Western University Scholarship@Western

Digitized Theses

Digitized Special Collections

1976

Growth, Development And Regeneration Of The Tomato Leaf

Warren Kent Coleman

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Coleman, Warren Kent, "Growth, Development And Regeneration Of The Tomato Leaf" (1976). *Digitized Theses*. 892. https://ir.lib.uwo.ca/digitizedtheses/892

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.

INFORMATION TO USERS

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

This copy was produced from a microfiche copy of the original document. The quality of the copy is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Canadian Theses Division Cataloguing Branch National Library of Canada Ottawa, Canada KIA ON4

AVIS AUX USAGERS

LA THESE À ÉTE MICROFILMEE , TELLE QUE NOUS L'AVONS RECUE

Ð

Cette copie a été faite à partir d'une microfiche du document original. La qualité de la copie dépend grandement de la qualité de la thèse soumise pour le microfimage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

NOTA BENE: La qualité d'impression de certaines pages peut laisser à désirer. Microfilmée telle que nous l'avons reçue.

Division des thèses canadiennes Direction du catalogage Bibliothèque nationale du Canada Ottawa, Canada, KIA ON4

GROWTH, DEVELOPMENT AND REGENERATION

OF THE TOMATO LEAF

by Warren Kent <u>Coleman</u> Department of Plant Sciences

1 ... Vox 5

Submitted in partial fuffillment of the requirements for the degree of Doctor of Philosophy

Faculty of Graduate Studies The University of Western Ontario

London, Canada

January, 1976

Warren Kent Coleman · 1976

c'

ABSTRACT.

An analysis of growth, development and regeneration of tomato (Lycopersicon esculentum Mill. cv. 'Farthest North') leaves was carried out in order to provide a basis from which the regulatory roles of gibberellins in the developmental processes of root regeneration could be examined.

The compound tomato leaf exhibited a basipetal sequence of leaflet initiation and development which could be consistently relater to quantitative growth aspects as defined by the leaf plastochron index (LPI). A formerly undescribed marginal vein differentiated basipetally from the leaflet tips and interconnected with derivatives of the secondary and minor veins. Discrete ontogenetic stages were recognized in minor veins as they developed from the upper spongy mesophyll layer in continuity with previously differentiated veins. Vein ending formation was a random process and appeared to depend upon the maturation stage of the surrounding veins. Histological. evidence was uncovered to support the concept of "morphological fields" in terms of a close interplay between planes of mesophyll cell division and subsequent minor vein development.

Closely related to the leaf's developmental state was its ability to regenerate organs when isolated from the plant. Two regenerating systems were developed during this investigation: 1) the tomato leaf cutting (relatively autonomous with regard to root initiation); and, 2) the aseptically cultured tomato leaf disc (totally dependent on exógenous nutrients and

iii

hormones). Application of the LPP allowed the consistent description of root regenerative capacity in both systems. In cuttings, gibberellic acid (GA₃) inhibited root regeneration regardless of LPI₃, provided that GA₃ was applied prior to on during initiation of primordia. Depending on application time and concentration, abscisic acid and various auxins were capable of reversing GA₃-induced inhibition. Rooting inhibition by GA₃ could be correlated with a concomitant inhibition of localized starch synthesis in the incipient root primordia regions, and not with a GA₃-induced hydrolysis of starch in these areas.

A more complex pattern emerged in tomato lear discs cultured on defined media. Auxin-induced root primordia could originate from two tissue types simultaneously over a seven day period; i.e. type I primørdia from phloem parenchyma of the primary and secondary veins, and type II primordia from the sheath garenchyma of minor vein. The use of the leaf disc system revealed multiple roles of GA, in the inhibition of rooting: 1) an early inhibitory effect (i.e. during the initial 48 hours of culture) which could be related to a GA2-induced failure to rapidly accumulate starch within the leaf tissue; 2) a late inhibitory effect which could be related to a GA2-mediated destruction of late forming primordia by a parenchymatization process which had its origin in an earlier GA, effect on growth stimulation of adjacent cortical parenchyma; and 3) an inhibition of meristemoid formation from sheath parenchyma derivatives

surrounding minor veins. This inhibition would insure an absence of type II primorgia formation.

Further work with cultured leaf discs indicated a GA_3 stimulation of rooting in continuous darkness which could be related to the specific indole-3-acetic acid (IAA) precursors, tryptophan (TPP), tryptamine (TNH₂) and indole-3-lactic acid (ILA). A study of possible GA effects on endogenous IAA synthesis through continuous feeding of $TNH_2-2-^{14}C$ over a 24 hour period revealed no significant effects on label incorporation although IAA synthesis was detected within the first 6 hours. ILA was observed to be a highly active compound in the induction of rooting in leaf discs and GA_3 increased the activity. It is hypothesized that GA_3 either prevents ILA breakdown leading to increased. ILA levels or enhances the synthesis of a highly active indole auxin from

ILA.

Results indicated that quantitative and qualitative features of tomato leaf growth, development and regeneration could be consistently defined in terms of the LPI. Furthermore, it appeared that gibberellins could affect root regeneration in tomato by two independent methods: 1) inhibition of rooting through a localized inhibition of starch synthesis and, 2) stimulation of rooting through a GA_3 -mediated increase in endogenous auxin leyels,

ACKNOWLEDGEMENTS

I wish to express my gratitude to Dr. R. I. Greyson for his advice, cooperation and encouragement throughout the -course of this study. The helpful advice of Drs. W. G. Hopkins and R. B. van Huystee during the preparation of the manuscript.is also.gratefully acknowledged.

My sincere thanks for Mr. A. Noon for assistance in photography, to Mr. R. Smith for his help in electron microscopy, to Mrs. G. LeBlanc for her typing, and to all of the members of the Plant Sciences Department for sharing their knowledge and experience with me.

Special mention must be made of my wife, Shirlyn, for her untiring encouragement, helpful suggestions and patience. Finally, the generous financial assistance of the Province of Ontario through their Graduate Fellowship programs is greatly appreciated.

A CARACTER

TABLE OF CONTENTS

•		Page
	CERTIFICATE OF EXAMINATION	. ' çii .
•	ABSTRACT	iii
	ACKNOWLEDGEMENTS	vi
	TABLE OF CONTENTS	vii
	LIST OF PHOTOGRAPHIC PLATES	viii
	LIST OF TABLES	xx /
	LIST OF FIGURES	
•	ABBREVIATIONS (used in the text)	
	CHAPTER 1. INTRODUCTION	
	CHAPTER 2. REVIEW OF LITERATURE	
	2.1 Introduction	S.
	2.2 Organ development: the leaf	•~
	2.3 Organ régeneration: roots from leaves	
	2:3.1 General considerations	•
•	2.3.2 Histochemical studies	
•	2.3.3 Biochemical studies	4
	2.4 Hormonal control of organ regeneration .	
		42
२:	3.1. Introduction	42
•	3.2 Materials and methods	45
	^{8°} 3.2:1 Growth and biochemical studies	45
	8.2.1.1 Seed and plant	֥
	production	45
	3.2.1.2 Growth measurements	· · ·
, i	3.2.1.3 Chlorophyll deter-	46
, P 1 1	minations	<i>116</i>
5		46
	vii	•

