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ABSTRACT

The first part of this thesis is devoted to the study of a
class of g-rings (lattice-ordered rings) which properly contains
the class of f-rings. The second part is a study of a structure
theory of a commutative partially-ordered ring which contains no
non-zero positive nilpotent elements.,

In Chapter II, a new class of %-rings is introduced, and it is
shown that an ¢-ring having zersc f-radical is an f-ring if and only
if it is in this class. Some classes of R-rings having the f-radical
equal to the set of all nilpotent elements of the rings are investigated.
In these classes of 2-rings, it is proved that an %-ideal is a prime
f~ideal if and only if it is a ring prime ideal,

In Chapter III, some properties of square archimedean %-rings
are studied. For example, it is shown that (1) in a square
archimedean 2-ring, the f-radical is equal to the 2-prime radical.
(2) in a square archimedean g-ring A, the set ﬁ(A) = {x g A]

(xv -x)" = 0 for some n} is an %-ideal if and only if N(A)

is equal to the g%-radical, and the set of all nilpotent elements
N(A) is an %-ideal if and only if N(A) equal to the %-radical.
(3) in a square archimedean pseudo f-ring, the set of all nilpotent

elements is always an 2-ideal, hence is equal to the %2-radical,

iii



iv

In Chapter 1V, Johnson radical of %-rings is studied. The
concept of a faithful, irreducible 2-module is introduced and,
under certain conditions, the rings having a faithful, irreducible
g-module are shown to be the L-primitive rings. The relation
between R(A), the Johnson radical of A and R{Anxn), where Anxn
is the ring of nxn matrices with entries from A, (the ordering
on Anxn take to be the canonical one), is investiggted.

In Chapter V, the concept of an m-filet is defined in a
commutative partially-ordered ring without positive nilpotent
elements. This concept is used to give necessary and sufficient
conditions for a commutative partially-ordered ring to be o-isomorphic

to a direct sum of strict rings.
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INTRODUCTION

The first part of this thesis is devoted to the study of
a class of lattice-ordered rings which properly contains the class
of f-rings. It is a continuation of the study initiated in the papers
by Birkhoff and Pierce [5], D.G. Johnson [13], J. Diem [7] and
Steinberg [18]. The second part is a study of a structure theory
of commutative partially-ordered rings which contain no non-zero
positive nilpotent elements.

In Chapter I we present the necessary background material for
our study.

In [7], Diem has shown that the following conditions are equivalent
for an %-ring (lattice-ordered ring) with zero %-radical: i) A is an
f-ring; 1ii) A 1is a subdirect union of totally-ordered rings without
non-zero divisors of zero; iii) (xV0)a(-xVv0) =0 for all x, a in A;
iv) if a, b, ¢ are in A and a > 0, then a(bwvc) = abVac and
(bvc)a = bavea and v) (xv0)(-xVv0) = 0 for all x in A. In
Chapfer 11, we prove that, for an f-ring with zero %-radical, these
conditions are equivalent to vi) a(xwv0)a(-xv0)a =0 for all X, a
in A with a > 0. It is easily seen that in any f-ring the conditions
iii), iv), v) and vi) hold. In [5] Birkhoff and Pierce have shown that
in any f-ring the %£-radical is equal to the set of nilpotent elements
and in [13] D.G. Johnson has shown that an %-ideal P in an f-ring is a

prime £-ideal if and only if P is a ring prime ideal. In Chapter II we



also generalize these two results: that is, in any %-ring which
satisfies one of the conditions iii), iv), v) or vi) the %-radical
is equal to the set of all nilpotent elements and an %-ideal P is a
prime f-ideal if and only if it is a ring prime ideal.

Chapter III is a study of square archimedean f£-rings. In a
square archimedean %-ring A, the %-radical coincides with the prime
radical of A, and hence the square archimedean pseudo f-rings form
another class of f-rings having the property that the 2-radical is
equal to the set of all nilpotent elements, We will show that for
a square archimedean 2-ring the %-radical is the set of all nilpotent
elements if and only if the latter set is an f-ideal,

In [13], Johnson introduced an analogue of the Jacobson radical
for f-rings, and in {18}, Steinberg defined three different general-
izations of the Jacobson radical for the classes of all %-rings.
Denoting these various "radicals" by Pm , J, and 7R, Steinberg [18]
showed that Pm (A) €J(A) cR(A) for Zny 2-ring A, and that these
three ideals ar: equal under certain conditions. In chapter IV we
shall show that J(A) = R(A) under more general conditions, and
that P(A) S_Pm (A). Also, we will define the concept of a faith-
ful, irreduciblg 2-module, and, for the class of pseudo f-rings, we
will relate this concept to Steinbergs work. In chapter IV we will
also investigate the relation between R(A) and R{Ahxn), where
Anxn is the ring of nxn matrices with entries from A, the

ordering on Ahxn taken to be the canonical one.
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In chapter V we define an equivalence relation on the positive
cone of a commutative partially-ordered ring without positive non-
zero nilpotent elements. The equivalence classes will be called
m-filets. The m-filets so defined give a disjunctive and distributive
lattice. We say a ring A has Jaffard's property if the set M of
all minimal m-filets of A is non-empty and satisfies the following
condition; for every f € A* (the positive cone of A) and for every

a € M there exists fa e A¥ such that i) fa < f, ii) f_ < a,
s 7 -

iii) FF; A a =0, (where a represents the m-filet containing a).

The main theorem is the following:

Let A be a commutative partially-ordered ring
which satisfy the condition that X2 = Xy = y2 implies
x =y for all x,y in A*. For A" to be o-isomorphic
to the direct sum of a family of strict cones (of A) it
is necessary and sufficient that (1) the lattice of
m-filets be lattice isomorphic to the lattice of a finite
subset of a set; (2) A* have Jaffard's property. More-

over, if A is directed then A is o-isomorphic to the

direct sum of a family of strict rings.

Throughout the thesis, definitions, theorems, propositions,
corollaries, examples and remarks are numbered by two integers.
The first integer represents the number of the chapter. For
example, Proposition 3.20 is found in chapter 3, immediately

following Example 3.19.



CHAPTER I

PRELIMINARIES

In this chapter we present those definitions and results
in the theory of lattice-ordered groups, partially-ordered
rings and latticed-ordered rings which we will need in the
sequel, None of these results will be proved; the reader is
referred to [4], [5], [7], [8] and [13] for proofs. Our
notation is the same as [7] and [13]. The term ring will always

mean associative ring and not necessarily possessing an identity.

DEFINITION 1.1. A partially-ordered group is a group G which

is partially ordered and in which a <b implies x+a+y<x+b+y
for all x, y in G. If G is a lattice under this partial order,
then G is called a lattice-ordered group., 1If G is totally
ordered, then G is called a totally-ordered group.

Let G be a partially-ordered group. An element b of G is
said to be positive if b > 0., The set of all positive elements
of G is denoted by G*., If G is a lattice-ordered group and
aeG, then the absolute value of a is [a| = av (-a), the positive

+

part of a is a” = avO0, and the negative part of a is

a~ = (-a)Vvo,
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PROPOSITION 1.2. Let G be an abelian lattice-ordered group and

let a,b and c in G. Then

i)

ii)

iii)

iv)

V)

vi)

vii)

viii)

ix)

x)

a+b= (avb) + (and);

a+ (bve)

(a +b)v(a+c) and a+ (bAc) = (a + BA(a + ¢}

(-a)A(-b) = - (avb) and (-a)VY(-b) = -(aAb);

la + bl <lal +|b] and fa- bl >|lal - Ibll ;

if a is not zero, and n is a non-zero integer, then

na is not zero;
if a+b=0 and a, b >0, then a=b=0; and

if a, b, ¢>0 and a<b+c, then there are elements

1* &1 > 0 such that b

Z 1 £

clf_c, and a=b1+c1.

PROPOSITION 1.3. Let G and G' be lattice-ordered groups and

let f :

G+ G' be a group homomorphism. Then the following are

equivalent:




i) f(avb)

f(a)v£f®) for any a, b in G;

ii) f(anb) f(a)Af(b) for any a, b in Gj;
iii) f(a*) = (f(a))* for any a in G:
iv) f(la|) = |f(a)}; for any a in G;

v) if a, b in G and aAb =0, then f(a)Af(b) = 0.

A group homomorphism between lattice-ordered groups that
satisfies any one, and hence all of i), ii), iii), iv) and v)
of Proposition 1.3 will be called an %-homomorphism. The kernel

of an %-homomorphism is an %-subgroup of G in the sense of :

DEFINITION 1.4. An %-gubgroup of a lattice-ordered group G is

a normal subgroup H of G that satisfies;
acH and |b| < |a| imply beH.
If H is any %-subgroup of G, then the difference group
G/H can be made into a lattice-ordered group by defining

a+ He (G/H)* if and only if a~ € H.

DEFINITION 1.5. A partially-ordered group G 1is said to be

archimedean if for every pair a, b of elements of G, with

a # 0, there is an integer n such that na £b.



DEFINITION 1.6. A partially-ordered ring A is a ring A in

which a partial order has been defined so that;
i) a>b implies a + ¢ >b +c for all ¢ in A; and
ii) a >0 and b >0 imply ab >0,

A partially-ordered ring A is a lattice-ordered ring
(2-ring) if A as partially ordered set is a lattice, and A is
a totally-ordered ring if A as a partially-ordered set is totally

ordered.

PROPOSITION 1.7. Let A be a partially-ordered ring and let At

be the set of all positive elements in A. Then
i) A'n (-ah = {0};
ii) A" + At <Y
iii) A*A* <A* and
iv) if a, be A, then a>b if and only if a - b e A* .,
Conversely, if P is any subset of a ring A that satisfies i), ii)
and iii), then the relation on A defined by iv) makes A into a

partially-ordered ring with A" = P. Also, if xvO0 exists for each

X €A, then A is an %-ring ([4]).
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Let A and A' be partially-ordered rings. An order
preserving homomorphism of A into A' is called an o-homomorphism.
It is clear that a homomorphism ¢: A -~ A' is an o-homomorphism if
and only if ¢(A*) € (A")*. If in addition, ¢(A) = A" and
s(A*) = (A")*, we call ¢ an o-epimorphism of A onto A'. If ¢
and its inverse ¢"1 are both o-epimorphism, ¢ is an o-isomorphism, and

the partially-ordered rings A and A' are o-isomorphic,

DEFINITION 1.8. A ring ideal I of an g-ring A is an %-ideal

if acA, bel and |a| < |b| imply ael.

Every g-ideal in a lattice-ordered ring is the kernel of
an g-homomorphism, If I is an g-ideal of an g2-ring A, then
quotient ring A/I is an g-ring with (A/I)* = {x + I|x7ell.
Moreover, the natural map from A onto A/1 is an g-homomorphism.
Also, if f is an %-homomorphism from A onto A!', and if I is

the kernel of £, then A/I is 2-isomorphic to A,

PROPOSITION 1.9. In any f-ring A we have:

i) |ab| < |a||p| for all a, beA;
ii) for all a, b, ceA and a >0 a(bve) > abvac,

(bvc)a > baVeca, a(bA c) < abAac, and

(bAc)a < baAca.
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If S is a subset of an %-ring A, then the 2-ideal generated
by S will be denoted tv <S>, If I, J are g-ideals, then
<I +J> =1+ J ([13]). The product of two 2-ideals I and J

n
is 1J = {iél a;b, | a;el, b.ed}.

A (right, left, two-sided) g-ideal I of an g-ring A is
said to be proper if I # A, If I is such that it is contained
in no other proper (right, left, two-sided) 2-ideal, then I is said

to be a maximal (right, left, two-sided)f-ideal,

DEFINITION 1.10. A proper f-ideal P of an f-ring A is prime if

for g-ideals I and J of A, IJE€P implies I €P orJCP.

A non-zero %-ring A is called prime if {0} is a prime

ﬂ.-ideal .

DEFINITION 1.11. A lattice-ordered ring A is said to be g-gimple

if A? # 0 and if A contains no non-zero proper -ideals,

PROPOSITION 1.12, ([7], 2.4) If P is an g-ideal of an 2-ring

A for which A*N\\P is closed under multiplication, then P is

a prime g-ideal.
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DEFINITION 1.13. A non-empty subset M of an %-ring A is

an m-system if for all a, b in M, there exists an xeA*  such

that axbeM.

DEFINITION 1.14. ([S], p45). Let A be an g-ring. Then the

o-radical of A is the subset N(A) = {acA | there is a positive
integer n such that xolaloxlolalo...-xn_llal x =0 for all

xo, xl, ese anA} Of A,

The g-radical of an &-ring A, denoted by N(A), 1is anil

g-ideal which is the join of all nilpotent g-ideals of A ([S8]).

PROPOSITION 1.15. ([7], 2.16, p76). If A is an g-ring, then

N(A) = {asA |there exists a positive integer n such that

(x|]a])"x = 0 for all xeA*l.

DEFINITION 1.16. The P-radical, denoted by P(A), of an

g-ring A is the intersection of all the prime 2-ideals of A.

Set P(A) = A if A has no prime f-ideals,

PROPOSITION 1.17: ([7], 2.9). lLet A be an f-ring. Then P(A)

is a nil f2-ideal containing N(A).

THEOREM 1.18. ([7], 2.15, p76). Let A be an 2-ring. Then

P(A) = {acA | any m-system containing la] contains 0}.
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THEOREM 1.19. ([71, 2.13, p75). Let A be an %-ring. Then

N(A/N(A)) is zero if and only if N(A) = P(A). Hence N(A)

is zero if and only if P(A) 1is zero.

DEFINITION 1.20. (1) An 2-ring A is called a distributive %-ring

(d-ring) if a(bAc) = abAac, (bAc)a = baAca for all a, b, ce A
and a>0. (2) An 2-ring A is called an f-ring if and only if

it satisfies the condition 2*x*'A x~ = x*z2*Ax” = 0 for all z, x € A,

We note that a d-ring A also satisfies a(bwvc) = abvac and

(bVc)a

baVeca for all a, b, cA and a >0, since

-(xvy) = =xA-y for all x, y € A, Moreover, an 2-ring A is an
f-ring if and only if aAb =0 and c >0 imply caAb = acAb =0

for all a, b, ¢ in A. (see [5], p56).

PROPOSITION 1.21. ([7], 4.1, 4.2, 4.3). Let A be a d-ring,

or a ring which satisfies either one of the identities x*a x~ =0
or x'x~ = 0. Then an %-ideal P of A is prime if and only if

A/P is totally ordered and has no non-zero divisors of zero.
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PROPOSITION 1,22, ([71, 2.17, 2.18), 1f I 1is an g-ideal of an

g-ring A, then N(I) = N(A)AI and P(I) = PQA)NI.

PROPOSITION 1.23. ([7], Corollary 4.,6). Let A be an 2-ring

which is a d-ring or satisfies either one of the identities x*a x- = 0

or x'x” =0. Then P(A) = {x ¢ A | x is nilpotent}.

PROPOSITION 1.24, ([71, 2.5). An g-ideal P of an %-ring A is

rime if and only if a, b e A* and aA*b € P imply aeP or b e P.
p < mply

Let {Aa: aeA} be a non-empty family of fL-rings, and let
A= 1 Aa the cartesian product of the A,. Define addition and
aeh
multiplication in A componentwise. Then A is a ring, We partially
order A by decreeing that (au) 2-(ba) if a, z_ba for

all a g A,

Then A is an %-ring in which
(a)v(b,) = (avb ) and (aa)/\(ba) = (aa/\ba).

