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ABSTRACT . N
In the thesi ‘fects of rotational flow disturb-’
ances on a body placed an inviscid, incompressible fluid
' . { : ’ .

stream, and in pérticular’thefcaée of a%flatkplate situated

midway Betweén two parallel planes ‘were studied. A singlg

vortex approaching the'fLat-plate was first considered and

. 0N )
then expanded to simulate the effects of pseudo-furbulence
s . - ¥

on the flat plater -
The finite~element and finite-difference numerical
' methpds were evaluated in the- thesis and arguments were made

<G ‘ . -
in support of using the finite-difference approach rather |
" than the finite-element approgch: The fact that the finite-

difference technique was used for the particular-flow prob-

lems ®tudied in the thesis does not.:iS;act from the useful-

ness of finite-element methods for ofher flow problems
particularly when further research has been made on yéria4 "

tional metﬁods applied to the non-linear fluid flow equa-

tions.

Theory éor a "Rotational Channel ‘Vortex'.'. was developed M
aﬁd.used‘té prévide the upstream bouhdary conditions to
tﬁ; éolution for the unsteady flow over a sémi—infinite"
and then a finite flat platé.‘ Alsofs;ew fechniq&gs:wege
introduce&/in the thesié to predict the intefniiland ex-
ternal boundary ?6haitidns. It was fouﬁa duriné the study
that several ﬁe£hod§ were available to préd{cﬁ the bédhdar}l
ﬁcbnditions on th;'flat plate but it was shown to.bé most

important| to select the apprbériate method to formulat

iii
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‘the correct boundéqy conditions on a body immersed imr an -

unstea¢y rotatlonal flow. The dse of pseudo-turbulence

models to 31mulate the approach;ng flow was‘elso.con51dered

and it was shown that the loading on the plate could be

A ]

‘determiined using this approach For instance the ‘results

‘\/5

showed that it was pOSSlble to qigdlct the 1nstantaneous
unsteady loads on the flat plate from a particular approach-
ihg pseudo-turbulence with a particular power spectral

& .
- -

density of the velocity fluctuations.,
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CHAPTER 1 _ :

INTRODUCTION

1.1 GENERAL INTRODUCTION

This thesis investigates first the effects of isolated:

stream_disturbances, such as vortex flows, and then distribu-

. < .
ted unsteady rotational flow disturbances, such as pseudo-

-

turbulent flow, over a flat plate situated between two

parallellplanes in an~1nviscid and incompressible fluid.

The Navier-séokes eguations are capabie of describing
analytically a laﬁge élass of unsteady or-time dependent -
flow problems of practical interest. Herver;‘the enormous” -
m;thematical difficulties encountered when solving theSe -
equations have so far preventéd obtaining a single analytie’

solution, in which the convective terms interact in a general

way with the viscous friction terms. This-is due mostly to

- -

the non-lineéar terms contained in the Navier-Stokes equations.

. . ~
Exact solutions of these equations, even without the com-

plexities of unsteady disturbances in the flow étream, exist

only in a few simple cases as, for example, the fully develop-
o

ed laminar flow in a pipe or channel, Hiemenz stagnation flow

and Couette flow. Schlichting [1979] (discusses several of

\ 5. ‘“"g,‘:‘ )
"~ these 'exact!*golutions. N

The importance of the present studi arises from the
- ‘ - . ,
fact that most of the flows which occur in practical appli-
cations are turbulent. For instance, turbulence is exper-

ienced when a fluid flows along a circular pipe at a

L}




A

Reynold's number highe¥ than the Reynolds criterion or

when a fluid is contgined in the space bétween two concen-

tric cylinders which rotate in opposite sense at high speed.
: A

Sipce.the“flowsy just mehtioned, ‘are continuously éffected

by the containing walls, ,such tﬁrbulence_is called "wéll i ‘

turbulence". furbulent flows also occur when a fluid flow

exhau;ts fFom an orifice at high speed or flows.over a grid

of bars placed normal to the stream direction. The tqrbﬁ-

lent flow which exists downstream of the jet or grid ‘of

- .

bars is called "Free furbulence".
One essenfial fegture of gurbulent fluid flow is tha;.
the fluid appears as a congiomeratlon of rotatlng flows
which 1nterm1ngle and wander along separate paths in a
random manner. In a model of such a flow, a mgthematical’
expression tha£ appears suitable, to express such a motion:

is thé vortex. /

s The possibility of studying.the effect of stream tur-

bulence-on the flow characteristics by using a mathematiéal
4 . , '

model to represent the approaching flow, was enhanced by

the successful works of other researchers as, for example,

the work by Lilly [1969], Base [1970] and Ahradi and Gold-
schmidt [1971] In the present wofR a single vortex and a
]

turbulence model were used to simulate the upstream boundary

cc:. - - )
P

condltlons, while the Nav1er—Stokes equatloﬁs were solved

bl

-‘near the solid Body to predict the variatioh\of the flow

characteristics with time. The pseudo-turbulenge model

used for determining the upstream boundary conditions, has




& S . Ly :
recently been described in the literature by the acronym

"FAVR", which in full form is "Firfite Area Vortex Re ioné"{'

through the trailing vortex wake of ano

-~

. introduction-of large *"jumbo" jets in
C :

el

airports, increased to avoid possible

A typical physical_problém for example, that e compasf\

ses these difficuylties, is the case of ‘an aircraft flying

.

- . . N . . [ Lad . N
raccelerations taused by aircraft- trailing}vortex /interfer-.
4 ' -

ence.“;This phenomenon is of:§uch,imp‘

Conference yas devoted to the Lstudy“o "Aircrafy wake tur-

Y

bulence™, edited by Oiéen

‘e D

techniques predicting aerodynamic.wi
availablé to’the dé;igner.
This study may aisé be of special interes
& of stu'dying,the' aero&?n'amic loading bn {:1« lz;ridg,

to a turbulent storm. Thé‘meshod may also be
' |

in fpe case

| 3

sed t

subjEcted

simu«~.
|

late .the effect of a singlé vortex_o a tornadp on d;parj

ticular high-rise building which would act as ja thiA flat

»t L .
plate subjected to a single vortex.

+ -
-

- I

1.2 . LITERATURE SURVEY f

’ ' .
In this study, since [the ﬁgeudo turbulenc

S .
was assumed

-~
a complete




oped gha; ﬁo£JOnly we{e Fefetiehel'hpt also eat;sfied the
essential jwall boundary.conditions~9fjtheznon—porous wall.

Pravious s;udies on such rotational functions applied
to invisc’d\and'incompreseihle flowhéré ecarce and only

the. ppte tial functlons are-mentloned mn the c1a551ca1

. works oigLamb [1932] and Prandtl and Tletjens [1934].-
. . /
of
; studi
. . . R '_; Ki

¥ city jaround a cylindrical body. The study was limited to
fiuctuathps of ’small magnitude relatlve tovthe main flow
while cbnstant in direction. Glauert Il956] 1nvestlgated
the problem of the two—dimensional laminar bounda}y layer .

on an infinite fiat plate normal to the approachlng stream
4/ . \9

‘for the case when the plate was makind, transverse oscilla-
4

s

‘ﬁaons in its own.plane. In h;s~work, the oscillations of
the flat plate Qere limited to be harmoﬁic. Ting [1960)
~studied the problém of the develeﬁment of a boundary'layef
4 . OVer a flat plate in the presénce of approachlng shear flow.
| 'A similarity solutlon was.obtained for large approachlng .

vorticity while for moderate'free stream vorticity the

i 4 - .
governing equation was replaced by an approximate one for

-

which a similafity,solution existed. A similar prdblem-

{ A
! e
‘

M ¢

i




~

concernijng the shear flow past a flat ﬁlate~was also

studied by Mark [1962], while an investigation for tfie
. ~

.-

pre?sure gradient induced by‘a shear floﬁ'past a flat plafé

o

was presentédﬂby Glauert [1962]).. Camiletti and Zamir - - .,"_

[1980/1981] examined the characteristics of laminar, steady,

a

incompressible flow past a semi-infinite flat plate placed'

Y

symmeﬁrically in a ‘two-dimensional channel.  In their worxk .

~

the incident Poiseuille flow was perturbed in the core by

boundary layers growing:. on the wall and onghe plate. Ex-
- .\ 4
pressions for the stream function’'and pressure gradient were.

-

" determiped by the method of matched- asymptotic expansions.

- In another study the evolution of an ipfinitely long -
’ .

straight vortex filament in the presence of an apprghching

-

rigid sphere was considered by Dhanak [1981]. -Similar to

-

the study in this/thesis, the fluid was regarded as being

inviscid and iﬁcompressiblg. The shape of the vortex fila-

4

ment when the sphere was sufficienﬁly far away from the
vartex was dépermined approximately using linear theory.

The  subsequent evolution was followed numqfically by inte- .

grating the non-linear equation- of motion.

L

Numerical methods have also been used with considerable

/4

success in the study of unsteédy.flows approéching solid

bodies. én these studies the finite—differéngg method has
extensivg}x,used. For'example: Fromﬁ and Haflows{l963]

describéhgz nume{ical method for the éqlutiog Af a finite-
dif?erehce aépfoximation’to the partial éifferential equa-

’
-, .

viscous fluid flow.

.~

tions of an unsteady, incompressible and

&




°

In their work they studied the.development of a vortex

. . ‘.
S

street behind a plate and rectangular cyllnder whlch was-

impulsively accelerated to a’ constant speed 1n a channel of

flnlte width. ' : - ;

Thoman and ‘Szewczyk [19691 studled the tlme—dependent

viscous flow over a c1rcular gyllnder for a range of

Reynold's number from 1 to 3 x lOi. In thls{study,‘the

. - J - . N
. authors gave more emphasis to the features of flow deyelopf

<
* , . -

v

ment when the flow started-iméulsiVely from,rest‘ The ™ ¥
“method‘was\of the explicit type of solution andfincludea a'
airectional differeénce scheéme for the non—line;r_termé,which
enhanced the stapility,of-the solation:so”that_a.nigh value
of Reynold:s nuﬁber'could be.achieved. . . ﬂ .
] » .

—
~

% The problem of calculating the initial flow past 3
cylinder inﬁa viscous.ﬁluid was also investigated, by Son
and Hanratty [1969] who tried to soive numerically'the time-
dependent equations of motion in order to extend the range

- gg avallable data on the steady flow around a cyllnder to
large values of Reynold's number Dennis and Stanrfbrth
[1970] later suggested a method in which the cylinder was

" mapped tg a stralght line by using a conformal transforma- -
tion. This method could be used to solve the eﬁudtions for

)-higher values dfnReynold's number. Jain and Rao, [1969]
investiga ed the numerical(soiutions with particular émpha-
'sis on the existence of thé limiting steady state of the

Karman vortex street for different Reynold's number.

s
Phillips and Ackerberg [1973] considered the problem

q

.
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v
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-

of an unsééady flow over a semi-infinite flat plate which

was parallel to ‘the oncoming free stream. The flu}d‘velo—

Y

city outside the boundary layer,.similarly to Lighthill's

solution mentioned previously, was assumed to vary with

time sinusoidally in magnitude '‘but not in direction. An
implicit finite-difference'scheme of thequcoﬁq order

accuracy was employed using a variable mesh size across the
b ’ . . .

5
@

s

boundary layer, ' ,
éébeci and Smith [19791 suggested aﬁ‘implicit'finite—
difference method fbf solving the sﬁeady lamin&r and turbue‘
lent boundary.layer equations for compressiblg and incom-
Rressible flpws about tWonimenéional‘and éxisymmetric
bodies. In this method the. momentum equatigp was linearized
by replacing the Reynold'é stfess (éuTV') by an:éddy visco-
sity term using Prandtl's’mixing theory. More applications
of this method were later reported by Cebeci,'Smith aﬁd
Mosdnskis [1970]. - ' “
A Crank—Niqolson finite-difference scheme with a vari-
able grid was inQéstigated b? Blottner [1974] and it was
showrn that the scheme was more efficieht and more accurate
for éoLying turbulent boundary layer‘équations than the |
prévious methods used: De Rivas [1972] studied the trun-
cafion error associated with the use of non—uniforﬁ gfids
in finite-difference equatipons. He showedhthat although
the finite-difference schemes that used uniform éfids were
the simplest and most accurate, the use of a suitable trans-

s

formation function for stretching the finite grid coordi-

.
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nates could be useful in decreasing the'truncation error

with non-uniform grid schemes.
To decrease the truncagion error associated with the .

_ »

finite-difference approximqtion, Hirsh [1975] applied a -
hrigher order finite-difference- schemé for solving fluid

mechanics problems. 1In a comparison between computed

«

‘ ’

results obtained'Eé using s@cond order and also fourth order
methods, it was showﬂ that the accuracy achiéved by the
fourth order coﬁputations were significantly éetter as
wéuld‘be éxpécted for:the same mesh size. It may be men-~
tioned that in general it is the aQﬁhbr'S'opinion éhat
accufacy is not the only critefiggiwhen ;eeking a‘sorut;on

* by finité—differénce'methodg,u THéﬁstabiLity of thefsoiufion’
-~ .

is of’ equal, or even more, importance,

»

A}
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. ) . . ' ' P . . p i .
Bwyer and McCroskey [1972] summarized.the many diffi-

culties associated with the numerical solution of the three-
dimensional and unsteady boundary dayer problems gsE ‘ -
R N é
1) obtaining proper and consistent initjal and

boundary conditions for the equations.

L

2) - developing a stable and unique numerical scheme

¢

-£0 solve the equations. -

3) calculating the flow up to fhefsepafation line. .

In the same work, Dwyer and McCroskey developed an
implicit finite-difference scheme which was used to inte--—

grate the three-dimensional time-dependent boundary layer

”

equations.. It was noted that it _was best to use an implicit

-

scheme when studyfng the gase of a solid ‘body in a fluid ';

‘ | e T B

¢ N s




.is the finite element method. 1In

- S .
foil set at an angle of attack to the incident stream.

flow because-of the stability problems that can occur with

-

"~ explicit schemes'particq}arIY'neer the leading edge of . the

body . ' -

‘Other work on thé use of finite-difference approxfma-

tion to solve boundary layer equatlons\include the works by

.

Singleton and Nash [19741, Cooper and Reshotko [1975] and

Cebeci [1975].

_ Another numerical approach to solve the flow equations

971) deVries and Norrie

applied the finite element method to sol\e field problems

"governed by Laplace s eguation, and in part;cular, to .

potentlal flow problems. The method of solution was then

appfled to the problem of a potentiail flowdzjﬁh\E\uniform
3veloc1ty approachlng irreqularly shaped bodies between two

parallel walls’, and to the problem of the flow over an aero-

+

Vooren and Labrujere [1974) solved the case of an incom-

pressible, inviscid ‘flow over arn aerofoil in a non-uniform - e
. ’ ' : , - .
stream using the finite element method. ' Another application

of the finite element method to6 solve potentidl- flow prob-

lems was given by Doctors [1970].

& A numerical method forysolziyg_t§§sNavierwstokgs equa- °
tions using the variational Epproach was developed by .

. Atkinson et a£ [1969 1970] for the class ‘of creeping flows

where the 1nert1a forces wére negligibly small compared to .

the viscous forces. Thompson and Haqie [1973] developed a

higher order-fipite element method for the Enalysis.of the -




créeping flow of an incompressible material.

4 - Cheng [1&72] suggested a finite element method for
solving the Navier-Stokes equations for any arbitrary ré—
gion of'interest. The method for solving the development

\wiéh time of an unsteady flow approaching steady stFte was
suggested previouslyﬁbf.Croccé [1965]. This method was
applied to study the blanar two—dimensionai viscous flow-

’
inside a channel with a cdnst;iction. Olson [1974] applied

." the finite elemeqs metﬁgd to solve éteady two-dimen-

¥sional and axisymmefric fléw prgblems. This method of sodu-
éioﬁ was verified by qpplyfng it to the  solution of the .
circulatory flow in a sqﬁafe'cavity and the flow over a
circular cylingf.' Brétandw and Ecer [1974] also used the
fknite element variational approach and apparently have
developed a'more\general'approach to, the unsteady viscous
flow over an oscillating aeFofoil.

‘ ;"Smith and Brebbia [1955] described a finite element
me£hod‘for the solution of transient, incémpressible vis-
‘cous flow in two-dimensions. Ehéy applied this method to
study the development of tbg‘VOrgex street behind a rectangu-

. lar oba};yction where the flow hag been impulsiv;ly acceler-
ated to a constant speed inkgaéhanngl of finite width. The
Reynold's number range invest;gatedfwas between 20 and 100. ,

‘,Recentlyt Bad; [1977] and saQr ;nd Base [1978/1979i

useq'the finite element variational .approach to study the

response 3f the laminar layer, on a fiat plate to free stream

disturbances. ‘In this study the rotational disturbances

i

A—«w.
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were simulated by randohly_positionedﬂmodified Rankine
vortices which were superimposed on the oncoming uniform
stream. : -‘; | - .

- More applications of the finite element method for
3 sgivfﬁg fluid flow problems include the works of. Guymon ’
' {1972], Baker [1973]), Lieber aﬁd Attia [1974] and Taylor
‘and Hood [1975].
Due to the difficulties, up till now, in obtaining
a general numerical solution for the Navier-Stokes equa-
tions, considerable experimental testing has been performed
in order\to obtain important information on the effects of ,
an approaching tdrb@lent flow on the loads on a body élaced
in the flow, Kestin [1966] investigatﬁp the effect of tur-
bulehce intensity on the drag.coefficient of an infinite
cylinder in ifosé'flAW. It was found that there was a crit- .
ical range of Reynold's number .for which the drag coeffi-
- ciéné depended strongly on the turbulgnce intensity as well

-as on the Reynold'é number. Outside this range the effect

of turbulence intensity on the drag coefficient was found
toﬁbe neéligiblé. Erens and Chasteau [1974] carried out
measurements of the response of the laminar boundary layer ;%ﬁ
to free stream disturbances. 1In this work they concentrated,
on'the frequency'analysis of the streamwise component of

the laminar boundary layer velocity flpctuationé at various

’

points along the length of a flat plate. No measurements

were reported for the variation of 1ift and drag due to the

disturbed stream. Perry ef» af. [1981] used a smoke tunnel
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to carry out a visuai study of turbulent spots and showed
that thése spots consisted essentially of an array of~vor-"
tices. & '

In the figld of aeronautics, the response of\aircraft
to free stream disturbance has centred on the pow;; spectral
methods. These methods circumvent direct trea&ment of’
random time functions by relating the statistics of a linear
system's response to those of the eicitatigq through a non-
statistical 'transfer.function'. For more details about

these methods see Liepmann [1952,1953], Sears [1956] gnd

Filotas [1969].

1.3. THE PRESENT WORK

The intent of the present work is to study the effects
of stream dis;urbaﬁces on a flat plate situated midway be-
twéen two parallel planes in an unsteady, incompressible,
inviscid, }otational fluid flow.

An initial solution for a potential flow test pfoblem
using the finite'élemgnt variational ap%roach, together
with the discuésipn which led to the using of finite-differ-'~
ence méthods in the final "solution" are presentea in-
Chapter 2. 'The:gaverning fluid flow equations and the .
finitesdifference analogue together with the method of solu-
tion are presented in Chépter 3. ‘

Chapter 4 preséntsvsimple vortex models as well:-as the

derivation for the mathematical expression for the rota-

tional vortex used to simulate the| styfam disturbances be-




tween two parallel planes. This new rotational vortex

@

expressipn between two’para<%el planes will be called the
"ééuivdlent modified Rankine vortex"*aﬁg ;ill be used to
simulate the flow stream disturbances in Chapters 6 and 7. '
Due to the importance and the effect of ﬁoundary con-
_ditions on the final fluid flow solution, a comple£e chapter

(Chapter 5) was devoted to address the methods used to

¢ . : . .
evaluate the different boundary conditions. New techniques

Y e T T

for evaluating the time-changing boundary conditions around
the.splutioﬂ domain .and oﬁithe flat plate were intreduced
and resulted in faster convergence towards a solution as
well as having the downstream and Fhe solid body boundary
condi£ions dependent on the flow conditions upstream.
: In Cﬁépter § the new rotational vortex expression dis-
cussed in Chaptef 4 as well as the new bopndéry condition '
%echniques discussed in Chapter 5 are‘applied to study‘the
proElem of a single "real" vortex approaching a flat plate
between two parallel planes in an inviscid, incompressible
fluid flow. A complete discusgion of rgéults are also pre-
" gented in the same Chapter.
' The effect of flow'§£ream pseudo-turbulence on the
flét plate, togethgr'wit$ the resulting time variations of
the plate 1lift and pitchiqg mo%ent coefficients are pre-.

sented in Chapter 7. The same Chapter also presents sta-

"+ tistical analysis used to analyze the computed’ data together

with the conclusions of this study, on’pseudo~turbulent flow

4

appfoaching a thin at plate,

¥

* .
Alternatively it is called "Rotational Channel Vortex"

™
/ .
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Finally in Chapter;8, the gener conclusions concern-~

ing the approach including the finite—différénce method and

- the results of the two particular flows.are presented,




CHAPTER 2 - ‘e

THE FINITE ELEMENT APPROACH FOR

SOLVING POTENTIAL FLOW PROBLEMS

2.1 INTRODUCTION °
Two major typés of nhmérical methods for solviﬁg\dif—.
ferentia; equations have bgen established. The first is
the use of finite-difference methods, which are pre-
sented in Chapter 3, in which the direct substitution of
the derivativés'in the governing equations by their finite-
difference approximation will result in the differenée ana-
logue of the equations. Thé application of this anaioghe., ‘
to each of the mesh points in the flow field will result in
a system of difference equations which can be solved to . -
obtain the required numericél solution, The second method,
which is.discussed in this Chapfer, is the use of the finite
element approximation where the characteristic equations
can be derived by using the variational formulation of the
“governing equations. The basic idea of using the finite
element méthod, wﬁen used to solvé field problems, is to
divide the solution domain into a finite number of sub-
domains or élements. The shape of the element.to be used
may be t;iangular, rectangular, quaﬁrilatéral or curved,
Once the type of element has been chosen and a finite ele-

zjrt mesh has been constructed, the behaviour of the unknown

eld variable over eacﬁ element can be approximatea by

,

15

e a ol R o et S AN 2




5,

“ - 1§

1

éontinuous“functions expressed in terms of fpe nodal values °
of the field variébie: or in terms pf a subset of genera- ‘
lized variables, and sometimes.the nodal values of its
vderivatives up tp'a certain order. The approximate rep;e4v
sentation of a two-dimensional field variable ¢(x,y)iwithin
an element 'e' can'be written in terms of the element un-
known parameters at” the nodal points‘¢j as,

6 (&) (x,y) = I™ N3(x,y)4y -+ o (2.1)

j=1 ‘ .

where m i;‘the:number of upknowq parameters and Nj(x,y),
j=1,(m are the element shape functiens. .

The element.shage,function is usually-chosen to satisfy
certain continuity requirements of the field variable and

its derivatives at the element interfaces joining the nodal

points. More details concerning types of element shape

- furictions are given in Zienkiewicz [1911i and Huebner [1975].

-The main approaches to derive the finite element char-
acteristic equations for the governing physical equations’

of the problem are:

f

14 ¢
l) The Variational Approaéh o
In this apéroach, a phyéical préblem governed by a set |
of differential equations,“may'be equivalently ex-
pressed as an extremum problem by the methods of cal-
culus of variations. For example, if one considers

the simple problem of potential flow governed by

Laplace's equation’

»

P
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‘Using the'samé'theorem, it follows (that the extremiza- .

. approximately satisfy the given~diffeﬁenti51_equatién'

(34" -

awz ‘ .
5;1 ]d x d (2.3)
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Iy Gey)l = ” f{x.y,w,g—;’;,g-;”;] x dy (2.4) ;.

will result ip the following differential equation

of 3 3f 3 3f .
—_ - - 2. - 0 (2.5)
Y X [3 g_q}:_ } oy l:a __L_p_:l .

tion of the functional I (y) in Equation .(2.3) is a
necessary and sufficient condition for the satisfaction

of Equation (2.2). - ' B o
The Weighted Residual Approdéh \

. . o - -
In this approach two steps have to be carried out. The

first step is to assume a general, behaviour of the

7 . A . - Y

dependent field variable in such a way .that it can ~ S
» » .

- , ,

\ .,
and the associated boundary conditions, The substitu- .Y
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/ . a T J‘ » ' . . L - ’ 1 8
/- tion of this approximation into,thé differential equa-
| tion results in some® errors called residuals. - rI‘hese

fesiduals are required to vanish in some average sense

-

over the entire solution domain. The next operation

*
L3

is"to solve the equationsurésulting from the first
\Etep to find the approximate solution.
3) Tﬁe Direct Method )
This method can be used only for relatiyely simple.
) problemét The procedure is to apply the‘governing
equations Eo egch inaividual element which results in
e a number of élgebraic equaéions. The set of equaﬁ§0ns
ariéing from the éifferent elements can be arranged
in a matrix form and solved to obtain the re§uired
solution.
. g ' s
fhe.details of the three different approaches; includ-

iig many applicgﬁions are given in Zienkiewicz [1971],

Huebner [1975] and Dasai [1972]. . ° '

In the following section a simple test problem is
solved bytthe variational finite' element apgroach, with a
discussion oﬁithé proble@s encountered which were a‘’decid-

ing factor to use the finite-difference approximations'in

solving the unsféady; inviscid, incompressible fluid flow

§ . 1)

. \ . over.a gemi-infinite flat plate situated midway between

' two parallel pianes.
. - ' A

" ‘ ’ \



. 2:2 TEST PROBLEM - POTENTIAL FLOW AROUND A CIRCULAR
CYLINDER - ‘ o
The finite element technique was tested by applying it «
to the/two-dimensional”potthial flow problem of a cylinder

in a uniform stream. The velocity-stream function-relation-

ship was defined as follows:

Since the potential flow is irrotational then,

- ] R .
vxU=0, ' | (2.7) -
\ A
Hence, for a two-dimensional potential flow,
v du _
‘3% "3y -0 L (2.8)

{

Substifuting Equations (2.6) into Equation (2.8) results in

obtaining Laplace's equation whichlis,

2 . 2 , -
LAy +-%§% =0 ? . (2.9)

Solving Equation (2.9) together with the, associated

boundary condltlons would result in the stream functlon

dlstrlbutlon in the potential flow, and substituting back

into Equations (2.6) would result in obtaining the velocity

field.

2.3 DERIVING THE FINITE ELEMEN? EQUATIONS FOR THE TEST

-

PROBLEM

The variational functional of Laplace's equation was




’

E3

given in the previous section, which is

1] @) =J}[ %—[

triangular shape element was chosen where the nodes

o

2 : .
%%q ] dx dy (2.3)

are situated at the vertices of the triangle, as shown in

{

the figure below.

In order to extremize the above variational functional,
a linear shape function was' assumed to represent the' varia-

tion of the field variable over each element, .such that

Yy = Ax + By + C » (2.10)

-

where ¢ is the'stream function at the point having ¢o-
"ordinates x and Y. A, B and C are consfants ‘to be deter-
mined in terms of the nodal variables. -

Substituting the noagl variables and their coordin;tés

into Equation (2.10), the following equations can be ob-

t

tained:
Vi = Axj +Byj + C ‘ (2.11)
A} v .
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Uk = Axy + Byy + C~ ‘ (2.13)

Solving for the constants A, B and C and substituting
into Equation (2.10), the value of the stream function VY
at any point within the element can be written as dependent

on the nodal values (Vj, wj, V), hence, - !

