Western University Scholarship@Western

Digitized Theses

Digitized Special Collections

1978

Evolution Of The Al Amar-idsas Region Of The Arabian Shield; Kingdom Of Saudi Arabia

Zohair Abdul Nawab

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Nawab, Zohair Abdul, "Evolution Of The Al Amar-idsas Region Of The Arabian Shield; Kingdom Of Saudi Arabia" (1978). *Digitized Theses*. 1112. https://ir.lib.uwo.ca/digitizedtheses/1112

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.

National Library of Canada Cataloguing Branch Canadian Theses Division

Ottawa, Canada K1A 0N4

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilm ing. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Bibliothèque nationale du Canada Direction du catalogage Division des thèses canadiennes

La qualité de cette microffiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieule de reproduction.

AVIS

S'il manque des pages, veuillez communiquer aver l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aided un ruban usé ou si l'universite nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui tont déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmes.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE

ut fait pour assurer une qualité supérieule de reproiction. S'il manque des pages, veuillez communiquer avec

NL-339 (3/77)

EVOLUTION OF THE AL AMAR-IDSAS REGION OF THE ARABIAN SHIELD, KINGDOM OF SAUDI ARABIA

> Zohair Abdul Haffeez <u>Nawab</u> Department of Geology

by.

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Graduate Studies The University of Western Ontario London, Ontario March, 1978

© Zohàir A H. Nawab 1978/

the st.

ج بنيسية اللبية الرحسين الرجيسيم و الإرض ذات المستدع ، أيسبه لقبسول فسب ···· مسبدة اللسبة العظير الإيتب الإيتب الم ١٣٠ ٢ ٢٠٠٠ مسن مسوره الطسارق FRONT VIEW The Al Amar-Idsas fault of the Arabian Shield as it appears on the ERTS images.

The Precambrian (≈1100-500 Ma) metavolcanic, metasediment; and plutonic rocks of the Al Amar-Idsas area are divided into two geologically distinct regions by the Al Amar-Idsas tectonic discontinuity, a major N.N.W. S.S.E. trending high angle thrust fault: West of this fault, the arear is underlain by the metasedimentary Abt Formation which is composed largely of sericite-chlorite schists of andesitic-dacitic affinity, and subordinate amphibolites with both tholeiitic (FeQ^T/MgO = 2; TiO₂ = 2%) and calcalkalic (FeO^E/MgO = 2; TiO₂ = 0.8%) basaltic characteristics. The Abt schists were intruded by a set of posttectonic granites $K_0 0 / (K_0 0 + Na_0) = 0.47$ to 0.59 in association with the development of zones of high temperature metamorphism. East of the Al Amar-Idsas fault, the oldest Precambrian rocks are gneissic granodiorite with. (,0/(K,0 + Na,0) values between 0.16 and 0.4. The gneisses are overlain, unconformably, by a succession of metavolcanic rocks of calc-alkalic affinity (Meherga formation) intruded by a suite of gabbros, diorites, and quartz-ri and quartz-poor granodiorites. Some of these rocks are rich in Cr, with $K_0O/(K_0O + Na_0)$ values between 0.27 and .The lower Halaban metavolcanics (Meherga formation) and associated plutonic rocks are overlain by a succession of soda-rich rhyolites, dacites and pyroclastic rocks (Al Amar formation). In contrast to the post-tectonic.

granites west of the Al Amar-Idsas fault, those to the east are less potassic with $K_2O/(K_2O + Na_2O)$ values around 0.37.

Although altramafic rocks occur in the Al Amar-Idsas region and lenses of serpentinite and high Cr-Ni carbonate rocks located along the Al Amar-Idsas fault, a complete ophiolite suite has not as yet been recognized. The possibility remains that the Alenaar-Idsas fault marks the eastern boundary of an incipient back arc basin developed above a westerly dipping subduction zone.

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the support of. the Institute for Applied Geology in general and Dr: A. Al Shanti in particular; they generously provided field. and financial support for this thesis. Without their help and encouragement this work would not have been possible. I would also like to thank Sheikh A. Z. Yamani and Mr. G. H. Sultan for giving me the opportunity to carry out this work. I am greatly indebted to my supervisor, Dr. W. R. Church, for providing many helpful suggestions and criticisms during the course of research and writing. In addition, I would like to thank Prof. W. S. Fyfe for his help in the field and discussion during the period of research, Dr. N., D. MacRae and Mr. T. La Tour for reading the manuscript, Dr. H. Hunter-for assistance in the analytical work, and Mr. J. Forth for preparations of thinsections.

TERMINOLOGY AND ABBREVIATION

The following terms and abbreviations are used throughout the thesis:

. . . .

Bir	= well
B.R.G.M.	= Bureau de Recherches Geologiques et Minières.
Ĉ	= centigrade
ĊIĘW.	= Cross, Iddings, Pirsson, and Washington norm
	system (1902)
C.A.G.	= Center of Applied Geology
D.I.	<pre>- = differentiation index</pre>
, cm	= centimeter
c/s	= counts per second *
D.G.M/R.	= Directorate General of Mineral Resources
ERTS	= Earth Resources Technology Satellite
I.A.G.	= Institute of Applied Geology
Jabal	= mountain
kń	= kilometer "
m ·	= meter
inm, mm	= millimeter
my	≠ million years.
p.p.m.	= part per million
U.S.G.S.	= United States Geological Sur <u>v</u> ey
U.W.O.	= University of Western Ontario
wadi	= avalley
1	

= weight percent

viii ·

TABLE OF CONTENTS

.

	* •
CERTIFICATE OF EXAMINATION	/ ii -
FRONTVIEW	iv
ABSTRACT	v
ACKNOWLEDGEMENTS	vii
TERMINOLOGY AND ABBREVIATIONS	viii
. TABLE OF CONTENTS	ix
LIST OF TABLES	xii,
LIST OF FIGURES	xiii -
LIST OF PLATES	xvi
CHAPTER 1 - PREAMBLE	1
l.l. Introduction	1
1.2. Geomorphology	* 4
1.3. Previous Work	´5
l.4. Present Work	6
CHAPTER 2 - REGIONAL GEOLOGY	8
2.1. Introduction	8
2.2. Regional Stratigraphy	11
	, ,
CHAPTER 3 - GEOLOGY AND ROCK UNITS	19
3.1. Halaban Group	19
3.1.1. Meherga formation	23
3.1.1.1. Petrography	25
3.1.2. Al Amar formation	29
,ix 🕈	· · · · · ·
in the second	

1

1.7

Page

•			, •
۰. و	3.1.2.1. Petrography	30	
•	3.1.3. Structure	. 34	· · ·
;	3.1.4. Chemistry	- 3,6.	•
:	3.2. Metagraywacke Units	53	
•	3.2.1. Abt Formation	53.	
	3.2.1.1. Geology and Petrography	53	•
	3.2.1.2. Marbles	.56	
	3.2.1.3. Structure	60	
	3.2.1.4. Chemistry	6.6	~
	3.3. Shigran Carbonate	77	
	3.3.1. Geology,	78	•
	3.4. Ultramafic Rocks	83	•
••• 7	73.4.1. Geology	83	
Ĵ	3.5. Al Amar-Idsas' Fault	84	
•	3.5.1. Observation	87	
•		90	
•	3.6. Plutonic Rocks	93	•
		93	
	3.6.2. Gneissic Granodiorite	·· 9,5 '	·.
	3.6.2.1. Geology	95	
•	3.6.2.2, Pètrography	9.6	• 、* •
`. `.	3.6.2.3. Chemistry	98	• : •
•	3.6.3. Gabbro-Diorite Intrusions	104	· .
د		111	• • •
, **	'3.6.4. Syntectonic Granodiorite		
• •	3.6.5. Post-tectonic Granite	σττ	0
	\mathbf{X}		• •

• •

•

` .. • · · Page

	••••••••	raye .
3.7. Khuff Formation	••••••	. 122
CHAPTER 4 - COMPARATIVE PETROCHEMISTRY	· · · · · · · · · · ·	. 128.
CHAPTER 5 - HISTORY OF IDEAS CONCERNING THE	••••	
EVOLUTION OF THE ARABIAN SHIELD	• • • • • • • • • •	. 133
CHAPTER 6 - CONCLUSIONS	•13	. 137
APPÉNDICES	•••••	. 140
RÉFERENCES	•••••	. 161
VITA	• • • • • • • • •	1 74

xi

LIST OF* TABLES

Description Table Page. Stratigraphy in the southern part of the Arabian Shield 10 Lithostratigraphy in the Al Amar-Idsas 2 13 3 Average chemical composition of the Halaban rocks 52 Average chemical composition of the marbles ... 4 6ŀ. 5 Average chemical composition of the Abt Formation rocks ; 70 6 Average Chemical composition of the Shigran carbonates and ultramafic rocks ·85 Average chemical composition of the gneissic granodiorites 99 8 Average chemical composition of the gabbros and diorites 112 9 Average chemical composition of the syntectonic granodiorites and post-tectonic granites 118

LIST OF FIGURES

•	Figure	,Déscription	Page
	Ţ,	Docation map	2
	2	Sketch map of the As Sakhen area	12
	·	Sketch map of Jabal Batran and Bir Al -	· · ·
		Badriyah quadrangles	16
	4	Sketch map of Jabal Minassa area	18
	5	Geologic map of the Al Amar-Idsas region	21
	6	Structural map of the Halaban Group	_; ≻_,35+_;
	7	Cr plotted against Ni, Zr, P ₂ 0 ₅ , TiO ₂ , Y	••• <
		of the Halaban Group	37
, ,	8	Cr plotted against Ba, Sr, Rb of the Halaban	
	 • • •	Group	3.9
	9	Zr plotted against Cr, Ni, TiO2, Y of the	• • • •
•		Halaban Group	41
	10	Zr plotted against Ba, Sr, Rb, P205 of the	1
•		Halaban Group	42
	11	Zr plotted against SiO ₂ , Al ₂ O ₃ , FeO ^t , MgO	· · · ·
,]	·	of the Halaban Group	43 1
	12	Zr plotted against CaO, K ₂ O+Na ₂ O, MnO of	. .
	• •	the Halaban Group	44
	13	SiO ₂ plotted against Al ₂ O ₃ , FeO ^t , MgO, CaO,	
•	· · / ·	$K_2^{O+Na_2^O}$ of the Halaban Group	46
	.14	Rb plotted against K and Ba of the Halaban	
	· ·	Group	47

	•.		
	Figure	Description	Page
	15	SiO ₂ plotted against K_2O+Na_2O of the	
		Halaban Group	48
··· · · ·	16	Si02 plotted against D.I. of the Halaban	
	` 、·	Group	48
•	`17 [.]	A-F-M diagram of the Halaban Group	50
. [*] i.,	18	FeO ^t /MgO plotted against the Halaban Group	•
		units	51
,	19	Plot of poles to bedding and foliation (Abt	··· :··
<i>۰</i> ـ		Formation) on a steréographic net	<u></u> 63,
	20	A-F-M diagram of the Abt Formation	69
• • •	21	Cr plotted against Ni, Zr, Y, Tio2 of the	
•	م ^ر ر	Abt Formation	72
	22 *	Cr plotted against Rb, Sr, Ba, P_2O_5 of the	· · · ·
1		Abt Formation	73
• •	/ 2 [′] 3 ′ e	Cr plotted against SiO_2 , Al_2O_3 , FeO^{t} , MgO	
•	· · · · · ·	of the Abt Formation	74
	_24	Cr plotted against CaO, Na20+K2O, MnO of	
	• • • •	the Abt Formation	7 <u>5</u>
, * , ,	25	SiO ₂ plotted against Al ₂ O ₃ , FeO ^t , MgO, CaO,	
•		Na ₂ 0+K ₂ 0 of the Abt Formation	76
* , ´	26	Sketch map of the Al Amar-Idsas Fault	89
•	27	The plutonic rocks plotted on Streckeisen's	
· · · ·	· · ·	diagram	9.4
	28	$Or-Q_z$ -Pl diagram of the gneissic grano-	
· · · ·		diorite	100

<u>;</u>{

ÿ.

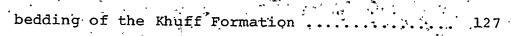
.

•	- •		
* •	Figure	Description	Page
-	نې م م		
	29	A-F-M diagram of the gneissic granodiorite	101
•	.30	Cr plotted against TiO ₂ , P ₂ O ₅ , Ni, Y of	•
		the gneissic granodiorite	· 102 ~ .
•	31	Cr plotted against Zr, Ba, Sr, Rb of the	
÷ \		gneissic granodiorite	`103 ·
	32	P ₂ 0 ₅ plotted against SiO ₂ , Al ₂ O ₃ , FeO ^t ,	÷.
-	•	CaO, Na_2O+K_2O of the gneissic granodiorite	105
r.	33	SiO ₂ plotted against Al ₂ O ₃ , FeO ^t , CaO,	
-		Na_20+K_20 of the gneissic granodiorite	106
	34	Potassium plotted against CaO, Ba, Rb of	A .
• .	•	the gneissic granodiorite	107
•	35	Alkali-lime index (Peacock diagram) of the	• •
•••		gabbro and diorite	119
•	36	Alkali-lime index (Peacock diagram) of the	
•	4	gneissic granodiorite, syntectonic grano-	· · ·
ş -	· · ·	diorite, and post-tectonic granite	121
-	37	SiO ₂ plotted against D.I. of the plutonic	o .
		rocks	. 123 .
•	38	TiO2 plotted against MgO of the plutonic	·· ·
	• • •	rocks	124
- *	39	Comparison between the Al Amar-Idsas plutonic	~
,		rocks and plutonic rocks from other localities	
•	• .	on an Or-Qz-Pl diagram	132
میں میں	40	Plate tectonic model for possible evolution of	,
÷.		the Al Amar-Idsas region of the Arabian	
		Shield	139
٠		сс. - Часка - Часка - Солон - Солон - Солон - Солон	jeen.

Χ̈́ν

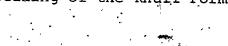
8.

LIST OF PLATES


Plate	Description 🔹 Page
:. 1	Outcrops, handspecimens, and thin sections for
••	some of the Halaban rocks 27
2	Outcrops and thin sections for some of the
•	Halaban rocks
3 -	Outcrops, crossbedding, conglomerate, and
, •	thin sections for some of the Abt Formation
	rocks 59
4	Bedding, foliation, fracturing, crenulation
• • •	and faulting in some of the Abt Formation
.	rocks
5	Mega to micro-folds in the Abt Formation 68
6	Quartz and calcite veins in the Abt Forma-
	tion; and contact relationships of the
· * * · , · .	Shigran carbonate
7	Alteration of ultramafic rocks, vein of
ξ.	magnesite, slickenside, and ERTS image of
•	the Al Amar-Idsas fault 92
8	Outcrops of gneissic granodiorite, layered
: .	gabbro, and thin sections for gneissic
• • • • •	granodiorite and serpentinate 110
· 9	Outcrops and thin sections of the diorite
• •	and syntectonic granodiorite $\dots \dots \dots$
10	Outcrop and thin section of the post-tectonic
• •	granite and outcrop, handspecimen, and cross-

xvi

7.7.64


A + 1 - 14

 \leq

Page .

xvii

The author of this thesis has granted The University of Western Ontario a non-exclusive license to reproduce and distribute copies of this thesis to users of Western Libraries. Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario's institutional repository (Scholarship@Western) are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information: E-mail: <u>libadmin@uwo.ca</u> Telephone: (519) 661-2111 Ext. 84796 Web site: <u>http://www.lib.uwo.ca/</u>

CHAPTER 1

PREAMBLÊ

1. Introduction

The Al Amar-Idsas fault, a major physiographic feature within the eastern edge of the Arabia Shield, has been interpreted as a collision boundary between a late Proterozoic volcanic arc and a more westerly located continental margin (Al Shanti and Mitchell, 1976). The aim of this thesis is to evaluate this hypothesis through a comparative study of the metasedimentary and metavolcanic rocks, and associated ophiolitic and granitic plutonic bodies, located on either side of the Al Amar-Idsas fault.

The Al Amar-Idsas région is situated in the eastern part of the Precambrian Arabian Shield in the high plateau of Najd (Fig. 1). Its geographic limits are:

in the North, parallel 24° 30';
in the South, parallel 22° 30';
in the East, meridian 46° 00';
in the West, meridian 44° 30'.
To the west, the thesis area is bounded by the Khuff

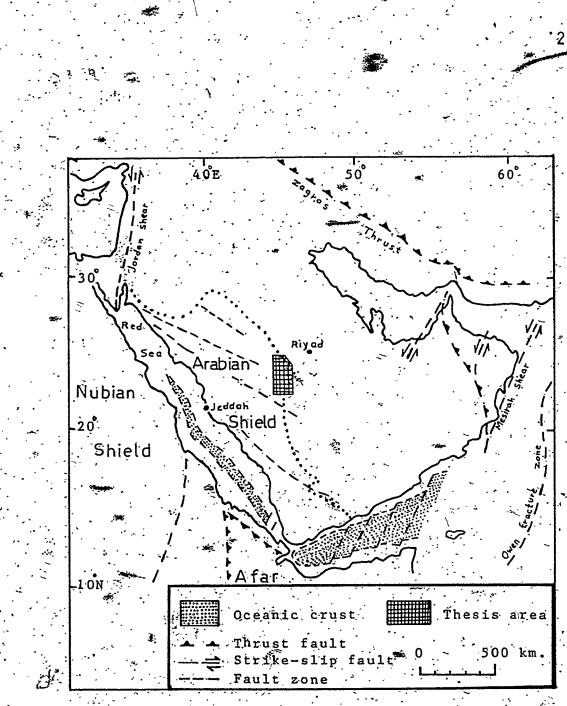


Fig. 1. Location map of the thesis area (after Gass and Gibson, with modification).

Formation of Permian age.

The centre of the thesis area is about 855 km east of
and about 12 hours drive from Jeddah. Access to the thesis
area can be gained via the following routes:
AJeddah - At Taif : 150 km of highway;
At Taif - Afif : 410 km of highway
Afif - Alshara : 185 km of highway;
Alshara - Al Amar : 110 km of unpaved road.
B - Riyadh - Al Quwayiyah : 200 km of highway;
Al Quwayiyah - Al Amar : 36 km of unpaved road.
C - From AdDawadmi, it takes about 2.5 hours to drive about
100 km south to Al Amar along a rough road.
The magnetite deposits of Jabal'Idsas are situated
near the centre of the area, whereas the Al Amar mine is
located about 45 to 50 km north of the Idsas magnetite
deposits. A new highway passing through the thesis area
7 km north of Al Amar mine is under construction (1976).
This highway will be a segment of the main Riyadh - At Taif
highway. The thesis area is crossed from west to east by
unpaved roads from which tracks passable to trucks and
four wheel drive vehicles lead into the principle wadis.
The Al Amar-Idsas region is characterized by a tropi-
THE AL AMAT-LOSAS REGION IS CHARACTERIZED DV & TRODIM

The Al Amar-Idsas region is characterized by a tropical-arid climate and occurs at an elevation of 700 m above sea level. During the winter months, temperatures fall below freezing point at night (-2° in February) but remain pleasant during the day (20°C). Rainfall is slight, and prevailing winds are from the north or northeast. In the summer, the climate is effected by monsoon winds which blow from the south, sometimes accompanied by haziness and small scale tornados. The nights are pleasantly cool but during day the temperature reaches .43°C in the shade. Humidity is very low both in winter and summer. In addition to about ten permanent settlements scattered throughout the area, many semipermanent encampments may also be found around the several wells within the thesis area.

1.2. Geomorphology

The volcanic rocks of the Halaban Group form a series of hills of varying height, extending from north to south. Where the Halaban rocks are metamorphosed and schistose, the relief is low. In the Idsas mountain range, elevation may be more than 300 m above the plain.

Marbles tend to occur as medium size hills or mountains, as at Jabal Al Badr Al Aswad, up to 150 m above the plain.

The north-south trending Al Amar-Idsas fault is bordered to the west by a large wadi about 100 m wide at its northern end (village of Marjan) and more than 10 km wide at its southern end.

Silicified carbonates of ultramafic origin distributed along the Al Amar-Idsas fault form small hills 5 to. 40 m high and 10 to 200 m long.

Serpentinite bodies in the central and southern parts

of the thesis area mostly outcrop in the form of small hillocks, only a few meters high. The Abt schist forms hills, sometimes even small. mountains, rising about 100 m above the plain (Jabal Tais). The major wadis within the Abt schist run north and/or south because they are controlled by north trending foliation.

Gabbros and diorites are distributed along northsouth trends and underlie low to moderate size mountains rising up to 200 m:above the surrounding plains.

Rocks of the gneissic granodiorite unit are found as small hillocks of weathered rock several meters high and are located within a large and highly weathered plateau cut by wadis running from west to east.

The younger granites tend to be unaltered and therefore occur as high subrounded mountains rising sharply from the surrounding plain. In some places, the height of the mountains (Jabal Batran) is more than 350 m above the plain.

1.3. Previous work

Rocks of the Al Amar-Idsas region were first represented on maps of the Arabian Shield by Bramkamp et al. (1956, 1958). They identified the region as consisting of igneous and metamorphic rocks, which Bramkamp et al. designated by the symbols "m" and "s", respectively. The first modern geological investigation of the Al Amar-Idsas region was carried out in 1962 by Hunting Survey Corp., Ltd., and involved an airborn magnetometer survey of the Idsas range. The survey was supplemented by a program of low altitude colour aerial photography of the area in the vicinity of the Idsas magnetite deposits and the ancient Fawara and Selib mines. (Aerocarto, 1964). This work was carried out as a preliminary-to a program of diamond drilling started in 1965 by D.G.M.R. at the Jabal Idsas magnetite deposits. Airborne magnetic and radiometric prospecting surveys were also carried out by the B.R.G.M. during the period 1965-1966.

Early geological investigations of the Al Amar-Idsas region were mainly concerned with the geology of specific mineralized areas of the Al Amar-Idsas region. The contribution of each of these workers will be discussed in the context of individual rock stratigraphic units described in the succeeding chapters.

1.4. Present work

Field work was carried out in the winter of 1976 between February and April. A preliminary analysis of the thesis area involving more than 12,000 square km, was accomplished by examination of eight aerial photographs at a scale of 1:100,000. 460 samples were collected from 325 stations, including 45 field oriented samples for structural studies, 279 samples for thin section study, and 170 samples for chemical analyses. Eight geological traverses were conducted across the thesis area in an east-west direction and approximately 20 to 30 km apart. Sampling was carried out on the basis of structural and lithological changes. The longest traverse was about 70 km long (south of the Al Amar mine) and included 37 sample stations, whereas the shortest traverse was only 10 km long and included only 9 sample stations. 45 samples were collected from silicified carbonate bodies located on a line about 200 km long parallel to the Al Amar-Idsas fault.

CHAPTER 2

REGIONAL GEOLOGY

2.1. Introduction

The thesis area.covers more than 12,000 square km of the central part of Saudi Arabia, and located at the eastern edge of the Arabian Shield (Fig. 1). The Arabian Shield and its African counterpart, the Nubian Shield, have been separated by the Red Sea Rift.

During late Proterozoic time (1000 - 540 my), the Arabian Shield underwent a major cycle of deformation and regional metamorphism, referred to as the Hijaz tectonic cycle. Deformation structures produced during this cycle are characterized by north-south trends. Later, during early Paleozoic time, northwest trending structures were generated in association with an important phase of northwest - southeast transcurrent faulting (Najd fault system).

Volcanic activity which occured during the Hijaz cycle was episodic and the various volcanic units are commonly separated by conglomerate, pyroclastic, sedimentary and carbonate rocks (Greenwood et al., 1975). Plu-

. New York

tonic rocks of the Shield vary in composition and age from diorite, 940 my, through granodiorite, 750 my, to granite, 550 my (Table 1). The basement on which rocks of the Hijaz tectonic cycle are thought to be deposited is possibly represented by the Khamis Mushyt gneiss. a rock unit supposedly older than 1000 my.

Greenwood et al. (1975) proposed that the southwestern part of the Arabian Shield formed by cratonization of intra-oceanic island arcs during the Hijaz tectonic cycle (1000 - 540 my). They postulated the existence of a northeasterly dipping subduction zone, on the basis of a general increase in the potassium content of more northeasterly located younger volcanic and plutonic rocks.

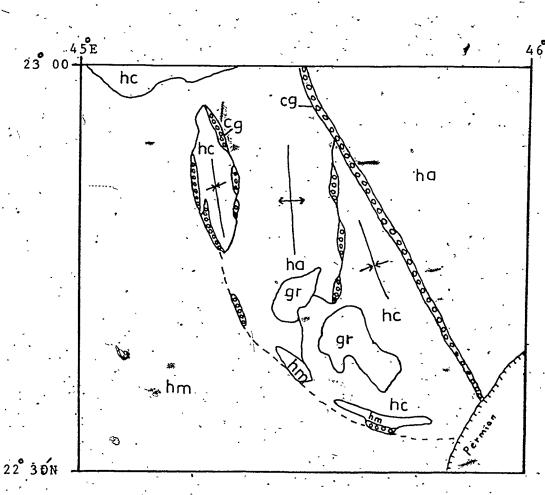
Bakor et al. (1976), Neary et al. (1976), and Nasseef and Gass (1977) have suggested that the ultramafic zones of the Nubian and Arabian Shields of which there are five in the Nubian Shield and at least two in the Arabian Shield, represent relics of closely spaced oceanic crust between island arcs. These island arcs have been formed in a manner analogous to those of the southwestern Pacific region.

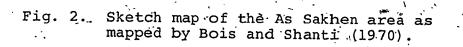
Marzouki (1977) concluded that the plutonic rocks of the Al Hadah region are typical of those produced by subduction of oceanic crust under continental crust. Marzouki (1977) also suggested that the evolution of the Arabian Shield involved collision of continental rocks separated Stratigraphy, or ogenic events, and plutonic rocks in the southern part of the Arabian Shield (After Greenwood et al., 1975). Table .]

PRINCIPAL LAYERED ROCKS STINU «

PLUTONIC ROCKS

OROGENIC EVENTS


°.'	• • •	•	44.2°	
Granite and guartz monzonite (570-550 Ma)	Quartz monzonite (650-600 Ma)	Injection gneiss (785 Ma)	.Second dioritic series (800 Ma)	First dioritic series (960 Ma)
BISHAH - Folds and faults; northerly trends; greenschist metamor- phism	YAFIKH - Folds and faults; northerly trends; greenschist metamor- / phism	RANYAH - Folds and faults; northerly and northeasterly trends; late, transverse shears; researchist, samphinhie	phism	AQIQ - Folds and faults, northerly trends; green- schist metamorphism
Conglomerate Graywacke Andesite Rholite Marble	Conglomerate Graywacke Rhyolite	Andesite Marble		Conglomerate Graywacke Dacite Andesite Basalt
Murdama Group UNCONFORMITY	Halaban Group e UNCONFORMITY ?	Ablah group	UNCONFORMITY	 Uiddah Group Bahah Group Baish Group
THIRD THIRD	EFISODE	AZ TECTOR	CIH -	/ FIRST


...

by closely spaced ocean basins.

2.2. Regional stratigraphy

The rocks of the Al Amar-Idsas region (Fig. 2) were considered by Bois and Shanti (1970) to be equivalent to, the Halaban Group of the central part of the Arabian Shield (Brown and Jackson, 1960), The lithostratigraphic succession established by Bois and Shanti (1970) is based on their study of the As Sakhen area (zones A, B, C; / Fig. 3.; Table 2). They divided the rocks into two main lithostratigraphic groupings, a lower metavolcanic group, further subdivided into three units, and an upper metasedimentary group composed of a lower conglomeratic unit and an upper metagraywacke unit. The ultramafic and associated gabbroic rocks of the Halaban Group were desig nated as the oldest rocks in the area, although Bois and Shanti (1970) allowed the possibility that the ultramafic rocks might be intrusive bodies formed penecontemporanéously with or even later than the associated volcanic units. These authors considered the rocks of the Al Amar-Idsas region to représent an unbroken lithostratigraphic succession of rocks. According to Bois and Shanti (1970) the lower andesitic volcanics (ha) form a central anticline dividing the younger sedimentary unit into two parts (Fig. 2). Conglomeratic and pyroclastic beds (cq) were found at the base of the sedimentary group.

·hm=	marble	•
hc=	clastic graywacke	`
	conglomerate	
ha=	andesitic flow	•

物

en stand states to

Dois and Shanti (1970) References Clastic rocks graywackes, gubricie and sericite biorite schist Chorite schist Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, formation Conglomerate, pyroclastic formation Conglomerate, formation Conglomerate, pyroclastic formation Conglomerate, formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, pyroclastic formation Conglomerate, formation Conglomerate, pyroclastic formation Conglomerate, formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate formation Conglomerate	•••	•	· · · ·	
graywackes, generation generation chlorite-plaquack, argilito, generation chlorite-plaquack, argilito, calcarcous guartite layers, lensi and beds of marble Groon-brown-black andesite; andes lithic tuff, agglomerate, brecia andesito, hordiendeschist Groon-brown-black andesite; andes lithic tuff, agglomerate, brecia andesito, hordiendeschist Groon-brown graywack, siltstone grade to argilite, thin calcarcou layers, soriate chlorite schist, guartz-serieut-c-hlorite schist, guartz-serieut-c-hlorite schist, lenses of limestone Groy-black andhesite; andesito, hordiendeschist Groon-brown graywack, siltstone grade to argilite, thin calcarcou layers, soriate chlorite schist, lenses of limestone Groy-black andhesite; guartz-serieut-c-hlorite schist, lenses of limestone Groy-black andhesite; guartz-serieut-c-hlorite schist, lenses of gray marble Andesitic flows, tuff and marble Andesitic flows, tuff and marble Andesite Fromation Groy-brown, massive to locally, sheared rhyolite, pyroclastic, rowch, altered diorite and andesite, blotite-brownlende- grained ambibel schist, meta- andesite, blotite-brownlende- grained ambibel schist, meta- andesite, blotite-brownlende- grained anabibel and dolonite Wornblende- grained anabibel schist and genist		al. (1972) Kahi et al.	Thekair. (1976)	Lithology
0 Badriyah Green-brown-black andesite; andes lithic tuff, agglomerate, breccia andesite, hornblende schist 4 Abu Savarir Formation Green-brown graywacké, siltstone grade to argillite, thin calcarco layers, sercice chlorite schist, guartz-sercicate-chlorite schist, guartz-sercicate-chlorite schist, lenses of limestone 0 Tidas Green-brown graywacké, siltstone grade to argillite, thin calcarco layers, sercice chlorite schist, guartz-sercicate-chlorite schist, lenses of limestone 0 Tidas Green-brown graywacké, siltstone grade to argillite, chlorite schist, guartz-sercicate-chlorite schist, guartz-sercicate-chlorite, grades downwar into calcarcous conglomerate 0 Madi al Jifr formation Pyroclastic, gand tuff 1 Addi al Jifr formation Pyroclastic, gand tuff 1 Addi al Jifr formation Pyroclastic, gand tuff 1 Jabal al Formation 1 Basic Jabal al 1 Addi al Jifr Pyroclastic, grade downwar into calcarcous conglomerate 1 Green-brown formation Basic 1 Jabal al Formation 1 Basic Abt. Formatin	graywackes, guartzite and sericite- chlorite schist	o Formation	· ·	chlorite-plagioclase schist, thin layers of graywackc, argillite, calcareous quartzite layers, lens
H Abu Sawarir Formation iithic tuff, agglomerate, breccia andesite, hornBlende schist Conglomerate, pyroclastic cocks, and marble Fawara g Fawara g Formation Gen-brown graywacke, siltstone grade to argillite, thin calcareo layers, sercite chlorite schist, lenses of limestone Rhyolitic tuff, flows and marble A wadi al Jiff promation Genglomerate, g and tuff g	· · **,	Zreiba Z Formation		
V Formation grade to argillite, thin calcarcous layers, sericite chlorite schist, guartz-sericite chlorite schist, into calcarcous conglomerate Conglomerate, pyroclastic Histas o. Conglomerate Gray-blue, brown and-black marble, schist, guartz-sericite chlorite schist, guartz-sericite chlorite schist, gray marble Conglomerate, pyroclastic Histas o. Conglomerate Green-brown graywacke conglomerate Indesitic flows, and marble Jabal al gaglomerate, forecia Hernblende Andesitic flows, and marble Jabal al gaglomerate, flow, flo	,Ċ			lithic tuff, agglomerate, breccia
Conglomerate, pyroclastic rocks, and marble Rhyolitic tuff, ignimbrite flows and marble Andesitic flows, tuff and marble Conglomerate of Green-brown graywacke conglomerate ienses of gray marble Conglomerate of Gray marble Conglomerate Conglomerate of Gray marble Conglomerate Conglomerate Schlorite of Solicite of Solicite	``````````````````````````````````````	Formation		grade to argillite, thin calcareo layers, sericite chlorite schist, quartz-sericite-chlorite schist,
Rhyolitic tuff, ignimbrite flows and marble Andesitic flows, tuff and • marble Andesitic flows, tuff and • marble Andesitic flows, tuff and • marble Andesitic flows, tuff and • marble Formation F Hornblende- F biotite granite granite graniss f Ultramafic and basic	\ •	Fawara o Formation		silicified marble, grades downwar into calcarcous conglomerate
Andešitic flows, tuff and marble Andešitic flows, tuff and marble Government Govern	pyroclastic rocks, and	LUSAS	Conglomerate	Green-brown graywacke conglomerat lenses of gray marble
tuff and Egfool flow andesite, meta-andesite and marble Formation flow andesite, meta-andesite and warble Wum flow andesite, meta-andesite and Wushraha Formation flow andesite, meta-andesite and Wushraha Formation flow andesite, meta-andesite and Wushraha Formation flow andesite, biotite - hornblende Wushraha Formation flow flow flow Hornblende- Abt. Formation flow flow Wushraha Formation flow flow flow	ignimbrite flows and	o o Wadi al Jifr o Formation U	Pyroclastic, agglomerate, and tuff	sheared rhyolite, pyroclastic,
Image: Second state of the second s	tuff and •	Egfool	, ANGEDAGE	andesite, meta-andesite and
v Fig blotite tion = granite u Quartz- granite chlorite granite chlorite granite u Quartz- granite granite granite <td>с ³³</td> <td>🔓 Mushraha</td> <td></td> <td>grained amphibole schist, meta- andesite, biotite-hornblende gneiss, gray-brown lenses of</td>	с ³³	🔓 Mushraha		grained amphibole schist, meta- andesite, biotite-hornblende gneiss, gray-brown lenses of
Ultramafic and basic	Ř	g biotite granite g gneiss	tion = Uuartz- E chlorite E schist and M chlorite-	
and basic	et.		명.sericite schist Ultramafic and serpen-	
	and basic			

Table 2 - Lithostratigraphic correlation of different workers in the Al Amar-Idsas region. Kahr et al. (1972) and Overstreet et al. (1972) divided the rocks of Jabal Batran and Bir Al Badriyah quadrangles of the Al Amar-Idsas region (Fig. 3) into four groups as shown in Table 2. The oldest group were considered to be granitic gneisses forming a basement to metavolcanic rocks of the Halaban Group (ua). The Bir Khountina Group, overlying the Halaban Group, consists of four formations:

1) Idsas Formation (ic), composed of conglomerate and chlorite metasediments;

2) Fawara Formation (fm), characterized by the presence of blue-black marble and dolomitic marble;

3) Abu Sawarir Formation (sg), consisting of green to brown graywacke and massive siltstone grading to black argillite; and

4) Badriyah Formation (ba), composed of volcanic andesites, rhyolites and associated pyroclastic rocks. In the southern part (Zone B; Fig. 3; Table 2) a fourth group of metasedimentary rocks was divided into a lower unit of graywacke and conglomerate with a chloritesericite matrix called the "Zreiba Formation" (zs), and an upper unit of gray to green graywacke, laminated argillite and calcareous graywacke, which Overstreet et al. (1972). correlated with the main outcrop of sericitic schist of the Abt Formation (ac) located west of the Al Amar-Idsas fault (Zone E; Fig. 3). Contrary to Bois and Shanti (1970), Overstreet et al. (1972) considered both the conglomeratic

1207 N. 120 N. 16 N. 16

A	, m	C	
Abu Sawarir Schist	.Unnamed	e,	Unnamed Abt Schist D Schist
Unnaméd Marble A			Fawara Marble
Unnamed Conglomerate A	Zreiba Conglomerate	Unnamed Conglomerate C	Idsas Conglomerate
	Unnámeď Rhyolite	B Rhyolite	Unnamed Rhýolite D
Badriyah Andesite	Badriyah Andesite	Jaba al Egfool Andesite	Halaban Andesite

9 r H e snowr

WDICD

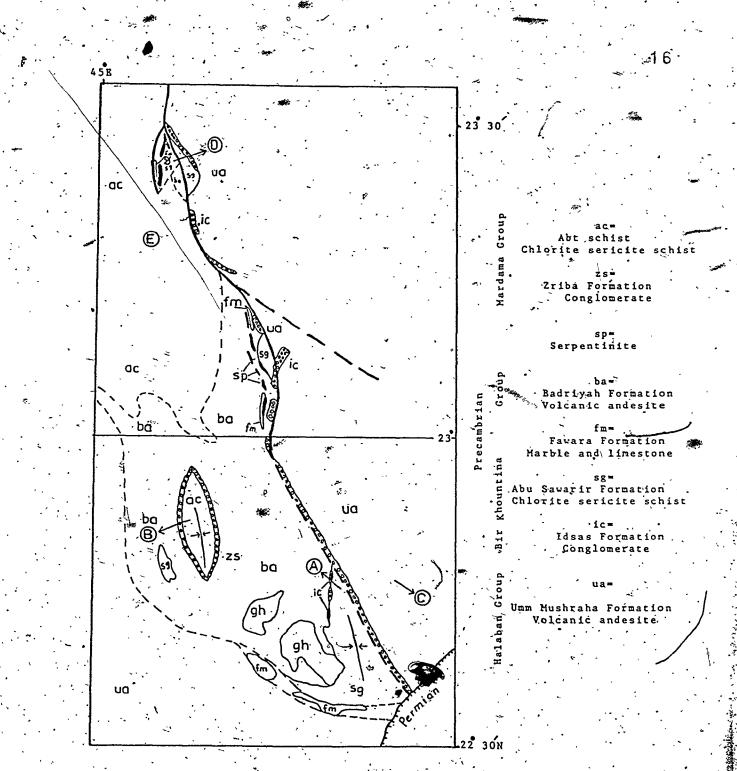
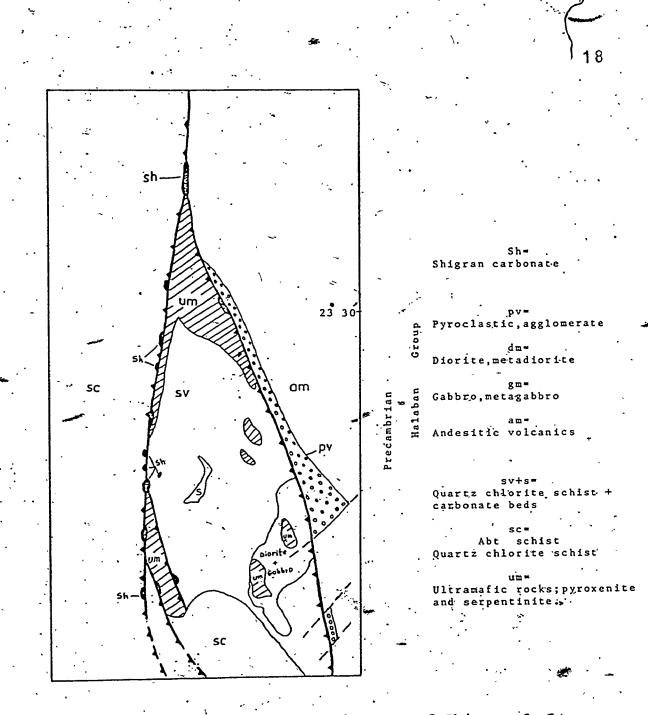
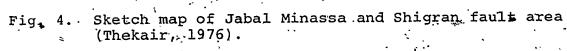




Fig. 3. Sketch map of Jabal Batran quadrangle (Kahr et al., 1972) and Bir Al Badriyah quadrangle (Overstreet et al., 1972). Zones A-B-C-D and E are explained on the facing page.

Idsas (ic) and Zreiba (zs) Formations and the volcanic Halaban and Badriyah units to be independent rather than correlative units.

