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Abstract 

Magnetic Resonance Imaging (MRI) is a non-invasive technique used in medical imaging 

with applications in diagnosis, stage determination and monitoring of the progress of disease. 

Although contrast agents have been used to enhance the image generated by MRI, it still 

suffers the major shortcoming of low sensitivity. This has led to a thrust to develop contrast 

agents that improve the sensitivity by relaxation (T1 and T2) as well as by chemical exchange 

saturation transfer (CEST).  

To further aid in the development of sensitive MRI contrast agents, the synthesis and 

evaluation of lanthanide and transition metal complexes was executed. The results are 

presented herein. 

Chapter 2 investigated pH dependent reversible binding on CEST effect and relaxivity in 

macrocyclic complexes possessing three of the same arms and a lone p-nitrophenol arm. 

Unfortunately, only the Tb3+complex had a small CEST signal. T1 relaxivity of the 

Gd3+ complex showed high relaxivity at acidic pH and low relaxivity at basic pH. 

Chapter 3 discussed the rigidification of the DOTAM structure as a means to promote the 

formation of the SAP isomer for CEST signal generation. These ligands were rigidified by at 

least one cyclohexyl group and were found to be very selective toward transition metals over 

lanthanides. However, none of the complexes investigated generated a CEST signal. 

Chapter 4 attempted to examine the amide CEST signal of DOTAM-tetraanilide complexes 

containing various para-substituents that would limit T2 exchange and increase amide-based 

pH measurements. Due to the insolubility of the other complexes, only the p-H and p-OMe 

complexes were evaluated. The CEST spectrum of the Tm3+-p-OMe complex revealed two 

amide signals. The absence of a bound water molecule in the Tm3+ agents allowed for higher 

signal to noise ratios because of reduced T1 and T2 relaxation.   

Chapter 5 involved a model study that assessed the electronic effects of para-substituents on 

the amide CEST signal and relaxivity of DO3A-monoanilide complexes. CEST spectra of 

only the Tm3+complexes could be acquired. The various substituents allowed a CEST effect 
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to be observed at different pH values. The T1 relaxivities of the Dy3+ and Tm3+ complexes 

were both low, while the Dy3+ complexes had much higher T2 relaxivities as compared to the 

Tm3+-based ones.  

Finally, Chapter 6 highlighted the attempt to synthesize para-phosphonate monoanilide 

analogues of the DOTAM tetraanilide complexes mentioned in Chapter 4, which would be 

suitable for in vivo studies. It is anticipated that the two amide signals seen in the CEST 

spectrum of the Tm3+-p-OMe complex would still persist in the modified complex, thus 

providing a means of a concentration independent ratiometric analysis of the CEST effect. 

Due to synthetic challenges, the synthesis of these modified complexes is still ongoing. 
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Chapter 1  

1 Introduction  
 

1.1 Magnetic Resonance Imaging (MRI) 
Magnetic Resonance Imaging (MRI) is a practical tool in diagnostic medicine, used for 

viewing anatomical images. This non-invasive methodology produces images based on 

the relaxation rate of water protons that are ubiquitous within the body.1 Within the 

clinical setting, a subject is placed in an immobile magnetic field (B0) which causes the 

nuclei containing the protons to precess or rotate at a particular frequency. This frequency 

is dependent on two factors, namely the strength of B0 and the gyromagnetic ratio (γ) of 

the nucleus, which in this case is 1H (γH = 26.752 X 107 rad s−1 T −1).2 The spin energy 

levels of the nuclei within this static magnetic field will be non-degenerate, thus a 

Boltzmann distribution of the nuclei will persist. There will be more nuclei occupying the 

low energy (α) state in which the spins are parallel to B0, than the high energy (β) state in 

which the spins are anti-parallel to B0 (Figure 1.1a). 

 

Figure 1.1: Diagram showing the distributions of nuclear spins in a magnetic field, 
Bo (a) Boltzmann distribution with more spins in lower energy α level than higher 
energy β level (b) excited state after rf pulse and (c) return to thermal equilibrium. 
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The nuclei in a state of thermal equilibrium can be re-distributed between the two energy 

levels by application of a radio-frequency (rf) pulse with the appropriate energy, ∆E = hυ 

(where h is Planck's constant and υ is the resonance frequency).2, 3 In other words, this 

radiation pulse must occur at the Larmor (resonance) frequency (υ, whereby υ = γB0) of 

the system.3 Once the pulse is applied, the distribution of nuclei in the excited state 

allows equal populations of nuclei between the α and β energy levels (Figure 1.1b).3 

Additionally, the spins of the nuclei will be the same so that phase coherence may be 

achieved.3 After some time, the system will return to thermal equilibrium and the 

Boltzmann distribution will be re-established (Figure 1.1c). 

 

1.2 Relaxation and Relaxivity 
The rate at which the system returns to thermal equilibrium after irradiation by 90o rf 

pulse is termed relaxation, namely T1 (spin-lattice or longitudinal) and T2 (spin-spin or 

transverse) relaxation. Figure 1.2a-c shows the vector diagrams representing these 

processes. At thermal equilibrium, the net magnetization is in the longitudinal (z) 

direction (M0 = Mz) and once the rf pulse (B1) is applied, the magnetization flips into the 

transverse (xy) plane.4 This causes a reduction of Mz and an increase in Mxy. The 

magnetization of Mxy will precess around the z-axis, thus causing a decrease in Mxy and 

the subsequent return to equilibrium, where M0 = Mz. 

 The T1 relaxation rate (1/T1) refers to the rate at which the system returns to Boltzmann 

distribution while the T2 relaxation rate (1/T2) refers to the rate at which the system loses 

phase coherence (Figure 1.2d-e).4 Associated with T2 relaxation is T2* relaxation, 

resulting from the inhomogeneity of the magnetic field. This effect may cause the 

magnetization in the xy plane to relax at a much faster rate, than is expected. 
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Figure 1.2: Vector diagrams representing (a) net magnetization M0 at equilibrium 
when the spins are placed in the external magnetic field B0 (b) perpendicular RF 

pulse (B1) is applied that  flips the magnetization into the xy plane (c) magnetization 
returning to equilibrium (d) T1 relaxation (return to equilibrium in the z plane) and 
(e) T2 relaxation (return to equilibrium in the xy plane). Adapted from Ref. 4 with 

permission of John Wiley and Sons. 

 

Contrast agents can be used to alter both the T1 or T2 relaxation times of water protons 

and subsequently, the rates of relaxation. The designation of the type of relaxation agent 

depends on a percentage basis by which that particular rate is altered.5 Contrast agents 

that increase the longitudanal relaxation rate in tissue faster than they do the transverse 

rate, are classified as T1 contrast agents.5 These agents enhance the MRI image generated 

by increasing the signal intensity, thus they are also known as positive contrast agents. 

Conversely, T2 contrast agents are known as negative contrast agents because they reduce 

the signal intensity of the tissue, whilst increasing the transverse relaxation rate.5 

 MRI contrast agents are normally small, metal-containing macrocyclic or linear chelates. 

The metals used may be paramagnetic, superparamagnetic or ferromagnetic in trait. 
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Ferromagnetic agents contain iron oxide particles and are T2 shortening while 

paramagnetic agents containing gadolinium (Gd3+) are T1 shortening.5 Contrast agents 

containing Gd3+ (Figure 1.3) are the most widely used contrast agents within the clinical 

setting, based on their approval by regulatory health agencies. Nevertheless, there have 

been other agents based on manganese and iron that have been also approved for use in 

similar settings (Figure 1.3).  
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Figure 1.3: Chemical structures of examples of MRI contrast agents. 

 

Gadolinium is a lanthanide and its efficiency as a paramagnetic metal in T1 contrast 

agents is derived from the seven unpaired electrons it possesses in its 4f-orbitals. The 

ground state of Gd3+ is symmetric, in that, each electron occupies an f-orbital, resulting in 

long electronic relaxation times.1 Direct contact between the water molecule(s) bound to 

Gd3+ and its unpaired electrons (dipole-dipole interaction) results in transference of the 

electronic magnetization.6 This in turn, reduces the relaxation time of the water molecule 

bound to the metal center.6  

Relaxivity refers to the change in the relaxation rate of water protons per millimolar of 

contrast agent used, as shown in equation 1.15: 
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r1,2 = [(1/T1,2)obs - (1/T1,2)W]                      equation 1.1 
                   [CA] 

 

where, r1,2 is the relaxivity, based on 1/T1 or 1/T2, respectively and [CA] is the 

concentration of contrast agent. The subscript "obs" refers to the rate with the CA present 

while "W" refers to the rate with pure water.  

Relaxivity can be classified into two main categories: inner-sphere and outer sphere. 

Inner-sphere coordination refers to the water molecule bound directly to the metal.5 This 

water molecule can be influenced by the inner-sphere relaxation that in turn is dependent 

on several factors. Firstly, it is possible to increase the relaxivity due to inner sphere 

coordination by increasing the number of water molecules (q) that are bound to the metal, 

as represented by equation 1.25:  

 

r1
IS =    q/[H2O]                                        equation 1.2  

          (T1m + τm) 

 

where [H2O] is the concentration of water in mM, T1m is the T1 of the inner-sphere water 

and τm is the residency time of that inner-sphere water molecule.5 

Secondly, the water molecules are also influenced by the the electronic properties of the 

metal within the chelate, as was discussed earlier. Thirdly, is the rate of water exchange. 

A requirement for an effective relaxivity agent is fast exchange of the bound water 

molecule with the bulk water. However, there is a balance at which this rate should 

occur; too fast and the water molecule does not bind to the metal long enough to be 

relaxed and too slow means that the effect of relaxation is ineffectively transmitted to the 

bulk water.5 

Fourthly, the rotational diffusion of the complex must be well thought-out. Smaller 

molecules have shorter correlations times due to rotation (τR) and larger molecules have 

longer τR, thus the latter is more efficient at promoting the desired relaxation.5  Lastly, it 
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may be possible to increase the relaxivity by decreasing the distance between the metal 

and the bound water proton.5 

These factors also help govern T1m and are taken into account by the equations of 

paramagnetic relaxation theory derived by Solomon, Bloembergen and Morgan and can 

be used to predict high relaxivities of contrast agents.7-11  Further details about those 

equations are outside the scope of this thesis and it is the author's belief that the content 

within this thesis does not warrant further discussion of those equations for 

comprehension of the remainder of the material.  

Second sphere coordination pertains to the protons of the hydrating water molecules of 

the complex and its contribution to relaxivity depends on the temperature and the external 

magnetic field.5 Closely related to second sphere relaxivity (and sometimes difficult to 

differentiate) is that of outer-sphere relaxivity, which pertains to the water molecules that 

diffuse near the metal center. It is important to note that the size of the second sphere 

(and outer sphere) contribution to the overall relaxivity is very challenging to predict.5 A 

summary of the afore-mentioned parameters that influences relaxivity is presented in 

Figure 1.4.5 

 

 

 

 

 

 

 

The T1 agents currently in use are excellent as blood pool or extracellular T1 agents but 

they have limited success as responsive agents in vivo. The T1 change in vivo is non-

Figure 1.4: Molecular considerations that influence relaxivity. Reprinted from 
Ref. 5 with permission of The Royal Society of Chemistry. 
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linearly dependent on concentration. This phenomenon is due to several reasons such as 

the inconsistent distribution of the contrast agent within the biological system, the pulse 

sequences used to generate the signal as well as protein binding and differences in 

viscosity.5 Additionally, these contrast agents are never completely silent. This drawback 

means that a signal is generated even if water cannot access the metal center, thus making 

it difficult to tell whether the change is due to relaxivity or concentration.12 The detection 

of the agent is a function of the environment and is directly proportional to concentration, 

which is usually unknown in vivo.13  

Omniscan (Figure 1.3), which is a Gd3+-DTPA complex has a stability constant of 22.46, 

while Dotarem and Prohance have stability constants of 24.7 and 23.8, respectively at 

25oC.14 The higher stability constants for Dotarem and Prohance is attributed to the 

macrocyclic effect, wherein the stability of a macrocyclic metal complex is higher than 

that of a complex formed from the analogous monodentate ligands.14 While these agents 

generally have an excellent safety profile, patients that have less than perfect kidney 

function may develop nephrogenic systemic fibrosis, after taking gadolinium based 

agents. If the kidneys are unable to properly filter waste from the blood, the contrast 

agent will spend a longer time in the body and is likely to undergo transmetalation with 

endogenous ions such as Zn2+, Cu2+ and Ca2+. The uncomplexed Gd3+ aqua ion is very 

toxic, with an LD50 of 0.1-0.2 mmol kg-1 in small animals.14 The toxicity is due to the 

similarity to Ca2+ in size, coordination number and Lewis acidity. 

These disadvantages have led to the need for more effective contrast agents that will be 

both sensitive to physiological changes whilst maintaining the contrast enhancement.  

 

1.3 Chemical Exchange Saturation Transfer (CEST) 
A more recent alternative to T1 contrast proposed by Ward et al., termed Chemical 

Exchange Saturation Transfer (CEST), has been fundamental in the discovery of new 

contrast agents.15  Earlier experiments referred to this as Saturation Transfer (ST) or 

Magnetization Transfer (MT). CEST involves exchange between protons of solutes and 
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bulk water, while MT occurs between semi-solid macromolecules and bulk water.15, 16 

The contrast generated by MT can arise by either cross-relaxation or a combination of 

cross-relaxation and chemical exchange.17-20 CEST agents operate by reducing the water 

proton signal through a chemical exchange site on an agent. This exchange of protons 

must occur between two magnetically different environments.15 Common sites of 

exchange are -NH (of amines or amides) and -OH (of alcohols). 

For a CEST agent to be effective it must meet two criteria. Firstly, the exchange rate (kex) 

which is affected by pH, temperature and the ionic environment should be smaller than 

the chemical shift difference (Δω), that is, Δω >> kex.15 This consequently means that 

residence proton lifetime, τm should be about 10-5 - 10-2 s, thus translating to the rate 

falling within the slow to intermediate range. 16, 21   

Secondly, a CEST agent also requires a large Δω from the bulk water signal. 15 This 

feature, if met, offers several advantages. If the Δω is large, then a greater chemical 

exchange is allowed, provided it remains within the exchange boundary.14 This should 

then produce a larger CEST effect. A larger Δω also allows for specificity of the 

radiofrequency pulse needed to achieve saturation of the agent without directly affecting 

other protons.15, 16 In addition, there is a reduction in the macromolecular MT background 

effect which always accompanies CEST in tissues. 15 

Figure 1.5 shows a schematic diagram describing the process of CEST. 22 As shown, 

there are two pools of exchangeable protons but it should be noted that three and four 

pool models have also been described. 23 Here, pool A represents the exchangeable 

protons of the bulk water and pool B represents those belonging to the contrast agent. At 

equilibrium, there is a Boltzmann distribution of the nuclei within both pools. A 

presaturation pulse is applied at the resonance frequency of the pool B protons, which 

then causes saturation of said protons and promotion of some nuclei to the higher energy 

level. This saturation is then transferred by the exchange of nuclei occurs between pool A 

and pool B. As a result, when the signal is acquired, there is a reduction in the signal due 

to the bulk water pool A protons. After some time, the nuclei of pool A will return to 

equilibrium. As can be seen in Figure 1.5, relaxation may be a competing process with 
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chemical exchange. Hence, the CEST effect will only be seen if the protons of pool B 

have long relaxation times with respect to their exchange rates. 

 

 

 

 

 

 

 

A CEST spectrum or Z spectrum is generated by selectively saturating a particular proton 

signal of the contrast agent (Ms) with a radiofrequency pulse, thus generating an image 

(Figure 1.6).16 However, another image is needed because the contrast to noise ratio is 

limited. A similar pulse is applied on the opposite side of the water resonance (M0), 

therefore this second image will be without the CEST effect. The images obtained after 

Figure 1.5: A schematic representation of both relaxation and CEST processes.  
Pool B represents the exchangeable protons of the contrast agent and Pool A 

represents the bulk water. The distribution of spins in Pool B is altered by 
application of a presaturation pulse to that pool. Relaxation will dominate 

dominate when the relaxation rate is faster than the chemical exchange rate and a 
normal NMR spectrum will be obtained. If chemical exchange is faster, then 
chemical exchange will cause redistribution of spins in both pools, thereby 
reducing the bulk magnetization of Pool A.  Reprinted from Ref. 22 with 

permission of The Royal Society of Chemistry. 
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each pulse application are subtracted and a CEST image is obtained which shows a 

darkening or negative contrast due to the contrast agent. The CEST effect is represented 

as a percent decrease in the total bulk water intensity and is shown in the equation 1.3 16:  

CEST effect (%) = (1 - Ms/ M0) x 100     equation 1.3 

 

Figure 1.6: A simulated CEST or Z-spectrum for a two-pool exchanging system. 
Pool A is at 0 ppm and Pool B at 25 ppm. Reprinted from Ref. 16 with permission of 

The American Chemical Society Publications. 

 

A CEST agent is highly beneficial as compared to other conventional relaxation contrast 

agents. Firstly, one can turn the contrast effect on and off as desired, either by turning the 

presaturation pulse off or changing its frequency.16 Secondly, based on the method of 

acquisition, there is no need to obtain pre- and post-contrast images, a process necessary 

to eliminate artifacts due to motion.24 Although two images are needed for a CEST 

spectrum, they can be obtained simultaneously. Furthermore, multiple agents with 

exchangeable protons of different chemical shifts can be designed.16 Additionally, CEST 
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contrast has a high contrast to noise ratio that can even be attained at high magnetic 

fields.25 

 

1.4 Diamagnetic Chemical Exchange Saturation Transfer 
(DIACEST) 

The molecules that were initially used to generate a CEST effect were diamagnetic, and 

thus known as DIACEST agents.15 DIACEST agents represent one main class of CEST 

agents (the other will be discussed in the following section). In general, DIACEST agents 

may take the form of endogenous or exogenous macromolecules and small molecules 

such as glucosaminoglycans, sugars, amino acids, and heterocyclic compounds (Figure 

1.7). 
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Figure 1.7: Examples of DIACEST agents. 

 

While these agents are sensitive to factors such as pH and temperature, they are faced 

with a major drawback, that is, the size of their Δω. DIACEST agents have Δω < 6 ppm , 

therefore the bulk water signal tends to interfere with the signal generated from such 

agents.15, 16  
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1.5 Paramagnetic Chemical Exchange Saturation Transfer 
(PARACEST) 

1.5.1 Lanthanide-based PARACEST 

The principles of CEST have been fundamental in the discovery of other contrast agents 

known as Paramagnetic CEST (PARACEST) agents.26-30 PARCACEST agents represent 

the second main class of CEST agents. These complexes contain paramagnetic metals 

such as lanthanides. The use of lanthanides as the paramagnetic metal of choice may be 

based upon the location of the unpaired electrons. In comparison to the paramagnetic 3d-

block transition metals that have their unpaired electrons in the d-orbitals, the unpaired 

electrons of the lanthanides reside in their 4f-orbitals. The 4f-orbitals do not overlap with 

the orbitals of the ligands, thus the bonding of lanthanides tend to be ionic. Due to their 

larger size, they may coordinate nine to twelve ligands. However, their coordination 

geometry is dependent on steric, rather than electronic factors. 

The magnetic properties of lanthanides vary along the period since each metal contains a 

different number of unpaired electrons. As such, each metal possesses a different 

magnetic moment (measurement of magnetism) and magnetic susceptibility. This latter 

feature influences the direction and magnitude of the interaction between the external 

magnetic field and the magnetic moment.16 The magnetic susceptibility also governs the 

lanthanide induced shifts (LIS) of the metals.16 It is this latter property that makes 

PARACEST agents more advantageous over DIACEST agents: the LIS favourably 

induces a larger Δω from the water signal.16 The larger Δω allows for a faster exchange 

rate of the exchangeable protons, which now includes a water molecule that may be 

bound to the metal. A larger Δω in conjunction with a faster exchange rate will only hold 

true if the slow to intermediate exchange condition is maintained.22 An agent possessing 

both of these properties permits more spins to be transferred within a particular time 

frame.22  
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Figure 1.8: (a) CEST spectrum of Eu3+-DOTAM-gly-Et (EuDOTA-4AmCE3+) [63 
mM] in aqueous solution at pH 7, rf presaturation applied for 1 s, B0 = 4.7 T, B1 = 

16.4 db at 22°C  showing bound H2O at 50 ppm  and (b) CEST spectrum of 
DyDOTAM3+ at B0 = 9.4 T and at 25°C showing -NH at 80 ppm and bound H2O at -

720 ppm. Reprinted from Ref. 22 with permission of The Royal Society of 
Chemistry. 
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Contrast agents that are paramagnetic metal complexes and are T1 shortening have at 

least one water molecule that is coordinated to the centre of the metal, however, the rate 

of exchange for such complexes is outside of the slow to intermediate limit which is 

required for CEST agents.22 A slower exchange rate has been found for tetraamide 

derivatives of DOTA (DOTAM) whereby all the acetate arms of DOTA have been 

replaced by amide arms. The amide arms provide a reduced electron density at the metal 

center, which in turn leads to the slow exchange of the exchangeable protons.16 This 

structure has been rudimentary in the design of subsequent PARACEST agents.31-34 

These DOTAM derivatives are moderately stable and have a high kinetic inertness that 

has been thought to result from the size of the Ln3+ ion and the cavity of the preformed 

macrocycle.35 

Of all the lanthanides, europium (Eu3+) has been found to have the slowest rate of water 

exchange and a low paramagnetic relaxation enhancement.16 These properties of Eu3+ are 

favourable in the design of PARACEST agents that include the pre-saturation of bound 

water.16 An example of such an agent is Eu3+-DOTAM-gly-Et (reported as EuDOTA-

4AmCE3+) in which the water exchange rate slowed substantially, thereby allowing for a 

discrete peak to be observed which had a large Δω from bulk water (Figure 1.8a).36 A 

larger CEST effect may be observed for exchangeable protons such as -NH when 

compared to water as seen for the Dy3+-DOTAM complex (Figure 1.8b). 22 

 

1.5.2 Transition metal-based PARACEST 

The invention of transition metal CEST (TM-CEST) is a reasonably recent development 

and as such, the foray into its application is behind that of lanthanide-based PARACEST. 

The requirements for CEST based on transition metals are similar to that of lanthanide-

based PARACEST. These include using a paramagnetic metal, having a slow to 

intermediate exchange rate and the presence of exchangeable protons. Another similarity 

with lanthanide-based CEST is the ligand design. An additional consideration for TM-

CEST is the number of possible oxidation numbers for the transition metals, which is not 

as important for lanthanides. Another is in regards to the smaller size of the transition 
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metals, which causes their coordination number to be six (as compared to nine to twelve 

for the lanthanides). The transition metals that have been explored thus far for this 

application include cobalt,37, 38  nickel39  and iron40-44 (Figure 1.9).45 These metals are 

biologically relevant and have suitable paramagnetic properties. 

 

 

 

 

 

 

 

b) 

a) 

Figure 1.9: Transition metal-based CEST due to amide protons of (a) Fe2+-
DOTAM-gly-Et [60mM] at pH 8.6, RF presaturation applied for 4 s, B0 = 500 

MHz, B1 =  700 Hz at 25 °C and (b) Co2+-CYCLAM [10 mM] in 100mM NaCl, 20 
mM HEPES, pH 7.3-7.4, rf presaturation applied for 2 s, B0 =11.7 T, B1 = 24 μT at 

37 °C. Adapted from Ref. 38 and 45 with permission of The Royal Society of 
Chemistry. 



16 

 

1.5.3 Applications and Challenges of PARACEST agents 

Since the reporting of PARACEST began, the associated agents have been shown to be 

sensitive to varied environments such as pH,26, 46 temperature47, 48 and metabolites such 

lactate,49 and glucose50, 51 (Figure 1.10). A desired feature of responsive PARACEST 

agents entails having two different types of protons available for chemical exchange. This 

feature allows a ratiometric analysis of the CEST effect due to each proton, thereby 

allowing a concentration independent method of assessing these changes. Currently, there 

are difficulties in designing similar probes using traditional T1 and T2 MRI agents of 

which the local concentration of the agent has to be known.  

 

Figure 1.10: Examples of responsive lanathanide-based PARACEST agents. 

 

While there are many advantages to be gained by using PARACEST agents over 

relaxivity agents, it is important to note that there are limitations that may impede the 

progress to be made. One of these limitations is the earlier discussed MT effect, which in 

vivo, obstructs the CEST signal as shown in Figure 1.11.53 This obstruction can be 

extended to the bound water signal at 50 ppm in Eu3+ complexes.53 

Another limitation of PARACEST agents is that of low sensitivity. However, efforts are 

currently being made to rectify this impediment. These resolutions include increasing the 

number of exchangeable protons on the contrast agent, combining the excellent shifting 

ability of lanthanide complexes with the peculiar characteristics of nanovesicular systems 
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(NanoCEST) and promoting the formation of non-covalent supramolecular adducts 

(SupraCEST).53 

 

 

 

 

 

In order to further the optimization of PARACEST agents, it is important to consider the 

agent, the solvent water, and the instrument settings.22 Subsequently, τm should be short 

and the concentration of the contrast agent high as possible.22 Unfortunately, this latter 

requirement is not favorable and can be compensated for by having a higher number of 

exchangeable protons present in the compound. In addition, one may increase the pre-

saturation power B1, which allows for an agent undergoing fast exchange to be 

considered.22   

The possibilities are endless in regards to the future of PARACEST agents and the 

considerable knowledge gained about the magnetic properties of PARACEST agents thus 

far, will be beneficial for further development of these agents. However, these agents will 

have to be exhaustively evaluated before they can be used in the same context as current 

Figure 1.11: Simulated spectra showing comparison between the performance of 
a CEST system without (black solid curve) and with (red curve) an MTC 

contribution. Reprinted from Ref. 53 with permission of John Wiley and Sons. 



