Western University Scholarship@Western

Digitized Theses

Digitized Special Collections

1971

Contributions To Structural Inference And Behrens-fisher Problem

Kiong Doong Ling

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Ling, Kiong Doong, "Contributions To Structural Inference And Behrens-fisher Problem" (1971). *Digitized Theses*. 467. https://ir.lib.uwo.ca/digitizedtheses/467

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.

The author of this thesis has granted The University of Western Ontario a non-exclusive license to reproduce and distribute copies of this thesis to users of Western Libraries. Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario's institutional repository (Scholarship@Western) are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information: E-mail: <u>libadmin@uwo.ca</u> Telephone: (519) 661-2111 Ext. 84796 Web site: <u>http://www.lib.uwo.ca/</u>

CONTRIBUTIONS TO STRUCTURAL INFERENCE

AND

BEHRENS-FISHER PROBLEM

Ъy

Kiong-Doong <u>Ling</u> Department of Mathematics

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Constant of the

. :

ł.

Faculty of Graduate Studies The University of Western Ontario London, Canada March 1971

C Kiong-Doong Ling 1971

ABSTRACT

The well-known Behrens-Fisher problem is concerned with statistical inference about the difference between the means of two independently distributed normal populations. This problem has been studied by many people using different methods of inference. The present thesis considers the Behrens-Fisher problems in the light of the structural method of inference for the following different cases:

Case (i): two independent normal populations with no assumptions on the standard deviations;

Case (ii): two independent normal populations under the condition that the ratio of standard deviations is known;

Case (iii): bivariate normal population with no assumption on the covariance matrix;

Case (iv): bivariate normal population under the condition that both the correlation coefficient and the ratio of the standard deviations are known;

Case (v): a generalization to $k(\geq 3)$ independent normal populations with known ratios of standard deviations;

Case (vi): a multivariate generalization to two independent multivariate normal populations (having the same number of components) with no assumptions on the covariance matrices; and

iii

Case (vii): a related Behrens-Fisher problem of obtaining the structural distribution for the difference of two location parameters of two independently distributed negative exponential populations.

In addition, the present thesis also deals with the distributions of

(i) the maximum likelihood estimators of the correlation
 coefficients when samples arise from bivariate normal distributions
 having (a) equal variances; and (b) equal means and equal variances;
 and

(ii) the maximum likelihood estimators of the correlation matrices when samples arise from multivariate normal distributions with zero means when (a) variances are equal; and (b) a fixed number of variances have a same unknown value while the remaining ones are equal to a different unknown value.

ACKNOWLEDGEMENTS

I wish to express my deep appreciation to my research advisor Professor Mir Maswood Ali for suggesting the problems, his constant advice and his keen interest in my work throughout.

I take this opportunity to thank Professor M. Safiul Haq for reading this thesis carefully and for his valuable suggestions which improved the present thesis considerably.

Finally, I would like to thank the Department of University Affairs, Ontario, and the Department of Mathematics of the University of Western Ontario for their financial assistance.

TABLE OF CONTENTS

ABSTRACT iii					
ACKNOWLEDGEMENTS v					
CHAPTER 1	INTRO	DUCTION	1		
	1.1.	Summary	l		
	1.2.	Bayesian Method of Inference	1		
	1.3.	Fiducial Method of Inference	2		
	1.4.	Structural Method of Inference	4		
	1.5.	A Comparison of the Three			
		Methods of Inference	10		
	1.6.	Behrens-Fisher Problem	13		
	1.7.	Statements of Problems	15		
CHAPTER 2	SOME	RESULTS IN STRUCTURAL DISTRIBUTION.	24		
	2.1.	Introduction	24		
	2.2.	On the Uniqueness of Structural			
		Distribution	24		
	2.3.	Consistency of the Structural			
		Distribution	27		
	2.4.	A Result In Structural Distributions			
		for Two or More Independent			
		Structural Models	30		

いないのないの

vi

	2.5.	Structural Distributions Over	
		Certain Subgroup Spaces of a	
		General Composite Measurement	
		Model	32
	2.6.	Structural Distributions Based on	
		Type II Censored Responses	38
	2.7.	Structural Distributions for	
		Transformed Structural Models	45
CHAPTER 3	BEHREI	NS-FISHER PROBLEMS	51
	3.1.	Introduction	51
	3.2.	Behrens-Fisher Problem I Indep-	
		endent Populations with no	
		Assumption on Standard Deviations.	51
	3.3.	Behrens-Fisher Problem II In-	
		dependent Populations Under the	
		Condition that the Ratio of Standard	
		Deviations is Known	54
	3.4.	Behrens-Fisher Problem III	
		Dependent Populations with no	
		Assumption on the Covariance	
		Matrix	61
	3.5.	Behrens-Fisher Problem IV	
		Dependent Populations with the	
		Condition that Both the Correlation	
		Coefficient and the Ratio of	
		Standard Deviations are Known	65

	3.6.	A Generalization of Behrens-	
		Fisher Problem for Independent	
		Populations with Known Ratio	
		Standard Deviations	69
	3.7.	Multivariate Behrens-Fisher	
		Problem	91
	3.8.	A Related Behrens-Fisher Problem	93
CHAPTER 4	DISTR	IBUTIONS OF SOME SAMPLE CORRELATION	
	COEFF	ICIENTS AND SOME SAMPLE CORRELATION	
	MATRICES 104		
	4.1.	Introduction	104
	4.2.	An Introduction to Conditional	
		Structural Model and Marginal	
		Likelihood	104
	4.3.	Distribution for a Sample	
		Correlation Coefficient I	106
	4.4.	Distribution for a Sample	
		Correlation Coefficient II	111
	4.5.	Distribution for a Sample	
		Correlation Matrix I	116
	4.6.	Distribution for a Sample	
		Correlation Matrix II	124
BIBLIOGRAP	РНҮ		133
VITA			140

viii

CHAPTER 1 INTRODUCTION

1.1. <u>SUMMARY</u>: In this chapter, a brief description of the Bayesian method of inference, the Fiducial method of inference, and the Structural method of inference is given. Since the present thesis is concerned with the Structural method of inference, this method is discussed in greater details. A comparison of these three methods of inference, and a brief introduction to the well-known Behrens-Fisher problem are also given. Finally the problems dealt with in this thesis are stated briefly in the last section of this chapter.

1.2. <u>BAYESIAN METHOD OF INFERENCE</u>: Let x_1, x_2, \ldots, x_n be a set of observations from a continuous random variable X having a distribution depending on an unknown parameter θ . In the literature several different methods have been employed to make inference about the unknown parameter θ . They are the usual standard method of inference -- which includes point estimation, confidence interval and testing of hypothesis, the Bayesian method of inference, the Fiducial method of inference, and the Structural method of inference. The last three methods of inference provide distribution for the unknown parameter θ , and this distribution is used as the basis of inference about the unknown parameter θ .

The Bayesian method of inference, using Bayes' Theorem, was developed by Jeffreys (1948). It assumes an *a priori* distribution of the unknown parameter, and views statistical inference as a method of combining the *a priori* distribution with the sample information to arrive at an *a posteriori* distribution for the unknown parameter. Therefore the problem of statistical inference, using Bayesian method, is effectively by stating the *a posteriori* distribution and so the choice of an *a priori* distribution for the unknown parameter becomes the main object of the Bayesian method of inference.

Suppose now X is a random variable whose probability density function (pdf in short) $f(x|\theta)$ depends on an unknown parameter θ . If $\chi = (x_1, x_2, \dots, x_n)$ is a set of observations from X, and $p(\theta)$ is an *a priori* density for θ , then the *a posteriori* distribution $g(\theta|\chi)$ of θ is proportional to

$$p(\theta)f(\theta|_{\chi}) = p(\theta) \prod_{i=1}^{n} f(x_i|\theta)$$

where $f(\theta|_{\chi})$ is the likelihood function for θ . The constant of proportionality can be easily obtained by integrating out θ over the parameter space.

1.3. <u>FIDUCIAL METHOD OF INFERENCE</u>: The Fiducial method of inference was introduced by Fisher in 1930. The main object of the method is to derive the Fiducial distribution of the unknown parameter without assuming any *a priori* distribution

for the parameter. But the application of Fiducial method of inference is restricted to variables whose distributions must belong to Koopman-Darmoris class of distributions. The Fiducial distribution for the unknown parameter is usually obtained by means of a pivotal quantity. A pivotal quantity is a function of a sufficient statistic and the parameter that has a fixed distribution independent of the true value of the parameter. The three-step procedure of arriving at a Fiducial distribution is summarized as follows:

(i) choose a pivotal quantity with a fixed distribution associated with it;

(ii) substitute the observed value of the sufficient statistic into the pivotal quantity; and

(iii) transfer this distribution of the pivotal quantity to that of the parameter.

As an example, suppose $\underline{x} = (x_1, x_2, \dots, x_n)$ is a set of observations from normal distribution $N(\mu, 1)$. Then $t = \overline{x} - \mu$, \overline{x} the sample mean, is a pivotal quantity which is distributed according to normal distribution N(0, 1/n). The Fiducial distribution for the parameter μ is thus distributed according to normal distribution $N(\overline{x}, 1/n)$.

The Fiducial distribution for the parameter is the basis of inference about the parameter in the Fiducial method of inference.

「「「「「「「「」」」」

1.4. STRUCTURAL METHOD OF INFERENCE: The Structural method of inference was introduced by Fraser in a series of papers (1961a, b, 1964a, b, 1966, 1967a, b) and in a book (1968). The basis of inference in this method is the error variable, introduced to describe the relationship between the response variable and the unknown parameter. The point of view taken is, that a response variable x, obtained from a process operating under stable conditions, is derived from an unknown transformation θ , operating on realized but unknown value of an error variable e. The error variable e, describing the unidentified sources of variation of the process -- the internal error of the system -- is assumed to have a known distribution on the space χ . The transformation heta belongs to a unitrary group of transformations on χ_{\star} (A group G of transformations on \mathcal{X} is called unitrary if $g_1 x = g_2 x$ implies $g_1 = g_2$ for any $g_1 g_2 \epsilon G$, and $x \epsilon \%$.) The response variable x and the realized error e are related by the following equation

 $(1.4.1) x = \theta e.$

The above description can be summarized by the structural model

$$(1.4.2) \begin{cases} x = \theta e \\ f(e) de \end{cases}$$

The structural model has two parts: (i) an error variable having a known distribution on the space χ ; and (ii) the structural equation (1.4.1) describing the relationship of a realized value e from the error variable, the known response x, and the unknown

quantity heta in the unitrary group G of transformations on χ .

The following definitions and assumption are essential for the analysis of the structural model (1.4.2).

Definition: The orbit Gx of a response value x is the set of all the pre-images of x under all the transformations of G:

$$Gx = \{g^{-1}x : g \in G\}$$
$$= \{gx : g \in G\}.$$

The orbit of x gives the information that the values of e which could have given rise to the response x.

<u>Definition</u>: A transformation [x] from the space \mathcal{K} to the group is called a transformation variable if

$$[gx] = g[x]$$

for all geG and xe χ .

The [x]'s can be considered as a new coordinate of the points x on the orbit Gx. Furthermore, a transformation variable [x] defines a reference point

$$D(\mathbf{x}) = [\mathbf{x}]^{-1}\mathbf{x}$$

on the orbit Gx. Note that

$$D(x) = [x]^{-1}x$$

= [x]^{-1}g^{-1}gx
= (g[x])^{-1}gx
= [gx]^{-1}gx
= D(gx).

Thus reference point D(x) on each of the orbit Gx is uniquely determined by the transformation variable [x], and so the set of all reference points indexes the class of all orbits.

The relation

 $\mathbf{x} = [\mathbf{x}] D(\mathbf{x})$

shows that every point x' on the orbit Gx can be obtained from the reference point by a transformation in G; and it also indicates that a transformation variable [x] can alternately be defined by first choosing a reference point D(x) on the orbit, and then letting [x] be the unique transformation in G that transforms the point D(x) to x.

Assumption: χ is an open subset in Euclidean space \mathbb{R}^{n} ; G is an open subset in Euclidean space \mathbb{R}^{L} , $L \leq n$; and the transformations

$$\tilde{g} = gh$$
, $\tilde{x} = ghx$

are continuously differentiable with respect to g, h and x.

The assumption implies that G is a locally compact topological group, endowed with the usual topology inherited from R^L .

<u>Invariant Differentials</u>: The use of invariant differentials in analysing the structural model is very helpful. The existence of invariant measures is guaranteed by the above assumption. A measure $\mu(\cdot)$ on the group G is said (Halmos (1950)) to be a left invariant measure (left Haar measure) if

 $\mu(A) = \mu(gA)$

for all elements g in G and all Borel sets A contained in G; and where gA is defined as follows:

7.

$$gA = \{g\theta:g\varepsilon G\}$$
.

The uniqueness of left invariant measure, unique in the sense that any two left invariant measures differ by a constant, was established in measure theory. For a left invariant measure $\mu(\cdot)$, a unique right invariant measure (right Haar measure) $\nu(\cdot)$ can be defined:

$$v(A) = \mu(A^{-1})$$

where

 $A^{-1} = \{g^{-1}:g \in A\}$

for any Borel set A in G. For a given transformation g, let $\mu_{\sigma}(\cdot)$ be a new measure defined by

$$\mu_{g}(A) = \mu(Ag)$$

for every Borel set A in G and where Ag is the Borel set

 $\{\theta g: \theta \in A\}$.

This measure, constructed from the left invariant measure $\mu(\cdot)$ and the transformation g, can be easily shown to satisfy the property of being a left invariant measure. Therefore by the uniqueness property we know that the measures $\mu_{g}(\cdot)$ and $\mu(\cdot)$ differ only by a constant, which of course depends on g as follows:

$$\Delta(g) = \mu_g(A)/\mu(A)$$
$$= \mu(Ag)/\mu(A).$$

This positive real-valued function $\Delta(\cdot)$ defined on G is called the modular function of the group G. The following properties of the modular function and the its relationship between invariant measures can be easily established:

$$\Delta(i) = 1, \ \Delta(gh) = \Delta(g)\Delta(h), \ \Delta(g^{-1}) = \Delta(g)^{-1};$$

$$\nu(gA) = \Delta(g)^{-1}\nu(A), \text{for all Borel set } A \text{ in } G,$$

where i is the identity element of the group G. The relationship between the left and the right invariant measures can also be expressed by means of differentials:

$$d\mu(\cdot) = \Delta(\cdot)d\nu(\cdot)$$
, and $d\nu(\cdot) = \Delta(\cdot)^{-\perp}d\mu(\cdot)$.

