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ABSTRACT

Interest in the linear random regression models has
been increasing in the last decade or so. The regression
coefficient in such models is assumed to possess a probability
distribution, and in that sense it is a random variable. Then
the mean and variance of this probability distribution are
estimated from given set of observations. These models pro-
vide an elegant technigue for handling inter-unit heterogeneity
found especially in cross-section behaviour. The model is
appropriate in all situations where relevant variables (eco-
nomic and non-economic) cannot be explicitly included in the
regression - either becuase they cannot be measured or data
is not available etc.

Under simplifying assumptions the model reduces to a
classical model with the means as regression coefficients
whose disturbances are heterskedastic. The least squares
estimators for the means are inefficient. The minimum variance
Aitken's estimates for means are not directly obtainable because
the diagonal elements in the variance-covariance matrix of
disturbances are functions of wvariances, the unknown parameters.
Thus we require estimates of the variances not only for their
own sake but as an aid to obtain efficient estimators for means.

This thesis discusses several estimators some of which have

iii



been developed and/or generalized by us.

The study provides a basis for selecting a suitabu.ie
estimator among several methods now available. We compute by
Monte Carlo experimentation the quality of alternative esti-
mators in terms of bias and dispersion of each estimator for
parameters, and of forecasts made from the estimated equations.
In addition some indication of the relative cost is provided.
The biases of standard errors obtained from asymptotic formulas
are determined.

The samples sizes studied are 10, 20 and 50. Three
models are analyzed at two different points (chosen well apart)
in the parameter space. To mention a few among several con-
clusions that emerge from our study. we find that (i) all
estimators of means and variances are unbiased (ii) rankings
of alternative estimators do change both across sample sizes
and parameter values (iii) iterative estimators analyzed
generally converge within five iterations and (iv) iterative
procedures show rather small gain in efficiencf in comparison
to increased cost of computation.

The study also makes several theoretical contributions,
The problem common to all estimators, that sometimes negative
estimates of variance may appear, is discussed both analytic-
ally and geometrically. It is argued that in seeking more
efficient estimators of variances, we reduce the probability
of obtaining negative estimates of variances. This theoretical
conjecture does hold in our empirical investigations. Further,

Tiv



it is argued that in seeking efficient estimators of variances
we reduce but do not eliminate the possibility of obtaining
negative estimates of variance. The solution therefore lies
in search for an estimator which provides guaranteed positive
estimates and also has other desirable properties. It turns
out that the simple proportional model with random coefficient
always yields a guaranteed positive maximum likelihood esti-
mator of variance, without any non-linearity problems found
with this method when applied in general. This property is
used to develop a stepwise least square estimator analogous
to the maximum likelihood estimator which is consistent and
generally positive. Hopefully, this is an improvement over
other methods. Here we have developed only theory.

In addition a theoretical proof of unbiasedness of
mean response coefficients estimators is developed. The formu-
las for calculating standard error of forecasts and coefficient
of multiple correlation corresponding to alternative estimators
are proposed., A more general assumption for the mean of random
coefficients wherein the mean is functionally related to
excluded and/or included variable/s is proposed. The thesis

concludes with several suggestions for further research.
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CHAPTER I

PURPOSE AND PLAN OF THE STUDY

I.1 INTRODUCTION

In classical linear regression analysis it is assumed
that the regression co-efficients are constant over the entire
sample period in time series or that they do not change from
observation to observation in cross sections. It can be argued
that this assumption is rather restrictive. For example, sup-
pose in demand analysis we are regressing the quantity demanded
of a certain commodity on, say; the price of that commodity and
some other explanatory variables. If we are using time series
data on all relevant variables, then it is quite likely that
the price elasticity of demand (or the regression coefficient)
does not remain the same over the sample period. The change
may occur because of changes in tastes over time., Similarly
in a cross section study of the production functionof firms,
the labour and capital elasticities might vary from small
firms to large firms due to economies of scale or managerial
abilities etc. Therefore, it seems desirable to postulate
linear regression models which permit regression coefficients
to change from observation to observation.

Interest in the linear regression models with random

coefficients has been increasing in the last decade or so.



In such models we assume that the regression coefficient
possesses a probability distribution and in that sensé, it
is a random variable. It is a common practice to estimate
the mean and variance of this probability distribution from
the given set of observations. In fact, the classical
linear regression model with constant coefficients can be
interpreted as a particular case of the regression model
with random coefficients, where only the intercept term is
postulated to be a random variable.

If we are using a regression model with random coef-
ficients and an estimate of the variance of random coeffici-
ents turns out to be statistically insignificant, this
would then, support the hypothesis that the regression
coefficient being considered is, in fact, constant. Thus
under this framework of random coefficient regressions we
have a statistical test for the non-constancy of a regres-
sion coefficient.

The linear regression model with random coefficients
has been put to various uses in econometric analyses in the
past. Zellner (1966) used the model in the context of the
aggregation problem. He showed that if we aggregate micro
relations,we end up with a macro relation which has coeffi-
cients changing over time. The only way to handle such
macro relations is to consider them as random coefficient

regressions; then there will be no aggregation bias.1

lSee also Swamy (1968), pp. 9-13.



Nerlove (1965) proposed the use of this model in the speci-
fication and estimation of demand for output and supply of
input functions for an industry when variables like managerial
ability, technological progress etc. cannot be properly
accounted for in the specification.

In a different context Swamy (1970) specified and
analyzed the linear regression model with random coefficients
in an aggregate consumption study of twenty-four countries
using panel data.2 Some early attempts to specify models
with a random intercept using time series of cross-section
data were made by Kuh (1959), Mundlak (1963) and Hock (1962).
The analysis of covariance was applied to such linear regres-
sion models with a random intercept.

The linear regression model with random coefficients
may be used for regional, urban or gquantitative economic
analyses where data on some of the explanatory variables are
practically non-existent and some economic and non-economic
forces are not clearly specified.

In a recent study Singh, Nagar and Raj (1972) used
the random coefficients model toc analyze parameter shifts.,
The authors have shown that the parameter shifts can be
built into the specification and analyzed statistically.

In a separate study on the Econometric Model for the Indian
economy it has been proposed by Professor A. L. Nagar to

put the random coefficients model to extensive use of

2 . . .
Time series of cross—-section data.



various sectors of the economy. 1In the blueprints of the
Tndian Econometric Model, it is proposed to carry out a
large number of micro studies (in cross-section and time
series alike) within the frame of the linear regression
model with random coefficients to collect basic information
about the size and direction of economic forces. This basic
information then, shall be used in identifying important
parameters in the macro equation and in making meaningful
disaggregation for the macro equations of the econometric
model.

With the recognition of the importance of the random
coefficients model, it would now be helpful if users have
some basis for selecting a most suitable method of estima-
tion from among the several methods now available. To
assist in this selection is the purpose and the objective
of the present project. To achieve this goal we shall
study the quality of the various methods in terms of bias
and dispersion of both estimates of the parameters, and of
forecasts made from the estimated equations. In addition
we shall give some indication of the relative costs of the
methods. Given qualities and relative costs, the user or
consumer has some basis for selecting the best method for

handling his particular problem.



1.2 SCOPE OF THE STUDY

1.2.1 specification and Estimation in the Linear
Regression Model with Random Coerricients

If we let the regression coefficients change from
observation to observation, we will have to estimate too
many parameters. It is ideal but hopeless to estimate and
run tests on all parameters in such situations. Therefore,
one has to make some simplifying assumptions about these
coefficients. In the present study, we assume that they
are random variables and we will estimate their means and
variances only. In Chapter II, we discuss three different
specifications of such random coefficient regression models.
In the first, we simply assume that the mean of the probabil-
ity distribution of a particular coefficient remains constant
over the sample period or over various observation units.

We call this the Constant Mean Response (CMR) model. Our
second specification permits the mean response coefficient
to change in a systematic fashion over sample units. There-
fore, we call it the variable Mean Response (VMR) model.
Last of all, we let the mean response be functionally rela-
ted to excluded and/or included explanatory variables. For
example, the marginal propensity to consume may be inter-
preted és a function of an included variable like income,
or of excluded variables like rate of interest, ratio of
nonhuman to human wealth etc. as proposed by Friedman (1957).
The estimation of these models is discussed in

Chapter III. It has been noted that for the purposes of



estimation all three specifications can be reduced to the

same format as the CMR Model. The only difference is that
in the latter two specifications the number of parameters

to be estimated is large.

The methods of estimation employed are the follow-
ing:

i) Ordinary Least Squares Estimation (OLS)

ii) Hildreth and Houck Estimation (HH)
iii) Step-Wise Aitken's Least Squares Estimation (sALS)
iv) Theil's Weighted Least Squares Estimation (TWLS)

v) Maximum Likelihood Estimation (MLE) .

In the estimation of mean and/or standard errors of
mean response coefficients, we need to estimate the vari-
ance of random coefficients first.3 A major drawback common
to all the methods is that the estimate of variance some-
times turns out to be negative. Some ad-hoc methods of
overcoming this difficulty have been discussed in Chapter
III. 1In Chapter VI we propose a stepwise estimation method
analogous to the maximum likelihood estimation of the linear
regression model with random coefficients as a means of
getting positive consistent estimators for the variances.

As a digression we note that the Maximum Likelihood Method

applied to the bivariate regression model with random coeffji-

3The Ordinary Least Squares (OLS) method of estimation gives
estimates of mean response coefficients only. Therefore,

we need extraneous estimates of variances to obtain con-



cients always provides positive estimates of the variances.
We also note that the Step-Wise Least Squares concept devel-
oped by Golderger (1961) can be employed in the present
context. Therefore we consider step-wise regressions and
propose a consistent estimation of variances obtained
analogous to the Maximum Likelihood Estimators. We cannot
call this estimator a Maximum Likelihood estimator.
However, the estimator possesses two desirable properties:

(a) the estimate of variance will be positive, and
(b) the estimator is consistent.

This is hopefully an improvement over the methods mentioned

above.

I.2.2 Monte Carlo Study of Several Methods of
Estimators

The exact sample properties of the estimators listed
above are not known and need a great deal of theoretical
analysis. In the present study we seek to examine the

sample .
small/properties of several estimators through sampling
experiments.4 In our study we have done bias analysis and

efficiency ranking of several estimators for the mean

response and variances of random coefficients. The descrip-

4phe Maximum Likelihood Estimator requires solution of non-
linear equations through an iterative procedure. This
estimator has not been included in sampling experiments
due to limited computational funds and research time.

For the same reasons the new estimator developed in
Chapter VI is not studied by Monte Carlo experiments in
this project.



tive statistics used are a combination of statistics based
on first two moments (i.e. bias, standard deviation and
root mean square error) of the sampling distribution and
the corresponding non-parametric statistics (i.e. median
bias and quartile deviation). These descriptive statistics
have generally been expressed in percentage form to make
them scale free. Various descriptive statistics have been
defined in Chapter IV.

In addition to making efficiency comparison of
several estimators, we have compared the estimators on the
basis of their forecasting ability and the coefficient of
multiple correlation. The biases of estimators of the
asymptotic standard errors have also been computed to
determine the least biased estimator. The sampling experi-
ments extend to three models. For each of the three models
the analysis has been carried out for more than one point
in the parameter space in order to broaden and strengthen
the conclusions. The results of the sampling experiments
are discussed in Chapter V.

The generation of random numbers is an important
aspect of a Monte Carlo study. The standard pseudo-random
numbers commonly used in sampling studies suffer from two
handicaps - (i) the hypothesis that they come from fixed
(uniform) population does not hold in many instances and
(ii) they are serially correlated. The pseudo-random

numbers used for this study do not suffer from these



deficiencies. These pseudo-standard normal deviates have
been generated by a computer routine developed by Carter
(1972). This routine has built in test for the hypothesis
that they are from a uniform population with no serial cor-
relation. The technique of random number generation is

briefly discussed in Chapter IVv.

1.2.3 Efficiency and Convergence of Alternative
Iterative Estimators

In the Hildreth and Houck, the Step-Wise Aitken's
Least Squares and the Theil's Weighted Least Squares methods
of estimation, we must estimate the variance first and then
the mean response of random coefficients. These methods of
estimation obtain the estimates for the variances of random
coefficients from the Ordinary Least Squares residuals.
Intuitively it seems that we can obtain more efficient esti-
mators for the variances of random coefficients (hence the
mean estimator for mean response coefficients) if we use the
generalized least squares residuals. Thus, the Hildreth and
Houck, the Step-Wise Aitken's Least Squares and Theil's
Weighted Least Squares estimators of variances and mean re-
sponse coefficients may be regarded respectively, as the
initial step for the following iterative estimators:

(vi) Iterative Hildreth and Houck Estimator (IHH)

(vii) Iterative Step-Wise Aitken's Least Sguares

Estimator (ISALS)

(viii) Iterative Theil's Weighted Least Squares
Estimator. (ITWLS).
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These iterative estimators are discussed in Chapter
III. The properties of these iterative estimators are
examined through Monte Carlo experiments in Chapter V. For
instance, we shall examine if there is a gain in efficiency
in terms of smaller standard error of estimates; if the pro-
portion of negative estimate of the variance of the random
coefficients is reduced, and finally, whether the iterative
schemes really converge.

The conclusions of our investigation of the sampling
properties of alternative estimators of the linear regres-
sion models with random coefficients are given in Chapter

VII.



CHAPTER 11

SPECIFICATION OF THE LINEAR

REGRESSION MODEL WITH RANDOM COEFFICIENTS

II.1l MODEL SPECIFICATION
Consider a general linear regression model of the

following type:

K
y(t) = ) Bs(t) x.(t) +u(t), € =1,2, Jeueey Ti
=1 .
J=l' o---.no'K (II.l)

where y(t) is the t-th observation on the dependent variable
and xj(t) is the t-th observation on the j-th explanatory
variable. There are K explanatory variables in the model
and T observations on all variables. Bj(t) is the regres-
sion coefficient of the j-th explanatory variable correspon-
ding to the t-th observation. It represents the partial
response rate at which the dependent variable changes for a
unit change in the j-th explanatory variable for the t-th
observation, when influence of all other explanatory variables
is held constant. In terms of partial derivatives, it can
be represented as

..a (t) t=1' .D..--,T
By (E) =3 K TE) 7 3 = 1y eenens K. (II1.2)

It is clear that there are KT partial response rates which

11
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are unknown in the model (II.l) and need investigation. We
will come to this point later. The u(t) 's are unobservable
disturbances in the model which are assumed to be indepen-—
dently and identically distributed with zero mean and constant
finite variance, og.

In the specification of the model (II.l), we have
formulated the regression coefficients as function of t.
This feature of the general linear model needs explanation.
It implies that the structural coefficients relating to the
x's differ for each observation.l : For example, consider a
simple bivariate regression relation between savings and
income of households. Suppose we have sample on savings
from a cross-section of households at various income levels.
Select any two households who have the same level of income
but different wealth holdings. These two households will
very likely have different savings response to a unit change
in income. The reason for this is simple; wealth holdings
also affect the savings behaviour of hoPseholds. This shows
that the structural coefficients will change from observa-=
tion to observation if explanatoxry variables (like wealth)
have been omitted from the model. Even if we include wealth
in our model, there are scores of other factors such as age

of households, number of persons in households, marital

1We are assuming that the form of the function between y and
x's does not change with observation. Further, we are
concerned with linear structures only.
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status, social status, price expectations, income expecta-
tions and many more, which affect the savings behaviour of
households and all cannot be simultaneously included in the
savings income relationship; therefore, the regression model
will have different partial savings response coefficients
from observation to observation.

Consider another example. We have a cross—-section
sample of firms to explain variation in output by level of
inputs, labour and capital. The change of output per unit
change in capital/labour is likely to differ from firm to
firm if the firms differ in size, managerial ability, tech-
nology etc. Thus in a simple regression relation of output
and two factor inputs, capital and labour, the model such
as (II.l) appears appropriate.

The objective in specifying the general linear model,
which allows the regression coefficients to change from
observation to observation, is to relax the restrictive assump-
tion of the classical general 1i£ear model wherein the regres-
sion coefficients are assumed constant over the entire sample
period. In the latter model, it is assumed that excluded
variables effect only the intercept term, not other response
coefficients; while, in the former model we generalize this
principle by assuming that excluded variables effect all
response coefficients. This point will become clear in sub-
sequent discussion.

We have rationalized the model (II.1) for cross-
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section studies by considering two examples. However, the
model is equally plausible for time series also. For example,
in a simple bivariate regression of inventory investment on
the sales of a firm, the response of inventory investment to
a change in sales will differ from year to year if business
conditions, expectations, governmental policy etc., which
also affect the inventory investment, change over time.
Similarly, if we were to explain variation in output of a
firm by level of capital and labour inputs, changes in output
per unit change in each input will differ from year to year
if technical progress takes place, better working conditions
are instituted in the firm etc., as these factors also affect
the output of a firm.

The specification of the model (II.l) is equally
justified for macro economic behaviour. In a study of aggre-
gate consumption, the changes in income of equal amount will
produce different effects on aggregate consumption if con-
sumer attitudes, income expectations, price expectation etc.,
change from year to year.

In the above discussion we provided certain illus-
trations (in micro and macro economics) where the use of the
model (II.1l), with changing coefficients, might be appropri-
ate. We emphasized that the response coefficients change
from sample unit to sample unit due to the fact that not all
variables (economic and non-economic) can be explicitly intro-

duced in the model. The variables are usually omitted from
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the model for various reasons--because they cannot be measured
quantitatively or data may not be available or because there
are not enough degrees of freedom or simply they cannot be
identified. 1In case of a homogeneous sample, if the model

is well specified in terms of the explanatory variables, one
may be able to use the regression model with constant coeffi-
cients. In other words, if the omitted variables could be
held constant (as is possible only in laboratory experimenta-
tion in physical sciences) then regression model with constant
coefficients could still be applicable.

The model (II.l), as noted earlier, has KT unknown
regression coefficients to be estimated. We can however, only
estimate and run tests on less than T parameters in the model
because we have only T observations in the sample. It is,
therefore, necessary that we impose certain simplifying re-
strictions on the structural coefficients of the model.

These restrictions may take one of the following forms.

A. Grouping of Observations

The sample can be grouped into small homogeneous
strata. For example, in a study of savings behaviour of
households in the cross-section, the single and married
households can be put in two separate groups and savings
behaviour of each analysed separately. 1In this way the
effect of marital status on savings behaviour can be control-
led within each group. For each of these two groups further

grouping of households can be done with respect to social
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status, making the effect of socio-status on savings behaviour
constant within each group and so on. The stratification re-
duces the number of parameters to be estimated since the
number of explanatory variables required in the regression is
reduced.2 Further, the structural coefficients can be assumed
to be independent of the observations in the sample and we

can use the familiar regression model with constant coeffici-
ents because the effect of omitted variables is then consider-
ably reduced. However, this approach is conditional to the
availability of data in suitable form and the number of

observations required will be rather large.

B. Use of Prior Information

If we have prior information about the structural
coefficients it can be utilized in their estimation along
with the sample data. Either one may then employ mixed esti-
mation as suggested by Theil and Goldberger (1961) ox alter-
natively follow the Bayesian approach. This subject is

beyond the scope of the present study.

cC. Random Coefficients Regression Approach

Another approach to the problem is to make some

simplifying assumptions about the structural coefficients.

2We are assuming that we have sufficient data and we don't
run into the degrees of freedom problem. There may be a
methodology point here - why not introduce dummies? It
may be pointed out that use of dummies is a discrete

case of .the. regression model with random coefficients
discussed as Assumption C.
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We may, for example, assume that they are random variables
with some specified properties. In the following analysis

we shall elaborate this approcach in detail.

I1.2 Constant Mean Response Approach

This approach requires that, for any specified j,
the regression coefficient Bj(t), t=12 .eeee, T, is a
random variable  distributed independently and identically
with constant mean and finite variance.

Algebraically we can write

E [Bj (t)] = B] (II.3)

where Bj is the mean response which is independent of t.

- 12
- = = 2
E [sj (t) st var g, (t) = o5 (II.4)
where o§ is a finite constant,

if 34 j° or t R
Jr 37 = 1y eeeaear K
£, t7 =1, eeeees, T,
i.e. Bj(t)'s are uncorrelated among themselves and across the
sample units. We may then write

l, ¢veeeae, T (IT.6)

B.(t) = B, + e;(t) 5 t
:] ] J j l' c..uo-'K

i



where
E Ej(t) =0 for all j and t (II.7)
Var e. (t) = o? (IT.8)
J J
Cov [ej(t) sj,(t‘)] =0 if j 4 j° or (I1.9)
t f t7

This assumption implies that Bj(t), t=1, 2, .40
ey T, fluctuates around the constant mean Ej with constant
variance o?. The.situation can be picturgd as in Fig. II.1,
for any specified 3j. The disturbances centered arbund Ej

are the assumed distribution for ej(t).

A Prob.(ej (1))

Fig. II.1l

18
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Since the mean response Ej' does not depend on t

we call this approach the constant mean response approach

(CMR} .

Substituting (II.6) in (II.l), we have

y(t) = § (By + ey(£)) xy(t) + u(t) ; (II.10)
£t =1, 2, eeesees T
or
y(t) = T B. x.(t) + u*(t) (IT.11)
3 J 3
where
u*(t) = Z €5 (t) X (£) + u(t) (I1.12)
J

If we make an additional assumption that x's are
non stochastic, then if follows from (II.7) - (II.9) that
Eu* (t) = 0 because E‘ej(t) =Bu(t) = 0 for all j and t (II.1l3)
Finally

Var u*(t)

u
]
"
[ ¥
G
Q
+
Q

o)

(I1.14)

where

var u(t)

n
Q

Thus in the model (II.ll), we have to estimate
2K + 1 unknown parameters (Ej(t)'s, og(t)'s, and cg). So

long as this number of parameters is less than T (number of
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observations) they can be estimated.

Here we digress a little to discuss the role of
the disturbance term u(t) in the model (II.l). It may be
pointed out that the disturbance term in any regression
model is included to account for omitted variables in the
regression. One can also postulate that there is an inher-
ent element of randomness in individual behaviour even
after all systematic causes have been included. Since the
concept of random coefficients in the model (II.l) has been
introduced for similar reasons, one may do away with the
disturbance term from the model, at least for the sake of
simplicity. Retaining the disturbance term would add one
more parameter to be estimated in the model (IX.1) (viz.,
cg). This additional term cannot be estimated separately.

if the model (II.l) has an intercept, for in this case

K
variance of u*(t) = | ] xg(t) o2l + o2 = (02 + 62) +
321 3 j 0 0 1
K
iL, x2(®) of (assuming x;(6) = 1 for all t) and it is Giffi-

of
cult to unscramble the estimates/o% and ci (cf. Klein (1953)).

Following the convention in the literature, we drop u(t)

from the model (II.l) and (II.ll).

To sum up

y(t) = § Bj(t) xj(t) ;s £=1, 2, «e., T, (II.15)

where Bj(t)'s are random variables. This may be written as



y(£) = ] By x5(€) +n(t) 7 £=1, ....o.T (II.16)

;|
where

n(t) = ) e.(t) x.(t) P =1, taeessT (I1.17)
3 J J

It follows that

_ .2 2 2
En(t) = 0 and Var n(t) = ¢°(t) =] x5 () of (IT.18)
J

for t =1, cveeee, T.

A variety of mixed models (where some regressions
coefficient are random and others constant) can be construc-
ted as special cases of (II.16) to suit particular need of
the researcher. In particular, the familiar general linear
regression model with constant coefficients is obtained
if we postulate that xl(t) =1, for all t and the regres-
sion coefficient attached to it in the model (II.15) is
random, while other regression coefficients are constant
(i.e. all other random coefficients have zero variances).

Thus we have

k
y(t) = 8, (t) +j£2 By Xy (t) (II.19)
- ko _
= g, + £2 By xy(r) + e (E) .

where El and Ej are all constants.

21
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II.3 Variable Mean Responsegépproach

The argument for constant mean response assumption
could be extended one step further; suppose Ej's for any
specified j is not constant but shifts (again shifts must
be systematic or estimation will be hopeless). For example,
it is likely that in time series analysis the marginal
propensity to consume (or any other such parameter) shows
a systematic shift. This systematic shift might take place
due to various reasons, for example, due to change in the
attitude of the people, changes in institutions, techno-
logical change etc. Similarly in cross-section analysis
that the mean response may have a systematic shift due to
occupational, sociological, geographical factors etc.

Suppose that in such situations we write

. = B. . f, (II.20)
E 33 (t) 33 + o fj(t)

where fj(t) is a continuous function of t (the sample unit)
which possesses partial derivatives at least up to second
order.3

In the simplest form fj(t) = t,
then,

3This idea has been explored in a separate paper by Singh,
Nagar and Raj (1972).
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i.e, Bj(t)'s fluctuate around a linear trend,

that
fj(t) = log t (II.22)
then
E By(t) = Ej + &j log t (II.23)
i.e. Bj(t) fluctuates around a semi~log linear trend.

Or sSuppose,
fj(t) = e (Ir.24)
in which case,

Ej + ajet (II.25)

E Bj(t)

implying that Bj(t) fluctuates around an exponential trend.
In fact, in the upswing and downswing of business
cycles the Parameter shifts may be such that they system-
atically increase during the upswing and fall during the
downswing or vice~versa. In such situations fj(t) may take

the following form,
_ 2

then,
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]

E §(t) By + [‘51 + 8yt + s3t2] (II.27)

2

i.e. Bj(t) fluctuates around a second degree polynomial
trend.4

The major difficulty that might arise in this
approach is the specification of the form of fj(t), j=l,; «eo
..., K. However, given computing facilities it is possible
to try out different forms of fj(t), j=1, 2, ...... K and
choose the one which yeilds maximum explained variation
(i.e. multiple correlation). Further it is difficult to
unscramble the individual coefficients Ej and a.  from

]
61, 62 and 63 for formulation (II.27).

We may, in a general case, write

— n B - t=l' e a0 ey T
Bj(t) = B. + 4. fj(t) + sj(t)

J J ' j=l'2’ e e s ey K.
(IT.28)
and assume that
E ej(t) =0 for all t and j (IL.29)
var ej(t) = 0? ;, a finite constant (II.30)

4Perhaps here, B.(t) = 61 cos {62t + §3) would be more
appropriate. However, if we are considering only one
cycle, quardratic form will serve the purpoese.



Cov [ej(t) e (t )] =0 ,ifjfiortgt (II.31)

The hypothesis (II.28) can be pictured as in Fig.
II.2 for any specified j and fj(t) = t. The disturbances
around the line Ej + Ejt are the assumed distribution of

ej(t).

