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ABSTRACT

Models, estimation prcblems afid some well known solution

procedures of linear structural and functional relationships are

described. Results of this thesis are summarized. Connections
with otherx aréas.such as covariance structure analysis and
simultaneois-eqguation models are indicated. Recently develodped
methods such as estimation using serial correlations, matrik atténu-
ation and Bayesian approach are reviewed. Further problems in

théory znd applications afe then proposed.

Maximum likelihood estimation of the five parameters of a
linear structural xelationship ¥ = o + 6x when « is known is
-ccnsidered: The parametexs are 8, the two variances of obsexva-
tion errcrs on ¥ and ¥, the mean and variance of x. Wheh the esti-
mates c¢annot be obtained by solving a simple system of five -egua=-
ticns, they are found by maeximizing the likelihood function
‘diredtly.

Maximum likelihodod estimation of the parzmeters of a linear
structural relatiénship y = ¢ + 8x when r repecated observations are
made on. edch (x,y) is considered. The estimate of 8 is found to be
.2 Toot of a fourth degree polynomial and o0 be consistent as r
increases: Estimates of other parameters can then be easily ob-
tained. The asymptotic variances ané covariances of the estimates
of the parameters are computed through a simplified procedure.

Twé adaptive procedures of reducing the finite sample ‘mean
square errors of consistent cstimztes of f§ in a linear structural

relationship v = o + 8x model are proposed. They are based on the

i




idea of constructing estimates through inspecting the sample esti=

mates of the asymptotic variances of the original estimates. These
+wWo procedures are applied to the estimates of Geary, Wolfowitz and

a modified Scott's :estimateé, which is obtained

Fh

rom a proposed
method of constructing conjugate estimates. Monte Carlo -expsri-
ments show that the procedures vield much higher precision in
finite samplesand in general are more efficient than the ordinary
léast sgquares estimate, and the modified Scoit's estimate is sapnrlor
t6 thée estimates of Geary and Wolfowitz:. Extension to more than

ohe indsperdent variable is considered.

By considering a model similar +6 a factor analysis moedel .
the maximim likelihood estimate of the slope parameter B of thelinsar
structeral ralationship when the errors of obssrvations are corrxe-
iated with covariance matrix kndwn to within a proporticnality
factox, is obtained. It is the same as the maximum likelihood
estimate ©6f B wihen theé covariance matrix is known complekely and

6 also identical %o that 6f 8 in the lEnear functional rel~ationship.

p

These results are generalized t5 multivariate case when there is
Sne independent variable. In +the functional form of ithe model

without normality assumption in the error terms, an -estimate being

consistent under some mild conditions is obiained by maximizing

certain guadratic Forms. This -estimate coincides with the maximum }
Jikelihood estimate under Tc—malitv assumpiion. Simple methods of

computing the .estimate are given for some special cases.

Regularity conditions undexr which the meXimum likelihdod

éstimate of the parametex 8 in the presence .of incicdental parameters

Is asymptotically mormal are given: AXthough the probability limit




of such estimate of g'is'not necessarily equal to the true para=

metér, it is seen thdt in soiie situations a consistént estimate of

8, which is a functioh of the estimate, ¢an be constructed. The

results are applied to the estimation of a linear functional réla=
tionship to0 obtain conditions under which the maximum likelihood
esStimates 0f the intercept and slope parameters are consistent and
asymptotically normal. The method is different from the usual
approach which relies on the ekxplicit form of the maximum Jikeli-

hood estifates.
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-CHAPTER 1

INTRODUCTION




1. INTRODUCTION

The problém of estimating linear structural and funcétidnal
relationships has a long history and océiirs. fréquently in the be-
havioral sciences, -ecohomics, educdtion and the natural Sciendes;
particularly in bidlégy. 2An éarly insSpiration to the subjéct was
given by Lindley (1947) who first showed that a consistent éstimate
of the slope parameter does. not &xist in a structural relationship
model and its. "maximum" likelihood estimate is inhconsistént in the
corresponding functional rélationship. Tindléy's results thére-
fore iwmply that additional information is required (he assumed
that ratio of the error variances is known) in the -estimation
‘problems involved, in order to obtain satisfactory resSults. Much
of the further work done was concentrated on consistént estimation
under additional information o¥under differént assumptions and was
Summarized in: the réview by MadansKy (1959).. More recently, com-
‘pfehensive reviéws were -given: by- Kendall and Stuart (1973, :ch. 29)
-and Moran (1971). Moran gave particular insight into variodus
-aspects -of the subjec¢t and stimulatéd further research by clearly
indicating the underlying principles and rationale involved. In d
this .Section we define the problem: through. the casé of éne linear
relationship between two variables. In the next séction, we
recapitulate -and comment on someé fundamental results in the esti-
‘mation of linea¥ structural and functional relationships, leaving
the details to the reviews mentioned above and the references: of
‘original work cited there. In section 3, we deScribe the main 7
results obtainad in this thesSis,.and in section 4 we review: recent

alternative approachées and development not included in the above

reviéws. This chapter is concluded with sore proposed problems.




3 i *

-Considér twd unobservable variables x and y linearly re-
lated by y =:a + 8X. To estimate thé slope parametér g, a sample -
of size n is taken. The (x;,¥3),-.., (x,,¥,) &re obsérved through

(Ei,nl)ho--, (En,nﬁ), respectively, where N ﬂ

Y.

+ BX.;
i a Bl'

. . 5 . h: = ¥. + €. i=21,..., B -
El X5 + 61' N3 ¥3 €i7 * I, r Do

The (§;,e;) are independent and identically distributed (i.i.d.) ‘

as N(Q,}) and
n,-

Two situations arise: the x; can either be fixed coastants or o
i.i.d. randem variables indepéndent of the (Gj'éﬂ)' In the former
case the relationship y = a + Bx in .(1.1) is usSually referred to: o
as. functional relationship and in thé latteér case as structural

relationship.. In $tructural rélationship, it iS assumed that

éach xirhas finite mean ji and vériandé,cz. Also z may or may not o
be -diagonal, depending on whether the errors §; and e are uncor=
related or cérrelated. Thus four different moégls caﬁ-be derived

from (1.l).

2. THE ESTIMATION PROBLEMS

2.1. Linear Structural Relationship with Uncorrélated Errors

In the present case, Ei§iei) = 05 = 0 and the: x; are i.i.d.

It is also aSsumed -that the xirare,nérmally—distributed with E(g{)ﬁ'u

and Var(x;) =.g%. Thus each of the (£;,n;) have a common bivariate

normal distribution completely specified by




E(n;) = a + 8u,
Var(zg;) = oZ + qg, (2.1.1)

2.2

Var (n;) =R%6% + o2

P
€

Cov(E;,ny) = Ba®.

If all -of the: yu, o, B, ~02, —0‘2 and oi are unknown, there are §ix
‘parameters in five équations and only u is completely determined:
by E(£;). Since it is posSiblé t6 choose (cf. Moran, 1971)
.differént sets of (a, B, 02} o%, ci) which together with E(Ef) = u,
‘give the same first twe moments, and ‘hence the same distribution
of the (£;,n;), the parameters 8, :02;662 -and: of aré unidentifiable
{cf. Réiéersgl, 1950). To avoid this difficulty, additional infor-
matidn: is theéerefore reguiréd. We l1list beélow different cénditions
under which RB: is. idéntifiable and Gafi: bé consistently -estimated.
Details of thée methods used to sclve the problems can be found in
Kendall and Stuart (1973, ch. 29):;, Malinvaud (1970, ch. 10),
‘Moran. {1971), and also in the references listed thére.

A. Information -Con¢erning theé variances c%i and/ox og.,
Maximum Yikelihcod -estimates (MLE) of szhaée been -obtainéd

in: thé following cases:

[

AL, gi% {or ¢°) is known,

a2 X = 62/} is known,

-y

a3. gg and &

MmN Nom

-are -both known.




B. FReplications areé available.

In this casé, corresponding to each (x;,y;), T indepéndent
réplicates '(‘Eij'ﬁij"" j =1,2,... £, are observed. The maximum
likelihood: solution is given in chapter 3.

C. ‘@ is known and 1 # O.

A completé maximum likelihéod: sclution is given in chapter -2.

D. -Grouping of observatiodns.

Supposé n = 2R and that it is possible to divide the B ;)
into two groups of size m- dccording to a éértain cfiterion which
i% unaffécted by the errcrs §; and ¢;. Then, if with probability

tending to 1 1im |z 9

(W

- ;‘2)] > 0, where the x'7) are the means
of the x5 in the jth group, j = 1,2, B can beé estimated consistently.

E. Existenc¢eé of instrumental variables.

Suppose there exist i.i.d. random variables z;, i = i,e0., 1,
such that the z; are independent of the (6j?¢j) but the Covizi.xi)
aré non-zéfo. Then B can be estimated cén§i§°entii;

The problem of unidentifiability of 8 occurs when we assume

- that the (x;,6;,e;) are normal. If we assume only that the (‘Si'e'f-)’
are normal?ﬁut the x; are not, then B can be estimited consistentié'

by the method of moments and cumularnts.

2.2. Linear Structural Relationship with Correlated Errors

For -this situation, investigations in: the literature -are
sparse. Weé now make comments on conditions. 2.1A to- 2.1E, -and assume:

that the 12}:51-€i¥'ére normal. Similar -to the Jiscussion in

seétion 2.1, we have five -equations:.as in {2.1.1) excert that the

last one is replaced by Covi(§,n) = go® + 05, and again all the

parameters eéxcept - are not identifiable.




-

It is clear that none Of the conditions in 2.1A makes 8
identifiable although they -do make some of the other pararéters
identifiable (identifiable parameters are those which can be
solved in terms of tie first iwo moments -and the known parameters
in the system of equatidns). But as generalizations to 2.1A2
and 2.1A3, one can considexr the situation when g = q% and p is
known. Wher c is an unknown Scalar, we say X is known to wWithin

LY
a proportionality factor. This is studied in chapter 4.

When replication is -possible (2.1B}, we can estimate Z

i)
by (n-—l)-li (gi-E., ni-—ﬁ,)*{gi-g-, ni—-ﬁ.); vhere ] denotes

E: =) £;/n, n- =73 n;/n and use this estimated J in the MLE
’b

known. However, it woulé be interesiting to consider
£ of 3 although the algebra would be complicated and
an explicit sclution might not exist.

r O

2 2
) €

‘When ¢ is known {2.1C); B is identifiable but 62, 21

and- ¢, are not.
de

When 2.iD or 2.1E is satisfied; it can be easily seen that
the seme estimates would also estimate 8 consistently in the
present case-

Finally:; it should be poinitéd out thak, for estimating 8,
there seems toO-bc no theory existing in the literature wusing the

rethod of moments or cumulants {if it is possible).

'2.3. Linear Functional Relationship

Here the difficultv-of unidentifiapility corresponding to
structural relationship is réflected in that roots of fhe likelihood

-equations (in #the case Ose¢ ='0¥:satisfy,82 = qf/c% and that the MGE




of B is inconsisteat (as first shown by Lindley, 1947 ). Sélari

{1969) théfi showed that the roots aré saddle points and do not
givera 1663l maximufi. TO Séttle thé problem -of finding consistent
estimates Of B,cOnditiéns similar to thoSe in stxuctuiral relation=
ship are usially considereds

g is Known and o, = 0, the MLE of B f£or structural

e

reélationship is still consistent in functional relationship; but

When o
it is no lénger thé MLE of 8 which i§ inconsistent (Moberg and
Sundberg, 1978). The MLE 6f B8 whehrg (which can be -correlated oxr
uncorrelated) is known to Within a proportionality factor or
known compléetely ¢an be found in Kendall and Stuwart (1973, ¢h. 29)
anhd- Sprent (1969).

Whén replication is Possible, the MLE of B for the corre-
lated errors model was obtained by Anderson (1358), and the uncor-
rélated errors mod€l was discussed by Barnett (1970),and Dolby
and Lipton. (1972).

When: ¢ is known and:i ¥;/n >y # 0 asn -+ <, the estimate
in:structu¥al relationship is still consistént for 8 in the func-
tional relationship with correlated or uncorrelated errors. The
samé can bé said about the estimates constructed in ithe structural
ré}@tionShip based on the method of grouping: and instrumental
variables (but the .conditions in 2.1E should: be reférmulated:-as:
there exist independent z;, = 1,..., n,such that
1&@3Zn(xiaf§.oE(zfﬁln is positive).

When: the (ﬁf,ei) are not necéssarily ormal and possibly
correlated, -Sprernt (1966) proposed a generalized least squaxeés

method of ‘estimating B. Dolby (1972) then showed that under mormal- .

ity of the 18;,¢;), the procedure is-the same:as for the MLE of 8.




2.4. Mualtivariate Generalization

A multivariate generalization &f (1.1) is

R =8 *BX f iy
£y

{(2.4.1)

Xp b 85

where B is a gxp matrixXx to be estimated, Ri: & £37 éi’ §i and
§; are vectors of eithér g or p components, and the ($5-55) axe
i.i.d. as N(Q,i). Only the (£.,p;) are observable, and as before,
X ; 1 v ;
we have either a sStructural relationship 6r & functional relatidn-
ship depending on whether the x; are i.i.d. random vectors inde=
‘pendent of the (éi'%i) or fixed constants. Results for the parti-
.cular case p = } and ¢ = 1 whiéh has already been discussed have
fai¥ly natural generaiizations to the multivariate éase:s More
-details, discussions and references can be found in -Anderson
(1258, 1976), Gleser and Watsom (1973), Kendall and -Stuart {1973,
«ch. 29); Malinvaud (1970, ¢h. 18), Moran {1971), Schneeweil (1976)

and: Sprent (1969). See Rokinson (1977) for & di:fferent approach.

3. MAIN RESULTS
3.1 Iﬁproqpction

’ This. thésis is partly concerned with the estimation of
-unkfown. parameters in Iinear structural and functional relation=
ships under variolus assumptions which have been discusseéd in the
litérature but mno satisfactory or asymptotically
.optimal procedures -had been attained. We also establish conditions:
under which the MLE of B in (2.4.%) in both structural and: func=

tional relationships are the same: when % is ¥nown. Then one does




not have to worry whether the X5 should be conside¥éd as being
generated from:a superpopulation or as fixed constants. The ‘theory
of maximum likélihood estifiation when the number Sf iinknown para-
metérs increasés with sample size is considered and is applied to
lifiear functional relationship.

The fésSults are contained in chapters 2 to 6: The presen=
taticns of the five chapté¥s are self-contdained so: that they can

bé read indépendéntly.

3.2.. Chapter 2

Suppose ¢ is known and p is known to be non=zero in the
Structural relationship model (1.1) with uncorrelated errors
(ef. 2.1C). Although (n.=a)/E. is a consistent :éstimate of B,
a§ Zéllner (1971) pointed -but, the maxifmum likelihood estimates
obtained by €quating the first two sample moments of (£,n) to

their corresponding expectéd values (cf£. (2.1.1)), may give

negative estimates of o2, ag and cz and therefore are not admissible.

Moran (1971) also discussed: the situation intuitively and included
the: problem of finding theé complete maximum likelihood solution in

his. Iist of unsolved problems. We solve this problém in chapter 2.

Consider the same model-again but with o unknown. In
.conditions 2.1A we assume Some -or all .of the cg ana&gz are known.
Fredquently the:information=9n,c§ and,diiis gained through replica-
tion and 2.1B would be more interesting. As Moran (1971) pointeéd
olt, -although: the procedure -of using :thée-estimates
3§= 1= E:-%)gé—;/(n- 1) an& 3‘:‘ =1 (n;=0.)/(n-1) in the estimate

of 8 when bofh,ézrand cirare known usually gives better results

8




than the mathod of using variance componeints, it is $till not the

optimal procedire since Eig and Ei" where Ei.

]
(ke

. Eij/r'énd

j=1

ﬁij/i; themselves contribute soéme informatién zkout 0%
1 pel et

ni.ﬁ- <
J

Il e~11,

nd 62. He included the problem of finding thé MLE of 8 in his

[l

1ist of unsolved problems. In this chapter we show that the MLE

of B is -given by a Yoot of a fourth degree polynomial and the MLE
of other parameters can be found easily once 8 is computed: Thus$
the probklem of solving a system of likelihood eguations by itera=
tive methods is aveided. The asymptotic variances and &ovariances
of the estimates of the parameters -are compited through a sSimpli-=

fied procedure.

3.4. C@;E?er:g

Suppose  now we assume that the xi are ncn—normal and have
non-zero third ¢enttal mmoifients. Ih this case, consistent éstimatés
of B -had béen constructed by Gearv (1942), Scott (1950) and
Wolfowitz {1952) based on the method of foments and cumulantsy
howevVer, Madansky (1959) &and Malinvaud (1970, ch. 10).observed that
estimates using higher moments g;égot:ve;y precise. Madansky'gave
an eXample whére the appréximate mean sguaré error of Geary's
estimate is so. large that it is useless. Quite often these esti-
mates even perform much worsé than the biased ordinary least
squares (OLS) estimate. In this chapter we :propose two: adaptive
procedures ‘to increase the finite sample efficiercies of the

estimates of Geary, Wolfowitz and a modified Scott's -estimate based

on the proposed idea of conjugate -estimates. Monte -Carlo :experiments
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are uSed to demonstrate that the proceédures yield
much higher precision in finité samples and in géneral these are
more éfficient than the OLS estimate. The modifiéd Scott's esti-
mate is also seén to dominaté the éstimates of Géary and Wolfowitz.
3.5. Chagtg; 5
Consider 2.1a2 (linear structural relatiodnship with

2

Ofe =:0):; Since d%ri Acarand X is known, we no¥ nave only fivé

unknoWn parameters: in thé five egquations in (2.1.1) and a consis-

tént -éstimate of B can be obtained by solving the equations with
the left hand Sides replaced by the ¢orresponding sample estimates.
In fact this gives the MLE of 8. When both cg and oz aré known
{2.1A3), we ‘have only four unknowns i five -equations and it is

easily seen that by choosing different subséts of the system: of

equations in (2.1.1), we get different consistent estimates Of 8.

This problemof "overidentification®, as noted by Madansky (1959);

was solved Dy Barmnett (1967) and Birch (1964) by solving the likeli-

hood -eguations: directly but thé algebra involvéd is quite compli- -
cated as indicated by DOlby (19769. The Same difficulty arises in

the cofrelated errors case when Z'iszknéwn and. we are not aware

&f any published results on the MLE of B in this case. By special~

iiing the results obtained for a general model -discussed in this
‘chapter to. the model (2.4.1) with structural relationship and a

-general ), we are able to obtain the maximum likelihood solution

torg—whg::p =1 and;i is Knowr to within a proportionality fackor

‘ox known completely (when g = 1, this is the case in section 2.2).