•	•	3.2.1.4	Total soluble carbo- "	. * *
• ,	,		hydrate determination	48, -
	•. •.	3.2.1.5	Starch determination	48
``````````````````````````````````````	3.2.2	Leaf ont	ogeny studies	49
· · ·		3.2.2.1	Clearing techniques	49
· · · ·		3.2.2.2	Histological technique .	50
•	3.2.3	Photogra	phy	50.
	3,2.4	Statisti	cal analysis	· 51 ·
. 3.3	Result	s	•••••	51 .
٩	3.3.1	Growth a	nd Biochemical studies	51
		3.3.1.1	P.I. and LPI: applica-	~*
:		<b>.</b> .	tion to the tomato	, D .
•	, •••,		shoot	. 51
	•••	3.3.1.2	Seasonal aspects	* 56 ° .)
• • .	-	3.3.1.3	Growth features of a	
	•	•	tomato leaf	64
. *-		3.3.1.4	Leaflet growth	72
•	3.3.2	Ontogene	tic studies	
	- ,	3.3.2.1	The adult leaf	79
	, <b>)</b>	· 3.3.2.2	Leaf initiation and early	ł
• •	- ·	- , ,	primordium development	100
• `	· • ′	3,3,2,3	Marginal growth and	•
	, ,	•	lamina differentiation .	103
·	•	3.3.02.4	Major venation develop-	·
•	, •		ment	11,0 "
	•	3.3.2.5	Minor venation develop-	•
· · ·	, ,	•	ment	128
· · · ·	* cy	• •	1	

viii

· ·		• • ,		,	0	•:	
· · · · ·			• • •		- <b>A</b>		
· · ·	3.4 Discuss	sion	•••••	°.		158	
CHAPTER	4. ROOT REG	GENERATIO	N FROM TOMA	TO LEAF	, , , ,	•	4
	CUTTING	5 <b></b>	, •		••.••	170 ·	
в, с,		• • •			•	x , `	
· ,	4.2 Materia	als and m	ethods	* • • • • • • •		173.	<b>9</b>
	4.2:1	Preparat	ion of leaf	cuttin	gs	173	
	4.2.2	 Histoche	mistry	ő ••••••	ه • • • • • • •	° 1,74	
۰ ۰ ^۱		4.2.2.1	Starch			174	¢.
* ~	,	4.2.2.2	Amylase ac	tivity		° 174	~~ , • .
مين مورغ		4.2.2.3	Phosphoryl	ase act	ivity .	175	
		4.2.2.4	General hi	stology	:`` <b>`</b>	175	
• • • • • • • • • • • • • • • • • • • •	. 4.2.3	Carbohyd	rate analys	is		175	·
· · · · · ·	4.2.4	Starch s	ynthesis in	isolat	ed	• •	•
	•	petiole	segments		• • • • • •	175	
	4.2.5	Total am	ylase activ	ity		176	· ·
•	4 <u>,</u> 2,,6	Determin	ation of me	mbrane	per-		•
r • • •		meæbilit	y changes .	•••••	•••	178	·
• • • •	4.2.7	Photogra	phy	• • • • • • •	********* *******	179 <b>°</b>	۰,
•	4.2.8	Statisti	cal analysi	.8	•••••	179	, , ,
* *•	4.3 Results	میشور منابعه منابعه م		•••••	<i></i> .	° 179	
۰ ۵	4.3.1	Leaf pos	ition	· · · · · · · · · · · · · · · · · · ·	, , • • • • • • •	179	•
	4.3.2	LPI	• • • • • • • • • •	¢	•••••	[,] 179	;
•	4.3.3	Auxins .	• • • • • • • • • • • •	• • • • • • •	••••••	186	
•		4.3.3.1	Different	auxins:	a o	•	
•		, · · ·	comparison	,° •••••	• • • • • • •	186	. •
•		4.3.3.2	Indole-3-a	cetic a	cid	,186,	
· · · · · · · · · · · · · · · · · · ·	۲ ۲ ۲	4.3.3.3	Indole-3-b	utyric	acid	193	
	4.3.4	Abscisic	acid	• • • • • • •	• • • • • • • •	° 193.	

5

ዋ

0

-

ī.

e

ix

¢		
4.3.5 Kinetin		193
4.3.6 Gibberel	lins	202
4.3. ⁶ .1	Regeneration inhibition	<b>?.</b>
· · · · · · · · · · · · · · · · · · ·	and its reversal	203
♥ 4.3.6.2	Biochemical and histo-	٠
* · · · *	chemical changes	i ·
*	associated with GA3	•
	inhibition	225
Discussion	••••••	247
	N FROM TOMATO LEAF DISCS	
CULTURED IN VITRO	D: PRELIMINARY	
OBSERVATIONS		258
Introduction	• • • • • • • • • • • • • • • • • • • •	256
Materials and me	ethøds	257
5.2.1 In vitro	3'• , ^a • •	257
	ical and Histochemical	•
. Technique	8	258 -
5.2.2.1	Fixation and embedding	Å
	for light microscopy	258
5.2.2.2	DNA and RMA staining	259.
5.2.2.3	Total protein staining .	259
5.2.2.4	Basic protein staining .	260
5.2.2.5	Starch staining	261.
5.2.2.6	NaOH - Dasic fuschin	- 0
<ul> <li>♪</li> <li>♪</li> </ul>	whole tissue clearing	261 ·
5,2.2,7	FPA - propiocarmine	•
	whole tissue clearing	262
/	<b>T</b>	

0

•

4[°].4

Q

5.2

CHAPTER 5.

	· ·		• .	
4 s	-	5.2.2.8 Fresh tissue histo-	*	
• •		chemistry	263	`. • `
		5.2.2.9 Electron microscopy	263	•
· · · · ·		5.2.2.10 Photomicrography	264	•
		5.2.3 Statistical analysis	265	
<u>.</u> •	5.3	Results	265	• • •
	• .	5.3.1 Culture requirements for leaf	· ·	
· ·		disc regeneration in vitro	265°	
• • • •		5.3.1.1 Nutritional factors	265	2
· ·		" 5.3.1.2 Non-nutritional factors.	266.	
6	• `	5.3.1.3 Hormonal factors	275	
• • • • • • • • • • • • • • • • • • •		5.3.2 Histochemical aspects of induced		·
•		root formation	285	·`.
· · ,	、 ,	5.3.2.1 Histological changes	285 ·	•
	· ·	.3.2.2 Nucleic acids	304	,
		5.3.2.3 Total protein	307	
•	•	5.3.2.4 Basic protein	3087.	•
		5.3.2.5 Starch	316	
٢.	5.4	Discussion	332	
CHAPTER (	6	TOMATO LEAF DISCS CULTURED IN VITRO		· ·.
• • ·		INHIBITION OF ROOT REGENERATION BY	* • ,	
• •		GIBBERELLIC ACID	,342°`≥ •	¥ /4
. (	6.1	Introduction	342	
(	6 <u>.</u> 2	Materials and methods	343	-
	6.3	Results	343	•
• , (	6.4	Discussion	368	•
		<b>F</b>		

•

÷. D

> -0

• :

.

•

.

ņ

5

**.** .

xi

0

	e	•	'	
		,	<b>*</b>	0
•	CHAPTER 7. TOMATO DEAF DISCS CULTURED IN VITRO:	• •	,	• .
. <b>•</b>	· STIMULATION OF ROOT REGENERATION BY			
•	GIBBERELLIC ACID	375	•	_
t. 2	7.1 Introduction	375	`	c
ć	7.2 Materials and methods	377	•	
• • • • • • • • • • • • • • • • • • • •	7.2.1 Culture techniques	· 377		
<b>,</b> ·	7.2.2 Radiotracer techniques	377	•	
<b>N</b> 0	[°] 7.2.2.1. Tissue incubation	377		
•	7.2.2.2 Extraction of indole	•		6
\$	🖌 🧳 metabolites	378	•	•
· · ·	7.2.2.3 TLC separation of indole	\$		
	metabolites	379	۵	•
•	7.2.2.4 Liquid scintillation	-	•	•
•	counting	382		
• • •	7.3 Results	384	• •	
· · ·	7.3.1 Culture studies	384 .	2	•
· · · · · · · · · · · · · · · · · · ·	7.3.2 Radiotracer studies	3,9,6	,	
	7.41 Discussion	401 .*	•	
	CHAPTER 8. SUMMARY AND CONCLUSIONS	417		•
.4	APPENDIX: STARCH STAINING TECHNIQUE	4.24		
•	REFERENCES	431	, '	
, ·	VITA	470		
· •		Ŧ ,		
5		, <b>.</b>	· •	c

Ċ

, i s

, 1 , 2 , 2

•

o a

(.

·. · ·

• •. •

•

• 5

* * ;

xii

•

# LIST OF PLATES

•

- ;

PLATE

O

PAGE

# DESCRIPTION

	° .
3.1;1	Heteroblastic leaf development in the tomato
	cultivar 'Farthest North'
3.1;2	Vein types and distribution in a NaOH cleared,
. <u>\$</u> .	mature tomato leaflet
3,2;1·	Cleared tomato leaflet showing mature vessel
	elements of the marginal fimbriate vein inter-
ç	connected with the minor vein system
3.2;2	Cross section view of marginal fimbriate vein
۵ 	in a mature leaflet
3.3;1	Interconnected vascular strands in the rachis
۰.۴	of a NaOH cleared mature tomato leaf
3.3;2	Junction of basal leaflet xylem with the
	rachis vasculature in a NaOH cleared tomato
· *	leaf
3.4;1	Cross section of a mature minor vein showing
•	a common vascular arrangement
3,4;2	Cross section of a mature minor vein junction . 97
3.5;1	Mature minor vein ending in a FPA cleared
- - -	leaflet focused at the level of the external
•	phloem showing "tight" junctions with the
° • • • •	adjoining bundle sheath cells
3.5;2	Similar to 1, except focused at the xylem
	level

i

	•
	•••
3.6;1. Median longitudinal section of a tômato	۰ ۱
, leaf primordium approximately 20. a high	102
3.6;2 Median longitudinal section of a leaf	
A primordium approximately 50 µ high	102
3.7;1 Cross sectional view of a basal lobe of the	•
terminal leaflet showing the early develop-	•
ment of the six lamina cells layers	105
3.7 2 Slightly later stage of 3.7;1 showing the	
development of the 2° vein procambium from	••
the upper spongy layer	105
8.8;1 NaOH cleared immature leaflet focused at the	•
level of the developing palisade lafer	<b>Ъ</b> 09
3.8;2 Same. Focused at the level of the developing	· o
upper spongy layer	109
3.9;1 Stomatal cell ontogeny in the lower epidermis	•
of a FPA cleared tomato leaflet	112
3.9;2 Stomatal cavity adjacent to marginal xylem	• ° •
vessel elements at the FPA cleared tip of	•
leaflet 3,	112
3.10;1 . Tip region of leaflet 3 showing the developing	'n
procambial strand of the midrib	114 /
3.10;2 Slightly lower than 1	<b>1</b> ]4
3.11;1 Cleared region of tomato seedling hypocotyl	
showing extensive phloem bundle reticulum	<b>, 117</b> .
	à
	1 *1 *1

• •

٥ .

•

9 _____

•

۰ ۵ • • • •

¢

· )

.Ú 0

-

,

•

3

. .

° ,

• • •

• ... . .

۰. ف

:

s

• • • •		· · · · ·
		•
.3.11:2	·Close up of the phloen branch point pointed	•••••••••••••••••••••••••••••••••••••••
•	out in 1, showing the nucleated sieve tubes	, ´
•	and adjacent phloem parenchyma	·117
3.12;1	Base of leaf 3 petiole showing the initial	• •
· •	development of the median external phloem	
	strand which will develop acropetally into	، ن مهاجع
· · · · · ·	the terminal leaflet	119
3.12;2	Later stage showing a single median vessel	•
	element strand and initiating internal	•
, <b>1</b> *	phloem strand	119
···· 3.13;1	Cleared hypocotyl of a tomato seedling showing	
	the isolated stem xylem initiation site of	,
•	leaf 3	121
. <b>3</b> .13;2	Close up of the xylem initiation site for	. 0
•	leaf 3 showing the typical vessel member	· · · ·
	morphology marking the acropetal end of an	-
· · · · ·	incomplete vessel	121
3.14;1	Progressive and continuous development of the	· · ·
с с б , , , , , , , , , , , , , , , , , , ,	procambial cells of the 2° veins and their	• •
•	derivatives from the upper spongy mesophyll	
٥	layer	127
3.14; <b>2</b>	Later stage than 1 showing the isolated vessel	• . • ?
	element development of the marginal fimbriate	· · · · · · · ·
D	vein	127
۰ ۰	e	•

v

8 ; 9

•

-

• , ,

<del>6</del>0

۵

• '			 ĩ
• • •,	• •		۰ ۲۰ ۲۰
	3.15;1	Initial stages in the development of the	i en
, <b>•</b>	• •	marginal fimbriate vein xylem at the tip	• •
•		of the terminal leaflet	¹³⁰
	[°] 3.15;2	Close up of the vessel elements at the	•
• •		leaflet tip	· 130 ·
•	°3.16;1 °	NaOH cleared preparation of an immature	· .
	1	basal leaflet showing basipetal maturation of	
r t	■ . ,	the major and minor xylem systems	132
•	3.16 💋	Basipetal and discontinuous maturation of the	··· (
	· · · ·	midrib and 2° vein xylem in an immature	
<b>.</b> •:	, ,	• terminal leaflet	132
<i>'</i> .	3.17;1	Immature tip of Meaflet 3 showing irregular	
ũ	· · · ,	maturation of the minor vein xylem and its	•
	1	relationship with the marginal fimbriate	
,	al 46	wylem	134 .
	3,17;2	Immature margin near the tip of leaflet 3	•
. <b>•</b>	с.	showing the nucleated vessel element with	•
	°.	perforation plate	134
, o	3.18;1	Early stages in minor vein development from	· · · ·
· , .		the upper spongy mesophyll layer as viewed	
-		in cross section	136
A	3.18:2	Progressive development of a vein ending as	
	•	viewed in a FPA cleared leaf preparation	136
,	· ′ 3.;19;1 ·	Stages 6 and 7 in Manor vein development as	
•	-	viewed in FPA cleared leaf material	139
•	_3.19;2	Similar to 1	139
		· · ·	. •

••••

,a., - ₽

**.** 3

0 • • • • • •

* * 0

rin. E

۶.

••

o, '

**۴**.

* ;

. . •

xvi

<u>і</u>р.

3.20;1	Stages 10 and 11 in minor vein development	- υ	
• · · · · · · · · · · · · · · · · · · ·	as viewed in FPA cleared leaf material	141	) ····
3.20;2	Similar to 1	141,	•
3,21;1 & 2	Examples of incomplete tracheid maturation	a	•
• • • • •	in the minor vein system	152	
3.22 <del>;</del> 1	Incomplete xylem development at the junction	• •	•
c	of a 2° vein with two 3° veins in a NaOH		•
4	cleared leaflet	.157	• • •
3.22;2	Incomplete xylem development in a minor	• •	
· · ·	vein	1.57	,
4.1;1	Cross sectional view of a mature tomato		•
•	petiole showing a portion of the vascular	•	· ·
,	strand	235	
.4.1;2.	IKI staining of starch grains within plastids	•	•
•.	occurring in the starch sheath cells	235	•
4.1;8	Cross sectional view of a basal petiole	••••	• • •
	region treated for two days in distilled	••	•
• *	water and subsequently stained for, starch	<b>.</b> .	
c	with IKI	235	• • .
4,1;4	Similar to 3, except petioles were treated		• • •
; * •	for 2 days with GA3 and subsequently stained	•	•
	for starch with IKI	235	•
4.1;;5	Day 6. Control petiole tissue stained for	•	••
1. N. C. N.	starch	·235	• •
4.1;6	Day 6. GA3 treated petiole tissue stained		
. •	for starch	235	, <b> 0</b> , h

• • • • •

1

xviiʻ

.

2 Amylase activity loc zed by the starch	يمون مي المرجع المرجع المرجع المرجع المرجع المرجع
* substrate film method within the vascular	3 <b>.</b>
stmands of basally located petiole tissue	
treated with GA3 (1) for 2 days or with	•
distilled water (2)	. 244
Cytological aspects of IAA treated leaf	
discs cultured in vitro	292
Early stages in root primordia development	•
from minor veins	295
Late stages in root primordia development	•
from minor veins	297
Normal ontogeny of adventitious roots in inta	ict .
tomato seedling hypocotyls	300
Primary xylem patterns in roots induced from	,
tomato leaf discs cultured on an IAA medium .	302
Azuré B staining for nucleic acids in culture	d,
tomato leaf discs	. 305
Mercuric bromphenol blue staining for total	• ,
proteins in the cultured tomato leaf discs	310
Mercuric bromphenol blue staining for total	5 S 1
proteins in cultured tomato leaf discs	312
Protein staining in tomato leaf discs culture	ď
on a basal medium	314
Histochemical characteristics of protein	•
microbodies in tomato leaf discs aged in vitr	<u>.</u>
for eight days	. 318

1

4.2.,1 8

5.1

5.2

- :

5.3

5.4

5.5

5.6 /

5..7

5.8

5,9

5.10

xvii:

5.11	Prominent organelles of fresh and in vitro
* , *, *,	aged tomato leaf tissue
,5 <b>.</b> 12	Subcellular aspects of in vitro aged tomato
* * *	leaf tissue
5.13	Further subcellular aspects of in vitro aged .
•	tomato leaf tissue 324
5.14 .	PAAS staining of starch grains in cultured
•	tomato leaf discs
5.15.	PAAS staining of starch grains in cultured
	tomato leaf discs
6.1	Histological changes induced in late forming
· .	root primordia by GA ₃
6.2	Abnormal vascularization of late forming roots
•	induced by GA ₃ 363

xix

#### LIST OF TABLES

£

TABLE	DESCRIPTION
3.1	Regression analysis of plastochron index
•	versus time (days) 59
3.2	Correlation analysis between LPI3 and
	different tomato growth parameters 65
3.3 .	Cell areas (cross-sectional) and estimated
	cell number in the palisade mesophyll tissue
4 5 ⁻	of mature leaflets
. 3.4	Regression analysis of the log.,width/length
<b>.</b> .	values for tomato leaflets
3.5	Regression analysis of the log. terminal
	leaflet length/lateral leaflet length for
	tomato
3.6	Chi Square analysis of vein ending frequency
•	in mature tomato leaves
3.7	A summary of important early ontogenetic
	events during tomato leaf growth and
•	development 159
4.1	Effects of different auxins on root regeneration
	from mature leaves 187
4.2 ,	2,4-D concentration effects on root
	regeneration 188

XX

1.3	IAA concentration effects on root	. *;	÷
	regeneration	189	
4.4	Effects of IAA on the growth/regeneration	` •	
•	cornelation coefficient	.192	
<b>4.</b> 5	IBA concentration effects on root	<b>`</b>	
ې ۱	regeneration	194	
4 · · · · ·	ABA concentration effects on root	· •	
•	regeneration	-197	
+.7	ABA effects of auxin-induced rooting	200	
1.8	•Kinetin concentration effects on root	· · 、	
· · ·	regeneration	201	
.9	Kinetin inhibition of auxin-induced rooting .	202	
+ 10.	GA3 concentration effects on root	· · ·	•
:	regeneration	204	
+.11	Correlation and regression analysis of GA3		
•	effects on rooting response/organ growth	207	
+.12	Effect of GA3 on petiole length prior to and		
	during root regeneration	208	
+.13 _.	Time course of $GA_3$ (1 x 10 ⁻⁴ M) inhibition		
÷	of rooting in tomato leaf cuttings	209	
+.14	Duration of GA3 treatment on root		
• •	regeneration	210	
+.15	Timing of $QA_3$ (1 x $10^{-4}$ M) treatment (30 min.	•	
	pulse) on subsequent rooting in tomato leaf		,
•	cuttings	211	
<b>.16</b>	Phosphon D concentration effects on root	-	
, •	regeneration in tomato, leaf cuttings	21.3	

xXi

4	о /	
4.17.	Non-reversibility of Phosphon D inhibition	· · · ·
	of rooting by auxins	214.
4.18 ¹	CCC concentration effects on root	، ۲ ر
	regeneration in tomato leaf cuttings	215 ·
4.19 .	AMO-1618 concentration effects on root	<i>`</i> .
•	regeneration in tomato leaf cuttings	216
4.20	Reversal of GA3 inhibition of root regener-	•
•	ation in tomaty leaf cuttings by	
• _ ~ `	simultaneous auxin treatment	217 🛓 🦯
4.21	Timing of IAA treatment on GA3 inhibition of	ې په د ا
, . 	root regeneration in tomato leaf cuttings	218
4.22	Timing of IBA treatment on GA3 inhibition of	* ° ``
	root regeneration in tomato leaf cuttings	219
4.23	Reversal of GA3 inhibition by simultaneous	
.•	ABA treatment	220
4.24	Timing of ABA treatment on GA3 inhibition of	*
	root regeneration in tomato leaf cuttings	221
4.25	Reversal of GA7 inhibition of root regenera-	
	tion in tomato leaf cuttings by simultaneous	•
	ABA treatment	222
4.26	Timing of kinetin treatment on GA3 inhibition	
	of root regeneration in tomato leaf cuttings	223
4.27	Effect of kinetin/ABA treatment on GA3	
•	inhibition of root regeneration	224
6	1	•

XXII

Effect of GA, on sucrose stimulation of root regeneration in tomato leaf cuttings main-226 Starch levels in GA3 treated and untreated petioles after 6 days in continuous darkness.. 236 Changes in the specific activity of total amylase in GA3 treated and untreated petioles. 242 Effect of GA3 pretreatment on subsequent starch levels in isolated petiole segments exposed to 30 mM G-1-P for 2 hours ... 245 Effect on  $\mathcal{GA}_{2}$  on starch synthesis in isolated petiole segments exposed to 30 mM G-1-P for 3 hours ..... Changes in cellular membrane permeability of GA3 treated petiole segments ...... 248 Effects of LPI, on regeneration response of cultured tomato leaf discs to various vitamins ...... 267 Effects of media pH on growth and regeneration of cultured tomato leaf discs ...... 269 Effect of light intensity on midrib and root elongation from regenerating leaf discs on media containing different levels of IAA :.... 272 Effect of light treatment of different auxin media on subsequent root regeneration ...... 273 -

4.28

4.29

4.30

.31

4.33

5.1

5.3

5.4

xxiii

		• • •
5.5	Effects of LPI3 on regeneration response	•
•	of tomato leaf discs to different IAA.	•
• •	concentrations	274
5.6	• Rooting responses of maturing leaf discs .	×
	to low concentrations of IAA	. 276
5.7 _c	Effect of IAA concentration and duration	•
° .	of treatment on rooting	277 7
5.8	Modifications of the primary vascular	
	patterns of emerging root primordia and	, ,
с , о -	their subsequent growth	280
5.9	Effects of different substituted phenoxy	1
· · ·	acids on root regeneration from cultured	4
o '	tomato la discs	282.
5.10	Changing sensitivity of cultured leaf discs	
5 5	to exogenous IAA applications	283
• 5.11	In vitro aging and loss of regeneration	· · · · ·
	potential	284
45.12	Effects of different auxins on root	
•	, regeneration from in vitro aged tomato	7
· · ·	leaf discs	286
5.13	Effects of wounding and kinetin on regenera-	
	tion of in vitro aged leaf discs	. 287
5.14	Characterister of protein microbodies from	• • •
•• • •	tomato leaf discs cultured in vitro	325

3

	• •	
	GA3 inhibition of auxin-induced root	<b>.</b> .
	regeneration from tomato leaf discs cultured	
	in continuous darkness or continuous light 34	4 [:]
	GA ₃ stimulation of growth in cultured	,
	tomáto leaf tispue in the light	8
	Effect of initial GA3 treatment period	
	on subsequent root regeneration from	
•	tomato leaf discs culture in vitro 34	9
•	Effect of late GA3 treatment period on	•
	subsequent root regeneration from tomato	
	leaf discs cultured in vitro	0
	Effect of short GA3 treatments at different	
• •	time periods on subsequent root regeneration	
•	from tomato leaf disce cultured in vitro 35	1
• •	Effects of sucrose concentration on growth .	•
•	and regeneration of tomato leaf discs as	
· .	modified by simultaneous GA ₃ application	5
.`	Effects of GA3 on rooting induced by	7
:	different types of auxins in the dark 364	ŧ
	Effect of GA3 concentration on rooting	
	response in the light of tomato leaf discs	
	cultured in vitro at different IBA	" 、
•	concentrations	5

6.1

6.2

6'34

6.5

6

6..8

\$

ั้งว

,	1		•	
	6.9	Effect of IAA concentration on the GA3-	• • č	
	· ·	induced rooting inhibition from tomato leaf	, ., ., .,	••• •••
		discs cultured in vitro in continuous		<b>.</b>
	2	darkness.	366 ,	
	6.10	Effect of a low GA3 concentration on IAA-	· ·	·
• .	•	induced root regeneration and growth of		۰
•	<b>N</b> 6	tomato leaf discs cultured in vitro	367	• ,
-	6.11	Effect of GA3 on tomato leaf disc growth	°∕	
	. 1	in the light or dark	369	
	6.12	Effect of ABA on GA3 rooting inhibitions	•	
	ć	and growth stimulation from tomato leaf.	•••	÷ ،
		discs cultured in vitro	370 _.	۰
	6.13	Effects of an initial 24 hour ABA pulse	•	•
٠	• •	on GA ₃ inhibition of root regeneration	371	° ``
	7.1	R _f values and colour reactions of simple	-	•
	· .	indolę derivatives	<b>381</b>	
	7.2	GA ₃ , effects on rooting in dark in the		•
: -	• <u>-</u>	presence or absence of tryptophan	386	
	7,3	GA3 effects on rooting in the dark in the	· · ·	
	· · ·	presence or absence of tryptamine	387	a'
- 3	7.4	Effect of leaf age on GA ₃ stimulation of	•	
,	- '	root regeneration at different TNH2	•	•
٦.	`•.`°	concentrations	388	۰ م
	"7" 5	Effect of GA3 and various accessory Mactors	<b>.</b>	
-,		on TNH ₂ stimulation of ropting,	389	•
• (	e • ·		, _	

i'.

ジ

ò

<i>.</i>		۰	
7,.6	GA3 concentration effects on TNH2 enhance-	-	
ð ,	ment of root regeneration	390	, r , z
7.7	Effect of $GA_3$ and $GA_7$ on the enhancement	,	
¢ •	of root regeneration	°391	
7.8	Effects of kinetin and ABA on the TNH2	s	-
	enhancement of root regeneration	392	20 `•
<b>7</b> .9. °	GA3 effects on IPyA stimulation of	: د ا	· ·
· · · · · · · · · · · · · · · · · · ·	root regeneration	393	0
7.10	Effects of accessory factors on IPyA	ა =	
	stimulation of root regeneration	394	
<u> </u>	TOL concentration effects on root	-	् दुः
( · ) . · · ·	regeneration in the presence or absence	۽ <mark>ہ</mark> اور آ	÷.
$\bigcup$	of GA3	395	• • • •
7.12	ILA concentration effects on root	-	G .
ε · ·	regeneration in the presence or absence of		, u
ء ```	GA ₃	397	
7.13	Effects of accessory factors on ILA	•	· , · .
°.	stimulation of root regeneration,	<b>398</b>	ε- , ο
7.14	GA ₃ concentration effects on ILA		
• • •	enhancement of root regeneration	399	•
°7.15	Effect of high TNH2 concentration on the	· · ·	,
•	enhancement of rooting by FLA in the	·	•
¢,	presence or absence of GA3	400	
•7.16	GA3 effects on the TNH2 metabolism within	. • -	ч.,
	tomato leaf discs cultured in vitro	0	°•,
	over a 24 hour period	<u>408</u>	· • •

.

,

c

å

•

:

•

.

# LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
. 2.1	Probable pathways of IAA biosynthesis from	• ث
	tryptophan in tomato shoots	40
3.1°	Successive tomato leaf growth in log. length	0
¢	expressed as a function of time	53
3 <b>.</b> ,2	Nomogram used to calculate fractional plasto-	· •
, · · ·	chron values	55
3.3	• P.I. data for an individual plant plotted	
5	against time.in days	58
3.4.	Growth in length of alternate, successive	,
	leaves expressed as a function of L.P.I	61 [.]
3.5	Season fluctuations in various growth para-	
` •	meters of 4 week old tomato shoots	6°3
3.6	Tomato leaf growth during the summer and	•
	winter	67
3.7	Growth in length of the tomato leaf petiole	۰. ۶,
ç fat - 3	and rachis (including terminal leaflet no. 3)	69
. 3.8	Fresh and dry weight changes during tomato	0
· · · ·	leaf development	์ 7 <b>า</b> ุ
3 •9	Carbohydrate changes during tomato leaf	• •
	development	74
<b>3.</b> 10	Total chlorophyll changes during tomato leaf	••
· · · · ·	development	7,6
" <b>8.11</b>	Leaflet growth in the tomato leaf	78
- 3.12 °	Number of xylem vessel elements within the	¢
o	tomato peticle as a function of LPI3	125

۰ -	α	i i i i i i i i i i i i i i i i i i i	· ·
	3.13;A & B	Progressive formation of minor veins	•
:		within the developing leaf lamina as	•
•	*	viewed in paradermal section	143
	3.1 <b>9;</b> A € B	Further examples of the progressive	•
	• •	formation of minor veins within the	•
	•	developing tomato leaf lamina	145
,,	3.15;A & B	Multiseriate development of minor procambial	
	•	strands as well as apparent multiple areole	•
٠	•	formation '	147
	3.16;A	Areole formation due to multiple procambial	•
5	•	strand linkage within an earlier formed	-
່ຳ	•	areole	149 ,
200	3.16;B	Later stage than A	149
• •	3.17	Generalize commary of minor vein ontogeny	•
° ,		in the developing tomato lamina	154
· .0	3.18	Pattern of lamina development in tomato	161
'n	.4.1	Effect of shoot age and leaf position on	9 ,
••••	,, <b>ë</b> ,	root regeneration capacity	181
• 。 •	4.2	Root regeneration of different tomato leaves	
· · ·		as a function of their developmental age	183
	4.3	Root regeneration of tomato leaf no. 3 as	•
, . , .	<b>*</b> *	a function of the developmental age	185
	4.4	Effect of IAA on root regeneration of tomato	•
	a. • • •	leaf no. 3 as a function of its developmental	<b>م</b> و ب
	· ·	age'	191
<i>2</i>	4:5	Effects of IBA on root regeneration at	. 0
ن	• d 9 (	différent morphological ages	196
			• • • •

٥

ς,

\$ ;

		· O .		
	6 6 7		, ,	`.
•	c *		-	•
• •	4.6	Effects of ABA on root regeneration at		
	•	different morphological ages	199	•
	4.7	Effects of GA3 on root regeneration at	•	•
	\$	different morphological ages	206	•
	ů.8;A	Total soluble carbohydrate changes in tomato	-	
ç	יע רי	leaf cuttings during root regeneration in	¢,	•
۰		the presence or absence of GA3	227	٦
	4.8;B	Stårch changes in tomato leaf cuttings during	• •	•
٥	· · · ·	root regeneration in the presence or absence		
۰		of GA ₃	227	•.
	4.9;A	Starch changes in tomato leaf petioles	•	•
•		during root regeneration in the presence or	·(^	
	۰ ،	absence of GA ₃	230	
	4.9;B	Starch changes in tomato leage blades during		• 5
ι <b>`</b>		root regeneration in the presence or absence		
	• •	of GA ₃	230	, °
	4.10;A	Total soluble carbohydrate changes in tomato		
	•	leaf petioles during poot regeneration in the	、 .	٠
	•	presence or absence of GA3	2·3 3,	
	4.10;B	Total soluble carbohydrate changes in tomato	1	
	4	leaf blades during root regeneration in the	,	. <b>'</b>
••	° ` 6	presence or absence of GA3	233	
-	4.11;A	Starch changes in petiole segments (0-5 mm	•	,
•		region measured from the basal petiole end)		. •
	-	treated with $1 \times 10^{-4}$ M GA ₃ or distilled	ŧ -	• •
, ·	ن م	water	238	•
	•	•		

.0

٥

xxx

	•			
	4.11;B	Starch changes in basal petiole segments		
	·	(5-10 mm region)	238	•
د	4;12;A	Starch changes in petiole segments (10-15 mm		• ,
		region measured from the basal petiole end)	•	
_	•	treated with $1 \times 10^{-4}$ M GA ₃ or distilled water	240	•
<b>`</b> •	4.12.;B	Starch changes in petiole segments (15-20 mm	-	A Y
	- •	region)	240	:
	4,13	Proposed main pathways for starch synthesis	254	•
	5.1	Effects of light intensity on root	•	
	•	regeneration from tomato leaf discs cultured	•	· ·
•		in vitro on media containing different IAA.	٥	•
	. •	concentrations	271	¢
	5.2	IAA effects on root distribution within leaf	-	· .
,	•	discs cultured in vitro	279	• , . v
	5.3	Nuclear and nucleolar volume changes in three		-4
	¢ -	different tissues of tomato leaf discs	•	•
		cultured on inductive or non-inductive media .	° 2.83	
	5.4 °	Time sequence of developmental events in	•	•
		cultured tomato leaf discs	° 336	
•	6.1;À '	Time course of root regeneration from tomato		•
•	•	leaf discs cultured in vitro in the presence	:	·
	• 0	or absence of $GA_3$ (1 x 10 ⁻⁴ M)	347	•
•	6.1;B	Fresh weight/dry weight ratio changes during		•
-		root regeneration from tomato leaf discs	, ** ,	4
. •.	د ۲۰۰۰ ۲۰۰۰ ۲۰ ۱.	cultured in vitro in the presence or absence	•	2
	s , ø	of $GA_3$ (1 x 10 ⁻⁴ M)	347	-
			ι •	

• •

xxxi

____**∦** 1 - 4

:

6.2	Effect of exogenous, soluble carbohydrate	. P	
•	type and concentration on GA3-induced		
	inhibition of root regeneration	354	
6.3;A	Changes in total søluble carbohydrates	, •	
-	during root regeneration from tomato leaf		
•	discs cultured in vitro in the presence	8	
	or absence of $GA_3$ (1 x $10^{-4}$ M)	35 <b>7</b>	
6.3;B	Changes in starch content during root	<b>، ند.</b>	
• ,	· regeneration from tomato leaf discs cultured	,	
ي . و ه	in vitro in the presence or absence of GA3	357	
7,1	TLC distribution of labelled tryptamine	•	
• • •	metabolites in tissue extracts after 6 hour		
	incubation in the presence () or absence		
, ·	() of $1 \times 10^{-5}$ M GA ₃	403	
7.2	TLC distribution of labelled tryptamine		
、 1	metabolites in tissue extracts, after 12 hour	•	
•	incubation in the presence () or absence		
·.	() of 1 x 10 ⁻⁵ M GA ₃	405	•
7.3	TLC distribution of labelled tryptamine		
	metabolites in tissúe extracts after 24 hour	• •,	
4 4	incubation in the presence () or absence	•	
<i>.</i> ,	$()^{\circ}$ of 1 x 10 ⁻⁵ M GA ₃	407	
.7.4.	TLC distribution of labelled tryptamine	•	•
·	metabolites in <b>tissue media</b> after 24 hour	•	
•••	incubation in the presence () or absence	- , ,	
13 h. . 9 	() of 1 x 10 ⁻⁵ M GA ₃	410	

en and the second of the second of the second of the second second second second second second second second se

:

xxxii

# ABBREVIATIONS

ABA	Abscisic acid
AMO-1618	2-isopropy1-4-dimethylamino-5-methyl phenyl-1-
	piperdine carboxylate methyl chloride
. ccc	(2-chloroethyl) trimethyl ammonium chloride
cv	Cultivar
2,4-D	2,4-dichlorophenoxyacetic acid
DIECA	Sodium diethyldithiocarbamate
ГРА	Formalin-propionic acid-alcohol
GA3	Gibberellic acid
IAA	Indole-3-acetic acid
IAAld	Indole-3-acetaldehyde
Iald 🖌	Indole-3-aldehyde
IBA	Indole-3-butyric acid
ILA	Indole-3-lactic acid
, IPA ·	Indole-3-propionic acid
IPyA	Indole-3-pyruvic acid
LPI	Leaf plastochron index
NAA	Naphthaleneacetic acid
PCIB	4-chlorophenoxy-isobutyric acid
PI .	Plastochron Inc.
TIBA	* 2,3,5-triiodiobenzoic acid
TLC	Thin layer chromatography
TNH ₂	Tryptamine
TOL	Tryptophol (indole-3-ethanol)
TPP	Tryptophan

The author of this thesis has granted The University of Western Ontario a non-exclusive license to reproduce and distribute copies of this thesis to users of Western Libraries. Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario's institutional repository (Scholarship@Western) are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information: E-mail: <u>libadmin@uwo.ca</u> Telephone: (519) 661-2111 Ext. 84796 Web site: <u>http://www.lib.uwo.ca/</u>

#### CHAPTER 1

. To a we she she was the same way a specific and the same

#### INTRODUCTION

The most important unsolved problem of biology is that presented by development and differentiation in higher • plants and animals (Stebbins, 1964). A dramatic and elusive aspect of this challenge is embodied in morphogenesis or the origin of organic form. In attempting to explore this problem, Sinnott (1960) has suggested that one of the most productive approaches has been to observe the consequences which follow the experimental disturbance of developmental events. With Sinnott's suggested approach as a starting point, I undertook the following study with a view to elucidate the developmental processes of root regeneration in Lycopersicon esculentum Mill. cultivar 'Farthest North'.

Regeneration or "the tendency shown by a developing organism to restore any part of it which has been removed or physiologically isolated and thus to produce a complete whole" (p. 231; Sinnott, 1960) is a reproductive processwhere the totipotency of individual cells and tissues is expressed in a highly regulated, morphogenetic event. While the arguments concerning the "normal" versus "abnormal" features of regeneration as a developmental event appear

1

circuitous and unproductive, it is readily apparent that regeneration is unique in certain distinct aspects. By definition, regeneration involves an organ forming at a site usually considered unlikely in view of the normal ontogenetic sequence found in the intact plant. In the early stages of regeneration mature, differentiated cells abruptly leave their mitotically quiescent state and, by a process of rapid and highly localized cell divisions, give rise to small and intensely methabolically active derivatives. This dedifferentiation phase (Buvat, 1944) is followed by the formation of an organ precursor or "meristemoid" (Torrey, 1966) which subsequently develops into a discrete organ primordium. This developmental sequence (i.e. dedifferentiation > meristemoid > organ primordium) is unique to the regeneration process. Another distinct feature of regeneration can be found in the possibility that the existence of an individual may be extended indefinitely (i.e. an eternal life form) through cloning or vegetative propagation of the somatic tissues. (Sax, 1962). Nevertheless, regeneration does not appear to be essentially different from the normal features of organ ontogeny in terms of organ type or apparent selfregulation during the development of the regenerating organ. Consequently a study of experimentally induced rooting (i.e. roots formed in response to wounding, detachment, chemical or physical treatments; Haissig, 1969) should provide a direct means of studying the developmental processes of organogenesis.

While profound advances have been made in the "microcircuity" of the gene (eg. see Watson, 1970; Wainwright, 1972'; Dickson, Abelson, Barnes and Reznikoff, 1975), regeneration studies are still enmeshed in relatively simple, empirical observations due to the complexity of the regenerating systems and the attendant technical problems. As a consequence, this dilemma has brought forth a plethora of generalizations concerning the nature of regenerating factors (eg. "morphogens" such as "rhizocauline" or "factor X": Bouillenne, 1961; Libbert 1956/57) with more recent attempts to link these hypothetical substances to the currently fashionable hypotheses of gene regulation. If one accepts the dictum of S. J. Holmes (1948, as cited in Bonner, 1963) that a 'true theory of development. must be primarily a theory of regulation', then a valid initial approach to the regeneration problem should entail: a) creation of an experimental system which would respond to chemically defined exogenous stimuli (known to occur naturally in that organism) by producing a specific organ type which would, in turn, be defined spatially and temporally; and b) modifying that regeneration response by physical or chemical means with a view to linking (i.e. correlating) the morphological result with a specific biochemical event or

pathway within the organism. These concepts form the basis of the present study on regeneration.

The regeneration of roots from detached leaves or leaf

fragments is a potentially useful system for studying the developmental processes of organogenesis due to the relative simplicity of the morphological unit which is regenerated and the ease of experimental induction. Root initiation, whether induced or of a "preformed" nature (i.e. formed during the natural process of branch or stem formation; Haissig, 1969) is a highly regulated and orderly event requiring cell division and enlargement in various dimensions at precise moments in the development of that organ. Since all of the naturally occurring plant hormones (i.e. auxins, cytokinins, gibberellins, ethylene, and the naturally occurring inhibitors such as abscisic acid) have been found to modify cell division and enlargement in a variety of plant systems, it is reasonable to suspect that they have a direct involvement in popt initiation. However, the cellular and biochemical events modified or controlled by the major classes of hormones are, in most cases, undefined and hence their roles in root regeneration are unknown. A NEW MARK

The present study centres on the delineation of one aspect of the hormonal control of root regeneration: the regulatory roles of the gibberellins. The study attempts to define these roles from a physiological standpoint and to study gibberellin interactions with other plant growth substances and nutrient substrates. Two regenerating systems were developed for this purpose: i) the tomato leaf cutting which is relatively autonomous with regard to root initiation

and, ii) the tomato leaf disc cultured aseptically in vitro which is totally dependent on a variety of external hormonal and nutritional stimuli.

During the initial course of this work on organ regeneration, however, a survey of the botanical literature revealed a virtual absence of information concerning the structure and ontogeny of the tomato leaf which would adequately serve as a reference point for subsequent regeneration studies. Specific areas of investigation which necessitated a thorough knowledge of the tomato leaf's developmental history included:

in vivo aging and regenerative capacity; and
 ii) anatomical origins of the regenerated organ.
 Furthermore, there was a need for a suitable developmental
 scale or index in order to accurately describe shoot
 development and minimize environmentally induced fluctuations
 in leaf growth and regeneration responses.

Consequently the regeneration studies are based upon an ontogenetic study of the tomato leaf with emphasis placed on the differentiation of the major and minor venation as it relates to the leaf plastochron index (Erickson and Michelini, 1957).

## CHAPTER 2

### LITERATURE REVIEW

# 2.1 Introduction'

The following review is, of necessity, rather broad in scope and no attempt has been made to examine the literature in its entirety. For quantitative studies and environmental aspects of leaf development the reader is referred to the reviews of Milthorpe (1956) and Maksymowych (1973) while general histological summaries of leaf structure and ontogeny occur in Foster (1936), Esau (1965a; 1965b) and Cutter (1971). Selected aspects of organ regeneration from leafes are provided by such individuals as Swingle (1940; 1952), Libbert (1956/57), Champagnat (1961), Dore (1965), Audus (1972), Hartman and Kester (1968), Haissig (1965; 1969), Girouard (1971a, 1971b) and Murashige (1974).

#### 2.2 Organ Development: The Leaf

Although there is a wealth of information concerning the comparative morphology of mature leaves (e.g. Von Ettinghausen, 1861, as cited by Pray, 1954; Wylie, 1946; Philpott, 1953), relatively few detailed developmental studies of monocotyledonous and dicotyledonous leaves have been carried out. The earliest (albeit superficial) studies of leaf development appear to be those of Malphighi in the seventeenth century (Goebel, 1905). However, it was not until. the extensive studies by Wolf in the 18th century and Nageli, Trecul, Eichler, Goebel and Prantl in the 19th century (as cited by Goebel, 1905) that the basic features of leaf initiation and development were revealed. These studies indicated that:

i) leaf primordia arise from a vegetative point or apex as a lateral outgrowth from the apical dome;

ii) intercalary cell formation and subsequent cell enlargement may proceed in a basipetal or acropetal direction or may take place equally throughout the developing leaf; iii) both initiation and early development of leaves from different species may initially appear quite similar histologically; and,

iv) lamina development of foliar organs may be quite variable (e.g. see discussions by Goebel, 1905 and Foster, 1952).

Although these studies established the basic framework; of leaf ontogeny, they were of a preliminary nature due to restrictive histological techniques, inadequate sampling, disproportionate emphasis placed upon the mode of leaf origin to the neglect of later phases of development (e.g. ontogeny of the leaf vasculature) and the strong tendency towards phylogenetic interpretations.

Avery's (1933) classical work on <u>Nicotiana tabacum</u> leaf differentiation and his later attempt (Avery, 1935) to relate endogenous auxin levels to growth and development of the tobacco leaf, served to initiate a serious reconsideration of leaf differentiation from a developmental/physiological point of view. Although relying heavily on serially sectioned leaf material, he was able to trace the developmental pattern of the major and minor venation and to distinguish among the procambium, phloem and xylem. Furthermore, his careful mapping of regions of intensive leaf growth and correlated studies of endogenous auxin levels suggested a positive relationship between the two parameters. Related work by Goodwin (1935) in <u>Solidago</u> and Humphries and Wheeler (1964) in <u>Phaseolus</u> support the concept of high endogenous auxin levels coupled with maximal rates of leaf

Foster's (1935) leaf ontogeny study of black hickory (<u>Carya Buckleyi</u> var. 'Arkansana') and his subsequent veview (Foster, 1936) brought together his own extensive research on leaf development with the varied and widely scattered literature of the past one hundred years. Foster pursued Avery's desire to acquire a more detailed and concrete knowledge concerning the manner in which the successive stages of leaf development (i.e. leaf. initiation, origin and differentiation of the procambium, petiole, midrib, and lamina) were interrelated and, ultimately, to derive valid generalizations concerning leaf ontogeny in the angiosperms.

Although a number of diverse types of marginal growth and lamina differentiation had been recognized by the time

of Foster's (1936) review, Hara (1957) was the first individual to attempt a complete classification⁶ based on the relative roles played by the marginal and submarginal initials in delineating the lamina. Considerable variability in the marginal growth features of most dicot leaves probably limits the usefulness of this classification (Cutter, 1971).

Foster subsequently emphasized the paucity of knowledge concerning the histogenesis of leaf venation and elaborated the specific questions and techniques necessary for probing venation ontogeny (Foster, 1952). In his view, it was evident "that the present limited knowledge of the histogenetic development of venation patterns represents a serious gap in our understanding of vascularization processes in plants and that it also prevents a full insight into the morphology of the leaf in angiosperms" (p. 752). Foster believed that the use of paradermal sections was of key. importance in any study of the origin and interrelationships of the procambial network in the young lamina and proceeded to elucidate these features in his accompanying study of <u>Quiina pteridophylla</u> - the first such study to appear in scientific literature.

Foster's (1952) work with <u>Quiina</u> and related genera initiated a renewed interest in leaf ontogeny. His^ostudent, Thomas Pray, carried out extensive research into the morphology and vascular ontogeny of the monocotyledon. <u>Hosta</u>, the dicotyledon, <u>Liriodendron</u> tulipifera (Pray, 1954; 1955a,

. 9

b, c) and the leptosporangiate ferms <u>Nephrolepis</u> and <u>Regnellidium</u> (Pray, 1960; 1962). By examining serially sectioned leaf material as well as whole mounts of cleared, leaves at different developmental stages, he was able to outline the differentiation of entire vascular systems in <u>Liriodendron</u> and <u>Hosta</u>. In <u>Liriodendron</u>, his observations included the following:

i) the secondary veins, which are multiseriate in their origin (i.e. when viewed in paradermal section) from the upper and middle spongy mesophyll layer of the developing lamina, start to differentiate soon after lamina initiation and develop progressively toward the margin.

ii) while all intersecondary veins (i.e. the tertiary and higher order veins of uniseriate origin) differentiate simultaneously and continuously between existing procambial strands until the ultimate areoles are formed, vein endings develop progressively from the strand delineating the areoles.

fii) phloem maturation precedes the xylem and is continous . while xylem development is discontinuous in all vein categories except the vein endings.

Similar studies by Slade (1957; 1959). De Sloover (1958), Ramji (1961a; 1961b; 1967), Hara (1958; 1962), Arnott (1962), Lersten (1965) Olson, Tibbetts and Struckmeyer (1969) and Herbst (1972) on a number of different angiosperm'species showing distinctive leaf venation patterns, have essentially substantiated Pray's gonclusions. However, some controversy has arisen over the nature of vein ending formation.

Primarily on the basis of her work with <u>Liriodendron</u> <u>tulipifera</u>, Slade (1957; 1959; 1961) hypothesized that vein endings may originate by two means:

i) a progressive differentiation of the vein into the areole. The works of Pray (1955a) and Arnott (1962)
demonstrate this ontogenetic feature most clearly.
ii) a separation of an intact minor vein due to tensions
developed in the expanding lamina.

In the light of Slade's suggestion for vein endings arising by separation of previously intact minor veins in <u>Liriodendron</u>, Pray (1963) exhaustively re-examined his own work as well as Slade's and conclusively demonstrated that - in this species at least - no evidence could be found to substantiate the vein separation idea. No further support for this method of vein ending formation has been presented.

Evidence has been presented by Hara (1962), however, which suggests that in the reduced spring foliage leaves of <u>Daphne</u>, vein endings may be produced through the maturation of potential procambial strand portions (i.e. "extension cells" beyond the endings) into mesophyll parenchyma. Lersten (1965) believes this idea to be applicable to the histogenesis of vein endings in <u>Trifolium wormskioldii</u> although Pray (1963) could find no evidence for such a possibility in <u>Liriodendron</u>, <u>Smilax</u> or <u>Aucuba</u>. A subsequent examination of vein ending and disjunct veinlet formation in Euphorbia forbesii by Herbst (1972) has also supported Hara's concept. Hara's hypothesis is quite similar to Goebel's idea that vein endings are incomplete connecting veins (Goebel, 1932 as cited in Foster, 1952).

While specific histological problems of leaf ontogeny were being explored by such individuals as Foster, Pray, Hara, and Lersten, attempts to describe leaf growth and the development of the vasculature in reproducible quantitative terms in <u>Coleus</u> shoots were being carried out by Jacobs and his co-workers (Jacobs and Morrow, 1957; 1958; 1967). Extensive studies of serially sectioned <u>Coleus</u> shoots revealed a close quantitative relationship between the leaf length and the particular stage of xylem and phloem development. Furthermore, stem loci of phloem and xylem initiation were discovered for the first time.

The problems assocaited with "objectively" describing the morphological status of the vegetative shoot apex and subtending leaves demanded an adequate developmental scale. Such a scale was produced for <u>Xanthium</u> by Erickson and Michelini (1957) which they termed the Plastochron Index (P.I.). The criteria for P.I. application included: i) leaves grow logarithmically and exhibit parallel growth curves during at least part of their development. ii) successive leaves appear at regular intervals. As a consequence, the P.I. is linearly related to time and serves to specify the developmental status of a shoot, When the above criteria were fulfilled for a given shoot, Euclidean geometry allowed the derivation of a mathematical

expression describing the developmental status of that shoot (see Erickson and Michelini, 1957):

P.I. = 
$$n + \frac{\log L_n - \log 10}{\log L_n - \log L_{(n + 1)}}$$

where 'n' is the serial number of that leaf (counting from the first true leaf above the cotyledons) which first exceeds 10 mm in length; 'log  $L_n$ ' is the log length (mm) of leaf n; 'log  $L_{(n + 1)}$ ' is the log length (mm) of leaf n + 1; and 'log 10' is the log reference length (i.e. 10 mm) which is selected on the basis of the criteria mentioned above.

For studying leaf development, the Leaf Plastochron Index (L.P.I.) is a convenient modification of the P.I.:

where 'a' is the serial number for any given leaf on the shoot apex.

LPL = P.I. - a

Utilizing this morphological index, Erickson.and Maksymowych extensively studied the quantitative cellular aspects of petiole and lamina differentiation in <u>Xanthium</u> (Maksymowych, 1959, 1962, 1963; Maksymowych and Erickson, 1960; Maksymowych and Blum, 1966a, 1966b; Maksymowych and Kettrick, 1970; Maksymowych and Wochok, 1969), culminating in Maksymowych's (1973) review book, <u>Analysis of Leaf</u> <u>Development</u>. Similar quantitative studies centering on problems of dicot leaf development were also carried out by Sunderland (1960) on <u>Lupinus albus</u> and <u>Helianthus annuus</u>, Denne (1967) on <u>Trifolium repens</u>, and Williams on

Trifolium subterraneum (Williams and Bouma, 1970; Williams and Rijven, 1970). On the basis of his own studies and a reevaluation of exponential leaf growth data in Xanthium (Erickson and Michelini, 1957) and Chenopodium (Thomas, 1961), Williams noted a typical progressive decline in the exponent or rate of leaf growth with increasingly older leaves (Williams and Bouma, 1970). As a consequence, Williams suggested that the value of the plastochron index "as a biological time scale for the system as a whole is limited because it obscures valid properties of the system"(p. 145, Williams and Bouma, 1970). Nevertheless, it is apparent that - given the declining exponent values for successive leaf growth - the P.I. is a valid criterion for leaf growth and development studies, provided the growth behavior of the entire shoot system has been previously defined and shown to be reproducible.

The validity of the P.I. as a basis for the physiological/ biochemical analysis of leaf development has been demonstrated by a limited number of researchers (e.g. Michelini, 1958; Holowinsky, Moore and Torrey, 1965; Lowenberg, Chen, Towill and Lowenberg, 1970; Isebrands and Larson, 1973).

The quantitative studies contributed greatly to an understanding of leaf development in dicotyledonous plants by: a) providing a relatively objective morphological index (the Plastochrom Index) which is superior to a time scale in allowing precise descriptions of developmental events within the leaf, and b) allowing diverse features of leaf ontogeny (eg. lamina differentiation and expansion) to be described in quantitative cellular terms. Perhaps the single most important concept to emerge, however, is the idea that the endless variety of leaf forms observed may be due to the duration and relative activity of the five interrelated, meristematic regions of the developing leaf (i.e. the apical, intercalary, adaxial, marginal and plate meristems as outlined by Cutter, 1971). The use of single gene mutants affecting leaf shape may prove to be an important experimental approach to this problem. Initial work in this direction with single gene mutants (eg. Hammond, 1941; Whaley and Whaley, 1942) or distinct plant populations (Kaplan, 1970) has supported the idea of form modification via altered activity of specific meristematic regions within the developing leaf primordia.

#### 2.3 Organ Regeneration: Roots from Leaves

2.3.1 General Considerations

As Knox and Evans (1966) point out, one of the most challenging biological problems concerns the question of how a specific hormonal stimulus can initiate and control the development of a three dimensional structure. As a prelude to answering such a question, however, one must know the ontogenetic events at the tissue and cellular levels accompanying this phenomenan.

The descriptive aspects of root regeneration have been

studied with varying degrees of thoroughness by a large number of researchers (e.g. see reviews by Swingle, 1940, 1952; Esau, 1965a; Haissig, 1969). In general, most root primordia have their origins near developing vascular tissues (Esau, 1965a) although "induced" primordia have been initiated in virtually all tissues capable of redifferentiation (Haissig, 1969). However, there is a strong tendency on the part of researchers to work predominantly with large morphological units (egg, the plant shoot) rather than stem pieces, whole leaves or leaf fragments. Developmental studies of root regeneration from leaf cuttings or in vitro cultured leaf fragments at the anatomical level are virtually non-existent. Furthermore, the use of leaf cuttings or in vitro cultured leaf fragments has generally not been directed towards regeneration studies. Instead, their use has been directed towards plant pathology problems and the physiological aspects of senescence (eg. Yarwood, 1946; Simon, 1967; Spencer and Titus, 1973).

As Table 2.1 indicates, the few studies of adventitious root initiation in stem cuttings of tomato appear evenly divided as to the roles played by the vascular parenchyma, adjacent pericycle and endodermis. In IAA treated tomato stem cuttings, Borthwick, Hammer and Parker (1937) observed that the proliferating derivatives of the external phloem parenchyma formed the external and adventitious roots while the internal phloem and adjoining pith cells form internal adventitious roots. According to Borthwick, the endodermal Table 2.1. Histological origins of induced root primordia in tomato.

Organ studied	Inducing stimulus	Initiating tissue	Contributing tissue	References
shaqt	wounding, IAA	phloem `parenchyma	endodermis	Borthwick et al (1937)
shoot	wounding, IAA	phloem parenchyma (also interfascicular cambium)	pericycle	Dorn (1938)
shoot ,	wounding	phloem parenchyma pericycle	· · · · ·	Hayward (1938)
shoot	wounding, <-naphthoxyacetic acid	pericycle	phloem ' parenchyma endodermis	Bausor et_al. (1940)
shoot	wounding	pericycle	endodermis, phloem parenchyma, differentiating sieve tubes, companion cells	Buvat (1944)
shoot	wounding	pericycle	endodermis	Bynre and Aung (1974)

cells proliferated and formed a "covering" (root cap?) over the adventitious roots while the pericycle, which would normally mature as fiber cells, played no role in regeneration. A similar study by Dorn (1938) reached essentially the same conclusions.

Bausor, Reinhart and Tice (1939) studied — naphthoxyactic acid effects on tomato stem cuttings. They found that the small-celled derivatives of the pericycle formed the conigal tip of the primordium while the endodermal cells formed the root cap. The phloem parenchyma probiferated with the derivatives forming the inner structure of the primordium next to the cambium. Similar results were presented by Bynre and Aung (1974).

The discrepancy with regard to the role played by the pericycle in primordium formation appears to be one of terminology. As Bausor notes, no sharp distinction can be made between the pericycle and phloem parenchyma in tomato. Metcalfe and Chalk (1950) point out that the term "pericycle" probably refers, in many dicotyledonous plants, to the outer part of the phloem. Furthermore, Esau (1965a) notes that in many stems the so-called pericycle is, by origin, partly primary phloem and partly interfaseicular parenchyma between primary phloem strands.

Subsequent vascularization of the developing root primordium has not been investigated except in a cursory manner by Bauser et al. (1939) who noted that the procambium of the developing root primordium differentiates xylem which

subsequently becomes continuous with the secondary wood (basipetal maturation).

Buvat's (1944) study agreed with Bausor's work with regard to the role played by the pericycle as the initiating tissue of the primordium. Buvat also extended Bausor's observations by noting that derivatives of the differentiating stem sieve tubes and companion cells form vascular connections between the phloem tissue of the stem and the developing procambium of the immature root (i.e. acropetal maturation).

#### 2.3.2 Histochemical Studies

Histochemical studies of tissues during root initia-. tion are few although their valuable contributions towards an initial understanding of the basic metabolic events accompanying regeneration are apparent. In stem cuttings of Hydrangea macrophylla, Molnar and La Croix (1972b) found that an increased concentration of protein preceded a similar increase in DNA content and subsequent cell division in preformed adventitious root initials. They speculated that, in this case at least, root initiation may be blocked by inhibition of DNA replication with a prior requirement for protein synthesis to overcome the blockage. Galle (1965, as cited in Hartmann and Kester, 1968), on the other hand, found an increase in RNA content of the basal tissues of cauliflower leaf cuttings during root initiation but found no increase in DNA content.

19,

Specific protein groups and enzymes have been observed to change their distribution and amount prior to and during root regeneration. In Hydrangea stem cuttings, peroxidase was the first enzyme to show an increase at potential primordia sites prior to any noticeable changerin anatomy (Molnar and La Croix, 1972a). Similar changes in peroxidase activity prior to organogenetic events have also been described by Van Fleet (1959) although the significance of these observations is unknown. Van Fleet has hypothesized that the cellular units of peroxidase may constitute a continuous system between primordia and adult tissue and function as catalysts for the reduction of hydrogen acceptors essential to cell division and initiation of primordia. Similar changes were observed by Kaminski (1959) in hypocotyl sections of Impatiens balsamina L.. He found that polyphenol oxidase increased in potential root primordia sites prior to any recognizable anatomical change. The significance of this observation is also unknown although this work was cited as evidence to support the hypothetical rhizocauline concept of Bouillenne and his co-workers (see section 2.4 for a discussion of the rhizocauline hypothesis).

