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’relative‘to'that of the’ ground‘ Thus,'the pile foundation

“'vide the, basie trends of the

snalytically obtained at the pile head and this soil-pile inter-
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L When dynamid loadings are applied to t?# structure supported by ‘a .

pile foundatlbh the pile foundation resists the movement f the structure
1provides the

\ . . .

stiffﬂ'.s andadamping to the structure. The characteristics of stiffness

and damping gLesult from the dynamic soil-pile ‘interaction gnd are very .

little known. : : ' Co : : -

As the'first step of the reéesréh on the comnlicated dynamic

soil-pile interaction, the gener 1 trends of this interaction were

investigated theoretically for he simple, ideal conditions. The’

model of a soil-pile system w7 chosen so that it could clearly pro-

ilepile interaction;4th;s, the
complicated bensvior of soi and other complicated conditions of a
soil-pile system were simp ified.

The soil re?ction ‘ a pile subjected to dynamic loadings results
from superimposing the soil reaotion in each wave genersted from=£ne
pile into the soil medium. The analytical solutions for the soil
reactions in an individual wave were derived and the characteristics
of this reaction_were.investigated; It was found} that the'soil
reaction in the n-th mode wave approached,quiekly to that for the
slane-strain case es‘frequency'inereases_sbove the n~th natural
frequency of the stratum. | ,

The stiffness -and damping of a pile set 1n the groumd were

action was investigated in terms of thos;\htiffness and :damping.

Signifieaﬁtly different frequency—depeqdent ;3hqxi:rs ‘of stiffness

»



o .
andddmmping were observed between ‘the weak and the stron%-soil

effects.‘ It was found that’certain dimensionless paramdtérs shown

- ‘X§ L 4

in this dissertation could indicate the intensity of the soii_effect.

-~

In order.to,illustrate the observed characteristics of soil-pile R

interaction, the'displacements of pile were shown at the pile head
N X ’ R N

. ']

under harmonic excitation applied:at the~pile head.

Using the derived %olution\for the soil-pile system, the coef~

ficient of soil reaction was further obtained along the length of
pile. "The results “for the static case showed that the coefficient of
soil‘reaction is notruniformialong the length of pile even’ if the '
"so1l medium is unifbtm.' -It-fnrther showed that the coefficieut« for -
the dynamic case apptoached that for the plane,strain ‘case as the

excitation frequencg incteased. Therefore, the dynamic condition

provides a more favorable situation for nndeling a soil medium as

. [y

Winkler s model than the’ static condition does. The spring and damp-

ing constants in this model may be obtained from the plane strain

. -

~condition. - . -
"_ Since the commonly nsed method to estimate themcoefficients of
.soil reaction are based‘on crude assumptions, some of those methods
WEre assessed by comparing theoretically the ooefficients ‘obtained by
uging them with tho&e obtained by the derived solution in this dis-
sertation:J The application of the modified Baranov 8 formula\to
‘estimate the coefficient for the pile was also asgessed. wss
found that the plate loading test poaaibly oveteﬂtimates the co Lﬁ-

.
"rficient for a slender pile but Vesié's formula underestimates it\
for the weak soil effect: It was also found that the modiff!d .

Baranov's formula could }@ applicab1e<to'eatimate the'coefficient

L
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CHAPTER 1. INTRODUCTION .

Dynamic loadings .applied to structure built on ground may be
classified into two types. One is tﬁe &irectwloading which may be
inducedAby’wind ghd operation of big machines. The other is the )
inertia loading of every mass of the structure induced by'grou2d=
sh;king. The ground shaking may be a dynamic disturbance transmitted
through the‘grouhd - an earthquake, for example.

Sincg_ground has some flexibi%ié&, the base of a structuré tends
to move d;e to those dynamic loadings: The forces at the b;se gfva

structure are determined by the force-displacement relakionship of the

ground at the contact. Therefore, this relationship affects the

-
-
o

behavior of structures built on ground.' P ) oy
. . @ . " X "'r“p 1
Sigmificant amounts of research have been conducted to clarify

this force-displacement relationship for a-6tructure placed directly
on the ground (Arnold, 1955; Aﬁbjobi and Groatemhuis, 1965; Awojobi,
1972; Bycroft, 1956; Elorduy, 1967; Kobori, etc., 1967, 1968, 1971;"

Lucqﬁgnd Westman, 1971; 1972; Luco, 1976; Novak,'1971f Reissner, 1936).

As a result of such efforts, it is possible to estimate this relation-

ship'reasonably well for a structure resting dtrectly on the ground.

_When a strﬁcture’ig supported by a pile foundation, the force-

~ -

displacement’rélationship of the éﬁil-pilé system at the pilevhehd -
must be includéd in the above mentioned force-digplacement relationshié.
‘ThisArelationship_resulta from soil-pile interaction and 1is not well
understood yet because ofAits extreme coﬁplexity.

Static behavior of a‘pile foundation is governed by soil charac-

teristics, contact conditioqf between soil and pilé, confining pressure,




ﬁoundary conditions of ground and pile, magnitude of applied force, .

etc. In addition, damping and inertia forces of the soil-pile system

Ed

‘affect the dynamic behavior of the soil-pile system. In the past, very
few studies have been made on the dynamic behavior of soil-pile system.

However, in most of those studies, the .effect of inertia and damping in

a soil medium are not properly taken "Into account. Instead’of those - -
. . . -

important factors in dynamics, much effort has been placed on accounting

for other goVverning factors as much as pessible. Because of ignorance

of important fackors in dynamics and so many parameters considered in a
: |

complicated manner, it has been hardly possible to draw a clear picture
of dynamic characteristics of soil-pile interaction.

. <, . o
"There are basically two kinds of treatment for soil medium when a

3

soil-pile system is modeled. 1In one of them, the soil reaction to a

Eile at a certain location is assumed to be related to the pile dis-~

. LI
placement only at the logation where the reaction is considered. 'Thus

’ the soil mediug: is treaggd.és 1ocally indepen_dent springs. and dashpots
distyri.b‘uted along- the 'ivile' 1en.gt:h. This model ig called Winkler's
.model. Sinee the displacement at one location in a soil medium influ-

." ences mechanical behavior of the med,ium at other locations, it is

difficult sto estimate the o'istants of equivalent locally independent
sp_x:':.lngs and dashpots distributed along the pile length. In Penzien's
work on seismic rgspe&of a pile (Per{zienr 1970), ;loweyer, ‘the “spring
constant is estimated fro‘m th°e static 'force-displacement relationship
which 1is obtained by applyingta uniform ring load at the 1ocation of |
the spring in an elastic half-space. This estimated spring conatant

. does not include the effects qf damping and inertia forces of f:he soil
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medium. On the other. hand, Baranov's formula for estimating the cof

stant of soil springs (Baranov, 1967) includes those effects to some

] ¢
\\\\\-//’ ‘ extent, In this'formula, the constant is obtained by applying a har-

monic excitation uniformly distributed along the circular, rigid,
massless cylinder'which extends infinitely in an infinite elastic

medium. Novak recently applied this formula to a dynamic soil-pile
/ ‘ ’ ’
3;interaction problem in estimating the locally independent spring and

dashpot constants of a soil medium (Novak, 1974).

- In the second kind of treatment, a soil medium is modeled as a

o

three dimensional continuum medium. In this model the displacement
at any location of soil medihm affects the soil reaction at all depths
of a pile. However, considerable difficulty is usually encountered in

deriving a.formula for soil ‘reaction. TFor a visco-elastic stratum

<
PR

overlying'é iigid basé, Tajimi derived the solut%on for seismic
'_‘ ' . reﬁgonae of % soil—pi{e system neglecting vertica} displacement of
tﬁg strﬁtumr(ngimi, 1969). However, his solution ig not for general
boundary conditions at’both ends of a pile but oﬁiy for‘the rotationally
, . +  fixed head and pinned tip. ’ .
‘ In this diséertatioﬁ, dynamic characteristics of soil—pile
interaction are maiﬂhy investigated under harmonic excitations. Main
emphésis 1s placed on drawing the physical insight of the dynamic

behavior so that general trends can be seen clearly. Dynamic behavior

of a soill medium is associated with waQes'generated‘in this medium,

g

and therefore, can be interpreted by the nafure of those waves. Since

a continuum model is the'bnly’model‘which can simulate the wave

~motions in the medium, this model is chosen from the above mentioned

¥

; . N . -
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two kinds of models. The égsumed conditions of s0il medium are sim-

plified as much as possible in order to avoid extreme complexity and
attain a clear picture of physical insight of dynamic soil-pile
interaction. In deriving the solution for horizontal vibration, the

vertical displacement of a soil medium 1is neglected following the

Tajimi's solution. However, the~solution is obtained in a different

-

m;nner so as~to be applicable to general boundary conditions at both
ends of the pile. Although Tajimi did not consider the solution for
vertical vibration of soil-pile ,system, the solution for this mode of

vibration is also obtained.

Scope of the Dissertation

Deformation of a'pile accompanies the reaction from a soil medium.

. The reaction forces for vertical and horizontal vibrations are derived

and their characteristics are discussed'(Chapter 2).
“Utilizing those gbtained'formulas for soil reactions, the equations
fof'motions of-a pile surrounded by¢a sotl medium are set up for verti-

. cal and horizontal 6ibrac16né and solved  for the stiffnesses of a soil-

pile system at the pile head (Chapter 3). Then, the characteristiecs of

bl - -

dyﬁamib soil-pile interaction are investigated in terms of those stiff-

-

nésses (Chapter 3). ‘

In order to further illustrate those characteristics, the
displacements of an installed pile aré obtained at the pile head for
harmonic excitation forces applied dat tbg,pile head (Chapter 4).

The solutions_obtained in Chapters 2 and 3 can also provide the ‘

plle displacement and soil reaction to a pile at any depth. Thus, the

locally independent soil Qprings or the coefficients of soil reactions

v
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) are obtained from thﬁm and their characteristics ;ére discussed together
with some of the commonly used methods to estimg‘i't‘e those spring con-
stants (Chapter 5). &(‘ ‘ . - .
. ! ' - C 4
/l'a‘;?."v : -
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CHAPTER 2. SOIL REACTIONS TO HARMONIC MOTIONS OF A PILE

2.1 Introduction ) ' C?\

When a pile 1s‘subjected to dynamic loadings, the energy applied

to the pile is trangmitted to the}surrdunding soii. Some of the
transmitied ene;gy is temporarily‘stored in the soil and returned to
the pile during a cyclic.loading and unloading process. Tﬁe remainder
of the energy is dissipated in the soil througﬁ conversion into heat
and radiation to infinity. The energy loss is called damping, and

classified into material and radiation dampings which result from the

.t

i
b

[

energy conversion -and radiation, respectively. Soil acts as a spring

through the former' ener: transitién and as a damper through the latter

ehergy transition. Soll reaction is governed by these "spring” and

"damping" functions of soil. 1In this study, the soil reaction is

expressed analytically and thén _its characteristics are investigated.

The soil medium is modeled as single stratum overlying bedrock

(see Fig. 2.1-1). Other assumptions .de in this study are:

1. The soil stratum 15 homogeneous, isotropic, and linearly
"visco-elastic.

2. The top surface of the soil stratum 1s freeifrom stresses.

3. T#e soil stratum is fixed at the.bedrock; i.e., no displacements
are allowea at the bedrock surface. -

4. The soil stratum is horizontal and extends to iﬁfinity with a

constagt thicknesé. - N S
5. Ver§icai and horizontal displaéemenﬁs are small eno;gh to be

negligible in horizontal and vertical vibrations, respectively.

’(a. . ) ' ’6 . . A
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6. -The load iéi;pplied tc the soil through the éircumgerence of

the circulér pile.

7. T@; pile is vertical and driveﬁ to the bedrock.

These conditions are rather,ideal; firsg, soil is never uniform
nor isotropic because of the incieasing pressure with depth and the
complicated formation process of soils. Second, the structure sup-

|

ported by the pile foundation may contact.the soil directly, thus

producing stresses in the soil which the abové made assumption does not

* account fqr. Third, it is diffi;ﬁ&t to encounter rigid bedrock under-

neath soil; flexible bedrock gféﬁsmits energy and provides flexibility

to the stratum. Cop

Most analytical solut‘.:_-'i::("s in soil dynafnics ac:opted the Voigt-type
visco—elagg;c model. This model yields iinearly frequency-dependent
Aamping. Contrayi?to this, expe¥imenta1-results on soils show that she
material damping is'iather frequency independent ARichant, Hall, and
Woods, 1970; Dobry, 1970; Krizek and.Franklin, -1967; Seed and Idriss;
1976; Hardin and Drne?ich, 1972). Therefore, the.complex elastic con*
stants a;e used he;e in order to simulate a frequ?pcy-independgnt |
material damping of soil. The reai and 1mag1nafy parts of the complex
elastic constants can etermined from the elasticxand damping |

\

nature of soil as described in Appendix A. i !

B e - <L »

"2.2 Analytical Solutions for Soil Reactioms

The ana;ﬁtical solutions for the .soil reactions’ to a vertically
and horizontally vibrating pile are derived individually in this

section. The assumptions used in these derivations are given in

’
.
-
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Section 2.1. The soil stratum overlying bedrock is shown in Fig.

2.1-1 along with the ctoordinate syétem.

.
N

"2.2.A Soil Reaction to Vertical Motion of A Pile ) ot

¢

Neglecting a horizontal displacement, the equat{on for vertical
motion of the soil stratum is given by . -
‘ " ’ Al 32
T+ 2u) + 10+ 2u") - w(t)
. l 3z -
(2.2-1)
-~ 2 2 8 -
129 ) 3
+ (p+ oo+ =5 Jw(t) = p —5 w(t)
r Or 2 2
v aT . ot
where ¢ - .
w(t) = vertical displacement of soil mass at time t,
A, u = real part of Lame's constants associated with strain
energy, ) -
A', u' = imaginary parts of Lame's constants assoclated with
energy dissipation due to material damping,
*  p = mass density of soil, i J
t = time, and
i = /-1, .

Under sfead§—sﬁate motion with frequency w, the amplitude of the
. ] ‘

displacement, w, can be separated as

w(t) = w eiw? . ‘ -t " ¢ . (2.2-2)




. N ~ : - 4 ‘\ .
R _ E “ o ‘ . 10
. N ¢ o ’ ~ T N
© . .in which w is the amplitude of the vertical displacement depending -
. 4 . N . o
. on r and z. -When Eq. 2.2-2'is swbstituted’into Eq. 2.2-1, the above
pA eﬁuatf%n,of motibntcan be.féwfitten as ) . S /
> . .y ~ ’\ : " ' . . hd .
2. . . . -
- 13 . i ;
S s n(1+iD)—*§¥(1+iD)(—l4‘a—-‘%) . Co
LELT A AR P’ ) or  arl/ -
Lo <. 3 (2.2-3) «
- . A » 2- - -
p = e\, .
. a"'- -;(VS)° v .
' ‘m-é.;_e . . ‘: 1. ! , a A ' o ' .
e f’; . ’ N ’ . ’
. . _':‘A V( :‘ ‘-a 'l ] - . . lN., A L] ‘ . R
0T L0 V. {1 -2y el : - ’
-~ s < - . - -
- -."v.,‘ ;_‘1‘ A' + zﬁ;,;.' "
b, = _ij‘gif = damping factor ass@ciated with the
. ' longitudinal wa\/e,
v ' ) “ ' - u‘
. Ds = %r— = Damping faqtor'associated with the shear wave,
S T )
V1 = ———T;Jif = longitudinal.-wave velocity,
N \\\; v, = /%— = shear waﬁg‘veiocity, and .
: . v - = Poisson's ratié. ‘ : . £
\ . { ‘
" It should be noted that the above- defiqu dampiag D1 and D are
 different frem the conmonly wsed definitions in which the d.eﬁxpmg
/ -
. factors are half of the above défined factors. . M
i Separating the variables in'w further, the vertical diaplacement -‘/
L]

w can be expressed by ' -

B 'Q ‘% ‘ : 7 R ) . J_ f. L ' “
v b ORM () S . éﬁ.g-z.) .




After substituting Eq. 2.2-4 into Eq. 2.2-3, the equation of motion can
e v cx i
be written as . ‘ . ot
: ‘ 2 2
o 2 1 9372 3 R 1 3R\ 1 -
. o +iD) =+ (0 D+ T30 )R
. N : 3z ar
N (2.2-5)
( 2 | | | y
9—— L]
- -
Vs) : i )
% . :' R ‘l '
. " This equation can be split into ‘tio ordinary differential equations:
.\n - . . . : AY ' \
‘ : ‘dzz -2 ~ T s
S oA . S5 4a%ze= 0 ‘ (2.2-6a) -
= \ dz ’ - .
. a’r + 14dR . 12R = 0 | | ' &% (2.2-6b)°
. 2 ¢ dr . , : ' K4 ‘
dr ., . N .
- . ‘ .. ( ' ©oa " '
where h.and 1 must/satis.fy tbé following reiationship:
‘ ) s . "2‘ . 2 s -
‘) n2(1 + 1iD,)h" - (w/Vs) ? : )
T T+ 1D, A .o @D
s .
- . T ; R
.Fhe solutions of Eqs. 2.2-6 are ’
- (39 '\ a . '
J , .
oy - - AJ
. R(x) = AK,Wr) +B ,I'O(l.r) | | S (2.2¢8a) .
. Z(z) = C sinthz) + D cos (hz) ¢ (2.2-8b)
. 3 b .
. where IOKlr) and 'Ko(lr)~ai'e the modified Bessel functions of the
. . .3 " .
zero-th order of the first and second kinds, reépectively, and A, B,
- . - . ..
* . C, and D are the constants determined by the boundary conditions.
. Thérefore, the complete solution for w is - ' ’ ,
. ° .
2 ‘ &
‘ - L
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K3

-~

w o= [A K (1r) + B 10(1r)] [c sta(hz) + D cos(hz)] (2.2-9)

*

-

The constant B must be' zero in ordersto satisfy ‘the condition
that w decays with distance r. Slnce’no horizontal displacement is
assumed, zdtro stress on the top surface of the stratum can never be

achievéd. The approximate solution can be obtained by selecting D = 0

.

and hn = %ﬁ (2n-1) where n jis an integer from one-to infinity. This

@

of the stratum. However, as shown in Appendix B, the displacement of *

the p!Ie as obtained by usihg the,apprOximate solution agrees Qery

well with that obtained by Pdulos and ﬁ;ttes (1969)'altﬁough they

2

adopted differen; assumbtiongwend methods of analysis. The dipplaée—

/ )
ment amplitude w of the stratum can finally be expressed -as

ﬁ .
‘ -
wo o= ‘.-Cn Ko(lnr) sin(hnz) : (2.2-10)
=i - '
vhere -
EER¢: | 1y v 2.2-11
b, = oy ® )  (2.2-11a)
+ . '
- n2(1 + IDKE - w/v )Y >
1, ¢ T i~ L
'Then the shear stress amplitude ;rzlis N ‘ 0
' ow
x - + ", —
Trz (u tu") or. ¢ on
Y - .2 BT (2.2-12)
] = -u(l+ 11)5) E c 1 K, (lnr) sin(hn?)
. ) ' -~ o=l S
. ‘.>) R \' .
) LN
e W,
kK "o - .

12

approximate solution'always yields the shear stress on the top surface



wherean(lnr)‘§S*the modified Bessel functiog.of the first ordex of the
. ‘second kind.

The displacement amplitu&é ﬂf«the stratum ac the radius of the

k — R

pile, W(z), may be expressed~£zom Eq 212—16 as T SR

- D “\4 . . - ®
W(z) = w(r=r0} 2)( ) e ‘:'\\ N
- . IR _(2.2-13)
= ,E ) Wn éin(h z) A
- n_:l_ c . ]
. " *  where Ty is the radius of pile and - -:. ‘
R A L L (2a2m18)

~

The §oil reaction induced by the‘digpiacement W(z) can be obtained

by integrating the shear stresses Tz around fhe‘g;réumference ©of the
' ’ R . 2
pile. Thus, substituting Eq. 2.2-10 into Eq. 2.2-12, and using the

. 4 .
relationship in Eq. 2.2-14, the soil reaction p (z)“1s obtained as
Py

) follovs: : ’ % '67' e
{ T ) S
- : 211' o
pv(z) = -/ Trz(r=r0)ro de , o ’
. 0 & L (2235)
£ ‘ ' K (1 L ) .
= 2m u(1 + 4iD )ro E 1n K (1 W sin(hnz)‘ .
) n=1 .

This expression canm be simplified by introducing‘;he parameter

a , so that ‘ ‘ N
m ' o L) - - -
P o
. . . . ‘ . . 5— \
) pv(z) . E L n's:Ln(hnz)’i Q (202 16)'
i - ' n=1 (4 ‘ - T
. - ‘ éd' . -:.
i 1’ »
. 0
! :
I .
\ . I
& . .
! : . ) ) Fe,

L

13
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» -
t

\ : ' ,‘i A K1(1nr6)
o = 211‘111‘0(1 + 4D )lnigﬁ—?—)—’ A
n 0

[ X]

(2.2—17)‘£

“

Using the dimensionless parameters, the soill reaction pv(z) in
N, .

Ay

Eqs. 2.2-16 and 2.2-17 can be reWritten as

F §
_ b
PV(Z) = My avn'wn s}é(hnz)
n=1 !
!
wvhere . o ' \ "
3 N jK1('1'/'1{‘) .
o, =721 (1 +14D) = o
va n HEK (1 /H)
. o 0 ™
o ) ' \\\JS\
- 2 _! R L34
_ n2(1 + 1D )2 - a2
1 = HI' = 1o O
‘"n n 1+ 1D
s
” h = Hh = T (2n-1)
n . n 2,
a"z: g—w
0 V
) 8
7= L
Io
PR
H -

@
¢

2.2.B Soi] Reaction for Horizontal Motion of a- Pile

-

motions of the soilfﬁtratum are given by

-

hY

(2.2-18)

(2.2-19)

(2.2-20)

(2.2-21) .