Thekair (1976) divided the rocks of the Al Amar-Asihailiya district (Zone D; Figs. 3 and 4) of the Al Amar-Idsas region into two groups as shown in Table 2. According to Thekair (1976), the Abt schist (sc) represents the oldest stratigraphic unit in the area and is composed of quartz-chlorite schist and chlorite-sericite schist (sv) of graywacke origin. The rocks of the Halaban Group are considered to be the youngest and are composed of a lower sequence of meta-andesite and dacite and an upper unit consisting of pyroclastics, agglomerate and conglomerate. Gabbros (gm) and diorites (dm) are intrusive equivalents to the older metavolcanic sequence. Thekair's assumption that the Abt schist is older than the Halaban metavolcanics is contrary to the view held by Bois and Shahti (1970), Kahr et al. (1972) and Overstreet et al. (1972)

CHAPTER 3

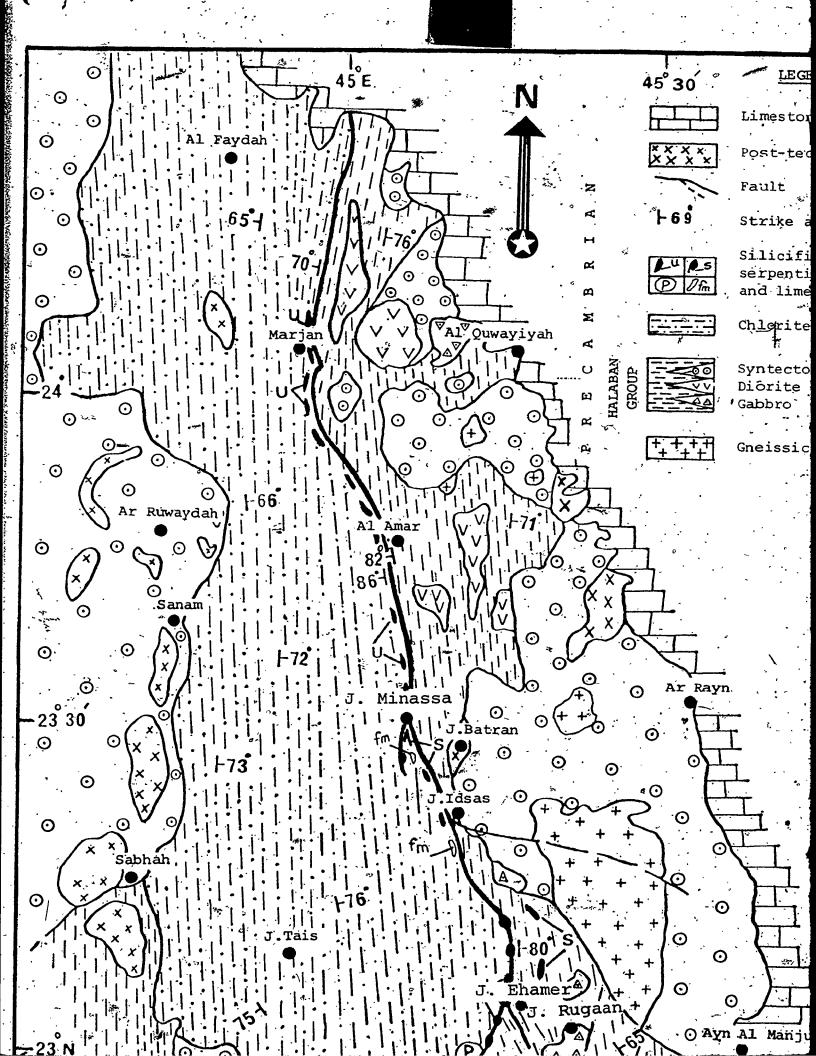
GEOLOGY AND ROCK UNITS

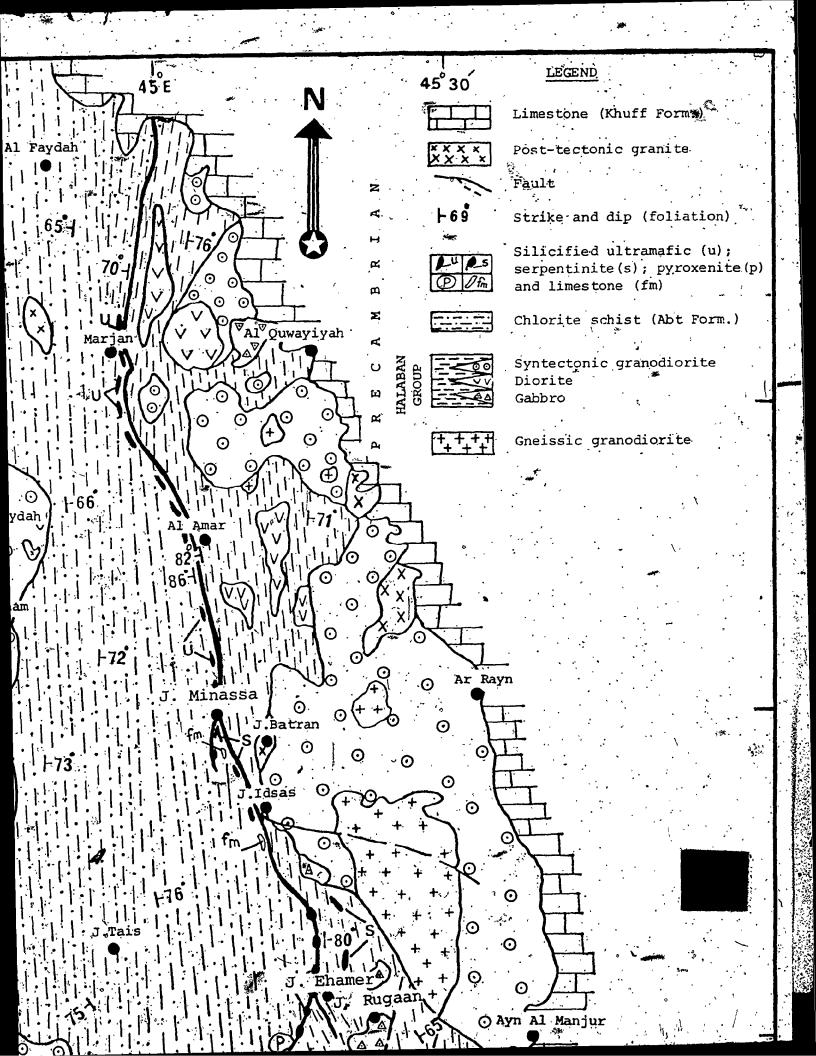
3.1. <u>Halaban Group</u>

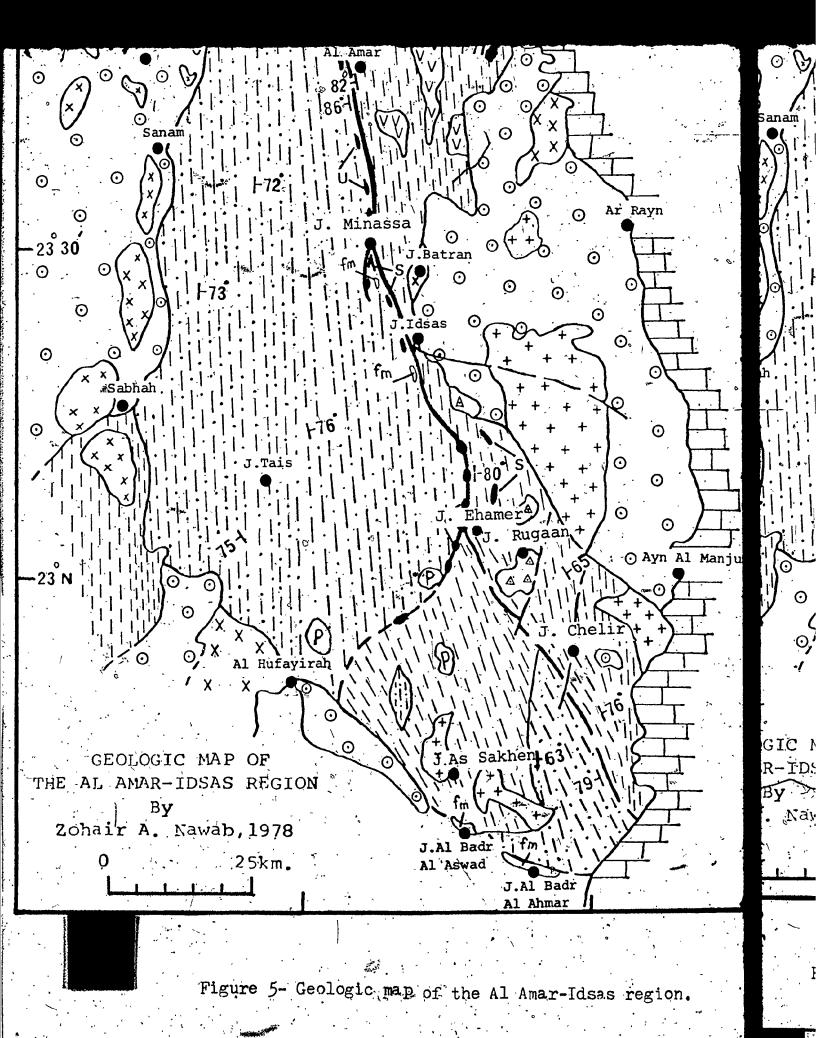
The term "Halaban Andesite" was introduced by G. F. Brown and R. O. Jackson (1960) to define a mappable unit in the central and northern part of the Arabian Shield consisting predominantly of fine-grained felsitic andesite. Jackson and others (1963) later utilized the name "Halaban Formation" to include not only the andesite mapped by Brown and Jackson (1960), but also other units consisting of sheared and folded, fine-grained felsitic andesite, agglomerate, quartzite, graywacke and locally interbedded marble, and rhyolite. J. Delfour (1966) introduced the term "Halaban Cycle" with reference to rocks in the northern part of the Arabian Shield, and divided the cycle into two formations:

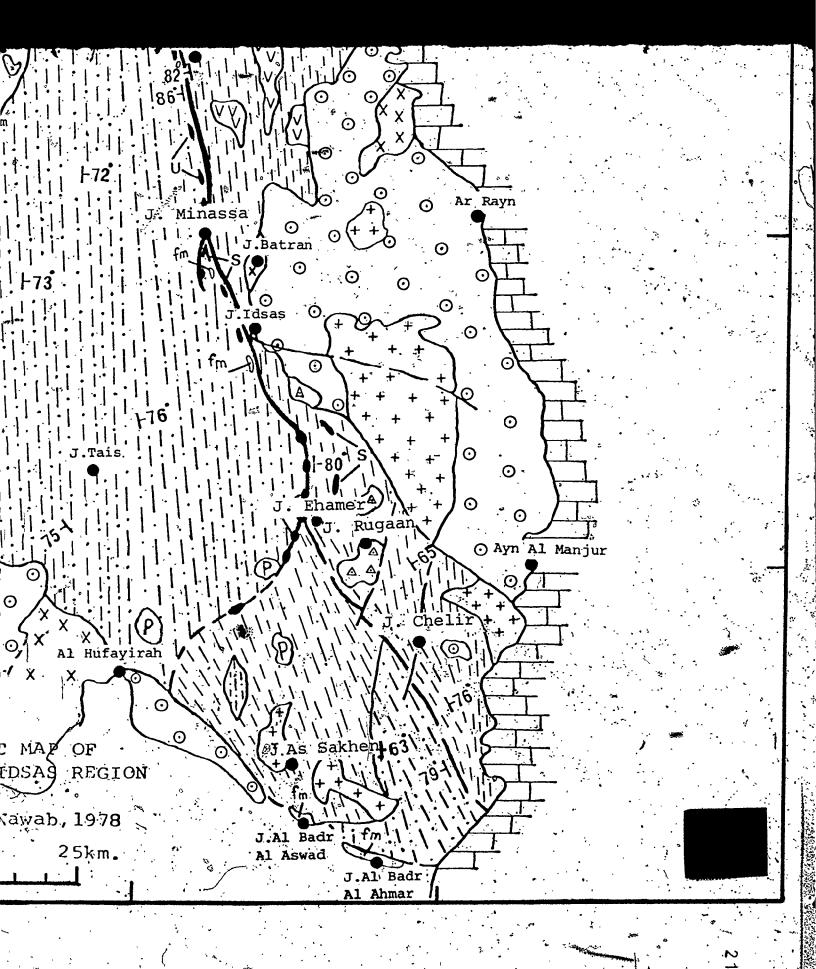
Formation I (lower Halaban), composed of alternations of schist; quartzite, and intercalated marble and ultramafic rocks; and

Formation II (upper Halaban), consisting of alternations of andesitic-basaltic flows, tuffs and agglomerates.


1:9


Bois and Shanti (1970) correlated the volcanic rocks of the Al Amar-Idsas region with those of the central part of the Arabian Shield and raised the Halaban Formation to Group status.


As a result of their work in the Jabal Batran quadrangle, Kahr et al. (1972) referred the metavolcanic rocks of this area to the Halaban Group and considered them as consisting of an unknown thickness of metamorphosed andesitic volcanics, graywacke and marble? intruded by hypabyssal plutonic mafic and ultramafic rocks. Overstreet et al. (1972) consider the Halaban Group to unconformably overlie hornblende-biotite granite gneisses of the basement complex. They have also shown that the andesitic volcanic and associated sedimentary rocks are strongly altered by regional and contact metamorphism and therefore predate-much of the plutonic activity in the area.


The Halaban Group in the Al Amar-Idsas region forms a belt of mountains 4 to 20 km wide and more than 200 km long, located to the east of the Al Amar-Idsas fault (Fig. 5). North of Jabal Chelir in the southeastern part of the thesis area, the Halaban Group appears to unconformably overlie gneissic granodiorites.

The lower part of the Halaban Group, here designated as the "Meherga formation" after the village of Meherga, consists of basic volcanics overlain by a succession of thin basaltic flows alternating with thick andesitic

31 M

Figure 5- Géologic map of the Al Amar-Idsas region.

flows*. Rocks of the Meherga formation are metamorphosed to amphibelite grade (Plate 1-A).

The upper part of the Halaban Group, designated as the "Al Amar formation" after the village of Al Amar, occupies a limited area in the central and southern parts of the thesis area and is composed of slightly altered to weakly metamorphosed andesitic and rhyolitic volcanic rocks. Andesite dominates in the lower part of the succession and rhyolite dominates in the upper part together with pyroclastic, agglomerate, volcanic breccia and conglomerate.

Gabbro, diorite and granitic rocks commonly occur as intrusions within the volcanic rocks of the Halaban Group. The gabbros are dominant in the southern part of the area, whereas the granites are more common in the northern and central parts.

Magnetite deposits west of Jabal Idsas are associated with jointed, fractured and strongly sheared andesites. The magnetite forms lenticular masses in which the long axes are parallel to the hinges of small folds in the andesitic unit. Large bodies of magnetite have not been found; the magnetite usually occur as grains and interstitial fillings in the andesitic unit (Kahr et al., 1972).

*The terms basalt and andesite are field terms used to describe quartz poor and quartz rich mafic volcanic rocks respectively. Abdul-Aziz (1974) concluded that the magnetite crystallized initially from a late stage immiscible liquid derived from an iron-titanium rich gabbroic magma, but that it was subsequently mobilized during deformation and metamorphism. Cu-Zn-Au ore bodies within the Halaban were explained by Al Shanti and Mitchell (1976) as volcanogenic stratiform deposits mobilized and redeposited in fractures within volcanic breccias and acidic rocks of the Halaban Group.

3.1.1. Meherga formation

The volcanic rocks of the Meherga formation include both basaltic and andesitic rocks. The 'basalts', forming layers up to 2 m thick, alternate with beds of slate, siliceous schist, pyroclastics and some marbles. The basaltic rocks where metamorphosed to amphibolite are fine to medium-grained and dark green in colour (Plate 1-B). In the southern part of the area however the 'basalts' are sometimes blackish green in colour and contain white phenocrysts of feldspar about 0.5 cm long. Locally, the amphibolites are deformed and have the appearance either of medium-grained diorite or chlorite schist depending upon the degree of deformation. Vesicules are sometimes abundant (Plate 1-C and 1-D) and small veins of calcite are common.

The 'andesites' form a unit with a maximum thickness of 10 km. They are invariably metamorphosed and sometimes highly altered (e.g. the southern and south-central parts

of the thesis area).

In the lower part of the Meherga formation, metamorphism increases to amphibolite grade. The more metamorphosed rocks have a well developed foliation trending north-south and dipping steeply 75° due east. Vertical joints in the volcanics trend north (5° to 10°) west. Badriyah Formation

In the south-central part of the Al Amar-Idsas region, in the area between Jabal Idsas and Jabal Rugaan, andesitic rocks occur in contact with and east of the Abt Formation (Fig. 3). This belt of volcanic rocks was mapped by Overstreet et al. (1972) and Kahr et al. (1972), as the "Badriyah Formation" of the Bir Khountina Group (Fig. 3). In the southern part of the thesis area, the Badriyah Formation is in contact with another more easterly located metasedimentary sequence, presented by Overstreet et al. (1972) and Kahr et al. (1972) as the "Abu Sawarir Formation" of the Bir Khounting Group, but considered by Bois and Shanti (1970) and Thekair (1976) as correlative with the Abt schist. The Badriyah Formation is not in physical contact with the Meherga formation of the lower Halaban Group; they are separated by the Al Amar-Idsas fault. However both groups of rocks are petrographically similar and the Badriyah Formation is intruded by gabbroic, dioritic and granodioritic rocks similar to those cutting the Meherga formation.

If the Abt and the Abu Sawarir Formations are coeval, then the Badriyah Formation may be older than both and is perhaps.stratigraphically equivalent to the Meherga forma-

3.1.1.1. Petrography*

tion.

The 'basalts' of the Meherga and Badriyah formations are composed of plagioclase, hornblende, chlorite and minor amounts of biotite, quartz, sericite, epidote, sphene and ilmenite. 'Andesites' are composed of the same minerals as the 'basalts' but also have calcite and hematite. Incontrast to the 'basalts' the 'andesites' contain little if any biotite.

<u>Plagioclase</u> occurs as euhedral crystals of andesine and labradorite, about 1 mm long and 0.5 mm wide. The twin ning is of albite type. The plagioclase crystals are sometimes zoned and altered to sericite, epidote and/or calcite especially at their centres. Fine-grained plagioclase makes up about 25% to 60% of the matrix of the basalt and andesite respectively. Tiny crystals are sometimes folded and twisted inside large crystals of quartz (Sample 246, Plate 1-E), indicating that some of the quartz crystals are porphyroblastic. Spherulites about 1 mm in

ATT petrographic descriptions in this thesis are the result of the study of many thin sections. The minerals described under this chapter and the other chapters are not necessarily to be associated together in the same thin section.

- PLATE 1
- A Amphibole schist of the lower Halaban Group (Meherga formation).
- B Handspeçimen of the amphibole schist. The grains are voriented in one direction.
- C Vesicules in a handspecimen of basaltic andesite. The vesicules are pure white in colour when filled with calcite.
- D Basaltic andesitic unite of the Meherga formation contain abundant of vesicules (south of the hammer head).
- E Fine to medium-grained chlorite (CL) schist. Grains of plagioclase are enclosed by large crystals of quartz (QZ) in the southeastern corner of the picture.
- F Fine-grained chlorite (CL) schist with spherulites about 1 mm in radius and made up of plagioclase (PL) and quartz (QZ).

- 2 " Ser to be and the

radius are made up of plagioclase and quartz (Plate 1-F). The spherulites may be formed by fast crystallization of feldspars and quartz around nuclei in a viscous magma béfore its eruption as a flow (Williams et al., 1954, p. 24).

Hornblende crystals are anhedral to prismatic in shape, about 2 mm long and 0.5 mm,wide. They are light brown to greenish brown to light green in colour and exhibit two sets of cleavage (Plate 2-A). In sample (283), the hornblende has evidently grown at the expense of pyroxene. Hornblende shows subophitic texture (Plate 2-B), and sometimes is partly replaced by magnetite.

Pyroxene occurs as anhedral to subhedral crystals of hypersthene, about 0.8 mm in diameter in both 'basalt' and 'andesite' (Samples 228, 181). They have a parallel extinction and slight pleochroism. A few fine-grains of pyroxene are present in the matrix. Most of the pyroxene crystals are altered to chlorite. <u>Biotite</u> tabular crystals of light to dark brown biotite about 0.7 mm long and 0.4 mm wide are common in the 'basalts'.

<u>Chlorite</u> is very abundant and forms prismatic oriented laths or clots possibly replacing hornblende. <u>Quartz</u> occurs both as oriented anhedral, medium-grained crystals about 0.4 mm in diameter, invariably exhibiting undulatory extinction, and as interstitial, fine-grained crystals about 0.1 mm in diameter (Plate 2-C). The latter are thought to have formed by metamorphic recrystallisation of the former. The quartz grains form about 2% of the constituent of the basaltic and not more than 10% of the andesitic rocks.

<u>Calcite</u> crystals are subhedral, about 1.2 mm long and 0.6 mm wide. They are products of altered plagioclase. <u>Epidote</u> is present as anhedral crystals within the plagioclases about 1 mm to 0.5 mm in diameter. <u>Sericite</u> is very fine-grained, has a high birefrengences,

and is usually present in the cores of plagioclase crystals.

Sphene, ilmenite, magnetite and hematite occur as minor components of both 'basalts' and 'andesites'.

3.1.2. Al Amar formation

ASS DE LA

The Al Amar volcanic sequence is about 5 km thick and composed dominantly of rhyolite. Downwards, the rhyolites are intercalated with andesitic rocks whereas upwards, the rhyolite passes into agglomerates, pyroclastics, volcanic breccias (Plate 2-D) and isolated beds of conglomerate. The Al Amar rhyolites are absent from the area north and south of Jabal Idsas as a result of deformation and/or erosion. In the northern part of the thesis area, the rhyolites are fine-grained, massive and jointed. Where weathered, they are brownish to black in colour but on fresh surfaces they are buff to pink. In the southern part, the rhyolites are often sheared, and in many places contains abundant disseminated pyrite. In these cases they are gray to light green in colour on both weathered and fresh surfaces.

The rhyolitic and andesitic units of the Al Amar formation unconformably overlie the Meherga formation and associated gabbro-diorite-granodiorite intrusions. Locally, in the northern part of the thesis area, rhyolitic rocks rest unconformably on diorite-granodiorite plutonic rocks. In the southern part of the area, andesites of the Al Amar formation unconformably overlie gnessic granodiorite.

A conglomeratic layer at the top of the Al Amar formation contains clasts of the gneissic granodiorite of the basement complex and of the Halaban Group and associated plutonic rocks, including pebbles of gabbro, diorite, granite and magnetite. The conglomeratic pebbles are about 0.5 cm in size, but locally boulders of gneissic granodiorites up to 10 cm acrossmare present (Plate 2-E). The conglomeratic layer is usually sheared and its matrix is composed of chlorite and calcite.

3.1.2.1. Petrography

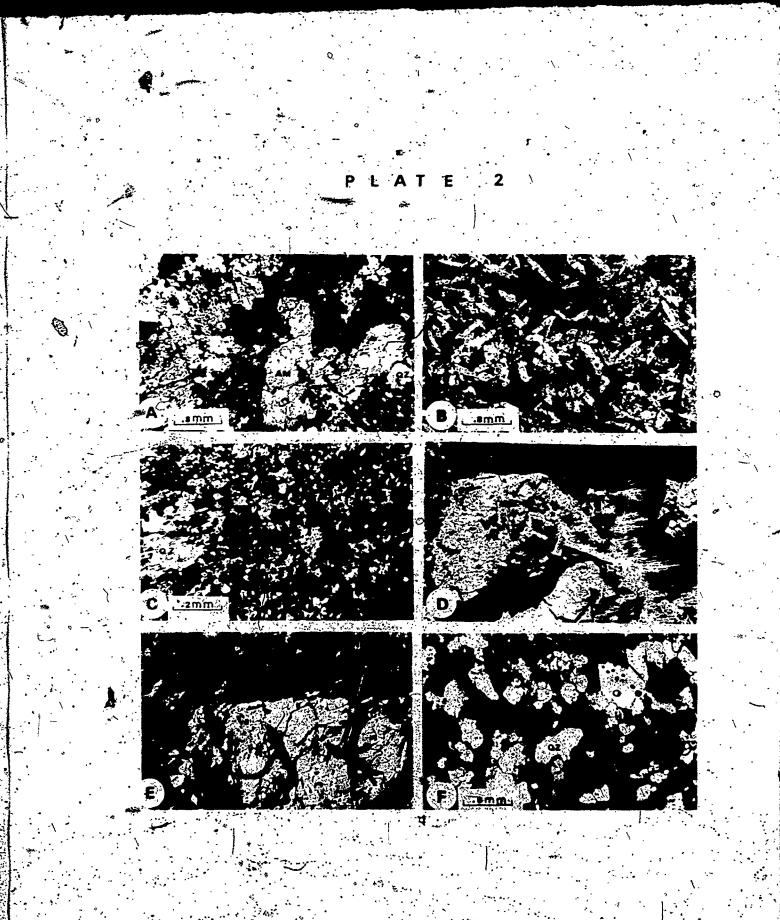
The Al Amar rhyolite which is the dominant rock type in the upper Halaban volcanics is soda rich $(Na_2O/K_2O \approx 1.8 \text{ wt. ratio})$ and is composed of quartz, plagioclase, and secondary chlorite, epidote, sericite, zircon, and hematite (Plate 2-F).

groundmass.

<u>Plagiočlase</u> occurs as euhedral crystals of oligoclase (An₁₆); the crystals are about 1 mm long and 0.7 mm wide and commonly untwinned and zoned. Quartz occurs frequently as fracture fillings within the plagioclase crystals which are commonly partially altered to epidote and sericite. Fine-grained plagioclase makes about 50% of the rhyolite matrix.

Quartz is found as euhedral to subhedral phenocrysts often exhibiting corrosion features. The grains are about 0.8 mm in diameter and invariably show undulatory extinction. Locally as a result of deformation they are crushed and have sharp edges. Fine-grained quartz makes up about 40% of the rhyolite matrix. Small veins of quartz fill fractures in the matrix and phenocrysts.

<u>Chlorite</u> is present as prismatic crystals about 0.6 mm long and 0.1 mm wide. These crystals are gravish green to dark green in colour. The shape of chlorite crystals indicates that they formed at the expense of hornblende. Fine-grained chlorite crystals are also present in the

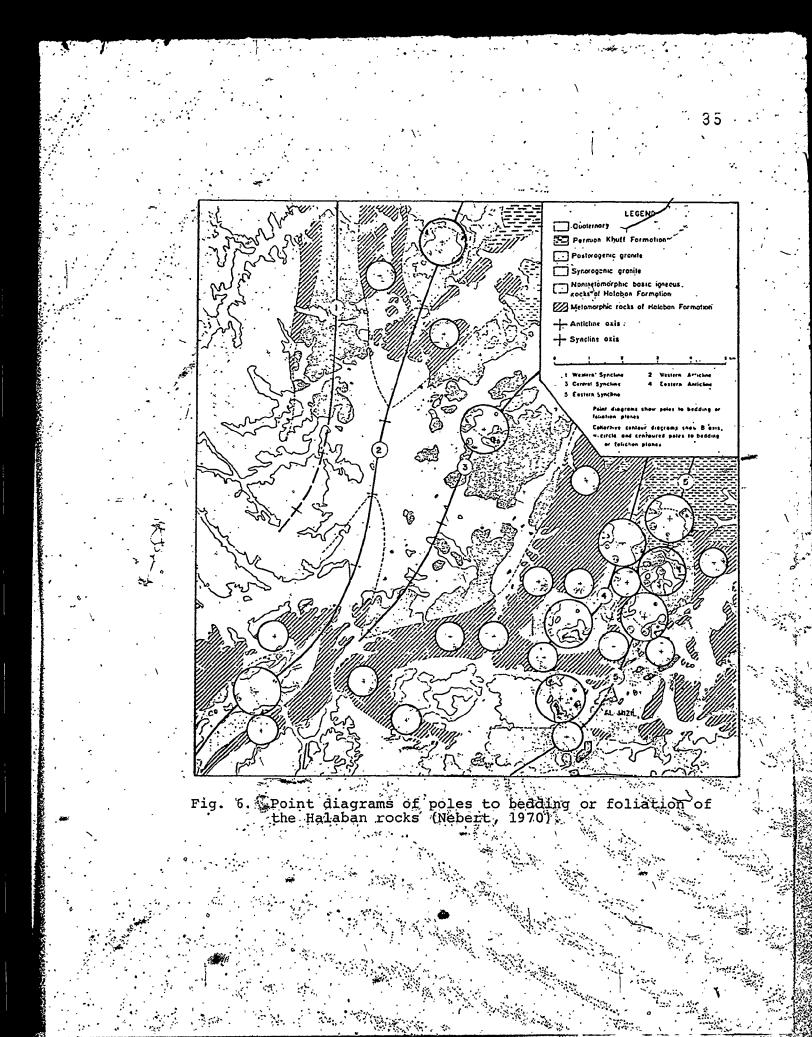

Epidote occurs either as anhedral crystals about 0.5 mm in diameter replacing plagioclase or as fine grains in the matrix.

Sericite is very fine-grained, has a high birefrengence and occurs as an alteration product of about 10% of the plagioclase.

PLATE :2 A - Xenoblastic crystals of hornblende (AM) in the amphibole schift. The crystals are about 2 mm long, 0.5 mm wide, and characterized by two sets of cleavage? B' - Prismatic crystals of hornblende (AM) show subophitic texture. The hornblende crystal grow partially at the expense of pyroxene (PY) - Fine-grained recrystallized quartz (QZ). - Outcrop of volcanic breccia. The fragments are angu-D lar and about 2 to 5 cm long. ' Outcrop of conglomerate. The pebbles are about 0.5 cm across. West of the hammer head a pebble about 10 cm is present. Medium-grained quartz (QZ) of the rhyodacite of the Al Amar formation. The quartz crystals are euhedral to subhedral in shape.

Al Manju

SI YES


Zircon occurs as very small euhedral crystals enclosed in quartz grains.

Iron oxides are developed by alteration of mafic . minerals.

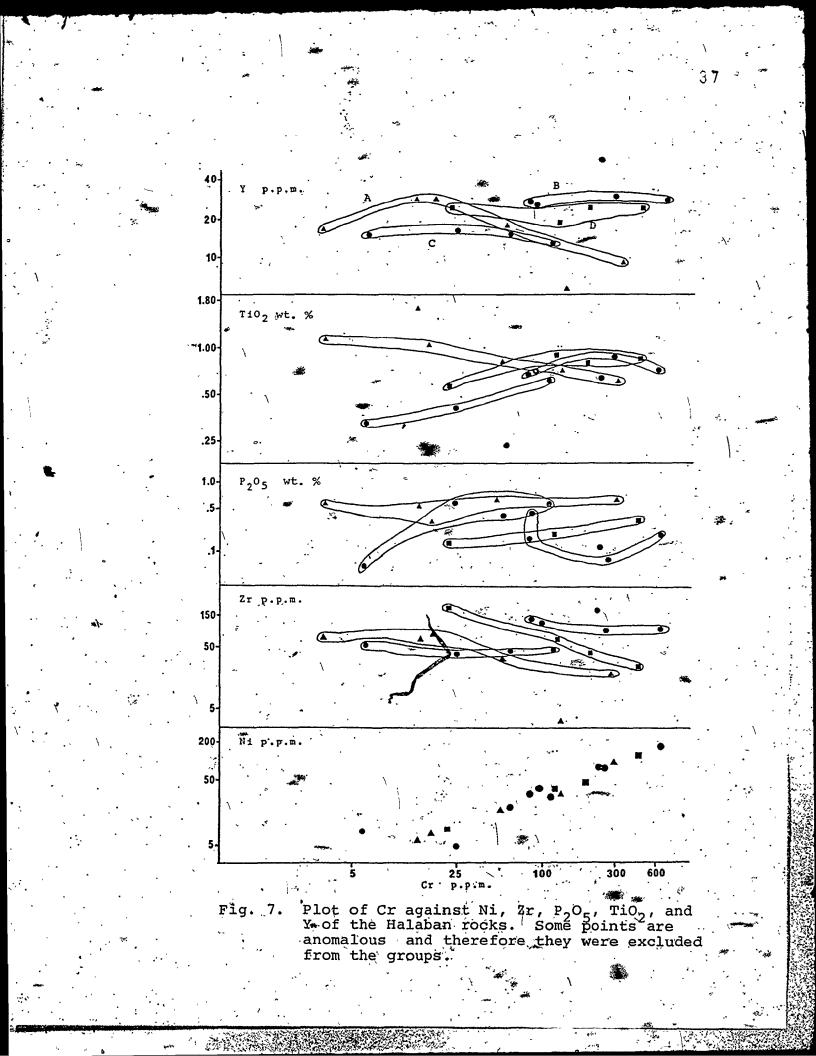
3.1.3. Structure ,

Nebert (1970) in his study of the area between Al Amar in the west and Al Quwayiyah in the east found that the structure of the Halaban Group was largely obscured by . extensive intrusions of granitic rock. In the Mizil and other areas, however, plots of bedding and axial-planar foliations revealed the existence of three sets of complementary tight anticlines and synclines trending north and northeast. In the cores of the anticlines, granite is always present, whereas basic igneous rocks invariably occupy the cores of the synclines (Fig. 6). The general Strike and dip of the foliation in rocks of the Halaban Group varies between N 20°W/70°W and N 20°E/72°E and the folds plunge 10° to 30° to the north.

Three well defined fracture systems occur in the Halaban Group, the orientation of the two dominant systems. being N 42° W/51°NE and N 68° E/71°NW. Other fractures strike N 63° W/36°SW. Two sets of faults are present in the southern part of the thesis area. The older set is related to the Al Amar-Idsas fault and strikes mainly N 5%-10°E; the younger set intersects the older fault at angles ranging from 40° to 60° and strikes N 10°-20°E. A

1.1

1. $\sim c$


branch of the Al Amar-Idsas fault passes through the gneissic granodiorites of the basement complex and appears to displace a dike cutting the granodiorite, southeast of Jabal Idsas, for about 1.5-km. > The younger faults displace the older fault for about 3 km in the southern part of the thesis area.

Chemistry 3.1.4.

Chromium content of basaltic rocks invariably de-· creases with fractionation. Taylor (1966) showed that the chromium content of ultrabasic rocks is 2000 p.p.m., basalts contain approximately 200 p.p.m., and andesites usually less than 50 p.p.m. Chromium crystalizes early as chromite, and is also contained in pyroxene and to a much lesser éxtent in olivine. Nickel, zirconium, yttrium, titanium, and phosphorous in the Halaban volcanic rocks are plotted* against chromium in Figure 7. Nickel de: creases' regularly with decreasing chromium, as would be expected in magmatic fractionation processes involving crystallization of oliving and chromite, and the Ni versus Cr trend in the Halaban volcanic rocks is therefore considered to be a primary igneous variation. All and the second

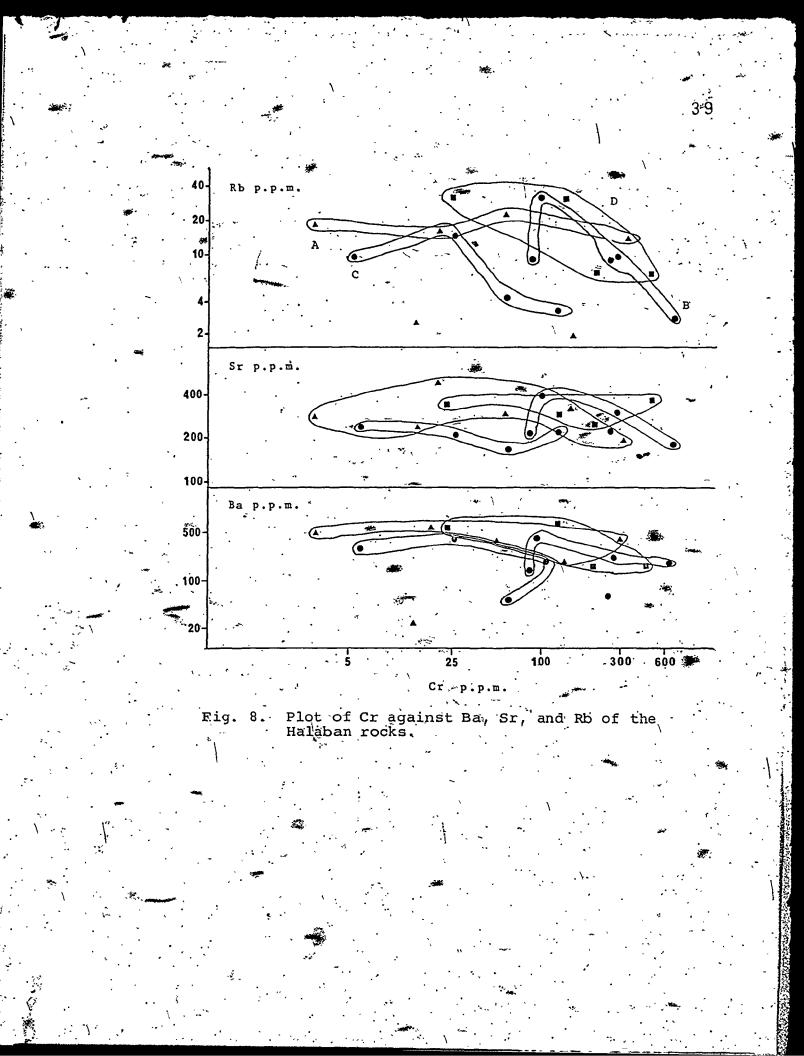
Plots of zirconium, titanium, phosphorous, and yttrium against chromium permits distinction of four

*All variation diagrams in this thesis are: 1) plotted on natural logarithmic scales because this di plays the real fractionation trends more clearly; major oxides are recalculated to 100% (anhydrous) ÷2,

groups* (Fig: 7):

Group A - mafic rocks of the Halaban Group distinguished by a tendency for titanium to increase with fractiona-

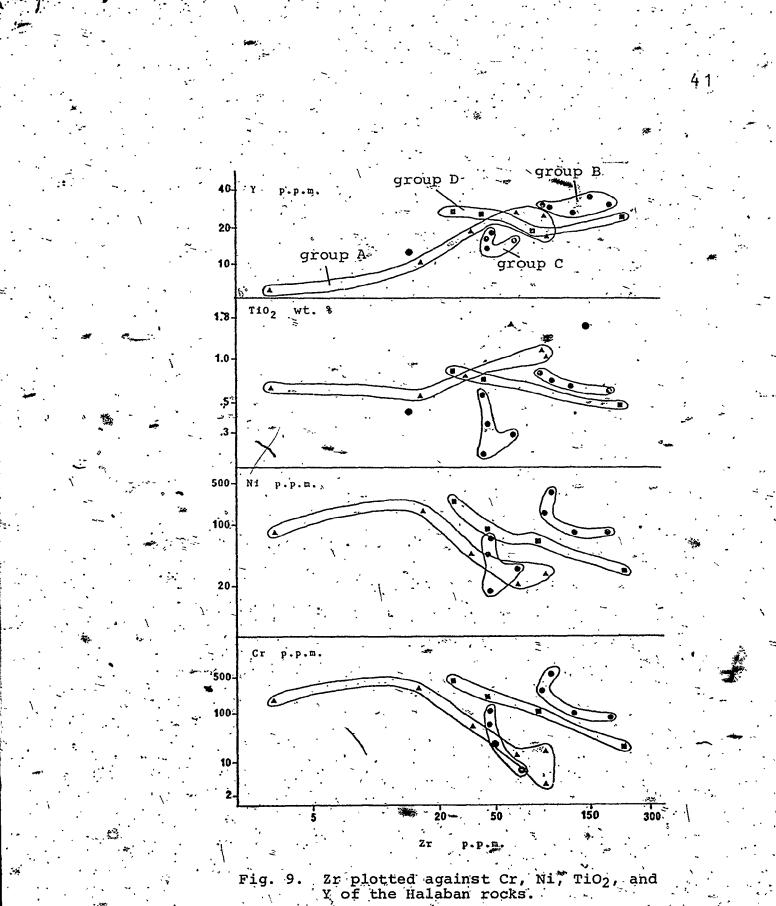
Group B - máfic rocks of the Halaban Group character ized by high values of yttrium and zirconium.

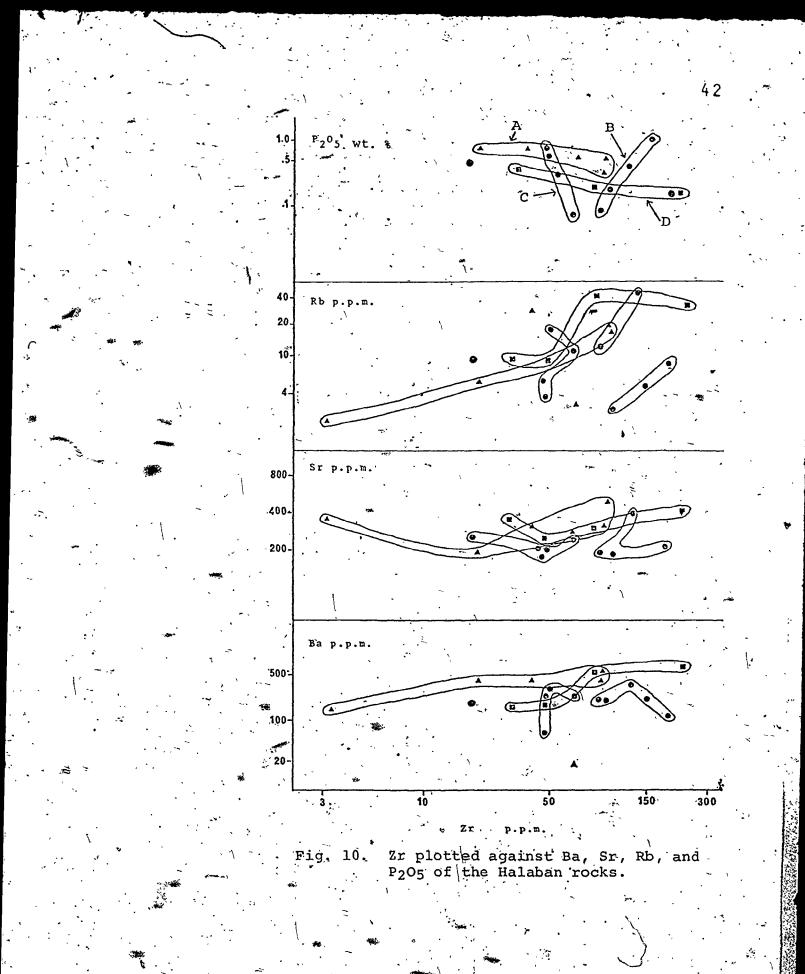

Group C - mafic rocks of the Halaban Group with low values of titanium, nickel, yttrium, and zirconium and high values, of phosphorous relative to the volcanic rocks of group B.

