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Abstract

Movements of financial variables exhibit extreme fluctuations during pe-

riods of economic crisis and times of market uncertainty. They are also

affected by institutional policies and intervention of regulatory authorities.

These structural changes driving prices and other economic indicators can

be captured reasonably by models featuring regime-switching capabilities.

Hidden Markov models (HMM) modulating the model parameters to in-

corporate such regime-switching dynamics have been put forward in recent

years, but many of them could still be further improved. In this research,

we aim to address some of the inadequacies of previous regime-switching

models in terms of their capacity to provide better forecasts and efficiency

in estimating parameters. New models are developed, and their correspond-

ing filtering results are obtained and tested on financial data sets.

The contributions of this research work include the following: (i) Recur-

sive filtering algorithms are constructed for a regime-switching financial

model consistent with no-arbitrage pricing. An application to the filtering

and forecasting of futures prices under a multivariate set-up is presented.

(ii) The modelling of risk due to market and funding liquidity is considered

by capturing the joint dynamics of three time series (Treasury-Eurodollar

spread, VIX and S&P 500 spread-derived metric), which mirror liquidity

levels in the financial markets. HMM filters under a multi-regime mean-

reverting model are established. (iii) Kalman filtering techniques and the

change of reference probability-based filtering methods are integrated to

obtain hybrid algorithms. A pairs trading investment strategy is supported

by the combined power of both HMM and Kalman filters. It is shown that

an investor is able to benefit from the proposed interplay of the two filtering

methods. (iv) A zero-delay HMM is devised for the evolution of multivari-

ate foreign exchange rate data under a high-frequency trading environment.
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Recursive filters for quantities that are functions of a Markov chain are de-

rived, which in turn provide optimal parameter estimates. (v) An algorithm

is designed for the efficient calculation of the joint probability function for

the occupation time in a Markov-modulated model for asset returns under

a general number of economic regimes. The algorithm is constructed with

accessible implementation and practical considerations in mind.

Keywords: Markov chain, change of measure, multivariate HMM filter-

ing, oil future prices, Ornstein-Uhlenbeck process, liquidity, TED spread,

VIX, financial distress, pairs trading, high-frequency data, regime-switching

algorithms
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HMM and quantitative finance

1.1 Introduction

A hidden Markov model (HMM) refers to a statistical model designed to capture the

hidden states of a system and their evolution, which are governed by a Markov process.

An HMM may be formulated in a simple state-space form, and much of the earlier

works in this area focused on solving the problem of nonlinear optimization with the

utility of forward-backward algorithms. Owing to recent advances, our implementation

of the HMM filtering in this thesis, via the change of probability measures, will be car-

ried out using the quicker forward-only-driven algorithms, filters. Before mathematical

finance became an established area, pioneering developments and applications of HMM

have occurred in engineering, speech recognition, image processing, and the fields of

biological and physical sciences.

The motivation of using HMM to address problems in financial modelling can be clearly

understood on the basis of signal estimation, which is popular in engineering. For in-

stance, an engineer may be interested in determining at a given time the charge at a

fixed point in an electric circuit. However, due to errors in measurement or some other

underlying unknwon factors, the charge cannot really be measured but rather just a

noisy version of it. Our goal is to “filter” the noise out from the series of observed val-

ues in the best possible way. In finance, we take prices and series of financial data and

economic indicators as given. We wish to determine if such observed data do contain

information about latent or hidden variables, and if so, how would we estimate their

dynamics. See further Mamon and Elliott [45] or Mamon et al. [46].
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Needless to say, the efficient estimation of financial variable’s dynamics and accurate

estimation of parameters have tremendous impact to the valuation of derivatives, risk

management, and asset allocation, among other financial modelling endeavours. The

object of this research is to augment further developments that could add value to

engineering and other allied fields, and applications of HMMs in finance providing easy

access for implementation in the industry. Specifically, we explore further extensions

of HMM-based models together with filtering methods via measure change when esti-

mating parameters. The extensions and developments are application-specific and we

describe them below.

Remarks

1. It has to be noted that the filtering algorithms for HMM adopted in this research

make use of change of probability measures. It is important to emphasise that,

although similar in principle, this has nothing to do with changing measure from

real-world probability to risk-neutral probability employed in derivative pricing.

2. The change of measure in this research is to demonstrate that we can facilitate the

calculation of filters under some mathematically “idealised world” (i.e., the new

measure) under which the observations are independent and identically distributed

random variables.

3. Fubini’s theorem then applies and allows the interchanges of expectations and

summations. Calculations are then related back to the real-world measure via

an inverse change of measure through the construction of an appropriate Radon-

Nikodým derivative, which is a discrete-time version of the Girsanov theorem.
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1.2 Research problems examined in this thesis

1.2.1 Filtering and forecasting commodity futures prices under an

HMM framework

In this work, we propose a model for the evolution of arbitrage-free futures prices under

a regime-switching framework. The estimation of model parameters is carried out us-

ing the hidden Markov filtering algorithms. Comprehensive numerical experiments on

real financial market data are provided to illustrate the effectiveness of our algorithm.

In particular, the model is calibrated with data from heat oil futures and its forecast-

ing performance as well as statistical validity is investigated. The proposed model is

parsimonious, self-calibrating and can be useful in predicting futures prices.

1.2.2 Filtering of an HMM-driven multivariate Ornstein-Uhlenbeck

model with application to forecasting market liquidity

Following Boudt et al. [5], it is interesting to note that the T-bill ED (TED) spread is

directly correlated with market stability. TED is calculated as the difference between

the interest rates linked on interbank loans and on short-term US T-bills. Currently,

its computation makes use of three-month LIBOR and the three-month T-bill yield

rates. An increasing TED spread usually portends a meltdown of a stock market as

it is taken as a sign of liquidity withdrawal. As described in Bloomberg, the TED

spread can gauge perceived credit risk in the general economy since T-bills are risk-

free instruments and the credit risk of lending to commercial banks is encapsulated in

LIBOR. The rising of TED spread indicates that lenders view default counterparty risk

to be rising as well. Thus, lenders would require a higher rate of interest or settle for

lower returns on safer instruments such as T-bills. When the default risk of banks is

decreasing, TED spread is falling; see Krugman [40].

We investigate the modelling of risk due to market and funding liquidity by capturing

the joint dynamics of three time series: the Treasury-Eurodollar spread, the VIX and

a metric derived from the S&P 500 spread. We propose a two-regime mean-reverting

model in explaining the behavior of three time series, which mirror liquidity levels for

financial markets. An expectation-maximisation algorithm in conjunction with multi-

variate filters is employed to construct optimal parameter estimates of the proposed
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model. The selection of the modelling set-up is justified by balancing the best-fit cri-

terion and model complexity. The model performance is demonstrated on historical

market data by producing accurate prediction of market illiquidity states.

1.2.3 Hybrid filters

Kalman-type filters played an important role in mathematical finance; see Date and

Ponomareva [10]. However, a major drawback of these filters is that the parameters

of the model such as drift, volatility, mean-reversion parameter, transition matrix, etc.

have to be either already known or estimated separately. Once the model parameters

are estimated or imposed, they usually remain static for a long time, and what is up-

dated is simply the estimate of the state of the underlying variable in question. This

is not a serious concern in electrical engineering and physics as the systems in these

areas are quite stable and therefore, the parameters are bound not to change very dras-

tically. However, it is a different story in finance where dynamic switching is necessary

to deal with extreme market forces and effects of financial crises, business cycles and

unanticipated events brought by human activities and sentiments.

To enhance the capabilities of Kalman filter, it is possible to combine other filters with

it in estimating parameters recursively. Nonetheless, this is far from ideal since previous

formulations (cf. Logothetis and Krisnamurthy [43]) demonstrated that applications

of the filters have to be done one after another, which is tantamount to performing a

consecutive application of two separate modelling for the same data. Such approach

has two major disadvantages: (i) it is quite slow and does not have the speed near that

of the two approaches combined, and (ii) its aggregated error is high if one has to work

with a huge quantity of data.

We expand the idea on automated pair trading approach proposed by Elliott et al.

[18] by synthesising the Kalman and multi-regime dynamic filters. This provides a

powerful tool in capturing the heavy-tailed distribution mean-reverting processes. An

expectation-maximisation algorithm jointly with Kalman filtering produces the most

efficient parameter estimation for the succeeding trading procedure. We address the

practitioners’ primary concern of filtering implementation. The performance of the

algorithms is evaluated on the historical spread between Coca-Cola Company and Pep-

siCo Inc. indices.
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1.2.4 Zero-delay HMM and high-frequency data

High-frequency trading (HFT) started to emerge in the 1990s in response to advances

in computer technology and their adoption by the exchanges. From the original rudi-

mentary order processing to the current state-of-the-art all-inclusive trading systems,

HFT has evolved into a billion-dollar industry. As the foreign exchange (FX) market

is liquid, thousands of transaction ticks are generated per business day. Data vendors

like Reuters transmit more than 275,000 prices per day on FX spot rates, Dacorogna

et al. [9].

As FX derivatives (e.g., futures and swaps) are one of the most highly frequent traded

assets in the market, there is a strong demand for good predictions of the future move-

ment of the FX rates as well as the estimation of FX volatilities. Indeed, FX rates are

very volatile and not easy to model and predict. Many successful HFT strategies run

on FX, equities, futures, and derivatives, see Aldridge [2]. It is documented in Cheung

[8] for example, that from time to time FX rates exhibit spikes or regime changes.

We develop a zero-delay HMM to capture the evolution of multivariate FX rate data

under a frequent trading environment. Recursive filters for the Markov chain and per-

tinent quantities are derived, and subsequently employed to obtain estimates for model

parameters. The rationale of zero-delay HMM hinges on the idea that with fast trading,

available information must be incorporated immediately in the evolution equations of

the financial variables being modelled. Our proposed model is compared with the usual

one-step delay HMM, GARCH and random walk models using likelihood-based crite-

ria and error-type metrics. Parameter estimation both under the static and dynamic

settings are carried out as well as in the models used as benchmarks in a comparative

analysis. Implementation details are provided. We include a numerical illustration of

the methodology applied to the currency data on UK sterling pounds and US dollars

both against the Japanese yen. Our empirical results demonstrate greater fitting ca-

pacity and forecasting power of the zero-delay HMM over the comparators included in

our analysis.

Static filtering algorithms have been available to academic and industry users for at
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least a decade. Market risk managers have been applying these algorithms to esti-

mate quantiles of portfolio distribution under Markov-switching model with typically

2 regimes. We develop an extension of the approach proposed by Hardy [34] and show

how to numerically construct a density function for total asset’s return distribution in

a more complex environment, i.e. when an underlying HMM has more than two states.

Our technique is straightforward and can easily be applied to various risk measure

estimations.

1.3 Overview of hidden Markov models (HMMs)

In this section, we introduce the assumptions and concepts relevant to the theory of

HMM. We hint at the versatility of the class of Markov models, which is a powerful

machinery in modelling a variety of real-world phenomena. The discussion of simple

HMM frameworks are given and extended to provide insights on how the estimation of

parameters is carried out.

1.3.1 What is an HMM?

Consider a Markov chain {Xk}, where k is a non-negative integer. Suppose {Xk}
embedded in signals corrupted by some noise. Indeed, {Xk} is hidden due to noise and

not observable in practice. The Markov chain is often assumed to take values on a finite

set, but this can be relaxed in general, allowing for an arbitrary state space. What is

observed in the market or real world is a process {Yk, k ≥ 0}, which is a function of

{Xk}. The time series {Yk} is a distorted version of {Xk} due to some noise assumed

to have a distribution, say, Gaussian or Poisson. The process {Yk} is a series of signals

containing the “true” state or regime of an economy.

Following the formulation in Cappe et al. [7], an HMM is a bivariate discrete process

{Xk, Yk}, where {Xk} is a Markov chain, and conditional on {Xk}, {Yk} is a sequence

of independent random variables. The conditional distribution of Yk only depends on

Xk. The respective state spaces of {Xk} and {Yk} are denoted by X and Y.

From Figure 1.1, the distribution of the variable Xk+1 given the whole information

(X0, X1, ..., Xk−1, Xk) ≡ {X} until time k depends only on the value of Xk. Similarly,
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Figure 1.1: A depiction of the structure of a simple HMM, where {Xk} is a hidden

Markov chain and {Yk} is an observation process

the distribution of Yk+1 conditional on Y0, Y1, ..., Yk−1, Yk and X0, X1, ..., Xk−1, Xk de-

pends only on Xk. Any HMM can be defined through a functional representation known

as a general state-space model:

Xk+1 = a(Xk, Uk) (1.1)

Yk = b(Xk, Vk), (1.2)

where {Uk} and {Vk} are independent sequences of random variables that are indepen-

dent of the initial distribution of X0; a and b are measurable functions. It is consid-

ered that {Uk} and {Vk} belong to the same family of distributions such as Gaussian,

Gamma, Poisson, etc; see Cappe et al. [7]; Elliott et al. [15]; Mamon et al. [45];

and Hamilton and Raj [27]. Such distributions are typically assumed for two reasons:

computational convenience and ease of interpretation of the model. It is important

to realize that the Markov property assumption is restrictive and it is not warranted

in certain applications. This leads to the consideration of the so-called higher-order

Markov chains or weak Markov chains described in Siu et al. [51, 52]; Xi and Mamon

[55, 56]. In this case, the process {Xk} is a weak Markov chain of order n ≥ 1, if its

value at the present time k depends on its value in the previous n time steps. More

formally, this means that we have

Xk+1 = a(Xk, ....Xk−n+1, Uk) (1.3)

Yk = b(Xk, ....Xk−n+1, Vk), (1.4)

where {Uk} and {Vk} are random noises.

A natural extension of the HHM is to consider self-dependence of the emission process
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Figure 1.2: Discrete HMM with a dependence among emissions. A depiction of a structure

of an emission-dependent HMM, where {Xk} is a hidden Markov chain and {Yk} is an

observation process

(cf. Cappe et al. [7]), another name for the observation process {Yk}, which is mostly

used in mathematical biology, genetics and computer science. This new model is il-

lustrated in Figure 1.2. Under the state-space form representation, the model can be

written as

Xk+1 = a(Xk, Uk) (1.5)

Yk+1 = b(Xk+1, Yk, Vk+1). (1.6)

Hamilton ([25] and [26]) coined the term “Markov-switching model” for such a model in

equations (1.8) and (1.9). This manner of modeling dependences was used in economet-

ric analysis to handle nonstationary time series. Markov-switching models have many

similarities with basic HMMs. The computational machinery used for both models is

virtually the same. However, they do differ in the statistical analysis.

Originally, the main areas of applications of HMMs are speech recognition and ma-

chine learning. In Fine et al. [23], hierarchical HMM is developed in an effort to

improve algorithms that use stochastic context-free gammas. The idea is to put addi-

tional sources of dependency in the model. It was proposed that states emit sequences

rather than single symbols. Therefore, every state is composed of substates which by

themselves are composed of substates as well. To illustrate this, we consider a graphical

representation of a simple one substate type model with multiple levels of dependencies.

In a state-space form, the model featured in Figure 1.3 can be written as

Ck+1 = a(Ck, Uk). (1.7)

Xk+1 = b(Ck+1, Xk, Vk+1) (1.8)
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Yk+1 = c(Xk+1, Ck+1,Wk+1). (1.9)

Figure 1.3: An example of a structure of a hierarchal HMM, where {Ck} is a hidden

Markov chain, and {Yk} and {Xk} are correlated processes driven by{Ck}

Working with this type of model, however, is computationally intensive and, in some

cases, it is not possibile to find a tractable solution. The only subclass of hierarchical

HMMs that is widely used is Gaussian. In particular, a conditionally Gaussian linear

state-space model (CGLSSM) has the state-space form

Wk+1 = A(Ck+1)Wk +R(Ck+1)Uk (1.10)

Yk+1 = B(Ck)Wk + S(Ck)Vk. (1.11)

In equations (1.10) and (1.11), {Ck}k≥0 is a Markov chain, W0 ∼ N(µν ,Σν) and A,

B, R and S are known matrix-valued functions of appropriate dimensions satisfying

additional regularity conditions. Such model is well-known due to its significance in

implementing the Kalman filter (cf. Kalman [36]) and use in computer engineering.

Kalman filter is outlined briefly in the subsequent chapter. Kalman filtering equations

together with Monte-Carlo methods are needed to work with CGLSSM.

To date, papers on HMMs abound with applications to speech recognition, genetics,

biology, finance and economics. In the literature, HMMs have different classifications

according to the type of noise, type of applications, etc. However, almost all of them

can be obtained from the models described in equations (1.10)-(1.11). Hence, as alluded

in Cappe et al. [7], if we learn the main principles of working with the above model
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formulation, in theory, we can apply our machinery to almost every possible situation

and get some solutions.

1.4 Synopsis of main results in HMM filtering

We summarise the main achievements in the area of HMM filtering. Results described

in this chapter form the starting point of our contributions to the field. The first sig-

nificant progress in HMM filtering was made in the mid 60s. From then on, major

results have been established, which include the (i) forward-backward method (Baum

et al. [4]), (ii) Baum-Welch filter [4], (iii) Viterbi algorithm [53], (iv) Expectation-

Maximisation (EM) algorithm (Dempster et al. [11]), (v) Markov-switching model

(Hamilton [25, 26]), and (vi) measure change-based filters (Zakai [57]; Elliott et al.

[15]; Elliott [13]; Mamon and Elliott [45]; Elliott [14]; Siu et al. [51]; Erlwein[20]).

Figure 1.4: An example of a simple HMM with a discrete alphabet of emissions

The main results described in this chapter are discussed on an intuitive level. For the

rigorous details, formal proofs and technical conditions, see the original papers. We

adopt notation of Ewens and Grant [19]. Without loss of generality, we study one

of the simplest HHMs and then try to explain Viterbi, forward-backward and Baum-

Welch algorithms based on a model example taken from bioinformatics. Such type of

HMM is used as a simple model for gene decoding. The model under consideration, as

depicted in Fig 1.4, consists of two states {S1 = H,S2 = L} (high and low). It has a

transition matrix A = {aij}, i, j = 1, 2 with an alphabet of emissions {A,B,C,D} and
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corresponding emission probabilities bi(a) = P (a|Si) so that for example, bH(A) = 0.2,

bH(B) = 0.3, and so on. We denote the set of emmision probabilities as B. It is also

considered that the initial distribution π is known.

1.4.1 Viterbi algorithm

Given some observed sequence O = O1, O2, O3, . . . , OT of outputs, we wish to com-

pute efficiently the state sequence Q = q1, q2, q3, ...qT that has the highest conditional

probability given O. That is, calculate

arg max
Q

P (Q|O). (1.12)

For arbitrary t and i, define

δt(i) = max
q1,q2,...,qt−1

P ({q1, q2, ..., qt−1, qt = Si} ∩ {O1, O2, O3, ...Ot})

So, δt(i) is the maximum probability of all possible ways to end up in state Si at time

t having observed the sequence O1, O2, O3, ...Ot. Then

max
Q

P (Q ∩O) = max
i

δT (i). (1.13)

Our aim is to find a sequence Q for which the maximum conditional probability in

equation (1.12) is achieved. Since

max
Q

P (Q|O) = max
Q

P (Q ∩O)

P (O)

and the denominator on the right-hand side does not depend on Q,

arg max
Q

P (Q|O) = arg max
Q

P (Q ∩O)

P (O)
= arg max

Q
P (Q ∩O).

Hence, we have the algorithm as follows:

• Initialisation step: δ1(i) = πibi(O1) for 1 ≤ i ≤ N .

• Induction step: δt(j) = max1≤i≤N δt−1(i)aijbj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

To recover the qis, define

ψT := arg max
1≤i≤N

δT (i)

and put qT = SψT . Then qT is the final state in the required state sequence. The

remaining qt are found recursively by using

ψt = arg max
1≤i≤N

δt(i)aiψt+1 and then putting qt = Sψt .
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Going back to our example, suppose we observed a sequence CCBABDCAA. From

the Viterbi algorithm, we conclude that the most likely sequence of states emitted is

HHHLLLLLL.

1.4.2 Forward-backward algorithm

Let λ = (A,B, π) be the full set of parameters. Given λ, we address the question of

how to calculate efficiently P (O|λ), which is the probability of some given sequence of

observed outputs. We consider an efficient method of calculating this by defining

α(t, i) = P (O1, O2, O3, ..., Ot, qt = Si). (1.14)

This is a joint probability that the sequence of observations seen up to and including

time t is O1, O2, O3, ..., Ot, and that the state of the HMM at time t is Si. The α(T, i) are

called forward probabilities. The forward algorithm can be described in the following

way:

• Initialisation: α(1, i) = πibi(O1).

• Induction: α(t+ 1, i) =
∑N

j=1 α(t, j)ajibi(Ot+1).

• Termination: P (0) =
∑N

i=1 α(T, i).

This algorithm requires computations in the order of TN2, and thus, is feasible in

practice even for problems involving large dimensions.

The second part of the forward-backward algorithm is the backward algorithm. In

the above, we calculated successively

α(1, ·), α(2, ·), . . . , α(T, ·)

forward in time. In the backward algorithm, we calculate another quantity but back-

ward in time. This will not be used to solve P (0) =
∑N

i=1 α(T, i) but it will be needed

instead in the Baum-Welch algorithm in subsection 1.4.3.1. The goal of the backward

algorithm is to calculate the probability β(t, i) defined by

β(t, i) = P (Ot+1, Ot+2, ..., OT |qt = Si), (1.15)
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for 1 ≤ t ≤ T − 1. For convenience and without loss of generality, we set β(T, j) to 1,

for all j. We then compute equation (1.15) working backwards from t = T − 1. The

induction step of the procedure entails the equation

β(t− 1, i) =
N∑
j=1

aijbj(Ot)β(t, j).

It may be shown that

P (qt = k, qt+1 = l|O, λ) =
α(t, k)aklbl(Ot+1)β(t+ 1, l)

P (O|λ)
. (1.16)

Equation (1.16) provides the impetus for the development of the Baum-Welch algo-

rithm. Rabiner [49] generalised the idea of Baum et al. [4] and obtained normalised re-

cursive equations for the forward-backward algorithm covering the case X = {1, . . . , r}.

1.4.3 Expectation-maximization algorithms

Both Dempster et al. [11] and Baum et al. [4] explained the main principles of find-

ing the parameters of models in instances of incomplete data. These principles and

algorithms became the cornerstone of further applications of HMMs as they can be

viewed as a subcategory of models for missing data. We describe the results for the

Baum-Welch and expectation-maximisation (EM) algorithms.

1.4.3.1 Baum-Welch algorithm

Baum-Welch (BW) algorithm is designed to maximise P (O1, O2, O3, . . . , On). To de-

scribe a general BW algorithm, we expand the notation stated at the beginning of this

chapter to:

O1 : O1
1, O

1
2, O

1
3, ..., O

1
m1

O2 : O2
1, O

2
2, O

2
3, ..., O

2
m2

O3 : O3
1, O

3
2, O

3
3, ..., O

3
m3

....................................

On : On1 , O
n
2 , O

n
3 , ..., O

n
mn .

This means that we are provided with n training sequences of possibly different lengths

m1,m2, · · · ,mn. Suppose a
(0)
kl and b

(0)
k are initial parameters such that P 0(Or) ≥ 0 for
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all training sequences. This restriction can be relaxed to ensure faster convergence of

the algorithm. Here, P (s)(Or) is the probability of observing the sequence Or after s

estimation steps. To proceed with the calculation, we consider initial values for the

parameters given by

π̂ = expected proportion of times in state

Si at the first time point given {Od}, (1.17)

âjk =
E(Njk|{Od})
E(Nj |{Od})

, (1.18)

and
ˆbi(a) =

E(Ni(a)|{Od})
E(Ni|{Od})

, (1.19)

where Njk is the number of times qdt = Sj and qdt+1 = Sk for some d and t; Ni is the

number of times qdt = Si for some d and t; and Ni(a) equals to the number of times

qdt = Si if it emits symbol a, for some d and t.

Equations (1.17), (1.18) and (1.19) constitute the induction step of the recursive algo-

rithm in the estimation of π̂, âjk and ˆbi(a). Convergence is achieved since P ({Od}| ˆλ(n+1)) ≥
P ({Od}|λ̂(n)), where ˆλ(n) is the set of parameters used in the nth step.

To complete the calculations of equations (1.17), (1.18), and (1.19), write

ζdt (i, j) = P (qt = k, qt+1 = l|O, λ) :=
α(t, k)aklbl(Ot+1)β(t+ 1, l)

P (O|λ)
(1.20)

Equation (4.15) can be computed from (1.16). Let Idt (i) be indicator variables defined

by

Idt (i) = 1 if qdt = Si and Idt (i) = 0 otherwise.

Then
∑

d

∑
t I
d
t (i) represents the number of times Si is visited. Hence, the expected

number of times Si is visited, given {Od}, is

∑
d

∑
t

E(Idt (i)|Od) =
∑
d

∑
t

N∑
j=1

ζdt (i, j). (1.21)

Thus, the expected number of times Si is visited, given {Od}, is

∑
d

∑
t

N∑
j=1

ζdt (i, j).
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Similarly, the expected number of transitions from Si to Sj , given {Od}, is∑
d

∑
t

ζdt (i, j)

To calculate the numerator of equation (1.19), we define a new indicator random vari-

able by

Idt (i, a) = 1 if qdt = Si and Odt = a ; Idt (i) = 0 otherwise.

Consequently,

E(Ni(a)|{Od}) =
∑
d

∑
t

∑
Odt=a

N∑
j=1

ζdt (i, j).

1.4.3.2 The EM algorithm

Dempster et al. [11] laid down the foundations of a very general class of incomplete-data

models, which includes HHMs and Markov-switching models. As previously mentioned,

the Baum-Welch algorithm can be derived as a particular case of the EM algorithm.

We follow Cappe et al. [7] closely in outlining the EM algorithm.

Assume that we have a σ-finite measure µ on (X,χ) and a family {f(·; θ)}θ∈Θ of non-

negative µ-integrable functions on X. This family is indexed by a parameter θ ∈ Θ,

where Θ is a subset of Rdθ , for some integer dθ. The task under consideration is the

maximization, with respect to the parameter θ, of

L(θ) :=

∫
f(x; θ)µ(dx).

The function f(·; θ) can be thought of as an unnormalised probability density with

respect to µ.

In the study of HMMs, we shall consider the joint probability function f of two ran-

dom variables X and Y where the latter is observed while the former is not. Then X is

referred to as the missing data, f is a complete-data likelihood, and L is the density of

Y alone, which is the likelihood available in estimating θ. In general, we assume L(θ)

is positive. Thus, maximizing L(θ) is equivalent to maximising the log-likelihood

l(θ) := log L(θ).
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We also associate to each function f(·; θ) the probability density function p(·; θ), with

respect to a measure µ, defined by

p(x; θ) =
f(x, θ)

L(θ)
.

This tells us that p(x, θ) is a conditional density of X given Y.

A central underpinning of Dempster et al.’s methodology [11] is the EM algorithm,

which starts with the family {Q(·; θ′)}θ∈Θ of real-valued functions on Θ indexed by θ
′
,

and defined by

Q(θ, θ
′
) =

∫
log f(x; θ)p(x; θ

′
)µ(dx). (1.22)

The related regularity conditions are stated in subsection 1.4.3.2. When we encounter

0. log 0 in equation (1.22), we assign it a value of 0. The quantity Q(θ, θ
′
) may be

interpreted as the expectation of log f(X; θ) when X is distributed according to the

probability density function p(·; θ). With the previous notation, it is possible to rewrite

equation (1.22) as

Q(θ, θ
′
) = l(θ)−H(θ, θ

′
), (1.23)

where

H(θ, θ
′
) = −

∫
log (p(x; θ))p(x; θ

′
)µ(dx). (1.24)

From equation (1.24), the difference

H(θ, θ
′
)−H(θ

′
, θ
′
) = −

∫
log

p(x; θ)

p(x; θ′)
p(x; θ

′
)λ(dx) (1.25)

is recognised as a Kullback-Leibler divergence (distance) between probability density

functions p(x; θ) and p(x; θ′).

We complete our introduction to the EM algorithm by stating the regularity assump-

tions of the proposed framework.

• The parameter set Θ is an open subset of Rdθ , for some integer dθ.

• For any θ ∈ Θ, L(θ) is positive and finite.

• For any (θ, θ
′
) ∈ Θ×Θ,

∫
|∇θ log p(x; θ)|p(x; θ

′
)µ(dx) is finite, where ∇θ is the

gradient with respect to θ.
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The convergence of the EM algorithm can be justified as follows. Under the assumptions

of subsection 1.4.3.2, for any (θ, θ
′
) ∈ Θ×Θ,

l(θ)− l(θ′) ≥ Q(θ; θ
′
)−Q(θ

′
; θ
′
), (1.26)

where the inequality is strict unless p(·; θ) and p(·; θ′) are equal µ - a.e. In addition,

we assume that (i) the mapping θ → L(θ) is continuously differentiable on Θ and (ii)

for any θ
′ ∈ Θ, θ → H(θ; θ

′
) is continuously differentiable on Θ. Then for any θ

′ ∈ Θ,

θ → Q(θ; θ
′
) is continuously differentiable on Θ and

∇θl(θ
′
) = ∇θQ(θ; θ

′
)|θ=θ′ .