18 

 

MRI relaxivity agents. The main barrier towards the use of PARACEST agents within a 

clinical setting is the MT effect of tissues. This issue may be resolved by developing 

PARACEST agents that produce a CEST signal outside of the range of this effect. 

 

1.6 Scope of Thesis 

 

Figure 1.12: Structure of the DOTAM scaffold on which the complexes in the 
upcoming sections of the thesis are to be based. 

 

In light of the discussion in the prior sections, the focal point of this thesis was to develop 

and appraise innovative ligands that would incorporate lanthanides and transition metals 

to be used as MRI contrast agents.  Such metalated complexes would fulfill the 

requirements of good PARACEST agents, thus serving as promising alternatives to 

relaxivity agents. These PARACEST agents were predominantly  based on the DOTAM 

scaffold (Figure 1.12), with variations made so as to principally analyze their various 

CEST properties based on either (or both) the water molecule bound to the metal center 

as well as the  amide proton (s) of the pendant arm (s). 

The modifications to be carried out on the DOTAM scaffold may be made on the pendant 

arms or on the backbone of the macrocyclic ring (or both). Hence, Chapter 2 focused on 

the synthesis and evaluation of a DOTAM analogue that had one arm replaced with a 

reversible binding group that would be bound to the metal center in a pH dependent 

manner. Chapter 3 targeted the preparation and analysis of the DOTAM core structure, 

which had been rigidified to varying degrees on the backbone of the macrocyclic ring.  
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Chapter 4 concentrated on the preparation and examination of DOTAM tetraanilines 

containing varying substituents in the para-position of the aniline ring, ideal for 

electronically tuning the amide protons. As a result of solubility issues with most of the 

tetraanilide complexes, this led to the synthesis and investigation of para-substituted 

monoanilide complexes which deviated from the DOTAM ligand, as seen in Chapter 5. 

Chapter 6 details the effort made to make the soluble DOTAM tetraanilides more 

biocompatible. These efforts involved synthesizing DOTAM tetraanilides that had one of 

the four aniline rings possess a phosphonate group in the para-position.  
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Chapter 2  

2 Lanthanide DO3AM Complexes with a Reversible 
Binding Arm 

 

2.1 Introduction 

In order to investigate the effect of reversible binding of one arm of the cyclen 

macrocycle on the CEST effect due to the bound water or amide proton(s), a series of 

asymmetric DO3AM ligands was designed and synthesized. This design envisioned the 

ligands possessing three of the same acetamide arms and the fourth arm having a 

potential donating group further away from the metal center. It was also hypothesized 

that the lone arm would bind in a pH dependent fashion and thus the ligand would switch 

between octadentate and heptadentate coordination modes.  

Production of a CEST signal requires a slow exchange rate of the exchangeable protons 

(lifetime, τm, of 10-5 - 10-2 s).1 This is made possible by the use of amide arms (weak 

donors) which lower the electron density at the metal center, in comparison to acetate 

arms.2 As a result, both the metal bound water protons and the amide protons of the 

pendant arms exchange slowly with the bulk water in order to meet the electron density 

requirements of the metal. This slow exchange should still be present when the 

coordination by the DO3AM ligand is octadentate. The loss of a coordination site to the 

metal in the heptadentate form may encourage an even slower exchange rate of the amide 

protons and bound water protons. This is feasible due to the additional reduction in 

electron density at the metal center. Accordingly, this further reduction may result in an 

improved CEST signal. Since the electron density requirements of the metal center may 

be met by the coordination of another water molecule to the metal, resulting in an 

increase in relaxivity, the relaxometric properties will also be assessed. 

In order to achieve the desired heptadentate/octadentate binding modes, a labile ligand 

with the appropriate pKa is required. To facilitate this switch in binding, the para-
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nitrophenol group was chosen as the labile pendant arm and the other three arms were 

acetamide-glycinate groups. The pKa of the para-nitrophenol group is 7.18 in water 3, 

which makes it suitable for observing changes in a biological environment. Other para-

substituted phenols with electron-withdrawing groups such as chloro and cyano have 

pKas of 9.38 and 7.8, respectively (in water) 3. The higher pKa values for these groups 

mean that they are less suitable for use within the biologically relevant pH range. As 

such, the choice of the para-nitrophenol for the lone labile arm offers the chance to 

develop a potential PARACEST pH responsive probe for applications in the detection of 

cancer cells, which have an acidic pH.2  

 

Figure 2.1: Chemical structures of some complexes discussed in this work. 

 

2.2 Results and Discussion  

2.2.1 Synthesis 

Scheme 2.1 represents the initial attempt to the target nitrophenol-DO3AM-gly (NP-

DO3AM-gly) complexes. This route involved trialkylation of cyclen with benzyl (2-

chloroacetyl)glycinate 2.1 as previously reported.3 However, during the synthesis, 

difficulties such as poor yields were encountered. These yields stemmed from the 
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incomplete conversion to the desired trialkylated product as well as over-production of 

the tetraalkylated product. 

Several conditions were attempted with the aim of optimizing the yield. These included 

using varying equivalents of electrophile (1- 5 eq), bases (NaHCO3, Et3N, DIPEA; 0 - 10 

eq), solvents (CH3CN, CH2Cl2, CH3Cl), temperatures (-40oC to 80oC) and reaction times 

(up to 1 week). Additionally, the protecting group of the electrophile was changed to that 

of the ethyl and tert-butyl ester. Regrettably, all these changes were unproductive. 

In addition to the synthetic challenges, the purifications were also problematic. For the 

reason that multiple products formed during the first step of trialkyation, purification by 

column chromatography was required. The many attempts made to isolate pure 

trialkylated product were unsuccessful due to the co-elution of both the tri- and 

tetraalkylated products. Moreover, when HPLC purification using a C18 column was 

attempted, transesterification as well as partial deprotection of the protected ester 

occurred. This likely happened prior to injection because it was necessary to dissolve the 

crude reaction mixture in MeOH for sample injection. 
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Scheme 2.1: Potential synthetic route towards NP-DO3AM-gly complexes. 

Due to the lack of success in what was expected to be a straightforward and easy 

synthetic pathway to the desired metal complexes, another approach to achieve that 

objective was attempted. This modification involved a reverse of the initial synthetic 

steps. As such, a monoalkylation with the electrophile of the lone p-nitrophenol arm, 

followed by trialkylation with the acetamide arms was performed. This sequence of steps 

worked successfully as seen in Scheme 2.2. Cyclen was first protected using formyl 

groups as reported to afford tri-formyl cyclen 2.3.4 Monoalkylation with 2-hydroxy-5-

nitrobenzyl bromide 2.4 and subsequent deprotection of the formyl groups with 2M HCl 

gave the crude product 2.6. The crude mixture was precipitated with ether to give the 

desired monoalkylated cyclen 2.6 in good yield. Compound 2.6 was trialkylated with 

ethyl (2-chloroacetyl)glycinate 2.7 to afford compound 2.8 in moderate yield after 

purification by column chromatography. The ester protecting groups were removed by 

saponification and the crude mixture purified by size-exclusion column chromatography 

to give the ligand 2.9 in good yield. With ligand 2.9 in hand, metalation with the 
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lanthanides was done based on literature procedure and this proceeded smoothly. The 

metalated complexes were purified by size-exclusion column chromatography to give the 

complexes 2.10 - 2.14 in moderate yields.  

 

Scheme 2.2: Modified synthetic route towards NP-DO3AM-gly complexes 2.10 - 
2.14. 

 

In order to expand the scope of the target ligand and to develop a possible redox 

responsive CEST agent, we attempted to reduce ligand 2.9 (Scheme 2.3). Several 

conditions shown in Table 2.1 were attempted but unfortunately, none was successful.  
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Scheme 2.3: Attempts to reduce the NO2 group of 2.9. 

Table 2.1: Conditions attempted for reduction of the NO2 group of 2.9. 
Conditions Results 

(i) Pd/C, H2, 2 days 
(ii) Na2S.9H2O, EtOH, rt to 50oC, 2 days 

(iii) SmI2, H2O, isopropylamine, N2, rt, overnight 
(iv) Zn in conc. HCl, rt to 50oC, 2 days 

(v) TiCl3 (>12% in HCl), H2O/AcOH (1:1), rt, 10 mins 

De-benzylation 
No reaction 

De-benzylation 
No reaction 

Decomposition 

 

2.2.2 CEST Evaluation 

 

Figure 2.2: CEST spectra of Tb3+-NP-DO3AM-gly 2.13. CEST spectra were 
acquired at 37oC, with a 15 μT, 2 s presaturation pulse, 10 mM in D2O/H2O (9:1). 
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CEST experiments for the Eu3+, Tb3+, Tm3+ and Yb3+ metalated complexes at pH 6, 7 and 

8 were carried out in D2O/H2O (9:1). Only the Tb3+ complex had a CEST signal of 3% at 

28 ppm at pH 8 (Figure 2.2). The pH at which the CEST signal occurs prevents the use of 

this agent as a responsive probe within the biological pH range of 7.35-7.45.  

CEST intensity as a function of Ln3+ choice 

As mentioned in the preceding paragraph, only the Tb3+ complex had a CEST signal, 

albeit a small one. Within the lanthanide series, the size of Tb3+ is between Eu3+ and 

Tm3+. As such, the signal seen for the Tb3+ complex may be a circumstance of 

"Goldilocks" fitting. In this situation, the size of Tb3+ was ideal for the correct orientation 

to be achieved by the phenol in order for coordination to the metal center to occur. If the 

metal is big (Eu3+), there may not be enough space for the phenol to attain the correct 

orientation for metal coordination. On the other hand, if the metal is small (Tm3+), then 

the phenol may have more than enough space for proper orientation but then the Tm3+ 

becomes too labile. Considering that the corresponding DOTAM-gly complexes (Figure 

2.1) did generate CEST signals,5 the lack of symmetry within these p-nitrophenol 

complexes may then exacerbate both conditions and thus prevent generation of a CEST 

signal as was observed for the Eu3+, Tm3+ and Yb3+ complexes. 

CEST intensity as a function of pH for Tb3+-NP-DO3AM-gly 2.13 

The expected trend for CEST signal due to amide protons is an increase in the CEST 

effect as the pH increases. The rate-determining step for exchange of amide protons is 

known to be deprotonation under base-catalyzed conditions and protonation under acid-

catalyzed conditions.2 The base-catalyzed exchange occurs at a pH greater than 5.2 In 

essence, the CEST effect should increase with increasing pH until a maximum signal is 

achieved and the  exchange rate is no longer favourable (exceeds slow to intermediate 

exchange) for a CEST effect to occur. Considering that a CEST signal was seen at pH 8 

and none at pH 6 and 7 (Figure 2.2), complex 2.13 demonstrated this expected trend of an 

increase in CEST with increasing pH. One may expect the phenol group to be 

coordinated to the metal at pH greater than 5. This assumption is based on the results of 

Gd3+-NP-DO3AM (Figure 2.1) in which the phenol group did not dissociate from the 
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metal, even at pH values as low as 5.6 The coordination of the phenolate group at high pH 

ensured that the electron density requirements of the metal center were met. When this 

occured, the ligand was octadentate and produced a CEST signal due to the amide 

protons, as was observed for the Tb3+complex 2.13.  

At pH 6 and 7, lack of an amide CEST signal for the Tb3+complex 2.13 may indicate one 

of two things. Firstly, the phenol group may in fact be protonated and not be coordinated 

to the metal center, in which case the ligand was heptadentate. Subsequently, the lowered 

electron density at the metal center did not lead to a slower exchange as was anticipated, 

so no CEST signal was observed. Alternatively and more likely is that the phenolate is 

coordinated to the metal (in octadentate form) but the exchange rate of the amide protons 

was outside of the slow to intermediate range desired for a CEST signal to be produced. 

This is likely to be the case for the other complexes 2.11, 2.12 and 2.14 as well. 

Chemical shift (Δω) as a function of ligand design 

One of the differences between the CEST results of the Tb3+-DOTAM-gly (Figure 2.1) 

and the Tb3+-NP-DO3AM-gly 2.13 is the Δω of the observed CEST signals. Previous 

reports have shown that the symmetric Tb3+-DOTAM-gly complex CEST signal occurs 

at 61 ppm (pH 7.4).5  On the other hand, the asymmetric Tb3+-NP-DO3AM-gly complex 

2.13 had a more upfield CEST signal at 28 ppm (pH 8.02). This difference in Δω between 

the complexes was most likely a result of the ligand design, rather than the pH at which 

the data was acquired. At high pH, the phenol group of 2.13 is expected to be 

deprotonated and therefore coordinated to the metal center. Hydroxyl groups (and by 

extension phenols) are weak donors and are not expected to give a strong ligand field.7 

The strength of the ligand field in turn influences the size of the hyperfine shift of the 

lanthanide.7 Although Tb3+ has a large hyperfine shift,2 this effect may be over-shadowed 

by the weak ligand field of the phenol group and subsequently, a small Δω is observed. 

At pH 6 and 7, this small Δω would violate the criteria for PARACEST agents, leading to 

the absence of a CEST signal.7  
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2.2.3 Relaxometric Evaluation of Gd3+-NP-DO3AM-gly Complex 

Relaxivity studies of the Gd3+-NP-DO3AM-gly complex 2.10 with respect to pH were 

performed. Complex 2.10 in an aerated solution of water showed an increase in the 

relaxivity as the pH decreased, with a very sharp increase between pH 5.5 and 6.5 (Figure 

2.3a). The r1 value of 1.5 mM-1 s-1 at basic pH is lower than that for Gd3+-NP-DO3AM 

(basic pH: 2.8 mM-1 s-1) 6 while at acidic pH, complex 2.10 has an r1 value of almost 5.3 

mM-1 s-1. This value is higher than that of Gd3+-NP-DO3AM, which has an r1 value 3.4 

mM-1 s-1 under similar pH.6  

 

Figure 2.3: Relaxivity profile of 10 mM Gd3+-NP-DO3AM-gly complex 2.10 over pH 
range 4 to 9, 25oC and 400 MHz in (a) H2O (aerated) and (b) 10 mM NaHCO3, 

aerated (■) and H2O, degassed (●). 

 

This relaxivity enhancement at acidic pH is not limited to complexes with amide side 

arms. If one compares Gd3+-DO3A-like complexes such as Gd3+-DO3A-NO2Ph (Figure 

2.1), a similar pattern is also seen. For such complexes, the relaxivity is found to be stable 

between pH 5-8.8 Below that range, it may increase due to acid-catalyzed demetalation.  

Above pH 8, OH- ions and dissolved CO2 in the form of carbonate can displace the bound 

water molecule and cause formation of ternary adducts which leads to a decrease in 
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relaxivity.8 In order to determine if carbonate binding did play a role in the relaxometric 

behavior of 2.10, a study in aerated bicarbonate solution was similarly done as that 

reported.9 Another experiment was done in degassed solution of H2O and compared to 

that of the aerated bicarbonate solution. Figure 2.3b shows the relaxivity as a function of 

pH for the degassed and aerated solutions of the Gd3+ complex 2.10 in water and sodium 

bicarbonate solution, respectively. The trend in the sodium bicarbonate solution was 

parallel to that previously reported for a Gd3+-DO3AM-ala complex (Figure 2.1).9 

However, since the trend of complex 2.10 in degassed and aerated solutions were similar, 

this possibly means bicarbonate was also being bound in the degassed solution, even after 

purging with N2 for two minutes prior to collecting the data. As previously reported, one 

should expect the relaxivity in degassed solution to be high and constant over the pH 

range 2 - 10, indicating two waters coordinating to the metal center.9 In both solutions of 

2.10 at high pH, the carbonate ion will be bound to the metal in a bidentate manner and 

the metal will have all its coordination sites occupied. As a result, a water molecule 

would not be coordinated to the metal. Once the pH becomes more acidic, the carbonate 

ion will no longer bind to the metal and a water molecule may be coordinated instead, 

leading to an increase in relaxivity.  

Increases in relaxivity may also be due to the reduced distance between the metal and 

bound water protons as well as short correlation times due to rotation but these values are 

expected to be small for low molecular weight11 complexes like 2.10. While the 

relaxivity enhancement at acidic pH could also be due to demetalation of the ligand, 

thereby forming Gd[H2O]8
3+ (r1 = 13 mM-1s-1)11, the stability constants for Gd3+-DOTAM 

and Gd3+-DOTAM-gly are 10.05 and 14.54, respectively. 12, 13 These values indicate high 

stabilities for those complexes and one can infer that the stability for complex 2.10 would 

be within those values. Additionally, the relaxivity increase at acidic pH may be due to 

the coordination of two water molecules to the metal center as per the design of the 

ligand. This would be expected to occur once the phenolate gets protonated at low pH 

and no longer coordinates to Gd3+. However, in the case of Gd3+-NP-DO3AM, it was 

observed that the relaxivity enhancement did not correlate with the apparent pKa of 6.48 

for the phenol and an increase in relaxivity was observed at a pH below the phenol pKa.6 

The pKa may be influenced by the proximity of the tri-cationic metal and the electron 
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withdrawing nature of the benzylic amine-like linkage to the ligand.  It is not surprising 

that it is not identical to free p-nitrophenol. 

The overall relaxivity enhancement of complex 2.10 at acidic pH is likely due to a 

complex combination of factors such as the increase in prototropic exchange of the 

phenolic protons and bound water protons 6, as well as the presence of the acetamide-

glycinate arms. In the latter case, these arms may form hydrogen bonds with the 

surrounding water molecules and thereby increase the contribution of outer sphere 

relaxation to the overall relaxivity.  

  

2.3 Conclusion 
The initial route followed towards the synthesis of a series of asymmetric complexes 

having three acetamide-glycinate arms and a p-nitrophenol arm for reversible binding 

was met with unexpected challenges. However, these were resolved by reversing the 

order of a few earlier steps in the synthetic scheme and the desired compounds were 

obtained. 

CEST experiments for the Eu3+, Tb3+, Tm3+ and Yb3+ NP-DO3AM-gly complexes were 

done at various pH values but only the Tb3+ complex showed an amide CEST signal at 

pH 8. In comparison to the tetraglycinate complexes of the same metals, there was a 

significant decrease (in the case of Tb3+) as well as elimination of the CEST effect, with 

respect to the other metals. The lack of a CEST signal for the other complexes as well as 

at other pH values may be due to a variety of reasons, primarily the faster than ideal 

exchange rate of the amide protons (and bound water), especially when the ligand is in its 

heptadentate form. This is in contrast to what was hypothesized based on the reduced 

electron density at the metal center.  

The increase in relaxivity at low pH in both the degassed and aerated solutions of the 

Gd3+ NP-DO3AM-gly complex 2.10 is likely due to a combination of increased 

prototropic exchange and or outer sphere relaxation, rather than simply an increase in the 

number of water molecules coordinated to the metal center. This increase in coordinated 
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water molecules would arise because of dissociation of the protonated phenol group. 

Sharp increases in relaxivity within the biologically relevant pH range of 5.5 to 7.5 were 

recorded for these various solutions. This does demonstrate the sensitivity of the phenol 

group to act as a relaxivity-based pH sensor. 

With the information gleaned here, it is now known that amide CEST can be modulated 

due to reversible binding but may be strongly dependent on the metal center and perhaps 

type of ligating group involved. Unfortunately, due to the small CEST effect at such high 

pH, this agent is not suitable as a PARACEST pH responsive probe. 

 

2.4 Supplemental Information 

2.4.1 General Experimental 

General synthetic details can be found in Appendix 1. 

CEST and Relaxivity Experiments 

CEST spectra were acquired on a 600 MHz vertical bore NMR spectrometer, using a 15 

µT, 2s continuous wave presaturation pulse at offset frequencies ranging from -110 to 

110 ppm in steps of 1 ppm  at a concentration of 10 mM in D2O/H2O (9:1) at pH 6.00 ± 

0.03, 7.00 ± 0.03 and 8.00 ± 0.03; 25oC or 37 °C. T1 relaxation time constant 

measurements were carried out on a 400 MHz spectrometer with 10 mM of contrast agent 

in H2O or in 10 mM NaHCO3 using an inversion recovery sequence (14 inversion times 

in the range of 0.001 s – 0.3 s) with a minimum d1 = 5T1 to ensure full recovery, pH 4-9 

(±0.03) and 25 °C; degassed with N2 for 2 mins.  
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2.4.2 Synthetic Procedures 

2-((1,4,7,10-tetraazacyclododecan-1-yl)methyl)-4-nitrophenol (2.6) 
Tri-formyl cyclen 2.3 (400 mg, 1.56 mmol) and NaHCO3 (262 mg, 3.12 mmol) 

suspended in CH3CN (15 mL) were stirred for 5 mins at rt upon which 2-hydroxy-5-

nitrobenzyl bromide 2.4 (724 mg, 3.12 mmol) in CH3CN (5 mL) was added dropwise. 

Stirring was continued for 18 h at 40oC. The mixture was concentrated and carried 

forward to the next step as is. Crude product 2.5 was dissolved in 2M HCl (8 mL). 

Stirring was continued for 18 h at 60oC. The mixture was concentrated then precipitated 

with ether. The title compound was obtained as a cream solid (323 mg, 64%). 1H NMR 

(400 MHz, D2O) δ 8.19-8.15 (2H, m), 7.04 (1H, d, J = 9Hz), 3.72 (2H, s), 3.12 (8H, 

broad s), 3.06 (4H, broad s), 2.99 (2H, broad s), 2.84 (2H, broad s). ESI-TOF m/z calcd 

for C15H26N5O3 (M +H)+, calculated 324.2036, found 324.2035.  

 

Triethyl 2,2',2''-((2,2',2''-(10-(2-hydroxy-5-
nitrobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tris(acetyl))tris(azanediyl))triacetate (2.8) Starting material  2.6 (250 mg, 0.773 

mmol) and NaHCO3 (260 mg, 3.092 mmol) were suspended in CH3CN (8 mL) and 

stirred for 5 mins at rt upon which ethyl (2-chloroacetyl)glycinate 2.7 (555 mg, 3.092 

mmol) dissolved in CH3CN  (2 mL) was added dropwise.  Stirring was continued for 36 h 

at 50oC. The mixture was filtered and the filtrate concentrated. The crude was purified by 

column chromatography (silica gel) by eluting with 0-5% MeOH in CH2Cl2 to give the 

product. The title compound was obtained as a yellow oil (367 mg, 63%). 1H NMR (400 

MHz, CDCl3): δ 8.29-8.17 (3H, m), 8.07-8.04 (1H, dd, J = 9Hz), 7.92 (1H, d, J = 2Hz), 
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6.49 (1H, s), 4.12 (2H, q, J = 7Hz), 4.05-3.94 (6H, m), 3.81 (4H, broad s), 3.4-2.77 (16H, 

m), 2.67 (8H, broad s), 1.25 (3H, t, J = 7Hz), 1.15 (6H, t, J = 7Hz). 13C NMR (100 MHz, 

CDCl3): δ 171.81, 170. 73, 169.64, 126.67, 125.85, 119.48, 117.33, 61.44, 59.72, 58.78, 

57.69, 51.28, 49.43, 40.67, 13.93. ESI-TOF m/z calcd for C33H53N8O12 (M+H)+, 

calculated 753.3783, found 753.3763.  

 

2,2',2''-((2,2',2''-(10-(2-hydroxy-5-nitrobenzyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)tris(acetyl))tris(azanediyl))triacetate (2.9) 
Starting material 2.8 (300 mg, 0.399 mmol) was dissolved in 8 mL of 2.5 M NaOH-

MeOH (1:1) mixture and stirring continued for 18 h at rt. The mixture was concentrated 

and brought to pH 6 by addition of 1M HCl. This was again concentrated and purified by 

twice by size exclusion column chromatography (100% H2O) and the fractions 

lyophilized to give the product. The title compound was obtained as a yellow solid (192 

mg, 72 %).1H NMR (400 MHz, D2O) δ = 8.10 (1H, s), 7.97 (1H, d, J = 9Hz), 6.40 (1H, 

d), 3.80-3.55 (7H, m), 3.22-2.40 (23H, m). ESI-TOF m/z calcd for C27H41N8O12 (M+H)+, 

calculated 669.2844, found 669.2822.  

 

General procedure for metalation. Starting material 2.9 was dissolved in H2O (1 mL) 

then the appropriate lanthanide chloride salts added. The pH was adjusted to 6 and the 

reaction mixture heated to 35oC - 40oC and left for overnight. The mixture was 

concentrated, purified by size exclusion chromatography (100% H2O) and the fractions 

lyophilized. 
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Gadolinium(III) 2,2',2''-((2,2',2''-(10-(2-hydroxy-5-
nitrobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tris(acetyl))tris(azanediyl))triacetate (2.10) Starting material 2.9 (31 mg, 0.046 

mmol) and GdCl3.6H2O (17 mg, 0.046 mmol). The title compound was obtained as a pale 

yellow solid (19 mg, 51%). ESI-TOF m/z calcd for C27H38 N8O12Gd (M-2H)+, calculated 

824.1850, found 824.1888. 