The localized synthesis and deposition of high starch concentrations prior to and during the formation of organ primordia appears to be a necessary prerequisite for successful completion of organ initiation and subsequent development. In IAA treated tomato stem.cuttings, Borthwick and his co-workers (Borthwick et al., 1939) noted that

and the second second

starch grains disappeared from endodermal and pith cells which became meristematic but remained in non-dividing cells. Starch subsequently accumulated around these meristematic regions as they developed into root primordia. Changes in starch content could be correlated with various stages of root primordia development in Hydrangea as well as the number of roots subsequently formed (Molnar and La Croïx, 1972a). In particular, starch was found to disappear from the region immediately surrounding the developing root primordium. Similar localized starch changes during bud regeneration (Thorpe and Murashige, 1968; 1970), floral induction-(Nakata and Watanabe, 1966; Sadik and Ozbun, 1967; 1968) and embryogenesis (Jensen, 1963) Support the original suggestion (Thorpe and Murashige, 1968) that starch accumulation may play a critical role in the initiation of organized plant structures, j In general, the few histochemical studies of root regeneration have suggested . that localized and specific metabolic changes take place prior to and during organ initiation.

2.3.3 Biochemical Studies

Attempts have been made to determine the biochemical events which occur during root regeneration. However, a number of limiting conditions impose themselves upon any conclusions to be drawn from such studies:

attendant biochemical diversity;

2.1

b) differential biochemical responses of the various
tissues during the regeneration process;
c) the relatively small part of tissue in terms of total
volume, mass and metabolic activity involved in organ
formation; and

d) the multiple and asynchronous nature of the regeneration response in most regenerating systems.

These limiting conditions combine to restrict the usefulness of the "net" biochemical changes observed. Correlated histochemical and cytochemical studies would greatly aid the biochemically based interpretation.

As Jalouzot (1971) notes, most biochemical studies of animal and plant regeneration have shown an enhanced synthesis of DNA, RNA and protein. These events precede initial cell devisions of the dedifferentiation phase which is obligatory for subsequent primordium initial formation and development. One experimental approach for elucidating the metabolic events of regeneration has been through the use of metabolic inhibitors. Root formation can be blocked by substances which interfere with or modify DNA, RNA, or protein synthesis (Höhm, 1955; Fellenberg, 1965, 1966; Guillot, 1965, 1968; Knypl, 1966; Kaminek, 1967). However, variable results are often observed. Fellenberg (1966) noted that the number of root initials in pea cuttings was unaffected by either actinomycin D or chloramphenicol treatments although the number of roots produced per cutting fell drastically.

ALCONTRACTOR

treatment of pea cuttings reduced rooting by inhibiting root initial cell development. Mitsuhashi, Shibaoka and Shimokoriyama (1969b) observed that actinomycin D significantly promoted root regeneration in <u>Azukia</u> stem cuttings when applied during the initial 24 hours after excision. During the 24-48 hour period, no effect was apparent.

Similar diverse observations have been made with various purine and pyrimidine analogues which are presumed to be incorporated into, and subsequently produce, defective DNA and RNA which, in turn, causes the synthesis of defective proteins. Fellenberg (1966) observed that 8-azaguanine inhibited rooting in peå cuttings and he was unable to reverse the inhibition by guanine treatment. However, root initial formation was stimulated. Ginzburg (1966) noted a stimulation of root initiation by both 8-azaguanine and 8-azadenine. Inhibition of root formation by 2-thiouracil was not overcome by uracil (Guillot, 1965; Fellenberg, 1966; Knypl, 1966) except in two cases (Höhn, 1955; Mitsukashi, Shibaoka and Shimokoriyana, 1969b). Mitsukashi et al.

(1969b) observed that 2-thiouracil inhibited IAA induced rooting in <u>Azukia</u> shoot cuttings when applied during the 24-48 hour period but not during the initial 24 hours. This inhibition was completely reversed by uracil. 2,6-diaminopurine gave similar results while a complete reversal could be brought about by adenine. Interestingly, the same authors reported a promotion of root regeneration in <u>Phaseolus</u> cuttings by 2-thiouracil bd fluorouracil (Shibaoka, Anzai, Mitsuhashi and Shimokoriyama, 1967).

While most of the research in this area using purine and pyrimidine analogues has proved unsuccessful due to apparently overriding secondary effects as well as pronounced differential responses among the various regenerating systems, a few studies done with 5-bromouracil (5-BU) have provided more positive results. Both Melichor (1964, as cited by Kaminek, 1967) and Fellenberg (1965; 1966; 1967) have demonstrated an apparent stimulation of root initiation In the latter case; Fellenberg: observed that J by 5-BU. stimulation of root regeneration in pea cuttings occurred if 5-BU was applied at the start of an experiment or after 36 hours (Fellenberg, 1967). Application of the mutagen during the 12 to 24 hour period inhibited root regeneration and this effect was reversed by simultaneous thymidine application (Fellenberg, 1966). Fellenberg interpreted these observations as indicative of the necessity of RNA and protein synthesis during the early period (i.e. 12 to 24 hours after initiation of the experiment) of IAA induced root initiation.

Although work with antimetabolites has indicated temporally specific syntheses of important macromolecular groups, a second, and more direct, approach to biochemical changes during root regeneration has been the extraction, separation and quantitative measurement of various molecular species coupled with estimates of the endogenous synthesis of these molecules.

A RNA fraction rapidly labelled with ³²P was found in IAA treated leaf cuttings of a <u>Euphorbia</u> species (Böttger and Lüdemann, 1964). This fraction was interpreted to be mRNA and was shown to increase in specific radioactivity until the root primordia began to elongate rapidly and subsequently penetrated the overlying tissues. While no subsequent studies have been pursued, it is known that IAA treatment can lead to enhanced mRNA_csynthesis in nonregenerating systems (Key, 1969; Davies, 1973).

Brown and Mangat (1971) examined RNA and free nucleotide changes during root initiation in detached leaves of Phaseolus vulgaris L. They found that the free nucleotide pools initially increased and then decreased (with the exception of UTP) prior to root emergence. Release of nucleotides from existing RNA did not appear to affect these pools either qualitatively or quantitatively. The authors suggested that synthesis of new nucleotides occurred from non-nucleotide precursors. UTP and UDP-glucose increased continually during the rooting response and were believed to be involved in the increased synthesis of polysaccharides especially cellulose) necessary for rapid root cell wall formation. Increased RNA levels within the leaf cuttings were attributed primarily to ribosomal RNA synthesis. Slight decreases in sRNA and low molecular weight fractions were observed during the rooting period, However, Nanda and Bhattacharya (1973) found two new low molecular weight RNAs within 48-72 hours after IAA treatment of etiolated

.stem segments of <u>Pepulus nigra</u> and suggested that these new •RNA molecules may be involved in the production of adventitious roots. Since the RNA fractions were characterized on . the basis of electrophoretic separation on acrylamide gels and subsequent staining with Toluidine blue, it is questionable whether the two fast migrating bands were new in the sense of <u>de novo</u> or enhanced synthesis.

During adventitious root'initiation in isolated hypocotyl sections of chickpea (Cicer ariatinum), Jalouzot (1971) found two periods of intense RNA synthesis preceding mitosis. The first period occurred almost immediatly after cutting the hypocotyls (i.e. within 4-6 hours). The newly synthesized RNA was suspected of being capable of forming a stable factor which maintained the cutting in an active metabolic state. A subsequent increase in protein synthesis occurred which lasted until 12 to 18 hours after cutting. Protein synthesis then declined. Accompanying this decline, enhanced DNA synthesis occurred from 14 to 20 hours and was accompanied by a second period of intense RNA synthesis. Declines in the DNA and protein synthetic rates preceded the. subsequent mitotic activity. However, subsequent work by Jalouzot (1975) on regenerating Vicia shoot cuttings indicates that an enhanced synthesis of protein (possibly an acidic fraction) associated with the chromatin takes place within the first 1 1/2 hours and may be important in subsequent DNA transcription and/or replication,

Enzyme changes during root formation have been explored

by Werner and Gogolin (1971), Brown and Mangat (1970), Simola (1973), Haissig (personal communication, 1971), Guillot; (1968), Nanda, Bhattacharya and Kaur (1973) and Frenkel and Hess (1974) (see Table 2.2). In general, the results have demonstrated quantitative changes in enzyme activity accompanying organ differentiation which could be related to enhanced or modified metabolic patterns. Qualitative changes (eg. <u>de novo</u> synthesis of unique enzymatic proteins or isoenzymes) have yet to be observed.

## 2.4 Hormonal Control of Organ Regeneration

The first published proposal for the existence of a specific root forming substance appeared in 1880 (Sachs, 1880, 1982; as cited in Thimann, 1972). 'Termed 'rhizocauline' this formative substance was hypothesized to be produced in the leaves and transported basipetally to the cutting's base where root initiation occurred. Bouillenne and Went (1933) developed this hypothesis further and, on the basis of their experiments with root regeneration in Impatiens hypocotyls, suggested that rhizocauline was a thermostable, non-nutritive, specific root promoting hormone formed in the leaves by light and often stored in the cotyledons. However, Went and Thimann (1937) pointed out that at least one of the hormones necessary for root formation was identical to an auxin. Undeterred, Bouillenne and his co-workers further elaborated the theory into a two factor system (cf. Champagnat, 1961) and later, a three factor one (Bouillenne, 1961) on the basis

Table 2.2. Enzyme changes during root formation.

					-
Species	Organ(s) studied	Inducing stimulus	Enzyi <b>te</b> studied	Activity . change	References
L. esculentum	etiolated seedlings	wounding	peroxidase	* increase during rooting	Guillot (1968)
• •	, j		polyphenol oxidase	increase during rooting	•
Daucus carota	root callus cultures	IAA	glutamate dehydrogenase	increase prior to rooting	Werner and Gogolin (1970)
0 ·		·	· aspartate .amino transferase	slight . increase	•
•		•	isocitrate dehydrøgenase	slight increase	
ġ.	 	, , ,	acid phosphatase	slight increase	2)
Phaseolus vulgaris	detached leaves	wounding	RNA phosphodiesterase	0-24 hr. 4x increase then de-	Brown and e Mangat (1970)
	; •			crease as primordium initiated	•
			•		
•	•	• •	- -		

28

Ï

ι.

				• • • •	•	•
•			· · · ·	• •	· · ·	· •
Table 2.2 Species	(com d.) Organ(s) studied	Inducing stimulus	Enzyme studied	Activity change	References	Y.
Phaseolus vulgaris	sedlings	wounding	glucose-6- phosphate dehydrogenase	slight decrease	Haissig, (personal communication 1971)	
	•	;	glyderaldehyde- 3-phósphate dehydrogenase (NADP)	10 X . 10 X	· · · · ·	
• • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	glyceraldehyde- 3-phosphate dehydrogenase (wwn)	during	· · ·	•
۰ ۵	· · · · · · · · · · · · · · · · · · ·	, ,	citrate synthase	no change	•	
Atropa belladona	suspension cultures of root callus	removal of exogenous IAA or addition of L-naphthoxyacetic acid	aldose glutamate: oxatoacetate transaminase	decrease	Simola (1973)	
•		۰ ۰	alanine aminopeptidase	decrease	·	Ľ
· · · ·		· ·	peroxidase	increase during rooting	• •	29
•	-	•		а	, , ,	

and Kaur (1973) Bhatťacharya Frenkel and .Hess (1974) References Nanda, iscenzymes iscenzymes increased number numbeř of increased increase increase Activity during rooting during rooting change . , ° о Г ribonuclease phosphatase IAA oxidase IAA oxidase iscenzymes iscenzymes iscenzymes peroxidase isoenzymės polyphenol qxidase studied Enzyme acid wounding and IAA wounding, Inducing stimulus IAA' and càtechol etiolated stem segments Organ(s) studied cuttings (cont'd.) stem Phaseolus aureus Roxb Table 2.2 Populus nigra L. Species

· 3 0

• of what must be considered very indirect and circumstantial evidence. Bouillenne concluded that two different types of substances (more specifically, phenol derivatives or flavones termed "rhizocauline mobile" and auxins) were synthesized in the leaves and subsequently translocated into the cutting base where they would react with each other in certain competent cells containing a polyphenolase enzyme and form the specific root forming substance "rhizocaline fixee". This theory has been criticized by Libbert (1956/57) and Champagnat (1961) who suggest instead that adventitious root formation depends on a complex of endogenous factors. In their view, root regeneration would not be due to a specific factor; rather, a specific group (composed of hormonal and nutritional factors) may initiate the process.

Auxins are the only class of applied hormones which have consistently enhanced root initiation in plants capable of spontaneous regeneration (Dore, 1965; Haissig, 1965; 1969). Whether the auxin enhancement of root initiation depends upon a direct effect at the regenerating site or is due to the mobilization of root-promoting substances from the leaves is unknown. However, the initial differentiation of a root meristem⁶ is determined, at least partially, by a localized high auxin concentration (Pearse, 1948 as cited by Figueroa, 1966; Warmke and Warmke, 1950; Heide, 1967) which is often brought about by a metabolically active (and basipetal) auxin transport system (Leopold, 1961; Goldsmith,

١

1960, 1966; Audus, 1972; Thimann, 1972; Rubery and Sheldrake. 1974). Consequently, the physiological basis for auxin stimulation of rooting would appear to be in the localized internal levels (native or applied) of this hormone acting in conjunction with other plant constituents such as the cytokinins. Cytokinins ar known 'to enhance cell enlargement, and in the presence of auxin, cell division (Letham, 1967, 1969; Srivastava, 1967). However, information on the effects of the synthetic cytokinins, kinetin and benzylaminopurine, suggest that this class of plant hormones prevent or, at least, do not stimulate root initiation (Plummer and Leopold, 1957; Humphries, 1960; Heide, 1965, 1969; Halssig, 1965; Letham, 1969) although exceptions have occasionally been observed (Allsop and Szweykowska, 1960; Miller, 1961; Bachelard and Stowe, 1963). Certainly, the promotive effects of cytokinin's in bud regeneration (Skoog and Miller, 1957; Letham, 1969) and lateral root formation (Goldacre, 1959; Torrey, 1963, Bonnett and Torrey, 1965; Letham, 1967) indicate a direct morphogenetic role for this class of hormones in at least some forms of organ regeneration.

Gibberellins enhance cell division and cell enlargement in a number of diverse experimental plant systems (Paleg, 1965; Sachs, 1965, Osborne, 1965). Although organ regeneration may be viewed as a highly regulated process requiring cell division and enlargement, and defined by apparently stringent temporal and spatial controls, applied gibberellins have often inhibited, or at least not promoted

root or shoot regeneration (Brian, Hemming and Radley, 1955; Brian, 1957; Chailakhian and Nekrasova, 1958; Kato, 1958; Kribben and Reisener, 1958; Viana, 1958 as-cited by Urban and Libbert, 1967; Gundersen, 1958; Chailakhian and Butenko, 1959; Miller, 1959; Schraudolf and Reinert; 1959; Brian, Hemming and Lowe, 1960; Dostal, 1960; Chailakhian, Turetskaya and Stowe, 1963; Turetskaya, Kefeli and Kof, 1963; Murashige, 1964; Julliard, 1964; Libbert and Krelle, 1966; Jansen, 1967; Bastin, 1976; Urban and Libbert, 1967; Nanda, Purohit and Mahrotra, 1968; Bigot and Nitsch, 1968; Gautheret, 1969; Thorpe and Murashige, 1968, 1970; Besemer, Harden and Reinert, 1969; Krille and Libbert, 1969; Heide, 1969; Mitsuhaski, Shibaoka and Shimorkoriyama, 1969a; Chin, Meyer and Beevers, 1969; Haissig, 1969, 1972; Kefford, 1973). The inhibitory action of GA2 on root regeneration has been found to be non-reversible by auxin treatment in some cases-(Brian et al. 1960; Heide, 1969; Haissig, 1972). However, other researchers have obtained an apparent partial or complete reversal (Schraudolf and Reinert, 1959; Appelgren and Heide, 1972). Abscisic acid has also been observed to partially reverse (Chin, Meyer and Beever, 1969; Thorpe and Meier, 1969) to have no effect (Heide, 1969) or to enhance (Krelle and Libbert, 1969) GA2 inhibition of organ regeneration.

• Interestingly, a few reports have demonstrated a stimulation of root initiation by gibberellins (Gray, 1958; Spanjereberg and Gautheret, 1964; Julliard, 1964; Nanda, 33.

Purohit, Bala, 1967; Gautheret, 1969; Erickson, 1971; Tizio et al., 1970; Nanda, Anand and Chibbar, 1972; Anand, Chibbar and Nanda, 1972; Varga and Humphries, 1974; Kochva, Buttan, Spiegel-Roy, Bornman and Kochva, 1974; Hansen, 1975). Although gibberellins may be important regulators in root regeneration, their role at the cellular and biochemical levels is still unclear. An early hypothesis suggested that gibberellins promoted rapid growth of the regenerating organ and hence diverted essential metabolites from the goot initiation region with a consequent inhibition of regeneration (Brian, 195%). This "nutrient diversion" hypothesis," was subsequently demonstrated to be incorrect when it was shown that GA3 inhibited root formation in the absence of GA3-induced growth (Brian/et al., 1960). second hypothesis was developed by Hrian and his co-workers which suggested that GA3 inhibited root regeneration by preventing organized cell divisions in the tissues that would normally have formed the primordia initials. Murashige (1964) also supported this idea on the basis of his observations of bud regeneration inhibition by GA3 in tobacco callus cultures.

The basis for this hypothesis of GA₃ inhibition of organ initial formation focused on 3 pertinent observations: - a) necessity of a direct and localized GA₃ application at the potential regeneration site;

b) maximum GA₃ sensitivity occurred prior to primordia formation;

c)  $GA_3$  stimulation of random cell divisions leading to callus proliferation while inhibiting organized divisions leading to shoot or root primordia. Recently a third hypothesis has been suggested (Haissig, 1969, 1972). After applying  $GA_3$  to the root systems of intact brittle willow plants, Haissig noted that the spontaneously forming (i.e. preformed) nodal root primordia within the shoot system possessed reduced cell numbers. This feature became most evident in the older, more reestablished primordia. Haissig suggested that, in brittle willow at least,  $GA_3$  treatment reduced intraprimordium cell division on which continued development of established primordia depended.

Although divergent in their choice of the precise regeneration stage affected, the hypothesis presented by Brian et al. (1960) and Murashige (1964) i.e. direct inhibition of organ initial formation, and by Haissig (1969; 1972) i.e. direct inhibition of organ initial development, both support the general idea that the inhibitory action of GA₂ is maximal at a very early stage of organ formation.

Recently, Thorpe and his co-workers have put forth a biochemically based hypothesis to explain the early inhibitory effects of GA₃ on shoot formation in tobacco callus cultures (Thorpe and Murashige, 1968, 1970; Thorpe and Meier, 1972, 1973, 1974a, 1974b; Ross and Thorpe, 1973; Ross, Thorpe, and Costerton, 1973; Thorpe, 1974). Based upon the premise that localized starch

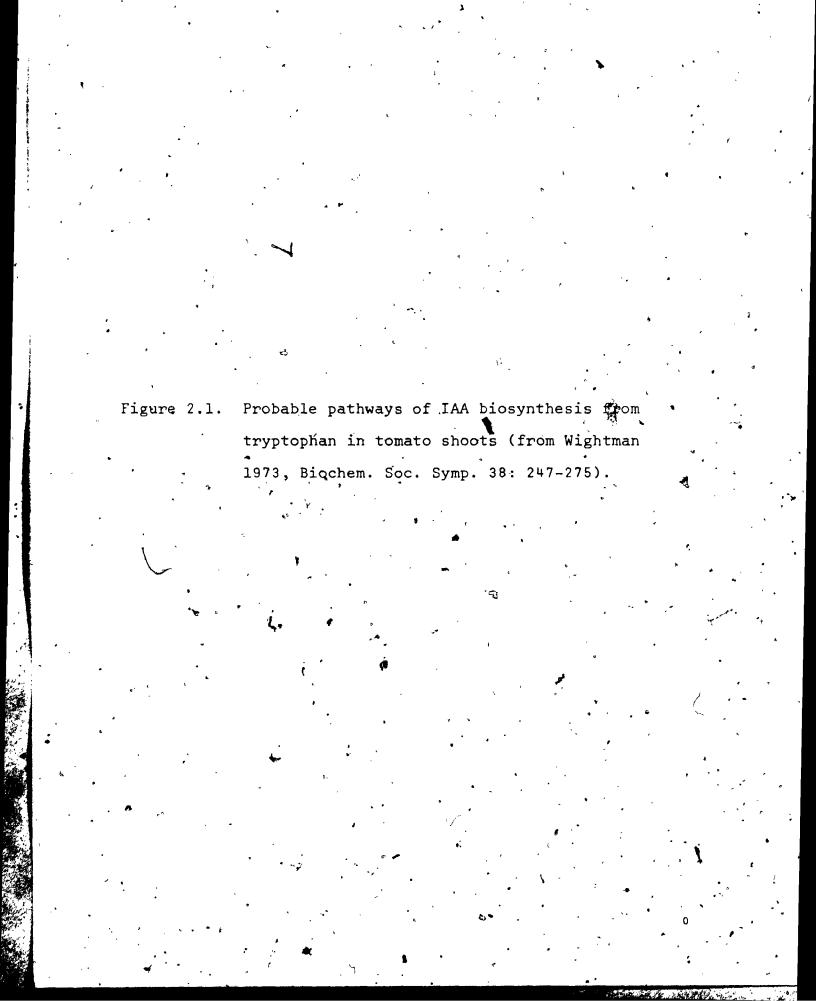
accumulation functions in the initiation of organized plant development, Thorpe and his collegues subsequently observed a positive correlation between starch accumulation, shoot formation and respiratory activity in tobacco callus cultures. The starch accumulation occurred prior to any organized development, and both starch accumulation and organ megeneration were suppressed in the presence of GA2. Although it was suggested that enhanced starch degradation (primarily by increased & - amylase activity) was characteristic of the GA₂ response (Thorpe and Meier, 1974a; 1974b) the data presented showed no pronounced effects of GA3 on -amylase activity. Rather, the data suggested that GA, treatment repressed the levels of soluble and insoluble starch synthetases as well as increased the level of phosphorylase. The latter enzyme could control the levels of endogenous starch through its reversible role in starch synthesis and breakdown. Instead of producing unphosphorylated sugars via the  $\ll$ -amylase/ $\beta$ -amylase/ $\beta$ -glucosidase route, an energetically more favourable pathway would be found in the production of the glycolytic precursor, glucose-l phosphate, via the phosphorylase system. However, this possibility at present remains hypothetical with no evidence presented in the case of root regeneration.

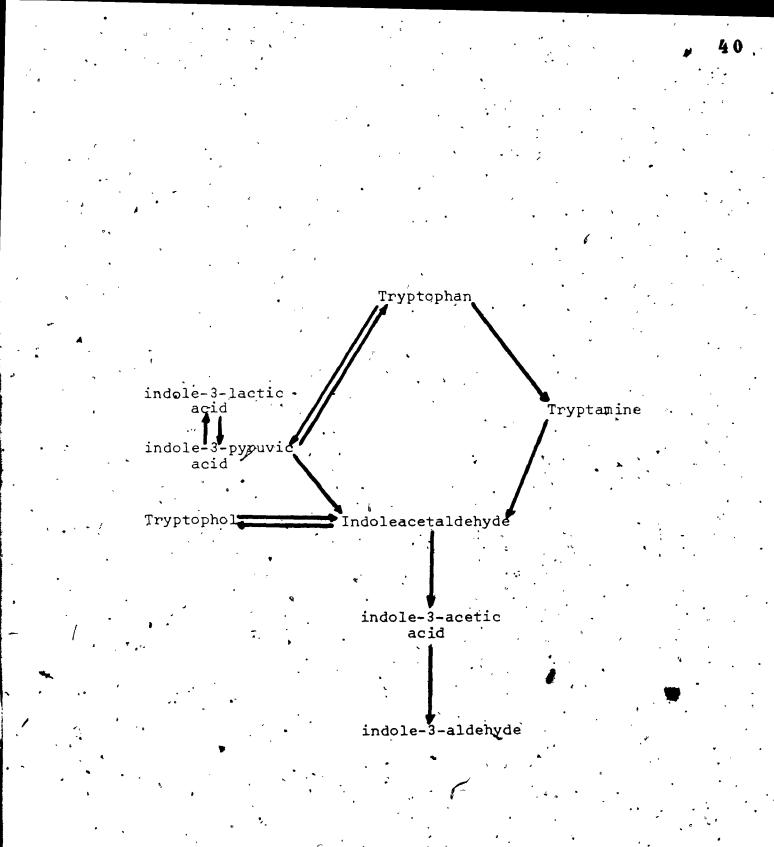
The apparent stimulation of root regeneration (but not bud regeneration) by  $GA_3$  has been observed in enough diverse organogenic systems to be considered a valid additional property of the  $GA_3$ -mediated regeneration response. Theories

presented to explain this rather paradoxical effect have centred on gibberellin involvement with one or more aspects of auxin metabolism:

a) decreased auxin catabolism;

b) decreased auxin complexing or binding; and/or


c) enhanced auxin synthesis


Initial observations on the effects of GA3 on endogenous IAA levels in non-regenerating systems have often demonstrated increased amounts of diffusible or extractable IAA or IAA-like substances (see reviews by Sachs, 1965; Brian, 1966; Audus, 1972; Thimann, 1972). An early suggestion for this GA3-mediated effect focused on the hypothesis of decreased auxin catabolism when it was demonstrated that GA, treatment. could reduce the activity of IAA oxidase in vivo (Galston, 1957; Pilet and Wurgler, 1958; Galston and Warburg, 1959; Pilet and Collet, 1960), but not in vitro (Kato and Katsumi, Similar reductions in activity were observed in the 1959). related enzyme, peroxidase (McCune and Galston, 1959; Halevy, 1962; Katsumi and Sano, 1968). However, other studies have demonstrated no GA, effect on IAA oxidase activity (Kurashi and Muir, 1964; Varga and Balint, 1966) or a GA3~induced increase (Gaspar and Bouillenne-Walrand, 1966; Bolduc, Cherry and Blair, 1970; Ockerse and Waber, 1970; Lee, 1971) Furthermore GA, did not inhibit the decarboxylation of IAA-1-14C in Coleus or Helianthus stem cuttings (Valdovinos and Ernest, 1966; Valdovinos, Ernest and Henry, 1967).

A hypothesis currently receiving more experimental.

support centres on gibberellin enhancement of auxin synthesis (Figure 2.1; for discussion's of auxin biosynthesis see Black, 1970; Audus, 1972; Wightman, 1973; Schneider and Wightman, 1974). Muir and his co-workers have demonstrated that GA₃ treatment increases the production of auxin from tryptophan in dwarf pea tissue and in cell-free preparations. of <u>Avena</u> coleoptiles (Kuraishi and Muir, 1964; Lantican and Muir, 1967; Muir and Lantican, 1968). Furthermore, GA₃ has been found to enhance the decarboxylation of tryptophan-1-¹⁴C in <u>Coleus</u> and <u>Helianthus</u> stem segments and <u>Avena</u> coleoptiles (Valdovinos; Ernest. and Perley, 1967; Valdovinos and Ernest, 1967; Valdovinos and Sastry, 1968). The results from both research groups support the concept of a gibberellin promotion of auxin synthesis via the tryptophan → tryptamine → intpleacetaldehyde → IAA pathway.

In root regenerating systems, the available evidence for such a role is meager. Bastin (1967) observed that GA₃ treatment to the shoot bases increased the endogenous levels of IAA-like substances in cuttings of <u>Impatiens balsamina</u>. seedlings, while root initiation decreased. Extensive work by Varga has supported the hypothesis of gibberellin stimulation of IAA synthesis from tryptophan using stem tissues and cell free extracts (Varga and Bito, 1967, 1968; Varga, Köves and Sirokman, 1968; Varga, Köves, Sirokman and Vito, 1968; and Varga, 1974 as cited in Varga and Humphries, 1974). More recently, Varga and Humphries (1974) demonstrated significantly enhanced rooting of Phaseolus leaf cuttings





when  $GA_3$  was applied to the lamina in the presence of tryptophan. This result was attributed to an enhanced IAA biosynthesis in the leaf lamina brought about by  $GA_3$  and is contrary to earlier results when  $GA_3$  was applied to the base of <u>Phaseolus</u> stem cuttings and found to inhibit rooting (e.g. Krelle and Libbert, 1969). It is not inconceivable that Bastin could have observed the same phenomena had he treated the leaf laminas with  $GA_3$  instead of the shoot bases where the primordia would subsequently form.

#### CHAPTER 3

LEAF DEVELOPMENT IN TOMATO

#### 3.1 Introduction

The ontogeny of the determinate organ, the leaf, is a complex, yet highly regulated event which has received relatively little attention from developmental botanists. When the approaches taken towards understanding leaf development are compared between such groups of people as Foster, Pray and Lersten on one hand and Erickson, Maksymowych and Denne on the other (see section 2.2), it is apparent that the ideal study should combine a morphological index of development with the quantitative and qualitative aspects of leaf ontogeny.

The tomato plant, although appreciated as an important vegetable species since the sixteenth century after its introduction from South America (Luckwill, 1943) and presently the basis of a multi-million dollar industry in the United States and Canada, has received virtually no attention from a developmental point of view. Similarly, the tomato plant's extensive utilization in genetical and physiological research with virtually nothing known about its anatomical composition and development has prompted one

noted physiologist dealing with phloem transport to remark that the tomato plant "is as unorthodox in its translocation patterns as in its morphology, but as even that strange confusion of leaves without axillary buds and inflorescences without subtending leaves may be interpreted by a distortion of the ordinary rules of plant architecture, so with a little imagination the distribution of assimilates from tomato leaves can been seen as a twisted version of the usual rules" (p. 66;Canny, 1973). As will be pointed out in this chapter, however, the concept of the tomato plant as a twisted distortion of the ordinary rules of plant architecture as espoused so turgidly by Canny is unrealistic.

While a few studies have explored tomato stem histogenesis (Venning, 1949; Thompson and Heimsch, 1964) with conflicting results, they failed to include a major factor governing stem growth and vascularization - the leaf. Although two studies have been published concerning the origin of the tomato leaf from the shoot apex (Lange, 1927; Hussey, 1971) only one report dealing with the histological development of the tomato leaf has appeared. In his study of the effects of 2,3,5-triiodiobenzoic acid (TIBA) application to tomato (cv. 'Marglobe') shoot apices, Bedesem (1958) included a description of tomato leaf ontogeny which was based solely on serially section material. Bedesem, although he outlined the major developmental features of the tomato leaf, dealt superficially with the histogenesis of the major and minor venation leading to interpretive errors

(e.g. failure to recognize a discrete marginal fimbriate vein). Due to the scarcity of information about the tomato leaf, the present study was undertaken to provide a detailed analysis of tomato leaf growth and development in the cultivar 'Farthest North'.

More specifically, an attempt was made to answer the following questions:

1. Can the growth characteristics and developmental states of tomato leaves be consistently related to the plastochron index as developed by Erickson and Michelini (1957)? Similarly, can various biochemical parameters be related to the developmental states of the tomato leaf?

2. What is the specific ontogenetic sequence of events

i) early growth of the leaf primordium and the apparent roles played by the five classes of meristems as outlined by Cutter (1971);

ii) timing and sequence of xylem and phloem differentiation
in the major and minor veins; and,
iii) the pattern of cell division activity throughout the
leaf during the course of development?

In view of the vascular origins of regenerating roots, it is readily apparent that a thorough knowledge of the tomato leaf's vasculature and its development is a necessary prerequisite for subsequent regeneration studies.

Furthermore, as noted in Chapter 1, there is a need for a developmental index which would be superior to a time-based description of plant material by virtue of its ability to minimize environmentally and, to a lesser extent, genetically induced fluctuations in growth and regeneration responses.

3.2 Materials and Methods

3.2.1 Growth and Biochemical Studies

3.2.1.1 Seed and Plant Production

Seeds of <u>Lycopersicon esculentum</u> Mill., cv. 'Farthest North' used in this study, were initially obtained from T. and T. Seeds Ltd., Winnipeg, Manitoba. Subsequent seed production from the original stock was carried out by the author. All seeds were washed for 24 hours prior to sowing in order to promote rapid and uniform germination.

The plants were raised under greenhouse conditions in wooden flats throughout the year.' Natural daylight conditions supplemented with a 16 hour photoperiod of combined fluorescent (Sylvania Gro-Lux) and incandescent lighting were provided. In general, night temperatures of 60-65°F and day temperatures of 75-85°F prevailed. During their development, seedlings were periodically thinned out and all morphological abnormalities (e.g. multiple cotyledons, leaf fusions) were disoarded. Emphasis was placed on the growth and development of true leaf number 3 (counting from the first leaf above the cotyledons) in these studies. Unless otherwise noted, all further references are to this leaf position.

# 3.2.1.2 Growth Measurements

In order to evaluate the feasibility of applying the P.I. to tomato shoots in the initial studies of leaf and • leaflet growth, vernier calipers were used to measure length and width of the leaves and leaflets of 10 randomly selected seedlings to the nearest 0.1 mm at 2 day intervals from January to March 1971. Later studies relied on a clear plastic ruler graduated in mm. Leaf areas were measured using an EEL Unigalvo 200) photometric leaf area meter (Evans Electroselenium Ltd., Halsted, England) and the readings converted to the nearest cm² using a calibration curve provided. This method proved more rapid and gave area values similar to the determinations obtained by a compensating polar planimeter (Keuffel and Esser Co.) from leaf tracings.

Fresh and dry weights of individual leaves were obtained to the nearest 0.1 milligram. In the latter case, leaves were dried at 105°C for a minimum of 48 hours prior to weighing.

#### 3.2.1.3 Chlorophy11 Determinations 🐳

Chlorophyll a/b levels were determined using a modified version of Bruisma's (1953) method. Instead of homogenizing the leaf samples in a blendor, the individually weighed leaves were ground in a chilled mortar and pestle with a '

small amount of purified sand, magnesium carbonate and acetone. All operations were carried out in an ice water bath (2-4°C) in a dimly lit room. The resulting slurry ; was quantitatively transferred onto a sintered glass filter and the extract filtered into a flask. The residue on the filter was reextracted twice with acetone and the combined extracts made up to volume using acetone and distilled water (80% acetone v/v). The aqueous acetone extract were stored in foil wrapped volumetric flasks (either 10 ml or 25 ml capacity depending on the initial fresh weight of the particular leaf). Samples of the extracts were measured in'l cm ground stoppered glass cells against 80% aqueous acetone in a Beckman DB spectrophotometer at 645, 652, and All samples were measured within 2 hours of 663-nm. extraction with a 10 minute period at room temperature in order to avoid condensation on the spectrophotometric cells.

The concentrations of chlorophyll a,b, and a + b, in milligrams per liter, were computed from the following equations:

 $C_{a} = 17.2 A_{663} - 2.7 A_{645}$ (1)  $C_{b} = 22.9 A_{645} - 4.7 A_{663}$ (2)  $C_{a+b} = 20.2 A_{645} + 8.0 A_{663} = 27.8 A_{652}$ (3)

As noted by Bruisma (1963), the two calculations of  $C_{a+b}$  should lead to similar values. Deviations larger than a few per cent would indicate either inaccurate adjustment of wave lengths or the occurrence of breakdown products. The chlorophyll a/b ratio was also calculated.

## 3.2.1.4 · Total Soluble Carbohydrate Determination

Oven dried leaf samples were ground to a fine powder. with mortar and pestle and 10-50 mg weighed out and placed in 15 ml Pyrex centrifuge tubes. A few drops of 80% ethanol was added to prevent clumping followed by 1 ml of distilled deionized water. The suspension was stirred thoroughly, placed in a hot water bath at approximately 70°C and 5 ml of hot 80% ethanol was added. The mixture was stirred continually for 10 minutes and then spun at high speed (4,000 rpm) for 10 minutes in a pable top centrifuge (Sorvall General Laboratory Model HL-4 and fixed angle_rotor Type (A). The supernatant was removed with a Pasteur pipette and retained (soluble sugar fraction). This extraction was repeated three mimes. The supernatant fractions were combined and reduced in volume to one or two ml under reduced pressure at 65°C in a Buchler Evapo-mix. The resulting extract was made up to 25 ml in a volumetric flask. Total soluble carbohydrate levels were determined in the tissue extracts using the phenol-sulphuric acid colorimetric method (Dubois, Gilles, Hamilton, Rebers and Smith, 1956). Sucrose was used as a standard over the concentration range of 0 to 125 ugm/m1 extract: / Three to four determination were made per sample.

# 3.2.1.5 Starch-Determination

The resulting tissue pellets prepared as outlined in section 2.1.4 were oven dried at 80°C for 48 hours prior to

use. The starch levels were determined using the phenolsulphuric acid colorimetric method (Dubois et al., 1956) after hot water gelatinization and perchloric acid extraction according to McCready, Guggolz, Silviera and Owens (1950). A glucose standard was used and all values were converted to starch equivalents by multiplying the experimental values by 0.90. Three to four determinations were made per sample.

## 3.2.2 Leaf Ontogeny Studies

#### 3.2.2.1 Clearing Techniques

Leaf and seedling samples were collected between noon and 2:00 p.m. from greenhouse grown material over approximately a one year period (July 1972 to August 1973) and the P.I. and LPI₃ noted. Over one hundred individual samples were processed by the NaOH-basic fuchsin method of Fuchs (1963) in order to study vascularization (especially the xylem) of the developing leaves. A fast-green counter : stain was used as recommended by Fuchs (1960).

Another group of over one hundred samples were fixed in FPA for 24-48 hours and then stored in fresh FPA until the material was completely bleached. Whole leaves and seedlings were washed for 2-3 days in 50% ethanol followed by staining in propriocarmine for 20 minutes at 60°C (Jensen, 1962). Further washing in 50% ethanol was followed by dehydration in a graded ethanol-xylene series. The leaf. material was permanently mounted on glass slides using Permount. This technique proved ideal for studying mitotic activity distribution and major and minor vein development.

3.2.2.2 Histological Technique

Fifteen seedlings were fixed in FPA, dehydrated and embedded in Paraplast. Five  $\mu$  thick serial sections were prepared from transversely or longitudinally cut material. The sections were dewaxed in xylene and hydrated through a t-butanol-distilled water sories. Staining was carried out either in aqueous 0.05% Toluidine blue or tannic acid-ferric chloride-safranin (Jensen, 1962), dehydrated and permanently mounted in Permount. Over fifty leaf primordia from inception to approximately 1500  $\mu$  long were studied by this method. Fifty individual leaflets selected at LPI₃ = -2.0 and LPI₃ = 0.0 were also processed by the above methods and sectioned paradermally for a detailed examination of minor

vein ontogeny.

#### 3.2.3 Photography

All black and white photography was carried out with a Zeiss Photomicroscope II and 35 mm Plus-X film. Film was developed in D-76 (Kodak) in 1:1 (v/v) solution with tap water for 10 minutes at 20°C. The sectioned material which had been stained with Toluidine blue, was photographed at an ASA 80 rating using a light blue green filter combination in . order to reduce the severe contrast condition which otherwise occurred.

# 3.2.4 Statistical Analysis

Regression, forrelation and Chi-Square analyses were performed according to Woolf (1968) with the aid of a Monroe electronic programmable printing calculator (Model 1766).

3.3 Results

3.3.1 Growth and Biochemical Studies

3.3.1.1 P.I. and L.P.I.: Application to the Tomato Shoot A plot of log. leaf length versus time (January - March 1971) measurements for 1 plant arbitrarily chosen from the 10 plants studied (Fig. 3.1), revealed that successive leaves of the 'Farthest North' tomato cultivar appeared at regular intervals and grew exponentially for at least part of their development. Similar results were obtained with. the nine remaining plants. The choice of a reference length for the calculation of the plastochron index values was broadly restricted within the exponential or the log. phase of leaf growth (i.e. between leaf lengths of appoximately 10 mm to 40 mm). Thirty millimeters was selected due to the ease of handling and the eventual use of this morphological index as a basis for regeneration experiments. A nomogram was constructed according to Erickson (1960) in order to calculate fractional plastochron values more quickly (Fig. 3.2). In order to test for a linear

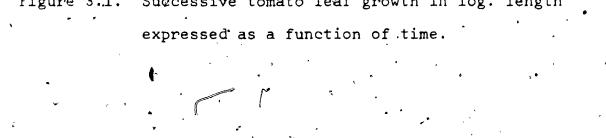
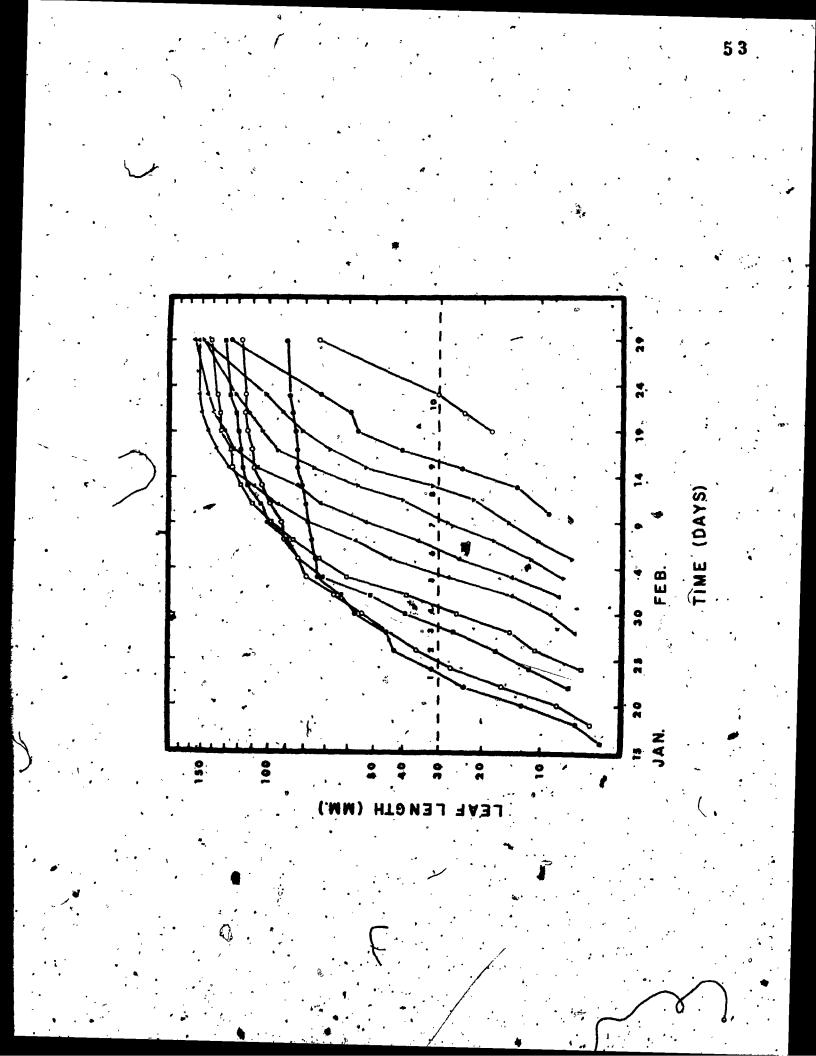
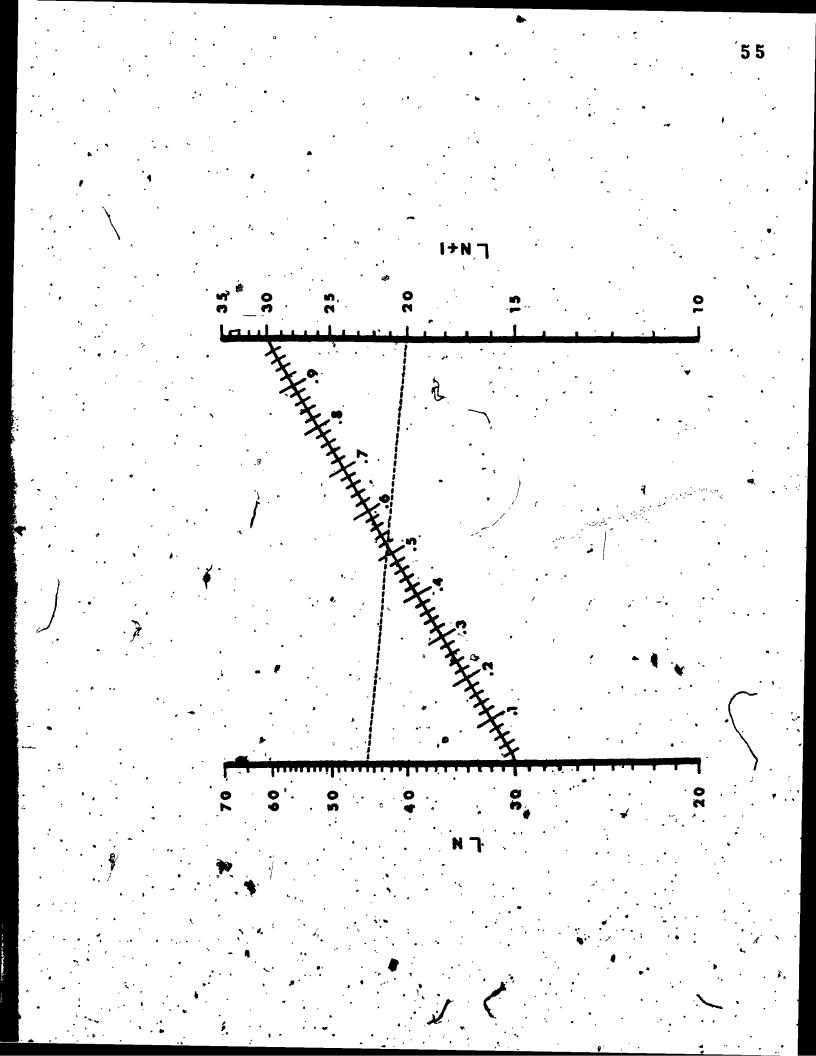
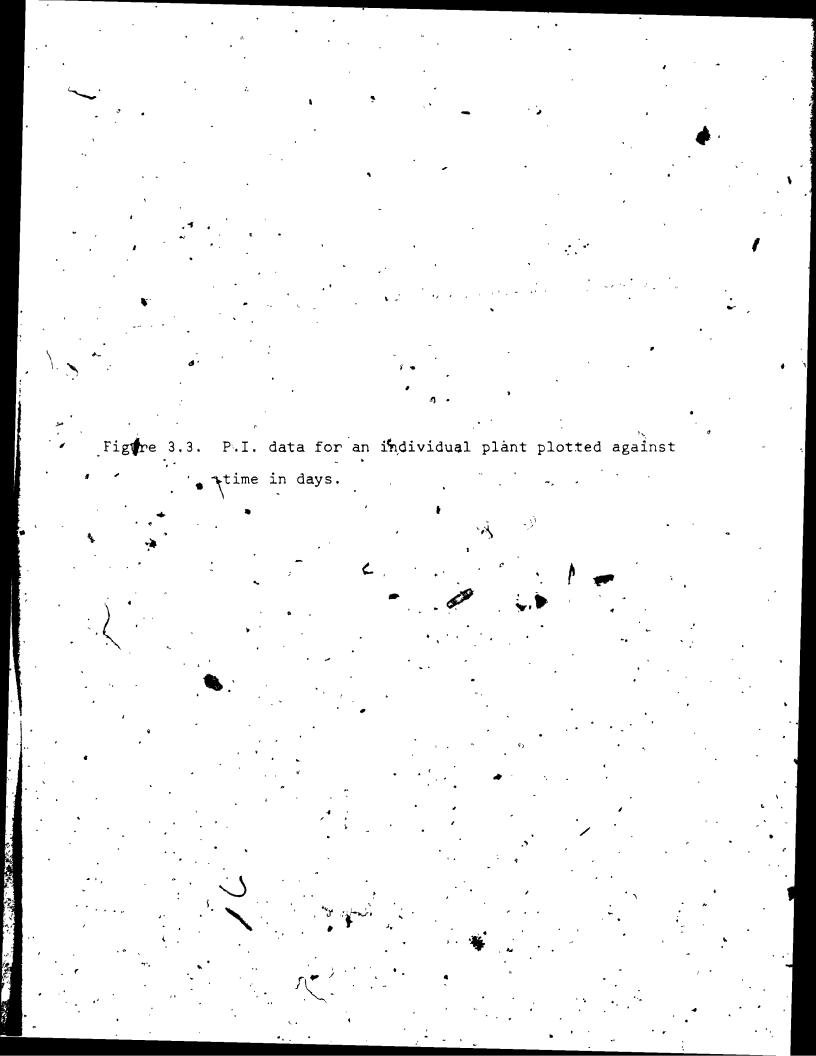
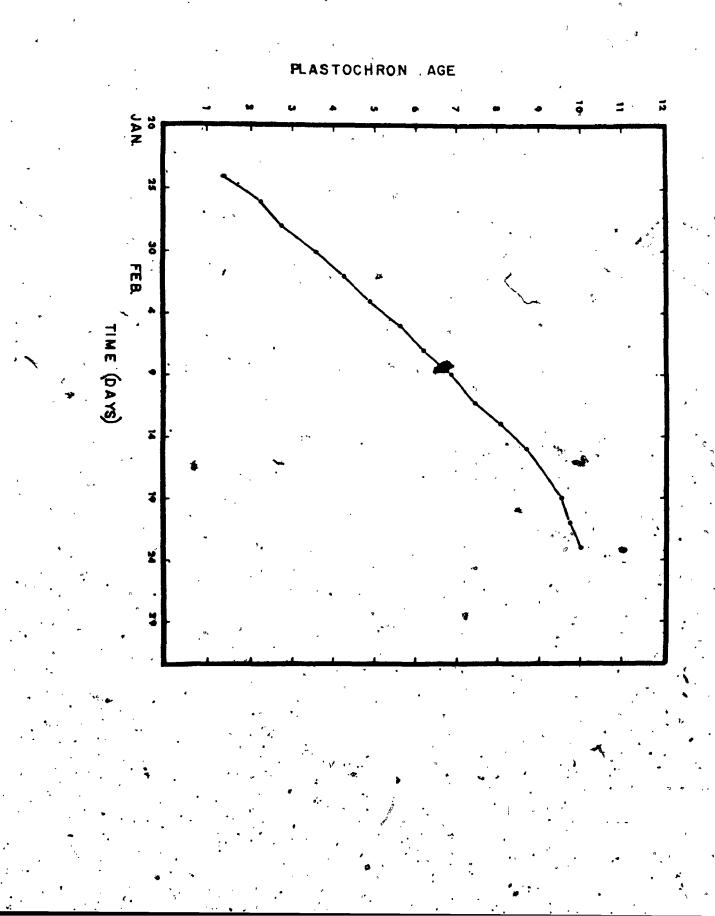





Figure 3.1. Successive tomato leaf growth in log. length



3.2. Nomogram used to calculate fractional plastochron values. For example, if leaf 6 (i.e. Ln) was
45 mm long and leaf 7 (i.e. Ln + 1) was 20 mm long, joining the two values by a straight edge (dashed line) would give a fractional plastochron value of .52 and, consequently, the PI value for the tomato shoot would be 6.52.


Figure 3.2.




relationship between time and the P.I., data from an arbitrarily selected plant was plotted against time in days (Fig. 3.3). It is apparent that a straight line results for , most of the growth period studied. Regression analysis of the data up to P.I. 8.7 revealed that the slope of the line (i.e. the plastochron interval/day) was .405 and, consequently, the average duration of one plastochron was 2.5 days or 59.3 hours (Table 3.1). Calculation of the 95% confidence intervals for the true regression coefficient (Woolf, 1968) revealed that the calculated P.I. duration is accurate within a 5 how period. Since the L.P.I. is of more direct importance for this leaf development study, an examination of the growth in length of alternate, successive leaves against L.P.I. was carried out (Fig. 3,4). The leaf . growth curves indicated that leaves 1, 3, 5 and 7 were very similar in the early log. phase of growth. They differed, . however, in the L.P.I. at which they leave the exponential, or phase 1 growth as well as in the subsequent growth rates and final lengths attained during phase 2 growth (i.e. "mature" phase).

#### 3.3.1.2 Seasonal Aspects

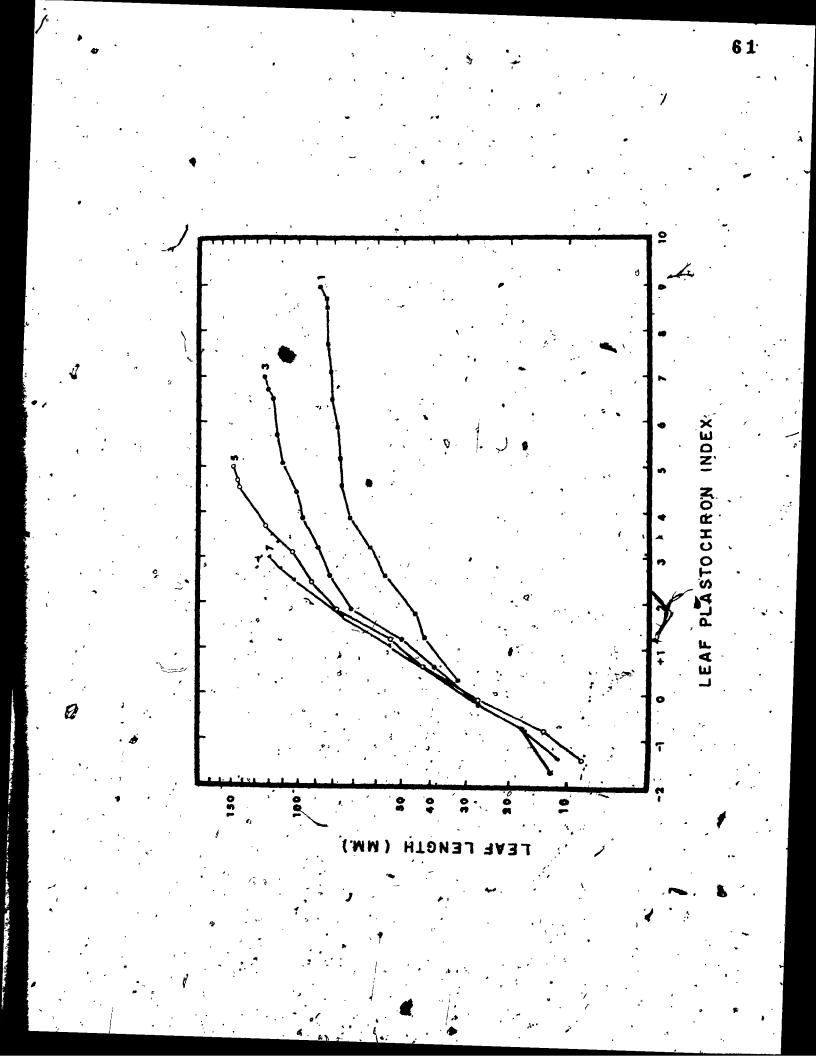
Shoot material sampled at 1 month intervals over a 16 month period from four week old plants revealed considerable fluctuations in various growth features (Fig. 3.5). However, correlation analysis revealed statistically significant positive relationships (at the 5% level) between the





5.9

 $\dot{\langle}$ 


Table 3.1. Regression Analysis of Plastochron Index versus Time (days).

Regression	Regression
Formula	Coefficient' Calculated PI Duration 4
Y = .30 + .405 X	.405 ± .0309 ^a 2.47 days (± approx. 5 hours

# a = 95% confidence limits

•

# Figure 3.4. Growth in length of alternate, successive leaves expressed as a function of L.P.I.



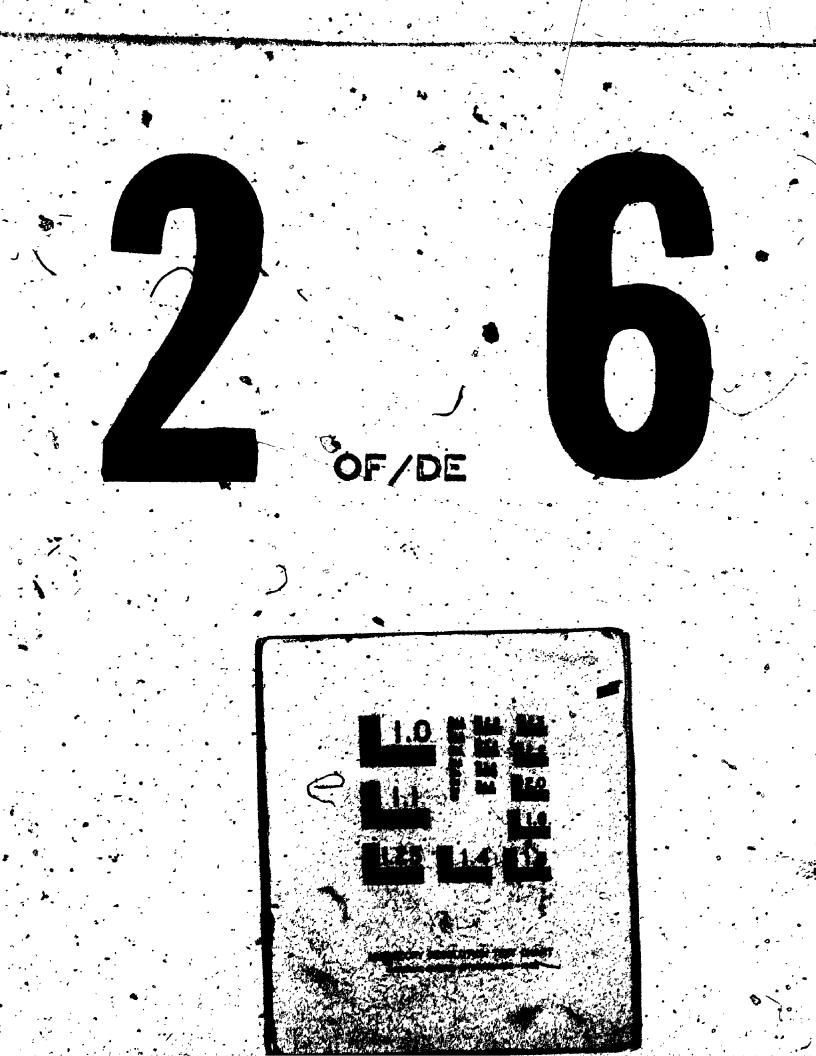
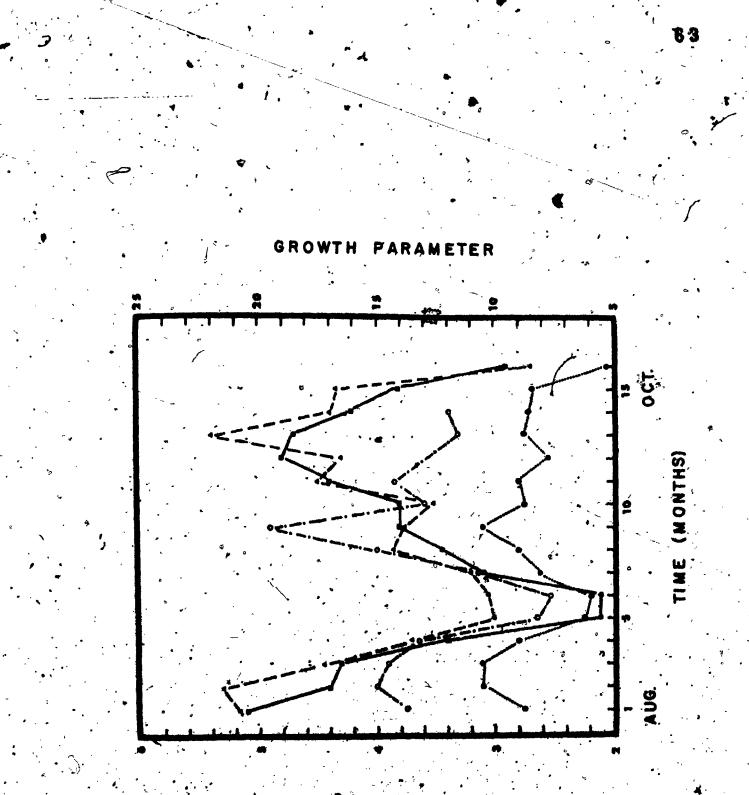




Figure 3.5. Seasonal fluctuations in various growth parameters of 4 week old tomato shoots. Closed squares, mean LPI3; closed circles, mean leaf length in cm.; closed triangles, mean plant height in cm.; open circles, mean leaf area in cm².



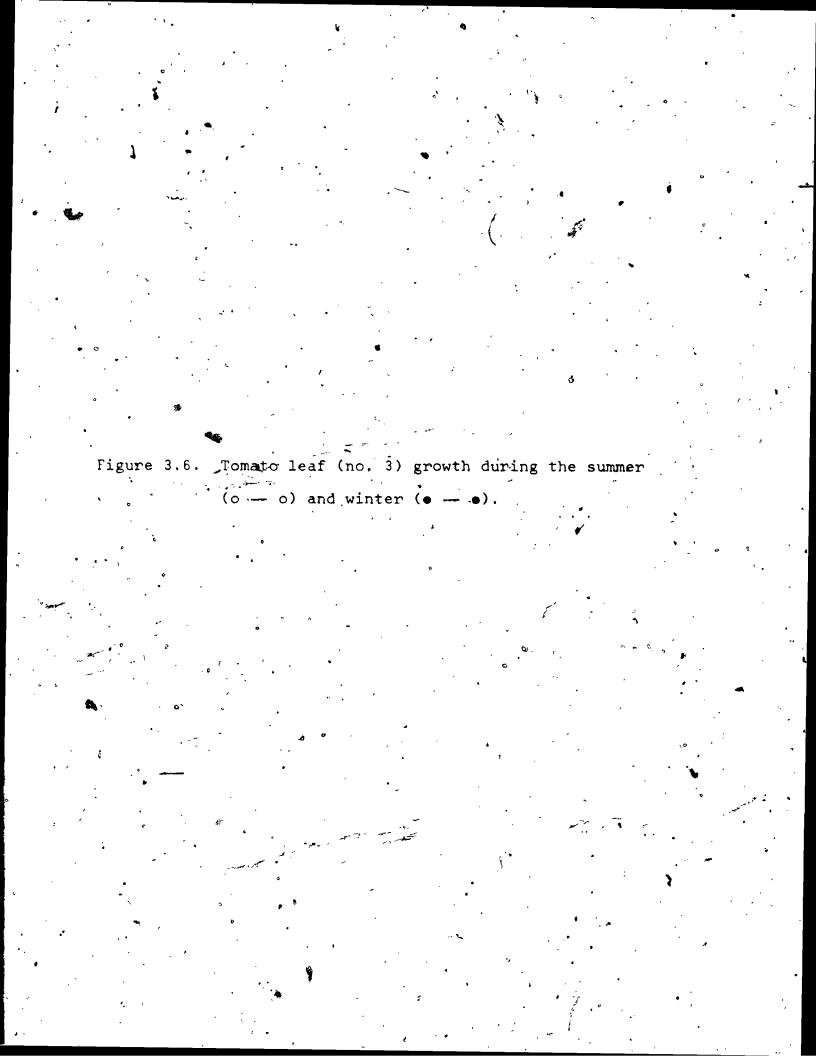
TIN NY 30

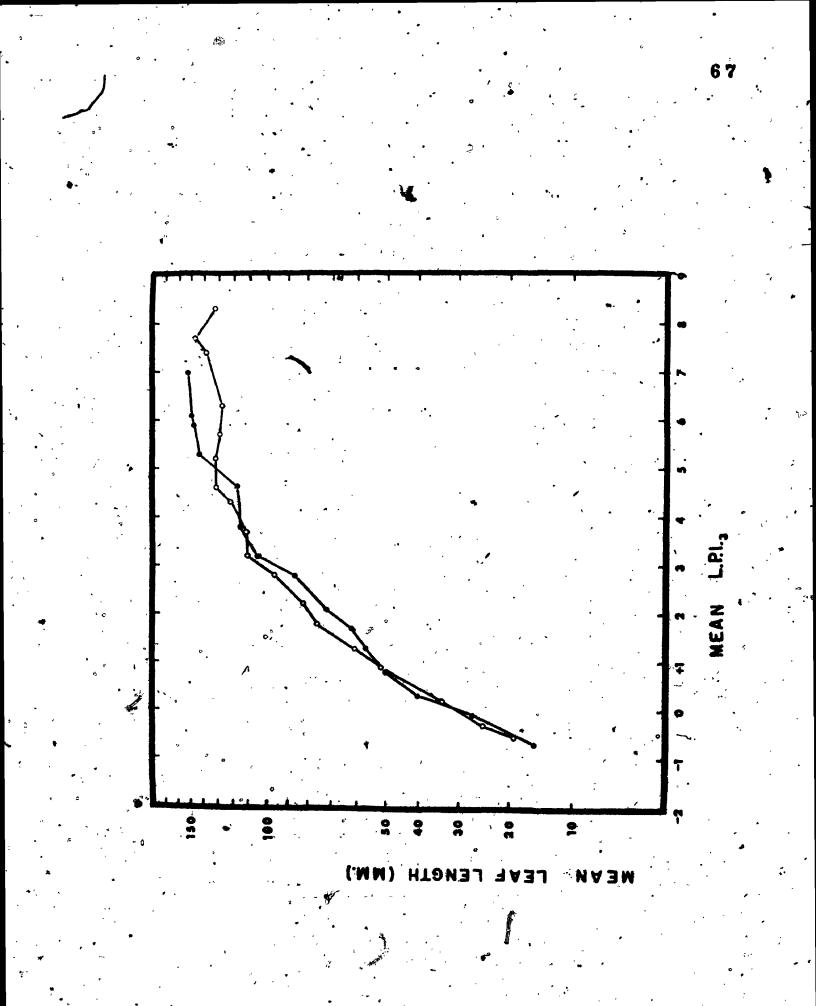
developmental status of the tomato shoots and L.P.I.₃ (Table 3.2). A plot of 50-60 individual lengths sampled at one time during the summer and a separate group sampled during the winter reinforced the validity of the L.P.I. as a useful, constant morphological criterion for evaluating leaf development (Fig. 3.6).

# 3.3.1.3 Growth Features of a Tomato Leaf

As noted previously, leaf three was chosen for a detailed examination we to its mature growth form and its.use in associated regeneration studies. An examination of whole leaf, petiole and rachis (including terminal leaflet no. 3) elongation revealed a basipetal trend in the termination of phase 1-log. growth (Fig. 3.7). While rachis elongation (including the terminal leaflet) ceased at approximately LPI₃ = +2.0, petiole elongation continued until LPI₃ = +4.0. Growth in leaf area was significantly and positively correlated (r = .998) with leaf length.

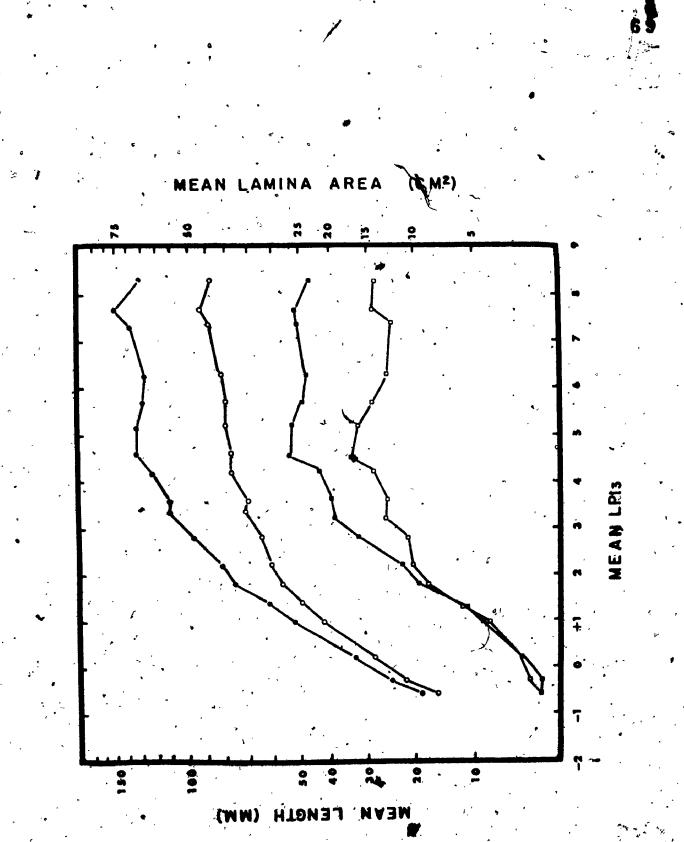
Fresh and dry weights of individual leaves over a  $LPI_3$  range of -1.0 to +7.0 revealed growth curves similar to those of leaf length (Fig. 3.8). At approximately  $LFI_3$  2.5, a declining rate of increase in dry weight relative to fresh weight caused a gradual increase in the fresh/dry weight ratio. This feature became more prominent after entrance of the leaf into mature (phase 2) growth around LPI₂ 4.0.

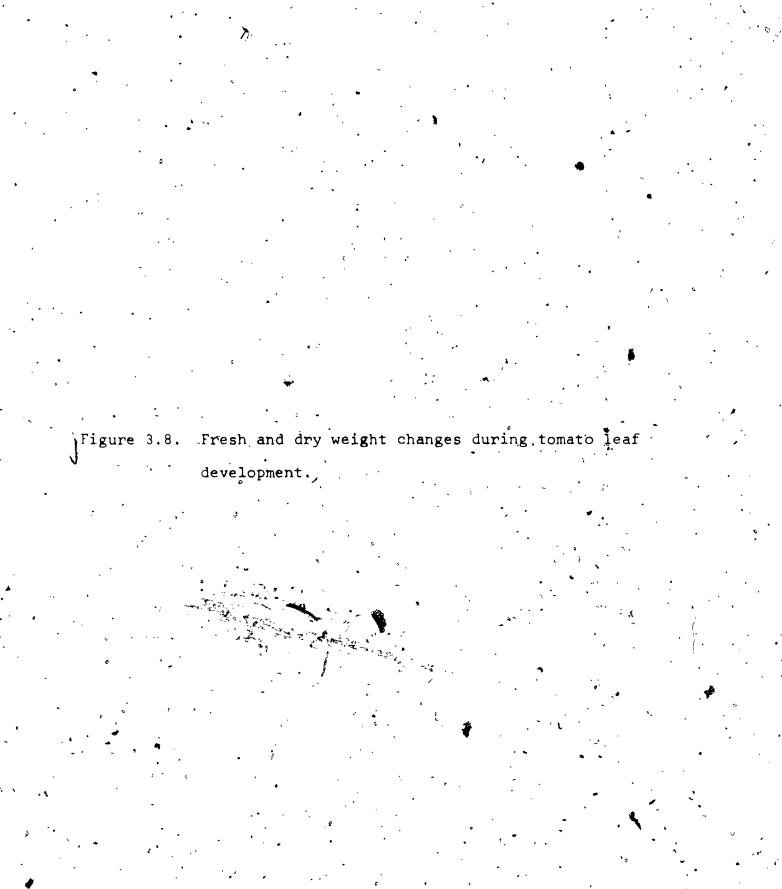

The total soluble carbohydrate fraction appeared to


Table 3.2. Correlation analysis between LPI₃ and different tomato growth parameters.

Growth parameter . Correlative coefficient (r)

* significant at 5% level
*** significant at .1% level


C.





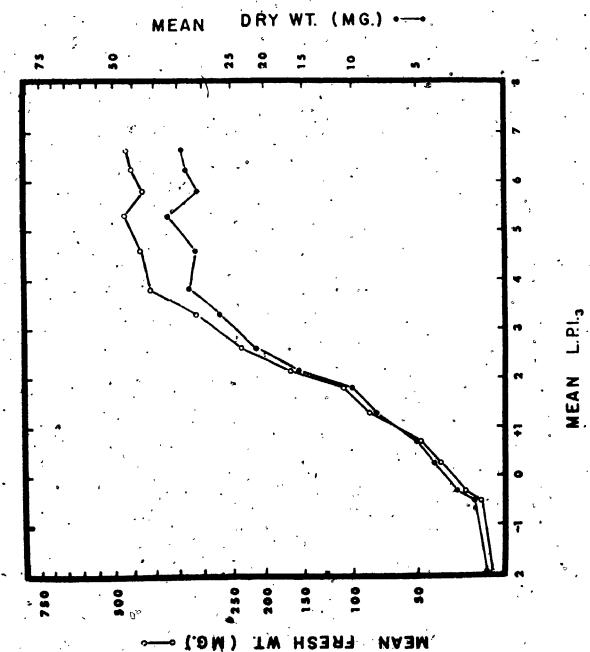


Growth in length and area of the tomato leaf. Closed circles, mean leaf length; open circles, mean length of the rachis (including terminal leaflet no. 3); closed squares, mean peticle length; open squares, mean lamina area.

Figure 3.7.

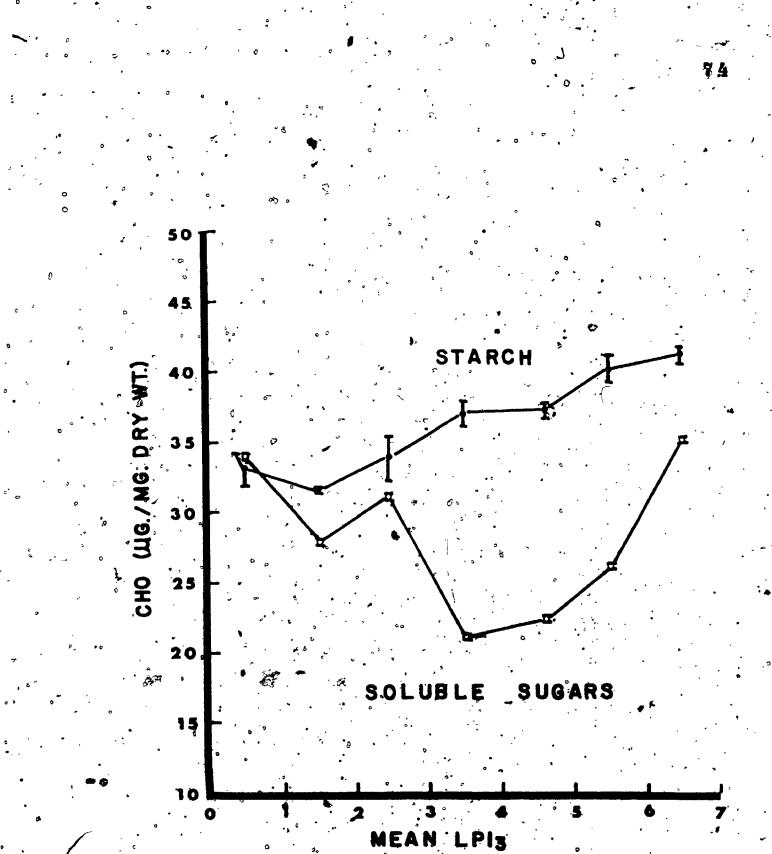


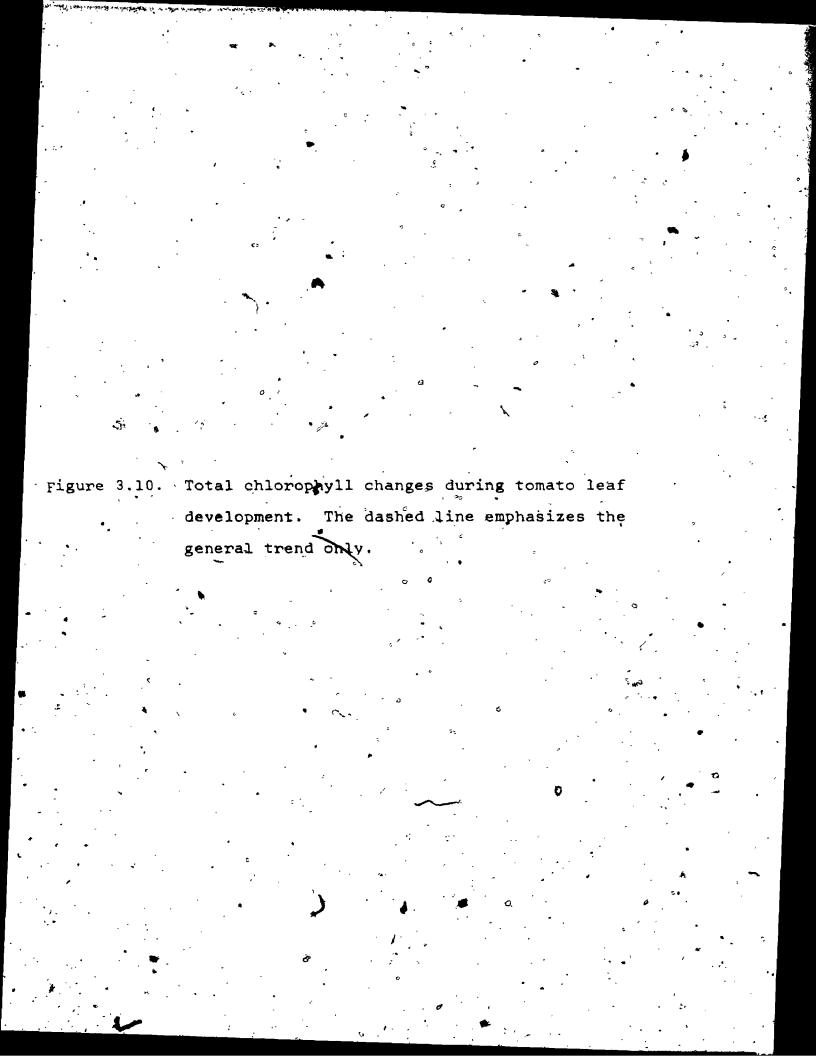


• , • ' , '



×1


decrease slightly until LPI, 2.5 - 3.0 when a noticeabledrop became apparent. This fraction subsequently increased until LPI, 7.0 (Fig. 3.9). Starch content increase steadily over the LPI, range of 0.0 to 7.0. Total chloro-. phyll per leaf increased in a typical exponential fashion until LPI, 4.0 when it reached a plateau (Fig. 3.10). Although there was no indication of breakdown products in the samples (as judged by the absorption values), the chlorophyll a/b ratio remained consistently around .75 to .80 over the entire sample range. The reasons for the low chlorophyll ratio (i.e. .75-.80), which deviated from an expected ratio of 2.5 - 3.0, are unknown. However, subsequent growth and development of the tomato plants over the following 5 week period was severely retarded due to a combination of macronutrient deficiencies (nitrogen and phosphorus) and insecticide (whitefly/aphid) spray damage. Consequently, the low chlorophyll a/b ratio may have been due to the early effects of these factors.


#### 3.3.1.4 Leaflet Growth

Growth in length of leaflets 1, 2 and 3 from the 10 plants originally sampled during January to March 1971 was plotted against LPI₃ (Fig. 3.11). Two features are noteworthy: the individual leaflets demonstrate progressively later growth cycles in a basipetal direction and the final length attained by the individual leaflets is progressively smaller in a basipetal manner. On the basis of palisade

∘72

	a ^t
	•
	•
	د ه ف
	•
-6 ·	°., (
	°
	° _ `
	• , •
	- 9
	, , , , , , , , , , , , , , , , , , ,
۵. ۲	, O
	۰ م
	<b>*</b> • •
	¢ 11.
· · · · · · · · · · · · · · · · · · ·	٥
	• • • • •
	• · ·
	С
	•
	¢
Figure 2.0 Stamph and tatal asluble soulshulate of	; •
Figure 3.9. Starch and total soluble carbohydrate changes	••••
🕴 🕴 during tomato leaf development. Vertical lin	es.
	· · · ·
* ± S.E.	· · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· • ,
	•
	•
	۶ ۶ ۰
	• : • •
	د ډ ^{و ب}
	, <b>o</b> ,
	° 7
	· · ·
	÷ •* •
	۰. م
	۰. ۲
	۰ ۲
	. , .
	v
۰, ۲ ک	
	• • •
	ě
	, , , , , , , , , , , , , , , , , , ,
	0 · · · · · · · · · · · · · · · · · · ·
	0 0





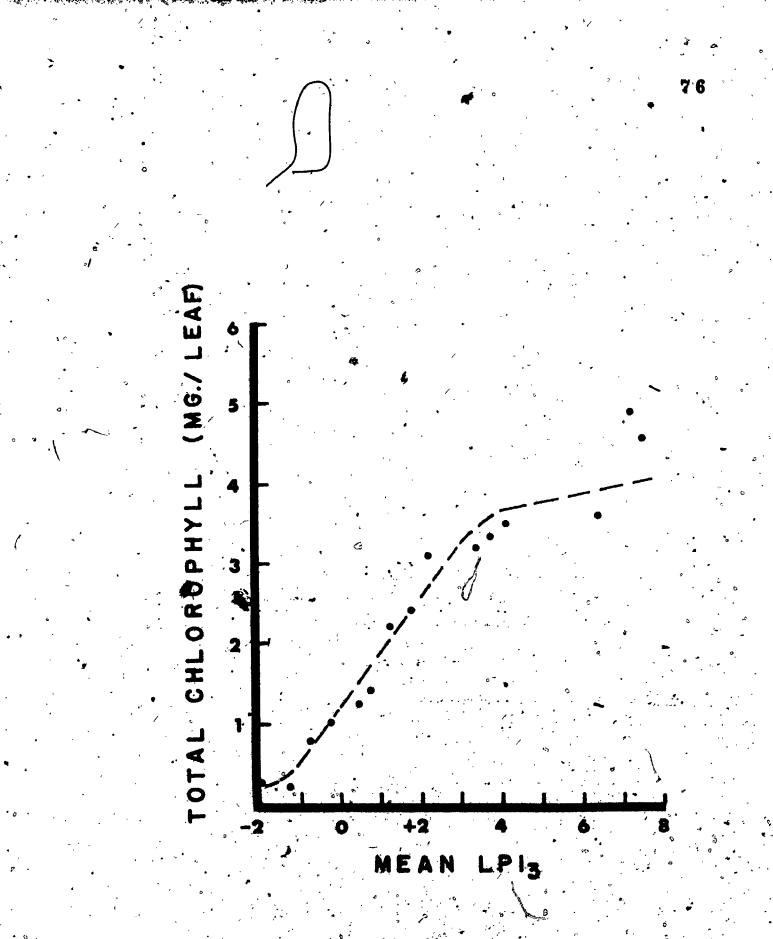
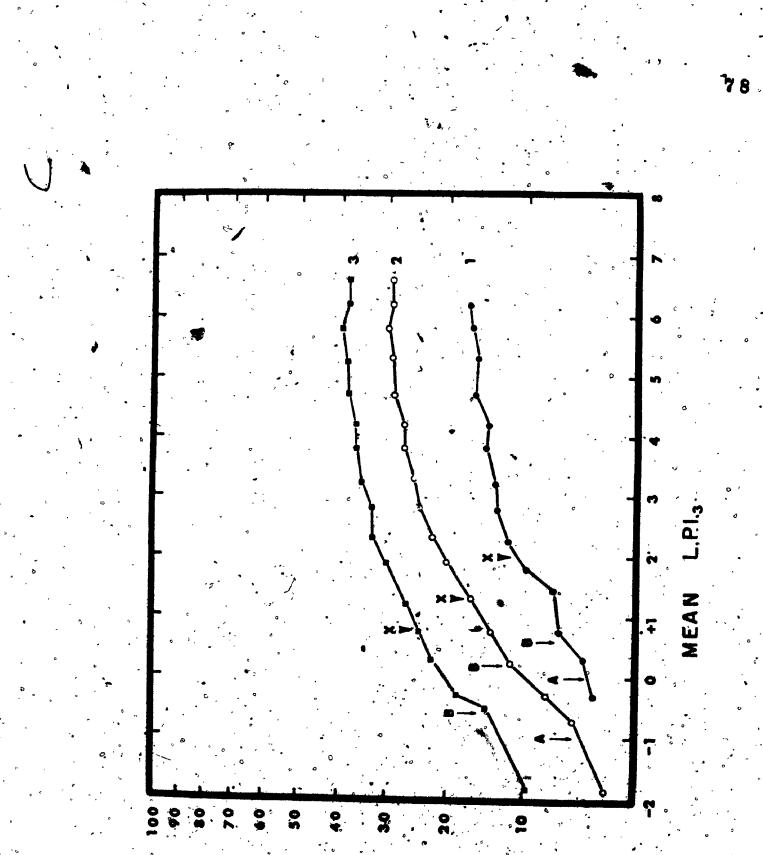




Figure 3.11. Leaflet growth in the tomato leaf. Closed circles, leaflet 1; open circles, leaflet 2; closed squares, leaflet 3. Points on the curves marked 'A' represent the approximate age when mitotic activity ceased in the apical region of the developing lamina. 'B' represents the similar occurrence in the basal region. 'X' represents the stage of final xylem maturation within the minor vein system of the tomato leaflet.



(WW) HIDNET LENGTH (WW)

mesophyll cell areas (cross sectional) and associated blade  $9^9$  areas, the basipetal trend in smallness of the individual leaflets appears to be due to fewer cells at maturity and a smaller cell size (Table 3.3).

Regression analysis of the log. width/length values of the individual leaflets indicated that the rate of increase in leaflet width relative to length for the terminal leaflet was consistently greater (at the 5% level) than the lateral leaflets (Table 3.4).

Regression analysis of the log. lengths for the terminal/lateral leaflets indicated that the relative growth rate of leaflet 3 compared to leaflet 1 was significantly greater (at the 5% level) than leaflet 3 to leaflet 2 (Jable 3.5). Furthermore, the Y-intercept values suggest that the lateral leaflets are initiated during the first 1000 A of growth in length of the terminal leaflet.

### 3.3.2 Ontogenetic Studies

and the first of the second second in the second second second second second second second second second second

### 3.3.2.1 The Adult Leaf

a) Leaf shape - The leaves of the tomato plant are arranged spirally in a 2/5 **physiciancy** and develop in a heteroblastic manner (Plate 3.1;1). In 'Farthest North' the first adult leaf form is encountered in leaf number 3. It appears imparipinnate with 5 asymetrically elliptic leaflets. The terminal (3) leaflet is larger than the lateral ones which are arranged in two sub-opposite pairs on the rachis. The

Leaflet position	LPI ₃	Mean cell area (u ² ) [*]	Estimated cell number (X10 ⁶ )**
l. başal lateral	4.45	640 <b>*</b> •	1.8
<b>,</b>	4.64	675	1.9
	4.88	785 > 644	3.2 2.7
· · · //	5.34	504	4.8
	5.45	614	2.0
2. middle lateral	4.45	718	3.8
	4.64	864	3.5
° O	4.88	796 764	3.9 , 4.0
	5.34	559	5.5
	5,45	882	3.2
3. terminal	4.45	859	5.4
· · · · · · · · · · · · · · · · · · ·	4.64	861-	5.1
· · · · · · · · · · · · · · · · · · ·	4.88	876 863	5.5 7 5.2
o	5.34	914	5.1
	5.45	807	4.7

Table 3.3. Cell areas (cross-sectional) and estimated cell number in the palisade mesophyll tissue of mature leaflets.

Each value calculated from 10 random cell measurements obtained in the middle lamina region of each fixed leaflet.

This value is based on the calculation:

Est. Cell number =  $\frac{\text{area of leaflet } (u^2)}{\text{main area of palisade cell } (u^2)}$ 

and is uncorrected for intercellular spaces or veins.

Table	3.4.	Regression	analysis	of the	log.	width/length
		•		•		•
,		values for	tomato le	eaflets		

Leaflet	Regression		
		Q	Çoefficient
1.	log Y =0091 +	.7388 log X	.7388 ± .0072 ^a
2	$\log Y =0250 +$	7447 log X	.7447 ± .0177 ^a
3	$\log Y =0054 +$	:7935 log X	.7935 ± .0035 ^ª

:

# a = 95% confidence intervals

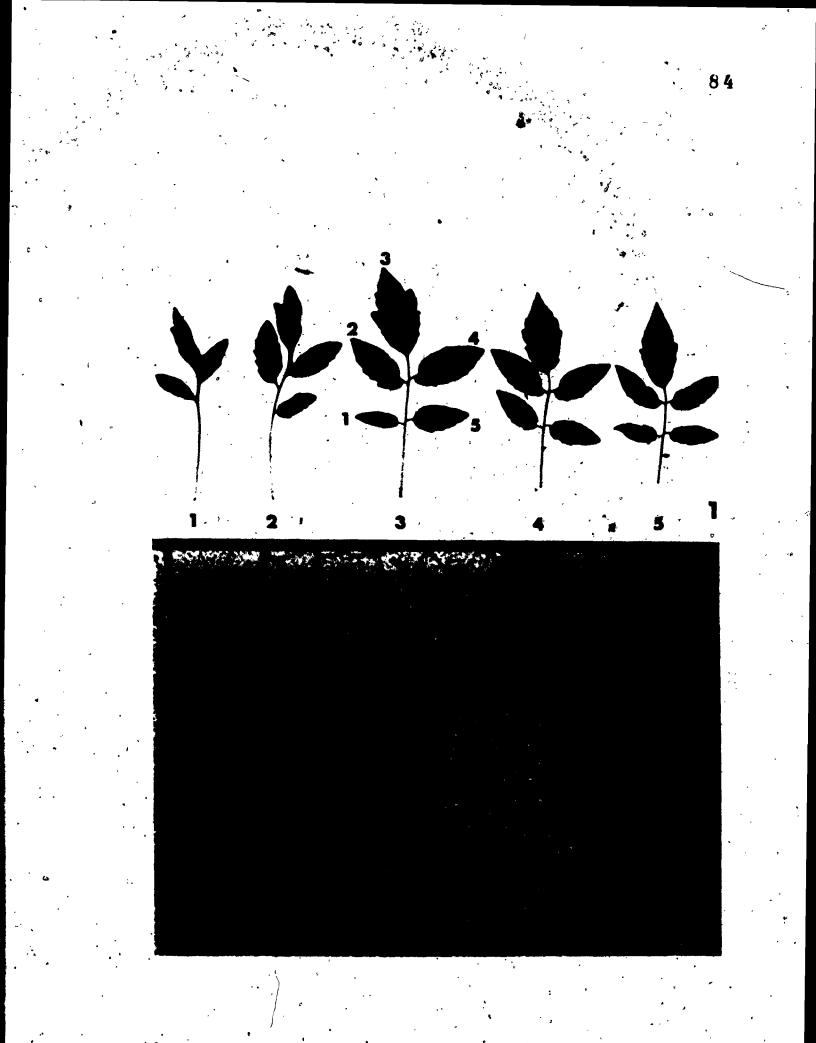
	بر بر بر بر	43 <b>1</b>	•	
		•		82:
	f leaflet Y-intercept	.0189 ± .0219 ^a .0265 ± .0180 ^a		
	t length/latepaf			• •
•	terminal leaflet ler Regression coef	1.4748 ± .0147 ^a 1.1267 ± .0097 ^a		
· · · · · · · · · · · · · · · · · · ·	the log.		60	
	Regression analysis of length for tomato.	log Y = log Y =	confidence intervals	
· · · · · · · · · · · · · · · · · · ·	Table 3.5. I	3/1 3/2		

ст. . Ф

يون مون کار

• ,

•


•

7

-

Plate 3.1. 1. Heteroblastic leaf development in the tomato cultivar 'Farthest North'. Leaves are numbered consecutively from the first true leaf above the cotyledons. Leaflets 1 to 5 of leaf 3 are also numbered. (Approximately 1/3 natural size.)

> 2. Vein types and distribution in a NaOH cleared, mature, tomato leaflet. Numbers refer to vein orders as described in text. (x 200)



leaflets are petiolate with a margin possessing a few rounded crenations or small lobes, irregularly spaced. b) <u>Venation</u> - The venation classification is based upon 2 criteria:

size and distribution of veins relative to the primary vein or mid-rib. The terminology of Hickey (1973) for // menation classification is quite useful for this purpose.
 number, type and arrangement of the tracheary elements within the different vein types.

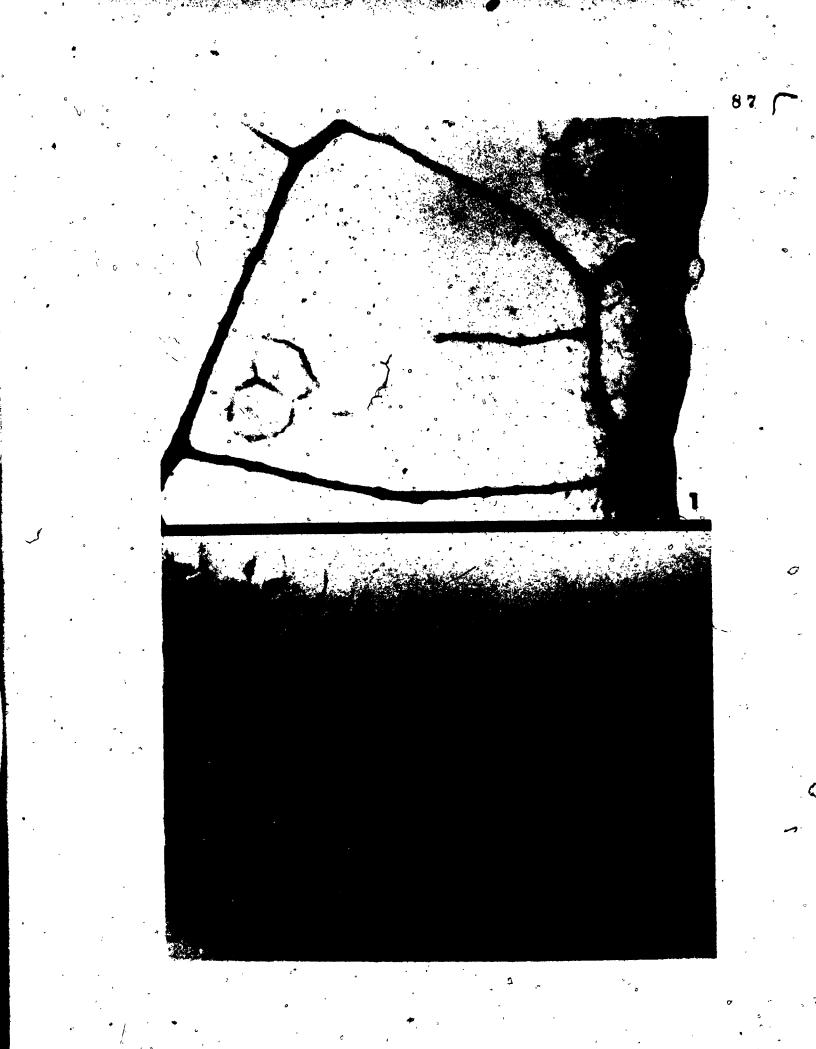
The following venation classification will be used: i) major venation - Tracheary systems composed of multiple vessels which appear early in the ontogeny of the leaf venation (Plate 3.1;2).

a) primary vein or midrib

b) secondary veins

c) intersecondary veins

d) marginal fimbriate vein - although this vein lacks internal phloem (unlike a, b and c), it is included on the basis of tracheary composition, early ontogenetic appearance and continuity with the primary vein (Plate 3.2;1 and 3.2;2).


ii) minor venation - Tracheary systems composed of tracheids / (usually two adjacent strands) which appear relatively late in the ontogeny of the leaf venation (Plate 3.1;2).

a) tertiary veins

b) quaternary veins

c) vein endings or terminal veinlets

Plate 3.2. 1. Cleared tomato leaflet showing mature vessel relements of the marginal fimbriate vein interconnected with the minor vein system. (x 200) 2. Cross section view of marginal fimbriate vein in a mature leaflet (arrow). (x 1280)



The vascular system is pinnate with the main lateral or secondary veins not terminating at the margins but curving acroscopically into a series of loops with adjacent secondaries or their branches (camptodromous venation; Hickey, 1973). The rounded crenations are supplied with branches of the secondary veins where they join a distinct marginal fimbriate vein.

The secondary veins have a moderately acute (45-65°) angle of divergence from the mid-rib which becomes more obtuse in the distal regions of the leaf. A few simple intersecondary (Hickey, 1973) or intermediate veins (Foster, 1950) are evident in the leaflets.

The tertiary veins exhibit an orthogonal reticulate pattern while the quaternary veins (the highest order venation recognized in this material) exhibit an orthogonal course. Terminal veinlets may be simple, branched or nonexistent while the areoles are imperfect, randomly arranged, irregular and small in shape. A survey of 880 areoles revealed that 418 (47.5%) contained vein endings. Chi-Square analysis (Table 3.6) suggests that vein ending formation is probably a-random event and ontogenetic evidence to be presented later supports this concept.

c) <u>General Leaf Histology</u> - The mature leaflets possess a thin lamina with a mesophyll consisting of a well defined columnar palisade layer and three layers of spongy mesophyll. Variations in the number of cell layers were not observed in the greenhouse grown material during the course of this

Table	3.6.	.Chi-Square	analysis	of	vein	ending	frequency	in "
- '	•	mature .toma	to leaves	5.~	۰. د	I	C	

<b>V</b> . Condition	Number 'observed	Number estimated	Chi-Square	Value*
-	• *	9	• /	······································
areoles with	•	- · · ·	• -	۵ .
vein endings	41,8 \``•	440	J.10,	<b>\$</b> 2
areoles without	$\mathbf{X}^{\mathbf{v}}$	•	× ² =	2.2 n.s.
vein endings	⁴ 62 •	440	<b>1</b> •.10	
m	<b>l</b>			
Total	880	• C 2		
é	<u> </u>	, , , , , , , , , , , , , , , , , , ,		- <u> </u>

Not significant at 5% level S 3.0

**,**•

investigation. A gradual decrease in thickness of the mature leaflet lamina is apparent from the base to the apex. This thinning effect is due primarily to a progressive failure of the palisade cells to elongate at right angles relative to the epidermal layers and not to the loss of a particular mesophyll layer.

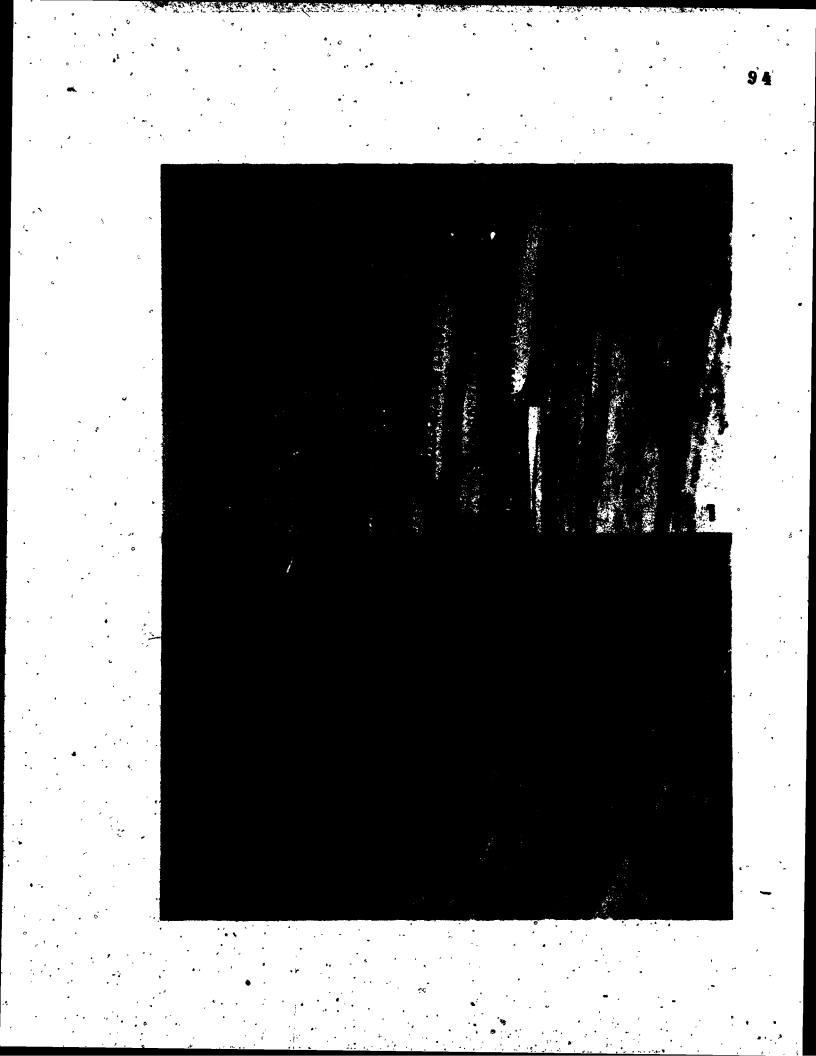
Scattered crystal idioblasts centaining calcium oxalate. crystals (Solereder, 1908) are observed in the upper mesophyll and rarely in the middle spongy layer. They are also apparent in numerous elongated cortical cells of rachis and petiole. Crystal accumulation within these cells begins immediately after cessation of mitotio activity. The leaflet, rachis and petiole are covered with three types of glandular hairs (types I, VI and VII of Luckwill, 1943) and three types of non-glandular ones (types II, III and V).

Stomata of the anomocytic type (formerly Ranunculaceous) occur on both of the adaxial and abaxial leaf surfaces (i.e. amphistomatic) although they appear more frequently on the latter. The guard cells protrude slightly above the adjacent epidermal cells. Using the plastic epidermal imprint method of Williams (1973), no stomatal abnormalities such as the occassional "single guard cells" reported to occur in tomato by Ahmad (1964) were observed. Very rarely, stomata were observed adjoining one another at right angles. In view of my ontogenetic study of tomato stomata (see section 3.3.2.3), it would appear that both stoma mother cell derivatives had pursued an independent, yet similar, developmental course.

The major vascular bundles of the leaf (i.e. the midrib and secondary veins) are bicollateral. The xylem possesses tracheary elements with annular, helical or scalariform thickenings (Plate 3.3). While the primary, secondary and marginal fimbriate' vein xylem is almost exclusively composed of vessel elements with simple perforation plates, the third, fourth and terminal veinlet xylem consists entirely of helically (with some annularly) thickened tracheids. Contrary to Solereder's (1908) comments that the vessels of the Solanaceae possess simple performations: exclusively, the short vessels of the marginal fimbriate vein at the leaflet tips may possess scalariform perforation plates. (Plate 3.15;2).

The internal phloem wentral to the xylem elements consists of sieve tubes, companion cells and phloem parenchyma. Its distribution is limited to the primary and secondary veins. In the former vein type, it fails to develop into the times of the leaflets and stops at the most distal secondary vein.

The more extensive external phloem consisting of the same cell types occurs as discrete bundles separated by parenchyma. Small phloem strands are observed to occasionally interconnect the external phloem bundles laterally in the primary veins. External phloem is associated with the entire vasculature except the extreme tips of the leaflets where the large marginal fimbriate vessels are present.


Isolated lignified fibers are occasionally observed in mature petioles within the external and internal phloem parenchyma. No fibers are observed in the mature leaflets or rachis. Bundle sheaths (often containing abundant starch grains within plastids) are evident surrounding the major and minor veins.