‘l

Prob.(ej (1)) | (5\'

Fig. IL.2

Since mean response varies with observation, we

may call this approach the variable mean response approach

(VidR) . It may be pointed out that the CMR approach is a

particular case of VMR apprcach when Ej = 0 for all j.

25



Substituting (II.28) in (II.15) we have

y(t) = § (B; + oy fj(t) + ej(t))xj(t) (II.32)
SV B, x.(t) + T 3, xs(t) + it
= § 5 %y § oy x4 (t) n(t)
where
* .
xj(t) = fj(t) xj(t) i §=1,2, eeseeer K (II.33)
n(e) = ¥ x.(t) e.(e), t=1,2, ceeene, T (II.34)
jJ J

Assuming that x's are non stochastic, it follows

from (II.29) - (II.31) that

En(t) =0, for all t (I1.35)
— 2 2 =
var n{t) = § xj(t) oF : =1, seevaes T (I1.36)

Tn the model (II.32), if fj(t) is prespecified,

there are 3K unknown parameters Ej's, &j's and o?'s.
So long as the number of parameters is less than T they can

be estimated.

I1.4 Mean Response as a Function of Some Explanatory
and/or Excluded Exogenous Variables.

In the preceding sections we have discussed the

cases where mean response either fluctuates around a constant

26



or about some specified trend. However, one cannot rule out
the possibility that the mean response is a function of some
included explanatory variables or even excluded exogenous
variables. For example, Friedman (1957) assumed that the
marginal propensity to consume is a function of rate of
interest, ratio of nonhuman to human wealth etc. similarly
in a separate study Agrawala and Drinkwater (1972) assumed
that the marginal propensity to consume is a function of
socio-economic variables, such as female participation, which
make the consumption function to shift over time. By way of
illustration we may consider a cross-section sample of house-
holds to explain the savings behaviour by their levels of
jncome. Assume further +hat the sample consists of house-
holds with varying amounts of wealth holdings. In this situ-
ation, it is likely that marginal propensity to save be
functionally related to wealth holdings of households, even
when wealth is explicity introduced in the regression.

Thus it may be reasonable to assunme that
E B.(t) = B, + d. g, (B(t i = 1, seeeses K IT.37
BJ() By ngj(())::‘ ' ' ( )

where gj(G) is a continuous function of exogenous (excluded
or included) variable %(t), which possess partial deriva-

tive at least up to second order.5

5Here we have included one explanatory variable in the

27



28

The simplest form;gj(ﬁ) might take is

1]
).

gj(ﬁ) (II.38)

then

1]
™l
+
21

h

E Bj(t) (Ir.39)

i.e. Bj(t) fluctuates around the linear function in &.

The other simple possibilities are:

"gj (8) log & (II.40)

and

]
o

gj(s) (I1.41)

More complicated form of gj(ﬁ) are possible., For example,

gy (8) = vy + Y8 + v48° (11.42)

then

- = = 2
E Bj(t) = Bj + oy EYl t oY B + ygB ] (11.43)

= .= = - 2
= (Bj"‘aj Yl) + (GJ YZ)E + (uj 'Y3)5

i.e. Bj(t) fluctuates around a second degree polynominal

function in #%.

function g5 for simplicity reasons. The assumption can be
generalized to include more explanatory variables.



The optimal form of gj(ﬁ) can be selected on the
basis of the criterion of maximum explanation of variation
in terms of multiple correlation. However, for complicated
formulations of the functional form of gj(E) such as (II.42),
it seems difficult to separate individual coefficigntsﬁj and

- from
aj/'yl, Y, and yj.

Now, let us write

Bj(t) = ej + ¢y gj(a) + ej(t) ; t=l, cieees, T (II.44)

and assune

E,gj(t) = 0 for all j and t, (IT.45)
var ej(t) = a§ , a finite constant., and (II.46)
Cov[sj(t) ej‘(t’?]= 0,if 4§ or t 4t~ (II.47)

Substituting (II.44) in (II.l1l5), we have

y ()

§ (33 + ooy gj(ﬁ) + ej(t)) xj(t) (11.48)
or
y(e) = § By x,(€) + ] oy x3*(E) + n(t) (I1.49)
j 3

where

29



*k t=1,2, ceense, T
. t - : E t 0 t H » Hf ' ’ .
X (t) gj( (t) xj( ) 4=1,2, seeees, K (II.50)
and
t) = x.(t I § - II.51
n(t) § 58 gy(e) ( )
Under the additional assumption that x**'s are

non stochastic, it follows from (II.45) - (II.47) that

and 2 2
E n{t) = 0 for all t / Var n(t) = ): X3 (t) a3 (IT.52)
J

t=l'2, ooooco'T .

The parameters of the model to be estimated are:
Ej‘s, aj's and dg's.
It is easy to see that this approach embraces the

CMR and the VMR models as particular cases.
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CHAPTER III
ESTIMATION OF THE LINEAR REGRESSION

MODELS WITH RANDOM COEFFICIENTS

ITI.1 Matrix Formulation of the General Linear Regression
Models with Random Coefficients.

For estimation purposes it is useful to write the
general linear models with random coefficients, discussed
in Sections II.2 - II.4, in matrix notation, as follows.

The CMR model (II.1l6) can be written as

y=Xg +n (III.1)

where

y (1) xl(l) e . xK(l)
Yol = . i Kpex . - ;

y (T) xl(T) « e xK(T)

[ B n) |

Ele = : and nTxl = :

By n(T)
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such that the elements of X are fixed constants and

En(1)
En=] . |= Opyp - (III.2)
En (T)
En?(1) . . . En(l)n(T) 02 (1)
o . ) . ©
Enn' = O m of - . = . (III.3)
) 2 0 -y
En(T)n(l) . . . En“(T) ¢~ (T) |

where

o2ty = T x50y of , e =1, 2. .., 0, (111.4)

J

as defined in (II.18).
Similarly, the VMR model (II.32) in matrix notation may be

written as

y = X* B* + n_ (III.5)

where y and n are column vectors as defined in (III.1) and

'xl(l) e xe(1) xH(D). . x;(l)’

. . . (III.6)

X* =
TX2K
_?l(T) . . . xK(T) xi(T). . . xE(T)d

lThe summation over j always runs from 1 through K and over
t from 1 through T.



such that xg(t), for all j and t, has been defined in (IT.33).
Thus the elements of x* are nonstochastic and fixed in re-

peated samples

wl e ¢ o W
[

=

(III.7)

[

RI = » » 1

r_
b

where Ej's and ﬁj‘s are defined in (II.28) above.

Also the disturbance vector n is the same as in model (III.1)
with En = 0 and Enn' = ¢ defined in (IxI.2) and (III.3)

respectively.

Finally, the model (II.49) may be written in matrix nota-

tion as

y = X**B* + 1 (ITI.8)

where the vectors y and n are as defined in (III.1l) and the

vector B* in (IIL.7) above.

The matrix X** of order Tx2K is defined as
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"xl(l) coee Xp (1) xEE(L) .. x§*(l)-

TxX2K * . . (III.9)
_xl(T) . e xK(T) x{*(T) . s s xi*(T)q

where x;*(t), for all j and t has been defined in (II.50).
The elements of the matrix x** are non-stochastic fixed in
repeated samples. Once again, the assumptions of the distur-
bance vector n are the same as in the CMR model (III.l) and
are given in (III.2) - (III,4) above.

In the models (III.7), (ITLI.5) and (III.8) the dis-
turbances are independently and identically distributed with
zero mean and heteroskedastic variances ¢2(t)'s. The elements
of the matrices of explanatory variables, X, X* and X*¥
(defined in (III.l), (IIT.6) and (III.9), respectively) are
non—stochastic/%?ied in repeated samples. Thus the models
differ only in the number of parameters to be estimated. We
may therefore restrict our discussion, which follows in sub-
sequent sections, to the CMR model (III.l) only, without any

loss of generality.



irr,.2 Ordinary Least Squares Estimator2

For estimation, we assume further that

pP(X) =R LT (ITI.10

i.e, the columns of X are assumed to be linearly independent.
The ordinary least squares (OLS) estimate of B in

the CMR model (III.l) is given as

b= (x'x)"T x'y (IXI.11)
= Ay
where
a= x'x)tx .

Under the assumptions stated above, it is easy to
show the OLS estimator b is linear, unbiased and consistent
estimator of B.

The linearity of b is obvious from (III.11l), for

any jth element of b is given by

b. =1 A.. y. (III.12)
]

2It is well known thatthis estimator is not appropriate in

the present context because it yields an inefficient esti-
mator for mean response. It is included primarily in the
study for its historical importance. Besides, since the
covariance matrix ¢ is not known a priori, it is not entirely
clear if other estimators which use the estimated covariance
matrix will be more efficient than the OLS estimator (cf.

Rao (1970). Therefore, the OLS estimator has some compara-
tive value also. We will come to this point later while
discussing the results of the sampling experiments in Chapter
V.
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where Aij is an element in the ith row and jth column of
matrix A, defined in (III.1ll) above.
In order to prove unbiasedness, we must show that

the expected value of sampling error of b is zero
E(b-8) =0 (III.13)
Substituting the value of y from (III.l) in (IIX.ll), we have

1

b= (x'x)"" x'"[xB + nl (III.14)

orx

B-F= %" xn

Taking expectation on both sides, we have

E(b) = B (III.15)

(" En= 0, from (III.2) and elements of X are nonstochastic
and fixed in repeated samples). Hence b is an unbiased esti-
mator.

To prove consistency we must show that Plim (b - B)
= 0. Taking the probability limit of the sampling error

given in (III.1l4), we have

Plim (b - ) = Plim (x'x) *

T > T+ o

x'n (III.16)

Plim (% x'x)_% Plim (% x'n)
T + o T > o

Now assuming that
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Plim (3 x'x)"t (III.17)
is bounded, and noting that
- _ . 1, _
Plim T x'n= 1lim E (f x'n) =0 (I1I.18)

T > o LI

(because En = 0 and elements of x's are non-stochastic and

fixed in repeated samples), we have

plim 5 =B , (III.19)

i.e. b is a consistent estimator of 8.

However, the estimator b will not be efficient
because Enn' # 021, i.e. the covariance matrix of the dis-
turbances is not a scalar times an identity matrix as
required under the classical Gauss-Markov assumptions. In
particular, the disturbances are heteroskedastic.

Given the unbiasedness of b, the covariance

matrix of the estimator b can be obtained easily as

var (b) = Elb-8) (b-8)'] (ITI.20)

1

(x'x) "~ x'(Enn') x(x'x)_l

(x'x)_l x' @ x(x'x)“l

because

Enn' = ¢ (I1I.21)



The elements ¢ are not completely determined because they
involve unknown parameters og's.

The traditional formula Gg (x'x)—l

for obtaining
the variance of b would yield biased results and hence is
not suitable.
The co-variance matrix ¢ of the disturbance vector
n in the CMR model (III.l) is diagonal,a typical element of
which is, ¢2(t) = Z x?(t) c?. Since ¢2(t) is a function of
observations on the explanatory variables, it will change
over time. In other words the disturbances are hetro-
skedastic.
We need to estimate the unknowns cg‘s for several
reasons.
(i) If we have these estimates, we may obtain variance
of b in (III.20).
(ii) We may obtain the Aitken  estimate of B.
(1ii) The hypothesis regarding the randomness of regres-

sion coefficients can be tested only if we have these

estimates and knowledge of their sampling distribution.

III.3 Hildreth and Houck Estimator

Hildreth and Houck (1968) have proposed an estima-
tion procedure to estimate Ej's and cg's in the model
(III.1), which may be described briefly in steps as

1) Fit the model {III.l)} by OLS yielding the

fitted residuals:

38



39

2) regress the squares of the OLS residuals as obtained
in step 1 above on a given function of x's yielding
the estimators of variances;

3) obtain an estimator of the covariance matrix ¢
using the estimates of the variances as obtained in
step 2 above; and finally,

4) obtain an Aitken estimator of the mean response
coefficients using the estimated covariance
matrix ¢ as obtained in step 3 above.

Having described various steps involved for the
Hildreth and Houck (HH) method of estimation, we now discuss
their theoretical foundations. Consider the OLS fitted

residuals in (III.1)

n=y-~xb (ITI.22)

where y, X and n are defined in (III.1l) and b is defined

in (III.1l). We may write (III.22) as

n = My (I11.23)

where

1

M=1I-2X(X'X — X (IIT.24)

is a symmetric idempotent matrix of order TXT.
Substituting the value of y from (III.l) in (III.23) we

obtain



3>
]

M(XB + 1) (IIT.25)
= Mn (°." MX = 0)

Let the elements of the matrix M be given as

Mg = . .

. : (III.26)
Tp1c + ¢ Tpp

and since these elements are functions of X's only they are

known and fixed in repeated samples.

Using (III.26) we can write the elements of the

vector ﬁ, defined in (III.25), as

W] [Im, n
. (III.27)

() } M, 0 (E)
t

Taking expectations on both sides of (III.27) we

have

E ) my, nit)|

Mo n(t)

)
t
En = : =0 (I11.28)
)
£

40



~

Define a column vector n whose elements are the squares of

elements of the column vector ﬁ defined in (II1I.27), i.e.

~2

[P ] m, n(t)]2

no= . = |\F. . (I11,29)
* - 2
22 (1) [E My n(t)]

A

The expected value of the vector n can be obtained from

(III.29), using assumptions (III.2) . (III.4), as

: .
E[z m, n(tﬂz I md, 0% ()
~ t . t .

E[E My, n(t)]2 ] mp 0% (8)
L .

.~

. =

(II1.30)

where ¢2(t) for t = 1, 2, ..., T, is defined in (III.4).

In matrix notation, (III.30) can be written as

Efi= MX 0 (III.31)
where
[ 2 2] 2 2,..]
mll - . ) mlT xl(l) - - . xK(l)
bdmx‘i‘ = . L] ; XTXK = L] -
n%l...lﬁT xim). ..xim)

(ITI1.32)
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and -ozﬂ )
1
chl =, » (£I1.33)
2
%k
Let us write
N =MXo + & (III.34)

where £ is a disturbance vector such that EE = 0.

The elements of the matrix MX are functions of X's
and hence independent of the elements of the vector €. We
may therefore, use the regression relation (III.34) to esti-

mate o as:

PTI S R TR (I11.35)
where
Bk = MX (III.36)
and rs%1 est 051
s=1.1=1. . (III.37)
L;i- Le;t cﬁ

Tt is easy to show that the estimator s is unbiased

~

and consistent. Substituting the value of n from (III.34)

in (I1I.35), the sampling error of s can be obtained, i.e.
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S -0 = (é'é)-l 2t . (III.38)

It follows that
E(s -0) =0, (°.° EE =0), (I11.39)

i.e. s is an unbiased estimator of o.

Further s is a consistent estimator, if

Plim s = &,. (III.40)

T >

It follows from (III.38) that

Plim (é - ;) = Plim (— 7 Z) Plim (- A £) (IIT.41)
T =+ o T + » T »>

Now assume that

Plim (3 2'2)7" (III.42)
is bounded, and noting that2a
Plim £ 2'€ = Lim E(% 2'€) = 0 (III.43)
T » o T+ w
(because Ef = 0 and the elements of é are non-stochastic and

fixed in repeated samples),

2a 2Hussain and Wallace (1967) have shown that Plim g,, = 0 does
not necessarily imply Lot E{g,) = 8, as is erronegusly
believed sometimes. Of course if I isjuniformally bounded
(i.e., |g] ¢ M < » for all T),theng Ee ===z Eg,, + 0,
(Also see' original reference [5] in Hgssaln and Wallidce).
Throughout this study we will continue to assume that g Irp
is continuously bounded.
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we have

Plim s = ¢ , (III.44)

i.e. s is a consistent estimator of o.

The estimator s will be efficient if the distur-

bances in £ are uncorrleated and homoskedastic, i.e. E(EE') =

021. Thisis unfortunately not true, for

E(EE') = E[n - En) (n - En)'] (II1.45)

E(an') - E(M) E{n") .

It is shown in Appendix 1 that
E(AR') = E(R) E') + 2 ¥ (III.46)

where ¥ is a matrix of order TXT whose elements are the

squares of the elements of the matrix ¥ of order TXT and
¥y¥=M29oM (III.47)

where M and ¢ have been defined in (III.24) and (III.4)

respectively.

Thus,

E(EE")

|
D
]

(III.48)

The elements of ¥ are all non zero and hence the disturbances

3Also see the Appendix A in Singh, Nagar and Raj (1972).
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E's are correlated and heteroskedastic. Hence, the estimator
& is not efficient.

The covariance matrix of the estimator & is given by

var(s)

It
=
-~
0]

|
Q
S
L)
0]

1
Q
~

(IXI.49)

Gra)L B om(eEn) BAE'H)TT .

Substituting for E(EE'} from (II1.48) in (£11.49), we have

var (8) = (5'&)"% &' 2D B(aE) Y . (ITI.50)

The variances in (III.50) are not fully determined
pecause ¥ is a function of unknown c?'s. However it is
appropriate to replace 2y by its consistent estimator 2@
obtained by replacing the unknown c%'s by their consistent

estimates s%'s.

T+ should be noted that the estimator of c§ obtained

according to (III.35) will have a range of ~» to =, Thus it

is always possible to arrive at negative estimate of c§ -

with, howsoever, small probability.

TII.3.1 Problem of Negative Variances: A Digression4

Here we digress a little to discuss the problem of

negative estimates of cg's, which might arise according to

4ohe arguments developed by us in this section are helpful

in interpretations of the sampling results in Chapter V.



46

(III.35). No doubt, in the limit, the probability of getting
a negative estimate will approach its lower limit zero because
the estimator S is consistent. The probability of getting

negative values of s§

's according to (III.3S5) may be sub-
stantial in small samples especially so because the estimator
in (1II.35) is inefficient (its standard errors will be

large) and it can be reduced in seeking a more efficient esti-

mator. This point will become clearer by the following

diagrametrical representation.

Y
A N

e e
—

Fig. III.1

In Fig. III.1 we have drawn a hypothetical probabil-

ity density function for any representative s? obtained by



the H-H method in free hand line.5 The shaded area under the
solid lined probability density function to the left of 0Y
line gives the percentage chance of getting negative esti-
mate (say 10%) for a given sample size (say a size 20). In
the same diagram we have drawn the probability density function
in broken line for an efficient estimator, which has smaller
spread than the H-H estimator by definition, (the shaded area
under the broken line to the left of line OY is less than
that under the solid line curve). The percentage chance of
getting negative estimate is reduced (say it is now 6%). It
is intuitively clear from the above argument that by seeking
more efficient estimates of og's we reduce the probability of
getting negative values., We will discuss a few efficient
estimators in the sections that follow.

Hildreth and Houck (1968), have suggested two alter-
native remedies to the problem of negative estimates of
cj 's.,

(i) We may replace negative estimates by zeros. The
estimator so obtained is biased but has lower mean square
error than Hildreth and Houck estimate obtained in (III.35)
above.

(ii) Employ constrained minimization of errors subject

to non-negativity constraints on c?'s, in obtaining their

5We are implicitly assuming that the distributions of esti-

mators are symmetric which may not hold in small samples.



estimators, i.e. use quadratic programming. The suggestion
in (i) is rather arbitrary and that in (ii) has not been
applied by anybody so far--perhaps due to its complex nature.6
Further, in the latter approach there is no way to measure

the precision of the estimates.

I1I.3.2 Hildreth and Houck's Estimator of Mean
Response Coefiicients.

T+ is well known that, if ¢ is known, the BLU esti-
mator of B is Aitken's estimator, given as

B = (x' s~ x)~L x ol v (IXI.52)

A
and the covariance matrix of B is given by

-1 -1

var B = (X' ¢ X) (ITI.53)

However as observed earlier ¢ is not known a priori because
its elements are linear functions of cg's, which are unknown.
In (III.35) above, we obtained sg's, which are consistent
estimates of og's. We may use these to obtain consistent
estimate of & and use it in place of ¢ in (III.52) and (III,

53). Thus the H-H estimator § is given by

~ A_l

B = (X'90 -1

X) X' 9 Y (III.54)

61n a separate problem Judge and Takayama (1966) have dealt with

the inequality restrictions in regression analyses.
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oD
1
(]

J J 0 (III.55)

) x?(T)s?
3 J J

The asymptotic covariance matrix of B is

-1

var (B) = (x' @ x)'l C=(x' o7t x)~1 (III.56)

where

N W
) x%(1)s 0
3
o=l = i . (III.57)
) x?(t)s?
j=1 J J
1
2 2
0 § xj(T)sj

Hildreth and Houck (1968) have shown that 8 as given in
(ITI.54) is a consistent estimator. However it is not
known if the estimator (III.54) is unbiased. We shall

prove below that B is unbiased also.
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I1X.3.3 Proof of Unbiasedness of §.7

Assumethat the elements of the vector n in (III.1)

follow a continuous symmetric probability law, wviz,
hin(t)] = hl-n(t)] (III.58)

where n(t) is the t-th element of the vector n, defined in

(ITI.1l) above.

Now consider the t-th element of 7 in (III.27)

nt) =) m, n(t) (III.59)
t

and the j-th element of s in (III.35).

5 T T 2
s5 =tzlpjt[p£1mtt n(t) (III.60)
where
P = ((By,)) = (B'&)"L & (III.61)
and

T 2.
[ 2 In]{t n(t)] = nz(k) ’ k = l' 2' LR R T (III.62)
=1

7The proof is based on arguments similar to the arguments
in the paper by Kakwani (1967).
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finally, the t-th element of matrix ¢ in (III.S55)is

94 () = jzlxj(t) tzlpjt t{ m_, n(t) (1T1.63)

Since the elements of n follow a continuous prob-
ability law, it follows from (III.59) - (ITIL.63) that the
elements of ﬁ, & and & also follow a continuous symmetric
probability law, i.e. their values do not change with a
change of the sign of the n(t)'s. Substituting (III.1) in

(III.54), we can obtain the sampling error of B as

1

1

B-B=(X"8 "X "X"% " (III.64)

Our objective is to show that E(B - B) = 0 given

that the expectation exists. Writing (B - B) as

8-F=8HM N (III.65)
where

H(n) = (X' 3™t x)7L x 37t (IIT.66)
we observe that

H(n) = H{(-n) ., (III.67)

i.e. H(n) is an even function of the vector n in the sense
that a change in sign of n does not change the value of the

function.



On the other hand the sampling error given in (ITI.65)
is an odd function of n. However, n and -n have the same
probability density function by assumption. Therefore the
sampling error (f - B) and (B - B) will have same density
functions also.
is symmetrically distributed about B. fThis
is unbiased, if its mean exists.®

However, the estimator ﬁ will not be efficient
because ¢~ 1 is obtained by using the inefficient estimates of

2

oi's,
J

8'I‘he following illustration pProvides a theoretical background
for the above proof. Consider a random variable x (say the
sampling error) with density function

£(X) dx ; -w < x < «

Suppose £(x) is an even function of x i.e. f(x) = f(-x).
Then it follows that

(1) J7 £ (x) dx = 2 SoE(x) ax

because

2 I2Ex ax = 0 £ix) ax 4 o £0x) ax.

«©

Now substituting x = -x in (2) above, we have

(3) <r0 £(-x) ax + o £®) dax = 2 17 £(x) ax.

Now, since f(x) is an even function of x (assuming that the
mean exists), it can be shown that

(4) E(x) = [: X £(x) dx =0

because, (4) can be written as

(5) BEx) =70 x £x) ax + 1 x £(x) ax.

¢
Substituting x = -x in (5) above, we have

(6) E(x) = s x £(x) ax + Jgx £(x) dx = 0
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III.3.4 Coefficient of Multiple Correlation
in the CMR Model.”

Let us for a moment assume that the covariance
matrix ¢ is known and is positive definite. Then it is al-
ways possible to transform models such as (III.l) so that
the Gauss-Markov assumption hold, i.e. that the transformed
disturbances possess a covariance matrix which is a scalar
times the identity matrix. Let S be a matrix of order TXT,

whose elements are known, such that

s's = ¢t and s lgr = 1 10 (III.68)

Then

SY = SXB + Sn (III.69)

is the transformed model, which satisfies all the Gauss-
Markov assumptions. In the model (III.l) the disturbances
n(t)'s are heteroskedastic, thus S is easy to obtain. In

fact, in that case, the transformation matrix S is given

by 1 1
(1) 0
S = ’ (III1.70)

1
® 5

(r)

-

9The material in Sections IXII.3.4 and III.3.5 is specially

developed by us for use as criterifn in choosing among
alternative estimators.

10Go1dberger (1964), p. 36.
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where ¢ (t) is the square root of ¢2(t), defined in (III.4).

It is easy to verify that (III.68) is true. It follows

that
E(Sn) = 0 (" S is known and (ITI.71)
E(n) = 0)
and
E(Snn'S') = I (. (III.4) is true).({III.72)

Writing the transformed model as

B+ (IT1X.73)

where

]

Y =8Y ; X’ X and n* = S n. (III.74)

The coefficient of multiple correlation is the

square root of R 2 defined as
Net Do
R2=31-0_"0n (III.75)
'y
A A
where ﬁ' =Y - XBand B = (X' x')'l X' Y

Substituting the value of ¥° and n*defined in (III.74), we

have 1
l\l - ”~
R2-31-02_0 (III.76)
Y'o — Y
where
A=Y-x%x8 (I11.77)

~

and B is defined in (III.52).
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However, R2 can not be computed because it is a function of

unknown cg's.

We obtained a consistent estimator for & in (III.35)
which may be used to obtain a consistent estimator for &.

Thus, § 2 may be defined as

A =1 A
A2 nl 6 n
R =1 - — T (III.78)
Y' ¢ Y
where
n=7Y - XB (III.79)

and B is the Hildreth and Houck éstimator given in (III.54).

IIT.3.5 Prediction with the CMR Model

"~

Assume thatflhe CMR model (III.l) B has been esti-
mated by the generalized least squares procedure defined in
(III.52) . Suppose we are given values of £he explanatory
variables for m-periods of prediction and we want to predict
the future values (in m-periods) of the dependent variable.
Let Xy be a mxK matrix whose rows consist of observations
on the explanatory variables outside the sample period.

