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Abstract 

Obesity currently affects 25% of Canadians and is strongly associated with many diseases 

including diabetes, cardiovascular disease, and cancer. However, only Intra-Abdominal 

Adipose Tissue (IAAT) is an important predictor of obesity associated disease and 

mortality. Magnetic Resonance Imaging (MRI) is an effective modality for imaging fat 

and methods have been developed to automate segmentation of IAAT. Currently existing 

techniques for automated segmentation in mice require acquisition using high magnetic 

field MRI equipment and use image acquisition techniques with low precision for fat 

quantification. We demonstrate a new fully automated technique for fat quantification in 

clinical strength mouse MRI through adaptation of an existing human fat quantification 

technique. We validated this method using images collected from mice in a 3 T clinical 

MRI against manual segmentation. Dice correlation coefficients revealed that 84% of 

voxels agreed for Subcutaneous Adipose Tissue (SAT) and 87% of voxels agreed for 

IAAT.  
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1 Introduction 

1.1 Fat Distribution and Disease 

1.1.1 Obesity related disease 

Obesity has become increasingly prevalent worldwide and is causing increasing costs for 

the support and care for obese patients. Obesity is defined as having excess body fat 

sufficient to adversely affect health and is caused by an imbalance between energy intake 

and expenditure. There are many factors that can cause this imbalance, but the most 

prevalent and problematic come from diet and amount of physical activity. About one 

quarter of Canadians are classified as obese according to measured height and weight 

data from 2007-20091 Across Canada obesity levels range from 18% to 36.7% of the 

province, as shown in Figure 1.1. 

There is also a trend toward increasing obesity in Canada, particularly the worst cases of 

obesity based on Body Mass Index (BMI). BMI will be explained fully in Section 1.1.2, 

but is a measure of the adiposity of patients based on their height and weight. There has 

been a massive 3 fold increase in the most obese patients2. The trend of increasing 

obesity is not only in adults, but also in children with 8.6% of children aged 6-17 being 

classified as obese. In 1981, obesity in adults was approximately half of current reported 

values3. This is not only a problem in Canada, as over 1 billion adults worldwide are 

classified as overweight, with an additional 300 million being classified as obese4. The 

increases in obesity worldwide are expected to continue to rise substantially through 

20195. 
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Figure 1.1 Obesity rates in Canadian Provinces 

Map of Canada with regions coloured based on percentage of the province classified 

as obese. Some data from Quebec was not available. [Image From: Slater J et al. 

20096] 

Higher levels of obesity are very problematic due to the expensive and chronic nature of 

the disease. It requires long-term care as it is linked to metabolic syndrome and its 

associated diseases such as diabetes, cardiovascular disease, and cancer7. The economic 

costs for obesity have been steadily increasing over time. The annual estimated cost in 

2000 amounted to $3.9 billion, but had risen to at least $4.6 billion by 2008, and increase 

of $700 million in just 8 years3 (see Figure 1.2). The 2008 estimates of obesity costs for 

Canada ranged from $4.6 billion to $7.1 billion3,8, split between direct and indirect costs. 

The range results from the number of diseases considered caused by obesity, with the 
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lower estimate focusing on 8 chronic diseases. For the lower estimate, indirect costs were 

$2.63 billion and are an estimate of the value of economic output lost from premature 

death or lost time from work. Direct costs were $1.98 billion and included hospital care, 

drugs, physician care, and institutional care. With the costs and prevalence of obesity 

increasing, it is important to invest time and effort into researching obesity and its 

associated diseases to develop better care and prevention. 

The most costly disease associated with obesity is diabetes, with over 9 million 

Canadians living with diabetes or pre-diabetes. Diabetes is a metabolic disease associated 

with consistent high levels of glucose in the blood. In normal patients, insulin will 

regulate the blood glucose levels so that after a spike in glucose (such as eating) the blood 

glucose levels will return to normal. 

 

 

Figure 1.2 Increasing costs of Obesity in Canada 

The increasing yearly costs of obesity in Canada displayed as a summation of the 

indirect and direct estimates. All of the costs were determined using 8 diseases 

strongly correlated to obesity. [Image From: Corscadden L et al. 20113] 

Insulin is a hormone produced in the pancreas that causes cells to uptake glucose from 

blood. In diabetic patients, high levels of glucose are not lowered due to insufficient 

insulin or the inability of the cells to respond to insulin properly. The deficiency of 

insulin and the inability of the insulin to reduce blood glucose levels are two different 
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types of diabetes. The first type, where insulin isn’t being produced, is less common and 

caused mostly by genetic factors. The second type is much more prevalent with 90% of 

diabetes patients having the preventable Type 2 Diabetes Mellitus (DM). Type 2 DM is 

caused by excess adiposity resulting in the cells losing sensitivity to insulin. Lowered 

insulin production can also occur as the disease progresses. Becoming diabetic doubles 

your chances of early death, and diabetes is the 8th leading cause of death worldwide with 

1.5 to 5.1 million deaths per year9. As seen in Figure 1.3, the mortality rates for 

individuals with diabetes increases as the patient’s age, although the rate ratio is much 

higher at younger ages. 

 

Figure 1.3 Mortality Rates and Aging with Diabetes 

Analysis of mortality rates between both patients without diabetes and patients with 

diabetes based on age. The rate ratio was calculated to display the mortality risk of 

being diabetic vs. the normal mortality rate. Mortality rates for younger patients 

(20-39 yrs) with diabetes were over 4 times higher, whereas mortality rates for older 

patients (50+) were less than 3 times higher. [Image From: Petellier C et al. 201210] 

Because DM is preventable, research on this disease is important. Prevention and 

treatment revolve around returning to a normal weight, increasing physical exercise, and 

eating healthy. These are typically drastic lifestyle changes that ideally should occur prior 
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to diabetes diagnosis. Knowledge about disease progression and development are vitally 

important for determining when and how to prevent or treat these ailments.  

Cardiovascular disease (CVD), another prominent ailment stemming from obesity, is an 

umbrella term for diseases affecting the heart or blood vessels. The principle cases 

included in this are coronary artery disease, vascular diseases in the kidney or brain, and 

peripheral artery disease. A majority of these diseases involve the buildup or movement 

of plaque in blood vessels resulting in impeded blood flow. Plaque is typically a buildup 

of macrophage cells or debris containing lipids and other material that impedes flow. 

Plaque buildup is strongly correlated with obesity, with recent research showing that 

obesity is associated with a 2.76 times higher incidence of non-calcified coronary artery 

plaque11. Cardiovascular disease is currently the number one cause of death with 29.34% 

of deaths resulting from this disease.  Although CVD is typically associated with the 

elderly, reports from a study encompassing 2000-2008 show that there are increasingly 

high risk factors for CVD in adolescents. Within the age groups of 12-19 years, the 

prevalence for pre-hypertension/hypertension was an astounding 14%12. The unfortunate 

part of cardiovascular diseases is that the progression of the disease is not easy to 

research. Typically plaque buildups are very small and it is not easy to predict their 

location. Small plaque buildup is typically asymptomatic as well. Therefore the primary 

method for determining how to reduce the incidence of CVD is to study obesity and how 

the disease develops in obese or overweight patients. 

Although several diseases are strongly correlated with obesity, weight measurements are 

not optimal for predicting disease onset or mortality. It has been found that the fat 

distribution in the body is a much better predictor of disease and mortality than total fat 

(or body weight)13-15. There are two major deposits of fat in the body: Subcutaneous 

Adipose Tissue (SAT) and Visceral or Intra-Abdominal Adipose Tissue (IAAT) as 

displayed in Figure 1.4.  
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Figure 1.4 Adipose Tissue Deposits in Humans 

Human axial MR image within the abdomen depicting the locations of the Intra-

Abdominal Adipose Tissue (IAAT) and Subcutaneous Adipose Tissue (SAT). IAAT 

is located within the abdominal muscle layer surrounding organs and buildup of fat 

in this deposit results in a more apple-shaped figure. SAT is located beneath the skin 

and outside of the abdominal muscle layer and buildup of this deposit results in a 

more pear-shaped figure. 

SAT is the fat deposit located just beneath the skin, and outside of the abdominal muscle 

layer. Similar to the Total Adipose Tissue (TAT), SAT is not predictive of disease or 

mortality. IAAT is a much better predictor of all of the obesity related diseases, and 

associated mortality. IAAT is fat located deeper in the body inside of the abdominal 

muscle layer and surrounds the organs within the abdominal cavity. It is believed that 

IAAT has a higher correlation to disease because it is more metabolically active16,17. 
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Also, IAAT deposit’s proximity to the hepatic portal vein, as well as the other organs, are 

other possible reasons why it is much more predictive of obesity related diseases. 

Unfortunately, the internal IAAT deposit is much harder to measure than TAT or SAT. 

Traditional measures such as BMI and waist-to-hip ratios are not able to accurately 

estimate IAAT and thus cannot be used reliably to predict disease, especially within a 

research setting. Thus, in vivo imaging is required and the most accurate methods for 

quantification of fat in vivo are MRI and CT18. This is one of the key areas of research in 

obesity: determining the relationship between IAAT and disease progression and how we 

can use this information to prevent or treat these prominent and deadly diseases. 

1.1.2 Current tests for fat distribution and disease 

BMI is the most common measure of obesity in the world, due to its simplicity and low 

cost. All that is needed to calculate BMI is the height and the weight of the patient; 

equipment required is simply a scale and a tape measure. The exact calculation is the 

patient’s body weight (in kg) divided by their height (in meters) squared. BMI results 

range from less than 15 kg/m2 as very severely underweight, and greater than 40 kg/m2 as 

very severely overweight or Obese Class III, as shown in Table 1.1.  

