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-population potential and tne methods of~maximnm entropy

ABSTRACT . g

oy

. 2
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. .~ - <
‘ -

The dissertation presents joint considerations of.

sl ' : ! b . " -
L2

the condepts of (1) entropy maximization and populatioﬁﬂmk\"“

<

potential and (2) informatdon minimization and.pngulation

-

‘o

/ ‘ L.

pbtenéial. I : _ -

In order tol ealculate pOpulation_potential it is
necessarp to determine 'the probability that a randomly
'selected individual at one location will have a spatial
interaction at enother location. The methode of maximum
entropy and minimum information pro;ide a means for
estigating such probabilities. Population potential is.-'
cldsely related to, and, derivable from, spatial-interaction

i}

and this allows an indinect connectionlto be made’between

.
-

and minimum information. This is, therefore, a recon- -

siderat;on of the potenti}liconcept‘within the context of
< - .. - -
these contemporary methods of prob@bility .estimation and it ——

1
3

addresses the question-of whether it Is possible to derive,

. . f i .
and practicable to employ, entropy maximizing and

-

information'minimizing populatfn potential functions.
The amount ofepotential interaction between places

is a function of both the attenuating effect of distance . é .

A 4
and the emiesivity of the origin, and an attempt is made to e
demonstrate that maximum entrop? ig of relevance to the'

former end minimum information to the latter. In the . o

iii . . .
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~o
"INTRODUCTION |,

v
o e J
. N A
% ]

1.1 Population Potential

The,conc;pt'of popuiation potential was initially

formulated and popularized by 'Princeton University astro-

N .~ .

’physicrst John Q. Stewart (1941,,1942, 1947iu " Assume first
that wé& have i‘map'which‘hﬁs bfeﬁ partitioned 4nto zoneé
of known population size éqd on which we have i@entifi}d

the zone centrdids and, possibly, other control points.

A}

“Stg%art asserted that ghé "influence" v at a point. j of a

populétioﬁ P in qone"i, is a decreasing function of the ,

distante r between the zone centroid and.the other point
. J . -

— vff % Pi/r_i)j L. . (1.1.1).

.
'l ., N : .

The population potential V at j is obtained by summing over

all contributing zones such that . !
. . ) .

¥
'
. A

~ , v.< L P, T, O,
v S A T BN

.

(1.1.2)

! '
-

where V., is in units of persons per distance‘in t. The
. .

3

summation is repeated for each control point and‘a contour

map of isopotentials can then be produced via standard \

bf'interpolétizw; Potential is Ealculablenatiany_
r - ¢ . :

methods
sﬁatial_scale. Eoffe§,¢l977),for example has employed the

,conceﬁg ag'tﬁifurbhn scale, while Warntz.(1965)_ha§\con-

1
=

structed potentials at the world level. -
A : © !

1 /

[y
A -

e

!
e
13




Equation (1.1, 2) is normally considered to r?present

‘a numerical approximation to the definite integral

~ s -

. _ : 1 . .
Vg = J’; dda - (1.1.3)
(8) -

where d is the population density of an infinitesimal™.

- . ! ’ BN
element of area da and r is the distance from this element °

A >

to point j. \The integration is extended to all elements

~

of the surface (6) where the density is not zero. McCalden

(1972, 1975) has reported on the difficulties involved in ,

/ attempting to evaluate analytically,‘integral forms of
- !
I

\

0

potential.

It is common to employ a se1f~potential term v in

33

the calculation of equation (1. 1 2) as a measure of a
population's influence on itself. The reason for such a

procedure is that otherwise\v equals infinity since P

. ’ ’ \jj

is beiné inided by zero. One.common method (there are
/

i

others) of calculating v is to assume that the region

33

associated with j is circular with uniform density and to

take the distance to itself as one~half 3@ the radius.

Thus 1if a = nrz where a is area, then t =,(afn)l/2[2.

Self-potential, given a value for area, 18 therefore

] o 1/2
Y 2 ?j[(a/n) ‘ X
° & N

was described by Stewart. (1942), and.
N /

(1.1.4)

/ ° The quantity V

3
by Warntz and Wolff}(197l), as a measure or index of the
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/lassigned'to cell i. It is éiven that

influence of population at a distance. As Stewart (1947,
221) stated: ‘“where the influence of people sums up to
large values %e have 'highlands' and 'peaks' of influence.

Such points are nearer to more people and all. kinds ‘of

sociological activities are expected to be at a high 1evel'

there.,"

I " =

Reviews of the concept of population potential can be

\

found in Carrothers (1956), Isard et al (1960), Olsson

(1965) and Warntz and Wolff (1971). >» The role of the

Voo . |

potential concept in the growth of systematic Anglo-

American human geography is discussed in Johnston (1979).
~ ) ’ ! )
1.2 Entropy Maximization

D

Since its introduction into geography che entropy con-

Ve

°

cept, has been employed in two bagic ways: as a deyice-for
estimating the form of a probability distribution, given a
limited amount of information, and as a measure on an

existing,probability distribution.

=

. !
Assume, in the. former case, that we have a population

(in the statistical sense) of size X, where x represents

i
the number of members to be assigned to cell i. Define
% )
i
'pi =—X— - . . (1.2.1)

-

as the probability that a randomly selected member will.be

R

Ep, =1 , (1.2.2)
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apd it is known also that - o

-«

Ipyyy =7 NG R ,
- 5 i1 ’
- - , . .
where“; is the mean value of some measure Yy on n cells o
~ 4 A

¢(i=1,...n). The most likely form for a probability dis-
‘ N 3 .
- tribution which assigns members of the population to cells

. R
= 48 one which maximizes the éntropy (see Shannon and Weaver,

S : . . . !
. i

J 1949) . .

Ho=-Ip, 1n Py - . (1.2.4)
i ¥ .

It is well known (see Jaynes,<l957; Tribus,.1961i Wilson,

1970; Webber, 1976, for example) that the maximum of

equation (155‘2), with constraints (1.2.2) éﬁd°(l.2.3) is

. A 3 . v
. “ s N Py = expl-A-by) ' (1.2.5)
where X and b are parameters which ensute that the con- )
’ ’

e . ‘

straints are satisfied.

Equation (1.2.5) is an expression which indicates the

statistically.most likely form for a prébability_distgif
bution ‘given only the information in goystraintg {(1.2.2)
and (1.2.3). Ih human gé&graphy the metﬁodology outlined

- above has been widely used as the basis for deriving

-
7

g%ensity .models, location models, and in particular, spatial

interaction mo@els (see Wilson IQ&Q:’197Q2.
. ' e ) .
In the case of the second type of usage.of the ehtropy .
v, { . .

concept-—as a measure on an existing probabi;ity distribug

. - . [
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C° - tioh—the value of H in equation (1.2.4) is calculdtéd

-
-~ e 1)

directly from the data. The highér the value .0f" H, the
1

Q\'_ -more dispersed‘?he distributipn. The lower "the vé;ue of H

e

’ j
the greater the tendency to_ uniformity where, for-a

.

perfectly_ynffor$ probability distribution, H achieves its
. , ) A
- maximum value

\ H=1lnn .° - (1.2.6)

i

13 B/ QIR IY T s b 4 ot e s b w ek
A

~ -~ : N

When calculated in this direct way H has ﬁeen vg;ibusly

PR

» ’

. hl . - - N
interpreted as a measure of concentration, uncertainty,

<ihformation, diépersion, and dividedness. Thig mode of

-

'applicatiod\of the entropy coﬁﬁepi has also been qﬁite

-
v

popular over the years in human géogqaphy (see Getds and.

- — ¢

Boots, 1978). ~ ® . i\
o A‘guide to the entropy maximizihg methodology has
—e‘ been written 3§ Senior (1979). An overall review of the
) 5 : g X

~

& - . Rl N . _
‘wm,._concept from a geographic’ perspective is in Haynes,

™

- N v -
e Phillips, and Mohrfeld (1980). co . ' .

+ ”

2" 1. Information ﬁinimization
D /'B\CJ : ,

and

\ . ) co .
? ‘Assume, that in addition to consttaints,  (1.2.2)

. . —

I AR

which is susyécted to be of relevance in the assignment of

Define si

cell, -having a total valueAbf S over all cells, and-

7/

« individuals to célls: as some such measure on a

v
< N 3

e €

(1.2.3), some additional a priori information is available
! . . : .

- - } [ , -~ A\ s
S . . . 1 ;
v : 4y =5 : \ (1.3.1)
. e , -
» - « '-&.

RV
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l 3
‘as the probability that si‘will'be found in a randomly

; ~selected cell. The statistically most “likely form for -

probability distribution p;, subject to constraints

(1.2l29, (1.2.3) and (1.3.1), is the one which minimizes

the Kullback (1939) information .

s I(q:p)

i
™~

1n —= _ (1.3.2)

whexe q and p are prior and posterior probability distribur

” . N v

‘ i . - ’ ) 4

tions respectively. The minimum of this function subject

-

I
o
a
A

4

- to the three constraints is o .
. K‘ T B} v ;ﬁa 7 b

pi:? a4 enp(—l«byi) (1.3.3)

-
s .

=

s
where t»he“—prior-qi will ensure that the assignment of °

N : individuais to cells takes place in direct proportion to

! ) i - ) - - A
the measure s, on those cells. T a\«*

g This is the method of minimum information and it has

\ -
N B

also been employen in human'geography as the basie‘for

deriying spatial models (see Webber, l979. Eor example).

e’ . oIt can be shonn that fhe entropy is a special cage of the ’ &
' 'information wben the prior is uniform and as such it has '

-

”f. - . been argues that the Kullback information statistic consti~

& . tutes a generalization 6f, and improvemént on,,;he Shannon -

&

o . :*,entropy'(seé'ﬁobson ard Cheng, 1973).

'\{ . - - The Kullback‘st%%iStic, like the entropy, ‘can’ also be

-,

employed as a measure on existing probability distributions.

i

-In_partdicular it is a measnre 0f the information to be
I3 \ .



gaineé in the transition from pridr to»posteiior-prob— - -§--

" abilicry distributions; the greater the difference between

the distributions, the higher the value of I(q:p). . .

[

The use of I(q:p) as a measure on probability distri- -
butions is extensively discussed in Theil (1967; 1972).
The method of minimum information is treated in Snickars

~and Weibull (1977) and especialiy in Webber (1979).

1.4 Purpose of the Study ‘ . *

v
Ry A IR R A AN e ot
-

- The- purpose of this_stndy isgto'undertake joint

. N
investigations of (1) entropy maximization and potential,

! - -

N v AR
and (2) information minimization and potential. The

o problem of calculating the potential at a~point i is, in
s ),

L

the first instance, one of determining the probaBility

,.’

that .a randomly selected individual at i will.have a - o -

: J
Spatial interaction'at 3. &Thefentropy maximizing and o

\

v
fr information minimizing formalisms&provide methods for
-

.

estimating'such probabilities. Population potential 1s

-
)

g derivable from interaction and this thereforg allows an

indirect connection’to be, established,beﬁWeen potential .

k i

and the methods.of maximum entrdpy apd minimum information . . .
S ' .o

'S

Insofar as the potential concept has continued to ‘stand

on a rather shaky foundation for some thinby years now-—

i .
- . -

s \ C
based, as will be shown, on.a‘questionable physicéI‘.

-~

analogy—a reconsideration of “FThe concept within the con-

-

text' of these contemporary methods of probability egtima-

-

i

-
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-

tion seems warranted.
The amount of interaction between-places, within the

context of population potential,, is a function of both the

\attenuating effect of the distance between them and Fhe

size or?é@iséiv;;y of the'orfgin. An attempt will be made
here té deqonstrate that tﬁe methqd of maximum entropy is
of relevance to the former and the method of mip#hum .-
iﬁformati&n to the latter.

" The organization of the discussion is'as fgllows.,

The concept of potential is considgred'in.greater detail

e d

in the se¢cond chapter, and the concePts of

»

maximum entropy

fully in the

\

and minimum information are discussed more

E

third'chapﬁér,‘&}n the fourth chapter, the joint consid-

eration of the éoncepts is undertdken with the derivation

of entroéy maximizing and information minimizing inter-

action models and, indi;éctly;ypoten%ial fuﬁ%tions. The

fifth chaptér presents a consideration of some of ther
prob;éms having to do with the operationalization of the

d?rived functiopé and with the interpretation of results.

The sixth and final chapter presents a discussion of some

'of tHe more geperal issues arising ‘from the joint)

N

inyestigations as ‘well as a critical review of results.

-

There 1s no empirical'inves;igation-included as such,
-

sinte the principal concern is not with' the ability of any

ﬁarticqlar form of the potential function to predict the

size of dthefcvariqbles (as has often tradifionally beeﬁ

L3

-
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- ‘

the case). Rather the central issue is cpngidered_tq be
the question of whether it is possibl%, and éracticgble,

to deri;e and develop potential functions within "the .

entropy maximizing and information minimizing frameworks.
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CHAPTER 2 R

POPULATION POTENTIAL

2.1 Thé Origins of the Potential Concept -+ . .

Stewart's original derivation of population potential

seens to have been based primarily on empirical data. In-

an analysis of data on’the geographical distribut%qp of

[y

college students he (1941, 89) found that ’ N

The number of undergraduates or alumni

of.a given college who reside in a .-
given area is directly proportional to

the total population of that area and . )
inversely proportional to the distance . -
from the college. ’

3
v

The discovery of this empirical regulaiity‘led Stéwart

(1941, 89) to state a general definition of population

potential: !

I defjine the "potential" of the population

of a given area, at a:givén point, as the
population of "the area, in millions, divided
bx'%he average disﬁaﬁcg,'in miles, from the
point to the area. o - -

Such a definition was apparently not only a result;of.

Stewart's empirical findings but also due in part to his
e . ’ \

familiarity with analogous concepts in the physical
sciences. As he (1947, -461) wrote:

The evident tendency of people to congregate

in larger and larger cities represents an -
attradtion of people for people that turns,,
out té have a”mathematical as well as merely
verbal resemblance to Newton's law of
gravitation. Lagrange in'1773 found that -
where the attraction of sevieral planets at
once was under consideration, -a new

A%
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_ mathematical coefficient, not used by Newton,
- simplified the calculations. This coefficient ,
’ ‘amounted to ‘a.measure of the gravitational
influence of ,a planet of mass m at a distance
” d, and it was .as simple as possible, merely
n/d. Later mathematical physicists, Laplace
and Poisson, furthetr elaborated the m/d
concept in celestial mechanies. Not until
° . +x 1828 did-Green find that similar measures
rexisted of the influence of an electric
charge e, and of a magnet pole, p, at a
distancé; namely e/d and p/d respectively.
To these quantities the name "potentials"
was given—the gravitational po'tential, the
electrostatic potential, the magnetic potential.

Stewart (1947, 461) coﬂtinged

In 193% evidence was uncovered which suggested
that the influence of people at a distance
could be expressed by a similar coefficient,
namely P/r—2P being the number of péople, and

r their distance away. For this coefficient
the name .'potential of population' was at once’
suggested because of the physical analogies.

The Newtonian law of gravitation to which Stewart
refertéd is the inverse-square law describing the gravita-
tional force Fij between two masses m, and mj separated by

a distance r V4

v hat : m, m

R W BT
Fyy = 6 —;2-3— ' (2.1.1)

where G 1is the gravitationaq constant and where the force, -

defined as the "weighf" due to gravitation, 1s measured in

(see Klein, 1971). ~The gravitational potential
~ . “ - 14

at a poi easyre of the work or -emergy required to

' move a unit of mass from infinity to the point (see Kellogg,

. ’ )
1929; MacMillan, 1930, for example). /;hé potential cal® bve

degived from the law of grathétional attraction as follows.

-




Since the concern is with a single unit mass (i.e.,

m3 = 1) the equation for gravitational force (2.1.1) can
be rewritten B .
B -~ mi.l :
Fij = G rz . - (2.1.2)

-4

The unit mass is to be moved from infinity toward m, éhd
it is desired to measure the amount of work done at

4

« location ¢ (which is between infinity and the mass). The

amount of work done is measured as a force times a dis-

z

tance when the force is constant (over a vety small s 5

- .

distance dr, force is constant). Therefore at some

—em.

arbitrary point r, the amount of work done W in moviﬁg a

- -+ .

_very small distance, from r to r—dr is Ly M
. m, . -
. . . QW = -G "‘—Z‘Q_r . - (2.1'3)
T ™

To get the total work -done in moving from infinity to a iu\

1s necessary to integrate equation (2.1.3) over that range

~

such that
X a o : . )
mi , ; H .
J _C_l_W = -J G — g_r . (2.1.4) P . ‘ .
- o ‘m r . "r..
Evaluating thiis expression we have -
¢ dr ‘a '
W = -Gm — ,
Pl . .
- . A "::
. //;0 a i B
. l . J |
= +Gmi ;‘ 'y . ” ‘,

PV
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Gmi -~ . )

- = 4 —= ) - (2:1.5)

- a 4 .

-

as the‘gravitationaltpatential at lqéation_a.

This briéf descriétion of the relationghip between
Newton's law of éravitational aftragtion and the coﬁcept
of grav?tational potential due to Lagrange has illus-

trated how the inverse~square fdrmulation is transformed’ .

H -

‘ ° . .
into the inverseldi;tange formulation{\ We can now go on

to investigate such a ;ﬁhnsﬁg}matioﬁ in the case of the

-

gravity model of spatial interaction and the index of
J N . “

’

'popglation pdtential in geoéiaphy. ) -

The traditional geogrgphical‘"g;é;ify'quel" is

sometimes written as an analogue of the inverse-square-

-

expression for gravitational force given above (equagio}j

& aaT
-

2.1.1), that is .

- ‘PR,
<P . = k _i__i
B N i‘J r 2 .
———g . ij

?

2

-

P

o (2.3.6)

i

whetre Tij.represents the amount.ofﬁinteraction, or

number of ‘trips, between places i and j (see; for ex-

oS

v

ample; Kolars and Nystuen, l974,_624§%ay10r, 1377,

287; Wilson, 1967, 16).

It might be suggested that

. the Stewatt form-of the populhfion fotential function

N

[

il

o

ot

s

-

~

can be derivgd ditectly from.this gravity nodel simpiy by

dividing through by Pj' I€ can be segn»ﬁbwever that it

’

-‘.'“
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» ‘is dlso necessary to take the intermediate stieps described

H -
i M . ' 'S

JOND BUNERE above if one wishes to derive the Stewart potential from S K

- equation (2.1.6). This gravity model (2.1.6) is an

~ ‘inverse-distance-squared function whereas the Stewart

- *

form of potehéial is an inverse-distance function. E -

.Q- . -
-The usual approach, instead, has been to rewrite the

oo

Jf ‘ g;ég}ty model with a'general%zed exponent b on the
: ' ) ;

N b} ! .
: - distance term such that . /~

- Tig .« )
’ . . :
* M peY -

N h - .

. : e
and Phen to derive the potential function from this (see

. P . : ] \ .
Yeatés, 1974)., Thus, a potential function can be derived,

e . from equation (2,1.7) if the equation is employed'to N

- ’

- estimate the propensity for interaction from all i's to a,
; s W . s >
B . single j.r In this case we_can.write ‘ )

: - . PP, T p
. . 13, 23,7304, 401 z——i (2.1.8)
' ¢ pis s b . b ,rb Va rb ir i .

23 33 nj, 13

Insofar as P, is common .throughout ‘the summation we can

o 3
i ‘ divide through. to get
.w\:\“ < ‘~|/ . . .'I e . ‘ . * . %. . . ’ﬁ“ ML‘.\\\< N : .‘;
x ' ' p g ”i'wm‘“"x.
e ==, (2.149)
Tnj ’ i rij' .- . . .

[ : - e

i

s
~,



T

"'1979a, 442) is misleading., The Stewart demographic ’

by dividing out the deétination term in an interaction

- !""( )

. . F 4
i,ii =V, = i (2.1.10) .
j .

’ -

-

This is.-a popular approach to the derivation of a potential ' .

. function, however it,is\ihportant to specify th%i;fhis -

derivation is not comnsistent With the potential function

employed by SteWart' to derive the function in this manner
. ¢

* and then set b equal éo one is purely anbitrary. .

° f‘ .
In summary“;t can be noted that to state that

"Newtonian theory suggests an exponent of 1,0" (Rich, 1980,

. o T s *
20) or that "a classical Newtopian interaction model must A

be assumed in order to derive equation*[(l 1. 2)]"(Sheppard

potential function . is not derived or dérivable from the . .
Newtonian law of gravitational_attract%gn unless the ‘

: - il . .
intermediate steps outlined above (2.1.5) are carried out. |

. (ﬂ.! e g .
We have seen two approaches to the derivation of - e //

”
o~ -
4

potential measures.' In’ one case ghe potential was,gotten
‘ ' e

model based on the Newtonian inverse square law of gravita—-.

N

t*\al attraction. In the othelr case the derdivation nas
based on the original definition of potential as a measure

of work done in a physical system. In comméhting oh éﬂese ’ -
. ot : ‘ . —

two'approéches Goodéhild (1979, 87) noted that

P . Ce . e
) .

. Unfortunately [the former] is inconsistent.
with\[the latter], since it would require

.
~

I
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;o ) the power of distance to be the same in
both potential and interaction equations,
rather than differing by one. It -

y : " ', ea8y to see Why it has 'become popular,

, ) _ however, since the word 'potential' is

KR much closer to its common meaning. In

; the physical analogy 'potential' is-the

6 i o potential:to do work [and] not in any

i sense potential interaction: Since there

; . is no obvious social dnalogy to the

i ° ] concept of physical work, it is in fact

é difficult to see how the idea of a

5

§

{

physical analogy ewver arose. o

For the remainder of this study we will accept the defi-

1 o

. nition of potentlal as potential p capita spatial <

Ci .

interac%ion, This is disdussed in’'greater detail in the
T - - \ ; ;

o

¢

& ¢ gection which follows. ; ’ ‘. + ‘ -

[ 2.2 Interpretations Bf kotential ’ . |
- RT3

. * Although the derivat on. given in equations (2.1.7) to
- N

° f
A *

14

Y- ‘ (2.1.10) does not lead tg the Stewarcxpotential function it

¢ is nevertheless very ps-ful in helping to fllustrate the

-~

N . -
meaning of, - and int%zpr tation to be given to, the poten-

o
¢

° 2 . tial concept. As a result of the division by&Pj in . .
3 \ -
i - ‘equation’(z.l.g) it can be said that equation (2.1.10)

-~ e . ‘ +
becomes a statement concerﬂing the propensity for inter-

- ! ,
4 /

{ ¢ €
action on a per capita basis at j. This fs an important

property oﬁ aopotentiﬁl function and one which distinguishes° P //

e

‘a potential function from an interaction model. th is

@ . ™ -
5 . ’ d

also an area where some ambiguity seems Lo exist, ‘

-

4

[

.

°

Sheppard Q979a 441), for eiample, has described thel

. [<]
- ° 2

issi f the P, t i t ti 1 f tio s 1if it P .
omission o e j erm in potentia unctions a _/‘5%\/¢&

-

ALY
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- 1s however testimony to the fact that potential is commonly

. model or a Lowry-type locatipﬁfmodel (sée Wilson, 1976).

»

'were a theoretical weakness. In discussing the Stewart

form of potential he noted that the assumption is made
Ay s o -

I3

- Ko

that "characteristics of the destination -do not influenc
3 - e

-

the level of spatial imteraction" and that such an

-2 “
assumption is "clearly untenable." He (197%9a, 422) stated

further that “t@g pfob%em is solved by insérting Pj in .the

numerator of [the equafion]." The .statement that "no

geographer has made the adjdstment" (Sheppard, 1979a, 442)

regarded as something dtﬁer than a modél of spatial inter-

-

AN ‘."\{/ 9
action.

The amount of interaction between places is not oniy
. s ipiem—

a function of the "emissiveness" of the-origin but also of ‘

the "attracgivéness" of the destination. Since a_potential
. . b 73

function contains no destinag}qn term it obvigysly‘has

little relevagcé to the modelling of observeh spatial inter-

o

-
action. It is only reasonable to employ a potential

[

- »

funciion in modelling spatial interaction when one is con- A

sidering spatial interaction to a single place and, as we

Vilf see, even in such instances it would nofmally be

preferabi@“to emﬁioy an origin constrained interaction

[

jéﬁ@unconstrgined potential function can be employed Ept
- N . v} .o \

will only provide results which are "proportional to" the

-

amount of interaction.

n . !
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In the context of spatial,interaetion,”potential_is
e . . ‘ .
probably best defined 'as a measure or index of the "poten-

. »

tial'for interaction" or "possible interaction.” As Rich

ch e oA o«

(1980 3) has stated S -~ .
e } . Whereas the gravity model is concerned L
with analysing or -predicting an L.
2 . . observed pattern of spatial flows, the : '
potential model is more concerned with .

than with the interaction itself. . ,

o
-

It is in this sense that potential nas cbmmonly been de- -

P s Vo

‘ 3 the opportunity for interaction . . .
!
[}
§

fined as an index of accessibility ot influence, and as a

measure of the intensity of possible contactkor social i
co . hd 1 S . . )
~intensity. -Whichener word or phrase one cﬁooses to use it I

Q

C is perhaps most important ‘to note that in every case the

potential is being described as an index or medsure rather

than a model.
The definition of the basic Stewart potential function

. as an index is perhaps better® understood if it is ‘compared
- - - ' o )
o to the concept of population density._ The'praetice of ,

+

y ° dividing population by area is well known and_ widely _

: accepted although this wag by no means always the case (see
QStewart and Watntz, 1958). Potential can be defined as a )

‘ . generalized or‘weighted populatibn density. “Craig (1972,
10) makes this explicit by noting that if population

A\ -
depsity d is expressed bn terms of population and area ay

’ .

o v
a0
* . L ’

. coa =P e, (2.2.1)
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of the influénce of populétion or social intensity. An

-~

/ . K .
then population can be written with respect to density and

area g - .
P, = d.a, -, (2.2.2)
and potential can be given as o : : =
. /’ .
2 - ,
Vj i diai/rij . 2.2.3)
_%:- -

In Craig's (1972, 10) words, this expresses population

potential as-a "wgighted average of the population densi-
ties"

Population potential has.been Eepeate&ly tested against
: S o

a wide variety of variables considered to be renresentative’

L4

extensive, though not complete list of such variables was

e

given by Warntz and Wolff (1971, 236):

'Telephone calls, telegrams, and mail
Bank chécks.
Bus, railway, and airline pafisengers
Vigsitors to fairs
.Hotel registrations ’
Marriage licenses . SN
Obituary notices S &
College attendance
Areas’ of cities
Rural population densities
Land values .
Highway and railway network densities and ,
: alignments \ 5
N 13. .Bank deposits and the "velocity'" of money
14, Information flows and decision making
15, Administrative areas
16, Taxes . \
17. , Patents -
18, "‘Business failures
*19., "Alcoholism and mental health

.
i

N Oe o o o = s o
* & o

. ‘ ST e

}
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20. Farm.sizes(
21. Commodity prices

-

<

(see also Stewart, 1950; Stewart and Warntz, 1958; and

v, . ’ f
Neft, .1966). These comparisons, normally by regression,
! "y i
analysis, often showed positive and strong correlations
|

between the log‘of population gotential and bhé log of

«

such variates. In addition, power laws associated with

&

_the slopes of the régression lines were often“discoNéred

to hold true over time. Rural population density, ;for

-

example, tends to be pnpporq%gnal to ‘the_square of the

i )
poﬁulat;on‘potgntial in the United States for a number of

census years (Stewart, 1947; &gewért and Wéfn;z, 1958).
£~ < . e
Potential maps can and have also been use&“&sﬁpurely

descriptive devices as well. They have, for example,

%

"BEen;emﬁloyed to illustrate the impact of the entry of

o -

the U.K., Ireland, Norway, and Denmark into “the Eﬁropean

Economic Community (Clark et al, 1969), and to illustrate

- .
.the impact of a new town on its region (Fatty, 1976a,

101).

PQteﬁtial, then, is not,primariiy a model of spatial
inféragtion bu't rather an iﬁdex_or megsuré ;f aggregate
accessibilif%. It caﬁ aiso be defined, fo%ﬁowing‘aZrntz |
and/Wolff {197i, 216) as a'genergl measure of re{ative
§ésitidh or location. It is Felated to spatial inﬁeractﬁgn,

in‘che sense that It describes the propengity for inter- /

.action on a per capita basis at the destination.

- -SSR - I




#21

P
v . '

What aré the noseiﬁlé uses for such an index? ~It has °

been seen that although potential can be-employed'as a :
4

descriptive device, one interest has historically been with

\

finding the relationship between potential and other social
> - *

»
e sepu me 1

and economic variables. Warntz and Wolff (1971, 236), for*
example, suggested that the "strong torfelat;qns" between

potential and variables such as those listed above indi-

’,

cate that "the potential-of-population surface represents ) i

o [
“%, !

the spatial 'structuring' for these kinds of phenoména./

e,

w»

f

AL AT TR P

|

The implication of sSuch a/statement is that population

e

potential is assumed to- be more highly correlated with such

variables than is population density, Stated another way ‘j

- it conlg be said that certain quantities and levels of

actfvities are expected to varyfas a function of the degree‘ww, '
. of aécessibility of the area in which thez;exist; preximity ’ ®

T to the aggfegate\ponulafiozris hypothesiéld to be a/better'

v

explanatpry variable than local population density.

<A wBrd of warning is in order here. One would

-

naturally expect many of the types of variables listed
- LN

- .\

above, snch as\marriage licences, land values, or highway

»

network ﬁeﬁgities, to be poéitively.correlated with .

e
e

popﬁla%ioi/ienghties. If the goal is to study the

/

fw LB q_,

, corrergtion between pogential and such dependent variables, ~
v =

- then the correlation between the density variable from,

.~ . ’ . N
) . - which the potent'ial was constructed, and the dependent . 2
R ) ' ' // ’ ,w}: . " ‘ .

\
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variable, sho;lg also;be iﬂ&estigated.‘ Goodchild;g& al

(1951) fod;d for example, that the observed coreelatfbn
" between log United States population density and log

pppulation‘petential for 1975 (using the Stewart, form for
y potential) {s 0.899. This seégests that meny of the

variables which were found to be correlated with potential,

, as listed above, may'also ber righly eorrelated, or even

more so, with pOpulaeion density. Goodchild et al (1981)

R B b s 4

‘

P the correlation between potential and
density is combined with the correlation
between the two ‘densities. The signi-

. . ficance .of «the spatial arrangement of

.o - [variable] pairs can be tested .by

. repeating the analysis with randomized

. pairs( . Randomization of [one variable]
alone will‘tes% whether the reldtionship

between [the variables] is significant.

; Lo In general it might be said that the goal should be to
. determine how much of the correlation is due to local .
- . N

density and how much is attributabl%ﬁpetial proximity

~to the remainder of the population.

The usually strong correlations betwéen populéfion’

densit

P

s and population potentials do, however, suggest

) -1 ‘that poflential can be regarded as a generalized population

&ensity an mployed as -such. As Craig (1972, 1l) has

1 B -

noted, if one wishes to compare the population densities of |

different places, population potential

. ‘ Y s directly relevant to the kind of )

comparison for. which the unweighted'

suggest that -




or 'crude' population densities are used;
not just as an undefined measure of
pressure or accessibility, but as a -~
weighted sum of population densities
which will often be more meaningful than,
the comparison of unweighted densities
whieh are so dependent on the area used.

Another possiple usage for potential functions, which

relates to their being derined as indiées of accessibility,

is as terms in other models. Thus eientthough potential is

not directly concerned witlhh modelling interaction, it can be

At O AT T

employed as an origin or destination term within an inter-

20 A

action model. fmagine, for example, that Tt was{desired

—r

to model recreational trips to parks where the interest was

v e

in trip makers who were staying in a different park each

night. In this case a potential might be employed as a

destination term which is representative 'of aggregate
li R - ,
accessibility to camping facilities. Perhaps the most

common-application of potentiei functions in this manner is

A

ip spatial interaction shoppiné,models where potential is

- onpp——s

employed to represent accessibility to stores and faéili-

ties. Both of these types of usage require a redefinition

~of the Pi term. This subject will be considered in greater

detail‘beloafand this will also illustrate additional

possible uses of potentiai functions,

“r W , ]

This review of the meaning of, and possible uses for

-

potential is far from complete. It would also be possible

for example, to include discussions of the.topological
4

properties of potential surfaceé (Warntz and Woldenberg,
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1967) and the gradients and flpws'assocﬁated with_such
pro?ertieq‘(Warntz, 1966). The role of ratios of income
and population potentials a;/indicators of urban, spéial,
and economic integr#éion could have been considered
(Dutton, 1970; Coffey, 1977) as COuld.the use of per

. capita income and income potentialﬁin the-identification

of economic sub-systems or regioné and associated popula-

tion "weights" (Warntz, 1965; Pooler and de Abreu, 1979).
_,?" ‘é -
Various thermodynamic concepts and analogies could also
I
have been discussed (Fein, 1970; Warntz, 1973a).- A de~- -

i e o 4 NN ket v, ¢ o e e e p o

tailed consideration of these issués goes beyond the scope

of the present study but it can nevertheless be suggested

that in some cases it may be appropriate to reconsider
’ e
such issues in the context of the arguments to be pfe-
. . o ) i
" _ sented in the remainder of this study.
: _x.‘ O J .

In the broédeét terms it can be said thét potentiii)is
a generdl index or measure of acce&®ibility and relative

v . i
location which is useful whenever such an index is rée- _

quired. Potentiai'is; however, just one of a number of
measures on areal distributionms. Some;quthgse will be

R Y .
reviewed in:the section which. follows. The purpose of the

e e [ [

3
review is to illuminate, by contrast, the nature of potential.