The EM algorithm is an iterative construction of the sequence {θi}i≥1 of parameter

estimates given an initial guess θ0. Each iteration is divided into two parts:

• Expectation step: Determine Q(θ; θi).

• Maximisation step: Chose θi+1 to be the value of θ ∈ Θ that maximises Q(θ; θi).

The EM algorithm is a very powerful tool when working with incomplete data and as

shown in the sequel it supports the filter recursions.

1.4.4 Change of measure approach

This approach incorporates the techniques discussed above with one additional step of

doing a change of probability measure. The basic idea of the method is to facilitate

the calculations in an easier framework, where under a new probability measure P̃ ,

all observations are independent and perhaps, identically random variables. Therefore,

all calculations take place under the P̃ measure, where Fubini’s theorem permits the

interchange of expectations and summations (Loeve [42]). The construction of the new

measure P̃ follows from the Girsanov theorem. The procedure can be understood more

clearly by considering Figures 1.5 and 1.6.

To illustrate the reference probability measure approach in a very simple situation

we consider an example from Elliott [15]. Suppose that in a coin-tossing experiment,

the probability of heads is p and the probability of tails is q. A probability space that
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Figure 1.5: Reference probability optimal filter derivation

Figure 1.6: Direct optimal filter derivation
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describes the outcomes of one throw of such a coin is Ω = {H,T} with probability

measure P where P (H) = p, P (T ) = 1− p. We suppose p is neither 0 nor 1. Suppose

further that we wish to adjust our statistics in our experiment to that of a fair coin.

We can achieve this mathematically by introducing a new probability measure P̃ such

that P̃ (H) = P̃ (T ) = 0.5. This implies that the event {T} has been weighted by a

factor
P̃ (T )

P (T )
=

1

2p̃
. The function

P̃ (·)
P (·)

is the Radon- Nikodym derivative of the fair

(uniform) P̃ measure with respect to P .

We note that the function
P̃ (·)
P (·)

can be used to define P̃ because

P̃ (·) =
P̃ (·)
P (·)

P (·).

Calculations performed under P̃ can always be related back to the real-world measure

P by invoking an inverse change of measure.

1.5 Kalman filter

Gaussian state-space models (GSSM) are an important subclass of Markov-switching

models. They have been examined quite extensively as tools in handling time series

with state-dependent coefficients. The estimation involved is relatively straightforward

and applications are ubiquitous in various areas of engineering and the sciences includ-

ing aerodynamics, physics, speech recognition, economics, genetics and finance, among

others.

Linear Gaussian state-space models (LGSSM) form a subclass of their own. This

can be largely explained by a huge variety of applications of data filtering in physics.

Many laws of physics can be expressed as linear ordinary differential equation (ODE)

or system of ODEs. Kalman ([36] and [37]) made filtering algorithms accessible that

demonstrated filtering applications in the accurate estimation of the exact coordinates

of moving objects (e.g., plane, missile, etc.). In the last two decades, there has been

considerable attention in applying Kalman filters in the modeling and estimation of

the dynamics of various quantities and variables in finance (cf. Date and Ponomareva

[10],and Wells [54]).
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To describe the Kalman filter, consider the state-space model

Xk+1 = AkXk +RkUk (1.27)

Yk = BkXk + SkVk, (1.28)

where {Uk}k≥0 and {Vk}k≥0 are uncorrelated sequences of white noise, i.e., they have

zero mean and identity covariance matrices. The initial distribution of X, denoted

by X0, is assumed uncorrelated with {Uk}k≥0 and {Vk}k≥0, and E(X0) = 0 and

Cov(X0) = Σ.

Define the following:

X̂k|n : = one-step prediction of Xk given Y0, ..., Yn

σk|n := Cov(Xk − X̂k|n)

εk := Yk − Ŷk|k−1

Stk and Bt
k are the corresponding transposes of Sk and Bk.

Kalman filtering algorithm:

For k = 0, . . . , n, the steps involved are:

• Initialisation step: If k = 0, set X̂k|k−1 = 0 and Σk|k−1 = Σ; otherwise set

X̂k|k−1 = Ak−1X̂k−1|k−1,

Σk|k−1 = Ak−1Σk−1|k−1A
t
k−1 +Rk−1R

t
k−1.

• Iteration step: Calculate the

Innovation εk = Yk −BkX̂k|k−1,

Innovation covariance Γk = BkΣk|k−1B
t
k + SkS

t
k,

Kalman gain Kk = Σk|k−1B
t
kΓ
−1
k ,

Filtering state estimation X̂k|k = X̂k|k−1 +Kkεk, and

Filtering error covariance Σk|k = Σk|k−1 −KkBkΣk|k−1.

The fundamental principles and theoretical underpinnings of Kalman filtering discussed

above will serve as the starting point of the last two projects on the comparison of

HMM filtering with other techniques, and combining HMM filtering with other filtering

methods.



1.6 HMMs in finance, actuarial science and economics 21

1.6 HMMs in finance, actuarial science and economics

This chapter underscores the various applications of HMMs to financial, actuarial and

economic modeling. We focus on how researchers bridge the gap between mathematical

developments and frameworks of applications in practice.

1.6.1 Motivation of using HMMs

Phenomena of stochastic nature abound in the sciences and social sciences and finance

and economics are of no exception. Black and Scholes [6] proposed in their semi-

nal work to use stochastic processes in modeling stock prices. A geometric Brownian

motion (GBM) was employed implying that the log-returns are assumed normally dis-

tributed. This leads to an analytic expression for the price of European call and put

options.

The assumption of normality is made for model tractability. However, such assumption

means that asset price changes are not serially correlated, which is not entirely correct

in reality. Merton [48] extended Black and Scholes’ model to cover the case of time-

dependent parameters affording greater flexibility. The presence of volatility smiles or

smirks, however, confirms that the constant volatility in the Black-Scholes-Merton’s

GBM framework is not satisfied.

With market upheavals and recent financial crisis (e.g., 2008-2009 period), the pure

diffusion approach to derivative pricing is deemed inadequate especially in modeling

the dynamics of variables underlying long-term investments. Among the reasons are:

• The long-run log returns follow a distribution with heavier tails compared to those

of the normal distribution.

• The distribution of log returns is completely different in various stages of the

economy. For example, during recession data exhibit huge spikes with negative

drift. During a stable or booming period the reverse is true, i.e., volatility is

relatively low and positive drift is positive.

• Independence of increments of log returns is violated. Indeed, a strong Markov

property is not realistic and models with different kind of dependencies have to

be considered.
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Diffusion models may be useful only in capturing the behavior of variables in the short

run but alternative models must be sought in the analysis of data used for long-term

financial instruments.

Several approaches have been proposed to rectify the normality assumption.

• Fat-tailed distributions could be incorporated in model construction. Also, em-

pirical density of log-returns has a much higher concentration around the mean

compared to the Gaussian distribution. Lack of tractability and more involved

estimation of parameters are the drawbacks of this approach.

• Adding a jump component into the model could be employed to give provision

for market crashes and other structural changes. Such models are termed jump-

diffusion models and surveyed in Kou [39].

• A broader category of models, the Levy-type models, is an appropriate alter-

native. These models consider stochastic processes that have infinitely divisible

distributions. They are quite rich in structure as Brownian motion and jump-

diffusion models are special cases. Nonetheless, there are some pros and cons to

work with Levy processes. It is quite easy to find a process that describes the

data perfectly. But, more often than not, it is very hard, and in some cases, al-

most impossible, to calibrate the model making parameter estimation a herculean

challenge. The techniques of working with Levy processes are completely different

compared to the current approach of working with diffusion models (Kyprianou

[41], and Asmussen [3]). New methods in this area provide general results. But,

since there is an associated increase of estimation complexity and diminishing

tractability with general results, they are not widely embraced by practitioners.

• A simple but powerful solution is through the use of mixture distributions with

weights assigned to certain distributions (Giacomini et al. [24]). A mixture of

distributions can create a distribution that captures stylized features of data ob-

served during economic downturns or market recovery (e.g., 1997-1998 and 2009-

2010 periods). The distribution gives various shapes reflecting different levels of

skewness and excess kurtosis.

• The approaches that utilise jump-diffusion models and mixture distributions

could be synthesized together. The idea is to use a Markov chain that gov-

erns the dynamics of parameters. The state of the Markov chain models the state



1.6 HMMs in finance, actuarial science and economics 23

of the market or economy, and combination of states produced a mixture of dis-

tributions. Its sophistication can be increased further by adding a jump process

whose intensity can also depend on a Markov chain. See Erlwein et al. [22].

1.6.2 Examples of HMM applications

Hamilton popularized Markov-switching models in a series of papers (cf. Hamilton [30],

[31], [32], [33]) and described in details [27] how to work with autoregressive time series

with parameters driven by a hidden Markov chain. His theoretical developments were

based on a two-state Markov chain model. The estimation of model coefficients using

the EM algorithm was established and the implementation was demonstrated using US

data via maximum likelihood. ARCH models with regime-dependent coefficients were

also presented in Hamilton and Susmel [29]. In [30], a class of state-space models that

extends the regular HMM was introduced. All known HMMs including the Kalman

filter Kalman [36] and time-series models within the same state-space framework were

classified. Hamilton and Raj [28] came up with a collection of results and applications in

econometrics and finance of time series with regime-dependent coefficients. Hamilton’s

contributions in HMMs have found continued applications in econometrics, finance and

insurance.

Hardy [34] further developed and applied Hamilton’s methodology [27] to the S&P

500 and TSE 300 indexes. The new models called regime-switching autoregressive

(RSAR(1)) and regime-switching log normal (RSLN-3) models were compared to the

existing ones, such as the independent lognormal model (ILN), AR(1), ARCH(1) and

GARCH(1,1). It was established that the two-regime model has the best fit using a

number of different criteria, such as the AIC (see Akaike [1]) and BIC (see Schwartz

[50]) and the likelihood ratio test (see Klugman et al. [38]). Pricing formulas for long-

term vanila options were derived. Calculations of popular risk measures such as the

value-at-risk (VaR) and and conditional tail expectation (CTE) under multi-regime

framework were performed. Sufficient information were given to enable the generaliza-

tions to models with more than two regimes. Interestingly, while a three-regime model

was considered, it was indicated that such number of regimes is more than necessary

for the data used in the empirical study.

Elliott et, al. [15] made substantial contributions to the HHM theory and applications
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of Markov chains in finance. His approach is quite different from that of Hamilton

in which a change of reference probability measures is at the core of the estimation

and filtering procedure. Such methodology was pioneered in electrical engineering by

Elliott and his colleagues, and its versatility and power were later promoted in financial

applications. In Elliott et al. [16], a regular Ornstein-Uhlenbeck process with a mean-

reverting level is modulated by a Markov chain. Based on HMM technique described in

[15], dynamic filters for the model parameters were developed in continuous-time set-

tings; simulations showed good results of modeling capability. Erlwein and Mamon [21]

pursued this line of inquiry and designed filters in discrete-time setting in the estima-

tion of HMM-driven parameters. The HMM measure-change approach was also applied

in the pricing of commodities (Elliott et al. [17]; Erlwein et al. [22]; and Mamon et

al. [47]). Another important application of HMMs is in risk measurement such as the

works of Hardy in VaR and CTE computations. In Siu et al. [52], a change of measure

approach developed by Elliott was used to find VaR on simulated data generated by a

weak Markov chain. In Xi and Mamon [55], filtering and forecasting were carried out

under a weak HMM setting. Applications to asset allocation are highlighted in Erlwein

et al. [20]. Whilst the strategy in Guidolin and Timmermann [12] does not feature a

reweighing of the portfolio, it describes the elegant approach of filtering in conjunction

with the change of measure. We note that it is one of the few papers suggesting 4 as the

appropriate number of regimes for the data in its numerical investigation; in majority

of the case studies in the literature, 2 or 3 regimes are deemed sufficient.

1.7 Structure of the thesis

This thesis contains the following contributions. Chapter 2 presents the filtering and

forecasting of futures prices under a multivariate HMM set-up. In chapter 3, we con-

sider the filtering of an HMM-driven multivariate Ornstein-Uhlenbeck model with a

special focus on forecasting market liquidity. Chapter 4 deals with the development

of a pairs trading strategy under a multi-regime environment. An application of zero-

delay HMMs to high-frequency foreign exchange trading is described in chapter 5.

Chapter 6 generalises static calibration algorithm procedures for a regime-switching

model with any number of regimes and describes the procedure of obtaining the dis-

tribution function of the total return in multi-regime environment. A summary and

possible extensions of the research results in this thesis are given in chapter 7.
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2

Filtering and forecasting

commodity futures prices under

an HMM framework

2.1 Introduction

In recent years, there have been various deregulations occurring in the electricity, oil

and natural gas markets. Apparently, prices of these commodities reflect financial risks

that are borne out by the market participants (sellers and buyers). Such risks are

important considerations when proposing a model for the price evolution of these com-

modities especially in designing energy derivative contracts.

The modelling of commodity futures prices and their underlying variables was stud-

ied by various authors in the light of various financial modelling considerations and

objectives. Cortazar et al. [8] proposed a multicommodity model for futures prices

that allows the use of long-maturity futures prices available for one commodity to es-

timate futures prices of another commodity; Kalman filtering was used in the model

estimation. Nakajima and Ohashi [22] put forward a commodity pricing model that

incorporates the effect of linear relations among commodity spot prices, and provided

a condition under which such linear relations represent cointegration; using crude oil

and heating oil market data, Kalman filtering was also utilised to estimate the model

parameters. In Antonio et al. [1], the inclusion of jump component is carried out to

explain the behaviour of oil prices; this, however, creates difficulties in the estimation of
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state variables, and so particle filters were applied instead of Kalman filters. Mirantes

et al. [21] formulated a generalised multi-factor model (n non-seasonal factors and m

seasonal factors) for the stochastic behaviour of commodity prices, which nests the de-

terministic seasonal models; the seasonal factors are trigonometric components driven

by random processes. A one-factor regime-switching model was developed in Chen

and Forsyth [7] but the objective was to capture the risk-adjusted natural gas spot

price dynamics; regression was used in model calibration using both market data on

futures and options on futures. Back et al. [2] conducted an extensive analysis covering

samples of soybean, corn, heating oil and natural gas options, and provided evidence

that seasonality in volatility is an important aspect to consider when valuing futures

contracts; an appropriate seasonality adjustment significantly reduces pricing errors in

these markets and yields more improvement in valuation accuracy than increasing the

number of stochastic factors.

The contributions of this research differ from the previous works mentioned above.

We aim to address (i) the development of a model for the evolution of arbitrage-free

futures prices suitable for valuation of commodity derivatives and (ii) provision of a

regime-switching framework with HMM-based dynamic estimation for the modelling

of multivariate commodity price time series along with the investigation of its various

implementation issues. Specifically, we proposed an approach for the estimation of la-

tent state variables in a model employed in futures pricing. The model is adapted from

Manoliu and Tompaidis [20] under a framework that is consistent with no-arbitrage

pricing. The methodology in [20] leads to a state-space formulation of the futures price

model suited for Kalman filtering and maximum likelihood method. More specifically,

the state variable for the spot and futures model is an Ornstein-Uhlenbeck process de-

signed to capture mean-reversion and observed term structure of volatilities and corre-

lation. Under this model, the futures prices are lognormally distributed. We start from

a lognormal spot price process and derive a multivariate equation for futures prices.

Instead of using a constant parameter (possibly multi-factor) mean-reverting process,

we allow the model parameters to be modulated by a finite-state hidden Markov chain

in discrete time. The parameters could then switch dynamically amongst economic

regimes representing the interactions of various factors including mean-reversion and

cyclical patterns (seasonality) in commodity prices.

The usual method of finding the maximum likelihood parameter estimates (MLEs)
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in conjunction with Kalman filtering is to numerically maximise the likelihood func-

tion. In Elliott and Hyndman [11], a filter-based implementation of the expectation

maximisation (EM) algorithm that can be used to find the MLEs is presented. Such ap-

proach makes use of the change of measure technique to evaluate filters under an ideal

measure and relate the calculations back to the real-world through the Baye’s theorem.

In recent years, linear and non-linear filtering have found a large number of applications

in finance. A recent survey of developments in this area along with various implementa-

tion details in the context of financial modelling is featured in Date and Ponomareva [9].

Considering the multivariate nature of datasets for correlated futures prices, we utilise

the filtering and estimation for vector observations put forward in Erlwein et al. [15].

The novelty of this work stems from the utilisation of all possible price information

from the futures market to obtain model parameters. Our estimation procedures are

designed to suitably calculate the h−step ahead forecasts of various related financial

variables. We formulate a model that is compatible with the Erlwein, et al.’s [15]

framework.

This chapter is structured as follows. Section 2.2 presents the formulation of the model

for the evolution of arbitrage-free futures prices. In section 2.3, the filtering algorithms

for parameter estimation are outlined. We provide in section 2.4 a numerical imple-

mentation by applying the algorithms to a data set of futures prices. We investigate

the forecasting performance of our approach in predicting log returns and future prices.

Finally, some concluding remarks are given in section 2.5.

2.2 Arbitrage-free evolution of futures prices

In this section, we provide a brief outline of the development of an arbitrage-free model

of futures price dynamics. Modelling the arbitrage-free price evolution is essential to

appropriately price securities in the commodity markets such as spread options. Spec-

ification of an arbitrage-free model is necessary to be consistent with the risk-neutral

approach in pricing. The development is based on reference of Manoliu and Tompaidis

[20] and the omitted proofs follow using a univariate version of Itô’s lemma in a straight-

forward fashion.
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We assume that the log-spot price ζt follows a single-factor mean-reverting process

under the risk neutral measure (or Q measure, in conventional notation), i.e.,

dζt = (α− κζt)dt+ θdWt. (2.1)

Here, α, κ and θ > 0 are assumed constants and Wt is a Q-Wiener process. The spot

price is considered to be a latent state, i.e., unobservable. We assume further that at

each time prices of m futures are available with maturities T1, T2, · · · , Tm. The price of

the futures contract with maturity Ti , at time t < mini(Ti), is denoted by F i(t) and

can be written as

F i(t) = EQ(eζ
i |Ft) = exp

(
EQ(ζi|Ft) +

1

2
VarQ(ζi|Ft)

)
,

where we denote ζTi by ζi for notational brevity and use the fact that eζ
i

is log-normal.

Here, {Ft} is the filtration generated by Wt. This leads to a closed-form expression for

F i(t) given by

F i(t) = exp

(
e−κ(Ti−t)ζt +

α

κ
(1− e−κ(Ti−t)) +

θ2

4κ

(
1− e−2κ(Ti−t)

))
. (2.2)

Our modelling formulation is consistent with the log-spot price modelling assumptions

in Manoliu and Tompaidis’s paper [20]. Under the assumption of no-arbitrage valua-

tion, the benefits from holding the physical asset, called convenience yield, are reflected

in the futures price (cf. Hull [18]). Convenience yield in a commodity is analogous to a

dividend in an asset that provides a known income; and dividends would naturally lead

to a corresponding adjustment in the price of the underlying asset of a futures contract.

Whilst we did not explicitly model the dynamics of the convenience yield as it is not the

intent of this paper to quantify it, we see that it is implicitly taken into account through

the log-spot price ζ in the closed-form expression for the futures price in equation (2.2).

Furthermore, at a fixed time t, F i(t) can be an increasing or a decreasing function

of maturity Ti, depending on the choice of parameters, which can easily be seen from

equation (2.2). Futures prices decreasing (respectively, increasing) with maturity re-

flects backwardation (respectively, contango). Typically, being able to model both these

situations adequately is a reason for modelling net convenience yield explicitly (possibly

as a stochastic process). We can achieve a switch between the two situations in our

framework through updating model parameters via self calibration as well as through
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regime switching, as will be made clear in the subsequent sections.

Next, we assume that the log-spot price follows a mean-reverting process with a differ-

ent drift function and the same volatility in the objective measure (or P measure):

dζt = (α̃− κζt)dt+ θdW̃t, (2.3)

where W̃t is a P-Wiener process. We assume the market to be arbitrage-free, which

implies that there exists a price of risk process λt such that α̃ − α = λtθ holds. For

the time being, we assume λt =: λ to be a constant. We apply Itô’s lemma to F i(t),

using equations (2.2) and (2.3), which leads to the following arbitrage-free dynamics

for log-futures price:

d
(
logF i(t)

)
= e−κ(Ti−t)

(
λθ − θ2

2
e−κ(Ti−t)

)
dt+ θe−κ(Ti−t)dW̃t. (2.4)

In the subsequent discussion, we shall assume that the parameters λ and θ are de-

pendent on the current regime, and regime switching is allowed over time. However,

the discussion on regime switching is postponed to section 3 and we will assume the

parameters to be constant for the purpose of this section.

For calibration and forecasting purposes of a multivariate time series of futures prices,

we use a moment-matching procedure to implement equation (2.4) in discrete time. We

suppose that observation times t1 ≤ t2 ≤ . . . ≤ tN are equally spaced and tk+1−tk =: ∆.

To write the dynamics of a vector of futures prices in a compact form, let vec{ai} de-

note a vector with ai at its ith element. Then, at time k, the arbitrage-free evolution

of the futures price vector of log-returns is given by

vec
{
yik
}

= vec
{
f ik
}

+ vec{qik}zk, (2.5)

where

f ik :=
λθ

κ
e−κ(Ti−tk)

(
1− e−κ∆

)
− θ2

4κ
e−2κ(Ti−tk)

(
1− e−2κ∆

)
, (2.6)

yik := log
F i(tk)

F i(tk−1)
, (2.7)

qik = θe−κ(Ti−tk)

√
1− e−2κ∆

2κ
(2.8)

and {zk} is a sequence of independent Gaussian random variables with zero mean and

unit variance. The above discrete-time implementation preserves the exact distribution
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of logF i(tk+1), conditional on Fk (i.e., information up to time tk). Hence, it is preferred

over more conventional Euler discretisation.

Although our formulation assumptions are similar to those in Manoliu and Tompaidis

in [20], our approach differs significantly. The work in [20] relies on modelling the

latent spot price evolution explicitly and then using Kalman filtering methodology to

extract this latent price. Single as well as multi-factor models are used in [20] and a

non-parametric seasonality adjustment is suggested for forecasting. In our case, the

spot price does not feature in the futures equation and is modelled only implicitly. We

incorporate regime switching to allow for factors such as seasonality and use a self-

calibrating filter which is adapted from Erlwein, et al. [15] for our particular model

structure. It will be demonstrated that a single-factor, two-regime model gives satis-

factory results for a chosen data set.

Our aim is to obtain estimates for the parameters λ, κ and θ along with the transition

probabilities if any of these parameters are governed by a discrete-time finite-state

Markov chain. We solve this problem in two steps:

1. Initial parameter estimation: In this step, we assume that the transition prob-

ability matrix is identity over the observed time series and identify the initial

parameter estimates for λ, κ and θ by maximising the likelihood of the observed

time series. Let these initial estimates be denoted by λ0, κ0 and subsection 2.3.1.

2. Update of parameters and transition probabilities using a self-calibrating filter:

To make the implementation tractable, we assign an appropriate fixed value for

κ and hence, κ is assumed to be independent of the Markov chain. The estimates

of λ and θ are updated using a self-calibrating filter. The implementation steps

for this filter are derived in subsection 2.3.2.

2.3 Filtering and model parameter estimation

2.3.1 Initial estimates of parameters

To find the initial estimates of parameters, we assume that the system is operating in

a single regime, i.e., the transition probability matrix for the Markov chain is identity.

Suppose that data on futures prices is available for times k = 1, 2, . . . , n, from which a

vector-valued time series of log returns, vec(yi1), vec(yi2), . . . vec(yin) can be constructed
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for i = 1, 2, . . . ,m.

In equation (2.5) the components f ik and qik are parametrised by θ, κ and λ. Since

we are assuming that zk are IID standard normal random variables, the likelihood

function of yik is given by

L
(
yik;λ, κ, θ

)
=

n∏
k=1

1√
2πqik

exp

(
−

(rik)
2

2(qik)
2

)
,

where

rik := yik − f ik. (2.9)

For each futures maturity Ti, we can therefore find estimates of the parameters λ, κ

and θ by maximising the likelihood of observations, i.e., by solving the non-convex

optimisation problem

min
λ,κ,θ>0

n∑
k=1

(
log qik +

(rik)
2

2(qik)
2

)
. (2.10)

To find a common set of parameters λ, κ and θ which maximise the likelihood of obser-

vations for all futures with all available maturities (T1, T2, · · · , Tm) simultaneously, one

may follow multi-objective optimisation approach and seek a set of parameters such

that likelihood for any Ti cannot be improved upon without decreasing the likelihood of

observations for a different Ti. As we are going to update the parameters using a self-

calibrating filter later, we reject this numerically involved approach. Instead, a simpler

approach is sought to obtain a set of parameters which minimise the sum of negative

log likelihood of observations for all futures, i.e. we solve the following optimisation

problem:

min
λ,κ,θ>0

m∑
i=1

n∑
k=1

(
log qik +

(rik)
2

2(qik)
2

)
. (2.11)

To obtain initial values, let {λ0, κ0, θ0} be any set of locally minimising arguments. In

the succeeding dynamic estimation, i.e., updating, we shall keep κ fixed and assume

that the remaining two parameters λ and θ depend on a finite-state Markov chain. The

estimation and update of the transition probabilities of this Markov chain and values

of other parameters corresponding to different states are discussed in the next section.

The arbitrage-free futures price dynamics structure is preserved under the Markov-

switching set-up because λ, being the price of risk, is dependent on f ik and qik as shown
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in equations (2.6) and (2.8). In Elliott et al. [10], for instance, a regime-switching

random Esscher transform is constructed, which is dependent on the time-varying drift

and volatility levels, to determine an equivalent martingale pricing measure.

2.3.2 Derivation of self-calibrating filter

We reformulate the problem in the standard form used in the literature on regime-

switching models; see, for example, Buffington and Elliott [3]; Elliott et al. ([10] and

[13]); Erlwein et al. ([14] and [15]), amongst others. Recall that the ith component of

the vector in equation (2.5) can be written as

yik+1 = f ik + qikzk+1. (2.12)

Let xk be a finite-state homogeneous Markov chain in discrete time, i.e., k = 0, 1, 2, . . . .

The semi-martingale representation of xk is given by

xk+1 = Πxk + εk+1, (2.13)

where Π is the transition probability matrix and εk+1 is martingale increment. Our

observation process is m−dimensional (one price observation for each maturity) and

the component i follows the dynamics given in (2.12). As mentioned earlier, zk are IID

random variables which are also independent from the Markov chain xk driving the

regime-switching dynamics of the mean and volatility parameters for each observation

component.

To simplify considerably the algebra involved in the filtering equations, we associate the

state space of xk with the canonical basis of IRN , which is the set of unit vectors er, r =

1, 2, . . . , N and er is a vector having 1 in its rth entry and 0 elsewhere. So in equation

(2.12), f i(xk) =
〈
f ik,xk

〉
and qi(xk) =

〈
qik,xk

〉
, where f ik = (f i1, f

i
2, . . . , f

i
N )> ∈ IRN

and qik = (qi1, q
i
2, . . . , q

i
N )> ∈ IRN . The notation 〈·, ·〉 is the usual scalar product and >

denotes the transpose of a vector.

To obtain the optimal estimates of xk using the observation process, we employ the

change of reference probability technique. In this technique, we perform the calculations

under P̃ measure whereby the observations yk’s are N(0, 1) IID sequence of random

variables, and yk is independent from xk. All components of the m−dimensional obser-

vation process have the same underlying Markov chain.
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The change of reference probability in our framework utilises a discrete-time version of

the Girsanov’s theorem. The real-world measure P , under which we observe our mea-

surements, can be recovered from P̃ through the construction of the Radon-Nikodym

derivative

Λk :=
dP

dP̃

∣∣∣∣
Fk

=
m∏
i=1

k∏
l=1

λil, k ≥ 1,

where

Λ0 = 1 and λil =
φ[qi(xl−1)−1(yil − f i(xl−1))]

qi(xl−1)φ(yil)

with φ being the N(0, 1) density. All parameters are dependent on the same Markov

chain and react to the same underlying price information. In some sense, the com-

ponents are correlated through the Markov chain. Whilst the noise terms for the

individual components are uncorrelated, the correlation structure of the futures prices

are encapsulated in each noise. This simplification is made to make the model tractable.

We present the filter equations under a multivariate setting. Our goal is to provide

adaptive filters for the estimates of the states and other auxiliary processes related to

the Markov chain. Let F
y
k be the filtration generated by the log-returns process yk. To

find the conditional distribution of xk given Fk under P , we write

p̂ik := P (xk = er|Fyk) = E[〈xk, er〉 |Fyk],

where p̂k = (p̂1
k, p̂

2
k, . . . , p̂

N
k )> ∈ IRN . Now,

p̂k = E[xk|Fyk] =
Ẽ[Λkxk|Fyk]

Ẽ[Λk|Fyk]

by the Bayes’ theorem for conditional expectation. Let ck = Ẽ[Λkxk|Fyk] and note that
N∑
r=1

〈xk, er〉 = 1. Thus,

N∑
r=1

〈ck, er〉 =
N∑
r=1

〈
Ẽ[Λkxk|Fyk], er

〉
= Ẽ

[
Λk

N∑
r=1

〈xk, er〉

∣∣∣∣∣Fyk
]

= Ẽ[Λk|Fyk]. (2.14)
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The construction of ck along with equation (5.6) yields

p̂k =
ck∑N

r=1 〈ck, er〉
.