T ’ Neglecting a vertiqal displacement,| the equations of horizontal

14




, . . : 15
{o+ 2 + 100+ 2 )}— A = 20+ 1w T2 0 (o) |
l‘ ' (2.2_223)
32 3.,2
v ‘ = p—5 u(t) - (u+ 1u') —3 u(t)
ot .02
. L
{(x + ) + 10" 4 2u')} %%— ACE) + 2(u + iy’ ) 2y (:)
: X (2.2-22b)
‘ az 52 .
s = p—7z v(t) - (u+ L") —5 v(t) | ,
Y, . . . at dz |
where
13
ace) = — 2= m(:)} + 18 5 v(t)
‘ . 1 3 . /
i . wz(t) = 3z [Br rv(t)} - — u(t)] T
b ‘ : (2.2-23)
' '2 u(t) = displacement in r coordinate _
N . ‘0

v(t) = displacement in 6 ‘coordinate

Under steady-state motion with frequency w, the amplitude _of the

displacements u and v can be separated as

. u(t) = o eiwt .
) * i < (2.2-24)

cv(t) = v eiwt » ‘
> . : . ‘ ' ¢ . . A . .

in which u anv & are the amplitudes of  the displacements u(t) ahd v(t),

« | . v

respectively, and depend on r, z and 9. Substituting Egs. 2 2—24 into

Eqs. 2.2-22, the equationa of motion can be- rewritien as I

)
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2

O

1
A
3

» K1
‘ o OW 2
* A 1 vz 2 3 u
_2u(t + 1 - _ Su
O+ )+ 1D,)757 2ug1‘ 1D )T =3 pw u - u(1 + iDS)azz

(2.2-25)

3w 2

ol 1 : . z 2 o v
A+ 21 + iDl)r S + 2u(1 + iDs) ™ -pw v - u(t + 2Ds)j—5

-

az

Let the potential functions ¢ and ¢y be defined as ;

S TR 11"
ar r a6
v o 138 _ ¥
r 236 or

. . ’
where ¢ and ¢ are related to the longitudinal and shear waves,
\ .
respectively. Expressing Eqs. 2.2-22 with the above defined potential
functions, the folwaing dec0uﬁied equations are derived:

2 2 ip )= 4+ (e, L
n(1+iDl)V¢.+{(1+i.Ds) 2+(v) $ =0

vzw + {(1 + iDS)

where

N

2 9

109 1

B ——— o - — o —=

v Tt 2
r

arz

]

rewritten as

¢ = R(r) e(e) Z(_z)

'Separating the variat}gs, the potential function ¢ can be

2
(2.2-27a)
8z s
2 .

—a—2+(-“-’—)2_}w = 0 (2.2-27b)

g e" (
9z 8

a2 .
*-E (2.2-28)
36" =
> - - . /‘
| . @.2-29) -

(2.2-é6)

L3
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Substituting ¢ in Eq. 2.2~29 into Eq. 2.2-27a and dividing by

R*©+Z leads to

17 .

L2 o 2
2 1 9 R 1 1 2R 1 1 3%
— —— __._._+_.__..___
““*“’1’(11 2t TR T 20 22
ar r a8 ,
2 —_
1 3 °Z w \2
+(1+1Ds)'z_ 2+(v) = 0 ,
3z s :

¢

. ’ ' ‘
Eq. 2.2-30 can be split into the following three ordinary differential

equations: ' LI
2 2 '
1dR,1T1dR m 2 . -
R 2¥rRar -3 - 4 - (2.2-31a)
dr. * r ' ~

N
N

The bc;iutiona, far Eqs. 2.2-31 are

*

d40 | 2 -, . ' (2.2-31c)

o=

B . ) .
where h and q must satisfy the relationship -

7w’

. (1 + 1D )n" - =
q = 5 2 : ‘ - (2.2-32)
n (1 + iDl) ’

<

-
1

“~ - - .
Im(qr)_l '

- - -

R = A K (qr) +B

-

) '(3.2-33a)

’
3

’Z - A2 sin(hz) + B_z‘ooa(hz) . (2.2-33b)
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© = A sin(mé) + B. cos(m6) , (2.2-33¢)

3 3

where Im(qr) and Km(qr) aje the modified Bessel functions of the m-th

order of the first and second kinds,-respectively, and A and B are

constants determined. by the boundary conditions. Therefore, the com-

»

plete solution for ¢ is

¢ = {A1 Km(qr) T B1 Im(qr)}{A2 sin(hz) + B cos(hz)}

2
(2.2-34)

7 ‘ o ‘x{A3,sin(m6) + B, éos(me)}

Following a process similar to that used for ¢, the solution of

Eq. 2.2-27b for ¢ can be derived and is

o

. v o= {A4 Km(sr) + BA Im(sr)}{AS sin(hz) + B5

cos(hz)} .
(2.2-35)
x {A6.sin(m9) + B6 cos(me)} ‘ ‘ ~;&
wvhere A and B are the constants determined by the boundary conditions

and s is

‘ h L 2 w 2

4; . 1+ iDs)h - (;;) A | .
s = (2.2-36)

. T+ 1D_ - .

]

NThen the displaceménga and stresses in the stratum can be

t

3

cobtained by using the following relatlonshipa;: . .o

*

. . -
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‘ .
o, = {0+ +i00 4 23} v
e (130,12 1 % 1w
w1 T 3r 2 .2 r 3ra® 2 39
.r 39 T
- 3 a2 . .
o, = O M T 4200 + 1u')~—%, (2.2-37)
. .az .‘ .
. ’ 2 2 \
- +apyf- L3¢, 223%¢ L3¢ 13y
"ro ygp " )( 298 T T arae T T r or
/ Te or
y 2
+ li : 2
r 36 .
3% %y | -
= ' .
Trz (u +4ut)g2 araz +. 2963z _
‘ 2.0%  a%y
= ' = -
Te; W+ 1uh) r 360z drdz

The constants B1 and B, must be zero in order to satiéfy the

4
condition that the stresaes and displacements decay with r. Since no

vef;ical digplacehent i§ allowed, zero stresses on the top surface of

the stratum can never be achieved. The dpproximate solution can be
-

obtained by selecting.Bzr--B =0 and h = %ﬁ (2n -~ 1) where n ig an

5
integér from one to infinity. This approximate solution always yields

the normal stress cz ofi the top surf&ce_of the stratum. However, as

3 L]

shown 1in Appendix B, such an qpbro;imate solution givea‘aatisfactory
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results. The loading condition in which a horizontal displacement

U(z) eimt is applied around the circumference of the pile (r = ro),

further calls for m = 1, A3 = B6 = 0 and
W
o

u(r =r., 86 =0, z2) = U(z)

0’
(2.2-38)

- = E‘ = -
v(r = Ty ] > z) U(z)

Therefore, the potential functions ¢ and/t/ﬁpn be finally written

as

[

¢ = + cos ] E“ An K1(qnt) sin(hnz)- (2.2-393)
n=1

y = gin 6 E Bn K1(§an sin(hnz) . (2.2-39b)
n=1 ‘

L ' . 5
where the ¢onstants An and Bn must further satisfy the conditioné/;;

. Egqs. 2.,2-38, and o

2

' 2. {w_
(1 + ms)hn - (Ys)

3 (2.2-40)
n 1+ iDl) - ’

2 w 2 '
{1 + iD )h™ -~ (—-—)
8 n Vs o
8 .= . ,

’ _ _ n’ 1.+ 4D
, * 8




8 -
2 : n "2 ‘
- + — s
+ Bn{sn K1(snr? 4 T Ko(snr) + rz 51(9 r)}l

I 1 . 21
\
@ Substituting the above obtained potential functions into Egs.
= ’ - ! ~
; 2.2-37, the displacements u and v and the stresses o and Tre can
be expressed with the con§tant§.An and Bn as
| . 1
= E - — +
u cos 8 sin(hnz) [ Ah{r K1(an) q. Ko(an)}
. n=1 : .
' : (2.2-41a)
. 1 \ .
+B = K1 (snr)]
: 1 1
t — e - —— ——
v sin E hg»in(hnz) [ %n = K1 (an) + Bn{r l(1 (snr)
a ~n=1 . ' i .
j:- - e (2.2-41)p)
* ®a KO(Snr)}] L I
| ) 2 .
. . = -+
f , . o, cos é}E: Sin(hnz)[Ah(A 2u)‘1 + iDl)qn K1(an)
) - n=1
l+ Z.A (1 + 1D ){2q—“1(( r)+—1-'1<( -r)} (2 2-41.)
a ¥ s r 0 r2 19 ’ ¢
d L
‘ ! ,
¥& *n 1 '
- 28w 198){2 Rl + 5 K, (snr)}
~ /
T = gin eE sin(h z)uy (1 + 1D )]A 4{1‘1 K (q 1) +2—K ( r)}'
_ re e s'|"n \r “0'%n 2 "1V,
) ' = \ . n-1 ' ) »~ . r
¥ . : . . . B
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fﬁign Substituting u and v in Eqs. 2.2-41 into Eqs. 2.2-38, the condition
€ . ‘
expressed by Eqs. 2.2-38 can be rewritten as
] R ) 1 ‘ S
- —_ + + —_—
E : [ An{ro Kilamg) + 9 1(o(ano)} Bn.'ro K1(snro)] sin(h z)
. - n=1 . '
(2.2-42a)
= U(z)
T 1 1 : ‘
- -— K + — + !
‘ E [ An{ o 1(ano)} Bn{ro K (s ) +s_ KO(snro)}]sin(hnz)
n= ] oL ' (2.2-428)
= -U(z) P _
In the above, U(z) tan also be writtén from the expressions in Eqs. -
2.2-47a and 2.2-41b as .
1] V‘m N i \ - Al .
v " U(z) = E U sin(h z) » (2.2-43)
. n n
n=1 4
Substituting Eq. 2.2-43 into-Eqs. 2.2-42 and solving for An and Bn, the
constants An and Bn are obtainéd as . .
2 +
A= - K enTo? * 24%0%0 BT U
,9 quO(anO)KT(snrO) + snK1(an0)K0(snr0) + qnsnroKO(anO)Ko(snro) n
f ) » \ ' N
(2.2-44a) * -
T 2 +
© B = - : g 2R G 7g) *a roKe (g ry) "
ry ,
n 1Ko (a,7g)K, (8 7)) + 8 Ki(q 1)Ky (s rp) + 98 0T0X0 nT Kp (8,7 0

R (2.2-44b)
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1 .
* Horizontal reaction of the stratum ph(z)e wt resulting from the

displacement U(z)eiwt is .

2T . o ‘ ~

- ph(z) = -—/ {or(ﬁro)cos 0 - rre(r-ro)sin e}rode (2.2-45)
’ ’ 0

Substituting o_ and T . in Eqs. 2.2-41 into Eq. 2.2- 45 together

with the above obtaine’d constants A and B . the horizontal soil

reaction ph(z) is obtained as

‘-ph(z) = mur, Z{'ﬁ + iD,s)hi —-(v

n=1

U sin¢h 2) (2.2-46a)
n n

|E

[+/]

et ™

\4—\,4.;
-

- where ) -,
2

4Ky (o, T IRy (8mg) * 8ok (AT Ko (8 Tg) + a7 oKy (9,7 dKT (8 xg)

= ~ +
n quO(anO)K1 (snro) ~SnK1(anO)K0(snr0)£+ qns T, K (c[n O)Ko(s r)

v (2.2-46b)

Yoo

Eq. 2.2-46a can be simplified by introducing the parameter o, as

kn
(z) Z & U s‘in h z , . (2.2-47)
n=1 - :
: s e 2 y ,
ahn - 'nfuro{(‘l ~+ iDs)hn - (“"—;) }Tn 7 . _ (2.2-48)

Using the dimensionless paramétere,‘ the soil reaction ph(z) cart’ be

rewritten as




p,, (2)

where

=2

=T

Ifi addition tplthe frequency pafa&eter ay» artother fﬁequencf

ll

parameter a

which has the following relationship 'with a_:"

a

'
0

0

-
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N v . R

'n'},[ E G}mrun Sin (hn22 - ' . . i < ‘ [ (2.-.2“'69 )

. n"'.'1 R . ! '
{T (1 + ip )BZ -\ 22 JH } T : (2.2450a) |

. il n .ao\_‘ A " " .:'

:rﬂ s . .‘. . B 4 . :"' . T

H ' -A \ , . . N “ ' .. . : . 4" .

s

4Hl<1(qn/H)K‘,r (sn/H) + smh’»-; ﬁqn'lﬂ)\léo(sh./n) + qnl_(ogqn/E)K1(sn(§‘) . A,

qunKO(qn/lf)K1 (s.ﬁ,m} + ‘HsnK1 (qn/H)KQ(sn/H) + qnﬂnKO(c.ln/H)l'io(‘sn/H)
et " (2.2-50b)

(+4p )R - a2 " " P
4 s n - F (2.2-50¢) .

n?(1'+jiD1) ) ° »

.oja+ mg-)ix'i ‘.3(2)- S '
By T o +'1D$ s o . (2.2750d)

o
-

- . .
: ‘e -
’ N - .

‘e L] ¥
<
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2.3 Characteristics of Soil Reactions\ to Harmonic Motions ‘of a Pile

'The dynamic'reéponse of a pile f{orms waves in the stratum. The

dfgplacements and stresses in the strdtu sult from those induced by

each wave. K The wave pattern of each we%e along the depth forms the
- os 3 ) R
mode shhpe s5f the gtratum which satisfies the boundary condition at
|

the. top-and bottom of ,the stratum. The parameter a is interpreted
\ . B

as ?Xmodal ﬁurce ;mplitude to yield a unit dishlacement amplitude of
. . .
thekn-th mode at the circumfe*ence of the pile. Therefore, this
pa;ameter is viewed as stiffness of the stra:;m associated with .the
‘n—th mode wave and‘ie called resistanceofactor.
\ .

-

The redistance factor 'is generally written in terms of a comp lex

numbef§ the real part._expresses the stiffness for the spring funptidn

of the stratum and the imaginary part ‘does the intensity of damping for
-

the damping functien of the stratum. The 5pring and, damping functions

»

*

of the §tratum‘afe governed by the nature oé’the wave propagation in

" i ’ I ET |
the stratum. ! )
o T ‘
* -f'. L . LY
2. 3 A Nature of Wave Propagation in Stratum g : .

-

In this paragraph. )he stratum is further simplified and assumed

to have no material damping. "Then’ 1 in Eq. 2.2—11b for this case is

=

‘= -— ?J— - ‘ ’ " ey " )
1 /n“n . . ‘ s O ¢ 3 S )

When .the excitation frequency w is larger than vlhn, the inside
. ‘ . . & = ‘

A

.. of the hquare root is negative. ~ Then, the dippfacegent w for n=n in

o ! ' & ’ i K Cev
Eq. 2'2-10: wﬁ’ -is vewritten as p Tl . L

3

f‘ “ \‘ f. ' ’7 s R ‘ " h - ) ‘\\fifi’
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w = C“;sin(h zjﬁzél T)
n n 0 n

M - ° . o
' N - ‘ ‘ 2 ’ :
where Hg(l;‘lr) is the Hank2l function off the second kind of the order

zero and 1 is " Lo -
i n ) -

1 = \/(9“5 - F]z h2 . ) M ’. (2-3"2)
n v . m ! . - .

“

-—
.

., cC c C- o N
"= B cqs(iut - 312 HZ(?I— r) - 531 cos (mt’+ —2—1-7— z) H2(21r)

2 L o\L L. O\L .
v ~\Zn rn ~zn . v re
~ ' i" . . . (2-3"3)
b" BN é‘ﬂ . - i ) k;/ .
. = = (2.3-4a)
zrg h . TN . B
L o= 2 ” (2.3-4b)
m 1.
n - R ) -

»

Eq. 2.3-3 shows that-the n-th mode wave progresses in’'fhe radial

° v . ’ A
- ® direction reflecting successiyely at the top and bottom of the stratum.

° f

Su‘ch n—th 1;1.ode wave"p‘i'opaga_tion formsﬂ the wave patterns in vertical
and horizontal directions. Those wave patterng are called the second-—; .
ary waves, vhich' consist of the Ldgxe,ssﬁre‘nwaires for. the horizo'm:.al :

o

R y ’ ° K ' :
wave pattern and the standing waves for the vertical wave pattern. The

wave lengtﬁs of the séanding #nd progressive ‘waves are given by ‘LG and

a
.

I:m, respectivgly, and are. shown 1in Fig. 2.3-1. - T

e

¥,

. e,

pa i b
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The wave length of the n~th mode primary wave, Ln’ can be obtained & ¢

4

from the geometry shown irm Fig.e%.3—1, and {is

L = — ! (2.3-5a)

Using previously defined dimensionless parameiers,.Eq. 2.3-5a can be

rewritten as

P

.

e L o= —i - . (2.3-5b) -
I n 2 . 2 2 : .
\/a .+ ho(1-n%)
0 n . - f
‘ ) ’ : \/
. Then the direction of the ray path of the n-th mode wave, th,‘is .
f .

-

obtain®d from the equation

*'%

. 5 - < b
2 2
. G g
n_ _ s - 0 _n
Lrn' o[ 2 - 27, =2 ) 2
" ' ﬂQ— + n2(1-n%) \[aa *+ b (=)
. vS ‘n

:(2.3-6)

When, the frequehcy 2, is equél to nﬂ&, the n-th mode primary wave

S

. . ¥ h -
propagates in the vertical direction. Then the n-th primary wave 1is -
1 ' . ’ i ) v
- identical to the n-th standing wave and its wave length 1s

N

- T, _ _tH

n 2n-1 : ¢ (2.3-7)

/ : v o
. .

Under this situation, the energy in the stratum is built up to iﬁfinity

'

. by succqasiye\refqutions at the top and bottom of tﬁe stratam. This -

[ . . -
.
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condi;ion is called resonance and the  frequendies at which this

condition occurs are called the natural frequencies for undamped °

-

system. Therefore, the natural frequencies for the vertical
: \

vibration of the stratum are « e
a = nh no= 1, 2, ... ® ‘ PRI

R As the excitation frequengy increases from the n-th natural
frequency, the n-th primary wave propagates mb:e horizontally. When
the\frequency is well higher than this natural frequency, the progres-

sivg wave is nearly identical to the primary wave. Under this high

@

frequency, the wave length of the piimary wave is nearly equal to
. ’ ‘\\ - - ~
2nvs/w which is the wave length of the shear waye.

When the excitﬁ%ion'frequend} is lower than the n-th natural

fréquency, Eq. 2.3-3 ean bé‘rewritten as . .

-

C : c ’
‘ n . 21 n 27
= — - ——z - om—— g ——
w (t) 3 cos(wt' LG)Ko(lnr) 3 cos(wt Lz:)KO(lnr)

- . : "(2.3-8) -

Eq. 2.3-8 shows that the n-th mode wave does not radiate,borizontélly

’

and the displacement v is in phase along the horizontal plane. In

(s
this case, the progressive wave does not appear*but the standing wave

, does. However, when the stratum has material damping,'the progressive

. wave appeafs slightly even in this ffeqqgncy range (Kobori, Minai and

Suzuki, 1971)

. -

In horizoytal vibration, mutudlly 1ndependent-solutions for the .

potential fun &ons $ and ¢ are derived. The wavespmssoclated with

-~

‘ 'thoae poten al functiong ¢ and V are respectively called ¢ and ¢ wavéa

‘here: The i wave 1s identical to the shear wave. The expressions .;_

. ’ o




!

for ¢ and ¢ in Eqs. 2.2-39 can be rewritten in a similar form as that ~<o

for w in Eq. 2.3-3, #nd.the’same arguments as those given for the

-

vertical vibrationfare still valid_for\the ¢ and ¢ waves. -
‘ : 5

: \\ Following a procedure similar to that usedmggz,veffiggl vibration,

the wave lengths and the directions of the ray pat® of the n-th mode

primary waves are found. . ‘ //)
¢ wave
Ly ~ ; = - 2mH — (2.3-9a)
.“’_.2 2 1 a? + hZ(n® - 1)
+ h"t ~ ,
\'4 n 2 /
- o o . 4 ) ’
2 - . ) - . .
) -n L 2 =2
[ . Vl n n2 ao - hn
cos B = = - (2'3_%)
" 2 2 2,2 .
/(3—) + h2(1 - ;1_) /ao B (n” - 1) ‘
vl S n 2
n .

cos g_ = 5 - o (2+3-10b)
_— 0 :
v

»

From those expressions, the natural fréquencies'are'ohta;ned

I rd rs

ao - l'-;n , ) n - 1, 2, beeg o
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L 3

' Nd
gh frequencies (a0 >> hi(n2—1)), the ¢ wave is nearly identical

to itudinal wave. Under this' situation, its wave length is

nearly the same as that of the longitudinal wave,
‘can be rewritten as

. The frequency“pargdeters a, and 86

| 4
|
| 1 H .
ao L . (2.3-11a)
S hY
r
1 0 ‘
] =Y —— N -~
3 T WL (2.3-11b)
5 »
A
wvhere Ls is the*wave length of the shear wave and is
Zva )
L8 = o . (2.?—12)

+

Therefore, the frequency parameéers ay and aé are concerned with the
. . . .

i‘ .
S
’ shear wave length rglative to the thickness of the stratum and the

fe T . |
radius of the pile, respectively.

&

2.3.8 Charaéfefistics‘cf Soil Reactions

i —
f ’ The explicii solutions for the soil resistance factors in Egs.

ﬂ co 2,2-19 and 2.2-50 show that the spring and dampiné functiohs of the

stratum affecting the dynamic behavior of the pile depend on the

-’ . rélativ_e'thicluxeas (i)', material damping (Dl’ Ds).,’shear modulus (u),

.

f . , Poissofi's ratio (v), wave mode number (n) and excitation frequency
L o . : o o p :

(80) ’ : . . . ! ) ' ? ’
° - In the following paragzaphs, the' effect of those paramgtérs on

the spring and damping functions of the stratum will be examined.-in

T,
’ 4




B i i

N VLR

~

Fe

.terms of the resistance factor. The material damping parameters are
assumed to be D1 = DS; the following definitions of frequency are used.