- 2.3 Other Measures on Areal Distributions

N ‘ _ v . . ' . N
' " > N Potential was described in the preceédinf discission as

\

a general measure of position, in this regard the highest
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"peak of a potential surface takes on a special dignificance °

- : L P, r , (2.3.1)

A

- e ea S e e - - ¢ ———— . emten o e AVt n =y

o

25

e

as the most accessible point of an areally distributed

population. Related summary measures on‘areal distribu— .
tions exist and will be briefly reviewed here. The dis-
cussion will be res;ricted to measures which are of a
mathematical form which isiapfiicable to "grouped" orx

spatially partitioned density data. It will also be

restricted to the consideration of four basic measures of

average,position (;r spatial central.tendency) and their
associafed moments. Additional measures of average
poéitioﬁ; ad: measures of dispersion dround the averages, L
are available but will not be considered here (we drdw X b
. . «

freely on Warntz and Neft,'l960, dnd Neft, 1966{ these
sources should be consulted for more detaildd dreatments).

One measure on an areal distribution is the mean

center which can be defined as the position where.

is 2 minimum. In other words this is "the point where . the

y » .
sum of(the.squares of the distances to the individials !

e

d“@rising the population” wiIl be a minimum' (Warntz and

Neft, 1960, 48). The mean center can be described as the

"balancing point" or "center of gravity" of a distribution.

e s Bt =

If the population dendity is assumed to\be“uniform; this
N {

measure will indicate the center of area (Ne%t, 1966, 29).

-
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‘Another measure of average position is the median
v

center, In linear statistics the median is that value

- - 8
about which "the algebraic sum of the deviations(i%/é/’\\\\\<
[}

S . i
minimum"” (Warntz and Neft, 1960, 49). If the deviatioms .

are regarded as distances, the median center of a two- \
. T L]
dimensional distribution is defined as thegminimum of

, ‘ ) 7
T P, r,, . _ (2.3.2)

. :
In general terms the median center is the position of

minimum aggregate travel and can bewconsidere&_to repre-

‘sent an optimuﬁ location for retail and service facilities,

oar

meeting places, and so on (although there are also other

‘ definitions of-this). -

-

{ A third measure on an areal distributiony}s the modal
center which is defined, in .general terms, as the highest
value on ;-ﬁghpothed" density surface. ‘The precise value
of the moéal center "can be determinéd only by medns of
the mathematical formula which desqribes the c;ntinuous
curve of 'closgft possible fi;: for the given frequency
distribgtion" kwarntz and%heft, 1960, 50):

A fourth measure o6f average position on an areal

distribution is known as the harmonic mean center and is

the location of the minimum of

- N l N ’
; (2.3.3)
Z'Pi/rij

L.
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This will be recognized as the reciprocal of population

potential and obviousl§ where equation (2.3.3) is at a

pingﬁum~the potential will be at 'a maximum. Neft (1966,

35) noted that "this relatiéhship al;o adds-to fheyuseful- .-

ness of thé peak of potent?él,)since the fact that this

- “

N -

b s o g 2T T RO TN PPRI
.

peak has certain.statistical properties akin to the

»

harmonic ‘mean can...be utilized."" _ e
l§ ) .

} With. the exception of the modal center, the measures -

: of a&erage position which were introducéd abové are de-

3 -

Coal - fihable not juéf at thedy minima, but also at ahy point on
’ .a surface. It follows from-—-this that ‘these measures can .
be mapped. Warntz and Neft (1960), and Neft (1966), have .

¢

termed such @appings as being illustrative of areal moments.
The use of the term "moment" arises from the fact- that

) [ 3 -
i . - the equations for the mean, median, and harmonic mean

k centers are analogous to a class_of, Statistical measures

on linear~frequency distributions knoWn &s moments. ‘A v
. general formula for the moment about any.point j can bé-

.

.-

written ds . . oo p r b .
\ | s e N
a - .. Mbj = = S . ‘(2.3.4) .

[N . e Ve

where P is the tota@mpopulaiion and b- 1s both the exponent '

~
¥

iy ) on distance and the number of the moment. Since P is a;

LY

> constant for a given population it can be ignored. It can

" . t
be seen that by setting b equal to two, one, and minus one,
e

. oF
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equations_ analogous to those for the meaﬁ% median, and
DI : . I - K t - R .
i ) ) harmonic mean” respectively, result..
3 : - ’ ' I

. ° d
In the case of the mean center or "center of gravity

.“‘

1

o bhe associated &econd moment can be,defined. - :

N

P, r . ' x@2:3.5)
o - . .

T i ‘ . . / ‘
N Ut will map as concentric circles around the center of gravity
(regardless of the distribution of population).

3
% L4 1 [ i
E3 . S . . . . £ y
% . The contours of the second moment—in person-miles-squated—
3
9

-

'"%’faﬁ. N b ~
In order. to map the first areal,momeﬁt, which corres-
. = -

-

pondﬁ\ﬁith “the median center, define

v ™
. - e ~M, , =L P, r,. , . (2.3.6)

-

r - as the value, in persons ‘times miles, at any‘point. The .-

resulting contour map will represent "aggregate travel

- . distance".~ If any valueﬁzn the map is divided by the total

s ' . .- .4 . ‘ * 1y

o ” ) population, the-resulﬁing value at that point ﬁrepresents

. .~ the arithmetic mean distance, in miles,'geqhireg o move .

%

Sa

+ ' every individual in the population to that™point by B

i shortest distance! (Warntz and Neft, 1960, 64).
.. The contour map which corresponds with the harmonic
; " i . °

. . + o - N
gt . , ot - f:l‘, « . - )
Rl .~ mean center';is based on the inverse first moment /// \ -

i . ' Lo : ’ C o e .
I N T ,.13»-,§-P1 "13 e @
] i ' ' ‘

L e . and‘this, of course, 18 identical to a map of population

&! ‘ o | ! -

porential (provided that the self -contribution is treated
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the same in eac% case).A Again, this will map as concen-

o * o . . N Q
tric rings_onTVWfor clrecularly symmetrical population .
distributions (although lo@al pin!ma and maxima are

at

) - possible). .

) Neft (1966) has argued that there are a number of
\ ~

- an

desirable properties which make the peak of potential (or

harmonic meéan center) the most useful of these ‘measures of

7 ’

- <

average position. Whether this is true is difficult to

answer in a definitive way, however, since the usefulness

© s RN P L YISO g
o

-~

of any of these measures of average position will. ﬁepend

o
-

b _upon the particular situation in which they are te be ©
. empld&ed. Nevertheless ithan_be ﬁhinted out, for' the sake '

o .
¢ . -0f contrast, that the peak of a potential surface is not a
R minimum aggregate travel point, nor a balaAcing or center ©

H I : . -

e
2, N

" of gravity point (élthough they may coincide in some cases).
« ; - . - v ‘

The discussion in this and the preceding sections has

S

v

s,
gy

i t had to 'do, directly or indirectly, with dome of the prop-
erties of pbtentials and potentidl snrfabes. Such a

. ) discussion would be incomplete, howeveér, 1if it did,not
N ' 3 N V . ~ e’ ° °
include the, subject of the next section, a review of the
relationship betweeh‘spatial aggregation and potential.

. . ’ X N N - : s

-

2.4" Spatial Aggregation and Potential i

. In discusg}ng the relationship between spatial . ) ‘
oLt . ' .. _ k! ’
A aggregation and potential, at least four effects due to
-, ] g "‘/i o
) . zone size and/or configuration can be. identified The (
5 S R X o ‘ N

o <
.
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first of these relates to the "smootgpess" of the potential
surface (where the word "smooth" is being employed in a

general pedagogic and conceptual sense, that‘is, it will

o

not bE_given a mathematical definition except to say, as
above, that potgntial can be regarded as a distance weighted
denéity). Stewart (1947, 222) originelly pointed out, and
Goodchiid‘gg al (1981) have recently reiterated; that a
‘jotehtiil surface based on the Stewart form of the potential

fundtion can be regarded._ as a smoothed or filtered version

/

of the dens%}y.surface from which it. was construpted:

The potential index 1is a distance-weighted
sum and can be visualized as an operator
or filter applied to the density surface;
Because weight ‘detreases with distance,
Vi represents local density values more
- than distant ones. The smooth&r the °
density surface, then, the, higher we ‘might
expect the log- Log’correlation to be with
potential (Warn;z, 1965, p. 16). Thus one' ’
1nterpretation of the observed correlation .
is that it-indicates a degree of smoothness

in th density surface.
- (Goodchild et al, 1981,

| p- 342) ° -
{
A second and closely related issue concerns the effect

of the regional configuration. 1In general, the size of

. A0

administrative areas‘gf data collection units tends to vary
. \

inversely withhfhe(density of“the data. For example where

popqlation'densit%eé are high, cbunfies; states, provinces,

census tracts, and so on, tend- to be relatively small, and

vice versa. In calculati United States population ten-
vice verssa ng Un - pop ﬂuwﬂmgo

tials, for example, wheth&r at the d&ate or county level,

L4
-
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,concept was briefly mentioned in Chapter l it has been

the density of control points generally dec;eases as one ‘

See i -

movee westward. This will havexspmeieifect on the re-.
J ‘ - -
sults, though this has never been investigated. A similar

X

problem arises when constructing potentials for urban
. . \

areas since, for the most -part, administrative areas tend

g . Lo : -~
to increase in¢ssize with distance from the center of the ’

city. Dalvi and Martin (1@76) dinvestigated empitically

4

the effects of both aggregation level and zone config—
uration on accessibility @easures_for the city“of/London,
Ta. - - L
- . / .
and found that both had a significang effect upon the

-~

value of the accessibility index. ' ~ ‘

A third issue relating to spatial aggregation levels
concerns, the rofe of the self-potential. -Although the
>

ignored subsequently. * Such an approach to the concept f% ) ;3

LIRS

the norm. It is usually treated as q computational prob—
£ . .

lem, where the goal is simply to avoid dividing by zero.

Yet, as Goodchild (1979, 88) has pointed out,-the self—
W . P
potential can be, depending on the zone .size, the ‘dominant

. 8

term in the sum. In computing 1970 United States popu-

1ation potentials for example, usihg«equation (l I. 2) for

w ~ e

a

the potentials, equation. (l 1. 4) for the self -potentials, 7 .
and data at the state leyel,‘the self-potential c mprises, = . .

-~

‘on the average,’ 17% of the totals by state, with{california
. . %
- Y e Al . .
being the largest at 61% of the total for the state. This

LS ¢ ~
w , * e .

. : ’ C = ‘ \ -

¢ !
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:model.

assumes a uniform population density within each state.
For assumptions other than uniform these proportions, can
be emuch higher. As Court (1966, 41) wrote:

The self-potential of New York City's
population, assumed to' be uniformly
distributed over-‘a circle equal .to the”
entire legal area, is greater thdn the
potential imposed on New York City by
thex.remaining 171.5 million residents ’ Ed
of the coterminous United States. A

‘'more concentrated distribution, such as

the conical, would imply that New York

City's residents are more. than twice as

important to it as alil the rest of the

country!

_Insofar as the self-potential;ébmprises a significant

portion of ,the sum, it can be a}gue& that it changes the

.

very nature and intent of the potential .function. In

particular, it would appear that the self-potential can

. . \
surreptitiously play~the role of a destination term, making

the potential function analogous to a spatial interaction

It can be suggested that this may in fact have
’ . I 2,

accounted for much of the early success in the comparison

of poﬁuLation potentials with spatial interaction data at

e
2%

the’ state level df aggregation (see the list in section
2.2). .
) -~ N . * .
. The problem of:the self-potential is highly dependent
. \ - -
k.
on zone

7

size, with the severity of the .bias being . directly

related to the relative size of thg zones. Warntz (1979

11) has argued that provided sufficiently small areal units

%5,

are employed in the calculation of potential, such as the
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3,068 United States counties, the self-potential is
-~

. "generally of very limited importance." The reasoring here

is that by us}ngjkdaifér'areal units the contribution

from the seﬁf-péten;ial is diminished in comparison with |-

-

" the contribution froom the remaining 3,067 counties™

+

Furthermore it can be noted that as the size of the areal
o .

Se—

units decreases, the calculation of potential more closely

\\.

approximates the integral form of the function (as given
-~ ’ %‘

in equation (1.1.3)). The relation between the spaéﬁal

NE AR A NI i e -

’

aggregation level and role of the self-potential is, how-

ever, an issue tha;'has yet to be's%éfematically }nvesti; Y e it
gated in detailm ) ' :

- °

»

. - .. . A 7
The fourth issue that can be discussed under the oL S ey

heading of gpatiél aggregatioh involves the classification

of variables as being intengive or extensive. An exten-

sive wvariable can be dgfined as being spice occupying,

while an I;fenéive variable is said to have no external

L3Y

e e S N e e, =
»

sgatigl extent, Variablgs such as population siﬁ? are

extensive while variables such as potential or accessi-

>

bility are intensive (see kroédbent, 1970). ' ) L
In its standard form, a potential function is ess'en-

tially an "incoming" quantity; the summafioniis over i at

j. Repeating. here for convenience, the usual form is

S /

EN

iy =1 P L]

<3 AT I
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. Suppose however that we are alsd,interested in the total

. \
e :

amount of potential or per capita interaction "outgoing"
from each i (for example, to be employed as an uncon-
strained origin term représenting "emissiveness' in a -

P

“destination constrained trip distribution model). The

summation is therefore over j at i .
o _ .
v, = ? Pi/rij s (2.4.1)

A

wEere Vg denopes outgoing potential. There is a, problem

which r;§tficts the usefulnesswof equation (2.4.15 in its !

present form., ' ' . ; -
Consider first the usual,fﬁcoming case. Imagine that

there are two identical regions i and j, eéch containiné

" 100 people, 10 miles apart. The contribution from i to j,
&

using the-Stewart form for potential, 1is 106%10 or 10 ;

r . ' ’ ‘ ‘
persons per mile. 1Imagine now that region i is divided in- |
- . . " :

sto equal halves 1 and i' eath containing hdlf of %he

population. The'contribution.from each™i to j is now i

-~

50+ 10 or 5 persons per mile, and the sum at j remains at .

10 persons per mile. Thus in the case of incoming poten-

’

-  tial at j our results are not adversely affected by
. . -

~ ) |

#

halvifi§ region i. The éape does not hold true for the -

outgoing .case-however. ) %, - N

Y

Imagine ﬁ%w that we'haye restored regionm 1 to its

sihgular form and we are concerned with the value of the -
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dutgoing potential from i, The contribution from i to j

- remains as before, at 10 persons per mile. Consider the

' effect however if region j-is .now split into haives j and

..

j'. The contribution from i to j is 10 éersoﬁsjfer mile

J
and ‘the contribution from i to j' is 10 persons per niTe.
£  Thus the sum of the outgoing potential from i is now 20 .

. , ;

persons per mile, a result 'which is iﬂconsistent with what

is expected. If we were to continue to pa;titigh region:j,

the amount of outgoing potential from i would continue to

t

increase in spite of the fdct that the size of the contri-
- LA

bution in each of the j regions would remain the same,

[N
v N

save for changes in'distance.

In general,'the’s&m of the outgoing potenti#l using
equation (2.4.1) as it stands, is ; funﬁtiongf fhe'number
2 of . control ?o;nts'hging.employed. In the case of the
~ usual "incoﬁing_potential," equation .(1.1.2) fémains'valid

3 - because ﬁopulatioﬁ is an extensive variable and increasing

. - the number of regions decreases the number of people in

each. However, in the case of equation (2.&.1) results afe ' >

i . )
. inconsistent because pq;ential is an intensive variable -

and chénéing the number of regioms by partitioning or - - :

AN L : o
g grouping has no effect on the value for potential in each. !f

.
~

There is a solutfqn to this problem., It is necessary,

- . 1in the case of equation (2.451), to multiply by the area

. of each j régibﬁ gsuch that

S e




(2.4.2)

This makes the output of this equation invardant with re-

spect to the zoning system. "If this is not obvious con-
sider again-.the hypothetical examﬁle above,/assuming now
that the ‘area of region j before partitioning is 10 square ;

miles. Before region j is halved, the total potential out-

» ARV APION P s
. \
—

going'from i, using equatioh (2.4.2), is 10x100:10=100

-

]

persons per mile, Again region j is halved, and the total

o

outgoing potential using equation (2.4.2) remains (5x100+ 10)

+ (5x100+¥09=100 pef§ons per mile. The result is therefore

invariant with'fespect-to the zoning system and although

the absolute values are now-larger (100 rather than 10)

- )
YT this 1s unimportant because potential is a relative.quan- ) g

.tity., If 1t is desired that the absolute values remain
the same, this can be accomplished by divi&ing the entire

right hand side of equation (§§4.2) by the total area

L a.P,/r )
V_Ejjiij .

. :
. s e (2.4.3)

_Inithe example above, this gives the total potential out-

-

going from i as 10 persons per mile regam™less of the Y

P

partitioning of region j.° ' : , L
Equation (2.4.3) gives results which are comparible

with-those of equation (1.1.2). It should be noted how-

ever that the issiie of the outgoing potential is importgnt\

..\ .’ . . ' .
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only when it is-desired to compare or jointly employ in- -
IR : going and outgoing potentials., TIf the concern is with
outgoing potential alone, tht’fact that it is a fudetion
\, -

% d% the number of control points will affect only the

absolute values of V:.

. Having Eriefly reviewed the effects of spatial ag-

- . gregation and partitioning on potentials we can now go on

to consider some alternative definitions of the population -

r

be noted that most.of the arguments in the preceding
/ ' . - \
sections apply to potential functions regardless of how .

e ¥

i' and/or distance terms 1n'potential functions. It should
1
i

the terms are defined.

-

o

2.5 Alternative Definitions of Terms

P . , 5.
¢ 1 No doubt owing to its broad conceptual nature, the

concept of pqpulation poténtial began to be geﬂeralized to .
p in¢ludé variables other than population shbrtly after itg

introduction. For the most part, the functions employed

VA o5 ot

¢

to genérate.these measures of potential were identical to

N

population potential; any changes consisted primaridy of

N [
L]

redefining ﬁhe‘%opulation or distance terms,

~ N v

et R R AR
-

Harris,. (1954) for example defined a market\pqténtial

\

+

,\ix-‘" v

- -.Q,J P N
"y~

(2.5.1)

-

Mj = i Ei/cij ‘ , ¥

-+

where E, represents retail sales and c,, re fesents trdns-
i "°P T1y - OPTESE

port cost over 1aﬁd'(inclu&@ng terminal costs). This f

S ¥ -
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index was considered to represent the accessibility of any

location j to theltotal market. It has-also been described

-

as economic potential (Vickerman, 1974, 679).

A generalization proposed by-Warntz (1959) was a com-

3

-

modity supply space potential

o~ Yj ='zmxi/rij , N -o(2.5.2)
. b . P
.. 3 .
- - X . ,
where Xi represented commodity output over someé time period

(see also Tegsjo and Oberg, 1966). Spatial demand,.in the

same study, was represented by income potential

U," =52 [/t , : (2.5.3)

| 3 i-i ij
where Zi represents total income at i (see also Stewart .

and Warntz, 1958; Warn;z, 1965). Eduagion (275.3)\canlbe
consﬁﬂered Lo represent a weighted population potential
since total 1ncome can be given as the product of pépu— -
lation and per capitalinCOme.

A more recent example comes'{rom Inhaber and Przednowek <=

(1974) and Inhaber (1975) who calculated a scienfificd

potential \
J, = LK,/r . - (2.5.4)
(A A TR
where_Ki represented the number of primary authors at i

who had puBliéhed in major scientific journals, This
scientific potential was defined as "a measure of the

pfoximity’of scientists (or scientific activity). to a given

v

-
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-ical distance, “city block distaﬂce, and so on.

. ;,f ya

e e cimd s e v et _.JL_.M_J_,.-H._ et e < i g e 77

- ° ‘. . 3
\ - e m mmes an e e as . . - .

<

3 . . R

point" g;nhaber and Przednowek, 1974,~46).
These few examples serve to point out that it is

possiblé<to define many types of'potentials simply by

changing the def{nition of the population term. Of course,

14

the distance term can also be redefined in a number of

ways, for example, as cost distance, time distance, spher-

'
a

N~ -

In addition.to redefining the distance term with

Fa

respect to the ﬁéy distance is measured, it is also

possible to employ'é%&brnative funct;onal forms repre-

senting the effect oéxdistance‘on per capita interaction.
kY

This is the subject of the following discussion.

2.6 Alternative& Disfance Response Functions

In theQStehart*form of potentiél, the effect of dis-

o

tance on per capita interaction iszan inverse function' of

simple linear distance. This is, however, just one among

many possible ways’ in which the.effect of distance can be
i

mathematicaily defined; many other distance response func-

- - .
tions (Amson, 1972b) have been suggested. Raising the
. [}

distance variable to some power, such that
V.=10p,/c> [(2.1.10)]
N j - i i ij ’ ’ .

’

has been commonplace since the advent of the potential
formulation. One of Stewart's (1942) early papers, for .

.

?

example, reported the results of a least squares estimation
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of. a iner function. A

+ b log r (2.6.1)

.=
log uj = k + log Pi 14 .

The analysis was of the geographical origins of under-

graduates us at Princeton, Yale, Harvard and M.I.T. and it

) . ¥
was fqund that the mean estimete for b was "close to

g s -

negative unity" (Stewart, 1942, 69). ”

%
20NN e

An alternative approach to-estimating the b value for *
T o the power function potential has been to determine a value

for the power term using spatial interaction data and then

to use that value to construct potentials from density «

data. Carroll (1955) forwexample, employed teleﬁhone calls

and inter-city travel<«data to estimate a b which was then

employed in the calculation of population ﬁotential. Al-
- . \ . A
o though potentials based on simple distance are probably

14

& Ebe most widely known, the practice of using igteraction~

data to determine a power which is then used to calculate

’ potential\has been-eommonplace over the years. (see, for -

example, Hansen, 1959; Ray, 19657 Laksﬁibnan and Hansen,

1965) . ’ , : .

-

Interestiqg variations of *the simple power function t

~were suggested early on by Anderson (1955) and Cargothers

(1956). Aqdeison proposed that the value for the power

. . A o
term be inversely related to population size, that is
& &

R bi = f(l/Pi). «The reasoning here 1is that the larger nhe

size of 'the populations, the greater the tranSport facility -

i s,
w
g

,-h"
g

Y

- . . -
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“-between them. Carrothers, on the other hand, suggested °
R M N
~ that the power term ought to be inversely related .to
distance itself._ In this case by a‘f(l/rij),- implying-
- ) L] ., .

that "an extra unit of distance added to a long movement

is of less importance than an extra unit added to a short -

movement" (Carrothers, 1956, 97) (This is also implied by

b=1). ‘ . _

Another formulation which has been employed is the

negative exponential where- ,

P exp(-bf~

vV, = 13 -

g
R

i

“-o -

“'Although et is not clear who first euggestedlitS‘inciusion
, 3 N ) ,

-
—— 8

as a distance reéponse function in the calculation of _

\ - I ’ . -
potentia), the negative exponential is now widely recog-

-

nized the literature (Ingram, 1970; Viekerman, 1974; ~

c

Weibull 1976).
Ingram (1970) reasoned that the functions given by

equations (2.1.10) and (2.6.2) both declined too rapidly*
J
« *near the origin. He suggesxed{ as an alternative, a

modified normal or Gaussian function of the foiﬁx.'

[

2 ‘ )
Vj i Pi<:xp( ry 13 /2? ’*%”, '(ﬁ°6'3)

where £ is a constant which 1is- related to the, spatial

dispersion of a given set of points (see also Echenique

=

gg_gl, 1969). QThe-use of ;his function is a response- to

/.

y .+ £ (2.6.2) "

Qe

st L

X
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}ﬁe noticeable absence of a distance decay effect at syort P
. m - . 4 .

o — 7 distances (Olsson, 1965, 52)-. : L ‘ I

- "To the author s, knowledge equations (2 1. 10), (2.6. 2)
[ "‘"*n
kﬁf o and (2 6.3), cover most of what ‘has been done in’ redefining

diseance response functions ia potential measures of the

R S %%' - .form Qeing considered. Ene list of employable functions
§ j - ) need not stop here however. Virtnally any function which
) . . .

} . is monotonically decreasing w&th/increasing values Of‘rij
E i - e s
+ + is a can'dtdate for inclusion in a potential equat®on.

1

It is possible, for_exeﬁble, to write a composite -
' function yhieh in effect combines the negetive eﬁponential_
el - s jo3 T - . o ! ,;

Coe . ) and powerx fdnctions. Such a formdlation could employ tlre -

-
.
1

)

-

RN
-~
.
"

‘f A g " gamma distribution to define a potential )

L ‘ "'y , g R g
': L " I3 v ’ ’ " . I. = - -b ) A .4
. . . . - V,:= L Pi exp( blrij) rij’ 2, (Z.o.4)

.

a%

-~ ' -
v " ' with an ekponentially'damped power function (sf%e Wilson .

and Kirkby,¢i975' Openshaw and Connolly, 1977).

; . 4’ ‘, -0, Another way to combine power and exponential functions
. / R iéﬂtd'nse a modifieﬁ Weibull distribution’function where
-3 .- ’ . . \_,_/ . ,“ ¢ ‘ :» gé!w— L b N : ) “ -
» . . . o Vj = i'Pi exp(ablrij 2) . (2.6{5)
L , ‘ : - . .o ‘
b D | : - . . . ) b
B . N {see-Tribus, 1969, 155). - SR N . :
e > ol . Other possibilities can be based on the Goux typologyu
i L § Q Slhad '

(TR ' oo of distance trdhsformations (Taylor, 1971) These’might

L
\ . include potenwiele based on the normal functionv

B
~ n
* N s . . - .. . e
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- . -

0u5) .

i Pi'exp(-brij
. o O )
or the log-normal functilon _ ) .

- vV, =
o k|

Fe - -

t

vV, = 3 ’ 2
j 'i

3

-

LBy efp(-b(log‘fijz ?

ples‘of the many possible‘disténce response functiodns

s
"(2.6.8)

The latter five equhtiqne represent just a few exam-

-

Additional

¥

‘which could :be employeﬁ to define potentials.
: . - . .
functivns could be borrowed from those which have been - -

::>~ employed in mo&élling_urb:i-pbpulation_densities ol 3

€

L (Zielinskis, 1979) and spatial interaction (Openshaw and

One might also includé'steppeé,

%lobai étepwise disconeinuous, aﬂd families og%deterrence" :'
° - functions (Openshaw and Conn;lly, 1977) i N (
The use of many of the functions above.is more ipm-’\<ﬁ“ . .
plex than, was the case’for the powey,functiogf.- A‘dis-; §‘

i . R ~ s " “ . 2
cusslon of parametexr space. search teg&niques for such

non- 7 .

Conpolly, 1977).

H
14
H
i
v
:

A O

“ —_— |

v .

functions can be found in Batty (i??ba; Chs, 5-9).

; | _J: -‘3- It should be emphasized that this brfef review does
. J , not pretend to be exhaustive of the literature on potential
Co . vor'accessibility. Related work has been published, for -

“ i .

o example, by Wachs and”Kumagai (1973), Weibull (1§76' I§80),

S, Dalvi and Martin (1976), Sheppard (1979a), and qobler (19797~ L

However the emphésis in thpse works. is not primarily on ‘ {

e Y

-




i All of .the potential équations'which have been review-

' =

ed in this section are distinguished from one another by

the forn of their distance response functions. It follows \
& that they can all be represented by a single EQuation
A Vj = iuPi f(ri}) R (2.6.9) ,
- & . 4

_ wheie f(rij) is any ncn-increasinﬁifunction: Equation
(2.6.9) can be seid to represent a’ general form of poten-—
tial. The Stewart form of pdtential can.be considered to ‘ﬁf%#
be a speéial case of equation (2.6.9)./2 . R

it

T In conclusion it can be said that none of the poten-
~k - . ‘
f'tials which have been described in this section have .been r
R ;

independently derived or ‘given any a priori basis. The

18

distance respotrse functions employed in equatdions (2.6.2)
to (2.6.8) werc simply borrowed from the field of spatial
" ’ B 3 e - '+l

interaction modelling. This bor}owing can be said to have
L been done, for ghe most patt,vwithout regard'to the manner
~ ‘ in which the functions can..be derived, and &ithqut regard

i N . D v
to the poss$ible empirical consequences of employing such

S/ ¢ N , . “ . o

Y v . - -

N '

.
-

.nw,

In 1ighq of the social physics.derivation of "the’
Stewart potential functdon glven earlier in this chapter,
and” in light of the analogy with the definition of poten—
. ' tial in the* physical sciences, it would probpably be ¢+ |
. appropriate to term the Stewart formulation "the potential"
~* and to, designatge the other functional f£dérms by some alter~ .

.« native label such ‘as "indices of accessibility." In ‘the 3
_‘wfs' . interests of.clarity and .economy of diedussion, however,
e we‘shall continue to employ, the wotrd '"potential' for any ¢

' .functf%n oft the form of (2.6.9). R e ’

.
Y . 5
A.—.———'—d"—_
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~in.greater detail,- therefore, how the entropy and infor- .y

b

o

ry
-

- —_

functions. Only the Stewart formulation has any a Eri&%i:

L
basis at all,.and even iﬁ this it is necessary to rely on

a questionable;physicaL agalogy.

. It was pointed'out in the introduction that the
enfropy,maximizing and infofﬁatioq miniﬁizing methodolégies
provide ; basis for making a priori estimates of the
functional form of §/probability distribution. It was also
suggested that in E{dér to caleulate the éotential it 1is

\

necessary to determine t%e'probability that a randomly
. B . _\ . v

selected individual at one location will have a per capita

spatial interacEion'ét another location. We will consider e

o

1/
X

m;tion formalisms. can be empioypd to derive probability

-y

distribution estimates. This is the subject of the next-

<
&

cHapter. - &

I‘\u" .
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CHAPTER 3 .
- ¢

ENTROPY MAXIMIZATION AND .
INFORMATION MINIMIZATION il -

o

/ -

3.1 The Entropies

It is commonly argued that there areﬁin geography two

-

general schools of thought on-the nature of the entropy
concept (see, for éﬁample,.Wilson, 1970; Marcﬁ;nd, 1972;

Sheppard, 1975; Coffey, 1979). The first, described by

‘ w
Sheppard (1975, 1) as thé’descrigﬁiye school, combines
; . -

.
L s f e TR R AN T o st ek
-

" ‘ concepts from thermodynamics and systems theory andkregards

3

"
L% e e m———a

entropy as an int;dnsiq_brbperty,of a spatial system. The
: \

o ‘. approach is exemplified in Fein (1970), Warntz (1973b),
J-" . ‘ Chapman (1977} and Coffey (1979) amoné.many others.’ By
b 3 " and l{rge the arguments within -this scﬁpol’of thought gre -
based on analogies with bhysical science, The second school
of tﬁdught, ﬁioneézzd_by WiLson‘(1967), argues that

o,
hd .

. - "entropy-maximizing methods provide a useful and practical

model-building tool" (Wilson,. 1970, 125). 1In this view,

entropy maximization 4s employed as a method of estimating

. *
- the form of a_probé%ility diétributioﬁ“on the basis~of
limited prior knowledge. The dichotothy concerniné the
: ' ' 7 :
G entropy concept in geography follows quite naturally from

. \ . _
the historical evolution of the concept in the physig&l :

+ sciencesv It can be argued however that the two, views of

~ ™ i
.

entropy are in fact instances of the sameLbasngconcept.

.
- .
-\ 3,
\ : ; . - %
S .
,
;
,

14 .
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Historically the concept of entropf_dates back to
the coining of the word by Clausius in 1850 when it was

associiated with trahsformations from work effects to heat

~

effects in thermodyﬁ%ﬁics}\ In 1872, Boltzmann used the
- entropy function in the context of statistical mechanics

v and it became known as ‘the Boltzmann H-function. In 1948 -
N ) .
rs *

Shannon (Shannon and Weaver,®1948) developed information

theory with entropy as a central component. The analoéy

T -

. . between entropy in informgtion‘theory‘and entropy in

¢

R s A i

stqtistieal mechanics wés.recoghized at the "time and, as
Y . .. y
Tribus (1969, 110) pointled ocut "there was a considerable

23

-

debate as to whether this function was the same or merely

. N
an analog to the entropy of Clausius." It remained for

' /

Jaynes (1957) to show that ~"the function had deeper méaning

~

-

than had been supposed . ... and that the two entropieé

were, in fact, examples of the same idea and.not meéerely

analogies" (Tribus, 1969, 116). )

-
PETEN ~—

; v The similarity between the apparently different vyiews.

\ ) -

e .
i . of entropy can be attributed to the fact that they are

devices for measuring énﬁ describing distributionsj

.
-~y

\ Clausius' view of entropy was as a g@iice for studying the

-

distribution of energy. Bol%gmann employed it to study

)

¥ the distr¥ibution of‘moiéqplqs in a gas. Shannon was

v concerned with the dfstribution of information. Jaynes
. L™ L

contribution was to generidlize the concept in order to show

e

4thaf: it .was 89011081)1.& to the R*‘I'l(‘y nF anvy Adotribhntdan
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The dichotomy concerning entropy in geégrapﬁy arises

not, from the coacept itself but rather from the fact that

the two schools of thought take different approaches to ///

v —

% = Fpe concept: ‘The statistical school of thought takes a
~ E . quantitative approach to the conFept in a manner which.
, 4 is ;;alogous.to the approach taken in statistical mechanics
: . and information theory. The descriptive sch;21, hgwe%egi -
takes a qualitétive approach t6 the‘e;?ropy concept&f:nd

3, ) . ] ;o .
i it is this which opens the door to confusionf

.

