

s

in E wlth perlod Fl and 2n1 raspegﬁfvely ,and theSe reduce

;‘A

-

/ .
' /

e ' are periodic.

7

tions ;/cel;l are eVen in n, and Wie functlons se ,jare 0dd in n.

o

e



f;-in which é and S_ are’ arbitrary constants determiﬁaﬁle

-4

v

. . s
& ! . ~
. ) . " .
L » Rl ' . .
.

funétions and theit pioperties“afe-preseqted in [75].
‘ =)

The. typejab\ olution which will be chos®n for Eq. ¢

4 70 in terms of ce Ce. or se Sem depends on m, chosen

’”
~

‘ in}qu 4.76~,being even or odd. !

[ i
’ -

are - '

. v

/ y‘wm(g'ﬁ't) = Cmggm(gmﬁ)cemjn,k)cos(@ﬁt + e (4.79a)
and’ | oY E

- Ce -

‘wm(é'_,“n,t) =-5 Se (£,k)se (h,k)cos gwrpt +e) (4.79b).

-
a . LY

. ! o

from Ehe condltlons speleled for the conflguratlon of

veloc1ty dlstrlbutlon over the membrane at t = 0. we is
] ] -

the natural frequency of the mth free mode of vlbratlon

-

and €m 1ts relatlve phase*shlft.- Slnce each 1ntegral

o

value of m glves a separate solutlon -of the differential

%

Tﬁe permissible forms of solution for Eq‘~4.70 (751" -

72,

S

N

-

eqhatlon the complete solutlon of Eq. 4.70, expressed’ ﬁn_

. . B :
“ . . ~ v
. .
- s e » ’ " ' = ’.-

"Thls solutlon sat&sf;es the continuity oﬁ dxsplacement

. a8’ well ,as the cbntlnulty of gradlept (slope) CS@dlthné

at any.: 1nterfocal llne.: These twp condltions 1mPly

elliptlc coordlnates, is . A B "'-‘ ’
f A . L » - ‘ B (“J ) | | \
S W1E,n t)’ ='mro CmCem(g,k)cemgn;K)cos(mmt +_smL
o . - e
R TP + I S nSen (£,k)se (n k)cos(w t fe o  (4.80) .
' . m=1 N . . - .

-

3




r
L]

.continuity of\displ‘éCement and gr"é‘dd.ent in crossing the

inteffoéal line.grthogonally. In Eq. 4.80, any product

/ B pair of solutions Ce/or Se are constant on any confocale
ellipée.* Hence, the symmetry is governed by ce or se. Qr
. » . /\w" ' .
Sinoéj7 L ‘ : o '
ce, (n/k) = ce (m+n,k) = ce (2m=n k) -

. <
- - - ‘o=

' b‘it foFlows that the-displacement expressed by

) Cem(g;k)cem(n,kj) ] '('f"é_r m even) »

- -

" is éy’mmetrical_ about botp 'the major -and, minor. axes of the’

. ellipse. Since " : . :
. & - C
- , , , .

L3 . s

ce_(n,k) = Zce (m#n,k) = ae (27-n,k)

o mw=1,3,5... . o
| ; | | .

“—it* follows ‘ha‘t the displacement, expressed ,by '

+
* B ~

Cem(E,chem(g,k)'_(for m-odd) B

is symmetricai “about the major axis but antisymmetrical

v
-

about the nlinor axis. .
. R ST
Similarly, gince . AN a
o i ='— = e .. : - -
, sem(n,k) f.s‘em(w_tn,k) .—se  (27-n,q) ) '
. . L
. . - m = L'3i5’- » e

it follows that the displacement expressed by

.
L] .
- . .
.. P *
. ! ‘ . 4
. _ : ¢ : ) , ,
. - . - ,
.
v . .

.« .




PR W
L
-
-
-

P S
LF
-
*

a"

| Se{‘}(g},k) sem(n.k) modd) j

corresponds to a displacement antisymmetrical about the

major axis but symmétrical about’ the minor a%is. Finally,
, © ' .

since ) ’ .
- /_J ) ’ ’ - PRI ’ '
-~ ‘ — " se (n,k) = * sem(nir},k) = -sel;n(Zw-n.k)‘
. w .‘ ' ) R m = 2'4,6,\?"-
, .- ) N .
[ 4 . SO ' : # i . i
e ‘ se{&,k)se(n,k) (m even)_ ‘ . \\\, [

[
e

corresponds to a displacemenf ant&éyﬁmefrical about ‘both

‘ . * axes.

- 2

The symmetry or'antisymmetry about the major and'_

2 -

. minpf axes is-the same as thaf for the degenera%e forms
cosmé , siﬁme about 6§ = 0,4% respectively. It is‘al;o_:

‘- | - remarkable'thatamgag;kaé o, the#Mathieﬁ functions ce (n,0)

and:sem(n,d)\ﬁigffeﬁucedto césﬁn:and sinmn respectively,

9

in which n is ;o‘be replaced by 6 of the polar coordinate

.

3 system. ‘
A4 -, :
' Each individual solution‘in Eq. 4.80 for m#O,l,ZL;..
S cdrresponds to a different mode of vibratfzn, Fig.' 4.84&.
- 2 ’

Whéﬁkh has its appropriate Qalué, the dynamic deformation

Y

sgrfaéb,of the mgmbrane and the‘natﬁial frequency, differ for

" each m. "Ahy mode may exist separateiy, or they may all be

present." ' The maximum displacement of the surface for

.

WA s s e R

Y



FIGURE 4.80 POSSIBLE VIBRATION MODES OF A FLAT
* ELLIPTICAL TENSION ROOF. - |

v
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\

a pafticolaf mode depends upon the valde of C_ or S .
These in turn are governed hy éée;oonfiguraﬁion of and
the normal velocity‘distribution over the membrane'at"
time £ = 0. s

¥ /ngé boundary condition for all n is thatAw = 0.at
the clzmping'ring wherelé = Eo' Since‘cem(n,k), sem(pjkf
are lnoependent of £, we must have .

[ 4

2ce (£_,k) = 0. for m=20,1,2,... . (4.81a)
Sem(Eo,k) =0 for m e 1,2,3,... , .'(418lb).
NOW Eo is,fixed, so we need those positive'values of{k, )
say"kﬁ ° for which the’respective functions in Eq. 4.81

I

vanish. These may be regarded as the p031t;ve parametrlc
zeroes of the functlons. They define a ser1e§ ‘of confocal
éggal ellipses. There is an infinity of zerces for gach
m, i.e. one for faCh n=1,2,3,.... Heme, for Cem there
are (n-1) nodaI elllpses within the clamplng ring, or n
nodal ellipses including the clamping ring, and 11kew1se'
’for Seﬁ,.but thei: locations diffpr.'ﬁk' | _’Y

- Equations 4.81 are known as the natural, frequencies

equatlons of the elliptical membrane,'51nce their roots x«f

are used to calculate the natural frequen01es of the modes

) of the membrane. N

I ]

“u
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Also :he functionsce_ (n,k), se (n,k) form > 1 have

zeroes in n. Hence, w vanishes if n satisfies the res-

r

pective equatijbns:

. ‘

cem(n,km’n) = 0 - (4.82a)"
‘and- : , R , _ Co-
‘sem(n,km,n) =0 . - | : (4.§2p)

The' roots of Egs. 4.82,definé a'series of confocal nodal

)

hyperbolas.

-
©

i . k . ive m z ;
Since pem(n,km'n), sem(n, mJn) each have eroes

in 0 < n o< 7, therefore for a given m each function gives

rise to m nodal hyperbolas.

L4

From pﬁygical,eonsideratibn, and since w(f,n,t) must

b %

be a'contiﬁudus function of &,n within the ellipse, which '

vanishes at its pefiphery, we may expand the solution in
Eg. 4.80, at any point of the membrane in the form of a
double sé;?es, namely [75]: | - -

Al

‘%(EIH'E)‘=,mio[ﬁ£i ijnCe (E,km'n)cem(p,km,n)cos(wm'nt

o T epn)] +"m£1[niismlnsem(g’km;n),sem(n"km,n)

‘cos(wﬁ;nt + em,n)]/ y , , (4.83)

——

in which C , S_._ rare arbitrary constants to be deter-
'm’n m'n . t . . o ‘
mined ‘from the initial conditions, O o is the'frequéhéy///
0 ' . < ' ’ - ‘
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. .

of* mode mn, having n nodal ellipses and m nodal hyper-

bolas, and €m.n its relativ¢ phase shift. The displace=

14

ment w(E,n,t) is a continuous function and vanishes at
the boundaries of the membrane at £ = éo. Multiplying

bofh sides of Eq. 4.83 by

(gosh2£ - cgs2n)Cem(£,km'n)cem(n,km,n) .

and integrating with respect to n from 0 to 27, and with

.respeFt to £ from 0 to Eo. All the terms vanish excepg

at m,n, hence, )

. ’ ] Y ’ .o ;
. EO f2“ : ' : . '
,J Jo Cem(g,km,n)cepgn,km'n)w(i,n)(coshzg-cqs?n)didn
|

I

_ o
men o - b6 2 §
| . T J Cem(g,km’n)[cosh2£ e m,n]dg
{ Joo BT
(4.84)
‘where . ' | L ) SN -
| . 1 27 :2 , 4 O
I‘m,n f = IO cem(n,km’n)cgsgndn . ., . (4.85).
" In a similar manner it can be shown that - oo f
.

L

(Sl T o | L
] JO fo Sem(g,km,n)sem(n,#m;?)w(g,p)fcoshzg—CQSZn)dgén

van ) go‘ 2, ' y .
, . m IO Sem(g,km'n)[coshZE— m'nng . |
(4.86) e
where
| Lo . = :
Yoon =T L} sem(n,km’n)SOSZnﬁn o (4.87) -
T . o o , ., '

AN

»



. : ) -

. The denominators of Egs. 4.83. and 4.85 ma§ be'evaluéted

numericglly;
v -

: ' ‘ i : K
By this the problem of free vibration of elliptical
membrane clamped at its boundaries is completed. The
above solution was formulated by MclLachlan [75]. From

this general sqlution;‘the author derives a éimplified
solution very well ‘suited for practical applications as

~

described below.*;

P

e

When the fundamental-ellipse tends .to a circle, the

semifocus d > 0 and since k = 1/2 3d, k > 0, and the  ~ -

series for cem(n,k) tend to cosmn = cosmf'for (m > 1),

where the confocal hyperbolae becoming radii of the circle -,

)

with n = 6: Figure4.8. ' - | :

In the same way as d > 0, e~>0 and k > 0 and

se (n,k) > sinmn = sinm® for (m > 1).

Similarly as d + 0, £ » » and d coshf + dsinhf » a .

Hehce, ’

t

ce_(£,k) » J_(2r) and Se_(£,k) » J_(24). and Eq.

4.80 reduces to K S .
f . wm ‘ % wm . E' _— ’ .
w(r,s) = s Ame(TTr)cosme T b BmeFTT:)sinme (4.88)
oo ' Ve y
where A, and Bm are arbitrary constants to be.determined

.« . , . . '
. o ~, ~ J,;jd«
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t. frem'the'initial conditions and related to Ch and Sﬁ;

» .
The frequency equation is obtained frOm,Ehe vanishing of

w at the bodndaries, giving,

W oy _ v : 3
I, (5a) = 0 . 4 (4.89)

The roots define the nodal circles, instead of nodal

“ellipses, while the nodal diameters are defined by the

roots of

b3

cosmé =0 and sinmd = 0 I . (4.90)

Hence, the theory of free. vibration of the circular mem-

brarie is obtained. . - P

In structural engineering considerations k <<-1,
. i L ) 4

and the frequency~eqdatioh is-g}ven approximately for ghi§

. N . - o
a
<

case as

' . =28 K .
2 1 2 o A L
kon * 7€ (4p 1)1° e : P (4.91)
‘ : 2 d2, . ol
. ' 2 Yén 2 _ T
Substitute for k= = 5= V= 2 and the frequency

4v

equatlon‘for the free v1brathon of cable roof in ellip~

tical boundaries may be written as_

2 ' ‘-zg

C —7 (4n-l) S (4.92)

on

L]
BIH

ne

» - ' ’ ¢ ‘ ot

. in- whlch n 1nd1cates the number of hodal elllpses for the

cres - e A
- x e -

'npof under 1nVest1gat1on, and 5“ 1ts elllﬁtxcal coordlnate

.
+
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.at the boundaries. .
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" surface’-under statictequiiibfium is defined by

. where f.x' f

4.2.2.5 F;ee V1brat10n of Reetangular Hyperbolic
Parab0101d Membrane 4 .

Con51der a hyperbollc parabolold membrane, rECtangular

in plan (saddle shape), as shown in Flgure,4.9, whose -

v

C fx 2 £ ‘2
wo(x,y) =5 x - —% Yy (4.93)
.. a. b rs '

o
2 X L

y are the drop along the ¥ -axes and thHe sag

.along the y axesirespecti;%ly, and}2a, 2b”its horizontal -

Lol

/ .dimensions. . ot . n

In free vibrations, we will assume theﬁmembf@ne,will
\x F‘.‘ . GA‘ "." o .

vibrate about the'equiLibriﬁm configuration and restrict

v,

_the analysis to small amplitude oscillations about this
. . - + .

. w1th ‘the orlgln at the saddle p01nt 0,

’

static equilibrium position.
'.. .

’

- Let Xyz be a right—handed Carte51an coordlnate system .

and con51der a
dlfferentlal element dx dy, cut from the deformed membrane
by‘two pairs of parallel~p1anes normal,;o the » and y.
axes‘asnshown,in'Figure 4.10. -

Assume the membrane is glven initialk dlsplacement at

- . A

t = 0 descrlbed as B . SRR “ oo

AN
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) - v . . k
. ‘ ¢ . , R ! ..
- . o . '" ' - “ - \ ‘ . | .
. wtx,y,o) = f(x,.y) -. . " - E (4.94a) ~ |
'4 and ini\tial irelecity'at tj.me t = é,,‘givvhen by : '
’, iﬂ%{d.ﬂ: g(x,y) | '. N '__»W.?,_,('44..§4b) -
Lo - R e . . R
¥ The membxane w1ll‘v1brate due‘to these 1n1t1a1 cond}taons.”

Denote the. dlsplacement of the' ffee osc111atlon at any .t

£
po:.nt b ¢ 5/ on the membrane and tJ.me t by w(x,y,t).. .
. ' yd .o . e .. . * -

- .. + ‘

. . . . s . : -

Due to these osc1Ilat10ns, ‘ther tenswn in the mem- B
.brane wall 1ncrease by AH whlle H is the..tensio,n'“' 'rthe

membrane under the statlc equlllbrlum and known ‘£xom statlc

- o
P, . . .

- " . . . . -

.

. analysis. . S o >

'32.;. e
'.) _ ‘8 W, ‘.» -

Vzat Van - V_,‘z."c * -m P dxdy (4.93)
where: ‘ S e ‘ ' R
Hea = (Hy ¥ BHOdYy EIORIE S RIC e
Hep = [{H#AH)1dy + e

; . ’ , ,', 4 ',/
Hoo = (H + A )dx e .

yc

3(H+AH) S

Hog = (B, + BH)dx + [—X—Y—dy] xi

_'64
e o
4 . * . "4"';'.
. . oy
and . p
. g
{a ' ¢ ﬁ'."‘v
‘s . I3
J . ' =
¢ .

°
.

+

»
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- A - _&(wo+w), . 3[(H +AH ) Tx | I . e :
. . b . = (" + __adv- 4+ ——— dxd ' ‘
. VZB ;‘.x Aﬁx) - S 4 . Bx . . T ;uy
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< -l Tze (H AH ) 3Y ,§§ UL SRR,

R Ce - .; - - c 0 dfw_tw)
- e ) L. * . -9 +w). - H “+AH
- P 3 (w_+w) . ol " Y)

¥ . . N
.ygd ‘ AHY+AHY) - ay_;._dx +. B C 9y . o
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o
=
0,
L]
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. - ot .o " . . -
S M - 4

Y P CE R - SO
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. - ey » . - 0 + B_W : . L .. l“{
— T _ 3x - . | dx ax - - N

a o 3 . B(Wo"".w) =3W6+§E, . ' - . f"-T,":. e ' .

ay 9y =79y : . S f . .

) From Static equ111br1um q "{H ” )%Y’g;f W efe q ts x : "
q/g/ié‘the'maSS pef I

-

ey
£

‘e
~

x
PRI the séatmc 1ead per unlt area .m

I @

- }y)_ 4..un1t area qf ﬁhe membrane, and g sis gravlty acdeleratxon.'
S i R , v“ﬁ, ~j? » e t‘, : 'T. S
K : . ij. substltute ‘the above d ”nltlons lnto Eq 4 95,
'}fﬁ: 'f“’e. diVLde by dxdy, and assume AH 15 constant vy espect ,?}
: ‘igﬁf. ) te space, i e.. .‘1 ‘ , .i"é ;“" {?f N .;» o f@m




= di = 0 ’ 1 = X,Y - ‘

.

. The équatien of, motior of the vibrating membrane givas: Y
N i 2 . N
2 : W 2 ‘
3w ) B
axz CUX Bxf 5 2 s
’ : ’ 2 « ‘ .
‘ . . 2 . " S a2
voooto- b 3w o) W 3w P
N +, ———7+ AH - ( + - ) = m —x . (4.96)
, Ty Sy 2 2’s 2 \ ‘
L Hy xay . . ay Ix b ot ) X .
, », N .

: The 1ncrement in the hor!iontal ten51on components AH .

' AHy may be determlned using the elasth propertles of ‘the

membrane mater1a1 and the condltlon of compatlblllty of

: ; L
- the deformatlons. . ~ r
Y ,'/./ 3 ' . ' o
e ‘ Apply Hoake s law ‘to the dlff rentlal 1ncrement
. S Flgure 4, ll*" r oLt B ] i
P ol ds. AH_ds ' AH (ds_ )2
,»_A'Adsx = B = - £ 5 = ‘: H' dx .' (4.97a)
R . 3 . “x"f’ ‘ “:.‘ x ) . N
' 81m11ar1y for y R
A as, )2
. . . AdS ‘_F E h dy ‘ . " ‘ . (4.97b) . .
w - o .'-" . .
- ' ;3'“'”7¥w‘ S ' ' \\5“
. e where Ex<aﬁd Ey are Young's modulus of the membrane
3 . materiak im‘x and y dlrectlons respectlvely and h 1ts'
S : ,‘\r ‘;ﬁ' -
tﬁlckness. ‘Assume 1sotrop1c membrane w1th unlform thlck-
~ ness, then, E,=E,=E. From compatlbxllty{bf,deformatlonb o
. * =] "‘u‘ N [ _Jﬁ'“
S S W ‘f} , ‘ L€
(ds_)” = (dx)” (1 + ( ) ] 5 (4.98a) - -
. T : .\ ' ’ - . - ‘




e

A o T ey

: ) o aw_ - . -
(fisy)- = (dy)” [1 + (———) ] . (4.98b)
ow Ty
| % g:c] (dx ’2. . . L - \
Ad?x\‘—::- N '- ds? ‘ * ’ | , - v r"_"\« (4,.993) P
. 3 .
Adsy dsy (4- 99b) .

Substﬁtute from Eqgs. 4 98 and 4.99 into Eqs 4.97 and
carry out necessary integration: {he horizontal 1ncrements

in membrane tension become’

owW_ o , ‘
_ Eh.[? o ow
’ ‘ AHx .— 72 “a.—-—a—i % dx ) - »(4‘.100a)
and” ¥ B
' (b ow ‘ . . 3
o, = Eh oW, %(4.100b)

2§, 9y B3y -7 ., /F\ : :

Substitution ef 'AHx and AHY into Eq. 4.96 gives,

. 2. .
¢ g, 2w, [fa NP gy g+ 2y
x' sz .2a -‘ —a 33 ?x sz ‘ '8;{2
2 b ow 52w P 2 .
) +Hvaw+Eh[J 0V 401 (—nQ 4 W) . AW
Y ay? 2b b 3y dy .ay2‘ Syj‘ 8t2
) : (4.101)

Equ'ation 4.96 is the generai equation of free vibratibn

» of a curved membrane surface, defined under ﬁtatlc equlll-'. '

brium by the functlon L (x,y). Howeve:;, we' are far from




s

. Ry . .
‘.. ’ . . , - . '
reaching a solution to this equation: a numerical solu-

- tion or further simpiificatioﬁs appear necessary. The

author derives such a simplified solution as follows.

-~

"‘ ‘ Since, K we assume smaJI oscillation, a separated solu-

tion for the oscillations may bé wrfEtep as b
. ! &

»

Wi,y t) = XOYWTE A - . (4.102)

]
. To' avoid mathematical complications in deriving the solu-

tion of Eq. 45101b'approximate assumptioﬁs must be intro-

" duced. e

&

Since w << w_ then
. o -

2 2
3w 2 3w 2
g $5 -2 g and g 55 9 g
X X By oy 1
azw 83 ° - ' . )
and,--'_7 and ——% may be neglected “in the parenthesis of
ax— . . 9y , ,
Eqg. 4.101:. This results in
« . o ¢ "2
; 2 ra JwW C 3w
.oTw Eh O OW . ¢ o
H —= + 5=1] . —% 77 dx]( )
} x‘axz 2a 7J_,- 8x 9x - axi
2 b v 922 ]
"3°w , En | Yo aw Yo 3°w w 1aa
. + H,.—5 + 3% I ;== == .dy] =m— (4-.103)
. Yyt 22y "’,Y 9y 3y, ot .
‘_\;‘\/ ‘r, ’ ’ ' -

¥ " Now we will solve this equation for the hyperbolic para-

boloid membrane, whose surface under static-equilibrium

, : A \ J ,
is given by Eq. 4.93 and whose boundaries are fixed and

. ‘'given by | . ' B o »

"

4 ’ .
. “ s ! .

PRI )

s
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. X a
W(a:Y':t)'=W(X,‘b:t) = W(xrbrt) =0 -

W‘(";a ry;t)

(4.104)

~

Substituking Egs. 4.93 and 4.102 into Eg. 4.103 and

-1

_
¢
dividing both sides by XYT. .
" i a ' . b )
] . W
. 2Ehf}2( J-‘ax X'dx - 2Ehf; Lb}’ Y dY o
Hy Tt =% X JHH, 3+ —3 Y ) = m
a b
(4.105)-
.The three parts of Egq. 4.105 include only one‘variable
each and thus, zach term must be constant, giving
a - -
- x" 2Ehfi J-a x X dX ' 2 ‘ 2
HX-T(— + a5 X = -A°. (4.1063) .
‘ b 9.
, . . :
S 2EhfZIbYYdY PR
.H _+_l = =% . (4.106b)
' | S
" : ‘ ' ’
m %T = _(xz +‘32) : (4.106¢C)
In the integral, ' ' - ..

a

a o a :
'J x X'dx= x X I - I X dx :

‘the’ flrst term ‘on. the rlght hand s1de vanlshes due to

}
the boundary condltlons (4.1049-, glving

[ ’

a a
I X X'dx = - I X dx
-a - Jea

_ Similarly,

Y



,]‘whege A,'B,‘C aﬂa'D,arq arbitraf9 constants to be deter-

b

b
J y Y'dy =
R
Then, éqs. 4.106a -
2
§—§'+ vi X -
9x ,
and
2
2_% + v2 Y -
2% Y
where
: 2
2 _ )
Vx T g VY
o X

L4

Equations 4.107 are integro-differential equations and ..

Ib
-b

Y dy

and 4.106b, .

after rearranging,

=0
=0 £
Hxas " H b
y C = _y—'}'
‘2Ehfi Y 2Ehfy‘

their solution may be written in the form [77]

It

X (x)

- Y(y)

[

A ¢cos vX + B sin v.x + K
X o b S

C cos v +'D sin v_. +\
yy YY. Q

mined from’'the initial conditions.

- £

PR

-

give’

(4.107a)

(4.107b)

-

‘(4.108a)

(4.198b)"

.

. Substituting Eq. 4.108a into Eq. 4.107a and Eq.

4.308b into Eq. 4.107b,'we get the followi

.for K 'and Q:

and

o

ng relation

(4.109a)

- ¢




¢‘ .

Shbstituting Eq. 4.108a into Eqg. 4.109a and carrying out
" the integration results in an equation relating A and K '
. ‘

as : - . em R

A(2- sin v a) + K(2a - v3Cc ) = 0 (4.110a)
. Vi x“ X X . .

Abplying the boundary conditions (2.104) to Eq. 4.108a,

two more. equations are available, i.e. - )

|
o
A4

A cosv.a+Bsinvya+K (4.110b)

i
(=]

A cos v.a - B sin v a + K (4.110c)
Equations 4:110 are three homogeneous eéuations in A, B
A and K having a nontrivial solution Shiy when their deter-

minant is zero. Thus,

L)

A B ‘ K
2 . | . 2.\
A ;- sin v_a ‘0 - y (2a—vxCx)
x . B
B cos vﬁa - 31p.vxa o 1 1 =0
4 L
K cog v a . Tsin'v.a _‘l

-

. .Expanding’the determinant and arranging as necessary,

g o

A

_' " 1 i b K . '
?P\\%{? : J Y (y)dy (4.109Db)
Y YCY -b ( 3 e o ‘
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sinv_a : "; S .
- cosavxa(zafvxcx)] = 0 (4.111)

.2 sin v 'a [2
x -
X ' -

v
Equation 4.111 has two solutions:
. ‘ 'Y ) B

(a) sin(\exa) =0 o . L (4.112)

This yields an infinite sequence of eigenvalues determined

by \
'\)nlxa = nm, r n = ]:1213"---v (4.113) - ’
>\2
, , ' : Rt}
Subst;tutlng for Vix = T
. l X
2.2
Ai = H, ™ (4.114)
1l a

~

(b) Putting the seécond factdifequal to zero and dividing

.

by sinv_a, leads to.the equation - .
" tan(v_a) = v_(a - 1,2 ) - 3 : ~ (4 ilS)'
RS A X 2 "xx" . ot g

This transcendental equafion,yields th% infinite sét of

positive roots denoted by"

wnzx(cx)"} ny=1.2.3,... b (4.116)

2
and determines a'séttéf.eigenvalﬁes.~ Plotting fhé'left- \
hand- and right;hand sides.of Eq.'d.iis; the solutions are
obféined as the‘pqints of interséction-betwéen the'braﬁches
of £he'tankvxa) curve and the third‘déqree‘éﬁrve,’Figupe' |

o . . %
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' .us now arrange.the eigenvalues v

4,12,

*

. }
- -

The first solution, resulting in K and B being, equal
f . . s ’

to zero, gives the eigerifunction

n,m , 4 n

1 o x ,n,=1,2,3,... (4.117)

X Ax) b B.'51n = 1

1'11‘

These eigenfunct ons -are antisymmetric with respect to
,/)k ~ .
x = 0.
, 4
For the second solution, B

2

and the eigenfunction becomes 8

X - co§vn2xa), n=1,2,3... | (4.118)

X (x) F‘A(cosv

n n,x

2 2

®

-

These functions are syﬁmetfié with respect to x = 0. Let

- » a -

n.x’ Vp x in order of
) . 1 2
increasing magnitude. The corresponding sequence is de-.

Vi (Cy) + D = 1,2,3..; where yn < v

L4 .

-

noted by

n+1l

and determines the complete set bf‘eigeqyalues,'ob ained

set of eigenfunctions, made up of all the fhnctions-

and (4.118), is denoted

-

-“ .

xn(Q¥;3) , n=1,2,3,...

\ » ! a

-

i
H

0 and K = -A cosv_ _a,
n,x

|
|
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Slmllarly, from Eq. 4.107b and the boundary condi-
tions’ (4 104), the following results are obtained~
1. F:dr the first'solution, "
‘ Csin(ub) =0 L " (4.119)
- ‘and the correspondlng elgenvalues are . 0
- - - . {l} ‘
. \)mlyb <m, m=1,2,3,... B (4. 120)
C with the corresponding antisymmetric functions ‘
. I | - \‘\ - . .
. . (x) =Dsin = yi, m=1,2,3,... (4:121)
. e e Mg b : ‘ ) .
ﬁ 2. The second solution ives the- eigenvalue eqpati&r} R
. S tan(v_b) = v_(b - = vic.) . | (4'."122)
- y ‘Y 2 Y . R
_v':ith\the. eigenvalues obtained from Eq. 4.'121 as 3
. i - 2Y(Cyr) , m = l,»‘2,3,.9. _?/w' .
0 ) and the correSpondlng symmetr c elgenfunctlons ) .
’ (y) = C‘(‘cosvm’zy‘b zyy) ’ IE"' ;:2:310 i - '
"‘ ' ' - ~"“ v ‘;,‘ (4 123)
 The elgenvalues‘ arranged in J.ncrea31ng ordér from Egs ..
s . 4.120 and .4.121 are denoted by . | v .
: I vm.‘(cy) s m=1,2,3,..." S - '

. .
o . i s
- . "’y . . . . T, L




The possible elgenfunctlons, as the outcome of Ean-4 121

-

' and 4. 123 are denoted by

Y (C
my

’

y):

; m = 1’112::3"1

At this stage of the analys1s, the mode shapes of the

system (4< 102) are completely deflned

(4.124)

_ w(x,y) =k¥n(cx,x)Ym(Cy,y): nﬁm é ;,2,3,.:§ .
! 2 . '
I The complete deflnltlon.of the eigenvalues an Vmnx
(4. 106¢c) results in, . |
" A " i\ + '1 [H —\)2 (C.) + H (C )IT = 0 (4 '12‘5‘)
: e ‘m X XX e my y . .
o,‘ . ’ \.»' ‘ .-'—- 1
~ The,solutiob_qf%Eq. 4.125,giyes ' b '
. . . . i"::;)’" ‘ . o
. . v ' T(t) ;'Fﬁm coamnﬁt‘+ Gnm s;nenmt (4w126§ ,
. . 'J/ ‘} " . . \71 “\ 1
. .where. v ‘ R . K .
IR AR S , .
| :whm m,-[Hx nx(cx) +.Hy my(Gy)] ‘(4.127)
. s * . L. ) A':. . , . ° x
‘ ?ﬁe complete so1utlon ‘of ‘the free v;bratlon may Pe. written -
, ‘hOW;1h the~f1nal form as - SR
w'(x.,y,:t)' - xl:;(cx,x)yﬁ'(ey,:y)‘ {Knmcqsw t +B_ cbsw t}
oo A o0  (4.128)




.
‘
«
. . .
- \\
. ’

e ) Xn(Cx,x) = ‘sia»nxx‘ when Vhx 1S given by Eq. 4.113 . : .

- : Vox = nn/a

(cosvnxa—cosvnxx) when Vhx 1s'grven by Eq. 4.115.

- : . ' ' 'b ’ . '.

X Similarly, .
Ym(Cy,x) = s8inv__y when v v is given by Eq. 4.120
. ' R . = Il‘_’l ’ ’
R : . Ymy T B

"

(cqsvmyb—cosvmyx),when Vy, 18 glyen ny Eq. 4.122.

Xnm and § om are\arbitrary _constants to be determined from

initial condltlons (4. 94) in the same way as in the case’

. of . membranes stretched over rectangular or c1rculark££§gd

boundaries. ‘ .- . , -
t"

It appears that the solutlons avallable for Eg. 4 111 .

© - < -
. -

of the determlnant‘fon the elgenvalnes and t@e_elgen-

.

functions may include the flat stretched rectangular mem-
brane. This argument is based on the first solution which

j'..' is independent of the function Cx,and therefore,of the
. - . . ' s . .

rise and the sag of the hyperbolic parabolcocid. This ' .,

solution gives the eigenvalues for'the membrane as’
. L4 N . s -
. 2 .2 .
-2 _ 'n n o m A - . N
. . A_wnm_m [ az HY ;:2-] n,m = :!.,’2,‘3,«..‘

T4 - ) UmS—

and the eigenfuncﬁion,' ' . .