Vo= Nj Yo+ N§ Uy kN v (2.14)
where”’ .
N = Lgygeagyg) + gy x + (x-x35)y1/28 (2.15)
Ny = [(xkyi-xjyx) + (Yx-yilx + (xi-xg)y]/2A (2.16)
'ONg = [(xiy4-x3yi) + (Yi-y§)x + (x4-%3)y]1/28 (2.17)
and
1 1 1
20 = | % x5 ox (2.18)

twice the area of the triangle ijk

- \ N
Substituting for the variable ¢y from Equation (2.14)

into the variational fﬁnctional, Equation (2.3), yields

) 1 (N} N Nk ]2
= = l—y; + .
. e [[ 2[[8x Vi ax Y3 ax/wk
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where the subscript e denotes the element.
The variational furctional for the whole domain @ can

be written as,

1o = . I

e-e (2.20X

Using the-variational principle that a solution would

exist if the functional is extremized, then

[BI] ~ 5 01

oNj 9Nz aNk aN;
= __l E R ———. l_i
Ze ”[[ax Vit vt o YRSk
ONj N Nk N;
j i
+ . —_— —=| dx 4 2.21
{By Vit gy Y T 5y q’kl By] x dy (2.2
where .
ONj  Y4-¥k o
% "33 (2.22)
BNl xk_fj . !
Y o 35 o . , j (2.2?)
ON- Yx—Yi . -
—_—d = 1 -
% 5A ” . (2.24)
and so on.
Equation (2.21) can be rewritten as follows:
°Ig _ : [ = 2.25
-a—w; = Ze-(Miq)l.-" Mj\l}j '+ Mkwk) =0 ,,( . )
where P “ !
. l‘. 2 2 ) , .
My = ir {(yj—yk) + (Xj*Xk) } (2.26)
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N ‘ ‘Mj = le {‘:yi"yk) (Yj'yk) + (‘xi—xk) (:éj-xk)} (2.27) -
1, AN \
My = 77 [(®-v3) (vy-yx): + (xi—xj)(xj—xk)} (2;28)
K(; B .. Applying Equation (2.25) to every modal point inside

£he domain, would r@suit in n linear algebraic equatiéns .
with~n unknowns (n is the number of nodal poinis). Solving
these equations toéether with. the bbundary conditions would

. result in obtaining the streain function distribution inside
the domain: ’

The velocities could be obtained using Equations (2.6)

which are
S . _. oY
u —-%§- ané v = T .§2.6)

Substituting for ¢y from Equation (2.14) Afsults in,

< . (] . »
© 0 ANj N Ny :
O e T
o = [(xk—xj)wi + (xi;kk)wj + (xj—xi)wk}/ZA (2.29)
N [
and-

<
}

= - [(Yj-yk)wi + (Yk-y;)by + (yi-yj)wk]/ZA (2.30)

From Equations (2.29) and (2.30) it can be seen that
the velocities (u and v) for each element are constant,
which would represent the velocities at the cehtrpid of

eaeh triangle.

Figure (2-1) shows' a coarse finite element mesh with '

straight boundaries for a pbtential'flow around a cylinder.
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Figure (2-1) Coarse finite element mesh, with straight
’ ) ) ‘ boundarles. .
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The corresponding stream function contours (stream lines)
obtained by the use of the finite element apprqach are

shown in_Figure (2-2).

A finite element mesh was then constructed such that
the centroids of the triangles adjaceht to tﬁe*cylinder
Qould lie on its sprface, so that the constant velocities
obtained_for each one of those elements would represent the
velocities of the centroiﬁ point on.the qzlindér surface.
Figures (2-3) and (2-4) show the finite element mesh used
and the correspénding.stréam lines. The velocities were
fhen compared to the values obtained from the theoretical
solution for pohent&al flow aroun& a cylinder, as shown in

the diagram, (see Glauert [1959]), which are,
~u = 2 U siﬁe sin®

v = -2 U, sin® cosf

Such a finite element mesh gave‘a pérbentage error of

35% in thé values of the velocities on the\gyiihder surface.

El -

—

Investigating the source of error, it was found that for
the elements adjécent'to th? cylinder, the aspect ratio
used (height of triangle/base of triangle) was about 1:8.
Upon modifying the aspect ratio of the ;ame\q%ements to be
close to unity, while the centroid would no longer lie on
the cylinder surface, the perc?ntage error’ was réduced con-
" siderably to‘about 2%. )

Another numerical solution was carried-out by increas=-

[§
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Figure (2-3) Finer finite element mesh
with straight boundaries.
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»
ing the total .number of gigments in the flow domain, while
keeping the number of hodal points on the cylinder constant.
In this case, also a larger-~circular outer boundary was
used, as shown in Figure (2-5). Ironically, although the
total. number of eieménts was increased, ié was found' that
the accuracy aecreased’and was worse than for the case using
straight outer boundaries to the solution domaith (see Figure
(2-3)). The stream function contours for this fihiég ele-

¥ , & -

ment mesh stencil are shown in Figqré (2—6).;'* ‘
'(/” _ From the attempts reported above,'it was shﬁwgyéhat
. the accuracy of the solution was Qery much dependent’;n :
the finite element mesh stencil shape. Also, t£ese studies
illustrated the importance of the aspect ratio of‘the‘ele-
ment over the number of elements used inwterms of obtaining
a“more reliable solution. .
The above mentionea probiems may be attributed to the
.type of element as well as the shape function used. 1In
order to overcome these problems intuitively, a higher order
or isoparametric element should be used. ‘ e
It was noticed while using the finite element approach
in'solving’ this test problem, that the mesh éymmetry did
affect the solution. For example, an asymmetrical mesh

around the cylinder produced an asymmetrical velocity dis-

“ t¥ibution. This

esult was also confirmed by Rasmussen

11981] and Gadallah [1982].

In order to\obtain a more reliable solution using the fi-

{ [1980], Mahmou

nite element method, the finite element mesh stencil has to be

[
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re (2;5) Finite element mesh with circular

boundary.

R T o en r
Figure (2-6) Stream lines using the
° finite element mesh of

Figure (2-5).
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symmetrical., This symmetry problem makes the finite ele-

ment method not so attractive a method in solving fluid
flow problems over solid bodies with complex geometries and
approaching asymmetrical unsteady flow. In the next Chapter

the alﬁernative approach to solving the fluid flow prbblems,

the finite-difference method, is discussed.

v
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- CHAPTER 3

. THE FINITE—DIFFERENCE'ANALOGUE TO INVISCID,

INCOMPRESSIBLE FLUID FLOW EQUATIONS

3.1 INTRODUCTION

In spite of the fact that the numerical methods will

[l

never lead to an exact solution, the success which has been
aéh;eved in solving different problems with a relatively

high degree of accuracy, has greatly enhaniced the importance

and effectiveness of these methods as an efficient approach

¢

for solving general field problems. Devéigﬁments in numeri-
cal procedures were encourageé by the inwvention and fastk
qe0e10pment of the electronic digital computer.

In this Chapter, the equations used in solQing‘two— .
dimensional incompre;sible,flow problems are first presented,
followed by their finite difference analogﬁe used in the
preseﬁt work.,

‘,
3.2 THE GOVERNING EQUATIONS

The fundamental.équations for the incompressible flow
of a Néwtonian fluid with no body forcesland constant pro-
perfies afé the momentum equations (Naviér—Stokes) and the «
continuity equation (see, e.g., Lamp [1932], or Schlichting

s

[1979]). These "‘equations can £ written as follows:

p + v V2U (3.1)

9 L
(ﬁ"' I_J..Z) H—

Ol

)

and Z.g = 0 ) (3.2)

30
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where . - >
‘ﬂh‘ - ‘ . . . .
U is the velocity vector . '
P is the pressure
ot is the ti@e

o is ﬁhe mass density of the fluid

and v is the kinematic viscosity of the fluid.

In the case of two-dimensional flow in the (x,y) plane,

the equation of continuity can be satisfied by introéucing

i
the stream function ¥ such that, \ //
- 3y S\
i and v = - A . (3.3?

where ; and v are the'velocitQ components in the x and y
airéétions respectively. | '

Eliminating the pressure term from_Equation (3.1),
(see Appendix (A)), and introducing the Qbrticity vector §

defined by the expression
Q=z%xU (3.4)

the resulting equations can be written in two-dimensional

form as follows:

30 50 30 _ 2 .
STt UtV =Y LAY , . (3.5)
'where
-0 =V K (3.6)
32 32
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and § is written 3§_the component Qs in the vort1c1ty
. ¢
vector Q. _ o é\,/'
' Equation (3.57 is called the Helmholtz vorticity trans-

port equation and Equation 13.6) 'is called the steeam func-

-

ES

For the case under study of an lncompressible inviscid
fluid flow where the kinematic viscosity coefficient is
considered to be eero (v = 0), then the right-hand 51de of the
Helmholtz equatlon would vanish, while the contlnulty equa-

tion remains the same, so the equations to solve would be:

vy = -0 . ' (3.6)
30 0 I : o
and Ft— + u ﬁ + V‘a—y' = 0 7 - , - (3-7)

It may be of interest tg that Equation (3.7)

is first order in space and 1N gnd the solution for all

X, y >0 and t > Q is completel specified by an initial

condition functlon, p(x,y 6), and boundary condltlon values,
Q(o,y,t) and Q(x,0, t)
A relationship between the pressure field and velocity

field can be obtained from Equation (3.1), (see Appendix

(a)), and.can be written in’ the Eho—dimensional form as,

Vlp=-pQ . _— (3.8)

(3.9)
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Equation (3.8) can be used to obtain.the pressure
distribution from the known velocity distribution if the

boundary conditions of the pressure are known.

3.3 DEDUCING THE FINITE-DIFFERENCE PdISSON'S EQUATION WITH‘
VARIABLE MESH SPACING |
The eqUatioﬁs deri?ed in the previous section may now
be épproximatég by finite—differénces.for a reétangular
mesh stencil. A particular case of a semi-infinite thin
flat plate set between two péralleluplanes was initiaily-
‘conéidered. In the regions close to the bounda;ies and
near the flat plate, as shown in Figure (3-1), where the
flow velocity gradients were expected‘to change rapidly,

smaller mesh sizes were used for the purpose of obtaining

both higher resolution and accuracy.

' ‘
VIO PI IV I I IV IIIFIIIVIIIIIIIIIFIIIY.

-

Flht Plate

. et e e o — .
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:
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Figune (3-1) Semi-infinite §fat plate between
Awo parallel planes

¥

o - : : .-

S AX1 — AXz

-
i-1 ‘ i itl
Figurne(3-2) Change 4in mesh Aspacing

N .
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Expanding a function f in a Taylor series, forward
and backward from a point within the domain with different

mesh sizeé‘AXl and AX> as shown in Figure (3-2), gives

. Jf 1 32%f 2 -
f1+l = fl + -; ! AXZ + f axz l_ AXZ
1 1
1 33f
* Frany l AX3 + 0(AX3) (3.10)
i .
of 1. 3%fF 2
£i-1 = f1 - 5% | 8% + 5 a7 | 8X]
1 1 .
EET: ’
3 4 . '
- 3%y | AX] + 048Xx}) : . (3.11)

The' expression for the derivative %&.l\can be obtained
i

by subtracting Equation (3.11l) ‘from Equation (3.10) so that,

Qr

\ £ : '

fi+1 = fi-1 = 3% i (AXz" + AX1)

L 1f I (ax2 - AX2) + 0(pX3), o | (3.12)
2- 3X2 i 2’ 1 A . R .

Q

where 0 (AX’) means the largest of 0(AX}) or 0(AX]), and

dividing by the totallspace increment so that,

of | Fiv1 - fio1 1 a2 | Axil— AX;
X ; AX, + b0X; 2 3X2 AX, + BX;
+ 0(aX%) ﬂ_ .(3.13).
This méans that the form ,
A | .10
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is of second order accuracy if:

2 2
AXz - AX1 2
i’}m‘;l < 0(AXy)

| ! (3.15)
or 0(AX, - AXy) < O(AXf) '

e -
.

/s

and for AX, very small, the accuracy at a field point i
deteriorates to first order in AX,. When AX; equalg AX,,
Equation (3.14) becomes seccond order accuracy sihce tﬁe
second term in Equation (3.13) would cancel. °

The expression for the second derivative is obtained
by multiplying Equation E3.ll) by 82 = (AXZ/Axl)2 and adding

the result to Equation (3.10) 50 that:

P 2 _ of
‘ £ - (A+8%)ff + S*f; ) = == l AX, (1-S)
L °f 2 1 3% f 2 *
=T | 8X; + g =5 | 8X) (8%, - X))
1 i
+ 0 (ax"*) ' : (3.16)
. 3% f . i
solving for =3 | gives ,
A% 4 -
32 | - f£i41 - (148°)f; + S°f51  of | [Lzs
aXz . AX e X . {(AX:
1 2 1
3
- %'g?f' I'(AXZ - AXl) + O(AX ) (3.17)
i .
Substituting for the first derivative %5 | from Equa-
. i

tion (3.14) into Equation (3.17) gives,



T

ChE (L+8%) €541 — (1+8) (1+82)£; + S(S+1)f;
X2 i o (1+S) AX%
&+ 0(0X, - AX,, 0X?) ’ | (3.18)

which is of second order aécuracy forSequal spac;ﬁg’(Axl
= AX3) ané first‘order fbr(&nequal spacing }Axl # AX2).

) This fact is illustrated by the‘last term i; Equation (3.18).
Modifying Equation (3.lé) for the two-dimensional paf—

tial derivatives and substituting intq Poisson's Equation

(3.6) which is,

32y . 3ty
3%z T = -

oy ¥
then:
2 . 2 2
(1+S£ wi+l’j‘(l+5) (1+8°) Il’i'j"'S(S +1) ‘Pi—l,j
(I+s) X3
2 * 2 . | 2
N (1+427) ¥3 541~ (1+2) (1+27) w%'j+2(z 1) ¥y 5.
(1+2) Ay?
= -9; 5 ‘ , (3.19)
where
7 = g;i as shown in Figure (3-3). f

Figune.(3-3) Schematic sketch of the mesh with vardiable
‘ s4ize - -

it eSOl
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‘& where (2+1)

’
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Solving for wi,j gives

. 2 L 2,

+ E{ (1+2%) V3,541 * Z(2%+1) wi,j—l}

+ A X B Qi'j]7E ° : | (3.20)
wHere .

» ’
. '
A = (1+8) AX? o (3.21)
/ : .

B = (1+2) .0y’ : (3.22)

and E =

B(1+S) (1+45%) + A(1+2) (1+2%) (3.23)
K
Equation. (3.20) was solved by using the Gauss-Siedel

iteration technique with an over-relaxation factor of 1.6,
<

*This factor was chosen by trial and error and was employed
to accelerate the iteratiQe process. The variation of the
‘number of iteragiéns fot various over—felaxation_factbrsf
for a typical computer program is shown“ifn Figure (3-4),

(ref. Roache [l976k). . "

The overhnelaxation‘factor (w)” was used in determining

t - . . ' +
the stream function value by the following equation, (see

Hornbeck, R.W. [1975]), ) ¢
B . . ) =
(2%1), (+1)* -~ . <
A N + (1~ .. ' 3.24) -
\w%'i w‘WLlj ‘ w) ¢1’J ~( )1

.

is the current iteration and () is the preced-,

| B , (L)%

ing iteration. The gquantity vy j was theée ¥alue of the .
rl .

\ ! -
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stream function obtained from the current iteration using

o

<

Equation (3.20),

The iteration was terminated whenmn-a convergence cri-

L]

terion of the form: -

TESSRNG) A N
1Pilj - wirjl s € ‘ ' '-‘

. . .-
was satisfied.

¢ <

In this analysis an order of accuracy value was chosen
to be € = 107%, since it was uneconomical and impractical

o to consider a higher accuracy since the equations were

RS

first order accurate in-AX. N -
’ , "

‘. * ¢
.

3.4 FINITE DIFFERENCE ANALOGUE FOR THE VORTICITY (HELMHOLTZ)

[

EQUATION >

An implicit method was employed in order to eliminate

= -

the stability problems when using larger time steps’. It ’

was recommended by Dwyer and McCroskey [1972] to.use impfi—
. * - & -

°

cit schemes because of ‘the stability problems that can occur

with explicit methods when solving the flow field near the
. 2 j
.=~ +leading edge of a solid hody. The fpllowing finite-differ-
ence approximations were used to replace the individual

terms of Equation (3.7) when épplied to a typical field

point (i,3):
(k+1) (k) .
s = = Qi 2 :
i,3 % ' :
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. ©

Q] Qi+1,9 = 9i-1,4 (
g3 > 3.26)
[ax_i,j AXi + AXi_l
. ’ [29? ~ Qirj+l ~ Qirj'l (3.27)\
. ¥l Ay + Byy. ‘

Writing the spatial dgrivativesrat the new time ‘level

(k+1) and substituiing~into Equation " (3.7) gives,

- Okt (k) h1)
. Qirj - Qilj + |jus = Qi+l;j - Qi.-l,j ~ s
AT Y, BXj + b%;_;
<
. Qs = - Qi s_q7 (k+1)
+ [vi e Th L2 S Y5 1] =0 - (3.28)

Rearranginé Eqﬁation .(3.28), the following equation

was then obfained: ' T

) (k+1)

* °
: §

(k+1)
- i,3

+ u,

.llj Xl (a

i+1,3 ~ %i-1,3)

’ (k)

S (k+1)-
+ vi,j X2 (Qi,j+l - Qi,]"l) = Ql,j (3.29)
where C - . B
X, = A/ (AXg + 8X5_q) | (3.30)
and x, = At((ij + ij_1) 4 (3.31)
The velocities\ui’j and vity were obtained by solving
’ . L

the stream function equation (Poisson's equation), Equation
f ]

©

J° (3.20), at the new time sfep and substituting into the ‘

fplIowin%requationsi v
_ : ) L
' L Vi, 941 - Vi, 59-1

u. (3.32)

1Ij.' ij“l + ij

-
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Vi1, - ¥Yi-1 9
Vi3 T T TAXzo) ¥ BXy (3.33)

For the points adjacent to the outflow boundary or the
leading.’edge of the flat plate, the spacialiderivative with -
respect to x was obtained by taking the backward differ-

ences, hence, Equation (3.29) had the following form:

(k+1) ' (k+1)
o R L P L ,
rJ Ls) Axi_l i,] AXi_l i-1,3
(k)
(k+1) _
*ViLg Xy (8,541 - 94 4-1) =9 3 (3.34) .

‘similarly, for the points adjacent to the upper bound-
ary, or near to the underside of the flat plate, backward
dif%erences were also emﬁloyed to obtain the spacial deriv-’
ative with ngspect to y. In this case Equation (3.29) took
the form: ' .

(k+1) ’

. At (k+1)
Qi,j ; +. v, ‘l,j) Do

(k+1) = (k)

At .
=94,

- . — 0. s (3.35)
1,3 ij—l 1,? 1

v
The application of Equations €3-29)r (3.34) or (3.35)
’to tHe mesh points results in a system of linear algebraic

4

: equationé.which can be written in a matrix form as:
(2o} D)~ (p) _ : (3.36)

where [A] is a square matrix of coefficients, and {Q} and
- ! r
{B} are column matrices. Solving these linear algebraic

equations would result in obtaining the vorticity distribu-

-
L]




tion at the new time step.

3.5 COMPUTATIONAL PROCEDURE FOR ONE STEP IN TIME LEVEL

The computational procedure for solving the finite-

difference analogue, presented in Sections 3;2 and 3.3, _

for one step in time increment was as follows:

1)

2)

3)

4)

"5)

6)

A new velocity distribution ug

The stream function ¥ and vorticity  were assumed
)

to be known at the k time ievel.

(k+1) \
Knowing the values of ¢ on the boundaries and
(k+1)
Q on “the upstream boundary, the relaxation method

giveh in Section 3.2 was then used to get a better
(k+1)
approximation for y .

and v: . was obtained
1,3

14

using Equations (3.32) and (3.33).
The corresponding lower wall and upper flat plate

vorticity were then obtained from the stream function

2

distribution using the relation Q = - %;% .

The values of the velocities uj 5 and v, j were then
’ - 1

¥ .
.substituted into the vorticity transport numerical ana-

iogue (Equations (3.29), (3.34) or (3.35)) to give a

better approximate to the vorticity distribution at

. the ney time level (k+1).

(k+1)
Comparing @ with the pravious approximation and on

the condition that the convergence criteria had been

achieved, go to step 7), otherwise return to step 2)

- -

and repeat.




(k+1) (k+1) (k+1) (k+1)

7) Save the values of ¢. . , Vi . and Q3

i, 0 M,5 0 Vi, at

']
the new time step.
Figure (3-5) shows the flow chart for the computa-

tional procedure at a general time step.

7

3.6 TIME INCREMENT CONTROL FACILI’{‘X A -

The solution routine was providé&ﬂﬁith a time incre-
ment control fécility which made it possible to obtain a
complete solution with less computer time.

Smaller time increments.wefé used when the number of
iterations between the Helmholtz egyation and Poisson's
equation had incréased. This indicated raéid_changes in °
the flow characteristics as the di;turbances were close or
in the solution domain. When the disturbances were far'
from the solution domain, flow characteristics had slqwer
changes as well as less iterétions were needed to obtain a
solution. Hehée, a larger time step was chosen such that

the maximum time step used was equal to or less than that

dictated by the stability conditions as will be discussed

in Chapter 6.
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CHAPTER 4

SIMPLE VORTEX MODELS

P - AND THE VORTEX EXPRESSION

4.1 VORTEX FLOWS

In the numerical solution of £he fluid flow equations
the unsteady boundary conditiops were provided by vortex
modeis. One way of studying an unsteady rotational flow is’

by considering arrays of vortices moving in the fluid flow. .

The vortex, which is the basis of any vortex model, may be
éonsidered to be a circulatory motion aroun® a stationary
or a moving point in space. A potential vortex is t@e
’ special case where the velocity, due to the vortex, at every
point is perpendicplar to the rédiug vector from the vortex
centre. The value pf the velocity is invérsely'proportional
to the distance from the vortex ceﬁtre. Clearly when the.
. radius tends to zero, then for the potentlal vortex a 51ngu-
lar point exists. A flow composed of such vortices would
have many singularitiés at the vortex centres, but for the - .o
remainder of the region a potential would exist.- The equa- .
‘ ' tion in terms of the potentiai, to solve for an inéompres—j
-~ sible, irrotational flow of such vortices is a linear equa-
tion. Thé‘complete solution may be obtaiﬁed bydsumming .

. , ¢ .
everal solutions in order that the 1n1t1a1 and boundarv

condltlons may be satlsfled ’
Onsager [1949] made a study of the interference effects

of arrays of potential vortices of random sign. Using,

. - 45
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statistical arguments, he sﬁowed that the vortices separate
into posiéive and gegéfiqe groups. Crow [1967] has shown
how groups of potential vortices of the same sign tend to
cluster. ' |

The uns teady flow over bluff bodies was studled by

Sarpkaya [1963]. By/aeveloplng potential flow equatlons

'for the flow over a cylinder of arbitrary shape, with the

addition of specified numbers of moving and growing vor-
tices, he calculated the fluctuating lift and drag on the

cylinder. The work illustrates how the structure of the

-

free flow downstream of the cylinder can be related to the
fluctuating loads on the cylinder.

fhese works on configurdtions of potential vortices
are interesting as a means to model flows, but the essen-

tial réquiremept is for a potential to exist. "In real tur-
bulent flows, in general, this is not the.case and a poten-
-~ - .
tlal may not be deflned since the ‘flow is rotmtional.
[ w‘

_ Prandtl and Tletjens [l934] and Lamq,[l932] contain much of

the earlier work on the theorems concernlng vortex flows.

4.2 SIMPLE VORTEX MODELS : : ¢
Mathematical studies of vortex models are computed

models of real unsteady rotatlonal flows and the vortex is

L3

the essentlal fundamental element of these models..

< Ne%éher the "free vortex", where the tangential ¥élo-
Fity vaéies inversely as the¢ radius ff&m theqcentre-of the
vortéx, nor‘the."fo§ced vdrtek", where in this casé thé ~

n

»
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tangential welocity is proportional to the radius, are suit-

able vortex expressions for an actual real flow model. The

=1

poténfial vortex has a region of infinite velocity and it

is an accepted fact that mathematical singularities do not

occur in nature. The velocity of the forced vortex becomes

*

too large at large distance.
Rankine (see Lamb [1932]) replaced the singularity at
the centre of the vortex by a solid moving core of radius

'ro'. The tangential velocity within this core was given

ER N

e

by, - ' :
Vg = constant . r (4.1)

-

)
N

Outside the vortex core, the tangehtial velbcity was
given by,

i r 2

o 7 \
Vg = constant . - (4.2)

3

However, the Rankine Vortex, as defined above’, is not
a continuous function and therefore would not be suitable
"as a vortex expression for use as a vortex model.

The vortex generating function‘representing the velo-

city field of a vortex could be of the form,
{ 5‘.

Vg = £(x, &, T,;, 1) o ' ‘ (4:3)

where Vg is the tangential velocity, x is the field or -
. .pbserver pojint and'é is the vortex centre position. The
terms ', and r, are called the variabie constraints of the

‘vortex generating function and are in this case the circu-
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Y < o ) : .
. lation constant (Fg) and the vortex core radius (ro)

< N v

respectively. The variable conStra}nts are either constant

+ or functions of time,
- Now the stream function of a modified Rankine Vortex
can be defined as, ¥
- ' Iy 2 2
5 b= - 5p loge | (xo ™+ (x .- €))7,
+ (y - n)2]+ constant ‘ e (4.4)
) and then, using Equations (3.3) .and (4.4), the velocity
3 components are, I . (
ry .. - r,
u=-,—ﬂ— (Y-T])/D andv=-1—r— (x - &)/D (4.5)
The tangential velocity about the centre of the vortex
(£, n) from these two components_ is then,- .
e P
Vg =T, r/mD ' (4.6)
%
In these expressions D = ro? +.(x - £)* + (y - n)? and
Fliis thé circulation constant and is the line integral of
the tangential velocity (Vg)pax around the.vortex core.
L) . ‘

Therefore . B

-

Iy = 271 rq v (4.7)

VGmax

~

where the vortex core radius by definition, is the radius
. where the vortex tangential velocity is maximum.

The velocity distribytion near the vortex centre varies

approximately linearly with radius similarly to a forced

" -

“
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¥ vortex and,

r
Vg = { 1 ]r when r << rg (4.8)

2
'rrrc

At a much greater radius from the vortex centre com-
pared with the vortex core radius, the modified Rankine

Vortex behaves as a free vortex and,

T , .
Vg = [7%1% when r >> rg (4.9)

The circulation, which is the line integral of the

velocity around the vortex given by,

r o= (? v.ds . , - (4.10)
C .

increases steadily with increase of radius. ‘When the radius
is infinite then the circulation is twice the value of the
"vortex circulation constant".

’

The vorticity distribution for the modified Rankine

Vortex is derived from the equation, - .
Q= _ "3 Lo
2 =~ TR . . (4.11)

which gives, ’

(4.12) .

»

- 2 2
@ =2T, re /mD

. From Equation (4.12) t can be seen that the vorticity
g ’ . T

is a maximum at the vortex centre and at ;\Egdlus,equal to
the vortex core radius, it reduces to a guarter of this e

value. At a long distance from the vortex centre, the vor- "

ticiiy tends to zero, showing the tendencfito approach irro-

‘
< -

-
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tational flow in this'region. ) ' o
The above mathemafical vortex model could be used to - *
simulate the two-dimensional rotational disturbance in a
. free sFream. However, in the present work, whe:g.the vor-
tex is between two parallel planes, a new mathematical modeI\
of a rotational vortex was deri&ed, such that thgnlateral

1

velocity eomponent at the walls was zero. .

4.3 VORTEX EXPRESSION (EQUIVALENT TO MODIFIED RANKINE

' VORTEX) |

In this Secéﬁon an equivalent to the modified Bankine Vor-
tex equé%ion between two parallel planeé Qés.obtaiﬁed. This
equation was then us;d to rgpresent thé'mathematical model
bf'the rota&ional distufbance.in the flow.

P - ) *
Writing the. complex potential for a two-dimensional

potential vortex, - ) i \\ ‘

W= -3 in 2 _ C(4.13)
wher? h

oo +iv o C o (4.14) .
and z = x + 1y A o | . | (4.i5)

When a potehtial vortex lies between two parailel
planes, the image of the vortex in one piane produces GK

image in the other plane, and so on, until, to satisfy com-

pletely the pair of boundary conditions, an infinite

L J

L]
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éequence of symmetrically .-placed images must be used.

L

, 5» ~ . ,
- Y
M /’7} 4// >
/ ~ :
! A - '/, + ¢ - + . :
i © /] «
y /]
‘ G a—=b . ST

Figune;(4-1)q Pgtiodigudiézniaution 04 images

. For instance,.if the two planes are perpahdibular to

the x axis, one cuttiﬁg through the origin and the other

at x = a, and if the vortex is at x = x5 (x5 ¢ a), then

]

+

4
,there must be a set of images at the points x = x,

o

Zma(m =+1, £ 2, .).,), all of the_same sign as the original,

‘Plus another set of opposite signs at the points x = =xo +

2na(n =0, £+ 1, £+ 2, ...) as in Figure (4-1).
' f.

The stream functlon due to this arrangement of the
vortex plus its. 1mages is the lmaglnary\part of the laga—
thm’/f a functiom whlch has poles at x = xq4 +‘2ma, and
zeros at x = --xO +;2na, (see Morse and Feshbach tLéS3]).

4
-

Hencge, the complex potential would be: »

P [
@

w = -

il o {Sln[(n/2a)(xo + zl]} ’ (4.16)

2n Sinl(n/28) (X~ - 2)1 |

. whijp is adjusted SO that the functhgvlnlparenthesés is -
<

w
/,

unity at x = 0 and by per10d1c1ty, it will be * 1 at

. x = na. Therefore the complex potential of both'parallel

. . .
,planes is zero. ' oot -
' /

!