‘~

‘Those practitioners who take a purely descriptive -

approach to the entropy concept generally discuss the con-

® &
cept in the context of "open s&%@ems," "closed systems," E
\ ‘ &Y . :
"energy," "environment," and ‘in particular "order." Thus - .
ki . Lo bd

\ ”

~it migh@fﬁeiargued that an "open system" draws "energy"

from its "environment'" and thereby becomes more "ordered."

AR E:
‘A1l of this is’then.likened to a process whereby the

, ar s

"entropy of the system" (the degree of order) has increased.

It is the proponents of this school of thoughé who have é?

. . §: | -
Soeoe, .

y i
perpetuated ;pe myth that there are different views or
- . 0 j 4

definitions of entropy, since they épparently do not see

]

— e — - jin B
&nf'cqnngcuiqn between such broad ideas and the entropy of

} : .

! - . information théorX: Coffey (1979, 187) for example argues
' o . . , .

!

N b
that-"ag .used in information theory, entropy has no
\

relation to its use in gge second law of thermodynamicsﬁ ot

\

(see also Marshahdxxizj;)t

i
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Metaphysical discussdions -of the gntfdpy of social ° -

systems, as exemplified 'in the preceding paragraph, retain :
R & oy . i
their apparent distinction from the ent y of information

theory only insofar as they remain at the level of analogy.

As soon as any attempt is made to quantify these broad
concepts and relétionships, it becomes immediately apparenz h
that the entropy concepts are identical.

'C;nsider especially the wsrd‘"order."‘ It is indeed
valid to equate the;entroby concept withﬂthé %%gree of
order in a system. Suppose that ‘the "system" of inp;re§t$‘
is the Unéfed States and that we are comcerméd with

studying the degree of order in this system., How could we

measure this? One obvious approach would be to consider
-

the distribution of poﬂulat}on among the states,; where a

—~

uniform distribution is disordered (high entropy) and a

sharply peaked .distribution Ceveryone resides in.Cali—’ﬁ

(

fornia) is Highly ordered (low entropy). . This usage of
the wOrds'"éntropy"_and "order" is entirely consistent
with tlie usage in classical thermodynamics, sta:}étical

mechanics,'and‘fnformation theory. _In‘the\latter case,

e

entropy 1is considered to_be a measure of "information" and
the interpretation of this is{exactly'the same as the

N . N .
‘fnterpretatian‘of order; a sharply peaked distribution

(highly ordered) cohtaiﬂs more information than a broad,

-

flat (disordéred) distribution in the senée that we are

< N ¢
. -
H e .

- " o
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more ‘certain about the nature of the'peékedzdistnigytion.
' s ..

‘ For example;\:zjé;$qxement‘tHat‘"éyeribne in the United
. . ; 0
: ' States live aliforgia" contains more information “than
the statement that "the distribution of population in the

“
j < o United States is uniform." 1In the former case the reader

o

-

“ knows .exactly where ¢ach individual lives, wiq}eas in the

o

% iatter case he knows only that eqﬁh;.numbéré of people

- are expected :o be f;und in gegions of equal area,.and;
;;ereq;re ligef;ily billions of.possible ‘darrangements of
individuals that will sati;fy this'conditioyl Stated

another way it can be said, in the former case, that "John

.
R
-

Ca

“

L aaa s AR GO

Doe lives in California" whereas in the latter case all

-

that is known is that "John Doe lives in one of n equal

A

area regions.” It is in this sense that a sharply peaked

-

distribution contains more information than a flat distri-

. & -

bution. This example also illustrates why entropy caﬁNélso "
be regarded as a measure of uncertaiﬂpy. In the case of - ‘ ‘g?
the flat, unifg§§ distribution wesare more uncertain about

the location of an individual. . ' » -

Regardless of whether we regard er\tropy as a’ measure

P o

)

of order, uncerfainty, or information; regardless of =

whether we are looking at the éistributiog of temperature,

;ﬂ : molecules, inforQathn, or population} and regardless of

“whether 'we take ClausiUS,'Boltzmann,QShannon, or Jaynes -

. ) as our* source, the reasonihg behind the concépt remains the-

"

-
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same throughout: entropy is simply a measure of the ) .

orderliness of a distribution at a point in time. A

. ’ -z
)

process can be "entropic," but entropy per se s not a

process., We strongly disagree with assertions such as

o

# . Goffey's. (1979, 337) that "the three formulations, of

. " entropy, the classical, the statistical, and the informa-

»
v

. tibnal are quite distinct" as well as his (1979, 339)

claim that the‘original entropy concept associéted with->

classscal thefmodynamics has been "mutilated." Just the b

sty N o SRR Ty

opp@%ite is true. The three formulations are all instances
of the_same basic éoncept, and it is precisely for this
. . reason that the entropy formulation is $So interest{ng.
Coffey's (Lé79) dissection of the entropy concept is at ~
odds with his plea fog unifying poﬁcepts.
; _ It was pointedfoﬁf earlier that it was Jaynes (1957)
who was instrpmentalnin generaliéigg the en;ropy concept
and demonstrating that it coﬁld be employed in the study
of any probability‘distribuéﬁbn. Insofar as many of the |
phenomena of inte;:sﬁ to éeographers can. be treated as- ' g
probability di;tributions,”theraiwould seem .to be a

by

natural connection between geography and entropy. Doubts

- can be expregsed about the appranh of the descript}ve e

e

N * school;.of thought insofar as the metaphysical analogies

¥

can Bg so‘readily replaced by actual probability distri-
butions. We agree with Wilson (1970, lZ%& who «argued that
& .

14 i} g

:
E
\ b | l
. . ‘ J
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Entropy . . . is _not some Platonic

property of an urban system which

can be discussed without further

definition. .There is a measyre of

entropy associated with any prob- .
ability distribution, and, con-

versely, whenever the concept of

entropy 1s used it should be. used

only as the entropy of a probability . ,
distribution, which it should be ™

possible to set out explicitly.:.

In the sections which follow we shall attempt to outline
the concept of the entropy of a probability distribution,

and the dssociated methods of entrbpy_maximization, and

" information minimization, in greafer detail.

3.2 A SimpleExample °

by

" There have b(een'a number of review alr‘tﬁes published
on Fﬂe role of the entropy concept in geography (Gould,
19723 Cesgrio, 1975; Webber, 1977; Senior, 19795;\ In each
case it can be suggested that the examples employed by the
authors are either non-geographic or; if geographic,Fare
too coiplex to be followed easily. In the presént dis-
cussion we shall attempt to use'the.siﬁplest possible
geog;aphical example. That SOwabstraEf a concept can be
illugin;téd with so simple an example is perhaps Eestimony
to its elegance. -

We will see below that there are two mathematical
definitions of éntropy commonly employed in geography; one

' Ky , :
Jds from statistical meGhanics and the other from information
\\ . -

theory’, 1If any rationale is required fof yet-another

AY

- .

- | : ~
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'pedagogic discussion' of entropy maximization it can be

noted that while Gould (1972), Cesario (1975), and Senior

(1979) all based their discussions on the definition of
entropy from statistical mechanics, it is the definition
from information theory that is now almost exclusively

emplayed in geography. Webber (1977) treated this latter

definition pedagogically, but at .4 more advanced level.

Imagine that we have a simple linear town composed of

»

three equal area zones. Fout pgbpié work in zone 1 and-it
is our task to assign them to hbmes in zonéé 2 and/or 3 in
an unbiased way. This example can be regarded as being

equivalent to a locatiodampdel, a spatial interaction model,

€« T

or population density model.

‘ Given only the information that the four workers are -

to be assigned to residences, how shoﬁld we proceed?;‘Iﬁ -
the absence*pi’ahy other i;forﬁation it, might seem that an

intuitively unbi;sgd assigngent would be to locate 2 worké;s
in each of the two zones, for this woald gfﬁe prob;bilities,

e

as in the case of an unbiased coin toss, of .5 for each
region, We quote at length from Jaynes (1957, 622) on.the
inappropriateness -of such an assignment:

‘ © The problem of specification of prob-

- . abilities in cases where little or no

information is available, is as old as T,
. the theory of probability. Laplace's

"Principle of Insufficient Reason" was

an attempt to supply a criterion of

choice, in which one said that two events.

are to be assigned equal probabilities .

ﬁ' .ﬁ . - , ‘ '
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if there is no reasdn to think other- v

e wise. However, except in cases where - -~
there 'is an evident element of symmetry- ;
that clearly renders the events "equally

possible,”" this assumption may appear

just as arbitrary as any other that might v
/ be made Since the time of Laplace,
this way of formulating problems has been .
‘largely abandoned owing to the lack of $
any constructive principle which would
give us a reason for preferring one
probability distribution over anog&er
in.cases where both agree equally well
with the available information. ’

It should be emphasized_that this 1s not to say that the

"Essignment of equal probabilities is no longer intuitively

S

desirable, but rather that we require some "constructive
principle" which will allow us to make such an assignment

in a systematic way. Such a constructive principle can be
-~ . b
found in the entropy concept. Quoting again.from Jaynes

.

(1957, 622): s

-
-

Just as in.applied statistics the crux .of Ce
a problem is often the devising of some
method of sampling .which avoids bias, our

t problem is that of finding a probability.
assignment which avoids bias, while agreeing

°
»”

- " with whatever information is given. The

great advance provided by information theory

lies in the discovéry that there is a §

. unique, unambiguous criterion for the -

* "amount of uncertainty! represented by a -

: discrete probability distribution, which B
' agrees with our -intditive notion that a '

broad distribution represents more un- '

certainty than does-a sharply peaked one), {‘
and satisfies: a1l other conditions which SR |
make it reasonable. : }

The unique and upambiguous measure of uncertainty to which %'f{

o
laYné%W;efers is entropy. The reasoning behind the use of

-

e ‘o ’

3
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this' measure can begillustrated withim‘the context of our

.z -

agsignment 'problem. |

- .
.

The first column of Table 3 2 11is a complete enu-~ ©
meration of all possible .assignments of numbers of workers
R .
tg. zones 2 'and 3. These are macrostates. It is obvious

’ “ P .
that such an enumeratdion.leads us no closer to finding an
: A Lo

2

unbiased method of assiéning workers 50 h’omes.e

Consider now however, as an alternative approach, the

s

possibility .of fdentifying the workers individually and

‘considering all possible combinations of iméﬁviduaLkassign-

’ B N 3 .
- N .

'ments.- If the workers are identified as a, b, ¢, and d we .

v -

] e o .
have, as possible'distributions, those listed in the .
. - - ) A > .
second colimn of Table 3.:2.1. " These are microstates and
M ) N ‘ ) : *

it is the“relation between the microstates and the macro-

-

3
states that suggests a solution to the assignment problem. '

a + ..\

From the third column of Table 3.2. Isit is @pparent that

“ *

the assrgnment of two workers to each of the two regions {'

‘
4 v

can océut im’ the greatest number of ‘ways. 'Wibson (1970 3)

’ -
. ~

points out that the macrostate which has the greatest‘ N

-
“

number of‘microstates esdgciated with it is, in a statis—

tical seuse,athe most probabler{ Su'ch. probabrlities are :

givem in the fourth column of Table 3,2.1 and‘it can be

~ 7 . o .

seen»that the uniform distribution of workers has the ¥

. -
sl

highest pTobgbility qﬁ‘occurence,_'mhué we héve a - f

- . [ -

.- ) X . 9 .. f R
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MACROSTATES AND

-

Distribution
of Workers .
(Macrostates)

.
s .
]
.
-
P
- .t
4
* 4
* -
-
A
'
S

b3

- - 2;"
¢

) TABLE 3.2.1

i

-
-

All Po sible "\'\I%nflber of
Asgignments of ; Ways of -
Individual Workers. Macrostates
(Hicroszates) Ocecuring (n)

> &
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MICROSTATES IN.A SIMPLE LOCATION MODEL

-~

Probability .

of Occurence

ofs Macrostate

nf/In
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.250

.250
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' outcome is that ‘sunm which can occur in the gré:;est number

“ |

-pidﬁ%%ilitieg 15'5§'E;biaéed way.‘l

.« *7 In order to further filuminaferihe’reaéofing behind

" this point of view it may be useful to consider a more
S . . . <

intuitively familiar example. lace a

S

You are. asked to

bet on the total humber of dots turning up in a single
" role of two fair dice (see Cesario, 1975). "How would ‘you
s A

place your bet? .-

All possible outcomes of the dice toséing problem are >

enumerated in Table 3.2.2 (which has g format identical
to Table 3.2.1).

)

~It is appatent that the outcome which

A

can occur-in the greatest number of ways is-a "7".

Provided that the payoff is!the séﬁe for eyery outcome we

- ~

~would therefore expect the rational gambler to bet on%\

"7." As Cesario (1975, 41) argued g rytional gamblér

- -

would bet on that outcome which has the greatest chance,

of, occuring, that’ is, the most probabIe' outcome.

cause each die is assumed to be fair, the most probable
o

. .

Be- *

[ a8

\

of ways. S . ' ks -0
P . T h oy T

) Of courge, the validity -0of this statement, and the
entropy methodology aé ‘a whole, can 'be said to be c6ntin-
gent upon making the 2ri6ri assumption that 411 micro=
states /are equally ikely. 'This .can ‘be interpreted, in
turn, as a conditjfn which ig identical to. the fPrinoiple ¢
of Insufficient’ Reason and thus 1t may be argued that the
entropy maximizing argument is a. circula? one. . Hovever,. -
if the mierostates are not a, priori équally likely; ‘the
method of minimum ‘information allows guch prior 1nforﬁation
to be explicitly incorporated into the analyais and this

'will\be discusped in greater detail fh section 3.5 below.

’

‘ . , , . .
., R / - .
: / " -
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. entropy can be considered“to be ‘a measure of the

4,.3

. of uncertainty >represgnted by a distribmtioﬁ

‘ -

In-the

,amount

. It was stated in the quotation from Jayues above that

. context of our assignment problem the meaning of. this

- Y -

phrase can be better understood if wé?compare the uniform

~

- (2=-2), distribution of workers to the maximally peaked

’(4 -0) distributibn. In the latter cgse we are absolutely,a

) ¢

certain’ rbout th@ microstate (abcd 0) whereas in the

former case we are least cextainnabout the microstates.

" . .

% -

i

-~

It is in’this sense that entropy can be described as-a

. _-""iﬂ

. one which maximizes our uncertainty about the microstates

. o=
measure of uncertainty‘ where the desdrable solution is the

2

<

.

and which theréforesis the least biaﬁﬁd from a subjectiVe‘
- . - . * - . i

point of view. p

-,

<

-

v,

-—

PR

. Vil -

information theory Qefinition:oi entropy was given in the.w

‘
Al - -

‘;, -, .  first chapter as,

4

tive means ¢an alsowgﬁpfound using the entropy.

equation for the Shannon (Shannon and Weaver,

the total number of trifs.

(The results whioh we- have &iscovefed here by exhaus-~

[N

Anj .

3

1948) or

‘ -

o

L
-

. . *

-z pi'ln Py .

\ *» . H
P~
N . * ) -

o’ "7 Let Ti repregent the dumber of griﬁs to each zone and'T\

Then . : : .

o
4

[(1.2:4)]~
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“is the probability'that a randomly. selected worker will béy**’*'“'

rail

- am——r M »
asgigned to a particular zone. Note that although we are

considering tr&ps, this problem does not involve a trip

matrix-since we are restricting ;he assignment of workers

a

tb those from zone 1 to zongé,Z and 3. This is analogous

<

to considering a single rowkof a trip matrix. If we were

concerned with trips between all zones, equation (1.2.4).

" would have to be summed adaitioﬂally over j such that

<

= -II ‘ .
% pij\ln pij RS (3.2.2)
ij .
wm
where . .
T . .
= 1] 2
. Pi - T . (3-203)
- * Ly - - 4 ‘,

.

Equation (1.2.4) (or (3.2.2)) represents the .defini-

“tion of entropy from .information tﬁgory.. The definition A
from statistical mechanics.is‘ : - - - ’
» R e et . . . e - .
N j’ R
C W= —Lb (3.2.4)
14 . . i ) ’ r[ Ti R n . -
. . . M

-

which will give the same results as equation.(1.2.4) when

* 2 -

T, 1is large (see Webber, 1976, 278). Equaéiong-(l.h.é)‘ /

- and (3.2.4) can both' be emplbyed to find the most likely -

- #
macrostate.

LA Cs Lo

Equation (3.2.4) can be'emp}Oyed in order *to calcu- ) ;j
‘e, “ ) ' - . i ' e ' - p - .
"+ ’late the number  of -mic tates asgociated with. each macro-.

— N >

gtdte., For the macrostates in our assignment qublem,

. . ’ s
I 4 iy . . .
. . In N A ‘m ”

- . . . K3 . . L e

. . . v ' -
. .t \ - . -

(™ " - ~ . N N .

. )

B




for H, occurs in the g¢gase of the ungform/distribq?ionh . L

- -
. - -

3 \\.\ / ., . - '/
fo; example, we have (where 01" =_1) '

A — —

& .

Macfostates Number/onWays~of Occuring L.
S A = .
. 4 0 S 1 S
0 ? 4 . 0! 4! . -
4 -
3 1 B,
1 3 . 1r 3¢ !
y Z =, e
’ 2 2 . 41 _
. 7t 27 - ° 2

and it can be seen that these results agree exactly with
those in Table 3.2.1, 1In the case of the 1nfo;m5tion ~

theory form of the entropy equation (l.2.4), we do not

.

get the nuﬁber.qf microstates directly, but instead we
A

find the maxiFum value of the equation. In .the assignment

problem example we have

»

PP

. -

Macrostates 3 ,: Value for Entropy H _ ( .
, . [ . ) : ”
4 00 - i s + @ 1a %)= 0.000
, (3 g LI
0 4 ' ) . \ .
3 1 G 1D+ G| = o0.562 ¢
: : ;Mg ;M
1 3, -
s . - s ..- 2 ’ 2 2 ] -
o 12 2 2 2yl =
2 2 G 1n'%)wj (7 1n )| = 0.693

Again. it is apparént that the 801ufion; tﬁ@ maximun vaiué\

\

"

.. -t ° - /
Equatiods‘(B.Z;A) and (Lfi 4) are devices for finding t&é Y
statistically most likely form of e\distribution, that ::, - _g
. ‘they identify the macrostate which has the ifeatest ieéi .;
number of microstatesﬂassociated with it and which can ' '
. . ST . y et .
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therefore occyr in the greatest number of ways.

- - il - -~

\

B { It was pointed out that equations (1 2 4) and (3.2.4)
-~ : [
. give the same results when Ti

to question what the difference is between the two. It

k4

has already been noted that one definition has i;gasource

is large and this leads one

~

b in information theory (1.2.4) and the other in° statistical

mechanics (3.2.4) so on this basis the distinction is an

S
—

historical one’ ¢

In mathematical terms the “two_are diffef—//'
X ; e

~—

P
L

ent in tha} (3.2.4) relies on Stirling's approximation

I 3 . - in the derivation of résults while (1.2.4) does not. In'

-

other words, if it is desired~—to find. the maximum of

- equation (3.2.4), Stirling's approximation
R * ’ . . ™y e
I'nT,! =T, 1ln T,-T /

o _ s . I 3 (3.2.5)

~  .is hormgll& employed tbAestimété the factorial terms

- {(this is why the stiéulgtion concerning large Ti i:s made,

since the larger the Ti the more accurate the approxi-

. -
mation). Wilson (1970, 8)
very important distimction
igerivative] of Stirling's

ittivés. coincide in the two

-

has noted that. this fis not a

however since "we only use the

3 L~

approximation and the deriv-

.v

. g -
cases.” In more -general terms

the distinction between the two forms of ,entropy has been

’

- described by Wilson (1970;

objective and subjective views of probability.' According

-,

to Jaynes (1957 622) T e

-,

8) as being

-

-

The 'objective' school of thought 'regards

the probability of an evernt as an objec-

L i

1" g
analogous to _the




. U it

-

. tive property of that event,_always

LT .- - capable in _pTinciple of empirical .
; L measurement by observation of freq-
uency ratios in @ random experiment.
i 2 .In calculating a probabilitygdistri—
. : bution the objectivist bg 1iev23 that
he is making predictions wh;ch are in -
principle verdifiable in every detail,
just as are those of classical
mechanics. The test 6f a good objec~
tive probability distribution p(x) is:.
does it correctly represent the
, - observable fluctuations of x?

o,

The subjective school of thought, on the other hand
- *
regards probabilities as expressions of
human ignorance; the probability of amn-
event is merely a formal expression of -
our expectation that the event will or s )
did occur, based on,_ whatever information
is available. To th@ subjectivist, the "
) purpose of probability theory is to help
. /i us in forming plausible conclusions in
’ S those cases -where there is not 'enough
) ’ information available to lead to certain
consequences; thus detailéd verification
tione . is not expected. The test of a good
‘ subjective probability distribution is
P » does it torrectly represent our state'of
knowledge agsto the value of x?

¥

.
RS TS LA Lareis T

‘

. Wilson (1970, 9) gas.argued that the entropy function from

o,

g\ ' statistical mechanics (3.2.1)%&5 "egsentially onjective"

while the entropy from ifformation theory (1.2.4) is

"essentially subjective.™
Regardless of the historical, mathematical,..and

|
1
E philosophical differences between the two definitions of

? entropy they do provide ‘the game results (when T is

,,-;«

large) and can be mathematically derived from_ ome another

A}

) (see Wilson, 1920, §), More importantly, however, . there -

B B

) . . . o *
i -
i
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seems. to be- some concensus that_thé entropy function from
information theory is broader (Sheppﬁrd, 1975, 4), more

flexible (Wiléon, 1970, 8), moge fruitful (Webber, 1977;

254), and more convenient and
From this point forward we éhallxconfine our atten-
t%on to the information theory finiyion of egitropy,

equation (1.2.4)., This will be done not gnly in the

interests of economy of discussion, and fin light of the

m statistical

o
Tt

tion on the &efini?ion of entropy fro
mechanics. - L ‘ -
In the- pfesent se%;éon the macrostate with éhg
largest numbetr of possible mi@roétates'waé identified,
first, by exhaustively looking atigx;ry poé%ible.arrange—
ment and, secondly, by calcuI;tiné the value of both
entropy statistics dh evefy possible macrostate in order
to E;;d the maxi;qm. The péxt two sections describe the
pnocgdures which are employed to figq the maximum, and

. weh

Benéé the most probable distribution, withdit having to

- calculate the wvalue of the entropy statistic on every )

- o
macrostate,

- " e ..

All of the results to be presénted can be extended to

the énffopy a§ given by equation (3&2.4).ﬁ£9'ﬁa&hematical

- ;proof that (1.2.4) is a uﬁiqqé and unambigious measure of

D -

*

Y

gorous (Seniér, 1979, 206)

ELd

-~

o~
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uncertainty is given in Shannon and Weaver (1948, 116),
S -
Jaynes (1957,

630), and Wilson (1970, 131).

“

"3.3  Constfained Entropy Maxiﬁizationg

-

Repeating here\fof/;onvenience, we have a mathematical

\ "
function . : . . i

H -Zp

3‘:1"n p ' > )
i i i

[(1.2.4)]

. » *

.and "it w%: shown in the example‘in the preceding section

¢

that the btatistically most probable digtribution is

. . . ﬁn‘f . .
associateiﬁwith qhe maximum 6f this function. In the

examplq of the aigignpent problem we foqu the maximum by
calculating every possible value for H. Since this ap-"

for large numbers of macro- . .

proath will -be impractical "

states we require a method to find thefmaximﬁm of the
. e

E

Ty

fupction by analytic means.

-

. ‘The usual approach to such a maximization problem is

well known and involves taking the first derivative of the

i

function,-@ettiné 1t\equal to zero, and soiving for P, - .

a

This usual method of maximization cannot be directly

employed for the entropy function howevéi since it is - . .

applicable only to unconstrained .functions.
: -

‘The constraint to which we refer is.ﬁ

&
.

T ‘ . l(1.2.2)]
’ R




Bt i aTe o

.
RO ——

-

‘ . - .
This is a normalizing constraint which ensures that the -

-
-— _\.

‘= probabilities sum to one. While working through the
i : ] .

. s i

example we codid ensure that this comstraint was satisfied °

-

simply by makidé sure that all workers were allocated to -

-regions 2 and/or 3.  For more complex problems, this
- i

’

constraint must be explicitly incorporgted into the

o U
%

maximization procedure. ) -

[y

In order to maximize the constrained entropy funftion

it is necessary to employ the method of Lagrange multi-
pliers. ‘The method, stated simply, allows a constrained

) T
maximization problem to be transformed into an equivalent ’

unconstrained praoblem. This means that-the maximum of an
unconstrained Lagrangian function can be foundh by the

conventional methods of differential calculus (see McAdams,
-~ * ’& »
1970, 145; Wilson and Kirkby, 1975, 280; and Senior, 1979,

\ 3

202-203: Senior warns that the discussién of the Lagran- ©

.
gian - method “in Gould (1972, 696f£,) is misleading).gd . 1

L
In order to transform the constrained entropy func- - {

tion into "an"unconstrained Lagrangian function it is.

L} .

necessary to multiply éonguiaint (1.2,2) by a Lagrangian *

multiplier A. (we shall actually use A+1 for .convenience of
. , )

notation). Combining the entropy function .ahd the con-

strainty multiplied~by (A+l);-We form a Lagri%gian i
. . L = % Py In Py + [(A=1)(1-zZ pi)l . (3.3.1)
. i - ' . .

i

\

-

. v
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.. means,

We “can now find the maximum of this funetion by conventional- ,

»

Taking the first partial derivative éf (3.3.1) with

rgspect'to Py and setting the result equal to zero we have

el < -

(s ]

L
Py

|

=-lmp, - 1-X2+1=0 . (3.3.2)

LYY

Solving for p, we get

o, ln p, + A =0 . _ (3.3.3)
and therefore. ‘ ' . S . N
T py s exp(-b) . (3.3.4)

N .
This is the maximum entropy distribution or, in other words,

the macrostate probability distribution which is the most

«

probable given the information %e have. Stated another way,

we have identified a method for finding thé maximum value

2

of H wdthout calculating every possible value of H, This

becomes clearer if it is noted that, by substituting

(3.3.4) "into (3.3.1) we get - o
\ A= 175, " (3.3.5)
A\ N N R
and héncg S . . o i, \
g -1 ‘
" .pi _':?nw- . '. (30306)

(see Tribug, 1969, 128). _ . . ii
In the context of the example we have been -using thg"

3

= . -, s v ﬂ e,
‘above result indicates that the probability of lotation in~ |
edch zone is one over the number of zones, or.
C L W
14 El
g
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.

s e N

. L\o ) . - 4 4
which agrees with the earlier results. ©Note algo that,

in the case of a uniform distribution, the ‘entropy can be

I3

o e e

2 %=

((2.5.6)]

{

directly cai&ulated as

.H = in n

°
-2
-0 ¥

\
(see Tribus, 1969, 128).. In our example this gives hal

- N

\

\

H= 1n 2 = .693

R A L T U

v
&

P

3

which agrees exactly with &he result ob;aiﬁed earlier

\
s e 3 eaopar i

using equation (1.2.4) directly. This result, as Tribus
) e

T

(1969, 128) noted, “"demonstrates that the principle

-

of

3 ¥ /
insufficient reason is a gpecial case of the application

-

o L

~of the principle of maximum entropy." 1In other words, it

nce of ‘any otherx

-
»

has beén shown again that in the abse

” information the .maximum entr:
A . .
for aésigning the intuitively preferable, uniform prob-

S

opy approach provides a metho

S e

ability distribution.

-

»

K ? \ »
It is perhaps surprising that we have come so far in
N # P ' .

. &

this geographic'discussion of the'entropﬁ concept without

having mentioned the.role of distanceé ‘This is the

!

subject of the next section.
= *

3.4 .Disfance Constrained Entrdpy Maximization

e

- F‘,@

= -

Bpy maximizat

'

In o;dgr to introduce the idea of ent#

e P ’ !

under 'a distance constraimt we return to the problem of

°

A

1"

"%

E
>

> 7

Ny

-

ion

b -

assigning four erkeri to.two regions. In previous sections -




LS v Lt

it wag emphasized that the assignment was taking place‘in
the absence of’any.othbr inﬁoxmatipn, Now e wish to
g o ’

[ELRRY .
wintroduce-some additional®ifformation in the form'of an

P c.,

average.distancgg and evaluate fhe consequences for the

’ o . . - g
entropy solution. ’ ’ o N
. Y » .

A . . R >

o

He shall specify thaxithe average distanceqthe four

workers travel in®’ commuting one—way ‘from jobs to homes is
\

l.fS mile§1 We know also that the distance from ne&ion l

to megion‘é (and'region 2 to region 3)jis one mile “and the;

.o g

distance from region 1 to region 3 is two miles. 'If we

. - Q

corisider the average distan@e associared with each macfb-

z
v o

'state we get results asnfolloys~ o T

-
-

- . ¢ N . E
> . -

- v ¢ 0 -
Macrostate AveregeﬁDistance

= 1 mile

: I) + (0 ol 2)
A

bl

Eéz miles

. . IS

’
0

.= 1.25 miles

'S

= l.75 niles

/‘ 2)

= 1, 5 miles

o ,¢r.'
The solution to the problem is obvious. The, only distri-

.bution 0% macrostate which satisfies the distance con-

hd - NG -

straint is _three: worke;s—tOxregien~2 and one worker-~~t:—o-»~~~~j

-,

‘region 3. In most practical modelling sitnanions,'of

e +
:.-..».-,-.@A& PIS
-

N P N AL R
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nﬁ.‘. L - - ﬂ-eourge;"th‘s 1ﬁ’ion is not this simple, there may be
N .- ( e 7 R S - . S E
SRR " mdnysﬁacrostares‘which will satisfy a.single distance con—-,,

BN ’ v

Py

o R E ‘strsint. In other words it can be’ said, following Wilson é?

’
)

g . ) - (1970, 3), that a megé dist\nce constraint is a "higher-‘

| 3 | - . 'le"e’*; mac?‘e{;‘tafe descriptian a because of-this it con- '’ '
) ’ tains "less informagigﬁffﬁzn the trip distribution macro-

- = ’ state’ description.. As a result, many different macro—“

. - A
. .,  state distriputions can exhibit the‘same mean’ distance.l

. o = Our problem i/ find the mos@robable macrostate !

A . S which also satisfies gome distance ‘gonstraint. This can o
. a0t Ld ‘

% be accomplished using the method outlined in_ the preceding
. ‘T R section= -The" distance constraint canfbe written in geneﬁal

7 ... h IV 4
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. L N - < N . .
- o - - . ' 8 y ¢ & .
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- N -
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. - N e L L.pYy ry =0T s ‘ ?ggg.l -7
. ‘::\ ) -~ ‘. b . - ";, »[-' ) '. Lt i p£ i ._ .- ' R l\ - . . A )k .
4T e e or - Lo o . ‘ ) . .o
. - I i .
s Lo which says that Ehe sum of .the probabilities times .the 7 DA
. Do T F o0 0 ‘ o L. T
vEC c0 distanbes @hould equal some average distancgqng Wec igg L .
A “ ke o
B T /?ﬁ to'mégimize nhe Shann6n~£ntropy function'(luz &) thi time
T - - b . v T ° ot -, LI . . ﬁ R
2EE . subject bo ‘the, nordalization constraint (1 2 2) and the a o
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. . L= -,:.H‘-l:,.[»(.i;-_l.),(']:-:z P- ).],,_-l- b[n:w tp-‘ x. .}. (3.4..2} B B S
KL AT | N .t .- i i i 1 . ¢ K
T - . " . i
R ] Ad £} . _"‘ﬂ". . “ ° \/" . . . - ” / 1 '.if _
' where b is 3 Lagrangian mhltiplier Whiph will ensure-that [ i,
. . PRl §
{ .0 .
PR constraint (3.4, l) is satisfied. Taking the, first partiah oo
K
" derimative af (3. 4.2) w;th respect Eo Py and setting the
i . T o . . . ~
result equal to zerc we have P L .
. . LAl Lgn o1 s A4 1 br, =0 . (3.4.3)
S T A S
%A ) - ! ‘:,m . - ‘. R B B . '${ - .
f g « .. v . v \\” R
Solving for Py we have_ . . o,
* " » ’.‘ [ - A P + s .
- R : -1p p, .=.A -{hr “= 0 (3.4.%) " )
e . 2 T N -9 s
. e- s . T § oL E 1 L s
' and then _— | e 0T ' ) .
Lo TS Py = exp(=NexpC-Tgy) T ( (3.4.5)
L 5 o N ‘ ‘ . . \ [4 oy ; - - g a ,
: This is thefmgﬁiﬁumﬂentfqpy distsibution conéistent with . '
/:* o Sl o s T *“ ot °
) the information in the- normalization ccn%traint (1m2 2) ”
0‘05“; - °“ Wy .
& VoA
L and Eve mean distnnce thstraint (3 4% 13 it,identifies
{(_ . \‘ A . - e r‘v =y ‘ N
:he macrostate*probability»ddstributidn whic has the T y°
‘ e o~ o) .
\e - \ﬁ{.k -
e largest numBer oﬁﬁmicrostates assn%iated with 1t‘and which
- * - e ’ “T: it % ‘q"ﬂ. oot s ol . .
- alsowsatisfies the“consffaints.' In the coﬁtext of k3 ot
A ~ 12
VS examplé‘we“have*bggn term on the left hand T, BB
~ ‘e . .. . g ‘* (W""ﬁ‘{“;‘;\ ”', . @x - L ]
.aiﬂewgf th & uation ted astthe prQ&abiLitm o
.' »M.» -*“‘ . *a, ﬂ? B AR 1
. ‘-\:ﬁ& — R ;ﬁ;:' R ";‘i«.‘: A :‘-a‘\‘& *“
‘a%mﬁietiamgiiar form - ‘
45’\';@ gl r»..‘ )/’*i "" . %t ‘g;}’%"i’ - N
»desiied “
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’fn order to solve for exp (- A) we first substitute (3 4. 5)

{f into §1.2.25 . ' . S

o, ’ . L exp(- ) exp (- br. ) =1 ) (3.4.6) 7/.