Angular collenchyma is common in the adaxial margins of the petioles and rachis, and is present as a 2-3 cell layer_underlying(a subepidermal chlorenchyma. Small vascular traces containing external phloem and vessels connected with the marginal fimbriate veins of the leaflets are found below the adaxial lateral collenchyma in the rachis and petiole. These traces are interconnected laterally with the main petiolar vasculature by periodic transverse traces (Plate 3.3;1) and subsequently connect with the lateral leaflet traces (Plate 3.3;2). ° -. d) Vein Ending Histology - Virtually all the terminal veinlets of the cultivar 'Farthest North' possess external. phloem and tracheids embedded in the upper spongy mesophyll[®] hayer. The characterization of vein endings as either principal or secondary types according to Fischer (1895, as cited in Pray, 1954) was not applicable in this study due to the heterogeneous nature of the terminal yeinlets. The principal type of yascular tissue arrangement found in the third, fourth, and terminal veins consists of two tracheary.

Plate 3.3. 1. Interconnected vascular strands (arrow) in the rachis of a NaOH cleared mature tomato leaf. Single strands within the rachis margins are directly connected to the marginal fimbriate vein system of the leaflets. (x 200)
2. Junction of basal leaflet xylem with the rachis vasculature in a NaOH cleared tomato leaf. Note the short irregular vessel elements at the junction point. (x 200).

and program a property of State

and a state of the state of the



strands adaxially located relative to the external phloem strand. In general, the external phloem consists of five nucleated parenchyma cells surrounding two sieve tubes (Plate 3.4;1). One of these parenchyma cells, adjacent to a tracheid, may be considered a xylem parenchyma cell while the others are probably phloem parenchyma (Plate 3.4;2) While the phloem parenchyma of the terminal veinlets forms a tight junction at the vein ending with the adjacent sheath parenchyma cell, the terminal tracheid(s) is often observed to extend slightly further around the margin of the adjacent sheath cell (Plate 3.5;1 and 2). The sieve elements in the terminal veinlets often do not extend to the tip of the vein ending; rather, they appear to stop near the end of the terminal phloem parenchyma cells. The positive identification of the sieve elements is based on: (1) lack of nucleus and other cell contents in cells of the mature leaf; (2) narrow diameter and thick primary cell walls; and (3) continuity with sieve elements in the 4^p veins possessing distinct sieve plates in the mature leaf.

A number of aberrations were observed in the phloem and xylem of the minor veins - particularly in relation to the vein endings. These abnormalities included: (1) variation in the number of tracheids (from zero to 3 tracheal strands); and (2) variations in the number of phloem parenchyma. The aberrant xylem development will be discussed further in the section dealing with minor vein ontogeny.

Plate 3.4. 1. Cross section of a mature minor vein showing a common vascular arrangement. T, tracheid; VP, vascular parenchyma; S, sieve tube element; SP, sheath parenchyma. (x 2458)

2. Cross section of a mature minor vein
 junction. (x 2048)



Plate 3.5. 1. Mature minor vein ending in a FPA cleared

leaflet focused at the level of the external
phloem showing "tight" junctions (arrow) with
the adjoining bundle sheath cells. C.I.,
crystal idioblast cell. (x 800)
2. Similar to 1, except focused at the xylem.

level. (x 800)





## 3.3.2.2 Leaf Initiation and Early Primordium Development

The leaf primordium is initiated as a small protruberance from the outermost 2 to 3 cell layers of the shoot apex flank. More specifically, the initiation process involves anticlinal divisions in the outermost layer of the two layered tunica with periclinal divisions in the inner tunica layer and adjacent corpus cells giving rise to the internal portion of the leaf primordium. Similar features have been observed in the tomato cultivar 'Marglobe' (Bedesem, 1958) and in numerous other studies of dicot leaf initiation (Popham, 1966). Fluctuations in the number of tunica layers during the different stages of leaf initiation and development were not observed in my material.

During the initial growth phase of the leaf primordium, a distinct meristematic cell or group of cells (i.e. an apical meristem) in the epidermal and subepidermal apical region of the leaf primordium was not observed. Rather, growth of the primordium is accompanied by diffuse cell division throughout the developing organ (i.e. an intercalary meristem). (Plate 3.6;1). When the primordium is between 20 to 40 M high, conspicuous enlargement and vacuolation of the epidermal and cortical cells on the abaxial side become apparent. Large multicellular hairs (type I of Luckwill, 1943) begin to differentiate from the developing epidermis in the leaf tip region at this stage. The remaining types of epidermal hairs subsequently differentiate from the developing epidermis in an Plate 3.6.

۳. .

Œ

 Median longitudinal section of a tomato leaf primordium approximately 20 µ high. (x 1056).
 Median longitudinal section of a leaf primordium approximately 50 µ high. Note/the acropetally differentiating procambial strand in the primordium base (arrow). (x 1056)

Ċ,



essentially basipetal manner.

# 3.3.2.3 Marginal Growth and Lamina Differentiation

When the peg-like primordium reaches approximately 200 u in height, a number of diverse events begin to occur. The adaxial meristem becomes apparent in the basal region of the primordium where it increases the radial thickness of the developing petiole by a series of periclinal divisions and the subsequent enlargement of the derivatives. On the abaxial surface, apparently random periclinal divisions in the vacuolating epidermal layer give rise to the different types of glandular and non-glandular epidermal hairs. Simultaneously with these events, marginal growth of the lamina begins.

Initial marginal growth in a tomato leaf primordium can be recognized in transverse sections by the appearance of the marginal and submarginal initials on the adaxial flanks of the young primordium (Plate 3.7;1,2). The initial marginal growth is localized on both sides of the distal leaf region where it will develop into the terminal leaflet (#3) lamina. The most distal lateral leaflet is also initiated at this time from adaxially located marginal and submarginal initials. Subsequent marginal meristem development in the lateral leaflets proceeds in a similar manner and at a comparable phase in their development.

In cross sectional views of the developing leaflets, it is apparent that the marginal initials give rise to the Plate 3.7. 1. Cross sectional view of a basal lobe of the terminal leaflet showing the early development of the six lamina cell layers (arrows). Leaf 3 is approximately 250 µ high at this stage: (x 800)

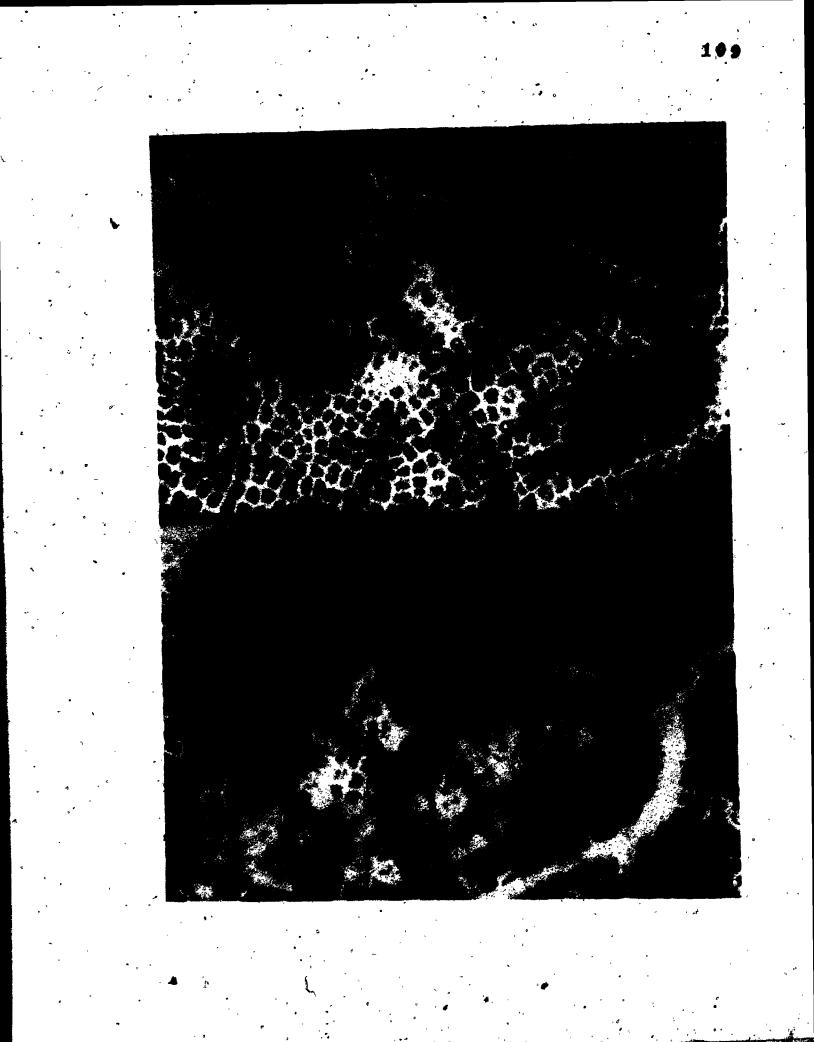
2. Slightly later stage of 3.7; I showing the development of a 2° vein procambium (arrow) from the upper spongy layer. The procambium develops in continuity with the mid rib. (x 1280)



abaxial and adaxial protoderm layers which perpetuate themselves by diffuse anticlinal divisions. In the present study, 4 cell layers can be consistently recognized in the mesophyll with their production following the middle type of marginal growth as described by Hara'(1957). Once initiated by the submarginal initials, the four mesophyll cell layers continue to develop by means of anticlinal divisions and cell expansion throughout the lamina (i.e. by means of plate meristem activity). A clear delineation between the marginal and submarginal initials of the marginal meristem and the plate meristem is, at best, indirect when interpreted on the basis of cell wall positions from essentially static cross sections of fixed leaf material. Similar conclusions have already been drawn with regard to the concept of early apical growth of the tomato leaf primordia due to apical and subapical initials (see section 3.3.2.2). Further comments on this dilemma which presently faces the developmental botanist will be found in the discussion.

Marginal growth ceases in the developing leaflets with the formation of the marginal fimbriate vein procambium which develops basipetally and continuously within both margins of the lamina and joins with the derivatives of the secondary vein procambial strands. Further growth in area of the lamina is due to diffuse cell division and enlargement in the plate meristem.

While initial observations of the mitotic activity


within the developing palisade and upper spongy layers would suggest a diffuse and random pattern, a closer inspection reveals a distinct relationship between the developing procambium reticulum of the minor veins and the planes of division in the previously mentioned two mesophyll layers (Plate 3.8;1,2). As indicated in Plate 3.8 cell division planes within the plate meristem are invariably at right angles or perpendicular to the developing minor veins. Further comments will be made on this observation in the section on minor venation development.

An examination of over one hundred FPA cleared leaves revealed that mitotic activity in the lamina of the most basal leaflet ceases around LPI, = +1.0 with the cessation sequence: lower epidermis -> lower spongy mesophyll -> middle spongy -> upper spongy -> upper epidermis -> 🐺 palisade mesophyll (Fig. 3.11). However, isolated mitotic divisions are still evident in the lower epidermis (as well as in the upper epidermis although to a lesser extent) after mitotic cessation in the palisade. These late divisions in the epidermal tissue appear to be associated with the last forming stomata. The lower spongy mesophyll has highly vacuolated cells and prominent air spaces at this stage while surrounding epidermal cells are developing irregular borders with mature stomata already present. Furthermore, the last glandular and non-glandular hairs to be formed have nearly completed their development.

As mentioned previously, the tomato leaf is

Plate 3.8. 1. NaOH cleared immature leaflet focused at the level of the developing palisade layer. Note the distinctive cell division patterns (arróws) . within the plate meristem. (x 800)

> Same. Focused at the level of the developing upper spongy layer. Note the relationship between the developing procambial strands (arrows) and the planes of division in the adjacent plate meristem. (x 800)



amphistomatous with stomatal development proceeding more . rapidly on the abaxial than on the adaxial surface. Stomatal ontogeny is very similar to that described for tobacco (Esau, 1965a) and proceeds in a basipetal direction within the developing leaf epidermis. Early forming stomatal complexes at the stoma mother cell stage are closely associated with the formation of intercellular spaces within the underlying mesophyll, During leaf development various stomatal stages are often observed in close proximity to one another (Plate 3.9;1). Maturing leaves periodically exhibit guttation droplets associated with the leaflet tips and crenations. Large stomata with underlying cavities adjoining the abundant accumulations of marginal fimbriate vessels are observed in these regions (Plate 3.9;2) and may serve the function of unspecialized hydathodes (Esau, 1965a).

## 3.3.2.4 Development of the Major Venation

When the leaf primordium attains a height of approximately 50 u, procambial cells of the incipient primary vein are detected in the base of the primordium (Plate 3.6;2). Differentiation proceeds acropetally and apparently continuously from cambial tissue in the stem and reaches the leaf apex when the primordium is 200 to 300 u in length (Plate 3.10;1,2).

External phloem differentiates acropetally from the procambial strand and is present in the base of 200 u high

110

Plate 3.9. 1. Stomatal cell ontogeny in the lower epidermis

of a FPA cleared tomato leaflet. Various ontogenetic stages from the stoma mother cell to a mature stoma are pointed out with arrows. (x 800)

2. Stomatal cavity (arrow) adjacent to marginal xylem vessel elements at the FPA cleared tip of leaflet 3. (x 800)



Plate 3.10. 1. Tip region of leaflet 3 showing the developing procambial strand of the mid rib (arrow). (x 1056)
2. Slightly lower than 1. Note the developing mid rib and secondary vein procambium (arrows). (x 1056)



primordia (Plate 3.12;1). The sieve elements, companion cells and associated parenchyma appear to differentiate in a continuous manner towards the leaf apex. The presence of anisolated stem locus of phloem differentiation (cf. Jacobs and Morrow, 1967) cannot be ruled out as a detailed study was not made of this aspect. As will be noted below, however, an isolated xylem locus within the stem is characteristic of this variety. The phloem leaf traces exhibit considerable complexity in the stem when viewed in FPA cleared material. This is particularly true in the hypocotyl regions immediately below the insertion points of the cotyledons where abundant lateral interconnections (literally a "phloem bundle reticulum") are observed among the internal phloem leaf traces (Plate 3.11;1,2).

Xylem vessel elements begin to differentiate in the base of the terminal leaflet when the leaf primordium is approximately 220 µ in height (Plate 3.12;2). Subsequent differentiation takes place basipetally and, to a lesser extent, acropetally. At the 250 µ stage, an isolated stem locus of xylem differentiation can be observed adjacent to the pre-existing leaf traces (Plate 3.13;1,2). Subsequent differentiation at this locus takes place in both directions as well; however, the stem leaf traces are the first to join in the apical region of the shoot when the leaf primordia is 300-340 µ high. Following this junction, xylem elements differentiate basipetally from the stem locus and join with differentiating tracheary elements of an older leaf trace. P. Cleared region of tomato seedling hypocotyl showing extensive phloem bundle reticulum. Phloem branch point at arrow. (x 200)
2. Close up of the Phloem branch point pointed out in 1, showing the nucleated sieve tubes and adjacent phloem parenchyma. (x 960)

Plate 3.11.



Plate 3.12. 1. Basé of leaf 3 petiole showing the initial development of the median external phloem strand (arrow) which will develop acropetally into the terminal leaflet. (x 1056)

Later stage showing a single median vessel element strand and initiating internal phloem strand (arrow). Note the well
developing external phloem strands. Leaf 3 is approximately 1200 µ high. (x 800)

ن ز

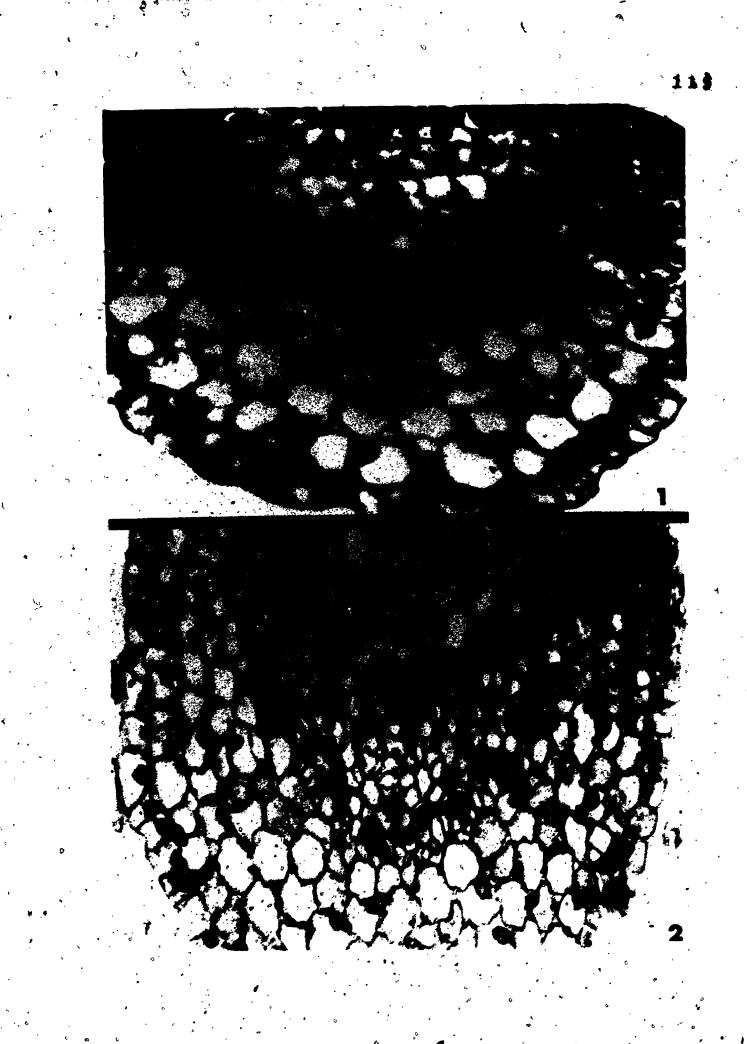
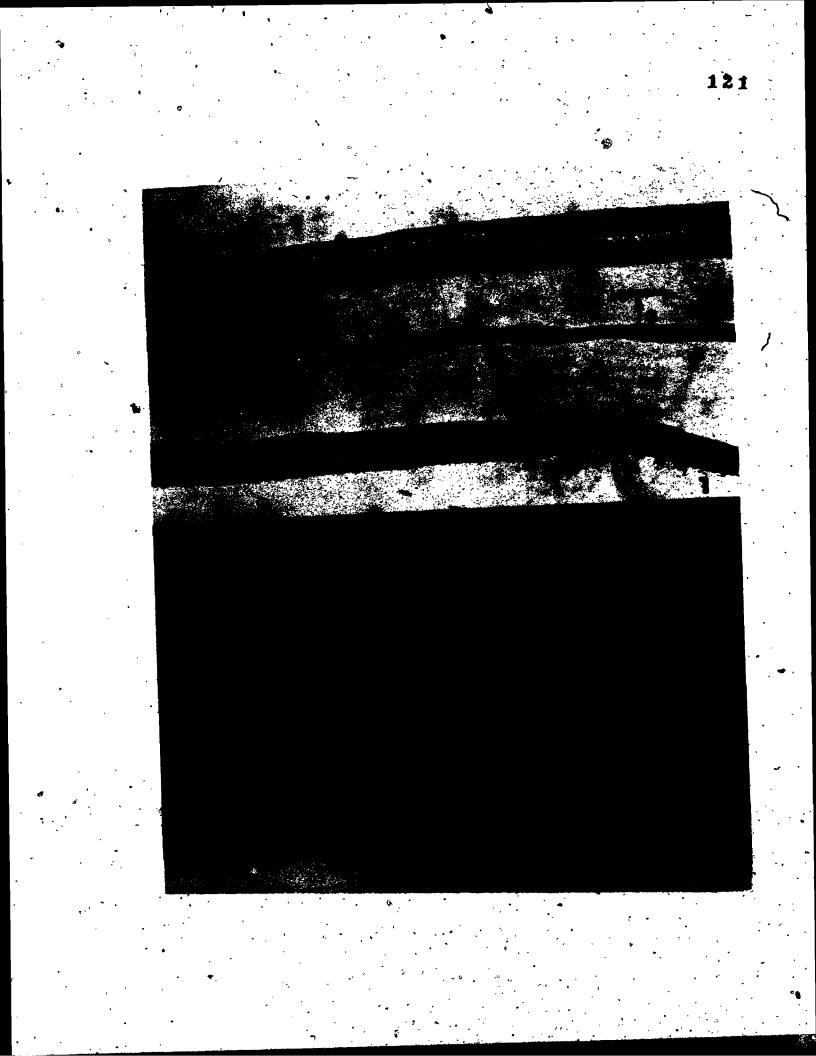
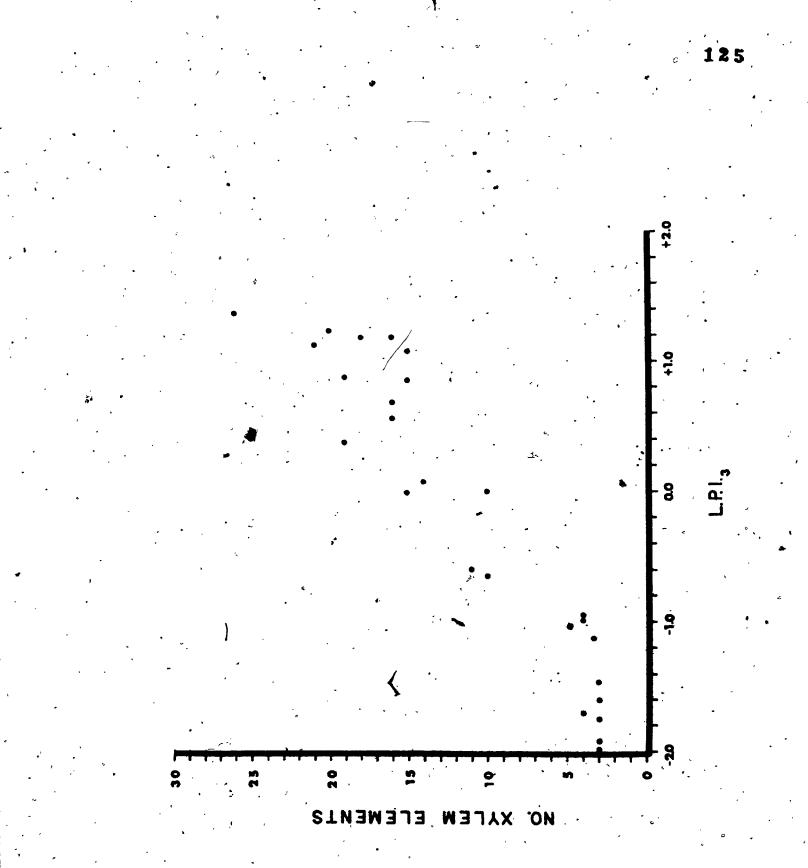




Plate 3.13. 1. Cleared hypocotyl of a tomato seedling showing the isolated stem xylem initiation site of leaf 3 (arrow). Probable initiation site of leaf 2 is also marked. (x 200) 2. Close up of the xylem initiation site for leaf 3

showing the typical vessel member morphology marking the acropetal end of an incomplete

vessel. (x 800)




The differentiating tracheary elements of the older traces within the seedling hypocotyl are themselves discontinuous in their development towards acropetally differentiating xylem from the root. While the leaf/stem locii situation is evident in leaves 2 to 6, leaf 1 may exhibit a variation the first isolated xylem locus is often within the stem adjacent to one of the developing cotyledonary traces. Subsequent development is adropetal and continuous into the leaf. Simultaneously, the xylem develops basipetally and joins one of the mid-rib xylem into the tip of the terminal leaflet is achieved by the time the primordium is 360-400 A in height.

The lateral leaflets subsequently initiate xylem in the basal mid-rib region which then joins the developing tracheary elements within the rachis. However, subsequent acropetal maturation in the leaflet is discontinuous, unlike that found in the terminal leaflet. The mid-rib xylem strands from the two sub-opposite leaflets (#2 and 4) subtending the terminal leaflet develop basipetally where they join with acropetally developing stem loci. The stem loci in turn join with the older, yet still developing leaf traces. However, in leaf 1, the lateral leaf traces are derived from the major secondaries which develop into the basal lobes of the lamina. The presence of the three major xylem traces gives the tomato leaf node its typical trilacunar appearance. Xylem vessel development at the base of the petiole is positively correlated (r = 90.7; significant at the 5% level) with the developmental status of the leaf (Fig. 3.12).

Secondary vein procambium in the terminal leaflet is apparent in 250  $\mathbf{A}$  long leaf primordia and develops in a continuously acropetal manner from the mid-rib procambium. All the secondary veins are outlined by procambial strands before the leaf is 400  $\mathbf{u}$  in length (Plate 3.14;1). The procambium of the secondary veins originates from the developing upper spongy layer with the middle spongy layer contributing cells to the abaxial surface of the bundle sheath (Plate 3.7;2).

Simultaneously with secondary vein procambium development, external phloem progresses acropetally into the distal region of the leaf where it will develop into the secondary veins. This process of phloem differentiation proceeds in successive secondaries in a basipetal sequence and precedes secondary vein xylem development. The various external phloem cells develop in a continuous sequence with no apparent disjunct differentiaion.

Internal phloem develops in an apparently continuous manner from the internal phloem strands of the older leaf traces and is present in leaf primordia 550-700. M long (Plate 3.12;2). It appears to terminate its acropetal differentiation at the junction of the most distal secondary veins. Internal phloem proceeds to develop acropetally in successive secondaries in a basipetal sequence. Figure 3.12. Number of xylem vessel elements within the tomato petiole as a function of LPI3.



•

Plate 3.14. 1. Progressive and continuous development of the procambial cells of the 2° veins and their derivatives (arrows) from the upper spongy mesophyll layer. (x 800)

> 2. Later stage than 1 showing the isolated vessel element development of the marginal fimbriate vein (arrow). Examples of discontinuous tracheid maturation in the minor veins are also evident. (x 200)



The first mature xylem elements appear in the distal secondaries of the terminal leaflets when the entire leaf, is approximately 450-550 µ long (Plate 3.15;1,2). Irregular maturation of the tracheary elements is consistently observed in the secondary veins (Plate 3.16;1,2). The basipetally differentiating marginal fimbriate vein xylem is also discontinuous (Plates 3.14;2 and 3.16;1). It often develops in an isolated manner at the junctions of 2° vein derivatives within the crenations. Subsequent xylem differentiation in the marginal fimbriate veins is essentially basipetal (Plates 3.16;1 and 3.17;1,2) and its development is in close continuity with the minor vein xylem.

## 3.3.2.5 Development of the Minor Venation

Minor vein procambium differentiates progressively from the plate meristem and is restricted in origin to the upper mesophyll layer. Initially the earliest occurring procambial strands are formed through a series of periclinal and anticlinal divisions in the distal part of the terminal leaflet, and later, in successive intercostal areas in a basipetal sequence (Plate 3.18;1,2). Similar basipetal sequences are found in the lateral leaflets during later, yet comparable, stages of development.

During the leaf's early increase in area, the minor vein reticulum expands by elongation and is accompanied by occasional transverse divisions of the procambial cells. Some discontinuities were observed in the progression of the Plate 3.15. 1. Initial stages in the development of the marginal fimbriate vein xylem at the tip of the terminal leaflet. (x 200) 2. Close up of the vessel elements at the leaflet tip. Note the apparent scalariform perforation plate at arrow. (x 800)

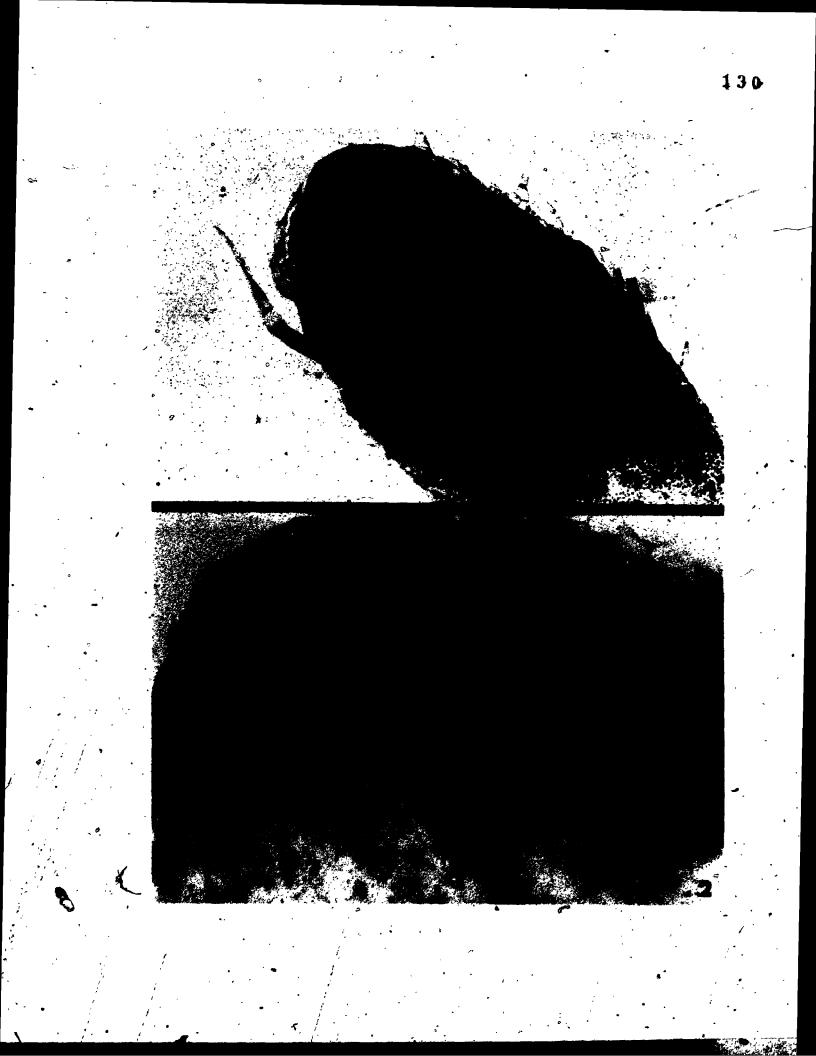
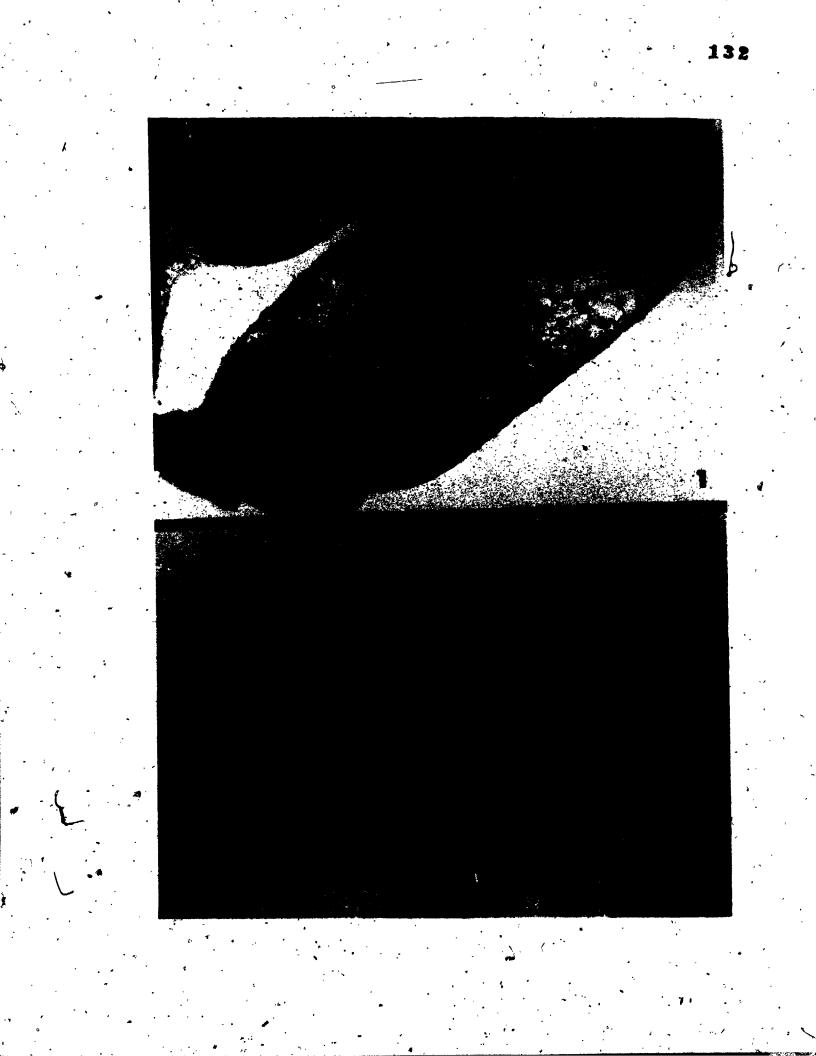




Plate 3.16. 1. NaON cleared preparation of an immature basal leaflet showing basipetal maturation of the major and minor xylem systems. Discontinuities in the marginal fimbriate vein xylem are noted. by arrows. (x 50)
2. Basipetal and discontinuous maturation of the

mid rib and 2° vein xylem in an immature.



 Immature tip of leaflet 3 (NaOH cleared) showing irregular maturation of the minor vein xylem and its relationship with the marginal fimbriate xylem. (x 200)
 Immature margin near the tip of leaflet 3 (FPA cleared) showing the nucleated vessel element with perforation plate (arrow at left). Note the failure of the external phloem strand (arrow) to develop into the extreme leaflet tip (towards the bottom of the plate). (x 800)

Plate 3.17.

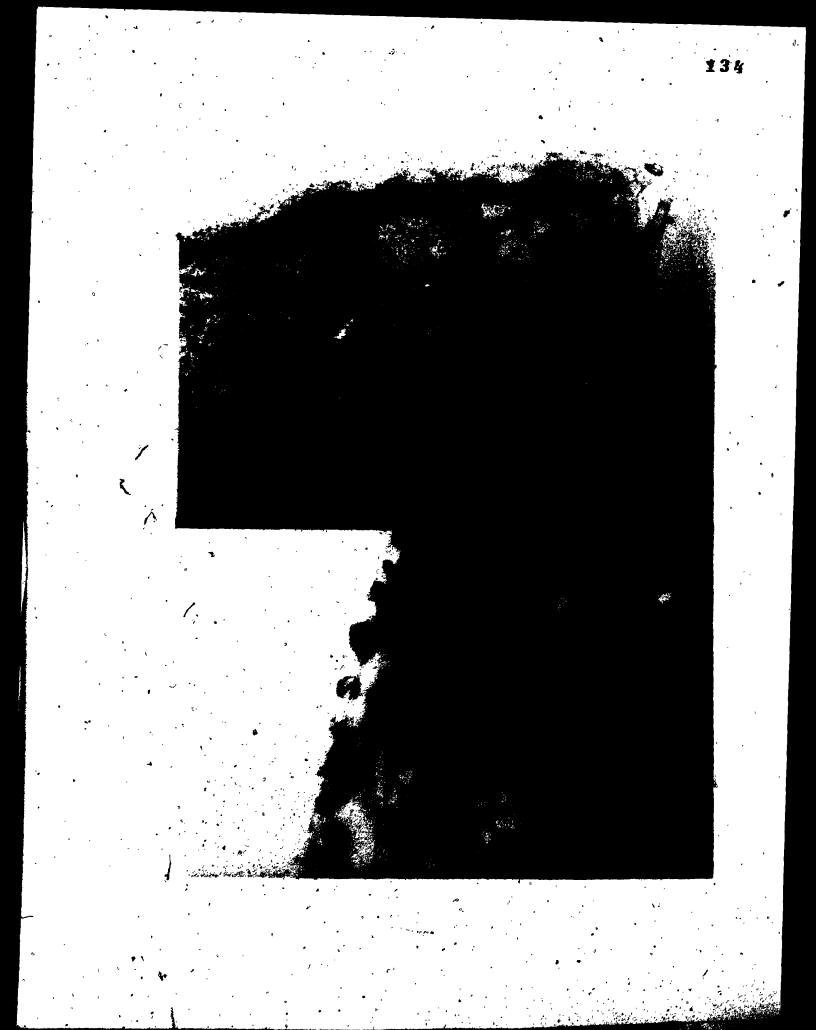
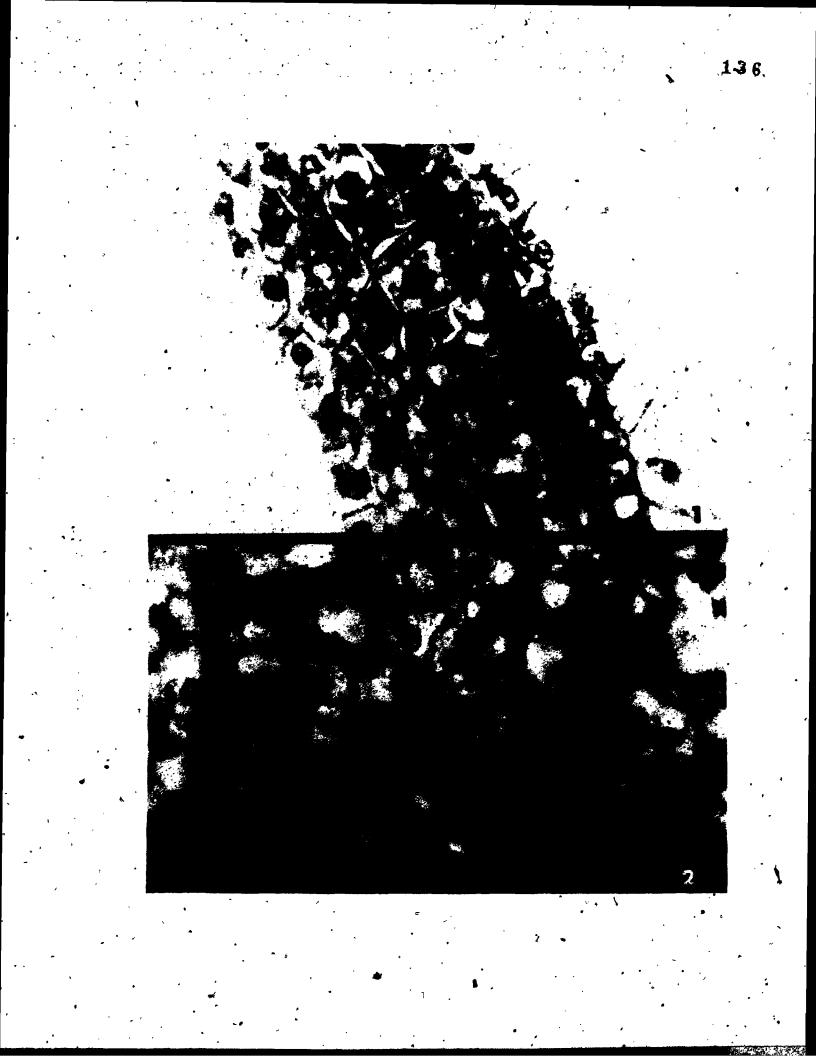




Plate 3.18. 1. Early stages in minor vein development from the upper spongy mesophyll layer as viewed in cross-section. The numbers on the plates refer to the ontogenetic stages defined by Figure 3.17. (x 1280)

2. Progressive development of a vein ending as viewed in a FPA cleared leaf preparation. Arrow marks the end cell which is undergoing a paradermal division into stage 5 or 6. (x 1056)



procambial tissue through its developmental sequences. Generally, these discontinuities involved apparently precocious, yet essentially normal, mitotic activity at the intersections of minor veins (Plates 3.19;1,2 and 3.20;1,2). Vein ending formation is essentially unpredictable, due to its random nature. In general, however, most if not all developing procambium tissue within clearly defined areoles will become terminal veinlets i.e. late forming procambial strands developing progressively towards a relatively mature minor vein. A few of the variations in development of the procambial network as viewed in paradermal sections are outlined in Figure's 3.13 to 3.16. Elongated plate meristem cells in continuity with developing procambial strands are outlined. bv stippling. These cells are interpreted as potential procambial cells or "extension cells" sensu Hara (1962).

As the figures indicate, minor vein development is progressive with areole formation following 2 distinct patterns:

a) areole formation due to progressive development of a procambial strand (at right angles to the existing strand) and across an earlier formed areole (or "areole precursor") (Figures 3,13A, 3.13B, 3.14A, 3.14B and 3.15A).

b) Areole formation due to multiple procambial strand linkage within an earlier formed areole (Figures 3.15B, 3.16A and 3.16B). This type of areole formation follows from the near simultaneous development of a number of pro-.

External phloem initiation in the minor vein reticulum.

Plate 3.19. 1. Stages 6 and 7 in minor vein development as viewed in FPA cleared leaf material. (x 1056)
2. Similar to 1. Note the pair of transverse divisions in the minor vein procambium strand giving rise to stage 7. (x 1056)



. 

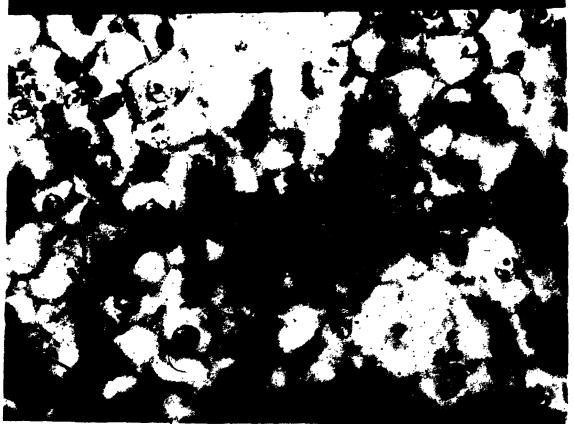
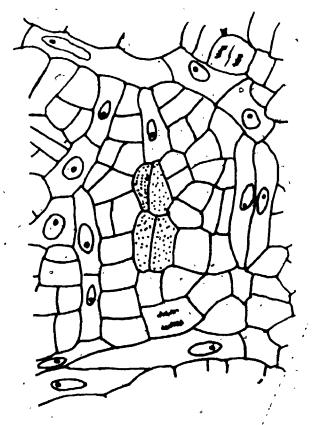




Plate 3.20. 1. Stages 10 and 11 in minor, vein development as viewed in FPA cleared leaf material. (x 1056). 2. Similar to 1. Note the formation of intercellular air spaces within the adjacent spongy * mesophyll. (x 1056)

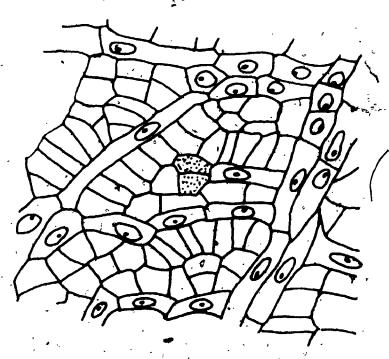


Figure 3.13; A and B. Progressive formation of minor veins within the developing leaf lamina and viewed in paradermal section. These figures are 'derived from tracings of photographic prints. Potential procambial cells or "extension cells" are outlined by stippling while procambial cells are nucleated. Note the presence of only one or two plate meristem_cells between the developing procambial strands as well as the typical bisertate origins of the minor vein procambium. (Fig. 3:13;A, x 1056; ' .Fig. 3,13;B, x 960).

143



4 j 6



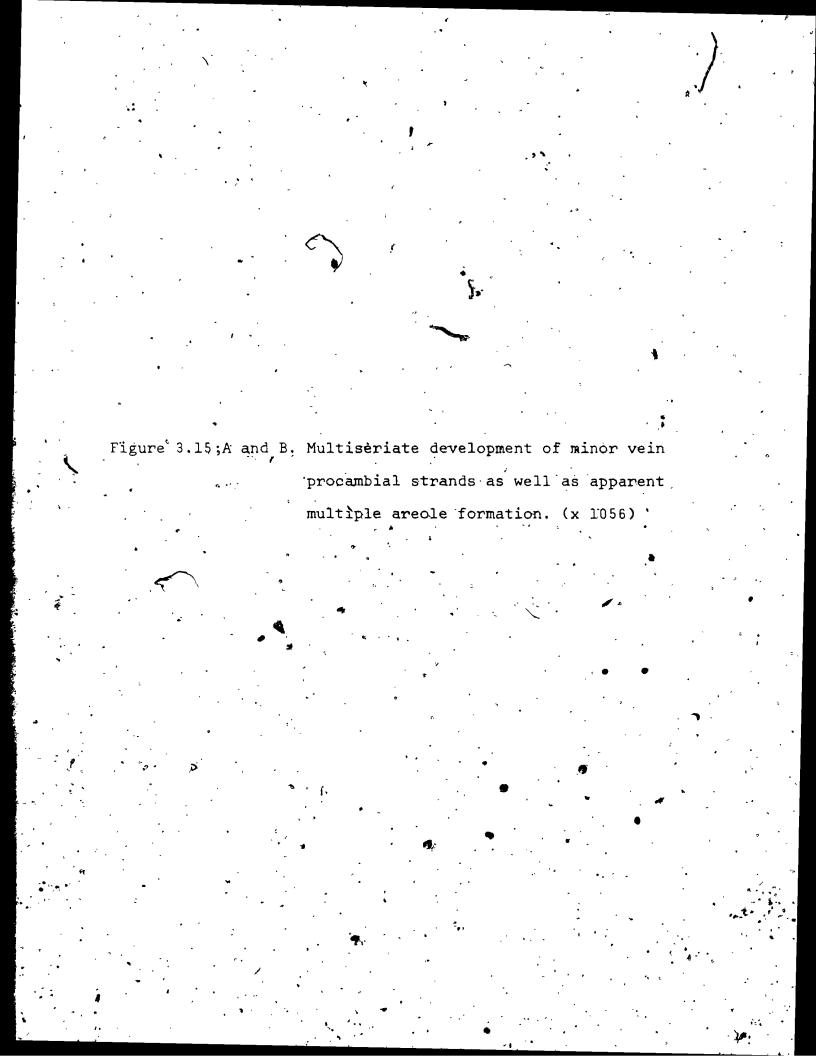



Figure 3.14;A, and B. Further examples of the progressive formation of minor veins within the developing tomato leaf lamina. Note the apparent extension cell interconnections between developing procambial strands in Figure 3.14;B

(x 1056)





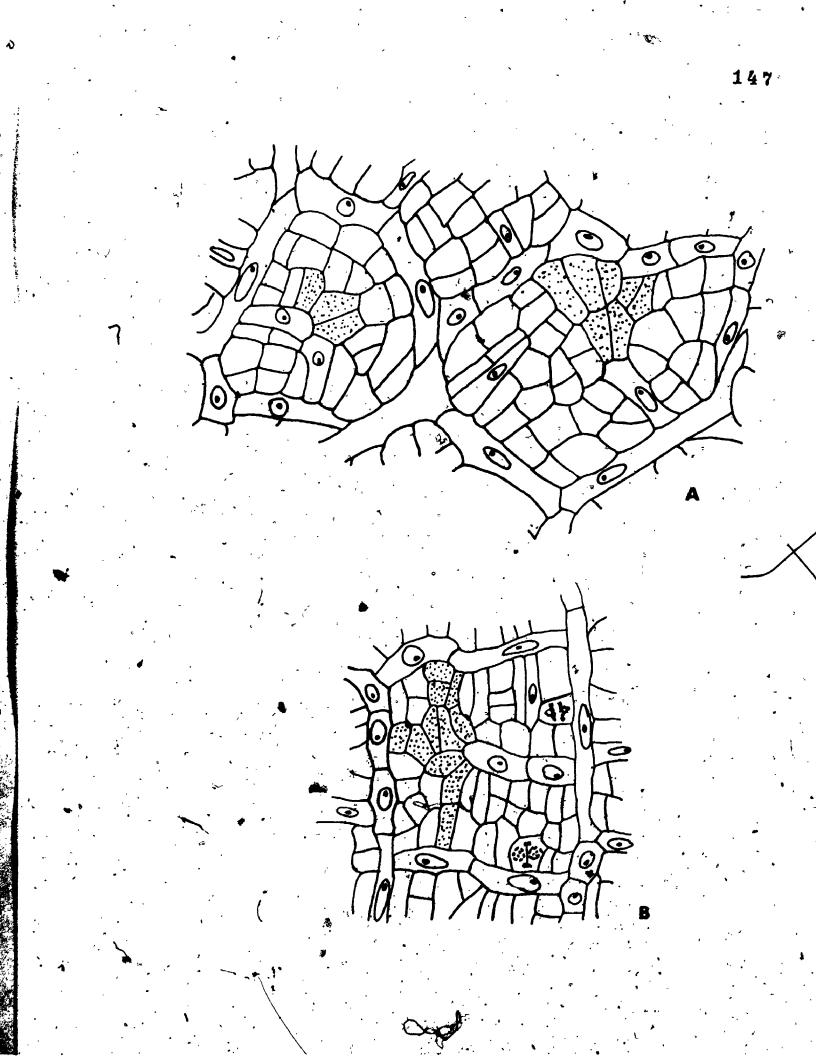



Figure 3.16; A. Areole formation due to multiple procambial.

areole.  $\int x 1056$ 

Β.

Later stage than A. Note the planes of the cell wall formation within the plate meristem cells surrounding the developing procambial strands of the minor veins. (x 1056)



is basipetal and essentially continuous with existing phloem elements. Although tracheid precursors are laid down prior to the phloem within the developing procambial reticulum, maturation of the sieve tubes is completed prior to the differentiation of adjacent tracheids. The tracheids mature in a typically discontinuous yet basipetal manner with complete development within the basal leaflet lamina occurring during the exponential phase of growth (i.e. at approximately LPI₃ = +2) when the surrounding mesophyll cells are non-mitotic, highly vacuolated and undergoing cell separation (Plate 3.14;2 and Plate 3.21;1,2). A generalized summary of minor vein ontogeny is presented in Figure 3.17.

In mature leaves (i.e.  $LPI_3 > 4.0$ ), anomalies in xylem development are evident in the minor veins and particularly in association with terminal veinlets. The most common aberrations include lack of any intervening mature tracheids between a seemingly isolated, yet mature, vein-ending and the occurrence of only one tracheid within the vascular strand. No discontinuities were observed in the external phloem strands at these aberrant xylem sites.

Variation in xylem development could be traced to early differences in the direction and/or number of mitotic events around stage 5 (Fig. 3.17). These inferred anomalies in xylem ontogeny include:

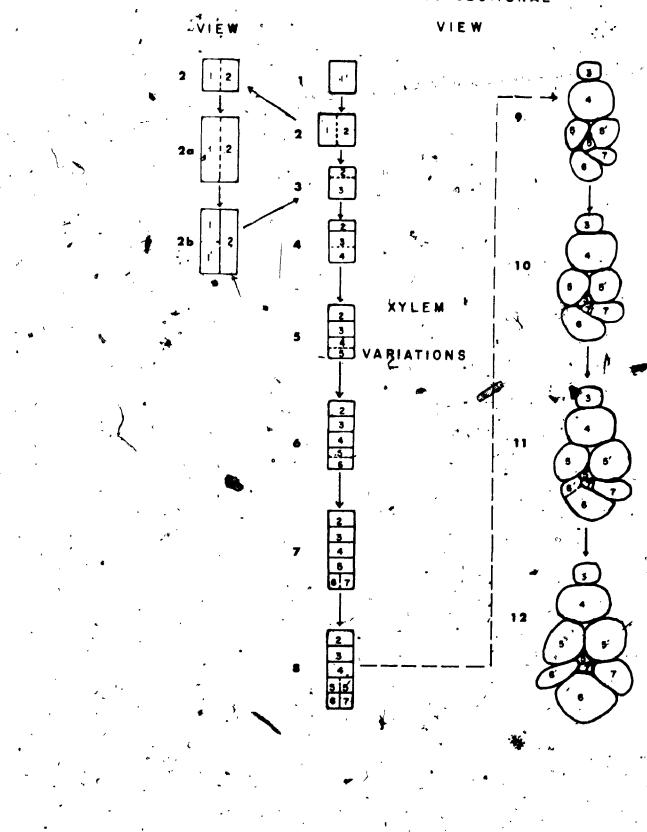

a) transverse divisions of cell 3 followed by normal phloem development from derivatives of cell's 4 and 5

Plate 3.21; 1 and 2. Examples of incomplete tracheid maturation in the minor wein system. These "precocious" tracheids often develop at the point of vein intersections. (Plate 3.21;1, x 800 and Plate 3.21;2, x 960)



Figure 3.17: Generalized summary of minor vein ontogeny in the developing tomato lamina. Cell types at the mature stage (12): 3 and 4, tracheids; 5,.5', 6, 6' and 7, vascular parenchyma; 5" and 7', sieve tubes: PARADERMAL

CROSS SECTIONAL



b) cell 4 develops as xylem parenchyma; normal phloem

c) cell 3 develops as xylem parenchyma; normal phloem development from derivatives of cells 4 and 5;

5;

d) cell 3 develops as xylem parenchyma; no tracheids form; normal phloem development from derivatives of cells 4 and

e) cell 4 divides paradermally; the upper derivative becomes a tracheid; the lower derivative becomes a xylem parenchyma. This appears to be the most common aberrant form of the five observed.

Xylem strand separations (Plate 3.22 🖅,2) were occasionally observed between minor veins and veins of increased complexity (e.g. between 2° and 3° veins). These separations resemble Slade's example (1959; Plate 5, Fig. 3 of her article) of a small veinlet becoming disconnected from a main lateral vein. A close examination of these, sites in NaOH cleared mature tomato leaflets (LPI, > 4.0) revealed, however, that the "separations" were often restricted to the xylem elements and not to the associated phloem and parenchyma. Slade's example appears quite similar. Whether these xylem separations were due to lamina expansion or histological processing is unknown. However, no evidence was found of vein ending formation by a rupturing mechanism at any stage of the leaf's development as postulated by Slade.

Plate 3.22. 1. Incomplete xylem development at the junction of a 2° vein with two 3° veins (arrows) in a NaOH cleared leaflet. Phloem development is complete at these sites. (x 200)

2. Incomplete xylem development in a minor vein. Complete phloem strands are evident (arrows). (x 800)



#### 3.4 Discussion

The growth and biochemical studies outlined above demonstrate that the PI and LPI are applicable, within limits, for describing the morphological status of the yegetative tomato shoot. Furthermore, this application is valid either to individual plants sampled over a specific time interval or to a large number of plants sampled simultaneously at different times of the year.

The non-linearity in the PI/time curve (Fig. 3.3) is due to flower bud production after 9-10 leaves are produced. Although this index is, as a consequence, limited in accuracy to the early vegetative stages, it is apparent ' that the PI and LPI are quite adequate for studying developmental features of the early formed leaves (i.e. leaves 1 to 7).

True leaf number 3 goes through four distinct growth stages which can be characterized in terms of the LPI₃: .i) LPI₃> -2.0. This period includes all features of leaf development until the leaf is 2-6 mm long e.g. initiation of the terminal and lateral leaflets in a basipetal manner and associated anatomical features (summarized in Table 3.7).

ii) LPI₃ = +1.0. Cessation of mitotic activity in the
lamina of the most basal leaflets. Subsequent lamina growth
by cell expansion and cell separation only. A summary of .
lamina development is presented in Figure 3.18.

iii) LPI3 = +2.0. Completion of minor vein maturation

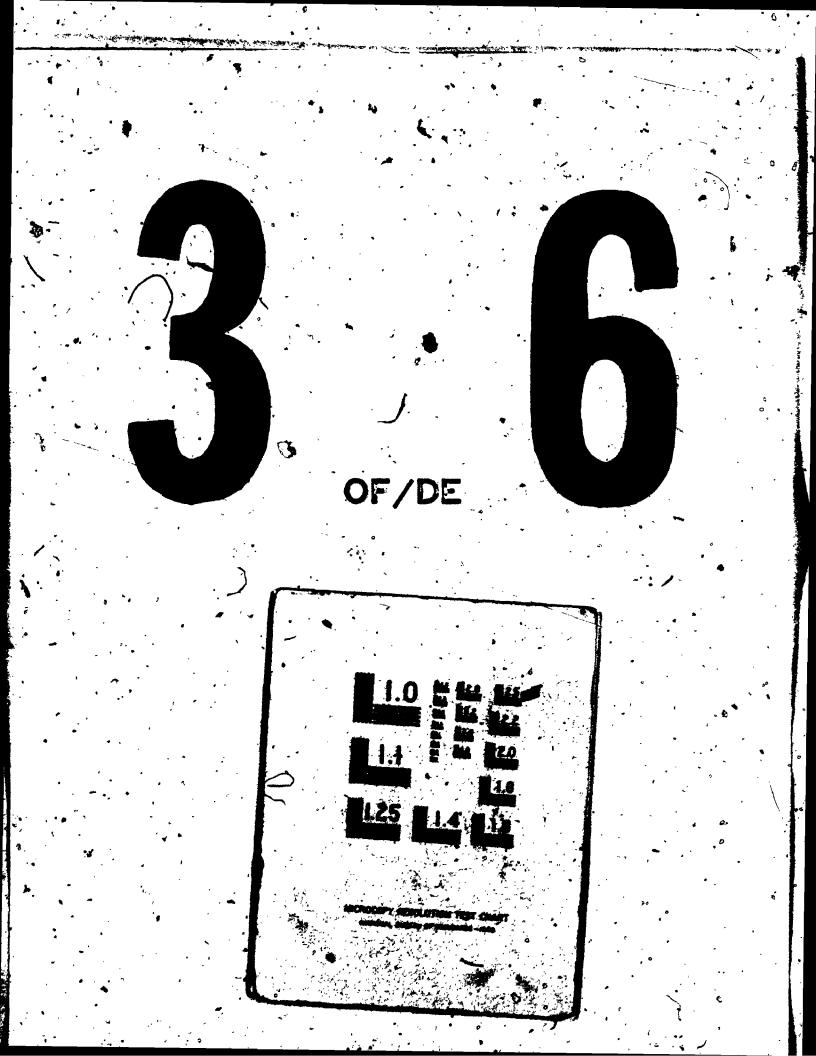



Table 3.7. A summary of important early ontogenetic events during tomato leaf growth and development,

Approximate leaf length	
20- 40 д	vacuolation of epidermal and cortical cells on the abaxial surface; differentiating epidermal hairs evident
50 🙀	midrib procambium in leaf base
200- 300 <b>u</b>	midrib procambium in leaf apex
200	marginal growth initiated; external phloem in leaf base; adaxial meristem in leaf base
° 220 🙏	isoláted xylem leaf locus
250 🗚 -	isolated xylem stem locus
250- 400 M	secondary vein procambium apparent - 🤊
270- 300 🗚	leaflets 2 and 4 present as small bulges on the differentiating rachis
300- 340 M	complete xylem connection between stem and leaf
360- 400 AA.	mature vessel elements at leaflet 3 apex
400- 450 🛤 🚬	formation of apical fimbrial vessels
550- 600 AA	first mature secondary vein xylem connection with basipetally differentiating marginal fimbrial vein xylem
550- 700 🛤 -	internal phloem strands differentiating acropetally towards leaf apex
1000-1100 A	leaflet 3 approximately 800 u long; leaflets 2 and 4 approx. 200 u; leaflets 1 and 5 approx. 50 u; fimbrial vein procambium halfway down leaflet 3 margin
1-2 mm	Sessation of mitotic activity in apical lamina region of leaflet 3
5 mm	mature marginal fimbriate vein (LPI = $-2.0$ , approximately) xylem at the tips of leaflets 2 and 4

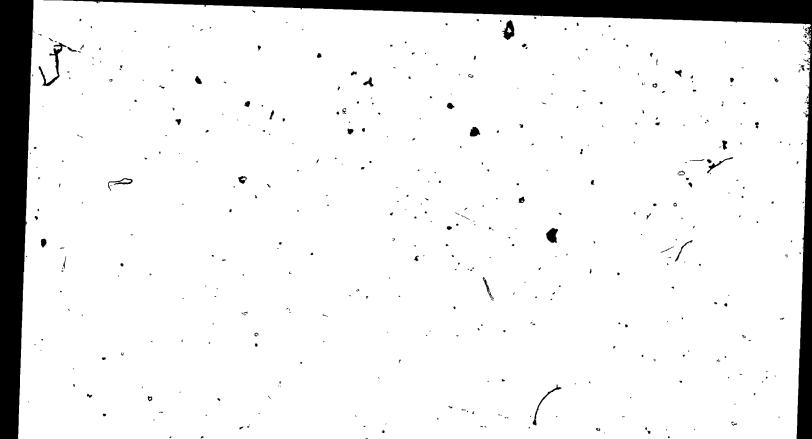
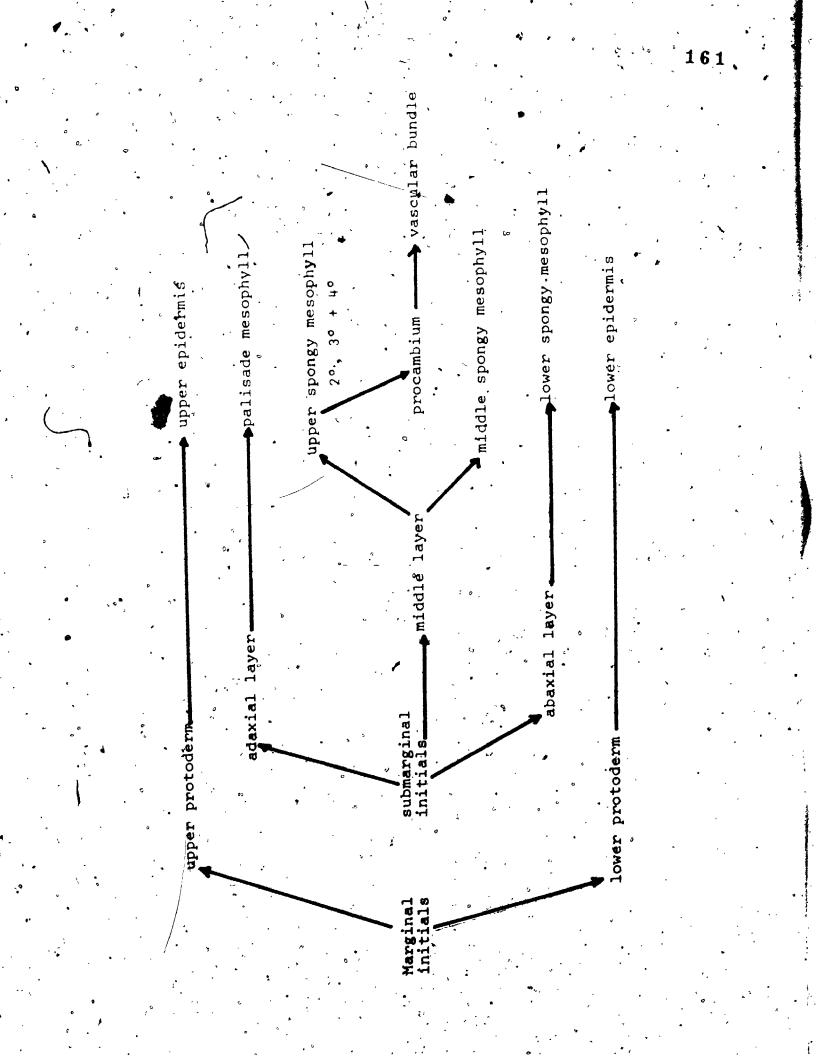




Figure 3.18. Pattern of lamina development in tomato.



(i.e. vein ending tracheid maturation) which immediately precedes initiation of a rapid decline in total soluble carbohydrates within the developing leaf. Approximate point of maximum growth rate in leaf length, fresh weight. Cell enlargement and separation is taking place throughout the lamina of the individual leaflets.

162

iv) LPI3 = +4.0., Cessation of exponential phase of leaf 3 growth (i.e. phase 1) in terms of leaf length, area, fresh/dry weight, and total chlorophyll level. Minimum level of total soluble carbohydrates is evident at this point. Leaf is anatomically and physiologically mature.

During the initiation process, the amount of internal leaf tissue derived from the outermost cells of the corpus region within the shoot apex is difficult to determine. However, it would appear that the majority of internal leaf tissues are derived from the  $T_{2}$  layer through a series of periclinal and anticlinal divisions with minor contributions to the leaf primordium base by derivatives of the corpus. The role played by the different regions of the tomato shoot apex in the organogenic process is unknown. The results of Lange (1927) and Hussey (Hussey and Turner, 1969 Hussey, 1971) suggest that the initial organogenic event (i.e. formation of a "growth center" of increased mitotic. activity) is relatively deep seated within the shoot apex and is probably within the outer periphery of the corpus. This is contrary to Schlepp's theory of leaf primordium formation (Schüepp, 1914, as cited in Foster, 1936) and also contrary to Lyndon's recent evidence for leaf initiation in pea (Lyndon, 1971). However, Russey (1972) has re-evaluated Lyndon's work and added his own analysis based on colchicineblocked metaphase distribution and carbon particle marker movement on the surface of the pea and tomate apices. The data substantiates the concept of a "growth center" (i.e. region of increased mitotic activity) within the corpus for both species and is contrary to Lyndon's original conclusions.

The present histological evidence substantiates the allometric analysis of terminal leaflet/lateral leaflet . growth i.e. the lateral leaflets are initiated during the first 1000 **A** of terminal leaflet growth. It is also apparent from histological evidence that the leaflets are initiated in a basipetal sequence. This initiation of leaflets in a basipetal manner is contrary to the relatively few studies in other compound leaves such as Carya (Foster, 1935), Clematis (Tepfer, 1960), Acacia (Riekson, 1969) and Doxanthus (Sistrunk and Tucker, 1974) which develop their lateral appendages in acropetal sequence. As a consequence, direct ontogenetic comparison with these leaves is limited. Nevertheless, it is evident that the basic developmental sequences'(e.g. procambial strand differentiation in the midrib and subsequent lamina development) observed in the: compound leaves are probably quite similar.

Leaflet growth in width relative to length is consistently greater for the terminal leaflet than the lateral ones. The earlier development and terminal position are

probably important factors in allowing successful competition for nutrients from the rest of the plant and possibly no restriction on lateral growth due to limited spacing as found with lateral leaflets in the leaf primordium stage. An examination of palisade mesophyll cell areas (cross sectional) and associated blade areas in mature (LPL > 4.0) feaflets (Table 3.4) suggests that the basipetal trend in smallness of the individual leaflets is due to both fewer cells at maturity and a smaller average cell size. The decreased cell numbers may be due to the progressively later initiation of the leaflets in a basipetal direction with the consequent production of fewer cell generations.

Certain differences were noted between this study of tomato leaf development and the one carried out by Bedesem (1958). Contrary to Bedesem, but in agreement with Lange (1927), no discrete apical meristem was observed in the emerging leaf primordium. Rather, the early growth in length of the leaf primordium appears to be due to scattered cell division and enlargement throughout the developing organ (i.e. due to a diffuse or non-localized intercalary meristem). While the presence of an apparently mitotically active epidermal and sub-epidermal group of cells is evident in the young primordia, it is questionable whether the distinction between an apical meristem and an intercalary meristem wan be made on the basis of histological examination

alone. Following their extensive labelling studies of DNA

synthesis during lamina development in <u>Xapthium</u>, Maksymowych and Wochok (1969) expressed similar doubts in any purely histological attempts at clearly delineating the marginal meristem from the plate meristem. It is apparent that the classical concepts of the various leaf meristems desperately need a reevaluation in terms of timing, duration and relative intensity of the mitotic cycle with emphasis placed upon⁴, the characterization of discrete cell cycle populations within the developing primordia.

The size of the tomato leaf primordium (cv. 'Farthest North') at anatomical stages comparable to Bedesem's leaf study of the cv. 'Marglobe' (Bedesem, 1958) is approximately one half. In view of the considerably larger final size attained by leaves of 'Marglobe' over the 'Farthest North' cultivar and associated studies in other dicot species (e.g. tobacco; Avery, 1933; cløver; Lersten, 1965), it would appear that the increased duration of various early developmental stages in the young primordia may be correlated with increased final size in the mature form.

The development of an apparently optional fourth spongy mesophyll layer in the 'Marglobe' lamina was not observed in 'Farthest North'. Whether the formation of this additional spongy layer is a function of leaf position, varietal differences and/or environmental modification is unknown.

Bedesem's observation that "the ends of the veinlets on the mature blade margin have clusters of somewhat disoriented spiral tracheids" (p. 452) is not supported. Rather, his failure to recognize a discrete marginal fimbriate vein composed predominately of large vessel elements with spirally thickened walls suggests that the "disoriented spiral tracheids" may indeed be the marginal vein. Sections of mature lamina tissue cut transversely through a small lobe or crenation would give the appearance of disoriented tracheary tissue along the blade margin. An examination of the mature leaf vasculature of six other cultivars (i.e. 'Alsia Craig', 'Bonny Best', 'Bush Beefsteak', 'Golden Queen', 'Rutgers' and 'Tiny Tim') has revealed similar xylem patterns, suggesting that this feature is probably ubiquitous to most, if not all, commercial tomato cultivars.

A locus of xylem initiation within the tomato stem was not observed by Bedesem. In the present study, it is apparent that the differentiation of xylem vessels at isolated leaf and stem locii occurs quite early in the development of leaf number three. While the initiation of xylem at the leaf locus appears to slightly precede the stem locus, examples were found of a reverse order of initiation. The latter initiation sequence is in agreement with Jacob's work in <u>Coleus</u> (Jacobs and Morrow, 1957). A second variation in the locus of xylem initiation is observed in the vascularization of leaf number one and involves the acropetal differentiation of xylem which is initially connected to an older trace. A similar developmental feature has been reported for Coleus and Anagallis by De Sloover (1958). These variable

occurrences in timing and location of xylem formation are probably due to locally altered cellular environments caused by minor fluctuations in the levels of various endogenous factors (both nutritional and hormonal).

While the minor venation of the tomato leaflets may show considerable localized variation in terms of number and arrangement of vascular tissue, a generalized scheme of minor vein ontogeny can be presented (Fig. 3.17).

My views on terminal veinlet formation coincide with Lersten's (1965) in the sense that "...the procambial strands are quite complex even at an early stage and probably very quickly attain a level of structural complexity and a degree of differentiation that can be assumed to prevent the formation of junctures with newly forming procambial strands" (p. 772).

The apparent control of planes of cell division in the upper spongy layer by the early stages of the developing procambial reticulum may have an important bearing on this problem (Plane 3, 8;1,2). This observation is contrary to Schuepps' view (1926, as cited in Avery, 1933) that all plate meristem cells show a complete lack of arrangement. Certainly, the right-angled development of successive members of the minor vein procambial reticulum appears to reflect the <u>prior</u> orientation of the plate meristem cells in the upper spongy mesophyll layer which, in turn, was initially caused by earlier developing procambial strands (e.g. 2° and 3° veins). This cyclic 'cause and effect'

167.

system would lead inevitably to: (a) an orthogonal reticulate pattern of minor venation; and b) a threshold areole sizeabove which further subdivision by hewly initiated procambial strands would be expected.

From the physiological point of view, one could hypothesize vein ending formation caused by the alteration of "hormonal/nutritional" fields emanating from the earlier formed procambial stages of the surrounding reticulum and prior to the completion of the later forming procambial strand within the areole. However, Hara's (1962) suggestion that tensions within the leaf during its rapid expansion could be removed by differentiation of potential procambial cells into mesophyll cells is equally valid in view of the total lack of experimental evidence.

While no disjunct minor veins were observed in tomato as found in <u>Euphorbia</u> (Herbst, 1972) it is interesting to note that Bedesem (1958) was able to induce gaps in the developing minor veins as well as the formation of apparent disjunct minor veins by TİBA application to young tomato leaf primordia. Whether these disrupted minor veins were formed by breakage or by subsequent differentiation of procambial cell precursors into mesophyll cells (similar to Hara's extension cells) was not established. It is apparent, however, that an experimental approach to the problem of disjunct vein formation could be initiated through the use of an ontogenetic system precisely defined in terms of a

168.

developmental index and coupled with highly localized TIBA applications on the developing lamina of tomato leaflets. An important feature of the present observations on tomato minor vein ontogeny is the apparent "multiple choice" allowed the procambial strand for its further development from the 'extension cells' (see fig. 3.13 to 3.16). While it is conceivable that <u>all</u> mesophyll cell precursors have the potential for procambial cell development, the final selection must rest on position relative to earlier formed, adjacent procambial strands. The signal for either vein completion or non-completion (i.e. vein ending formation) probably comes from the procambial strand towards which the younger strand is developing. The critical procambial stage, after which no connection with a younger stage is possible, is unknown. However, a thorough examination of the sectioned and cleared material would appear to suggest that once stages 4 or 5 (Fig. 3.17) had been reached, no further connection with a developing procambial strand is possible. In view of the precision with which the developmental status of the tomato leaf can be described both qualitatively and quantitatively (at the organ, tissue, physiological and biochemical levels), it is apparent that the LPI should prove to be an adequate index for studying the regenerative capacity of the tomato leaf.

## CHAPTER 4

## ROOT REGENERATION FROM LEAF CUTTINGS

## 4.1 Introduction

The pre-eminence of the leaf as a source of hormonal and nutritional substances necessary for root formation in cuttings has been recognized for almost 100 years? (e.g. see the early review of Went and Thimann, 1937; and individual works such as Cooper, 1935; Went, 1938; Van Overbeek and Gregory, 1945; Van Overbeek, Gordon and Gregory, 1946; Adams, 1967).

Due to its sensitivity and simplicity, the tomato leaf cutping has been a favourite system for studying the effects • of natural and symphetic auxins on induced adventitious root formation (Hitchcock and Zimmerman, 1937; 1938). However, no recent studies on the effects of the other major groups of plant growth substances appear to have been pursued in this regenerating system. With regard to the gibberellins, only one published report has appeared which, deals with the effects of GA₃ on root regeneration in tomato. Using shoot cuttings, Jansen (1967) confirmed some of the earlier results of Brian et al. (1960) who worked with pea cuttings:

171.

i),  $GA_3$  inhibits root regeneration over a wide concentration range (i.e. from  $10^{-3}$  mg/l to 1000 mg/l);

ii) GA3 exerts its effect during root primordia induction
with no apparent effects on root development; and
iii) GA3 is unable to inhibit rooting completely.

Unlike Brian and his co-workens, however, Jansen did not rule out the possibility that the GA3 effect was not localized at the site of primordia formation." Instead, he postulated that the GA's response would be indirect due to its effects in the shoot tip (e.g. growth stimulation) which would, in turn, give rise to such correlative events. as inhibition of root formation in the base of the shoot. Interestingly, Jansen found that IAA was inhibitory to the rooting of tomato shoot cuttings. He suggested that the .regenerating shoot cuttings were probably saturated with endogenous IAA, and hence, exhibited a toxic response to exogenous IAA applications. This appears to be a plausible 'explanation in view of the high levels of IAA found in stomato shoots (Schneider, Wightman and Gibson, 1972). However, Jansen's observations with tomato shoot cuttings. did not significantly extend the original observations of Brian et al. (1960) nor did they explore possible links between altered metabolic patterns and GA3; inhibition of root regeneration. As a tool for studying regeneration, the use of a complex and developmentally undefined shoot system with its attendant failure. to respond to exogenous auxins, make an evaluation of GÅ3-auxin interactions

impossible. It should be pointed out that modifications of the GA₃ inhibition of root regeneration by other growth substances or nutrient substrates have generally been considered in terms of concentration effect with little regard to the timing and sequence of application. Finally, it should be noted that Jansen's use of root dry weight as a measure of root formation would not allow a complete separation of root initiation from root growth - two developmental events which show considerable divergence in their responses to growth substances.

As indicated in Chapter 2, the hypotheses for  $GA_3$ inhibition of organ regeneration centre on inhibition of primordium initiation, and/or subsequent development. A metabolic link between an altered starch metabolism and  $GA_3$ induced regeneration inhibition has been developed by Thorpe and his co-workers over the past seven years for <u>in vitro</u> bud formation from tobacco callus. However, no such links have been established for root regeneration except in a very cursory and qualitative fashion by Munzel (1968) who noted that starch accumulations, were less in  $GA_3$  treated peticle segments of detached <u>Begonia</u> leaves than in controls. No consideration was given to possible  $GA_3$  induced correlative effects which might have accounted for this observation.

As a consequence, the present study involves four interrelated areas:

i) to relate the developmental state of a tomato leaf (as

1,72

defined by LPI) to that leaf's ability to regenerate roots; ii) to evaluate the theory that root formation and growth rate of the regenerating organ are related; iii) to physiologically define the inhibitory aspects of gibberellins on root regeneration with emphasis placed upon an altered carbohydrate metabolism in the region of the induced primordia; and

iv) to evaluate other plant growth regulators in terms of their ability to modify the gibberellin response.

4.2 Materials and Methods

#### 4.2.1 Preparation of Leaf Cuttings

Cuttings of true leaf number 3 were obtained from tomato plants (cv. Tarthest North') at the LPI₃ designated in the individual experiments. LPI₃ values were calculated (as outlined in Chapter 3) on the basis of ten to twenty LPI₃ determinations from randomly selected plants. In the plant growth regulator studies, each peticle base was immersed in 5 ml of test solution for up to 48 hours in continuous darkness at 25°C unless otherwise noted. Approximately 20 to 24 leaf cuttings were used for each treatment. The cuttings were subsequently rinsed in tap water and placed in plastic trays (16" x 10" x 4") containing a mixture of standard greenhouse potting soil and vermiculite (1:1 v/v). Approximately 4 litres of rooting mixture were prepared for each plastic tray and 1 litre of tap water was used to moisten the fixture. The plastic trays were wrapped in clear plastic bags and place in a growth cabinet at a constant 20°C with 16 hour day length.

Lighting was provided at 800 f.c. by a bank of 4 fluorescent tubes (Sylvania Cool White). Fourteen days after the cuttings were prepared, they were removed from the rooting medium, cleared in 70% ethanol and the number of roots (internal and external) counted.

#### 4.2.2 Histochemistry

## 4.2.2.1 Starch

Localization of starch grains in fresh sections of petiole material was carried out with I-KI staining (Jensen, 1962). Starch distribution within the tomato leaflets was observed after boiling the leaflets in 95% ethanol for 20 minutes, washing them in hot water, and flooding the bleached tissues with I-KI solution for a few minutes. The fodine solution was then rinsed off and the starch containing areas observed as dark purple colourations (Machlis and Torrey, 1956).

### 4.2.2.2 Amylase Activity

The enzyme was localized at the cellular level using the substrate film method of Molnar and La Croix (1972b) with slight modification. Instead of filtering the 3% suspension of soluble starch after heating, the suspension was centrifuged at 6,500 x g for 15 minutes at room temperature prior to substrate film preparation: Control tissue was heat killed at 100°C for 5 minutes.

## 4.2.2.3 . Phosphorylase Activity

This enzyme was localized at the cellular level using the starch synthesis method of Dyar (1950, as cited in Jensen 1962), with glucose-1-phosphate as the substrate. Controls included i) heat inactivation of the tissue and ii) incubation without glucose-1-phosphate substrate.

## 4.2.2.4 General Histology

An aqueous solution of .05% Toluidine blue was used to obtain fresh sections in order to evaluate the morphological changes (O'Brien, Feder and McCully, 1964).

# 4.2.3 Carbohydrate Analysis

Starch and total soluble carbohydrate analysis were carried out as outlined in sections 3.2.1.4 and 3.2.1.5.

## 4:2.4 Starch Synthesis in Isolated Petiole Segments

The bases of the leaf cuttings were pretreated with distilled water or  $GA_3$  at 1 x  $10^{-4}$  M for a 48 hour period in continuous darkness. The basal 20 mm of the petioles were subsequently severed and weighed out in groups of 250 mg (fresh weight). They were cut into .5 atd 1.0 mm segments and incubated in 0.1 M sodium acetate buffer (pH 6.1) in

the presence or absence of glucose-l-phosphate at a final concentration of 30 mM. Preliminary experiments indicated that lower concentrations of G-1-P were not effective in supporting starch synthesis while higher levels (i.e. 4 0 and 50 mM) did not substantially increase endogenous starch levels above those induced by 30 mM G-1-P. Incubation conditions included incandescent lighting (1000 f.c. light intensity) for 2 or 3 hours with the temperature maintained at 30⁰C by means of a water bath. Three samples were used for sach treatment. At the end of the incubation period, sche petiole segments were extracted with hot 80% ethanol four times and the dried pellet subsequently analysed for starch content according to the method of Dubois et al. (1956) as outlined in section 3.2.1.5. The results are expressed in Ag starch per 250 milligrams fresh weight tissue.

4.°2.5. <u>Total Amylase Activity</u>

Petiole tissue from  $GA_3$  treated and untreated material were homogenized in the presence of a small quantity of purified sand for 5 minutes at  $0-2^{\circ}C$  in 0.05 M sodium citrate buffer (pH 5.8) with 0.2%  $CaCl_2$  (3 ml buffer solution/gm fresh weight tissue) in a cold mortar and pestle (Baun, Palmiaro, Perez and Juliano, 1970). The homogenate was stirred for 30 minutes in the dark and subsequently centrifuged at 30,000 x g at  $2-4^{\circ}C$  for 30 minutes. Acid washed Polyclar AT (5% final concentration) was added to the resulting supernatant and stirred for 15 minutes in order to remove

phenolic compounds which might cause enzyme inactivation (Loomis and Battaile, 1966; Anderson, 1968). The suspension was centrifuged at 20,000 x g at 4°C for 15 minutes in a Sorval swinging bucket HB-4 rotor. The supernatant was subsequently assayed for total amylase activity using either the gel diffusion.method of Briggs (1962) or the spectrophotometric procedure of Schuster and Gifford (1962). The gel diffusion method was modified slightly. Instead of impregnating \$9 mm filter paper discs with the plant extract, 8 mm circles were lightly marked on the surface of the agar/starch plates using a stainless steel cork-borer. The enzyme preparations were subsequently placed in .02, .04 ml or .06 ml amounts within these circles and incubation of the plates carried out at 40°C for 3 days. The plates, were stained with I-KI solution for 10 minutes and the average diameters of the clear areas noted. A preliminary experiment with a commercial amylase (Sigma Co., St. Louis, Mo.) indicated a linear relationship between the diameter of the clear zones and the log. concentration of amylase in accordance with the results of Briggs (1962). The spectrophotometric assay of Schuster and Gifford (1962) was modified slightly by the use of 155 ml iodine solution and 4.5 instead of 5.0 ml water due to the presence of iodine-reducing substances in the extract (Juliano and Varner, 1969) Duplicate samples were evaluated from each treatment. The assay gave reproducible values which were proportional to enzyme concentration, Specific activity is defined as the change in absorbance at 620 nm

per milligram of protein in 15 minutes at 37°C. Total protein determinations for the enzyme analyses were carried out using the filter paper disc-xylene Brilliant Cyanin G method of Bramhall, Noack, Wu and Loewenberg (1969). Bovine serum albumin (Type IV, Sigma) was used as a reference standard after an appropriate correction for water content (Rutter, 1967).

## 4.2.6 Determination of Membrane Permeability Changes

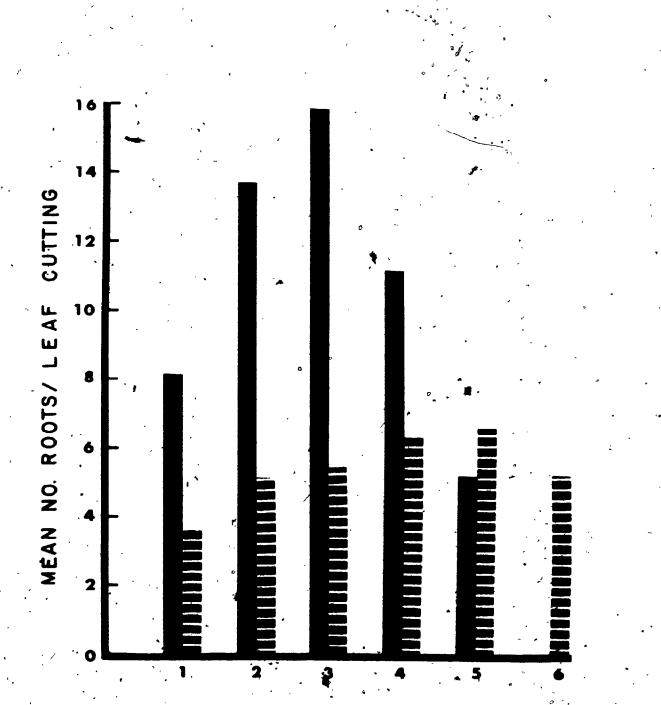
Using the method of Lee and Wilkinson (1973), four hundred milligrams (fresh weight) of tomato petiole tissue were cut into 2 mm segments and washed 'thoroughly in distilled water for 5 minutes. The sections were placed in a 25 ml Erlenmeyer flask containing 3 ml of citrate buffer (5 mM, pH 5.2) and GA, at various concentrations. Two sample flasks were prepared for each treatment. The flasks were incubated at room temperature (ca. 25°C) for 1 hour on a rotary shaker (approx. 60 revolutions per minute). The tissue was then removed, thoroughly rinsed in distilled water, blotted on filter paper, and transferred to 5 ml of distilled deionized water for a further 30 minute shaking. The tissue was removed and the amount of intracellular materials released into the water was estimated by measuring the absorbance at 240, 260, and 280 nm, The difference in leakage of cell contents between the treated and control tissues was used as a measure of change in membrane permeability.

## 7 Photography

carried out as described in section 3.2.3.

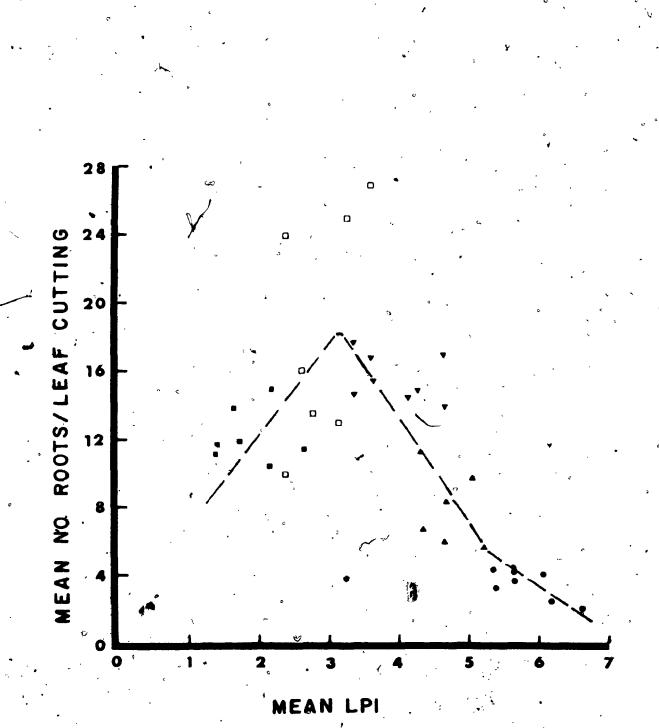
#### 4.2.8 Statistical Analysis

Standard error, regression and correlation analyses were performed according to Woolf (1968). The count data was transformed by the square root transformation and subsequently analysed by the Student-Newman-Kreul Multiple Range Test (Sokal and Rolf, 1968; Woolf, 1968).


4.3 Results

#### .3.1 Leaf Position

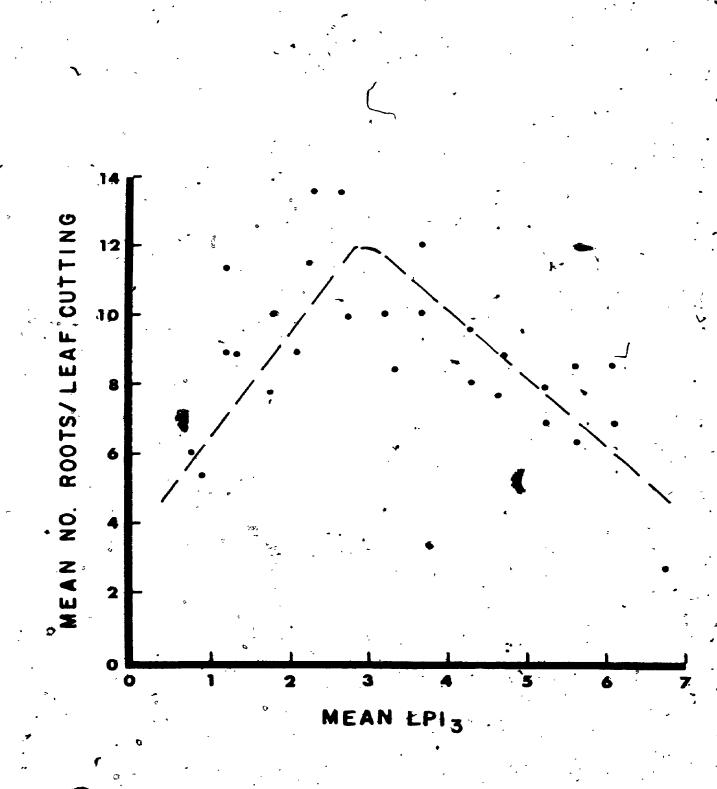
An examination of the rooting potential of the different tomato leaves along the shoot axis of differently aged groups of plants revealed a progressive increase in regenerative capacity followed by a decline (Fig. 4.1). This data suggested that the capacity for root regeneration varied (a) with the position of the leaf and (b) with the age of the shoot from which the leaf was taken.


4.3.2 <u>LPI</u>

When the regeneration responses of the various leaves were plotted in terms of the developmental index, LPI, a consistent trend was observed (Fig. 4.2). A similar response curve was obtained for leaf number 3 (Fig. 4.3). In all of. Figure 4.1. Effect of shoot age and leaf position on root regeneration capacity from tomato leaf cuttings. Black bars, leaves from 4 week old tomato shoots. Hatched bars, leaves from 6 week old tomato shoots.



LEAF POSITION


Figure 4.2. Root regeneration of different tomato leaves from 4 week old plants as a function of their developmental age. The dashed line is drawn to emphasize the general trend only. Leaf 1, circle; leaf 2, triangle; leaf 3, inverted triangle; leaf 4, open square; leaf 5, closed square.