) : . - i
In order to obtain the stream function value, the

7 14




this Spggests thdt the value of
. "valent radial distance from the vortex cehtre‘topa fielg
. ‘ ! ’ . &

point.

'A‘+ B

¢

.‘Qsz

o
lmaglnary part of Equatlon (4 16) was determined (see

o

Appendlx (B) tor proof) "The stream functign value may be

written ass - L ) v

v o="TW) , L, . 4amn
B . T ’ EI I ‘
- and ¥ = - £ In [A : B] S . (4.18)
. | . o §
where o | o .
A = [1 - K? tan?cx - K? tanhlcy i ;
> s R4 - - . ¢ .
., . * tan®cx taph’cyl?® IR (4.19)% .
- hah o . |
"B = {2 K tanh cy + 2.K tan?é# tanh cy]l? ' (4.20)
,C=[(1 - Ktan cx)? + (K tanh cy
" 4 fan @ tanh cy)21% . - . (4.21)
NN , . o -
Y‘; cot 5 Xg. L , . . (4.22)
. -4
C e s . v
= - . . . :
c=a | L (4.23)

reoc .

tkmmarlng Equatlon (4.18) to tﬁérstre?m functlon equa-
: \ .

tion of a- potentlal vortex which ‘is of the form

;‘_ G . . ‘ ,! ‘
V= ﬁi?qln r K - . (4.24)
y : o
A+ B

C

13
wt A

It-is shown in Appendlx (B) that as A, B and C tend

to a value of zero at the vortex céntre, then the quotlent

. tends to a° value of 1nf1n1ty. Therefore, 1n1;hls

P

would act as an equi-.
' 2 O T

-

o

<




<
+ 3

- centage deviation of about 0.018%. T

4
analysis the stream function expre551on used for a vortex

positioned between two parallel planes was written in an

equivalent form as follows: .,

To [& ‘
Yy = yr In [-———-——'A T B} ‘ e ' (4'25) i
‘The quotlent K—%—E now tends to zero as A, B and C

I
tend to zero value ~
>

"Equation (%.25) can be written as

Yy = -;—% 1n r; (4.26)
whar; . . e
- r; = '~A E B . ‘-/ : , (4.27)
f; will be called the dimensionless equivalent radial dis-

3 . . v -

tance from the vortex centre to a fieliﬁpqintefor a~poten-

tial vortex between two pagaliel°plane§.5
éEquation (4.26) was used. to test.the finite-di%ference

> -

analogue and the method of solutlon presented in Chapter 3
"when a potentlal vortex s&tuatéd,between two parallel
planes approached the solution domain w1th no - solid bbdy/

u’w1th1n.“The stream function values on the boundarles sur-

»

rounding the: §olutlon domaln weref evdluated numerlcally

using Equation’ }4.26), whllq\the interior sﬁrqam function
Y *
: . Q , . ' .
distribution was obtained by numerically solving the. Helm-
3 Q -

-holtz and Poisson's’equationé. The exact and computed‘

. s . . Y : . ) .
stream function-values were in good.agrequpt with a per-~
»

-’
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In order to remove the singularity at the vortex
centre, Equation (4.26) can be modified similarly to the

classical modified Rankine Vortex. ‘ . .
. . - h J
The vortex expression (4.26) would now take the form:

-

v

3

S .
b= - 7o 1n (r#? Brr2) , - (4.28)

where révis the dimensionless vortex core radius similar

1

to r; defined above.

A

The minus s'ign on the right-hand side of the above

equation was so that the circulation was positive in the

3 N
counter-clockwise sense |[since Vg 7.~ %%—.
; J

To have zero stream function,value on the walls, Equa-

<

tion (4.28) was rewritten again after subtfacting a constant

value from it which compensates for the addition of the

dimensionless vortei poréiradius<term, amq - .
> To 2 .2 ’ 2
¥ o= - 5y [In(r2® + rf%) - In(l + rg )]
r r¥2 4 r*2
T T §%11n ? ¥ rﬁgi' | . (4.29)

o Equation (4.29) is the final form of the "real" vortex

equation between two parallel planes, which wasmuséd in the

_ « :
computer program. : \ -

Figure (4-2) shows the contour plot of Equation5(4.26)§3

for a potential vortex positioned mid-way between the planes
-and Figuxe (4-3) sgows the vpft;§“bffsét from the centre line.’
similarly, streamline contour plots for a rotational vortex

are shown in Figures (4-4) and (4-5). Figure (4—6) shows

* . ®

Q)'?l

-9

”-i:

L
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Y AXIS
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. Figure (4-2) Potential vortex midway between two
- ¢ parallel planes.
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PLOTTING DERIVEd EQUATION OF STREAM FUNCTION
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'Figure (4-4) Rotationalxvoftex,midwéy“between two
parallel plapes: ' - i
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PLOTTING DERIVED EQUATION OF STREAM FUNCTION

‘ 900'00 1.0000 2-0000' 000 $.0000 6.0000 7.0000 |  ©.0000
ot - XAXTS i

< /

2 . B !
Figurt (4-5) Rotational Vortex at .one-third thé
. distance between the two paralle%

planes.
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ARRAY"OF FIVE VORTICES (ROTATIONAL FLOW)

— T or v —— o v—— 2

~ 1-0000 ’3,000 3-0000 xﬁ-g&ﬂ]ﬂs 5-0000 6-0000 '7-0000. - 9.0000 .

»
Figure (4-6) Array of five rotational vortices.




F - ’ 2

the combined effect of five vortices expressed by Equation
s . B ‘ ’ )Q .

(4.29) in the flow domain, '
s 10 o

In the case of the flow in the x direction, simply x:

and y are interchanged in.the'equation of r;, while x would

N 2

be expregsed as: T ' . ’

2.

; =
X = X = Xo - Ug t - S (4.30)

’ , d '¥, . : 1
where xg is the initial x coordinaf& for the vortex centre,

nUC

LA ’

T, %
is the convective vortex velocity, and t is the time.

In this case K wthd take the form:

4

K = cot 3= Yo ° ' (4.31)

where y  is the y coordinate for the vortex centre,

Figures (4-7) to'(4—l4i show the changes'of~the lateral

.
A\l

-

‘velocity component (v) along the x axis and thetlongitudinal
¢ velocity component (u) afongnthe y axis respectively, for
wwsi' different yo/a ratios, where yo is the distance from one of
.k the planes to the vortex centre and 'a' is tﬁe distance

4 )

"betweeh the planes as illustrated in the following diagram.

=

4

A4

N ,\}
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. An equation for a vortex situated between two parallel -

v
2

planes was -also developed and reported by Thomson [1958]

' usiﬁg a cofiformal mébping technique. However, the function

¢

: . _— .
developed by Thomson is limited only to a position on the
'centré-dine between the two parallel planes, while as'éhown

4

in.FiQures (4-2). to (4-6) the function,developéa‘by the
“éuthbr,is flexiplé‘in both positions between the %70 plates,

j ’ . . 4 - 3 . - ’ ’
and also, is either potgntial or rotational. ‘ .
S N [ :

b. ) . i . -~
Q)C ..
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‘N - CHAPTER .5 . ‘
- K BOUNDARY, CONDITIONS - |
’ * . * ) ’ L 5
‘ ) . . e b i u
‘5 1 INTRODUCTION R _ o .
\\ " \/
p 'ThlS Chaptsf obncerns the.methods devised to determine r

Al

the boundary'condltlons around the domaln and on the flat '
+* R . 6
plate. Mean1ngfu1 solutlons of phy51cal problems involving ‘
fleld varlggles requlre adequate know%edge of tH% bpundary

L9

)
condltlonshA The Nav1er Stokes equatlo¥s and .the contlnulﬁzfﬂ\

equatlon, whose solutlbns‘are being- sought, are the ggvern

.

xng d1fferent1al equatlons commqn to a varletx of many flow -

pafterns. Thése flow patterns can be drastlcally dlfferent

from one another, not only quantltatlvely, but also in

hché?hcter! merely becaase of some‘dlfferenceS"ln the im-
posed Equitipns at the Flow bounéaries. .Improper B;pim_

. précise numeridai;treatmant of the boundary eonditiohs in-
va;{ably'leads to enreliaole or uﬁaoceptable solutions: In -

©

recent years, con51derab}e effort by many researchers has

m
¢

been ~in progress, to analyzg the er‘rs in numerical ‘ E .

h

solutlons caused by 1ncon31stenc1es generated at the flow

e, 6‘

‘-boundarles Several authors tregtlnq\glfferent types- of
flow-problems (see Wu [1976], Morett1[l969] and Roache
. [L9761) are all in agreement‘that the proper handllﬂh.oft

boundl&y COndltlons is - of domlnant 1mportance in the numerr

.
»

“q‘, . -

‘1ca1 solut!ﬁn ef ‘flow problems,

N .

> .. In most of the numerical studies carrled out’ prev1ously

v

, ’ .
- » .

3 . . e

‘to 80lve flow.prpblems, the boundary conditions were made .
A ‘ ‘ . r‘ v - v ’ -



e

A | | e
to satiefy certiin aésumétions which were approximations
‘o the, geal phy51cak problem, For example, in the worﬁ\by
Cheng [1972], Poiseuille flow was assumed at the upstream

, q,
nfand downstream boundarles, whlle Smlth and Brebbia [1975]

,‘/ T . &

assumed both the normal derivatives of the vort1c1ty and

stream functlon to have a value of 'zero at the exit enforc-

K

ing the flow to be parallel even though w1th1n the domain R

3

flow dlsturbances occurred. The questlon arlses how far

L}

must a downstream boundary be placed 1n & rotatlonal flow

over an ¢bstacle before perturbations. to the obstacle

in the flow arevgegllglble and can be 1gnored

The tradltlonal boundary condltlons used in numerical
problems were, elther Dlrlchlet conditiong where the functlon

‘values were specified, Neumann conditions where the normal

gradients were specified, or mixed. condltlons, sometimes

G
called Robbln s, wheére a welghted comblnat;on of function
value'and normal gradlents are specified. .

" | In the’present work, Dirdchlet type boundary conditions
were used with modifications.'fThe boundary conditions that.

L_Ean'be used in a numerical scheme'to simulate the real | .

houndary oonditioné-dependnon the physical'pfoblem under

con51derat10n. uIn this work the empha51s was to studg.the

[ 8

ime- dependent flow problem over a semi—lnflhlte flat plate

*

whlch was assumed to be 91tuated mldway betweem‘two‘parallell
walls as shown 1n Figure (6-1) of Chapter 6. ®.

. The determlnatlon of the boundary Condltlons on the
L]
four s1dés of the flow fleld and on the flat plate were as '’

R T
. “ .

. "' -




followé.

$.2 THE UPSTREAM BéUNDARY
Several methods have been fecorded invthe literature

%q,specify the upstream boundary when dealing with the’

' problem of flow over a solid yody. 1In most of these-studiesﬂ

the upstream bouhaary éonditions were completely independent

of the conditions inside the flow fféld. éxamples of thesel

approx1mat10ns ‘are the works by Pao and Dauglierty [1969]

who’ specified: 2 = 0 and W U, thus fixing y on the up-

,3Y
stream boundary and-Kawagutl [1965] who used a solution for
_ fully develoged Poiseuilié'flow to fix both ¢ and Q.  In
some'other“c‘ses, the work by Thoman and Szewciyk [1969]
for‘exémpfé, the upstream boundary conditions deﬁéndéd"on

the condltlons 1n51de the flow domain by assumlng that

= - —2 0 and hence wx,j = Y2 '3 at that boundary, whefe ?”

s

2
sufflces 1 and 2’ 1mply the boundary and .one mesh step within
.S ‘ .
the domain respectlvely, : . . e - -

g i

o In the present work congerning a rotaticnal disturbance
.- g . .

approaching a thin flat plate, the upstream boundary condi~ e,
- '. - . R \ . u' M ‘- ’ ! -

tions were'assumed'to be explicitly specified.acbo;ding to

’

a spe01al generatlng functlon and. completely i:ffgﬁpdent of
x L
the flow condltlons w1th1n the doma;n-

The dlstr1but10n of the,stream function on the upstream °

boundary was obtained from.the foI;oyiﬁg expréssipn:

’ - -
' v L] . - ! ' "

R A A N T 6 §
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* 2 * 2
- r * + r 3 e~
= Uy *Y + ['2—:;'1 * 1n g *S (5.2)
) 1 + rc /
where . .

Yy is the stream function due to the uﬁiform flow,

by is the.stréhm funétiop due to the vogtex, .
' Ue is the undisturbed vélocf%y of approach,

Y .is the ¥bstance from the lower wall,

I . is the vortex stfengfh, -
is the vortex dimensidhless core radiué,
.and r is tﬁe equivalent dimensionleés‘radial digtancg
ff&ﬁ the vortex éentre to a field point.
A ) The derivation of the‘st;eam function and the eguiva-

lent dimensionless radial distanée of a vortex between two;

i _paréllel walls was shown in the p?evious Cﬁapper. Eqﬁation‘

(4.27) for evaiﬁa%ing the equivalent'dimensionless radial _

distance (réi takes into account the location of the vortex :

) * .
. centre. » : . «

"

’

. | . :
L In th; computer ﬁ:bgram it was found-‘that it is more

efficient to obtain the vortex'stream function derivatives

» ¥ .

numerically (with respect to spatial coordinates) rather
. . 'than using the full mathematical ggprgssibn for them. The

© stream function values, due to the vortex, were calculated
N, e . .
at the-'north', 'east', 'south', "wé€st', and at the centfé
) . "v ’ . v '

of each upstream grid point as shown in the diagram on the

o + LI

£

’ { ] *

fqlléwihé paée. - ' -




Obtaining vont4c4ty at a point 6nom’Atneam
5unct&on values - s, .

.
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The vorticity and~the velocity componEnts‘wére obtained

-at each.upstream grid point as' follows:

LY

¢E+¢w+wu+ws--4wc

(5.3)

fe = = V7 £ - o7
_ 3y _ YN - g )
uc = -gy = >h (5.4)
__ay. - VE -~y e
Ve = - = N ~— . (5.5)

The subscripts E, W, N, § and C would denote east, west,

b
L

north, south, and centre of each.grid point ré§pectively.
? 4 . -

The step h was taken with, very small size (h =

not too small a value to, invoke large’round-off e;roré.

Subroutine 'VORT', in Appendix (D), was used to evaluate

f | \ L] .
the vo;t@c!%y and velocity components at each grid point. .

£

<.

>

L]

5.3’ THE BOUNQARY CONDITIONS AT THE UPPER AND LOWER PLANES -

Siﬁce v = - 22« 0 on the upper and ldwer walls, then

the stream'functfon value y will be constant w‘th respect

=40.0001) but

~

- to X along~these boundaries. The constant stream ‘function .

values were determined from,the known upstream conditions.
. “ Lo - '

4 .
™ }t L 1

N T, - -

%



"where H is tHe distance between the two walls.

/
. . - 3 4
) » o - ‘
. . I . ¢
. . “ . .
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Al

3
The lower wall stream function value was taken to be zero,

while the upper value was calculated from the integral,

¢‘= [ u dy . ‘ ’ - © (5.6)

Since the volume flbw rate of fiuid‘%ldng the channel

due to the vortex is zero then:

= * .
wupper Up * H . | (5.7)

plane - , a7 )

The wvorticity values were'only required on the lower

©

wall, since for inviscid, incompressible fluid flow, the

v

. vorticity equation is a f#rst order, non-linear partial

differential equation with respect to space and time, (See

Equation (3. 7)) ‘ L

The vort1c1ty on the lower plane was estlmated from

.3

the stream function-vorticity relationship as follows:

-~

&= - viy ) . -
3%y . w]'
14 = - T e—— - -
[ax5 oy? T a
. ' \ -
2
Slnce %;% 0 along the planes, then .
22 “
Q = - .l Ve .
lane ay? : ;L 4
P y ;; * .
v o T PN L
R L 1 (32 - (5.8)-
. . ,/’ ) ‘ | . ‘}. .»- -

A\ It is of interestﬂthat for'thelcase‘ f a vidcous fluid
» . ] L

o

fiow, the method useq/to/detErmine plaﬁe v rticity;ﬁrom e




o~

.

»

*

¥

stream .function would remain thé& same.

“TWeésh 'size, then this enabled the first four

v
”

for variable

’Because the'computer program was writte
ows of grid

points near the parallel planes to be.of equal smaller

-

spacings than within the domain in order to increase the

first order accuracy of their vorticity value

- o

(see Equa- .

tion (5.8)5.

» Recently, Cooke [1981] developed inde

LS

lar appro h,which extrapolated the str function near , ,
the wall to obfain the wall vorticity and numenically~sat—
isfy tne‘noﬂslip condition in a viseous fluid flow.

Before the general method of solution was applied a
preliminary method was introduced to predict 1n1t1a1 plane

vorticity values. These vorticity values could then be use

as the first estimate of the- plane vorticity values im the

'compfessible unstead fluid flow between two parallel planes,

7

. valye.

-

iterative process for-obtaining a complete solution at the

new time step. !

'The'approacn was based on the fact that for 1nv1501d

.. ~

the planes'are'alwajs‘streamlines for all. timel Also, from

? ya

the Helmholtz vort1c1ty equation for an .inviscid fluid flow
which is ﬁ%‘— Q, then this 1mplies that the vort1c1ty is’

convecbedalong,\each streamline with the same constant

M . *

The diagram on the following page sifows the value of

- the vort1c1ty at a general’ plane p01nt I and at a general

s 4

time level k WhiCh-lS written (Qk(I))

-
L4 < -

—

2

ndently-a simi-

d

ln"

4

-
.
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N nk—fhnxu-l) ‘———*-‘—‘.DX(I) —-f
o 3 Ty
s s il LLla

I-1 I I+l

o ] b e
I-1-I. : I->T+1

Estimating plane wortdicity at a_general time step

This value wqyld move to a new position” at the new
time step, the coordinate of which is given by the expres-

sion U, 6t. The same analysis ‘can also be applied to the
I-I+1 ) ‘
vorticity at.the point '(I-1). By interpolating between

these two new positions for the vorticity value then:
. =~ . ) . 1
Dx(I-1) - Uz 6t

k+1 - k .
- - I1-1+1
() = 2 (I-13 + Ue ot + Dx(I-1l) - U¢” dt]
. I-I+1 ! I-1-1
* (k) - of@-n) | . . (5.9)

: 7 ) ) o

, Qhére the superscripts k and k+l1 denote the presént and new

time level respectively. .
The convective velocities are cglqulated.as the average

véfacities betwéen the two neighbouring‘pqints at the pre—

sent time level.

M

X |. K oy . v
ve - = LU 1; + U (I) | (5210
I-1+I : _ "
k 3 ~ ' “
) ch '. = U jI) "’2' U ‘(I""l) . . gs'l'i)
I+I+1 . ' -

By using this method in the solution routine; it was

.
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possible to save approximately 15% of the computer time in

P

order to obtain a compléte solution.

4 ’ ' ! vw
5.4 - THE OUTFLOW. BOUNDARY COND%TiONS

In a typical numérical solution, the evaluation of. the
' L4

_ stream functfon and vorticity at the outflow boundafy is

one of the most idterestihq computational boundary problems,

In order to avoid large computational time in the case of

\ L

. 'studying the unsteady flow over an obstacle, a method to

L]

predict the downstream poundary conditions dlose to the

obstacle. is developed. This technique avoids the long inte-
. LI S

- grations necessary to a downstfeamqboundary where perturba-

[}

. [1955], Michael®[1966], and Son and Hanratty [1969], a

tions are of gmall order of.mMagnitude.
a , . 5

/ . .
Plotkin et al [1968] and .Yoshizawa [1970], approached o
1 /*h\\

\_‘\-‘,
the downstream boundary problem by using an asymptotic o

-

solution applicable at large, but finite, distances from, o

the region of interest. 1In the work by Allen and Southwell

&

-

potential flow solution was used to simulate the downstream-

conditions, Katsanis [1967] used uniform flow with u =
- [
constant, and v = 0 .at the upstream and downstream boundarles,‘ﬂ’

whereas Paris and Whltaker [1965] used a less restrlctlve

type of downs tream boundary'where v=2~0 and established . -

Al

flow.existed such that 5— =0, .were assumed at the Qutflow

. ”A
[

of a two-d1mens10nal channel. Roache [1976] stated that

from previous experlence when solving f],‘w problems numeri- .-

]

cally, (hat catastrophlc 1nstab14;t1es may- be propagated

. ' *

¢
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upstream ﬁrom the outflow boundary, and cause the solutlon

" to go numerlcally unstable. The same author presented a

well-documented survey of‘the boundary conditions used pre-

viously with fluid‘flow problems. ' . .
' - 4 o
In the present work the problem concerns a- real vortex .. .

¢
with' dlstrlbuted vort?c1ty approachlng a thin flat plate.

The fluld is assumed to be 1ncompress1ble and 1nv1sc1d, and .
the approachlng flow, is two dlmenSLonal, unsteady and rota-

tional. [Rewriting the governlng equatlons 1ntroduced in

Chapter 3, which are:

<

Viy = - Q . o s (3.6)
‘ U e . C -
30 ]y 3 _ e e e ‘ \
H+UH+V§§-O : . ’ ) (3.7) .
It can be seen that both the.sttream function ¢ and the
*ﬁr
vorticity Q are functlonssof the 1ndependent varlables. the
L}
spatial varlables "x, y" and the time "t" although the 1n—” ’
dependent varlable "t" is not explicitly present 1n Equar
tion (3.6). . § . R 4 ”
That is: . )
) ’ 'Q ’ a“-.
“‘ . . " i
v =y (xr _Y, t) . (5.12)
and 2= Q.(x, y, t) | o Coo(5.13) -
Equation (3-6) is a second erder linear partjal differ-
ential equation, and therefore, in two-dimensidral space,

requires the values of the stream function to.be known on .

all exterior and interior boundaries. ‘ ) i
: . ' .
!




Equation (3.7) however,'is a first order non-linear Ipr

differential equation in vorticity "Q", and therefore re~ .’
¥ 2N
quires boundary conditions only at parts of the bounazry,

preferably where "inflow" occurs. This is shown %Qﬁﬁéé .
. L4

ﬁ‘%.

rd

Stream function (y)
boundary conditions required

Vorticity (Q) boundary
gonditions required

following diagram. | 1
. IJ)N‘ I
Us _ Vg | - Qp (top)
>V : E b by
I
‘ Vs t s
I
|
I
|

»
T

Where the subscripts N, S, E, W and B aenote North,‘South, !
_East, West and body (flat plate) respectivgiy.
Thereﬁore, in order to obtain a solution for‘Equation -
(3.7), it.1is ﬁot’ﬁecessary t6 specify the vorticity at the «
‘~outflow boundary. f

» For the stream, function and the spe01al case of uni-

form flow in the x-dlrectlon,lphangesqln the x-direction are
‘ore an order of magnitude greatér than the flow in the
I'g

° \
y-diyection, and near the boundaries it can be written that:

the

.

bEVx, t) (5.14)

)

- *

Writing the Tayldr series for gﬁis function ‘in terms -

P

. , .
of the two variables, then: /, . ) .\

,‘ . - (x—xo) v
Ip(to + Gtz, Xo + ze) = w(to, ) + —T-'——— [—a——s] ‘
p , 4 Xg .
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L

+ ... -0 (8t2 §x3) (5.15)
¢ .
Using centered,differences to evaluate the stream
function derivative with }eépect to x, with variable mesh

\‘s;ze, gives the following_approximaté expression:

-

ﬂ o Y (xXo + 8x2) = Y(xo - 8xi) +
X 0x, + &x, T
xo .
to

0(sx) (5.16)

It is of interest‘to note that if 6x; = 6x,, Equation
(5.16) would be of second order accurate (see Roache [1976]).

Using backward.diffefénce technique, a similar expres-
sion for the partial derivative of the' stream function with

- 4
respect to time, also gives: ’

Y L Vixo, to) - Vixo, to - .5t1)
5t * 3

t)
Xo

to

A+ .. 0(6t)

4

(5.17)

L
where 8t; is +4he previous time step, 6t; is the new time

step and:§§ﬁ and 6x; are the mesh sizes -which may be either

-

constdnt in value or may vary. This is shown'in the

(XO’; Y. |t) ’

\

:zk+ Boundary Point

. e sk €8x,

Boundary Point 4in a variable mesh Adize

. R »
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«.
Substituting Equations (5.16) and (5.17) into'(5.15)’_would

-

result in .

L

W(to + GtZI Xo A4 8xg) = W(to‘, Xo)

-

+ [Wltg, %o + 8%X2) - V(ty, Xo - 8%, 91

4 “ S )

e . . (8%, + Sxa) +‘[w(to' Xo) ’ e, =
¥ ’
- Ulto - Stu, %)) * gEk " (5.18)

For constant $pace and time: steps, Eglation.(5.18)

reduces to the following expression: ’

~

wk+l(xo + §x) =”2wk(xo)'+ [wk(xo + §x)

: ; ; ‘e \ a6
- VS (xq - 6x)1/2 - v ix,) _N5.19)

:where the superscript k, .denotes the time level. In the

solution, the interior point values near the outflow bound-

’

ary, wk-l(xo), can be stored as a vector and eventually

save computer storage space. ' ' . ‘

\
"A similar expression can be obtalned for the vort1c1ty
. - L d

by replac1ng ¢ by O when the outflow boundary vorticity

N

values are required. as 1n the case of v1scous fluid flow.
In thlS case the vortlélty equatlon becomes a second

. order equatlon and the outflowubeundary vorticity would be

"\
L]

required, so that, . - . L 4

, B - A '
¢ ' - . /

' ‘ LG ] .
Q(to + Sta, 'xg + 6x57\5lﬂ(to, x5) + [Q(tp,. x5 + 0x2)

N -

L]

- Qltos Xo = 8x1)] * 5Kl 4 [Q(rg, x5)
- ' . *

L&)
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5.5 THE BOUNDARY CONDITIONS ON THE FLAT PLATE

. ~
On the flat plate, the lateral velocxty component was

always zero, SO that\

This meant thai the.stream function value w‘wod}d be &« -
constant along the length of the flat plate. >

A 31mrlar technlque with m1nor modlflcatlons to the
3’

predlctlon of the outflow boundary was adoptdh to- estimate

. ,ﬂ"\
the_pe@’stream functlon value for the flat- plate at the
/

new time -stgp. = .- S ‘ ;; ) % o

-

. " Equdtion (5.@{ was used tolo§tain the‘kogticity valyes |

on the upper side‘of the plate, since"thé'lowef side:
¥ ] )

vort1c1tv was ‘not requ1red to- obta1n a solutlon ‘for .the

flnft order invise¢id vortlclty equatlon \5\ T e

7

Thls Chapter has shown How in. generalkthe 1mportant

boundary condltlons are determlned\ The follow1ngffﬁ3pteryw

-
N

utll;ze thlS theory together with the flow equatlons t

obtaln solutions of phy51cal flow.problems.

Y.
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. CHAPTER 6 - .
r1“I-II:‘. EFFECT OF A !‘"REAL" V'O@‘,’[‘EX APPROACHING
A FLAT PLATE ‘PLACED BETWEEN TWO PARALLEL
PLANES IN AN INVISCID, INCOMPRESSIBLE FLUID FLOW N
6.1 INTRODUCTION
This Chapter investigates the effect of a two-dimen-
sional rotational vortex approaching a flat plate, set at s
zero. incidence, between two perallel planes‘in an inviscid,
incompressible fluid flow. The vortlclty stream function
method, describBed fully in Chapter 3, z;s used to obtain
" the solution. The vortex expression obtained in Chapter 4,
‘Equation (4328);‘was used.ﬁo eimulate a rotatidnal distur-
bance in the flow stream which affected the flow in the
solution domain through its effect on the upstream boundar&.

F@gure (6 1) shows a schematic sketch of the fluid
flow pr??lem under conslderatlon ‘ ‘ ) *
"The flat plate was 51tu§ted midway between the two
parallel planes withy.its leading and trailing edges situated'
between the mesh points ae éhown.‘ The main flowxapproached

the flat plate from left to rlght with an undlsturbed velo—

city of U,, and the vortex was released at a dlstance Xq

upstream of the solution domain and ygq from the lower plane.
The introductien of the new outflow technique, discpesed'in
Chapter 5, and also applying it to the flet plate, made it
possible to expand the study to include variable chord ' -

lengths of the flat plate as will be seen during the course
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of discussions, The limitation to the case of one approach-

iné vortex simplified the analysis of themresults and in’
this case was used to demonstrate the method. However, this

does not imply a limitatien to'the method of solution as

will be shown in Chapter 7 where a vortex array is studied. -~

The effect of the vortex on the tine variation of the stream
function contours, and the lift and pitching moment coeffi-
cients on the %lit plate were investigated as described in

L

the following sections. ' o

k] 4

.