Let $m(\cdot)$ be an invariant measure defined on the space X such that

$$m(gB) = m(B)$$

for all Borel sets B in \mathcal{X} and g in the group G. The terminology "invariant differentials" is used for the invariant measures constructed from the volume elements dx, dg and the Jacobian of the transformations in G. A detail discussion on the construction of invariant differentials has been given by James (1954) and Fraser (1968). Suppose now the error variable e has a density f with respect to the invariant measure $m(\cdot)$ on the space χ :

f(e)dm(e).

The conditional distribution of [e] given the orbit Gx (=Ge), labelled by its reference point D(x), can be derived from invariant properties as:

(1.4.3) $K(D(x))f([e]D(x))d\mu[e]$.

Note that there exists an one-to-one correspondence between points on the orbit Gx and elements in the group G of transformations. The structural distribution for θ given the orbit Gx, or simply the response x, can now be obtained by transferring the density (1.4.3) for [e] on Gx to the corresponding element on G:

$$(1.4.4) K(D(x))f(\theta^{-1}x)\Delta(\theta^{-1}[x])d\mu(\theta),$$

since

$$d\mu[e] = d\mu(\theta^{-1}[x])$$
$$= \Delta([x])d\mu(\theta^{-1})$$
$$= \Delta([x])d\nu(\theta)$$
$$= \Delta(\theta^{-1}[x])d\mu(\theta) .$$

If the density f of the error variable e is given, with respect to the Lebesgue measure, as f(e)de, then the expression (1.4.4)becomes

(1.4.5)
$$K(D(x))f(\theta^{-1}x)J_{N}(\theta^{-1}x)\Delta(\theta^{-1}[x])d\mu(\theta)$$

10.

where

$$J_{N}(\mathbf{x}) = \left| \frac{\Im[\mathbf{x}]\mathbf{x}'}{\Im\mathbf{x}'} \right| \mathbf{x}' = D(\mathbf{x})$$

is used a compensating factor to produce the invariant differential $dm(\cdot)$ on χ .

The uniqueness of structural distribution on the group space for a given structural model has been pointed out by Fraser; but a detailed proof of this property is not given anywhere. A proof of the uniqueness property will be given in Chapter 2.

1.5. <u>A COMPARISON OF THE THREE METHODS OF INFERENCE</u>: It is well-known that for a given *a periori* distribution $p(\theta)$ for the parameter θ , the Bayesian method of inference leads to a unique *a posteriori* distribution $g(\theta|x)$ which is used as the basis of statistical inference about θ . Therefore the difficulty of the Bayesian method of inference lies in the choice of a particular *a priori* distribution to represent the prior knowledge about θ . Different *a priori* distributions could lead to different *a posteriori* distributions. The Fiducial method of inference could also lead to a multiplicity of Fiducial distributions based on the same set of data depending on various choices of the pivotal quantity. Mauldon (1955) has provided an example where infinitely many different Fiducial distributions. Examples in which the Fiducial distributions. The relationship between the Fiducial and the Bayesian methods of inference was obtained by Grundy (1956) and Lindley (1958). Grundy provides a class of one-parameter distributions, for which the sample sum is a sufficient statistic for the parameter in sample of any size. He proves that the resulting Fiducial distribution for the parameter does not coincide with the *a posteriori* distribution, derived by the Bayesian method, for any given *a priori* distribution. Lindley shows that a Fiducial distribution is equivalent to *a posteriori* distribution if, and only if the random variable X with parameter θ can be transformed to Y and μ respectively so that μ is the location parameter of Y. In this case the Fiducial distribution is the same as the Bayesian *a posteriori* distribution obtained by using uniform *a priori* distribution for μ .

The following criteria has been proposed by Lindley (1958) and Sprott (1960) for the investigation of the consistency of Fiducial distributions:

Criterion I (Lindley): A Bayesian analysis for a first sample, using the Fiducial distribution obtained from a second sample as *a priori* distribution, should yield a result coincide with the Fiducial distribution obtained directly from the combined sample;

Criterion II (Sprott): A Bayesian analysis for a sample, using the Fiducial distribution obtained from another sample as *a priori* distribution, should yield a result independent of the order of the combination; and

Criterian III (Sprott): Consider two independent distributions both involving the same parameter. A Bayesian analysis for a sample from one distribution, using the Fiducial distribution obtained from a sample from the other distribution as *a priori* distribution, should yield a result independent of the order of combination.

An example is provided by Lindley showing the Criterion I, and hence Criterion II or III, is not fulfilled.

Lindley and Sprott considered random variable X whose distribution belongs to Koopman-Darmois class of distributions. They showed that the Fiducial distribution is consistent, under the above three criteria, if and only if, the random variable X can be transformed to a random variable which has either a normal distribution with location parameter or a gamma distribution with scale parameter.

It will be shown in Chapter 2 that structural distributions of these parameters evidently satisfy all the three criteria mentioned above.

Like the Fiducial method of inference, the Structural method of inference has its limitation too. For some problems, it is not possible to find a proper structural model, so that they cannot be solved by this method. Generalization of the structural method of inference has been studied by Fraser (1962, 1966, 1970). Applications of the structural distributions have appeared in papers by Haq (1968), Fraser and Haq (1969), Maxwell (1969) and Whitney (1970).

Confidence sets for the parameter based on Fiducial method, Bayesian method and Structural method are in general different from the confidence intervals of Neyman (1937). This has been . mentioned by Kendall and Stuart (1961).

We would like to conclude this section with a remark by Lehmann (1959) -- "Statistical inference is concerned with methods of using this observational material to obtain information concerning the distribution of X or the parameter 0 with which it is labelled. ... The need for statistical analysis stems from the fact that the distribution of X, and hence some aspect of the situation underlying the mathematical model, is not known".

1.6. <u>BEHRENS-FISHER PROBLEM</u>: Let $x_i = (x_{i1}, x_{i2}, \dots, x_{in_i})$, i = 1, 2, be samples of size $n_i (\geq 2)$ drawn from independent normal populations X_i with respective means μ_i and standard deviations $\sigma_i (> 0)$. The problem of making statistical inference about the difference between the means was first posed by W. Behrens in 1929. In the literature this problem is well-known as the Behrens-Fisher problem.

Fisher (1935) proposed the so-called "Behrens-Fisher Distribution" as a solution to the problem of estimating and testing the difference between the means of two independent normal populations with different standard deviations. A Behrens-Fisher distribution is a distribution of a random variable which is a linear combination of two independently distributed random variables both having Student's t-distributions with not necessarily equal

numbers of degrees of freedom. His argument was essentially based on the Fiducial method of inference. For the case in which the standard deviations of the populations are equal, the Fiducial distribution for the difference of the means has been shown to be a modified student's t-distribution.

Jeffreys (1948) used the Bayesian method of inference to arrive at the same results. A review on the Behrens-Fisher problem and its Bayesian solution was given by Patil (1964). Brown (1967) uses a method which he calls as "secondarily Bayes' method" to obtain a solution to the Behrens-Fisher problem. He assumes a priori distributions for nusiance parameters and obtain estimates from the a posteriori distributions of the desired statistics which are induced by the a priori distributions.

The problem of testing the hypothesis of equality of two means of two independent normal random variables has received a great deal of attention. Wald (1955) proposed four criteria for determination of non-randomized critical regions, or tests, and showed that for equal sample size, the critical regions must satisfy

 $\left|\frac{\sqrt{n}(\bar{x}_{1} - \bar{x}_{2})}{(s_{1}^{2} + s_{2}^{2})^{1/2}}\right| > \phi(s_{1}^{2} / s_{2}^{2})$

where $\bar{x}_i = \sum_{j=1}^n x_{ij}/n$, $s_i^2 = \sum_{j=1}^n (x_{ij}-x_i)^2$, and $\phi(\cdot)$ is a function to be determined. For large sample sizes he had proven that the

constant function $\phi(s_1^2/s_2^2) = c$ yields the asymptotically most powerful unbiased region. Test of this form has also been examined by Fisher (1939) and Welch (1949). Extension of Wald's result to the case of unequal sample sizes is considered by Romanovskaja (1965). McCullough, Gurland and Rossenberg (1960), and Gurland and McCullough (1962) have employed a preliminary test of equality of variance before proceeding to test of equality of means. Analytic theory of tests for the Behrens-Fisher problem have been examined by Linnik (1963a,b, 1965, 1966), Linnik and Salaevskii (1963), Linnik, Romanovskii and Sudakov (1964), and many others. The multivariate analogue to Sceffe's (1943) solution for the Behrens-Fisher problem is given by Anderson (1957). Structurally, the Behrens-Fisher problem has been studied by Fraser (1961a,b).

The present thesis is mainly concerned with the solution of the Behrens-Fisher problem by the Structural method under different situations. These problems are stated in the next section.

1.7. <u>STATEMENT OF PROBLEMS</u>: The present thesis deals with the following variations of the Behrens-Fisher problem.

Service and the service of the servi

(A) <u>Behrens-Fisher Problem-Independent Populations</u>: Let $\chi_1 = (x_{11}, x_{12}, \dots, x_{1n_1})$ and $\chi_2 = (x_{21}, x_{22}, \dots, x_{2n_2})$ be samples from independent normal distributions X_1 and X_2 with respective means μ_1 and μ_2 , and standard deviations σ_1 and σ_2 . Corresponding

to these samples we can associate the following structural models (measurement models):

$$\begin{cases} x_{ij} = \mu_{i} + \sigma_{i}e_{ij}, \quad j = 1, 2, ..., n_{i}, \\ n_{i} \\ \pi^{i} [(2\pi)^{-1/2}exp\{-e_{ij}^{2}/2\} de_{ij}] \\ j=1 \end{cases}$$

for each i = 1, 2. This problem deals with the structural distribution for the difference of the means, $\mu = \mu_1 - \mu_2$, say, based on the complete sets of observations χ_1 and χ_2 , for the following two cases:

(i) with no condition on the standard deviations; and

(ii) under the condition that the ratio $\sigma = \sigma_2/\sigma_1$ of the standard deviations is known.

A related Behrens-Fisher problem for two independent negative exponential distributions is also examined. Let the distribution X_1 and X_2 be negative exponential distributions with respective location parameters μ_1 and μ_2 , and scale parameters σ_1 and σ_2 . The structural distribution for the difference of location parameters $\mu = \mu_1 - \mu_2$, based on Type II censored observations, are considered for the following three cases:

(i) when both scale parameters σ_1 and σ_2 are known; (ii) when the ratio σ_2/σ_1 of the scale parameters is known; and (iii) when both scale parameters σ_1 and σ_2 are unknown.

(B) <u>A Generalization of the Behrens-Fisher Problem - Independent</u> <u>Populations</u>: This problem is a generalization to the problem (A). For each i = 1, 2, ..., k, let $x_i = (x_{i1}, x_{i2}, ..., x_{in_i})$ be a sample of size $n_i (\geq 2)$ from normal distribution X_i with mean μ_i and standard deviation σ_i . The distributions x_i 's are assumed to be mutually independent. Or equivalently we consider the following structural models:

$$\begin{cases} x_{ij} = \mu_{i} + \sigma_{i}e_{ij}, j = 1, 2, ..., n_{i} \\ n_{i} \\ \prod_{j=1}^{i} f_{i}(e_{ij})de_{ij} \end{cases}$$

where

$$f_i(t) = (2\pi)^{-1/2} \exp\{-t^2/2\}$$

for each i = 1, 2, ..., k. The main object of this problem is to obtain the joint structural distribution for the (k-1) differences of two means:

$$\mu_{i}^{*} = \mu_{1} - \mu_{i}, i = 2, 3, \dots, k,$$

under the condition that the (k-1) ratios

$$\sigma_{i}^{*} = \sigma_{i}/\sigma_{1}, i = 2, 3, ..., k,$$

of the corresponding standard deviations are known. The case where k = 3 is discussed in greater details.