T wix,y) = Bihnnﬂ §~sin mﬂ'% , N,m = 1,2,3;,..' - ‘ . ’
| ' . ' . : : : .

.
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-
L
4
~
. -

.

which is the same solutlon as was obtained for the rec-

. tangular flat stretched’ membnane

L]

The above simplified solution formulated by the author
5 ‘
leads to the following.conclusions:

4

1. If the hyperbolic paraboioid is very shallow, the
second ghlution of Eg. 4.111 ﬁay be ignored andvthe
rooﬁ‘vibrates neariy as a‘flat membrane. v

ol 2. Furthermpfe, since the‘antisyhmetric moaes did not

. cause a@ditional:tensioﬁ in the membrane; then we may
conclude. that the soliution 1 which is indeéendent of
the tension increment AH; gives the same modes as the

flat membrane with AH equal to zero.

PrEis

N ~ \

~ \
\

A

4.2.2.6 Free Vlbratloh of Clrcular Hyperbollc .

Paraboloid .
rw . L

Con51der a hyperbollc paraboloid membrane of mass per
. unit area'm, stretched uniformly all around a Ilgld boun-
dary c1rcular:;ﬁi§¥§h, with tehsion per unit length of arc
T, as shown in Figure 4. 13 The general SOIution outlined
above 15 extended by the author to 1nclude this case of

the hyperbollc parab0101d in the follow1ng fashion:

- s '

‘ The surface of the membrane under static equilibrium

\\) - mdy be described in Cartesian coordinates by,” .

Wo (x,y) = 5,0 52 . fz(l)
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- .

where f, = the drop along the X axis (8 = 0,m), £, = the

sag alé;ng the y axis (6 = .72l, %—TT)' a}ld’a is the radius of

) L
- i

the plane circle, -

LT ‘
Eq. 4.129 takes the form, '\ 7| "'«

% - fé‘(x%)z sirfs s (4.130)
: \ "

N

. In polar coordinates ,t

= rye
wo(r,'e) = fl(a) cos

with the transformation from,.Cartes\ian to poiai_c'coordinates

‘x = rcos®, y = rsind, and the equation of- the plane circle.

at the boundary r = a.

The general equation of motion of a free vibrating

curved membrane surfice, developed in the previous section,

may be redéveloped in polar coordinates applying the s

]

o

following relations bétween Cartesian and polar coordi- |-

* nates: | ‘ - . B 4

B gogp 2. 5ind w L g1
ow . ow cosO 3w ,
3¢ - SR8 5 - T 3% .. l2.131b)

2w _ on2e 2w , sin®0 2% _ 2sinbcose o’w . .

- -
) > " T ' 736 . 1
‘\EMM 3w ‘sinze'/gw / hl ' L
r / '
and .

i . o
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o ' 4 %
‘ .
+* . . N » " . .
T2 : 2 2 e 2 T
.2 g - sinzq J g + cosze 9 g + 2 51n£cosq agag B ’
* BY -~ 31' ' ae ‘-a"~\ . E R /4
& . > .
o %, sinfcosP 3w , cos O w -(2.131§)‘

- .ri 96 r. ar

- A »

. v
- i

‘Assuﬁing that the membrane vibrates linearly about the

L
static equilibrigm %é;Eq. 4.130, the increase in membrane

tension due to vibration is independent of space and time
dAH
91

e, |
horizontal tgnsion°H in the membrane is constant, hence,

di =,0 ; i = r,6,t). Assume that the initial’

(i.e.,

‘
9

;the additional (incgease) horizontal .component of membrane
) .

ltension AH, due to linear vibrations will be umiform

s

throughout the membfaﬁe. ’ -
. " ’ * ‘
Based on these assumptions, the general equaﬁion.of
+* : - .
vibrating curved membrane surface {4.96), developed

- _“ . A L]
%ecalled here, and after rearrangement may
. Q . . \.\1 — .

v

earlier, may be

be written in the form: -« \;\n\\ '
22 3%w “ i
(H+AH) V" w,'+ AHV'W_ = m . ' (4.132)
. . : . ° at :
. vo. 3 PR . [] ’

in which V2 is the Laplacian‘bﬁératér and AH is the in-

crease. in membrane tension due to linear vibration.

The solution of Eqg. 4;%32 is very cémplex and further

simplifications have to-bejbonsidered:‘ Since AH << H and

,Vzw'k<‘V2

. w_, the second order of AH, Vzwo, or their pro-,
s duct may be ignored;: gﬁaed on this assumption, Eq. 4.132

-

" may be reduced to,’ -/

:. . \>* - '
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Hv%w + AHVZw = m C A ‘ (4.133)

3
<y . v

The additiongl tension may be.determined from the elastic
. ' & .
\ . properties of the membrane material and coﬁpatibility of

the deformations.
- ~ ~%

Tné equations of elastic and geometric -gompatibility
(4.97) and (4.99) ﬁay beagfittén in terms of the area

+  élemenf dxdy by assuming th transverse displacement w

e : only is significant ti.e., the displacements‘bf the mem-

-braﬁé\in‘its plan afe negligible) whichcgiﬁés

W ow -
. ¢ AH . AH , . O Iw o o oW
. £h QXdy +- g dydx = Thx ax.dxdy + 5y 3y dydx . (£.1?4{
. N . N
ﬂ_ . ijnqe AH is assumed constant everywhere, Eq. 4.134 ﬁay'be
. e pressed in inteéral,fofﬁ, which, rearranged, gives

LS ~
-

. oW ow
= Ell 1- _Bﬂv. ©_O oW Lo
. AH = 33 JSJ [=x 3% ¥ 5y 3y ay]d.Xdy A (4.135)
:js\-j LT Here, S =‘the plane area of ‘the membrane.(ﬂaz). h,E 2

»

the membrane thickness and its material modulus of elas-

[ticity'}espectively: the double integral is taken.over

; . .k,
the plane aldea of the membrane:. . . .

'Aééuming‘the boundaries'aie rigid; the right-hand-

[y * KN

Slde of Eq. 4.135 may be further slmpllfleﬁ by intedra-~
Y

tlon by partsa Applylng the boundary condltlons Whlch ' .

~.lmPlY‘Fhat w vanishes at the boundar;es, Eq. 4.135 yields

’
f »
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. Crmasy,
“ X
MR = - gg v ( f w dxdy o (4;136)
in‘wh};h V2wO is constant and given b& ‘ :
v2w6ﬁ= j% (£,-£,) C L 4137

The  Laplacian operatbr in polar cocordinates is

' 2 .8
72 = 32 +¢% g% + 35 32 _ . '(4.138)
ar ‘ r 96 :

A

' Substituting Egs. 4.136, 4.137 and 4.138 into Eq. 4.133

and rearranging, the equation of free vibration of the

circular hyperbolie paraboloid is obtained as,

ve

2w _ 1 2w 1

T 2ﬂ .
w 4
= == F —5 I f w rdrde (4.139)
Brz r 362 vz at2 4c? o ‘o
' 2 f wazﬂ | '

1n which C° 2Eh/(f f ) ;L r under‘ﬁﬁe double integral
is the Jacobian for transformdtion from Cartesian to, polar
“ocordinates and.v2 = E. - .

m* -
. ST

An equatlon 31m11ar to Eq. 4.139 was obtaaned by
e \

- Irvine 1n 1981 [18], us1ng a completely different approach,

but he did not give a solutlon for it due to its complexlty.

In thig work, an attempt has been made to reach a solution

to Eq. 4.139.° TR .“ , '
. el
Assume a separated'solution of the form,

w(r,8,£) = R(r)é(8)T(t) ‘  (4.140)

t
¢
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Substituting-Eq. 4:140 into Eq. 4.139 and dividing both

sides by R(r)¢(8)T(t), gives

1 o%Rm) 1 R , 1 3% _ 1 almw
, R(r) 4 2 TR({r) O3r r¢(6). 442 va{t) "t 2
. : 27 ra - il
e J J R(r) ¢ (6)rdrde
l. ‘o ‘o :
+ . (4.141)
adc? R(r)¢(6) ' S

&
;

After integratioh by pyrts of tﬁ@ double integral on the
right- hand 51de of Eq. 4.141, it»ﬁay‘be seen that the

double 1ntegral vanishes for R(r)¢(errepresent1ng antl-

symmetrlc modes but not symmetric modes. TherefOre,

Egq. 4.141 may be sblit into two parts: one, for anti-

symmetrical modes, takes the. form;

1 9o%R(r), 1 aR(x) 1 _1. 2%(e) __ 1 afm(e)
R(r) 5,2 ~ rR(r) or 2 0(8) - 442 vir(t)  at?
- ’ . (1.142)

The other, for symmetrical modes, which aref independent

on the coordinate "6, takes the form:

R(x) -, 2 M3 > i

v i ‘ ) . ' a - ‘
1 3°R(r). 1 dR(r) 1 J rR(r)dr
a C.R(r)

A4

o " 1 1 3°T(v)
- ‘ 2 T(t) 3t

rJ

(4.143)

’

The solutlon of Eq. 4.142 is similar to that for the

circular flat membrane given prev1ously by Egq. 4.58, in

g whlch v is now (= )l/2




Equatiom 4.143 is a simﬁle form of integro-differen-
) . . -~
tial equation and its-solution niay be poggible after

separating the variables.

~

One side of Eq. 4.143 is fndependént of the other
/

-

"and separation of variables teLhﬁique.implies that each

t
side must be equal to a negative constant. Let this con-

stant be‘—wz, then for T(t), Wejget '
321 (¢) 2 2 : o . .-
S v v e =0 . \ (45144) |

e . e T

.
S s
s B2

and for the function R(r) , we have the follbwiﬁngre—

2 3%R(r) SR(r) - ,w® 2 | ’ﬁ?// a -
2 2RIE) L 3RE) w2 pir) - £ | rR(r)dr =0
3 5T 3 ")
or Voo a Q o.

arranged equation:

(4.145)

The solutions for this equation are sought in the limit

0 < r < a, with the boundary condition R(a) *= 0. It can
belshbwn that this in fact is a self-adjoint, positive

definite eigenvalue problem. ®

a ‘ T - .
The integral f rR{r)dr is independent of r, so the
R O e ) . v N B N
general ‘solution may bé written in the form

‘.
N
> e

R(f) AJo(\)) + BYo(\)) + 1 o (4.146) . )
where A, B'and I are constants toﬁbé aeterm;esd from the
boundary conditions. As in theﬂprqyious discussion of e

o

circular flat membfane;free vibration, in order.to avoid

-*




"vanish; then Eq. 4.146 takes the, form .

2()6‘

"infinite deflection of the,functionﬂR(r)‘by Yk' B must

_ we, S _
R(r) = AJ_(45) + 1 (4.147)

Substituting Eg. 4.147 into Eq. 4.145, carrying out the

necessary mathematical formulations, which are based mainly

on Bessel function pfdpertieé, and rearranging we get ;

. - a ' ,'
I = ()2 J R(r)r dr ‘ (4.148)
" a wC o] ‘ :
. " M . L \
This relation gives the value of the constant I; it
3 ‘a " . ‘ B
is seen from Eg. 4.148 that I is independensgof r and is
determined by the integral limits. 4
) L . ' /
Substituting Eq. 4,147 into Eq. 4.148, integrating "
and';egrranging we get the following eguation: o .
av a’ 2 C, 2 ’ |
ALY I ()1 + 1[5 - (5 °) =0 (4.149)
w' 1w 2 2 .
. : a’v
. ~ ‘ o
v Apélying the boundary conditions-to Eq. 4.147, which
"implies that R(r) vanishes at 4a, '
wa . ‘ o
AJOLTT) + I,;-}L o : (4.150)
To get a nontriﬁiai solution for the constants A and 1
~ from Eqs. 4.149 and 4.150, their determinant must vanish,
ilécl
) ’ & H @



av wa a
w 1% 7 - ¢
. wa,
I (D) 1
This condition yields
wa
JI(TT) - wa [i __(awC)2
I (43 A v,
o'V

—7)

a v

wC 2-

S

(4.151)

(4.152)

. Equation 4.152 is the frequenc§ equation of the symmetric.

"modes of the eircular hyperbolic‘parabolqid, and its'solu-

tion gives the different ftequencies of the sym@gtrié modes

of vibration.

. The ratio of tﬁe,égssel functions is (see, e.g. [83])

w
. _om
(

V

_a

)15

\

2(m0ma) /;‘ .
- v J
=I 1 ———]
m . - om/)2 ,
Jo,m Vv

), m=1,2,3,.

J (fQEi)

1 V
L VR -

< . om
Iol )
wheref ]o;m
w__a

+ O Vv

1

1

- Equating Egs. 4.152 and 4.153

®

aw

o 2.2)
(=% =

.

/1 i z(woma)

¥ 1 v

m .2 ; (woma)z
Jo,m A

j

[

(4.153) |

= are the éeroeg of the Bessel function

(4.154)

Equation 47154 islthe‘f#equehcy equation‘pﬁ all symmetric

modes W

i

om’ ™ 7

‘ / ” ) .
1,2,3;.?}, of the circular hyperbolic paraboloid

|

|
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[

cable tension. roof. This equation leads to the following, -

o

..

equation for the frequency of mode wopt .-
. . " . r .2 Y .
1. H1/2, 1 1.2 1,.4 Jo,1 1 1/2,1/2
w 4 = Z.6=) {(— +5 3 + 503 - = + + ] }
ol a 4C2 2 °0,1 2°°0,1 C2 | 4C4 C'
(4.155)
v ' . The non-dimensional perameter
. 2 -‘ - .
2 _ maH ‘ U
¢ = 2Eh/(f f) ) _

plays a significant role in thls equatlon. When fl,f2 + 0,

,C2 + o, and Eq. 4.155 reduces to

_ 1/2 | o B
‘ wol’_— ( ) B . \
) “ i . A ] : N_' e
which is the equation of the first mode of.a& circular flat
" tension roof. Hence, the theory of free vibration of

"circular flat membrane is obtained as a special case.

When fl,f # 0, the mode w,y ©f the hyperbolic para-

b0101dtroof has much higher frequency than-the flat roof.

The hyéerboiic pafabeloid-ropf under experimental 3
investigation (Chaeter 6) hasla\vaiue'fOr C2 = 0. 6093
-For this value. substituted into Eq. '4.155 glves a. frequeney/A
- for mode_»wol is about three trmes hlgher than that for a

flat roof. These theoretlcal results are in agreement

-with experlmental results obtalned from experlments des-

\ :
o
\
\

cribed in Chapter 6. -
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I
Y

. It may be~concluded that’thé _mode wol of the hyper-

“ bollc paraboloid rpof lS about nlne tlmes st1ff»er ‘than
. ~ ‘
the corresponding mode of a flat: roof+~ This suggests

that the hyperbolic parabo;éid,roo?;is:tdo stiff to move

N B ‘[‘ . -
: . - up and down as a whole in the fifs“sgmmetric mode, and

therefore it tends to move in its antisymmetric modes
. )

which need less energy than the symmetric modes. The mode
. T

. -
shapes are defined by substituting Eq. 4.149 into Egq.

4.147 and by using theJ;esult ob ained‘ié Eq. 4.152. We
" get T .

17 *,

wa .
R(r) = ALT_(45) - g (3]

C sy

., TEquation 4.156 is the equat'oﬁ/io; the symmetric vibra-

. (4.156)

« tion modes of the ¢ircular /hyperbolic pardboloid.

oy, ~ “
ey —

Ve

The écmplete solutigh for 'the free vibfat%oh is ob-
tained by combinimg the solutioﬁ'of Eq. 4.144,obtainea
in previous analysis in this work,witp the solution of
‘ﬁﬁe mode s;apé equatidn. This gives the complete con-

figuration as,

)

, w__r - w.oca’ |
Vom(TrE) = L 13 ()= () 1 (apo0su pt + by sine t)

m ° WV 'o v © 7 om .
' w r ' Pk :
. o+ I, ( ){[(C cosne+d sinnd) cosw__t]
' n v nl Soom
£ “ * ’
- + [(e cosn9+gnlsxnne)91nw t]}
. . form=1,2,3,... and n = 1,2,3,... . T (4.157)
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The p0551b1e v1bratlon modes are, shown in Flgure 4,14, ',

/

It 1s 1nterest1ng and s1gn1f1cant that Eq 4. 156 obtalned’

. hd -~

in’ thlS work for the symmetrlc modes of v1bratlon, wa§

>

suggested w1thout proof by Kinsler and Frey [78] in thelr

e

" study of prooagation of .sound within pylindriéal-endlo; y

sures. o ; C
: - : ¢

4.3 FREE VIBRATION OF CABLE ROOF BACKED BY A CAVITY

- S A [;
\ . . PRI

4.3.1 Introduction ‘ o

A study of the free vibration of an isolated cable "
roof is‘rarely applicable. More often,‘asetruoture is |
ethBSed'a has opehings (doors and windows) andnthe air
movement t:jghgh them due to roof movement during vibra-
tion affects the dynamic, characteristicsfof the.roof,

especially the natural frequency of those modes which

cause a large change 1n the air volume of the cav1ty.

_"Thlsuchangegln volume'ls accompanied by a change in pres-

_ gure of the air inside the‘enclosure.

+ 4 o

. As ‘the roof v1brates, the air inside the enclosure

is alternatlvely dompressed and’ expanded Du:lng the

compre551on actlon; a volume of a1r mQves out through thé

,1

openxngs and as the air expands, a volume of air moves Ln.

This movement of alr is due - to the change of, the air-

P .

pressure w1thin the enclosure caused by the change of the

volume durlng roof vibratlon.\ N
o o

Phe problem of a cqppletely closed cavity has been,

211

-




studied by many authors (e.g. Kinsler and Frey (78]), but

the oroblem of cavity with openings is more'difficult.
vIn~thie work, an attempt is made by the author to explore
_ this p}oblem ahd reach a solution.

.4.3.2 Free Vibration of Clrcular Cable Roof Backed by
. Closed - Cavity

?

For a circﬁlar‘cablé roof having a fixed boundary of

radius’a, the mode shapes of the equivalent membrane may °

.be given by Eg. 4.58 as \
) S S T .
W m(r,e) = Jn( 5 )A cosne | (4.158)

a

in which Wom is the natural frequeniy of mode Wom! VY =/ *

where T, m are the uniform tension per unit length and the

-

mass per unit area of the membrane espectlvely, and A
is the displacement amplitude. The average amplitude of

dlsplacement\of the membrane sur%ace s, in mode nm, may

be defined as

_ ) wnmds ’ , . e .
an :': 2 . ’ B} . . (4-159)

\ N TTa . . : ., e

S T e

in which ds = 2nrdr. "An inspection df the J m ( 3 T'func—

tlon shows that a membrane vibrating at frequencies other

&han 1ts fundamental fré&ﬁéﬁc§’7w l) produces llttle net

dlsplacement of the surroundlng axr.-‘ .f»a_¥%

For symmetrical modes (n = 0), all parts of a

) . . Lot
. o . . -
’ . [P < . ! .

[ 4

H
-
\
)
4
1

T .- o -
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rimg-shaped surface element, ds = 2mr dr, contained bet-
ween r and r+dr, have the same displacement amplitude
and, it is possible to carry out the indicated:Gsurface

Hé;gration of Eq; 4.159 by merely integrating over r from
o to a. Then '
a Womt
I A J( )211r dx
-  _ ‘o . . . .
Yom = > , . (4.160)
3 Ta
which upon intégration‘becomes
2VA w__a s ’ :
Wom T oot Ty =) _ (4.161)
. om - ’ .
in*which AOm = the displacement amplitude at the centre.
For the fundamental mode (m = 1),
. wpl = 0.432 Aol
and for the second symmetrical mode (m = 2[;
1 , ] <
w02‘=--0.123AA02 A F

W

PO

where the negative 31gn indicates that the average dis-
“placemernt amplltﬁde is oppositely d1rected to the dis-
placement at the centre. When the dlsplacement amplltudes~

at the centre are equal, 1 e.vA = A, the fundamental

N ol 02
mode of v1bratlon is more than three times as effectlve '

“for dlsplacing the - a1r as is the second symmetrlcal model

(
’

This shows that the fundamental mode of vibration .

. * . N oo ’
.




-

produces a large change in volume, Figure 4.15, but that
. -
a membrane' vibrating at natural frequencies other than'

its fundamental fregquency, produce iit;le net volume

chiange of thepegclqsed air. . e

s " ]
.

-~ 3, [ ]

In many problems encountered’ in the study of sources

of sound waves, the chsracterlstlcs of the sound wave are -

-

dependent on the amount of air dlsplaced i.e. the- volume
dlsplacement amplltude and not on the -.exact shape of mov1ng

surface. Then the radiating source may be replaced by an
W
equlvalent Smele piston, such that the product of its

area and dlsplacemenfﬁémpiltude is equal to the Volume N *

displacement amplitude of)the true surface. -

v

As the membrane vibrates, the air in the enclosure

is alternately compressed and expanded. These changes in,
pressure occur within the enclosure behind the membrane

as the VOlume'of’entrapped air is altered by vibration of

{ . . S

the membrane. Since the radial velocity of transverse‘
waves along the meMbraﬂe'is much less than the speed of.‘
sound in.air, the preSsure resultlng from'ihe compre551pn
and expansion of the air in the enclosure may be assumed
uniform over the entire extent of -the membgane, i.e. it

R , i [T '
is not a function of radial position and depends only on

_ the average displacement w.
». |

4
)

When the surface of the membrane is displaced an
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FIGURE 4.15 VIBRAIION OF A CIRCULAR MEMBRANE
- BACKED BY A CAVITY, AND NOTATION.
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o
\ average amount w, the increment in the volume of ' the en- -
. . . s Y
closed air is . .
. 2 - ’ . .
AV = ma'w ) : (4.162)
" .. . 3 .

A

(4 .
where a is the radius of the membrane. If the equilibrium

- . ®

volume inside the enclosure. is yo'and the equilibrium

pressure is Py and the alternations of volume are adia-

‘bafic,'the'new pressure p ana‘yolume V are related‘by,

¢ L

Ed
-

pv' = povg = constant . (4.163)

: ‘ @ ‘ R
+ % where Yy here' represents the ratio of the specific heat of

4
L4 e

the entrapped air at constant pressure to-.its specific

»

heat at constant volume. Byldifférentiation ef this equa-

tion, it is- possible to show that.the increase in pressure
»

- . -

Ap inside the enclosure will be . c

- . =~ M . 4
« © ' Ypo . ‘Ypo 2_ . : .‘
'/-\\// Ap = ~ v AV = - 520 Taw ' (4.l.64)
. ‘e . s ° : ° o L e
s : ThefintrOduction of a force given by Eq. 4.164 as acting -

upon each unit area of thé'memb;ane modifies the equaficn

Il

" 'of motion (4.32) which now becomes,

2 R | I

' . 2 2 o a w . &, 2_ . o . o
: : CNIVW 2 S S ratw . (4.165) -
.. | . ~ . ‘3‘1‘: ‘ "“mvo. C o e ‘ e o

L2

.Where W is.an integral function of all the allowed modes
~ : : " ‘ -

o

of vibrafipn, Eq.w4:59 and m = mass per ‘unit area of the

" . mambrane. A general §olutign of'Eq. 4.165 is complex: é ?*%.

-



be integrated and becomes

- - . .
3 L] .
: .- rd
.
1}

. . ) * .
"ﬁ‘ " N \A
[ 4 Fl - *
However, if only one mode of vibration is present, the

solution of Eq. 4.165 is greatly simplified.. If only

-

the frequency w of the symhmetrical mode is present, we

may assume a solution in the form-
: ’ 9

A N . -
‘w = R(r);!bt- » h .. . (4.166)
o , c P
Then, Eq. 4.165 becomes . .
2 2, YP. ra o -
d R(r) + 1 dR(z) + Y- R(r) =2 R(r)2rr dr
a 2 r dr 2. . ™™V
r Y o ‘o

. (4:167)

The solution for this type-of}iﬁtegro—differenfial equa-

b

‘tionqwas obtained in the previous section ‘and may be uged

. ' '
here: ' e

S
- L,
a

-~

R(r) = AT Err - 3_(2a)), ' (4.168)

With tﬁis solution, the right™hand term of EQ. 4.167 may

e

v . ;
YR, ra . - Ta“yp_ " B
T-—Vo- Jo IR(I‘) 27r dr = ——,i-‘-v-o—— A J2 (qa) (4..169)

where Jz(%a) is a second o}der,Bessel function of the

¢

first kind. e

r

Subséituting Bq. 4.168 and the result of Eq. 4.169

L3

| into Eg. 4.167 leads toafhe.frequency equation

(Lay, - 4 , o

J

2 "o'v p
(£ay <. = -q : (4.170)
Vg ) o .

2'y o
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masyp, . IR
where o0y T~ is” a non-dimensional constant measuring

p .+ 0
the relative importance of the restoring force, owing
to the compression of the air in the enclosure and the

tension, T, applied.to the membrane. This constant oy

O ~

"is small if either the volume .of the.enclosure or the
tension in the membrane is large. In the limit where\ihe

constant oy approaches zero, the allowed frequencies are

;o s ol
th¥se corresponding to Jo(%ao = 0. The condition corres-
. . N &
ponds’ to the one previously determined fongree vibration
of a circulér membrane. Hence, the theory of free vibra- \:2
. “ * /"

tion of circuigr membrane in vacuo is obtained. This

solution is due;to Kinsler and Frey [78]."

-

- °

4.3.3 Free Vibration of Cable Roof .Backed by Cavity
) With Openings B

Most ofteh.a cable yoof stgugturé is enclosed and
has openings. The air movemen#‘through them due to roof.“
movement affects the freéuency'characte:istics bf the - .
roof,‘eépecially.the frequency of thdsevmbdes which. cause
a change in'the air volﬁme of the cavitf‘ This change
in.volume, as statéd'before, is accoﬁpénied by a change

‘in pressure of the air ‘inside the enclosure.

The'ﬁroblem of a coméletely‘closed cavity only -has
" been studied by many authors in acoustic lectures_aﬁd
was reviewed in the previdus'paragraph.: The problem of

) ‘ ' ‘ - . e

¢

——a




7in which Ap acbuétic pressufe acting at .an obewéng of
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»
. -~
Bl 4 -

a vibrating membrane backed by'a cavity was studied
briefly by‘%he author, [108], .and is completed in this
work, accompanied by experimentai verification of the

’ .
theory (Chapter 6).

L)

Since the dlmen51ons of cable roof structure (radlus
and cav1ty depth) ‘are small in comparlson with the wave

length of sound waves, as stated earlier, we may assume

Lo ’ ]

the enclosure under the roof will act like a Helmholtz

N

" Resonator: and fhe roof will act like a membrane piston

AN

on the enclosure. . ‘ - .

The increase in pressure inside the resonator, which
' : )

results when a volume. of air AV moves in'through an .1«

opening:of area Ad,_is'given by (781,

Ap = -Yp 7= bcg T 8 : (4.171)
' PR rO . 0 ' . -

in which p = mass density of‘air, c, = speed‘of sound in

air and Vo orxglnal volume of the resonator.

The acoustic force acting on the opening, due tb

c e . . ] /' .
this change of internal pressure, is . ~ e
L4 - . e ' ’l

A R | . (4.172)

2
oV, "o . o /

» . ' n !

1S

- &p A = ocC

~

*

area A, The resultlng d1fferent1a1 equation for the

lnward dlsplacement £ of the a1r in the resopatqr openlngs

/ B

5t . - . 2

-
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of number N, assuming the damping is‘very small, may be

written as

. 2 L
. 47 & o2 AV
! -
p &' NA_ ? o v (NAj ) =0 (4.173)
o ‘
in which ' = the effective length of the air mass ip a

single hole and is equal to 1.20 to 1.70 the radiuS'of
the  openhing a,r dependlng on whether the openings have

'flanged ends or not.

For a cable roof with N wall openlngs, each of area
-

Ao’ the change in volume due to the average movement of

' the membrane w and the existence of the openings is

) o : .
. = 2 < g (1ma) = rafE(l - &)
eAv“_,Nnda mw = N OEj,(l ac) = 7a w(l - 0.Lc) (4fl74)
in which
ﬂazﬁ
ac = NA € is the ratio between the volume of air

220

'displaced due to. the membraﬁe movement and the air which ~

]

moves through the openings. . . ,
, ; . . A

Substitute for -AV into Eq. -4.173 and the eqﬁation

of motionifor,the inward displacement £. of the air inside

the enclosure beneath the reof,is ' 5,'f, ‘ N
Co a%e ; o (NA )2 e

fp £'NAY] == + toc (1 - d Jle =0 (4179
° at © Vo ‘ ‘

The natural frequency of‘the‘whole gystem is given by

& o
o f

. . .
) 1)

*
[ A

~a



) 2 cgNA , . A «
W = (e 9y (1 - «a o) . o (4.176)
O 13
or
2 “ .
%=(1-a)z—(1~—) (4.177)
u)R C

This approximaﬁion is possible. because w2 << wihwhefe‘

= ‘frequency of the whole system, and w_ = frequency of

R

the resonator. .When the membrane is rigid, W‘z.o, there-

fore a_ = 0 and the frequency of the system is equal to

the frequency of the resonator

. ZNA e
. w - w - g' O -
Yo

Buprwhén the surface of the membrane is displaced by -an

. i ) \‘ -

average amount w, and the air moves through the openings,
this change in volume of the enclosed air causes an in-

. “" *
-crease in the pressure inside the cavity.’

If the équiiibrium volume inside the enclosure is

3

';(V .and the eqU111br1um pressure 1s p and assuming.that
- ———————-\_/

the alternatlons of air. volume are adlabatlc, the. pressure

~ -

1ncrease,,as stated earller, mayvbe glven as
AV AV C2av TN o
- YPO V f pCp V; ] (4.17?)

(o]

[
o
5
| e
&
'
i

"air bulk modulus and ¥ = air specific heat

21



The introduction of a force given,by:Eq. 4.178 as

acting upon each unit . area of the membrane surface modi- .

x

fies Eq. 4.32, qf the free vibration, which ‘now becomes

¥ 9 :
2 $e2 :
viyy = i-‘-'z’- + (—2 ‘-‘}—V) : (4.179)
. e} v

el - m

@

mass per unit area of the membrane. Substi-

in which m
‘tuting for -AV from Eq. 4.174, the equation of motion

reducés to. ,
Y 22
o pc ‘n‘a’ ] : _ . *
oo a - % ‘ (4.180)
t o ) c. y .

I

Vew =

1
2
v -

Qry

- In this equation W is an integral function of all the

allowed modes of vibration. A generalisolution is too
involved to be considered for practical abplication. I1f
only one frequency w is presert, a solution of the “follow-

'ing form may be assumed: [ ' h
4 - f
) . |

w = R(r)el?t R . (4.181)

-

. Substituting Eq. 4.181 jinto. Eq. 4.180 gives

N2

2 - a
©A%R(r) , 1L 4R(r) , 2 &L 1
.—-—-—d -t T a t VR = (1 - 2 )J R(r)2mr dr
r’ . (o] Cc Y0 -

»

(4.182)

4 o . .' é ” ‘. ‘ * : e S — :
in"which T = the tension per unit length in the membrane.
It is found that this equation is saﬁisfied by a function

w2 . v . - .

' &

»

of the form«(sge Eq.f4.153),
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o

w . : :
- I, Gal - . (4.183)

»

;-

rJ, (Lr) 2
1'v r %
‘ (l-uc)A[ W v o(ga)]
o (g) '
Fazpcz - ' ‘
- — 9% (1 . L w L
* TVO (1 Olc)A JZ(Vé) : (4.184)

€
*

Substituting Egs. 4.183 and 4.184 into Eq. 4.182 shows

that ’ .
2 2 : . .
W 2 - W Ta pc, 1 ) ey
(\)) JO (-\-,'a) - v (1 - (}._) Jz’%a) ‘ (4.185)
‘ o ‘ c Vo
or, w1th regard. to Eq. 4. 174 . ;
gg
wa,2 "o v’ . _ oy L -
(v ) — = ao(l 3 ) = Po(l "qcl (4.186?
2 () c *
&

Substltutlng for (1 .- a ) from Eq. 4.176 into Eq. 4.186

. and rearranging gives

wa 2 o ' . . )
Jo(TT) o w R'Yé _ pﬂazl' . . -
wa, - %o T 2 mNA - (7.187)
J, (= © ¢ NA (wa/v) - , : 3
: o o
This yie{@s thé parameter K _
‘ ‘ »2 . m NA m | >. ‘ S
;- - - pa "= —.a— .—.2 - .._r ’ > ‘L
BQ 1. 2# 1. 7 (xn)/‘ A.) Ar.,,. (4.188)
. ! L ] - .