Write Ĝk := E[G|Fyk] for any F
y
k−adapted process Gk. We denote the conditional

expectation under P̃ of ΛkGk by γk(Gk) := Ẽ[ΛkGk|Fyk]. The adaptive filters will en-

able the model parameters to adjust to current market conditions. We give the recursive

filters for: (i) (Jsrx)k, the process related to the Markov chain’s jumps up to time k;

(ii) (Orx)k, the process related to Markov chain’s occupation time; and (iii) (T r(g)x)k,

an auxiliary process related to x and for some function g.

The results for the recursive filters, which are modifications of those given in Erlwein

et al. [15] when there is only one uniform source of noise for each component of the

observation vector, are presented in the Appendix.

The Expectation-Maximisation (EM) algorithm is applied to calculate the optimal

estimates of the model parameters. Such calculations result to expressions that involve

the use of adaptive filters related to the Markov chain process provided in Proposition

1. Given the recursive filters in equations (2.16), (5.11), (5.12) and (5.13), the model

parameters are updated every time new information arrives. Proposition 2 in the Ap-

pendix, whose proof is described in Erlwein et al. [15], gives the optimal parameter

estimates computed using the EM algorithm in terms of the filters.

In subsection 2.4.1, we discuss the updating of λ (as f is affine in λ) and then use

the nonlinear relationship between the parameters to arrive at an updated value of θ.

It has to be noted that we fix κ, update λ, after which update θ given an estimate of

f i, i.e., the updates do satisfy constraints (at least approximately). The constraint, in

fact, is our route to updating θ as there is no direct means to update it.

2.4 Numerical implementation

We illustrate our method by applying it to the dataset of daily log-returns series of

heat oil future contracts compiled by Data Stream. The data were recorded from 19

June 2009 to 17 August 2011 with ten maturity dates. These maturity dates, denoted
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T=29/07/11 T=30/06/11 T= 31/05/11 T=29/04/11 T=31/03/11

Minimum -0.0369 -0.0372 -0.03739 -0.03721 -0.0369

Maximum 0.0474 0.0478 0.0481 0.04812 0.0480

Median 0.0001 0.0001 0.0001 0.0000 0.0000

Mode 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0003 0.0003 0.0003 0.0003 0.0003

Std Dev 0.0146 0.0147 0.0149 0.0150 0.0150

Skewness -0.0360 -0.0342 -0.0312 -0.0252 -0.0219

Kurtosis 0.0054 -0.0023 -0.0116 -0.0190 -0.0329

T=28/02/11 T=31/01/11 T=31/12/10 T=30/11/10 T=29/10/10

Minimum -0.0366 -0.0369 -0.0372 -0.0379 -0.0384

Maximum 0.0477 0.0479 0.0481 0.0486 0.0490

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mode 0.000 0.000 0.0000 0.0000 0.0000

Mean 0.0003 0.0003 0.0002 0.0002 0.0003

Std Dev 0.0151 0.0152 0.0154 0.0157 0.0160

Skewness -0.0238 -0.0254 -0.0242 -0.0240 -0.0240

Kurtosis -0.0479 -0.0579 -0.0745 -0.0899 -0.1089

Table 2.1: Descriptive statistics for the log-returns of futures price for the entire dataset

by Ti, i = 1, . . . , 10, are the last trading days of the month from 29 October 2010

to 29 July 2011. Table 2.1 show the descriptive statistics of the entire futures prices

data given their maturities. In Tables 2.2 and 2.3, the descriptive statistics for the

log-returns of futures price for the respective periods of 29/06/2009–14/07/2009 and

15/07/2009–24/07/2009 are shown. The suitability of the regime-switching model is

clearly demonstrated by Tables 2.2 and 2.3, where the sample moments are statistically

different for the two non-overlapping periods.

Indeed, the log-returns of our multivariate data undergo regime changes in mean and

volatility levels. To model such regime-switching behaviour, we assume that for every

maturity date, log-return’s mean f and volatility q, the daily price process F i(tk) is of

the form

yik+1 = ln
F i(tk)

F i(tk−1)
= f(xk) + q(xk)zk+1

corresponding to each maturity date Ti.
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T=29/07/11 T=30/06/11 T= 31/05/11 T=29/04/11 T=31/03/11

Minimum -0.0268 -0.0273 -0.0278 -0.0283 -0.02870

Maximum 0.0070 0.0071 0.0072 0.0072 0.0069

Median -0.0086 -0.0087 -0.0088 -0.0088 -0.0092

Mean -0.0104 -0.0106 -0.0107 -0.0108 -0.0110

Std Dev 0.0106 0.0108 0.0109 0.0110 0.0111

Skewness -0.0353 -0.0481 -0.0518 -0.0694 -0.0960

Kurtosis -0.8898 -0.8852 -0.8639 -0.8379 -0.8404

T=28/02/11 T=31/01/11 T=31/12/10 T=30/11/10 T=29/10/10

Minimum -0.0292 -0.0297 -0.0304 -0.0314 -0.0324

Maximum 0.0066 0.0064 0.0062 0.0057 0.0055

Median -0.0096 -0.0101 -0.0104 -0.0108 -0.0109

Mean -0.0112 -0.0114 -0.0116 -0.0119 -0.0122

Std Dev 0.0111 0.0113 0.0114 0.0116 0.0119

Skewness -0.1342 -0.1574 -0.1832 -0.2347 -0.2802

Kurtosis -0.8255 -0.8300 -0.8142 -0.7892 -0.7674

Table 2.2: Descriptive statistics for the log-returns of futures price for the period

29/06/2009–14/07/2009
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T=29/07/11 T=30/06/11 T= 31/05/11 T=29/04/11 T=31/03/11

Minimum 0.0009 0.0009 0.0009 0.0009 0.0009

Maximum 0.0265 0.0268 0.0270 0.0271 0.0271

Median 0.0114 0.0115 0.0116 0.0117 0.0117

Mean 0.0128 0.0130 0.0132 0.0132 0.0132

Std Dev 0.0091 0.0091 0.0093 0.0094 0.0093

Skewness 0.0293 0.0352 0.0396 0.0390 0.0389

Kurtosis -1.3725 -1.3875 -1.4187 -1.4349 -1.4351

T=28/02/11 T=31/01/11 T=31/12/10 T=30/11/10 T=29/10/10

Minimum 0.0009 0.0009 0.0009 0.0009 0.0009

Maximum 0.0270 0.0270 0.0272 0.0275 0.0276

Median 0.0116 0.0116 0.0117 0.0118 0.0120

Mean 0.0132 0.0132 0.0133 0.0135 0.0136

Std Dev 0.0093 0.0093 0.0094 0.0095 0.0096

Skewness 0.0385 0.0387 0.0291 0.0289 0.0226

Kurtosis -1.4360 -1.4355 -1.4264 -1.4420 -1.4953

Table 2.3: Descriptive statistics for the log-returns of futures price for the period

15/07/2009–24/07/2009
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2.4.1 Computing initial parameter estimates

As mentioned in subsection 4.3.1, we first assume that the system operates under a

one-regime setting. This allows us to find starting values λ0, κ0 and θ0. To simplify

the implementation, we assume that κ is constant. Thus, using κ(t) = κ0 for all

time t > 0, the evolution of the process λt is derived under the multi-regime modelling

set-up. This would in turn update θt given an estimate of f i as shown in equation (2.6).

Whilst we made the assumption that κ is constant to achieve simplicity in the im-

plementation, such assumption is actually justified empirically. That is, κ appears not

to depend on a Markov chain and remains constant through time for any quantity of

regimes. We found that if the size of the data used to estimate the initial parameters is

varied, both λ0 and θ0 change but κ appears stable. As it is computationally intensive

to calculate starting values of λ, κ, θ for various combinations of window sizes for our

dataset, we randomly select a few sub-dataset samples from the original data and then

use these samples to estimate initial values. The processing of data via a moving lag

window is discussed in subsection 2.4.2. Our numerical results show that there is not

much perturbation in the estimated κ values. This indeed supports the assumption

that κ can be taken as constant; see Table 2.4.

Following the calculation of the initial parameters of the model outlined in subsec-

tion 2.3.1, we first solve the minimisation problem in (2.11) using a standard function

fminsearch in MATLAB. The built-in algorithm in fminsearch is quite fast, but it pro-

vides arguments which minimise the function in (2.11) only locally. Since this function

exhibits fluctuating behaviour, we have to deal with many local extreme points. This

implies that one has to search for a global minimum at least within a reasonably big

subset of IR3. We observed that the function fminsearch always finds an extreme point

which is closest to the initial value supplied. A subset of IR3 for the space of the initial

values is therefore considered and a minimum point in that space is determined. The

results of our estimations for five sub-dataset samples are displayed in Table 2.4 and

again, it is clear that the assumption of a constant κ is reasonable. In our HMM fil-

tering implementation, we set κ = 0.00057, being the average of the calculated initial

values for κ0. It has to be noted that the parameter θ does not vary a lot either.

This fact provides additional support for the validity of the model and accuracy of the

filtering algorithms. As one will see in subsection 2.4.2, the values of qik do not change
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λ0 κ0 θ0

0.0618 5.832× 10−4 0.0140

0.0166 5.458× 10−4 0.0161

0.0528 5.411× 10−4 0.0153

0.0248 5.594× 10−4 0.0149

0.0343 5.693× 10−4 0.0165

Table 2.4: Estimation of initial values of κ, λ and θ for five sub-dataset samples

significantly after only several iterations. This is consistent with equation (2.8) since

an estimate of qik gives an update of θ.

2.4.2 Implementation of self-calibrating filter

The HMM filtering algorithms were implemented with a moving lag window of vari-

ous time steps to obtain estimated values for f i and qi. That is, we experimented to

process data points in batches of 1-5 data points per batch for each algorithm step. In

particular, we apply the recursive filtering equations in Proposition 1 in processing a

batch of data points. Consequently, this gives estimates of the filters for various quan-

tities related to the Markov chain that are used to provide EM estimates for model

parameters in accordance with Proposition 2. The two-step process of calculating the

filters and computing EM estimates constitutes the completion of one algorithm step.

The two-step process is then repeated for the next moving lag window of data points.

The final filtered values in the previous algorithm step are employed as initial values

for the filtering equations in the succeeding algorithm step.

Each moving lag window for our filtering is assessed on the basis of goodness-of-fit

metric, which is the root mean square error (RMSE). The model corresponding to a

given number of regimes and moving lag window with the lowest RMSE is deemed

as the most appropriate for the dataset. The results of our RMSE computations are

summarised in Tables 2.5 and 2.6 for the one-regime and two-regime settings, respec-

tively. The starting values of q are uniform for all regimes as these do not affect the

convergence of the filtering algorithms.

Given any number of regimes, a pattern emerges from Tables 2.5-2.6 in that the best
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Window size Num. of regimes St. value of f St. value of q RMSE

1 1 0.0000 0.02 0.312131

2 1 0.0000 0.02 0.250943

3 1 0.0000 0.02 0.342138

4 1 0.0000 0.02 0.341751

5 1 0.0000 0.02 0.350081

1 1 -0.0001 0.04 0.156124

2 1 -0.0001 0.04 0.143903

3 1 -0.0001 0.04 0.120332

4 1 -0.0001 0.04 0.110002

5 1 -0.0001 0.04 0.123421

Table 2.5: RMSE results given number of regimes, size of filtering window and starting

values model parameters under a one-state setting

Window size Num. of regimes St. value of fi St. value of σi RMSE

1 2 [-0.01 +0.01] 0.02 0.155199

2 2 [-0.01 +0.01] 0.02 0.105657

3 2 [-0.01 +0.01] 0.02 0.115599

4 2 [-0.01 +0.01] 0.02 0.091993

5 2 [-0.01 +0.01] 0.02 0.127700

4 2 [-0.01 +0.01] 0.03 0.090471

4 2 [-0.02 +0.02] 0.04 0.084289

4 2 [-0.05 +0.05] 0.08 0.121808

4 2 [-0.03 +0.03] 0.04 0.101739

4 3 [-0.02 0 +0.02] 0.02 0.089001

4 3 [-0.03 0 +0.03] 0.04 0.132655

Table 2.6: RMSE results given number of regimes, size of filtering window and starting

values model parameters under a two-state and three-state settings
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No. of regimes N Likelihood value L No. of parameters d BIC

1 9278.33 2 9270.15

2 9691.38 6 9666.86

3 9700.23 8 9663.45

Table 2.7: Likelihood-based model selection analysis

RMSE value is for a window of size four. For any starting value of f i and qi, we observe

erratic trends of the transition probability matrix. In some instances, it has constant

zeros and ones especially for models with low number of states. But starting values for

parameters f and q can be chosen randomly. The only restriction for the initial values

is to obtain convergence in the first iteration of the filtering algorithm. These starting

values for f i and qi cannot be either too small or too large. Working with simulated

data, we also found that that algorithm converges faster to the “true” values provided

the number of regimes is chosen correctly. In our case, the numerical implementation

of filters under the two-regime model yields the most stable parameter estimates.

2.4.3 Discussion of numerical results

The initial parameters were estimated using random subsets of the whole data focus-

ing on the first 6 months. The HMM filtering algorithms were implemented to the

remaining datasets with a moving window of four time steps to obtain estimated val-

ues of f i and qi for one-, two- and three-regime models. The evolution of transition

probabilities is depicted in Figure 2.1. The plots of f and q in Figure 2.2 behave as

expected. Considering that the data corresponds to the period when the economy was

slowly recovering from the subprime financial crisis, we observed as anticipated, slowly

decaying values of mean levels and constant behaviour after that period. A similar

pattern for volatilities is obtained and there is a relatively big uncertainty at earlier

periods but they leveled off not too long after a certain point. From the graph of f

(Figure 2.2a) under one-regime framework, it is noticeable that the “true” values of f is

are always underestimated.

To evaluate the statistical significance of the RMSE values, we perform an F test. The

estimated value of the F statistic for the comparison of RMSEs between one- and two-

regime models is higher than the quantile value of the F distribution based on a 95%
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confidence level where the p-value is 3.91 × 10−7. For the comparison of RMSEs be-

tween two- and three-regime models, the p-value is 3.57× 10−11. Hence, there is merit

in using a regime-switching framework. Considering that a two-state setting produces

the best RMSE in Table 2.6, we conclude that the two-state Markov switching model

is the most appropriate for our data.

This is further backed up by a likelihood-based selection criterion. The popular crite-

rion for model selection is the Akaike information criterion (AIC). However, it is argued

in Schwartz [23] that AIC may underestimate the optimal number of parameters, and

thus, the Bayesian information criterion (BIC) is proposed as a robust alternative. The

BIC metric is given

BIC = lnL− 1

2
d ln b,

where L is the likelihood function, d is the number of parameters in a model and b is

the number of datapoints, respectively. The main idea is to choose the model with the

highest BIC value. From Table 3.30, the BIC analysis indicates that the three-regime

model is marginally better than the two-regime model. However, we maintain that the

decision to choose a three-regime model does not outweigh the burden of model and

computational complexity.

Figure 2.1: Evolution of transition probabilities
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(a) Dynamics of f i levels

(b) Dynamics of qi levels

Figure 2.2: Parameter estimates using data prices of futures contracts with expiry

29/07/2011
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The proposed model in this research is estimated by the maximum likelihood method.

Hence, it appears that a likelihood ratio test (LRT) would be more appropriate in the

comparison of embedded models, i.e., a lower dimensional model (say 2 regimes) is

a restricted version of the higher dimensional model (say 3 regimes). However, it is

noted in Hardy [17] that the likelihood ratio test is not a valid test for the number

of regimes in a regime-switching model. In particular, there are theoretical problems

concerning the consistency of the estimator (i.e., asymptotic level of the test) since the

regularity conditions are not satisfied under the null hypothesis; thus, the chi-square

theory underpinning the LRT does not apply, see Gassiat and Keribin [16]. This is

further substantiated in Chen et al. [4] and [5], where it is explicitly stated that the

required LRT’s regularity conditions are not fulfilled under mixture problem. In fact, it

is also asserted in Chen and Kalbfleish [6] that the asymptotic properties of likelihood

ratio statistics for testing the number of subpopulations are complicated and difficult to

establish. So, whilst there are modified LRTs tailored to regime-switching models, their

implementation is quite involved and we opted to keep the model selection assessment

simple by adhering to the BIC-based evaluation.

Finally, as can be seen from equation (2.6), the evolution of the market price of risk

λ through time and maturity can be inferred and constructed once the estimates of

other parameters are fully determined. Our numerical implementation with the use of

the HMM filtering techniques and estimation of initial parameter values produce the λ

dynamics given in Figure 2.4.

2.4.4 Prediction performance

The futures prices are treated as a 10-dimensional observation process. From equation

(2.12), we have the dynamics of the vector process of price returns yik = ln F i(tk)
F i(tk−1)

i = 1, 2, . . . , 10. Therefore, the one-step ahead forecasts for F itk+1
is obtained through

the forecast equation

E[F itk+1
|Ftik ] = F itk

N∑
j=1

〈x̂k, ei〉exp

(
fj +

q2
j

2

)
, (2.15)

where x̂k is the estimate for the unconditional distribution of the Markov chain. We

utilise the estimates of f itk and qitk to get one-step ahead forecasts for F itk+1
. The results

are shown in Figure 5a. To complement the RMSE metrics in Tables 2.5 and 2.6, the

criteria in Hyndman and Koehler [19] in assessing the goodness of fit of the one-step
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Model setting MAPE MdAPE MdRAE

One-state model 0.02769 0.02090 1.18122

Two-state model 0.02395 0.01964 0.88347

Three-state model 0.02590 0.01921 0.94448

Table 2.8: Further error analysis

ahead forecasts are adopted. The mean absolute percentage error (MAPE), median

absolute percentage error (MdAPE) and median relative absolute error (MdAPE), for

the 1-, 2- and 3-state HMM-based models are evaluated. The models are compared

using these three criteria. The results of this error analysis are presented in Table 2.8.

The two-state model outperforms both the one-state and three-state models under the

MAPE and MdRAE. The three-state model outperforms the two-state model under

the MdAPE albeit the improvement is minimal.

Figure 2.5a displays the plots of the actual and one-step ahead predictions. A Q-Q plot

depicted in Figure 2.5b strongly supports the initial assumption of using Brownian

motion as a source of uncertainty in the model. From the plot of residuals against

time shown in Figure 2.6a as well as Figure 2.6b, it is apparent that the assumption

of constant variance is very reasonable. Whilst we would not generally expect this

behaviour, one can see that from our dataset the variance does not change much for all

regimes; see Figure 2.2b.
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(a) Residuals

(b) Squared residuals

Figure 2.6: Residual analysis supporting the one-step ahead forecasting
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2.5 Conclusion

In this work, we performed an integration of various modelling ideas to model the

evolution of arbitrage-free futures prices. In particular, the initialised one-state model

gives poor prediction, whilst the use of a multi-state regime switching model will ne-

cessitate finding the rate of mean reversion κ using a mechanism other than direct self

calibration. A calibration of a multiple regime model with a good prediction perfor-

mance is possible only through a combination of the two calibration methodologies as

elaborated in subsections 2.3.1 and 2.3.2. We provided an approach and algorithms

capable of providing parameter estimates for an arbitrage-free commodity futures price

model. Given a data set of futures prices, the recovery of parameter estimates is carried

out under the assumption that parameters shift dynamically according to the state of

the economy modulated by a hidden Markov chain.

To illustrate the numerical feasibility of our approach, we focused on two- and three-

regime switching modelling frameworks. We detailed the solution of determining ap-

propriate initial parameter values by considering an approximation to a non-convex

optimisation problem. Assumptions on the model parameters are verified empirically.

Self-calibrating HMM filtering algorithms are then able to produce dynamic param-

eter estimates reflecting the switching of economic regimes. The performance of the

model is deemed adequate based on the analysis of one-step ahead forecasts and the

accompanying post-model diagnostics. We benchmarked our results with those from

the one-state setting and both the goodness-of-fit and information criterion metrics val-

idate the merits of using a model with regime-switching feature. Although the focus of

our application is on daily data, we experimented as well on weekly data (say, Wednes-

day’s prices). The parameter estimates as expected would change but the trends of the

volatilities and drifts as depicted by their graphs remain the same. The plots of the

transition probabilities have similar decaying behaviour as in Figure 2.1. Nevertheless,

their evolution through algorithm steps is different. We observed that the near terminal

probability values would still approach the 0.6 and 0.4 limits.

The relationship of this research with the existing recent works on modelling com-

modity futures price under some model characteristics is summarised in Table 2.9.

Note that our method may also be employed for modelling the futures price evolution
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Paper RS∗∗∗? Mean-reversion? SP∗∗∗∗ observed? FP∗∗∗∗∗∗ observed?

[11] No No∗ Yes Yes

[14] Yes Yes Yes No

[20] No Yes No∗∗ Yes

This chapter Yes Yes No∗∗ Yes

∗–uses geometric Brownian motion for spot price
∗∗–can include spot price as a zero-maturity futures price in both cases
∗∗∗–regime switching
∗∗∗∗–spot price
∗∗∗∗∗–forward price

Table 2.9: Comparison of this research with recent existing works

of other commodities such metals, agricultural products and raw materials. The pro-

posed model is shown to be very parsimonious, with a two-regime one-factor model,

which provides adequate performance in one step ahead out-of-sample forecasting on

10 measurement variables, having only 6 free parameters and no non-parametric sea-

sonality adjustments. The algorithms proposed in this research project provides a very

useful alternative to the existing methods of futures price modelling and forecasting.

Accurate forecasting commodity futures prices has important implications in various

financial modelling applications such as the pricing of commodity spread options and

calculation of quantile risk measures of commodity futures portfolios.
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2.7 Appendix

Recursive filters and EM updates

Proposition 1: Define the diagonal matrix B whose Bij entry is given by

Bij =


m∏
i=1

φ

(
yhk+1−f

h
i

qhi

)
qhi φ(yhk+1)

for i = j

0 otherwise

.

Then

ck+1 = ΠBck, (2.16)
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and

γ
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)
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g(yil)Πer,

(2.19)

where g(yil) = yil or
(
yil
)2
.

Proposition 2: Consider a multivariate dataset yi1, y
i
2, . . . , y

i
k, 1 ≤ i ≤ m observed up

to time k. If the set of parameters
{
π̂sr, f̂

i
r, q̂

i
r

}
characterises the model then the EM

estimates are given by

π̂sr =
γ
(
J (sr)

)
k

γ
(
O(r)

)
k

(2.20)

f̂ ir =
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)
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. (2.22)
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(a) Dynamics of f

(b) Dynamics of q

Figure 2.3: Parameter estimates using data prices of futures contracts with expiry

29/07/2011 under a one-regime Markov chain
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(a)

(b)

Figure 2.4: Dynamics of λt process under a 2-state setting corresponding to regime 1 in

(a) and regime 2 in (b)
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(a) One-step predictions

(b) Q-Q plot

Figure 2.5: One-step ahead forecasts and normal analysis of residuals
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3

Filtering of an HMM-driven

multivariate Ornstein-Uhlenbeck

model with application to

forecasting market liquidity

3.1 Introduction

The sale of an asset always has, to a greater or lesser degree, an effect on the mar-

ket. A business’s capacity to own sufficient liquid assets for the purpose of meeting

its financial obligations is termed its liquidity. If an asset is able to be sold without

producing drastic movements in its price and so with minimum loss of value is said to

be liquid. Cash and cashable instruments are examples of liquid assets that can be used

to meet immediate financial needs. Although currencies are liquid assets, even major

currencies can at times suffer from severe illiquidity when they must be exchanged in

the foreign exchange market. The US dollar and US dollar-linked assets, for instance,

could experience market illiquidity if countries holding trillions of dollars of US bonds

start dumping US dollar bonds.

The importance of dealing with liquidity problems is motivated by recent develop-

ments based on Basel III, which the US Federal Reserve uses as a liquidity requirement

guideline for financial institutions. Basel III directives also require the diversification of

counterparty risk and stress testing that could identify unusual market liquidity condi-
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tions. The goal of regulation is to prevent investments that are particularly susceptible

to sudden liquidity shifts.

In 2007, the world was deemed to have experienced the worst financial crisis since

the 1930s. This crisis originated in the United States and spread across the global

financial markets within less than a year. Some big financial organisations and banks

declared bankruptcy. The downfall of Lehman Brothers was the most calamitous high-

profile default of this crisis; see Gorton [19]. Whilst many financial market events in

2007-2008 were considered to be a direct consequence of improper credit risk manage-

ment, it is also believed that the main trigger of economic turmoil was the inability to

predict liquidity in the markets. In 2008, AIG had a huge portfolio of CDS and CDO

that was originally rated AAA but backed by subprime loans. As a result of financial

instability, the AIG products were downgraded and the company had to post addi-

tional collateral for its positions. These events are believed to be the main trigger of

the liquidity crisis that began in September 2008, essentially bringing AIG to a level of

bankruptcy but eventually bailed out by the US government. It is widely well-accepted

that, ironically, efforts to mitigate credit/counterpaty risk could create additional illiq-

uidity, which on its own causes instability in the financial industry. In this chapter,

we propose a method of quantifying and forecasting illiquidity in the financial market.

As financial turbulence cannot be avoided, warning systems that aid the prediction of

economic crunches are necessary to prepare market participants to deal with future

instability.

As pointed out in Goyenko [20], research on liquidity risk could be traced to two

sources, namely, market liquidity and funding liquidity. Although both market and

funding liquidity risks reinforced each other mutually, their mechanisms have different

drivers (cf. Brunnermeier and Pedersen [5]). Chordia, et al. [8] argued that mar-

ket liquidity, which refers to the easiness of trading, is asset-specific and influenced

by variables that are market-wide and firm-specific. On the other hand, as asserted

in [5], funding liquidity is agent-specific; this could depend overall on the borrowing

constraints of dealers, hedge funds, investment banks and the availability of arbitrage

capital. We wish to clarify that in this work, we develop an approach that examine

several underlying mechanisms that drive both types of illiquidity.

It is set forth in [20] and the references therein that the T-bill–Eurodollar (TED)
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and volatility index (VIX) are commonly used indicators of funding liquidity. Both

indicators are further eleborated below, but it is worth noting that they are known not

to be significantly impacted by stock (market) illiquidity. For this reason, a market

liquidity metric based on bid and ask prices of stocks, as detailed below, is employed

as another indicator.

It is documented in Boudt et al. [4] that the TED spread could also be considered

a major indicator of market stability. The TED spread is calculated as the difference

between the interest rate linked to interbank loans and the yield on short-term US T-

bills. Currently, its computation makes use of the three-month London Interbank Offer

Rate (LIBOR) and the three-month T-bill yield rates. An increasing TED spread usu-

ally portends a stock market meltdown as it is taken as a sign of liquidity withdrawal.

The TED spread, as described in Boudt et al. [4], can gauge perceived liquidity risk

in the general economy since T-bills are risk-free instruments and the funding liquidity

risk of lending to commercial banks is encapsulated by LIBOR. A rising TED spread

indicates that lenders view the default counterparty risk to be rising as well. Thus,

lenders either require a higher rate of interest or settle for lower returns on safer instru-

ments such as T-bills. Conversely, when the default risk of banks decreases, the TED

spread falls; see Krugman [22].

We aim to use hidden Markov models (HMMs) driving a mean-reverting process in the

analysis of the joint movements of important economic indicators to forecast liquidity

and illiquidity states of the financial market. In this chapter, we utilise observed TED

spread data as market signals and filter out the state of the economy and subsequently

liquidity levels. Filtering results could be useful in assessing near-future market stabil-

ity. The proposed idea is very similar to that of Abiad [1] wherein a regime-switching

approach is used as an early warning device in identifying and characterising periods of

currency crises. It must be recognised, however, that a noticeable TED spread move-

ment cannot be taken as a pure indication of extreme illiquidity/market downturns

caused by severe illiquidity. Whilst fluctuations in the TED spread may happen due

to some significant underlying factors, these fluctuations are sometimes caused by pure

noise alone. In the late 1990s, with the world battling the dot-com bubble and other fi-

nancial upheavals, more instability and uncertainty in the behaviour of the TED spread

was observed.
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The second indicator for liquidity levels that we consider is the VIX. This is a trade-

marked ticker symbol for the Chicago Board Options Exchange (CBOE)’s market

volatility index and measures the implied volatility of S&P 500 index options

(www.cboe.com/micro/VIX). Using historical data, VIX appears to capture some pe-

riods of illiquidity that were not picked up by the TED spread. The third indicator

we consider is a metric based on the evolution of the S&P 500. At the end of October

2012, market illiquidity was felt to be brought about by cautious trading as specu-

lators and traders’ anxiously anticipated the result of the US presidential election.

This illiquidity was captured by an S&P 500-based bid-ask spread metric but not by

the TED spread. This fact can be explained by the absence of direct causation effect

between the proposed metric and the TED spread. For this reason, for a reasonably ad-

equate study modelling liquidity can be accomplished by investigating the TED spread

dynamics along with other indicators such as the VIX and an S&P 500-driven measure.