1. Natural frequency is the natural frequency which is assoclated

with the specific mode under discussion.

2. Low,requency range is the frequency range lower than the i

above defined natural frequency.

3. Hiéh frequency' range is the frequency range higher than the

above defined natural frequency. . N\

-
" o
g

1) Frequency and Wave Mode Number .

Figs. 2.3-2 show the variation of the resistance factors o_ and ;£

" with frequency. In these figqres,'the characteristics of the relatibn-

f ship bet&qen soil reaction and frequency may be classified into those .

in the low, resoﬁant; and high frequéncy ranges.

In the low frequency range, very little of the progressive wave’

o

is generated in the stratum. Therefore the damping is mostly caused

by the material damping and is nearly freq;ency independent. 1In this
frequgncy range, the characteristicS’of‘thé standing wﬁvg appear
strongly; The pharactéristics'of this w;ve aré‘goverqed by the wave .;

length of the standing wave relqtivp to the thifckness of the stratunm,
: . (
-
which is governed by the ‘wave mode mumber under a given frequency.

L

| .

Therefore ihe‘stfffnesa in the low frequency range 1is significantly

|

1

affected by the mode number. Figs, 2.3-2 indicate that the atiffunes
hy ads
‘) -
increases with mode number. As sﬁpwnrin Fig. 2.3-3, such an increase

. : ! I . : v
is more rapid for a thinner stratum (relative to the radius ofe. the

P

pile) and for vertical vibration than horizontal vibration.

Y
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When exciﬁation frequency'is around ;he resonant frequency of the
stratum, the intensity of the pro&ressive wave suddenly increases
This accompanies a sharp 1nerease of the damping and drop of the stiff-
ness as shown in Figs. 2’3'2ﬂ | i t,

As the excitation frequency increases further, the primary wave

'S ®

propagates more horizontally and the effect of the sghnding wave tends

to diminish. Thus the wave length of the progressive wave approaches.

v

that of the primary wave which is nearly or completely independent of
the ﬁode humber in this frequency fange. This situation results in

" reducing the depeydence of the soil resistance'oQ the mode number-as
showﬁ in Figs. 2.3-2. Since the wave length of the pfimary wave ré&la-
tive to the radius of tge pile affects the behavior of the horizontally
propagating primary wave, it may be Qore convéé%;nt to use the frequé?cy
parameter aé,in this high frequency range. :

»

(11) Relative Thickness of Stratum

Frequency-dependent spring and damping functions of *the stratum h
are éhown in Figs. 2.3-4 arnd 2.3-5 for various thicknesses H. As can'

~be seen in those figures, the spring function of the stratum is signi-

ficantly affected by the thickness H in the low frequency range; the

~

static case is further shown in Fig. 2.3-6. Fig. 2.3~6 indicates that

~ .
the stiffness in the higher mode wave is more -affected by the thickness
H.

. . \. <
The comparison of the previqusly obtained soil resistance factors

—

Son and ;£n with those for tHe plane strain case 1ndicatea that as the

ftequency 1ncreases above the resonant frequenty of the stratum, the

-

L]
)

//,fyrimnry waves become closer to thoae'for the plane strain case and dlso
' § . " : ..

"v-
5

LRl
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propagate mote horiiontally. ’Thg plane strain case referred to here ~

. iétdefined:;n Appendix C and yields the wave'propagétion @n'only the

horizontal direction no matter what the extitation frequency is. As !
b rd
the primary waves propagate more horizontally, the behavior of the

stratum.is governed more by fhe wave 1ength of the primary wave rela-

- b4

: H . ¥
5 (f’ . ( tive to the radius r, but less by the wave length relative to the

thickness ef the stratum, Thus, as the excitagion frequency increases _"

o

iﬁ the high frequency range, the stiffness and damping begcome less

-

dependent on the thickness ﬁpand, apidly converge to those for ‘the

)

blane strain gase.as shown in Figs. 2.3-5. . SR w

At the resonant frequéncy of the undamped stratum, the primary
:wave propagates in a vertical direction and the wave length relative. to !

-

the thickness of thé’stratdm termines the resonance. Therefore, as

"
‘e - ‘.

shown in Figs, 2.3-4, the n~th undamped resonance appears at the cen-
. v sfant ratio between the qhickness-o%vthg sefgtum and the,wave 1ength\:ﬁ

. of the primary wave : nE;/(Zn) for veftigéi vibration andaE;/(Zﬁ) for =

P : - 4

. horizontal vibration.. . . ‘ ' ‘.’} . )
A - o ' . ’ , - T -
" (111 Mat:erial/Damping o . ' ’

. ) >

Figs. 2.3~7 and 2. 3-8 show the variation of the soil reaction -
with frequency for both presence and abaence of the matgrial damping -

1n the stratum ‘ In the Iow frgquenﬁy range, it can, be seen in those ,

. . figures that the material damping affectsathe damping functfbn of the
“strafim but little does tha spring fungtion, The mnterig% dnmp@ng R ‘-“°.”’
gen;iates the dsmping a1££0u§$ no dnmping'appeats'ighehh‘hla'tic' L
. stratum. This generated damping result- moltly from the nntetial f‘a “}"

| danping and ‘varies veﬁy littrh with frequancy.




e

-4
g

T 3
S
-
Q
<
'S

. §.
- .
€ £
s @
“ o
[
b4
+ » - [~}
F-S
. ' ‘ : , FREQUENCY 3 = ag/ 21 - -
' ) a8 L > IMAG, PART
- ‘ 5 ——— 0ge0p0 |,
" L . . — - — DQ-D,-OJ} -

~

12 | —_— 0g=0Dy=0 |
’ —-—— Dg*Dy*0.1}

.

RESISTANCE FACTOR Oy,
«
T

.
.-
=
* . 4
. :
. ) !
.

{

’ - e Y T8 8 10 12 14

) T . . .FREQUENCY ageTo/m ' ,.'
,;'7«; B Fig. .2.3-57i.jilnriation of Resistance Facf:or o with Frequency .

- . > . a, for Various Damping Factors (Vartical Vibracion).
- : ' o - AR

. - . - . R .
s + 4 . .
N ‘ ° . - 0
S - . - . o ”
- . . :
. - B .

. . c
P —— , .
. .
i S .-
4 FaR N
. . .
¢ . -
- .
- T . :
had . - - -
‘ °
— N
a——r -
)
S R 7 .
L
[
-
N
.
>
-
. » -
-
. .
. .
- e L *
. e . -
4 » n
P AT
; e ”




.
H | . ' .
. . . H . . o f
SR e e [ T A w7 e -:,“'-gn'dfj:’ftr'fvs*t.ﬁ; ma»mmww‘awwwmkwmmw

1

Lk
RESISTANCE FACTOR &y,

oyt

(4

> : .+ FREQUENCY 3g=ag/a3

8 I N IMAG, PART

£
~— 0gs0y=0 | .,
- DQEDy=0.1}

————-‘DQ-O‘-Q '

-8

T

c
&
&
. neJ
o — =~ D@=Dy=0.1 | Lz
< 27~
B " P
w - ’
* . g . - =
a -
& Ae=10 -
3
N «
, 2
1 A “,. 70 -
& 0 1 1 1
£ .

- o 2 4 s, L ] 12 14
L o : FREQUENCY Tg=sp/inr . ® .
; - ' . ' ?1;’,., 2.3~7b. Va.tiation, of Resistance Factor with Frequeacy -

i o ' . :6 for Various Damping Faktors Horizontal Vj.bitgion)

.
o . : . [ .

-
. ‘
(4 -
w s
' B
. - -
. A ] "
4 .
.
- .
* 7
: .
L2 ‘,v v L P
» . Y ‘ L4 .
] - .
.
- -
, -
lad .
" ~ b
’
" . )
. - . ’
M [ -




E | |
E N
E ..
.
? .
é
4 -
E ’ . -
3 o
L'\ F 4 =
y . [
. g
- o <
- Q
-
Q
<
'S
| g
< ..
~ &
n
W
«
* )
_'~ P
* L 4
' \
- » -
‘ &
\ g
: g
' » <
] [
. w
.. | %
. o %
. -3
P T
A . - ! -
Fig. 2.3-8s.
N . .
L
. v
. -~
.
. : «
.
L] . ) ,
-

»

16

1.2

24

Y

T SRR N N e SRR R LR R it t‘#\m}

g X 1

L]
« 45
9
E'_EA'-_.P.‘.‘;"‘I" :

- ‘---‘d---q-_____

-
N
s V=04 € .
Con=1
‘l“ - | 1 ek \‘ ’
a. 0.4 «r 08 12 1.8 20
FREQUENCY ag’ = ag/H : -
r- . ® . » I
© IMAG. PART
. . -~ !
. * e N . °
——-Dg\oo’co ! "
— = Dg=D, = Q1 N
L
%

&

o os 12 . 18 Y I
© PREQUENCY'sq < sq/H c

Variation of Resistance Factor a__ with h'tquancy

4 for Various Damping Factors (Vertical Vibratien)®

[



L et e

e

R

.- ‘;‘r'\f"f"&m":?".‘?*kd' ?“W‘ s

REAL PART .

1.8
. _’ , ; 12
. N I o R
Y g“
\\
. § H=10 - !:I\\\ s
. * : “ ’ - '( \‘ T
. . V=04
— é >' s a=
¢ i 3 oA :/ ——00=0 "0 ..
’ ? T } * ""‘"DQ-D,\ 0.1
(] A . S e : 1 i <
‘ o 04 - 08 12 18 20
-> . R °
- J FREQUENCY ag =ag/H
- ' IMAG, PART
i? .‘ = . —————— .
E ‘ ’
L . : 4 . -
L3 R § .
) - 8 2
. i ‘ - .0 ' i J . —d s | "J -
) o - o _ o4’ o8 12 18 20
; : R FREQUENCY og =sg/f - = . .
Fig. 2.3-8d. Variation of Resistance Factor & with Frequeancy -
_ Y. & for Various Demping Factors . (Horizomtal Vibration)
9 ."*" : P ﬂ . ' L
S o - . - ¢ ° .

v 4
- . K
. . s
5 - ’ . ) s
- ™ "
: L . » / ’
A Ll
L 4 ‘ . . Py
- - )
- » . . -
4 - ’
. . . - .
s L 1™ . .
¢ s .
3 v .
s . ¥
- .
) \
L
’ ‘
- - -" L4 R []
Ve ' : . »
» o . - ," . ~
‘ o . Yo .
. . . F -
ry . . - . .
. R R .
& - ~ .

.
.
-
-
- .
’
.
-
-
-
<
-
.




:
RLe dramatic effect of the material damping can be seen at the

natirﬁl frequency of the stratum. At ‘this frequency, the elastic

2 -

Snragum does not have any stiffress but the material damping yields
"a cqttain’¢alue of stiffness which is higher for higher material
damping (Pig. 2.3-9). The stiffness at the natural fgequency depends

on 'the thickness H as shown in Fig $2.3-9.

i

A
—e
v

In the»high frequency range, the material damping tends to reduce
the stiffness with 1ncreasing frequency and creates the damping 1n
additipn to t.he radiational damping (Figs. 2. 3-7 and 2. 3-8). This
;additional damping seems to be nearly constant " through the high fre~
' quency range although the radiational damping grows linearly with .

| %;equegcy; Thus, theameeerial datping affects the damping function of

P L »

+  the stretum'lesa as the ftequeney increases.

£

(iv) Poisson's Ratio

“Figs. 2.3-10 and 2.3-11 show how the variation of the soil reaction

with frequency depends “on Poissqn‘s ratio.

.The natural frequency in ‘thé vertical vibration is higher for

4

higher Foisson s ratios since it is a, = nhﬁ and n 1a lerger for. higher

Poisson's ratiqs. Gontrary to this, .the natural frequency a, in hori-

-

-zontal vibration is independent of Poiason's ratio. /,/,\
‘ L :
° In‘éhe‘%bw freqnency-rangeg high Poisson's ratios yield higher
stiffness fo} both vertical and horizontal vibrations. In.the high

ftequend& :nnge,nhnnevar, thelneriltion of Poilaon's ratio nffectl the
apring function differently for vcrtieal and horizontal vibration..
- »

* The ltiffnelo 1n vezticnl vibrltlon ccndl to auynptoticlily npproaeh a

, un:lque vnlue ugnvdlen of any Poinon s ntio as the frcquancy c‘i ¢

-

o
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increaﬁes ’On the other hand.:fhat in horizontal vibration tends to

"L

drop wheh Poisson '8 tatio is extremely high. Only.when Poisson 8 ratio

/ -

s gxttemely Low; does it follow a t;énd‘similar,to that observed .in

P * vetrtical vibration.

»
r

N . o -In the high fréﬁugncy %angé, the variation of Poisson's ratio
affects the damping function difféf%ntly‘for vertical_and horizontal
vibrations. It does nbt affebt the dahpiﬁg,in vertical vibration

* s . : whereas the damping in horfzontal vibr7g;on grows more rgpigiy witﬁ

& . -

. frequency fof higher Poisson's ratios

.o - - - \ v

: . ’ .
. .'8{nce the variation of Polsson's ratio affects thy shear modulus

as well as thev}esiétancé factor a;,'the‘ﬁggvtbus result does not show
PR ' . . . . ) . v 3
. .the full effect of the var¥ation of Poisson's: ratio on the soil reaction.

* "+ . Thus the following new parameters,°moaifiéd resistance féctors‘a“, Qr¢>

s> ° defined in order- to account fully'for'thfa variaéioni

e e ' L
- ' - e .V .
. LR ;a - |
f ] ”’ el e"‘ s ,.

¥ - . I

.where u* is the reference shear modulus. The variation of thﬁ

. K}
‘ . ’ * modified resistance factor with,frequgncyais shown in Figs. 2,3-11
. . T - where the shear moduigs for v = 0.4 is taken as the reference shear
) R . s . f
. modulus. Ve e ‘ > ‘
. - ? . \
S o, L. s - "
p g % =
¢ . s et L ;
' N X» @ . L ": » )
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kYR P Introduction‘ . ' . ‘ . L

" A pile exposed to dynamic 1oadings interdcts with surrounding aoil.

The result ﬁf this interaction is the modification of pile stiffe}ss, : i
and generation of damping through the energy radiation and dissipation.

The energy radiation and dissipation result from the progressive wavea

and material damping of sdbil, respectively. °

In this chapter, the equations for the pile vibrations'are;soiVed

>

using the resistance factors obtained 1n'the previous chapter, and the .
effect of.soil on the-stiffness and damping of thgegile is studied.
. The adopted assumptions other than those for the stratum are as folloys:

1. The pile stands vertically._ ) )
A - ! 9
2, The‘pile\}s composed of a linear elastic and uniform matérial.
y)

3. The pile has 'a uniform circular cross section.

4, ;No separatioﬁ‘between pile and soil 1& allowed. : ,

.5, The pile tip is either pinned or clamped at the bedrock. NI
. 4 . . - P

Y “‘t\" ‘ : - o

3.2 Stiffness and ﬁempigg:in Vertical Vibration -

3 2\? Derivation of Solution " b - .

87 ' . I ‘!

‘A pile driven, 1nto the%ground is subjected to an excitation force,

. ﬂP e;mt

E

, at its head and a soil reaetion, P, (z)e 5 along 1ts entire L o~
- . } o, -
length as shown in Fig. 3 2-1 The solution for a EFEe\vibration of

+ this pile is obtained by solving the following ﬁomogeneoua.equatioh: : ) .
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L 4
. ' )
o 2 2 ( |
L ~EpS _3_2 {W(z)ei“} +Avi‘—2 {W(Z)
_ -7 9z ‘ az
. wherev )
' E, = Young's modulus of -the pile
~ - -
. - S = area of cross section of the pile,
« m = mass of unit length of thF pile,
W(z) = amplitude of vertical displacement of the pile? and
’ ¢+ ¢,,’, .
. w = frequency. i - . oo B
The sélution for this equation is
. < °
) W(z) '= A.sin(sz) + B coéfkﬁz) , X3.2-2) .
. r ‘
where ° " .
v
o m 2 ' )
by E,S “ (3.2-3)
— The boundary conditions of the pile for free vibration are fixed

L]

- tip and free hea&% Those conditions called for B = 0 and Av = 2 (2n-1)

in which n is an integer from one to infinity.. =

-

¢ Therefore, the mode shape of this pile in the n-th mode, En(z),

is

£,(2) = sin(r,2) . o | (3.2-4)

h 3
where

‘ - T go M o k ’

<

vo
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Using the above obtained mode shape, the amplitude of the pile

deformation, W(z), can be described by

o
W = C sin(A_z ‘ 3.2-6
\ (z) h ( vn, ) . ( ) .
5 TR "
"' where C is the n-th generalized coordinate. .

o« . «
The external forces acting on the pile are the excitation force,'

P eimt, at the head and soil reaction, pv(z)eiw?, along'the-length.

Therefore the equilibrium condition of the forces acting on infini-

. tesimally thin slice of the pile, dz, leads to
. L
' 2 (- 2 ™\,
-Es 2 Iw(z)el®t } 4w 2o du(z) ety = psmyel® - p (2)elt
P 2 2 ! v
3z oz .
AY
(3.2-7)
® L
vhere L, . -
P = amplituae of the vertical excitation force,
4

jpv(z)‘ = amplitude of the vertical soil reaction, and

1 at z=H
0 at z¥H"

6 (H),

Since no separation between pile and soil 'is assumed and Avn is
identical to h_, W_in Eq. 2.2-13 is equal to C_ in Eq. 3.2-6 and the i
E soil.reaction, pv(z), is exp?eésed by Eq. 2.é—16. Hen;e, mnlfip;ylng
Eq. 3.2-7 by the above obtqiﬁed n-th mode shape and integrating over
. ‘ the length of the pile leads to .

.\ ’

N T T T P

"
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. . . , . . . ’
: A H : H -
' ‘ . WES h2 - Az sinz(h z)dz = P | 5(H) sin(h z)dz -
. m?P n v n ) . n
o ' " 0 | o . - . (3.2-8) v
v % : - ’ .
~ . - Wﬂ'u Sinz(h Z)dz @,
7 . n vn n' _ .
D .
. The solution of Eq. 3.2-8 for wn-is .
) o 1 '
2P - (-1)% o . .
L 7y (3.2-9)
. EPS(h - A )+ a
n v wn .

Therefore, after substituting the above obtaiﬁed Wn into Eq. 3.2-6

(W =C ), the stiffness of the soll-pile system at the pile head is
n n : .

P o
. ' N T W(z=H) = Z E. S( —) (3.2-10)

1(v in Eq. 3.2-10 can be reérritt‘en with the dimensionless parameters as

7 - .,
\
ES _ - .
: K, = H K, ) (3.2-11a) .
or - . o : . ’ k \
E,S X, )
K, =~ 7 = . (3.2-11b)
0 H
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where . ' |
\ N m’ . .
_ 1 (_1)n-1 -1
&+ N T 7 N =
v B - A"+ Y d
=1 'n v v,
. ' ) : N
' 2, =2 - =2
=T =
’v U H /(EPS) vi p H yf '
ya ’ BT .
v- VS/VP (wave velocity ratio) R
- .( . .
p = p/pp (mass ratio)
T m 2 D T2
. - A, AH H| EPS.“’ ag /‘Yv/(p H”) ,
T . " ‘
'E;__?M_m[nrg
¥ - -
I 4 L'}
Vo = / EP/pp i ¥
- In,Eqs. 3.2-11, E;'accounts for the variation of pile radius
s ‘
(g}h'Kwherebs KV/H accounts’ for the variation of pile length.
‘f’?‘ —- . - ’
3.2.B Effect of Soil on Stiffness and Damping . ' ' '

. ‘ The stiffness Kv of the soil-pile system is a complex number and

is called "complex stiffness" here. The ‘real.and imaginary parts of

v the complex stiffnéss represent, respectively, the stiffness and damp-
ing.of the soil-pile system at the pile head. In this study, they are
’ simply called "stiffrie¢s” and "damping," respectively. The vector sum

of the real and magimry"‘*-«p&rta of the complex stiffness expresses the

.
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amplitude end phase shift of the force reqnired to yield a unit

. ‘ ampli&ude of the vertical displacement at the pile head.
¢ The effect of the surrounding soil on the stiffness and damping -

,of the pile appears through the parameters Y and a in the explicit

solution. Thus soil modifies the stiffness of the q}le and generates

L 3
the damging "This situation called soil-pile interaction. The

above defined complex stiffn ss‘I(.v indicates that the interaction is

governgd by the parameter ] slenderness rstio;(ﬁ); soll resistance -

s factor (a ) which is further governed by H ags Vs Di and DB;

frequency (A and a ), and parameter,Y . In this'paragraph the effects
of soil on the stiffness of pile are studied for vertical vibratiom.
2, S ) . ' R -
(1) General Features for the Static'Case s ‘ . o 1
In the static cese, no damping is genereted and the complex
stiffhess is composed ‘of the real part only. The variation of this

stiffness with the parameter Y is shown in Fig. 3. 2—2 for the various .-
. slenderness ratios.' Inythigifigure the stiffness parameter Kv stays
at E; ~ 1 under the negligible soll effect, and becomes larger as |
i this effect increases. When the sotl effect is very'strong,'tne ‘ ' /
~ stiffness of the soil-pile system is completely controlled bynsoil
and the value of log K grows nearly proportionally with log Y . The

figure indicates that the relationship between soil effect and Y is

@

rather unique regardless of any slenderness of@the_pile: the transi-
: N - (R
tion from very weak to intermediate soil effect lies around Y, = 0.3,

Lo and that from interheédiate to very strong soil effect 1ies around
. Yv = 10. This naturé of,paremeter f;'apd the expression of Yv in

Eqa; 3.2-12 indicates that;

I" N
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)
. ° 1:: qhe. stiffness of _a:_,n.:ore slendet: p:!.le in‘0 h.arder soil is more
:"mohiﬁied by tﬁe surroundihg soil;
ZLT the ubdificaiion of the pile stiffness is more sensitiJg to "
. the hardness of soil when'the;pile'is ﬁbre slender, ahd to i
.’the slenderness of pile when the soil is harder;
. 3. the variations of pile slenderness and of shear wave velocity‘
\ of soil (in terms of ;) affect theﬁpile stiffness in about the
¢ same order of ;agnitude.- ’ ‘

- The effect of theAvariatign of pile length and soil hardness on
the'pile stiffness can be seen directly in Fig. 3.2-3, in which the’ .
barameter E;/ﬁ‘is used in or&er to account fully for the variation of

pile length. As soil effect incréases, the parameter E;/ﬁ of the

soil-pile sysfem becbmes.iﬁdependent of the pile length; This 1is-
because’ the ‘surrounding soil tendé to restrict the movement. of the
» plle at the lower portion and the portion in which the pile mostly

deforms becomes independent of its total length.. The previously drawn

.