Table 1.1 BMI Classification 

Category BMI range – kg/m2 

Very severely underweight less than 15 
Severely underweight from 15.0 to 16.0 

Underweight from 16.0 to 18.5 
Normal (healthy weight) from 18.5 to 25 

Overweight from 25 to 30 
Obese Class I (Moderately obese) from 30 to 35 
Obese Class II (Severely obese) from 35 to 40 

Obese Class III (Very severely obese) over 40 

The relevant classifications for this thesis start above 25 kg/m2 in the Overweight 

classification and all of the three obese classes above 30 kg/m2. These classifications 

represent the at risk population, with higher rates of health conditions such as 
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hypertension, dyslipidemia, DM, CVD, stroke, amongst many others19. It is important to 

note that these classifications are only recommended for use in statistical scenarios and 

not for individual classifications. This is due to one of the flaws of BMI: BMI 

overestimates adiposity on lean individuals, and underestimates adiposity on those with 

less lean tissue. In particular, BMI has been shown to have sensitivities of only 36% in 

males, and 49% in females in comparison to body fat percentage20.  These are incredibly 

low sensitivities and thus BMI is more suited for large statistical studies that it isn’t 

feasible to use more direct measures of adiposity. For this reason, and because BMI is 

much less sensitive to disease prediction than IAAT quantification, BMI is not optimal 

for research. 

Waist-to-hip ratio (WHR) is another method for measuring obesity and is as simple as 

BMI. This technique uses the ratio of the circumferences of the waist and the hip to 

estimate adiposity. In the elderly, WHR has been shown to be a better predictor of 

mortality than BMI21. While WHR is a better estimate of the distribution of fat in the 

body, it still is not an accurate enough tool for use in obesity research. There are 

drawbacks such as inexact methodology for where on the body the waist and hip 

measurements should be made. More importantly, WHR is not the best indicator of 

cardiovascular risk factors22.   

The problem with BMI and WHR is that they can only determine whether or not a patient 

is at risk and do not provide a measure of degree of risk.  Therefore the optimal method 

for obtaining information about these diseases and their interaction with fat accumulation 

must be done with techniques able to measure IAAT. For this reason, imaging techniques 

are at the forefront of obesity research.  

Single slice extrapolation is a popular technique for quickly estimating the amount of 

IAAT23-25. This involves scanning a single axial slice within the L2-L5 vertebrae region. 

As seen in Figure 1.5, this region is around the navel and has the highest accumulation of 

IAAT making it the best location for estimating the total IAAT. The reason this technique 

was developed was to account for the need to keep breath-hold times low for patients in 

the MRI. Breath holding in MRI is required due to motion causing artefacts within 



9 

 

collected images. Scanning a single slice and extrapolating IAAT volumes requires much 

shorter scan times than scanning the entire abdominal volume. This results in either better 

images or less time required for breath holds. In addition, this method also reduces the 

time needed for post-processing of the images as analysis only requires the segmentation 

of a single slice rather than a whole 3-dimensional set which can be approximately 80 

slices. However, single-slice sampling fails when attempting to predict large variations in 

individual internal fat content26, and when attempting to measure weight loss27. Both of 

these are extremely important for research into obesity and its attributed diseases, as 

using techniques for weight loss or looking at individual variation and comparing it to 

disease is what is needed. Thus, multislice imaging is required for accurate measurement 

of IAAT in MR images28. 

 

Figure 1.5 Adiposity in Spinal Regions 

Depiction of the localization of adiposity in relation to position along the spine. 

Intra-abdominal adiposity peaks between the L1 and L5 vertebrate, whereas 

subcutaneous adiposity peaks further down the spine23. This distribution results in 

the associated apple-like shape for patients with higher IAAT, and pear-like shapes 

for patients with higher SAT. 

A recent development is an automated technique to deal with the large post processing 

time of manual segmentation, called AdipoQuant29. This method is available for human 
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MRI using water-fat images. It has been validated for use on lean and obese adults as 

well as lean and obese children. The average volume difference between full abdominal 

segmentations for this method was (39.8 ± 28.44) cm3 (1.1 ± 0.7%) for SAT, and (93.1 ± 

80.9) cm3 (5.0 ± 3.3%) for IAAT. The method was also used with multiple water-fat 

imaging techniques (IDEAL30, multipoint Dixon31) collected at different research 

laboratories. Most importantly this technique saves time, requiring only 2 seconds per 

slice in comparison to 8 minutes per slice with manual segmentation. The flexibility of 

this technique and insensitivity to the size difference between adults and children makes 

it a prime candidate for application to smaller test subjects.  

There are many other techniques for the automated segmentation of adipose 

compartments in humans, and additionally there are many semi-automated techniques 

available.  Another leading MRI technique uses a segmental shape model32 to identify the 

abdominal muscle layer and then perform segmentation. Other automated segmentation 

techniques that use histogram thresholding33,34 are available. 

1.1.3 Rodent Research 

While human research is important to advance our knowledge, rodent research can 

unlock information that would not be accessible from human research. This is due to the 

many techniques that are available for use on rodents, such as drug testing or invasive 

procedures. Research into the effects of chemical compounds on weight (loss or gain) 

would not be possible without preclinical testing on animal models. Rodent models are 

preferred due to their relatively cheap costs, and mouse models are specifically relevant 

as they are validated models of human obesity35. Specifically, for obesity research, rodent 

models are much easier to regulate in terms of diets and monitoring the weight gain and 

loss over time. It is much more difficult to ensure strict following of controlled diets and 

ensure patients return at regular intervals for testing. In addition, studies that induce 

weight gain would not be recommended for use in humans, especially to the point of 

obesity. In essence, using rodent models such as the mouse allow cheaper, faster, and 

better regulated observation of the effects of obesity with less barriers to research than in 

humans36. 
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1.2 MR Physics  

1.2.1 Nuclear Magnetic Resonance and MRI Basics 

Atomic nuclei with magnetic moments can be used to generate a signal. These magnetic 

moments appear in species that have odd numbers of protons, neutrons, or both. The most 

prominently used nucleus in MRI is hydrogen (1H). This is due to its large natural 

abundance in the body in comparison to other nuclei. It is the most prevalent nucleus in 

the human body due to both lean tissue containing large amounts of water molecules, and 

fatty tissue containing molecules composed of many 1H. The body is composed of 63% 
1H, and the next highest composition of MRI-studied nuclei is oxygen composing 26% of 

the human body37. Not only is the high composition of 1H important, but also it has a 

high natural abundance of a single isotope. 99.985% of hydrogen nuclei exist naturally as 

the 1H isotope38, making it a prime subject for use as more nuclei result in more signal. 

The high concentration of 1H in the body allows it to be easily measured in comparison to 

other nuclei.  

A combination of magnetic fields is used to manipulate the nuclei into producing a 

measurable signal in the MRI. The main magnetic field, or B0, is a constant magnetic 

field. When nuclei are placed within this field, the lowest energy state will be aligned 

with the direction of this magnetic field. There will still be a small component of the 

nuclei’s polarity that is not aligned with B0 in the higher energy state anti-parallel to B0.  

Figure 1.6 illustrates these alignments.  
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Figure 1.6 Effect of Magnetic Field on Magnetic Moments of Nuclei 

Cartoon depiction of the direction of nuclei magnetic moments when placed within a 

magnetic field. Nuclei within the magnetic field have two energy states: a low-energy 

alignment parallel to the magnetic field, and a high-energy alignment anti-parallel 

to the magnetic field. Due to the energy differences between these states, the nuclei 

tend to align parallel to the magnetic field. 

This magnetic field causes the nuclei to precess. The rate of precession that these nuclei 

experience is based on the strength of B0 and a property of the nuclei called the 

gyromagnetic ratio (γ)39. This property depends on the nuclei’s atomic weight as well as 

its structure. Equation 1.1 models the precession of nuclei. 

Equation 1.1 

€ 

ω 0 = γB0  

Here ω0	  represents	  the	  angular	  velocity	  of	  the	  nuclear	  precession	  within	  the	  

magnetic	  field.	  For	  1H, this velocity is 267.52 ⋅ 106 rad/s⋅T or 42.577 MHz/T. With the 
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strength of B0 at 3 T, 1H precess at 127.6 MHz, which is within the Radio Frequency 

(RF) range.  

1.2.2 Net Magnetization within a Magnetic Field 

The alignment to the external magnetic field, B0, is governed by the tendency for the 

proton spins to align with the magnetic field and their ability to gain energy from thermal 

contact40. This is according to Boltzmann probability theory where the number of aligned 

protons (N||) depends on the total number of protons (N), Planck’s constant (ħ), the 

Larmor frequency of the protons (ω0), Boltzmann’s constant (k), and the temperature (T) 

as seen in Equation 1.2. 

Equation 1.2 
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N|| ≅ N
!ω 0

2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

The aligned protons can be manipulated by RF magnetic fields as a group, and thus we 

can concern ourselves with the response of the net magnetization of the nuclei rather than 

the individual responses. Figure 1.7 illustrates net magnetization. As our signal will 

depend on the number of protons within this group, the resulting MRI signal depends on 

the strength of the magnetic field and the temperature of the object. In the case of humans 

and animals, the temperatures are relatively consistent; meaning the largest factors 

contributing to the signal are the magnetic field of the MRI and the number of protons 

within the object. 

In order to measure the signal from the nuclei we apply an additional magnetic field to 

force the nuclei out of equilibrium and tip the net magnetization. This additional 

magnetic field is typically a short pulse of milliTesla (mT) magnetic strength, and we 

denote this RF field as B1. As the precession is constant, the tipping process can be 

simplified by using a rotating frame with an angular velocity of the Larmor frequency. 

Therefore, the tip of the net magnetization (θ)	  will	  depend	  on	  the	  strength	  of	  the	  field	  

(B1), the gyromagnetic ratio (γ), and the amount of time the RF pulse is applied (τ)41. 