The L-ring A is called the complete direct union of the family
{A,:0eA} . The map P, from A onto A, defined by Pa((aa)) =a
is called the a-th projection and is an R2-homomorphism. A sub L-ring
A' of the complete direct union A is called a subdirect union

of the family {Aa:asA} if P, restricted to A' is onto A,

for each oaeA.
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THEOREM 1.25. An g-ring A is isomorphic to a subdirect union of

the family {Aa:asA} of g-rings if and only if there is a family
{I,:aeA} of g-ideals in A such that ﬂ{Iu:aeA} is zero, and

A/1 is isomorphic to Aa for each aed .
a

THEOREM 1.26. ([5]). A lattice-ordered ring A is an f-ring if

and only if A is isomorphic to a subdirect union of totally

ordered rings.

PROPOSITION 1.27. ([5]). Let A be an f-ring and let a, b, ceA,

Then
i) a? > 0;

ii) if a > 0, then a(bvc) = abVac, (byc)a = baVca;

a(bAc) = abAac and (bAc)a = baAca;

iii) |ab|

la] Iv] ;
iv) a%*a" = 0;

v) a*b a~ = 0,

DEFINITION 1.28. An g2-ring A is called subdirectly irreducible

if the intersection of all of the non-zero %-ideals of A is

not {0}.
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PROPOSITION 1,29. ([13], pl89). If A is a subdirectly irreducible

totally ordered ring with zero %-radical, then A is R-simple.

THEOREM 1.30.  ([13], Theorem 4.4, pl174). An f-ring A is prime

if and only if A # {f} and A is a totally-ordered ring without

non-zero divisors of zero.

PROPOSITION 1.31, ([7], 2.4, p75). An 2-ring A has zero %-radical

if and only if it is a subdirect union of prime %-rings.

THEOREM 1.32.  ([7], Theorem 4.4, p81). Let A be an 2-ring

with zero %-radical. Then the following are equivalent:

i) A is an f-ring;
ii) A is a subdirect union of totally-ordered rings with
no non-zero divisors of zero;

iii) xtax" =0 for all x, ac€A;

iv) if a, b, c€ A with a >0, then a(bve) = abvac
and (bvcla = baVca; and

v) x'x" =0 for all x € A,



CHAPTER II
SCME CLASSES OF LATTICE-ORDERED RINGS

AND THEIR 2-RADICAL PROPERTIES

The main purpose of this chapter is to prove that for an

2-ring A with one of the following conditions:
(@ x*ax™ =0 forall x, aec A;

@®) if a, b, c in A and a >0, then a(bvc) = abvac

and (bVvc)a = baveca;
() x*x" =0 for all x € A;
(6) ax*ax"a =0 for all ae A, x €A,

the %-radical is equal to the set of all nilpotent elements. If an
f-ring A satisfies any one of (@), (B), (y) or (8§) then an
f-ideal P of A is a prime %-ideal if and only if it is a ring
prime ideal. For an %-ring with zero %-radical the conditions (),

B), () and (§) are equivalent.

15
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An 2-ring which satisfies the condition (8) has been called
a distributive L-ring or d-ring ([18], [20]). We will sometimes
call an 2-ring a D-ring (after Diem) if it satisfies the condition
(a), orthogonal g-ring if it satisfies the condition (y) and h-ring

(helping) if it satisfies the condition (§).

PROPOSITION 2.1. Let A be an g-ring. Then the following conditions

are equivalent:
(5) ax*ax"a = o for all acAt, xeA;

(8)' ax*bx’c

o for all a, b, ceA*, xeA;

@©)" axtbx-c = o for all a, b, ¢, xeA.

+
PROQF, (8) implies (§)'. For any a, b, c,cA and XxeA,
0 _<_ax"bx'c < (avaC)x+(avaC)x'(avb\/c) =0 by (§8).

Hence ax'bxc = 0 for all a, b, ceA* and xeA.
(8)' implies (8)". For any a, b, ¢, x in A,
- - - - 4 -
ax*bx"c = (a* - an)x** - b (c" - ¢7) = a*xbrxet - amxbxTet -
a*x*boxmct + axb x et - a'xbtxcT ¢ aTxMptxTeT a*x™ " x7¢” -

a xbx"cc=0 by (5)'. Hence axtbx"c = 0 for all a, b, ¢, xeA,

(5)" implies (§). Trivial.



17.

PROPOSITION 2,2, Let A and B be two ¢-rings and ¢:A~+ B

an g -homomorphism of A onto B. Then B has the property
@), ®), &) or (§) if A has the property (o), (),

(y) or (5) respectively.

PROOF, i) Assume A has the property (a) : a*A a” = 0 for all
acA. let x, yeB, then there exist a and beA such that

$(a) = x, ¢(®) =y. Then x'y x™ = (xVO0)y(-xV0) =

(6(a) V4 (0))e () (6(-2)V4(0)) = #((aV0)b(-aVv0)) = ¢(a’d a™) = ¢(0)

ii) Assume A has the property (8) : a(bve) = abVac,
(bvc)a = baveca for a, b, ¢ in A and a >0, If a', b', c'

B with a' > 0, then there exists a, b, ceA with a > 0 such

that ¢(a) = a', ¢(®) =b', and ¢(c) = c'. We have a' (B'Vc') =

$(a) (e (DI Ve(c)) = ¢(a)eldbve) = ¢(albvc)) = ¢(abvac) =
o(ab)vo(ac) = ¢(a)p(d)veé(a)e(c) = a'b'Va'c'. A similar proof

gives ¢(b'Vvc')a' = bta'vc'a',

+

in

0.

iii) Assume A has the property (y) : a’a” = 0 for all aeA,

Let xeB, then there exists aeA such that ¢(a) = x. Now

X7 = (xV0)(-xv0) = (4(2)v 6(0)) (4(-2) V$(0)) = [6(av0)][6(-aV0)]

[4(a*)]1[s(a")] = ¢(a*a”) = ¢(0) = 0.

iv) Assume A has the property (8) : xa*xa"x = 0 for all

xeA*, acA. Let y, beB then there exists x, a in A such that
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$(x) =y, ¢(a) = b. We have yb*yb~y

y(bV0)y(<sbVO)y =

¢ (x) (4 (2) V4 (0))¢ (x) (-4 (2)V ¢ (08 (x) = ¢ (x)¢ (aV0)¢ (x)$ (-aV0)¢ (x)

= ¢ (x)¢ (@%)p (x) (27)¢ (x) = ¢ (xa*xa"x)

0. This completes the proof

of the iemma,

PROPOSITION 2,3, Let {A)‘:)u-:l\} be a non-empty family of f-rings,

and let A= J AA be the g-ring endowed with the direct union
AeA

order (see Chapter I), Then A 1is an g-ring satisfying the conditions

(@), @®), () or (§) if and only if A satisfies the same

conditions for every AeA.

PROOF. Assume A satisfies the condition (a) (respectively
(B), () or (8§)). Since the A-th projection PX is an
g-homomorphism onto AA for every xeA , by Lemma 2,2 A)‘ satisfies

the condition (a) (respectively (8), (y) or (§)).

Conversely, let A satisfy the condition (a) for every 2AeA.

A
Let x = (x,), a= (a))eA, where x,, a,eA,, then x* = (xv0) =
(x,)V(0) = (x,v0) = (x;) and X" = -xV0 = (-x,) V(0) = (-x,V0)
(e +ax= = (x* ) = (x¥a.x") =

= (xk). We have xTax™ = (xA) (ax) (xx) (xlalx;\) (0). The same
argument works for the other cases.

DEFINITION 2.4, An g-ideal 1 in an g-ring A is called an f-ideal

if aAbel and reA’ imply raaAb, arAbel,
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We have the following properties., The intersection of any family
of f-ideals is an f-ideal. In any f-ring every %-ideal is an f-ideal.
If an 2-ring A 1is not an f-ring, then A contains a smallest non-
zero f-ideal S and it is generated by the set of elements of the
form |r|a*A a”, a*|r|Aa” where r, a run through all the elements
in A. Every %2-ideal containing an f-ideal is an f-ideal. Moreover,
an f-ideal I of an f-ring is an f-ideal if and only if the quotient

ordered ring A/I is an f-ring (see the note after the Definition

1.20).

PROPOSITION 2,5. An %2-ideal I in an %-ring A is an f-ideal

if and only if aAb =0 and r € a* imply raAb, arAb € I,

PROOF. Necessity is obvious. To prove the sufficiency, suppose

the condition is satisfied and aAb € I, then aAb = 0 in the

quotient %-ring A/I. Let X = (a-b), then x* = (a-b)" =3 and

x- = (a - 5)' =b (by Proposition 1.2ii). But XA x" =0 and hence

—_— — e
-

forr e A+, rxAx" €1 and so 0 = rx*A x~ = x*A x" = r x*A X",
Since (X)* = (x*) and (X)" = (X°) for every x e A, we have

0=1x*Ax" = fX)AE " = T@EA®B) = TaAb and so raAb ¢ I.

Similarly, arAb ¢ I.

LEMMA 2,6, Let A, B be two 2-rings and f : A >+ B be an
2-homomorphism from A into B, Then f'l(G) = {x e A|f(x) € 6},

where G is an f-ideal of 3, is an f-ideal of A,
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PROOF., It is clear that f'l(G) is an %-ideal of A. Now let

a, b € A such that aAb = 0, then for every T € A+, we have

f(raAb) = f(ra)Af() = f(r) £(@Q)A£f(b) € G, f(arAb) = flar)A£(b) =

£(a) £(r)A£(b) € G. Hence f (G) is an f-ideal of A.
Let I be an f-ideal of an %-ring A and for a positive
integer n, let In ={x¢ Alxn € 1}. The set of all nilpotent

elements of A will be denoted by N(A).

PROPOSITION 2.7. For every positive integer n, In is an f-ideal.

Also, Mmel,
- n—

- -n -

PROOF.  Recall that Z = {x € A/JI]x = 0} is an f-ideal of the
f-ring A/I and that Zz = {0} . ([5], p63, Theorem 16). The ideal
I, is the pre-image of Z, under the natural map 6: A > A/IL,

Hence In is an f-ideal. As 9(1:‘1) S(S(In))n = {0}, we have

Mei,
n—

THEOREM 2.8. Let A be an %-ring containing a nilpotent f-ideal
I. Then N(A) = P(A) = N(A).

PROOF. Since I™ = {0} for some m > 0, it follows that
(I::)m c " = {0}, so ) is a nilpotent ideal. The set of nilpotent

elements of A is contained in U I, < N(A) and so the set of all
n>0

nilpotent elements is contained in N(A). Since N(A) 1is contained
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in the set of all nilpotent elements for any %-ring, hence N(A)

is equal to the set of all nilpotent elements in A,

PROPOSITION 2.9. Let A be an &-ring which satisfies the condition

(8), (i.e., A is a d-ring). Then the set P = {x¢ Alaxa = {0}} is

an f-ideal which is nilpotent.

PROOF. It is clear that P = {x € A|A*xA" = {0}} and P is an ideal.

Also x € P if and only if A|x|A = {0}; for let a, b€ A" and

0= alxlb a(x+ +x)b=axt*b+ax"b we have a x*b=0=ax" b,

Thus axb

ax'b- ax™b = 0, Conversely, let x € P, then dxd =0

for all de A*. Now d|x|d' < (dwvd")|x|(dva") = |(@Vvdx@vdn] = 0;
thus A*|x|A* = {0}. This shows that P is an %-ideal. Now let

XAy =0, r >0 then d(rxAy)d' = drxd'A dyd' £ (dr vd)xd'A (drvvd)yd'
= (drvd). (xAy)d' = 0. Hence P is an f-ideal, Clearly P> = {0}

and so P is nilpotent.

THEOREM 2.10. Let A be an %-ring which satisfies the condition (B).

Then N(A) = P(A) = N(A).

PROOF. This is a consequence of Theorem 2,8 and Proposition 2,9,

LEMMA 2.11. Let A be an %-ring which satisfies the condition

a*A a= = {0} for all a€ A. Then for any a, b in A we have:
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ii) a%= 0 if and only if (a")% = (@7)? = o;

iii)  (ab)? > 0; and

iv) aA* a>o0.

4

PROOF, i) a" = (a* - a")% = [(a* -

= @H* s @420,

a')zlz = (292 + (@)% - a*a” - amah)

ii) Follows from the equation a? - (a"')4 + (a')4 .

iii) (ab)? = [(@* - a) 0"
= a'bta*b* + atbTa’p”

iv) Let beA*, then aba
(a*b - a™b)(a" - a") =

a*b a*t + ab 2" > 0.

+

b-31% = @b’ - a*b™ - a’b* + a"b")2
a™b'a™’ + a™b"a"d” > 0,

@ -a")b (at -a") =

- - * - -
atbat - a*tb a~ - aba* + aba” =

LEMMA 2.12, ([7], 3.5, p78). let A be an %-ring in which the

square of every element is positive, and let a,bsA+ with

a® = b2 = 0. Then ab = ba = 0.

PROPOSITION 2.13. Let A be an f-ring satisfying the condition

ata” = 0, for all acA., Then a2 =

2

b" =0 implies ab = ba =0,

2
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(a+b)? = (a=b)2 = 0 and |a| =0 = |b]2.

PROOF. Let A be an g-ring with the condition a*a” = 0 for

all acA. Then a2 = (a* - a")2 = (a+)2 + (a')z -atam - ama" -

@2+ @250, 1f a2 =0, then (a9% = (a7

1}
o
*

Now suppose a® =b% =0 then (a")2 = (a)? = (l>+)2 = (b-)z =0
2

and by Lemma 2.12 ab = ba = 0. Moreover, (a ib)z = tab tba+ b? - 03
o = @@+ a2 = G2+ (7 + 2’ 4 aa = 0. Sinilarly,
b? = o,

LEMMA 2.14, Let A be an g-ring satisfying the condition
a*A a~ ={0} for all a in A or a*a” =0 for all a in A,

Then (x’m"/\m')2 = (m+r/\m')2 0 for all meA and reA+.

m*rAm~, then 0 ixz =

PROOF, Let X = ImAM , ¥
- - - - - * -
(m'A 7)) (mm'ART) < (' Am ym* A(m*AnT)n” < rm em’Am rm"

+ - - - N -+ + -
Armm Am™m~ = 0, since we have mrm =0 or rmm = 0,

Similarly, yz 0.
LEMMA 2.15. Let A be an %-ring satisfying the condition
a*A a~ =0 for all a in A, Then (rm+Am')A(rm+/\m') ={0},

(m+r/\m')A(m+r/\m') ={0}) for all reA’ .



24,

PROQF. Let x = Tm'A m, y= m*rAm™ with reA’. Then
+ -
for peA we have 0 < xpx = (rm"'/\m")p(m"'/\m ) < (rm*pA m”p) (rm*}\m') <

rm+p (m A m A np(mm*Am’) < rm+pm+A rm+pm'/\ m prm*Am™pm” = 0. Now

. + - -
if aegA, then xax = x(a - a )x = xa*x - xa'x = 0. Thus xAx = 0,

Similarly, yAy = 0.

PROPOSITION 2,16, Let A be f-ring satisfying the condition

a*A a® = 0 for all a in A. Then the set I = {acA|AaAaA = {0}}=

{acA|A%a A*a A* = {0}} is a nilpotent f-ideal.

PROOF, It is easy to see that {-reA|AaAaA = {0}} = {acA|A*aataa* = {01},
Since A%a A*a A* = A*(a* - a”)At (@t - a7)At = Ata"AtatAt 4 Atatatamat -
A+a+A+a'A+ < A*amatatat = ata'atatat . A"':;t'A+a"A‘b , we have ael if

and only if a", ael, and so ael if and only if |aleI. Whence

if |y| < |x] with xeI, then |[x|eI and from 0 f_A"'IylA"lﬂA+ <

A*|x|A*|x|A* = 0 we have yel.