The MLE of B in both cases are the same and are also identical to

‘the MLE in: the corresponding functional relationship model. The




model ‘with p = 1 is ifmportant in economet¥ics (sée commerits by

Robinsén, 1977) and in many practical Situations. Real exampleés
were given by Barnett (1969) and Tayior (1973) where differeént
instruments measuring a certain lung function had to bé comparéd
with a more expensive and hard to operate standard instrument.
In this chapter we also consider as a particular case of
-a general modél, the functional felaticnship model of (2.4.1)
wheén 2 is known, and the normality assimption on the'(ai,ei) is
relaxed. We proposé an éStiméte~ofF§ that faximizes a ceitain
guadratic form in the obServations. Easy computational methods

‘that do not reguire iteration aré also giveén.

3.6. Chapter 6

When: we have functional relationship in (.1} or (2.4.1),
‘thé number -of unknown -parameters increases as n - « sincé each
time We are introducing -an édvitional'xi. Thus the asymptotic
theory of thé MLE in the i.i.d. case does not apply here. UNeyman
-and: Séott (1948). calléed an unknown parameter whi¢h appears only
:a finite number ©f times in the probability distributions of the
-observed variables an incidéntal parametér and called the others
‘stfuctural parameters. In the present case, the x; are incidental
paiametersrwhilezthe v, o, 3,702! q% and'aizare structural para-
‘meters. Néyman and Scott considered the—gene}al,prbbiémzéf—eétii
Mmation in the presencé of incidental parameters and in particular
-demonstrated that the MLE of structural parameters might not be
consistent. 7Patefield (1977) also pointed out that the asymptotic

covariance matrix of the MLE of structural parameters iS not

necessarily given by the inverse of the information matrix. Thus




the asymptotic theory is gquite différenht from the usual i.i.d.

case -and needs spédial treatmént. In chapter 6, regularity éondi-
tions are -given in order for the MLE of sStructural parameters o

be coOnvergent (not necessarily to the true parameters) and asympto=
tically nomaZlly distributed. Althéugh the MLE might aot be
éonsistént, it is Seen that quité often a functiofi of the MLE is
éonsistént. TheSe reésults arée appliéd to thé éstimation problem

in 2.1A2.

4. -SOME RECENT APPROACHES AND CONTRIBUTIONS

4.1. Estimation When the Serial Correlation 6f the True %, is Non-Zero

A method was proposed by Karni and Weissman (1974) £6r the
func¢tional relationship with @néorrelated exrrors model of (1.1}
(when @ = 0 and § x;/n + 0). Assuming that the 1imit,pl of the

serial correlation of Tag 1 of the x;

-

. §A 2
1is § Xex:.o./ Y X:
are i=2 T ATE 33 01

is non-zéro, they showed that asymptatically,.

) S = 2+ o2,
Sen = BSZ,
ZSAEAQ = i(l— pl) + Zog
7'5A"§An BS 1= l)i::

‘where s denotes the sample product moment -of its subscripts,

;sz'= {:gg/g (Yimit :exists- as n + =), and Aai = a, - a, for -every

X i “i-1
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sequericé {a;}3.,- Solving these equations, one getsa consistent
cetimate & civen by & S | I |
estimate of iven b = (s = 278, )/(s._. = 2 7S, 00 )e
e of 89 ¥ B = Gy sgan’” Sgg = 2 “Spgar)
‘They -also Gave thé asymptotié variance -of §. The accuraéy
of this method dépends on thé strength of the serial -correlation.

Smaller values of p, would résult in larger MSE of B

Variablés i5 Known

Consider the struétural relationship model of (2.4.1) with
unéorrélated errors (i.e-., 2 is .diagonal) when q@ = 1. Lét
' )’ Then theé reliability

éi = (Eil' .. -':gip:) ' and Qi = (6 5 R -'6ip

of the P variable €55+ 3 = Li---s B, is defined to be 1- Xy, with
Aj = Va’r(ﬁ%i,j’/»"éf(ﬁi*j;’* ‘Supposé we know the xj. “To 'illustrété' the
undérlying principle, consider the particular case when p also
equals oné -(model (1.1) of Section 2.1), so that we know

A =1

1= cig/(o:z + :qﬁ),, Putting ,gg = ).102 1 - x? in (2.1.1) and

:s'olving’ the e@uati’dns, wé obtain a consistent -estimate L

B = séh—'/(s’};.g = As‘ég) of B. This can beé viewed as an “adjusted”™
Sen’See

with a. consistent -estimate Sgp = klfsgg of +the variance (}:27 of the %

OLS estimate (OLS- estimate = ) obtained by réplacing: 's’EE

P Returning to- thé general situation, we first £it a multiple

regression of n on E- Then the wvectur of regressSion coefficients

is -estimated by~ ,(fx-l)gi';e)";l(n;J‘;e—!m),,, whete R = ,(nls,_.,;ia, ﬂfn). and’ .
=gk
estimate § = 5’3.—13&,'3?, - R/‘\I,L;)’ of the true :Covariance matrix -of the :x,

. where 22 is a diagonal matrix whose diagonal is that -of :;'1-13{:';3, -and-

R E] ‘.. We thus replace '—n-l—:;e";e' by the consistent i

i is also-:a diagonal matrix with the (j,j) element equal to ).j.

‘The matrix H is then said to be a matrix corrected f£or attenuation
S ma X o I




{cf. Bock and Peterson., 1375). It cah then bé shown -that §-1n~lg‘n
is a consistent estimate of B . However, since H might not. be
positive definité, some slight adjustments are reguired ( Fuller
and- Hidiroglou, 1978). The method was discussed by Warren, White
and: Fuller (1974). Fullér and Hidiroglou (1978) inveStigatéed the
asymptotic properties of the estimateé and exténded them: t6 a

général );

4.3. CoVariance Structure. Ahalysis

In the analysis of covariancé structure, Jdréskoa (1970,
1971) considéred n mutually independefit r=dimensional randém vec=
tors zys--er 2, each having .a miltivariate normal distribution

with the same -¢ovariance matrix

RS UTINRSE} S

‘E [%]f e én]:. = mr

where § -and § are-diagonal matrices, ;3 is symmetric, and: A and: X
are known n'x g -and h xr matrives, respectively, with rank (A = gsn
and rank (p) = h € r. The elements of the matrices R, Ke B Wor §
fand'% a;é either known constants .-of unknown parameters which can be

' (i) free paraméters- that are mot constrained to be -equal
to any other parametérs, or )

(i) constrained parameters -that are unknown but eqial to

one or more other parameters.
‘Hé outlined a computational procedure for -obtaining the MLE of the

unknown: parame¥ers. when they are identifiable-
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The theory -of -analysis of covariance structure can be
applied to the problem of estimating linear structural relation-
ship (J6reskog, 1970) which we oW illustrate by théa follow=

ing example. Consider the structural relationship modeél 6f (2.4.1)

when for each (ﬁl,xl),r independent repeated observations: (gij'ﬁij)
are availablé. Then the model becomeés
Rijg = & * Bt fayr (4.3.3)
Bi5 T Xt 8y
where the X5 are i.i.d. as N(Q, 2}{)1 .and areé independént :6£ the
'('ﬁij "iij) + which are i.i.d. as N(Q,:Z?—');;, Where
= ')‘:'6 Jo = Cov{B..) I = Covig.:)
7 g ks Raxdr ke T OVikagh
and ZG and Z.E .are -diagonal. Since X = }f ):r éij/m,‘ and
;& =Y Xr Qij/nr = ;’Eﬁ—, where "~" denotes MLE, we assume g = u = 0
= - = 3 N - s S = [ B B N I, N -9
{cf. chapter 3, section 1l). Now let 2 (’%il""" %if" er\‘,il""' Nir
‘Thén the g, are independent and
B TE R T Wheer Bl gdaecor £l (3.5.2

where B' = <~ B"---B") is 2rxp. Thus the Z; ‘have  the same

covariance matrix B ;):y B' + . where
R L

T



i$ 2rp x 2rp. It i§ now clear that by setting R = Q,—& =1,

o = Zx, P = grand,gz = {; the model (4.3.1) is expressed in the
form of -Joreskog's model and hence his computational procedufe is
applicable héré. Noté that (2.4.2) 100Ks like a factor -analysis

‘médél which is .also a particilar case of JoresKog's (1970) moédel..

4.4. The Usé 6f Instrumental Variables and the Connections 6f

Linear Fiihctional Rélationship with Simultaneous-Equation

In econcmetrics, inStrumental variables are comménly uséd
in the éstimation of linear structural and funétional rélationships
{(also known as errors~in=variables estimation in -econométrics): -
Thére are various statistical models involving the use 6f instru~
mental variables. In tliis sSeéction, the connéction -of ofie Such
model with simultaneous=edquaticn models is illustrated. Goldbérger
(1972) and zellner (1970, 1971} considered the linear functional
relationship model of (2.4.%) when the unobservable constant x.
can be expressed as Ei = @0 +7§ %i’ whe¥e the gi are non-=gtochastié:
.and cbservable k=dimensional (p < X) vectors which play the roles
of instrumental variables. JI. is & p-compchient vector, and JI is

0

'y

a p x k unknown matrix. For convenience, we assume g = 0 in

2.4.1) and §j, = 0 ‘Then the imodel can be written in the form:

R B & ¥ Yr X TR TR Ay (4:4.1)

i=2%X,...; n.

Each y; has zero mean and is correlated with g; and ;. This is

the "structural"™ form of a system of simultanéous eduations with

the z. identified -as "exogeneous" variables (in econometrics,




éxogenéous variablés are variables with valiues determined outside
-thé- médel); the Ei'andfﬂi are "endogeéneous" variables both corre=
lated with the erroxs j; and §;+ and the model is in "structural”
form because relationships ar¥e expressed directly betweén the
endogenous variables (note the different usagé of "structural”

‘here). The "reduced" form of the model (4.4.1) is

"R R % * As

= E Ei + gi, i= 1,.—.,. n.

To estimate B, let B! = [f5--- Bg1. L' = [g3--- £pl-
2= lz55) = Igy--- g dr g = 18551 = [f--- E 10 B = Ing]d
= [x}lg—-~ ;’;'lq]i;, X = '[Yij} 5 [El"" ‘Eq] ,ana:é = [Sijl = [é,l___, éﬁl'

th'veétér kir and all

whexe tij dénotes ﬁhe'jt component of the i

the matrices are partitidned into columns. Then (4.4.1) can be

rewritten as

Gy--- Rgl = 4lf1--+ fg) ¥ Whyoor Xqlo
q

0§y~ o0 = Z1fy--+ Bp) *+ [§--- G1-

“Thus for each &£ =1,..., P, gzz= % EE +,Q2 is- .an ordinary multiple
régréession modél and the OLS procedure can: be applied to obtain
anxeStiméteixgzof;IR: Now for each m = 1,:... g, replace Q by
,iiraréxfi;ted'vélués, in.

Rp = $8, + K, and -estimate B BY the OLS procedure. The cén~

$ = r«€1 ,gp];,: where the '59. =z

sistent estimate obtained in this way i¢ known as the two- stage
léast sguares (SLS) estimate. The covariance matriiiof'(qa,éi)

can also- be estimated by the usual residual méan sum of squares




and- products. -Another method which estimates B: and I simultaneously
is the three SLS. T6 obtain the three SIS éstimate, coénsider the
linear model:

%' 1

0y
ey &1
=

M

N e
U M

it

AL : Cow

ai‘
A e
o

Note that Z*' is fir¥st multiplied by each of the gz =3I, + ¢y

and p. = $Bn * Ey to construct (4.4.2). & two SLS is first carried
out to obtain an- estimate of the covariance matrix Y of (E5 o850
which is then used inh Aitken's generalized least sduares éétimates
of Bys-- .,;gg and Jys .-, T in (4.4.2) assuming Y is known (so that
the covariance matrix of z!El”" cer E.Eg' 'g';él P ;,{%‘ép is ‘known) .
Under a normalXity .assumption on the (Eji'éjf)"’ another c¢omputationally
rore complicated method is to obtain the "full information™
maximim likelihood (FIML} estimates of B and § by solving the
likelihood: -equations of the model (4.4.1) -diréctly. However, the
asymptotic covariance matrix of the three SLS estimates iS the sane
as that of thé FIML estimates (Rothenberg and. Leenders, 1964).

For greater details of -estimation in model (4.4.1):, see

Gbldberger (1972) and Zellner {1970, 1971)., -Carlson, Scbel and
Watson (1966) also discussed the use of ég’ionoij\etfic‘mgthods in

a: biclogical example.
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Anderson (1976) also showed: héw the estimation of a cceffi-
cient in one -equation of a simultaneous systeém of stochastic equa-=
tions is related to the estimate of the slope paramater 8 in the
linear functional relatiénsShip ifodel of (1.1l) with uncorrelated
errors. Baséd on this ¢onnectidn, he pointed 6ut that in many
applications in econometrics, it is more relévant to -cénsiderx
asymptotic properties as S2 = n * J {x;~%.)%/0 + © while n is
fixed. In this case, as Si + =, the OLS estimate is also consistent
and has the Same limiting distribution as the MLE of B when 1 is

known. Comparisons 6f thé two éstimatées navé to ba made based -on

the asymptotic e¥pansSions -of their distributions.

4.5, Baveésian Approach

Lindley and El-Sayvad (1968} -considered Bavesian estimation
of the fuﬁctional,relationship—model,cf (1.1) with uncorrelated

errors. They assumed that the incidental parameters'xl,.,., xﬁ

have a coimon prior distribution N(0,t%), where 2 is unknown,
and..are independent, and an .arbitrary prior -distribution

ﬁis,bg;oi)tz) {assuming ¢ = :0) was considered. Aftex making the

san (g a2 a2 22y 4 fR.A . 8. 8 -1 wh =2 2
t;ansf9rm§t;on (8.0&.6§,t )Wf IB’ellfezz'Blg)' where ell 7+ o7,
&QZE 8212'+'0§ and 612 =,612 (cf. (2.1.1)), they showed that for
Iéigersamples, the marginal posterior distribution -of (Bfi,ﬁzz,elz)

). (s denotes the central

concentrates around the point (s S__4S

) S T = poin EE"“nn’ TEn
product momént of its subscripts).. Thus as n + «, with certainty
we know ﬁhefeij. However, the posterior distribution of 8 does
not concentrate aroéund: any value as n-+w and its -variance does: not

tend to zero. This 'means that whatever the'sizewof sample,. the

true value of :8 is never known. This is .a phenomenon inherited




from the difficulty of unidentifiability as previously -discussed.
Whilé in the maximum likelihood approach the likelihood egquation

1/2

solution (Sﬁn/SE for g does converge (to ¢_/Gs)}, but in

&)
g
gené¥zl does not converge to thé true parameter (Lindley, 1947).
However in the Bavesizn- approach, we do learnsomething about 8
from. the posterior distribution which incorporates both ouf prior

knowledge (not only about 8, but cg, ci

ahd T also) and the infor-
mation contained in theé data collected, although the :posterior
distributicén does not have zero dispersion. Of course, the choice
of the prior distributioh w i5 important. Whén: prior knowledge
about the parameters is available, the Bayesian approach is a
good:-che.

zellner (1971) dlso considered a Bayesiah approach to the
functional relationship model -of (1.1) with uncorrelated errocs,
but with different assufiptions on the prior distributions. 1In

particula¥, he assumed that the prior distribution of

. 2 2 . L e ] 2.20 ..a . e
(qﬁg,cs,aéaxl,-way xn) is proportidnal tQ;l/bagz) and: found that

the- posterdor diistribution of (¢, 8) has & bivariate student=t
form with swean (a,B), the OLS estimate of (a,B).
For further discussioh see Floreiis, Mouchart and Rithard

(1974) .

5. :SOME PROPOSED PROBLEMS
Wé :conclude this: chaptér with somé proposed problems..

{X¥). Consider a simple regression model

y = ot Bx + e,




wheré- the présence of a normally distributed term e with zero fean
indicates that the variablés % and y are not exactly Ilinear
rélated and €& is not interpreted as error of measSurement (Malinvaudd
{1970 , p. 201) ¢all e thé error in the equation). IXf the
"independént® variable x (which -can bée deterministic or stochastig)
and the "dépendent” variable y are observed with errors § and €,

respectively, the model bécomes

. = V. + + B8%. + e. + €.
n; =¥, o Bx; e; €50

o (5.1y
Ei = Xi+ail ii:lr——--r n,

where the (ei,ei,ﬁi)raré i.i.&.,as:N(g,X). The model (1.1) -can be
c¢onsidered as the particular case when éi = 0. :Schneeweip (1976}
discussed estimation in a model similar £6. (5.1) but with more
than ohe independent variable. HoWever; since he considered

ei + ey as a wholé, no mew estimation problem different from that
of {1.1) arises. The fact that methéds of estifation in (5.1}
are- not always. the samé as those in (1.1) ¢an be seen. as§ follows.
Consider the case when replication is possible, i.e.; for éach

dy 3= Yoo, T.

1xi,yi),:weéhaye repeated measurements (Efjfhij

Given x; , ;ij' j=1,..., r, are independernt but'nij, 3 E Y000, 1,

:afg,cqrrélated'through—ei1 in contrast to model (l.1) with repeated
:measurements, aﬂéﬁthe maximum likelihood sSolution shéuld therefore
‘be different from that of chapter 3. A complete solutién does not
seem to Have been attained. Model (5.2) is -appropriate, for
instance, when X and y -are two different kinds of measurement -both

describing the same phenomenon (say lung function in physiclogy)




50 ‘that (5.1) may bé more realistic¢ than an exact linear relation.
Because of £luctuation dué to operations, we observe £ and n as
defined in (5.2).

(2) consider (5.2) again. Now suppcse the :measurement £
is -hard and: expensive to maké, whilé thé measiirelient n is easy
and cheap to make. After the parametérs in médel (5.2) have beén
‘estimated, one may only want to make repeated méasurements LI
on yi,énd try to .predict the corrésponding xg based on the fhodel
(5.2) using the estimated parameters. Lawley .and MaxweIl (197.3)
and Chan (1977) c¢onsidered a similar prédiction problem in a
factor ahalysis modél and introduced the concdept o6f unbiasedness.
In analégy, we c¢all a predictor ¥ -of x; unbiased if Eij,xi) i
it would bé interesting to find a minimum mean squére erroxr .
unbiased predictor of,xi:ané to find out its relationship with
the corresponding predictor in factor analysis.

{3) When réplication is possible in model (1.1) or (2.4.1),

Z:fixst by the usual within group sum of Sguare§ and :products and
then use this: estimate in the MLE of B (or B) aésﬁmiﬁg,zris khcown.
Another better procedure is to solve the likeliho6d &quations
dire@tiyrbpt the computation is much more involwved. Thus it woculd
be interesting to look at the efficiency -of the former proceduré
rélative to the latter.