There have been many attempts to model and explain illiquidity such as those put

forward in van der End and Tabbae [27]; Mancini et al. [23]; and Vayanos et al.[28],

amongst others. Whilst these proposed modelling approaches include Monte Carlo

simulations to demonstrate their implementability, they are nonetheless built on sim-

ple assumptions for tractability and do not offer the capacity for dynamic calibration

using market data. This leaves a huge gap between model implementation which unifies

theoretical approaches and real data. In this work, we attempt to address this gap by

explaining how to fit the model with the data. With the aid of filtered estimates, we

provide a description of the data dynamics with emphasis on the effect of illiquidity

shocks.

In forecasting illiquidity, we use a discrete-time Markov chain assumed to modulate

the parameters of a mean-reverting process so that several economic regimes can be

embedded into the model. As mentioned in Brunnermeier [5], the economy has a liquid-

ity “self-stabilising effect”, which is either a “loss” or a “margin” type; see Brunnermeier

and Pedersen [6] for additional discussion. It is, therefore, reasonable to look at the

Ornstein-Uhlenbeck (OU) process as a simple model for the TED spread and thus liq-

uidity level in general, as self stabilising and the mean-reverting properties of a process

are closely linked. More specifically, a market downturn with a falling spiral effect

could elicit a fire sale amongst borrowers, which in turn decreases prices and further

worsen funding conditions. Such downturn effects could be associated with episodes of
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deflation and periods of poor economic growth. This is based on the assumption that

instances of a fall in the general price level (e.g., CPI, GNP deflator) roughly coincide

with market pull backs in lending due to tighter borrowing constraints. As such, the

evolution of indicators for these observed economic events can be captured by an OU

process that exhibits temporary low and high value levels.

Goyenko [20] showed a strong correlation between TED and VIX as major indicators in

illiquidity estimation; in the same paper, a measure for the evaluation of stock illiquidity

was also presented using market bid and ask prices. Whilst it could be avouched that

a high degree of correlation between indicators is suggestive of their dependency on a

common underlying factor, the correct and ease of identification of such an underlying

factor, if it exists at all, remains elusive. Our work is based on similar assumptions in

[20], but instead of finding correlation between the major indicators of illiquidity, we

incorporate as much information as possible into our model by simultaneously using

three market variables integrated by a set of multidimensional dynamic filters. For

stock illiquidity, the S&P 500-based spread is used. The main consideration of this

paper is the prediction of illiquidity level based on previous information contained in a

joint time series of indicators. The dynamic filtering algorithm’s structure enables the

finding of expected state probability of the illiquidity level at the next time steps.

Our main contribution is the development of an HMM-driven model tailored for cap-

turing and predicting liquidity risk levels. The model’s fit and forecasting power are ex-

amined using historical data series. Detailed empirical implementation procedures are

provided along with the discussion of various aspects concerning model validation and

other post-diagnostic modelling considerations. Our numerical results demonstrate that

the proposed model has satisfactory capacity in identifying periods of liquidity crises.

This modelling tool shows promise in aiding the prediction of economic crunches oc-

curring over a short-time horizon.

The chapter is organised in the following way. Section 3.2 gives an overview of the

modelling set up including the HMM formulation and introduction of the change of

measure concept for the filtering technique. A description of the mathematical filtering

equations is also presented. We specify in section 3.3 the data used for the numerical

estimation and prediction experiments. The process of recursive parameter calcula-
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tion together with the discussion of the econometric interpretation of the dynamics of

estimates are delineated in section 3.4. Finally, section 3.5 concludes.

3.2 Modelling setup

An Ornstein-Uhlenbeck (OU) process rt is any process that satisfies the stochastic

differential equation (SDE)

drt = θ(µ− rt)dt+ σdWt, (3.1)

where Wt is a standard Brownian motion defined on some probability space (Ω,F, P ),

and θ, µ and σ are positive constants. The parameter µ is the mean level to which the

process tends to move to over time, whilst θ is the speed of mean reversion, and σ is

the volatility. Assuming that θ, µ and σ are constants, the solution of (4.1) by Itō’s

lemma is given by

rt = r0e
−θt + (1− e−θt)µ+ σe−θt

∫ t

0
eθsdWs, (3.2)

where r0 is the initial value at time t = 0.

In the sequel, it is assumed that θ, µ and σ will be time-dependent; hence, we respec-

tively denote them by θt, µt and σt. To capture the switching of economic regimes, we

also assume that the values of parameters θt, µt and σt are modulated by a discrete-time

Markov chain with a finite-state space. We regard the state of the underlying Markov

chain as the regime of an economy, or more specifically a liquidity regime dependent

on major factors causing economic turbulence. In particular, the scenario when µt and

σt are in the “worst” regime (i.e., very high µt and σt) corresponds to very unstable

periods of the global financial crisis; in this instance, µt reaches a high value with σt

considerably spiking up creating a completely unstable behaviour for θt.

A distinct contribution of this work is the detailed implementation of parameter esti-

mation under a multivariate OU setting which extends the one-dimensional framework

of Erlwein and Mamon [16]. We consider d OU processes; each process is denoted by

r
(g)
t with component g ∈ {1, , . . . , d}. All vectors and matrices are written in bold

lowercase and uppercase letters, respectively. Following the idea developed by Elliott
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et al. [13] let us assume that (Ω,F, P ) is a probability space under which xk is a ho-

mogeneous Markov chain with a finite-state space in discrete time. Thus, xk evolves

according to the equation

xk+1 = Πxk + vk+1, (3.3)

where Π is a transition matrix and vk+1 is a martingale increment, i.e., E[vk+1|Fk] = 0,

where Ck = Fk ∨ Rk. Here, Fk = σ{x0,x1, ...,xk} is the filtration generated by

x0,x1, ...,xk and Rk is the filtration generated by the {rk} process.

With the closed-form solution in (3.2), each component of the d-dimensional obser-

vation process can be written as

r
(g)
k+1 = r

(g)
k e−θ

(g)(xk)∆t + (1− e−θ(g)(xk)∆t)µ(g)(xk)

+σ(g)(xk)e
−θ(g)(xk)∆t

∫ tk+1

tk

eθ
(g)(xk)sdWs, (3.4)

where µ(g) = (µ
(g)
1 , µ

(g)
2 , ..., µ

(g)
N )>,σ(g) = (σ

(g)
1 , σ

(g)
2 , ..., σ

(g)
N )>,θ(g) = (θ

(g)
1 , θ

(g)
2 , ..., θ

(g)
N )> ∈

IRN and ∆t = tk+1 − tk. For ease of calculation, the state space of xk is associated

with the canonical basis of IRN , which is the set of unit vectors eh in which eh is a

vector having 1 in its hth entry and 0 elsewhere, h = 1, 2, . . . , N. So in equation (3.4),

µ(g)(xk) = 〈µ(g)
k ,xk〉, θ(g)(xk) = 〈θ(g)

k ,xk〉 and σ(g)(xk) = 〈σ(g)
k ,xk〉, where 〈·, ·〉 is the

usual scalar product and > denotes the transpose of a vector.

If xk is constant on a small time interval ∆t then using the property of a Gaussian

distribution and the Itô isometry, the variance of r
(g)
k+1 in (3.4) is∫ tk+1

tk

e2θ(g)(xk)sds =
1− e−2θ(g)(xk)∆t

2θ(g)(xk)
. (3.5)

Equation (3.4) has the representation

r
(g)
k+1 = ν(g)(xk)r

(g)
k + ζ(g)(xk) + ξ(g)(xk)ω

(g)
k+1 , 1 ≤ g ≤ d, (3.6)

where ω
(1)
k , ω

(2)
k , ..., ω

(d)
k are independent standard Gaussian random variables and

ν(g)(xk) = e−θ
(g)(xk)∆t, (3.7)

ζ(g)(xk) = (1− e−θ(g)(xk)∆t)µ(g)(xk), (3.8)

ξ(g)(xk) = σ(g)(xk)

√
1− e−2θ(g)(xk)∆t

2θ(g)(xk)
. (3.9)
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The succeeding calculations are inspired by the approach described in Elliott et al.

[13], where filters are derived under some equivalent probability measure P̄ . Under this

ideal measure, the observations are independent and identically distributed random

variables making the calculations of conditional expectations easy. The filters, which

are conditional expectations, are then related back to the real-world by the use of

Bayes’ theorem for conditional expectation. The ideal measure P̄ is equivalent to the

real-world measure P via the Radon-Nikodym derivative constructed as

ΛK =
dP

dP̄

∣∣∣∣
CK

=

d∏
g=1

K∏
k=1

λ
(g)
k , K ≥ 1, Λ0 ≡ 1, (3.10)

where

2 ln(λ
(g)
k ) = −

r
(g)
k

(
r

(g)
k−1ν

(g)(xk−1) + ζ(g)(xk−1)
)
−
(
r

(g)
k−1ν

(g)(xk−1) + ζ(g)(xk−1)
)2

ξ(g)(xk−1)2

(3.11)

Write the conditional probability of xk given Rk under P as

p̂ik := P (xk = eh|Rk) = E[〈xk, eh〉|Rk],

where p̂k = (p̂1
k, p̂

2
k, . . . , p̂

N
k )> ∈ IRN . Now,

p̂k = E[xk|Rk] =
Ē[Λkxk|Rk]
Ē[Λk|Rk]

by Bayes’ theorem for conditional expectation. Let ck = Ē[Λkxk|Rk] and note that
N∑
i=1

〈xk, eh〉 = 1. Thus,

N∑
i=1

〈ck, ei〉 =
N∑
i=1

〈Ē[Λkxk|Rk], ei〉 = Ē

[
Λk

N∑
i=1

〈xk, ei〉

∣∣∣∣∣Rk
]

= Ē[Λk|Rk]. (3.12)

Consequently, equation (5.6) implies that

p̂k =
ck∑N

i=1〈ck, ei〉
.
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Similar to Erlwein et al. [18] or Erlwein and Mamon [16], we define the following

quantities:

J
js
k+1x =

k+1∑
n=1

〈xn−1, ej〉〈xn, es〉 (3.13)

O
j
k+1x =

k+1∑
n=1

〈xn, ej〉 (3.14)

T
j
k+1(f)x =

k+1∑
n=1

〈xn−1, ej〉f(rn) , 1 ≤ j ≤ N. (3.15)

Equations (5.7) and (5.8) are the respective number of jumps from es to ej and the

amount of time that x occupies the state ej up to k + 1 . The quantity T
j
k+1(f) is

an auxiliary process that depends on the function f of the observation process; in our

case, f takes the form f(r) = r, f(r) = r2 or f(r) = rk+1rk.

Other than generalising the framework in Erlwein and Mamon [16], our contribution in-

cludes expressing recursive filtering equations compactly though matrix notation. This

allows efficient computation and decreases parameter estimation time using vector-

optimised mathematical packages (e.g., MATLAB by The Mathworks). Define the

diagonal matrix D(rk) with elements di,j by

(dij(rk)) =


∏d
g=1 exp

(
−
r
(g)
k

(
r
(g)
k−1ν

(g)
i +ζ

(g)
i

)
−
(
r
(g)
k−1ν

(g)
i +ζ

(g)
i

)2
2ξ

(g)
i

)
for i = j

0 otherwise.

(3.16)

For any process Gk, we denote the conditional expectation, under P̄ , of ΛkGk by

γ(G)k := Ē[ΛkGk|Rk]. We provide recursive filters for ck, γ(Jj,ix)k, γ(Oix)k and

γ(Ti(f)(g)x)k.

Theorem 1: Let D be the matrix defined in (4.22). Then

ck = ΠDck−1 (3.17)

γ(J j,ix)k = ΠD(rk)γ(J j,ix)k−1 + 〈ck−1, ei〉〈D(rk)ei, ei〉πjiej (3.18)

γ(Oix)k = ΠD(rk)γ(Oix)k−1 + 〈ck−1, ei〉〈D(rk)ei, ei〉Πei (3.19)

γ(T i(f)(g)x)k = ΠD(rk)γ(T i(f)(g)x)k−1 + 〈ck−1, ei〉〈D(rk)ei, ei〉f(r
(g)
k )Πei. (3.20)
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Proof The proof follows similar derivations of the filtering equations as those provided

in Elliott et al.[13], Erlwein et al. [18] or Erlwein and Mamon [16].

�

To obtain the model parameter estimates, we use the Expectation-Maximisation (EM)

algorithm [11]. The EM estimation for the multi-regime setting is very similar to that

in the one-dimensional case illustrated in Erlwein and Mamon [16], so the proof of the

next theorem is omitted.

As indicated in the above discussion, the model parameters ν(g), ζ(g) and ξ(g) have

estimates that depend on the filters of quantities given in Theorem 1. These dynamic

parameter estimates are given as follows.

Theorem 2: If multivariate data set with row components r
(g)
1 , r

(g)
2 , · · · , r(g)

K 1 ≤ g ≤ d
is drawn from the model described in equation (4.3) then the EM parameter estimates

are

π̂ji =
γ
(
J j,i
)
k

γ (Oi)k
(3.21)

ν̂
(g)
i =

γ
(
T i
(
r

(g)
k+1, r

(g)
k

))
k
− ζ(g)

i γ
(
T i
(
r(g)
))
k

γ
(
T i
(
(r(g))2

))
k

(3.22)

ζ̂
(g)
i =

γ
(
T i
(
r(g)
))
k+1
− ν̂(g)

i γ
(
T i
(
r(g)
))
k

γ (Oi)k
(3.23)

ξ̂
(g)
i =

γ
(
T i
(
(r(g))2

))
k+1

+ (ν̂
(g)
i )2γ

(
T i
(
(r(g))2

))
k

+ (ζ̂
(g)
i )2γ

(
Oi
)
k

γ
(
T i
(
(r(g))2

))
k

(3.24)

−2
ν̂

(g)
i γ

(
T i
(
r

(g)
k+1, r

(g)
k

))
k

+ ζ̂
(g)
i γ

(
Ti
(
r(g)
))
k+1

+ ν̂
(g)
i ζ̂

(g)
i γ

(
T i
(
r(g)
))
k

γ (Oi)k

Proof The derivations of (5.17) - (3.24), which generalise the filters for the univariate

OU case, are straightforward based on Erlwein and Mamon [16].

�

Remarks
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1. To implement the recursive equations in Theorem 1 in providing the dynamic

updating of the estimates (3.21)–(3.24) under Theorem 2, note that γ(H i)k =

γ(H i〈1,xk〉) = 〈1, γ(H ixk)〉, for some function H which may denote J , O or T .

2. Equation (3.22) in Theorem 2 contains the parameter ζ(g), which must be known

prior to achieving a workable recursion. In practice, the sequence of equations

(3.22) and (3.23) can be implemented in reverse order. That is, ζ̂(g) can be

estimated using the previous knowledge of ν(g). This latter implementation was

adopted in the empirical part of this project, resulting in significant stability in

parameter estimates.

3.3 Description of data for implementation

To model the levels of liquidity, we use three monthly time series data covering the

period of 30 April 1998–30 April 2013; data points are recorded at the last trading day

of each month. These data sets are: (i) TED spread obtained from Bloomberg, (ii)

S&P 500 VIX compiled by the CBOE, and (iii) calculated average spread of S&P 500

based on the data collected by Bloomberg. The indicator in (iii), MktIll (a short form

for “Market Illiquidity”), was adopted from Goyenko [20] and defined by

MktIll = 2
Bid−Ask
Bid+Ask

(3.25)

where Bid and Ask are the respective bid and ask prices.

The choice of the end-of-month time series data sets in our analysis is mainly due

to convenience as they are readily available from all data sources. To ensure that we

are not missing possible anomalous patterns in the data, we also look at the time series

values recorded at other days of the month. Figure 3.1 shows the dynamics of the TED

spread for the data collected on the last day of the month (TED-30) and on the 11th

of each month (TED-11); if the 11th is not a trading day we utilise the value of the

previous trading day. Except for a few time points that correspond to the recession

period of the late 90s and 2007-09 crisis, the behaviour of the two time series is almost

identical. Although not shown here, the graph of VIX and Mktill data series display

a very similar pattern. The main purpose of this research is not to accurately predict

the dynamics of individual variables, but to capture the joint effects of these variables

to forecast illiquidity. Whilst we use monthly discretisation, our method works for any
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Figure 3.1: Plot of TED recorded on 11th or last trading day of the month

Figure 3.2: Plot of TED, VIX and MktIll× 100

discretisation frequency. The important consideration is to select a discretisation grid

(monthly in our case) just fine enough to capture all the major economic breaks and in-
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stabilities, and without creating distortions or introducing extra noise in the data. Data

sets with weekly and quarterly frequency were also considered. The general behaviour

of the data remains the same, and therefore monthly observations are appropriate for

our intended application given the correct number of calculations involved in the win-

dow processing of data points.

The data set for our filtering applications is formed by constructing a matrix with

a dimension of 181 × 3 over the period 30 April 1998 – 30 April 2013 with the TED,

VIX and MktIll in the first, second and third columns, respectively. Figure 3.2 displays

a visualisation of the movements of the TED spread, VIX and MktIll×100 variables.

Note that we use MktIll×100 to scale the magnitude of MktIll and make it comparable

to that of the TED and VIX. The instability of the TED spread in the late 1990s -

early 2000s has been limited to the information technology bubble, political dispute sur-

rounding the 2000 US presidential election, political and financial crises in post-Soviet

Russia, and a recession in Japan; see Bianchi et al. [3] and Sipley [26], for example.

The dot-com price bubble persisted through 1997-2000 climaxing in March 2000. It

is worth noting that these three indicators pin down the occurrence of the financial

market instability directly affecting liquidity. However, each indicator captures this

instability at different moments and with different durations. The superiority of one

measure over the others is therefore not clear. This is usually the case whenever the

duration of the market crash is short and rapid economic recovery is expected by many.

On the other hand, the subprime mortgage crisis in 2008-2009 was captured by all

three measures at once. The noticeably unusual spike in the TED spread during June

2007 seems to clearly herald the coming of extreme financial meltdown that happened

in August-September 2008. From the plot of the trivariate series, we also observe the

cyclical behaviour of the economy shifting from stable to unstable states. This provides

support for using a multivariate version of the OU process in modelling the generating

process of the underlying data.

3.4 Numerical application

3.4.1 Calculation of estimates and other implementation assumptions

Several approaches may be employed to find initial parameters for filtering algorithms.

These include the methods in Erlwein and Mamon [16]; Erlwein et al. [17]; and Date
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and Ponamareva [9], amongst others. Good starting parameter values are necessary to

stabilise the filtering algorithm procedure. However, estimating initial parameters is

not straightforward considering the nature of the data and other factors. Whilst none

of the initial-value estimation algorithms must be disregarded, the choice of which to

adopt mainly depends on (i) achieving stable performance and (ii) relative ease of im-

plementation. In this project, we combine the above-mentioned approaches to generate

reasonable initial estimates.

To choose the number of states in a regime-switching model, statistical inference-based

methods such as the Akaike criterion information (AIC) [2], Bayes’ information crite-

rion (BIC) described in Schwarz [24] and Hardy [21], or the CHull metric mentioned

in Ceulemans and Kiers [7] may be utilised. These criteria are independent of the

nature of the data; they are general tools that can be applied to any data set with an

ultimate goal of selecting the model that optimally balances goodness of fit and model

complexity. To simplify the discussion, make the mathematics tractable and provide

insightful interpretations, one may posit that the economy can only have two states

- a “crisis” regime associated with abnormally high indicator values and a “regular”

regime. A transitional state may be created and persists over some time due to the

weighted combination of volatilities under the above two regimes.

Brokers who have long-term positions in different securities hedge their portfolios dif-

ferently depending whether to expect a future crash or rally. In the trading world the

value of the financial contract can only go up, go down or stay the same. In general, it

is assumed that every stock always has a positive growth, i.e., it earns more money than

what one can get from a risk-neutral investment. Therefore, even when the potential

growth on a stock, mutual fund and other risky investment portfolios is minimal but

the level of liquidity is high, the economy is still deemed to be in the good (or “high”)

state. Consequently, when the percentage change in the value of the index or any other

major indicators of the financial state of the country (GDP, for example) is relatively

close to the risk-neutral rate, we regard the economy to be in the “high” state. Further-

more, we rely on the results of Boudt [4] and Dionne [12] advancing two-state models

in investigating liquidity. Any three-state model will be shown later as a special case of

the two-regime framework, where the third state is between the “high” and “low” states.

Finding parameter estimates via the likelihood maximisation procedure is a tedious
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endeavour but such a procedure provides the best results for dynamic modelling, if it

can be accomplished. We shall use the first 40 points of the multidimensional data

set to calculate the starting parameters for our filters. For simplicity, when obtaining

initial filter values, it is assumed at the outset that the set of true parameters

Ξ = {πij , ν(g)(xi), ζ
(g)(xi), ξ

(g)(xi)}

is homogeneous, i.e., the values of the set Ξ do not change when subsets of the data

are chosen in a sense that true parameters of the model stay the same for data subsets

of any type or size. Whilst this may be a strong assumption, the filters will eventually

adapt and parameters will change accordingly as the number of algorithm passes is

increased. The likelihood function, conditional on knowing which state the process xi

is in, is given by

L =
d∏
g=1

K∏
i=1

{
1√

2π((ξ(g)(xi))2
exp

(
−

(r
(g)
i+1 − ν(g)(xi)r

(g)
i − ζ(g)(xi))

2

2(ξ(g)(xi))2

)}
(3.26)

or

L =
d∏
g=1

K∏
i=1

φg,i, (3.27)

where

φg,i = φ

(
r

(g)
i+1 − ν(g)(xi)r

(g)
i − ζ(g)(xi)

ξ(g)(xi)

)
, (3.28)

and φ stands for the density of the standard Gaussian distribution. See analogous

concepts in Erlwein and Mamon [16] or Hardy [21]

As the sequence of the states xi is hidden, a recursive algorithm similar to the one

proposed in Hardy [21] is used. The idea of the algorithm is to calculate the most prob-

able set Ξ by building the likelihood function using recursions and to apply standard

computer routines for maximisation of the function over a desired set of parameters.

Although Hardy’s method was designed for the geometric Brownian motion model, we

extend it in a straightforward manner to handle our multidimensional data set assumed

to follow the OU process. Additionally, the definition of the log-likelihood function is

extended by using the sum of the log-likelihood functions for the TED, VIX and MktIll

data sets. Adopting the notation of this article, the density function of the process at

time t in Hardy’s algorithm, given the whole set of parameters including the state of

the Markov chain at time t, is changed to φg,i(ri+1, ri,Ξ).
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ν1 ν2 ζ1 ζ2 ξ1 ξ2 π12 π21

TED 0.5178 1.4795 0.1478 -0.6130 0.6119 1.3191 0.6010 0.0076

VIX 0.5709 1.5484 0.4852 -0.1123 0.0212 0.4137 0.6010 0.0076

MktIll 0.5428 1.3090 0.0079 0.0016 0.0006 0.0001 0.6010 0.0076

Table 3.1: Initial parameter estimates for the filtering algorithms under the two-state

setting

The results of the initial parameter estimation under the two-state model are pro-

vided in Table 3.1. The values of parameters ν1 and ν2, encapsulating the speed of

mean reversion, can be considered to be almost the same for all three variables. This

empirical result that these parameters have uniformly close estimated values is no co-

incident and gives additional strong support to the hypothesis about the dependency

of TED, VIX and MktIll on the same underlying factor.

The HMM filtering algorithms can only give a local maximum, and at times could

be extremely unstable to implement. Such limitation can be rectified by choosing ini-

tial estimates that fit the data very well and working in double precision arithmetic.

It is also possible to employ a symbolic package such as Wolfram Researches’ Mathe-

matica, but in that case the speed of the computation drops dramatically. The static

log-likelihood maximisation approach appears to yield initial parameters that afford

appreciable stability for our OU-based filters.

The starting values for the one-regime model are obtained by simply maximising the

likelihood function (4.35), taking into account that x = 1, i.e., the system always op-

erates under one state. The results of this optimisation are exhibited in Table 3.2.

As expected, the initial parameter values for the single state model lie between the

corresponding estimates for the two-regime model. The only parameter which does not

follow this observation is ξ; but even then such ξ values corresponding to the three

indicators produce a stable convergence for the filtering procedure outlined in the next

subsection.
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ν ζ ξ

TED 1.2201 -0.1475 2.0761

VIX 0.5911 0.1295 0.0223

MktIll 0.8580 0.0023 0.0001

Table 3.2: Initial parameter estimates for the filtering algorithms under the one-state

setting

3.4.2 Filtering procedure

In the estimation of the parameters of the underlying OU process, we employ the

method described in section 6.2 using the starting parameters in Tables 3.1 and 3.2.

The data set described in section 4.4 contains columns consisting of g = 1 (TED), 2

(VIX), and 3 (MktIll). There are 141 time points considered in our filtering applica-

tion. The first 40 time points for the three vectors of data are used for the initialisation

discussed in subsection 3.4.1. The predictive power of the model is tested on the last

60 monthly observations from the middle of the financial crisis (30 May 2008) up to

the end of the time series data (30 April 2013). All results are analysed and evaluated

using a combination of both intuitive and rigorous statistical approaches for decision

making.

The dynamics of the estimates θ, µ and σ are computed by first producing the esti-

mates of ν, ζ and ξ. Then using equations (4.14), (4.15) and (4.16), we back out the

values of the desired model parameters. The OU filters described in section 6.2 were

implemented with a moving window spanning vectors of data which extends the idea

of the procedure in Erlwein and Mamon [16]. More specifically, vectors of data are

processed through the recursive equations of the filter to obtain the best estimates (in

the sense of conditional expectation) after several time points. Once the parameters

are estimated from a batch of vector of data points, they become starting values for

the next recursion, and so on. The size of the processing window is determined by

likelihood-maximum or other statistical criterion. Owing to the complex nature of the

data and the filtering equations, we employ the smallest window possible (3 points per

window in our case) that gives stability to the algorithms. Whilst this choice results

in a relatively high volatility, the outputs contain ample information about parameter

fluctuations.
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Figures 3.3–3.6 provide output for the parameter estimates of the OU process cor-

responding to TED spread. An implication that can be drawn from the behaviour of

Figure 3.3: Evolution of the mean-level estimates for the TED spread data

transition probabilities in Figure 3.6 is that, over our study window, major illiquidity

events do not happen very often, but when they do, they do not last very long and

are not severe until the financial market collapse in 2007-2008; see Figures 3.3-3.6 or

3.10. After the crisis in 2008, the structure of the economy changed completely. This

fact is supported by Figure 3.3, wherein the mean-reverting levels are switched. This

phenomenon occasionally arise in similar filtering applications (e.g., Xi and Mamon [29]

or Xi and Mamon [30]). In our case, this anomaly can be explained by the presence

of higher volatility levels during times of greater uncertainty. This is substantiated by

Figure 3.5 as the level of σ reaches the highest level in 2008.

The other odd behaviour shown by the filtering results is the negativity of θ in Figure

3.4. Even though the formulation of the OU process does not allow the parameter θ

to be negative, the multi-regime construction of OU process, proposed by Elliott and
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Figure 3.4: Evolution of the speed of mean reversion for the TED spread data

Wilson [15], does not restrict θ to be always positive. From an empirical perspective,

getting θ ≤ 0 is justified by the fact that the OU process becomes unstable as can be

seen during the 2007–2008 period when there was a sudden unfolding of several related

financial and economic events leading to the crisis, and exacerbated by too much uncer-

tainty and unpredictability of the economy. Getting a negative value for the speed of

mean-reversion has the respective interpretations that the process is actually repelled

from the mean level. However, during stable periods, the speed of reversion remains

positive and this parameter is interpreted in the usual sense.

The results of the dynamic parameter estimation based on filtering under the one-

regime framework are illustrated in Figures 3.7 –3.9. The dynamics of the parameters

look similar to those of the two-regime model. This fact can be interpreted as an ex-

cellent fit of the 2-state HMM-modulated OU model to the data set. We use the AIC

and BIC tailored to several previous works on filtering, in particular, Date et al. [10]

and Xi and Mamon [30] to show that the proposed two-regime model provides a better
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Figure 3.5: Evolution of the volatility levels for the TED spread data

explanation of the data compared to the one-regime setting. The AIC and BIC metrics

are computed as

AIC = lnL− p (3.29)

and

BIC = lnL− 1

2
p lnκ, (3.30)

where L is the log-likelihood function for the entire multivariate data set, κ is the num-

ber of observations and p is the number of parameters in a model. With the calculated

value for the log-likelihood function of the last 141 vector of monthly observations,

both the AIC and BIC signifies that the two-regime model significant outperforms the

one-state model; see Table 5.3.

The general trend of the behaviour of the data during the crisis in 2007-2008 is captured

by the model. Nonetheless, due to extreme volatility movements, getting a perfect fit

during this period is a challenge. Given the initial parameter estimates, we report that

it takes 5-6 algorithm steps for the OU filters to adjust and maintain some stability.
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Figure 3.6: Evolution of the filtered transition probabilities obtained from the multivari-

ate data

3.4.3 Filtering and forecasting illiquidity

There are many approaches in modeling illiquidity based on the TED spread or other

major economic factors. However, these approaches either look at a certain threshold

of the TED spread as benchmark for illiquidity (see, Boudt et al. [4] and Krugman [22])

or correlate the TED spread with another major economic variable (see Goyenko [20]).