This relationship is displayed in Equation 1.3. 
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Figure 1.7 Net Magnetization of Nuclei in a Magnetic Field 

Cartoon depiction of the summation of the direction of magnetic moments of nuclei 

within a magnetic field. As they tend to align with the magnetic field, net 

magnetization will be parallel to the magnetic field. These groups of nuclei 

experiencing the same magnetic fields are called “Spin Packets” and result in ease of 

calculations through use of net magnetization rather than individual magnetic 

moments. 

Equation 1.3 

€ 

θ = γB1τ  

After the time τ	  has	  elapsed	  the	  RF	  magnetic	  field	  is	  turned	  off	  and	  the	  nuclei	  precess	  

back	  to	  the	  equilibrium	  magnetization.	  This	  return	  to	  equilibrium	  results	  in	  a	  

varying	  magnetic	  field	  arising	  from	  the	  nuclei,	  and	  if	  there	  are	  nearby	  conductive	  

materials,	  a	  current	  will	  be	  induced	  in	  them.	  A	  current	  will	  be	  induced	  in	  detector	  

coils	  surrounding	  the	  nuclei	  that	  allow	  measurement	  of	  signal.	  The	  return	  back	  to	  

equilibrium	  magnetization	  is	  governed	  by	  many	  properties	  including	  the	  tissue	  that	  

the	  bulk	  of	  the	  nuclei	  are	  located	  in,	  such	  as	  fat	  or	  water.	  
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1.2.3 Magnetization Relaxation 

When the nuclei are placed in this magnetic field, they approach an equilibrium 

magnetization (M0) dependent on absolute temperature and the external magnetic field 

B0
42. As the bulk nuclei are tipped out of equilibrium by the RF pulse, the net 

magnetization will return to equilibrium based on two relaxation properties. The first 

property is called spin-lattice relaxation, or T1 relaxation. After being tipped away from 

equilibrium, the net magnetization (Mz) will grow back towards equilibrium according to 

Equation 1.4. 

Equation 1.4 

€ 

MZ = M0 1− e
−t T1( )  

Thus the current longitudinal magnetization will exponentially grow back towards 

equilibrium over time (t) with a rate factor (T1) known as the spin-lattice relaxation time. 

The T1 is the time it takes for ~63% (1/e) of the magnetization to return to equilibrium 

after it has been perturbed by the RF magnetic field. Spin-lattice relaxation, or T1 

relaxation, is based on the composition of the object including the mobility of nuclei. In 

addition, T1 relaxation rates will be greatly affected by magnetic field strength. Mobility 

of the nuclei is how easily they can rotate and vibrate within the object, resulting in 

energy transfers from the nuclei to the lattice surrounding them. Objects with more 

nuclear mobility (for example water, in comparison to fat tissues) will return to the 

equilibrium state slower, thus in most cases the T1 of more mobile objects are longer. For 

example, T1 times are 250 ms for fatty tissues and are 900 ms for water-based muscle 

tissues42. 

Equation 1.5 

€ 

MXY = MXY 0( )e− t T 2 

The second relaxation property is called spin-spin relaxation, or T2 relaxation. This is the 

rate at which the net magnetization in the transverse plane decays back to zero, and is 

heavily dependent on neighbouring spinning nuclei. Equation 1.5 governs this rate of 
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relaxation. Here Mxy(0) is the initial magnetization in the transverse plane, t is the time 

elapsed, and T2 is the spin-spin relaxation constant. Spin-spin relaxation is typically 

much faster than spin-lattice relaxation, with the time constant being 60 ms for fat and 50 

ms for muscle42. This relaxation occurs due to the dephasing or decoherence of transverse 

magnetization over time. Dephasing is the return to random orientation of the nuclear 

magnetization over time across the transverse axis and results in the net magnetization in 

the transverse plan being reduced to zero. This dephasing is shown in Figure 1.8. 

 

Figure 1.8 Dephasing of Transverse Magnetization 

Cartoon depiction of decay of net magnetization in the transverse plane using a 

rotating frame of reference. The frame rotates at the Larmor frequency, resulting in 

the net magnetization appearing to remain in one direction. As the precession of 

nuclei move away from the Larmor frequency due to interactions between spins, the 

net magnetization decays to zero. 

There is an additional effect on the relaxation of the transverse magnetization. As the 

decay rate is governed by the interactions of neighbouring spins, differences in the 

precession rates can cause this dephasing to happen quicker. A main source of this 

difference in precession is due to B0 inhomogeneity. Unfortunately for our equipment we 

cannot create a perfectly equal field across the entire object, and this results in small 

differences in the magnetic field. These small differences will change the Larmor 
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frequency in that area, which in turn interferes with neighbouring nuclei causing a faster 

decay rate of transverse magnetization. This faster rate is called T2* and is described by 

Equation 1.6. 

Equation 1.6 
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1
T2*

=
1
T2

+
1
T2'

 

T2’ is the dephasing due to the magnetic field inhomogeneities that includes chemical 

differences, inhomogeneities in the main magnetic field, and any other sources causing 

non-ideal relaxation for the object’s nuclei. Loss of transverse magnetization due to T2’ 

is recoverable as it is static and related to the magnetic field inhomogeneities42. 

The spin echo sequence takes advantage of the dephasing of the transverse magnetization 

to produce an echo by using a 180-degree flip of the net magnetization. If we call the 

total time of this process TE (or echo time), the 180-degree flip would be applied at 

€ 

TE 2

to invert the phase the spins have acquired43. As each of the nuclear magnetizations 

dephase at different rates, flipping them and allowing the phase to evolve over the same 

period of time will cause them to rejoin together. This causes a growth in transverse 

magnetization until it reaches a maximum at TE, which is called the echo. The next step 

is to localize the nuclei precession with small variations in the magnetic field, using 

gradient coils. 

1.2.4 Resolution and Gradients 

Varying the magnetic field across a direction will allow localization of the received 

signal. Localization requires the use of multiple directional gradient fields that are mT/m 

in strength. These gradients cause the Larmor frequency of the spins to be linearly 

proportional to their position44, resulting in changes of 10 – 100 kHz across a human 

body at 3T. These differences in frequency of precession can be modeled using Equation 

1.7. 
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Equation 1.7 

€ 

ω r( ) = γ B0 +G r( )( ) 

Here r can be replaced with either x, y, or z. The gradient function (G(r)) is normally a 

linear function of the position. The z gradient or slice-select gradient is applied during the 

initial radiofrequency pulse. This gradient, in combination with the RF pulse’s 

Bandwidth (BW), selects the region to be imaged. This gradient can either be used to 

select a volume to scan or it can be used to encode areas in the z direction to allow the 

volume scanned to be localized into multiple slices.  

The next gradient used is the phase encoding gradient. This gradient encodes across the 

object in the y direction by adjusting the longitudinal magnetic field. This causes slight 

phase differences across the y direction that can be accounted for localizing the signal 

responses. To further localize, a final x gradient or frequency encoding gradient is 

applied to give us differences in the precession frequencies across the x direction of the 

object. This is when we acquire the signal that the nuclei produce. We now have 

localized signal for the x, y, and z directions of our object allowing us to fully reconstruct 

where the signal comes from in our object. 

As a note, the frequency encoding gradients are repeated for each phase encode that we 

need to collect, and furthermore both of these are repeated for each slice select or z 

gradient that is needed. This causes the length of time required for our acquisitions to 

mainly depend on the number of slices and phase encodes required45, while there is little 

dependence on the frequency encoding. The resulting signal acquired is the current 

induced by all of the precessing nuclei in the sample, within the area excited by the RF 

pulse. This results in a matrix consisting of phase on the y axis and frequency on the x 

axis. This matrix is known as ‘k-space’ and is the Fourier transform of the MR image, 

meaning the amount of phase and frequency encodes we use to map out our signal 

directly determines the resolution of our final image.  Figure 1.9 shows an example of k-

space and the Fourier transform image space. 
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Figure 1.9 K-space and Image Space 

(Left) K-space image, (right) reconstructed image. The k-space matrix is frequency 

vs. phase, resulting in the center of k-space containing low frequency, low phase 

information. The center of k-space contains low-resolution information about the 

image. The further out in k-space that the information is contained, the higher the 

resolution. To convert k-space information into an image, the Fourier transform is 

used.  

Resolution determines the amount of detail visible in the image by the number of voxels 

in the image. This is a very important part of segmentation due to partial volume effects 

(PVE). PVE occur when a single voxel contains signal from two separate objects. In the 

case of segmentation, when fat tissue and water tissue are contained in the same voxel it 

can cause problems with segmentations. In most cases, the voxel size should be smaller 

than the size of the object. Unfortunately this is not always possible to achieve this with 

reasonable scanning parameters. 

The resolution of the acquired images is dependent on how many phase and frequency 

encodes we acquire. To increase the amount of resolution there are tradeoffs that must be 

made. Keeping all other parameters the same, an increase in resolution will either 

increase the time of the scan or reduce the Signal to Noise Ratio (SNR)45. SNR is needed 

to be able to identify where in the image the useful data is, and to separate that from the 
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background noise. To regain some of this SNR, the scans can be repeated and averaged 

and follows the relationship in Equation 1.8. Averaging noise will cause it to cancel out 

or lower intensity, whereas averaging the signal from the scanned object will increase the 

intensity in comparison to that noise. Unfortunately this greatly increases the scan times 

because each average requires a complete repeat of the scanning sequence. Thus we have 

a three-way tradeoff between SNR, resolution, and scan time.  

Equation 1.8 

€ 

SNR ∝ Naverages  

1.2.5 Water-Fat Imaging 

1.2.5.1 Chemical Shift 

There are many MR acquisition techniques for analysis of fat content and water content. 