(4) Lindley and =l=Sayyad {1.968) proposed -a Bayesian
approach of estimating the functional relationship model of (1.1}

with: uncorrelated errors in which,the,ki'haye common prior distri-

buticn'N(O,sz and: are independent. They £found that even for Xarge




samples the posterior -distribution does .not concentrate around any
valué. A Bayésian approach using additional information such- as
inst¥umental variables, grouping with c¢riterion independént
-0f errors, and repeated observations would intuitively give
bétter fesults and seem$ worth further invéstigation. 2Zellner’s
{1970, 1971) Bayesian discussion of model (4.4.1) with p=q= &
-¢an be consideréd as -one such approach.

(5) In the presénce of infinitély many incidental parametefs,
Wald (1948) gave nécessary and sufficient conditions for the
existénce -of uniformly consistent éstimites O6f Structural para-
meters. It is seen in chaptér 6 that althoudgh the MLE 6f a
structural parafmater is not necessarily consistent, there are-
situatiéns when a function: of it is consistent. Under What
further assumptions -do the conditions given by Wald also imply
‘the éxisténce of a consistént estimate which is a function of

the MLE?

S .
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1. INTRODUCTION-

Consider -a bivariate random variable (X,y) satisfying: the
linear relation y = o + 8x, 8 being unknown and to bé estimated:
Suppose X and y canhnot be observed exactly, but instéad we observe
E=%+ Sandn=y+ ¢, wheré thé errors § #nd ¢ have zeromeans and
Unkndwn variances o’% and uz, respectiveély.

If o is @inkh’éwn; x,& and ¢ are independent and normally
distribuatéd, and x has unknown mean p and variance o2, then B is
not identifiable and cannot be estimated consisténtly from n
independént cbservations (E—i'n'i) s A =1,..., 1 (¢f. Kendall and

Stuart, 1973, ch. 29; Moran,1971). When 63 (or 62) or 62/0% is

known, 8 becomes identifiable and Maximum Likelihood (ML) esStimates.
in these cases have Leen obtained (Lindley,6 1947; Birch, 1964):.
If o is Known ané p 4is only ‘known -to be-non=zero, then § 2lso.

‘bécomes: identifiablé and can be estimidted. consistently by

. . - 7n _ n:
{n. = e}/ E., where n. = ¥ ng/nyE. = I £./n. without loss of
i=] - i=x *

genérality, let a be zero. The model thén bécomés

£ = x + 6,

n=8x+ ¢.

The ML éstimate (ﬁ,;é,az,, 325_, 63), -of {p,B, 02;, 0%;;:0'3)' is ‘well=known when
8° ,3% and 83 are non-negative. However, when one of the variance

-estimates is negative no full sSolution to thé estimation of

{n .iB.oz,,;oé,qu) ‘was- available, as pointed out by Moran (1971,

Pp. 252) and Zellner (1971, -p. .130).




2. MAENIMUM LIKELINOOD SOLUTION

The model is

i i i
ni = 3‘:.; + E.i r i=1,.. -y N, (2.1)

.. . s s s 2 -
vhere Xy d o= l,..., n, are 1.i.4. as H{u,c¢7 ), p # 0, 854
. : o a - 2 s ) S
i=1x,..:, n, @xe 1.1:8. as n(O,QG), €:, 2 =1,..., n, &re i.%.4.

.2 . . - <

as N(O,c{), and fox each l,;i,6; and e, are independent:

Wie further assume that (g;,.n;) is non-singular. The model then

becomes that each (Ei’“i) has the bivariate normal distribution

with mean (u,81n) and positive cdefinite covarience matrix

The positive definitness of

2

V is eguivalent tc the condition that
= 2 2
at most one of © e

. ogrand,o is zero and B # 0 if of = 0. The

Tikelihood function L for (Ei,ni), i=1,:... n, is thus the pro-

duct:of the bivariate normal probability functions.

i

n
Let me = i£1 gini/n, meg = L

2 2 2
£;/n, and n = iZI ni/n..

T - =2 -2 s - . .
Then (€., n.., mgg = £, mnn - n-, min = E.n.) is the unigue ML

estimate of the transformed parameter E(§) = p, EM) = Bu.
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var(g) = ¢ +—0§+ Vax{n) =7826"+ Cii'cdv(g,n) = 802)'9hen L is

considered as a functioh of the transforimed parameter: The

transformztion is one~one if -8 ¥ 0. Consider first the ML esti-
mation: with the ¥Yestrdctionthat 8 ¥ 0. It will be shown later
that the probakility that the MLE of 8 being zero is zexo. By

~ A 42 ~2 —

lemma 3.2.3 of Anderson (1958), the solution (1, 8,6 $65,07) For

the eguations

maximizes L on Q {(ufa,dz,céjch: uF 0, 8%#0, VY is positive

e = vem - . . . . = 2 2N e ii3as
ugﬁlnxtel1 Hence it is the ML estimate of (1,8,6 ,cg,aé):proulcea

A ~ ~ ~ _ “ = _ - =
that §2 = 0, 0§ = 0-an@u§:2 0: In this case, we have

Howevér, complication arises when one of the
is less than:-zero. Then the Iikelihood function L has to- be

maximized directly. L has only one local maximum on the :open set




~

-~ P -~ ~ '2'1\’ - - l\‘j A‘ AV
Q at (v,B.GZ:OGrdiﬁ- If one of the'o’,og and ci is neogative,

‘then when restricted to the set of all admissible values:

o= 8,622,050 uw #0, 8£0,c220,0220,¢6° >0,
6% S €

¥V is positive definité}, L cannot have a Idcal maximum at a

point Such that all off02; Eg and of are positive. Thus theé

problein reduies to maximizing L in each &asé when o2 = o, 63 = 0

:orrgi = 0..and take the one which gives thé largest valuée of .
as -our ML solution.

Case 1: o2 = 0. Aftéer some algebraic manipulation &ne

-can express

. i . Es n )
L= (@0 eleMexs (—(1/2) 1) (g5 = wP/as + ) (g = guy /5213 .
i=1 i=1

Hence it is ¢lear that L is ma%inmized when

=m__ =A%, (2.2)

Q
mh N w
[l
El
oy
™
i
'l
.

and at this point

T s em 1B (3) — 1 1n 2y - 22y
In L = -a 1n (27%) (n/2)1n,[(mggr E-)(mnﬁ: n<)l n. (2.3)

Caseé 2= Q%'=:0. After some algebraic: manipulation one

can express

L= 1/een et expl=(1/2) 1§ (8, = wP/o? + IZ‘ tny - 889 °/621).
(25 TO Xpr=1s4 i;], i Ft i TR €
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Hence 1 is maximized when

B = E.,,

B = Men/Megs

2 _ . =2

g = me. - --

s T &

. L2, ~
o =W - W /mgg' (2-.4)

and at this$ point

I T, = = = ). = = ;;;2,—7 = 2 . = :
In L = -n in {(27) - (n/Z)lnHmEg g.)(mhn mEn/mEE)] n. (2.5)

Case 3: q; = 0. Aftér some: alasbraic manipulation one

‘can express

I - n - . fa A .
L = (1/02m P8R D)) expl- (1/2) [} tny = Bw) 2/8%6% + ] (8E, = n )P /8%0213 .
=1 i=1

‘Maximizatién through solving likelihood equations yields

= f. (mgn/mnn): ’

T
|

Im m, -
‘nn/ &n”’

= fm_ 32 _=2) ,
B (min/mnn) (Mq = A-

g5~ ™en™nn © ; (2.6)

= m

orty N T

and at this point

T, = = & y. - - k = ‘__'2 - _—,2' R - -~
In L==n In (2w) (n<2)1n [(mnn; "')(mgg m€n/mnn)]"n’ (2.7)

2 a2 .2
+ O and oe

‘Thus if one of G is megative, the ML éstimate is

given by either (2.2), (2.4) or (2.6) -depending on which'of (2.3),

1 e




(2.5) and (2:7) gives the largest value. t is not difficult to

see that if Sg < 0, then (2.5) is greater than (2.7) and (2.3).
Hence (2.4) gives the ML -solution. Similarly if 35 < 0, (2.6)
gives the ML solution.

Now let us remove the restriction that 8 # 0. Suppose

2 .2 .2

that L attains its maximum at a point (u“!B',c",a% 507 ) with

8’ = 0: At +his point V bécomes a diagonal matxix with eiements

c"2'+—géz and aéz; However the point (u',G,c'z + céz,o,zo

)

]
<
also gives the same maximum: From case 2 we notice that this

g

oint is given bv (2.4). Hence mfh/még = 0 whose occurrxence has

Drobability zexo because £ and n axe continuous random variables-

2 ~2

REMARK: G- < 0 implies m . > n./E. = 8 <
3 S5 0 implies mgn/mgg n-/& 8 and G

implies m”“/mrh < n./E. . These situations correspohd to the
. - 55

cases when the -estimate E./EL lies outside the bounds formed by

+he léast sguare rcgression mgn/m of n on £ anéd the reciprocal

ge
:0f the léast sguaxe Yegression mnn/mEn (since o« = 0, we vequire

+hé regression lines pass thfough thé origin) -

£ £ on nn. Moran

o]

{197)) discussed these situations intuitively and pointed out that
in: these cases, the sample variéncesrand—covariance—ofrg and:

7 -should give -some information on the sX¥ope parxamet.xr 8. Esti-
nafes of g in:- (2:4) and (2.6) therefore give the necessary adjust=
ment -wheén H-/E Iies ocutside the bounds. If noneof the trae values of

0240% and ¢2
) -€

Is zexo, withprobabiliity tending to one when sample sizZe
incréases, Bwill-give the ML estimate of £ and is consistent.

Since ﬁ = ﬁf/ff and EIE,) = u; if u is near ‘to zero,

g will fluctuate wildly and -have large mean sguare error in finite




. . .
e :
'
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sample size although it is consistent. On the other hand, the
éstimiate of B in (2.4) is asymptotically biased but has small
varianée. Thus it wéuldbe interestingto know if theré-is. a reducs I
tion of-mean squaré error by combining. 8 linearly with the estimate ’
of B in (2.4); the weignts beitnig determined based on samplé
information (Feldstéin (1974) applied this téchniqué to thé case
of the use of instrumental var¥iable).
The asymptotic varianceé of B is given by (cf. Kéndall and
Stuart, 1973, éguation 10.17):
L= i g T 2 R - ,;.2_ . . = .. ,2_ . . =
{E{n.)/E(E.)) (var (n-)/E“ (n.) + var(E.Y/E"(&£.): i i
=2 covin.,E)/EEIEM) = (62 + 8221/ . ;
"
:
-
.
4
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CHAPTER 3
MAXTMUM LIKELTHOOD FSTIMATION OF A LINEAR STRUCTURAL

REIATIONSHIP WITH REPLICATIONM

[}; Q)




1. INTRODUCTION

Consider a bivariate random variablé (x,y) satisfying the
Iinear relationship y = a + gx with unknowh a and B to be esti-
mated. x and y cannot be observed directly. Instead weé obsérve

the values of £ = x + 6 and n = § + ¢ with exrors 6 and e,
Yéspectively: The relationship is usually calléé structural

rélationship. For each (x5,75), ¢ repeatéd observations Eij'éhd

njsr j=1,..:, X,are obtained. The médel ¢onsidered here is
¥; = o + 8x.,

* * (1.1)

3 xi + Gijp ’nij = . ljl (1 =2,...,n; 3 = lt---lr)fl—

§

€5

where x ij—énd €33 are mutvally independent, x; % N(u,ézk,
] . 5

. 52 2
Sij Vv N(O:UG:)J' é

il

" N(O,of), and u, 02, d§ and c

€35 .are unknown.
Whéir r = 1, it is well Known that 8 is unidentifiable. Here we
assume that r > 1. (1:1) was £first considered by Tukey (1951}
and:-Madansky (1959) and -estimatés of B weYe obtained using vari-
arnicé .componénts. As Madansky (3959) and Moran (1971) both pointed
out, a maximum likelihood solutién has not been obtained for this
médel. (A related problem, vhich is not considered hére, is that
x is assumed to be non=stochastic. The relationship- is called
functional relationship- and was considered by Barnett (1970),
Dorff and Gurland (196Xa, 1961b);, Housner and Brennan- (1948). -and
Villegas (1961).) Dolby (1976) obtained the maximum likelihood
solution for -a general model of which the functional relationship
with- replication is a special case. The concept of replication
in {1.1) is diyferent from that :of Dolby -since the within group
replicates in (1.1) are correlated through x; while those in

Doigy‘s nodel are inde?enéent. Anderson. (1951) also--considered




&2

a genéral éstimation problem &6f which (1.1) is not a special
case. In this chapter, it is founq'thét the maximum likelihood
éstimate of B is .a root of a fourth degreé polynormial -and the
maximum likéliho6d estimatés of p, @, 02} c? énd—og

obtained subseguently (sections 2 and 3). The information

can be

matrix for the six parameters isobtained. Simplified formulas .
for inverting this matrix and for the asymptotic variance of

thée maximuim likélihood estimate of 8 are derived (secticn 4).

It is also -shown that as the number of replicates increases;

the p6lynomial mentioned above has a root which ¢onverges in.
probability to B :(Section 5). A numerical examplé is given to
illustraté -the computation of the estimates and their asymptotic

variances -(section 6).

2. THE LIKELIHOOD FUNCTION
Tot L = (I - 3-9 = - - n. v -
—'et éi (gil: e o7 Eii') r ni B (ﬂi,Ir LA 4 nlr) r a:nd

z} = ,(gi,gé), i=1,..., n, then Zi v N{(R.V), where -

-2 2. 2.
{9 Azt Oshs B89 Ler
p' =l e (et BUILiy)e ¥ = Lo (2.1

N ,
2 2 2. 2. |
Bc*%rr B %rr*““e%rf

1__ denotes the r xs matrix with all entries 1, I the-rxr
Ars > = r

identity matrix. The log likelihood is

Y
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in L = constant - %a 1a|y] - l ? ry~t
- 2 X 2 i’___ gim 'Q.J_ ’
where d; = g5 = R Let R = (hy. 831,
2 5.
): = I_OG;EI' 707
N L 0 021' ! ]
ERY
then y = Z’ + 02@3'. By the Binomial Inverse Theoxem,
vi=gr (672 + ') - I
-~ E N, n N R
;4' ] _2 _2_ -
0 o 1 T8 Aer BOs 0 Aer )
- 7 z a . (2.2
~2 2672 8254
N € Arxr & xrx
where a = ;;;'Z’—lk +0 %= roggz + ;;2820’;2 + 0”2,
LEMMA 2.1
- &6 £ - L; 2 _ 1. . ine2 -1
In L = constant sn in G > In In 93 >In In o
I_ Lo _2.-1 .
50 lna -3 Ih; —cfa™) (2.3)
where: _
_ =2 i Cur2 5 2 e 2
h; = o I (£;5 =) + o, ,ZJ,_.(ni,j - - Bu)“,

= =2 v > -2 - = -
ey = 057 I (E55=w) + 8o, Zr(nij;— o= Bu),

n. r

}Zﬁ and ] denote ) and ] , respectively:
r = L oL
- i=l J'—l




4 4

Proof: See Appéndix A.

3. THE MAXIMUM LIXKELIHOOD SOLUTION

LEMMA 3.1. The maximum likelihood estimates & and 1! of o and py when
2

B,oz,c‘g—s;and oz are fixed satisfy

=
il
Pad]
il
.
-

o F Sﬁ ‘—"'E’.g ’

whére E.. = Zﬁ}}r{ij/nr, f.: = anrnijlnr‘ Thus to maximiZe 1ln L, it
suffices to maximize (2.3) with p, o+ Bp replaced by E.., n.. (cf.

Richards, 1961) .

Proof: See Appendix B. - i
Let L dénote the L of (2.3) when y and o+ By are replaced

by E. and n.. .. Because of lemma 3.1, from how on for sSimplicity

in the process of finding the maximum likelihood estimates of

8,62:,,(';;% and oz,w’é write E’ij' for 513‘ = ET.. and nij for "i’j: = 7q..
Let
«"';i. = ):rgij/r r ﬂi- = Zrﬂij/r 2
t,.,. = Z Z ;52' /nr t =37 n? /nr
EE néx~ij ! nn nix'ij ’ 7
w,, =¥ ¥ (g..- E é)iz}'rn W o= Y Y Ay -n )2/rn
TEE néxr'tij c FATT ’ nn Rérttij o it T
-5 2 -t =2 =Y F .o
Sgg T an;;./n ' Shn T ipNg-/Bor Sgn = zn&:;i."nj;'/n -




By differentiating ln Ll with respect to the parameters
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B,b‘,cﬁ,and Ui and equatihg to zero, we get the following likelihood

eguations:i

“ng + ):nci;i. = incie/a =0 1

n/tac?) + §_c2/(2%?) =0,

‘-i’l,-i'

. ) 2. 2 . = a2y 2,.2. 2 _

*n. + n/(acy) * ntE{/o5 Zzncigi./(gcs) : chi/(a o3} = 0,

- . 20024 L 2 . < - 2 . 42% 2,..2 2

“n- -+ nB—/(agé) + ntm]/cE = 2Slncini./(aae) + 8 znci/(a qe) = 0.

After the algebraic manipulations in Appendix C, we have

'4325‘S + 8Os -5 ) = ds. =0, 13.5)
ci + g%6? =t 13.6)
ci + o2 = tep (3.7)
(2r-1)a” = Tleght ) - E(Bsg +As),  (3.8)

where A = oi%cg. {3.5) is the familiar eguation in ‘the linear
strxuctural relationship model when Ui/qé is known. t is also-

shown iIn Appendix :C that

I I3 "-J:’ 4«'»— 'j:.x. 2 - , = = 3
Py {8) = S(kpB- k87 + k8" + ka8 + Ky a, (3.9)




ks = (xr=1)s

a
i

¥y = FS2 W _ + (F-1)s

k, = -(r=1)s
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g£%entes
) ”2«’ = (y — 2 = (= - 2 .
1T TSggWan T (T DSgatpe T (57 LiSgeS e = TSpaveg

3T= D) (SeaSanYee = SenSec¥nn) -

_ 2 o ~ 2
N o+ - o 5 -
En nn gnfan T F T DSeeS ity = TS Veg

5.t .
En"nn nn

Let """ signify a maximim likelihood estimate. e theréfore

‘See that,g can be obtained by solving (3.9) and then picking up the

root which gives the lar¥gest value of 1n Ll‘ Thus we have proved

the following theodrem.

“THEOREM: 3.2. The maximufm likelihood eéstimate 8 of B is a solution

of the .equation (3.9) If a real solution exists. Then we obtain
82 from (3.8) through the X in (3.5), &2

= 22,8 22 _
= GE/A, g” = ;EE

- 8§,from—

(2.7), and @ and §I by Yemma 3.1.