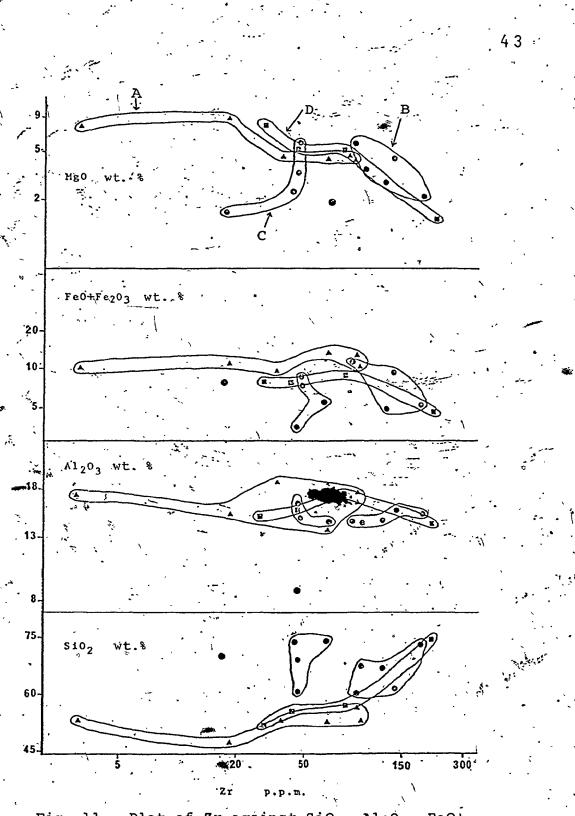
"Group D - mafic rocks of the "Badriyah Formation" with trace element contents intermediate between groups B and C.

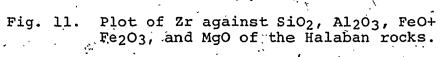
There are no obvious trends in the plots of barium, strontium, and rubidium against chromium (Fig. 8), probably reflecting the mobile nature of these-elements during low grade metamorphism and alteration.

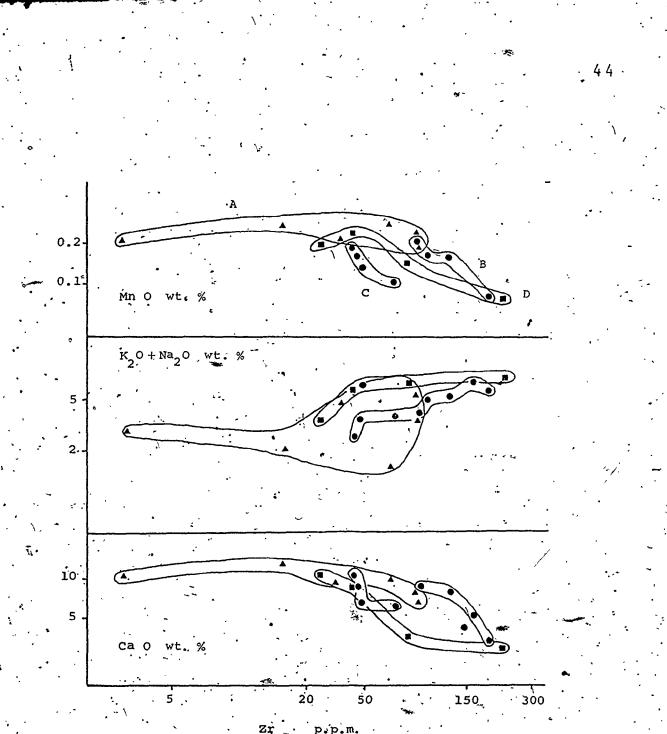
One of the most common diagrams used to distinguish basaltic rocks is the total alkalies versus silica. However, problems arise in the use of this diagram when the rocks being plotted have been subjected to low-grade metamorphism. Under these circumstances, most major elements and many trace elements are mobile during alteration


*The trends of all variation diagrams in this thesis are not based on statistical technique or regression equation. They are interpretations of the data as elements behave during a normal fractionation process and also based on grouping together the samples that belong to the same unit in the field.


(Cann, 1969). However, trace elements such as phosphorous, titanium, girconium, yttrium and niobium are considered by Nicholls et al. (1971) to be relatively immobile during alteration, a point of view also subscribed to by Cann (1970), Hart (1973), Pearce (1975), Wood et al. (1976), and Coish (1977).


Tortest the mobility of various elements of the Halaban Group, the trace and major element concentrations of the Halaban intermediate and basic volcanics have been plotted against their zirconium content in Figs. 9, 10, 🦉 11, and 12. Chromium, nickel, and titanium tend to decrease whereas yttrium increases with increasing zirconium (Fig. 9) as would be expected in fractional crystallization. Figure 10 reveals no obvious trends. There is no marked tendency for silica to vary with zirconium in any of the four groups with the possible exception of the rocks of group D (Figures 11, 12). "Total alkalies tend to increase with increasing zirconium in group's B and C, whereas overall contents of aluminium, total iron, manganese, calcium, and magnesium tend either to decrease or show no systematic variation. Although the trends for most major elements is not very clear, the division of the Halaban volcanic rocks into four groups is nevertheless still evident.


Plots of major oxides versus silica indicate that total iron, magnesium and calcium decrease with increas-

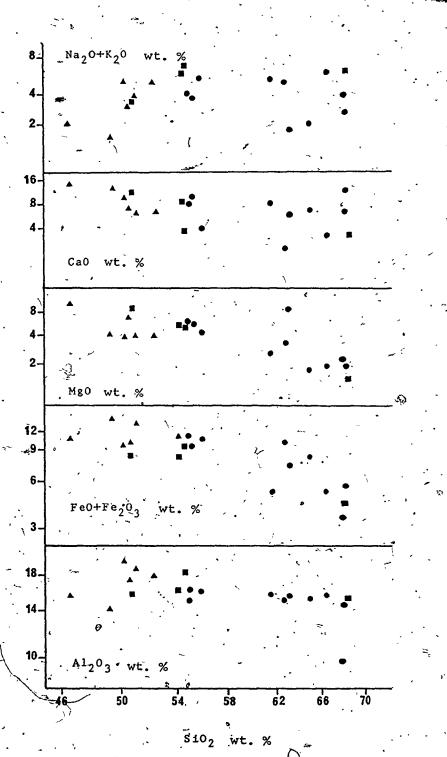


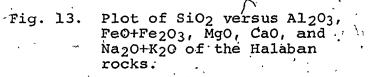
ੜ

Zr p.p.m. Fig. 12. Plot of Zr against CaO, K₂O+Nā2O, and MnO of the Halaban rocks.

A. Carthall State

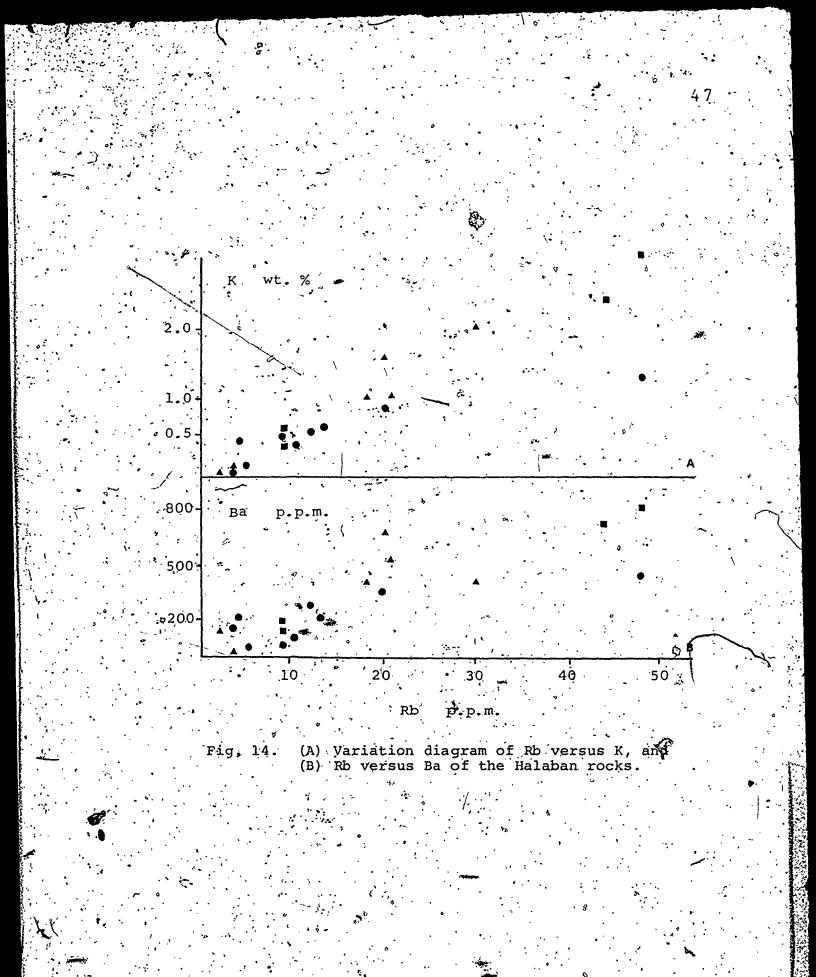
憩に

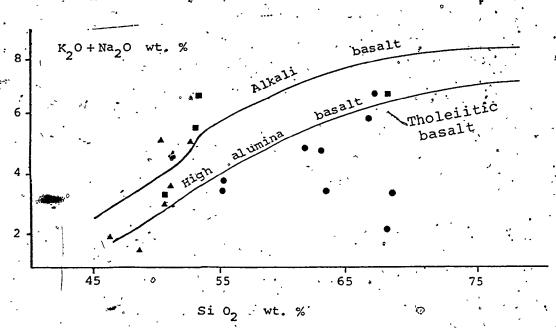

ing silica; whereas total alkalies show little change (Fig. 13).


Rubidium is one of the large cation elements which tend to increase with fractionation (Taylor et al., 1969). Rubidium enters preferentially the potassium position in mica first, and K-feldspars second (Taylor, 1966). Figure 14A reveals a strong covariance between potassium and rubidium.

Barium tends to concentrate during the late stages of fractionation due to its large size. Barium enters K sites of potassic-feldspars and therefore tends to covary with rubidium (Fig. 14B).

Kuno (1966) plotted total alkalies versus silica oxide to divide basic magmas into three types: alkali basalt; high alumina basalt; and tholeiitic basalt. Figure 15 indicates that 'basalt' samples (group A) are located in the alkali basalt and high alumina basalt fields the same as the rocks of group D. Groups B and C both are located within the field of tholeiitic basalt except for one sample which is located in the field of high alumina basalt. The value of this diagram is however doubtful due to the altered nature of the rocks.


The differentiation index, used as a measure of rock basicity (Figure 16), reveals that silica increases with differentiation. Hutchison (1974) stated that average rock types have the following differentiation indices:



See Standard Contraction of the State of the

46.1

1. N.

Fig. 15. Kuno's diagram (total alkalies versus silica) applied to classify the Halaban volcanics into the alkali, basalt, high alumina basalt, and tholeiitic basalt fields.

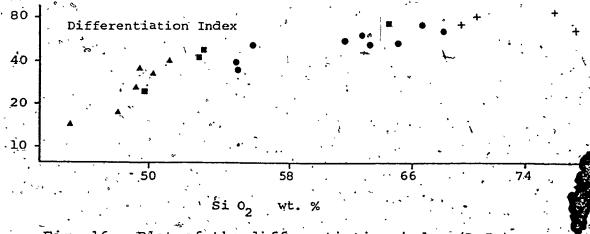
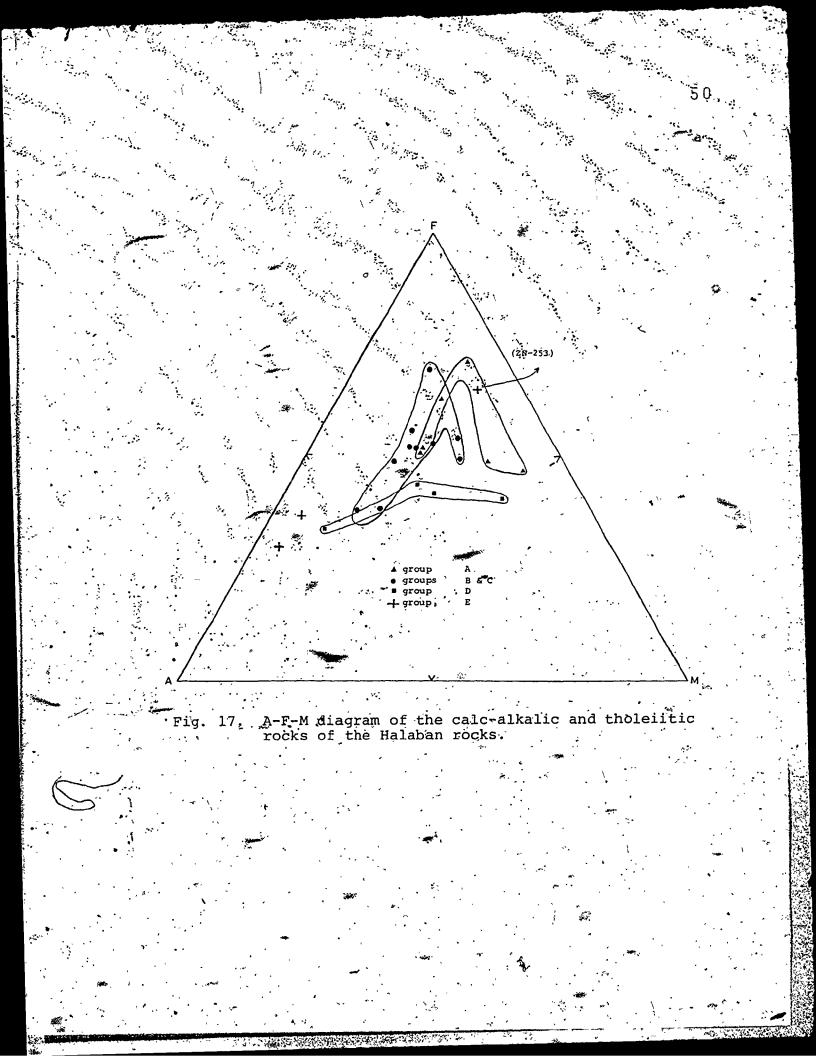
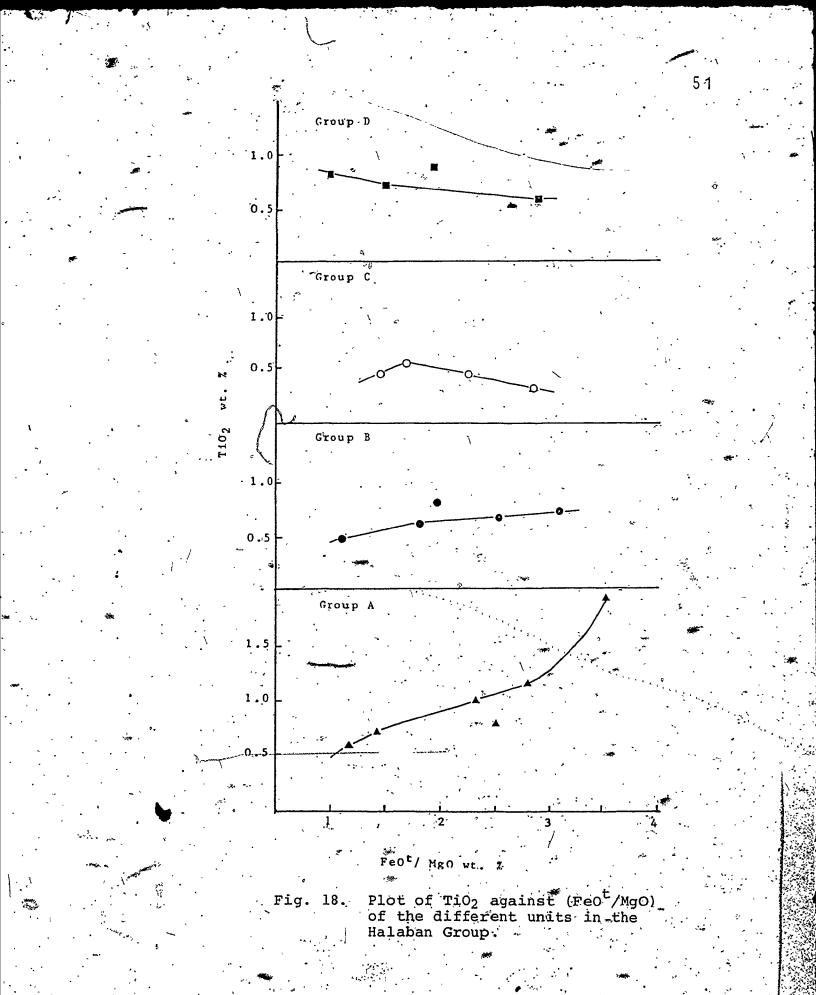


Fig. 16. Plot of the differentiation index (D.I.) versus silica content of the Halaban rocks.

ñ


Alkali granite = 93; granite = 80; granodiorite = 67; diorite = 48; andesite = 53; gabbro = 30; basalt = 35 and ... peridotite = 6.


The general trend of the volcanic rocks of the Halaban Group plotted on an A-F-M diagram (Fig. 17; A = total alkalies, $F = Fe_2O_3 \times 0.8998 + FeO$, M = MgO) coincides with the general trend of the calc-alkali suites. The volcanic rocks exhibit little iron enrichment relative to magnesium with increasing total alkali and silica content. On Figure 17, one rhyolite sample (zn 253) plots well away from other rhyolites. It is characterized by high values of silica (76.17), total iron (4.74), manganese (0.20), calcium (5.08) and phosphorus (0.65). and a low value of aluminium (8.32). This sample is located on an east-west fault close to a body of mafic igneous rock.

TiO₂ is plotted against FeO^t/MgO on Figure 18 for the volcanic rocks of the Halaban group. Group A of the Halaban rocks, characterized by a well defined trend along which titanium increases with increasing FeO^t/MgO. Group B marked by increase of titanium then very slight decrease as FeO^t/MgO increased. Group C starts with increase in titanium then rapid decrease with increasing FeO^t/MgO. Group D is characterized by decreasing titanium with increasing FeO^t/MgO.

Average abundances and ranges of major oxides, minor elements, and CIPW norm values of the Halaban Group are given in Table 3. Chemical analyses of rock samples belong

èn

4.5

٢.	ט ;	Group A	Grou	Group'B	. . *	5 - 	Group C		Group D	U	Group E	
•	Ave. I	Range	Ave.	IT Range	. ef	Ave, III	Range	Ave. IV	Range	Åve. V	-Range i	-
sio,	48.08	46.05 50.5	9 60.51	. 54.	64.67	61.91	55.18 - 67.49	\$5.71	49.95 - 6	74.63 ,	Ч. Ц	
710.2	1.01	0.58 - 1.8	3 0.66		0.83	0.40	1	0.74	1	0.31		•
A1203	16.52	13.05 - 19.8	0 14.78	۳.	15.09	13.53.	-	16.04	ï	11.63	1	
Fe203.	2.46	.2.22 - 2.7	5 2.02		2.49	2.00		2,13	1	1.77	1.67 - 1.83	-
Feò	8.73	7.50 - 11.0	r5 . 4.76		.8.82	4.31	• /		1	2.49	ļ	
Mn0	0.23	0.19 - 0.3	10 0.Í2		0.20	0.14	1			0.16	1	
ЧÇÒ	5,53	3.97 - 9.5	3.12		5.71	3.21	1			1.06	•	•
Ca0.	9.85	. 6.10 - 14.2	0 5.52		.8.30	8.33	н -		1	2.39	1	_ `
11a20-	2.29	*0.90 - 3.2	9 4.47		5.78.	2.63	1	·	1	4.36	ı	_
K20	1.01	,I		•	1.36	0.57	مه ا		ı	0.41	ł	
P205	0.45	0.00 - 0.68	58 0.20	- 80.0 0	0.47	- 0 - 42	0.06 - 0.66	0.18	0.15 - 0.33	0.23	cà'n - 70'h	
Total	9616	(* 	96.77	77 - 17	•	97.45		98.22	•	99.44	8	
	` ·				· .	•			``.			
Feo.	,1.98 			1 · ´ ·	•	06.1	4	.1.44	•	. 3.85	D .	
.,			•					•		2	•	
, . c	.2.05	.0, - 6,30	30 15,92	2 6.06 -	- 21/117	24.77	7.31 - 33.16	6,35	.0 - 24.59	40.45	23.08 - 62.57	~
; 8	6:21	0,35 - 11.97	:	1	. 8.53	3.37	់រ	्न	2.65 - 19.01	2.42	۴ آ	~
ą p	20.15	7.69 30.20	20 39.12	. ~,	- 50.54	22.68	1		1	37.23	0.03 - 56.40	~
an Ua	31.69	27.26 - 34.99	. -	-	- 24.65	23.13	î		14.24 - 2	10.39	3.03 - 7.15	<u>،</u>
COL	.0.58	.00 - 3. /	48 0.66		3.03	0.27		0,76	•		0.02 - 0.5	~ 1
dĭ Įb	11.61	.00 - 26.3	0		- 13.78	11.1	1		•			
, УЧ	15.20	6.19 - 27.3	22 7.32	•	- 21.01	10.35	. 0.00 - 19.18	10.20		9°°°	00 0 - 00 0	N
	4.28	.00 - 12.	00.0 či		0.00	00°0	0,00 - 0,00 2 5 4 - 3,38		2.68 - 3.44		'. i	~
: :	11.00	······································	72 1.29	٠.	1.59	0.68	1	,		0.60	`,	
da da	, 1.13	.00 - 1.	.62 0.48	•	8T°T .	1.01	•		•	0.55	0.02 - 1.54	
. (*	:	مر ۱ ۱	. ** •		•				·			
. , ,			230 . 0	, , ,- , ,	Trace	e Tementa	· · · · · · · · · · · · · · · · · · ·	189	, 21 - 436	,	ہر د 0	•
5 2			•	-	• •	115	•	•	ı	194	63 - 285	
				• • •		5.		•	121 - 6	· S	0	
t f	۲ ۱ ۰	, i 5 - C	8	ו		, vo	ı	9 - -	L	. 10	. 8 - 12	-
2. 2.	21,1	6 	4 132	• - •	۰.	49	42 - 63	. 06	29 - 213	246	104 - 318	
- ×		6 I 28	8 36		••••	16	1	24	1926	65	۱.,	
Sr	336	197 - 591	1 252			226	177 - 253	353	266 - 437	148	82 - 277,	•
		й 7 7	0 17				. 4 . 20	ac	40	5	2 - 13	

2

5**2**

, × 0.8998. +

on (Fe₂

to \Halaban Group are given in Appendix 2.

3.2. <u>Metagraywacke units</u>

3.2.1. Abt schist

The Abt schist as described by Bramkamp et al. (1956, Map I-212A; 1958, Map I-207A; 1963, Map I-206A) and Jackson et al. (1963, Map I-211A) is composed of sericitechlorite schist, derived mostly from sedimentary rocks, The name Abt"schist first and minor amount of marble. appears on geologic map I-270A, scale of 1:2,000,000, of, the Arabian Peninsula published by the U.S. Geol. Survey and Arabian American Oil Company (1963). The same unit mapped by Mytton (1966) on Mineral Investigations Map MI-4, scale of 1:100,000, as "sc" is described as consisting chiefly of quartz-biotite schist, chlorite-biotite schist and sericite-biotite schist with abundant pinch and swell layers of quartz lying within the regional foliation. Nebert (1970) mapped the Abt schist as well foliated paraschist striking between NNW and NW and dipping steeply 90° to 60° east or west. Al Shanti (1973) mapped the Abt schist as tightly folded chlorite schist with bedding and foliation mostly dipping to the east,

3.2.1.1. Geology and petrography

The Abt schist in the thesis area forms a belt of Fow hills, about 30 to 40 km wide and 200 km long,

located between the Al Amar-Idsas fault in the east and a belt of post-tectonic granites in the west (Fig. 5). Thé Abt schist reaches a maximum, width of about 40 km in the central part of its outcrop area and a minimum of 3 km in the southern part. - Sedimentary features such as cross bedding (Plate 3-A) are still preserved. To the north, the Abt schist is separated from the Halaban Group by the Al "Amar-Idsas fault, while in the central part, it appears to be in tectonic contact with volcanic rocks of the Badriyah Formation (Overstreet et al., 1972). To the northwest, the Abt schistsmare underlain either stratigraphically or tectonically by the Ar Radainyah formation, an eastward dipping succession of quartzo-feldspathic ** rocks and calcareous units, including marble, characteristic of shore line facies (Al Shanti, 1973).

The western and southwestern parts of the Abt schist are characterized by a higher metamorphic grade in the vicinity of large, elongated post-tectonic granites. Three metamorphic zones developed from west to east, they are: a - biotite-hornblende schist: A medium-grained, dark green to brown coloured rock, composed of plagioclase, biotite, chlorite and epidote. Quartz occurs as anhedral, oriented grains exhibiting undulatory extinction, and as interstitial, fine-grained crystals formed by recrystallization of the former. Hornblende occurs as subhedral crystals, brown to brownish green in colour; some hornblendes appear to have grown at the expense of pyroxene. Annedral crystals of garnet are locally present, and ilmenite and hematite are found as opaque minerals (Plate 3-B).

b - chlorite-biotite schist: Fine to medium, grained, light green to light brown in colour; composed of quartz, plagioclase, epidote, chlorite, tabular crystals of light to dark green biotite and accessory ilmenite and sphene (Plate 3-C).

c - sericite-chlorite schist: A very fine-grained light gray to light green coloured rock (Plate 3-D); composed of quartz exhibiting undulatory extinction, chlorite as tiny oriented laths, sericite, epidote as equigranular crystals, plagioclase as altered crystals. calcite either as grains or tiny veinlet, and ilmenite as an accessory mineral.

Some biotite-chlorite rich Payers of the Abt schist in the central and northern parts of the thesis area may have been originally mafic lava, and the numerous quartzcalcite sericite layers may have been calcareous shale and tuffaceous marl (Plate.3-E).

In the southern part of the thesis area, Overstreet et al. (1972) recognized a weakly metamorphosed to unmetamorphosed, medium to coarse-grained graywacke and calcareous graywacke, grayish green in colour with sedimentary features such as cross bedding and graded bedding still preserved. Overstreet et al. (1972) called this unit the "Abu Sawarir" Formation of the lower Bir Khontinà Group (unit sg; Fig. 3).

Bois and Shanti (1970) correlated the Abu Sawarir Formation with the Abt schist in the north (unit hc; Fig. 2). Thekair (1976), in the area south of Jabal Minassa, correlated the schist sequence east of the ultramafic belts, mapped as unit sv, with the Abt schist (unit sc; Fig. 4).

3.2.1.2. Marble units

Eigkelboom et al. (1966) mapped these marble units as making up the upper part of an unmetamorphosed volcanic sequence located along the Al Amar-Idsas fault. Kahr et al. (1972) introduced the term "Fawara Formation" to include limestone, dolomite, marble and silicified carbonates although they admitted that not all of these carbonate rocks are similar.

The carbonate rocks were subsequently divided by Thekair (1976) into three groups; one group, which he designated as the Sihailiya carbonate, he considered to be sedimentary. The two other categories of carbonate rocks were referred to as the Halaban carbonate and the Shigran carbonate. The latter are altered ultramafic rocks and will be discussed later.

The Fawara Formation (Sihailiya carbonate) are black,

blue, and brown marbles of sedimentary origin which in the central and southern parts of the thesis area separate graywackes of the Abt schist (Abu Sawarir Formation) from the volcanics of the Meherga formation (Badriyah Formation). The marbles form isolated lenses and ridges of various size and shape. The thickness of the Tenses ranges from 1 m to 1 km, their length from 20 m to about 7 km and their height from 10 m to about 200 m above the plain level. The contact of the marbles with the surrounding country rock may be sharp or gradational.

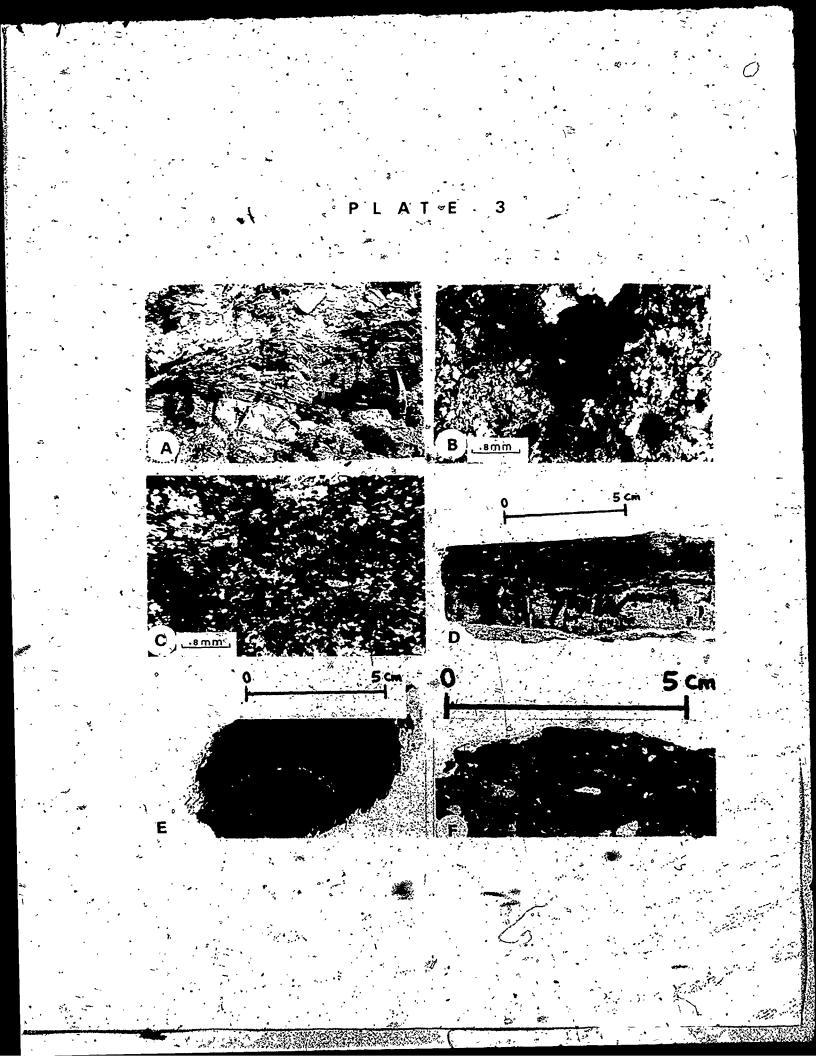

In the central and southeastern parts of the Al Amar-Idsas region, the marbles have sharp contacts with amphibole schist and calcareous sandstone beds respectively. 'In the southern part, gradational confacts are found between the marbles and surrounding calcareous clastics and tuffaceous rocks of the Abt schist (Abu Sawarir Formation). At Jabal Al Badr Al Ahmar in the southern part, the marble is underlain by a thin bed of conglomerate (Plate 3-F) whose interstices are filled by carbonate materials. These marbles are reddish brown in-colour on both fresh and weathered surfaces. They are medium to fine-grained, thinly bedded and gently folded. Coarse to medium-grains of white calcite, are present. Cavities are filled with precipitated calcite, first coating the walls, then fill. ing the spaces. At Jabal AI Badr Al Aswad, "about 7 km north of Jabal Al Badr Al Ahmar, the marble is black in

PLATE 3 ...

- Graywacke of the Abt Formation contain cross bedding,
- B Biotite-hornblende schist consist of biotite (B), hornblende (HD), chlorite (CL), sphene (SPH) and ilmenite.
 - C Chlorite-biotite (B) schist consist of quartz, albite, chlorite (CL); epidote and ilmenite. The grains are very fine.

199 - S

- D Handspecimen of the chlorite-sericite schist with tiny veinlets of calcite perpendicular to the foliation planes.
- E Handspecimen of folded calcareous and quartz layers of the Abt Formation.
- F Conglomeratic bed underlain Jabal Al Badr Al Ahmar marble. The pebbles are cemented by carbonate materials.

colour on both fresh and weathered surfaces. The marbles which are locally folded are thick bedded (about 2 m) and very fine-grained (Plate 4-A). In the central part of the thesis area, the marbles are buff, pale brown and gray in colour on weathered surfaces but dark gray to black-blue in colour on fresh surfaces. The marbles of the central part are massive, although locally they are bedded, gently folded and contain abundant calcite veins.

All the marbles are composed of very fine-grained calcite and variable amounts of secondary crystalline quartz. Thekair (1976) found using x-ray diffraction methods that dolomite is the predominant component of these marbles.

Table 4 illustrates, the average and range of chemical composition of five marble samples. The variation in silica, magnesium and calcium content reflects the degree of hydrothermal activity along the fault plane at the base of the carbonates. Chemical analyses of individual samples are given in Appendix 3.

3.2.1.3. Structure

The Abt schist is tightly folded; bedding and foliation both dipping steeply east or west. The general strike of the foliation varies between N 10°E and N 30°W and dip between 55° east or west, and 90° (Plate 4-B). There are three fracture cleavage systems in the Abt schist Forma-

6.0

Table 4 - Average and range of chemical composition

ien en e	5				n na sea Na sea Ar			
*	Ave. ^I .	. Range .			Ave.	Range	·	•
. Si0 ₂	13.41	2.30 - 30.	43	Ç 👬	2., .	0 –	6	`.
TiO ₂		.02	ج: 'وې	Ba	29	2 - `	B1 .	•
.A1203	.41	.06 16	06 ° ₁ ,	Nì	Ξ1	0 - 1	58.	
№ 203+		.10 - 1.	64	Nb	2	.0°	5	. ک ړ.
- FeO	° 33 ° .	· . · . · . · . · . · . · . · .	82	Zr	<u>`</u> 6	;0 – 0;	17	,
MnO		.02 - , .	23.	Y	3	0: -	5 **	. ;
MgO	14.23	. 59 - 22.	41 f	Sr 🚺	448	53 - 18	28 .	*
CaO	34.21	22.97 - 54.	22	RD	4	1	9	~~~~
Na ₂ 0			· · ·	••••			- j	Ż
K-2	.02, •	0"	10 🌷 😽	•		å .		
P205	. 02	0	06	,	•	• ` •	·	
1.0.1.		,30.62 - 42.	44	•	S		•	
				• •	***	• • • • • • • •	•	

Total 100.84

L = average of 5 samples.

٤.

•

tion: N 45°W/75°SW; N 65°E/70°SE, and less commonly. N 35°E/55°NW. The latter system of fractures is usually filled with calcite minerals (Plate 4-C). Locally the Abt schist exhibits a secondary crenulation (Plate 4-D). Crenulation represents inhomogenous deformation and changes in the total volume of the rocks (Hobbs et al., 1976, p. 40).

Aerial photographic studies indicates the presence of many lineaments within the Abt schist. In the field however it is difficult to determine the nature of the lineaments because of the low relief and extreme weather ing of the fine-grained schists. On the east, the Abt schist is bordered by the Al Amar-Idsas fault, at least two branches of which pass through the Abt Schist in the central and southern parts of the outcrop area. Plates 4-E and 4-F show faults in the Abt schist displacing andesite dikes about 5 cm and 1 m, respectively. The nature of the folds present in the Abt schist are illusrated in Plate 5-A, 5-B, 5-C, and 5-D. Most commonly, the folds are inclined although the other types of folds are also present. A plot of poles of bedding and foliation (Fig. 19) shows that the axial planes of folds in he Abt schist tend to strike north-south, dipping 75° to 80° west whereas the folds plunge about 10 the south southwest

Quartz veins are abundant throughout the Abt schist.

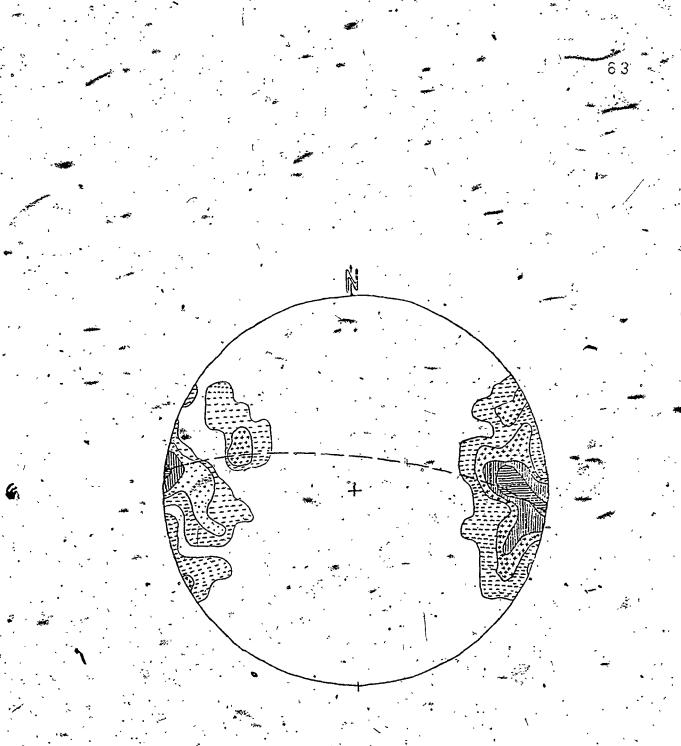
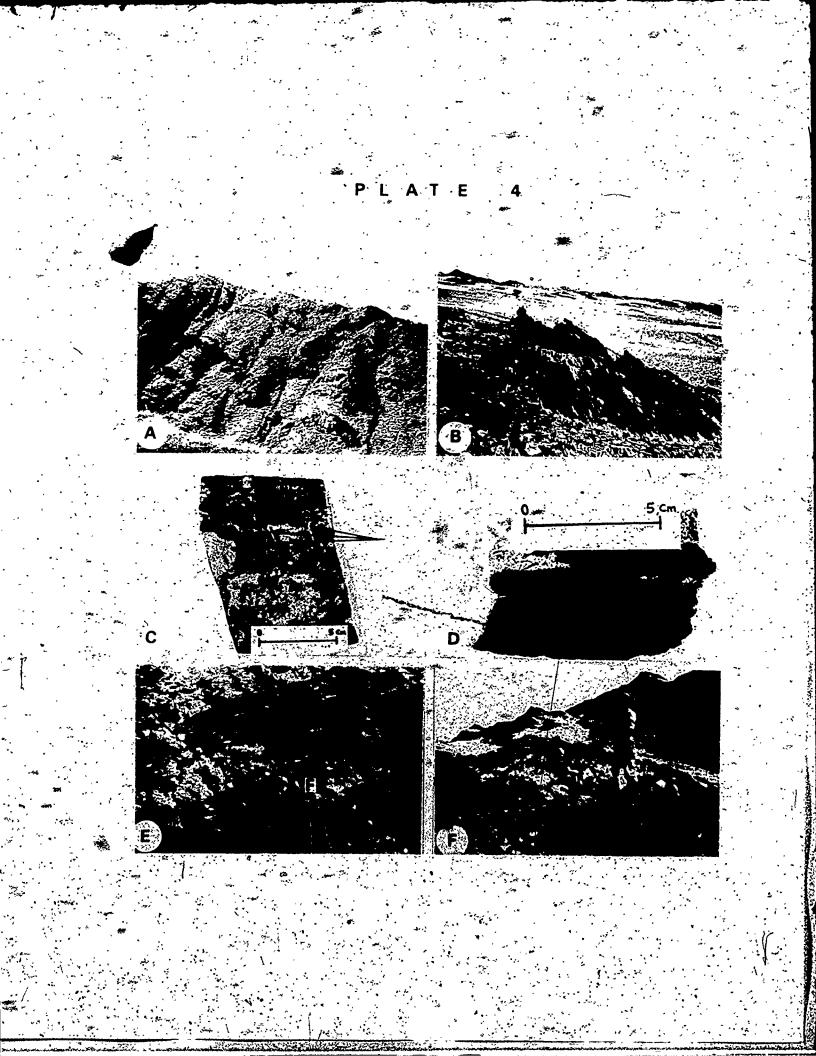


Fig. 19. Sterogram of poles to bedding and foliation of the Abt Formation.


PLATE 4

· • • • •

- A Beds of marble about 2 m thick at Jabal Al Badr
 - Al Aswad.

1 m.