(C) <u>Multivariate Behrens-Fisher Problem</u>: Let $\chi^{(i)} = (x_{1\alpha}^{(i)}, x_{2\alpha}^{(i)}, \dots, x_{p\alpha}^{(i)}), \alpha = 1, 2, \dots, n_i, i = 1, 2, be samples from two independent p-variate normal distributions with means vector <math>\mu_i$ and covariance matrix \sum_i . These samples can be considered structurally as:

$$\begin{cases} X_{i} = \theta E_{i} \\ f(E_{i})dE_{i} = (2\pi)^{-n}i^{p/2}exp\{-\sum_{j,\alpha}(e_{j\alpha}^{(i)})^{2}/2\} \prod_{j,\alpha}de_{j\alpha}^{(i)} \end{cases}$$

where

$$X_{i} = \begin{pmatrix} 1 & \dots & 1 \\ x_{11}^{(i)} & \dots & x_{1n_{i}}^{(i)} \\ \vdots & & \vdots \\ x_{p1}^{(i)} & \dots & x_{pn_{i}}^{(i)} \end{pmatrix}, \quad E_{i} = \begin{pmatrix} 1 & \dots & 1 \\ e_{11}^{(i)} & \dots & e_{1n_{i}}^{(i)} \\ \vdots & & \vdots \\ e_{p1}^{(i)} & \dots & e_{pn_{i}}^{(i)} \end{pmatrix}$$

and

$$\theta_{i} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \mu_{i1} & c_{11}^{(i)} & \cdots & c_{1p}^{(i)} \\ \vdots & \vdots & & \vdots \\ \mu_{ip} & c_{p1}^{(i)} & \cdots & c_{pp}^{(i)} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \mu_{i} & c_{i} \end{pmatrix}, i = 1, 2,$$

where $|c_i| > 0$, is an element of the positive affine group of transformations on \mathbb{R}^p . The problem is to derive the structural distribution for the difference of the two mean vectors, $\mu = \mu_1 - \mu_2$, based on the complete sets of observations $\chi_{\alpha}^{(i)}$, $\alpha = 1, 2, ..., n_i$, i = 1, 2. (D) <u>Behrens-Fisher Problem - Dependent Populations</u>: Let $(x_{11}, x_{21}), (x_{12}, x_{22}), \dots, (x_{1n}, x_{2n})$ be sample of size $n(\geq 2)$ from a bivariate normal distribution (X_1, X_2) with mean vector $\mu' = (\mu_1, \mu_2)$ and covariance matrix

 $\begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix} .$

The associated structural model corresponding to the set of observations is

$$\begin{pmatrix} 1 \\ x_{1j} \\ x_{2j} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & \gamma \\ \mu_{2} & \alpha & \sigma_{2} \end{pmatrix} \begin{pmatrix} 1 \\ e_{1j} \\ e_{2j} \end{pmatrix}, \quad j=1,2,\ldots,n,$$

$$(2\pi)^{-n} \exp\{-\frac{1}{2} \sum_{j=1}^{n} (e_{1j}^{2} + e_{2j}^{2})\} \prod_{j=1}^{n} de_{1j} de_{2j}$$

where the submatrix

σl	Y]
α	σ ₂)

with σ_1 , $\sigma_2 > 0$, has determinant >0 (i.e. $\sigma_1\sigma_2 - \alpha\gamma > 0$). This problem is concerned with the structural distribution for the difference of the means $\mu = \mu_1 - \mu_2$, based on the complete set of observations, for the following two cases:

(i) with no assumption on the covariance matrix of (X_1, X_2) ; and

(ii) under the condition that both the correlation coefficient ρ and the ratio σ_2/σ_1 of the standard deviations are known.

Note that for case (ii), we have $\alpha = 0$, and the pdf of the error variables (e_{11}, e_{21}) , (e_{12}, e_{22}) , ..., (e_{1n}, e_{2n}) is replaced by

$$\prod_{j=1}^{n} \{ [2\pi(1-\rho^2)^{1/2}]^{-1} \exp(-\frac{1}{2(1-\rho^2)} [e_{1j}^2 - 2\rho e_{1j} e_{2j} + e_{2j}^2] \} de_{1j} de_{2j} \}.$$

In addition, this thesis also deals with the distributions of correlation coefficients and correlation matrices as indicated below.

(E) <u>Distributions of Some Correlation Coefficients</u>: Let $(x_{11}, x_{21}), (x_{12}, x_{22}), \ldots, (x_{1n}, x_{2n})$ be a sample of size n from a bivariate normal distribution (X_1, X_2) with means μ_1 and μ_2 , and covariance matrix

where $|\rho| < 1$. The maximum likelihood estimator (MLE for short) for ρ is

$$\hat{\rho} = 2 \sum (x_{1j} - \bar{x}_1) (x_{2j} - \bar{x}_2) / \sum [(x_{1j} - \bar{x}_1)^2 + (x_{2j} - \bar{x}_2)^2]$$

where

$$n\bar{x}_{i} = \sum x_{ij}, \quad i = 1, 2$$

and
$$\sum = \sum_{j=1}^{n} .$$

20.

A DE RESERVENCES

If we know that the means of the two marginal distribution are equal, i.e., $\mu_1 = \mu_2$, then the MLE for ρ becomes

$$\rho^* = 2 \sum (x_{1j} - \bar{x}) (x_{2j} - \bar{x}) / \sum [(x_{1j} - \bar{x})^2 + (x_{2j} - \bar{x})^2]$$

where $2n\bar{x} = \sum (x_{1j} + x_{2j}).$

This problem is to derive the distributions for ρ and ρ^* .

(F) <u>Distributions of Some Correlation Matrices</u>: Let $x_i = (x_{1i}, x_{2i}, \dots, x_{pi}), i = 1, 2, \dots, n, be a sample of$ size n from a p-variate normal distribution $X = (X_1, X_2, \dots, X_p)$ with mean vector Q, and covariance matrix \sum . If the variances of all the marginal distributions X_i 's are equal, then $\sum = \sigma^2 p$ for some positive real number σ . Note that P is the correlation matrix of X. The MLE for P is the following random symmetric matrix:

$$\hat{P} = \begin{pmatrix} 1 & & & * \\ r_{12} & 1 & & \\ \vdots & & \ddots & \\ \vdots & & \ddots & \\ r_{1p} & \cdots & r_{(p-1)p} & 1 \end{pmatrix}$$

where

$$\mathbf{r}_{ij} = \mathbf{p} \sum (\mathbf{x}_{ik} \mathbf{x}_{jk}) / [\sum_{i=1}^{p} (\sum_{ik}^{2})], \quad 1 \leq i < j \leq p ,$$

and \sum stands for summation over k from 1 to n.

Now, suppose that α , $1 \leq \alpha < p$, of the variances of the marginal distributions X_i 's are equal, say σ_1^2 , and all the rest of them equal to another value $\sigma_2^2(\neq \sigma_1^2)$. By rearranging the order of X_i 's in X, we can, without loss of generality, assume that

$$\sum = DPD'$$

where D is a p×p diagonal matrix of the form

$$D = diag (\sigma_1, \ldots, \sigma_1, \sigma_2, \ldots, \sigma_2), \sigma_1, \sigma_2 > 0$$

and P is the correlation matrix of the random variable X. The MLE for P is the following random symmetric matrix

$$P^{*} = \begin{bmatrix} 1 & & & & & & & \\ r_{12} & 1 & & & & & \\ \vdots & \ddots & & & & \\ r_{1\alpha} & \cdots & r_{(\alpha-1)\alpha} & 1 & & & \\ & & & & & \\ r_{1(\alpha+1)} & \cdots & r_{\alpha(\alpha+1)} & 1 & & & \\ \vdots & & & \vdots & & & \\ r_{1p} & \cdots & r_{\alpha p} & & r_{(\alpha+1)p} & \cdots & r_{(p-1)p} & 1 \end{bmatrix}$$

where

$$\mathbf{r}_{ij} = \begin{cases} \alpha S_{ij} / (\sum_{i=1}^{\alpha} S_{ii}), 1 \leq i < j \leq \alpha \\ \{\alpha(p-\alpha)\}^{1/2} S_{ij} / \{(\sum_{i=1}^{\alpha} S_{ii}) (\sum_{i=\alpha+1}^{p} S_{ii})\}^{1/2}, 1 \leq i \leq \alpha < j \leq p \\ (p-\alpha) S_{ij} / (\sum_{i=\alpha+1}^{p} S_{ii}), \alpha < i < j \leq p \end{cases}$$

where

$$s_{ij} = \sum_{k=1}^{n} x_{ik} x_{jk}$$
.

The problem is to derive the distributions for \hat{P} and P^* .

NUT DI MAN

CHAPTER 2

SOME RESULTS IN STRUCTURAL DISTRIBUTION

2.1. <u>INTRODUCTION</u>: In this chapter, some elementary results in structural distributions are given. These results include the following:

(i) Uniqueness of the structural distribution;

(ii) Consistency of the structural distribution in the light of criteria proposed by Lindley (1958) and Sprott (1960);

(iii) Structural distributions for independent structural models;

(iv) Structural distributions over subgroup spaces of general composite measurement models;

(v) Structural distributions based on Type II censored responses; and

(vi) Structural distributions for some transformed structural models.

2.2. <u>ON THE UNIQUENESS OF STRUCTURAL DISTRIBUTION</u>: In this section, we give a proof of the uniqueness property for structural distribution over the group space for a general structural model. In other words, we prove that the structural distribution, based on the complete set of responses, does not depend on the choice of a transformation variable.

Consider a general structural model

$$\begin{cases} x = \theta e \\ f(e) de = \Pi f(e_i) de \\ i=1 \end{cases}$$

where $x = (x_1, x_2, \dots, x_n)$, $e = (e_1, e_2, \dots, e_n)$ and $\theta e = (\theta e_1, \theta e_2, \dots, \theta e_n)$. Then the structural distribution for θ , based on x, is given by (See (1.4.5) of Chapter 1)

$$g(\theta: \underline{x}) d\theta = K(D(\underline{x})) f(\theta^{-1}\underline{x}) J_{N}(\theta^{-1}\underline{x}) \Delta(\theta^{-1}[\underline{x}]) d\mu(\theta).$$

This pdf for θ can be rewritten as follows:

(2.2.1)
$$g(\theta:\underline{x})d\theta = K(\underline{x})\overline{f}(\theta:\underline{x})d\mu(\theta)$$

where

$$\overline{f}(\theta: \underline{x}) = f(\theta^{-1}\underline{x})J_{N}(\theta^{-1}: \underline{x})\Delta(\theta^{-1})$$

$$K(\underline{x}) = K(D(\underline{x}))J_{N}([\underline{x}]:D(\underline{x}))\Delta([\underline{x}]),$$

and

$$\mathbf{J}^{\mathbf{N}}(\boldsymbol{\theta}:\tilde{\mathbf{X}}) = \left| \frac{9\tilde{\mathbf{X}}}{90\tilde{\mathbf{X}}} \right|$$

Note that K(x) serves as the normalizing constant factor for $g(\theta:x)d\mu(\theta)$ to a probability density so that we have

$$K(\underline{x})^{-1} = \int_{G} \overline{f}(\theta; \underline{x}) d\mu(\theta) =$$

It is clear that the factor $\overline{f}(\theta:\underline{x})d\mu(\theta)$ does not depend on the choice of a transformation variable. This implies that the normalizing constant factor depends only on the responses \underline{x} .

Therefore it follows that structural distribution for θ , based on the responses x, is unique.

Furthermore, from (2.2.1) we conclude the following:

"When a structural model is given, the structural distribution for θ , based on the responses χ , can be obtained directly without introducing any transformation variable. We need only to calculate the left invariant differential $d\mu(\theta)$, the modular function $\Lambda(\theta)$ and the jacobian $J_N(\theta^{-1}:\chi)$."

The following example is given here to illustrate the usefulness of the **a**bove conclusion. Also the structural distribution obtained will be used for future study in obtaining structural distributions for the differences of two means in Chapter 3.

Example: Consider the measurement model:

 $\begin{cases} x_{i} = \mu + \sigma e_{i}, i = 1, 2, ..., n \\ (2\pi)^{-n/2} \exp\left\{-\sum_{i=1}^{n} e_{i}^{2}/2\right\}_{i=1}^{n} d e_{i} \end{cases}$

where (μ, σ) belongs to the positive affine group G on Rⁿ. The distribution for μ and σ , based on $x = (x_1, x_2, \dots, x_n)$, has been obtained by Fraser (1961b). This is given here in a slightly different form:

 $g(\mu,\sigma:\underline{x})d\mu d\sigma = K(\underline{x})exp\left\{-\frac{1}{2}\sum_{i=1}^{n}(x_{i}-\mu)/\sigma\right\}\sigma^{-(n+1)}d\mu d\sigma$ $= K(\underline{x})exp\left\{-n[(\overline{x}-\mu)^{2}+s^{2}]/(2\sigma^{2})\right\}\sigma^{-(n+1)}d\mu d\sigma$

また、日本市の一部の設定部所たいでい

where $n\bar{x} = \sum_{i=1}^{n} x_i$, $ns^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$. The normalizing constant factor K(x) is given by

$$K(x)^{-1} = \pi^{1/2} (n/2)^{-n/2} \Gamma(n-1)/2) s^{-(n-1)/2}$$

2.3. <u>CONSISTENCY OF THE STRUCTURAL DISTRIBUTION</u>: The main object of this section is to prove the following proposition:

"The structural distribution is consistent in the light of Criteria I to III of Chapter 1 proposed by Lindley and Sprott".

It is clear that Criterion III is weaker than Criterion II and Criterion II is weaker than Criterion I. Therefore it is sufficient to prove that the structural distribution is consistent in the light of Criterion III only. Before proceeding to the proof, let us first recall Criterion III.

Criterion III deals with two independent distributions both involving the same parameter. The Fiducial distribution is obtained from a sample of one distribution. Then using this Fiducial distribution as *a priori* distribution for a Bayesian analysis for a sample from the other distribution should yield a result independent of the order of combination.

Now we proceed to give the proof. Let us consider the following two general structural models

 $\begin{cases} x_{ij} = \theta e_{ij}, j = 1, 2, ..., n \\ n_{II} f_{i}(e_{ij}) d e_{ij} \\ j = 1 \end{cases}$

i = 1, 2. Then the structural distribution for θ , based on a first set of responses, say $x_{1} = (x_{11}, x_{12}, \dots, x_{1n_1})$, is

$$g_{1}(\theta: x_{1}) d\theta = K(x_{1}) \prod_{j=1}^{n_{1}} f_{1}(\theta^{-1}x_{1j}) J_{N_{1}}(\theta^{-1}: x_{1}) \Delta(\theta^{-1}) \frac{d\theta}{J_{L}(\theta)} .$$

The likelihood function for θ , based on the other set of responses $x_2 = (x_{21}, x_{22}, \dots, x_{2n_2})$, is

$$\prod_{i=1}^{n_{2}} f_{2}(\theta^{-1}x_{2i}) \cdot J_{N_{2}}(\theta^{-1}:x_{2}) .$$

Hence a Bayesian analysis for the responses x_2 , using the structural distribution $g_1(\theta:x_1)d\theta$ as a priori distribution, yield the a posteriori distribution

 $(2.3.1) \qquad g(\theta: x_{1}, x_{2}) d\theta = K(x_{1}, x_{2}) \prod_{i=1}^{n_{2}} f_{2}(\theta^{-1}x_{2i}) \cdot J_{N_{2}}(\theta^{-1}: x_{2}) \cdot I_{N_{2}}(\theta^{-1}: x_{2}) \cdot I_{N_{2}}(\theta^$

The proof will be complete if we can prove (2.3.1) is the structural distribution for θ , based on the combined sample $\chi = (\chi_1, \chi_2)$, derived from the following combined model:

$$\begin{cases} x'_{j} = \theta e'_{j} \\ n_{1} & n_{1}+n_{2} \\ \Pi & f_{1}(e'_{j}) \cdot \Pi & f_{2}(e'_{j}) \cdot \Pi & de'_{2} \\ j=1 & j=n_{1}+1 & j=1 \end{cases}$$

where

$$x'_{j} = x_{lj}, e'_{j} = e'_{lj}$$
 for $j = 1, 2, ..., n_{l}$,

and

$$x'_{n_1+j} = x_{2j}, e'_{n_1+j} = e_{2j}$$
 for $j = 1, 2, ..., n_2$.