6_.2 I?EFECT OF THE ROTATIONAL DISTURBANCE ON.THE STREAM
: FUNCTION‘ CONTOURS AND STABILITY CONDITIONS
This/section investigates the effect of a rotational
. disturbance on the shape of tﬁe stream function céntours
;nd also the sﬁbsequent motion of the disturbandé with time
whgn originally positioned on the centreline bétweep £wo
parallel planes. Stream functién contours were plotted at
different time levels whilé the rotational disturbaﬁce was
being convected by the main streamy towards the plate, sub-
sequently passing through the\solution domé;n‘and final;y‘
exiting from the’outflow gogndafyﬂ Initiaiiy, a stea&y“
sta;e‘solution, witﬁ zero vorticity, was ssumed to exist in
lthe flow field. The mathematical model presented in Chapter
‘4, where the flow‘disturbance'was considered to be in the
‘form of a "yredi vortex, was used to simulate the flow .

stream disturbance. The centre of the équivalgnt modified

Rankine vortex was assumed to be initially located far up- *




/N/y

S S 83
stream of the solution domain sﬁch that its influgnée on the

* A
flow pattern at thé upstream boundary of, the solution domain
r .

was negligible. Figure (6-2) shows the ‘initial’ stream func-
"tion contours at time €‘=.0. The solution procédure for
solving the time dependent gpverning eguations, ppesented/
pfeviously in Chapter 3, sectionv3.4 was used ix;n. this analy-
sis. The boundary\conditions were\developed by’using the
methods mentioned earlier in Chapter 5, fhe introduction

of the néw technique to estimate the outflow boundary con- ’
ditions based on'previous flow within the solution-domain‘at
a previous time made it possible to solve this problem with
minimal éfze,of solu%ion-dghain._ Tﬁé soluéion was gontinuegﬁv‘,
until the vortex,réécheg the upstream Bbundary of the solu; ‘
tioﬁ.domaiﬁ.. At this point in time, when the vortex entered
the solution'domiin, it became a’rotatioﬁal disturbance.

The resulting disturbance impinged on the flat platg‘énd was
then convected downstream dllowing the flow region to feg;rn
again to its original steady state., "Figure (6-3) shows the«
vorteg'relative positions in the flow field, while Figdre
(6-4) shoﬁs the corresponding changes of. the stream function
valﬁ;s that took place at the outfloQAboundFry. From

Figure (6-5), for a channel floﬁ without the flat piate, ig
can be seen that although the vortéx was~réieased‘midway be-
tween the two parallel planes, its centre was

cpnvected.;n the direction of rotation towards one of the

plahes upon reaéhing the solution domain. A poséible explan-

ation of this phenomenon is that this shift can be attributed

L A . ) . . &
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Vconflguratlon had a predomlnant downward motlon. This down-

'a motion towards the lower boundary..

88

to the wall effects on the rotatienal'disturbance'and pres~-

4

sure field as well as the relative velocity between the
disturbance centre and the main*flow. When the vortex, with
cldbkwise eirculation as shoWn in Figure (6-5), entered the

upstream region of the solqtlon domain, the flow for this

ward motion persisted for the time while the complete finite
rotational disturbance entered the'domain and ‘resulted in

the original vwortex, now ‘a rotational disturbance, acquiring

-

Figure (6-6) shows the effect of increasing the velo-

*

city of approach U, while keepinglthe vortex ciréuletion r

constant. The effect of this'change increases the value of

~

linear momentum over the walue of the angular momentum.

This resulted in a less dlst1ngu1shed vortex in the stream

»
’ g

function contours. T ) ,J"

Introducing -the Rossby number as:
' r ' . i "'
.RS —m -- X (6-1)

.o B
- ., ) ) . 1
g W ) . ]

where RN S Lo : |

r is the original vortex eircﬁlation constant

,Uo 1is the undisturbed velogity of the fiow

r* is the dimensioniess ocore radius

and " H . is the distance between the two parallel planes

i

théh the prev1oue result can be re-stated that as the Rossby

number (Rg) increases; the angular momen tum effect increases.

Figuresl(6-7) to (6-18) sﬁom the change of stream func-
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tlon contour plots with time for a vortex with counter-

clockw1se 01rcu1atron and a value =10 mz/s, dimensionless
: ¥ ,
radius rz ="0.5 and approaching the solution domain with a-

« 7

veloc1ty Uw —].()m/riand impinging on a- semlﬂlnflnlte flat

plate 51tuated midway between the parallel planes. The

N

Rossby number for this flow was Rg = 4.35..° '

These Figures show that the vortex centre was convected _

e dlrecthn of’ gptatlon upon entering the solutlon do-
maln-as was explalned earller. The Flé‘}es also show that

a stagnatlon pp;nt which was formed on,the_lower side of the
“flat platei as the disturbance was afproaching Fhe plate,.

moved on to-the upper side of the flat plate while the dis-

turbance was being cpnvected‘ove}'it. The same %igures also
show thet the rotational distu?Pance at this Roséby-nu@be}

wa§ bounded by.a contour llne ]Olnlng a 1ead1ng and trailing

%

stagnatlon p01nt on the upper plane.. Outside this boundary

, —-— dontour line there was no reversed flow. As the time pro-

=

gfessed further, the leadihg stagnationﬂgeint on the upper
wall left the domain, subjecting the outflow bouﬁdéry to

reverseds flow conditions which resulted in an ihstability

v

of the numerical solution,

L]
- ’

Sever?l numerlcal experlnfnts were carried out

héing different values of T, U, and rc, and hence, dlfferent

y -

Rossby’numbers. ' From these computations it was realized .

that the numegical techniques introduced were more stable o

foi'Rossby‘numbers less than a vhlue of one, that is:

[
-

Rg < 1 _ . .o . (6.2)

-

N

H
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'figu es- (6-19) to (6-24) show t@ehchange of stream function
confour plot; with time for a flow with Rg = 0.62 (I =

1 _mz/sf"Um = 5 m/s and r: =0.7). It can be seen from these
es that the disturbance waé less distinguishéble and

that thw®- i table while the disturbaqcé passed .

»

¢

The stablllty was not only affected by the Rossby number,

but there was another inherent stability conditien due to

.

the finite-difference formulation in order to limit error

. growth with time.’ In the stability analysis presented hy.
Roache [19767, a ‘-necessary condition for stability. for an
1nv1sc1d\and 1ncompressxb1e fluid flow u51ng the forward

time centred space method was given as;

.

2AX
8§t ¢ T ‘ . - ' (6.3)

13 .
where

AX 1is «the mesh size .-

.

\_—~ - = * .
and . U . is the vortex conv ive .velocity.
quever, Base [1969] who presented stability and error
analysis for the case of a modified Rankine vortex in an

inviscid and incompressible fluid flow, derived the condi-

tion for a stable solution, with a percentage error of less

than 0.3% in the values of vorticity, which was::

> 0.2 rg P

st < g (6.4)

-
Yo is the modified Rankine. vortex core’radius

® .
- -
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and U is the vortex cogvective velocity.

Comparing Equations (6.3) and (6.4) when AX end Ie
are of the same order of magnitude, it can be seen that
Equatlon (6 3) is less ‘restrictive and therefore is super-
seded by Equatlon (6.4). |

In the case of the equivéfént modified Rankine vortex’
used in this\study! Eqd&ﬁion (6.4) was modified to’fake the
.

form .

. 0.04 r N
§t < ' (6.5)

(o

So, in order to achieve a stable solution with percent- '

age error equal to or less than 0.3% for an equivalent modi-

fied Rankine vortex in an inviscid, rotational and incompres-

sible fluid flow, Equations (6.2) and (6.5) had to be satis-

fied.

Yy

6.3 ‘'CALCULATION OF PRESSURE ON THE FLATnPLATE . :

L
~

In general, the lift fofce on a flat plate or an aero- -.
feii at incidence to an appreaching free stream is manifested
as a'preséuré’differenee\between the top and bottom surfaces.
The 1lift force can be obtalned by elthe;,con81der1ng the
change of mOmentum of the incident flow stream or by vortex
theory. 1In the vortex theory a bound vqrtex is assumed to
exiet wi;hin the aerdfeil or flat plate'@iﬁh a circulation
strength related to the 1lift on the plate. When the lift

changes (in order ‘to satisfy Kelvin theorem) a vortex of

o%posi%e sign to the bound vortex is shed from the plate

.
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* -
trailing edge and then is convected downstream. In the

pfesent study, however, the fluid is assumed inviscid,

hence there is no mechanism to generate this vortex.

In the classical potential flow solution far ;ifting
aerofoils, in three-dimenéional studtes, Lanchester's %
theory is applied. In the twp-dimensianal~theory, the
bound vortex strength is determined by the Kutta-Joéukowski

condition. The following éxample dillustrates the importance

of the assumption of whether the fluid. is visdous or in-
.
viscid. The lift force on a thin flat plate at 1n01denge

~

to a unlform free stream is determlned by 1ntegrat10n of

the pressures on the plate. 'From the normal force to the

1
thin plate, a 'drag' force will appear due to the incidence

. Y .
of the thin plate. However, since the flow is inviscid
b : » 'L

then this drag force should be zero. This dilemma may be ’

1

resolved by considering an infinite pressure acting on the
infinitismal area at the leading and trailing edges of the _

thin flat ‘plate. For a semi-infinite flat plate the Kutta-

yr &

Joukowski condition is not required since in this case a
. .

trailing edge will not exist. Conseguently, in this study,
the 1lift forcé.on the finite flat plate would be due to

1, . . .
the "external" pressure field alone. This is an idealized

mad®l and in practice, for a real fluid, both components of

-

1lift force will‘result.

——

In order to determine the lift on.%he'plate due to the

approaching flow it was necessary to determine the pr ure

difference between the top and bottom surfacdes of the flht
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'plate as a function of time and position.

Writing the x component of Navier-Stokes equation as,

ou Ju su _ _ 1 3p 9°u 3 u

—B—t + u 3% + v 'a-y ) % + \)(-—Tax + —i-ay I (6.6r

For an inviscid flow (v = 0) and at the plate surface
the transverse velocity component "v" is equal to zero so

that Equation (6.6) reduces to, R

Ju du _ _ 1 3p g .
§-E+ u -a*}—{—l [—D_'BX . . (6.7)

e

Integratlng Equatlon (6.7) with respect to x from the

leadlng edge to a point x: on the flat plate then,:

* X X X -
ou ou . - _ 13
Iatdx+fuﬁdx—f p,E‘de (6.8)
(0] o o . - - ‘ .

»

Since x is not a function of the time t, then Equation

(6.8) can be written'as,

X X X '4.
a N

3 | : Ju _ 1 3p
HJUdX‘FIu-a—XdX—-I Eaxdx
o} o : o
, X )
: uy - u
& ojuax+ X201 p - py (6.9)

" where the subscripts x and o denote the points x and the

leadiné\edge respectively.
The static and dynamlc pressures at the leading edge
can be grouped \:ogether so that Equation (6.9) can be re-

writtea as,

b 2 , ,
-a—t' Iu @X + -—i- = ) px + 5 PO (6.10)

)



between the top and bottom surfaces on the flat plate as a

9 -« ‘. 4 ' ngg
where Po denotes the total pressurge at the leading edge.

It may be noted that the stagnatlon p01nt, where the

-

measured pressuxe is equal to the total pressure (Po), is
‘not neqeesg;iiy t the 1ea@ing edge as shown.in éigures
(6-7) tz-(6—22).

Furthermore, assuming that the totallpressurekat the

. N -
top and bottom sugégces is unique at the leading edge, the

. Je .
.difference in pressure between the bottom and top surfaces °

at a point on the plate can be obtained from the following

equation: . )
X R ¢

- 2 2

_ _ 1123 x| _ (8 Ux

Ap = pn[gg Iu dx + TT]B [5? Iu dx + 7?1T}
- o o
-~ _. .3 ) : Vg - Uy |
= _p_§E } (ug - up) dx + > ] (6.11)

P :
where the subscripts B and T dencte the bottom and top sur-
faces of the flat plate respectively.

6.4 LI?T AND PITCHING MOMENT COEFFICIENTS

Knowing the variation of the pressure difference Ap

1
-

function of distance x and time t, then-the 1lift coefficient
<7

Cr, and the pitching'moment coefficient about the leading' '

‘edge Cp were obtaitied £rom the following relationsh@pé,

C

f“I Ap dx ‘ . :

O ' . \

CL=W , . - . (6-12)
vi-‘m- ’

+

b

-\
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where C is the length of the flat plate:

The velocities on the top and bottom surfaces of the

flat plate were obtained nuhérically from the velocity

oy

o

stream function relation {u = 331 using forward and backward,

a

n'differences.respectivel&, thus satisfyind the Kutta—Joukowski

condition of having flnlte veloc1ty at&jﬁe tralllng edge.
The 1ntegratlon terms in Equatlons (6 11), (6.12) and
(6.13) were,carrled out by a modlfled«trape201dal rule,

since the spatial steps were not equal.

- ~w

It may be- noted that the eguation for- the pressﬁre (on

the flat plate) for unstgady; rotational and inviscid flaw

is. more complicated than- that for viscous flow since in the

- viscou? case the no-slip condition on the flat plate simpli-

fles the pressure equation (where u ;.v = 0 and §~ = 0).

.Subroutlne (LIFTC) was used tq calculate the 1;ft and.

'.pitching moment coefficients in the‘main program presented

E ‘ -
0 . - ‘

in Appéndix (D).

6.5 ESTIMATING THE FLAT PLATE STREAM FUNCTION VALUE -

This section presents three different methods which
were employed to estimate the flat plata,gtream function ‘to-

gether with the resulting lift tpefficient versus time plots.

A discussion of these plots is'helpful in deciding upon the

-~
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most approprlate method to be used to obtaln*the fluid flow

-

solution around the flat plate. These methods are; °’

'

1) A simple stralghtforward method in whlch the flat plate

stream function value was set to be constant.for all

A}

 time and was determined from tﬂe potential flow solu-.
N ’ i . ‘

tidn assuminng the initial uniform apbrdaching fléw. /

2) | In order to aMgQw the flat plate stream function_ to

JN ‘.:‘* n ’ .
s suggested to use a semi-

-

change with %time, it

infinite flat plate whose stream function value was
determined at each time step as the average value of

the two, nelghbourlng p01nts lylng on the outflow boupd-

ary. .. ’ S \\

3). A technique similar to the one presented in Chapter 5

*

was used again with modifications to predict the stream

function valle on the flat plate at the new time steps.
This technique was developed on the basis of a Taylor

series expansion of the stream function values, which

~

contained the entire kinematics of the problem, with

respect to time and space near the_leadiﬁb_edge of thé

-7 plate. The stream function value for the flat plate at

each time step in this cése would be dependent on ‘the

leading edge conditions. - .

.

*'Figures (S—éS) and (6-26)Vshow the variation of the

lift eoefficientﬂVersuE'time for the stream function values

~

oh” the flat plate determined using methods 1) and/é) respect- .

.+ dvely. Figure (6-25) shows that the 1lift force does not

L]

v

- change eign as the vortex passes through the domain, however,
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Figure (6-26) shows a reversal of the sigh when the flat | ..

plate stream funetion value depended on the outflow boundary
- Tt
conditions. It can be seen that both flgures dlsagree qtal— R

itatively with the effect of the approachlng vortex on. the '+

flat plate. 1In thlS case, prlor to the vortex enterlng the .

2

domain, more f1u1d flows underneath the #late than above 1t

with a resultant downward lift force due to ‘the pressure -

»

1

difference around the plate. . ’ o , .
Flgures (6427) and (6-28) show the dhanges of-the 1ift
and pltchlng moment ~coefficients about the 1ead1ng edge w1th
time u51ng‘method 3). In the case of seml-lnflnlte flat . “ >,
plate the chord'leugth was based -on’ the length‘uithdh the
solution domain. Similarly to method 2), method 3) alfo has~
shown a reversal in sign of the lift force, but is more
. realistic in'direction‘to the nature of the flow and pressure.
. As the time proeeeded,forward and the disturbance: was %
further dql?stream and away from the‘solution domain, the
lift and pitching moment coefficients reduced down toa
. value of iere. The sudden release—ef the vortex.at a dist-
ance Xg upstream of the solution domain resulted in the
small diaturbance at the early time steps as shown in Figuree'
(6-27) and (6-28).. The same figures also show a small oecil—
}atioh in the Iift and pitching moment coefficients before
’ s _ decaying to- zero value. These oscillations may be attributed

- . . /

=, to the computer round-off error and’ the value of the conver-

o gence critet}on (¢) used. Figure (6—29)‘shows the effect of

the convergence criterion ¢ when it was taken to be ten

LY
i »




VORTEY APFRUATHINT SLMI-INSINITE FLA® PLATE

. . ' . . Y

b e .
g \ e * 0.70
°

-

] - .

T T T Y T T 1
?-MWM I.-WH 5-0800 €.0000 1.0000 L1
. TIME ,

€

J

A
CIFT COEFFICIENT CL
-9.2000

[
B
R A1)

—
.«

-4.6000

—k
1y
.

-

“Figure (6-27) Flat plate §éreaﬁ function
. dependent on flow conditions e
. ) *at’ the leading -edge. : ; v

-
«

- VORTEX APPAGACH ING sm-lmun? FLAT PLATE '
- : L 0.70 ’ .
e 31 *
N -
. E . - -
| @ . '
! <
5 = )
‘ — Eﬂl
. g - . -
" ;2' v -
S ) é ‘ . e ) '
* 2 e 2.0088 OE " 0300 . 5.6530  G.0508  7.0000 .00
. Z f‘ \F TIME .
. . s -
. LY : ‘ 1 R
g . ) ‘
b . .
z
Figure (6-28) Change of pitching moment
' coefficient with time. .
A4




T — ; l{J" T v
0 Jgo 1.0000 MUMWO ' : :
. . -

g VORTCX APPROACHING
° - + SEMI-INFINITE.
1. FLAT "PLATE
2 3 ~ =07"
s '

=]
7]
©
<
=
(-3
on
o
=%
g
-
r
o
o
g
(-]
(-2
o
o—
o
o
o

4

-0.2000
i

=0.4000
I I
5

~0.6000

-0-?000

=1.0000
L

Effect of increasing the tonvergence

Figure (6-29)
criterion “Ef.

105

O e R



" ” 106
times the valué‘used to obtain Fiéure (6~-27). 1It'can be
seen from this plot that the amgiitude and the frequericy of
these oscillations iqcreased w%&h the increase of the value

of the convergence criterion €. 1In ‘the study, the computgr -

cpu time was almost doubled by changing the danergenée

-

criterion an order of magnftude from 0.01 to 0.001.

With the flat plate stream function values'dependent on
the‘flow conditions at tﬁe leading edde, it became possible
to extend the studies to include finite f)}&t plates with
different chordflepgghs and not only semi-infinite plates.
Figures- (6-30) and. (6-31) show the plate 1ift and pitching
moment coefficients ve?sus time for a vortex flow with a
dimensionless core radlus r; = 0.7 and for 8ifferent fflat
plate chord lengths. It can be seen from these figfires that,

for-a constant vortex size, the ,greater the flat plate chord

length the greater the maximum lift and ;htchiﬁg mément

Al

coefficients, The effect of changing' the chord of the plate
" also changed the flow pattern and so the' shorter chord plate

did not experience éxactly the same pressure field as the
. ' L]

longer chord length. plate, Figurés (6-32) to (6-35) show

the same ré;atiOns while fixing the chord lenéth C and"

chahging thakvo:tex dimensipnlgifrcusgqudius r;. It can be
seen from these\figures,fhaf,‘for a comstant chord length,
Rk e ® -/ .

the smaller the vortex dimensionless core radius the greater

the maximum plate,kéft and. pitching moment coéfficients.'

The' above results can becéymmarized in Figures (6-3%)

»
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and (6 37).where the maximum lift and pitching moment coef-7 .
ficients are plotted versus the dimensignless quantity

Ht;/c. It can be seen from thesemfigures that the maximum
plate lift and pitching moment ceefficients are directly pro-
portional to the chord length,and indirectly proportional

to the vortex size. Figufes (6—38)-to (6-40) show the

change of stream function contours with time for a finite

-

flat plate in a flow having a Rossby number of 0.62.
’
The study in this Chapter besides 1llustrat1ng the -

numerlcal technlque also 1nd1cated the 1mportance of deter-
mining the correct stream functlon value on the plate. The
computer programs were very stable for Rossby number value

less than unity, provided that other. criteria were satisfied

as mentioned previously in this Chapter. ,
In the next Chapter a model-of”pseudo-turbulence; based '
on a convected random array of real vortices or eddles, will
be 1ntroduced and 31m11ar1y as w1th the single vortex dis-
cussed in thls Chapter the effects of this pseudo-turbulent
flow on. the lift and,pitching moment on a flat plate will

'be studied.

)
-
-
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! CHAPTER 7.
.SIMULATION OF TURBULENCE
AND ITS EFFECT ON A SEMI—‘INFINITE FLAT PLATE
7. l\ INTRODUCTION
‘Recently there has been particulaf %nterest given to
simulating unsteady flows,'such as,turbulenqe, usfng computer
simui;tion experiments. The success that has been achieved

. in thesé studies has made it‘possiEIe to invest}gaté the

~ ~
effects of ;seudoiturbulence on a body using a mathematical
model to simulate the approaching turbulent flow.

| iilly [1969] developed a numerical simulation technique
for two—dimensional_turgulence. In this appréach, Lilly

4

considered an incompressible turbulént velocity field to be
ideslized as a randdm vectorvfieid gov;rnéd in time and two-
dimensional space by the Navier-Stokes equations.

Basé [1970] developed a method that can be used for
simulqting pseudo-turbuience of different statistical char-
acteristics and to obtain a contingous velocity time ﬁistory
at each point in the flow field. 'In this approach the eddy
structure of the turbulence was rép:esentéd by groups of
' randomly éositionéd méving "real" vortices. It was found
that by .changing Eﬁe rotational core‘size of the individual -
"real" yortices and also {y changing the mean distance be-
'tween them, the statiétical characteristics of the pseudo-

turbulenkce were changed. Another contribution in the numeri-

cal solution of two-dimensional turbulence is found in the

N : -
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work of Ahmadi and Goldschmidt [1971] where a numerically
simulated turbulent field was forced to satisfy ghe Navier-
Stokes equation and stationarity.

The method to model turbulence used in thisthapter
follows the approach described by Base [1970]. The computer
simulated model of pseudo-turbulence was used to generate '
the upstréém boundary éonditions for an incompressible and

inviscid fluid flow over a semi-infinite flat plate between

two parallel planes. The continuity and momentum conserva-

¥

tion equations were solved near .the plate by wsing the finite
difference methods presented in Chapter 3. The resulting
random longitudinal-and‘lateral velocities were sampled and

the corresponding auto-correlation and power spectra were

blotted. The effects of this pseudo-turbulent flow on the

1ift and pitching moment coefficients on the flat plate were

also plotted.

7.2 DESCRIPTION OF ' THE .CONSIDERED PROBLEM
The probilem considered was that of a semi-infinite thin

flat plate set at zero incidence to an initially uniform

. H

flow. The turbulent fluid flow was modelled by groups of Ty
randomly positioned moving vortices to represent the eddy |

structure of the turbulence Figure (7-1) shows four boxes

-

A, B, C and D for the vortices, with box C representlng the{

solution domain where the flat plate ig’ situated mldway be- 3
" i
tween the upper and lower planes. Initially the vortices ];j
. : ‘ X

wewe randdmly positioned in boxes A, B, C and D as shown in he

¢
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‘ .
- one "vortex model cycle" (tgycle)} had elapsed. With “further -

~—

120

Figures (7-2)~gand (7:3). With the increase of time, the
X : ® .

vortices were convected by the flow untii a total time of

incréase 6f time and with no further increase in the number

of vortiéesibeing addéd to the model, ghe program was SO
N .

scaled that within this time period the vortices had moved

approximately one box 1ength downstream. At this particular

time period approximately one-quarter~of the total .number of

vortices ‘farthest downstream, that by now had little influ-

«

ence at the upstream boundary of the solution domain, were

removed and replaced by the same number of similar vortices

x

with new random positions and new signs upstream of the flat

plate. These added vortices had little-influence on t%;

conditions at the upstream bo?ndary of the solutlon domain.
< ) I/‘?
The vortex model then continued amd the process repeated

again so that a continuocus pseuao—turbulence vortex model’.

-was achieved. By this means, the vorte del provided a

continuous velocity field at' the upstream boundary.of the

solution domain. Hence, the pseudo-turbulence entered the
‘ A

solution domain through-its effect on "the ups tream boundary

v

.while the correspondlng effect on the flat plate was investi-

gated by solv1ng numerlcally the 'Navier-Stokes equations in

¢+
~-

the solution domain surrounding it.

»

7.3 THE PSEUDO-TURBULENCE BOUNDARY CONDITIONS

In general, for a rotational f£luid flow, the effects
' \

" from all the disturbances cannot be summed, as is possible

L]
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.

for a potential flow, since the angular momentum equation is

[}

non-linear. . However, for.an incompressible fluid flow the
continuity equation is linear and so, in.principle, the velo-
- A )

city at a point can still be written as the sum,

s,

X=\_7_1 '+\_7_2+\_73+.......+\_1N (7.1)

S

provided. each velocity contribution (Vi, Va, ... Vy) is

known. In the complite mathematlcal solutlon of most prob-

-

léms this is not possible, since the velocity field is not

o
known anq is the required solution. In the present Chapter,

the gtream function on the upstream boundary is assumed to

be equal to the summation of the contributions of each indi-

1

vidual random "real" vortex whose expression was given: in

Chapter 4, Equation (4.29), so that,

Vo= Yy + Y2 + Y3+ ... + YN ' (7.2)

Differentiating Equation (7.2) with respect to vy
respectively would give, J}

W _ 3y, e, 3V + ) - (7.3)

oy oy oy oy RN oy

W _ Ay, e, AWy ¥n §
and 3% % + 3" o Bx'+ ceees F % ‘(7.4)

. Using the stream function definition which is,

-

Y ‘ ‘e = _ 31

u = —- - and v

then,

u=u] +U2 :"‘113 + e 0 0 0 s + uN« ' (7‘5)



124

v=v) + V2 Vst ool + Yy (7.6)

.t
..
Ll

The tacit assumption then waf¥that the velocity at any
field point (x).-was given by the sum of the contributions
'figh the real vorﬁices. :

The velocity (uj) thegéfore at an upsﬁrég& boundary
point (xj) was given by:

N o s

uj = I (uy) (7.7

m=1 :
where x; was the position vectof of the upstreém boundé;y
'poiﬁ?4‘ui, i=1,2 were the velocity components in the x and-
y directions, and-(ui)m was the contributioﬁ to the veloc;ty
at the point (x;) due to the mth vortex and N was the total
number of vortices representing the model. It could also
be shown, from Equation (7.7) that the spatial derivative at

the point (xj) was also equal to the sum of the derivative

- contributions from the complete array of vortices so that,

duy + N [Bui

9xXj - 9X.

l , 1i=1,2 - . (7.8)
1/m

m=1
Since a condition for the vortex generating function

was ‘that the continuity equation-be satigfied so that,

.[BUi
m

fhen by supstituting Equation (7.9) into (7.8)  the result

CLom v

was,

= =0 : (7.10)
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The continuity equation was therefore satisfied impli-

citly throughout the whole vortex model which ensured that

it was kinematically possfble. Further ‘details concerning

the vortex model from which this present study was developed

are presented by Base [1970]. The computational procedures

]

and the methods used to evaluate the other boundary condi-
tions rquired to obtain a solution of the fluid flow'equa—°

tions were similar to those for a single vortex presented in

the previous: Chapters.

7.4 STATISTICAL ANALYSIS AND RESULTS

In order to describe a turbulent flow in mathematical

-

terms it is convenient to separate the flow into a mean mo-
tion and into a fluctuatiofi, or eddying motion. - Denoting

the time-average of the u-component of velocity by U and its

-~

velocity of fluctuation by u', the relations for the velocity

components can’be written as,

(7.11)
(a) (b)

u=u+u' v=v+v'

-e

The time-averages are defined at a fixed point in space

and are given, for example, by
.T
[ u(t) dt o o (7.12)

J

u = Lim
T-+co

e 1o
o

When writing a computer'program to estimate the mean
value, if' the time increment between each digitized value

(u).. is the same, then Equation (7.12) may be approximated

r

m

by:
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(7.13)

where Niis the total number of numbers representing the total
sample length.