4. ACCURACY OF THE MAXIMUM LIKELIHOOD :ESTIMATES

‘To derive Fisher's information matrix, we use the following

formula: proved by Dolby (1976):

fnl = _
53, Li — 1 o1 ’!l = -1 .
= [Tan ) = nger gy + A R

(4.1




. 2 2 2 . ..
where ¢, = a,u,S,u*,oG,de , V. o= ax/ad, gw = 8Q/3¢, with similar

A%
meanings for V., g, and d = ani/n.

First restrict ¢ and ¢ to the Seéquence 8162102105 and consider

the 4 x4 symmetric matrix P whose elements are

1 1

N

tr (X wa Xé) .

To simplify notations, only the upper triangular -elements 0f P are
given here. By using (2.1) and (2.2), we find that
T2 02a2282/0y 22281482 /A) /62 —2:28032 (228/M) (a=x82/027]
P = 1/(2020280) 6262 (a-1/6%) /6% /0" (x/M) (B/6%)
L7 e E-E &7 e s

2 a2 A 2,2, 22
i (a ,2;/05+:/66). r“g /(céoe)

(/) ,(az~2a82/q§4xa4 /o:)

Bgg &'
= ;
t T
n a.

‘where Pgp is the {lJlJth element. 3y (2.6.7) of Press (¥972) we have

EPL I = ]
-k £ = |plsizl . (4.2)

o

Pgg

Similarly, with 9,6 = 8,0,u we can consider the 3:x 3 matrix

=1
B - o P - ~ s e . - N
R = Lgém Q¢J. Direct algebraic manipulation showS that




ug:
g
{a=6" %)/ (2a%)

262a). The first colvmn of E

5 ]
where v = r!o? ~ r“B/(anlr g = ¥&/{o
can be obtained@ from multiplying the second column by the scalar p and
hence D is singular, i.e., 12! = 0. Thus again by (2.6.7) of Press

(1972) we have

1f We seguence the parameters as B,ayu,cz,og,cf, by (4.1}

Fisher's information matrix -¢an now be expressed as

T 2 eyt
[Pas* ™ %

£=nt g 2 % L ]

vhere K is a 3x 3 matrix. {fl*gives the asymptotic covariance matxix
6f the maximum likelihood estimates of S,a,p,az,ag and 0:. It can be
obtained from first calculating [ using (4.4) and then inverting the
resulting matrix. However some simplification is possible and if

one is only interested in the asymptotic variance aviB) of B, no

matrix inversion is requir=d. To see this, let

2 rL. _ 1- . ¥
np = E! &23._1 , gt - ﬁn }’*421] .

o1 Bazd K21 K22




whezxe {22 and §22 are 3 x3 and 2 x 2 matrices respectively, and 222/3
is the asymptotic covariance matrix of 02,02 and 62‘ Then by (4.3)
ard (2:6.3) to (2.6:5) of Press (1972), we have

-1

kyi =

i1

R |
=127 "% R) Kny -

The (1,1) element of Fi1 when -d3ivided by n gives the
asymptotic varianceé RV(B), and by (2.2), (4.3) and (2.6.3) of
Press (1972) we have

AV(E) = L/fntog, + uiv - £'F Tk -
' i Peg , : T~ 1
[T/ tnl]) -

Thus no matrix inversion is reguired. Now to determine the whole

6 x &6 matri: g_l,jj:isoniynecessary to invert four 3 x 3 matrices,

namely?%g,z - kllgg*,'g'and




{uzv + 2i/1gi g']

‘5. CONVERGENCE IN PROBABILITY AS THE NUMBER OF REPLICATES INCREASES
Now- Wwe proceed to show that the polynomial pnr(b) in (3.9)
‘has a root which &onverges in probability to 2 as the number of

Yeplicates x tends to infinity.
$HEOREM,5;11 Givenh n,8,¢ > 0, there exists an Ty > 0 independent
of x such that for r > r,.,

v 0

Pr{pnr(b) has a root in (8- ¢, £+¢)} > 1 - 6.

Proof: Given n and & > 0, there exists a closed bounded set B c R

such that Pr{zx = (x;,-..,% )" ¢ B} > 2 - 8/2. Given fixed n,§ ¢ B
.and b, since ?nr(oiﬁy (where pnr(b,§) denotes the pnr(bk when x i8s
fixed) is a polyhomial in samwle moments of £ and n, as ¥ + « it
is asymptotically normal with mean in(b,ﬁ) and vaxiance Vn(ﬁ)

{cf. Cramér (1946, §28.4))« So using Tchebychev's inequality, it

-can be proved that-given ¢ > 0,

2

Pr(]pnr(—b,gs) - '{; ; <lx 1=V (x)/fe” 2 L~ mé/:sz (5:.1)

for every 3 ¢ B, where M ¥s independent of x and is of -order /%
since Vhfﬁ) is of order l/r and is a -continuous function of X onrﬁ.
It can be derived fhat fh{b3§) is a polynomial in b invdlving

- - 2 2 = = A I xr=4-1 L " 33T
B ,cerand oagand,at b = 8, fn and Its derivatives fhrand fn with:
" e 5 i : T CF (b.x) &
respect %o b are zero and im > 0. Ex¥panéd pnrjb,m) and,fn(b,k) at

B to the: third order and consider thé change -6f sign in a small

neighbourhood of 8. It follows from (5.1) that there exists Iy




a0
oy

independent of x such that for every ¥ ¢ B we can £ineé b,y (), by(x)
with B — ¢ < bl(ﬁ) < B < b2(§) < B8 + ¢ and for r >*IO

Prip,,

(bl(ﬁjuﬁ) . pnr(bz(g),§) <'0]§) > 1 - §/2.
“Then

Prfénr(b) has a zoot in (8 — ¢, 8 + €)1}

2 Pr{phr(b) has a root in (8 = ¢, B + ¢) and x ¢ B}

= fﬁ ?r{pnrfb) has a root in (B8 - e, 8 + ¢) | %) I () ax

2 f; (1= 68/2) £ (x) @x > 1 - 6.
= x

‘6. A NUMERICAL EXAMPLE
Consider the simulated data in Table 1 with h = 12 and r = 3.

From the data, we Find

Ei. = -0.417, N.. = 0.549,

£., = 18.002 = 38.815,

teg ! taq T3

"JEE' = 0-,515 ’. wnn = 0.766 P

= 17.487 = . - = 25.4
§E§ 17.487, sTm 38.049;,. sgn 25.453

and the polynomial b, (8) is

3

~75180.9 + 101194.28 + 1265.482 — 475808° - 16025.28%.

=).458 and 1.479 are the two real roots of this polynomial: The

datter together with the values of the other estimates




a = 1.166, Ho= <0.417, 6% = 17.211,
62 =0.791, o = 1.152,

obtained through theorem 3.2 give the larger valué of 1n L. Hence

they are the maximum likelihood estimates of the parameters. A

glancée at the data also tells us the positive root should be taken.

The .datd was actually simulated from modeX (1.1) with o = 1,
8 =1.5, u = 01:62 = 10 and cg = og = 1. Using thesé ‘trde paraméter
values. in (4.4)., we compute Fisher's information matrix F and by
inverting F; wé find that thé asymptotic standard errors of &, B. B,
%, 32 anar3§'are 0.228, 0.096, 0.923, 4.217, 0.260 and 0.283,
respectively. The large variances of 1 and 62 are not -surprising;

2

even if p =0, ¢ = 10 are estimatd from 12 indepefidént observa-

tions from~N(u;62), the standard errors of sSample meéan. and sample

variance are 0.910:and 3.910 respéctively. In fact the Sample vari-
In general; the true parameters aré unknown:-and estimated
values have to be uséd to estimate the asymptotic variances of the

maximum 1ikelihdod estimates.

]




TABLE 1

bata for Model (1.1), n= 12, ©r =3

i=1 i=2 i=3 i =4

unobserved x; ¥, -1.180, =~G.770  3.814, 6.721 -4.993, -6:489 =7.274, =~9.9i0

-1.879, =-0.138  3.494, 7.5317 -4.915, -6.674 -B,842, -+-9:734
-1.869, -1.198 3.594, 8.136 -4.442, -6.753 -8.163, <8:378
-0.603, -1.571  5.429, 4.702 -3.989, -6.992 +7.977, <9:684

-observed- gij,' nij

u.q.{.u.
D :
W N

1l

i=5 i=6 i=7 i=8
: unobszrved x. .y, -2.824, -3.236 -6.161, =§.241 4.651, 7.976  5.708;, 9:36%
- . ) 3=1 -3.138, -1.537 -6.486, -—B.251 3.935, 8.032 4.326, 9:285
_ cbserved £...n, .43=2 -4.218, -4.083 -4.809, <8.558 5.686, 2.45. 3-813, 10:24L
3 1I3=3 -3.560, -4.245 -6.220, -9.289  5.002, 7.646  6.139; §-999 7
i=o9 i=10 i=11 i=12 B
-undbsefved X 0¥y 2.110, 4.165 1:979 2.798,

3.139 2.37
T o 1.833 2.923

observed §_ .
3743 3.582 3.29




APPENDIX A

2r 2r

blishing thé identity 1XI =05 G; a. However, we give a Simple and

direct proof herxe. Let fcgi), g(xiﬁ, and £(z. | xi),be the density

i
functions of z;. x; and z; given x,, Fespectively. Then,

£(z;) = I_m f(zili{i)g(xi) axg

® “GEE oy 1 -2 2
= . (2w) G5 0,0 —exp{-;5t06 zr(gij—-xi)
1 =2 2L =332
=30, Zr(“'ij o= Bx;) Fo 7 (x;-w)T) ax;.

Expanding and regrouping terms -of the expression inside the exp,

-we f£ind

1 )
_7'—(—+ r): S =y = = 3 - _]; L2 V.G e
£(z;) = (2m) 2 PR s S i exp { 7 (ax] + 2c3%; +,hi)} ax; .,

Toe e




On completing the square, we have

. :.1; 7:’1’: =
{2%) G50,

i

f(zi)

I
-~
N
2
Q
[ 2]
Q

The proof is completed by taking products..0f £(z;)7 1 = 1l,eee, 1,

and using the algebraic¢ identity




APPENDIX B

From 23ln L/3a =0, 3ln L’3uy = 0, we have

(BY) and (B2). imply that

a(E.. = p) = % i,c5 = 0.

which togethér with (BI) give

(B3) then gives

'n(g-“ - {1 = i— {a =

n = .
—_— (E s — B ) = -
52'

2

Since ¢ >0, we have u = E. and also a« + By = 7n.. from (B4).




APPENDIX C

From {(3.1), one finds

2

g 1l % - . hr F a2 - - ye. -

{=nBa +’;§'2nci”i') " 33 i3 Sen + s().sgg = snn) Assn} 0, (cl)
6 €

0

where X = 62/0%. Equations (3.1) and (3.2) together give

. l < = ; ;
“nB + —— }.c.n,: =0; (C2):
aoz “h 11

so that the first bracketed termin (Cl) is zero and hence (3:5) is

-Obtained. TFrom (3.1} and {(3.4) Wwe obtain

8 = ™Ean
- —5 I,y T F—5 = 0.
ag . G
R &

{3:6) then féllows frém (C2). Adding (3.3) and (3:4) and using the

-definition of 'a', we have

¢ e
2 = 1 _ 1 2
Tz chigi' + == la = =) chi =0,
a0 a‘r
and by (3.2),
1 2 “ee |, tnn 2 2 =
— — ¥ &£ 22 e mal) - e . - T . = -
-2n + = §.67 + nl—5* + —35) —5 1,605 = =3 ):ncigf” 0. (C3)
o o ac’, aoy

It can be verified that
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Tge T Vee

2
RN

1 B
T Infi

and hence (C3) is reduced to

3 3 | AN t__
_’"'.:,.];A 2 —ag ,Tm:_:
2nr = 3 znci + ar(=3= + -1 = 0. (c4)
9% Y%

Using (3.1) and (3.5), we can Obtain--eguation (3.8) from (€4)..

Also by (3.2), (3.6) and (C4) we have eguation (3.7). From (C2),

using the definitions -0f 'a' and 'c;_ we have

2. re 4 ree - Belysise(r + B2
& (r)\sgn + rgs,rm ,B,qe),/{Br,()‘ + B9}

‘Substituting this into (3.6) yields

202 0 2 4 ors gDt - grids. 4 Bs ) =0
g;:,—é:(e f Xy + r(x + 8 )t'ﬁh 81:,:().5gn + —Ssnn) =0. (C5)

‘Eliminating (jg from (3.8) and (C5), we obtain

: - - Fe(f = 1182 - % (3% - i3t 23
A+t ) = (8s f,‘7+ ksgg),}{ (r = 1)B" = rA} + (2¢ (A + 8 :)tn

zﬁxtéi, " Tnn g

bt

=B(2r = 1) Qsp, + Bs, ) = 0,

+ s, =W + S, to:
EE" ton nn nn’
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2 e a2~ 3ye B T S .
8 L - 87 (r l)ktgg + (¥ l}Atnn ri Weg = 0. (c6)

(325

1]

Substituting A En ~ Bsnn)/(sén:; Bsgg)

of (3.5) into (€6), we £inally obtain

4 - S S
kgB™ + k8 # k58° + KB + K, = 0.
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CHAPTER 4
TWO ADAPTIVE:. -PROCEDURES FOR ESTIMATION )
-OF A LIMNEAR STRUCTURAL RELATIONSHIP

s




1. INTRODUCTION

In sSome practical situnations such as estimation of the
relation bétween income and some component of consumbtion -as
pointed out bynMalinVaud (1870, bs 374), the assumption on
regression analysis that the indépendent variable can be dbserved

QXaétii'ﬁay bé unrealistic. A Tore apbropriate model would be

(1.1)

where ¢ and B are unknown and to be estimated, § and ¢ are uncor-—
e - . o . 2 ; -2
Yelated -exrror texms with zero means and variances o5 and G

Yespectively, and only £ and # a2re -observable.

betwgen x and y is usually called.a functional relationship
nonstochastic and a structural xelationship if % is a random ¥ariable
inidependent of & and e¢. Comprehensive reviews of the problem of
-éstimating linear functional and S$tructural relationships were given
by Kendall and Stuart (19737:Cha9tex 29), Madansky (1939}, ¥Malinvaud
{19703 Chapter 10), and Moran -(L971).

Here we are concerned wWith the :estimation of § in:thé linear

N . - L= - o . R
sStructural relationship. Afte¥r an estimate § is obtained, o can

be éstimated by . - EE., where #. and E. are sample meanss




The -ordinary léast sSquares {OLS) estimate of B is knowh to be

inconsistent, and whdt is worse, if x, § and ¢ are independent
and normally distributed with -unknown variances, E becomes un-=
identifiable (See Kendall and Stuart (1973 , Chapter 29); Moran
(1971)). Different approaches have been used to estimate B ¢on=
sistently and ‘to overcome the problemof unidentifiability. In oné
approach, additional information about the variances of thé error térims
is .assumed to-bé available, e.g., og (o¥ Uf)orrdz/cg is known, or
both cg and;c}:z.'rare known (Birch (1964); Lindley (1947)). In econo=
metrics, a common précedure is to usé instrumental variables
which are correlated with x but not with § and ¢ (Geary, 19493
Reierspl , 1945) . In other approaches, the true ordering of x
is assumed to be known (Dorff and Gurland 196la, 1961b)., or
gréouping of -observations is assumed td be pbHs&sible (Wald, 1940).
If x has -a non-norfial distribution, then Bis identifiable-and con-
sistént eStimatés wére proposed by Drion (1951), Geary (1942),
Scott (1950), and Wolfowitz (1952). Although estimatés based on
instrumental variables§, true: ordering: of X, -gfouping:-and non-
no¥mality of x are épnsistenﬁ, they a¥e usually unrelizble in:
fifiite samples (cf. Madansky 41959))., and QQite~thengpérfoﬁn
much worse than the -CLS estimate. Whén the variance of § is
large, Feldstein (1974) combined the instruméntal variables
estimate linearly with thé -OLS estimate and achieved a reduction
of mean squared error (MSE) in finitesamples while preserving
‘consistency.. Although hisprocedure-does not dominate the OLS

estimate, the loss in efficiency when the latter is -superior

‘seems to be outweighed by thé substantial gain in efficiency




when the former is Siuperior. This is a good practical procedure.

However, the algebra involved in applying Feldstein's proceduré
to other .cases is usuvally formidable, eSpecially in structural
relationship. The éxtension 6f his procedure to multivariate
‘cases would be & moré complicated problem.

In section 3 wWe propose two adaptive procedures for the

-estimation of B, the Pre-test Procedure ((PP) and Estimated
Ratio Procedure (ERP) which aré based on the idea of constructing
.an estimate by comparing the: sample asymptotic variances of
variéus esStimates. Whén they -are applied: to the consSistent esti=
mates by -Geary, Wolfowitz and Scott (section 2), consistency is
preserved and the MSE's estimated by Monte Carlo expériments are
improved. The adaptive procedures in genéral also vield smalle¥
estimatéd MSE's than that of thé OLS estimate {section 4).

AR extension: 6f the ERP to more than one independent
variable % is also proposed (Section 5)-.

If we have & independeiit observations (E; ;) each gener—

ated from (1.1), the model can be written as

+ . Ta + Bxi, + €50 i=1%XxX..., n, (X.2)

where (xijéi,ei), i=1,..., n,are independent and. identically
distributed and xff ﬁi and ey are mukually independent with unknown
variancesydz,cg,anéxai,respectively. Also g # 0,32($i) = s

E(§;) = Ele;) = 0 and py = E(x3) # 0 for all i. Assume that the

sixth moments of xf;rﬁi and ei:exiSt so that the sixth product

. . _ N
moments. of E;i and ni:exlst. Let My = E(xi;,, u)y o,
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= . =mE =~ a = £ ik s = r _E K L=
ukf. = E(Ei = 1) (ni o = Bu} and let Skz—- Xn(gi £) (ni n)y /n
o 13
be the corresponding sample estimate, where Zn;denbtes T .
' i=1

E. = } E;/n, and n. = }.n./n.
2. SOME CONSISTENT ESTIMATES

The following consistent estimates will be used in the
tWo adaptivé procedure§ in section 3-

1. Geary's (1942) estimates

'BG = 512/521.

It is consistent if B ¥ 0.
2. Wolfowitz's .(1952) estimate.
' 1

. . .3
By = (Sg3/530)

It is consistent.

3. Mcodified Scott's (1950) estimate.

Rvisyq/s,5) .

if AV(SZI/S

By = S51/S39. 30) S

‘othexwise,

= 503/513

‘where AV(;Q;/$30) and'AV(so3/slzx are estimates cf the asymptotic

variances of s and '5703/51,27, respectively, and they ¢an-be con-

217530
structed by ‘the method described in section 3. Since 5511530 and
SbB;SlZ are both consistent when 8 # 0, §s is consistent.