0y
conclusione concerning the nature of Yv and its mathematical expres- '

*

" sion can be visually observed in Fig. 3.2-3.

o (11) General Teqtu;es“for the'Dynamic Case
When ‘ae so;l effgpt 13 absent, the stiffness i;'decreases from
K,= 1 with frequency b (b < 1.5) as shﬁwn‘wirl" ﬁg: 3.2-4. In this
figdre‘the new parametér b 1s defined by

- — ) — — o F — 'n’-
Ch = AN (Ao - 5.) A . (3.2-13)
’ .
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. g ]
Since material damping in the pile is not considered, nd- damping

appears in this situatiom. .

When”this pile is surroun&ed by soil, the surrounding soil
modifies the pile stiffness and gengfates the damping as shown in
Figs. 3.2-5. 1In these figures, zero gtiffness appears ;; frequencies
higher than b = 1 or even does not appeaf under the str&ng soll effect.
Th: frequéncy at which the stiffness is zero 18 approximately equal to
the undamped natural ffequency of the soil-pile system.. The fifst

natural frequencies of the soil-pile system can be obtained by solving

the following equation for the frequenc#, ¢ - )
h2 - 32+ Real (Yo.) = 0  withn=1 (3.2-14)
n v v vn .

and are'éhown for various Yv in Fig. 3.2-6. It should be noted Tg
Fig. 3.2-6 that the undamped .first natural frequency of the soil-bile
sfgtem is independent of pile slenderness when the'parameter Y& is
kept co;stant. This is because the first natural frequency of the
soil-pile.system is located ét the higher frequency than that of the

stratum and, therefore, the resistance factor E;n for n = 1 in this

frequency ra i

of Figa. 3.2-6"and 3.2-2 indicates that, under the given conditions of

is independent of the pile slenderness. The similarity

the soil-pile syst;m, the dynamic pile stiffness is ﬁodified by ‘the
su;rounding s0il nearly as much as the static one is. Therefore, the’
deé{ée of 801l effect for the dyna;ic case does not differ much from
thagkfor the static case anﬁ is known from the paraﬂpter ;1.

The stiffness tends to be reduced at the resonance of the stratum

as shown in Figs. 3.2-5. Such reduction is not significant until

Yv:z 0.3 and increases with soil. effect or Yv until Yv ~ 10 (Fig. 3.2-7);
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'Tﬁose values of the parameter Yv corFespond to the tranéftions froé‘the
vér& weak to' intermediate soil effect and from the intermediatg'to‘very
stron% soil effect, resp;ctively. .The values Y; at those tragsifions
coincide with -those for the static case. This tr;nd fygther supports
the above mentioned identity of the soil effect for the dynamic and
static cases. Fig. 3.2-7 indicates also that the stiffness at the
resonance of the étratum deéreases less fof;§ more slender pile.

The variation of the'damping with Trequency can be seen in Figs.
3.2-5 for various soil effects. Belbw the fundamental resonant fre-
_ quency of the stratum, the damping of the pile results moétly from the
material damping in the soil, and therefore, varies very little with
frequency. !However,'agpund the fundamental resonant frequency of the
stratum, a significant amount of -the pnégressive wave apéears suddenly

and brings an abrupt increasg of the damping: due to the energy gadia—

tion: Thereafter the.damping grows linearly with freqdency until the

next higher mode progressive wave becomes significant. This behavior

- f

of damping can be seen more clearly upder‘fhe,btronger'soil effect., -
On the other hand; under the weak soil effect the above mentioned

abrupt increase of the damping cannot be seen clearly but another type

sharp ingrease of damping can be seen around the frequency where the
. » o,

stiffness of the-soil-pile system is zero. This sharp increase of thé’g

-
LY

damping is due to the resonance of the soil—pilé;éyatem._'

-

Fig. 3.2-8 shows the variation of the stiffness E; with frequency -

-

ag under the atirong shil effect for H = 40 and 160. Above the funda-

" mental resonant fréﬁ %he stratum, thé'sgiffneauvf; tends to. be

independent of slenderness as frequency ;ﬂcreases. A!B}s is because the

n . 4 ‘ . .
stiffness of the soil-pile system is governed by the- surrounding soil
) « 3

‘
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and the soil resistance factor becomes iQ&ependent of slenderness as
» .

6 increases. -Howevex,.even if the effect of soil’is

- weak, the variation of the damping E; with frequency aé is quite inde-~

» the frequéncy a

pendent of slenderness as shown iﬁ Fig., 3.2-9. Thus, regardless~of any
soil effect, the damping E; does not depen; much on‘slehdernéss. Fig.
3.2-10 also shows this trend and further indicates that the dampingvi; Q
increases with the‘parameter Yv.

Under the strong soiI}éffect, the s£atic stiffngss E;qusllpses
with slenderness whe;eas the dynamic stiffnes; i; is fairly’independent
of slenderness in thehhigh frequ;ncy range. .Therefore, the ratio
between the.dQnamig and static stiffnésses in éhe high frequency range 3
is larger for a more slender pile. This trend>can be seen in Fig.

. . 3.2-11 where the ratio is shown only for the gtrong soil effect and the

stif fness at a6.= 0.4 isyseleéked as the dynamic stiffness. Regardless

-

e
.

of any slenderness, the mﬁx{mum value of this ratio appears around
Y; = 10. which correspondg to the transitionAfroq the ingermed#ate to
ve}y strong'soil effect. The figure further indicates that the'djnamic
stiffness can be larger than fhe static oﬁe and this trend is more sig-

nificant for a more slender pile. ® .

A

(i14) Effect of the Variasfon of Poisson's Ratio

; Yhe variation of Poisson's ratio affects the statical'stiffneas.of
: " the soil-pile system, E;} as shown in Fig. 3.2-12., In this figure,

| higher Poisson's ratio leads to thé higher stiffness of the,aoil-pile

system. This is. simply because the real part of the soil resiatance
factor ;vn is larger for higher Poimson's ratio in the low frequency

range. The more slender a pile is, the lesg it is affected by the

4

¢
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variagion qf Poisson's r;tio. Fig. 3.2-12 shows also that thé pre-
viously mentioned transitions "in- the soil effect appear at the more
or less unique values of YQ.regardless of - any Péisson's ratio} h&Yever,
the values of YV at those transitions are slightly larger for a lower
Poisson's ratio. .

It was found previously that the soil resistance factor is nearly
independent of Poisson's ratio in the high frequency range, and that
a higher Poisson's ratio yiel%s a higher resonant fr;quency of the
stratum. Those trends are reflected in the complex stiffness of the
soil-pile system as shown in Fig.*g.%:13. The reduction of the stiff-
ness at the fundamenta{ resonant frequency of the stratum is further
shown in Fig. 3.2-14. 1In this figure, the reduc¢tion is smaller for a
lower Poisson's,ratio and a more slender pile. The figure also indi-
cates .that the variation of the soil effegi'yith the parameter Yv is

-

fairly independent of Poisson's ratio for the dynamic case.
AL

(iv) Effect of the Variation of Mass Ratio

When the mass ratio is ;gried while Yv is held constant, the
té’lhfionship b;:t;:e.en the complex st“iffneas and ‘the frequenc’a(')‘ is
affeéi?d only through the parameter i; (see the.expressions for E; and
X; in Eqs. 3.2-12). Therefore the variation of the mass ratio does not
affect the cémplex stiffness in the static case, but does affect in the
dynamic ca;e more ags frequency increases. This trend can be seen in
Fig. 3.2-15 where the lower mass ratio ylelds lower stiffnéaa and -
higher damping in the dynamié case. Fig.zéh2-l6 ind{cates that those -

trends appear to be more significant “in the strdnger soil effect and a

less slender pile. This is because the difference in the mass ratio
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leads to a larger difference in K; for larger Yv‘and smaller H (see Yv'

v

" and eXV in Eqs. 3.2-12).

The variation of the complex stiffness with frequency b is shown

.

.in Fig. 3:2-17 for the various mass ratios. The damping for the lower

<

mass ratio is smaller in this figure, although it is larger in Fig.

3.2-15. This is because the frequency b is larger for the smaller mass

o

ratio under the specified aé (see 5; in Egs. 3.2-12).

¢

3.3 Etiffnesses and Dampings in Horizontal Vibration
. A

When a pile is s@ibjected to a horizontal or rotational excitation

5] L4

at the pile head, the pile'deforms both léterally énd'fotationally

along its length. This situation is called here a horizontal vibration.

-~

Thus, in horizontal vibration, the horizontal and rotational displace-

"

ments of the plle are coupled to each other. . &

In.vertical vibration, the mode shape of the pile coincides with

that of 'stratum. However, it is not necessarily so in horizontal

o

3

vibration. If the mode shape of the pile is not identical to that of

the stratum, the application of the modal analysis in horizontal vibra-

¢
- - <n

tion leads to simultaneous linear equations - as many as the number of
' J

modes of pile required to describe the displacement. Tﬁe currently
available explicit solution (Té}imi, 1969) is based on modal analysis

and“only for the pile with "rotationally fixed head - pinned tip" ,in

- -

. which the mode shape of pile yoincideg.with that of the stratum. .Tgé
. modal analysis, however, can ‘also handle otheff end conditions as shown
in Appendix D where the solution is derived using modal qnalysis.
" when fhe soil effect:on the pile 1is. strong, many modes of the piie

are required to describe the pile deformation modified by soil. Since

4
’ S

{

)
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the soilveffect in horizontal vibration of .the pile is uéually very
strong, modal analysis results in considerable effqrt in solving a
large number of simultaneous linear equations. In order to avoid such

difficulty, a new solution called "direct solution' without using modal

analysis is developed here. The direct solution leads to only feur————

simul taneous linear equations and is far more efficient than the other

Y

solution.

-

3.3.A Derivation of Solution

. - .
The surrounding soil affects the behavior of agpile through the

resistance force ph(z)eiwt acting around the circumference of the pile.
Then the equilibrium condition of the forces, acting on the infinitesi-

mally thin slice of:the pile as shown in Fig. 3.3-1, leads to the

- following equation. ' . 14
34 int 32‘ iwt iwt '
E_ I ——-{U(z)e } + d’———-{U(z)e w } = -p, (2)e w (3.3-1)
P 4 2 h
dz it
wheré&

.EPI = 'bendig%*spiff?ess.qf the pile, and

U(z) = amplitude of h6ri;ontal displacement of* the pile.

.

Since separation between soll and pile is not allowed, the soil
resistance ph(z) is expressed by Eq. 2.2-47. Substitution of ph(z) in

Eq. 2.2-47 into Eq. 3.31 yields the following equation.

.

E_1 d46(z) - meU( ) = ;~ i, ;U sin(h z) : 3 3;2) ‘
P P L ® z %hnn n ) :
z n=1 @
o [
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The solution of Eq. 3.3-2 for U(z) can be obtained by superimposing

. 3
the homogeneous and particular solutions of Eq. 3.3-2, and hence is

o

u(z) = Uh(z) + Up(z) t3.3-3)_

where Uh(z) and Up(z) are homogeneous and particular solutions of

Eq. 3.3-2, respectively. .

The particular sé€lution, Up(z), can be written as

Up(z) = }E:‘an'sin(hnz) o | '(3ﬁ3-4)

n=4

where a is the constant determined by substituting Up(z) in Eq. 3.3-4

into Eq. 3.3-2 and is ' ‘ i

hn n
a _ . (3.3-5)
n E I hY - mw?
g n

The homogeneous solution Uh(z) can be written as

Uh(z) = A sin(Ahz) + B cos(}hz) +C sh(Ahz) +D ch(Ahz)_ (3.3-6)

mimotasaikiti Anseats SR v -

. where A, B, C, and D are the constants determined by the boundaryacon-

ditgdns at the head and tip of thé pile, and

2 AR PRTI  S

W :

h ‘ E;f . (3.3-7)
| ‘ ) : i1
Since a perfect connection between pile and soil is assumed, the i

3
¢
horizontal displacement of the Surrounding soil in Eq. 2.2-43 must be ’

'
v




e

and Uh(z) in Eq. 3.3-6 into Eq. 3.3-3, U(e) is now written as

' | 88
'0‘ -

equal to that of the pile expressed in Eq. 3.3-3. Substituting the

above solutions for Uh(z) and Up(z) into Eq. 3.3-3, this condition

leads to
A sin(A z) + B cos(A z) + C sh(x 2) + D ch\\hz)

" o ‘ (3.3-8)

ah U
—E 2“ 5 sin(h z) = E U sin(h_z)
=1 EI hn - MW e '
e

By expanding sin(Ahz), cos(Ahz), sh(Ahz), gnd ch(Ahz) into a sine

Fourier series of . argument hnz, Eq. 3.3~8 can be rewritten as

oo .

§ : ; “hn Un \
AF + BF + CF + DF - - sin(h z)
n 2n 3n 4n I h4 -2 n
r W .
n=1 . EP n )
® (3.3-9)
¢ T = E U sin(h 2)
n n
n=1
o
where
Fi, E sin(Ahz) _ T
FZ 2 H , cos(Ahz) :
n\ - q/ sin (h_2) dz (3.3-10)
F3n ,sh(Ahz) .
F4 ch(Ahz)

Solution of Eq. 3.3-9 for Un is

: Y 4 2
| (AFm + BF, +.CF, + DF'lm)(EPI hn-mw) . _
U= — (3.3-11)

2
I -
EP hn mw + ahn

From Eqs. 3.3-4, 3.3-5, and 3.3-11, UP(z) can be expressed with

the unknown constants A, B, C, and D. After substituting such UP(z) .

\




(3.3-12)

Fln\

FZn‘
F3n 1 ' &
F4n/

Using the dimensionless parameters, U(z) in Eq. 3.3-12 can be

(3.3-13)

rewritten as N

sin (_}:h_z-)

0

cog (Xh;)

(3.3-14)
U

KN
o Thrad

sh GhZ)

ch (;h;:)

F4 (3.3:‘15)




4

After evaluating the integration in Eq. 3.3-10, {Fn} in Eqs. 3.3-15 can <

be expressed as ' Y . .
S L ;
Foo Apcos Ay sin h / (hn Ah) ] , )
F -(x, sin h_sin ) -%/52-72 - ‘
2n h n h n h o _ =
=24 ey o\ o A *h
+ . - T 3
Fo Ay ch A sin hn/ b b s
— — ._2 __2 / P *
Fin (xh sin h sh A+ hn)/(hn + Ah) )
(3.3-16)
T ’
F1n hn/2 .
M— -
an 0 . B B
F LS e ® = h .
> 2 — — ‘ — — —2 :Ah n B
.hE + :
Fal A, ch A sin hn/ ( h + Al ) o S
; % stnd s %+ 5)R2.+ 72
4n h n h n n’ h K
~ " :
} ' c
The displacements for the static casé can be obtained from the .

\ . ’

\above equations gé.a limit case for Kﬁ - Oi'kfter the.constants A; B,

, : \
, and D are evaluated. However, no simple'ekplicit formulas can be

obtained for w = 0 from the dynamic solution} .Therefore,-it appears "
sultable to derive a special golution for the statig case. 4

n the static case, Eq. 3.3-2 becomes : ' -

PO\ g” ) ‘Z opn Up sinCh z) . (3.3—17),’

~




L 4
The particular and homogeneous solutions of Eq. 3.3-17 are,

respectively,

Up(z) # (3.3-18a)

n=1 P n

az3 ¥ B2+ cz + ' (3.3-18b)

u

‘Uh(z)

The complete solution for U(z) can be obtained by superimposing the above

two solutions and are

U(z) = U, (2) + U_(2)
R

. .
( a U
' - a2l 822 ez + D - E hn 2 sin(h 2) (3.3-19)
. 0 )
Ih ,
n=1 EP n

Following "the same procedure as that in the dynamic case, Unfor the

static case can be obtained as

. 4
(AF + BF + CF + DF,, JE_.I h ‘
Un = n 2n 4‘ ;n {n" P n. (3.3-20)
EIh +a
P n. hn
where , -
F. ) z3
in
F, ‘ , A 22 4
B > = ﬁ[ sin(hnz), dz - . (3.3-21)
F31'1 ‘ 0 Z 3 ' '




*

Substituting Un in Eq: 3.3-20 into Eq. 3.3-19 and introducing the °

dimensionless paraméterr;'. lead finally to

( A

.._3 —
.o A() n
b PR - _
" ' z S _ J fon
u(z) = < < _ - Yth'in(hnz) <
. z n=1 3n
.: \1 ) \—f—lm
’ where \
( \
- 3
f1n F1n/H
- — 2
'f2n hn ’FZ'n/H
(T} Tha .
f3n ' h1:1 + Yh c"hn F3n/H
 “an ) | o)

)

+

A T
B
> (3.3-22)
C
D
(3.3-23)

’ F. /0 302 - 6 0
n . n
- »
4 _2 -
F, /H 2 h -1
2n 2 n
{ = % sin(h) + 2 (3.3-24)
h n -3
n — hn .
F. /H h 0
3n n
. . ,
. \Fén 0 -hn
.
. : " With the displacement of the pile expressed in Egs. 3.3-14, and

3.3-22 the amplitude of the angle of fotation ;, the bending moment

M, and shear force P are obtained from the standard relationships:

H

¥



du(z) . > _
r(z) : —az (3.3-25a),
-
: dZU(
M(z) = p,199z) . (3.3-25b)
P 2 . . :
dz
»
L dlu
P(z) = E,1 382 (3.3-25¢)
P 3
dz
All these quantities are listed in matrix form in Table 3.3-1. LN

The displacements and forces at the plle head are related through

the stiffness Kh at the pile head as

K e0 -k ol (u) )

= " (3./3-26)

I
lM’ -K M,0) K M,0) (ci _

a

where Kh(P,c) is equal to Kh(M,U), since a linear soil-pile system-1is

assumed; and U and ¢ are U(z=1) and-c(;;1),,respectively.’ -

L]

The stiffnesses Kh are defined by the forces applied at the pile

head which yield appropriate unit displacements at the pile head as

- shown in Pig. 3.3-2. This leads to the following boundary conditions

at tie pile head.

- -

v _ _ . -
Kh(P,U) and Kh(M,U) ve. U(z=1) =4, §(z=1) = 0O
s : (3.3-27)
' } — -
.Kh(P,c) and Kh(M,;) e U(z=1) = 0, z(z=1) = 1
The boundary conditions at the pile tip are
Pinned tip U(z=0) = 0, M(z=0) = og  (3.3-28a)

Clamped tip  U(z=0)'= 0, £(z=0) = 0 (3.3-28b)

L 3o aot




o

[

- (2)3

()n

‘ N . . . -
Lo . ) . ,
o .
B N ’ [~ s
' 1] uzz mDJ: " - ucp_ aou:z:n - n:._ asa—__—: uu_. u_._— no..czc.un Z YYe® ¢ Z (W z YW y T (ROD Y
T € J - 15 i T L e & =~ F i - = = -— = —-= -
- ﬁ. -
.8
4t u ‘U uy u u uf t wouz u u’uyp .
Nz uuisy '3- Tyugs gy 3- 2z yups q J- z gus_y 3-l LI EIRY Z (YS Y T YROD Y- X YUI® Y-
R A I - A - = = =t - = T - - T -= T
. . v
K . — . “ W _.» - . .o
u u uy u wu . uuz u’' uawy - .
lzaserwy zueoayty Tzwmay®y  zweoy | TYwy  Iuwey xyumy- 3 geody
u uy u ug . u uz u uy VL
v Tuvis g L. DA B AN vy rwe b 2 xeod L
L . i S . o .._
e . ’ . !
L] ’ . - . i * e
— i 4 . . - * —
— » - . 7
u vy u u ug t u ug u u ujg
alfjz v aou«,._. L | a=u~m -y T ao.#; - 7y naun; )- ) o \ 0 . 0 9
. - - ) ) /.
u u uy u u ug u u uy u u_ g \ .
Z Y ups L - 2 Yus -z [ - z 4y ujys - 0™ z
A R LR S g o B 0 0 T 29
A - . - .
\
u:: .:.u:__:.eu, m.:.. aoucp_:: m:_. scu_.__: 3 u:.— .:vu:__:: - 0 i 22
{
il 0 o e v
[ -
.n:.m =—=:cu N:; :—n:..« m_.._ :«a:mu n:_m :-::—u. . 1 Nu m.u1,
— n ) - - — ‘ N - t
L , ‘ 3 /, - 0
. ot . |
.4 / {0« ©) #sa) Syimig
. i L&. . - , - / R
4.» 114 30 Radivq pue rRIudmsdEydRjQ 10] BuoyskRairdxy Auuocvc/ -
\ v T - /
T I-€°C @1quL ' '
- /
\ + .
hd - ' 1
. ‘
]



ad
i

]

(2]

, RQ#ATIONALLY\\ & 3
FIXED HEAD . "
. ) \\/_\ i
Kn (P, U) u=1 N Kp (M, $)
P{v \
- l T, (=) Kn ®, ) PINNED HEA®
\;_/ N, .
v" N ) \\ -
I' - Kn M, L) S “
- / ‘\ .
J 1 A P ' .

t
i

|
i
i

*

Fig. 3.3—3. Boundary Conditions at Pile .Head in Deriving

* Stiffness Kb

*

-
Y
4
L]
W .
. B
“
9
1 !A ;
-
4 ’ b
L4
'
h ]
' 4
.
N
’ o
v Kt
3
. / . e
.
' P .
.
’




———

-’ . “ o 9 6
Thus r simultaneous linear equations are established for. the given
boundary conditions and are listed in Table 3.3-2. After solving these
equations for the constants A, B, C and D, the stiffness or the cor-

respoﬂding forces at the plle head are obtained from the equations
listed in Table 3.3-3. .
- The following dimensionless parameters'fdr the stiffnesses Eﬁ are

defined for_conveniencé.