- B Typical foliation of the Abt schist trending N 10°E and dip 75°E.
- C Fractural cleavage in the quartz-chlorite schist. Calcite minerals filled the fractures.
- D Crenulation developed in the chlorite-sericite schist as a result of deformation.
- E Fault in the Abt schist displaced a small layer of andesitic vein-type about 5-10 cm.
- R Fault in the Abt schist displaced andesitic dike about

The oldest quartz veins are those striking north-south parallel to the foliation. They are refolded the same as the schist (Plate 5-E and 5-F); younger quartz veins however cut across the foliation and bedding surfaces. The quartz veins vary in thickness between a few millimeters and 1 m, and in length from 0.5 to 300 m. Pods of quartz are also present (Plate 6-A). Most of the quartz veins are white in colour, clear and minky quartz veins being rare. Calcite veins are less common than quartz veins but in many localities both quartz and calcite are present in the same veins (Plate 6-B).

3.2.1.4. Chemistry

Average abundances and ranges of major oxides, minor elements, and CIPW norm values of the Abt schist are given. in Table 5. Two of the amphibole schist samples (269A; 276) are basaltic, having relatively high nickel and titanium contents with the TiO₂ values comparable numerically to their FeO⁺/MgO ratios. The remainder of the samples (249, 283, 278A) are characterized by low titanium contents relative to FeO⁺/MgO and appear to be low potassic calc-alkaline rocks. The more silicic rocks (SiO₂ = 62 wt % to 73 wt %) are low in titanium relative to FeO⁺/MgO but appear to be enriched in nickel and chromium relative to island arc andesites from Tonga (Ewart et al., 1972).

The general trend of the Abt schist rocks in an A-F-M

- A, B, C Illustrate different scale of folds in the chlorite-sericite schist of the Abt Formation.
 - D Quartz, albite, and chlorite crystals deformed and folded in a thin section of quartz-sericite schist of the Abt Formation.

PLATE 5

- E Quartz veins are abundant in the chlorite schist of the Abt Formation.
- F Quartz vein deformed and folded within the Abt Formation.

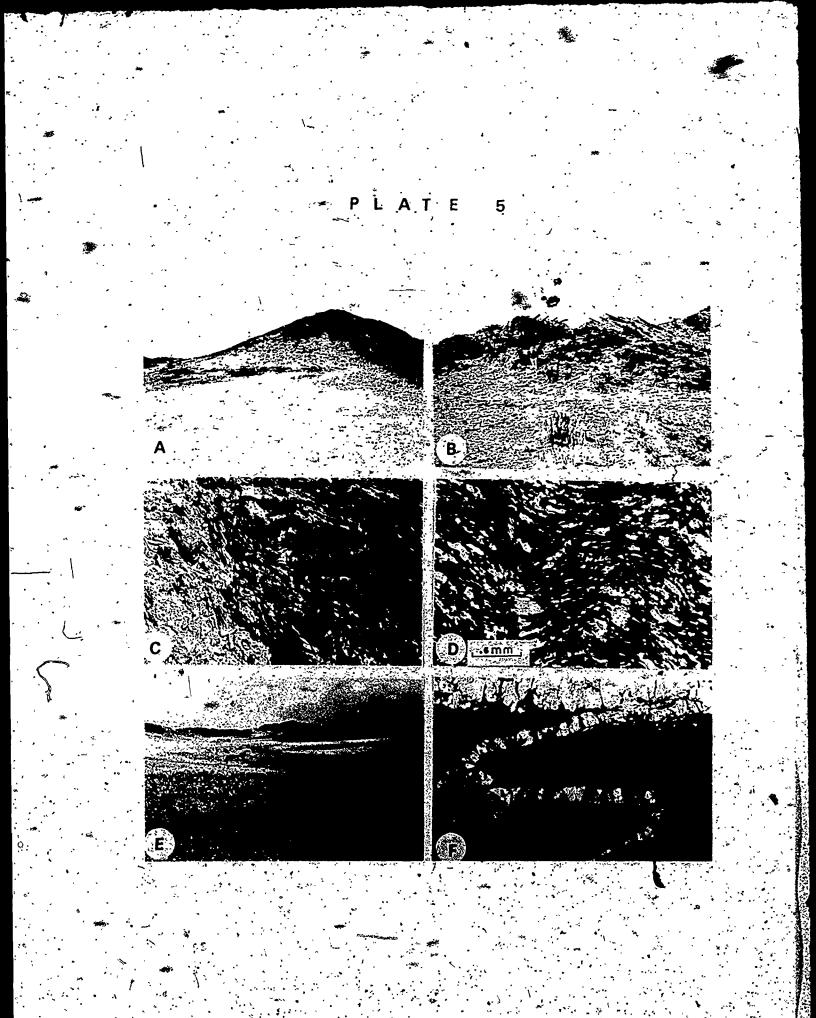


Fig. 20. A-F-M diagram of the calc-alkalic to tholeiitic rocks of the Abt Formation.

يتم :

· • • `,

groups

A & B C

. .

٠.

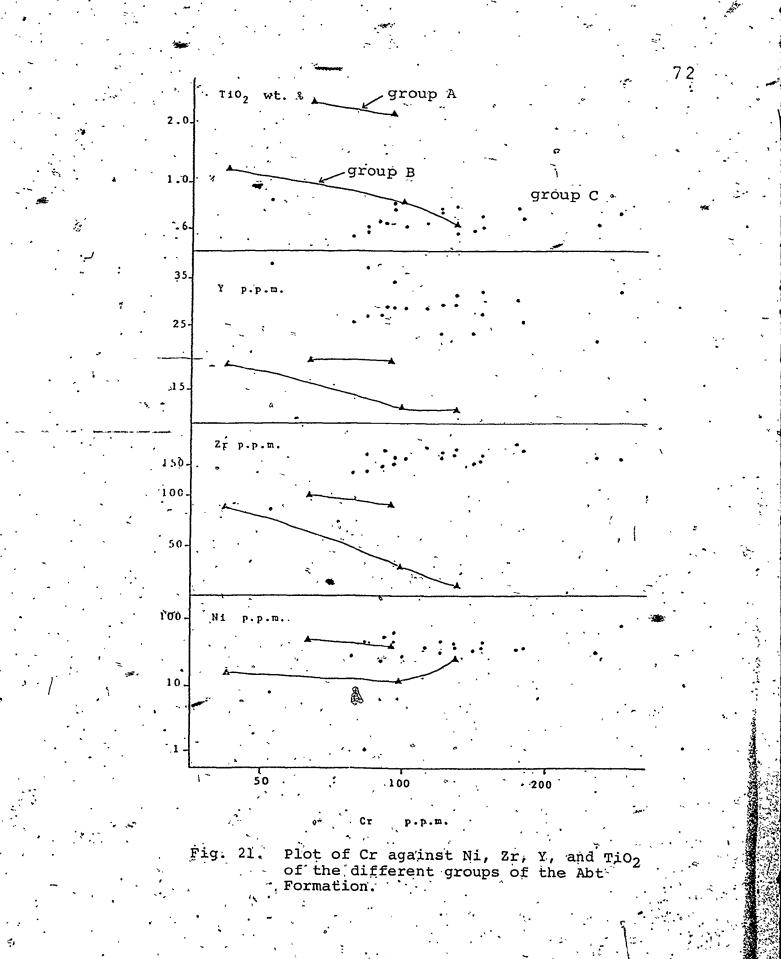
(ZN-282)

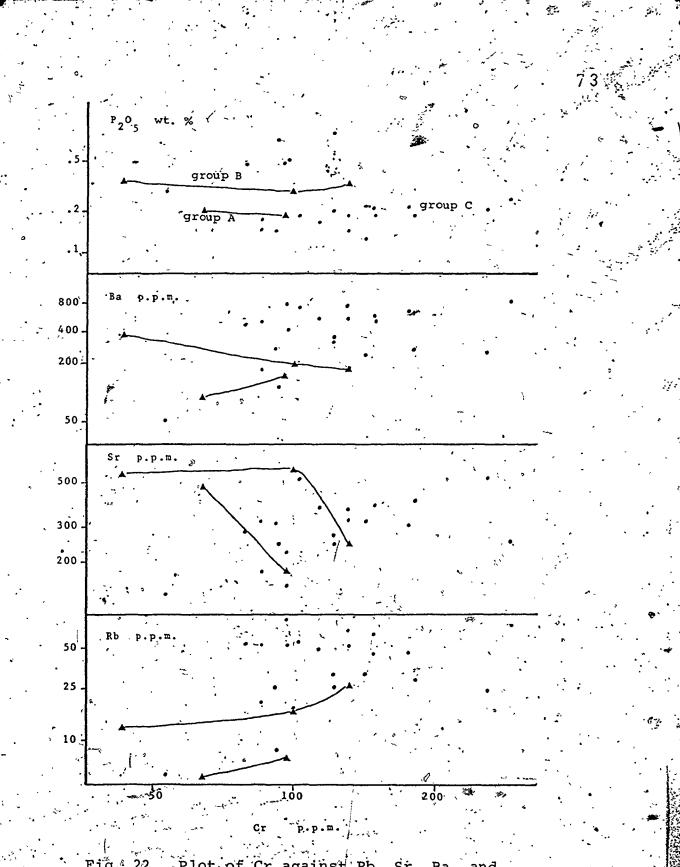
, **:** ,

• •

69

Table	5 -	Average and range of	chemical composition
		and CIPW norm values	of the Abt Formation.


		Group A	•	Group B	, τ	roup C
,	Ave.I	Range	Ave I	Range	Ave	Range
sio ₂	46.54	47.33 - 45.75	45.55	40.24 - 49.63	65.39	58.50 - 73.01
T10 _{2.}	2.00	1.92 - 2.08	0.83	0.62 - 1.09	0.64	0.21 - 0.81
A1203	14,46	14.19 - 14.73	16.35	11.87 - 19.46	14.27	10.61 - 16.03
Fe203	2.88	2,87 - 2.89	2.35 ,	2.16 - 2.54	1.88	0.60 - 2.50
FeO	12.38	12.25 - 12.50	7.86	6.62 - 9.38	3.72	0.88 - 8.99
in0	0.24	0.24 - 0.24	0.20	0.17 - 0.22	0.12	0.03 - 0.56
lg0	6.93	6.47 - 7.39	5.37	3.67 - 6.75	2.50	0.54 - 4.16
CaO	10.89	10.53 - 11.24	12.20	10.04 - 16.34	3.47	1.99 ~ 5.72
ła ₂ 0 [™]	2.05	2.58 - 1.52	1.90	0.82 - 2.48	3.55	0.98 - 6.89
⁽²⁰	0.25	0.33 - 0.17	1.01	. 0.93 - 1.10	1.54	0.38 - 5.56
2 ⁰ 5	0.20	0.19 - 0.20	-0:31	0.28 0.34	0.31	0.08 * 0.72
otal	-99.07	· · · · · · · · · · · · · · · · · · ·	93.93	• ,	97.39	
<u>~</u>						
eot'	- 2.16		1.86	· · · ·	2.26	
lg0		•			2.16 .	- 1
к ₂ 0	0.11		0.35	•	0.30	
2 ^{0+Na} 2	•	· .	• •		-	• •
			· · · · ·	•	۰.	
• •	•	•	Nor	mș (CIPW)	•	
	***	0.00 - 0.00 >		0.00 - 1.84	27.40	12.37 - 35.27
r.	1.50	1.97 - 1.02	6.47	6.08 - 7.17	9.73	2.23 - 33.06
ь	17.54	22.06 - 13.02	14.24	0.70 - 21.41	30.69	8.69 - 59.37
n	29.86	26.44 - 33.28	34.92	30.25 - 39,22'	13.99	7.04 - 22.77
or	· _	0.00 - 0.00	· <u>·</u> ,	0.00 - 0.00	13.79	0.00 - 6.54
i	19.51	20.89 - 18.12	23.46	7.79, - 50.58	1.30	
y.	16.27	11.27 - 21.27	6.88	0.00 ÷ 4.48	10.33	0.00 - 8.35
1	6.81	9.03 - 4.58	5.96		10.33	2.13 - 19.19
t, í	4.22	4.20 - 4.24	3.62****	0.00 - 15,61 3.46 - 3.75		0.00 - 0.00
	3.84	$3.68 \div 4.00$	1.66	3.46 - 3.75 1.37 - 2:11	2.80	0.89 - 3.61
•	0.47	0.45 0.48	0.80		1.20	0.41 - 1.58
P 0	<u> </u>	0.00 - 0.00	. 1:30-	0.68 - 0.89	• 01.75%	0.19 - 1.84
	aite	, v.vv - v.vv		0.00 - 3.90		0.00 - 0.00
· · ·	-			· · · ·	••	
* r	79			nts (P.P.M.)	• ••	
· ·			. 89	42 128	102	0 - 287
1-" L ⁻	113 44	90 - 136	236	161 - 3671	. 393	44 - 765
	44	40 - 47	17	12 - 25	32:	0 – 89 °,
)	4	° 3 – " 4	- *** 1,	Q - 2	8	0 - 13
,	94	- 90 - 98	50	, 29 - 84 **	159 /	72 - 207
هر	19	- 19 - 19	° 15	13 - 18 [,] 🌤	27	1 - 40
. .	322	174 - 469	460	245 - 290	315 🕤 🕨	- 39 - 693 .
,	÷., 6		. 18			


 $X_{2}O$ and $Na_{2}O$ recalculated at $SiO_{2} = 65$ wt. I = 2 samples II = Š samples TIF = 29 samples

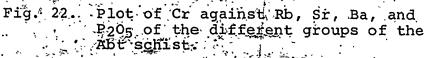
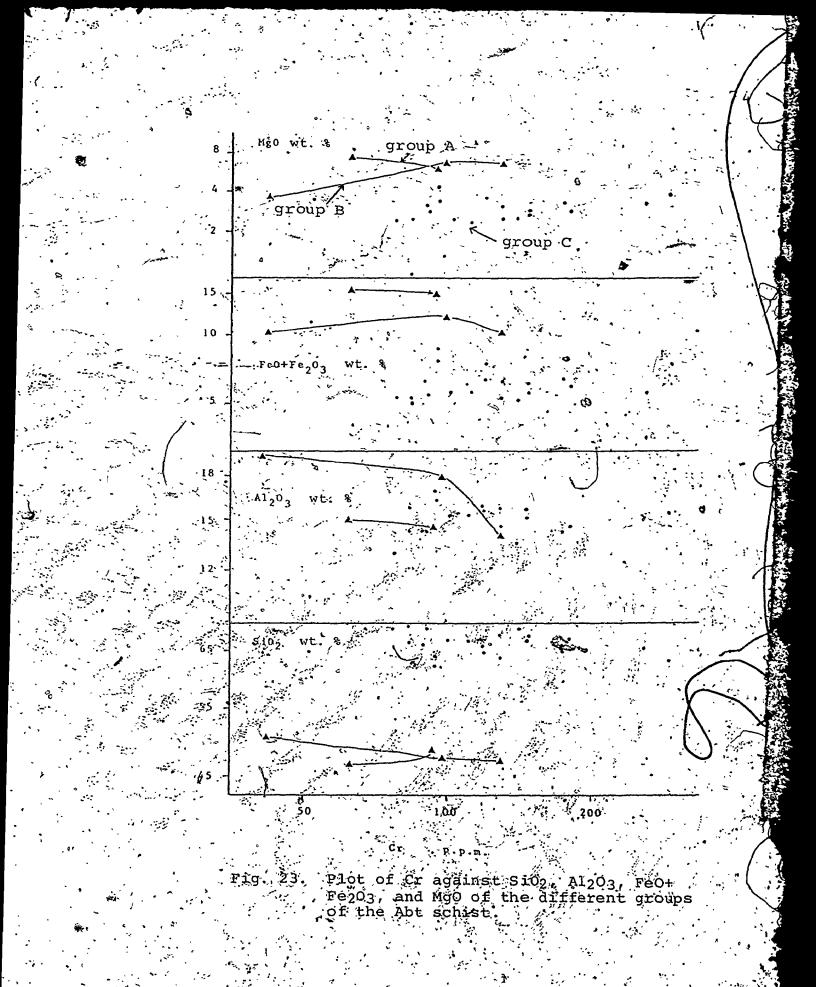
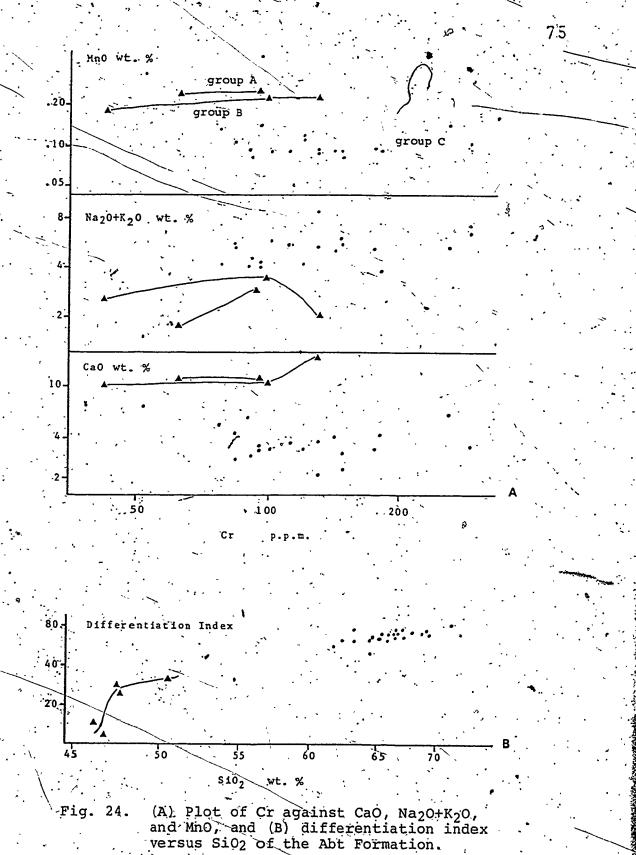

7-0

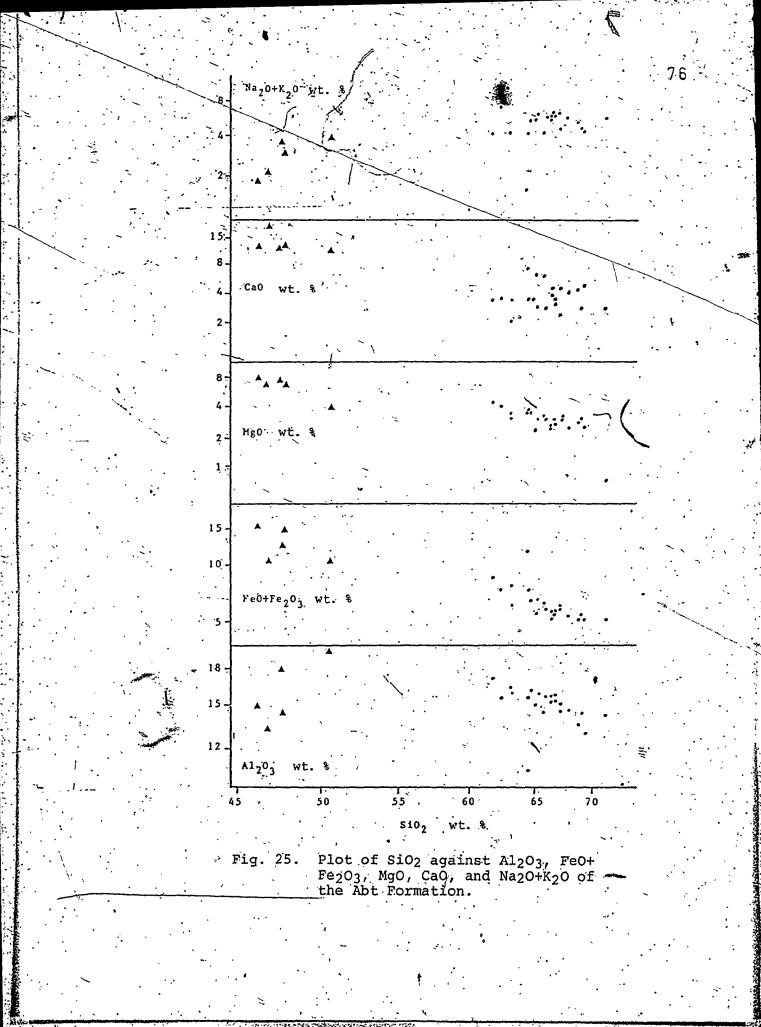
diagram (Fig. 20; A = alkalies, $F = Fe_2O_3 \times 0.8998 + FeO$, M = MgO) is of calc-alkaline type. There is little iron enrichment relative to magnesium with increasing total alkali and silica content. Sample 282, which plots away from the sedimentary group of the Abt schist on the A-F-M diagram, was collected from an area which has been affected by an east-west fault, and as a result may have been depleted in aluminium, total alkalies, Barium, niobium and strontium and enriched in total iron, manganese, magnesium and calcium.

Chromium content of the Abt schist is plotted against their trace element concentrations in Figures 21, 22, 23, and 24. The two mafic groups are outlined. In the tholeiitic basalt group (samples ~269A; 276) there are no changes in the overall trends except that strontium increases and total alkalies decrease with fractionation. In the calc-alkali basalt group (samples 249; 283; 278A) titanium, yttrium, zirconium, barium, silica and aluminium increase with fractionation but rubidium and magnesium decrease with fractionation, whereas nickel, phosphorous, total. iron, and manganese show either no or very slight variation with fractionation. Compared with the mafic calc alkaline rocks, the Abt metasedimentary schist is enriched in zirconium, yttrium, barium, rubidium, total alkalies and silica and depleted in total iron, magnesium, calcium, manganese, phosphorous and possibly titanium. The enrich-






· · · ·


٠,

ĝ

and the state of the second second

ment of the sediments in silica, zirconium, yttrium, rubidium, and total alkalies relative to the calc-alkaline mafic schists possibly reflects mixing of material from both island arc and continental sources.

Major oxides of the Abt schists are plotted against their silica content (Fig. 25). Alumina increases in the basic rocks with increase in silica. On the other hand, alumina decreases in the sedimentary rocks of the Abt schist with increasing silica. Iron and magnesium decrease in both, the basic and sedimentary groups with increasing silica. Calcium does not vary with silica increase in the basic rocks whereas in the sedimentary rocks, calcium varies widely. Total alkalies tend to increase in the basic rocks of the Abt Formation with increasing silica. The gap between the basic and silicic rocks in terms of silica (Fig. 25) suggests a different source for the metavolcanic and metasedimentary Abt schist groups.

Chemical analyses of rock samples from the Abt Formation are given in Appendix 4.

3.3. Shigran carbonates

The Shigran carbonates were mapped by Eijkelboom (1966 A 12) as beds or lenses of brown silicified marble occurring in association with ultramafic rocks located along the Al Amar-Idsas fault. Eijkelboom (1966 A 14) considered the brown marble to be of sedimentary origin 77

and compared it with the Farida marble of the Murdama Group. Bois and Shanti (1970) interpreted the Shigran carbonates to be the dolomitized and silicified parts of serpentinite and pyroxenite bodies, whereas Kahr et al. -(1972) and Overstreet et al. (1972) included both the brown marble associated with ultramafics and the clearly sedimentary marbles overlaying the Halaban Group within a single lithostratigraphic unit the "Fawara Formation". The carbonate rocks of this unit were however divided by Thekair (1976) into three categories:

a - Halaban Carbonate of sedimentary origin,

b - Sihailiya Carbonate of sedimentary origin,

c - Shigran Carbonate of magmatic origin.

3.3.1. Geology

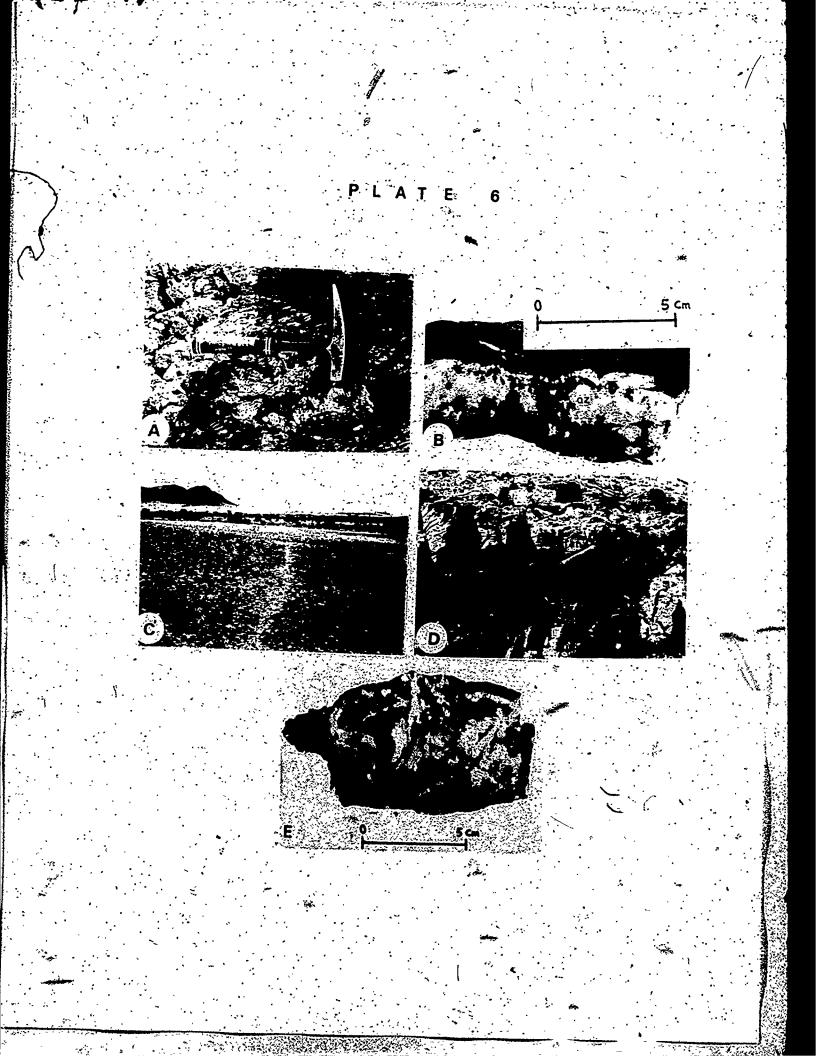
The term "Shigran" (introduced by Thekair, 1976) was derived from Jabal Ashigran in the central part of the thesis area. The most obvious feature of the Shigran carbonates is their alignment along the Al Amar-Idsas fault and its central and southern branches. In the northern part, the carbonates are found between the volcanic rocks of the Al Amar formation to the east and the sedimentary Abt schist to the west. To the south the carbonates are found not only along branches of the Al Amar-Idsas fault (e.g. Shigran fault) but also occur within the Abt schist.

The Shigran carbonates form isolated, elongated lenses.

and/or sheet-like bodies rising above plain level (Plate 6-C). The carbonates vary in size from 10 m to 1.25 km long and 20 m to 200 m thick. Shigran carbonates are abundant in the central part of the Al Amar-Idsas region between Marjan village and Jabal Rugaan, and are less frequently encountered to the north of Marjan village and to the south of Jabal Rugaan.

Bois and Shanti (1970) and Kahr et al. (1972) specifically pointed out the spatial relationship between the brown marble and the ultramafic rocks west of Jabal Batran. Thekair (1976) reported that ultramafic rocks are associated with Shigran carbonates only south of latitude 23° 34'N.

In the northern part of the Al Amar-Idsas region, the Shigran carbonates are in contact with pyroclastic rocks (Plate 6-D) and/or conglomerates along their eastern side and chlorite-sericite schist on their western side. In the central part of the region, the carbonates are in contact with conglomerate and/or pyroclastic and ultramafic rocks on their eastern side, and chlorite-sericite schist along their western side. Occasionally, Shigran carbonates are entirely enclosed within the Abt schist. Thekair (1976) found the contact between Shigran carbonates and the ultramafic rocks to be gradational. Furthermore, he found that the carbonates contain small patches of serpentinite as well as veinlets of serpenting about 1 mm to 1 cm thick. The contact of the Shigran carbonates (Plate 6-E) are frequently brecciated, the breccia zones ranging in thickness between 5 cm and 15 m. The brecciated, zone west-of the carbonate consists of crushed and sheared chlorite-sericite schist, Shigran carbonate, quartz, and calcite. On the other hand the brecciated zone along the eastern margin of the carbonate consist of Shigran carbonate, serpentine, rhyolite, conglomerate and/or pyroclastic materials.


Calcite veins are abundant in the Shigran carbonate. They vary in size and shape, but some are evidently fracture fillings about 5 mm to 7 cm wide and 10 cm to 1 m long. Otherwise, calcite occurs as lenses or pods. Quartz veins, which are also common, cut across each other in all directions, the dominant vein type being parallel to the long axis of the Shigran carbonate lenses. Barite veins are also present in the northern part of the thesis area about 10 km south of Marjan village. Where associated with carbonates, the barite veins are about 5 to 10 cm wide and 0.5 to 4 m long. Some veins have good crystals developed along one side.

Thékair (1976) found that Shigran carbonate consists of: carbonate, quartz, serpentine, magnetite, chromite, chlorite, talc and sulfides. He also identified using x-ray diffraction methods, magnesite, dolomite, calcite and antigorite.

8 (

- Pod of quartz about 15 cm wide, 7 cm thick, and 25 cm long.
- B Quartz vein between two calcite veins in the Abt
- C Isolated lenses of Shigran carbonate along the Al Amar-Idsas fault.
 - D Shigran carbonate in contact with pyroclastic unit below (at the hammer head) and chlorite-sericite Schist on top.
 - E Typical example of silicified Shigran carbonate.
 - Several veins of quartz, calcite, and hematite are

present.

The average chemical (compositions and norm values of Shigran carbonates are given in Table 6. For total rock analyses of Shigran carbonates and barite veins, see Appendix 5.

3.4. Ultramafic rocks

The ultramafic bodies of the thesis area have been studied or commented upon by: Schaffner (1955; 1956b), Maclean (1958a; 1958b), Directorate General of Mineral Resources (1959), Kahr (1962), Herness and Kahr (1963), Eijkelboom (1966 A 14; 1966 A 15), Lambolez (1968), Bois and Shanti (1970), Kahr et al. (1972), Overstreet et al. (1972), Khukandy (1975), Thekair (1976), Zubeir (1976) and Al Shanti and Michell (1976). The most comprehensive description of the ultramafic rocks is by Bois and Shanti (1970) who concluded that the ultramafic rocks associated with amphibolitic gneiss, gabbro and altered green schist in the southwestern part of the area formed part of an ophiolitic suite of rocks.

3.4.1. Geology

The ultramafic bodies are mainly serpentinite and to lesser extent pyroxenite and/or peridotite (Plate 7-A). They are mostly located south of Jabal Minassa along the Al Amar-Idsas fault and its branching faults. North of Jabal Minassa, intrusive complexes of gabbro and diorite are common, but ultramafic bodies have not been reported.

17 C

In the area between Jabal Minassa and Jabal Rugaan extensively developed ultramafic bodies vary in dimension from 10 m to 4 km long, 2 m to 1 km wide and 0.5 to 5 m above plain level. Few ultramafic bodies are exposed in the mountains north of the magnetite deposit of Jabal Idsas. Ultramafics associated with Shigran carbonates tend to lie east of the carbonates. However, many ultramafic bodies, are enclosed within the Abt schist about 20 km west of Jabal Rugaan and without any relationship to Shigran carbonates.

The serpentinized rocks are locally carbonatized and silicified (Plate 7-B) along fracture and fault zones where most of the serpentinite bodies are mylonitized and crushed. At Jabal Minassa, unaltered pyroxenite is preserved in the cores of serpentinite rocks.

Magnesite veins are present in the southern part, north of Jabal Ahaamer (Plate 7-C) and occur in association with ultramafic bodies. The veins are notable for the cauliflower-like form of the magnesite and they are about 10 to 30 cm wide and 5 to 100 m long.

The average chemical composition of the ultramafic rocks is given in Table 6, and total rock analyses of the ultramafics, pyrôxenite and magnesite are given in Appendix 6.

3.5. Al Amar-Idsas fault

The Al Amar-Idsas fault has long been recognized as

84

Table 6 - Average and range of chemical composition and CIPW norm values of the Shigran carbonates and ultramafic rocks.

•	Shigr	an Carbonate		' Ult	ramafic	,
	Ave. I	Range	-	. Ave. ^{II}	Range	~
510 ₂	[.] 32.91	24.25 - 41.	48	33,57	15.18 - 41.69	· ·
rio ₂	.05	.02		.12	.0521	
A1203	. 89	.23 - 1.9		3.49	.60 - 10.81'	
$re_{2}^{0}3$	1.96	1.88 - 2.1		2.34	1.95 - 2.76	:
23 Fe0	4.10	3.41 - 5.1		7.67	4.01 - 11.29	
in0	.16	.09:		.15	.0822	-
ig0	21.75 -			26.39	5.49 - 39.22	
CaO	10.54	.58 - 24.0		10.93	.02 - 35.57	
 Ma ₂ 0	-	•	. ზ		.018	
<2 ⁰	.04	0:	22 ·	.0,4	.0 -• .11	
2°2°5	•••	. ·		06	.050	•
2.5 2.0.1.	28.08	21.81 - 33.5	53	15.99	6.37 - 29.30	,
fotal	100.48	0		100.78		
re0 ⁺ /Mg0	· .27			.37		
۰. ۱	•	•	•		· • •	, •
	, ·	•	Norms (CIPW)		• •
2.	. 30	.0 - 2.9	•			•
or	.09 •	00	68	.29	.069	
ab .		•	·	. 34	.0 - 1.62	
ín	2.76	. 1.38 - 6.0	69 •	10.54.	11 - 31.82	
or	•	•		.22	.0 1.10	
<u>ار</u>	33.06	•		7.84	.0 - 17.13	
уy	~ 8.51	.0 - 32.3		17.44	2.72 - 37,50	
)	23.90			59.52	27.14 - 85.22	
nt	. 2.92	3.7Ì - 3.9		3.92	· 3.574.36	
11	11	.07	33	.21	.1331	,
¢		•.		-		
		. /		ts (P.P.M.)	• • •	
Cr .	2273	1598 - 3880		1869 (P.P.M.)	? 409 - 3019	
a T	235	0'- 155		. 1889 . 85	10 - 296	
ni .	£235 ∰. 1553	7.37 2460		1256	205 - 2729	
и т	8 8	. 0 2	L	1256 6	0 - 22	, *
ir Ir		-	•	2	0 - 22	٠ 🐞
· · ·	1	`0;		.11		1797
	. 325	· 38'- 53:	3 ·	.11	0 - 73 3 - 404	,
r.	·			. 2		,
2 b : = 8 sam		· _ · · · · · · · · · · · · · · ·	•	المتهجرة ومتصور المتكالب ومتورجه والكالي ومراكاته ويعود فالهوم	<u> </u>	

85.

3

`; ;

こうしょう ちょうちょう ちょうちょう ないないない ないない

,

an important tectonic boundary although the nature of the fault has been the subject of widely varying interpretations. Bramkamp et al. (1956, Map-I-212A; 1958, Map I-207A) considered the fault to be a normal fault, but Bramkamp et al. (1963, Map I-206A), Jackson et al. (1963, Map I-211A) and Bouladon (1968) represented the Al Amar. Idsas fault as a thrust fault. Eijkelboom (1966 A 12, 1966 A 13 and 1966 A 14) interpreted the fault as normal fault with recent movement along the fault plane. Later, Eijkelboom et al. (1970, Map MI-18) postulated the fault to be a thrust fault involving eastward displacement of the Abt schist over the Halaban, followed by block faultving to give the present differences in elevations on either side of the fault. Mytton (1966, Map MI-4) represented the fault as a major fault extending north-south. Bois and Shanti (1970) found that the fault in the southern most part of the area is intersected and offset by numerous secondary faults. Nebert (1970) considered the fault to be a deep normal fault which has been reactivated several times, the latest phase of movements taking place during Quaternary time. Brown (1970) pointed out that the fault toward the north appears to be a dextral strikeslip fault and to have a displacement of about 60 km.

On the tectonic map of the Arabian Peninsula however Brown (1972) represented the fault as a thrust fault. Kahr et al. (1972) described the Aldmar-Idsas fault in the Jabal Batran quadrangle as an imbricate overthrust fault consisting of three imbricate blocks thrust westward over the Abt schist. In the southern part of the Jabal Batran quadrangle, they (Kahr et al., 1972) found the overthrust fault graded into a southeast striking tear fault. Thekair (1976) stated that the fault started as a thrust fault involving eastward thrusting of the Abt schist, but later was reactivated as a strike-slip fault.

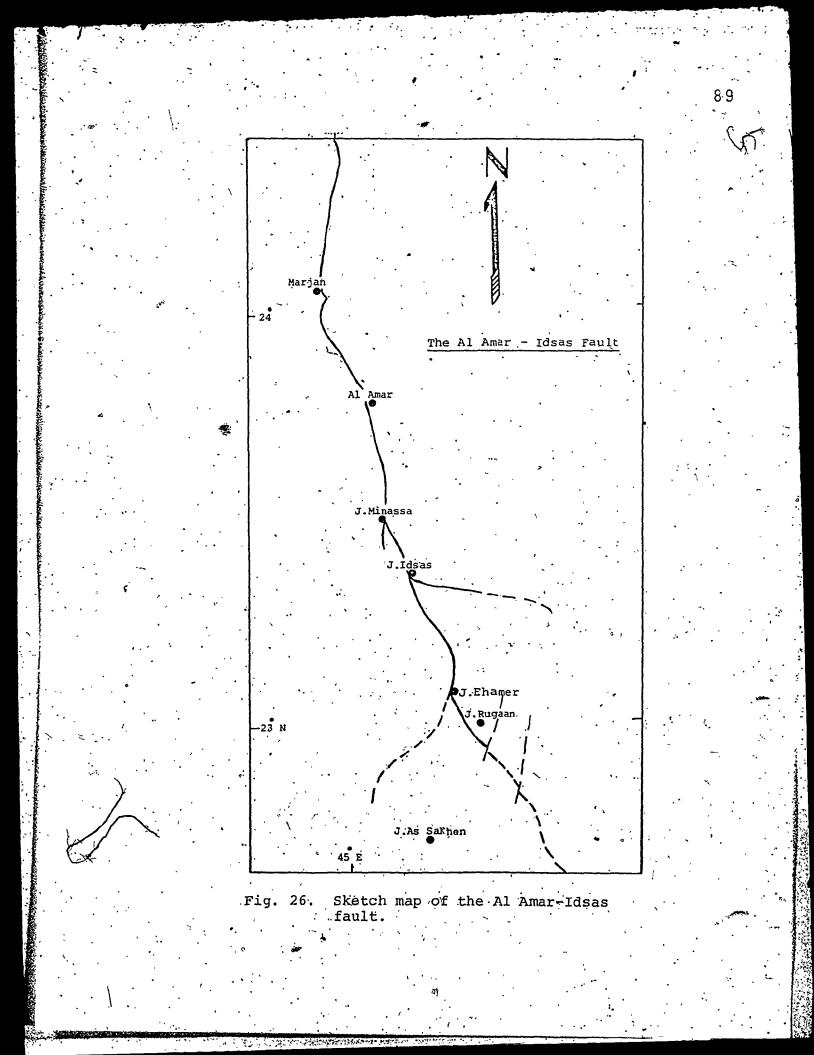
Al Shanti and Mitchell (1976) considered the Al Amar-Idsas fault to be a major tectonic line marking the boundary between two plates. Moore (1976) 'concluded that the Al Amar-Idsas fault is a strike-slip fault of Proterozoic. origin, reactivated and dislocated by later sinistral strike-slip faulting during development of the early Paleozoic Najd fault system. Moore (1976) also pointed out that the fault is a "copper-lead line" dividing a "Pb-Ag" province to the west from a "Cu-Zn-Au" province to the east.

3.5.1. Observations

The Al Amar-Idsa's fault is a well-defined topographic feature that can be seen clearly on aerial photographs and ERTS images (Plate 7-D). It is exposed in the extreme eastern corner of the Arabian Shield and extends approximately for more than 220 km before disappearing to the north and south beneath the Permian Khuff Formation (Fig.

5). North of Jabal Minassa, the Al Amar-Idsas fault is well defined as a single boundary line whereas, south of Jabal Minassa, the fault is splayed (Fig. 26).

The strike and dip of Al Amar-Idsas fault changes along a north-south line as follows:"


at latitude 24" 20' strike N 10° E dip 75° NW, at latitude 24° 05' strike N-S dip 70° W, at latitude 23° 55' strike N 25° W dip 56° SW, at latitude 23° 15' strike N 30° W dip 85° NE, at latitude 22° 50' strike N 35° W dip 67° NE.

The fault can be divided into three segments (Fig. 26).