Most of these take advantage of the differences between the molecular composition of 

water and fat. In water molecules, the 1H are bound to oxygen that pulls their electrons 

towards it, and there are relatively few electrons around the nucleus. This leaves the 1H 

nuclei of water more susceptible to the magnetic fields than the 1H in fat molecules. In fat 

molecules, the 1H nuclei are typically bound to carbon atoms instead of oxygen. In this 

case, the electrons surrounding the 1H are not drawn towards the carbon as much as they 

are to oxygen but instead remain associated with the 1H. From this, a shielding effect 

occurs such that the 1H experiences a smaller magnetic field than it would if it were in a 

water molecule. This results in measurable changes to the Larmor frequency based on a 

nuclei’s local environment43. This phenomenon is called “chemical shift” and has been 

exploited for analysis of fat content or removal of fat from the image. From the main fat 

peak to the water peak, the shift due to chemical composition is 3.5 ppm, as shown in 

Figure 1.10. Looking back at Equation 1.1, any change in magnetic field will cause a 

change in the frequency of precession. Therefore chemical shift results in the 1H in fat 

molecules precessing at a slower rate than those in water molecules. 
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Figure 1.10 Chemical Shift between Water and Fat 

Representation of the spectral difference between 1H contained in water molecules 

and fat molecules. The precession of the nuclei in fat is slower than those in water 

due to the reduced magnetic field that they experience. This results in a difference of 

3.5 ppm between the two peaks, or 428 Hz within a 3 T magnetic field. 

1.2.6 Water and Fat Imaging Techniques 

One early acquisition technique was called Fat Saturation. This involved an additional RF 

pulse prior to the initial RF pulse called a saturation pulse. This pulse is centered on the 

frequency where the fat precession would be, with a small bandwidth so that it does not 

affect the water molecules. This saturation pulse would be 180 degrees in order to 

completely flip the net magnetization of the fat nuclei (to –M0). As the magnetization 

slowly grows back to equilibrium, the RF pulse covering both water and fat is then timed 

to when the fat magnetization reaches zero. This leaves the water magnetization in the 

transverse plane, and the fat magnetization untouched by this RF pulse. The disadvantage 

of this technique is that it requires the perfect bandwidth for the saturation pulse. In 

addition, there is not one singular fat peak but many due to the multiple species present in 

the body. 

Water 

Fat 
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Another technique was developed to take advantage of the different precession rates of 

fat and water hydrogen nuclei. The theory behind the Two Point Dixon technique46 is that 

if an image is collected when the fat and water are the same phase, and then another is 

taken when they are opposing phases, a simple addition or subtraction of the resulting 

images will return a water only or fat only image. The images collected are the In Phase 

(IP) image for when the water phase and fat phase are parallel, and the Out of Phase (OP) 

image for when the phases are anti-parallel. Problems arose using this technique mainly 

due to inhomogeneity in the main magnetic field. This inhomogeneity causes the IP and 

OP images to have a phase shift as shown in Figure 1.11. 

 

 

Figure 1.11 Effect of Field Inhomogeneity on Phases of Water and Fat 

Representation of the relative phases of the water signal (red circle) and fat signal 

(blue circle) within the two images collected with Two Point Dixon. In a scenario 

with the correct B0, the IP and OP images add or subtract to give water-only and 

fat-only images. Due to slight variations in the B0 across the image, different areas 

will experience different precession of nuclei. When the timing of image collection is 

based on the theoretical B0, areas with a shift in this B0 will experience phase 

differences resulting in bias in both the fat and water images. 

Phases in OP 

Image 

Phases in IP 

Image 

No Field Inhomogeneity B0 Field Inhomogeneity 
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This inexact opposition results in biases that vary across the image, dependent on the 

range of differences in the magnetic field. In addition, this technique also treats fat as a 

single peak that causes difficulty in true quantification of fatty tissues. 

The next development in water-fat imaging was the Three Point Dixon technique47,48. 

This technique was developed to account for the variation in the main magnetic field by 

estimating what the field would look like based on the collected images. Collecting an 

initial OP image, an IP image, and then a second OP image allows this estimation. By 

using the two OP images it is possible to determine the change in phase over time and 

allows determination of the magnetic field in that location. This can then be used to 

correct the IP image, and then fat and water images are created in the same method as the 

Two Point Dixon technique. This method was fairly robust but suffered in areas where 

water and fat content were almost equal. Figure 1.12 shows the Number of Signal 

Averages (NSA) in a 100% water voxel, and 50% water voxel.  

NSA is a measure of how the technique performs based on the SNR. It is a measure of 

how many effective averages your final images has, and optimum NSA is equal to the 

number of images you collected. The optimum SNR for the Three Point Dixon method 

would be as if you averaged 3 images, or had an NSA of 3. In the 50% voxel, the Three 

Point Dixon gives an NSA of 0. This decrease to zero drops rapidly as the content of the 

voxel approaches 50%. This happens due to the lowered information from deconstructive 

interference when taking an OP image, as a 50% voxel will result complete 

deconstruction of signal due to the opposing fat and water in the voxel. From this we can 

conclude that to not lose data, we should avoid collecting OP images. 
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Figure 1.12 NSA for Three Point Dixon at Different Echo Times 

Heat map of the NSA of a voxel containing 100% water (a) and 50% water (b). Axes 

are the angle separation of the fat signal between the first and second echo time (θ1) 

and the angle separation between the second and third echo times (θ3). The second 

echo time is centered on the alignment of the fat and water signals (in phase). The 

dashed white line covers angles with symmetric separation, a requirement for Three 

Point Dixon. An asterisk marks the optimum angle separation for Three Point 

Dixon. [Image from Reeder S et al. 200549] 

This led to the development of the Iterative Decomposition of water and fat using Echo 

Asymmetry and Least-squares Estimation (IDEAL)49. This technique involves using 

NSA maps to determine the optimal echo times to collect images for reconstruction of the 

fat and water images. While previous water-fat techniques used symmetric echoes to 

allow addition and subtraction as the simplest way to obtain the water and fat images, this 

technique used asymmetric separation of echoes. These echoes were optimized so that the 

angles of separation between the phase of water and fat signals were 
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process the field map is iteratively determined after each images is collected according to 

the relationship in Equation 1.9. 
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Equation 1.9 
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While this technique is the most robust of the previously described techniques, it still 

suffers from the same problem that Fat Saturation suffers from. Fat is made up of many 

species of molecules, all with different amounts of electrons shielding the proton nuclei. 

These different species have different chemical shifts, as shown in Figure 1.13. The 

different levels of shielding depends on the way the electrons are organized, which is 

dependent on what types of bonds are present between the Carbon atom and the rest of 

the molecule. This results in an inability to correctly quantify adipose tissue due to some 

fat species being present in both the water and the fat images. Fortunately, more 

information is available about these additional peaks, such as their relative position and 

height compared to the water peak. The summation can be added into the relationship in 

Equation 1.10 to enhance our image results. 

Equation 1.10 
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Finally, there is one additional factor that needs to be accounted for to better quantify fat 

in these images. The additional relaxation of nuclei due to inhomogeneities in the 

magnetic field cause bias in the final images if not taken into account50. Therefore, we 

need at least one additional image to solve for R2* (inverse T2*) and adapt our variables 

as shown in Equation 1.11. 

Equation 1.11 
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Figure 1.13 Spectrum of 1H in different Fat Species 

Relevant spectrum for 1H in fat molecules. Green arrows mark the different 

chemical components of fat, and the purple dashed line represents the spectrum 

from 1H in water. The separation and relative heights of the fat peaks will stay 

consistent and can be accounted for.   

This is currently the preferred technique for quantification of fat. As this method uses an 

iterative process of fitting the image results to the theoretical values, the best results can 

be achieved by maximizing the number of images taken. As it is simply not feasible to 

acquire endless images, the currently accepted number of images taken for R2* Corrected 

IDEAL is six as this provides the best balance between acquisition time and accuracy of 

the fit. 

1.3 Fat Segmentation 

Several automated techniques for segmentation of fat have been proposed, and most of 

them rely on the muscle layer between the IAAT and SAT.  As this layer is lean muscle it 

is bright on water images and darker than the fat in T1 images. This difference in signal 

intensity makes it theoretically possible for identification using automated segmentation 

based on simple thresholds.   
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1.3.1 Mouse Anatomy 

In rodents, the same muscle layer is present separating the entire subcutaneous adipose 

deposit from the intra-abdominal adipose deposit. However, difficulties arise from using 

the muscle layer for automated segmentation because there are differences in the muscle 

layer between humans and rodents.  The primary difference is the size of the muscle 

layer. Recent studies have shown the layer to require a resolution of 80 μm	  in	  lean	  mice,	  

and	  as	  small	  as	  50	  μm	  for	  obese	  mice51.	  This	  means	  that	  any	  image	  resolution	  larger	  

than	  this	  will	  cause	  PVE	  over	  this	  layer.	  Another	  area	  of	  difficulty	  is	  that	  high-‐

resolution	  images	  obtained	  from	  rodents	  have	  shown	  that	  this	  muscle	  layer	  doesn’t	  

fully	  separate	  the	  IAAT	  from	  the	  SAT52.	  This	  is	  especially	  problematic	  for	  region	  

growing	  techniques,	  as	  there	  is	  not	  a	  full	  barrier	  separating	  the	  two	  sections.	  	  

There are additional differences between human and mouse images that must be 

addressed. The position of the hips and legs in mice is problematic for segmentation 

techniques due to their proximity to the muscle layer. In humans, the water signal from 

the legs is far enough removed from the abdomen to ignore in segmentation of the muscle 

layer. In mice, ignoring the leg muscles causes inclusion of fatty tissues in the legs or 

misclassification of subcutaneous fat located near the edges of the legs. A more difficult 

problem to deal with is the superficial fascia – a small layer of lean tissue within the 

subcutaneous adipose tissue shown in Figure 1.14. This layer is difficult to account for 

due to its small size and inconsistent presence in MR images. Due to its small size, 

typically the superficial fascia does not affect the automated segmentation, but in some 

locations in the mouse it is thick enough to cause the automated segmentation to fail. 