The structural distribution for θ , based on the combined responses $x' = (x'_1, x'_2, \dots, x'_n)$, derived from the above combined structural model is

$$(2.3.2) \quad g'(\theta: x') d\theta = K(x') \prod_{j=1}^{n_1} f_1(\theta^{-1}x'_j) \cdot \prod_{j=n_1+1}^{n_1+n_2} f_2(\theta^{-1}x'_j) \cdot J_{j=n_1+1} + J_{j}(\theta^{-1}x'_j) \cdot J_{j=n_1+1} + J_{j}(\theta^{-1}x'_j) \cdot J_{j}(\theta^{-1}x$$

where $N = n_1 + n_2$. Note that

$$J_{N}(\theta^{-1}:x') = J_{N_{1}}(\theta^{-1}:x_{1}) \cdot J_{N_{2}}(\theta^{-1}:x_{2})$$
$$\prod_{j=1}^{n_{1}} f_{1}(\theta^{-1}x'_{j}) = \prod_{j=1}^{n_{1}} f_{1}(\theta^{-1}x_{1j}),$$

and

$${}^{n_{1}+n_{2}}_{j=n_{1}+1} f_{2}(\theta^{-1}x_{j}) = {}^{n_{2}}_{i=1} f_{2}(\theta^{-1}x_{2i}).$$

Hence (2.3.2) becomes

$$g'(\theta: x') d\theta = K(x') \prod_{i=1}^{n_{2}} f_{2}(\theta^{-1}x_{2i}) \cdot J_{N_{2}}(\theta^{-1}: x_{2}) \cdot \prod_{j=1}^{n_{1}} f_{2}(\theta^{-1}x_{2j}) \cdot J_{N_{2}}(\theta^{-1}: x_{2}) \wedge (\theta^{-1}) \frac{d\theta}{J_{L}(\theta)}$$

which is identical to (2.3.1). Thus the proof is complete.

2.4. A RESULT IN STRUCTURAL DISTRIBUTIONS FOR TWO OR MORE

INDEPENDENT STRUCTURAL MODELS: First of all, we define the independence of two or more structural models.

<u>Definition</u>: Two or more structural models are said to be mutually independent if the corresponding error variables are mutually independent.

The main result of this section is:

"For two or more mutually independent structural models, with not necessarily equal numbers of responses, the joint structural pdf over the direct product of the group spaces is the product of the structural pdf over the corresponding group space."

It is sufficient to prove the above result for the case having only two independent structural models. Let us consider the following two independent structural models:

(2.4.1)
$$\begin{cases} x_{ij} = \theta_{i}e_{ij}, \quad j = 1, 2, \dots, n_{i}, \quad \theta_{i} \in G_{i}, \\ & n_{i} \\ f_{i}(e_{i})de_{i} = \prod_{i=1}^{n} f_{i}(e_{ij})de_{ij} \end{cases}$$

i = 1, 2. These independent structural models can be rewritten as a single model as follows:

$$\begin{cases} X = \theta E \\ & n_1 & n_2 \\ f(E)dE = \prod_{j=1}^{n} f_1(e_{1j})de_{1j} \cdot \prod_{j=1}^{n} f_2(e_{2j})de_{2j} \end{cases}$$

where

30.

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1n} & 0 & \cdots & 0 \\ 0 & 0 & x_{21} & \cdots & x_{2n_2} \end{pmatrix}, E = \begin{pmatrix} e_{11} & \cdots & e_{1n_1} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & e_{21} & \cdots & e_{2n_2} \end{pmatrix}$$

and

 $\theta = \begin{pmatrix} \theta_1 & 0 \\ & \\ 0 & \theta_2 \end{pmatrix}$

is an element of the direct product $G = G_1 \times G_2$ of the two unitrary groups of transformations G_1 and G_2 . The unitrary property of G follows directly from the unitrary property of G_1 and G_2 . The structural distribution for θ , based on X, is

$$(2.4.2) \quad g(\theta_1, \theta_2: X) d\theta_1 d\theta_2 = K(X) f(\theta^{-1}X) J_N(\theta^{-1}: X) \Delta(\theta^{-1}) \frac{d\theta}{J_L(\theta)} ,$$

where $N = n_1 + n_2$ and $L = L_1 + L_2$. We note that

$$(2.4.3) \begin{cases} J_{N}(\theta^{-1}:X) = J_{N_{1}}(\theta^{-1}:X_{1}) \cdot J_{N_{2}}(\theta^{-1}:X_{2}) \\ \Delta(\theta^{-1}) = \Delta_{1}(\theta^{-1}_{1}) \cdot \Delta_{2}(\theta^{-1}_{2}) \\ J_{L}(\theta) = J_{L_{1}}(\theta_{1}) \cdot J_{L_{2}}(\theta_{2}) \end{cases}$$

where $x_{11} = (x_{11}, x_{12}, \dots, x_{1n_1}), x_2 = (x_{21}, x_{22}, \dots, x_{2n_2}),$ and the subscripts i, i = 1, 2, of $\Delta_i(\cdot)$, $J_{L_i}(\cdot)$ refer to the corresponding functions the models (2.4.1). The identities (2.4.3) follow directly from the fact that elements of G operate component-wisely on X, and also the product of any two transformation of G operate component-wisely as well. Now

「「「「「「「」」」

うなのの

$$f(\theta^{-1}X) = \prod_{j=1}^{n_{1}} f_{1}(\theta_{1}^{-1}x_{1j}) \cdot \prod_{j=1}^{n_{2}} f_{2}(\theta_{2}^{-1}x_{2j}).$$

Therefore (2.4.2) can be rewritten as

$$g(\theta_{1}, \theta_{2}: X) d\theta_{1} d\theta_{2} = K(X) \cdot \prod_{j=1}^{n_{1}} f_{1}(\theta_{1}^{-1} x_{1j}) \cdot J_{N_{1}}(\theta_{1}^{-1}: x_{1}) \Delta_{1}(\theta_{1}^{-1}) \frac{d\theta_{1}}{J_{L_{1}}(\theta_{1})}$$
$$\prod_{j=1}^{n_{2}} f_{2}(\theta_{2}^{-1} x_{2j}) \cdot J_{N_{2}}(\theta_{2}^{-1}: x_{2}) \Delta_{2}(\theta_{2}^{-1}) \frac{d\theta_{2}}{J_{L_{2}}(\theta_{2})}$$

$$= g_{1}(\theta_{1}: x_{1}) d\theta_{1} \cdot g_{2}(\theta_{2}: x_{2}) d\theta_{2}$$

where $g_i(\theta_i:x_i)d\theta_i$, i = 1, 2, are the structural pdf for the corresponding structural models (2.4.1). Thus we complete the proof.

2.5. <u>STRUCTURAL DISTRIBUTIONS OVER CERTAIN SUBGROUP SPACES OF</u> <u>A GENERAL COMPOSITE MEASUREMENT MODEL</u>: Consider a general composite measurement model

(2.5.1)
$$\begin{cases} X = \theta E \\ f(E)dE = f(e_{11}, \dots, e_{1n}, e_{21}, \dots, e_{2n}) \cdot \prod_{i=1}^{n} de_{1i}de_{2i} \\ i=1 \end{cases}$$

where

$$X = \begin{pmatrix} 1 & \dots & 1 \\ x_{11} & \dots & x_{1n} \\ x_{21} & \dots & x_{2n} \end{pmatrix}, \quad E = \begin{pmatrix} 1 & \dots & 1 \\ e_{11} & \dots & e_{21} \\ e_{21} & \dots & e_{2n} \end{pmatrix}$$

and θ belongs to the group G $_{l}$ of transformations on R^{2n}

$$G_{1} = \left\{ \theta = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & 0 \\ \mu_{2} & 0 & \sigma_{2} \end{pmatrix} : -\infty < \mu_{1}, \ \mu_{2} < \infty; \ \sigma_{1}, \sigma_{2} > 0 \right\}$$

The structural model (2.5.1) can also be written in the alternative form: the general transformation θ being expressed differently as

$$\theta' = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & 0 \\ \mu_{2} & 0 & \eta\sigma_{1} \end{pmatrix}, -\infty < \mu_{1}, \mu_{2} < \infty, \sigma_{1}, \eta > 0.$$

We call this "new" model as structural model (2.5.1'), and denote by G' the set of all 0'. This "new" model is the same as the original model (2.5.1) with relabelling of the transformation 0 of the group G_1 . Hence the structural distribution for μ_1 , μ_2 , σ_1 and η , based on X, derived from

(a) the structural model (2.5.1'); and

(b) the structural distribution for μ_1 , μ_2 , σ_1 and σ_2 by applying the following substitutions

(2.5.2)
$$\begin{cases} \mu_{i} = \mu_{i}, i = 1, 2 \\ \sigma_{1} = \sigma_{1} \\ \eta = \sigma_{2}/\sigma_{1} \end{cases}$$

are identical.

The main object of this section is to prove the following: "The structural distributions for θ over some subgroup spaces of G1 obtained from

33.

(a) the subgroup model directly; and

(b) the structural distribution for θ derived from the full-group model (2.5.1) by imposing the appropriate condition; are identical."

The structural distribution for μ_1 , μ_2 , σ_1 , and σ_2 , based on X, derived from model (2.5.1) is

(2.5.3) $g(\mu_1, \mu_2, \sigma_1, \sigma_2: X) \prod_{i=1}^{2} d\mu_i d\sigma_i$

$$= K(X)f\left(\frac{x_{11}-\mu_{1}}{\sigma_{1}}, \dots, \frac{x_{1n}-\mu_{1}}{\sigma_{1}}, \frac{x_{21}-\mu_{2}}{\sigma_{2}}, \dots, \frac{x_{2n}-\mu_{2}}{\sigma_{2}}\right)$$
$$\cdot (\sigma_{1}\sigma_{2})^{-(n+1)} \cdot \prod_{i=1}^{2} d\mu_{i} d\sigma_{i} .$$

Applying the substitution (2.5.2), we obtain the structural distribution for μ_1 , μ_2 , σ_1 and η :

$$(2.5.4) \quad g(\mu_{1},\mu_{2},\sigma_{1},\eta:x)d\mu_{1}d\mu_{2}d\sigma_{1}d\eta \\ = K(x)f\left(\frac{x_{11}-\mu_{1}}{\sigma_{1}}, \dots, \frac{x_{1n}-\mu_{1}}{\sigma_{1}}, \frac{x_{21}-\mu_{2}}{\eta\sigma_{1}}, \dots, \frac{x_{2n}-\mu_{2}}{\eta\sigma_{1}}\right) \cdot \\ \cdot \sigma_{1}^{-(2n+1)}\eta^{-(n+1)}d\mu_{1}d\mu_{2}d\sigma_{1}d\eta$$

since the jacobian of the substitution (2.5.2) is σ_1 . By conditioning $\eta = 1$ to the structural distribution (2.5.4), we obtain

$$g(\mu_{1},\mu_{2},\sigma_{1}:x,\sigma_{1}=\sigma_{2})d\mu_{1}d\mu_{2}d\sigma_{1}$$

$$= K'(x)f\left(\frac{x_{11}-\mu_{1}}{\sigma_{1}}, \dots, \frac{x_{1n}-\mu_{1}}{\sigma_{1}}, \frac{x_{21}-\mu_{2}}{\sigma_{1}}, \dots, \frac{x_{2n}-\mu_{2}}{\sigma_{1}}\right)$$

$$\cdot \sigma_{1}^{-(2n+1)}d\mu_{1}d\mu_{2}d\sigma_{1} \cdot$$

11、22、新たい

For the subgroup model of (2.5.1), where θ belongs to the subgroup

 $G_2 = \{\theta \in G_1 : \sigma_2 = \sigma_1\}$.

we have

$$J_{N}(\theta^{-1}:X) = \sigma_{1}^{-2n}, \ \Delta(\theta^{-1}) = \sigma^{2} \text{ and } J_{L}(\theta) = \sigma_{1}^{3}.$$

Hence the structural distribution for μ_1 , μ_2 and σ_1 , based on X and derived from this subgroup model, coincides with the structural distribution given above. This proves the above proposition for the subgroup G_2 of G_1 .

Let

$$G_{3} = \{ \theta \varepsilon G_{2} : \sigma_{1} = 1 \};$$

$$G_{4} = \{ \theta \varepsilon G_{3} : \mu_{1} = \mu_{2} \};$$

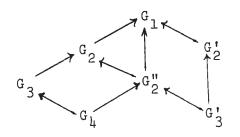
$$G_{2}' = \{ \theta \varepsilon G_{1} : \mu_{1} = \mu_{2} = 0 \};$$

$$G_{3}' = \{ \theta \varepsilon G_{2}' : \sigma_{1} = \sigma_{2} \};$$

and

 $G_2'' = \{\theta \in G_1 : \mu_1 = \mu_2, \sigma_1 = \sigma_2\}.$

If the arrow "→" is interpreted as "is a subgroup of", then we can easily verify the following relationship between subgroups defined above given by the diagram below:



The proposition on structural distributions over subgroups is valid if the full group space and the subgroup space are any two groups appearing in the above diagram. These proofs are similar to the one given above and so are omitted. Structural inference, based on a given structural model, when outside information is available has been considered by Fraser (1968)-(See Sections 6 and 7 of Chapter two).