Assume that the model (III.1l) still holds for
future observations, then the true values of the dependent

variable will be given as



Y, = xfE * ng (I11.80)

where subscript £ refers to the forecasts or future values
and Y. is a column vector of size m consisting of the true
unknown values of the dependent variable and ng is an m-
element disturbance vector distributed with zero mean and

covariance matrix ¢f. such that

E{ngng) = 0¢ = ¢§(1) W (I11.81)
. 0
)
L 0 ¢f(m)‘
where

92 (t) =I§ x2.(t) 02 ; £t =1, ...m . (III.82)
£ 1 £3 3

3:

~

Let xfE be the predictor, where B is defined in (III.52).

Phen the prediction error is given by

xfE - Y = xfE - (xfé + ng) (III.83)

= X (B - B) - ng

The predictor is unbiased in the sense that the expected

value of the prediction error is zero, i.e.

E(ng -¥)=0 (II1.84)

because
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=
™I >
Il
™I

and Enf =0 (II1.85)

The sampling covariance matrix of predication error is given

as

A ~

E[(Xf§ - Yg) (XB - Yf)i] (III.86)
- E[(xf(ﬁ-é) - ng) (X (B-B) - nf)']

= %; B(B-B) (8-B)' x.'-x; E(R-B)n

- Eng(B-B)’ Xg + Elng ng)

If we assume that the elements of n are uncorrelated with
those of Ngr then it is easy to verify that E nf(E-E)'X% 0
and E(§~§)n% = 0. Therefore, we can write (III.86) as

2 2 7 -l..=1

. - - '

E[(XeB-Yp) (X 8- S] = x. (x'o™t0)™t x'_ + o (ITI.87)

It can be shown that predictor XfE is the best in the class
of linear unbiased predictors.

Now since ¢, ¢f and B are functions of the unknown
cg,we may replace cg's by their consistent estimators s?'s
to obtain the variance of the predictor given in (IIX.87)

as

Estimated Var (Prictor) = X (X' o7x) t Xy + o, (III.88)

where 3 T is defined in (ITII1.57)



and

IIT.4
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bp = . (III.89)

Iterative Hildreth and Houck Estimator

Hildreth and Houck (1968) have proposed an itera-

tive scheme for the estimation procedure described in the

preceding Section III.3, which may be briefly described

in a few steps as follows:

1)

2)

3)

4)

5)

Carry out Step 1 to Step 4 of the HH method of
estimation discussed in Section III.3 and obtain
the initial estimates of the variances and the
mean response coefficients;

Obtain Aitken's fitted residuals in (III.1l) using
the initial estimates of the mean response co-
efficients, obtained in Step 1 above;

Carry out Step 2 to Step 4 of the HH method of
estimation discussed in Section III.3 to obtain
fresh estimates of the mean response coefficients;

Obtain fresh Aitken's fitted residuals in (III.1)
using the fresh estimates of the mean response
coefficients, obtained in Step 3 above; and then

Go back to Step 3 above and keep iterating between
Step 4 and Step 3 until convergence.



Although Hildreth and Houck did not give any
specific reasons for iterating between different stages
of their method discussed in Section III.3, intuitively it
seems that we can obtain more efficient estimates of para-
meters of model (III.1l) by the above iterative procedure.

It may be recalled that in deriving the estimator
$ in (III.35) we made use of the ordinary least squares
residuals, defined in (III.22). We may use Aitken's fitted
residuals instead and obtain fresh estimates of cg's ana-
logous to (III.35).Then the estimators s?'s obtained in
(III.35) and Ej-s in (III.54) may be regarded as the
initial estimates of the Iterative Hildreth and Houck (IHH)
Estimator.

2

Fo |
Given the initial estimates cj's and Bj S we may

obtain fitted generalized least squares residuals in the

CMR model (III.l) as

N

where

= B , defined in (III.54), (III.91)

o] M
[

while ¥ and X have been defined in (I11r.1).

Subscripts 1, 2, etc. indicate the round of iteration con-

sidered.
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Define

b4
.

n2= - r (III.QZ)

which may be used to obtain a fresh estimator of G

analogous to (III.35) as

5, = Grdy~L g Ny (III.93)
whexe
[ 2.1
o
52 = . (ITII.94)
Lsém.

Then the estimates sg(jﬁ;may be used to obtain a fresh

estimator of covariance matrix ¢ analogous to (III.55) as

] x5 s50)
J

* 0

-
[\
]

(III.95)
2 2,.
L § %3 (T)Sz(:‘)_
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The second round of iteration can be completed by

obtaining a fresh estimate of B aralogous to (III.54) as

A All
- '
8 (x' o,

) x' a7l y (III.96)

Xy~ 5

where matrix 3;1 is the inverse of the matrix 62 in (III.95).

If we continue iterating the values of s and B, then, at

the T-th iteration, we have

_l - -

Sp = (8'8) 8' ng (II1.97)
where
[~2
nT(l)
A : N a
Np = |° ;o Mp =Y - X By, (III.98)
~2
_pT(T)_
and
Bn= (x' oot gl g 3ol (III.99)
T T T . .

However, it is not entirely clear if the iterative scheme
presented above will result in gain in efficiency in terms
of smaller standard errors of the parameter estimates.
Moreover, whether the proportion of negative estimates of
variances cg's will be reduced. Also, whether the process

will really converge. In fact, these questions require a



great deal of theoretical analysis. We shall, in the pre-
sent work, look into these problems through Monte Carlo

experiments.

II1.5 Step-wise Aitken's Least Squares Estimator

The Step-wise Aitken's Least Squares (saLs) esti-
mation procedure goes a step further than Hildreth and
Houck method in estimating the variances of random coeffi-
cients. The steps involved in the SALS method of estimation

are

1) Carry out Step 1 and Step 2 of the HH method of
estimation discussed in section III.3 and obtain
the initial estimators of variances;

2) Obtain an estimator of the covariance matrix 2y
using the initial HH estimates of the variance as
obtained in Step 1 above;

3) Obtain an Aitken estimator of the variances using
the estimated covariance matiix obtained in Step
2 above;

4) Obtain an estimator of the covariance matrix @
using Aitken's estimates of the variances obtained
in Step 3 above;

5) Obtain an Aitken estimator of the mean response
coefficients using the estimated covariance matrix
obtained in Step 4 above.

The theoretical considerations behind above S5teps

are explained below:l3

13The material in Section III.5 and III.7 was developed

jointly by Professor A. L. Nagar and the author. The



The disturbances £'s in the regression relation
(IIT.34) were shown to be correlated and.heteroskedastic
and hence the estimator s as obtained in (III.35), though
unbiased and consistent, is not efficient. Intuition
suggests that an estimator that takes into account the co-
variance structure of the disturbances Ej's in the regres-
sion relation (III.34) will be efficient. Aitken's pro-
cedure cannot be applied directly to (III.34) because the
covariance matrix of the disturbances 2% defined in
(ITI.48), is a function of the unknown c?'s. We may how-
ever, apply a step-wise procedure to estimate o efficiently.

Obtain s according to ordinary least squares
applied to (III.34). Then, the estimators sg's so obtained
can be used to estimate ¢ from (III.3) and finally Y and 4
from (III.45) - (III.48). Next use the estimated covariance
matrix 2@, obtained above, to get generalized least squares

estimator for ¢ as

=@ e s tientas (III.100)
SRATEE S R SRR I
YIRS T
where B = MXis defined in (III.36).

estimators (or extensions) proposed in these sections were
first presented by the author in January 1972 in a seminar
for the Monte Carlo Workshop at the University of Western
Ontario. These estimators have also been applied in a
separate study by Singh, Nagar and Raj (1972).
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The estimate so obtained will have the same aymptotic

properties as the Aitken estimator., !

The asymptotic covariance matrix of ¢ is given by

~

Var (o) = 2(&' ¥"1 )"l = 5z 471 51 (III.101)

N

Using the estimate 0, we can obtain an estimator
¢ from (III.3 ). This new estimate may then be used to
obtain an efficient estimatorof g as

A=]

(]
B=(x'¢o -1

a-1

X) X' ¢ Y . (ITI.102)

fa)
Further, the asymptotic covariance matrix of B is given by

a A_
7 1

By = xreTinTh = '

"t E (xreTix "L,

(III.103)

The estimabu‘% will have the same aymptotic pro-
perties as Aitken's estimator obtained by using the true
@_12

The proof of unbiasedness and the concepts of
Multiple Correlation Coefficient and Prediction developed

for the HH estimator can be easily extended for use with

this estimator.

11 Theil (1971).

1202. cit,
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Iterative Step-wise Aitken's Least

' Squares Estimator

Analogous to the IHH estimation procedure discussed

in Section III.4, we may define an iterative procedure based

on the SALS estimator discussed in the preceding section.

We may first describe the steps involved in the Iterative

SALS (ISALS) estimation procedure as

1)

2)

3)

4)

5)

6)

Carry out Step 1 to Step 5 of the SALS method of
estimation discussed in Section III.5 and obtain
the initial estimates of the variances and the
mean response coefficients;

Obtain Aitken's fitted residuals in (III.1l) using
the initial estimates of the mean response co-
efficients obtained in Step 1 above;

Carry out Step 2 of the HH method of estimation
discussed in Section III.3 to obtain fresh HH
estimators of the variances.

Carry out Step 2 to Step 5 of the SALS method of
estimation to obtain fresh estimators of the
variances and the mean response coefficients;
Obtain fresh Aitken's fitted residuals in (III.l)
using the fresh estimates of the mean response
coefficients as obtained in Step 4 above;

Go back to Step 3 and keep iterating among Step
3 - Step 6 until convergence.

It may be recalled that in deriving the HH esti-

mator of ¢ we used ordinary least squares estimates to

obtain the mean response coefficients defined in (IIr.22).

The HH estimates s?'s were used to obtain an estimator of



covariance matrix 2¥_. Then, the estimated covariance matrix
2@ was used to obtain the SALS estimator g in (I1I1.100).

The SALS estimated variances are used to obtain an estimator
of the covariance matrix @. Finally, the estimated co-
variance matrix 5 is used to obtain the SALS estlmator, %
in (III1.103). Therefore, the estimates cg's and B 's may

be regarded as the first round of IteratlveStep—WLSe‘Aitken's
Least Squares Estimator. To begin the second round of

iterations we may use B in place of b to get éz analogous

to (IIX.35) as

e
Se>

(II1.104)

where % is defined in (III.36) and ﬁl is a vector of the

squared elements of the vector ﬁl such that

D

~

nl =Y - X

w

(I11,105)

The estimator éz obtalned in (III.104) gives us a fresh
estimatox 2?2, where ?2 is the matrix of squared elements

of

¥, = Md M (II1.106)

and
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]gxgm 2(3) |

* 0

0D
i

(ITI.107)

x5 (m)s5(3)
3

It follows that

~
L]

gy = (5'(2¢2)

~

1l -

g7t s by, (III.108)

This yields a fresh estimator $2 from (III.3) which may be

used to obtain a fresh Aitken estimator of B as

= (X' &

oI

5 9 X)X 32 Y (II1.109)
The process could be repeated until convergences in gj's
are obtained.

Once again, intuitively it seems that the iterative
procedure would lead to gain in efficiency and would reduce
the proportion of negative estimates of c?'s. The proper-
ties of this iterative estimator are not known and need
investigation either analytically or by Monte Carlo experi-

ments. We would follow the latter approach.
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III.7 Theil's Weighted Least Squares Estimator -
Special Case Oof the Step-Wise Aitken's
Estimator.

For the bivariate regression model, Theil and
Mennes (1959) have shown that the off-diagonal elements
of the covariance matrix 2@, defined in (III.48), are of
loﬁer ofder of magnitude than the diagonal elements. Con-
sequently they proposed replacing the off-diagonal elements
of 2V by zero and then applying weighted least squares
procedure to (III.34).

We shall show that this procedure can be extended
to the multiple linear regression case in a straight for-
ward manner.

Consider the ¥ matrix defined in (IXI1.47), viz.,

¥ = MoOM (ITI.110)

where ¢ is defined in (III.3) and M in (III,24).

Let us define

1

M* = X(X'X) — X' (£11.111)

and

M=1- M* ( M=1I- X(x'x) "L

X') (I11.112)

Substituting the value of M from (III.112) in (III.110) we
have

¥y = (I - M*) & (I

M*) (I11.113)

& - IM* - M*Q + M*OM* .
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Now ¢ is of order 1, or 0(l), because its elements do not
increase or decrease with sample size and M* is of order

1/T because (x'x)'l

is 0(1/T). Therefore, the diagonal
elements of Y are of order 1 and the off-diagonal ones
are 0(1/T).

Consequently, the covariance matrix 2¥ whose
elements are 2 times the square of the elements of @ will
have the leading diagonal terms of 0(l) and the off-
diagonal terms of O(g2).

Thus for large samples (at least) one may ignore
the off-diagonal elements of the covariance matrix 2%,

We may then proceed exactly as in the step-wise Aitken

procedure discussed in Section III.é6.

III.8 Iterative Theil's Weighted Least Squares
Estimator - Special Case of Iterative
Aitken's Step-Wise Least Squares Estimator,

Once again, treating the off-diagonal terms zero
in the covariance matrix 2¥ we may proceed as in the
Iterative Aitken's Step-Wise Least Squares to obtain the
Iterative Theil's Weighted Least Squares (ITWLS) Estimator.
The convergence properties of this special case are also

unknown and need investigation.

ITI.9 Maximum Likelihood Estimator

So far we have discussed estimators which use

step-wise procedure to estimate parameters of the model
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(IIT.1). One may attempt joint estimation of parameters

(elements of B and o) using the Maximum Likelihood pro-

cedure, as proposed by Rubin (1950). Thus, we may assume
that the n(t)'s are normally distributed with means and

variances specified in (III.2) - (III.4).

The joint distribution of n(l), n(2), ..., n(T),

in (III.l) can be written as

1 2
"7y D () (III.114)

L =

N 3] =
¢ =
e
a
r‘.
S
[\®)
®

(2m) |

where ¢2(t) is defined in (III.4) above and n(t) is the

t-th element of the vector n defined in (III.1l).

The Log likelihood function of parameters in the

CMR model (III,l), given Y and X's can be written as

L = —% log 27 -% 12: log ¢2(t) -%1{: 32::; (II1.115)
where
nit) = Y(t) - % x5 (t) Ej (III.116)
3(n(L), ..., (TN | _,

because, Jacobian, |J| = 3 (Y (1) T
’ LEL Y 4



The normal equations of ﬁj‘s and 5?'5 for all j, can then

be written as

a?L_—_XM:O

3. ot $2(t)

j
where
32 (t) = § x?(t) 8§ , for t =1, 2,
and
n(e) = ¥(e) - ] xy(e) By .

J

We may write (III.1l7) .as

(x' 371

The normal equation of 6§ are

é%z = = -—.]—2'- z ._l_._. . xz‘(t) -
Bcj t= J

T (az(t)(—l)(xg(t))

N 4=

L

=1 (32 (¢))?

or

L]

[4

’ for j =1, 2,

T

LI I K

(II1.117)

(II1.118)

(rrr.119)

(III.120)

(ITI.121)



2 2
x5 (t) ~4(t) xi(t)

] og— -] lmg—31— =0, (II1.122)

£32) £ (62(1)

for 3 =1, 2, ..., K.

These normal equations are highly non-linear in
the parameters. 1In principle, solution of these non-linear
equations can be obtained by some suitable method of
solving non-linear equations. These methods seek to find
the roots of a linearised version of the non-linear equ-
ations through successive iterations starting with some
initial estimates. The selection of the initial values of
the parameters is an important aspect of these iterative
procedures as convergence depends on them. The initial
values could be intelligent guesses or estimates obtained
by less efficient methods. It is generally recommended
that consistent estimators be used as the initial values
because they are found to be good approximations. Further,
the final round estimates will be consistent because they
are functions of initial consistent estimates.

If the likelihood equations have multiple roots
and corresponding local maxima,it is possible that if iter-
ative procedure converges at all, it will converge to a
local maxima rather than the global maximum. To ensure a

global maximum we may have to find all the roots and choose
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the one for which L is maximum. In addition, if the likeli~-
hood function has saddle points, or region of inflection
oscilations may occur and thus convergence may not be achieved.
A variety of numerical methods varying in computational com-
plexity, their capabilities to overcome the problems discussed
above and speed for convergence are available to suit the need
of researcher.14 The solution of the non-linear system may
thus come to remain as an exercise in Numerical Analysis.15

In the present study, we have not attempted to study
the sampling properties of this estimator for paucity of

computing funds and research time, and this has been left to

be tackeld as post doctoral research.

14A few references are included in the Bibliography.

lsln a separate study Singh, Nagar and Raj (1972) employed

the Modified Gauss-Newton Procedure to solve the non-
linear equations, and found that almost half of the times
as many as 22 to 36 iterations were required for con-
vergence.



CHAPTER IV

THE DESCRIPTION OF THE SAMPLING EXPERIMENTS

Iv.1l Purpose of the Sampling Experiments

We disucssed several methods of estimating the
mean and variance in the linear regression model with
random coefficients in Chapter III. Intuitively
these estimators may be ranked as follows, because they
incorporate successively less information regarding the

structure of the covariance matrix 2@ defined in (III.48)1

-

(i) saLs

(ii) TwWLs
(iii) HH
(iv) OLS

The purpose of the sampling experiments is to determine
if the above intuitive ranking holds good in large and
small samples. 1In the preceding chapter we also derived
the estimates of the asymptotic standard errors of the

mean and variance of the regression coefficients.2 The

lWe have excluded the Maximum Likelihood Estimator (MLE)
from the ranking because it is not subjected to sampling
experiments in the present study. Further, the iterative
pProcedures have not been included in the ranking because
they will be dealt with separately.

2The OLS provides estimator of the means only.
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exact standard errors for finite samples of the mean
response and the variance of regression coefficients are
not known. The sampling experiments are designed to
determine if the conventionally calculated estimates of
the asymptotic standard errors are biased upward or
downward in small samples.

In Chapter III, we also discussed three iterative
estimators for estimating the parameters of the model,
viz.

(a) Iterative SALS (ISALS),

(b) Iterative TWLS (ITWLS), and

(c) Iterative HH (IHH).
However, it is not clear if these iterative methods will
result in a gain in efficiency in terms of smaller standard
errors of the parameter estimates. Moreover, we do not
know whether the iterative process will really converge.
In fact these questions require a great deal of theoretical
analysis. We shall look into these qguestions through
sampling experiments.

All the methods have the common difficulty that
the estimate of the variance may sometimes turn out to be
negative. As pointed out in Chapter III, we expect a
method yielding a smaller number of negative estimates of
variance to be more efficient and rank them on this basis,
Further, since we expect the Iterative estimators to be

more efficient than their counterpart, we propose to
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undertake sampling experiments to determine if the itera-
tive schemes yield a smaller proportion of negative

estimates of variances.

iv.2 Design of the Sampling Experiments

Iv.2.1 Specification of the Models

We shall analyse the following three models in

the present study.

The Proportional CMR Model I.

Y(t)

Bytt) % (8) , t=1, 2, .cor Ty (1v.1)

and

i

Bl(t) By + el(t) (IV. 2)

Eel(t) =0, for all t,

2
93

Var sl(t) for all t

we assume that el(t)'s are independently normally distri-

buted.

Combining the two equations (Iv.,1) and (IV.2),

we may write

Y(k) = By x;(8) + ng(€) , £=1, 2, .ouy T (IV.3)



where

np(t) = x,(t) ey (t) , £t =1, 2, ..., T. (Iv.4)

For the Monte Carlo experimentation we specify

a priori the following sets of parametric values.3

Set I Set II
Mean Response = El : 0.6 10.1
- = 42 .
Var Bl(t) = Var el(t) =0y 0.03 6.5

The alternative sample sizes chosen are 10, 20

and 50. The values of Xq in these experiments are

3It may be pointed out that conclusions to be drawn from
the sampling experiments for each of the three models,
depend on the values of the parameters and the values of
independent variables selected by us. In view of this,
Thornber (1967) suggested that the whole range of para-
meter space be investigated to make more definite con-
clusions. Consequently, we may select an estimator among
the host of other estimators with smallest loss function.
The suggestion however, entails enormous computation
cost even when a small range of parameter space is con-
sidered in conjunction with variation in other para-
meters. Besides, there is the difficulty that selection
of the various parametersvalues may not always give
meaningful results. In our case larger values of the
variances of random parameters generally lead to a set
of dependent variables, some of which are negative. We
have chosen two sets of values of parameters well apart
in the hope that if the selection of an estimator is
dependent on parameter space it will show up. We have
limited the variation of parameter values to two only,
mainly to meet the limitation of computation cost and
research time,
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T = 10 3.452
5.555

T = 20 3.452
5.555
8.923
14.794

T = 50 3.452
5.555

8.923

14.794

3.452

5.555

8.923

14.794

3.452

5.555

Xy

3.895 3.953
6.998 7.344

3.895 3.953
6.998 7.344
9.584 11.079
6.072 16.904

3.895 3.953
6.998 7.344
2.584 11.079
6.072 16.904
3.895 3.953
6.998 7.344
9.584 11.079
6.072 16.904
3.895 3.953
6.998 7.344

The Bivariate CMR Model II,

4,157
8.027

4,157
8.027
11.849
16.984

4.157
8.027
11.849
16.984
4.157
8.027
11.849
16,984
4,157
8.027

4,575
8.311

4.575
8.311
12.688
18.239

4.575
8.311
12,688
18,239
4.575
8.311
12,688
18.239
4.575
8.311

Y(t) =8 (%) :‘<1 + B,(8) x,(8) , £=1,2, .., T

where x
Bj(t)
E ej(t)

var ej(t)

] is a constant; and

(IV.5)

(IV.6)

We assume that the el(t)‘s and ez(t)'s are independently

normally distributed.

Combining (IV.5) and (IV.6), we may write the
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model II as

Y(t) = By %, + By x,(t) + ny(t) , t
where

nz(t) = X

79

1' 2, LRI T (IV.7)

l' 2' ey T (IV-S)

This gives us a case more like the conventional

linear relation where we associate the disturbance or

error with the whole relation rather than just the para-

meters.

Indeed the error in equation can be assumed to

be an error associated with the constant term or inter-

cept.

In the CMR model II we have in effect the composite

case of error in parameter and error in equation.

We specify a priori two sets of values of the

parameters for the Monte Carlo experiments as

Mean Response

Mean Response

var

var

The

the

]
I

alternative

CMR model I

Set I Set II
By 0.8 30.2
B2 0.6 10.1
2
o] = 0.04 1.5
2
o5 0.03 0.5

sizes chosen are the same as in

values of X, in these experiments
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are the same as values of Xy in the CMR model I,

The values of §1 (a constant) for sample size
10 are as follows:

X

1
T =10 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0

The values of explanatory variable §l for sample
size 20 and 50 are obtained by repeating the values of

size 10.5

The Trivariate CMR Model TIII,

Y(t) = Bl(t) xl(t) + Bz(t) xz(t) y =1, 2, oo, T
(IV.9)

and

By (t) = Ej +eg(t) , 3 =1, 2 (IV.10)
E ej(t) =0, for all 3; t =1, 2, «ee, T,
Var e, (t) = c? s J =1, 2,

J 3
5

In order to avoid any possible rounding of errors in
calculation of the type mentioned by Johnston (1963),
pp. 131, we shift the origin to make the numbers in Xq
and x, of the same size,



We assume that the el(t)'s and ez(t)'s are independently
normally distributed.
Combining (IV.9) and (IV.1l0), we may write the

CMR model III as

Y(t) = By x;(t) + Ez x,(£) + nylt) , £ = 1, 2, eees T
(IV.11)
where
n3(t) = xl(t) el(t) + xz(t) sz(t) , £=1,2, ..., T.
(IV.12)

The a priori specification of the parameter
values for the sampling experiments is the same as in the
CMR model II.

The values of the independent variable Xq in
these experiments for sample sizes 10, 20 and 50 are the
same as values of the independent variable %, in the
Monte Carlo experiments with the CMR model I. The values
of x, in the sampling experiments in the CMR model IIX

are:
%2
T = 10 10.100 10.150 10.200 10.250  10.200
10.100 10.300 10.350 10.400 10.400

=
il

20 10.200 10.600 10.700 10.800 10.880
11.555 11.660 11.886 11,886 11,995
10.998 10.987 11.567 11.554 11.990
11.997 12.000 12,332 12.775 12,887
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)

T = 50 10.200 10.600 10.700 10,800 10.880
11.555 11,660 11.886 11.886 11.995
10.998 10.987 11.567 11.554 11.990
11.997 12.000 12,332 12,775 12,887
10.200 10.600 10.700 10.800 10.880
11.555 11.660 11.886 11.886 11,995
10.998 10.987 11.567 11.554 11.990
11.997 12,000 12,332 12.775 12.887
10.200 10.600 10.700 10.800 10.880
11.555 11.660 11.886 11.886 11.995

The correlation matrices indicating the simple
correlation between two independent variables for sample

sizes 10, 20 and 50 are given as

Sample Size

1o 20 50

1 0.8569 1 0.8635 1 0.8516
Correlation )

Matrix
0.8569 1 0.8635 1 0.8516 1

It is clear from the simple correlation matrices
that there is high degree of intercorrelation between two
variables. The objective is to study the performance of

alternative estimators when regressors arehighly correlated.

Iv.2.2 Generation of Random Numbers

Having specified a priori the parameter values,
observations on the independent variables and the distri-
bution of the sj(t)'s we now seek to generate a set of

independently normally distributed pseudo-random numbers



corresponding to the disturbances nj(t)'s in the three models.
The procedure to generate a series of pseudo-random numbers
nj(t)'s may be explained as follows:

The first step is to generate a series of pseudo-
random numbers u(t)'s as random drawings from a uniform
population. There are many standard routines available to
accomplish this task.6 The shortcoming with the pseudo~-random
drawings produced by one such computer routine are firstly that
they fail the statistical test of the hypothesis that they come
from some known (uniform) population; and secondly they turn
out to be serially correlated.7 Carter (1972) used the
shuffling technique proposed by Maclaren and Marsaglie (1965)

to generate pseudo-random numbers free from these two

deficiencies.8

6One such routine used for the present study has been fully
described by K. Roberts (1968) .

7R.A. L. Carter (1972).