 

Europium(III) 2,2',2''-((2,2',2''-(10-(2-hydroxy-5-
nitrobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tris(acetyl))tris(azanediyl))triacetate (2.11) Starting material 2.9 (25 mg, 0.037 

mmol) and EuCl3.6H2O (14 mg, 0.037 mmol). The title compound was obtained as a pale 

yellow solid (16 mg, 53%). ESI-TOF m/z calcd for C27H38 N8O12Eu (M-2H)+, calculated 

819.1822, found 819.1858. 

 

Thulium(III) 2,2',2''-((2,2',2''-(10-(2-hydroxy-5-
nitrobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tris(acetyl))tris(azanediyl))triacetate (2.12) Starting material 2.9 (30 mg, 0.045 

mmol) and TmCl3.7H2O (18 mg, 0.045 mmol). The title compound was obtained as a 
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pale yellow solid (19 mg, 51%). ESI-TOF m/z calcd for C27H38 N8O12Tm (M-2H)+, 

calculated 835.1951, found 835.1949. 

 

Terbium(III) 2,2',2''-((2,2',2''-(10-(2-hydroxy-5-
nitrobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tris(acetyl))tris(azanediyl))triacetate (2.13) Starting material 2.9 (30 mg, 0.045 

mmol) and TbCl3.7H2O (25 mg, 0.068 mmol). The title compound was obtained as a pale 

yellow solid (33 mg, 89%). ESI-TOF m/z calcd for C27H38 N8O12Tb (M-2H)+, calculated 

825.1863, found 825.1862. 

 

Ytterbium(III) 2,2',2''-((2,2',2''-(10-(2-hydroxy-5-
nitrobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tris(acetyl))tris(azanediyl))triacetate (2.14) Starting material 2.9 (30 mg, 0. 045 

mmol) and YbCl3.6H2O (49 mg, 0.127 mmol). The title compound was obtained as a pale 

yellow solid (72mg, 68 %). ESI-TOF m/z calcd for C27H38 N8O12Yb (M-2H)+, calculated 

840.1998, found 840.2010. 
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2.4.3 Spectra 
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Chapter 3  

3 Transition Metal Complexes of Semi-rigidified and Fully-
Rigidified DOTAM 

 

3.1 Introduction 
T1 contrast agents are more often than not, either small macrocyclic complexes like Gd3+-

DOTA, or linear metal complexes such as Gadodiamide (Figure 3.1). The molecular 

structure of any MRI contrast agent will influence its thermodynamic and kinetic 

stability, the magnitude of the induced shifts (in the case of PARACEST agents) and 

even its spectroscopic properties.1 The acyclic complexes have higher flexibilities, which 

may facilitate faster water exchange, an important criterion for a good T1 agent.1 

 

Figure 3.1: Chemical structures of some ligands and complexes discussed in this 
work. 

 

As previously mentioned in Chapter 1, it is becoming more widespread for PARACEST 

agents to be designed based on the macrocyclic DOTAM (Figure 3.1). Substituting the 

acetate arms of DOTA with amide arms provides a reduced electron density at the metal 

center that in turn leads to the slower exchange of the exchangeable protons of -NH, -OH 

and a metal bound water. This slow exchange is a requirement for a CEST signal to be 

produced.1   
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DOTA and its associated structures such as DOTAM, offer higher preorganization, 

symmetry and rigidity, as compared to conventional acyclic ligands. Once chelation with 

a metal occurs, these properties subsequently influence the coordination geometries of the 

macrocycles. DOTA forms very stable lanthanide chelates by adopting either one of two 

conformations: square anti-prismatic (SAP, more stable) or a twisted square-antiprismatic 

(TSAP, less stable) (Figure 3.2). The coordination geometry is dictated by the 

configuration of the substituents on the backbone of the ring as well as the pendant arms. 

Hence, the two isomers can be differentiated by their respective angles between the N-

Ln-N and O-Ln-O planes (α). If the angle α, between the plane of the coordinating 

nitrogens of the backbone and the oxygens of the pendant arms is about 39o, that 

indicates the SAP geometry. On the other hand, an α of 25o indicates the TSAP 

geometry.2 Larger lanthanide ions (earlier in the period of the periodic table) that are 

coordinated to DOTA, tend to preferentially form the TSAP isomer while the smaller 

lanthanides (later in the period), prefer the SAP isomer.3  
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Figure 3.2: Schematic representations of the possible isomeric geometries of Ln3+-
DOTA. 

 

It has been shown that the water exchange rate in the SAP isomer of DOTAM is about 50 

times slower than that of the TSAP isomer.3, 4 In the TSAP isomer, the bound water is 

further away from the metal centre and this facilitates a faster exchange with the 

surrounding water molecules.2 It has also been demonstrated that the coordination 

geometry in DOTAM ligands having bulky amide substituents, normally led to the 

formation of the SAP isomer.5 However, the coordination geometry of these types of 
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complexes was also found be affected by the nature of the solvent.5 Considering that slow 

exchange is desired for CEST, using DOTAM ligands that are prone to form the SAP 

isomer should ideally produce good PARACEST agents.  

Potentially, another way to form the SAP isomer over the TSAP isomer is by means of 

rigidification. Rigidification may be achieved by placing groups on either the backbone 

of the macrocyclic ring, the alpha position of the pendant arms, or in both positions 

concurrently. Additionally, rigidification increases the kinetic inertness of the metal 

complexes.6 This is likely due to the more compact macrocyclic cage that prevents the 

nitrogen atoms from being protonated, thus leading to dissociation of the metal from the 

ligand.6  

Interest in the modulation of the CEST signal due to the amide proton, directed the 

research to determine the effect the rigidity of DOTAM-like structures would have on 

amide CEST generation. This effect has not been studied in detail for DOTAM-like 

structures. Nonetheless, it has been reported that the TSAP isomer of DOTA and 

DOTAM ligands, which have been rigidified by one substituent on the backbone of the 

ring or on each of the pendant arms, have a faster exchange of bound water.3, 7, 8 It was 

anticipated that by rigidifying the DOTAM backbone, the preferred SAP conformation 

for CEST would be “locked in”. Taking into account that the amide arms inherently 

allow for slow exchange of the amide protons, it was hypothesized that an even higher 

CEST effect should be generated by rigidification of the macrocycle, compared to that 

due solely to the amide protons.  

It was decided, that the structures to be investigated as PARACEST agents would have 

the DOTAM core structure but be rigidified through substitution of at least one 

cyclohexyl group on the macrocyclic ring. The cyclohexyl rings should additionally 

increase the hydrophobicity of the complexes. Hence, for in vivo applications, there may 

be favourable uptake into specific organs of the body.6 Optimistically, this would provide 

an opportunity to view these organs by CEST imaging. However, one should bear in the 

mind that if the agent is too hydrophobic, it might spend a longer time in these organs 

than is medically safe. Additionally, due to the presence of the amide protons of the 
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pendant arms, these agents may be pH responsive probes, hopefully within the 

biologically relevant pH range (pH 7.35-7.45).  

 

3.2 Results and Discussion 

3.2.1 Synthesis 

Figure 3.3 shows the initial target fully-rigidified 3.1a and semi-rigidified 3.2a 

complexes for this study. The route to achieve these complexes was to follow similar 

procedures published by Desreux et al., with the most important step being a "crab-like" 

condensation between a bischloroacetamide and a diamine.9 However, due to the 

difficulties faced during this crucial step, we modified the target ligands. It is noteworthy 

to mention, that previous work done on complexes similar to those shown in Figure 3.3, 

was within the context of conventional T1 MRI agents and as such had the acetate arms of 

the DOTA core structure.9  

 

Figure 3.3: Initial target complexes and their intermediate structures.    
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Synthesis of fully-rigidified complexes 
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Scheme 3.1: Synthetic route to new target fully-rigidified complexes. 

 

Scheme 3.1 shows the synthetic route taken to achieve the new target fully-rigidified 

ligand 3.9. Initially, the free diamine of 3.3 and chloroacetyl chloride was used to form 

the bischloroacetamide analogue of 3.4 according to literature procedures.10, 11 However, 

that product was not isolated in high yield. Several methods were attempted in order to 

increase the yield of the bischloro analogue of 3.4. These included varying the solvents 

(dioxane, CH2Cl2, toluene), reaction times (6 - 24 hrs) and temperature (-20oC to rt). 

Additionally, both organic and inorganic bases were employed and the equivalents of the 

electrophile chloroacetyl chloride (2.2 - 5 eq) were adjusted. Furthermore, oxalyl chloride 
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as well as to bromoacteyl bromide were used to increase the strength of the electrophile. 

Unfortunately, none of these changes improved the yields of the desired bisacetamide. 

We opted to use the diamine salt 3.3 that would allow for easier handling. However, it 

was insoluble in the solvents that were being used for the reaction and this likely had an 

effect on the low yields that were obtained. As a result, a Schotten-Baumann reaction 

using two phases of solvents was done following literature procedure.12 These reaction 

conditions addressed the solubility issue. Using bromoacteyl bromide as the electrophile, 

the reaction proceeded very well and the product 3.4 was easily isolated in excellent 

yield. 

Upon obtaining 3.4, the "crab-like" condensation with the diamine salt 3.3 was 

performed. The reaction was monitored by UPLC and two products were observed in the 

chromatogram. One product corresponded to the fully-rigidified intermediate 3.1b shown 

in Figure 3.3. The other product was the major one and had a mass with a higher 

molecular weight. The difference in mass between the two products indicated that the 

larger molecular weight product had an additional bisacetamide group. The identical 

reaction reported in the literature 9 made no mention of this larger by-product, although a 

yield of only 23% was reported for the smaller molecular weight product. 

Several things were done in order to improve the yield of 3.1b. These included varying 

the type of base and its equivalents (organic and inorganic; 2-10 eq), solvents (CH3CN, 

anhydrous EtOH, DMF), reaction times (up to 4 days) and temperatures (rt to 80oC). 

These changes did not improve the yield of the desired product 3.1b. Using varying 

equivalents of the bisbromo- or bischloroacetamide electrophile, as well as creating an in 

situ bisiodoacetamide also proved unsuccessful. The templating agent LiBr, was also 

used according to a procedure by Sharma et al.13 Moderate to excellent yields were 

reported  in the formation of macrocycles, which had been semi-rigidified with a benzene 

ring. Using templating agents is a well-established strategy for forming macrocycles such 

as crown ethers.13  

Due to the afore-mentioned problems, it was decided that the diamine salt 3.3 be 

protected using TsCl. This protection step was initially challenging, giving low yields 



50 

 

after following reported procedures.10, 11 It was decided that a Schotten-Baumann 

reaction, similar to that followed for the synthesizing the bisbromoactemide 3.4, should 

be used to improve the yield. This approach was successful giving the ditosylated 

diamine analogue of 3.3 in excellent yield.  

The cyclization reaction between the ditosylated product and 3.4 was attempted. 

Monitoring the reaction by UPLC showed the desired smaller molecular weight product 

as the major product, in addition to a by-product with a larger molecular weight. The 

mass difference between the two products corresponded to an additional ditosylated 

diamine. Initial attempts at separation and purification of this mixture were unsuccessful 

due to solubility issues. However, a solvent system of 10-30% acetone in CH2Cl2 was 

attempted and the desired and undesired products were isolated in low yields of roughly 

equal amounts. 

The removal of the Ts protecting groups proved problematic. LiAlH4 is a good reducing 

agents for amides and can also be used to remove Ts groups. As such, it was hoped that 

this reagent would allow for a simultaneous reduction and detosylation as demonstrated 

previously.14 In this instance, neither reaction worked, with only the starting material 

being present even after heating to 50oC for 2 days. Detosylation was also attempted 

fruitlessly with 0.1M SmI2 in THF,15 heating at 80oC in 32% HBr in acetic acid 16 and 

using a Ti(OiPr)4/Me3SiCl/Mg combination.17 Refluxing in concentrated H2SO4 only 

partially worked, even after heating up to 5 days at 110oC. The UPLC chromatogram for 

that reaction showed a mixture containing starting material as well as partially and fully 

deprotected compounds. Although the mixture was separated, there were discrepancies 

observed during characterization of the desired product. The HR-ESI-MS showed the loss 

of the tosyl groups but the 1H-NMR showed aromatic peaks in the spectrum.  Attempts to 

further purify the compound were unsuccessful. 

The difficulty associated with the removal of Ts groups has also been earlier 

demonstrated.18 In light of the previous results indicating the need for a protecting group 

to increase the yield of the initial target intermediate, other protecting groups were 

investigated. The Ns group was used but the results were the same as that of the Ts 
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groups during both the cyclization and deprotection steps. The diamine salt 3.3 was 

protected with Boc groups but no reaction occurred during cyclization with the 

bisbromoacetamide. It was based on these exhaustive attempts to improve the yield of the 

initial fully-rigidified intermediate 3.1b, that we modified our target complexes to those 

based on compound 3.9 (Scheme 3.1). 

Following cyclization of 3.3 and 3.4, the reaction mixture was purified by column 

chromatography and product 3.5 was obtained in 31% yield. Reduction of the amide 

groups of 3.5 was done using 1M BH3 in THF and the desired compound 3.6 was isolated 

in good yield. Peralkylation of 3.6 with ethyl (2-chloroacetyl)glycinate 3.7, followed by 

saponification, afforded the fully-rigidified ligand 3.9 in a moderate yield of 54% after 

two steps. 

Metalations of ligand 3.9 with lanthanides of varying sizes (Eu3+, Tm3+, Yb3+, Nd3+, 

Gd3+) were carried out as reported9 but were unsuccessful. The conditions tried included 

varying the equivalents of the lanthanide salts, solvents, reaction times and temperatures. 

It was at this point speculated that the inner cavity of the fully-rigidified ligand 3.9 was 

too small to accommodate a lanthanide. The ionic radii of the lanthanides range from 

1.143 Å for Ce3+ to 0.985 Å for Yb3+.19 It is likely that the chelate cavity is much smaller 

than this range. Within the context of PARACEST, the metals most commonly used are 

lanthanides but more recently, there have been reports of transition metals such as cobalt 

(Co2+),20, 21 nickel (Ni2+)22 and iron (Fe2+),23-26  being used to generate CEST due to the 

amide protons.27 As such, metalation with some of the smaller transition metals (Fe2+, 

Co2+, Ni2+, Cu2+, Zn2+ and Ga3+) was performed. The metalation of ligand 3.9 was 

partially successful, giving complexes 3.10 - 3.13 in moderate to good yields. However, 

no metalation occurred with Fe2+ and Ga3+. The ionic radii of these two metals are 0.62 Å 

and 0.92 Å for Ga3+ and Fe2+, respectively. 19 In regards to Co2+, Ni2+, Cu2+ and Zn2+ that 

formed complexes, the ionic radii ranged from 0.69 Å for Ni2+ to 0.90 Å for both Co2+ 

and Zn2+. It may therefore be inferred that the chelate cavity for the fully-rigidified ligand 

is greater than 0.62 Å but less than 0.92 Å. The preference of this ligand for transition 

metals over lanthanides showed the ability of the fully-rigidified ligand to discriminate 

based on size. This is perhaps due to the very rigid nature of the ligand and the associated 
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distortion it causes to the cavity. Additionally, the presence of the acetamide-glycinate 

arms may cause steric crowding which leads to further discrimination against the larger 

lanthanides. This may be confirmed or disproved by solid state analysis but 

unfortunately, attempts to grow crystals of the complexes were not successful. 

Synthesis of semi-rigidified complexes 

 

Scheme 3.2: Synthetic route to new target semi-rigidified complexes. 

 

As previously mentioned, the lack of success in the lanthanide metalations of the fully-

rigidified ligand 3.9 could be as a result of the very rigid nature of the ligand. For 

comparison purposes, the synthesis of the semi-rigidified counterpart that contained only 

one cyclohexyl ring was subsequently attempted. A similar synthetic pathway to that of 
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the fully-rigidified complex was followed starting with the bisbromoacetamide formation 

of ethylenediamine (Scheme 3.2). It was hoped that the reduction in rigidity would also 

lead to the formation of complexes of 3.2 shown in Figure 3.3. Unfortunately, similar 

problems as described earlier for the initial fully-rigidified complexes of 3.1 were faced.  

Hence, target 3.2 was altered to that based on the larger macrocycle 3.19. 

Using X-ray crystallography, characterization of the product 3.16 of the "crab-like" 

condensation reaction was possible.  Crystals of 3.16 were obtained by dissolving the 

compound in CHCl3 and layering with petroleum ether. After a series of similar steps 

earlier described, the semi-rigidified ligand 3.19 was obtained (Scheme 3.2). 

The attempts to metalate the semi-rigidified ligand 3.19 with lanthanides also failed. In 

retrospect, it may be possible that the lanthanides partially coordinate to the fully-

rigidified and semi-rigidified ligands at some point but falls out due to the distortion by 

the cyclohexyl groups appended to the backbone. Metalation with the same transition 

metals used for the fully-rigidified ligands was more successful and complexes 3.20 - 

3.24 were obtained in good to excellent yields. Although the Ga3+ reaction was still 

unsuccessful, the metalation with Fe2+ worked.  Based on this and previous observations, 

the fully-rigidified ligand is more selective than the semi-rigidified ligand. The reduced 

selectivity of the semi-rigidified ligand is likely due to the removal of a cyclohexyl 

group. Similar attempts to grow crystals for solid state analysis were not successful. 

 

3.2.2 Crystal Structure 

The crystal structure data of 3.16 is summarized in Table 3.1. The structure of 3.16 as 

shown in Figure 3.4a consists of three rings, the common points holding them together 

being two tertiary nitrogens, N1 and N4. This gives the molecule a "Y-like" appearance. 

One can image the cyclohexyl ring being the vertical stem and the other two nine-

membered rings being the arms (Figure 3.4b). The cyclohexyl ring is not distorted and 

remains in its favourable chair conformation. The starting diamine salt 3.3 had an 
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absolute configuration of R, R-(+) (corresponding to C13 and C14). This configuration 

remained unchanged given that C13 and C14 are not sites of reactivity. 

 

 

 

 

 

The interesting feature of ligand 3.16 is the tertiary N1 and N4 that originated from the 

cyclohexyl diamine. The expected bond length for each N-C single bond in tertiary 

amines is 1.469 Å.28 The three bonds to N1 consisted of two bonds (new bond N1-C12 

and original bond N1-C13) that were close to the expected value of 1.469 Å (average 

length = 1.465 Å). The other new bond N1-C7 was much shorter by 0.021 Å (Table 3.2). 

On the other hand, two of the three bonds to N4 consisted of the shorter new N4-C7 bond 

(∆Å = 0.009) and the original N4-C14 bond (∆Å = 0.01) being the longest. Surprisingly, 

the bond length of N4-C14 is identical to the N-C bond of endo δ-lactams of the type C1-

N(-C1)-C=O (1.479 Å).28 The third bond N4-C6 (new) was identical to the expected 

value of 1.469 Å. The difference in bond length between the original bonds N1-C13 and 

N4-C14 may be due to the difference in the spatial orientation of these bonds. Each bond 

is pointing in opposite directions and the corresponding nitrogen atoms may require 

(b) (a) 

Figure 3.4: (a) ORTEP drawing of 3.16 showing naming and numbering scheme.  
Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with 

arbitrary radii for clarity.  Water of hydration omitted for clarity. (b) Ball and stick 
representation of 3.16, showing its Y-like shape. 
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different degrees of lengthening in order to each form two additional N-C bonds. 

Considering that the N4-C14 bond was the longest, this likely had to undergo the most 

change. 

Table 3.1: Crystal data and structure refinements for 3.16. 

Formula C18H32N6O5 
Formula Weight (g/mol) 412.49 

Crystal Dimensions (mm ) 0.325 × 0.320 × 0.122 
Crystal Color and Habit colourless prism 

Crystal System orthorhombic 
Space Group P 21 21 21 

Temperature, K 110 
Unit cell dimensions 

a, Å 
 

9.504(2) 
b, Å  14.103(3) 
c, Å  14.726(4) 
α,° 90 
β,° 90 
γ,° 90 

V, Å3 1973.9(8) 
Z 4 

F(000) 888 
ρ (g/cm) 1.388 

λ, Å, (MoKa) 0.71073 
μ, (cm-1) 0.103 

Number of reflections to determine final unit cell 9608 
Number of reflections measured 174049 

Unique reflections measured 13523 
R1 0.0353 

wR2 0.0871 
R1 (all data) 0.0449 

wR2 (all data) 0.0916 
GOF 1.066 

Min & Max peak heights on final DF Map (e-/Å) -0.205, 0.473 

 

Unpredictably, only one bond angle (C7-N4-C6) involving either of the tertiary N1 or N4 

corresponded to a tetrahedral geometry for sp3 nitrogens (Table 3.3). The other bond 

angles are greater than 109.5o and range from 113o - 117o, thus falling between that of an 

sp3 (109.5o) and sp2 (120o) nitrogen. It is possible that while in solution state, nitrogen 

inversion occurred, leading to the interconversion from tetrahedral to trigonal planar and 
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back to tetrahedral geometry. This interconversion may be possible since the ring systems 

involving N1 and N4 are large ring systems with less strain. However, upon forming 

crystals, a hybrid developed, thereby leading to bond angles between the two geometries. 

Table 3.2: Selected bond lengths (Å) for 3.16. 

N1-C1 1.4482(10) 
N1-C13 1.4646(10) 
N1-C12 1.4647(10) 
C6-N4 1.4680(10) 
N4-C7 1.4602(10) 

N4-C14 1.4788(10) 

 

Table 3.3: Selected bond angles (o) for 3.16. 
C1-N1-C13 117.07(7) N4-C7-C8 113.11(6) 
C1-N1-C12 116.77(7) N4-C7-H7A 113.1(9) 

C13-N1-C12 114.33(6) N4-C7-H7B 108.3(10) 
N1-C1-C2 112.67(7) N1-C12-C11 108.55(6) 

N1-C1-H1A 109.6(12) N1-C12-H12A 113.6(11) 
N1-C1-H1B 111.4(9) N1-C12-H12B 111.2(10) 
N4-C6-C5 112.68(6) N1-C13-C18 114.15(7) 

N4-C6-H6A 111.7(11) N1-C13-C14 113.98(6) 
N4-C6-H6B 107.1(9) N1-C13-H13 103.9(9) 
C7-N4-C6 108.85(6) N4-C14-C15 113.18(6) 

C7-N4-C14 113.84(6) N4-C14-C13 112.30(6) 
C6-N4-C14 113.82(6) N4-C14-H14 104.6(9) 

 
 

3.2.3 Magnetic Properties 

Magnetic moments 

The magnetic moments for the Co2+ (3.11) and Ni2+ (3.12) fully-rigidified complexes 

were determined and found to be 3.93 and 2.80 μB, respectively. These observations are 

in agreement with that of high spin Co2+ and Ni2+ complexes.29 These values indicated 

that the coordination number (CN) for both complexes is six but due to distortion, the 

geometry is pseudo-octahedral rather than octahedral.29 

The magnetic moments for the Co2+ (3.21) and Ni2+ (3.22) semi-rigidified complexes 

were 4.81 and 3.52 μB, respectively, which are in agreement with that of high spin Co2+ 
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and Ni2+complexes.29 The value reported for the Ni2+ complex (3.22) indicated that the 

coordination geometry is pseudo-tetrahedral rather than tetrahedral due to distortion (CN 

= 4).29 Similarly, distortion of the Co2+ complex (3.21), led to a pseudo-octahedral 

geometry (CN = 6).29  

A value of 2.49 μB for Fe2+ (3.23) indicated a low spin compound which could be either 

Fe2+ or Fe3+, thus this value is considered to be anomalous.29 However, there are a few 

things that should be considered in order to establish a reasonable oxidation state of iron 

in this complex. Firstly, if a fully-rigidified complex containing iron had been made, the 

oxidation state of iron and thus the ionic radii would be the same in both types of 

rigidified complexes. Secondly, octahedral Fe3+ has a smaller ionic radius (low spin = 

0.55 Å and high spin = 0.645 Å) than Fe2+, Ni2+ and Co2+ and metalation with iron did 

not occur with the fully-rigidified macrocycle 3.9. Thirdly, the ionic radius of high spin 

Fe3+ is similar to that of Ga3+ (0.620 Å) which did not metalate either the semi-rigidified 

or fully-rigidified ligands, meaning that these metals are too small for the cavities of the 

ligands. Hence, it can be inferred that iron in the semi-rigidified complex must be the 

larger low spin Fe2+, which was too large for the fully-rigidified ligand. 

CEST studies 

CEST data was collected at pH 6, 7 and 8 at T = 25oC and 37oC for the Co2+ and Ni2+ 

fully-rigidified complexes 3.11 and 3.12 as well as the Co2+, Ni2+  and Fe2+semi-rigidified 

complexes 3.21, 3.22 and 3.23 (10 mM, 9:1 D2O/H2O). Unfortunately, no CEST signals 

were observed. Similarly, no signals were observed when CEST experiments of the 

complexes at 20 mM in pH 7 phosphate buffer (0.02 M) at 37oC were performed. 

The most likely reason for the absence of an amide CEST signal is that the exchange rate 

of the amide protons may be outside the required regime for a CEST effect to be 

observed. This faster exchange rate could be due to the very rigid nature of the ligands, 

considering that Co2+, Ni2+ and Fe2+ in simpler ligands such as DOTAM have shown 

amide CEST signals.21, 22 While the coordination geometry of the transition metal in the 

complexes may also negatively impact the CEST signal generation, the exact geometries 

are unknown. The deviation from the lanthanide-containing DOTA-like complexes, as 
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represented in the original target complex structures (Figure 3.1), means that the 

definition of SAP and TSAP coordination geometries (nine-coordinate with respect to 

lanthanide ions) cannot be used in context with these highly rigidified macrocycles 

containing transition metals. Based on the results of the magnetic moments of the 

transition metals, their geometries may be tetrahedral (four-coordinate) and or octahedral 

(six-coordinate), with some distortions. The transition metals used to form these 

complexes are therefore coordinatively saturated and unlikely to form three additional 

coordinating bonds. Therefore, it cannot be reasonably concluded that the lack of a CEST 

signal is also due to the formation of the unwanted TSAP isomer, which in DOTA-based 

complexes, have faster exchange rates of exchangeable protons.  