. o s
where m, = the ratio of mass per unit aréa of air

ﬁattaghéd” to the-membraaéﬂto'the mass'Eer

¥




.
- &

, freely v1brat1ng)1n vecgé, . ¥,

- m
. unit amnea of the membrane, m_ = ]? :
. Ar'= the ratio of opening to the total area of
NA
) the membrane, A_ = —2 : .
. r A
.. Wa'4DC,(2)
0Lo = TV
.o ) :
and ,,/ : .
- _ ra%w v/ " (w/H) . S
. A - (4.189)
s »0° " (NA_/2maH) (2£/a) ‘
) . .

,Fhe non-dimensional constant % is exactly the same as
: 4

. “

‘for" a completely closed cavity, which, as stated earlier;,

e : [N —_ . . . . .
?measu;es the relative importance of the restoring force :

resulting from the compression of ‘air in the enclosure

and the.initial tension T applied to, the membrane. This
10‘ &. = LT

value is small if either the volume of the enclosure behind

tné:roof'is_large or the tension applied to the roof is *°

~

high. . In thé limiting case when“ao approaches. zero; the *

LFe

possible frequencies are those cd;gesbondiné to

J (—a) = 9, which is the ¢requency equatlon of a membrane
‘.'l‘ «

°. The noﬁ-dimenéiodal term (I‘e“gL) mea;ureSnthe éelael.
tive . 1mportanCé of the, “total. area ofcthe openlngs Ain the
w*Ils of the enclosure as well as the relatlve movement °
of the air withln the openlngs w1th respect to the dimen-

s;ons of the enclosure(radxus a and depth H)

P 1



versely, if the volume of air displaced by the membrene

as if it were backed by a complete closed .cavity. Con-
- ., b

is equal to the volume of air moving through the openlngs,‘

m !

the‘term (1 - a ) vanlshes and the membrane v1brates as '

if it were in vacuo.

®
-

The frequencies of symﬁetric modes of an open mem-

brane v1brat1ng in vacuo are the roots of the quatlon

.

Jo(TT) = 0. Con51der1ng those frequenc1es as reference

..~ frequencies denoted by w*, a reduced frequency equat;on

° ¢

may be obtained.

' Since [82]
: N

2. ' S C -

7 Jn(z)"= Jwi(:z) +4Jn_l(z) S (4.190~

we get for

2y 2988

I .
B, = O\J; = -1 ' o (4.191)
o »qz(TT)' k‘)J ( ) ) o o
» / . ’. . . : .
For the fundamental frequency w oi® 7? =~ 2.404 and
J (2.404) - ] Y
T, 1T 404 = 1. 202 o . : : .

Then Eq. 4. 191 glvea the add1t10na1 mass ratio

45
ta
/

- 225
- .
3 . * .
N - NA R - 2
If the opening area ratio (2 ) or the movement of o
. ) . .n-aH . , E,i
* the air ratio (%%) is too small, the term (1 - —w) N K
' * \" - -~ c 4
approaches 1, since (éL-+ 0), and.the membrane vibrates
C ’ T ‘?

rxl




- S,
. - P L 2
. L .
\ ) N v * . 7 N b 2026
. w.,a :
"3 ( ol ) } . s,
a* : QO - Vv, 2.,404,2
L oa - ! ] 1 ’
w
. 02 ) (;ol .
2 v v , .
. or ) ) '
2 <y 21 -
> Woi 2 2.404 ST .
K C
- F .
) . Dividing by wgl (in wacuo) gives. N
. L 1,2 1 - :
: - [ 3 , o < {4.192)
. ﬂ)ol (' l+6c K i '(‘ . .-
. When the area ratjo A~T+ ©, the additional mass'ratio
w :
Bc >0 by Eq 4.188, I———] > 1 and the membfane v1brates(,
. ’ol . e o
‘as lf the cav1ty behind it did not ex1st. -
/ . .

It may be concluded that when Ba increases due to

.the decrease‘in area of the openiﬁgs,'the freguency of the

.

' system decreases and vice versa This seemlngly surprls;ng
' result holds only for véry taut membrans for whlch the

behav1our of the roaﬁ w1th the cav1ty resembles the be-

-

haviour of a Helmholtz:resonator.
N The reduction’ in frequency f* due to’ B 15'shown .

v 7 ) ;
’ * ‘1n Table 4. 2 and Fxgure 4, 16 and 1t ‘is in general agree— ! ,

»

ment with results obtalned in experlmental work (Flgure
6. 7) Thg fundamental frequency fol for the membrane

'v1brat;ng in vacuo is not avallable dnd it 1s taken for "',

" the membrane model with 1ts base completely open. o

4 . . .




. o

. - The trends observed in Flgures 4. 16 and- 6 1 are 1n

N

aqreement wlth the theory formulated, and SUggest that
: the behaviour of the cable roof backed by a cav1ty w1th
openings can be 51m11ar‘to that of a-Helmholt; resonator.
For_thie résbqatoi the natural frequency also incteases
with the area of opeﬁing.Ao (abtuaily with /3;){'this iéf*

SO becaﬁSe the air mo%ihé through'the opening generates

o . ‘ . 3 i
pneumatic stiffness of the resonator proportional to Az

.

while the'associated»maSS'iE proportional to A, (and %'a ).
}”jn_'.ifl_t‘ "'L78¥; The~behav1our of a roof-cavity system with- openlngs

depends on~1ts‘parameters and may fall between two llm1t-

- ..
B

j%f" : "'41 ing cases- a Helmholtz resonator 1f the roof is very

N A rigid and. a “Kettledrum“ if the openlngs are absent. A

- e
.

?%-“.'jﬁf . more general theory whlch would 1nclude both llmlting

A j cases as well as_ the 1ntermed1ate case should be develoPed
» , e R
’ - ’ ° ‘ “ ' © T ’ ‘ N ’ . ’ ro
e ! ’ w jod
| v, kT , ’ - PR
\ . - -
- “ .
R .. :
. . ’ . 4 A
. ), B r B : ~. ’ ‘.
- . R = N
Lo K - . o .
.-y . * - . .
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‘ v‘ - 1N
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. _'I;ABLE‘, 4.2 Reduction in Fundamental Frequency Due
S to Wall -Openings (Comparison Between R
. Theory and-Experimerftal Results) ' _ .
N LT . \
. ‘
. -t ~ o.‘ 1 f f -
No. N ~B>c . 1+_Bc o —fil f°1 experimental
. .~ ol - o% ) ‘
1 50  0.1455, 0.8736 - 0.9343 ° - i
2. 40 .0.1819  0.8461 . 0.9198 <
3 30 0.2426  0.8049 .0.8971 , '
4 25 ,°0.2911 :. "0.7745  0.8800 - \ «
5 20 0.3638 - 0.7332  0.8563 _ - -
6 15  0.4851 0.6733 - 0.8206 - o S
7 12" 0.6084  0.6225. 0,7890¢ . . . - . 3
8 9  0.8085' 0.5529  0.7436  0.8059
9 6, ~'1.2128 . 0.4519 0.6722 ° 0.713. @&
A . - ¢ - . » . .
10 3 7 2,425 . 0.2019  0.5403 % 0.5468
11 1" 7.277 . 0.1208  0.3476 _
-
- ' . " v.\ -
N\
: FN
f
.. } ¥ -
[ K 4
P /
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-  CHAPTER 5
i «.° . . DYNAMIC RESPONSE OF TENSION, ROOFS
. . 7. T K _ ‘
. . ... °  TO TURBULENT WIND ‘ ,
[ ] \ . , - ‘., ‘ \ ' ) ‘ . . ;\. .
. Y -~ N ) ’
. 5.1 % INTRODUCTION . . . ) Lo
o - ,Tension roof structures belong to the glass of light
“ . o » ) - . K ] ' .
‘fﬁ . .' and flexible strdqtural&systems which are sensitive to
N ! ¢ . ~ » ) ' - - ' ' " ’
_vibrations. ‘Théréfore,°the design and éonstruction of

2 \

o these structures ;equlres an examlnatlon .of thelr dynamlc

’ c] 'behavlour.; An examlnatlon of the dynamic, behaV1our of’
~‘:r .- ten51on ro&fs is necessary to’secure a. safe and servicegble
e .

des:.gn.‘g For smqll dynamic dlsplacements the examlnatlon .

. .
can- be separated into two parts. ;the*determlnatlon of
R ‘4;‘ the actual forces acting and the aﬁa3931s of the reSponse
: fa ’ : ' ~
v - of ‘the structure to these forces. . R
FARY 0 ¢ : " . e P ’
' Lo : c e A .
S e P C 'The dyndélc forces Qn a. tenS1le rodf are malnly ‘

~

cauéed by wind; 7 Due t0~the turbulent nature ofcthe wind, .

'y K

the Problem of w1nd loadlng has to be founded,on éxperi-

-3

: r -
U . méntal %ork‘and statlstlcal methods.-

. ' . . B b . ‘ - -

The W1nd inauced dynamlc excxtapion exper;enceﬁ E&

7.

» ... the structure can be categorlzed.under four separate S
R . ""\..) . . . . . ' . ;’_ . A‘: .
.o beadmgge: o : e o, L
[ 4 L . . P . 4
L . o R o Jl" ) ’ S

'Q o ;}.; The flrst physical phenomenon whldh causes dynamlc

. i excitation is .the sheddlng of vortiges from the structure.

' . . : . L. , f ..'
. ) . o . ’

o -
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A 2 o
I1f the frequency of vortex shedding (ff= X-S-) is nearly

.equal to one of the natural. frequenc1es of the structure
¢ : then large amplltude vibration may develop Past ex-

perience has’ shown [84 85,86] that dynamic exc1tat10n by

.

vortex shedding is apparently not a prgblem for the type

s of structures considered here.

-
L

2. dynamic excitations caused by sheddingqu vortices
I o 5 . ¢

"by other structures. : . C

. \ / . 0\ B o - - M“S ) .‘ . . ]

& - 3. aeroelastlc 1nstab111ty .of. prtter or galloplng type..
) " as well as the case llsﬁed as (Zl,are beyond the sbope of

[}

’ Q : 4%
this study. : . L .o

H

; L 14. The flnal type of dynamlc exc1tat10n is that caused
by the buffetxng*of w1nd gusts. For ten31on roof struc-

- - . tures the fourth type mentloned is most 1mportant [15 87]

7 . = o P
v

-

Tensionkroofs are exp05edrto 1arge'def1ections and
L N
# changes of geometry; therefore,ban accurate dynamlc

analys1s is fraught w1th problems Strlctly speaklng, ;

) the oscxl}gtlons of. ten31on roofs are nonllnear. ' However,
[ ~

» c - the usual approach 1s to assume that the motion is con- ,‘;

flned to small dlsplacements about the’ statlc equlllbrlum
’ o . 1.}(3 , 3

pOSItlon. R . °

l 8
< . o (. . - 7]

The dynamic analysis of tensidn roofs under wind Lo

+ °
1 'Y

Lty &
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o

loading in this work will be based upon the assumption
j . that lepear oscillations take plaee about the quasi- °

static position defined by the mean wind '1oading’, ‘and

that the dynamic -response of the structure-due to the
- randomly fluctuating componentnéan be'superimposed upon

the quasi-steady response to give the total response’ of

the. system. Furthermore, an attempt is made to explore
the influence Jf ‘the surrounding air on the free side and
e : _below the roof within the enclosure on its behaviour. .

: - ) ‘ “ ‘\ : ’ ’ - . '
R 5.2 WIND LOADING_ . G B

"

) - The W1nd by definition; 1s a movement of free air
) o . 'caused, on avlarge scale, by the thermal and pressure
- S differentials above the earth's surface. By virtue“of
't’ ; ) .the mass and velocity of the moﬁlng air, the wind possesses

kinetic energy If an obstacle 1s placed in the path of

- the w1nd so that the’ mov1ng air is stopped or deflected
?

,‘, B . From its path all or part of the kinetic energy of the
> . movxng air is transformed into the potentlal energy - of
o ', pressure. . .. | A e
. o N ) ’“

’ . A genersl expression for wind pressure'on the struc-.

: . I . } . oo s & .
,.;4 - ..tufe is glven by Davenpqggtii:] as,

“qt‘i.ﬁz«,f—f %— P C (x,y z t)v(x,y z t)lV(x.y z,t)l 3

.A dv(x y,2,t) - N
A QVixy.z, | (5.3) “

°

R




where, - q(x)y,z;t)

Vx,y,2z,t)

e

p

' C x, ]zlt)
q( Y

g
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force per unit area at coordinates
x,y,z of the structure at time t

velocity of the .air at coordinates

X,¥,z at time t H :

mass density of air

‘p;essure coeffic}th‘at-cocrdinates' .
X,y,z at cime é C .
COefficientrcf virtual mass (inciuding 9
what is known as the sdditional or

a

associated mass coefficient)

-]
»
b

diameter of the object
reference area for the virtual mass.

‘.' . 2
(generally qug’ .

~

. Two different physlcal mgchanlsms are resp0ns1ble

for the terms on the rlght ~-hand side of Eq 5<]l The

¢« first term is the familiar expression which reflects the .

contrlbutlon of the drag forces to the pressure, whale Afxc;j

the second térm is the 1nert1al reaction associated with o ‘S/}

‘the acceleratlon of the, wind The second term~may be 5/tf\"
‘ /important in cases with rapldhwlnd speed and dlrectlon -

changes, such as tornadoes and squalis, but, for the usual

V 4

storms.of engineerlng con51deratxon, it is not as 1mportant

as the first térm, which will be considered in this work

-

It is useful, for several reasons, to consider the




Wal )
N
b.

S - - \~

o 4

wind as. hav1ng a mean value V(x,y,z) upon whlch gusts

H

(fluctuations) in wind - speed v(x,y,z t) are superlmpOSed. l{-\\_
* N -
,Thls may be wrltten as st;ted earller by @ . coN

-
A . . *

T Vix,y,z,t) = V(x,y,2) + vix,y,z,t) Co(5v2)

. N Based on this assumption, the mean wind problem and

~

the fluctuating winq problem may Be considered separately.
- ' The mean and fluctuating components of wind speed repre- -

sent the sources of static and dynamic wind loading res-

pectively on'a'structure,‘ The reéponse of the structure

will similarly have static and dynamic components.
o . ' _ '
The total.w1n? pressure, neglecting the second part

T 4 of ‘Eq. 5. 1, is given by ‘ : . ' .

Cqlx,y,z,t) = % o'Cq'(x,y,z,t).'[V(x,y,z)w(x,y.z,t).]‘2.'(5.3)
. - . . ‘

- At éreeeﬁg, theoretical me%hods‘ere inadequate tp : . .
determine pressure’ceefflcients for all but the 'most |
elementary shapes.. As a result expéiimental methods h .
’ such as w1nd tunnel tests must be used. Davenport [88] v

has. emphasized the 1mportance of u51ng boundary layer'

W1nd tunnel tests to predict the response of structures,

- ] -

not only because they reflect the turbulent nature of

the wxnd but al o because they reflect the lniluence

] ’

' whlch surroundin

structures may have upon the pressure

coefflcients. C. tion must be taken when trying to ‘apply

-
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"uniform flow wind tunnel test results to actual struc- "
' . : . - »
tures. Davenport [88] has shown that both the pressure- -
. distribution and tbe maguitudes'of\pressure coefficientsﬂ
for boundary layer wind tunnel tests results d}ffer sig-
nificantly from uniform flow test results. Furthermore,
’ 1nstab111ty of the structure may depend on turbulence as

-

shown by. Novak [120], Novak and Tanaka [L21]

e ' / )
N Although boundary: layer wind tunnel tests are
_clear;y more representative of atmospheric turbulence
. than uniform flow teets, few studies have been made of
:;f" N pressure on cable-roofs in boundary layer wind;tunnels
}q‘ , [89,90,91]. It has been recognized~that in a fluctuating
2 ‘flow the pressure coefficieut mayevary uith time, tbere—
. .-;; fore the pressure coefficient isOwritten as C (x,y,z t).
T aImpllclt in the varlatlon of tﬁgwpressure coeff1c1ent s
ylth ime is the Reynolds number effect and the fact that

3
pressure coofflc;ents available for cable roofs whlch

- the«' gle of . attack of the.mund.may vary w1th time. 'Thé. ’

Will be used fh this work are‘obtaiﬁed from boundary‘layer
o M Y *
w1nd tunnel tests [89 91] and from a unlform flow wind .
PR} . - . ‘ )
tunnel:test [94]. o L [ -

B 4
. g .
oo B . . - M

"For uniform flow wind:tunnel testéf it will be assumed

that the pressure coeff1c1ent will not be tlme dependent

-
g -« v

\ '
. SV and may be wrltten as C (x,y,z) This assumptlon 1s based

.




-

D)

. o o a3

on the idea that-t%e Reynolds number efifect is negligible
and that the gusts will always be in the direction of,tne
mean wind, and therefore\Cq(x,y,z) will Be defined by the

mean wind direction.

. A'representation of the fluctuating wind velocity is

drfficult to obtain, and the ?est way to describe the
fluctuatifg component is in ajstatistical sense. Wind

f‘ _records sometimes are available, however the 1ngormatlon
abqut the spatlal dlstrlbutlon of the 41nd pressure as a
function of time 1s still llmlted For large structures,
this point is .of 1mportance. The most, eleme tary appfoach,

4 assumlng thattthe same veloc1ty acts on all points on a

structure si ultaneously,~is aéceptable for small (point)
‘structuregi ut is quite far from.reality-for large struc-

;tufes iiie'caple roofs. |

I

’
g i . -

A sllghtly more reflned approach is a plane wave
assumptlon, rn the-sense.of Tayﬂor s/Hypothesms that the -
veloc1ty fluctuatlons recorded at a po;nt travel unchanged
in the dlrectlon of the mean w1nd at the mean wind velo—

+ city. A computatlonal rnveltlgatlon of the w;nd effect .
... on a cable net structure based upon the plane wave assump—
. “ . tion Has been carrled out [84]: fleld tests on another .
cable net . structure also Justifled a plane wave assumptlonp

t‘ ‘for Zini;ghsts,[921. Therefore, in this work, the ‘plane

-
’ ‘ ‘ . N r - . . N ’ -
. . . ,‘ . . . ) . ‘.
.~ ~ . ) ., L . 4 ’ ) v . -
., N M . , - . b . +
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» : : . .b
wave assumption is used in the dynamic analysis of ten-
. ’ ° o - / . N

sion roofs. -

5.2.} Statichind Pressure:

, 5.2.1.1 Uniform Flow Approach - o
? P ’

A pressure coeff1c1ent ohgalned £rom uniform flow

~wind tunnel tests may be’ assumed to ‘be 1ndependent of

@

time and is wrhtten as_Cq(x,y,z). In this sense, ﬁhe

mean wind velwveity V(k}y,zy/may be considered to cause a
- ; - S . ! . ) .
) "+« pressure o6n the suspensién roof “definhed as = o
. N - 3, s e . . , o
> : o L S
q(x,y,2) =(%—p/éq(§3w,i}zf(x,y,z) § $-4)

5 This pressure may, be added to Ehe live- and dead loads on

the structure to fcr@ a quasi-static load. Using the

nonliaear,sblutien described in Chapter 2, the quasi-

-

. static eéhlllbrlum position’ may be obtalned The term
.o (— ‘ (x, y z))‘ is the dynamlc heacl assoc1ated w1th the

) mean.veloc1ty V(x,y,z) at'the roof‘helght’z whlch can be

obtained from the gradient veIOC1ty V u51ng the power
Yaw or the logarithmic lawsv Equatlons 3.2, 3.3 and 3.5

. respectively.- Sometlmes xtfls more convenient to measure

4

the pressure coefficients in.respect'tO‘the dynamic pres- .

sure at,thghgredientlheight Zg- The conbersion factors
v /V(x,y,i)] are ea511y estlmated from the velocity

v

b prolees for each exposure.
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e S L ’
%he mean—pressure coeff1c1ent Cq on ten51on roof

. 0
o~ 2 . s

surface actually Varles with timebover the structure not
P

"only because the direction of the wind is not constant

=
-

but also because'the‘conflguratlon of the “tension 'roof .

a 4 Py
-

~ sutface changes under dxgamfc excitation. This can be
. ﬁ_.‘. ’ "'F ' ' -
simplified by two assumptions:

. " . -
N ¥

P

RN r

. N ,"". W . .
(1) First, it is assumed t;;@ the direction of the wind
- ’ .'% -
C : . 2 4. .
is constant and is-.always r,;the direction of the mean

. - e" ,l‘ .
wind. Thus, the coeff%ci?hts corresponding to the mean

-»
. A

wind dlrectlon are those/used in this approach.
. oLt n'h':,:/ ) '
- M i 4 “”' . v -\" .
(2) Second;'if; in addition to the assumption of linear
oscillations, it is also assumed that .tthe deﬁlection of
the tension roof surfrce from its original configuration

»

to the mean wind confliguration is sufficiently small,

then the magnitude anb“distribution of ﬁressure'coeffi¥
' v * oo L :
cientswj.im £He original configuration may be used fon

‘the dynamic analysis. These pressure coefficients are

measuréd ®n rigid models in wind tunnels.4 o
' T

i

The mean pressure coeff1c1ent Cq was, measured by

Ish12ak1 and Yoshikawa [93], on a model roof of dlfferent

"~

sag/span ratlos and helght/span ratlos lard across the
fﬁ ‘s

total width of a wind tunnel creatlng condltlons of two—

.

238

d;mensional flow. In the1r experiments, a large. pressure,,'

coefficient (-1.5) was measured on the»leadlng edge of

. ;:o"' S

A “,-l- - : o . -
J/:s - ‘ C o . : - ' ’61
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the roof. TIts magnitude decreased from the edge and

.- tended to the value of -0.30 at the rear. For sagged
r%ofs, the pressure coefficients are more uniformly dis-
s . tributed thaq for flat roofs :-and the average pressure

, %coefficient is much larger, about -0.9, Figure 5.1.

LT e s ~ % .
B ) s . s
& , . . A )
. .
.

. . Beutler [94] measured the mean pressure coeff1c1ent

.&
N

.on a c1fcu1ar concave model and a rectangular hyperbollc

3 @

‘panﬁb0101d model Figure 5.2a,b. .In his experlment, a
N - large pressure * coefficient (= O 9) was measured on the

Y. leading edge of the circular - concave model. Its magnltude
‘ ' dec;eased grom the leadlng edbe‘and tended to the value‘
- ’ +0,1 at the rear. For- the hyperbolic Qarab0101d model

°~; ) co withMangle of‘attack at the lower edge, the pressure co--

4
- . l-h
@ . & - efficiant was positive (+0.06) and decreased toward the ) y

\ . ~

“2 G

, rear having a maximum negative value (-1.0) at aSout the f

3 3
centre area, Figure 5.2b.

. N e 8 ‘ . '~ rJ R -

AR , o Both authors [93 94] concluded that the distribution

\
) .

‘ of pressure co!ff1c1ents on ‘the top of the c1rqglar model » o

ST T - “were dependent on:both absolute model helghtvas well as

‘ the aspect ratio Kheight/diameter ratio). They'concluded
4 ‘o 2 W

- 7 also that because of the separatlon in the flow always °
o o y P

‘s - | created by the leadlng edge, the Reynolds number effect

»

.
a ¥ . . \u,rx

L w . ont pressure coeff101ents of flat roofs is. neglmgibie-

]

. thls\xs\not the case for the hypérbo;}c ‘paraboloid model,




V= 5m/s
PA -} 5;—.» s
~ ~ MODEL - C, MODEL - 8, MODEL - A, . *
- Cq-10 . N We———— T < DIRECTION
-0.5 ' OF FLOW
“ b A X/L v BN

-3

FIGURE 5.1 Variation of Pressure Distribution Among Three Models
: . (sag/span ratio: A =0, B =0,1, C=0,2) (from
: . Ishizaki and Yoshikawa [93]) T

v

~
~

1.

X -

FIGURE 5.2 'Pressure Coefficient Distribution; a) Circular Concave
. Roof, b) Hypar Roof’ (from Beutler [94]})

. N A R .
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where the separation -is Reyndldsfﬁumber dependent.
[ ’ .o - . . \.-‘* :' ' _" : . . I

. - . . e .
' - . . .

5.2.1. 2 Turbulent Flow Approacn R _
. It has been recognlzed that in a3 fluctuatlng leW, .

\ the pressure coefflclents vary with tlme* therefone, the

‘pressure coeff1C1ent 1s wrltten aS'Cq(x,y,z,t). ,; - e .
. <! [3 B - Lot

~ - .

In tensiohvroofsularge\daflgptlons are possible. under i

w1nd 1oad1ng and therefore change~:;\3eometry\can also . , .
.:( © ' '.
~1nf1uence the wind pressure coeffic1ent” . -~

»,.u“‘- . . ! ?

Therefore, boundary layer flow tests are«mbre realis=- "

e
P

tic than unlformfflow tests, not onlyibecause they reflect :

i, . r
’:il‘.

"the turbulen¢" ﬁature,of the w1nd but also because they . ‘

. reflect the 1nflﬁence wh1ch surroundlng structures may <

{n‘. .

have upon’ the pressure coefflclents.

«, ’

‘v
y . [P

) ‘. . - ‘
,, - T,

The best yéy to descrlbe the pressure coeff1c1ent

.”

on the tenﬁ&ﬂn roof Surface is in a statlstlcal sense-

1 e., as max1mdm,.m1nrmum,'mean ahd RMS coeff1c1ents for -
-4 - $ .

each'indlvldual roof p01nt {x,y, z) The'local pressure

. : coeff1c1en€s can be deveioped from a time hlstory, and

. iy ‘¢ T R . .
deflned as. - ,"’," . /’ , . e ) .. . 1 v '
' . L S8 ';l'. . ’ , ‘ . :
. i . I e ’ . (x,y‘,z) Cow R
e (x,y,z’) q%_, . (5.5a)
N 3 : q‘n‘aXl ) P Yoty ,?"Jr‘*" !/ l d L ‘b", - 1 ' B
I ,fﬁ' 'ff° o (KrY 2)
L e e s q’“m (5.5b)

:f'qmiq( 2 qd(ZT




i

B N ' c—(xly Z) =" (x'::"‘iz)' : i R o ‘ (5-50)
q . qd(Z . 'y o

o_(x,y,%) s Sy :

. €y (xyyy2) = "g—E*TET- e , (5.5a) \
q d ' o ’ : N
N where qmai(x,y,z) = maximum instantaneous pressure at -
! poiht'(x,y,;) »
.2 .
mln(x,y z) e mln}Qum 1nst%?teneous pressure at’
. point (x,y,z) ) \
. E , E(x}y,z)_ = mean pressure at po;nt (x)y z)
, - I . l T . ) .. vis . ~
© . =z f q(xyy,zct)dt - .
> . ' . - 0 ¢ -
R "oq(x;y,z) = root mean,sguare (RMS) pressure’
] ’ ’ d T i J/
. ' l L
- SRR SRR CCRBTECRPIY it/ 7
- - . s ﬂ‘ . O_ - [ . - oo
) . o o l __2 . . . ’ . ‘ : s
e qd‘ZL =58 v (x,y,z): dYnamlc head pressure

assoc1ateg w1th the mean velocity at

- the roof helght zZ - N
. ' . N ’ . .9 APUERER ¥

Here, T is the sampllng perlodA related to approx1mate1y

t
.

-

one hour sampling perlod ln full scaleﬁ\ ‘ ‘
" For stgg;;‘ﬁinds;‘it aépears possgile to assume (961

»

that the mean. veloc1£y 18 independent of. x and‘% and can .

b +
. . . s

be written as vV (2). Therefore, the dynamic head.ls - )
, S Y o
- dependent on the cqprdlnate z, only. ““- Cae

A major difficulty in describing the effective lpading"

- . “
7




. N ,’ ‘ am - ) ] i . " A . 243

-

) o on the structure is the‘fact that the fluctuating forces

vary spatially as well ag temporally, especially for large
. : .

»
p span structures- like Qheftension,rodfs. D;yénborﬁ et al.
' ' c [89], suggested that it‘;s hig?Iy aﬁ&antageogs to répre-»:\x'
) sent £hese,fluctuating fbrbeé‘bn £he'£oof sdffﬁce in terms .
'? ‘ . 'of mathematlcal mode shape functions H;ving orthogonal prq-
" pertles. Denbtlng the 1th\a</gogona1 functhn by
. f Q (x,y,z) the i stantaneous pressure fleld on the roof,
e denoged by q(x,:j& t) . is [represented as: e -
- ) . Q 4 L . .
:;p | 0/ ’ q(x,y,z,t) 5 i C‘Ii(f‘t)v ,V'i()x,y‘,‘z)' \ (5.6:)w
. N 0 | . |
‘ - ' Thé ﬁressuxe fiéldqcan riow be defined'in‘terms of éhe‘ ;.
~f1uctuating coppohents q; () and thé modal functign PR
VLT . * o " . ! .-
‘ : . ¢ The mear load-for any“wind'diyéction 6 can be written
.o v as qev], - [ R T ¢ "
S q(x,y,z 0 = qd(Z°)§-C__T)—¢(x,y,z) o,
: : s The overbars denote tlme average values ,and “_—T-T .
o the meah forc;‘coeff1c1ent for mode i, for w1né direc~

-

'\-tlon e. The wmean square value'(variance).does not con-

s , . ‘
N . tain cross terms on account of the grthogonal1ty condl—
s viona . - ORI ST
| . o L T, .
¢, (x,y,2)¢,(x,y,2)dA = '0_: R I o : .
e - LY Y | , ,
’ g J K . "( .
- P * ’ . ’ ’ \ 4,}‘ ,
. » ' .Ql




Lad -

if i # j and is const"a'nt for i = j.* So the mean square

pressure fluctuatdon—iss+— ' "’ e

.

" 2, - o2 2 2 s ’
ve qq(gc,y,z,e) = qd(Zi)iZ P ‘(6)¢i(x,y_) (5.8)
' N q;
0 - [ " - . - ?_ ' :, ‘/ - ’ N .
Y where oc',j_(e) is the ith root-mean—square fluctuating
\qji . -~ : s,

generallzed force coeffic:.ent for thefith mode "for w1nd

R dlrect:{.ofe. .S ' - . -
. ! ° . . .

“ ‘.”, From Eqs. 5% 7 and 5.8, the max:.mung and mlnﬂhum pres—

A 3 4
suré f:.eld tan be «rltten ass: ) : ’

L + ©

Ef@x,f,z),‘-; {;d(z)'["z: “’_('ch 20, (%,0) +g; /Tos
. il 9 ,

Tod (2] 05(x,y) )
| ~ A T SRR
, 3 * Co . oo (5.9) .-

“ : - : . . - >
. 4 @

In thJ.s equa-tlon, 9 . ,lS/; sﬁatlstlcal pea‘k facto;;_, usually

v » t ‘1 \

" in the- ra‘hge 3 to-4,, assocn.ated with each ,mo&e i.. - P
. ? - 'y - . b ) [" e : '
” “The loadlng representatlon by Eq 5.9 can be pre- -
Q «

'Sented in an alterna,t:.ve and generally s:L,mpler foxm, L89]

', : bﬁ ' . ‘.\ - o -
L A ‘ X
f\i(x,y.Z) = qa(z)z{I .IZL + 93 OC (2)]¢ 4x.y)} , ((5.10) o

: i F - ;ﬂ'; o 16‘ "“'~ e’ . ql / N . ' “g'ﬂ‘, ‘ *

* o in' whlsh the g; are statistical pdak fact'ors. o , ‘

.. ‘»'— : - a,‘.*‘ ~ . .  -
o Davenport et al. 189] tested a: hyperbollc parabolo;d

Y

d’el for the Olymplc Col:.seum to be bu11t rn Calgary,. )
A]Ibert\' Canadan They found that iaeak m:.nimum pressure
eoeffic:xents are max:.mum-(‘-o 91) mt the leading *edge and e

. .