In this work, we introduce a new approach which is naturally suited for dynamic fil-

tering algorithms. It relies on the dynamics of p̂k = E[xk|Ck]. As previously specified,

Regimes Log-likelihood BIC AIC Number of parameters

I 491.0379 446.4991 482.0379 9

II 569.6856 470.7104 549.6856 20

Table 3.3: Comparison of selection criteria for single- and 2-state regime models
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Figure 3.7: Evolution of the mean-reverting level under the one-state setting using the

TED spread data

the two-regime model is instructive in that each regime corresponds to illiquid and

liquid states of the market. We put forward that if p̂k(1) = 〈p̂, e1〉 � 0.5, i.e., the

probability of being in regime 1 is very high, the market is extremely liquid and it is

therefore easy to buy and sell every contract. But, if p̂k(1)� 0.5, which is equivalent

to p̂k(2) = 〈p̂, e2〉 � 0.5, then the market is very illiquid, which typically corresponds

to recession or period of economic crisis brought about by some major financial events.

We implement the above approach with the objective of determining regimes of illiq-

uidity through the HMM filtering of data. The output of this implementation is dis-

played in Figure 3.10; the upper panel shows the joint plot for the evolving estimates

of µi, θi, πij and p̂k(1) whilst the lower panel shows the TED evolution plotted on the

same time scale. We omit the graphs of the two other indicators (VIX and MktIll) to

avoid overcrowding the lower panel of this illustration. They are displayed in Figure

3.2 and similar demonstrations can be produced using various combination of results

in Figures 3.2–3.6. Two salient points are as follows. First, every point estimate of
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Figure 3.8: Evolution of the speed of mean reversion under the one-state setting using

the TED spread data

each model parameter was obtained via a data processing procedure based on a deemed

optimal filtering window of size three. Clearly, this inherent dependence on the data

processing window size is a source of variability for modelling results. Second, from

the side-by-side comparison in Figure 3.10, we delineate four major trigger events of

the 2007–2008 liquidity crisis captured by the model with the period of their occur-

rences charted against the time axis. These events are the hedge fund crash, total loss

underestimation by the federal regulators in the US, major collapse of the economy in

September 2008 and recovery stage. One important finding of our modelling implemen-

tation is the pre-crisis stage that is captured only by the illiquidity state process, but

not by the dynamics of any of the model parameters. Thus, it is essential to monitor

all parameters, indicators and any other metrics simultaneously.

It is asserted in Brunnermeier [5] that the hedge fund crash was one of the major

triggers of the 2007–2008 liquidity collapse. The outcome obtained in our model is

consistent with Brunnermeier’s argument; in fact, our results provide further support
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Figure 3.9: Evolution of the volatility under the one-state setting using the TED spread

data

to the findings that the hedge fund crash event triggered the chain of events leading to

the deepening of the financial crisis up to January–February 2009. The severity of the

crisis is seemingly marked by the underestimation of the total loss by federal regula-

tors. After this event, return to the “normal” liquidity level did not happen without

the painful experience of several major defaults in the financial industry and new dras-

tic measures taken by the regulators. The proposed model and modelling approach

capture these dynamics exceptionally well. In Winter 2009, after many bankruptcies

and government bailouts, trading levels started to pick up. Subsequently, financial un-

certainty decreased, and trading volume rose from already low level comparable to that

of the pre-crisis stage. Around this time, the considerable restructuring of the general

economy caused the behaviour of the variables we are examining to change altogether

with levels, movements and model parameter estimates completely different from those

of the past.

The following technique is used to predict the state of liquidity. First, p̂k is computed
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for some k, and second, the expectation of p̂k+1 given Ck is calculated as

E[p̂k+1|Ck] = Πkp̂k, (3.31)

where Πk is defined by equation (4.2).

Figure 3.11 depicts the dynamics of the prediction values E[p̂k(1)|Ck−1] and shows

the estimates of p̂k(1) obtained by applying the filtering algorithms on the last 60

points of the data set. The drastic change in the movement of estimated probabilities

between the fourth and fifth time points corresponds to a significant drop in the values

of all the three variables (TED, VIX, MktIll) in April-May 2009; such twist was per-

fectly captured by the dynamics of p̂k(1).

To distinguish the liquid from the illiquid state, we propose a criterion that hinges

on p̂k(i) � 0.5 for i = 1, 2. If p̂k(1) > 0.6, it is assumed that there is enough evi-

dence to conclude that the level of liquidity in the market is high, and traders can take

positions with little or no probability of acquiring additional risks due to market or

funding liquidity. So, the higher the p̂k(1), the higher the liquidity level. Whenever

p̂k(1) < 0.4, the financial markets are assumed illiquid, and therefore, additional capi-

tal must be infused to deal with the financial distress.

Based on empirical evidence, typifying exactly the liquidity state when 0.4 < p̂k(i) <

0.6, i = 1, 2 is not an easy endeavour. This situation is characterised by a very high

level of uncertainty regarding market directions over a short time. On the one hand,

the “state of uncertainty” signals the occurrence of future hard times. On the other

hand, it can also be viewed as a sign that economic stability is forthcoming after an

economic downturn. The case in point here is the period of early 2009, when regula-

tors used all possible schemes to stabilise the market sentiments and provided instant

artificial liquidity to help markets function the way they were intended to be. We note

that our proposed model gives somewhat overoptimistic estimates for E[p̂k(1)] during

the last period of the market crash in 2008, and this requires some adjustment. How-

ever, the estimates for the p̂k(1) still remain at the 0.4 level, coinciding with what was

previously argued concerning “state of uncertainty” and artificial liquidity. Liquidity

state prediction for the last 48 data points is accurate in the sense that the predictions

jibe very well with the classification of the liquidity state estimates.
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The “state of uncertainty” can be viewed either as a third regime in a two-state model,

which is interpreted as the lowest/worst bound for the “high” regime and upper/best

bound for the “low” regime. This can be explained from an econometric point of view.

Recession and upturn times in the economy are generally followed by short periods of

market anxiety. During these unstable periods, liquidity can rise and fall quite fre-

quently because speculators do not have stable expectations for the long-term horizons

and short-term government interventions can provide only temporally relief. It is rather

difficult to capture that “state” as it has in a way the characteristics of either regime.

Of course, the stability of a possible separate three-regime model must be investigated

as well, and could certainly be an alternative model. Nevertheless, preliminarily results

in our case reveal that recursive algorithms do not provide even an approximate con-

vergence for finding the starting parameters for the three-state model. Thus, we rule

out the dynamic three-regime setting as inappropriate for this data set.

3.5 Concluding remarks

In this work, we developed an HMM-based modelling approach in assessing levels of

market and funding liquidity risks. The structure of the proposed model incorporates

major econometric assumptions concerning factors of economic recovery. We provided

a detailed methodology on how to extract information from major economic indicators,

and linking these to the short-term prediction of market illiquidity or liquidity. The

methodology employed made use of newly developed multivariate HMM recursive fil-

tering algorithms expressed in matrix representations. Effects of mean-reversion and

liquidity state dependency were also explored.

The model’s implementability and forecasting performance were investigated using mar-

ket data. Results were analysed against statistical metrics and interpreted by examining

underlying historical financial events. We found that the one-regime model significantly

underperforms compared to a two-regime model. Undoubtedly, a simple OU process

cannot capture all the very complex features of the liquidity risk in the financial mar-

ket. A technique for liquidity-state estimation naturally consistent with dynamic HMM

filtering algorithms was put forward and its validity was evaluated using past data.

An improvement that could be done with our modelling approach is the further ex-

amination of the two-state model. Its predictability of liquidity becomes uncertain if
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the conditional probability of the Markov chain falls in the range [0.4, 0.6]. Despite our

empirical and economic reasoning to support our assumption and conclusions under

this scenario, additional analysis of this particular aspect is a promising research direc-

tion. Our preliminary results suggest that the three-state model cannot be fitted given

the data we examined. There is however a possibility that the three-regime model may

work by adding some other economic variables portraying clear multi-regime behaviour.

Our suggested modelling construction and empirical work used monthly data. Building

on our results, further analysis of data with different frequency could be carried out

to open avenues for modelling methods and insights about liquidity risk over a long

or very short-time periods. These entail establishing new drivers, factors and deter-

minants of liquidity to be included in the filtering experiments. The HMM-driven OU

process may have to be tweaked to accommodate these new inputs leading to new filters.

We put forward and empirically tested a new way of estimating and predicting liquidity

levels in the financial market. This approach provides a quantitative methodology that

supports economic interpretation of our liquidity proxy variables. The liquid/illiquid

regimes pinpointed by our regime-switching modelling approach accurately correspond

to those identified by practitioners. This research therefore addressed the missing link

between economical and mathematical modelling of liquidity. The methodology it con-

tains could be useful for traders, economists, regulators and policy makers.

The current recommended modelling and estimation set up can be effectively exploited

under sophisticated trading-scheme environments. For example, underlying variables

involved in trading, valuation or reserve calculation for financial derivative contracts,

are known to follow the OU process. Our filtering equations can be employed to provide

dynamic parameter estimates both for pricing and risk management. Regulators may

also consider this model to study the impact of different constraints on the economy.
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Figure 3.11: Evolution of the estimated liquidity-state probabilities and one-step ahead

forecasts of liquidity-state probabilities
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4

Pairs trading: An integrated

Kalman-HMM approach

4.1 Introduction

Pairs trading is an investment strategy used to exploit financial markets that are out of

equilibrium. It consists of a long position in one security and a short position in another

security in a predetermined ratio (Elliott et al. [8]). This creates a hedge against the

sector and the overall market where the stocks belong. If the market or sector crashes,

a trader experiences a gain on the short position and a loss on the long position leaving

the profit close to zero in spite of the large move. Traders bet on the direction of the

stocks relative to each other. This type of strategy is effectively employed by hedge

funds as it is possible to monitor for deviations in prices, automatically changing the

positions to use market inefficiencies earning some profit.

The paper by Elliott et al. [8] describes two automated algorithms for setting a pairs

trading strategy. The strategy requires parameter estimation support. The first algo-

rithm is based on the smoother approach (Shumway and Stoffer [15]), and the other

algorithm is based on dynamic filtering along with the EM-Algorithm (Elliott and Kr-

ishnamurthy [7]). It is shown that both algorithms work rather well on simulated data

with a computational advantage for the latter. Unfortunately, due to the structure

of the Kalman filter, the performance of the dynamic filtering algorithm is limited to

white-noise type of models. The other criticism as Steele [16] pointed out is that the

model in Elliott et al. [8] is theoretical and does not confirm market’s stylised facts. For
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example, the normality of returns on an equity spread (say, returns on a portfolio that

is long Dell and short HP in equal dollar amounts), can be rejected yet such normality

assumption is implicit in the posited model.

In our approach we will extend the idea of automatic pairs trading algorithm pro-

posed by Elliott and Krishnamurthy [7] under a model with non-normal noise. We

use a model with a hidden Markov chain modulating parameters to capture the non-

normality of returns of the spread portfolio. We note that Levy-type processes could

provide excellent statistical fit but they are difficult to interpret from financial perspec-

tive. Instead, we modify and integrate methods that are based on dynamic filters of

Elliott et al. [6] , Elliott and Krishnamurthy [7], and matrix extension proposed by

Mamon and Erlwein [11].

There are many examples demonstrating markedly better fit to financial data when

using a hidden Markov model(HMM) compared to a simple autoregressive process. We

extend the Gaussian mean reverting model by allowing parameters to be governed by a

hidden Markov chain. The advantages of modelling non-normality from mixed-normal

models are: (i) modelling framework and methodology are composed of simple meth-

ods supporting the normal-noise case and (ii) putting economic interpretation for the

sudden changes in the behaviour of the process is easy. From the practitioners point

of view, the most desirable characteristic of the HMM modulated model is tractability

for applications in the financial industry.

Whilst pairs trading is deemed relative safe for market or sector arbitrageurs, no one is

safe from the price swings within the sector. Such could ruin short-term profit opportu-

nity and, in some cases, bankrupt a financially stable hedger, see for example Goldstein

[5]. History teaches us that the best way to deal with this type of risk is either to un-

wind a short position whilst taking minimal losses or better track a constantly changing

reverting level of the portfolio; the worst case scenario is described in Khandani and Lo

[13]. The former approach is taken by aggressive high frequency algorithmic traders as

their positions are usually neutral at the end of each trading day. However most mar-

ket participants use pairs trading as a hedge against the sector and therefore they are

mostly risk averse. Making model parameters flexible to adapt to market changes will

decrease the size of the traders positions, and therefore potential risks will decrease as

well. We illustrate that at any given time the hedgers position comprises of a short and
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a long leg within the spread, with some drawback that the potential profit will decrease.

The structure of this chapter is as follows. Section 4.2 presents the modelling frame-

work for the evolution of the underlying pairs or spread portfolio. In section 4.3, we

outline the construction of the filtering algorithms for the parameter estimation as well

as the trading strategy. We investigate the effectiveness of our approach in section 4.4

by setting trades based on simulated and historical data with the spread exhibiting a

strong non-normal behaviour. Section 4.5 concludes.

4.2 Modelling setup

We set up the framework by first outlining the differences between observation, state

and hidden-state processes. We then explain and justify the modification of the trading

process.

4.2.1 Observation, state and hidden state processes

An Ornstein-Uhlenbeck (OU) process rt is a process that satisfies the stochastic differ-

ential equation (SDE)

drt = θ(µ− rt)dt+ σdWt, (4.1)

where Wt is a standard Brownian motion defined on some probability space (Ω,R, P ),

and θ, µ and σ are constants independent of Wt. The parameter µ is the mean level to

which the process tends to move to over time, whilst θ is the speed of mean reversion,

and σ is the volatility. In the following it is assumed that θ, µ and σ are not constant,

it is considered that the parameters are dependent on some underlying Markov process

{xk}. So, θ = θ(xk), µ = µ(xk) and σ = σ(xk), where

xk+1 = Πxk + vk+1, (4.2)

with Π and vk+1 being the transition matrix and a martingale increment respectively.

That is, E[vk+1|Fk] = 0, where Hk = Fk ∨ Ck. Here, Fk = σ{x0,x1, ...,xk} is the

filtration generated by x0,x1, ...,xk and Ck is the filtration generated by the {rk} pro-

cess. The states of xk are mapped with canonical basis of IRN , which is the set of unit

vectors eh, h = 1, 2, . . . , N with eh = (0, . . . , 1, . . . , 0)>. that is, the hth component

of eh is 1, and 0 elsewhere.
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Using the discretisation described in Erlwein [9] or Tenyakov at al. [17], it may be

shown that if the parameters of the OU process modulated by the hidden Markov

model (HMM) is constant over the small interval ∆t, then equivalent to equation (4.1)

is then result

rk+1 = ν(xk)rk + ζ(xk) + ξ(xk)ωk+1, (4.3)

where

ν(xk) = e−θ(xk)∆t, (4.4)

ζ(xk) = (1− e−θ(xk)∆t)µ(xk), (4.5)

ξ(xk) = σ(xk)

√
1− e−2θ(xk)∆t

2θ(xk)
. (4.6)

In equations (4.3)-(4.16), µ(xk) = 〈µk,xk〉, θ(xk) = 〈θk,xk〉 and σ(xk) = 〈σk,xk〉,
where 〈·, ·〉 is the usual scalar product and > denotes the transpose of a vector. Such

representation of the model parameters is the offshoot of choosing the Markov chain’s

state space as the canonical basis of IRN .

Following Elliott et al. [8], the observation process yk follows the state process rk

observed in some Gaussian noise with volatility parameter α. So,

yk = rk + αZk, (4.7)

where Zk is a standard Gaussian random variable independent of Ck.

To summarise, in discretised form the equations for the dynamic behaviour of the

data are

xk+1 = Πxk + vk+1, the hidden state process;

rk+1 = ν(xk)rk + ζ(xk) + ξ(xk)ωk+1, the state process;

yk = rk + αZk, the observation process.
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4.2.2 The trading strategy

We define Yk = σ{y0, y1, ..., yk}, the whole information available from the market up to

time k. The ultimate goal is to compute the quantity

r̂k|k−1 = E[rk|Yk−1]. (4.8)

Write

r̂k|k−1(i) := E[rk|Yk−1, Rk = i], (4.9)

where Rk = i represents the hidden Markov process being in the ith state at time k.

The quantity r̂k(i) is interpreted as the most possible value of rk given the observed

information up to time k and considering that the process is in state i at time k.

Figure 4.1: Trading strategy

We define the unconditional probability of being in state i as θi. The trading pro-

cess can be described as follows: (i) firstly, we find the values i and i + 1 such that

r̂k|k−1(i) < yk < r̂k|k−1(i + 1); (ii) secondly, the probabilities are aggregated subject

to Θ1 =
∑i

j=1 θj and Θ2 =
∑N

j=i+1 θj ; and (iii) lastly, the positions are changed in a
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manner similar to that in Elliott et al. [8] with the key difference that the portfolio

consists of two parts proportional to Θ1 and Θ2. The pairs trading strategy is formed

using two stocks with the predetermined ratio 1:1 as the stocks are taken from the

same sector with a long position on one asset and a short in the other. The positions

are set in the same way that the spread portfolio is either short or long depending on

the expected level of the difference in the stock prices. If the level is lower than the

spread then it is expected that the correction will occur so that the trader takes a long

position on the spread portfolio, and vice versa.

The schematics of the trading process is displayed in Figure 4.1. If Ntnl represents the

total notional amount for the investment in the strategy, Ntnll = Ntnl Θl for l = 1, 2

respectively. It could be thought of that the two trades are carried out simultaneously,

i.e., yk < r̂k|k−1(i+1) for Ntnl2 and r̂k|k−1(i) < yk for Ntnl1. If r̂k(i) < yk the spread is

assumed to be too large, so a long position in the spread portfolio is taken. Similarly,

when yk < r̂k|k−1(i + 1) a short trade is entered. This trading strategy leads to a

substantial decrease in the overall risk exposure.

4.3 Filtering approach: extended Kalman and dynamic

filters

In this section, we provide Kalman filtering results within the multi-regime set up

described in equations from subsection 4.2.1. As well, we briefly recall the dynamic

filtering results for the OU process.
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4.3.1 HMM extended Kalman filter

We give the derivation of the conditional mean and variance of the state process rk.

The results are represented by recursive relations.

r̂k|k−1 =

N∑
i=1

r̂k|k−1(i)θi (4.10)

=
N∑
i=1

E[rk|Yk−1, Rk = i]θi

=
N∑
i=1

E[ν(ei)rk−1 + ζ(ei) + ξ(ei)ωk+1|Yk−1, Rk = i]θi

=

N∑
i=1

E[ν(ei)rk−1 + ζ(ei)|Yk−1, Rk = i]θi

=
N∑
i=1

(ν(ei)E[rk−1|Yk−1, Rk = i] + ζ(ei)) θi

=
N∑
i=1

θiν(ei)E[rk−1|Yk−1, Rk = i] +
N∑
i=1

ζ(ei)θi

using the independence of increments property

= E[rk−1|Yk−1]

N∑
i=1

θiν(ei) +

N∑
i=1

ζ(ei)θi

= r̂k−1ν̂ + ζ̂.

Σk+1|k = E[(rk+1 − r̂k+1)2 |Yk] (4.11)

= E[(ν(xk)rk + ζ(xk) + ξ(xk)ωk+1 − r̂k+1)2 |Yk]

= E[
(
ν(xk)rk + ζ(xk) + ξ(xk)ωk+1 − r̂kν̂ − ζ̂

)2
|Yk]

= E[E[(ν(xk)rk + ξ(xk)ωk+1 − r̂kν̂)2 |Yk, Rk+1]]

= E[E[(ν(xk)rk − r̂kν̂)2 |Yk, Rk+1]] + E[ξ2]

= E[ν2]Σk|k + E[ξ2]

= ν̂2Σk|k + ξ̂2.

The Kalman updating formula is defined as

r̂k+1 = r̂k+1|k +Mk+1

(
yk+1 − r̂k+1|k

)
, (4.12)
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where Mk+1 is determined below.

Whilst minimising the conditional variance, we get

E[(rk+1 − r̂k+1)2 |Yk] = E[
(
rk+1 − r̂k+1|k −Mk+1[yk+1 − r̂k+1|k]

)2 |Yk]
= E[

(
rk+1 − r̂k+1|k −Mk+1[rk+1 + dZk+1 − r̂k+1|k]

)2 |Yk]
= (1−Mk+1)2 Σk+1|k +M2α2.

So, the optimal value for M is

Mk+1 =
Σk+1|k

Σk+1|k + α2
. (4.13)

Substituting the result from equation (4.13) into equation (4.13), we obtain

Σk+1|k = Σk+1|kα
2 = Σk+1|k −Mk+1Σk+1|k. (4.14)

Equations (4.10)-(4.14) look very similar to the static case when the parameters of

the OU process are constants. If the set of parameters S = {νi, ζi, θi for i = 1, . . . , N}
is provided, the values of x̂k+1|k or x̂k|k can be found by recursively applying equations

(4.10)-(4.14).

We use the sample standard deviation estimate to calculate α̂ given by

α̂ =

√∑n
j=1 (yj − r̂j)2

n− 1
. (4.15)

4.3.2 Parameter estimation

The following calculations are based on the methods outlined in Elliott et al. [6]. To

simplify the notation, we write r̂k := r̂k|k. All filtering equations are established under

the reference probability measure P̄ and the results are inverted back to the real-world

measure P . This is justified by the Bayes’ theorem and the associated Radom-Nikodym

derivative with this measure change is given by

ΛK =
dP

dP̄

∣∣∣∣
ĤK

=
K∏
k=1

λk, K ≥ 1, Λ0 ≡ 1, (4.16)
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where

2 ln(λk) = − r̂k (r̂k−1ν(xk−1) + ζ(xk−1))− (r̂k−1ν(xk−1) + ζ(xk−1))2

ξ(xk−1)2
, (4.17)

and ĈK stands for the filtration of the process r̂k up to time K.

Write the conditional probability of xk given Ĉk under P as

βik := P (xk = eh|Ĉk) = E[〈xk, eh〉|Ĉk],

where θ̂k = (θ̂1
k, θ̂

2
k, . . . , θ̂

N
k )> ∈ IRN . Now,

β̂k = E[xk|Ĉk] =
Ē[Λkxk|Ĉk]
Ē[Λk|Ĉk]

by the Bayes’ theorem for conditional expectation.

Set ck = Ē[Λkxk|Ĉk] and notice that

N∑
i=1

〈xk, eh〉 = 1. So,

N∑
i=1

〈ck, ei〉 =

N∑
i=1

〈Ē[Λkxk|Ĉk], ei〉 = Ē

[
Λk

N∑
i=1

〈xk, ei〉

∣∣∣∣∣ Ĉk
]

= Ē[Λk|Ĉk]. (4.18)

Therefore, equation (4.18) implies that

β̂k =
ck∑N

i=1〈ck, ei〉
.

Following Erlwein et al. [11] and Erlwein and Mamon [9], we define

J
js
k+1x =

k+1∑
n=1

〈xn−1, ej〉〈xn, es〉 (4.19)

O
j
k+1x =

k+1∑
n=1

〈xn, ej〉 (4.20)

T
j
k+1(f)x =

k+1∑
n=1

〈xn−1, ej〉f(r̂n) , 1 ≤ j ≤ N. (4.21)
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Equations (4.19) and (4.20) represent the number of jumps from es to ej , and the

amount of time that x occupies the state ej up to k + 1, respectively. The quan-

tity T
j
k+1(f) is an auxiliary process dependent on the function f ; in our calculations

f(r) = r or f(r) = r2 or f(r) = r̂k+1r̂k.

To find more compact and efficient representations of the filtering equations we de-

fine the matrix D(rk) with elements di,j by

(dij(rk)) =

 exp
(
− r̂k(r̂k−1νi+ζi)−(r̂k−1νi+ζi)

2

2ξi

)
for i = j

0 otherwise.
(4.22)

For any process Gk, we denote the conditional expectation, under P̄ , of ΛkGk by

γ(G)k := Ē[ΛkGk|Ĉk]. We provide recursive filters for ck, γ(Jj,ix)k, γ(Oix)k and

γ(Ti(f)x)k.

Theorem 1: Let D be the matrix defined in (4.22). Then

ck = ΠDck−1 (4.23)

γ(J j,ix)k = ΠD(rk)γ(J j,ix)k−1 + 〈ck−1, ei〉〈D(rk)ei, ei〉πjiej (4.24)

γ(Oix)k = ΠD(rk)γ(Oix)k−1 + 〈ck−1, ei〉〈D(rk)ei, ei〉Πei (4.25)

γ(T i(f)x)k = ΠD(rk)γ(T i(f)x)k−1 + 〈ck−1, ei〉〈D(rk)ei, ei〉f(rk)Πei. (4.26)

Proof The proof follows similar derivations of the filtering equations in Elliott [6],

Erlwein et al. [11] or Erlwein and Mamon [9].

�

Theorem 2: If the data set with components r1, r2, . . . , rK is drawn from the model

described in equation (4.3) then the EM parameter estimates are

π̂ji =
γ
(
J j,i
)
k

γ (Oi)k
(4.27)

ν̂i =
γ
(
T i (rk+1, rk)

)
k
− ζiγ

(
T i (r)

)
k

γ (T i ((r)2))k
(4.28)
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ζ̂i =
γ
(
T i (r)

)
k+1
− ν̂iγ

(
T i (r)

)
k

γ (Oi)k
(4.29)

ξ̂i =
γ
(
T i
(
r2
))
k+1

+ ν̂2
i γ
(
T i
(
r2
))
k

+ ζ̂2
i γ
(
Oi
)
k

γ (T i (r2))k
(4.30)

−2
ν̂iγ
(
T i (rk+1, rk)

)
k

+ ζ̂iγ
(
Ti (r)

)
k+1

+ ν̂iζ̂iγ
(
T i (r)

)
k

γ (Oi)k
.

Proof The derivations of (4.27) - (4.30) can bee seen in Erlwein and Mamon [9].

�

To get the model parameter estimates, we use the Expectation-Maximisation (EM)

algorithm, Dempster et al. [4]. The estimates of ν, ζ and ξ can be obtained from

Theorem 2, and their updates can be obtained by applying Theorem 1.

4.4 Numerical application

4.4.1 Preliminary results

In this section, we first validate the modelling approach on a simulated data set. We

show how the newly developed filters respond to the underlying data with single-regime

behaviour. The results will illustrate the possibility of using the new methodology not

only during turbulent periods, when the data display distinct multi-regime spikes in

log-returns, but also during relatively calm times.

The OU process has a normal distribution and the increments
rk+1 − rk

rk
, conditional

on rk are also normally distributed. From (4.3), the observation process yk can be

expressed as

yk = νrk−1 + η + ξωk + αZk, (4.31)

which is equivalent to

yk
dist
= νrk−1 + η +

√
ξ2 + α2ω̂k. (4.32)

Clearly, equation (4.32) has an OU functional form too, where ω̂k is distributed as
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N(0, 1). The simulated histogram of
rk+1 − rk

rk
is shown in Figure 4.2. Figure 4.3 pro-

vides an additional support of the normality assumption.

Figure 4.2: Histogram of rk+1−rk
rk

Unfortunately, real data in practice often do not satisfy the normality hypothesis. Our

task then is to come up with a model that is robust enough to incorporate different types

of data distributions. Figures 4.4-4.5 depict a histogram and Q-Q plot, respectively,

of data simulated from the model with Markov-modulated coefficients. This simulated

data set violates the assumption of normality; it apparently produces very heavy tails.

This fact attests that the Markov-driven model is able to capture non-Gaussian dynam-

ics of real data. Consequently, the proposed approach has the potential to be employed

extensively for long periods characterised by a mixture of calm and turbulent financial

times.

For an additional simulation, we consider a simplified version of the discretised model in

(4.3). However, the process will be generated without the regime-switching behaviour



4.4 Numerical application 104

Figure 4.3: Q-Q plot of rk+1−rk
rk

according to

rk+1 = νrk + ζ + ξωk+1, (4.33)

yk = rk + αZk,

where ν = 0.6, ζ = 0.15, ξ = 0.05 and α = 0.4.

From Figure 4.6, we conclude that the filters of Elliott and Krishnamurthy [7] produce

quite noisy, but precise parameter values. The estimates are fairly stable and will not

cause a significant loss if one decides to use them for financial market trading.

We will use the above results to benchmark the proposed method and algorithm by

assessing the implementation speed, relative error in the estimated EM estimates and to

comment on other features of the algorithm. Figures 4.7 - 4.10 present the dynamics of

the parameters estimated using the new filters under the two-state model. Although the

main purpose of the algorithm is to replicate the dynamics of the coefficients modulated

by the HMM, we found that the one-regime (stationary) parameters are estimated very
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Figure 4.4: Histogram of
rk+1 − rk

rk

accurately and it only takes about half time compared to that in the Kalman-EM

algorithm of Elliott and Krisnamurthy [7].

Figures 4.7 - 4.9 show that one of the regimes produce “divergence” in all estimates.

Yet the unconditional probability of being in the “divergent” regime is almost zero

as illustrated in Figure 4.9. It is apparent that the filtered parameters have better

precision than those given by the Kalman-EM filters; see Figure 4.6. Moreover, the

increase in the computational time can be explained by the numerical implementation

of the new method’s structure. Comprehensive details about implementation of the

multi-regime filter procedure can be found in Tenyakov and Mamon [17], Erlwein et al.

[11] or Tenyakov and Mamon [18].