Now let a, bel and a >0, b >0, then by Lemma 2,11 iv),

0 <A”(a - b)A*(a - b)AT = (A*aa" - A'bA%)(aa" - bAT) = ATanTan” -
+
A*an'ba* = A'bATaA" + A'bATDAT = -ATaa*bA” - A"bA%aA* < 0. Hence

+

+ - -

AaA*bA* = A*ba*aA* = 0. For a, bel, we have a’, a-, b', b el and
- - ? + -t -t

hence A a*A*bTA* = a*a*a*b A* = A*a"Ab'A = A*aATBTAT = 0, thus

+ - - -
A(a-bA*@a-bA  =a*@ -2 -bp " +bp)A% @ -2 -b" +bHAY = 0,
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and so a - bel, It is clear that for any al and rcA we have
ar, racI. This shows that I is an f-ideal. The 2-ideal I is a

5
nilpotent ideal, for I = {0},

" THEOREM 2.17. Llet A be an f-ring satisfying the condition

a*A 2= =0 for all a in A. Then N(A) = P(A) = N(A).

PROOF. The g-ideal I = {acA|AaAaA ={0}} defined in Proposition
2.16 is a nilpotent f-ideal., By Lemma 2,15, I contains the elements
of the form mm'Am~, m'rAm~ for meA, reA”, hence I is an
f-ideal, By Theorem 2.8 N(A) is the set of all nilpotents,

hence N(A) = P(A) = N(A).

PROPOSITION 2,18, Let A be an g-ring. Then the following are

equivalent:
i) A satisfies the identity a*a” = 0 for all a in A;
ii) aAb =0 implies ab =0 for all a, b in Aj;
iii) (aAb)? + ab = a(aAb) + (aAb)b for all a, b in A;

iv) (avb)2 + ab = a(avb) + (avb)b for all a, b in A,
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PROOF, iii) implies ii). Clear,

ii) implies i). Since a'Aa” = 0 for all acA, by ii) a*a™ = 0,

i) implies iii). If aAb =0, then x* = (a-b)” = (a-b) VO =
(a-b)V(a-2a)=a+ (-bV-a) = a+ [-(bAa)] =a and x = (a-b)
=-(a-b)vV0=(b-2a)V(-b) =b + (-aV¥V-b) =b + [-(aAb)] = b,

By i) ab = xx =0 and hence iii) holds, Now assume

aAb=1r#0, Then aAb-r=0 and so (a -Tr)A(D -1) =0,

Since y*=[(a-1)-(b-1)]*=a-r and y = [(a-71) -~ (b-17)]
=b -1, we have by i) y+y' =(a-1)(b-1)=ab-ar-r71b+ 2 =0,
Thus ab + r° = ar + 1, i.e., (aAb)? + ab = a(aAb) + (aAb)b.

This completes the proof of i) implies iii).
iii) equivalent iv)., This follows from the fact that (-av=b) =

-(anb) and (-aA-b) = -(avb) for all a, beA,

LEMMA 2.19. Let A be an g-ring satisfying the condition x'x™ =0
for all xeA. Then the set J = {aeAla2 = 0} has the following

properties:
i) aeJ if and only if -aed;
ii) aeJ if and omnly if a*, a"eJ;

iii) aeJ if and only if |a|eJ;
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iv) a, be J implies a - b e J;
v) a,beJ implies ab = 0, hence J2 = 03

vi) J contains the set of the elements of the forms
|r|a*Aa™, a*|r|Aa", where a, r run through A;

vii) if |b] <|a], ae J, then be J.

PROOF., i), Clear. Also ii) and iii) are obvious, for

a? = |.€L|2 = (a2 + (a')z, and iv), v) and vi) follow from

Proposition 2,13, and Lemma 2,14, Finally if |b] < |a], where

aeJ, then 0 5_|b2| 5_|b|2 < |a]? =0 by iii) and vii) holds.

LEMMA 2,20. Let A be an 2-ring satisfying the condition x*x" =0
for all x ¢ A, If every element of A is nilpotent, (i.e., if

A = N(A)), then N(A) = P(A) = N(A) = A.

PROOF. The set J = {a ¢ A|a2 = 0} is the set {a e A||a|? = 0}
by Lemma 2.19, iii). For any a, beg J, a -b € J by Lemma 2,19, iv).
Now let a¢J and T e A'. From (ra - a)2 > 0, we get (ra)z-ara > 0.

2
Hence ara < (ra) = rara. We have ara < rara

< rz ara

<I‘3

ara etc

< 1lara for alln >1land r € A%,
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Since N(A) = A, r =0 for some positive integer n, it follows
that (ra)® = 0. Now for any r € A, |ral? f_(lrllal)2 = 0. Hence

raecJ forany re A and ae J. Similarly, ar € J. Thus J is
a nilpotent f-ideal by Lemma 2,19 v) and vi). Now the lemma follows

from Theorem 2.8.

THEOREM 2.21. Let A be an R-ring satisfying the condition x*x~ = 0

for all x € A. Then N(A) = P(A) = N(A).

PROOF. Let P(A) = P, From Proposition 1.23 P = N(A). Also P
is an %-ideal of A and P may be considered as an %-subring of

A. By Proposition 1,22 N(P) = N(A)N P = N(A) since N(A) c P,

But every element of P is nilpotent, hence by Lemma 2.20 N(P) = P,

Thus N(A) = P = N(A).

LEMMA 2,22, Let A be an !%-ring with the following property: if
x € A* and aec A then (xa)’x € A*. Then I,=1{ace Al (x Ial)zx =0

for all x € A*} is a nilpotent %-ideal of A,

PROOF. Let a, b€ IZ' Hence for every x € A+, (x|a|)2x =0 and
2 .

(x|bl)"x = 0, From (xlai -x|b|)2x € A7, it follows that x|a|x|b|x =

and x|b|x|a|x = 0., We have 0 f_(x|a - b|)2x f_(x|a| + x|b|)2x =0

for all x € A*, Hence a - b € I, Also if a€I, and r €A then

0

for all
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x € A%, 0 < (x|ra])%x < x| | [a])%x < [xlz| vV x)]a]1%x| x|V x) = o.
Hence ra € I,. Similarly, are I,. Thus I2 is an ideal. Now for
any y e A, and a € I,, the condition |y| < |a| implies (x|y|)2x.§
(x]a])%x for any x e A*, thus I, is an f-ideal. For any a, b, c,
d, and e in I,, we have |a|, |b], |c|, |d|, and [e] in I, and so
u = |a]V|b]v]c]v]dlv]e| € I,. From 0 < |abcde| < |a|[b][c|]d]le] <
u$ = (Ju|)® = 0 we have Ig = {0}. This shows that I, is a nil-
potent %-ideal of A,

COROLLARY 2.23. Let A be a positive square ring, i.e., a2 >0

for all a€A, Then I,={ace Al(x|a])%x = 0 for all x € A*} is a

nilpotent %-ideal.

COROLLARY 2,24, Let A be an %-ring satisfying the condition

x'a x” = 0 for all X, a in A, Then I, is a nilpotent f-ideal.

PROOF. In an %-ring satisfying the condition x*a x~ = 0 for all
X, a in A, we have (ab)z >0 for all a, b in A by Lemma
2.11. Hence for any x € A* and ac¢ A, we have (xa)zx e A* and

hence the Corollary follows,

LEMMA 2,25, Let A be an %-ring satisfying the condition (d):
ax*axa=0 for all ac A* and x € A, Then I, is a nilpotent

f-ideal L]
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PROOF. We first show that if xeA and acA’ then (ax)%asA’
Indeed (ax)za = (a x -a x')%;= (ax+)2a - ax'ax"a - ax'ax+a+(ax')2a =
(ax’)za + (a x')zeA’. using the condition (§). Thus by Lemma 2.22

12 is a nilpotent f-ideal. We now show that 12 is an f-ideal.

Let a, reA’ and xeA, we have [a(rx*p\x')]za = [a(rx+ﬁxx')]'
[a(rxt« x7)]a 5_(arx+)(ax')a = arxax’a = 0 by Lemma 2,1. Hence

+ - .. - .
X A X slz. Similarly, x+r/\x eI2 and so I2 is an f-ideal.

THEOREM 2.26. Let A be an f-ring satisfying the condition

axaxa=0 for all xeA and acA”. Then N(A) = P(A) = N(A),
PROOF. The Theorem follows from Lemma 2.25 and Theorem 2.8,

LEMMA 2.27. Let A be a prime 2-ring (i.e., {0} is a prime g-ideal).
Then the condition x*a x” = 0 for all aeA+, xeA is equivalent

to the condition (8): a x*ax'a = 0 for all acAt and xeA.

PROOF. That the condition x"ax™ = 0 for all acA” and aeA implies

() is trivial.

Now assume A satisfies (8). For any a, b in A" and x
in A, we have 0 < (x+ax')b(x+ax') f_x*(avb)x' (aVb)x*(a\/b)x' - 0
by (8). Since b is any element in At and hence (x+ax-)A+(x+ax') = {0}.
By Proposition 1.24, x*ax™ = 0 for all aeA*, xeA since A is a

prime %-ring. This completes the proof of the lemma,
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PROPOSITION 2,28, Let A be a prime 2-ring, Then A is a

totally-ordered ring without non-zero divisors of zero if and only

if ax’ax"a=0 for all aA* and xeA.

PROOF, This is a consequence of Propesition 1,21 and Lemma 2,27,

PROPOSITION 2.29. Let A be an %-ring satisfying the condition 8):

+ - .
axaxa=0 for all aeA+ and xecA. Then an %-ideal P is a prime

g-ideal if and only if A/P is a totally-ordered ring without non-

zero divisors of zero.

PROOF. Assume A satisfies (§). By Lemma 2,2 A/P satisfies
the condition (§). Since A/P is a prime 2-ring, by Proposition
2.28, A/P is a totally-ordered ring without non-zero divisors

of zero.

Conversely, if A/P has no non-zero divisors of zero, then by

Proposition 1.12 P is a prime %-ideal,

THEOREM 2,30, Let A be an %-ring with zero 2-radical. Then

A satisfies the condition (§): a x*a x"a =0 for all acA’ and
xeA, if and only if A is a subdirect union of totally-ordered

rings without non-zero divisors of zero.
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PROOF, Since A 1is an f2-ring with zero %-radical, by Proposition

1.31 A 1is a subdirect union of a family {Aa}a-er .of prime £-rings, By Pro-
position 2.2 A satisfies the condition (§) for every oel .

A, is a totally-ordered ring without non-zero divisors of zero for

every acl' by Proposition 2,28,

The converse is trivial by Proposition 2.3,

COROLLARY 2,31, Let A be an %-ring with zero %-radical. Then

the following are equivalent:
i) A is an f-ring;

ii) A 1is a subdirect union of totally-ordered rings without

any non-zero divisors of zero;

iii) x*a x" = 0 for all x, aeA;

iv) if a, b, ¢, A, a >0, then a(bvec) = abvac and

(bvc)a = bavea;
+

v) x'x =0 for all xeA;

vi) ax*ax’a=0 forall aeA’, xeA.

PROOF, This is a consequence of Theorem 2,30 and Theorem 1,32,
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COROLLARY 2,32, Let A be a prime t-ring (i.e., {0} is a prime

g-ideal). Then the following are equivalent:
i) A is an f-ring;

ii) A 1is a totally-ordered ring without non-zero divisors of

zero;
iii) x*a x” = 0 for all a, xeA;

iv) if a, b, ceA and a > 0, then a(bVvc) = abVac and

(bvec)a = baVcea;
v) x'x" =0 for all xeA; and

vi) ax'ax"a = 0 for all acA* and xeA.

PROOF. Since {0} is a prime 2-ideal N(A) = {0}. By Corollary
2.31, i), iii), iv), v) and vi) are equivalent. Also, since an
f-ring is prime if and only if it is a totally-ordered ring without
non-zero divisors of zero by Theorem 1.30, Hence the corollary

follows.

We note that in the Corollary 2.31 and Corollary 2.32, iii) is
the condition (0), iv) is the condition (B), v) is the condition

(v) and vi) is the condition (§).
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PROPOSITION 2,33, Let A be an 2-ring which satisfies one of

the conditions (o), (B), () or (§). Then every %-ideal P

whichis a prime 2-ideal is a ring prime ideal.

PROOF. Suppose P is an %-ideal whichjggprime 2-ideal, then A/P

is totally-ordered ring without non-zero divisors of zero by Proposition
1.21 and 2,28, Let a, be A such that aAb< P, and a ¢ P, then
(2 +P)(ab +P) =a(ab) + P=0+Pand a+P #0 + P, Since A/P
contains no non-zero divisors of zero, (ab + P) = 0 + P and again

b+P=0+P., Thus b & P, This shows that P is a ring prime ideal.

PROPOSITION 2,34, Let A be an %-ring which satisfies one of the

conditions (@), (B), (Y) or (§). Then an %-ideal P isa prime

f-ideal if and only if ab € P implies a€ P or b €P,

PROOF.  Necessity is clear from the proof of Proposition 2.33. Now
we prove the sufficiency, If P is an Z-ideal with the property,
that is ab € P implies a € P or b € P, them A/P contains no
non-zero divisors of zero. Since (A/P)¥*~T0 is closed under
multiplication, hence {0} is a prime %-ideal of A/P by Proposition

1,12, Thus P is a prime %-ideal of A,
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PROPOSITION 2.35. Let I be an ¢-ideal of an %-ring A. If A/I

satisfies one of the conditions (a), @®), &) or (§), then

n . . . .
/T = {2cAla el for some positive integer n} is an g¢-ideal.

PROOF.  Assume A/1 satisfies one of the conditions (a), (B),
(4) or (). Consider the natural g-homomorphism ¢: A > A/T = R,
Since the g-radical N(A) is the set of all nilpotent elements of A
by Theorems 2.10, 2.17, 2.21 and 2,26, we have ¢ 1(N(K)) = {acA|a"el
for some positive integer n} = VI is an %-ideal of A by Lemma

2.6.

COROLLARY 2.36. lLet A be an g-ring which satisfies one of the

conditions (a), (8), (y) or (5§). Then yT is an g-ideal for

every g~-ideal 1.

PROOF. A consequence of Lemma 2.2 and Proposition 2.35.

REMARK 2.37. In a general g-ring A, /T may not be an g-ideal.
For example; in Example 3.3, {(0, 0)} is an g-ideal, but

JT(0, 0)} = {(a, -a)eA|acR} is not an g-ideal of A.

PROPOSITION 2.38. Let A be an g-ring which satisfies one of the

conditions (a), (B), (y) or (8). If P is an f%-ideal then the

following are equivalent:
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i) P is an g-prime ideal;

ii) VP =P and aAb =0 implies aecP or be P.

PROOF. i) implies ii). /P 2P is clear. Since P is a prime
g~-ideal A/P satisfies one of the conditions (@; @B), () or

() by Lemma 2.2, we have A/P a totally-ordered ring without non-

zero divisors of zero by Propositions 1,27 and 2.29, If x e /P

then x" ¢ P for some n (and (:'c)n = 0)., Since A/P contains no

non-zero divisors of zero we have X = 0, i.e., x ¢ P. Hence VP = P.

Assume aAb =0, then aAb=(a+P)A(b+P) =aAnb+P =0 We

have a=0 or 5=10, i.e., agP or beP.

ii) implies i). We note that the condition "aAb = 0 implies
aeP or beP" is equivalent to the condition "aAb € P implies
agP or begP". Nowassume yP =P and aAb e P implies ag P
orbegP, Let I i P, J iP where I, J two %-ideals of A, then
there exists ae I*N\ P and b ¢ J\p (since a § P if and only
if |a] §P). If IJEP then 0< (aAb) <a, b and hence
0 < (a/\b)z <abeglJeP =/, Thus aAb ¢ P a contradiction. Hence

1J i P. This shows that P is a prime f-ideal of A.