H3Kh(P,U) -1’k (P,0)] .
= : (3.3-29a)

-—HZK.h(M,U) HK, (4, 1)

: K, (P,U) -thPz;)

-Eh(M,U) Kh(n,c)

or

REOE KREoM| g @0 o @0

Bt

‘ (3.3-29b)
K o0/ B0/ 2k M,U)  r K (M,0)
Kh ’ Kh ' G "'rOKh : OKh »C
Dimensionless parameters on the left.hand s}de of Eq. 3.3-29a can show

fully the effect of the variation of pile radius, whereas those in Eq.

4
3.3-29b are more suitable for showing the effect of pile length.

.

w

3.3.B " Effect. of Soil on Stiffnesses and Dampings

. = \ Y
The derived explicit solv..on shows that the complex stiffness Kh
is governed by the slendqrneas ratio (ﬁ); soil resistance factor (E;n)
o 50 0]

and parameter Yh. These parameters determine the effect of the sur-

which ig further governed by ﬁ; a and Ds; frequency (X; and ao);
rounding soil on the stiffness of the pile. 1In this section tﬂéoabove

mentioned effect of the surrounding soil is studied. °

©

Er
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(1) General Featﬁres.fer the Static Case

When the effect of soil is absent, the parameters Yh and ;£n are

zero. This situation leads to the %ollowing'values of the stiffnésses Eﬁ.

]

Kh(P.U) ' 3
1 E£(P,;) = 3 (pinned tip)
Kh(M.t;) L3
12 -
= 36 (clamped tip)
'\
4

en the sufrounding goll affects the behavior of the pile., those
stiffhesses become larger than the above values'as shown in Figs. 3.3-3.

In thes

figures, the growth of soll effect with parameter Y 1is slower

h

for Kh(M,C) an Kh(P,U). This is because the boundary conditions for

‘Kh(M,cs provide e stiffer condition to the pile. The growth rate of
soll effect iﬁ .( ,0) seems to be somewhere:between those in Kh(M,c)
and Kh(P,U). The clamped tip also provides the stiffer tondition to

the pile than the pinned tip does. Thus, as can be seen in Figs. 3.3-3,
the effect of soil‘on the stiffness grows more rapidly with Yv for the
pirnned tip pile than for the clamped }ip pile.” However, when the éux-
rounding scil effect is strong enough to fix the lower portioﬁ of pile,

the difference in stiffness between pinned tip and clamped tip piles

& diminishes.
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Figs. 3.3-3 further indicate a rather unfaue réiationship between
- N Y ’

Do \
soll effect and Yh regardless of any slenderness of pile. The transi-

tion f%om the very weak to idtermediate soil -effect lieé\at Yh = 0.6

A

°

to 10 for the pMnned tip and Yh

transition from the intermediate to very strong soil effect lies at

\
~ 5 to 30 for the clamped'tip. The
\,

A

\
Yh:z 60 to 350 for the pinned tip and Yh=3 350 to 1000 for the clamped

tip. The lower and upper bounds of the above ranges of Yh

by the values Yh for Kh(P,U) and Eh(M,c), respectively. The uniq?e

are‘governed
.

\
relationship between s0il- effect and Yh, and the expression of Yh\%?
Eqs. 3.3-16 lead to the same conclusions as those in vertical vibra&ion

\

(see (1) in paragraph 3.2.B) except fhe third conclusion. The third‘\
conclusion for horizontal vibration is tha; the stiffness f% of the \\
plle is more affected by the variation of the slenderness of the pile’
than by the variation of the shear wave velocity of the soil.
The sti}fness parameter f£ does not show the full<effECt,€f the
length of the pile. The full effect of the variation of the pile
length is obtalned by dividing the stiffness by the slenderness r;tio
| as expressed in Eq. 3.3-29b and is shown in Fig;. 3.3~4. These figprea
show that the stiffnesses of the soil-pile system f;r soft soll are
strongly affected by the éienderneas in Kh(P}U), Kh(P,c), aﬁd Kh(M,c)
in decreasing of@ef. As soil gets harder, however; they beceme inée—
-

pendent of the pile length. The reason for this has alréady been given

in paragraph 3.2.B for vertical vibration.

(11) General Features for the Dynamic Case

When soil does not affect the behavior of a pile, the damping does

—

not appear and the stiffnesses decrease monotonically with ffequenéy

»
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(3-5_1.5) as shown in Fié. 3.3-5. 1In this eaSe, the stiffnesses are
zero at the following frequencies. . n
— "//
T K, (P,U) ) 1.571 - ‘ " ]
Ah for Kh(P,c) = 2,365 e gpinned Eip)
l(h(M,g) "[3.142 .
Y g
‘ 2.365 . _ \
- ’ ‘
= 3.142 «e+ - {clamped tip)
3.927 ) e

-
* ~

'Those frequencies for Kh(P,U) and Kh(M,c) are the .natural frequencies

ofﬂthe pile under the boundary cbhditions with which .those stiffnesses
: . ' = . \
afé obtained.

-

The soil surrounding the pile modii%fs the pile stiffness and

generates the damping as shown in Figs.. -6. Trends similar to those

L4

~ in vertical vibration can be seen in these figures. »ﬁggn#%r, under

"very geak soil effect,' the noticeable difference between those two

nodes of vibration appears at the frequencies where the stiffnesses
\)'s -—

are’ zero; those frequencies in horizontal vibiat;On, b, ;an be belpw
b = 1 whereas those in vertical vibration cannot be. This is becduse,

for small Yh the first natural frequency of the soif—pile syatem \

corresponds to thé’frequency a 1arge enough to yleld a large negatisg

- . ¢

soil reaction for v = O 5. ' . ; \ &

- - - “ “ .
The stiffness of the soill-pile system tends to drop at the 4 \

L Y

resonance of the stratum as,shown in Fig;. 3.3-6. The variation of \

this reduction with the parameter Yh

18 further shown irf Fig. 3.3-7. \ ’
. d -
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It van bp:seen in this figure that. the t nsitions, from the very weak

' c
to intermediate and from the intermediate ty very strong soil effect, !

. \
appear nearly at the same values of the paraﬁ&ter Yh as those for the

static case. Therefore, the degree of the soll effect can be known

-

from- the parameter'Yh in the.dynamic case as well.as in the static case.

The relationship between the soil: effect and the pakameter Yh is not

much .different between static and dynamic loadings. ig. 3.3-7 further

*

shows that the %eﬁuction of the stiffness at the reson;ﬁce of the

stratum is smaller for a more slender pile, and is large ip K(P,U),
e '\

K(P,z), and K(M,z) in decreasing order. ) ’ \\

The variation of the complex stiffness E% with ffaquency\gézis

. . . \
shown in’ Pigs. 3.3-8 for the strong soil effect. Under’ this soi%

effect, the stiffness Kh(P,U) tends to decrease with frequency whereas.

the stiffness Kh(M,;) tends to increase. The most important featuréxin

this figuré is that, as observed and explained in vertical vibration, |

- . Y

_ _ . B .
the complex stiffness Kh tends to become independent of glenderness as -

frequency increases above the first resonant frequency of the stratum.

On the other hand, thé stiffness E£ in the static case 1s smaller. for =~ "
a more slender pile. Therefore, under the strong soil effect, the \

. ratio between the dynaniic and static stiffnesses increases with slen-

.

derness when the parameter Yh is kept constant.

The ratio between the dynamic and static stiffnesses‘begoﬁes

4

maximum around a certain value of YH as shown in Fig. 3.3-9. Such a

value of Yh correspondé to fhe transition from the intermediate to
' P -
very strong soil effect. As soil hardness increases beyond this con-

dition, the ratio decreases. Those trends observed in Fig. 3.3-9 are

" most pronounced in Kh(P,U) but least in.ﬁh(M,;). Fig. 3.3-9 further
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N " .
indicates that the dynamic stiffness of the soil-pile system'can be

©

larger than ‘the static one.
The damping relative to the'stiffness is large for Kh(P,U),
Kh(P,c), and Kh(M,C) in decreasing order as can be seen-in Fig. 3.3-9.

& ]

The vatiation of the damping E£ with Yh is shown for aé = 0.4 and
H = 160 in Fig. 3.3-10 where the damping Eh 1s nearly identical to
those fbr 5-3;10. The figure indicates that the damping E£ grows with

Yh following the relationship, Im(iﬁ) = Yh, where C are

o

Kh(P,U) 0.97 = -
¢ for Kh(P,c) ~ . {0.16 v 3 (pinned tip)
| K, (3,2) 10.036
0.74 5
& 0.1 (clamped tip)

0.019 !

However, when the effect of s0il is very strong the wabove constants

;end to bé reduceé.

EN
’

3 T ) - +

(111) Effect of Variation of Poisson's Ratio '
T, . A1

The effect of the variation of Poisson's ratio on -the complex

. , P ,
stiffness can bé seen in Figs. 3.3-11 for the static case and in Figs.

*

‘ 3;3-12 and 3.3~13 for the dyhamic case.

-

Under the weak soil effeég, the static stiffness is very little
affected S& this variation although a higher Poisson's ratio generally

ténds to yleld higher stiffness. However, thefdynamic stiffness

/‘\ )
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)

decreases more fapidly with frequency, for v = 0.5 than for v = 0 as
— . ®

.

shown in Fig. 3.3-12. This trend can also be seen in Fig. 3.3-14 where
the natural frequency of the soil-pile sttem shows approximaEéLy the
frequency at which the stiffness Kh(P;U) is zero.

When the soil effect is very strong, the complex stiffness E£

@ 3

reflects more sensitively the variation of Poisson's ratio and is

»

clearly larger for a higher Poisson's rat%g»as shown in Figs;\3.3—13.

When normalized by the statical stiffness, however, the normalizéd»g'

i
o

L) NV TN
Poisson's ratio (Figs. 3.3-13). This trend is different from that in

.
complex stiffness varies with frequency a’ nearly independently of .~

vertical vibration in which the unnormalized complex stiffness E; little

o

depends on Poisson's ratio at frequencies aboye the first resonant fre- |
quency of the swratum. N

The variation of Poisson's ratio does not change much the relation-

»

_ship between soil effect and the parameter Y, for the static case (Figs.

3.3-11). However, for the dynamic case, the previously mentioned
[

transitions of soil effect appear at slightly larger values of Yh for
-

v = 0 than for v = 0.5 as shown in Fig.‘3.3-15. This figure further

indicates that the amount of the reduction of the stiffness at the7reso—

nance of the stratum is l*ttle affeigpd by the variationh of Poisson's

ratio. ;
{

(iv) Effect of Variation of Mass Ratio

9

As explained in vertical vibration, the variation of mass ratio

<

affects the complex stiffness of the soilipile system through the

parameter lh.

between E£ and 36 1a-affectéd by the variation of mass ratio in a

Thus, as shown in Figs. 3.3-16, the relationship °




-
<
)
-
a
4o
2
>
o
-
d
a2
o]
ok
X
Y
-l
<
=
S
[~
[ 4
L4
~
b3
W
[
124
>
L]
[
[+
>
Q
£ .
3
L]
<
W
-
<
T
]
-
«
4

AN e s 4 s

x

e 1 4 1

0.1 10 100- 1,000 . 10000 . 100,000

A X C YL PP S

PARAMETER Y}, . "

Pig. 3.3-14. Variation of the First Nafunl Frequency. of Soil-Pile“' i

System with Parameter ¥, for various Poisson's and ‘
ss Ratios (Fixed-Pinndd) ' :

>




3
2
[
<

"
P
=

]

(-4

-
<
2

L -
< Dg= Dy ™ 002
ag= ! .
CLAMPED TIP
!

100 1,000

v

‘ ' PARAMETER

Fig. 3.3-15." Reductiim 6f Real Part'of Stiffness 'at:t;he
First Natural Frequency of Stratum fo Various .-
Poisson's Ratios < ‘ .




A Y
-
.

)

COMPLEX SHHENESS Kyy (P, U)

N T * -
- : ' . o e~ hd ° a N

Y - a . - . ¢ . FREQUENCY s’ - e

N Fig. 3.3~16a. Variation of Complex ‘Stiffness Tih(r,u) with Erequeficy 3
for Various Mass Katios. : R - PRI :

'
. . : a
- - T 0 N e 7 ~

.
;h -
. e R
s * .
.
. - ° ’ A
v,
’ v . o ,
' ¢ v
s v -
« -
" -
to. . L3 .- 3
-
- . &
" !
e . . %
! P . .
.
” N
- ’ '
* ' LN -
o . " ! >
-
M .
L]
- »
Eal
-~ .
’ . )
’ -
- l“




?“‘\‘
Lo

 COMPLEX STIFFNESS Ky, (P, )

”

H
1.

-
1

“".Z-':..;’ \ "
2 L
' " N o
’ §
. P
- ;'
Knp P, {’
4 ; - @ «
L %= 05
=Y
° . DQ- Oy = 0.02 —
v ) ’Yh' 1000
. ] . q
" ’i
Laad : .
B
! — -~
. e
P j .
| 7 ,

= REAL‘PART ) \\ _
%
X \ s
- / “ ’ ﬁ *» 0.3
7 Ty j
- i ‘.-q —-— I — b‘ - 1.2
1 ’
{ &
! .
o . % _ .
L \. '
IMAG. PART .,
1 4 ] L L | L y |
02 04 0.8 08 1.8
. r -
FREQUENCY
& ‘0

h; 3 3-16b. Va‘hd.on of Complex Stiffness R(P,c) with Frequency.

0

for Varigus Mass Ratios

.

'

L

|




) . * a ’ -~
' 139
. ° ‘
L3
g § ’
4 Eh(M,C)'
.

N L 5 - @
v = 0,5

. N ,
) Dg = Oy = 0.02 .
' Yy » 1000 ° . .
5 -4
z
IZ: , 4
- [7;] * N
.3 :
- Z y 2 . « - .
- ———9-12
. : S
5 oL S
x .
W - 3
-
&
%_
- v Y

N ¥

.

, " FAEOUENCY ag ) o .
Pig. 3.3-16c. Variation of Complex St{ffness K 0f,C) with Fraquemcy
. .+ a) for Various Mass Ratios -

v ) 1

‘. - L4 g R . " - .
d | . 4 ﬁ
' . vt . -
- . - . -
~ . o
v - ., { % -
[y i - . %:_ M
¢ . a Rt
) .4 N N .
- : - LA
L} ‘ i
: “
€ ’ - . -
~ . 7
. - -
.
. . .
- . S ~
-
- .
- s
* -
kd a
[ ™
. .
’ I 'i\ R
¥ [
[y -




manner similar to that- in vertical vibration. However, the redﬁction

of the stiffness at the resonance of the,stratum i8 not so much affected ‘

.in horizontal vibration as in vertical vibration (Fig. 3.3-17). Figs.

-

3.3—16hfurther show that ~the variatiop of mass ratlo affects the stiff- .-’ ‘5

ness Kh(P;U)'most and the stiffcess Kh(M,C) least,. whereas it affects

”

‘the deﬁping Kh(M,;) most but the damping Kh(P,U) least.

IS - L8 ° -

2

3.4 Equivalent Springs and Dashpots with Frequency-Independent

Constants for Soil-Pile System

When the dynamic response$of the structure supported by thg’pile.
‘foundatid; is analyzed, the pile foundation is often replaced at the
pile head by the equivalent .spring amd dasﬁbot with frequency indepe;-
) dent constants- (Voigt quel). The real and imaginary parts of the
' complex stiffness‘provide the information of thelepring and yiscqua ' .

-

constants of this model. .
(;=%hg\§ieviouslyobtaiﬁed results on the real part of the conplex |

stiffness Yreveal that the’equivalent spring stiffness depends highly o

- on the frequeﬁcy under the weak soil~effect and iarge‘meas ratio.but

little depends on it under the strong soil effect and small mass ratio.

- E - £ ] ’
Therefore when the effect of soil-is atrong and the mass ratio 1is emall,

the spring functﬁn of the pile foundetion can be"reeeonably rep],aced
‘ by the. frequedcy independent spring. . s _ P
- The viscous constant ‘of " the equivalent dashpﬁt can be obteined by
s dividing the imaginaiy part of the complex stiffness by frequency. -

Such viscous constants até shown in Figs. 3 4-1 and 3 4-2 for vettical

L

]
vibretion and Figs.’ 3‘4 -3 and 3.4=4 for hor:[zontal vibrat:lon. In those ‘ ’

\,

figures, the viscous conatants under the. weak soil effect tend to
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increase- sharply aroumd. the frequency where tﬂq stiffhess,becomes zero;
this sharp increase is'lafge in Kh(M.C). Kh(P,c), and K£(P,U) in
décreasing»order. However, when the effect.of soil is astrong, the

viscous constants seem to bg fairly frequency-independent. except at

-

relatively low frequencies. fé is~§hll *nown this trend results from

i

i , the nature of the radi&tionaf damping, and was also observed by Novak

(1974) for a pile. At relativeiy low frequencies, a’sharp increase of

- the viscous éonatant can be seen in the éigurea.gndef:any intensity of
soil éffect; this sharp increaae'is larger for the stronger ;oil effect
and mor;.alender pile. Therefore, wheﬁ the effect of soil °is strong

andﬁthe frequency 1is well'ébove the first resonant frequency of the

stratum, the°damping function of the pile foundation can be reasonably

.

:éplaced by a dashpot with a frequency-independént viscous constant.

A -




g
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A

\,

stiffness and damping of a soil-pile systeé, the structure supported =«

. s .
¢ , . .
' -

| :
‘l CHAPTER 4. DISPLACEMENTS OF AN INSTALLED PILE IN VERTICAL
I ~ 0 . .

AND HORIZONTAL VIBRATIONS

4.1 Introduction : ‘ N ' !

© L

In the previous chapter, the soiljpile interaction was studied

for the stiffness and damping of a soil-pile system at the pile head.

A

i

As the simplest case to fllustrate the found chéracteristics of the

1

by the pile foundation is eliminated and harmonic excitatioh forces are

3

applied at the head of an installed pile to obtain theAdispla%ements .

< St gt

-
.

4&‘&0‘:‘.{.

of the pile. R . , L
. 2 .

Under harmonic excitation, the complex dlsplacements at the pile ©

4

head can be obtained by inverting the previously derived complex “
stiffness of the soil-pile system. The amplitude and its phase' shift

are, respectively, the absolute value and argument of this complex

- ' ‘
displacement. )
, - ]
4,2 Displacements of an Installed Pile in-Vertical and Horizontal
Vibrations ot
4.2.A Vertical Vibration : 2 )

The displafement at é;e pile head sybjected to a unit vertical .

? e

force, ﬁv. is obtaingd by inverting the stiffness Kv’ and expressed as

4

D = K " : . (4.2-1)

The following dimensionless parameters for Ev.and H B; are defined for

convenience:




LY
— EPS'
Dv = —ﬁfgpy L < (4.2-2a)
; L ES .- '
¢ N H D - — D : - ‘(4.2—2b) ’
v r v - . . ’

~

In the above expressions, 5; shows fully the variation of pile radius

\ whereas i-ﬁv shows the variation of pile length. . E

Since 5; is a complex number, B; can be réwritten as

3
©

v

— S = e
v : D, = A, e . ) (4.2-3)
|- é :
_ where -0 . BN
"l ) AXV = ‘5;|“ : (amplitude) ‘3(412-48)
. ; » H h 'A )
Y = -arg Dv (phase shift) ~ . (4.2-4Db)

. . ©
1
L N

~

The amplitude X; and phase_shiffay can also be éipresséd by the com-
- * . R "-.[

> P L J
plex stiffness as
° ( . ‘ e - { : -
x 1 1 .
. ) A = — 3 (4.2-~5a)
. ' . v Real(K ) .1+ tan” - N
Imag. (k“;) . . .
tan y = o—m—————— - £4.2-5b)
- Real(K ) E . -

— ~eattiy -
N . RS

v ' The above expression for Z; in Eq. 4.2-5a indicates that the ‘amplitude

of the displacement is smaller for a larger phase shift (y f_%a even - 4.

-

1f the étiffness‘in ﬁ; is‘held constant. The expression for y also

indicates that_the‘tmnller stiffness and larger damp;ng‘in R;(yielq

-

a larfer phase shift.  ° “ »

. ¢ -
- B

o f




_aressmaller for the more- slender pile.

The dispTacement 5; for the static case is shown in Figs. &.éﬂl
and 4.2—2.&tSinée no damg}ng appéara invthiﬁﬂcgse, the digplacement
in those figures -is simply che.inv;rse of tbe sgiffness(;hoﬁn in Figs.
3.2-2 aﬁd 3.2-3.

For the dynaﬁic ¢ase,‘ih§ ampIitudé ahd phqse éhifé‘of\the dis-

-

placement éré shownyiﬁ Figs. 4.2-3 -in whicﬂ-thé'parameters are the same

as those used for the complex éfigfnesé shown' in Figs. 3.2-5. Two
types of‘peak—%mplitudes can be seen in this figure.: One bf thep 1is

associated with the,resonénée of the stratum and the other with ghe

resonance of the”soil-pilé'system. Thus,’the first- and.second-type
peaks appear, respectively, at the resonances of the stratum and ‘the

o ] P
soil-pile system., It is interesﬁ&ng to—note that the latter resonance‘

- -’

nearly coincides with the natural frequency %f the pile.” Thus, Fig.