.decreaee towarq the ‘iﬁpar when the w:md is blbwing alcmq
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AR

. »the ‘line joining the high points of the roof Figures 5.3

"the Elow ax1s, Figure 5.6

and on the resultihg presgure diétributiOn dhi .
t

(4) the RMS values of the ppessure ooefflclents 1ncre§sed

7 ’

and $.4. 1In thelr analy51s of the results, they foipd

that the most severe cases are likely to be felt when the"

<

w;nduls,at 0° or 180°, that is, when blowing along ‘the line
. o ' ¥

- joining the high'goints of the roof. They suggested that

‘this was because it caused a,strong'asymme;riC*load in

S

this direction mainly associated with first asymmetric °

mode in this directiom, Figure 5.5. .

. LR :
’ %'
.
>
- P

Chrlstlano et al. [91] teste;i‘ ci¥¥rcular concave

3

‘a "' .
cable rocf mgdel in a boundary lay®® flow where water is

a

used as a fluid ratker ‘than-air. From their experiment,

they’ﬁade-the_following observations:

4

(1) the flow separates from the leading edge of the struc-

. ture and may or may- not reattach, depending primarily on

the value of the height/diameter (aSpectqratio) of the

building and the- velocity distribution Gf the approéoh
L : ' - e
£1éw: . . . . o . '

(2) the'resulting‘statiC'time-smoothed average pressure

dlstrlbuxlon is asymmetrlc about an axis perpendlcular gp -
L3 . ) . . '

&
.‘s.*

13) ground roughness, the‘result of buildlngs anq.weqe—

tation cover surroundrng the bulldlng, has a sxgnlflcant
A

effect on the~veloc1ty profr}e of the.approachingfflow

L4
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, unlfarm !over the entlre roof areaf . -

L

o«

H

- v

downstream, regardless of the reattachment, and an in-

crease in aspect ratio resulted in an increase in the RMS

~values of the pressure coefficiénts, Figure 5.7.

We mgy_conqlude from the work.that in both uniform

LY

and bodndary’layer'flows,,the pressure coeffic{int dis-
tributions Jn' tension roof surfaces are dependent on the

geometry of the stxucture, mainly, the height/diameter

L 4

ratlo, the dlrectlon of flow Reynolds number and the

turbuIénde in the approachlng flow.

C .

In codes of ;rﬂytlce‘.nothing is mentioned about -

pressure coeff1c1ents for ten51on roofs in partlcular '

{95]. 'The Sw1ss‘eqde of practice and the draft: of the

American ASA Standérdaf20,97,98] gave ' a minimum external

o

suction preesure'epefftcieht of (+§.7) to be used for

.roofs with a wéil.ﬁeight to least’'width ratio o# less

“than 2.5. F@f’cloeedltanks of height equal %o the dia-

meter the external pressure coefficient suggested is

-1.0 and in both cases the computed pressure is ‘assumed .

1

ch

.y ) .
I'] . - - . *»
. N N y \

‘ Srnce bﬁsPens1on cable roofs ha/e a helght to dla—

o

: meter ratzo af about 1/4, 1t.may be assumed that, f0r the

”de51gn of thgse structures for the 1nfluence dT mean wind,

a’ unlform pressure coefficient’ distrlbutlon of magnltude

- Qs ~ [}

-1 0 actlng on the ‘entire’ rogf area may be assumed.

-
-
. . [ »
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The internal pressure goefficient distribution,

C depends on the nuﬁberv shape and area of wall

q,L!
;“Qpenings, and on their oriesfation t0vthé_wiﬂd direction.

f : , : : 7

The Swiss code of pracéice‘[97]‘ipdic;tes that when .

the opehingS'g;e u;iformlf distributed, the internal
presSufé coefficient is the samé forlall‘lowﬂstruct&res“
énd is equal to«iAOZZO. If'the openihgs are not uniforﬁly
dlstrlbuted, a positite 1nternal pressure .¢. pushing
~

the roof upwards) ex1sts when the openlngs are faclng |

the wind direction, and negative when they are,in the

_ o
rear.
In this wgrk, the internal pressure fluctuations Ve
‘ - g .
. . ™
inside an aeroelastic model of Q\concave suspension roo¥ R

v - .

with openings (windows) are measured in boundary layer

\]

wind tunnel tests (Chapter 6)~ Assuming that the
. $ ‘ .

-

interpal pressure field was the same everywhere within

"the encldsure, it was found that the infernai‘pressure
. ,

coefficients were dependent on the vélocity of the
approaching flow, the number of openings ahd the locations
of the openings with respect to the.approaching flow

For a velpcity of approaching flow V_ = 28 ft/set

G

(8.534 m/s) and with openlngs fairly unlformly dlstrl-

NA
buted (N-9) with area parameter B, = 5- 3% (8, = 7?2 %) , .

;o c
it was found that the mean pressure coefficient C=. = -0:43
. ‘L
L4 Y . ' ' "" '




~

and the rms pressure coeff?cient qu = 0.085. For the
same area pargmeéer, but with Yind'viloeity Vé = 38 ft/ =
sec fll.S? m/s) , both ceeffibients increased towca2 = -0.6
and ¢ % 0.13. ,
qo2 | N
) For wind vefecity of Vé.= 28 ft/sec (8.?3%‘m/§),

but the grea parameter B_ = 3.54%, the coefficient dropped
to Cag = -0.37 and CgOQ“= 0.07v(see Table 6.6). |

It follows that the net static pressure may be given

by ' ' ' 0

g, =9, -9, e (5.11)
. .
in whleh gu is the upper,sﬁpt;c pressure end q, is the
lower (internal) wind pressure :'Cq (% P 72), where V '
) ) a . . 2: i . - v Q
relﬁteg“to the gradient height.. . v

P
~

In practice, the net static wind pfessure is commonly,“

assumed\tniformaover the entire roof surface.’

T2 Dyngmlc Wind Pressure

It has been recognized for many years that the wind

.« ¥

“is}turbulent in nature and thus behaves randomly in space"
J . i
ahd time. In the prev1ous sections, a determgnlstlc

an?lyszs was made for w1nd loadlngs' however, due to,the

aqdom -nature of. the w1nd a much more rational ‘way te’

« .
* 5 J . ’ i a :
\
\

| |
N J - )
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of random processes.

»

L
Y :

L] -

¢ - 0

Based on the assumptions made in Chapter 3, the

’

randomly fluctuatlng component of the w;pd will be con-.

cribed by4arstationary.gaus§ian process. P
S oL ‘¢
Recalllng the. lelSlon of the w1nd lnto qua51 statlc
,..L
and randomly - fluctuatlng components and the &ssumptlon

‘of neutral strong wind for which, the mean veloc1ty v
is dependent only on the level Z above the grOUnd the

randomly fluctuating- component of the w1nd pressure is -

given by k ‘ . e
" .
q(x,y,z,t) = —%— Cq(x.y.z')'[27(.Z)v(3<5i1,z;t)+v2 (x,y,2,t) 1.
= Sy ’ | . (5.12)

where V(x,y,z,t) = V(Z)+v(x,y,z,t) and Cq(x}y,z) is the

mean pressuyre coefficient. J

]

Consf!er a structure of area A, situated in the atJ

~—
mospheric boundary layer, which is suff1c1ently small

* '

with respect to the,wave length of the turbulence of
gustlng that we may regard the flow past the structure
// as quasi-steady. Then the f}uctugt&ng‘force may be

written as; . , = ' :

hescribe(the dynamic wind pressure is by using the theory -

51dered‘to-be,homogeneou§\and 1sotrop1c fnd-w111 be des- -

253
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i

F(x,y,z,t) = % P Cq(x,y,z)A[ZV(Z)v(x,y,z,E)#v?(x,y;zppnyfﬁﬁ
. .,'(3:; 13)
LY N ‘A‘

If the fluctuating wind component is small with‘%gsgebt~
to the mean wind [component) the term involvin § v?+k,y7z,t)

may be ignored and Eq. 5.13 may be rewritte pn

3

-

F(x,y,z,t) =p A Cq(x,y,z)ﬁ(zjv(x,ygz,t)‘ * (5.14)

The dropping of the terms'involving'vz(x,y,z,t) is

a crucial- assumption, since. it means that the forcing
function is now linear in v(x,y,z,t).
@ - - 2
Harris [101] and others have 1nvestlgated the error
. 4
in neglectlng v (x,y,2,t) and zhe 1nent1a terms- of Eq

5.1 by using the results of communlcatlon theory and

N . i, . :
.expressed ‘their results in'terms of the 1ntens;ty of tur-

»

bulence IV =0 /V(Z). Harris fouqe that for the range

i3

of greatest praotlcal 51gn1f1cance characterlzéd by 5
. ﬁtzo < I < 0 50, .the approxlmatlon undere§t¢mates ‘the

that in light of uncertainty involved in cbtaining the

aerodynamic coefficients, the apbroximation is perfectly
satisfactory for the majority of cases.
. L

The power spectrum of F(x,y,z,t) is tﬁenjrelated

>

to the velocity speetrum, Eq. 5.14, as folloyé:'

o mean pressure T? between: 4% and 25%. harrls concluded N
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Splf) = [PACT(2)1% 5, (£) e 519 |
or . . - o = o ' -
. S, (£) = 4[--"—'1ﬁ’—] s,(5) . " (5.16)

V(Z)

v .

,where F(x,y,z) = % oA Cq(x,y,z)Vg?Zf is the.static force
of the wind acting on the surface of area A. If the size

of the structure ceases to be small, -some adjustment must

be made for the reduced spatial correlation of the forces.

’

The influence of the aisturbancegin relation to the size
of the structure is ihtroduced through an aerodynamic ad-

mlttance function of the form [41], Ix( )| , where ||
depotés’the absolute value and D is a cggracter;stlc
dimen§ion of_the ;tructure Itﬂwas suggested that R = +/A,
*be taken, whe?e‘A:i the. otal area of the ;urface

“Hence, Eq. 5.16 may wtitten, after introducing the

. aerodynamic admittance function, as [41],

y

_ Sé(f) = g (EXay.2)y2 2 ”— Ry s, @ (5.17)
: T, Vi(z) v(z) ' ‘

. . S
- J L]

Thi’s equatlon glves the relatlonshlp between the spectrum ~

" ,
0

of the'load fluctuations on the stryctire and the spectrum

7

uof the 1ong1tud1na1 component of turbulence in ‘the unlform

/

‘turbﬂlent flow in whlch the structure 1s placed. The
A .7
i /#

parameter (
V(Z)

the wave ' length ) V(Z)/f and size of the strutture /i.

. .-
) is dimensionless frequency which rekates

Therefore, the‘dominant or;cﬁaracﬁeristic frequency in

= - —




@

.or at least large areas, of the,surfaceﬂeimultaneousin\
1 ‘ * N - s

be considered to be the average size of the eddies rolling

.in the dlrectlon of the flow.

-ponents, the ratio A/VA, << l and the Qressures prgduced

"to high frequency components of the wind is podrly corre-

.t A ’

Coo L 256

the flow reglon f can, be a55001ated with a cha‘acterls—

- V(Z)
tic wave leng Xs or length scaie, Ls = wllch may

]

»
-

The effectiveness of a gust in producing a load on

gewstructure depends largely.on the gust size in

v

relation to the size of the structure, i.e. the ratio

(\/¥D) or (V(z)/f#RA). 1In the casé of high frequency com-

-

ane only correlated or well organlzed @ver.qulte small

#
areas.of the surface; their total effect is small since
in some areas they will tend to produce increésed loads .

while simultaneously at other parts of the structure,
& v .

there will be a decrease in load. Thus, the pressure due

* L}
L

lated over the 'surface as a whole. The very low frequency

o~

oomponehts'of'gustiness are' associated with A//A >>"1,
and in this case their influencecié\felt over the whole,

L)

“

As f/A/V(Z) .+ 0, we can anticipate that x2 + 1 and .

furthey as f/A/¥(2) + =, we might anticipate‘x2 + 0.

Al

* Theoretical estimates of the functlon,x (f/_/V(Z)),
suggested by Vickery [100], have been made uslng somewhat

overslmplexed theoret;cal models of the flow of a tu&bulent
¢' . "‘ ’ - ) . o}




\ is, linear ,about ﬁhe gquasi-static ﬁqu:}}!!}um cqﬂfigura—

tion,-bdfh theé forcing function ePd';hgsdishiaoement° ;

.(xz’YZ’zz't ) and 1s deflned/ﬁ%j \ . o .

Stream paét a b;uff’pbject. The empirica1°model sug- *

. gested by Vicke;y'[lbblihas the form’

i3 0 . .
. . | =

X(£), = 1‘/_: IR A - (§-18)
: 1+ [Ef A14/3 B ’ - : .
- v(Z) : ) "'d AN , .

While the model employed dss an over51mp11£1catlon, Yig

has beén found that the t%eoretlcal estlmates of i

L

X (f/_/V(Z)) are in satlsfactory agreement with observa-
“\
‘e ~.

tions, Flgure 5.8. Ce .

¥
» - v

v
. . A
®- - . ‘

Conseguent to theia sumptions that ‘the longitudinal
- ; . /. .. :

velocity’distribution isCGaussian” and that oscillation

* o
-

response for the system arerGau551an. Becauee the fluc-—

» ¢ - . »

tuatlng part -of the wind pressure‘may be assumed o ‘be

-

. R . .
e'stationar¥ randon process, it isg fully described by

. R ' s 5. - ’ 2
the probability distribution, the spectral densities~and .
. ’ ¢ . ’ [ DN . '
the cross-correlation funetions: . '
“P " ¢ . . /‘*‘l\ 1’ ) aS

i

_The cross~correlatlons are ‘defined- as - tng‘average

&

-0f the product of the pressure at one point (r) 1n spaCe "

and tlme (%, ,Y ,z ,t ) thh that at.another po1nt s,
1'73'71

I 4
1‘” v e

-

v . . N - .
. s A, e - 4 A 5
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Rq q (x.l,xz:\yl,yz:zl,zz;tl(tz)' ‘ | ) “

r-s

- C Previous work of many authors (e.g. Corcos 1102]),
has shown that, if the.turbulentrboundary layer thickness
is constant anduthe mean pressure éradient smail, the
turbulent wall-pressure fluctuations constitﬁté a sta-
tionary homogeneous random phenomenop, that i;,"the pres-
sure cross~correlation is a function of the separations,
lxl—xzi, ly;=vo |0 lzy-2,1, andAnot the location of #he

. points in space nor the time. Thus, for horizontal~sur; ‘

faces, Eq. 5.19’m$y\be written with some approximation as

<qr(xl Ierlz ,tl>q;5 (X2 IYWZIZ '1‘:2))
o ' =R
AT s
t\. s , )
The Fourier‘transform of the cross-correlation function

(le‘-le:]yl'YzhoaT)l (5;?0)' ’

Ré q with respect to time yields the cross-spectral
r’s
. density function

Sqrqs(lxl—x2| I|Y1'Y21"01f) _ .

¢

o . 4 _'2‘"‘f‘[‘ ‘
a4 A . = 2 f R ! (lx -X l’ly "y ',O,T)e 1 - dT
- ~o 9p9g 1 % 142 ) )
' (5.21)
n . in which Sq q is the one-sided crbss—sggétral density
. r’s -
function. . *

v - ' .
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The correlation measurements by Willmarth and
Wooldridge [103];'and Many other.authors,/;how»that the
pressure fluctuations are,convected downétréam and deéay
.after travelling a few bouﬁdary—iayer thicknésses.

.

The convection veloci?y of preséure—producing éd&ies
is defined as the velocity of a reference frame in which '
the rate of decay of the pressure correlation is the =
'1eést. The convgcﬁioh velocity V. is rglated to -the
?ength:scale of longitudinal turbulencg’Lx(vf‘in the direc-

- .

tion of convection and the-life expectancy of the turbu-"

lence eddies I' [104]), as follows:

)

L,(v) = v T : | . (5.22)

4

Morri [105] found that the flﬁctuatiné preséure v
decays dc&pstream from the edge rapidly for a small ratio
of model height/ground ropghness, (ﬁ/zo = 50), and slowly
',fpr_a large (ﬁ/zo = 130), both for open terrain.;gHe also
found tha£ tbe convection velécity varies from VC/VG =
0.3o,atﬂfﬁyvef= 0.1 to v _/V, = 0.50 at fﬁva = 0.50, where

f is the frequency in cycl?é per second.

Maestrell;\[lQG]'andféull [107], among others, mea-
sured pressure spec f; on/a wall parallel to f}ow at high
velocities: Morri [105], Ishizaki and Yoshikawa [93] and
Christiano [91] measured pressure-specgra'6n low flat or

curved roofs in two- and three-dimensional flows at low

Ed
I




velocities.,KThese measurements ghowed the followiﬂg"

general results: .

*

1. £xcept near the ends or near. irregularities, a .

. "boundary-layer pressure field is nearly stationary

in time. ‘
(¥ 4 N 1

2. . The correlation of a bourary-layer pressure field .
is characteriZed'byQa';imé~decay as well as by a

convection velocity in the direction of the flow.

¥

3. The mean-squaré pressure is nearly constant within .

-~

“the correlation area.

. '

" Based on these results, an expression was given by the

1

author '[108] and Abu-Sitta and the author [12] for the .

3

pressure cross-spectrum, assuming hbmogeneous turbulence,

LT ‘. B
. - et ~

in the following form:’ e
T A 2
. i . _ Sg ‘ L
Sqrqs(lxl-le'Iyl‘Yzl'O:g?w;\we exp{-n(|ax"]|
- ' ) , ‘
+ 21'AY_ lU+U )} . (5.23)

In which = ii, w = the frequency in radians per second,

W, =-equiva1eni convection frequency = Ejng, |ax'|=
%%, | i e et f pie Lo
5£;TVT_ = separation in §1rectlon of fl??, gnd3|éyf| = .
in’Yzl = geparation ;n Airection per endi;ularton;he .
75;137— P ’ P -ar,

flow. Finally, Vc = convection.velocity~taken as 0.45 VG

and cér= the variance of the homogeneous pressure field,'




o
T - $ ~
:

-

»

2 ' i . - : 2 .
o_ = <q(x,y,z,t})> =R_* -~ (0;0:0:;0:0) = C_ g
) . : . - (5.24)
o > ' ’ ’ i ) - v
where C = the R.M.S. pressure distribution coefficient ‘ “

of the pressure fluctuations and qé is the dynamic pres-

-

sure head of the free flow.

-

. Morri [105] ‘meastired the R.M.S. pressure fluctuations

.

‘on a low roof at lo&’velocitigs and found that the co- ’

©

efficient tg varies’ from 0.10 to 0.015 and depends on
. q ‘ . o
the ratio model height/boundary layer thickness, (H/S),

and little on the model height/roughness ratigﬂ(ﬁ/zo),

-

and velocity of the flow, ' - N

Ishizaki and Yoshikawa, [93] measured the R.M.S. pres-

"

, sure fluctuations on low flat and curved roofs at low

" velocities. They fouﬁd tha;'the'averaged'coefficient Eo .
. ‘ q

is largest on a flat roof (0.60) and smallest on a curved

<
'

roof (0.05), and showed also that C, takes the maximum
value on the windward edge %hd decreases. leeward on' each

roof.

3
<

A more reeent study was conducted by Davenport et al.
[89] on the Calgary Olympié'Coliéeum model with a hyper-

K"') bolic parébolqid shape surface, at the Wind Turnel Labora-

.

tory, in London, Ontario, Canada. .
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e -;; : In thelr tudy, they found Ehat t takes a maximum

..
¢

q '-f,_.,,‘_:'.""-"-: -
valua of 0 09

on’ the~w1ndyar8 edge and decreases rapidly

Tee-

to 0. 03 about \he centretof the mbdel on tbe llne ]Olnlﬁg

the two hlgh polnts, and remamns about aonstant toward ‘}? ;
the lee pf the.roof. f:”,f fa 'f: ,]ff “,'?;m:'"€”1ﬁ3= L Tl
)‘ ERR - ‘ R v "'!. o L ,. .::"' B 4:, _.;;1..‘: "Ah' Y- . .,'.,::-A__ an ” -_;“

The-préssure spectrum at a. point can be descrabed \<‘.?g_ .

o
by an.emplrlcal expressmpn, 'v‘f‘f ':éif s 'ﬁ 7f' S
. ) S ‘ ___:".‘:'; Ca 2 . A ] s ‘ 1. .‘ i,._ ‘:... ' '. ) . ‘{_} ‘ "-;(
S : "2 T PR
PR S (0,0, 0 w) ﬂ- exp(-—‘np Jy - S w0 (§525) ,‘
. . . : v X e . - ‘,"" . ._". e A ‘ e K A .
D : v - - . 3 oo s w 7 ‘. -

show1ng ‘a decay of the«pressure fluctuatlons progortlonal . el

to wzﬁ Flgure 5 9 shows:’ thlS spectrum.ln the 1ogarithm1c ;;-i

form.compared w1th measurements by Ishlzc‘ﬂklaand.':{os}'u.katv\ra?B " .,‘

[93] These results show general agreement w1tH’Eq..5 25..

o

- AJthough this agreement is not rlgorcusly substantiat 3,

it should be adequate,for an approx1mate analysis at least. o

'.‘ . o~
. - ) .

The defin;tion of the coherence furiction, Y, similar .

to that introduced in Chapter 3 for the turbulent bdﬁpo—'
nents of turbulence is, “

lSq q (X lyllzllxzfyZ'z 'w) l O “u
y2 = (5.26)
qrqs r(xllyl.z 1msqs(x21y2122:‘3) ) )

’

The square of hndﬂlusfof the cross spectra is,
: ' LY
" 2. 2 '
1S g (Xp¥yr2prRgr¥pezgiorl = Fw+tw  (5.27)
9,9 - .

¥ "

in which C(w) is the real part (co-spectrum) and Q(w) is

Y
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the ‘imaginary paiﬁiﬁqhad:a%uréz\ofﬂthe cross spectrum.

¥ . 4 - s

' K - - . . o e- ‘ -
By o - g .
v '3 .

Assuring tﬁe'préssure‘fie1d~is hom@géﬁééus,{tﬁed"

) . tor

qr
- . L e T G 2&)

g

- S

‘e c;

- .
Y

f

. and 51m11ar1y, as dlscussed bffqre,,

- ) . i
:‘ Y ooa @

4

qr s - r

s (xl,yl.zl,x Yy "cﬂ ;:Sq a, (|Ax|,|&yr']Az| !//
z

.
L

For'é'hofizonta{ éurféce Az;= 0, and Eq} 5.;97may.be
"wrltten ag' ) e | o
"'0"'.' . * e

(1ax|, by, 07w)" - - (5.30)

U 9s

®

Adg
Accordingly;.the square of the coherengce function may be

) S ’,(xi,yl,?-';xz;}"z—ysz) = 8

&
-

« 0

%
I

wr;ttenaas folloWs. .
(|ax], |Ay} 0:w) i

1Sq a,

Av 2 4"
. 8.(0,0,0:
3 q( ! . w)u

Then the modilus of spectrum may be written as: °
. N - . i .. ’
- : ) - , o v" 4’

N 5 - ' . ~ o ‘ v
([AXL[Ay[,O;m}‘2 = —%’exp{ﬂzn(Ax'2+&?a4xle'|u%} y

S
g o | | o
P o L (5.32)

e

(5.33)




u * .
| - < ! gv 2 ‘ .‘: -
yz""= exp{-2mAy*" ~ -4n|Ax"|u} o (5.34)
. 9% ’ ' ot
andn . .
2 - “
Y., . =-exp{-m(dy'“+2TEX" |u)} g (5.35)
9,9 i o
[ ‘o %Y

Equation‘5.3§ is the coherence function of the pressure

spectruﬁ,
. Substituting for |Ax'| and y = L., where
e * _ we«
‘ . - mBV, )
W (B = 0.45, Morri [105]), .

e LXTV),— Lx(v)

n v
'

"the coherence function for points on the x-axis only is

_&(ZWf)le'l ’

P A
~ £) = ¢ . o : 5.36
_quqs( ) e ( )

where 6* = 2.0.

Morri [105], in his experimental work,foundnexperi--

°

. mentally that 6* = 0.60. This difference in ¢* may be
due to the assumptlon of homogenelty of the pressure field
* and the independence of the cross spectrum mathematlcal

model on H/S or H/zo. (For,. ®* = 2.0, the response of the'

structure to pressure f(:stpaﬁﬁsps is underestimated.)

It may be concluded from the coherence function e&haf
"tion (5.35), that the coherence decay is proportional to

|ax'|, (ay' )' and the c1rcular frequency wi When

Y2 : (w) = 0 at a partlcular frequency, ‘the pressure
99
‘ . ] ’ - ' '




3
fluctuations at points r and, s are incoherent {uncorre-

’ lated) at that frequency, but if yé a, (w) = 0 for all R ] ‘Q

f -

-‘ frequen01es, then the pressure fluctuatlons are statis-~

-

tically independent: finally, when Y; g (w) =1 ﬁor all. - ’_"'.
9,9 , .t

the frequencies (w), the pressure fluctuations-at points

r, s afe fully correlated.

As stated earlier, the coherence function y describes

the frequency dependence of two processes, as well. as

B £ v
their spatial correlation.

* The ‘area under the cross-correlation coefficient with

respect to time gives a measure of time over which the two

processes are correlated, as

T = J 0 (T)dT 7 (5.37)
Q qrqs - =. )

v N

/and is called the time séale, T. This expression is

51m11ar to the length scale of turbiulence, L (v) obtained,

¢« &

in Chapter 3 where.the 1ntegrat10ns were carried out with -

respect to spatlal separatlon.

Y . . e Lo
« , , p
-
o . .
9 N . . 838

Y e 5 3 RESPONSE OF TENSION ROOFS %o DYNAMIC WIND PRESSURE

Cable roofs may be treated mathematlcally as dis-

s
crete Jor cOntlnueus systems. In the contlnuous approach,

T »
d 3 ' ’

) szmultaneous partlal deferentlal eqﬂatlons are utilized

i

to represent the real.strgcture, aseumlngﬁthe structural




L)

v
1 -

propertles ﬂhy be adequately represented as unlform or

sllghtly varying. vy

§
A

<4

x'The phfsical and analytical underétaﬁding of«the
) dynivlc response of ten51on roofs is dependent on the- kncw-

ledge of the natural frequenc1es, “the vibration mode shapes

' and.the_damplng capgslty of the strpqture.
g

The analysis of free vibration of suspension roofs .

with many configuratiors in. plane and surface shape is’
,showﬁ_in Chépter;A in which the natural frequencgies, mode |

shapes and fhe effect of the air enclosure are studied and

3

. J
.

- defined.
% 4 { ' : v AU o .

The damplng capacaty 6f tension rOOfS’lS 1mportant

<

*

1

in the 1nveet1gatlon of the dynamlc response of’ these

b . .

structures. In general, the damplpg results from many'ﬂ
different -and highly éompliéated’%nergy/fggé mechanisﬁs.

yleferent types .of damping can be explalned as materlal

W [

damping, structural damplng, acoustlc damplng and aero-'

- e

dynamic damplng Furthermore, the damplng ratio can be

dlfferent for the dlfferent v1brat1ng modes.

-~

General information about damping capacity can be .
h .

obtained by full scale q.d”model tests. In.experimental -’

work, the testing methods are.of impdrtance. o B

The matérial, structural andfaquZtic damping may bé

4

«




they exhibit [l to 64].  *° )

EY) ] - . ' 4 N ‘
“ -« .
obtained from free vibrationit;;::\&ﬂ\still air. Thesé

»
* -0 s

procedures have been carried out and the results are pre-

v e
sented LQ\SZaptef 6, for dlfferent modes of vibration of

a circular Suspension roof model. The damplng ratios are

'obtadned from the.logaritbmic decrement of the auto-

K

correlation curves of vibration. The total damping of_ the

‘strueture including the aerddynamic dampjng may be -ob-

tained from wind tunnel tests: results of these experi- l
. . : A
mental analyses are presented ¢n detail in Chapter 6.
- e '6' -~

1

Ten510n rqpfs pelong to the class of nonllnear struc-

[N

tural systems due to their large deflectlons and have to

be pnalyzed°aocording to the degree of nonlinearity hhich

4

| L . . R -

It was .assumed earlier that the dynamlc response 1s
small enough to be superlmposed on the nonllnear qua51—
stat;cfresponse. "Results .of model tests conducted by

Jensen [92] have indicated that theMnonlinearity of ten-

- .

.sion roof systems does not’ appear very distinct with

respect to their dynamic response behaviour. .
. 1 8

'5 3.1 Modal Analxels of Ten51on Roofs

'] N L'l
If the assumptlon of dynamlc llneaxlty 'is accepted,

P

T;the dynamlc reSponse £an be adequately represented 'in

I

terms bf mode shapes. = B _ ) : ' ©




In the modal analysis technique, the .response in each
R r . Aat Q
mode may be treated as that*gf‘an independent .one degree

L of freedom system by ihtroducing genéralized coordinates

.which have uncpupled properties. The response is described
v . 4 » .'. ‘.

»

> in terms of the modes' of free vibration whose orthogonality
'/r7facilitates the golution and the complete motion of the

éystem may be obtained by summing the modé}‘contributions.
.-

Let the dynamic vertical displacement of a ciréular

tension roof be given in pélar coordinates by s /

,.4 'd{. : 5 . Lt N
) _ \ \ " Ml - .
w(r,?,t) = Z znm(t)Qnm(r)cosne + I z (t)¢nm(r)51nne

- . ;> * ' : N (5.38)
in which r,B'; polar éoordinaées, FigurefS.ld, znm(t)f .
'zﬁm(t) =szmmetric anduantisymmetriéltime depenaenf'ampli-
tudes (gené;aliz‘hhcéorainateé), @ﬁﬁ({)‘f‘the'nm;h moaal ‘«
;j:’sh;pé-fanction,dgpendingvon.r qnly, n =‘number of nodal °

DR / . el
diameter. and m = number of nodal circle in the mode shape .
v -2 . , : “ .

_— ’
- —-— e

. "' (Chagter 4).
.

2

. o A
The equation of motion of the nmth symmetric mode

«

may then be given by (Novak [SB]’i.f.'

. : MomZom b Comnm * KomZom T F,f: oL (5.39) R
in which Mnm,° nm’ Knm’ Fom = gengyéllzed mégs, damping,
) stiffness and loading of the nmth natural mode respec-

. tively. The uncoupling of this equatjon in terms'of modal

-
]




-

. ’  time-dependent amplitudes znm(t) is only possiple if tHe
mass, stiffness and damping are independent of ireqdency~
‘and if damping is broporgional to either mass or stiff-

ness. [122): this is only approximately the case for ten-

© -

L)

sion roofs due to the inertiaseffects of the air in the

enclosure under the roof. .

. [

/. ’ a
The generalized mass is defined by
! ZTT a 2 2 ~‘< ¢
- Mnm = J J m, ¢nm(r)cos (ne);drde (5.40) A
o ‘o : , .

- " in-which m, is the sum of mass per unit area of the roof
material and the air "attached" 'to the’nOQf surface during
movement.