THEOREM 2,39, Let A be an 2-ring which satisfies one of the

conditions (a), (B), (y) or (8). If P is an %-ideal of A,

then the following are equivalent:
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i) if a,be A and abeP, then aecP or beP;

ii) if I, J are two ideals (ring ideals) of A such that

1JeP, then ISP orJcP;

iii) if I, J are %-ideals of A and IJ <P, then I <P or

iv) A/P 1is a totally-ordered ring without non-zero divisors

of zero;

v) VP =P and aAb =0 implies a€ P or b e P,

PROOF. A consequence of Proposition 1.21, 2,29, 2,33, 2,34 and 2,38,

In some classes of 2-rings, the ring has no non-zero nilpotent
elements if the ring has no non-zero positive nilpotent elements,
Examples of such classes are the classes of %-rings satisfying the
conditions, (@), (B) or (y). This is true since for any positive
integer n, xm (x"')4n + (x')4n holds for the %-rings satisfying
the condition (a), |x®| = |x|® holds for the %-rings satisfying the
condition (8) and x°M = (x*)%M 4+ (x7)%" holds for the L-ring
satisfying the condition (Y). !lence an %-ring which contains no non-

zero positive nilpotent elements, and satisfies any one of the conditions

@), (B) or (y) is an f-ring.
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In [6], Diem has given some examples which satisfy the conditions
@), ®) or (y). We now present two examples to show that an 2-ring
satisfying @), @), @) and (§) may not be an f-ring; an f-ring
satisfies the condition (§) but does not satisfy any of the conditions

h)' (B) or (‘Y)o

EXAMPLE 2.40. An g-ring satisfying (), @), (y) and (8§) that

is not an f-ring,

Let R be the set of all even integers with usual order. Let
A be the cartesian product of two copies of R with the operations

and order in A as follows: for a,, a,, b1 and b, in R,

i) (31) a2) + (bln bz) = (al + bl' a2 + bz).;
ii) (31. az) (hla b2) = (82b2' 0); and

iii) (al, az) > (0, 0) if a, >0 and a, > 0.

Then it is easy to see that A is an f-ring. It is clear that
|(a1, az)| = (|a1|, |a2|) for all (a,, a,)eA and A is an
archimedean commutative g-ring. Since the product of any three
elements in A is zero, the ring A satisfies the conditions (o)
+ -
and (§8). Now for any (al, az)eA, (al, az) (al, az) =
[(aln 32)\/(0, 0)]['(310 aZ)V(on 0)] = [(alo az)v(ot 0)][(‘31‘32)\/(0:0)]

= (ai\.joe azvo) ("alv 09 -aZVO) = ((azv 0) (-82\/0),0) = (0, 0), since
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32 is an even integer. Thus the ring A satisfies the condition
(). Forany x=(a,a) and y= (b, bp) in A,

[yl = (2, 2,0, b)] = | (25h,, 0)] = (layllb,], 0) =

(Iallo 'azl)(lblln lbzl) = '(315 az)”(blo bz)l= IXHY . By ({s],

Lemma 1, p58) the ring A satisfies the condition (B). The f-ring

A 1is not an f-ring. For (o, 2)/\(2,0) = (0, 0) but (0, 2)(0, 2)AE2,0)
= (450) /\(230) = (250) >(0,0).

EXAMPLE 2.,41. An 2~ring which satisfies the condition (6), but

which satisfies none of the conditions (¢}, (B) nmnor (y).

Let A= {aX + bY + c¥? + dY> + eY?| a,b,c,d,ecZ} where Y° = 0

»

x2=xY=xY2=xY3=xY4=Y2x=Y5x=v4x=o, YX =Y and z is
the ring of integers with the usual order. Then the semi-group ring A

is an f-ring if we define A” = {aX + bY + ¥’ + ar® + e¥?| a5 0

b>0, ¢c>0, d >0 and e >0 }. Since A5 = {0}, the ring A

satisfies the condition (§). This ring satisfies none of the conditions

(), (B) or (y). To prove this, let m= -Y + Yz, then

n* =Y, 0" =Y and 'MW = VO =¥ 40 m'n = vPy = v3 # 0.

3
Hence A satisfies neither () mnor (y). Since Y [X-Y)VY] = Y(X + V)=
2 4 2
Y +Y and Y(X - Y)vY(Y) = (oY} + YH VY2 = ¥°, it does not satisfy

the condition (B).



CHAPTER III

SQUARE ARCHIMEDEAN 2L-RINGS

The main aim of this chapter is to prove that, for a square
archimedean 2-ring A, (and, in particular, for a positive square
g-ring), (i) N(A) = P(A), (ii) the set N(A) of all nilpotent
elements is an f-ideal if and only if N(A) = P(A) = N(A), and
(iii) §(A) = {x € A[|x|™ = 0 for some n} is an g-ideal if and only

if N(A) = P(A) = N(A).

DEFINITION 3.1. An f-ring A is said to be a square archimedean

%~ring if it satisfies one of the following obviously equivalent

conditions:

i) if x,y e A* then there exists a positive integer n = n(x,y)
such that xy + yx f_n(x2 + yz);
ji) if x, y € A, then there exists a positive integer n = n(x,y)

such that xy + yx 5_n(|x|2 + Iylz); and

iii) if x, y € A+, then there ekxists a non-negative integer

n = n(x,y) such that n(x2 + yz) + (x-y)z > 0.
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We have the following properties:

i) any f-subring of a square archimedean %-ring is a square

archimedean f-ring;

ii) if A 1is a square archimedean 2-ring, B an f-ring, and
if f is a homomorphism, such that f(A"') = B*, f(A) = B,

then B is a square archimedean f-ring;

iii) 1let {A)\:AEA} be a non-empty family of square archimedean

f-rings and let A = X A, the direct sum of the family with
Aeh

the order defined as follows: (aA) >0 if and only if
'3y 20 for each AeA, then A is a square archimedean

f-ring; and

iv) every positive square f2-ring (xz 2 0, xeA) is a square

archimedean fL-ring.

LEMMA 3.2. Let A be an %ring. If a, b € A, then

@ landl < lalvivl 5 @) lavb| < |a|v(b].

PROQF. (i) Let a, b€ A, then aAbD <ax la| < lalvlbl and
-(anb) = (-a)v(-b) < |a|V|b|. Hence |aAb] < Ialvlbl.
i) Since avb < Ja|lv[b] and -(avb) = (-a)A(-D) < -a < |a]

< Ialvlbl we have lavbl < [aIVIbl.
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We will often use the following notations in this chapter:

for an g-ring A,

N =N(Q) = {xeA[xn = 0 for some positive integer n} ,

N = N(A) = {xeA||x|™ = 0 for some positive integer n},

= = m

N, = N (A) = {xeA[|x|" = 0}, where m is a positive integer.,

It is clear that in any g-ring A, N(A) < N(A) and that,
for certain classes of g-rings, (for example the g-rings satisfying
one of the conditions (e¢), (B), () or (8)), ﬁ(A) = N(A).

The following example will show that in general §(A) # N(A).

EXAMPLE 3.3, Let Z be the ring of integers with the usual order.
Let A = Z x Z with the operations and order as follows: for

a, b, ¢ and deZ,

i) (a, b) + (c, d) = (a*c, b+d);

ii) (a, b) - (c, d) ((a+b) (c+d), 0);

iii) (a, b) > (0, 0) if and only if a > 0, b >0,

It is easy to see that A is an ¢-ring with fl(A) = {(0, 0)} and

N@A) = {(a, -a)]|acZ}.
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LEMMA 3,4, 1Let A be a square archimedean %-ring and x, yeA+.

m m m
Then for allm > 1, (x + y)(2 ) <A 2 ). Y(z )) and

m-1 m m
(xy) @ < ¥y (x(2 ) y(z )) for some positive integers A and Moo

PROOF. We proceed by induction on m. Let x, yeA+. If m=1,
then (x+y)2 = x2 + yz + Xy +yx < (x2+y2) + n(x2+y2) = (n+l) (x2+y2)
for some n and xy < xy + yx f_u(x2+y2) for some u (by the square
archimedean condition). Assume the assertion holds for m - 1,

that is, assume

Me 1 2!!1- 1 M= 1

CX"}')Z < }‘m-l(x + yz ) say ,
then G = (e a6 )
= x;_l(xzm + yzm + xzmmlyzm-1 + yzm-lxzm-l)
i)\i_l(xzm + yzm +n' (xzm + yzm))

for some positive integer n', (by the square archimedean property),

and hence

m m m
wy? <2 mened «y7) .
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Similarly, if
m-2 m-1 m=-1

(xy)? <ulx +y

2m=1 2 m-1 m-1
% <utx@ o+ y? )

m m m-1 m-l m-1 m-1
=u2(x2 +y° +x y +y2 x2 )

m m m m
_fu2(x2 o+ yz + M(x2 + Yz ))

for some positive integer M (by square archimedean property),
and hence

m-1 m m

(xy)2 _<_u2( )+ ¥R )

This completes the proof.

LEMMA 3.5, Let A be a square archimedean %-ring. Then E(A)
is a sublattice subring of A and ﬁ(A) is also a square

archimedean %-ring.

m

2m 2

PROOF, If x, y € (ﬁ(A))+, then x 0 and y° =0 for some
m m m-1 m m

m
m > 1. Hence (x+y)2 < lm(x2 + y2 ) =0 and (xy)2 < um(x2 + y2
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for some positive integers lm and B by Lemma 3.4. That

N(A) is a subring now follows from |x +y| < || + |y] and

. Clearly ﬁ(A) is a convex subring of A. Now

|xv| < |x|]y
if a, be(N(A)) then 0 < aAb<a and so aAbeR(A);

avb = (a+b) - (aAb), hence aVbeN(A). If a, beN(A), then
since |aAb| < |a|v[b|, |aVvb] < |a]v|b] and N(A) is
convex, we have aAbD, avbeﬁ(A). It is clear that ﬁ(A) is a

square archimedean g-ring.

PROPOSITION 3.6, Let A be a square archimedean g-ring in which

every element of A is nilpotent. Then ﬁz(A) is a nilpotent

t-ideal of A,

PROOF, Let N, = f:z(A). From Lemma 3.4, a,beN, implies a-beN,.

Let ,ae(ﬁz)", and reA*. Then (ar)a + a(ar) < n ((ar)2 + az) for

. 2
some n > 1 and since a =0,
ara < n(arar)

< n2 (ararz)

< ns(arars) etc.

inm(ararm) for all m > 1.




w- !

46,

Since r is nilpotent by assumption, we have
ara = 0

Thus ar and raeﬁz.

+ - +

Now if aeN veA and let a=a -a, r=7T -7T then

X
a’, a~ < |a|, whence a’, a's(ﬁz)*. We have ra and areﬁz.
Thus ;2 is an ideal, It is clear that ﬁz is an %-ideal., Now
we show that (ﬁz)2 = {0}. Suppose a,bs(§2)+, then
0<absbac<n (a2 +b°) =0, Hence ab=ba=0. If a, bel,
- ¢ - -

+ - = - -
then a , a°, b+, b e(N)+ and ab” =0 = ah" =ab =ab,

Thus ab = 0. This completes the proof of the proposition,

PROPOSITION 3.7. Let A be a square archimedean 2-ring in which

every element is a nilpotent. Then for every m > 1, ﬁzm is a

- m =
nilpotent f-ideal of A and (sz)2 = {0}, where sz = sz(A).

PROOF. We proceed by induction on m.

For m= 1, the result is true by Proposition 3.6. Assume the
assertion holds for m - 1. let A* = A/ﬁz, then A* 1is also a
square archimedean %-ring and every element of A* is nilpotent,

By the induction hypothesis ﬁzm_l(A*) js an g-ideal of A* such
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= m-l = -
that N2 _ = {0} in A*. Now N _(A) = 87 (N __;(A*)), where
om-1 " ™

0:A -+ A/N2

and so §2m(A) is an %-ideal of A. Also

ﬁ;mn-l A) = e'l(ﬁzlmn:i (A*))
- ')
= ﬁz
Hence ﬁzm - ¥ = fo}.
mn 2

PROPOSITION 3.8. Let A be a square archimedean %-ring in which

every element of A is a nilpotent. Then N(A) = P(A) = A.

PROOF.

T Cs

pa) cxw SPweac U N w .
1 n=1l 2

THEOREM 3.9. Let A be any square archimedean 2-ring.

Then N(A) = P(A).
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PROOF. Let B = P(A) then B is an %-ring which is square
archimedean and every element of B is a nilpotent. By Proposition

3.8 N(B) = P(B) = B, But N(B)

BAN(A) and so B € N(A). Thus

P(A) = B = N(A) and hence P(A) = N(A).

The following corollary is another proof of Theorem 2,21,

COROLLARY 3.10. Let A be an %-ring satisfying condition (y)

(i.e., x'x" =0 for all x€ A). Then N(A) = P(A) = N(A) = N(A).
PROOF. Since A satisfies the condition (Y), A 1is a positive
square %-ring and hence a square archimedean %-ring. By Theorem 3.9

N(A) = P(A). ‘Thus by Proposition 1.23, N(A) = P(A) = N(A) = N(A).

THEOREM 3.11, Let A be é square archimedean %-ring. Then a

necessary and sufficient condition for N(A) = P(A) = ﬁ(A) is

that N(A) be an %-ideal of A.

PROOF. Necessity is clear. For the sufficiency, suppose

ITJ(A) = N is an %-ideal of A. Since every element of N 1is a
nilpotent, we have N(?l) = P{E) =N by Proposition 3.8. But
N(N) = NAN(A), hence K €N(A). Since N(A) €P(A) N for

any %-ring, we have

4l

= N(A) = P(A) .
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THEOREM 3.12. Let A be a square archimedean 2-ring. Then a

necessary and sufficient condition for N(A) = P(A) = §(A) = N(A)

is that N(A) be an g2-ideal of A.

PROOF. Necessity is clear. For the sufficiency, suppose N@Q) is
an g-ideal of A. If xeN(A), then |x|eN(A) and so |x|n =0 for
some positive integer n. Thus xs?l(A) . This shows that N(A) = ﬁ(A).

By Theorem 3.11 N(A) = P(A) = N(A) = N(A).

In [5], p60, Birkhoff and Pierce have shown that a d-ring A
is positive square if and only if it is an orthogonal g-ring, (i.e.,

x*x" = 0 for all xcA). We have the following generalization.

PROPOSITION 3.13. Let A be a d-ring, Then A is a square

archimedean g-ring if and only if A is an orthogonal g-ring.

PROOF. Assume A is square archimedean and suppose X,yeA and
xAy =0, then x>0, y>0. By the square archimedean property,
0<xy+yx <2 (x2 + yz) for some positive integer . It fellows

that

0 <xy < )\(x2 + yz) and so

0 <xy = xy/\()\(x2 + yz) < Alxya &+ y%)]
< AMxya x4 xyAyz]
= Alx(yAx) + (xAY)y]

= U
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Thus, by Proposition 2.18 A is an orthogonal Z-ring.
The converse is trivial, for an orthogonal %-ring is a positive
square &-ring and a positive square L-ring is a square archimedean

2-ring.

COROLLARY 3.14, Let A be a d-ring. Then A is a square

archimedean %-ring if and only if A 1is a positive square L-ring.

PROPOSITION 3.15, Let A be a square archimedean 2-ring. If I is
2

a right 2-ideal of A and x € A is such that x° € I, then xI< 1.
PROOF. For y € I+, then 0 < xy + yx < A(x2 + yz) for some positive
jnteger A (by the square archimedean property). Then 0 < xy f_k(xz + yz).
Since x2 + y2 €1 and 1 is convex, we have Xxy € I. Now for any y € I,

y=y -y and y*, y~ € I. Hence xy € L.

THEOREM 3.16. Let A be a square archimedean %2-ring with an identity

1> 0, Then |x| < m'l for some positive integer m if |x|k =0

for some positive integer K.