The éstimate $,3/S39 1S related to Scott's (1850) con-

sistent estimate which ¥s a root of

£,(0) = [ Tng=n.) - Db(5;~E)177n = 0.
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But :Since fir'ié(B) —B, 0, f;;(a)—::—Py 0 and are of order n . where

N 1=

-B denctes convergence in probability, a Taylor's expansion of fﬁ
1

at B shows that 'én-’- B is of ordexr greater than n 2. ‘Henhce
éSYfﬂptotica}iy Scott's estimdte has zers efficiéncy relative toé ;éG
and B;. Thus a reasonable substitute for Scott's estimaté would
be -2 root of £7(b) =-0, sin;:e:“z";;(sl =25 -6u, # 0. Obviously,

- i é ias . 5F F"(B) = ¢
Szl/SBO is the unigue root of fh(b) = 0.

The rationaleof choosing adaptively between s and

217530
Sg3/5;, for §'§ is as follows. Let B bé a consistent estimate of

B in the model (1.2)-. Now rewrite (1.2) as

— ) D § =1 - 7 ] 5
n; =¥; +€if" £E. = =aB + B Y + 5i’ i I,00e, ¢ (2.1)

i

i

which is ¢alled the duzl model of (1-2) and has the same form as
(1.2) with the roles of x and y, and hence £ aad n, interchanged.
The méthod uSed in constructing 8 can be used to constfuct a
consistent estimate B 1 ofthe 871 in (2.1). The reciprocal of
BTJE;——denoteé%pyr'éc znd'calleé the conjugate of B, iSa consistent esti-
mate ©f 8. It can be proved that B is the conjugate estimate of
8%, i.e., B = 8. 1f 8 = B, we call & a seFf-conjigate esti=
mate. e note that

and’ §W are self-conjugate estimates;

(1) B¢

{1i) 521/530 -ang 503/5:172 are -conjugates of each other.

If gc # §, define the -completién c(ﬁ,ﬁc,—) of the consistent

estimates 8 .and B® by

c (’é::;ég) = ﬁ it AV{(@) < av(BS)

8¢ otherwise.
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B. is simply c(921/530, 503/512y. It can be shown that c(B,8 )

is seélf=conjugate and hence no new coénjugate estimate can be

S

constructed. The precision of a consistent estimate B of 8 usually
depends. on 8. It may be good for large values of 8 but not fo¥
small values (or vice versa). Thus it is gquite natural to ask
whethér aécéuraéy can be gained by -estimating g™L in (2.1) first
and taking the reéiprocal. This is the -basic wmotivation for pro-
posing conjugate estimates: The idea of completion therefére
gives a guideline to decide whether to apply the originzl esti-
mating procedure 8 to the model {1.2) or to estimate 8 through
modél (2.1) using the conjugaté estimate Ec of B. The méthod of
conjugaté estimationand completion -does not apply only to the
¢enstruction of the modified Scott's -estimate; it cPn be appliéd'
to any other consistent estimates 0f § in (1.2). From preliminary
Monte-Carlo: experiments we found that $,,/S3qr Sp3/Sj, 3re usually
1io bétter ;hanzﬁG, Ew, but in Séction 4 it will be seen that

,géjhéﬁ mich higher precision ﬁhan,ﬁc,aha—gw.

3. TWO ADAPTIVE PROCEDURES IN FINITE SAMPLES

Tet

Hag “11]

k3 > (3'1)
Vi1 “on

P!
il

be -the .covariance matrix of (&,m).. Thus

N - -1 e =2 R 2
0s o5 = Uy ”113 o O S O. = g, “113' (3.2)



so that. Wwhén g8 > 0 (B < 0)

zi{,l]_/—uzo <8 < Uoz/llil (uozlull $ B s Ull/uzo)- (3.3)

¥ A — . - e . - 5 o~ - :

lLet BI'.: = sll/$20 be the OLS estimateé -and By = 502/511 be the
reciprocal o6f the léast squares regres$sion of £ on f. Then

lsiL Sriﬂﬁf« Since with probability going to one, EL + 131 Mog:
and ,'éuav Bgy/ ¥y ¢ W have asymptotically, when g > 0 (8 < 0),

'éi. 5 B < E(j: —(ﬁa < B s 'éL) . Lét B be a consistent estimaté of g:
The asymptotic bias (AB) of EL—can be estimatéd by éL;-é. Howsver,
when -8 > 0, asymptotically E’L =8 < 0 and §U - B > 0. To préeserve
thesé inéqualities when 8 > 0 for finite samples, estimate g by the

consistent éstimate

~

= g8 if BI!é B < SU'

oo}l
+

= BU it BU <

Since in general it is unknown whethér 8 > 0, replace this condition
by- BL >:0: This seems to be réascnablé since the Sy1 P By, = 5?11520—
is. a consistent estimate of 862 and ‘héncé asymptotically 8 aﬁdfgt
have the sSame sign. When B < 0, all the inegualities aré reversed.
§L' éU -and t+he three estimates: in-:séction 2 are functions g:-of

'tllt:—z,, Where t; and t, are sample Statistics. The asymptotic MSE is:
AMSE(g(t,/t,)) = AV(g(t,/t.)) + [AB(g{t,/t;))17.

We have described how to estimate the 3B of 8, and §; when there is

-2 consistent estimate. AV(g (tl/—tz)i)",j:s .a function of AV(tl),, A\rg(gz) .and

ACovit;,t,) (cf. Kendall and Stuart (1977, Egq. (10.12})).
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So, for example when g(ti/té:): = BL = 511/520'
AV(S. /50 ) = (won /) 2{AV (5. )ue 2+ BV (S, )15 = 2ACOV (S 1 S0 1 ¥50)
117520 11/¥%20 11/¥11 20'¥207 <% 11°%20"%11¥%207 -

Tioe ‘s .Y, AU 3 A _ saan .. —
7 viers AV‘—S—II)" FAY (520) and ACov(slz,szo) a¥e functions of Big
' {cE. Kendall and Stuvart (1977, Eq. (10.23), (19.24))). Since
some or all -of the Vg arée unknown, the A\i(sll/szo) is estimated
by ﬁv(sll/szof) obitained from estimating each unkanown "’ij by sij'

In th.ji:é, section, we propose two adaptive procedures which
would lezd to possible improvement of efficieéncy in fipite samplés.

A stimulating description of the principle of adaptive procedures

through robust estimation was given by Hogg (1874). When applyinc

N . B o w . . ~ ~ ~ -

the iwo procedures to a consistent estimate B sich as EC’ BF- and
= 1]

Eg, we need estimates of the asymptotic MSE's of these estimates

- _ N ~

{which have =Zero AB) and of S'L

using the méthods just described.

~
and BU which ¢an be constructed

1. Thé Pre-test Srocedure (PP). The PP chooses the -estimate
-~ A ~ - . . - . - I
among BL’ §Ur and 8 with the smallest estimated asymptotic MSE.
-~ T - _ . - ~ . . - _ -
Althouch SL andé :SU are in -general inconsistent,in finite samples,

the consisténcy cf 8 does not-guarantee that It is superior to —aL

>~ _ - _ - - ~ - P - - - _ - -~
nd g,.- Thus in the PP, the-estimate B 1is defined adaptively as-one of
U us s ' P = -

u

I ﬁL, §U and B {&f. Feldstein (1972) in the case-of instrumental variables).
7 2. The Estimated Ratio Procedure (ERP) . Define a class

of estimatés of B indexed by A, 0 = X 5 =, by

2
2

2, 4’*}(5*%3;] }/25y; - (3.4

g(2) = { (757072 = 2S,q) * [;(rs—qz = As,,)

ém is consistent if and only if ) = oﬁ/gg?,a’.rxd it is the general-

ized least BSguares estimate proposed by -Sprent {1966) , which was
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proposed origifially for functional relationship when og/céiis
known. Clearlys; £.(0) = EU, B{=) = §Lrand () ©s a strictly mono-—
tone function of A (decreasing if §L > -0, increasing otherwise).

When the Value*Of'Gf/Ug is unknown a2ad estimated by A' = 32]36,

R ~2 o ~ a2 | _ ] ]
where O, = Sgy = S338 and 65 = s, $43(8) (cf£. (3.2)).., then

8(3*') = R provided that 2 s’H'é 25, = iszo {cf. eg. {3.4)) . To provose a

different estimate, considexr h(B) = (502-rslls)/(szoe-slls_l)irﬁxpanding

2

it a.};;g to the second order termand replacing 8 - 2 and (8 - B) by AE (8 - g) =0

— . - - ~ ~ - _ .~ _ - o -
and & consistent estimate AV(R) of AV(3), respectively, wé obitain

~=g o~ 2v=1,735. 3 _ &2 yRu(h =
85,5 — 511 (8) ) (Ssll)(SZOSOZ S11YAV(8). (3.3)

leo or §s11 <0, let A = 0 if

(3.5) is negafive, and let X be (3.5) o6therwise: In the ERP,

Now Jet A = « iF 520 - sll(s)

the estimate éR is defined to be §(i); + is easily seen from
the .definition of 'é.R that if X is not given by (3.5), then ,’é,R,
eaquals the truncated estimate ém- Otherwise, A > %' since the
second term of {3.5) becomes non-négative. Herice the ERP pulls
Ei%% towards gL‘ The second term 6f (3.5) can ‘be expressed as

Al\.z ;327 - 2 ~ A

(Bo5) 5'1'71(520502 = s73)AV(8)
which increases with AV(8) and decreases with [B]| anad 82, The pukl
towards §L is large when AV(B) is ¥arge and thé pull is small when

E 2
7"

— - - - 3 - .. - P L I3 -~ _
. aré laxge. This is intuitively reasonable since if 8 has
large asymptotic variance, we are in favour QE,SL. On *the other hand

w2

] and o
8

iflgl and o§ are large, the bias of,aL becomes severe (thé asymptotic
‘bias cf éL isgscg/(oz +—c%}) and thérefore less weight should be
placed on gﬁ” Since 8 is consistent, AV(@) - 0 as n-+ », hence the

puIl'becomgs'Small and we are in favour of ,§ in
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large samples. This is desirable since § is consistent and f is
asymptotically biased {cf: Feldstein (3974)). In fact, by using
the definition of convérdénce in probability and the ‘Taylor's

expansion -of B(A) at 2 %—35/6% we can prove the following theorem.

THFOREM7731. Leét B bé a consistenit estimate of § in (1.2);
then (a) t§P is consistent and nr(ﬁp;:ﬁ)"% 0 as n » «; for

any r > 07 :
(b) B is consistent,and if av(B) = o(n"), then n"(Bp-f) B0

as n » o,

Theorzm 3.1 says that asymptoticdally all the éstimateés
§P, ERvahd # are equivalént. The advantages of using 8, and By
théreforé lie in finite samples. We apply PP and ERP to
B = Bg Es' 8, ( and use EGP to denoté the PP appliéd to B,
and so on) and their -efficiences are -évaluated by Ménté Carlo

expériménts in the next section.

4. RESULTS ON MONTE -CARLO- STUDIES

‘Given the covariance matrix zzgf (£,n) (which: éan be
eétim,aﬁgai—gonsistently by the sémpléi—ggva:iancé matrix) in (3.1),
ane cannot determine uniguely B, 62,, o% -and 0'3. In fact for
every B ¢ 1“11“;%'”02@533 ‘[“oz“Ii" “II"E%j if 3, < 0; without

loss of generality, we .aSsume subse@;éntly M1 > 0), the set of

parameter -values
2 _ : 2 Y 2 _ - o
woul'd::give the same 2 ‘For B lying outside that intérval, (4.1)

does not give admissiblé values since-:one of ¢”, Y and- o, is




2
&

negative. The precision Uf an estimate of B8 depends on the set
of parameters which actwally generates i. For this reason, it is
interesting to 100k at, for a given Z, the "average (overall admis-—
$ible values of g) Méﬁ“,défined as. fo6Jlows.

Let Z He the positive definité matrix in (3.1) and let F
be a density function. For 8 ¢ [uliuzéi uongfk; let the para-=

meters cz, qg and ci in (1.2) be given by (4.1). PFurthermore ve
] specify the distribution ©f % as that of z/{oz(BMZin/z}, wheré 2z

has density function £, asad qi i§ the variance ©£f z. The @igtri-

bution of (£,n) in (1.2) is then completely determined (setting
&= 0). Letrg be any estimate 0f . We call
v p=1
=1 =x =1 02 11 R
HiiYao

~

the (z,f);squé;e error ($5:€.) of 8, where EB(B = 6)2 is the expected .
value of (B = 8)° when the distribution of (£,n) is specified by
Léff) and a given 8. (4.2) is an averade of Es(ﬁ - 6)2.

In finlie samples; the (original and adaptive) consistent
estimates have infinite second moments and hence their MSE& ﬁéyrbe
infinite. This imay be due to heavy tails at the extremes of their
‘density functions although their probability mass within a wide
interval is fuch higher than that ofigt. This leads to the -con=
sideration of'HSEEbased'éﬁ'truncated~éistributi9hs of the estimates,
i]gi1'28[(§ - B)zw B € (-a,b)l, where a and b are large positive }
nﬁﬁbers. .

The MSESused foxr computing the efficiencies in the tdble are

these finite "trancated" MSESestimated by the Monte Carlo expériments.




Similar consideration to the difficulty ofﬂestimating "“iInfinite

variances was also given by Feldstein (1974).

comn T . 21 i =1 -
Given %, let B(8) = ujquyy * Bluozull MqqM,pls where

0. ¢ [0,1): Tﬁe (Z,f) = s.e. gives an indication of the average
performance of B over the range of 8(8). It is also interesting
t6 Kknow the efficiency of an estimate for different values of 6.
Inh the Moate Carlo expérimentsq,z was set at two levels:

= ik 1 —i = ] 'I;l =
. ' Uiqlog & 14 Mooty
a2

Jji 5 i
iq -1 =1
=1 - Mijkog = Se Uasllyy =
[5 2;] 11720 02711

f was set at fl = density of T{1.5, 1) and £, = density of
B(0.5, 0.2). The sample size was fixed at n = 20 and n = 50. The
values of (lirfj)'— s.e., i, = 1,2,and the MSES for -several values
cf @ Were'eséimatea from X000 simulated samples. The efficiency is
defined to bé the ratio of +the MSE of the OLS estimate’éL to the MSE
Of the estimate considered. Results of the Monte -Carlo -experiments
are given in the table £ré® which we draw the following conclusions.
{i) ésrdominates EG and Ew,and thexe are cases where Es is-
substantially moxé efficient ﬁhanfaG and EW‘ 'éG and éw:haVe vexry
low precision and for most 6-valués remain much worse thanrgL even
when +he sample size is as large as 50.
(i) The PP and the ERP dominate the original estimates
and the gain in efficiencies from applying these procedures isi
substantial. This is true even when the original estimate is more
efficient thah the OLS estimate 35, The efficiencies using the PP

.and the ERP inhcredse .as the sample siZze n and 6 increase.




(iii) The .ERP dominates thé PP in (E,f)=s.é.—ex¢ept—thé'§GP

,and'gcn,fOf (Ziffl)'and n = 20.. Thé ERP is-21lso superior to the PP
for most ‘9-values afd thé peércentagée gain in efficiencéy when PP is
Superio¥ is less than theé péercentagé gain in efficiency wheh the
ERP- is superior. In this séanse; the ERP is prieferable 6 the PP.
(iv) AXthoush the ERP doés not aominaté'gL'for—every value
of 6, it is superior to-the lattér in (ii,fj)-é;e.'wheﬁ n = 50 and
evell in sofe c¢ases whén n = 20. Wheéen Et is substantially biasedq,

the -gain in efficiéncy when ‘the ERP i$ used: may bé subStantial.

il

Generally speaking, for'gy, ¥ = G, W and S, the estimate §§R has
at least an-efficiency 6f 75% relative to thé optimum estimate in
the class fgL,éb,EY?,EYR} and in many case$ is itself the optimum
estimate evVen when -the Sample size is as small s 20.

{v) Conclusions (ii) t@—(ivj therefore suggest that -the
ERP" should be used in genefal. Thé question is. to Which estimate
it should be applied. ’iheiERP—whenzapériedité,ﬁwVSéeerté—givé
slightly better results than when it is applied to B gﬁa,és.
‘However, concluision. (i) sucgests that It is quitejpcssible that
Bg is superior to 8 and B, in large samples. Since the ERF con-
verges -asymptotically to the original estimate, it seems to be
reasonable to use the estimate B, in estimating § when the
éxperimenter hds no additicnal information -about the errors and
c% is not negligible.

REMARK. The MSE used in computing the efficiency of an -éstimate

~

B for each 6 in the table was calculated based on .21l the 1000

‘samples simulated. This MSE thus représents an estimate of the




conditional MSE E[(B ~ 3)21 8 ¢ (-a,a)] where Pr(f ¢ (-a,a}) > 1=y

with ¥y very small (say 0.00001) so6 that the expected number of

thée 1000 $imulated: B falling outside (~a,a) is less tham 1. A
disadvantage of choosing y too small is that for an eéstimate 8

the distribution 6f which has thick tails; the estimated MSEScould
bé substantially inflated dué to the presernce of a few extreme
vélués,althCUgh §,mayrhighly center around B: Since in practice
B is estimated baSed oh one sSamplé, an estimate E with distribu=
tion highly centering around 8 is preferred éven though there is
véry small probability of getting a valué far frém 8. Thus in
our Monte Carlo experiments, the MSE"s of theB's were-also estimated
based 6n the simulated Bvalues retained after a:total of ¥ (=1 ,5’and
10)s of thé 1000 sSimulated § wére deléted from both ends in
such & way that the estimated MSE is$ the -minimuin among all trunca-
tions with the same y. The Simulated MSE's are then estifmates of

the quantity min (EHB - 82| 8 ¢ (a,b)1: Pr(a,b) =1 = 100 1y}.
{a,b)

The efficienciés (not presented hére) relative to6 §L {also

truncated with the same y) were then calCulated. :

It was thén observed :;:hat, .as vy increases; the efficiencés of all .
the estimates-incdreasé £6r every 8 except when & = 0 the relative
efficiencies decrease slightly as y increases. Even when y = I,

the estimated MSESof all the estimates discussed (except Eﬁr are
substantially less than the MSESestimatéd based on all 1000 simu-—

lated values. This indicated that the estimates may have a few:

extreme values. For the untruncated simulation; in -general 8%'7:'

is5 better than ng’ However, -after truncation, i'é'G improves
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substantially and performs much better than EW (this is true- even
for y = 1), but remains inferior to §g~ The relative efficiences
of Bars Bur and,BsR become very closé. The ERP remains better
than thé PP and the increases 6f efficiences dver the original

estimates remair Substantial:

5. -SOME GENERALIZATIONS
In this séction, we extend thé ERP to- the estimation of g
in theé model

ng = oo+ gix

i=11,..., n,

Es = X5 % Ry

W o= - . an -'7. - r - ~ T - C mn o . (- - ‘-:_, -
where g, {l,rél and gl are p-component column vectors, '¥1'81'€I)’

i=13,..., n;, aré i.i.d.; x., ‘and ¢; are independent and:

LD I éi
2 ]

. ] 5061 2 - . ] 2
Var(éi) = Z, Va:(éi) = { 71;.72 = 25' Var(ei) =0, .
1 2 Ss.