4.4.2 Analysis of the data

By construction, the Kalman-EM filter (cf. Elliott [8]) is not able capture all stylised

characteristics of data following non-normal distribution. Thus, this presents difficulty
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Figure 4.5: Q-Q plot of
rk+1 − rk

rk

when implementing trading strategy based on Gaussian models. We pick the KO -

PEP pair of stocks (i.e., Coca-Cola Co and PepsiCo Inc) to test our integrated filtering

approach. The data of daily NYSE closing prices were chosen randomly from Bloomberg

covering 24 October 2012 to 07 January 2014. The data set has 300 data points and

contains subsets with price spreads exhibiting distinct non-Gaussian spikes and appear

to have multi-regime behaviour; see Figure 4.11.

Daily closing data were used in the study as intra-day prices have additional liquidity

and high-frequency-type noise embedded in them. It is also known that intra-day

data are observed in uneven intervals making them not straightforward for immediate

analysis. For our filtering procedure, we use the modified spread (SPR) between KO

and PEP as

SPR = KO−PEP−30. (4.34)

The adjustment coefficient of 30 was chosen solely for convenience of representation.
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Figure 4.6: Single regime dynamic filtered parameter estimates using simulated data

Figure 4.7: Evolution of the estimated ζ1 and ζ2 under 2-regime HMM
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Figure 4.8: Evolution of the estimated ν1 and ν2 under a 2-regime HMM

For the real trading procedure, the spread KO−PEP is used. Note, that even with

30 as an adjustment, this does not result to negative values in the differences and the

main characteristic of the data set is preserved. We attempted to find the rationale for

the major spikes in SPR. No explanation from data sources such as Bloomberg and the

Internet can be found. The occurrence of spikes appear data-specific, and looking at

the same time series of spread from 2002, we see that the spikes happened again quite

frequently.

4.4.3 Initialisation of the algorithm

To implement filtering algorithms, suitable parameters for initialisation are needed. An

advantage of our proposed approach is the complete automation of the initialisation

stage. The financial modeller may choose from various algorithms, some of which are

described in Erlwein et al. [9, 10], or Date and Ponomareva [3], amongst others. For

our purpose, a simple log-likelihood maximisation would suffice and we adopted the

procedure in Date and Ponomareva [3], which is also described in Hardy [12]. We di-
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Figure 4.9: Evolution of the estimated ξ1 and ξ2 under a 2-regime HMM

vide our data into two parts, one part serves as a training subset, the remaining part

is utilised for the trading procedure and validation.

To carry out the initialisation step, we assume that the data set follows the simple

OU model, and so α = 0 in (4.7), and the other parameters are not modulated by a

Markov chain. The likelihood function is then given by

L =

Ntrn∏
i=1

{
1√
2πξ2

exp
(
−(ri+1 − νri − ζ2

2ξ)2

)}
(4.35)

or

L =

Ntrn∏
i=1

φi, (4.36)

where

φi = φ

(
ri+1 − νri − ζ

ξ

)
. (4.37)

The MLEs resulting from equation (4.36) are chosen as starting values for the estima-

tion and trading procedure detailed in the later sections. To choose the optimal number
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Figure 4.10: Evolution of the estimated θ1 and θ2 under a 2-regime HMM

Figure 4.11: Spikes in the log of price spreads
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ν ζ ξ π1

PEP-KO(35) 0.9682 0.1225 0.2596 0.5

Table 4.1: Initial parameter estimates for the multi-regime filtering algorithm. The same

values are used for all regimes (e.g., ν = ν1 = ν2, etc).

of regimes, several model selection criteria could be employed such as the Akaike in-

formation criterion [1], C-hull criterion [2], and the Bayes information criterion [14].

Typically, the optimal number of regimes based on these criteria is two. The “curse

of dimensionality” is still bearable at this level. In our new approach, the number

of parameters will more than double if the number of regimes is increased to three.

When the data set does not show extreme spikes (i.e., about 3 standard deviations or

more from the mean), any increase in the number of regimes will expectedly result to

accurate prediction of spread levels (this is called overfitting), however such setting is

also penalised for its complexity.

We do not consider the development of a filtering algorithm under a one-regime model

here as this was already considered in Elliott et al. [8]. Notwithstanding, this one-

regime model is still used to benchmark the results of our suggested method. The

initial estimates for the parameters of the filters are shown in Table 4.1. Following

Elliott [6, 8] concerning the bounds of the parameter values (i.e., 0 < ν < 1 and ζ as

well as ξ > 0), we conclude that the data set could be modelled by the OU process.

We use the same values to initialise the benchmark algorithm. Nonetheless, in El-

liott [8] or Elliott and Krishnamurthy [7], there is no apparent indication on how to

select the starting values. The convergence of estimates is expected as long as the

initialisation provided the starting values are reasonably close to the actual model pa-

rameters. In this study, it turns out that Elliott’s dynamic filter does not produce any

convergence and hence, parameters are adjusted to produce stable convergence on the

training data set. The “stabilised” parameters are shown in Table 4.2.

4.4.4 Numerical application

In this section we outline the trading method in conjunction with the filtering algo-

rithms. This procedure is performed in several steps. The optimal parameters are
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ν ζ ξ

PEP-K O(35) 0.8731 1.5527 0.1364

Table 4.2: Initial parameter estimates used in applying the dynamic filtering algorithm

of Elliott and Krishnamurthy [7]

found using the EM algorithm and then we find the estimate r̂t and compare it to the

observed yt. The comparison will result will establish the trading position.

Before applying the filters to the data, the user may decide if smoothing the data,

without introducing noise to the underlying process, is needed taking into consider-

ation additional work and time for “cleaning” and smoothing. This is pertinent to

high-frequency data but not necessary for our own purpose. Another important ques-

tion is the length of data series to be included in one pass of the algorithm. Some

insights on this issue are given in Tenyakov and Mamon [17, 18].

By taking a “practical” look at the data plotted on Figure 4.12, it seems that the

process produces 2-3 major and approximately 10-15 minor jumps every 50 points.

The data time series does not appear to have a constant mean-reverting level But,

certain mean stabilisation seems possible in the horizon. If the processing window of

50/15 = 3.33 or bigger, the minor changes of the data set’s behaviour may be missed by

the filter. This judgement on the window processing size is supported by the numerical

work in Tenyakov and Mamon [18] or Erlwien et al. [11].

We apply our new algorithm (combining the Kalman and multi-regime filters) using

starting parameters given in Table 4.1, which were estimated using the data subset

from 16 January 2013 to 07 January 7 2014 with a moving filtering window of three

points. The first 50 points of the data were “cleaned up” (i.e., processed using the

Kalman estimation algorithm) and then the dynamic multi-regime filters are applied

to the Kalman-filtered estimates to produce the parameters of our proposed algorithm.

The next step in our algorithm is different from that in the pairs trading paper of

Elliott et al. [8]. We emphasise that the following shift happens not by one point, but

by the size of the moving window which was established to be three. Whilst the the

long shift might affect two possible position changes between the first and third value.
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Figure 4.12: The dynamics of the spread SPR in the data subset used for parameter

estimation

The step is repeated until all the data points are completely processed.

The plot of the estimated values of the spread in each state under the two-regime

model is depicted in Figure 4.13. We also plot positions where the estimates from both

regimes, r̂t(1) and r̂t(2), are either greater or smaller than the corresponding value for

rt. Points marked with ∗ indicates r̂t(i) > rt for all i, and with + indicates the reverse

inequality relation. It is visible that the predicted values of r̂t follow the dynamic of

the process with a very precisely. Since we chose one-regime model to begin with, it

takes some some time for the algorithm to show relative stability in the spread process

signifying further support for the two-regime behaviour of the data. Questions about

fitness and model error must be settled using some statistical methods and criteria.

Since the model is developed for financial trading purposes, profit will be the main

criterion for choosing the best model in the context of this chapter.

We consider 4 trading strategies: (i) aggressive trade in which all earned extra capital

being is reinvested in the stock; (ii) normal trade in which only one unit of stock the

stock is kept and all earned capital is invested in the money market; (iii) safe trade is a
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Figure 4.13: Data processed via the dynamic filtering algorithm

(i) aggressive (ii)normal (iii)safe (iv)imaginary

Profit,$ 16.6361 16.0067 15.8564 18.4892

Table 4.3: Pairs trading profits using the dynamic approach with interest rate of

0.01%/per day and initial capital of zero

variation of the normal trade and employed when there is uncertainty in the positions,

i.e. r̂t(1) < rt < r̂t(2), in which case all the capital is invested in the money market;

and finally, (iv) imaginary trade in which the normal trade is performed on every data

point of the “processed” data subset as described above; of course, this type of data

set is not available in real time and, therefore, the result of this trade is used only for

comparison.

Our results show that the aggressive strategy does not necessarily produce a significant

increase in profits. In investing all earned capital in the spread portfolio, the main

part of the profit is collected whilst the investor takes a long position on the portfolio.
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Considering the long waiting times and the not significant increase in the value of the

spread portfolio, the overall profit is consequently not significant as well.

One reason for the decrease of portfolio value is due to losses taken during the “in-

correct” trades. Even though the decline of the profit is minimised by keeping a double

position as explained in subsection 4.2.2, the increase of the portfolio value offsets the

safe position. The little difference in the trading results between the safe and normal

position can be explained by the behaviour of θt. If θt is always close to 0.5, this strat-

egy corresponds to taking long and short positions with almost equal proportions of

the portfolio. This means that the best strategy is doing nothing whilst investing all

previous profits in the money market account.

As expected, the imaginary strategy outperforms all other trading strategies although

the earned margin profit is not as high as one would predict. We rationalised this on

the basis of the size of the moving window, which sets the maximum profit strategy.

If the frequency of changing positions increases, it is hard to say anything about the

amount that will be earned or lost as a consequence of the frequent trade. Any extra

profit or loss is treated as a result of pure noise and it cannot be controlled within our

set-up.

Using the values in Table 4.2, we estimate the parameters of our proposed modelling

framework. The dynamics of the implied parameters ν, ζ, α and ξ calculated using

the single-regime dynamic approach are shown in Figures 4.14-4.17. The graph of the

“best” estimates of the process defined as E[rk+1] = ν̂E[rk|Yk]+ζ̂ is given in Figure 4.18.

We tried using different sets of parameters as starting values, but some divergence

in the parameters’ behaviour does not disappear. This is to be expected anyhow be-

cause the data set dictates the dynamics of the parameters. That is, if convergence has

to occur, almost any set of values can be assumed as starting values for the algorithms.

4.5 Conclusions and directions for further research

This work improved the performance of the pairs trading strategy proposed by Elliott

et al. [8]. The adaptive power of two popular filtering approaches, namely, the Kalman
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Figure 4.14: Evolution of the implied ν

and HMM filters were synthesised. Based on empirical evidence, the new hybrid algo-

rithm outperforms each of the individual filtering technique. The proposed algorithm

is more robust and well-suited to the pairs trading method, and requires the same com-

putational resources to those of the conventional Kalman filters on Gaussian-type data

sets.

We explored how significant the gain of having multi-dimensional filters in terms of

accuracy without diminishing execution time and increasing complexity of the opti-

misation methods. Our applications proved successful in trading simulation. Under

the assumptions of no transaction costs and bid-ask spreads, the back-testing trade

performance showed that a hypothetical trader could manage to earn a non-zero profit

with positive probability. The trading technique has the potential to yield positive

gain especially when the transaction fees are low. Although our approach based on the

combination of two filtering methods were tested on historical prices of Coca-Cola Co

and PepsiCo Inc, practitioners could adopt this to other data sets and exploit arbitrage

opportunities due to temporary market inefficiencies or other factors.
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Figure 4.15: Evolution of the implied ζ

The inclusion of transaction costs for pairs trading under the multi-regime framework

is open for further investigation. The cost structure needs to be defined and embed-

ded into the procedure. Also, the use of high-frequency data may be considered as

this is the case in current practice for hedging funds companies and other institutional

investors. Further examination is required on how to produce filtered parameter esti-

mates within their specified constraints without, or at least with minimal, additional

numerical optimisation procedures.
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Figure 4.16: Evolution of the implied ξ
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5

Modelling high-frequency FX

rate dynamics: A zero-delay

multi-dimensional HMM-based

approach

5.1 Introduction

Trading that entails days and weeks to complete decades ago are now being carried out

in a fraction of seconds. There is apparently a shift in the market in recent years from

the traditional long-term buy-and-hold strategy to short-term trading that involves fast

execution of quote orders by computer programmes creating a cascade of buying and

selling securities. Such high-frequency trading (HFT) employs modern technological

tools and algorithms to achieve rapid trading. Trading firms, such as hedge funds, rake

in profits from moving in and out of positions in microseconds to trade stocks, bonds

and futures taking advantage of minute price differences detected by computers. Crit-

ics say high-speed trading exaggerate wild price swings, but advocates assert it helps

provide price discovery and liquidity to the marketplace.

Shah [36] reported that computerised HFT has been making inroads in the market

for currency derivatives. As indicated by the Boston-based consulting firm Aite Group,

HFT already accounts for up to 30% of activity in the global FX market, mostly in

heavily traded currencies like the dollar. In the same report, it was also noted that



5.1 Introduction 123

Credit Suisse, for example, maintains an advanced execution services system for its

lines of FX products globally, and such automated system allows its traders to manage

option risks. Indeed, whilst the use of HFT is widespread in equities and commodities

market, banks and hedge funds have been continuously making a push into niche ar-

eas including FX derivatives and the more thinly emerging market currencies. Given

these developments and the fact that the value of currency derivatives depend on the

movements of FX rates, there is therefore a strong demand for fast and reliable mod-

elling of FX rates’ future evolution as well as the accurate estimation of their volatilities.

A dependable FX rate model is essential in the pricing of FX derivatives as well as

in the risk management and optimisation of portfolios containing assets and products

that have FX rate exposures. In addition to the ability of the model to adequately

replicate the stylised features of the FX process, there is also a need to be able to

dynamically implement the model with relative ease and accessibility. As pointed out

in Meese and Rogoff [31], a simple random walk (RW) describes the FX rate dynamics

better than most of the suggested modelling approaches. This has the implication that

majority of previously proposed FX rate models are unsatisfactory in terms of their

out-of-sample forecasting and statistical fitting performance. In a paper that examines

several FX rate models showing their advantages and disadvantages and illustrating the

non-existence of a strong correlation between the behaviour of major economic factors

and the FX rate dynamics, Nailliu and King [32] also found that only a few models can

do better than the RW model in a comparative survey covering the last 3 decades of

data.

In this chapter, we propose an alternative model along with its implementation method-

ology in explaining better the behaviour of FX rates. We show that under some perfor-

mance metrics, this proposed model outperforms the RW model. Our methodology and

modelling formulation reflect the present frequent trading practices of major players

in the FX market as well as the mechanism to capture the appropriate state of the

whole economy as time goes by. Using various statistical tests and empirical data, we

show certain advantages of a zero-delay multivariate HMM in terms of its fitting and

prediction capacity. As stated in Nailliu and King [32], it is possible to predict FX spot

rates more accurately than those produced by the RW model if information about the

structure of the market trading is aptly incorporated in the model. Inspired by this

realisation, we introduce a model, given its simplicity and implementation attainability
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with respect to the current computing technologies, that may be easily adopted by

the practitioners. This augments the currently used time series based models such as

the ARCH/GARCH and stochastic volatility (SV) models. Within the context of FX

rate modelling, a vast literature has sprung from Engel’s ARCH model [15] as noted

in Maheu and McCurdy [30] and a discussion of the SV approach is given in Taylor [37] .

Certain information that drastically affects market prices of frequently traded assets

has an instant influence in the dynamics of other financial variables such as FX rates.

As elaborated in Haldane [22], traders engaging in HFT worldwide via computer pro-

grammes could automatically change their positions and bring some over-all 40,000

spot-price changes in less than a second. Thus, the assumption of current price depen-

dence on previous asset information recorded on a time lag of one day or wider fre-

quency, which is the usual framework for many discrete-time HMM-based approaches,

is deemed insufficient. With liquid trading that affords volumes of readily available

information nowadays, the utility of the zero-delay model is well justified.

In a previous study, Engel and Hamilton [16], for instance, suggested the suitability of

an HMM in modelling FX rates based on raw data taken as an arithmetic average of the

bid-and-ask prices for the exchange rate (in dollars per unit of foreign currency) for the

last day of the quarter, beginning with the third quarter of 1973 and ending with the

first quarter of 1988. Cheung and Erlandsson [7] contributed to this idea by incorpo-

rating a rigorous Monte-Carlo approach to test for multi-regime dynamics of quarterly

and monthly data. In Yuan [41], FX rates are modelled using a static HMM with a

special smoothing parameter. Since many successful trading strategies are dependent

on fast FX rate movements (cf. Aldridge [2]) and given the peculiar characteristics of

the FX data collected recently, we regard the zero-delay HMM to be more appropriate

than the commonly used one-step-delay HMM. Evidence will also show that the new

resulting dynamic filtered estimators for model parameters are able to capture better

the trends of the FX rate process.

We adapt the technique of Elliott et al [13] in establishing expressions for zero-delay

filters. Such an approach uses the change of probability measure method to evaluate

filters under some ideal measure and relate the calculations back to the real-world mea-

sure through the Bayes’ theorem for conditional expectation. In the derivation of the

filter expressions, we also incorporate the idea explored in Erwein et al. [17] concerning
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the dependencies of several processes evolving in parallel on the same discrete-time

Markov chain. This approach performs well in delineating the amount of fluctuations

of the FX caused by volatilities from those due to regime changes. In arguing that a

multi-regime behaviour is present in a given data set, we employ a sequential algorithm

following closely the testing procedure of Rodionov [33]. The procedure tailored to our

HMM filtering-based estimation technique provides clear support for the existence of

regimes. In establishing a statistically correct quantity of regimes needed to model the

data, we use the Bayesian Information Criterion (BIC), which is a penalised version

of the Akaike Information Criterion (AIC). The justification based on BIC is further

reinforced by the CHull criterion.

We examine the fitting and prediction performance of our proposed model and estima-

tion approach against popular models using FX rate data on two major currency pairs,

namely the Japanese yen (JPY) vesus US dollar (USD) and JPY versus UK sterling

pound (GBP). The JPY is chosen as the base currency in our study owing to its repu-

tation as one of the most volatile currencies in the world, and hence, regime-switching

model is a reasonable model to investigate the characterisation of its dynamics.

This research develops and examines the performance of a zero-delay model in cap-

turing the stylised characteristics of FX rates recorded with greater frequencies. The

zero-delay model may appear to be a slight modification of the usual one-step-delay

model, but such modification could produce different empirical results favouring the

former model. Furthermore, whilst zero-delay and one-step-delay models may at times

yield similar conclusions, the examination of data on leading currencies demonstrates

that the former model could outperform its competitors with respect to better fit and

prediction accuracy for out-of sample forecasts. We show the robustness of the zero-

delay model by testing it on a random subset of data and analysing its performance

vis-a-vis those of the alternative models on the same data set.

To achieve our objectives, this chapter is structured as follows. Section 5.2 describes

the modelling framework and filtering recursions of a zero-delay model. The multi-

dimensional filtering scheme is then considered and estimates of the parameters for the

proposed model are determined using the EM algorithm. In section 5.3, we provide

numerical evidence that favours the proposed model over other competing models with
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respect to goodness-of-fit measures and log likelihood-driven criteria. This chapter

culminates with some concluding remarks in section 5.4.

5.2 Model formulation

If sk is the FX rate at time tk, we posit that over a very short-time period, i.e., over

several seconds or minutes, the dynamics of its log returns evolve according to the

equation

yk := ln
sk
sk−1

= µ ∆tk + σ
√

∆tk εtk . (5.1)

In equation (5.1), the parameters µ and σ are the respective drift and volatility pa-

rameters under the real-world measure P , where εtk ∼ N(0, 1), i.e., εtk is a standard

normal random variable and ∆tk = tk − tk−1.

Given the stochastic nature of the FX process, µ and σ do not only change with time

but also depend on the state of world according to a finite-state discrete-time Markov

chain xtk incorporating the over-all interaction of various factors. Therefore, equation

(5.1) can be rewritten as

yk := ln
sk
sk−1

= µ (xtk)∆tk + σ(xtk)
√

∆tk εtk , (5.2)

xtk = Axtk−1
+ vtk , (5.3)

where A is a transition probability matrix and vtk is a martingale increment. This

formulation is extended to the multivariate setting below. For brevity, we shall write

xk instead of xtk and similar notational adjustments will made to other variables.

Let (Ω,F, P ) be a probability space under which xk is a homogeneous Markov chain

with a finite-state space. Without loss of generality, let ∆tk = 1. The dynamics of the

d−dimensional observation process is then

ygk = µg(xk) + σg(xk)ε
g
k , 1 ≤ g ≤ d, (5.4)

where {εgk} is a sequence of independent standard Gaussian random variables. In par-

ticular, they are independent for each component of the row vector yk. To considerably

simplify the algebra involved in the filtering equations, we associate the state space of

xk with the standard basis of IRN , which is the set of unit vectors eh, h = 1, 2, . . . , N

and eh is a vector having 1 in its hth entry and 0 elsewhere. So, in equation (5.4),



5.2 Model formulation 127

µg(xk) =
〈
µgk,xk

〉
and σg(xk) =

〈
σgk,xk

〉
. The notation 〈·, ·〉 is the usual scalar

product and µg = (µg(1), µg(2), . . . , µg(N))>,σg = (σg(1), σg(2), . . . , σg(N))> ∈ IRN ,

where > denotes the transpose of a vector.

The use of mixture of normals in our filtering methodology is well supported. Virtu-

ally, every distribution can be approximated by a mixture of normals with any required

precision. Applications to finance under this setting can be found in Kamaruzzaman

et al. [26], Wirjanto and Xu [40], or Jung [21], amongst others. Some works on mix-

tures of normal distributions with HMM to deal with FX modelling for option (e.g.

Kaehler and Marnet [25]) found that normal mixtures capture well the leptokurtosis

of the data, whereas the Markov-switching models capture both leptokurtosis and the

heteroskedasticity. In this work, we verify the assumption of relative normality. The

term “relative” refers to the fact that it is not possible and, in certain application, is not

feasible to check normality on every subset of available data. Modelling assumptions in

this paper both from the intuitive and rigorous levels are discussed in the succeeding

sections. As an alternative to our proposed method, some heavy-tailed noise drivers,

such as t-distributed Levy processes, for example, could be used. Even though the

model might produce better fit, the calculation becomes less tractable, and hence such

alternative is avoided by practitioners. We work under mixture of normals assumption

as the main goal of the project is to produce estimation schemes that can be easily

implemented in practice. Of course, it may be necessary to employ non-normal distri-

butions when the data strongly suggest but in that case it is also possible to increase

the number of normal distributions so that the mixture of normals is able to provide a

better fit.

To find the optimal estimate for the state of xk, we use a change of measure approach

described in Elliott et al. [13]. We perform the calculations under a new, ideal measure

P̃ under which all observations yk’s are IID standard normal random variables and yk’s

are independent from xk. Using a discrete-time version of the Girsanov’s theorem, the

real-world measure P can be recovered via the Radon-Nikodŷm derivative

Λk :=
dP

dP̃

∣∣∣∣
Fk

=

d∏
g=1

k∏
l=1

λgl , k ≥ 1,

Λ0 = 1 and λgl =
φ[σg(xl)

−1(ygl − µ
g(xl))]

σg(xl)φ(ydl )
,
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where φ(·) is the density function of an N(0, 1) random variable. The filtration Fk is

given by Fk := Fxk ∨F
y
k, where Fxk and F

y
k are the filtrations generated by the Markov

chain xk and observation process yk, respectively.

We construct the filters for relevant quantities related to the Markov chain under the

multivariate setting. Model parameter estimates will then be obtained in terms of these

filters. Define the conditional probabilities of xk given Fk under P as

pik := P (xk = eh|Fyk) = E[〈xk, eh〉 |Fyk].

Write p̂k := (p̂k(1), p̂k(2), . . . , p̂k(N))> ∈ IRN and so the optimal estimate for xk given

the available information up to time k is

p̂k = E[xk|Fyk] =
Ẽ[Λkxk|Fyk]

Ẽ[Λk|Fyk]
(5.5)

by the Bayes’ theorem for conditional expectation. Define ck := Ẽ[Λkxk|Fyk] and note

that
N∑
h=1

〈xk, eh〉 = 1.

Thus,

N∑
h=1

〈Λk, eh〉 =
N∑
h=1

〈
Ẽ[Λkxk|Fyk], eh

〉
= Ẽ

[
Λk

N∑
h=1

〈xk, eh〉

∣∣∣∣∣Fyk
]

= Ẽ[Λk|Fyk]. (5.6)

The construction of ck along with equation (5.6) yields

p̂k =
ck∑N

h=1 〈ck, eh〉
.

In addition to the state’s optimal estimate, we also consider the following quantities:

Jsrk+1 =
k+1∑
n=1

〈xn−1, er〉〈xn, es〉 (5.7)

Ork+1 =

k+1∑
n=1

〈xn−1, er〉 (5.8)

Trk+1(f(ygk+1)) =
k+1∑
n=1

〈xn−1, er〉f(ygn) , 1 ≤ r ≤ N 1 ≤ g ≤ d (5.9)
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with f(ygn) = ygn or f(ygn) = (ygn)
2
.

Equation (5.7) counts the number of jumps from er to es at time tk+1. The amount of

time up to tk+1 that x occupies state er is given by Ork+1 in (5.8). The function Trk+1(f)

in (5.9) is an auxiliary quantity that occurs in the estimation of model parameters.

For any process Gk, we denote the conditional expectation under P̃ of ΛkGk by

γ(Gk) := Ẽ[ΛkGk|Fyk]. The adaptive filters enable the updating of model parame-

ters that will incorporate past and current market conditions. Taking advantage of

the semi-martingale representation of xk, we obtain the recursive filters for γ(Jjik xk),

γ(Oikxk) and γ(Tik(f(ygk))xk), and they are presented in the results that follow.

Proposition 1: Suppose A = (aji) is the transition matrix, ai = Aei, and

Γi = Γi(yk+1) = Γi(y1
k+1, ..., y

d
k+1) =

d∏
g=1

φ
(
ygk+1−µ

g(i)

σg(i)

)
σg(i)φ

(
ygk+1

) .
Then

γ(xk+1) =
N∑

i,j=1

〈γ(xk), ei〉 ajiΓjai (5.10)

γ(Jjik+1xk+1) =
N∑

m,l=1

〈
γ(Jjik xk), em

〉
almΓlam

+ 〈γ(xk), ei〉 ajiΓjai (5.11)

γ(Oik+1xk+1) =
N∑

m,l=1

〈
γ(Oikxk), em

〉
almΓlam

+
N∑
l=1

〈γ(xk), ei〉 aliΓlai (5.12)

γ(Tik+1

(
f
(
ygk+1

))
xk+1) =

N∑
m,l=1

〈
γ(Tik

(
f
(
ygk
))
xk), em

〉
almΓlam

+f(ygk+1)
N∑
l=1

〈γ(xk), ei〉 aliΓlai. (5.13)

Proof: See Appendix.
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It is important to note that even though the above recursive formulae look similar

to corresponding equations in a one-step-delay model, the derivation is based on the

new model. In this research project, the filtering algorithms developed by Elliott [13]

are extended under a zero-delay modelling framework. Compared to the one-step delay

filtering equations, there is the presence of multiplier terms in the filtering equations

of the current framework; namely, the terms alm, aji, etc in equations (5.11)-(5.13).

Although this extension was alluded to in the second edition of Elliott et al. [13], this

was not comprehensively examined in the succeeding reprints, and more importantly,

applications to data were not investigated.

Another difference between the one-step-delay and zero-delay sets of filters lies in the

processing of data sets that is backshifted in time for the former set of filters through

the transition matrix. Both filtering methods yield recursive formulae with similar

forms. However, it is observed that with a greater number of time steps in the process-

ing of data sets in combination with an appropriate smoother for the one-step-delay

modelling framework, both filters will provide close parameter estimates.

We apply the Expectation-Maximisation (EM) algorithm (cf. Dempster et al. [12])

to find the optimal estimates of the model parameters. As the next result shows, the

transition probabilities aji, and the levels of the drift µ(i) and volatility σ(i) are ex-

pressed in terms of the quantities in (5.7)-(5.9). The following results are stated without

proof. It has to be noted that although we work under the zero-delay modelling set-

up, the reasoning behind the proof of the following results are similar to those in the

one-step delay model case (see Erlwein et al. [17]), and hence it is easily reproducible.

Proposition 2: Consider a multivariate dataset yg1 , y
g
2 , . . . , y

g
k, 1 ≤ g ≤ d observed up

to time k. The respective EM estimates of parameters {aji, µg(i), σ(i)}

âji =
γ
(
J
ji
k

)
γ
(
Oik
) (5.14)

µ̂g(i) =
γ
(
Tik
(
ygk
))

γ
(
Oik
) (5.15)

σ̂g(i) =

√√√√γ
(
Tik

((
ygk
)2))− 2ygkγ

(
Tik
(
ygk
))

+
(
ygk
)2
γ
(
Oik
)

γ
(
Oik
) (5.16)
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Now, in terms of the recursive filters given in Proposition 1, the optimal estimate of

the Markov chain is then

p̂k =
ck∑N

h=1 〈ck, eh〉
=

γ(xk)∑N
h=1 〈γ(xk), eh〉

.