PROOF. We proceed by induction on k. For k = 2, i.e., |x|2 =0,
then by the square archimedean property lxl §.2|x| = |x| + |x| <
A(lez + 1) = A-1 for some positive integer A. Now assume the

assertion holds for j <k (k > 2), that is for j <Kk, Ix|? =0
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implies |x| < m*l for some m > 1. Assume lxlk =0. let k' =k

if k is even and k' = k+#1 if k is odd. Since (lxlz)k'ﬂ:o
and k'/2 < k, by hypothesis |x]2,§ n°l for some n > 1, Now by the
Square archimedean property |x| < 2|x| E_A'(lez + 1) <A'(n1 + 1)

= A'n.l + A"l = (Aln + A').l.

We now generalize some results of Diem [7], and give an example

to show that one of the theorems found in I7]1 can not be generalized.

LEMMA 3.17. Let A be a square archimedean 2-ring. Then for

x, yeA* with x2 = y2 =0 we have xy = yx = 0,

PROOF,  Since x,yeA+, there exists a positive integer A such that
2
0 < xy +yx < Ax o+ yz) by square archimedean property. We have

Xy = yx =0, for x2 = y2 = 0 by assumption,

We recall that a non-zero f-ring A is called an g%-domain

if A*N\ {0} is closed under multiplication.

LEMMA 3,18, Let A be a prime g-ring which is square archimedean,
Then A is an 2-domain if and only if a,peA, aAb =0, and ab = 0

imply ba = 0,

PROOF. See (7], p79, Lemma 3.6.
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PROPOSITION 3,19, Let A be an L-ring with N(A) = {0} which

is a square archimedean 2éring and in which disjoint elements
commute. Then A is a subdirect wnion of square archimedean ¢-domains

in which disjoint elements commute,

PROOF.  Since N(A) = {0}, A 1is a subdirect union of a family
{Ah' aeT} of prime g-rings by {71, 2.14. Since the properties of
béing square archimedean and having disjoint elements commute are
preserved under ¢-homomorphisms, each A, 1is square archimedean and

disjoint elements commute., Thus by Lemma 3,18 each A, 1is an f-domain,

PROPOSITION 3,20, Let A be a square archimedean %-ring in which

disjoint elements commute. The P(A) = E(A).

PROOF,  Since P(A/P(A)) = {0}, A/P(A) is a subdirect union of
2-domains by Proposition 3,19, It is clear that A/P(A) has no non-
Zero positive nilpotent elements. Hence acA* and a" = 0 for
some positive integer n imply that aeP(A)., Now if xeﬁ(A), then
Ix]n =0 for some n and so |x|eP(A). Thus xeP(A)., It follows

=
»

that P{A) = K{A).

THEOREM 3.21., Let A be a square archimedean %-ring in which

disjoint elements commute. Then N(A) = P(A) = ﬁ(A).
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PROOF.  The theorem follows from Proposition 3,20 and Theorem 3.9.

In [7], p79, Diem posed the following question: Is it true that,
in every prime 2-ring A in which the square of every element is

positive, a, be A, aAb =0, and ab = 0 always imply ba = 0,

In view of Theorem 3.11, if we knew that for an arbitrary prime
2-ring A which is positive square, ﬁ(A) was an %-ideal of A then,
for a, be A, a b=0 and ba =0, we would have (ba)2 = (ba)(ba)
= b(ab)a = 0. But N(A) = P(A) = N(A) = {0} and so ba e N(A) = {0}.
Hence the following question is interesting: Does there exist an

2-prime positive square ring for which N is not an %-ideal.

The following example will show that in general a square

archimedean %-ring may not be a positive square ring.

EXAMPLE 3,22, (Diem, [6]) Let A be the group direct sum of

two copies of the integers Z with usual order and define the

multiplication and order in A as follows: for 3,5 35, b1

and b, €2,

i) (al, az)(bl, bz) = (albl, albz + blaz); and

ii) (ay, a)) 2 (0, 0) if a, >a > 0.

1
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Then A is a commutative g-ring with P(A) = { (0, az)lazsz} . Moreover,
A/P(A) is an f-ring., It is easy to check that A is square
archimedean and also archimedean. The element (1, 0) is an idempotent
and so A is not a positive square ring, The element (0, 1) > 0

has the properties; (0,1)% = (0, 1)(0, 1) = (0, 0) and (0,1)(1,1) =
(0,1) # (0,0). This shows that (0,1)2 = (0,0) and (0,1)A #{(0,0)},
Thus the following Diem's Theorem cannot be generalized to the square

archimedean g-rings which are also archimedean g-rings.

THEOREM 3.23, (Diem, [7]) If A is an archimedean g-ring which is

positive square then, (i) xeA* and x2 =0 imply xA = Ax = {0},

(i) P A% = a%P(a) = P = {0},

THEOREM 3.24. Let P(A) be the g-prime radical of an 2-ring A,

Then the following are equivalent:

i) A/P(A) is an f-ring;
ii) A/P(A) satisfies the condition (a);
iii) A/P(A) satisfies the condition (8);
iv) A/P(A) satisfies the condition (y); and

v) A/P(A) satisfies the condition (§).

PROOF. Since N(A/P(A)) € P(A/P(A)) = {0} by ([7], 2.9), hence
A/P(A) has zero g-radical. By Theorem 2,31, the above conditions

are equivalent.
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DEFINITION 3.25. An 2-ring A is called a pseudo f-ring if it

satisfies any one of the conditions in Theorem 3.24,

PROPOSITION 3.26. ([6], p47, 2.1) Let A be an R-ring., Then

the following are equivalent:

i) if P is a prime %-ideal of A, then A/P is an f-ring;

ii) if P 1is a prime %-ideal of A, then A/P is totally-

ordered without non-zero divisors of zero;
iii) A is a pseudo f-ring; and
iv) A/P(A) is a subdirect union of totally-ordered rings

without non-zero divisors of zero,

COROLLARY 3.27. ([6], p53, 2.8) Let A be a pseudo f-ring, then

N(A) € P(A) (whence N(A) = P(A)).

We note that a pseudo f-ring may not be a square archimedean
2-ring (c.f. [6], Example 2.6, p51). Also a pseudo f-ring which
is a square archimedean f-ring need not satisfy any of the conditions
(o), (B), (y) or (8) (see [6], Example 2.7, p52), Nevertheless we

have the following:
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THEOREM 3.28, Let A be a pseudo f-ring which is a square

archimedean %-ring, Then N(A) = P(A) = fI(A) = N(A).
PROOF,  Since A is a pseudo f-ring, by Corollary 3.27 N(A) = P(A)
and since A 1is a square archimedean %-ring, N(A) = P(A) by |

Theorem 3.9. Hence N(A) = P(A) = N(A) = N(A).

PROPOSITION 3.29.  ([5], p56) Let A be an R-ring with 1 > 0.

Then B(A) = {xe A| |x| <n.l for some positive integer n} is a

sub f-ring (a subring which is sublattice) of A which is an f-ring.

PROOF. Let x, y € B(A), then |x] <n.l, ly]| <ml for some
positive integers m,n. |x-y| < |x| + |y| <n.1 + m.1 = (mn).1,

|xy| < leyl < (n.1)(m.1) = m.1., Hence B(A) is a subring of A.
since |xvy| < [x|vlyl <n.1 m1 < (men).1 and |xAy] < [x|vlyl| <
(m+n).1, B(A) is a sub L-ring., It is an f-ring, for, if z >0

and xAy =0, then z <u.l, where u is a positive integer and

zx < (u.1)x = ux, xz < x(u.1) = 'ux. Hence xzAy < uxAy =0,

zxAy < uxAy = 0, Thus B(A) is an f-ring,

From Theorem 3.16, we note that for any %-ring with an identity

1 > 0, which is a square archimedean f2-ring, P(A) < B(A) holds,



57.

LEMMA 3.30., Let A be an f-ring and S a non-empty subset of A,
L.

Then the polar set of S, S = {x¢ Al|x|A|s] = 6 for all s e S}

is an g-subgroup of A. (A normal subgroup D of an £-group A is

called an L-subgroup if |x| < |y|, where y e D, implies x € D).
PROOF.  Suppose x,y € S, then lelxls] =0, |ylals|] =0 for
all s e S. Since |x-y| < |x| + |y| for any x,y € A, we have

(x-y) € SL.

PROPOSITION 3,31, (Heinriksen § Isbell, [10]). Let A be an

f-ring, Then A 1is an f-ring if and only if §" is an f-ideal

for each non-empty subset S of A,

PROOF, If A is an f-ring, then clearly s is an 2-ideal for

any non-empty subset of A. Conversely, suppose A is not an

f-ring, then A 1is not a totally ordered ring. Hence there exists

X, Yy € A such that x and y are not comparable. Thus (x-y)*A (x~-y)~
=0 and (x-y)+ #0, (x-y)" #0., Let- M= {(a,b) € AxA|a/\b =0 and
a#0, b#0} The set M in this case is not empty. Since A

is not an f-ring by assumption. There exists (a,b) €M and r € N
such that ar b # 0 or ranb # 0. Take S = {b}, then we have

4
S is not a ring ideal of A. This completes the proof of the theorem.
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PROPOSITION 3.32, Let A be a square archimedean £-ring with 1> 0,

Then E(A) n {l}L = {0} and B(A) N {I}L = {0}; where

B(A) = {xA| x < m.1 for some meZ*} ,

PROOF.  We prove B(A)N {1}‘L = {0} first, Let asB(A)(\{l}-L,
then |a|Al1=0 and |a] < m1 for some mez*. We have

la] = |aJAm.1 = 0. Thus a=0 and so B(A) N {1} = {0},

For the first case, since ﬁ(A) S B(A) by Theorem 3.16, hence

N(A) N {13 = {0},

COROLLARY 3.33, Let A be a square archimedean g-ring with 1 > 0,

If AN{m.1| meZ} < N(A), then 1A x =0 implies x =0 (i.e.,

1 1is a weak order unit),

For any g-ideal I of a g-ring A, we define the following

set,
/T = {xeA||x|"cI for some n} and recall that
/T = {xeAlxns I for some n}.

As we will see these two sets have some connection with the sets
r=1(A) and N(A). If A is a square archimedean t-ring, then it
follows from Lemma 3.4 that T is a subring of A for any f-ideal

I of A. It is clear that ‘/'I-' is always a convex set,
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Now consider an arbitrary f-ring A, If I is an %-ideal

and ¢: A+ A/I the natural 2-homomorphism, then

/T=¢lN@/D)  and

/T =0 (®A/D).

Since the preimage of an %-ideal of an f-homomorphism is an

f-ideal, we have the following Proposition.

PROPOSITION 3.34. Let A be an %-ring which satisfies one of the

conditions (a), (B), (Y), (8) or is a square archimedean pseudo
f-ring., Then /T = /T is always an %-ideal of A for any %-ideal

I of A,

PROOF. Since an 2-ring A satisfies one of the conditions (¢),
(B), (), (6) or is a square archimedean pseudo f-ring,
NA/I) = N(A/I) = N(A/I) is an %-ideal of A/I. Hence /T = /T

is an %-ideal of A.

In the relation /ﬁf = ¢'1(ﬁ(A/I)), if for any %-ideal I in
a square archimedean %-ring A, /E% is an %-ideal, then N(A) is an
2-ideal, Now if A has zero %-radical, then aanb =0 and

ab =0 imply ba = 0. We have the following theorem.
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THEOREM 3.35. Let A be a square archimedean #-ring with zero

g-radical, If /T is always an %-ideal for any f-ideal I of

A, then A is a subdirect sum of 2-domains.

PROOF. Since A has zero g-radical, by Proposition 1,31 A is a
subdirect union of &-prime rings {Aa}, aeh. Each A, is a square
archimedean and aAb = 0, ab = 0 imply ba = 0, Thus by Lemma 3.18

Aa is an f%-domain for each aeh .



CHAPTER IV

JOHNSON RADICAL FOR A CLASS OF LATTICE-ORDERED RINGS

In [13], Johnson introduced an analogue of the Jacobson
radical for f-rings, and in [18], Steinberg defined three different
generalizations of the Jacobson radical for the class of all 2-rings.

Denoting these various "radicals' by P J, and R, Steinberg [18]

m?
(o)

showed that P, (A) €J(A) <R(A) for any f-ring A, and that
these three idezls are equal under certain conditions. We shall
show that J(A) = R(A) under more general conditions and that

PA) c Pmo(A). Also, we will define the concept of a faithful,
irreducible 2-module, and, for the class of pseudo f-rings, we

will relate this concept to Steinberg's work. In this chapter we

will also investigate the relation between ®R(A) and R(Anm), where

Anxn is the ring of nxn matrices with entries from A, the ordering
on Anxn taken to be the canonical one,

DEFINITION 4,1. (i) A right %-ideal I of an %-ring A is said

to be modular if there exists a left identity modulo I, e € A such

that x-ex € I for all x € A,

61
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ii) A right g-ideal I of a g-ring A is said to be
regular if there exists a left identity modulo I, e € A* such that
x-ex ¢ I for all x ¢ A.

We note that if e is a left identity modulo I, then e"
is a left identity modulo I for any positive integer n. Since
any orthogonal g-ring (x*x™ = 0) is a positive square ring and
in an g-ring which satisfies the condition (a), every element x
satisfies x4 > 0, for these classes of 2-rings the notions of
modular and regular are the same, Steinberg has shown this for the
class of d-rings (the %-rings satisfy the condition (B)).

Let <(1-a)A>r denotes the right f-ideal generated by the set

(1-a)A.

DEFINITION 4.2, An element a > 0 of an &-ring A is said to

be right f-quasi regular (right 2-QR) if <(1-a)A>, = A,

Let Q(A) = {a € A|<(1-|a|)A> = A}, then a e A'N Q(A)
n m
if and only if |a| < J |[xj-axj| + } lzj-azj||r

for some x.,
i=1 j=1 1

5
Z:s rj in A i=1,2, ..., n, j=1,2, ...,m. Also
a € Q) if and only if |a| € Q(A) and |a] € ) if |a|" =0

for some positive integer n,

In general §(A) may not be a ring ideal and it may contain
idempotent elements. Also N(A) < Q(A) and if N(A) = A, then

QCA) = A,
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DEFINITION 4.3, A right %-ideal I of an L-ring A is a right
2=QR g~ideal if 1* C€Q(A). An g-ring A is said to be %-QR
g=ring if A = Q(A).

In general a right 2-QR right ideal may not be a right 2-QR

2-ring. (see Example 7, (18], p159).

LEMMA 4.4. ([18]). Let A be an g-ring and I a right g-ideal
in A. Then (i) (I:A) ={ae Al|x||la] eI for all xe A} is
an g-ideal in A, (ii) if I is modular, then (I:A) is the

largest ¢-ideal of A contained in I.

DEFINITION 4.5. An f-ring A is said to be L~primitive if

there exists a regular maximal right g-ideal M such that (M:A) = {0}.
An f-ideal P is an L-primitive L-ideal if A/P is an L-primitive

f~-ring,

We now want to relzte some results concerning Steinberg's
work [18]. 1In his work, for any f-ring A, in fact Pm (A) is
the largest 4£-QR L-subring of A, (it is an f%-ideal ofo A), J(A)
is the largest right 2-QR %2-ideal of A and R(A) is the largest
right £-QR right £-ideal of A. Since P(A) <N(A) <Q(A) and P(A)
is an %£-QR L-ring, hence P(A) <P, (a).

o

THEOREM 4.6.  ([18], 4.3.18), Let A be an %-ring such that

A/Pm (A) satisfies one of the conditions (@), (@B) or (y). Then
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Since P(A/Pmo(A)) = {0} implies N(A/Pmo(A)) = {0} by
Theorem 1.19, by Corollary 2.31, A/Pm (A) satisfies any of the
conditions (), @) or () if and o:Iy if A/Pmo(A) satisfies
the condition (5). Thus Theorem 4,6 holds true for the class of

g -Tings satisfying the condition (5).