8Op. cit., Carter (1972):- The shuffling technique was found
to have no effect on the statistical test of hypothesis
that the pseudo-random numbers come from a uniform popula-
tion. Therefore, if a set of random drawings did not pass
the null hypothesis that the sample is from a uniform
population over the range 0 to 1, that set is discarded
from the set of random drawings, otherwise it is put to
further tests for correlations (up to order five and even
odd items). The set is retained if the hypotheses that
sample drawings come from a population in which each of the
above correlation is zero. If any of correlation is not
zero, the set is shuffled and the tests for serial corre-
lations are applied. The shuffled sample is retained only
if the above hypothesis is accepted for the shuffled sample.
In this way the pseudo-random drawings can be obtained
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The second step is to transform the pseudo-
random drawings from a uniform population to pseudo-
random standard normal deviates. This is accomplished

by the Box-Muller (1958) transformation:

il

wi(t) = (-2 log v (£))* cos (2n u, (t)) (IV.13)

Wwylt) = (-2 log uy(£))% Sin (2T uy(t))

where the ul(t)'s and uz(t)'s, t=1, 2, ..., T are
pPseudo-random drawings from a uniform distribution obtained
in the first step; and the wl(t)'s and wz(t)'s are the

independent standard normal deviates.9

Iv.2.3 Conversion of Standard Normal Deviates
to nj(t)'s

The final step is to transform the series of
independent standard normal deviates to independent normal
deviates n(t)'s for each of the three models selected by

us for Monte Carlo study. By way of illustration consider

such. that the desired assumptions hold- 100 per cent
within the domain of above tests.

9The routine for generating standard normal deviates was

generously made available to me by Professor R.A.L.
Carter.



the problem of finding a suitable transformation in the

context of model III.10 Consequently,

n{t) = n3(t) r =1, 2, ..., T. (IV.14)
Further,
E n3(t) = E(xl(t) el(t) + xz(t) ez(t)) (Iv.15)
=0 , for all t (because E el(t)=
E e,(t) = 0))
and
var ng(t) = x2(t) var ey (£) + x2(t) Var e, (t)

(IV.16)

because the El(t)'s and ez(t)‘s are assumed to be inde-

pently normally distributed.

Therefore, we may write (IV.1l6) as

2

2 2
1 + x2(t) o

Var ny(e) = x%(t) o s . (IV.17)

10It can be easily varified that Model I and Model II are

particular cases of Model III whenc% = 0 (Model I);
x,(t) = El for all t, while X, (t) becomes xl(t) (Model
II).
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Let the transformation be given as

nglt) = ¢5(t) wit) , t=1,2, ..., T (1v.18)

where w(t)'s are the Standard Normal Variates obtained in

(Iv.13).

Then, it follows that

E nylt) = E (¢3(%) w(t)) (Iv.19)

il

¢3(t) E w(t)

=0 ' for all t because
the ¢3(t)'s ~are known and fixed in repeated samples,

and the w(t)'s are standard normal variates, therefore

var n,(t) = ¢§(t) var w(t) (IV. 20)
= 95 (t)
= x%(t) oi + x%(t) cg .

Further, then3(t)'s will be independently normally distri-
buted because they are linear transformation of indepen-
dently normally distributed variates w(t)'s.

Thus the transformation (IV.18) is the desired
transformation to transform the pseudo independent standard

normal variates, obtained in the second step of the trans-
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formation, to independent normal variates with mean 0
and variance ¢§(t).1l

In the matrix notation (IV,18) it may be written

as
ng = P3w3 (IV.21)
where
[n4(2)] [04(1) .
i . 5 i .
n3Txl I 4 3TxT °
. 0 .
Ln3(T)J ] ¢3(T) ]
and
(w (1) ]
w3Txl =1
W (T) |

The derivation of the transformation for disturbances in

the general linear model may be obtained analogously as

n = Pw (IV.22)

11See footnote 10 regarding the derivation of transforma-
tion for Model I a

nd Model II.



where
(1) [w(1)]
Mgl = | ° o Woe = | (IV.23)
[ n(T) | (W (T) |
and
[ (1)
. 0
Prop = . (1IV.24)
0 .
g % (T) |
such that

K
-=1

Thus, the peseudo-random numbers n(t)'s for
given values of c?'s and x's may be obtained by pre-~
multiplyingthe vector w of the Standard Normal Variates

by the transformation matrix P defined in (IVv.24).

Iv.2.4 Descriptive Statistics

The description of an empirical distribution is

commonly studied in terms of first two moments, mean and

88
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the variance (or the standard deviation), defined asl2
N x
Mean (8) =3 ] 8, =3 (IV.25)
i=1

where@i is an estimate of 0.13

The first moment of empirical distribution is

used to estimate the bias of the parameter, defined as

Estimated Bias (8) = & - o (IV.26)

where © is the true value of the parameter.14

The standard deviation of the sampling distribu-
tion (a measure of dispersion) is the square root of the

second moment about the sample mean and is defined as

12This is under the assumption that small sample moments

in population are defined. As pointed out by Basmann
(1961) however, these moments may not always exist. The
problem of verifying the existence of small samples mom-
ents in the population is a rather complicated one. In
the absence of this verification it is instructive to
compute the corresponding non-parametric statistics for
the sampling distribution (the existence of the popula~
tion counterpart of these is without doubt) , which has
been done in the present study. These non-parametric
statistics are defined later in this section.

lBThe sample size N throughout the sampling experiments

is equal to one hundred unless otherwise noted.

14The true value of parameter is fixed (a priori)

in sampling experiments.



90

)2 (IV.27)

@)

s a(d) --Jl 1§ é, -
N j=1 1

The standard deviation of different sampling
distribution are computed to compare the relative effici-
ency of alternative estimators.

Sometimes a percentage relative efficiency concept
based on the second moment about the sample mean of samp-
ling distribution is used to compare the relative efficiency

of two alternative estimators.

Var(@)I
Percent Efficien 3E) = 100.0 Iv.28
ercentage iciency (3E) 3537?52} X ( )
Ay 42
[sd(0) ]
= 1 x 100.0
[sa(d) ;112

where the subscript I and II indicate the estimator under
consideration.

The estimator II is said to be relatively more
efficient than estimator I if E > 100. The descriptic
statistics (IV.27) and (IV.28) are particularly useful
to compare two unbiased estimators. If the estimators
are biased a more useful descriptic statistic is the
root mean square error based on the second moment of

the empirical distribution about the true value of para-
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meters. 15

N :
Root Mean Square Error (RMSE()) ="/%~ ) (Gi-—@)2 (Iv.29)
i=1

or

RMSE (8) = JVar(@) + Bias? (8) (IV.30)

The descriptive statistics defined above have
the common shortcoming that their values are dependent
on the size of true parameter value. The scale free
descriptive statistics which are analogous to the above
concepts are obtained by dividing each statistic by the
true value of the parameter and representing the ratio

in percentage foxm.

Percentage Bias (% Bias) = Eié%igl x 100.0 (IV.31)
s _ sa(
Percentage Standard Deviation (%Sd) = 5 ¥ 100.0 (IV.32)

The descriptic statistic (IV.32) is analogous

to the coefficient of variation.

15The empirical bias of unbiased estimator will generally

be zero, yet there may be instances when this is not so.
In situations where empirical bias is not zero descrip-
tive statistic (IV.29) rather than (IV.27) is useful.
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Finally,

Percentage Root Mean Square Error (% RMSE) = BE%ELQL x 100.0

(Iv.33)
In addition to computing the first two moments of
the sampling distribution we may compute a number of non-
parametric statistics.16

As a measure of central tendency, we may compute

the Median to obtain,
Median Bias (M Bias(8)) = Median(8) - o (IV.34)

and

_ M Bias(§)

Percentage Median Bias (% M Bias) 5

x 100.0 (IV.35)

The non-parametric measure of dispersion computed

is the quartile deviation, defined as

R Q3 -
Quartile Deviation (QD(B)) = —_—— (IV.36)

where Q1 and Q3 are the first and third quartiles for the
data.l7
We may define scale free dispersion concept for

(IV.36) which is analogous to the percentage standard devi-

ation.
Q3 - 0
Percentage Quartile Deviation (%$QD) = 55— (IV.37)
16See footnote 12,
17

Let a set of data be arranged in order of magnitude and
divided into four equal parts. Further, let Q1 Q, and
Q3 be the values which divides the arranged set, then,

Q1 and Q3 are the first and third quartiles respectively
while Q5 is th median. The probability of an observa-
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Iv.2.5 Data for the Sampling Experiments

The values of independent variables for each of
the three CMR models and sample sizes 10, 20 and 50 have
been specified in Section IV.2.1. These values of the
independent variables for any given model and sample size
T remain constant in repeated samples as required by the
assumption of the CMR models. We now consider generation
of sample of data on the dependent variable for a given
model and sample size T.

Suppose, we are interested in generating the

sample of data on the CMR model III for sample size T =

10; then
Y = XB + n . (IV.37)
where
T [~
[¥ (1) x4 (1) X, (1) =
* - Y 1
Yi0x1 =|- rX10x2 =| - . rBax1 =| (1IV.38)
. . . By
¥ (10) Lxl(IO) xz(lo)_
and n(l)
Niox1 =| °
n(10)

tion falling within the interval Med # Qb is .50.
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such that
En=20 (IV.39)
and
[ 2 2 2 2
(xl(l) o] + xz(l) o5 0
Enm' = Var n = . (IV.40)
2 2 2 2
0 (xl(lo) oy + x2(10) 02_

The values of Ej and og were also specified for
the CMR Model IIT in Section IV.2.1. Therefore, the
values in XB can be obtained directly while the values
of n can be obtained analogous to transformation (Iv.18).
Hence, a sample of data on the dependent variable Y are
obtained from (IV.37). The process of obtaining sample
of data on Y's is repeated 100 times. The set of Obser-
vations in XB remains constant in each of 100 replications
in the sampling experiment. The set of observa-
tions in Y differ érom replication to replication because
the set of pseudo-random numbers in w for the transforma-
tion (IV.18) change with replication. In a similar
manner, the sample of data may be obtained for other

sample sizes 20 and 50 in the CMR Model III, and for the

other two models and samples sizes 10, 20 and 50.
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Having obtained 100 samples of data for each of
the three models and sample sizes, the estimates of the
Ej's and cg's, and their standard errors are obtained
for alternative estimators. For each of these estimators
the frequency distributions of individual estimates are

assembled and then, the descriptive statistics of their

frequency distributions are calculated.



CHAPTER V

RESULTS OF SAMPLING EXPERIMENTSl

In the preceding chapter we described the design of
the sampling experiments. Tn this chapter we present the
results of the sampling experiments. For discussion purposes
we have divided this chapter into two sections. In the
first section, we shall discuss the sampling properties of
the Ordinary Least Squares (0LS) , the Hildreth and Houck (HH),
the Theil's Weighted Least Squares (TWLS) and the Step-wise
Aitken's Least Squares (SALS) estimators for sample sizes 10,
20 and 50 (only for the CMR Model III-Set I).2 In the second
section, we shall present the results of the sampling expgri-
ments on the Iterative HH (IHH) , the Iterative TWLS ~ (ITWLS)

and the Iterative SALS (ISALS) estimators for sample size

lThe computer programming for computations in this chapter
was done by the author. The Department of Economics,
University of Western Oontario provided the financial
assistance for the computations.

2Originally, we planned to undertake the sampling experiments

for sample size 50 for all the models. However, after
finding out the cost of computations for alternative esti-
mators in the CMR Model III-Set I we decided to drop the
experiments for other models for reasons similar to given in
footnote 3. ‘

96



97

20 only.3

V.l Sampling Properties of the OLS, the HH, the
TWLS and the SALS Estimators.

vV.1l.1 Estimation of the Mean Response Coefficients.

v.l.1l.1 Bias Analyses of the Mean Response Coefficients

of Alternative Estimators.

In Chapter III we proved that the OLS and the HH
Estimators of the mean response coefficients are unbiased.
We also noted that the proof of unbiasedness for the HH
estimator can be extended for the TWLS and the SALS estimators
of the mean response coefficients. Now, we will investigate
if the empirical bias is zero. The results of the sampling
experiments relating to the bias of mean response coefficients
are summarized in Table 1 to Table 3. The summary statistics
used are the percentage bias (% Bias) and the percentage

median bias (8 M Bias).4‘ The hypothesis that each of the

3Ideally sampling experiments for the iterative estimators

should also be done for sample sizes 10 and 50. However,
iterative properties are rather costly to investigate. In
view of the limitation of funds, we decided to study the
properties of the estimators for sample size 20 only. For
the same reason we had to limit our investigation to six
iterations only. This limitation was imposed after seeing
the results of sampling experiments for sample size 20 and
other sample runs. Further investigation will follow as
post doctoral research.

4The % Bias, the % M Bias are defined respectively in

(Iv.31) and (IV.35).
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estimators for the mean response coefficients is unbiased

is tested by the t-test.5

Bias Analysis in the Proportional CMR Model I.

Table 1 shows that the empirical % Bias, the % M
Bias and the t-statistic values for the two sets of values
of the parameters in the CMR Model I for sample sizes 10
and 20. It may be noticed that for each sample size the
numbers within each descriptive statistic in this table for
the HH, the TWLS and the SALS estimators are the same. This
is to be expected theoretically because of the special nature
of the CMR Model I. It is shown in Chapter VI (see footnote

TABLE 1 Percentage Bias, Percentage Median Bias and t-statistic of Alternative
Estimators of the Mean Response Cocfficient in the CMR Model I

-

MODELI - SETI MODEL] - SETII
Sample | Estimator
Size . — ’ . -
Cocfficicnt: =0.6 Cocfficicent: = 10.1
By B4
% Bias % M Bias t % Bias % M Bias t
10 SALS 0.2094 0.2952 0.2266 0.0508 0.0716 0.2266
TWLS 0.2094 0.2952 0.2266 0.0508 0.0716 0.2266
HH 0.2094 0.2952 0.2266 0.0508 0.0716 0.2266
OLS 1.3166 0.6342 1.1605 0.3193 0.1538 1.1605
20 SALS 0.0136 0.0489 -0.0210 0.0033 0.0119 -0.0210
TWLS 0.0136 0.0489 -0.0210 0.0033 0.0119 -0.0210
HH 0.0136 0.0489 -0.0210 0.0033 0.0119 -0.0210
OLS 0.1047 0.3358 0.4115 0.0254 0.0814 0.1223

5The t-test is defined in fcotnote 6.



3, Ch. VI) that in the proportional CMR model I the HH, the
TWLS, and the SALS estimators are identical to the Aitken
estimator of the mean response coefficient,’

It is clear from table 1 that the % Bias and the & M
Bias figures for sample sizes 10 and 20 in each of the two
sets of values of parameters are less than one and a half

percent for all the four estimators of the mean response

coefficient suggesting that the estimators are likely unbiased.

More importantly, in each case the t-statistic value lies
inside the interval -t 975 to t 975" which for large samples
is the interval -1.96 to 1.96 at .05 level of significance.6

Thus empirically also we find the estimators to be unbiased in
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the CMR model I. Note however , the results indicate that the

OLS has greater biases than the other methods. Thus if we

6The empirical bias is obtained from a sample of size 100.
We can therefore, apply the large sample theory here. The
hypothesis is

Ho: 0 =98

where ©; is the estimate of ¢ obtained from one sample of data
N
)

by a particular method and @ = = 6i , N = 100.

i=1

The Alternative hypothesis is
Hl: 0 # 8

The t-statistic is defined as:

(o] B

-6

sde|JN

t =
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increase the significance level (SL) the OLS becomes biased

before the other methods do.7

Bias Analyses in the Bivariate CMR Model II with an Intercept

Table 2 gives the % Bias, the % M Bias, and the
t-statistic for each of the four estimators of the mean
response in the CMR Model II for sample sizes 10 and 20.

It may be seen that for sample size 10 the % Bias and
the % M Bias figures are always more than three percent. On
the other hand for sample size 20 the % Bias and the % M Bias
figures are always less than two percent except in the case of
the TWLS estimator of the mean response coefficient Eé in the
set I. However, the % Bias figures are only a rough guideline
on the unbiasedness of an estimator and not a test of hypothesis.
In order to test the  hypothesis that the estimators are un-
biased we must verify if the t-statistic values lie inside the

interval -t to t

975 at .05 level of significance {see

.975

7The Median Bias is tested using the binomial test.
The null hypothesis is

HO: Median (@i) -0 =0

An equivalent method of testing this hypothesis is

Prob (o; < Median (6,)) = Prob (0;> Median (0,)) = 3

For large samples the standard normal variate

(]L—% | - %) % ‘,N is calculated,nwhere L is the number of

estimates to the left of Median (0). The binomial test is
described in Kendall and Stuart (1961) pp. 514-517. For our
study we did not use this test,
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TABLE 2 Percentage Bias, Percentage Median Bias and t-statistic of Alternative Estimators
of the Mean Response Coefficients in the CMR Model II

MODELH - SETI MODEL H -~ SETII
mmu.:nMHn Estimator Coefficient: B 1 =8 Coefficient: B 5 =6 Coefficient: § q =302 Cocfficient: W 5 =101
% Bias % M Bias t % Bias % M Bias t % Bias % M Bias t % Bias % M Bias t
10 SALS 3.0882 6.2073 0.5295 7.4748 19.2282 -0.5286 0.5718 0.8446 -1.2340 3.1662 5.7876 1.2506
TWLS 3.1324 3.2233 -1,0504 7.8510 17.7230 1,0639 0,6815 0.9214 -1.4386 3.7899 5.3460 1.4605
HH 4.7060 71,7696 -0.9663 11.8492 20,0371 0.9724 0.8356 1.2112 -0.8724 4.7147 6.1296 0.9007
OLs 5.3121 8.5167 -2.0330 13,3287 16.4630 2,0605 0.7997 0,9840 -1.9916 4.4596 5.0769 2,0422
20 SALS 0.0286 0.6380 -0.0185 0.0044 0.0044 -0.0019 0.0449 0.1377 0.1612 0.1451 0.3989 ~0.1855
TWLS 1.4591 0.6168 0.8022 2.3500 2.3500 ~0.8572 0.0300 0.1427 -0.1327 0.0949 0.4911 0.1347
HH 1.1865 0.6859 —-0.6544 1.9580 1.9580 0.7017 0.2336 0.0953 0.1472 0.1107 0.5188 -0.1492

OoLs 0.2530 0.3511 -0.1692 0.3696 0.3696 0.1652 0.0317 0.0510 -0.1463 0.0995 0.5698 0.1476




footnote 6 of this chapter).

It may be seen from Table 2 that in all cases except
the OLS estimator for sample size 10, the t-statistic value
does lie inside the interval -1.96 to 1.96. Hence, all
estimators except the OLS estimator for sample size 10 are

unbiased in the CMR Model II at .05 level of significance.

Bias Analyses in the Tri-variate CMR Model III without
an Intercept.

The results in table 3 for sample size 10 and 20
are similar to the CMR Model II. Once again the hypothesis
of unbiasedness is substantiated on the t-test for all esti-
mators except the OLS estimator for sample size 10.

In Model III - Set I, the sampling experiments were
extended to sample size 50. The results for sample size 50
are in accordance with sample size 20. The t-statistic values
lie inside the interval —t gqg to t g95 at .05 level of
significance. Hence each estimator of mean response is
unbiased at .05 level of significance.

v.1.1.2 Efficiency Ranking of Alternative Estimators
of the Mean Response Coefficients.

In Chapter IV we provided an intuitive efficiency
ranking of the SALS, the TWLS, the HH and the OLS estimators
on the basis of the information regarding the structure of

estimated disturbances used by each estimator. In this

102
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TABLE 3 Percentage Bias, Percentage Median Bias and t-statistic of Alternative Estimators
of the Mean Response Coefficients in the CMR Model IIE

MODELIII - SETI MODELMI - SETII
Sample - - -
Size | Estimator Coefficient: B 1 =08 Coefiicient: B9 =0.6 Coefficient: Bp =30.2 Coefficient 85 =10.1
% Bias % M Bias t % Bias % M Bias t % Bias % M Bias t % Bias % M Bias t
10 SALS 6.7176 6.4115 —1.8402 17.1893 21.7080 1.8106 1.0986 2.2744 —1.0969 2.5905 4,2457 1.1301
TWLS 3.4557 4,0883 -1.1420 8.8736 19.2917 1.1572 0.7061 0.9516 —1.5575 4.0290 5.4976 1.5849
HH 4.8839 8.3343 ~1.2519 12,5937 20.9394 1.2598 2.6359 1.2793 —1.6687 15.0196 7.1554 1.6511
OLs 5.4587 7.9950 —2.0349 14,0269 16.5260 2.0626 0.8250 1.1752 -1.9968 4.7160 5.3525 2.0456
20 SALS 0.1747 0.0311 -0.1066 0.2824 0.3635 0.1026 0.2435 0.0434 -0.7145 0.9650 0.1551 0.7589
TWLS 0.6979 0.0581 0.3961 13185 1.5682 —0.4353 0.0762 0.0453 -0.3228 0.2924 0.5001 0.3428
HH 1.3775 0.5923 -0.7218 2.3777 0.3933 0.6957 0.0058 0,1324 -0.0235 0.0032 0.5936 -0.0035
OLS 0.4620 0.4377 -0.2911 0.6925 0.6107 0.2575 0.0659 0.1334 -0.2825 0.2144 0.3211 0.2554
50 SALS 1.6505 2,7459 -1.6274 2.6496 2.1092 1.3490
TWLS 1.6511 2.7706 -1.6279 2.6512 2.3716 1.3494 Not Available®
HH 1.6011 2.3240 —-1.5610 2.5564 2.3250 1.2749
oLS 1.8106 1.5146 -1,7518 2.9600 3.8589 1.4935

*See footnote 2 of this chapter.
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section, we shall investigate if this intuitive efficiency
ranking holds in for sample sizes 10, 20 and 50 (only for the
CMR Model III - Set I) in the monte carlo experiments. The
descriptive statistics computed for the efficiency analysis

in the sampling experiments are the percentage root mean
Square error (% RMSE), the percentage quartile deviation (% QD)
and the percentage efficiency (% E).8 The results of the
sampling experiments on the three models are given in Tables 4

to 8.

Efficiency ranking in the Proportional CMR Model I.

For a given sample size the numbers within each
descriptive statistics in Table 4 for the HH, the TWLS, the
SALS estimators are identical. In fact theoretically we
expect this to happen. As noted earlier (see discussion on
Table 1), the HH, the TWLS and the SALS estimators in the
proportional CMR model I are identical to the Aitken estimator
of the mean response. Further, the Aitken estimator of the
mean response is independent of the variance of the random
coefficient 012 or its estimator 812 (see footnote 5, Chapter

VI). Thus, in view of the special nature of the CMR model I,

8The & RMSE, the % QD and & E are defined in (IV.33), (IV.37)

and (IV.28) respectively. Unless otherwise noted throughout
the section V.1.1, the % E statistics has been calculated
as

1
Yar(9I 4 100.00, where T = SALS, TWLS, or HH
Var (0)0Ls estimator.
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we expect that for a given sample size the HH, the TWLS and

the SALS estimators of the mean response coefficient to be

identical and each to be more efficient than the OLS estimator.
Table 4  Percentage Root Mean Square Error, Percentage Quartile Deviation

and Percentage Efficiency of Alternative Estimators of the Mcan
Response Cocfficient in the CMR Model! I

MODELI -~ SETI MODEL! - SETII
Sample Estimator - -
Size Coefficient: 7 =0.6 Cocefficient: B 1 =10.1
% RMSE % QD %E % RMSE % QD %E

10 SALS 9.2417 4.8692 !50.7882 2,2413 1.1809 150.7882
TWLS 9.2417 4,8692 150,7882 2.2413 1.1809 150.7882
HH 9.2417 4.8692 150.7882 2.2413 1.'1809 150.7882
OLS 11,4216 6.9521 100.0000 2.7700 1.6861 100.0000
20 SALS 6.4639 4,7152 175.4184 15676 1,1435 175.4184
TWLS 6.4639 4.7152 175.4184 15676 1.1435 175.4184
HH 6.4639 47152 175.4184 1.5676 1.1435 175.4184
OLS 8.5617 6.0464 100.0000 2.0764 1.4664 100,0000

It can easily be verified from Table 4 that for a
given sample size the SALS, the TWLS and the HH estimators
rank equal in efficiency while each rank higher than the OLS
estimator on both the % RMSE and the % QD criteria. Since
the estimators under consideration have been proved unbiased
we can say, using the % E criterion, that for sample size 10
and 20 respectively each of the SALS, the TWLS and the HH
estimators is 50 and 75 percent more efficient than the OLS

estimator in both sets of values of parameters.



106

Efficiency Ranking in the Bivariate CMR Model II with an
Intercept.

The sampling results on the bivariate CMR Model II
with an Intercept are given in Table 5. These results are
particularly interesting in different ways, which we discuss
below.

It may be noticed that none of the SALS, the TWLS
and the HH estimators is more efficient than the OLS esti-
mator on the % RMSE and the % E criteria. On the contrary we
find that the OLS estimator ranks higher in estimated
efficiency among the four estimators under study. This result
may appear surprising. However, reader is reminded of the
fact that each of the SALS, the TWLS and the HH estimators of
the mean response coefficients is obtained by replacing the
covariance matrix ¢ in the Aitken formula (III.52) by its
consistent estimator because ¢ is not known a priori. The
efficiency comparison of an 'estimated' Aitken estimator, say
HH estimator defined in (III.54) to the OLS estimator defined
in (IIT.1l1l) amounts to comparing the asymptotic covariance
matrices of the estimators given in (III.20) (with ¢ replaced
by its consistent estimator) and (III.56). Theoretically it
is difficult to prove that the covariance matrix in (III.S56)
will be equal to the covariance matrix in (III.20) (with ¢
replaced by its consistent estimator) plus a positiye definite
matrix or vice versa. Rao (1970) has pointed out the difficulty
in the theoretical analysis and suggested that Monte Carlo

experimentation be done to determine the relative efficiency



107

Table 5  Percentage Root Mean Square Error, Percentage Quartile Deviation and Percentage
Efficiency of Alternative Estimators of the Mean Response Coefficient in the CMR

Moedel 11
MODELIl - SETI MODELII - SETII
Sample . — = —

Size Estimator Coefficient: B1=08 Coefficient: B2=0.6 Coefficient: B7 =30.2 Coefficient: 5 =10.1

%RMSE | %QD %E %RMSE | %QD %E %RMSE [ %QD %E %RMSE | %QD %E
10 SALS 58.4027  18.2459  20.0725 1415963  43.3969  20.9293  4.6685 2.9108 75.0976  25.5152  13.6294 74.3894
TWLS 29.9849  17.9464  76.7739  74.2083  43.4241  76.8476  4.7864 2.7820 71.8298 26,2257  13.5072 70.8075
HH 48.9307  17.8493  28.7824 1224257  40.6608  28.1831  9.6144 2.8892 17.5737  52.5581  13.4204 17.4016
OLS 26.6637  17.3903  100.0000  66.0468  40.6150 1000000  4.0941 27364  100.0000 22.2873  13.3831  100.0000
20 'SALS 154365  10.9365  93.8210  22.8499 165213 ~ 95.9173 25112 1.5447 56.5854  7.8209 5.2280 74.2170
TWLS 18.2484 109064  67.5723  27.5144  16.8950  66.6095  2.2616 1.6014 91.8423  7.0477 5.2455 91.3803
HH 18.1422 114560  68.2213  27.9744  16.8337  64.2824  2.3371 1.6681 86.0079  7.4232 5.3423 83.3725
OLS 149547 10,8340  100.0000  22.3767  17.9968  100,0000  2.1674 15257  100.0000  6.7372 5.3622  100.0000
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of the two estimators.