" The. generalized +loading,
’ 2 ra,-
an = I f qt(t)Qnm(r)cos(ne)rdgge . (5.41)
~ o o : ,
] . .
'in which ’
; .’{ ' ’
qq (£) = q(t) + q () - qg(t) (5.42)
where g(t) = fluctuating pressure due to wind turbulence,

*

qr(t) = radiated pressure due to roof movemeﬁt, q;kt) =

internal pressure in the enclosed volume under the roof,
a ¥Function of wind veiccity, roof movement &nd number and

size of wall openings, as was . found in the experimental

work in Chapter 6.
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The damping C__ is the sum of material, structural,

acoustic and aerodynamié damping. The stiffness Knm is

modified due to enclosed air effects. R
. >

.
-

. Here, it is assumed that the normal displacement w

¥ - . - N ¥
is representative of the roof motion and as such, is

14 : «
sufficient to describe the response. If this were not the

[y

-

]

case, similar.equations for tHe tangential displacement .

could be written. ‘ -

'
ot

The equation of the antisymmetric motion may similarly

.: Y be given by
) ] -Mnmznm + Cnmznm * Knrqznm B an (5.43) v )
' " . . ’ . ‘ . . t oo . " -7
in which the antisymmetric generalized load is given by
2T ra ‘ .
an = [o J~ qt(t)¢nm(r)51n(ne)rdrde (5.44) )

© .

Similar to one degree of freedom, the solution,éf '
the éguation of mq@ionf(5.39), Qith ran&om excitation, i4
defined by the spectrum of the general}zed coordinate Z m

in the mode nm only as [109]

y | (w2 '
Sz- (w) = —— SF (w) - (5.45)
"y nm Knm nm .
, . in which IHnm(w*12 is the square of the ¥requency response

function (mechanical admittance) modulus, defined és

1

-1

JH 0 12 = (1= 2217 4 a2 262 )

(5.46)
nm nm o




.where Bnm = the critical damping ratio for the total

‘ oo
damping and Wom = the natural circulay frequency of the

undamped nmth mode of the system, and w = frequency of the

™= ’

random excitation.

oy .
5.3.2

Spectra of the Response

The response spectrum of the displacement in the < °
1 8 ' .
nmth mode including both symmetrical and antisymmetrical

2 . [ 4
components may be written as

2
2 'Hnm(mI

_ .2 ,
S,. (w) = ¢nm(r)cos ng —————— Sg ﬁw) ) e
nm . Knm nm . o
2 ' b '
4 2 2+ By (@) | }
: + ¢nm(r)sin né ——5—— S (w) (5.47)
) . K nm
. nm

The spectrum of the teotal response is given by,

e e 2 2+ lH o ? ,

S (w) = 2 . [¢ s (r)cos™ ng ——s—— 8§ (w)
' w h:‘(m=l nm Kﬁm © Fom

) ' 5
: |H__(w) |+ . ‘
+ ¢§m[r)sin2n9 ——Eﬂi———— SF' (w) ] {(5.48)
o Knm '
[ %

<
in which SF (w) and S_, (w) ==the spectra.of the symme-
nm Fm . T
trical and antisymmetrical generalized forces Fﬁm(t)'° ’

' - 3 ’ i -
an(t) respect;yely.
The coupling between modes in Eg. 5.48'35 put egual

to zero. Anticipating the results of the experimental

work, Chapter 6, it is 'found that in the model under study

+




oniy the modes nm = 01, 11, 21 and 02 are of impgrtance.
The coupling between the modal responses 01 and 02 is

negligﬁble because, they are widely sepafated in fre&uency
* . .,

and the coupling between the modes 11, 21 and 01, 02 can

be shown to vanish (see section 5.3.3). Also, the coupl-

ing between symmetric and antisymmetri¢ modes is neglected.

Therefore, the spectrum of the total reéponse (due : p

to the first four modes) is approximated by ’ .
) , ,
- |8, (0) ]
s = I (o2 ) =% s ()]
m=1,2 Kom om
LI N LTI 2
) + [¢7,(r) ————'5S (w)+¢5, (r) —=—5——5 (w)]éos“H
11 2 F, 0 0 2 Foy
11 ST : 21
|8 11(‘*’)| - |H 21(‘*’)I . 2
+ [¢ll(r)-———§-——SF. (w)+¢2l(r)-——;~————SFél(w)131n’e
' ll 21

v:. “‘ (5.49)

inywhich the last term of Eq. 5.49 is the antisymmetric

N

conmponent of the response spectrum.

5.3.3 sSpectra of the Generalized Wind Force

The generalized force spectra‘SF (w), S%, (w) typi- -
< “nm nm

cally are related to the actual presgure spectrum, in .

polar coordinates, acting on a-horizontal surfacé (Az=0) ,

Sq(r,ezr',e‘:w) bf,
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r' w . i - ,
S (w) = f S (r,6,x',8",w)d__(r)d__(r')cos(nb)cos(nb')dAdA'
an A AJ q S nm nm-

( (2T 2T cara - . e
: - | L Jo qu(r,e,r 67w ()6 (r')rr

cos (n8)cos(nd')drdr'deds’ - )

2 fénJ2ﬂfara,
o

[

S (0 rO?U))‘A .
.4 oJo, . : :

+

) ] ', Y ant ' g
, . Sq}r,e,r ,0 ,m)¢nm(r)¢nm(r )r; cosnfcosnbd

R | S _(0,0:w)A?
’ : TW ’ S
. ’ ’ q I ) ‘
’
, ) | i)‘ ; i
' | J— .
) dﬁdr dede | Sq(0,0,w)A lxnm(w){ . {5.50)
: s
Similarly, ‘ .
‘ " . ' e B
‘ ~ T, (2my2mrara : ' g
< . . Spr (W) =5 _(0,0:w)A J J I [ N
s : nm_ g 0o ‘0 o’ - e
’ ' ’ N ' '

-

Sq(t,e,r',e',w)¢nm(r)¢nm(r'7r;{sin(ne)sin(nB')‘ s

>
. S (0,0,w)A .
i q ’ ’ ) ’

o o . drdr'deds’'s -

, ) ‘ .
= sq(0,0,w)A [IAm(w)l (;.51)

in which A=a representative area of the structure.
The nondimensicnal generalized spectra IInm(w)l,

ot

IIAm(w)l are called theé joint acceptance functions. They

define the serisitivity of the ihtefactipn between the




0
.

fluctuating pressure and the structural modes of vibration

-

*and hence determine the response of the structure. The
‘ general cﬁi:ifteristics of these‘functions indicate the

”~

important link between the gust fluctuations (described

+ by the velocity spectrum) anq the‘médal force fiuctuations
and displacements. Also, these.fpnctions depend on the
mode sh%pe and'the velocity fieidL hence the pressure )
field{-which var?es;from structure to étructure: ;hey show

that the-effectivépéSS*of the pressure in exciting a mode

involves also the geometry of the structure and the mode

¢ ! - .
4 Y .

shape. L “5; .

. To evaluate the iptegrals in. the joint accepténce,
we substjitute for Eﬁe mode shape ¢nm(r)wffom Eq. 4.58 ,and
for the spectra Sq(r,e,gﬂ(Q',w) and'Sq(0,0,w)'ip polar

coordinates.from Eqs. 5.23 and 5.25 respectively.

-

@
-

The symmeiric component .of the joiné'acceptagce fﬁnc-
tion, after introducing the. coherence function y from Eq.
5.31 and assuming the pressure field to be fully corre-
la%ed, may be written as follows:

wnmr : wnmr'
L ?
a[a Jn( " )Jn(' S yrr'drdr

Y 2

I (w) = I
nm “a\ : o A .

(o]

2m 2n‘ ‘ .
J‘ J cos (nf) cos (nd')dede’ (5.52)
o ‘o -



v

h)

A
~ . =
Py . where vy

J =
n

the néturé; frequency of mode nm and v =

Ythe coherence function,

»
Bessel function of the first-kind of order n, w

nm

YT/m: T is the

&

tension in the roof per unit 1ength\and m its. mass ‘density

1

per unit area.’

The integral
-~

2T 27
J cosnbcosnd'

OJO

-

2#2

0

s for né =

ne'

, for né # no'

°

A

(5.§3a)

(5.53b)

¥

This result shows that the joint aéceptqncg function

is equal to zero when né # n6' and exists only when’

ne = n6'. It may be concluded that the coupl{hg between

modes of different nodal diameters n is equal to zero.

.8
-’ s o7,
Similarly, since the integral =~ - o

P
3

21 c2m e 2 . - p
J [ sin(nf)sin(n6') = 21~ , for né = nb' (5.54a)
c ‘o . _ . "
=0 , for n6 # no? (5.54Db)
‘then, T - ) ‘
‘ . .
Inﬁ(w)'= inm(w) , for n = m (5.55)

~The joint acceptance function of modes 01, 11, 21 ‘

(

and 02 may theféfofe be evaluated as followsg':

L}
w_ . r'

. 2 a W .r . - ra
e mI fw) = Y J J (- rar I I (== yrrare,
» -Tom A2 0 © vV g0
: : w __a.
, 2. vad, (=22
=2any 1 vV 42 n=i,2 (5.56)

. A wom
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e

| The total peak response is

- ) . ” ';’:""\ "..‘e h. ]“‘
, ' «,«‘ : " |
- ‘.-' F) - v * -,5; ‘
’. .‘( ! l." .' * s
2 " T;f ’ ’ h
1, ] ﬁ' .2 *
- :
Similarly, - “ o . b
. 2 a w_.r ) a w .xr'
‘ _ 2T Y nl- .- ~nl [ [
Inl(w) > ‘J Jl( )yrdr J Jl(-—;——dr dr .
\A o -
ﬁ4 a - “n12 “n1®
= (g 17 (I ()
2A nl -
W & w_.a‘* " - .
nl%® nl _
JQ ( v YH /( " Y1}, n=1,2 (5.57{
. A . v \

L 2 1

in which I, Ty are Bessel functions of the first kind

and order zero and one?tespective%y, and Ho’ Hi are the

Struve functions of eero order ahdhfirst ogder respec-

tively (see Appendix B).

Ll

oy . y

5.3.4 Evaluation of Peak Response

With the knowlé&ép of all‘thg pressure spectra

Sq(r,e,r',a',w),»thé spectra of the displacements (orh
strains, stresses, etc.) may be calculated asAindicated

in Eq. 5;49,'by replacing modal displac¢ements bf other
modal guantities.

From the spegtra of response we can calculate the

standard deviatioh:as.follows: ) .

LA . .
= JO Sw(w)dw o (5.58)-

52
(w)

k) . . -

Ye T Wq,stf«g 9 (w) e .
‘ » B ' ’ L]

-

LI

o



] ) - . v 8 :‘ . ‘ 27;9
L s
L] P N . K) * ‘ ’x 4 . :
I . , N I - ) ht L]
) X . ) < + . s - ‘ \l’
~in which wq sé = the qua51 statlc deflectlon, g = a peak.
- I Py P -
"factor, defined in Chaptgr 3 S C o,
Ty . \“ ‘ " .. u E . Lo
S— For the total quasiwsstatic and dynamic response

v Py [ e ° 2 . ) .
given-by Eg. 5.59, we assume that ‘“he quasi-static res-
- L : - : oL -
\, Ponse is determined by appropriate linear or nonlinear

Ralysis. - wT, o T ‘ v¢4;fl

* .
- -

L2 . ...,w V i i ) T ‘ . .f =

1 - X h.
e ,>+3.5 Coincidence Phenomenon . " : R Y
* Tq? symmetrlc and antlsymmetrlc components‘of :the ¢
301nt acceptance function of mode nm, Eq 5 55 ‘3re' - T
» 5 (2 13 wﬁmr wnmr" b
%, ‘ = ' = 9 - : ’ '
e Inm(w), Inm(w) 27 J J Y Jn( )Jn( v )rr! drdr
: o .'o - ~
, n =.m ' (%}60).
Substituting for the cocherence function y from Eq. 5.35,
Eq”'5.60 may be written as - i
o, _ o faga CH, - W, T ' -
, Inm(w) = Inm(w) = 27 J f Jn( 5 )Jn( ) Xr
00 . ' . ¢
- . yl_y2]2 . T
. 2L, V) xl-x2|
e : cos (21 — =" drdr',n=m .
) nm Vc . . "," s
S - “(5.61)
" where |X‘-X2| = Arcosé*, Iyl-y2| = Ar sin8*, A /Ax§+Ay
and 6* = the angle between the’ separatlon ‘Ar and the ’
, :
& :
direction of fiow. From the- above equatlon, lt may be
seen that the joint accgptancegfunctlons Inm'= Iﬁm (n=m)
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tion frequency of th’pressure fleld\—— \s\e.ua]: to “the

natural frequency of the'tens;on roof, fnm ?h;mr

:§0 fnm"
\ v

Sw

response will result in the hode,corresponding.

o

This phenomenon is known as the cocincidence Ehenomenon

a A ‘ P
and it is in general agreement with experimental work
- Fa » -

. -

carried out and submitted in Chapter- 6. It was found

S

that the major response in.the}aeroelastic model tested

.

in the boundary layer wind tunﬁel under turbulent wind -

4

is due tg'ﬁhe first antisymmetiicﬂmode 11 (n=m=1)J.whefe

the coincidence phenomenon may occur. ) -

Also, this theoretical result for the coincidenge

[4

-'effect is in general ééreement with Morri [105] and Lin‘

1110] analysis for -a rectanguléi rigid panel.
. LT o

5.4 AIR STRUCTURE INTERACTION - "

-

Ten51on roofs gre subject to large deflectlons and

two'special,problems arise under wind loading. - Flrst, .

large deflections ané change bf‘geometryncan influence -

- "

’ s , ‘. S

.

;u'

A large.\ua.



o t i . .1) . : | 2 8 ]‘

‘D

Jthe wrn&’pressure. second, the change of geometry, and,

! - oY

Y o'

.consequently, the changes in velocity and acceleratlon of

4

the vibrating structure under the fluctuating-wind loadlng

indicate that the surrounding air of the structure has to

b

be- taken into account. - If the change of-the geometry.is
to influence the wind pressure; Ehe‘deflecticns have to

be Teally large. An examlnatidh of this probLem is pog-

v R »
"".""

51b1e by wind tunqel tests.l L ey LT

. LR ~

- A more- exact- expre551on for the w1nd pressure can be <
considered as (Davenport [44], o .nﬁl ~; o
. T 1 o ‘ 2. . " ¢
q(x,y,z,t) =35 p C_(X,y,2,t)V (x,y z,t) - ., ,
2 q t . S .
i dV (x,Y,2 t) ' s . L
" Cn 5T C e

F

-

[
13

where the last term expresEes the'inertial'reacbioniasso;
ciated with the acceleratlon of the turbulent w1nd A |
and D exprgss a reference area for a v1rtual nass, and

the diameter of the object, while C 1s a coeff101ent of ’ 3

&

an additional air mass, and -
V_(x,¥,2,t) = V(X,y,z,t) = wixy,z,t) (5.64)

where V = the relative velocity, V = velocity of tu;bu-
lent flow above the roof and w is the veloc1ty of the- a

v1brat1ng membrane under the actlon of the turbulent w1nd

*




. - o
.

N The existénce of this latter term of Eg. 5.63 has
seldom heen alluded to in relation to wind load;ng, al-
though in the case of flexible v1brat1ng structurés like
teqsiqn.rdofs,.Whgch cover a large area and’ undergo large

changes infgeometry, it has tqfbe considered. ’

. -
W

Tension'roof structures have an enclosure with }
openings (doors and windows) and a reallstlc analysis ¢
? - '
shoyld ihclude the effect of the air within the enclosure.

e
".’ ) As the roof .vibrates, the air pressuré inside fluc-
tuates .and should be considered in the ‘analysis.
This problem or,air—structurefinteract;on ik very

. .
- a . 4

complicated and, to.the knowledge of the writer, has not

been fecogdgzed‘or studied by*researchers. An attempt ‘ ‘

-

is made in this studybto-analyzgrthis problem and explore

the behaviour of tension roofs under the éffect of tur-
. ' . T : Co : t . o
#. bulent wind above its syrface and the air.enclosed below
- [
! ey i’
its surface. e
< 3 4 * B

! oA
i - . ) .
[ IR S [

/

The "Plane Wave" assumptlon (analogous to Taylot's

ol
,Jrom

‘ hypothe51s) implies that ‘the wind velocity fluctuatlons

o . recorded at.a\901nt travel‘along the surface 0f the roof

-

l

unchanged in the direction of the mean wind veloc1ty If
- . X T ,/a.,’-— ~ .
."this assumpthon is acciﬁted a 91mpllf1cat10n can be made.

by assumlng that the plane wave for wind gusts is similar ‘

; ¢

Ar.: i - »




‘to sound waves acting on a flexible wall. The following

4

analysis is outlined according to this simplification.

-

v If a loudspeaker .excitation acts on a-flgxible,wall

forming one panel of an enclosure bounded by rigid walls

(or a membrane sheet attached to a cyfindrical drum head)

[111], there are three or four diffefent sound waves:

™ 1. The incident sound wave.
2.- The reffgcted wave, which
sure on a rigid panel and
. ‘ ‘ doubling of the‘effectibe
oﬁ the paﬁelu -
3. The radiated waves,
— a. In bppoéi%e direction
\ ‘ This is‘fadiated-back

of the wall. ,
¥

t

b. In the direction of the sound wave. .This

derives ffom the pres-

"which results in the

excitation pressure
S

.

to the sound wave. -

by virtue of the motion

A

ris.radiated to the inside of the enclosure

o

by ‘virtue, of the motion of ‘the wall and is

—

called the transmitted wave.

~

Since the mémbrane ig very flexible, ye méy:assdme'that

. the reflected wave has negligible effect in this analysis.

PRt

- ‘ The radlated wave due to the membrane. movement in

-

the opp051te dlrectlon to the sound wavqmexlsts due to,




the negatiVe‘belocity'bfifhe panel w = gt Wthh exerts L e

a negatlve acoustic pressure proportional to -this

St velocity, (i.e. Q. = —p co g:, where p 1s the density of"

air and c.'ls the speed ‘of sound in a1r) and will appear’

in the equatldn of motlon of the panel as a éamp;;g term,
. This termuis the/eceQStlc damplpg'and 1F.plays en 1mpor{’ a

tant part in theiéiﬁeationeof some Structhree. | e

If we eééume:thetplane wave of turbulence, acting °*

R

on the.roof with itsaassociated air mass o, is similar .

to the plane dave of sound acting on a flexible panel,

the rélative moveme of fhe membrane to this plane wave

' prodqces a.damplng texm,' Let us examine the first term
’ of Eq,, 5 63 After substltutlng the value of V from %

l

Eq.. 5 ‘64 then o o

-~ l - ! ‘]- K] R . ) .
q(~x,y,2,t) ‘=~— P Cylx,¥,2) [V(}‘f/@—&(x}y,z}t)lz
. ) ¢ .

S

(5.65)

., g N .
By expanding Eg. 5,65, we get

A\l +

q(x,y,z,t) %,p Cq(x,y,z,t)[V2(X.y,z,t)-2V(x,y,z,t)€r(X.y,z}t)
~ . '2 - ’ ®
+w(x,y,z,t)] (5.66)
. -~ . *

.
L3 * - . -

By assuming small amplitudes of vibration, ‘the term w?

" . . : )

ﬁ may'be ignored and Eg. 5.66 reduces to.
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q

- #

2
q(x,y z,t): %— pCV (x,¥,2,t)
- P Cu(x,y 2, E)VX,y,Z, ) WK,y 2, t)  (5.67)
The' first term is the tota]l effect of the turbulent pres-

sure field inclpding the gquasi-static éffect of the mean

wind velocity V and the gusty component effect v.as

studied in detail in previous sections.

L)
-

‘The second term represents a'force'proportibnal to

the-velocity of thé_strdcture: it has an effect similar -

to the structutal damplng forces and 1s termed the* aero-

dynamic damplng force. Wh11e those forces are small com-

ﬁuparedﬁwith.thé ihértia and stiffness forces of a structure

P

éhey are appreciable  in comparison with the forces due

to strupturalldamping. Tﬂey can-markedly influence the
behaviour of a structure in wind and may be added to the

equation of motion of the éystem.

The wavé,trénsmitted to the enclosure i8 caused N
D 4 . N

of

mainly by moGemenﬁ of the roof which, in tha’fundamental

mode of v1bratlon only, causes a change in the_air volume .

I

@

- under the membrane, .as discussed 1n\EBapter 4 Due to

-
‘this change in air volume, the pressure inside the enclo-

sure will increase ot decrease.

L

As stated earlier im Chapter 4, becguse the sound

P

L) 4 ) ——




-the enclosure. This change in press&;b is obtained in a

LI

wave length in the air is much larger than the enclosure

dimensions, the increase or decrease:in pressure due to

~

air volume change may be assumed unifgrm everywhere within

4

13
s

manner similar to Kinsler [78] and is éssumed to be’ a func-

i

tion of the averaged panel displacement w, with regpeét

to membrane area and the air movement eff¥ect tﬁrough the N

wall openings, if any. This pressure acts on the lower

!

surface of the roof and has to be included in its equation

of motion. i

°

Frdm the theoretical aﬁalysié presented in Chaﬁter;
4, and the experimental worb in Chapter 6, it was found
that the only modé of vibration largely affected due to

tée air movement is the fundamental mode 01.

P
We turn now to the>determination of the frequency ;

response function (mechanical admittance) in mode 01,

in which are included the effects of the enclosure~uﬁder

the roof, the aerodynaniic damping term, and the openings

Il

in the wall, on the response. :

. ’ .

'45 Tﬂis-function can be obtained in a manner sipilaf to '
Lin [110] by considering the steady state motion of the

system under a suitable harmonic excitation. For this,

-we can choose the following'plane standing wave of wind

acting on the circular membr ane surface from the free




side. Let the plane wind wave be given by:

‘ Viz,t) = T(z)el* (5.68)

%n which V(z) = the amplitude (9ean velocity at the height,
of the roof z) and w = frequency of the wind wave res-
pectively. Due to this plane wind wave, the membrane
vibrates, a radiated bressure qr"deve16p5'and an inctrease

or decrease in internal pressure qq occurs.

The equation of motion of the membrane .in its funda-

mental mode wh1ch 1nc1udes the effects of 1nert1a, struc—

’

tural resistance and stiffness may be written as follows

Mo1Zgp (8)+Co1 807 (E)(E Ko 20y (£) = Fig(O¥ e (BT ()

(5.69)

in which MOl' c01' K01 = the_general;zed mass, structural
damping and stiffness of mode 01 respectively: Fi‘ (t),
~ 3 Ll . . '01
F_ (t), F, '(t) = thé generalized incident wind force, ..
Tor ' TRoy
the generalized force due tQ radlated pressure and the

'generallzed force due_to change in 1nternal pressure, of
mode 01 respectively: ZOl(t) is the generalized coordi-

14

nate of mode Olhreleted to the displacement as,

w01(r,§) = ¢oi(§)?ql(t) (5570a)

where ., (r) = the fundamental mode shape 01, and is a

function of r only.



The internal pressure increase or decrease qg(t).
is derived in hapter-4 (Egqs. 4.148, 4.18%)"and i$ depen-

dent on the average displacement of the fun@aﬁental mode

WOl(r,t), (@, = 0 for nm # 01). "Therefore, the displace- 

“ ' ment of mode 01, in this analysis, may be written in the
fo;m -
W (r,t) =W, . elvt : - (5.70b)
01 01 - )
where Gé is the average amplitude of mode 01, Figure 5.10,
given by
2nra .
. L Io ¢>01(r)rdrd6 |
e - w01 = - 5 3 ! (5.71)

Ta

A
and the average internal pressure may be written as

3

27 ra . .
J <I>Ol(x')rdrc16]elwt

2 .

pc

- 0 i

qq - (8) = -[— (1-5—)[

01 o] c ‘0 ‘O

(5.72)

in which Vo = the original volume of air within the en-

closure, p =, air density and éo = speed of sound in air.

Substitute for the fundamental mode shape, from
: , Wgy T i
OlJo( v

- Chapter 4, as ¢01(i) = A
‘ ) ) a

of Eq. 5.71 to get: °
woia
v | (5:73)
Wy 2 , T

2vJ1(

Wop () = Ay, I :

5

\
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), evaluate the integral
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} ™
in which A = amplitude of vibrasion of mode 01. Sub-
) 0l weL'v :
. 1. :
stitute the value 0‘.(1-7,52) = ;75;—— (Eq. 4.176),
evaluate the integral in Eq. 5.72%n8 the internal pres-

sure may be written as,

; 2 ZpQ'U;é QJl(wq}a)
qp (t) = w'Ag [ & X

-iwt
e le™ . (5.74)

X’%

in which N number of wall openings of area Al each,

L' = effective length of attached air through the openings
and is equal to 1.20 to 1.70 times the equivalent radius
of opening a, dependiﬁé on the shape of the opening and

if it has flanged ends or not. - -

-

The generalized force due to change in internal pres-

sure, from Eq."5.74.éfter carrying out the necessary inte-

gration (Eq. 5.41) may be written as,
' ‘w01a

L 20 29T, ) . 3
/IN\\\F, ) = (w2r erat (T2 det (5.75)

201 NAo Woy ol™ S .

The radiated'pressure due -to the roof (membrane)

movement is given by Mead  [11l1] as

g, (¢)

|
©
0
E

(5.76)

.

in which w = the average magnitude -of displacement speed.

" Carrying out the necessary integration (Eq. 5:41),-
. d » . .
the generalized force due to radiated pressure, from ' .

C .
.
] . [
L] N




r . | 4

. Egs.-5.71, 5.76 may be written as:

- w01a
- . 2vT. ( ) . .
F_ (t) = -(iwmpc ) [—E—2—]a2 o't (5.77)
01 01 :

- @

w

We turn now to study the incident pressure q, (t)
i

due'to“the plane wave given by Eq. 5.68 as

Viz,t) = T(z)e™t

Due té this plane wind'waye, e is induced on

the surface of the roof defined by

-

. -1
,£) = 3 p CV
qglz,t) P Cq

5 (z,t). ° - (5.78)

SN

where ’ i -

VR(z",t) = V(z,t) - wit) - (5.79)

where VR(z,t) = the velocity of the wind above the roof

- -

by Davenport ,[41] the following e

. ' | 2

3C 32 (z,t) )

“e 0 dqlz.t)  _p y2y Cq | R
L @Gt T RESs g S W) (580

If we assume Cq = the pressure'coefficient'is constant

with respect té uR(z,t) then Eq. 5.80 reduces ‘to:

. ‘\ | 'd (z’t) _ ','.' .
‘ A : E%ETETET, o CqVB(z't)

And, g{z,t) may be-written as

=0 cq(v(z,t);*@?t#)\\‘_' (5.81)

.

)

v , \

uation may be obtained:
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relative to the surface. Following the procedure outlined

-
>

R AT e S R e R




alz,t) = 2% CV(z,t) -0 cqv(zﬂt)Qxﬁi.' (5.82)

R 2 q
.

L]

t. 4 «*

. + . o !
L ] ’

Substituting the plane wind wave definition .from Eq. 5.69,

- . .Eq! 5,82 may be written. as, .
qlzit) = p~Cq(Velw#)2 - 0 cqv.5'e19t ©(5.83)

1
N -

-

-

Then the generalized wind force, aften‘carrying~6dt

- -

the necéssafy‘integrationi(Eq. 5.41), is Ny
' ' . Wnhqa L
IR St D)
Lo ' T PG (zvt) =(5meC @Vt (2)) [———]A, e, . ..
' . 01 A T 01 » &

- ‘ . , ~ (5.84)

‘The generallizéd force due -to relative movement of the - ,
roof, aftep cafrying out the necessary integration (Eq.

-

5.41) may be written as; ’ .. 0
' Waaqda ‘
" | A T T
; F. (z,t) = -iwmpC V(z) [ =~ 1°a,,e (5.85)
: q % 01 A
. , wWo1 - 701

- ~ \

The generalized incident wind force Fi in Eg. 5.69 is

: : ‘ 01 '
« . ‘ now to be replaced by summation of the geJFralized wihd

.~ " force F5 ‘ and'the gengralized force due to relative #uove-
: o1 - ~ ' . A
. ' “ment of the roof F_ . : ) S : b
¢ . ’ wOl ., - “ , * ' . . \\‘
Substitute Egs. 5.75, 5:77, 5.844and 5.85 .into_th '
equation of motion (5.69). After calculating the gene- T L

ralized maSS‘MOi (Ea. 5.40) and }tg'}elatives the genera-

k4

lized.structufal damping (C01_= 2qM01) and generalized

L.




4 »

vt > . -

v
e~
~

[ .' 2 ’ ’ . ) -
stiffness.£K01,= wOlMOI) and rearranging as necessary,

we obtain the following equation: , ,
’ 2 2 . ‘ oc pC V(z) '
(1 - —%— 1+ g&i%f) PR T P - R | )] S
wg3 mNa’ “o1 Wo1 ™p1 - . Mg
.% o C:V2 (z)e?¥t ' '
s 9 "= q w a . (5.86)
2vJ, ( Ovl‘)_ L .
wo1™ Agyl rpa— ’
: H 01 R

From Eq. 5.86, after introducing the relation bet-

‘ween the damping constant o and the dampihg,ratio D

A 01
for mode 0l ‘as o = Dblwal' the frequenc& response func- .-
'~ tion may be written as ([58], N
» . Y
H01<w)‘; G 2 ~——— = (5.87) -
, Fl-(agz) ﬁl+8c)]+12001(5§;)(1+Br+BV)

&

1]

in which B, = the cavity ratio (the-same as found in

.. Chapter 4 in free vibration analysis, which,

-

. represents an additional mass effect on the

system) - o -
p!L'a2 ” pa2 -
. . = “‘ = 1.‘2 - 1.7 — ’
e * mNa . mNa,
o
« B; = the acoustic dampiné,tatid‘which derives-
from the radiated wave-due to the vibration
. " o of the roof
. . . o . pc . . .
= 55 0 = CO , . (5.88)

01™901




t

«Wwhere C

\

¢ . v
: »

5. “
] L] - »

- 'B:?; the aerodynamlc damplng ratio due to the
veloc1tﬂ of wind stream relative to the ™
~roof movement '
quV(z) p C V(z)

.ZooimmOl

2

the damping coefficient of the roof and D1 its

L'l.

A . o
Jastfucturi£’§gmplng ratio for mode 01 and w01 natural

. frequency of hode 01 vibratlng'ln viiSO.
- . N

» a

"Thus, it is assumed that the aerodynamic damping

—ratio is related:to the flow velocmty Véz,t) v1a the pres-

“sure coefficient Cq. This coefflclent degends on the

" vibration, may be writtenas:

‘shape of the building and on the aspect ratio, H/D. For

high H/D, the‘whdle roof may vibrate in the wake while

for a low H/D, the flow may reattach over a 1efge propor-"

tion of the roofs. Little information'on.the coefficient ’

Cq is avaiiable and further gesearchris needed.

t

The square of the response frequency- function modulus

(the mechanlcal admlttance), for the fundamental mode of

v

k3

I
[1:(5%->2(1+ec)]2+4u (0 (14846112
01 ‘ “Yor- - ‘

2
[Hyy ()|

S (5.90)

= —3. " . (s.ébx\\ )
. ’ \ \

o
4

N

-

.55,

"o

¥
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4

The effect of the air within.the enclosure with opénings
is accounted for by the cavity ratio Bc, ahd the effect
of the acoustic damping of the system in the additional

damping ratio Br. The effect of the air stream on the °
L N

unenclosed side is included in the aerodynamic damping . .-

13

ratlojﬁv. : . .

If the area of the openings (NAO) tends to infinity,

the ‘cavity ratio Bc + 0, and the membrane (or roof) vi-

. v

brates as if in.vacuo (i.e., Woy = wSl’ the natural fre-

quency of vibration in vacuo). If the ! mass of membrane

per uniq/érea is large enough, the additional acoustic

o

dampinggpéfig?ar is small and the effect of the roof move-
. AN

S—
s

ignoted. \\v. o

ment in&grgéaiigg an acoustic damping pressure may be

Finally, 'if either the pressure,cdéfficient and/or
the velocity of 3ir is -small with respect to a large mass

per unit area of the roof, the aerodynamic damping is -—_

-~

negligible: however, if the mass of the roof is light with
iespect to high pressure coefficients and/or high wind

speeds; the aerodynamic damping ‘ratio is significant.