Relaxivity studies 

The relaxivity properties of the Co2+ (3.11) and Ni2+ (3.12) fully-rigidified complexes as 

well as the Co2+ (3.21), Ni2+ (3.22) and Fe2+ (3.23) semi-rigidified complexes were 

determined and the results are shown in the Table 3.4. The low r1 values of the complexes 

are comparable to those reported for macrocyclic complexes involving these metals. 21, 22, 

24 Based on these values, it is likely that there is no water molecule bound to the metal 

center. The variation in r1 values of the complexes were not based on the type of ligands, 

but rather on the type of metal, with the Ni2+ complexes having the highest values. 

Table 3.4: r1 and r2 values of agents 3.11 - 3.12 and 3.21 - 3.23 at 37°C and pH 7.00 ± 
0.03.   

 
Mn+ r1 (mM-1s-1) r2 (mM-1s-1) 

 
r2/r1 

Fully-rigidified Co2+ (3.11) 0.052 0.262 5.04 
Ni2+  (3.12) 0.268 0.345 0.507 

Semi-rigidified 
Co2+ (3.21) 0.081 0.463 5.72 
Ni2+  (3.22) 0.246 0.365 1.48 
Fe2+ (3.23) 0.097 3.17 32.7 

 

On the other hand, while there was no significant variation in the r2 values of Ni2+ 

complexes 3.12 and 3.22, a difference was seen in the values for the Co2+ complexes 3.11 
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and 3.21, with the semi-rigidified complex having an r2 value that is more than one and a 

half times that of the fully-rigidified complex. With the exception of the lone Fe2+ 

complex, these r2 values were comparable to those previously reported. 21, 22 

The r2 value of 3.17 mM-1s-1 for the Fe2+ complex 3.23 was the highest of all the 

complexes and higher than that reported previously for other Fe2+ macrocyclic 

complexes.24 Nevertheless, in comparison to superparamagnetic iron oxide nanoparticles 

(SPIONs) that have r2 values greater than 70 mM-1s-1 at 60 MHz,30 the r2 value of 3.17 

mM-1s-1 for the Fe2+ complex 3.23 is obviously much lower at 400 MHz.  

The r2/r1 ratio for both Co2+ complexes 3.11 and 3.21 are similar, while that of the semi-

rigidified Ni2+ complex 3.22 is almost three -fold higher than the fully-rigidified Ni2+ 

complex 3.12. The r2/r1 ratio of Fe2+complex 3.23 is the highest of all the complexes 

described here as well as that of reported for various SPIONs such as TMAOH 

(tetramethylammonium hydroxide) SPION and Resovist®.30  This recorded high value 

shows the preference of negative contrast enhancement (darkening effect), thus indicating 

that the interference from the T1 effect (lightening effect) is small.30 

 

3.2.4 UV Studies 

Stability studies 

Stability studies of the complexes (1 mM in H2O) at pH 2-11 were carried out 

spectrophotometrically in order to further characterize the complexes made. At pH 7, the 

λmax for the fully-rigidified Cu2+ complex 3.10 (Figure 3.5a) and Co2+ complex 3.11 

(Figure 3.5c) was 584 nm and 525 nm, respectively. Although the Ni2+ complex 3.12 was 

a dark green solid, in solution it was almost colourless, making it difficult to obtain its 

λmax. No stability studies were done with the Zn2+ complex 3.13 since it was naturally a 

cream -coloured compound.  

The absorbances of complexes 3.10 and 3.11 at acidic pH were low, indicating possible 

demetalation. However, at basic pH a hyperchromic shift was observed, possibly 
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indicating increased stability. The solutions of 3.10 and 3.11 at pH 2 and 11 were left 

undisturbed for a week at room temperature and their UV absorbance re-measured. The 

Cu2+ complex 3.10 (Figure 3.5b) and Co2+ complex 3.11 (Figure 3.5d) showed no 

significant difference in absorbances at lower pH, but there was a slight increase in 

absorbance for the complexes at pH 11.  

 

 

Figure 3.5: Absorption spectra of fully-rigidified complexes Cu2+ 3.10 (a) and (b) 
and Co2+ 3.11 (c) and (d). Figures (a) and (c) are at pH 2 - 11 and (b) and (d) are at 
pH 2 and 11 taken 1 week later. Each complex concentration was 1 mM in H2O at 

25oC. 
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Figure 3.6: Absorption spectra of semi-rigidified complex Cu2+ 3.20 (a) at pH 2 - 11 
and (b) pH 2 and 11 taken 1 week later Each complex concentration was 1 mM in 

H2O at 25oC. 

 

Similar stability studies at pH 2-11 were carried out for the semi-rigidified complexes 

3.20, 3.21 and 3.23. Likewise, no stability studies were done with the Ni2+ 3.22 and Zn2+ 

3.24 complexes for the reasons mentioned earlier. At pH 7, the λmax in H2O occurred at 

637 nm for the Cu2+ complex 3.20 (Figure 3.6a), 525 nm for the Co2+ complex 3.21 

(Figure 3.7a) and 473 nm for the Fe2+ complex 3.23 (Figure 3.7c). The Cu2+ complex 

3.20 seemed to be more stable at pH 6 or greater since a slight hyperchromic shift was 

observed at those pH values. Both Co2+ 3.21 and the Fe2+ 3.23 complexes had their 

highest absorbance at pH 7, indicating higher stability. 

The absorbances at pH 2 and pH 11 were re-measured one week later during which the 

solutions were left at room temperature. There was no difference in absorbance for the 

Cu2+ complex 3.20 (Figure 3.6b) and only a slight difference in the absorption spectra of 

the Co2+ complex 3.21 (Figure 3.7b) at those pH values. The Fe2+ complex 3.23 (Figure 

3.7d) had a lower absorbance one week later at pH 2 but there was no difference in 

absorbance of the pH 11 values. 
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Figure 3.7: Absorption spectra of semi-rigidified complexes Co2+ 3.21 (a) and (b) 
and Fe2+ 3.23 (c) and (d). Figures (a) and (c) are at pH 2 - 11 and (b) and (d) are at 
pH 2 and 11 taken 1 week later. Each complex concentration was 1 mM in H2O at 

25oC. 

 

The aqua complexes of Cu2+, Fe2+, Co2+ and Ni2+ have weak absorbances occurring in the 

near infrared region.31 This may account for the small absorbances due to d-d transitions, 

seen in the aqueous solutions of the fully-rigidified and semi-rigidified complexes at 800 

nm. That feature is comparable to that of Cu2+ complexes of tetraaza macrocycles such as 

DOTA32 and DOTAM33. That feature is not restricted to DOTA or DOTAM. In Cu2+ 

polyaminocarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), this has also 

been observed.34 Although these complexes are more rigid in nature, it is not surprising 
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that they possess similar absorption characteristics as that of the unrigidified 

macrocycles, seeing that no additional chromophores were incorporated in the structures. 

Ligand exchange studies 

 

Figure 3.8: Ligands and complexes used in the ligand exchange study.  

 

UV ligand exchange studies were attempted in order to determine the strength of binding 

of the ligands 3.9 and 3.19 to the metals. The first choice was phenanthroline (Figure 3.8) 

because it has a strong absorbance in both its free and complexed states. Figure 3.9a 

shows that the Cu2+-phenanthroline complex had a λmax of 273 nm while the free ligand 

had a λmax of 262 nm in 1:1 H2O/pH 7 phosphate buffer. The titration was carried out 

using the semi-rigidified Cu2+complex 3.20. Regrettably, there was an overlap of the 

peaks at 273 nm and 262 nm, which made it difficult to estimate how much Cu2+ was 

actually being released from the semi-rigidified ligand and being bound by 

phenanthroline. Additionally, with less than 0.5 μM of phenanthroline added, there was 

shift in λmax from 273 nm to 262 nm. 
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Figure 3.9: Titration absorption spectra at 25oC of semi-rigidified complexes (a) 
Cu2+ complex 3.20  (10 μM in 1 : 1 pH 7 (0.02 M) phosphate buffer/H2O) with 

phenanthroline (500 μM in 10 μM Cu2+ complex 3.20 solution) and (b) Zn2+ complex 
3.24 (10 μM in 1 : 1 pH 7 (0.02 M) phosphate buffer/H2O) with Zincon (500 μM in 

10 μM Zn2+ complex 3.24 solution).  
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The second choice of ligand for the afore-mentioned purpose was Zincon (Figure 3.8). 

Ligand exchange experiments were carried out with Zincon and the semi-rigidified Zn2+ 

complex 3.24. Zincon binds strongly to Zn2+ (log β = 4.19, Kd = 64.44 μM).35 The 

complex had a λmax at 600 nm while the free Zincon had its λmax at 470 nm in 1:1 pH 7 

phosphate buffer/H2O (Figure 3.9b). The λmax of the Zn2+-Zincon complex and the free 

Zincon has been observed at 620 and 488 nm, respectively, in borate buffer.35 However, 

attempts to derive a Kd for complex 3.24 were unsuccessful, even although ∆λmax was 

130 nm. Addition of up to 25 μM addition of Zincon (2.5X), caused both peak 

absorbances at 470 and 600 nm to increase simultaneously, which is not an ideal 

response. The reason for the increase in absorbances for both peaks was not investigated.  

 

Figure 3.10: Titration absorption spectra of Cu2+-Zincon complex (10 μM in 1 : 1 
pH 8 (0.02 M) phosphate buffer/H2O) with fully-rigidified ligand (500 μM in 10 μM 

Cu2+-Zincon complex solution) at 25oC. 

 

The Cu2+-Zincon complex (Figure 3.8) was titrated with the fully-rigidified ligand 3.9. 

The absorbance was measured for up to 95 μM of the ligand. As can be seen in Figure 

3.10, there is no absorbance peak corresponding to the free Zincon. This reinforces that 

the Cu2+-Zincon complex is a stable one (log β = 4.39, Kd = 40.01 μM).35 Heating at 60oC 
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for overnight did not lead to formation of the Cu2+-fully-rigidified complex 3.10. The 

negative absorbances observed at longer wavelengths when the concentration of fully-

rigidified ligand was increased, may be attributed to the formation of aggregates.  

 

  

Figure 3.11: Absorption spectra of ligand exchange experiment with (a) Cu2+-DOTA 
and Zincon at  Cu2+-DOTA complex (10 μM in 1 : 1 pH 8 (0.02 M) phosphate 

buffer/H2O) with Zincon  (500 μM in 10 μM Cu2+-DOTA complex solution) at 25oC 
and (b) Same solution at 60oC, four days later. 
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The Cu2+-DOTA complex (log β = 22.25)36 was similarly titrated with Zincon. The UV 

spectrum showed that no exchange occurred between the two as evidenced by the 

absorption at ~488 nm which correlates to free Zincon (Figure 3.11a). The formation of 

the Cu2+-Zincon complex was completed only upon overnight heating of the mixture at 

60oC (Figure 3.11b). 

Cu2+-DOTA complex and fully-rigidified ligand 3.9 were reacted together at room 

temperature for overnight and the ligand exchange was monitored by UPLC. The 

chromatogram showed that no exchange occurred (data not shown). A similar experiment 

was done with the semi-rigidified ligand 3.19 giving the same results. Overnight heating 

at 60oC also did not lead to the formation of either the Cu2+-fully-rigidified or semi-

rigidified complexes.  

Despite the fact that we were unable to quantitatively determine the stability of the fully-

rigidified or semi-rigidified complexes, the afore-mentioned results of ligand exchange 

indicates that the stability of these complexes is in the order of semi-rigidified ligand ≈ 

fully-rigidified ligand < Zincon < DOTA. 

 

3.3 Conclusion 
The synthesis of the initial target lanthanide complexes containing one and two 

cyclohexyl rings appended to the backbone of DOTAM was met with several challenges. 

Based on the low yields obtained for these initially desired ligands during cyclization, the 

targets were modified to that of the very interesting and larger molecular weight by-

products. These semi-rigidified and fully-rigidified ligands possessed a most unusual 

structure, as indicated by the X-ray crystal data of the intermediate semi-rigidified ligand. 

This intermediate ligand had an additional bisacetamide group attached, thereby forming 

a Y-shaped structure with two tertiary amines.  

The new target ligands were observed to be selective towards the smaller transition 

metals, rather than the desired larger lanthanides. Within these two types of ligands, the 

fully-rigidified one was even more discriminating, since it did not form a complex with 
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Fe2+. This observation of selectivity towards the transition metals indicated the smaller 

cavity sizes of these ligands and this may be useful for scavenging metals of similar sizes. 

The research showed that a CEST signal cannot be generated for the Ni2+, Co2+ and Fe2+ 

complexes under the different pH conditions and solvent mixtures used. At this time, it 

may be simply inferred that the lack of a CEST signal was due to the rigid ligand design 

that caused the exchange rate to fall outside of the desired regime for CEST. Considering 

that these modified complexes are fused structures that have severely deviated from 

DOTA-based ones, the definition of SAP and TSAP cannot be applied to these structures. 

While coordination geometry may play a role, it cannot be construed that the absence of a 

CEST signal is due to the exclusive formation the TSAP isomer, which is known to 

possess a fast exchange rate for the metal bound water protons. In regards to T1 and T2 

relaxivities, all the complexes gave low values but these were comparable to published 

results. However, an exception was seen in the semi-rigidified Fe2+ complex, which had a 

much higher T2 relaxivity.  

The attempt to assess the selectivities of the ligands by performing exchange experiments 

was met with difficulty. Nonetheless, it was possible to conclude qualitatively that both 

types of rigidified ligands synthesized are weak chelators as compared to un-rigidified 

ones such as DOTA.  

The information gained here has indicated that the degree of rigidity in DOTAM-like 

structures is important in binding of lanthanides as well as transition metals. More 

rigidified structures led to better selectivity but the rigidity negatively affected the 

generation of a CEST signal. It is still crucial to gain information regarding amide 

exchange and accordingly, the amide CEST effect in a SAP isomer. Hence, towards that 

goal, it may be necessary to reduce the level of rigidity in the target ligands. This may 

provide an easier way of driving the formation of the preferred SAP isomer, which is a 

promising advantage for good CEST signal generation. 
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3.4 Supplemental Information 

3.4.1 General Experimental  

General synthetic details can be found in Appendix 1. 

CEST and Relaxivity Experiments 

CEST spectra were acquired on a 600 MHz vertical bore NMR spectrometer, using a 15 

µT, 2 s continuous wave presaturation pulse at offset frequencies ranging from -110 to 

110 ppm in steps of 1 ppm at a concentration of 10 mM in D2O/H2O (9:1) at pH 6.00 ± 

0.03, 7.00 ± 0.03 and 8.00 ± 0.03; 37 °C and at a concentration of 20 mM in pH 7 

phosphate buffer; 37 °C. T1 and T2 relaxation time constant measurements were made on 

a 400 MHz vertical bore NMR spectrometer. T1 relaxation time constant measurements 

were made for four different concentrations (1, 2, 4, 8 mM) of CA in H2O, using an 

inversion recovery sequence (20 inversion times in the range of 0.1 s - 20 s) with a 

minimum d1 = 5T1 to ensure full recovery, pH 7.00 ± 0.03 and 37 °C.  T2 relaxation time 

constant measurements were made for four different concentrations (1, 2, 4, 8 mM) of 

CA in H2O, using a CPMG pulse sequence (15 inversion times in the range of 0.001 s - 7 

s) with a minimum d1 = 5T1 to ensure full recovery, pH 7.00 ± 0.03 and 37 °C. VNMRJ® 

software of the spectrometer automatically gave the T1 and T2 relaxation times from 

which the corresponding relaxation rates were calculated. The relaxivities were then 

determined from the slope of the linear regression fitting of the rates versus concentration 

in Microsoft Excel. 

 

3.4.2 Synthetic Procedures 

General procedure for cyclization. A solution of bisbromoacetamide, K2CO3 and LiBr 

were suspended in CH3CN and refluxed for 1 h and (1R,2R)-cyclohexane-1,2-diamine 

tartrate in CH3CN was added and stirring was continued for 36 h. The reaction mixture 

was filtered and the filtrate concentrated. The crude was purified by column 

chromatography (silica gel; CH2Cl2/MeOH/NH4OH (90:10:1); charring with KMnO4).  
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(4aR,8R,11aR,15aR,19R,22aR,23R,24R)-
hexadecahydro-8,19-
[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine-
6,10,17,21(7H,9H,18H,20H)-tetraone (3.5). Bisbromoacetamide (3.4) (0.889 g, 2.5 

mmol), K2CO3 (2.07 g, 15 mmol) and LiBr (0.434 g, 5 mmol), (1R, 2R)-cyclohexane-1, 

2-diamine tartrate 3.3 (0.661 g, 2.5 mmol) and CH3CN (vtot = 80 mL). Title compound 

was obtained as a white solid (0.394 g, 31%). 1H NMR (400 MHz ,CDCl3): δ 8.67 (2H, d, 

J = 10Hz), 6.70 (2H, d), 3.86-3.64 (4H, m), 3.51-3.44 (3H, m), 3.16-3.09 (5H, m), 2.46-

2.40 (2H, m), 2.01-1.93 (4H, m), 1.82-1.66 (8H, m), 1.56-1.29 (10H, m), 1.13-1.05 (2H, 

m). 13C NMR (100 MHz, CDCl3): δ 174.51, 174.13, 66.74, 62.85, 56.12, 55.00, 53.55, 

31.98, 25.53, 24.89, 24.75. ESI-TOF m/z calcd for C26H43N6O4 (M + H)+, calculated 

503.3346, found 503.3350. 

 

(1R,10R,10aR,14aR)-decahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-
3,8,16,21(2H,9H)-tetraone (3.16). Bisbromoacetamide 3.15 (1.755 g, 5.81 mmol), 

K2CO3 (3.9 g, 28.24 mmol) and LiBr (0.434 g, 5 mmol), (1R,2R)-cyclohexane-1,2-

diamine tartrate 3.3 (1.536 g, 5.81 mmol) and  CH3CN (vtot = 170 mL). Recrystallization 

from petroleum ether-CHCl3 gave the title compound as colourless crystals (0.529 g, 

23%). 1H NMR (400 MHz ,CDCl3): δ 7.51 (2H, d) 7.17 (2H, d, J = 10Hz), 3.92 (2H, 

broad s), 3.48 (2H, broad s), 3.37 (2H, broad s), 3.30-3.17 (4H, m), 2.90-2.65 (8H, m), 

1.95 (2H, broad s), 1.68 (2H, broad s), 1.10 (2H, broad s), 0.97 (2H, broad s). 13C NMR 
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(100 MHz, CDCl3): δ 174.07, 173.07, 61.12, 58.95, 53.59, 38.73, 37.74, 25.03, 23.97. 

m.p. 247.3 - 250.1oC. ESI-TOF m/z calcd for C18H31N6O4 (M + H)+, calculated 395.2407, 

found 395.2392. 

 

General procedure for amide reduction. Macrocycle was dissolved in 1M BH3 in THF 

and then refluxed for 3 days. After quenching with H2O, the mixture concentrated and 

acidified with 6M HCl at 0oC then refluxed for overnight. Mixture was co-evaporated 

with CH3CH2OH then dissolved in H2O and lyophilized. The brown sticky solid was 

basified with NH4OH and extracted with CHCl3. The organic layers were collected, dried 

over Na2SO4, concentrated and the residue co-evaporated with acetone. Product was then 

carried forward to next step without further purification. 

 (4aR,8R,11aR,15aR,19R,22aR,23R,24R)-
tetracosahydro-8,19-
[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine (3.6). Macrocycle 

3.5 (0.335 g, 0.666 mmol), 1M BH3 in THF (30 mL), and 6M HCl (5 mL). The title 

compound was obtained as a cream solid (0.242 g, 81%). 1H NMR (400 MHz ,CDCl3): δ 

3.05 (2H, t, J =  14Hz), 2.72-2.65 (2H, m), 2.64-2.44 (10H, m), 2.40-2.28(4H, m), 2.28-

2.15 (5H, m), 2.00 (2H, d, J = 13Hz), 1.95-1.85 (3H, m), 1.76-1.63 (8H, m), 1.33- 0.95 

(14H, m). 13C NMR (100 MHz, CDCl3): δ 61.41, 59.97, 57.10, 48.63, 47.35, 43.71, 

40.76, 32.50, 29.76, 26.16, 25.36, 24.85. ESI-TOF m/z calcd for C26H51N6 (M + H)+,  

calculated 447.4175, found 447.4156. 
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(1R,10R,10aR,14aR)-tetradecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine (3.17). 

Macrocycle 3.16 (0.467 g, 1.184 mmol), 1M BH3 in THF (50 mL) and 6M HCl (9 mL). 

The title compound was obtained as a cream solid (0.353 g, 88%). 1H NMR (400 MHz 

,CDCl3): δ 3.07 (2H, t, J =  13Hz), 3.03-2.96 (2H, m), 2.78-2.47 (20H, m), 2.25 (2H, d), 

1.94 (2H, d, J =  13Hz), 1.78-1.72 (2H, m), 1.30-0.99 (8H, m). 13C NMR (100 MHz, 

CDCl3): δ 61.43, 48.54, 46.23, 45.84, 45.14, 30.07, 29.62, 25.67, 24.44. ESI-TOF m/z 

calcd for C18H39N6 (M + H)+, calculated 339.3236, found 339.3235. 

 

General procedure for alkylation and deprotection. Starting material and K2CO3 were 

suspended in CH3CN and ethyl (2-chloroacetyl)glycinate dissolved in CH3CN () was  

added. The reaction mixture was heated to 60oC and left for 2 days. Reaction mixture was 

filtered and the filtrate concentrated. The crude was the carried forward to the next step as 

is.  

Crude product was dissolved in MeOH/1M NaOH (1:1) and left stirring at rt for 

overnight. The reaction mixture was concentrated and neutralized with 1M HCl. The 

crude was purified by size exclusion column chromatography (100% H2O) and the 

desired fractions were collected and lyophilized to give the desired compound. 

 

2,2',2'',2'''-((2,2',2'',2'''-
((4aR,8R,11aR,15aR,19R,22aR,23R,24R)-icosahydro-8,19-
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[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine-5,11,16,22-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetic acid (3.9). Starting material 3.6 

(0.200 g, 0.448 mmol), K2CO3 (0.310 g, 2.24 mmol), ethyl (2-chloroacetyl)glycinate 3.7 

(0.402 g, 2.24 mmol), CH3CN (vtot = 7 mL) and MeOH/1M NaOH (vtot =6 mL). The title 

compound was obtained as a cream solid (0.221 g, 54%). ESI-TOF m/z calcd for 

C42H71N10O12 (M + H)+, calculated 907.5253, found 907.5295. 

 

2,2',2'',2'''-((2,2',2'',2'''-
((1R,10R,10aR,14aR)-dodecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-4,7,17,20-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetic acid (3.19). Starting material 

3.17 (0.323 g, 0.954 mmol), K2CO3 (0.659 g, 4.77 mmol), ethyl (2-chloroacetyl)glycinate 

3.7 (0.857 g, 4.77 mmol), CH3CN (vtot = 10 mL) and MeOH/1M NaOH (vtot = 9 mL). The 

title compound was obtained as a cream solid (0.273 g, 36%). ESI-TOF m/z calcd for 

C34H59N10O12 (M + H)+, calculated 799.4314, found 799.4346. 

 

General procedure for metalation. Starting material was suspended in H2O and the 

appropriate metal salts added. The pH was adjusted to 7 and the reaction mixture heated 

to 50oC and left for overnight. The crude was dialyzed for 3 days and then lyophilized. 
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Copper(II) (2,2',2'',2'''-((2,2',2'',2'''-
((4aR,8R,11aR,15aR,19R,22aR,23R,24R)-icosahydro-8,19-
[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine-5,11,16,22-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.10). Starting material 3.9 

(0.034 g, 0.0375 mmol), CuCl2.2H2O (0.0066 g, 0.0413 mmol) and H2O (1 mL). The title 

compound was obtained as a blue solid (0.031 g, 86%). ESI-TOF m/z calcd for 

C42H68N10O12Cu (M - 2H)+, calculated 967.4314, found 967.4296. 

 

Cobalt(II) (2,2',2'',2'''-((2,2',2'',2'''-
((4aR,8R,11aR,15aR,19R,22aR,23R,24R)-icosahydro-8,19-
[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine-5,11,16,22-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.11). Starting material 3.9 

(0.024 g, 0.0265 mmol), CoCl2.6H2O (0.0069g, 0.029 mmol) and H2O (1 mL). The title 

compound was obtained as a purple solid (0.015 g, 58%). ESI-TOF m/z calcd for 

C42H68N10O12Co (M - 2H)+, calculated 963.4350, found 963.4392. 
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Nickel(II) (2,2',2'',2'''-((2,2',2'',2'''-
((4aR,8R,11aR,15aR,19R,22aR,23R,24R)-icosahydro-8,19-
[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine-5,11,16,22-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.12). Starting material 3.9 

(0.034 g, 0.0375 mmol), NiCl2 (0.0054 g, 0.0413 mmol) and H2O (1 mL). The title 

compound was obtained as a green solid (0.026 g, 72%). ESI-TOF m/z calcd for 

C42H68N10O12Ni (M - 2H)+, calculated 962.4372, found 962.4348. 