Specifically within regions near the lungs, the fascia has a low enough fat content and 

large enough size to be readily apparent. In humans this is not as problematic due to the 

size difference of the fascia compared to the abdominal muscle layer, but in mice the 

fascia is approximately the same size as the abdominal muscles layer near the lungs. 

Extra steps are required to ensure that the fascia is not mistaken for the abdominal muscle 

wall. In addition, the fascia inconsistently appears in some abdominal images close to the 

mouse hips. These two differences in the mouse anatomy should be accounted for or at 

least understood when developing segmentation techniques for mice. 
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Figure 1.14 Superficial Fascia in a Human MR Image 

Fat only axial image of a human. The SAT is separated around the body by a thin 

layer with less fat content known as the superficial fascia. As seen in this image, the 

size and intensity of the fascia greatly differs from the size and intensity of the 

abdominal muscles surrounding the IAAT. Thus in human automated segmentation 

the fascia can largely be ignored when trying to locate the abdominal muscle layer. 

1.3.2 Rodent segmentation techniques 

The primary method for quantification of adipose tissue in rodents is currently manual 

segmentation. Manual segmentation of T1 weighted images has been validated vs. 

weighing the tissues53 proving its worth as a non-invasive technique for measuring 

internal fat. Furthermore, IDEAL imaging has been shown to be a more accurate method 

for manual segmentation than T1 images because T1 images having the same signal 

intensity values in liver tissue and adipose tissue. In addition, some organs, such as the 
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bowels, are easily mistaken for adipose tissue in T1 images54. This leaves manual 

segmentation of IDEAL images as the optimal route for quantification of adipose tissue.  

The base methods for manual segmentation require a threshold or connected threshold 

growing technique. The threshold is performed on Fat Only Images to create a total 

adipose image. This image is still prone to intensity variation but does not include organs 

such as the bowels, in comparison to T1 weighted images. This threshold is slice specific 

and is based on the operator’s subjective judgment of an appropriate threshold. From the 

total adipose image, the subcutaneous adipose tissue is removed to create an IAAT 

image. Then the SAT image is created by a simple subtraction of the IAAT from the 

TAT. 

A recent development, and the first fully automated MRI segmentation technique on a 

mouse model, uses a region growing technique52. For this method, the authors used a 9.4 

T MRI, T1 weighted images, and maximized their resolution at approximately 0.2 mm to 

attempt to fully resolve the muscle layer boundaries. As they could not fully resolve the 

muscle layer even at this resolution, they chose to adapt the region growing to account for 

the small connections between the IAAT and SAT. This technique begins by 

automatically selecting locations acceptable for seeding the region growing, and then 

trims these based on several limitations. After reducing the possible seeding locations, 

competitive region growing is started between the IAAT and SAT where the algorithm 

adds pixels in areas furthest from the edges first. In this way, the region growing fills up 

all of the internal tissues before going towards the edges of the IAAT where the SAT and 

IAAT compete in the small areas where the muscle layer doesn’t separate the two 

deposits. Bland-Altman analysis comparing to manual segmentation resulted in a mean 

difference of (0.85 ± 0.8) cm3 for the TAT and (1.0 ± 1.3) cm3 for IAAT.  

Another recent technique for automated segmentation in mice uses a segmental shape 

model55 to identify the abdominal muscle layer and separate the deposits. This method 

acquired T1 weighted images on a 7.05 T MRI. Segmentation procedure involved 

identifying the body contour, and then shrinking the contour until it reached the 

abdominal muscle layer. After this, a shape constraint was enforced to revise the 
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abdominal muscle contour based on distance from the body contour. To account for odd 

shapes in the body contour, this technique employed a segmental weight template to 

determine where variance in the body contour’s shape was more likely to occur, and that 

the dorsal and ventral areas typically have a similar shape. Finally, a distance constraint 

was added to keep the abdominal muscle contour from going to far into the abdominal 

cavity. Average Dice coefficients in comparison to manual segmentation were 0.941 for 

TAT, 0.935 for SAT, and 0.920 for VAT.  

 

Figure 1.15 Differences in Anatomy 

A comparison of a fat only image of a human abdomen (left) and a high resolution 

Balanced Steady-State Free Precession image of a mouse abdomen (right). Note the 

differences in abdomen shape and distribution of adiposity. The abdominal muscle 

wall is highlighted by a red asterisk in both images. The superficial fascia is 

highlighted by a red circle in the mouse image and is not visible in the human image. 

[Mouse Image Courtesy of Dr. Paula Foster’s Lab] 

1.3.3 Limitations of current techniques 

The main limitation of manual segmentation is the time investment required to perform 

the analysis on large or multiple data sets. Manual segmentation typically requires 

approximately 8 minutes per slice, but can be much longer depending on the slice. 
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Longer times are required on slices with lower resolution, with objects of similar 

intensities to fat (such as a fatty liver or bowels), and with more ambiguous ranges of 

intensities. In situations such as these, the time requirement of manual segmentation is 

much higher due to the extra care required in selecting the proper threshold ranges and 

boundaries of the fat deposits. 

In addition to the time required for manual segmentation of each slice, training time is an 

important consideration. Operators must understand how to use the segmentation tool, 

and must be familiar enough with the mouse anatomy on a fat only image to properly 

segment the appropriate tissues. This adds to the already large time costs of manual 

segmentation. Furthermore, even with training, inter-operator differences is a non-

negligible problem with manual segmentation. This is especially important in studies 

involving weight gain or loss as smaller changes in adipose content could be within the 

error range of manual segmentation. To worsen this problem, intra-operator differences 

have also been established in manual segmentations, so using the same operator for every 

data set does not eliminate the problem of variation in the results. 

While the region growing method is performed on high resolution images, the collected 

images suffer from more issues with signal variations in the T1 weighted images due to 

the use of 9.4 T MRI to collect the images. Higher MRI field strengths are associated 

with higher variations in the static field, resulting in large intensity differences across 

collected images. This will cause issues with adipose quantification as lower intensities 

will be removed from the image, or qualified as lower fat pixels when they are just areas 

of lower field strength. In essence, the flaws of not using a truly quantitative method of 

imaging water and fat results in a less accurate method for quantification with variation 

between scans causing non-negligible differences in adipose quantification. 

The region growing method was developed to account for the small connections between 

IAAT and SAT so that no leakage of the regions would occur. However, in the final 

segmentation images it is readily apparent that there is still significant intrusion of the 

IAAT label into the SAT images, mainly at the posterior side of the mice. Finally, the 

inconsistency of labeling of tissues outside of the abdominal cavity causes issues in 
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comparing subjects, and possibly even comparing the same subject to itself. If the 

algorithm consistently labeled the region below the abdominal cavity as IAAT, it could 

be accounted for and wouldn’t cause any issues. Unfortunately, its inconsistent labeling 

reduces the algorithm’s reproducibility on different images. 

There are similar limitations to the segmental shape technique. This technique also uses 

T1 weighted images for analysis, but adjusts intensities of images with the adaptive fuzzy 

C means segmentation. This clusters intensities within the body of the mouse into 

adipose, muscle, and organs. While this reduces some problems with loss of intensity, it 

does not eliminate the problem of misidentification of organs within the T1 ranges of 

adipose (bone marrow, bowels, liver). In addition, the segmental shape template and 

other constraints are all based solely on obese mice within their hardware setup. The 

variation in shape and position of the abdominal muscle layer and body contour is much 

less predictable when including lean mice and using a hardware setup that is not as 

constrictive on the mouse bodies. 

1.3.4 Proposed Solutions / Thesis Objectives 

The purpose of this thesis is to address the current challenges with automated rodent 

segmentation by creating a rapid, accurate, flexible technique that is easily transferred to 

human research. To do this, I propose an adaptation to the currently existing AdipoQuant 

algorithm with adjustments to account for the major differences between mouse images 

and human images. This allows use of fat fraction images for analysis and quantification 

over fat only images and T1 weighted images allowing a much greater accuracy in 

quantification. In addition, using a 3T MRI keeps the technique applicable to human 

research, as these MRI scanners are clinically available. 

My hypothesis is that automation of the technique will allow more precision in the 

calculations and the reproducibility will be measured to ensure that small variations in 

adipose volumes can be quantified using this technique. Using fat fraction images should 

also reduce the amount of variability between images allowing further improvement in 

reproducibility. 
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These adaptations include solutions for the higher amount of PVE, the effect of the PVE 

on the muscle layer, the size of the muscle layer, the superficial fascia, and the leg 

position in mice. Thus this thesis describes the use of a 3 T MRI to collect IDEAL images 

of mice at relatively low resolution and validates the use of an adapted automatic 

segmentation technique. 
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2 Validation of Volumetric MRI Adipose Analysis on Mice 

Using a Fully Automated Segmentation Method 

2.1  Introduction 

Obesity is an increasingly costly disease associated with chronic diseases such as type II 

diabetes, cardiovascular disease, and cancer7,56. Adipose tissue volume measurement is 

necessary for investigating effective treatment of obesity and its related diseases. Total 

Adipose Tissue (TAT) and Subcutaneous Adipose Tissue (SAT) can be estimated with 

techniques such as BMI, waist to hip ratio, and skin fold calipers. However, only Intra-

Abdominal Adipose Tissue (IAAT) has a strong correlation to the occurrence of obesity 

related diseases16,17. Magnetic Resonance Imaging (MRI) is suitable for measuring IAAT 

due to the inherent differences in image contrast between fat and other tissues.  