Let E P
1%ee Ren

s
fﬁEn: nn|

be the sample covarianceé matrix .of (£,n); then
18
avhad .
A 2
Q'E§'+‘°gl

Sprent (1966) proposed a generalized least squares esStimate

as n > v

of g, which is§ a: funétion of ngg;» for functional relationship.
7 . N

It can be shown that it is consistent for structural relationship.




Replace the qglgl by a general pousitive definite matrix & and
v
denote the neir estimate by %(&). Let 3 be a consistent estimate

of 8-

To condtruct p functions similar o h{B) of section 3 when

2%-1 . )
o ):-1 is unknown, let
(=]

R;(ﬁb:) s_._ = ;‘3’"%

an Y ‘_;n ) 3 RS S:, (5.1)

d
' = e g aaa g . = . - 2 t H.
where EEC (Xx’ ‘e X?) and éin o1 lso le %3

be the matrix whose (g.k) element is 24(2)/2. 3 q evaluated

~

at 8 . Then based on the same axguments as in section 3, we
estimate
2
d.
3
if R (F 0
= o L) <
i Q-J (£

by As ==

Lo L2
X cxc/c 3

3
o
3
~ T 1 POy
= : Iz - - = H.AV(R)
K(Q);/Ri (,%) ) tr(}éjl'y(._))
-and AV (fér), is a consistent estimete of the asymptotic covariance

~ L " oa
matrix of 8. R is then defined to be B(A) .
v




(z?f)-‘-’s.e. and Efficiencies Relative to the OLS Estimate ,BL

();1 £ N N ();l,f ¥y

L 6=0. 257 “9=0.5 8 0 7) T 9‘0 25. ~8=0.5. 6=0. 75 —
ESTIMATE  B(8)#1.25 B8(9)=1.5 £(0)=1.75 (), F)=s.e. B(B)=1.25 B(8)=1.5 8(8)=1.75 ié)-s e.

n_= 20: A =20
2142 .369 691 2435 .120° .290 .639 .379
.008- 5002 786 2.798 .033 -390 <340 1.923

>
Y

PR

2007 010 <002 .013 ) .001L
.396 779 1.340 : .510- y 1.299
677 972 1.497 .833 .806 ; 1.538

1)

o5 s
Q
w

[2)
'

.065 '123 . 131 . 2= 0 .06& -116
2515 <904 1.548: W3 ;638 1.658
.979. 1.381 1.669 - 1.029° 341 1.776

J164 .385 .692 ; 2262 - .992
.593 .973 1.495 3 .620 : 1.420
.619 1.020- 1.538 5984 1.439

“*"’m“"” _ éwér»,;v

o= :50 n =50
.302 .630- 2
1602 2.326.

a

.014- -058
1.372 2.899:
1..957 2.950

To),; ».}]
> ‘G?? )
a1

_ #257 -225
31..563: 3.257
2,160 3.289

12497 2.740°
1575 3.125
1.869° 3058

DY TRY TP
e
g9

2]
kel




50

. Gt - ) Qpf)
7 $=0.00  6=0.50° §=1.00 T 8=0.00  0=0.50  €=1.G0 _
ESTIMATE  8(8)=5.00. 8(8)=5.20: £(8)=5.4 (J,f)=s.e. B(6)=5.00-B(8)=5.2 B(8)=5.4 .(},f)=s.e.
n-= 20 B = 20
g2 .128 .179 .365 219 .120- J161 .269 77
éu .289 .729- 2.421 .308 .367 745 1951 .215
EG 010 .014 .003 6.125 .060 .159 . 068 3.102
Bep 663 .918 1.681 2242 .775 .952 1.656. .162
B .792 .981 1.634 221 .940 1.047 1.616 148
’éw .033 2062 .042 5.640 .099 .052 .146 2.878
’ém, .679 .B67 1.712 266 .776 L9564 1.658 .161
év.m -808 .996 1.618 .213 2942 1.035 1:615 149
'és .189 2232 .338 1:722 .315 484 .73 439
r‘ésp .619 .938 1.575 L2631 .822 .961 1.650 .155
'éSR .792 1.609 1.536 212 .957 1.064 1.582 147
nE30 n=30
E: .045 .092 .233 .110 .040 .081 .20F .088
'éU .168 .871 4.329 30 .185. .900 3.891 .104
B .349 .705 1.337 .159° .524 .989 2.020 .084
’éGP 587 1.062 2.817 .052 .731 1.072 2857 .066
’éGR 767 1.21% - 2.494 083 .938 1.241 2.513 .058
g, .333 | .691 1.263 Ja70 .524. 1.001 1.919 .085
B 585 1.060° 2.833 .092 737 1.071 2.857 .066
B 764 1.2i5 2.500 083 .945. 1.238 2.513: .058
Bs .380 77 1.534 31 .599 1.005 2.342 .079:
Es? 550 1.078 2.688 .09% .733. 1,101 2.865 .067
Bep .726 1.229 2.358 .083. .953  1.230 2.404 .061 |
a. -

The rows -corresponding —tp—i% give the MSE ofi‘éL. ;
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CHAPTER 35
SOME -GENERAL PROCEDURES OF ESTIMATING BOTH LINEAR

STRUCTURAL AND FUNCTIONAL RELATIONSHIPS




1. INTRODUCTICN

Consider two p .and -g dimensional variables x and y linearly
rélated by y=g + B¥ ;- whexe g and B -are unknown g-component vector
and g xp matrix, respectively. (%o simplifyv hotations, In this
chapter matrices denoted by €apital letters will not be underlined
by "A".) The variables ,{ and ¥ are vnobsérvable, and instead, we
obsexve Ri =X +gq and L2 =y + g, where (gl,%z) is distxibuted
as n(g,{),,;, With n such (f,y) and the corresponding {g,.p,)}. the

model becomes

i=21,..., n,

3 —~ " 2 " £ - i . ) i g
where the vector of "errors" of obsexrvations ('35:1"5552) are i-.i.d.
as ‘t\"(:f’(\)’,i)i, 7= '[:cijj mav be or Try mot be diadonal: We want £0
a3 oy o IR {5 h m a5 < 3 3 = -
estimate B based -on the ("Qil’"Qi2) . The Xy can either be constants
or génerated independently ffom a superpopulatith. The relation-
-ship Ny T & F OBy in (1.Y}) for the former is usually referred to as

a fonctional relationship and for the latter as

a structural rela-
tionship. Inthestructural relationshipwe assume that the %y are

i.i.d. as N'(;;\{,L{') . where y and zx are Gnknown, and: are independent

of the (:!ﬁjl'"‘gj2)” The problem of estimating paraméters in linear

structural and functional relationships ‘was comprehensively

reviewed by Kendall and Stuart {1973, chapter 29) and HMoran (1971}.
For the structural relationship model of (1-1), the simplest

case-p =g = 1 and ): is diagonal had been extensively studied in

+he literature. It is well known that § = B {(we write -8 for B -when
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B is I x 1) is unidentifiableée if 6,3 and o,; are unknown (Reiérsgl,
1950) . Unidentifiability results from the fact that (nyn,) has a
bivariate normal distribution and is completely specified by its
five first two moéments which are determined by six -unkncvin para=

meters. To avoeid this difficulty, additional information is

reguired. Two commonly studied cases are (i) both 913 and Os55
are known; and (ii) G,5/Gy5 is knovn (Which is equivalent to-
knowing } to within a proportionality factor (t.w.p.F.), i.e:,
knowing the A in Z = cA, whexre the (1,)) element of A is 1 and

c iIs an uinknown non-=zerc scalar (Lindley; 1947; Moran, 1971)).

In the former case, the maximum likelihood estimate (MLE) of B is
obtained fIrom solving the five unknown parameters in the fiva equa-
tions formed by eguating the first two sample moments of +the
(nii’niZ) to ‘theixr coxresponding expected values. In: the latter

case this cannoct be done since there are only four unknowns in five

eguiations. This éifficgityrbf “overidentification"”, as ncted by
Madansky (X959), had aroused considerable discussion and was
resolved by Barnett (1967) and Birch (1964) who solved the likeli-
hodd eduations and the algebra invoived:isiquiie complicated as
indicated by Dolby (¥976)-. It is interesting to note ‘that the
‘MLE of 8 in both cases (i) and (ii) are aldebraically the same.
‘Thé problem of finding the MLE of B fo¥ the:r general multidimensional
structural relationship model (p and g are not both one) of -(1.I)
whén } (not necessarily diagonal) is known or Xnown t-w.p-f. is
more complicated and seems t© have not been soived.

In :the functionalrelationshib model -of (1.1), no pérticulér
difficulty arises in obtaining the MLE of B when } is known or

known t.w.p.f. and the solutions can be found in Kendall and
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Stuart (1973, chapter 2.) and Sprent (1.969). It should be noted
that the MLE of B in the case } is known and the case ] is known
t.w.p.f. are algebraically the same.

For both structural and functional relationships; when § is
not known t.w.p.f., consistent estimates can be obtained if for
each {x.,v.), s replicated observations are available. The model

AT
{(1:1) then bzcomes

Yi =& F Bg;.

. T3l T X5t Ai51 (2.2)
Rij2 = ¥i * &i52r 1= Leeeermn 3= 1oecos sy ,
where the (&ijl'éijz) are i,iad,és,mig,2Y; -One procedure is to
° n e — —
. s . - = (s =
estimate F by 1 (ij1 = Ri-1v Ragz ~ Re-2) Wagn ~ Biear

Qijﬁ/s; k = 1,2, and then use the

GET)

Rij2 = Ei.z)/n, whese 5i'k =1
‘MLE of B assuming ] is knowh. ®Rnothér procedure is to solve the
likelihooG eguations directly. In: the functional relationship
model of (1.2), this was studied by Anderson (1951), Barnett (1969),
Dolby and Lipton (1972), and Villegas (1961). The computation is
in general complicated and can only be solved by iterative method.
The stractural relationshiprmodel wheén p = g = 1 is studied in
chaptexr 3. A different estimation procedure fox model (1.1) under
different assumptions was given by Robinson 977 .

In this chapter, we are mainly concarned with the estimation

cf QS in the following model:.




=8By T gy
28,0 -
_'B(QB)’
‘where Rir g and

£1 are r—component vectors, b is a p=component
v

Vector and B is a xrxp matrix. g and B are one to one -differenti-

able functions of the parameter vectors 8, &nd 26’ respectively.
Also the £; are i.i.d. as N(Q,Z), vhere ) is& either khnown completely
6r a khown Ome to one differentiable function of an unkhown para=

méter ﬁeétorrﬁo. Only the R; are observable and the %i are either

anknevn -constants (functional relationship) or random véctors

structural ¥ ionship) which are independent ©f the . nd i.3i.4.
(struct 1 relationship) %h nd of th and d

J
as N(E7Ex) with unknown 3 and Zx. Thé models (1:1) and (1.2} are
particular -cases of (1.3) which is guite similar to the factor
analysis model. Jdreskog (1970) in an analysis of covariance
Structure considered a very general -fodel wWhich includes a wWide
range -cf models as particular cases of his. By imposing various
Specificatiors on the parametric structuré of his general model,

‘he specializéd his model to the multivariate linéar structural rela-
tionship when } is -assumed to be diagonal; but he did fnot a¥rive

‘at any -explicit estimate-éXcept suggesting a numerical procedure
which -was outlined in his genexral model. By considerihg the less
.general but simpler model (1.3), the likeXihood function cap be
-expressed in:- a convenient form. From it we are -able to prove,

when specialized to the structural relationship model of (1.X)
with p- = 1, that the MLE of B in the casejz is known and the case

2 is known t.w.p.f. are -algebraically the Same and are also. identis

a2l to the ‘MLE of B when:'we have thefunctional relationship. This is




useful since vie do not have to determine whether the éi'should be-
taken as constants or i.i:.d. random vectors in our design. Simplexr
methods of combuting fhe MLE of B when p = 1 is given in sectién 4.
In seétion 4, we relax the normality assimption on £; In (1.3) and
propose an estimate of QB in the funcitional relationship when z is
known or known t.w.p.f£. This estimateé coincidés with thé MLE of

28 under a no¥mality assumption: The rationale of constructing

the present estimate enables us to establish consistency under Some
mild a&ssumptions on thé asvmpitoiic behaviour of the By This
implies that the MLE of § g undex a normality assumption is also con-
sistent, a result whic¢h is not always true in fMaximom kikelihood
estifmation with infinitely many incidental parameters as pointed
out by Neyman and Scott (1948).: In section 4,we give methods of

compiting the proposed estimate which is a value maximizing

certain guadratic form in the Ri-

2. 'MAXIHUM BLIKELIHOOD ESTIMATION IN STRGCTURAL RELATIONSHIP

LEMMA 2.1. Let 21' Xazbe non<singulax matricés and B be any
matri® such that the matriz multiplications below are compatible;

then

FEY ;i 'rt";l, X
le + B ié B ’B'iz

P

= Bvigtel ALl 11,0 -

Proof: (2.1) can beé proved by direét matrix multiplications.

Prove (2.2).,. 'we use the Binomial Inverse Theorem
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(a+uv) =21 algEe?! s vamteytvaTl (2.3)
to conéludé that
iy =1 _ ¢=1 _ o=1_,¢-1 i =1, e-1
(BI;B + J,) " = 1,7 - I;7B(};” + B'}I;B) "B’ . (2.4)

Now from the theory of partitioned matrices, we have

el o= 135t eetel 15t - gt ¢ seitm e rp Y
= ”:;l ""B'i;l'B' IBZJ_B' + ZZI-;l -
Bt
L L
I Q i, -B I
and
det[r —B.j) = det[l- * Q] =1.
Q I~ -B I
‘Hence
mtoQ
12| = det I I DY D e
e I

and {2.2) is obtained.

It is interesting to observe that (2.4) can also be deduced

from (2.1) -and the théory of partifioned matrices without using (2.3).

Consider the model (1.3), since Xi and £; are assumed to be

normally distributed, Ry 1= 1,..., n, are i.i.d. as N (% + By,

B, B* + J). It follows from (2.2) and (2.4) that the log likeli-

‘hood: for model {1.3) is




L | TR n .. n re—l s
1n L = constant - 3 In|} | = 5 1a|]} - 5 In[}, ~ + B'} "B|

CHEREE MR i Dol S Dl I

1
N| =
16133

i=1

(R; = & = By - (2.5)

‘To get thé likelihood équations, wé usé the theory of differenti=
ating a sScaldar value function of a matrix variable (¢f. Dwyer,
1967).. Following his notations we: use <X to dendte the (i,3) th.
element of the matrix X and if y =-y(X) is a scalar funcétion .of
X, then we usé 3y/3X to dénote the matrix whose (i,J) th -2lemént
is the partial derivative of y with respect to the (:I.,j);th

.elemént o0f X.

We further -assume that p £ r and: rank (B) = P, so: that

—B'Z—]fB is positive definite.

_ . ek 7 e . 7 _ ’ * i
Differentiating (2.5) with respect to K gu = (eal,.-,, exqa) : f
and -éguating to zéro, we have i
|
- 1 - ] : : )
B'F(g = = 2 n;) + B =9, {2.6) - -
i=1 = -
_t
ol D ] , PO,
6=t Feg -5 L +BR) =@, k=1l,...,2, @7
L oK i=1
where
e oo 1 _ v=1o 771 | eyl sl pel 2.8 ‘
F =1} ¥ B(zx + B'} "B) "B'} "~ . (2.8) S




ASSUMPTION I: Let,%a,énd y be the MLE of 9, 2nd y given that

gﬁf ga and Ex are fixed. fhen -
g{%u) + Blgs)gr 2.9)

is indéepéndent of §,, § and 1ee
ASsumption I holds for models (1:1) and {(1.2) in Section I.

For éxample, in
By <& T ERg tgy BT Lo,

where.
Mi11y
nt . , 011
n _ | isyy _RY L 4 .
Y= fr &= 7 B = | ’ Z—
' N313 led Bl 5.1
e °12
:Eﬁ:i.sz-é
and 0 and ] are s-componént vectors and I is s$xs, (i.e:, the
= 1-when it is expressed in the form 6f (%:3)),

(2.9) is egual to

Where a, = ) ~ M..q/ns, a, = ) ¥ n:zo/Nns.
1 i=i 3=i ijl 2 21 j=1 ij2
1 letting

Now consider the log likelihood 1n L_robtaineaiby
@ + By =jg(§u) +'B‘QB%E in 1n L. Under assumption I, to maximize

In L, we .only have to maximize 1ln Ll with respect tozge, Zx,'andzgo
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if } iS-unknown (cf. Richards, 1961).. Also for simplicity we can
write R3 for ni;;(gjﬁa)"FB(QB)%) in the course of maximizing in L,.
Letting

PR ~1 = ~—1 -] . =
¢=B8'] "B, D= ({x 0 Ri B'z HL X R3Ri/Dr

the likéXihood equations are given by

. a,:}i‘}fl 1 1K -1 .
R= —a_yx_ ) -nz * nuz P> z:K uvz y Z <DR:LE Ex uvz (2.10)
n 3py
: . _3C_ S
0= = =¥bp 2P0 35 )+ 2 2 p ¥=1,...,b (2:11)
BT 305y go; MM 285, A B0 ’

- ) - i i . . _.vth
where 86'_ (eBl"°"'qu)' and Kuv is the matrix with the (u,v)
element 1 and all other elements 0, If ) is unkncwn, weé have also
the likeélihood egquations

3 1ﬁ:::i. . n s
0w lo tr{ e Loyt

386k 2" 26

it XX psggd teonty

ok =1

+ 1 haoppppny™ 32 ke 212
o4

wherefgkf (801,..,;8; Y.

gcC:
Pre- and Post=multiplying (2.10)} by Zx' we have

-nz + nD + Z DR;Ei = R (2.13).
which implies that
I, =cterytsylect < 7L, (2.14)

From (2.11) and (2.13), we have

L



T

- _ aéw . - ﬁ; SN ‘dgi, = = 3 i
tr{-n}_ _393£) + 2 121 p{ D o 0, k=1;,..., b. {2.15)

-‘Using (2.4), it can be shown that
p=c?t- @y lsyie Y. (2.16)

Now (2.14), (2.15) and {2.16) together give

T =) =Y _w=1. =1 =1 =7 =7 Ve . n é i B
tr{i[C L e i B R R e - 33-?5 +2 % ;El: gila}

=0, kX =1,..., b, (2.17)

which ddes not involve zx.