® X . i ! ¢
Rearranging we have .- o ? . .
’ exp (-1) "= s (3.4.7) L
T . VL exp(—bri) - ) T
' . . 1 ‘ ) ' - .“(
' N . ’ . 4 - T L -
where, to simpl%ﬁy.the notation we define . ST,
. , o, A =.exp( A) “. - C(3.4.8) ‘
gepeating’he}e for convenience it can be noted again that o
p, was defined as - . : oo Tk
Py gers I - . . (
-, ’ . i~ : .
: . * Py ET . . [€3Z«1)]
.if Py "in equation (3.4.5) is replacei\by quation (3. 2 l) R

and.éxp( A)»in equation (3 4.5) is.replaced by A (equatioqf

L} LY +

(3.4, 7) we have¢ as a “firnal result - o _.mr ,

- con T By

AT exp(- bry) N E PO

N L e s . B > \“.‘
. X - . ' . . o W
»"where ' * - ' ' -t : Y «5 e
L ey, . o ~ . . . Vi RPrINe
s - o, A = - — - R 3. 4 10 o
i . :'H . s " - I e‘xpl<'—bri) " . (/ . ) PR
N ” e - E - . e - . EREES X
. ) X -~ e =% . "o hd . -, v
“;? L 7 .' ST . G R ! et
The practical use of equations g3 qr9) and (3 4 10) can - A
o be illustrated with tHé“data from the assignment problem. LU
o ‘. LI . ‘e ‘ o . i " f . . - =N [N ;:‘ .
v . . s e o 5\;\‘ rA o
P ! . . . * . s . R [ . Y
. . - ‘ ’ . : . - vel,
N X . R . . [} : ’ e * ,:{/‘ b ! -y )
e o ‘ e ’ . . SOt v
A ) . S S 3. - - - -
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Yy be done, however, some estimate&for'the
w 4r - l
. value of the pwrameter ‘b is required . " *
. 5

. In

e 2 e
CS i . Ve . . . i
N such&as this, iterations .are carried out, and the oara— =
| d, I
LY 4 ‘ ; -_ >. b . -,
A M R 4 ’ v 2

' meter b

for b matches the observed value (see Baxtery.l973

. '.,. ., ’
example). During the firet iteration of ‘the calibration
procedure some preliminary or starting value for b is.-
-N. K} 'y .. . - ,.~ ‘3
‘x S 4 -A‘ :
. therefore required as§a point of departure.’-Such a value

_-for b can~be arrived at

value of

derived by integration as fgllgws e . t"=" %?
e e . = e Lot e
Sw I I‘IE exp(,br ) dar?: L, ité“' l"
A e Lo 1% 15] 1y _ Pl?_ - 17 (374 +11)
- BREN © SUEPERENS N  E AR
S I exp (~br, TR D L ey
RN e 1 T . T E
e RPN "‘ ~l ' - . . e . o [y
VRN hidJ T SNy .

(a eomplete evaluation o?%the integrals is presented in-
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M&aeer and Brown 1978 67 68)

»*f ‘:\ -

‘that ‘a: neasonable first approximation to b fn the dis— "

. . - ;“ . g? [ . -
y g .y . "x
odel) ea\e is “‘)& T o) W ' "

. s

bLo(3v4,10)
v '3 .“‘ .

the usual approach td the ealibfation of mode"ls~

is kepeatedly readjusted dnt £4 ‘the model values

- S 3 -~

ior

if it is noted What the mean :

- .. . - -
KR .

a continuoue function y zgﬁgp( br j) can be
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L I T . In the "calibration" of our simple assignment problem
. it will suff&cé,to employ the inverse of _the mean trip . \\
. . o * o = =
- “length as the, value for b in order to demonstrate how ‘the
o w " .constraints operafe:“‘ln the example this gives b e‘l/1;25
* - R ., * \ \ . . ~ - L .
1 " miles = 0.8.° Using this Vaﬁue,for b we have tg; trips’
. , k e -
1 : from region: 1 to region 2 - ®/ ®
1 A oo » 4 exp(~0.8 + 1) [ LT, .. .
& ‘ . 12 exp(-0.8 " 1) + exp(-0:8 - 2) ' 2’
§ ) N g R ) :
~ ‘% . - ¢ and from region 1 to regidn 3 . . ) ' -
Ay . T ‘.* - T « DR fﬁ .o AT )
- 25 . T - - 4 o exp{(~0.8 « 2) . ="1.24 - s
- o ' : . 13 expG—OLS ¢ 1) + exp(-0p8 +2), i ) : S
- Q- . . _l . . X N ‘ . .
These results, when rounded-off tqsintegers, agree exactly
¢ g
with the desired resulbs for the distance constrained .
o . assignment problem (a refinement of‘the balibration B
k?, procedure which guarantees &nteger solutions has been
Y ,f?u ‘%' proposed by Gharnes et, al 1976) ) Note also that 2.76°+ ’
;ﬁ Jl h“% 1. 24' 4q00, which satisfiés thé normalization constraint.
. PP w‘ . N ¥e . . " . . \ . ¢
S T ‘Ehe average distance dssociated with the integer solution
T L fi;, is l 25 miles and this is also in agreement with the :
a b S " v . W . .
e, SR desired results. o : : )
T, ‘”zk" . “. These calculations are, of course, intended onlv to =
Ny . *u‘;\:"' , ""."i':, “ o N TR L to, Y 3
fﬁ‘ b o “%be illustrative of the ‘'use of. the entropy maximizing
b5 v v P * . A .
s e eoa interaétion model. In‘hctual practice (for more complex
L e v , .
K EARAR ay

. f e A *problems) the A‘s and b would be»repeatedly readjusted in'

) s : . . . . .
’ ﬁgﬂ, “ v Tan iterative algorithm until the constraints were’ . ;?:
om0 e L L . , . - . .

e " ¥ o " . . ' )
: - . . N & Q’
- - . " e . O ..
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<satisfied (seefﬁaxtera«lS%ﬁ{*Wilsgn, l974;'Batty, 1976ay

t . . . . .- Ed
- . - -

Senior, 1979) s Ses—. 1 s .
s . _‘,‘ . . H . \- ) c ’~ -~
We have .seen onde'again in:this gsection that the

> -
~ N

entropy maximizing fOrmulaﬁion consists of identifying,m_ P

14

" the maximum of the. entropy functig&tsubgect to whateVer

e

Thesmacrostate or
/

probability SiStEibutiog associated With*this.maximum can

additional information is known.

be defined .as the most probable since it has the greatest
%

number of4microstates associated with it and can occur in

-Q ’.

the preatest number of ways.

1 . . v

afproof which indicates that the Shannon entropy is

Tribus.(l969 123) presents

neither a %ecal saddle ppiﬁt nor a minimum but rather an

unconditiqnal global maximum.:.Furthermore, Wilson (1970
. . ‘)_ ' e - -y L )
20-22) presents evidence to the effect that the maximui
of the Shannon entropy function is a Gery sharp maximum

N = . . . .l o e\ “/ i N
(see also Jayrles, 1968 231). . -k

. \ 7

. o

entrapy maximizing method.can be calleg\into question.on\
o ¢

the basis that a priori’equally likely microstates must\

‘be assumed. ‘We shall see in the next seétion that there

- . ‘

is an extension of the method which overcomes the probkem.

[P ’ - [

+ . pYyFT 0
. B

' 3.5 The Method,of Minimum Information e

.

.
R 14

g X JIn the example which has been employed throughOut this.

- chapter the assumption has been made ‘that, characteristicsﬁ

Y

bf the destinatidn zones have no, effect on the assignment

LIt was indicated earlier that the validity oﬂ'the -

13
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- g
of workers to those zones (i.e., .all zores are of equal

-

size, each, contains the same number of homes, etc.). h

-

- 7 e W :
of a priori equally likely mic¥ostates, that is, in the

absence of such prior information, the probability that.

e
-

-a-wérker will be assigned to any parﬁ@cular zone {1

- :

equal over all zones.' This “was demonstrated in section

4
-

3.3 where the maximization was camried out subJect only

to the normalizing constraint and the result was a ‘uni-

Z

144) have commented on the assumption of eqnally likely

fprior microstates: . - . ’ e
Now, if there reaily is no a priori
" information available, then, inm the .
. spirit.-of Laplace, this.assumption .
as to prior probabilities 'is warranted.
However, if there i3 some a priori
information about the specific condi— ‘ -
. tions at hand in an application. this
Ry assumption may be unreasonable. This' - .
Sl ,means that the assumption in the J voa
: entropy derivation is biased in relation._
to the a priori information i;7question.

»

he context of the

I

Such a bias can bé demqgstrated within

N -

example. Suppose that some prior information is intro-
’ o . .

duced inothe form of the.areas of the destination zones.

OneAWOuld naturally ‘expect such information.to have an

v Co - ‘

o

that it would be expected that he assignment of. workers

“té zbnes would be in direct proportion to the size of the

. . _, .. . .
the language of information theory this is the aSSumption-g

form.distribution of onkers. " Snickars and Weibull (1977,‘

- e

effectfon the gssignment of workerS*to zones in the sense .

e

-
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zones. }nformation coﬁcerniqg such..unequal prjior prob-
abilities "is not, hpweverg'taken,intb,acchnt thin the/
entropy maximizing framework and the result will be biased
with respect to this a priori imformation. /

It was indicated in the intro@ﬁctibn‘thét ‘the statis-

- ’

tically most likely form for a probability distribution"pi

» R - s ? -
which takes information concerning some prior probability

L

distribution %} into account, is the one which minimizes

" regpect to the areas a

.

the Kullback (1959) information

: . Py
I(q:p) = L Py in E—*
it 9

ara e 8

A3

[(1‘3f2)]

The prior qi is dqfinéd with regpeét.to some measure on

the cells (see équatioﬁ 1.3.1) and, in the context of thg.

E )

example we have been‘&iscussiqg,

.

1 of the déqtinatfon

that

v . &

where,‘by definfition h .

‘ i

- . »

R . s° ¢

WY

~.‘ * . A . e s, .
‘information (1.3.2) subject to the.information that ’

. AL,
R 4 N v
ta SR L T I

i ¢ , o . ,’:“

it "can be defined with
» _‘. N

zones sucl

" It is desired to find thé minimum of ﬁﬁe Kullback

g

(3.5.2)

-

1«

N ['.-_(1'.‘2.{)] R

Y

[
’
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qi(i ='1,...,n) known .

- '

%

) . R .
Form a Lagrangian in prder to maximize ~I(q:p)

P : - 1.

and then'.

\
@&
LB o

He !

Solving for pi, we

. . -

-
Lo

and,

., \ - (o
equation (3.5.1) for q to get

<

B 'y

s . _cerning the prior,

" sults in ‘an ~assignment which is in direct proportion

\

" travelled is now reintroduced,

. ‘mum of the‘Kulychk information siﬁjec; to’ the usual

f

- ~

P N

i

¥£Ai>i I e fora-z e,
. i

-w-" s

~In

a

P

"5”_4 -

Pi
s

Obtain - .

. pi = qi ex‘p(-)\z

3

Thus, when the only information a

-~

21 + 1n q'i -+ 1

[
o

’

b L

* v

since exp(~A) is a‘constant, we can substitute in .

the: prior, in ‘this partic%}ar case, the areas of the

v

1f ;he‘information concerning the 'mean distance

R

we can also find the mini-

”

pormai&z&pidﬁ“coﬁstréiné_glh2,2L, the Known prior :(3.5.3) -

»

°"

[@:a.))

(3.5.4)

{3.5.6)

’

(3.5.7) -

-

Elgble is that'con—

the method‘of mfnimuﬁ information re-

to:
s

zones.

to be

4
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' In ‘this case,;eihavé )
. :- & .
. - e — . . - - - . .
L = —I(q:p)’+,E(k—%)(l—zapi)] + bfr-I 1 ri] s (3.5.8)
: - : . 1 ' 1 -
and, minimizing with respect to Pys -
“ 3 L :in P, + 1In g, - A - br = 6 (3.5.9)
’ 8 9D, 1 1 i L
which leads to o '
. piJ= 9y exp(éi)exp(-bri) . (3.5.100)

-

\

This is identical to the maximum éntropy result (3.4.5)

Rl

\

reported in the~Iast section except that the prior_ prob-

-~

ability distribution has now appeared in the model.

la}

N b4 . i

. Substituting in the;pormalizﬁtion constraint (1.2.2) to b
‘solve for exp(-A) gives a more familiar result 4 T

- ) ’ ‘ :' l \ __.',:';5 :—‘?;- 3
- ‘ ' N qi ex'p.(-}"bri) B ’ ’ :

. Py 7 L q; exp(~br 9 ’ ‘ (3.5.11)

/{\ ’ i : e, . A ",

) . . .o .

A . .
. LT N P
wﬁich will assign -workers to zones in direct proportion
‘ ‘e - _"." - PN . . N [} i~
o, N . B T . :
to the size of zones and in inverse proportion to ad

-

e,
exponential ‘function of distance.

.Suppose that in the éxqmpme assignment periém, zone

*. T,

.2 coqeains‘013yaand zone 3‘£optains Q.7;.of,éhé go%é% area
of'tﬁé two aeﬁtinapioﬁ zones (femembé;ing éhaq zone*@n&mig
onl&:én origin). 'Thejrgsultiqg agsignmeﬁt 6fZWO;ke@s to :

‘;;hes, usiné;eééation (3.5.11) ié_ T ‘ ) T

- -,
6. N . ¥

-

-

Ry
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L4
\
1

) 9.3 + 4+ exp(=0.8 -« 1)

i . 127 003 exp(=0.8 ¢ D] * [0.7 - exp(-0.8 - )] ~ 293
L - # -
! and ) o) ) -
= 0.7 * 4 +/exp(-0.8 * 2) ‘e = 2.05.

~. T13 7 70,3+ exp(-0.8 - 1J] + [0.7 - e®p(-0.8 - 2)]

Once'again, two workers (in integer form)=~have been as=

-

i

a

! signed to each of the two destination zones. In compar—,,

ison with the maximum entropy results in

-

the previous

Y

section, it can be seen that the attenuating effect of

- \

o raapye e T AR RR A,

’ distance has now begn pértially offset by the variation én

.

.
3

. .. . .
the size of the€ zones. Note also that the mean distance '™

: L - i
constraint bas;pot been satisfied; if. this were desired,

e

- - -~

N - fhen it would be necessary to adjust.b itéra;ively until

! . oo Lo . s
a correspondence between the observed mean and the model

-

mean was attained (although in this particular example

. -~ . there are so f8w trip-makers that this/;ould be redundant

\

L S ' unless non-integer trips were allowed). : -
. ’ ' . .

- ! . Thé method of minimum information thus provides a °
;. : . means of making an estimate of the shatistical%y most

X r i
o

likely form for a—probability'distfibufion p} whHen prior
probabiliiigs“are knowﬁ.anh are not equally likely.

1 1Y A

by
AI"‘ £ y

though we havg qsea thg‘example.of-a prior defined with

. > . oo . .
. . respect to the areas of the zones here, it will-be seen
‘ . , | . . . '
,, in the pext.chapter that there are g large'number of

¢

different types of data which are permigsible chdige& for .

’

a

<. r
éﬁe.Priorépnd these can ipclude properties «of the origins ¢
[} - ’ ’ X :
. RS . . ‘ P °

N

v

.
\ . N . * .. - ’

LB
) e Y
b endn S redtn - aotr
.
I's

<
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and/or destinations, ,as well as the flows between:' them.

¢« In addition, these Ean_he defined from either empiricalv
- - . . ¢

observation or descriptive models. It quickly becomes

¢ N - -

apparent that*the meth d of minimum information is an

<

'important.generalization of minimnum entropy, not only

because of the resolution of the problem of unequally’

Y

La han S P s 30 SVRNIA o e et B and s iy ¢

Py

o Iikely priors, but also because of the flexibdility and

increased rauge for potential application it introduces.

Earlier in this chapter, ehtropy was described as a

-\

‘measure of the information\in a probahility distfibution

(i.e., it was said that a peaked distribution contains
e - ~A .. . : e

information). It should be noted that this definttion and -

usage of the word "information".is different from, and R

. inconsistent with, the definition of information in the -
T . . . ?
et D - Kullback formulation. The difference batween the tyo -

y e

v definitions has formed the subject of considerable debate

.

- and controversy in the field of information theory and 1is

°
»

w - much too compﬂ x to. be thoroughly discussed and rgvdewed ,
e, 3

Y here. The interested reader is referred to Hobson and
1 “_ . (

Cheng (1973),~and especialiy Webber (1:979), for more ) .

’ . detailed,treatments. ‘The difference between'the\defini-
l . ’ ' !

4 tiong does not have any direct effect on the results to )

v .
. ° R

" . be obtained from the methods of maximum entropy and mini-

»

) mum i formation. s
’Before we go on to consider the derivation of poten- R
‘ . ' ‘tial functions within the entropy maximizing and infor- i ,dt

+ N Jn’ N ® . ’ v e v
6 N . L
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"mation ninimizing frameworks, we will briefly

-

eview some
of the alternative ways in which the Shanﬁgn aE;’Kullback
, ' . o

functions have been employed in human éeography.a )

N
- tats

3.6 Extensions of the Methods

In this discussion of entropy maximi ation and infor-

© L]

mation minimization the derivation of uniform aqd negative

-

exponential probability distributdions haé been illustrated.

-

The use is not limited to .these two cases however,

&

" Tribus (1969) has shown that a number of«alté;native

!..

and P

*

functional forms can be derived by changing,the cohstraints.

, 1 . ” ! N ; : -\ .
In this regard Tribus (1969)"has'derived truncated and

normal Gaussian, incomplete gamma, beta, Cauchy, Weibull,

Bose-Einstein, and,Poisson distributions using the maximum
entropy formulation. Consideration of the use of
additional constraints in a geographical‘context will be

-

- considered in greater detail in the next '‘chapter. .

T .

’ ‘ .
-We have *seen in this ‘chapter how the methods of !
. “" LI .
constrained entropy maximization and information mini-

d’
mization ¢an be. employed to derive probability distri-

' Such, probability disfri-

1

butions in an unbiased manner.

«
- - N )

. . y i
butions can form, the basis not only for.spatial interaction

3

-models,ibut also for location and‘denéity'models (see o

Webber, 1979)

_rh fact the.enE;opy/infbfmation formalisms

S 2

L}

can.be extended t0¢any geographical problem which can be

°

formulated in terms of a- probability distributiomeésee,

- M 0 v

1"

-
N P . .
. -
.
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for exemble, Leopold and Langbein, 1962) 'Tﬁéafunérions o

N v
-

e
can ‘be employed e&ther to derive probability distributions‘

e

’
. “

as“hes been emphasized here, or to measure-existing ‘,,j o
I ’ '

R

\@istributions (see, for example; Curry, 1964 1972' ' L

Medvedkov, 1967 1970; Berqy and Schwind 1969" Gurevich

[P

1969 Chapman, 1970, 1973; Semple and Golledge, 1970; .‘;'

/ PN
Semple ‘and Griffin 1971 iégple and Gauthier“»}972'
“ - n . N
Garrison and Paglsonr 1973' Semple,‘1973 Batty, 1974b‘ .
: N - -
Egg , P Haynes and Enders, 1975 Perin, 19753, Semple and Demko, .
I : toe .
223 -kf g 1977' and Getis“and Boots,el978). o, o Do :... )
. »;f"‘ LN ,.' i <, - ' ! “ . !
~ L Lo h " e There arge other aspects, of the encropy/information pe
N § .2 ) R . 5 : - -, . s ]
] fy ) l?: s concepts whiah also could have been considered here.* For
':* : é‘- -Qi;a \3;" ' h * ¢ q !
- A A ethple, argnments\hame been made that the Shannon entropy
‘\ 2 : function caa be' considered to.he a special case gf the
K e , "< s fo- g . < - K
® o X ,moxe‘general Kdllback function (this ‘will be demonstrated
b, ';:f below), and that the lacter ig’ to"he greferred because a i
: T . ‘ ey . ;
L S ‘\?' . number.of mathematiﬁal.inconsiatencies which arise when the
oo - Shannon measure is ex;ended to cohtiﬁ%ous space do not }
| - ., ’
) arise fqrethe equivalent Kullback measure (see Hobson and
- Lo R éphen§§ 1973, Batty, 1974b)9 Batty (1972 1974a, 1976b)
K ' ; has- extended this development into the geographical con—
- * < * . 3 \ - . L]
s NESI mext bx‘defining ‘a spatial entropy e . :
3 Q . . bl ‘ J’ '@ A g
N . = . 9\' . 7 . ’ “: N ’(\' ) ‘"‘ R T i ) ' . ' - - ‘:.". 1 ‘
S L T S 'E,-Ifd'l'n a, 0t G0
: o - a & G a_ . . v T et
A ’ * ' where" a1 represents the area of €§ne§, He (1974 5) argued
telee {
SRR - . o "o . Ja :
Sy Y . .. » » ! o ‘. . .
T - LI S . . . . . ' SRV ¥ .
. . O =
1.-:»‘ ki o e A N ! & d v . e
‘;;: i \:; o « . > p‘ ’ - "
! l :%/Q : o : OO : :
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o _ ‘\‘equation'[(3 6.1)] .i® more useful in - ' -7 /
spatial _analysis than equation [{1.2. 4)]

* - because the effects 6f partitioning a \\\\

- spatial system in different ways can be

e _compared in absolute terms using-equation L
-[(3 6.1)]. Furthermqre the spatial
K ) entropy statistic can be used in com-

: - parisens between, different region..

7y

(see,also Curry, 1972). Angel and_Hyman (1976) have em~

-

ey

[N G S
-
. ~
B e R SRS a0\ % oy 2
’
‘
~

ployed the continuous form of the Shannon ﬁeaspre)to'

develop spatial interaction models written in continuous

-
-

terms, and Bussiére and Snickars (1970) have employed it

/

to produce urban population densit§ models. Charnes et al
(1972) have employed the discrete Kullback measure to

B L. derive a spatial interaction model in information theoretic ‘“\J

- ~

e . te%ms&(see also Phillips et al, 1976, and Charnes et al, ~
i gt at gL al

~ . N [

- e e

~ - 1976)% More advanced diSCuss;%ns of the Shannon and

"¢ Kullback functions can be found in March and ﬁatty {1975).

A} : ©

o\\\\\\\\‘ A discyssion of alternitive measures of information is in .

*

. " 7w walsh and Webber (1977).. . ' : )
. ‘o ! 1 .

Another'%opic which was nat discussed in this review
; BN is in the relation,between entropy maximizing, information
\\_ , minimizing, and maximum lgkelihood‘procedures (gee %atty

co ~end-M'ackie, 1972; Wilsoﬁ; 1974; -and-Webber, 1979). >Wilson
) o . - T ‘ . .
and Kirkby (1975, 291) for example, noted that "if maximu .
o‘ , \-‘\ - )
., likelihood methods are used for barémeter estimation . . .
. . X NG Y .

the equations to be solved for th e parameters turn out

\ - . N

togbe just 'the entropy maximizing—co;gﬁigznt equations."
L8 : . <. >

gimilarly, another overlooked issue was in the relatiens

~
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*Wilson; for example, described his approach as a "sta-

(1979) for alternative and/or critical points of view.‘

. entropy maximization and information minimization as a

‘foundation for the next chapter.

N . - .
., - , ~
L . . . by . -
‘. \ & L

between entropy maximization, information mfnimization, and
! /‘

linear and geometric programming (see. Wilson and Senior;\\

°

19743 Dinkel et al, 1977;,Webber, 1979, 141, for example?. =
;oFina}ly, i#xcan be nbted that this discussion has also

ignored the question of whether the entropz/information

formulations provioe a "theoretical foundation" forfthe .

~

models which result from‘them. Such a claim was made in

Wilson's <1967) ihitial introduction of thﬁ\entropy ) . !
maximizing;concept but more recently Sheppard (1976; 1979b) ‘
has provided arguments to the contrary, suggestingﬂthat T

the technique is primarily a method of hypothesis testiné.

In order to resolve this question it would appear to“be

necessary to 4écide what it is that constit;tes "theory." = - J

¥

,.vm

tistical theory" while Sheppard (l979b) regards the work.,
of Smith (1975), 1nvolving 4individual choice behavior, as
exeﬁgihry of Eheory; We- shall leave the question'open to
debate for now, referring the reader torBeckmann and

Golob (1972), Hausen (1972),'Fisch (1977), and Cesario

\
[4

/

The purpose of 'this chapter has not been to presentmi
an exhaustive review buterather, as was suggested at the\

outset, to provide an introduction to the concepts of

’
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. 'CHAPTER 4 ; \
MAXIMUM ENTROPY.AND MININUM INFORMATION SOTENTIALS .
N . - . . a* 1

P ~ ; .

To briefly reiéerate,yit can be pointed out again

-~

that while the secéqd chapter was pohcerned\ﬁixh potential,

€ v

and the third with entropy maximizatioﬂ and information
minimization, the present discussion is addressed 'to the

/ - . <
relations Qetweéh\ﬁhemfand, in particular, to  the deri-

vation of potential prctions. Problems’ of calculation

and interpretation which result from employing entropy

\\

.and information based‘potential functions will be dis-

e

cussed in Chapter 5.

4.1 Potentials aﬁg'Trip Distributions S ' ’ -

OTPR VO RSY

In the second chaﬁger it was shown how potential
functions can be derived from gravity, o; trip distri-

bution models. Given a model of the form - . |

[ -

. PP, L |
-k, e
Ty .

-

it was indicated that botential can-be obtained by

dividing each. side by'Pj, such' that . :
E ST i . o
’ g oA e -

- | .
?ii = K #i ' ; T (4.1.1)

: Iy o
. SAE o



A
S

Since potential 1s a sum at a point, a summation sign éan'

be added to each side (while dropping the k for convenience)

to get 1 ’ ~

[(2.1.10)]

This demonstrates, once agaiﬁ;uthat population potential is

summed per capita sp;tial interaction at the destination,

»
that 1is, 5
i (4.1.2)

since P, is constant on each zone.

] )

The equations above describe the relationship between.

population p%tential and spatial interaction and it can be o

seen by equation (4.1.3) that the most(siénificant,detér—

:

minant of -the form of the potential functi&n will H?‘the,f‘.

t .
1

tfgp digtribution model.- Wilson (1971) has ident&fied a .
family of trip-distribution'podel;, any of which_could be -
.inserted.in equation (4.1.3) to form a potential function.
Howeve;, as was indicéted in Ehg second chapter, the
ﬁrincipal concern iﬂ Fhis stuéy is with sotential functions

of the traditional Stewart-Warntz type and, in pafticplar,

with the form of their distance response functions. ‘In
t , \

\\
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<part, to the fact that when one attempts to define an|

\

~ .
!
other words the focus is on potential| functions of ‘the
form )
; ij='§ Pi f(rij) e [(2.6.9)]

g

and the goal is to derive a trip digtr ution moael‘which,

when inderted in equation (4.1.3), will p‘gﬁuce the

desired result. The task of examining the types of

potentials which would obtain-from insertiné é\yariety of

trip distribution models, such as the members of the Wilson

.

family, into equation (4.1.3) 1is left for future research,.

By first dexriving a suitable trip distribution model,

and then inserting/the result in equation (4.1.3), we are

+

taking an indirect approach ta the maximum entropy and

mininum- information derivation of potential functions. It

should be noted that the author's own attempts to derive

otential functions directly from méximum entro hav
p =S ‘ y 3 8T PY 7

proven unsuccessful. This can be attributed, at 1easﬁ in

— |

estimate of probability for potentials, the quantitie%

employed are not analogous to those normally used in

oy

entropy maximization. For example, if one defines a

e

\ . i
probability of per capita interaction of the form ¢ -~
) N »
"L . X, ‘
Py [(1.2.1)]

both the numerator and denominator of the right-hand-side

< .
are unknowns, In the usual situation, as.is the case with

'




% 4

trip distribution modelling, the denominator of an .equation

such as (1.2.%) is known 2 priori and a mormalizing con4j

straint is required to ensure that the sum of the numerator

‘exactly equals the given denominato;.. In thé case of

v

< potentials, however, the probabilities'will_sug to one

) <

, without a normalizing constraint since the denominator is

an a posteriori result and is ﬁ%mply the sum of the

numerator. ‘ﬁhether s@ch problems can be handled success-

2
.

fully @ithin the entropy maximiziﬁé framework remains to

)

be seen, and for the moment this issue will élgg be left

~
r 3

" ‘ ] .
as a matter for future consideragtion,

¢t

.

N -
-

4.2 Potentials Based on Maximum Entropy Trfp Distributfons

It was stated above that it ‘is desire@ to derive a

-

trip distribution model which can be.inserted in equation

-

(4.1.3) to produce a result which is of the form of the’

* . ‘ [ ’ o~ ) “t .
potential given by equation (2.6.9). It can be seen
easily that the only trip digéribution model which willu

produce the desired result is {7 - .

T, =k P, P, £( (4.2.1)

13 g By £lrgy)

g This'modél, although included by Wilson (1971,2) in the
maximum entroéy_family, is not derivable from maximum
edtropy since it is totally unconstrained. As was

indicated in the previous chapter, in order to be able to¢"

_ employ the method of maximum entropy to derfvé a'trip

¢ o . s 3

£y e %t CONERAL A
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'
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< ) ~‘ ! S . - \ o 1
distribution model it is necessary to introduce con-.

> ~

straints.

[

A conqirginei form of fhé»potgntigl giéeh.by.~5"
veduétibn (Z.é.?) is‘_

(4.2.2)

X

-~
- ES
-

>or alternatively . ; . i

(4.2%3)

-

N .
A RSy - L (4.2.4)
g i

?hesé functions w}ll be discusged in greater detail below,
L h v -

L) .

amd it will be shown that the only trip distribution model
which cad be inserted in equation (4.1.3) to get.a poten~

tial of the‘form'of'equafigp (4.2.2) is

- L)

Tyy T APy Pj"f(._rij) , (4.2.5)

1 -
h | ' ' g .

-

- Trip distripution model (4.2.5) is not wholly derivable

from maximum entropy since it contains one unconstrained
. >

term P,, but it is, nevertheless, at least péftiaily based
- N ey ) - [} .

3’ .
, on the method. The point is that if it is’deaire& to

employ the method of mégimuﬁ entropy as a basis for

-
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deriving potential functions then it is neéessary that

;hoserﬁﬁnctionsj and~the7trip~distrfbﬁtion“modeisfon'whiéﬁ

,

" they are founded, be constrained. As will be discussed in

- { f -
greater detail in section 4.3 below, normalized potential {'
B

functions, and the balancing factors associated with them
(such as equation (4.2.4)) are also important with respect -

to the empirical results to be obtained.

Consider a country (or some other area of interest)

partitioned into n zones. Each zone has a total of Pf

interactors where T is thé& number who will have an inter-

15
action with the %th zone., —Define

) .
e T .

C T
: - 11
,‘ . Pgg TR (4.2.7)

.

as the probability that a randomly selected interactor

»F

will be located in 1 and have an interaction at>j, where

- (4.2.8)

Unlike the usual trip di&g;ibution,ﬁodel, whici‘is con-

strained with respect to knowp numbers of trip-makers
. 2y P

entering and leaving zones, it is necessary to constrain

this particular model with respect fo the total popudlation

s

of each oriéin éqne. Thus
f ' ) -
I T,, =P , (i.2.9)

P 13 i |

.
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= each zone is making a trip. . This.is, of cou¥fse, an un-

RN
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é
? -

which indicates that it is pssumedﬁ?ﬁat every resident.of,
.realistic assumption for a trip Histribﬁtfﬁ% ﬁodei; but ié
not unreasonable ﬁg} an index like populdtion potentiai.‘

Dividing each side of constraint (4.2.9) by P will put it

’

in probability form ) o
| SR N . '
X pij =3 . (4/._2.104)
h| -
. .

Given that we are now considering a matrix of spatial
inte;acfion (unlike the previous chapter) the Shannon

entropy needs to be summed ovér i-and j,  such that

H=-I p,, ln p L [(3.2.2)]
.- FPIRES B &

Suppose we wish to maximize the entropy subject anly to
. 4 T
- Eal
the constraiant that LI pij = 1. Form a Lagrangdian
N " - ij . ,

. .
A
h v

H

g e
. L =~ p 1n p,, + [(A=-1)(1-ZZ p,.)] (4.2.11)
1y "1l 13 iy 11 |

where, once again, A 15 chosen to satisfy the normalization

.

constraint. Differentiating (4&2.11% and setting ‘the

2 . - {
result equal to zero .we .have v

L o np,,-1l-A+1=0 ., (4.2.12)
Jp 13 -
14 ,
»e
H

and solving for«;ij results in
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trip distribution is uniform.