It may also be pointed out that the bivariate CMR
Model II has the problem that sometimes negative estimates
of the variances are obtained (refer to the discussion in
Section III.3.l).9 The fact that the OLS estimator in our
sampling experimentation has turned out to be more efficient
than the other three estimators may well be due to the
problem of negative estimates of the variances and may not
hold in general for all heteroskedastic models. However, the
study of all heteroskedastic models is beyond the scope of
this thesis.

In Chapter IV we noted that the results of the
sampling experiments depend on the values of the parameter
chosen by the researcher (see footnote 3, Chapter 1IV). As
pointed out by Thornber (1967) the ranking of alternative
estimators may or may not remain the same from one point to
another point in the parameter space, For example, the
ranking of alternative estimators remained the same for two
points in the parameter space in the proportional CMR Model I.
However, we will show that the ranking of some of the
estimators reverses itself from one point to the other point

in the parameter space in the CMR Model II.10 We may call

9A theoretical solution to the problem of negative estimates

of variances is proposed in Chapter VI.

10The sampling experiments, as noted in footnote 3, Chapter IV
were restricted to two points in the parameter space for
limitation of computer and research time. The two sets of
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this phenomenon 'ranking reversal'.

The CMR Model II has two regression coefficients
each of which may have different rankings for alternative
estimators. In order to determine the overall ranking of
alternative estimators, we may calculate the overall % RMSE
and overall % QD ranking of alternative estimators and rank
them accordingly. The Overall % RMSE and Overall % QD
Rankings of alternative estimators for the CMR Model II are
given in table 6.11

It can be seen from table 6 that on the overall %

RMSE, the OLS performs better than all other estimatoxrs both

values were chosen well apart to detect possible ranking
reversal., To determine the point in parameter space at which
the reversal takes place and to determine if there is more
than one reversals would require a study of whole parameter
space, which may not be always possible.

llIn order to obtain the overall $ RMSE and the overall % QD

rankings in table 6, we first ranked alternative estimators
for each of the two regression coefficients separately on
the basis of the values of % RMSE and % QD in table 5 - an
estimator for each regression coefficient with lowest %
RMSE (or % QD) is ranked first while the estimator with
highest % RMSE (or % QD) is ranked last. Having ranked
alternative estimators for % RMSE and % QD for individual
coefficients the overall % RMSE and overall % QD ranking
for alternative estimators in table 6 were calculated
respectively as the sum of the % RMSE and % QD for the
individual regression coefficients as obtained from table 5.

The choice criterion among alternative estimators is
that an estimator with lower overall % RMSE and overall %
QD rank is always preferred. : C-

Sometimes Kendall's coefficient of concordance (1956)
is used for measuring the strength of rankings. However in
our case this was not considered necessary in view of clear
ranking of estimators. Besides, forecasting precision
criterion has been applied later, which does similar job in
some sense.
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in sample size 10 and 20 since it has the lowest rank. The
ranking of other estimators relative to each other changes
both across the points in the parameter space and across the
sample sizes. Thus, we do see the phenomenon of ranking
reversal. In Set I the TWLS estimator is the second best for
sample size 10 while the SALS estimator is the second best
for sample size 20 on the overall % RMSE ranking criterion.
On the same criterion in Set II, on the other hand, the SALS
estimator is the second best for sample size 10 while the

TWLS estimator is the second best for sample size 20.

Table 6  Overall Percentage Root Mean Square Error and Overall Percentage
Quartile Deviation Ranking of Alternative Estimators of the Mean
Response Cocfficients in the CMR Model 1I'

MODEL II - SETI MODEL II - SETII
Sample . :
Size Estimator
Overat % RMSE Rank | Overall % QD Rank || Overall % RMSE Rank | Overall % QD Rank
10 SALS 8 i 4 8
TWLS 4 7 6 5
HH 6 4 8 5
OLS 2 2 2 2
20 SALS 4 4 8 3
TWLS 7 5 4 5
HH 7 6 6 7
OLS 2 .5 2 5

The reader may be reminded that the estimates of
variances of random coefficients are used to estimate the
mean response coefficients for all estimators except the
OLS estimator. It seems that negative estimates of variances
which do occur in a fairly large number of times is respon-
sible for the violent behaviour of the estimators. In the
Model I since there is no problem of negative estimates there

is a definite pattern about the performance of estimators
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both across the sample size and the points in parameter space.

On the overall % QD ranking criterion for sample size
10 the OLS estimators ranks first, while for sample size 20
the SALS estimators ranks first in Set I and Set II.

For sample size 10 the OLS estimator is empirically
biased and hence the relative efficiency comparison of
alternative estimators in terms of the most efficient esti-
mator (the OLS estimator) is not really meaningful. However,
for sample size 20 we can make a relative efficiency compari-
son of alternative estimators on the basis of the % E criterion.
Thus in the Set I, the SALS estimator is only 4 to 6 percent
less efficient than the OLS estimator (Table 5). The TWLS
estimator is 32 to 33 percent less efficient than the OLS
estimator. In the Set II the SALS estimator is 26 to 43 per-
cept less efficient, the TWLS estimator 8 to 9 percent less
efficient and the HH estimator is 24 to 27 percent less
efficient than the OLS estimator.

Before we go on with the discussion of efficiency in
CMR Model III we may say a few words in regarxds to choice
between two estimators ranked first and second. The OLS
estimator appears better choice for both sample sizes 10 and
20 not only on the overall % RMSE ranking criterion but also

on the cost of computation criterion.12 However, the OLS

12The cost of computation may be, however, not a very important
consideration in single equation computation. The cost of
computing a single run in a sample of size 20 for the SALS
or the TWLS is less than $2.00 (including the cost of
compilation).
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does not give estimates of variances and variances of mean
response coefficients. We need to use some other estimator
to estimate variances.l3 Furthermore, the properties of the
standard error (in terms of bias) of the OLS estimator need
to be taken into consideration in contrast to the SALS and
the TWLS estimators (the second ranked estimators). Also, if
the overall % QD is the relevant criterion the choice of the

OLS estimator remains as only the second best at least for

sample size 20 in the CMR Model II.

Efficiency Ranking in the Trivariate CMR Model ITI.

The Monte Carlo experiments on the CMR model TIII for
sample size 10, 20 and 50 (for Set I only) are summarized in
Table 7. The results are (for sample sizes 10 and 20) generally
analogous to Table 5 and many of the comments and conclusions
on the CMR model II hold much the same qualitatively. For
example, the OLS once again ranks above the other three esti-
mators on the % RMSE and the % E criteria. The explanations
for this are the same as set out in discussion on the sampling
experiments on Model ITI. Further, once again we find that the
phenomenon of ranking reversal takes place on all criteria.

Since there are more than one regression coefficients in the

131f we take into consideration the cost.of computing the

estimates of B+ and the variances of By's the OLS esti-
mator is roughiy 80 percent of the cost”of computation for
the SWLS or the TWLS estimators.
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Table 7 Percentage Root Mean Square Error, Percentage Quartile Deviation and Percentage
Efficiency of Alternative Estimators of the Mean Response Coefficients in the CMR

Model III
MODEL 1if SET1 MODELHI - SETI
Sample Estimat — —_ -
Size stimator Coefficient: 3= 0.8 Cocfficient: B =0.6 Coefficient: B =30.2 Coefficient: B, =101
% RMSE % QD %E %RMSE [ %QD %E %RMSE | %QD %E %RMSE | %QD %E
10 SALS 37.1174  18.3308  53.9984  96.4793 448290 513128  10.0756 5.4946 17.0195  23.5318 115512 100.0121
TWLS 304566  17.9510  78.5895  77.1915 410049  78.6545  4.5883 2.7689 83.0603  25.7384  13.9765 82.2453
HH 393181  17.8980  47.2763 100.7546 424525 462801  16.0143 2.9636 6.8424 922014  14.6159 6.4223
OLS 27.3746  17.8505 100.0000  69.4368  44.0547  100.0000 42134 28308  100.0000  23.5312 14.4244  100.0000
20 SALS 16.3824 109341  93.8458  27.5383 203698  95.3683  3.4163 1.6837 46,8856 127522  6.4502 43,3581
TWLS 17.6301 109960  81.1516 303186  20.2310  78.8203  2.3609 16751 97,7778 8.5349  6.2224 96.8479
HH 19.1364  10.8048  60.1284 342580  20.9528 619170  2.4656 1.8303 89.5547 9.1060  6.5069 84.9825
OLS 15.8761  10.7241  100.0000  26.9006  22.0441  100.0000  2.3342 1.6249  100.0000 83972 62809  100.0000
50 SALS 10.2756 63318 103.8578  19.8187  13.5619  101.8308
TWLS 10.2759 6.3508 103.8528 19,8258  13.6009  101.7587
Not Available
HH 10.3914 70933 101.5409 202141 137211 97.6988
OLS 10.4934 57521 100.0000 20039  11.8374  100.0000
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model and the rankings for each sometimes differs, we have
computed the overall % RMSE and overall % QD ranking (analogous
to Table 6), which is given in Table 8.

On the overall % RMSE ranking the OLS estimator con~-
tinues to out-perform other estimators both in sample 10 ana
20 as in the CMR model II. Furthermore, with one exception
the OLS does very well on the overall % QD ranking also @s
it ranks first or share first rank with other estimators).

The one exception is for sample size 10 ~ Set II where it
ranks second to the TWLS estimator. Once again 'n the overall
%t RMSE ranking the TWLS estimator ranks second in Set I for
sample size 10. The second ranked estimator in Set TI is
shared by the SALS and the TWLS estimators. For sample size
20 the second ranked estimators are the same as in the CMR
Model II for Set I and Set II.

Table 8  Overall Percentage Root Mean Square Error and Overall Percentage

Quartile Deviation Ranking of Alternative Estimators of the Mean
Response Coefficients in the CMR Model III

MODELIII - SETI MODELII - SETU
Sample Estimator

Size
Overall % RMSE Rank | Overall % QD Rank || Overall % RMSE Rank Overall % QD Rank

10 SALS 6 8 5 5
TWLS 4 4 5 3
HH 8 4 8 7
OLS 2 4 2 5
20 SALS 4 5 8 6
TWLS [ 5 4 3
HH 8 5 6 8
OLS 2 5 2 3
50 SALS 2 4
TWLS 4 6 Not Available
HHI 7 8
OLS. 7 2




115

As pointed out earlier, we performed the sampling
experiments for sample size 50 for the CMR Model III - Set I.
The results are summarized in Tables 7 and 8 along with the
results on sample sizes 10 and 20. It may be seen that on
the overall % RMSE ranking the OLS estimator does marginally
worse than the SALS and the TWLS estimators. Furthermore,
the ranking of alternative estimators is close to the intuit-
ive ranking of estimator set forth in Chapter IV with the
exception that the HH estimator does not rank above the OLS
estimator but shares the rank with the OLS estimator. On the
overall % QD ranking, however, the OLS continues to be
superior over other estimators.

The OLS estimator was shown to have empirical bhias
for sample size 10 and therefore efficiency comparison rela-
tive to the OLS estimator as computed by descriptive
statistics ¢ E is not very meaningful. However for other
estimators the relative efficiency have been computed as
percentage of the OLS estimator and they can be read from
Table 7 under the column for % E.

In conclusion, on the % RMSE criterion, the choice
once again is between the OLS and the SALS or the TWLS
estimators for all sample sizes. Therefore, all the arguments
given above in the concluding remarks on the CMR Model II
regarding choice between alternative estimators hold for the

CMR Model III also.
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v.1.1.3 Forecasting Efficiency Ranking of Alternative
Estimators in the CMR Models

The choice of a relevant criterion depends on the
purpose of the sampling experiments. Insofar as the purpose
is to have a precise knowledge of the structural parameters
the criterion of efficiency outlined in Section V.1.1.2
geems satisfactory. The interest, however, does not have to
be limited to the precise knowledge of the structural para-
meters only; for example, the interest may be in the con-
ditional forecasting precision of alternative estimators.

In the latter case the criterion of conditional forecasting
(forecasting for short) ability for alternative estimators
will be more relevant. In Chapter III we developed the
theoretical framework for this purpose in the context of the
HH estimator. We further noted that the analysis can be
extended to other estimators. In this section we shall
present the results of the sampling experiments on the fore-
casting ability of alternative estimators. The descriptive
statistics used for the comparison are the % RMSE, the % QD and
the % E. The results from the Monte Carlo experiments for
the three models and samples sizes 10, 20 and 50 (for the CMR

Model III-Set I only) are given in Table 9 to Table 1ll.

Forecasting Efficiency of Alternative Estimators in
the Proportional CMR Mo el I.

It can be easily verified from Table 9 that for a

given sample size the numbers within each descriptive
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Statistic are the same for the HH, the TWLS and the SALS

estimators.

Table 9  Percentage Root Mean Square Error, Percentage Quartile Deviation,
and Percentage Efficiency of Forecast of Alternative Estimators in
the CMR Model |

MODELI -~ SETI MODELI - SETH
Sample Estimator Forecast Forecast
Size
% RMSE % QD %E % RMSE % QD %L
10 SALS 11,1827 4,5092 150.7882 2.2697 1,1753 150,7892
TWLS 11,1827 4,5092 150,7882 2.2697 1.1753 150.7882
HH 11.1827 4.5092 150,7882 2.2697 1.1753 150.7882
OLS 12,1868 6.4381 100.0000 2.71429 1.6781 100.0000
20 SALS 7.0768 4.5593 175.4184 1.5780 1.1412 175.4184
TWLS 7.0768 4.5593 175.4184 1.5780 11412 175.4184
HH 7.0768 4.5593 175.4184 41.5780 1.1412 175.4184
OLS 8.8768 5.8465 100.0000 2.0796 1.4634 100.0000

As explained in the discussion on the bias and efficiency
in Sections V.1.1.1 and V.1.1.2, this is due to special
nature of the proportional CMR Model I. It can be easily
verified from the Table 9 that the ranking of alternative
estimators is the same as efficiency ranking obtained in
the Section V.1.1.2. On the % RMSE and the % QD criteria,
the SALS, the TWLS and the HH rank equal and each ranks higher
than the OLS estimator both in Set I and Set II within each
sample sizes of 10 and 20.

On the % E criteria we can say that for sample sizes
10 and 20 respectively the SALS, the TWLS and the HH esti-

mators of forecast are 50 and 75 percent more efficient than
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the OLS estimator of forecast both in Set I and Set II.l4

Forecasting Efficiency of Alternative Estimators in
the Bivariate CMR Model II with an Intercept

Table 10 gives the % RMSE, the % Qband the % E of
alternative estimators in the Bivariate Model II with an
intercept.

The forecasting efficiency ranking on the % RMSE
criterion is similar in many respects to the efficiency
ranking in Table 5 - Table 6. For instance, the OLS esti-
mators ranks first for sample sizes 10 and 20 on the % RMSE

Table 10 Percentage Root Mean Square Error, Percentage Quartile Deviation

and Percentage Quartile Deviation and Percentage LGfficiency of
Forecast of Alternative Estimators in the CMR Model II

MODELIl -~ SETI MODELIl - SETII
Sample .
Size Estimator Forccast Forceast
% RMSE % QD %E % RMSE % QD %E
10 SALS 21.4109 9.0860 30.0381 2.5073 1.6649 80.6443
TWLS 12.7647 8.4772 83.2153 2,5636 1.6555 77.3822
HH 19.3158 8.3533 35.7032 4.5932 1.5802 24,0363
OLS 11.5656 7.7797 100.0000 2.2641 15155 100.0000
20 SALS 8.7993 6.2654 97.8588 1.8664 1.2832 84,1409
TWLS 10,3685 6.7087 71.5711 1.7686 1.2657 93.4837
HH 10,5764 7.0110 67.3175 1.9108 1.2656 80.2887
OLS 8.7139 6.0060 100.0000 1.7101 1.3041 100.0000

14We ran the t-test for bias of forecast in the CMR Model I
(sample sizes 10 and 20) and found that the forecast is
unbiased. The figures are however not included to conserve
space. This finding is in concurrence with theoretical
expectation.
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criterion. For sample size 10, the TWLS estimator is second
best and is 17 percent less efficient than the OLS estimator
in the Set I, while the SALS estimator ranks second and is
19 percent less efficient than the OLS estimator. For sample
size 20 the SALS estimator ranks second in Set I while the
TWLS estimator ranks second in Set II respectively. Thus we
find that phenomenon of ranking reversal takes place both
across the sample sizes and across points in the parameter
space. The viotile behaviour of the HH, the TWLS and the
SALS estimators can be attributed to their dependence on
negative estimates of variances of random coefficients.

The ranking of alternative estimator on the % QD
criterion sometimes differs in the two sets of values of
parameters from that in Table 6. For example in Set I for
sample size 20 the OLS estimator ranks first on the fore-
casting efficiency criteria in Table 9 while the SALS esti-
mators ranks first according to efficiency criteria in Table
6. Similarly the ranking on the % QD differs in Set II for
sample size 20. The ranking for sample size 10 in both Set

T and Set IT on the % QD criterion is the same as in Table 6.

Forecasting Efficiency of Alternative Estimators
in the Trivariate CMR Model TIII

The results of sampling experiments on alternative
estimators in the trivariate CMR Model III are contained in

Table 1l.
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Table 11 Percentage Root Meuan Square Error, Percentage Quartile Deviation
and Percentage Efficiency of Forecast of Alternative Estimators in
the CMR Model IIL

MODEL Il - SETI MODEL IUI — SET II
Sample .
Size | Estimator Forecast Forecast
% RMSE % QD %L % RMSE % QD %E
” carg 151410 8.4513 57.3053 3.0353 17041 54.7567
s 12 8.3540 847828  2.4024 1.6014 86.6744
o 15.5322 8.2045 54,6943 7.6635 1.5387 8.6237
ors 114960 1.7391 100.0000  2.2443 1.5027 100.0000
20 SALS 8.4729 6.0597 98.2725 2,2718 1.1644 50.2188
TWLS 9.3278 6.1528 82.1631 1.6306 1.1410 97.3126
HH 10.3693 6.6565 63,6995 1.7420 1.1328 85.4035
OLS 8.3851 5.8044 100.0000 1.6089 1.1727 100.0000
50 SALS 4,1822 2.0944 100.4199
TWLS 4,1823 2.0961 100.3975 Not Available
HH 4.1835 2.1095 99.7658
OLS 4,1835 2.1095 100.0000

The results on the forecasting efficiency of the CMR
Model III are similar to the results of the CMR Model II for
sample sizes 10 and 20 as can be verified from Table 10 and
Table 11. The only exception being that in the Set II for
sample size 10 the TWLS estimator does better than the SALS
estimator which is contrary to the findings for the CMR Model
Iz,

For sample size 50 we £ind that the SALS estimator of
forecast is the best while the TWLS estimators performs the
second best, The HH and the OLS estimators perform equally

well. This finding is in concurrence with the findings in

Table 8.
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For each of three samplesizes and two set of values
(except Set II for Model TII) the relative efficiency of
alternative estimators has been expressed as percentage of
the OLS estimator, thch may be read from Table 1.15

In Set I, for sample sizes 20 the forecasting
efficiency ranking on the % QD criterion is the same as that
on the $ RMSE. In Set II, however, the forecasting efficiency
ranking on the % QD criterion differs from that on the % RMSE.
The ranking is identical to the ranking in Set II of Model II°
on the % QD criterion (see Table 8).

In conclusion, the first and second rank positions

for alternative estimators is the same for efficiency and

forecasting efficiency criteria.

v.1l.1.4 coefficient of Multiple Determination
Ranking of Alternative Estimators. Lo

Having ranked the SALS, the TWLS, the HH and the OLS
estimators in terms of efficiency in Section Vv.1.1.2 and in
terms of forecasting efficiency in Section v.1.1.3, we go on

to rank the estimators on the basis of the mean and the median

15The percentage bias figures in the CMR Model III for sample

sizes 10 and 20 were generally less than 2 percent which
suggest that estimators are unbiased. We did not however,
specifically run t-test for the unbiasedness of alternative
estimators of forecasting.

16The Coefficient of Multiple Determination, R2, is the square
of the Multiple Correlation Coefficient, R.
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values of the coefficients of multiple Determination (Rz) as
obtained in the sampling experiments. The formula for calcu-
lating R2 was developed in Chapter III for the HH estimator.
Further, it was noted that the formulae for other estimators
can easily be obtained on the lines of formula for the HH
estimator. The criteria for ranking alternative estimators
is that the higher the sample mean and the median value of

R? the better the estimator.

The mean and median values of Rz, for alternative
estimators for the three models and sample sizes 10, 20 and
50 (for the CMR Model III-Set I only) were computed. The
mean and median values of R2 were generally very close. Most
of the times the difference were in the third and fourth
decimal places only%7 In many instances the SALS and TWLS
marginally perform better than the other two estimators but
no systematic trend seemed to emerge. In conclusion the
ranking of alternative estimators on the basis of coefficients

of Multiple Determination was rather ambiguous.

17The numbers for RZ for alternative estimators were
suppressed to conserve space.
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V.l.2 Estimation of the Standard Errors of the Mean
Response Coefficients.

V.l.2.1 Bias Analysis of Alternative Estimators of The
Standard Errors of the Mean Response Coefficients.

The standard error of an estimator has special
importance in testing of hyoptheses. A biased standard
error is undesirable because it makes the testing of hypo-
theses unreliable. For example, if the standard error of
an estimator is biased upward, we will commit more Type I
errors. On the other hand if the standard error of an
estimator is downward biased, we will commit more errors of
Type 11.18 As pointed out in Chapter IV, the exact standard
errors of the SALS, the TWLS, the HH and the OLS estimators
are not known. Therefore, in small samples also we compute
the standard errors of alternative estimators using the asymp-
totic formulae given in Chapter III. It is clear from the
above discussion that we need to study the bias properties
of asymptotic standard errors of alternative estimators. In
this section we shall study the bias properties of alterna-
tive asymptotic standard errors in the three models for

sample sizes 10, 20 and 50 (for the CMR III - Set I only).

18Type I Error is committed if a hypothesis is
rejected when it should be accepted, while Type II Error
is committed if a hypothesis is accepted when it should be
rejected.
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The bias of an asymptotic standard error has been computed
as a difference between the mean of asymptotic standard
error (obtained from sampling experiments) and the standard
deviation of the mean response coefficients estimates (taken
from Section V.1.1.2). The descriptive statistics used for
bias analysis are the % Bias and the % M Bias and the t-
statistic.19

Bias Analysis of Alternative Estimators of the Standard

Error of the Mean Response Coefficient in the Proportional
CMR Model I.

The results of sampling experiments on the bias of
alternative estimators of standard error of the mean response
coefficient for sample Sizes 10 and 20 in the CMR Model I are
given in Table 12.

The values of the t-statistic for the bias of alter-
native estimators of standard error for sample Size 10 lie
outside the interval - 1.96 to 1.96 and hence all estimators
of standard error are biased. However, the SALS is the least
biased estimator. The ranking of alternative estimators of
standard on the basis of their % Bias and % M Bias perfor-
mance is in accordance with the intuitive ranking of esti-

mators of mean response given by us in Chapter V.

91t is interesting and important to test the spall
sample distributions of the standardised ratio t = éhQﬂd@for
normality. This is usually tested by the Kolmogrov-Smirnov
test. The test is fully described by Sidney Siegel, Non
parametric Statistics for Behavioral Sciences, New York:
MCGraw-Hill (1956) pp. 229-238. This test was not applied
for limitation of computer and research time.
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Table 12 Percentage Bias, Percentage Median Bias and t-statistic of Asymptolic
Standard Error of Alternative Estimator of the Mean Response Coeffi-
cient in the CMR Model 1

MODELI - SETI MODELI -~ SETI
Sa.mplc LEstimator 2 ~
Sie SE (87) SE (81)
% Bins % M Bias t % Bias % M Bias t
10 SALS 6.3965 8.4707 -2,5601 6.3968 8.4711 -2.5602
TWLS 6.6320 9.7026 -2.6763 6.6319 9,7026 -2.6763
HH 10.0893 14.6567 -3.5784 10.0893 14,6569 -3.5784
OLS 14.4929 18.8366 ~5.4050 14.4917 18.8355 -5.4044
20 SALS 0.1755 0.0166 —0.1144 0.1755 0.0166 -0.1116
TWLS 0.2615 0.4337 -0.2405 0.2615 0.4337 -0.1710
HH 2.7331 7.5680 -1.2104 2.7332 7.5680 -1.2104
OLS 2.0324 6.9021 ~19,2566 2.0324 6.9021 -0,8936

The values of the t-statistic for the bias of alter-
native estimators for sample Size 20 lie between -1.96 and
1.96 at .05 level of significance both in Set I and Set II,
except for the OLS estimator in Set 1.20 Therefore, the stand-
ard error are unbiased in all estimators except for the OLS
estimator of the standard error for sample Size 20. Once

again the SALS estimator of the standard error is the least

biased estimator in the CMR Model I on all criteria for sample

Size 20.

20phe standard errors of the OLS estimates of the mean
response coefficients have been obtained as square root of the
variance given in (III.20) replacing ¢ by its consistent esti-
nmator obtained by HH Method, throughout in this section. It is
well known that the conventional formula of variance, viz.
62 (x'x)~l yields biased and inconsistent estimates of standard
error if disturbances in the regression are heteroskedasic. The
bias of standard errors computed for sample Size 20 by the con-
ventional formula were mostly higher than standard errors ob-
tained from consistent formula. More importantly the behaviour
of bias of standard errors obtained from standard formula was
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Bias Analysis of Alternative Estimator of the Standarxd
Errors of the Mean Response Coefficients in the Bivariate
CMR Model II.