According to the studies by Wérdlaw, Irvine et al.
[123] 3hd Campbell [124], ‘the effective mass of the vibrat-
ing rooflshbuld_include the "added mas$" of the air. Closed

. form formulae for this added mass are availablé f123,124]?

"




R CHAPTER 6

\

’EXPERIMENTAL, STUDY

.
-~

6.1 INTRODUCTION | . ‘ ‘

¢’

In many structural engineering problemsyép expgri4
' méntal study becomes necessary because either the problen; s
is too complex for theoretical treatment or the analysis .
is too expensive. Further, no theories can be called (
exact because “they are based on simplifying assumptions
and approximatiéns, and an experimental study may be

essential to provide verification of a theory.

The design of a cable roof is quite often dictated
by functional and architectural reguiremeﬂts,and one is
faced with a\sirgcture which may be both large and com-

. .

plex. ‘ o

<4

- For a majority of cable roofs it wéuld be difficult

to_determine wind-pressure coefficients using theoretical
_considerations. Therefore, a winéffﬁ;nel study of a roof-
model seems to be the best solution to determination of

-

\ the roof pressure as well as for assessment of aerodynamic

. behaviour. It.is fqr this1purpbse that roof models are
used most. Another useful ‘application is the evaluation --
‘of damping: here, a roof model” permits a more realistic

analysis for the dynami c regpoﬁée of the structufe.

i , \ , -
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6.2 WIND TUNNEL MODELLING

) L]

SR The basis of all wind tunnel work is the hypothesis

that -all wind forces and structural reactions ‘canh be
scaled in'‘some proportion to wind conditions with struc-

L - tural sceale factors. 1In every case, a dimemsk ehaly-

LY

sis of aLf variables yields a préportionality constant
which is a function of dimensionless groups of 'the

. variables.

~Once a unique relationship has been established

bétween the proéortionality constant and its dimension-

1éss groups, values of the constant are:found, by e&peri-

' ment, for different values of the dimensionless number. -
B l‘q L3 : ’ :
If more than one number is involved, each relationship

-

i& found séparately. '
C . ]
In mdny cases, the scaling requiremeﬁta'for oqé
~dimensionless correlation make it difficult or .impossible
o ito~scale.another éne correctly. In addition, the wind
: , . , \ )
tupnellftself_li@its'the-réﬁge of.varigbles and Eertaig
‘hséumpfidhs are then made. T IR "

' ' - » "

3 ‘ - ' ¢

'6.2.1 \Laws of Similarity

(TS

o The éimilarity requirements in model design which -

need to be satisfied in order thai the results of tests -

carried out ih a wind tunnel represent the behaviour of

. ] |

. . -
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¢
Ve

. a full-scale prototype in-the natural wind will vary accord-

. ing tb the problem under investigation. To.achiéve simila—

3 . .
rity, it is necessary to represent in ‘the wind tunnel the

relevant physical properties of both the structure and the

- - X . 4 ) .
natural wind. . . . ~

The Laws of Similarity may be determined by the method
‘t ' .
of dimensional ahalysis or by a thegretical solution if it

-

is available. Provide% that all physical quantities are in-

corporated iq&s the analysis, the méthoa_provides the func-
tional relationship between the dimensionless values of the’

quantities and yields the Similarity Laws which permit fuli:
scale predictions "to be made from model test results. It can’
- [
-be,assum%d that the behaviour of structures under steady uni-

formfwind conditions will depend on the aerodynamic shape

andign the following eight physical properties:

- -

E, b, V, D, UO' g, 0, GS .
* M . - .
in which p, V, Hg = density, velocity and dynamic viscosity
o ] - .
of air: E} D, ¢ =gmodulus of elaé!icity, typital dimension
- a . "

- and density of structure: 65 = loga}ithmic,decremené (struc-

-
[y

tural damping paramefer)vand g = gravitational acceleration.
. I3
(The compreggibility of the air characterized by Mach number
- .is, in general, also a factor but is not consgidered to be s

éignifiqaﬁt for the present study,.)

AY
-

| 4 .
From these eight quantities, five dimensionless para-
[ 4

meters were derived [112]:31

4 -




S\ - : .

r »

. B . ) ‘ - Energy dissipated per cycle
1. LQ%ffiEEfif/Eecreme?t O Total energy of oscillation

*E _ Elastic forces of the structure

2. Elasticity Number sz ~  TInertia forces of the air

«Q

) .4
. . ; o _ Inertia forces of the structure
3. Density Ratio F ®L © T T Inertia forces of the air

-
RS §

- . ‘ ‘ Gravitatiomal forces of the
» structure
Inertia forces of the air .

ASE

. _4. Gravitational Number

» A
pVD _"Inertia forces of the air
Vigcous forces of the air

Co C _ -
‘ . e . "
The dimensionless parameters 2 and 3 lead to the

5. Reynolds Number

Strouhal Number (dimensionless frequency) %? or its in-

verse, the dimensionless  (reduced) vélocity, V/£fD. The’

fﬁ) Similarity Laws.between model and prototype require,
‘Q ideally, that. all lengths, masses and times characterizing
the prototype 'and natural wind satisfy the following
. . A .
: ratios: ‘ .-
.« ' . ﬂ
L L.. . . . . -
im _ “2m _ _ Dimensions-of Model - (6.1)
L L.. *** 7 Dimensions of Prototype = ‘L. :
. “1p 2P : : , . ‘
M, . M .- ) )
1l T2m _ - Mass-of Model - . -_ | © (6.2)
. MlP . sz ‘ Mass of.Prototype .M “o
.. ’ v ' . _; . . s R
- C Tlm = TZmu= . Time for Model Lo (6.3)"
A "Tlp. TZP_ Time foxxErototype T _
» ! ) ' v ‘ ‘
" 0 . .- in which Ayr Ayr Ag = the length, mass and time scale: | ‘

LN
i Ya-
] T

', respectively and subécfipt‘(mf referred to the model and

-

+ . . &




P

(P} to the prototype.

6.2.2 Types of Models

The five dimensionless parameters stated. previously
mey be used in various combinations for different types
of wind' tunnel tests. The family of models obtained from

various combinations may be categorized into two main

types: rigid and aeroelastic models.

The rigid'model is mainly used to measure the wind

pressures and forces, while the aeroelastic model is used

* -
'’ .

to mgasure the deflections and stresses induced by the

°

w1nd forces. S , A

6.3 MODELLING STUDY - o v

It was stated that cable structures dre”prone to

’

aerodynamlc exc1tat10n or flutter since they are 1nherently

3 L B
flexible. The unusual feature of the .experimental inves-
e
tigation is that it focuses on the dynamlc behéﬁlour under
wind action of a membrane-like and wind-sensitive struc—

ture: . a flexible roof of very large size. " Two types of

.experimental work have to be considered important. '’

LY

P 0

First, a rigid model is used to yield the aerodynamic

#- ’ y ] L l' 13 - * * "
pressure dlstrlbutlon on the exterior and 1nterlor surfaces

of the roof for a varlety of wind d1rect10ns. From thls

lnformatlon, the steady ~state wxnd loads on the-roof cgn
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Noran

be-cglcuia;ed for any wind speed and diréction.

A .

v
-

Second, an aeroelastic model is employed to examine
the possible aerocelastic response which could be induced”
by .either turbulent (gusty) wind or peri&dic flow fiel&s
(vortex shedding) setup by the tension roof itseif. The
aeroélastic model studies can be extended to study the
interaction between -the roof,movément and the éxternal
wind pi‘essure \nd internal air pressure within the en-

closure.

6.3.1 BAeroelastic Model Scaling

In practice, it is rarely possible to satisfy all
the five dimensiohless parameters mentioned earlier and_

to model the boundary layer of the earth accurately.

o

The Reygblds number is very:important and it is
difficult to achieve in the wind tunfel. It had been |
shown by tests carried out over a wWide range'éf.Reynoids
numbers tﬁat the air flow patterh ground a sharp-edged
body is substantially independeht of ﬁhis parameter be-
cause the positions of flow geparatioﬁ are fixea by the
‘ ;harpvedées [112].L For some angleé;of attack, suspegsion
’roofs fall within this cétegory put;at other angles of

attaék,'fpr certain types.of suspenéion roofs, the effect

of the Reynolds number may be significant.
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For the observation of static deflection andwftreéses

due to wind, only the elastic and gravitational parameters

e

need to be con51dered but for dynamlc studies, both the

‘inertial and the damplng parameters have to be- taken into

account as well.

Therefore, 31m11ar1ty of 1nert1al elastic and damplng
N )

forces for cable ten510n roofs requlres equallty of the
following dlmen51onless quantities: . _
. . “ -, » . -‘i‘t ',f

1. similarity of inertial effects > T

2. : Similarity of elastic effects - 5

3. Similarity of structural damping - Gs.

@

The model must have an external shape exactly.corres-
ponding to the full-scale although true reproduction of
internal structurel details is not necessary, proyided

that imertial and elastic stiffness requirements, can be

maintained.

Model and full-scale air densities are thé same for
tests in atmospherie wiﬁd tunnelg;énd therefore, .the
structﬁral densities‘at all cdrresponding positibﬁs must - . ‘\
"'be the same oh fhe model and the prototype.

: | .K% .
6(,3 1.1 The Mass Density Scalmg : o ¢ .

X The den51ty ratio parameter whlch 1nc1udes the effect =




.

6 _ M : . ’
g - 2 . (6.4a)
p pD3 o
Hence,
M M ' M . ‘
[—3-] = [——5] = [——> ] o (6.4b)
p0> ™ oD P oD x D ‘ ~

-

in which M = the total mass. Thexefore, the mass per unit

L4

m

. : - ; = 1
éfea (m) scaling Am AL (where A mP).

6.3.1.2 The Elasticity Scaling
- .
In order that the elasticity parameter bé compatible
. ' -
with the*prescribed mass density scaling, the following -

relationship should .be satisfied:

E E, . '
[l = [ . . (6.5)
pVZ‘m pV P .

Suitable materials are not usually available and compro-

' mise has to be made to yield an equivalent stiffness

éffect for pure membrane action: ‘therefore, elastic
simila;ity»implies similarity of the tension force per
unit length. An alternative form of the elastic¢ity para-

’

meter, .-when the ‘elastic energy is basicaliy extensional,

may be deriveé‘aS'follows:
‘ & .
Multiply the €lasticity paramefer by h/D.

'

e - A

. ) T ] \ . )
of the inertial requirement, can be rewritten in the form
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E h, _ E h,
=2 oln = =2 B (6.6)
I Dim T Nz D
The/r.eforéi when ‘[h/D]m = [h/D]P: RCIEREN
[Eh] ‘
m: ,2 v o
TERT, - NV L (6.7)

\
© where h is the membrane thickness, D is a chaﬁgcteristic
building length and AV is velocity scaling. Therefore,

the tension per unit length scaling is: E

[Eh]

6.3.1.3 The Dynamic Stiffness Scaling

A cable roof structure is usually closed and has
f

openings (windows and doors)ﬁ the air movemen[ythrough

them due to roof movement affects the frequency charac-
; :

teristics of\fhe roof, especially the freqﬁe#cy of those
I
modes which cause a change in the air volumeiof the cavity.

This change in volume is accompanied by a!¢ﬁ

s

nge in pres-
L. '
sure of the air inside the enclosure. As thé, roof vi- .

'Brates,.the alr inside thé enplosure is alte natively
'cémpressed and expanded. During the éompres ion action,
a volume of air moves out through the opening and durlng
the expan51on, a volume of air moves in. e problem of
a v1brat1ng tens1on«roof enclosed by a cav1ty has been
briefly studied by the, author [108], and expanded in tth

%

work. It was found that a dimensionless constant .

.i‘

¥




» -

L3 . N
\ 4 2 ‘ :
LENETN

o~ TT_V,
restorlng force owing to the compre551on of the air in

(a ), measufés-the~relative importance of the

the enclosure-and to the initial tension applied to the

- ‘'membrane. In the formula, p = air density, 06“5 speed

of sound-in air, a = horizontal dimension of the membrane,

3
]

initial tension in the membrane per unit length and

-

<
]

the original volume of the enclosure.

-

t

lthough a few papers have been published 1n “aero-
». nautical journals on the effect of enclosed cayltles on~
the vibrations of panels,* little information is ?yailable

on this effect in the ‘structural engineering and” wind

tunnel modelling literature.,\In fact, there are indica-
tions that the modelling regquirements foér the'correct toe
simulation of internal volume ‘effects* have been “overlooked

in some tests of pneumatic structures: however, the impor-

~

tance of scallng the acoustlc stlffness of vorumes en-

closed by such structures [113] has to be empha51zed

- 4

From the above-stated theoretlcal analy51s by the
e

‘author (1n thls work and 1n [108]), the volume scallng -

may, be derived es follows:

4 2 42

e Y | (6.9)
[ 4 ] '= [ . ! 6.9 -
TV, m 'rovo P o

".

~Bince g, g are the same for model and prototype the
‘above relation may be rewtitten as - o

o
.




o0 oo . L

- ‘ . o o I
e =B =i | (6.11)
L’"T . : °

e
Substitute for the tension per unit length scaling:

L Tha .
705 A AL ’ -
¢ o ‘

the volume scaling is

Ay = MG , J (6.12)

This volume scaling, requlred to ensure similarity - .
,X/Qf the ‘dynamic stlffness of the membrane, implies that
the model volume has to be exaggerated by l/k beyond that

required by the overallrlength scale, where AV is thg

velocity sc9lihg.

* ’ It is interesting and significant that the same
scaling relationship has been .arrived at by Tryggvason
and Isyumov [113] in'gonsidering:ﬁhe modelliﬁg of inflat-
able structures, andlby’Holmqs [li4}lin his study for.
scaling the fluctuating inté;néllpresspres inside buiidings,

’ uéiné'a completely different aralysis,

?
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(iii)

A= A,

¢
'

6.3.1. 4

- .

Summary of Aeroelastlc Scallng Requlrements
With the above con31derat10ns, the aeroelastlc
modelling requirements for tension cable roofs can be

summarized as follows:

(1) similarity of turbulent boundary layer flow defines

the length scale AL .

(ii) Scaling of all exterior dimensions”of the structure

according to AL

Scaling of internal volume according to A 3

(iwv) Scallng of mass per unit area of the cable roof as

m i . to achleve similarity of inertia .forces

scaling
L s 52y - |
ATO = AEH?ﬂ AVAL L . o
. . B
(vi)'' Similarity of structural damping 8 = 1.
)

Rigid Mod31‘Scalin§ o

)

6.3.2

The rigid model 51mulatlon is stralghtforward sIt-'

= A/

307

2

. (v) Elastic similarity based‘on tension per unit length

is achleved by malntalnlng the lehgth scaIe AL and- dupll-"

cating the exact external shape of the prototype.

Regardlnq the internal shape, lt is, daffkgglt and

3
- e

not worthwhlle to simulate the internal detalls, but the

exaggerated volume scale, Ay
: - N0

- .
-

a4
s
Y

= XL/A ’ should be malntained,

-
P

-
o
I3
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~

as ip the aeroelastic volume modelling, if the internal .

pressure coefficients are to be measured.

. -

6.4 THE PROTOTYPE

k]

An example of the structure, which aroused consi-

derable attention, is the suspénsion roof of the Calgary'
. ;

_ Olympic Cbliseum, to be built in Caigary, Canada [32].

-

The proposed envélopeibf the Coliseum is genggateaf

from a sphere of 67.195 m'radius. The base is bounded by

-~

a circle of 60 m radius, and the roof by a hyperbolic

paraboloid membrane, aAsaddle shape (Figures 6.1 and

%4

.6.2).

fhe high points of’thé'ropf lie at the extreme loﬁgi— -

tudes of the’ equator, th low points on a‘zero meridian, i

at rlght angles to the merldlad passxng through high

p01ntq,;at angles of 17° southern‘altltude. E .~

&

[ - ‘m'a'

The membrane of the roof a 10 cm thick equlvalent

s

lxghtwelght cOncrete rlbbed shell is supporéed by a

, perlmeter'rlng ‘and an orthogonal cabldanet of ‘double

. e,
‘ LI I’y

:,curvature. Vert1ca1 sgctlons of théffoof along the prin- "~

b clpal —pérpendlcular, dlrectlons are 1dent1ca1 parabolas -

. » tr
, - r. -7
c

"concaye;;n -one dlrectlon and convex in the other. . .- -

.
. - . ! LY
- R =T ' - ‘ M
VoL e ‘ . o
ﬂo . . . . '] ~e v ‘ ‘ “
CRrY

“ ' In plan, the roof.is an ellipse, with a major axis’
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of approx1mately 134 meters and a mlnor ax1§ﬁpf 128 meters
The sag along the major axis is 12.5 m, follqwed by

Jfurther drop along the hogg, on - the minor axis, of

7.50 m, giving a total dlfference between high and low

.
b

p01nt‘of 20 m.

The roof is‘generated by a net“of'orthogonal cables
e spaced at € m in both dlrectlons. They are anchored in

I -
the perlmeter beam whlch 1s hdllow 1n51de and has an ‘.

overall cross—sect;pn 1.50 x 4.5 m. Cable net supports

lightweight concrete precast ribbed pahels. These are

»

interconnected by grouting the jdints to form a monolithic
membrane.,. ' -
o ’

The cables a e made.of high strenqth steel and are
prestressed in stagés,_as_required, to control forces and
stresses in the‘ring\béam. The‘ring‘beam is supported on
precast eencrete columns which have slight but copstanf
curvature. fhere are 32 periﬁeter columns.. At the base,'

the columns are equally spaced along the_perimeter;- At

the top, they\;upport‘the ring beam, the horizontal pro- .

- . -
S

jection of which is an ellipse.

A} I

The roof is insulated -and is covered with plastic
- {
waterproofing membrane. The mass perpunit;a:ea of the
roof is 1.428 slug/ft?

(= 6.97 Kg/m’) of which




-

'

- the cable net = 0.093 slug/ft2 (= 0.454 Kg/mzL'

- the roof shell = 1.335 slug/ft2 = 6.516 Kg/mz) - ’

A rigid model of the structure described was inves-'

tigated in_great detail ingthe Boundary Layer Wind Tunng}

Laboratory [89]: To complément this pngr;;,‘the ﬁutho:
: ‘undertOQk'a study in whiéh.two agroelastic models were
~used éo pfedictythe response to wind 1oadiné, and to‘study
the intera;tioﬁ between roqf movement , external wind pfes-

. . . / .
sure and tHe air pressure in the.enclosu;e.i The first,

a simp}ified model, reproduced.the basic dimensions, mass
and stiffhes; bgt‘fgplé;ed the hfpefbbbib»paraboloid'by* .o
a.shaflow (flat) roof and the liptical plan by a cifcle.
The adyantage of this simplificatioﬁ;gas‘tnat'the7appréxi—
matd model was more ameﬂablqvgo the th;Brgtical éhalysis

in Chapter 4. The second model reproduced the prototype

correctly. -

. ' 1 *
6.5 CONSTRUCTION OF MODELS

-

L

The selection of the modelliné scales is governed . ¢

' o ®

material available and the scale Of the,

by roof membrane T
boﬁndary layer wind tunnel.
v “

-

¢ - . . . ' . . .
_The wind tunnel facility at the Boundary Layer Wind
- ". ¢ ‘; .

Tunnel Laboratory at-The University of Western“Qutario

+

. in Loﬁdon,fcanada i;'%ébable of modelling the atmospher{ﬁ '
. . 7 ' - . — t, -

- ' "
3 Lay,

P



.
A

' b&undary layer at length scales,ranging from about 1:300 .
. .g ’ . ) N ] ) ' d . ’ ‘ -
A to about 1:500 [113]. . Within these.bounds, the chojice )

gc : Bf the lgngth scale is detérmiﬁed by available model
membrane materials to cof?éttlz;%cale the ﬁass'per unit:
area and result in = velocity scale determined by elastic
. pfoéerties. This would permit wind tunnel testing over

&

a representative range of wind .speeds.

.
& )
5

6.5.1 The Aexoelastic Models -

An exten31ve study of material properties of ‘various

a A\ o . “

. avallable membranes was carried Out before the flnal

o

L length scale‘was determined. The overall length scale AL
‘ i . - N ’
'\ * “had to remain compatible with the length scales of the

modelled wind.

L e A 0.01.inch (= 0.254 mm) thick TFE (Tetrafluoro-
. .- ethylene) membrane was .chosen. This material® [115]
, L - satisfied the mass scaling at a gepmetry scaling of

'

Ap°= 1:384 and permitted a suitable velocity scale based
on'similarity of elastic properties.
. . 4 ..

'A'su;ﬁﬁry of'thezvarioug other scaling parémeters
. is“pfeéented in Téblé 6.1 and:numerical valﬁes'fbr the
A hyperbollc parab0101d model and the prototype scaling

, are given 1n Table 6.2,

313
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TABLE 6.1 SUMMARY OF +AEROELASTIC SCALE

[

<

PARAMETERS

Reroelastic §caling

No. Parameter ~Numerical Value
, : : 7
1 L(ﬁgth AL =L /L, ‘ 0.002604 (1:384)
2 Mass/Unit A;\= A 0.0d2604
AreaD , *
. 13
2 Weight/ Aw = AL 0.002604
Unit Area
4 Tepsion/ )\T =4'AL)\‘2, ot 1.042 x 1074
Unit Length
3 Velocity Av = Vm/VP . 0.20 (1:5)
5  Internal. A, = )\3/)\2 . 4.41'%1( 10—7
Volumeo v LoV
R : "
6 Density A= Dm/pP 1.0
7 Time A = AL AV "0.013 (1:76.8)
8 Force AF = Fm/FP = )\]_2_‘7\\2’ 2.788 x 10-7
' 2 2 '
A P2 A . :
9  Pressure o F/ L v 0 Ofi (1 2?)
> ‘ “ L}
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The aeroelastic models were designed and constructed -
to satisfy exactly the(various similarity requirements |
presented in section 6.3.1.4. The plan view of this model
is shown in Figure 6.3. The walls of the model are rigid)
made from aluminum material, and reproduce only thewex—
fterigr geometry. The model roof, made from TFE (Tetra- '
fluoroeth?leﬁe) membrane, is attached to the walls-by a '

) ciamping ring made of rigid plexiglass, giving the correct:
overall geometry of surface of the ring beam in the proto-

type,,Plate 6.1. Another ring is designed by which the

‘tension in the membrane can be adjusted (Figuéé 6.3).

A séaled preséure chamber was mountéd beiow'the moéel
,to éxaggerate the enclosed.volume as’reqﬁiredAby the " ”
. internal volume sgaiing.g The pressure-dhamber was sealed
to prevent any air leakagé by insertiné a rubber stfip
—befwéé; the mgdél base and the chamber flange. . Baffles
were placed:into this volume in order ﬁQ avoid any acoustic
reéonance}

[} LS

o : | oL ' : .
In order to-study the surrounding air—rqof interac-
[y . . . .

tion,  which in some'aspecté s more general, a 51mp11f1ed

model of the, Calgary roof wa:\de51gned. Thls simplified . -
‘ model reproduces the basic dimensions, mas§ .and stiffness ’

but replaces the hyperbollc parabolo1d by a shallow, flat

roof and the elliptical plan by a circle. The advantage
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e

.more amenable'tdltﬁe theoretical analysis, conducted in .

.
3

av

/

of this simpliﬁfcatgén is that the approximate model 1's
A ‘;?s ‘ :“. . . . ’ - [

>

.
. - . .o ‘

Chapters 4 and 5. . ° . S T e .

- .
14 L oy

I' . . . . A o Q . . L ) - < . ; .
- The numerical‘vélues of parameters fdr this simpli—

-fied model anfid the averaged prototype geometrlcal scaling ’

areyglven-ln Table,6.3 The same pressufe chamber was

used in both models. Plan and elevatlon views of this

s

51mp11f1ed ‘model are shown in Flgures 6.3 and 6 4.
/

Furthermere, in.order to slq'}ate the existence of openings .

"in thé pretotype kdoors and windows), nine circwlar holes

b) . .

of 3/4-inch (~ 19 mm) diameter each are drilled in the
walls of the 51mp11f1ed model, Plate 6.2.* This allowed.
study of the effe%t of air movement through the openings

‘on the frequency characteristics of the roof and the
¢ K

total damping ratio of the system. .
LA . ﬂ

v
-

e .
. . -
Ed " !

«

6.5.2 Sensing Devices Used 'in Experiment

o

The se551ng devices . used to measure the vertlcal
displacemeﬁﬁs ere Kaman non-contact reactanee’sensors

U
of the displaceme «typea$ These devices measure change

in reactance of the air gap between the vibrating surface‘.

!

¥ . ' .
and. the probe plate. To improve the conductivity of the

TFE membrane, a small piece ‘of metal aluminum foil is

attached to the interpal surface of the membrane at the
g . - - . » . .
* For the Calgary coliseum the estimated leakage rate .

correspands to the wall area parameter of about- 5 .

to 8%. ' . . , - .

¢ o, . - *

et W
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<

location of each Kaman probe. The Kaman sensors are cali-
9

>

brated each time they are used. The probes were lbdcated X

o

at the centre of the model and at an intermediate specific

*  point of the base radius at distance r = 0.436a, Figure

’ L]

6.5. The probe at the centre eliminated the asymmetrieal ‘

modes £, and f£,, and the one at r/a = 0.436, eliminated

-] . , /
mode f02' Usfng the turntable in the wind tunnel floor,

the latter position was.related to 6 = 0°, 45°, 90° with

wind direction. This arrangement was done to separate
the symmetric modes of vibration from the antisymmetric

ones and. to measure simultaneously the response at two

points for cross-correlation analysis. )
i, '

Dge to instrumentation difficulties, the attempt to

measure two records“simultaneoﬁsly failed .and the response

_ -
was measured separately. SR -
. LA i} , : .
6.6 - EXPERIMENTAL TESTS ' , LN
6.6.1 Simp#ified Aeroelastic Model o )
6.6.1.1 'Ekperiments in Still Air
The model was first excxted in still air by means R 4

of a loudspeaker, Figure 6.6 éhd Plates 6.3 and ‘6. 4 it

was Observed that the fzrst symmetrlc mode f01, belng
the volume dlspla01ng mode, is strongly dependent on the
' number of wall openlngs. It was found that the frequencf

‘of mode £, is 1ncreased by 1ncrea51ng the number of

o1 , 4

AR s YwEakiy o, T
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12

openlngs whlle the other modes fll' filfand fo2 were -only

5, ~ a

. sllghtly affected The varlatlon of tha natural fre-

quenc1es w1th the total area of- openlngs is shqwn in

[y
~»

-

R = the.area of-c;e opening and A .= the wall area. .The

- °

- ‘ . ¥ N 5 o .S .
& " structural and*acousticalidamprng..' : Y e

\.. natural frequehc1es were establlshed from the spectra of"

the response -to harmonlc exc1tatlon fon.df%ferent openlngs

-

\and modee, Flgure 6‘7a. The spectra were obtagped us;ng

).-F

the Structural Dynamics Analyzer 5423A of the Hewlett-
¢ .

>

N
Packard Co.

3

Thid analyzer also gives th®&® total damping Do The

u hamping ratios found atadifferent”openiqgs are preéented-
. g : ‘ " o7 e
, in Table 6.4. This damping comprises all thé material,

@

- : e .
L '
s - . . -
. . . . e ¢ ’

- . The acousfical'damﬁing/ié due, to, the movement of
- R »
the membrane and is proportlonal to its ve1001ty. As
l -" Y
- the frequency of mode f01 is decreased w1th tHe decrease'
R :

of the area parameterkp , the acoustlc dampzng is de-

creased accordlngly; The éhmplng ratlos of modes fll' "3
le and £ are only silghtly affected.

] . . .
e -

. . i s

. ’ & « . . A . "_. .
6.6.1.2 Wind Tunnel westsz R LT ’
Fl;aw Paopeiuu and Expeumaﬂtaz Set- Up BT ’

° ? ®

' The experiments were . conducted in the BOundary Layer .

.paraﬁeter“ea = (Nﬁo/hg)xloﬂ in which N' = number of opeﬁings, :

2]

€
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N i * B ' ! . ‘ ’ ' .
TABLE 6.4 MODAL DAMPING RATIO AT’DIFFERENT AREA PARAMETER B '
., . IN PREE VIBRATION TESTS ' . '
’ -"'.' ’. . . ' ) P / ‘

-
2

* Number °© Mode 5’.Resox‘1'ant Area Parameter ' Damping 'Ratio
‘ fnmv *  Frequency NAO . Dnm%
e e o © .+ Hz B.=— x 100% ° . '
. : o . ¢ @& A

1 E 26.556 -  Base open

. .
4 -y . . v

e L
2 g 21.402 5.30 S auses. . T

. - 18.931 | 3.54 .
: e £ - 14.523 RS W01 IR . 2.22 fi‘fz' " A
‘ . . 'f " \.... Béég open. .A: R .
; 6 £ 47.586 'uixll"saab - kv",;;yl.gegsz
S £, 4802 .. iase T Q;fillgjﬁé;:7=.: o

8 - £, ‘46.075 1,760 Lo 14ee -

T T T YR X P 17 S
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Wlnd Tunnel Laboratory at The UnIversaty of Wgstern
) . > . . ¥ ‘#

Ontarlo 4 R . N
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. ‘. PR
- N

TWO expoSures were simulated a; the w1nd tunnel floor.
Flrst the tunnel floor was covered w1th randomly placed

‘blocks of helghts varylng from. 1/2 inch (= 12 7 ‘Tin) to

3 inches (— 76.2 mm) approklmately, Plate 6 2. " X .
& . ., . > ’ ".: >
Theﬁpropérties of the flow at the test section'are "

- ’ » -

shown in Flgure 6. 8 whlch shows the varlatlon oi mean-- -
. . . :

wind speed veloclty, V(z),‘and the standard devratlon of .

the w1nd veloc;ty fluctuatlon with helght o (z),.@x the

test sectlon. This veloc;ty proflle corresponds to thﬁ
RN 2% :
boundafy layer of a bu1lt -up’ area {A4J .and ltB turbulence

inten51ty Lé about 12% for V_ = 28 SO ft/sec (— 8. 687 m/s) L

G

»
..

-

3at the model helght. - "_ SR T o Ce]

-

L R

- In ﬁhe second phase of " the experlments, ‘the tunnel

i - -0 -

fioor was CderEd with’ rough‘carpet.- The propertmé%_of e

the flon'ht the test section for this exposure are. shown

1n Flgure 6 9 whlch'also shows the variation of ,the mean

w1nd ve1001ty, VIz), and standard dev1at10n of the wind

:veloc1ty fluctuatlons with height, o, (2), ‘at. the test -

section. . This veloc1ty prof11e~corresponds to the boun- <j .