1) north of Jabal Minassa the fault sharply separates Halaban volcanic rocks to the east from Abt schist metasedimentary rocks to the west;

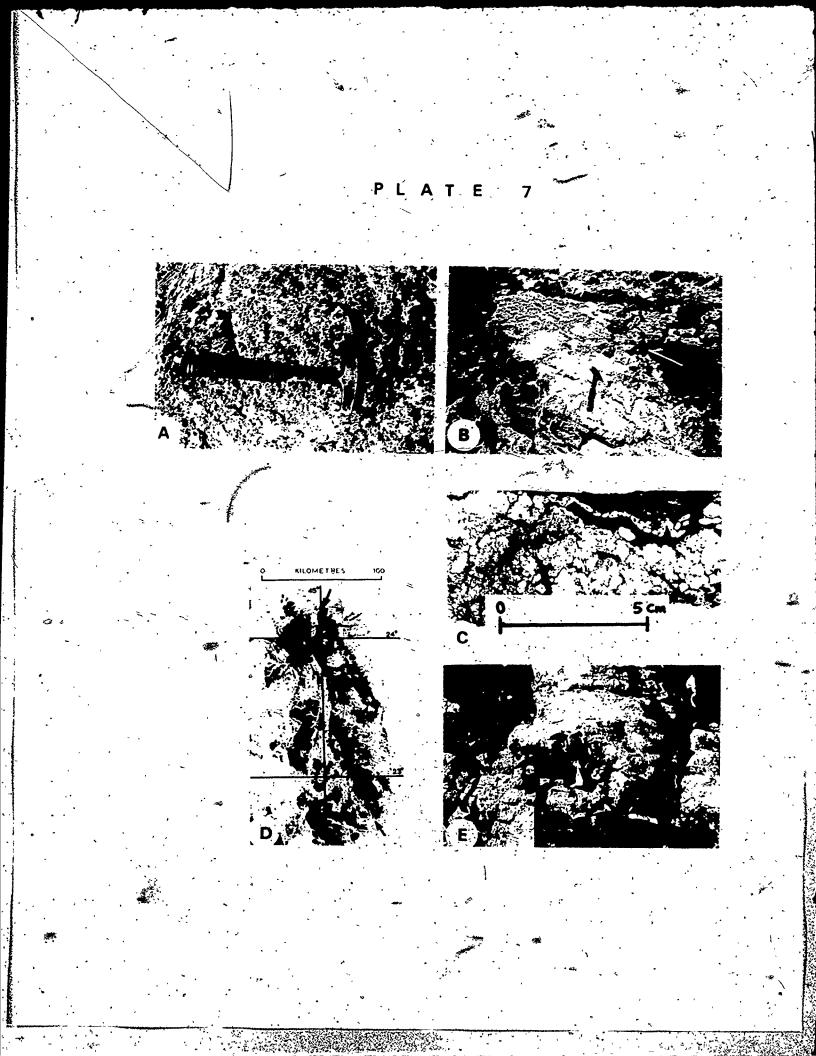
2) between Jabal Minassa and Jabal Ehamer, the fault splits south of Jabal Minassa into two parts, one the Shigran fault passing through the Abt schist, the other, representing the main fault, cutting the Halaban volcanic rocks. South of Jabal Idsas, one branch of the main fault strikes southeast through the volcanic and igneous rocks, the other branch, striking south Separates the volcanic rocks to the east from the metasedimentary rocks to the west;

3) south of Jabal Ehamer, the fault changes strike. from south to southeast and separates conglomeratic rocks

to the east from scattered exposures of the Abt schist (Abu Sawarir Formation of Overstreet et al., 1972) to the west.

Surficial deposits and Quaternary sands extensively cover areas through which the fault passes in the south central part of the region.

The Al Amar-Idsas fault is the locus of occurrence of the Shigran carbonates. Slickensides occur in quartz veins along the Al Amar-Idsas fault plain (Plate 7-E).


3.5.2. Interpretation

The Al Amar-Idsas fault is here interpreted as a westerly directed thrust fault which later became the locus of strike-slip faulting. The direction antithetic to the dip of the fault plain cannot be considered to represent the thrust direction. Thrusting is associated with regional deformation involving folding of the Abt metasedimentary rocks and their conversion to sericitechlorite schists.

The shape and nature of the Al Amar-Idsas fault was compared by Thekair (1976) to other major strike-slip faults such as San Andreas fault of California and the Alpine fault of New Zealand.

Reactivation of the Al Amar-Idsas fault over a prolonged period of time is indicated by the relationship between different types of veins and the slickensides they

- A Ultramafic bodies of serpentine and pyroxene are slightly altered.
- B Serpentinite body highly carbonatized and silicified particularly along fracture zones.
- C Handspecimen of magnesite vein north of Jabal Ehamer.
- D Al Amar-Idsas fault as it appears on the ERTS images.
- E Slickenside occur in quartz vein at the bottom of the picture and to the east of the hammer arm.

bear. Moore (1976) stated that the fault was reactivated during development of the Najd fault system, whereas Nebert (1970) suggested that Al Amar-Idsas fault may have undergone reactivation even during Quaternary time.

3.6. Plutónic rocks

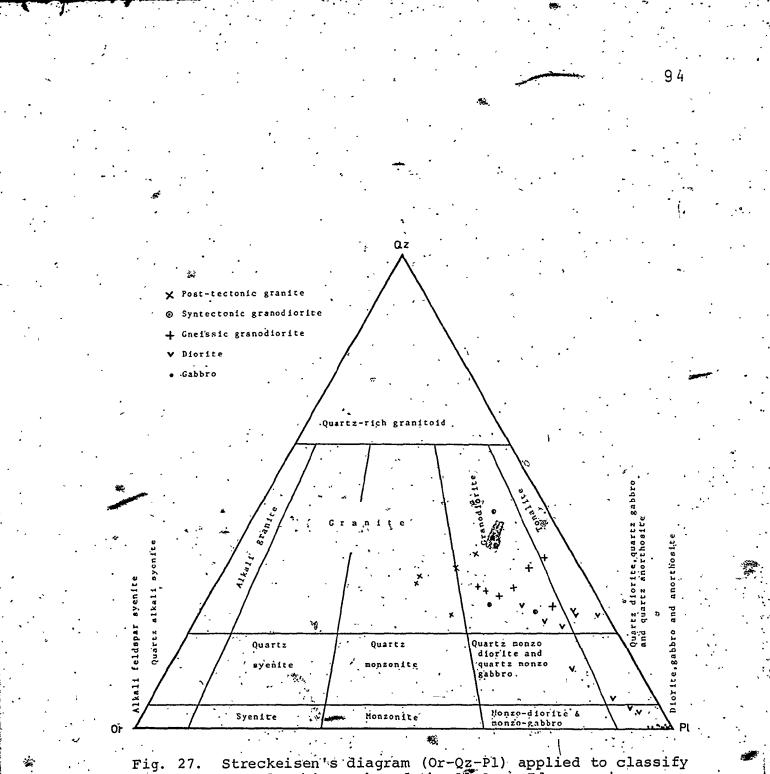
3.6.1. Classification

On Streckeisen's diagram (1976) the plutonic rocks of the Al Amar-Idsas region are located within the gabbrodiorite, tonalite, granodiorite and granite fields (Fig. 27).

The Al Amar-Idsas plutonic rocks can be considered on the basis of element abundances to form four groups: 1) a low K_2O gabbroic-dioritic group, 2) a high K_2O dioritic group, 3) a granodioritic-tonalitic group, and 4) a granitic-adamellitic group.

In terms of field relationships however

In terms of field relationships, however, the plutonic rocks of Al Amar-Idsas region fall into four groups:


1) gneissic granodiorite, the oldest unit,

2) gabbro-diorite complexes, pre-Al Amar formation,

3) syntectonic granodiorite, pre-Al Amar formation,

and

4) post-tectonic granite representing the youngest suite of intrusion in the Al Amar-Idsas region.

Streckeisen's diagram (Or-Qz-P1) applied to classify the plutonic rocks of the Al Amar-Idsas region.

3.6.2. Gneissic granodiorite

Kahr et al. (1972) and Overstreet et al. (1972) considered the gneissic granodiorite of the Al Amar area to be the oldest rocks in the thesis area. They mapped it as a polydeformed, gray, massive hornblende-biotite gneiss highly variable in terms of its mineral composition, grain size and texture. Bois and Shanti (1970) described the gneissic granodiorite as large intrusions of laminated, coarse-grained hornblende-biotite granodiorite containing inclusions of mafic and metamorphosed sedimentary rocks. The main foliation has a north-south trend and dips steeply either to the west or east.

3.6.2.1. <u>Geology</u> -

The gneissic granodiorite underlies parts of the area east of the Al Amar-Idsas fault (Fig. 5) where it forms both large and small hills. When a gneissic structure is not well developed in the rocks, foliation is the prominent feature (Plate 8-A). *The gneissic granodiorite seems to form the land surface on which the later volcanic and sedimentary rocks of the Halaban Group were deposited. Small, white or pink aplitic dikes intrude the gneissic granodiorite and tend to grade into felsitic and/or quartz veins. To the contrary, dikes genetically related to the gneissic granodiorite have not been observed to cut younger rock units. East of Jabal Batran, the gneissic granodigrite contains a diverse set of inclusions of metasediment considered by Kahr et al. (1972) to be the oldest sediment in the area (Plate 8-B). Rb/Sr isotopic age data (Brown in Overstreet et al., 1972) indicate that the gneissic granodiorites east of Jabal Idsas are as old as 1010 my.

The gneissic granodiorite has three sets of joints: N: 30° E/40° SE; N 05° W/15° W; and N 55° W/63° NE. The gneissic granodiorites are cut by at least two sets of faults. The older, a branch of the main Al Amar-Idsas fault south of Jabal Idsas, strikes southeastward; the younger, which displaces the Al Amar-Idsas fault to the south of Jabal Rugaan, strikes north-south.

3.6.2.2. Petrography

The gneissic granodiorite varies in composition from biotite-gneiss to hornblende-gneiss and locally to horn-. blende-biotite gneiss. They are medium to coarse-grained rocks, composed of about 45% feldspar, 30% biotite, 20% quartz, and 5% hornblende.

The texture of the gneissic granodiorite is hypidomorphic-granular, medium-grained (Plate 8-C). The mafic minerals, feldspars, and quartz exhibit a dimensional preferred orientation.

<u>Plagioclase</u> crystals are euhedral in shape, about 1.5 mm long and 0.8 mm wide. The twinning is of albite type and some of the crystals have normal zoning. The central part

of the plagioclase is commonly altered to sericite. <u>Orthoclase</u> forms subhedral crystals, about 1 mm in diameter. A few small crystals of perthite are present in some thin sections and the orthoclase sometimes rims crystals of plagioclase. In general the orthoclase is altered to kaolin.

Quartz forms anhedral grains about 0.8 mm in diameter. The quartz has undulatory extinction and occupies irregular spaces between the other constituents. Some grains are broken and filled with calcite minerals. The quartz crystals are locally dusty, and contain inclusions of apatite and zircon.

<u>Biotite</u> is the characteristic mafic mineral of the gneissic granodiorite. It forms unaltered, light to dark brown, euhedral crystals, about 1 mm long and 0.5 mm wide, with a preferred orientation. Pleochroic haloes are sometimes present in the biotite.

<u>Hornblende</u> crystals are prismatic, enhedral to subhedral in shape, about 1 mm long and light brown to light green in colour. Where altered, hornblende has been changed to chlorite.

<u>Muscovite</u> is present as very small crystals, about 0.2 mm long. They are found mainly bordering quartz crystals. <u>Zircon and apatite</u> are found as very small inclusions in quartz grains, whereas leucoxene is present as an alteration product of ilmenite. 3.6.2.3. Chemistry

Seven chemical analyses were made of the gneissic granodiorite (Appendix 7).

On a normative Q-Or-Pl diagram (Fig. 28) the gneissic granodiorite samples plot as a series of points extending from the tonalite field to the granodiorite field. On an A-F-M diagram (Fig. 29; A = alkalies, $F = Fe_2O_3 \times 0.8998 + FeO$, M = MgO) the samples define a curved trend line along which alkalies progressively increase relative to iron and magnesium.

The average and range of composition of the gneissic granodiorite are given in Table 7. The rocks are characterized by low to intermediate silica content and highly variable calcium content. Barium and strontium have higher values than do average granitic rocks, while chromium, zirconium and rubidium have generally lower than average values.

Since chromium is usually a stable element during metamorphism, trace element contents of the gneissic granodiorites have been plotted* against their chromium content (Figs. 30, 31). Taken as a group, only titanium, phosphorous, and zirconium appear to vary systematically with chromium content. Nickel, yttrium, barium, strontium, and

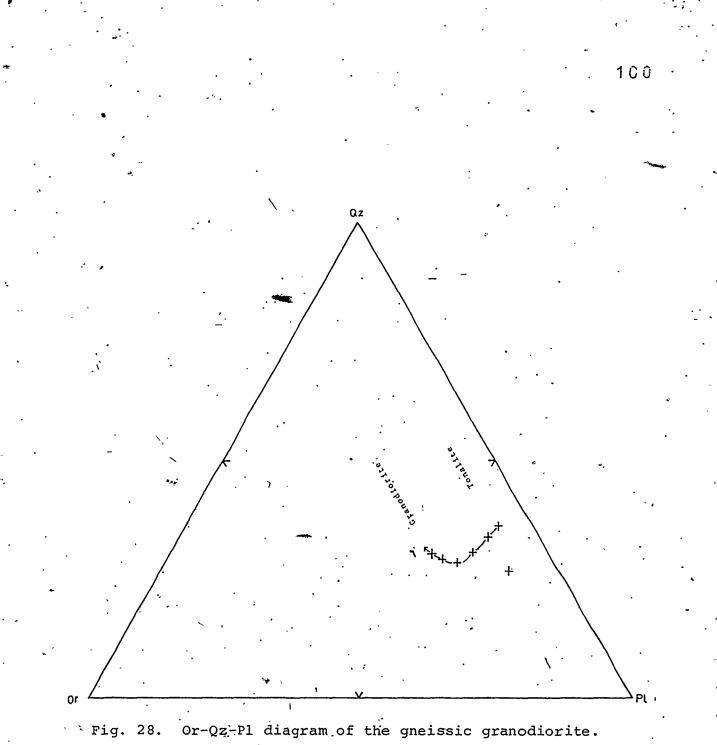
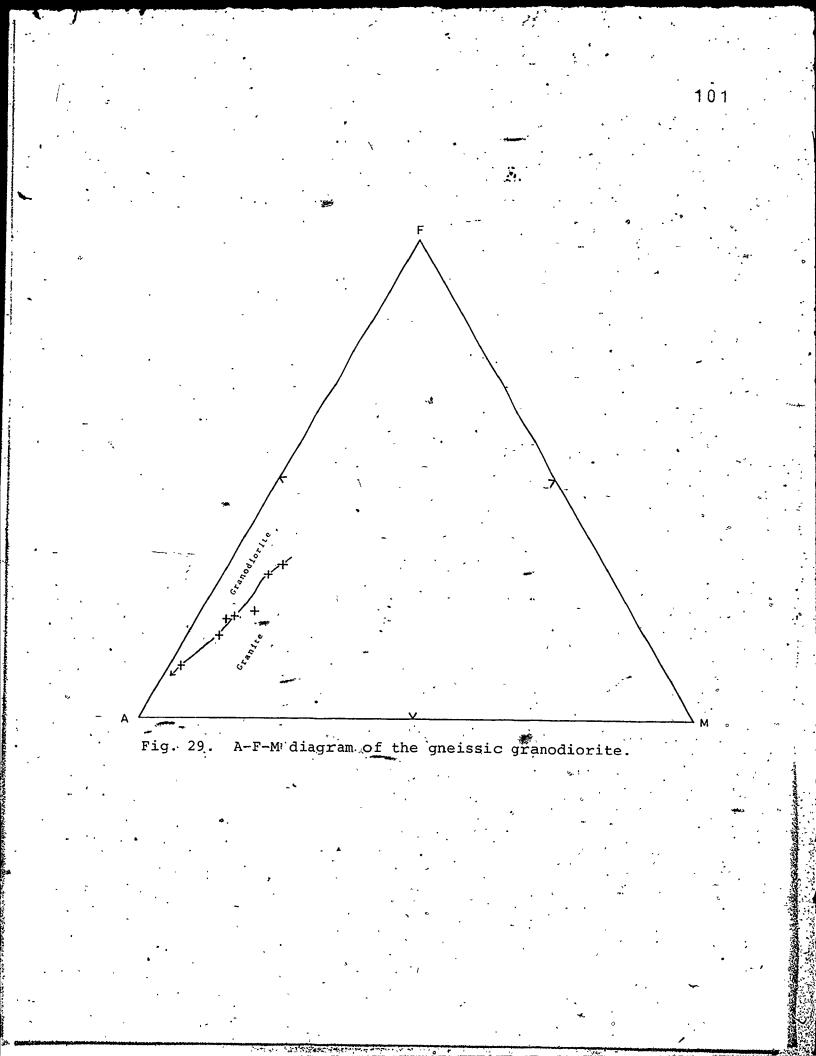
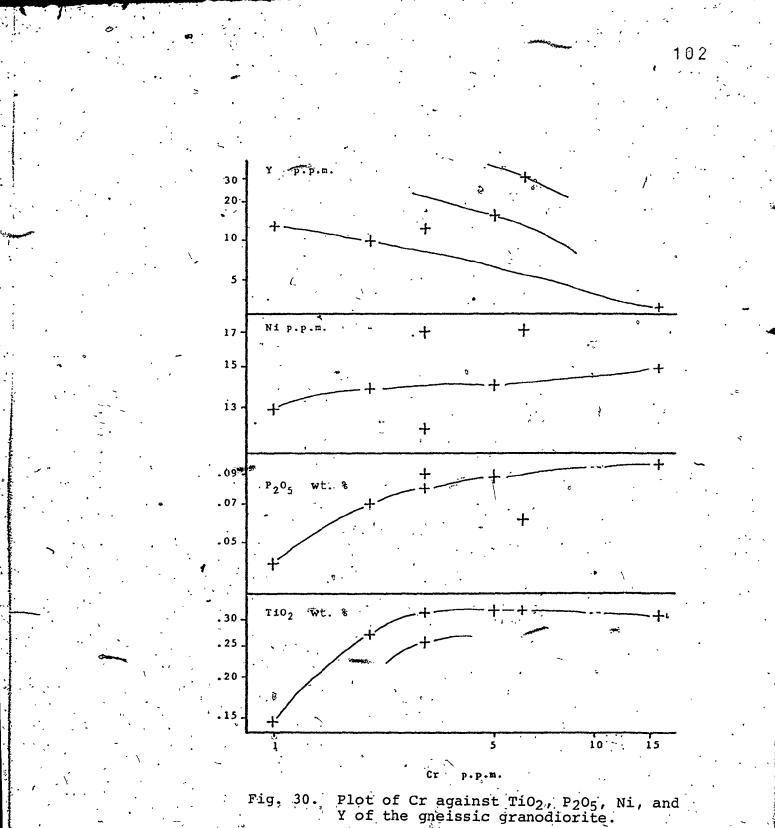

*All variation diagrams in this thesis are:
1) Plotted on natural logarithmic scales because this displays the real fractionation trends more clearly.
2) major oxides are recalculated to 100% (aphydrous).

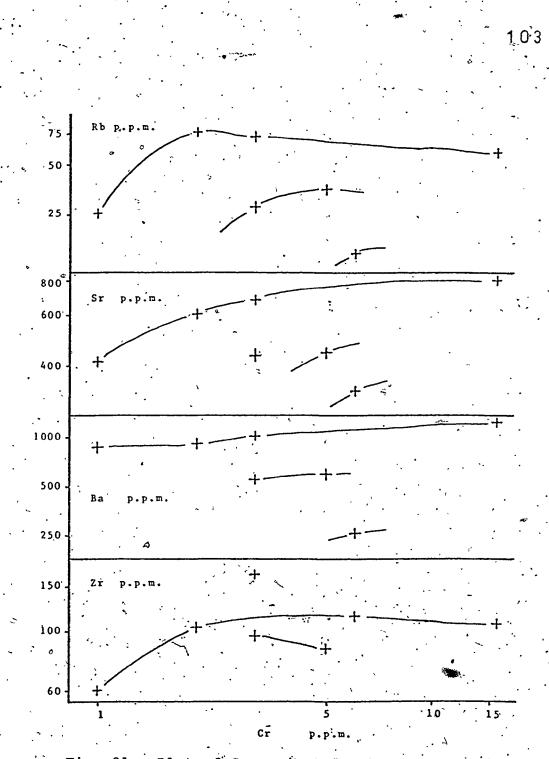
Table 7 - Average and range of chemical composition and CIPW norm values of the gneissic granodiorites.

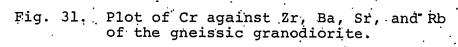
	Ave. ^I	Range	•	Norms (C	IPW)
SiO ₂	71.54.	70.47 - 73.32		Ave.	Range
TiO ₂	0,27	0.14 - 0.32	Q_	·28.82	24.85 - 33.55
A1203	14.70	13.29 - 16.85	or.	13.27	5.27 - 20.04
Fe ₂ 0 ₃	1.40	0.20 - 1.67	ab	40.96	38.06 - 46.27
FeO	0.83	0.30 - 1.50	ລກໍ	11.73 .	8.66 - 15.92
MnO	0,05	0.04 - 0.07	cor	-	-
MgO	°0.70	0.16 - 1.10	di	1.20	0.09 2.98
CaO	2.63 .	· 1.82 - 3.48	hy	1.65	1.39 - 2.95
Na ₂ O	4.76	4.26 ÷ 5.51	he	0.56	0.21 - 1.30
κ ₂ ο .	2.23	0.87 - 3.34	• mt	1.21	0.29 - 2.48
P205	0.08	. 0.04 - 0.10	il	0.52	0.27 – 0.62
Total	99.19		ၾ	0.15	0.10 - 0.24
	g0 = 2.99	·· ;	*ĸ ₂ 0	D/(K ₂ O+Na ₂ O)	= .32


	•			
		Trace element	(P.P.M.)	
	Cr .	5	1 - * 16	
	Ва	5 781 · ·	254 - 1408:	
	Ni	15 ·	12 17 -	
	Ňb .	9	7 _\ 13··	
	Zr j	105	60 - 167	
	Y	• 14 .	3 - 31	ì
-	-Sr.	• . 528	320 - 811	
	Rb	44	14 - ¹ 73	


I = 7 samples. FeO⁺ = total iron (Fe₂O₃ x 0.8998 + FeO). *K₂O and Na₂O⁻ recalculated at SiO₂ = 65wt. 8. <u>م</u>،

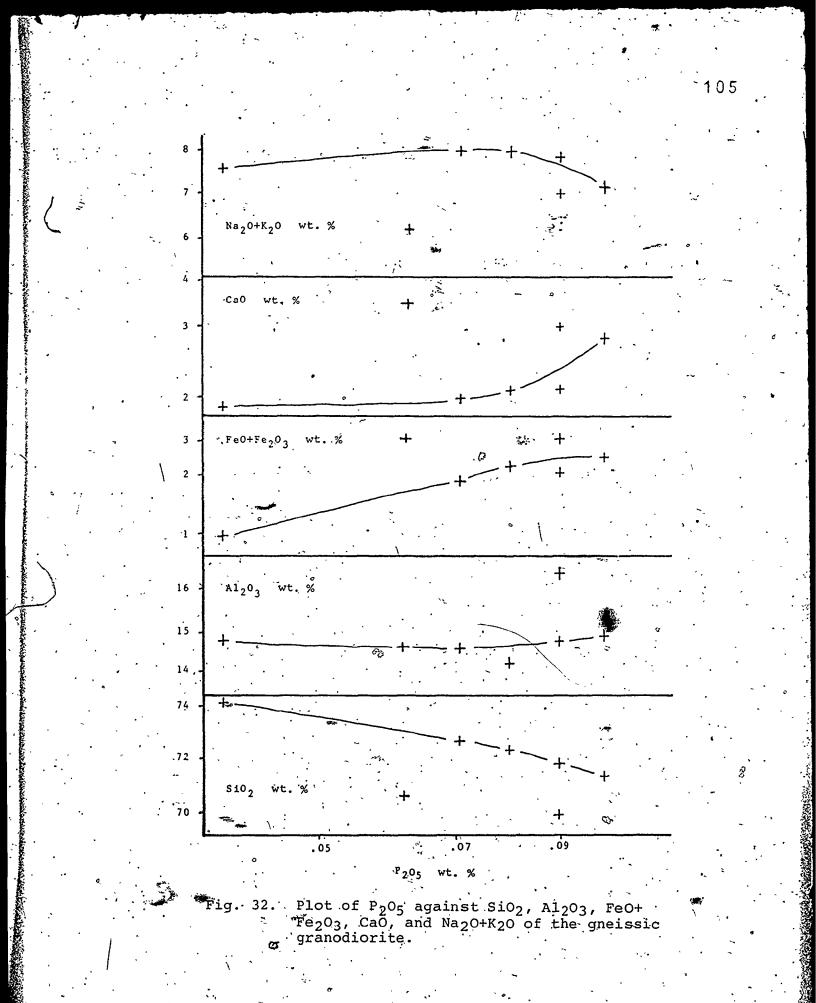
*





.

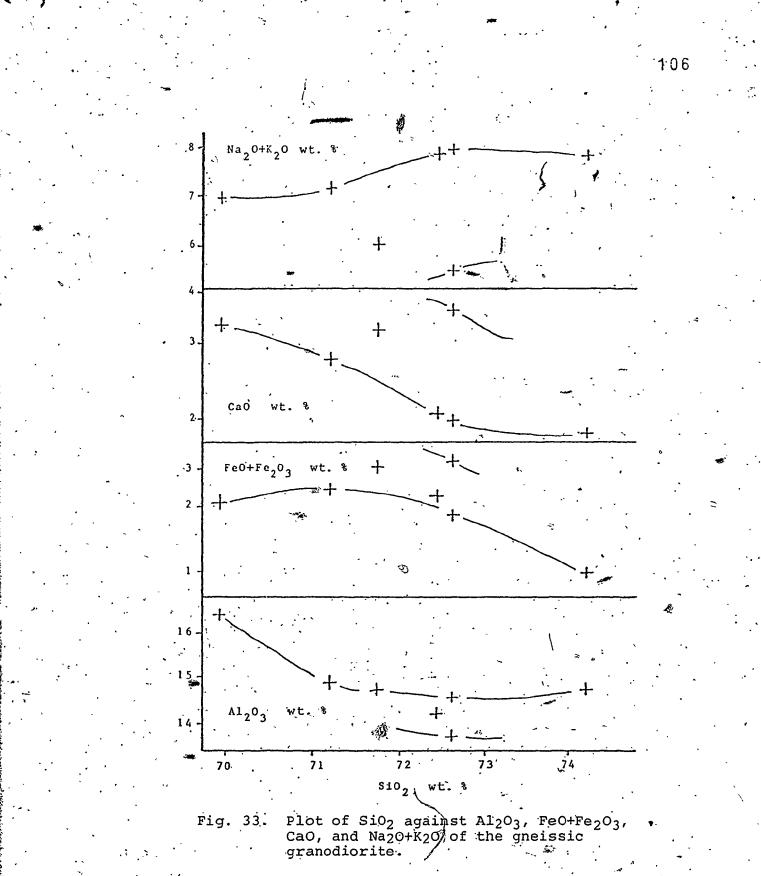
e.

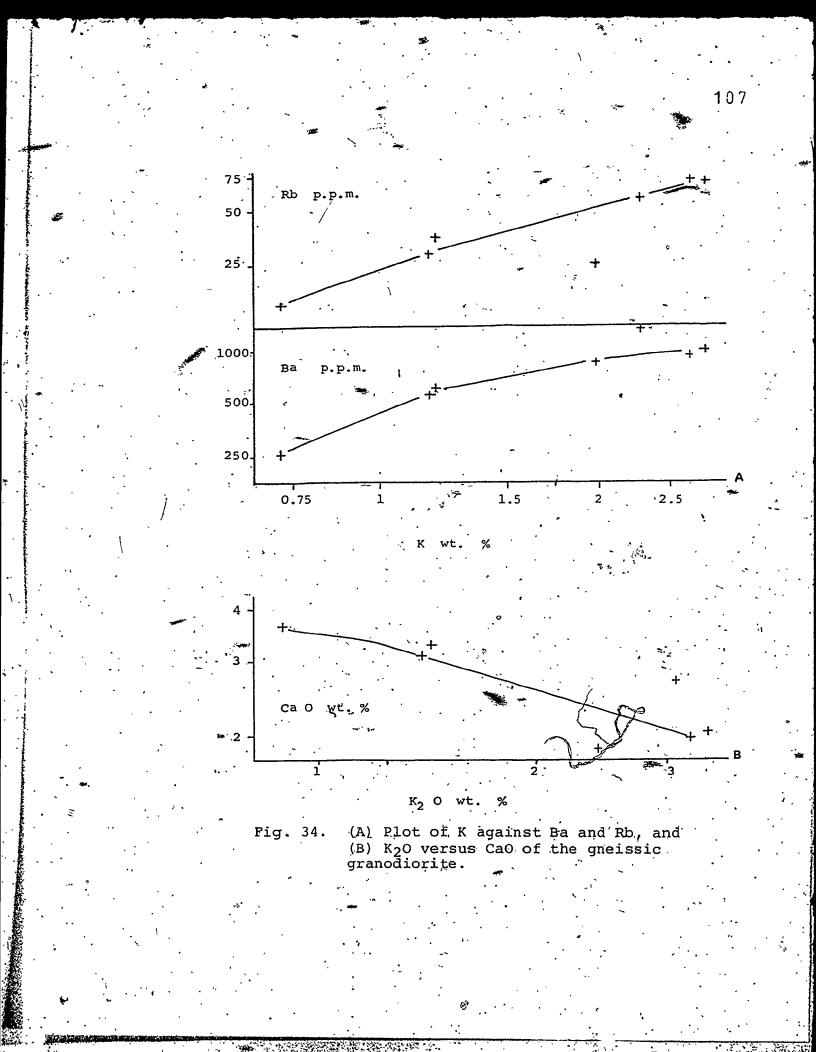

rubidium exhibit no regular variation relative to chromium. Figure 32 is a plot of the major oxides against phosphorous. Total iron and calcium tend to increase as phosphorous content increases, whereas silica decreases. Total alkalies indicate little change.

Plots of major oxides against silica content (Fig. 33) show that calcium and alumina tend to decrease slightly with increasing silica. Total iron and total alkalies give no regular patterns.

Plots of calcium, barium, and rubidium in the gneissic granodiorite against potassium content (Fig. 34) reveal that calcium decreases as potassium increases, indicating that plagioclase decreases as potassic-feldspar and biotite increase. Barium and rubidium tend to increase with potassium. Barium and rubidium tend to substitute for potassium in potassic-feldspar and biotite.

3.6.3. Gabbro-diorite intrusives


Gabbros are common intrusive rocks in the southern part of the thesis area where they form large circular to elliptical bodies (Plate 8-D). They intrude the gneissic granodiorites of the basement complex and Menerga formation but they do not intrude the Al Amar formation. The gabbros are coarse-grained rock, black to greenish gray in colour. Some of the gabbros exhibit layering and are clearly cumulates (Plate 8-E). The layers are made up of gabbro and norite in the lower parts of the intrusions,



. ۲.

۰.

÷.

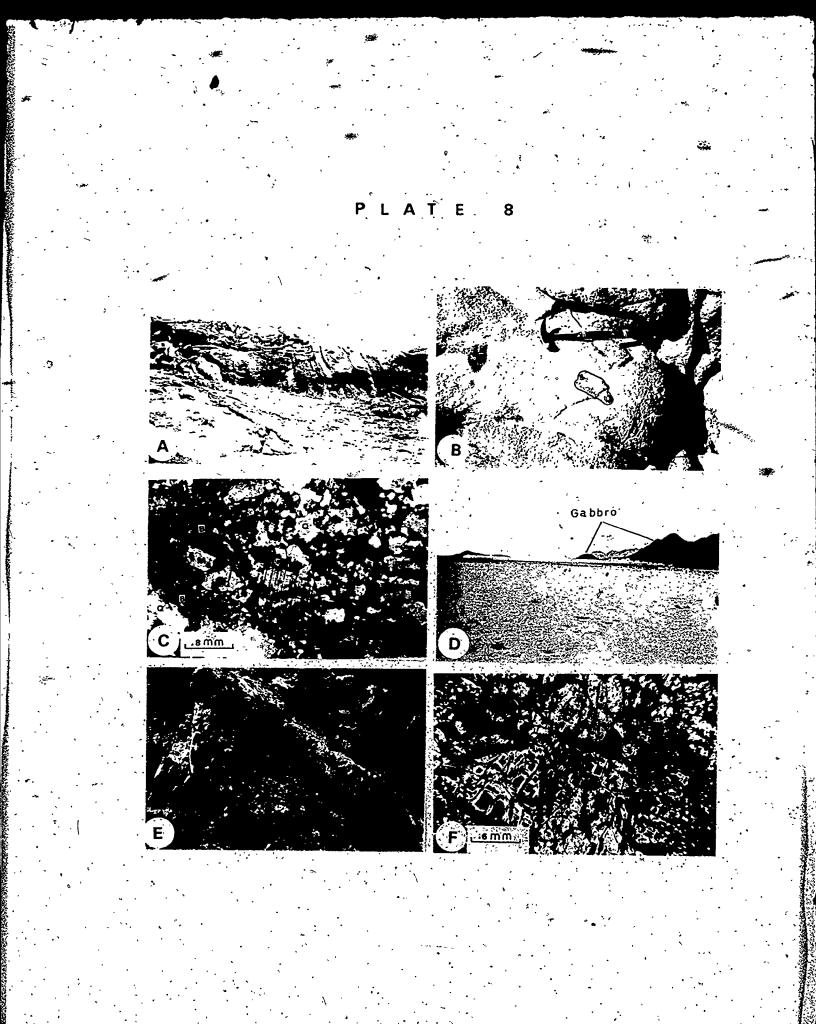
Whereas layers in the upper parts are composed of olivine gabbro and peridotite (Zubeir, 1976).

8-F):

The gabbros are composed of plagioclase, olivine, pyroxene, hornblende and opaque minerals. <u>Plagioclase</u> occurs as tabular, euhedral crystals and make up more than 60% of the rock. Plagioclase separated from the cumulate rocks, range in composition from An_{93} at the base to An_{78} at the top (Zubeir, 1976). <u>Olivine</u> is the second most important cumulate mineral (25%). It occurs as medium to large euhedral crystals of forsterite (Zubeir, 1976). Incipient serpentinization of olivine along cracks and around its margins is widespread (Plate

<u>Pyroxene</u>, orthopyroxene (hypersthene) and clinopyroxene (diopside and augite) are present only as minor constituent of the cumulate rocks. They are more abundant in the normal gabbros.

Hörnblende is brown in colour and occurs usually as an interstatial mineral or sometimes as a replacement of pyroxene.


Opaque minerals usually interstitial, include magne-

Diorites are more abundant in the central and norther ern parts of the thesis area and form either large elongate bodies trending northwest-southeast parallel to the Al Amar-Idsas fault (Plate 9-A) or semicircular bodies

PLÁTE

- A ~ Gneissic granodiorite, weathered, altered, and locally foliated.
- B Zenolith of the old metasediments in the gneissic granodiorite.
- D Eliptical to circular bodies of gabbros in the Al Amar-Idsas region.
- E Cumulate gabbro exhibit layering. The layers are made up of plagioclase, olivine and/or pyroxene.
- F Thin section of serpent inized olivine of the layered

gabbro.

associated with the gabbros. The diorites are coarse to medium-grained rocks, grayish green in colour. They are foliated along their borders but have massive cores. The diorites are composed of plagioclase, hornblende, biotite, quartz and secondary minerals chlorite, sericite and epidote (Fig. 9-B). Opaque minerals include ilmenite and hematite.

The gabbros and diorites contain xenoliths of the gneissic granodiorites of the basement complex, and rocks of the Meherga formation. Rocks of the Al Amar formation have not, however, been observed as xenoliths in the gabbro-diorite rocks.

The average chemical composition of the gabbros and diorites is given in Table 8, and analyses of individual samples are presented in Appendix 8.

3.6.4. Syntectonic granodiorite

Plutons of syntectonic granodiorite are found scattered throughout the area east of the Al Amar-Idsas fault (Fig. 5). These plutons, although similar to the gneissic granodiorite mineralogically and chemically, are not gneissic. The syntectonic granodiorites are gray in colour, massive, coarse-grained in the center, but mediumgrained, lineated and schistose at their margins (Plate 9-C). The border zones are also richer in mafic minerals. Along their contacts, the syntectonic granodiorite plutons TABLE 8 - Average and range of chemical composition and CIPW horm values for the gabbros and diorites of AlAmar-Idsas region.

5

Feo[†] = total iron (Fe₂O₃ x 0.8998 + Feo). * k_2^{0} and Na₂O recalculated at SiO₂ = 65 wt. %.

Į.

CALCULATION OF THE OWNER OF THE O

日本が行きのこの

.112

. v. . 7

۰,

tend to exhibit flow banding and develop narrow metamorphic contact aureoles in the Halaban metavolcanics and meta-

Inclusions of gneissic granodiorite, Halaban metavolcanic and metasedimentary units occur in parallel alignment and have trends parallel to that of the country rocks (Plate 9-D). In the southern part of the thesis area large inclusions of gabbro and diorite are present inthe granodiorites.

Fleck quoted in Greenwood et al. (1975) reported that syntectonic granodiorites in the southern Hijaz quadrangle range in age from 650 to 600 my. Also, Brown quoted in Overstreet et al. (1972) stated that the quartz diorite of the component plutons east of the Al Amar-Idsas fault has a K-Ar age of 604 \pm 12 my.

The syntectonic granodiorite is hypidomorphic in texture and generally composed of 30% plagioclase, 30% quartz, 20% orthoclase, 13% biotite, 5% hornblende, and less than 1% zircon and apatite (Plate 9-E;-9-F).

Chemically, the syntectonic granodiorites are similar to the gneissic granodiorite of the basement except that the syntectonic granodiorites are richer in total iron reflecting their greater concentration of biotite. The syntectonic granodiorites are also higher in chromium, nickel, zircon, yttrium and rubidium than the gneissic granodiorite but lower in barium and strontium.

PLATE 9

A - Large elongated bodies of diorite trending NW-SE parallel to the Al Amar-Idsas fault.

1.

B - Thin section of the diorite consist of oligoclaseandesine (PL), biotite (B), hornblende (AM), and quartz (QZ).

C - General view of the syntectonic granodior te.

- D Syntectonic granodiorite containing inclusions of diorite and gabbro.
- E Thin section of the syntectonic granodiorite consist of plagioclase (PL), quartz, hornblende, biotite, and ilmenite.

- Handspecimen of the syntectonic granodiorite composed of plagioclase, quartz, amphibole and opaque minerals.

٦÷

The average chemical composition of the syntectonic granodiorites is given in Table 9, and individual analyses are presented in Appendix 9.

3.6.5. Post-tectonic granite

Late to post-tectonic granites underlie a large part of the western sector of the thesis area but are present only as small scattered circular to oval plugs in the eastern part (Fig. 5). They are medium to fine-grained, pink to red in colour, massive, and unaltered. The posttectonic granite have a well developed metamorphic contact aureoles where they intrude metasedimentary rocks, and often contain inclusions of diorite, meta-andesite and sericite chlorite schist. The granites are cut by two sets of fractures, N 10° E/80° E and N.80° E/70° W, the first set of which provided channel-ways for solutions rich in iron, as indicated by the deep colour of the fracture surfaces (Plate 10-A).

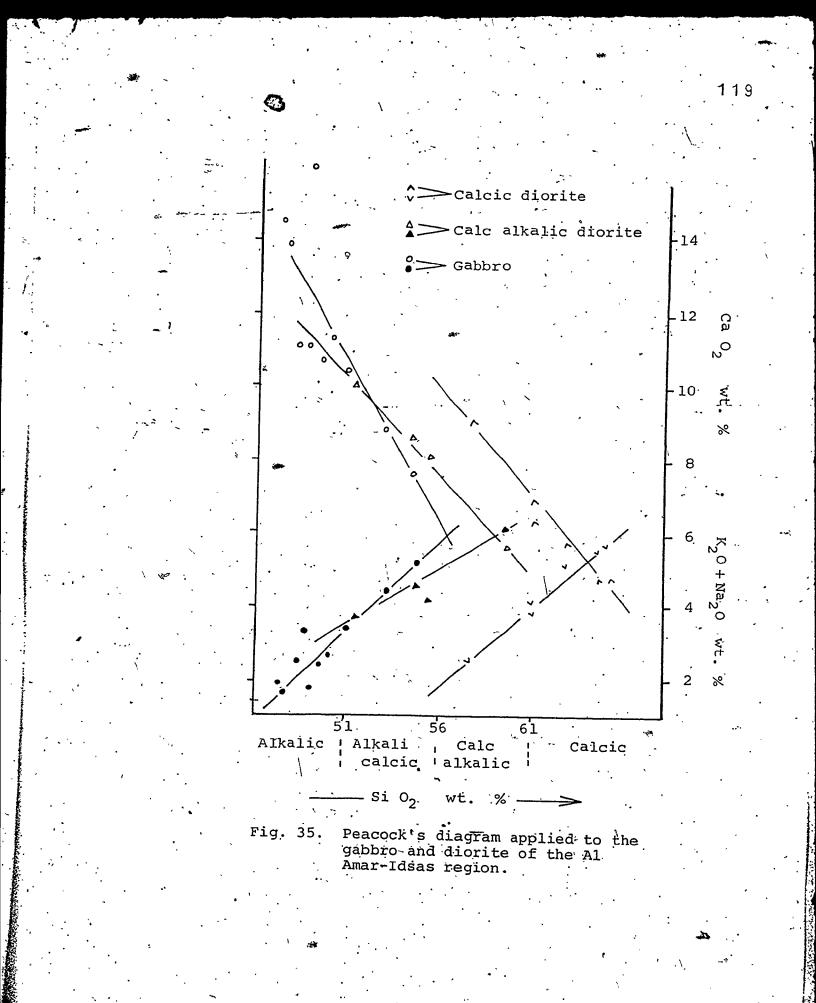
The post-tectonic granites are equigrahular and consist of 50% orthoclase and/or perthite, 20% quartz, 15% plagioclase, 10% biotite, 3% amphibole and less than 2% apatite and/or sphene. Some of the post-tectonic granites contain phenocrysts of white feldspar up to 1 cm long (Plate 10-B) whereas others are poor in quartz and are syenitic.