The results of the sampling experiments for sample
Sizes 10 and 20 in the CMR Model II are given in Table 13.
An examination of the sampling results will show that the
OLS estimator of the standard error of the mean response
coefficient is unbiased for sample Size 10 at .05 level of
significance. On the other hand the SALS and the TWLS (for
B, only) estimators of the standard error of the mean re-
sponse coefficients in Set I and Set II respectively have
the t-statistic values lying inside the interval -1.96 to
1.96 and hence these estimators are unbiased at .05 level
of significance for sample Size 20. 1In all other cases the
t-statistic values lie outside the interval ~1.96 to 1.96
and hence all other estimators of the standard error of the
mean response are biased.

Since ranking of alternative estimators for the two
coefficients sometimes differ in terms of the % Bias and the
% M Bias we have computed the overall % Bias and overall § M
Bias rankings analogons to the overall % RMSE and the over-
all % OD rankings in Table 6 (see footnote 11) and are
given in Table 14.

It can easily be seen from Table 14 that the OLS

estimator is the least biased estimator on both the overall

rather viotile due to inconsistency property of the estimator.
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Table 13 Percentage Bias, Percentage Medium Bias and t-statistic of Asymptotic Standard
Errors of Alternative Estimators of the Mean Response Coefficients in the CMR

Model II
MODELII - SETI MODELII - SETII
Sample . = = = ~
Size | Estimates SE@ Y SE (B SEB SE (Bp)
%Bias  %MBias ¢ %Bias  %MBias  t %Bias  %MBias  t %Bias  %MBias t
10 SALS 53.6348 56.0759 -32.7098| 55,1352  57.5408-33.0176| 12.1206 147607 — 4.4305 18.6492  20.3260 — 7.2108
TWLS 12.0495 13.4857 — 4.2990( 18.7794  20.3252- 6.9048( 15.0521 19.7801 — 4.9280 19.9287  21.5896 6.9844
HH 433747 47.8443 —18.6870 48.0832  51.1012-19.7176| 56.1067 59.2357 -29.9960 59.2216  61.5255 -32.2944
OLS 8.1662 43128  1.6869 2.1423  4.7327- 0.7533| 5.4254 3.0920  1.748¢ 1.5665 3.0198 — 0.5533
20 SALS 0.0953 3.8881  0.0359 2.6589  1.9651 —0.8244| 11,5764 13.0182 -7.2987 15.2229  15.5189 - 9.6382
TWLS 17.3004 18.7135 —10.7534) 22,4486  22.3368-15.2767 0,7856 3.1720 -0.4324 S5.1611 5.9519 —3.0690
HH 18.6584 17.7933 -9.97900 22.7713  23.8273-17.4494 5.6321 6.6180 —3.0469 10.1287  10.8002 -6.1696
OLS 6.9671 5.2120  4.1824 3.1566  3.9382 1.8703 6.7144 5.1641  3.983Y 4.4860 53099 2.3228
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Table 14 Overall Percentage Bias, Overall Percentage Mcdian.Bias Ranking of
the Asymptotic Standard Errors of Alternative Estimators of the
Mean Response Coefficients in CMR Model 11

MODELNl - SETI MODELI! -  SETH
Sample .
Size Estimator Overall % - . Overall % Overall % Overall %
Bias Rank M Bias Rank Bias Rank M Bias Rank
10 SALS 8 8 4 4
TWLS 4 4 6 6
HH 6 6 8 8
OLS 2 2 2 2
20 SALS 2 2 8 8
TWLS 6 7 3 3
HH 8 7 5 6
OLS 4 4 4 3

% Bias and the overall % M Bias ranking criteria for sample
Size 10. the SALS and the TWLS estimators on the other
hand are respectively least biased estimators in Set I and
Set II on both the overall criteria of the % Bias and the
$ M Bias.

If we combine the results in Table 7, Table 10 and
Table 14 we can conclude that the OLS estimator is the best
choice for sample Size 1.0, while the SALS and the TWLS
estimators are respectively the best choices when parameters
are small and large for sample Size 20.
Bias Analysis of Alternative Estimators of the

Standard Error of the Mean Response Coefficients
in the Trivariate CMR Model IIT.

The summary of the Monte Carlo experiments on the
bias of alternative estimators of the standard error in the

CMR Model III is given in Table 15.
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Table 15 Percentage Bias, Percentage Median Bias and t-statistic of Asymptotic Standard
Errors of Alternative Estimators of Mean Response Coefficients in the CMR

Model I
samote | Bstimates . MODEL lII — SETI ) _ MODEL IIl — SET II
size SE(B,) SE (B;) SE (B,) SE (8,)
% Bias %M Bias t % Bias = %M Bias t % Bias - %M Bias t % Bias %M Bias t
10 SALS 24.9556 28.1560 _10.1311[31.4233 337703 —12.5907 ||33.4248 37.5267 —9.7712 |34.9706 39.9961 —12.1536
TWLS 11.2661 14.6061 _ 4,0435{17.9479 1838608 - 6.5731 || 9.7176 14.0742 3.2650 ;.s% 16.4384 - 5.4265
HH 28.6305 33.1471 _11.3623|34.0141 37,0915 -13.1909 [72.2282 74.4633 «8.83 74.8703 76.7547 —52.2618
oLs 47719  4.4410 15629 2.1888 43186 - 0.7740 | 5.0163 2.9410 1.6225 | 1.6553 27152 - 0.5875
20 SALS 2.4645  4.6586 _ 1.4307| 5.1573 64510 — 2.9001 |[30.3437 31.4567 -25.1542 | 34.8976 35.3571 -31.02359
TWLS 75468 12.3326 _ 2,1765|12.5549 162613 — 3.4725 || 0.7236 0.1625 0.4179 | 3.1243  4.9406 — 1.8637
HH 19.9264 18.6542 _10.3482|24.6172 254554 —18.,8092 || 4.8503 5.0733 - 2.4656 | 8.8961 9.6847 - 5.6118
OLS 6.6056  6.2693 39747 4.0653 42249 2.0229 | 6.5030 5.2398 3.8993 | 4.6282 0.9631  2.3972
50 SALS 6.8513  7.8302 _ ¢.7427|15.4180 150910 -15.8525 _
TWLS 6.8527 8.3649 _ 6.7560 G.w%.q 15.8903 -15.8142
Not -Available
HH 9.8538 11.5019 _ g.2088| 16.8958 17.3086 —18.3476
OLS 3.1022  3.5394 _ 3.1344| 9.2798 10.8604 - 6.5634
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An examination of Table 15 shows that in most cases
on the % Bias and the % M Bias criteria the least biased
estimators of the standard eérror are different for the two
regression coefficient estimates (i.e. §1 and §2). There-
fore, we will choose the least biased estimator among alter-
native estimators on the overall % Bias and overall % M

Bias ranking criteria, tabulated below in Table 156.

Table 16 Overall Percentage Bias, Overall Percentage Median Bias Ranking of
Alternative Estimators of Standard Errors in the CMR Model 111

MODELIII - SET]I MODEL 11 ~ SETIH
Sample .
Size Estimator Overall % Overall % Overall % Overell %
Bias Rank M Bias Rank Bias Rank M Bias Rank
10 SALS 6 6 6 6
TWLS 4 4 4 4
HH 8 8 8 8
OLS 2 2 2 2
20 SALS 3 3 8 8
TWLS 6 6 2 3
HH 8 8 5 5
OLS 4 3 5 4
50 SALS 5 4
TwLs 5 6 Not Available
HH 8 8
OLS 2 2

An examination of Table 15 and 16 will show that the
conclusions on the CMR Model TIT regarding ranking of the
alternative estimators of the standard errors of the mean

response coefficients are upheld again for sample Size 10



and 20. Furthermore if we combine the results in Table 8,
Table 1l and Table 16 we can once again conclude that the
OLS estimator is the best choice for sample Size 10, while
for the sample Size 20 the SALS is the best choice if the
parameter values are 'small' and the TWLS is the best choice
if the parameter values are 'large'.

On the basis of the t-test for sample Size 50, the
alternative estimators of the standard error of the mean
response coefficients are all biased at .05 level of signifi-
cance. However the OLS estimator of the standard error is
the least biased estimator on the basis of the overall %
Bias and overall % M Bias ranking in Table 16. Further, if
we combine the results in Table 9, Table 11 and Table 16,
the OLS may not be a bad choice considering the cost of
computation. However, if we could evaluate the bias of
standard error of mean response and correct it,the SALS ox

the TWLS would be preferable to the OLS estimator.

v.1l.3 Estimation of the Variance of Random Coefficients

Estimation of the variance of random coefficients
(variance for short) is an important aspect of the estima-
tion and the hypothesis testing in the linear regression
model with random coefficients. The variances are required
to estimate the mean response coefficients efficiently (ex-
cept in the porportional CMR Model I and OLS estimator) and

to estimate the str.idard errors of the mean response coeffi-
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cients. Besides, the values of the variances influence our
faith in the specification of the model and the quality of
data.

In this section we shall study the Sampling proper-
ties of the three estimators of variances. We are interested
in studying the bias ang efficiency properties of the
variance, and the bias of the standard error of variance for
alternative estimators. In the CMR Model I, such an analysis
Seems straight forward on the lines of analysis of the
sampling properties of alternative estimators of the mean
response coefficients. Thig is because the CMR Model I has
no problem of negative estimates of variances. The possi-
bility that some of the estimates of the variances be
negative in an estimator makes various descriptive statistics
meaningless and herce an investigation of sample properties
in terms of these statisties is ambiguous.21 Since the
problem of negative estimates of variance exists for the
CMR Model II and the CMR Model III, we will not do the
traditional monte carilo analyses on the alternative esti-
mators of variances for the CMR Models II and ITI. Instead,
we shall measure the efficiency of alternative estimators

by the proportion of negative estimates of variances obtained

2lpor éxample, if negative estimates are obtained
fifty percent of the time (which may well be) then, there is
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in each estimator in the sampling experiments (see Fig. III.1

Chapter III).

V.1l.3.1 Bias Analysis of Alternative Estimators of

Variances of the Random Coefficients in the
CMR Models.

Bias Analysis of Alternative Estimators of Variances
in the Proportional CMR Model T.

Table 17 contains the results of sampling experi-
ments on alternatiﬁe estimators of variances for two sets of
values of parameters in the CMR Model I for sample Sizes 10
and 20. It may be seen that the t-statistic values for all
the estimators of variances lie inside the interval ~1.96
and 1.96 at 5 percent level of significance for sample

Sizes 10 and 20 in both sets. Therefore, all the estimators

of variance are unbiased emperically.

Table 17 Percentage Bias, Percentage Median Bias and t-statistic of Alternative
Estimators of Variances of the Random Coefficient in the CMR

Model 1
MODELI - SETI MODEL! -~ SETI
Sm?1plc Estimator
Size Cocfficient: o % =0.03 Coefficicnt: o?=o0s

% Bias %M Bias t % Bias %M Bias t
10 SALS 90467 25,3898 —1.4344 9.0467 25,3898  —1.4344
TWLS 4,4089 16,4763 ~0.7865 4.4089 16.4763  —(.7865
HI 3.8531 14,1817 ~0.6845 3.8531 14.1817  -0.6845
20 SALS 2.2837 0.2421 0.7484 2.2837 0.2421 0.7484
TWLS 2.0968 0.5926 0.6894 2.0968 0.5926 0.6894

HII 1.8201 14.3280 -0.0009 1.8201 14.3280 -0.0039
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The unbiasedness of variances for the HH estimator
is in concurrence with theoretical results of Chapter III.
However, we did not give a theoretiecal proof of unbiasedness
for the TWLS and the SALS estimators of variance. Hence
the emperical results here are rather important.22

As pointed out earlier, such an analysis is not
feasible for the CMR Model II and the CMR Model III and
therefore, we now go on to discuss the efficiency property

of alternative estimators.

V.1.3,2 Efficiengg Analysis of Alternative Estimators
of Variances of the Random Coefficients.

Efficiency Analysis of Alternative Estimators of

Variances in the Bivariate CMR Model I.

The % RMSE, the % QD and the & E statistics have

been computed for the efficiency analysis of alternative
estimators in the CMR Model I and are given in Table 18.23
The SALS and the TWLS estimators are more efficient than the
HH estimator on the % RMSE, the QD and the % E criteria as
conjectured on theoretical grounds in Chapter III for sample

Sizes 10 and 20.°2%

221t is our belief that the proof of unbiasedness
for the TWLS and the SALS estimators of variances can be
constructed on the lines of Kakwani (1967) arguments.

23The 3 E statistic: throughout section v.1.3.2
has been computed as Vvar (8) SALS or TWLS
X 100.0.
Var (0) HH

241he mH estimator is in fact the Ordinary Least

Squares estimator of variances.
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Table 18 Percentage Root Mecan Square Lrror and the Percentage Quartile

Deviation of Alternative Estimators of the Variances of Random
Coefficients in the CMR Model I

MODEL! - SETI MODEL1 ~— SETII
Sample | pstimator > -
Size Cocfficient: [¢] 1 =0,03 Cocfficient: o 1 =0.5
% RMSE % QD %E % RMSE % QD %E
10 SALS 56.4253 24.5700 125.5321 56.4253 24,5700 125.5321
TWLS 56.2303 21.9571 126.5933 56.2303 27.9571 126.5933
HH 63.7175 28.2943 100,0000 63.7175 28.2943 100.0000
20 SALS 30,5996 21.8376 222.8216 30.5996 21.8376 2228216
TWLS 30.4855 21,5068 224,3038 30.6858 21.5068 224,3038
HH 45,5493 31.0804 100.0000 45.5493 31,0804 100.0000

However, our conjecture that the SALS estimator
is more efficient than the TWLS estimator does not seem to
hold.

The efficiency analysis of the above type is not
meaningful for the CMR Model II and III as pointed out
earlier and for these Models we will carry out efficiency
analysis in terms of proportion of negative variance esti-
mates (See Fig. III.1l).

Efficiency Analysis as Measured by the Percentage
Negative Estimates of tne variances of the Random

Coefficients in the Bivariate CMR Model 1l.24°2

The percentage negative estimators of the variance

of the random coefficients are tabulated in Table 19 for

25gince the sampling experiments for each estimator
is repeated 100 times, the actual and percentage numbers of
negative estimates for each parameter are identical.
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alternative estimators for sample Sizes 10 and 20 in the
CMR Model II.

An examination of Table 19 brings out a few inter-
esting points. The percentage of negative estimates of
variance does not necessarily decrease, as may be expected
intuitively, when parameters values are increased from Set
I to Set II. A priori value of 022 in Set II is 17 times

its value in Set I but the percentage of negative estimates

Table 19, Percentage Negative Estimates of Variances in Alternative Estimators
in the CMR Model II

MODELII - SETI MODELHII - SETII
Sar.nple . Coeffjcient: Cocfficient: Cocfficient: | Cocfficient:
Size Estimator of =0.04 05 =003 cf=15| gg=05
10 SALS 10 48 9 49
TWLS 11 46 9 49
HH 14 45 10 49
20 SALS 3 16 0 30
TWLS 1 17 0 29
HH 7 15 3 30

of variances is increased one and a half times for sample
Size 20, while it remained constant for sample Size 10.

2 in Set II is nearly 40

However, when a priori value of 9,
times its value in Set I, the percentage of negative esti-

mates of variance is decreased for sample Size 20. Therefore
no definite relationship seems to exist between the values of

parameters to be estimated and the percentage of negative

estimates obtained for an estimator.



The rationale for efficiency analysis of alternative
estimators in terms of the number of negative estimates of
variance was given in Fig. III.l of Chapter III. It can be
seen that in Set I and Set II, the overall percentage
negative estimates of variances (the sum of negative esti-
mates of variances of 012 and 022) for each of the SALS and
the TWLS estimators is less than the overall percentage
negative estimates of variances for the HH estimator for all
sample Sizes.26 In this sense the SALS and the TWLS estima-
tors are more efficient than the HH estimator. Further, the
TWLS estimator does marginally better than the SALS estimator
except in the case of Set II for sample Size 10 where it

does as well as the SALS estimator.27

One representive Histogram for estimates of 022

showing the negative estimates is given in Appendix 2.

26Str:.ctly speaking the percentage of negative esti-
mates of variance is to be compared for alternative estimators
for each of two parameters o 2" and 022 separately. If this be
the case then, only the TWLS estimator in Set II will be more
efficient than the TWLS and the HH estimators. Further, it
may be p01nted out that in the proposed comparative eff1c1ency
analysis in Fig. III.1l, Chapter III holds for the smmetric
distribution only. (And perhaps between distributions with
a given skewness.)

27In the CMR Model III, the reverse is true.

28The histogram has been plotted through the use
of HIST routine available in the SSP.
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Efficiencz Analysis as Measured by the Percentage
Negatlve Estimates of Variances of Random Coefficients
in the Trivariate CMR Model IXT,

In table 20 we have given the percentage negative
estimates of variances of random coefficients as obtained
from the sampling experlments on the CMR Model III for
sample Sizes 10, 20 and 50 (for the Set I only).

An examination of Table 20 reveals that many of
the conclusions on the cMR Model II for sample sizes 10 and

20 (refer to the discussion in Table 19) continue to hold.

Table 20 Percentage Negative Estimates of Variances of Alternative Estimators
in the CMR Model III

MODELII - SETI MODELHMI -~ SETII
Sample . . Cocfficient: Cocfficient: Cocfficient: Cocfficicnt:
Size Estimator 0% = 0,04 0% =003 0% =15 % =05
No. of -vc Est. No. of -ve Est, No, of -ve Est. No. of -ve Est,
10 SALS. 10 48 29 41
TWLS' 11 47 9 49
HH 16 45 12 48
20 SALS i 26 0 39
TWLS 2 27 0 40
HII 7 23 ‘5 39
50 SALS 0 15
TWLS 0 15

myr 3 15
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For example, we find that there is no definite relationship
between the pPriori values of variances and the percentage of
negative estimates of variances in alternative estimator for
sample Sizes 10 and 20. Further, on the criterion of over-
all percentage negative estimates of variances, the SALS
(except for sample Size 10 -~ Set II) and the TWLS estimators
are more efficient than the HH estimator for sample Sizes 10
and 20,29

In the Set II the SALS estimator of variance does
worse than the TWLS and the HH estimators for sample Size
10, while the SALS estimator of variance does marginally
better than the TWLS estimator for sample Size 20,

For sample Size 50, the SALS and the TWLS estimators
of variances perform equal while each perform better than the
HH estimator,

It may be seen that as we increase the sample Size
the proportion of negative estimates of variances is

reduced, which we would expect theoretically.

V.l.4 Estimation of the Standard Errors of Variances

In Section V.1.3 we pointed out the difficulty in

obtaining meaningful descriptive statistics such as the root

29The comments in footnote 26 are again relevant here,
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mean square error or the standard deviation in the CMR Model
II and Model III and to carry out the traditional sampling
analysis in terms of moments. It is obvious then that the
bias analysis of standard error of variance can not be done
in the CMR Model II and III because we need the standard
deviations of estimates of variances. In view of this
difficulty we shall do bias analysis for only the CMR

Model I.

V.1l.4.1 Bias Analysis of Alternative Estimators of
the Standard Errors of Variances of the
Random Coefficlents.

Bias Analysis of Alternative Estimators of the Standard
Errors of Variances of the Random Coefficients in the
Proportion CMR Model I.

The results of the sampling experiments on the bias
of alternative estimators of the standard error of variances
of the random coefficients are given in Table 21.

It can be verified from the Table 21 that
the HH estimator of standard error is the least biased
estimator on both the % Bias and % M Bias criteria for sample
Size 10.30 Furthermore, the HH estimator is also unbiased
on the t-test at .05 level of significance for sample Size
10. For sample Size 20, the HH estimator is the only biased

estimator on the t-test at .05 level of significance, while

30yefer footnote 20, Chapter V.
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Table 21 Percentage Bias, Percentage Median Bias and t-statistic of Alternative Estimators
of Standard Error of the Variance of Random Coefficients in the CMR Model 1

MODEL1 - SETI MODELI - SETII
Sample | . ~
Siz.c- Estimator SE (6 i) SE (G % )
% Bias % M Bias t % Bias % M Bins t
10 SALS 23.4162 37.1773 —4.4092 23.4162 37.1773 —4.4092
TWLS 27.4392 40.4774 -5.4532 27.4392 40,4774 ~5.4532
HH 6.9804 23.6948 -1.0822 6.9804 23.6948 -1.0822
20 SALS 7.6878 7.7249 1.5670 7.6888 1.71247 1.5636
TWLS 3.9578 10.9212 0.8357 3.9578 10.9210 0.8357
HH 19.0348 1,9979 3.5100 18,9478 1.9234 3.4960

the SALS and TWLS estimator of standard error of variances

are unbiased.

V.2 Efficiency and Convergence of the ISALS, the
"ITWLS, the IHH Estimators.

In this section we shall discuss the results of
sampling experiments for sample Size 20 on the three iter-
ative estimators discussed in Chapter III. We are interested
in investigating if there is a possibility of improving the

efficiency of the SALS, the TWLS and the HH estimators by

izterating them.31 Furthermore, we want to know whether the

31The SALS, the TWLS and the HH estimators are the
first step in iteration of the ISALS, the ITWLS and IHH es-
timators respectively (see Chapter III).



alternative estimators really converge. We shall study the
efficiency Properties of alternative iterative estimators
of the mean response coefficients in the three models ang
the variance of random coefficient in the CMR Model I in
terms of the % RMSE, the % QD and % E criteria, While the
efficiency properties of alternative iterative estimators of
the variances of random coefficients in the CMR Models II
and III are studied in terms of Percentage negative esti-
mates of variances at each iteration. The convergence
properties of alternative estimators are studied in terms
of the convergence of the mean response coefficients.32
Convergence is defined as follows:

An estimator, Bj, is said to converge at iteration T, if

A

lEj (r+1) - Ej (t) | <6  for all 4 (V.1)

where § is any preassigned small number.

In the study of efficiency and convergence of
alternative iterative estimators in the CMR Models I, II and
IIT we performed respectively three, six and six itera-

tions.33

timates of variance of the random coefficients

2The es
are used to estimate the lnean response coefficients efficiently
and therefore the convergence of the mean response coefficients

is important for estimation.
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V.2.1. Efficiency Analvysis of Alternative Iterative
Estimators of the Mean‘Resgonse Coefficients

in the C Models for Sample Size .

The results of sampling experiments on the effici-
ency analyses of the alternative iterative estimators of
the mean response coefficients in the CMR Models are given

in Table 22 to Table 24.34

Efficiencx Analysis of Alternative Iterative Estimator
of the Mean Response Coefficients in the Proportional
CMR Model I for Sample Size 20,

Table 22 gives the % RMSE, the %QD and the % ®
statistics for each of the three iterations of alternative
iterative estimators of the mean response coefficients,

An examination of Table 22 shows that the ISALS, the
ITWLS and the IHH estimators of the mean response coefficient
are identical and there is no gain in efficiency at any stage
of the three iterations, As pointed out earlier, the SALS,
the TWLS and the HH estimators of the mean response coeffic-
ients are identical to the Aitken estimator in the propor-

tional CMR Model T. Furthermore, the Aitken estimator does

34The ¥ E statistics have been computed as:

Var (5) ITER
Var (0) ITER

[ WS

X 100.0 , § =2, 3, ... 6

throughout this section,



Table 22 Percentage Root Mean Square Error, Percentage Quartile Deviation
and Percentage Efficiency for each of the (hree iterations of
Alternative Iterative Estimators of the Mean Response Coefficient
in the CMR Model I for Sample Size 20

MODELI - SET! MODELI - SETI

s | & -

% E Cocfficient: B, = 0.6 Coefficient: §;, = 10.1

2 1]

= W % RMSE % QD %E % RMSE % QD % E

1 SALS 6,4638 47152 100.0000 1.5676 1.1435 100.0000

2 ISAS 6.4638 4.7152 100.0000 1.5676 1.1435 100.0000

3 ISALS  6.4638 4.7152 100.0000 1.5676 1.1435 100.0000

1 TWLS 6.4638 4.7152 100,0000 1.5676 1.1435 100.0000
ITWLS  6.4638 4.7152 100.0000 15676 1.1435 100.0000

3 ITWLS  6.4638 4.1152 100.0000 1.5676 1.1435 100.0000

1 ~HH 6.4638 4.7152 100.0000 1.5676 1.1435 100.0000

2 IHH 6.4638 4.7152 100.0000 1.5676 1.1435  100.0000

3 IHH 6.4638 4.7152 100.0000 1.5676 1.1435 100.0000

not depend on the knowledge of variance at all and it has

BLU Propérties.35 Therefore, it is expected that there

will be no gain in efficiency in iterating alternative

mators of the mean response coefficients.

35See footnote 5, Chapter VI.

esti-
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Efficiency Analysis of Alternative Iterative Estimators of

the Mean Response Coefficients in the Bivariate CMR Model
TT for Sample Size 20.

The results of sampling experiments on alternative
‘Iterative estimators in the Bivariate CMR Model II for
sample Size 20 are summarized in Table 23. An examination
of results will show that except for the IHH estimators in
Set II there is an improvement in efficiency on the % RMSE
and the % E criteria at one or more stages of iterations.
But the fluctuations in efficiency between iterations are
often large and there is no systematic trend for convergence
(we will come to convergence later).36

It may be recalled that the SALS estimator in Set
I and the TWLS estimator in Set II were ranked second in the
CMR Model II. The gain in efficiency on the % RMSE and the
% E criteria in iterating these two estimators is rather
small and it shows up only at the sixth iteration. Further,
the ISALS (I=6) and the ITWLS (I=6) estimators are respec-
tively less efficient than the OLS estimators on the % RMSE
criterion in the CMR Model II (see Table 5 for the efficiency

of the OLS estimator).