 

Zinc(II) (2,2',2'',2'''-((2,2',2'',2'''-
((4aR,8R,11aR,15aR,19R,22aR,23R,24R)-icosahydro-8,19-
[1,2]benzenodibenzo[b,k][1,4,7,10,13,16]hexaazacyclooctadecine-5,11,16,22-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.13). Starting material 3.9 

(0.024 g, 0.026 mmol), ZnCl2 (0.0035 g, 0.026 mmol) and H2O (1 mL). The title 

compound was obtained as a white solid (0.017 g, 68%). ESI-TOF m/z calcd for 

C42H68N10O12Zn (M - 2H)+, calculated 968.4310, found 968.4356. 
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Copper(II) (2,2',2'',2'''-((2,2',2'',2'''-
((1R,10R,10aR,14aR)-dodecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-4,7,17,20-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.20). Starting material 3.19 

(0.030 g, 0.0375 mmol), CuCl2.2H2O (0.0069 g, 0.0413 mmol) and H2O (1 mL). The title 

compound was obtained as a blue solid (0.027 g, 84%). ESI-TOF m/z calcd for 

C34H56N10O12Cu (M - 2H)+, calculated 859.3375, found 859.3398. 

 

Cobalt(II) (2,2',2'',2'''-((2,2',2'',2'''-
((1R,10R,10aR,14aR)-dodecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-4,7,17,20-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.21). Starting material 3.19 

(0.041 g, 0.051 mmol), CoCl2.6H2O (0.013 g, 0.0547 mmol) and H2O (1 mL). The title 

compound was obtained as a purple solid (0.032g, 73%). ESI-TOF m/z calcd for 

C34H56N10O12Co (M - 2H)+, calculated 855.3411, found 855.3404. 

 

Nickel(II) (2,2',2'',2'''-((2,2',2'',2'''-
((1R,10R,10aR,14aR)-dodecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-4,7,17,20-
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tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.22). Starting material 3.19 

(0.020 g, 0.025 mmol), NiCl2 (0.0036 g, 0.0275 mmol) and H2O (1 mL). The title 

compound was obtained as a green solid (0.014 g, 65%.). ESI-TOF m/z calcd for 

C34H56N10O12Ni (M - 2H)+, calculated 854.3433, found 854.3400. 

 

Iron(II) (2,2',2'',2'''-((2,2',2'',2'''-
((1R,10R,10aR,14aR)-dodecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-4,7,17,20-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.23). Starting material 3.19 

(0.020 g, 0.025 mmol), Fe(CF3SO3)2 (0.0088 g, 0.025 mmol) and H2O (1 mL). The title 

compound was obtained as a red solid (0.021g, 95%). ESI-TOF m/z calcd for 

C34H56N10O12Fe (M - 2H)+, calculated 852.3429, found 852.3394. 

 

Zinc(II) (2,2',2'',2'''-((2,2',2'',2'''-
((1R,10R,10aR,14aR)-dodecahydro-1,10-
(ethanoiminoethanoiminoethano)benzo[b][1,4,7,10]tetraazacyclododecine-4,7,17,20-
tetrayl)tetrakis(acetyl))tetrakis(azanediyl))tetraacetate) (3.24). Starting material 3.19 

(0.025 g, 0.031 mmol), ZnCl2 (0.0042 g, 0.031 mmol) and H2O (1 mL). The title 

compound was obtained as a white solid (0.018 g, 65%). ESI-TOF m/z calcd for 

C34H56N10O12Zn (M - 2H)+, calculated 860.3371, found 860.3356. 
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3.4.3 Spectra 
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S 3.1: 1H NMR Spectrum of 3.4 

S 3.2: 13C NMR Spectrum of 3.4 
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S 3.3: COSY Spectrum of 3.4 
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S 3.4: HMBC Spectrum of 3.4 
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S 3.5: HSQC Spectrum of 3.4 
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S 3.6: 1H NMR Spectrum of 3.16 

S 3.7: 13C NMR Spectrum of 3.16 
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S 3.8: COSY Spectrum of 3.16 
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S 3.9: HMBC Spectrum of 3.16 
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S 3.10: HSQC Spectrum of 3.16 
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S 3.11: 1H NMR Spectrum of 3.6 

S 3.12: 13C NMR Spectrum of 3.6 
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S 3.14: 13C NMR Spectrum of 3.17 
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S 3.17: r1 relaxivity profile of 3.11 

 

 

 

S 3.18: r2 relaxivity profile of 3.11   
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S 3.19: r1 relaxivity profile of 3.12 

 

 

  

S 3.20: r2 relaxivity profile of 3.12 
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S 3.21: r1 relaxivity profile of 3.21 

 

  

S 3.22: r2 relaxivity profile of 3.21 
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S 3.23: r1 relaxivity profile of 3.22 

 

 

S 3.24: r2 relaxivity profile of 3.22 
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S 3.25: r1 relaxivity profile of 3.23 

 

 

S 3.26: r2 relaxivity profile of 3.23 
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Chapter 4  

4 MRI PARACEST Agents that Improve Amide-based pH 
Measurements by Limiting Inner Sphere Water T2 
Exchange  

 

4.1 Introduction 
The aim of this project was to modulate the pKas of the amide protons and subsequently 

the amide CEST effect in DOTAM analogues. This was to be accomplished by 

synthesizing DOTAM tetraanilides that had electron-donating groups (EDGs) and 

electron-withdrawing groups (EWGs) in the para position of the aniline ring. One may 

expect the EWGs of the acetamide arms to make the amide protons more acidic, resulting 

in a faster exchange rate with the bulk water protons. On the other hand, EDGs should 

slow the rate of exchange of the amide protons with the bulk water protons. On account 

of this modulation, it was hoped these agents would be more sensitive to changes within 

the biologically relevant pH range, thus resulting in pH responsive PARACEST probes. 

It has been previously demonstrated that the bound water exchange rate in PARACEST 

agents of Eu3+-tetraamide complexes with one para-substituted aniline arm, can be 

modulated electronically using EDGs and EWGs.1 A similar study involving amide 

protons has not yet been reported until now.2 As a result of the interest in the CEST effect 

due to amide protons, the complexes synthesized here were based on Tm3+ and Dy3+, 

which allowed for a larger chemical shift difference from the bulk water, in comparison 

to Eu3+. 

It was furthermore proposed that these PARACEST agents would not contain a bound 

water coordinated to the metal center. This is a highly feasible circumstance owing to the 

four aromatic rings of the acetamide pendant arms, which can provide steric bulk to the 

complex, thus blocking access of water to the metal center. The lack of a metal bound 

water would reduce signal losses due to T2 relaxation. This relaxation is facilitated by T2 

exchange of the metal bound water with the surrounding water molecules. The impact of 
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this effect may be lessened by using pulse sequences such as the ultra-short echo-time 

(UTE) pulse.3 It should be considered that the presence of any other exchangeable 

protons such as amide protons would still cause T2 relaxation. However, the extent of 

relaxation will be lesser as compared to that of a metal bound water. 

 

4.2 Results and Discussion 

4.2.1 Synthesis 

 

Scheme 4.1: Synthetic route to tetraanilide complexes 4.11a,b - 4.15a,b. 

 

The electrophiles 4.1 - 4.5 were synthesized by adding chloroacetyl chloride to the 

appropriate aniline in CH3CN while cooling in an ice bath in the presence of K2CO3 

(Scheme 4.1).  The reactions were stirred overnight at room temperature, then filtered and 
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the crude products were recrystallized from methanol.  The average yield of these 

reactions was good (ca. 75%).   

Syntheses of the tetra-substituted cyclens were performed by mixing cyclen with the 

appropriate electrophiles in CH3CN in the presence of K2CO3.  It was necessary to heat 

the reaction at 55 °C- 80 °C over 1-3 days to ensure complete tetraalkylation.  The 

progress of these reactions was monitored by UPLC-MS.  When the reaction was 

considered complete, the mixtures were cooled and the reaction mixture filtered. It was 

realized that the precipitates contained the desired products; therefore, they was washed 

with cold water to remove the K2CO3 and other salts.  At this point, efforts to recrystallize 

these compounds from methanol were unsuccessful due to their highly insoluble nature. 

As such, the crude products were used in the next step without further purification.  

These tetraalkylated ligands 4.6 - 4.10 were mostly insoluble in a wide range of solvents 

such as MeOH, CH3CN and H2O.  

The tetra-substituted ligands 4.6 - 4.10 were metalated using salts of Dy3+ and Tm3+ in a 

1:1 H2O/dioxane mixture at 80 °C over 4 days.  The metalated complexes were subjected 

to dialysis against water across a membrane with a 500 Dalton molecular weight cutoff to 

remove salts carried through from the previous step as well as any unchelated lanthanide 

ion.   The final products were isolated and lyophilized to give white powders, with 

exception of the p-NO2 complexes 4.15a,b being yellow powders.  Identification of the 

metalated products was accomplished by high resolution mass spectrometry along with 

their UPLC trace which showed that all of the samples to be homogeneous tetra-

substituted product. After metalation, solubility slightly improved for the Dy3+ and Tm3+ 

tetraaniline complexes of p-OMe (4.11a,b) and p-H (4.13a,b). Attempts were made to 

improve the solubilty of the p-NO2 complexes 4.15a,b for CEST analysis using Tween 

20® but these were unsuccessful.  
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4.2.2 Crystal Structure 

Figure 4.1 shows the X-ray crystal structure of Tm3+-p-OMe complex 4.11a with the 

corresponding crystallographic parameters listed in Table 4.1. The crystals were grown 

from slow evaporation of a concentrated solution of 4.11a in water. In solution, DOTA-

like complexes may adopt two possible coordination isomers. One isomer is the square 

antiprismatic (SAP) and the other is the twisted square antiprismatic (TSAP) isomer. The 

two isomers can be differentiated by their respective angles between the N-Ln-N and O-

Ln-O planes (α). In the former geometry, that angle is ~ 40o and in the latter, is~ 30o. 

 

 

 

 

 

 

 

The solid state structure of the Tm3+-p-OMe complex 4.11a revealed that α was 27o, thus 

indicating a TSAP geometry (Figure 4.1). The structure also revealed that there was no 

bound water coordinated to Tm3+, therefore that geometry is more correctly denoted as 

TSAP'.  Lanthanide complexes based on the DOTA core structure, typically have eight 

coordination sites due to the four nitrogens of the macrocycle and the four oxygens from 

the pendant arms. These atoms coordinate to the metal center and the ninth coordination 

(a) (b) 

φ 
 α

Figure 4.1: Molecular representation of the solid state structure of Tm3+-p-OMe 
complex (4.11a) determined by single crystal X-ray studies. Hydrogens have been 
omitted for clarity. (a) Top down view of 4.11a. The aniline rings are omitted for 
clarity. α indicates the angle created between the planes of N–Ln–N and O–Ln–O 

and is listed in Table 4.2 along with selected angles and bond lengths and  (b) side on 
view of 4.11a showing eightfold coordination of the Tm3+ by the nitrogens of cyclen 
and the oxygens of the amide pendant groups. φ denotes the trans O–Ln–O bond 

angle. 
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site on the metal is typically occupied by a solvent molecule such as water. The distance 

between the centeroids of the O4 and N4 planes has a distance of 2.47 Å, which is 

comparable to other TSAP structures. This distance in SAP structures is ~2.35 Å.4, 5 The 

distance between the centeroid of the four nitrogen atoms of the macrocycle and Tm3+ is 

1.38 Å, which is shorter then a series of previously reported SAP DOTAM complexs 

(Dy3+  = 1.59 Å, Nd3+  = 1.66 Å, Tb3+  = 1.59 Å, Yb3+  =1.56 Å).6  

Table 4.1: Crystal data and structure refinements for 4.11a. 

 

 

 

 

 

 

 

 

 

 

Additionally, it was noted that the angles at the metal center (φ, O1–Tm–O3 and O2–Tm–

O4) was about 123o (Table 4.2). This angle is expected to be at least 135o.4, 7 The lower φ 

may be as a result of Tm3+ being positioned lower in the chelate cavity and the four 

oxygens of the carbonyl pendant arms being wrapped around the metal. This in turn 

blocked access to the metal by the water molecule. Taking into account that the chemical 

shift due of the amide CEST signal is distance dependent, the compact nature of the 

complex may have led to a highly shifted signal.8 

Formula C44H67Cl3N8O13Tm Formula Weight (g/mol) 1191.34 Crystal Dimensions (mm ) 0.27 × 0.18 × 0.08 Crystal Colour and Habit colourless prism Crystal System triclinic Space Group P -1 Temperature, K 110 

a, Å 10.948(3) 
b, Å  14.438(3) 
c, Å  17.436(5) α,° 77.345(10) β,° 78.428(9) γ,° 85.152(10) V, Å3 2632.1(12) Number of reflections to determine final unit cell 9059 Min and Max 2q for cell determination, 4.88, 64.1 °Z 2 F(000) 1222 ρ (g/cm) 1.503 λ, Å, (MoKa) 0.71073 μ, (cm-1) 1.904 
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Table 4.2: Summary of torsion angle α (°) and selected bond lengths (Å) for Tm3+-p-
OMe (4.11a). Average α angle 26.95N1-C-C-O1 12.4(3)N2-C-C-O2 15.1(4) N3-C-C-O3 14.7(4)N4-C-C-O4 2.9(3)N1-Tm 2.508(2)N2-Tm 2.492(2)N3-Tm 2.469(3)N4-Tm 2.500(3)O1-Tm 2.295(2)O2-Tm 2.245(2)O3-Tm 2.313(2)O4-Tm 2.265(2)φ angle O1–Tm–O3 123.64(7)φ angle O2–Tm–O4 122.43(8)Centeroid O4–Tm 1.087 Centeroid N4–Tm 1.382Centeroid O4–centeroid N4 2.470 

 

4.2.3 Magnetic Studies 

CEST evaluation 

As a consequence of insolubility, only the Tm3+ and Dy3+ tetraaniline complexes of p-

OMe (4.11a,b) and p-H (4.13a,b) were further evaluated. CEST data for these complexes 

were acquired within the pH range of 6.5 to 9.0 for 4.13a,b and the pH range of 5.1 to 8.0 

for 4.11a,b (Figure 4.2). These ranges were chosen because of the observation that the 

maximum CEST effect was close to pH 8.0 for the former and the latter had the 

maximum CEST effect between 7.0 and 7.5. 

A 12% CEST signal was observed for the Tm3+-p-H complex 4.13a, while two signals of 

17% and 12% were observed for Tm3+-p-OMe complex 4.11a. These signals may be 

attributed to the presence of the two conformational isomers in solution, that is, the SAP' 

and TSAP' isomers, respectively. This particular assignment was based on the previous 

observations for a series of DOTAM alkyl amides.9, 10  
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The CEST results for the Dy3+ tetraaniline complexes of p-OMe (4.11b) and p-H (4.13b) 

were more customary. While the Dy3+-p-H complex 4.13b still had one signal of 6%, the 

Tm3+-p-OMe complex 4.11b now had one signal of 3%. A summary of the CEST result 

for the Tm3+ and Dy3+  tetraaniline complexes of p-OMe (4.11a,b) and p-H (4.13a,b) are 

shown in Table 4.3. 

Table 4.3: CEST % measured at pH 7, 37 °C, 20 mM with a 15 µT, 5 s continuous 
wave saturation pulse. 

Agent ppm (δ) CEST % 

4.11a -43 
-83 

17% 
12% 

4.13a -41 12% 
4.11b 74 3% 
4.13b 70 6% 
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Figure 4.2: CEST spectra of (a) Tm3+-p-OMe complex 4.11a over the pH range of 
5.1–7.0 and (b) Tm3+-p-H complex 4.13a over the pH range of 6.5–9.0. CEST spectra 

were acquired at 37 oC, with a 15 uT, 5 s presaturation pulse, 20 mM. 
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Figure 4.3: Maximum CEST effect as a function of pH (a) Tm3+-p-OMe complex 
4.11a shows a pH maximum at 7.5 for the signal at -43 ppm and at 7.0 for the signal 

at -83 ppm and (b) Tm3+-p-H complex 4.13a shows a pH maximum at 8.0. 

 

Figure 4.3 shows the changes in the CEST effect of agents Tm3+-p-OMe complex 4.11a 

and Tm3+-p-H complex 4.13a as a function of the pH ranges measured. The signal for the 

4.11a SAP' amide (-43 ppm) has a maximum signal at pH 7.5 compared to the TSAP' 

amide (-83 ppm) with its maximum signal at a slightly more acidic pH of 7.0. A similar 

effect has been previously reported for DOTAM agents, in which the signal having the 

greater chemical shift displayed a maximum CEST signal at lower pH, in comparison to 

the signal with a smaller chemical shift.11 

The presence of the two signals seen for the Tm3+-p-OMe complex 4.11a was 

encouraging for ratiometric analysis. A ratiometric approach would eliminate the CEST 

effect dependency on concentration, thus allowing the agent to be used as a biological 

reporter.12, 13 Unfortunately, preliminary results from the ratiometric studies indicated that 

this cannot be avoided. The CEST response for this complex between pH 6 and 7 seemed 

to be concentration dependent, which is highly likely due to the solubility issues. At high 

concentrations, 4.11a is very insoluble but at lower concentrations, the solubility 

improves. These discrepancies preclude the use of this agent for ratiometric purposes. 

(a) (b) 
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Relaxometric studies 

Table 4.4: r1 and r2 values of the Tm3+ based agents at 37 °C, pH 7. 
Agent r1 (s-1 mM-1) r2 (s-1 mM-1) 

Tm3+-p-OMe (4.11a) 0.05 0.36 
Tm3+-p-H (4.13a) 0.06 0.67 

 

The lack of a bound water in the Tm3+-p-OMe complex 4.11a should be advantageous in 

amide- based PARACEST imaging as water exchange contributing to the T2 shortening 

mechanism has been eliminated. As mentioned earlier, the exchange of amide protons of 

the acetamide pendant arm still contributes to the T2 relaxation of bulk water. However, 

the extent to which this happens is less compared to the highly shifted bound water (δ = 

500 ppm).14  The associated r1 and r2 values for Tm3+-p-OMe (4.11a) and Tm3+-p-H 

(4.13a) are provided in Table 4.4. The low values shown are representative of the lack of 

an inner sphere water molecule in these complexes. Moreover, Tm3+ is not known to act 

as a T1 relaxation enhancer; therefore, it is not surprising that they did not produce a 

strong T1 relaxation of the bulk water.15  

 

4.3 Conclusions 

A series of Dy3+ and Tm3+ para-substituted tetraaniline contrast agents were synthesized 

for the testing of their ability to respond to pH changes in the physiological pH range.  

Poor solubility of many of the compounds limited the possible measurements and 

prevented the complete analysis of structure and effects. As such, a proper analysis of the 

electronic effects on the pKas of the amide protons could not be performed.  Four of the 

compounds were soluble enough for further investigation. It was observed that the 

unsubstituted anilines (Dy3+ and Tm3+-p-H) had a maximum CEST effect at a pH near 8, 

while the maximum CEST effect for both the Dy3+ and Tm3+-p-OMe agents was between 

pH 7 - 7.5.  A crystal structure indicated that the geometry of Tm3+-p-OMe complex is 

TSAP', which potentially leads to the highly shifted signal at -83 ppm.  A signal for a 

Tm3+ agent above 100 ppm has been previously observed,10 but due to the inability to 
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grow a crystal suitable for analysis by X-ray crystallography, the presence of an inner 

sphere water cannot be determined. A concentration and pH study was attempted to 

determine if the Tm3+-p-OMe complex could be used as a ratiometric agent to measure 

pH in vivo, independent of concentration, but due to solubility limitations, no suitable 

measurements could be performed.  With the lack of inner sphere water, the Tm3+ aniline 

agents may produce appreciable amide CEST contrast without decreasing image signal 

intensity due to lowering of the bulk water T2 relaxation time constant. 

 

4.4 Supplemental Information 

4.4.1  General Experimental 

General synthetic details can be found in Appendix 1. 

CEST and Relaxivity Experiments 

All samples were studied at 20 mM concentration, 37 °C.CEST spectra (Tm3+ and Dy3+) 

were acquired using a 15µT, 5s continuous wave presaturation pulse at offset frequencies 

ranging from -100 to 100 ppm in steps of 1 ppm. T1 relaxation time constant 

measurements were made for 4 different concentrations (1, 2, 4, 8 mM) of CA using an 

inversion recovery sequence (10 inversion times in the range of 10 ms – 10 s) with a 20 

second repetition time to ensure full recovery, pH 7 and 37 °C.  T2 relaxation time 

constant measurements were made for 4 different concentrations (1, 2, 4, 8 mM) of CA 

using a CPMG pulse sequence (10 train echo times in the range of 10 ms – 10 s) with a 

20 second repetition time to ensure full recovery, pH 7 and 37 °C.  

 

4.4.2 Synthetic Procedures 

General procedure for synthesis of N-aryl-chloroacetamides. Anilines 4.1 - 4.5 (7.84 

mmol) and K2CO3 (15.68 mmol) were suspended in CH3CN (50 mL) and cooled to 0oC 

in an ice bath while stirring. Chloroacetyl chloride (15.68 mmol) was added dropwise and 
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reaction mixture warmed to room temperature and left stirring overnight. Reaction 

mixture was filtered and the filtrate collected and concentrated. The residue was 

recrytallized from hot CH3OH. 

 

2-Chloro-N-(4-methoxyphenyl)acetamide (4.1). The title compound was 

obtained as silver crystals (1.29 g, 82%) 1H NMR (400 MHz, DMSO-d6): δ 10.17 (1H, s); 

7.51 (2H, d, J = 8.6 Hz); 6.90 (2H, d, J = 8.6 Hz); 4.22 (2H, s); 3.72 (3H, s). 13C NMR 

(100 MHz, DMSO-d6): δ 164.5, 156.0, 132.0, 121.4, 114.3, 55.6. 43.9. ESI-TOF m/z 

calcd for C9H11ClNO2 (M+H)+, calculated 200.0478, found 200.0477. 

 

2-Chloro-N-(p-tolyl)acetamide (4.2). The title compound was obtained as 

white crystals (1.08 g, 75%) 1H NMR (400 MHz, DMSO-d6): δ 10.21 (1H, s); 7.50 (2H, 

d, J = 7.4 Hz); 7.13 (2H, d, J = 7.4 Hz); 4.24 (2H, s); 2.26 (3H, s). 13C NMR (100 MHz, 

DMSO-d6): δ 164.8, 136.4, 133.2, 129.6, 119.8, 44.0, 20.8. ESI-TOF m/z calcd for 

C9H11ClNO (M+H)+, calculated 184.0529, found 184.0524. 

 

HN

O

Cl

2-Chloro-N-phenylacetamide (4.3). The title compound was obtained as white 

crystals (1.06 g, 80%) 1H NMR (400 MHz, DMSO-d6): δ 10.36 (1H, s); 7.60 (2H, d, J = 

7.4 Hz); 7.33 (2H, t, J =7.4 Hz); 7.08 (1H, t, J = 7.4 Hz); 4.26 (2H, s,). 13C NMR (100 
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MHz, DMSO-d6): δ 165.0, 138.9, 129.2, 124.2, 119.8, 44.0. ESI-TOF m/z calcd for 

C8H9ClNO (M+H)+, calculated 170.0373, found 170.0366. 

 

2-Chloro-N-(4-chlorophenyl)acetamide (4.4). The title compound was 

obtained as white crystals (1.08 g, 68%) 1H NMR (400 MHz, DMSO-d6): δ 10.43 (1H, s); 

7.62 (2H, d, J = 8.6 Hz); 7.38 (2H, d, J = 8.6 Hz); 4.26 (2H, s). 13C NMR (100 MHz, 

DMSO-d6): δ 165.2, 137.8, 129.2, 127.9, 121.3, 43.9. ESI-TOF m/z calcd for C8H8Cl2NO 

(M+H)+, calculated 203.9983, found 203.9983. 

 

2-Chloro-N-(4-nitrophenyl)acetamide (4.5). The title compound was 

obtained as yellow crystals (1.80 g, 79%) 1H NMR (400 MHz, DMSO-d6): δ 10.97 (1H, 

s); 8.22 (2H, d, J = 9.0 Hz); 7.84 (2H, d, J = 9.0 Hz); 4.35 (2H, s). 13C NMR (100 MHz, 

DMSO-d6): δ 166.0, 145.0, 143.0, 125.4, 119.5, 44.0. ESI-TOF m/z calcd for 

C8H8ClN2O3 (M+H)+, calculated 215.0223, found 215.0220. 

 

General procedure for synthesis of tetrakis-N-aryl-acetamides. 1,4,7,10-

tetraazacyclododecane (cyclen), (0.5 mmol) and  K2CO3 (2.25 mmol) were suspended in 

CH3CN (12 mL) and acetamides 4.1 - 4.5 (2.25 mmol) dissolved in CH3CN (3 mL) were  

added. The reaction mixture was heated to 55oC-80oC and left for 1-3 days. Reaction 

mixture was filtered and the precipitate washed with H2O then collected and dried. 
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2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-methoxyphenyl)acetamide) 
(4.6). The title compound was obtained as a white powder (0.389 g, 94%) 1H NMR (400 

MHz, DMSO-d6): 10.04 (4H, broad s); 7.51 (8H, s); 6.80 (8H, s); 3.68 (16H, s,); 3.25 

(12H, s); 2.84 (8H, broad s). 13C NMR (100 MHz, DMSO-d6): δ 168.8, 155.1, 131.7, 

120.8, 113.6, 58.1, 55.0, 52.0. ESI-TOF m/z calcd for C44H57N8O8 (M+H)+, calculated 

825.4299, found 825.4284. 