The above proposition is not valid in general for any subgroup of group of transformations as can be seen from the following counter example.

Example: Consider a general location-progression model

$$\begin{cases} \begin{bmatrix} 1 & \cdots & 1 \\ x_{11} & \cdots & x_{1n} \\ x_{21} & \cdots & x_{2n} \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & 0 \\ \mu_{2} & k & \sigma_{2} \end{bmatrix} \begin{pmatrix} 1 & \cdots & 1 \\ e_{11} & \cdots & e_{1n} \\ e_{21} & \cdots & e_{2n} \end{pmatrix}$$
$$f(e_{1}) de_{1} = f(e_{11}, \dots, e_{1n}, e_{21}, \dots, e_{2n}) \prod_{i=1}^{n} de_{1i} de_{2i}$$

where the transformation θ belongs to the location-progression group

$$G = \left\{ \theta = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & 0 \\ \mu_{2} & k & \sigma_{2} \end{pmatrix} : -\infty < \mu_{1}, \mu_{2}, k < \infty; \sigma_{1}, \sigma_{2} > 0 \right\}$$

36.

For this structural model, we have

$$\begin{split} J_{N}(\theta^{-1};\chi) &= (\sigma_{1}\sigma_{2})^{-n}, \Delta(\theta^{-1}) = \sigma_{2}^{2} \text{ and } J_{L}(\theta) = \sigma_{1}^{2}\sigma_{2}^{3} . \end{split}$$
Hence the structural distribution for $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$ and k,
based on the complete set of responses χ , is given by
$$g(\mu_{1},\mu_{2},\sigma_{1},\sigma_{2},k;\chi)d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}dk \\ &= k(\chi)f(\theta^{-1}\chi)J_{N}(\theta^{-1};\chi)\Delta(\theta^{-1})d\mu(\theta) \\ &= k(\chi)f(\frac{x_{11}-\mu_{1}}{\sigma_{1}},\ldots,\frac{x_{1n}-\mu_{1}}{\sigma_{2}},\frac{\sigma_{1}x_{21}-kx_{11}+k\mu_{1}-\sigma_{1}\mu_{2}}{\sigma_{1}\sigma_{2}},\ldots,\frac{\sigma_{1}x_{2n}-kx_{1n}+k\mu_{1}-\sigma_{1}\mu_{2}}{\sigma_{1}\sigma_{2}}) . \\ &\cdot (\sigma_{1}\sigma_{2})^{-n}\sigma_{2}^{2} \frac{d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}dk}{\sigma_{1}^{2}\sigma_{2}^{3}} . \end{split}$$
By conditioning k = 0 to the last pdf we obtain
(2.5.5) $g(\mu_{1},\mu_{2},\sigma_{1},\sigma_{2};\chi)d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}$

 $= k(x)f\left(\frac{x_{11}-\mu_{1}}{\sigma_{1}}, \dots, \frac{x_{1n}-\mu_{1}}{\sigma_{1}}, \frac{x_{21}-\mu_{2}}{\sigma_{1}}, \dots, \frac{x_{2n}-\mu_{2}}{\sigma_{2}}\right)\sigma_{1}^{-(n+2)}\sigma_{2}^{-(n+1)}d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}.$

On the other hand, if $\theta = G' = \{\theta \in G : k = 0\}$ a subgroup of G, the location-progression model becomes the composite measurement model (2.5.1). For this model, the structural distribution for μ_1 , μ_2 , σ_1 and σ_2 , based on χ , is given by (2.5.3), which is clearly not the same as (2.5.5).

2.6. <u>STRUCTURAL DISTRIBUTIONS BASED ON TYPE II CENSORED RESPONSES</u>: In many practical situations it happens that only censored samples can be obtained for one reason or another. Analysis based on censored samples has received a great deal of attention in the literature. Contributed articles in this area up to 1961 can be found in a book edited by Sarhan and Greeberg (1962). Censoring is classified into two types: namely Type I and Type II. Type I censored samples are referred to samples such that no observations above or below a fixed value can be obtained. Type II censored samples refer to samples such that a proportion of the original full samples are cenosred. In this section we combine the theory of Structure inference and the basic distribution theory of order statistic to derive structural distributions based on Type II censored responses. To do this, the following definition is necessary.

Definition: A structural model

(2.6.1) $\begin{cases} x_{i} = \theta e_{i}, \quad i = 1, 2, \dots, n, \quad \theta \epsilon G, \\ \\ n \\ \pi f(e_{i}) d e_{i} \\ i = 1 \end{cases}$

is called an order-preserving structural model if

 $x \leq x'$ implies $\theta x \leq \theta x'$

for any x, x'e χ and any θ eG.

For simple measurement models, $\theta x = \theta + x$. Therefore simple measurement models are order-preserving since it is always true that $x \leq x'$ implies $\theta + x \leq \theta + x'$. Some other examples of order-preserving structural models are multiplicative measurement models and measurement models.

The object of this section is

(i) to prove the following proposition:

"For any order-preserving structural model, the structural distribution based on ordered responses is the same as the structural distribution based on unordered responses".

(ii) to derive structural distribution based on Type II censored responses; and

(iii) to provide some examples which are needed for future study in Chapter 3.

Let us first take up (ii). Let the responses x_i 's be arranged according to magnitude as $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$. The unknown realized values of e_i 's can be arranged in the same manner. A general Type II censored responses is

(2.6.2)
$$x_{0} = (x_{(k_{1})}, \dots, x_{(l_{1})}, x_{(k_{2})}, \dots, x_{(l_{2})}, \dots, x_{(k_{r})}, \dots, x_{(l_{r})})$$

where k_i and l_i , i = 1, 2, ..., r, are integers such that

 $1 \leq k_1 < \ell_1 < k_2 < \ell_2 < \dots < k_r < \ell_r \leq n.$

The ordered responses $x(\cdot)$ corresponds to the case r = 1, $k_1 = 1$ and $l_1 = n$. The structural distribution for θ , based on Type II responses x_0 , is derived from the following structural model induced from the structural model (2.6.1):

$$(2.6.3) \begin{cases} x = \theta \\ \vdots \\ \overline{f}(e) \\ de \\ e \\ CF(e_{k_{1}})^{k_{1}-1} \cdot \frac{r-1}{\pi} \{F(e_{k_{1}+1})^{j} - F(e_{k_{1}})^{j}\}^{k_{1}+1} - \ell_{1} - 1 \\ (1 - F(e_{k_{1}})^{j})^{n-\ell} \cdot \frac{r}{\pi} \{ \int_{j=k_{1}}^{i} f(e_{j})^{j} \\ de_{j} \} \end{cases}$$

where

$$C = n! \{ (k_{1}-1)! [\prod_{i=1}^{r-1} (k_{i+1}-\ell_{i}-1)!] (n-\ell_{r})! \}^{-1} ,$$

and

$$F(t) = \int_{-\infty}^{t} f(y) dy.$$

The structural distribution for θ , based on χ , derived from the induced structural model (2.6.3) is

$$(2.6.4) \qquad g(\theta:\underline{x})d\theta = K(\underline{x})\overline{f}(\theta^{-1}\underline{x})J_{N*}(\theta^{-1}:\underline{x})\Delta(\theta^{-1})\frac{d\theta}{J_{L}(\theta)}$$

where $N^* = \sum_{i=1}^{r} (l_i - k_i + 1)$. The normalizing constant factor K(x) may be obtained by integration

$$K(\underline{x})^{-1} = \int_{G} \overline{f}(\theta^{-1}\underline{x}) J_{N*}(\theta^{-1}:\underline{x}) \Delta(\theta^{-1}) \frac{d\theta}{J_{L}(\theta)} \cdot$$

Now we proceed to the proof of the proposition (i). We find that the structural distribution for θ , based on the ordered responses $\chi(\cdot)$, is given by (2.6.4) with r = 1, $k_1 = 1$ and $\ell_1 = n$. So the desired pdf for θ is

「「「「「「「」」」」

$$(2.6.5) \quad g(\theta: \underbrace{x}_{\mathcal{X}}(\cdot)) d\theta = K(\underbrace{x}_{\mathcal{X}}(\cdot)) \overline{f}(\theta^{-1} \underbrace{x}_{\mathcal{X}}(\cdot)) J_{N}(\theta^{-1}: \underbrace{x}_{\mathcal{X}}(\cdot)) \Delta(\theta^{-1}) \frac{d\theta}{J_{L}(\theta)}$$
$$= K(\underbrace{x}_{\mathcal{X}}(\cdot)) \cdot \underbrace{\prod_{i=1}^{n} f(\theta^{-1} \underbrace{x}_{\mathcal{X}(i)}) \cdot J_{N}(\theta^{-1}: \underbrace{x}_{\mathcal{X}}(\cdot)) \Delta(\theta^{-1}) \frac{d\theta}{J_{L}(\theta)}$$

The structural distribution for θ , based on the unordered responses $x' = (x_1, x_2, \dots, x_n)$, is

$$(2.6.6) \qquad g(\theta: \mathbf{x}') d\theta = K(\mathbf{x}') \prod_{i=1}^{n} f(\theta^{-1}\mathbf{x}_{i}) \cdot J_{N}(\theta^{-1}: \mathbf{x}') \Delta(\theta^{-1}) \frac{d\theta}{J_{L}(\theta)} .$$

Now since

$$\prod_{i=1}^{n} f(\theta^{-1}x_{i}) = \prod_{i=1}^{n} f(\theta^{-1}x_{i}), \text{ and } J_{N}(\theta^{-1}:x') = J_{N}(\theta^{-1}:x(\cdot))$$

it follows that (2.6.5) is identical with (2.6.6). Hence the proof of the proposition is complete.

We conclude this section by giving two examples.

Example 2.6.7: Simple measurement model

 $\begin{cases} x_{i} = \mu + e_{i}, e_{i} > 0, i = 1, 2, ..., n \\ f(e_{1}, ..., e_{n}) \prod_{i=1}^{n} de_{i} = exp \left\{ - \sum_{i=1}^{n} e_{i} \right\} \cdot \prod_{i=1}^{n} de_{i} \\ \vdots = 1 \end{cases}$

The structural distribution for μ , based on censored responses χ given by (2.6.2), is easily obtained from (2.6.4):

$$g(\mu: \chi) d\mu \alpha (1 - \exp\{-(x_{(k_{1})}^{-\mu})\})^{k_{1}^{-1}} \cdot (\exp\{-(x_{(k_{r})}^{-\mu})\})^{n-\ell_{r}} \cdot \frac{r^{-1}}{\prod_{i=1}^{n} [\exp\{-(x_{(\ell_{i})}^{-\mu})\} - \exp\{-(x_{(k_{i+1})}^{-\mu})\}]^{k_{i+1}^{-\ell_{i}^{-1}}} \cdot \frac{r^{-1}}{\prod_{i=1}^{n} [\exp\{-\sum_{j=k_{i}}^{\ell_{i}} (x_{(j)}^{-\mu})\}] d\mu}{\alpha(1 - \exp\{-(x_{(k_{1})}^{-\mu})\})^{k_{1}^{-1}} \cdot \exp\{\alpha\mu\} d\mu, \mu < x_{(k_{1})}^{-\mu}, \mu\}}$$

where

$$a = (n - \ell_r) + \sum_{i=1}^{r-1} (k_{i+1} - \ell_i - 1) + \sum_{i=1}^{r} (\ell_i - k_i + 1)$$

= n - k_1 + 1.

The normalizing constant factor $K(\,\underline{x}\,)$ is

$$K(x)^{-1} = \int_{-\infty}^{x(k_1)} (1 - \exp \mu \cdot \exp\{-x_{(k_1)}\})^{k_1 - 1} \cdot \exp\{(n - k_1 + 1)\mu\} d\mu$$

=
$$\int_{0}^{1} (1 - t)^{k_1 - 1} (t \exp x_{(k_1)})^{n - k_1} \cdot \exp x_{(k_1)} d\mu$$

=
$$\exp\{(n - k_1 + 1)x_{(k_1)}\} \cdot \beta(k_1, n - k_1 + 1).$$

The substitution t = $\exp\{\mu - x_{(k_1)}\}$ is used in the preceeding simplification. Thus we have

$$(2.6.8) g(\mu: \underline{x}) d\mu = \frac{(1 - \exp(\mu - x_{(k_{1})})^{k_{1}-1} \cdot \exp\{(n - k_{1}+1)\mu\} \cdot d\mu}{\exp\{(n - k_{1}-1)x_{(k_{1})}\} \cdot \beta(k_{1}, n - k_{1}+1)}, \mu < x_{(k_{1})},$$

as the structural distribution for μ based on $\underline{x}.$

<u>Remark</u>: It is of interest to note that (2.6.8) does not involve r, l_1 , and k_i , l_i , i = 2, 3, ..., r. Therefore we conclude:

(i) "The structural distributions for μ based on the following two different Type II censored responses

$$\mathbf{x} = (\mathbf{x}_{(k_1)}, \dots, \mathbf{x}_{(\ell_1)}, \dots, \mathbf{x}_{(k_r)}, \dots, \mathbf{x}_{(\ell_r)}), 1 \leq k_1 \leq \ell_1 \leq \cdots \leq k_r \leq \ell_r \leq n,$$

and

$$\mathbf{x}' = (\mathbf{x}_{(\mathbf{k}'_{1})}, \dots, \mathbf{x}_{(\mathbf{k}'_{1})}, \dots, \mathbf{x}_{(\mathbf{k}'_{s})}, \dots, \mathbf{x}_{(\mathbf{k}'_{s})}), 1 \leq \mathbf{k}'_{1} \leq \mathbf{l}'_{1} \leq \dots \leq \mathbf{k}'_{s} \leq \mathbf{l}'_{s} \leq \mathbf{n},$$

are identical if, and only if $k_1 = k'_1$."