-

dary layer of open country area [44], and ts turbulence

1nten81ty at the model helght is about 8% for VG = 31,30, /

ft/sec (= 9.54 m/s). | | _ R

L ! -

Sy e



1

INTENSITY ¢ :
8 000 0. 040 0. 080 0. 120 0. 160 0. 200-
d 1 o ‘ 1 j J Al
e
_ - 0=, 30.9
. : ALPHA= 0. 321
[=} .
Q
o.'- + ¥
3 . o -MEAN SPEED
X -INTENSITY
-3
"N ~
wg | . »
) Q¥ | ) 8
2| % . ‘
z K °
% _'84 !. ) - . [
e k
52 k's * &
il M -
I
g| -, L ‘ '
sl ’
sl .
A
e
(=]

R M .-v L ““—T T M 1 v
®. 00 g.21 ° Ig 42 é) 62 0.83 1. 04
NORMAL 1ZED MERN SPEED

FICGURE 6.8 Wind Velocity Profile and Turbulence Incensity at Test
S:ctinn (Built-Up Area, V_, = 28.5 ft/sec)

. G
. ot
o INTENSITY . .
© B 000 0.020.  0.040 0. 060 0. 080 0. 100
. 1 I L . i 1
«
- r
: © 26 35.5
L ALPHA= 0. 243
[=] * .
g .
n-.— »* e’ o
m . r'd
" o -MEAN SPEED
T % -[NTENSITY
O, . »* R
m‘?_‘ o, . » -
"IJ:‘-L * ‘
o [N
IE 4’ 4
o'&z . < ¢
:8. ) -
- v o
2 Y
w 1] N Al * 1Y
W .
8‘ + . ' »
i ) % £}
. ,d v Y
ve Cmee -
RUEG ' . '
' . : ™ -y
. g + ) \. . » ‘,..'
I3 2 b ] v
9.0 6.20 « 1,00
_ ‘,p Noﬁmfo L1ZED %?A: ween © . s

FIGURE 659 -Wind. valocity mt}u, m mm Intlhsity. at Test
i Bection (Opon oauuy upemn, ¥, - ‘91 3o f.t/uc) ‘ ,

332
Cy
4
\
¥ ..
o
..




Py

: | b B - 333

kS

The' wind velocity was measured using a hot wire

device. ®he spectrum of wind velocity at model height
s presented in Figures 6.10 and 6.11 corresponding to

built-up area and open country exposures respec;ivelym

\

The length scales calculated from the power-epectrpms were

. ) “
about 1 foot for built-up area and about 3.0 feet for

open country exposure.
- 2

Measurements of membrane vertlcal)dlsplacement-were

made at the three dlfferent locations shown in Figure 6. 5

)

u51ng,the Kaman proﬁes. The output from the Kaman probes

Y

system was analyzed to determine thz:zean and ‘the stan-/

dard deviation of the response usin -digital data acqui-

.7
~

s1t10n system. The arrangement of the testlng ‘instruments

is shown 1n Flgure 6 .12.

¥

The HP 5423 A analy%er was employed for the computa-

tlon of the autocorrelatlon functlons. The number of

bl

.correlation points sampled was 512 with a lag time interval

3
of 0.60 milliseconds. The power epectrum of the membr ane

model response was obtained from the autocorrelation .

' N
function by dlrect Fourier transformation. The mean res- 3

) ponse and the standard dev1atlon were obtained after \1

passing the total response 51gnal into a dlgltal achlSL-
tion system (PDP 11/60 oomputer) ) D o :

hod o

3

To study the,fluctuating internal oressure within:

S T«
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"and £ °appear dominant. Mode f

are presented in Flgures 6. 13 to 6. 20 S

‘volume changes whlle ‘f

,thoué% the fréQuency of mode £,

[ ) g N -
the enclosure due to the movement of the membrane under

" the turbulent wind, assuming that' the 1nternal pressure

is homogeneous, "a pitot tube was‘inserted‘at the instru-

ment plate (see Figures 6.3 and 6.4).

Madel ReAponAe

o

Several tests were conducted to assess the modal

contributions and the effects of openlngs, terraln and

. ‘ . .
w1nd veloc1ty3 . : Coe

sy

P - . P
The mean and rms vertical deflectlon at r/a = 0 and

"+ 0.436 at’ .angles 6 = 0°, 45°, 90° with the wind direc- -

tion were measured 'and are presented in Table 6. 5 The ..

spectra of response at centre and at r/a 0.436 loca—

n

tlons, for dlfferent area paramete;s (B, = 5.3, 1,53,'0%f}

- When the. Kaman probe is at the centre modes fdl

corresponds to ‘internal

02 0

02 is 1ndependent of these., Al-

01 decrqases with smalle?

' »

“.Openlngs, and therefore response is 11kely to increase,

~the 1nterna1 pressure bullds up and the square of frequency

response modulus decreases resultlng in the v1rtua1 dis- .
appearance of resonance in mode fOl' Flgure 6.15.

cy [ ] ) .

At r/a #,0.436,‘at,whiCh mode £

02 is elamlnated,

338
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both the symmetric and anEiSymmet;ic components of mode ' -
‘fli response are important -in addition to the ‘contribu-
“tion of mode f01, Figures 6;16'and 6.17.

When the,mddel openings are completely closed,. the
only modes observed are modes £;,, f,; and 532 because:

. the contribution of mode f,; has vanished. ‘ .

o

The largesp total mean response occurred at the angle

NS

. . ‘ .
of incidence 9 = 0° at wind velocity 31.2 ft/sec (= 9.51 - -
. ; ) - N P ’

m/S)‘When the normal openingSgye}e coﬁpletely closed. S
The largest total rms response was. obserVed at r/a.= }
0.436 with 6 = 0° to.90° and wznd veloc1ty 11.63 ﬁt/sec . N -

= 3.55 m/s) when the ‘area parameter B ~was equal to 3,54%

-ﬂ\

and 0%. Thls response is the largest of all p01nte.on !

¢

the roofjand'&as up to 250% largér'than thelfesponEe at ' o

the centre, Table 6.5. : . , "

~ With smaller’openings (N = 0) and virtual dlsappearance

. of mode f01, modes f£,,, f,, and £ 02’ which are not affected -

. ,‘?
by openings,’ remained the only main source of 'response. J
. N +4 N
- A ‘o, A
.

‘Intennal Pressure . . - - . . !

* ’ '

The mean ,and the standard deviation for the internal

pressure fluctuations were established and pfeeented in

by '},3:';_,‘,,;& J R B

Tdble‘G.ﬁ_for different wind vel?city,and‘wali openings. e
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... TABIE 6. |6 INTERNAL PRESSU} COEFFICIENT FOR nxmmq'r-"wmn :
P . VELOCITIES AND AREA PARAMETER (3 = NA_/A_x 100) ‘ .
- v . M *
- * - !
Wind Area Parameter Gradient Wind: Pressure Coefficient .
; - Direction . - Qa; Speed V . £~{mean) "C_ (RMS) . .
P - - (£t/see) - % -
" 00 o .5.300 ©38.0 . -0.60 0.13 Coe
T e, 45° j T, 30° S 38.0 -0.61" 0.13
R .+90° Lo 530 38.0°° % . -0.63 0.13
s . 0% _ 5.30 .28.0 - - £0.40 0.080°
Co45% 5.30 28.0. -0.43 0.085
90° 5.30 28.0~ .. '-0.43 0.090
T 3.54 28.0 _-0.37  g0.07 .
45° - 3.54 , 28.0- <0.40" "0.10,
90° , 3,54 28.0 -0.45 - .06
. “o b '
0° . 0 28.0, -0.20 0.04 .
" 45° 0 28.0 ,-0.18 0.05 ]
© o9 -, o 128.0 -0.19 0.06 ',
' - j (1 £t/sec = 0.3048 m/s) - 5 -
) o | ’
- r “ ‘. .
< ’_ . "
! ¢ ' “ L]
% : : . . / '
o - '
’ P .'-r » ‘
" & ’ V; * [
L] l 1 , * | "
» oot . .
/ . 4 -
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°Fdr a velodity of approaching flow'Vé‘= 28 ft/sec
(~ 8 534 m/s) and with openlngs falrly unlformly dlstrl-
buted (N'*‘9) w1th area parameter B "5.30% (B = §ﬁ~ %),
it was found that the mean pressure coeff1c1ent C§2<i

-0. 43 and ‘the rms pressure cdeff;cient qu = 0. OB{;‘

For the same area parameter but with w1nd’%eloc1ty V

38 ft/sec (= 11.58 m/s) both COeff1c1ehts increased to
c:‘ag:.-o.ea and cq.%"-"o‘n’.:'.- - ;

~

”

For a w1nd VeIOClty of V = 28 ft/&ec (= 8.534 m/s),

but the arga parameter B, = 3. 54%, thé coefflcxents

dropped tq CE' = -0:37 and Cq :“0-07'

e L ey

(<}

Cnoba Spectra 06 WLnd Fluctuations Oven Modez R005 Sunﬁace

. To understand the correLation between the fluctuatlng
. 4
flow velochtles ovet. the roof model the cross spectra

of the longltudlnal fluctuatlng compoﬂbnt of tufbulent
- e f
wind wera measired at different loqatldnsAJust ‘above the -

~

surface of the roof. These measurements~showed alﬁost“'

no correlatlon of wind quctuatlons along and across the -

wxroof model when the veloc1ty of the approachlng‘fiow ‘3@

Vé = 8 ft/sec (= 2. 438 m/s) ; Flgures 6.21 to 6. 24, and a-
small correlatlon oyer the roof sgrface’along'wind when

~ ‘ s /

G = 31 ft/sec (=‘9.45 m/s)¥, Figures 6.25,.6.36. o
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.hatural’frequency with the cavity parameter Bc = Q' o Na
' o]

6.6.1 3 Effect of Cav1ty Openlngs on the Freqyency
Character

1
.

The variation of the model natural frequencies with

NA T .
o ,

. total area parameter,Bé =.—= x 100 is shown in Figure

A
c

6%7. jigure 6.7 indicates that the natural frequency of

the first symmetrical mode is strongly dependent on the
. e - - .

‘area parameter B , decreasing with the decrease of the %

ﬁotal area of openings w1th1n the cav1ty wall, whlle the*

natural freq!énc1es of the other modes are sllghtly

L]

affected. ‘ -

For the first symmetrical pode, the variatdion of

2
pa

v

is shown in Figure 4.16 (Chapter 4). . Figure 4.16 indi-
Setes that the natgral frequency of thls mode decreasés

due to the 1ncrease in the addltlonal mass effect repre—
' - v e

sented by the cav1ty parameter B N

For the light, highly taut roof tested,_ the natural

frééuen;ies increase with increasing area of opegings
. ‘ T - %4
indicating a behaviour similar to that of a Helmholt:z

} 4

resonator.” The trends ‘observed in Figures 4.16 and 6.7

are in agreement with the ﬁheory formulated in Chaptet 4.

6.6.1.4 Effect of Wlnd V51001ty and Cav1ty on Res§5ise

Figures 6.27 to 6.29 and Figures ,5.30 to 6.32 show

[} b

the variation of the dimensionless total mean and standard

2 "




L}

. deviation responge respecti&ely at different locations

on the roof, for different wind velocities and area para-

-meter B, In these figﬁﬁes it appears that the greatest

féspoﬁse (a pogitive maximum, i.e. downwardsg is attalned

. ;
a
o »

when ‘the model is completely c,psed- 1t occurs at the *

@ L3
5

leeward p031t10q of r/a = '0.436 of the roof. S
P — P . &
. '_ ) ~ —~ ~

- o 2
- Flgures 6.33 to 6.35 and Figures i 36 to'6 38 show

the dlmen51onless total mean ~and standald dev;atlon res-

ponse respectlvely at dlfferent locatlons onrthe roof
" "

for different area parameter B t dlfferent wind velo-

»

cities. S ‘ ®. . . 4

In these flgures a Slgnlflcant qunomenon i's dﬁserved

V
When the qust 31ze (——) lS about 0. 33 of the’ structure .
v
size D, (i.e.’ fg = 0.33), a peakuresponse exlsts at all

LA “ oy

7 e : * ’
vt
. "

6.6.1.5 Effect of Cavity'end Wind Veiocity oﬁ Damping |,

’ For free vibration tests, the t%tal structural and
w * - } ?I
atoustical damping ratio Do for each mode pf V1brat10n
f£f_“at different -area parameter Ba 1s*presented in~ Table
6.‘4. . * - '1 . 0“ ) , - ‘.E“‘“. ) N
The acoustical damping %sadue'te/the mqvement of the

-
<t N "

roof and is proportional‘tzfits Jibration'veloeity; A8
. » - ‘ . Jd

[

350

[

-

area parameferq and eyverywhere on the roof. o . .

L)

.V‘)



PIGURE.6.27 " NON DIMENSIONAL MEAN RESPONSE AT CENTRE,r/o=00
- s . WITH WIND VELOCITIES AT DIFFERENT AREA . *
o PARAMETERS (PROBE NO.2 ) '
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 the frequency of the fundaﬂental symmeﬁrlc mode f 3e-
3. X
creases with the decrease of the area parameter sa‘ the

[

‘acoustlc'damprng decreases, resultlng accordlngly in the

01 while the ' .

dampdnésof modes fll; f21'and-f02 are.slightly affected.

decrease of the total damplng of mode f

L A,

In wind tunnel teSts, the structural, acousticadl ,

and aerodynamié damping retios for different modes of

v1bratlon at’ different wind velocities and area, parameters
e ° * " -

.are presented in Table 6.7. : . ' o

,” For.éhe open case (N = 9), the total damping ratio .
for mode f01 varies between 8% and 12% depending on wihd.’

¢ . . Py

velocity, and for mbdes fll' Zl.and fofrit\ls ahout

‘l.S% regardless of wind velocity. RN

« w
.

v, ) : . e

‘Referrlné to Table 6,4 which gives the structural C

.
.

'and acoustrcal damplng ratao, the positive aerodynamlc

‘

damplng ratlo for mode f variés between 5% and 10% (very
hlgh) debendlng on w1nd velocity and for the other modes

it ls about 0 10% regardless of wind velocity. This

experlmental-result rﬁ'rn general agreement w1th theoretrcal

6 6 1n6 Effect”of Wlnd Velo¢1ty and Cav1ty on’ the

2 Internal Pressure c effrclents
L] ,' 3, N

N *

" The varration 6f the xﬁternal pfessure coeffxclents

w

f‘ ‘I' v#" : -

_..
R13

.

z
3
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» (mean and standard deviation) are presented in Table 6.6.
* ?

In this table, the internal mean pressure coefficient- .

-

varies between -0.2 and -0.63 and depends strodﬁly on

wind velocity and the area parameter Ba’ and little on

. i

the angle of wind attack. .The rms of the internal bies—

» > 1

sure coefficient was found to vary between 0.05.and 0.13,

-

. also depending~iérongly on the wind velocity and the area

parameter and little on the wind angle of attack. .

’ L]

»

‘For the closed case (N = 0), the internal mean pres-

*+ ' gure coefficient is about -0.20. This value -is used by’

Al -

the Swiss Code [97] iﬁ specifying the mean inte¥nal pres-

' . sure coefficient for low buildings.

! : _ o

-

6.6.2 JHyperbolic Paraboloid Aeroelastic Model

' The.mean and rms toﬁal resbonse for the Calgary
Olympic Coliseum model are preéented in' Table 6.8'and «‘\
the spectra of response'at r/g = 0 and at r/a = 0.436

, ~ are presented in Figures 6.39 to 6.42.

For this model, it was pbéerved that the largest
total mean response occurred at r/a =.~0.436, at wind "~

. - velocity'30.18 ft/sec (=.9.20 m/s) and angle of incigence
¥ 5 =-0°. ,'.The'la-rges. total rms response was observed at o

’

model centre (r/a = 0) with 6 .= 0° to 90° and wind

. velocity lOLZSvft{sec (= 3.124 m/g?. This response wés

§




[

w‘tions'onNthe,roosznd with wind velocity at different

C o b
. A ‘ -
. . A ‘\ " ): . , v .‘ . . ) v« d
the largest over al%/the 533?§§2a was of the order of the
) T e . ? ) ,
mean response: . i : v i
. ‘ . . o . N ’y 0
» ' L]

G.GTE\k Effect of Wlnd Veloc1tg and Angle of Attack
' on’ Response o .

’

Figures 6.43 to 6.45 and Figures 6.46 to 6.48 show

‘the variation of the dimensionless total mean and stan-

- .

dard deviation response respectively, at different loca- *

angles of attaok. L B
‘ " . | ~

-

These flgures show that the%maﬁlmum total mean res-

ponse ex1sts at the leeward posmtlon of r/a -°0 436 of.

the roof -but, Unllke the shallow (£lat) roof Ehe mean

response was always negatlve, i. a. upwards, except when

)

the w1nd veloc1ty was very’ hlgh (30 ft/sec, 9. 144 m/s)

; and the angle of attack was 6 = 90°, when a posxtlve

i N

(downward) response was observed The.maxamum total rms

*

t

response of the hyperbollc parabolo;d model was observed

.8

at the centre whlle that of the shallow (flat) roof was | f

at'locatlon r/a = 0.436 : . ; .

: ™

' )

’ N =
4

6.6.3. Comparison' Between the Response of the Simplified
. Flat.Model -and the Hyperbollc Parab0101d Model -
Under Wln& Loadlng, ¢ e . 7

> ]
£ )

The respénse results obtaxned from,the experlmental

v oe

tests conducted for the simplified shal;ow (flat). model




r Y ' .
and the hyperbollc parab0101d model are‘presented in
Tables 6.5 and 6.8 o '

-~ > *

. | Ca, e o

o In these tables 1t appears that the response of the

frat roof 1s about 6 to 10 tlmes the response of the hyper-

. 1
i "bolic parabolold model .under the same condltlons (w1nd
/“7 v31001ty and angle of attack) ~Phis significant and
anticipated exper1mental~result is in general agreement

' with the theoretical analysis conducted in.€hapter 4

[l » )
/ —
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GHAPTER 7 . . ‘

T T SU'MMARY AND CONCLUSIONS S

. '71 'SUMMAR{ AR S o L

%_l.w A: nonllnear theory, ié developed to caICulaterthe res-

l 1Y

&
o«
'
~

e =

oW 5 pense of a'51ngle hangxng cable to the effeet of stath
loaﬂ The eolutlon oh;alned may be llnearlzed or*ndapted °

b X 'to apply to cables'that are 1n1t1ally taut&nd flat. It’

G - ) ?

¢ ‘ “w
oo is” fpundvthat the nOni;near response 1s governed by the‘ Y

~ - |
. v A

F ! - -‘ .
e 'd1m§n31on1ess parametar A =’ GJE)
! v e

o R . mg = welght of cable per unlt 1ength L = hquzontal span

, 1n whlch

.
.
Pl - -

~‘_f ‘ ;OE‘céble H = lnixlal ten51oh in. cable, E = modulus of s

'

fs : l:ﬁ' B elastacity of cfble materlal A :qcable cross sectlonal w,;eﬂ:g;
‘ ”,3{. rarea; L‘ = cable extended 1ength (— nL ), L 02 cable “; . 713

. or1g1na1 length and n = the exten51on factor.

+2 - -
K T N 3

. . ’
N . o I Y
‘ - ¢ v . . n
. - o . e . ‘ - 3a v

St .v'Basiceliy,"Ehi% @imensiﬁnIeSS ﬁarametet.accounts for,

’ . ” °

* ’ geometrlc and elastlc effects and 1s of funddmental im-

s ) 1 -

-

Y

I

portance 4in the statlc response of suspended cables

: s - . _When mg << Ho’ kz << 1, the increase.in cable tension' ] I

LA ) P o * - . B . - A P

‘ ’ . Kﬁ > 0 and the classical linear theory of .the taut cable

- igf recovered N
» . - . , "" ) ‘\ . ‘ _'u -

3 PR

M - B ' . 'g, . . - . . 2
e ‘ From the above stated theory, the static responSe

_of, certaxn types ‘of suspension roofs may be calqulated

- '

- o (ene way, SIDQIE layer hanglng roof Qﬂ}‘ D J
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@ - % .
L

- -

.

2. A nonlinear tHeory is developed to calculate the

>

N . reSponse.ef two tYpeswof suspension roofs (rectangﬁlér
' and circular flat Cable roofs) .to static loads.  The

- 2

b solutlon obtalned for the rectangular type is governed
R " 2 2Eh, -, 2962
* .. by.a dlmen51onless_parameter x° = (H ) (—=— T
. ‘- a“ \ . ‘- £ -0 ' o N :
ﬁ‘iS‘the thicknegs of the roogtand a its-longer dimension.

)} where

.

"“ . V;When the ratio.of roof'load per ‘unit aréa/initial tension,
- * » . w
d, /H 1s smaIl the 1ncrease in roof ten51on due to addi-

N o,.\ \ ’ i

',Atlonal 1oad1d§ 1s~nEg11g1ble and the response may be -
obtalned from cla551ca1 linear thedry,.on the other hand,

r

when this ratlo 1s~large, the requnse is*strongly non-
. . - v 2 SR
linear. . R A A
<t i ) L4 v 7 - .". <
This solution‘obtained for the rectangular flat roof
is based on work*by_Timoshenko and Goodier” using a.me@-

N ° ]

brane analogy. ~ : . .

»

The nonlinear static respdnee for’ the circular flat

roof: i's obtained from the Von Karman equations for °

. clamped thin plates. The sdlution of the honlinear equa—4

tions was obtained by making some approximations. - The

results obtained are in agreement with results of other-

.
0

analyses. g ' . ' .
- ( -

3. Based“on the assumption that the additional displaéet r -

ment due to additional ;oading"on a curved surface is o

'

small, a linear theory is developed to estimate the static’ %;
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B o N AR e 1o

. different. approaches.

“on the other hand, when these,parameters are large, the X

‘are replaeed by nodal hyperbolas.

" response of rectangular and circular curved roofg to

”

addltlonal static and/or quas1 -static loadlng The equa-

 tions formulated are based on work by Printer. The solu--

tions obtained are in ‘agreement with results derived using

r

4, ‘A theory is deyeloped for the free vibration of an

- elliptical flat tension roof, uﬁilizing elliptical co-

ordinates. From the solution obtained it is found thag
: o N ’
the free undamped vibration.of the elliptical flat roof

is governed by the ratio of roof mass per unit area/

1n1t1al tension, (m)To),_and'the semifébeus of the ellipse.

When{these parameters are sma@l,.the eiliptical‘flat roof

may be approkimated by an equivalent circular flat roof:

elliptlcal roof v1brates in a completely different way,

-

the nodal c1rc1es 1h the m&ge shapes of the circular roof

are replaced by nodal confocals and the nodal diameters

e

' ¢ . . .
5. A theory is developed for the free undafiped vibra-
' h o+

tidn of‘a rectangular hyperbolic paraboloid tension roof,

p

>

based on work by Printer. : )
A2

From the analysis'conducted, there are two forms

of solution possible for this type 6f'suépension roof.




-

" The first type of solution is that of the rectangular

. flat roof (i.e., independent of the rise of the sag and

the fall of the hogg) .~ ‘In the second solution, the
symmetric modes of vibration are dependent on the increase
in roof tension due to vibration while the asymmetric modes

are independent of it.

[

. 6. The dynamic behaviour of circular hyperbolic paraba-

loid tension roofs was not known. In this work a theory

*a

is déveloped #pr defermining its eigenfunctions and eigegﬁ‘
values; the solution cah be obtained after some approxi-

mation. . :

ﬁ ’

It is¢ found by fhis theory that the asymmetrical
vibration ﬁodes of the.cifcular hypqrbolic paraboioid'qre;
inqéiendent.of the increase in tension due to viEraéion;and
arq/the'same as fof’the'cifcul;r flat roof, but gheféymmé—
Eric modes are completgly different and are,-a@ditionally,

tension dependent. 1In the solution obtained for the.

eigenvalues, it is found that the natdral frequency of the

first symmetric modé of the hyperbqlic paraboloid roof is

about three times that.of thé flat roof (i.e., the stiff- ~ . -
ness is about nine times.greater). Also, in the solution ob-

tained_for‘the‘eigenfunctions, it is’ found that the nodal -

- .

circles in the symmetric mode shapés of the hyperbolic parabo-

loid are shifted toward or away from the gentre of the roof

- -




W4

_effect on the fre

‘and area of “the wall openings and on the area dnd//ess L

depending on the argument of the Bessel function Jn(%?f.

The resylts obtained for both the rectangular and
circular hyperbolic»paraboloid tension roofs emphasizes
that, if the roofs are shallow, they may behave simjlar. L

to rectangular and c1rcular flat roofs respectlvely in

free vﬁbration. ] . : | -7 |
] . » - Y
7. The enclosure below a cable tension roof has a great

effect on its frequency response, especially for those

modes which cause a change in the air ‘volume within the

enclosure. It is found/that the enclosure has a strong

of the fundamental mode, f01, and’

causes the mode to be sOppressed as the number of wall

-

‘openings in the enclosuré decreases, whlle -the other modes @&

‘are slightly affected.

It is found from free vyibration and wind tupnnel tests

for the shallow (flat) circular roof model that the dyna-

"mic response in the fundamental mode with natural fre-

- ’ o
qguency fo1 decreases with the decrease of area openings
which provide contributions to the mass.and the stiffness

4

X a roof. Thls.contrlbutlon depends on the number, shape

of the roof. ; |

This problem may be treated|mathematically by

<«

,
/ . ! 14
// .



‘/

on the' above mathematical treatment is in general gagree-

/t

i

v

representing the enclosure by an'equivaleﬁt Helmholtz

]

resonator. The theoretical analysis conducted and based

ment with experimental test results.
J ]
' a

p / 3y ’ . ' . A
8. The &air above a cable ten51on~rgof and within the

4

382

J ’ *.
enclosuge.below it has a great effect on the total damping-

ratioé'of the roof. »»The relative movement of the roo§ with

/4
respect to the, turbulent wind glves rise to a positive
“ v

ae;odyﬁamlc damping term which has a great effect on the

..

gOi’ and.lrttle effect on damping of other 1mportant modes

¢

110 Fa1 #0d foy-
- .? . R . .
It 'is found that the aerodynamic damping for the

-

mode with'frequeucy b ‘varies between 5% and 10%~(very

01

-

for other modes it is about 0.10% (smail), and slightly

.affected by wind velocity'and area parameter. Also, it

is found in free vibratien tests that the total struc-.

, - M .

tural and acoustical damping (due to roaf movement) for

the mode with natural frequency £ is dependent on the

01
area parameter B an& decreases with the’ decrease in

area ﬁarémeteft while other modes are, slightly affected.

-4 -

These experimental results are in réasonable agreement

with the air-roof interaction analysig.

Lo )

otal dampind ratlo of the fundamental mode of v1bratlon

high) and depeﬁds on wind velocity and area parameter Bé:

-

2
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9. The total dynafiic response of tension roofs cannot

é »

be estimated by purely static analysis ¢onsiderations.

.
°~

It is found that the resonant part of the response is

about 250% that of-theiiﬁas1 statlc response and does not ,
necessarily increase w1th wind veloc1ty. It is found N
from wind tunnel'tests that when the characteristic wave
length of the wind tﬁrbulence (gust size V/f) is about

0.33 that of the diameter of the roof D (i.e. g% = 0.33), -

a peak response occurs for all values of area parameter

C -t
and-over all the roof surface. . . : .

L

This eignificant finding ?mplies'tnat_the 1atge vi-
bration response of cable tgneion roofs to turbulent'Wind
loading does“not necefsarily occur at high wintl velocity,
but may.depénd on how the preSSure lnduced by turbulent

wind is dlstrlbuted over the surface of the roof

.Y

10. The dynamic response of cable tension roofs to tur- .

L}

bulent wind loading is governed by the shape of the roof.
4
For the clrcular flat roof model, the 1argest mean res-

‘(

ponse is p051t1ve, i.e. downward, and is observed atnthe

leeward position of r/a = 0.436 on the Yoof: this response.

~c?n be up to 250% that of the response at the roof¢centre.

Thls response occurs between 6 =.0° and 45° w1th the w1nd

direction at which it occurs depending strongly on’the,

wind Qelocity.

d
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For the hyperbolib paraboloid tension roof modél,.Qhe
maximum mean reéponse was observed at the leeward posi-~
tion of r/a = 0.436 on the roof. Unlike the flat xoof

model, the response of the hyperbolic paraboloid roof

/ :
model was always negative, i.e. upward, except when the

velocity was very high with wind direction 6 = 90°. Under

this particular cendition, a positive response was ob-

)

served.
. - 5‘\
The maximum rms response féf the hyperbolic parébo-, .
loid roof model was observed . at the cenfre, while thgl
flat roof model had a méxiﬁﬁm rms response at r/a = 0.436.

+ ’

11. FroT’EPe describeé theoretical and experimental

investigation, the response of cable'tepsidn roofs to tur-

" bulent wind loading can be predicted by using the dynamic

résponse obtalned by linear modal analysis superlmposed

" on the statlc response. ThlS depends on the pressure
“sa%ctrum usedLi The suggéstéd'model for the pressure e
spectrum, whlch is adapted from previous work by the

”author gives reasonable aqreement with’ experlments Its

further development should be promigding. ’

' 4 T '
N 2

12. A-real strugtuie can be simulated successﬁully with

an aeroelastlc model in the wind tunnel ,provxded that

)

it is 3caled; correctlx. It is- fbund from the theoretlcal

analysis coﬁhuﬁﬁed that th lative lmportance of the

-
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restoring force owing to the compression and expansion

¢

of the air gn the enclosufé below the roof and to the

initial tension applied to the roof can be exgressed in
nadoc
terms of the dimensidnless parameter ao=£ TV - 031ng
o0 <

this parameter, the volume scaling of the enclosure de-

rived is A, = Ai/Xé in which A, = the geometric scaling
. o M

AV = the wind velocity scal%ng. This siénificant finding
for simuiating the dynamic~stiffneSS of .the cable roof'
structure is in full agreement with results obtained re-
cently by others, using completely different analyses

Al

and approaches.

From wind tunnel test results, the response. of the .

¥

real structure may be evaluated.

.
13. When the enclosure below the tension roof model is
simulated correctly, the internal pressure :coefficients

may be evaluated from wind tunnel tests.

It is found that.thg mean and standard deviation‘of
£he internal pressure:coéfficieﬂts are strongly depehdent
on the area parameter B, and wind velocity and are iittle
”affected by model orlentatlon w1th respect to wind direc-
.tuﬁf For a w1nd veloc1ty of V = 28 ft/sec -(= 8.534 m/s),

it is found that the 1nternal.pressure coefficient is

-0.43 when the area parameter B, = 5.30% (N=9) and
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depreases to -0.20 when”Ba = 0% (N=0): the rms internal

&

F '

pressure coefficient is 0.09 for\Ba = 5.30% and decréa;es
to 0.04 for Ba = 0%. These values also change with a

change in wind velocity.

k)

c

'The mean internal predsure coefficient measured for
the closed case (Ba = OS is in‘'agreement with what is

specified in some standards.

14. The dynamic response is assumed to be linear, and
modal analysis is utilized to calculate the  response.

The response in each mode 'is evaluated and the total res-

ponse is the summation of all modal contributions.

~In free vibration tests, it‘is found that the impor-

tant modes with frequencies f01, flf? f21 and f02 have

well-separated frequencies.

This result facilitates the use of the modal analy-

sis_ approach. a T

15. For the two models Yested in the Boundary Layer

4 .
ent winhd velocities and terrain-

Wind Tunnel under diffe]
conditions:, no flutter or other dynamic instabilffy was

observed.
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16. The behaviour of a roof-cavity system with ‘openings
 depends on its parameters and may fall between “two

limiting cas& a Helmholtz resonator if the roof is

ver'y rigid and a "Kettledrum" if the Qpenings are absent.
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- It décreases with wind dirxection and becomes positive at

. £

t21 !

. - 383
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7.2 CONCLUSIONS . - ‘ ] . N

L4 3

The dynamic behaviour of cable tension roofs under
turbulent wind loading is governed by wind turbulénce,

air enclosed underneath, wall.openings and the shape, mass,

-

initial tension and dimensions of the roof.

As the size of the openings decreases, the natural-

frequency of a circular shallow (flat) roof decreases,
internal pressure drops and the total dynamic response:

] s, .
increases. This 'increase in response is mainly due to the

pressure (which is negative (suction))on the upper surface.

leeward. The internal pressure is negative (suction) and

decreases in magnitude with decrease of area openings, re-"

€ -

sulting in a:largef net pressure downwards, especially at -

“the leeward position, where the maximum‘pdsitive response

b )

‘was observed in experiments at r/a = 0.436. - .