 

2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetrayl)tetrakis(N-(p-tolyl)acetamide) (4.7). The title compound was obtained 

as a white powder (0.375 g, quantitative) 1H NMR (400 MHz, DMSO-d6): δ 10.05 (4H, 

broad s); 7.47 (8H, d, J = 6.6 Hz); 7.03 (8H, d, J = 6.6 Hz); 3.26 (16H, s); 2.82 (8H, 

broad s); 2.22 (12H, s). 13C NMR (100 MHz, DMSO-d6): δ 169.0, 135.9, 131.9, 128.7, 

119.3, 58.1, 52.3, 20.1. ESI-TOF m/z calcd for C44H57N8O4 (M+H)+, calculated 761.4503, 

found 761.4529. 

 

2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetrayl)tetrakis(N-phenylacetamide) (4.8). The title compound was obtained as a white 

powder (0.348 g, quantitative) 1H NMR (400 MHz, DMSO-d6): δ 10.32 (4H, broad s); 
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7.61 (8H, d, J = 7.8 Hz); 7.22 (8H, t, J =7.8 Hz); 7.01 (4H, t, J = 7.8 Hz); 3.38 (16H, s); 

2.81 (8H, broad s). 13C NMR (100 MHz, DMSO-d6): δ 169.3, 138.5, 128.3, 123.0, 119.3, 

58.1, 51.9. ESI-TOF m/z calcd for C40H49N8O4 (M+H)+, calculated 705.3877, found 

705.399. 

 

2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetrayl)tetrakis(N-(4-chlorophenyl)acetamide) (4.9). The title compound was 

obtained as a white powder (0.394 g, 94%)1H NMR (400 MHz, DMSO-d6): δ δ 10.6 (4H, 

broad s); 7.64 (8H, d, J = 8.8 Hz); 7.26 (8H, d, J = 8.8 Hz); 3.37 (16H, s); 2.78 (8H, 

broad s). 13C NMR (100 MHz, DMSO-d6): δ 169.5, 137.4, 128.1, 126.6, 120.8, 57.8, 

51.7. ESI-TOF m/z calcd for C40H45Cl4N8O4 (M+H)+, calculated 841.2318, found 

841.2325. 

 

2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetrayl)tetrakis(N-(4-nitrophenyl)acetamide) (4.10). The title compound was 

obtained as a yellow powder (0.437 g, quantitative) 1H NMR (400 MHz, DMSO-d6): δ 

10.69 (4H, broad s); 8.10 (8H, s); 7.81 (8H, s); 3.39 (16H, s); 2.87 (8H, broad s). 13C 

NMR (100 MHz, DMSO-d6): δ 170.2, 144.5, 142.0 124.3, 118.7, 57.7, 52.0. ESI-TOF 

m/z calcd for C40H45N12O12 (M+H)+, calculated 885.3280, found 885.3254. 
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General procedure for synthesis of metalated compounds. Compounds 4.6 - 4.10 

(0.07 mmol) were dissolved (or suspended) in dioxane/H2O (1:1) (4 mL total) then the 

appropriate lanthanide chloride salts (0.07 mmol) added. The pH was adjusted to 6 and 

the reaction mixture heated to 60-80oC and left for 1 - 4 days. The crude was dialysed for 

3 days then lyophilized to obtain desired products. 

 

2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-methoxyphenyl)acetamide), 
thulium(III) salt (4.11a). The title compound was obtained as a white powder (58 mg, 

83%). ESI-TOF m/z calcd for C44H54N8O8Tm (M-2H)+, calculated 991.3407, found 

991.3387. 

 

2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(p-tolyl)acetamide), thulium(III) 
salt (4.12a). The title compound was obtained as a white powder (30 mg, 46%). ESI-TOF 

m/z calcd for C44H54N8O4Tm (M-2H)+, calculated 927.3610, found 927.3647. 
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2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetrayl)tetrakis(N-phenylacetamide), thulium(III) salt (4.13a). The title 

compound was obtained as a white powder (41 mg, 67%). ESI-TOF m/z calcd for 

C40H46N8O4Tm (M-2H)+, calculated 871.2984, found 871.2974. 

2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-chlorophenyl)acetamide), 
thulium(III) salt (4.14a). The title compound was obtained as a white powder (40 mg, 

56%). ESI-TOF m/z calcd for C40H42Cl4N8O4Tm (M-2H)+, calculated 1007.1425, found 

1007.1412. 

 

2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-nitrophenyl)acetamide), 
thulium(III) salt (4.15a). The title compound was obtained as a yellow powder (61mg, 

82%). ESI-TOF m/z calcd for C40H42N12O12Tm (M-2H)+, calculated 1051.2387, found 

1051.2408. 
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2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-methoxyphenyl)acetamide), 
dysprosium(III) salt (4.11b). The title compound was obtained as a white powder (53 

mg, 77%). ESI-TOF m/z calcd for C44H54N8O8Dy (M-2H)+, calculated 986.3356, found 

986.3383. 

 

2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(p-tolyl)acetamide), 
dysprosium(III) salt (4.12b). The title compound was obtained as a white powder (43 

mg, 69%). ESI-TOF m/z calcd for C44H54N8O4Dy (M-2H)+, calculated 922.3560, found 

922.3586. 

 

2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetrayl)tetrakis(N-phenylacetamide), dysprosium(III) salt (4.13b). The title 

compound was obtained as a white powder (45 mg, 75%). ESI-TOF m/z calcd for 

C40H46N8O4Dy (M-2H)+, calculated 866.934, found 866.2903. 
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2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-chlorophenyl)acetamide), 
dysprosium(III) salt (4.14b). The title compound was obtained as a white powder (49 

mg, 70%). ESI-TOF m/z calcd for C40H42Cl4N8O4Dy (M-2H)+, calculated 1002.1375, 

found 1002.1343. 

 

2,2',2'',2'''-(1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(N-(4-nitrophenyl)acetamide), 
dysprosium(III) salt (4.15b). The title compound was obtained as a yellow powder (45 

mg, 62%). ESI-TOF m/z calcd for C40H42N12O12Dy (M-2H)+, calculated 1046.2337, 

found 1046.2336. 
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4.4.3 Spectra 
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S 4.1: 1H-NMR Spectrum of 4.1

S 4.2: 13C-NMR Spectrum of 4.1 
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S 4.3: 1H-NMR Spectrum of 4.2 

S 4.4: 13C-NMR Spectrum of 4.2  
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S 4.5: 1H-NMR Spectrum of 4.3 

S 4.6: 13C-NMR Spectrum of 4.3 
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S 4.7: 1H-NMR Spectrum of 4.4

S 4.8: 13C-NMR Spectrum of 4.4 
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Chapter 5  

5 Dysprosium(III) and Thulium(III) Complexes of DO3A-
monoanilides: An Investigation of Electronic Effects on 
their Relaxometric and Amide-based PARACEST 
Properties  

 

5.1 Introduction 
As described in Chapter 4, a study of DOTAM-tetraanilide PARACEST agents which 

were varied about their para (p-)-substituents  was completed.1 The aim of that work was 

to modulate the amide proton exchange rate to increase the CEST contrast produced by 

these protons. Unfortunately, with the exception of the Dy3+- and Tm3+-p-H and -p-OMe 

complexes (Figure 5.1), the other complexes were insoluble and could not be further 

studied.1 

 

Figure 5.1: Chemical structures of some complexes discussed in this work. 

 

In order to produce water soluble complexes, a series of analogues, the DO3A-

monoanilide ligands, was prepared. The intent was to utilize this series to investigate the 
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influence of the nature of the para-substituent on the amide proton CEST signal. These 

complexes represent a simplified system compared to the tetraanilide complexes 

possessing not only aqueous solubility but also only a single carboxamide proton.  The 

presence of three acetate arms and the use of Tm3+ and Dy3+ would produce large LIS 

and engender fast water exchange at the metal center.  However, the effect on exchange 

of the amide proton should be smaller and hence a CEST signal is expected.  Congruent 

with this expectation, is the observation of an amide proton based CEST signal for the 

Yb3+-DO3A-oAA complex (Chart 1).2, 3  

The lone acetamide arm was designed with the para-substituted anilines spanning a large 

range of electronic effects ranging from strong electron-donating groups (EDG, e.g. -

NMe2) to powerful electron-withdrawing groups (EWGs, e.g. -NO2). Anilines that are 

substituted in the para position on the aromatic ring can provide information about 

electronic effects, charge state (pKa) and polarity. Since the CEST effect is due to the 

single carboxamide proton, these studies should provide insight regarding the amide pKa 

and provide some insight on the ability to tune the pKa and CEST effect to biologically 

relevant pHs potentially laying the foundation for development of a pH responsive 

PARACEST contrast agent. 

In lanthanide complexes, where CEST due to amide protons is to be observed, one may 

expect EWGs of the acetamide arm to make the amide proton more acidic. This should 

result in a faster exchange with bulk water. On the other hand, the opposite effect should 

be observed for EDGs: the amide proton becomes more basic resulting in slower 

exchange with the surrounding water. According to Terreno et al., an increase in pH up to 

9 increases the amide exchange rate and subsequently, the amide CEST.4 It is expected 

that EWGs would allow for a decrease in the pH at which the maximum CEST effect 

occurs. This feature would make agents possessing these functional moieties more 

applicable as pH sensors for detecting biological anomalies, such as cancerous tissues, 

which have an acidic extracellular pH.5 

Our second focus was to examine the influence of the nature of the para-substituent on 

the complex relaxivity. These complexes were expected to have fast water exchange at 
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the metal center that may be affected by the electronics of the single amide arm. For 

example, EDGs are envisioned to promote faster exchange of bound water due to an 

increase in electron density at the metal center, while the converse would ensue with the 

presence of EWGs. These effects should be apparent in the relaxivity measurements.  In 

support of this notion, Ratnakar et al. have reported that Eu3+-tetraamide complexes with 

one para-substituted aniline arm, can electronically affect the CEST effect due to a bound 

water molecule.6  

 

5.2 Results and Discussion 

5.2.1 Synthesis 

Treatment of Et3DO3A with the chlorine-containing electrophiles 5.1 - 5.5,1 in the 

presence of  K2CO3, gave the desired bifunctional compounds 5.6 - 5.10 in low to 

moderate yields after purification by column chromatography (Scheme 5.1). All the ester-

protected compounds 5.6 - 5.9 were subjected to saponification at 60oC without any 

problems, with the exception of 5.10. The saponified compounds 5.11 - 5.14 were 

obtained with excellent yields (Scheme 5.1). In contrast, the amide bond of 5.10 

hydrolysed, leading to the formation of DOTA (Figure 5.1), as seen by UPLC. 

Consequently, the ethyl groups of compound 5.10 were removed under milder conditions 

at 5oC7 and compound 5.19 was obtained with excellent yield (Scheme 5.2). 
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Scheme 5.1: Conditions for synthesis of contrast agents 5.15a,b - 5.18a,b. 

 

Scheme 5.2: Conditions for synthesis of contrast agents 5.20a,b and 5.21a,b. 
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Metalation of the ligands 5.11 - 5.14 with lanthanide salts of Tm3+ and Dy3+, afforded the 

Tm3+ complexes 5.15a - 5.18a and Dy3+ 5.15b - 5.18b in moderate to good yields 

(Scheme 5.1). In order to prevent the hydrolysis of the amide bond, as seen previously 

during the saponification of 5.10, the metalation of ligand 5.19 with Tm3+ and Dy3+ was 

performed at room temperature and 5.20a,b were obtained in good yield (Scheme 5.2). 

The metalated complexes 5.20a,b were subjected to catalytic hydrogenation to produce 

5.21a,b in excellent yields (Scheme 5.2). 

 

5.2.2 CEST Measurements of Tm3+ Complexes  

 

Figure 5.2: (a) CEST spectra of 5.15a - 5.18a and 5.20a - 5.21a at pH 7.00 ± 0.03 and 
(b) CEST spectra of 5.15a - 5.18a and 5.20a - 5.21a at pH 8.00 ± 0.03. CEST spectra 
were acquired at 37oC, with a 15 μT, 2 s saturation pulse, 10 mM in D2O/H2O (9:1). 
Data was processed with Origin® software by performing a Lorentzian fitting of the 

raw data. 

 

The CEST data for the Tm3+ compounds were obtained at pH 6, 7, 8 and 9. CEST signals 

were not observed at pH 6 and 9 (data not shown), however, there were signals at pH 7 

and 8 (Figure 5.2). The magnitude of the CEST effect ranged from 1 - 8% at these pH 

values, with the p-H complex 5.17a having the highest signal of almost 8% at pH 8. 
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While these values may be considered low, only a 3-5% change in the water signal 

intensity is needed to see contrast in an MR image. 5 

CEST signal intensity as a function of EDG/EWG  

Figure 5.3 shows the trend in CEST signal intensity with respect to the Hammett 

substituent constants associated with groups in the para position (δpara). Hammett 

substituent constants give a measure of the total electronic (polar) effect exerted by a 

substituent on the aromatic ring, in comparison to the absence of the substituent. 8, 9 

These values are derived from the rate of equilibrium of the ionization of unsubstituted 

benzoic acid and that of a substituted benzoic acid.8, 9 A δpara value of zero (p-H) indicates 

no electronic effect, while increasing negative δpara values indicate EDGs (increasing 

order of strength: p-OMe, p-NH2 and p-NMe2). On the other hand, increasing positive 

δpara values indicate EWGs (increasing order of strength: p-Cl and p-NO2). 

 

Figure 5.3: CEST intensity with respect to σpara at 37oC and pH 7.00 ± 0.03 and 8.00 
± 0.03 for 5.15a - 5.18a and 5.20a - 5.21a. CEST spectra were acquired at 37oC, with 

a 15 μT, 2 s saturation pulse, 10 mM in D2O/H2O (9:1). 

 

At pH 7, with the exception of the p-NH2 complex 5.21a, which displayed no CEST 

signal, the presence of EDGs led to an increase in the amide CEST effect, in comparison 
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to the p-H complex 5.17a. At pH 8, the CEST effect was greatest for the complexes 

5.15a, 5.16a and 5.21a. However, their CEST effect was lower than that of the p-H 

complex 5.17a. These results seem to support the hypothesis made earlier. The increased 

electron-density, due to EDGs, resulted in the amide proton being less acidic, therefore 

requiring a higher pH for deprotonation and subsequent exchange. 

At pH 7, CEST signals were seen for both 5.18a and 5.20a, which bore EWGs. Both 

complexes gave higher signals in contrast to the p-H complex 5.17a. At pH 8, there was a 

reduction in the signal of the p-Cl complex 5.18a and a complete disappearance of the 

signal for the p-NO2 complex 5.20a, (as compared to the p-H complex 5.17a). These 

observations also appear to be in agreement with the afore-mentioned expectations that 

EWGs should lead to more acidic amide protons due to lower pKas. At pH 8, the acidic 

proton seems to be exchanging rather quickly with the bulk water, thereby negatively 

affecting the CEST signal and causing obliteration of the signal. The reduction rather 

than eradication of the CEST signal of the p-Cl complex 5.18a implies that the amide 

proton exchange rate is still within the limits of the rate requirement for a CEST signal to 

be generated. Thus, these EWGs allowed a maximum CEST effect to be seen at pH 7 

instead of at pH 8 or 9. 

The pKas (unknown) for all these complexes are prone to be dissimilar, even although 

there are some similarities in pH where the maximum CEST signal occurs. From these 

results, one may infer that there are also similarities in the amide proton exchange rates. 

The interesting phenomena of the p-NO2 complex 5.20a having a CEST signal at pH 7 

and no signal at pH 8 (vice versa for the p-NH2 complex 5.21a), may serve as a starting 

point  for the design of a potential dual pH and redox probe using more than one p-NO2 

substituents. The reduced CEST effect in the p-NH2 complex 5.21a as compared to p-

NO2 5.20a, has been similarly demonstrated for the Eu3+-DOTAM-p-NO2 and -p-NH2 

monoaniline complexes (Figure 5.1) reported by Ratnakar et al.6 
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Observed chemical shift as a function of EDG/EWG 

The chemical shift at which the amide CEST signal arises in Tm3+-DOTAM complexes is 

-51 ppm.4 The chemical shifts observed for the CEST signals of the Tm3+- DO3A-

monoaniline complexes 5.15a - 5.18a and 5.20a - 5.21a fall close to this expected value. 

Furthermore, it was observed that the chemical shifts of these complexes were 

independent of pH (Table 5.1). In comparison to the p-H complex 5.17a at -53 ppm (at 

pH 7 and 8), the EDGs had upfield chemical shifts and the EWGs had downfield 

chemical shifts. Surprisingly at pH 7, the p-NO2 complex 5.20a had the most downfield 

chemical shift at -46 ppm. The slight downfield shift produced by the EWGs and upfield 

shift produced by the EDGs are likely a result of shielding effects propagated through the 

aromatic ring system to the amide proton rather than changes in the chelate conformation 

which would result in larger chemical shift changes, vide infra. 

Table 5.1: Chemical shifts (δ) of Tm3+ based agents 5.15a - 5.18a and 5.20a - 5.21a at 37°C 

and pH 7.00 ± 0.03 and 8.00 ± 0.03. 
 δ (ppm) 

7.00 ± 0.03 8.00 ± 0.03 
p-NMe2 -55 -55 
p-NH2 n.o. -56 
p-OMe -54 -54 

p-H -53 -53 
p-Cl -52 -51 

p-NO2 -46 n.o 
n.o. indicates not observed 

 

The Yb3+-DO3A-oAA complex (Figure 5.1) reported had two signals, each due to the 

amide proton and the o-NH2 substituent (δ (ppm) = -11 and +8 ppm, respectively; pH 7, 

37oC).2  A single signal for the p-NH2 complex 5.21a was only observed at pH 8 (37oC). 

The difference in the number of signals seen in both complexes may be attributed to the 

position of the NH2 group, rather than pH. In order for a signal to be generated by the 

NH2 group, intramolecular hydrogen-bonding with the carboxylate arm may be 

necessary.10 In complex 5.21a, the NH2 group in the para position is not conducive to 

intramolecular hydrogen-bonding with a carboxylate arm, therefore, no CEST signal was 



135 

 

seen for these exchangeable protons. In contrast, the Yb3+-DO3A-oAA complex has the 

NH2 group in the ortho position, an ideal location for this interaction and thus, an 

additional CEST signal for these protons was observed. The small chemical shift 

difference in Yb3+-DO3A-oAA complex is a shortcoming of using Yb3+, since the signals 

were close to that of the bulk water signal. 

As previously reported, Tm3+-tetraaniline-p-H complex had a CEST signal at -41 ppm. 

The Tm3+-tetraaniline-p-OMe complex had two CEST signals at -43 and -83 ppm due to 

the square antiprismatic (SAP) and twisted square antiprismatic (TSAP) isomers, 

respectively.1 The solid state structure of the Tm3+-tetraaniline p-OMe complex indicated 

no bound water, therefore those geometries are more correctly denoted as SAP' and 

TSAP'.1 Only one signal was seen in the Tm3+- DO3A complexes 5.15a - 5.18a and 

5.20a - 5.21a. Hence, this suggests that there is only one isomer (most likely SAP) 

present in solution.  

CEST signal were not produced by the Dy3+ complexes as the T2 relaxation was too 

great, thus no comparisons to the Tm3+ complexes can be made. 

 

5.2.3 Relaxometric Evaluation of Dy3+ and Tm3+ Complexes  

Tm3+ Complexes  

The relaxivity data for the Tm3+ complexes 5.15a - 5.18a and 5.20a - 5.21a was acquired 

and these results are seen in Table 2. These low relaxivity values are comparable to those 

reported for the complexes of Tm3+- tetraaniline-p-H (r1 = 0.06 mM-1s-1 and r2 = 0.66 

mM-1s-1) and -p-OMe (r1 = 0.05 mM-1s-1 and r2 = 0.40 mM-1s-1).1  In comparison to the p-

H complex 5.17a, the r1 values indicated an overall slight increase for EDGs and a slight 

decrease for EWGs (Figure 5.4). On the other hand, with respect to 5.17a, both EWGs 

and EDGs showed a decrease in r2, with the exception being the p-NMe2 complex 5.15a 
(Figure 5.4). 

 



136 

 

 

Table 5.2: r1 and r2 values of Tm3+ based agents 5.15a - 5.18a and 5.20a - 5.21a at 
25°C and pH 7.00 ± 0.03 
 r1 (mM-1 s-1) r2  (mM-1 s-1)

p-NMe2 0.06 0.19 
p-NH2 0.06 0.09 
p-OMe 0.10 0.12 

p-H 0.05 0.15 
p-Cl 0.03 0.15 

p-NO2 0.03 0.12 

 

Figure 5.4: r1 and r2 with respect to σpara at 25°C and pH 7.00 ± 0.03 for 5.15a - 
5.18a and 5.20a - 5.21a. 

 

The relationship between r2 and the strengths of the EDGs or EWGs, is not 

straightforward. A maximal value for p-H complex 5.17a (or p-Cl complex 5.18a) is 

observed with falling off as │σpara │> 0 with the exception for p-NH2 complex 5.20a 

Dy3+ complexes  

Dy3+ complexes have been shown to act as T2 shortening agents.11 This is evident as 

these agents 5.15b - 5.18b and 5.20b - 5.21b had much higher r2 than r1 values (Table 

5.3). In particular, the p-OMe 5.16b and p-H 5.17b complexes had r2 values of 
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approximately twice that of the other complexes. These r2 values were also higher in 

comparison to Dy3+-DOTA (r2 = 1.5 mM-1 s-1 at 22oC; Figure 5.1),11 indicating that 

having at least one amide arm is advantageous. This assumption was made based on 

previous results by Soesbe et al., where derivatives of Dy3+-DOTA-glyn (Figure 5.1), 

with n = 2, 3 and 4 had r2 values of 18.8 mM-1 s-1, 4.2 mM-1 s-1 and 1.4 mM-1 s-1, 

respectively, at 22oC.11  

Table 5.3: r1 and r2 values of Dy3+ based agents 5.15b - 5.18b and 5.20b - 5.21b at 25 
°C and pH 7.00 ± 0.03. 

 r1 (mM-1 s-1) r2 (mM-1 s-1)
p-NMe2 0.2 2.6 
p-NH2 0.1 2.0 
p-OMe 0.2 4.5 

p-H 0.3 7.0 
p-Cl 0.1 3.4 

p-NO2 0.1 2.3 

 

 

Figure 5.5: (a) r1 with respect to σpara at pH 7.00 ± 0.03 for 5.15b - 5.18b and 5.20b - 
5.21b and (b) r2 with respect to σpara at pH 7.00 ± 0.03 for 5.15b - 5.18b and 5.20b - 

5.21b. 
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The r1 values with respect to δpara of both the EDGs and EWGs substituents showed a 

decrease in comparison to the unsubstituted p-H complex 5.17b. This trend was similarly 

observed for the r2 values. Nevertheless, there was an inverse relationship between the 

strengths of the groups and the r1 and r2 values. This trend was similarly seen in the r2 

values of the Tm3+ complexes. 

Table 5.4: Relaxivity parameters r1 and r2 (mM-1 s-1) of Dy3+ based agents 5.17b and 
5.21b at pH 7.00 ± 0.03 and 10oC, 25 °C and 37oC. 

p-NH2 p-HT r1 r2 r1 r210oC 0.07 3.4 0.16 8.725oC 0.08 2.0 0.30 7.037oC 0.05 0.71 0.12 3.2
 

The study involving complexes of Dy3+-DOTA-glyn also demonstrated that Swift-

Connick theory can be used to envisage the trend in r2 with respect to the lifetime of 

bound water (τm), at several temperatures.12 This is given by the equation 5.1: 

r2ex = (1.8 X 10-5)    τm∆ω2                       equation [5.1]      

                              1 + τm
2∆ω2 

where r2ex is the transverse relaxivity due to molecular water exchange, ∆ω is the 

chemical shift difference of bound water in rad s-1 and τm  is the lifetime of the bound 

water.13, 14 It was shown that when n = 0 and 2, the exchange rates were faster than 

optimal for generating T2 contrast.11 On the other hand, when n = 3 and 4 the exchange 

rate was slower, with n = 2 being optimal.11 However, no data about monoacetamides 

was reported. In order to compare the Dy3+-DO3A-monoanilines, temperature studies 

were carried out on the p-H complex 5.17b (one with higher r2 values) and p-NH2 5.21b 

(one with lower r2 values). Results for both complexes indicated that as the temperature is 

increased, the r2 decreased (Table 5.4). This highlights that the exchange rate should fall 

on the fast side of the Swift-Connick plot (τm < 545 ns; between n = 0 and n = 2), as is 

expected for fast inner-sphere water exchange systems.11, 15  Due to the fact that these 
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complexes represent each extreme (high and low r2), it is therefore expected that all of 

these Dy3+ complexes would also have fast inner-sphere exchange of water. Because the 

p-H complex 5.17b gave the greatest r1 and r2 values, the substituent effect appears to be 

steric in nature rather than dictated by subtle changes in the electronics of the amide arm, 

given that hydrogen is the smallest substituent.  The steric nature of substituent may 

influence the conformation of the complex, but perhaps more likely influence the second 

sphere of solvation and lead to the observed trend. 