It is understood that the mean values are taken over a
sufficiently long interval of time, for them to be completely
independent‘éf time. Thus, by definition, the‘timeJaverages
‘of all quantities describing the fluctuations are equal to

zero and,

At =0 V' =0 . (7.14)

The mean square value is given by the expression
T
" ¢? = Lim % [ (u - u)? dt (7.15)
T—>o00 N

Equation (7.15) may be rearranged, using the above defi-

‘nition of the mean value to give,
T ‘ 8
0% = Lim = I u? dt - u? (7.16)

and this may similarly be approximated in a computer program

Sy

by' ‘
4
1 N — ~
o =% I (w! -nu’ (7.17)
m=1
- The standard deviation (o), or the root mean squafe of
the fluctuations (u! ), is given by the positive square

r.m.s,

root of Equation (7.17). ; ..

Figure (7-4) shows the variations of the conditioned

!
longitudinal velocity component [—TE————],.at an upstream

r.m.s.

)
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Figﬁre (7-4) Variation of the conditioned longitudinal
velocity component with time.
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shown in Figures (7~10) and (7-11).
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boundary point, with respect to time for a pseudo-tirbulence
o - - : ¢

~

vortex model with mean dimensionless radius r, = 0.7, mean
. R a® '
approaching velocity of 5.0 m/s, and mean circulation con-

stant of 1.0 m?/s (RS = 0;062). Figures (7-5) and (7-6)

mean
show the corresponding auto-correlation and power spectral
density for such a conditioned signal. For further details

°

concérning this analysis see Appendix (C). -

Similarly Fighres (7-7), (7-8) and (7-9) show the time
variations, auto-correlation, and power spectral density for
the condition&d lateral velocitf component., .

Figures (7-4) to (7-9) show that the randomness and -»
disorderlineés is maintained as in true tupbulence by using
this pseudo-turbulence vortex model which ensured a contin-
uous random signal.

The resulting timé—yariations of 1lift and pi#ching

moment cocefficients, obtained by.solving the stream function.

equation and Helmholtz equation in the solution domain, are

The numerical methods presented and the computer:pro—
grams developed, see Appendix (E), to solve these equations
with the associated boundary conditions were extremely stabie
to the unsteady, continuous and stochastic chanées that took °
place on the upstream bgundary. To obtain a-solution for
the approaching pseudoJﬁurbulence required more iterations N
than for a single approaching vortex studied in, /the previous
Chapters.

In this pseudo-turbulence study the stability criterion
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and accuracy were the game as for a single vortex discussed .

-in Chapter 6. “‘ T

It is of interest to mention that in order to compute .

L3

the one pseudo-turbulence model ‘just discussed,:of 5'secopds
'real time d&ration, a total of 8690 CPU computer S$econds 3
wére fequifed. ‘At the present.cha;ge‘yhie at theiUnivep§ity
Computer Centre, this was eguivalen£ to a finanéial_charge g
of $933ufor an overnight run (Q:). .
It‘has been shaown that the pseudo-tﬁrbulgnce modei
could be run with different model paramete?s to produce the .

]
effect of different pseudo-turbulence on the flat plate.

——Therefore, only Nﬁel was studied té illuStrate the tech- ®

nique. For further models: provided the stability criteria

were satisfied, differént pseudo-turbulent structures could -
* <]

be studied by changing the input data to the computer program.

. P -

Py o &
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CHAPTER 8

CONCLUSIONS

A~

8. 1 GENERAL CONCLUSIONS

The main objective of this study was to investigate

i

the inflﬁénce of a two-dimensional, uns'teady, incompressibie
inviscid fluid flow sfream wiih rotational disturbances
~ approaching a body situated between two pérallgl planes.
The governing equations were written in Ehé:form_of éhe

Helmholtz vorticity transport equation and thé stream fupc—

tion equation. - An implici&\finite-differeqc method with
variable mesh‘size_and also facility for variable time step
‘ control was developed for solving fhese equations. fhis
_method consisted of an iterative solution between the
stgzam function équation and the Helmholtz vorticity equaFion
.in o?der to achieve a convergence. A*new‘ﬁodified vortex
mathematical exﬁfession was developed to represent a real
vortex éositioned between two parallel planes. This ex-
pression satiﬁfiedpthe "no flow th;ough the solid wall"
-boundary condition and also was rotational. New Fechniques
' were also developéd to gstiméte the time-changing bounda£&
conditions around the solution domain and ;1so~6n the body.
The introduction of these techniques assuréd that the-solu-

tion verged faster than traditional methods € well as

‘having the downstream and body boundary conditions dependent

on the flow. conditid@s upstream.

" The method of solution and the numerical technigues
: |
137 :
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’

were tested by comparing the computed stream iunctiop
values te those obtained analytically when a potential vor-
tex situated between two parallel planes quuation (4.26))
approach?d the solution domain with no solid body within.
The compérisoA.between the exact and the computed solution
was in good agreement with a percentage.deviation’of approx-
imately‘O.dl%. The variable_timé step control made it pos-
siblé’to obtain solutions which wouldiﬁive needed more iter-
ative attempts with a fixed time step to obtain. When the
disturbances were close or within the solution doﬁaiﬁ_where
rapid changes took place in the flow characteristics,
-smaller time steps were used. L%;ger time steps were used
when the disturbances were far from the solution domain.
' Tpé Raximum time st?p used was less or equal to that ob-
tained from stébili£Y.criteria discussed in Chapter 6.

The finite-difference techniques introduced in this
thesis were developed iﬁ'dfder to stué& the‘effect'of a two-
dimensional rotational distuébapce in the approaching stream
impinginq on a flat plate situated midway between two paral-
lelqplanes. Tn tﬁis problem the rotational,distﬂrbance was
simulated by an "eguivalent modified Rankihe vortex" which
was set initialiy far from the plate such that its influence
on the flow pattern'on the upstréam béundary was almost
negligible. Tl‘tream lines in this initial case weré
lines parallel to the x axis. The vortex was. then convectéd,
with no viscous digfgsion, along with the. free stream wuntil

v

it entered the solution domain, impinged on the plate and

»
»
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was convected out of the downstream boundary. At this point

‘in time the fluid flow within the domain returned to its

original steady state. The new technique for determining
the magnitude of the outflow‘boundary and the body stream
function vaiues which were dependent on the flow conditions
upstream, made it possibie to study‘the lift and pitching
moment coefficients on both semi-infinite and finite flat
plates, for the inviscid fluid'case. étreém function con-
tours as well as the time variation of 1lift and pitching
moment coefficients for the flat plate were plotted. The
method of solution was extremely stable provided that the
Rossby number value was less than unity. A complete
discuésion and full analysis of .the results were presented
in Cha;ter 6, and showed that the results were consistent
with the physiéal situation of the considered problem.

This study was then extended to investigate the.éffect
of flow stream pseudo-turbulence on a thin flat plate set
at zero inqidence to an init;aliy uniform flow. A computer
simulation technique to generate pseudo—turbuleﬁce, based
on the work by Bage 11970,1974;, was used to generate the

upgtream boundary conditions to the solution domain around

the flat plate. The stream function equation and the vorti-—

3

city transpoit eguation were solved around the plate using

-

the same numerical techniques and methods‘develqped-prer

viously in this thesis. The time-varyihg lift and pitching

moment coefficients on.the flat plate were plotted. The
. . A_ -

4duto-correlation and the power spectrum were also plotted .
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‘for loné saméles of the longitudinal and lateré} velocity
components. This study showed that using this pseudo-tur-
bulence model ensured the randomness and disorderliness,
as. in the' true turbulence, while satisfying the conserva-
tion of mass and angular momentum equations within the
domain. 'In the pseudo-turbulence study the stability cri-
terion and accuracy were the same as. for thelsingle vortex
case discussed in Chapter 6.

It has been shown that even with the assumption of
‘inviscid fluid flow, the fluctuating loads due to the un-
steédy approaching rotational flow hay be determined and
eventually could be used for practicql.engineering'design
studies, for example, the important problem of the case of
an airctaft<crossing the wake flow of another aircraft. 1In
particﬁlar, by studying the response of an aircraft wing to
a discrete vortex or even pseudo-turbulence it could provide
information that eventually could be used to redﬁce the
~hazard of wake turbulence, not only by indicating modifica-
tions to the aerodynamics of ﬁhe aircraft that generates the
wake, but also predicting the response of the following
aircraft. | '

In the case of a bridge response to unsteady flow, the

three-dimensional- nature of turbulence would reduce the , -

effect of aerodynamic loading predicted by the two-dimensional
pseudo-turbulence model used in this thesis. The behaviour
of the three-dimensional structure can deviate from that of

.

the two-dimensional models, however the two-dimensional

-
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study would indicaée the important parameters with respect
to relating the spectrum of the load or lift‘force on the
bridge to the apprcaching flow structure.' In future studies
three-dimensional pseudo—tufbulence‘models wou;d be more

-

suited to predict the aerodyhamic loads on bridges.

8.2 RECOMMENDATIONS FOR FUTURE STUDIES

The following are some recommendations that may be
considered for future studi;s to pursue in this research
area:

1) The plate studied in this analysis was assumed to be
infinitesimally thin. In future studies an aerofoil’
shape with thickness could be introduced 'into the com-

- puter program for analysis. This analysis would be
applicable to the practical case of an engine turbine
blade subjected to turbulent flow wheré estimates of
the fluctuating lift may be required.

2) In other studies, the case where £here are more than
éng solid body in the solution dggiin'could be consi-
dered, for example, a cascade of blades inta.turbine.

3) fﬁis present study considered an inviscid fluid. 1In
future study the viscous terms in the Helmholtz vor-
ticity equation could be included. Studies on the
effect of Reynold's number variations on the.lift and

drag coefficients, of a body such'aé an. aerofoil, could

then be determined .

4) Finally, studies on the effecgs of'éhanging the turbu-
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lence statistical characteristics on the lift and drag

forces on a flat plate or éerofoil in a viscous fluid

flow could be attéempted.

2

»
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v . APPENDIX (A)
N : THE EQUATIONS OF MOTION
FOR AN INCOMPRESSIBLE FLUID FLOW
The equations of motion in the case,éf a three-dimen-

sional, unsteady, incompressible fluid flow (Navier-Stokes

equation) can be written in vector form as:

[i + U'V]H = -

o+

YP+vViU (A-1)

ot - -

4

3

g y
and the continuity equation as-

V.U =0 | (A-2)

i 4
Taking the vector curl of Equation (A-1) and noting

that: g ) ' ‘ : - >
- 1 - . \
(BVU=7T 02 -U% (TxD) S :
~ ‘ . 4' ‘ -
the following equatiorr can then be ob%ained: -
. ' ‘ -
. _ ) , ; 3 A
[g% + (§°Z)]Q‘= (R-V)U + v Vzg ) . (a-3)

o

where @ is the vorticity vector defined by:

£l

=1
A

R =V x - .. (A-4)

4 £y
N "

In the case of two-dimensional flow where there is,ﬁo<
P * . S .

change with réspect to the z direction [;% =_0], only one
. ,‘ . .

comﬁonent of the vorticity (Q,;) _exists which isg perpendicu~'

-

lar to the plane of motion such that

‘143
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b

Also the first term on the right hand side ‘'of Equation

(A-3), (vorticity stretching or ampiificationhterm), would

vanish, . : .
. ) ' In this case the stream function y may be introduced N
such that, * °
- _ SR 1] |
. . u = 3y ’ v, = X

Y - \

and Equations_ (A-3) and (A—4) can be wri%ten as,

R , .. 90 AN _ 2 ‘ : _

e + u X + Vv —a—i = v VQ . . (AG) .
and - Q= v2y ' . (A-7)
where ‘
v 32 82 ’

Equations (A-6) and (A-7) are known as the vorticity

transport (Helmholtz) and stream function equations respect-

ively.
An expre;sion for thé pressure can be»obtgineé by taking
the Qiyergence of the two sides of Equaticn (A—is and by
. -uding the continuity Equation (A-2). The.fdllowing equation 'l '

was obtained, ' .

S’.." (U-7)U = - = 7%p (A-8)

. which can be written in two-dimensional, cartesian coordi-

&3




nates as,

32%p
# x?
where
Q =
v

4“‘“ ’
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' A-9)
- p Q- 4 (A=9) |
i
' \mh
RN "J‘ ’
_ du 3v (A-10) +_
9x 9y
’ ' /}
R
) : /.
L 3
{ o 'Y
", . -
N -
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. APPENDIX (B) )
DERIVATION OF THE STREAM FUNCTION
EQUATION FOR A VORTEX BETWEEN TWO

PARALLEL PLANES

’
—

Ip this Appendix the analysis necessary to obtain the
st;eam function Equation (4.18) for a vortex positioned‘be—
tween two parallel plahes is presented. -

Rewriting the complex potential discussed in Chapter .4
for, this flow regime using fhe method of images, Equation

(4.16), which is: o h

_ _ir Sinf (1/2a) (xg + 2)1}
W= - 52 n {sinT(Tr72a) (X0 = zn} (4.16)
where
W= 6 +iu , (4.14) '
z = x +~ify ' ) (4.15) )
i= /7T '

I'o = circulation constant

4

distanoe—betvwéen- the two parallel planes

’

[+)
fl

and xo = the x coordinate of éhe vortex centre, (see Figure »
‘(4-12,'mgasg;ed‘from one of the planes.
Using trigonometric relations ‘to ;nalyze the tgxﬂ be-
tween the parentheses in Equation (4.16), which will be de-

noted by F, and putting c = m/2a, results in "

p - Sin[c(Xo + 2)] . , ﬂ
Sin[c (;o - ‘Zﬁ . e

146 £
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_ Sin cxg Cos cz + Cos cxo Sin cz
SIn cxp Cos cz - COsS CXg Sin Cz
: o
-1 + Cot cxg tan cz )
1 - Cot cxg tan cz
. : ' - ~.
Putting K = €ot "(cx,) and substitufing for z from

Equation (4.15), then v
g

¢

F o= 1l + K tanfc(x + 1 y)]
> 1 - K tan{cix + 1 y)]
1 + K tan cx + tan in _ "i’
_ 1 - tan cx tan icy- ’
: "] - g tan cx + tan7icy . .
L - tan cx tan icy ‘

" i , .
S
)

Noting that from the relations between trigonometric

. ~
¢
[

and hyperbolic functions we have, ' s

h

(1l + K tan-cx) + i(K tanh cy - “tan cx'tanh cy)
(1 - K tan cx) - 1(K tanh cy + tan cx tanh cy)

-

. . "4
- tan icy = 1 tanh cy

then, B

-

Substituting X = tan cx and Y = tanh cy in the above

equation, and rewriting it'as a function of the new variables

4

X and Yﬁ results in,

Top = (L * RX) 4+ i(KY - XY)
' - (T = KXy - 1(KY + XY)

Multiplying both.the numerator and the denominator by

° the cbnjugatewdf the denominator yields,




whete

R = //71

. - 2 + 2
and 0 = tap l\l = KZ§¥ — K§¥2Y+ XZY 2
. ’ ' N
Equation (4.16) can now be written as-
- il i6
wo= - 5o In(Re™ ")
=-1 L ;
. = - 5o [In R + 1i6] .
Since~£he stream function ¥ is the imaginary ba;t of .
L4 L @
’ - . - i
Equatio B-4),, then ' .
9 n (o), ther . ¥
= = - lo
Y I(w) 5 In R
© FO‘ A+B P ﬂ:
-—"'4—“11'1[ C a s .
where
' 242 22 ¢ 22y 2 ~‘ /‘
~ A= (1# x2x? - R*Y? % x2y%) % , >
, s T - D
B = (2KY + 2Kx?Y)?
. . ‘ s <
C=[(1 - KX)? + (RY + XY)?*]2 /

w
(1 - K2X? -

148

[(1 + KX) + 1(KY - XY)][(l - KX) + i(KY + XY)]

Id

(1 - KX)* + (KY + XYy2 | o«

-

+ X2Y?) + 1(2KY + ZKX Y)

(l - KX)? + (KY + XY)2

ie

&

Q@

¥

&

- K2X?2 - K?2Y? + X2Y?)%2 + (2KY + 2KX 2yy) 2

. [(1 - KX)..'2 + (KY + XY)2]2

(B-1)
(B-2) -

" (B-3)

(B-4)

Ll

(B-5) o

(B-6)
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i = _TL J - " - N . 'CL ) v 0
X = tan 57 X - ~ _ X . (B-10)
- e N N ’ . ‘ , “" ’ o
= T .. T . . .o
Yl—' tanh 2a-‘ y.' _‘ , ‘ . ‘- (? 11)
. . - . -. ' . .
‘ §ﬁFlCot 5a #9 L . ’e(B-lZ)
- B - . A + B .
. . As it was mentloned 1n Chapter 4 the value of — .
WOuld.act as a non—dlmenslonal equlvalent radlal dlstance - 1'
&' from the vortex cqn;re to a f1e1d point. . .
& «Dlrect substltutlon of the vortex coordlnates‘(x = Xo
v-éﬁd-y = (@) into the term A Z B'would resuXt in afd undeter- : =
mined yalue. Taking the limits of this term as Y - Ojandf .
'“»: - . . -7 ) o # ) . S " ) © -
"KX +~ 1 would result in the following: oL '
. ’ : ~ ( > 2,217 2 o
Lim. = E'B = Lim E%% — §x¥ ) - o . o
Y+0 ° KX~+1 v . ’ ’ ) Lo
KX'*]. X . s o - ' ¢
N - 4 ¢ . S ‘
. -~ - . ~ [ 3 t )
I (17— KX) (1 + KO)IZ - L -
' N @ . e ngim [_( [(1 — Kx) 2;] 7] T ) - ’
¢ -KX-+1 A r .
v s "r‘_-’. Tl + KX)? . ’ o Q’
. . . . = im - KX = % o c ok
,.. , . ._ ] KX‘*l - "5, \ . . . .
) ‘ ¢ ) i ® . - *
'In order to hdve a non-dimensional equivalent radial
o‘ . P 5 ) ’ E] . .
distance that would tend to zero at the vortex centre, simi- .
 larly as for the modified Rankine vortex ’'discussed in , Caa
Chapter 4;~ﬁquation ‘(B-6) can be,wfﬁtten‘in,andther-equiya# :
lent form as, ? - . .
‘:' . .- ro i c . ' L] < > !
B Nl R S - D "
| . l"‘ s T w, o ° ‘
TT_—‘DS\ ¥ = 53— 1ln rg o p _
. /’ ) ) [
. 4 - v F
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c_ . . Ce
+ B

.

o

Similarly if the coordinates of the paréllel'planes

]

variable of: re “would tend, tova value of ‘unity.

The dimensioh&ess variable r;

-~

to the field point, whidhxvariei from a value of

vortex centre to.one on the two parallel planes.

limite: T o T
* . “ &
re = 0 : . at the vqrtex centre
4
o » ©

and r; =1 3

at the planes -

P

« -

o

a !

e

,pa;allel planes-. . e, e

(B-14)

"sionless equiwalent radial diStance~{rom the vorteg éentre

These

&

‘are 1ndependent of the actual vortex 9051t10n between the

"4(x = 0 or X = a) were substltuted 1nto Equatlg@ (B—l4), the
would Be calleg the dimen-

zero at the



APPENDIX (C)
AUFO-CORRELATION AND

_POWER SPECTRAL DENSITY FUNCTION v

%

C.1l' AUTO-CORRELATION

-

The auto-correlation function of rgpdomcdata describes

t o °

the general dependencédof the vaiues of the data at one time
épep'on the values of another time. For a continuous'record

u(t) at a slngle measurlng p01nt, if the record is stationary

then the auto—correlatlon functlon R11(T) may be estimated
i

from-a sample of length T as follows. .

¢ ’ . . . .
The auto-correlation covariance is given by tHE%expres—

- 14
s c

eion:
. F] ~ R N * { ‘ ) .
< uj(t) ujlt + 1) > \ ' "
g T ‘ s -
= Lim- % I u; () u;(t + 1) 4t ‘ (C.1)
T>o0 o ’ . 7/

. . - ) . E
and the aupo—corrélatign“coefficiéht by:

.

f

Ri; (1) = < uj(t) uylt + 1) >/ ¢

((<ug2(8) »% (cuyle + 1 =% - - (C.2)

- " « \ M e~
assuming the integral agbove toéexist.-,ﬂben estimating on'a

* . - N - | re—

digital computer the amto-&orrelation covariance from a given

array, Equation (C.1l) is approximated by,

u ' A N-r
Z  (uy)
=1 n

. P | s
< (t) uj(t + 1) » = e . (gl)
4

v

n+r .
2

9 A
: * 151



‘r=Q’ l’ 2 o;-m s ’ " (C03)l

where r is the lag number, m the maximum lag, 'and N, is the

total sample length.

ﬂ

In the analysis the total sample length N and the maxi- -
mum lag have to be such’'as to provide readonable accuracy.
The equivalent error "E" is defineéd as:

!5 )

o 7 !,
o maximum lad :*  [m o
E "A[total sample length] B [ﬁl' (c.4)

Whennanalyzing, if possiblq, the maximum lag is made

such a value so as to make the maximum. equivalent error .

Ry

equal to or less than the estimated error of the expérimental

A Y
tests.

The quantity Rjj (1) is always a real-valued even func-
tion with a maximum vaiue‘bf'unity at T = 0. In equation

forfrl, . A ‘ ' ‘ hliie o ‘ . \'

Rjj (1)e= Ryj (-1) - - (C.5) .

-
-

and” Ry (1) &1 | | (C.6) -

——

C.2 TRANSFORMED POWER SPECTRAL DENSITY FUNCTIONS

The power spectral .density functioh of random data des-

cribes the general fréQuenc§ composition of the data in teérms
of the spectral'%ensity of its mean square value. It is,ob-

tained by taking the Fourier transform of the auto~-correla-

. .
tion'coefficient. The relationship betwifn the two functions

-
4

\

.
|
-
‘ P




*

I53- .
is given by, ‘ ' ' . . h 4 ¢«
Gij(f) = 4 J Rii(T) Cos2nfr dn ‘ (C.7) ) I

o
Since the power spectral density is obtained from %HE‘
auto-correlation coefficients, then both these gquantities
contain the same amount of information concerning the signal,

-

only the presentation is different, The shape of the corre-

la;ion curve determines the form of the transformed power
‘.speétral curve and’ vice versa.  For inst&nde, if a signa} is
4 uncorrelated for Q\very small time lag,‘as shown in Figure

(C-1), then the signal will havé a larqge frequencvy range. .

-

R(T) | G (f)

Figure (C-1) .

As the time scale of the siénal increases, however, then
the 'frequéncy band containing most of-the energy becomes

narrower. This is shown in Figure (C-2).

. - .

G(f) -

~,

R(T)'

L)
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For further details regarding the theory relating the

power spectral density function to the auto-correlation, see

)

Bendat and Piersol [1971].
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APPENDIX (D)

COMPUTER PROGRAM ’

4

FOR SINGLE VORTEX MODEL




C
C
: C
C
C
C

acaoan

13

102

“105

PROGRAM FLOW TO SOLVE FOR A SINGLi VORTEX APPROACHING

A FLAT PLATE BETWEEN TWO PARALLEL PLANES

COMMON FP(25, 25)

DINENSION T1(230),CL(250)" CM(250) ,XDUM(1000) , YDUM( 1000)

&

F(I,J)=STREAM FUNCTION VALUE AT THE POINT (I, J)

, , YDUMM( 1000)
OMEGA=RELAXATION FACTOR

OMEG(T,J)=VORTICITY

. PROGRAM FLOW11 (INPUT,OUTPUT,TAPET,DEBUG=OUTPUT)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

,25)
5 25),V(25,25),CP(25,25)

MAXITZMAX. NO OF ITERATIONS- PERMITTED

UI=VELOCITY OF STREAM
OMEGA=1.60

READ *,M,M1,M2,N,N1
PRINT 102,M,M1,M2,N,N1
FORMAT (51I5) ‘
UI=5.0

NM2zN-1

MM2=M;-1

NU1=N1+1

NL1=N1-1

READ #,(DY(J),J=1, m

PRINT 105, (DY(J),J=1,N)
, READ105,(DX(I I=1,M)

PRINT 105, (DX(IQ,I=1,M)
FORMAT (22F5.2)

M3=M+1 : a

N3=N+1

M2:z=M

X(1)=0.0

¥(1)=0.0

DO 13 J=2,N3
¥(J)=Y(J-1)+DY(J-1)
CONTINUE

DO 15 I=2,M3 X
X(I)=X(I-1)+DX(I-1)
CONTINUE '
RC=0.7 '
PI=ABS{ACO0S(~1.0))
X0==4,7
YO=(Y(N)-Y(1))/2.0
GAMA=10.0

c

c

C
xC'

CCCCCCCCCCCCCCCCCCCCCCQCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
COMMON F(25,25),0MEG(25,25) ,BOMEG(2
COMMON X(25) Y(25) DX(25) DY(ZS) U(
COMMON FI(25) IPVT(250) M,N,M1 M2 N“‘MMZ NMZ UI,ITN,IC,DT,T"




o

eNeNsETETET N L

12

, M2=M1+IK ' e

co : 157

N
IA=1
THE NEXT FIVE LINES ARE ADDED TO HAVE FOUR RUNS WITH
VARIABLE VORTEX RADII OR VAREABLE CHORD LENGTHES
DO 78 IK=1,4 7 T~
M2=M e -
RC=0,4+0.,-T#IK . .

IF(IK.EQ.4)M2=MM2 i -
AL=X(M2)-X(M1)+.25 .o .
CALL BNDCR(F,M,M1,M2,N,N1,DY, UI) ‘

DTM=0.2%RC/UI .

DT=DTM : Sy

T=0.0 : A

DO 12 I=1,M3 o«

DO. 12 J=1,N3 ‘.. o

OMEG(I,J)=0.0  ° , 2~ .

BOMEG(I J)= OMEG(I) J)
CONTINUE ! .
‘KT=1 . <4 ﬁ/@ - :

DO 75 KK=1 250 \ .

1C=0 .
CALL POIS

IF(KK.EQ.1)GO TO 77

CALL HELM, , ‘ -

-~

¥ XRETURNS(10)

7

C
c -

115

110

25

- 103

11

CONTINUE

CALL LIFTC(CL,CM,KT)
TI(KT)=T
XDUM(IA)=TI(KT)
YDUM( ¥4 ) =CL(KT)
YDUMM(IA)=CM(KT)

IA=IA+1
REER RN RN RN R RN RN AR RN RN RN RN ERRS
PRINTING OUTPUT -, )

l'lI'll"ll“illlllllill'llll!"ll!!ll\&l!*lllllil!lll!l.lllllll!l!

PRINT 115,TI(KT),CL(KT) :

FORMAT (2X, 'TIME =',F10.4,1X,'LIFT COEFF. =',F10.5) '

PRINT 110,T ‘ a
FORMAT(1X '"VALUES OF VORTICITY AT T=',F8.4)

PRINT 103, ((OMEG(I,J),I=2,M},J=2,N)

PRINT?25,0MEGA, ITN,T

FORMAT(/ 1X, 'RELAX # ',F10.4,3X,'ITN = ',I10,3X, 'TIME=",F10.4,
$/,1%, 'STREAM FUNCTION F(I ) :

PRINT 103,((F(1,J),I1=2,M),J=2,N)

FORMAT(15F8.3)

PRINT 111

FORMAT(5X, 'VALUES OF U(I,J)',/) ' )
PRINT 103, ((U(I,J),I=2,M),J=2,N) . r

R

- . .’



e PRINT 112

112 FORMAT(5X, 'VALUES OF V(I,J)',/)
PRINT 1034((V(I,J),I=2,M),J=2,N)
PRINT 113 v

113 « FORMAT (5X, 'COEFF. OF PRESSURE',/)
PRINT 103,((CP(I,J),I=2,M),J=2,N) =,
WRITE(F, T .

. DO 20 I=2,M
*'DO 20 J=2,N
20 WRITE(T, 108)X(I) Y(J), F(I J)
708 .FORMAT(3F10.4) g .