If an g-ring A satisfies (a) (respectiveiy ®), &), )
then A/P(A) satisfies (a) (respectively ®), &), ()). Hence
an g-ring A which satisfies one of the conditions @), ®), &)
or (5') is a pseudo f-ring. Since P(A) € Pmo(A) for any 2-ring
A, the natural map from A/P(A) to A/Pm (A) is an 2-homomorphism.
Hence if A is a pseudo f-ring then A/Pm;EA) satisfies one of the

conditions (a), (8), (y) or (§). Thus we have the following.
THEOREM 4,.7. If A is a pseudo f-ring, then Pmo(A) = J(A) = R(A).

DEFINITION 4.8, If A is an g-ring and M an abelian g-group,

then M is said to be an A-g-module if a law of composition is
defined on MxA into M which satisfies for By» 8 € M and
a, b e A;

i) (g +g))a= g2+ g3
ii) g (a +b) = g;a+ g:0;
iii) gl(ab) = (gla)b; and

iv) Mt eM .
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DEFINITION 4,9, Let MA be an A-g-module. An g-subgroup H of

M is said to be an A-g-~submodule if HA C H,

DEFINITION 4,10, An A-g-module MA is said to be an Zrreducible

module if MA is simple, (i.e., {0} and M are the only

A-g -submodules) and there exists m¢e M*  such that mA = M,

DEFINITION 4,11, An A-g-module M, is said to be faithful if

m| |r] =0 for allme M implies r =0,

PROPOSITION 4,12, If A 1is an g-primitive ring, then A has a

faithful, irreducible A-g-module G.

PROOF, Suppose A 1is an g-primitive ring, then by definition
there is a maximal regular right g-ideal M such that (M:A) = {0}.
Then G = A/M = {a+M|a ¢ A } is an abelian lattice-ordered group.

Define (g+M)a by ga+M for all ge¢ G and a e A, We have for

s 815 &, 3, b e A;

1) [(g +M) + (g, +Mla= (g +Ma+ (g +Ma,

+

ii) (g +M)(a+b) = (g+Mas+ (g+Mb,

1ii) (g + M)ab

[(g + M)a]b,

+, ace A+ then (g + Ma e G+ .

D

iv) (g +M)e¢
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Thus G is an A-R-module. Now the A-%-submodules of G are of

the form M'/M for some MC M €A, Since M is a maximal

regular right %-ideal we have M' = M or M' = A, Now let e be

a left identity modulo M. For any x £ A we have (e+M)x = ex + M =
x+M, Hence (e+M)A = G, and e+M is a positive element in G. This
shows that G is an irreducible A-%-module. It remains to show that
G is a faithful module. Let r € A and |a+M||r| =T for all a e A.

Then |a#M||r| = (|a]#)|z] = (Jal|x])*M = T. This means that

i

lal[r] e M for all a e A. Since (M:A) = {0}, we have r = 0.

Thus G 1is a faithful A-%-module.

LEMMA 4.13. If G is an A-%-module, then |ga] §.|g||a| for all

gE€G and a € A,

PROOF.  |ga| = [(g* - g7)(a* - a7)| < Ig*a*| + |g*a~| + |g-a*| + |ga"
= g*a* + g*a” + gmat + gma” = (g* + g7)(@* + a7) = |g]lal.

THEOREM 4.14. If an %-ring A has a faithful, irreducible A-%-module,

then A is a prime %-ring.

PROOF. Let G be a faithful, irreducible, A-%-module, and Il‘

I2 be non-zero %-ideals in A, Then, by the assumption that G is

faithful, there are elements up, u, € 6" such that ullill = lulllill £0,
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for some i, ¢ I, and u,li,| = |u2||izl # 0 for some i, ¢ I,. The
set <y I;> = fu e G| |u| < Juja| for some a e I, is an
A-%-submodule of G, Indeed if h, k ¢ <uI,> then [h] f_lulal,

13 S,l“lbl for some a, b ¢ I,, we have |h-k| < |n| + |x| S,Iulal -
lagpl < luyllal « fupllo] = Ju;ldal+lol) = [luglcla] + b]3] -
lu,Clal+[b])|, where |a] + Ib| € I,; and for every r € A,

x| < Inliz| < lujalle] < uy(la]|z]) = layclall=Dl, lallz] € 15.
Since G is irreducible and ulll # {0}, we have «<u.I.> = G.

171
Similarly <u212> = G,

Choose b € 12 such that u,b # 0. Since u, € G = <u, I>,

there is an element a e I, such that qul :_Iulal. Then
0 # lugdl < lu,llbl < lujallbl < uclallbl) and so |alln] # o
and |a||b| ¢ I;I. Thus A is a prime 2-ring.

COROLLARY 4.15, ([18], 4.3.10) Let A be an 2-ring, then every

f-primitive ideal P is a prime f-ideal,.

COROLLARY 4,16. Every L-primitive ring is a prime fL-ring,

PROPOSITION 4.17. Let A be a pseudo f-ring, If A has a faith-

ful, irreducible A-2-module, then A is totally-ordered ring without

non-zero divisors of zero.
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PROOF, Since A has a faithful, irreducible A-f%-module, by
Theorem 4,14, A is a prime g-ring. By Proposition 3.26 A is a

totally-ordered ring without non-zero divisors of zero.

PROPOSITION 4,18, Let A be an f-ring with a faithful, irreducible

A-g-module G and let e¢ G* satisfy eA = G, Suppose A is a

pseudo f-ring. Then the map «a:A > G defined by «(a) = ea is an
g¢-homomorphism of the totally-ordered additive group of A onto G.
The kernel of this homomorphism, I = {ae¢ Alea = 0}, is a maximal

regular right g-ideal of A,

PROOF. By Proposition 4,17 A is a totally-ordered ring without
non-zero divisors of zero. If ace A+, then eae G'. Since A is a
totally-ordered ring, aAb = 0 implies either a=0 or b = 0,

Hence either ea =0 or eb 0. It is clear that

0. Thus eaAeb
a 1is an g-group homomorphism of A onto G, The kernel Ie is
an 2-subgroup of the ordered additive group of A, and I, is a
right ideal of A. Since G is irreducible we have that I, a

maximal right 2-ideal of A, The right g-ideal Ie is a regular

ideal, for there is an element u e A such that eu = e, Now from

the Proposition 4.19 (below), |e||u] = |e] and hence elu| = e.
For any acA we have e(a- |ula) = ea - elula=0 andso a-|ulace I..

Thus |u| is a left identity modulo Ie'
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PROPOSITION 4.19, Let A be a pseudo f-ring, If G is a faithful

irreducible A-g2-module, then G 1is a totally-ordered group and

|gal = |g]|a] for every ge G and every ac A.

PROOF. G 1is a totally-ordered group, since it is a homomorphic image

of the totally-ordered additive group A. The second statement is

obvious,

LEMMA 4.20. Let A be a pseudo f-ring, Let G be a faithful,
irreducible A-g-module and suppose e ¢ 6" satisfies eA = G, If

+
0 # g € G, then Ig, = {a e Algja=0}= I

PROOF. The set Ig1 is a right ideal, It is also a right g-ideal,
for if |b| < |a] with ae Ig), then 0 < |g;b| < lggliv] :_Iglllal
= lglal =0 so be Igl. Since the set of all right Z-ideals forms

a chain and Ie is the maximal right g-ideal, we have Ig1 = Ie.

Now if Ig, # I_, then gl # {0}, The set <g,I> = {a € G|

lel < |g a], for some ae I} clearly forms an A-i-submodule of G.
1

Since glle # {0}, we have <g11e> =G, Let ue A" be a left
identity modulo Ie. Then u¢ I, and u>a for every a ¢ Ie’

(since A is a totally-ordered ring, 0 <u < a would imply u € Ie'

a contradiction). Thus u ¢ Igl, so 0 # g1 € G and there exists a ¢ Ie
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such that gu < ga. Thus gi(a-u) >0 and so a-u >0, i.e.,
a >u, But then a=u so uc I, (since a e I.), which is

a contradiction.

PROPOSITION 4.21. Let A be a pseudo f-ring, If A has a

faithful, irreducible, A-%-module G, then A contains no non-

zero proper right 2-ideal.

PROOF. By Proposition 4.18 A is a totally-ordered ring and I,

is the unique maximal right %-ideal which is regular., Now if

a€l, then gja=0 forall g €G', since by Lemma 4.20

Ig, = I,. We have then ga = (g* - g-)a=g%a-ga-ga=0 for all
g €G and so ]gal = Ig||a| = 0, Since G is a faithful A-%-module,

a=0. Thus I_= {0} and {0} is a maximal right %-ideal in A.

COROLLARY 4.22. Let A be a pseudo f-ring, If A has a faithful,

irreducible A-%-module, then A is a totally-ordered ring with

identity and ®R(A) = {0},

PROOF, By Proposition 4.21 R(A) = {0} and by Proposition 4.17 A
is a totally-ordered ring. Let e be a left identity modulo {0},
then e is a left identity of A. Since A contains no non-zero

divisors of zero, e 1is a two-sided identity of A,
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THEOREM 4.23, Let A be a pseudo f-ring, Then every maximal

regular right g-ideal is a two-sided g-ideal,

PROOF, Let M be a maximal regular right ¢-ideal of A. Then

(M:A) = P is the largest g-ideal contained in M and A/P is an
g-primitive ring, Thus A/P has a faithful, irreducible A-g-module.
Since any homomorphic image of a pseudo f-ring is a pseudo f-ring
([6], 2.9, p54) we have A/P a pseudo f-ring, Hence by

Proposition 4,21 A/P contains no non-zero proper right f-ideals,
Since M/P is a proper right g-ideal in A/P, we have M/P = {0},

i.e., M =P,

From Theorem 4.23, we have that, in a pseudo f-ring A, R(A)
is a two-sided g-ideal. Moreover, if M is a maximal regular right
g-ideal, then M is two-sided and (M:A) €M implies that (M:A) = M,
Hence M is an g-primitive g-ideal, Thus R(A) is an intersection

of g-primitive g-ideals.,

THEOREM 4.24, Let A be a pseudo f-ring., Then the following are

equivalent:
i) A is g-primitive;
ii) A 1is g-simple, totally-ordered and has an identity;

iii) A has a faithful, irreducible A-g-module.
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PROOF. By Proposition 4.12 (i) implies (iii) and by
Proposition 4.21 and Corollary 4,22 (iii) implies (ii). Now

prove (ii) implies (i),

Suppose A is g-simple totally-ordered ring and has an identity,
since 1 > 0 every right g-ideal is a regular right g-ideal and

A% # f0}. The set
A={I<A|] {0} €I <A, I aright 2-ideal}
=

is not empty, since {0} ¢ A. If {I_ |ael} is any chain of

members of A, then {J Ier , forif U I,=A, then 1¢1I
aeT aeT %o

for some o which is a contradiction. By Zorn's Lemma A has a

o’
maximal right 2-ideal, Let M be any maximal right 2-ideal, then
(M:A) = {0}, for (M:A) is a two-sided %-ideal such that (M:A) CM# A,

Hence (M:A) = {0}.

DEFINITION 4.25. A right ¢-ideal I of an %-ring A is called a

Von Neumann right f~-ideal if for any a € A there exists b ¢ A

such that aba = a(I), An f-ring A is called a Von Newmann 2~-ring

if {0} is a Von Neumann ideal.

PROPOSITION 4.26. Every totally-ordered commutative Von Neumann

f-simple ring A with identity is a field.
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PROOF. Suppose 0 # ag¢ A a non-unit., Then a 1is a zero
divisor, for since A is Von Neumann there exists ue A such
that a(ua - 1) = 0, Let U={xe Ajax = 0}, then U # {0} and

U# A, It is clear that U is an g-ideal, a contradiction.

THEOREM 4.27. Let A be a commutative pseudo f-ring. Then A is

Von Neumann and g-primitive if and only if it is a field.
PROOF, The sufficiency is clear, Now prove the necessity. By
Theorem 4.24 A is a totally-ordered g-simple ring with identity.

Again by Proposition 4,26 A is a field.

PROPOSITION 4.28. Every Von Neumann f-ring A is J-semisimple

(i.e., J() = 0).

PROOF, Let A be an f-ring, then by Theorem 4.7 J(A) = R(A).

If ae J(A) then <a> < J(A), since J(A) is a two-sided
g-ideal, where <a> is the smallest ¢-ideal contains a. Since A is
a von Neumann, there exists x ¢ A such that axa = a and

(ax) (ax) = ax., We have e? =e=ax and e ¢ <a> cJ@), a

contradiction ([13], pl80, Corollary 28).

We now give an example to show that the condition "Von Neumann'
is necessary in the Theorem 4.27 and the converse of Proposition

4,28 is not true,
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EXAMPLE 4.29, Let Z be a ring of integers with usual ordered. Then

Z is a commutative L-simple totally-ordered ring with identity. It is
not a field. Moreover, Z is J-semisimple but not von Neumann. The
Same example shows that a J-semisimple ring with descending chain

condition for 2-ideals may not be a von Neumann ring.

It is well known in ring theory that every right maximal
modular ideal of an arbitrary ring is a right von Neumann ideal [19].
But this is not the case for arbitrary f-rings, For example the
lexicographic ordering of Z[A], where 2Z is the ring of integers
with usual order, has the unique maximal f-ideal <)\> = {ao+alk+...+anln
€ Z[A]Iao =0 }. The maximal %-ideal <\> is not von Neumann %-ideal,
On the other hand the ring Q[A], with lexicographic order, is not a
von Neumann totally-ordered ring but the unique maximal %-ideal

<A> = {ao ta o+, o+ ahln £ Q[}\]lao = 0} is a von Neumann %-ideal,

As we have defined that for arbitrary f-ring A, R(A) is the
intersection of all maximal regular right 2-ideals of A and for the
class of pseudo f-rings R{A) coincides with J(A), the intersection
of all f-primitive 2-ideals of A, Now we will show that R(A), where
A is the nxn matrix ring over an 2-ring R, 1is the collection of

all matrices with entries from R®(R),

Let R be an arbitrary f-ring and A be the nxn matrix ring
over R, If we define the positive cone of A to be A+ = {(aij) € AI

a,. >0}, then A is a lattice-ordered ring. We have the following
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i) (alJ)V(le) = (aiijij)= (313)/\0313) = (aij/\bij);
) @] = (a4,
Throughout the rest of this chapter the ordering of the nxn

matrix ring A over an 2-ring R, always means this ordering,

PROPOSITION 4, 30, Let A be the nxn matrix ring ("Z?) over a lattice-

ordered ring R, Then A can never satisfy (B8) or y) if

R # {0}, (@) if R 4 {0}, nor can it satisfy (5) if RO # {0},

PROOF, i), We note that the condition (8) 1is equivalent to
lab| = |a||b| for all a, b, in A, (see [S], Lemma 1, p58), Assume
(R)2 # {0} and let a, b be in R so that a#0, b#0 and ab # 0,

Take x = (aij)' y = (bij), where 4312 3,=2a, a..=0 for

1)
all other entries, b11 = b, b21 = <b, bij = 0 for all other
entries. Then |[xy| = I(aij)(bij)l = |(cij)| with c,, = 0;

Ix||y| = (Iaijl)CIbijl) = (dij) with d11 = ab + ab # 0. Hence

|xy| # |x||y|. Thus A does not satisfy the condition (g).