The post-tectonic granites have strong scintillo-

metric anomalies indicating that they are enriched in radioactive elements. Even where granites are covered up by sand or gravel, a scintillometric anomaly may still be detected. The most radioactive granites are also the most deeply coloured red. Lacombe and Latalenet (1970) reported that the radioactivity ranged from 100 to 450 c/s.

The average chemical composition of the post-tectonic granites is presented in Table 9. The post-tectonic granites are enriched in silica and potassium and impoverished in titanium, aluminium and calcium compared with the gneissic granodiorites and syntectonic granodiorites. Average chromium, nickel, zirconium, and yttrium content of the granites is much higher than that of the syntectonic granodiorites which however have higher barium and strontium values. The scintillometer anomalies may reflect enrichment in zirconium and yttrium of the post-tectonic granites.

Chemical analyses of post-tectonic granite samples are given in Appendix 9.


On a calcium-total alkalies versus silica diagram, the Al Amar-Idsas region plutonic rocks form two groups: a) a calcic to calc-alkalic group which includes the gabbros and diorites (Fig. 35) in addition to the gneissic granodiorites of the basement and the syntectonic granodiorites (Fig. 36) intrusive into the Meherga formation; b) a calc-alkalic to alkalic group consisting of the

•	an	erage and range of d CIPW norm values anodiorites and po	of the syn	ntectonic		
		tonic granodiorite	Post-te	Post-tectonic granite		
	Ave. ^I	Range	Ave. ¹¹	Range		
δi0 ₂	71.57	70.10 - 73.46	73.34	66.41 - 77.75		
Tio2	0.32	0.24 - 0.49	0.23	. 0.07 -: 0.67		
Al203	. 14.22	12.66 - 15.62	13.30	11.97 - 13.91		
Fe203	1.36	0.28 - 1.68	1.02	0.50 - 1.98.		
FeO	1.17	0.44 - 2.40	1.46	0.53 - 4.36		
MnO	0.05	0.03 - 0.08	0.05	0.02 - 0.13		
MgO 🔏	0.78	0.16 - 1,69	0.24	0.00 - 0.67		
CaÒ	2.54	1.98 - 3.46	1.13	0.54 - 2.02		
Na20	4.23	3.24 - 5.64	4.06	3.74 - 5.05		
κ ₂ ο	2.15	1.53 3.33	4.33	3.02 ÷ 5.40		
P205	0.29-	0.03 - 0.63	.0.09	0.04 - 0.24		
Total	98.68	· · · · · · · · · · · · · · · · · · ·	99.25			
+K,0	. 34	· · ·	.52.			
K ₂ O+Na	20.	Norms (,	• •		
Q	32:81	25.13 - 41.03	30,21	21.12 - 35.67		
or .	12.63.		25.76	17.87 - 32.19		
ab	36.34	27.75' - 47.86	34.57	31.92 - 42.78		
an.	. 9.81	8.68 - 10.49	4.68	1.08 - 8.39		
cor	0.64	. 0.00 - 1.58	ŏ. 25	.0 - 0.87		
di	0.33	0.00 - 1.48	0.33	.0 - 1.06		
* hy	2.97	1.31 - 6.63	2.10	0.47 - 7.19		
ol .	-		. — ` — `			
mt	1.80 /	1.44 - 2.47	1.34	0.73 - 2.91		
il	0.62	0.45 - 0.94	0.44	0.13 1.29		
ap	0.66	0.07 - 1.51	0.38	0.10 - 0.90		
hm	÷.		0.12	.0 - 0.58		
r	٠.					
Cr	1-16	Trace elemen		· • • • • • • • • • • • • • • • • • • •		
Bå !	602	· ·	257	0~- 670		
Ni -	48	86 - 1066	 388 115 	83 - 788		
NP	· 12	7 - 194 10 - 14	115 18	11 - 266		
Zr,	1 <i>2</i> 157	•		15' - 24		
	•	-109 - 238	268	129 - 355		
Y Sr	- 28	^S 8 ↔ 44	1:35*	62 - 329		
Sr <u>Rb</u>	378 55	56 - 709 47 - 59	83 156	21 - 188 21 - 233		
<u></u>			120.	<u> </u>		

2 = 5 samples

Ι

samples 5 TT

18.

11

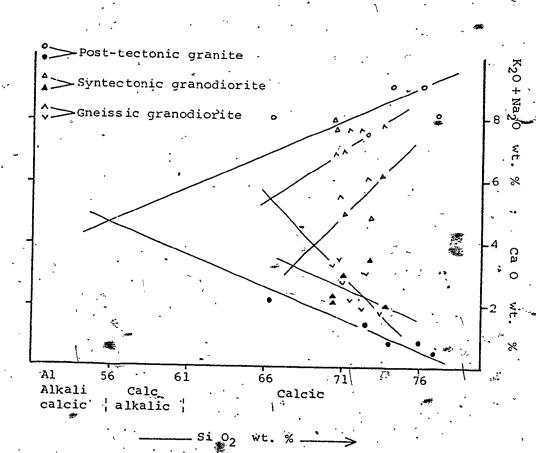
· •

post-tectonic granites (Fig. 36).

The gneissic granodiorites of the basement possibly represent different granites as follows:

a) samples 154, 159, and 225 are calc-alkalic $[K_2O/(K_2O+Na_2O) = 0.25 \text{ to } 0.41]$ and have chemically high values of rubidium, potassium, barium and low values of yttrium, calcium, and total iron;

b) sample 147 in contrast is calcic [K₂O/(K₂O+Na₂O)
 = 0.16] and has high values of yttrium, total iron, and calcium and low values of rubidium, potassium, strontium, barium, and aluminium;


c) samples 204, and 325 with intermediate characteristics lie between group a and group b.

The syntectonic granodiorites are very similar to the gneissic granodiorites of the basement and can also be divided into two groups:

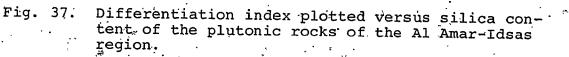
a) samples 152, and 161 are high in aluminium, total
alkalies, strontium, barium, and normative or, ab, and an;
b) samples 172, 175, and 275 are characterized by low aluminium, total alkalies, strontium, barium and normative or, ab, and an.

The post-tectonic granite sample 188, collected from east of the Al Amar-Idsas fault, is significantly lower in K_2O and higher in Na₂O when compared with the post-tectonic granites which intrude the Abt schist west of the Al Amar-Idsas fault.

The differentiation index (DI) of the Al Amar-Idsas

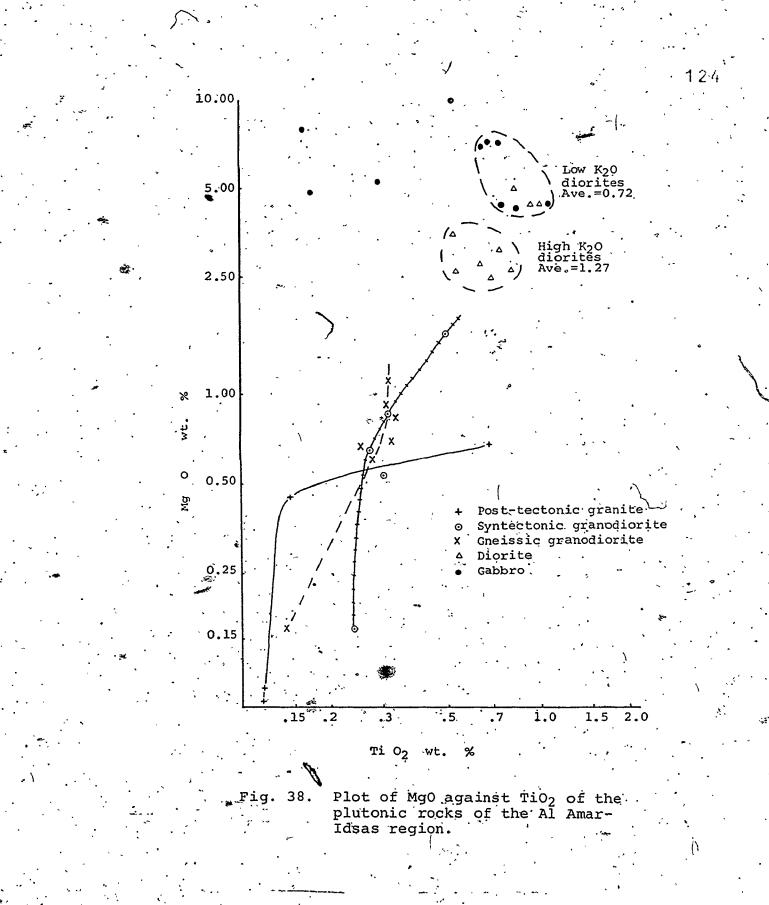
121-


Fig. 36. Peacock's diagram applied to the gneissic granodiorite, syntectonic granodiorite, and post-tectonic granite of the Al Amar-Idsas region. plutonic rocks increases generally with increasing silica (Fig. 37). However, there are two breaks associated by slight shifting in the plutonic rocks trend, the first at about DI 40 and the second at DI 65. This may indicate that the plutonic bodies were emplaced by several pulses.


On a plot of MgO versus TiO₂ in the plutonic rocks (Fig. 38), it is evident that the diorites form two groups: a) a high K₂O (Ave. = 1.27 wt %) high silica diorite group characterized by MgO values less than 4%; b) a low K₂O (Ave. = 0.72 wt %) low silica diorite group*characterized by MgO values more than 4%.

The low K_2O diorites have similar MgO-TiO₂ characteristics to some of the gabbros and may be gentically related to them. The high K_2O_2 diorites may be gentically related to the syntectonic granodiorites. The gneissic granodiorite and syntectonic granodiorite geochemical trends are similar, whereas geochemical trends in the post-tectonic granites are quite different:

3.7. Khuff Formation


The crystalline and metamorphic rocks are unconformably overlain at the eastern borders by the Permian Khuff Formation (Fig. 5). The contact between the Khuff Formation and Precambrian rocks is marked by a cliff the height of which does not exceed 50 m (Plate 10-C). The lowest unit of the Permian strata, which dips gently 5°

97 . AV.

CONTRACTOR OF

Ti

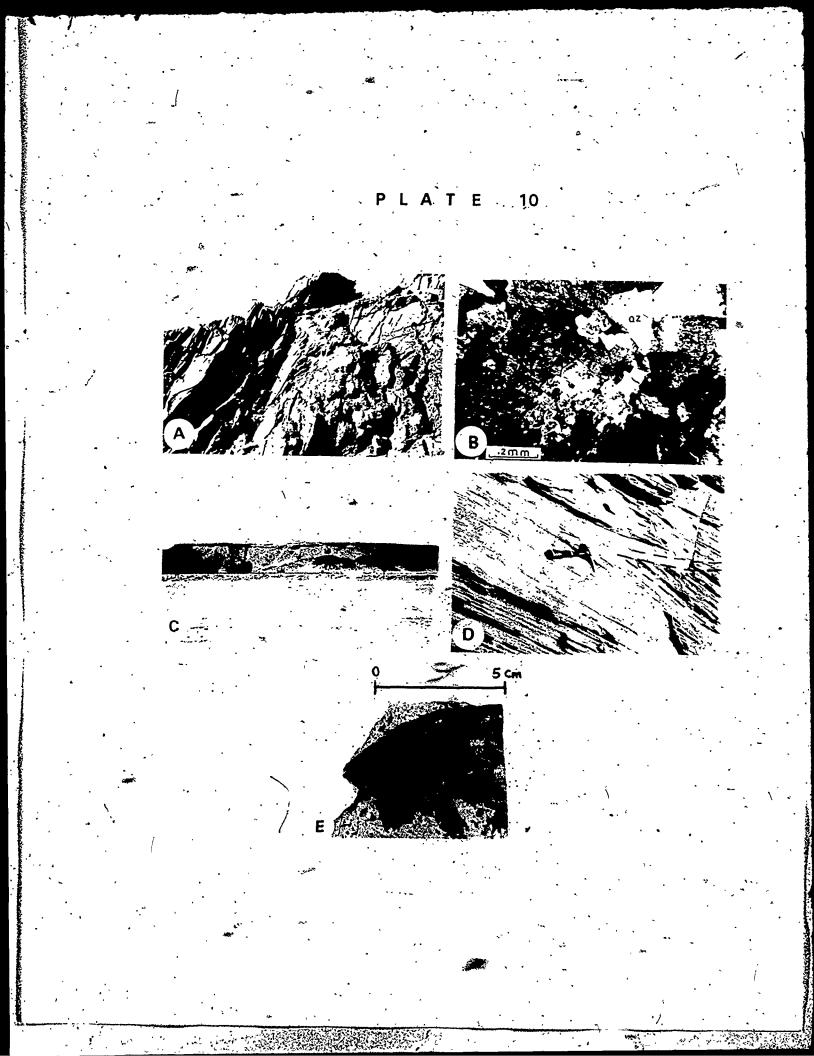
due east, is composed of coarse-grained and heterogeneous cross bedded sandstone (Plate 10-D). The upper units are mainly formed of impure limestone (Plate 10-E) and/or dolomite containing some gypsiferous horizons.

いたかと見たたいのというと

Chemical analysis of the Khuff Formation impure limestone are given in Appendix 9.

.125

PLATE 10


A - Major fracture surface in the post-tectonic granite serves as channel-way for solutions rich in iron.
B - Thin section of the post-tectonic granite consists of perthite, orthoclase (OR), quartz (QZ), and plagio-clase (PL).
C - Géneral view of the contact relationship between the

Precambrian rocks (g) and the Paleozoic cover (LS).

D - Cross bedding in the sandstone of the Paleozoic cover north of the Al Amar-Idsas region.

E - Handspecimen of the impure limestone of the Paleozoic cover east of the Al Amar-Idsas region.

121 - 12

CHAPTER 4

COMPARATIVE PETROCHEMISTRY

One of the main problems encountered in this study of the volcanic rocks of the Al Amar-Idgas region concerns the effect of chemical mobility during weathering, alteration and metamorphism in modifying the original composition of the rocks. The results of an experimental investigation concerning the reaction between seawater and basalts indicated that silica, iron, magnesium, calcium, sodium, and potassium are invariably mobile elements (Bischoff et al., 1975; Seyfried et al., 1977).

Since the Al Amar-Idsas volcanic rocks are altered and contain volatiles up to 7.7 wt % (e.g. sample no. 193), clearly the possibility arises that their bulk chemistry may have undergone modification as a result of secondary alteration processes. For this reason, in the following . discussion of the origin of the Halaban rocks in terms of their tectonic environment, reliance is mainly placed on the comparison of relative variation in content of supposedly immobile elements.

128.

In terms of silica content and using the silica classification of basaltic rocks of Bryan et al. (1972), the volcanic rocks of the Halaban Group include:

basalt	samples	84, 104,	164, 165,	180,
	• .	257D;	g*.	. /
•				

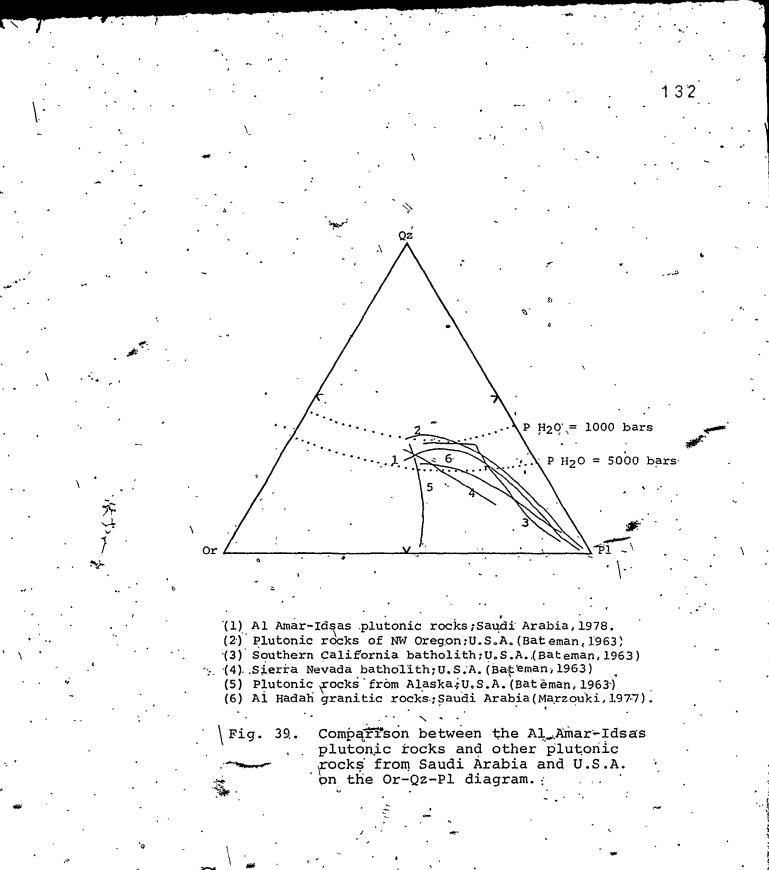
basaltic andesite	samples 181, 182, 193, 205;
andesite	samples.49B, 206A, 207, 308;
dacite	samples 19, 110C, 183, 254A, 254B,
	255. 304:

and rhyolite samples 109, 139, 253. The group A Halaban volcanic rocks all have silica contents less than 53 wt % and are therefore basalts. Other than sample 84 in which $\text{TiO}_2 = 1.95$ wt %, the basalts tend to have low TiO_2 , Cr_2O_3 , and NiO content and exhibit a relatively low rate of increase in TiO_2 relative to FeO^t/MgO during fractionation. The Halaban basalts (group A) are comparable in these respects to basalts from Eua island of Tonga (Bryan et al., '1972; Ewart et al., 1972) but are lower in SiO₂. Total alkali content is highly variable and is therefore not considered to be of any use for comparative purposes.

Groups B, C, and D are low titanium high silica calcalkaline rocks. Groups C and D have higher silica contents relative to FeO^{t}/MgO and $Cr_{2}O_{3}$ than group A rocks, whereas group B rocks are possibly even more siliceous and similar to the low TiO₂ and FeO^{t}/MgO and high $Cr_{2}O_{3}$ and esitic rocks of Andes- zone A of Lefevre (1973).

Group E rocks are rhyolites with silica contents ranging from 70.25 wt % to 78.17 wt %.

The metavolcanic rocks of the Abt schists include both high and low titanium types.


The high TiO, basalts (group A) are relatively fractionated tholeiitic rocks which are similar in TiO₂, Fe0^T/MgO and alkali characteristics to the fractionated Galapagose basalts (Byerly and Melson, 1976); the later however are significantly richer in silica. They also, other than having 1 wt % less SiO₂ and a lower TiO2 content relative to FeO^t/MgO, closely resemble the mid-Atlantic Ridge tholeiite (e.g. sample A 150) described by Shido et al. (1971). The high TiO, basalts resemble some basalts of the late stage Korambasanga volcanics of the Lau Island of the Eua-Tonga-Feji arc system (Gill, 1976). In the low TiO, basalts (group B), the more fractionated basalt (sample 278A) is comparable to the oceanic island arc tholeiites of Eua (Bryan et al., 1972), whereas the less fractionated again resemble the late stage basalts of the Korambasonga volcanic group of the Lau Island (Gill, 1976).

The chemistry of the Abt sediments seems to be dominantly of calc-alkalic type. However, relative to chromium and titanium they seem to be enriched in silica and zirconium. The high zirconium content reflects the presence of well developed crystals of zircon, and it is conceiv-

able that the Abt Schist contains zirconium and quartz of continental derivation.

The ultramafic rocks are relatively enriched in iron (Table 6), and appear to be cumulates rather than mantle rocks. While they could represent the cumulate part of a disrupted ophiolite, such a conclusion is far from certain. Similarly the gabbros are cumulates, relatively iron enriched (Table 8), and could have been derived from tholeiitic or calc-alkalic source rocks. The Al/Ti ratios of clinopyroxene of the gabbros also indicate a tholeiitic or calc-alkaline source for these rocks.

On a Qz-Or-Pl plot of various plutonic rocks of the western United States, Alaska, and western-Saudi Arabia (Fig. 39), the plutonic rocks of the Al Amar-Idsas region are almost idéntical to those of northwest Oregon and the southern California batholiths. They character-istically exhibit low TiO₂ relative to FeO^t/MgO and low Nb indicating that they are of calc-alkaline or "orogenic" character.

......

.

HISTORY OF IDEAS CONCERNING THE EVOLUTION OF THE ARABIAN SHIELD

CHAPTER

To understand the Precambrian tectonic history of the Arabian Shield we should look to the tectonic history of Africa in general and to the Pan African event in particular because until recently (30 my ago; Coleman et al., 1972) Arabia was part of Africa.

Greenwood et al. (1975) have suggested that the Arabian Shield formed during two stages of cratonization of an intra-oceanic island arc in southwestern Saudi Arabia. The first stage began with deposition of calcic to calc-alkalic basaltic and dacitic volcanics and immature sediments that were deformed, metamorphosed and intruded by dioritic batholiths; the second stage of cratonization, initiated about 595 my ago, also involved volcanism, deformation, low grade metamorphism, and intrusion of granitic batholiths. Greenwood et al. (1975) proposed a northwest trend for the island arc and northeast dip to the associated Benioff zone on the basis of the pelarity of potagsium variation trends identified by

1.33

Greenwood and Brown (1973).

Garson and Shalaby (1976) also used a plate tectonic model to describe the evolution of the Red Sea region from Archean to lower Cambrian times. They suggested that the development of the Arabian Shield involved subduction and successive opening and closing of a series. of intracontinental marginal basins developed in response to oceanward migration of the primary arc system. Garson and Shalaby (1976) claimed that this process explains the existence of five ophio rite zones in Egypt and Saudi Arabia as well as the Najd fault system. Shackleton (1976) however concluded that throughout Africa the geologic history of cratonic regions and their circumferential tectonic belts is very similar, and that there is no evidence either for cratonization processes involving oceanic island arcs or for large scale plate motions.

According to Brown and Coleman (1972) and Akaad and Noweir (1972) the ultramafic rocks of Saudi Arabia and the Eastern Desert of Egypt trend NNW-SSE. Akaad and Noweir (1972) suggested that the ultramafic bodies were formed as peridotitic crystal mushes composed mainly of olivine and pyroxene lubricated by water vapour extracted either from geosynclinal sediments or nearby granites. In Saudi Arabia, ultramafic rocks identified by several workers (Bakor, 1973; Larry, 1974; and Neary, 1974) occur in linear zones, a feature which led Burke et al. (1977) to suggest that plate tectonic processes have been operative throughout the last 2500 my. Kröner (1976, 1977) concluded that plate tectonic models fail to explain the evolution of the Precambrian linear fold-belts of South and East Africa.

Neary et al. (1976) postulated that the granitic rocks of the Northeast Sudan and of the Arabian Shield were formed in an island arc environment above an oceanic subduction zone, and interpreted the five ultramafic zones of the Eastern Desert of Egypt and the two ultramafic zones in the Arabian Shield as relicts of oceanic crust between island arcs. However, Neary et al. (1976) suggested that since paleomagnetic data indicated Africa has been a unified continental mass for the last 1500 my (Piper et al., 1973) the oceans between the arcs must have been closely spaced.

A different plate tectonic model was suggested by Al Shanti and Mitchell (1976) for the eastern edge of the Arabian Shield. They proposed that the Al Amar-Idsas fault marked the site of an eastward dipping subduction zone, separating a volcanic arc system represented by the Halaban volcanics on the east, from ocean floor sediments represented by the Abt schist to the west.

The plutonic rocks of the Al Hadah area in the west of the Arabian Shield were interpreted by Marzouki (1977) as having formed in a continental margin subduction zone environment. The ultramafic zones in the Arabian Shield . Were considered by Marzouki and Fyfe (1977) to represent sutures marking the sites of small, closely spaced basins, whose closure involved continent-continent collision.

1.36

Nasseef and Gass (1977) and Gass (1977) report that all of the Arabian Shield granites "belong to a low Rb, Nb, Y provence when compared to the African granites elsewhere." On the basis of the suggestion by Pearce and Gale (1977) that all granitic rocks formed above active Benioff zones have Nb contents below 15 p.m., Gass (1977) concluded that all calc alkalic granites of the Arabian Shield formed above a Proterozoic Bennioff zone. Based on the evolution of K₂0/(K₂0+Na₂0) variation in supposedly 1000 my old granitic rocks sampled on an east-west traverse across the Arabian Shield, Gass and Nasseef (in press) further concluded that the early granites of the Arabian Shield evolved above four independent arc systems. Frisch et al. (1977) identified what could be the largest ophiolite belt in the central part of the Arabian Shield (the Hulayfah-Hamdah ophiolite belt) and concluded that the Arabian Shield is built up of several closely spaced volcanic arcs of late Proterozoic age. According to these authors the trench sediments between these volcanic arcs have been squeezed out as a result of collision

CONCLUSIONS

CHAPTER

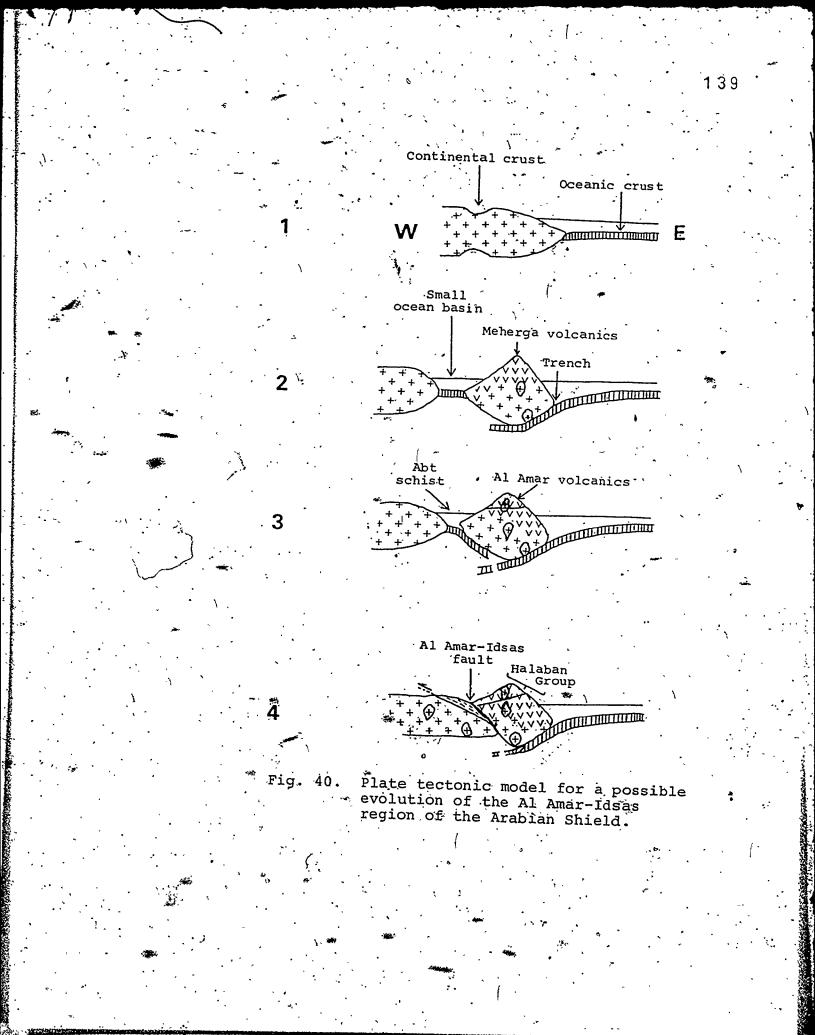
The Al Amar-Idsas region is characterized by the presence of:

1 - gneissic granodiorite basement east and west of the Al Amar-Idsas fault as old as 1010 my (Rb/sr).

2 - volcanic rocks ranging in composition from basalt to rhyolite, and which are calc-alkaline. 3 - schists (Abt Formation), a mixture of tholeiitic and calc-alkali volcanic rocks derived from a volcanic arc to the east and calc-alkali sediments perhaps in part derived from a continental source.

4 - a major tectonic discontinuity, the Al Amar-Idsas fault, a distinctive linear feature separating Halaban volcanic rocks from Abt Formation metasediments. The fault is a westward directed thrust fault along which later movements were of strike-slip nature.

5 - ultramafic_rocks (serpentine, pyroxenite, peridotite) and carbonate (Shigran) occuring mainly along the Al Amar-Idsas fault or nearby, but in places within the Abt metasediments or Halaban volcanic rocks.


6 - granitic rock of which the $K_2^{O}/(K_2^{O+Na_2^O})$ values increase from east to west.

1.38

The geology of the Al Amar-Idsas region can be interpreted in terms of the existence of a westerly dipping subduction zone east of the Al Amar-Idsas region (Fig.40) responsible for the development of the older (Meherga) formation of calc-alkali volcanic arc rocks and a marginal basin in which the Abt metasediments were deposited as mixtures of tholeiitic to calc-alkali volcanic rocks and immature sediments derived in part from a continental source. Closure of the small ocean basin along an easterly inclined subduction possibly resulted in the formation of the Al Amar formation. Even later, transcurrent fault movements took place along the Al Amar-Idsas fault.

Finally, I would like to emphasize that both, the geologic work and the proposed tectonic model in this thesis are, the results of a regional study of the Al Amar-Idsas region. For a better understanding of this part of the Arabian Shield I would like to suggest the following:

A, A detailed stratigraphic study of the most southern part of the thesis area to find the relationships between the metavolcanics and metasediments.
B, Completion of a collection from both the Meherga and Al Amar formations for pegrographic and chemical analysis to further understanding of the volcanicity of the area.
C, Age determination of zircons in the metasediments of the Abt Schist.

APPENDICES

Appendix		Page
· . 1	Analytical procedures	-141
2	Total rock analyses and normative values	•
•	of the Halaban Group rocks	143
3 5	Total rock analyses of the marbles	146
4	Total rock analyses and normative values	`,`
、 、 、 •	of the Abt Formation units	147
5	Total rock analyses and normative values	
`	of the Shigran carbonates	152
6*	Total rock analyses and normative values	-
•	of the ultramafic rocks	15À
7	Total rock analyses and normative values	° .
· · ·	of the gneissic granodiorites	155
. 8	Total rock analyses and normative values	· · · ·
	of the gabbros and diorites	[.] 156
-9	Total rock analyses and normative values	· · · ·
- Magnegar	of the syntectonic granodiorites, post-	· · ·
·	tectonic granites, and Kuff Formation	. 158 _.
10	Geochemical sample location map	160

METHOD

Chemical analyses were determined using the Philips PW 1450 AHP fully automated x-ray fluorescence spectrometer, at the University of Western Ontario. Samples (about 500 gr.) to be analysed were crushed to a fine powder (less than 200 mesh) in a Bleuler Mill. Powder pellets and fused discs were made from the powder of each sample according to the method of Norrish and Chappell (1967) and Norrish and Hutton (1969), respectively. Pellets and discs were then loaded into a sample holder and automatically fed to the machine. Counts were determined for both the unknown samples and the U.S.G.S. standards. The standards used were: FS72 (for all major elements except Na), GA (for Na), AGV-1 (for Ba, Sr and,Zr), GSP (for Rb), VSN (for Y), and DTS (for Cr and Ni). The data were / printed on a teletype and punched on a paper tape which was then used to generate computer cards. A computer program, obtained from Dr. H. Hunter of the University of Western Ontario, applied the necessary correction factors to the raw data. The calculated chemical composition (in K. wt %) of the sample analyzed was punched on cards and these were run through a second program which calculated the CIPW molecular norm.

The analyses are accurate to within 1% of the amount present for major elements except Na and to within 10% of the amount present for trace elements and Na. In general, there is close agreement between the analytical (XRF) and U.S.G.S. standard acceptable values for TiO_2 , MnO, MgO, CaO, Na₂O, K₂O and P₂O₅. Values determined for SiO_2 are slightly greater, and Al₂O₃ and total Fe as Fe₂O₃ are slightly less than the U.S.G.S. standard values: The small standard deviations calculated from multiple analy- ° ses of the standard samples indicate a high degree of precision for the analytical method used.

DETERMINATION OF VOLATILES

The total volatiles for all the chemically analysed samples were determined using the method of loss on ignition (LOI). About 2 g of sample was weighed, ignited at about 1100°C in a porcaline cruciple, cooled in a desicator and reweighed. The weight loss was assumed to be due to volatile loss (= LOI).

۶ ۶	#• A1	A,2	Å3	<u>λ4</u>	<u>א</u> ז -	λ6
•	<u>164</u> ''	104	165 -	193•	257D	. 84
sio ₂	46.05 /	50.59	49.77	48.38	47.60	46114
Tio2	0.58	. 0.68	0.78	1.06	1:10	1:83
۸1 ₂ 03	15.16	17.28	19.80	16.44	17.40	13.05
F0203	2.40	2.39	2.22	2.37	2.63	2.75
FeO	\ 8.10	7.90	- 7.50	7.76	10.09,	11.05
MnO	0.26	Q.20 '	0.19	0.24	0.19	0.30
ngo.	9.52	7.29	3.93	4.21	4.22	4.03
Cad	14.20	10,59	. 9.28	. 6.47	6.10	12.48
Na ₂ 0	\$ 0.90	3.00	2.98	3.29	- 2.28	1.31
к ₂ 0,	1.06	0.06	· 2.01	1.68	1.09.	0.15
P205	0.65	 •	0.63	ð 0.25	e 0.60	0.53
L.O.I.	1.10	- ·	0.79	7.70	6.65	6.35
Total	99.98	, 99.98	99.93	99.85	99.95	~ 99.97
			٠.			
reo .	☎ 1.08	1.37	2,42	2.35	2.95	.3.36
NgO K Fb, *	. `• 489	249	 556 .		431 [°]	415
-	÷ ·		*	•- ·		
Ba Rb	23	80	14	. 35 .	2.6	7
• •		No	orms (CIP	w) .	•	
Q		•	-	`	6.01	6.30
or	6.33	~ 0.35	11.97	10.77	6.90	0.93
ab	7.69 `	25.13	25.42	Ý 30.20	20.60	11.85
an	34.55	33.72	34.99 (27.26	28.34	31.27
cor '	-	· - '	- ÷		3148	.•
di	26.30	15.47	5.82	4.82	3	26.24
hy_	6.19	16.58	7.98	18.94.	· 27.22	14.27
01	12.75	4.04	7.46	· 1,45 ·	· ·	· - 1
mt	3.52	3.43	3.24	3.7.3	4.09	4.26
11 _.	1.11	Ì.28	1.49	2.18	. 2.24 .	3.72
ар	1.56	· . -	1.62	. 0.64	1.62	, 1 . 33
• •	<i>י</i>	•		••	•	r
•		Trace	elements	(P.P.N.) \		
Cr	307 -	125-	51	. 17	2 3 <i>g</i>	14
Ba	410	160	4,28	697	543	· 21
Ni	82	32	16	. 7.	-	5
ND .	5	. 4	. 7. °	· ۳۰	-	· · -
2r	20	3	35	94	9.4	. 61
Y ⁻	. 10	6	1,8 .	. 27	t 17	28
Sr	. 197 .	356 -	300	591	320	253
Rb .	18	· 2	30	20	21	3
		8 + FeO				

Appendix 2 - Total rock analyses and normative values of the Halaban rocks.

•

1. S.

Appendix 2 - Contin.

		•				ł	1.4	, .		
	, B1	₿Ž	B ₃	В4	:85	· / ·	Сļ	, c2	C3	• , C4
	206A	205	19	207	· 110C	• 1	•49B	304	254A	255
Si02	61.29	54.42	64.67	57.95	64.21	¢	55.18	62.79	63.17	67.49.
TiO2	0.67	. 0.83	0.53	0.63	0.63		0.54	. 40	0.37	0.30
A1,0,	14.48	14.57	15,05	°-14.69 [°]	15.09		15.88		15.58	14.41
Fe,0,		2.49	1 1.00	1.80	1.86	,	2.34	1.68	2.10	1.89
Fe0	8.09	8.82	0.60	3.03	3.24		6 .93	1.60	5.20	3.49
MnQ	0.16	0.20	0.02	0.16	Ø.08		0,17	0.17	.0.13	0.10
MgO	3.40	5.71	1.66.	2.57	1.96		5.65	2.15	3.22	1.80
CaO	2.28	8.30 -	- 9.93	. 7987	3.23	۰.	9.01	12.27	* 5.95	6.10
Na ₂ O	4.68	2.96	5.78	3,56	5.38.	•	3.14	· 2.10	2.48	2.79
K20	0.07	6.69	0.52	1.36	Ø.39		0.49	0.15	0.98	0.64
P205	0.17	20:08	0.14	0.47	0.14	,	0.66	0.35	0.61	0.06
1.0.1	. /	.0.91 .		5.90	3.73			7.56	0,25	1.25
lotal	99.96		99.82	100.01	99.9*		99.99	100.01	100.04	100.02
•				 • `	1,2		·	, ,	,	 `
fe0 ^t		`, `	· · ·	•••	• • •		• _	*		
₩gŌ :	\3.01	1.93	1.03	ັ <u>່</u> 1.81	2.51		1.60	1.45+	2.20	2-88
K Ro	194 ·	441	480 .	235	324		10]7-	249	407 6	443
Ba Rb	60.	18 `	· · · e.	· 10	13	. •	54	11	19.	· 25,
		۴.		•	د Norms	(CIPW	n S	``	•	••
Q	19.27	6.06	17.61	15.50	21.17		, 7.31	33.16	25.80	32.80
or	0.42		. 3.18	-8.53°	2.40		2.89	0.96	5.80	3.83
ab	40.53	25.27.	50.54		47.31	' v '	26.50.	`19,29	21.02	23.90
an '	.10.45	,24.95		21.37	15.71		.27. 82	14.70	25.62	24.38
cor	3.03	· •	- X +	-	0.29			ا يو د	1,07	, -, ·
di	- î -	13.55	10,88	13.78			10.34	15.65		4.86
hy ,	.21.01	3.24		3.63	8:73	e ~••	19.18	•	15:49	6,73
01	- <u>-</u>	e _ 9	۰ - ^۱	- ,		•	· · · ·	`	-	,
mt	3.56	3.64	⁴ 'Q.48	2 . 7.8	2,80	•	3:-38	. 2.64	3.05	2.77
<u>۱</u> ۱ ۰		.1.59	1.04		1.24		· ^{~.} 1.02	0.43	0.70	0.58
ap 🛹	. 0.41	0.19		1.18	0.30		1.56	0.90	1.45	0.14
		•		•	•	~	• •			
• .		۱	· · ·	**	۲	٠	• 、		•	
,	· 2			Trace .	element	s (P.	P.M.)	• ~		3
Cr	624	273	.221	86	. 77 .	•	<u>ุ</u> รีรร	56	. 25	'6
Ba	179	231	73	456	126	· . ·	215	, 54	371	298
Ni	192	78	79. [`]	36.	34	· · ·	31.	17	- 4	8
Nb	· ź			* '6	12	• •	. 7 .,	4	° 7	3 -
Zr	96 -	- 8.4	164	123	194 🔎	. \	, 44	42	46	63,
		. 31 \	68	25	29.		14*	, 16 `	18	, 16 [°]
¥.N	• . 29	21/								
¥ Sŕ <i>[</i> #=.	*.29 185	207	206	437	,226	· ,	253	177 :	233	240

Fe0t = Fe203 x 0.8998 + Fe0

ż

Appendix 2 - Contin.