The 1ncrease in the rms response is mainly due“to the

A
dlsappearance of the volume displacement mode with frequency
Oﬂ" Rega:dless of the openlngs, the modes w1th frequencies

f11 and f21 are always present and in fact, because of their

ex1stence, the maximum dynamlc deflectlon 'is not at the
centre but at ,about. 0.436 of the radius. The’ dlrectlons of the

nodal dlameterg of the modes with frequencies fll and -
f tvary (between 8 = 0° and 450) giving rise to

IRy . . - o
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a . . ..
. - ‘
‘e

anti-symmetric components relative to flow direction, this

’ ¢ .. L.
may be due to. weak correlation between .the wind fluctua-

s Ed

z e

tiohs over the roof surface.

c 4

- o N With large openings, the response- is reduced due to

. ' the presence of mode with frequency f,, and the large

» ' increase in the internal pressure.
- . A

o . A remarkable conclusion for cable tension roofs is that
3 4

the maximum dynamic response does not necessarily occur at

»

Sa . : hlgh wind velocities:. when .the characteristic wave 1ength

¥

of the turbulent wind, corresnondxng to the peak of‘the

wind velocity spectrum, 1s about 0.33 the roof dlameter,

).
a significant (peak) response occurs.

Tn tension roofs, the dynamic deflection can exceed

_two to three times the static deflection due to wind. A
generalized gust factor is net easy to obtain because. the

p mode with frequency f01 corresposds to sfmmetridal loads

‘ ‘ while the~modes‘wi£h frequencies fll and‘f21 correspond

- ’ to antisymmetric loads. The former depends critically on
' .

wall openings while the latter does not. ‘Cable tension

-

L

roofs are flexible and their movementiunder turbulent wind
creates .additional positive acoustical and aerodynamic
dampingaeffects'wh;ph have a great’influence on responseé

due to.-air changihg volume mode with' frequency f01 '
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L

Therefore, a‘proper assessment of cable roof behaviour °
in turbulent wind ghould inclide the effects of wind tur-
bulence, wall openings, air enqlosure} sQaﬁe, mass, initial

tension and dimensiens of the roof as well as thesinternal

L}

pressure changes due to roof movement. . -

-~

Such assessment may’ be successfully.achieved,by

(] ® - " -

testing a properly designed aeroelastic' model, taking into

L}

account the dynahmic stiffness due to she enclosed air
below the roof. This becomes impertant in view of the VLWi
variety of cable roof systems and tbe-giffieulty of pro-
Posing a geneéral theory for their free vibration ahd
‘ dynamic response analysis.- . | .
<; ‘ ' . . Ny . JQ\ o
7.3 RECOMMENDATION FOR FUTURE RESEARCH o
Much remains te be done in the field of cable ten-
- a ' sion roofs. In the field of statlcs, nonllnear response
under additional loading and mater;al norflinearity should .

. . B - .
. . ~ e y

) be considered. DR | T

. ' However, the majority of unanswered questions lies in

the field of -dynamics. The lasge
Atensxon roofs under wind loadlng influenge the pressure
Y coeff1c1ents and therefore in win l experlments
the pressures should be measured on v1bratinq models rather

.than rigid- models.

- "\ 4 —
N -

o

-
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. . : For cable. tension roofs, the’c¢hange in curvature )
. A . < » ’i,. s ."‘ " . ‘
‘" ” . . 1
during vibration-should be accdunted for in the solu-
’ ) - - ’ i) . . . . . w,n - -
; - tion_and the. theory should-consider dynamic nonlinearity.
. AV , ' " . - ' . | . -
" T . N . LI - ’
] .o . . . ’ 0
% . A more.rigorous theory should be formulated to account\
l - ' . U: “YI " . N it C e . ., - ‘ -
, for the”air-structure interaction.
. a ’ . ‘ .Y\\' . 5 . . ) .
. ~ '\ Finally, full scale obser itions are needed, in order
> ‘5 .
. N B )
to clarify: Reynolds number effects and other features
. . v 4 L . . .
&7 - * . & . . '
; 4 of roof response in natural w1nd\

. C \
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A.1 ELLIPTIGAL COORDINATES (from References [75,80])
\\
Polar coordinates, r, 8, Figure A.l, may be regarded )

as spec1fy1ng the p051tlon of a polnggas the intersection -

by ,of a circle radius r, and a,xadial/ilne at anq e § from

/

an initial line. A change frbm Cartes1an to polar co~

~ordinates is affected by meéns—of the equations :
r = /x2+y2 ' ' . (AT
. ‘ &
- and .
8 ='axctan-§ ) ) (A.2)
' N

’

The %irs Egq. (A.l), when r is given various constant ' .

values, 4 ‘pgesents the family of circles. ' The second,

when 6 is given various constant values, represents the
- family ‘of radial lines.

Equations A.1 and A.2 are a special case of equations -

of the'form

Fl (XIY) = E . ' -(AOB) Py d
and

F, (x,y) (A.4)

I
3
™

) " . ’

When'definite constant values are given to £ and n, these
equations represent two curves which intersect, if

F (x,y), F (x,y) are suitable functlons. 'leferent values

» P

go . 392 - -
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of £ and n will yvield different curves and a different
point of intersecéion. Thus, each point in the‘xy pléne

will be characterized by definite values of £ and n - the

valués which make the two curves given b¥ Egs. A.3 and

A.4 pass through it -“and £, n may be regarded as "co

ord;qatesf of a p01nt. Since given values of ¢, n deflne

+

the pPoint by means of two intersecting curves, they are

called "curvilinear coordinates"

C1f Eés. A.3 and A.4 are solved for x’apd y, we shall

' have two edquations of the form

o
i

and’
y = £,(6,n) (2.6)
Consider;Ehé\two equations
| \L u' o .
x =d cosh& cosn (A.7)
§ = d sinhf sinn - (A.8)
where d is a ¢onstant. °"Elimination of n yieldé
x2 ’ Y2 ) ‘ ﬁ ' ‘
S A Y M \ _(B.9)
d"cosh™g d s;nh £ <

» L3

" *The general theory of curvilinear coordinates was deve-
loped by G. Lame in the’ book “Lecons-sur les coordonees
curvilingnes”, Gauthler-vlllars, Paris, 1859. .
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' If £ is:constant, tnis is the. equation of an eflipse:
W . ‘.P BN ) .o L. ! i , . g )
with“semiaﬁesi& coshfé, d sinh&, and with foci X = +d.

For dlfferent values of £ we obtaln dlfferent ellipses,

w1th the same foei - that 1s, a family of confocal

® 4 -~ ’

elllpses, FlgurevA.Z._ On any of'these ellipses £ is

-~ "\:

: constant and n varies through.a range 21r,\

) -

%-"”‘”5’ ‘a circle

“ 1n polar coordlnates r is constant and 6 varies. 1In

A% .a

“.fact in the present case§ n 1s the eccentric angle of

ta p01“on the elllpse.“r If, on the other hand, we ;

u‘

ellmlnate £ from Eqs A 7 and A 8 by means of equatlon

* n , s w

cos2h£ - 51nh2& = 1, we have . . ‘ b

W

. g2 ) 2 T T o
R swwr suial yony el S (3.10)
d cos’’n d"sin™h = . : ’ . s . A
T L o B v - o ' r

, " For a constant value of n this répresents a hyperbola

. >~
~

. “having~thé sameg focﬂ#+d asfthe.ellipses.a Thus,*Eq. %.10

b4 vy

represents a famlly of’ confocal hyperbolas, on any one.

PN -

3 . -

‘ ) ¥

of ‘which n is constantpand £ varies, , . '
»-1 - \ N N N : ‘ (:

[N

" These coordinatés g,'n are’éallea'Elliptic Coordinates‘ >
and are very useful 1n phy51cal problems 1nvolv1ng elllp—

’
-
4 e . »

tic boundaries, C : ST e )
¥ T L “ *

oo

~ The two equations~(A.%)‘and (A.8) -are equivalent to

' B K .
1 . .. 3
' . f 4. - . v . . . .

* If a,6 are the polar coordlnates of a_point on the

L circle circumscribing an ellipse of semiaxes a, b, the

Y perpendicular from this point to the x axis intersects
the ellipse at the point 'k = acosf, y = bsinb. § is
called the éccentric angle of the 901nt on’ the ellipse,

vt
3 R 4
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* ’

e - - x + iy = d cosh(&+in) (A.11)
’ . . : .
in which the real part gives x E,d’coshi cosn and the

. imagipary part gives y = d sinhf sinn.

‘. A ' v
w - ° -

. : Referring to Figure A.2, at the extremities of the

IR}

#major axis of any confbcal ellipse, n =0, , y = 0 and
- x = +d coghf = +a. At the'ends”of the minor axis, n =
ln, 3n, y = +d sinhf = +b. 'If e’is the eccentricity of

2
the ellip®e, where d -t

. »

, and when e » 1,

»

ae, so-coshf = e
E. > 0, whi1€‘a~+wd, Thus} a long ellipticél cylinder-

degene;atesngo a ribbon of %qual length, whoée width is
[ . ' ’ .7 5 ' 3 .
2d, i.e. the interfocal distance, Figure A.3. With a J

. y . & =
constant,jif e > 0, £ > o, and the ellipse tends to a
5 ' . .
. " circle of radius a. .

- ’ L2

v

sifee d = ae, 4 ~ 0, the.foéi tend to coalesce at
# "the origin, and hcoshf - hsinhf -~ ;. If d isgconstant,
as a'+ ©, £ » o, and e +‘0,iF>that the gdnfocai ellipses

tend to become* concentric circles. Now Eqg. A.10 may be

L ) o .
- written as ¢ - ‘ : ‘

£

} . «

x2 y2 . d2
" cos®n’ "sin’n

As h +d, y/x + + tann, so ™ 6, cosn + cosf, the con-
focal hyperbolésxultiﬁatély become 'radii of the cifELé

and make angles 6 with x axis, Figure A.4.

-

[
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A.2 ARC'LENGTH OF THE ELLIPTICAL COORDINATES

™_ —Referring to Figure A.5, the hyperbolic and elliptic

arc lengths are, -respectively:

52
as; = [(%?)2 + (%%)2]%/265 | . (A.R2)
and °_ ' R . s '
as, = 1M + &hH% 2an. (A.13)
Now, ; . : . “ | ' .
%% = ? sinhf cosn %% i.d coshg-sinn
and %§ = -d cosh¢ sin; %%.= d sinhg cosﬁr

Substituting into Egs. A.12 and A.13 giveé the hyperbolic

*

]

arc length as,

dSl d[cqshzgsinzn.i sinh2€cos2n]1[?§g

d(cosh?t - cos?n)i/%ac

A
= 4 (cosh 2¢ - cos2nm)1/%ac (A.14)
z “
And the.elliptical arc 1éngth is:
as, = L (dosh2t - coszmyZan, © (a.15)

“ _ 2 a-
",gmilarly, the(aistance of any point (x,y) from the
Pt 3 .
origin, Bxpressed in elliptical coordinates, is

. $

Al
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'

-d[coshzgcoszn + sinhZEsinznll/2

2,1/2

i

r = (x2+y

d(cosh2£ - sinzn)l/2

=4 (cosh2t + cosZn)l/2 (A.16)
Y2

When £ is large enough, coshf » sinhf -+ %eg, so with 4

constant ds, ~ rdf ~ dr, dS2 ~ rdn and dé

1
in polar coordinates.

ldS ~ rdrdﬂ,.as

(=Y

. a. :
A.3 TRANSFORMATION OF LAPLACIAN OPERATOR VZ, TO

ELLIPTICAL COORDINATES '

Write Z = x +iy = 4@ cosh(£E+in), and Z = x-iy = d

cosh(élin), then z27 = x2 + y2, and ]
. - ’ .
L] —_ 2 ' 2 , . -
42272 _ ( aé + az)zz o ' o 7 (A.17)

323Z Ix oy
T ' vy
E~in, we get ’

/",ﬂfii.%k g+in, T -

d coshf and EE = £2+n2,

Z =d cosht, 7

. Thus’, . N
3 _ ) R 1 1 . ;
—— , 22 =
z d sinh¢ 3Z d sinht
.and '
2, = 2 2 .
M = ( 32 + g Z)Eg'
Y414 3L 3°n” N
So ¢



" >
9t _ 1 2 3 _ 1 3
. 9z d sinht 3% ' 57 4 ginhE oF \
2 .2 2
and 49 82'+ 9

"Hence, N
43% 3%, 3% 4 32 32
) - = T3t 373 (= + —3)
9292 ox oy ‘d” (cosh2f=cos2n) ,3& an g
or \
2 2
, 2 _ % )
. S Ve = (‘—2 + —?) . ‘
. ax .- 3y~ . -
2 2
_ 2 ) 5 .
= (= + 5) (A.18)

d (cosh2g-cos2n), 3E%  an

Equation A.18 'is the Laplacian operator expressed in ellip-

» tical coordinates: £;n.
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BESSEL AND STRUVE FUNCTIONS DIAGRAMS
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of thlS 51mp11ﬁlcataon is that the approx1mate model i's
a8 -é 2
_more amenable to the theoretlcal analy51s, conducted in

3
LA R4 . .

Chapters 4 and 5 .o ‘ . C "‘ s s

+

{ N re .. -

» “

.

" s . A O €
.

Jxe

‘. The numerlcal values of patameters for thls 51mp11—

R

‘ ;fled model and the averaged prototype geometrlcal scallng

are glven-ln Table 6. 3. The same pressure chamber was

7

usea in bOth models. Plan and elevation views of this -

slmplrfled model are shown 1n Flgures 6. 3 and 6.4.
/

Furthermore, inrorder to 519'*ate the existence of openings

1n thé prototype (doors and .windows) , nine circular holes

¥

of 3/4 inch (~ 19 mm) dlameter each are drllled in the

walls of the siﬁplified model, Plate 6.2.* This allowed

study of. the egfe%t of air movement through the‘openinQS
- : 8 , 4

on the freéuency characteristics. of the roof and the -
R '

total damping ratio of the system.

.-
o

I3 e \
- -
-

6.5.2 Sensing Devices Used in Experiment

4

2 ~ The sehsing devices used to measure the vertical

displacemeﬁﬂs were Kaman non-contact reactanee sensors

(

U
of the dlspla ment ty&e.A These dev1ces measure change

1n reactance of the air gap between the v1brat1ng surface
e
and the probe plate. , Po improve the conductivity of the

TFE membrane, a small piece of metal aluminum foil is

-
1

attached to the internal surface of the memﬁrane at the

* For the Calgary collseum the estimated leakage rate
correspands to the wall area parameter of about-r 5
to 8%. ,

>

.
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“location of each Kaman probe. The Kaman sensors are cali-
’ A4

_ brated each time they are used. The probes were located

at the centre of 'the model and at an intermediate specific

w
e

point of the baée radius at distance r 0.436a, Figure

6.5. The probe at the centreleliminated_the asymmetriéél

modes fll and f21

mode f,. WUsing the turntable iq-the wind tunnel floor,

the latter position_ was.related to 6 = 0°, 45°, 90° with

and the one at r/a = 0.436, eliminated

wind direction. This arrangement was done to separate
. )

the symmetric modes of vibratiorf from the antisymmetric

-

ones and to measure ‘'simultaneously the response at two

-

points for cross-correlation analysis.

’ . e (
. . Due to instrumentation difficulties, the attempt to
) / ." . -
measure two records simultaneously failed and the response

-

-

was measured separately. -

-
. ) -

6.6 - EXPERIMENTAL 'TESTS }

6.6.1 Simplified Aeroelastic Model

é:G.i.l Experiments in Still Air
The model was first excited in still air by means
of a iéﬁdspeaker, Figure 646 and Plates 6.3 and;6.4{‘ It
-was observed that the first symmetric mode f,,, being
the Volume-displacing mode, is strohgly dependent on the
? number of wall openings. It was found that the: frequgncy

of mode £

o1 igs increased by increasing the number of

323

»



. .
o 'dn—-13S _
.._d.rzmﬁﬁun_xu NOILVHBIA mumn_ ‘9’9 JYN9IS
- YE 2S )
HIZATVYNY
JIWYNAQ
IyynLINYLs| . g
[
HILNNOD
i
y3174 el
. ¥
AN
H308003Y | 3d092S011IS0)
3dvL Y S N s il |
Y3ILU3ANOD
_ IINVLIVIY mok%%%uuo
NV
N y
- 'y !
‘ ¥ ) 'dNY
43ImMdd
HIBWVYHD )
F¥NSSINd J
RE e )
m oy

“HINVIAS anol

© T INIWIONVHNY
mmomzum LINIWIDVIA3IA NVRIVA ‘69 mmDo_u )
. ,xr Mﬁ..,\ - !.
- ;u . - . /
N 2 . 1380ud,
. a 4 4 -
, %% 300W 3o X
. - 9EH0
_Nﬁ ¢ :w uﬂg = :4 N , .
v
10, 3g0W <= ~
4 * ) L‘.ll“ ' L)
e ° .

nt



kY

>

)
&
. i~
.7
. * PLATE (6.-3) * Aeroelastic gl_gx_i@l in Free Vibration Tests




% P ~ . \)

’ . - ’ ) [ . . : ) . )
\D,~ , . . ' /Al .
N A B -

M o : e o A
, . §31S8], UOTJ3BIdIA 9314 UT kuamEmmsmﬁha JusumgI3sSul  ($°9) HAILVId '
N . . 'y .

.. *

ty : ) ’




327

v,

- . L i .
"openingS“while'the ogher modes fll“ f21-and fo2 were-only

sllghtly affecﬁed. The variation of the natural fre-

quenc1es w1th the total area of: openlngs is shown in
v

~Figure 6.7. The frequenc1es are plotted agalnst the areg

-paraﬁeter Ba =.(NAO/Ag)x100 in which)Na= number of opeﬁihgs, i

L]
\

Ad = the‘area,of one opening and Ac’- the wall area. The

1

- [Y . 5 c
natural freguencies were established from-the spectra of .

the response to harménic excitation for df?ferent openlngs L °

and modes Flgure 6. 7a. The spectra were obtalned us;nq

o

the StrUctural Dynamics Analyzer 5423A of the Hewlett-

\fPackard Co. ¢ . . . o \,-

-

z . . '
Thid analyzer also gives the® total damping Do The-
dambing ratios found at, differenﬁ”openings are presented.

"ﬁn'Table 6 4. Thls damplng comprises all thé materlal,

e
4

s st;uctural and acoustlcal damplng.:‘ ' . \‘

. .
¢ -

3§ .

s e

The aCOustlcal damplng 1s due to the movement of

the membrane and is proportlonal to its veloolty As
{ b
the frequency of mode f01 is. decreased w1th the decrease
pN
of the area parametexéﬁ ’ the acoustlc damplng is de-~
N

creased accordlngly. Thb dhmplng ratlos of modes fll' T}

L}

fzi and £, are °n1Y’8119htly affected o s

< 5 ’ o - " [N

s 7 "f‘ D s}

5 6.1.2 Wind Tunnel Eests" SRR k,

N ¢

-

Flaw Paope&t&ab and ExpeALmeﬁtaL set Up .; coe .

° ? »

A The experiments were .conducted in the BOunda:y Layer -

/ . X v
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TABLE 6.4 MODAL DAMPING RATIO AT DIFFERENT AREX PARAMETER B

..

IN FREE VIBRATION TESTS

*  Number Mode Resonant Area Parameter  Damping Ratio
f nm Frequency NAO * Dnm %
Hz 8= &, X 100%
1 . £ 26.556 - Base open. 3.110
2 fOL 21.402 5.30 . 2:5§5
‘ 3 ,f01 18.931 3.54 2.616
‘ . 1.7 .
4 f01 14.523 1.78 2.22
. 5 fll 48 Base open -
6 fll 47.586 5.30 1.389
7. f11 "46.922 -3.54 -~ "1.343
8 fll 46.075 1.78 1.466
9 fll 44.914 0 1.053
10 £, 52 Base 'open 0.668
11 fo, 54766 5.3 1.306
T ; s \: 7
¢ . N
#
»
r 4
-
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'Ontario.

ol
J N

L

Wind Tunnel Laboratory at The Univerdity of Western

- .oy 'QI

Two exposures were simulated at: tHe w1nd tunnel floor.

-
First, the tunnel floor was covered w1th randomly placed

blocks of heights varying from 1/2 inch (= 12.7 mm) to

3 inches (= 76.2 mm) approximately, Plate 6.2.

.
Y
-

The properties of the flow at the test section are -

shown'in Figure 6.8, which shows the wariation of mean
. . * >

wind speed velocity, V(z); and the standard deviétion of
the wind velocity fluctuation with height, o,(z), at the
test section. This velocity profile corresbonds to the

_ : ’
boundary layer of ,a built-up area [34], and its turbulence

inteqs{ty is about 12% for VG-= 28.50 ft/eec (= 8.687 m/s)'

" at the model height.

#n the second phase of the -experiments, the tunnel

'floor was covered with rough carpet. The properties of

‘the flow at the test section fof~thﬁs exposure are shown

in Flgure 6. 9 whlch also shows the variat}on of the ‘mean
wind veloc1ty, V(z), and standard dev1at10n of the w1nd
veIOC1ty fluctuatlons w1th helght, o, (z), at. the test
sectlop. Thls veloc1ty proflle corresponds to the boun-

aary layer of open cOuntry qrea [44], and‘lts turbulence

f

intensity at the model height is about 8% for V., = 31.30

G

]

ft/seé (¥ 9.54 m/s).

P .
£ . q
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. >
The’ wind velocity was measured using a hot wire

deyicer‘ The spectrum of wind velocity at model height |

s presented in Figures 6.10 and 6.11 corresponding ﬁo

built-up .area and open country exposures respectively.

The length scales calculated from the power spectrums were

about 1 foot for built-up argé and about 3.0 feet for

open c?untry‘exposure. . | -
Measurements of membrane Yertigal_displatement were

made at the three diffe:enp locatiohs 'shown in Figﬁre 6.5

ueiﬁg,the Kaman prpbes. The output from the Kaman probes

system was enalyzed to 'determine the mean and ‘the stan-

dard deviation of the response ufing a-digital data acéui—

sition system. The arrangement of* the teéting instruments

is shown in Figure 6.12. . .

The HP 5423 A analyzer was employed for the’ computa-

t

tion of the autocorrelation'functidns. The number of

of 0.60 millisecond@. The power Spectrum of the membrané

model response was obtained from. the autocorrelation

ffunction by dlrect Fourier transformation. The mean res-

ponse and the s!andard deviation were obtained afte

pass;ng the total response signal into a digital acquisi-

tion system (PDP ll/ﬁglcomputer). - iy '
‘ L. L ‘ﬂ

_iTo study the fluctuating'internal pressure within

Y™ S

333

-correlatlon points sampled was 512 with a lag time interval
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. are,ﬁresented‘in Figuréé 6.13 to 6.20.

) - ‘ - 336

° -

7 the enclosure die to the movement of the membrane under

the turbulent wind, assuming that the internal pressure

v

is homogeneous, a pitot tube was inserted at the instru-

ment plate (see Figures 6.3 and 6.4).

.

Model Response
Several tests were conducted to assess the modal
contributions and the effects of openings, terrain and

wind velocity. . oo
\‘9 ' b

* kY
[}

“*  The mean and rms vertical deflection at r/a = 0 and

-

.+ 0.436 agiangles 8 = 0°, 45°, 90° with the wind direc-

ES

3 ]

tion were'measured'and are presented in Table 6.5. ,fh%

spéctra of response at centre and at r/a 0.436 loca-

5.3, 1.53, 0%) -

tions, for different area parameters (8,

a
]

When the Kaman probe jis at the centre, modes £,
and 502 appear dominant. Mode f01 corresponds to internal

02
tHbugh‘the frequency of mode £01 dﬁgrpases with smadler

A

volume changes while £ is independent of these. Al-

. .openings, and thekrefore response is likely to increase,
- . o .

.the internal pressure builds up and the square of frequency ,

[N

response modulus decreases resulting in the virtual dis-

appgaranée of resodande in mode f0£; Figure 6.15.

LJ

’ . 4

. At r/a = 0.436, at which mode f02 is eliminated,

3
¥ .
I d ‘ ’ »



uy

‘ “
only modes observed are modes fll’ f21 and €02 because

337

both the symmetric and- antisymmetric components of mode s

fll response are important in addition to the contribu-

¢ .

tion of mode fOl’ Figures 6.16 and 6.17.

When the model openings are completely closed, the

-

the contribution of mode’fOl has vaniéhed.» ‘ '

¥
%

The largest total mean response occurred at the angle .

of incidence 6 = 0° at wind veiocity 31.2 ft/sec (= 9.51 -

p
7

.m/s) when the normal openingsiyere*complete;y closed.

.
The largest total rms response was\observed at r/a.= -

0.436 with 6 = 0° to 90° and wind velocity 11.63 ﬁﬁ/sec . .
(= 3.55 m/s) when the 'area parameter B was equal to 3.54%

L]

and 0%. Thls response is the largest of all p01nts on

the roof and. was up to 250% larger than the response at

the centre, Table 6.5. ' . ) .

With smallerlopeniﬁgs (N = 0) and virtual disappearance
of mode f01, modes fll le and f02, which -are not affected -

by openlngs, remalned the only main source of response.

LR ]

4 . *
-

'Intennaz Pneébune

'l

The mean and the standard dev1at10n for the 1nternal

‘pressure fluctuatlons were establlshed and presented in

Table 6 6 for different wind veloc1ty and wall openings.

-
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VELOCITIES AND ARER PARAMETER (B

TABLE 6.6 INTERNAL PRESSURE COEFFICIENT FOR DIFFERENT WIND

= NA [A X 100)

- Wind

Area Parameter Gradient Wind _Pressure Coefficient

90°

-op
45
+ 90

-0.45

-0:20
-0.18
~0.19

Direction . ﬁg ~  Speed V . C=(mean) . (RMS)
6° (£t/sed) a4 -
0° 5.30 1 38.0 ' -0.60 0.13
45° 5.30 38.0 -0.61 ,0.13
90° 5.30 38.0 ', -0.63 . 0.13
0° 9 5.30 128.0 - =0.40° 0.080
45% 5.30 *28.0 *-0.43 0.085
20° 5.30 28.0 -0.43 .0.090

-

0% 3.54 28.0 ~ -0-37 0.07

45° . 2.0 . -0.40 ®  0.10

~

(1 ft/sec = 0.3048 m/s)

4 )




"For a ve1001ty of approachlng flow VG = 28 ft/sec
(- 8. 534 m/s) and with openings falrly unlformly distri-
buted (N . 9)-with area parameter B ='5.30% (B —-2?~ ).
A 1t was found that the mean.oressure coeff1c1ent.C§£‘;‘ i .
'—0 43" and the ms pressure.coeff101ent C = Q. 085 _

A
‘For the game area parameter but w1th wind %eloc1ty V =

"38 ft/sec (= 11. 58 n/s) both coeff1c1ents 1ncreased to o

C~ =2 -0.63 and C_ ' - = 0.13. ‘ S
qg{ ' ¢ . qo' b . . . -
. ' ' & . .
‘For a-wind velocity of Vé
but the area parameter'Ba ='3.54%,-the coefficients

, a - . -

= 28 ft/sec {= 8.534"m/s),

N

dropped to C—~ = ~0:37 and"C .= 0.07.',
. . qg‘ ‘ . ' qO'”%’ * ‘ - _— ,

Cross-Spectrna of wiﬁd‘FbuetuqtionA OQver Model Booﬂ'Sunﬁccé
To understand the corréletion betweeﬂ the'fiuctuatfné

flow velocutles aver. the roof model the cross spectra

[ l

of the long1tud1na1 fluctuatlng coqgonent of turbulent R

:7"1hd xere measured at dlfferent-locatléns )ust above the'

. . N p )
surface of the roof. These measurements showed almost Coe
S L T

‘no correlatlon of wind fluctuatlons along and across the

v , w g

roof model when thenveloclty of ‘the approach1ng fIOW'f

ﬂ.

Vé =8 ft/sec (- 2. 938 m/s), Figures 6.21 to 6 .24, and a |, u.j
small correlatlon over'the roof surfacelprng wind, when

[ -

;th = 31 Et/see (= 9.45 mys), Figures 6.%5,‘6.26.
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6.6.1,3 Effect of Cavity”bpenings on the Frequency'

‘Character .
The variation of the model natural frequencies with
NA - :
. total area parameter. Ba =-7§9-x'100 is shown ip@Figure
- R J . fo]

% 6.7. 'Figdte?6.7 indicates that the natural frequency-of

" the first symmettiCal mode is strongly dependent on the

‘ area ﬁgrameter Ba:tiecreasing with the decrease of the )
- - 3 ‘ E

IC{ total area of openings within thercavity wall, while the

| 3

natural fgequencies of the other modes are elightly‘

¢
. )

affected.'

For the first symmetrical mode, the variation of
' &

e

L4 N ' A
. O

13 1

. ~is shown in. Figure 4.16 (Chapter 4). Figure 4,16 indi-

cates that the thural frequency of thlS mode decreases

due to the increase in the addltlonal ‘mass efféct repre-

o
+ 9

sented by the cavity parameter B - ' ’ v

For the llght hlghly taut roof tested the natural

; 4

frequencxes lncrease w1th increasing area of openlngs
1ﬁdlcat1ng a behav1our similar to, that of a Helmholtz
resonator. The trends observed in Figures 4.16 and 6.7

are in agreement with the theory formulated in Chapter 4.
. , e ’ Qrmt 1€

ve

"‘ s : #

L IS

6.6.1.4 Effect of Wind. Ve1001ty and CaVLty .on Response Lo

4+

Figures 6.27 to 6.29 and Fzgures 6.30 to 6.32 show

the variation of the dimensionless total mean and standaxd’/

B
. e




w-—-m_..—‘---n——-—rw-“m“,7”.__,__”‘-_‘7‘
- a

" when. the model is completely clqsed; i occurs at the

.

deviation response respectiVely'at different locations
" - ]

on the roof, for different-.wind velocities and area para-

meter“Ba. In these figures it appearé that the greatest
L .. . . ) . * v

. response '(a positiyve maximum, . i.€. downwards) is attained

. 1

»

-

;'leewaid position of r/a = 0.436 of tHe’'roof.

w . - h x

- . -— X ~ : - 5 @
. ¢ N .-
-~ . . DI »

“Figures 6.33 to 6.35 and Figuris.6.3'6 to % .38 show

" 4 - . : .y )
the~dimen$ionless total mean and_standa!d dev1at10n res=

: ponse respectlve}y at’ dlfferent locatlons on;the roof

~
for different area parameter*B at dlfferent w1nd velo- .
cities. . . . ' .7 .*

- )

350

In ﬁhese’figuies.a sidnificant'qunomehon'ik'observed.

V
When the gust size (-) ‘is about 0.33 of the strubture N
Ve . *
size D, (i,e. fg = 0.33),.a peak»response ex1sts at,all

'area parameters and everywhere on the roof. 4 o

e

‘ ' L] N 4 ,'
) : s R
. . e

6.6.1.5 Effect of Cavity and Wind-Velocity on Damping |,

4 . . ' .
P For free vibration teets,'thé total structural and
S | N - .
acoustical d@mping ratio Do

fnm at dlfferent area parameter B 1s presente& in mpble

' »
to .
« . \ .
04. - . _‘ 4
. . « a“ ;o - N ‘o
" T

L . ? -

The acoustlcal damplng ﬁSAdue to the movement of the

roof and is proportionaixto its v1brat10n velocxty
t‘f -» . K |

M . v t

for each mode . of v1brat10n T

’



IGURE 6.27 . NON DIMENSIONAL MEAN RESPONSE’ AT CENTRE,r/a=00
* WITH WIND VELOCITIES AT DIFFERENT AREA
‘PARAMETERS (PROBE NO.2) . -

Pe/
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FIGURE 6.28 NON DIMENSIONAL MEAN RESPONSE AT ' = 0.436
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) | . PARAMETERS . (PROBE NO. | ) —_

. - s
) - . )

.......



A
« A (;gg) ‘/\

FIGURE 6,29, NON DIMENSIONAL MEAN RESPONSE AT "4 = 0436
, + WITH WIND VELOCITIES AT DIFFERENT AREA = -~ .
. o PNRAMETERS (PROBE NO 3), - S
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