18.3

Figure 4.3. Root regeneration of tomato leaf no. 3 as a function of its developmental age. The dashed line is drawn to emphasize the general trend

only.



the above experiments, the duttings were rooted directly in the vermiculite/potting soil mixture for the 14 day period.

4.3.3 Auxins

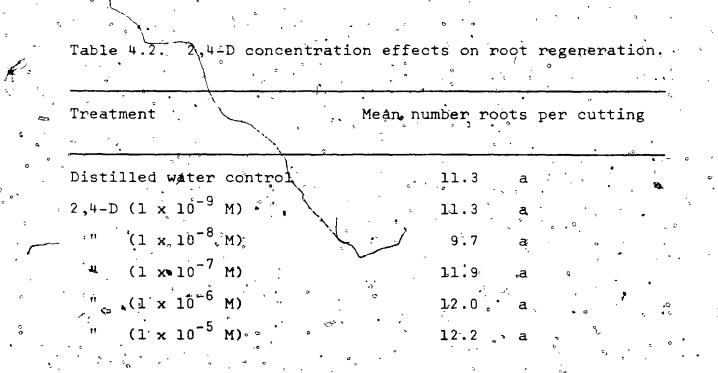
4.3.3.2

IAA

## 4.3.3.1 Different Auxins: A Comparison

When different auxins were evaluated for their ability to stimulate regeneration in mature tomato leaves, a rooting response (in declining order of effectiveness) was observed as follows: IBA>NAA>IAA>distilled water (Table 4.1). 2,4-D proved toxic at the concentration tested (i.e.  $1 \ge 10^{-4}$ ). No significant stimulation of rooting was observed with this growth regulator over the concentration range of  $10^{-9}$  M to  $10^{-5}$  M'(Table 4.2).

In terms of root regeneration, tomato leaf cuttings were sensitive to IAA concentrations above  $1 \times 10^{-5}$  M (Table 4.3). Plotting the LPI₃ against rooting for IAA treated and untreated leaf cuttings revealed typical response curves (Fig. 4.4). However, optimal regeneration capacity was shifted from approximately LPI₃ = 2.5 - 3.0 to LPI₃ = .0 - 4.0 in the presence of high exogenous IAA levels. Petiole and rachis plus terminal leaflet growth were significantly correlated with regeneration responses IAA did not alter this situation (Table 4.4). Table 4.1. Effects of different auxins on root regeneration from mature leaves.


Treatment* Mean number roots per cutting

Distilled water control 6.8 a IAA 14.8 b NAA 22.7 c IBA 28.9 d 2,4-D -- -

*Auxins supplied to perioles at concentrations of  $1 \times 10^{-4}$  M.

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = ,4.8$ 



Means followed by the same letter in a column not different at 5% level.

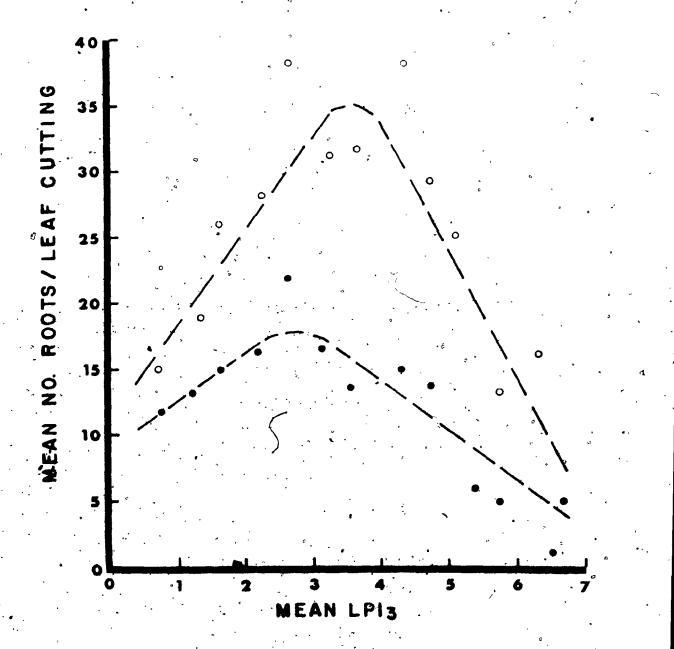
n

Mean LPI  $_3 = 3.1$ 

Table 4.3. IAA concentration effects on root regeneration.

c.	•	Treatment	, , -	Mean	number roots p	er cutting
ę	ç	0	· · · ·	ی ^ر می	رم. در د. بر ا	a
	,	Distilled water	control	· · · · · · · · ·	9.°5 a,b	

IAA	$(1.\times 10^{-8})$	(M)	چ	10.4	a
. "N	$(1 \times 10^{-7})$	M)		6.6	(, b
11	(1 x 10 ⁻⁶	M)	· · ·	6.4	b
, <b>†</b> †	$(1 \times 10^{-5})$	M) ° .'	· · · ·	6.9	. <b>b</b> ?
, ¹¹	(1 x 10-4	M)		35.8	C -
	· • • •	- ' • • •	,	-	, · · · · · · · · · · · · · · · · · · ·


Méans followed by the same letter in a column not different at 5% level.

Mean LPI = 4.4

**J**.

Figure 4.4. Effect of IAA on root regeneration of tomato

leaf no. 3 as a function of its developmental, age. The dashed lines are drawn to emphasize general trends only. Distilled water control, closed circles;  $5 \times 10^{-5}$  M IAA, open circles.



# Table 4.4. Effects of IAA on the growth/regeneration

correlation coefficient.

Correlation coefficient(r) Comparison Treatment ..34****** distilled water Petiole growth' vs ******* .42  $(IAA (1 \times 10^{-4} M))$ Rooting response ******* -distilled water . Rachis/terminal leaflet growth vs IAA (1 x  $10^{24}$  M) ** Rooting response .38

** significant at 1% level

"significant at the .1% level

.192

## 4.3.3.3 <u>IBA</u>

Regeneration was significantly stimulated by IBA concentration above 1 x  $10^{-6}$  M (Table 4.5). Similar rooting-LPI₃ response curves were obtained with IBA as were found with IAA (Fig. 4.5).

#### .3.4 Abscisic Acid

ABA had no significant effect on root regeneration over the concentration range of  $10^{-8}$  M to  $10^{-4}$  M (Table 4.6). Slight variations were observed between regenerating leaves treated with ABA (1 x  $10^{-4}$  M) over the LPI₃ range of -0.5 to +7.5 and distilled water controls (Fig. 4.6). In the presence of IAA or IBA, ABA had no significant effect on regeneration (Table 4.7).

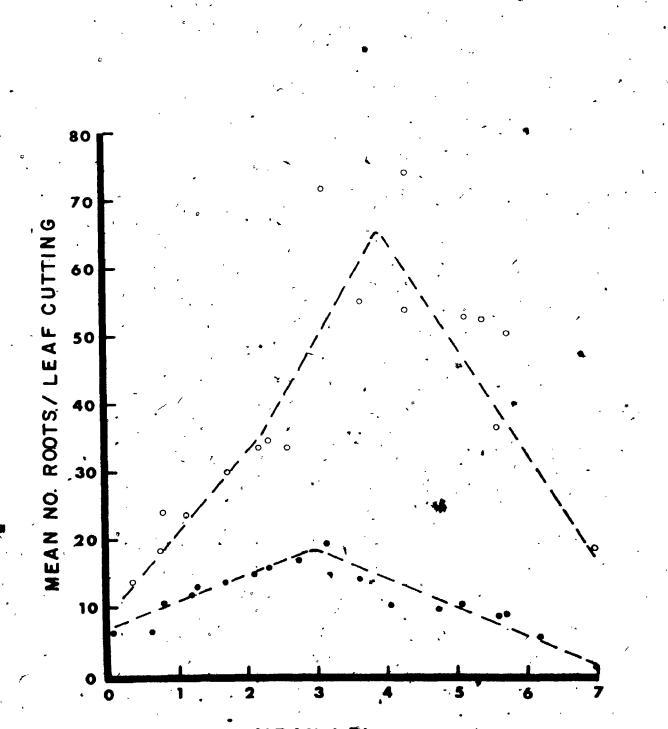
4.3.5 <u>Kinetin</u>

Petiolar application of kinetin solutions for a 48 hour period caused a progressive and significant decrease in regeneration over the concentration range of approximately  $10^{-6}$  M to  $10^{-4}$  M. Lower concentrations of kinetin (i.e.  $10^{-8}$  to  $10^{-7}$  M) had no significant effect (Table 4.8). IAA or IBA were unable to completely reverse the kinetin inhibition (Table 4.9). Table 4.5. IBA concentration effects on root regeneration.

194

Treatment Mean number roots per cutting

			•	an .
Distilled water control	¢ '	16.0	a .	
IBA, $1 \times 10^{-8}$ M		19.0	a,b	*
IBA, $1 \times 10^{-7}$ M		21.2	a,b	
IBA, $1 \times 10^{-6}$ M		21.5	Ъ	1.
IBA, $1 \times 10^{-5}$ M	•••	44.8	с	
IBA, $1 \times 10^{-4}$ M		82.7	c	•
,				, •


Means followed by the same letter in a column not different

Mean LPI₃ = 3.7

at 5% level.

Effects of IBA on root regeneration at different morphological ages. Lines drawn for general trend only. Distilled water control, closed circles;  $1 \times 10^{-5}$  M IBA, open circles.

Figure`4.5.



MEAN LPI3

# 197

Table 4.6. ABA concentration effects on root regeneration.

<u></u>								- e.,
				~	×		۰.	
Treatment	,		Mean	number	roots	per	cutting	
		( -	× .					

Dis	tilled water o	control	12.7	à		
<b>A</b> BA	$(1 \times 10^{-8} \text{ M})$	•	12.3	a	· ·	
<b>11</b>	$(1 \times 10^{-6} M)$	- -	11.5	a	1	
	(1 x 10 ⁻⁵ M)	•	12.5	a	, • •	
11	$(1 \times 10^{-4} M)$	٩.	10.6	a	.*	
			۵ ۲	•	۲	•

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 3.4

Figure 4.6. Effects of ABA on root regeneration at different morphological ages. Lines drawn for general trends only. Distilled water control, closed circles; 1 x 10⁻⁴ M ABA, open circles.

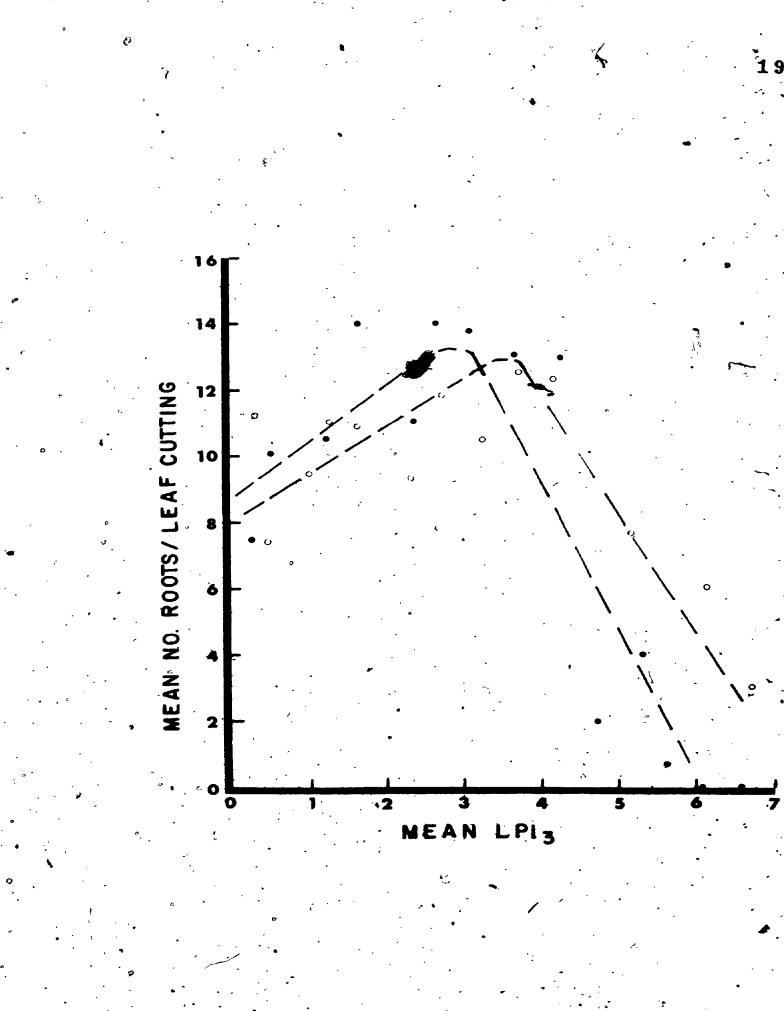



Table 4.7. ABA effects on auxin induced rooting.

ferme of

Frealment	Mean	ทบท ำ	ber' root	s pêr cu	tting
Distilled water control	-		16.3	a	<u> </u>
LAA (5 x $10^{-5}$ M)	-	•	23.3	Ъ	•
IBA (5 $\times$ 10 ⁻⁶ M) ,			23.0	þ.	· · ·
	<b>0</b> 11		17.3	a	
ABA + IAA °			18.4	a,b	
ABA + IBA	-		25.7	Ъ́	- •
3			<u>a</u> .		

Means followed by the same letter in a column not different at 5% level:

Mean LPI = 3.1

Table 4 8	Kinetin concer	tration e	ffects o	n moot		· · ·
- -	regeneration.		•		. c "	
Treatment	a - <b>4</b>	Mean num	iber root	s per ci	itting .	۰. ۲
Distilled w	ater control	······	12.5	a,b	· · · · · · · · · · · · · · · · · · ·	
Kn (1 x 10 ⁻		`	14.0	a	, 	• • • •
Kn (1 x 10 ⁻		· · · · · · · · · · · · · · · · · · ·	10.7	b .	e	
Kn (1 x 10		• • • • •	8.1	Ċ	•	• `
Kn (1 x 10 ⁻		,	2.0	d i	j	• ,
Kn (1 x 10	•	• • • •	0.0	e		
Means follo	wed by the same	e létter i	n a colur	nn not d	lifferent	0 ° • ``
at 5% level		• • • • •	· · · · ·	<b>و</b> بردن		• S
Mean LPI =	3.0			c	- · ·	. Р с
	<b>"</b>		۲ ۲ ۲ ۲	<b>10</b>	• • •	· · ·
					5	
, D			· · · · · · · · · · · · · · · · · · ·	•		
o ^{~ ,} ,	م مو		6 ⁰	с, °і	•	•

cà

Table 4.9. Kinetin inhibition of auxin-induced rooting. *.*• ` Mean number roots per cutting Treatment ۰, ۵ · , . с **11.**2 Distilled water control a  $Kn (1 \times 10^{-5} M)$ 3.9 ь IAA (5 x  $10^{-5}$  M). 21.8 ċ  $IBA(5 \times 10^{-5} M)$ 36.8 Į d

Кл + IAA 7.8 b Кл + IBA 11.9 a

Means followed by the same letter in a column not different at 5% level.

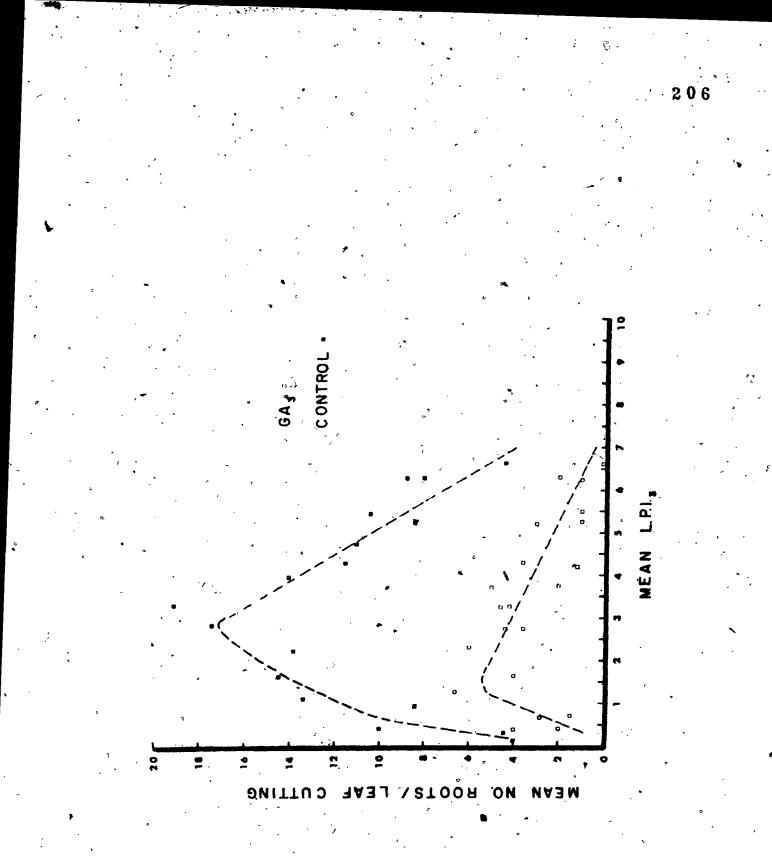
Mean LPI₃ = 3.9

## 4.3.6 Gibberellins

4.3.6.1 Inhibition of Regeneration and its Reversal

 $GA_3$  inhibited root regeneration over the concentration range of 10⁻⁸ M to 10⁻⁴ M (Table 4.10). However, complete inhibition of root regeneration was not possible regardless of the LPI₃ (Fig. 4.7). While blade growth rate was unaffected by  $GA_3$  treatment, petiole growth was significantly altered (Table 4.11). As indicated by the regression coefficients, significantly more petiole growth, occurred in the  $GA_3$  treated tissues for each new root formed than in the control material. Very little petiole growth took place prior to and during root initiation and  $GA_3$  treatment dide not significantly change this situation (Table 4.12).

Treatment with  $GA_3$  invariably (a) delayed the formation of the root primordia and (b) reduced the total number of roots formed after 14 days (Table 4.13). However, the tendency for root formation to occur at the base of the cuttings (i.e. within the basal 10 mm) was not altered. Treatments of  $GA_3$  (at 1 x 10^{-#} M concentration) as short as 5 minutes duration were effective in significantly inhibiting regeneration (Table 4.14). Thirty minute pulses of  $GA_3$  at different time periods during the regeneration experiment revealed that the greatest sensitivity to  $GA_3$ . was during the initial 96 hour period immediately following leaf excision, i.e. prior to and during the primordia formation phase (Table 4.15).


Table 4.10. GA3 concentration effects on root regeneration.

/. Treatment	Mean number	roots	per (	cutting
		•	•	•
Distilled water control		6.6	a '	
$GA_3 (1 \times 10^{-8} M)$	•	0.6	р	~~ . <b>≪</b>
$GA_3$ (1 x 10 ⁻⁶ M)	· · · · ·	1.2	p.	
GA ₃ (1 x 10 ⁻⁵ M)	с <b>с</b>	1.4	b	• <u>•</u> ••
GA ₃ (1 x 10 ⁻⁴ M)	•	1.Ö	Ъ	•
•	· · ·	• •	, se a la companya de	

Means followed by the same letter in a column not different at 5% level.

Mean LPI  $_3 = 4.3$ 

Figure 4.7. Effects of  $GA_3$  on root regeneration at different morphological ages. Lines drawn for general trends only. Distilled water control, closed squares;  $1 \times 10^{-4}$  M  $GA_3$ , open squares.



¢.

lable will, correctioned and contraction and contraction organ growth.		•		
Correl	Correlation	Regression	Regression	Y-intercept
Variable Treatment coeffi	coefficient	formula	coefficient	
petiole growth H ₂ 0 49*	49***	Y =10 + 1.648X	1.648 ± .245 ^a	10 ± 1.24 ^a
GA ₃ 33*	33*	Y = .563 + 2.28 <b>0X</b>	2.280 ± .378 ^a	.563 ± 1.024 ^a
rachis/terminal H ₂ 0 .42 ⁴	ч2***	<pre> x =07 + 4.401X x = .174 + 4.570X </pre>	4.401 ± .692 ^a	07 ± 3.531 ^a .
leaflet growth GA ₃ .64 ⁴	6 <b>4</b> ***		4.570 ± .67 ^a	.174 ± 1.85 ^a
<pre>* Significant at 5% level ***Significant at .1% level a ±95% confidence intervals.</pre>			5. 128	

Table 4.12. Effect of GA₃ on petiole length prior to and

during root regeneration.

Time	Mean petiole length (mm)	± 95% confidence intervals
(days)		
•	-GA ₃	, +GA3
0 *	25.0	
2 [.]	· 27.5 ;	28.4
ų	27.2	28.7
6 J.	27.7 ± .7	28.8 ± ,7

Mean LPI3 =.3.6

Day			Mean numbe	r of roo	ts per	cutting	
	· •	7	-GA3		+GA3		•
. ч			· . 0.0	, <u>, , , , , , , , , , , , , , , , , , </u>	• 0.0	· ·	, ··•
6			. 4	-	0.0		
ġ	,	<b>e</b> .	3.5		.1		
10	0		8.3		.7	- 🔨	.'
12 、	v	•	12.2		1.8		
14		ð	16.5	۰ ۲ ۹	<u> </u>		
		,	·				_
Mean LPI3	= 3.6	a ,			3 4		•
Mean LPI ₃	= 3.5	° , '	<b>a</b> .	• • • • •	: 4	•	•
Mean LPI ₃	= 3.6 ,	•	ę.	• • • •	r •	•	, , , , , , , , , , , , , , , , , , ,
Mean LPI ₃	= 3.6	•	<b>6</b> .	· · · · ·	· · ·	•	°
Mean LPI ₃	= 3.6	•	<b>e.</b>		· · ·	•	°
Mean LPI ₃	· ·	•	<b>6.</b>		•	•	, , , , , , , , , , , , , , , , , , ,
Mean LPI3	· ·	•	<b>4</b> .		•	•	, , , , , , , , , , , , , , , , , , ,
Mean LPI3	· ·	•	<b>8</b> .		•	•	, , , , , , , , , , , , , , , , , , ,
Mean LPI ₃	· ·	•	6.		•	•	, , , , , , , , , , , , , , , , , , ,

Table 4.13. Time course of  $GA_3$  (1 x 10⁻⁴ M) inhibition of 'rooting in tomato leaf cuttings.

Table 4.14. Duration of GA3 treatment on root regeneration.

Treatment duration ,	Mean nu	nber of 1	roots	per cu	tting	
· · · · · · · · · · · · · · · · · · ·		\				<b></b> .
Distilled water control.		15.4	a	r •	0	1.1
5 minutes, $GA_3$ , 1 x $10^{-4}$ M		3.1	∿p		1	-
30 minutes	**	2.3	. Ъ		11	
l hour		3.0	Ъ	•		
24 hours		2.3	Ъ	1		
48 hours	^	,1.7	Ъ	•		r
c	<b>、</b>					

Means followed by the same letter in a column not different

at 5% level.

Mean LPI $_3 = 2.9$ 

Table 4.15. Timing of  $GA_3$  (1 x 10⁻⁴ M) treatment (30 min. pulse) on subsequent rooting in tomato leaf cuttings.

Time of 30 minute

1 710	e or s	0 1111	nuce	1		· •			•	
GA3	pulse			- 1	Mean n	umber of root	ts per	cuttir	ıg	Q
, 	·.					• •				ਪ 
Con	trol				, 9	. 11.7	a			
0	hr,			•		1.8	c			
l	hr.	•				1.7	c	,		
24	hr.	•	l I		۰.	2.1	с		•	
48.	hr.					4.3,	ъ.			
72	hr.					5.8	Ъ			
96	hr.		• • •			5.9	Ъ			~
<u>1</u> :44	hr.			,		10.0	a			
192	hr.	•	,			12.3	a.	<b>د</b>		
	,					3		,		\$

Means followed by the same letter in a column not different

Mean LPI 3. = 3.5

at 5% level.

Attempts were made to alter the endogenous gibberellin status during root regeneration through the use of inhibitors of the gibberellin biosynthetic pathway. Phosphon D progressively inhibited regeneration over the concentration range of  $10^{-8}$  M to  $10^{-5}$  M (Table 4.16). This inhibition was not auxin reversible (Table 4.17). Both CCC and AMO-1618 at high concentrations caused slight stimulation of root regeneration (Tables 4.18 and 4.19). This effect was not altered. by the age of the leaf material.

Both  $\vec{I}AA$  and  $\vec{I}BA$  were capable of reversing  $GA_3$  inhibition of root formation regardless of whether the auxin application was prior to, during or after  $GA_3$  treatment (Table 4.20, 4.21 and 4.22).

ABA was also capable of reversing  $GA_3$  inhibition provided that ABA was applied at a high concentration prior to or during the  $GA_3$  treatment (Tables 4.23 and 4.24). No reversal was possible when ABA treatment followed  $GA_3$ application.  $GA_7$  inhibition of regeneration was also reversed by simultaneous ABA treatment (Table 4.25).

Kinetin at 1 x  $10^{-8}$  M did not reverse GA₃ inhibition regardless of time of application (Table 4.26) and did not significantly affect the ABA reversal (Table 4.27).

GA₃ inhibition was not significantly affected by exposing the leaf cuttings to continuous low intensity fluorescent lighting (250 f.c.) during the 48 hour treatment period. However, leaf cuttings failed to regenerate if left in total darkness for the 14 day period. If high

Table 4.16.	Phosphon regener					•	
Treatment		· .	Mean	numb	er roo	ts per c	utting .
Distilled wa	ter conti	rol			20.4	a.	
Phosphon ^D (	1 x 10 ⁻⁶	M)		•	14.0	Ъ	
Phosphon D (	5 x.10-ę	M)		. na	3.1	с	
Phosphon D (	$1 \times 10^{-5}$	M)	•	्रे	0.9	·a ·	,`

213

Means followed by the same letter in a column not different at 5% level.

Mean LPI3 = 3.3

214

Table 4.17. Non-reversibility of phosphon D inhibition by auxins.

Treatment Mean number roots per cutting

Distilled water control 13.4 Phosphon (5  $\times$  10⁻⁶ M) 2.9. а IAA (5 x  $10^{-5}$  M) 19.4 IBA (1 x 10⁻⁵ M) 2.5.3 е Phosphon_+ IAA 3.2 .a · 4.1 Phosphon + IBA ۰B

Means followed by the same_letter in a column not different at 5% level.

Mean LPI₃ = 3.3

Table 4.18.	- CCC	concentration effects on root	regeneration
. • •	•	in tomato leaf cuttings.	•

Treatment Mean m	umt	ber root	s per d	cutting
Distilled water control,	· · ·	18.3	a	
CCC $(5 \times 10^{-5} \text{ M})$		17.6	a	•
" (1 x 10 ⁻⁴ M)	,	20.2	a,b	*
	•	25.7	c	
$(1 \times 10^{-3} \text{ M})$	,	23.5	j,o	с <b>•</b>
	÷.	- ·	· • • •	

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 3.3

4.

Table 4.19.	- AMO-1618	concentration	effects	oń root

Treatment Mean num	nber root	s per o	cutting
Distilled water control	13.3	D *	
AMO $(5 \times 10^{-6} M)$	15.3	[ົ] ້b <b>ີ,</b> c	·.
" $(1 \times 10^{-5} M)$	17.0	b,c	•
" (5 x,10 ⁻⁵ M)	16.5	b,c	, ,
" (1 x 10 ⁻⁴ M).	17.6	с	
" (5 x 10 ⁻⁴ M)	9.3	a a	۰ ۲
•			

regeneration in tomato leaf cuttings.

Means followed by the same letter in a column not different at 5% level.

Mean  $LPI_3 = 2.9$ 

Table 4.20.	Reversal of GA3 inhibition of	of root regeneration
	in tomato leaf cuttings by s	simultaneous
· · · · · ·	auxin treatment.	•
,	c	· ·

Treatment	Mean number roots per cuti				
· · · · · · · · · · · · · · · · · · ·	•				۴
.Distilled water contr	ol .		a		
$GA_3 (1 \times 10^{-5} M)$	•	0.2	Ъ	۰. ۲	•
IAA $(1 \times 10^{-4} M)$	4 4 	27.0	e	• .	•
IBA $(1 \times 10^{-5} M)$	•	22.5	d,e		۰ ۲
GA ₃ + IAA	-	16.7	c	. ·	, T
GA ₃ + IBA	• •	19.1	e,d	1	
•	د . م	e			, <b>x</b>

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 3.9

Table 4.21. Timing of IAA treatment on GA₃ inhibition of root regeneration in tomato leaf cuttings.

Treatment			Mean number roots			roots	pei	c cu	cutting				
0 -	24	hr.	1	24	48	hr.		•••••••••••••••••••••••••••••••••••••••	• •		. ·	•	- - `
H ₂ 0	•			H ₂ 0		•			10	.9	c.		
GA'3	(1	x 10 ⁻⁶	M) ·	H ₂ 0	•			.'	, 2	<b>.</b> 3 ′	a	•	
IAA	(5	x 10 ⁻⁵	M)	H [*] 2,0					22	.1,	ġ٠		r •
H ₂ 0				IAA			•		14	.5	c	-	
GA ₃	•	· ·		IAA		•		• •	7	• 9 ·	þ.		•
IAA		·		GA3	•	,	•••••		13	<b>.</b> 9	С	•	

Means followed by the same letter in a column not different

Mean LPI $_3 = 3.5$ 

at 5% level.

roo	t regener	ration in	tomato	leaf cu	attings	<b>5.</b>
	<u> </u>	~Ku			·	
Treatmen	t	Mea	n number	roots	per cu	itting
) - 24 hr.	24 - 48	hr.	· · · /		. I	•
H ₂ 0	H ₂ 0		1	3.2	a	<u> </u>
GA ₃ (1 x 10 ⁻⁶ M)	H ₂ 0			4.5	Ъ·	
IBA (5 x 10 ⁻⁵ M)	H ₂ 0	. •	. 2	3.0 .	c .	
H ₂ 0	IBA	· ·	2	4.3	d	
GA ₃	IBA		. 1	7.3	a	• •
IBA	GA	•	1	7.2*	a 🕯	*
	<b>.</b>	• •	-	,		•
Means followed b	y the sa	me letter	in a co	lumn no	t diff	erent
at 5% level.	- , , , , , , , , , , , , , , , , , , ,	· · · ·		•		•*
Mean LPI = 2.7		•			• •.	
•	.' .	••	•	*		•

	· · · ·	•	0				
Table 4.	22. Timi:	ng of IBA	treatmen	nt on G	A, inhib	ition (	of
, t				₽, `	3.		
•	root	regenera	tion in	tomato	leaf cut	tings.	•
•		· · · · · ·	• .		-		•

ABA treatmen	nt.	
Treatment	Mean number roots per cutting	
	12.8 a	•
$GA_3$ (1 x 10 ⁻⁶ M) ABA (1 x 10 ⁻⁸ M)	l.5 b 10.8 a	
-ABA (1 x 10 ⁻⁴ M)	11.3 a	
$GA_{3} + ABA (1 \times 10^{-8} M)$ $GA_{3} + ABA (1 \times 10^{-4} M)$	4.3 c 12.6 a (	

Table 4.23. Reversal of GA₃ inhibition by simultaneous

Means followed by the same letter in a column not different

at 5% level.

Mean LPI $_3 = 3.1$ 

· ·	Treatm	ient		n'number ting	of roots	per
0 - 24 1	ח <b>ד</b>	24 - 48.	hr.	, ,	•	
н ₂ 0.		H,20*·	•	14.	0 a	•
GA ₃ (1 x )	10 ^{-,6} м)	H ₂ 0	· · · · ·	5.	2 c	
ABA (1 x )	10 ⁻⁴ M)	н ₂ 0.	•	; 12.	3 a,b	•
H ₂ 0	•	ABA	•	15.	5 a	× •
GA3	1	ABA		3.	6 🥟 c	Ň
ABA	•	GA3	•	9.	ч b	

Table 4.24. Timing of ABA treatment on GA₃ inhibition of root regeneration in tomato leaf cuttings.

221

Means followed by the same letter in a column not different at 5% level.

Mean LPI = 3.5

Table 4.25.

Reversal of GA7 inhibition of root regeneration in tomato leaf cuttings by simultaneous ABA treatment.

Treatment	Меа	in number ro	ots per	cutting
H ₂ 0		9.1	• a	
GA ₃ (1 x 10 ⁻⁶ M)		0.5	· b	<b>.</b>
$GA_7$ (1 x 10 ⁻⁶ , M)		· • · 1.5	b	•
$GA_7 + ABA (1 \times 10^{-4} M)$	•	8.6	a'	<b>▲</b> د ۲
ABA (1 x 10 ⁻⁴ M)		9.3	a	Ø
· · · · · · · · · · · · · · · · · · ·		•	•	*• •

Means followed by the same letter in a column not different at 5% level.  $\checkmark$ 

Mean LPI $_3 = 3.8$ 

	Mean	numbe	er roots	per	cutting	
24 - 48 hr		+	ت - - م		` •	
H20	· · ·		12.8	a	e .	
H ₂ 0 .			6.0	Ъ.		
H ₂ 0			14.6	a		
Kn		•	15.0	aj	6 T	
Kn			4.2	с		
GA3 ′		۵	8.7,	d	۴	
	$H_2 0$ $H_2 0$ $H_2 0$ Kn Kn	Mean 24 - 48 hr. $H_20$ $H_20$ $H_20$ Kn Kn	Mean number 24 - 48 hr $H_20$ $H_20$ $H_20$ Kn Kn	Mean number roots 24 - 48 hr. $H_20$ $H_20$ $H_20$ $H_20$ $H_20$ $H_20$ 14.6 Kn 15.0 Kn 4.2	Mean number roots per 24 - 48 hr. $H_20$ $H_20$ $H_20$ $H_20$ $H_20$ 14.6 a Kn 15.0 a Kn 4.2 c	

Table 4.26. Timing of kinetin treatment on GA3 inhibition

of root regeneration in tomato leaf cuttings.

Means followed by the same letter in a column not different • at 5% level.

Mean LPI₃ = 2.7

2.23

	· · · ·	
Table 4.27.	Effect of kinetin/ABA treatment on GA ₃	
	inhibition of root regeneration.	

Treatment	Mean nur	Mean number roots per cutting				
0 - 24 hr.	24 - 48 hr.	· •.	<b>*</b>	, ,		
H ₂ 0	,H ₂ 0	13.4	. a,b	- <u></u>		
H ₂ 0	GA ₃ (1 x 10 ⁻⁶ M)	6.3	c	, ,		
ABA (1 x $10^{-4}$ M)	GA3	11.5	b	•		
. 0	GA ₃	7.6	C	u		
ABA + Kn	GA3	11:0	Ъ			
ABA + Kn	H ₂ 0	15.8	a			

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 3.9

concentrations (i.e. 4% to 8%) of sucrose were applied to the petioles for the initial 48 hours, root regeneration took place at low but consistent levels. This stimulation of rooting in the dark by exogenous sucrose application was inhibited by simultaneous GA3 application (Table 4.28).

## 4.3.6.2 <u>Biochemical and Histochemical Changes Associated</u> with GA₂ Inhibition

Having established a definite inhibition of root regeneration by GA2, I decided to explore the possibility that this inhibition might be related to an altered carbohydrate metabolism (see section 2.4 for the reasons behind this decision). An examination of total soluble sugar content within the GA2 treated and untreated leaf cuttings during regeneration revealed no significant changes (Fig. 4.8A). However, starch levels failed to increase appreciably in the GA, treated material when the cuttings were placed in a 16 hour photoperiod of high light intensity (Fig. 4.8B). A closer examination of the starch levels revealed that the inability to accumulate starch was observed initially in the petiole during the 48-96 hour period (Fig. 4.9B). Later, (i.e., during day 6 to 10), decreased starch levels were also observed in the GA treated leaf blades (Fig. 4.9A).

Although total soluble sugars displayed no pronounced differences between the treated and untreated leaf cuttings, a closer examination of their distribution demonstrated

AT A HARM

Table 4.28. Effect of GA₃ on sucrose stimulation of root regeneration in tomato leaf cuttings maintained in continuous darkness.

G

Mean number roots per cutting Treatment 3.5 4% sucrose а 4% sucrose +  $GA_3$  (1 x 10⁻⁴ M) 0.1 ь 6% sucrose 2.9 а 6% sucrose + GA3. 0.4 ь 8% sucrose 3.6 a 8% sucrose  $+ \langle GA_3 \rangle$ 0.4 Ъ

Means followed by the same letter in a column not different at 5% level.

Mean  $LPI_3 = 2.7$ 

Figure 4.8;A. Total soluble carbohydrate changes in tomato leaf cuttings during root regeneration in the presence or absence of GA₃. After a 48 hour treatment period in continuous darkness, the cuttings were transferred to a 16 hour photoperiod (arrow). Vertical lines ± S.E.
B. Starch changes in tomato leaf cuttings during root regeneration in the presence or absence of GA₃.

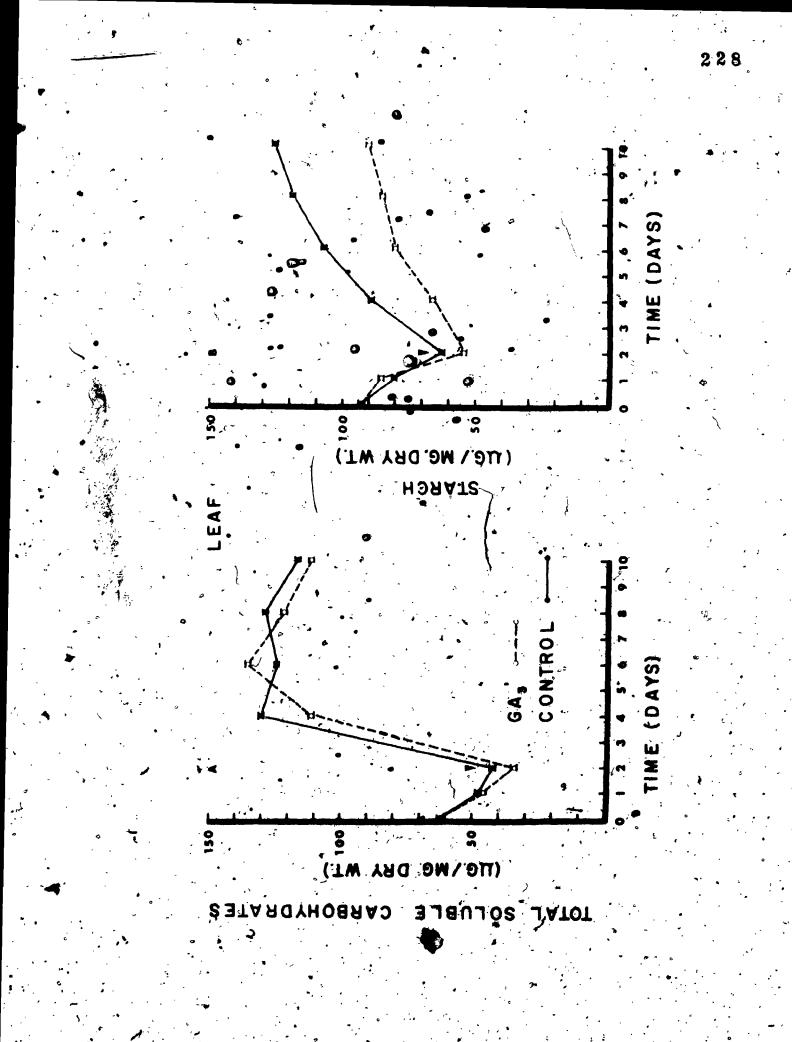
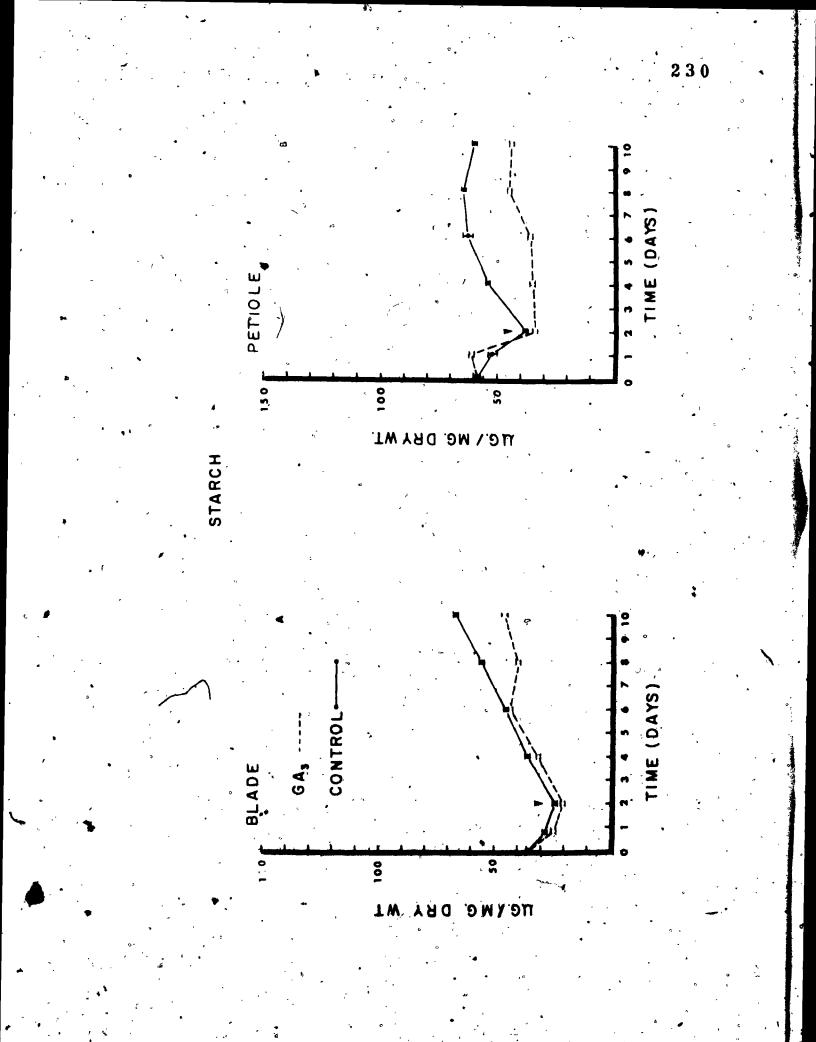
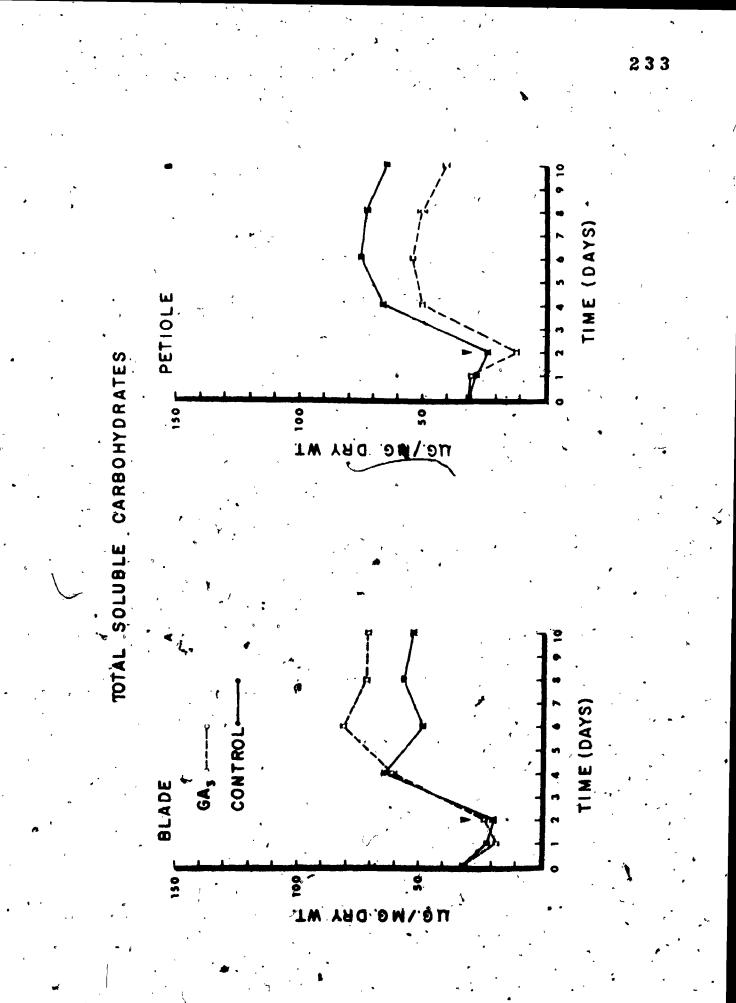




Figure 4.9;A. Starch changes in tomato leaf blades during root regeneration in the presence or absence of GA₃. Vertical lines ± S.E.
B. Starch changes in tomato leaf petioles during root regeneration in the presence or absence of GA₃.



consistent variations in the petiole and blade levels (Fig. 4.10B and 4.10A) after 2 days and 4 days respectively.


A histochemical examination of the petiole bases substantiated the quantitative observations of a failure to accumulate starch by the GA₃ treated material in the chloroplasts of vascular parenchyma and adjoining cortical tissue prior to and during primordia formation. However, vascular cambial activity and phloem fiber ("pericyclic fibers") development were apparent by day six in both the treated and untreated petioles (Plate 4.1;1 to 6). Starch distribution within the blade tissue of the preated and untreated cuttings was similar; most of the starch was accumulated in the cortical parenchyma of the basal regions of the mid-rib and secondary veins.

When the leaf cuttings were treated for 48 hours in the dark with distilled water or GA₃, followed by an additional 96 hours in continuous darkness, the petiolar starch content in the treated and untreated material showed similar starch breakdown patterns (Table 4.29).

In view of the polar nature of the regeneration response, an analysis of starch content distribution was carried out using successive 5 mm petiole segments from  $GA_3$  treated and untreated leaf cuttings. The results (Fig. 4.11A and B; 4.12A and B) indicated that  $GA_3$  treatment markedly affected starch distribution within the basal regions of the regenerating petiole tissue. In the basal 20 mm region, where the roots will develop, the data

Figure 4.10; A Total soluble carbohydrate changes in tomato leaf blades during root regeneration in the presence or absence of GA3. Vertical lines ± S.E.

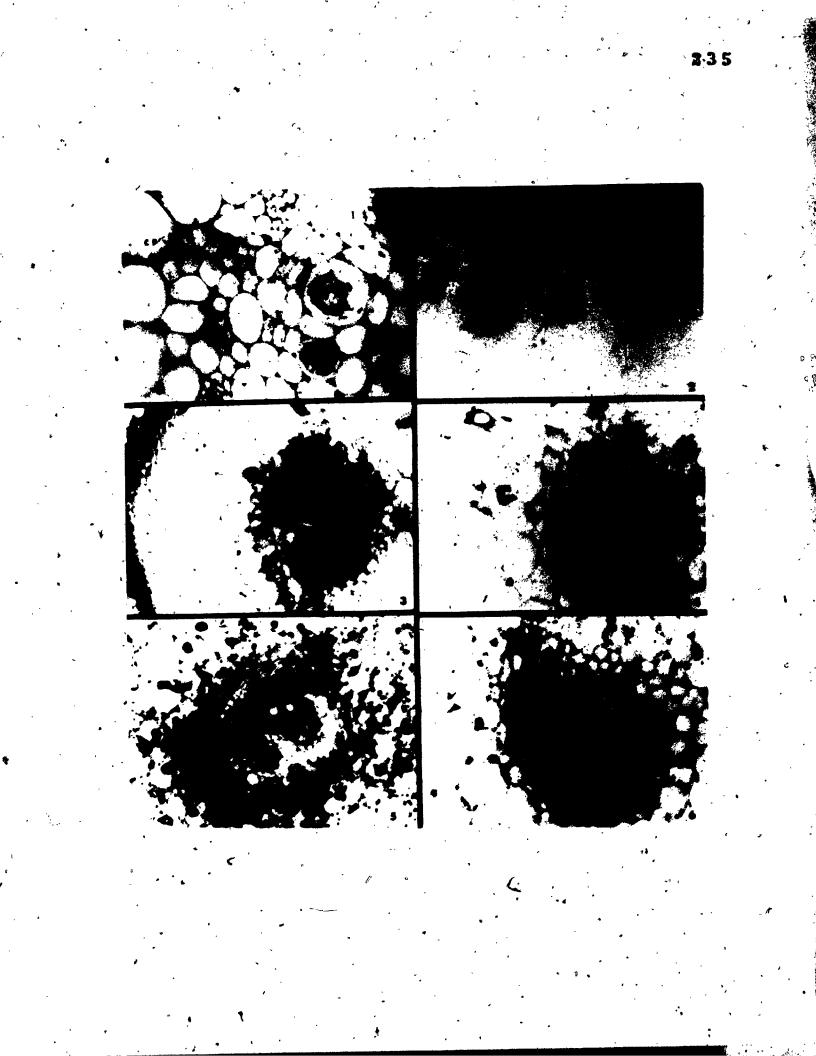
> B. Total soluble carbohydrate changes in tomato leaf petioles during root regeneration in the presence or absence of GA3.



Cross sectional view of a mature tomato petiole showing a portion of the vascular strand. V, vessel elément; EP, external phloem; CP, cortical parenchyma. (x 400) IKI staining of starch grains within plastids occurring in the starch sheath cells. (x 480) Cross sectional view of a basal petiole region treated for two days in distilled water and subsequently stained for starch with IKI. Note the numerous large starch grains within the starch sheath as well as the smaller grains forming within the vascular and cortical parenchyma. (x 100) Similar to 3, except petioles were treated. for 2 days with GA, and subsequently stained for starch with IKI. Note the paucity of starch grains within the starch sheath.

(x 130)

6.


Plate 4.1.

1.

2.

3.

Day 6. Control petiole tissue stained for starch. Prolific starch production and an active vascular cambium are evident. (x 100) Day 6.  $GA_3$  treated petiole tissue stained for starch. An active vascular cambium and lack of starch are evident. (x 100)



	pet.	tioles after 6 d	ays in continuou	s darkness.	•
Time (days)	Starch co	ontent (ug starc)	n/mg dry wt tiss	ue). ⁺ S.E.	_ ` .′
<u>,</u> \$		-GA3	+GA-3 (1	1 x 10 ⁻⁴ M)	-
0 6	• •	43.4 ± 1.0 33.9 ± 1.4	 33.6 ± .7	•	
					-
•		•	•	· · ·	
•					ł.

j,

Eigure 4.11;A. Starch changes in petiole segments (0 - 5 mm region measured from the basal petiole end) treated with 1 x 10⁻⁴ M GA₃ (o - - - o) or distilled water (• - •). After a 48 hour treatment period in continuous darkness, the cuttings were transferred to a 16 hour photoperiod (arrow). Vertical lines ± S.E.
B. Starch changes in basal petiole segments (5 - 10 mm region).

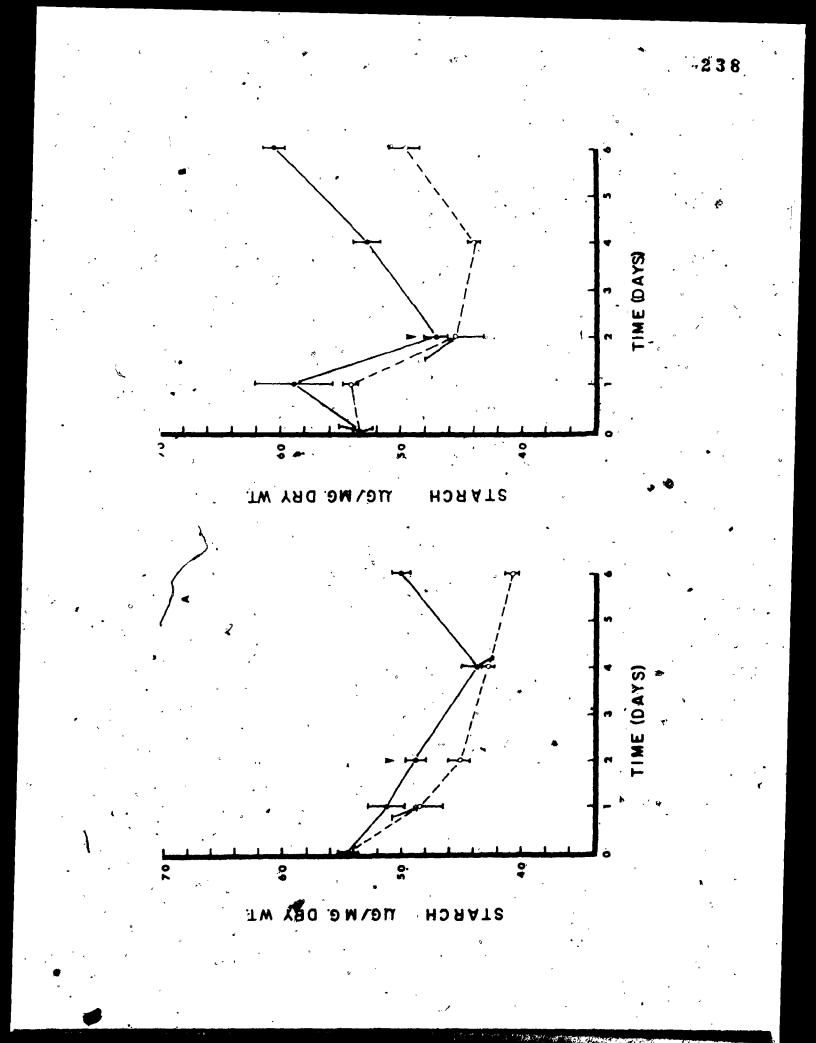
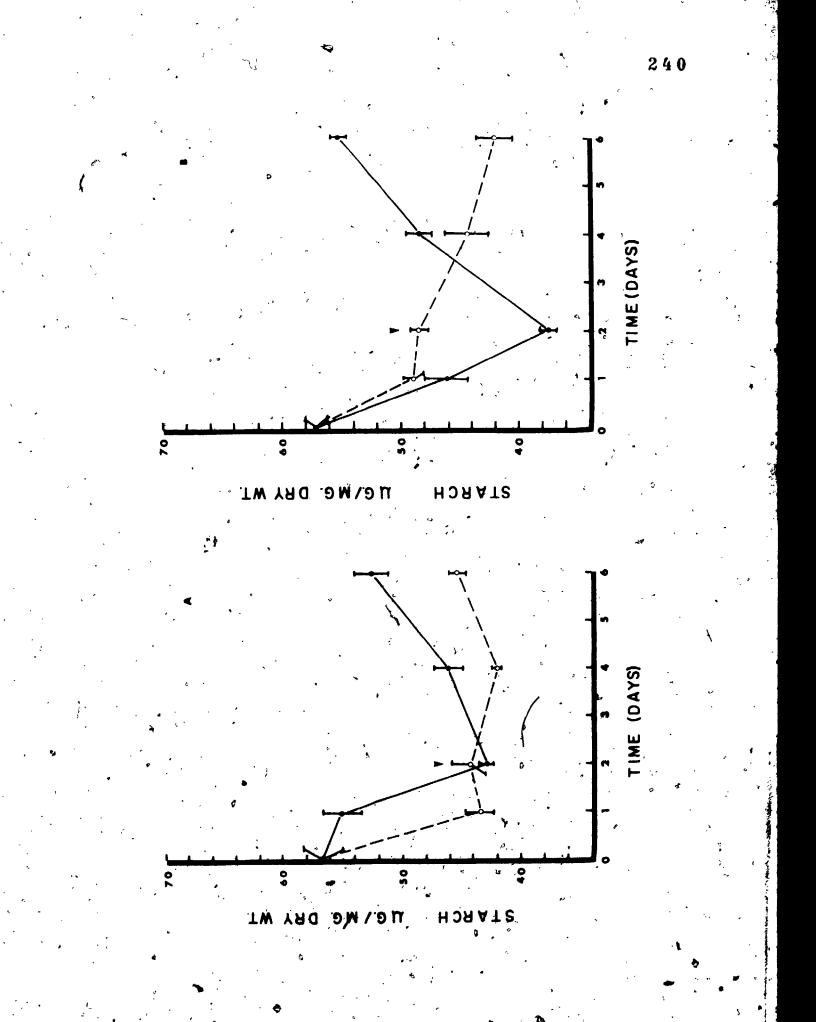



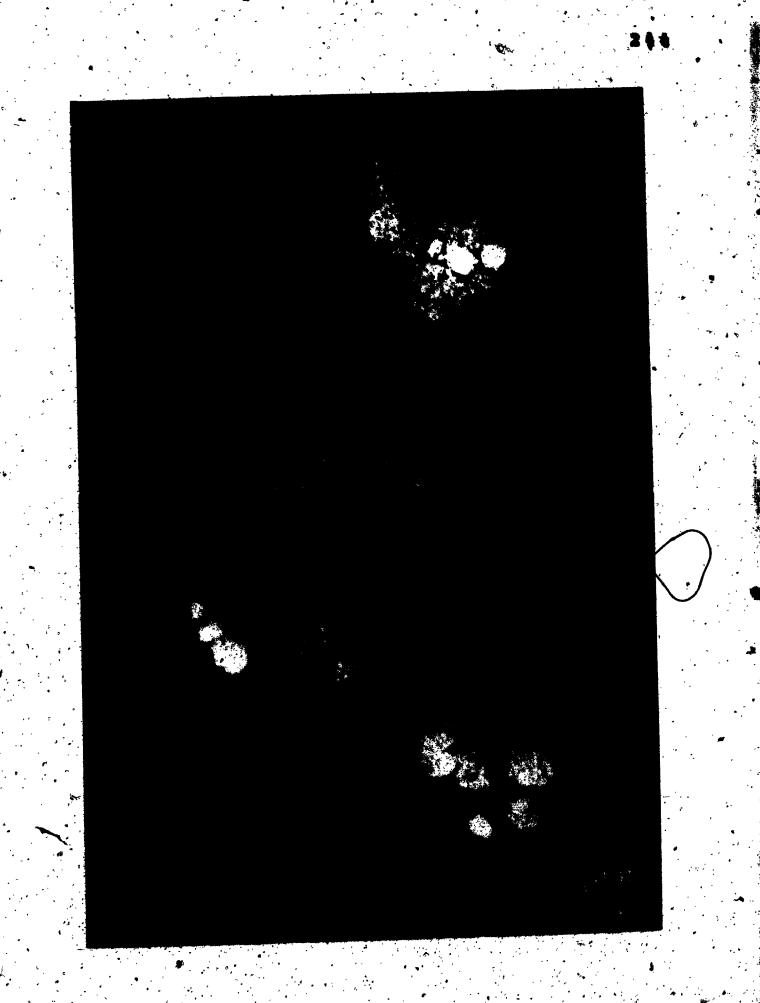

Figure 4.12;A. Starch changes in petiole segments (10 - 15 mm region measured from the basal petiole end) treated with  $1 \times 10^{-4}$  M GA₃ (o --- o) or distilled water (• --- •).

B. Starch changes in petiole segments (15 - 20 mm region). Vertical lines ± S.E.



suggested that GA3 primarily inhibits the localized accum lation (synthesis?) of starch when the cuttings are placed in a photosynthetic environment (i.e. from day 2 to day 6 rather than the degradation of existing starch reserves during the dark treatment period (i.e. from 0 to day 2) Coincident with this view was the observation that the specific amylase activity in both the treated and untreat petiole material increased during the first four days wit no treatment effect evident. (Table 4.30). No activity could be detected using Brigg's (1962) agar diffusion method. Most of the amylolytic activity was confined to the vascular parenchyma associated with the three mayor, traces (Plate 4.2; 1,2) during the initial four days ∿of the experiement.

Net starch synthesis of isolated petiole segments in the presence of the starch precursor, glucose-l-phosphäte was slight for the distilled water treated material during the 2 hour incubation period and was not confined to a particular tissue region although it was localized within the plastids. However, petiolar material pretreated for 48 hours with  $GA_3$  at a concentration of 1 x 1 failed to accumulate starch. Rather, the treated tissues continued to lose starch regardless of the presence or absence of G-1-P (Table 4.31)  $GA_3$  had no apparent effect on net starch synthesis if it was added to the incubation medium (Table 4.32). This feature suggested that  $GA_3$  ac on starch accumulation was not a rapid event involving, e.g., a cellular membrane change. In line with Table 4.30. Changes in the specific activity of total amylase in GA3 Treated and untreated perioles.


Time (days)	Specific activity	(x 10 ⁻² ) (± S.E.)
	-GA ₂	+GA ₃ (1 x 10 ⁻⁴ M)
0		
2	63.3 ± 13.8'	• • • •

69.8  $\pm$  4.4 66.7  $\pm$  0.0

Amylase activity localized by the starch substrate film method within the vascular. strands of basally located petiole tissue treated with  $GA_3$  (1) for 2 days or with distilled water (2). Clear areas are regions of hydrolyzed starch and correspond to vascular strand regions within the

petiole. (x 280),

Plate 4.2;1 and 2.



and .

Table 4.31. Effect of GA3 pretreatment on subsequent starch levels in isolated petiole segments exposed to 30 mM G-1-P for 2 hours.

· · ·						
_*	• •	-		F +	Mean stare	content
48 hr.	· · · ·		Incubation		(± S.E.)	• •
 pretrea	atment		medium	•	*(aig/250 .mg.	fresh weight)
		•	, , , , , , , , , , , , , , , , , , ,	• • • •	A	

		· · ·		•	-
			• •	321.8 ± 2.3	
	buffer	only	•	298.5 ± 16.9-	•
· · ·	buffer	+ G-1-P		335.3 ± 11.3	
Ŵ)		• • • • • • • • • • • • • • • • • • •		3.93.0 <b>±</b> 7.5	
-	buffer	only	•	268-5 ± 7.9	
	buffer	∯•G-1-P		300.0 ± 15.2	
	•	₹. •,			

 $GA_3$  (1 x 10⁻⁴

• H₂0

	,		•	· · · · · · · · · · · · · · · · · · ·	246
			· · · · · ·	;	
			• •		
	Table 4.32.	Effect of GA			
	48 hr.	segments exp	· · · · · · · · · · · · · · · · · · ·	mM G-1-P fo	
•		t medium	• •	250 mg fresh	· •
•		buffer onl buffer +.G	· •	$277.5 \pm 1$ 330.0 ± 1	
	н,о	buffer + ( (1 x 10 ⁻⁴ buffer + (	M	282.0 ± 1	0.8
(		+ GA ₃	-	334.5 <b>*</b>	7,5.
•	*3 hour inc	ubation period	].		

this observation, a GA₃ induced change in cellular membrane permeability was not pronounced (Table 4.33).

Discussion

Root regeneration in tomato leaf outtings can be described accurately and consistently through the use of the developmental index, LPI. While maximum regeneration capacity occurs at approximately the point of maximum growth rate in length of the tomato leaf (i.e. LPI₃ 2.0 - 3.0), hormonal application alters this situation. Treatment with natural or synthetic auxins enhances rooting optimally during the stage after maximum growth rate and prior to that leaf's completion of the exponential growth phase Ti.e. LPI₃ 3.0 - 4.0). A consistent, positive correlation between petiole or terminal leaflet and rachis growth with

Localized application of GA₃ to the severed petiole bases consistently inhibited rooting regardless of LPI₃. Stimulation of rooting by high concentrations of the gibberellin biosynthetic inhibitors, CCC and AMO-1618, suggests a possible role for endogenous gibberellins in the restriction of root regeneration. However, although CCC and AMO-1618 are capable of selective inhibition of gibberellin biogenesis in higher plants, the present evidence is far from conclusive and may simply indicate increased organic nitrogen levels due to the breakdown of the inhibitors (Lange, 1970). A significant GA₂ mediated

Table	4:33.	Changes	in	<b>cell</b> u	lar	membran	e	permeability	of	$GA_3$
*	· · · · ·	treated	, nat	iala	c	nanta		••		-
		treated	per	TOTE	Segi	llen LS4	•			

. .

Treatment	Cell contents	released (mean	absorbance ±SE)
~	A 240 nm	- A 260 nm	A 280 nm
distilled H ₂ 0	,15 ± .003	.07 ± .005	.05 <b>.±</b> .004
•	M) .16 ± .004	•	/
$GA_3 (2 \times 10^{-4})$	M)	.09 ±.004	.06 ± .002
$GA_3 (4 \times 10^{-4})$	M) .15 ± .001	07 ± .002	.05 ± .002
$GA_3$ (6. x 10 ⁻⁴	M) .15 ± .006	.08 ± .001	.05 ^{°±} .001

increase in petiole growth over the control tissue could be related to rooting response. No significant GA, effects on growth were evident prior to or during root initiation. These results suggest that no diversion of essential nutrients takes place for 'either enhanced petiole or blade growth and would tend to rule out the nutrient diversion hypothesis through the GA, mediated formation of alternative 'metabolic sinks'. Unlike the cuttings from distilled water or auxin treatments, maximum rooting response in GA₂₀ treated material occurred prior to the stage of maximum leaf growthgrate. In view of the high endogenous auxin levels observed in dicot leaves at the stage immediately preceding maximal leaf, growth (Goodwin, 1937) and the observed ability of auxin treatment to reverse the GA, mediated inhibition of root regeneration in tomato leaf cuttings, it is tematively suggested that the optimal rooting point in the GA, treated material may be primarly due to high endogenous auxin levels in the tomato leaves at this stage. Although the mode of GA2 action (or "sequence of reactions, leading to the physiological "effect"; Paleg, 1965) can be modified (or "overridden") by auxins in an apparently independent manner (when condidered from the point of view of timing sequence of auxin application. relative to GA,), ABA reversal of GA, inhibition is quite time-and concentration specific, which suggests a direct interaction between the two growth substances? However, the precise nature of ABA action in the sequence of reactions

leading to decreased starch levels is unknown. At a low concentration (i.e.  $1 \times 10^{-8}$  M) kinetin had no effect on GA, inhibition regardless of time of application or the presence of ABA. Consequently, its role as a possible modifier of GA, action in the regeneration response of tomato leaf cuttings seems questionable. Interestingly, high exogenous sucrose concentrations cannot overcome the GA, inhibition of regeneration. This feature suggests that soluble carbohydrate levels may not be the primary candidate for GA, action. This conclusion is supported by. the quantitative analyses of total soluble carbohydrates which demonstrate an increase in both the treated and un treated leaves prior to and during root regeneration. Similarly, histological evidence reveals an active vascular cambium under both treatment conditions. This aspect would tend to rule out a GA, mediated inhibition of mitoticactivity in the tissues which will be associated with the organogenic_event

Biochemical and histochemical evidence tend to support Thorpe and Murashige's hypothesis (see section 2.4) that localized starch accumulation prior to and during primordia formation are a necessary prerequisite to an organogenic response. However, contrary to the suggestion put forth by Thome and his colleagues that GA₃ mediates localized starch levels primarily by altering amylase activity. (Thorpe and Meier, 1974a; 1974b), the present results support the hypothesis that GA₃ initially inhibits localized starch synthesis with no significant effect on starch breakdown by amylase. The present evidence of GA3's role in the inhibition of localized starch synthesis may be summarized as follows:

 GA3 application has no significant effects on the breakdown of starch in tomato petioles when the leaf cuttings are placed under conditions favouring continuous starch breakdown (i.e. after 2-6 days in continuous darkness);
 When GA3 treated leaf tissue is placed under a 16 hour. photoperiod, no active accumulation of starch takes place in the petioles although endogenous sugar levels increase. Increased sugar and starch levels are also observed in the leaflets of the treated and untreated tissues.

3) Total mylolytic activity increases in both the treated and untreated petioles during the initial four days with no significant treatment effect, wident.

4) Amylolytic activity is localized primarily in the vascular bundles although inhibition of active starch accumulation in the GA₃ treated petioles is evident in the cortical parenchyma as well as the vascular tissues.

5) Net starch synthesis in the presence of the starch precursor, G-1-P, did not occur in GA₃ treated petiole segments.

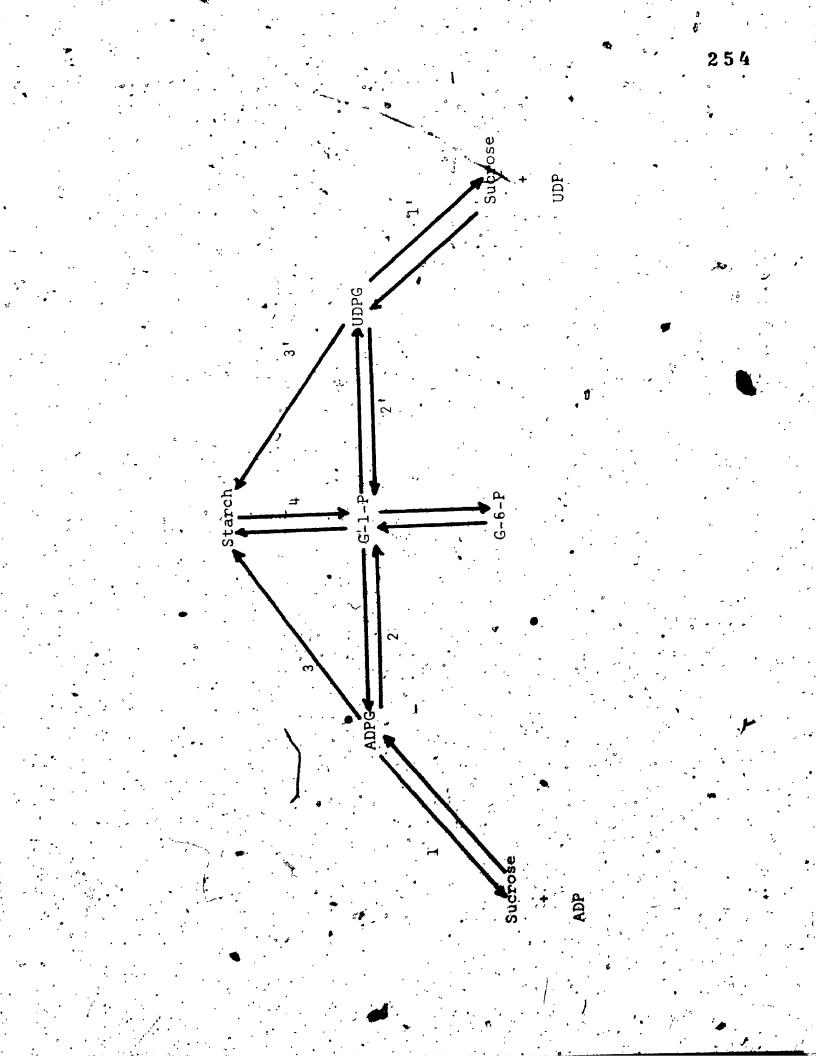
On the basis of the present evidence, the mode of GA3 action can be hypothesized as involving inhibition of the starch synthesizing mechanism within the plastids causing

the observed failure of the petioles to accumulate starch. This event would, in turn, block the formation and early development of the organ primordia through a limitation in the availability of locally high concentrations of carbohydrates in an osmotically inactive form which would be readily utilized for metabolic energy production and rapid cell wall synthesis via the phosphorylated sugars. In view of the apparent lack of GA, treatment effects on net starch synthesis from G-1-P in petiole segments when applied during the incubation period and the failure to detect a significant GA, modification of cellular permeability, the GA, mechanism of action (or specific metabolic change: Paleg, 1965) would not appear to involve a rapid and pronounced membrane modification effect (at least at the cellular level). Rather, the inability of GA, treated material to synthesize starch in the presence of G-1-P. suggests that the mechanism of GA, action may reside in either 1) the inhibition of de novo or enhanced synthesis of starch synthesizing enzymes and/or 2) "destabilization" of pre-existing starch synthesizing enzymes. Since three routes have been identified for starch synthesis in the leaves of higher plants (Fig. 4.13) an examination of the specific activity changes of such enzymes as UDPGpyrophosphorylase, phosphorylase, UDPG-starch synthetase, ADPG-pyrophosphorylase and ADPG-starch synthetase would. appear to be a desirable first step. However, as noted by Tekete and Vieweg (1974), starch synthesis may take place

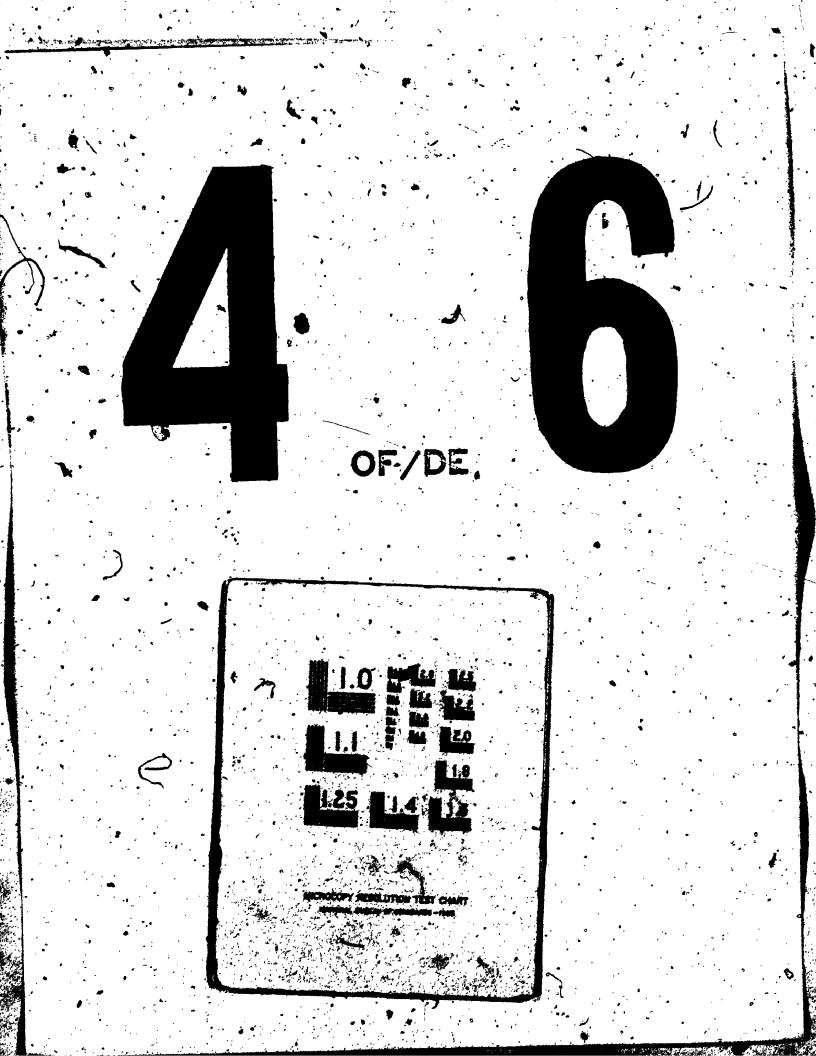
252

Figure 4.13. Proposed main pathways for starch synthesis (after Huber, Fekete and Ziegler, 1969;

Vieweg and Fekete, 1972; Fekete and Vieweg, 1974. Key to the enzymes:


ADP.glucose:fructose glucosyl transferase;
 1'.UDP glucose;fructose glucosyl transferase;

2. ADPG-pyrophosphorylase;


2'.UDPG-pyrophosphorylase;
 3. ADPG²starch synthetase;

3' UDPG-starch synthetase;

4. phosphorylase.



during rapid starch degradation with the overall effects o starch metabolism "the sum of quite a number of different synthetic and degradation steps which all function at approximately the same time" (p. 135). These complex biochemical problems are beyond the scope of the present study. Moreover, it is apparent, what a cautious approach is hecessary. For example, although ADP-glucose pyrophosphorylase appears to be an important enzyme in the regulation of starch levels in leaf tissue (Turner and Turner, 1975), its' in vivo activity may be controlled by such factors as i) G-l-P levels, ii) P, levels; iii) level of glycolytic intermediates (e.g. P-glycerate); iv) ATP Whether directs levels within the chloroplasts and ,v) pH. or indirect regulation of this enzyme or enzymes of the starch biosynthetic pathways is mediated by plant growth regulators is currently wiknown. Furthermore, whether the postulated regulation of one or more of the starch synthes enzymes is under nuclear or organelle control is also unkn The limited evidence in the literature would suggest that the regulation of synthesis and turnover of starch metabolizing enzymes in plastids may be controlled primarily b the nucleus with a subordinate role played by the organell itself (Badenhuizen, 1969).



GROWTH, DEVELOPMENT AND REGENERATION OF THE TOMATO LEAF

Warren Kent <u>Coleman</u>

Department of Plant Sciences

1 : 1.2 . 1

Ъν

*Submitted in partial fulfillment

of the requirements for the degree of Doctor of Philosophy

Faculty of Graduate Studies The University of Western Ontario

January, 1976

Warren Kent Coleman 1976

C

## CHAPTER 5

ROOT REGENERATION FROM LEAF DISCS CULTURED IN VITRO: PRELIMINARY OBSERVATIONS

## 5.1 Introduction

The tomato leaf cutting is a relatively autonomous system with regard to root regeneration. This feature no doubt arises due to a sufficient supply of endogenous metabolites (both hormonal and nutritional), although the levels of these factors fluctuate with the developmental. stage of the leaf., As a consequence, the relative importance of various endogenous factors (e.g. carbohydrate substrate, vitamins and hormones) and their possible interactions in the regeneration process are unknown. A more ideal regeneration system should exhibit a total dependence on chemically defined, exogenous nutrients and plant growth regulators. In view of the previous work with tomato leaf cuttings (see Chapter 4), the present study centred around a) developing a regeneration system utilizing 5 mm diameter leaf discs cultured in vitro which would be totally dependent. upon external stimuli and b) examining that system at the histochemical level (utilizing both light and electron microscopy) with a view to defining the regeneration response

2 5 🚧

in terms of cellular activities.

The present study is the first detailed account of anatomical/histochemical changes occurring during root formation which are induced in cultured leaf blade tissue by a specific hormonal stimulus. No comparable study with any species is evident in the literature. Finally, this study will serve as a reference point for subsequent physiological experiments dealing with the apparent multiple; controls of organogenesis by gibberellins in cultured leaf material (see Chapters 6 and 7).

#### 5.2 Materials and Methods

5.2.1 In vitro Culture

True leaf number 3 from the tomato cultivar 'Farthest North' was selected for all <u>in vitro</u> regeneration experiments. An average LPI₃ was calculated for each group of leaves used in the culture experiments on the basis of the measurements of 10 randomly selected plants (see section 2.2 for LPI calculations). Twenty to thirty leaves were severed at the pétiole base, and the cut surface immediately sealed with liquid Paraplast. Leaves were surface sterilized with freshly prepared and filtered 5% calcium hypochlorite. After sterilization for 7 minutes, all subsequent operations were carried out in a sterile culture hood. The leaves were rinsed with four changes of sterile distilled water (total volume approximately 1 liter) and then placed, adaxial side

down, on a glass plate. Leaf discs were cut with a 5 mm (inside diameter) stainless steel cork borer. Two discs were removed from the basal half of each leaflet and included the midrib medially placed within the disc. The, discs were temporarily stored (i.e. up to 1 hour) on moist filter paper in small. (6 cm diameter) petri plates until all of the leaflets had been sampled . Subsequently, the . leaf discs (one disc per vial) were placed abaxial side down on approximately 10 ml of .8% agar-based medium (pH 5.2' ± .1) in screw top vials (Richards Glass Co., Montreal) containing Murashige and Skoog (1962) mineral elements, 1 x 10⁻⁷ thiamine and 2% sucrose. This medium is termed "basal" and is non-inductive with regard to organ regeneration. IAA at final concentrations of 5 x  $10^{-6}$  M to 5 x 10⁻⁵ M was added to basal medium by filter sterilization using a Gelman Swinny type hypodermic filter attachment with Millipore filters (GA-8; pore size 0.2 u) after autoclaving the other constituents. This medium is termed the "auxin medium" and is inductive with regard to root regeneration. The discs were placed under continuous low intensity (200-250 f.c.) fluorescent (Sylvania Cool White) lighting at a constant 25°C for up to seven days unless otherwise noted.

# 5.2.2 Histological and Histochemical Techniques

5.2,2.1 Fixation and Embedding for Light Microscopy At twelve hour 'intervals for a period of five days and

again on the sixth and seventh days, five leaf discs were removed from both the basal and auxin media and fixed immediately in cold 10% formalin in 0.1 M phosphate buffer (pH 7.1) for 2-3 hours using vacuum infiltration. fixed discs were passed through a tertiary-butanol series and embedded in Paraplast wax (Jensen, 1962). Transverse and paradermal sections were cut 10 M in thickness and mounted on slides coated with Haupt's gelatin adhesive (Jensen, 1962). The slides were dewaxed in xylene and hydrated through a graded ethanol series. The slides were washed in running tap water for 2-3 hours prior to staining In the following histochemical procedures, the prepared slides were batch processed in order to minimize variability of the staining results, All histochemical treatments were repeated at least four times with serially cut sections (20 tissue sections per slide) for each time period. A total of approximately 10,000 to 15,000 tissue sections were examined in this histochemical study. . "

## 5.2.2.2 DNA and RNA Staining

DNA and RNA were localized using the Azure B method of Flax and Hines (1952). Control slides were treated with 5% TCA at 90-95°C for 15 minutes in order to hydrolyze the nucleic acids prior to staining (Jensen, 1962).

#### 5.2.2.3 Total Protein Staining

Total proteins were localized by the Mercuric Bromphenol

259

blue method of Mazia, Brewer and Alfert (1953) as modified by Pearse (1968). No controls were included as preliminary experiments demonstrated that neither the Van Slyke deamination (Gifford and Dengler, 1966) or acetylation (100% acetic anhydride at 60°C for 4 hours; Pearse; 1968) blocked the staining reaction. Similar results were obtained by Quintarelli, Scott and Dellovo (1964).

# 5.2.2.4 Basic Protein Staining

Basic proteins were localized by the picric acidbromphenol blue method of Block and Hew (1960,a;b); see also Ringertz and Zetterburg (1966) for discussion of the staining procedure. Controls included the following and preceded the staining:

i) modified Van Slyke deamination according to Block and Hew (1960a) - equal volumes of cold 5% TCA/5% sodium nitrite for 1/2 hour at 4°C. Two solution changes were made, during this time period. This deamination step was used either with or without prior picric acid hydrolysis of the nucleic acids. This procedure blocks the  $\ll$ -amino groups and the  $\in$ . amino group of lysine. The guanidino group of arginine is relatively unaffected.

ii) acetylation - 100% acetic anhydride containing 1% acetic acid at 60°C for 1 hour (Block and Hew, 1960b). This procedure blocks the amino groups by acetylating primary and secondary amines and amino compounds (Pearse, 1968). iii) absence of nucleic acid hydrolysis - as noted above, the picric acid hydrolysis of the nucleic acids was omitted in one control series in order to demonstrate basic amino groups which were not bound to the mucleic acids. A second control series was not hydrolyzed with subsequent deamination in order to demonstrate the involvement of terminal amino and/or the E groups of lysine in the staining of the "unbound" basic protein fraction.

Extensive evaluation of the ammoniacal silver procedure ... of Black and Ansley (1964) lead to its rejection as a suitable stain for basic proteins due to its apparent nonspecificity.

# 5.2.2.5 Starch Staining

Starch grains were localized sing the Periodic Acid-Schiff's (PAS) reagent (Jensen, 1962) as well as a Periodic Acid-Ammoniacal Silver (PAAS) method which was developed by the author (see Appendix ). The PAAS method was simpler than the PAS method while allowing starch grain morphology and distribution to be adequately described. IKI staining for starch (Jensen, 1962) was not possible with the fixed material.

# 5.2.2.6 NaOH-Basic Fuschin Clearing Technique

Method no. 1 of Fuchs (1963) was used in order to study the stages of xylem vascularization and Casparian strip formation within the developing primordia (see section 3.2.2.1 for method outline).

# 5.2.2.7 FPA-Propiocarmine Clearing Technique

This clearing technique was developed by the author and is described in section 3.2.2.1. The procedure was useful for studying nuclear activity in the various tomato leaf tissues during primordia induction and development. Nuclear/nucleolar volumes for three different leaf tissue types (i.e. midrib cortical parenchyma, bundle sheath cells of the minor veins, and spongy mesophyll) were calculated using the formula for spheroidal volume:

 $\neg v = \frac{4}{3} a^2 b$ 

where a equals transverse radius and b equals longitudinal radius (List, 1963). A diploid, pre-DNA synthetic phase,  $G_1$  nuclear volume has been determined at approximately 150-190  $\mu^3$  on the basis of Van't Hof and Sparrow's work (Van't Hof, 1965; Van't Hof and Sparrow, 1965) with tomato root tissue.

Two complete experiments of 7 days duration and comprising induced and non-induced leaf discs were sampled at 12 hour intervals (20 samples/treatment) and processed by each of the above clearing methods...

All histological and histochemical observations were made primarily for leaf discs derived from maturing leaflets within the LPI₃ range of 3.0 to 4.0.

## 5.2.2.8 Histochemistry of Fresh Tissue.

Free-hand sections of leaf discs aged 8 to 10 days on basal medium were stained according to Jensen (1962) and Johansen (1940) as follows: a) neutral red for vacuolar structures; b) Sudan IV for lipids; c) Janus green for mitochondria; d) IKI for starch; and e) 1% aqueous Methylene blue for general cellular morphology. Acid phosphatase was localized by the lead sulphide procedure (Gomori, 1952, as cited in Jensen, 1962) while peroxidase activity was located according to the benzidine reaction as modified by Van Duijn (1955, as cited in Jensen, 1962).

## 5.2.2.9 Electron Microscopy

Fresh leaf material and leaf discs aged for 8 days on basal medium were cut into 1 to 2 mm squares under cold 3% glutaraldehyde in .1 M phosphate buffer, pH 7.1, plus 2% sucrose. Tissue pieces were subsequently transferred to fresh glutaraldehyde fixative and repeatedly vacuum infiltrated until the tissue was essentially free of trapped air bubbles. Total fixation time in cold glutaraldehyde was 16 hours at 4°C. Tissue was rinsed in cold buffer and 2% sucrose five times over a 6 hour period and post-fixed for 3 hours in 2% osmium tetroxide buffered to pH 7.0 with .1 M phosphate. Using fresh buffer, the tissue sections were washed 4 times over a 14 hour period followed by staining the tissue blocks with saturated (approximately 8%) aqueous uranyl acetate for 30 minutes at room temperature. Following whole tissue staining, the preparations were washed in distilled water and dehydrated through a graded acetone series at 4°C. Total dehydration time to pure acetone was 5 hours. The tissue blocks were subsequently infiltrated with Spurr's low Viscosity epoxy resin medium (Spurr, 1969) over a 2 1/2 day period at room temperature with continuous agitation followed by embedding and polymerization for 2 days at 60°C. Sections were cut with a diamond knife and stained for 45 seconds to 1 minute in .35% aqueous lead citrate. Sections were observed with a Phillips electron microscope (Model 200).

# 5.2.2.10 Photomicrography

Prepared histochemical slides were photographed with a Zeiss Photomicroscope II. Black and white photos were taken and processed as previously described (section  $3.2 \times$ ). Colour photographs were taken as follows:

i) Kodacolor-X 35 mm film for preparations staining red or yellow. Correct adjustments included an ASA setting of 80, 12 volt setting for the 60 watt illuminator and the use of a 3200°K compensating filter (Kodak 80A).
ii) Kodak Photomicrography colour film 2483 for preparations staining blue, green or purple. Correct adjustments included an ASA setting of approximately 4.0, 12 volt setting for the 60 watt illuminator and the use of a 3200°K compensating filter (Kodak 80A).

## 5.2.3 Statistical Analysis

Root count data was evaluated as described in section 4.2.6 using 70% ethanol cleared material in order to count internal as well as external roots. In the leaf+disc system; rooting response was divided into three categories depending on the vascular origins: i) midrib; ii)° secondary vein and iii) minor vein origin. Two sub-categories were recognized for each one of the three categories: external or emerged roots and internal or presumptive root primordia. Fresh weight, dry weight and midrib lengths were transformed to log values prior to analysis (Sokal and Rolf, 1968; Wolf, 1968).

#### 5.3 Results

#### 5.3.1 Culture Requirements for Leaf Disc Regeneration in vitro.

Some of the variables associated with root regeneration in cultured tomato leaf discs were defined by extensive preliminary culture experiments. A few of the more important observations are summarized below.

### 5.3.1.1 Nutritional Factors

i) Preliminary experiments with White's mineral nutrients (White, 1963) proved unsuccessful in supporting root regeneration from the leaf discs. However, the inorganic medium of Murashige and Skoog (1962) was successful and, as a consequence, was used throughout this study. The omission , of any inorganic component (i.e. macroelement, microelement, or FeEDTA stock) blocked regeneration. ii) A total dependence on exogenous carbohydnate source was necessary for regeneration by the leaf discs. All three carbohydrate sources tested o(i.e. sucrose, glucose, and glucose/fructose) supported regeneration over the concentration range of .005 M to .10 M although different concentration optima were apparent in terms of root production or fresh weight changes. Filter sterilization instead of autoclaving the glucose/fructose component of the medium had no effect on root regeneration although a decreased fresh weight was evident in the autoclaved treatment. iii) Thiamine was necessary for root regeneration in excised ° leaf discs. This effect was evident only in mature; leaf material (i.e. mean  $LPI_2 = 6.4$ ) and no effect could be demonstrated in younger (i.e. mean LPI₃ = 3.2) samples (Table 5.1). Other vitamin combinations tested, which included nicotinic acid, pyridoxine, biotin, calcium pantothenate

and ascorbic acid, increased rooting significantly although no dependence on morphological age was evident.

5.3.1.2 Non-Nutritional Factors

i) Rooting appeared to be relatively independent of the amount of medium available to the leaf disc (i.e. between 2 and 16 ml).

ii) Growth and root regeneration from the leaf discs exhibited a broad ranged pH optima from 4.3 to 6.6 although

Lable.5.1. Effects of	LPI.3	on_r	egener	ation	respo	Ase o	⊳‡`
cultured t	omato	leaf	discs	to v	arious	vita	amìns
freatment ****	LPI3	Meai	n : numb	er of	roots	per	disc
control	3:2 6.4		•	1,°3 2.1 .	a. C.	· · ·	•
hiamine 1 x 10 ⁻⁷ M)	3:2 6-4			1.4 ° 5.5 '	a b	•	•
hiam ne and vitamin vitamin	3.2 6.4	• •	£,	6.4 4.8	b a,b	• • • [•]	• •

· ` & °	• • •	10	· · ·	,	
thiamine and vitamin	•3.2	` c	12.9	<b>đ,</b> b'	•
supplement II**	6.4		1ç.6'	Ъ.	
thiamine, supplements	3.2	5 6 - 5 -	16.6.	Ъ	
I and II	, 6.4.	**.	1.6.6	Ъ	
<b>A</b>	e	•	·	• • •	۲

* Vitamin supplement I contained nicotinic acid (1 x  $10^{-6}$  M), pyridoxine (1 x  $10^{-6}$  M) and glycine (5 x  $10^{-5}$  M).

** Vitamin supplement LI contained biotin ( $1 \times 10^{-6}$  M), calcium pantothenate ( $1 \times 10^{-6}$  M) and ascorbic acid ( $1 \times 10^{-6}$  M). Means followed by the same letter in a column not different at 5% level. the media pH changes during the culture period tended towards mildly acidic conditions (Table 5.2).

and and the second

iii) Leaf discs exhibited an apparent increased sensitivity to IAA in terms of number of roots regenerated when cultured in the dark in contrast to different light conditions (Fig. 5.1 A, B and C). Furthermore, increased light intensity caused a decrease in the number of internal or presumptive root primordia regardless of their origins. However, midrib elongation and mean root length were significantly greater in light grown discs (Table 5.3).

The possibility that the regeneration responses to IAA were related to either 1) the nature of the auxin and/or 2) light effects on the medium were explored. As indicated in Table 5.4, conditioning of the media by continuous light exposure had a significant effect on the number of regenerated roots regardless of the auxin source.

iv) Leaf discs taken from different aged material (expressed in terms of their mean LPI3) showed no significant differences in their regeneration responses to low IAA concentrations. However, there was a significant difference in response

at high IAA concentrations between young leaves (mean  $LPI_3 = 2.0$ ) and leaf material taken from the end of phase one growth (mean  $LPI_3 = 3.6$ ) or older leaves ( $LPI_3 = 5.7$ ) (Table 5.5). This difference in response was due primarily to fluctuations in the numbers of primordia originating from the minor vein system.

v) Essentially similar results were obtained with different

Table 5.2. Effects of media pH on growth and regeneration of cultured tomato leaf discs.

Mean number Mear e fresh Initial pH* Final pH* roots per disc weight (mg) 4.3 24.4 4.7 7.0 a C, 25.7 5.Ò 5.0 7.0 a С 10.1 5.3 5.2 b 27.2 С 8.2 .6.0 5.6. a,b 26.1 С 6.2 5,8 a,b *p*∋ 7.9 27.9 * C 23.8 6.6 a,b · 941 C

* Mean value of four determinations.

IAA 5 x  $10^{-6}$  M

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 3.6

Figure 5.1. Effects of light intensity on root regeneration from tomato leaf discs cultured <u>in vitro</u> on media containing different IAA concentrations. A. Continuous light, 800 f.c.; B. continuous light, 250 f.c.; and C. continuous darkness. Mean LPI₃ = 4.2 Closed circles, roots of midrib origin; open

and the second 
Closed circles, roots of midrib origin; open circles, roots of secondary vein origin; closed squares, roots of minor vein origin.

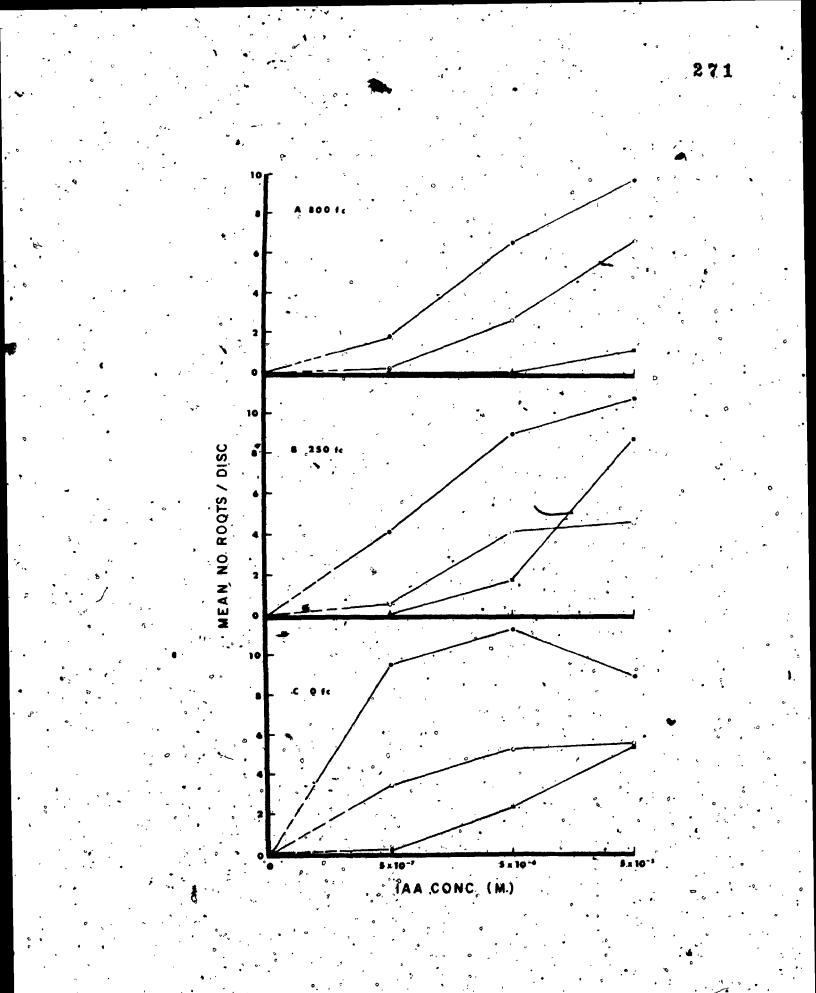



Table 5.3. Effect of light intensity on midrib and root elongation from regenerating leaf discs on media containing different levels of IAA.

Spitt an and the chain when the