83

» pij = *(4.2.13)

Eduatioﬁ (4.2.13) indicates that‘in the absepce of any

prior information beyond the normalization constraint, the

1Y

$
most likely form for the probability distribution is
&

uniform. This agrees with results obtained in the third

chapter.

In order to consider the above result within the

-,

/P = (equation

pi‘j

context Of potentiq} we can put Tij
(4.2.7)) into result (4.2.13) for Pyy tO get -
T, = & (4.2.14)
- ij n2 * . .

Insérting (4.2.14) for Tij in the definition of potential

(4.1.3) we have

- R
n2
Vj = I P , (4.2.15)
i 3
2 - *»
or, since.P and n~ are both constant,
1
v O = . (402.16)
. i Pj

The potential in any zone will therefore be proportional

to the inverse of the population of that zone when the

This demonstrates once

¢r

again that it is neceséary to include some additional

information if the result of the entropyfﬁéximizing'/

e
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procedure is to be of further interes't.
<
The requirement for additional information raises one
problematic issue asgpciated with potential functions

(dnd also illustrates a further. difference between such

functions and trip di;t{igution models). In the example
¢ .

in the previous chapter it was shown how some additional

information can be introduced in the form of an average
distance travelled in the system., Obviously, such data——
are not readily available in the context of potential

{
because the concern 13 with potential (per capita) spa}ial

4

‘interaction rather than observed interaction. The absence

of such data is, however, primarily an.ehpirical problem

7

(and will be discussed as such below). As Tribus (1969,
122) p?inted out, it does not necessarily impede the

entrbpy maximizing procedure: .

...we may not always know the mean value

[i.e., r]. But we may know that such a

mean value exists. This information there-’

fore may be put into the formalism to

determine the  FORM of the probability

¢ distribution, yugh it will not determine
the numerical val of the constants .
appedaring in the prybability distribution. -

Consider a function of distance f(rij)' Suppose

that the total of this function weighted by the number of

trips 1is kgown. Writing this total as R, we have

; ‘1 L T =R . (4.2.17)

i A i3

13 £Crygy)
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Dividing each side 'of equation-(4.2.17) by_the total

-

number of intera®tions such that-

. -

r‘; i -

) ip e,y = 5, (4.2.18)
h| P
) ij‘ |
* will allow us to express equation ¥4,2.17) in probability
form . P
Tz pij f(rij) = R s (4.2.19)

' R — ij

where R denotes the mean of the generalized distance.
Having introduced this addiéional information we can now
‘maximize the entropy (3.2.2) subject to constraints
(4.2.10) and "(4.2.19).

1)

Form a Lagrangian by adding together\the entropy and

. W
the constraints , TN~
L=-H+ [(Ai-l)((PilP)-ﬁ_pij)]_ . .
+ b [R - ZZ p,, £(x,.)] , (4:2;20)
- )

where b is the Lagrangian multiplier éssociated with con-
,straint (4.2.19). Differentiating,agd setting equal to

zero in order to find the maximum we have

oL

= -1 - 1.~
. apij ) n Py .

i

E ad “

and solving for pij we get

»

[

+ 1 - bf(r

ij)

’

=0

y (4.2.21)
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,pij = exp[-ki-bf(rij)l .

To solve for exp(—ki)\substitute equétioﬁ (4.2.,22) into -

L}
the normalization constraint (4.2.10)

P L
L expl-i; bf(r ==, -(4.2.23)
P ij P
" which yields, on reérréngement
\ ) . . .
- = Ty g
: - 773

(\

13

éubstitutf;g equation (4.2.24) into result (4.2.22) for

P

exp(«ki) we have ': e
k-4 vl L I w
=Pi exp[- bf(r )] L
pij = P E exp[ bf(r )] 3 (4.2.25) .
and finally inserti&i\ﬁffﬁP for pij (equation (4.227)). in
# Iy
equation (4.2.25) we get
4 et B
o S ey explobi(ry,)], . (4.2.26).
ij P Z<exp[—bf(rij7ﬂ . I
j :
The P's cancel, leaving us wXth A

P, exfif~bf(r, )]
- 1 1] i
iy = exp[-bf(rij)] * . (4‘2i27)
] . :

. T
’
<o & ! &

which can also be written as
/ -~

.exp[-bf(rij)] , (4.2.,28)

v

ij 1 By

(4.2.22)
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Equation (4.2.27) i§~véry'§imilar to what was specified

5T - ”(4~.=z.2§>_‘ )

. earlier to,be'the desired type of trip distribution model .

. (eguations (4.2.5) and (4.2.6)). One diffexence is that
the model above cohtains the parameter bk: Anothef, more

©

'signifié%nt'difference,;is that_triq'distribution model

(4.2.27) does not cbﬁtaig ajterm for.the population at the

\&éstifﬁtion P... Before we go on to imsert such a term,

3 :

- ; we can ‘exumine very briefly the potential function which

k¢

7
et b,

. - . will result from using,ﬁGHei"(4.2.27).
- 5 ., . b R i
- . ) . Repeating here ‘for convenience, pbpulatiop‘potential.
s / - . .
; ., was defined as

-

_ . ' T,. - : o
. : Lov =2 [¢4.1.3)] .-
~ < . j . i P . ) -

-

.
. »
4 N Cat

R . Insertiﬁg fesult (4:2.27) into fhis'definition.we get

e

o : - Pi'egp[;pfﬂrij)]~ |
v ' o~ L gxp[rbf(gij&] . \
PR MR — , 4.2.30)

. j ’ 'i K 'Pj . ‘. . . -

L I Pixegpl-bf(Fij)]\

| -, g
L e 3T TemREG T

% IR e A R . . . . . proes \
. . P . . N

’

" h.2.31Y

-

Y whiéhgdemonstratgs élearly the role fhe‘deétinbtion term

v !

-
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. - ¢ l—~/~
) ~ will play if a trip distribution, model such as (4.2.27)
i ; s
. : = is employed. Co - .
. . [ ;. Y-t
In order to get t%e desired potential function .
(equation (4.2.2)) it is neéeééary to inég?é Pj-in the
* numerator of trip model (4k2;275‘such that ' N
® T, = ! Pj ?xp[ibf(rij)] . o (4.2.32) «
. . i L exp[-bf(x,,)] s St
1 : ij . .
8] . : k|
- This adjustment can be made only on the basis of the gra&-
3 a .
ity model analogy, but is copsistent with the usual
; R approach to the problem (for example, Wilson, 1967, 1971).
; If trip moﬁel (4.2.32) is inserted‘ingthe definition for
L ’ pétential (4.1.3), the ?j's cancel and we get,
- ~ A ~ -~

a‘/ g ~ ) <
|2, e;&p[-bf(’rij)]
\ hE(r, | ’
- | _ . ?.éxp[ (riJ)]

(4.2.33)

e
(TVE

-

H . *
. .

which 15 very similar.to 'what was stated to be the de-

{

sired result:fwith,the:excepfion that thé parameter b

| appea;é in what is now a negative'exponentialjdistanc@_'

response function. JIf this constrained‘potential is

.

_employed ‘in order to calculate potentials the .grand sum

i el

of the potential wi;i equal exactly the totél population

)
'l

size. A éimple exaﬁp&e of the calcuiétion.of“potentials

-

__— with an equation such as (4.2.3%) is presented in

Table 4.2.1. It cai be noted that the constrained
o ' ;o potential can aldo be written ’

- N » A . . ¢
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,— R TABLE 4.2.1

AN" EXAMPLE OF THE CALCULATION OF THE CONSTRAINED POTENTIAL
(using linear distance)

vovo

\ /
v -1 Pi exp( brij) ’
j 1 ¥ exp(-br,.)
i

leen the populations at Towns 1 and 2, and the distances,
it dis desired to calculate the constrained potential at
Towns 3 and 4. The sum of potential at Towns 3 .and 4
should be equal to the total population size (i.e., 48).
The parameter b is set equal to 1.0. The calculations

are as follows: . f N
-3 -4 ‘ T
v, = —xbe = 32e __ 15 71 + 31.42 = 47.13
3 3. -7 Ry \ ]
e +e e +e-° . .
\ ) 7 8 ‘”
- vy = -tbe . 32e "~ __ .94 ..58= .87
. 47 3 T A 8T ; 2
.~ e X e _ Totdl V. = 48,00

P

99
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A, P, exp[-bf(x

_ Vj = i i Ty ?3)] s (4.2.34)
-~ ’%.
where ¢
0 l -
A, CTERTREGLT (4.2.35)
p .

4

ﬁquationd?4.2.33) can be said to represent the sta-
tistically most likély form for a pdtentialﬂfuﬁction given

only the information in the normalization and distance
hY -
constraints on the trip distributionfhodel. 1In Jaynes N
(1968, 231) words
. & - '
The distribution [(4.2.33)] is the one
) .5 which is, ih a certain sense, spread =, -

- out ¢as uniformly as possible without |,

eontracting ‘the given information...
- it agrees Wwith what is known but .

expresses a "maximum uncertainty" with

respect to all other matters

‘' It was po;nted‘out above that since a potential func-

tion is an index of potential or poégggié per capita inter-

action, avenage'distance data will not normally be avail-

able for the célchati&B_of the balancing‘féctor b. )

©

=¥, Although this issue will be aiscussed in greater detail

below, it can be pointed out for now that in light of the

t L

results obtained so far, b can be deférmined, as -an

-

a posteriori .result, from

i? k;j exp[-bf{rii)]
LI expl[~bf(r,.)]
1 A3

3 : - .
. ® 7. ¢

=R = (4.2.36)

AN
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which simply expresses the mean distance with respect to

- the form of the distance response function (see Webber, AN

1976, 279).

Bef&re we go on to consider the derivation of some
alternative distance response functions for .potentials it
is ﬂgééssary first to_digress briefly in ,order to discuss

the role of normalizing constraints in the calculation of

potentials.

. \
4,3 Normalizing Constraints and Podéntials
. - \‘ .

3

Normalizing\constraints are employed in spatiai inter-

N . . R
action models in\iﬁ%@f‘?efensure that the model number of

\ . +
trips leaving or arriving at origins and destinations

matches  the obser&ed nunber. Such a requirement is un=-
[

necessary for potbntial functions quite simply because
. {

-

theyiare not ihtehded to be employed in modelling.spatiél.
interacéion; a potential function is an iggég of potentiai
or possible per capita interaction at the destinatiog:
However, the use of norméiizigg constraints and theA

balancing factors associatsd with them in potgntiél

functions will have an effect on the resulting form of

°

the.pS&ential gurface. Suppose,..for example, that we were

A Y v
to construct one.potential map using an upnconstrained
- '
negative exponential function -

"V, = f P, exp(-br,,) . [(2.6.2)]

. . 3 5 i s
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and another using the consgmained negative exponential
{

-

funétion 5 ’ ) -~
I ] o
Vj = i Ai Pi exp(-b;ij) s (4.3.1)
where _
A, = 1 ‘ (4.3.2)
i L exp(-br, ) ' T

J 13

-
.
&

Ehe map is to be constructed on a grid of equally spaced

1 at each. One potential s

control points with equal P
function is constrained with respect td population size,

and the gother is not, and because of tﬁis, the two
resulting potential surfaces—if comstructed using the
same data, and the same value for 5—would differ. The

reason for this difference is to be found in the effgcf

;}?the balancing factors (equation (4.3.2)).

- -

. If we were to calculate the total distance from

each point to all other points on the bounded uniform

5 .
the gri

\

would have the smallest totals by virtue of their

- & "
grid of control points, the points certral to

centrality. On a graph showing'the relationship  between

A

distance and the negafive e;ponential distance response
function (Figdre 4.3.1) the sum of exp(—brij) (the

denpmimator- of equatlon (4.3.2)) will be larger when

—-

distancég are sﬁall ((d) on the graph) and smaller when

‘distances are large ((b) Qg‘the,graph).
‘ 7

- s . o e i
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“Figure 4.3.1 Distance and the Negative Exponential
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The balancing factor (4.3.2) is ﬁritten with respect to

the inverse of this sum, however., which means that when -¢

-~ distances are smaller (at the center -of the‘mép)‘the

value of the.Ai's w}ll be lower. Conversely, when

“oew

e - distances are larger.(at the periphery of the map) the

<~

s e g

value of the A, 's'will be=lmrger. The effect 6f thése

i

differences in the relative vgiueszof the Ai's,.whén‘

) B - ™ .
's, will be that at the center of, the

3

~ - 'region’ of interest the values of the V

- _ N

-

_éﬁ than they would have been otherwise; since the larger-

célculating the 'V

's will be lower

Ai's_§t the periphery of the region will tend .to increase
-7 4 . e N ) .
th% size of the denominator™in the constrained potential.

Similarly, at the'periphery of the region, the values df

Wrer eor e tw sme— e

the Vj's will be larger than they would have been otﬁépwiSe, L.,
since the shaller Ai's at . the :Znter'of the region will

-~ .
N .
N {

P

s i = - e e AR A s
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function (2 6.2), and the other with the constrained

‘boundary be peaked at the center. In fact, it is this iff

’arbitnarily bounded uniform distribution of,popﬁiation

" with P, outside the boundary should, inﬂthegry, be uniforn.

104

tend to decrease the size of the denominator in the con-

strained potential Stated another way it can be said

that if one, map were constructed using the unconstrained

function (4.3.1), the latter map, all other things being
equal, will tend to be "flatter" than the former.

In the case of‘the usual unconstrained potential,
the greatest number of per cagita interactions occur over
the shortest distances and, as a result, the potential
surface associated with a bounded-uniform distribution
of population will be peaked at the center. This is a
desirable property of the potential surface if the
boundary.ls a real one Csuch‘as a coastline) and there are
no Pi ontside the boundary. If, however, the boundary is
an arbitrary one (such as a county or,gtate), and there /

are Pi outside of the .boundary, then it is not desirable

that the'potential of the uniform distribution ingide.the

~property of unconstrained potentials which can be said

v ~
.

to+“be one of their major weaknesses; ‘the potential on an

i‘

Ve .
Insofar as the balanéing factors in a constrained

potential function will have the effect of "flattening

'

what Wwould otherwise be a centrally peaked potential

-
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/
‘equal to zero In the constrained potential function,

were discussed.

which can be bdbtained usiﬂg the entropy maximizing

approach,

"ratic gamma function.

[y

The task of determining the exact degree of flattening is

population density d(r) at a distance from the center of

105

’
i
[N

surface, it would appear that their inclusion in potential ' .

functions is-a first step in overcoming this deficiency.

Y

largely an empirical one and is left for future research.

rd

For the hbmené;_however, it can be noted that if b is set

. -

(4.3.1) and (4.3.2), then

g i
Vj - JE: T 'Y Vi (403"3)

and Vj will ‘be conStant on each zone,

!
In the second»cﬁapter'a number of possiblé forms for

the distance responsé function in a potential equation

[

To ,this point, however, we have only
considered negativd’expoﬁential and generalized forms of

potential, ‘It will be seen in the next section that

-

there are a number of other distance response functions >\

<

v,

4.4 A f;mily of Potential Functions

' : .
Within™the field of urban population density modelling,

AN

Amson (1972a) has proposéd, and Zielinski (1979; 1980) has
reviewed, a "family" of density models based on the quad-
- . g

L4

This function expresses the

. A

a city d as q.

. E 3
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- .

= - . .2 =D '
d(r) = d0 exp ( blr bzr )ﬂr 3 (4.4.1)

\
-

The.terqs'bl,_bz, and b3 are the parameters of the function

0

and setting thg% equal to zero individually and in pairs
~ 2

e

results in the other models of the family. Setting b3

L

equal to zero (now writing only the distance response - -

function) we get thg quadratic negative éprnential'fuqc-

¥

tion i l ' ’ ‘ A -
t ‘ / . *
. exp(—b r _.b\’rz) Y (40402)
- 1 2
setting bl'equal to zero gives the normal gaﬁma function
. exp(abérz) r_b3 . L (4.4.3)

¢

~ ) ‘-

. . . ’
and setting'b2 equal to zero gives the gamma function

I -

exp(-blr)'r7ﬁ3 Co j(qf{,A)‘
Setting b2 and‘b3 equal to zerg‘wengt Fyeiﬁfgative expo-
nential function . o ,— ‘ .- -

'.exp(—blr)_ ;o I (4.4.5)

-
N e

setting bl ‘and b3 equal to zero gives tﬁe notmal function

”

exp(szrz)./ , (4.4.6)
/ - L] -
‘and, f%nally, setting b1 and b2 equal to zero results in -
the power function ‘ . ' .
£ L “(4.4.7)
,%‘ . H
» N . -

. -
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Given that a number of members of tTis quadratic gamma

family were employed within potential functions in the
Eecond chapter, it would seem useful to consider.employing

all of them as a basis for defining a family of potential

-

functions. Moreover, it would seem to be especially
-~

desirable to attempt to derive all of the members of such
a family of distance response functibns on the basis of
maximum entropy.

It has been shown that the form of the distance
response function'resultidg from the entropy maximizing
proce&ure depends upon the nature of the constrain;(s)
specified. It follgws from this that it should be ﬁossiblg
to deéive the quadratic gamma function, and hence the

members of the family, if the appropriate constraints can
. S R '

be determined. ‘ >

Note first that the quadratic gamma distance response
func&%yn in equation (4.4.1) can be rewritten in J manner
wﬁich makes it more obvi?us that the function consists of

three separate parts, that is

[

exp(-blr)exp(-bzrz) r;b3 a (4.4.8)
- o

~

. bl
We -have seen that the first term in this function results
1 . \ . - -

|

from entropy maximization if a constrain{ is placed on the

mean distance (rewriting and renumbering £o0r convenience)

Il B rij = r ‘ (2.4.9)

g4
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form of the geometric mean, that is, if

" then

108

. ) v
An appropriate constraint is now also rgquired”for the
second or middle term in equation (4.4.8). Such a‘con-
straint has been shown by Tribus (1969, 131) to be that

éssociateﬂ‘aith the variance of the distrd%ution

=2 2
IZ p (r )T =g
, PRRE R B & ,
which can also be written
5z Pys T L r2 + 02 . (4.4.10)
ERRENIRES

where ‘0 is the standard deviation (and‘c2 the variance).
It has also been suggested (see Wilson, }970, 35) that the
inverse power function—the third term in (4.4.8)—can be
defived~via éntropy’maximfzation if a constraint is placed

on the log of the mean 'distance such that1 ‘-

;-

P pij 1n rij ='1n T . (4.4.11)
M ;o -

1 .
"Noté” that this constraint can also be written in the




In’ order to derive a trip distribution model with a

quadratic gamma distance response function from the maxi-

[

mum entropy formalism we can maximize the function in the
‘usuél way, now forming a Lagrangian using constraints

(4.2.10), (4.4.9), (4.4.10), and (4.4.11) as follows

= -H + [A l)((P /P)-L pi )] + b [r ZZ pij
“ j .

2, 2 2
+ bz[r +0 —ii pij rij ]

-

+b,(1ln r7§§ Pyy in r .1 - ' (4.46.12)

Maximizing we have

¢ "

-1 - Ai + 1 - blrij

(4.4.13)

and solving for pij glves

. -
= exp(-).)ewp(~b.r, Jexp(~b.1..2) r,. 23 *. (4.4.14)"
Pyj PAmA I BXPRATD Ty 4/ BXPL 0Ty 5 1y 0 v

K

Substitution in normalizing constraint (4.2.10) to solwe

for ex -Ai) will lead to a result of

.Pi exp( bl 1j)exp( b ij ) rij 3

P13~ P £ exp(-b,x,, Dex (-b T ) r,. %3
N L BXPATD Ty g/ 8XPRTE Ty 15 7
,g -

.'i4.4.15)

i
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Equation (4 4.15) is a probab}lity distribution with
- a quadratic gamma distance Tesponse function. This
probgbility distribgtion can ‘be turned into.a trip
; ’ distributioh model,‘and then into a\potential'functioh, by -
repeating the steps outlined in section.du{f This leeas

to a quadratic gamma potential function of the form .

~

oAl i} e T
% Vj = i Ai:fi exp( blrij)exp( b2rij ) rij 3, (4.4.16)
v ’ =
; ' where .
A - . -~
. Ay == 1 =g .+ (4.4.17)
§ exp(*b T j)exp( b2 13 ) rij 3 .

-

It is now possible to define a maximim entropy -

familyfof'pgtential functions by -dropping the¥distance
.. . i ) ’ i ) ' ".\
- constraints on the entropy funqtion,one,at a time and in

. ‘ . - A '

13 o pairs. - In the interests of economy of discussion the

- -

balancing factors>A will not be written out. ”In ‘each

7 ~ - -

case below, the A 's will be equal to bne over the sum

. over j of the distance response function (as in equation

.

(4.4.17)%' . T o

If the only &oﬁstraints on the entropy. funbtion are

>

Al \ (4.4.9) and (4.4.10) the maximization will Tesult inﬁa
v . 4 J ‘A

quadratic negative exponential potential function o .

. -
' - ~
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) I (4 4 19)

exp( -b,r, ) exp( -b,r, 15

-Mgﬁimizing the entropy subject only to constraints (4.4.10)

~and (4.4.11) will reghlt in a normal gémma potential

= *

-

fqnction

-b

) Ty ° . (4.4.20)

A, P 3 7,

1 By exp( b r

-

and similarly, maximizing subject only to constraints

. g . . . o
(4.4.9) and (4.4.11), will produce a gammarpotential -
L « - e

.function < - .

- M 1

-
. I

-z -b ) ’
j. i Ai Pi exp(fblrij) rij‘ 3 . (4.4.21)

e - »
N o

If constraints (4.4.10 and (4.4.11)’§re(dropped,

v -~

and the

»

ffaximization of the entropy funétibnjis carrfied out

~

subject only to constraint (4%4.9), the result will Be a -~

_negatiﬁe exponential potential function '

!
»

P

§ Ai i exp( b ij) oy, &474.2%)

[N
o« 0

Y -

while maximizing subject to conséréigt (4.4.10) alone wiii

-
- -

give a normal potential function
- v
. 3y 4

>

£

e v

T Z A Pi exp( b2rij Y};n'.

[

.

A

»

(4.4.23)

-«

-

pF£qar1y, maxim;zing theféntrgp& subjedﬁmoniy to constraint
. D X ? .

(4.4.11) will fesult in a power form of potential function
e "‘ - ’ ' :
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D A i Ay By Ty S .,(4.4.54)

X

P s u
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»

which is similar to:the original Stewart formulation when

b3 is set equal to one, ) : . S

The seven potenfiél functions which have been set out
above (equations (4.4.16) to (4.4:24) can be said to;form
a coherent quaérafit gamha family which is 5ased oq‘the
maximum entropy formalism. In the approach of Aﬁéon (1972)

. . and Zielinski (1979, 1980), the members of the qdaératic

RN

gaﬁﬁa family are obtained by droppiﬁg the parameters of
/

2 P
the distance response function one at a time and in paixs,

&

whereas in the maximum gntropy'prroach the alternative

family members are obtained by dropping the constraints

s

on"the entropy function one at’a time and in pairs. The

iattér app;oaéh'can be said to be p;eferégie since it

provideé some r%tiqnaie for"Ehoosing“and interpreting any

particular family member. In the former approach, the

.
»

- dropping-of parameters would abpear to-be somewhat

-

arbitrary, whereas in the maximum entropy approach an

-

explicit connecﬁion is made between .the parameters and

0y 0,5 AT A B

’

. : their constraints. A summary of the relati&néhip between?

r :
the constraints and distance response functilons is pre-

":AM&EEhted in Table 4.4.1.- ' - ’

4
. . L
pu
'

It remains to provide a common sense or intultiwve *

interpretation of the meaning of the vhrious‘distaﬁcg

+ ?




TABLE, 4.4.1 , ‘
ww o
A SUMMARY OF THE DG>UW>HHO¢G>ZZ> FAMILY OF POTENTTALS mmOSHZQ
THE RELATIONSHIP BETWEEN. CONSTRAINTS ‘AND DISTANCE WMMMOZmN
FUNCTIONS RESULTING FROM ENTROPY MAXIMIZATION

[

U,w.m tance Constraint Dis tance wmmmnﬁmm; Function Name 3
(following Zielinski, 1979)

m H 1y’ mncwﬂuu r Quadratic Gamma

+

2 . )
manﬂwu m....uwn.wu.\ ) . Quadratic Negative Exponential-

2 %
" ~~ . e,
(3) . mn.cw.nw.u r, u...cw . ) Normal Gamma |

K

. 4
4) "xr, Inx //.mv , Gamma

) Pt ! . , Negative Exponential
(6) WO rmal
- ~>

Inverse Power

0o
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response functions. For the functions based on a single .

o

constraint ((414.22), (4.4.23), and‘.(4.4.24)) this .is. not.

too difficult. The negative exponential potential
. A >
function (4.4.22) can be interpreted to be the statisti-

cally most likely form for‘g potential function when
spatial interaction varies inversely with distance. - Simi~

larly, for the power form of the potential function

-

(4.4.,24) —which is based upon the constraint ;2;4.11)

being placed uppn the log of distance—it can be said that
. . - - ) ,
interaction varies logarithmically or less than linearly

A

with distance. As Wilson’(1970, 35) noted:

Suppose people perceive travel costs not
as we measure them, but as the logarithm
‘of what we measure. Such_an assumption
would apply-1f the cost of travelling 50
miles was. perceived to be less by the
traveller who was committed to 200 miles

_anyway than to the traveller who was going
50 miles in total., Then ryj 1s’ replaced
by ln:.ry;, and exp(-brys) becomes
expC;blnrif), which is ¥y -b}* Thus, if
models fit better with inverse power
functions- than with negative exponential
functions, this tells usg something about
the way travellers perceive costs.

i

¢ .

For the n&rmalmpotential function (4.4.23) the maximization

is carried out subject only to thefqpnstraint'on the

vagianc%ﬁ The importént thiqg to noté for purposes of
R iy N . ’
interpfetation is that the constraint (4.4.10) is written

"

with respect to the square of the distance. Thus it can

be said tHat when in;éracﬁiod&varies as the square of the:

distance, the ééatistically most likely form for the

.
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o « distribution of per capita-interaction is identical in .

form.to the sormal curve. It can also be noted. that
. " . A O
equation (4.4.23) is illustrative of the "funétign-of-a-

- function” concept (discussed by Wilson and Kirkby, 1975, -
80.) iﬁ the 'sense that the normal disf&nce résponse . \

function can be regarded as the exponential of the
2 " .

1 : . ' .
The remaining members of the family of potential .

quadratic term -br

functions set out above are morée difficult to interpret

N
[V
-
- L AN e RO DO A Yooy s gt

~ * Q,‘y a -
in an intuitive manner since they are composite functions;

-~

- equations (4.4.19), (4.4.20) and (4.4.21) each contain two

-~

terms, while equation (4.4.i6) contains three terms.
e - /

. N \

Perhaps the best that can be said is that these composite

T

functions should be regarded as combining the properties

“\

S . 1

of the\individual'funbfions from which they are composed.

©

For example, the gamma function (4.4.21), as Zielinski

N

%l989, 144) has stated "ecan be seen as an amalgamafign of

the negative-exponential and invefse-power [functions], and
'~ has the merits,of both in its flexibility." 1In the com-
" text of the present approach, it can also be safa that'the¢

composite functions indicate that there are combinations

~ N

. .
of constraints operative in the gystem. Moreover, it can " )
. L4

be noted that the degree to which any of the composite

S . -
functions tend to approximate the individual functions

they contain, or the individual cqhstraints on which they "

~e
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are Sased, depends largely on the numerical values obtained
for the parameters in the fitting;of the funetions. For

example, in the case of the gémma function, when bl is

small aﬁdigé is large, the distribution will approximate

the bower‘function, while wggn b3 is small and b1 is large,
it will teﬁd to act like the‘negative exponential function.
In general it can be said that in the case of the composite
functions, the issue‘of mean%ngcbr interpretation is -
partly replaced by the empirical question of which function
provides the best fit to a given distribution. .The matter
of interpretation is then a function of the parameter
values obtained.

This section @is"presepted a\discussién of the :-
indirect, maximuﬁ éﬁgrgpy derivation of potentialafunctions;

In the next section we shall consider the W4nnmer in which

th@\principle of minimum information can be employed...

>

4.5 Potentials Based on Minimum Information Trip
Digtributions )

-

In Chapter 3 the method of minimum information was

introduced as an extension and refinement of the maximum

T
.

entropy formalism. This section explores some of the

possible applications of the method of minimum information

in the context of population‘potentiak, . ‘

Repeating here fogacogvenienée, the Kullback (1959)

information gain is f;ﬂ‘ '

P

\
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Py

~

I(q:p) = Zpy In — , ©o[(1.3.2)1
q
i i
2 , T
where P; and q, are posterior and prior. probabilities . .

respectively. Minimizing this fungﬁion is analogous to .
maximizing the entropy function except that the Kullback
"function allows any additional information concerning non-

constant prior distributions to be taken dnto account

explicitly. In order to comsider mﬁnimum information .and

I
o

potentidl joigtly,\it will be useful to first discuss some
'y RS . .

4 - -~ * * 4 . t
of the sorts_ of pri&r information which may or may not be
- - ) <& .

$ % ) . -.
of relevance to per capita interaction. A1t ghouldtbe el

~ ~
n

noted that this discussion is  with respect to,ﬁbtentialﬂ

g Py y
functions of t ormy which, were derived earlier in the
S ; .

D)

kd
.

chapter. . Man if not all of the types)of informationg

discussed belbw are of relevande to tr distribution

<

models, and in the case of other forms of Jpotential .

- P~ '
(based on altédrnative trip models) these arguments may

13

o~

not apply. : ' -
In the third chapter the example employed in order
to illustrate the method of minimum information concérned ™

.

the assignment of_wonkefs to homes in zones, where the L
zones were of unequal-area. It was ﬁgted previousiy ﬁhap
potential is an intensivesvariable (see Séction 2.4) and,
as -such, the sizé';f‘the.destinatioﬁ zone has no effect

on the quantity; splittihg tﬁe~destinatién zone, for

° - ® .
:
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example, has no effect o:Kthe potential contributions in

-

each of the two mew zones. It follows from this that

> -

_there 1is no rationale for attempting to employ minimum .-

’

information to take priox infoimation~concerning

-~

destination zone ginginto account., VSimilarlj there is

no reason to consider the areas of the origipéting zones

- !

per se as being of relevance in the estimatiopn of

-t

potentials.

-

In a discusgioq of the method of minimum information,

v

Snickars and Weibull (1977, 145) described a number of

~possible -choices for the prior in spatial models, among
them, popﬁlation distributions at past tiqes, and histqri-
cal travel patterns. It is appéfent that data on observed.

or historjical travel patternssare not permissible choices
. -
for -the priqn{in minimum information potgntials of the
: .

form being conséidered heré since potential cbﬁSisQS of .

———

possible per capita interaction rather than observed

spatial interaction. Similarly, population distributions

at past times, when considered as being in the destination

s

. : ) o R .
zones, also are not of releyan%e since, by definition,

'charactegistics of the destination do nb% influence the

a

. amount of per capita spatial interaction. Population

distributions at past times in the origin zdnes would

also seem to have little or®™iro. pertinence to the ~

compugation of present day potentialé.

or

-~

’
"
~ \_

L
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It is apparent that many of the types of priors which

_ore~qofﬁally employed in spgtial’modef building—such as —

« B

. those concerniné‘the areas of the;zones or histdrifﬁfly
observed ‘travel patterns—have no relevance to the minimum
information estimation of the form of potential functions.
This is not'sprprising, for as we hove seen, ' the typq;of

potential functions under discussion here have a number

of properties and characteristics which set them apart

from trip distribution and location models. However there

L]

is a manner in which appr%griate priors can be-chosen for

o e mrRY

> these potengials and this is based on the characteristics
¢

- of the origins. <, ’ -
. : _ The potential at a point is a function of both the
e f ’ characteristics of the ofiginating zone and the . v

attenuating effect of distance between'zo% The latter
' .aspect’ was treated in the previous sectidn, while the
_ former ‘has barely been considered. It is argued here that

there are characteristics of the originating zones, .

besides their populations, which may be of relevance to

\ ) . -~

the amount of pe cagita interaction emanating from them, o7
and that prior probability distributions can be defined

on the basis of such chgracteristics. In the calculation

N

) of population potential, for example, some pfqpertieé
{ ~

of the origin zone which may be of releyance to the amount \\;«/
. of per cagita interaction, in addition to the population
i . . )

- 7

1
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size, might be the number of automobiles there, the income
— .

of the population, energy costs in the zone, and so on.
Such data would .seem to be an appropriate choice for

priors within the context of potential; the;.represent -

3
.

a priori information which may have an effect.on the

— *

Y .

amount of per capita spatial .interaction emanating from a
' % . . )

zone, Stated another way, if such data are known, .and are

©

nonunifotm, tne microstates are not ali a priori equally
likely, and the method of minimum information, rather than
‘meximum entrony, should be employed. ‘

Thus it is arg2e§!that while entropy maximization is

a

of relevance to the study of the effects %f di;tance in~
notential/functions, the'nethod of minimum inﬁormation is
applicabie to the’study of the emissinity of the origine;
tingwfgnee. In particular:it is suggested that a methoi;>
of sequential information minimizing (see Webbef,.1979)
can be fruitfully employed as an organizing framework
within which the characteristics of the originating zones
can be systematically investigated

In the g@cond chapter it was noted that a treditional
ﬁtncern in-the study of potentials has been'with the
correspondence or ‘correlation between potential and other
viriables deemed to be reppeSentative of accessibility or

social intensity. Such’a concern can be construed as an

attempt to make a spatial prediction on the basis of -
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limited prior information, that is, given the populations,
sé}, and the distances, it‘is desired to see how well the

value of some other phenomenon, such &s the value of land,

- .

can be predicted. The discussion in the previous section
ind?ﬁated that one mgthod of attempting to im?rove such
predictions~is to take into account possfﬁle varilations
in the attenuﬁtiqg effect of distance by considering

alternative constraints on distance. Another manner in

—
L~

which an attempt can be made to improve on the predictions,
however, 1s to take into account possible variations in
the effect of the origin zone. Such an approach to this

) 2

problem has been commonplace and is implicit, xample,

in the pfocedure of replacing the population term by some

other term deemed ‘to be more relevant to & particular

problem (such as retail sales (see Harris, 1954)), or in -

weighting the population term by some quantity whith is
seen to be of significance (such as‘ger capita income

(see Warntz, 1959, 1985, 1979)). The method of minimum -

information provides an organizing framéwork within which‘

such adjustments and weightings can be handled in a

sﬁstematic and sequential way. The significance\og the-

o - ¢
method is that it allows an explicit connection to be made

between the constraints deemed to be gﬁérative in some

-

spatial system and the sihe‘offghe origin term in the

- -

potential’ functior. This is precisely analogous to tﬁe'
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manner in which the connection was made earlier between

e
= g

L]

cons%raintg on distance and the form ;f the distance
response function. In fact, and as we will see below,

the method of Waximum entropy is a special case of fhe
method of minimum information when the prior is uniform.
Fhe method of minimum information allows normali;ation and

distance constraints, and information concerning non-

constant prior probability distribu}ions, to be incorpo-

-

°

rated within a single formalism.