(ii) The structural distribution μ , based on the complete set of responses (ordered or unordered), is

$$g(\mu: x)d\mu = n \exp \{n(\mu - x_{(1)})\}d\mu, \mu < x_{(1)}$$

Example 2.6.9: Measurement model

$$\begin{cases} x_{i} = \mu + \sigma e_{i}, i = 1, 2, ..., n \\ f(e_{1}, ..., e_{n}) \prod_{i=1}^{n} de_{i} = exp \left\{ -\sum_{i=1}^{n} e_{i} \right\} \cdot \prod_{i=1}^{n} de_{i}, e_{i} > 0. \end{cases}$$

In this example we wish to derive the structural distribution for μ and σ based on the following Type II doubly censored responses.

$$x = (x_{(k)}, x_{(k+1)}, \dots, x_{(\ell)})$$

where k and l are integers such that $l \leq k < l \leq n$. It follows from (2.6.4) that the structural distribution for μ and σ based

New York

on $\frac{x}{\sqrt{\sigma}}$ is $g(\mu,\sigma;\underline{x})d\mu d\sigma \alpha (1-\exp\left\{-\frac{x}{(k)}^{-\mu}\right\})^{k-1}(\exp\left\{-\left\{\frac{x}{(k)}^{-\mu}\right\}\right)^{n-k}\cdot \exp\left\{-\sum_{i=k}^{k}\frac{x}{(i)}^{-\mu}\right\}\cdot\sigma^{-(k-k+1)-1}d\mu d\sigma$ $\alpha (1-\exp\left\{-\frac{x}{(k)}^{-\mu}\right\})^{k-1}\exp\left\{-\left[A(\underline{x})-(n-k+1)\mu\right]/\sigma\right\}\sigma^{-(k-k+2)}d\mu d\sigma$

for $-\infty < \mu < x_{(k)}$, $\sigma > 0$; and where

$$A(x) = (n-\ell)x_{(\ell)} + \sum_{i=k}^{\ell} x_{(i)}$$

The normalizing constant factor K(x) is given by

$$K(x_{\gamma})^{-1} = \int_{0}^{\infty} \int_{-\infty}^{x(k)} (1 - \exp\left\{-\frac{x(k)^{-\mu}}{\sigma}\right\})^{k-1} \exp\left\{-\left[A(x_{\gamma}) - (n-k+1)\right]/\sigma\right\} \sigma^{-(\ell-k+2)} d\mu d\sigma.$$

To carry out the above integration, we make the following substitution:

$$\begin{cases} t = \mu/\sigma \\ z = 1/\sigma \end{cases}$$

which has jacobian z^{-3} . The integration reduces to

$$K(x) = \int_{0}^{\infty} \int_{-\infty}^{x(k)^{2}} (1 - \exp\{-x_{(k)}^{z+t}\})^{k-1} \exp\{-A(x)^{z+(n-k+1)t}\} z^{\ell-k+1} dt dz$$
$$= \int_{0}^{\infty} \exp\{-A(x)^{2}z^{\ell-k-1} \int_{-\infty}^{x(k)^{2}} (1 - \exp\{-x_{(k)}^{z+t}\})^{k-1} \exp\{(n-k+1)t\} dt dz$$

$$= \int_{0}^{\infty} \exp\{-A(x)z\} z^{\ell-k-1} \int_{0}^{1} (1-y)^{k-1} (y \exp\{x_{(k)}z\})^{n-k} \exp\{x_{(k)}z\} dy dz$$

=
$$\int_{0}^{\infty} \exp\{-[A(x) - (n-k+1)x_{(k)}]z\} z^{\ell-k-1} dz \cdot \int_{0}^{1} (1-y)^{k-1} y^{n-k} dy$$

=
$$\frac{\Gamma(\ell-k)\beta(k, n-k+1)}{[A(x) - (n-k+1)x_{(k)}]^{\ell-k}}$$

since
$$A(x) - (n-k+1)x_{(k)} = (n-\ell)x_{(\ell)} + \sum_{i=k}^{\ell} x_{(i)} - (n-k+1)x_{(k)}$$

= $(n-\ell)(x_{(\ell)} - x_{(k)}) + \sum_{i=k}^{\ell} (x_{(i)} - x_{(k)})$
> 0.

The preceeding simplification involves a substitution $y = exp\{ -x_{(k)}z + t\}.$ Hence we have

(2.6.10) g(µ,σ:x)dµdσ

$$= \frac{\left[A(\chi) - (n-k+1)\chi(k)\right]^{\chi-1}}{\Gamma(\ell-k)\beta(k, n-k+1)} (1 - \exp\{-(\chi_{(k)} - \mu)/\sigma\}).$$

$$\exp\{-\left[A(\chi) - (n-k+1)\mu\right]/\sigma\}\sigma^{-(\ell-k+2)}d\mu d\sigma$$

for $-\infty < \mu < x_{(k)}$, $\sigma > 0$.

2.7. <u>STRUCTURAL DISTRIBUTIONS FOR TRANSFORMED STRUCTURAL MODELS</u>: A general multiplicative measurement model

Constant and a second

unders frages

(2.7.1)
$$\begin{cases} x_{i} = \sigma e_{i}, e_{i} > 0, i = 1, 2, ..., n \\ f(e_{1}, e_{2}, ..., e_{n}) \prod_{i=1}^{n} de_{i} \\ i = 1 \end{cases}$$

with $\sigma > 0$, is transformed into the following simple measurement model

(2.7.2)
$$\begin{cases} x_{i}^{!} = \mu + e_{i}^{!}, \quad i = 1, 2, ..., n , -\infty < \mu < \infty, \\ f(exp e_{i}^{!}, ... exp e_{n}^{!}) \prod_{i=1}^{n} e_{i}^{!} de_{i}^{!} \end{cases}$$

by the transformation $t \rightarrow \ln t$. Note that $x_i = \ln x_i$, $e_i = \ln e_i$, for i=1,2,...,n, and $\mu = \ln \sigma$. Similarly a general simple measurement model

(2.7.3)
$$\begin{cases} y_{i} = \mu + e_{i}, i = 1, 2, ..., n, -\infty < \mu < \infty, \\ n \\ f(e_{1}, ..., e_{n}) \prod_{i=1}^{n} de_{i} \end{cases}$$

is transformed into the following multiplicative measurement model

(2.7.4)
$$\begin{cases} y' = \sigma e_{i}' \\ f(\ln e_{i}', \ldots, \ln e_{n}') \prod e_{i}'^{-1} de_{i}' \\ i = 1 \end{cases}$$

by the transformation $t \rightarrow \exp\{t\}$. Note that $y'_i = \exp y_i$, $e'_i = \exp e_i$, i = 1, 2, ..., n, and $\sigma = \exp \mu$.

In this section we wish to prove the following propositions.

(i) "For the structural model (2.7.1), the structural distribution for μ (= ln σ), based on $x = (x_1, x_2, \dots, x_n)$, or equivently $x' = (x'_1, x'_2, \dots, x'_n)$, derived from

(a) the structural distribution for σ , based on χ , by applying the transformation $\sigma = \exp \mu$; and

(b) the transformed structural model (2.7.2) directly; are identical."

(ii) "For the structural model (2.7.3), the structural distribution for σ (= exp μ), based on $\chi = (y_1, y_2, \dots, y_n)$, or equivently $\chi' = (y'_1, y'_2, \dots, y'_n)$, derived from

(a) the structural distribution for μ , based on y, by applying the transformation $\mu = \ln \sigma$; and

(b) the transformed structural model (2.7.4) directly; are identical."

First, let us prove proposition (i). The structural distribution for σ , based on χ and derived from the structural model (2.7.1), is

 $g(\sigma: x) d\sigma = K(x) f(x_1/\sigma, \ldots, x_n/\sigma) \sigma^{-(n+1)} d\sigma$.

Therefore, the structural for μ , derived by using (a), is (2.7.5) $g(\mu:x_{\nu})d\mu = K(x_{\nu})f(x_{1} \exp\{-\mu\}, \ldots, x_{n}\exp\{-\mu\})\exp\{-n\mu\}d\mu$. On the other hand, the structural distribution for μ , based on x' and derived from the structural model (2.7.2), is $g(\mu:x_{\nu}')d\mu = K(x_{\nu}')f(\exp\{x_{1}'-\mu\},\ldots,\exp\{x_{n}'-\mu\})\cdot \prod_{i=1}^{n}\exp\{x_{i}-\mu\}d\mu$

= K'(x')f(exp $x'_1 \cdot exp\{-\mu\}, \ldots, exp x'_n \cdot exp\{-\mu\})exp\{-n\mu\}d\mu$.

Since $x_i = \exp\{x_i'\}$, it follows that the last expression is the same as (2.7.5). Hence we complete the proof for proposition (i).

<u>Remark</u>: Proposition (i) can be extended in the following two directions. First, if a Type II censored response is used instead of the complete set of responses, then the transformation $t \rightarrow ln t$ will produce a corresponding Type II censored transformed response for the transformed structural model. The proposition (i) is still valid if censored response is used. Also, if we have a general compositive multiplicative measurement model whose error variables take only positive values, then the transformation $t \rightarrow ln t$ transforms the model into a transformed composite simple measurement model. The structural distribution for μ 's derived by (a) and (b) are again identical. Proofs for these two extensions are simple generalizations of the proof given above and so they are omitted.

Next, we proceed to prove proposition (ii). The structural distribution for μ , based on χ and derived from the structural model (2.7.3), is

$$g(\mu:\underline{y})d\mu = K(\underline{y})f(\underline{y}_1-\mu, \ldots, \underline{y}_n-\mu)d\mu.$$

Therefore the structural distribution for σ , based on y and derived by using (a) is

(2.7.6)
$$g(\sigma:y)d\sigma = K(y)f(y_i - \ln \sigma, \dots, y_n - \ln \sigma)\frac{d\sigma}{\sigma}$$

On the other hand, the structural distribution for σ , based on χ' and derived directly from the structural model (2.7.4), is

$$g(\sigma:y')d\sigma = K(y')f(\ln y'_{1}/\sigma, \dots, \ln y'_{n}/\sigma) \prod_{i=1}^{n} (y'_{i}/\sigma)^{-1} \cdot \sigma^{-(n+1)} d\sigma$$

 $= K'(y')f(\ln y'_{1} - \ln \sigma, \ldots, \ln y'_{n} - \ln \sigma)\sigma^{-1} d\sigma.$

48.

Since $y_i = \ln y'_i$, i = 1, 2, ..., n, it follows that the last expression is identical with (2.7.6). The proof of proposition (ii) is thus completed.

<u>Remark</u>: Similar extension of the proposition (ii) to the case when censored responses, and the case for a general composite simple measurement model can be easily proved.

We conclude this chapter by an example.

Example: Simple measurement model

 $\begin{cases} x_{i} = \mu + e_{i}, i = 1, 2, ..., n, -\infty < \mu < \infty, \\ n \\ \Pi [exp(e_{i} - exp\{e_{i}\})de_{i}] \\ i = 1 \end{cases}$

The purpose of this example is to obtain the structural distribution for $\sigma(=\exp \mu)$ based on a singly Type II response $x = (x_{(1)}, \dots, x_{(k)})$, $1 < k \leq n$, at the right. Instead of looking at the above model, we consider the transformed mutliplicative model:

 $\begin{cases} x_{i}^{i} = \sigma e_{i}^{i}, \quad i = 1, 2, ..., n \\ n \\ \Pi [exp(ln e_{i}^{i} - exp(ln e_{i}^{i})) \cdot de_{i}^{i}/e_{i}^{i}] = exp\{-\Pi e_{i}^{i}\} \prod de_{i}^{i} \\ i = 1 \\ i =$

where $x_i' = \exp \{x_i\}$, $e_i' = \exp \{e_i\}$, and $\sigma = \exp \{\mu\}$. The structural distribution for σ , based on y (or equivently $y' = (y_1', \ldots, y_k')$, is obtained by using (2.6.4) as follows: $g(\sigma:y')d\sigma = K(y') [1 - F(y_{(k)}')]^{n-k} \cdot \prod_{i=1}^{k} f(y_{(i)}'/\sigma) \cdot \sigma^{-(k+1)} d\sigma$ $= K(y')exp\{-(n-k)y_{(k)}'/\sigma\}exp\{-\sum_{i=1}^{k} y_{(i)}'/\sigma\}\sigma^{-(k+1)} d\sigma$ =
$$K(y') \exp\{-A(y')/\sigma\}\sigma^{-(k+1)}d\sigma$$

where $A(y') = (n-k)y'_{(k)} + \sum_{i=1}^{k} y'_{(i)}$. The normalizing constant factor K(y') is

$$K(\mathbf{y}') = \int_{0}^{\infty} \exp \left\{-A(\mathbf{y}')/\sigma\right\} \sigma^{-(k+1)} d\sigma$$
$$= \int_{0}^{\infty} \exp \left\{-A(\mathbf{y}')t\right\} t^{k+1} \frac{dt}{t^{2}}$$
$$= \Gamma(k)/A(\mathbf{y}')^{k} .$$

Hence we have

$$g(\sigma: y') d\sigma = \frac{\left\{ (n-k)y'_{k} + \sum_{i=1}^{k} y'_{i} \right\}^{k}}{\Gamma(k)} \exp\left\{ -\left[(n-k)y'_{k} + \sum_{i=1}^{k} y'_{i} \right] / \sigma \right\} \cdot \sigma^{-(k+1)} d\sigma.$$

「「「「「「「「「」」」」

50.

CHAPTER 3

BEHRENS-FISHER PROBLEMS

3.1. <u>INTRODUCTION</u>: The present chapter employs the structural method of inference to investigate Behrens-Fisher problems under several different assumptions. Sets of observations are viewed as responses of the associated structural models (See Section 1.7 of Chapter 1).