MRI using T1-weighted image acquisition at 0.35 Tesla (T) has been shown to be a 

sensitive, reproducible, noninvasive, and safe method to determine the distribution of 

adipose tissue53. Unfortunately, T1-weighted quantification of IAAT is confounded by 

other bright structures like blood vessels or bowel contents that may be mistaken for 

adipose tissue57. Pulse sequences used to obtain water-fat separation give quantitative fat 

fraction images where each voxel (volume-pixel) provides a measure of the percentage 

fat. This makes it the optimal technique for determining quantitative volumes of fat non-

invasively.  

Once the images are acquired, segmentation of the compartments of fat is required for 

analysis. Manual segmentation is tedious and time consuming especially for large data 

sets. It is important to distinguish anatomy to avoid classifying other organs, such as the 

liver or bowels, as fatty tissue and this requires substantial training. To alleviate these 

problems, there are many automated segmentation algorithms for measuring the fat 

deposits32,33,34. Automation allows rapid analysis that isn’t prone to intra- and inter-
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operator differences, leading to more precise and reproducible results. This is very 

important in longitudinal mouse models as small changes of fat may be missed if intra- or 

inter-operator differences are present. Furthermore, automation removes the training 

requirement for manual segmentation. It is important to distinguish anatomy to avoid 

classifying other organs, such as the liver or bowels, as fatty tissue.  

Animal models are advantageous for obesity research because they allow careful control 

of disease models, have lower costs than human research, and allow research that would 

not be ethical on humans36. This is particularly relevant for obesity research where animal 

models allow measurements to be made first on the normal weight animals and then 

disease progression can be monitored as fat is accumulated. Mouse models are well 

established for obesity in humans35, but mice add additional difficulty to current 

automated segmentation methods due to their small size compared to humans. As a 

result, much higher resolution images are required for mice than humans; however, it is 

not currently possible to acquire images of mice with high enough resolution to have 

voxels of similar relative size (in relation to full body size) to human voxels. This means 

that mouse MRI has a relatively lower resolution compared to human MRI. In addition, 

there are minor differences in anatomy between mice and humans, such as positioning of 

limbs and incomplete separation of fat compartments. A layer of muscle separates the 

IAAT and SAT. In humans this layer is large and completely separates the two fat 

deposits, whereas in mice this layer is much thinner relative to the mouse size, and does 

not seem to fully separate the deposits even at high resolutions52. Another issue is the 

relative size of this muscle layer with the superficial fascia. This small layer in the 

subcutaneous adipose tissues appears to be relatively the same thickness as the muscle 

layer. 

Here we propose a method to address the issues caused by relatively low-resolution 

mouse images. This method will be adapted from a currently existing human adipose 

quantification method29 in order to apply it to a mouse model. This method will be tested 

with water-fat images collected from a 3T MRI with resolutions as low as 0.7 mm x 0.7 

mm in the axial plane. This will allow other research to be performed simultaneously 

with the fat quantification as well as promote longitudinal research. 
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2.2  Methods 

2.2.1 MRI Acquisition 

Following approval by the institutional Animal Use Subcommittee, in vivo data was 

collected from 13 mice (C57BL/6J): 7 on a Western diet consisting of 40% of calories 

from fat, 6 on a normal chow diet. All animals were scanned with a custom-built 1H RF 

coil in a GE 3.0 T MR750 (GE Healthcare, Waukesha, WI). Images were collected with 

an IDEAL [3] pulse sequence over 40 minutes (NEX = 13, six echoes, TE = [2.2, 3.2, 

4.3, 5.3, 6.4, 7.4] ms, TR = 14.02 ms, FOV = 120 mm x 54 mm x 34 mm, Resolution = 

0.8 mm x 0.7 mm x 0.7 mm, Flip Angle = 3°).  

2.2.2 Automated Segmentation 

The segmentation algorithm was adapted from a validated human MRI segmentation 

method called AdipoQuant29. The first step identifies background noise to separate it 

from the mouse volume. To accomplish this, a k-means clustering algorithm was used on 

the total signal image (the sum of the signal from the water image and the fat image). 

This process is illustrated in Figure 2.1. The mouse method has increased number of 

classes to account for the lower SNR in mouse images compared to human images on a 

3T MRI. The lower classes were discarded (noise, lungs, bone-filled regions), and the 

upper classes were kept (fat and water tissues) and converted into a binary tissue volume 

mask. Small holes in the mask were filled using a hole-filling algorithm. 
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Figure 2.1 K-means on In Phase Image to Create an Image Mask 

Axial images within the lower abdomen of an obese mouse. From left to right: in 

phase image, k-means image, and the resulting total tissue mask. Image intensities 

are binned into equally separated groups or classes by the k-means segmentation. 

The lowest classes in the k-means images are discarded as noise, and the higher 

classes are kept as tissue and then filled to create a mask. This mask is then used to 

remove noise from the fat fraction image. 

The second step created a mask of the adipose tissue as outlined in Figure 2.2. The tissue 

volume mask was applied to the fat fraction image to remove noise and non-tissue 

compartments. A threshold of 70% was applied to the masked fat fraction to select high 

fat content areas. This fat mask was expanded to nearby voxels greater than 60% fat 

fraction. A much higher fat fraction than the human method is required here (the human 

method expands to voxels with 45% or higher fat fraction) due to the lower relative 

resolution and the very small muscle layer separating the two fat deposits. This lead to 

partial volumes on the muscle layer and the adipose tissue resulting in voxels with up to 

65% fat fraction. As the muscle layer is usually only one voxel wide, the expansion of the 

fat selection consistently selected the muscle layer as fat if a lower fat fraction was used. 
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Figure 2.2 Adipose Tissue Mask Creation 

Axial images within the lower abdomen of an obese mouse. From left to right: Fat 

only image, greater than 70% fat fraction voxels, total adipose tissue voxels. The 

voxels from the center image are used to locate the connected fat that sits between 

60% and 70% fat fraction, creating the total adipose voxels. The center image shows 

that thresholds alone will not accurately find all of the adipose tissue. 

Next the organs and muscles were located using a fat fraction less than 65% within the 

tissue volume mask. Unfortunately, this threshold cannot be used across the volume due 

to the superficial fascia as displayed in Figure 2.3. To account for the superficial fascia 

around the chest of the mouse, the threshold for water tissue around the diaphragm was 

reduced to fat fraction less than 40%. Less than 40% fat fraction cannot be used across 

the entire volume as high fat fraction voxels over the muscle layer would be removed, but 

this typically only occurs around large fat deposits closer to the pelvis. Thus, the fascia 

causes additional issues close to the pelvis and was accounted for by dilating a mask of 

the skin that was removed from the water tissue mask. The fascia did not cause issues 

between these two areas. 
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Figure 2.3 Superficial Fascia in a Mouse MR Image 

Axial image of an obese mouse at the level of the heart and lungs. On the left is the 

fat only image, and on the right is a threshold of fat fraction less than 60%. As noted 

in Figure 1.14, the fascia surrounds the mouse body and is within the SAT. 

However, the mouse fascia is much larger relative to the abdominal muscle layer, 

shown with the arrows. As they are closer in size, it is important to take into account 

the fat fraction of the fascia to avoid misclassification of the layer as part of the 

abdominal muscles. 

The constructed organ and muscle mask was then converted into polar coordinates, as 

shown in Figure 2.4. The new matrix contained the outer edge of the organ and muscle 

mask (the muscle barrier between the IAAT and SAT) as the lowest pixel in each 

column. This is then smoothed within the slice to have a solid barrier at the edge of the 

muscle layer. Further smoothing is applied to ensure consistency between slices. Figure 

2.5 shows the selected pixels for the slice and the final smoothed result. The strictness of 

the smoothing algorithm within the slice was increased in comparison to the human 

method to account for more missing pieces of the muscle layer due to PVE. However, 

smoothing was reduced between slices due to greater variation between slices. 
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Figure 2.4 Water Mask and Polar Water Mask 

Axial images within the lower abdomen of an obese mouse. The left image is a mask 

of fat fraction less than 65% (with noise removed), the right is the same image 

converted to polar coordinates. Conversion to polar coordinates is effectively an 

unwrapping of the image from the center. This means that voxels closer to the 

center of the Cartesian image will be at the top of the polar image. Each voxel 

further from the center in Cartesian is lower in polar coordinates. 

This surface was then converted back into Cartesian coordinates and filled to complete a 

mask of the visceral cavity. The mask is then applied to the total adipose mask to separate 

the IAAT from the SAT. This can be seen in Figure 2.6.  

Finally, summing the fat fractions in each slice and multiplying by a voxel to volume 

conversion factor allowed determination of the volumes of fat. The conversion factor was 

determined by the imaging parameters of the scans. The segmented volumes could then 

be viewed in 3D as separate rotatable images, shown in Figure 2.7. The full segmentation 

process is summarized in Figure 2.8. 
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Figure 2.5 Lowest Voxels in Polar Coordinates and Smoothing 

Axial images within of the lower abdomen of an obese mouse converted to polar 

coordinates. The left image shows the lowest voxels from the originally converted 

polar image shown in Figure 2.4, the right image is a smoothed, continuous line 

covering the bottommost voxels. The lowest voxels in the left image can be towards 

the center of the Cartesian image, but most are at the edge of the abdominal muscle 

layer. Note that voxels outside of this abdominal layer (fascia, artefacts) will cause 

misalignment. 
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Figure 2.6 Intra-Abdominal Cavity 

Axial images within the lower abdomen of an obese mouse. From left to right: Total 

adipose image, intra-abdominal cavity, and total adipose image with abdominal 

cavity mask applied in green. The abdominal cavity is created by filling above the 

smoothed boundary in Figure 2.5, and converting back to Cartesian coordinates. 

This mask of the cavity is then applied to the total adipose image to separate the 

IAAT from the SAT. 