PRINT 114, TI(KT) CL(KT),CM(KT) RC;KT
11u FORMAT(1X, 'TIME="',F10.4,1X, 'CL(KT)-' F10.4,1X, 'CM(KT)-'
" X,F10.4,1X,'RC=", F1O 4 1x 'KT=*, 1Y)
. WRITE(7 116)TB(KT) CL(KT) CM(K ,RC,KT
;o v116 RpRMAT(uF1o 4,I4)
. KT=KT+1
°DTO=DT .
DO 14 1=2,M
DO 14 J=2,N
- FP(I,Jd)=F(I,J)
« 34  CONTINUE
10 CONTINUE

L 4

4

c ERERREE RN RN
C. CHANGING BOUNDARY WITH TIME *
o *!IlllllllllllIIlll*ﬂ!!l!*!ll!llll'!ill

IF(IC,LT:5)DT=DT#*2. °
F(DT.GT.DTM)DT=DTM
\\éf(DT LT.DTM/8.0)STOP
=T+DT
U(M3,2)=U(M,2)
DO 21 I=3,M
U1=(U(I,2)+U0(I-1,2))/2.
U2=(U(I,2)+U(I+1,2))/2. ®
OMEG(1I, 2) OMEG(I=1,2)+(DX{(I-1)-U1*DT)*(OMEG(I,2)-OMEG(I-1 2))
$/(U2'DT+DX(I 1)-U1'DT)
21 CONTINUE -
N I=2 . 3
-DO 16 J=1,N3 ‘
., CALL UPSTF(F X,Y,X0,Y0,UI,DX,DY,GAMA,RC,N,T,I,J)
16 CONTINUE . .
17 CONTINUE . ’ oo
Zz(F(M1,N1)-F(M1=2, N1))'(X(M1) x&M1 1)) /7(DX(M1-2)+DX(M1-1))
. IF(KK- 1)2u 26,24 ]
26 DO 23 J=2, N
F(M,J)= F(MMZ J)+(F(M J)-F(MMZ 1,J))72.0
23  CONTINUE
. F(M1,N1)=F(M1-1,N1)+Z T . -

a

1444



24
29

27
22

S | 159

GO TO 27

DO 29 J=2,N -

F(M,J)= F(MM2 J)+(F(M, J)-€(MM2 -1 J))/2 0+(F(MM2,J)-FI(J))*DT/DTO
CONTINUE

F(M1,N1)= F(M1-1,N1)+Z+(F(M1-1,N1)-FI(N+1))‘DT/DTO

DO 22 J=2,N .

FI(J)=F(M£2,J) s

FI(N+1)=F(M1-1,N1)

. DO 36 I=M1,M2

36

QOO0

F(I,N1)=F(M1,N1)
F(M,N1)=(F(M,N1+1)+F(M,N1-1)) /2,0
DO 32 I=M1,M3

F(I,N1}=F(M,N1) ,

CONTINUE .

I=2 '

- DO 31 J=2,N

31
757

4o
41~

~7 A\

42

43
120

130
78

90

CALL. VORT(F, OMEG, X, Y, X0,Y0,UI,DX,DY,GAMA,RC,N,T,I,d)
CONTINUE

CONTINUE

KTT=KT-1

DO 40 I=1,KTT

L=I -

IF(TI(I).GT.4.8)GO. TO 41

CONTINUE N

CONTINUE {

LL=L-1

SUM1=0.0

DO 42 I=2,LL
SUM1=SUM1+CL(I)*
CONTINUE
CLAV=(DT¥(CL(1)+CL(L)42.%SUM1)/2.)/(TI(L)-TI(1))

PRINT 43,RC,CLAV :
FORMAT(1X 'RC-' F10.5,1X, 'CLAV-' F14.7,7) .
PRINT 120 (TI(I) I=1 KTT)
FORMAT(/,TX,'TIME CHANGE';/,16F8.5)
PRINT 130,(CL(I),I=1,KTT)
FORMAT(1X, ,IFT COEF v/, .5)
CALL PLTCLT{TI,CL,KTT, AL RC,1)

CALL PLTCLT({I,CM,KTT,AL,RC,2)
CONTINUE
CALL PLTALL (XDUM)YDUM, N'KTT KTT,1)"
CALL .PLTALL(XDUM,YDPUMM, H*KTT KTT ,2)
CONTINUE -

CALL EXIT
END 5 i g

*




" SUBROUTINE BNDCN(F,M,M1,M2,N,N1,DY,UI)
C CCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCe

c SUBROUTINE- BNDCN TO EVALUATE STEADY STATE BOUNDARY, CONDITIONS C
¢ CCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee ofd
. DIMENSION F(25,25),DY(25) , -
- ~ N3=N+1 ' f
M3=M+1 ) g
Do 1 J=1,N3 ° .
DO 1 I=1,M3 -
1 F(I,J)=0.0 ‘ . .
DO 11 I=1,M3 . :
11 F(I,1)=-UI*DY(1) -
DO 2 J=2,N3 ' 1,
F(1,J)=F(1,J-1)+UI*DY(J-1) , )
F(2,J)=F(1,J) .
F(M+1,Jd)=F(1,J) ' .
2 F(M,J)=F(1,J) :
DO 3 I=2,M .
DO 3 J=1,N3 ‘
F(I,J)=F(1,d)
3 CONTINUE :
40  PRINT 102 . 4
102 FORMAT(5X,'F(I,J) VALUES')
' PRINT 103,((F(I,J),I=2,M),J=2,N) K
103 FORMAT(15F8.3) S
RETURN -
END
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|
|

'SUBROUTINE UPSTF(EPS,X,Y, xo YO, UI‘DX ,DY, GAMA RC,N, T 1,J)
cccCccccccccccccCccccccccccccccccccCcccccccccCccccatcccccccccccccccc

AN

c

C

C SUBROUTINE UPSTF TO EVALUATE THE EQUIVALENT RANKINE VORTEX
. C . .

C
C
C

o
-

EQUATION ®

.

QOO0

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCC
DIMENSION X(25);Y(25),EPS(25,25),DX(25),DY(25)

YY=DY(1)
. PL-ABS(ACOS(<1.]) - ‘
. C=PI/(2.%(Y(N)-YY)) .
X(I)=X(I)-X0-UI¥*T -
* o Y(J)=Y(JI)-YY _ . ‘e
IF(J-N)5,6,5 .
5 CONTINUE .
AK=1./(TAN(C*Y0)) \
AA= (1-AK"2'(TAN(C'Y(J)))"Z-AK"Z'(TANH(C'X(I)))"2+
®(TAN(CH*Y(J)))®#2®(TANH(C#X(I)))#e2)#%2 . .
AB=(2 . ®AK*TANH(C*X(I))+2. 'AK'(TAN(C'Y(J)))"Z‘TANH(C'X(I)))*'2
AC= ((1.-AK'TAN(C'Y(J)))“2+(AK'TANH(C*X(I))+TAN(C'Y(J)) :
BETANH(CH#X(I)))#R2)8u2
REQS=ABS(AC/(AA+AB))
GO TO 7 .
CONTINUE v
REQS=1.0 .
7 CONTINUE '
EPS(I,J)=(-GAMA/(2. 'PI))*(ALOG(REQS+RC"2)-ALOG(1.+RC"2))
X(I)=X(I)+X0+UI*T
Y(J)=Y(J)+YY : ' . . _ .
EPS(I,J)=UI*Y(J)-UI*YY+EPS(I,J). : ‘ . .

’ RETURN . S -
END ‘ . )
' . s ) N
®
. -
-
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L J
SUBROUTINE VORT(F,OMEG,X,Y,X0,Y0,UI,DX,DY,GAMA,RC,N,T,I,J)
€ CCGCCCCCCCCCCCCCCECCCCCLCCCCCTCCCCCCCCCCCCCCCCCCCCCCCCCececcceeeeee

C SUBROUTINE VORT TO EVALUATE THE VORTICITY AND VELOCITY C
C COMPONENTS AT THE POINT X,Y DUE TO A VORTEX AT A POINT C
c XO , YO . C

o ccccccccccccccccccccccccctccccccccccccccgcccccccccccccccccccccccccc
DIMENSION F(25,25),0MEG(25", 25) DX(25),D¥Y(25),X(25), 2(25)
,,U(25,25),V(25,25)

H=0.0001

FC=F(L,J) \ ‘>
X(I)=X(I)+H . ’ .
CALL UPSTF(F,X,Y,X0,Y0,UI,DX, DY GAMA,RC,N,T,1,J)
X(I1)=X(I)-H ;
. FE=F(I1,J) : . \)
X(I):X(I);H - . [
“CALL UPSTF(F,X,Y,XO,!O,UI,D§3DY;GAMA,RC,N,T,I,J)
"X(X)=X(I)+H - b :
FW=F(I,J)
Y(J)= Y(J)+H A
CALL UPSTF(F,X,Y,X0,YO,UI,DX, DY GAMA, RC N T,sz)
Y(J)=Y(J)-H . \ AN
. FN=F(I,J)
Y(J)= Y(J) -H
CALL UPSTF(F,X,Y,X0,Y0,UI,DX, DY GAMA,RC,N,T,I J)
CY(J)=Y(J)+H
FS=F(I,J) - 5
OMEG(I,J)&= (FW+FE+FN+FS-4 . %FC) /H##2 Y
V(I, J)--(FE FW)/(2,%H) _ S
U(1,J)=(FN- FS)/(2 'H) ’
F(I,J)=FC
RETURN .
END ' ¢

| ¥
B
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SUBROUTINE POIS .
C CCCCCCCCCCCCCCCCCCCCCCCCC‘CCCCCGCCCCCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCC
C . — f R ﬂﬂ—\ C
-C SUBROUTINE POIS TO SOLVE POISSONS EQUATION BY ITERATIONS® C
C C
C

cccccccccecccccccccccccccccccccccccctccccccccccpccccccccccéccccccc
COMMON F(25,25),0MEG(25,25) ,BOMEG(25,25) o :
COMMON x(25) Y(25) DX(ZS)QDY(ZS) 0625 25%,v(25,25),CP(25, 25)
COMMON FI(25) Ipv'r(zsg,) M N M1, M m‘ma maz/ UI ITN IC D‘I‘ T.
COMMON FP(25, 25) - ‘ ‘e
- ITN=0 . )
' MAXJT=500 o : S }
® ERR=0.Q01 T ., : . . .
OMEGA=1.6 o ° . : )
A=OMEGA : AR - B y -
B=1.-OMEGA * - o 9 , ¢ o ) .
.10 R=0.0 R I
. DO 28°I=3,MM2 ‘ ‘ .o : -
" DO 28 J-3,.NM2 . :
IF{J.EQ.N1.AND.I.GE.M1 AND 1. LE.M2)GO TO 28
50  S=DX(J)/DX(I-1) ' i
Z=DY(J)/DY¢J-1) o . e
‘AA= (143)%DX(I)*¥2.. - . L
BBz (1+4Z)#DY(J)##2, | L .
E=BB* (1+S)#(14S#92 | ) +AAR (14Z) R ¢ 152882 ) ° C
_ FNEW=A®( (BB* (F(I+1,J)*(1+S*#%2)4F (I-1 J)*(SH3+S))+AA*(F(1‘J
$+1)%(14Z%82)4F(I,J-1) (z"3+z))+AA'BB!OMEG(I J))/E)+B'F(I J)

- .. RESID=ABS{FNEW-F(I,J)) ~ , o
» IF(RESID-R).35,35, 36 v . g : ' ;
36 'R=RESID LT ey T e : -
' .3 F(I,J)=FNEW ; o x oot
28 CONTINUE : T oo
B IF(R-E.RR)GO 61,61 - ° R .
+ 61  ITN=ITN+1 = S, ,
IF (ITN-MAXIT) 10, 10 ;62 ‘ S . .
62 * CONTINUE S S : :
PRINT 101,MAXIT \\r:m, a. . @ : ‘
101 FORMAT(ZZHF FAILS TO CONVERG 15, 10HETERATIONS) . . -

.STQP . cTe

60  CONTINUE e T~ s

DO 3¢ I=2,M ™ .

¥ /'D0 30, d=2 N Lta ™Y
oo (X, )= (F(I, 1) -F(I, J-1))/(DX(J)+DY(J ) r
' V(I,3)=(F(I-1 ) =F(Ta1, J)) /¢DX(I)+DX(I-1)) . o
- CP(T,d)= 1/‘(0(1 J)*24V(T, J)“Q)/UI“Z . .
" 30 , CONTIN . o o .
' DO, 187E=2 M . - o ' '~'

Mfw«onﬁcu 2)--(?(1 2)-2 *F(I 3);‘;‘(1 u))/w(z)".z

. .,

. an v
-

. . g

. - [
‘e N . 5 - . = 4




()
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SUBROUTINE HELM

C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C

SUBROUTINE HELM TO SOLVE HELMHOLTZ VORTICITY EQUATION USING C
~ ‘BANDED MATRICES, C

C CCCCCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

65

66
63

85

. CONTINUE . . S

XRETURNS(L)

COMMON F(25,25),0MEG(25,25),BOMEG(25,25)

- COMMON Xx(25),Y(25),DX(25),DY(25),U(25,25),V(25,25),CP(25,25)

COMMON FI(25) IPVT(ZSO) M, N,M1 M2 N1 MMZ NM2 UI ITN 1c, DT T
COMMON FP(25, 25)

DIMENSION A1(250 39), B1(250)
'Iilll!l!llllll!l!!'*!l!!‘ll{!!*ﬁl!!!!tl!

PORTION SOLVING HMELMHOLTZ EQUATION *
lll!lllll!lll!lllllll!!llllllillllllll «
IillllllllllfllliIlllll!llillll!llllill!lll!l!!!!lll!&!ilil!!‘

NNz=NO. OF EQUATIONS OF VORTICITY
CONTINUE

ERR=0.001 i

NN=(MM2-2)® (NM2-2) - (M2-M1+1) ,
NI=MM2-2 ’

NII=NI-(M2-M14+1)"

NU1=N1+1

'NL1=N1-1"

NB=M-2 | S .
ND=2#NB-1 ‘ ’

.DO 55 I=1,NN

DO 55 J=1,ND )
A1(I,J)=0.0 .

1J=1 N | |

DO T4 J=3, NM2

DO- 74 I=3,MM2 s |
ID=1J o |

IF(IJ.GT.NB)ID=NB . ? /

IF(J.EQ.N1.AND.I.GE.M1/AND.I.LE.M2)GO TO 74
ALM1=DT/(DX(I)+DX(I-1)) :
ALM2=DT/(DY(J)+DY(J- -0 : ’ L.
AB=0.0 : .o
BC=0.0 3 , L
A1(1J,ID+1)=ALMI*U(I,J) - oL ’
A1(1J, ID+NI)=ALM2#V(I,J), ‘ o

* IF(J.EQ.N1.AND.I.EQ. M2+1)GO Tq 65

IF(I-3)66,65,66 ,

© AB=A1(1J, 1n+1)'onwo(1 1,9) - R

GO TO 63

A1(1J, ID-1)--A1(IJ ID+1) ° . ' -k
CONTINUE <, ‘
IF(I.GE.M1.AND.I. LE.MZ .AND.J.EQ.NU1)69,85

l‘ ' L]

. . i . o
. . * . ! Te L o ’
. "
. . .,



. 69

2

64
87

67

20

- 76

70
T4

ry -

6

. +CONTINUE

IL=T

166

IF(J-3)71,69,71 . . -
BC=A1(1J,IDNI)*OMEG(I,J=1)

GO TO 64

A1(I1J,ID-NI)=-A1(IJ,ID+NI)

A1(1J,ID)=1.00

IF(J.EQ.N1.AND.I,EQ.M1-1)67,87

CONTTNUE

IF(I-MM2)68,67,68

A1(IJ,ID)=A1(1J,ID)+U(I,J)*DT/DX(I~1)
A1(1J,ID-1)==U(I,J)*DT/DX(IN) > ®
A1(IJ,ID+1)=0.0 ’ . - )
CONTINUE

IF(I.GE.M1.AND.I.LE.M2,AND.J.EQ. NL1)72 86 .

.CONTINUE ‘ ~

IF(J-NM2)73,72,73

A1(I1J,ID) A1(IJ ID)+V(I, J)#DT/DY(J-1)

A(1Jd, ID-NI)--V(I J)'DT/DY(J 1)

AT(IJ,ID+NI)=0.0

B1(IJ)=BOMEG(I,J)+AB+BC . ]
IF(J.EQ.N1.AND.I.LT.M1)20,21 - .
CONTINUE : .

" A1(1J,ID+NII) A1(IJ ID+NI)-

A1(1J,ID+NI)=0.0
CONTINUE o
IF((J.EQ.NU1.AND.I.LT.M1).0R.(J.EQ.N1.AND.I.GT.M2))76,70
CONTINUE -

A1(1J,ID-NII)=A1(1J,ID-NI) A .
A1(1J,ID-NI)=0.0 .
CONTINUE , -
"IJ=IJ+1 '
CONTINUE - ,
CALL CROUT(A1,NN,NB) “ !
CALL SOLVE(A1,B1,B1,NN,NB) :

I1C=IC+1

LF(IC.GT.15)6,7\ . A

h ]

TzT-DT

DT=DT/2.0 *° - - )

DO 8 J=2,N" , _

DO- 8 I=2,M . S
F(I,J)=FP(I,J)

OMEG(I, J)-BOMEG(I J) , p
'CONTINUE ‘

RETURN L | . <

CONTINUE S e *

R=0.0 . ;
DO 78 J=3,NM2




82
78"

83

79

84
200

15

'DO 78 I=3,MM2’

IF(J.EQ.N1.ANDSI.GE.M1.AND. I LE.M2)GO TO 82

. RES=ABS((B1(IL)-OMEG(I,J))/B1(IL))
RES=ABS((B1(IL)-OMEG(I J))) :

IF(RES.GT.R)R=RES . ..
IL=IL+1 - ) :
CONTINUE

CONTINUE

IF (R.LT.ERR) GO TO 79 :

IB=1

DO 81.J=3,NM2 .

DO 81 I=3 MM2
IF(J.EQ.N1.AND.I.GE.M1.AND,I.LE. MZ)GO TO 83.
OMEG(I,J)=B1(IB) . B
IB-IB+1 . ' ‘ "

CONTINUE , _ _ -

CONTINUE
CALL POIS
GO TO 5 o
CONTINUE . .

IJ=1 '

DO 200 J=3,NM2

DO 200 I=3,MM2

IF(J.EQ.N1.AND. I.GE.M1.AND. I.LE. M2)GO TO 84

OMEG(I,J)=B1(1J) \

Td=1J+] . o

CONTINUE

CONTINUE

DO 15 J=2,N

DO 15-I=1,M _ ‘ ’
BOMEG(T,J) =OMEG(1,J) ~ Y
CONTINUE . , x
RETURN v . . -

END ' '

L4
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SUBROUTINE CROUT (A,NEQ,NBAND)
DIMENSION A(250,39)
~ NAsNBAND-1 .
- NTT=2%NBAND-1 _
DO 5 J=2,NBAND ' . ’ -
5 A(1,J)=A(1,d)/4(1,1) : ‘
KY=NEQ-NA
KX=2 ’
10 K1=KX+1 ‘
K2=KX-1
KA=KX+NA .
KB=KA-1 : .
, KBND=KX-NBAND .
\; IF (KX-KY) 15,15,12
. 12 "KB=NEQ
‘ KA=NEQ .
15 DO 30 I=KX,KB
IF (I-NBAND) 16,16,17
16 KC=1 ‘ ‘
.. GO TO 18 , C
.. - . 17 KC=I-NA o
18 SZ=0, .
DO 20 J=KC,K2 A . ]
IF (I-NBAND) 105,105,110
105 J1=J
GO TO 115 : :
110 J1=J-I+NBAND . : .
115 IF (J-NBAND) 120,120,125 x : CT
120 J2=KX’ :
GO TO 130 °
125 J2=KX-J+NBAND . .
- 130 SZ=SZ+A(I,J1)%A(J,J2) S -
20 CONTINUE
IF ‘(I-NBAND) 140,140,150 . L.
140 J1=KX h : /)
. GO TO 160 .
\ 150 J1=KX-T+NBAND ' , .
. 160 A(I,J1)=A(I,J1)-S2Z . .
‘ - 30 CONTINUEﬂ .
. ' IF (KX-NEQ) 31,51,51
. 31 DO 50:J=K1,KA C o
IF (KX-NBAND) 32,32,34 ,
" 32 KC=1 ‘ .
GO TO 36 o
I KC=J-NA=1 / ‘.
36 SZ-0., . o . X
DO 40 I=KC,K2 ) / T W
IF (KX-NBAND) 165, 165 170 ’

\ . . ’ - -
hd \ . v »
- . - . 4 :

o



165

170

I1=1 .
GO TO 175
I11=I-KX+NBAND

~175-IF I~NBAND) 180,180,185

180

185
190
195

ko

200

410

220
50
51

70

J1=J

GO TO 190

J1=J-I+NBAND .

IF (J1-NTT) 195,195,40
SZ=SZ+A(KX,I1)®A(I,J1)
CONTINUE '
IF (KBND) 200,200,210
J1=J ' :
J2=KX

GO0 TO 220

J1=J-KX+NBAND

J2=NBAND

A(KX,J1)=(A(KX,J1)-SZ)/A(KX,J2)”

CONTINUE

KX=KX+1 .

IF (KX-NEQ) 10;10,70
CONTINUE

RETURN

END

169



T

v
SUBROUTINE SOLVE (A,F,SOL,NEQ,NBANDJ

- DIMENSION A(250,39),F(250),SOL(250)

NA=NBAND-1

KY=NEQ-NA-

NTT=2#NBAND-1
F(1)=F(1)/4(1,1)

DO 110 KX=2 NEQ

10
20
30
40
50
60

.0

80

K2=KX-1

IF (KX-NBAND) 10, 10 20

KC=1

GO TO 30

KC=KX-NA T
SZ=0, ‘ ‘
DO 70 J=KC,K2

IF (KX-NBAND) 40,40,50
Ji=d

GO TO 60

J 1=J-KX+NBAND
S2=SZ+A(KX, J1)'F(J)
CONTINUE .

IF (KX-NBAND) 80,80,90
J1=KX

' GO TO 100

90
100

110

120

130

140
150

J1=NBAND

F(KX)= (F(KX)-SZ)/A(KX J1)
CONTINUE

SOL(NEQ) =F(NEQ)

KX=NEQ

L=KX-1

IF (KX-KY) 140,130,130
KA=NEQ

GO TO 150

KAz=KX+NA-1

SZ=0.

DO 200 J=KX,KA

- IF (L-NBAND) 160, 160,170

. 160

170
180
190
200

. 210

‘END

J1=J

GO TO 180
J1=J-L+NBAND

IF- (J1=NTT) 190,190,200
S2=SZ+A(L, J1)'SOL(J)
CONTINUE
SOL(L)=F(L)-SZ
KX=KX-1

IF (L-1) 210,210,120
CONTINUE

RETURN

170



SUBROUTINE PLTCLT(T,CL,KT,AL,RG,NC)
DIMENSION T(250),CL(250)

CALL

-CALL

CALL

L d

PLOTS (30,24 .,10.75,2)
PLTCOM(26HPLEASE USE .4 MM BLACK INC,26)
PLOT(1.0,1.25,-3)

CALL SCALEN(T,8.0,KT,1,0,TMIN,TDA) g

€ALL SCALE4(CL,9.0,KT,1,0,CLMIN,CLDA)

YCALL CRAXES(8.,9.,TMIN,CLMIN, TDA CLDA,Y)

CALL

PLOT((T(1)-

N) /TDA, (CL(1)—CLMIN)/CLDA 3)

\

.

‘\\ ;

10

C

X36HVORTEX APPROACHING FINITE FLA

o/ CALL NUMBER(5.6

CALL-LINE4(T,CL,KT’ 1, TMIN,TDA,CLMIN,CLDA,0,0,0)
CALL SYMBOL(2.5,8.5,.125,

# pLATE,0.0,36)
CALL SYMBOL(S.,B.,.125 5HRC = ,0.0,5)
8.,.125,RC,0.0,2)
CALL SYMBOL(S.,'? 5,.125,5HL = ,0.0,5)

‘CALL NUMBER(5.6,7.5,.125,AL,0.0,2)

IF(NC.GT.1)GO TO 5 | r
CALL SYMBOL(-.5,3.5,.125,19HLIFT COEFFICIENT CL,90.,19)
GO TO 10

CALL SYMBOL(-.5,2.9,.125,30HPITCHING MOMENT COEFFICIENT "o,
90.,30)

* CONTINUE

CALL PLTERR(1) .,

PAUSE . N

CALL ENDPLT 7

RETURN :

END ~

- —




D

SUBROUTINE PLTALL(XDUM YDUM, N, NN, NC)
DIMENSION X1(250), xe(zso) x3(250) XU4(250), Y1(250) Y2(250)
1,Y3(250),Y4(250) xnuu(1ooop YDUM( 1000} .
CALL PLOTS(30 10.0,10,75,2)
CALL PLTCOM(ZBHPLEASE UsE .4 .MM BLACK INC, 26) ) .
CALL PLOT(1.0,1.25,-3). 'a Ky -
DO 5 I=1,NN ‘ ‘ ;
X1(1)=XDUM(I) By T
Y1(I)<YDUM(I) Co
X2 (1) =XDUM(NN+I) . €
Y2(I)=YDUM(NN+I) - ‘ , :

’ X3(I)=XDUM(2*NN+I) ~ o b
Y3(I)=YDUM(2*NN+I) ] ~ , :
XU (I)=XDUM(3*NN+I) -
Y4(I)=YDUM(3®NN+I) ' :

5 CONTINVE
CALL SCALEY(XDUM,8.0,N,1,0,XMIN xDA)
CALL SCALE4(YDUM,9.0,N,1,0,YMIN, YDA) .
CALL CRAXES(G.,9.,XMIN YMIN,XDA,YDA,zx
CALL' SYMBOL(2.5,8.5,.125,
X36HVORTEX APPROACHING FINITE FLAT PLATE 0.0,36) ,

IF(NC.GT.1)GO TO 8 . "
'CALL SYMBOL(-.5,3.5,.125,19HLIFT COEFFICIENT "CL,90.,1 9) -
GO TO 10 ‘ .
8  CALL SYMBOL(~.5,2.9,.125,30HPITCHING. MOMENT COEFFICIENT CM,
$90.,30) .-
10 CONTINUE

CALL PLOT((X1(iY=XMIN)/XDa, (Y1(1)4YMIN) /YDA, 30
w CALL LINE4(X1,Y1,NN,1,XMIN,XDA,YMIN,YDA,0,0,0)

CALL PLOT((X2(1 -XMIN)/XDA (Y2(1)-YMIN)/YDA 3)

CALL LINE4(X2,Y2,NN,1,XMIN,XDA,YMIN,KYDA,0,0,0) B .