4.2-4 shoﬁs approximately the amplifications at the first resonaﬁces\
of the stratum and soil-pile system for various degrees of soil—effect.
’

- M

In thié figure; the amplifications of the second-type peak are remark-‘

ably high for ‘the weak soil effect andcthooe of tbe first—type gsak

o'

® & T '

Two types of sharp 1ncreasea‘of phase shift cén also be seen in

-

Figé.éh.2e3. One is accompanied by the resonance of éhe stratum and

E)

the other by that of the spil-pile system. As tgg soll eﬂfect :
LY

5

increases, the second\tipe of sharp increase’diminishes and the phase

’- L3

: )
shift grows less with frequency. .
- e % T
The variation of the amplitude and- the phase shift with £requency

e

‘aa are ehown in Fig 4.2-5, The important featyres of this figure are
the same as those in Fig. 3.2-8 and vere explained in the previous
chapter. 0 - -3

," . . wr

»
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The variation of Poisson's ratio 4ffects the static displace-
ment B; (Fig. 4.2-6). On the other hand, it affglta very little the

dynamic displacement 5; at the freqﬁencies higher than the first

resonant frequeycy of the stratum as can be seen in Fig. 4.2-7. " This

trend was observed and explaiﬁed in. the discussion of the complex
'stiffnesg.

The variation of the mass ratio affects only the dynamic behavior

e

of the soil-pile system. The amplification around the resonance of
) - ,

the soil-pile system is shown/in Fig. 4.2-8 for E'- 0.3 and 1.2,

_This_figure indicates that the variation of the mass ratio does not

<

much affect the resonant frequency but does affect the amplification:

.

the lower mass ratio yields higher amplification. Fig. 4.2-9 shows

‘ _the same trend in the amﬁlification as that observed in Fig 4.2-8.°

.

.Howeygr, under the strang soll effect, the variation.of mass ratio

doép“not much affécttthe amplitude but does affect iﬁe phase shifé:}s
, : o
shown in Fig. 4.2-10 where the lower mass ratio yields a, larger phase

-

shift.

>

4.2.B Horizontal Vibration

3 - < . .
The displacements at the pile head subjected to unit- forces are -

obtained by inverting the complex stiffness Kh’ and expressed as

[}

LCRONCE I R N

DB D] |k en TR o]

(4.2-6)

v
N

r

where Dh(U,P) and Dh(U.Hs are the horizontal displacements U due to
forces P=t and M1, respectively, and”Dh(c,P) and Dh(c,H)'hre rota- -

tiéﬁal,diaplaceﬁents z due to fporces P=1 asid -M=1, respectively..

@
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. The Eolléwing-dimensionless parameters for displacemeﬂts D

-

defined for convenience.

D, (U,P)
Dhgc,P)
3

-2 —
H Dh(C,P)

. -~

Dh(U,P) H

0
Epl 2
0

164

are
h

D_(U,P)/H> D, (U,M)/u’

(4.2-7a)
2

Dh(c,P)/H Dh(c,M)/H

2
0

Dg(;,m)/ro

3 .
D, (U,P)/r. D, (U,M)/r
h L (4.2-7b)

Dh(c,P)/r

Y

N

-

e LT A T s A B S M s s S %"“h‘m‘g

— V4

The dimensionless quantities.on the left side of Eq..4.2—7a fully
show the effect of the variation of pile radius. The left side of

] -

. Eq. 4.2-7b shows the effect of the variation'of'bile length.’

In a manner similar to that used for vertical vibration, the com-

plex displacement 5% can be rewritten as .

-1y

h A © o ‘ .

jw
0

where

|, | (4.2-9a)
' b R - . . >

(4+2-9b) -

=

Y ’= arg Dh

4 -
As a special case, the displacement of ;the pile with 'the rotationally

-

fixed head id simply the inverse of the complex stiffness thP,U).
. -

for the static case are shown in Figs.

The displacements’ﬁi

I

4.2-11 and 4.2-12 for the rotationally fixed head (fixéd head) and

Figs. 4.2-13 and 4.2-14 for the free head. Since ;hé displécement ' -

'Dh(U,P) for the rotatfb;ally fixed head is related only to Kh(P,U),

the soil effect on the displacement of thig pile vayies with the

‘e
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in the same"ﬁﬁnner as that on the étiffnéss Kh(P U) does.

-

parameter Yh

On the other hand, the displacements for the free head pile are gov- - >
1
erned by Kh(P v), Kh(P ), and Kh(MF;) Therefore, the soil effect .

on the displacements for this pile vary .with Yh,;n a different manner .

than the soil effect on the stiffnesses &qes. Since the free head

3 >

T~
~_
tions used in deriving the stiffnesses, the soil effect on the free

head pile grows more rapidly with Yh than those on the stiffnesses do.’

For the dynamic case, the displacement D

hfis composed of the ~§
amplitude and phase shift. They vary with frequency and tHis varia- ﬁ'i

-

tion depends on the effect of soil as shown in Figs. 4.2-15 and 4.2-16. %
In those figures, the previously mentioned two types of peaks can be

clearly seen. Under the small Y the first-type peaks for the free

h’
head - pinned tip pile are much more significa;t than the second-type -
ones. On the other hand, the first—type;pe;ks £;r other piles are far ‘
less significant than'&he second ones are. Figs.i4.2—17 also show ‘
the different trends in the amplificafions at th; resonance of the
strétum for the free head - pinned tip pile and other piles; the Pt
amplification for the free head - pinned tip'piIe'ééc;eases with Yh’
whereas those for other piles increase under the weak soil effect and
decrease under the strong soil effect. The variations of the ampli- E -
ficatians at‘thg resonance of the soil—pile system’hith Yh are shown .
in Figs.'4 2-18, The trends in this variation are affected veny
little by the boundary conditions at the ends of the pile.

Figs. 4.2-16 show that even under small Y, , the phase shift of

the free head - pinned tip pile remarkably increases groﬁnd the resonant

frequency of the stratum, and drops thereafter until the next sharp
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increase appears. Those trends in phase shift are also quite differ--
ent from those of other piles observed in Figs. 4.2-15 and 4.2-16.

When the effect of the surrounding soil is very strong, the
' 3

(‘boundary condition at the pile tip does not affe

he behavior of the

pile. Therefore, under such condition, the diqplaceNents at the jead

- of the-clampad-tip pile are very little or no d erent from those of

the pinned-tip pile. The strong soil effecbh.further yields the condi-

tion thaé the relationship between the displaceﬁent Bﬁ and the fre-

0

pile at frequencies higher than the first resonant frequency of the

quency a

is nearly or completely independent of slenderness of the

stratum (Figs. 4.2-19).

The variation of Poisson's ratia.affects the static displacement

D, as shown in Figs. 4.2-20. Trends similar to those in vertical A

vibration are seen in these figures. When dynamic loadings are applied
to a plle under the weak soil effect, thé amplitudes for two extreme
Poisson's ratiosgyvary with frequency from their statical values as

shown in Fig. 4.2-21. 1In this figure, the peak amplitudes appear at

higher frequencies b for v = 0O than for v = 0.5 (b =1 for v = 0 and

- R ~

b~ 0.9 for v =.0.5); the peak amplitude in vertical vibration appears
at a nearly constant value of b regardless of the value of*‘Poisson's .
ratio. As can be seen in Figs. 4.2-21 and 4.2-22, the peak amplifica- -

tion under the weak soil effect is higher for v = 0 than for v = 0.5.
'

For the strong soil effect, the amplitude varies with frequency a’

0
shown in Figs. 4.2-23. These figures indicate that the phase shift does

as

not'depend on Poisson's ratio but the amplitude-does; hoth amplitude o
and phase shift are nearly independent of Poiqgon's ratio in vertical’

-

vibration. The solil effect in the dynamic case grows with Y, slightly

h

) i

~
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more rapidly for v = 0.5 ghan for v = 0 as shown in'Figs. 4,2-22
and 4, 2—24}.

The variation of mass ratios affects the displacements of the
plle. Under the weak soil effézt, the higher mass ratio yields the
lower resonant frequency of the soil-pile system (Fig. 4.2-25) and the
lower resonant amplifications (Figs. 4.2-25 and 4.2-26). Contrary to

"the above trend in the resonant frequency, {his frequency in vertical
vibration 1is fairly indepgndent.ﬁi the mass ratio. Under the strong
soil efféct, th; variation of Eﬁé'mass ratio affects the relationship
between D, and a' as shown yﬁ'?igs. 4.2-27; the trend follows that in

h 0

P —
vertical vibration. The varfation of the mass ratio (0.3 < p < 1.2)

does not seem to affect‘very much the relationship between Yh and the

degfee of soil effect (Figs. 4.2-26 and 4.2—26).
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CHAPTER 5. COEFFICIENTS OF SOIL REACTIONS FOR A PILE

5.1 Introduction

In the-ﬁ;§1ysié of pile behavior, the soil resistance to the pile
is often éssuméd to be related to the pile displacement dhly at the
depth where the soil resistance is cénsidered. Adopting ;uch an
assumption, many investigators have uged the relationship between the

pile displacement and soil reaction expressed by .
p(2) = E_z" U™(2) (5.1-1)
. tA

where p(é) is the soil reaction at depth z, Es is the constant deter-
mined from the elastic éharacter of soil, m and n are the constants
governed by the variation of soil properties with depth and the stress-
strain relaﬂionship of-soil, respéctively. For example, the following

constants m and n were used for the horizontally loaded pile.

»

n=1, m=0 ... Chan (1937) I

n=1, m=1 ... Row (1956), Terzaghi (1955), Reese and Matlock (1960)

n=1, m=arbitrary number ... Palmer and Tomson (1948)
: 5#1, m=1 ... Rifaat (1935) |

n=0.5,.m-1'... Shinohara and Kubo (1961)

n=0.5, m=0 ... Hayashi and Miyajima (1963)

The relationgﬁip expressed in Eq. 5.1-1 leads to the coefficient

of soil reaction as T .

l ) , ST

210
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K(z) = P(—f_) = B 2" "y (5.1-2)

when the soll is a homogeneous and linear elastic medium, the above

expression for k(z) is simply expressed as

-

k(z) = E (5.1-3)
s \

3
2

Thus, the coefficient of soil reaction is iqgependent»of depth for
such a case.

In the dynamic caéé, this coefficient ;hould include the damping
and inertia effect of the soil mass. Altﬁough many people have con- .
ducted research on the coefficient of soil reaction er a pile, the I
above mentioned important factors in dynamics have not been properly
considered in most cases. Baranov (1967) obtained a simple forﬁula
to estimate the dynamic coefficient of soil feaction for the embedded
foundation in general. This formula is based on a plane strain assump-
tion but includes the previous}y mentioned important facfors in
dynamics to a‘certain extent.

éince the solutions fér vibrations of a soil—pile‘system derived
in the previous chapter considered soll as a continuum medium and
"sufficiently reasonable boundary conditions were assumed, the coeffi-
cient can be obtained from those solutions in a rational mdwner. 1In
this chapter, the coefficients of soil reaction for a pile are derived

» 3

from the previously obtained solutions for a soil-pile system and the -
. 4 \ .

characteristics of those coefficients are investigated. Some of the

- -

commonfy used methods to estimate the coefficient of soil reaction for

&

a pile and the above mentioned Baranov's formula are also examined.




As a fundamental case,

sidered in this study.

5.2 Derivation of the

212

homogeneous and linear elastic soil 1s con-

Coefficients of Soil Reactions

The so0il reaction
the circumference of a
and 2.2-16 in vertical

horizontal vibration.
. &

parameters as

v

o

to a pile and the displacement of soil- around
pile are expressed, respectively, by Eqs. 2.2-13
vibration and by Eqs. 2.2-43 and 5,2-47%n

They are also expressed with the dimensionless

wiz)) W sin (h_z) l o
_ = E n - n - (5.2-18)
pv(z) = (™ e Wn_sin (?nz)‘ .
U(z) z ‘U sin (h z) )
R 2 no n v (5.2-1b)
ph(z) =1 lﬂu th Un,sin (hnz)‘
According to Eqs. 3.2-9, 3.3-11 and 3.3-22, W_and U are :
. w2 d(-n“'1 {*
W = ES - = — 5.2-2a) °
n P> b -2+ Y o - ,
n v v vn ,
(AF. "+ BF. + CF. +DF )" - %)
in 2n 3n 4n n
U = (5.2-2b)
n E" ey %
n h h ‘hn

From the definition, the coefficients of s;fl reaction for verti-

cal and horizontal vibrations at z are obtained from the equation,

1

K, (z) .
K (z)

p, (@) /()

Py (z) /U (z)

> (5.2-3)




213
. . After substitﬁting Eqs. 5.2-1 into Eq. 5.2-3 and using the expres-
sions for wn and Un in ﬁzs. 5.2-2, the coefficients of soil»reaction
fo% a pile can be written és ) .

kv’h(;) = uk, (z) ' (5.2-4)

where

a
k (z) = vn (5.2-5a)

. © o (AF. +BF. +CF. +DF, ) (n -%%
! hn in 2n 3n 4n n h - =
. . n sin (h 2z)
E —4 —4 — n
- h - Ah + Yh ap -
ky(2) = . “_4._,4 (5.2-5b) -
(AF1n+BF2n+CF3n+DFlm) (h -Ah) , :
— =4 -
n=1 T ARt Y %
L

=)
n
-

sin (h z)
n

5.3 Characteristics of the Coefficients of Soil Reactions o

-

Fig. 5.3-1 shows the distributions of the static coefficients of
soil reactions along the depth for homogeneous and linear elastic
soil. The figure indicates that the coefficient is distributed nearly

uniformly along the depth for extremely small Y. For increasing

.

values of Y, the.coefficignts at the shallow depth increase from the

above nearly uniform value whereas that at somewhat deeper depth

decreases. Thﬁs, even 1f the soil medium is assumed to be homogeneocus

*

and linear elastic, the coefficient 18 geherally not uniform along the

depth but tends to decrease with deéthﬁjﬁ?his\trend is more signifi-

~ * cant in a shorter pile. In horizontal vibration, the coefficient can
. . . \ RN

|
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be zero and even negative for large Y As can be seen in Fig. 5.3-5,

he

this negative coefficient results from the negétive soil reaction

under which soill pushes the pile toward the same direction as that of

the pfre displacement. The above observation for homogeneous soil

leads to an idea of the distribution of the coefficient for inhomo-
geneous soll as shown 1n Fig. 5.3-2.

Fig. 5.3-3 further shows the distribution of the céefficient
obtained from thevfield test (McClelland and Focht,-igsé). In this
figure, the coefficient tends to increase with depth until a certain
depth and decreases thereafter., Considering an éxtremely low elastic
modulhs of soil near the ground suffife and strong nonlinear behavior

of soil in this region, this trend in the field t%ft agrees with the

I

y .

one drawn from the theoretical analysis. However, the investigators

s

who conducted this test thoughk that the decrease of the coefficient-
with depth was unrealistic since the soil strength did not decreaée
with depth at that test site.

Fig. 5.3-1 implies that the distribution of the coefficient along
the depth is mostly govgrned by the parameter Y and its overall magpi-
tude is géverned by 31:;derness. The vartations of overall magnitude

of the coefficients with slenderness are shown in #ig. 5.3-4 in which

Aot
[N

extremely small values of Y;—and Y

®

h are chosen so that the coeffi- -°

cients are.nearly uniform along the deﬁth; In this figure, the coef-
ficients decrease with slenderness but nearly linearly increase with
rolﬁﬂ

Fig. 5.3-5 shows the distribution of the coefficient along the

depth for three different cases. In each case, thé shown comﬁinattons

.
>

/
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°

-of the parameters H and’Yh yield the unique displacement parameter

» -

Bh(U,P).‘«{his figure indicates that, under such combinatio;;fgf:§he

a : berameters H and Yh, the distribution pattern of the coeffi®ient ak¥ong -
. . ~ ’ ‘ . .
o - §he depth is_rathgf independent of slenderness. Thus ;¥¢the location of

- zero stiffness does not vary with slenderness. This 1s because, as

o

can be seen in the same figure, the variation of the pile displacement.
with depchﬂis nearly independent of slenderness under sdch combina-
tions of the parameters so that those of she moment and shear force

in the pile and the soil reaction arg'alao‘indepepdent. Th?refore,

i

- the previously found rather uﬁique relationship between soil effect

and Y can be explained from the rather unique relationship between Y

i

ﬁﬂﬁ the variation of the pile displﬁcement with the depth, since-Y 2

N does not vary much with H under the constant value of D (or K).

When a pile is subjected to harmonic exbitagidn at the pile head, e e

“the)distfibutions of the dynamic coefficients of soil reactions’.along

) ‘he d‘ep‘th vary with frequency as showR_in Figs. 5.3-6 and 5.3-7. In CoT

v . -

. thése fiédrészqip can be seen that the coefficient tends to become

more unifori along the depth as‘fréquency increases. The uniform value -

o

which the coefficient approaches seems to .be the coeffibient for the_ e
£

plane strain case. This can be gxplained from the natutre of the wave

- propagation as explained previoﬁsly. Since the anﬁle of the ray path

© . . L . . ) &

in each mode wave and the numbers of progressive waves can be uniquely

’ defined by the frequengy parameter ay> thefparamét;r ab or normalized

paramdter a_ is the most useful frequeney parametcr for indicating how

%0
. much the coeffiqient approaches that forﬂthe plane strain case at the

< s '
v

- . . 3

. ) frequency w.
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Figs. 5.3-8 and 5.3-9 further show how the coefficlents at par-
ticular depths approach that for thé plane strain case as the fre-

quency parameter ab increases. : Since the frequency parameter ao is

larger for a more slender pile under a given frequency 36 orrw, the

coefficient for a more slender pile more quickly approaches that for

<

the plane straln case as the frequency ab increases.

5.4 Somé Considerations on Estimation of the Coefficient of’ .
>

- Horizontal Soil Reaction

The coefficient of soil reaction for pilé is often estimafed from
the loading test on the pile, plate loading test, and theoretical
formulas for a beam rest on the surface of an elastic medium.
Baranov's formula may also be\used\to estimate the, coefficient for
a pile for the-dynamic case. In thé'following, the coefficient of

horizontal soil reaction estimated by those methods are compared with.

those obtained from Eq. 5.2-5b.

(1) .Coefficient.EEtimated,from Loading Test on a Pile

This test has an advantageqsince it is conducted under the situa-
‘tion close to the real situation d?‘soil—pile system. However, the .
problem is how the coefficient is deduced from tﬁe test results.

The un}formly distributed equivalent coefficient is often esti-
mated so tat this coefficient yields the same displacement at the
pile head as that obtained in the éest. Obviously, BQ:; equiyaleﬁt
uniform coefficient differs from the real,one—uhsz\fhe 861l medium 1is
inhomogeneous. Fig. 5.3-1 shows the estim;ted equivalent coefficient

together with that obtained from Eq.'5;2—5 for a homogeneous and linear

A
e tie

:
.
L
y
.:
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elastic spil medium. As can be seen, even if the soil medium is homo-

geneous and linear elastic, the estimated coefficient generally dif- .

v

fers from the one expected in this soil mediumy The difference 1is

much more significant for 1prger'f On the other hand, under small ° ¢

he
Yh and slender pile, the estimated one agrees with the expected cne.

(1i) Coefficient Estimated from Plate Loéding Test
The coefficient of subgrade reaction is often assumed to be '

related 4o the coefficient of soil reaction through the relationship

- = * a -
k 2 rojk i (5.4-1)

where.k* is the coefficient of subgrade reaction and is USU{lly
obtained {ipm the*pléte loading test.

When the soil mgd}um is elastic, the theory of elasticily indi-
cates that the coefficient of subgrade reaction 1s simﬁly iﬁveraely
proportional to the wi&th of the plate. The coefficient, of soll reac-
tion is therefo;e independent of the width of the plate. According .
to Terzaghil(1955), thia is because the’size of the pressure bulb o e
increases proportionally with the width of the plate. He postulated
that such a cendition exiéted for the soil-pile systém'and‘applied

the above mentioned relationship between the coefficient and width

A “

of the plate for estimating the coefficient for a piié in clay. .

. }
When the soil medium is homogeneous in addition to linear elas-
g . .

tic, the coefficient of soll reattion for a pile now may be obtained

- from that for the circular plate on‘h homogeneous and linear elastic

half space. Thus, the coefficient of soil reaction obtained from the

plate loading test is , .

)
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. kh =y Eh \1 "¢ ® (5.4“23).
’ where -
M 0 ‘
— 8 l
kh = -0 : . (5.4-2b) .

ERY

The coefficient obtained from Eq. 5.2-5b has already been shown
in fig. 5.3-4 for homogeneous and linear-elastic soil with v = 0.5.
‘ " In this figure) the coefficient decreases‘yith slenderness. On the
other hand, the coefficient estimated froﬁ the plate loadiné test for
such ideal soil is independent of slen&arﬁhss as shown in Egs. 5,42
. and 1is E£ = 5.1. Therefore, the comperiso% of this value with those

| A
in Fig. 5.3-4 reveals that thé plate loading test may provide a rea-

—~——

-~
sonable estimation for a sport pile (H/r z 20) whereas it may over-
1

estimate the coefficients for a slender pile

” i

\
- .o

(111) Coefficient Estimated from Theoretic¢al Formulas
!
There are some theoretical formulas used for estimating the

. static coefficiemt of soil reddfiggi Among them, Vesié's formula

is very often used. ‘

Vesié (1963) has proposed a formula fqr,ﬁbtimating the static

coefficient of, soil reaction for a uniforml? loaded beam on an elastic

o,

- half-space. Broms (1964), F;ancis (1964), and Bolows (1968) applied
. |

" this formula to estimatehthe coefficient for a bile. However, Francis 2

used the coefficient as large as twice of tﬁat obtained by Vesif's
4 | .
formula,because a pile is surrounded by aoii After this modification,

Vesié's formula for the coefficient of soil. reaction is

i
i
J

j
!
i




‘ k, = 1.30
P I 2
h Fp 1- v )
- | where E is Young's modulus of soil.,_THig equation is rewritteh by
the previously defined dimensionleés parameters and tis
(!.4—4) N

The variation of the coefficient E# udth.slendernésslébtained by

h

noted that the coéfficient obtainéd from Vesié's formula is indepen-

, v
Vesié's formula, is shown in Fig. 5.4~1 for varieus Y. . It should be

<

dent of slenderness; this is Because YH:ia:expressed by Yh = 4 ;2 ;-§4

and therefore ﬁa in Eq. 5.4-4 1s cancelled out. Comparisan between

the ‘coefficient obtained by Vesié's farmula and that -obtained from Eq.