361t will be shown that convergence is achieved in
80 to 90 percent of the cases for 6§ = 0.0001l. The fluctua-
tions in efficiency results from the fact that in 10 to 20
percent casesthe convergence is not achieved,which is
pOSSlbly due to the problem of negative estlmates of vari-
ances in the CMR Models II and III.
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Table 23  Percentage Root Mean Square Error, Percentage Quartile Deviation and Percentage
T Efficiency for each of the six iterations of Alternative Iterative Estimators of the
Mean Response Coefficients in the CMR Model II for Sample Size 20

MODELII - SETI MODELII - SETII
Iteration} Estimator Coefficient P 1 = 0.8 Cocfficient: B 5 = 0.6 Cocfficient: B 1 = 30.2 Cocfficient: B 2 = 10.1
%RMSE | %.QD %E %RMSE | %QD | %E %RMSE | %QD %E %RMSE | %QD %E
1 SALS 15.4365 10.9365 100.0000 22,8449 16.5231 100.0000 2.5112 1.5447 100.0000 7.8209 5.2280 100.0000
2 ISALS 24.6246 11.0499 39.3502  39.5809 16.9666 33.3625  2.2289 1.5158 127.0538 6.9840 5.1085 125.5168
3 ISALS 16.6644 10.0505 85.8879 24.4564 17.0783 87.3412  2.5312 1.5525 98.4277 7.9124 5.2609 97.6971
4 ISALS 16.5915 10.2369 86.9937  25.1899 16.6433 82.6755  2.2648 1.5440 123.2378 7.0929 5.1372 121.9277
5 ISALS 18.8500 10.2361 67.2083 27,3687 16.9323 69.8314  2,5317 1.5568 98.3864 7.9136 5.2646 97.6638
6 ISALS 15,1773 10.7778 103.5358  22.5245 15.8527 102.9510  3.8497 1.5774 42,6996  13.0278 5.2608 36.1703
1 TWLS 18.2484 10.9064 100.0000 27.5144 16.9850 100.0000 2.2616 1.6814 100.0000 7.0477 5.2455 100.0000
2 IT\WVLS 33.4486 11.0791 29.6612 517106 17.5103 28.1957 24.2893 15.4815 0.8759  86.7298 51.8655 0.6671
3 ITWLS 19.5917 11.0266 86.6299  29.4463 - 18.0304 87,1324  2,26747 1.5957 99.5900 7.1359 5.2707 97.7173
4 ITWLS 21.6156 11.0211 714544 32,6979 17.5516 70,9581  2.2702 1.5393 99.2738 7.0926 5.2594 99.7743
5 ITWLS 16.2231 11.0151 125.7203  24.0061 17.4788 130.4107  2.2633 1.5957 99.9666 7.1196 5.2983 98.1349
6 ITWLS 15.9686 10.8766 129.9606 24.2028 17.0000 128.4943  2,2340 " 1.5471 102.5887 7.0110 5.1570 101,1633
1 HH 18.1422 11.4560 100.0000 27.9744 16.8337 100.0000 2.3371 1.6681 100.0000 7.4232 5.3423 100.0000
2 IHH 18.9635 11.7593 91.4078  29.7067 18.2080 88.5096  2.3812 1.6872 96.3505 7.6465 5.4014 94,2883
3 IHH 19.0046 12.4351 91.2667 28.4600 18.1612 96.7819  2.5711 1.7181 83.0226 8.3676 5.2747 79.9517
4 IHH 16.4626 12.4673 1213393 24.0980 18.1281 125.0769  2.9790 1.7479 61.7962 9.9231 5.4055 56,2338
5 IHH 17.1222 12.8597 111,7866  26.5341 18.1093 110.6046  2.6384 1.6968 75.6210 8.4525 5.3528 77.1964
6 IHH 16.9194 12.8597 114.486 26.2050 18.1453 113.4009 2.8178 1.7181 68.967 9.8039 5.3674 56.3661
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The gain in iterating the SALS estimator in Set I
and the TWLS estimator in Set II is negligible both on the
¥ RMSE, the % QD and the % E criteria in comparison to in-
crease in cost of computation. There is a gain in efficiency
in iterating the TWLS and the HH estimators in Set I on the
% RMSE and the % E criteria. However, the ITWLS and the
THH estimators rank lower in efficiency than the OLS and the
SALS estimators. If the % QD is the criterian of efficiency,
then there is loss in efficiency iterating the TWLS and the
HH estimators in Set I.

In Set II, there is gain in efficiency in iterating
the SALS estimator on the % RMSE and the % E criteria. But,
the ISALS estimator ranks lower than the TWLS and the OLS
estimators on the % RMSE criterion. There is a loss in
efficiency in iterating the HH estimator on all the three
criteria.

Efficiency Analysis of Alternative Iterative Estimators

of the Mean Response Coefficients in the Trivariate CMR
Model III for Sampie Size 20,

In Table 24 we have summarized the results of samp-
ling experiments on alternative iterative estimators of the
mean response coefficients in the Trivariate CMR Model IIIX
for sample Size 20. The results are similar to the results
in Table 23. For instance, in Set I, there is a slight gain
in efficiency in iterating the SALS estimator on all the

three criteria. The ISALS is less efficient than the OLS
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Table 24  Percentage Root Mean Square Error, Percentage Quartile Deviation and Percentage
Efficiency for each of the Six iterations of Alternative Iterative Estimators of the
Mean Response Coefficients in the CMR Model IiI for Sample Size 20

MODELIII - SETI MODELHI - SETII
Iteration| Estimator = ) = = =
Coefficient: B 1 = 0.8 Coefficient: B 5 = 0.6 Coefficient: B 1 = 30.2 Coefficient: 9 = 10.1
% RMSE % QD %E % RMSE % QD %E % RMSE % QD % E % RMSE % QD %E
]
1 SAlS 16.3824 10.9341 100.0000  20.3698 20.3698 100.0000 3.4163 1.6837 100.0000 12,7522 6.4502 100.0000
2 ISALS 15.9065 10.0865 106.1829  18.6421 18.6421 105.2876  3.0850 1.6469 121.1528  11.82075  6.2316 115.8732
3 ISALS 16.5178 10.6463 98.3592  19.6057 19.6057 98.3961  2.4367 1.6159 195.7374 8.7730 6.2307 210.3016
4 ISALS 15.9794 10.6462 105.1705  19.3480 19.3480 103.6658  2.3824 1.6261 204.7769 8.6439 6.2306 216.6292
5 ISALS 16.3586 10.6462 100.2889  19.6045 19.6045 100.2448 11.7864 1.6570 8.4529  47.1078 6.4386 7.3600
6 ISALS 15.9943 10.6462 104.9686  19.3822 19.3822 100.83604  2.4000 1.6241 201.7045 8.7162 6.3226 212.9501
1 TWLS 17.6301 10.9960 160.0000  30.3186 20,2310 100.0000  2.3609 1.6751 100,0000 8.5349 6.2224 100.0000
2 ITWLS 16.5223 10.7414 113.7136  28.2039 19.3412 115.3680 97.6504 0.2697 297.3020 91.79802  1.0925 309.7570
3 ITWLS 18.2687 10.9267 93.0926  30.7556 20.3232 97.1327  2.3735 1.6309 98.9872 8.6023 6.2011 98.4853
4 ITWLS 17.9807 10.6430 96.3215  31.2053 19.6962 94.3872 24161 1.633s 95.4033 8.8562 6.3019 92.7765
] ITWLS 16.6294 10.9316 112,225 28.4703 20.0469 113.1998  2.5600 1.6682 85.4514 9.3173 6.3403 84.3659
6 ITWVLS 22.5059 10.6415 61.4510  38.0232 20.0469 63.6753  2.3768 16240 98.7288 8.6160 6.2011 98.1890
1 HH 19.1364 12,8048 100.0000 34.2580 20.9528 100.0000 2.4656 1.8303 100.0000 9.1060 6.5069 100.0000
2 1HH 16.6583 11.6105 131.5914 28,8747 20.4939 140.4315  3.1658 1.8208 36.6955  12.6731 6.6765 51.8189
3 IHH 20.3966 13.1206 88.1994 36,2054 20.9090 89.7814  2.6766 1.8078 84.8593 9.8989 6.6429 84,6304
4 IHH 17.6340 12.8764 117.1883  30.4077 21.2685 126.3636  2.4967 1.8543 97.9048 9.3532 6.5141 95.2078
5 IHH 116.650 129.9350 27106 219.3228  219.5990 24522 2,3893 1.7592 106.5202 8.8186 6.1726 106.6455
6 IHH 21.3602 12,7882 80.5101 37.6139 21.8833 83.3126  2.4941 1.8351 47.7284 9.1459 6.6685 99.1293
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estimator on the % RMSE criterion. On the % QD criterion
the ISALS is more efficient than the OLS estimator. How-
ever, cost of computation far outweighs the gain in efficiency
in iterating the SALS estimators on all criteria. But, the
gain in efficiency still leaves the ITWLS and the IHH
estimators less efficient than the OLS estimator on the %
RMSE criterion. On the % QD criterion, the ITWLS (I=6) is
more efficient than the ITWLS (I=4), the IHH (I=2) estimators.

In Set II, there is no gain in efficiency in iter-
ating the TWLS estimator on the % RMSE criterton. It may be
seen that the ITWLS (I=2) estimator does badly on the % RMSE
criterion while it performs well on the % E criterion. This
is due to the large bias in the ITWLS (I=2) estimator,3’ The
IHH estimator perform badly in comparison to the HH estimator
on all criteria.

In conclusion, iterating the SALS, the TWLS and the
HH estimators may improve the efficiency of the estimator,
but the gain in efficiency does not affect the ranking re-
lation among alternative estimators. The gain in efficiency
in some cases is often marginal, and hence we cannot justify
iterating the alternative estimators when the increase in

computing cost is taken into consideration.

3Tye plotted a histrogram for the ITWLS (I=2)
estimator. The histrogram had large numbers of observations
in one string while a few observations appeared as outliacrs.



V.2.2. Efficiency Analysis of Alternative Iterative
Estimators of varilances of Random Coefficients
in the CMR Models for Sample Size 20.

The results of sampling experiments on alternative
izterative estimators of variances in the CMR Models are
given in Table 25 to Table 27.

Efficiency Analysis of Alternative I-terative Estimators

of Variances of Random Coefficients in the Proportional
CMR Model I for Sample Size 20.

The % RMSE, the % QD and the % E statistics have
been computed for each of the three iterations in the pro-

portional CMR Model I and are given in Table 25, Both in

Table 25 Percentage Root Mean Square Error, Percentay . Quartile Deviation
and Percentage Efficiency for each of the three Iterative of
Alternative Iterative Estimator of the Variance of Random Coecffi-
cients in the CMR Model I for Sample Size 20

150

MODELI! -~ SETI! MODEL1 - SETII
. - 2
lteration | Estimator Cocfficient: O 12 =0.03 Cocfficicnt: o1 =0.5
% RMSE % QD %E % RMSE % QD %E
[ SALS 30.5996 21,8376 100.0000 30.5996 21.8376 100.0000
I I SALS 29.2217 18.8600 109.1700 29,2217 18.8660 109.1800
1 I SALS 29,2217 18.8600 109.1700 29.2217 18.8660 109,1800
1 TWLS 30.4855 21,5068 100.0000 30.4855 21,5068 100.0000
I ITWLS 29.3468 19.4001 107.4600 29,3468 19.4001 107.4000
It ITWLS 29.3468 19,4001 107.4600 29.3468 19.400° 107.4600
1 HH 45.5493 31.0804 100.0000 45.5493 31.0804 100.0000
11 111 41,7797 33.8213 93.2600 41,7797 33,8231 93.2600
1 1K 41,7797 33.8231 93,2600 471.7797 33.8213 93.260000




get I.and Set II there is a gain in efficiency in iterating
the SALS and the TWLS estimators of variances but there is

a loss in efficiency in iterating the HH estimator.

SALS and the TWLS all possible gain in efficiency is

realized at the second iteration.

There is a systematic

trend for convergence in all of the three estimators.

results in the second and third iterations are identical £for

each of the ISALS, the ITWLS and the IHH estimators on all

criteria.

Table 26 . Percentage Negative Estimates in Alternative Estimators of the

Variances of Random Cocfficicnts in the CMR Model I for
Sample Size 20

In the

MODELII - SETI MODELII - SETH

Herats Estimat Cocfficient: Cocfgcicnt: Coeffgcicnt: Cocfﬁzcicnt:
eration  (Estimator = = = =

0% =0.04 5 =0.03 oy=15 gy =0.5

% -ve 3% % -ve 8’% % -ve 8% %-vca %
1 SALS 3 16 0 30
2 [ SALS 3 16 0 30
3 ISALS 5 18 0 30
4 1SALS 3 17 0 30
5 1SALS 4 16 0 30
6 ISALS 3 16 0 30
1 TWLS 1 17 0 29
2 ITWLS 3 17 0 31
3 1TWLS 2 17 0 30
4 1TWLS 3 16 0 30
5 ITWLS 2 18 1 29
6 ITWLS 2 16 ] 30
1 fH 7 15 0 30
2 IHH 10 15 0 30
3 1HH 9 15 2 30
4 1HH 8 15 3 30
5 [HH 10 15 4 30
6 [1H 10 15 2 29
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Efficiency as Measured by the Percentage Ne ative Estimates
of variances of Random Coefficients in the Bivariate Model
I7 for Sample Size 20.

The results of the sampling experiments are sum-—
marized on the iterative estimators of variances in Table 26.
There is no gain in efficiency in iterating the SALS, the
TWLS and the HH estimators, on the criterion of overall
percentage negative estimates of variance.

Thus, on the basis of sampling properties of the
ISALS, the ITWLS and the IHH estimators of variances in the

CMR Model II, the iterative estimators are not recommended.

Efficiency as Measured by the Percentage Negative Estimates
of variance of Random Coefficients in the Trivariate Model
ITII for Sample Size 20.

The percentage negative estimates of variance (%
-ve 312 or % -ve 322) are tabulated for the alternative
iterative estimators in the Bivariate CMR Model III in
Table 27. On the criterion of overall percentage negative
estimates of variances, the ITWLS and the IHH estimators in
Set I are more efficient at one or more stages of iterations
than the TWLS and the HH estimators respectively. Similarly,
in Set II, the HH, thé TWLS and the SALS estimators do
better when iterated. But the decrease in percentage nega-
tive estimates of variance in all cases is less than two
percent. In many situations, this small gain in efficiency

may not be justifiable in terms of increased cost of itera-

tions. It may be noted that in Set I, the overall percentage



Table 27 Percentage Nepative Lstimatcs in Alternative Iterative Estimates
of the Variances of Random Cocfficients in the CMR Model
III for Sample Size 20

MODEL IIT — SETI

MODEL III - SET 11

. . Cocfficient: Cocfficient: Cocfficient: Cocfficient:
Itcration Estimator o ? =0.04 g ;_:0.03 G% =15 G :;. =05
&2 &2 &2 ~2
%-ve 0 7 %ve T4 %-ve O] %-ve Oy

1 SALS 1 26 0 39

2 ISALS 3 26 0 38

3 1SALS 4 25 0 38

4 ISALS 5 25 0 7

5 ISALS § 25 0 37

6 ISALS 5 25 0 37

1 TWLS 2 27 0 40

2 I TWLS 3 26 0 38

3 I'TWLS 3 26 0 38

4 1 TWLS 2 27 0 38

5 1TWLS 2 26 0 38

6 ITWLS 3 26 0 38

1 HH 1 23 S 39

2 1HH 9 20 S 38

3 THH 11 21 6 38

4 1HH 10 21 6 a8

5 1HH 13 21 6 38

6 I HH 9 21 5 38

negative estimates criterion, the ITWLS (I=5) and the IHH

(I=2) estimators have least number of negative estimates

among six iterations and yet each rank lower than in the SALS

estimator.

In Set II the ISALS (I=4) is more efficient than

the ITWLS (I=2) estimator anrd both estimators are more

efficient than the IHH estimator.

v
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V.2.3 Convergence of Alternative Iterative Estimators
of Mean Response Coefficients in the CMR Models.

The test of convergence was described in Section
38

V.2. We may choose the value of 6§ equal to 0.0001. The
results of the convergence test on alternative estimators
in the three models for sample Size 20 are described below:
Convergence of Alternative Iterative Estimators of the

Mean Response Coefficients in the CMR Model I for Sample
Size 20.

Alternative iterative estimators in the proportional
CMR Model I converge (both in Set I and Set II) at the first

. . . 9
iteration in 100 percent cases.3
Convergence of Alternative Iteratlve Estlmators of the

Mean Response Coefficients in the CMR Model 11 for
Sample Size 20.

The convergence test was run at the fifth iteration
for alternative iterative estimators in the CMR Model IT
for sample Size 20. Convergence was achieved in 80 to 90
replications out of 100. Percentage convergence in the ITWLS
and_ the ' ISALS estimators was always higher than in the IHH
estimator. The ISALS and ITWLS estimators performed equal in

cerms of percentage convergence.

38phe value of § = 0.0001 seems 'appropriate for most
economic experiments. In sample cases another value of §
{(i.e. § = 0.00001) was tried and convergence was achieved in
70 to 80 replicatioms out of 100.

39This result is true for all values of § up to 7
decimal points.
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Convergence of Alternative Iterative Estimators of the
Mean Regponse Coefficients in the CMR Model III for
Sample Size 20.

The percentage convergences in the two sets in the
CMR Model III are similar to the CMR Model II.

In conclusion, the alternative estimators of mean
response coefficients generally converge within five itera-

tions.40

401n Tables 23 and 24 the iterations seem to get
worse and then get better and then sometimes get worse
again. In short there seems to be a cycling process. This
cycling process in efficiency arises for the non covergence
of 10 to 20 percent cases. A more stringent test for con-
vergence would be to verify

Isj (t+2)-Bj (t+l)|§[Bj (t + 1) - Bi(t) |

for all t after say t = 5. This was broughtdgo my notice by
Professor T. M. Brown. Unfortunately,we didfhpply this test.
We therefore caution the reader about the conclusions re-
garding convergence which hold only within the domain of the
test of convergence used for the present study.



CHAPTER VI

STEPWISE LEAST SQUARES APPROACH TO ESTIMATING PARAMETERS

IN THE REGRESSION MODEL WITH RANDOM COEFFICIENTS

ANALOGOUS TO THE MAXIMUM LIKELIHOOD ESTIMATORIL
VI.1l., INTRODUCTION

In Chapter III we discussed several methods of esti-

mating regression models with random coefficients. All
these methods provide estimates of the variances and the
mean response coefficients. However, there is the difficul-
ty common to all the methods that the estimates of variances
may sometimes turn out to be negative. Some ad hoc methods
of overcoming this shortcoming were also pointed out. For
example, it has been suggested that negative estimates be
replaced by zeros. Hildreth and Houck (1968) have shown
that the restricted estimator will be biased but will have
lower mean square error than the corresponding estimator
without zero restrictions.2 Alternatively it has been

suggested that a programming approach be applied to the

l'I'he idea emerged in the course of discussion with
Professor A.L. Nagar on the problem of negative estimates
of variances. I am thankful for his guidance in prepara-
tion of this Chapter.

2This procedure was applied in a few sample runs and

the estimates of the mean response coefficients were obtained.

These estimates were not always meaningful, We did not,
however, carry out extensive test of this procedure.
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pProblem using the restriction that ojzzo, for all j. This
approach has the shortcoming that the Precision of the esti-

mator cannot be measured. Further, we argued that in

a few efficient estimators of variances, However, as has

been said earlier, we cannot eliminate the pPossibility of

getting negative estimates through this approach. In the
present Chapter we will Propose a 'step-wise least squares
approach' to the problem, an approach which does in fact
pProduce a guaranteed positive estimate of variances,

VI.2. MAXIMUM LIKELIHOOD ESTIMATORS OF THE MEAN RESPONSE
COEFFICIENT AND THE VARIANCE IN THE BI-VARIATE RE-
GRESSION MODEI, WITH A RANDOM COEFFICIENT
The bivariate regression model with a random coeffi-

cient has some very interesting pProperties. The model gives

2 guaranteed positive estimate of the variance by all

methods discussed in Chapter III. Further, the problem of

non~linearity in the parameters of the normal equations
does not arise in this special case.3
We may write the bivariate regression model with

random coefficients, on the lines of model (IT.15) as

3In this section we have included the discussion on
the MLE only because other estimators were found not suit-
able for the solution to the problem of negative variances
as discussed in this Chapter.
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y(t) = 8,(t) x,(¢) , £=1,2,..,.,T.. (VI.1)

where y(t) is the t-th observation on the dependent variable
and xl(t) is the t-th observation on the explanatory

variable. Bl(t) is a random regression coefficient such

that4

By (8) = Fl e (k) oL L. (VIL2)

where the assumptions (II.7) - (I1.9) hold, for j = 1.

Substituting (VI.2) into (VI.1l), we have

y(t) = By x;(t) + ny(£) y £ =1, 2, ..., T (VI.3)
where
ny (t) = e, () x4 () P t=1,2, ..., T (VI.4)
such that
By () = o for all t, and Var n(t) = ¢,2(t) = 0,2 2(8),
fort=1,2, ..., T ... (VI.5)

Under the assumption that the nl(t)'s are independently

distributed with the means and variances given in (VI.5), the

joint distribution of ny (1), ng 2) , .., Ny (T) is:
2
T n (t)
1 =-1/2 1
e e o« o o « . (VI.6)
@M% 1 ¢, (1) =1 ¢, (t)
t

40nce, again, we will restrict the discussion to the
CMR model only without any loss of generality.
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where ¢l(t) ?\FIZ(t)"‘*' fort=1, 2, . . ., T.

Further, the log likelihood function in the para-

meters Ei and 012 can be written as

T
=2 _ T 1 2 2
L(Bl, oy I Y xl) = 5 log 27 5 E=1log xl (t) oy
1T lye) - B ox(e)1?
- 'é'z 2 2 . . . . . (vIl7)
t=1 Xq (t) gy
because the Jacobian of the transformation |J| = 1
or
T T
= - Z -1
L=-351log 2r - 5 ] 1

2 17 2
£=1 log xl (t) 3 £=1 log oy
2

T [y(t) - §1 X, (£)]
5 . . o (VI.B)

N 1=

_ 2
t=1 Xq (t) oy

The normal equations for parameter estimator §1 may

then be obtained as

5L _ _ 1 % [y(t) - 21 xl(t;].zl-xl(t) _ 0 (VI.9)
‘_—'~ 2 _ m - - - L ]
BBl =1 Xy (t) gy
or
T |y(t) - B, x (t)]
1 171
bum— = 0 . . L] - . (VI.lO)
3,2 L, D
or
B = X % (t) (VI.11)
l — T t=l #‘_t') . . . » - - . - . - .
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because 012 is finite by assumption.

It is clear from (VI.ll) that §1 is independent of
the estimate of variance for the simple proportional CMR
model (VI.l)..5

Similarly the normal equation for 812 is given

as
" 2
T [y(t) - B, x,(t)]
5L T 1 1 ¥ 1
W2 T BE 2 x (o) 5%
or
5 2
T [y(t) - By x,(%)]
- T+ g ) 1 =0 ... (VI.13)
25, 2 1% £=1 %, % (£)
oxr
” 2
T [y(t) - By x,(t)]
5,2 =% i1 e e e e e .. (VI.18)

_ 2

because 012 is finite by assumption.

5In fact the estimator (VI.ll) is also the Aitken esti-

mator of f; for the model (VI.3). This can be seen easily
from the fact that the variances of the disturbances nl(t)'s

as given in (VI.5) are proportional to xlz(t)'s. Thus the
Aitken estimator of El can be obtained by deflating the
model (VI.3) by xl(t)'s and then applying the OLS, i.e.

y(t)/x (t) = By + n} yt=1,2, ..., 01T

where n;(t) = ny(t) / x (%),

It is clear that the OLS estimator of B, in above_is
(VvI.1ll) because E ni(t) = o for all t and Var ni(t) = ci for

all t. Now the estimator is independent of value of 612. Far-

ther, the HH, the TWLS and the SWLS estimators of El are
identical with (VI.1l1).
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It is clear from (VI.ll) and (VI.1l4) that explicit
solution of the normal equations for the simple bivariate
model (VI.3) is obtainable and the problem of non-linearity
in parameters, as in the multivariate case, does not arise.
Further, the estimator (VI.1l4) of variance is guaranteed
to be positive. It is this interesting feature that we
will exploit to define an estimator with desirable proper-

ties.,

vi.3. STEP-WISE LEAST SQUARES ESTIMATOR
The step-wise least squares technique is well known.6
We will discuss below some aspects of this technique which

are relevant for our purpose . Consider a simple model

Y = xlel + x2 82 + u' . - - . - [] . (VI.15)
where
v (1) ?xl(l)- ?xz(l)-
Yy=1. r X = . ¢ Xy =, . . . (VI.16)
|y (1) | | %, (T). |%5(T) |

Bl and 82 are scalars. Further
u(l)

u = he . . - L) - L] - . . . . (VI-l'?)

6Goldberger (l961).
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such that
Eu = O . . L] L] - - . - ] ] - (VI.].S)

and

Euu' = U ITxT L] - L) . Ld * . - L (VI ] 19)

In the first step of the stepwise least squares pro-

cedure we regress y on Xy

Y = lel + ul - . L] L L] L] L] - L (VI.ZO)

It follows that

u, = x282 + u and Eu1 = x282 #F o0 . . . . (VI.2]1)

and therefore, the OLS estimator applied to (VI.20) will
yield an estimator

By= (x; "x)Fx Yy .. .. ... (VI.22)

of Bl' which is biased and inconsistent.
The next step requires that we regress the OLS resi-
duals,

Y = y - xl Bl * & 2+ e e« * + = @ (VI-23)

on X2

o _
y = x262 + nz « *¢ & 0 e e + = @ (VI-24)

where up is the disturbance term defined in (VI.26) below,.

Since the true model is given in (VI.1l5), subtracting

xlsl from both sides of (VI.15), we get

~ ~

y - x181 = xzsz + (xlsl + u - xlBl) e« « . (VI.25
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Therefore,

N =% (B =B +u . ..... (VI.26)

The OLS estimator of 82 in (VI.24) is given as

32 = (x'2 xz)"l x'2 y° e e s e e s (VIL27)

It is easy to see that the estimator 82 is biased

and inconsistent (as Bl is biased and inconsistent) be-

cause
E(nz) Z O 4 4 s s e o o . » (VI.28)

Further, since

Ey° = E(y - xlgl) e e e e e e e e e e e e . (VIL29)
(because (VI.23) holds)
= Ey ~ X1 B El
= xlﬁl + x262 - xl(xl 'xl)_l xl'(xlﬂ1 + xzﬂz)
(because (VI.22) and (VI.15) hold)
= x,8, - xl(xllxl)—l X, %58,
=[xy = % 0y "2 7 x) "%,
or
EY” = %57 By o e o e e e e e e e e e e . . . (VI.30)
where

Xy~ = Xy - Xg P oot v e e s o . (VI3

and P is the OLS estimator of the auxilliary regression coef-

ficient in X, = le + disturbance, i.e.
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S -1
P - (xl'xl) x1|x2 - - L[] L] L] L] (VI.32)

It follows from (VI.30) that in order to obtain a
consistent estimator of B2 we should regress yo on x2° ra-
ther than y© on xp, @as in (VI.24)) because the disturbance
term in the regression

y° = xzosz + disturbance, . . . . . (VI.33)

will have zero expected value. The vector x2° may be inter-
preted as the vector of the observations on the explanatory
variable Xyr after it has been corrected for relationship
between the two explanatory variables.