	•	•	-			•	•	•	
	Đ1	D2	,D3	D4	E1	E2 🧅	• E3	x .	· Y
	180	<u>181</u>	182	183	• <u>109</u>	`\ <u>139</u>	253	308	<u>254B</u>
sio ₂	49.95	54.12	52.78	65.99	69.55	76.17	78.17	54.87	63.53
TIO2	0.43	0.70%	0.87	0.57	0.30	0.21	0.43	1.68	0.43
M1203	. 15.53	16.28	18.10	14.24	14.71	11.86	8.32	· 15.74	14.62
Fe ₂ 0	. 2.19	2.21	2.31	1.79	í.83	1.67	1.80	2.51	2.15
FeŌ	6.22	6.34	7.29	2.55	ووپي	1.54	2.94	8.16	6.33
MnO	0.20	0.25	0.34	0.08		.0.14	0.20	0.33	0.22
MgO	8.56	5.55	5.39	1.43		_~ 0.55	1.91	4.55	1.66
CaQ	11.47	8.92	3.64	3.46	1.48	0.62		4.01	6.43
Na20*	2.61	5.16		. 3.95	6.60	6.48		^ن 5.19	1.51
ĸ, 0	0.65	0.45	3.13	2.49	. 0.64	0.07	0.51	0.16	0.40
P205	0.33	` _	•0,.22	0.15	0.04	0.01	0.65	0.99	0.65
25 L.O.I.		<u>,</u>	2.64	3.29	0.90	0.61	, 0.10	1.72	1.99
Total	·	<u>.6</u> 99.98		99.98	99.91		100.02		99.97
	8.	•			Les pro				
. •		inter ^a	-	·7				· 2. 5.	
FeO ^t MgO	0.96	1.50	1.74	2.91	6.35	5.53	2.39	2.29	4.93
K. RD	599	415	541	.470	· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	291	302	268	369
Ba Rb	20	21.	18	18	, 4 1	32 -	» 17 ·	48	21
· ·			. .	<i></i>			`ه	· · ·	
•		, v	, -		as (CIPW)		.	,	
0 :	-		.82	24:59	Ž3.08		62.57	6.68	35.17
or -	3.89	2.65	19.01	•	3.82	· •	. 3.01	, ' 0.96	2.41
ab ,	22.40	43,33	•	,34.56	56.40			44.70	13.03
an	29.09	19.87	17.08	14.24 .	7.15	3.03	-20.98	1.3.73	28.25
cor ·	-	۰.	3.02		0.57	0.02	0.06	2.12	1.58
di	21.28	19.83	1	2.05	ŕ 🕶	-		·	
hy	11.25	-	24.36	. 5.17	5.62	2.75	8.32	22.47	13.96
01	.6.39	9.55		-	-	•	• -	- <u>-</u> `	-
nt.	3.23	3.19	3.44	2.68	2.68	2.44 ົ	2,61	′ 3.70 [,]	6.18
il ,	1.61	1.40	1.69	1.12	0.Š8	0.40	0.82	- 3.25	0.83
ap '	0.80		0.55	-0.37	= 0.10	0.02	1.54	•2.39	1.57
*	۰ · ·	· · ·		•		`. '		-	.:
•			. •		ents .(P.P	.M.)	•	•	
Cr	4 36	183	115	21 · 785, · ·	··· '1	· - ,	1	· -	
За	180	.190	861	· 785 ·		63	234	239	193 -
۰ آن	121	42	ູ 31	۰ و ۰			÷	<u> </u>	-
Nb	6	. 7	6	6	· · 11	12	' ' 7		, Ĝ
Zr	29,	42	7,7	213.		317	103	148	
2	<u>,</u> 26∙	26	19	24		· 79 ·	• 27	35.	-
Sr`	- 377	. 268 _			86		. 277		
я́ь`	9		. 48	- 44	-	2 ``.	- 14		 9

Foo^t = Ee_{20_3} x 0.8998. + Feo X and Y were omitted from variation diagrams because they do not contain Cr or Ni...

Appendix 3 - Total rock analyses of the marbles.

- ,	, `		۰ <i>۱</i>	•	
. /.	<u>1.98</u> ·	265A	<u>265C</u>	268	281B
SiO,	2.30	13.39	17.05	3.88'	30.43
TiO	.07	.09	.07	-4.09	.02
Al203	.22	.55	.07* .17	1.06	06
Fe ₂ 0 ₃	.10	1.60	.13	.12	1.64
FeO	.15	.82	.19	.17	. 30
MnÓ	.02,1	.23	· . 0 <i>4</i>	.02	.02
MgO	22.41	14.36	19.28	.59	14.50
CaO v	32.69	33.46	27.73	54,22	22.97
Na ₂ O	· , -			العمر ف	-
к ₂ о́	.04		.04,-	.10	· _
P205	.05	`	.01	.06	·
<u>L.O.I.</u>	42.44	.36.92,	36.30	40.45	30.62
Total -	100.49	101.43	101.01	100.72	. 100.43
	· • •				

Trace elements (P.P.M.)

#: _/

23. ×

	Cr		_`	• •	5		÷. **		1	ŕ	` 6
	Ba	• •	30	• •	81		<u></u> 2	•	21		1.1
	Ni	•		· · ·	. 14	2	ę. –	:•	58	-	1
	Nb	**	2	8	. `	<u>ب</u> ب	2		5		.
	Zr		5	14	5		~ 3		່ 17 🙀	· •	-
• .	۲.	, e	5 🛥	•••	, 3		4 '		-	and the second second	<u>َ</u> ، ع
	Sr		,114	· · · · · · · · · · · · · · · · · · ·	165		5 3	-	1808	١	99.
	Rb	·	· <u>·</u> <u>4</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>.</u> 4	<u></u>	6		6	* <u>`</u> * <u>`</u>	1
			e 1	. •		· ·		, -	· .		

Appendix	4	-	Total	r	ock	ana	lýse	s ^r and	i norm	a-
•			tive-	va	lue	s of	the	Abt	Forma	<u>-</u>
			tion.				•	•	?	

			·····		
	A ₁ .,	^λ ₂	- B ₁	^B 2	Вз
	269A	276	<u>278</u> A	283	249
510 ₂ .	47.33	.45.75	49.63	#46.79	40.24
	1.92	2.08	1.09	0.78	0.62
11 ₂ 0 ₃ -	- 14.19 ·	14.73	. 19.46		. 11.87
² ³ ² ³ .	- 2.87	2.89	2.34	o 2.54 [,]	2.16
23. °e0	12.25	12.50	7.58	9.38	6.62
inO	0.24	0.24	0.17	0.22)	0.20
1g0 🌷	6.47.	7.39	3.67	6.75	5.68
a0	10.53	11.24	. 10.04	10.22	16.34
la 20 **	2.58	1.52	2.48	2.39	0.82
20	0.33	0.17	· 1.10	1.01	/ 0.93
2°5	0.19 .	0.20	0.34	0.28	0.32
2-5 .0.1. · _	0.91	1.19 .	1.96	1.83	13.73
'otal	99.81	99,90	99.95.	99.90	99.53
					~
• •		د ه	•		
eot	•.	1. Sec. 1	•		
<u>g0</u>	2,29	.2.04	2.64 、	1.73	1.51
K UD	. 391 .	282	761	524	270
ia ib	19	13	4	. 6	5
Ψ	•9* •				
	· · ·	Norms	(CIP)		~
, -			1.84	• -	
r	1.97	1.02		6.08	6.16
b	22.06	13,02	, 21.41	20.61	0.70
n,	26.44	33.28	39.22	35.28	30.25
li,	20.89	18.12	7.79	12.00 .	50.58
Y	11.27	21.27	16.17	4.48	• -
<u>,</u>	9.03	4.58	_ • •	15.61	2.27
it .	4,20	. 4.24	́. ⊶ 3.46	3.75	3.6
r.,	3.68	4.00	2.11	1.51	1.3
p .	0.45	0.48	0.82	0.68	0.8
10° - 244	• <u>-</u>	• - •	· - · .	<u> </u>	3.90
	· · · · ·	Trace eleme	nts (P:D.M:)		·.
r	"9'4 · 🐪	64	42.	. 98 🥐 🕯	128
a, .	136 '	90	267	. 180	161
ц" "	40 -	47	15	12	25
ib -r	3	4	2'.	` 1	-
Sr '	. 90	98 .	.84	36	29
· · ·	19	19	<u>, 18</u>	13	.13
2000 20	174 · ·	469 **	545	590 🐣	245
··· •	7	ີ ູ5	12	16	26

 $FeO^{t} = Fe_{2}O_{3} \times 0.8998 + FeO^{t}$

10 • 14

Appendix 4 - Contin.

ļį

• %

	1	•

	-				•	•	• •	
•	Cl	С2	C3-	C4 ·	ČC5	Ċ6	C7	C8
	<u>12</u>	<u>13</u>	<u>. 59</u> .	69	<u>110A</u>	<u>113C</u>	130	<u>132</u>
sio ₂	67.36	67.37	65.33	64.79	67.61	63.28	, ₀ 64.72 [°]	· 62.5
rio ₂	0.44	0 .64	. 0.67	0.64	0.60	0.72	0.61	0.6
A1,20;3	14.49	-13,89	14.06	14.74	13.48	15.17	15.15	14.3
^{Fe} 2 ⁰ 3	. 1.77	1.49	1.93	~ 1.90	1.86	2:02	1.89	1.8
FeØ	2.43	3.40	3.84	3.64	3.10	5.20	3.63	3.3
MnO	0.60		0.09	0.09	0.03	0.12	0.08	0.1
MgO	1.81	2.83		2.30	Q.64	3.55	2.72	2.1
CaO '	2.67	2.66	4.12	3.56	2.55	3.16	2.86	5.7
Na20	3.14	3.35	3.31	3.57	4.15	3.01	3.00	4.1
к ₂ 0	2.41	1.01	0.98	1.78	089	1.00	2.20	0.8
P205	6.14	0.69	0.18	0.16	0:14	0.76	0.21	.0.2
L.O.I.	3.19	2.15	2.74	2.69	4.79	2.03	2.92	4.1
Total	. 99. 89	3.00.01	99.97	99.86	99.84	100.02	99.99	100.0
•	•	_		·, •		•		•
e e t			-					
reo ^t MgO		1.82	2.05	· 2.33	7.46	1.98	1.96	· 2.3
* <u>K20</u> K20+Na		.22	.22	.33	.17	.24	.42	, 1
		`		Norms (CIPW)	•		, i
2	31.82	35.06	28.68	25.39	34.26	29.43	28.14	21.5
or.	14-73	6.10	5.96	10.82	5.53	6.03	13.39	. 4.9
ab	27.47	28.95	28.80	·31.08	36.94	25.98		36.5
nn -	12.76	8.92	19.82	17.11	12.36	10.98		18.8
cor	2.27	4.17	, 0.50	.0.87'	i.46	5.30	3.23	
ii -	 .	, -	–	-,	·	- ·	. (***	7.7
y	7.09	11:01-	-1-1-61	10.24	540G.	16.07	11.35	
nt	2.65	· 2.87	2.88	2.83	2.84	2.99	2.82	2.8
11	0.86	1.24	1.31	· 1.25	1.20	1.39	1.19	.1.2
ар	0.34	1.67	0.44		0.35	1.84	0.51	0.4
	• • •		Trace	elemen	ts (P.P	. M.)		
Cr	130	93	178	112		120	147 .	108 [,]
Ba"	258	112	.251	515,	158.		581	239:
Ni "	. 24	50	. 35	- 38	1	30	35	31
۰. ۱b	-11	13		17	13	9 [°]	11	- 6
	• 1,78	191	183	185	182	168	160 、	170
 (· ,	27	28	- 25	28	38	23.	32	27
5 r	139	244		- 382	177	248	422	520
Rb	30	8	29	49	. 19	25	65	* 23

Feot = $Fe_2O_3 \times 0.8998 + FeO.$ * K_2O and Na_2O recalculated at $SiO_2 = 65$ wt %.

Appe	ndix	4 - Co		7	·		••••	-	٠,
			1. SP-	`,				•	
<u>`</u>			:		× ×	· ·		· .	
	C9	C10	c11 .	¢12 [.]	C13	C14	c15	. C16	
•	<u>137</u>	166	208	<u>210</u>	219	220	231	236	· •
S10 ₂	66.64	62.28.	65.50	63.23	61.43	58.50	64.65	65.08	
Tio2	0.60	0.75	0,70	0.72	0.70	0.72	0.57	0.62	
A1203	13.16	15.46	15.53	15.24	15.12	16.03 -	15.09	14.83	
Fe ₂ O ₃	1.89	1.96	2.00	1.99	2.08	2.17	1.91	1.88	
FeO	3:10	4.18	3.86	4.18	5.25	5.78	3.10	* 3.63	
MnO	0.09	0.10	0.10	0.11	0.10	0.14	0.10	0.09	
MgO	2.36	- 3 - 19 ,	2.98	2.89	3.83	4:16	2.35	2.38	1
Ca0	4.05	, 3. 19	2.69	2.74	3.30	3.00	4.15	3.20	
Na ₂ 0	^{-*} 3.76	3.23	3.38	4.24	. 2.94	2.16	3.28	· 3.55	- /
к ₂ 0	1.07	1.71	1.87	1.18			1.93	2.14	
P205	0.12	0.21	0.72	0.20	0.24	0.48	.0.17	0.18	
L.O.I.	3.17	3.79.	0.58	3.18	1.68	5.01	2:65	2.41	•
Tota]	100.01	100.05	99.91	99.91	100.04	99.93	99.95	99.99	••
		-						· ··· · ··· ·	
• .		••			,	•	1	· <u>)</u> ·	
Feo ^t MgO	2.03	1.86	ì.90	2.07	1.86	1.86	2.05	2.34	•
*,к ₂ 0	.22	.¥5	. 36	.22	.53	.45	.37	. 38	~'
K ₂ O+Na	20	•	•	. '	, .				
	·	-	4	lorms (C	IPW)	•			
<u>o</u>	28.96	24.58	28.63	-	16.42	25.54	25.42	25.00	
₽. or	6.53	10.50	11.12	7.21	20.24	.11.08	11.72	12:96	
ab •	32.85	28:39	28.78		- 25.29	19.26	28.52	30.78	•
an	16:39	15.03	8.74	12.71	15.06	12.53	20.03	15.07	
Cor ·	_	3.11	4.79	2.55	1.23	6.54	0.48	1.31	
di	2.89		_	· • ·			-		
hy *	\$ 8.08	13.45	11.96.	12.66	16.76	19,19	9.47	10.43	• •
mt.	2.83			2.98	3.07	3.32	2.85		
il '.	1.18	1.48	1.34	1.41	1.35	1.44	1.11	1.21	
ap`	0.29	0.52	1.72	0.49	,	1.18		0.44	
- ;		÷		• . •	•		· .		÷.
	· · ·				SMP.P.N			•	`•
Cr '	. 141	175	145	120		95	. 84	101	4 ·
Ba	274	625	.481	3,07	765	424	491	ę <u>6</u> 77	. •
Ní	- 34	. 44	• 46	47	· · ·	ິ 62	41	31	-
Nb	ל .) 9 , "	8	ູ 7	12	6 .	6	`7	
Zr	152	207	195	182	·164	155	137	166	13
Y,	23	, 30	29	29	,32	28	~· 26	28 🦏	к.
Sr	323		284	268	.243	225	318	521	
Rb	- 31	46	. 39	· 32 ·	` <u>75</u>	51	53	. 55	

 $Fe0^{t} = Fe_{2}O_{3} \times 0.8998 + Fe0.$ *K₂O⁺Na₂O recalculated at SiO₂ = 65 wt. 1.

di.

149

. ,			
Appendix	4	-	Contin.

		• •					~
		,	.`	در معرف میکور		、.	î. <i>r</i>
•	C17	~; C18 [.]	C19	C20	-C21	<u>Ç</u> 2-2 _%	C23
	238A	242	243	246	247	273	282A
sio ₂	65.40	62.84	65.70	60.10	65.97	63.13	64.81
1102	0.57	0.75	0.68	0, 79	0.55	0.63	0,81
۸۱ ₂ 03	13.991	15.58	14.65 -	15.38	12.22	13.60	10.61
$Fe_2^{Q_3}$	1.86	- 1.96	1.96	2.09	1.92	1.98	2,50
FeŐ	3.25	• 4.16	4.00	5.23	. 3.11	4.01	8<99
MnO	*0.09	0.09	0.09	0.56	0.13	0.09	0.35
Mg0 🛹	2.32	3.05	2.78	3.16	2.30	3.01	13.49
Ça0	3.59	1.99	2.15	3.23	4.65	5.36	6.99
Na ₂ 0	3:32	3.22	4.20	0.98.	1.97	2.95	1.08
к,о́	1.86	5.56	- 1.43	2.92	1.98	0.91	0.42
P2°5	0.14	0.19	0.18	0.47	0.45	0.14	0.29
L.0.1.	3.69	0.68	2.31	4.97	4.69	5.08	-
Total .	300.08	100.07 .	100.13	99.88	99.94	100.89	100.34
<u> </u>			<u></u>			1	
reot Mgo	2.12	1,94	2.07~	2.25	2.10	1.92	3.2
*к,0	. 36	.63	,25	. 7,5		.24	.2
K ₂ O+Na	20		•		· ····		r.
		, -	1	Norms (C	EPW)	1. C.	1.
6	27,53	12.37	25.94	31.09	35.27	26.79	33.3
or	11.40	33.06	8.64	18.15	12.25	5.61	2.4
ab	29.14	27.41	36.33	8.69	17,42	26.05	9.1
an	17.54	8.70	9.71	13.64	19.56`	22.10	22.7
cor	0.33	1.10	2.77	6.20	- [']	••-	-
di .	1 0, 1	_ ·	-	÷	2.59	3.84	8.3
hý.	9.79	12.62	11,95	16.29	9.00	11.02	18.1
mt ·	2.80		2.90	3:19	2,93*	3.00	3.6
i1 .	1.12	1.53		1.58	· 1.10	··· 1.25	1.5
ap	0.34		0.44	- 1,18	1.12	0\$35	0.6
	,		Trace		s (P.P.M	•)• *:	۰.
Cr	- 130	129	147		·78 ·	92	· 52
Ba	520	707	502	733 '	. 475	`258	. 44
ŃI	40	41	45	45	😹 27	23	7
Nb	10	8	6	10	. 8	ל י	۰ .
	176	193 -	171 🧃	166	I36	151	83
Zr •,	•		.2,7	34	25	* \$26	40
Zr · Y	31	. 29					
Zr · Y Sr	•	. 29 -'319 69	372 *46	- 147	287 54	·315 24	133

150

澎

*K20+Na20 recalculated at Sio2 = 65 wt. %.

e 30

Appendix 4 - Contin.

	- • ****				,	• • •
·	C24	C25	C26	C27	C28	C29
	15	<u>57</u>	74	199	215	233
sio ₂	71.03	68.77	66.50	~₹73.01 ·	68.53	70.28
TIO ₂	0.70	0.56 '	0.43	0.32	0.50	0.21
A1203	13.61	14.35	13.51	<pre></pre>	12.57	15.05
Fe ₂ 0 ₃	, 1.77	1.70	1.80	1.52	1.75	0.60
2 - 3 Fe0	2.90	2.87	2.80	1.21	2.80	0.88
MnO	0.07	0.07	0.09	0.05	0.09	0.04
MgO	1.67	2.36	1.99	1,19	1.79	0.54
CaO	2.31	3.37	3.00	2.86	4.84	2.57
Na ₂ 0	5.72	4.08 /	3.64	6.28	4.30	.6.89
K-0	·0.38·	1.Ž5	1.56	0.57	0.46	1.04
P2 ⁰ 5	0.66	0.69	0.16	0.61	0.17	0.08
2.2 L.O.I.	-		* 4.31	-	1.21	1.90
Total	100.82	100.07	9,9.84	100.72-	99.01	100.08
;		****	,		~	
*K20 K20+Na	.06	.23	_30	.08	.10	.13
2	2°		' :			
•	• '	•			·	
• •	· · ·		Norms	(CIPW)	· ·	
.	29.16	30.01 ·	30.38	29.20	. 30.47	21.25
or ·	2.23	7.38 ⁻	. 9.65	3.28	2.78	6.26
ab	47.99	34.48	32.24	51.71	37.19	59.37
an ·	7.13	12.24	14.49	7.04	13.94	. 7.20
coʻr	1,14.	1.79	0.79		-	-
di	ب	· ·	· •	2.32	7.76	4.30
hy 📑	6.94	8.94	8.36	2.31	.3.87	• 0.14
mt	2.54	2.46	2.73	. 2,14	2.59	0.89
i1. 🐐	1.32	1.06	0.95	0.59	0.97	0.41
ар	ື້ 1.55	1.63	0.40	1.41	0,41	0.19
	• • • •	1 - A - A - A - A - A - A - A - A - A -		`•;	• •	-
•	•*	.	, : .	<u>`</u> ••	•, •	
*-			• •	nts (P.P.M.	.)	· .
Cr	93	91	47	-	66	4.
Ba	112	" 36 <u>4</u>	442	, 183	.145	420
Ni·.	8	45	.15	-	22	. 14
NЪ	13	13	3	8	5	. 11
Zr	191	140	108	140	97	72
¥	.28	`26	21	. 24	20 ·	• 1
Sr	244.	. 295	280	142 .	522	693
Rb .	8	33	46	9	14	35.

* K_20 and Na_20 recalculated at $SiO_2 = 65$ wt. %.

Appendix 5 - Total rock analyses and normative values of the Shigran carbonates and the magnesite and barite veins of the Al Amar-Idsas region.

	•			Shigra	n Carbona	te .	-	2
	<u>113B</u>	<u>121B</u>	208E	<u>309</u> ~	312	313B	315	316A
sio ₂	38.38	31,30	32.23	24.25	33.14	25.42	41.48	37.09
TiO ₂	.13	.03	.04	06	.05	.02	~. 07	.03
A1203	1.69	.54	.44	:43	. 4 4	. 2 ³	1.93	1.41
Fe ₂ O ₃	1.93	1.89	1.89	1.96	1.91	1.88	2.15	2.05
FeO	3.86	3., 49	3.53	4.14	3.60	3.41	5.80	4.94
MnO	.19	.17	.17	.10	.09	.18	.19	.18
NgO .	6.64	26.37	24.74	1.9.61	28.15	35.19	. 12.56	20.70
CaO	24.07	5.41	6.98	18.32	2.47	.58	14.70	11.77
Na ₂ O	-	· -	` _	· ´	• –		· -	,
к ₂ 0*	.22	-	•	.04	.08	*	• -	-
P205	.01	· _	-	-	-	- -		. <u> </u>
<u>1.0.1.</u>	22.99	31.27	30.27 .	31.44	31.04	33.53	21.81	22.25
Total	100.11	100.30	100.29	100.34	100.97	100.26	100.51	100.25
Fe0 ⁺	.84	.20	· .21	. 30	.19	14	. 62 '	.33
MgC .		· ·				· ·)	
•••		4 * '	•	NOTMS	(CIPW)	• ^	· · · · · ·	.ł.,
Q Or	-			· •	* -· >		2.391	÷:.
ab	-			•	.68	<i>,</i> •		•
*	×	- h-		••	-	• • •		•
an	5.26	2.13	1.72	· ·	1.38	• •	6.69	4.93
di	61.47	28.83	37.57	,	12.67	* *	68,.67	、55 . 23 ⁷
hy.	•••••	8.38	6.53	• • •	32.15		18.12 ·	.2.93
ol	2.43	56.60	50.15		🗯 49.03		_· -·	33.02
mt _.	3.71	3.97	- 3.92	•	3.96	•	3.96 ·	, 3.81 "
il	.33	.08	:11	· ·	14	· · · · ·	.17	.07
ap	.03.	· •	-		•		<u> </u>	-
• •		.	՝ ሞ ነ	aco olemo	ent (P.P.1	,	•	
Cr	1598	2269 ·	1967	2321	≈2079	3886	1836	2229
Ba	- 54		20			÷ 90		
Ni	•	1666	1592 ^{°°°}	1649			130 1098	- 30 1520
ND .	, <u>, ,</u> ,	<u> </u>	, A *	. 11	- ¹ . 21	_2466	T030	1529 [°]
Zr	· •		- 1	, ττ . ττ	~ 41	2	5 · · · ·	, - ,
21 . У	י ג	• • - •	 . 1	. 3, 		· =	-	• **
	. 362	263	י⊥אב, " האפור^ רסוג	533	288	-2 38 ·	- · · · · · · · · · · · · · · · · · · ·	263
Sr		20.5	4 1 1	5.55.	2248 4	492		767

1.52

۱ (

153

Appendix 5 -Contin.

١

<u> </u>						
	Alter	_	an Carbona	tes	<u>Magnesite</u>	Barite
	<u>110B</u>	<u>113A</u>	222	<u>272A</u>	322	114
5i0 ₂ '	53.42	65.78	47.65	-33.68	3.44	.81
rio ₂	1.89	.38	.07	.08	.06	-41
A1203	15.44	11,03	.59 🛸	.81	.06	. 4.78
Fe ₂ 0 ₃	2.30	2.07	1.58	2.42	1.67	.04
FeO	7.20	5.06	.75	8.19	1,52	•.11
vin0	• .12	:25	o7 و	. 1.8	,04	.11
Mg0	j 1.98	.28	~ 11.02	7.64	22.78 ·	.76
CaO`,	5.61	4.79	16.49 🛋	23.21	30.77	.90
٥ _و a	4.52	4.10	· 	-	-	· - `
к,0	. 30,	.06	.14	.09	.12	.07
P205	. 85	.12	· _ ·	, - '	.02	• .89
	6.14	- 6.12	21.92	24.21	39.85	
Fotal		100.02	100.29	100.50		* 8.88
Fe0 [†] 1g0	4.68	23.73	· ,20)	1.36	.13	.19
		•,	Norms (C	IPW)		
Q	10.51	. 32.40	16.24	· - · _		
Or 🥍	1.89	.38	1.06	· · · · · · · · · · · · · · · · · · ·		•
abʻ	40.82	36.91		-		
an	22.37	12.25	1.53	2.89	•	
aì .	1.24	10.79	75.75	65.89		•
hy 🥂	13.63	3.00	- *	-	· · ·	
ol ~		· · _ ·	- .	25.16	. ^	
mt ·	3.56	3.19	2.92	5.22		
il	3.83	.77	.17	.23	·	,
ap	2.15	. 130	<u> </u>	· •		· · ·
			ce element	s (P.P.M	. À	
~~	_ `}	11a 15	438 438	821 - 821		_
Cr	1.00	•	•		• •	- (51.8%)
Ba, '	180	- 5166	`21 .	243. 381 -	31 151	(21.92)
Ni	102.	113 .	377	-	. 151	
NĐ -	32	12	1-3	· 6	9	8.
Zr -	.259	63	16	5	· ~ · ·	69
Y a	17	14	ن ::م		68	-
Sr	364	2 35:	2165	706	892	2703
Rb	7	• 2	8	. 5.	3 .	13

FeO' = total iron (Fe₂O₃ x 0.8998 + FeO)

Appendix 6 - Total rock analyses and normative values of the ultramafic rocks.

Ē

A. 1983

•					+	·	· · ·	- ,
<u>·</u>		<u>.</u>	· \					·
·		-fire		Ultram				<u></u>
	190	195	- <u>260</u>	280B	287	22'4A	- <u>224B</u>	<u>224C</u>
SiO ₂	41.22	41.69	41.35	<u> </u>	29.53	15. 18	20.12	41.48
TiO ₂	.07	.06	.15	:09	.05	.21	.15	15
Al203	1.33.	1.05	-5.89	1.00	.60	. 2.42	4.78	.10.81-
Fe203		2.24	2.45	2.76	1.95	2.75	2.05	2. 52
//.Fe0	6.06	6.66	* 8.09	∿ 11.29	4.101	11.18	• 4.91	9.16
MnO	.13	.14	.17	· .22	.17 .	.08	.11	.18
MgO	38.73	39.22	29.52	. 37.13	33.73	5.49	8.70	18.62
CaO	.13	.02	6.12	1.38 :	1.29	35.57	33.01	9.94
Na ₂ O	.05	-	.18 👾	· · · -		• •] -	-
κ ₂ ο	.04	.01	.n	.03	.06	-	05	54
P ₂ 0 ₅	.50	<u> </u>		.01	-	· - /	_ `	-
L.O.I		10.71	6.37	8.83	29.30	27.56	27.08	7.41
Total		· 101.80	99.33	100.68	100.70	100.38	100.38	100.09
						•		
Fe0	.20	. 22	35	·** . <u>3</u> 7	.17	2.49	•.78	61
MgO			•		-	-		• *
•	,	• • • • •	and a	Norms (CI				
Or .	· . ·	.06	e3??	ِ ، 1 9	.50			-
ab	· .		1.62		-			-
an		.11	15.89	2.87	2.05			31.82
cor		. 1.10	/ - •	·		•		Ξ. ·
di \		- ^ ;	13.00	3.62		•	•	17.13
hy	, -··	37.50	12.89	12.92	2.72			19.66
ol	• • •	57.54	51.84	• 75.83	85.22			27.14
. mt		3.57	3.78	4.36	3.96		.*• <i>.</i>	3.94
iľ	· · ·	.13	.30	.19	.13			31
ap	•	` -	_ ·	.03		•		
	• •	, ¹ .	_	~.	· · · · · ·	•		
				e elements				•
Cr	2603		2007	2827	2482	714.	409	887
Ba	296	10	13	. 14	26	210	100	10
Ňi .	2729	2537	⁹⁷¹	. 977	1950	31,7	205	35,9
Nb	<u>s</u> 2	14	. –	. 9	22	1	• -	- ,
Zr 🖌	<u> </u>	2	3 .	•) 2 .	73	, 7	-
		73	6	2	3	4	·	2
¥ .	-							- <u>-</u>
	10 ·	3 🦛	54	· 24	3 9	114	361	404 💉

				~	. ·		•
<u> </u>		Gneissi	.c Granodic	orite (Base	ment)	· · · · · · · · · · · · · · · · · · ·	······································
	· 98	147	154	159 -	204	225	325
sid,	71.37	70.82	71.91	71.02	71.90.	• 73.32	70.47
TiO ₂	0.32	0.31	~ 0.27	0.31	0.32	0.14	0.25
A-1203	14.03	13.29	14.45	14.89	14:78	14.58	16.85
Fe_2O_3 ·	1.57	1.67	1.53	1.59	ʻ 1. 66 .	0.20	` 1.5 6
Z J FeO	0.59	1.50	0.30	0.85	1.45	0.57	0.\56
MnO	0.05	0.05	0.05	, 0.05	0.07	0.06	0.04
MgO	0.69 🌋	0.91	0.61	1.10	0.83	0.16	0.63
CaO	2.02	3.48	1.94	2.76	3.02	1:82	3.35
Na ₂ O	4.43	4.55	4.63	4.26	4.58	5.34	5.51
к ₂ о	3.34	0.87	3.26	2.82-	, 1.50	2.38	1.44
P205		50. 06	0.07	0.10	0.09	0.04	🧳 0.09
Toíal	98.49	97.57	99.02	99.75	100.20	98.61	100.75
*K ₂ O	.43	.16	.41	.40	.25	. 31	< #21
K20+Na	20	•	Normș	(CIPW)	· ,	* C	¢
Q,	28.32	33.55	27.99	26.37	31.70	28.97	24.85
or	20.04	5.27	19.46	16.65	8.77	14.24	· 8.45
àb	38.06	39.48	39.48	39.05	· 38.61	45.74	46.27
an	8.66	·13.61	9.15	- 11.55	, 14.35	8.88	15.92
cor	-	- •	· _	. –	0.42	0.01	0.35
di	0.77	. 2 [.] .98	0.09	1.15	 .	-	-
hy "	1.39	1.87	1.49	2.20	2.95	1.51	1:56
mt	1.15	2.48	0.35	2.00	ر 2. 38 .	0.29	1.20
il °	0.62	0.60	0.52	0.59	0.60	0.27	0.47
ap.	0.19	0.15	0.17	*** 0.24	0.24	0.10	0.21
.he	0.80	. - ′.	1.30	. 0.21	7-1	<u>_</u>	0.72
		. Т	race eleme	, nts (P.P.M.	SA		
·Cr	. 3`.	~ 6 •	-	. 16	5	1	3
: Ba ,	985	· 254 /	927	1408	585	· 858-	· 541.
Ni	' 17	· [·] 17	. 14	15	/ 14	13	12
Nb	. 8 🔔	, Ż	13	* 7	9.	. 8	· 8·
Zr	167	114 👦	104	107	87	60	98
Y	12	31	10	3	15	13	** 🐨
Sr	438.	· 320	605	811	435	419	668
Rb '	73	· 14·	74	58	-34	25	. 28

Appendix 7 - Total rock analyses and normative values of the gneissic granodiorites. 55

ja vie

い、「「「「「「「」」」

1 Anton ...

Appendix 8 - Total rock analyses and normative values of the gabbros and diorites.

•					Gabb	ro		<u>ر</u> کې د		· ~
	23	· <u>26</u>	40	44	45	64	94A	<u>97</u>	184	289B
i0 ₂	50.8Q	48.93	47.48	49.12	48.23	45.04	46.62	48.00	52.9,5	49.49
iō ₂	1.16	0.86	0.29	0 [\] .65	0.74	0.52.	0.29	0.17	0.73	0.67
1,0,	17.95	17.97	19.64	16.88	15.66	15.09	21.84	25.64	19.75	16.33.
3,0,3,	.2.54	2.80	2.03	2.39	2.88	2.90	1.88	1.69	2.15	2.44
e0 -	9.29	10.01	4.74	9.06	10.96	.11.30	3,42	·1.63	5.79	9.95
nO	0.15	0.16	0.16	0.22	0.26	0.23	0.08	0.07	0.13	0.23
gO	4.32	4.11.	7.97	£)07	7.02	10.80	5.39	4.90	4.36	7.16
aO	10.30	11.19	13.86	11.35	11.15	12.23	14.50	16.15	8.84	10.78
a ₂ 0	2.75	2.85	1.23	,2.51	· 2.38	1.12	1.66	1.57	. 4.33	2.15,
20	0.56	0.47	0.38	0.14	0.08	0.12	0.26	0.17	0.31	0.21
2 ⁰ 5	0.17	0.65	0.04	0.49	0.63	0.60	0.03	0.01	0.29	0.47
<u>.o.</u> j.	·	~	2.11	-	<u> </u>	<u>\</u> -	0.99	-	0.40	
otal	99.99	100.00	99.93	99.88	99.99	99.95	99.96	109.00	99.63	99.88
<u>e0</u> [†]	2,68	3.05	.82	1.59	1.93	1.29	:95	.64	1.77	1.70
j0 ·	.17	.14	.24	.05	.03.		.14	•.10	07	.19
×20		-			•		•	••		
0+Na20		• •			Norms (CIPW) 🔪		ı		
	1.80	-		-	`-	-	-	· -	0.17	_، 0.28
r	3.31	2.80	2.30	0.569	0.45	0.71		1.00	1.84	1.27
b	23,26	24.09	10 ₇ 64	21.00	20, 15	9.47	14.19	ļ3.28	36.76	18.16
n	34.99	34.80	47.98.		31.79	35.78	60.17	62.41	33.65	34.27
j.	12.52	13.83	69.ל°1	14.68	16.05	, 17.18	9.87	13.92	6.95	12.65
У	17.84	14.40	14.95	18.71	18.72	13.56	4.58	5.35	15.41	27.18
1	-	2.85	2.77	4.16	5.75	16.68	6.25	1.24	• . •	. -
t.	3.68	4.06	3.01	3.46	4.18	4.20	· 2.75 ·	. 2.45	3.13	<i>3.54</i>
.1	2.20	3.15	0.56	1.24	1.40	0.99	0.56	• 0.32	1.39	-1.24
P	040	1.59	0.10	1.48	1.50	1.42	0.07	0.02	0.69	1.41
• 、		•			· ·	· · . ::	54 A		-	
۰.	مبر شــــــــــــــــــــــــــــــــــــ	• • •			• •	ts (P.P				
r.	J 25	160	154	. 164 .		164	80	267	315	104
a .	142	4 36	• 76	88	. 79	. 6,8	, 119	. 146	392	131
i··	· · 16	27	63	8	, -	-	47	74	114	31
b -	- ,	_	- '	5	5	5	-	1	8	6
r. '	33	47	10	- 1	S	. 2	12	-	21-	3
•	. 17	17	,	8		3	1	. 2	· 10	, 5
r	, 297	550	370	253	198	163	946	1026	981	325
b	14	14	` 3	2	. 4	. 4	11	3	5	5

156

۰۰۱

Appendix 8	3 – C	ontin.
------------	-------	--------

				•	•		<u>د م</u>	ÿ		
	······································			`	Dior	ite				بدر
	20	24	25	<u>33</u> ′	88	· 149 ·	150	<u>186</u>	<u>301</u> `	306
io ₂	51.18	55.24	64.48	54.58	64.52	60.99	60.97	59.68	57.68	62.71
rio ₂	0.95	1.00	0.69	0.83	0.63	0.51	0 29	0.73	0	0.52
A1203	17.73	15.72	14.90	18.02	15.93	15.62	`l5.57́	17.65	17.34	17,07
EejŐ	2.34	2.22	2.01	2.17	1.85	2.15	2.06	1.90	2.23	1.87
FeÖ	9.30	8.71	4.107	5.84	3.14	5.65	6.32	4.70	6.54	3.30
MnO ° + `	0.16	0.17	0.09	0.14	0.08	0.14	0.15	0.12	0 [′] .15	0.10
NgO °.	4.43	4.45	2.44	.5.01	2.77.	3.40	2.61	3.14	2.69	2.56
CaO	10.16	8.29	4.85	3.69	4.85	6.94	r 6.17	5.73	9.06	5,76 -
Na ₂ O	/ 2.98	3.19	3,53	3°. 84	4.18	3.16	3.47	4.43	2.30	3:89
к ₂ о	0.54	0.94	2.14	0.69	1.77	0.77	0.78	1.70	0.33	1.41
P205	0.70	· 0.74.	• 0.68	0.15	0.17	0,11	0.76	. 0.75	[.] 0.20	0.15
Total	100,49	100.67	99.91	۰99.96	99.89	99.44	99.65	100.53	99.45	99.34
FeO ⁺	2,57	2.41	2.42	1456	1.73.	2.23	3.13	2.04	3.18	1.95
igO 🔎	.15	.23	.38	.'ÌS	: 30	.20	. 18	.28	.1,3	.27
K ₂ O	, , ,	. • •	;						-	
2 ^{0+Na} 2		·.	•		Norms (. •	•	•		Υ. Υ
Q	1.97	7.35	21.72	2.75		17.99		9.77	17. 86	
or	3.14	5.46	12,53	4.12	10.47	4.62	4.62	9.99	1.96	3.47
ab	24.83	26.53	29.59	32_82	35.40	27.16	29.45	37.27	19.56	33,47
an 🕔	,3 3 .43	25.89	18.86	. 29.65	19.50	26.02	24.68	23.12	36.20	24.82
di	10.28	8.52	·0.79	10.22	2.83	`6.48	. 0.92	0.31	6.43	2.32
hy	19.57	19.48	10.72	15.33		13.35	14.97	13.67	12.48	9.04
mt	3.38	3.18	2.90	3.153			3.00	2.74	3.25	2.74 •
il [']	1.78	1.87	1.30	1.59	1.20.	0.98	1.50	1.38	1.78	1.00
ap .	1.61	1.72	1.60	0.30	0.40	0.26	1.01	1.74	. 0. 48	0.36
<u> </u>	•		. :		alomon	ts (P.Í	х м)	•	-	
cr	3.7	42	26	160	62 é	23		` * 8	21	13
Ba	180	229	` - 464		419	. 243	1270	537	233	. 382
Ni	100	11.	9	۹30 27	419. 49	13	-1270	. 18	• 10	14
NP	. 17	, 1. 5	. 6	-	5	. 13	-, 6 ·	. 18	-	4
•	. 26	· · · · · · · · · · · · · · · · · · ·	140	47	185.	49	54	-	 58	· 106
Zr	26		23		•			131		
Y		18			25		•	15		15
Sr '''	\ 310	257	, 277	550 [,]	470	248	311	- 639	278	- 552
Rb Fe0 ⁺ ≂	total irc	23	71	1.4.	47	14	12	• 33	7	43

Fe0 = total iron (Fe₂O₃, x. 0.8998 + FeO). * K_2O and Na₂O recalculated at SiO₂ = 65 wt. 8.