'/;’J,dfz’ﬂ/”’fa’/,,,~—%rv@?@iﬁh*of the Kullback information gaih‘which is

appropfiate for a matrix of interaction is

-~
. .
I(q¢p) = IZ py, In A (4.5.1)
; . 1j 914 / :

It is desired to -minimize this function subject to what-
ever additional infoertion-is known. The pieces of prior
information we have can be expressed as follows (now

renumbering the constraints for convenience):

-

’ Py o
z Pyy T (4.5.2)
3 :
IZp,, x,, =1 (4.5.3)
g Pap Tag TR
_ . P
arnd . - ~
qij(i’ j=1,...,n) known. (4.5.%)

o

Here p,, is defined as it waéjearlier in the chapter, that
ij .. .

is,

~

122
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' =‘Eii 5 & [(4.2 j)]
. pij 3 s _ 2. ‘

-

and qij is defined with respect to any nonconstant prilor -
&

distribution as measured on the originating zones, that is

’ s .. o
q = L ’ (4-505)/
ij z 844
i J .
where 8,., is the amount of some phenomenon in zone i con-

ij

sidered to have an effect on the number of interactions

v

between it and j. The prior probability distribution q;j

-

might, for example, be defined with respect to the number
of automobiles in the origin zones, that is, it is sus-
pected that this will have an effect on' the number of

interactions with j. The prior can also be defined with

respect to some measure between zones, which is considered
an - v

to facilitate spatial interaction, for example, sij

{

| .
be the number of direct road, rail, and/or air route

could

connections between i and j (expresgsed as a proportion

of the total number of connections between all zones).

-~ 1

It 1is now desired to find the minimum of the Kullback

Ainformation (4.5.1) subject to the information in con-

straints (4.5.2), (4.5.3), and (4.5.4). Form a

Lagrangian to maximize -I(q:p)

L = -I(q:p) + [(Aijl)g%Pi/P)-z 2

)]
Y| ij

+ b(r-IZ p,, T

13

ij) , (4.5‘.‘6’)
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where Xi and b are mﬁltipliers assoclated yith constraints

(4.5.2) and (4.5.3) respectiveLfﬁf-Differentiéting
equation (4.5.6) with respect to.pij and‘seéging it e&hal

to zero gives

v

—,()T,i;f -lnpyy =1+ 1n gy - 5‘1 + 1~ brii = 0. (4.5.7)
Rzarragging eq;atipn (475:7) and taking gntilogs results
o N ) :o. . -
c Pyg = Gyg exp(Aexp(br ) . (4.5.8)

- -

v il
e

.To solve forAexp(-ki) substitute in “the normgliz;ng con-

‘s

straint (4.5.2) in the usual way goiobtain

Py o .
»
P :]Z a5, exp (- br ) |

exp(-1,) = (4.5.9)

j

and sdbstitufe-equation (4.5.9) into equation .(4.5.8) for

+

exp(-kif to get

exp(-br, ) -

: P, q
- \ S S 13’ .
Piy TPt qijfgxp( —br 3)_,» (4:5.10)

3 - o
Equation (4.5.10) .represents the probability of inter-
4 . . e

action between zones .and it can be seen that the pribg

~

“probability distribution is now included in ‘the function.

/

’Substituting T, /P for pij (equation (4 2 7)) in

N .
. .equation (4.5310) we have . ‘ ; <
, . PP £ 44 exp(-br‘i)
) Iij =3 Z q exp( br )" (4.5.11)
- S F 13
. &'
b 4 - -

- e 24
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Where, upon cancelling the P's, and .again ineer%gng Pj-
B - h -M" - had P ! ‘ ’ P . ) - .
~fr- - -.=  ,in the numerator of the right-Hafd-sid¢ on the basis of

— oy the gravity model enelogy3 we get a trip distribution-

o
. -
., .

. . " model .
e;p(—brid)

P, P, q .
- o1 P Yy , -
. 1|'.‘.j 'z 4y 4 exp(fbrij) b (4'5'}?). L

' o | x

*In order to turm this txip model into an expression ton- »

4 - -
< - . N~

. ' (cerning per capita' spatial interaction at the destination,

it is inserted ipfb the definition of potential (repeating

. . here for ‘convenience) e .
2 . . - . “:b o . T I T
S L o vo=z s CI(4.1.3)}
’ . ) | i Py . )
s~ . ’ -
to give - N
L y o . P, q exp(~br, ;) N
e L v, =T L qiﬂ s brij) 6.5.13) =
, ® . . . . o i )
" T . - . j ij ij @
"~‘4 .. . .
: It should be noted again that £t is only by the Qevice of
h ) i - - inserting Pj in the trip model that it cancels olit of the
. !
ﬁ' s final result. Had P} not. been inserted in the trip o
B . distribution mgdel then it would- appear in the potential
_ ! , a8 folIows ’ ! o
i~q«‘?}'p‘ W 4 ~ ’ w' ‘,‘ . .
) N : P ' xp(=br .
". ‘ Voo . 5 ood 144 exp(sbry ) \
. R . PR A 3 . X - . - .
- AU El ; 14 exp(-bry,) . ,
.r\l N V = '- . ] M ) (4.5014')
kA v . At ‘P, . N . . « 9
{ . j_ B¢ i -, ' f@
. . . o s o
" To put potential function (4 5 13) in more familiar form .
- - : . 3
. we can separate out the balancing factor- such that- |
4“’ - ) <r - . .
. v = z A, P, q,, exp(- br, ) (4:5.15) -
v ‘ 3 Z1 \1 1j "1 2 - -
o | é? | ,
oo . : , . ’
Cono ' . ;
."-_ ) - N 3 ‘J,- ) '\;
N \ : ‘ f\'_ A R— (4 — e
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Equations (4.5.15) and (4.5.16) are id;ntical to equations
(4.%:34) and (4.2.35) which were derived by maximizing the

- . entropy, except that tﬁey contain the prior qij (and _the
distancg response fuﬁctions are different). The assign-— -
ment of per capita interaction with this function will

be direc;ly g;oportional to the prior probability ¢

~ distribution (times the population) .and inveréely proﬂor—.

o .. tional to gn‘exponentidl function of distance. .. ,
- . ’ - ' ¢

L There is a slightly different and interestiﬁg approach
‘ . ’ - - . . i
which can be taken with equation (4.5.13). Snickars

e - . a.
and Wg@bull (1977), and Batty -(1978, 142) have noted that

e a = J R . : e
since qij Sijli'éij’ a result §uch as equation (4.5.13)

can also be written ) .
. ‘ . ' 6

SR Bi sij exp(—brij) .
vj =Pt s exp(-br, ) ? (h.5.17)
. B FE R 13
' or ) .
. Vj-= i Ai Pi sij,exp(—brij) R (4<5~18)
\ I
‘ ; Yhere
h . ' A ‘ 1 ‘ h (4:5 9‘) “
= : - .5.19) ¢
i $§ sij exp{;bgij)
-~ . . - a 3
P Wﬂﬁ“ ; -

-
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Q ¢ ) These equations will give the same results as those to be

obtéined ffom.equatioﬁs (5‘5.15) and (4.5.16) even though

the prior is now expressed with respect to the actual’

; v data Sij (rather than as a probability).

R A furthér aspect of writing the results in the form

o redefine the

§ \
population term in a potential function usi&g the method

of equation (4.5.17) is that it 7llows us t

of minimum information. If s{g is defined with réspect

sto any variable measuyed on a per capita basis in the _

°

e ettt et
<, © o YA fadare X

origin zone, this,will\transform the P, term into the

i =
units of the other variable. For example, if sij is '
- ) ’ defined as éer capita income in the origin Zone, then Y

because the prodﬁlt of .population and per capita income
) is total income (Pi sij = Zi) equation (4.5.17) can be

writtén °directly as income potentiale \ .

I A, 2Z exp(;#r

U, = ’ ". .
\{ h| i i 71 ij)\ ? . (4:5.20)
. ‘ where ‘ -
o L = L ‘ [(4.5.19) ]
\ : i 844 axp(-brij) !
: j I
' . . 0
- The same results hold for any sij measured in per capita
terms; 1if sij is measured askautomobilés per capita,. for
example, the origin term .in the poteqfial }uncpion-wrik
- y - -
be numbers of automobiles. ' ’

l _ N -
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The principle of minifum information thus provides

o " ~ a method whereby additional information concerning the

-

v . . -
i origin zones, or connections between zones, can be in-

qluded'in potential fumctions. -The choice of the prior
AY

{ distribytion, of course, may be argued to be no less

: P arbitrary than simply deciding to weight population by

some -other variable as has traditionally .been the case. )

However, minimum information does provide an organizing

- k4

framework within which such additional information can be

s

e e Bt g A .
. AU
[

systematically incorporated. Moreover, Webber (1979, 140)
has arguéd that minimum information provides a vehicle fox

"sequential model building"” and this has application in

-

the contéﬁt of potential. Webberﬁ¢1979, 140) has
described sthe sequential approach as follows:

The information minimizing research
process...represents a simple strategy:’
Once a social system has been identified,
a small number of constraints is then
used in the first model of that system;
if the results are insufficiently
"acdurate, additienal constraints are
involved. The process of adding .

. constraints continues until the pre- . #
dictions are acceptable, but only those . /-

. \ . cofistraints are added which aifect the ‘

predictions.

>/ Sequences of information minimizing potential funct}ons'
can be developed following ‘this approagh and this yould

"allow for the inclusion of sufficient prior information ’ ;
such that some desired level of p;edictability could be -
N . R

reached. Some of the types of variables_shich might be

s
hed
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considered as priors relevant to potentials are:- agri-
. .)!

culturals production; automobiles, air flights, buses,

trains; telephones and mail shipﬁeﬁts; manufactufing

production and shipments; income; energy cosfs; numbers
of direct road, rail, and air connections; nudberg of

. -, }
éontiguous zones (join counts); numbers of intervening

opportunities; and so on. A form of the Kullback

information statistic which could incorporate m such
, .

variables is

j - vt ;
. *\ Pij
I(q:p) = IZ Pyy ln 3 7 3 = (4.5.21) ”

. ij “qij Aqij qij's'qij -

"or, more -generally v %
‘ \ hd . . ) pi .) . l
- I(q:p) = LI pij 1n'———%— . (4.5.22)
- S m

 Minmimizing equation 14.5.22) subject to normaiization -
- .constraint (4.2.10) and the distance constraint .
. ‘5z p,, f(x,,) = R, C[(4.2.19)]
) BERE S RS
l\ N . ! ’ %‘ ’
and following the other intermediate steps outlined above, _
e - b :
will result in a generalized potential function .
P 1 q® ex [-bf (x 1 '
- . [Tr o Yag BXPLIREE 1@& .
. - Vo= I+ - , (4.5.23)
] m SAGN
1 |00 q exp[-bE(r,.)] |~ o
. ij ij .
\ S i m ,

o

-

>

»
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which says tFat the probability of ger capita interaction )

between zones ié'dirégtly;proportional to m prior distri-
i DA I

butions and-invéreeiy'groportional to an exponential

Y

function of distance. When it is remembered that three

types of constraints on distance lead to seven different

distance response functions, and when these are then

considered in combination with m pr%or probability dis-

®
tributions, it is apparent that the method of minimum h

information provides us with a framework-for deriving a

very large .number of potentials.

The minimum infﬁ%matiou potential function (4.5.23),

. °

like the potential functions Qerived from maximum entropy,

-

is statistically the most likely to occur, given the

information in the constraints. #In fact, it can be

demonstrated’tﬁat information minimizing is equivalent to

entropy maximizing when the prior is uniform. Define a
prior ‘

-
i,

a
q, = =—i (4.5.24)
5 °°%
3 3

-~

_ . g
j is the size of the destination zone (in, say, a

where a

location model) Then minimizing the Kullback information

statistic subject to normalization and distance con-

—

straints will result in armodel of the form

)
, - - i ig
R . pij a, f(r,.) ’

(4.5.25)
z
SR &

S
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A)

where, to quote Batty (1978, 142) M{t is clear that if
2 h

. [a,] is uniform,-that is, if‘fal ='a, = ... = an], then

3 2

- the zone size effect cancels from the model."

o~

~The equivalency of minimum information and maximum -
entropy in the ‘case of a uniform prior can also be demon-

strated in another manner. Define the uniform prior

B -~

A

=1
== (4.5.26)

Inserting thfslinté the Kullback function (4.5.1) we

—~ have

' : I(q:p) = LI p
o =

Pnn + I pij,ln pij .

» ij

" . §§?

. Because 1n n‘is a constant, minimizing I(q:p) can be seen

kS .
13 1n pij n s

(4.5.27)

P

to Be equivalent to makimizing H, that is
Jﬁ, . ¢ )

1 : . - €
.

I

-

min[I(q:p) - 1ln n] = max - ZI p (4.5.28)

In p" R
S E R

where the riéht-handJside is the Shannon entropy (see ‘

Batty, 1978, 142; Webber, 1979, 120).- Thids illustrates .
- . - -
that entropy maximization is a special case of iInformation

yfch the prior is uniform (seé'aléo

W&

ninimization in

-

ﬁpbson‘and Cﬁeg
o t .
ted the

.This’chapter»haqrpresen ind@rectﬁderivation

- \

of ,potential functions through the methods of maximum
' .%i il . - .

- g Fo -

it
“

e
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entropy and minimum informatioa. A general discussion of

the usefulness and practicality of thgse.Qerivaiions and

regulfs w&ll be reserved for the moment. In the next
- ,‘ . 4 A
chapter the discussion focuses instead on some of the

more practical issues associated with the use and

operationalization of the sorts of potential functions

vhich have been presented here. . "

-




* CHAPTER 5 .

OPERATIONALIZATION AND INTERPRETATION

e

Before we consider the methods of calculation afid

.

empirical meaning of the "sorts of potential functions

. N »

which have been defined gbove, we will first reconsider

> .

the issue of the self-potential, now within the context of:

the maximum entropy methodology. This is the subject of.”.

-~

the discussion which fol}gws. -

5.1 Stewart's Self-Potential N

The calculation of the self-potential was describéd in

first chapter as a problem which arises when one wishes

to compute the cOntribution of potentiél per capita inter- .

o

action §f the populatton within a region, to ﬁhe'total-:

per capista interaction (or potential) at its ‘centroid. -

It was pointed out that when the Stewart: form of potential
¥, .

e

(1.1.2) is being employed, it is necessary to use an

‘e&uation éuch as (1.1.4) in order to avoid dividing by

7
zero when 1 equals j. In the second chapter; At was also

suggested that perhaps the best approath to redqolving

the self-potential problem, when possible, is to reduce

the aggregation level of the data. Decréasing the sizes
of the areal units not oily reduces the size of the self-

-

potential contribution in comparison to the contribution

from all other regioms, but also resglgéiin computations
which ‘more closelysépproximate.the integral form of the

&

A\
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Gitewa;g*function (L.1.3). Never heless,- it is not alWa%%

possible or convenient to reduce the level of @ggregation,

/

and evem if such data are available, it still remains 4

s

necessary to calculate the self-potential, however smal
]

its relative magnitude,

L)

In discussing the problem of the self-potential it

-

should be pointed out firgt that Stewart's method of

\ .
assuming a region to be circular, and then dividing the

P
»

ﬁopulgtion byehalf the radius is not 'an arbitrary one. J '

In this case the self—pofenfial is given by

v

) 33 = 2P/r , (5.1.1) "
where r, the radius, is found from ] T ,
. ' ‘ . .
‘ o r=(amt? T, (s.r.2)

“This method is based upon the mathematical fact that the
potential at the center of a disk having uniform density
can ‘be shown to be egual to the populétion divideéd by half \e :

the radius, as will be shown below (following Warntz et al, .

o g—

Consider a circular;drea’bf radius r with a uniform

1971, App. I).

>,

distribution of population and imagine thai this area has N

been pqrtitioned into n concentric rings such that each.

| -4

ring haé the same width, that is (r ). 18 constant.

37 F3-1

Here fj denotes the radius of a ring, where the total . ‘

. o . . M
‘+ . N
y

radius is® R — L.
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. J j_l) _— ) ( 1.3) -

. If the number of rings is large, an approximation to the
integral of the potentiaiﬁgf population at the center of
the circular “region caéwbe found by dividing the population -~

within each ring by .he distance to the center and summing

;- ) -~
% over all rings. Thus’
‘ . ////' d nr,z - d ﬂr(.Z_l)
! vig = L —1 J , (5.1.4)
;! : j r, + r, /2
1 ? where, once again, d denotes population density. If den-

sity is 'held constant, (5.1.4) can be simplified, such .

that 2 2

T PR .
S vy T 2md L -l J ) (5.1.5)

r, + r
g I j-1
_ . . .
Expanding the numerator of the right hand term in the right

H B R A -

hand side gives ’

(rj + rj_l) (fj - rjéh)

~ L vjj~= 2nd § rj T 1 (5.1.6)
. Il
and upon cancelling, we have
4
vjj =A&f5 ? (rj - rj_l) . (5.1.7).

4

Recalling that d = P/an where P is total population and ‘'a'

is total area, and substituting into (5.1.3) results in

-

- 27 B (5.1.8)
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Noting that a ='ﬂr2 we have, as a final result

jj 2 = » [(5.1.1)|]

for the potential at the center of a circular region with

-

uniform density.

There are two aséomptions to be made in employing
Stoyart'sdmethod of calculating self-po;ential as it has
beeniaftlined above. The first is the assumption of
circularity. This is not too oevere an ;ssumpfion since,
as Stewart and Warntz (1258, 144) noted "For an irregular
area, a, not too difégrent in shape from a circle, khe

- =

same formula approximately applies, if by.r we understand

= a,” again even though

-

'a' be irregular." Moreover it\cdn be hoted that for

the vdlue determined™by sett

elongated shapes, Stewart and Warntz (1958) suggested that

-

the'potential at the center may be approximated ‘by treating
the shape as heing elliptical, and calcg%:tiog’the
appropriate gelf=potential on this basis, This can be

accomplished by using the ratio of the semimajor to semi-

£

minor axis of th elliptical region, in conjunction with
the table provided by Stewart and Warntz (1958).
The second assumption implicit in the Stewart method

of calculating self-potential is that whicﬁiﬁékes the
-~ 2N -
distribution of population to be uniform over the region.

There will -obviously be many casés where such an assumption
; )

.
A . . ¢

*

-
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gannot be considered to be valid, and it was in response
4 ';» ) q"’ i h . . .

to this deficiency that -Court (1966) suggested an alter-
k, - - - ] - -

native approach. He (1966, 4) wrote

-

[

{ . The potential produced by a county's
y o population at some centyral poiat can
, - be computed only if the exact distan®e
. of each person from the point “is known
. . or assumed. Such information cannot
- be obtained in any but the simplest
cases. Instead, the manner "in which
. the population is distributed over the N
: area must be assumed, or estimated.
|
)
i

K » Such assumptions -require mathematical —
g models of the popadation. :

We ha&é already seen, in the previous chapter,-th%t t?ere
are a number of possible.moa;ls for the distribution of. -
. population (i.e., the quadratic gamma family, for exqmﬁleh.
Court (1966) himself investigated eight models (uniform,
radially constant, conical,-Rayleigh, negative exponential,
radial nggative egponentia%: radial~linéar decrease, and
: ) half-normal). For the purpéses of brevity of discussion,
we shall only consider the negative e%p;nenfial in further
« . detail here. There "dte a number of reasons fo;~%his.‘ Not:
P only is this probably the best known and most often-used

- ,

of the population density models but it is also derivablé®

from-the maximum entropy formalism, Furthermore, as far

° ag this author is aware, the negative exponential ,has been

' the only non-uniform g%pulation model ever act&ally used iq;

..
I3

order to compute self-potentials (see, for example, Warntz
e,

5 : t al, 1971; Waratz, 1979).

it
o2 SR

———




e e At
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|

\
-
w
©

-~
TN,

-

5.2 Entropy Maximizatiqn and Court' s Self Potential-

In order to employ Court s (1966) procedure for

@easuring~the self-potential it is necessary to obtain ‘a

'Hmodelvfor the digtribution of population overithe region

™

of interest Bussiére and Snickars (1970), and Bussiere

(1972), have demonstgated ‘that thei negative exponential -

.
SN—

populatidﬁﬂdensity model can be derived via the entropy

maximizing method.’ Defipé{a probability

- . " op(r,0) = dI(,r) . (5.2.1)

t

wvhere d(r) "is a stochastic variable représenting the mean

- 5]
surface densify at a distance r from the centre" (Bussiére, .

1972, B89). /[The }erm p(r,8) can be said to reoresent-the

probability of a randomly selected inhabitant of a region

with' total population P, being located at distance rj, \\ ’ -

' -

k] .

in this derivation that the region of interest is circular

.

and the distribution of population is symmetrical about"

the center. Following Buésiére (1972) define.a normali-

zation constraint : - - e ’

’ ' I{an p(r,0) dr = 1 (5.2.2)
! .

X )

o

A

» - - .~ N
The derivation"by Bussiere and Snickars is in con-
tinuous te ms and hence there is no need to employ the
‘method of minimum-information in order to take zone sizes
into account, If. however, one wishes to “derive a popu-
.lation density model for discrete zoneg,. vhere the zones )
are of unequal size, then the method of mifimum information , ~
%pould be employed (see Batty, 1974a, 1974b, foxr..example). © e




c‘-’ﬁ‘ ) f .
and an average distance constraint - .
. B L . T e R
.. 3 . - . . :
[ J 27r p(r,8) r dr = r ] .(5,2.3)
} A 0 * , - ’ .. : -

° o

¢

.

%awhere E represents the mean distance of the population from’

the, center. The most likiely form ‘for tﬁeuprobability.

‘ [ , Q. . ‘.
density fuhctidn p(r,8) is one which maximizes the entropy

t': -t . LI 1 ‘ .
N J 2rr p(r,8)[1n p(r,0)] dr (5.2.4)
N ] " o ' ) ~ . ‘ g
, subject to constraints (5.2.2) and (5.2. 3) Bdssiére

2, - .
v p(r;8) ='%F exp (~br) . (5.2.5)"°
. : ' "'«x.‘k;’
.. -Substitutidby in (5.2.1) -gives . A
- : : b2P &
. _— "d(t)A= ST exp(—br) ~ (5.2.6)
a OL, in more familfar notation, . " e
J ‘e 7, o , - ?
¢ d(r) = 4, exp(-br) , (5.2.7)
¢ | (‘ . " . N -
‘where . . : . ’,
. 2 .
. b P .
. s . ; : do = _Tr_. . . . . (5\.298)

(1972) shows the result of the maximization to be-

Equations «(5.2.6) and (5. 2 7) reg<esent the statistically

'9 i
-~
. most likely form for the dis ribution of population around ;
\the center of a circular region when the constraint is.
~ * q
placed on . the meanﬂdistance and when the effect of distance
‘@aQQ; A ***3 » T Nl A
. AW ‘ﬁ.‘x - i RS » ~ Ve .
sl NI . . .
S Pt 1A .. . -
O Al R ' .1‘ . - oo - -
»5\-' o T e . R p » L . - . -
;:\":ﬁu\\' . v: ' ,‘4‘“ . ' * N 2 ! Ay N Al N R '
FETVRTR S N x-n P - . B ! . N
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. i's :1inear with distance. This maximum entropy result can
’ ’ L S : . ‘

. " ‘.,,‘s\ Vad e ~ 'Y ¢ - @ .
= . now be employed™in order to find the self-potential at the

of the region following the method of Court (1966)

’In his discussion of the self—potential associated

1 ’b
with the negative exponential population model, Court

[

(1966) presented the population function in rectangular

coordinates euch that

L.
Gt I Feiyal
.
v

s

p(x,y) =

-

o
N~

p- exp (-b /xz + y2)~

<

(5.2.9)

NN

where

ﬁthe-coefficient b /Zm,is required for the zeroth

¢ 1)

moment .to be unity;

e e AL RSP
-
-

it has been widely interpreted,
‘ - -~ - e )

‘erroneously, as a parameter independent of b"

~

(COu?r;-lééss'

o .16); Except for the coo;dingﬁﬁ’system,'equation (5.2.9)
'ie'identicél to the-meximum eﬁtropy_resnlt (5.2.5).

: ’ : In order to calculategthe self- potential %# the

i , . -

; 'center of the circular region with -a negative exponential

-

° distribution of population it 1% ne@essary to first defiLe

s

' . . the radial protability density by integrating around.the '

, qircle-and; }n the case of equation (5.219), transforming

o ' ~ » . N ¢
to polar coordinates., 1In this case, equation. (5.2.5), or,’ »

‘ ) f - T,
~ . —_— : 4 -

2. ‘ -‘ |- .
The results and arguments to be presented are not

original but are primarily a restatement of Court's (1966)
original work. ' They are included here partly, for tlhe Sake
. of completeness, and partly because they were never pub-
- ‘ 1ished. and are difficult to fimd. Professor Court noted
i ' (personal communication) that the ditto copy of the paper
- which he sent to this author was the.only one he. had
o , remaining.” The author gratefully acknowledges Professowr
‘ Do Court s asBistance. S A o T ‘
/ ( . <o o e
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equation (5.2:9), ci§ be written . «

) ‘. p(r) = rb2 éxp(-bi) . 7 (5.2.10)

-

where p&r) is the probability that a randomly chosen -

individual will be at distance r.. This is the radial

prbbabilipﬁwdensity, obtained integrating around Fhe
circle; and may be visualized "as the result of sweeping a

board arogﬁd'the‘bivariaté distribution, piling up along
. , - \

A

one radius all the population that originally-was dis-

tributed over the plane"” (Court, 1966, 8).

€

Co@rt ‘atgued that if the‘probability density function

N A 5

p(x).igvgiven, the self-potential at the‘center v (now
. - A ) - r ‘, -~
using’ﬁolar coordinates) can be found by integrating such

that ’ . . .

we

P I T p(r) ir (5.2.11)

]

v
o}

’

where "the integration is bvgr,the;domain of the’Va}iable:
if p(r) represents a population distribgfioq*within a'

LY

circle of radius a, the integratibﬁ“fs from zero to'a,“ if

p(r) is a discrete diSEFibution, the integkation is equiv-
i}& R .
alent to a summation"™ (Coyrt, 1966, 9). Conceptually, this.

- . p .
procedure is equivalent to that outliﬂqd abobe in the case
G X - .

3 ”-
the center of a

of the calculation of ;the potential at

¢ Ve

uniform circular distriBution.
e . ‘ . . )
.. The se1f~potenéia1:i§ now obtained by integrating over

A ’ -

“the radial propability demsity. Thus, if equation (5.2.10)

is substituted for p(xr) in equatidny(QfZ:lL) we have

*
*
.
~
~ °




St AV RIS, T IR GUGENS "lP I 307U ni i Stp i s s o

. . 142
S -0
N -1 .2 40 : o
v, = P r rb” exp(-br) dr , - (5.2.12)
- - o | v - ‘ » .
or . . -
m .
o v v, = P I b2 exp(—br)jgf . (5.2.13)
A 0 % .
A Because hz,is a constant it can be moved outside of the '
\
) integration ” .
v, = P Q? J exp(-br) dr . ’ - (5.2.14)
. : o
R The ;ntegral of exp(~br) is 1/b and hence the fesult is
Vs = Pb (5.2.15) -

& o i
(see Court, 1966, 17). This is an estimate of the self-"
potential at ‘the center. of a circular }egion withfé mono-
cenbric, ﬁ%gative exponential distrﬁbutfon of population,

which indicaqgs thaﬂ the self potential is equal to the

v e

‘ T ’f‘total populdtion times a Parameﬁér b. A numerical valwea
for the selflpétential cannot be computed, however, until
S ¥ - ot : = ”

# - some estimate is obtained for this parameter.

\
Court (1966). noted that, in the case of the negative
Y

. R expgonential model, the percentage of the total populatibn

. contained in a circle of radius c (whe?e e=r/2) can be
v . - - /
calculated from

\

P(e) = 100{1 - (bec + 1) exp(~bec)] . - (5.2.16)

- + Court (1966-, 17) also ndted‘tbat, given equation (5.2.16),

[

"tableg‘oz thé‘incomplateIgamma£function, or suitable chi--
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square tables, yieid values of bec corresponding.to_se-;?,

lected values of P(c). For P(c) = 95 percent, bc = 4.745

1"

‘o In other words, if this value for bc is inserted ‘in

equation (5.2.16), the result/wilp be - -

I

P(c) = 100[1 - (4.745 + 1) exp(-4.745)] = 95%

A\

Having detérmined this value forwbe, Court (1966,)17) con-
cluded that "if the people inside a’ciéélb of radius «r
represent 95 percent of a population having a neg;tive \“
exponential distfifution” the self-potent;al of the entire

population, including the fivé percent outside the circle,

-

is - o .
ég 4 745 P
e 3o /80 b n
VLT T . . (5.2.17) \

. ; . e
E ' "
. '/i P
A

If it is wished to compave this valué*ﬁith the potential
v v . \ . . -

of a uniform distribution (equation 5.1.1), then
- L a

"4.745/2 = 2.373 and PR
v = 2.373 22 . (5.2.18)
o_ : r
<5 : -

o -

This it can be said that for .equally @ized, circular

regions having the same total poéhLations, thé‘sg}fh

e

potential associdted with the' assumption of a peéatiwe
exponential poﬂulation di}tributlonvis 2.373 times greaterg

than the self-potential associated with' the assumption of
a‘uniform p;pulation dist;ibﬁtion.- Comménting on these . .
. : . M =, \‘%’ \
results, Warntz et al (1971, -10) noted that =

. 4
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This is a substantial difference and.
affects urban peak potentials con-
s¥fderably.  As the negative exponen- ‘
tial character of the spatifal distri- .
bution- of urban g%bulation~densities

is by no means irrefutable, such
approximations - should not be taken too
seriously; nonetheless they do provide,

we believe, a better approximation than

do- self-potentials calculated from the
uniform density model, e¥én though it

has its own difficulties.

The maximum entropy approach does provide some rationale

for usi?g the negative exponential population modegl al-

. -~

though,'aé He have seen, this depends largdly on the

nature of the constraints which are specified. Neverthe-

-~

Lesé, it is possible to employ the entropy maximizing

~

formalism in order to derive the form of the population’

-

diétriﬁution; and then "to use the procedures devised by

Court (1966) in order to balculaée the p9tenti§%\at éhe
center of. the distribution. These latter proced;rqs, it
can be'noted, cafl be empldoyed in ;rder to calculgte the
self-;;téntidls‘associated with fmer“othe? than- the
n%gative exponential (such as the qua&ratic gamma family
members) thougb we s;all nat consider tﬁgm here. ’

It can also be pointed:§ﬁtv§haf‘§ﬁxalternative
solution to the sélf:potengial proﬂﬁ%m in “the context of
entropy maximization is éimply to consider fhé results of

- . -
section 4.2 at a lower level of\aggregéﬁwon. Repeating

here fgr.conven, , i1t was shown that the maximum entropy

and staEistic_ mostilikely'forﬁ'for a function

“ -
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= ’
describing potential per capita interaction is
m -

'?i exp[-bf(x
Vj =.?““ T exp[-bf(r
" j . M

1]
)]

[(4.2.33)]

S

— ’ If sufficiently disaggregate data are évailabf@, there is
. #

no reason why this Function cannot also be employedsto cal-

—

culate seif-potential. Suppose, for example, that it we?

e .
3%

-

‘~

desired to calculate United States population, potentials

R e e S OT  RAAE N Mo mie o Ly

using equation (4.2.335 at the state level of aggregation.

-

Lageas 0

If county level data were also available, it would be
= - Py : ‘
possible to ‘employ equation (4.2.33),§pd such data to cal-

' N N
Al

-~

culate the potential at the control péﬁ%t representing the

- "center" offeach. state, and to employ this quantity ég'the

.
I -

-~ selffpotential."This approach would, of course, again

Y NP

1ea7e us with the problem of calculating thg self—potengial

-

of the county in which ﬁhe control point is located al- "~
though, as Qas‘indicgted earlier, the relative size of the . é§

contribution is diﬁinished. And obviously, 1f such dis- -,

1 ) }
E : aggregate data were available, the logical approach woul% .