, IAA • concer	° •	ight intensity foot candles)	length (mm) after 7 days (± S.E.)	<pre>length (mm) after 7 day (± S.E.)</pre>
0		• 0 •	5.7 ±.1	
· ·	``````````````````````````````````````	250	° 7.1 ± .2	
•	• re	. 800	7.2 ±.2	• 
5 x 3	L0 ⁻⁷ M	0	. 6.3 ± .1	3.0 ± .2
• • •	•	· 250 `	7.1 [±] .1	9.2 ± .9
•	•	<b>8</b> 00	7.2 ± .2	(15.1.±.9
ຶ 5 <b>x</b> ຸ]	L0 ⁻⁶ M	0	6.2 ± .1	_1.9 ⁺ _,1
• •	· ·	250	,7.0 ± .1	2.5 ± .1
	- - 9 -	800	. 7.2 ±.2	13.1 ± 1.1
5	L0 ⁻⁵ M	0	6.1 ± .1	
· · · · ·	¢	.250	• 6.6 ± .1	2.0 ± .2
	e	°°° 800*°	6.8 ⁺ .1	12.7 ± 1.1

Mean LPI₃ = 4.2

1

Auxin*	Media pretreatment conditions**	Culture conditions**	"Mean number of root per disc
IAA .	• none	light	4.5 [%] c,d,é
ر <b>م</b>	none	dark	13.2 f
	light	light	.9 a 🕚
· .	' dark	í light	4.5 c,d,e
·	• light	dark	5.4 c,d,e
`s ?*	dark	dark	16.7 £
IBA	none	light	3.6 c',d
• •	nône	dark	8.2 e
• 0	<b>\</b> light	light	1.3 a,b
	đark	• light	2.9 b,c
	light	dark	4.2 c,d,e
. •	dark	dark 😽	8.1 d,e.
NAA	none	light	7.3 d,e
	none	dark	~14.5 f'
	light	light	3.6 b,c
	gark	light .	8.2 e '
	light	dark	15.8 f
· · ·	dark	đark	<b>16.4 f</b>

Table 5.4. Effect of light treatment of different auximedia on subsequent root regeneration.

A TALE AND A TALE A

* Auxin concentration:  $5 \times 10^{-6}$  M.

** Medřa were pretreated in continuous darkness or continuous light (800 fc) for 7 days at 25°C. Freshly cut leaf discs were then placed onto the media and subsequently cultured under the described conditions.

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 3.8$ 

Table 5.5. Effects of LPP, on regeneration response of tomato leaf discs to different IAA concentrations.

Here there have a

e.	• • • • • • • • • • • • • • • • • • • •	·	

0	2.0	. 4	a
· · · · · · · · · · · · · · · · · · ·	3.6	. 2	a
•	5.7	0.0	, a,
5 x 10 ⁻⁷ M	2.0	4.5	Þ
ι.	3.6	3.0	Ъ
•	5.7	_3.2 [°]	b
$5 \times 10^{-6} M$	2.0.	ę 10.0	a
	3.6	6.8	c
	5.7	8.1	c,d
5 x 10 ⁻⁵ M ²	2.0	22.1	e
4	3.6	🥻 11.1 🕺	a .
· · · · · · · · · · · · · · · · · · ·	5.7 *	8.4	c,d
,		•	• • • •

Means followed by the same letter in a column not different at 5% level. leaf positions as were obtained with different LPI3. vi) When leaf discs (true leaf #3) from different cultivars (i.e. Bonney Best, Marglobe, San Marzano, and Tiny Tim) at comparable stages of development were cultured at different IAA concentrations, regeneration was observed in all cases.

#### 5.3.1.3 Hormonal Factors

The minimum level of IAA necessary for a regenerative response in maturing leaf discs was approximately 0.01 ug/ml medium for dark grown discs and 0.2 ug/ml for light grown ones (Table 5.6). Exogenous IAA application for the initial 4 to 5 days of the 7 day culture period was sufficient for maximum root production at each IAA concentration tested (Table 5.7). IAA concentration also regulated the root distribution (Fig. 5.2A). Root primordia were present in 72 hour material as presumptive or internal root primordia only. However, by the end of the 7 day period, most of the roots were external (Fig. 5.2B).

Root elongation was progressively inhibited by increased auxin exposure, regardless of IAA concentration while the vascular patterns of the emerging roots (which are normally diarch) possessed increasing numbers of triarch arrangement (Table 5.8).

Various synthetic auxins and structurally related (inactive members) of the substituted phenoxy class were tested for rooting activity in the presence or absence of IAA. In general, the substituted phenoxy compounds did not Table 5.6. Rooting responses of maturing leaf discs to low concentrations of IAA.

Mean number of roots per disc IAA concentration continuous light (250 fc) Continuous dark

0 0.0 a 0.0 a  $3.0 \circ a$  0.0 a  $3.0 \circ a$   .0

Means followed by same letter in a column not different at 5% level.

Mean LPI $_3 = 3.4$ 

A CAR AND A CAR AND A

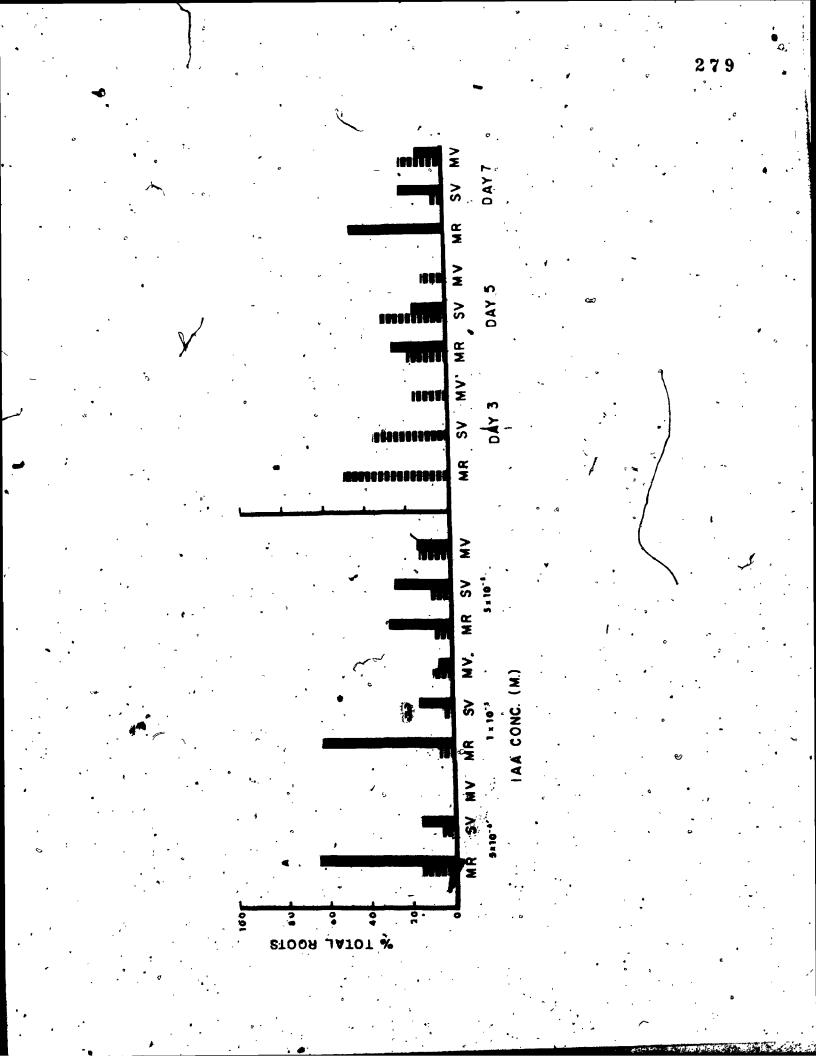
A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL

a strange

trea	atment on	rooting	•		\$	•
			Duration		an numb	· ,
IAA concentratio		edium ; ;	basal med (days)	dium ro di	ots per sc	۵ ۲
5 x 10 ⁻⁶ M		2 *	. 5		.4 b.	•
		3	· · · · · · · · · · · · · · · · · · ·	a • •	4.3 c	•
· · · · ·		4	. 3	1	0.1 a,	d
•		5	· 2	l	2.0 a,	d
	•	<b>7</b> .	0		8.3 a.	 
$1 \times 10^{-5} M$	$\cdot$ ·	Ż	- 5	L	7 b	•
	• (	3.)	4	•	6.1 c	· · · · · ·
÷ .	· (	ц. 🕷	3	1	4.5 d	:
		5	2	· <b>1</b>	1.5 a	ġ
• •	• • •	7	• 0	Ľ i	4.0 °ā	•
'5 х 10 ⁻⁵ М		2	5	ĩ	2.3 a,	a
*	•	3	- 4	• 2	1.3 e	
i i i i i i i i i i i i i i i i i i i	• •	4 · ~	. 3	2	9.2 e,	f
•	•	·5	2	[*] 3	0.4 f	
		7	- 0	. 2	6.4 e,	f •
	•		2	•	• .	. 4 . 54

Table 5.7. Effect of TAA concentration and duration of

* Discs were cultured on IAA media for varying times and then subcultured onto basal or non-inductive media for the remaining time period. Total culture time was 7 days.


Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 3.5$ 

277

Figure 5.2. IAA effects on root distribution within tomato leaf discs cultured in vitro.

A. Percent distribution of presumptive (hatched bars) and emergent roots (solid bars) after 7 days on different media containing different IAA concentrations. Mean LPI₃ = 3.5
B. Percent distribution of presumptive and emergent roots at different times on a medium containing 5 x 10⁻⁵ M IAA. Mean LPI₃ = 3.2 MR - midrib; SV + secondary vein; MV - minor vein.



length (mm) Mean root C å 1.5 13.8 ີ. ດ Initial root vascular pattern 2.9% Tetrarch . 6 Modifications of the primary vascular patterns of emerging root. 3, 5 or 7 days) and subsequently subcultured onto 43.5% Triarch Leaf discs were cultured on an inductive (IAA) medium for various 18% 9e 0 53.68 Diarch **91**8 828 sample ч О basal medium for a total of seven days. 50 69 M) basal medium roots per 55 Total no. their subsequent growth. 2 days **Freatment and Duration*** 4 days time periods (i.e. (5 x 10⁻⁶ 5 days .7 days 3 days 5.8. Table IAA

primordia and

5% level Sampled roots originated from the mid rib and secondary veins only. Means followed by the same letter in a column not different at ວ<u>*</u>ບ. n Mean LPI3

80 2

stimulate root formation appreciably and consistently inhibited IAA-induced rooting (Table 5.9). Histological abberations produced by the substituted phenoxy acids on IAA-induced rooting included disruption and callusing of the apical meristem of the root primordia and apparent inhibition of xylem element formation into the primordia although Casparian strip formation which is normally observed a short time after xylem vascularization in IAAinduced roots - was apparent.

One day pulses of IAA during the first four days of culture revealed a slightly greater sensitivity during the 48 hour to 72 hour period when evaluated after 7 or 14 days (Table 5.10). <u>In vitro</u> "aging" of the leaf discs on the basal medium for periods up to 10 days followed by the standard 7 day period on IAA medium revealed a similar increase in sensitivity by the second day followed by a progressive loss of regeneration capacity (Table 5.11).

The possibility that this loss of organogenic ability was due to specific endogenous physiological factors (and hence reversible) as opposed to irreversible genetic change, was explored. Leaf discs aged 8 days on basal medium were placed on IAA medium to which various nutritional and hormonal factors were added. The following factors were tested at a final contration of 10 mg/l and found to be ineffective: catechol, resorcinol, coumarin, glutamine, phenylalanine, yeast RNA, yeast hydrolysate, yeast extract, kinetin and various vitamin combinations.

Table	5.9.	Effects o	f different	substituted	l' phenos	⟨y/aç	įds on	
	•	0,					67	
4		root rege	neration fro	m cultured	tomato	leaf	discs.	

<b>)</b>	Mean 1	nůmber	of
Auxin treatment	roots	per d	isc
o-chlorophenoxyacetic acid (1 x 10.6 M)	0.0	a	
o-chlorophenoxyacetic acid + IAA (1 x $10^{-5}$ M)	8.6	d j	
p-chlorophenoxyacetic acid (1 x 10 ⁻⁶ M)	<b>1</b> .0	a	ι
p-chlorophenoxyacetic acid + IAA	1.6'	a,b	
$2,4,5$ -trichlorophenoxyacetic acid (1 x $10^{-6}$ M)	.7	a .	رۍ د
2,4,5-trichlorophenoxyacetic acid & IAA	1.8 .	a,b	
2,4,5-trichlorophenoxypropionic acid	•		,
$(1 \times 10^{-6} \text{ M})$	3,1	Ъ	<b>,</b>
2,4,5-trichlorophenoxypropionic acid + IAA	<b>J</b> . 4	Ċ,	, <b>1</b>
2,4-dichlorophenoxyacetic acid (1 x $10^{-6}$ M)	.6	_ a/ _	
2,4-dichlorophenoxyacetic acid + IAA	. 6	a	,
	13.3	.e °.	, 7 3

Means followed by the same letter in a column not different at 5% level.

Méan LPI $_3 = 3.6$ 

able 5.10. Changing sensitivity of cultured leaf discs 'to exogenous IAA applications. Mean number of હ Time of IAA roots per disc pulse treatment.  $(5 \times 10^{-5} M)$ after 7' days After 14 days 0 - 24 hrs. . . 6 a 24 - 48 hrs. -1.9 1.5 C, 48 - 72 hrs. . 4 . 6, а 072 - 96 hrs. 0.0 0.0 b-

and the general set of a

Means followed by the same letter in a column not

different at 5% level.

Mean LPI₂ =  $3.5^{\circ}$ 

• .•

the second s

and the second and the second s

# •Table 5.11. In vitro aging and loss of regeneration *

.

Duration on

non-inductive After 7 days on inductive medium* Mean fresh medium (days) Mean mumber of roots per disc wt. (mg)

22.0° 9.6 <u>1</u>1.1 27.5 а 37.8 12.8 a 10.4 38.1 33.6 5.9 Ď 2.0 33.9 p. . . . 3 27.5 10 : 27.3

* Leaf discs were cultured on the non-inductive or basal medium for the times indicated and subsequently transferred to an inductive medium (5 x  $10^{-6}$  M IAA) for a seven day

Means followed by the same letter in a column not different. at 5% level.

Mean^{*}LPI₃ = 4.4

period.

However, 10% coconut milk significantly (at the 5% level) stimulated rooting in the aged discs in the presence of IAA although a large number of the primordia were derived. from the callusing edges of the discs. High levels of IAA and IBA were capable of significantly increasing the regenerative response of the in vitro aged discs to a level comparable to low levels (approximately 1 to 5 x  $10^{-6}$  M) of IAA supplied to freshly prepared discs (Table 5.12), Attempts to reverse or at least slow down the in vitro aging process leading to a progressive loss of organogenic capacity by culturing the discs on media containing cysteine, ascorbic acid, PCIB, or TIBA proved unsuccessful. GA2, which is capable of retarding senescence in detached leaf tissue of such spècies as Taraxacum officinale, Tropaeolum majus, Rumex crispus and Rumex obtusifolius (Beevens, 1966; Goldthwaite and Laetsch, 1968), had no retarding influence on the loss of organogenic potential by cultured tomato leaf discs. Subsequent work indicated that wounding was essential to renewed regeneration provided that discs had previously formed one or two roots (Table 5.13).

#### 5.4 . Histochemical Aspects of Induced Root Formation

## 5.4.1 General Histological Changes

By twelve hours after culture initiation, nuclei and nucleoli had increased in volume on both the inductive and noninductive media (Figures 5.3A, B, C and D). In general, the

Auxin	concentration*	Mean	number of	roots per	disc
IĂ	l × 10 ⁻⁶ M	· · ·	<b>.</b> ,1	a,b	·····
e	1 x 10 ⁻⁴ M	· ·	ُ [°] δ.3	f.	. o
IBA	$1 \times 10^{-6}$ M	•	. 2	a,b.	<b>3</b> , î
· •3	1 × 10 ⁻⁴ M	- -	4.6	e	
NAA	1 [°] x 10 ⁻⁶ M		. 2	a,b	•
	$1 \times 10^{-4} M$	0	ĸ2.8	c,d,e	•
2,4-D	1 × 10 ⁻⁶ M		° 1.7	c,d	•
	1 x 10 ⁻⁴ M	\$ ¢	0.0	a	•
IAA	1 × 10 ⁻⁶ M		<b>#</b> 2 3	· · · · · · · · · · · · · · · · · · ·	
IBA	1 * 10 ⁻⁶ M	•	3	a,b ·	,
	$1 \times 10^{-6} M$		-	· · · · · · · · · · · · · · · · · · ·	• • • •
NAA	1 x 10 ⁻⁶ M	· · · · · · · · · · · · · · · · · · ·	•4	a,b	· · · ·
IAA ·	$1 \times 10^{-6} M$		· · · · · · · · · · · · · · · · · · ·	· 2 • .	`. *
2,4-D	1 x ^{10⁻⁶ M}	· · ·	1.4	`b,c	

Table 5.12, Effects of different auxins on root regeneration from in vitro aged tomato leaf discs.

* Leaf discs were aged in vitro for eight days on basal medium prior to sub-culturing onto the different auxin media. Means followed by the same letter in a column not different at 5% level.

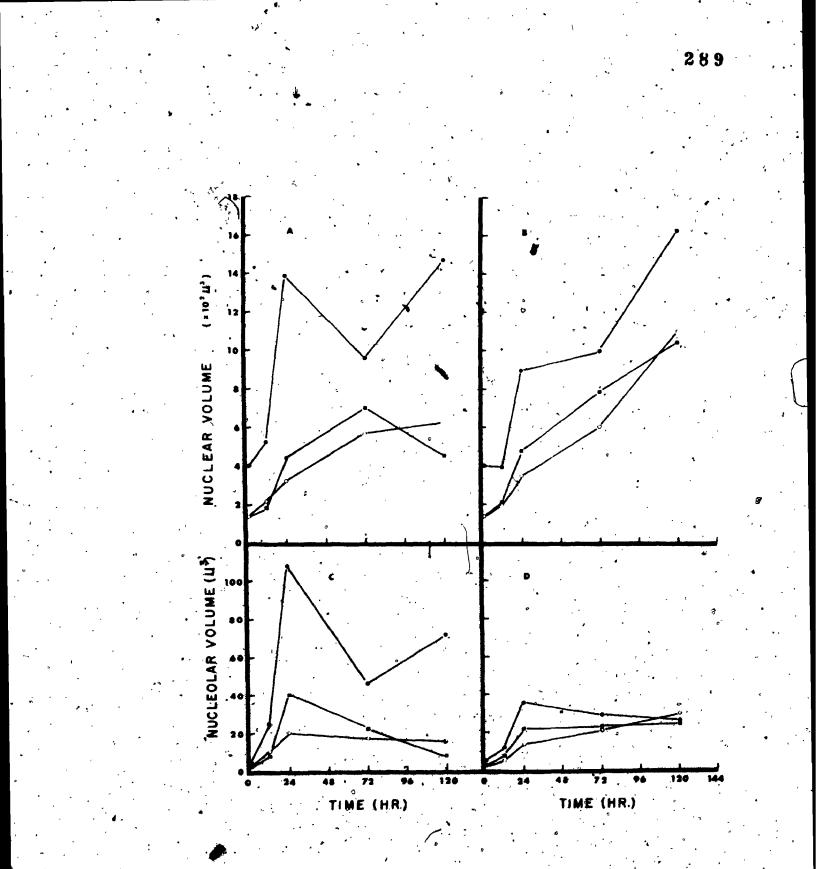
Mean LPI = 3.8

Table 5.13. Effects of wounding and kinetin on regeneration

## of in vitro aged leaf discs.

Treatment*		8	~ Mean number roots	
days O to 8	days 8 tó 15		per disc	
(rooted) basal	IAA (5 x $10^{-6}$	M)	5.1. a	
(rooted) basal	IAA + Kn (l x	10 ^{-,8} M)	° 2.6 b	
(unrooted) IAA	IAA	•	2.5 Ъ	
(unrooted) basal	IAA + Kn 🔬	•	1.1 c	
) ) )		· · · ·		

* 10 mm discs which rooted spontaneously during the eight days on basal medium (designated 'basal, rooted') were cut into two 5 mm discs and subsequently cultured onto an inductive medium (with or without kinetin at 1 x  $10^{-8}$  M) for 7 days (i.e. days 8 to 15). Failure to severely wound the <u>in vitro</u> aged tissue (rooted or unrooted) lead to no regeneration response when subsequently placed on an inductive medium.


Means followed by the same letter in a column not different

at 5% level.

Mean LPI₃ = 3.7

Figure 5.3. Nuclear and nucleolar volume changes in three different tissues of tomato leaf discs cultured on inductive or non-inductive media.

A. Nuclear volume changes on inductive medium.
B. Nuclear volume changes on non-inductive medium.
C. Nucleolar volume changes on inductive medium.
D. Nucleolar volume changes on non-inductive medium.
Midrib cortical parenchyma, closed circles.
Spongy mesophyll parenchyma, open circles.
Minor vein sheath parenchyma, closed squares.



•

nuclei of the 3 different tissues studied continued to increase in volume during the initial 24 to 120 hours regardless of the medium. The nucleoli appeared slightly vacuolated by 12 hours. Nucleolar volume increases were most pronounced during the first 24 hours in the leaf tissues cultured on IAA medium (Plate 5:1;3,4 and 5) with volume increases recorded up to 27 x for the cortical parenchyma of the midrib (Fig. 5.3C).

After 24 hours on the inductive median, numerous cell divisions were evident in the following tissues:

i) xylem and phloem parenchyma - anticlingl divisions with some periclinal figures;

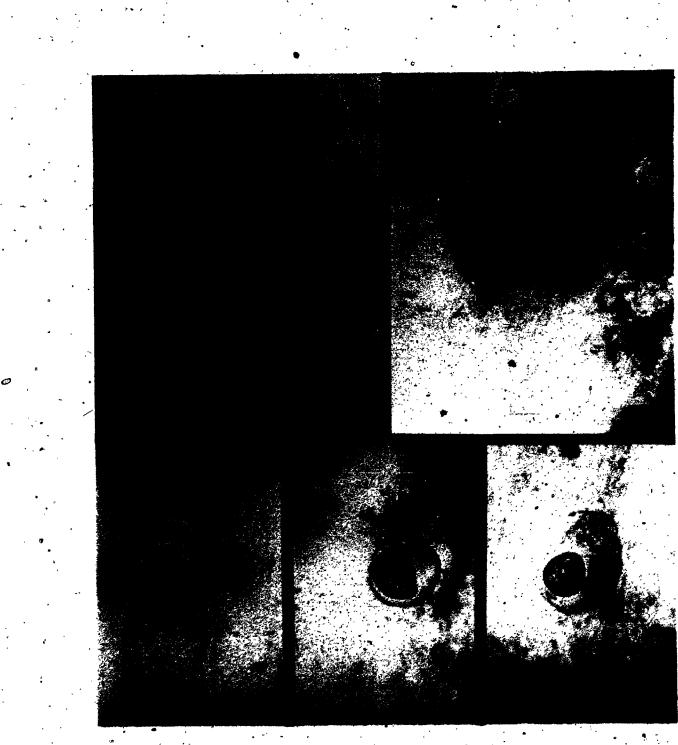
ii) cortical parenchyma - anticlinal divisions with most mitotic figures oriented transversely to the long plane of the veins;

iii) sheath parenchyma of the minor veins - anticlinal with some periclinal figures.

The following cells and tissues were essentially nonmitotic:

i) palisade and spongy mesophyll

ii) mature sieve tubes and xylem elements or tracheids; and, iii) epidermal cells (including the stomata and hair cells).


Similar mitotic responses were observed in leaf discs cultured on the basal medium although to a lesser degree.

Data for nuclear volume changes and observation of metaphase plate diameters of the major vein cortical parenchyma and minor vein sheath parenchyma supported the view that the Plate 5.1. Cytological aspects of IAA treated leaf discs cultured in vitro.

 Diploid metaphase figure in a FPA cleared minor vein sheath parenchyma cell after 36 hours on an IAA medium? (x 1600)

/2. Polyploid metaphase figure in a FPA cleared midrib cortical tissue after 36 hours on an IAA.medium. (x 1600)

3, 4 and 5. Large and highly vacuolated nucleoli in FPA cleared midrib cortical tissue after 24 hours on an IAA medium. (x 1280)



two tissues initially possess predominantly polyploid (i.e. tetraploid) and diploid nuclei respectively (Plate 5.1) and Fig. 5.3A).

بإحصابه المتحققا والهر

After 36 hours, small meristematic centers were observed forming from the external phloem parenchyma cells of the primary and secondary veins. Very short vessel elements were also observed to be differentiated from the xylem parenchyma located abaxially and in continuity with the youngest pre-existing xylem strands.

By 48 hours, the leaf discs on the inductive medium differentiated small primordia from their primary and secondary veins. It is apparent from Plate 5.6;2 that the root cap is derived from the overlying endodermal cells which initially divide anticlinally followed by one periclinal division step leading to a 2-cell layered cap stage.

The sheath parenchyma of the minor veins appeared to respond in a variety of ways when exposed to inductive conditions. These cells exhibited the following developmental patterns in an unpredictable manner:

i) starch sheath formation ii) Casparian strip formation

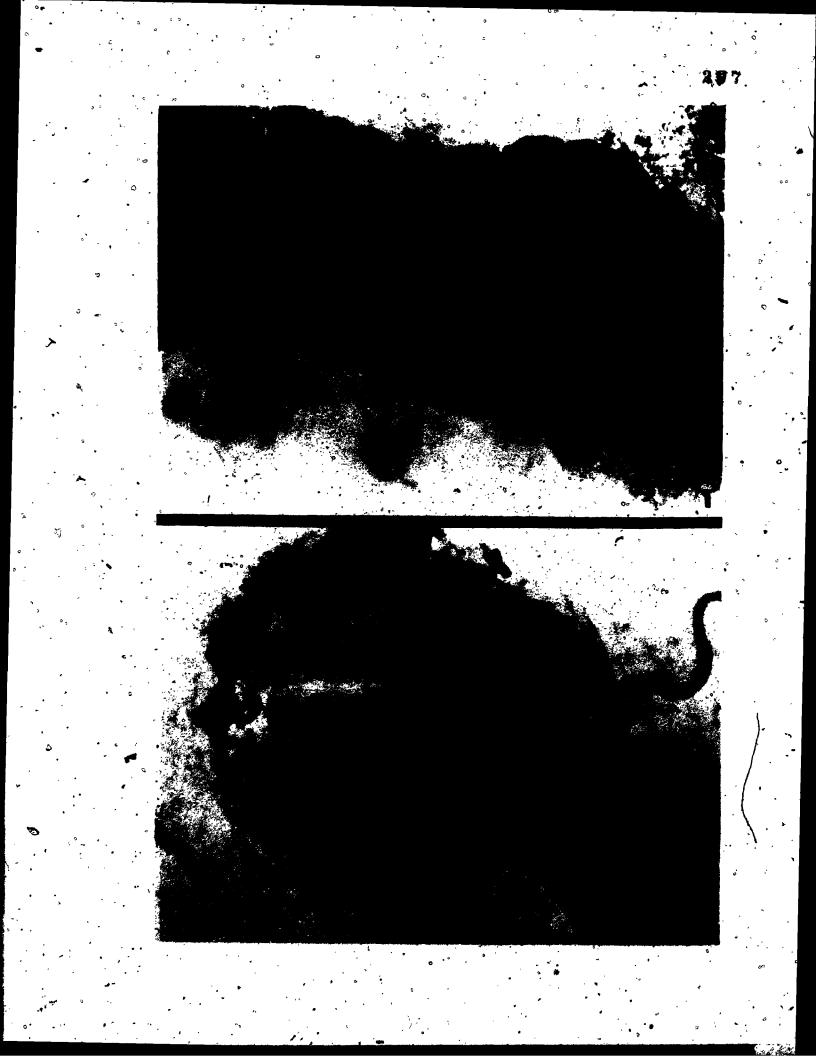
iii) wound vessel member (WVM; Roberts, 1971) formationiv) root primordium formation

Primordia on minor veins appeared to be derived solely from dedifferentiated sheath parenchyma derivatives (Plates 5.2; 5.3).

On the basal medium, considerably less mitotic activity -

Plate 5.2. Early stages in root primordia development from minor veins.

 Recent periclinal divisions in FPA cleared minor vein sheath parenchyma adjacent to external phloem after 36 hours on an IAA medium. (x 800)


2. Meristemoid development from derivatives of the minor vein sheath parenchyma after 72 hours on an IAÅ medium. (x 200)



Late stages in root primordia development from Plate 5.3. minor veins.

> 1. Well developed meristemoidal regions derived from minor vein sheath parenchyfma after .72 hours on an IAA medium. (x 800)

2. Three roots with xylem vascularization developed from a minor vein after 120 hours on an IAA medium. (NaOH cleared disc; x 256)



was apparent in the vascular parenchyma. The sheath parenchyma of the minor veins were capable of all the. above developmental patterns except root primordium formation. In fact, no meristematic cell clumps were evident although mitotic activity was apparent.

From 60 to 72 hours, the differentiating primordia formed procambial strands which, in turn, differentiated into the root vasculature. Xylem maturation began initially from xylem parenchyma adjacent to the youngest xylem. elements and consisted of reticulate to scalariform elements being laid down at right angles to the existing xylem.

Unlike the vasulature of spontaneously formed adventitious roots in tomato stem and leaf.cuttings which (initially) is normally diarch (Plate 5.4), the induced primordia often possessed triarch (and occasionally tetrarch) xylem patterns. As pointed out in section 5.3.1.3, this xylem patterning could be related to duration of auxia application. While the initial xylem elements within the developing root mature acropetally, subsequent additional xylem development may be basipetal. Discontinuous xylem maturation and extensively pitted vessel elements were also in evidence (Plate 5.5).

Casparian strip formation within the developing root primordia became evident at a later stage than the xylem vascularization and was contenuous with the newly formed Casparian strip in the surrounding midrib or secondary vein endodermis. It matured in an acropetal direction and Normal ontogeny of adventitious roots in intact tomato seedling hypocotyls.

Plate,5.4

 Early stage in a NaOH cleared seedling showing a developing meristematic area (arrow) which causes the overlying endodermis to burge into the surrounding cortical tissue (x 307)

 Initial xylem vascularization stage with the short vessel elements forming at right angles to the hypocotyl vasculature (arrows). (x 307)
 Well developed root vasculature with typical diarch pattern. (x 307)



Plate 5.5. Primary xylem patterns in roots induced from tomato leaf discs cultured on an IAA medium. 1. NaOH cleared root tip region showing the well developed Casparian strips (CS) of the endodermis and triarch xylem pattern (arrow). (x 256) 2. Anomolous maturation and development of the primary root xylem. Note the isolated vessel elements (arrows). (x 200)



usually approached the root primordium apex more closely than the xylem elements (Plate 5.5;1). The phloem appeared to precede the xylem during root primordia development and also matured in an acropetal direction.

On the non-inductive medium, extraxylary fibers associated with the external phloem of the major veins became apparent during this period (i.e. 60-72 hours). Casparian strip formation also became evident in the midrib and secondary vein endodermal cells and in minor vein sheath parenchyma in an apparently random manner. By 120 hours, a number of roots derived from the primary and secondary veins had broken through the epidermal leaf tissue. At this stage, the roots had a well defined root apex and internal differentiation had occurred to delineate the normal tissues of a mature root. Small vascularized roots (approximately one half the diameter of roots from the midrib or secondary veins) were apparent along the minor veins (Plate 5.3;1).

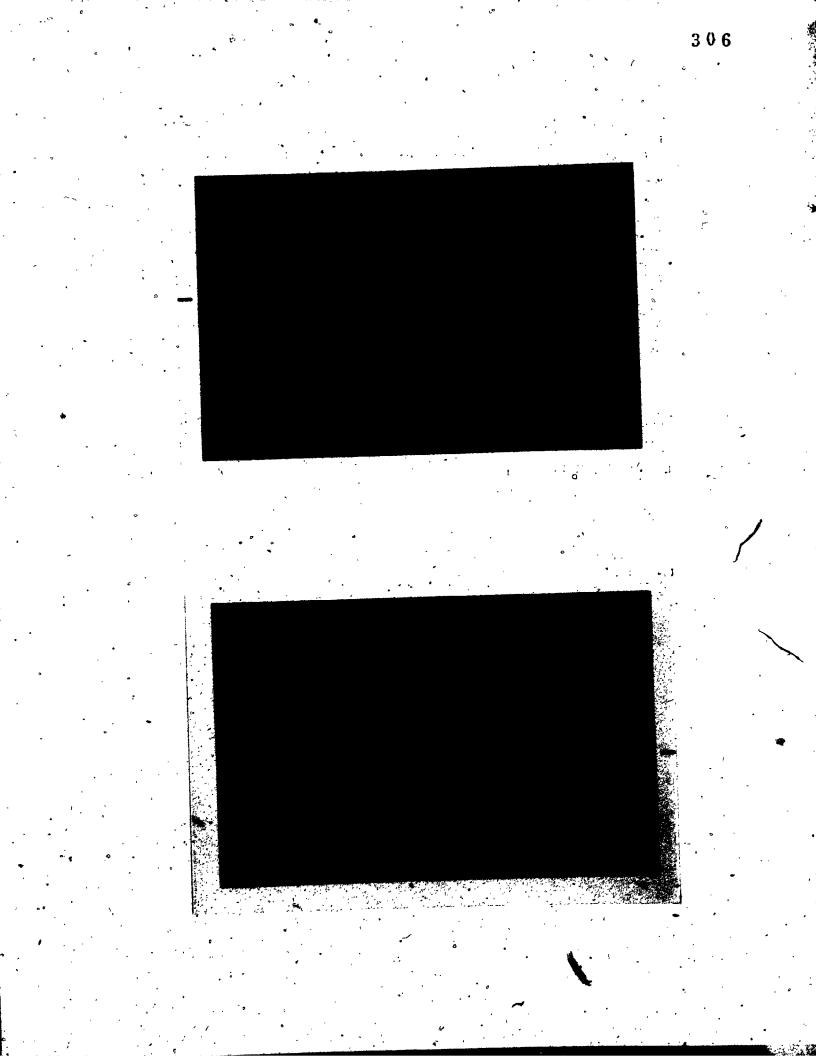
While cell division was still evident, its distribution now appeared restricted to the developing root tips as well as the midrib and 2° vein cortical parenchyma. Unlike the initial figures, however, the mitotic activity within the cortical parenchyma appeared to be more random in its orientation with high activity apparent at the basal and apical ends of the major veins.

By seven days, a well developed vascular cambium was evident in the midrib and secondary veins of both the induced

303

and non-induced leaf material with numerous external roots visible on the induced discs.

5,3.2.2 Nucleic Acids


Initially, the leaf discs exhibited no cytoplasmic staining with Azure B. Nuclei were small and light greenish-blue while isolated heterochromatin clumps around the inner periphery of the nuclei stained dark blue. Nucleoli were small and pale greenish-blue. Chloroplasts (especially in the palisade mesophyll) appeared pale blue while the lignified vessels and tracheids stained a green colour. TCA hydrolysis removed all nuclear and chloroplast staining without affecting the xylem colouration.

After 24 hours on the inductive medium, the cortical parenchyma and external phloem parenchyma of the major veins possessed large blue, highly vacuolated nucleoli. Pale blue cytoplasmic staining also became evident in these tissues at this stage. The chloroplasts maintained a pale blue colouration. On the non-inductive medium, similar staining characteristics were observed (Plate 5.6;1).

Green amorphous deposits were observed at the wound sites along the disc edges on both media. They were TCA resistant and were believed to be phenolic in nature. In FPA cleared material, calcium oxalate crystals were also observed in the wound regions. They appeared to be derived from ruptured idioblasts. Similar accumulations of calcium oxalate crystals in wound regions have been reported by Plate 5.6. Azure B staining for nucleic acids in cultured tomato leaf discs.

1. Cross section of the midrib from a disc cultured for 24 hours on basal medium. Nucleolar and cytoplasmic staining is evident in the vascular parenchyma. (x 480)

Paradermal view of a secondary vein after 48 hours on an inductive medium. Two densely staining root primordia are evident. Note the initial biseriate cell layer of endodermal cell derivatives which will form the root cap. (x 240)



Bloch (1941). By 36 to 48 hours, small meristematic centres were apparent in the external phloem parenchyma. The cells composing these centres were characteristically small with large nuclei and nucleoli and intensely stained from RNA.

After 48 hours, the developing primordia were intensely stained for nucleic acids (Plate 5.6;2). Similar intense cytoplasmic RNA staining was observed in young sieve tubes and their companion cells.

By 84 to 96 hours on the inductive medium, the vascular parenchyma of the midrib and secondary veins showed considerably reduced nuclear and cytoplasmic staining. Intense cytoplasmic RNA staining was restricted to the developing primordia on the major veins and the meristems of the young roots from the primary and secondary veins. However, on the non-inductive medium, phloem and cortical parenchyma still possessed moderately intense cytoplasmic RNA staining.

By seven days, the nucleic acid staining of the leaf discs on both the inductive and non-inductive media had become restricted to the nuclei. The root apices were the only areas to exhibit intense cytoplasmic RNA staining.

## 5.3.2.3 Total Proteins

Initial protein staining was restricted to the nuclei and small nucleoli as well as the cytoplasm of the sieve tubes and companion cells. The mesophyll chloroplasts also showed moderate staining. By 24 hours, cytoplasmic staining

07

was evident in the vascular and cortical parenchyma which paralleled the increased cytoplasmic RNA staining. In general, the total protein staining pattern showed similar trends to the RNA staining as to intensity and cell localization in both the induced and non-induced leaf discs (Plates 5.7, 5.8 and 5.9;1). However, small, intensely staining crystalline particles within the cytoplasm of non-meristematic. cells became evident by 60 to 72 hours. This particulate staining was quite evident in the non-induced discs and tended to increase both in particle size (from approximated 0.2 u to 1.5 u diameter) as well as distribution (from vascular parenchyma and minor vein sheath parenchyma to cortical parenchyma and finally, mesophyll parenchyma). Further observations on their staining characteristics are presented below.

## 5.3.2.4 Basic Protein

Treshly cut leaf discs showed intense basic protein staining of the palisade mesophyll chloroplasts as well as the midrib parenchyma. Nuclear staining was also evident. Both deamination and acetylation reduced the staining in the chloroplasts and nuclei. By 12 hours, sieve tubes and companion cells (especially in the external phloem) showed considerable nuclear and cytoplasmic staining in both induced and non-induced leaf discs. Both deamination and acetylation were able to reduce considerably the staining intensity.

At 24 hours, chloroplast staining was reduced in both

08

Plate 5.7. Mercuric bromphenol blue staining for total proteins

• in the cultured tomato leaf discs.

1. Cross-sectional view of the midrib of an induced leaf disc after 60 hours. Note the large and darkly staining nuclei of the external phloem

parenchyma. (x 120)

2. Cross-sectional view of a region of the external phloem in an induced leaf disc after 72 hours. Note the small and intensely staining phloem parenchyma derivatives adjacent to the external phloem, strands. (x 480)

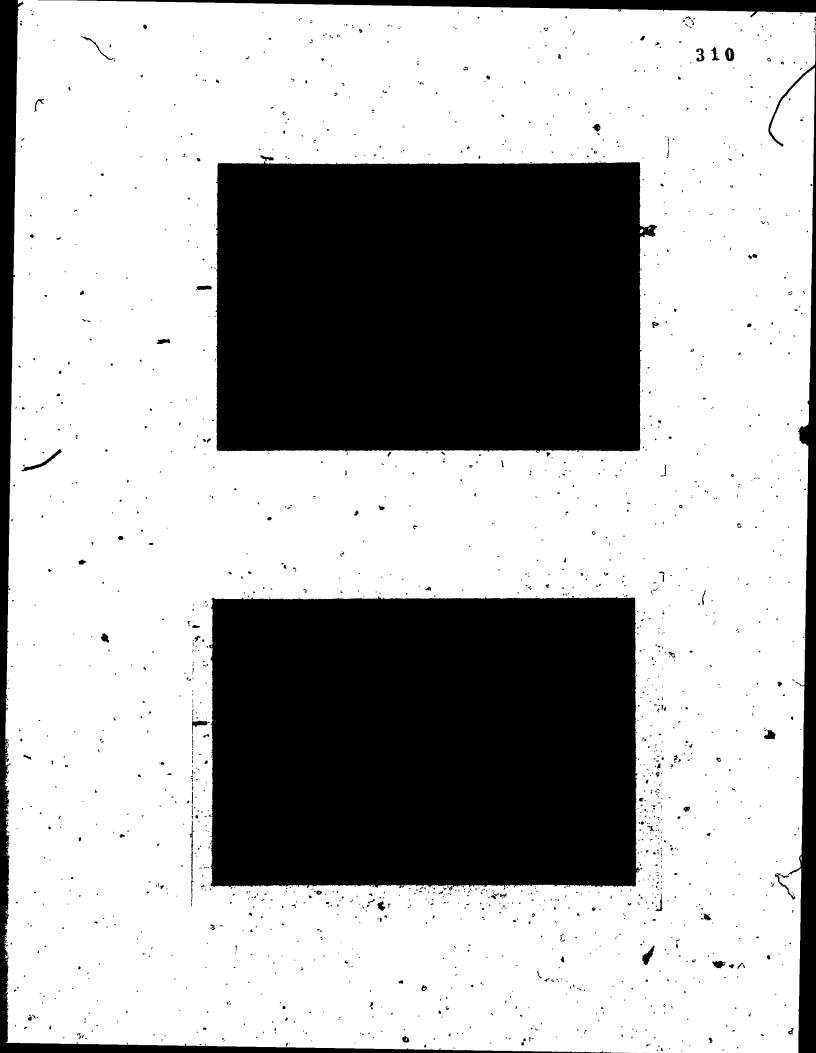
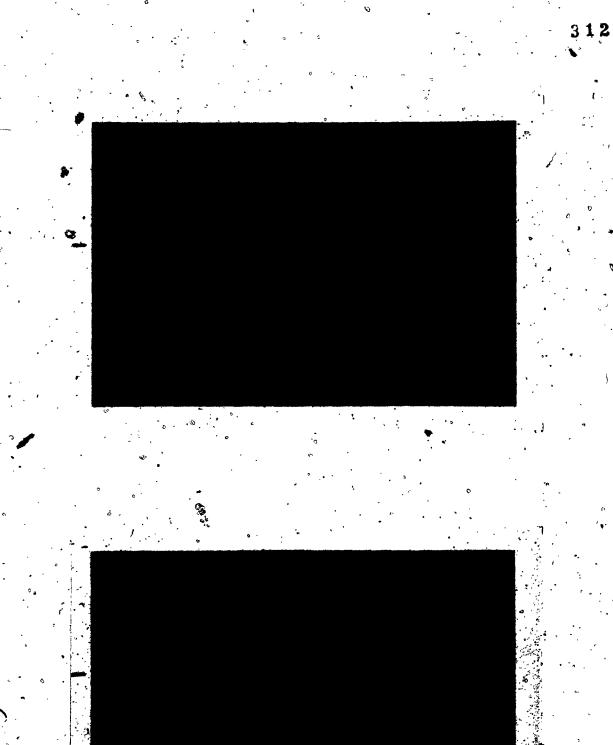




Plate 5.8. Mercuric bromphenol blue staining for total proteins

 Cross-sectional view of the midrib of an induced leaf disc after 84 hours. Note the intense nuclear and cytoplasmic staining of the root primordium in comparison with the highly yascuolated mesophyll and cortical parenchyma. (x 120)¹
 Paradermal view of the midrib of an induced leaf disc after 96 hours. The intense cytoplasmic staining is primarily localized in the developing root meristem. (x 120)



1

., σ. ÷

٩

. Ŧ

0.1 .

•

Plate 5.9. Protein staining in tomato leaf discs cultured on

🛚 a basal medium. 🔬 🦯

1. Cross-sectional view of the midrib of a leaf disc cultured on basal medium for 48 hours and subsequently stained for total proteins. Note the absence of any densely staining meristematic centers. (x 240)

Cross-sectional view of the mesophyll region after 168 hours. The protein microbodies (i.e. the small blue "dots") are intensely stained for basic proteins and are quite abundant in the non-meristematic regions of both the induced and non-induced leaf discs. (x 480)



types of leaf discs while intense staining was observed in the nuclei and nucleoli of the vascular and cortical parenchyma of the primary and secondary veins as well as the sheath parenchyma of the tertiary veins. Faint cytoplasmic, staining was also observed in these tissues.

By 48 hours, intense cytoplasmic staining was apparent at the sites of the root primordia. This staining pattern was unaffected by deamination or acetylation. Furthermore, the omission of nucleic acid hydrolysis by picric acid only sightly reduced the staining intensity, regardless of whether it was subsequently deaminated or not.

In the non-induced discs, the omission of picric acid hydrolysis had no effect on chloroplast or cytoplasmic staining of the sieve tubes or companion cells. However, subsequent deamination abolished the chloroplast as well cytoplasmic staining of the phloem cells.

By 60 hours, small intensely staining particles of a crystalline nature became evident in both types of discs where they were localized in the non-meristematic regions of the tertiary vein sheath parenchyma and the vascular parenchyma of the primary and secondary veins. In the noninduced discs, they were also evident in some of the surrounding palisade cells. These particles did not require prior nucleic acid hydrolybis and the staining reaction was reduced considerably by deamination and acetylation. In both size and pattern of distribution, these particles closely resembled the particles giving an intense total protein stain (Plate 5.9;2).

From 72 to 168 hours, the root primordia showed intense nuclear and cytoplasmic staining although the omission of prior nucleic acid hydrolysis or deamination only slightly reduced the staining intensity.

In the non-induced discs, the staining of the phloem cell cytoplasm and cytoplasmic particles was abolished by deamination.

Further attempts at the characterization of the protein microbodies or crystals using leaf discs aged for 8 or 10 days on basal medium was carried out at the light and EM levels (Plates 5.10 to 5.13). A summary of the results is presented in Table 5.14.

## 5.3.2.5 Starch

Initially, the freshly cut leaf discs possessed a few, small PAS or PAAS positive granules in the plastids of the -starch sheath surrounding the midrib and the guard cells. By 12 hours small, irregular starch grains were apparent under both culture conditions in the sieve tube plastids and the chloroplasts present within the midrib and sheath parenchyma of the major and minor veins. Faint fuclear staining by the PAAS reaction was also evident at this stage.

By 24 hours, small starch grains were apparent within the cortical parenchyma chloroplasts surrounding the primary and secondary veins as well as the adjacent mesophyll. The Plate 5.10. Histochemical characteristics of protein microbodies in tomato leaf discs aged <u>in vitro</u> for eight days.
1. Peroxidatic activity localized in protein microbodies (PMB; arrows). Fresh tissue preparation. (x.800)
2. Acid phosphatase localized in vascular parenchyma: Some particulate staining is evident (arrows). However, the staining wine restricted to specific cells and not to the protein microbodies. (x 800)

1



Plate 5.11. Prominent organelles of fresh and <u>in vitro</u> aged tomato leaf tissue.

> Fresh mesophyll tissue preparation from a mature leaflet showing a well developed chloroplast (C) with small plastoglobuli and an interphase nucleus (N). Both organelles are appressed to the cell wall (CW) of a highly vacuolated cell. (approximately x 25,000)
>  Protein microbody (PMB) from <u>in vitro</u> aged leaf tissue showing the surrounding single membrane as well as the 100 Å lattice structure. Note the irregular appearance of two sides of the crystal (arrows) which may indicate sites of protein incorporation. (x 159,120)



Plate 5.12. Subcellular aspects of <u>in vitro</u> aged tomato leaf tissue. The nucleus (N) displays an irregular margin with very little evidence of endoplasmic reticulum (ER), Chloroplasts (C) possess abundant and large plastoglobuli. Mitochondria (M), a dictyosome(D) and a protein microbody (PMB) are also evident in these highly vacuolated mesophyll cells. (x 22,000)

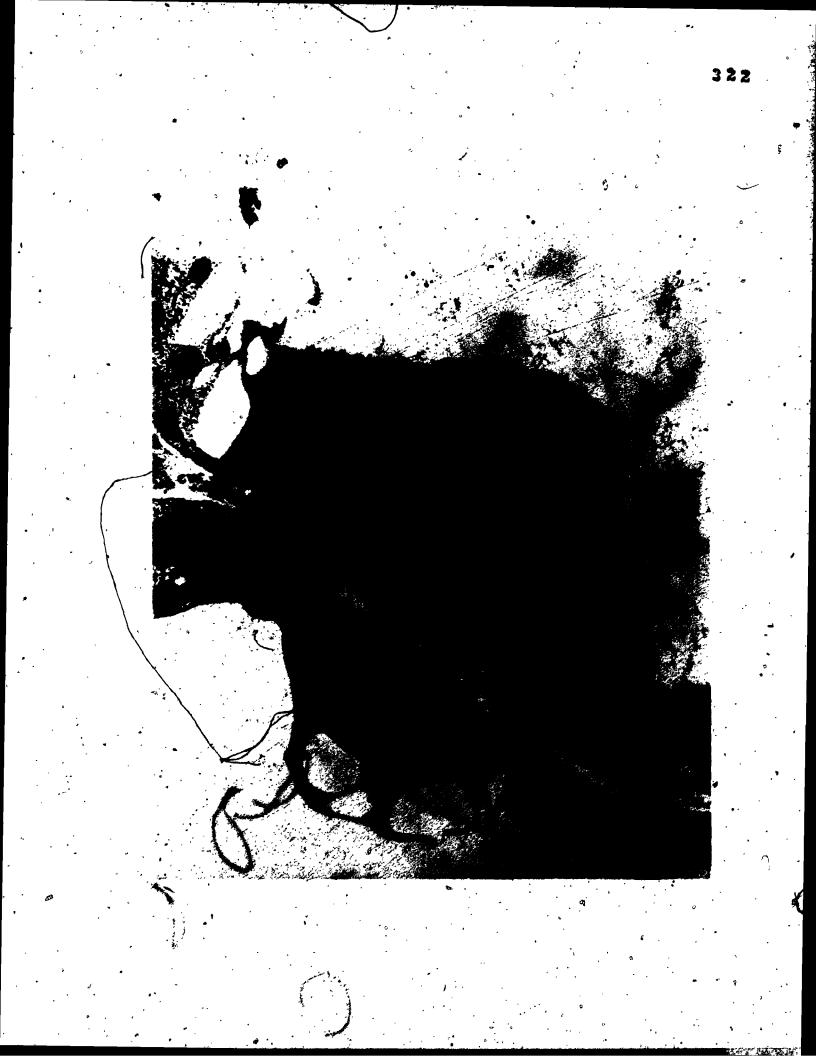



Plate 5.13. "Further subcellular aspects of <u>in vitro</u> aged tomato leaf tissue. The protein microbody (PMB) ( displays a very prominent lattice pattern of approximately 100 Å wide repeating units. Associated with the microbody are chloroplasts (C), a mitochondrion (M) and a multivesicular body (MVB). (x 57,920)



		•
		۴ • •
		•
. Table 5.14. Characteristics of	protein microbodies irom tomato iean variation in	· •
1 Si're nange: andro	approximately 0.5 to 1.5 M (after 8 days on basal medium).	
: "	ric leaf tissue aged at least 6	· · ·
Lattice spacing:	approximately 100Å.	•
4. Birefringence: nil		۰ ۲۰۰۰ -
S. General staining chare	characteristics*:	· · ·
a) Total prote	protein ++ Remarks	
i) after .02 N HCL	.02 N HCL extraction 30 min. at 2°C ++ no effect on crystal morpholo	ogy
b) Basic protein	otein	27
, i) after d	after deamination +	U
ii) after a	acetylation + · · ·	• •
	acids	•
1) after T	<b>1) after TCA hýdrolysis</b> ⁰	
d) Insoluble	Insoluble polysaccharides (PAS)	
e) Lipids (Sudan IV)	Suđan IV). 0 1	•
		• • • •
)		32
		5
	(構成の)がある。	and the set of the set of the set

•

ר י

**.** :

<i>.</i>				_
	<b>4</b> • • •	° ``	•	**
	,	•	•	· · · ·
Table 5.14 (cont'd.)	•	· ·		
6. Specific enzyme staining*:		•		
<b>(</b>	0		•	•
i) minus sodium glyceropho	osphate 0	•	-	, , ,
<pre>ii) complete mixture: repea and thawing (3x)</pre>	ated freezing 0	/ /	•	•
ž	++	•	5	
i) minus H ₂ 0 ₂	<b>°</b>		• •	•
ii) complete mixture: tissu	heated to		-	۰۰۰ م (۱۳۳۰
and the minutes		-1 - -	• • •	۳ ۴
	•	· · · · · · · · ·		4
+ Intense staining	• • •		\$ 	
very weak staining	3	•		· · ·
no staining		•	ى •	• • •
	•		s	°
	· · · · · · · · · · · · · · · · · · ·	• • •	、 ・ ・	¥ 3
•	•	• • • •	- · ·	2 6
	Ę		•	•

non-induced discs also showed starch accumulations within the xylem parenchyma.

At 36 hours, starch grains were present within the epidermis (especially the stomatal guard cells) and a more wide-spread distribution of gnains within the mesophyll tissue was evident. These grains appeared larger in the In the induced discs, the small merinon-induced discs. stematic cells derived from the external phloem parenchyma were devoid of starch grains although heavy accumulations of starch were evident in the surrounding tissue. Similar observations were made at 48 to 72 hours in the induced discs for, meristemoidal areas from the major, and minor veins (Plate 5.14;1). The non-induced discs appeared to have larger starch grains, especially in their vascular parenchyma. In general, starch was distributed throughout the tissues of the non-induced discs (Plate 5,14;2),

By 84 hours, some of the developing primordia from the primary and secondary veins possessed starch grains in the root cap cells prior to their emergence. Differentiating phloem was observed in the basal region of these developing primordia.

The starch grains in the root cap cells were of a considerably different morphology than the grains in the surrounding mesophyll. The cap cell starch occurred in multigrained amyloplasts and appeared rounded, pitted and uniform in size in any particular cap cell layer while the mesophyll starch grains were localized within the chloroplasts and appeared angular and heterogenous in size (Plate 5.15;1 and 2).

At 7 days, the induced discs possessed no starch grains in the well-developed vascular cambium which was present in Plate 5.14. PAAS staining of starch grains in cultured tomato leaf discs.

> Cross-sectional view of a meristemoidal regionforming from the minor vein sheath parenchyma derivatives of a leaf disc cultured on an inductive medium for 72 hours. Note the starch accumulations in the surrounding mesophyll and their absence from the meristemoidal region.
>  Similar accumulations are not as pronounced in the non-meristematic regions of the induced discs. (x 480)

2. Cross-sectional view of a minor vein from a leaf disc cultured on an inductive medium for 72 hours. The starch accumulations are typically spread throughout the mesophyll tissues with no preferentially localized deposits as observed in the induced leaf discs. (x 480)

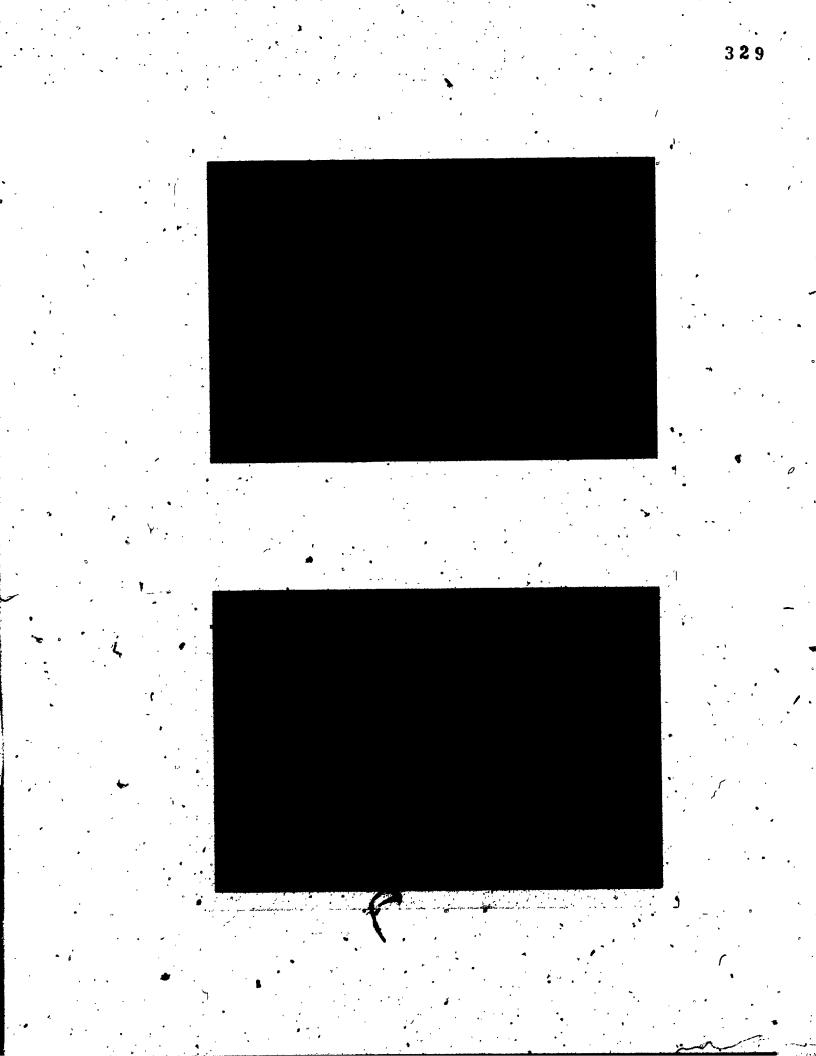




Plate 5.15. PAAS staining of starch grains in cultured tomato leaf discs.

(x 480)

 Cross-sectional view of an induced leaf disc at 120 hours showing localized starch deposits within the cap cells of developing root primordium as well as the surrounding mesophyll. (x 120)
 Similar to 1. A close-up view of the root cap cells containing starch grains which are morphologically distinct from the grains within the adjacent mesophyll cells.



the primary and secondary veins. Starch grains were confined to the xylem parenchyma, the cortical parenchyma, 'mesophyll and root cap cells.

On the non-inductive medium, however, the discs possessed abundant starch grains in the vascular parenchyma while the mesophyll was essentially without any starch grains. The apparent loss of starch from the mesophyll tissue was evident as early as 84 hours after culturing the discs.

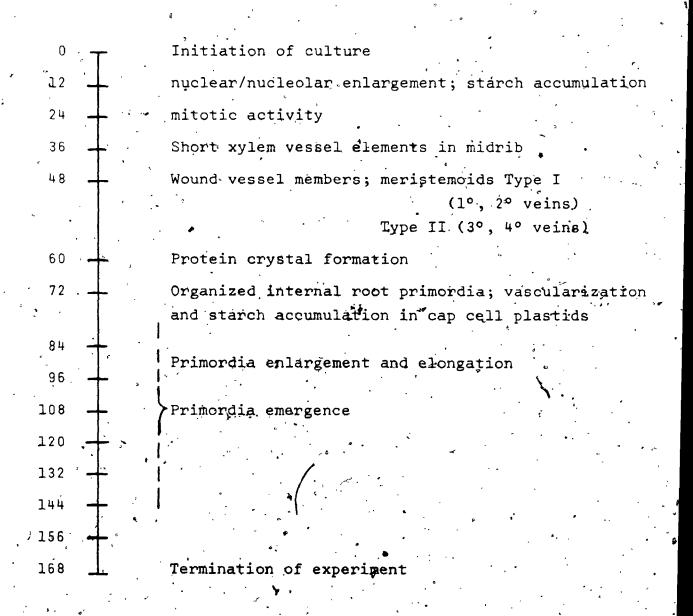
5.4 Discussion

ં ક્ષે

A comprehensive study of the yarious tissue culture parameters has substantiated the hypothesis that 5 mm diameter tomato leaf discs possess a total dependence on external stimuli (such as organic and inorganic nutrients and hormones of the auxin class) in order for root regeneration to occur. When discs from maturing leaves (LPI₂ 3.0 - 4.0) are cultured in continuous darkness, their sensitivity to exogenous IAA is comparable to the Avena colenptile segment elongation bioassay with the lowest detectable response level in the range of 0.005 to .010 Mg IAA/ml of medium. However, the various substituted phenoxy acid auxins and their structurally related, inactive members displayed little or no ability to induce root regeneration. The reasons for this lack of organogenic induction are unknown but the observations are compatible with similar ones made on rooting effects of 2,4-D from tomato leaf cuttings (see Chapter 4). The observations may

332

indicate: i) a high degree of structural specificity in terms of auxin type for induction of regeneration; ii) an exceptionally efficient detoxification process which renders molecules such as 2.4-D inactive; or iii) an incapacity to take up the substituted phenoxy acids.


Prolonged culture (i.e. up to 10 days) on a noninductive medium leads to a progressive decline in organogenic capacity of the leaf tissue when subsequently placed on inductive media. Correlated with this decline were increasing nuclear volumes in non-organ.forming and potential organ forming tissues (which may indicate increasing ploidy levels) and declining nuclear and cytoplasmic staining for RNA, total and basic proteins. This in vitro aging phenomena is quite typical for subcultured tissues (e.g. see review by Reinert, 1973) and has been correlated with irreversible genome instability (e.g. polyploid cell formation and possible somatic mutations). However, the loss of capacity for organogenesis in tomato leaf tissue may be reversed (at least partially) by culturing the aged tissues on high auxin media, inductive media supplemented with coconut milk, or a combination of both. Furthermore, the additional factors of wounding and the presence of one or two spontaneously formed roots are beneficial for maintenance and subsequent expression of organogenic capacity in long term cultures. Reinert (1973) has observed similar reversibility in the embryogenic capacity of in vitro aged carrot cell cultures. The loss of the capacity for embryogenesis by the carrot

cells could be reversed by subculturing these cells onto an inductive medium with a high nitrogen level. Consequently, <u>in vitro</u> aging and associated loss of organogenic capacity would appear to encompass both genome alterations and presently unknown changes in endogenous physiological factors.

Tomato leaf tissue, which is essentially mitotically inactive at the LPI, used in the histochemical observations (i.e. LPI, between 3.0 and 4.0) responds rapidly to culture conditions by undergoing diverse histochemical and developmental changes (summarized in Fig. 5.4). Unfortunately, comparison with similar leaf disc culture systems is impos-Sible as none have been described. In general, the induced and non-induced leaf discs show similar histological and histochemical changes over the 7 day culture period, except in terms of the events which surround root primordium initiation and subsequent development. The auxin induced tomato 🐋 leaf discs are unique in their ability to give rise to root primordia simultaneously from two different mature tissue types. The initial steps of root primordia induction within primary and secondary veins (type I root primordia) consisted of anticlinal with subsequent periclinal mitotic activity leading to dedifferentiation of the phloem parenchyma. Accompanying the initial mitotic activity, a localized build up of RNA (especially within the cytoplasm) became evident in the small, isodiametrically shaped, phloem parenchyma derivatives. This localized increase in RNA

Figure 5.4. Time sequence of developmental events in cultured tomato leaf discs.

Time (hr.)



staining was paralleled by increased total and basic protein staining of the nucleolus and cytoplasm. While acropetal differentiation of the root primordia's vasculature is consistently observed, auxin-induced primordia show abnormal vascular archy and xylem maturation. Both features appear to be related to the duration of exposure to auxin media.

Root primordia induction within the minor veins (type II root primordia) consisted of the development of small meristemoidal areas from derivatives of the bundle sheathparenchyma. Some of these meristemoidal areas eventually develop into small, yet essentially normal, root primordia and subsequently, mature moots. Similar changes in RNA, total and basic protein staining patterns were observed, in the type II primordia as were found in the type I. Although these general histochemical changes are similar to those observed in other root regenerating systems with regard to timing and localization of organ formation, specific features of protein histochemistry are unique to the regenerating tomato leaf discs.

The basic proteins change both with regard to location and susceptibility to deamination. Initially, basic protein staining is susceptible to deamination and is restricted to the nucleoli and chloroplasts. However, by 36 to 48 hours, it is apparent that meristematic leaf disc tissue and developing root primordia have a high content of basic protein in both the cytoplasm and nucleus which is only slightly hindered in its stainability by the high nucleic acid levels present within the same cells. Most of this, protein is not susceptible to deamination suggesting that the resistant guanidyl groups of arginine are responsible for the observed staining. While histones probably contribute to the staining patterns observed, it is likely that the majority of nuclear and cytoplasmic table; retern are ribosomal in origin (Busch and Smetra, 1975).

The basic proteins of the sleve tube and placed parenchyma cytoplasm, and mesophyll chlord, lasts are susceptible to deamination, suggesting a different type protein; Furthermore, prior nucleic doid hydrolysis has no effect on this staining pattern in both induced and moninduced leaf tissue. Since the chloroplasts, sieve tube and companion cell cytoplasm contain considerable total protein, it is possible that the basic protein staining within these areas is due to the terminal amino groups of the proteins. The modified Van Slyke deamination procedure used in this study would not distinguish the terminal amino groups and the C-amino groups of lysine (Pearse, 1968). By 60 hours, particulate protein staining within the cytoplasm was observed in non-meristematic, highly

vacuolated cells (e.g. mesophy14 cells and most of the minor vein sheath parenchyma in leaf discs from the basal medium). These protein particles increased both in size and distribution and took on a more crystalline shape with

time.

As outlined in Table 5:14, the protein crystals to not appear to contain any acid phosphatase activity which would have suggested lysosomal functions similar to certain forms of crystal containing lysosomes found in animal tissues. Rather, the presence of high peroxidase a tivity suggests that these crystals may be peroxisomal in nature (Tolbert, 1971). It should be noted, however, that the histochemical presence of peroxidatic activity detected by the benzidine reaction may be due to the catalase component as no peroxidase enzyme per se has been isolated from Similar crystalline inclusion's them (Tolbert, 1971). have been found in the non-meristematic regions of shootforming and non-shoot forming tobacco callus tissues (Ross et al., 1973). These inclusions were assumed to be protein bodies on the basis of their configuration. It was suggered - that these crystals were a form of storage protein which was subsequently broken down into amino acids and utilized in the synthetic processes of meristemoid formation and development. , However, Matsushima and his co-workers (Matsushima, Wada, and Takeuchi, 1969; Matsushima, 1971) had previously described these crystalline microbodies in organogenic and non-organogenic tobacco callus. On the basis of histochemical observations at the electron microscope level, they concluded that the crystals were proteineous and contained high peroxidatic activity of catalase within the crystalloid cores. Similarly, morphological and histochemical evidence at the light and EM levels suggest

that the crystalline protein bodies observed in cultured tomato leaf tissue are probably not relatively inert protein storage bodies; rather, they appear to be enzymatically active microbodies of a peroxisomal nature which may be associated with photorespiratory activity (Tolbert, 1971). *Structurally similar crystal-containing bodies have been found in detached tomato leaves (Shumway, Rancour and Ryan, 1970) tobaceo leaf cells (Frederick and Newcomb, 1969), virus free leaf cells of Verbesina, Sanvitalia, Zinia, 👝 Calendula and Dahlia (Petzold, 1967), pedicels of tobacco and tomato (Jensén and Valdovinos, 1967), cells of Avena coleoptile (Cronshaw, 1965; Thornton and Thimann, 1964) and bud cells of potato tubers during dormancy (Marinos, 1965). It has been suggested that these inclusions may represent a specialized type of microbody characteristic of cells with low metabolic activity (Frederick, Newcomb, Vigil Their presence in the non-meristematic and Wergin, 1968). tissue areas of both induced and non-induced leaf discs and the ability of in vitro aged discs to be experimentally induced to form root primordia suggests that these microbodies play no direct role in organ regeneration. It is presently unknown whether a peroxidatic oxidation of IAA is possible.

Starch grains, which first became evident at 12 hours within vascular parenchyma chloroplasts, continued to accumulate in the leaf tissue. However, by 48 hours, starch was conspicuously absent from the primordial initials.

° 🕐

Rather, it preferentially accumulated in tissue surrounding the developing primordia and subsequently, morphologically listinct starch grains 'became evident within the cap cells of the developing root. This sequence of starch changes in the vicinity of the developing primordia is in agreement with Borthwick's study (Borthwick, et al., 1937) on IAA stimulated rooting in tomato stem cuttings as well as previous studies on bud initiation in tobacco callus (Thorpe and Murashige, 1968; 1970). Furthermore, it would tend to support the latter's hypothesis that starch plays a definite role in organogenic processes. However, a non-specific accumulation of starch grains was evident in the non-induced discs. Similar starch accumulations have been observed in detached and photosynthesizing leaves and cells cultured in the presence of exogenous carbohydrates . where no obvious organogenic events are occurring. 'As a consequence, a direct relationship between organogenesis and localized starch accumulation would be obscured in . terms of gross quantitative analysis. Whether this nonspecific starch synthesis would alter the GA, induced inhibition of root regeneration as found in leaf cuttings Chapter 4) will be explored in the following chapter,

341

TOMATO LEAF DISCS CULTURED IN VITRO: INHIBITION OF ROOT REGENERATION BY GIBBERELLIC ACID

CHAPTER 🏵

6.1 Introduction

In vitro, culture techniques allow a far greater control over external and internal variables affecting organ regeneration than do leaf or shoot cutting systems. The cultured tomato leaf disc system has a rapid regeneration time, as well as histologically and temporally defined primordia from two distinct tissue types. Moreover, the factors necessary for regeneration in this system have been delineated (see Chapter 5). These factors include a complex, yet defineable group of specific inorganic and organic nutrients, vitamins and auxin-type growth regulators.

The study of regenerating tomato leaf cuttings in Chapter 4 suggests that localized starch synthesis is a necessary prerequisite for root regeneration. A GA₃ induced inhibition of starch synthesis appears to be the basis for  $GA_3$  inhibition of regeneration although the specific biochemical mechanism is unknown. The present chapter attempts a similar analysis of GA₃ effects on root regeneration in cultured tomato leaf discs in terms of the following questions:

\$ **A** (

 Can GA₃ inhibition of root regeneration be related to an earlier effect on internal starch levels?
 Does the concentration or type of soluble external carbohydrate source modify the GA₂ effect?

3) Does GA₃ preferentially affect Type I or Type II primordia in terms of initiation and/or development? In view of the divergent GA₃ effects on the growth and metabolism of leaf discs in other systems (e.g.
Kuraishi and Hashimoto, 1957; Goldthwaite and Laetsch, 1968) and probable growth modifications in the present system, three more questions are evident:

4) What effect does GA3 have on disc growth?

5) Is the growth effect tissue specific and/or auxin. dependent?

6) Does the growth response modify the regeneration response and can the two events be experimentally separated?

6.2 Materials and Methods

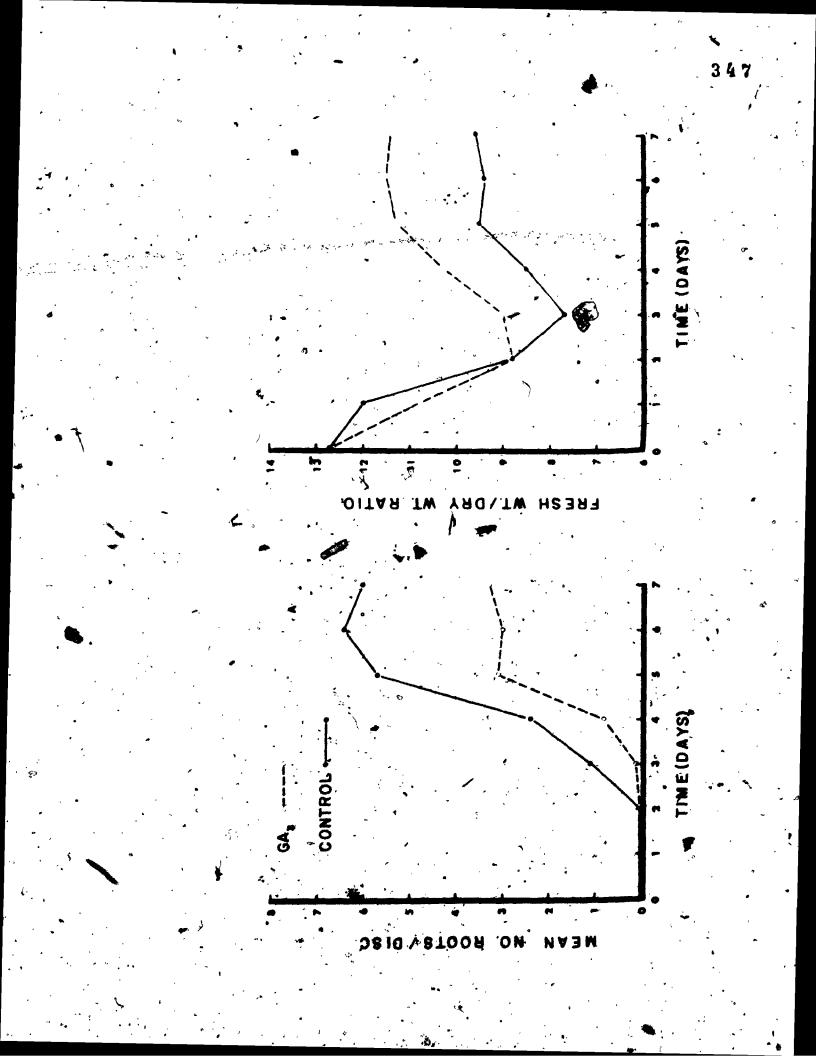
Culture techniques and biochemical analyses are essentially similar to those outlined in Chapters 5 and 3 respectively. Histological procedures for cleared leaf disc preparation are outlined in section 3.2.2.1.

6.3 Results

GA3 inhibited auxin-induced root regeneration from cultured tomato leaf discs in the presence or absence of, light (Table 6.1). A study of the time course of root Table 6.1. GA, inhibition of auxin-induced root regeneration from romato leaf discs cultured in continuous darkness or continuous light.

Mean number roots per disc GA₃ concentration Continuous darkness Continuous light

	*	<u> </u>	<u> </u>	•	`
0	12.1	à,	•	5,3, c	ŧ
10 ⁻¹⁰ M	9.2	a,b	: .	5.6 c	•
10 ⁻⁹ M	9,2	a,t	• •	5.2 . C	•
10 ⁻⁸ M	9.1	a,b	•	2.1 •	C
10 ⁻⁶ M	. 8. 6.	b,c	•	• 2.0 d	•
. 10 ⁻⁴ M	7.6	þ,c.	•	2.0 d	
	• •			· · · ·	


Means followed by same letter in a column not different at

IAA concentration:  $5 \times 10^{-6}$  M.

Mean LPI3 + 4.3

• formation revealed a delay as well as a reduction in the total number of organs formed (Fig. 6.1A). However, fresh weights and midrib elongation of the GA₃ treated discs were significantly greater than the control tissues (Table 6.2) with an initial difference becoming noticeable during the 48-72 hour period in terms of fresh/dry weight ratio changes (Fig. 6.1B). Callus proliferation from the midrib and secondary verns was evident in the GA₃ treated leaf material cultured in the light.

Sequence treatment and GA, pulsing experiments were carried out in an attempt to determine the time of maximum sensitivities for regeneration inhibition and growth stimulation. GA, inhibited organ regeneration if applied for the first 1 to 5 days followed by the control inductive medium (Table 6.3). However, maximum inhibition occurred after 7 days on an organogenic medium containing GA3. GA, - induced growth stimulation was also apparent during the first five days of culture with a maximum effect apparent after an initial 48 hour treatment period. When GA, was applied during the later stages of the culture period (i.e. from days 3 to 7), no inhibitory effect on organ regeneration was apparent (Table 6.4). Maximum GA3-induced growth was observed if GA2 was applied from 48 to 72 hours after the initiation of the culture experiment. A pulsing experiment, in which 24 hour treatments of GA, were applied to the tomato left discs, was inconclusive. (Table 6.5), However, the observation that maximum inhibition of root regeneration Figure 6.1. A. Time course of root regeneration from tomato leaf discs cultured in vitro in the presence or absence of GA₃ (1 x 10⁻⁴ M).
B. Fresh weight/dry weight ratio changes during root regeneration from tomato leaf discs cultured in vitro in the presence or absence of GA₃ (1 x 10⁻⁴ M).



348

. Table 6.2. GA_g stimulation of growth in cultured tomato leaf tissue in the light.

	· ។	•	•	¥.		د 	<u>`</u>
· · · · · · · · · · · · · · · · · · ·	•	an fin esh		• .		Mean fi midrib	nal.
Treatment	we	ight (	mg) <b>*</b> "	(mg)*	i ·	length -	(mm)*
IAA (5 x $10^{-6}$ M).		25.9		2.7		• 6.9 [*]	e
$IAA + GA_3 (1 \times 10^{-4})$	M)	3,5 <b>.</b> 3 . ∙	Ъ.	3.1	d	7.5	f *

Initial fresh weight, approx. 2 mg; initial dry weight, approx. .2 mg; initial midrib length, 5.0 mm. Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 4.3$ 

Table 6.3. Effect of initial GA3 treatment period on subsequent root regeneration from tomato leaf discs cultured <u>in vitro</u>.

				· · · · · · · · · · · · · · · · · · ·
Treatment du	uration (hr)*	Mean num	ber of	Mean fresh
IAA + GA ₃ .	IAA	roots pe	r treatment	weight (mg)
<u> </u>	0 - 168	8.2	c,d,e	19.3 f
°0 – 24	24 - 168	- 5.5	b,c .	33.4 g
0 - 48	48 - 168	6.5	b,c,d	,37.0 g
0 - 72	72 - 168	5.5	b,c	32.3 g
0 - 96	96 - 168	6.3	b,c,d,e	32.1 g
0 - 120	120, - 168	4.7	b	32.9 g 2.
0 - 168		2.6	a	22.2 f
	•	ſ	· .	

* IAA 5  $\times$  10⁻⁶ M; GA₃*1  $\times$  10⁻⁴ M

Means followed by the same letter not different at 5% level.

Mean LPI $_3 = 3.6$ 

Table 6.4. Effect of Mate GA₃ treatment period on subsequent root regeneration from tomato leaf discs.cultured <u>in vitro</u>.

,Treatment du * IAA		Mean number of roots per treatment	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
·	0 - 168	• 2.6 a	22.2 f,g,h
³ 0 - 24	24 - 16 <b>8</b>	6.3 b,c,d	22.2 f,g,h
0 - 48	48 - 168	6.5 b,c,d,e	29 2 h,i
0 - 72	, 72 - 168	9.3 d,e	30.7 i
0 - 96	9 <b>6 - 1</b> 68 '	8:7 d,e	26.9 g,h,i
0 - 120	120 - 168	9.8 e	20.3 f,g
0 - 168		8.2 c,d,e	19.3 f.

* IAA 5 x  $10^{-6}$  M; GA₃ 1 x  $10^{-4}$  M

Means followed by the same letter not different at 5%

Mean LPI₃ = 3.6

evel.

Table 6.5. Effect of short GA, treatments at different time periods on subsequent root regeneration . - from tomato leaf discs culture <u>in vitro</u>.

Time interval during the 168 hour culture period Mean number of Duration of GA₃ when GA₃ treatment (hr) roots per treatment (hr)* applied treatment.

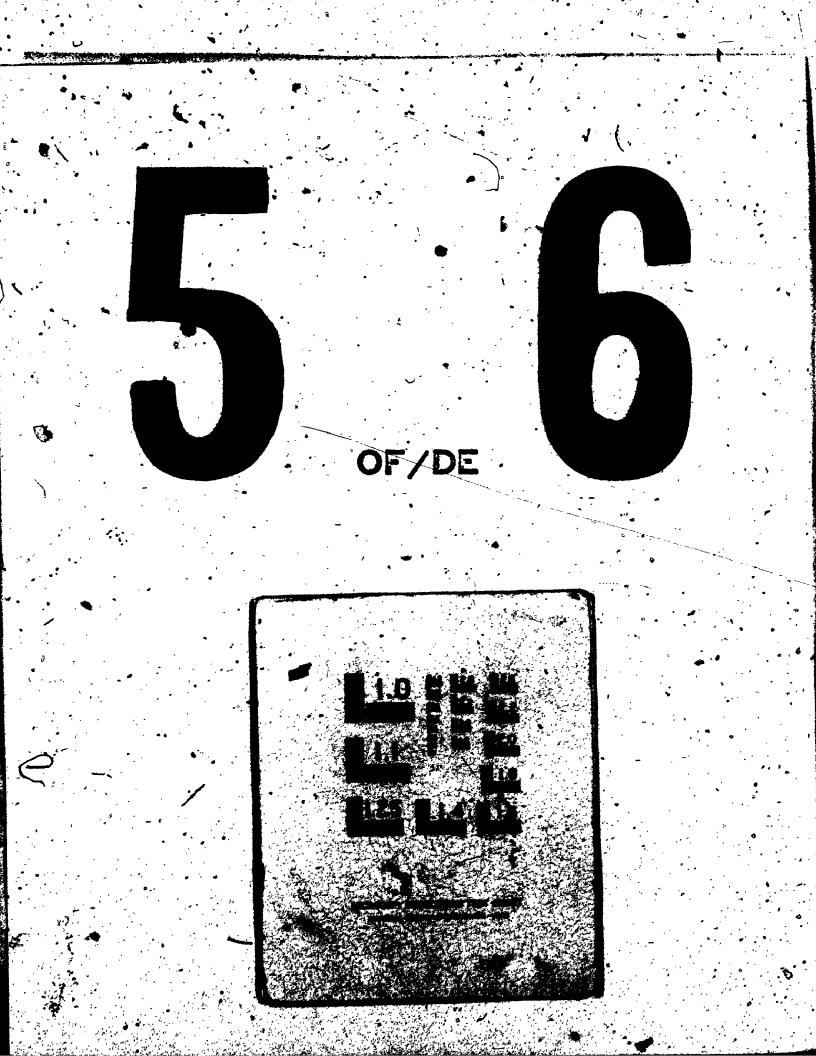
IAA + GA3 control

IAA control

6.6 24 0 - 24 a,þ 24 -.48 5.9 24 a.,b 6.2 a,b 24 48 - 72 ²9.5[.] 24 72 - 96 a 5.9 48 0 48 a,b 7,6 48 7.2 24 a٠ 48, 48 •96 8.

**TAA 5 x 10^{-6} M; GA₃ 1 x 10^{-4} M.** 

Means followed by the same letter in a column not different at 5% level.


Mean LPI $_3 = 3.4$ 

351

7.7

4.4

a



took prace if GA3. was applied over the entire.culture period Suggested that the inhibition might involve 2 effects: i) an early inhibition (i.e. during the initial 48 hours) and, ii) a late inhibition possibly associated with earlier effects of GA, (e-g. growth modification). In view of the earlier results with tomato leaf cuttings which suggested that GA, inhibition of organogenesis was associated with an altered starch metabolism, experiments using different concentrations of various soluble carbohydrate sources (i.e. sucrose, glucose/fructose, glucose and maltose) were carried out. The results indicated (Fig. 6.2A, B, C and D) that the type of carbohydrate substrate had no effect on GA₂-induced inhibition of organ initiation. However, under conditions of low carbohydrate concentrations, GA, exhibited no significant effect on organ regeneration although growth was significantly enhanced (Table 6.6). An examination of total soluble sugar and starch levels within the GA, treated and untreated leaf discs revealed consistent differences (Fig. 6.3A and B) in starch levels during the initial four days. 7 In the control tissue, maximum starch levels occurred at 72 hours while GA, treated tissue exhibited a slower accumulation of endogenous starch reserves with maximum levels at 96 hours. It is significant that no GA, was applied on day 3 or later (Table 6.4) when maximum starch levels were achieved in the organogenic tissues. Total soluble carbohydrates increased

Figure 6.2. Effect of exogenous, soluble carbohydrate type and concentration on  $GA_3$ -induced inhibition of root regeneration. Open circles,  $GA_3$  1 x 10⁻⁴ M; closed circles, control. A. Sucrose concentration. Mean LPI₃ = 2.6 B. Maltose concentration. Mean LPI₃ = 3.0 C. Glucose concentration. Mean LPI₃ = 3.1 D. Glucose/fructose concentration.

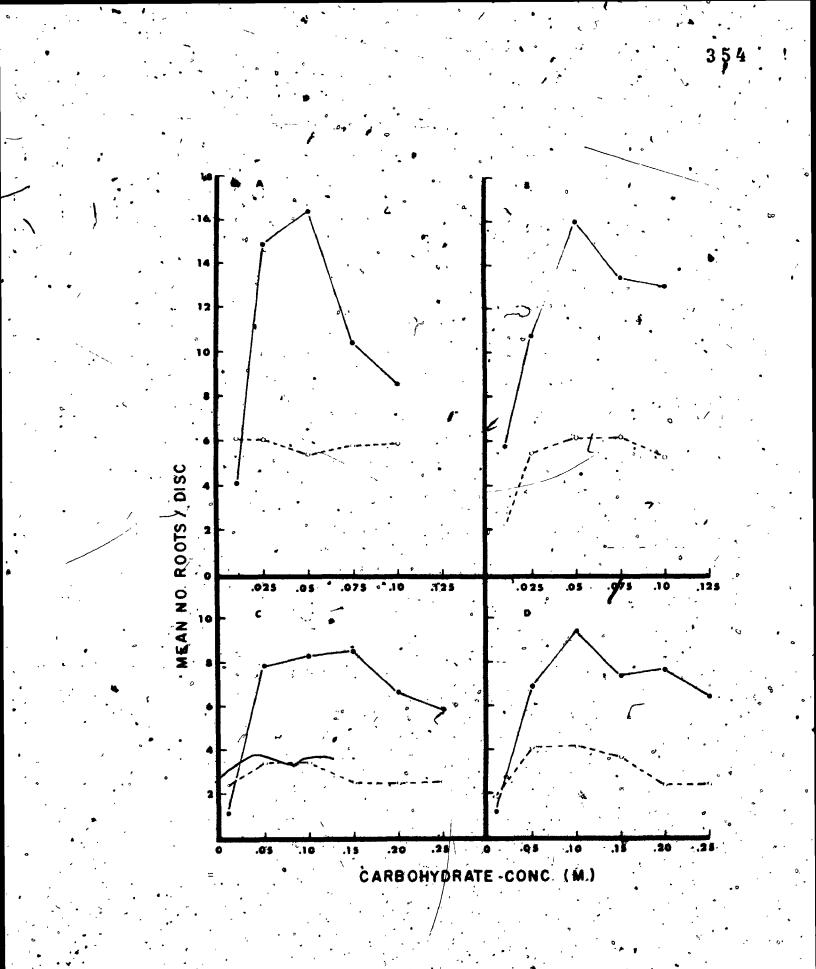
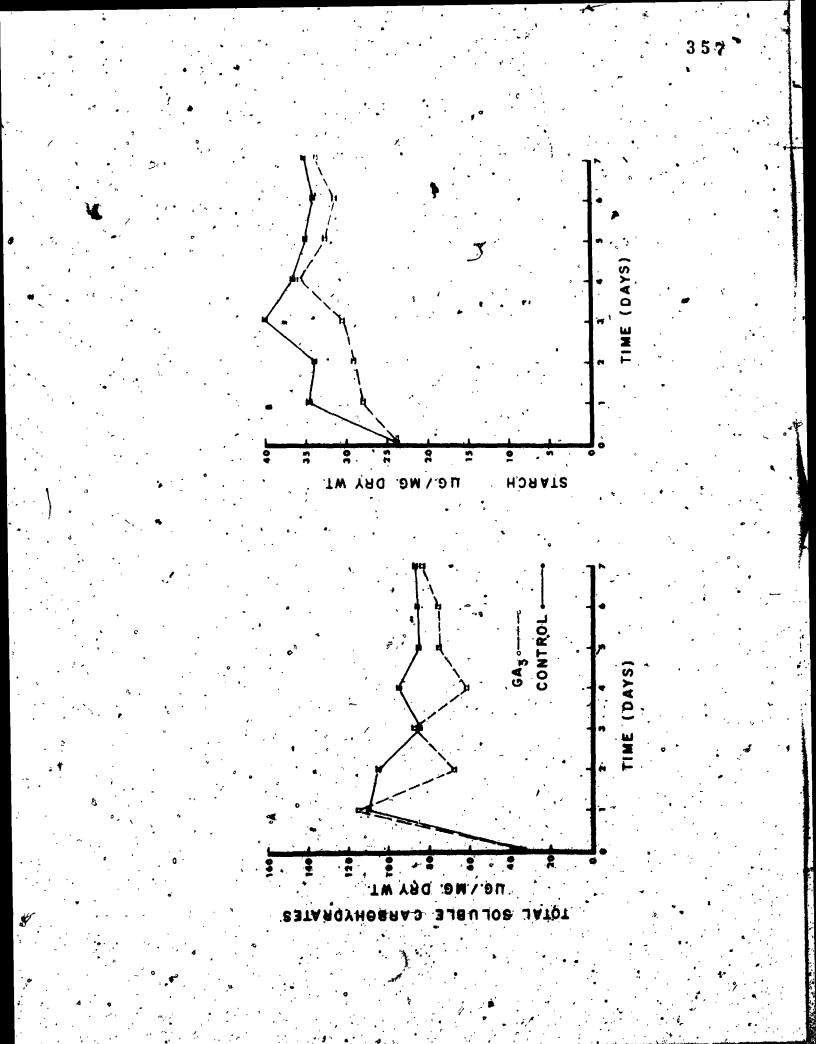