Furthermore, for any process Gk, we have

γ(Gk) = γ(Gk 〈xk,1〉) = 〈γ(Gkxk),1〉 .

Hence, when Gk = Jk, Ok or Tk, equations (5.14)-(5.16) in Proposition 2 are fully

determined, and Proposition 1 gives the dynamic updates of the model parameters.

5.3 Numerical case study

In this section, we analyse the performance of our proposed model and estimation

method. An implementation to FX rate data compiled by Bloomberg is conducted.

Two data sets are considered, namely, the JPY/USD and JPY/GBP, spanning the

period of 0935 HRS, 06 July 2012 – 1840 HRS, 11 July 2012 with a five-minute interval

between each observation. The JPY was selected as the base currency as it is known

to possess random wild fluctuations in log returns or increments. This characteristic is

deemed suitable for an HMM to capture.

The distributional structure of Japan’s natural resources and electricity supply com-

bined with its geographical location implies that the JPY movement is mostly affected

by internal factors (e.g., occurrence of natural disasters, supply and demand of raw ma-

terials, political climate, institutional policies, manufacturing sector stability, amongst

others). Data sourced out from the World Bank in 2012 [38] reveals that Japan is the

third largest economy in terms of total GDP and it is also the third largest automobile

manufacturing country. The share of automotive exports in Japan is 17 percent and the

industry actively participates in generation of FX earnings (cf. Klink et al. [28]); this

is direct consequence due to automobile manufacturers reaping benefits of globalisation

by means of exports. The Honda Motor Corporation’s 2012 Report explained that the

variations in Honda’s stock price volatility are caused by various factors including fierce

and increasing competition, short-term fluctuations in demand, changes in tariffs, im-

port regulations and other taxes, and shortages of certain materials, amongst others.
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Since Honda is one of the biggest contributors to the national GDP, it is recognised

that its stock price is highly correlated with the JPY currency. Therefore any major

price movements in the value of major car companies have strong association with large

price movements of JPY relative to the USD, GBP and other major currencies trading

in the FX market. Apparently, the above-mentioned circumstances surrounding Japan

could contribute to the volatile nature of its currency against major currencies such as

the GBP and USD.

In this project, we take FX rates as inputs to a model and assume that they contain

latent information. These FX rates are “filtered” to extract the information essential

in the characterisation of the “best” estimates of parameters for our proposed model.

These “best” estimates can in turn be utilised for pricing derivatives, risk management

and forecasting over a short horizon. From the actual data, we generate the observed

log returns ygk for g = 1, 2 (1 ≡ JPY/GBP, 2≡ JPY/USD), k = 1, . . . , 1000. It is

assumed that the log return process is decomposed into two parts: the mean µ and

volatility σ, which are both driven by an unobserved HMM xk. The goal is to estimate

µ, σ, xk and the matrix A in an optimal way.

5.3.1 Regime-switching assumption in the data

Before starting the model implementation, we first validate the important modelling

assumption of multi-regime behaviour in our data. In addition to simple visual check

of spikes, which shows instances of regime shifts in the mean and volatility of log re-

turns, there are a few formal statistical tests described in the literature that could be

used to determine the presence of regime switches; see for example Rodinov [34]. We

choose a sequential algorithm adapted from the works of Rodionov [33] and apply the

testing procedure with a 99.9 percent confidence level on every data point. This test

essentially checks if the difference between the mean values of two consecutive regimes

are statistically significant according to the principles of the Student’s t-test. This test

of significance for each of the mean and variance levels is a two-step test. In the first

step, the size of a sample window encompassing the first few data points is chosen,

and the mean and variance of the data in this sample window are calculated. These

statistics (sample mean and variance) are employed in establishing a “test interval”. In

the second step, data points that belong outside the “test interval” are compared to a

computed regime shift index (RSI). An inference of whether a possible regime switch
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occurred is made on the basis of this RSI.

For the detection of regime shifts in the variance of the log returns, the data points

are first de-meaned, i.e., the data is transformed to have a zero mean. The test for the

shifts in variance is conducted in a manner similar to that of the regime-shift determi-

nation for the mean of the log returns. Needless to say, the size of the sample window

used to construct the RSI and the “test interval” have direct impact on the detection of

mean and variance shifts of the underlying process; see Rodionov [34]. For the purpose

of providing support to the Markovian assumption in this paper, we heuristically find

that a window of size 6 data points (30-minute interval) is adequate.

Figure 5.1: Illustrating the occurrence of regime switches in the mean of log returns with

a 99.9 % confidence level for JPY/GBR covering the period 09:35, 10 July – 19:20, 11 July

2012

Figures 5.1 and 5.2 depict episodes of regime switches in the mean of log returns.

Regime changes occur at times where the vertical bars are drawn. The orientation

of the vertical bars (above or below the horizontal axis) indicate whether the regime

change in the mean that occurred was going up or down. A salient point to notice

is that within the time interval [09:15, 11:15] on 11 July 2012 (right-end portion of

Figures 5.1 and 5.2), there were noticeable simultaneous changes in the mean of FX
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Figure 5.2: Illustrating the occurrence of regime switches in the mean of log returns with

a 99.9 % confidence level for JPY/USD covering the period 09:35, 10 July – 19:20, 11 July

2012

rates’ log returns for both currency pairs. This strongly supports our assumption that

the joint FX rates’ behaviour in the mean is driven by the same Markov chain.

Figure 5.3: Illustrating the occurrence of regime switches in the volatility with a 99.9 %

confidence level for JPY/GBR covering the period 09:35, 10 July – 19:20, 11 July 2012
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Figure 5.4: Illustrating the occurrence of regime switches in the volatility with a 99.9 %

confidence level for JPY/USD covering the period 09:35, 10 July – 19:20, 11 July 2012

As portrayed in Figures 5.3 and 5.4, there is also evidence of regime switches in volatil-

ity happening closely in tandem, at 01:40 on 10 July 2012 and at 01:45 on 10 July 2012

(middle section of Figures 5.3 and5.4) for the JPY/GBR and JPY/USD, respectively.

This instance serves another indication that a multidimensional HMM may work well

to model our bivariate FX rate data.

In general, the result of any statistical test in establishing the presence of regime

switches is a function of confidence level, size of “test interval”, and the data pos-

sessing extreme volatility movement (or the lack of it). It has to be noted though that

when the data is recorded with very short frequency, such as in our case, it may not be

that straightforward to differentiate between the shifts in the volatility parameter and

movements of volatility itself. Sudden increases in the variance are normally adjudged

as regime switches although such assessment result is still test-specifc. In certain se-

quential tests, some spikes in the data are simply treated as outliers even though these

may be considered as triggers for a regime switch in other detection tests for regime

switching. Relying only on Rodionov’s regime-switching test procedure [33], our aim

is not to pursue other test procedures in detecting multi-regime dynamics but rather

on showing enough evidence that our HMM approach is suitable for the FX-rate data

sets that we are examining in this paper.
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The time period for the data set in our study was chosen randomly. We note, however,

that major waves of trades usually happens closer to the end of the month and markets

are relatively calm during the first couple of weeks of the month. We also included a

weekend/non-trading day to our sample data set to see if the parameters of the model

respond to a weekend/business day transition. Roughly a week of data was picked, and

this is deemed reasonably a long period of time for frequent trading.

In the next subsections, we describe several algorithms to model the distinguishing

distributional characteristics of FX rates, propose approaches for model calibration,

and perform model validation via goodness-of-fit tests and forecasting exercise.

5.3.2 Benchmarking the zero-delay HMM

We evaluate the performance of several competing HMMs based on several statisti-

cal criteria. We also make comparisons, through the assessment of fit and prediction

performance, of our proposed modelling approach with the widely used generalised au-

toregressive conditionally heteroskedastic (GARCH), Bollerslev [5] and the RW model.

In addition to the zero-delay filters developed in section 6.2, we consider two more

HMM filtering algorithms, viz.: the static estimation approach presented in Hamilton

[23] and the dynamic filters for the one-step delay model derived in Erlwein et al. [17].

The models included in the benchmarking of our zero-delay HMM are as follows.

1. Static independent log-normal model (ILN). It is assumed that the log returns

process is lognormally distributed with constant mean and variance, i.e.,

yk = µ+ σεk, where εk ∼ N(0, 1),

where N(0, 1) stands for a standard normal random variable.

2. Static regime-switching one-step delay log-normal model with N regimes (RSLN-

N). This extends the the ILN model to multi regimes. The mean and variance

of log returns are not constant. Rather, they are driven by discrete-time Markov

chain with finite state space. Thus,

yk+1 = µS(xk) + σS(xk)εk+1, where εk+1 ∼ N(0, 1).
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Under this model, a static estimation is performed by processing the entire data

set, and only one set of model estimates are obtained. The notation µS and

σS signify estimates calculated from this static estimation procedure. Similar

explanation goes for the subscript notation in the next two models.

3. Dynamic regime-switching one-step delay log-normal model withN regimes (DRSLN-

N). Under the DRSLN-N ,

yk+1 = µD(xk) + σD(xk)εk+1, where εk+1 ∼ N(0, 1).

This model features a dynamic estimation procedure that produces a sequence of

parameter estimates evolving through filtering-algorithm steps.

4. Dynamic regime-switching zero-delay log-normal model withN regimes (ZDRSLN-

N). This model has all the properties of the DRSLN-N with the assumption that

the distribution of yk depends without delay on xk, i.e., a zero-time lag depen-

dence. That is,

yk = µZ(xk) + σZ(xk)εk, where εk ∼ N(0, 1).

Remark 1: We recognise that we do not explicitly model the correlation amongst

the currency pairs. Nevertheless, the currency pairs are governed by the same

HMM, and are therefore implicitly correlated. Filters with appropriate correla-

tion structure for the various white noise governing the log returns of currency

pairs will most likely be better. Notwithstanding the limitation of the proposed

model, this research investigation can be treated as a lower bound for the credibil-

ity of a study that takes explicitly into account correlated white noise (or correlated

Brownian motions in the case of continuous-time modelling set up).

Remark 2: Under the one-step delay model (3rd model), the reaction to xk

is not instantaneous. With the zero-delay model (4th model), there is no delay in

the reaction to xk. Under the latter framework, this is tantamount to relabelling

the observation process. So, in the calculation of filters under the zero-delay model

in Proposition 1, if {Fly∗} is the complete filtration generated by the observations

then Fl
y∗ = F

y
l+1, where F

y
l+1 is the filtration generated by the observations under

the one-step delay model. This implies that Ẽ[xk+1|Fly∗] = Ẽ[xk+1|Fyl+1]. See

further the Appendix.
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5.3.3 Numerical implementation

5.3.3.1 Optimal number of states in HMM

Our choice of the optimal number of states for the HMM is based on the maximisation

of log likelihood with a penalty for increasing the complexity of the model, i.e., adding

more parameters. This is further complemented by a few error analyses choosing the

number of states that yield the lowest value for a given error metric. Such evaluation

of log likelihood-maximisation with penalty criteria and error metrics assume that we

are able to successfully obtain models’ parameter estimates. This is further discussed

in subsection 5.3.4.

5.3.3.2 Initial parameter estimates

Various approaches may be used to find initial parameters in the implementation of

filtering algorithms. Least-square method (see, for example, Erlwein and Mamon [19]),

likelihood maximisation if it can be accomplished (cf. Date and Ponomareva [11]) and

use of first two sample moments are the most popular.

In our case, we first assume that the time-series data are stationary. Then under

the one-state setting, we find the estimates µ̂g and σ̂g using (i) the sample moments

(sample mean and sample standard deviation) and (ii) maximum likelihood. For both

sample moment-based and maximum-likelihood methods, we identify the maximum

and minimum of the data set and assign the starting values as µg(1) =
max(ygk)−µ̂

2

g

and µg(2) =
min(ygk)+µ̂

2

g
. This procedure may be generalised for the N−regime case

by “spreading” starting values of µg(i) evenly around µ̂g. Initial values of σg(i) are

typically taken to be σ̂g in either regime and as the data are filtered, two volatility esti-

mates emerge, which may or may not be different for each of the two regimes. The EM

algorithm’s rate of convergence is very fast so long as the starting parameters are close

to the “true” parameter values. But as these “true” values are unknown to begin with,

we rely on data processing’s stability and speed with the aid of the filtering equations

attaining convergence in each algorithm step.

We choose 1/N for the initial value of each entry in the transition probability matrix,

and this yields a stable convergence. An alternative approach described in Hamilton

[23] and Hardy [24] is useful for the two-state RSLN model. Such approach works very

fast because it is computationally easy to maximise a smooth function (exponential
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Method µ(1) µ(2) σ(1) σ(2) a12 a21

Sample 8.0 × 10−4 -7.0 × 10−4 3.0 × 10−4 3.0 × 10−4 5.0 × 10−1 5.0 × 10−1

Likelihood 2.0 × 10−6 7.0 × 10−7 3.8 × 10−4 1.8 × 10−4 3.6 × 10−2 5.1 × 10−2

Table 5.1: Initial values for all filtering algorithms (JPY/GBP data)

Method µ(1) µ(2) σ(1) σ(2) a12 a21

Sample 6.7 × 10−4 -4.0 × 10−4 2.2 × 10−4 2.2 × 10−4 5.0 × 10−1 5.0 × 10−1

Likelihood 2.0 × 10−6 -3.2 × 10−6 3.8 × 10−4 2.0 × 10−4 9.0 × 10−2 1.1 × 10−2

Table 5.2: Initial values for all filtering algorithms (JPY/USD data)

function in this case) over the six parameters. It is worth noting that whilst the results

of sample moment-based and likelihood maximisation approaches in obtaining initial

values (Tables 5.1 and 5.2) are different, they still make the filtering algorithms con-

verge and are able to replicate identical dynamics of aij , and µ(i) and σ(i) for each

pair of currencies.

By construction, the dynamic filters, with a single underlying unobserved HMM, take

into account the behaviour of two FX rates jointly. Hence, the starting values for a12

and a21 were taken as the average of the corresponding values in Tables 5.1 and 5.2

in each method. Although the likelihood maximisation (ML) is an ideal method to

initialise parameter values given its statistical formality and grounding, its implemen-

tation in practice may pose one insurmountable challenge. The maximum likelihood

value found using numerical methods may not necessarily be a global maximum, and

proving that is not clear-cut if not impossible. Such a problem akin to ML estimation

becomes more pronounced under HMM with four or more states where computational

time increases with dimensionality.

We further remark that instead of employing the maximal and minimal data values

in the above assignment of initial value estimation, appropriate quantiles could be con-

sidered instead. This is because outliers can substantially affect this procedure. In

spite of the fact that the use of sample moments to select initial estimates is rather

heuristics, they enable the filtering algorithms to yield parameter estimates that have

identical evolution to those produced by the ML method in the 2- and 3-state settings.
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5.3.3.3 Filters, data processing and estimation

In the implementation of the ILN and RSLN-N models, we employ the estimation

method proposed in Hardy [24]. This method, however, was formulated not taking into

account the joint dynamics of two FX rates. Thus, parameter estimates are obtained by

applying the method separately to each data set. This implies a simplifying assumption

that each FX rate data series is independent of each other. The same approach and

assumption are taken in the implementation of the GARCH model, where we utilise

the standard-fitting and forecasting procedures from Matlab’s Econometrics Toolbox.

The dynamic filtering algorithms put forward in this research on the other hand were

designed to work on two-dimensional data of FX rates collected at same time points.

Dynamic filters process a moving window of several univariate or multivariate data

points. This gives rise to certain filtered quantities related to the Markov chain that

subsequently produce a sequence of model parameter estimates using Proposition 2.

The processing of a window of data points is termed as one complete pass or algorithm

step. The initial values are used to generate parameter estimates in the first algorithm

step, which in turn serve as the initial values to obtain the parameter estimates after

the second pass through the data, and this process continues until the last algorithm

step. The size of the moving window is chosen based on some criterion, which is the

maximisation of the log-likelihood function in our case.

Our findings show that the numerical values of log-likelihood function are not mono-

tonic with respect to the window size, and the models with the best fit (in the context

of penalty-based information criterion) do not always produce the best out-of-sample

forecasts. This issue is linked to an associated instability of the log-likelihood max-

imisation due to various factors, most notably the numerical error from the division of

quantities close to zero. Whilst scaling (e.g., working in terms of percentage returns,

log, etc) may help in a few occasions, we note that this issue has no simple quick fix

because it is a data-dependent problem. The selection of the appropriate window size in

our case is made on the basis of (i) maximising log-likelihood values and (ii) reproduc-

ing the nonlinear evolution of the probabilities p̂; refer to equation (5.5). We display

the plots of p̂ in Figures 5.5 and 5.6 through the algorithm steps. The behaviour of p̂

under the zero-delay HMM (Figure 5.6) looks very similar to the behaviour of p̂ under

the one-step delay model (Figure 5.5).
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From the above window-size selection guidelines, our numerical experiments demon-

strate that the most suitable moving window must contain 7 bivariate data points,

which correspond to a 35-minute interval. A wider moving window smooths out the

prediction process. That is, with more data points in the moving window, the graphs of

µ̂, σ̂ and p̂ would look like straight lines, which are contrary to the essence of nonlinear

dynamics of parameters. Moreover, a large sample window decreases the quality of the

out-of-sample forecasts as FX rate dynamics are not also fully captured. On the other

hand, smaller window size magnifies the effect of volatility, which markedly dominates

the drift component. Consequently, this results to large numerical errors making the

predictions meaningless.

Figure 5.5: Evolution of p̂ under the one-step delay HMM

5.3.4 Comparison of numerical results

In Tables 5.3 and 5.4, we present various statistical measures to gauge the goodness of fit

of the proposed model in comparison with other popular existing models. We evaluate

the Akaike information [1] and Bayesian information [35] criteria, abbreviated as AIC

and BIC, respectively, that highlights the maximisation of log likelihood and penalty

for model complexity. The model with the highest AIC and BIC is most preferred. The

AIC and BIC metrics are given by

AIC = lnL− b
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Figure 5.6: Evolution of p̂ under the zero-delay HMM

BIC = lnL− 0.5k lnm,

where L is a likelihood or log-likelihood function, m is the number of observations and

b is the number of parameters in a model.

Furthermore, we also evaluate the fitting performance of the models by analyzing the

errors when prediction values are compared to actual values. The prediction is an

all out-of-sample forecasting because only data in the past are continually processed

to generate forecasts as move through time. With FX rates treated as a 2-dimensional

observation process, the one-step ahead forecasts using equation (5.1) is

E[ygk+1|F
g
k] = ygk

N∑
j=1

〈x̂k, ej〉exp

(
µ̂g(j) +

σ̂g(j)2

2

)
, (5.17)

where x̂k is the estimate for the unconditional distribution of the Markov chain and F
g
k

is the filtration generated by ygk.

One way to examine the model’s goodness of fit is to use the root-mean-square-error

(RMSE) metric given by

RMSE =

√∑m
k=1(sgk − ŝ

g
k)

2

m
,
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Model Log-likelihood BIC AIC RMSE Param.

RW n/a n/a n/a 2.6510× 10−4 n/a

ILN 6603.99 6597.08 6601.99 n/a 2

RSLN-2 6680.68 6659.96 6674.68 n/a 6

RSLN-3 6702.21 6660.76 6690.21 n/a 12

DILN 6781.19 6774.28 6779.19 8.0811× 10−6 2

DRSLN-2 6877.03 6856.30 6871.03 6.5976× 10−6 6

DRSLN-3 6890.12 6848.67 6878.12 6.5897× 10−6 12

ZDILN 6804.96 6798.05 6802.96 8.2164× 10−6 2

ZDRSLN-2 6862.17 6841.44 6856.17 6.5533 × 10−6 6

ZDRSLN-3 6878.29 6836.84 6866.29 6.5832× 10−6 12

GARCH(1,1) 6667.86 6654.05 6663.86 2.4720× 10−4 4

Table 5.3: Results of likelihood- and error-based fitting measures covering JPY/GBP

data collected between 09:35, 06 July 2012 and 18:40, 11 July 2012

where sgk, ŝ
g
k and m are the actual value, predicted value and length of the data series,

respectively. The model producing the lowest RMSE is most preferred. For modelling

multivariate data, the corresponding appropriate RMSE metric is given, for example,

in Date et al. [9].

Remark 3: We do not consider the RMSE for multivariate modelling here because

the implementation of ILN and GARCH models was performed using univariate-based

algorithms. Thus, to make our model comparison valid, the univariate version of the

RMSE is employed on each time series of FX rates.

Under both the AIC and BIC, our empirical results reveal that for the JPY/GBP

data, the multi-regime models with dynamic filters (one-step and zero-delay mod-

els) significantly outperform other competing models. From Table 5.3, the DRSLN-N

and ZDRSLN-N models fit the data very well judging from the chosen criteria. The

ZDRSLN-N models are marginally better than the DRSLN-N models as the former

have slightly smaller RMSEs than the latter. In the case of the JPY/USD data, the

RW model outperforms all other models. This is because the log increments of the

JPY/USD spot-rate process are so small that numerical errors muddled the calculation

of the RMSE. But, under the log likelihood-driven criteria (AIC and BIC), it is clear
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Model Log likelihood BIC AIC RMSE Param.

RW n/a n/a n/a 2.883 × 10−6 n/a

ILN 6999.81 6992.90 6997.81 n/a 2

RSLN-2 7065.49 7044.76 7059.48 n/a 6

RSLN-3 7078.31 7036.87 7066.31 n/a 12

DILN 7102.50 7095.60 7100.50 4.0598× 10−6 2

DRSLN-2 7230.05 7209.32 7224.05 4.0021× 10−6 6

DRSLN-3 7235.12 7193.67 7223.12 7.9566× 10−6 12

ZDILN 7200.95 7193.62 7198.53 4.0678× 10−6 2

ZDRSLN-2 7239.74 7218.35 7233.07 3.1228 × 10−6 6

ZDRSLN-3 7244.13 7202.69 7232.13 6.5533× 10−6 12

GARCH(1,1) 7027.22 7013.41 7023.22 2.1801× 10−4 4

Table 5.4: Results of loglikelihood- and error-based fitting measures covering JPY/USD

data collected between 09:35, 06 July 2012 and 18:40, 11 July 2012

that the ZDRSLN-2 won this comparison race of FX-rate models. The ZDRSLN-2 also

ranked second in terms of the RMSE criterion. Thus, we still place a great deal of

confidence in the performance of the ZDRSLN-2 model. We note that the likelihood

statistics for the random walk are not available. The main advantage of choosing a

ZDRSLN-2 model over a random walk model is flexibility and adjustability. It is a

huge advantage to have a model that can be adjusted for the data dynamics; a random

walk model cannot offer such flexibility.

For both data sets, the fit of the ILN and GARCH(1,1) models is poor relative to

those of the other models across all criteria. We observe significant improvement in the

log-likelihood values of the dynamic models over those of the static RSLN.

It appears logical that within the context of a multi-regime modelling comparison, the

Markov-switching (MS) GARCH model [20, 27] would be the more appropriate choice

over the usual GARCH model. However, the calibration procedure for the MS-GARCH

model involves either the Markov chain Monte Carlo (MCMC) algorithms or maximi-

sation of a quasi-likelihood function. Therefore, the calibration procedures are not

readily accessible to practitioners; in addition, such estimation algorithms are not fast

enough to be considered for frequent-trading models. Trader requires rolling over their
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positions quickly and would tend to rely on the simpler version of the GARCH model

than endeavour in dealing with the implementation issues of the MS GARCH model.

The curse of dimensionality is another significant issue. For example, there are al-

ready twelve parameters to estimate in the two regime MS-GARCH(1,1) model. But,

we note that a simple GARCH model is the standard for hedge fund managers working

with volatility in discrete time. We do not provide a detailed analysis of how parameters

in the simple GARCH (1,1) are chosen for the purpose of benchmarking. The GARCH

(1,1)’s AIC and BIC statistics were calculated using the standard Matlab Econometrics

Toolbox.

5.3.5 CHull criterion

In any modelling endeavour, the main goal is to select a model that optimally balances

model’s goodness of fit/misfit and complexity/simplicity. To reinforce the AIC, BIC

and RMSE criteria in our analyses above, we consider the model-fitting criterion called

CHull (based on the concept of convex hull) in the context of mixtures of factor analyses

developed by Ceulmans and Kiers [6]. We tailor this criterion to our regime-switching

methodology aided by the guidelines provided in Buteel et al. [4]. A generic but suc-

cinct synopsis of CHull is described in Wilderjans et al. [39] comprising of two main

steps: (i) determining the convex hull of the fit-measure-versus-complexity-measure

plot of the models under comparison and (ii) identifying the model on the boundary

of the convex hull such that increasing complexity (i.e., adding more parameters) has

only a small effect on the fit measure, whereas lowering complexity (e.g., having less

parameters) changes the goodness of fit/misfit significantly.

In our CHull implementation, we keep track and compare the changes in the log-

likelihood (simple fitting measure) when the dimensions of the models (measure of

complexity) are increased or decreased. In particular, the change of the log-likelihood

of the models on the convex hull is given by(
logLn − logLn−1

fn − fn−1

)
/

(
logLn+1 − logLn

fn+1 − fn

)
, (5.18)

where Ln is the log-likelihood value of the nth model, with models being ordered accord-

ing to the number of free parameters. Here, fn stands for the number of free parameters

in the nth model. In our case, n = 2, 4, 6 and 12. In summary, the above procedure
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can be described as simple as plotting the values of the log-likelihood for all models

versus the number of free parameters and choosing the points where the log-likelihood

values are the biggest and building a convex hull using these chosen points. We pick

the model that produces the greatest statistic value in equation (5.18).

The points corresponding to the models lying on the convex hull are connected by

a line. From Figures 5.7 and 5.8, the models chosen by the BIC is on the upper bound-

ary of the convex hull. As seen in Figures 5.7 and 5.8, the models whose log-likelihood

values lie on the convex hull are the same models which are selected in accordance with

the BIC criterion. This provides extra support on the appropriateness of the dynamic

regime-switching models (especially the zero-delay model) in capturing the trend of the

bivariate FX data.

Figure 5.7: Chull for the JPY/GBP data

5.3.6 Parameter estimation results and further model validation

5.3.6.1 Dynamics of parameter estimates

Figures 5.9 - 5.13 depict the estimation outputs of the filtering experiment for the zero-

delay 2-state model. The plots for the outputs of the one-step delay 2-state model look
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Figure 5.8: Chull for the JPY/USD data

and behave in a similar manner, and are therefore omitted. The estimated drift and

volatility dynamics clearly show the multi-regime pattern of the FX-rate process. This

empirically illustrates the unpredictability of the parameters’ behaviour in the models

under consideration. Such unpredictability is consistent with Nailiu and King’s findings

[32] regarding extreme difficulty in estimating parameters and modelling the FX-rate

process in general.

5.3.6.2 Validating the white-noise assumption

The multivariate extension of a regular Q-Q plot was comprehensively tackled in Liang

and Ng [29] and the result in our case is shown in Figure 5.14. Since the data has

several dimensions, it is important to understand that producing two different Q-Q

plots will not capture properly the noise structure of the data. Visually, the output of

the method is interpreted as a simple one dimensional Q-Q plot; the points have to be

as close as possible to the straight line. The graph supports the normality assumption

of the residuals whilst the general dynamics of the process is explained by the model.

We argue that for extremely noisy data the line in Figure 5.14 is very straight and the

normality hypothesis is validated for the particular data set.
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Figure 5.9: Evolution of µ̂Z(i) for the JPY/GBP data under the 2-state HMM

Figure 5.10: Evolution of σ̂Z(i) for the JPY/GBP data under the 2-state HMM

5.3.7 Frequent trading and the ZDRSLN-N modelling set-up

Following the discussion in subsection 5.3.4, we focus our comparison on several dy-

namic regime-switching models if no delay in the reaction time of yk to xk in frequent

trading is a pertinent assumption. We implemented the ZDRSLN-N and DRSLN-N

filters using the most popular computing platforms in the industry. These include the

Microsoft Visual C++ and Visual Basic for Applications (VBA) in Microsoft Excel.

The codes written in Excel are more instructive than those in C++, and without a

doubt they are more useful for practitioners keen on implementation. However, it takes
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Figure 5.11: Evolution of µ̂Z(i) for the JPY/USD data under the 2-state HMM

Figure 5.12: Evolution of σ̂Z(i) for the JPY/USD data under the 2-state HMM

a very long time to generate results using Excel. It would only take 8.29 seconds to

run the filtering together with the parameter estimation codes and produce the needed

numerical outputs (e.g., plots of parameters’ evolution) in C++ whilst it would take 7

minutes to perform the same tasks in VBA.

In the financial industry the design of many algorithms is compatible with Excel work-
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Figure 5.13: Evolution of transition probabilities under the zero-delay 2-state HMM

Figure 5.14: Q-Q plot for the bivariate FX rate data

books. We therefore implemented a C++ code to interface with Excel sheets. This

endeavour imposes additional limitation on the performance of the code as Excel is

used not only as a database, but also as a graph-plotting engine. If C++ is run for the

purpose of calculating the parameter values alone, the computing time involved is only
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2 seconds. This shows that C++ implementation is convincingly more efficient than

VBA.

Given the appropriateness and seeming dependability of the zero-delay models in out-

performing other models under a frequent trading environment, we now concentrate

on the analysis of our complete JPY/GBP and JPY/USD FX bivariate data set. That

is, all data points that were recorded, some of which occurred in time intervals of less

than 5 minutes, are considered. Thus, we wish to examine time series data with a much

higher frequency than the ones studied in the previous subsections. The period covered

is the same as that in the previous exercise, i.e., from 09:35, 06 July 2012 to 18:40, 11

July 2012.