3.2. BEHRENS-FISHER PROBLEM I -- INDEPENDENT POPULATIONS WITH

NO ASSUMPTION ON STANDARD DEVIATIONS: Consider the following two independent measurement models

(3.2.1)
$$\begin{cases} x_{ij} = \mu_i + \sigma_i e_{ij}, \quad j = 1, 2, \dots, n_i, \\ f_i(e_i) de_i = (2\pi)^{-n_i/2} exp \left\{ -\sum_{j=1}^{n_i} e_{ij}^2/2 \right\} \cdot \prod_{j=1}^{n_i} de_{ij} \end{cases}$$

for each i = 1, 2. We wish to derive the structural distribution for the difference of two means, $\mu = \mu_1 - \mu_2$, say, based on the complete sets of responses $x_i = (x_{i1}, x_{i2}, \dots, x_{in_i})$, i = 1, 2. The structural distribution for μ_1 , μ_2 , σ_1 and σ_2 , based on x_1 and x_2 , is (See Section 2.4 of Chapter 2)

$$g(\mu_{1},\mu_{2},\sigma_{1},\sigma_{2};\chi_{1},\chi_{2})d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}$$

$$\alpha \exp\left\{-\sum_{i=1}^{2} \frac{n_{i}}{2\sigma_{i}^{2}} \left[(\mu_{i}-\bar{x}_{i})+s_{i}^{2}\right]\right\}\sigma_{1}^{-(n_{1}+1)}\sigma_{2}^{-(n_{2}+1)}d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}$$

where $n_i \bar{x}_i = \sum_{\substack{j=1 \ j=1}}^{n_i} x_{ij}^{j}$, $n_i s_i^2 = \sum_{\substack{j=1 \ j=1}}^{n_i} (x_{ij}^{j} - \bar{x}_i^{j})^2$, i = 1, 2. Since no assumption is made on the standard deviations σ_1 and σ_2 , it follows that the structural distribution for μ_1 and μ_2 , based on x_1 and x_2 , can be obtained by integrating out σ_1 and σ_2 over the range $(0, \infty)$. Note that

$$\int_{0}^{\infty} \exp\left\{-\frac{n_{i}}{2\sigma_{i}^{2}}\left[(\mu_{i} - \bar{x}_{i})^{2} + s_{i}^{2}\right]\right]\sigma_{i}^{-(n_{i}+1)}d\sigma_{i}$$

$$= \frac{1}{2}\int_{0}^{\infty} \exp\left\{-\frac{n_{i}}{2}\left[(\mu_{i} - \bar{x}_{i})^{2} + s_{i}^{2}\right]t\right]t^{n_{i}/2-1}dt$$

$$= \frac{1}{2}\Gamma(n_{i}/2)\left\{\frac{n_{i}}{2}\left[(\mu_{i} - \bar{x}_{i})^{2} + s_{i}^{2}\right]\right\}^{-n_{i}/2}$$

$$= \frac{1}{2}\Gamma(n_{i}/2)\left(\frac{n_{i}}{2}\right)^{-n_{i}/2}s_{i}^{-n_{i}}\left\{1+(\mu_{i} - \bar{x}_{i})^{2}/s_{i}^{2}\right\}^{-n_{i}/2}$$

Therefore the structural distribution for μ_1 and μ_2 , based on x_1 and x_2 , is (3.2.2) $g(\mu_1, \mu_2: x_1, x_2) d\mu_1 d\mu_2 \alpha \left\{ 1 + (\mu_1 - \bar{x}_1)^2 / s_1^2 \right\}^{-n_1/2} \cdot \left\{ 1 + (\mu_2 - \bar{x}_2)^2 / s_2^2 \right\}^{-n_2/2} d\mu_1 d\mu_2$.

This implies that the structural distribution for μ , based on χ_1 and χ_2 , is

$$g(\mu:\underline{x})d\mu\alpha \int_{-\infty}^{\infty} \left\{ 1 + (\mu_{1}-\overline{x}_{1})^{2}/s_{1}^{2} \right\}^{-n} \frac{1}{2} \cdot \left\{ 1 + (\mu_{1}-\mu-\overline{x}_{2})^{2}/s_{2} \right\}^{-n} \frac{2}{2} d\mu_{1} \cdot d\mu.$$

From (3.2.2) we note that, if we introduced new variables

 $t_i = (n_i-1)^{1/2}(\mu_i - \bar{x}_i)/s_i, i = 1, 2,$

then t_1 and t_2 are variables having Student's t-distributions with (n_1-1) and (n_2-1) degrees of freedom respectively. Now define

$$r^{2} = s_{1}^{2}/(n_{1}-1) + s_{2}^{2}/(n_{2}-1)$$

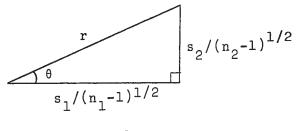
and

$$\tan \theta = [s_2/(n_2-1)^{1/2}]/[s_1^2/(n_1-1)^{1/2}].$$

$$r \cos \theta = r \cdot [s_1/(n_1-1)^{1/2}]/1$$

= $s_1/(n_1-1)^{1/2}$

and similarly $r \sin \theta = s_2 / (n_2 - 1)^{1/2}$



Hence the structural distribution for μ , based on x_1 and x_2 , can be represented in the form

 $\mu = \mu_1 - \mu_2$ $= (\bar{x}_1 - \bar{x}_2) + r(t_1 \cos \theta - t_2 \sin \theta)$

where the distribution for the variable

$$z = t_1 \cos \theta - t_2 \sin \theta$$

is usually known as Behrens-Fisher distribution. Tables for percentage points and cumulative probabilities for Behrens-Fisher distributions have been published by Fisher and Yates (1957) and Weir (1966). Welch (1947) gave an approximation to Behrens-Fisher distribution based on a single Student's t-distribution with f degrees of freedom where f is given by

$$f = \left\{ \left(\sum_{i=1}^{2} s_{i}^{2} / n_{i} \right)^{2} - 2\left(\sum_{i=1}^{2} s_{i}^{4} / [n_{i}(n_{i}+1)] \right) \right\} / \left(\sum_{i=1}^{2} s_{i}^{4} / [n_{i}^{2}(n_{i}+1)] \right)$$

Patil (1965) gives a similar approximation to Behrens-Fisher distribution z based on a single Student's t-distribution. She chooses a constant h and number f so that hz have the same second and fourth culmulants as that of the student's t-distribution with f degrees of freedom. She also proves that this t-approximation for z is sufficiently accurate for most purposes unless degrees of freedom of t's in z are very small.

3.3. <u>BEHRENS-FISHER PROBLEM II -- INDEPENDENT POPULATIONS UNDER</u> <u>THE CONDITION THAT THE RATIO OF STANDARD DEVIATIONS IS</u>

<u>KNOWN</u>: The structural model (3.2.1) is again used in this section. Here we imposed the condition that the ratio σ_2/σ_1 of the standard deviations is known, say equals c > 0. The structural distribution for $\mu = \mu_1 - \mu_2$, based on χ_1 and χ_2 , is derived here under the above condition. Some properties of a multivariate t-distribution are quoted from Cornish (1954) paper for the present and future investigation.

54.

55.

The structural distribution for μ_1 , μ_2 , σ_1 and σ_2 , based on χ_1 and χ_2 , is

$$(3.3.1) \quad g(_{\mu_1},_{\mu_2},_{\sigma_1},_{\sigma_2}:_{\chi_1},_{\chi_2})d_{\mu_1}d_{\mu_2}d_{\sigma_1}d_{\sigma_2}$$

$$\alpha \exp\left\{-\sum_{i=1}^{2} \frac{n_{i}}{2\sigma_{i}} \left[\left(\mu_{i} - \bar{x}_{i}\right)^{2} + s_{i}^{2}\right]\right\} \sigma_{1}^{-(n_{1}+1)} \sigma_{2}^{-(n_{2}+1)} d\mu_{1} d\mu_{2} d\sigma_{1} d\sigma_{2}$$

Applying the substitution

$$\begin{cases} \mu_{i} = \mu_{i}, i = 1, 2 \\ \sigma_{1} = \sigma_{1} \\ \sigma_{} = \sigma_{2}/\sigma_{1} \end{cases}$$

having jacobian σ_1 , to (3.3.1), we obtain the structural distribution for μ_1 , μ_2 , σ_1 and σ based on x_1 and x_2 :

$$g(\mu_1,\mu_2,\sigma_1,\sigma;\mathbf{x}_1,\mathbf{x}_2)d\mu_1d\mu_2d\sigma_1d\sigma$$

$$\alpha \exp\left\{-\frac{n_{1}}{2\sigma_{1}^{2}}\left[(\mu_{1}-\bar{x}_{1})^{2}+s_{1}^{2}\right]-\frac{n_{2}}{2\sigma_{1}^{2}\sigma_{1}^{2}}\left[(\mu_{2}-\bar{x}_{2})+s_{2}^{2}\right]\right\}\sigma_{1}^{-(n_{1}+n_{2}+1)}\sigma^{-(n_{2}+1)}.$$
$$\cdot d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma \cdot$$

Therefore by conditioning $\sigma = \sigma_2/\sigma_1 = c$ in the last probability density and then integrate out σ_1 we obtain the structural distribution for μ_1 and μ_2 based on $\underset{\sim}{x_1}$ and $\underset{\sim}{x_2}$:

 $g(\mu_{1},\mu_{2};\chi_{1},\chi_{2},c)d\mu_{1}d\mu_{2}\alpha\int_{0}^{\infty} exp\left\{-A(\mu_{1},\mu_{2},\chi_{1},\chi_{2},c)/\sigma_{1}^{2}\right\}\sigma_{1}^{-(n_{1}+n_{2}+1)}d\sigma_{1}.$

· dµ 1 dµ 2

56.

 $A(\mu_1,\mu_2,\mathbf{x}_1,\mathbf{x}_2,\mathbf{c}) = \frac{n_1}{2}[(\mu_1-\mathbf{x}_1)^2+s_1^2] + \frac{n_2}{2s_1^2}[(\mu_2-\mathbf{x}_2)^2+s_2^2] > 0.$ Note that g(µ₁,µ₂:x₁,x₂,c)dµ₁dµ₂ $\alpha \int_{0}^{\infty} \exp \left\{-A(\mu_{1}, \mu_{2}, \chi_{1}, \chi_{2}, c) / \sigma_{1}^{2}\right\} \sigma_{1}^{-(n_{1}+n_{2}+1)} d\sigma_{1} \cdot d\mu_{1} d\mu_{2}$ $\alpha [A(\mu_1, \mu_2, \chi_1, \chi_2, , c)]^{-(n_1+n_2)/2} d\mu_1 d\mu_2$ $\alpha \frac{a\mu_{1}a\mu_{2}}{\left\{s^{2}+n_{1}(\mu_{1}-\bar{x}_{1})^{2}+n_{2}(\mu_{2}-\bar{x}_{2})^{2}/c^{2}\right\}^{(n_{1}+n_{2})/2} }$ $\alpha \frac{\frac{a\mu_{1}a\mu_{2}}{\left\{1 + \frac{n_{1}(\mu_{1} - \bar{x}_{1})^{2}}{2} + \frac{n_{2}(\mu_{2} - \bar{x}_{2})^{2}}{2^{2}\epsilon^{2}}\right\}^{(n_{1} + n_{2})/2}}$ where $s^2 = n_1 s_1^2 + n_2 s_2^2 / c^2$. Putting $t_1^* = (n_1 + n_2 - 2)^{1/2}(\mu_1 - \bar{x}_1)/s, t_2^* = (n_1 + n_2 - 2)^{1/2}(\mu_2 - \bar{x}_2)/s$ and $R^{*-1} = \begin{pmatrix} n_1 & 0 \\ 0 & n_2/c^2 \end{pmatrix}$ we find that

where

 $g(\mu_1,\mu_2:x,x_2, c)d\mu_1d\mu_2$

 $^{\alpha} \frac{d\mu_{1}d\mu_{2}}{\left\{1+(t_{1}^{*},t_{2}^{*})R^{*-1}(t_{1}^{*},t_{2}^{*})'/(n_{1}+n_{2}-2)\right\}^{(n_{1}+n_{2})/2}}$

Hence the variables t_1^* and t_2^* has a bivariate t-distribution characterized by the matrix R^{*-1} (see Cornish (1954)).

The following results of multivariate t-distributions are quoted from Cornish (1954) paper. Let $t_i' = (t_1, t_2, \dots, t_n)$ be a multivariate t-distribution of order n and characterized by the matrix R⁻¹. Then the pdf of t_i is given by

$$\frac{\Gamma(\frac{v+n}{2})|R|^{-1/2}}{(\pi v)^{n/2}\Gamma(v/2)} \quad (1 + t_v^* R^{-1} t/v)^{-(n+v)/2} dt$$

Cornish has proven the following:

(i) The limiting for the distribution t, as $v \to \infty$, is a multivariate normal distribution with mean vector Q and covariance matrix R.

(ii) Suppose $\chi = H\chi$ are any p(< n) linearly independent linear functions of the t_i 's. Then χ has a multivariate t-distribution of order p characterized by the matrix $(HRH')^{-1}$. In particular, the marginal distribution of $t_1 = (t_1, t_2, \ldots, t_r)$, r < n, is a multivariate t-distribution of order r characterized by the matrix R_1^{-1} , where R_1 is the leading r×r submatrix in R.