Table 6.6°. Effects of sucrose concentration on growth and regeneration of tomato leaf discs as modified by simultaneous GA3 application.

	Mean number of	Mean fresh	Mean midrib
Treatment •	roots per disc	weight (mg)	length (mm)
* <b>§</b> *	· • • • · · · · · · · · · · · · · · · ·		. 1
.01 M sucrose	4.1 a	17.0 e	7.1 f
.01 M sucrose +	• • • • • • •	•	•
GA ₃ (1 x 10 ⁻⁶ M)	6.2 • a	21.4 c	.8.2 g
.05 M sucrose	-16.4 b	19.3 c,e	7.1 f
05 M sucrose +	•		• •

Means followed by same letter in a column not different


Mean LPI = '2.6

A. Changes in total soluble carbohydrates during root regeneration from tomato leaf discs cultured in vitro in the presence or absence of GA₃ (1 x 10⁻⁴ M). Vertical lines [±] S.E.
B. Changes in starch content during root regeneration from tomato leaf discs cultured in vitro in the presence or absence of GA₃.

.Vertical lines ± S.E.



Figure 6.3.



four fold during the initial 24 hour culture period followed by relatively gradual declines during the remaining 6 days. Initial inflection points in the soluble carbohydrate levels of the  $GA_3$  and control treated tissues at day 2 and day 3 respectively, coincided with similar inflections in the fresh weight/dry weight ratio curves. Consequently it appears that decreased starch levels in the  $GA_3$ treated leaf discs may account for the initial inhibitory effects of  $GA_3$  on organ regeneration.

In order to explore more closely the possible late effects of GA, on organ regeneration, a histological exami nation of GA3 treated and untreated leaf discs was carried out using the two whole tissue clearing techniques. Leaf tissues cultured of an organ inducing medium containing GA, were observed to form callus proliferations at the severed ends of the primary and secondary veins. Callus was derived primarily from the cortical parenchyma tipsues. By 120 hours, a noticeable cortical cell enlargement at right angles to the vascular traces was evident in the GA, treated material. In a number of cases this marked polarization of cell enlargement included the endodermal cells involved in root cap formation of late forming primordia (Plate 6.1). Subsequent cell enlargement appeared to include the entire primordium. This apparent destruct tion of the late forming primordia by a parenchymatization process beginning in the endodermal derivatives of the post cap cells would explain the late effects of GA3 on

Plate 6.1.

Histological changes induced in late forming root primordia by GA3.

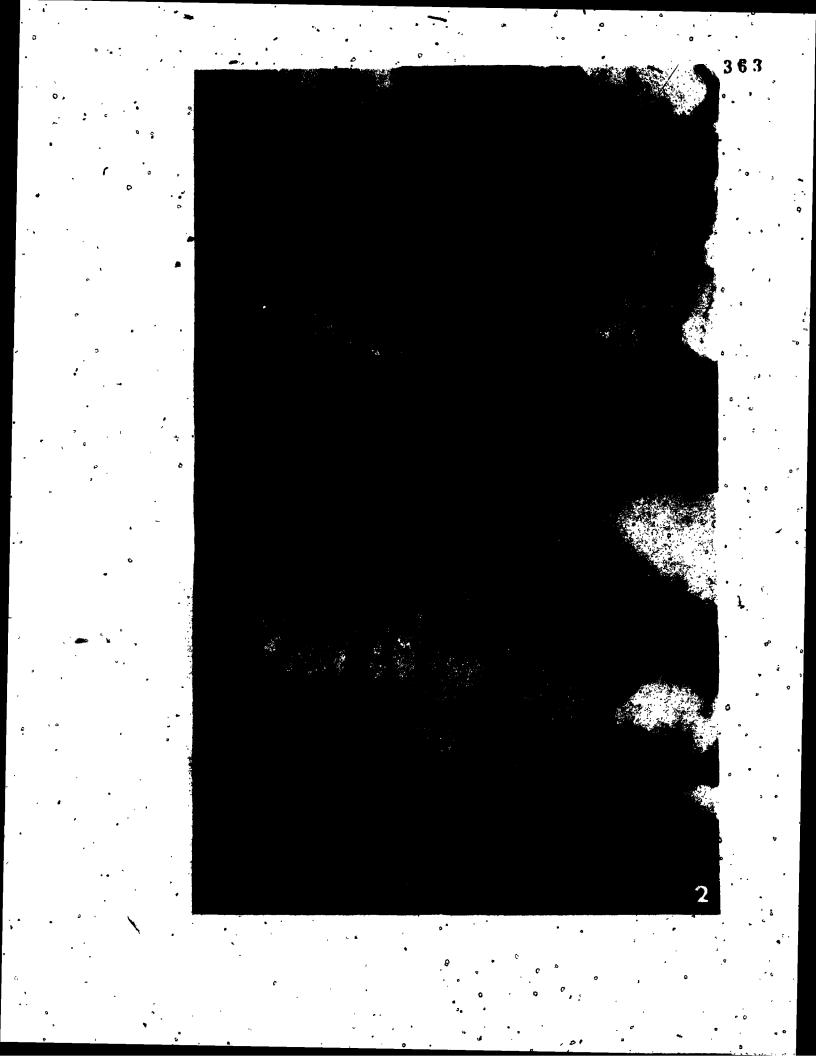
1. FPA cleared midrib tissue with developing primordia from leaf discs cultured on IAA medium for 120 hours. (x 120)

 Similar to 1. A close-up of IAA-induced
 primordium showing the typical flat, hemispherical, bulging morphology with rectangular shaped cells (arrow) forming the root cap.

(x[.] 200)

 $GA_3$  treated leaf tissue after 120 hours showing a typical, late forming primordium with sharp. beak-like apex of enlarging cells. Note the large, highly vacuolated cortical parenchyma cells around the primordium. (x 200)  $GA_3$  treated leaf tissue after 120 hours showing a later primordium stage where the cap cells appear to be elongating in a direction parallel to the surrounding cortical parenchyma cells. (x 200)




inhibition of organogenesis. In some cases masses of proliferating cortical cells possessed vascular traces similar to ones found in root primordia (Plate 6.?;1,?). Whether these traces were initially developed within discrete primordia which were subsequently destroyed by parenchymatization or were formed in response to localized callus proliferations is unknown. However, their strong resemblance to root vasculature suggests that the former hypothesis may be correct.

At 120 hours, meristemoidal areas in endodermal derivatives of the minor veins were virtually absent in  $GA_3$  treated material (mean number meristemoids = .1) although quite abundant in the control tissue (mean number = 5.3). At the LPI₃ and auxin concentrations used in these experiments, however, no type II primordia would be formed from these meristemoids.

Attempts were made to modify the  $GA_3$  responses by auxins or ABA. Regardless of auxin type, high concentrations of  $GA_3$  inhibited root regeneration (Table 6.7) at high auxin concentrations.  $GA_3$  inhibition of root regeneration was most. pronounced at high auxin concentrations regardless of the presence or absence of light (Tables 6.8 and 6.9).  $GA_3$ alone induced slight yet reproducible rooting responses in the dark. Interestingly, when high concentrations of IAA were applied in the presence or absence of a low  $GA_3$  concentration, no inhibition of organogenesis was observed although a growth stimulation was evident (Table 6.10). No

Plate 6.2. Abnormal vascularization of late forming roots induced by GA₃.

- NaOH cleared leaf tissue after 120 hours on
   IAA medium showing 3 root traces (arrows) joining with the mid rib vasculature. Note the long vessel elements which compose the , root trace. (x 200)
- 2: NaOH cleared leaf tissue after 120 hours on a GA₃ + IAA medium showing the apparent effects of primordium destruction on the vascularization^{*} process of the root. The vessels (arrows) are short, irregular and discontinuous in appearance. (x 200)



Treatment.	• م	ag o	Mean number of roots per dis	ċ
	• •	, 	 •	
		•		•

Control ...

IBA  $(5 \times 10^{-7} \text{ M})$ IBÂ +  $(GA_3$ IBA  $(5 \times 10^{-6} \text{ M})$ LBA +  $GA_3$ PAA  $(5 \times 10^{-7} \text{ M})$ 0.0 a

PAA +  $GA_3$  0.0 a PAA (5 x 10⁻⁶ M) 0.0 a FAA  $GA_3$  0.0 a

*Phenylacetic acid

Means followed by the same letter in a column not different at 5% level.

Mean LPI  $_3 = 3.9$ 

Table 6.8. Effect of GA₃ concentration on rooting response in the light of tomato leaf discs cultured <u>in vitro</u> at different IBA concentrations.

365

Mean number of roots per discs Tneatment . IBA  $(1 \times 10^{-6} M)$ , 1.0 a  $IBA + GA_3 (1 \times 10^{-8} M)$ а  $IBA + GA_{3} (1 \times 10^{-6} M)$ а  $IBA + GA_3 (1 \times 10^{-4} M)$ IBA (1 x 10⁻⁵ M) 7.5  $IBA + GA_3 (1 \times 10^{-8} M)$ 6.2  $IBA + GA_3 (1 \times 10^{-6} M)$ 3.5  $IBA' + GA_3 (1 \times 10^{-4} M)$ 1.3.

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 3.7$ 

Table 6.9. Effect of IAA concentration on the GA₃-induced rooting inhibition from tomato leaf discs cultured <u>in vitro</u> in continuous darkness.

	Mean [°] number	of roots per disc
Treatment	-GA3	$+GA_{3}$ (1 x $10^{-4}$ M)
<u>.</u>		
Control	0'a	l a
IAA (5 x $10^{-8}$ M)	1.3 Ь	.2 a
IAA $(1. \times 10^{-7} M)$	2.3 c	1,4 b
.IAA (5 x 10 ⁻⁷ M)	7.1 d	° 6.2 d
IAA $(1 \times 10^{-6} \text{ M})$	) 10.5 e	7.9 d.
IAA (5 $\times$ 10 ⁻⁶ M)	10:5 è	7.6 d

Means followed by the same letter in a column not different at 5% level.

Meaf LPI = 3.8

Table 6.10. Effect of a low GA₃ concentration on IAA-induced root regeneration and growth of tomato leaf discs cultured in vitro.

· · · · · · · · · · · · · · · · · · ·		2
· / · · · ·	Mean number of	Mean freșh (
Treatment	roots per disc	weight (mg)
IAA (2.5 x 10 ⁻⁵ M)	8.9 a,b	32.4 c,d
$IAA + GA_3 (1 \times 10^{-8} M)$	.9.8 a,b	41.0 e °
ΊΑΑ (5.0,×10 ⁻⁵ , M)	11.0 a,b	29.6 c
IAA + GA3	<b>11.5</b> b	.38.9 d,e

Means followed by the same letter in a column not different at 5% level.

Mean. LPI $_3 = 3.6$ 

significant growth effect was evident in  $GA_3$  treated material without the presence of an auxin (Table 6.11). ABA had no effect on  $GA_3$  inhibition of rooting when applied simultaneously although an inhibition of growth was apparent at high concentrations (Table 8.12). An initial twentyfour hour pulse of ABA at different concentrations were also unable to overcome the  $GA_3$ -induced inhibition of organogenesis (Table 6.13).

#### 6.4, Discussion

• The present set of experiments has revealed multiple inhibitory roles of GA₃ in the control of <u>in vitro</u> root pegeneration when the leaf discs are cultured in continuous light. Furthermore, the GA₃ inhibition of organ regeneration is apparent only at or above threshold concentrations of externally applied soluble carbohydrates or auxins although the type of soluble carbohydrate of auxin had no effect on the inhibitory response.

The early or initial inhibitory effect on rooting (i.e. during the first 48 hours) can be related to a partial inhibition of endogenous starch synthesis. Both tissue analysis of starch levels and  $GA_3$  timing experiments support this hypothesis. The conclusions are also in agreement with the previous leaf cutting experiments of Chapter 4.

However, it is apparent from histological observations that meristemoid formation from the minor yein sheath parenchyma is also inhibited. Under conditions of low Table 6.11. Effect of GA3 on tomato leaf disc growth in the light or dark.

Treatment* Mean fresh.weight (mg)

continuous light  $(1 \times 10^{-4} \text{ M})$  16.1 a continuous light +  $GA_3$  (1 x 10⁻⁴ M) 15.3 a continuous dark 10.0 b continuous dark +  $GA_3$  11.2 b.

* Basal medium without auxin.

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 3.2$ 

°O

/#able	6-12	. Effect	of ABA	on GA3	rooting	inhibition	and
4		•			A 1	- ·	
0		-growth	stimula	ation fr	om tomat	o leaf dis	CS .
						n '	-

cultured	i'n	vitro.		e
` <b>`</b>			٠.	

, °	Mean number of Mean fresh
Treatment	roots per disc weight (mg)
<b>`</b>	•
control.	° 6.4 b 25,6 °с
ABA $(1 \times 10^{-4} M)$	5.9 b 10.0 d
ABA + GA ₃ (1 * 10 ⁻⁸ M)	3.8 a 10.8 d
ABA + $GA_{3}$ (1 x $10^{-4}$ M)	3.9 a₀ 12.9 d
C C	

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 2.8$ 

Table 6.13. Effects of an initial 24 hour ABA pulse on GA3 'inhibition of root regeneration.

- `•			• .
Treatment* ,	•	Mean number of	roots per disc
			<b>•</b>
Control		14.0	a
GA3 (1 x 10 ⁻⁶ M)	· .	10.7	b,c
GA3 (1 x 10 ⁻⁴ M)	₱ a +.	7.9	c,đ
ABA (1 x $10,-6$ M)		12.4	a,b
ABA (1 $\times$ 10 ⁻⁴ M)		15.2	• a
$GA_3$ (1 x 10 ⁻⁶ M)	+ *	An	• .
ABA $(1 \times 10^{-6} M)$	•	8.8	c,d
$GA_3$ (1 x 10 ⁻⁴ M)	) <b>+</b> 0 ¹		
ABA $(1 \times 10^{-6} M)$		7.1	d
$GA_3$ (1 x 10 ⁻⁶ M)	+; * ;	, , ,	•
ABA $(1 \times 10^{-4} M)$	)	7.1	đ
$GA_3$ (1 x 10 ⁻⁴ M)	•	1	• •
$ABA (1 \times 10^{-4} M)$			c,d
· • • • • •		· · · · ·	

* Discs were initially cultured on the different treatment media and then subcultured onto an inductive medium for the remaining 144 hours.

Means followed by the same letter in a column not different at 5% level.

Mean LPI = 2.7

LPI₃ and/or high exogenous auxin levels, this GA₃-mediated meristemoid inhibition would be expressed in terms of a reduced number of type II root primordia. Whether this inhibition of meristemoid formation from the sheath parenchyma derivatives of the minor veins is causally related to reduced starch levels in the GA₃ treated leaf discs or to a direct effect on the mitotic and enlargement processes of the potential meristemoidal cells is unknown.

A third inhibitory effect occurs relatively late in the culture period (i.e. during days 4 to 6) and involves the destruction of late-forming type I primordia by a process of gradual parenchymatization. This inhibition appears to be related to an earlier, GA2-induced mitotic activation and subsequent elongation of the cortical parenchyma cells at right angles to the underlying vascular tissues. The destruction of the root primordium begins with the endodermal derivatives which form the cap cells and may involve vascularized primordia as well as younger stages. This growth related inhibition of primordia development may account for up to 50% of the GA2-induced inhibition and may help to explain why auxins are unable to reverse the inhibition as was found in the leaf cutting system. However, the GA, #ffects on rooting and growth can be experimentally separated under conditions of high auxin levels and low GA, concentration where no inhibitory effect on rooting was apparent although a significant growth stimulation occurred. Similarly, although ABA was capable of suppressing the GA,

growth stimulation, it had no effect on a GA; -induced, f inhibition of root primordia initiation or development. A The consequences of ABA suppression of GAy-induced growth as it affects the late GA₂ effect on root inhibition (i.e. the parenchymatization process) are unknown as no detailed histological study was made. It is conceivable, however, that the proliferating cells of the developing root primordium may be selectively modified through the action of GA3 with a consequent destruction of the primordium. This concept of primordium destruction by GA, differs from Haissig's observations on GA3 inhibition of preformed root primordium devélopment (Haissig, 1972). Based on històlogical observations of cell numbers in median longitudinal sections of GA, treated and untreated, preformed root primordia in brittle willow seedlings, Haissig concluded that GA3 inhibited development by a direct inhibition of mitotic activity within the developing primordium. Although the present study does not rule out GA3 inhibited intraprimordium cell division leading to limited root primordium development, it does present histological evidence for a second inhibitory effect of GA, on root primordium development which is based upon the actual destruction of the primordium.

Although GA₃ appears to exhibit multiple inhibitory roles in the control of root regeneration when the leaf discs are cultured in continuous light, a consistent observation was the slight stimulation of rooting by GA₂ when the leaf

373

discs were cultured in continuous darkness. This observation is pursued in the following chapter.

#### CHAPTER 7

TOMATO LEAF DISCS CULTURED IN VITRO: STIMULATION OF ROOT REGENERATION BY GIBBERELLIC ACID

# 7.1 Introduction

This chapter explores the ability of cultured tomato leaf discs to form a small, yet reproducible, number of roots when the discs are incubated in the presence of GA, in continuous darkness. Previous work (see section 6.3) has established that GA3 inhibits IAA-induced rooting in the dark regardless of auxin concentration. Consequently, the consistent yet alight stimulation of rooting in the dark by high concentrations of GA3 alone appeared paradoxical unless one hypothesized a GA3 effect on the levels of endogenous auxin. A number of researchers have demonstrated that GA3 increases the amount of endogenous auxin in various plant materials. For example, Sestry and Muir (1963). observed that GA3 treatment of tomato fruits lead to increased diffusible auxin levels from the developing fruits. Thisman (1972) suggested that tomato pollen could contain gibberellin which could, in turn, stimulate auxin production in the ovary. Further work by Muir and his associates (Kuraishi and Muir, 1963; 1964) established that GA3 treated

stem tips of the rosette plant, Hyoscyamus, contained 43 times as much auxin as in controls. Gibberellic acid has also been reported to increase the endogenous auxin levels of bean seedlings 200 times (Nitsch and Nitsch, 1963). Similar reports are present in the literature (e.g. Nitsch and Nitsch, 1959; 1961; Bastin, 1967; Varga and Bitó, 1968 as cited in Varga and Humphries, 1975). Two mechanisms have been hypothesized for these observations: 1) GA, binhibition of auxin oxidases leading to increased auxin levels by a sparing effect; and 2) GA₈ stimulation of endogenous auxin synthesis. Although both systems have been supported by experimental evidence (see section 2.4), the current study suggests that the latter hypothesis presents a more plausible explanation of the observations. As noted in Figure 2.1 (see section 2.4), IAA may be synthesized in tomato shoots by one of two pathways: ...

 $TPP \rightarrow TNH_2 \rightarrow IAAld \rightarrow IAA \quad (1)$  $TPP \rightarrow TPyA \rightarrow IAAld \rightarrow IAA \quad (2)$ 

Since GA; is capable of apparently stimulating endogenous IAA synthesis by pathway (1) in a number of non-regenerating systems (see section 2.4) the following study examines; this effect in a root regenerating system and involves two interrelated aspects:

i) culture studies involving GA3 effects on root regeneration in the presence or absence of possible IAA precursors (see Fig. 2.1);

ii) radioactive incorporation studies with the IAA precursor,

tryptamine- $2\frac{14}{6}$ C bisuccinate, in the presence or absence of GA₃ over a 24 hour period.

7.2 Materials and Methods

# 7.2.1 Culture Techniques

Similar procedures were followed as outlined in section 5.2.1. The indole derivatives, GA₃ and labile components such as the accessory factors, ~ketoglutaric acid and pyridoxal phosphate, were added by filter sterilization after autoclaving the media. All indole compounds and accessory factors were purchased from Sigma Co., St. Louis, Mo.

## .2.2 Radiotracer Techniques

## 7.2.2.1 Tissue Incubation

Duplicate samples of 190 discs per treatment from young expanding tomato leaves (LPI₃ 2.0 to 3.0) were incubated in 25 ml Erlenmeyer flasks containing Murashige and Skoog (1962) inorganic nutrients, .06 M sucrose, 5 x  $10^{-7}$  M thiamine, 5 x  $10^{-5}$  M-<-ketoglutaric acid and 2 µc of tryptamine-2-¹⁴C bisuccinate (final concentration 8.6 x  $10^{-6}$  M; specific activity 47 .0 mCi/m mole; New England Nuclear, Boston, Mass.) in a total volume of 5.0 ml. Radiochemical purity of the TNH₂-2-¹⁴C was greater than 98.5% when purchased approximately six months before the experiment and TLC separation of a 5 ul sample revealed a single homogenous radioactive peak which co-chromatographed with authentic tryptamine. Gibberellic acid was added to one half of the samples at a final concentration of  $1 \times 10^{-5}$  M. After surface sterilization of the whole leaves, one hundred 5 mm diameter leaf discs were punched out with a stainless steel cork borer, added to each flask and subsequently incubated for 6, 12 or 24 hours on a linear shaker (120 cycles per minute) in continuous darkness at

## 7.2.2.2 Extraction of Indple Metabolites

25°C.

All'of the following steps were carried out if dim light at 4°C to present decomposition of the indole compounds. In order to effect "coprecipitation" of the labelied compounds, one hundred micrograms each of TNH₂, IAA and TOL in 80% methanol were added to each fraction associated with the extraction procedure (i.e. liquid" medium, washings and methanol tissue extract). This step is based on the assumption that the minute amounts of 'hot' compound will be carried along with the relatively large amounts of 'cold' carrier, allowing easy detection and collection. At the indicated times, the liquid medium was pipetted off; made up to methanol and stored in the dark at -15°C for subsequent analysis. Each sample of 100 leaf discs was pinsed onto a sintered glass filter with 200 ml

378

SALE REPORT

1 x 10⁷⁵ M unlabelled tryptamine, The aqueous washings were stored at +4°C. The leaf discs were ground with a prechilled mortar and pestle containing .5 ml 80% methanol and .02% sodium diethyldithiocarbamate (DIECA) for 4 minutés (Mann and Jaworski, 1970). The methanol/DIECA extraction solution which contained the ground tissue was made up to 40 ml (final volume) with the extraction solution, rinsed into a centrifuge tube of 50 ml capacity and stored at  $4^{\circ}C$ for 30 minutes with occasional stirring. The tubes were centrifuged for 10 minutes at 23,000 x g and the supernatant decanted off and saved. The pelletowas reextracted for an additional 30 minutes in 40 ml cold 80% methanol and .02% DIECA and subsequently centrifuged at 23,000 x g for 10 minutes. The supernatants were combined and the pellets stored at -15°C.

and the second state of th

The methanol extracts were evaporated to hear dryness at 35°C using a Buchner flast evaporator. The soluble extract residues were taken up repeatedly in 5.0 ml (final volume) of methanol. The resulting extracts were stored in the dark at -15°C under a nitrogen atmosphere until subsequent analysis by TLC. Total time for extraction and TLC analysis was under 72 hours.

## 7.2.2.3 TLC Separation of Indole Metabolites

Precoated Eastman Chromagram sheets (20 cm x 20 cm) with a 100 mu layer of silica gel (without fluorescent indicator) were activated at 110°C for 30 minutes before use in order to provide a highly active adsorption layer. The following solvent systems were evaluated for separatory properties and running times (in brackets):

i) ethyl acetate-isopropanol-water 65:24:11 v/v (75 minutes) (Ballin, 1964)

ii) isopropanol-ammonia-water, 85:5:15 v/v³(180 minutes)
(Kaldewey, 1968)

iii) chloroform-methanol-acetic acid, 75:20:5 v/v (55 minutes) (Pillay and Mehdi, 1968)

iv) chloroform-96% ethanol, 65:35 v/v (60 minutes) (Ballin, 1964)

v) chloroform-acetic acid, 95:5 v/v (Pillay and Mehdi, 1968)

vi) carbon tetrachloride-ethanol, 1:1 v/v (80 minutes) (Sherwin and Purvis, 1969)

Indole compounds were detected on the thin layer plates using Van Urk's reagent (Kaldewey, 1968). One gram of 4-dimethylaminobenzaldehyde was dissolved in 50 ml of HG (density approx. 1.19) and 50 ml ethanol added. Immediately after development, the plates were sprayed with this reagent and then exposed to aqua regia vapors (HCl-HNO₃; 3:1 v/v).

The neutral, solvent system (i) of Ballin (1964) was selected since it gave excellent, reproducible separations of IAA from TNH, and TOL with no evidence of decomposition products (Table 7.1). Further steps used to avoid decomposition of indole derivatives included spotting the TLC sheets under a gentle stream of nitrogen and running the thin layer plates in the dark at room temperature (ca. 25°C). Table 7.1. R values and colour reactions of simple indole derivatives.

and the second of the second

۰ ^۵ 3

Indole derivative*

1. Indole-3-lactic acid .11 blue dark blue 2. Indole-3-glyoxylic

colourless, orange-yellow acid .14 colourless light blue .15 Tryptamine colourless . light blue Trytophan .20 ч. réd-purple light blue Indole-3-acetic acid . 38 6. Indole-3-acetaldehyde ₲78 red-purple purple. 7. Tryptophol dark purple, dark blue .81 82 colourless orange 8. 3-indole-aldehyde

* 2 mg of each indole were run in ethyl acetate-isopropanolwater, 65:24:11 v/v for 75 minutes at 25°C. Running distance was 10 cm. Results presented from one representative

, run,

Fifty microliters of each tissue or media extract containing the labelled indole compounds were spotted at 2 cm intervals, run for 10.0 cm and then dried at room temperature. A standard solution containing 2 ug each of TNH₃, IAA and TOL was routinely run adjacent to the labelled samples. Preliminary experiments indicated that neither DIECA nor the tissue extracts affected the R_f values of the indole compounds.

and the second 
No attempts were made to identify IPyA among the labelled products of  $\text{TNH}_2$ . The reasons for this decision included the pronounced instability of IPyA and, more importantly, the failure of IPyA to incorporate a ¹⁴C label from  $\text{TNH}_2$ -2-¹⁴C during previous, and extensive, studies by Wightman (e.g. Gibson et al., 1972). Similarly, although the R_f zone corresponding to TOL could include IAAld, the latter substance is unlikely to be present due to its instability whereas TOL is quite stable and has been readily demonstrated in tomato extracts (Schneider et al., 1972; Gibson et al., 1972).

# 7:2.2.4 Liquid Scintillation Counting

The individual spots on the developed thin layer plates were cut out as 2 cm x 10.5 cm strips. Individual sections 2 cm x .9 cm were cut out at  $R_f$  values from -.05 to 1.00 and individually placed in low background glass scintillation vials (20 ml capacity) with .5 ml methanol. The capped vials were shaken for 1 hour in the dark at room temperature

on a linear shaker (180 cycles per minute) in order to elute the labelled indole derivative. Following the solubilization step, 12 ml of toluene based scintillation cocktail (Omnifluor; New England Nuclear Corp.) were added to the individual samples and subsequently counted as counts per minute (cpm) in a Beckman 230 liquid scintillation counted for 10 minutes per sample or until the 2 sigma counting error displayed fell to .2% of the gross counting rate. Quantitative determinations of label distribution were done on the basis of totalling the net cpm for each radioactive peak over the R_f values of the various indole components. Preliminary experiments were carried out in which the labelled TLC spots were eluted and counted for 10 minutes. The Silica gel support was subsequently removed and the vial recounted for 10 minutes. From the two sets of count data, an estimate of label solubilization into the scintillation fluid was determined as: 6

HACHER TO JA Ser

Contraction of the second states

total net sample count rate without support total net sample count rate with support x 100 = % solubilization

Although a consistently high solubilization of over 90% was indicated, the experimental results possess an unknown error factor due to the biphasic nature of the counting system.

Prior to counting, a quench correction was made by adjusting the gain mode so that the external standard ratio (S value) was close to .750. No appreciable colour or chemical quenching was observed in the samples with the S

384

values varying between .75 and .77. The background counting rate was subtracted from the gross counting rate to give net sample counts per minute. The per cent efficiency for counting at the gain setting used was approximately 74%.

1 61 1 53 74 T

In view of the fact that each treatment consisted of two samples which were, in turn, sampled twice, for a total of four determinations per treatment, the nonparametric Mann-Whitney U-tost (Siegel, 1956; Sokal and Rolf, 1968) was used in preference to the calculation of a two sigma error factor based upon net sampling counting rate. This choice of statistical evaluation was preferable due to the complexities of the latter analysis for dealing with samples within samples. The Mann-Whitney U-test is the nonparametric equivalent of the conventional t-test for analysing two independent samples without the obligatory requirement for normally distributed data or homogeneity of variances which are demanded of the latter test. Furthermore, the Mann-Whitney U-test is ideally suited for small sample sizes.

#### 7.3 Results

3 Y

#### 7.3.1 Culture Studies

Since GA3 is suspected of increasing endogenous IAA levels in non-regenerating systems by a mechanism which may

involve enhanced synthes is from IAA precursors, a series of experiments was carried out in order to determine GA, effects on the rooting response induced by various IAA precursors. When TPP was evaluated, a high concentration of GA, significantly enhanced the TPP-induced regeneration response (Table 7.2), A similar observation was made for GA, effects on TNH, induced rooting (Table 7.3). Further work with TNH, revealed that the GA, response was consistently greater in young expanding leaves than in mature leaves (Table 7.4) with an apparent requirement for such accessory factors as thiamine, pyridoxal phosphate and 🛩-ketoglutaric acid (Table 7.5). 🛛 GA, was progressively more effective in enhancing TNH, induced rooting up to a concentration of  $1 \times 10^{-5}$  M GA₂ (Table 7.6). GA₇ gave essentially similar results .(Table 7.7). Attempts to replace or modify the GA, effect by ABA or Kn were unsuccessful (Table 7.8). When IPyA was evaluated, however, no GA3 enhanced rooting was evident regardless of IPyA concentration (Table 7.9) or the presence of accessory factors' (Table 7.10). TOL, which occurs on a branch pathway from IAAld (see Fig. 2.1) gave a slight stimulation at high concentrations and this effect was enhanced by GA₂ (Table 7.11).

ILA, which occurs on a possible branch pathway from IPyA (see Fig. 2.1), has been described as a native compound only in tomato with very weak biological activity in the oat, wheat and maize colcoptile tests and in the pea stem test (Schneider and Wightman, 1974). Surprisingly, ILA had very high root inducing capabilities and they were considerably Table 7.2. GA₃ effects on rooting in the dark in presence or absence of tryptophan.

				······	· ·	•		
T	reatme	ent 🄪	•	Mean	number o	f roots j	per di	sc.
Tryptopha	n	GA ₃	· · ·	•			•	_
0	.3	. 0 .	· · ·	· · ·	0.0	a	•	Ĺ
• 0 • •	1	x 10 ⁻⁸	M	,,, c ,	. 1	a		•
0 - `	· 1	x 10 ⁻⁶	M	·	, <b>, 4</b>	a		`•
0	1	x 10 ⁻⁴	М		.3	a	9	•
1 x 10 ⁻⁴	ัท	0	,		.1	a	4	
$1 \times 10^{-4}$	M 1	x 10 ⁻⁸	M	- 0	••3	a	•	·
1 x 10 ⁻⁴	M 1	x 10 ⁻⁶	M		1.2	Ъ.		
$1 \times 10^{-4}$	I M	x 10.~4	M	· ·	1.6	Ъ		, 7
	•		5		• • •	, 		•

Means followed by the same letter in a column not different at 5% level.

: .

Mean LPI $_3 = 3.3$ 

386.

· · ·	prese	nce or ab	sence of tr	yptam;	Lne -		
·	`` .	` .		'			
Treatment			Mean numh	er of	roots	per	disc
Control				0.0	a	,. 4	F
GA ₃ (1 x 1	.0 ⁻⁴ M) ¹			0.0	a, '		
TNH ₂ (1 ×	10 ⁻⁴ M)	***	Y	· .1	a,		•
$TNH_2$ (2 x	10 ⁻⁴ M)	· · ·		.3	` <b>`a</b>		1
TNH ₂ (1 x	10 ⁻⁴ M)	+ GA ₃		ີ . 3	a	•	÷
$TNH_2$ (2 x	10 ⁻⁴ M)	+ GA3	, • •	2.9	b		•

Table 7.3. GA3 effects on rooting in the dark in the .

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 2.7

Table 7.4. Effect of leaf	age on GA ₃ stimulation of root
regeneration at	different TNH $_{\mathcal{T}}$ concentrations.
	•
· · · · · · ·	Mean number of roots per disc
Treatment	LPI ₃ = 2.0 LPI ₃ = 4.6 •
	· · · · · · · · · · · · · · · · · · ·
Control	
TNH ₂ (1 x 10 ⁻⁴ M)	1.1 b,c .4 a,b
$TNH_2 (2 \times 10^{-4} M)$	.7 a,b .3 a,b
TNH ₂ (3 x 10 ⁻⁴ M)	.4 a,b .4 a,b.
$GA_3 (1 \times 10^{-4} M)$	:\$ a,b 0.0 a
$GA_3 + TNH_2' (1 \times 10^{-4} M)$	2.1 c,d .8 a,b
$GA_3 + TNH_2 (2 \times 10^{-4} M)$	2.5 d , 6 a, b
$GA_3 + TNH_2 (3 \times 10^{-4} M)$	1.3 b.c4 a.b

Means followed by the same letter in a column not different

at 5% level.

Table 7.5. Effect of  $GA_3$  and various accessory factors on  $TNH_2$  stimulation of rooting.

in the second second second

Treatment*	Mean	number	roots	per	disc
Control		0	.0 a		• • •
$TNH_2$ (2 x 10 ⁻⁴ M)	• •	. 0.	0 a	•	•
$GA_3 (1 \times 10^{-4} M)$	•	, ° 0,	0 a		× -
TNH ₂ + GA ₃	•	΄ Ο _σ	0 <b>a</b>	ر	·
TNH ₂ + GA ₃ + accessory factors		•	.2 a	• • •	
$\text{TNH}_2 + \text{GA}_3 + \text{vitamins} (1 \times 10^{-6} \text{ M})$	•; )	. 1	.6 Ъ		
TNH ₂ + GA ₃ + accessory factors + vitamins	, , ,	2	.3 b [°]	· · ·	٥
$TNH_2$ + accessory factons (5 x 10 ⁻⁴ M).	•	,	l a	: • E	
TNH ₂ + vitamins	,	•	.3 a	ر م <u>ر</u> ر	•
TNH ₂ + accessory factors +	• •				
vitamins /*	-	• •	3а		
$TNH_2$ + accessory factors + vitamins + glycine (5 x 10 ⁻⁶ M)	, " • `	•	(5 a		
TNH ₂ + GA ₃ + accessory factors + vitamins + glycine	• •	2.	.0 Ъ	- - -	

*accessory factors: 5' x  $10^{-6}$  M  $\leftarrow$  -ketoglutaric acid, 5 x  $10^{-6}$  M pyridoxal phosphate; vitamins: 1 x  $10^{-6}$  M each of thiamine, pyridoxine and nicotinic acid. A subsequent experiment revealed that thiamine alone could replace the vitamin mixture.

Means followed by the same letter in a column not different at 5% level.

Mean^o LPI₃ = 2.1

.

· 3 8 9

•	,						
able	7.6.	GA3	concentration	effects	on	TNH ₂	enhancement
	,	. •	<i>a</i> .			~	

We want the state of the second se

of_root	regeneration.	•
		•
	•	

	Mean number of roots per disc		
Treatment	-TNH ₂	+TNH ₂ (2	x 10 ⁻¹ M)
~°		••••	· · · · · · · · · · · · · · · · · · ·
Control	0.0 a,	. 2	a .
$GA_{3}$ (1 x 10 ⁻⁸ M)	0.0 a	° 1.1	b
GA ₃ (1 x 10 ⁻⁷ M)	, .3 а	1.6	Ъ
$GA_3$ (1 x 10 ⁻⁶ M)	°.2 a	1.9	b,c
GA ₃ (1 x 10 ⁻⁵ M)	.2 a	2:7	c 📩
GA ₃ (1 x 10 ⁻⁴ M)	.4.a	2.2	ð,c
A Form		•	· •

Means followed by the same letter in a column not different

Mean LPI₃ = 1.9

at 5% level.

391

Table 7.7. Effect of  $GA_3$  and  $GA_7$  on the enhancement of root regeneration.

Mean number of roots per disc--TNH₂  $+TNH_2$  (2 x 10⁻⁴ M) Treatment Control .2 a .6 a ĠА₃ (1 х 10⁻⁶ м) 3.5 ·c .9 a,b  $GA_3$  (1 x 10⁻⁴ M) 2.9 c 4.3 С  $GA_7$  (1 x 10⁻⁶ M) .5 3.2 С a  $GA_7$  (1 x 10⁻⁴ M). 2.1 b,c. 4.1 .c.

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 1.6$ 

FAR THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY AND TH

# Table 7.8. Effects of kinetin and ABA on the TNH₂-

TNH ₂ (2 x 10 ⁻⁴ M) TNH ₂ + GA ₃ (1 x 10 ⁻⁴ M) TNH ₂ + ABA (1 x 10 ⁻⁸ M) TNH ₂ + ABA + GA ₃ TNH ₂ + Kn (1 x 10 ⁻⁶ M) TNH ₂ + Kn + GA ₃ TNH ₃	Treatment	Mean number of roots per disc
TNH ₂ + ABA (1 × 10 ⁻⁸ M) TNH ₂ + ABA + GA ₃ . TNH ₂ + Kn (1 × 10 ⁻⁶ M) TNH ₂ + Kn + GA ₃ TNH ₂ + Kn (1 × 10 ⁻⁸ M) 1.4 a 3.3 b 0.0 c TNH ₂ + Kn (1 × 10 ⁻⁸ M) 1.4 a 1.4 a		1.4 a
TNH ₂ + ABA + GA ₃ . TNH ₂ + Kn (1 x 10 ⁻⁶ M) TNH ₂ + Kn + GA ₃ TNH ₂ + Kn (1 x 10 ⁻⁸ M) 1.0 a,c	$TNH_2 + GA_3 (1 \times 10^{-4} M)$	3.7 b
$TNH_{2} + Kn (1 \times 10^{-6} M) = 0.0 c$ $TNH_{2} + Kn + GA_{3} = 0.0 c$ $TNH_{2} + Kn (1 \times 10^{-8} M) = 1.0 a,c$	$TNH_{2}^{+}$ ABA (1 x 10 ⁻⁸ M)	1.4 a
$TNH_{2} + Kn + GA_{3}$ 0.0 c $TNH_{2} + Kn (1 \times 10^{-8} M)$ 1.0 a,c	$TNH_2$ + ABA + $GA_3$	- 3.3 b
$TNH_2 + Kn (1 \times 10^{-8} M)$ 1.0 a,c	$TNH_2 + Kn (1 \times 10^{-6} M)$	0.0 c -
	$TNH_2 + Kn + GA_3$	0.0 , c
$TNH_2 + Kn + GA_2$ 3.2 b	$TNH_2 + Kn (1 \times 10^{-8} M)$	1.0 a,c
*2 5	$TNH_2 + Kn + GA_3$	3.2 b

- Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 1.3$ 

	· · · ·	2	of root	- - -	۰.
° regeneration.	¢ •	د ن _{مصع} ہ ا	. <b>"</b>	: •	ځ
• • •	Mean num	ber of	roots pe	er disc	
Treatment	, -6A _{,3}	+GA	3 (1 x ]	נס ⁻⁴ אַז	
Control	.0.0 a .	•`	0.0°.a		• • • ·
IPyA (1 x 10 ⁻⁸ M)	0.0 a	· ·	0.0 a	,	:
IPyA (5 x 10 ⁻⁸ M)	.3 a C	, č	a a	-	•
IPyA (1 x 10 ⁻⁷ M)	• .7 a,b	er L	1.1 b		
IPyA (5 x $10^{-7}$ M)	ູ <b>3.6</b> ໍ້ໍໍ	, o ,	3.8 c	•	۰
IPyA (1 x $10^{-6}$ M)	5.1 d	•0	5.1 đ		
-	. , ,	2,	• .		
Means followed by the same different at 5% level. Mean LPI ₃ = 2.3 🗳			° .	e .	, - , - , - , - , - , - , - , - , - , -
· · · · · · · · · · · · · · · · · · ·	. <b>ا</b> د د د	<b>)</b> •'	-3 -8	· · ·	•
9		3	· . · · ·	•	
م ¹				F 5.	
ີ ອ 	- · _ 0	· · ·			•
	, , , , , , , , , , , , , , , , , , ,	ţ	۰ ۰	<b>3</b>	21 21 2

5

۰.

Q

**ö**¢

ş

**393** 

۵.

ø

Table 7.10 Éffects of accessory factors on IPyA stimulation of root regeneration.

· · · · · · · · · · · · · · · · · · ·						
Treatment*	Mean	num	ber of	roots	per	disc
IPyA (5 x $10^{-7}_{0}$ M)	2.	-	2.6	a	·.	
IPyA + accéssory factors	·		3.8	å		
$IPyA + GA_3 (1 \times 10^{-4} M)$ -	- <b>1</b>		4.1.	a	5	• • •
IPyA + GA ₃ + accessory factors		î.	\$.7, 3.7,	۰a •	с	
IPyA (1 x 10 ⁻⁵ M)		0	.11.4	۵۰ م	,	
IPyA + accessory factors			11.7	b	-	•
$IPyA + GA_3 (1 \times 10^{-4} M) $		. •	10.4	Ъ	•	
IPyA + GA ₃ + accessory factors			12.7	Ъ·	fø	
, s	•		•			٠

*Accessory factors include  $\checkmark$  ketoglutaric acid (5 x 10⁻⁶ M) and pyridoxal phosphate (5 x 10⁻⁶ M):

Mean's followed by the same letter in a column not different at 5% level.

Mean  $LPI_3 = 2.6$ 

Table	7.11.	TOL concent	ratión	effects	on	root	'neğer	eration
				· • ·		N°	. –	_ • v

•	in	the	presence	or	absence	of	GA
o` c			· ·		0		

Treatment	a , , , ,	Mean number of root -GA ₃ tGA ₃ (1	
Control,		0.0 a ~ .2	· · · · · · · · · · · · · · · · · · ·
TOL (.2 $\times$ 10 ⁻⁵			a,b,c
TOL (4 x $10^{-5}$	t)	r ''	a,b,c
TOL (6 $\times 10^{-5}$	· · · ·	0.0 a .7	
TOL (8 x $10^{-5}$	• .	.la .8	
TOL (1 x 10 ⁻⁴	· · · · · ·	*5 a,b,c 1.3	
TOL (2 x 10 ⁻⁴	0 *	.9. Б.,С 2.4	· · · ,
• • • •	• •		· <b>^</b> .

Means followed by the same letter in a column not different at 5% level.

Mean LPI₃ = 2.5

enhanced by  $GA_3$  (Table 7.12). Unlike the TNH₂/ $GA_3$  response system, the  $GA_3$  promotion of rooting in the presence of ILA was not enhanced further by such accessory factors as pyridoxal phosphate and  $\prec$ -ketoglutaric acid (Table 7.13). However,  $GA_3$  was progressively more effective in enhancing ILA-induced rooting up to a concentration of 1 x 10⁻⁵ M  $GA_3$ (Table 7.14). No interaction was apparent between ILA and TNH₂ in terms of the presence or absence of  $GA_3$  (Table 7.15). TLC separation of the commercial ILA preparation (Sigma, St. Louis, Mo.) with 3 different solvent systems (see section 7.2.2.3) gave a single homogenous spot in terms of UV fluorescence and a positive colour reaction with the Van Urk reagent. This result indicated a pure ILA sample and suggested that no indole impurities could account for the observations.

7.3.2 Radiotracer Studies

Although ILA gave a more pronounced response in the presence of  $GA_3$  than  $TNH_2$  and  $GA_3$ , its effect was totally unexpected in view of the lack of response with IPyA and the fact that tomato is the only species known to contain ILA. Furthermore, very weak biological activity was accorded to ILA and the bulk of the literature suggested a  $GA_3$ mediated effect on auxin biosynthesis by pathway (i). As a result, an evaluation of  $GA_3$  effects on the metabolism of  $TNH_2-2-^{14}C$  in tomato leaf discs cultured <u>in vitro</u> over a 24 hour period was carried out as outlined in section 7.2.2. Table 7.12. ILA concentration effects on root regeneration

. in the presence or absence of  $GA_3(1 \times 10^{-4} M)$ .

· · · · · · · · · · · · · · · · · · ·	Mean number	of roots per disc
Treatment	-GA ₃	+GA ₃
• • • • • • • • • • • • • • • • • • •		۰ •
Control	- 0.0 a	.6 a ' ·
ILA (1 x $10^{-6}$ M) $\circ$	.2 a	1.1 a,b
ILA (5 x 10 ⁻⁶ M)	. ́1.9 Ъ	, 4.4° c
ILA $(1 \times 10^{-5} M)$	4.2 c	5.4 c.
ILA (2 x $10^{-5}$ M).	- 🗲 5.3 č	12.3. e
ILA $(4 \times 10^{-5} M)$	8.0 d	10.9 d,e
ILA (6 x.10 ⁻⁵ M)	11.9 e	9.5 d,e
с <u>,</u>		· •

'Means followed by the same letter in a column not different at 5% level.

Mean LPI3 = 2.1

Table 7.13. Effects of accessory factors on ILA stimulation of root regeneration.

Treatment*	Mean					
	nean	number	of	roots	perj	disç
• , • : • • • • • • • • • • • • • • • •					·	
ILA $(1 \times 10^{-6} M)$	2	1	.2	•a •		,
ILA + accessory factors		. ` `	,5	a		-
ILA + $GA_3$ (1 x 10 ⁻⁴ M)	* · *	l	.1	a,b		
ILA + GA ₃ + accessory factor	rs	, 1	. 7 [,]	Ъ	•	
ILA (1 x 10 ⁻⁵ M)	<b>.</b> ,	'4	.2	c,đ	at "	~~ •
ILA + accessory factors	• ,	. 3	. 6	c ´	•,	•
$ILA + GA_3 (1 \times 10^{-4} M)$		5	.4	a .	•	
ILA + GA ₃ + accessory factor	rs	۰ ^۰ 5	.ı	c,d		
	•	· •				•

Table	7.14. GA ₃	concentration	effects	on ILA	enhancement
:	of	root regenerat	ion.	- -	•

	•			<u>.</u>		
• /	2 2 9		•	Mean numb		
Treatment	-	•	• •	-ILA	,+1LA (2	x 10 ⁻⁵ M)
	· · · · · · · · · · · · · · · · · · ·		-	• • • • •	; ,	·····
Control	1	•	`** *	0.0 a	5.7	Þ
	' = 8 .		đ		· · ·	

	x 10 ⁻⁸		đ	, ,	0.0	<b>a</b> .	e.	•	6.7	b,c	,
GA ₃ (1	x 10 ⁻⁷	M)		•	.1	a	e	-	8.0	b,c	
GA ₃ (1	x 10 ⁻⁶	M)	v		0. Q	ą		· .	8.2	þ,c	
GA ₃ (1	x 10 ⁻⁵	M)	. •	· ·	. <b>1</b>	a	•		8 <b>.</b> -5	с.	۰ د ۲
GA ₃ (1	x 10 ⁻⁴	M)			0.0	a,	,		8.2	b,c	
			+								

Means followed by the same letter in a column not different at 5% level.

Mean LPI $_3 = 2.3$ 

# Table 7.15. Effect of high TNH₂ concentration on the

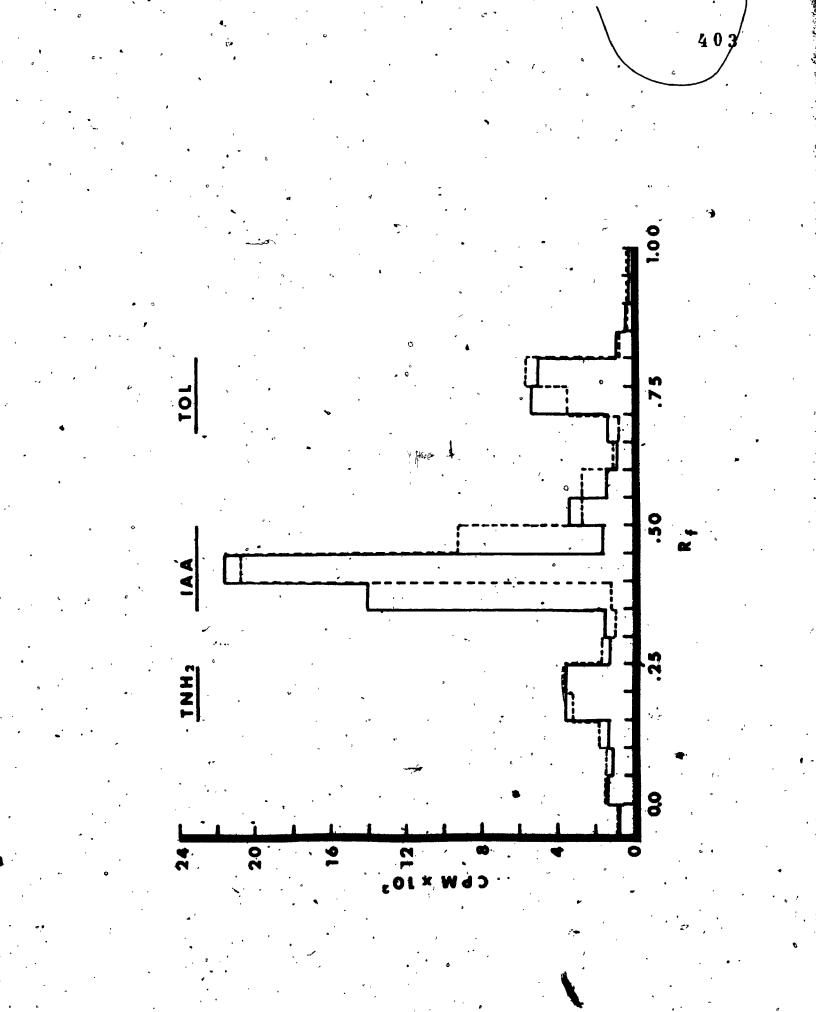
1.1

enhancement of rooting by ILA in the presence

or absence of GA₃.

Treatment		of roots per dis GA ₃ (1 x 10 ⁻⁵ M)
Control	0.0 a .	• .l a
ILA (1 x $10^{-6}$ M)	.2 a	.3 a,b
ILA (1 x 10 ⁻⁵ M)	3.4 d	5.5 e,f
ILA $(2 \times 10^{-5} M)$	6.6 f	8.7 g
$TNH_{2} (1 \times 10^{-4} M)$	.2 a,b	1.6 c
$INH_2 + ILA (1 \times 10^{-6} M)$	.5 a,b	1.2 b,c
$\text{FNH}_2 + \text{ILA} (1 \times 10^{-5} \text{ M})$	3.6 d,e	5.2 e,f
$TNH_2 + ILA (2 \times 10^{-5} M)$	6.4 ¢,f	9.7 g

Means followed by the same letter in a column not different at 5% level.


Mean LPI $_3 = 2.5$ 

A preliminary experiment confirmed the suspicion that  $TNH_2-2-\overset{14}{,}C$  could be converted into IAA within the leaf tissue during a 24 hour incubation period. Control flasks without tissue gave no evidence of any spontaneous breakdown of TNH2-2-14C into IAA during the 24 hours. Consequently, duplicate samples of 100 discs per 5 ml incubation medium containing 2 uc of  $\text{TNH}_2 - 2 - {}^{14}\text{C}$  were prepared as outlined in section 7.2.2 and sampled at 6, 12 and 24 hours after the start of the experiment. The results indicated that IAA was synthesized in the tissue within 6 hours after exposure to TNH₂-2-¹⁴C (Fig. 7.1). Increased label incorporation into IAA was apparent at progressively later times with  $n_{\Phi}$ apparent effect of GA, on the incorporation (Fig. 7.2 and 7.3). However, an analysis of the net count rate data did indicate a GA₂ mediated decrease in the level of incorporation at 12 hours into the radioactive peak at  $R_f$  .70 - .85 which includes the indole metabolites TOL, IAAld, and Iald (Table 7.16). No evidence was found to support the idea of extracellular synthesis or leaching of IAA from the tissues (Fig. 7.4). Over 90% of the upplied radioactivity was recovered after 24 hours incubation in the presence or absence of GA₂ (i.e. incubation medium, 35-40%; distilled water washing, 20-25%; methanol soluble tissue extract, 30-37%; and pellet, 1%).

7.4 Discussion

The culture experiments indicate that the enhancement of rooting by  $GA_3$  can be related to specific IAA precursors

Figure 7.1. TLC distribution of labelled tryptamine metabolites in tissue extracts after 6 hour incubation in the presence (---) or absence (---) of  $1 \times 10^{-5}$  M GA₃. The radioactivity is expressed as counts per minute (cpm) and is uncorrected for a background count of 35.5 cpm.



7.2. TLC distribution of labelled tryptamine metabolites in tissue extracts after 12 hour incubation in the presence (---) or absence (---) of 1 x  $10^{-5}$  M GA₃. Radioactivity (cpm x  $10^{2}$ ) is uncorrected for background of 38.9 cpm.

Figure 7.2.

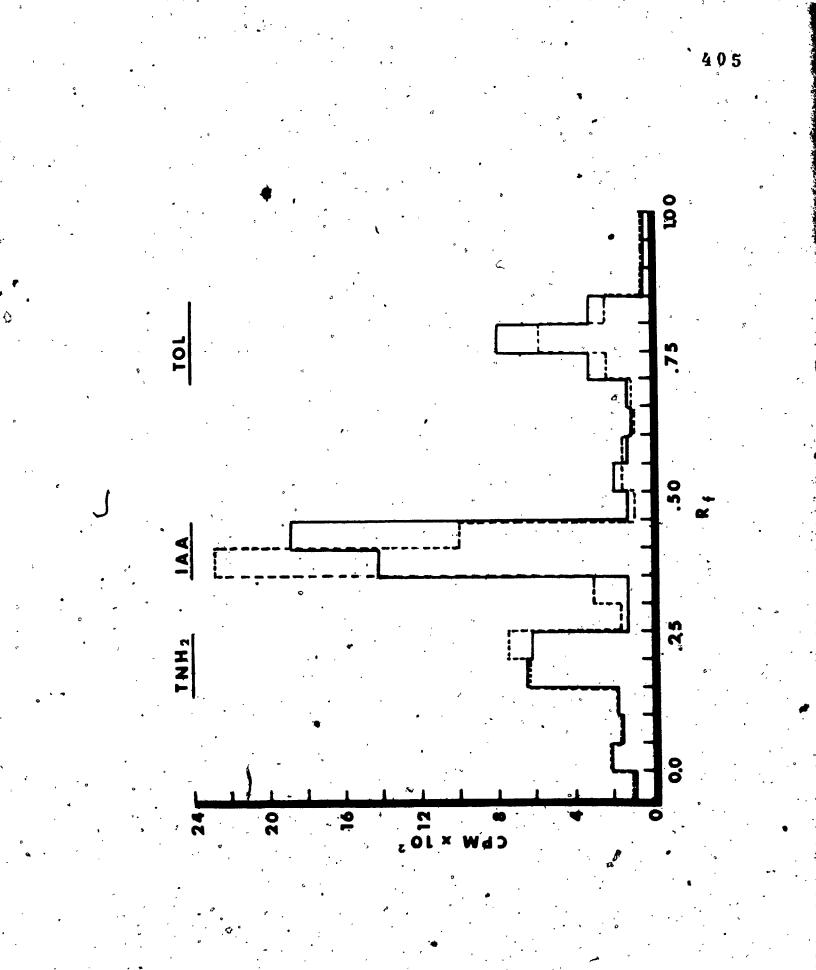
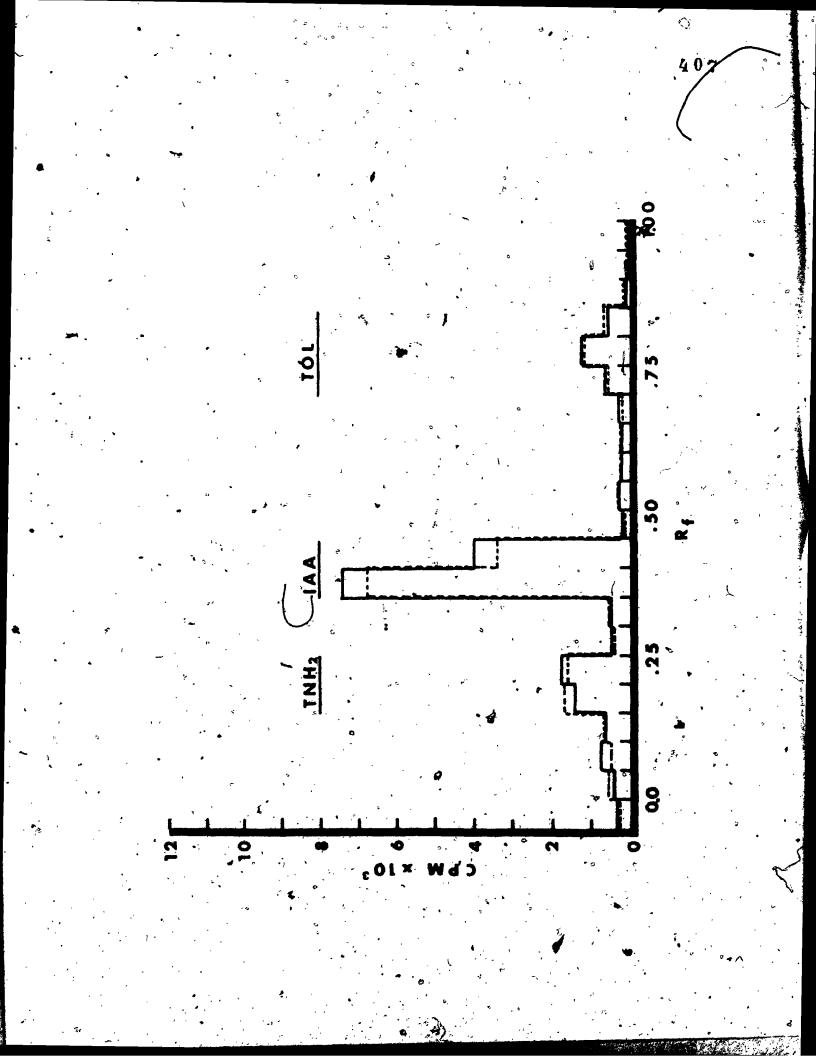
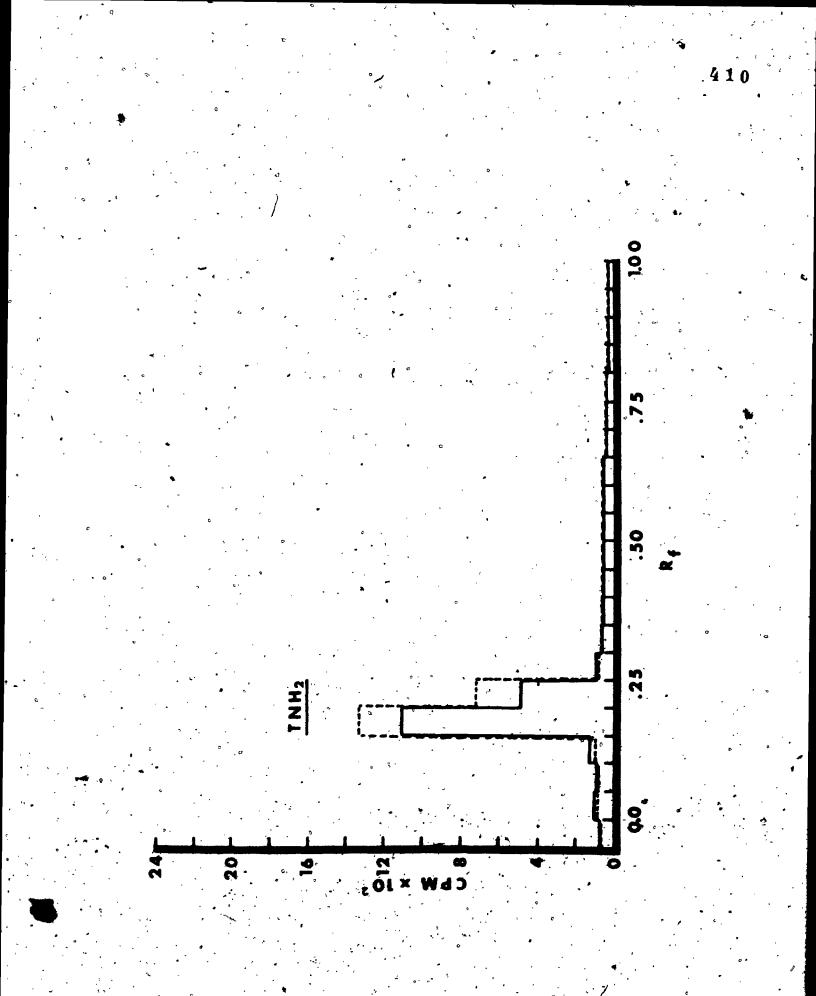





Figure 7.3. TLC distribution of labelled tryptamine metabolites in tissue extracts after 24 hour incubation in the presence (---) or absence (---) of 1 x  $10^{-5}$  M GA₃. Radioactivity (cpm x  $10^3$ ) is uncorrected for background of 38.6 cpm.



· · · · · · · · · · · · · · · · · · ·		۰.
		Q
•		, •
		•
	٦	<b>.</b>
Table 7.16. GA,	effects on the TNH ₂ metabolism within tomato leaf-discs cultured in VILLO	2
	a 24 hour	•
	- •	ι.
3	Mean Net CDm ^a , Relative amounts of	5 ••
		۰ ۰
Sample time Trea		۹.
6 hrs. TNH2		,
· · · TNH2	+ GA ₃ (1 x 10 ⁻⁷ M) 746.5  2811.9 10/0.4 · +	
TNH A TNH	,	ч ÷
· • · ·	2 + GA. 1207.1 NS 3596.3 NS 930.7 5 62.78	
		ني. ٥
24 hrs. TNH2		
TUH2	+ GA3 3958.5- 10775.4 2148.5	•
		`
^a Methn net cpm for	hrs and 12 hrs, based upon two samples which were, in turn,	۶
for a total of four	determinations per treatment. Mean net com for 24 nour based upon	•
sample which was	, sampled three times for a total of three determination of the second states of the second s	
ment. TNH ₂ activity may	AA breakdown product, indole	• -
Similarly, TOL a	nclude the IAA precursor, IAAId, and the IAA	<i></i>
. Iald. Each pair	ach metabolite at the various times were individuants	• .
compared by the l	compared by the Mann-Whitney U-test outlined by Siegel (1956) and Sokal and Kolf (1958). No	
comparisons were made among	different times or d	
fsignificant at 5% level; NS	3 - not s'ignificant 。	
^b Based on the to	total amqunt of labelled indole metabolites present in the methanol soluble $\mu$	4
fraction.		0 8
		, ,
•		,

Figure 7:4. TLC distribution of labelled tryptamine metabolites in tissue media after 24 hour incubation in the presence (----) or absence (----) of 1 x  $10^{-5}$  M GA₃. Radioactivity (cpm x  $10^{2}$ ) is uncorrected for background of 43.0 cpm.



such as TPP,  $\text{TNH}_2$  and ILA and, hence, could involve a  $\text{GA}_3$ mediated increase in endogenous auxin levels. The present study did not demonstrate any stimulatory effects of  $\text{GA}_3$ on IPyA induced rooting. Although  $\text{GA}_3$  stimulated TOL induced rooting, the response appeared essentially. additive with no indication of a direct interaction between the two substances. Furthermore,  $\text{GA}_3$  has no effect on tryptophol oxidase isolated from cucumber shoots which suggests (barring a species specific response) that the  $\text{GA}_3$  mechanism of action does not reside directly in TOL metabolism (Percival, Purves and Vickery, 1973 as cited in Schneider and Wightman, 1974).

411

The results with TPP and  $\text{TNH}_2$  agree with results from non-regenerating systems in the sense that the  $GA_3$  effect appears to be related to pathway (1). Subsequent experiments dealing with the  $GA_3$  enhancement of  $\text{TNH}_2$  induced rooting have indicated the following: (i) the  $GA_3$  induced response is concentration dependent; (ii) increased rooting is further enhanced by such accessory factors as  $\prec$ -ketoglutaric acid and pyridoxal phosphate which are known to be co-factors for a number of enzymes involved in IAA biosynthesis (e.g. tryptophan decarboxylase, amine_oxidase); (iii)  $GA_3$  can be replaced by  $GA_7$ ; and (iv) the  $GA_3$  effect cannot be replaced by either Kn or ABA. Although radiotracer studies confirm the suggestion by Wightman (1973) that active IAA synthesis can take place within young tomato tissue from  $\text{TNH}_2$ , the present experiment failed to confirm my Kypothesis that the  $GA_3$  effect of the stimulation of rooting in cultured tomato leaf discs can be related to enhanced conversion of  $TNH_2$  to IAA. Furthermore, no extracellular synthesis or leaching of labelled IAA was evident in either the  $GA_3$  treated or control materials after 24 hour incubation. These results differ from Black's observations that extracellular synthesis of IAA from TPP did occur after 48 hours in media which had previously supported the growth of soybean callus tissue for 2 to 14 days (Black, 1970).

However, the experiment outlined above cannot be considered as definitive proof for a lack of GA₃ involvement in pathway (1) as no consideration was given to such aspects as uptake rates, intracellular compartmentation of indole compounds and turnover of metabolites. Glasziou (1969) has outlined the problems faced with radiotracer incorporation studies and gives the following example for a hypothetical 3 labelled precursor A*.

. A*		Ą*	<b>`</b>	B C	br	eakdown	products	3
* •	tissue	•	ŕ.,	11 precursor		• *	•	
•	boundary	•		pools	-			,

According to Glasziou (1969), "the labelled precursor A* is added to the medium with and without regulatory substance and a difference in fadioactivity in C is taken to indicate an effect on its synthesis or turnover. In fact, if the regulatory substance affected the rates of any of the reactions by any means, it would almost certainly change

the amount of radioactivity appearing in C. For example, assuming it accelerated the formation of B from intracellular pools, it could conceivably double the pool size of B, decrease its specific activity to half or considerably less, and change the rate of synthesis of C not at all or up to double. The amount of radioactivity in C could easily register a decrease under circumstances in which synthesis of C increased". Consequently, the present results indicate only the presence of intracellular biosynthesis of IAA from  $TNH_2$ . Further experiments with a "pulse chase" design are necessary in order to evaluate problems of uptake, compartment tion and turnover, and the effect that GA₃ has upon these factors.

Wightman has suggested that the IPyA route to IAA could be the main auxin pathway in tomato (Wightman, 1973). However, the present evidence from radiotracer work indicates a rapid (i.e. within 6 hours) and high incorporation rate of ¹⁴C label from TNH4-2-¹⁴C into IAA in young leaf material. This result suggests that the TNH₂ route could be as important as the IPyA route in tomato - especially in young expanding 6 tomato leaves where high levels of IAA are known to occur (Schneider et al., 1972; Wightman, 1973). Furthermore, exceptionally high levels of TNH₂ (i.e. 1000 µg/kg fresh wt. shoot tissue) have been recorded in tomato which suggests that fluctuations in the levels of either endogenous gibberellins or TNH₂, or both, could have important consequences on endogenous IAA synthesis and outtimately, plant

development. It should be noted that the main pathway to IAA in at least two other plant species (i.e. cucumber and oats; Sherwin and Purves, 1969) proceeds via TNH, rather than IPyA. Extensive studies by Muir and Lantican (1968) indicate that GA, promotes the conversion of both TPP and TNH, to IAA by an enzyme system from oat coleopfile tissue. However, the same workers noted that GA, appeared to promote the conversion rate of TPP to IAA in pea apices (cv. Little Marvel) but not the conversion of TNH2. They suggested that the GA, effect involved the decarboxylation of TPP to TNH2 and not the oxidation of TNH2 to IAAld. This conclusion has been supported by Valdovinos and Ernest (1966) who noted that GA3 caused an increase in the evolution of labelled CO₂ from TPP-1-¹⁴C supplied to macerates of Little Marvel + apical tissue. Although the Avena curvature test was used as the auxin assay in the experiments of Lantican and Muir, subsequent work with TPP-1-14C has supported the observation that GA, doubled the initial conversion rate of TPP to IAA when GA, was applied to cell-free extracts of oat coleoptiles (Valdovinos and Sastry, 1968). However, the latter authors suggest that the GA₂ effect on auxin formation probably involves the TNH, to IAA step although the precise site of action is unknown.

The use of <u>in vitro</u> or cell free extracts to demonstrate GA₃ enhancement effects on IAA synthesis from TPP or TNH₂ indicate a direct, although presently unknown, mode of action. Although Valdovinos and Sastry (1968) have

speculated that the site of action may be at the ribosomal level, no substantive evidence has appeared (e.g. that protein synthesis occurs in their systems). An interesting, although invariably ignored observation, has been made by Lantican and Muir (1967) which may provide some insight into the possible site of GA₅ action. Using a cell-free enzyme preparation from oat coleoptiles which was capable of synthesizing IAA from TPP, they observed that GA, additions to the enzyme extract restored the enzyme's activity which was lost by dialysis. In view of their use of the Avena curvature bioassay to monitor IAA synthesis in the enzyme preparations, further work with labelled precursors is highly desirable with a view to 1) extracting and characterizing the tryptophan decarboxylase and amine oxidase enzymes; and 2) evaluating the possible role of GA, as a posttranslational effector substance (e.g. an enzyme cofactor molecule).

The results obtained with ILA were surprising and unfortunately, were made too late in this study to fully evaluate⁷ the problem. Although this indole derivative has been described only in tomato, Wightman suggests that it may be present in other species as well (Schneider, Gibson and Wightman, 1972). The similar  $R_f$  value between ILA and IAA in a number of PC and TLC solvent systems and the tendency to monitor indole compounds on the basis of colorimetric reaction and biological assay only may be responsible for its lack of detection. The pronounced activity of ILA in

this root regenerating system and the apparent enhancement of ILA induced regeneration by GA2 suggests that GA3 may directly affect the metabolism of ILA either i) by preventing its further metabolism and causing it (and possibly IPyA) to accumulate within the tissues which would in furn lead to increased endogenous IAA levels; or ii) by enhancing the metabolism of ILA into a more active (and presently unknown) indole auxin. With regard to ii), it is important to note that the auxin literature over the past 25 years has consistently pointed out the possibility of other naturally occuring indole auxins such as IPA and IBA which may be derived from different indole intermediates in the IAA pathway (e.g. see individual papers by Blommaert, 1954; Fischer, 1954; Linser, Mayr and Maschek, 1954; Melchior. 1958; Bayer, 1969; and review by Fawcett, 1961). In the tomato root regeneration system it has been shown experimentally that both IPA and IBA are highly active in stimulating root regeneration if supplied exogenously. Removal of the hydroxyl group from the carbon 2 position of the 3 carbon side chain would change ILA to IPA. Whether such a reaction is possible in this species is presently unknown. Nevertheless, the natural occurrence of other indole auxins with biological activities as great or greater than IAA, warrants further study in order to delineate their biosynthetic pathways and ultimate relationship to the plant's development.

# CHAPTER 8

SUMMARY AND CONCLUSIONS

T. H. Morgan is reputed to have said, in a lighter moment, that since he had been unable to solve the problem of regeneration, he had decided to try something easier such as the problem of heredity (Bonner, 1963). Similar feelings are prevalent today. Nevertheless. although the problem of regeneration is quite complex, attempts continue to be made towards delineating regenerative processes with the ultimate goal of describing (and explaining) developmental events in biochemical terms. A necessary preliminary step in this direction must encompass the development and evaluation of a suitable regeneration system which will be amenable to biochemical probing. In this regard, the usefulness of the morphological index, LPI, for describing tomato leaf development and root regeneration capacity from leaf cuttings cannot be over-emphasized.

In the present study of tomato leaf development, the LPI has provided a precise and reproducible yardstick by which quantitatively defined events of leaf growth and development can be related to specific qualitative aspects of the leaf's ontogeny. This study is the first detailed

analysis of tomato leaf ontogeny as well as the first description of a compound leaf which exhibits a basipetal sequence of leaflet initiation. Hopefully, this report. will correct the misconception held by some physiologists that the tomato plant is a "twisted distortion of the ordinary rules of plant architecture" (see section 3.1). Besides enlarging upon Bedesem's (1958) summary of tomato leaf ontogeny, the present study confects some of his interpretive errors and explores the relatively untouched developmental problem of minor vein ontogeny. Contrary to previous studies, I was able to derive a generalized sequence of stages for minor vein ontogeny (see Figure 3.17) based upon extensive studies of cleared and sectioned tomato leaf lamina tissues which were viewed paradermally as originally suggested by Foster (1952). Furthermore, this study of tomato leaf lamina and vein development has uncovered histological evidence to support the concept of "morphological fields" in terms of a close interplay between planes of mesophyll cell division and subsequent minor vein These events will probably be found to encompass ontogeny. both subtle changes in hormonal/nutritional fields and biophysically defined stresses on the individual cells of the

If we hypothesize leaf form as the end result of the relative activity and duration of five interrelated meristems within the leaf primordium, then further research into leaf ontogeny must concentrate on the quantitative evaluation of

growing 'organ.

meristematic activity and must include a delineation of cell cycle populations within the different tissue regions. The use of single gene mutants which affect leaf form at different stages in the primordium's development may be used advantageously in this regard. At present, the literature contains exceptionally few attempts to examine this neglected, yet important, developmental problem.

Closely related to the leaf's developmental state is that leaf's ability to regenerate organs when severed or physiologically isolated from the remaining plant body. The present study of root regeneration from tomato leaf cuttings has validated this concept with subsequent use of the LPI for studies centering on the regulation of regeneration by GA₂. Contrary to an earlier suggestion put forth by Thorpe and his associates (Thorpe and Meier, 1974a; 1974b) that GA2 inhibits starch accumulation and subsequent shoot primordium formation in tobacco callus cultures primarily _ by increasing the content of the starch hydrolyzing enzyme, A-amylase, the present study provides evidence which suggests that the initial GA, effect does not involve increased starch byenolysis. Rather, GA3 appears to inhibit localized starch synthesis in the incipient root primordia regions leading to a subsequent failure to produce primordia. Further work in this area should include an evaluation of the specific activities of the plastid-localized starch synthesizing enzymes as well as their synthesis and turnover as affected. by  $\mathcal{M}_2$ . The role of starch synthesizing plastids in organ

regeneration has never been considered until now and should be explored at the biochemical level.