*

c . 5.2-5 shows that Vesié's formula gives a reasonable estimation when v

- the parameter Y, 1s about’ equal to 10,000.. However, as pointed out

h
before, the varfation of the ¢oefficient with depth is large”for

Yh = 10,000.

In the dynamic case, no theoretical work has been done to ésti—

1

mate the coefficient of soil reaction for a plle. However, Baranov's

T

approximage gormula for-estimating the coefficient .of soil reaction =

" for an embeddea foundation may be applicable to a pile. The appli- )
. cability of this formula to a pile may be 1le examine. R
’ Baranov (1967) assumed an elastic medfum surrounding an infinitely

" LS .

“

long, rigid~ayf}nder'subjected to harmonic excitation, and derived the
- ,

formula for the coefficient of soll reaction for this case. This

-

N —
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situatfon .doeg not yield the strain‘bn the plane perpendicular to the

axial directfgn and'is viewed- as a plane straih case. Sincg Baranov's
. . - \v" ’ ‘ N ‘,‘ . L . ’ B .
fformula does not include material aampfhg;-his formula is modié}éd in

Appendix C’'so a5 to include {t. ) ’ : :

]
] .

The coeff%eieaL;gstimatep by this modified Baranov's formula fs

-

.shown in Figs. 5.3-7 and:5.8-9.togethev with the coefficient obtained
ff%m Eq. 5.2-5b. In this figure, g‘significaﬁt error #n hiseformula
appears 1in ‘the .static case or’zero excitation frequency: the real ¢

part of this coefficient 1s zero at zero frequency whereas it is not

“

i

zero In the- real case, This error results from a plane strain : ,'
PR . .
‘.assufiption. T . o

Mg

i hY

" On the other ﬁand, as is shown in figs.‘5.3—7, the distributed

- coefficient along the depth approaches that estimated.by the mod1§§ed
' * . . ' TN

’ r

Baranov's formula as more wave<;odes accgmpény'the progressdive waves, - ‘\
. ‘e ! [l

L}

o Coﬁsideridg this: trend and 'the trenl observed previously in the static, \‘
- » .

cgefficigpf: ‘the plane strain assumption leads to a reasonable estidg— g:
ﬂ . - Y - . !

'tionlof ‘the coeffic¢lent for a slenaer pil® with small Yh and hiéh fre-

I . - - s 0
»  quencles.” This statement is aléb'applicable to’ the coefficient for N

-

n - » -
vertical vibration.’ . . . . ;1 '
¢ o L ' *

- ‘ L3
.

¢

B

C Flgs. '5.4-2 ‘show the displacements of afpile ‘at
h P

t

the head in Hori- LI
zéntal~wt§ratiqn,.which are obtained bwva‘;fgorbus golution derived in

‘th{s disseftation and ah‘épﬁroxiqimte vutipn."‘ In the approxiﬁate
a8 ; ¢ S A Y

solution, she reaction from the.soil fs calculated from.the modified

- Baranov'

- .-
. ‘A

8 gorﬁdla. _Exﬁﬁﬁfent Qgreement betweenathos; amplitudes can

be seen at the frequéncies above the ‘Becond résonant frequency of t;{e
<. R e ) !

j;;;a“g;um."‘HoWevex:, for the shown frequency. rahge (;O“i o), the /"‘
f%igﬁeehentﬂinnthe phase shifts are not go good as- that in the:ampligudes..'
. \ N M 3 ' ’ AR ’ N

c . e YN
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The éynamic soil-pile interaction and the dynamic céefficients of -
soil reaction for a pilé fo;ndatioh have been investigated in this
dissertation. The:mainlemphasis was placed on obtaining a physisgl .
insight of the phenomenon. Thus a rather simple soil-pile system was
considered so that important features of the dynamic behayior could

be seen clearly.

-

tion from the soil, and results in a‘soilﬂpile interaction. Iniinite

modes of waves are generated in the soil medium by the motion of such 1}

*  a plle.

those in all waves. ~

The "soil resistance factor" Aefined in thls dissertation shows RS
quantitatively the functions of !he Qoii medium to a pile ln indi;idual’
wave modes. fhia factor is a complex number in which the real and

imaginary parts fepresent, respectively, the spring and damping func-

- features of this variation are: ¢ ' ‘ c
1. S;iffne;s te;ds to-drop with frequénéx in the low frequency ’ A
range and shows its mininum va}ue at/the resonance of .the ;
. ;Eratum. K . “j ;.. - Y— 4,Nf' ' 'W
-~ 2, Dampiﬁg.in ‘the 15w ffedﬁeney range is ﬂe@rly‘igaependent of
frequency when'material damping 1» present.
3. ‘

The behavior of a pile driven into soil is modified by the reac-

The reaction from soil is a net effect of superimposition of

vafdnsxof soil medium provided to the ﬁile in individual wave modes.,

Those functions of fhe soil medium vary with frequency. The main

4

CHAPTER 6. SUMMARY AND CONCLUSIONS

) ; ~

)
& -
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-
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..

Damping increases sharpl& around the resonance, and there-
. . . . 0

after linearly increases with frequency. - T

-

238-
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. 4. As frequed%y increases above the resonance of the stratum,
stiffness and damping become identical with those for the

plane strain case.

“

Those frequency-dependent behaviors of the functioqs of the soil

medium are governed py the dimensionless parameters such as the wave

mohéinumber, damping factors (D1 and Ds)’ Poisson's ratio (v), and réla-

tive fhickness of .the stratum (H). They affect the damping and stiffness
functions of the stratim (H). The effect of these parameters on the ° ’ -

functions of the soil medium are classified into those in the following . .

a«

three frequency ranges.

gin the low freguency range: ' .

®
N ]

1. Stiffness is higher for higher modes and relatively thinner

. . . /L

stratum. . ; N
- 2. Damping does not appear for soil without material damping.

3. Damping is larger for larger material damping and higher

L] ‘ - i
i

. modes. D
around the resonance: : ) 3 . .
N . 1; . The droé of sgiffness is~§mgl}ér for higher material damping
‘ and higher modes;‘, - (
in the high f{gquehcy range: ) .
- 1. Stiffness is reduced by the mate:{a‘~:fmping, and thié >
feduction grows with'frquency. S . .

2. Material damping generates the damping, in addition to .
- . . . - . . K
ffﬂ\.i . radiational damping, which is nearly frequency-independent ‘ A

and latger for higher ;aterial damping.

3. Stiffness and damping,afe independent of Ppisaén's ratio in
; > / "

a . -

. ' vertical vibration. ,/’ ) P 2 |




,are different for the'Qeak and strong soil effects. The degree of R
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LY

4, In horizontal vibration, the stiffness for higher Poisson's

ratio is lower above a certain frequeney, whereas the damp-

ing for such Poisson's ratio is higher.

5., Stiffness and damping become independent of the relative

°

thickness of the stratum and wave mode as frequency increases

The aboye derived resistance factors were useJ:%; obtain the stiff-
-4

—— " ness and damping of a soil-pile system at the pile head. The stiff-

ness and damping are expressé’b respectively, by the real and imaginary

parts of the complex ﬁumber and were called "complex stiffness." The

.
’ [

complex*stiffness varies with frequency. The trends of this variation

the soil effect on the complex stiffness can be roughly estimated from
the parameter Y. )

*

Two types of abrupt changes were observed in the *variationm of the

- .

" complex stiffness with frequency: the stiffness drops vhereas the
14

damping increases.’ One is associated yith the resonance of Ehe soil

- v

“medium and the other with the regonance of the aoil—pile system. When

the "soil effect 1is weak, the first type of abrupt change 1s not
noticeable whereas the second one appears Etrougly. On the other

Hand, when the soil effect is stroag, only the first type of abrﬁpt

change appears. i . :
\ .
Other observed main feeturea of the complex stiffness are.

. 1. Under the atrong aoil effect, ‘the-stiffness K quickly .
beco 1ndependeg; of slendernesa as the frequency ao
.. B
) increases above the first reaonant frequency of the scratum.

L]

ne - . [ ] - N -
. .

~
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2. The damping K 1is nearly'independent of slenderness under any

intensity of soil effect, except the above mentioned abrupt
change and the damping in the low frequency range.

3. The damping is small and does not vary much when the fre-

quency 1s lower than the first reaodant‘;requency'of the

stratum.
" 4, When the frequency 1s highef thanléhe first resénané fre-
quency of the stratum, the damping grows nearly linearly
* with frequency exéept the above ﬁentioned abrupt change.
-, . 5: Under the strong soil effect, Ebe dém;ing rélative to the ’

;tiffness is Pigh for Kh(P,U), Kh(P,c), and Kh(M,c) in
decreag}ng order, and thét for’vertical vibration i3 between
~ those for K (P;r) and K (M,0).
6. In horizontal_vibration, the complex Etiffnesskxh(P,U) is

most -sensitive to the variation of the governing parameters

b

but the complex stiffness Kh(M,Q) is'leaa . _;§
7. The gomplex_sfiffdess in Vertical vibr‘fif; varies with fre- . ; . gé
| Lo "quenCQ nearly indepedde;cly of Poisson's ratio at frequen- , ' %i
?fp‘ - cies‘abo;e the first resonant fréqdbhc§ of the stratum. * .
' 8. Iﬁ hprizqnta;_vibration. the complex stiffness normalized by
. : :' ] ‘_thé'static one varies with'frequéncy ngarly'indeﬁendently of 0
' -,foisson’é ratio; althodgh the—complex stiffness is highg? for |
) higéer Poisson's ratio. - ' o AN
9. ‘Thé effect‘df the var;ationuoﬁ nass ratio 1ncrea;es‘with-‘ | .
| friﬂugncy. i - |
‘-16. The larger mass ;at;oAl;ads to the higher s:if%geas and .
. ' ' i : - . ¢ ~ 3

. ‘ s lower'dimbingw
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11, Under the strong soil effect with large mass ratio at high
frequencies, the stiffness and damping may be treated as in

’ ¢ a standard'Voigt model in which tﬁe spring and damping cons-
T tants are frequen:y independent. “ .

The displacements of a pile-subjected to harmoﬁic excitation at
its head were cglculated. The results showed how.the characteristics
of the complex stiffnesses affected the displacements of the pile.

)
The coefficients of the soil reaction to a pile were investigated

using the previously derived solutioﬁs for a soil-pile system. Major

»

findings for the static coefficients are as follows.
1. Even if the soil medium is uniform, the coefficiénts are

genefally not uniform along the depth hut tend to decrease

with the depth.

2. Smaller Y and a more slender pile yield more uniform coeffi-

. IN

cients along the depth.

3. The coefficients increase nearfy‘linearlf with rO/H for

20 < Wy <2000 0 | . L

4. Any combination of Y and slenderness which yields the Eonstant ////,

- o " A s
D leads to nearly unique variatior of :hq coefficients with‘///
depth. - -

+ The dynamic coefficient of soil reaction is expressed by a complex

number, in which the real and imaginary parts represent th

stiffness and damping, respectively. As frequency iq€;z§ses, the coef-

ficients become uniform along the deptﬁ and approacy/those for the " LT
" N ) - /// . " )
plane strain case. The comparison of the coef{}q}enta obtained from L.

' -

. the derived solution with those for_the plahzfitrain case has shownt
o - ' . . 7 4 “. - .
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“ . .

1. Beloy the first resonance of the stratum, the real part of

®

the coefficiengg {8 higher than that for the plane strain
case, whereas the imaginary paft‘is smaller,
! 2. Around the first resonanﬁ,&#equency’of the strat&m. th; regi .
) ‘part of the cé%fficients is lo;er than ;hat for tﬁe p}ane
. I ‘stra;n.case. -
] ‘ ’ “ w )
The cbeffiqient of horizontal soil reactions is usually esti-
. . mated from the field tests or analytical soiugzons. Sinﬁg those esti-
~ mations rely on certain assumpfions, so@e‘éfﬁ;he above methods were
°asaes§ifxby comparing the ctefficients obt;inea ;ith them and those
¥ B
obtéingd from the derived soldtiqn for a soil-pile interaction. The
main” findings are as,follo;s. ‘ ’
‘ .o, "équivﬁlent coefficient" Epck calculated from fiela tests on
a pile may be underesiimated at shallow depths but over-
estimated at somewh&t\&iiiie? depths. | i
. s,
* 2. The plate lo?ding test (may overestimate the coefficient for
. a,slendér pfle. i » :
3.  _Vesié's formula may ;f;vide a reasonable overall value of
the oeffigiep}‘fo} Yh X~ 10,000 but ‘overestimate for
. Y £ 10,000, . o o ’
. 4. F ‘a‘signde; pile, small Y‘and high frequency (;0 > 3),
. b . ) the dynamic éoeffici;nt may be reasonably estimated from
" - t;e plané agtain case (mod?fi;a\Baranov's formula) .
Some1of thefaboye,fiddinga'hagéﬁgevealed that the sprifg-and,
R damﬂlng fuhcgiohu of a 80il medium can be replaced by the 1oc;11y
" - inggpeadent spfing and damfing diét;ibutgd along the pile length

A

‘(Winkler's model) in some cases. High frequency, soft soil, and

* °

& - .
P ®

B
., LY
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- slender pile produce such favorable cases. The above findings h;ve<  .

A

. . F u ” - '
also shown that the constants fox the locally independent spring and

damping may be obtained from those for the plane strain case or modi-

v .

fied Baranov's formula. When the soil medium is replaced by such a
model, the variation of soil properties affects the lbcally indepen-

dent spring and damping only through the parameters J', D, and DS and

1
the shear modulus, as shown in the formula given in Appendix C. Thus,

t

such modeling of a soil med&um~will make the dynamic analfsis of a

-

¢
pile foundatian much simpler.

-

Suggested Future Study

In this dissertation, the dynamic soil-pile intéractioq‘was

.Studied for a single pile. However, pille foundations usually consist

of more than one pile and the inieraction‘among piles may not be neg-

.

ligible for such a case. Since the soil medium was treated as a

2t continuum in the derived solution for soil-pile interaction, this-
M solution can easily be exténded so that it can acceunt for the ,pile-
to-pile interaction. ) ' ¢ ) a )

The study in thié‘dissertation was.gimed to d}éw the basic char-

acteriatics of séil*pile interaction, and ghps, extremely ideal con-
.ditions for the soil medium and the pile were considered. The
obtained results are further affected by many factors neglected in

¥ this dissertation, such as inhomogeneity and nonlinear behavior of/
-80il medium and concgct condit;oné betwéed soil and pile. When these
effeét; are conaidéred,lit is toJ‘complicated to derive ;He solution
Ereatihg soil medium as 8 three dimensional continuum. However, the

!

solution for such a case can be obtained rather easily when Winkler's

4
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..

model is used for the s0il medium. In this model, the spring and
§ .

damping constants may be obtained from those for the plané strain
case as shown In Appendix C. The dynamié case is more- favorable for

such modeling than the static case.

Y

' When the behavior:of~a pile subjected tq seismic¢ loading is
analyzed, the.driving force from soil medium to pile must be con-

sidered in addition to the force from structure to pile. This situ-
: [

ation can rather easily be taken into account in the analysis by h .

3

superimposing the displacements due to those forces.

~
.

Therefore, further research on the following 1is necessary to

rafine the results obtained in this dissertation, and the analyses

*: . -
" for them are feasible. s ’
1. Pile—to;pile interaction.
2. , Effects of inhomogeneity and nmonlinear behavior of soil and .“

contact condition between soil and pile.-
3. Behavior, of R;le foundation under seismic loading.

Those studies must be carried out experimentally as well as theoretically.

L4 id
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APPENDIX A .
"DAMPING FACTOR FOR COMPLEX STIE§y§§§MAND COMPLEX ELASTIC CONSTANTS o
The model of a complex spring is shown in Fii\\Aél. The force
L . ) U- ) ’
in this model is composed of those in the real and imaginary parts of
the complex spring, and. expressed as . : -
% - RS X
P = p+"p'§ T . ) (A-1)
~ Where p and p' are the forces in the real and imaginary parts of the
~ . ‘ [
spring, respectively. Those forces can be expressed as
- ) a
&
- p = kx ‘ ’
(A=2)
p' = 1k'x -
where x 1s the deformation of the complex spfigg; k and k' ar® the )
4 ) , - . 7
real and imaginary parts of spring congtants, respectively. . ;)
When the harmonic displacement is given by x = xj sin wt, ‘the o ,

© forces p and p' in Eq. A-2 can be rewritten as

- P = po éin wt

p' = pa cos. wt
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The displacement, x; and force in the imaginary part of the spring;

~

‘\\ P . . A4
-*.p', lead to the relationship ’

P22 . . ;
o E) A (B - v (a-5)
R X v pO. L .,P ) . °
Thus, the fore@-displacemeut relationship in the imaginary part of‘}
the spring draws a hysteresis loop with an ellipse shape, whereas -
that in the real part draws a singlé linear \line. Superimposition

of those relatfonships leads to the force-displacement relationship

. ) ‘ ‘ ) ] A
of the complex spring, whith is a hysteresis loop.as shown in Fig. “

A-1. . X
] L4 : Bl .’5

_The hystereais 100p in the complex spring 1n§§cates~that the
behaviér of the complex spring gccompanies an energy-’ loss: Fhew
eneegy loss euring one cycle ofumetlon is given by the ehclbsed,area
pf the loop.. Such an energy iess,is induced entirely by the imaginery
pert of Fhé spring as the force-displacement relationshies in the £;a1
and'imdginary perts of the spring indicate. Thus; the energy loss in
the. complex spring during one cycle of motion, Ta, can be obtained by
the a;ga of the hysteresis loogfin the 1mag1nary part of the spring.

- That is

‘ ) , ) . ~— .
With the relationship expressed 1nfkq(\A-5, theé "integration in Eq.)h—G

» leads to
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Besides the energy loss, the oaximum sttgin energ§ stored. in the redl

. - ' . ’ - \“ ’
part of the spring during one cycle of the motionm, Ts’ is = ™ N

- - .
+ ~ . R -

]
= o=
o
(=]
(=]

2. T L . _
k x5 ) ~ , (A-8)

- >

Using Ehe gelat;onships in Eqs. A-7 and A-8, the ratio bereen‘

) Td,and T8 is given By ]
T ; .
’ d . g X '
T Z“Ok _/\ . @
8 * ¥
. ~ 2 N 7=

Therefore, theudamping fabtor D tan be calculated from Eq. A—9 hfter« ‘
the area of spe ‘hysteresis loop, the stiffness of the real Jpart of

» :
_ the complex spring, apdffﬂ;’dzzslefement amplitude are obtained from

. the experiment. The damping factors D1 and D used in the disserta-

. tion are obtained from the one—dimensional stresa—strain relationships
under the riormal and shear egfeeses,‘respect}vely. , L
Wpen the imaginary pe;t of the complef spridé'is‘replqged with a
single staadard dashpot, the model becomes a staodafd Voigt_mbdel.

The energ§ loss in this uodellduring one cycle of motion is given by

3

T, = muwc 2 - ’ : (A-10)




where ctis the viscous constant of the dasHpot. Then, the ratio:

betweeh T, and Ts is

d 3 N : \

' 'fg = 2 Luw ‘ b ‘ . - ) O
_ T X . : .
: (A-11)

o = 2r D'
Pl . . ’ ' .. - »
where D' is the damping factor for the standard Voigt model and is

N
~

D' = 20_)_ . ‘. . ) (A_12)* .
. k -
‘ The expreésion for D' in Eq. A-12 indicates that the damping factor

- of a sfa;aérd Voigt model grows lipggri§'with frééuency. On the other
- hahd,‘the damping’ékctﬁr\of‘tﬁe ;omblex spring-model is independent
- of ;he fréduency as shown\in‘%q. A~9. Since many egperimégsf on soils
-~ 1ndicate that the material'damping is subst;ntially inéependenf of
the frequency of vibration, the cdmplex spring model may be more

Cw

apprdpriaée model for soils than the standard Voigt model.

; s, j .
. | . :
O/ | '
© -~
- / - ’ N .
.
/

*Thé damping fatq‘& D' defined 1n Eq. A-12 1s twice the commonly .

defined damping factor, : —

\ \ . -t ; ‘ " \\‘\
) o \ . - . ,
- \ :
.




APPENDIX B o .

COMPARISON OF DISPLACEMENTS OBTAINED FROM NEW SOLUTION

. . WITH THOSE OBTAINED BY POULOS :

: »

Poulos (1969, 1972) obtained analytically the static d:lsplace—rY
ments of a pile set in- ground in which soi]l was treated as a con-
tinuum medium. Althongh the boundary conditions similah?to’those
considered in this dissertqtion were uéEd; no digplacements in the
soil nedium were neglected. Consequently, the condition of the
stgeés-free surface was satisfied at thé top surface ‘of the soil
medium. .

Figs. B-1 and 3-2 show such displacements obtained by Poulos
together with those ootaineo with the new solutions. In Poulos’

solution, the pile was diﬁided into small segments ‘and the contact

stresses between pile and soil medium were assnﬁif to be distributed
uniformly along the 1ength of %egment.‘ ﬁtilizing Mindlinks equation
for displacements in 2 semi—infinite medium subjected to an‘internal
point load, the relationship between the pile displecement and the

corresponding soil reaction was obtained at the center of ®ach seg-

_ment. Although Mindlin's equation is for a semi-infinite medium,

zero displacements of the stratum at its bottom were approximately

' satisfied using fictitious "mirror image." For a horizontally loaded

pile; the pile was assumed to be a thin strip. e
! . ‘ //'
‘The figures show a fairly good agreement between the displace-

°

ments obtained by Poulo- and the new solution, despite some compo-

'(/

"nents of stresses and dieplacements not being treate& rigorously Ln

& - ¥ ¢ / * /
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he new solution. The displacements obtaine& with the new solution

I

‘' '~ are gegerally smaller than ‘those obtﬁined by Poulos. This'trend,

hd&ever, tends to diminish ‘aé" the piie becomgs more slender-.