’ ‘4 .

- ,' be to use them to calculaﬁeﬁall'oflghe\potentials, rather
.than jﬁét the self-potential. . This discussion has been -~
included partly for the sake of complgtene?s vis a vis -

the maximum entropy‘approach, and partly for the purpose

. of illustrating that there @ré alternative methods of

calculating the self-potential, The latter point could be

- P —e
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important 1f it were desired to empirically test and

-
v ~ . =2 NS b -
- : compare” the vafious methods of .computing- self-potgptial.

&

Consideration of the'tfpes of‘épproaches to dealing

with the self—potentialzprgblem outlingd aboves~is, of T~

] . -

course, predicated on the assumption that there is a
; °

problem ot dividing by zero when i = j. Within the quad-
- -
ratic gamma family of functions this situation occurs only

for thosé members coﬁtaining a power function: (1)“the

TF

PN

quadratic gamma, (3) the normal. gamma, (4) the gamma, and
? A ' ' g
: - (7) - the inverse power. For the remaining three mefibers of
a ) - ..
the family—(2) the quadratic negative exponential, (5) the

negative exponential, and (6) the normal—the problem of ~;z

R ot

dividing by zero is non-existent since tH&y do not contain

a power term. The latter three functiong contain only .

’

exponential terms and at a distance of zero, the exponentfal

-

is finite,‘;h;t fs, by definition el = 1. But although the’
.4 " * . .

'/pureiy exponential functions avoid -the techpnical problem .

- -
\ .

.0f dividing by zero, they do 4dntroduce what may be a

conceptual- problem sinée they will result in a self-poten-
tial whichais simply equal to—the ‘total population size pf,'

N "
2

)
s
%,

the region., If this 'is unacceptable, then it will be
.o . ¥ . - .

negifsary:to‘emplof’one of the methods discussed above.

w5 -

K Fihaiiy, it can be noted that there is an additional

and alternative approach to the calculation of potential

which avoids the problem of the self-potential~entirely.
~ u* = ) ™

i - " - 3 v . -
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. This method, suggested by Goodchild (in conyetrsation), is ~

e o o e Spm PATESTIRIS
.
. .
.
.
.
PR aasnan ol

.% . to '‘place a sufficiently fiﬁe.giid over the mag”gf‘intgrgat,

. .~
and then to calculate the potential.at the Intersections

of the grid. 1In other words, the summation would be-over . b

iy

the i's' representing areal c?ntroids in ‘the usual way,
) &
s i - .
- . but the summation would be at j's defined: as the.grid

>

‘ . N B )
Intersections (assuming, of course, that no data point

TS TR TR A el e

: £ - . :
“ . coincides with a grid point). /Altbough this appgoach will

0y

be slightly more complicated in terms of defining the

e o e e
) T e o

T - grid), it héé‘a number of advantageous properties. In ) :
addition to avoiding the self-potential problem, the grid
method allowé‘a choice to be made with respect to the %

\ ' resolution level of the results, pfovides a uniform dis-
f % - ) ol
tribution of destination control points, and,; in light of

- these brqpefties, can simplify the contoup}ng process

P (whether automated 6r manual)w .. ..__ ’

Hawing conéidered self-potentials within ;he context

P4

of the entropy méximizing.paradigm, we camn now go on to

",

discuss some of the issues aﬁd prbblems associated with the
calculétion of maximumggntfopy and minéggﬁ informatiop
" ’\\potengidﬁ functions.- In particulér thé poiﬁé'will be made
- that-employing ;fpo;ential,function with an "_aciljz.;s.t:abl'e\"‘r
45 . distaqgg response function (that is, with parémeters) c;n
" result in a potential surface which is,virtually idéntiéal

" e . o > -+
to the~density surface from which it was constructed. . The
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.- discussion will focus, once again, on the negative expo-

nential potential function (2.6.2), though the arguments

-

Lo be presented apply.to the otlier members of the quad-

-~

ratic*gafima family of potential functions.

5.3 Céleulating the Petentialg

One fundamental difference between the potential’

—

-functions dexived eariier in the precedieg chapter and the
Stewart fofm of potential, is that all of the former con- ,
tain one or more adjustable parameters while the latter
does mnot., 1In Ehe derived potential functions, b is a
parametef——the slope of the function—which is associated

with some mean distance, The introduction of such a

-

paramefer in a potential function leads immediately‘td

computational proifTe ' - .

7
- £

In the calibra®™on of spatial interaction models there
. _

. - L] .
are two -basic approaches to eetimatfhg the value of the
. . - : ’
parameter on distance. 1In the first case, data on the

- \

total or mean trip length (or cost} are available and are

employed as a calibration target. The calibration process

“involves the adjustment of b in an iterative procedure

until the model distance matches the observed distance

v

2 _
(see Hyman, f§69; Baxter, 1973). 1In the second case, one

jr more measures of goodness of fit, such as the corre-
4
lation coefficient or standard deviation, aﬁe employed as
- , &
the calibration target. In this situation, the b parameter_

- } «.

¢

W
}
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(and perhaps others) are adjusted iteratively until some -

satisfactory degree of fit between obsgfved npmbers'qf
’ Ve

txips and model numbers of trips is achieved (see Batty,

*

1976a). Both of thése methods of calibration assume the

existence of data;concerning.the‘nuﬁbers and lengths of

-

- .
observed trips and, because of this, neither can be

directly applied to the cbmputation of a‘popential

function. An indirect approach is\required in each case

and we'shall now consider these in greater detail.
Suppgse/we ;:;—intereéted in comstructing :!!!gential

.

sufface based on the negaéive exponentiaf gotential .
function (;.4.22). Some value for b, the sﬁope of the.
function, is nequi}ed. The first method of calculation
assumes the existgnoé‘of data on mean trip length. Inso-"’
far as a pbtedtial,Surface is\consgructed from a demsity
sugfacé, such data are never directly avaiiﬁﬂle and an
indirect approach is required. It iqﬁpossiﬁré, for exam-

ple, to employ the Stewart form of theﬁgunqxion to find an

average distance

N

T Ves Tay o _ _
T vij = r .- - (5.?.1) )
ij

, 4 - ‘ :
With the Stewart form of the. potential function it cam be ° |

e in that - )
noted again ? ) . e - ~

14 = Pi/rij : [(%.l.})]'

e
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and
S I v,, =V . (5.3.2)
1. H
_

Hence equation (5.3.1) can be simplified to

?

. (5.3.35

or, since summing P, over both i and 3 is equig&}ent to

i
adding the total population to itself n-1 times‘ B

-

P(n-1) _

v . (5.3.4)

1

Equation (5.3.4) ‘indicates that if‘the sum of population,

the number of regions, and the sum bf potential are known,

,/
e -~

an average diistance of potential\geg.cagita interaction

-

can be specified (such sidplificatibns‘are 6f course not
k=3 -
possible for other forms of the distance response function;

-

it should also be noted that this measure 1is exclusive of
the distance associateé:with self-potentials).

- The average distance associated with the Stgwart form
of potential can then be eﬁﬁloyed to derive an estimate for
b in‘thé negativ? exponeﬁﬁial potential function;\ fn the

case of tye negative exponential it 1s normally assumed

that the b value equals the inverse of the mean distance

(seé Brown and Masser, 1978, 67). Thus . : !
- § --.‘ ¢ : | ’ “":
. " b =X, . (5.3.5)
r L . -
, \ -
. ’ t
“\;ﬁ&m . N ) J
.. ’
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and for poéenﬁial this can be given &irectly as the in-
. {
verse of equation (5.3.4).

v e
b = m . (5.3.6)

. The resulting value for b can then be directly émpfﬁyed
-to construct a potential surface based on a megative
exponential distance response function. This 1is obviously
a very roundabout method of parameter estimation and would .
probably be upezul only when one wishes to directly com-
pare pdfenfial surﬁaces resulting from the Stewart and
~negative exponential forms having the same mean &i;tance.
—

-~ The second method of parameter estimation, in thi;caae,

of spatial Interaction modelling, assumes the existgpcé~

P ‘ of data on numbers of trips or-interactions_getween o
_ regilons. Again these data are not available fgom the ') .
| denéity data embloyéd in the construction of-a potentisl '
surface., Furthermore it éan be-pointed out that were suhﬂ
- e

data available they would, by definition, represent ob-

. v served sgatial'interaction.d Hence, ‘it would be more

/
!

appropriate to employ a spatial interaction model which

| - ’ 4

contains a term representing destination attractivepéss.

These same argumenﬁé would apply to the practice of using

.o P ’ o £ . .
interaction data to estimate b in the power function

- .
[

_‘potential as described in section 2.6.

-

It is nevertheless possible to employ statistical

A

protedures such as least squares in the calculatiom of
N L - * -

!
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poténtial functions .although once. againy~an -indireet - - - - - o .

-

approach is-required and, a& we shall now see, the use of . ..

such procedures raises serious questions about the nature

and purpdséfof potential. Suppose that we are interested

i&ﬁthe‘relation between_ population poteﬁtial and the °

value of land. As was suggested in section Z:Zf the usual

though often unstated hypothesis is that it is expected >

that such a depéndent variable is more highly correlated p

¢
~v}itt)l population potential than withﬁpopulatioo density.
With the Stewart form of potential, testiag this'hypothesis“

relativél% straightforward matter; indices are con-— N \
and conclusions,can be «

is a

structed, correlations calculaged,

- . . -
= b

‘drawn. If the hypothesis is supported arguments'can be v
made’ to the effect that accessibility, as well as popu—
lation density, plays a role in determiming land value, .

. -

With a potential function with adjustable pArameters,
. . . ..

howavef, cemplications. are introduced. -

-

. In order to employ a pdtentiai function such as the

-,
Lo

negative exponential in the absence of data on mean .
4 - L4 ]

diglanceé, it is»necessary to- Fit the\function directly ) ;

to tha dependent variable.‘ In the 'case of equation (4.4.22),

o~

it would therefore be possible, for example, to adjust b .

o ~

iteratively until the highest possible correlation wad ‘4

.t

achieved between land values and potentﬁals. Tbis pro- ¢

~

cedu;efwodld have to be repeated each time an additional
v . . .

3




Py

~_dependent.wariabie.is~t0'be examined and’dt.canvﬁe ;ug—

-

+ . “:"9

et i s e e s rvmre e i i - s i ey = v e e

gested that in virtually every .case it would be expectedl

¥

that the correlation between potential and the dependent

variable will exeeed the correlation between the density

v
-

,and the dependent variablé‘as a result.of the introdﬁction - .

- 5 -+
> ot -~ . -

of -an adjustable parameter in the potential function.(

As just one example of the effect of such a parameter

.. . Al

it can be noted that log population density against log
A\ M

Stewart forpsof potential giyes a-Pearson correla;ion of t

. o - .\ - \.:‘ . . '0- . ,?c;. . ,

0.89 for31970 United§3t§tes nﬁbulatiOnrdata by sfates}

(this is identical to the result reported by Goodchild et
al (l98h) for 1975 data) For an unconstrained negative ° -
expohential pptential function (equation (2 6. 2)), using

the average distance defined by equation (5 3. 4) as a .,

’ /

- o

i calcufation target, the c&rrelation between population ¢ N

e

. s

potential and populationﬁdensity drops to 0 73. However a“ Co

if the b parameéer is adjusted to maximize the correlation,
L & .
the csefficient rises, even with a. crude method of adjust- ,

] L}

ment (ten percent teductdnné)“ to over 0 96 With'she

use of more refined techniques mhe correlation between '

lo§f$6’ulation density and log population potential gould-
A\

exceed 0. 96 when a negative exponential function is en- ) .
i r o ) : :

e e, "

ployed to calculate tﬁe potentialsrh The 1ntroductioh of

- . 3

an adjustable slope parametér'allows the researeher to .

. N N
e e MY i -

dncmease or decr ase.the slope of the potenuia1 function

PR
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-in order to make the surface which results from it more

P
. \ .
¢ . .- J T . - - - A e s s

» closedy resemble some .density surface.” This, in turnm,.’

1ead3‘to‘brpb1ems EOncerning'the empirical meaning of- the

- 3 ‘ :

- o irface which is the subject of the discussion which \}‘

0 o . o ®
follows. ./ *

S.4 Interpreting the Results Vool
It was pointed out in Section 2.4 that the conven-

e

. ’ [ - ‘ .
tional Stewart form of & potential surface can be regarded

as anm averaged or smoothed version of the density surface ¢

g . g S .
. - fram which,ft was constriicted. It can further be sug-
-~ b ‘ R 9 ? -

. ' gested that it ig this very property  of a potential sur-

'

. face which distinguishes it from the densft§ surface and
4 . - *

which fakes 1€ of interest. Such reesoning‘is, for exam-

14

~

- plé, implicit in the hypothesis steted‘aBove‘edﬁcerning
land values.’ 'However, in a potential fuhction with an . ' ,
N agjustéble.slope pafémeter, the greater or steeper the

~ v 1

;slppe} the more’clpsely the potentiaL surface resembles

* W

the dengﬁt&'sutface[ Consider the correlation between

o

- population potential and bopuleﬁion density describede :

aBove,'as an irlustration of "this phenomenon. It was
L . ) R el ’

reported that the co;relati&g,.w;thumore.refine§~methods- -

<. ) of’cékculation‘ would exeeed 0. 96. This of .course Eug—

. s . N R . N .
¢ ~ |1 .

- e _gests that the negative exponential potential surface"

. . _ merely replicates g&e population density surface, the. e

¢ 4 o

& ) calculation of potential is, in effec% redund&nt in such

&

a situation.

. . . . . - K
oo i . : B - ~ R , )
- ' , N . f R ]
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- The role: played by the slope parameter 1's undoubtedly

g o . o .- el
T the major complication introduced by the inclusion of an
¢ "adjustable distance requnse:function in a potential L R
A , o equation. In the situation where the'Stewart form of the ~
a . . o . . . . L
E 2:‘ .4 , ~ .

function is being“employed,lno anaYogous problem exists ’

£ because the potential surface is, by definition, smoother °
3 ? \ . than thé density surface, In the situation where‘the<best
% ’ ’ fit between a potential surface ahd some'dependent varia-
. % ] ble is achieved with a steeply sloping distance respondA‘ g
*%' ,““ iunction,hon;ver; the implication is that the original n )

r.: ‘ density distribution may be a better predictor of tbe lc
. k‘.‘ dependent variable than tne potential[/ Stated.anptH€%~way
B ,' it can Mt said that the greater the effect of thitdistance
s ' response.funetion, the greater tme“correspondence between
0ﬁbtential and‘tbe'density'variﬁble employed:ég daiculate I
- ’ ; oo b : T, ‘
-1 ©fhe potemtial. N . L -
e A mnch moné severe Gerionﬁéf this-problem can occur,_mﬁh“r’
) ‘whenia steeply sloping distance'respdnseﬁinnction'is« .
T employed in combihation with a gzandard measure oé%self— ,
. B = pot:ntialj In‘Qas indicated‘abbve that the self-potential

v N - - - ) -
N . -1ls usdally .the dominant term in the potential summation.s -
- .E . 1 e — . « . . .

. o
.o . - ~ R . . \

If such séif-potentialé are‘combined’with a distanee

v

response fnnction which minimizes the contribution from

<

o

= B ‘other regions, the resufting potential surface &111 be

&

J -

) , ) ,'very similar to the originad density surface, differing, ) :
:: ." ,:H v . . . . //// L - N - , , - .
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, for the most part, only.to the extent that the self-

-
]

. ,‘hpoteﬁtiﬁi;fa ;'tegfﬁn &iffere‘freﬁ the pdﬁuiatiaﬁ‘ﬁan{ty

on that region. Thus if we write a power function pofeén=

]

= - tial with the self—petential explicitly included

ByTyy v, s (WD GLAD

- o . “'§ ."
1 it can be notedpthat as b becomes large, I P, r
] . el i

iy

-b
1 Tij

approaches zero, and the potential approximates the self-

v

-l \

potential ) ‘ S i

> V = v . .' ‘ : ) (5.4.2)

The only.signtficant'difﬁe;ence between the ﬁoténtial -
7 . : . [ i \ .
. ro surface and the original density\surface'wffi Be in the ¢

-

— . ~

» @‘ - N
degree to wh{;h the self-potentjals differ from the den- -

v554 sities. If we write density as . . .

' T T e . SRR
. Ce : oy ;i -, [(2.2.1)]
&’ C e, . o . i .
and self-potential, &s defined 1ﬂ the first chapter, ae -
. . . gf .. .

® v .-

. ~ 2P, 3541> . S
o S . R e B ) I N

- 4
s 4 N . * 3 .
] 5 . . B
L2 h - P . »
. o ) . .
. = - : O B * @
. ”

- - » ~
‘A "~ N .o . - / |
. . . - N . . .

.t \
' . ‘ the similarity becomes obvious, density varies with area B
o e
- while self- potential Varies with the.square root of area.
i ‘ If e, vere to employ a constant distance to evaluate o 7
o N . .. . . - . e
,fi. YL - jself-potential ds has sometimes been the case (see belqy),
— y n:‘;.m . - 4 ’. . % - .
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quest fe;?higher correlations and oblivious to the

bined® effect of b -and

the'selﬁﬁvotentlal Will'simply be a constant proportion

the population size of each region. o ~
- . . L - -
The problems associat®d ¥ith slope parameters/ﬂﬁd

self-potentials in the talculation dfrgptential functions
Have not gone entirely. unnoticed by other researchers.
Houston (1969) for example, studied the effect of both the

b value and the self -potential in a’ power £unction market

potential for the USS$R. Using constant distances r

33 /

calculate the self potentials he found in the case_of’ the

e \

=

i3
8,

fpllowing pairs™of parameters—b = 1.25, 1 km;

b=1.5 r,, =1, 8 km; b = 1.75, 25 km; and , -

33

2.03.-rjj =

was never less

ryy ~ L

1, 8, 25,.and 50 km—that the self-potenfial
. a .

v -

b

’

than 97 percent of the total narket poten-~

tial. He (1969, 235) concluded that "the findings here co

~ 7 .

in*the

we A
.

com-

prompt  the question' of how many potential studies;.

7

have managed only to replicate

; |

33

the‘&istribution of the mass Variable." Houston (1969) -

also cites a study by.Ray (1965) as an example of this type

2 —

of occurence ‘mting *that Ray' s values for b of 1 42 and
oft S miles resulted in Houston 8¢ OWN. study, in a . Y

narket potéﬁtlal in which sélf—pbtenti@l accounﬂed on’the

¢

‘. daveragea for 97 percent of. the total market potential with ’r:’/

N (

.

onlx one’ pointh out of.128 at less than 90 percent. This

‘

JJWOuld suggest that tﬁe‘qgrrelation between market pot_:ent;ial‘i -

P

v
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.

and nanufacturing~ﬁhich Kay (19Q5)~found for Southérf -

Ontario was; in-essence, a cofrelation'BEtﬁeen.manufactur-
¢ ’ a .
"ing and the retail sales data which.were employed to

construct the market potential.

-

-/ In'addition to these complications which are intro-

duced as a result of allowing the distance requnse func-
" tion to wvary, there are those 'which will result from also
allowing the pobulation or origin term to vary by ed%ing

priors. The sequential apfroach to adding priors has

already been discussed and need not be nepeate& here. It
- A . * & ! -
* can be said, however, that allowing the relative magnitude

\

-

of the origin term to be changed and édjnsted,quite simply

adds another vatriable to tﬁ% analysis. If the goal 1is

to study, say, the correlation between potential and

P4
\

“some other quantity, the consideration of a sequence of

priors will furtﬁer“conpficete the testing procedureés. -

9 L. AN

other words, 1f we were to first'Set the origin term

" equal to Pi and then find the distance response function

e

and b value(s) which gives the highest coefficient of*-

3/*
correlation, it wouldAnct be appropriate ‘to- accept this '/

- v

',r'result as given and then go on to consider’a sequence of

g

priors independently. Rather, each time a new.prior was

added in the attempt “to” further improve the goodnes§ ~of - fita

. - [

. it would also be necessary to once again evaluate all of
the distgnce rESpgnse functions sinceé some alternative




.

N B
i’y R -

! -y -

distance regpdnse funqtiog;.3f~somg alternative b vﬁTge(s),-
6igbt ngﬁ’provide'better results. e |

\ In conclusion it can be. said that there are 2 number
of problems .associated -with the calcdlatioﬂ of potential,*“ﬁﬁ
A B ifunctions whére the ,diStance response function éontainswan.
é ] " adjustable slope, parameter and where,_alternative priors
qan_be added. Such problems would be further agmpouided
for functions with more than onme parameter (a discussion

. 2
of parameter space search in the' case of more than on%e

i —

parameter is contained in Batty,'l97653.f It has been

shown that not only are there practical pfok}gﬁs, but also,
£y o ~

=y

that there 1is a_very real dahger of constructing mathe~.

matically fallacious and redundint potentials. This. is

not to argue that the use of alternative distance functions

X - and sequences of pfior;_}s_considegéd to be inaﬁpropriate.
- Rathgr the purpose is-to suggegfﬁ%hat as much afggntiqn
N should be given to theecorrelation betweén thﬂ:two,w f'
- . derisities as to the:co;relﬁpionfgetﬁeeh’;he depggdent
density vzziable and the péteptial. . < : '
- P Before proceeding, it can alsolﬁﬁ?hoted_thatqflfhough
o ". the inifﬁdﬁktiqupf'additional donsxfainfg and hence 1;:;
; :éddifional parameters will ﬁormally iﬁp;dbe the fit of'aﬁy
v . .
g _ particulep_function, this not 6n1yg;@p1fes‘tﬁé use of'mopg
} . #wmcomplex nonE%naar’fitting procedures, increaéedgcgmpﬁ—
;’ -~ ‘ ' fational césts, and redﬁcgggeffié?ency, but alsg resulfst,
PO ") ‘. . | ) ‘&‘_:ﬂ; " PN ‘ e . |
N . . \ . . .
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. . " in the loss_of one,degree of freedom in.the eBtimation’ for

”
t

T T ’ each‘addffionéI'ﬁaramEEéf‘infrodﬁcedJ(Eéé’nndfuiis,‘1981; L
- O - B T j ’ > P o8 - . ’
- 240). Moreover, as Zielinski (1980, 144)% has noted, "with | . |
- - B . , ~ ‘ - .. l . ‘- .
each parameter added, a model inevitably gains in accuracy

N . ’ and loses in meaning." - ’

, 5.5 Summary

A summary of some of the important properties of
R .
- potential, .and potential functions, as discussed through-. -
out this stud¥, and particularly in the present chapter, .
- ) t AN
is as follows:" ; . . -
‘} . ;

—l‘,

1, Potential describes spatial interaction only-to the

-ggtent that the interaction can be considered te be

on a per capita basis at the destination.

2. Potential is an indek of aggregate accessibility; the

hiN

, . 1 h t is is that it will ‘Orrelate str 1
. usua ypo hes ,ﬂant c e strong y

with wvariables which can be expected to vary as a

!
’

. function of accessibility. x'gﬁ .

3. ‘:Constraining the origin term “in a potential function

has aneeffect on the resulting form of the potential

-

Ee surfac&; all other things being equal, an origin con-
strained function will produce a "flatter" Surféce

+f - . “ than an unconstrained function. B .

R . »r

N Ed
- . - 4., The number and/or configuration of control points can |

affect the nature ‘of a potentiai_surface, the fewer
or less~dense the points,”the smoother the surface.

[ . . « » P P

-, -
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The self-potential can;wdepending~on-the~ieve1~of -
spatial aggregatiqn,_be the domipant term in the sugy

s

in such éases this suggests that it can surrepti-
p > -

tiously play the role of a destination term. . -

Potential is an intensive variable; it is therefore

-

necessary to multiély by the area of the destination
' - N\
region when cadculating the amount of potential =

outgoing from a point. \

In the calculation of a potential equation which has

a slope parameter in the distance reséonsg‘function,
complications tesﬁlf‘trom the~use.of dens:;yfrafher -
an additionalh -

than interaction data; in particular,

density Ygriable bt data on mean distances are

e
required as calculation targets.

‘Steeply sloiing distance té?ponse functions can result

in reduhdantvpotentingeurfaces‘which replicate the

¥ an,

density surfaces from:.which they'were constructed;

w

this problem is exacerbated when the self-potential

. il
is included in the, sum. -~

i \ N

The definition of potential 'as an index of aggregate

B

accessibility” implies that a potential "surface should

be "smoother" than the density surface from which it

B
.

wag constructed; thisvwiil not necessarily bewarue of
functions with adjustable SlOpe parameters but”’ is, by

definition,

- v

true of the Stewart form of potential.

,

it

»%
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e ’ h Given this discussion of some of the practical
problems associated with the empirical .use of the derived
) . potential functions, we can now go.on to consider some of
the more general issues which result from thé joint con~
. sideration of entropy maximization,.information mini-
o P “ &
Led . 4
3 mizagtion, and potentia’l.{
4 : 3
t‘a“ - it &
"3 .
+ ,/—~—— ‘ ~ -
. . ) ,
. N w;:' -
- E _‘ .
~ ~ . ) R
e . .
. »
T
Lt rs ¢ y
- <
K e, ’. ‘ " "
v\‘ | - ’ | )
v N . N
&
y o = o
. » N f. (A/
, 7 :
\ B . .
l- N R .
. B v . !
3 . . “ v
,w . ¥ . N “: - -
. N - N e s .
- N >




[

*

gean’

F— B e LT PP

S .?ﬁ...,,_- e UV R o
> 3 .. T A

%,

~

7

.ability of.spatial interaction betweén 1 and j. The mini-

» ~
= CHAPTER 6 : T

Y
t

REVIEW AND DISCUSSION -

6.1 Sumhary of Results

. - \ ¢

Throughout this study éntropy makimizaé;oﬁ and infor-
mation minimization have been treated and discussed as, if

ﬁhey were separate entities. Thiis, istinction :l.s,y’somc\a;fzhat's
1 .

artificial however and has been md ntainéd primarily

'Because it corresponds with the historical evolution of

the methods in geography. It was demonstrated that maxi-

mum entropy is in ﬂact a®special case of mihimﬁ&Jinfor—

- mation and it foilows from this that this studyl g:ou}’&ave

- ~

been organized principally around the method of minimunm

Ed

information, with maximum entropy treated as a special - &

4
3

case. ., _ . -

-

It can be said, therefore, that’the*study undertook

to derive probability disgributign estimates, and trip

.

models, for potentiéis by minimizing the Kullbgck (1959)

-

information (mow reﬁumbening for convenience)

-

- P
I(q:p) = LI p '1n/——il— ‘ (6.1.1)
. 1j m
43 I gq
ij
m L

where pij is the posterior ﬁ%gyability of spatial ;ntér—'

action between zones i and jéhnd‘qij is the prior prob~-

—~

mizatien was carried out subject to constraintd of the form

”

-

- 163 = .
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§ . . * * Pi ) )
. . - :‘ . b Pij ‘=—P-' K (6.1.2)
-~ > . h ‘ B
. . -
—
iZ pij f(rij) = R~ ,. €6.1.3)
3
and £ ‘ N
; .- 4 = (i, 3.= 1,...,n) known . (6.1.4)

:i’?:»“ -
The result of such a minimization, after following the

E N . -~ . .'
intermediate steps discussed in Chapter 4, was shown to

L ° . be a potential fufction—

¥ ~ ° m
V, =L A, P, T q,,. exp[-bf(r,.)] (6.1.5)

© J ’
) N\ IR S NS & ij7°
where .
E _ A, = —— : TB:1.6)
, LI q,, exp[-bEf(res,)] -

3 j m ij " ij @

.. L
* ~ . . o . -
This is a generalizedﬂpotential eﬂuation which allows for |

changes in the effect of. distance and .in the emissivity of

P

the originating zones. The form of the distance fésponse

.fuwbtion exp [~ bf(rij)] depends on ‘the form of the éﬁ \

constraint(s) placed on distance in edyation ‘{6.1.3). The

- F- population term PJ can be Weighted, or redefined, by mﬁking
the appropriate choice of the prior probability distri-

» S~ a \ . ‘ ' . .
. bution qij in constraint 6. 1. 4). . ] -

B TS O IS NP W RSCUCRIT A bt st s o2

If the prior is uniform, or equivalently, 1f there is

oy

,* no relevant ;Liot in{ermation available, thenrprogi%ility




| - o f »
.

-

distribution estimates, can be ‘gdtten by maximizing the

o
H]

Shannon entropy . ".

- 2 a

' - H = -If 1n. p, 6.1.7)°

} : = Pyy 1nPyy (6.1.7)
. ij . \

. @ ) ’ 5 N N -

subject only to ‘constraints (6.1.2) and (6.1.3). This ~ £
results first, in a trip modél,‘and then in a potential

function . . -
\® \
exp{-bf(rij)] o (6.1.8)"
\ . ‘ .

\A

S : )
,Jj . )

¢

.7 Given tth*%?ief Sumﬁary of resulits we will now l

. \ i X
proceed, In 'the remaining sections, to consider some of

A
’

the a%tenddni problems and issues which arise iﬁntﬁe con-

-
-
N >

text of minimum inforﬁatidn; maximum entropy and potential.'

° [

v
b, - . . .,

.a o ,
6.2 Critical Retrospective , : & = *° ,

4 ~ .
Py R .
N L]

Inalook{ng back, perhaps the most ;ppxopriate’thiﬁg .

thaé can -be said (to paraphrase W%lson (1970, 69)) is that .
’ o ’ -

° .

the concept of potential doges pot‘éapily lénd itseif to -
- -::'.-o g :\,_ .' o T .
entropy -maximizing or information minimizing gsqymptions. x
{

\

LY

We héve‘seen’that the constraimts normally employed in

. . R . : .
. "engropy and information modelling 'present problems when.

'Z;considered'withiq the dontext of potential and we have
'-t e N v ~ -

’ —

b
; —.

séen that this, in turn, leads to pthgméﬁic@difficuitieb'.

PO -
- .

el
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o in the use and_operatidnalizafion 6f the resdlting,potenv R
R . L ’ -
* tial functions, Thereﬁyere two general sorts of. prob) :

‘' , .

C ‘Lms, both closely related to two- of the three types of C .

2 N 2 . o 5
) constraints considered. - — T Lo e
Distance-Constfaints'——fThe vatious'distance,response\'
I ) S S

‘ functions}which‘can be'detfved for p&tentialheqnations~h}}“'

* the methods of ?axinum‘entropy'and minipum information ..
; : . T . ; Lrom ..

were shown’to;result from‘constrainfs being placed ontfhe-
s "

S - 'l'

e ©  mean distance. Te was argued that actual data concerning Cw

. ‘4, . 7
% ] et - ’ ~.""53 8 A

; ’ ) average distances need not be known 5 griori for this

e

information to be’ includgd in the maximization or R

= -

.. “ “
o minFmizatiqn. This vds fortunate since “such aata are

° :'

generally not - available for‘potentials{ the average dis~ )

, A . ot ~/‘
tance of pdssible per capit spatial interaction‘is not o

R .

. known priori but is an a posteriori result. lthfqllows .

. . . « from thﬂs t@ thetpotentials cannot be calculatedtso" Y.
4 . . - . - - . ,\\/ ] N

as to satisfy some known average distance,‘as is the

< . \' (4 o

case with trip.distribution models., Rather, they must be

.
° - -

L - calculated 8o as to-maximize or minimize gomé measure of ..
el fit between the potential and some other variable.- This
oy . R ' '
- ~means that ‘the &erived potential equations cannot ‘be

- ,‘ ,employed to construct potential surfaces unless some C 7
. - > \ ks,
additional variable ‘is employed as s calculation target

ar® z 2 6"

..-——-——'—“d*:
] <o ~ or unless the, b’ values in” “the ¢ distance response functions

, . are arbitrarily seti . 5§ d -J‘h: Co e

. T C . *
' . [ . .. o K . R N *

2
-
P




A e .

’0‘ tial equatious whiqh have been presénted here (other than
. X R

'*.\

the Stewart form) yet as far as this\autﬁor is aware it has

neve&,been iscdbSed crdtically\in the 1iterature., Many
. é

.

authors, for example, have prgpoaed_gegative‘exponential

potentials but none have discussed extensivelywthe problems %

- '
* v . . -

.of\ealculatiod'and'daterpretatiod whicbf?his entails., ,
PR . . ‘ I'4 . '§'~ <

»

. -

o portation study done at a different point iq time and at .
. o, < "'e AN

. . a diffenegt level of aggregation. /I%ey (1976 40) noted

LR -

B the*inconsisteﬁcies of such an approach, but'used the . ‘%ﬂg?
o~ .1 . . _Q.. . t o A [

values anyway.,cSimilarly, Weibull (1976 372) employed @\$

‘ travel time to work in Stockholm* apparently also gbtten S
. - ’,’ ‘- - ‘, . o _

"u,. from an. earlief‘btudy, in order to estimate accésEﬁ% 1{ Yé T e
. 9 .. \v‘" M -

V}ckerman (1974 683) 1ntr6duced a negative exponential i*{*

.

potential quatimn, but ﬁhen uﬁed‘r ' andﬂ ’.Z.in hié b
3 5 "1 Tiy :

-~ 4 ¢ .