 

Figure 2.7 3D Segmented Volume Images 

3D renders of a full obese mouse abdomen. From left to right: Total tissues image, 

SAT only, IAAT only, Water tissue only. Volumes range from the dome of the 

diaphragm to the base of the pelvis and are displayed with the diaphragm at the top 

and the ventral side of the mouse facing out of the page. 
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Figure 2.8 Summary of Segmentation Process 

The same axial slice is used in all images. A k-means algorithm is applied to the in 

phase image (A) to create a tissue mask (B). This tissue mask is then applied to the 

fat fraction image (C). A threshold is then applied to the masked fat fraction image 

creating a high-fat content image (D). Nearby fat voxels with PVE are then added to 

create the Total Adipose Mask (E). A threshold is then applied to the masked fat 

fraction image to create a water image (F). This water image is converted to polar 
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coordinates (G), and a line is smoothed along the lowest pixels (H). After filling 

above this line, the image is converted back to Cartesian coordinates to create the 

abdominal cavity mask (I). This mask is then applied to the total adipose image (J) 

to separate the IAAT from the SAT. 

2.2.3 Segmentation Analysis 

The automated segmentation was compared to manual segmentation57 (performed with 

ImageJ software) of 10 equally spaced slices across each animal. Manual segmentation 

was performed on the same fat-only IDEAL images used in the automated segmentation. 

Images were manually segmented through use of thresholds on the intensity images to 

remove low intensity sections and noise. Once a suitable threshold for fat was 

determined, a binary image was saved as the total adipose tissue. Thresholds used were 

dependent on the individual slice and not fixed across image sets. Then, the SAT deposit 

was manually removed from the total adipose mask and saved as the SAT mask. The 

IAAT mask was then created through a subtraction from the TAT mask. Masks were 

converted to volumes and compared slice-by-slice with the automated segmentation. The 

processing time was calculated for both methods. 

2.2.4 Reproducibility 

Three lean mice were scanned twice on the same day to determine automated 

segmentation reproducibility. One IDEAL scan was performed on an anesthetized mouse, 

then the mouse was removed from the scanner, repositioned, and placed back into the 

scanner and another IDEAL scan was performed. All scans had the same parameters with 

minor adjustments to FOV positioning if needed. Total volumes of the fat deposits were 

compared between the automated segmentations. 

 

2.2.5 Statistical Analysis 

To compare the automated and manual segmentation methods, slices were compared 

between the automated and manual methods by first determining the absolute volume 
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difference (VDA). VDA is defined as the absolute difference between the automated (A) 

and manual (M) volumes, divided by the manual volume shown in Equation 2.1. A VDA 

equal to zero shows that both automated and manual methods agreed in the volume of the 

slice.  

Equation 2.1 

€ 

VDA = A −M M  

Bland-Altman plots58 were also used to visualize the agreement between the two 

methods. Here, a mean not equal to zero results from a bias between the two methods. 

For example, a positive mean results from the manual segmentation consistently 

measuring more fat volume per slice than the automated segmentation. In addition, a 

small standard deviation between the points will mean that there is greater agreement 

between the two methods. A slope in the points would correspond to a change in the 

difference between the techniques at different levels of fat. This is undesirable as a bigger 

difference between the methods would likely be due to the automated segmentation 

performing better only at certain levels of fat. 

Bland-Altman plots exclusively show volume differences and do not account for shape 

and location of segmentations. Thus, an additional metric to measure the overlap of the 

segmented images is required. Here we use the Dice Coefficient (DC)59. A perfect 

overlap of segmentations would be equal to a DC of 1, and can be likened to a 100% 

match. The DC is calculated with Equation 2.2 by dividing the number of overlapping 

points (nxy) by the sum of points in the manual segmentation (nx) and automated 

segmentation (ny).  

Equation 2.2 

€ 

DC = 2⋅ nxy nx + ny( ) 

Reproducibility was measured using the coefficient of variation (CV) calculation in 

Equation 2.3. It is determined with the standard deviation of the absolute differences (σ) 

and the mean volume measured (µ). Equation 2.3 
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€ 

CV =σ µ 

Results 

Two datasets of obese mice were discarded due to insufficient resolution for 

segmentation (0.85 x 0.9 mm) in the abdomen near the hips. One lean mouse data set was 

discarded due to insufficient SNR. All other automated segmentations completed full 

volumes successfully. The automated technique required 0.6 seconds per slice, whereas 

manual segmentation required 11 minutes per slice. Full volumetric analysis (70-90 

slices) was 50 seconds for the automated segmentation, and over 6 hours for manual 

segmentation. 

 

Figure 2.9 Difference Image Between Manual and Automated Segmentations 

Lower abdominal axial slice in an obese mouse is depicted. Red voxels show 

disagreement between the manual and automated segmentations for what is 

classified as SAT (A) or IAAT (B). The lower abdomen with the highest amount of 

IAAT is typically the most difficult to segment, and shown here the only 

disagreements are on edge pixels. 

The measured VDA for SAT was (6 ± 5) mm3 and for IAAT it was (5 ± 4) mm3. Total 

adipose tissue VDA was (12 ± 6) mm3. A difference image is shown in Figure 2.9. This 

relates to the Bland-Altman plots where the mean measured adipose volumes were -2.6 

A B 
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mm3 for SAT, and 3.1 mm3 for IAAT. The 95% confidence interval was 21.4 mm3 for 

SAT, and 17.6 mm3 for IAAT. See Figure 2.10 and Figure 2.11 for the plots. The 

measured Dice coefficients were 0.84 for SAT, and 0.87 for IAAT. The average 

measured volume for TAT was 116.9 mm3 per slice, with SAT averaging 55.0 mm3 per 

slice and IAAT averaging 61.9 mm3 per slice. 

Coefficients of variation between the repeated tests were 1.8% for IAAT and 1.8% for 

SAT. Between the two repeated scans, the IAAT was different by an average of 3.57% 

and the SAT differed by an average of 4.12%. 

 

Figure 2.10 Bland-Altman Plot for Subcutaneous Adipose Measurements 

Bland-Altman plot of single slice data from measurements using the automated 

segmentation technique and the manual segmentation technique. Note that the 

average is below zero meaning that the automated technique tended to measure 

slightly more subcutaneous adipose than the manual technique. 

-‐40	  

-‐20	  

0	  

20	  

40	  

0	   20	   40	   60	   80	   100	   120	   140	   160	   180	   200	  

M
an
u
al
	  V
ol
u
m
e	  
-	  A
u
to
m
at
ed
	  V
ol
u
m
e	  
(m
m

3
)	  

Average	  Measured	  Adipose	  Volume	  (mm3)	  

Individual	  Slice	  Data	   Mean	   95%	  ConYidence	  Interval	  



48 

 

 

Figure 2.11 Bland-Altman Plot for Intra-Abdominal Adipose Measurements 

Bland-Altman plot of single slice data from measurements using the automated 

segmentation technique and the manual segmentation technique. Note that the 

average is above zero meaning that the automated technique tended to measure 

slightly less intra-abdominal adipose than the manual technique. One outlier is 

present due to the manual technique misclassifying the liver as adipose tissue. 

2.3 Discussion 

We have demonstrated that a version of AdipoQuant adapted to mouse MRI is able to 

automatically segment IAAT from SAT in MRI of mice with high agreement to manual 

segmentations. Less resolution increases the partial volume effects creating more 

ambiguity for manual segmentation. This ambiguity increases the difficulty of manual 

segmentation as well as the time required. This is normally a trade-off for the ease of 

using a clinical scanner, such as a 3T MRI. However, our automated technique was over 

300x faster than the manual method resulting in extremely rapid, full volume results (less 

than 1 min, or 0.6 seconds per slice). No previous training is required to run the 
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segmentation algorithm. On the other hand, manual segmentation requires enough 

training for the operator to distinguish anatomy such as the liver as well as training with 

the manual segmentation software. Thus this technique allows segmentation of mouse 

images, including those acquired on a clinical MRI system, to be performed without the 

tradeoff of a longer time investment to analyze and segment the images.  

Although other techniques may have comparable automated segmentation times (less 

than 1 min – 3 minutes), they suffer from other difficulties such as using T1 weighted 

images for analysis. Automated analyses of T1 weighted images are less robust to image 

intensity changes resulting from hardware changes (e.g. a change in the coil used for 

image acquisition),	  whereas Proton Density Fat Fraction (PDFF) images such as those 

acquired from IDEAL60 are immune to intensity changes caused by switching acquisition 

hardware. T1 weighted images also have an overlap in intensity values for the liver and 

the adipose tissue26,54,61. Typically, areas within the bowels are easily mistaken for 

adipose tissue in T1 weighted images. Water-fat imaging, such as IDEAL, is the superior 

technique for reproducibly locating adipose tissue57. Additionally, unlike other automated 

analysis methods, the original AdipoQuant technique has already been successfully 

applied to images from multiple facilities using different hardware and pulse sequences 

for data acquisition29, demonstrating the algorithm’s flexibility. 

We suggest a minimum resolution of 0.7 mm axial in-plane resolution for image 

acquisition. The size of the mouse and the amount of fat in the lower abdominal region 

dictates how well the algorithm can perform the segmentation. Mice with high IAAT 

volumes are more difficult to segment in the abdomen near the hips and the largest pixel 

size that accounted for this was 0.7 mm x 0.7 mm in the axial plane. This was due to the 

extremely small amount of water between the SAT and IAAT near the hips. If the pixel 

size was too large it contained high amounts of fat tissue relative to the water tissue. With 

pixel size at 0.7 mm the voxels over the muscle layer were below 65% fat fraction and 

thus were distinguishable. As the segmentations were performed in the axial plane, slice 

thickness was not as important for proper segmentation.  
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While all segmentations are susceptible to artefacts, our method has additional difficulty 

with artefacts in the water images. Artefacts in the fat images will only alter the total fat 

calculated, but artefacts in the water images can cause significant problems in the 

selection of the abdominal cavity. This only occurs if the water artefact is attached to the 

water muscle layer and located within the subcutaneous adipose tissue. The further the 

artefact extends through the subcutaneous adipose tissue, the more problematic the result. 