2

Ņ

a ,

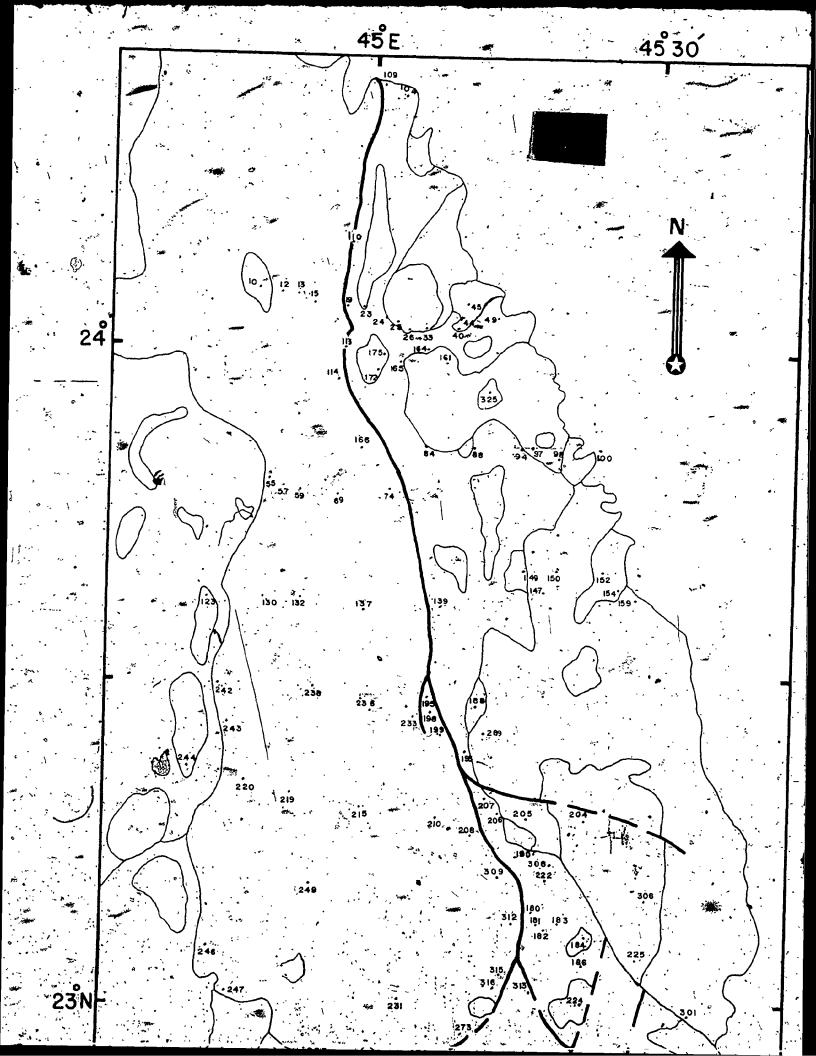
Appendix 9 Tötal rock analyses and normative values of the syntectonic grano-diorites And Khuff Pormation 1 Syntectonic granodiorites Sio 275 Sio 70.18 70.10 72.97. 73.65 71.16 Sio 70.18 70.10 72.97. 73.65 71.16 Sio 70.18 70.10 72.97. 73.65 71.16 Sio 0.31 0.24 0.27. 0.49 Algo .15.07 15.62 14.06 13.70 12.66 Peo 0.68 0.24 0.07 0.09 0.05 0.07 Mgô 0.55 0.68 0.18 0.650 1.69 2.40 Cao 2.24 2.10 3.46 1.98 2.91 Na2O 4.70 5.64 3.38 4.21 3.24 K2O5 0.11 0.09 960 1.92 1.21 Total .99.98 .9.95 9.9.97 .99.96 1.21 Total .99.98 .9.9.96 .9.75 .99.96 .7.75	•	**	٠.	· · · ·		• • •	
diorité, post-tectonic granités, and Khuff Pormation 1. Syntectonic grandiorites 152 461 178 175 275 Sio_ 70.18 70.10 72.97. 73.46 71.16 Tio_ 0.31 0.31 0.24 0.27 0.49 Al_00 15.67 15.67 15.62 1.62 1.66 Peo 0.66 1.24 0.44 1.11 2.40 MnO 0.08 - 0.03 0.05 0.07 MgO 0.55 0.84 0.15 0.656 1.69 Cao 2.24 2.10 3.46 1.98 2.91 Na20 4.70 5.64 3.38 4.21 3.24 K20 3.33 2.06 1.51 1.99 1.82 F20 0.61 1.0.09 0.60 0.03 0.63 J.0.I 0.09 0.60 0.03 0.63 J.0.I 0.09 0.60 0.03 0.63 J.0.I 0.09 0.60 0.03 0.63 J.0.I 0.09 0.60 0.03 0.63 J.0.I 0.99 0.98 99.96 99.97 99.96 Total 99.98 99.98 99.96 99.97 99.96 X20 41 5.27 31 32 .36 K20 Ma20 41 5.27 31 32 .36 Morms (CIFW) 0 25.13 23.72 41.03 36.41 437.74 97. 19.92 12.21 8.50 11.87 10.89 ab 40.25 47.86 29.90 35.96 27.75 an 10.31 9.6 8.68 0.72 10.49 di 0.17 148 9.03 0.45 0.52 0.94 an 19.41 2.38 0.36 2.37 2.47 an 10.31 7.166 5.2 0.52 0.94 ab 0.26 0.59 0.45 0.52 0.94 Ma20 0.59 0.45 0.52 0.94 Ma20 0.59 0.45 0.52 0.94 Ma2 0.26 0.21 1.25 0.07 1.51 Trace elements (P.P.M.) C. 510 10 83 2 51 Ba. 1066 655 86 386 8164 Ni 194 18 79 1156 1157 No 14 11 14 11 14 11 27 28 8 109 7135 1156 1157 No 14 11 14 11 14 11 27 28 8 34 44 323 S6 70 54 36 1156 1156 1156 1156 Ni 194 18 79 1135 1156 1157 No 14 114 11 14 11 14 11 27 23 8 109 1135 1156 1156 Ni 194 18 79 1135 1156 1156 Ni 194 194 196 115 1156 1156 Ni 196 115 1156 1156 1156 1156 1156 1156 1	Appèno		Tótal ro	ck analys	es and no	rmative'	, ,
and Khuff Formation : Syntection : Synt							• •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	diorite,	post-tect	tonic gra	niteš,	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·		Synte	cionic grano	diorites		.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<u>161</u>	172	175	· <u>275</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.18	70.10	.72.97.	73. 4 6	71.16	٠
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO2	0,31,	0.31	0.24	.0.27,	0.49	
FeO 0.68 1.24 20.44 1.11 2.40 MpO 0.55 0.08 0.03 0.05 0.07^{-1} MgO 0.55 0.84 0.16 0.656 1.69^{-1} CaO 2.24 2.10 3.46 1.98 2.91 Na_2O 4.70 5.64 3.38 4.21 3.24 K_2O 3.33 2.06 1.51 1.99 1.82^{-1} P_O5 0.11 0.09 0.60 $=0.03$ 0.63^{-1} P_O5 0.11 0.09 0.60^{-1} $=0.03^{-1}$ 1.21^{-1} Total -99.98 99.98 99.96^{-1} 99.97^{-1} 99.96^{-1} $tK_2O^{+Na}_{2O}$ 41^{-1} $.27^{-1}$ 31^{-1} 32^{-1} $K_{O}^{+Na}_{2O}$ 12.21^{-1} 8.50^{-1} 11.67^{-1} 10.89^{-1} ab $40.25^{-1.3}$ 23.72^{-1} 41.03^{-3} 36.41^{-1} 93.77^{-4} $ort.19.92^{-1}12.21^{-1}8.50^{-1}11.67^{-1}10.89^{-1}ab40.25^{-1.3}47.86^{-2}29.90^{-3}35.96^{-2}27.75^{-3}an10.31^{-1}9.86^{-2}29.90^{-3}35.96^{-2}27.75^{-3}ab40.25^{-1.3}47.86^{-2}29.90^{-3}35.96^{-2}27.75^{-3}ab40.25^{-1.3}21.66^{-2}2.37^{-2}24.7^{-2}ab0.51^{-1}11.48^{-2}0.52^{-2}0.94^{-2}ab0.26^{-$	A1203 ·	.15.07	15،62	14.06	13.70	12.6¢	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe203	1.58	1.64	0.28	• 1.62	1.68	•
Mg0 10.55 0.84 0.16 0.656 1.69° CaO 2.24 2.10 3.46 1.98 2.91 Na_2O 4.70 5.64 3.39 4.21 3.24 K_2O 3.33 2.06 1.59 1.99 1.82 k_2O 0.11 0.09 0.60 1.99 1.82 k_2O 0.11 0.09 0.60 1.99 1.82 k_2O 0.11 0.09 0.60 1.21 Total 99.98 99.96 99.97 99.96 tK_{2O} 41 2.7 31 32 tK_{2O} 41 2.7 31 0.89 $ar10.3123.7241.0336.41tK_{2O}1.211.651.68cor0.51-14.101.87ar10.312.862.281.98ar1.660.590.450.520.94ar1.6665586386<$	FeO	83.0	. 1.24	. <0.44	• 1.11	2.40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A and	• 0.08	···· - `0.03	.0.05 -	0.07	•• ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgÓ	0.55	0.84	'0.16	· 0.65 c ·*	· 1.69° 🕶	'-
k_2O 3.33 2.06 1.5 1.99 1.82 k_2O_5 0.11 0.09 0.60 50.03 0.63 $L.O.I.$ 1.19 0.24 2.81 0.90 1.21 Total .99.98 .99.96 .99.97 .99.96 K_2O .41 .27 .31 .32 .36 $K_2O^+Na_2O^-$.25.1.3 .23.72 .41.03 .36.41 .97.74 $Or .19.92 .12.21 .85.0 .11.87 .10.89 .ab .40.25 .47.86 .29.90 .35.96 .27.75 .an .0.51 .di 0.17 $	CaO	2.24	2.10	3.46	1.98	2,.91	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na20	4.70	\$.64	3.38	4.21	3.24	
L.O.I.1.190.242.810.90-1.21Total.99.9899.9699.9699.9759.96 K_{2} O.41.27.31.32.36 K_{2} O.13.23.72.41.03.36.41.47.74 Q .25.13.12.21.8.50.11.87.10.89 ab .40.25.47.86.29.90.35.96.27.75 an .10.31.9.86.8.68.72.10.49Cor.0.51.7.148.10.158di0.17.148.23.236.237.247 mt 1.44.2.38.0.36.2.37.2.47 mt .144.2.38.0.36.2.37.2.47 mt .144.2.5.0.07.1.51 Ma .2.6.2.7.2.6.2.37.2.47 mt .2.6.2.7.2.6.2.37.2.47 mt .2.6.2.7.2.6.2.37.2.6 </td <td>• K20 .</td> <td>.3.33</td> <td>2.06</td> <td>1.5</td> <td>1.99</td> <td>· 1.82</td> <td>•••</td>	• K20 .	. 3.33	2.06	1.5	1.99	· 1.82	•••
L.O.I.1.190.242.810.90-1.21Total.99.9899.9699.9699.9759.96 K_{2} O.41.27.31.32.36 K_{2} O.13.23.72.41.03.36.41.47.74 Q .25.13.12.21.8.50.11.87.10.89 ab .40.25.47.86.29.90.35.96.27.75 an .10.31.9.86.8.68.72.10.49Cor.0.51.7.148.10.158di0.17.148.23.236.237.247 mt 1.44.2.38.0.36.2.37.2.47 mt .144.2.38.0.36.2.37.2.47 mt .144.2.5.0.07.1.51 Ma .2.6.2.7.2.6.2.37.2.47 mt .2.6.2.7.2.6.2.37.2.47 mt .2.6.2.7.2.6.2.37.2.6 </td <td>P.05</td> <td>0.11</td> <td>· ´0.09</td> <td>0.60</td> <td>5:0.03</td> <td>0.63</td> <td>,</td>	P.05	0.11	· ´0.09	0.60	5:0.03	0.63	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.19	0.24	• •		· · ~	· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total	-99.98	39.95		99.97		•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. *K , OV	41	• • • . 27 • •	.31 -	. 32	.36	· ,•
Norms(C1FW)2 0 25.13 23.72 41.03 36.41 37.74 $0r$ 19.92 12.21 8.50 11.87 10.89 ab 40.25 47.86 29.90 35.96 27.75 an 10.31 9.86 8.68 9.72 10.49 Cor 0.51 $ 1.48$ 9.86 9.72 10.49 di 0.17 $ 1.48$ 9.86 6.63 mt 1.44 2.38 0.36 2.37 2.47^{*} $i1-4$ 0.50 0.59 0.45 0.52 0.94 aF 0.26 0.21^{*} 1.25 0.07 1.51 Trace elements (P.P.M.)Cr 510 10 8.34 2 51 Nb 14 11 14 11 10 238 109^{*} 135 -156 115 Y 238 109^{*} 135 156 196 388 34 44 23	K20+Na20			Δ.			· · ·
ab 40.25 47.86 29.90 35.96 27.75 an 10.31 9.86 8.68 9.72 10.49 Cor 0.51 $ 1.10$ 1.58 di 0.17 1.48 $ 1.98$ 6.63 mt 1.44 2.38 0.36 2.37 2.47° iI 0.60 0.59 0.45 0.52 0.94 aP 0.26 0.21 1.25 0.07 1.51 Trace elements (P.P.M.)Cr 510 10 834 2 51 Ba 1066 655 86 386 8167 Nb 14 11 14 11 10 Zr 238 109 135 156 144 Sr 709 543 56 196 388				· · ·		and the second se	*
ab 40.25 47.86 29.90 35.96 27.75 an 10.31 9.86 8.68 9.72 10.49 Cor 0.51 $ 1.10$ 1.58 di 0.17 1.48 $ 1.98$ 6.63 mt 1.44 2.38 0.36 2.37 2.47° iI 0.60 0.59 0.45 0.52 0.94 aP 0.26 0.21 1.25 0.07 1.51 Trace elements (P.P.M.)Cr 510 10 834 2 51 Ba 1066 655 86 386 8167 Nb 14 11 14 11 10 Zr 238 109 135 156 144 Sr 709 543 56 196 388			23.72		35.41	7937.74	· 7
an10.319.368.689.7210.49Cor0.511.481.101.58di0.171.484hy1.312.662.281.98o:500.590.450.520.94aP0.260.211.250.071.51Trace elements (P.P.M.)Cr.510108342aP0.266.55863868167Ni194189711Nb1411141110Zz238109135-156155Y298344423Sr70954356196388				e ^{8.50}	11.87	10.89	
Cor 0.51 1.48 4.10 1.58 di 0.17 1.48 4.10 1.58 hy 1.31 2.66 2.28 1.98 6.63 mt 1.44 2.38 0.36 2.37 2.47 ii 0.60 0.59 0.45 0.52 0.94 ap 0.26 0.21 1.25 0.07 1.51 Trace elements (P.P.M.)Cr 510 10 8.4 2 51 Ba 1066 655 86 386 8167 Ni 194 18 9 7 11 Nb 14 11 14 11 10 Zr 238 109 135 156 1.56 Y 29 8 34 44 23 Sr 709 543 56 196 388	ab	•			35.96	27.75	•
di 0.17 1.48 4 hy 1.31 2.66 2.28 1.98 6.63 mt 1.44 2.38 0.36 2.37 2.47 ile 0.60 0.59 0.45 0.52 0.94 aP 0.26 0.21 1.25 0.07 1.51 Trace elements (P.P.M.)Cr. 510 10 8.4 2 51 Ba 10.66 655 86 386 8167 Ni 194 18 9 77 11 Nb 14 11 14 11 10 $2r$ 238 109° 135 -156 155 Y 29 8 34 44 23 Sr 709 543 56 196 388	N	. 10.31 "	ັງ. 86	8.68		10:49	سو ر
hy1312.662.281.986.63mt1.442.380.362.372.47i10.600.590.450.520.94aP0.260.211.250.071.51Trace elements (P.P.M.)Cr. 51010Ba106665586194189711Nb1411141110Zr. 238109135156155Y298344423Sr70954356196388	· Còr	· ·	0.51.	* (- , > *	10	ূল্য হৈ ৪	Ø.
mt 1.44 2.38 0.36 2.37 2.47 $i I = 0.60$ 0.59 0.45 0.52 0.94 $a P$ 0.26 0.21 1.25 0.07 1.51 Trace elements (P.P.M.)Cr. 510 10 8.4 2 51 Ba 10.66 655 86 386 8167 Ni 194 18 9 77 11 Nb 14 11 14 11 10 $2r$ 238 109 135 -156 155 $3 4$ 44 23 34 44 23 Sr 709 543 56 196 388	di	0.17			8 8		
$11 + 20^{\circ}$ 0.50° 0.59° 0.45° 0.52° 0.94° ap 0.26° 0.21° 1.25° 0.07° 1.51° Trace elements (P.P.M.)Cr 510° 10° 836° 2° Ba 1066° 655° 86° 386° 816° Ni 194° 18° 9° 11° 11° Nb 14° 11° 14° 135° 156° 155° 29° 8° 34° 44° 23° Sr 709° 543° 56° 196° 388°	hy 5. 9	1.31	2:66		^P 1.98	6-63	
ap0.260.211.250.071.51Trace elements (P.P.M.)Cr.510Ba10.66.65586.863868164Ni194.18.9.72.11.14.11.14.135.156.156.157.156<		1.44	2,38	0.36 E	2.37	2.47	<u> </u>
Trace elements $\{P, P, M,\}$ Cr. 510 10 832 2 51 Ba10.66.655.86.386 8167 Ni194.18.9.7'.11Nb14.11.14.11.10Zr.238.109.135.156.155Y.29.8.34.44.23Sr.709.543.56.196.388		0:60	0.59	0.45	0.52	•• 0.94	»
Cr. 510 1082 51 Ba10.66.655.86.386.8167Ni194.18.9.77.11Nb14.11.14.11.10Zr238.109.135.156.155X.29.8.34.44.23Sr.709.543.56.196.388	ap .	0.26	0.21°	1.25	0.07	s, 1.51	· J.
Cr. 510 1082 51 Ba10.66.655.86.386.8167Ni194.18.9.77.11Nb14.11.14.11.10Zr238.109.135.156.155X.29.8.34.44.23Sr.709.543.56.196.388		-			7	•	. /
Ba 10.66 .655 .86 .386 .8164 Ni 194 .18 .9 .77 .11 Nb 14 .11 .14 .11 .10 Zr 238 109 .135 .156 .155 Y 29 .8 .34 .44 .23 Sr .709 .543 .56 .196 .388		N		elements (P	•.P.M.)		
Ni 194 18 9 7 11 Nb 14 11 14 11 10 Zr 238 109 135 156 155 Y 29 8 34 44 23 Sr 709 543 56 196 388		· jocc ·		8.	2		· • ·
ND 14 11 14 11 10 2r 238 109 135 156 155 Y 29 8 34 44 23 Sr 709 543 56 196 388	ba.	* 1066	- 655 .	86	. 386		•
21 238 109 135 156 157 Y 29 8 34 44 23 Sr 709 543 56 196 388	NL .	174	Τ8.	S	• 7*	-	• ••• •*
X 29 8 34 44 23 Sr 709 543 56 196 388				I4.		19	
Sr 709 543 56 196 388	-21		109 [,]		156	15	
	.Y.		. 8		44.	-23	
KD 59 55 56 58 47 9			`543 · ``			388.00	• *
	KD	59	55	56	<u> </u>	47	

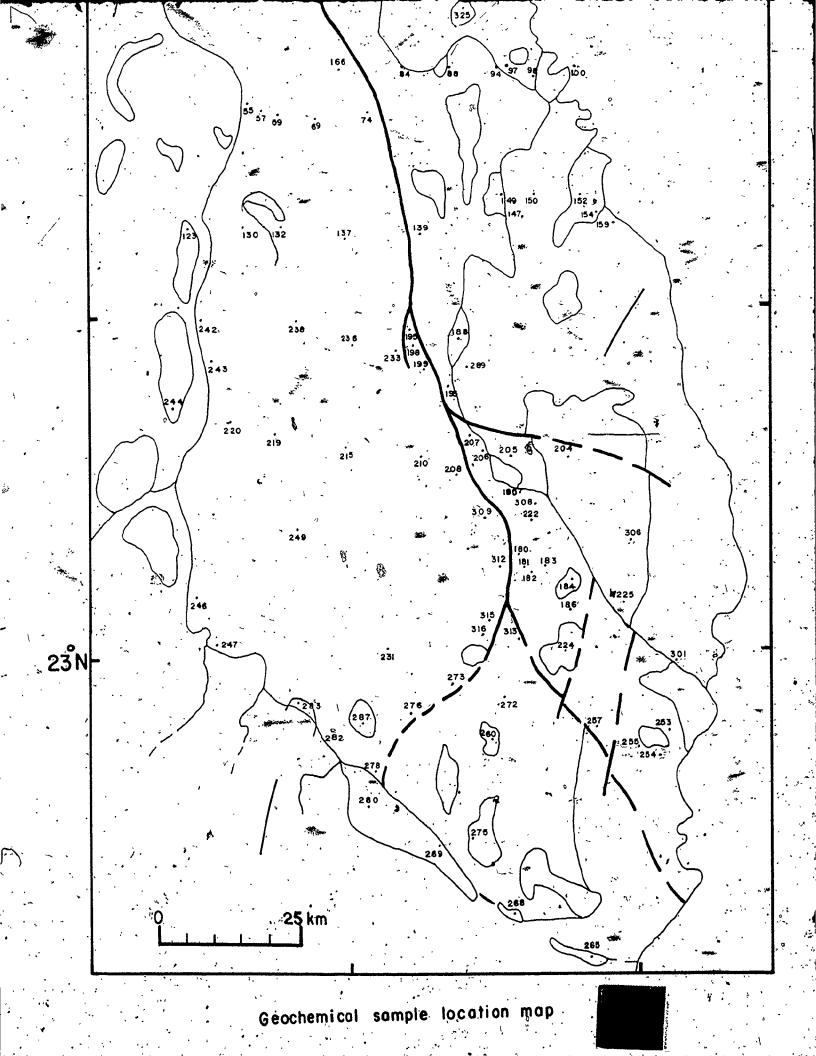
 $*K_2O$ and Na20 recalculated at SiO₂ = 65 wt. 8.

· Appendix 9	- Contin	1	
•	,		

· · · · · ·	*		-	•	• •	
	Post-tecton	nic granite		; ~.	Khuff	
10 .	<u>55</u> ⁶ <u>1</u>	23 .188	. 244 .	4	· 100D	
sio ₂ .72.46		.03° 77.75	74.05 -		2.23	
TiO ₂ 0.15		12 ~ 0:13	0.07		0.09	
^{A1} 2 ^O 3 13.69		1.24 - 11.97-	13.70	* . ★ -	0:97 x	÷.
Fe ₂ 03 1.56		1:55 0.50	0.53	م ر -	0,21	
	,	.82 0.76	0.21		0.31	
•		.03 0.03	0.02	····	⊅ *0.1,7	
MgO 4 0.45		01 0.06	` – ^{«``}		-16.27	•
CaO 1.46		.84 0.54	0.77.		38.67	-,
Na 20 3. 92.	1 1	.81 5.05	3.74		-	5
K ₂ 0 3.60		:28 3:02	5.40	`\$; `\$	0.18	Ľ,
P ₂ O ₅ 0.07		.04 0.0Ē	0.04		•, •	
Total - 97.93	98.49 100.	.77 _ 100.68	99.13	<u> </u>	59.10	

*'*59


	20	48	. 54	- 58°°°	<i>*</i> /: <u>37</u>	.,59	
-	K ₂ OtNa	20. ~ ^	و المدين أعملتهم ال			• • •	•
•				Norms	(CIPW)"	<i>.</i> .	• :
× 1	, Q.	32.95	21.12	31.40	35.67	29.91	-•
., ~	or	21.72	26.04	30.96.	17.87	, 32 <u>,</u> 19	.* #
÷	ab.			.,31.99	42.78	31.92	u 201
•••	'an: 📜	•		3.41	1.08	3:59	
۰ , ۱	, çõr	0,87				0.740	÷
	di 📜	`_ 	6.18	.42	1:06	<u> </u>	~ I
٢.	S hy	1.14	7.19	0.70	0.47	0.98	
۱ ۰	, mt. 🔔 -	1.47	2.91	0.79 -	- 0.73 .	.	
24.1		A					с. Т а


11 0.25 0.13 ap 0.17 0.58 0.90 0.14 0.14 0.10

			🕐 Drac	e elemen	ts (P.P.M	•)**
(Cr		670	بمسترجع والمسترين	Ĩ.	an - mar star	613
.Ba	and an	460	505	83.	788	··104
Ni		266	.11		**16*	
			9		and the second s	204

1. 472 'Zr 208 129 355 108 62 S egay 3 88 86 188 145 21 21 217. 126. 183 21 39. 233*** Rb

*K20 and Na20 recalculated at SiO, = 65 wt *

REFERENCES

Abdulaziz, M. I., 1974: Geological, mineralogical, and geochemical studies on Jabal Idsas iron ore and its origin. Unpublished M.Sc. thesis, Center for Applied Geology, Jeddah, Saudi Arabia.

Aerocarto, 1964: Colour aerial photographs of ancient mining sites at Idsas, Fawara, and Selib. Saudi Arabia Directorate General of Mineral Resources Open-file Mining-site low-altitude aerial photographs, Scale 1:12,500.

of Leeds.

Akaad, M. K and Noweir, A. M., 1972: Some aspects of the serpentinites and their associated derivatives along Qift-Quseir road. Annals of the Geological Servey of Egypt, Cairo, vol. 11. pp. 251-270.-Al Shanti, A.M.S., 1973: The geology and mineralization of the Ad Dawadimi district of Saudi Arabia. Unpub-lished Ph.D. thesis, the University of London, 323 pp.

----- and A.H.G. Mitchell, 1976: Late Precambrian subduction and collision in the Al Amar-Idsas region, Arabian Shield, Kingdom of Saudi Arabia. Tectonophysics 30; pp. 41-43. Bakor; A. R., 1973: Jabal Al Wask: a Precambrian basic and ultrabasic igneous complex in the northern Hijaz of Saudi Arabia. Unpublished Ph.D. thesis, University

Al Wask, northeast Saudi Arabia: an Eocambrian back arc ophiolite. Earth and Planetary Science Letters 30; pp. 1-9.

Bateman, P. C., L. D. Clarck, N. K. Huber, J. C. Moore and C. D. Rinehart, 1963: The Sierra Nevada Batholith. U.S.G.S. Prof. Paper 414

Bischoff, J. and F. Dickson, 1975: Seawater-basalt interaction at 200°C and 500 bars: implications for origin of seawater heavy metal deposits and regulation of seawater chemistry. Earth and Planetary

Science Letters, 25, pp. 385-397.

Bois, J. and M. Shanti, 1970: Mineral resources and geology of the As Sakhen quadrangle; Kingdom of Saudi Arabia. B.R.G.M. Unpublished Report 70JED6. pp. 45.

Bouladan, J., 1968: Current problems in mineral prospecting in zonés I, II, and III - Geologic and metallogenetic aspects, Saudi Arabia. B.R.G.M. Unpublished Report 41.

Bramkamp, R., R. Gierhart, G. Brown and R. Jackson, 1956: Geology of the southern Tuwayg quadrangle, Kingdom of Saudi Arabia. U.S.G.S. Misc. Geol. Inv. Map 1-

212A.

ern Tuwayg quadrangle, Kingdom of Saudi Arabia. U.S.G.S. Misc. Geol. Inv. Map I-207A.

162

Geologic map of the Wadi Ar Rimah quadrangle, Kingdom of Saudi Arabia, U.S.G.S. Misc. Geol. Inv. Map I-206A.

Brown, G. F., 1970: Eastern margin of the Red Sea and the coastal structures in Saudi Arabia. Phil. Trans. Roy. Soc. London. A. 267, pp. 75-87.

and R. G. Coleman, 1972: The tectonic framework of the Arabian Peninsula. 24th International Geol. Congress, Montreal, Sect. 3, Tectonics, pp. 300-305.

Bryan, W. B., G. D. Stice and A. Ewart, 1972: Geology, petrography, and geochemistry of the volcanic islands of Tonga. Journal of Geophysical Researce, vol. 77, no. 8, pp. 1566-1585.

Burke, K., J. F. Dewey and W.S.F. Kidd, 1977: World distribution of sutures - the sites of former oceans. Tectonophysics 40, pp. 69-99.

Byerly, G. R., W. G. Melson and P. R. Vogt, 1976: Rhyodacites, andesites, ferro-basalts, and ocean? tholeiites from the Galapagos spreading center. Earth

164

Coish, R. A., 1977: Ocean floor metamorphism in the Betts Cove ophiolite, Newfoundland. Contributions to Mineralogy and Petrology, vol. 60, pp. 255-270. Coleman, -R. G., R. J. Fleck, C. E. Hedge and E. D. Ghent,

1975: The volcanic rocks of southwest Saudi Arabia and the opening of the Red Sea, Kingdom of Saudi Arabia. U.S.G.S. Unpublished Report SA(IR)-194, 60 pp.

Delfour, J., 1966: The mineral resources and geology of the Hulayfah-Musaynaah region; Kingdom of Saudi Arabia. B.R.G.M. Report SG.JED.66A8, 143 pp. Directorate General of Mineral Resources; 1959: Geology, ancient mines, and mineral resources of the Duwadamy, Quay-Lyah, Haliban area, Saudi Arabia. Directorate General of Mineral Resources openfile Report.

7.3

a guide for investment and development, Saudi Arabia; Directorate General of Mineral-Resources Bull. 1, Eijkelboom, G., 1966: The mineral resources and geology of the Jabal Dhuhaylan-Jabal A Urd region; Kingdom of Saudi Arabia. B.R.G.M. Unpublished Report 66A12. , 1966: The mineral resources and geology of Jabal Damkh-Arwah region, Saudi Arabia. B.R.G.M. Unpublished Report 66 A13, 21 pp. , 1966: The mineral resources and geology

of the Al Amar-Ar Rayn region, Saudi Arabia. B.R.G.M. Unpublished Report 66 Al4, 17 pp.

, 1966: The mineral resources and geology
of the Idsas-Wadi Jifr region; Kingdom of Saudi
Arabia. B.R.G.M. Unpublished Report 66 Al5, pp. 38.
M. Gendi, B. Henry; X. Leca, M. Shanti,
P. Delange and J. Pflam, 1970: Geology and mineral
resources of the Al Amar-Ar Rayn quadrangle, Kingdom
of Saudi Arabia. Directorate General of Mineral
Resources Map MT-18.

Ewart, A. and W. B. Bryan, 1972: Petrography and geochemistry of the igneous rock from Eua, Tonga Islands. Geological Society of American Bulletin, v. 83, pp. 3281-3298.

Fleck, R. J., R. G. Coleman, H. R. Cornwall, W. R. Greenwood, D. G. Hadley, D. L. Schmidt, W. C. Prinz and J. C. Ratte, 1976: Geochronology of the Arabian Shield, Western Saudi Arabia: K-Ar results. Geological Society of America Bull., v. 87, pp. 9Frisch, W. and A. Al Shanti, 1977: Ophiolite belts and the collision of island arcs in the Arabian Shield. Tectonophysics 43, pp. 293-306.

Garson, M. S. and I. M, Shalaby, 1976: Precambrian-Lower

Paleozoic plate-tectonics and metalogenesis in the Red Sea region. Geological Association of Canada, Special Paper no. 14, pp. 573-596.

Gass, I. G. and I. L. Gibson, 1969: Structural evolution of the rift zones in the Middle East. Nature, London, 221, pp. 926-930.

Gass, I., 1977: The evolution of the Pan African crystalline basement in NE Africa and Arabia. Journal of Geological Society - London. Vol. 134; pp.

and A. O. Nasseef (In press): Arabian "Shield granite traverse, Saudi Arabia. Institute of Applied Geology, Bull. Contribution no...; pp. Gill, J. B., 1976: Composition and age of Lau basin and ridge volcanic, rocks: Implifcations for evolution of an interarc basin and remnant arc. Geological

Society of American Bulletin, v. 87, pp. 1384-1395. Greenwood, W. R. and G. F. Brown, 1973: Petrology and chemical analysis of selected plutonic rocks from the Arabian Shield, Kingdom of Saudi Arabia. Directorate General of Mineral Resources Bull, 9, Arabian, Project Report 196, 22 pp.

Hart, R. A., 1973: A model for the chemical exchange in the basalt-seawater system of oceanic layer 2. Canadian journal of Earth Science 10, pp. 799-815.

Herness, S. K. and V. P. Kahr, 1963: Report on field trip to Jabal Idsas, Saudi 'Arabia'. Directorate General of Mineral Resources open-file Report 3-212-1568.
Hobbs, B. E., D. M. Winthrop and P. F. Williams, 1976: An outline of structural geology. John Wiley and Sons, Inc., New York. London. Sydney. Toronto.

Hunting Survey Corporation Limited, 1962: Airborne magnetometer-scintillation counter survey Jabal Idsas, Saudi Arabia. Directorate General of Mineral Resources open-file Maps, Scale 1:50,000.

Hutchison, C. S., 1974: Baboratory handbook of petrographic techniques. John Wiley and Sons, Inc., New York. London. Sydney. Toronto.

Jackson, R., R. Bogue, G. Brown and R: Gierhart, 1963: Geölogy of the southern Najd quadrangle, Kingdom of Saudi Arabia. U.S.G.S. Misc. Geol. Inv. Map I-211A.
Kahr, V. P., 1962: Jabal Idsas area, geology and mineralization, Saudi Arabia. Directorate General of Mineral Resources open-file Report 3-212-6013, pp. 26. Kahr, V., W. Overstreet, J. Whitlow and A. Ankary, 1972: Reconnaissance geology of the Jabal Bitran quadrangle, Kingdom of Saudi Arabia. U.S.G.S. Unpublished Report SA(IR)-124, 70 pp.

Khukandy, M. E., 1975: Geology of the mafic, ultramafic and related rocks of Jabal Batran Area; Unpublished M.Sc. thesis, Center for Applied Geology, Jeddah, Saudi Arabia.

Kröner, A., 1976: Proterozoic crustal evolution in parts of southern Africa and evidence for extensive sialic crust since the end of the Archean. Phil. Trans.
Roy. Soc. London, Ser. A280, pp. 541-553.

> , 1977: Precambrian mobile belts of southern and eastern Africa - ancient sutures or sites of ensialic mobility? a case for crustal evolution towards plate tectonics. Tectonophysics 40, pp. 101-135.

Kuno, H., 1966: Lateral variation of basalt magma across continental margins and island arcs. Canadian Geol. Súrv. Paper, 66-15, pp. 317-336.

Lacombe, P. and J. Letalenet, 1970: Mineral resources and geology of the Jabal Al Hawshah quadrangle, Kingdom of Saudi Arabia. B.R.G.M. Unpublished Report 70 JED 26, 32 pp

Lambolez, B., 1968: Airborne maghetic-scintillometric sheet 118 interpretation, Kingdom of Saudi Arabia. B.R.G.M.

Unpublished Report 68 JED 52, pp. 6.

Larry, A. M., 1974: Geology of the basic and ultrabasic rocks west of Jabal Al Wask, Saudi Arabia. Un-

published M.Phil. thesis, University of Leeds. Lefèvre, C., 1973: Les caractères magmatiques du volcanisme

plio-Quaternaire des Andes dans le Sud. du Pérou. Contr. Mineral. and Petrol., vol. 41, pp. 259-272. MacLean, W. H., 1958a: Réport on Fawara hills district, Saudi Arabia. Directorate General of Mineral Resources open-file Report.

> -----, 1958b: Report on Idsas, Saudi Arabia. Directorate General of Mineral Resources open-file Report.

Marzouki, F.M.H., 1977: Petrogenesis of Al Hadah plutonic rocks, Kingdom of Saudi Arabia. Unpublished Ph.D. thesis, University of Western Ontario, Canada, 267 pp.
and W. S. Fyfe, 1977: Pan-African plates: additional evidence from igneous events in Saudi Arabia. Contributions to Mineralogy and Petrology; v. 60, pp. 219-224.

Moore, J. M., 1976: A major lineament in the Arabian Shield and its relationship to mineralization. Mineralium Deposita 11, no. 3, pp. 323-328.

Mytton, J., 1966: Geologic map of the Al Urd quadrangle, Kingdom of Saudi Arabia. Directorate General of Mineral Resources, Mineral Inv. Map MI-4. Nasseef, A. O. and I. G. Gass, 1977: Granitic and metamorphic rocks of the Taif area, western Saudi Arabia. Geological Society of America Bull., v. 88, pp.

1721-1730. Neary, C., R., 1974: Chromitiferous ultrabasic rocks in the northern Hijaz of Saudi Arabia. Unpublished Ph.D. thesis, University of Leeds.

> , I. G. Gass and B. J. Cavanagh, 1976: The granitic association of northeastern Sudan. Geological Society of America Bull.,.v. 87, pp. 1501-

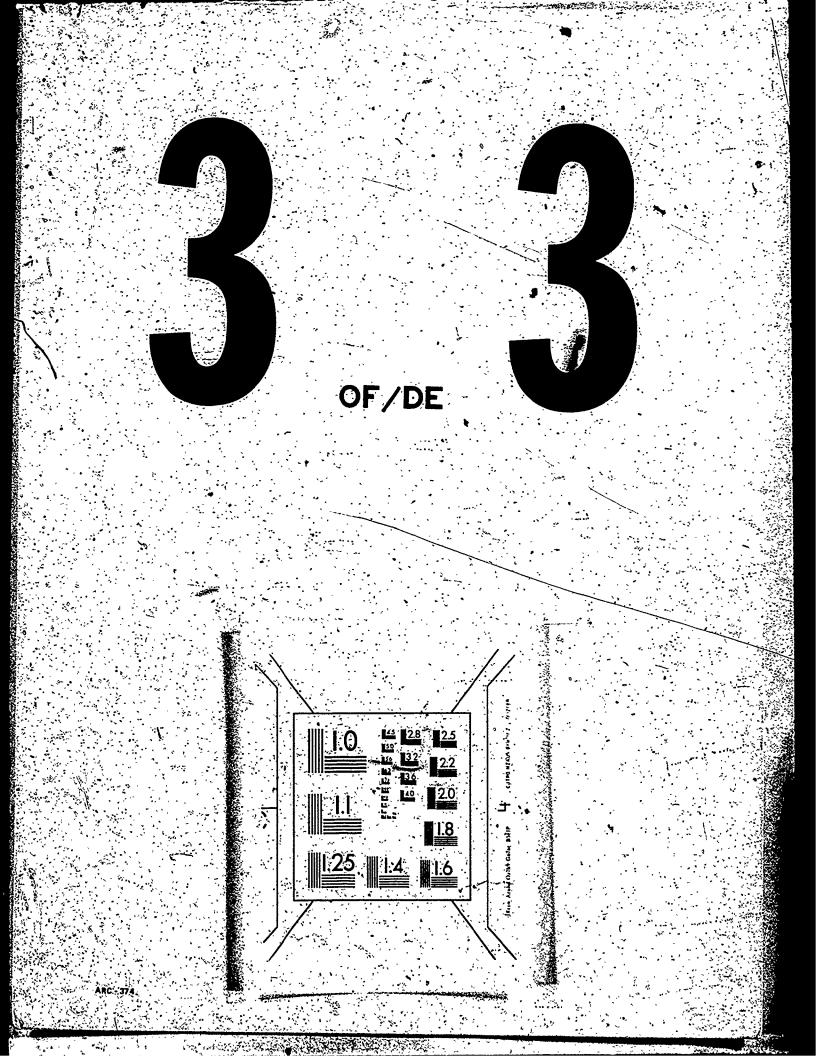
Nebert, K., 1970: Geology of western Al Quwayiyah region, Saudi Arabia. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen Band 135, no. 2, pp. 150-

Nicholls, G. D. and M. R. Islam, 1971: Geochemical investigations of basalts and associated rocks from the ocean floor and their implications. Phil. Trans. Royal Society of London 268, pp. 469-486. Overstreet, W. C., J. W. Whitlow, V. P. Kahr and A. O.

Ankary, 1972: Reconnaissance geology of the Bir Al Badriyah guadrangle, Kingdom of Saudi Arabia.

U.S.G.S. Unpublished Report SA(IR) -126, 47 pp.

Pearce, J. A., 1975: Basalt geochemistry used to investi-


gate past environments on Cyprus. Tectonophysics

-25, pp. 41-67.

1512.

170:

170

and J. R. Gale, 1977: Identification of ore-deposition environment from trace-element-geochemistry. In Volcanic Processes in ore genesis, Spec. Publ. Inst. Min. and Metallurgy/Geol. Soc. London. vol. 134, pp.

Piper, J. D., J. C. Briden and K. Lomax, 1973: Precambrian Africa and South America as a single continent.

Nature, London 245, pp. 244-248.

Schaffner, D: F., 1955: Réport on Fawara hills district, Saudi Arabia. Directorate General of Mineral Resources open-file Report 3-212-4039.

> Directorate Géneral of Mineral Resources open-file Report 3-212-2005.

Seyfried, W. and J. Bischoff, 1977: Hydrothermal transport of heavy metals by seawater: the role of seawaterbasalt ratio. Earth and Planetary Science Letters, 34, pp: 71-77.

Shackleton, R. M., 1976: Pan-African structures. Phil. Trans. Royal Society of London, Ser. A 280, pp. 491-497.

Shido, F., A. Miyashiro and M. Ewing, 1971: Crystallization of abyssal tholeiites. Contribution to Mineralogy and Petrology, vol. 31, pp. 251-266.

Streckeisen, A., 1976: To each plutonic rock its proper name. Earth Science Reviews, vol. 12, pp. 1-33. Thekair, M. E., 1976: Carbonate Tocks in Al Amar-Asihailiya district of Saudi Arabia. Unpublished M.Sc. thesis, Center for Applied Geology, Jeddah, 210 pp. Taylor, S. R., 1966: The application of trace element data to problems in petrology. Physics and Chemistry of

the Earth, v. 6; pp. 133-213.

, C. C. Annette, A. L. Graham and D. H. Blake, 1969: Trace element abundances in andesites. Contribution to Mineralogy and Petrology, vol. 23, pp. 1-26. U.S. Geological Survey and Arabian American Oil Co., 1963: Geologic map of the Arabian Peninsula. U.S. Geol. Surv. Misc. Geol. Inv. Map I-270A.

Vincent, G. 1968 Geology and mineral resources of the Halaban-Sabhah region, Kingdom of Saudi Arabia.

B.R.G.M. Unpublished Report 68 JED 1, pp. 47. Williams, H., F. J. Turner and C. M. Gilbert, 1954: Petro-

graphy - An introduction to the study of rocks in thin section. San Francisco, W. H. Freeman and Co.

Wood, D. A., I. L. Gibson and R. N. Thompson, 1976:

406 pp.

Elemental mobility during zeolite facies metamorphism to the Tertiary basalts of eastern Iceland. Contributions to Mineralog and Petrology, vol. 55, pp. 241-254. Zubeir M. 0. 1976: Geological petrological and geochemical study on the Rugaan mafie - ultramafic 'layered intrusion. Uppublished M.Sc. thesis,

Institute of Applied Geology, Jedgah, Saudi Arabia.

8, y

例 新