' actgal calculatfons,’hotinggshat‘limitations in available. B

M

v N 0 . v I

. funttional forms Bucﬁ‘as the %xponential,{exp( br d) in

M 4 3

[ T ' \ :

", ;/} which the domstant b has to‘be calibrated*"” Einally,.

o ve = . N v
"‘ll

EQIngram, (1970) solved tfle p’roblenﬂz{ of having to est‘,i.maf‘e ‘b

. {\ PR NN _—— ~< ’ ’ ,‘ « . "‘ _",}_\ .-
by calculating po,tenhia‘l ag : -,;;. T e
; - AL TP T I O By
L3y ;}»" . R T THO T :‘ LA \# <
L eV, = Z P, eV ij» b UPREN ‘@@_’3‘2 el) Lo o,
| . { k) i T LT ! oo
". . - ,,,. N . .. d 5 AR
N, T
\ ! ! N i‘l?i f' Te
e ! ".“'. .
. N T < o

S Thievis an important propeg%y of the types‘of poten- v .

co%gntimé time preventéd the eonsideration oﬁﬁ"alternative. < e

.. . : n° X —
Dalvi and Martine(l976), for example, const ucted accessgi--
o e . . , f !o - ’ .
bility indicies for London’ using a negati ,equnential" '
o \; X . ]
. functiqa, ‘where the vaiue for b was gotten from a trans- . °
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1 . L o T
. , , SRS 1680 i -
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. A4 : ~ ' v : “:5» I
) . 7 e 1. s - , ! ‘.zl
‘ where the b was simply omitted (see alsov/guation 2., 6v8) N
— . .o bl - AR . - 77 .j_on
- - These few exampres serve to point out that the prob- o 5 r/ s
o c v, : - " R &
. lem of dealing wfth parameters “on distance in potential / ﬁ
» P - ~, '3 ;
) and accessibility formulations has generally been solved ' ;
' ( AR P 4 i ’ e ,‘
either by borrowing values £rom transpo; ation studies and M
2 . - A hat . ° i
: interaction models or by. ignoringvit. "‘As was suggested fﬁﬁ - - |
- > ° 1
. - the second chapter, thesemp blgms‘seem,to atiSF from the =
; - S S
borrowing’of distance re@idnsg functions from trip dis- T
T tribution molesﬂ The'eopsidétation of.potential nithin ) o
\ t ’.
the entropy maxiﬁizing and information minimizing forma- « .0
e [y - s * . . - P
B -2el - . o A .
lisms has demonstrated expli itly why this borrowing 1eads -
P to problemsg in the" case of a trip~distribution model the
iv - - - . . = 2 - “ . ( -
" mean distance is known a griori whereas in.the .case of R
v Ny N T o~
. potentials it is necessary to aSSUme, for the purposes of ’
" - P . M'V’_ — e N - N S e i *‘ v N K
wsderiving the- functions, that a’ mean'distance i ~ Known~ | =, ™~
Y 8 . A B . '
\.'\( _‘ 2 . ,<, .' rw _- .Y ' , e . - s . .
e a tiori, wheq in facg_it is ;%fa posiiriori nesultff et X .
ST A B} Thene is no simple*solution ‘to’ the %uohi‘ of déiling~ - 4;
' A e R T el a
NPV . PRI - -
- ,’giﬁb ‘pa rametersﬂon distampe‘in potentiﬁlmand accessib%lity,i:_~_ -
e D e e - Iy o L S T
3 '1ndiwgg@ except‘to say that Ja Nariety of approaches are N,\A\{;’
. o PR ;‘ - . . . e TR ,é . .- e ’. l:: e . -2 \,,:1‘
* ﬂwawailgble“ﬂ If for examplem it'Were desired“to _% stggct N
PRI ) =1 .. n . &-\ . M : -sﬁ.: /:I“ » *"‘f@*.{‘ i H A N '_\:
- S Ay g e ¢ T
Lo ~»a potential sq;face usd ngra ge ative expoged% al distance-a' =y
= w‘-‘ 2 e ot ’., S T e “g' 4&’ v \ -,,,\;*}' i i iy : - X .t_ -t N ’
g L response function, yet tﬁe 07 aVailabiewestimate-for’b . ﬁg;
s i . ' 3 T 5’” b b?“":&'li ": :ﬂ “ q’i o oﬁ % ’ ,-’ ) "‘; e -
some othé time L o
[P u;i, ? i T - ki v g - A ~ -JF:"G&: -’f#.?h\, .("m‘; " .ﬁ*ﬁf
A SN L T e
L. }geriod GOr at a differen gation).,t«hd‘n“’itw;sw'~ W
‘z‘ \»A‘,,.,: : '3 »*.\A« dv; ,\M :;‘k tw ‘au ,im\‘ S o ' oy, R A . -
< » s mE /ﬁs ﬂ'w‘* - .‘f ez, 3 >
probably WOuld be i xeferabk .xo“’ IR S
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- : ~y iInStead. If, on the other hand, it were desired to employ
Cope . R - s -
' ‘retdil potential, Say, as the destination term in an -
- ; .8, we ) = T
1 ;originwcpnstrained shopping model, then it would be
. N , ] . - 5 e ¢ . , ) \\
.- "possible to test & variety of distance fesponse functions
b < N hd >! . ) .
, ™ §or such a potential by including the tests as a part of
. R N . ——— . .‘ P ‘:M e ‘
7 : the“overall.shopping model calibration. Similarly,
1 . the interest is..in the correlation between potential and
- e —— . o
" other variables, the tésting of alternative functions and
@ I . ‘ Q%
’ the calculation of b panametersépresents no extraotdinary
s - L « . E e o :
( §. ' ‘ probléms.; The calculation Qf‘multiple/patameter distance
3 s , T h - . . ‘ c' . ;‘ 8
e ' response furictions. is, difficult, but i% no more difficult
g - . N for potentials then it’is for trip dietributiop models
. g (see 0penshaw and Connolly& 1977) o I :‘
' k . - » . s +
RO i " Prior Probability Distributions — Another type of
2 . ) PR
L - \constraint with which it was necessary’ to deal in the
. - o L ‘-r’ : )
b ) - , entropy maximxking/information minimiéing analysis of
’g - “ . potentials were those having to do with prior probability,
3 2 T P ~ te .gl’;‘
" distributions. This presented o serious problems, but .
< 7 it was shownlfhat many.of the types of priors which are'fﬂ
. N e . sooe
./ i < “« S
R g ’ normally of reLeyance in spatial models are not permis- J
vl L e T sible Choices” within the context of the type of potentials
,:'. :‘ ; N - . : m ,r‘ ,', ‘ .
¥ - B T being diqcussed'ﬁere.. This demggetrated once again that
S o R
o o %’ea,’;‘ i_the coneept of potential doee not easilxilend itself .to o
i vf‘( ;, the assumptions .of maximum entropy Mpd inimqm information.b
. : « ¢ e o A ’*@;{ T {.‘ . L A -, w‘, - LA K
AL © e I f,'
;i 4 o R
e ) e ; g
.t' “'I ~ 'uif‘!"h . . v -
,' :: \‘ ; ;.“- ."; N . . ) . . -
3 MRS e T
:;z- ,~ . ?ﬁ' iy “,.g.: ’\.r‘ » \
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of, asSumpéions in, and requirements of, fhe entropy
. - ,

. maximizing and information minimizing methodsy The,

-
- : -

consideration of potentials within these framgaorks “has

Rl

forced us to examine,ﬁin detaidl, assumptions and con-
L ) . " - - e
“ g 7 - - e . N .
straints\which are«usualdy accepted and, employed yithout

~ M L.

o e

**question. T . T .

N - - ¢

- * - ) ?

In considering the discussion in this, dnd. the pre-

vious chapter,»the argument -could be madﬁ%&hat, at least

) . okP .
for practical purposes, the Stewarg, form of potential may

~<

be.preferablevas a general index, of aggregate accessibil-
J at - ' ' ¢
ity. It is, for the‘mbst~part, a simple and~unambigupus

.
A . ] el

index, and_providesyresulbs with tbe desired property of

- L)
b
\ » .

snooghness. There/are no parameters to be adfusted and

s

: . . ) . N e “ .
therefore there is no danger-of conStructing a'redundant

-~

potential surfacesy In addition,:a Surface can be’ con-
v, i e

structéd with it in the absence of additional data @n L e

W.
mean distances or densities. - .

On the other hand Mthere are aiso advantages which can'

P

N 7
be attributed to .the other' forgs of potential provided

o e
= »

sufficient precautions a{e taken so as not to unknowingly

» .

construct a redundant potential surface.g Much better fits

R "
could normally,be eXpefted when tnp primary interes§<of

the researcher is in the type of correlation studies that

T .re * N .,; - w'c ._ ~\ ) '.‘;‘n S ‘l‘ . R < \:.‘- _rl\ i . -

» - . A% N t .y\ sl . L) - *

IfEGERING € “18e"”i‘t‘ canbe" said tha’t t“h?,s s‘tudyk “Hgs - T

v
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" have been diEEEssed'herEK

In addition, it can be noted‘

., . '." I\ . N . . . ] ) -

.that although a potential surface constructed withxan- bt

adjustable slope parameter can_be "less smooth" than &
) .

Stewart surface, it can also be "more sﬁooth".(/Thus if
-
some variable is very highly correlated with accessibility,

~

potentials constructed on the basis of-the Stewart index

~

may fail to adequately capture the relatidnship;‘an even“

smoother surface may be requfred. ® . R

. - N ‘ o . . o’ ) LN .
All things consideréd it °is difficult, if not im~ - -

7

-

@ "l

PR

possible, to denermine which form of potential. is_ p ef=

e T~

s :
erable in ‘any particular s%égation without knowin_~the L. ’

i \ -

nature and purpqse of the research,

I£ it is d;sired,
- '\ /i ¥ .\ -
for example, simply to illustrate graphically he impact§
. A R
:of a new~town on a region,'the simple Stewart gorm«
. !

-~
o_/

£

Lf‘however the int

potential is o doubt adequate. sntion.l L

BN

~r‘ 9

is to study the'correlation between

e &

potential ‘and qther
- ff{
dependent variables; “a. variety of distance response .
/ oo
functions, including simple Euclidean distance, should :

pfbbably be tested along with a sequence of alternative

r, “_ .'ﬂ L ¢ . L4

priors.ﬁ - Coo vt 'xw . ‘\'y T - et )
RS SR ﬁ ‘ : R

The potential fun}tions presented in this study were,*‘ N

S X3

derived via the methpds qf minimum/information and maximum

.

»igem
o~

w.

entropyu %There are st 11 a few general issues which

remain to be considerpd,

ety - ~

L l\r'\,’, RN * [
f-

gfncerning functigns 0L, models de- .

,s», S
‘e ~

.”‘ ,#

n } -
~% w. ”

rived from these forﬁagismsa

Some 6f these issues vere,

vt

, % . -
P . s L N R ¢ €
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L _antic ipatEd in ea 1ier ¢ _ptersu;_geuﬁil__ge ‘that_all of

. ~ ‘ v . @ ;__. < i ) - K o . -
. .Q ‘them, in one way or another,’ again have to ao with con- )
. straints. v . }‘""% § R
' . i 6.3 Some. Related IssueS/’ , . 1,& p o
1 N - In describing the metho& of maximum entr@py Jaynes ‘
- » . ¥ /
(1968, 232) stated that . .o . . = . -
i ' ’ :
;. ’ ‘ -, If the information inconporated into
f ' S the maximum—entropy :analysis,includes g
é, N all the .,constraints" actually operative
L ST . in the random experiment, then the Cron
li ) . distribution predicted by maximum ' .
? - T entropy is overwhelmingly the most R )
X - ..1ikely to be observed experimentally,
) : .because it can be’ realized in.over-
‘ — . \ whelming%¥ the greateSt dumber. of ways:“' . -
N : "‘ The question of whether all of the relevant fnformation
b has heén inbluded.in the.donstraints is an important and .
S . 7 difficult one, and criticisms have been lévelled at the
i’ . @ l-. N e . -/ . . ~."l & . i - -
f; ) [7 entropy formalismipreciselx for this reason: In par- = .
' a N ticular f%’has béen'argued thatHif infofmation comdcerning’
. . some mean is available, then information about related
:’ I w “*‘ B
k3 ’ measures,'such as the variance, also will be availa le and °
e % should be incLuded. As Sheppard (1976 747) argued in -
. , L
: . a. discussion/of trip distributfon modelling,
3 ’ | - . 4 -"
. PR £ 4 the expected cost: of a trip is knowh Y
- . * ‘then it .4g 1ikely 'that this has been ' .
: : ) — ~ea1cu1ated from the distribution ofvtrip N ’

. ; : cosits 'for all journeys, -80 ‘tRhat. other
- - .>moments should be: available.. These. should
U I o ¢ - o also bé dfcluded as prior informatibn, -

R . since traVel»behaviourwdepends just as
Lo - LT upmuch on them’as on thé mear, ' e
~ . “t’:’ 4 ot . [ R : . N - ] [}
& ~ . - . - F
L g ..-: ; ) : & )
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Sheppard (1976w 747)'went on to -suggest that if such

information is included-in the msximizg&ion, the solution

- ..
RN

"no longer even supetficiailywmeéénbles )
the.gravity Todel ~if-th& “fraditional

sense,

since it involves many other

parameters.

This observation reinforces

the argument that maximum entropy -

ould

~mationvorediction fails to agree with the empirically . -

*wfwfd3§;:s went on to argue that "Phe principle of maximum

@ s

"line of. reaso»ing is,

: method of sequential infonmation min?mizing discussed

not be used and justified because i r
produces identifiable-results, such as ’
the gravity model; it Has the quite . .
independent justification as an infer=+

ential technique. .

’ N -

The issue of whether all of the relevant information has

been included in” the constraints is really of empirical

significance onfy when the maximum entropy/minimum infor-

ob¥erved distribution (in the caﬁeﬁ%f potential this will
oo . . ¢

‘be some surrogate variable representing accessibility,
ol ‘ A
such as land val e€). If such™a disagreemént occurs-it

)

can be said, following Jaynes (1968, 232) that "the

i {
observed deviations then provide a clue as to the nature
ot

of the new constraints and it is for this reaso

that

* i

A

entropy is most useful to us in just those cases where it

fails to{predico_the correct expeniﬁ!ﬁtal”facts. This

- - ~

AY

of course, very simi;ar-to the' ’

- N
v
I y

-~ .

% earlier (see Webber, 1979, 131) T A J
- %ﬁf L, Another importa t and closely related issue concerns ,
e : ' . the ‘proplen ‘of how tzJ 1nterpret, and provide 8 .

explain,

\I

:i‘\‘“
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rationale fof the.;onstraintsanhichkare.empioyedw

seqnentialnapproach to information minimizing'provi

-

method for determining which constraints improve, pr

“The

des a

e-

-

’»‘i«-

results.

dictions, but it still remains“necessary to determine

empirically which are important and to interpret the
, *

In discussing the tendency to cOncentrate on

7~

*

deductive model generation within the minimum inform?tion

framework, Batty (1981, 148),

-

for éxample,

»w

made the

.

oo S e q———ye

e

statement that: \;'
1 believe that all the really exciting
challenges in this field now lie.ip

showing how ‘cénstraints might be

identified from data, in the’ meaning of
diffetent levels of spatial information,,

in parameter invariance ‘and interpre— o

-

.- ] tations,

and so* on®

Indeed it rappeats

.that the inverse problem

that of

R determining what constraints are

" Similarly,

. important,
reSult, represents,the rea} frontier.

,

‘Goodghild (1979 " 88) hoted that

the solution to6 an information minimizing
or entropyimaximizing stratégy can beé -

‘ ‘. regarded as a .null hypothesis, the most v

! likely state of the system given the
constraints. This it is the devfations
from the maximum entropy solution which

. are interesting”'since they represent
ghe{effects of additional constraints

° and -unequal probabilities which the*

“system impoéses, in othér words . A <
idformation not previously kndwn to '
the researcher. A _good ‘fit on the

. _other hand indicates that .there is

" ‘nothing in the system unknown=to the -

.

'S

) ggsearcher. How good then 'is the £it - ,
of . [the] model? ‘This is clearly “the * A
most important topic,f/r ‘any, continued g
research. T oot
e “ . ) (8 " -
, . - o2
o R - .

rather than what model will .

N3




We?ber»(l&?d, 140) also anticipated this in a discussion

- s

of the seduential approach to minimum information spatial
. . ar " .

modelling, when he Statedﬁthigi .

- -

the paradigm regizsents.a method whereby
the constraints whilch operate upon &
social system are inferred from given
datd, and morg elementary-theory must
thén .be developed to explain the origins
“of the constraints~—to-explain ghy it is
~trat—the - expectations of particular
variables take on given values. .,
hY

These‘arguments apply to constraints 1in. the form of priors

[N - -~

added, as well as ths various gistance constraints.whioh
can be employed. In the discnssibn of the calculation of

minimum.information'potentials, it was noted that %ach
prior is added ittisfalso necessary to ‘re-—

~Teo

o °

arameters on distance'. Thus it c0uld.be sald that the

"sequéntial"‘approﬁéh to evaluating constnaints, when

considered within the context of both priors‘and distance "

. 3 e .- g . .-
consmraints,’is'more of a two—sé%gez iterative procedure,

alﬁernating’back and forth between priors and%constraints

on distances

A further issue concerning functions ;and models

/. ~

Lol

derived via the method df,minimum information involves

. 3 -
L

redundancy in the constraints. In particular it would

P ro

appear that there are situations wherein’the information

1] N s

contained in one or more- priors is already contained in
‘15 %
’the constraint on the mean. The mean distance employed in.

+
]

7"

»
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<calibratidng a locatfonfmoéei, for example, is-dormally .

an observed mean.' If the characteristics of the desti-

natﬁgns, such as’thernumber of houses there, have an effect

on the number of individuals travelling to-them, then .this
~ s o

-

will be refleS@ed in the actuai number of trips taking

place énd, therefere, in t?e observed mean distance. The

observed mean, in other words, alréady contains inforumation

concerning the effect.of the charagcteristics of the
- . r .

destinétions.qn the number.of tripsg; to minimize the
Kullback information subject to a constraint ox the

’ s ) ..
" observed mean distance dnd a prior based on the properties
. - - .

of the'destinatiqns is, in suéh a situation, redundant.

N -

That this is so can be demonétrated within the contex€ BF
the sfmple.éseignEEQt‘problem.exampke Which Mes employed

- L2 L
¢

in the. third chapter. i

~

- .

In that example, the maxfmnmlentrbpy assignment of
- - K
workers Was three to the second zone and one to the thigd

zone, a distribution in which the average,distance

travelled was 1.35 miles. . The minimum information solution

.

assigned . .two workers to-each of the two zones~and‘this
. . : o ®

resultedin an average ‘distance travelled of 1.50 miles.,

.

‘The reason for the difference in the assignments vas that

in the minimum infbrmation case, probabilities relating

LI

to the areas of destination zonesvtwo and three’ "(0.3.and

.

0.7 resﬁectiVely),were tatgn\ihto aceount.-*Suppose;'hbw—'"
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. * . . )
ever, din the case_of the maximum entropy model, that it

had been’ known a Efiori, as a matter of empirical;pw
\ . 'ﬁ,:‘\f
f‘ﬁbservation, that the mean distance travéelled was not '1.25

<

miles but wés 1.50 miles. Then maximizing theseirtropy

<

subject: orly to‘normalization and distance .constraints, -
. .

-

where i . ’ ¢

, = 1.50
LT 1 .
§ ' ¢ .

would have ied'fo the-desired result Bf'two workers

a§si§ned to .each 20ne‘(tﬁ%t isy, 1f this distance con-
T - ’ .

straint is satisfied exactly, the distribution of workers

: . ’ . {
‘ must be two in each zone—see section 3.4). If the mean

‘ ¥

distance travelled is based on obgeryed'trips; then those

tripg will reflect emp@ricaliy'the fact that the zones

WS, R

-

+differ in size. To minimfzé the information statistic

. .

‘subjeét to both a mean distance of 1.50 and a prior base& B

. ’ Y 12 °
on zone size, is redundant since the same information is

£

‘beiirg inc;uded twiéé in the minimization. It should be ‘ %
; y 3
3

' _pointed out, however, that this procedure will not A

3 - o

‘normally lead to incorrect numerical results. Ce e - ' oo

«

In the maximum entropy model, b will be adjusted

iterativelynﬁntil';he model mean distance_.equals the . -

\

i

obseryed mean distance., Two workers willibe’és&i&ned to

éach zone and the model ‘mean distance will be 1.50. 1In

P .
’ . L]

cfhe'minimum;info&mation model, .the same‘prodgdure will be

- ’ ‘
a -

followed and the same results obtained, except that the ' -
, ‘ o . e .

R . : N

7 + W’

.
) - 5 . ' s
3 2 . h
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&
resulting value for b will now be lower since it has to

"absorb" the extra trips genereted by including the

. areas of destinations. For example, in the enpropy°

Y

model (enuations.3;4.9 and 3.4.10) the results will be

_‘ 4 o exp(-0.0 » 1)
exp(-0.0 ¢« 1) + exp(~0.0 « 2)

3

_ .4 +-exp(-0.0 - 2) - 2.00
13 exp(=0.0 + 1) + exp(~0.0 - 2) . ,
~ Rk . e

., T

where the value for $ of 0.00 is no longer the inverse of

~ ‘ .
the mean distance, but is chosen (for illustrative pur-
‘poses) to provide a solution which is equal to the desired

‘integer reéult. In order to achieve the same infeger
- )
result using the ninimum information model (equation 3.5.

-

11) it is necessary to adjust the value for b and to

ol

- recelculate (rounding to two decimals) as follows

-~
-

0.3 4 - exp(=0.85 - 1)
[0.3 - exp(-0.85 + 1)] + [0.7 + exp(-0.85 + 2)]

2.00 ., .

<

0.7 * .4 « exp(-0.85 + 2) :
[0.3 -, exp(-0.85 + 1)] + [0.7 - exp(-0.85 +-2)]

e
i3]

2000 ¢

e

v ¢

In the minimum information model the b value of -0. 85 is )

&

-1qwer than the previous entropy model ‘value of 0.00; this .

e !
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e

is appropriate since the slope of the distance response

-

-

in order to,offset the effect of the zone sizes. .°

- -

P

The fact that b = 0.00 in the maximum entropy model

also demonstrates,

LY

be redundant.

in another way, ,jhow constraints can

N

If the r value employed as'a calibratiomw

<

target is ‘that assgociated with a uniform distribution, :

this provides no additional information and the effect ‘of

€

“distance drops_out of the problem° the'assignment'is made

*##Which; in the case of the entrdpy formalism,

are assumed

. to be equal.

- .
.

%

The problem of redundaney in constraints %nd priors

»

in® minimum information functions and models is easily

handled within the sequential method of! evaluation.

-8 B
redundant prio{s are added,
L4

Iﬁ‘
they will not improve pre—

didtions, and hence are to be droppedianyway.

- -
.

is added which is suspected to be redundant, but turns

.4 »

out to improve the predictions, then some additional

-~
-

+ informatdon has been add?ﬂ'(for example, that observed,

trips do* not take place in diredt proportion to. the areas

-

v, of zdnes) .

the problem is that it doef.démongtfatemthat it is ‘

s

<

Mhat is perhaps the most important aspect of

A o o

\ - uipe

ERTY

. necessary to renevaﬂuate distance response functions and

parameters on distance each time K:3 priog is added.

\.
p
‘ -

-

"function must be steeper im the minimum information model |

If a priori'

'.

Iy

£

If’ “

.
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satisffed ‘Tﬁis cpmplipateswthe»empirical evaluation of
é such models and functions, but is absblutely necessary if
* the.results arev:o bevconsidered valid. o B ‘@su '
Yith;n the context of gotentials the_hane general = -

\ g

this is not‘undertaken, then redundant pgiors .¢an enter

2* - S,

the analysis by erroneously_improving predictidnsf In the

-

example above, for insfance, if the model nesults were

first calculated with respect to the mean distanct anﬂ
. - V ° - . LI -
then the prior vas added, without a re-evaluation.of b .

the ‘same information would have been included ‘twice in

N ~

the analysis and the results wduld-héﬁ% been.differgﬁt.

Vd . N L«

In general it can be said thatmwithin(the sequential,.
I ‘ ’ .

a - e

pinimum information appréach; it is necessary to. ensure
X { . - N L4 - hd -

‘ C e 3 . . .

at every step of the way, that¥all constraints are being-

< <

oz °

arguments toncprning«rsdﬁh-;_cy in priqms and 6onstraints

~hold true.

nation do not effect the amouw% of 2 cagit gnteraction,

*
and since the mean distance associated with that inter-,

. A h;. »
actidn is ag a posteriori re%ult, the problenm of including
e T e,

4 -,

priofs inv

However, since

properties of the desti- .

3

‘such information ‘does not arise.
, T e ‘

Ratﬁe:,

'potentiais‘will be redundant when~different properties

of the originating zones contadin overiapping information,"

Y
.

™y

L 3-
for example, when the proportion(of teleﬁhones or amto- KR Y
& - % .- ’ . c
mobiles cprrespoﬁds with ghe relative population size. ﬂ. .
*
§uch redundancies "can be handled by sequeni?ally adding ’ .
‘ co B T ) CE
. > . , 0 -3 . .
A v ' , - o
A . ° o A - r. ‘.‘). . . .
u\h . , . © .
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hand as a basis for‘making‘tﬁeodecision ﬁhether to include
. ~ e

a particﬁiaf prior. There”will be similar rédundancies
. ) " N e h
with priots based on "between—-zone" measures, such as the
; - . - .
number of roads, and number of rail lines; these.can-bé

. AN
treated,in the same manner.

Has all of the relevant ®aformation been included in

- Ay

the constraints? What is the meaning of the constraints

~
N

that have been included? How are the cons@;aints related
to one dnother? These are the piinhipal\dﬁestions which \\\

havé been addresééd bnie%ly in the pfesent discussiony ~

- —~

thefe’arq§ no doubt, many-other similar and équally

‘sigrificant ones which can” be raised about the metlods of
: . Ca

minimum information and maximum entropy. Even though-this

di§chs§ioﬁ has touched on o6nly a few such q&estioﬁs, it

may be said to have substantiated onée again Bétxy's

LN

o ‘9&&: 148) claim that it»ié the issue of the constraints,

rather Eﬁhn\gpat model will re‘gult:,~ which represents 'the

.
~ .

real frontier." -
. ’ ~ '

~
~

When- the method of maximum entropy'was intrbduc@d to

Lt . ] ] . g\\\
geography by Wilson in 1967 (althoujh see Curry (1964))
- \\\ " '\ . N N ]

claims were made to the effect that a theoretical basis

for the gravity model had .been found. It~is this issue,
. i

now caonsidered with respect to potentials, whieh forms the

-

. _ . . TN
subject of the next and concluding section.
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6.4 . Conclusion, ) e

. ~

. ' 5 -
It was stated at the outset that the goal of this

study was to comsider the derivation 6f,potenti51\fuqé- ..

tions within the context of the entropy maximizing and

~

informatiof minimizing formalisms. Along the way it was

necessary first to review the,origihs, meaning, and
~ " - « ~ . N

properties of potential functions, and then to introduce

“ 0 ’

and describe the maximum entfopy and  minimum information

techniques. 1In the(fnurth chapter entfopy maximization,

_information minimization, and potential were' conSidered

jpinfly and, in the fifth chapter, a number of pe:iShe;ally
related but important issues were discusng. )

:
.

‘Except for a brief mention at the end of fﬁe\ﬁhird

o

chapter, the issue of whether the maximum entropfland\ -

minimum inf?rmatibn aﬁproaéhes«piovide a theoreticél' T .-
foundatidn for the functions derived from them has, ﬁér
the most part, been igno}ed. This issue may be largely
irrelﬁydnt‘ig the context'oﬁ the present study since it
has beep repeakedly arg?gd that‘a‘potegtial function is

anvinHex, not a model, and one wonders whether an index
. : - ’ . :
requires a theoreti€al foundation. This may be seen to

be analogous, for example, to asking whether the closély
related measure of population density require& a_theo~-

retical basis. . - «-
It cdn be suggeéteq that exaggera;ed'aqd pefﬁapg
overly enthﬁsiastic claims accompanied the introduction

N\ e

o S . K I
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of the entropy maxiqizing.formal}sm in agg&iii\i?alysis.
Wilson (1967, 256), for example, claimed .that the-techdt

"does offer a sound theoreficgl basis for the g;avify

N

. model" while .Gould (1972, 691), (in a discussion of the

absence of normalization constraints in the tradifional

< -

gravity model) argued that Wilson's work "raises the

e

gravity model phoenixlike from the ashes of such absurdity,

and places it on a‘'secure theoretical.foundation for the
first time." More recent evaluations of the method have

\ .
been more restrained and/or critical. Shéppard (1976

~
.

747) , for example, has stated that } /theoretical basis
for the gravity model cannot be suggested simply because

a gravity=like solution can be reached by_QhQ,Speci;

fication of certain prior information" while Beckmann

(quoted in Weﬁber, l976h 290) claimed that the proponents

‘0of maximum entr?py "have Become skilled virtuosos in

subjecting every problem to this approach and inventing

ad hoc constraints to make entropy fit the case." Et\would

+ ~ .
g8eem” obvious that the usefulness and validity of the

t

‘appfoach lies,sohewhere in the middle ground/between the

two extremes,
\ . .
The question, of whetﬁer the maximum entropy and

minimuh’infbrmﬁtion appfghches provide a theoretical

basis'fof the potenfial oncept would probably not .arise

¥ . N . !

at all, were it not for' the connection between potential,

3
i)

19




A

et A

- 184

-~ ~ [

N,
- o

®
1

e < s 2 ANY R W

By

functions_.,and gravity models, as outlined in the second
. chapter. In other words, it has traditiomally be;n aféued

. that the gravity model n;eds a‘soﬁnd theoretic¢al b;se "
and, sincg¢a—;btential function can be derived grqm éhe

‘ gravity model, the question of theorxy seéms to carry-pver
automatically. Potential, as it has been.defined in this
study, is an index, and as Auch it pan be argued that it
does not require a theoxetical rationale. Potené&al is,
however, a weiéhfgd indgx, and it can also be argued that
it is iﬁ the‘weighting-of the distanFe and origin terms
that the entropy maximizing and informatioh minimizing
approaches play gb§alid and important role within the con;,
text of potential; not as .a theoreticai justification, but
as tools or concepts which allow the connection between

the form of the potential function'and the constraints

on potential per .capita spatial interaction, to be made

explicit. )

~

) e
In reviewing the many alternative forms which were

§ugggsted'}or potential‘funct;;ns_in the»second chapter
(éectiéﬂ 2.6), it was argued that hanz.of éhg distance
response functions were simply borrowed from thekfield of
spatial interaction modelling with little or no regard

to xheif~meaning and interpretation. The.ﬁe£ivation of

: ¥ . N
potential functions within the entropy maximizing frame-

work c:i/pe said to be a stq% toward overcoming this

.) ’ . | | | A
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deficiency in the sense that it establishes a mathematical

~ -

tie between the actual or perceived effect of distanceé on
N . e

potential per cépifh interaction ‘and the appropriate form

of the distance response function. Stated another way it

o
-

can be said that maximum eutropy’hay not provide’a

-

AR Y st s 41
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theoretical foundation for potential but it does provide

»

a mathematical and st;tiséical rationale for q&e form of

©

L RS My agace,

the distance response function %y‘establishing a tonnection /

between it .and the constraints. This can be said to be of.
significance since, in effect, it changes the nature of ).

the problem of“measuring and defining accessibility or

locational attractiveness. To paraphrase Amson (197Za, .
- N

“165), who was discussing urban population distributions:

b » The pioblem of éeté;mining the form of a potential function .

0 t

has been replaced by a quite.different one: that of
. . . i ’ .
determining the effecf of distance. To know the latter

is théeén to know the former.

¢« Similarly, the methol of minimum information prgvidgs

3 " a basis not only(for ﬂeriving and interpreting ﬁistaﬁce

t 2
v

response functioné but also for'weighting and redefining
the origin term. This also eéfgﬁiishes a connection

4 . [S ) s - ‘ .
‘. betveen ‘the constraints whigh dre deemed to be.operative

_in the system.of interest and the resulting form of the

: : L .
: , potential function. Minimum information, in other words,

o provides a method for tying together certain prior
3 _‘ﬁ_/ O

{
§
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information about the origin zones, expressed 'as prior
probabilities, and the ‘effect. of theagones 0q;ger‘cagdta //
spatial interaction. In addiqion, it was suggested that

-

."between=zone" characterigtics, other than distance, can:

. - . , - H \
al?6’%e‘ihcorporated through the method of minimum .
information.

; Pn short it can be said that th& method of maximum

entropy, and the more generaf'methbd of minimum information,

LIV

"have their strengths as well as. their weaknesses. We .

have seen mhaf they éen be employed to dérive genéralized
models‘and:functions arnds; in pafgiﬁular, to derive generic
potential funceions‘with m;py pessible specific sforms.

We haveAaleo seen thit the methods provide an oréanizing

framework within which such:functions and models, and the
L4

constraints associate% with .them can‘be handled. On the
-’/ . N . L4

other hand it has been <argued that there are a number of

problems which can-be raised, and criticisms which can be
g . -
.t ’
levelled, concerning the choiece, use, and interpretation

of constraints. This has been par;}cula;iy evident in

“

the present study- wherein the attempt has been to treat

, . v -

a spatial fndex with tools normally intended to be em-

ployed for spatial model building;. the resulg was a
&

demonstration of the demands imposed by, the methoOs of ;

maximum entropy aqd minimum information in terms of the

<types of data and information-they require, and@in terms

-

of ‘the assumptions associated with them.
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