CALL PLOT( (x351)-XM1N)/an (Y3(1)-YMIN)/YDA 3) A

CALL LINEY4(X3,Y3,NN,1,XMIN,XDA,YMIN,6YDA,0,0,0) "

CALL PLOT((xuu)-xMI /XDA, (Yll(1)-YMIN)/YDA 3) 4

CALL LINE4(Xl,YU4,6NN, ,xMIN XDA,YMIN,YDA,0 ,0,0)

CALL PLTERR(1)

CALL ENDPLT "
RETURN A
END -

-~ -



1%3

SUBROUTINE LIFTC(CL,CM,KT)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCQCCCC

C
c _ . C
c SUBROUTINE LIFTC TO CALCULATE THE C
C C ok
c LIFT AND PITCHING MOMENT COEFFICIENTS o . “wx‘?
C C
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
. COMMON E(25,25),0MEG(25,25) ,BOMEG(25,25)
COMMON x(25) Y(25) DX(25) DY(25) U(25 25),V(25,25),CP{25,25)
COMMON FI(ZS),IPVT(ZSO),M,N,M1,MZ,NJ;MMZ,NMZ,UI,ITN,IC,DT,T
COMMON FP(25,25)°
DIMENSION CL(250),CM(250),G1(25),G2(25),G3(25),DU(25),DP(25)
AL=X{M2)-X(M1)%0.25
SUM1=0.0
. SUM2=0.0
N - DO 35 JI=M1,M2
: A UB=(F(I,N1)-F(I,N1-1))Y/DY(N1-1)
UT=(F(I,N1+1)=F(I,N1))/DY(N1)
DU(I)=UB-UT -~
G3(I)=(UB*#2-UT##2)/2.0 ‘ -
N G2(I)=0.0
DO 30 J=M1,I' :
- IF(J.EQ.M1)GO TO 30 .
* G2(I)=G2(I)+(DU(J=1)+DU(J))®DX(J=1)/2.0 ;
g | 30  CONTINUE ' :
- G2(I)=G2(1)+0.5%DU(M1)#0.25 .
IF(KT.EQ.1)G1(I)=G2(I) o ,
DP(I)=~( (GZ(I)-G1(I))/DT+G3(I))
G1(I)=G2(I) .
IF(I.EQ.M1)GO TO 35 -
sg:g-sun1+nx(r -1)®(DP(I-1)+DP(1))/2.0
/ =SUM2+DX(I<1)*(DP(I-1)*(X(I- 1)~X(M1))+DP(I)'(X(I)-X(M1)))/2-
35  CONTINUE®
CL(KT)=SUM1/(0 ,5%UI##28#4L)
. CM(KT)=SUM2/(0.5%UT #u28A[ 882 )
a RETURN - ~
- END ¢ "

169 1220 11 . ‘
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APPENDIX (E)

COMPUTER PROGRAMS

FOR THE PSEUDO-TURBULENCE. MODEL

o e

3 ,




C
C
C
C
C
C
C

e NeNeoNeNe

PROGRAM MOp1! (INPUT,QUTPUT,TAPE7,DEBUG=0UTPUT)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
COMMON F(25,25),0MEG(25,25),BOMEG(25,25)

COMMON X(25) Y(25) DX(25) DY(25) U(25 25),V(25,25),CP(2
COMMQN FI(ZS) IPVT(250) M,N,M1 M2 ,N1, MM2 NM2 UI ITN IC

102

105

15

PROGRAM MOD1.,TO SOLVE FOR RANDOMELY POSITIONED VORTICES

AéPROACHING A FLAT PLATE BETWEEN TWO PARALLEL PLANES

COMMON FP(25, 25)

DIMENSION TI(250) ,CL(250),CM(250),XDUM(1000),YDUM(-1000)

, » YDUMM( 1000)

5,25

W

aaaaaaa

) -

DIMENSION-XV(100),YV(100),VCR(100),GAMMA(100), US(250 4 V8(250)

OMEGA=RELAXATION FACTOR

F(I,J)=STREAM FUNCTION VALUE AT THE POINT (I,J)

OMEG(I,J)=VORTICITY

MAXIT=MAX. NO OF ITERATIONS PERMITTED

UI=VELOCITY OF STREAM
OMEGA=1,60
READ * M,M1,M2 N,N1

PRINT 102 M, M1, M2 N,N1

FORMAT(5IS) d

K0 e

NM2zN-1

MMZ2=M-1

NU1=N1+1

NL 1=¥1-1

READ *,(DY(J),J=1,N) .
PRINT105,(DY(J),J=1,N)-
READ105, (DX(I),I=1,M)
PRINT105,(DX{(1),I=1,M)
FORMAT (22F5.2)

M3zM+1

N3EN+1

M2=M3

X(1)=0

Y(1)=0.0

DO 13 J=2,N3
Y(J)=Y(J-1)+DY(J-1)
CONTINUE Y

DO 15 I=2,M3
X(I)=X(I-1)4DX(I-1)
CONTINUE
STGLN=X(M)-X(2) 4
AMW=Y(N)-Y(2)

RC=0.7 .- .

-

-

’




PI=ABS(ACOS#-1.0))
CIRC=1.0 ‘
Fa WRITE(7 106 )M,M1,M2 M3 ,MM2 N, N1 NM2 N3, STGLN Auw 'RC, CIRC .
106 FORMAT(9IS 4F8. 3) ?
WRITE(T, 103)(x¢1) I=1,M3) - ,
NRITE(7,103)(Y(I),I=1 N3) -~ Ty
IA=1 ) . S
DQ 78 IK=1,4 | . I . !
.RC 0.4+0. 1#IK ° . - ‘ y
M2:=M14IK - . ’ o
IF(IK.EQ.4)M2=MM2 . : - ' e
AL=X(M2)-X(M1)+.25 v :

(o N e Ne e R

.

CALL BNDCN(F,M,M1,M2,N,N1,DY,DX, UI U,v,CP)
DTM=0.2#RC/UI ) e o
DTDTM’ o=

T=0.0 , e '*‘~\\\‘
T7=0.0 - * ‘ - . |

DO-12 I=1,M3 o ~ \ . / ,
DO 12 J=1,N3 . T |
OMEG(1,J)=0.0
BOMEG(I,J)=0MEG(I,J) ' .

12 CONTINUE ~ * . C 7
KT31 ’

"DO 75 KK=1,250 : S oo
IC=0 . ' e '
CALL POIS ) v T .o
IF(KK.EQ.1)GO TO 77 : . -

CALL HELM, e, , -
XRETURNS(10) . * s ,
77  CONTINUE Co : - .
C XQC=X CO-OPDINATE FOR GUARTER CHORD POINT . .
' C. - QCL=QUARTER CHORD LENGTH . , "L N
QCL=z0.25%(AL-.25) : b -
XQC=X(M1)+QCL £

©

f’ . ' ’ - | .
) GALL LIFTC(CL,CM,KT) 7 . . X Pany

¢ FTI(KT)=T ) o N A _ .
*US(KT)=U(2,N1) - a - ~
'VS(KT)=V(2,N1) - . : e ' '
XDUM(IA)<TI(KT) - & ) -
YDUM(IA)=CL{KT) : T , '
YDUMM( IA)=CM(KT) ¥ , , ~

¢y TAZIA#T o . T . PO
C llll!lllilllll!lllllillllll!l!iIlll!.Il!!l!l!llill!l!lll"{l. ll!l
C PRINTING OUTPUT : r
C llll!l!ll!llllllllllllllIlllllll!!lllllilllIilllllll!lllllllli!!l
PRINT 115,TI(XT),CL{KT) .
+115' . FORMAT (2%, 'TIME =',F10.4,1X, 'LIFT COEFF § :'wF1O 5 - Lo
PRINT 110,T . =~ S
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110
25.

103

11
112

13

104

14
10

oNeNe

21
C

C
C

~

. DO 14 J=2

Co o : 177
“ ) - \
FORMAT(1x,'vKLUEs OF VORTICITY AT T=/,F8.4) ‘
PRINT 103, ((OMEG(I,J),I=2,M),J=2,N)
PRINT25 ,0MEGA, ITN,T v
FORMAT(/ 1X, 'RELAX ' F10.4,3X,'ITN = ',I10,3X, 'TIME=", ,F10. L,
$/,1X,'STREAM FUNCTION F(I J)'3
PRINT 103, ((F(1,J),I=2,M),J=2,N)
FORMAT(15F8.3) °
PRINT 111
FORMAT(5X, 'VALUES OF U(I,J)',/)
PRINT 103, ((W(I1,J),I=2,M),J=2,N)
PRINT 112 .
FORMAT (5X, 'VALUES OF V(I,J)',/)
PRINT 103, ((V(I,3),I=2,M),J=2,N)
PRINT 113
FQRMAT (5X, 'COEFF, OF PRESSURE' , /)
PRINT 103, ((CP(I,J),I=2,M),J=2,N)
WRITE(7,103)((F(I,J),I 2 M) J= 2 N)
WRITE(7,103)((OMEG(I,J),I =2,M) J=2 ,N)
WRITE(7,103)((U(I,J)4I=2,M),J=2,N)
WRITE(7,103)((V(I,J),I=2,M),J=2,N)
WRITE(7,103)((CP(IL,Jd),I=2, M),J:Z N)
WRITE(T7,104)US(KT) ;VS(KT).,CL(KT),TI(KT),CM(KT) ,KT
FORMAT(5F8.3,110)
KT=KT+1
DTO=DT
DO 14 I=2,M
yN ' :
FP(I,J)=F(I,J) ‘
CONTINUE

CONTINUE
BRERNENRERRRENRRNERERERRR AR R RRR RN AR

' CHANGING BOUNDARY WITH TIME *

RERBRAFRSARRRRARRRRRFRRBRVRRRERRERERRREE

IF(IC.LT.5)DT=DT¥*2,

IF(DT.GT.DTM)DT=DTM

IF(DT.LT.DTM/8. O)STOP .

T=T+DT . . h

TT=TT+DT ' :

U(M3,2)=U(M,2) :

DO 21 I=3,M “ . : )
U1=(U(1,2)+U(I-1,2))/2. . 1"}
U2=(U(I,2)+U(1+1,2))/2:

OMEG(1I, 2) OMEG(I-1 ,2)+(DX(I- 1)-U1'DT)'(0MEG(I 2)-0OMEG(I-1,2))
$/(U2'DT+DX(I-1)-U1'DT)

CONTINUE -
l'l!llllil!!!lil!!!ll!!!lllﬁl!i.!l!!!!i’li!lll!llillllllll!

CALLING RANDOM VORTICES
SRRRRRRERRR RN R BB RS R RN R RN R RN R BN RN AR R A AR B RRRNARARRRRRRRRRY



- 26

23
24

29
27
22

36
75

4o
41

43 .

132

120

' ‘ | o Mvs-

1

IF(KK.GT.1)GO TO 16

CALL TURBFLO(AMW, STG£N CIRC,RC,XV,YV,VCR,GAMMA xERO)
CONTINUE .

CALL WKSHT(TT,DT,XV,YV,VCR,GAMMA,X,Y,UI,OMEG,
&F,U,V,N, AMW, STGLN, CIRC,RC,XERO)
RRRRRRRUBARRERRRERERRRER SR RRRRF AR R BN A RRAEERRRNRE RN
I'll!Iillllllll!liililill&llll!llliillll!lli!!l*li!!!iiillli!*l
DO 17 I=3,M3 '

F(I,1)=F(2,1) :
F(I,N3)=F(2,N3) » ) > -~
CONTINUE

Z=(F(M1,N1)-F(M1-2,N1) ) #(X(M1)-X(M1=1))/(DX(M1-2)+DX (M1~ 1))
IF(KK-1)2M 26,24

DO 23 J=2 N

F(M,J):F(MMZ,J)+(F(M,J)-F(MM2-1,J))/2.0

CONTINUE

F(M1,N1)=F(M1-1 JN1)+Z

GO TO 27 -
DO 29 J=2,N

F(M,J)= F(MMZ J)+(F(M,J)=F(MM2~1,J)) /2, 0+(F(MM2 J)=FI(J))*DT/DTO
E(M3,J)=F(M, J)

A Y

CONTINUE '
F(M1,N1)=F(M1-1 N1)+Z+(F(M1 “+,N1)~FI(N+1) ) #DT/DTO
DO 22 J=2,N

FI(J)=F(MM2,J) '
FI(N+1)=F(M1-1,N1) . v

DO 36 I=M1,M2
F(I,N1)=F(M1,N1)
CONTINUE : y
KTT=KT-1 y ‘

DO 40 I=1 KTT

L=I

IF(TI(I).GT.4. 8)GO TO ¥1

CONTINUE .

CONTINUE

LL=L-1

SUM1=0.0
DO 42 I=2,LL Ay
SUM1=SUM1+CL(I)

CONTINUE '
CLAV=(DT#(CL(1)+CL(L)+2.%3SUM1)/2.) /(TI(L)-TI(1)) "
PRINT 43,RC,CLAV '

FORMAT(1X 'RC-',F10 5,1X, 'CLAV t\F1u 7,7) .

PRINT 132

FORMAT(/,1X, 'TIME CHANGE' /)

PRINT 120 (TI(I) I=1 KTT)

FORMAT(1x,16F8.u) .

PRINT 134 -




13u FORMAT(/,1X, 'LIFT COFF.',/)
PRINT 120,(CL(I),I=1,KTT)
CALL PLTCLT(TI,CL,KTT,AL,RE,1)
_ CALL PLICLT(TI ,CM,KTT, AL RC.2)
78 CONTINUE

C CALL PLTALL(xDﬁM YDUM, L#KTT KTT)
90 CONTINUE
CALL EXIT
END )
o
./ .
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SUBROUTINE BNDCN(F,M,M1,M2,N,N1,DY,DX,UI,U,V,CP) .
C CCCCCCCCCCCCCCCCCCCCCCCCClCcctCCCClCCCCCCCCCCCCCECCCCCCCCCCCCCCeeeee

/ ‘ .
C SthOUTINE BNDCN TO EVALUATE STEADY STATE BOUNDARY CONDITIONS C-

C CCCCCGCCCQCCCCCCCQCCCCCpCCCCCCCCCCCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

-

DIMENSION F¢25,25),DY(25), DX(25) u(25,25),v(25,25),CP(25,25), ﬂ

F(1,J)= F(1 J=1)+UI*DY(J-1)
F(2,J)=F(1,J)
¢ F(M&1,Jd) F(1 J)
2 F{M, J) F(14J) ) .
DO 3 I=2,M
"DO 3 J=1,N3
F(1,J)=F(1,J) C
3 CONTINUE ‘ : ) \
DO 30 I=2,M
DO 30 J=2,N ‘
U(1,Jd)= (F(I J+1)-F(I, J=1)) 7(DY(J3)+DY¥(J-1))
V(I, J) (F(I-1 J)-F(I+1 J))/(DX(1)+DX(I-1))
CP(I,J)=1.-(U(I,J)"2+V(I,J)'*2)/UI"2
30 CONTINUE
RETURN
END ) . .

-~

»
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SUBROUTINE POIS
C CECCCCCCECCCCCCCCCCCCCCCCeeceeeeeeeegeeeeeeeeeeeeeeeceeeceeceeceeccee
o C
o SUBROUTINE POIS TO SOLVE PQISSONS EQUATION' BY ITERATIONS C
C C
C cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
COMMON F(25,25),0MEG(25,25),BOMEG(25,25)
COMMON x(25) Y(25) Dx(25) 01(25) U(25 25),V(25, 25),CP{25,25)
COMMON FI(25) IPVT(250) M,N, M1'M2 N1,MM2 wuz u1 ITN 1c, DT T
COMMON FP(25,25) -
ITN=0 .
MAXIT=500
ERR=0.001.
OMEGA=1.6
A=OMEGA
B=1,-OMEGA
10 R=0.0
DO 28 I=3,MM2 L :
DO 28 J=3,NM2’ -
IF(J.EQ.N1.AND.I.GE.M1. AND. I. LE M2)GO TO 28
50  S=DX(I)/DX(I-1)
Z=DY(J)/DY(J-1)
AA=(143)¥DX(I)*#2, '
BB=(1+Z)#DY(J)#*2,
E=BB*(1+3S)%(145%%2, )+AA'(1+Z)'(1+Z"2 )
FNEW=A® ((BB* (F(I+1,J)#(1+S%#2)4+F(I-1 J)'(S"3+S))+AA'(F(I J
$+1)%(1+Z882)4F(I,J- 1)*(Z*‘3+Z))+AA*BB*OMEG(I J))/E)+B*F(I,J)
RE‘SID:ABS(FNEW—F(I,J))
- IF(RESID-R)35,35,36
36 R=RESID
35  F(I,J)=FNEW
28  CONTINUE
IF (R-ERR)60,61,61 ;
61  ITN=ITN+1
IF(ITN-MAXIT)10,10,62
62  CONTINUE .
PRINT 101,MAXIT
101 FORMAT(22HF FAILS TO CONVERGE IN, 15, 10HITERATIONS)
STOP
60  CONTINUE
DO 30 I=3,M
DO 30 J=2-,N
u(r,Jd)= (F(I J+1) F(I J=1))/(DY(J)+DY(J=-1))
v(I, J)=(F(I-1 ,J)=- F(I+1 J9)/7(DX(I)+DX(I-1))
30 CONTINUE
. DO 31 I=2,M
DO 31 J=2,N
CP(I,J)=1 -(U(I J)#R24V (I, J)*FZ)/UI**Z o

@

k] .
1

PO
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. 31 CONTINUE Ly :
DO 18 I=2,M
OMEG(I, 2)--(?(1 2)-2.%F(1,3)+F(I,4)) /DY(2)#*2,
OMEG(f N)=-(F(I,N)-2,%F(I,N- 1)+F(I yN=2)) /DY (N-1) #%2

18 CONTINUE \

J=N1 ’ L0
DO 19 I=M1,M2 '
OMEG(1I, J)--(F(I J)-2. 'F(I J+1)+F(I, J+2))/DY(J)"2 ‘x

+

: 19 CONTINUE A
{ RETURN : , . o>
END Y | '
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suBrdUTINE HELM,

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCCCC

55

. 65

66
63

83,

SUBROUTINE HELM TO SOLVE HELMHOLTZ VORTICITY EQUATION USING C
BANDED MATRICES - -C

XRETURNS(L)

‘COMMON F(25,25),0MEG¢25,25),BOMEG(25,25) -

COMMON x(25) Y(25) Dx(25) DY(ZS) U(25 25),v(25,25),CP(25, 25)
COMMON FI(25) IPVT(250),M N,M1 M2 N1 MM2 NM2 UI ITN 1C, DT T
COMMON FP(25, 25) £ ’
DIMENSI0N3A1(250,39);31(250)
!l!!lIl!l!ll!ll!lllll!!ll!llillllll!l! .

PORTION SOLVING HELMHOLTZ EQUATION *
BUBRRARRBBERRERRURARERBBRBRRRRRNRNERARN -
lllllli!llll!l'll!ili!!llillllll!llti!lilllllllll!!lI&*illl!i

NN=NO. OF EQUATIONS OF VORTICITY ’
CONTINUE . — - -

ERR=0.001 . . Ny
NN=(MM2-2)#(NM2-2) - (M2-M1+1) ~

NI=MM2-2 X ' :
NII=NI-(M2-M1+1)

NU1=N14)

NL1=N1-1 -
NB=M-2 ‘

ND=2%NB-1 T -
DO 55 I=1,NN : ,/’,

1 V.
DO 55 J=1,ND ,
41(1,J)=0.0 . ,

IJ=1

DO ‘74 J=3,NM2 ’
DO T4 I=3 MM2 '
ID=1J

-

- IF(1J.GT.NB)ID=NB ~ s »

IF(J.EQ.N1.AND.I.GE.M1.AND,I,LE.M2)GO TO Tl .
ALM1=DT/(DX(I)+DX(I-1))

ALM2=DT/(DY(J)+DY(J-1))"

AB=0.0

BC=0.0 o

A1(1J,ID+1)=ALM12U(I,J) e

A1(1J,ID+NI)=ALM2#V(I,J) '

IF(J.EQ.N1.AND.I.EQ.M2+1)GO TO 65

IF(I-3)66,65,66 .

AB=A1(IJ,ID+1)*OMEG(I-1,J)

_ GO TO“63 ‘ -
A1(I1T, ID-1)--A1(IJ ID+1) -
CONTINUE
IF(1.GE.M1.AND.I. LE.M2.AND. J.EQ. NU1)69,85

CONTINUE

L 2 v
v ‘ )
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69

T
64

87
67

68

86
S 3

RE

20

21

76

70

T4

IF(J- 3)11 69,71 S
"BC=A1(1J, ID+NI)*OMEG(I,J-1) ‘

GO TO 64 .
A1(1J,ID-NI)=-A1{I1J, ID+NI)
A1(1J,ID)=1.00
IF(J.EQ.N1.AND.I.EQ.M1-1)67,87
CONTINUE i

IF(I-MM2)68,67, 68

A(1J, 1%) =A1(1J, 1D) WL, J)#DT/DX(I-1)
A1(TJgTD=1)=-U(T,J)*DT/DX(I-1)
“A1(1J,ID+1)=0.0

CONTlNUE .

IF (I.GE.M1.AND.I.LE.M2 .AND. J.EQ.NL1)72,86
CONTINUE

" IF(J-NM2)73,72.73

A1(1J,ID)= A1(IJ ID)+V(I, J)*DT/DY(J-1)

A1(1J, ID-NI)--V(I J)’DT/DY(J 1)
1(IJ,ID+NI)=0.0 .
1(1J)=BOMEG(I',J)+AB+BC

IF(J.EQ.N1.AND.I.LT.M1)20,21,

CONTINUE

A1(1J, ID+NII)=A1(IJ, ID+NI)

A1(1J,ID+NI)=0.0

CONTINUE

IF((J.EQ.NU1,AND2I.LT.M1).0R.(J.EQ.N1.AND.I.GT.M2))76, 70

CONTINUE

A1(1J,ID-NII)= A1(IJ ID-NI)
A1(1J,ID-NI)=0.0

CONTINUE

1J=1J+1

CONTINUE

CALL CROUT(A1,NN,NB)

CALL SOLVE(A1,B1,B1,NN,NB)
I1C=IC+1

IF(IC.GT.15)§,7

. CONTINUE

TZT-DT

DT=DT/2.0

DO 8 J=2,N -

DO 8 I=2,M .
F(I,J)=FP(I,J) . -
OMEG(I,J)=BOMEG(I,J) .
CONTINUE
RETURN L ‘
CONTINUE' .
IL=1 " -

" R=0.0

DO 78 J=3,NM2 .

2’

184



DO 78 I=3,MM2

- IF(J.EQ.N1,AND,I.GE.M1.AND.I.LE.M2)GO TO 82
"RES=ABS((B1(}.)-OMEG(I,J))/B1(IL))

82

80

,200

15

RES=ABS((B1(IL)-OMEG(I, J)))
IF(RES.GT.R)R=RES

IL=IL+1

CONTINUE .

CONTINUE

IF (R.LT.ERR) GO TO 79

IB=1 . &

DO 81 J=3,NM2 :

DO 81 I=3,MM2 .
IF(J.EQ.N1.AND.I.GE.M1.AND.I.LE.M2)GO TO 83
OMEG(T, J)-BT(IB)

IB-IB+1 .

CONTINUE «

CONTINUE

CALL POIS

GO TO 5

CONTINUE

IJ=1

DO 200 J=3,NM2

DO 200 I=3,MM2
IF(J.EQ.N1,AND.I.GE.M1,.AND.I.LE.M2)GO TO 84
OMEG(I,J)=B1(1J) : e
1J= IJ+1 . ' .
CONTINUE
CONTINUE.
DO 15" J=2,N : -
DO 15 I=1,M

BOMEG(I, J) OMEG(I, J)
CONTINUE : X

"RETURN

END B N
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SUBROUTINE CROUT (A,NEQ,NBAND)

DIMENSION A(250,39)
NA=NBAND-1
NTT=2%NBAND-1
DO 5 J=2,NBAND
5 A(1,d)=A(1,J)/A(1,1)
KY=NEQ-NA
KX=2
10 K1=KX+1
K2=KX-1
KA=KX+NA
KB=KA-1
KBND=KX-NBAND
~IF (KX-KY) 15,15,12"
12 KB=NEQ
KA=NEQ
15 DO 30 I=KX,KB
IF (I-NBAND) 16,16,17
16 KC=1
GO TO 18
17 KC=I-NA
18 SZ=0.
DO 20 J=KC,K2
IF (I-NBAND) 105,105,110
105 J1=J
.GO TO 115
110 J1=J-I+NBAND :
, 115 IF (J-NBAND) 120,120,125
120 J2=KX .
G0 TO 130
125 J2=KX-J+NBAND
130 SZ=S2+A(I,J1)*a(J,J2
20 CONTINUE '
IF. (I-NBAND) 140,140,150
140 J1=KX
GO TO 160
150 J1=KX-I+NBAND
160 A(I,J1)=A(L,J1)-SZ
30 CONTINUE
IF (KX-NEQ) 31,51,51
31 DO 50 J=K1,KA
IF (KX-NBAND) 32,32,34
32 KC=1. .
GO TO 36
34 KC=J-NA-1
36 SZ=0. o
DO 40 I=KC,KZ
* IF (KX-NBAND) 165,165,170

186
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t,

165
170
175

-180
185
190
195

40

200
210
50

51

70

I1=1 ' * (//
GO TO 175

I1=I-KX+NBAND

IF (I-NBAND) 180,180,185
J1=J

GO TO 190

J1=J-I+NBAND

IF (J1-NTT) 195,195,40
SZ=SZ+A(KX,I1)#*A(I,J1)
CONTINUE

IF (KBND) 200,200,210
J1=d

J2=KX

GO TO 220 .

J1=J-KX+NBAND . -

J2=NBAND .
A(KX,J1)=(A(KX,J1)-52)/A(KX,J2)
CONTINUE  ~ .

KX=KX+1

IF (KX-NéQ) 10,10,70

CONTINUE ) '
RETURN

END ' .

R

187




SUBROUTINE SOLVE (A,F,SOL,NEQ,NBAND)
DIMENSION A{250,39),F(250),S0L(250)
NA=NBAND-1

KY=NEQ-NA

NTT=2#NBAND-1

“F(1)=F(1)/A(1,1)

10
20
30
40
50

60
70

80

90
100
110

120

" 130

140
150

160

170
180
190
200

DO 110 KX=2,NEQ

K2=KX -1

IF (KX-NBAND) 10, 10,20
KC=1¢

GO TO 30

KC=KX-NA

SZ=Q.

DO 70 J=KC,K2Z *

IF (KX- NBAND) 40, Ho 50
J1=J

GO TO 60 . .

J 1=J~KX+NBAND ,
SZ=SZ+A(KX,J1)*F(J) .-
CONTINUE

IF (KX~-NBAND) 80,80, 90
J1=2KX

GO TO 109

J 1=NBAND

-F(KX)=(F(KX)-SZ)/A(KX,J1)

CONTINUE

SOL(NEQ) =F(NEQ) -

KX=NEQ =

L=KX=1

IF .(KX-KY) 140; 130 130 .
KA=NEQ

GO TO 150

KA=KX+NA-1 ' -

SZ=0.

DO 200 J=KX,KA

IF (L~ NBAND) 160, 160 170
J1=J

GO TO 180

J1=J-L+NBAND .

IF (J1-NTT) 190,190,200
SZ=28Z+A(L,J1)*SOL(J) ’
CONTINUE

SOL(L)= F(L)-SZ '
KX=KX-1 . °

-~ IF (L-1) 210,210,120

210

CONTINUE
RETURN
END -
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SUBROUTINE PLTCLT(T,CL,KT,AL,RC,NC)
DIMENSION T(250),CL(250) :
CALL PLOTS(30,24.,10,75,2) ‘ . .
CALL PLTCOM(26HPLEASE USE .4 MM BLACK INC,26)
CALL PLOT(1.0,1.25,~3)

CALL SCALEHW(T, '8.0 KT,1,0 TMIN, TDA)

CALL SCALE4(cL,9.0,kT,1,0,CLMIN,CLDA)

‘CALL CRAXES(8. 9.,TMIN CLMIN TDA CLDA,H4) .

CALL PLOT((T(1)-TMIN)/TDA (CL(1)-CLMIN)/CLDA,3)
CALL LINE4(T,CL,KT,1,TMIN,TDA,CLMIN,CLDA,0,0,0) -
CALL SYMBOL(Z 5, ‘8. 5,.125,
X38HRANDOM VORTICES APPROACHING FLAT PLATE,0.0,38)

CALL SYMBOL(5.,8.,.125,5HRC = ,0,0,5)
CALL NUMBER(5;6,8.,.J25,Rc,o.o,2)

CALL SYMBOL(5.,7.5,.125,5HC = ,0.0,5)
CALL NUMBER(5.6,7.5,.125,AL,0.0,2)
IF(NC.GT.1)GO TQ 8 Lot
CALL SYMBOL(-.5,3.5,.125,18HLIFT COEFFICIENT C,90.,18)

CALL WHERE(XPT, YPT, FCTR) L

XPT=XPT+.125%. 6 , : I .
YPT=YPT+.035 '
CALL SYMBOL(-. uasii14 125 1HL 90.0,1)
GO TO 10 -

CALL SYMBOL(-.5,2.9,.125, 29HPITCHING MOMENT' COEFFICIENT C,
$90.,29) )

CALL WHERE( XPT,YPT,FCTR) T ~
XPT=XPT+.125%.6 . ‘
YPT=YPT4+.035 - - .
CALL LOWER(-.425, 6 125,1HM,90.0,1) «
CONTINUE r
CALL PLTERR(1) : ’ . L.
PAUSE . . -
CALL ENDPLT :

RETURN

END

1

- \




- L)

. . SUBROUTINE PLTALL(XDUM,YDUM,N,NN,NC)

DIMENSION X1(250) x2(250) x3(250) X4(250) Y1(250) Y2(250)
1,Y3(250),Y4(250) xnuu(1oooy YDUM(1000) ) N
CALL PLOTS(30,10.0,10. 75,2). -
CALL PLTCOM(26HPLEASE USE .4 MM BLACK INC,26) ' T
"CALL PLOT(1.0,1.25,-3)
DO 5 I=1,NN .}
X1(I)=XDUM(I)
Y1(I)=YDUM(I) . ‘
X2(I)=XDYM(NW&I) T . : : S
Y2(I)=YDUM(NN+I) . ~ v ‘ -
¥3(I1)=XDUM(2#NN+I) ' * ‘ o -
Y3(I)=YDUM(2#NN+I) -

. XH(I)=XDUM(3*NN+I) ,
Y4 (I)=YDUM(3*NN+I) ‘ ‘

.5 CONTINUE, .