When p = 1, (2.17) reduces to

v - 5 n 331
caeto=lar-1, -1 3C. ; i ; i
-nB'y 7S}y BC T = +2 ¥ —=—pl=10,k=1,...b. (2.18)
ELpe 18y 305 Ri

‘Now (2.18) also holds with ) replaced by A throughout. Thus we

‘have proved -that

THEOREM 2.2. Under assumption I, the MLE of 5’:8: for the struct-
ural nodel of (1.3) with p = 1 are algebraically the same in the

case S is known completely and the :case known t.w.p.f.

EXAMPLE 2.L. (2.18) can bé used to find the MLE of 8 = B in the

structural relationship-model of (1.1) with.p = g = 1 and a general

1 when § is known or known t.w.p.f. By theorem 2.2, it suffices to:

find the MLE of B when A is known since this will also be the MLE

-of :8 when J. is known. Now g = (0,a)', B = {1,8)"', x5 miN(ufcz)iand




9127911
935/931  ©22/913
with A- known. Since

o=l _ o oo - 22 3371, o
I'" = fog(a,, = a0 7Ry F =

(2.18) then becomes

(1,BYFSF(1,8) " (8,XYF(1,B) ' = (L,B)F(1,;8)'(0,1)FSF(1,8)"

Solving for 8, we have

B = (ayyryy— Tyg) * Tlagyryy = 1)) 7+ 455 ¥31 57550 (355715 ¥215T13 ) 17/

[26x;,* 53121?22)]}

where

FSF

Lt12 227

94

1
=)
L]

1 . )
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Thus the sameé MLE of § i obtained whether we know 6nly
055/6yy 30d 6;,/0,4., 0T all of Gy4, 0,5 and Oyae This is a
genéralization of thé case when ) is aiagonal;: in which the
MLE of 8 when 0,3, 05, are both known is only a function of
0,5/053 (cf- Kendall and Stuart, 1973, chapter 29).

For the miiltivariate generalization of example 2.1 with
p= 1, aiethod of finding the MLE :0f 5 is givén in seéction -Sf .
3. MAXIMUM LIKELIHOOD ESTIMATION IN FUNCTIONAL RELATIONSHIP

In the present case, the i are unknown:-constants, the

16g ITikeélYihood is. 7

. m oy e 1 B o=l .
in I = -constant - 7 inlyf - 5 j;g—'i'(n’i “f- Bﬁi)"z (g - &~ Bx;)-

Hence:

where: %. =

ASSUMPTION IT: Let %q be the MLE of § given that the x;, §, and §,
are fixed. Then there exist £, .g- independent -of ‘the Xir 'Q-o and. 23

and- -dependent only -on Qys--++ Ry such that

g®,) +BRE = g- 3.1)

g

|



Assumption II holds also for model {1.1) and (1.2) in
séction 1. Now c¢onsider the log likelihood 1n L, obtained from
replacing g by g (E&)f in in L. Undér assumplion II, to. max‘ix;”\ize
1a L we only have to maximizé 1a L, with respect to X3+ Rg-and
also g if ] is unknown. Also for simplificity we can write D
for p'i“;;g and x; for x. - f. 1n '—il becomes

%

b M. aer . 10B e .
constant - % in |3} = 5 i-z-=i' (p; - Bx;) ¥ {p; = Bxi)-

Equating 3 1n Ll/a x; to zero, we ‘have
- "lﬁ . - —_— A oz . S
B'Y (Bx; - R3) = Q- i=1,..., 1,

so that g; = € 'p; (C and p; are defined in section 2). So from

= 1,..+ b,

BRi ., X
3681& rgi]} = 0.

N —ﬁ;

=1 “i.e-1..1 aC
tr{c [=nB'} "853 “BC = + 2§
sy e 3By isy




.
3

o

[d<]

Comparing (2.17) with (3.2), we see that when p > 1 and J is
known or ‘known t.w.p.f.; the MLE of QB for structural -and func-
tional relationships in (1.3) ar¥é in géneral different. Howevar,

whén p = 1 we have

THEOREM 3.1. Consider p = 1 in model (1.3). Supposé assumption I
is functional with g of (3.1) are algebraically being the
g(§,) + B(gY of (2.9). Then the MLE of §, are algebraically the
Same whether (1.3) is taken tc bé structural or functional, and |
is known :completély or khown t.w.p.f.

In: partic¢ular, theorem 3.1 holds for model (1.%) with D = 1,

which is the most -commonly studied model.

4. ESTIMATION WITHOUT NORMALITY ASSUMPTION ON. THE ERRORS

We shall restrict ourselves to the functional relationaship
model of «(1.3) a@g,assuﬁe—that-g;= g. ZSupposéJZ is known or known
t.w:p.f. Let §3 be the true parameter vector; and By be B(g3).

For any i! the éipécted'value of the -squre of the length (the-

noxm) of the véctox'(BffélB);lng‘Z-lni is
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Bl B e e i ) = el e T B e e Y
= tr(B' 37N + BoxsxiBe) L BB IR H) = p o+ 4 (g,

are R T T L
where 0;(85) = xiBYL BB ] 1p)~1g'y Box; -

The following lemma riotivatés the construction of our
estimate.
_ : PR Lo § = -
It . = ] )
LEMMA 4.1. xiBp} "Byx, $; Bl > 95 ()

Proof: Let.

Then, for any y = (y.y3)' ¢ R°P, we have

X'QX = (¥1Bg +,¥é§")z-l(30¥l + By,)2 0 .

By setting

[l

= :
55 iYLty St

in the akove ineguality, the lemma is proved.




LEMMA 4.2. Lét § be any rxr positive definite matrix,

and A be two rxp matrices of the form

Ra

where I is the p x p identity matrix. Then
B ZG].A(A':E;IA) —'lA, z_lB < B z;;B'
if and only if A = B.

Proof: Thé "if" part is obvious.

T6 préve the "only if" part, consider again

'\A' fj—"i;B Al E_lAr 7

For any Xy € 'Rp, let y, = '-"E(E,"z:-lA)—l (A'E—']'B);XI e RP. Hence

A ey ¢ ATy, = Q- Now

- IR | . .
] [ celMaeyaty o -e eyt

Q
-1

- (B' X—IA) (AFX""lA)"‘l‘
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Lo ,
So (Y1¥2)Q = -0, which implies. that

X2

=1 , L1]
[2-%1 tp1y -4 T o= ® 1 4 = _f
(y3B' + x3A"E ~(By; + Ay,) = {yy.y3le| | =O.
d2)
We therefore must have giﬁ' + XéA' = 0. From the form. of B,a,
we have
¥o = Xy (Rg = RA),xi =0 .
Since Xi ¢an be arbitrarily chosen, Réf='RA‘
Lemma 4.1 says that the expéected value of thée norm
- .
. =1 2 :l s e E oo _ .
OF (B'Y 'B) B'Y By is maximized when £s ——gﬁl This
suggests. that a possiblé consistent estimate of 25 would be the
vaige~q£;Q§,which maximizes the quadratic form
n ’-'-‘ =Y L
%— 1. Rt l13(13'{ -y "13';2 1}31 . (4.1)
i=1

The followihg theorem: givés coniditions underxr Whi@hzﬂg is

consistént..

THEOREM: 4.3. Supposé the following  neighbourhood N of QE
exists. A:Gi‘ven any 6 > 0 with 55 = {Q:&g— Z”'Q)B -Qa” = 4§} S N,

there -exists a k6 > 0-such that for @VQEYVQS € Sg

Lo
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;-1 n 1 n . L
13m| = i£1 $;0a) /5 1’21 0;(95)) < 1 = kg . (4.2)
Assumé alsoc that

L3 ge (4

“Then Q‘é EQ"B’ as n + =,

Proof: et ¢ > 0 and ¥ > 0 be given. Choédsé §, 0 < § < ¢, such
that S; ¢ N. Then by (4.2) and (4.3) we can find n; > 0 such
that for n > n;, Q'B € SG' we have

L 3§ LY 4. (e ‘ (4.42)
= $.(8,) /= $:(83). < 1 = k! -4a
n gty *i®/n 2 2aRe 8
1 3 : .
ky < o izl N’i'(%g)' = :¢;§;g%g}:], . (4.4b)

where 1 > k"S > 0. Now, for any ‘%B—

1Y =1, ,e-1o -1, e=1
n L Ml BETITR) TR ey
1= )

n _- : —1 =Y. 3
L %o * &i)1 RICR R Dl NE R

B

2 2
=aL %% T

=11

n =

: g ig gy - T
1w e e,
i=1

1§ o=l vl -1.,7-1
tx ) ogl e TR T




- s
%

. n . o .
Let dn = % 121 [‘t’i('?.;) = 93 (QB') }]. We therefore have

1 _
i §° = & -7 2 n Py | ,'*;i: =1 o= .
s 2 (2 1Qt 1 2
* a7 G T &Pl ka8 v s

with vy, P 0 uniformly on §, because of the compactness of Sg- Now

§
. R ) _ L . 1
var(l ¥ aimpl el e e  egsa %)
J- n -— . o - _7 _— . ,,
el A TL T Yo S T e VR
n lfl
i B N T oy L1 B
<7 gl 5 (83) 715 i£'1, $; @3) ;,-lil ¢; (8g)]

The first ineguality fo6llows from Lemma 4.1 .and the last from

(4.4a). A similar argument shows that

Ll

o P Ny -
%iBéz £i/indn ¥l < > as n > =,

™
i+

on SG 77777

uniformly on S; and (4.4b) show that one can find n, > 0 such that

for n > nz

P A

e
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Pr(y, (§3) = ¥y (]! >0 for aI@;QB € S5 > I=y.

If the event inside the bracket is true, we have ¥, (82) > ¥, (R,
for all g € SS‘ This impliés that a 1ocalrmaximumrg§,of ¥, in
{Qg{“ga - Qg”zs 8} (exists by compactnéss) must be in the interior,
i.és, satisfying—ﬂgg - Rall < &, completing the proof of the
theéorem.

Sometimés it is easiér to check the -consistency through

the following theorem.

THEOREM 4.4. QE is consistent if B is of the form in Lemma
4.2 and
n
S - 5 R e
0 < 1lim 5'-21 xgj, j=1... P (4.6)
;s n
=1 2 . . . -
Hmg L % o R N (4.7
i=1 -
- = (3 ,7'7:'
where- *,l = (Xil:---r xi?) -
) ] o n
In.particular if §_ = ) X:¥X5/n converges to a non-singular matrix,
) nogoy PR '

thenxgg is consistent.

Proof Consider

1 B
7.k %

N
oD
w e
1§

=112
.M
&
'

&~

|

H

t
Ey
(2l




. -1 - . . .
%7121 65 (§g) = 0 would therefore contradict (4.6). Hencé
v L

. n .
lim Il‘ 2 ('QB > 0 FufFthermore, if lim % le d. (‘Q-B) = ®, the

second equality in (4.8) would imply that for at least one j,

a _ ) _
Y x2. = » whic¢h contradicts (4.7). Hence 1im =

j=1 3

By lenma 4.2 we have

W X
1im =

‘IB!X'IBO =G>0 .

_ _1 = ¢ .;l . ;1 _
36{ By - Béz B(B'} —B)
Thus a §imilar argument as in (4.8) sShows that

n

. 10§ oy _ A -

lim: o _:;_ [@i(,qa) ¢2:(‘Q'8)] >0.
i=1 -

It can: be shown that (4.9) is a c¢ontinuous function &f "—QB'

Hence by the compactness of S;, there exists a %5 > 0 such that
1im L % ¢ (82) = $=(p2)1 > 2
=" n ;&5 igs 'ij_'Q;B 6

for all ‘QB € §6. This fact together with l_i;m;];- Z [ (,Qé) > 0,

i=1

li‘m% M ¢i(g§) < o implies that (4.2) and (4.3) are satisfied. The
' i'—‘l

theorem: then follows from: theorem 4.3




By diffefentiating (4.1) with respect to the eBk and
equating €6 zero, Wé oObtain equation (3.2). Thus under a normality
assumption and with the A of | = &a known, Q% and the MLE
coindide, and the conditions for cénsistency established hére
¢an. be- applied to- the MLE. Thé consistency of the MLE of the
funétional relationship model of (1.1) in sectidn I has not been
thoroughly discusséd in the litératiire, -especially in the multi--
variate caseés (nindley (1947); Kendall and Stuart (1973, Chapter
29) had sketchéd a proof of the consistency of the MLE 6f 8 for the
casée p =g =1 and Whénr{ is diagonal.) For a multivariate riedel;
the MLE-doesnot havé a c¢losed form; thé idea of their proof may
notbe applied without complications. WNote that -here we do not
-assumie that S, converges-. Instéad we assume that asymptotically the
Ei:shoglénnbtrbé oo Closé or too spread -out. Moran (1971) pointéd

out that the conditions for consistency dépend on the asymptotic

‘beéhaviours -ofthe
To faximize (4.1), we can differentiste the expression.
with ¥espect to §,, equate it to zero and solve for %@’ ‘This
in principle ¢ah beé carried out by iterative méthods; but the
computation may be labovous. Here wé give methods -of maximizing.

(4.1 for some special forms of B.

Method 1: Siuppose B is of thé form

wheré R is an unknown (r - p) X p matrix ‘to -be estimated. First,




10 6

we  shall maximizé tr(F'Z'lsanlé) subject to the condition that
?'Zil? = I, whéere F is & r xp matrix. The maximum value is

. 1

f A, and is attained when F = :{—’29, whére P'P = I,

i=1

P = (RI""’ Ep)' and the 5 are vectors satisfying

1 21
0 %sf 2-amp; =49 i=1l,..., 5 (2.10)
A; is the ith largest root of [Sh = Y] = 0 (Rao, 1973, p. 51).
Now let
. 1 F,)
1% = .
F2

where Fl is pxp. Thken R = szi

Fy is non=singular. To brove this, lét

“Then
) . .
riB g8, = (PP TN =1

Aimplies
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‘When- B = B, (4.1) redices to
er(rr 371817 m) 2 tr(er i L8l o)
for C satisfying 'é'):;lc = I, Now for any B, there éxists a
nén=singular K -such that
x5y ek = 1 .
Let C = BK, then c') Ic = I. It is easily seen that (4.1) is
ex 3 e I8 B0 I ts) = tr(e'l i)

which completes the proof of our assertion. It is éasily seen that

o £ind R it is only necéssary to have P satisfying (4.10)

without the orthogonality ¢ondition P'P = I.

Method 2: An altérnative way of -obtaining R is: by using the

equivalence of ,Qg to the MLE and the result of section- 9 of

Anderson (1976) (see alSo Geary(1948), Sprent (1969, P. 91)). Iet
; ;ggi,,,.. v Reep be vectors satisfying '

- 5y = Ajznej, =R 3= lpenar TP,

where Aj is theé jth smallest root of
; Tg.. = A = )
Isy = Ml =0.

- -2 - N L4 __ 3 i3 c Y- _ _ - .

Lt @ = [R1rener "er—p] . Partition & as: ,[91,, 92] , where Ql’ has

p columis. Theén R = --95191;,—
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When ] is a diagonal matrix and p is less than i - p,
figthod 1 is less laboriods. Otherwise method 2 i& supériosr.
Method 3: Let X; be the largest root of |S; - A]] = o.
If % satisfies
BU(gt 17T 5, - D T Bigy = 4 (4.11)
Re? L7 By~ Xy Rg) =& .
then it maximizes (4.1).. Td Seé this let
1% esI el -lo,e-l.
.1 opp sl e B g =
i=1
which i1s égquivalent to-
(@t eyl I e - L it =0 . (a2
Tf X > A, then
-3 :E: S

21 1 - 2 i = mrp s, - ADE

would be negative definité, which implies that the left-hand side
c‘:’fr (4.12)- is negative. Hence: ).lp z A and (4.1) has :;’pax’i-mwn value
Ajp. ‘This value is actually -attained at Qg since (4.312) is satis-
fied when A = AP, by (4.11)
In the special -case when B is of the form
11

. 'R'B




where Ry i$ (r = 1) x 1, method 3 is less laborous than method 1.
Thus fiethod 3 should be applied to. compute thé MLE of B in the

model (I.Y) with p = 1 and } is known -oxr knéwn t.w.p.f.
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CHAPTER 6

MAXIMUM LIKELIHOOD ESTIMATION IN THE

PRESENCE OF INCIDENTAL PARAMETERS




113

INTRODUCTION.

Reégularity conditions under which theé maximum likelihdod .esti<
maté (MLE) is consSistent and asymptotically normal wheh the
observations are assuméd to be- indépendent and idehticidlly -dis-
tributéd (i.i.d.) have'been extensively studiedin the Iiterature.

A concise paper was written byKulldorff (1957) and a review was
written by Norden (1972, 1973).. However in many pFactical sit=
uations, the basic assumption that thé observations a¥e i.i.d.
does not hoéld. In a fundamental paper, Neyma# and Scott (1948)

considered thé following more genéral problem of parametric

estimation: Let {sq:‘i}“i"ﬁl be ah infinite séquence 6f indepéndent

random: vectors (they c¢an have different dimensions). For each i,
X5 has: a p.4.f. £i(§ijg,ii), whéxre gfandj{i are p and r -com=
ponent vectors of parametérs, reSpectively. § is the saime for each
of iandis called a Strudtural parameter, and the 1; each of which
appears éﬁlyrénce'in,fi,é;e ¢alléd incidental parameters. Heére
we aré mainly concerned with. estimating the structural parameter
%conéiétéhﬁhp. The well knéwn problém of estimating: linear
functioﬂai rélationship, -alsé: kndwn as errors-in-variables eg-
timation:in econometrics, provides an important example belonging
to this kind:-6f estimztion problem (see Section 3). In the ab-
Sencé of incidental parameters, the usuval properties of ‘the MLE
in the i.i.d. case, @ameiy consistency, .asymptotic fiormality and
efficiercy, have fairly natural generalizations to non=identically

-distributed random vectors. TRegularity conditions under which




incidental parameters is asymptotica¥ly normal. It

is seen that the probability 1limit of the MLE of Q is not
necessarily equal to the true parameter. However, it is shown
in séction 2, that in Some situatidns a consis{:ent -estimate of
8 + which is a function &f the MLE, ¢an be constructed. In
séction 3, the results are applied to6 the estimation of linear
fun(:t—:‘;'onai relationship. This is different fromihe usual approachés
which-rély on the explicit form {when it exists) 6f the MLE
(Barnett 1969, 1970; Patefield 1977). Consequéntly, we are
ablé to giveé mild ¢onditions under which the MLE df the in-
tercept and slope parameters in a Yinear functionhal relation=
ship are consistent and asymptotically normal. -Our discussion
is closely related to one of the problems raiséd by Moran (1971)

in the conclusion 6f ‘his review paper.