 

Figure 5.6: (a) r1 with respect to pH at 25oC for 4mM each of 5.15b - 5.18b and 
5.20b - 5.21b and (b) r2 with respect to pH at 25oC for 4mM each of 5.15b - 5.18b 

and 5.20b - 5.21b. 
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This trend may be caused by an increase in the number of coordinated water molecules at 
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complexes had no trend with respect to pH over the range tested. Unexpectedly, the p-

NMe2 complex 5.15b demonstrated a dramatic increase in relaxivity at pH 9, which may 

be due to OH- catalyzed prototropic exchange.16, 17  

In order to be applicable as a responsive probe, a change in relaxivity approximately 2.0 

mM–1 s–1 or more is needed.18 None of the complexes met this requirement within the 

biologically relevant pHs. 

 

5.3 Conclusions 

It has been shown that several Tm3+- and Dy3+-DO3A-monoanilide complexes can be 

synthesized and obtained in moderate to excellent yields starting from monoalkylation of 

Et3DO3A with various para-substituted anilines.  

It was also demonstrated that a CEST signal could be generated from an amide proton in 

the Tm3+ complexes. The amide CEST signal is slightly modulated under varying pH 

conditions, by using EDGs or EWGs. Complexes containing EDGs gave higher CEST 

intensities at pH 8, while those with EWGs had higher CEST intensities at pH 7. The 

observed chemical shifts of the CEST signals were independent of pH but were 

influenced by the nature of the para-substitutent.    

It has been furthermore established that the relaxivities for the Tm3+ complexes were very 

weak, while those of the Dy3+ complexes were stronger. However, the presence of either 

strongly electron-donating or withdrawing groups in the Dy3+complexes, resulted in 

weaker relaxivities.  

The observed trends in CEST intensity and relaxivity are not simply dependent on the 

electronic nature of the para-substitutent and are a result of complex interplay of metal-

bound water exchange rate, amide-proton exchange rate, outer sphere solvation and 

conformation of the complex – contributing factors that cannot be deconvoluted in these 

studies.19 
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Although the complexes reported herein are not very promising as responsive contrast 

agents for in vitro or in vivo use, the information gleaned is still valuable for the 

development of agents that can provide a CEST signal due to amide proton(s). This 

information can assist in the design of ligands to achieve agents with CEST responses 

that would fall within the physiological pH range of interest (pH 6.5-7.5). One step 

towards this objective would be to investigate variation of the position of substitution 

with other EDGs or EWGs on the aniline ring as well as bis(amide)-bis(carboxylate) 

ligands.  

  

5.4 Supplemental Information  

5.4.1 General Experimental 

General synthetic details can be found in Appendix 1. 

CEST and Relaxivity Experiments 

CEST spectra of complexes were acquired on a 600 MHz vertical bore NMR 

spectrometer, using a 15 µT, 2 s continuous wave presaturation pulse at offset 

frequencies ranging from -110 to 110 ppm in steps of 1 ppm  at a concentration of 10 mM 

in D2O/H2O (9:1) at pH 6.00 ± 0.03, 7.00 ± 0.03 and 8.00 ± 0.03; 37 °C. T1 and T2 

relaxation time constant measurements were made on a 400 MHz vertical bore NMR 

spectrometer. T1 and T2 relaxation time constant measurements were made for four 

different concentrations (1, 2, 4, 8 mM) of Dy3+ complexes and three different 

concentrations (2, 4, 8 mM) of Tm3+ complexes in H2O. T1 relaxation time constant was 

measured using an inversion recovery sequence (15-20 inversion times in the range of 

200 ms – 25 s) with a minimum d1 = 5T1 to ensure full recovery (pH 7.00 ± 0.03 and 

25°C). T2 relaxation time constant measurements were made using a CPMG pulse 

sequence (15-20 train echo times) with a minimum d1 = 5T1 to ensure full recovery (pH 

7.00 ± 0.03 and 25°C). Additional T1 and T2 temperature studies were done at 25°C and 

37°C (pH 7.00 ± 0.03). VNMRJ® software of the spectrometer automatically gave the T
1 
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and T
2 

relaxation rate constants. The relaxivities were then determined by linear 

regression fitting of the rate constants versus concentration in Microsoft Excel. 

 

5.4.2 Synthetic Procedures 

General procedure for monoalkylation. Et3DO3A and K2CO3 were suspended in 

CH3CN (3-5 mL) and acetamides 5.1 - 5.5 dissolved in CH3CN (1.5-2.5 mL) were added. 

The reaction mixture was heated to 55oC-60oC and left for overnight. Reaction mixture 

was filtered and the filtrate concentrated. The crude material was purified by silica gel 

column chromatography with 5% MeOH in CH2Cl2. The desired fractions were collected 

and concentrated to give the desired compounds.  

 

Triethyl 2,2',2''-(10-(2-((4-
(dimethylamino)phenyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)triacetate (5.6). Et3DO3A (1.027 mmol), compound 5.1 and K2CO3 (1.550 mmol 

each).  The title compound was obtained as a brown oil (168 mg, 27%). 1H NMR (400 

MHz, CDCl3): δ 10.75 (1H, s); 7.67 (2H, d, J = 9.3 Hz); 6.55 (2H, d); 4.17 - 4.07 (8H, 

m); 3.49 (2H, s); 3.33 - 1.96 (16H, m); 1.23 - 1.19 (12H, m). 13C NMR (100 MHz, 

CDCl3): δ 173.0, 169.9, 147.0, 130.0, 121.1, 112.9, 61.1, 56.8, 55.0, 51.1, 49.1, 41.1, 

14.0.  ESI-TOF m/z calcd for C30H51N6O7 (M+H)+, calculated 607.3819, found 607.3813. 
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Triethyl 2,2',2''-(10-(2-((4-methoxyphenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.7). Et3DO3A (1.039 

mmol), compound 5.2 and K2CO3 (1.632 mmol each).The title compound was obtained 

as a colourless oil (234 mg, 38%). 1H NMR (400 MHz, CDCl3): δ 10.93 (1H, s); 7.72 

(2H, d, J = 8.7 Hz); 6.65 (2H, d); 4.17 - 4.07 (8H, m); 3.67 (3H, s); 3.50 (2H, s); 3.37 - 

1.97 (16H, m); 1.22 - 1.17 (12H, m). 13C NMR (100 MHz, CDCl3): δ 173.0, 170.8 132.5, 

121.3, 113.7, 61.1, 56.8, 55. 2, 55.0, 52.1, 48.9, 41.1, 14.0. ESI-TOF m/z calcd for 

C29H48N5O8 (M+H)+, calculated 594.3503, found 594.3522. 

 

Triethyl 2,2',2''-(10-(2-oxo-2-(phenylamino)ethyl)-1,4,7,10-
tetraazacyclododecane-1,4,7-triyl)triacetate (5.8). Et3DO3A (1.039 mmol), compound 

5.3 and K2CO3 (1.632 mmol each). The title compound was obtained as a colourless oily 

residue (211 mg, 36%).  1H NMR (400 MHz, CDCl3): δ 11.1 (1H, s); 7.84 (2H, d, J = 7.8 

Hz); 7.13 (2H, t); 6.94 (1H, t, J = 7.4 Hz); 4.16 - 4.09 (6H, m); 3.55 (2H, s); 3.41 - 1.93 

(16H, m); 1.24 - 1.19 (9H, m). 13C NMR (100 MHz, CDCl3): δ 173.0, 170.9, 139.1, 

128.1, 123.2, 120.0, 61.2, 56.9, 55.0, 51.4, 49.2, 14.0. ESI-TOF m/z calcd for C28H46N5O7 

(M+H)+, calculated 564.3397, found 564.3399. 

 

Triethyl 2,2',2''-(10-(2-((4-chlorophenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.9). Et3DO3A (1.039 
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mmol), compound 5.4 and K2CO3 (1.632 mmol each). The title compound was obtained 

as a colourless oily residue (254 mg, 41%).  1H NMR (400 MHz, CDCl3): δ 11.46 (1H, 

s); 7.89 (2H, d, J = 9.0 Hz); 7.13 (2H, d); 4.20 - 4.14 (6H, m); 3.65 (2H, s); 3.57-1.97 

(16H, m); 1.29 -1.24 (9H, m). 13C NMR (100 MHz, CDCl3): δ 173.0, 171.2, 137.9, 128.1, 

121.5, 110.1, 61.3, 57.0, 55.1, 52.1, 48.7, 14.1. ESI-TOF m/z calcd for C28H45ClN5O7 

(M+H)+, calculated 598.3008, found 598.2999. 

 

N N

NN
O

OO

O

EtO

EtO N
H

OEt

NO2

Triethyl 2,2',2''-(10-(2-((4-nitrophenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.10). Et3DO3A 

(1.039 mmol), compound 5.5 and K2CO3 (1.632 mmol each). The title compound was 

obtained as a yellow oily residue (171 mg, 27%).  1H NMR (400 MHz, CDCl3): δ 12.02 

(1H, s); 8.13 (2H, d, J = 8.9 Hz); 8.06 (2H, d); 4.22 - 4.10 (8H, m); 3.73 (2H, s); 3.54 - 

2.18 (16H, m); 1.30 -1.24 (9H, m). 13C NMR (100 MHz, CDCl3): δ 173.1, 172.3, 145.3, 

142.8, 124.3, 119.8, 61.4, 57.2, 55.1, 52.1, 48.7, 14.1. ESI-TOF m/z calcd for C28H45N6O9 

(M+H)+, calculated 609.3248, found 609.3222. 

 

General procedure for saponification. Et3DO3A-monoanilines 5.6 - 5.9 were dissolved 

in MeOH (1.5-2.5 mL) and 1M NaOH (1.5-2.5 mL) added, then heated to 60oC and left 

for overnight. The reaction mixture was concentrated and neutralized with 1M HCl. The 

crude was purified by size exclusion column chromatography (100% H2O) and the 

desired fractions were collected and lyophilized to give the desired compounds.  
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2,2',2''-(10-(2-((4-(dimethylamino)phenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (5.11). Compound 

5.6 (115 mg, 0.190 mmol). Title compound was obtained as a brown solid (110 mg, 

98%). 1H NMR (400 MHz, D2O): δ 7.32 (2H, d, J =8.0 Hz); 6.68 (2H, d); 3.91 (2H, s); 

3.80-2.12 (16H, m). ESI-TOF m/z calcd for C24H39N6O7 (M+H)+, calculated 523.2880, 

found 523.2889. 

 

2,2',2''-(10-(2-((4-methoxyphenyl)amino)-2-oxoethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (5.12). Compound 5.7 (170 

mg, 0.286 mmol). Title compound was obtained as a brown solid (157 mg, 95%).1H 

NMR (400 MHz, D2O): δ 7.38 (2H, d); 6.98 (2H, d J = 8.0 Hz)); 3.93 (2H, s); 3.89-2.78 

(16H, m). ESI-TOF m/z calcd for C23H36N5O8 (M+H)+, calculated 510.2564, found 

510.2569. 

 

2,2',2''-(10-(2-oxo-2-(phenylamino)ethyl)-1,4,7,10-
tetraazacyclododecane-1,4,7-triyl)triacetic acid (5.13). Compound 5.8 (160 mg, 0.284 

mmol). Title compound was obtained as a cream solid (149 mg, 96%).  1H NMR (400 

MHz, D2O): δ 7.59-7.36 (4H, m); 7.25 (1H, t, J = 6 Hz); 6.83 (~0.5H, t, J = 7 Hz); 3.95 

(2H, s); 3.88-2.24 (16H, m). ESI-TOF m/z calcd for C22H34N5O7 (M+H)+, calculated 

480.2458, found 480.2441. 
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2,2',2''-(10-(2-((4-chlorophenyl)amino)-2-oxoethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (5.14).  

Compound 5.9 (240 mg, 0.401 mmol). Title compound was obtained as a cream solid 

(210 mg, 90%). 1H NMR (400 MHz, D2O): δ 7.54-7.33 (4H, m); 3.95 (2H, s); 3.90-2.21 

(16H, m). ESI-TOF m/z calcd for C22H33ClN5O7 (M+H)+, calculated 514.2069, found 

514.2073. 

2,2',2''-(10-(2-((4-nitrophenyl)amino)-2-oxoethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (5.19). Compound 5.10 (115 

mg, 0.189 mmol) was dissolved in MeOH (3 mL) and cooled to 5oC. NaOH (38 mg, 

0.945 mmol) was added and the mixture left sirring at 5oC for 3 hrs then brought to rt and 

left for overnight. The reaction mixture was concentrated and neutralized with 1M HCl. 

The crude was purified by size exclusion column chromatography (100% H2O) and the 

desired fractions were collected and lyophilized to give the desired compound. Title 

compound was obtained as a yellow solid (105 mg, 94%). 1H NMR (400 MHz, D2O): 

δ8.18 (2H, d); 7.67 (2H, d J = 9.0 Hz)); 3.94 (2H, s); 3.89-2.99 (16H, m).  ESI-TOF m/z 

calcd for C22H33N6O9 (M+H)+, calculated 525.2309, found 525.2316. 

 

General procedure for metalation. Compounds 5.11 - 5.14 and 5.19 were dissolved in 

H2O (2 mL) then the appropriate lanthanide chloride salts added. The pH was adjusted to 

6 and the reaction mixture heated to 55oC and left for overnight. 
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Thulium(III) 2,2',2''-(10-(2-((4-
(dimethylamino)phenyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)triacetate (5.15a). Compound 5.11 (43 mg, 0.073 mmol) and TmCl3.6H2O (30 mg, 

0.073 mmol). Title compound was obtained as a brown solid (24 mg, 44%). ESI-TOF m/z 

calcd for C24H36N6O7Tm (M+H)+, calculated 689.1988, found 689.2010. 

Thulium(III) 2,2',2''-(10-(2-((4-methoxyphenyl)amino)-
2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.16a). Compound 

5.12 (42 mg, 0.073 mmol) and TmCl3.6H2O (30 mg, 0.073 mmol). Title compound was 

obtained as a cream solid (35 mg, 65%). ESI-TOF m/z calcd for C23H33N5O8Tm (M+H)+, 

calculated 676.1671, found 676.1659. 

 

Thulium(III) 2,2',2''-(10-(2-oxo-2-(phenylamino)ethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.17a). Compound 5.13 (40 mg, 

0.073mmol) and TmCl3.6H2O (30 mg, 0.073 mmol). Title compound was obtained as a 

cream solid (30 mg, 58%). ESI-TOF m/z calcd for C22H31N5O7Tm (M+H)+, calculated 

646.1566, found 646.1588. 
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Thulium(III) 2,2',2''-(10-(2-((4-chlorophenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.18a). Compound 

5.14 (42 mg, 0.073mmol) and TmCl3.6H2O (30 mg, 0.073 mmol). Title compound was 

obtained as a cream solid (30 mg, 55%). ESI-TOF m/z calcd for C22H30ClN5O7Tm 

(M+H)+, calculated 680.1176, found 680.1178. 

Thulium(III) 2,2',2''-(10-(2-((4-nitrophenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.20a). Compound 

5.19 (43 mg, 0.073 mmol) and TmCl3.6H2O (30 mg, 0.073 mmol). Title compound was 

obtained as a yellow solid (50 mg, 91%). ESI-TOF m/z calcd for C22H30N6O9Tm (M+H)+, 

calculated 691.1417, found 691.1404. 

 

Dysprosium(III) 2,2',2''-(10-(2-((4-
(dimethylamino)phenyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)triacetate (5.15b). Compound 5.11 (60 mg, 0.102 mmol) and DyCl3.6H2O (38 mg, 

0.102 mmol). Title compound was obtained as a brown solid (46 mg, 60%). ESI-TOF m/z 

calcd for C24H36N6O7Dy (M+H)+, calculated 683.1859, found 683.1874 
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Dysprosium(III) 2,2',2''-(10-(2-((4-
methoxyphenyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)triacetate (5.16b). Compound 5.12 (59 mg, 0.102 mmol) and DyCl3.6H2O (38 mg, 

0.102 mmol). Title compound was obtained as a cream solid 58 mg, 77%). ESI-TOF m/z 

calcd for C23H33N5O8Dy (M+H)+, calculated 670.1543, found 670.1569. 

Dysprosium(III) 2,2',2''-(10-(2-oxo-2-(phenylamino)ethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.17b).  Compound 5.13 (56 mg, 

0.102 mmol) and DyCl3.6H2O (38 mg, 0.102 mmol). Title compound was obtained as a 

cream solid (48 mg, 68%). ESI-TOF m/z calcd for C22H31N5O7Dy (M+H)+, calculated 

640.1437, found 640.1457. 

 

Dysprosium(III) 2,2',2''-(10-(2-((4-chlorophenyl)amino)-
2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.18b). Compound 

5.14 (59 mg, 0.102 mmol) and DyCl3.6H2O (38 mg, 0.102 mmol). Title compound was 

obtained as a cream solid (36 mg, 47%). ESI-TOF m/z calcd for C22H30ClN5O7Dy 

(M+H)+, calculated 674.1047, found 674.1048. 
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Dysprosium(III) 2,2',2''-(10-(2-((4-nitrophenyl)amino)-
2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetat (5.20b). Compound 

5.19 (60 mg, 0.102 mmol) and DyCl3.6H2O (38 mg, 0.102 mmol). Title compound was 

obtained as a yellow solid (42 mg, 55%). ESI-TOF m/z calcd for C22H30N6O9Dy (M+H)+, 

calculated 685.1288, found 685.1319. 

 

Reduction of 5.20a,b. Compounds 5.20a,b were each dissolved in MeOH (2 mL) and 

Pd/C (10 mol %) added. The suspension was purged with H2 under vacuum and left 

stirring for 2 days at rt under H2.  The reaction mixture was filtered and the filtrate 

concentrated then redissolved in H2O and lyophilized. 

 

Thulium(III) 2,2',2''-(10-(2-((4-aminophenyl)amino)-2-
oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (5.21a). Compound 

5.20a (30 mg, 0.040 mmol) and TmCl3.6H2O (15 mg, 0.040 mmol). Title compound was 

obtained as a white solid (29 mg, 86%). ESI-TOF m/z calcd for C22H32N6O7Tm (M+H)+, 

calculated 661.1675, found 661.1656. 

 

Dysprosium(III) 2,2',2''-(10-(2-((4-
aminophenyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
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triyl)triacetate (5.21b). Compound 5.20b (20 mg, 0.027 mmol) and DyCl3.6H2O (10 

mg, 0.027 mmol). Title compound was obtained as a white solid (14 mg, 74%). ESI-TOF 

m/z calcd for C22H32N6O7Dy (M+H)+, calculated 655.1546, found 655.1518. 

 

5.4.3 Spectra 
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S 5.1: 1H-NMR Spectrum of 5.6 
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S 5.2: 13C-NMR Spectrum of 5.6 

S 5.3: 1H-NMR Spectrum of 5.7 
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S 5.4: 13C-NMR Spectrum of 5.7 

S 5.5: 1H-NMR Spectrum of 5.8 
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S 5.16: r1 relaxivity profile of 5.15a 

 

S 5.17: r2 relaxivity profile of 5.15a 
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S 5.18: r1 relaxivity profile of 5.16a 

 

S 5.19: r2 relaxivity profile of 5.16a 
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S 5.20: r1 relaxivity profile of 5.17a 

 

S 5.21: r2relaxivity profile of 5.17a 
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S 5.22: r1 relaxivity profile of 5.18a 

 

S 5.23: r2 relaxivity profile of 5.18a 
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S 5.24: r1 relaxivity profile of 5.20a 

 

S 5.25: r2 relaxivity profile of 5.20a 
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S 5.26: r1 relaxivity profile of 5.21a 

 

 

S 5.27: r2 relaxivity profile of 5.21a 
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S 5.28: r1 relaxivity profile of 5.15b 

 

 

S 5.29: r2 relaxivity profile of 5.15b 
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S 5.30: r1 relaxivity profile of 5.16b 

 

S 5.31: r2 relaxivity profile of 5.16b 
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S 5.32: r1 relaxivity profile of 5.17b 

 

 

S 5.33: r2 relaxivity profile of 5.17b 
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S 5.34: r1 relaxivity profile of 5.18b 

 

 

S 5.35: r2 relaxivity profile of 5.18b 
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S 5.36: r1 relaxivity profile of 5.20b 

 

S 5.37: r2 relaxivity profile of 5.20b 
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S 5.38: r1 relaxivity profile of 5.21b 

 

S 5.39: r2 relaxivity profile of 5.21b 
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S 5.40: Temperature profile of r1 relaxivity of 5.17b 

 

S 5.41: Temperature profile of r2 relaxivity of 5.17b  
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S 5.42: Temperature profile of r1 relaxivity of 5.21b 

 

S 5.43: Temperature profile of r2 relaxivity of 5.21b 
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Chapter 6  

6 Synthesis Towards Modified Dy3+ and Tm3+ DOTAM-
tetraanilide Complexes Bearing a para-phosphonate 
Monoanilide for In vivo Studies 

 

6.1 Introduction 
A previous report was made regarding the study of DOTAM-tetraanilide PARACEST 

agents which were varied with regards to their para-substituents.1 This was done with the 

aim of exploring the adjustment of the amide exchange rate by the presence of electron-

withdrawing groups (EWGs) and electron-donating groups (EDGs). The adjustment of 

the amide exchange rate in turn would affect the CEST due to amide protons. 

Unfortunately, with the exception of the Dy3+ and Tm3+-p-H and -p-OMe complexes 

(Figure 6.1), the other complexes were insoluble and could not be further analyzed after 

synthesis.1 The solid state structure of the Tm3+-p-OMe complex revealed that the angle 

between the N-Ln-N and O-Ln-O planes (α) was 27o, thus indicating a twisted square 

antiprismatic (TSAP) geometry. It was also noted that the complex lacked a metal bound 

water molecule and was more accurately termed as the TSAP' isomer. Additionally, the 

Tm3+-p-OMe complex had an interesting feature of two CEST signals of moderate 

intensities at -43 and -83 ppm, corresponding to the square antiprismatic (SAP') and 

TSAP' isomers, respectively.1 These features reported for the Tm3+-p-OMe complex are 

unique and so warrants further studies.  

 

Figure 6.1: Chemical structures of some complexes discussed in this work. 
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It has been reported that non-ionic complexes are more tolerable than ionic ones due to 

better blood compatible viscosity and osmolality.2 Therefore, for the tetraanilide Tm3+-p-

OMe complex to be used in vivo (in mice or other animal models), the overall charge of 

the complex needs to be reduced to neutral or close to neutral. To meet the charge 

requirements, it was decided that a phosphonate group should be installed in the para-

position of the unsubstituted aniline ring. This derivative would be a lone arm on the 

macrocycle, with the remaining arms being the unmodified para-substituted aniline of p-

OMe. The corresponding p-H complex would also be synthesized for comparison 

purposes. As a result, our lanthanide metalated complexes would have an overall charge 

of +1, which should be more tolerable for in vivo studies, should the opportunity present 

itself. Additionally, we hoped for an increase in solubility in aqueous solvents. It is 

anticipated that the presence of the two CEST signals seen in the unmodified tetraanilide 

Tm3+-p-OMe complex would still be present in this modified analogue. If so, it would 

allow for ratiometric analysis that would eliminate the CEST effect dependency on 

concentration, thus allowing the agent to be used as a biological reporter.3, 4 The 

ratiometric analysis of the unmodified tetraanilide Tm3+ -p-OMe complex was attempted 

but due to solubility restrictions, no appropriate measurements could be performed.1  

 

6.2 Results and Discussion 

6.2.1  Synthesis 

The synthetic route as shown in Schemes 6.1 and 6.2 represent the attempts to the 

modified DOTAM tetraanilide possessing a phosphonate group. The initial reactions 

attempted in order to achieve 6.4 without using a protecting group for the amino moiety 

was met with difficulty. Starting with the p-I-aniline 6.1, several conditions were tried. 

These included using various solvents (toluene, CH3CN), reaction times (up to 3 days), 

and temperatures (90oC - 155oC). Under these conditions, multiple products were formed 

including the desired compound but purification of the mixture was challenging.  
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Scheme 6.1: Synthetic route to phosphonate ester electrophile.  

 

To further optimize the desired reaction conditions whereby the phosphonate diester was 

produced, several metal-catalyzed cross couplings of 6.1 and triethyl phosphite were 

attempted based on literature precedence.5 NiCl2, Pd(OAc)2  and PdCl2 were used as 

catalysts. However, all gave the same results as previously observed, that is, multiple 

products being formed. This occurred whether or not the reaction was carried out at room 

temperature or heated to high temperatures.  

A model reaction with iodobenzene was performed using the PdCl2 catalyst so as to 

determine whether or not the amine of 6.1 was inhibiting the progress of the desired 

reaction. This reaction was successful and thus highlighted the need of a protecting group 

for the amine moiety. 

Following literature procedure,6 the amino group of the p-I-aniline 6.1 was protected with 

an aceyl group to give 6.2.  The palladium-mediated cross coupling reaction was then re-

attempted with 6.2 and the alkylphosphite. While this reaction was met with more 

success as compared to that with the free amine, the reaction times were long and the 

yields were unsatisfactory. To reduce the reaction times while possibly increasing the 

yields of 6.3, microwave-assisted synthesis of the palladium-catalyzed cross coupling 
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reaction was performed.7 Moderate yields of the desired phosphonate diester compound 

6.3 were accomplished following purification by column chromatography.  

 

Scheme 6.2: Synthetic attempt to obtain metalated phosphonate complexes. 