The OLS estimator of By in (VI.33) is given as

A

(o]
By

t - ]

The estimator 820 is unbiased and consistent, for

1 - L]
E B,° = (x2° x,) 1 x2° Ev® .. .. . (VI.35)

(" ° x2° is non stochastic)

It follows from (VI.30) then,

1 - 1
E 32 - (xzo xzo) 1 x2o x2o 52

i.e. 820 is an unbiased estimator of 82. Further

Plim ~1

T>co

5 0 _ Plim

Ba” = e [(x2°'x2°) (x2°'y°)] . .« . (VI.37)
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_Plim [{1 _ o' _o}]-1 (1 _ o' oo
= 2hn (1'% (3 5°'°)]

- Plim [f1 o' o}-1] Plim [1 o' o
T-r0 T 72 T2 T [T 72 ¥

Plim (1 o' o|-1l _ ¢-1 .
Let [T Xy X ] = ], o be bounded, then it follows

T
x2 x2

Plim 3 o _
that .. By = B3

because
Plim 1l [oJe] Imt 1 o' o
Tw (T xz y ] T'm E XZ E Y - - . . - . (VI.38)
_Lmt 1 o' o
= P T *2 (x5785)
(*.° (VI.30) holds)
Lmt

_ 1 o'_ o
T Mo [T X2 Xg ]BZ
Plim (1 O'xzo]“l = E'lo o Py assumption, it

Now, since

T-+c0 T %2

i |
follows then that Liim™ (1 o 0] _ Lmt [1 o

o
T |T X2 ¥ | T mae |T ¥2 *2 ]Bz
=), o, o.
*2 ¥
Plim 2 o _
Thus, from (VI.37) and (VI.38), we have Toveo By~ = B,

Q

N
i.e. estimator 62 is consistent.

Further since,

~

E Bl

(xl’xl)-1 X' BY oo e e 0. (VI.40)

(xl'xl)_l xl'[xlsl + x282]



=8y + G T Xy 'y 6y
=g, + P 8, [°." (VI.32) holds],

o

we may obtain an unbiased and consistent estimator Bl for

Bl as

Bl = Bl - P 82 . . . . L] [ . - . (VI.41)

where Bl' P and Bzo are defined in (VI.22), (VI.32) and
(VI.34) respectively.7
vI.4. STEP-WISE ESTIMATOR OF THE MEANS AND VARIANCES IN
THE REGRESSION MODEL WITH RANDOM COEFFICIENTS ANALO-~
GOUS TO THE MAXIMUM LIKELIHOOD ESTIMATOR
In this section we shall investigate the possibility
of applying the maximum likelihood procedure in step-wise

fashion to a linear regression model with random coefficients.

Consider a simple regression model with random

coefficients

y(t) = Bl(t) xl(t) + Bz(t) xz(t) P £t=1,2, ..., 7T
(VI.42)

such that

Bj(t) = B'j +ej(t) st =1, 2, « ¢« 1 T; J=1, 2 (VI.43)

E Bj(t) = Ej ; for all t; 3 =1, 2, . (VI.44)

7Goldberger (1964) has shown that Blo and 820 are

in fact the true OLS estimators of Bl and 82 in combined
(True) model (VI.1l5).
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Var Bj (t) = Uj Fi J = l' 2’ - - . [} . . . L . . .
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. (VI.45)

E (Bj(t) - Ej) (Bj'(t') - Ej') =0 4 4 e e s e e s o« (VI.4G)

if 3 # 3" or t # t!

Substituting (VI.43) into (VI.42), we have

y(t)

where

El xl(t) + Ez xz(t) +n(t), t=1, 2, . . ., T (VI.47)

n(t) = el(t) xl(t) + ez(t) xz(t) ,t=1,2, .. ., T (VI.48)

such tbat
En(t) =0 , for all t . . . . . « (VI.49)
and
var (n(£)) = ¢2(t) = %2 () 0. + x,2(8) 0,%, . . . . (VI.50)

Now suppose, in the first step of the step-wise pro-

cedure, we regress y (t) on xl(t) as

y(t)

where

ny () = Ez X, (t) + n(t) , t

because (VI.42) is the true model., It follows that E nl(t)
# o. However, analogous to the MLE (VI.1ll) and (VI.14)

we may define estimator for Ei and 012 as

T

By %xq () + ny(e) ,t=1,2, ..., T « +» « (VI.51)

1, 2’ . - .y T . . - (VI-SZ)

B, = % ] y(e)/x(€) . ... .. .. .. (VI.53

t=1
T - By % (0))?

2
=1 X4y (t)

. » . . - . . - (VI.54)
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It is easy to establish that ﬁl and'c“r‘l2

(VI.53) and (VI.54) are biased and inconsistent estimators

defined in

of El and 012 respectively because of the specification

bias in regression (VI.51). 1In particular, the bias of §1

is given by

1 E y(t)
T E—l §I¥ET— I T T T (VI.SSI

t
™R
Il

_1 § §1 xl(t) + EZ xz(t)
T t=1 x; (8)
= 1 T xz(t)

B, + B, =1
1 27 £=1 xlfti

The second step in the step-wise approach is to

regress the residuals from the regxession'of yon Xy i.e.

yo(t) = y(t) - §l € s t=1,2,..., T, (VI.56)

on x2

YOUt) = By xp(8) + np(8) .. .. ... .. .. (VI.57)
where

na(8) = (B) - B) x(6) +n(t) . .. ... ... (VI.58)
(on the lines of (VI.25) and (VI.26).)

Again, we may define estimators of EZ and 022 analo-

gous to the MLE estimators (VI.1l) and (VI.14)

O

T
_ 1 t)
BZ - E" .{=l %‘E) . . . . . . . - . . . - - (VI|59)
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2 2
T [y%(t) - B, x,(t)]
62 1 % 2 2 2 . - . - - (VIGGO)
t=1 X, (t)

It is clear from (VI.58) that

~

Eny(t) = E(B) - By) x;(t) + En(t) . . . . .. .. . (VI.61)

T
= - lg 1 2 _
) [BZ T ‘?‘.:l xlttj] xl(t) #0, t=1, 2, « « . T,

because (VI.49) and (VI.55) hold. Therefore, the estimators
82 and 822 defined in (VI.59) and (VI.60) are biased and

inconsistent.

In particular, the bias of §2 is given by

_ T o
Ef, =42 1. Exi Sl L w2

T £l X, (t)
1 % E y(t) - E Bl x4 (£)
T =1 x, (8
_ 1T xy(8))
R LI PRSI I LI P E=1 iI(tSJ x, (¢)
T E=1 X, (F)

(*.° (VI.55) holds)
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By (a0 - w0 3 ke .
B, IxX,(t) - x,(t) = ) ] .
- F -7 l% x, (t) _1_'§ x, (t)
2 2 |T £ let) T £1 xlit)
It follows from (VI.61l) that the regression rela-

tion (VI.57) has specification bias which may be corrected

as

Il

y°(t)

By |x,(8) - -T-‘Zgl;{—l—ﬁ)— X (8)[ . . . . (VI.63)

_ 1T xz(t)
Hnp®) 1By gl | M

5 (t) (t) = f Xp
2 [*2 1 T £.1 ¥ (%)
T x., (L)
-, 1 2
*["2"" FRmO T, _1“7]

or

v (L) = By x2°(t) + n2°(+_) , b =1,2, ..., 7T (VI.64)

where

0 1 T xz(t)
X, (8) = x,(t) - x,(t) TLl (€T t=1,2, . .., T (VI.65)
and

o = 1 P x2(t)
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It follows from (VI.61l) that

E n2°(t) =0 ,forallt..... (VI.67)

Thus if we define the estimator §2° in regression

relation (VI.64) analogous to (VI.53) as

. T o
Bzo = % L(t—)_ e &+ & & e ® e * e » (VI-GB)
t=1 x,°(t)

then §2 will be unbiased and consistent because the distur-

bances nzo(t)'s have expected value zero. Viz.
E§°=lT E y°(t) Y | 4 13
2 T =1 xzo(t)
1T EIy(®) - By x ()]
T T ) o
t=1 X, (t)
_ _ _ 1 - T x,(¢)
=T ) o
t=1 X, (t)
[because (VI.55) holds]
_ 1T ®, (k)
LT B2 %8 = x (8) 5 E_l %, (®)
== 7 =
T o
t=1 Xy (t)
= o]
=l’lz? By %57 (1)
Tl x,°(t)
= EZ

Similarly, it can be shown that §2° is consistent.
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In (VI.65) xzo(t) is defined as

x2°(t) = xy(t) - x, (£) B ... .. (VI.70)

where
po L] XY (VI.71)
P=— ® & e e e = VI-
T £=1 xliti

i.e. P is the maximum likelihood estimator of the mean
response P of the random coefficient P(t) analogous to the

MLE estimator (VI.ll) in the auxilliary regression.

xz(t) = P(t) xl(t) P £t=1, 2, .. ., T (VI.7?72)

where

P(t) =F +g(t) ... ... (VI.73)
such that
EE(t) =o , for all t ; Var g(t) = o and  (VI.74)
Cov (g(t) E(t"))= o, if t # ¢

In other words x2°(t) is the corrected xz{t) after
adjusting for the regression relationship between two ex-
planatory variables with random coefficient defined in
(VvI.72).

We may, then, define the estimator Bgo for the model

(VI.64) analogous to (VI.l4) as

; y° () - £,° x,°(£)1°
t=1 xgo(t)

.« - (VI.75)

2

In order to show that the estimator 820 is consis-
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tent, we must prove that

. 2
g_];:;m ‘&20 = 022 . . [} [ - . L) . . - - (VIC76)
Taking the probability limit of o, in (VI.75) we
have
(o) o = 0,2
Plin 52, _ 2lim 1 § ¥ (&) - % (8) B, (VI.7T)
Trco 2 T T f=1 xgo(t)
o] (o] s 2 2
Tre T ga1 xgo(t)
Plim =z o =
because v Bz = B,
Furthermore, -
T Ey°(t) - x,°(t) B,1°

Plim "2 Lmt 1 Y 2 2 (VI.78)
Tre "2 T T $y x%o(t)

_ Imt 17 Var yo(t)

Tae T t=1 x2°(t)
But
Yo(t) = y(t) - 1 x. (t) % y(t) (VI.79)
T 1 £=1 xlit)
[*." (VI.56) holds]
= g g -1
= [xl(t) Bl + x,(t) By, + n(t)] 5 % (t)

T [x)(t) By + x,(t) B, + n(t)]
Ly xy (%)



T x,(t) T "
1 = 2 1 n(t)
"EFn® ) Fr-ra® L. xm®
§ xz(t) _
= (t) - (t) = B
%5 X Ly R (E)
T
1 n(t)
+ [n(t) - x (£) =
(n 19§ L) EITf’]

T
x,2(t) B, + {n(t) - %, (t) %E_l %”—1(:%)]

Therefore

var y°(t) = Var (x2°(t) B,) + Var [n(t) - xq ()

or

(VI.80)

(VI.81)
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because Var xzo(t) Ez = 0 and

o 15
Cov |x,°(t) By , n(t) - x;(t) i.-iZ:

Further, (VI.8l) can be written as

var y°(t) = var [n(t) - xl(t)(%'ﬁi%%) N %i%%)
L((T)—))} (VI.82)
= Var l:- 3 (t) %__()T - [xl(t) %mll.a__:.] nit)-
cee = X, (t) % %i%ﬁj.]
=["12“") 7 i%(t—)g* coe * (xg (0) & 'xi_(?) - 1)2
$2(E) + ... + xl ft) %2 ;!52('1'(_')1')]

because Cov [n(t), n(t')] = o, if ¢ # t*

and var n(t) = ¢2(t), £t =1, 2, . . ., T.

Rearranging the terms in (VI.82), we get

Var y°(t) = x12(t) L

(t) . (2—'—2] 6% () (VI.83)
2 ) T .

=1 Xy (t

ctr—14
N{e—

Substituting the value of var [yo(t)] in (VI.78), we get
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(VI.84)

- 2

+(Z

2
y ¢ (t)]

9% (t)
1 x77(t)

)
Tq\fL_. 20 o
-
"y
1)
™~
4
]
Nt
f
B~
&
+
E§
[y
1}
(o]
N o

Plim

o
™
) T
& I EdL~a
r...ll_....mll\ 1_T
e H w
B3 e
- B +

(because other terms approach

zero limit)

2o(t)

13
T t=1 x

t
T-ro0

x§°(t)

2 2 2 2
X (t) 01 + X (t) 0y

7
)
t=1

sl

5

Therefore,

(VI.85)

2 Imt
2 T

+ O

|

x,2(8)
xz°(t)

1

i o~ o~
B~ < :.-..w
=13 ~N o

ES LS
8 L.

4 i
mm; e~
™~ =13

1 R —
b
Il
O
N N
o
Es
— 4
[a P =)



2

. ~ O
l.. C

2 is inconsistent estimator for 022.

The result in

estimator 62 as

2 v o) - 8,° x,0(£)1 LT

T

|~

1

t=1 xg(t) t=1

where sl2 is a consistent estimator for 012

the HH method.8
~ 2
It is easy to show that 02°

(e} o 2
Plim » 2 _ Plimy 1 [y°(e) - By %, (8]
T-roo 2 Ta & o T 2

T X 2(t)
_ Plim 4 2 1 ) 1
Lhe 1 Tia xg(t)
because Plim g °©_F
T 2 2
or
Plim § 2 _ Imt ;_§ var [y2(8)1 _ 4.2 13
e %2 T Tia ki) LT
8If the s 2 obtained by the

we could reverse the process
2
of, say, O, -

xlz(t)

xg(t)

(VI.84) suggests that if we define an

(VI.86)

obtained by

will be consistent.

(VI.87)

xlz(t)

— (vi.88)
X,y (t)

HH method is negative
by choosing a positive estimate
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Substituting the value of var [yo(t)] from (VI.83) (VI.88)

we have,
by 2
.2 I P I = L A R
Plim [ 2 _ Lmt 1 T t=1 71 (VI.89)
Tro 02 = Tow T )

_ 2
=1 xz(t)

2
1 T X, (t)

T xlz(t)

=1 x;° () t=1 xzz(t)

Lt 1T ot el (2§ ¢
Tre T 1 x,° (£) Tro T T £21 x22(t)
T x,2(t)
o 2Imtl 1
1 =Tt xzz(t)
T 2 T x 2(t)
_me 1§ i 2mely T
TH= T £1 xzz(t) 1 T Tia xzz(t)

Substituting the wvalue of ¢2(t), and rearranging, we have

a2 2
. - T x. ()

Plim _ 2 2 Imt 1 1

T g, = 0, + 01" N (VI.90)
=1 X, (t)
T X 2(t)
-G 2 Lmt 1 1
1 T Tt xzz(t)
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L] ~ L3 » L] 9
l1.e. 022 is a consistent estimator.

Phis estimator cannot be called the maximum likeli-
hood estimator but it has two desirable properties:

(a) the estimate of variance is hopefully positive and

(b) the estimator is consistent.

This is hopefully an improvement over the methods

10

discussed in Chapter III. However, a detailed comparative

study in this direction is required.

Having obtained consistent positive estimates of

cjz, j =1, 2., we may estimate, éz(t) = 8 2 Xy 2(t) +

~

Uzz(t) and ¢. This may be used to estimate the mean response

vector as
o= (x'et %) "1 x'a-ly, e e« o (VI.OD)
where
. & %, (1) x., (1)
y (1) ; Bl .1 .2
y=1|". B =1 o x = Ixg 2 X1 = . (VI.92)
yiT) Eé xl(T) xz(T)

9The analysis in this chapter can also be taken as an
analysis of the specification error (of omitting a relevant
variable) in the regression model with random coefficients.

lolt cannot be ruled out that estimator (VI.87) may be

negative sometimes (though in couple of tests we did not
find it to be so). However, we have not worked out the
conditions under which the estimator (VI.87) will yield
guaranteed positive estimates. These conditions need to be
spelled out, . .



and ¢ =

2 2 2 A
xl (l)sl + xz (1)02

2

.

~

2 2 2 ~
xl (T)sl + Xq ('I‘)O‘2

2
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(VI.93)



CHAPTER VII

SUMMARY AND EPILOGUE

In this thesis we discussed several aspects of the
specification and the estimation in the linear regression
models with random coefficients., 1In the course of development
of the thesis we made several theoretical and emperical contri-
butions, which are as follows:

l) We proposed an extention in the specification of the
linear regression model random coefficient wherein we let
the mean response be functionally related to the excluded
and/or included variables., For example, the marginal
propensity to consume may be interpreted as function of
included variable like income or of excluded variable
like rate of interest, ratio of non-human to human wealth
like rate of interest as proposed by Friedman (1957).

This idea is being explored further seperately.

2) A new estimator and an extention of Theil's Weighted
Least Squares (TWLS) estimator were proposed theoretically.
The new estimator is called the Stepwise Aitken's Weighted
Least Squares estimator (SALS). This work was jointly
done with Professor A. L, Nagar.

3) A theoretical proof of the unbiasedness was developed
for the Hildreth and Houch (HH) Estimator of the mean

response coefficients. Similar proofs could be constructed
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for the SALS and the TWLS estimators of the mean response

coefficients.

4)

5)

6)

7}

The formula for the standard error of the conditional
forecast was developed for the alternative estimators of
the random coefficients regression models, Further, we
used the forecasting efficiency as a criterion in choos-
ing among alternative estimators in the sampling study.

The formula for the coefficient of multiple correlation

(R) was developed for the alternative estimators of the
random coefficients regression models. Further, we used
the mean and the medianvalues of R as a criterion in choosing
among alternative estimators in the sampling study.

The problem of negative estimates of variances was dis-
cussed geometrically along with some ad-hoc solutions
proposed in the literature. We proposed a Stepwise Least
Squares approach to the estimation of the means and vari-
ances of the random coefficients regression model analogous
to the Maximum Likelihood estimator. This approach enables
us to obtain estimates of the variances, which are con-
sistent and positive. Hopefully this is an improvement
over other methods. Here we have developed only the theory.
The finite sample properties of four estimators of the mean
response coefficients and three estimators of the variances
of random coefficients were studied using the Monte Carlo
technique. The study extends to three models (one of which

has the property that it guarantees to give positive
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estimates of variance i.e. Model I - a simple proportional
constant Mean Response Model) for the sample sizes 10, 20
and 50 (only for Model III-Set I). In the Monte Carlo
study we studied the performances of estimators both in
terms of parametric and nonparametric statistics and the
analysis has been carried out for more than one point in
the parameter space.

The results of the sampling experimentation are:

Estimation of the Mean Response Coefficients

(1) All estimators of the mean response coefficients are
emperically unbiased on the t-test at .05 level of
significance but for one exception - the Ordinary Least
Squares (OLS) estimator for sample size 10 in Models II
and III is biased.
(ii) In the Model I with guaranteed positive estimates of
variance the SALS estimator of mean response coefficient
is the best choice.
(iii) In the models, II and III, which have the problem of
negative estimates of variances, there are several
conclusions,
iiia. For sample size 10 the OLS estimator of the mean
response is the best choice.

iiib. For sample size 20 the SALS estimator is the best
choice when parameters values are 'small' and the
TWLS estimator is the best choice when parameter

values are 'large'.
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iiic. For sample size 50 the OLS estimator of the mean
response coefficients is once again the best
choice (even though it does worse marginally
than the SALS and the TWLS estimators of the mean
response coefficients in terms of the efficiency
of estimation and forecasting precision).

In proclaiming an estimator the 'best choice' we have
taken into consideration the performance of the estimator for
its estimation efficiency (bias conbined with dispersion - root
mean square error), forecasting precision, mean/median value of
coefficient of multiple correlation, the bias of the standard
errors of the estimates derived from asymptotic formulas and
cost of the computation. Since there is no definite way to
assign weights for each criterion our conclusions may appear
subjective to some readers. Further, the conclusions are
generally based on the parametric statistics. In some instances
these results were different from the results of the non-
parametric statistics. We decided however to suppress the
conclusions on the non-parametric statistics in order to avoid
the burden on the reader of a variety of conclusions. The
interested reader may refer to Chapter V for the results of
the sampling experiments on the non-parametric statistics. The
results on biases of standard errors of estimates derived from

the asymptotic formulas may also be read in the text,
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Estimation of the Variances of the Random Coefficients

(1) All estimators of the variances of the random coeffic-
ients are emperically unbiased (conclusion based on the
CMR Model I only as similar analysis on other model was
not practical). _

(ii) The SALS and the TWLS estimators of the variances of the
random coefficients (with one exception) are more efficient
than the HH estimator of variances in all models and all
sample sizes. The efficiency for the CMR Model IT and
III have been measured in terms of the proportion of
negative estimate of variances (see Fig. III.1).

8) The efficiency and convergence properties for three iter-
ative estimators were investigated for sample size 20
using the Monte Carlo technique. The convergence of the
mean response co-efficient was studied at the third
iteration for the proportional CMR Model I, while for the
CMR Models II and III convergence was studied at the fifth
iteration. The results of samplings experiments are as

follows:

Efficiency of the Iterative estimators of the Mean Response

Coefficients

(i) In the CMR Model I there is no gain in iterating any of
the HH, the TWLS and the SALS estimators of the mean
response coefficients as can be expected theoretically,

(ii) In the CMR Models II and III iterating the SALS, the HH

and the TWLS estimators does increase efficiency in several
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instances but the gain is often marginal and hence we
cannot justify iterating the estimators when increase in
computing cost is taken into consideration. Sometimes

there is loss in iterating the HH and the TWLS estimators.

Efficiency of the Iterative Estimators of the Variances of the

Random Coefficients

(1)

(ii)

In the CMR Model I there is a definite gain in iterating
the SALS and the TWLS estimators of variances. The gain
is realised at the second stage of iterations. Further,
there is loss in iterating the HH estimator of variance.
In the CMR Models II there is no gain in iterating the
SALS, the TWLS and the HH estimators of variances of
random coefficients. In Model III there is slight gain

but cost consideration may outweigh this slight gain.

Convergence of the Mean Response Coefficients

(i)

In the proportional CMR Model I with guaranteed positive
estimates of variances, the convergence is achieved in 100
percent cases. In the CMR Models II and III wherein we
have the problem of negative estimates of variances
convergence is achieved in 80 to 90 percent cases within
the domain of the convergence test applied by us (see
footnote 40 Chapter V).

As is well known, the Monte Carlo results are only

sugggestive and not conclusive. We therefore caution the

reader of the limitations of our conclusion. Further, we have

presented the results as they were obtained, often not knowing

why they occurred. With full theoretical explanation, there

would, of course, be no need of the sampling experiments.,
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We conclude this chapter with a few suggestions for
further research. In the text and in the footnotes at several
places we pointed out the need for further research. We may
again mention here a few areas requiring attention. There is
a great deal of theoretical analyses required to be done in
the estimation of random coefficient regression model. It is
our hope that our work will stimulate research in this direction.
Besides, we did not undertake the sampling study on the Maximum
Likelihood Estimator, and the new estimator proposed by us in
Chapter VI. Both of these need to be studied with the
empirical tools. In addition several inconsistent but positive
- @gtimators of variances can be defined (refer discussion on
Chapter VI) using stepwise regression technique whose properties
need be studied for small samples. Further, there is need to
study the properties of alternative estimators when the disturb-
ances are not normal and may for example, follow a Cauchy
or a lognormal distribution.

Another area which may prove interesting is to study
estimation problems on dynamic equations, where} for example,

theory suggests the lagged dependent variable in the regres-

sion as a causal variable.
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APPENDIX 1

THE COVARIANCE MATRIX OF THE DISTURBANCES
IN THE REGRESSION (III.34).

In (III.45) we showed that

~

E(zg') = E(f A')- E(}) E(3") . . . . (Al.1)
where
En = MXo e s s s s o s o o« (Al.2)

as shown in (III.31l) and thus to evaluate the covariance
matrix of £, we must evaluate E(ﬁ ﬁ')

From (IIX.29) we have

SO C( 1
A1) ] my n(e)|?
n (t=1 J
Mpxa < | = . . . . (Al.3)
.2 r'.'f . \2
fi” (T) m,, n(t)
) ) {e=1 Tt J ]

which may be written as

. -
m,. m., n(t) n(t")
. t,e'=1 1F 1T
Mpx1 = : . . (Al.4)
% (£} n(t")
r N n(t!
_F't,=1mTtmTt |

where Mo is the element in the t-th row and t'-th column

of the matrix M of order TxT defined in (IXI.24) and n(t) is
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the t-th element of n defined in (111.1).

The element in the k-th row and k'-th column (k,

k! = 1,2 ..., T) of Eﬁ:' may then be written as
T T
E E’t.=1mktmkt'n(t)w(t')] [E--,tn.=1’“k't"“‘k't"-”(t"’”(t""
e e e+« « . (Al.5)
T

= 1 ten ) ..'E[n(t)n(t')n(t")n(t“')]
E't.,t..’t...= o T LT

In order to evaluate the mathematical expectation in
(Al.5) we may assume that n(t)'s are independently, normally
distributed with means and variances defined in (III.2) -
(III.4). This assumption simplifies the results drastically.

The terms in the summation in (A1.5) will be non zero
only if either t,t',t",t"™ are pairwise equal or t=t'=t'=t"™,

In a typical former case the value of the summation is

equal to
T T 2 2 '
2 2 2 2 4
mk mkl v 0 (E) T (E") ] -~ e 9 (E) « . (Al.6)
12;,1:':1 t k't £=lmkt Mot

In the latter case, however, the value of the summa-
tion is equal to
2 2 4
3Emktmk.t¢(t) e e e e e e« . {Bl.7)
If we combine znd rearrange the terms such as (Al.6)

and (Al.7) we may write the element in k-th row and k'-th
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column of Eﬁﬁ' as
T T
2 2 2 2,
m, o7 (t) nH e (B e o o 0 o . (AL.8)

+ 2 e 07 (E)
LMkt Mt
Therefore,

EmM'=EMENY+ 2§ . « . « . . . . (AL.9)
where E(n) is defined in (II1.30) and i is the matrix of
squared elements of TXT matrix

lp = M¢M, . . . - . - . . . . (Al.lO)

¢ is the covariance matrix of disturbances n's defined in
(III.3).

It follows from (Al.l) and (Al.9) that

EEE' =20 . + v v 4w « . . . (AL.11)
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