2. ASYMPTOTIC DISTRIBUTION

_ «© : _ A T oo & -
Lgt {fi}i=li ’f"' 9’ - (ell'G'r—:fr,aé') ’ :I:"il 1= ll—'zr‘--r be' as

=yt

defined in section 1, and Q an&f‘iti bé, respectivély, the parametric
. _ & . = 6o 9> 12 3,2 . e

spaces of 2 and I containing the true parameters Q and I3,z 1,2,.

For .2 sample of siZe n, the log Iikelihood is therefore

.

C n A oan I (O
where } denotes 21=l' The MLE Q’ Iyrcccrkn, OF 8
are taken as roots -of the equations VBL/a;t = %. ‘Where 3{1, = g,gr,"f!‘

Assume throughout that for each i,a unique solution

g{l(g\:'l,f‘i’) to the -equation




5. o o
I an (ﬁi :,,Q;:j;{i) = '(\), (2.1)
"\cl

‘exists whén it is§ considered as i funcétion in I To Simplify

mnotation, let, whénever thé derivativeg éexist,

4\.16 '\:.'1. B :\r:l

Bygen 1)

th élement

TLet %ﬁr(e) be thé sSymmetric¢ Fandom matrix whose (k;2)
is X—qikl (x578)/n. For every random vector ;\!{:wz.th distribution
5 2 - ey s € A ilta o oy
depending oily 6n e and fti’ we also write E(X) for E(',%I;,Q ,;\r’i);,,
the expectation o&f ;\(’ when the true parameters are Q,; and 'E:‘i’f
THEOREM 2.1a. Let g0 ¢ @°, where 0° is the interior of @, and

assume that the following regularity conditions are satisfied:

s _’.L,, Ax. 28,71
Tide gr, PELRIRAAL)

Al. For almost all x. , ::e*]’c enf, (%38,

2

(x Q.T ¥ and W S?.nfi '("\Ei'%"!{i) éxist for every

A2. Given ¢ > 0, there exists a § > 0 -such that

1z o, B | s |
;Z 1 . qf};l (éi"@:)] = I_l'): E;thikg (xei l%A,)] < e
"Qf—‘,@, <&,

for &1l 0 « 8g < 85 i ie is true when sup is replaced by inf..




-2 _ Jaf. (%:38.7:) = 9 (2.1)

i A <
exists when it is cong$idered as a function in Ii- To simplify

notation,. let, Whenever the derivatives$ exist,

2
8
LY

[y

£36(%i0833) wnfy (2578 %3)r  Eie= (g re-ov fiep’ »

'

) - _ ALY
Dypg (X3-R) = 30, £i0, (?61'5?. rg3 (%5080 -

TLet A-(é’) be the symmetric rahdom matrix whose (k,R})ith element
is }:qlkz ('}él'»){n' For every random vector gzwz.th distribution
-depending only on 8 and Iy we also write E (»X’) for E (;%l,?f ,I;) .
the expectation of Y when the true parameters are Q'; and t°.

i

THEOREM 2.1A. TLet @' ¢ 0°, where n° is the interior of 9, and

assume that the folléwing regularity conditions are satisfied:

52 32 . : i
W znf 1 2,-: Y- -and 362'_39}( fj_ ("\fi ,,%,;\r‘,i) éxist for -every

=Y (] -
{Q:13) € @° % T;.

A2. Given ¢ > 0, there exists:- a § > 0 such -that

< e

1so : 1. i
SLEL  sup ag, (@ - SIELag, (X800

llgegtiles,

for all 0 <« 85 < &; the same is trué when sip is replaced by inf.




A3. There exists a § > 0 and functiéns hikgiﬁi) such that
lagy o o)1 € hyy o (x;) for almost all x., g with [j§ -f7|[ < s

and 1Im § E(hik£(§ia)2/n,< o,
n =

Assume also that {[gie(gi;glfgi(gig;)) - E Eie‘ﬁi*ﬁl'gi(¥i'21)*L/“ B o,

where B denotes convergence in probability &5 n + «. Then &

necessary condition for Qn E :gl is
: . | 1 e seq . ] -
FLEE o KarR /g e R 125,271 + 0 s n o (2.2)

‘Conversely, we have

‘THEOREM 2:1B. If thé asSumptions X1l - A3 are satisfied and in

addition the following conditiom holds:
A4, lim ,{['[én(%l)]'_jl,” < =, where “Q” of a matrix A is defined

as sup |laglls

S -

=il <t
‘Then. (2.2). is sufficient for the following to hold: with prob-
ability going to oné as M + «, there exists a @n satisfying the

‘set of likelihood eguations corresponding to- 8
PEidRs o809 ks ) = 8

such: that ,ﬁn E gl. Furthermore, any other such seguence vould

-equal ﬁ"' with -probability going to-one as n + @,




The proofs of theorems 2.1A and 2.1B appear in Appendix 2.

REMARK. A2 is implied by A3 together with the following condition:
A2'. qikg(gflgr—is a contifuous function of § uniformly in i.

The proof of this is given in Appendix B. AZ"Y is moré easily
verified than A2 in some ¢ircumstances.

It is thus seen thatrén cénverges in probability to gl
indépendently of the I$ if and-only if (2.2) holds independently
e m(2°)
depending only on §° such that (2.2) holds independently of thé
P

13, and we then have §” 5 m(§°). This is precisely the situa=

of the 1. It is quite o6ften that there exists a §

tion in the Iinéar functional relationship discussed in the next

Section. mfif,(g‘?) would then be a consisteént -estimate of §°.

‘Thus although the MLE of § may not be consistent, it is often

possible to-céonstruct a conSigtent estimate which is a function

of the MLE; .and the problém reducés to seéarching for gl such

that (2.2)iﬁ@lag,inaependentiy of the r%.
We Téw give regularity conditions under which §" is asymp=

totically -n6rmal. These corditions here 4o n6t involve any

third derivatives.

a5. ELf; o008 g5 (s R = @, for all i

A6. Theére: exists a y > 0 such: that

_ . 1 T il & ) 1 A
'rg_+—,{/21273;lgéiék:(;§i,2 'gi’("ﬁj:"'g

:742+Y + 0 as n¥o, k=1,.000 P

i I , HE 1l
A7. 0O «< lim -]'—I’Z Var [fiek (Ksiia’ pgi (%ir,q )]

< 1iﬁ1%2’Var[fiek(ﬁifﬁlv%i‘ﬁi'QIY)1<gﬁ* k=1,---s P-




REMARK. A5 can be replaced by thé weaker aSsumption that

3 E[fiek(éiqgl,gi(§ijgi)ﬂ/n is of smaller oréer than n /2,

The proof of the following theorem reduires Appendix C.

‘THEOREM 2.2. Under aSSumptions Al to A7, thé MLE §” is asymp=
totically nermal with mean 81 and Govariancé matrix
=*1/2 ialyq1=l o reia salyiisl
n {E{A (8711} XHJE[Qn(Q Y1} =, where
,Yn = z Var[féie (Ki’g l%’i(éilg )*)*][nr that 1S,
nl/2 y /2 gia 91y 13- o1 d N(0,I), where S means convergenss

Xn - kﬁ v ‘Q, ‘?o + WA =€+ B 9
in distribition as n¥-es.

Noté that in theorem 2.2, we do not assume that V. -and

- s D oL s el s : X
E[kn(% }] :converge to a&ny limit. The convergences of,Xh,and
E(a_(91)] usually occur in the special casé when the incidental

; are generated from the same Stperpopulation.

paraméterér$
Proof: BY the Mean Value Theorem of a fun¢tion from R® to RV,

ﬁeMﬁfﬁawmmﬁngmmﬁabfkef'

1/2,T.,~1/2;1 Al N o
XN TR £io R8s (e 8TN ]

= T2 (g @” - g (2.3)

where ||9™ = gtll < :Ilf§;“’ - p'll. The left hand side 6f (2.3)

-when divided by %A?§; has variance 1 and




W T y1/2¢ 1 1. 12FY
EE %‘, Xn '\.lah('fl'gv’gi(f{figgf))
/ nata
A
1.,
) *2+Y )
B 2 . pay
(A R) n

s Z 2 Elfs . (%, ,Q:,g ,Qi))l
_l% 16 1 i

as n+ o by A6. The last ineduality is a conSeguence of A7 and
the use of 8a-of Rac (1973, p. 149). Thus by Liapounov's Theorem
; . -8
the left hand side of (2. 3) > N(0. fx), or
'T¥;1/2 (9 )nl/?‘(g g ). + (0 ,‘\’ A) for each lel . By (Hv) of Rao

, a
(1973, p. 128), y.1/%2 (o )n1/2 -ph S ND. Next we pro=

ceed to show that

A n, P
E[A (Q 13- an(g ) = Q- (2. 4):

Let ¢ > 0 be given and let 6 be as in A2 whén ¢ is replaced

by e/2. By A3 and Tchebychev's inequality, ‘we have

nt sup 1;(2 (gl"g) - '—z EL Sup- ike ("‘Ei'g)j ‘
g=g"1l<s o-g{l<s ’
< ¢/2) + 1

as n + «; thé same is trué when sup is replaced by inf. (2.4)

follows immediately since :@,ﬁ -Prgl (theorem 2.1B) and

Pr( ZE[qm if%il'”f' L OF B




lspp inf
723;”0—6,1”< qukf.()rii's,)]l <e/2,
oA

So, with probability going t6 1 as =

1
- _l =
a2 1 MWy g2

Vol ER, (@R (8DT ¥

exists and

_ =7
N S s BE
- Ra (8T (R (o™

(2.4), A4, A7 and Appendix C. Théerefore

-

1
v 2 el (gh1m?@"-gh =

, L
I e, n 2
'E[Qn(ie, Y1 [.Zén(g )1 ¥n }

{7 aff!;”
o, (8™ (n2 (3" - o139 T wig, D
Yn Ra(871 A 8T ’;‘Q‘E'
In the case 59 is ihéonéistéﬁﬁﬁggt,affﬁnction m(%") is con-
o

sistent, we have that m&gn) iszégygggatiéaily normal with mean

(91) = % 4 covaris matrisx T TJEL'i(éi 1}_1 - {E[ (61) }_1 T
m(g™) = 9~ and covariance matrix o “RIER, (91} N, {EIR (8] R -
where RT is the matrix whose (i,3j)th element is .

ami

95141,

n




3. APPLICATION TO LIMNEAR FUNCTIONAL RELATIONSHIP

In this sectiodn, we -apply the reSults in section 2 to
:discuss one 6f the various models in éstimating linear function=
al relationship. Comprehensive réviews of the subjéct wefe givén
‘by Malinvaud: (1970, Chapter 10), Moran (1971}, -and Kendall and
‘Stuart (1973; Chapter 29). Thé f0llowing model is -considéred.
Suppose two unobsérvable non-stochastic variablés x .and y are
linéarly related by ¥ = & + gn, where & and B .are unkKnown and to.
be estimatéd. We observe £ = %X + § and n = ¥ + ¢, wherée § and ¢
are independéeht and nérmal with zero méans and variances & 56
and o__» respectivély. With a sample of sizeé n, the modél can

‘be written as:
51
EY( Gie j)

§:) = =0 when i # 3, i3 = l,e.-, Do

‘B s
£(5;6.5)

i
Heré we consider the casé when A = d,é,é/o 86 1é assumed to ‘EBe known
{for dnidentifiabillity difficulties arise when A is unknown, cf.

Kendall and--Stuart, 19735 Chapter 29):. The structural parameter is

8 = (&, B, aa:g) Te (;9’1:,'62 . 9:3');'1' and the incidental parametexs are the Xy -




Let g° = (ao,go,cgsnybé~the trie parameter. The éxplicit form

of the MLE § = (&,8,5,,)7 can be found in Kendall and Stuart

(1973, §29.16) and is a unique admissibile sélution of the likeli=
hood- réguat'i'éns .

ol e aia ~p 1 e no 1 o 4T
THEOREM 3.1. In medel (3.1), § > 87 = (a®,R°, 50'66')' provided
that

A qe L2 35, Lo 2 -
0 < ldm foi < llmziz x; <& (3.2)

If in addition, théré exists a ¥y > ‘0 such that

3 sws 77771 _ ’2+Y — >y
1im- === R =0, (3.3¥
f ;@1 *y/2 1

then § is asymptotically normal with mean (0°,8°, 3035)7 and

covariance matrix

(382 + x %2 kx o |
XX
.o _
A0S s =kX k )
2 r
: o o "XX 66
5 - 22X ¥

where & = (1+ (892/%), ¥ = Ixg/n, Sy = I(x; = ¥%/n, ana

- o
Sxx + 066') *



Proof: We have

£ ((E = constant — 9ra . = Loz oy
%n,fiiLgiﬁni),g.xi) = constant - fno . = S2W X

: b=l rp 22 4 1 RPN
* 2ogs BT Y (ny a8k Ty

and Al is obViously satisfied. Alsé after taking first partial

derivates, we £ind g;C(E;,ny),0) = (Af; +8n; = aB)/AA +82),

10y = (n; - o -85,/ b (A+87)],

Hh
[}

= LOE; + Bn; -aB) (n; - =85;)1/Log(k +89 %), (3.4)

1

fi0. = = 055 + (n; —a=86)2/1265 + 821,

and their expectations vanish at g}. Differentiating (3.4)
with reéspect ipfgi it can be seen that A2 and A3 -are satisfied

using (3.2)... After some algebraic¢ manipulation , it is found

that
~ = -
X X o
corn palygy=l _ _ 1 ° 2 =1 15 .2 0
- e =1 2
s 2 . c e e , .
since flafl = % %Jaij‘ vhere A = (aii)' it is clear that A4 is




-
125
: satisfied by #{3.2). Hence § g'gliby theorem 2.1B. Also we £ind
1 ; 0 -
: ; , -1 5 Aols
2 ., 5y 2 - v 2 _ .86
V. = 2° g2 (Aa+(8°)) x =) % + —= 0 .
an &6 n~ 1 A*.(quz
ino 2
2(x+ (B°)")
0 (V] -,——Fa-———:
L 83
Thus A6 and A7 hold because of (3.2) and (3.3). The proof is
completed by Uising- theorem 2.2.
We notice that the MLE of g is consistent for « and 8 but
not for Ss5° As pointed out in Séction 1, the function (&,3,2366)

of the MLE (&134868) is consistent. Theé inconsistency of'cr66

‘had been observed in the literatu¥e (cf. Lindley 1947) .and the

-A

FOsae which is asvmptotically -~

usual unbiased c¢orrection is

equivalent to- 26,,.. The consistéfncy of & and -6f f has been
86 &

-demonstrated in: the literature (cf. Lindley (1947) Kendall and

‘Stuart (1973; Chaptexr 29)) but the method reguires- the convergence
of X and S,y to finite limits:. Here we only reguire that the
xishouhihefthgg be too Spread nor .concentrated:whén n + ©

(see (3.2)).. -Asymptotic normality of the MLE 6fi€%§$'n + = does

not seem to have been investigated in the literature. The asymp-

totic covariance matrix of (a,B) Was obtained by Patefield (1977)
based on the -éxplicit form of 1&15) (see also Barmett (1969,

1970); Robertson (1974).)




APPENDIX A

Proof :0f theéorem 2.1A,

A;r;piyiﬁg thé Méan Value Theorem we c¢an write

Sleg et gitn. oty = & {x.,8 .8
nl fig, B8 8t 8 M = 5155 25087005 308
I A PSSO A an_ .1
n E Ilek'(_?\fil'% 'gi (¥il,§' )) = %n (2 } (g '?.' ) P

) T - S 5 nan X n, _ (alyq P

where Jlo™ = g7|| = {Jg" =87|]. sSince B (87) - E[%(g S EEa]
((2.4) in the proof of theorem 2.2) and gﬁ—:-
we therefore have 'Zfiek'(?\,(i"?, 5 (Qi ,2 Y) /i > 0 and

3 5 F g 1.5 ] > o
hence Zsifie;k(?\’ci,f\)' 495 (’a‘cii:,g’ NWi/n + 0-as n > o«

Proof .0f Théorem .2-..1B.

‘We first observe that using an .argument similar to the
‘proof of (2.4) in theorém 2.2, we have from A2 and A3,
. B .
A (8) = E[p_(a)] = 0 uniformly n a sufficiently :small neigh-
I Cq, 5 Sy 4 B =
bourhcod of k. Lt follows from A2 fhat )};E'[Qni({{%)i] /n is a
n L
equicontinuous function .6f @ at 61 ©n n. A4 theén ensures
LU ) L
the existence of a A such that A < = |[{E[A. (e1)137 1| L.
= 4 A,
“The Pprocf of thedrem 2.1B can now bé completed by applying the
Inverse Function Theorem with an ardument which is a -Suitable
modification of those first used by Foutz (1977). in his proof

of the existence and uniqueness of the MLE in the i.i:d. case.
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APPENDIX B

A2®' and A3 imply A2.

We prove the "sup" casé. Suppose A2 is not true. Then

wé can find Sn, = 0 and k. such that

e . T U )
o L) BDsup e Gl s i L Blage (gl = «.
g <g <5,
kn
J wWe- See = ;1 - < L
Now by A2%, we See that W = kn:— i;l v\ip— U6 (K57 8)
) L g -gtli<s,
=kt Zn < P ¢ 1y convergés to 0 a.e. Alse by A3 W_ is
n ;L GakelRs R converges to 0 a.e. by A3 W, I

dominated uniformly in § by a Yandem variable Z'ﬁ in . Hence
by theorem 4-1.4 of Chung (1974);, we have Elwﬁ] >0asn-> o

and this is -a: ¢contradiction.
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APPENDIX C

Let {A.} be a sequence of p x p matrices and [[A || < K
An’p=1 ~n-

for-ail n. If {e.17  1is a séguence of random matrices Such that

AN p=3:
E = A 5 0, then with probability going to 1 as n + « g L
xn RN L g ! ane
exists and (E. = 2 )E?lrg 0.
%} wn’vn.

Proof: Sincé—gn - %nrg'o' with probability going: to 1 as

- — - ;-l - - e _
n>e, [E = all < 1< H;\s:n;u which implies ‘gﬁl exists by
theorem 2.8(a) of Pudin (1964)- WNow it :can be preved that

with -probabiTity going to 1 as n »

. L .
WML = IR T = IRy = RplD ™ < 287X

Hence
. 1By - BET I < 11, - Rall NESM B o,

which implies (E, - A )}5—1 g

:of-:
I v s
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