2
ii). Assume (R)” # {0} and let a #0, b#0 such that
ab # 0, Take x = (aij) with 2); = 38, aj, = -b, a5 = 0 for
all other entries, Then x* = (aij) with a;, = a and all other

entries zero and x~ = (aij) with a;, = b and all other entries

over zero., We have x*x~ = (c..) with Cip = ab # 0,
1]
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iii) Assume (R)3 # 0} and let a # 0, b#0, c#0 with
abc ¥ 0, Let x = (aij) with 37 =8 2, = -c and zero elsewhere,
y = (bij) with b11 = b and zero elsewhere, then x* = (aij) with
a;, = a and zero elsewhere, x" = (aij) with a, = b and zero
elsewhere. We thus have x*yx' = (dij) with dln = abc # 0. Hence

x" A X # {0},

iv) Assue (R)> #0 and let af0, b#o, c#0, d#0

and e # 0 with abcde # 0, Let x = (x..) withx,. =b, x = -d
ij 11 1n
and zero elsewhere; y = (yij) with Yip = @ and zero elsewhere;

(zij) with Z11 = © and zero elsewhere; w = (wij) with

Woin = € and zero elsewhere. Then y x*z x"w = (vij) with v,

nn
abcde # 0, Hence A does not satisfy the condition (§) by

Lemma 2.1,

PROPOSITION 4.31. Let A be the nxn matrix f-ring over an g-ring

R. Let Ii’ i=1,2, ..., n, be right ¢-ideals of R. Then
T= {(aij) e Al 3j € Lipi=1,2, ..y, n, a5 ¢ R} is a right
£-ideal of A, Moreover, if each I, is a regular ideal, then T

is a regular ideal.

PROOF, It is clear that T is a ring right ideal of A, If
l(bij)l :_I(aij)l where (aij) e I, then (|bij|) 5-(laijl) and so
lbijl :_]aij[ for all i=1,2, ...,n, j=1,2, ..., n, Since
Ii is f-ideal for i =1, 2, ..., n, we have bii € Ii and so

(b;j;) € T. This shows that T is an f-ideal. Now assume I, is

a regular f-ideal with left identity e, > 0,i=1,2, ..., n,
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t e= h = el = i j i
Let e (ei') where €5 e and e1] 0 for i#3j (it
is clear that e > 0), then for every (xij) e A we have

(xi5) - e(xij) = (%35 - e;%;;) €T. thus T is a regular g-ideal.

PROPOSITION 4.32. Let A be the nxn matrix 2-ring over an f-ring

R. If I is a right g-ideal of A, then for fixed A and u ,

(I)}\u ={be R|b = .y is an entry in the (A,u)th position of a matrix
(aij) in T} is a right g-ideal of R. Moreover, if T is a
regular right g-ideal of A, then (T)Au is a regular right f-ideal

Of R’)\=1, 2, s0e0y n;u=1, 2, seey N.

PROOF, Let a', b' ¢ (T)A . Then there exist two matrices
_— H
(aij)’ (bij) e 1T such that 8, = a', b)‘u = b', Since (aij - bij)

= (aij) - (bij) e I with a' - b' in the (A-p)th position of

¥ [ ]
(235 - bij)' we have a' - o' ¢ (‘ﬂ)m . Now let Te R and a'ce ('I'))‘u,

let (cij) e A with Ca =T and zero elsewhere and (aij) e T with

= L . o = T i = ! S
am a'. Then (le) (aij)(cij) e I with dAu a'r, Hence

a'r ¢ ('I')M. This shows that (DM' is a right ring ideal of R for
any 4 and y . To show that (T)lu is a right g-ideal, let |b'| < |a'|

with a' ¢ (T)A , then there exists a matrix (uij) e T with U, e a'.
n

Take (b;.) to be the matrix such that bij =2, for all i # A,
15

j#u and bku = b'., Then [(bij)l < |(aij)| and since T is a right
g-ideal, we have Cbij) e T. This implies that b' ¢ ('I'))‘v and hence

mlu is a right g-ideal of R.
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To show the second part, let us assume that T is a regular
right g -ideal of A with a left identity & = (eij)(g >0) modulo T.
For fixed » and ,, we now show that 8 > 0 is a left identity

modulo (-I-)Au' Since T is regular for any (xij) in A we

n
have (xij) - e(xij) = (xij) - (eij)(xij) = (xij - kéleikxkj) e I.
For any element x in R, let §= (xij)’ where Xy =X and x_
1s zero elsewhere, then xm - X e)\kxkp = ;&u - eux)‘u and this

k=1
- K3 ! . 3 > 3 I R
is in (I)Ml Hence e, 1isa left identity modulo (j}‘u Thus

( )lu is a regular right g-ideal of R for all A and B

PROPOSITION 4,33, Let A be the nxn matrix 2-ring over an L-ring

R. If M is a maximal regular right 2-ideal, then for a fixed 21,
ﬁ)\ = {(aij)la)\j e M, aij e R}l is a maximal regular right 2-ideal
of A,

PROOF. By Proposition 4.31, M, is a regular right g-ideal of

A, Let ﬁl < -M_', then there exists jo such that M = (ﬁx))\joi (ﬁ'))‘jo.

Since (ﬁ')lj is a regular right g-ideal of R by Proposition 4,32,
o

which properly contains M and so (ﬁ'))\j = R,
o

Now assume e > 0 is a left identity modulo M. Take e = (eij) e M

with e_.
Mg
i = P = . = s . M
with djok = e, zero elsewhere. Then we have eh (eij)(le) (glj)e M
with g, = e2 € (ﬁ)'}‘k. Since e2 ¢ M (for if so then e ¢ M,
AN

e, zero elsewhere and for any k # jo, let k= (dij) e A

a contradiction) we get (ﬁ);k = R, for any k # jo' Thus M!' = A and

so ﬁ) is a maximal regular right g-ideal of A.




" If M is a maximal regular right g-ideal of A, then it

that for some ), (m\’u =R for all vy # ), and for u=1,
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is clear

2,000,n,

THEOREM 4.34. Let M be a maximal regular right g-ideal of A,

and (for a fixed )), let (m\m =R forall v#x, pn=1,

0

Then for some maximal regular right g-ideal M of R, M

u = 1) 2, ee oy n,

PROOF, Forany re R and me (ﬁ)lj’ for any i, let m
with m = m}\j, and T = (rij) with r = rji’ zero elsewhere.
or = (dij) e M, with mr = d>‘:-L and hence (mAjR < (ﬁ)}\i for
I(M)Ai = R,

n
i and j. We now show Y M. #R. For if
i=1 Al i

nes-13

n 2
. S— - v
then RR = E M RC M) for a But then e e

where € is a left identity modulo BT“ by Proposition 4,32
n —

is impossible. Thus ) (M)A‘ # R. Since every proper regular
i=1 1

2-ideal is contained in a maximal regular right g-ideal say N,
n

-zl(ﬁ)AiSN. Hence M<=TN, where (ﬁ))\i =N, i=1,2,.,.,
1:

(ﬁ)\ai =R for v#X. Since M is a maximal regular right ¢

by assumption we have i = N, and (m)\u = N for each y,

2, ..., N,

Au’

= (mij) € ﬁ’
Then

any

» which
right

we have

n and

-ideal

THEOREM 4, 35, Let A be the nxn matrix 2-ring over an g%-ring R.

Let the R-radical of R be ®(R), then the ®-radical of A,

R(A)
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is the set {(aij) € Alaij e RR)} = [R{R)]mm.

PROOF.  Since by Proposition 4,33, for any maximal regular right

g-ideal M of R, F/l'}\ ='{(aij)|a)\j €M, a..e R} is a maximal

ij
regular right %-ideal of A, we have ['R(R)]mm = n Fd'}\ D R(A),
A=1 ’2 ’ L XN ’n
Me A

where A 1is the set of all maximal modular right 2-ideals of R.

By Theorem 4,34 for any maximal regular right 2-ideal M of A, there
exists a maximal regular right %-ideal M of R and a A such that
(l\-d'))‘u =M, and (ﬁ)\,u =R forallv#i,u=1,2, ..., n, we

have ﬂ ﬁ)\E%(A). Hence R{(A) = [R(R)] = n MA .
A=1,2,...,n nxn A=1,2,...,n
MeA Me A



CHAPTER V
DECOMPOSITION OF COMMUTATIVE PARTIALLY-ORDERED RINGS INTO

A DIRECT SUM OF STRICT RINGS

In this chapter we will define an equivalence relation on the
positive cone of a commutative partially-ordered ring without positive
non-zero nilpotent elements, The equivalence classes will be called
m-filets. These differ, in general, . from Jaffard's filets. The
m-filets so defined form a disjunctive and distributive lattice. The
main theorem of this chapter is the following: Let A be a
commutative partially-ordered ring which satisfies the condition that
x2 = xy = y2 implies x =y for all x, y in A*. Then for A" to
be o-isomorphic to a direct_sum of a family of strict cones (of A) it
is necessary and sufficient that (1) the lattice of m-filets be lattice
isomorphic to the lattice of finite subsetsof a set; (2) A+ have
Jaffard's property (Definition 5.16), Moreover, if A is directed

then A is o-isomorphic to a direct sum of a family of strict rings.

In this chapter all rings are commutative partially-ordered rings
. . n
without non-zero positive nilpotent elements, i.e., X ¢ At xM=0
implies x = 0. The positive cone of A is At = {x ¢ Alx > 0}; for

each a e A", we define the set E(a) ={y ¢ A*lya = 0}, i.e.,, E(a)

81
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is the annihilator set of a in A+. .We define a binary

relation "" on A% as follows: For a, be A#, a~b if and only
if E(a) = E(b). It is easy to see that "' is an equivalence
relation, Let FA be the set of equivalence classes defined by

this equivalence relation. As usual a will denote the class of

a and will be called the m-filet or m-carrier of a. The prefix m is
used to distinguish the role of multiplication in the definition,

We introduce an order relation on the set F, by defining 2 <b if
and only if E(a) 2 E(b). clearly this relation is independent of the
representatives a and b and Fp is an ordered set. It is clear
that 0<3 forall a in A and a <b implies 2 <b for all

+
a, b in A .

PROPOSITION 5.1, The partially-ordered set (FA, <) is a lattice

where (1) aAb =ab and (2) avb=a + b for all a, b in

IS

PROOF, (1) Since E(ab) > E(a), E(b) andso ab <a, b . Now
assume X <@, b. ILet y ¢ E(ab) then yab = o and so ya e E(b) < E(x).
We have yax = 0 whence yx e E(a) € E(x). By definition

2 .
yx2 =0 and so (yx)2 =y x2 = 0. Since A contains no non-zero

positive nilpotent elements, we have yx = 0, Therefore y e E(x),

and hence E(ab) € E(x), i.e., X <ab, Thus aab = ab .
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(2) a+b>a,b is obvious, for 0 = x(a + b) = xa + xb
implies xa = xb = 0, since the elements involved are non-negative,
Now let ¢>a, c>b and xe E(c). Since E(c) <E(a)NE(b),

it follows that xa = xb=0 and so x(a +b) =0, i.e., xe E(a ¢+ b).

Thus ¢>a+b and a+ b=avb.

EXAMPLE.5.2. Let S be the semi-group consisting of two elements X
and Y with the multiplication XY.= YX = X°> = Y* = X. The semigroup
ring A = Z(S) with positive cone A’ = {aX + bY|a >0, b >0} is a
commutative 2-ring (lattice-ordered ring, see example 3.3), where Z
is the ring of integers with the usual order. In this ring AY has

no nilpotent elements but A itself has nilpotents. (For example,

X ~ Y is nilpotent).

EXAMPLE 5.3. Consider the group ring A = Q(G), where Q is the
ordered rational field and G any finite abelian group. The set

A= ] rgglrg > 0} is a cone in A, hence A is a partially-
geG

ordered ring without non-zero nilpotent elements, for the ring A is semi-
simple. Let 0 # r = ngg e A" and y = ngg e A" such that

y = 0= ( ngg} q sgg). It is clear that all Sg must be zero. Hence
E(r) = {0} andso T=1 forallr# 0 in A+. Thus the ring Q(G)

has only two m-filets {I, 0} with 0 < T,
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EXAMPLE 5.4. Let Z be the ring of integers with the usual order.
The ordered direct product A = ZxZ is a partially-ordered ring with
the positive cone A* = {(al, az)|a1 >0, a, >0}, Itis clear that

A contains no non-zero nilpotent elements. This ring has four m-filets

and FA has the following structure.

| /('1'."1')
N

T, 0

.
o

FA is f-isomorphic to the lattice of subsets of a 2 element-set.

The above examples are characteristic of a general situation

and are suggestive of the following definition,

DEFINITION 5.5. A partially-ordered ring A is a striet ring if

the positive cone A" of A admits only the trivial zero divisor,

A itself will be called a striet cone.

REMARKS 5,6, (1) Examples 5.2 and 5.3 indicate that A may
have non-zero zero divisors even though N has none. (2) x=0

if and only if x =0, for x ¢ E(x).
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DEFINITION 5.7, A lattice-ordered set L with least element @ is
said to be disjunctive lattice if for any x, ye L, x { y then

there exists z # 0 such that 2z < x and zAy = 0.

PROPOSITION 5,8, The lattice of m-filets (FAvV'A) is (1)

distributive and (2) disjunctive lattice,

PROOF. (1) aa(®wvc) = aA(D + c) = a(brc)= ab + ac = abwvac =

@EAD) v (2A0).

() If a,beF, and a3 £b then E(a) 2E(b); so there

A
exists d ¢ E(b) such that d ¢ E(a). Let c=ad#0, then c#0,

We have CAb ='cb =0, for cb=adb = 0, It is clear that ¢C <

. + . .
since xe A, xa =0 implies xc = xad = 0,

DEFINITION 5.9, An m-filet a ¢ FA is called a minimal m-filet or

atom if it is not zero and 0 < X < 3 implies X = 0.

The set of all minimal m-filets will be denoted by M. For
acF, let M@ =®eulb<al
PROPOSITION 5.10. (1) M@EVD) =y @U u®). ) y@EAD) =
M@N M®).
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PROOF. (1) That M (avb) DM(a) V M(b) is trivial. Let mE M(avh)

then m=mA(EVD) = @AD VEAD). If m¢ M@V ME) then
mAa =0, mAb =0, since m is a minimal m-filet, which is a
contradiction, Hence meM (@)U M®). Thus M(avb) € M(2)V M(b),

and hence (1) follows.

(2) That M@EAD) ¢ M @A M (D) is trivial, Let meM (@ N M (B)
then MA(EAD) = MADAD = mAb =m, Thus meM (AAD). Hence

M(aAD) = M@ N MD).

PROPOSITION 5,11, Let FA be the lattice of m-filets of a ring A,

then the following properties are equivalent:
(1) a#£0 implies Ma) # ¢ .
(2) M@@) € M(b) implies 2 <b .
(3) M@ =M®) implies a = b,
(4) M@n ME) = ¢ implies 3Ab =T,
(5) =2 is the 1l.u.b. of M (3).

(6) The map o:F 27 gefined by 6(a) = M@)

A

is a one to one lattice homomorphism from FA to the family of

subsets of M,
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PROOF, (1) implies (2). Suppose ;ilT, let c¢ FA such that

c#0, ©<a cAb=0; then WE # ¢ by (1). If me M(S) then

ol

mM<c<a where meM (3) and F;ﬁAFiEAF='O_ shows m¢ M(b).

(2) implies (3). Trivial (3) implies (4). If ZAD # 0
then we have M@)N MB) = MEAB) # M@ = ¢ .

(4) implies (5). Suppose c>m forallmeM(3) and agc.
Then by disjunctive property there exists d # 0, d <3, dAc =0,

Thus we have dAa=d#0 and by (4) M@N M@) # ¢ . Let
meM(Dn M(@ since m< T so m< cAd =0 which is a contradiction,

Hence 2 < T and this shows that Z is the l.u.b. of M (a).

(5) implies (6). The map 6 so defined is a lattice homomorphism,
for 8(aAb) = M (@AD) = M @M B), e@vD) = M (3vE) = M@ UM (B).