_ CALL SCALE4(XDUM,8.0,N,1
CALL SCALEY4(YDUM,9.0,N,
CALL CRAXES(S.,Q.,XMIN,Y

.

v

,0,XMIN,XDA) . o .
.0, YMIN,YDA) :
MIN,XDA,YDA,2)

CALL SYMBOL(2.5,8. 5,.125
X38HRANDOM VORTIC
IF(NC.GT.1)GO TO
CALL. SYMBOL(-.5,3.5,.125,18HLIFT COEFFICIENT C,90.,18)
| CALL WHERE(XPT XPT,FCTR)
' " XPT=XPT+.125%
¢ YPT=YPT+.035, : , ’ .
CALL SYMBOL(-.425,5.4,.125,1HL,90.0,1) 8 _—
GO TO,10 )
8 CALL SYMBOL(-.5,2.9,.125,29HPITCHING MOMENT COEFFICIENT c,

kéhING FLAT PLATE, o 0,38)

' $90.,29)
_ CALL WHERE(XPT,YPT,FCTR) \
XPTsMT+.1258.6 . %
YPT:YPT+.035 {
CALL LOWER(-.425,6.,.125,1HM,90.0,1) o .
10  CONTINUE gz R
TCALL PLOT((X1(1)-XMIN)/XDA,(Y1(1)-YMIN)/YDA,3)
CALL LINE4(X1,Y1,NN,1,XMIN,XDA,YMIN,YDA,0,0;0) .
CALL PLOT((X2(1)-XMIN)/XDA (Y2(1)-YMIN)/YDA 3)
'CALL LINEM4(X2,Y2,NN,1,XMIN,XDA,YMIN,YDA,0,0,0)
CALL PLOT((X3(1)-XMIN)/XDA (Y3(1)-YMIN)/YDA 3)
_CALL LINEN(X3,Y3,NN,1,XMIN,XDA,YMIN,YDA,0,0,0)
CALL PLOT((X4(1)-XMIN)/XD4,(Y4(1)-YMIN)/YDA,3) ;
CALL LINE4(X4,Y4 NN- 1,XMIN,XDA,YMIN,YDA,0,0,0Y ’
CALL SYMBOL(S.,S.,.125 8HC = 2 us 0.0-,8) % .
- CALL SYMBOL(4.,7.5,3./32.,94 = 0.50,0.0,9) b
CALL LOWER(4.,7.5, 3 /32.,1HR, 0.0,1) ' . g
CALL LOWER(M.,7.HM,3./32.,2H c,0.0,2) ) . '

F'y




g CALL
‘ - CALL

* CALL
CALL
CALL
CALL
CALL
CALL

.

l\

sngL(u.,7.,3./32.,9H = 0.60,0.0,9)
LOWER(Y.,7.,3./32.,1HR,0.0,1)
LOWER(4.,6.94,3./32.,2H C,0.,0,2)

SYMBOL(%4.,6.5,3./32.,94 = 0.70,0.0,9)

LOWER(Y4.,6.5,3./32.,1HR,0.0,1)

'LOWER(Y4.,6.44,3./32.,2H C,0.0,2)

SYMBOL(Y4.,6.,3./32.,9 = 0.80,0.0,9)
LOWER(4.,6.,3./32.,1HR,0.0,1)

CALL 'LOWER(Y.,5.94,3./32.,2H C,0.0,2)
CALL PLTERR(1) “ )
CALL ENDPLT
RETURN
END
4
' « ! ‘ /n.
4
4
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/ SUBROUTINE TURBFLO(AMW,STGLN,CIRC,CR,X,Y, VCR,GAMMA,XERO)
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCeee
c SUBROUTINE TURBFLO TO GENERATE THE PSEUDO-TURBULENT FLOW c
c USING RANDOMELY POSITIONED EQUIVALENT RANKINE VORTICES c

C CCCCCCCCCCCeecteeeceletectCeCCCCeCCCCCCCCCCCCCCCCCCeeCeeeeeceeeceee
DIMENSION X(100),Y(100),RN(200),WZ(200) ,GAMMA(100)
. DIMENSION U(25, 25) v(25,25) XPT(ZS) YPT(25) VCR(100)
XERO=0. 3"67626&]58
ND=20
N=LU#*ND
CRMS=0.0
CALL RANDNR(X, N , XERQ)
CALL ASORT(X, N)
CALL RANDNR(Y,N,XERO) ’
CALL RANDNG(VCR,N,XERO)
NR=1
DO 28 I=1,N
VCR(I) = 2.%VCR(I)*CR
IF(VCR(I)-CRMS)7,9,9
T CONTINUE
CALL RANDNG(WZ,NR,XERO) ,
VCR(I)=2. ’WZ(1)'CR
GO TOQ 8
9 GAMMA(I)=CIRC*(VCR(I)/CR)#%2
Y(I) = AMWH*Y(I)
28 X(I) = STGLN®*(2.-L4.%x(1))
NK = 2 ) *
CALL SIGNSR(X,Y,GAMMA,VCR,N,NK) ,
RETURN

' END
(\

(@ +]




SUBROUTINE WKSHT(TT,TINCR,X,Y,VCR,GAMMA,XPT,YPT,
&UREF, OMEG,EPS,U,V,NP, AMW, STGLN,CIRC,CR,XERO)
DIMENSION X(100),Y(100),RN(200),WZ(200),GAMMA(100)
DIMENSION U(25,25),V(25,25),XPT(25),YPT(25),VCR(100)
DIMENSION EPS(25,25),0MEG(25,25) -
ND=20
N=4#ND
" X1=TT#UREF
IF(X1.CE.STGLN)10,6
CONTINUE
TT=0.0
CALL CRDSHT(X,Y,GAMMA,VCR,RN,WZ,AMW,CIRC,CR,STGLN,XERO,ND)
CONTINUE ~
- CALL UVPTS(X,Y,VCR,GAMMA,UREF,N,XPT,YPT,U,V,EPS,OMEG,NP)
DO 51 KK=1,N “
51 yX(KK) = X(KK)+TINCR®*UREF \ \
RETURN ) o ,
END .

=3

193

1)
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SUBROUTINE RANDNR(Z,N,XERO)
DIMENSION Z{100)

DO 3 I=1,N
2(I) = 23.%XERO+.21132486579 . o
Z(I) = Z(I)-FLOAT(INT(Z(I))) o
3 XERO = Z(I) ‘
RETURN
END
F ‘ ‘ L)
-M‘ #
V4 5
¥
. f
- ’
\N - .



' SUBROUTINE RANDNG(Z,N,XERO)

w N,

DIMENSION Z(100)

DO 3 I=1,N
2(1)=23.%XERO+.21132486579
7(1)=Z(I)-FLOAT(INT(Z(I)))
XERO=Z(I) '

SUM=0.

DO 2 J=1,10 «
Z(I)=10.%Z(1)
TEMP=FLOAT(INT(Z(I))) "~
Z(1)=Z(1)-TEMP
SUM=SUM+TEMP
Z(1)=SUM/90". - -
RETURN -

END



-

SUBROUTINE SIGNSR(X,Y,GAMMA,VCR,N NK)
DIMENSION X(100),Y( 100) GAMMA(100) VCR(100)
DO 1 I=NK,N

TEMP = O. , _ .
K=1I-1 ' ' '
VDo 2 J=1,K ‘ -

(x(a)-x(I))*'2+(Y(J)-¥(I))**2 :
2 TEMP TEMP-GAMMA(J)*SQRT(R)/(VCR(J)"2+R)
IF (TEMP) 4,3,4
3 GAMMA(I) = -GAMMA(I-1)
GO TO 1 . .
4 GAMMA(I) = GAMMA(I)®TEMP/ABS(TEMP)
1 CONTINUE ]
RETURN
END

N
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SUBROUTINE UVPTS(X,Y,VCR,GAMMA, UREF,N,XPT,YPT,U, V,EPS, OMEG, NP)
CCECCCCCCCCCCCCCCCCCCCCCCeCeeC3CCCCCCCCCCCCCCCCECCCCCCCCCCCCeeeee

- C SUBROUTINE UVPTS TO CALCULATE THE BOUNDARY VELOCITIESC c
' C DUE TO THE RANDOM, VORTICES .~ C
¢ ’ ccccccccccccccccccccccccccccccccccccécccccccccccccccccccccccccccc
DIMENSION X(100),Y(100),VCR(100),G (100)
, DIMENSION EPS(25,25), OMEG(ZS 25),W®5,25),U(25, 25) ,XPT(25)
. .. &,YPT(25),DX(25), DY(ZB) | -
ﬁl ¢ I=2 . ) " ) -
NZ:NP,+1_, C : . . ~
DO 2 'J=1,N7 LT .7
LA UPT=0,0 ) i ,
: VPT=0.0 v .
‘\ . £PT=0.0 . -
. “ OMI:0.0 : - * - 4
‘DO 1 K=1,N N ’
GAMAS=GAMMA(K) | A ' R
RC=VCR(K) :
. X0=X(K) AN -
' Y0=Y(K) v o~ '

, CALL UPSTF (EPS,XPT,YPD,X0,Y0,UREF, GAMAS RC,NP,0.0,1,dJ)
' CALL VORT(EPS,OMEG,XPT,YPT,X0,Y0,UREF ,GAMAS, RC
%,NP,0.0,U,V,1,J) ; " - '
UPT=URT+U(T,J) _ e . - .
VPT=VPT+V(I,J) .
EPT=EPT+EPS(I, J) | .
OMT=OMT+OMEG(T,J) - g T
1 CONTINUE -
, EPS(I, J)-EPT+UREF*(YPT(J)-YPT(2)) N ‘ g k
- : . OMEG(I,J)=OMT ‘ e ~ ,
" WI,J)=UPT+UREF ~ - ‘
S~ W(I,d)=VPT x "
c PRINT 15,I,J ‘
15 FORMAT(2110) ,
v C PRINT 20,EPS(I,J),OMEG(I,J),U(I,d),V(I,J) .
: 20 FORMAT (1, "EPS=",F10.4, 1X, 'OMEG-' F]Q/H X, '0=",F10.4,
- &'V=",F10.5) . . ' e
2 CONTINUE ’ . ’ .
RETURN
END - : !

N
. * v - .
. 4
- _ . ~
.
. .




\

P

SUBROUTINE CRDSHT(X,Y,GAMMA,VCR,RN,WZ,AMW,CIRC,CR,STGLN,XERO,ND)
X(100),Y{100) ,RN(200) ,WZ(200),VCR(100) ,GAMMA (100)

-

DO U4 1=7,L

NDI=I+ND \

Y(I)=Y(NDI) '
% VCR(I)=VCR(NDI)

GAMMA(I)=GAMMA(NDI)
4 =X{NDI)
"- M - o —— *

-CALL RANDNR(RN,M,XERO)
DO 5 I=1,ND
LI=I+L :
NDI=I+ND ™' -
X(LI)=-STGLN®*(1,.+RN(I))
5 Y(LI)=AMW®*RN(NDI)
. CALL RANDNG(RN,ND,XERO)
DO 10 I=1,ND
LI=L+I .
YCR(LI)=2.*CR*RN(I)
8 IF(VCR(L()-CRMS)7,10,10
7.CONTINUE' & o
", CALL RANDNG(WZ,NR,XERO}
g  VCR(LI)=2.*WZ(1)*CR
"GO TO 8
10 GAMMA(LI)=CIRC*(VCR(LI)/CR)*#2
NK =L + 1"~ ’
CALL SIGNSR(X,Y,GAMMA,VCR,N,NK)
RETURN
END




19

N Oy O

LS N
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SUBROUTINE ASORT(X,N)

DIMENSION X(N) e
IT=2 N
IF(N-IT)19,18,18 . - . r
CONTINUE ' .o o e
DO 18 I=1,N . . ’
K=2##1/2_1 T

GO TO 1 .

IT=2%IT . ' .' .

IF(K)7,7,6 * . . oL .
I=1 .- . -

JsI

Y=X(I+K) . .
IF(Y-X(J))4,5,5 . . :
X(J+K)=Y ° ”» ~. o ot
T=I+1 . .o , R '
IF(I+K-N)2,2,9 - ’ .
K=(K-1)/2 . : .
GO TO 1 ’ . ’ ,
X(J+K) =X(J) s .
J=J-K , : ‘

IF(J)5,5,3

"CONTINUE

RETURN . o o
END ‘ . i )
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SUBROUTINE UPSTF(EPS,X,Y,X0,Y0,UI,GAMA,RC,N,T,I,J) "
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c SUBROUTINE UPSTF TO EVALUATE THE EQUIVALENT RANRINE VORTEX . C
. C ;™ - v EQUATION c
, C cccccccccg%cﬁcccccccccccccccccccccccccccccccccccccccccacccccccccccccc
W DIMENSION X(25),Y(25),ERS(25,25),,DX(25),DY(25) C
YY=¥(2) Loe

PI=ABS(ACOS(-1.9) . Fogt Tt o
C=PI/(2.%(Y(N)-YY)); o
. X(I)=X(I1)=-XO-UIL*T ~ :
Y(J)=Y(J)-YY T ]
. IF(J-N)5,6,5 | T
5 ‘CONTINUE . - - .. S
AK=1./(TAN(C*YO0)) '
AA=(1-AK®#2% (TAN(CHY(J)))#%2_ AK**2*(TANH(C'X(I)))i*2+!f
®(TAN(C®Y(J)))##2% (TANH(C#X(T)))##2) 8% *
AB= (2 .#AK®*TANH(C*X(I})+2. *AK‘(TAN(C'Y(J)))"Z’TANH(C'X(I)))'*2
Ac=((1 -AK'TAN(C'Y(J)))*'2+(AK‘TANH(C'X(I))+TAN(C'Y(J))
RETANH(CRX(I)))n%2) %22 : >
REQS= ABS(AC/(AA+AB)) ~ . ‘
GoTO T .- - : < e .
6 © CONTINUE ‘
REQS=1.0
7 CONTINUE .

&

EPS(I,J)=(-GAMA/(2. 'PI))'(ALOG(REQS+RC"2)-ALOG(1 +RC"2)) ) //E

X(I)= X(I)+X0+UI‘T
Y(J)=Y(J)+YY

RETURN
END - <

v »
. . . -

'

-~
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SUBROUTINE VORT(F,OMEG,X,Y, XO Y0,UI,GAMA,RC,N,T,U,V,I,J)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

‘ c SUBROUTINE VORT TO EVALUATE THE VORTICITY AND VELOCITY C
c COMPONENTS AT THE POINT X,Y-DUE TO A VORTEX AT A POINT c
c - X0, YO C

c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
", . DIMENSIOKN F(25,25),0MEG(25,25),DX(25), DY(25) X(25),Y(25)
DIMENSION U(25,25),V(25, 25)
H=0.0001 : N

W  FeR(ILY)

. X(I)=}{(I)+H
® CALL UPSTF(F,X,Y,X0,Y0,UI,GAMA,RC,N,T,I J)

- X(1)=X(I)-

© X(I)=X(I)+H
FW=F(I,J)
. . Y(J)=Y(J)+H
" CALL UPSTF(F,X,Y,X0,Y0,UI,GAMA,RC,N,T,I,J)
Y(J)=Y(J)-H
FN=F(I,J)
Y(J)= Y(J)—H ,
CALL UPSTF(F,X,Y,X0,Y0,UI, GAMA RC, N'% Iyd)
Y(J)=Y(J)
FS=F(I,J) .
OMEG(I,J):-(FW+FE+FN+FS-H.'FC)/H"2
V(I,J)=—(FE-FW)/(2.%H)
U(I,J)=(FN-FS)/(2.%H)
. F(I,J)=FC ‘ . .
« RETURN '

END




3 N 1

SUBROUTINE LIFTC(CL,CM,KT)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ’

C . C
C SUBROUTINE LIFTC_TO CALCULATE THE . C
C . C.
c* LIFT AND PITCHING MOMENT COEFFICIENTS c
C ' -

C CCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCQECCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

"COMMON F(25,25),0MEG(25,25) , BOMEG (25,425)
COMMON X(25),Y(25),DX(25),D¥(25),0(25,25),V(25,25),CP(25,25)
COMMON FI(25),IPVIK250),M,N,M1,M2,N1 ,MM2,NM2,UT,ITN,IC,DT,T
COMMON FP(25,25) A , ,
DIMENSION CL(250),CM(250) ,G1(25) Gg(25),G3(25),DU(25),DP(25)
AL=X(M2) -X(M1)+0.25

| . SUM1=0.0 ' f\\]
SUM2=0.0 | - -/ A
DO 35 I=M1,M2 - W ‘
UB=(F(T,N1)-F(I,N1=1)) /DY(N1=1).

. ) UT=(F(I,N1+1)- F(I N1))/DY(N1)
DU(I)=UB-UT
G3(I)=(UB*¥2-UT#¥2)/2, 0 ’
G2(1)=0.0
DO 30 J=M1,I

A IF(J.EQ. M1)G0 TO 30

‘ G2(I)=G2(I)+(DU(J-1)+DU(J))*DX(J-1)/2.0

- 30  CONTINUE ‘
G2(1)=G2(1)+0.5%DU(M1)#0.25 ¥
IF(KT.EQ.1)G1(I)=G2(I)
DP(I)=-((G2(I)~G1(I))/DT+G3(I)) .
G1(1)=G2(1) .
IF(I.EQ.M1)GO TO 35 ’ .
SUM1=SUM1+DX(I~1)*(DP(I- 1)+DP(I))/2 0
SUM2=SUM2+DX(I~1)*(DP(I-1)*(X(I- 1)-X(M1))+DP(I)'(X(I)-X(M1)))/2

35  CONTINUE

CL(KT)=SUM1/(0.5%UI*%2#aL) -
CM(KT) SUMZ/(O SRUIHHDEA] HND)
RETURN

END
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PROGRAM STAT(INPUT,OUTPUT,TAPET,TAPE10) 0
cccccccccccccccccUcccccccccccccccccccccccccccccccccccccccccccccccccccc
c
PROGRAM STKT TO DO STATISTICAL ANALYSIS TO THE PSEUDO-TURBULENT C
~ . . o c
RESULTS OBTAINED EE?M PROGRAM MOD1
‘ o
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccec
DIMENSION F(25, 25) U(25,25),V(25,25),X(25),Y(25),US(1001),
$VS(1001)
DIMENSION OMEG(25,25),TI(1001), CL(1001) CP(25,25),CLQC(1001)
READ(T, 106)M,M1 M2 ,M3,MM2,N,N1,NM2,N3, STGLN AMW, RC CIRC
READ(T, 103)(x(1) I=1 M3)
READ(7,103)(Y(I),I=1,N3)
DO 3 KK=1,1001
READ(T, 103)((F(I J),Is
READ(7, ]03)((0MEG(I J),
! READ(74103)((@(I J),I= 2]
READ(7,103)((V(I,J),I=
READ(7,103)((CP(I,J),I=2,M
READ(7,104)US(KK) ,VS(KK) ,C
3 CONTINUE
“4INCR=TI(KT)-TI(KT-1) " . ) }/“‘\\
PRINT 103,(US(I),I=1,KT)
PRINT 103,(VS(I),I=1,KT) rd
CALL STRK1€US,KT,TINCR)
CALL STPK1(VS,KT,TINCR) -
CALL PLTCLT(TI CL,KT)
CALL PLTCLT(TI,US KT)
CALL PLTCLT(TI,VS,KT) ) .
108 FORMAT(3F10.4) .
103 FORMAT(15F8.3) 4
104 FORMAT(5F8.3,110) \ ' .
. 106 FORMAT(9I5,4F8.3) : ’
*  STOP ) ~
END . L

Il
noooaon

N

C
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PROGRAM STAT (INPUT,OUTPUT,TAPE7 ,TAPE10)
ccceeeeceeeceeceecceeececceccecececceeeeeccecccecccececceeccececcccceeccce

C . o
c PROGRAM STAT TO DO STATISTICAL ANALYSIS TO THE PSEUDO-TURBULENT C
s . '

“c RESULTS OBTAINED FROM PROGRAM MOD?

C » c
CCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

DIMENSION F(25,25),U(25,25),V(25,25),X(25),Y(25),US(1001),
$Vs(1001) .
‘ DIMENSION OMEG(25,25),TI(1001),CL(1001),CP(25,25),cLQcif001)
*  READ(7,106)M,M M2, M3, MM2,N,N1,NM2, N3 , STGLN , AMW, RC C
- READ(7,103) (X(1), I=1 M3)
READ(7,103){(¥(I),I=1,N3)

-TI(®T-1) ~
,(US(I),I=1,KT) e | 4
PRINT A03,(VS(I),I=1,KT) v
LL STPK1(US,KT, TINCR)
CALL STPK1(VS,KT,TINCR)
CALL PLTCLT(TI,CL,KT)
- CALL PLTCLT(TI,US,KT) ~ e
CALL PLTCLT(TI,VS,KT) T
108 FORMAT(3F10.4) =
103 FORMAT(15F8.3)
104 FORMAT(5F8.3,I10)
106 - FORMAT(9I5, WFs. 3)
STOP . . '
END « :
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SUBROUTINE STPK1(UE,NVS,TINCR)

DIMENSION UE(NVS) , ' -

DIMENSION CC(300),G(300),GS(300)

PRINT 150

FORMAT (27H ANALYSIS AT A SINGLE POINT) ’
TIME = TINCR#FLOAT(NVS-1)

LGM = IFIX(SQRT(FLOAT(NVS)))

IGM=LGM

NI = IFIX(SQRT(FLOAT(NV.

NCV=LGM+1

CALL AMNSQR(UE,NVS,UMN,USGMA)

PRINT 103,UMN,USGMA

FORMAT (12H MEAN VALUE=,F10.5,24H ROOT MEAN SQUARE VALUE=,F10.5)

‘DO 1 I=1,NVS

UE(I) = (UE(I)-UMN)/USGMA
PRINT 2,(UE(I},I=1,IGM)

FORMAT (10F12.3)

CALL AUTOCR(UE,NVS,IGM,SGMA,CC)
TINCR = 1000.#*TINCR

CALL PSDFU(CC,NCV,TINCR,G,GS)
TINCR ¢ .001#TINCR

RETURN 3
END




SUBROUTINE AMNSQR(A,NN AMU SGMA)
DIMENSION A(NN) SR
AMU =
SGMA =
DO 21 I=1,NN
AMU = AMU + A(I). .
21 SGMA = SGMA+A(I)¥¥2
AMU = AMU/FLOAT(NN) ~ -
SGMA = SQRT(SGMA/FLOAT(NN)-AMU*AMU)
s PRINT 100,AMU, SGMA
' 100 FORMAT (123 MEAN VALUE=, 1PE15.5,24H ROOT "MEAN SQUARE VALUE=,
$1PE15.5)
RETURN

(3

.

END




- SUBROUTINE AUTOCng,NN,LGM,SGMB,CC)
DIMENSION X(NN),CC(LGM),F(50) =«
PRINT 100 v
100 FORMAT (30H AUTO CORRELATION COEFFICIENTS) ,
NCV = LGM + 1
DO 1 K=1, ch
K -
F(K)=L
= NN - L
sGMA 0
SGMB = 0
CC(K) = 0
DO 2 I=1,J
SGMA = SGMA+X(I)#%2
SGMB = SGMB+X(I+L) ¥¥2
2 CC(K) = CC(K)+X(I)#*X(I+L) Y
1 CC(K) = CC(K)/SQRT(SGMA*SGMB)
= SQRT(FLOAT(LGM) /FLOAT(NN))
CALL PLTCLT(F,CC,K-1)
PRINT 101,NN,LGM,E
101 FORMAT (20H NUMBER OF NUMBERS = 110 14H MAXIMUM LAG =,I10,24H M ,
“1 AX. EQUIVALENT ERROR =,F10.,5) -
SGMB = SQRT(SGMB)
PRINT 103,SGMB
103 FORMAT (uzﬂ STANDARD DEVIATION OF CORRELATING SIGNAL=,1PE15.5)
. \ PRINT 102,(CC(I),I=1,NCV) _ 4
r 102 FORMAT (10F10.5) ;
- RETURN
END

-

/

[ ]

it
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_ SUBROUTINE PSDFU(R,NCV,H,G,GS)
_DIMENSION R(NCV),G(NCV),GS(NCV),FR(100)
PRINT 30
30 FORMAT (/32H1POWER SPECTRAL DENSITY FUNCTION//)
PRINT 31
31 FORMAT (/32H ECHO CHECK OF AUTO CORRELATIONS)
. PRINT 100,(R(I),I=1,NCV)
100 FORMAT (10F10.5)
LGM = NCV-1
ASIGN = -1.
AM = FLOAT(LGM)
SUM

0.
I=2,LGM . ¢ N
20 SUM = S .
G(1) = 2.%H%*(R(1)+2.%SUM+R(NCV))
DO 1 K=2,NCV , ‘
SUM = 0, _ - “
s AMI = 3.141593%*FLOAT(K- 1)/AM ' '
DO 2 I=2,LGM
2 SUM = SUM+R(I)'COS(AMI'FLOAT(I 1))
G(K) = 2.%H¥(R{1)+2.#SUM+ASIGN*R(NCV))
1 ASIGN = -1.'ASIGN
. GS(1) = .5%(G(1)+G(2))
GS(NCV) = .5%(G(LGM)+G(NCV))
. DO 23 I=2,LGM
. 23 6S(I) = .25%(G(I-1)+G(I+1))+.5%G(I)
- FC = 500./H
. BE = 2.%FC/AM
PRINT 3 '
3 FORMAT (86H TIME INCR.(H)M.SEC. MAX LAG CUT OFF FREQ..(C.P.S) EQ
1UIV. RESOLUTION BANDWITH(C.P.S)/)
PRINT 4,H,LGM,FC,BE °
’ 4 FORMAT (F10.4,120,F20.0,F30.0)
NLO = NCV+1-~3%((NCV+1)#*3)
PRINT 5 :
- 5 FORMAT (108HHARM. FREQ. P.S.D.FU. P.S.D.FU. HARM. FREQ. P.S
1.D.FU. P.S.D.FU., HARM., FREQ. P.S.D.FU. P.S.D.FU.)

PRINT 50
50 FORMAT (/113H NO(K) (C. (RAW) (SMOOTH) NO(K) (C.P.S)

$pP.S) .

1. (RAW) (SMOOTH) NO(K) (C.P.S) (RAW) (SMOOTH))

FM = FC/AM ;

DO 6 I=1,NCV,3

F1 = FLOAT(I-1)%*FM

IJ = I-1

IK = I+1

FP = F1+4FM

FB = F142.%FM
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6

19

1"

FR(I)=F1
FR(I+1)=FP
FR(I+2)=FB

PRINT 10,I1J,F1 G(I) GS(I) I,FP, G(I+1) GS(I+1) IK,FB G(I+2)
$GS(I+2)

FORMAT (I4,F9.3,F12.6,F11.6,2(18,F9.3,F12.6,F11.6))
CONTINUE

CALL PLTCLT(FR,G,8)

CALL PLTCLT(FR,GS,8)

IF (NLO-1) 8,11,7

F1 = FLOAT(LGM)*FM

FP = F1+FM

PRINT 19,LGM,F1,G(LGM),GS(LGM) ,NCV,FP,G(NCV),GS(NCV)
FORMAT (I4,F9.3,F12.6,F11.6,18,F9.3,F12.6,F11.6)

GO TO 8

F1 = FLOAT(NCV)*FM

PRINT 9,NCV,F1,G{NCV),GS(NCV)

FORMAT (Iu F9 3 Fi12. 6 ,F11.6)

CONTINUE

RETURN

END

209



-
ol

SUBROUTINE PLTCLT(T,CL,KT)

DIMENSION T(KT),CL(KT) o .

CALL PLOTS(30,24.,10.75,2)

CALL PLTCOM(26HPLEASE USE .4 MM BLACK INC,26)

CALL PLOT(1.0,1.25,-3)

CALL SCALE4(T,5.0,KT,1,0,TMIN,TDA)

CALL SCALEA4(CL,6.0,KT,1,0,CLMIN,CLDA)

CALL CRAXES(5.,6.,TMIN,CLMIN,TDA,CLDA,2)

CALL AXIS4(0.0,0.0,4HTIME,4,-.15,-.1,5.,0.0,TMIN,TDA,2,.5,1)

CALL- AXIS4(0.0,0.0,31HLONGITUDINAL VELOCITY COMPONENT,31,.15,.1
~ $,6.,90.0,CLMIN,CLDA,2,.5,1) .

CkLL'PLOT(iT(1)-TMIN)/TDA,(CL(1)-CLMIN)YCLDA,3)

ALL' LINE4(T,CL,KT,1,TMIN,TDA,CLMIN,CLDA,0,0,0) ~ .
CALL SYMBOL(.5,7.,.21,14HCL VERSUS TIME,0.0,14)

ALL SYMBOE(S®7B) .21,27HRANDOM VORTICES APPROACHING,0.0,27).
CALL SYMHOL(.5,7.5,.21,24HSEMI-INFINITE FLAT PLATE,0.0,2%)
CALL PLLERR(1) - .

PAUSE

CALL ENDPLT
RETURN

END

v
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