Even with higher frequency, the trades on our two currency pairs are still at irreg-

ular intervals and do not occur simultaneously. Moreover, they do not necessarily

happen every second or even within a minute. Sometimes, there were several trades in

a one-minute interval, at other times, there was none at all. So, from the original data

sets, we construct two new “derived” FX data sets where data points are “observed”

at synchronised time points (but finer intervals of uniform lengths) to be able to apply

our filtering algorithms in conjunction with our zero-delay models.

The new-data-generation procedure combines simple heuristics of data imputation and

smoothing in the following way. The time series data is binned into two-minute inter-

vals. With the two-minute interval binning, we ended up with 35 and 63 empty bins

for JPY/USD and JPY/GBP currency pairs, respectively. The bin length is justified

on the basis of minimising the number of empty bins whilst attempting to retain the

effect of the model’s drift.

The data values are averaged in each two-minute bin interval and this average rep-

resents the data point of the modified new data set assigned at the beginning of the

bin interval. If there were no trades in a given time interval, the previous average value

is used, i.e., it becomes a new trading value for the next empty bin.

We concentrate on the performance analysis of the adjudged best two models from

the previous subsection given the newly obtained 2-minute time-series bivariate data
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set. We include the RW model in the analysis. The resulting goodness-of-fit statis-

tics from the application of both the dynamic one-step and zero-step delay filtering

algorithms on the new data set are depicted in Tables 5.5 and 5.6. The results osten-

sibly favours the ZDRSLN-2 model in terms of BIC and AIC. The RMSEs show that

the ZDRSLN-2 model is able to outperform significantly the RW model with approxi-

mately 43% decrease in RMSE for the JPY/USD data and approximately 18% decrease

in RMSE for the JPY/GBP data.

Model Log likelihood BIC AIC RMSE Parameters

RW n/a n/a n/a 3.692× 10−4 n/a

DRSLN-2 6671.307 6650.584 6665.307 8.472× 10−4 6

ZDRSLN-2 6728.407 6707.684 6722.407 3.031× 10−4 6

Table 5.5: Loglikelihood- and error-based goodness-of-fit measures for the new JPY/GBP

data set with 2-minute frequency covering the period 09:35, 06 July 2012 - 18:40, 11 July

2012

Model Log-likelihood BIC AIC RMSE Parameters

RW n/a n/a n/a 1.010× 10−5 n/a

DRSLN-2 7115.221 71022.19 7109.221 1.323× 10−5 6

ZDRSLN-2 7204.691 7191.66 7198.691 5.780× 10−6 6

Table 5.6: Loglikelihood- and error-based goodness-of-fit measures for the new JPY/USD

data set with 2-minute-frequency covering the period 09:35, 06 July 2012 - 18:40, 11 July

2012

The 2-minute interval was chosen heuristically and it is completely data-dependent.

The new data was then obtained from the original data set, and we correspondingly

perform our analysis.
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5.4 Conclusion

In this chapter, we put forward an alternative approach to jointly model the behaviour

of high-frequency multivariate FX rates using an HMM. New filtering recursive equa-

tions are derived assuming a zero-delay modelling paradigm. These recursions yield

a self-calibrating multi-dimensional model that practitioners may employ for various

financial modelling endeavours. To demonstrate the applicability and performance of

our proposed model together with its parameter estimation methodology, we consider

its implementation on the JPY/USD and JPY/GBP FX rates. A comparative analysis

was conducted examining various HMM competing models with increasing complexity

in terms of regime dimension and lag order as well as commonly used models for simple

benchmarking. Our selection criteria in assessing model performance are in adherence

to balancing the goodness of fit via log-likelihood maximisation and model complexity

penalty (AIC, BIC, Chull). This was complemented by evaluating the model’s RMSE

and choosing the model with the least forecasting error.

Whilst we tend to emphasise model development for data under the HFT’s frame-

work, this investigation can be viewed as bridging the gap between the usual modelling

of low-frequency data (daily, weekly monthly or quarterly) and the modelling of the

currently emerging data sets resulting from rapid trading (minutes or seconds). More

specifically, some of the challenges unique to high-frequency data were elaborated, and

certain ways to formally or heuristically rectify them were given. Common issues in

the implementation of our proposed approach were detailed and addressed.

The empirical evidence of our extensive study using various filtering estimation al-

gorithms in conjunction with model validation diagnostics shows that the proposed

dynamic models, in particular the ZDRSLN-N , outperform other competing models

(GARCH, RSLN, DRSLN). These zero-delay models could be potentially beneficial in

forecasting FX rates to aid practitioners in setting their trading positions. Certainly,

further examinations need to be pursued such as performance analysis of the ZDRSLN-

N model with respect to a few benchmark models on several other FX rates at different

time periods. Armed with a better model in terms of fitting high-frequency data, a

natural direction of this study would be the pricing of FX derivatives as well as testing

the accuracy of risk measures for portfolios with exposures to FX-rate movements.
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Two extensions could be pursued to probably improve further the model performance

and make the filtering algorithms more flexible. (i) Smoothers could be incorporated

that will allow parameters to change quickly without having the need to filter a quite

large subset of data. This procedure will decrease the RMSEs and simultaneously

shorten the time of parameter estimation. (ii) A correlation structure between the

white noise drivers of the data could be introduced. This would lead to a collection of

enhanced filtering algorithms but most likely, a set of new challenges in the numerical

implementation have to be tackled.

Finally, an alternative approach could be explored by considering instead the mod-

elling of the price dynamics of currency or FX futures. From the estimates of FX

futures prices, forecasts of FX spot rates and other parameters of interest can be re-

covered. This methodology is similar to the idea worked out in Date et al. [10] in

capturing the evolution of arbitrage-free futures prices on commodities. The method-

ology of modelling FX futures prices directly is ideal but only if backing out FX rates

for one particular currency pair. Nonetheless, when a joint evolution of FX rates is

needed, the approach in this research prochect is still deemed more appropriate and

relevant.
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5.6 Appendix

Proof of recursive filters in Proposition 1

We provide the derivation of the filters given in Proposition 1 of section 5.2.

Filter for the state of xk

γ(xk+1) = Ẽ[Λk+1xk+1|Fyk+1] =
N∑
j=1

Ẽ [ΠxkΛk 〈xk+1, ej〉|Fyk+1]Γj (5.19)

=

N∑
j=1

Ẽ [ΠxkΛk 〈Πxk + vk+1, ej〉|Fyk+1]Γj

=
N∑
j=1

Ẽ [ΠxkΛk 〈Πxk, ej〉|Fyk]Γj .

By noting that
∑N

j=1 〈xk, ei〉 = 1, it follows that

γ(xk+1) =
N∑

i,j=1

〈γ(xk), ei〉 ajiΓjai.

Filter for the jump process J

γ(Jjik+1xk+1) = Ẽ[Λk+1J
ji
k+1xk+1|Fyk+1] (5.20)

=

N∑
l=1

Ẽ
[
ΛkΠxk 〈xk+1, el〉

(
J
ji
k + 〈xk, ei〉 〈xk+1, ej〉

)
|Fyk+1

]
Γl

=
N∑
l=1

Ẽ
[
ΛkΠxk 〈Πxk + vk+1, el〉

(
J
ji
k + 〈xk, ei〉 〈xk+1, ej〉

)
|Fyk+1

]
Γl

=

N∑
l=1

Ẽ
[
ΛkΠxk 〈Πxk, el〉

(
J
ji
k + 〈xk, ei〉 〈xk+1, ej〉

)
|Fyk+1

]
Γl

=

N∑
l=1

Ẽ
[
Π 〈Πxk, el〉ΛkxkJjik |F

y
k

]
Γl

+ Ẽ
[
Λk 〈Πxk, ej〉 〈xk, ei〉Πxk|Yyk

]
Γj

=

N∑
m,l=1

〈
γ(Jjik xk), em

〉
almΓlam + Ẽ

[
ΠxkΛk 〈Πxk, ej〉 〈xk, ei〉 |Fyk

]
Γj

=
N∑

m,l=1

〈
γ(Jjik xk), em

〉
almΓlam + 〈γ(xk), ei〉 ajiΓjai.
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Filter for the auxiliary process T

γ(Tik+1(f(ygk+1))xk+1) = Ẽ[Λk+1T
i
k+1(f(ygk+1))xk+1|Fyk+1] (5.21)

=

N∑
l=1

Ẽ
[
ΛkΠxk 〈xk+1, el〉

(
Tik(y

g
k) + f(ygk+1)(yk+1) 〈xk, ei〉

)
|Fyk+1

]
Γl

=
N∑
l=1

Ẽ
[
ΛkΠxk 〈Πxk + vk+1, el〉

(
Tik(f(ygk)) + f(ygk+1) 〈xk, ei〉

)
|Fyk+1

]
Γl

=

N∑
l=1

Ẽ
[
ΛkΠxk 〈Πxk, el〉

(
Tikf(ygk) + f(ygk+1) 〈xk, ei〉

)
|Fyk+1

]
Γl

=
N∑
l=1

Ẽ
[
Π 〈Πxk, el〉ΛkxkTik(f(ygk))|Fyk

]
Γl

+

N∑
l=1

Ẽ
[
Λk 〈Πxk, el〉 〈xk, ei〉Πxk|Fyk

]
f(ygk+1)Γl

=
N∑

m,l=1

〈
γ(Tik(f(ygk))xk), em

〉
almΓlam

+

N∑
l=1

Ẽ
[
Λk 〈Πxk, ej〉 〈xk, ei〉Πxk|Yyk

]
f(ygk+1)Γl

=
N∑

m,l=1

〈
γ(Tik(f(ygk))xk), em

〉
almΓlam

+f(ygk+1)

N∑
l=1

〈γ(x)k, ei〉 aliΓlai.

Filter for the auxiliary process O

The proof follows from the derivation of the filter for the auxiliary process T by noting

that when fg(y) ≡ 1 in equation (5.9), we obtain equation (5.8).

�
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6

An estimation algorithm for a

Markov-switching model with

any number of states

6.1 Introduction

The economy exhibits cyclical patterns alternating between stability and growth. Thus,

the parameters of models describing the financial or economic process must also change

over time. Such phenomenon in the economy can be effectively captured by embedding

a hidden Markov chain to modulate model parameters. Consequently, this popularised

the use of hidden Markov models (HMMs) to support various financial modelling ob-

jectives such as valuation, risk management and asset allocation. In the estimation

of risk measures, HMM-based models are ideal especially for long-maturity insurance

contracts such as segregated funds because they have the ability to adapt to dynamic

changes in asset log returns over a long period of time.

Advanced mathematical and statistical machineries were developed to enhance and

support the applications of HMMs to finance; see Date and Ponamareva [1] and Erl-

wein et al. [5], amongst others. Model calibration, which is obtaining reliable parameter

estimates using observed values from the financial market, is a prime consideration and

needs to be put in place. Otherwise there is no way to make the model implementation

a success.
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The pioneering works of Hamilton [6], Hardy [8] and Elliott et al. [2] offered com-

prehensive procedures in the estimation of parameters for Markov-switching models.

Whilst these works described the underlying mathematical principles with augmented

insightful discussions on a few implementation issues, details of implementation to spe-

cific data sets are left to the readers to hurdle such as the issues of initialisation and

algorithm stability. Concentrating on statistic estimation, Hardy’s work [8] is well-

acknowledged in the actuarial community; it gives practically detailed procedure that

can easily be implemented in Excel with VBA, which is the main platform currently

used in the industry. However, to the best of our knowledge, the systematic procedure

on finding appropriate parameters of Markov-switching models using data under three

or more regimes is left unaddressed.

In the sequel below, we explain how to calibrate an HMM-driven financial model as-

suming the number of regimes is more than two. As in Hardy [8] and the general

Black-Scholes framework that is still popular with practitioners, we assume that the

underlying process follows a geometric Brownian motion with regime-switching pa-

rameters. From the programming point of view, our procedure is compatible with an

object-oriented interface as it directly encapsulates already known results and method-

ology.

The organisation of this chapter is as follows. In section 6.2, the modelling framework

is set up. Section 6.3 explains how to proceed with a general calibration procedure if

number of the regimes is N , any integer number greater than two. Section 6.4 presents

some conclusions.

6.2 Modelling setup

We focus on a regime-switching log-normal model in discrete time and extend the

estimation procedure when there are at least 3 regimes. We assume log-normal in-

crements for asset prices over short time intervals. That is, log returns are normally

distributed with constant mean and variance which depend on the state Rti = 1, 2, .., N ,

i = 1, 2, .., n, where Rti denotes a regime where the process is over the period [ti, ti+1).
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So, if St stands for the stock price process,

ln
Sti+1

Sti
|Rti ∼ φ(µti , σti), (6.1)

where φ is a Gaussian density with mean µti and standard deviation σti over the inter-

val [ti, ti+1). The distributions of log-increments conditional on Rti are independent.

For simplicity, we set S0 = 1 in future calculations.

The transition matrix of the underlying hidden Markov process, Π = (pkj), is defined

as

pk,j = P (Rti+1 = j|Rti = k), j = 1, 2, ..N, k = 1, 2, . . . , N. (6.2)

For a two-regime model, we have only six parameters to estimate. Unfortunately, the

curse of dimensionality is extreme in this case. For a three-regime model, it is necessary

to estimate twelve parameters, i.e., Θ = (µ1, µ2, µ3, σ1, σ2, σ3, p11, p12, p21, p22, p31, p32).

The procedure for calculating maximum likelihood estimates under a two-regime HMM

is known; see Hardy [8], Hamilton [6] and Elliott et al. [2]. It consists of maximising the

likelihood function over six parameters. In this case, after using the optimisation con-

straints on p12 and p21 (0 ≤ pij ≤ 1) and calculating π1 =
p21

p12 + p21
, the maximisation

procedure can be easily done with standard optimisation algorithms. Unfortunately,

that is not the case if the number of regimes is greater than two. In the succeeding

discussions, we describe how to overcome the challenges in working with models having

three or more regimes.

In financial applications, knowing the probability density function of Stn , fStn (x), is

essential for finding different risk measures of a portfolio such as value at risk (VaR)

and expected shortfall also known as CVaR and conditional tail expectation. To find

fStn (x), we need to know the joint distribution function for the total sojourn in regime

1, . . . , N − 1, i.e., we require P (R(N − 1) = kN−1, R(N − 2) = kN−2, . . . , P (1) = k1),

for ki = 0, 1, 2, . . . , N ; i = 1, 2, . . . , n. The algorithm for finding P (R(1) = i) in a two-

regime model is elaborated in Hardy [8]. We provide a generalisation of the two-regime

algorithm in this chapter.

Following the discussion in Hardy [8], we generalise fSn as follows:

Stn |R ∼ LN(µ∗(ζ), σ∗(ζ)), where (6.3)
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µ∗(ζ) =
∑

ζ:ki∈{0,1,2,...,N},
∑N
i=0 ki=n

kiµi, (6.4)

σ∗(ζ) =
√ ∑
ζ:ki∈{0,1,2,...,N},

∑N
i=0 ki=n

kiσ2
i , (6.5)

where LN stands for the log-normal distribution.

Therefore, the density function for Sti is

fStn (x) =
N∑
R=0

φ

(
lnx− µ∗(ζ)

σ∗(ζ)

)
P (R(N−1) = kN−1, R(N−2) = kN−2, . . . , P (1) = k1).

(6.6)

Formulae (6.3)-(6.6) are simple generalisations of the algorithm for two regimes. As

long as the joint density for staying in different regimes, µi, and σi are known, it is

easy to calculate the values of fSti (x),∀x > 0.

6.3 Estimation of model parameters under an N-regime

model

This section summarises the results of the parameter estimation for a 2-regime model.

We then explain how to generalise the results on an N -regime model

6.3.1 Maximum likelihood estimation in 2-regime model.

Write ytn+1 := ln
Stn+1

Stn
. The likelihood function for y = (y1, y2, .., ym) can be written

as

L(Θ) = f(yt1 |Θ)f(yt2 |Θ, yt1) · · · f(ytn |Θ, y1, ..., ytn−1). (6.7)

The calculation of L(Θ) is performed recursively, and this is described by Hamilton

and Susmmel [7]. The starting values of the recursion are obtained using the invariant

distribution π = (π1, π2). In the case of a two-regime HMM π is known explicitly, and

given by

π =

(
p2,1

p1,2 + p2,1
,

p1,2

p1,2 + p2,1

)
. (6.8)

The maximisation of the likelihood function is with respect to six parameters. It can

easily be done using standard optimisation routines, such as Solver in Excel/VBA or

any optimisation routine in Matlab.



6.3 Estimation of model parameters under an N-regime model 165

6.3.2 Maximum likelihood estimation in an N-regime

model. The procedure for finding the parameter estimates for an N -regime model is

somewhat similar to the one for the two-regime HMM. The key difference is the es-

timation of the invariant distribution π. To the best of our knowledge, there is no

explicit formula for the stationary distribution when K > 2. This problem is resolved

numerically under a weak constraint that the transition matrix Π must be regular, i.e.

∀ 1 ≤ i, j ≤ N, 0 < pij < 1. This works even in the case when pij = 1 for some i and j

as during numerical optimisation there is always presence of numerical errors and such

an estimate p̂ij would never equal to one. Under the above assumption a normalised

eigenvector corresponding to an eigenvalue 1 provides values of stationary distribution

π. The existence of such an eigenvalue is a direct consequence of the Perron-Frobenius

theorem.

Consequently, the algorithm for maximising the likelihood function is with respect to

N2 +N parameters. The difference between this approach and the method for N = 2

lies in the function g for π = (g(pi,j), 1 ≤ i, j ≤ N − 1). For N = 2, g is described by

(6.8). The function g in general does not have a closed form for a number of regimes

exceeding two and therefore, it has to be estimated numerically.

As the data sample size n → ∞, the time to complete the maximisation procedure

increases dramatically. Working with a large n is not really a problem in real-life appli-

cations. In our framework, it is assumed that the quantity of regimes does not change

although this is not necessarily true in practice. From studies employing more complex

dynamic filters, as described in in Elliott et al. [2]; Xi and Mamon[9]; Erlwein et al. [4],

the number N of regimes may change after some periods of time for a given data set.

When n is very large, we apply the algorithm only to the previous m < n time points.

In this argument, we assume that the most recent information about the process is

more relevant than its overall performance.

6.3.3 Joint probability function for occupation time in different regimes

in an N-regime model.

We start by generalising the procedure for finding the marginal probability mass func-

tion P (R(k) = i) for the total sojourn in regime k for k = 0, 1, 2, . . . , N ; i = 1, 2, . . . , n.

Using the same approach one can find a distribution of staying in regime-1 under the
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N−state HMM, which is P (R(1) = i). However, the case of finding the distribution

of being in regime k is still unexplained. There is always a trade-off between the time

consumed on writing a code and the performance of the algorithm. From the practical

point of view, it does not help if it takes a long time to write a very complicated code

that only marginally increases the precision of the method. In typical applications,

parameters are calculated by imposing the number of regimes i.e., N = 2, 3, . . . . It is

rather time consuming writing a code for each regime case especially if starting from

scratch.

We shall propose an alternative way of modelling the probability function for staying in

regime K whilst utilising the code for the finding probability function under a 2-regime

model. We also show how to calculate the joint probability function for the amount of

time spent in each regime, i.e P (R(1) = k1, R(2) = k2 , . . . , P (N − 1) = kN−1).

Suppose the underlying process has N states and its transition matrix is given by

Π =


p11 p12 · · · p1N

p21 p22 · · · p2N

...
...

. . .
...

pN1 pN2 · · · pNN

 . (6.9)

We “transform” our N -regime Markov process into a two-regime process by considering

the process as either being in regime one or being in any other regime. Therefore if we

define Π′ as the transition matrix for the proposed 2-regime process, we have

Π′ =


p11 1− p11

K∑
i=2

pi1/

K∑
i=2,j=1

pij 1−
∑K

i=2 pi1/
∑K

i=2,j=1 pij

 (6.10)

Following the already established algorithm for the two regime-case, it is easy to find

P ′(R(1) = i) for the “transformed” model. From our formulation of the transformed

model, P ′(R(1) = i) = P (R(1) = i). Now, consider a new Markov process which has

N − 1 states and a transition matrix Π2,

Π2 =


p22/

∑N
j=2 p2j p23/

∑N
j=2 p2j · · · p2N/

∑N
j=2 p2j

p32/
∑N

j=2 p3j p33/
∑N

j=2 p3j · · · p3N/
∑N

j=2 p3j

...
. . .

...

pN2/
∑N

j=2 pNj pN3/
∑N

j=2 pNj · · · pNN/
∑N

j=2 pNj

 . (6.11)
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Applying the previous argument to Π2, we can find the probability function of being in

regime 1 under a Markov chain with a transition matrix Π2. Unfortunately, this pro-

cedure will not give us a distribution of being in regime 2, but it will help us calculate

the required distribution after several steps of the proposed algorithm.

By definition of R(i),
N∑
i=1

R(i) = n,

and so,

P (R(i) = k) = P (R(ic) = n− k),

where ic stands for the regime not equal to i. To calculate the joint probability function
we recall that

P (R(N − 1) = kN−1, R(N − 2) = kN−2, ..., P (1) = k1)

= P (R(N − 1) = kN−1|R(N − 2) = kN−2, ..., R(1) = k1)

· P (R(N − 2) = kN−2|R(N − 3) = kN−3, ..., R(1) = k1)

· · · · · · · · · · · · ·

· P (R(3) = k3|R(2) = k2, R(1) = k1)

· P (R(2) = k2|R(1) = k1)P (R(1) = k1)

We already showed the calculation of P (R(1) = k1). To calculate P (R(2) = k2|R(1) =

k1), it is important to understand the procedure described earlier when the 2-step pro-

cedure was applied to Π2 In short, it consists of working recursively backwards using

conditional probabilities when the conditioning is based on the knowledge about the

previous regime (cf. section 6.1 of Hardy [8]). By assuming a Markov model being

driven by Π2, we constrain the original Markov chain with transition matrix Π going

through all of its states except state 1. This means P (R(2) = k2|R(1) = k1) equals to

the probability function of being in regime 1 the under Markov chain with transition

matrix Π2.

Given the background above, the general algorithm for finding P (R(N−1) = kN−1, R(N−
2) = kN−2, . . . , P (1) = k1) is as follows:

Algorithm for finding joint probability mass function for

R(N − 1) = kN−1, R(N − 2) = kN−2, ..., R(1) = k1, jth-step



6.4 Conclusion 168

• Delete the first row and first column of the matrix Πj−1 and normalize the re-

sulting matrix as shown in (6.11).

• Construct the matrix Π′j using the approach described in (6.10).

• Apply the algorithm in finding the probability function of staying in regime 1 as

it is depicted in Hardy [8].

After P (R(N − 1) = kN−1, R(N − 2) = kN−2, ..., P (1) = k1) is determined, it is easy

to construct a joint distribution function for the occupation time spent in different

regimes. As shown in section 6.2, this distribution is an essential component to find

the density and cumulative distribution function of Stn .

This method is straightforward and it can be applied even to a large data set with

thousands of data points. There is, of course, an associated computer memory require-

ment that must be allocated to the efficient calculation of the final distribution which

is used in equation (6.6).

This approach in conjunction with calculating fStn in equation (6.6) yields a set of

risk measures, which is the primary objective in risk management. Preliminary results

demonstrate that for the distribution of Stn when the quantity of regimes is small (e.g.,

N < 5) and n is a reasonable value, this approach is preferable to the Monte-Carlo

method.

6.4 Conclusion

We put forward a new procedure in estimating parameters of the Markov-switching

model by extending the methodology proposed in Hamilton [6] and Hardy [8]. The

proposed algorithm is suitable for implementation in an uncomplicated manner and it

is based on ideas and procedures that were previously tested on a 2-regime framework.

In other words, the approach can be easily adopted to practice once the 2-regime

approach was already implemented. Elements of algorithm’s structural design is of

prime consideration. This approach offers the advantage of systematic implementation

over rewriting the code from scratch, which may only lead to negligible additional

computing speed for the user. The approach could be employed by practitioners for

the calculation of risk measures, and the modelling of financial and economic variables

underlying many long-term contracts. Academic and industry users can implement the

approach with major financial platforms such as Matlab, Excel/VBA or C++.
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7

Conclusions and further

extensions of research

7.1 Contributions

In this thesis, we developed new regime-switching models and the corresponding imple-

mentation algorithms tailored to filtering and forecasting of commodity futures prices,

pairs trading strategy, liquidity risk forecasting, and FX rates behaviour modelling.

Demonstrations on applying our proposed approaches to data sets were conducted,

and related statistical inference questions were addressed. The performance of the

models put forward in this thesis was assessed on the basis of some statistical metric

or by comparing them to current standard models in the literature.

We emphasised the numerical works performed in each model that could be trans-

lated to financial practice. The results outlined in this thesis were obtained under

the assumption that model parameters are driven by a dynamic HMM and therefore

filtering techniques are naturally necessary for parameter estimation. This setting is

more realistic than most of the HMM frameworks for modelling that make use of static

parameter estimation. To facilitate the parameter estimation procedure, the change

of measure methodology was invaluable in conjunction with the EM-algorithm. Our

multi-dimensional filtering extensions of the approach previously inspired by Elliott,

Mamon, and their collaborators (cf. Mamon and Elliott [3] and [4]; Elliott et al. [2];

Aggoun and Elliott [1]). Our results enriched previous economic interpretations and

insights on various financial application areas.
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Our implicit goal in this thesis is to bridge the gap between academic and practi-

cal approaches by proposing methods and procedures that are theoretically sound but

at the same time easily accessible for quants, and some major industry hurdles are

reasonably resolved. In addition to an extensive statistical and mathematical formu-

lation, we offered some insights and interpretations in the context of financial market

participants’ behaviour, convention, and regulation. One distinct feature of this thesis

is the comparison exercise involving several competing models with respect to profit

targetting and loss level measurements, which are of special interest to hedgers and

traders as well as government bodies with oversight functions.

Specifically, we showcased four major contributions: (a) filtering of commodity futures

prices and prediction focusing on the analysis of heating oil futures contracts, which

were tackled in chapter 2; (ii) forecasting illiquidity via an OU-multivariate model,

which was the main theme of chapter 3, and it was found that the crisis of 2008-2009

was not the trigger for creating an illiquidity regime but such a regime already existed

a long time before the subprime crisis–it just did not surface with apparent clarity

until the crisis event. (iii) implementation of pairs trading strategy backed up by the

integration of two filtering algorithms in chapter 4, where it was shown that for a fi-

nancial sector it is possible to attain a successful algorithmic trading; and finally (iv)

modelling FX rate evolution for high-frequency trading in chapter 5 using an HMM

under a zero-delay framework.

To complement the above big four studies, we developed static estimation procedure

given in chapter 6. The procedure can be used in the estimation for any number of

regimes for a Markov-switching model. A central concern that was addressed is the

justification of various ways in effectively initialising the algorithms.

7.2 Further extensions of research

Whilst providing solutions to various financial problems, we came to realise the lim-

itations and many imperfections of of our approaches. Rather than viewing these as

drawbacks and deficiencies, they can be turned into opportunities that could stimulate

more research activities. The list below outlines several research directions that are

offshoots of the results in this thesis.
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• The extent of the effect of correlation between the driving noise factors and of

correlation between Markov chains modulating various model parents is unknown.

For example, in our modelling framework for liquidity forecasting in chapter 3, we

assume that the three data series correlate only through the underlying Markov

chain. In contrast, a simple Kalman filter is built under the assumption that its

noise terms are correlated and this is specified by a variance-covariance matrix.

It would be appropriate to investigate a new type of dynamic HMM filters where

a covariance structure is taken into account for different Markov chains driving

different time series.

• A natural extension of the liquidity forecasting problem is to link its applications

to trading strategies. For example, it is known that S&P 500 futures are one

of the most liquid contracts in the world. Even during uncertain times, bid-ask

spread usually makes a very significant correction to contract’s price.Buy-side

organisations such as insurance companies, hedge funds, pension management

funds usually get the largest hit in correcting their positions. By accurately

predicting the state of liquidity, these institutions could gain insights on how and

when to change their strategies to avoid paying unnecessary fees.

• In the pairs trading strategy in chapter 4 involving the OU-process, the model

parameters can only be stable under suitable conditions. For instance, the speed

of mean reversion, mean level and variance have all to be positive. However, for

automatic trading adhering to these conditions implies full reset of parameters.

This in turn, creates loss of valuable historical information as implied by the

filters Perhaps, there is a transformation, and its construction is left to further

research, that can train the algorithm to effect the parameters attain some form of

stability. Alternatively, constraint optimisation with applied to filtering equations

construction must be considered.

• For the pairs trading problem, an extension to our approach would be the con-

struction of strategy where the noise is not necessarily Gaussian. From our expe-

rience, as long as it is possible to develop filters for the one-dimensional process,

the multi-state extension is theoretically available in principle.

• With the frequent trading discussed in chapter 5, we worked with a two-minute

bin to deal with uniformising the frequency of data points. Clearly, a standard
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procedure with mathematical underpinnings is sought for “cleaning” the data set

with a view towards using it for frequent trading model calibration.
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