»
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*  APPENDIX C

SOIL REACTIONS FOR THE PLANE STRAIN CASE . :

. N - « -
o . ‘ . . t v *
% . . . i .. -
LY
-

When a rigid cylinder extends vertically to infinity in an infi-

nite soil Qedium and is subjected to lateral and vertical external |
> . . - [t
loads, no strains develop on the plane perpendicular to %25/4;13 of -

. ~ .. AY .
the cylinder. Thus, this situation is viewed as a plane strain con-

ditiont and only a unit th;cknesé of thé soil medium is considered for

‘this analysis. Such a slice of soil medium is sbowﬂ'pogéthé} with a

coofdinate system in Fig. C-1. The édop;ed assumptions are :25

1. Séil medium is infinite, homogeneous, iéotrqpic, and visco-
¢ elastic (frquency independént damping) .

2. Cylinder is rigid-and inftnite}y 1png.:

»

3. No separa;ion is allowed

Loor

between cylinder and soil medium.

. ' L4 R - -
The adopted symbols are the same as those used in Chapter 2 unless -
’ : :

-

<
»

C.1 Soil Reaction in Vertical Vibratjdn - \

Under the assumed conditions, the equation of motion of the soil

med;;m can be written as . .
| 18 a2 : a2 —
(u+ ") ==+ =5)w(t) = p— w(t) c-1)
. r ar 3r2 3t2, 4 R

.
4 -
« A}

-, v

Under steah;-étate motion of frequency w, tﬁe.a-piitude.of thé,,

displacement can be qépa}atgd as | ot ' g

‘.; ‘ . ‘— ' ” I4 ':,"' .’ . R .

////" w(t) = "w elot L BER " (c-2)
B by \d .
- &F . ‘ T

N Y T re
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After substifuting Eq. C-2 into Eq. Q;1 and rearranging, the above

equation of motion cam be. rewritten as

2 .
dw_ 1 _ (112 -
2 + T . A" w 0

dr

The solution of‘Eq.'C-a for w 1is

ot

o , . ' ‘ : ’ ~\

w-’A%u§)+n%uwX h . (€-5)

Since the stresses and displacements decay wifh forizontal dis-

tance, the constant B must be zero. Thus, the displacement w is
-

- 9

w = A Ko(i”r) . (C-b)

and the shear stress Ty is
s,

o

'
sz = G+ ar

- -u(1 + 103) 1! Kj(l'r) A ' T(c-7)

» “

Using the above obtained shear stress 1., the soil reactfon to the

cylinder can be derived as follows:

Ll

-




,

v”‘": [
. v . . z 5 8
2n . .
Py T 7 [ ez (r-ro)ﬁde b
“ d 0 ,
* ‘ ) ) '] . - N
- - A ] K — —_
; ) . = 2tu(1 + iDs) Ty 1 11(1 ro) A & _ {c-8)

The soil reaction for a unit displacement amplitude of the cylinder

can be obtained from'Eqs. C-6 and C-8, and hence is

o P, .
v w(t-ro) ..

~ >

. , K1(1'r0)_ \ .
= 21ruro(1 + iDS) 1’ - (C-9)

Ko(l'ro)

-

The abowe obtained kv can be rewritten‘with the dime_nsionless_

. 7
parametefs such that

S

v N4 ’ ’ ; T (C_10).

where

- L K, (1"
k ™= 271'(1 + 1D )
' 4 . , 8

— (C-11a) _
R
Ko(l § ‘-\{-. » ' .

B N L

(C-11b) .
N ® -

Then, the s0il resistance factor ;; for the pfhne strain cage can

- be  obtatned from the relationship

-
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C.2 %Soil Re.;&tion in Horizontal Vibration

For the assumed condit:fons, the equations of nbﬁiyof the soil
“
pedium can be written as”

f | 3 13

- O+ 20) + 100 + 2y )‘ = A(t)°& (i +'40") — == (1)
. 32. '
’ 2 _ = p — u(t)’ (C-13a)
hod : . - ] ' at " t
Ve \ ~ ’,:;ic\
:(A + 2u3 + 1(A' + 2u')= %-a‘g ACt) + 2(u .+ ip* ) g? mz(t)° Q“,i‘ .,
.- ‘\ 32
\ ¢ = D-—‘—Z_ v(t) (C-13b)
: \ ~ 2t '

. ‘ \ -

Under steady-state motion of frejuency w, the amplitudes of the

4 N v\

displacements can be separated as \ - ®
. ’ . b ) )
u(t) = uel®® _ . -‘ : (C-14a)
w(t) = velt (C-14b)

v
\

After substituting Eqs. C-14_1into Egs. Cﬁ13 and rearranging, the above

equations of motions can be rewritten as

o
E <
~

N . .1 ) 2
(O + 20)3-+-1D ) 24 2u(1 + iDs) ;-a's— = - pwu (C-15a)
i aA 3“"‘2 2 :
( + 2u)(1 + 1D ) 1 + 2].1(1 + iD ) 35 " CPwVv (C-15b) . °

. |

Using “the pbt’eptial functions ¢ ;md ¥ defined in Eq. £.2-2v

Eys. C-15 can be decoupled as “‘\ . . )
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8 v
tance r, the constants B, and B, must\be zero. .When the iitizontal

,~ . o hd .
2 ' 2 ' 5 . . 0' - ’ . . - \ -
Vo + (¢q")"¢ = 0 : L (C-164a)
2, - ' 2 : ) ) . N '
VYv+ (8"Yv = 0 R L (C~16b).
where .
) R -~
. > 4
Y @ 4 '
v1 vs
Q' = = — (C-17a)
/1.+ iDl /1 + 1D .
@O 4 . .
'vs
g' =° ® (C=17b)
1 4+ 1Ds

The solutions of Eqs. C-16 forl¢ and y are } ,
‘ ’ s ) : .

¢ t\A:A1 Km(q'r) + B, Im(q:r)"A sin(me) + B, cos(meit (C-18a)
- ‘ . ' n” ) . .
¥ !Ag Km(s r) + 33 Im(s F}*,Aa ?12§m6) + A 3}(m6)1i (C-18b)

».\1

- Since the stresses and Qigplaceme g decay with horizontal dis-

excitation is applied to the cylinder, the induced stress nd dis-’

placements conditions in the soil medfum i;quire n =1 and A2 - A4

= 0. Hence, the\botential functibna~¢ and ¥ are

¢ = A i1(q'r) co§ 8 ~ ) ) (C-19a)

vy = B K1(s'r) sin 0 . ' (C-19b)
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. .o . : E J
With the potential functions derived in Egqs. C-19, the displacemgntge/ _
,u'and v and the stresses o and T can be obtained as
. [ 4
- 3%, 13 : y :
4 ar T T 26 il
= éose[ ;—K(q r)+qK(q r);+BlK(s r)] (C-204)
v = _1_ ﬂ - A‘k * .
r 98 ar ‘ . ’ s
= ‘sin -6 - AlK (:;'r) ¥B al K.(s'r) + s'K (s'r)l ‘ (C-ZObJ
- e 0 | - -t
) . »
12 . 1 22
g_ = ()\+2u)(1+iD)V¢—2u(1+1p)-—_i+___'_9.
r T or 2,2
, r 46
2. - ) : )
Ay 1 L
‘r 3 38 2 36 :
r
1 2 ] . 2 -
= cos BJA(A + 2u1)(1 + iDi)(q ) Kv1(q r) + 28u(1 + iDs) ) »
KZLK(qr)+ K(qr) - 2Bu(1 + 1D ) . '
B <, 1 ' kS -
X {2 — K (s r) +—= K ‘(s'r) (C-20c) g
Ut 20
19§, 22% L 3% 19y . 1 % v '
Trp - HOTHAD )("—5 ar ¥ T 3tae T iel *ract 2 2)
‘ ' '
= sfn 0Au(1 + 1D ) 14 %—Ko(q'r) +Z 7 K, (q r)
+ Bu(1 + 41D )%(s ) K, (s'r) + 4 o K, (s'r) + -27 K, (s’ r)}]
. , . L (C-20d)
Furthermore ,mal displa‘cement of the circular, 'rigld
cylindef réquire.s that
: > ' ’
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u(r o , 8 =0) - - v(r ='r0, 6 = —) : (c-21)

0

.8 N .
Substitltion of u and ¥ in Eqs. C-20 into Eq. C-21 Yead to

[} ’
4

2 K '
B = 1(q'rQ, 5
2 K1(s ro)_+ sl T

v " ]
) *alry Xpla'ryd
K (stro)

. (C-22)
Q

.Using the relatiénship obtained in Eq. C-22, the horizontal dis-

I
.

placement ,of the cylinder®can be expresséd as "

u(r=r_,0=0) =

he 0’
] 1 ' . ' 1 tat ' ' N
q.KO(q ro)K1(s ro) + s K1(q ro)KO(s ro) +q's ;OKo(q rO)KO(s ro)

A
1 v L
o o 2K, (s'ry) + 8'r K (s'1) ;
‘ : - ) (c-23)
With the relationship in Eq. C-22 and the stresses o and T g in . ¢
Eqs. C-20, the soil reaction to the cylinder can be derived, as followq;_ ’

’ F

>

27 .
= - ‘ - - = o!
Py, - j{ lor(r ro) cos;e .Tre(r ro) sin 8‘ r, 4@

0 : ’ :

ol o
0 vs A . . . - .

' (s 1 v ' "’\'7,” ) ' l ' .
4K1(q rO)K1(s ro) + s rOKT(q rO)Ko(s ro) +\%géoko(q go)K!fs ro)

¥ L™ U .,
2% (s ro) +8'rK (s'ry)

x A
(C-24) (U

’
’

The, soil reaction for a uiit displacement amplitude of the ‘cylinder can

|

, A : +
be obtained from Eqs. C-23 and C-24, and hence is v

o

- ~

J .
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5 d >
° ‘

- ! " p 2 '
. : h w T' .
><; kh\". u(r-ro’ 9-:0) = “Hro (vs) (C‘ZS) ",-

-where ‘
\ . -
4K.A(q'r ; (s'r,) + 8'r K (q'r_;K (s'r.)) + q'r K ('t )K (8'r 3
T =, 1 ;Tp VT 0 01 00 - 0 00 0" 1 0
k ® ] 7 Tw. T; Tt ] T
q_KO(q rOKK1ﬁs ro) +58 K1(q rO)KO(s ro) + q's rOKO(q rO)KO(s ro)
A
K } (C-26)
\\ .

parameters such tha

+

kK = : (c-27)
where A
ko= om@piT 28y
RS NCUR NS SR HCOR NP RArFl XCUR N
7 (C-28b)
\a-' = q' ro -’ (c.zgc) ’
s = s Iy ~ (C-284d)

3 )
a, for the plane strain case can be

Then, -the soil resistance facto

obtained from the relationship < . B - .

’
©
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and s' can be also expressed as

- Alv: - : et - ~-o;A4tr-::-~'M
;‘ s
= 264
ah = T (C—29)

1% _ — .
6. 1' 1
n ) :
Ty = 7 withh_ =0 ) (C-30a) )
= n n
H /_
s' s b
9 n -~
, P , o
T - — . . o
ag — 4, . (C-30b) .
H ‘ ¥
, . R , . L
* The relationships in Eqs. C-30 inpdicate that o, and o for ‘the plane ool
. stra’in ca’se‘ age identical to % and a respectively, when hn .
is equal to zero. ' " .
¥ L) L
)
“ a
% 0 ' ‘ . ‘
-
o . —
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APPENDIX D - ' o ’
) ANALYTICAL SOLUTION FOR THE BEHAVIOR OF SOIL—PILE SYSTEM IN
’—\\HORIZONTKL VIBRATION BY USING MODAL ANALYSIS
. ¢ : : /'
t‘T‘he assumptions adopted iﬁ tyis solution are e¥®tly the same as f/
'tl;ose. adopted in the direct solution for horizdntal vibration\in |

Chapter 3. Forces applied to a pilg, soil reaction, and the coordi-

nate system are shown in Fig. 3.3-1. When the soil reaction ph(z) imb
is treated as aqbexternal force to the pile,‘the equation of free
vibration of the pile can be written from Eq. 3 3-1 as

52 iwt~“ : ' ‘
, 3 (U(z) e ) = 0 (D~1)

ot

o

The solution o%_. Eq. D-1 for U(z) 'can be expressed'by
U(z) = A sin(rz) + B cos(h z) + C sh(A 2z) +'D ch(A 2) ] (D-2)

| ks
. .

f Using the’ horizontal displacement U(z) in Eq. D—Z; the boundary
conditions for free vibration of pile lead to four sgﬁultdnebus,
. ' 4 / A
homogeneous, linear equations with unknowns A, B, C, and D. An infi-

- nite number of mode shapes and natural frequenc;es,ban be obtained -

from those equatio:@.w With those mode sl';apes. a%d’natu‘ral fx_'equencie.s;

. . L]
the horizontal and rotational displacements ofwghe pile can be
expgepsed,'respkctive1§:tby . o ' - N
re _ &~ . ’ * ' v LI
U(t z) E £, (z) n ‘*‘ R . (D-3a) ¢
n=1 -- ! b ‘ e ) ‘ . - -.‘ ’




I . 1 i )
P pos S
= ' *
. g(t,2) E £.(2) n .
T e ~ n=1 ° !

L]

. where : ‘
z .
. it =,
U(t,zy> = U(z)e " :
- iwt . ' .
g(t,z) = t(zxe” :

>

ugn(z) = n-th mode shapé of pile free from soil effect

-

nl;l(t) = n-th‘general}zed cooi‘dina_te
: L9 En(Z)
En(z) = T3z = z(z)
. Lagrange's equation for a.pile subjected to
. . .

the j-th generalized coordinate, is

~ -

d_. a'rk ) BTk + 8T8‘ _ —N— )
de \on; an,  on, 3 ) .
J ) k|

—
-~

t - -~ &

LT
where Tk’ s* and 'Nj

eralized force in the j-th generalized coordinate, respectively, an

.- 1

an
‘ \ r.l = —1
b ot .

. o ' - R .

The' kinetic and strain energies' can be written as

fm.l.l-(t,z) dz"

H v
' f EPl‘?‘U"(t,z)_dz
H )

~

@
—

are the kinetic and strain energies and the gen-

' \
external forces’ in-
(D-4)
Y
(D-5)
R .

*




~

~t

N\

. ‘ : o2 '

Be,2) = WLz) - | - (D-7a)
/

U;b'(t,Z) - a_z‘l{_;_al;’)_ N o (D-7b)

3z

Substitution of"l‘k and T8 in Eqs. D-6 into Eq. D-4 leads to

<
»

2

dn . - -
. 2 -
——71- m Ei(z) dz + l:j nj EPI Ej(z) dz = Nj (D-8)
dt . .
H - H
A )

‘ U .
where Ahj is the j-th, natural frequency (in terms of Ah) of the pile.
Since harmonic-excitations with frequency w are applied, nj can be
expressed as ’ N ’ -

s st - ' '
n, = c_e D-9
3. 3. A (0-9)
» A
Using the expression for nj in.Eq. D-9, Eq. D-8 can be rewritten as
AN 2 1ot B
c A - A I/l z) dz e = N . 1 . (D~10
5 (ny = 2n) 2 L-Ej( L T (-10)

The external forces on the pile, Peiwt, Meiwt and ph(z)eiws,

are shown in Fig.‘3.3-1. The virtual ;ork done by those fdrces on

* %the virtual displacements, sU(t,z) and §z(t,z), is given by

.
-

8w = P eimt-GU(t,z-H) + M eiwt-Gc('t,z-H)
| - ~ tut . -
- | P (2) e“"-5u(2) dz ) (0-11)
+ H o . . -

S
2




-

Substit.‘ut.:[.ng the exp'ressi,oris*of} U and £ in :Eqs. D-3 ?nto Eq. D-11,
- N\ N - . ,

: the ‘above virtual work done can be rewritten as d

- “0
: .
- v

LI

' A
o = E Pe’t g () + el

n=1 :

r

Et'l (1)

-[“p,h(z) elvt En'(z), dz ¢ &n_ ' (D-12)
H T :

.
W\ -

3 L)

On the other hand, the work done by the generalized forces (N

2, »
N3, ...)‘ on the virtual displacements (6n1, Gn-z, 6n3, ...) 18 \-
/ . : . i “ . 3
: o e .
‘ Sw = Z:_Nn-Gnn . (D-13)
n=1

v

I .
-Comparison of the expression of éw in Eq. D-12 with that in Eq. D-13

letids to the j-th generalized force such thatw ) -
: ‘ - ) !‘(‘\ )
: | ' A O N
. N = e ) +uel@) T -.\‘/-f‘
S T 3 -3 . ‘A
. - z ' - ' 14
(\ ) L P, (2) & (z) dz} (D-14)

s
r

After substituting the generalized force N

3

Lagrange’§ equation can.-be rewritten as

.
4 -

2

s . =

Cj( - -A}EPI'/ Ej(z) dz = PEJ

%

in Eq, D-14 into Eq. D-10,

(n)+us<n) R

[ ph<z> £, (2) = @13)
H

.
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*, After substituting v, in Eq. D-9 into ‘Egs. D-3 io:r 3=1, 2, 3,

i
..., the displacemént amplitudes of the pile can be described by

&,

U2 Zc £_(2)

‘ n=1 .

2(z) Zc ! (&)

n=1°

Since ‘a perfect conﬁeétioq between the pile and the soil is assumed,"

the horizéntal displacement of: the pile in Eq. D—lﬁt be equal to
¥ o

that of the surrounding #oil in Eq..2.2-43, T},;g ditich leads to
. * - 1

\
A Lt

Z u sin(h z) = E ’an!;:(;)\\\

n=1 n=1 ) s

~

* .

Expanding En(z) with a sine Fourier series with anvargument of hnz,

-
'

Eq. D-17 car; be rewritten as
‘ .

o - A3

Z U sin(h z) ZZ sin(h z)

. o=1 . o=l 11

vhere

%

Dnl - %/ El(z) sin(hnz))dz
H.
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Therefore, U can be expressed as . B
n S . .

ﬂs” ,

¥

, U ™ chfnnl T - (D-20)
1=1 T

2 <>
-

a

With the expression for'Un in Eq. D-20, the soil reaction ph(z) in Eq. -~

2.2-47 can be rewritten as

[ -2

p (2) = E_ﬁfm sin(hnz) .C; Dy ¢ ' (D-21) :’/{
: n=1 B O o . e <.
« After substitution of p,(z) in Eq. D-21 into.Eq. D-15, Eq..D-15
is expressed by “ . N .
< { ] )
c (A4~ - )\4) E 1 52(2){ dz_ -fp E.(H) + M g'l(u) (- '
3 Una ™ %) e [y (e
o T . :
S Z p (D-22)
2 %hn nj
' n=1 - ) -
where - . & \
. % )
) | -
t Dy = & L ty(2) sinlhz) | (8-23)

. Lagrange's equation for all other genera},ized_coordihiates leads to

"equations similar to Eq. D-22. Thus, simultaneous linear equations-

N ‘
I

for Cn (n=1, 2, 3,....) are established.'\ Such -equations, consideping

up to the r-th mode of .the pvilev, can be expressed in a4 matrix form Coe

e




(D-25b)

Using the dimensionless parameters, Eq. D—ZA can be rewritten as
b i

£ (D)

£,(1)

Ll
o -

N N A
-—t
L

Ll
o -

-
N’
—




- - . e, p
- b

e e e vtman e g e g i om—————
* ' [ /j’ ° .A:
i v ".—o ‘ '
; Al Lo ! 272
3 ) ‘\- o ' v
where -
Y. L '
- 3 R - : '
g T B ey T 7 Z“hn Pag Png - (p-27a)
' ‘n=1 . '
- 1
- 3° % _ T4 N
b = H = A - A D-27b
3 bj ( nj h) / EJ (z) dz ( )
0
1 .
o Dnj = 2 J{ Ej(z).sin(hnz) dz L . (D-27¢)
0 . ’
< :
Dnl = 2 / El(zy) sin'(hn'z) dz | y . (D-274d).
N O y

® -
Since_ the mode shapes,of the pile free from so0il are used to expééss
'thq displacement of the pile, many mode shgbes are reqhired to describe
th; displacements of the pile strongly affected by tﬁe soil. 'This I .
. situation leads to a lﬁrge‘number of simultaneoué linéaf.equaziohs.
As a special case, the mode‘shapes of a pile with avro;ationall§
fixed head and pinned tip (fixed-pinned pile) are ’ . .
| L .
En(E) - sih(?hn'z-) n=1,2, 3, ... ° " (D-28)

where \ =

- ) ‘ l. -

- Those mode shapes of a pile indicate that 5; and 5; are zero when j

3

. and 1 are not equal to n, redpectively. Thgréﬂbre, for such a_spécial_

~case, Eq. D«26 can be reduced to . .




~— l - ‘ ‘ .\ ’ 3?3
L \ - ‘ "
' . L4 . L] L] [ ] . »
51(1) 51(1) a11+b1 0 0 \ 0 C1 .
' ‘ ' Lo
' : he a % - -‘ " R J cnl 0",
P 52(1) . 52(1) ? azg‘ﬂyz 0 | \0 C2
mt) 2\, m®) | ; ! SR E
Epl : EpI . . . o 2
E (1) E‘(‘) 0 0 ® *. * a +b«- " . o C
n n nn n ‘ n
< : : X : : {
. : : . . s . _ '\\..
E (1) E'(1)/ O 0 . (. . . 0 e s o g <+ C
r r o rr\ 5 r
- L (D-30)
\
~ . | \\ / ‘
which are not simultaneous but independent equations. ]

~

With those obtained constants, the displacements of the pile can

/
be obtained from Eqs. D-3 along with Eq. D-9. - ‘\\\\syfl
AN " .
s

N /

\ * |

N
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