R1 = H, 6.11
R1 = OMe, 6.12
R2 = PO(OH)2
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Scheme 6.3: Synthetic approach to metalated phosphonate diester complexes. 
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The cross-coupling reaction between palladium and the protected p-I-aniline 6.2 relies on 

the Pd (II) of the catalyst being reduced to Pd (0) by the triethyl phosphite. In order for 

this reduction to occur, it has been demonstrated that at least five equivalents of the 

triethy phosphite is needed, in addition to heating the reaction mixture to at least 80oC.7, 8   

 

Scheme 6.4: Proposed mechanism of palladium-catalyzed microwave-assisted 
synthesis of a phosphonate diester. 

 

The mechanism of the catalysis by Pd(0) is more complicated than the corresponding 

reaction with Ni(0). This complication arises as a result of factors such as the source of 

Pd(0), the types of ligands of the catalyst and the electronic and steric factors of the aryl 

(or alkyl halide).9 The proposed mechanism for this cross coupling is shown in Scheme 

6.4 and is derived from that of the nickel-mediated reaction.9  

The amino-protecting group of 6.3 was removed and a reaction involving 6.4 and 

chloroacetyl chloride was carried out to afford compound 6.5 (Scheme 6.1). 

Monoalkylation of the triBoc-protected cyclen 6.6 with the electrophile 6.5 using 

traditional conditions were problematic. Initial conditions were done at room temperature 
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followed by heating at 50oC for up to 3 days but the reaction was quite sluggish. The 

reaction was also carried out with the assistance of the microwave, initially at 60oC and 

then at 80oC for up to 3 hrs. At these higher temperatures, even although the reaction 

proceeded with some improvement, UPLC-MS also showed deprotected products. As 

such, the subsequent monoalkylation reaction was carried out at 70oC. Additionally, 

rather than separate the products at this stage, the crude reaction mixture of 6.7 was 

carried forward to the deprotection step to facilitate a less complicated purification step. 

Over two steps, the monoalkylated product 6.8 was obtained in low yield (Scheme 6.2).   

Trialkylation of 6.8 with the unmodified aniline electrophiles of p-H (6.9) and p-OMe 

(6.10) proceeded sluggishly as that of the monoalkylation and the reaction did not go to 

completion. The outcome was the same whether the reaction was done for 3 days heating 

at 60oC or in the microwave for 3 hrs at 80oC. Creation of an in situ iodide-containing 

electrophile of 6.9 and 6.10 via a Finklestein reaction did not improve the formation of 

the desired peralkylated products 6.11 and 6.12. The reaction mixture consisted mostly of 

trialkylated and tetraalkylated products that were difficult to separate by silica gel column 

chromatography as both products were very polar and eluted together. Purification was 

also attempted by semi-preparative thin layer chromatography with a solvent system of 

H2O/sec-butanol/acetic acid in 2.5:2.0.5 ratio. Those conditions also proved unsuccessful. 

As a last attempt and based on the polarity of the products, HPLC purification using a C18 

column was attempted. This was met with some success but the desired products 6.11 and 

6.12 were obtained in low yields.  

The dealkylation step of the phosphonate diesters of the peralkylated compounds 6.11 
and 6.12 was the most difficult step (Scheme 6.2). Several reaction conditions were 

attempted in order to cleave the ester bonds. These ester bonds were very stable under 

refluxing conditions or heating in the microwave at high temperatures in concentrated 

HCl.10 A reaction mixture of incomplete deakylation products ensued when TMSBr was 

used at room temperature in varying solvents for prolonged reaction times.6, 11 This 

phenomenon was also observed when neat TMSBr was used. Although the reaction 

conditions with TMSBr produced some of desired phosphonate compound, UPLC-MS 

also indicated various bromide adducts of these products, which were still present even 
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after neutralization with NaOH and 2 days of dialysis. This was the norm when more than 

90% TMSBr was used. Quenching the reaction with CH3OH as typically done after 

concentration of the reaction mixture,6 led to decomposition products.  

As a result of the challenges faced during removal of the phosphonate diesters of 6.11 
and 6.12, it was decided that metalation of the diesters 6.11 and 6.12 as seen in Scheme 

6.3 should be pursued so as to be able to preliminarily characterize the complexes based 

on their magnetic properties. This approach does not represent an ideal situation, 

considering that these complexes would still have a +3 charge and the charge 

requirements for future in vivo studies would not be met.   

 

6.3 Conclusions and Future Work 

The synthesis of DOTAM-para-substituted tetraanilide Dy3+ and Tm3+ complexes with 

one aniline arm bearing a phosphonate group in the para-position of the aniline ring and 

the remaining arms containing p-OMe or p-H was attempted. This modification was 

based on published results regarding the intriguing observation of two amide CEST 

signals in the unmodified tetraanilide Tm3+-p-OMe complex.1 The purpose of the 

phosphonate group was to reduce the overall charge of the complex for prospective in 

vivo studies. Unfortunately, the synthesis was fraught with difficulties such as low yields 

and unsuccessful reactions. Consequently, at this time, the desired target complexes 

cannot be attained. 

The inability to acquire the desired target phosphonate metal complexes, necessitated 

temporary alteration of the target metalated complexes to that containing the phosphonate 

diesters. Once these precursor compounds are obtained in yields sufficient for metalation, 

the lanthanides Dy3+ and Tm3+ will be incorporated into the these ligands containing p-

OMe or p-H. At this juncture, comparative evaluation of the magnetic properties of these 

complexes similar to that carried out for the unmodified tetraanilide complexes for which 

no inner sphere water was present will be performed.1 
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More importantly, the condition for efficient removal of the phosphonate diester needs to 

be determined. This may involve changing the type of alkyl groups of the phosphonate 

diester. Once this has been accomplished, metalation with the desired lanthanides can be 

carried out. The magnetic properties of the complexes can then be evaluated and 

compared to both the unmodified DOTAM tetraanilide complexes and those having the 

phosphonate diester present. Depending on the results obtained, in vivo assessments of 

the modified tetraanilides containing the phosphonate group may be completed.   

 

6.4 Supplemental Information 

6.4.1 General Experimental 

General synthetic details can be found in Appendix 1. 

 

6.4.2 Synthetic Procedures 

Diethyl (4-acetamidophenyl)phosphonate (6.3). Triethylphosphite (1.25 mL, 

7.173 mmol) and PdCl2 (0.159 g, 0.897 mmol) were added to a solution of 6.2 (1.17 g, 

4.483 mmol) in CH3CN (18 mL) in a 20 mL microwave vial which was then sealed. The 

mixture was irradiated at 100oC and maintained for 3 h with stirring in a Biotage 

Initiator® microwave reactor. The temperature was monitored by external IR temperature 

sensor. After 3 h, the reaction was checked by TLC and UPLC-MS and the solution was 

transferred to a round bottom flask for concentration under reduced pressure. The crude 

product was purified by column chromatography (silica, 1:1 EtOAc/hexanes then 5% 

MeOH in CH2Cl2). The title compound was obtained as a yellow sticky solid (1.03 g, 

85%). 12 1H NMR (400 MHz, CDCl3): δ 8.21 (1H, s); 7.78 -7.63 (4H, m); 4.18-3.99 (4H, 

m (2 x dq), 3JPH = 10.0 Hz); 2.21 (3H, s); 1.32 (6H, t, J = 7.0 Hz). 13C NMR (100 MHz, 

CDCl3): δ 169. 5, 142.7, 132.7, 119.2, 62.2, 24.4, 16.2. 31P NMR (161.97 MHz, CDCl3): 
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δ 18.8. ESI-TOF m/z calcd for C12H19NO4P (M+H)+, calculated 272.1052, found 

272.1043.  

 

Diethyl 4-aminophenylphosphonate (6.4). Sodium (0.245 g, 10.64 mmol) 

dissolved in dry EtOH (21 mL) under N2 was added to a solution of 6.3 (1.03 g, 3.80 

mmol) in dry EtOH (10 mL) and the reaction mixture was refluxed under nitrogen 

atmosphere for overnight. After the reaction was complete (monitored by TLC and 

UPLC-MS), the solvent was removed under reduced pressure and the crude black 

mixture then suspended in CHCl3 and was washed with H2O.  The organic layer was 

collected and dried over Na2SO4, filtered and concentrated under reduced pressure. The 

crude product was purified by column chromatography (silica, 20-100% EtOH in 

CHCl3). The product 6.4 was obtained as a yellow sticky solid (0.740 g, 85%).11 1H NMR 

(400 MHz, CDCl3): δ 7.61 - 7.53 (2H, dd, J = 8 Hz, 3JPH = 12.0 Hz); 6.72 - 6.66 (2H, dd, 
4JPH = 3.0 Hz); 41.5 -. 3.96 (4H, m (2 x dq), 3JPH = 10.0 Hz); 1.30 (6H, t, J = 7.0 Hz). 13C 

NMR (100 MHz, CDCl3): δ 133.7, 133.6, 114.2, 114.1, 61.7, 61.7, 61.7, 16.3, 16.3. 31P 

NMR (161.97 MHz, CDCl3): δ 21.4. ESI-TOF m/z calcd for C10H17NO3P (M+H)+, 

calculated 230.0946, found 230.0941. 

 

Diethyl 4-(chloroacetamido)phenylphosphonate (6.5). A suspension of 

K2CO3 (0.536 g, 3.876 mmol) in a solution of 6.4 (0.740 g, 3.23 mmol) in CH3CN 

(12mmL) was cooled to 0oC.  A solution of chloroacetyl chloride (0.31 mL, 3.876 mmol) 

in CH3CN (2 mL) was then added dropwise. The reaction mixture was slowly warmed to 

room temperature and then stirred overnight (monitored by TLC and HR-ESI-MS). The 

reaction mixture was filtered, the filtrate collected and concentrated under reduced 



184 

 

pressure. The crude product was used without further purification in the next step.11 The 

resulting oil was evaporated with toluene three times to give the crude product as a 

yellow solid (0.756 g, 77%) which was used without further purification in the next step. 
1H NMR (400 MHz, CDCl3): δ 8.68 (1H, s); 7.84 - 7.75 (2H, dd, J = 9 Hz, 3JPH = 13.0 

Hz); 7.74 - 7.68 (2H, dd, 4JPH = 3.0 Hz); 4.22 (2H, s); 4.19-4.03 (4H, m (2 x dq), 3JPH = 

10.0 Hz); 1.32 (6H, t, J = 7.0 Hz). 13C NMR (100 MHz, CDCl3): δ 164.5, 140.8, 140.8, 

133.0, 132.9, 119.6, 119.4, 62.5, 62.4, 42.9, 16.3, 16.2. 31P NMR (161.97 MHz, CDCl3): 

δ 18.3. ESI-TOF m/z calcd for C12H18ClNO4P (M+H)+, calculated 306.0662, found 

306.0652. 

 

 Diethyl (4-(2-(1,4,7,10-tetraazacyclododecan-1-
yl)acetamido)phenyl)phosphonate (6.8).  K2CO3 (0.423 g, 3.06 mmol), NaI (0.238 g, 

1.591 mmol), 6.5 (0.486 g, 1.591 mmol) and 6.6 (0.723 g, 1.530 mmol) were suspended 

in acetone/CH3CN (2:16 mL) in a 20 mL microwave vial which was then sealed. The 

mixture was irradiated at 70oC and maintained for 3h with stirring in a Biotage Initiator® 

microwave reactor. The temperature was monitored by an external IR temperature sensor. 

After 3 h, the reaction was checked by HR-ESI-MS and TLC and the mixture was 

filtered. The filtrate was collected and concentrated under reduced pressure. The crude 

product 6.7 was used without further purification in the next step.  

Crude 6.7 was dissolved in CH2Cl2 (4 mL) and an equal volume of TFA added. The 

reaction mixture was left stirring for 3.5 hrs at room temperature (monitored by UPLC-

MS). The crude product was purified by column chromatography (silica, 1.5:5:93.5 

NH4OH/MeOH in CHCl3). The product 6.8 was obtained as an orange sticky solid (0.561 

g, 83%). 1H NMR (400 MHz, CD3OD): 7.83 - 7.77 (2H, dd, J = 9 Hz, 4JPH = 3.0 Hz); 

7.75 - 7.67 (2H, dd, 3JPH = 13.0 Hz,); 4.16 - 4.01 (4H, m (2 x dq), 3JPH = 10.0 Hz); 3.67 

(2H, s); 3.30-3.14 (16H, m); 1.31 (6H, t, J = 7.0 Hz). 13C NMR (100 MHz, CD3OD): δ 

163.3, 133. 8, 121.0, 116.8, 63.9, 57.5, 51.6, 45.9, 44.7, 44.2, 43.9, 39.5, 16.7. 31P NMR 
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(161.97 MHz, CD3OD): δ 19.1. ESI-TOF m/z calcd for C20H36N5O4P (M+H)+, calculated 

442.2583, found 442.2590. 

 

General procedures for synthesis of tetra-substituted cyclen. Starting material 6.8, 

electrophiles 6.9 or 6.10 and K2CO3 were suspended in CH3CN in a 20 mL microwave 

vial which was then sealed. The mixture was irradiated at 80oC and maintained for 3 h 

with stirring in a Biotage Initiator® microwave reactor. The temperature was monitored 

by an external IR temperature sensor. After 3 h, the reaction was checked by HR-ESI-MS 

and the mixture was filtered and the filtrate collected and concentrated under reduced 

pressure. The crude product was first purified by column chromatography (silica gel, 5-

10% MeOH in CH2Cl2, then 100% EtOH) then by HPLC (C18, gradient over 19 mins 

99:1 to 45:55 H2O/CH3CN). The fractions were concentrated to reduce the volume then 

lyophilized. 

 

Diethyl (4-(2-(4,7,10-tris(2-oxo-2-
(phenylamino)ethyl)-1,4,7,10-tetraazacyclododecan-1-
yl)acetamido)phenyl)phosphonate (6.11). Starting material 6.8 (0.250 g, 0.566 mmol), 

electrophile 6.9 (0.384 g, 2.264 mmol) and K2CO3 (0.313 g, 2.264 mmol) were 

suspended in CH3CN (6 mL). The product 6.11 was obtained as a yellow oil (0.105 g, 

22%). 1H NMR (400 MHz, CD3OD): δ 7.81 - 6.76 (17H, m); 6.71 - 6.30 (2H, m); 4.42 - 

3.43 (20H, m); 3.21-2.91 (8H, m); 1.28 (6H, m). 31P NMR (161.97 MHz, CD3OD): δ 

19.49. ESI-TOF m/z calcd for C44H58N8O7P (M+H)+, calculated 841.4166, found 

841.4157. 
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Diethyl (4-(2-(4,7,10-tris(2-((4-
methoxyphenyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1-
yl)acetamido)phenyl)phosphonate (6.12). Starting material 6.8 (0.250 g, 0.566 mmol), 

electrophile 6.10 (0.452 g, 2.264 mmol) and K2CO3 (0.313 g, 2.264 mmol) were 

suspended in CH3CN (8 mL). The product 6.12 was obtained as a cream solid (0.195 g, 

37%). 1H NMR (400 MHz, CD3OD): δ 7.66 - 6.93 (12H, m); 6.66 (4H, s); 4.33 - 3.86 

(10H, m); 3.82 - 3.56 (19H, m); 3.28-3.05 (8H, m); 1.29 (6H, m). 31P NMR (161.97 

MHz, CD3OD): δ 19.34. ESI-TOF m/z calcd for C47H64N8O10P (M+H)+, calculated 

931.4483, found 931.4448. 

 

6.4.3 Spectra 
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Chapter 7  

7 Conclusions and Future Work 

 

The Gd3+-based T1 relaxation agents currently used in clinical settings are limited in the 

amount of anatomical information they provide during imaging. This low sensitivity has 

led to the need to design and synthesize MRI contrast agents that will be better at 

providing information regarding physiological changes such as temperature and pH. The 

studies described in this body of work primarily sought to improve signal generation and 

sensitivity, in a variety of metal complexes by PARACEST. This area of research 

represents a part of an ongoing theme within the Hudson laboratory, that is, the synthesis 

of DOTAM-based lanthanide complexes for potential clinical applications in MRI, of 

which I was a part of over the past four years. For thorough analysis of the complexes 

synthesized, the relaxometric properties of the complexes were additionally investigated. 

The PARACEST and relaxometric data reported here for the assortment of lanthanides 

and transition metals complexes studied demonstrate the progress, achievements as well 

as unforeseen failures on the path towards the aforementioned goals.  

The studies began by synthesizing and evaluating lanthanide complexes of DOTAM 

analogues bearing a para-nitrophenol group that could undergo reversible binding to the 

metal center in a pH dependent manner. With the remaining three arms of the complexes 

being the same, this overall design made the complexes asymmetric. As seen in Chapter 

2, the PARACEST results for the lone Tb3+ complex indicated that pH dependent 

reversible binding was indeed possible. The increased relaxivity of the Gd3+ complex at 

acidic pH implied a complex combination of factors. The results of this slight pH 

dependent modulation of PARACEST and relaxivity suggests that tuning of the labile 

arm is needed to produce possible contrast agents with the desired increase in 

physiological pH sensitivity. This tuning may be accomplished by varying the electron 

density of the labile arm.  
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The original goal of the work in Chapter 3 was the symmetric and asymmetric 

rigidification of the DOTAM scaffold, in order to increase the PARACEST signal 

generation through preferential formation of the desired SAP isomer. The desired ligands 

were to be tetraaza macrocycles consisting of one or two fused cyclohexane rings. 

However, the final complexes (consisting of bicyclic hexaaza macrocycles) were more 

rigidified than originally desired. Since the ligands deviated from the DOTA-based 

design upon which the definition of SAP and TSAP is based on, these definitions are 

therefore not applicable to these new macrocyclic ligands. These ligands were found to 

be selective for the smaller transition metals. The absence of PARACEST signals in these 

transition metal complexes demonstrated the negative impact that rigidity of that form 

(and possibly steric bulk by those cyclohexyl groups) has on the exchange rate. In order 

to observe a CEST signal, reduction in the level of rigidity of the structures is likely 

needed. 

The Dy3+ and Tm3+ DOTAM tetraanilides of Chapter 4 contained varying para-

substituents that would limit T2 exchange and increase PARACEST pH measurements 

that are amide-based. This limitation of T2 exchange was possible owing to the four 

aromatic rings of the acetamide pendant arms, which provided steric bulk to the complex 

and blocked access of water to the metal center. This absence of a metal bound water for 

the Tm3+ aniline agents increased the sensitivity of PARACEST imaging and produced 

appreciable amide PARACEST contrast without decreasing image signal. These results 

have good implications for in vivo PARACEST imaging which may benefit by 

combining the features of the highly shifted amide CEST signal (observed in the Tm3+ -p-

OMe complex) and long T2 times. 

Due to the low solubilities of a majority of the complexes in Chapter 4 that prohibited 

them from being fully studied, para-substituted monoanilide Dy3+ and Tm3+ DO3A 

complexes were synthesized and investigated (Chapter 5). The presence of EDGs and 

EWGs affected the pH at which the maximum PARACEST effect is observed. This 

feature is an advantage for developing biologically sensitive pH PARACEST probes. To 

further maximize this feature, bis(amide)-bis(carboxylate) ligands complexes may be 

investigated, along with varying the position of EDGs and EWGs on the aniline ring.  
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The final chapter dealt with the endeavours made to synthesize biocompatible DOTAM 

tetraanilides complexes containing a para-phosphonate monoanilide arm. These 

complexes were to be based on the Dy3+ and Tm3+ complexes of -p-H and-p-OMe 

tetraanilides that were evaluated in Chapter 4. Such efforts involved synthesizing 

complexes that had one of the four aniline rings contain a phosphonate group in the para-

position. The synthetic procedure to remove the diesters of the phosphonate group of the 

ligands has proved to be very challenging and as such, the synthesis is still ongoing. Once 

the desired complexes have been obtained, the magnetic properties of the complexes can 

then be evaluated and compared to the unmodified DOTAM tetraanilide complexes.  

Due to the unanticipated complications faced, vital lessons were learned and highlighted 

regarding the significance of structural design for ligands that are to be used as metal 

chelates for MRI contrast agents. By suitably adapting and building on each stratagem 

reported here or by combining them, complexes may be generated that can be customized 

for different applications. It is important to ensure that these new agents will possess high 

kinetic and thermodynamic stabilities, have low toxicities and exhibit their desired 

imaging properties in the clinically relevant magnetic field strengths. This research is 

important because it has answered questions, compared differences and similarities in 

data and of course, created expectations. Current and future researchers seeking to 

optimize various MRI contrast agents may use the work described here as a guide in the 

expansion of more sensitive and specific MRI contrast agents. 
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     Appendices 

Appendix 1: General Considerations 

A.1.1 General Experimental Considerations 

All solvents were used as purchased unless otherwise stated, except for dioxane (dried by 

passing through columns of activated Al2O3) and water (18.2 MΩ⋅cm-1 deionized). 

Solvents were removed under reduced pressure in a rotary evaporator. Aqueous solutions 

were lyophilized. Flash column chromatography (FCC) was carried out using silica gel 

(SiO2; mesh size 230–400 Å). Thin-layer chromatography (TLC) was carried out on an 

Al backed silica gel plate with compounds visualized by 254 nm UV light.  Size 

exclusion chromatography (SEC) was carried out on Bio-Gel P2, 45–90 μm mesh resin. 

Dialysis was performed against water using a cellulose membrane with molecular weight 

cut off at 500 Da.  

NMR spectra were recorded on a 400 MHz spectrometer; for 1H (400 MHz), chemical 

shift values (δ) are referenced relative to the residual proton in the deuterated solvents as 

follows: CDCl3 (7.26 ppm), D2O (4.75 ppm), CD3OD (3.31 ppm), DMSO-d6 (2.49 ppm); 
13C NMR (125 MHz): CDCl3 (77.0 ppm), CD3OD (49.0 ppm), DMSO-d6 (39.5 ppm);  31P 

NMR (161.97 MHz). Mass spectra (MS) were obtained using electrospray ionization 

(ESI). UV-visible absorption spectra were recorded over a range of 190 - 800 nm using a 

Cary 300 Bio UV-Visible Spectrophotometer. Samples were placed in a 10 mm quartz 

cuvette. Microwave reactions were performed in a Biotage® MW reactor using sealed 

glass vials. Melting point (m.p.) was recorded in capillary tubes using a Gallenkamp 

Variable Heater. 

The effective magnetic moment (μeff) was calculated by using the Evans’ method.1, 2 Five 

millimolar of metal complex and 5 % t-butanol by volume was placed in a capillary tube 

which was then placed in an NMR tube containing 5 % by volume t-butanol in D2O. The 

concentration of the metal complexes was determined by preparation of stock solutions of 

complex. The μeff was calculated at 298 K (T) from NMR data, using the following 

equations: 
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   Χg = (-3Δf)/(4πfm) +Χ0 + [Χ0 (d0-ds)]/m          1 

    μeff = 2.84 (ΧmT)1/2                                              2 

The mass susceptibility of solute (Χg) was calculated by obtaining the observed 

frequency shift of the reference (Δf ) in Hz, the spectrometer frequency (f) in Hz, the 

mass of the substance per cm3 of solution (m), and the mass susceptibility of solvent D2O 

(Χ0= -0.6466 x 10-6 cm3/g ). The last term is neglected due to the minimal contribution 

to mass susceptibility of solute, in which do is density of the solvent and ds is density of 

the solution in g/cm3. The molar susceptibility (Χm) is the product of Χg multiplied by the 

molecular weight of the metal complex studied.  

(1R, 2R)-cyclohexane-1,2-diamine tartrate,  bromoacetyl bromide, ethylenediamine, LiBr 

and 1M BH3 in THF were purchased from Sigma Aldrich. K2CO3 and ZnCl2 were 

purchased from Fisher Scientific. CoCl2.6H2O (98%) was purchased from Lancaster 

Chemicals. Lanthanide salts and transition metals salts were purchased from Strem 

Chemicals. Compounds 2.33, 3.44, 3.154, 5.1 - 5.55, Et3DO3A6, 6.27, 8, 6.69, 6.95 and 
6.105 were synthesized as previously. Compound ethyl (2-chloroacetyl)glycinate 3.7 was 

produced by a former laboratory member. 

A.1.2 General Crystallographic Considerations 

The sample was mounted on a Mitegen polyimide micromount with a small amount of 

Paratone N oil. All X-ray measurements were made on a Bruker Kappa Axis Apex2 

diffractometer at a temperature of 110 K. The unit cell dimensions were determined from 

a symmetry constrained fit of 9608 reflections with 5.16° < 2q < 76.3°. The data 

collection strategy was a number of w and j scans which collected data up to 84.758° 

(2q). The frame integration was performed using SAINT.10  The resulting raw data was 

scaled and absorption corrected using a multi-scan averaging of symmetry equivalent 

data using SADABS.10 

The structure was solved by direct methods using the SIR92 program.11 All non-

hydrogen atoms were obtained from the initial solution. The organic hydrogen atoms 
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were introduced at idealized positions and were allowed to refine isotropically.  The 

positions of the hydrogen atoms on the water molecule were obtained from a difference 

Fourier map. The O—H bond lengths and the H···H distance were restrained to 

chemically reasonable distances. The isotropic displacement parameters for the water 

bound hydrogen atoms were allowed to refine. The structural model was fit to the data 

using full matrix least-squares based on F2. The calculated structure factors included 

corrections for anomalous dispersion from the usual tabulation. The structure was refined 

using the SHELXL-2013 program from the SHELXTL program package.12 Graphic plots 

were produced using the NRCVAX program suite.13  Additional information and other 

relevant literature references can be found in the reference section of this website 

(http://xray.chem.uwo.ca). 
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