Moreover, if 6(a) = o(b) we have 7 = Sup {m|m eM (@)} = Sup{ m|m eM(b)}
= b,

(6) implies (1). This is trivial for the map 6 is a one-

to-one map,

PROPOSITION 5,12, Let FA be the lattice of m-filets of a ring A,

Consider the conditions:

(1) for any b, Zi e Fpo i=1,2, ..., then 3 2T, < e <b

implies ;n = a

el T cees for some n;



Then

2)

0 implies 2a
2 p N

ii) if a, b, d ¢F

exists ¢ eFA

(3) if a #0 then

M (3)

n+l

A,
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i) for any a‘ie Foo1=1,2, .0, and a, > a,> ...

1% -

= ..., for some n, and
where a> b> d, then there

such that cvb = 3, caAb = d;

is a non-empty finite set;

4 F, is isomorphic to the set of all finite subsets of a

PROOF .

A
set.

(1) implies (2) and (1),

(1) implies (2).

(3) and (4) are equivalent.

We prove the second part ii) first.

It is sufficient to prove for the case d = 0, for if c' ¢ Fy such

that ¢'Ab =0, c'vb =a then take c = c'vd we have CAD =

(c'vad)ADb = (c'ADB)Vv (dAb)

d, cvb==¢

vdvb

]
B
<
g
<
A
"
il
<
A
]

Now let 2> b > 0. Since a¢b (if a=b, take c=10) by

disjunctive property there exists -El #0,

by =<c,Vb and if b) #a then af b ("7 a>b)). Againby
disjunctive property there exists 32 #0, 'c'z < a, E-Z/\ 5-1 = 0. Let
b_2 = -c'z\/'n_l = (EZVEI)VF < a, By continuing this process we will
have T)-l _<_b—2 15-3 < ees < 3. The ascending sequence is strict, for
if Fn = Fm-l then En-rl f-s.n (% ¢ b, =0 implies C. s 0)

a contradiction, and so Fn = a for some n. By (1) there exists

c

€

F

A

such that cvb = a

to prove (2) ‘i). Let 31

and cAb = 0.

>3, > vee > 0,

There is a similar argument

For any a, 3y 23, >0,

there exists b, such that b Aa = 0, bnv a, = a. Since
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= A rY = b 2 = "y 5 Y ry Y 5
b, =b N a =bp Al ,va )= BAby,,) VO, A ) 2 (ByAby,)

V(Fn/\i'n) = ('S'n/\le) <b_ ., so E'n = B'nAB'm < b

nel 1 S Ppype We have

b, bz <. 23, andby (1) b, =b ., = ..., for some n.
This implies that ;n = -a-n+1 = ..., for the complement is unique.

(1) implies (3). The condition (2) i) implies M(a) # ¢
for all a # 0., Now if M(a) is infinite say {'ﬁl, 'x'n-z, «es }, then

m, < mIsz < mIszvms < .ee <2 contradict to (1), hence the

set M(a) is finite.

(3) implies (4). Since (3) implies the cordition (1)
in Proposition 5.11, and so the map 6:F, - 2M define by 6(a) = M(2)
in (6) of Proposition 5.11, is one-to-one. The image is just the
family of the finite subsets of the set M. Thus FA is isomorphic

to the family of finite subsets of a set.
(4) implies (1). Trivial.

+
Let A be a partially-ordered ring with psoitive cone A . We

are interested in commutative rings satisfying the following condition:

2 +
*) x =xy=y2 implies x =y for all x,y € A .

PROPOSITION 5,13, (1) Let A be a commutative partially-ordered

ring which has no non-zero nilpotents, then A satisfies condition

*). (2) A commutative partially-ordered ring with (*) condition
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2
PROQF, (1) 1f xz = Xy = yz them (x - y)2 =X = 2xy + y2 = 0,
Since the ring A has no non-zero nilpotent elements, we have

X=-y=0, Thus x =y,
. 2 2
(2) i), If a" =0, a >0 then a“ = a.0 =0

(*) condition we have a = 0, ii). 1If a3 = 0, then a4 = 0,

2 and by

. 4 2,2 _ 2 2 s
Now if a =0, then (a“)“ =a0=0 » and by (*) condition

we have a° = 0. Thus a=0 by i), iii). Now prove by induction

on the exponent of a, Assume ak =0 implies a =0 for all

n+l

n> k(n> 3). Assume a =0, Let i=n+1 if n+1
is even, i =n+2 if n+ 1 is not even, then (al/z)2 = (aI/Z)-o
= 02. By induction hypothesis ai/2 = 0. Hence an+1 = 0 implies

a=¢ for all n.

EXAMPLE 5.14, Let A = {a + bX|a, b € Z} where X2 = 0, If we

define the addition componentwise and multiplication as usual, where

Z 1is the ring of integers with the usual order, then A is a
commutative ring., The set A'={a + bX|a > 0}V {0} is a positive cone
for A and A is a partially-ordered ring. The ring A has no
nilpotent elements in A+ but A itself has infinitely many nilpotent
elements and A satisfies the (*) condition. The ring so

defined is a direct ring (see the following definition).

DEFINITION 5.15. A partially-ordered ring is said to be direct

if for any a, b in A, there exists an element c¢ in A such

that c >a, ¢ >b.
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We note that a partially-ordered ring A is directed if and
only if A = At - A+, Where A+ is the positive cone of A.

(See [15], p18).

DEFINITION 5,16, We say a commutative partially-ordered ring A has

Jaffard's property if the set M of minimal m-filets of A is non-
empty and satisfies the following condition: to every f € A*

and 3 €M there exists f3 € A" such that i) £ <f, ii) f <3,
a

iii) T-F_A 2 =0. £_ will be called the Jaffard projection of £
a a A

with respect to a.

PROPOSITION 5.17. Let A be a partially-ordered (commutative)

ring with positive cone A*. If A has Jaffard's property and
satisfies condition (*), then the Jaffard projection of f with

respect to the minimal m-filet a is uniquely determined.

PROOF.  Suppose fa and g satisfy i), ii), and iii). Then
f=g+h with g<f, E_<_§ and haa = 0. Since ?.éf_'a', and
from F-f A 2 =0, we have F-f-A f. =0, whence (f-f-)f_ = 0.
3 a a a a
Similarly gh = 0. From hAa =0 and ?5. < a we have fa/\ h=Ffh=0,
- a

thus fa-h = 0, Similarly (f-f_)g = 0, If we multiply f = g+h = fEl 4»(f-f§)

2 a 2

by g we obtain g = fig. Similarly we obtain fag = fa . By (*)

condition we have g = f_.
a
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LEMMA 5,18, Let A be a commutative partially-ordered ring with
positive cone A'. For ag M theset P_= {x¢ A+IJ-( <a} isa
z =

strict cone of A,

PROOF. (i) 0 e P_. (ii) Since P_ <A, P_N(-P) = {0}.
—_— a a- a a
(iii) If x, y e P., then X +y = XVy <@ Hence x+ye Pa .

Thus P5 + Pa - Pa. (iv) If x, vy ¢ Pa, then xy = xAy < a.
Hence xy € PE’ Thus Pa'PZI < Pgl . v) If x,ve Pa such that
xy =0 then XAy =Xy = 0. Now if both X, y = a then a = 0

this is impossible, since 2 € M, and hence x =0 ory =0, i.e.,

x=0 ory =20,

Note that Pa is also a module cone., For if r € A+, X € PZ\ R

then TX = TAX < TAa < a . Hence rsta.

Let {Pi} , i€l be afamily of cones in a partially-ordered
ring A. A non-empty subset R SA* is the direct sum of cones
{Pi}, i € I, denoted by R = ‘EI P;, if for each r € R, there
exist p; € Pi iel, p; #lg only for a finite number of i e I

such that r = Epi and the expression is unique,

THEOREM 5,19, Let A be a commutative partially-ordered ring

satisfying the condition (*). For A*  to be o-isomorphic to the
direct sum of a family of strict cones (of A) it is necessary and
sufficient that (1) the lattice of m-filets be lattice isomorphic to

the lattice of finite subsets of a set S, and (2) A* have Jaffard's
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property. Moreover, if A is directed then A is o-isomorphic to

the direct sum of a family of strict rings.

PROOF.  We prove the sufficiency first. By assumption M # ¢
and from Lemma 5.18, Pa is a strict cone for every a € M,

We now show that the sum } P- is direct. Suppose x € P_0 P]-)
aeM a

where a #b then X <3, x<b, whence X < 3AB = 0, this

implies that x = 0, Now if = X= % X_ ¥ o400 * X= = + Yo teeoty-
mp a ow if x = x- + £ X35V, %75 Yd ’
then x- € P_ and so x_, < a. It is clear that x < x. Also
a a - i
x-x-A;'—'X""'aoa + X- A—= ;"V se e V;” ;= ;(-/\a Voc.
a b athes g Y (5 A 2)

\4 (xgI /A 3), since FA is a distributive lattice by Proposition 5.8.
As a, b, ... de M, we have %AZiFAE= 0, «v0) Ya/\ii
dAa = 0. Hence maAE = 0. This shows that x- is a Jaffard
Projection of x with respect to a. Similarly Y is a Jaffard
Projection of x with respect to a. Since the projection is

unique by Proposition 5.17, we have X5 = y- and so the sum _Z P-

a acM 2
is direct. It is clear that _Z P; € A*. Now we want to show
acM
+ + -
A < _2 P- . Let 0#ye A, then y¢€ FA. By (1) there
aeM 2
- ,N
exists only a finite number of minimal m-filets {ai}i-l such that

- - - +
a, X y. By Jaffard's property to each a_ corresponds Y; € A
1

such that y. <y, ;’i <a and y-y;Aa =0. Now proceed by




94,

induction on n. If n=1 then yeM andso ye€ Pi." Now
assume the proposition holds for n -1 and y has n minimal
filets {5'1, 5'2, ieey 3} such that y>a, i=1,2, ..,n

For Zn eM and y e A+, by Jaffard's property there exists y ¢ A+

such that y, <y, ;n <a, Y-y, /\'aTn = {0}. Since 0 <y - y, 2V
we have y - Yo < y. We have M(y - yn) ;f M(y) and by induction

hypothesis y - y_€ EP; . Hence y ¢ ZPa, since y_ € Ps-n .
Consequently y € ): P, for all y ¢ A+.
aeM @

If y, 2€ )P, then (y +z)- =y.+ 2z, aecM, since }P.
a a a a

a’

is a direct sum of cones. To show thaty, z € ZPE implies

(yz)- =y_z- for all aeM, let (yz)., y-, 2. be the unique
a aa a a a

projections of yz, y,z respectively, y = Yz * &y - ya),

2 =2z ¥ (z - 25), ¥z =yg25+ ya(z - 25) + (y - yi)zi + (y - yz)(z - z3).

i -Z= = Ve Z- < 3 “Ze- - - - Ze) = V- - Ze
Since Yg%3 = Yz A za < a and so y32; € Pa. yaiz zai ya/\(; za)

and this is equal to aA(z - z3) or 0A(z - zz). We know in either

case it is zero. Hence y;(z - 25) = 0, Similarly za(y - ya) = 0.

Now (v -y )(z - 22) = (v - ya) Az - z.) # a, for otherwise

0=( - Ya)/\(z - "a)"z = aAa = a, a contradiction. Hence
(y - )’5) (z - 75) ¢ Pa. We claim that u = (y - ya) (z - 25) has no

contribution to Pi’ for if this is not the case let us call it u-;

then ug < u, Ei <7, since E'a <u we have 0 < _?1 < uAz =
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- - - - -= - - - -/\-=— - =
(y - y3)(z Za)ﬁ~a (y ya)/\(z za) a =0, Thus us 0. We

have (yz)a = yaza. Hence the sum is a ring direct sum of cones.

Now assume that A is directed; A = A* - A*, The set Di = Pa - Pa

is a ring for all a € M. Indeed x = X} = Xy ¥ T Xg = Xy Xps Xp,

xs, x, € P;, then x +y = (xl + x3) - (x2 + x4) and
Xy = (x1x3 + x2x4) - (x2x3 + x1x4) belongs to D3. In fact Di is an
ideal of A. It is clear A = Di . To see that the sum
acM
Y D- is direct, let A eD- /) ) De, then A == ~y== ) (x= = y=)
aeM ° " pem ° a ‘a3 gg3 b b
b#a

where X=, ys € P; and Xe» Vr € Pg. We have X + Y3 + e, # y;

= y; tXp et X=. It follows that xs = y; s ooy xE = yE, for

the expression in unique. Thus A = 0 and so Dy r\sz D= 0, Let
eM
b#a

2
uv, - (V1u2) - (vzu1 . Forany x€ A if we let x7 be the unique

+ -
u = u1 - uz, v = v1 - vz, U, uz, Vi» V, € A, then uv = ulv1 +

component of x in DE’ ac M, then (u :-V)E = u; * vy for any
u, v € A, Hence Cuv)a = (ulvl)a + (uzvz)a - (vluz)a - (ulvz)a =
(ag 03 + () (7 = (v - () - (ag(vp); = ugvg o Sinee
PE is a cone for D- , a€ M, hence DE is a partially-ordered

a

ring for every a € M. Thus A = Z Da a direct sum of partialiy-
aEM
ordered rings with direct product order. It is clear that the positive

elements correspond to the positive elements.
Now prove the necessity. (1) Let Ai’ i€ I be strict rings and

.. e . +
let A= ) A;. The positive cone of A is A" = {(ri)iallri € AT, > 0},

ST

as a
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It is clear that A is a partially-ordered ring without non-zero

positive nilpotnet elements, Let r = (ri) e A, and define
iel :

pi:A > Ai by p; (r) = T, € Ai' We also define supp(r) to be

{ieIlp;(x) #0}. Let r=(r) , s=(s;) be in A",
17 . 17,
iel iel

Since each Ai is strict, E(r) € E(s) if and only if pi(s) #0
implies p.(r) # 0 for all i ¢ I. We have T >s if and only if
pi(s) # 0 implies pi(r) # 0 for all i € I, or equivalently
;1-5- if and only if Supp(r) 2 Supp(s). Hence the lattice of
m;filets'of: A is lattice isomorphic to the lattice of the family
of finite subsets of I. (2) We observe that T is a minimal
m-filet if and only if there is i € I such that pi(r) # 0 and

{6§ .} . Now let

Pj (r) =0 for all i # j., Let us denote M

i,
iel
£feA, Ei e M Case (1) if T AT take f_ =0. It is clear
%
that 0 < f, T)'_<_-6-j and ?Agj = 0, Case (II) if Ej < f,

we may assume p, (s'j) = r; = p;(f) for those i e I such that

r. # 0. In this case we take f = §.. Thus 6§, < f, 5, =8,
1 P J i~ j j
J

and f - 6j A TS-j = 0. This completes the proof of the theorem

(The same proof works for the case A+ = X (A+) ).
iel i

LEMMA 5,20, Let A be an f-ring without positive nilpotent
elements, Then aaAb =0 if and only if ab = 0 for all a, b in

At



97.

PROOF. Since A is an f-ring, we have aAb =10 implies ab = 0.
Conversely, if ab = 0 then 0 < aAb < a, b whence 0 < (a/\b)2 < ab

Thus aAb =0,

In a commutative f-ring without positive nilpotent elements, the
definition of m-filet is equivalent to the definition of filet for
lattice-ordered abelian group, ([15], p32). Thus Pz = T=1{beAlb<
b > 0} (See {151, p37), and G(a) = TU(-T) = P; - P; =Dy a
totally-ordered ring for every minimal filet a.

We have the following Corollary.

COROLLARY 5.21, Let A be a commutative f-ring without positive

nilpotent elements. Then A has Jaffard's property and the lattice
of m-filets is lattice isomorphic to the lattice of finite subsets of
aset S if and only if A is o-isomorphic to a direct sum of

totally-ordered rings without non-zero divisors of zero.

)

0.
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