The minimal effect is swapping of classification of IAAT and SAT. If the artefact 

protrudes outside of the subcutaneous adipose tissue, entire sections of SAT will be 

misclassified causing very high segmentation error. Most notably, phase wrapping of 

water-based heating apparatuses can cause major issues with segmentation of the IAAT. 

Utilization of increased image field of view or phase oversampling can eliminate these 

artefacts, but at the cost of additional scan time. Alternatively, heating apparatuses that do 

not require water near the animal could also avoid these artefacts. 

While manual segmentation was used as a reference standard to for comparison to the 

automated segmentation, it is far from a perfect technique. It suffers from tediousness, the 

necessity for training for proper use, and inter-operator and intra-operator differences. In 

addition, the manual segmentation was performed on the fat-only images that are affected 

by intensity variation. While not as consistent as using the fat fraction images, it has been 

validated as an improvement from segmenting T1 weighted images57. As T1 weighted 

segmentation has been validated by comparison to weighing internal organs53, manual 

segmentation was a validated method for quantifying internal fat and the best choice for 

comparison of the automated segmentation. Thus, differences depicted in the Bland-

Altman plot could be partially or wholly due to erroneous manual segmentation from 

operator error or intensity variation. This reduces the ability of manual segmentation to 

determine how well the automated segmentation performs at measuring adipose tissue. 

Automated selection of the start and end slices (diaphragm and hips) is a future 

improvement for this algorithm. Other techniques use water and fat content maps52 to 

alter the segmentation method for specific areas in the mouse. For our method, the start 

location could be determined automatically as a slice nearby the global maximum of 

water tissue (lungs / liver). The end location could then be selected as a slice near the 
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local water maximum posterior to the global fat maximum (legs will create an increase in 

water in that slice). These fat and water maps could also improve superficial fascia 

removal from the water masks. 

The algorithm was originally adapted from AdipoQuant with significant modifications 

that accounted for the smaller size and differences in mouse anatomy. These imaging and 

post processing methods can generally be applied directly to human research, aside from 

a few changes such as FOV. It is also important that this code works on at clinically 

relevant MRI strength as this allows the technique to be applied in the same environment, 

with the same acquisition sequence on mice as it could be with the human technique. This 

is important in advancing our ability to learn from the mouse models of obesity and their 

associated diseases to human disease. 

Reproducibility results showed that there is high precision between segmentation 

methods. This allows better research to be performed on longitudinal research, as smaller 

changes in fat distribution will be observable with this technique, where with manual 

segmentation the changes could be overshadowed by operator error. In addition, the short 

analysis time simplifies larger studies allowing more conclusive research. 

2.4  Conclusion 

In conclusion, we have developed a rapid, repeatable, and automated tool for analyzing 

fat deposits in mouse MRI. It is over 300 times faster than manual segmentation, is 

competitive with the leading automated mouse segmentation times, and uses robust 

quantitative images for more accurate analysis. Unlike other techniques, our technique is 

usable on low-resolution images. The adaptation of AdipoQuant also allows translation of 

our technique to human studies. Lastly, the close agreement with manual segmentation 

shows that this technique is a promising method for advancing our knowledge of obesity 

through the use of mouse models. 



52 

 

3 Conclusion 

3.1  Summary of Findings 

This thesis shows the relationship between my automated segmentation technique and 

manual segmentation. This section summarizes different advantages to using my 

technique over currently existing techniques for segmentation on rodent MRI. In 

addition, these advantages are related to the original goal of developing a rapid, 

reproducible, and transferrable method of segmentation for mouse MRI. 

3.1.1 Rapid Analysis of Full Abdominal Volumes 

The main advantage to my method over manual segmentation is the large benefit from 

reduction in time required for analysis. In segmentations of full 80 slice volumes of 

rodents, the automated segmentation was over 300 times faster. This was due to the 

requirement of ~6-11 min per slice for manual segmentation, dependent on the difficulty 

of the slice. In addition, this time cost was increased due to the need for training of new 

operators. As discussed previously, this includes training of mouse anatomy, 

identification of anatomy on fat only MR images, and training on the software for 

analysis (typically ImageJ). The high time cost reduces the ability to analyze a large 

number of subjects typical in rodent research. With this automated technique lowering 

time costs to less than one second per slice, full analysis of a large number of subjects 

becomes trivial because analysis of one subject required 50 seconds for an 80-slice data 

set. The rate of segmentation was also comparable to other segmentation techniques, with 

the region growing technique for 9.4 T requiring 40 seconds per full data set, and the 

segmental shape method requiring 10 seconds per data set. This massive reduction in 

time compared to manual segmentation opens up more conclusive research by allowing 

analysis of many more subjects. 

3.1.2 Agreement Between Segmentation Techniques 

Comparisons of the segmentation techniques using Bland-Altman plots and the Dice 

coefficient shows very close agreement between the manual and automated 
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segmentations. The differences could be accounted for by errors in manual segmentation 

as it is far from a perfect technique. The most important thing to note is that the majority 

of the differences between the two techniques come from differing classifications around 

the edges. This is an ambiguous area as classification in manual segmentation is normally 

at the discretion of the operator; do the volumes of greater than 50% Fat Fraction on 

voxels containing the muscle layer count as subcutaneous adipose tissue, or do they count 

as intra-abdominal adipose tissue? This classification has much more consistency when 

the identification is not based on subjective opinion, but an objective automated method. 

Bland-Altman results for the competing region growing technique were similar, but 

unfortunately cannot be accurately compared due to their use of full segmentation results 

rather than individual slice results. Considering the reduction in time costs and the very 

similar results between the segmentation methods, the automated segmentation is the 

superior method. 

3.1.3 Reproducibility 

A benefit to automation in most segmentation techniques is that the automated method 

for segmentation usually improves the reproducibility versus manual segmentation. In 

this case, the extremely low differences in measured fat volumes (3.57% for IAAT, 

4.12% for SAT) based on repeated scans showed very high reproducibility. This is vitally 

important for any studies looking at weight loss or gain over time as variations above 4% 

in IAAT will be detectable. In comparison to the leading competitors, my automated 

technique uses fat fraction images over T1 weighted images giving it an advantage in 

reproducibility. 

3.1.4 Transferability 

As the segmentation algorithm is based on the AdipoQuant for segmenting human MRI, 

the ability to transfer techniques and knowledge between mouse and human research is 

straightforward. Images can be taken with the same MRI scanner, the same acquisition 

technique (not including changes to the resolution and FOV), and segmented using 

essentially the same process for both human and mouse images. This is a huge advantage 
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over other techniques and this is currently the only available technique with this 

translation ability. The other technique available in both humans and animals, the 

ATLAS-based technique, uses an entirely different atlas based on the mouse anatomy 

rather than the human anatomy. My automated segmentation technique is the only 

existing method that allows direct translation from mouse research to human research.  

3.2  Future Work 

While my technique has been demonstrated as a powerful and rapid tool for analysis of 

fat deposits in mice, there are many applications for this tool. The following section will 

summarize some of these applications, as well as some additions that can be added to 

optimize the technique. 

3.2.1 Disease onset from Obesity 

An application of my automated segmentation algorithm that I have already alluded to is 

investigation of disease onset and its correlation to the distribution of fat content in mice. 

There is already conclusive evidence that the ratio of IAAT to SAT is highly indicative of 

disease progression, but determining when disease development begins could be very 

important for advancing prevention of disease. While the onset and progression of 

disease in mice could be significantly different than in humans, application of the 

knowledge gained from mouse models to human research could give important 

information about diseases. Unlike human studies, mouse models allow strict control of 

diets and monitoring of progression with increasing obesity. Furthermore, this technique 

is unique due to its reproducibility and ability to measure very small differences over 

time.  

3.2.2 Expansion to Other Rodents 

While mice are the most common laboratory animals for obesity research, other rodent 

models can provide better information in different areas. A primary example is guinea 

pigs for their very similar fat development to humans. In addition, rat models are 

commonly used for research. Both rats and guinea pigs are much larger than mice easing 
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the resolution to size restrictions that occur with mice. This allows less focus on PVE 

around the muscle layer so that the main adaptations required for the AdipoQuant 

algorithm would simply be accounting for the legs or other anatomical differences. My 

technique could be expanded even further to other animal models but would likely 

require more in depth work to determine if any differences in anatomy are significant 

enough to affect segmentation.  

3.2.3 Rodent Pregnancy 

Another promising area of obesity research is how obesity in pregnancy affects 

newborns. Early onset diabetes and metabolic syndrome are increasingly problematic in 

the younger population. Unfortunately, research into human obesity in pregnancy has 

many levels of difficulty. It is more difficult to get scans without motion when the fetus is 

included in the image, which is necessary for quantifying abdominal fat deposits. In 

addition, obese pregnant humans are often too large to fit into conventionally sized MRIs. 

Using rodent models, this research becomes much simpler. My technique can be used for 

monitoring the levels of adiposity in pregnant rodents and their fetuses and continuation 

of monitoring post pregnancy. This could determine the effects of maternal obesity on the 

offspring. 

3.3  Conclusion 

My automated segmentation technique has been validated for quantification of adipose 

tissue in mouse MRI. The comparison to manual segmentation demonstrated that the 

automated method is a much better technique to use with shorter time costs and similar 

accuracy. In addition, studies requiring high reproducibility are ideal for the automated 

technique due to the ability to very small differences between scans in longitudinal 

studies. My work is an important step towards improving our understanding and 

management of adiposity through research on mice. 
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