A second root regeneration system was developed which utilized 5 mm diameter tomato leaf discs cultured in vitro. When the leaf discs were cultured aseptically on defined nutrient media, root regeneration was totally dependent on a number of external factors such as organic and inorganic. nutrients and hormones of the auxin class. Furthermore, root primordia could originate from two distinct types of tissues simultaneously, i.e. type I primordia from the phloem parenchyma of the primary and secondary veins, and type II primordia from the sheath parenchyma of the minor veins. However, the roots from both sites were histologi-'cally "normal" for induced root primordia. Histochemical studies at the light microscopy level established that the dedifferentiation - meristemoid sequence was accompanied by localized increases in nuclear and cytoplasmic RNA as well as increased nuclear and nucleolar volumes. Increased total and basic protein staining of the nucleolus and cytoplasm paralleled the increased RNA levels and probably signified the onset of increased ribosomal synthesis necessary for subsequent synthesis of proteins which was, in turn, necessary for organ formation.

Although crystalline protein microbodie's developed in the organogenic and non-organogenic tomato leaf discs, they were interpreted as peroxisomes rather than protein storage bodies. Similar crystalline inclusions were observed in

t chacco callus cultures and were hypothesized to be involved in supplying substrates for developing shoot primordia in the callus cultures (Ross et al., 1973) although previous work (Matsushimo et.al., 1969; Matsushimo, 1971) appears to have discounted this idea. Present evidence supports the concept of a simultaneous, yet essentially independent, development of peroxisomes associated with increased photorespiratory activity of the cultured tissues. The use of the tomato leaf disc system has revealed multiple roles of GA, in the inhibition of rooting: 1) an early inhibitory effect (ise. during the initial 48 hours of culture) which can be related to a GA3 rinduced failure to mapidly accumulate starch within the leaf tissue; 2) a late inhibitory effect which can be related to a GA, mediated destruction of late forming primordia by a parenchymatization process which has its origin in an earlier GA, effect on growth stimulation of the adjacent cortical parenchyma.

3) an inhibition of meristemoid formation from sheath parenchyma derivatives surrounding the minor veins. This inhibition would insure an absence of type II primordia formation.

Further work with the leaf dist culture system has revealed an apparent GA3 stimulation of rooting in continuous darkness which can be related to the specific auxin precursors, TPP. TNH2 and ILA. Attempts to study the possible GA3 effects on endogenous IAA synthesis through the

continuous feeding of  $TNH_2 - 2 - 14C$  over a 24 hour period revealed no significant effects on label incorporation into IAA although IAA synthesis was detected within 6 hours after the initiation of the experiment. As pointed out in section 7.4, the present experiment cannot be considered as definite proof for a lack of GA₂ involvement in the synthesis of IAA from  $TNH_2$  as no consideration was given to such aspects as uptake rates, intracellular compartmentation of indole compounds and turnover of metabolites. Further quantitative studies are needed in these areas.

The observation that ILA is a highly active indole derivative in the induction of rooting in tomato leaf discs . cultured in vitro and can be further increased in activity by GA, is quite surprising and without precedent in the literature. As noted in Chapter 7, ILA has been reported only in tomato although its absence in other species may. simply be due to lack of detection. Whether GA, prevents its breakdown leading to increased ILA (and possibly IPyA) levels or enhances the synthesis of a highly active (and, presently unknown) indole auxin from ILA is unknown. The 'literature has consistently pointed out the possibility of other naturally occurring indole auxins such as IPA and IBA. Furthermore, Wightman (1973) has recently uncovered a separate endogenous auxin pathway which converts phenylalanine to the weak growth promoting substance, phenylacetic acid,

It is apparent that this area of hormonal physiology is ripe for detailed metabolic studies on the origina and

22

fates of endogenous indole auxins. The relevance of these additional, and as yet uncharacterized, auxin pathways to the plant's growth and development remain to be uncovered.

## STARCH STAINING TECHNIQUE

APPENDIX

### 1. Introduction

During a histochemisal examination of adventitious root initiation from tomato leaf discs cultured in vitro (see Chapter 5), attempts to stain starch grains within the fixed tissue sections using IKI solutions.(Jensen, 1962) were unsuccessful although starch was readily demonstrated in fresh tissue preparations. The alternative method available to the plant histologist (i.e. the PAS method; Jensen, 1962) utilizes a very light sensitive and labile stain and is quite time consuming, with numerous steps in the procedure. Fortunately, histochemists have developed a number of techniques for staining glycogen, a macromolecule similar in composition to the amylopectin component of starch although differing in the number of glucose residues found. in the side branches. Of the methods available, the demonstration of glycogen by means of silver complex formation is relatively specific and gives a dark metallic deposit which is readily photographed (Pearse, 1968). The silver methods are, in general, similar to the PAS method in the sense that they employ acid hydrolysis and oxidation

### 2. Materials and Methods

Due to the large deposits of starch found in the root cap cells, adventitious roots induced on defined culture media from tomato leaf discs (see section 5.2) were subsequently fixed in cold 10% formalin in 1 M phosphate buffer (pH 7.1) for 1 - 1 1/2 hours. Subsequent dehydration, embedding and longitudinal sectioning of the root tips at 5 µ were carried out using the standard microtechniques of Jensen (1962). Following dewaxing, hydration and brief washing in tap water, the staining procedure was carried out as follows:

1. Immerse slides in 5% aqueous periodic acid for 60 minutes at 60°C. Variations of this treatment and their consequences for starch staining are listed in table 1. Control sections were untreated.

2. Wash slides in 3 to 4 changes of distilled water. In order to test the hypothesis that the periodic oxidation step was in fact producing aldehyde groups necessary for

subsequent silver staining, duplicate slides were blocked at this step by one of four different procedures (see Pearse, 1968):

i) Methylation a) mild; acidified (HCl) methanol for 24 hours at 37°C. This step will block carbóxyl groups (among others); b) drastic; acidified methanol for 24 hours at 60°C. This step abolishes the PAS staining reaction. Sections are then rinsed briefly in several changes of distilled water.

ii) Bisulphite blocking for aldehydes; 10 ml ethanol are added to 40 ml of 50% aqueous sodium bisulphite. Sections are treated for 3 hours at room temperature and them rinsed briefly in several changes of distilled water. According to Pearse (1968), sodium bisulphite forms addition compounds with aldehydes and ketones.

iii) Amine-aldehyde condensation; 90 ml acetic acid are added to 10 ml aniline. Sections are treated for 30 minutes at room temperature and then rinsed briefly in several changes of distilled water.

iv) Dimedone blocking for aldehydes; saturated solution of dimedone (5:5 dimethyl-cyclo-hexane-1.,3-dione) in 5% acetic acid. Sections are treated for 3 hours at 60°C and then rinsed briefly in several changes of distilled water. According to Pearse (1968), this reagent forms condensation products with glacial acetic acid solutions of aldehydes. The reaction is believed to be specific for aldehydes and is capable of abolishing the PAS reaction.

3. The slides were subsequently stained in freshly prepared ammoniacal silver for 60 seconds at room temperature with agitation. To prepare the stain, add 10% aqueous silver nitrate dropwise to 4 ml of concentrated ammonium hydroxide until a persistant turbidity occurs (approximately 10:2 v/v).

4. The slides were washed briefly in five changes of distilled water.

5. Dehydrated and mounted in Permount.

Results

Periodic acid oxidation of insoluble polysaccharides for 60 minutes at 60°C allowed excellent staining of starch . granules by the ammoniacal silver method (Table 1). Starch grains stain a deep yellow to yellowish brown and are readily photographed by any of the commercially available colour films. The stained preparations have not faded after four years of storage at room temperature. When lower temperatures of periodic acid treatment were used, comparable staining was achieved only after 24 hours treatment in periodic acid. No appreciable staining of primary cell walls was observed in any of the treatments and no staining occurred without the periodic acid treatment. methylation, dimedone and aniline/acetic acid were able to abolish the subsequent staining reaction, the bisulphite blocking for aldehydes had no apparent effect. The reason for the failure of the bisulphite treatment to block the PAAS staining is unknown. The bisulphite forms addition

	•			Staining re	results*
•	- - -	•	· · · ·		-         
Periodic acid		Post-periodic acid	.Post-	Starch Cytoplas grains nucleus,	Cytoplasm, nucleus, cell
duration /	Temperature	blocking procedure	'formalinization	wąlls	etc
· O miñ.	1	-	8	0	0
10 min	RT (25°C)			, 0	0
60 min.	RT		1	+ •.	0
24 hrs.	RT		1	, * *	0
60 min.	50°C			· • +	, O
60 min.	60°C		. ,2 min.RT	• • •	, , +
60 min.	· 009 ·	mild methylation	· · · · · · · · · · · · · · · · · · ·	0	, . <b>O</b>
60 min.	0°0	drastic methylation	· · ·	0.	0
60 min.	θ Θ Θ Θ	bisulphite		· · + · +	. 0
60 min.	-60°C	aniline-acetic acid	· <b>***</b>	0	Q
60 min. :	, 60°C	dimedone		• • •	o _.

compounds with aldehydes and ketones which can, in turn, be broken down in dilute alkali into aldehydes or ketones (Pearse, 1968). Since the staining solution is alkaline, this blocking product could conceivably be broken down rapidly enough to allow aldehyde-silver ion interactions. Another possible explanation - too short a blocking time should also be mentioned.

Post-formalin treatment allowed a wider variety of cell constituents to be stained (e.g. cytoplasm, Casparian strip, vessel elements) without affecting the starch staining.

## 4. Discussion

The use of ammoniacal silver solution for staining polysaccharides in animal cells depends on prior acid hydrolysis and oxidation of the glucose residues to produce aldehyde groups <u>in situ</u> which reduce the diamminesilver (I) ion to metallic silver (Pearse, 1968). On the basis of the present results a similar mechanism appears to operate in the procedure outlined in this paper.

The reasons for the lack of appreciable cell wall staining are obscure. While a periodic acid oxidation of the primary cell wall material would be expected, the subsequent yellow colouration produced by silver deposition may be too faint to be distinguished from light, refracted through the wall. The starch grain must present a very favourable site for colloidal silver deposition by virtue of the high density of periodic acid-produced aldehyde groups. Consequently, this method would be suitable for defining starch grains in fixed plant material in cases where the traditional iodine-potassium iodide method is undesired or inadequate and the PAS method too cumbersome. The described MAAS method for starch grains is rapid, simple and gives permanent reproducible staining of good contrast with no evidence of starch grain degradation. REFERENCES

Adams, D. G. 1967. A morphological approach to predicting the rooting potential of the <u>Rhododendron</u> shoot.

Ph.D. thesis, Oregon State University.

Ahmad, K. J. 1964. Cuticular studies in Solanaceae. Can. J. Bot. 42: 793-803.

Allsopp, A., and A. Szweykowska. 1960. Foliar abnormalities, including repeated branching and root formation, induced by Kinetin in attached leaves of <u>Marsilea</u>. Nature 186: 813-844.

Anand, V. K., R. N. Chibbar, and K. K. Nanda. 1972. Effects of GA₃ and IBA on rooting and on the sprouting of buds on stem cuttings of <u>Ipomoea fistulosa</u>. Plant and Cell Physiol. 13: 917-921.

Anderson, J. W. 1968. Extraction of enzymes and subcellular organelles from plant tissues. Phytochem. 7:

1973-1988. Appelgren, M., and O. M. Heide. 1972. Regeneration in <u>Streptocarpus</u> leaf dises and its regulation by temperature and growth substances. Physiol. Plant.

27: 417-423.

Arnott, H. J. 1962. The seed, germination and seedling of <u>Yucca</u>. Univ. Calif. Publ. in Bot. 35: 1-164. Audus, L. J. 1972. Plant Growth Substances. Vol. I. Leondard Hill, London. Avery, G. S., Jr. 1933. Structure and development of the tobacco leaf. Amer. J. Bot. 20: 565-592. Avery, G. S., Jr. 1935. Differential distribution of a

phytohormone in the developing leaf of <u>Nicotiana</u> and its relation to polarized growth. Bull. Torrey Bot. Clum 62: 313-330.

Bachelard, E. P., and B. B. Stowe, 1963. Rooting cuttings of <u>Acer</u> rubrum L. and <u>Eucalyptus</u> <u>camaldulemsis</u> Dehn. Aust. J. Biol. Sci. 16: 751-767.

Badenhuizen, N. P. 1969. The Biogenesis of Starch Granules in Higher Plants. Appleton-Century-Crofts, New York.

Ballin, G. 1964. Dünnschichtchromatographische Trennung von Indolderivaten in neutralen Fliessmitteln. J. Chromatog. 16: 152-156.

Bastin, M. 1967. Auxin and gibberellin interactions in morphogenesis. Planta 73: 243-249.

Baun, L. C., E. P. Palmiano, C. M. Perez, and B. O Juliano.
1970. Enzymes of starch metabolism in the
developing rice grain. Plant Physiol. 46: 429-434.
Bausor, S. C., W. L. Reinhart, and G. A. Tice. 1940.

Histological changes in tomato stems incident to treatment with ~-naphthoxyacetic acid. Amer. J. Bot. 27: 769-779.

Bedesem, P. P., Jr. 1958. Histogenetic effects of 2,3,5triiodobenzoic acid on the shoot apices and leaf primordia of tomato. Bull. Torrey Bot. Club 85: 434-472.

, *

• • •

Beevers, L. 1966. Effect of gibberellic acid on the senescence of leaf discs of nasturtium (Tropaeolum majus). Plant Physiol. 41: 1074-1076.

Besemer, J., U. Harden, and J. Reinert. 1969. Der Einfluß von Kinetin und Gibberellinsäure auf die Organbildung an in vitro kultivierten Blattern von Cichorium , intybus L. Z. Pflanzenphysiol.,60: 123-134. Bigot, C., et J. P. Nitsch. 1968. Effet du moment de l'application d'acide gibberellique ou de 2,6diaminopurine sur la néoformation des bourgeous chez Begonia rex Putz. C. R. Acad. Sci. Paris 267: 619-621.

Black, M. M., and H. R. Ansley. 1964. Histone staining with ammoniacal silver. Science 143: 693-695. Black, R. C. 1970. Studies on the occurrence and biosynthesis

of indoleacetic acid in several plant tissues.

Ph.D. thesis, The Pennsylvania State University. Block, D. P., and H. Y. C. Hew. 1960a, Schedule of spermatogenesis in the pulmonate snail Helix aspersa with special reference to histone transition.

J. Biophys. and Biochem. Cytol. 7: 515-531.

Block, D. P., and H. Y. C. Hew. 1960b. Changes in nuclear histones during fertilization and early embryonic development in the pulmonate snail, Helix aspensa. J. Biophys. and Biochem. Cytol. 8: 69-81. Block, R. 1941. Wound healing in higher plants. Bot. Rev. 7: 110-146.

Blommaert, K. L. J. 1954. Growth and inhibiting substances , in relation to the rest period of the potato tuber. Nature 174: 970-972.

Bolduc, R. J., J. H. Cherry, and B. O. Blair. 1970. Increase in indoleacetic acid oxidase activity of winter wheat by cold treatment and gibberellic acid. Plant Physiol. 45: 461-464.

Bonner, J. T. 1963. Morphogenesis: An Essay on Development. Atheneum, New York.

Bonnett, H. T., Jr., and J. G. Torrey. 1965. Chemical control of organ formation in root segments of <u>Convolvulus</u> cultured <u>in vitro</u>. Plant Physiol. 40: 1228-1236.

Borthwick, J. A., K. C. Hamner, and M. W. Parker. 1937. Histological and microchemical studies of the reactions of tomato plants to indoleacetic acid. Bot. Gaz. 98: 491-519.

Böttger, I., and I. Lüdemann. 1964. Über die Bildung einer stoffwechselaktiven Ribonucleinsäurefraktion in isolierten Blattern von <u>Euphorbia pulcherrima</u> zu Beginn der Wurzelregeneration. Flora 155: 331-340.

Bouillenne, R. 1961. Hormones végétales-organogénèse sexualisation et floraison. Proc. 15th Internat. Hort. Cóngr. (1958) 1: 1-15.

Bramhall, S., N. Noack, M. Wu, and J. R. Loewenberg. 1969. A simple colorimetric method for the determination. of protein. Anal. Biochem. 31: 146-148. Brian, P. W. (1957. The effects of some microbial metabolic products on plant growth. Symp. Soc. Exptl. Biol. 9: 168-182.

Brian, P. W., H. G. Hemming, and D. Lowe. 1960. Inhibition of rooting of cuttings by gibberellic acid. Ann. Bot. 24: 407-419.

Brian, P. W., H. G. Hemming, and M. Radhey. 1955. A physiological comparison of gibberellic acid with some auxing. Plant Physiol. 8: 899-912.

Briggs, D. E. 1962, Gel-diffusion method for the assay of - amylase. J. Inst. Brewing 68: 27-32.

Brown, E. G., and B. S. Mangat. 1970. Studies on the free necleotide bool and RNA components of detached leaves of <u>Phaseolus</u> <u>vulgaris</u> during root development. Phytochem, 9: 1859+1868.

Bruisma, J. 1963. The quantitative analysis of chlorophylls a and b in plant extracts. Photochem. and Photobiol. 2: 241-249.

Busch, H., and K. Smetna. 1970. The Nucleolus. Academic Press, New York.

Buvat, R. 1944 A Recherches sur la dedifferenciation des cellules vegetales. Ann. Sc. Nat., Botanique 5: 1-113.

Bynre, J., and L. Aung. 1974. Adventitious root development in the hypocotyl of <u>Lycopersicon</u> esculentum Mill. (var. fine ball. Amer. J. Bot. 61: 54 (Abst.) Canny, M. J. 1973. Phloem Translocation. University

Chailakhian, M. K., and R. G. Butenko. 1959. The influence of adenine and kinetine on the differentiation of flower buds in isolated tops of <u>Perilla</u> plants.

Chailakhian, M. K. and T. V. Nekrasova. 1958. The effect of physiologically active substances on overcoming polarity in lemon grafts. Dokl. Akad. Nauk. SSSR 119: 826-829.

Chailarhian, M. K., R. K. Turetskaya, and N. S. Klushkina.
1961. Interaction of physiologically active
substances.in plant cuttings during formation and
growth of moots and stems. Fiziol. Rast. 8: 601-612.
Champagnat, P. 1961. Differenciation. Formation des racines
et des bourgeons. In: Handbuch der Pflanzenphysiol,
Vol. 14. (W. Ruhland, ed.) Springer-Verlag,
Berlin. pp. 839-871.

Chen, S. L., L. R. Towell, and J. R. Lowenberg. 1970. Isoenzyme patterns in developing <u>Xanthium</u> leaves. Physiol. Plant. 23: 434-443.

Chin, T-Y., M. M. Meyer, Jr., and L. Beevers. 1969. Abscisic acid-stimelated rooting of stem cuttings.

Planta 88: 192-196.

Cooper, W. C. 1935. Hormones in relation to root formation on stem cuttings. Plant Physiol. 10: 789-794. Cronshaw, J. 1965. Crystal containing bodies of plant cells. Protoplasma 59: 318-325. Cutter, E. G. 1971. Plant Anatomy: Experiment and Interpretation. Part 2. Organs. Edward Arnold (Publishers) Ltd., London.

Davies, P. J. 1973. Current theories on the mode of action of auxin, Bot. Rev. 39: 139-171.

De Sloover, J. 1958. Le sèns longitudinal de la

différenciation du procambium, du xylème et du phloème chez <u>Coleus</u>, <u>Anagallis</u> et <u>Taxus</u>. La Cellule 59: 55-202.

Denne, M. P., 1966. Leaf development in <u>Trifolium repens</u>. Bot. Gaz. 127: 202-210.

Lickson, P. C., J. Abelson, W. M. Barnes, and W. S.

Reznikoff. 1975. Genetic regulation: the lac control region. Science 197: 27-35. Dore, J. 1965. Physiology of regeneration in cormophytes. In: Handbuch der Pflanzenphysiol. Vol. 15(2). (W. Ruhland, ed.) Springer-Verlag, Berlin. pp.1-99. Dorn, H. 1938. Histologishe Studien uber die Entwicklung

Sprossburtiger Wurzeln nach Heteroauxinbehandlung.

Planta 28: 20-42.

Dostal, R. 1960. Über die Wechselwirkung der Gibberellinsäure und anderer Stimulatoren in den Wachstumskorrelationen. Biol. Plant. (Praha) 2: 48-60.

Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances.

Analyt. Chem. 28: 350-356.

Erickson, R. O. 1960. Nomogram for the plastochron index.

Erickson, R. O. and F. J. Michelini. 1967. The plastochron index. Amer. J. Bot. 44: 297-304.

Esau, K. 1965a.' Plant Anatomy. John Wiley and Sons, Inc., New York.

Esau, K. 1965b. Vascular differentiation in plants. Holt, Rinehart and Winston, New York.

Fawcett, C. H. 1961. Indole auxins. Ann. Rev. Plant Physiol. 12: 345-368.

Fekete, M. A. R. de, and G. H. Vieweg. 1974. Starch metabolism: synthesis versus degradation pathways. In: Plant Carbohydrate Biochemistry (ed. J. B. Pridham). Academic-Press, New York. Ch. 9. pp. 127-144.

Fellenberg, G. 1965. Hemmung der Wurzelbildung an etiolierten Erbsenepikotylen durch Bromuracil und Histon.

Planta 64: 287-290. '

Planta 43: 288-314.

Fellenberg, G. 1966. Die Hemmung auxininduzieter Wurzelbildung an etiolierten Erbsenepikotylen mit Histon
und Amtimelaboliten der RNS- und Proteinsynthese.
Planta 71: 27-42.

Fellenberg, G. 1967. Möglichkeiten der Regulierung differentieller DNS-Aktivitäten bei höheren Pflanzen. ) Planta 76: 252-268.

Figueroa, R. H. 1966. Relation of auxin metabolism to the rooting of tea. Ph.D. thesis, Univ. of Florida.

Fischer, A. 1954. Über die papierchromatographische und papierelektrophoretische Trennung von Indolderivaten. Foster, A. C. 1935. A histogenetic study of foliar determination in <u>Carya</u> <u>Buckleyi</u> var. arkansana Amer: J. Bot. 22: 88-147.

Foster, A. S. 1936. Leaf differentiation in angiosperms. Bot'. Fev. 1: 3-49-372'.

Foster, A. E. 1951. Morphology and venation of the leaf in light acut fula Luckes Amer. J. Bot. 37:

Foster, A. S. 1952. Foliar venation in angiosperms from an ontogenetic standpoint. Amer. J. Bot. 39: 752-766.

Frederick, S. E., and E. H. Newcomb. 1969. Microbody-like organelles in leaf cells. Science 163: 1353-1355. Frederick, S. E., E. H. Newcomb, E. L. Vigil, and W. P.

Wergin. 1968. Fine structural characterization of plant microbodies. Planta 81: 229-252.

Frenkel, C., and C. E. Hess. 1974. Isozymic changes in relation to root initiation in mung bean. Can. J. Bot. 52: 295-297.

Fuchs, Ch. 1963. Fuchsin staining with NaOH clearing for lignified elements of whole plants or plant organs. Stain Technol. 38: 141-144.

Galston, A. W. 1957. Studies on indoleacetic acid oxidase and its inhibition in light-grown peas. Plant Physiol. 32, Suppl. xxi.

Galston, A. W., and H. Warburg. 1959. An analysis of auxingibberellin intemaction in pea stem tissue. Plant Physiol, 34: 16-22.

Gamburg, K. Z. 1962. . The effect of gibberellin and auxin. · on the growth of the first leaf and on the root formation in sections of corn seedlings. Dokl. Akad. Nauk SSSR 145: 941-944. Gasper, T., and M. Bouillenne-Walrand. 1966 L'activite auxines-oxydasique regulatrice de la croissance après traitment à l'acide gibberellique. Les -Phytohormones et l'Organogenese. Congr. Colloq. Univ, Liège 38: 411-420. Gautheret, R. J. 1969. Investigations on the root formation in the tissues of <u>Helianthus</u> tuberosus cultured in vitro. Amer. J. Bot. 56: 702-717. Gibson, R. A., E. A. Schneider, and F. Wightman. 1972. Biosynthesis and metabolism of indole-3yl-acetic acid. II. In vivo experiments with ¹⁴C-labelled precursors of IAA in tomato and barley shoots. J. Exptl. Bot. 23: 381-399. Gifford, E. M. Jr., and R. E. Dengler. 1966. Histones and alkaline fast green staining of onion roots. Amer. J. Bot, 53: 1125-1132. Ginzburg, C. 1966. Action de bases puriques et pyrimidiques et de quelques andogues sur la rhizogenese et la caulogenise de tissus vegetaux cultives in vitro. C. R. Acad. Sci. Paris 263: 868-871. Girouard, R. 1971a. Bouturage de certaines espèces forestières. Environ. Can., For. Serv. Laurentide Res. Cent. Inf. Rep. Q-F-X-23.

440

Girouard, R. 1971b. Vegetative propagation of pines by means of needle fascicles - literature review. Can. For. Serv. Inf. Rep. Q-X-23. Glaziou, K. T. 1969. Control of enzyme formation and inactivation in plants. Ann. Rev. Plant Physiol: 20: 63-88.

Goebel, K. 1905. Organography of plants. trans. by I. B. Balfour. Vol. I and II. Clarendon Press, Oxford: Goldacre, P. L. 1959. Potentiation of lateral root

inducțion by root initials in isolated flax roots. Aust. J. Biol. Șcf. 12: 388-394. Goldșmith, M. H. M. 1966 Movement of IAA in coleoptides

of <u>Avena sativa</u>. II. Suspension of polarity by total inhibition of the basipetal transport. Plant Physiol. 41: 15-27. Goldsmith, M. H. M. 1966b. Maintenance of polarity of auxin movement by basipetal transport. Plant Physiol. 41: 749-754.

Goldthwaite, J. J., and W. M. Laetsch. 1968. Control of senescence in <u>Rumex</u> leaf discs by gibberellic acid Plant Physiol. 43: 1855-1858.

Goodwin, R. H. 1937. The role of auxin in leaf development in <u>Solidago</u> species. Amer. J. Bot. 24: 43-51. Guillot, A. 1965. Action de la 2-thiouracile dur la

> rhizogènèse dans les boutures de plantules étiolées de tomate. Planta 67: 96-102.

Guillot, A. 1968. Recherches physiologiques sur la rhizogénese chez la jeune plant éticles de Tomatoe (Lycopersicum esculentum Miller). Doctoral thesis, Faculty of Science, Paris. Gundersen, K. 1958. Some experiments with gibberellic acid. Acta Horti Gotoburg 22:'87-110. Haissig, B. E., 1965. Organ formation in vitro as applicable to forest tree propagation. Bot. Rev. 31: 607-626. Haissig, B. E. 1969. Physiological aspects of adventitious roct initiation in brittle willow (Salix fragilis, .) ) Ph.D. thesis, Univ. of Minneson ar Haissig, B. Z. 1972. Mersstematic activity during adventitioug root primordium development. Plant Physiol. 49: 886-892. Halevy, A. H. 1962. Inverse effects of gibberellin and AMO-1618 on growth, catalase and peroxidase activity in cucumber seedlings. Experientia 18: 74. Hammond, D. 1941. The expression of genes for leaf shape in Gossypium hirsutum L. and Gossypium arboreum L. Parts I and II. Amer. J. Bot. 28: 124-150. Hansen, J. 1975. Light dependent promotion and inhibition of adventitious root formation by gibberellic acid. Planta 123: 203-205. Hara, N. 1957. On the types of the marginal growth in dicotyledonous foliage leaves, < Bot. Mag., Tokyo 70.*

108-114.

442

Hara, N. 1958. Structure of the vegetative shoot apex and development of the leaf in the Ericaceae and their allies. J. Fac. Sci. Univ. Tokyo. Sect. III, 7: 367-450.

Hara, N. 1962. Histogenesis of foliar venation of <u>Daphne</u> <u>pseudo-mezereum</u> A. Gray. Bot. Mag., Tokyo 75: 107-113.

Hartmann, H. T., and D. E. Kester. 1968. Plant Propagation. Principles and Practices. Prentice-Hall, Inc.,

Hayward, H. E. 1938, "The Structure of Economic Plants.

Macmillan Co., New York: '

New Jersey.

Heide, O. M. 1965. Interaction of temperature, auxins, and kinins in the regeneration ability of <u>Begonia</u> leaf cuttings. Physiol. Plant. 18: 891-920.

Heide, O. M. 1967. The auxin level of <u>Begonia</u> leaves in relation to their regeneration ability. Physiol. Plant. 30: 886-902.

Heide O. M. 1969. Non-reversibility of gibberellin-induced inhibition of regeneration in Begonia leaves.

Physiol. Plant. 22: 671-679.

Herbst, D. 1972. Ontogeny of foliar venation in <u>Euphorbia</u> forbesii. Amer.-J. Bot. 59: 843-850.

Hickey, L. J. 1973. Classification of the architecture of dicotyledonous leaves. Amer. J. Bot. 60: 17-33.

Hitchcock, A. E., and P. W. Zimmerman. 1937. A sensitive

test for root formation. Amer. J. Bot. 24: 735-736.

Contrib. Boyce Thompson Inst. 9: 463-518.

Hohn, K. 1955 Zur Frage der Bedeutung der Nuchein-sauren

für die Wachstumsvorgänge der Pflanze. Beitr. Biol. Pfl. 31: 261-292. Holowinsky, A. W., P. B. Moore, and J. G. Torrey. 1965. Regulatory aspects of chloroplast growth in leaves

of <u>Xanthium pennsylvanicum</u> and etiolated red kidney bean seedling leaves. Protoplasma 60: 94-110.

Huber, W., M. A. R. de Fekete, and H. Ziegher. 1969. Enzyme des Starkeumsatzes in Bundelscheiden-und Palisaden Chloroplasten von Zea mays. Planta 87: 360-364.
Humphries, E. C. 1960. Inhibition of root development on petioles and hypocotyls of dwarf bean (Phaseolus vulgaris) by kinetin. Physiol. Plant. 13: 659-663.
Humphries, E. C., and A. W. Wheeler. 1964. Cell division and growth substances in leaves. Colloq. Intern. Centre Natl. Rech. Sci. Paris. 1963. 123: 505-515.
Hussey, G. 1971. Cell division and expansion and resultant

tissue tensions in the shoot apex during the formation of a leaf primordium in the tomato.

Hussey, G. 1972. The mode of origin of a leaf primordium in the shoot apex of the pea. J. Exptl. Bot. 23: 675-

682.

Hussey, G., and J. Turner. 1969. The mechanism of leaf primordia formation in the tomato. Rep. John Innes Inst. 60: 26-27.

Isebrands, J. G., and P. R. Larson. 1973. Anatomical changes during leaf ontogeny in <u>Populus deltoides</u>. Amer. J. Bot. 60: 199-208.

Jacobs, W. P., and I. B. Morrów. 1957. A quantitative study of xylem development in the vegetative shoot apex of <u>Coleus</u>. Amer. J. Bot. 44: 823-842. Jacobs, W. P., and L. B. Morrow. 1958. Quantitative

relations between stages of leaf development and fferentiation of sieve tubes. Science 128: 1084-1085.

Jacobs, W. P., and I. B. Morrow. 1967. A quantitative study of sieve tube differentiation in vegetative shoot apices of <u>Coleus</u>. Amer. J. Bot. 54: 425-431. Jalouzot, R. 1971. Etude.du metabolisme des acides nucleiques et des proteines au course de l'initiation de racines adventives. Planta 97: 16-27.

Jalouzot, R. 1975. Activation au cours de l'initiation de racines adventices cheq la fève (<u>Vicia faba</u>): metabolisme des proteines. C. R. Acad. Sci. Paris 280: 1571-1574.

Jansen, H. 1967: Die Wirkung von Gibberellinsäure und Indolylessigsäure auf die Wurzelbildung von Tomatenstecklingen, Planta 74: 371-378. 445

Jensen, T. E., and J. G. Valdovinos. 1967. Fine structure of abscission zones. I. Absoission zones of the pedicels of tobacco and tomato flowers at anthesis. Planta 77: 298-318.

Jensen, W. A. 1962. Botanical Histochemistry. W. H. Freeman & Co., San Francisco.

Jensen, W. A. 1963. Cell development during plant embryogenesis. In: Meristems and Differentiation. Brookhaven Symposia in Biology No. 16. pp. 179-202. Johansen, D. A. 1940. Plant Microtechnique. McGraw-Hill Book Co., New York.

Juliano, B. O., and J. E. Varner. 1969. Enzymic degradation of starch granules in the cotyledons of germinating peas. Plant Physiol. 44: 886-892.

Julliard, B. 1964. Interaction de l'auxine et de la gibberelline sur la rhizogenese des boutures de Vigne (<u>Vitis vinifera</u> L.). C. R. Acad. Sci. Paris 258: 5716-5719.

Kaldewey, H. 1968. 'Simple' indole derivatives and plant growth regulators. In: Thin Layer Chromatography (ed. E. Stahl). Academic Press, New York. pp. 471-493.

Kaminek, M. 1967. Root formation in pea stem sections and its inhibition by kinetin, ethionine and chloramphenicol. Biol. Plant: (Praha) 9: 86-91.

446

Kaminski, C. 1959. Recherches sur les phenoloxydases dans les hypocotyles de <u>Impatiens balsaminia</u> L. Bull: Acad. Belg. Cl. Sci. 65: 299-315

Kaplan, D. R. 1970. Comparative foliar histogenesis in

Agornus calamus and its bearing on the phyllode theory of monocotyledonous leaves. Amer. J. Bot. 57: 331-361.

Kato, J. 1958. Studies on the physiological effect of gibberellin. II. On the interaction of gibberellin with auxins and growth inhibitors. Physiol. Plant. 11: 10-15.

Kato, J., and M. Katsumi. 1959. Studies on the physiological effect of gibberellin. V. Effect of gibberellic acid and gibberellin A on the activity of indoleacetic acid oxidase. Mem. Coll. Sci. Univ. Kyato, B., 26: 53-60.

Katsumi, M., and H. Sano. 1968. Relationship of IAA-oxidase activity to gibberellin - and IAA-induced elongation of light-grown cucumber seedlings. Physiol. Plant.

Kefford, N. P. 1973. Effect of a hormone antagonist on the rooting of shoot cuttings. Plant Physiol. 51: 214-216.

Key, J. L. 1969. Hormones and nucleic acid metabolism. Ann. Rev. Plant Physiol. 20: 449-474. Knox, R. B., and L. T. Evans. 1966. Inflorescence initiation in Lolium temulentum L. VIII. Histochemical changes at the shoot apex during induction. Aust. J. Biol. Sci. 19: 233-245.
Knypl, J. S. 1966. Specific inhibitors of RNA and protection synthesis as suppressors of the IAA - and coumarininduced growth responses. Acta Soc. Bot. Polon. 35: 357-373.

Krelle, E., and E. Libbert. 1969. Interactions between abscisic acid and gibberellic acid regarding root formation. Flora 160: 299-300.

Kribben, F. J., and H. J. Reisener. 1958. Ube das Wachstum des Gurkenkotyledos unter dem Einfluss von Gibberellinsäure. Beitr. Biol. Pfl. 34: 379-893.

Kuraishi, S., and I. Hashimoto. 1957. Promotion of leaf growth and acceleration of stem elongation by gibberellin. Bot. Mag., Tokyo, 70: 86-92.
Kuraishi, S., and R. M. Muir. 1963. Diffusible auxin

increase in a rosette plant treated with gibberellin. Naturwissenschaften 50: 337-338.

Kuraishi, S., and R. M. Muir. 1964. The relationship of gibberellin and auxip in plant growth. Plant and Cell Physiol. 5: 61-69.

Lange, A. 1970. Gibberellins: structure and metabolism. Ann.* Rev. Plant Physiol. 21: 537-570.



Lange, F. 1927: Vergleichende Untersuchungen uber die Blattenwicklung einger <u>Solanum</u> - Chimaren und ihrer Elterarten. Planta 3: 181-281. Lantican, B. P., and R. M. Muir. 1967. Isolation and

properties of the enzyme system forming indoleacetic acid. Plant Physiol. 42: 1158-1160.

Lee, T. T. 1971. Incréase of indoleaceticacid oxidase isoenzymes by gibberellic acid.in tobacco callus cultures. Can. J. Bot. 49: 687-693.

Lee, T. T., and C. E. Wilkinson. 1973. Differential response of plant cell membranes to some vinyl organophosphorus insecticides. Pesticide Biochem. Physiol. 3: 341-350.

Leopold, A. C. 1961. The transport of auxin. In: Handbuch der Pflanzenphysiol. Vol. 14. (W. Ruhland, ed.) Springer-Verlag, Berlin, pp. -671-582.

Lersten, N. 1965. Histogenesis of leaf venation in

Trifolium wormskioldii (Leguminosae). Amer. J.

Bot. 52: 767-774.

Letham, D. S. 1967. Chemistry and physiology of kinetinlike compounds. Ann. Rev. Plant Physiol. 18: 349-364.

Letham, D. S. 1969. Cytokinins and their relation to other phytohormones. Bioscience 19: 309-316. Libbert, E. 1956/57. Die hormonde und korrelative Steuerung der Adventivwurzelbildung. Wissensch. Z. Humboldt-Üniv. Berlin 3: 315-347. Libbert, E., and E Krelle. 1966. Die Wirkung des

95-98

"Gibberellin-antogonisten" 2-ChlGrathyltrimethylammonium chlorid (CCC) auf die Stecklingsbewurzelung windender und nicht windender Pflanzen. Planta 70:

Linser, H., H. Mayr, and F. Maschek. 1954. Papierchromatographie von zellstreckend wirksamen Indolkorpen aus Brassica-Arten. Planta, 44: 103-120.

List, A., Jr. 1963. Some observations on DNA content and cell and nuclear volume growth in the developing xylem cells of certain higher plants. Amer. J. Bot. 50: 320-329.

Loomis, W. D., and J. Battaile. 1966. Plant phenolic compounds and the isolation of plant enzymes. Phytochem. 5: 423-438.

Lowenberg, J. R. 41970. Protein synthesis in <u>Xanthium</u> leaf development. Plant and Cell Physiol. 19: 361-365. Luckwill, L. C. 1943. The genus <u>Lycopersicon</u>. Aberdeen Univ. Studies No. 120.

Lyndon, R. F. 1971. Growth of the surface and inner parts of the pea shoot apical meristem during leaf

initiation. Ann. Bot. 35: 263-270.

Maksymowych, R. 1959. Quantitative analysis of leaf development in <u>Xanthium pennsylvanicum</u>. Amer. J. Bot. 46: 635-644. Maksymowych, R. 1962, An analysis of leaf elongation in <u>Xanthium pennsylvanicum</u> presented in relative elemental rates. Amer. J. Bot. 49: 7-13. Maksymowych, R. 1963. Cell division and cell elongation in leaf development of <u>Xanthium pennsylvanicum</u>. Amer. J. Bot. 50: 891-901.

Maksymowych, R. 1973. Analysis of Leaf Development. University Press, Cambridge.
Maksymowych, R., and M. K. Blum. 1966a. Incorporation of ³H-Thymidine in leaf nuclei of <u>Xanthium</u> <u>pennsylvanicum</u>. Amer. J. Bot. 53: 134-143.
Maksymowych, R., and M. K. Blum. 1966b. Autoradiographic studies of the synthesis of nuclear DNA in various tissues during leaf development of

Xanthium.pennsylvanicum. Develop. Biol. 14: 250-265. Maksymowych, R., and R. O. Erickson. 1960. Development of the lamina in <u>Xanthium italicum</u> represented by the plastochron index. Amer. J. Bot. 47: 451-459. Maksymowych, R., and M. A. Kettrick. 1970. DNA synthesis, cell division, and cell differentiation during

> leaf development of <u>Xanthium</u> pennsylvanicum. Amer. J. Bot. 57: 844-849.

Maksymowych, R., and Z. S. Wochok. 1969. Activity of marginal and plate meristems during leaf development of <u>Xanthium pennsylvanicum</u>. Amer. J. Bot. 56: 26-30. Mann, J. D., and E. G. Jaworski. 1970. Minimizing loss of indoleacetic acid during purification of plant. extracts. Planta 92: 285-291.

Service of the states

31-33.

Marinos, N. G. 1965. Comments on the nature of a crystalcontaining body in plant cells. Protoplasma 60:

Matsuśhima, H. 1971. The microbody with a crystalloid core in tobacco cultured cell clone XD-63. I. Cytochemical studies on the microbody. J. Electron Microscopy 20: 120-127.

Matsushima, H., Me Wada, and M. Takeuchi. 1969. The crystal containing body in tobacco cultured cells. Bot. Mag., Tokyo 82: 417-423.

Mazia, D., P. A. Brewer, and M. Alfert. 1953. The cytochemical staining and measurement of protein with mercuric bromphenol blue. Biol. Bull. 104: 57-67.
McCready, R. M., J. Guggolz, V. Silviera, and H. S. Owens. 1950. Determination of starch and amylose in vegetables. Anal. Chem. 22; 1155-1158.

McCune, D. C., and A. W. Galston. 1959. Inverse effects of gibberellin on peroxidase activity and growth in dwarf strains of pea and corn. Plant Physiol. 34: 416-418.

Melchior, G. H. 1958. Uber den Abbau von Indolderivaten. Planta 50: 557-575.

Metcalfe, C. R., and L. Chalk. 1950. Anatomy of the Dicotyledons. 2 vols. Clarendon Press. Oxford. Michelini, F. J., 1958. The plastochron index in developmental studies of <u>Xanthium italicum</u>. Moretti, Amer. J. Bot. 45: 525-533.

Miller, C. S. 1961. Kinetin and related compounds in plants growth. Ann. Rev. Plant Physiol. 12 395-408.

Miller, E. V. 1959. Studies in rooting of willow cuttings. Plant Physiol. 34: suppl., xvi. Milthorpe, F.-L, 1956. The Growth of Leaves, Butterworths

Scientific Publications. London.

Portulal: a rooting promoting substance in <u>Portulaca</u> leaves. Plant and Cell Physiol. 10: 715-723.

Mitsuhashi, M., H. Shibaoka, and M. Shimokoriyama. 1969b. Morphological and physiological characterization of IAA<less-sensitive and IAA-sensitive phases in rooting of <u>Azukia</u> cuttings. Plant and Cell Physiol. 10; 867-874.

Molnar, J. M., and L. J. La Croix. 1972a. Studies of the rooting of cuttings of <u>Hydrangea macrophylla</u>: enzyme changes. Can. J. Bot. 50: 315-322.
Molnar, J. M., and L. J. La Croix. 1972b. Studies of the rooting of cuttings of <u>Hydrangea macrophylla</u>: DNA and protein changes. Can. J. Bot. 50: 387-392. Muir, R. M., and B. P. Lantican. 1968. Purification and properties of the enzyme system forming indole-acetic acid. In: Biochemistry and Physiology of Plant Growth Substances (eds. C. Wightman and G. Setterfield). Runge Press Ltd., Ottawa. pp. 259-272.

Münzel, E. 1968. Hemmung der Regeneration an <u>Begonia rex</u>-Blattstucken durch Gibberellin. *Die Naturwissenschaften 55: 659.

Murashige, T. 1964. Analysis of the inhibition of organ formation in tobacco tissue culture by gibberellin. Physiol. Plant 17: 636-643.

Murashige, T. 1974. Plant propagation through tissue cultures. Ann. Rev. Plant Physiol. 25: 135-166.
Murashige, T., and F. Skoog. 1962. A revised medium for 'rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.

Nakata, S., and Y. Watanabe: 1966. Effects of photoperiod and night temperature on the flowering of <u>Litchi</u>

<u>chinensis</u>. Bot. Gaz. 127: 146-152. Nanda, K: K., V. K. Anand, and R. N. Chibbar. 1972. The promotive effect of gibberellic acid on the production of adventitious roots on stem cuttings of <u>Impomoea fistulosa</u>. Planta 105: 360-363.

Nanda, K. K., and N. C. Bhattacharys. 1973. Electrophoretic separation of ribonucleic acids on polyacrylamide gels in relation to rooting of stioled stem segments of <u>Populus nigra</u>. Biochem. Physiol. Pflanzen 164: 632-635 Nanda, K. K., N. C. Bhattacharya, and N. P. Kaur. 1973. Disc electrophoretic studies of IAA oxidases and their relationship with rooting of etiolated stem segments of Populus nigra. , Physiol. Plant 29:

442-444.

Nitsch, C., and J. P. Nitsch. 1963. Etude du mode d'action de l'acide gibbérellique au moyen de gibbérelline A, marquée, 1. Action sur les substances de peroissance du haricot nain. Bull, Soc. Bot, Fr. 110: 7-17.

Nitsch, J. P., and C. Nitsch. #1959. Modification du metabolisme des auxins par l'acide Gibbérellique. Bull. Soc. Tr. Physiol. Veg. 5: 20-23. Nitsch, J. P., and C. Nitsch. 1961. Synergistes naturels

des auxines et des gibbérellines. Bull. Soc Bot. Fr. 108: 349-362.

O'Brien, T. P., N. Feder, and M. E. McCully. 1964. Polychromatic staining of plant, cell walls by Toluidine Blue 0. Protoplasma 59: 368-373.

Ockerse, R., and J. Waber. 1970. The promotion of indole-3-acetic acid oxidation in peachuds by gibberellic

1216.

Olson, K. C., T. W. Tibbitts, and B. E. Struckmeyer. 1969. Leaf histogenesis in Lactuca sativa with emphasis upon lactifer ontogeny. Amer. J Bot. 56: 1212-

acid and treatment. Plant Physiol. 46: 821-824.

Osborne, D. J. 1965. Interactions of hormonal substances in the growth and development of plants. J. Sci. Food and Agric: 16: 1-13.

Paleg, L. G. 1965. Physiological effects of gibberellins. Ann, Rev. Plant Physiol. 16: 291-322.

Pearse, A. G. E. 1968. Histochemistry: Theoretical and Applied. J. and A. Churchhill Ltd., London. Petzold, H. 1967. Kristalloide Einschlüsse im Zytoplasma pfianzlicher Zellen ? Protoplasma 64: 120-133.

Philpott. J. 1953. A blade tissue study of forty-seven species of Ficus. Bot. Gaz. 115: 15-35.

Pilet, P.-E., and G. Collet. 1960. Étude du nanisme I.

Action de l'acide gibbérellique sur la croissance et la destruction <u>in vitro</u> des auxines. Bull. Soc. bot. Suisse 70: 180-194.

Pilet, P.-E., and W. Wurgler. 1958. Action des gibberellines

sur la croissance et l'activité auxines-oxydasique du <u>Trifolium ochroleucum</u>. Hudson. Bull. Soc. bot. Suisse 68: 54-63.

Pillay, D. T. N., and R. Mehdi. 1968. Separation of simple indole derivatives by thin layer chromatography. J. Chromatog. 32: 592-595.

Plummer, T. H., and A. C. Leopold. 1957. Chemical treatment for bud formation in Saintpaulia. Amer. Soc. Hort. Sci. 70: 442-444.

Popham, R. Al 1965. Laboratory Manual for Plant Anatomy. -C. V. Mosley Co., Saint Lonis. Pray, T. R. / 1954. Foliar venation of angiosperms. I.

Mature venation of <u>Liriodendron</u>. Amer. J. B. 41: 663-670.

Pray, T. R. 1955a. Foliar venation of angiosperms. II. Histogenesis of the venation of <u>Liriodendron</u>.

Amer. J. Bot. 42: 18-27,

472.

Pray, T. R. 1955b. Foliar venation of angiosperms. III. Pattern and histology of the venation of <u>Hosta</u>. Amer. J. Bot. 42: 611-618.

Pray, T. R. 1955c. Foliar venation of angiosperms. IV. Histogenesis of the venation of <u>Hosta</u>. Amer. J. Bot, 42: 698-706.

Pray, T. R. 1960. Ontogeny of the open dichotomous venation in the pinna of the fern <u>Nephrolepis</u>. Amer. J. Bot. 47: 319-328.

Pray, T. R. 1962. Ontogeny of the closed dichotomous venation of <u>Regnellidium</u>. Amer. J. Bot. 49: 464-

A, T, R. 1963. Origin of vein endings in angiosperm leaves. Phytomorph. 13: 60-81.

Quintarelli, G., J. E. Scott, and M. C. Dellovo. 1964.

The chemical and histochemical properties of

Alcian Blue. III. Chemical blocking and unblocking. Histochem, 4: 99-112.

Ramji, M. V. 1961a. Histogeneais of the venation pattern in the leaves of <u>Polyalthia longifolia</u>. Proc. Indian Acad., Sci: B, 53: 98-106. Ramji, M. V. 1961b. Ontogenetic studies in <u>Sarcandra</u> <u>irvingbaileyi</u> Swamy. II. Histogenesis of foliar venation. Proc. Nat. Inst. Sci. India, Pt. B, Biol. Sci. 27: 189-197.

Ramji, M. V. 1967. Morphology and ontogeny of the foliar venation of <u>Calophyllum inophyllum</u> L. Aust. J. Bot. 15: 437-443.

Reinert, J. 1973. Aspects of organization-organogenesis and embryogenesis. In: Plant Tissue and Cell Culture (ed. H. E. Street). Botanical Monographs Vol. II. Univ. of California Press, Berkeley. Ch. 12. pp. 338-355.

Rickson, F. R. 1969. Developmental aspects of the shoot, apex, leaf, and Beltian bodies of <u>Acacia cornigera</u>. Amer. J. Bot. 56: 195-200.

Ringertz, N. R., and A. Zetterburg. 1966. Cytochemical demonstration of histones and protamines. Mechanism and specificity of the alkaline Bromphenol blue binding reaction. Exptl. Cell Res. 42: 243-259.

Roberts, L. W. 1970. The initiation of xylem differentiation. Bot. Rev. 35; 201-250.

Ross, M. K., and T. A. Thorpe. 1973. Physiological gradients and shoot initiation in tobacco callus cultures. Plant and Cell Physiol. 14: 473-480.

Ross, M. K., T. A. Thorpe, and J. W. Costerton. 1973. Ultrastructural aspects of shoot initiation in tobacco callus cultures. Amer. J. Bot. 60: 788-795. Rubery, P. H., and A. R. Sheldrake. 1974. Carrier- o mediated auxin transport. Planta,118: 101-121.

Rutter, W. J. 1967. Protein determination in embryos. In: Methods in Developmental Biology (ed.

F. H. Wilt and N. K. Messells). Thomas Y. Crowell Co., New York. pp. 671-683.

Sachs, R. M. 1965. Stem elongation. Ann. Rev. Plant Physiol. 16:.73-96.

Sadik, S., and J. L. Ozbun. 1967. Histochemical changes in the shoot tip of cauliflower during floral induction. Can. J. Bot. 45: 955-959.

Sadik, S., and J. L. Ozbun. 1968. The association of carbohydrate changes in the shoot tip of cauliflower with flowering. Plant Physiol. 43:.1696-1698.Sastry, K. K. S., and R. M. Muir. 1963. Gibberellin: effect on diffusible auxin in fruit development Science

140: 494-495.

Sax, K. 1962. Aspects of aging in plants. Ann. Rev. Plant Physicl. 13: 489-506.

Schneider, E. A., R. A. Gibson, and F. Wightman. 1972.

Biosynthesis and metabolism of indol-3yl-acetic acid. I. The native indoles of barley and tomato plants. J. Exptl. Bot. 23: 152-170.

Schneider, E. A., and F. Wightman. 1974. Metabolism of auxin in higher plants. Ann. Rev. Plant Physiol. 25: 487-513. Schraudolf, H., and J. Reinert. 1959. Interaction of plant growth regulators in regeneration processes. Nature 184: 465-466.

Sherwin, J. E., and W. K. Purves. 1969. Tryptophan as an auxin precursor in cucumber seedlings. Plant Physiol. 44: 1303-1309.

Shibaoka. H., T. Anzai, M. Mitsuhashi, and M. Shimokoriyama. 1967. Interaction between heliangine and pyrimidines in adventitious root formation of <u>Phaseolus</u> cuttings. Plant and Cell Physiol. 8: 647-656.

Shumway, L. K., J. M. Rancour, and C. A. Ryan. 1970. Vacuolar protein bodies in tomato leaf cells and their relationship to storage of chymotrypsin inhibitor I protein. Planta 83: 1-14.

Shuster, L., and R. H. Gifford. 1962. Changes in 3'nucleotidase during the germination of wheat embryos.

Arch. Biochem. Biophys. 96: 534-540.

Siegel, S. 1956. Nonparametric Statistics for the Béhavioral Sciences. McGraw-Hill Book Co., New York.

Simola, L. K. 1973. Changes in the activity of several enzymes during root differentiation in cultured cells of <u>Atropa belladonma</u>. Z. Pflanzenphysiol. 68: 373-378.

Simon, E. W. 1967. Types of leaf senescence. Sym. Soc. Exptl. Biol. 21: 215-230.

Sinnott, E. W. 1960. Plant Morphogenesis. McGraw-Hill Book Co., Inc., New York.
Sistrunk, D. R., and S. C. Tucker. 1974. Leaf development in <u>Doxantha unguis-acti</u> (Bignoniaceae). Amer.
J. Bot. 61: 938-946.

Skoog, F., and C. O. Miller. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exptl, Biol. 11: 118-131.

Slade, B. F. 1957. Leaf development in relation to venation as shown in <u>Cercis siliquastrum</u> L., <u>Prunus serrulata</u> Lindl. and <u>Acer pseudoplatanus</u>. New Phytol. 56: 281-360.

Slade, B. F. 1959. The mode of origin of vein endings in the leaf of <u>Liriodendron tulipifera</u> L. New Phytol. 58: 299-305.

Slade, B. F. 1961. Developmental studies on the reticulate venation of leaves. Amer. J. Bot. 48: 536 (Abstr.). Sokal, R. R., and F. J. Rohlf. 1969. Biometry. W. H.

Solereder, H. 1908. Systematic Anatomy of the Dicotyledons trans: by L. A. Boodle and F. E. Fritsch. Vol. I and II. Clarendon Press, Oxford.

Spencer, P. W., and J. S. Titus. 1973. Apple leaf genescence: leaf disc compared to attached leaf. Plant Physiol. 51: 89-92.

Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastructural Res. 26: 31-43. Srivastava, B. I. S. 1967. Cytominins in plants. Int. Rev. Cytol. 22: 349-387. A Stebbins, G. L. 1964. Four basic questions of plant biology. Amer. J. Bot. 51: 220-230. Sunderland, N. 1960. Cell division and expansion in the growth of the leaf. J. Exptl. Bot. 11: 68-80. Swingle, C. F. 1940. Regeneration and vegetative propagation. Bot. Rev. 6": #301-355. Swingle, C. F. 1952. Regeneration and vegetative propagation II. Bot. Rev. 18: 1-13. Tepfer, S. S. 1960. The shoot apex and early leaf development in Clematis. Amer. J. Bot. 47: 655-664. Thimann, K. V. 1972. The natural plant hormones. In: • Plant Physiology. A Treatise. ed. by F. C. Steward. Vol. VIB. Academic Press, New York. Thimann, K. V., and F. W. Went. 1934. On the chemical nature of the root-forming hormone. Proc. Kon. Okad. Wetenach, Amsterdam 37: 456-459. Thomas, R. G. 1961. Correlation between growth and flowering in Chenopodium amaranticolor. II. Leaf and stem growth. Ann. Bot. 25: 255-269. Thompson, N. P., and C. Heimsch. 1904. Stem anatomy and aspects of development in tomato. Amer. J. Bot. 51: 7-19.

hornton, R. M., and K. V. Thimann. 1964. On a crystal-

a, enseme forent a . 5. . ... the set for the state of . 24 , there were the prover a face of the second terms

Thorpe, T. A. 1974: Carbohydrate availability and shoot formation in tobacco callus cultures. Physiol. Plant. 30: 77-81.

Thorpe, T. A., and D. D. Meier. 1972. Starch metabolism, respiration and shoot formation in tobacco callus cultures. Physiol. Plant. 27: 365-369.

Thorpe, T. A., and D. D. Meier. 1973.. Effects of gibberellic acid and abscisic acid on shoot formation in tobacco callus cultures. Physiol. Plant. 29: 121-124.

Thorpe, T. A., and D. D. Meier. 1974a. Enzymes of starch metabolism in <u>Nicotiana tabacum</u> callus. Phytochem. 13: 199-1334.

Thorpe, T. A., and D. D. Meier. 1974b Starch metabolism in shoot-forming tobacco callus. J. Exptl. Bot. 25: 288-294.

Thorpe, T. A., and T. Murashige. 1968. Starch accumulation in shoot-forming tobacco callus cultures. Science 160: 421-422.

Thorpe, T. A., and T. Murashige. 1970. «Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Bot. 48: 277-285.

بېسېر ئەن يېلى

> Tizio, R., R. Saussay, and R. Gautheret. 1970. Action de quelques gibberellines sur la rhizogénèse de Fragments de rhizomes de Topinambour cultivés <u>in vitro</u>. C. R. Acad. Sc. 270: 2088-2092.

Tolbert, N. E. 1971. Microbodies - peroxisomés and glyoxysomes. Ann. Rev. Plant Physiol. 22: 45-74. Torrey, J. G. 1963. Cellular patterns in developing roots. Symp. Soc. Exptl. Biol. 17: 285-314.

Torrey, J. G. 1966. The initiation of organized development in plants. Advances in Morphogenesis 5:

39-91.

Turetskaya, R. K., V. I. Kefeli, and E. M. Kof. 1963. Interactions of heteroauxin and gibberellins observed during formation of roots and shoots in willow cuttings. Dokl. Akad. Nauk. SSSR 148: 46-464.

Turner, J. F., and D. H. Turner. 1975. The regulation of carbohydrate metabolism. Ann. Rev. Plant Physical. 26: 159-186.

Urban, I., and E. Libbert 1967. Adventivworzelbildung bei der Windeflanze <u>Calystegia sepium</u> (L.). R. Br.: • Stimulation durch Auxine, Vitamine und den Gibberellin-antagonisten 2-(Chloräthyl) trimethylámmoniumchlorid). Flora 157: 373-388.

Valdovinos, J. G., and L. C. Ernest. 1966. Gibberellinenhanced CO₂ release from tryptophan-1-C-14 in plant apical tissue. Plant Physiol. 41: 1551-1552.
Valdovinos, J. G., and L. C. Ernest, 1967. Effect of gibberellic acid and cycocel on tryptophan metabolism and auxin destruction in the sunflower seedling. Physiol, Plant. 20: 682-687. Valdovinos, J. G., L. C. Ernest, and E. W. Henry. 1967. " Effects of ethylene and gibberellic acid on auxin synthesis in plant tissue." Plant Physiol. 42: 1803-1806.

Valdevinos, J. G., L. C. Ernest, and J. E. Perley. 1967. Gibberellin effects on tryptophan metabolism, auxin destruction and abscission in <u>Coleus</u>. Physiol. Plant. 20: 600-607.

Valdovinos, J. G., and K. S. S. Sastry. 1968. The effect of gibberellin on tryptophan conversion and. elongation of the <u>Avena</u> coleoptile. Physiol. Plant. 21: 1280-1286.

Van Fleet, D. S. 1959. Analysis of the histochemical localization of peroxidase related to the differentiation of plant tissues. Can. J. Bot. 37: 449-458.

Van Overbeek, J., and L. E. Gregory. 1945. A physiological separation of two factors necessary for the formation of roots on cuttings. Amer. J. Bot. 32: 336-341.

Van Overbeek, J., S. A. Gordon, and L. E. Gregory. 1946. An analysis of the function of the leaf in the process of root formation in cuttings. Amer. J. Bot. 33: 100-107.

Van't Hof, J. 1965. Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exptl. Cell Res. 39: 48-58. Van't Hof, J., and A. H. Sparrow. 1963. A relationship between DNA content, nuclear volume and minimum mitotic cycle time. Proc. Nat. Acad. Sci. 49: 897-902.

Varga, M., and I. Balint. 1966. The effect of gibberellin on the growth, indoleacetic acid content and on activity of indoleacetic acid oxidase in rice seedlings. Acta. biol. hung. 16: 243-253.
Varga, M., and M. Bito. 1967a. On the mechanism of gibberellin-auxin interaction. I. Effect of gibberellin on the quantity of free IAA and TAA - conjugates in bean hypocotyl tissues. Acta Biol. Acad: Sci. Hung. 19: 445-453.

Varga, M., and M. Bíto. 1967b. On the mechanism of gibberellinauxin interaction. IV. Effect of gibberellin treatment on the oxidative destruction of indoleacetic acid in bean hypocotyl tissues. Acta biol. Szeged. 13: 107-112.

irga, M., and E. C. Humphries. 1975. Root formation on petioles of detached primary leaves of dwarf bean (<u>Phaseolus vulgaris</u>) pretreated with gibberellic acid, triigdobenzoic acid, and cytokinins. Ann. Bot. 39: 803-809.

Varga, M., E. Köves, and F. Sirokman. 1968. Die Wirkung von Gibberellinsäure auf die Bindung der Indolylessigsäure an Makromoleküle im Gewebe des Hypokotyls von Bohnen. Z. Pflanzenphysiol. 50: 72-74. Varga, M., E. Köveş, F. Siråkman, and M. Bitó. 1968. On the mechanism of gibberellin-auxin interaction. III. The effect of gibberellin treatment on the biosynthesis of indoleacetic acid from tryptophan. Acta Bot. Acad. Sci. Hung. 14: 435:442.

Venning, F. D. 1949. Investigations on the morphology, anatomy, and secondary growth in the main axis of Marglobe tomato. Amer. J. Bot. 36: 559-567.

Vieweg, G. H., and M. A. R. de Fekete. 1972. Die Bedeutung des Glucose-l-Phosphates für die Stärkesynthese in den Bündelscheidenzellen von Zea mays. Planta 104: 257-266.

Wainwright, S. D. 1972. Control Mechanisms and Protein Synthesis. Columbia University Press,

New York.

Waldi, D. 1965. Spray reagents for thin-layer chromatography. In: Thin-Layer Chromatography. A Laboratory Handbook. (ed. E. Stahl).

Academic Press, New York. pp. 483-502. Warmke, H. E., and G. L. Warmke. 1950. The role of

> auxin in the differentiation of toot and shoot primordia from root cuttings of <u>Taraxacum</u> and <u>Cichorium</u>. Amer. J. Bot, 37: 272-280.

Watson, J**L**D. 1970, Molecular Biology of the Gene. W. A. Benjamin, Inc., New York. Went, E. W. 1938. Specific factors other than auxin affecting growth and root formation. Plant Physiol. 13: 55-80.

Went, F. W., and K. V. Thimann, 1937. Phytohormones. MacMillan, London.

Werner, D., and D. Gogolin. 1970, Kennzeichnung der Bildung und Alterung von Wurzeln in Callus – und Organ – Kulturen von <u>Daucus carota</u> durch die Aktivität der Glulamatalehydrogenase. Planta 91: 155-164.

Whaley, W. G., and C. Y. Whaley. 1942. A developmental analysis of inherited leaf patterns in <u>Tropaeolum</u>. Amer. J. Bot. 29: 195-200.

White, P. R. 1963. The Cultivation of Animal and Plant Cells. The Ronald Press Co., New York.

Wightman, F. 1973. Biosynthesis of auxins in tomato shoots. Biochem. Soc. Symp. 38: 247-275.

Wilfiams, J. A. 1973. A considerably improved method for preparing plastic epidermal imprints. Bot. Gaz. 134: 87-91.

Williams, R. F., and D. Bouma. 1970. The physiology of growth in subterranean clover. I, Seedling growth and the pattern of growth at the shoot apex. Aust. J. Bot. 18: 127-148.

Williams, R. F., and A. H. G. C. Rijven. 1970. The physiology of growth in subterranean clover. II. The dynamics of leaf growth. Aust. J. Bot. 18: 149-166. Woolf, C. M 1968. Principles of Biometry. D. Van

Nostrand and Co. Inc., New York.

Wylie, R. B. 1946. Relations between tissue organization and vascularization in leaves of certain tropical and sub-tropical dicotyledons. Amer. J. Bot.

33: 721-726.

Yarwood, C. E. 1946. Betached leaf culture. Bot. Rev. 12: 1-56.