(iii) The pdf of the conditional distribution of t_1 , given $t_2' = (t_{r+1}, \ldots, t_n) = a'$, is

57.

$$\frac{\Gamma(\frac{v+n}{2})|R_{1}|^{1/2}}{(\pi v)^{r/2}\Gamma(\frac{v+n-r}{2})} \left\{ 1 + a'(R_{2} - R'_{3}R_{1}^{-1}R_{3})a'/v \right\}^{(v+n-r)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R_{1}^{-1}R_{3}a')'R_{1}(t_{1}^{+}+R'_{3}R_{1}^{-1}a) + a'(R_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a}{v} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R_{1}^{-1}R_{3}a')'R_{1}(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R_{1}^{-1}R_{3}a')'R_{1}(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R'_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{1}R_{3}a')'R_{1}(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R'_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{1}R_{3}a')'R_{1}(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R'_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{1}R_{3}a')'R_{1}(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R'_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R'_{2}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{3}R_{1}^{-1}a)}{v} + a'(R'_{3}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{3}R_{1}^{-}a)}{v} + a'(R'_{3}^{-}-R'_{3}R_{1}^{-1}R_{3})a} \right\}^{-(v+n)/2} \cdot \left\{ 1 + \frac{(t_{1}^{+}+R'_{3}R_{1}$$

where R_1 , R_2 and R_3 are submatrices of R^{-1} given by

 $R^{-1} = \begin{pmatrix} R_1 & R_3 \\ R_3 & R_2 \end{pmatrix} .$

Now we return to the derivation of the structural distribution for μ based on χ_1 and χ_2 . Define two new variables t_1 and t_2 as follows

$$(t_1, t_2)' = H(t_1^*, t_2^*)'$$

 $H = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

where

Then the variables t_1 and t_2 has a bivariate t-distribution characterized by the matrix R^{-1} where R is given by

$$R = HR*H'$$

$$= \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/n_1 & 0 \\ 0 & c^2/n_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1/n_1 + c^2/n_2 & -c^2/n_2 \\ -c^2/n_2 & c^2/n_2 \end{pmatrix} .$$

Therefore the marginal distribution for t_1 has a student's t-distribution with (n_1+n_2-2) degrees of freedom and characterized by $(1/n_1 + c^2/n_2)^{-1}$. That is the pdf of t_1 is given by

$$g(t_{1}:x_{1},x_{2},c)dt \propto \frac{dt_{1}}{\left\{1+t_{1}^{2}/[(n_{1}+n_{2}-2)(1/n_{1}+c^{2}/n_{2})]\right\}^{(n_{1}+n_{2}-1)/2}}$$

But $t_1 = (n_1 + n_2 - 2)^{1/2} [\mu - (\bar{x}_1 - \bar{x}_2)]/s$, so that the structural distribution for μ , based on x_1 and x_2 , is

(3.3.2)
$$g(\mu: x_1, x_2, c) d\mu \alpha = \frac{d\mu}{\left\{1 + (\mu - \bar{x}_1 + \bar{x}_2)^2 / [s^2(1/n_1 + c^2/n_2)]\right\}^{(n_1 + n_2 - 1)/2}}$$

$$\frac{d\mu}{\left\{1 + \frac{n_{1}n_{2}(\mu - \bar{x}_{1} + \bar{x}_{2})^{2}}{c^{2}s^{2}(n_{1} + n_{2}/c^{2})}\right\}^{(n_{1} + n_{2} - 1)/2} }$$

The constant of proportionality $K(n_1, n_2, c)$ for (3.3.2) is

$$K(n_1,n_2,c) = \Gamma\left(\frac{n_1+n_2-1}{2}\right) \left\{ \pi^{1/2} \Gamma\left(\frac{n_1+n_2-2}{2}\right) c^2 s^2 (n_1+n_2/c^2) / (n_1n_2) \right\}^{-1}$$

Now if we define

$$t(n_1, n_2, c) = (n_1 + n_2 - 2)^{1/2} (\mu - \bar{x}_1 + \bar{x}_2) / [c^2 s^2 (n_1 + n_2 / c^2) / (n_1 n_2)]^{1/2}$$

then it follows from (3.3.2) that $t(n_1, n_2, c)$ has a student's t-distribution with $(n_1 + n_2 - 2)$ degrees of freedom. Consequently, the structural distribution for μ , based on x_1 and x_2 , can be rewritten in the form

$$\mu = (\bar{x}_1 - \bar{x}_2) - \left\{ \frac{c^2 s^2 (n_1 + n_2/c^2)}{n_1 n_2 (n_1 + n_2 - 2)} \right\}^{1/2} t(n_1, n_2, c) .$$

The following three special cases for the structural distribution for μ , based on x_{1} and x_{2} are given here for later comparison.

(i) When $n_1 = n_2 = n$, the structural distribution for μ , based on x_{1} and x_{2} , can be rewritten in the form

$$\mu = (\bar{x}_1 - \bar{x}_2) - \left\{ \frac{c^2(s_1^2 + s_2^2/c^2)(1 + 1/c^2)}{2(n-1)} \right\}^{1/2} t(n, n, c)$$

and whose pdf is given by

$$K(n,n,c) = \frac{\frac{d\mu}{(\mu - \bar{x}_1 + \bar{x}_2)^2}}{\left\{1 + \frac{(\mu - \bar{x}_1 + \bar{x}_2)^2}{c^2(1 + 1/c^2)(s_1^2 + s_2^2/c^2)}\right\}^{(2n-1)/2}}$$

(ii) When $n_1 = n_2 = n$ and c = 1, the structural distribution for μ , based on x_1 and x_2 , can be rewritten in the form

$$\mu = (\bar{x}_1 - \bar{x}_2) - \left\{ \frac{s_1^2 + s_2^2}{(n-1)} \right\}^{1/2} t(n, n, 1)$$

and whose pdf is given by

$$K(n,n,l) \frac{d\mu}{\left\{1 + \frac{1}{2}(\mu - \bar{x}_{1} + \bar{x}_{2})/(s_{1}^{2} + s_{2}^{2})\right\}^{(2n-1)/2}}$$

(iii) When c = 1, the structural distribution for μ , based on x_{1} and x_{2} , can be rewritten in the form

 $\mu = (\bar{x}_1 - \bar{x}_2) - \left\{ \frac{\binom{(n_1+n_2)(n_1s_1^2+n_2s_2^2)}{n_1n_2(n_1+n_2-2)}}{\binom{(n_1+n_2-2)}{n_1n_2(n_1+n_2-2)}} \right\}^{1/2} t(n_1, n_2, 1)$

and whose pdf is given by

$$\frac{d\mu}{\left\{1+\frac{n_{1}n_{2}(\mu-\bar{x}_{1}+\bar{x}_{2})^{2}}{(n_{1}+n_{2})(n_{1}s_{1}^{2}+n_{2}s_{2}^{2})}\right\}^{(n_{1}+n_{2}-1)/2}}$$

The available t-tables can be used for constructing structural interval for μ . Furthermore, we note that the particular case (iii) with c = 1, gives the result the same as that obtained by the Fiducial method. This result was also obtained by Pitman (1939).

3.4. BEHRENS-FISHER PROBLEM III -- DEPENDENT POPULATIONS WITH

<u>NO ASSUMPTION ON THE COVARIANCE MATRIX</u>: The last two sections are concerned with the structural distributions for the differences of two means based on the complete sets of observations taken from independent normal distributions. In this section and the next we consider the case in which the two distributions are correlated. This section deals with the case with no assumption on the covariance matrix. That is we wish to obtain the structural distribution for μ , based on $x_1 = (x_{11}, \dots, x_{1n})$ and $x_2 = (x_{21}, \dots, x_{2n})$, from the following structural model

$$\begin{cases} \begin{pmatrix} 1 \\ x_{1j} \\ x_{2j} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & \gamma \\ \mu_{2} & \alpha & \sigma_{2} \end{pmatrix} \begin{pmatrix} 1 \\ e_{1j} \\ e_{2j} \end{pmatrix}, \quad j = 1, 2, ..., n, \\ (2\pi)^{-n} \exp \left\{ - \sum_{j=1}^{n} (e_{1j}^{2} + e_{2j}^{2}) \right\}_{j=1}^{n} de_{1j} de_{2j}, \end{cases}$$

where $\sigma_1, \sigma_2 > 0$ and the matrix

has determinant > 0. Fraser (1968) (For details see page 241) has shown that the structural distribution for μ_1 and μ_2 , based on χ_1 and χ_2 , is

 $g(\mu_{1},\mu_{2}:x_{1},x_{2})d\mu_{1}d\mu_{2}\alpha\{l+n(m(x)-\mu)'s(x)^{-1}(m(x)-\mu)]^{-n/2}d\mu_{1}d\mu_{2}$

where $\mu' = (\mu_1, \mu_2)$, $m(x)' = (\bar{x}_1, \bar{x}_2)$ and

$$S_{\nu}(\mathbf{x}) = \begin{pmatrix} x_{11} - \bar{x}_{1} & \cdots & x_{1n} - \bar{x}_{1} \\ x_{21} - \bar{x}_{2} & \cdots & x_{2n} - \bar{x}_{2} \end{pmatrix} \begin{pmatrix} x_{11} - \bar{x}_{1} & \cdots & x_{1n} - \bar{x}_{1} \\ x_{21} - \bar{x}_{2} & \cdots & x_{2n} - \bar{x}_{2} \end{pmatrix}$$

$$\begin{pmatrix} nS_1^2 & nS_{12} \\ nS_{12} & nS_2^2 \end{pmatrix}$$

Let
$$t_1^* = (n-2)^{1/2}(\mu_1 - \bar{x}_1)$$
, $t_2^* = (n-2)^{1/2}(\mu_2 - \bar{x}_2)$, and

$$R^{*-1} = n \Re(\chi)^{-1}$$

= $a^{-1} \begin{pmatrix} s_2^2 & -s_{12} \\ s_2^2 & s_{12}^2 \end{pmatrix}$, $a = s_1^2 s_2^2 - s_{12}^2$.

Then the variables t_1^* and t_2^* has a bivariate t-distribution characterized by the matrix R^{*-1} . If t_1 and t_2 are variables defined by

$$(t_1, t_2)' = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} (t_1^*, t_2^*),$$

then the variables t_1 and t_2 has a bivariate t-distribution characterized by the matrix R^{-1} where R is given by

$$R = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} R * \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} s_1^2 - 2s_{12} + s_2^2 & s_{12} - s_2^2 \\ s_{12} - s_2^2 & s_1^2 \end{pmatrix}$$

Therefore the marginal distribution for t_1 has a Student's t-distribution with (n-2) degrees of freedom and is characterized by $(s_1^2-2s_{12}+s_2^2)^{-1}$.

But $t_1 = t_1^* - t_2^* = (n-2)^{1/2} (\mu - \bar{x}_1 + \bar{x}_2)$, so that the structural distribution for μ , based on x_1 and x_2 , is

$$g(\mu: x_{1}, x_{2}) d\mu \alpha = \frac{d\mu}{\left\{1 + \frac{(\mu - \bar{x}_{1} + \bar{x}_{2})^{2}}{s_{1}^{2} - 2s_{12} - s_{2}^{2}}\right\}^{(n-1)/2}}$$

The constant of proportionality is

$$\Gamma(\frac{n-1}{2})\left\{\pi^{1/2}\Gamma(\frac{n-2}{2})(s_1^2-2s_{12}+s_2^2)^{1/2}\right\}^{-1}$$

Furthermore, we note that the variable

 $t = (n-2)^{1/2} (\mu - \bar{x}_1 + \bar{x}_2) / (s_1^2 - 2s_{12} + s_2^2)^{1/2}$

has a Student's t-distribution with (n-2) degrees of freedom. Hence the structural distribution for μ , based on χ_1 and χ_2 , can be rewritten in the form

$$\mu = (\bar{x}_1 - \bar{x}_2) - \{(s_1^2 - 2s_{12} + s_2^2)/(n-2)\}^{1/2}t.$$

This structural distribution for μ , based on χ_1 and χ_2 , is slightly different from the usual paired t-test distribution

$$T = (n-1)^{1/2} (\bar{x}_1 - \bar{x}_2 - \mu) / (s_1^2 - 2s_{12} + s_2^2)^{1/2}$$

which has a Student's t-distribution with (n-1) degrees of freedom.

3.5. <u>BEHRENS-FISHER PROBLEM IV -- DEPENDENT POPULATIONS WITH THE</u>

CONDITION THAT BOTH THE CORRELATION COEFFICIENT AND THE

<u>RATIO OF STANDARD DEVIATIONS ARE KNOWN</u>: In this section we wish to derive the structural distribution for the difference of two means $\mu = \mu_1 - \mu_2$ based on samples χ from a bivariate normal distribution in which

(i) the correlation coefficient ρ ; and

(ii) the ratio $\sigma = \sigma_2/\sigma_1$ of the standard deviations, are known. More precisely, the derivation for the desired structural distribution is based on the following structural model

$$\begin{cases} \begin{pmatrix} 1 \\ x_{1j} \\ x_{2j} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma_{1} & 0 \\ \mu_{2} & 0 & \sigma_{2} \end{pmatrix} \begin{pmatrix} 1 \\ e_{1j} \\ e_{2j} \end{pmatrix}, \quad j = 1, 2, \dots, n, \\ \begin{cases} 2\pi (1-\rho^{2})^{1/2} \end{bmatrix}^{n} \exp \left\{ -\frac{1}{2(1-\rho^{2})} \sum_{j=1}^{n} (e_{1j}^{2}-2\rho e_{1j}e_{2j}+e_{2j}^{2}) \right\} \\ \cdot \prod_{j=1}^{n} de_{1j} de_{2j} \end{cases}$$

where $-\infty < \mu_1, \mu_2 < \infty$, and $\sigma_1, \sigma_2 > 0$. The structural distribution for μ_1, μ_2, σ_1 and σ_2 , based on $\chi = (\chi_1, \chi_2), \chi_1 = (\chi_{11}, \chi_{12}, \dots, \chi_{1n})$, is

$$\alpha \exp \left\{ -a^{2} \sum_{j=1}^{n} \left[\left(\frac{x_{ij}^{-\mu} 1}{\sigma_{1}} \right)^{2} - 2\rho \left(\frac{x_{1j}^{-\mu} 1}{\sigma_{1}} \right) \left(\frac{x_{2j}^{-\mu} 2}{\sigma_{2}} \right) + \left(\frac{x_{2j}^{-\mu} 1}{\sigma_{2}} \right)^{2} \right] \right\} \frac{d\mu_{1} d\mu_{2} d\sigma_{1} d\sigma_{2}}{\left(\frac{\sigma_{1} \sigma_{2}}{\sigma_{2}} \right)^{n+1}}$$

where $a^2 = \{2(1-\rho^2)\}^{-1}$. Making use of the substitution

 $\begin{cases} \mu_{i} = \mu_{i}, \quad i = 1,2 \\ \sigma_{1} = \sigma_{1} \\ \sigma = \sigma_{2}/\sigma_{1} \end{cases}$

and then conditioning on $\sigma = c$, we obtain the structural distribution for μ_1 , μ_2 and σ_1 based on χ and given $\sigma = c$:

$$g(\mu_1,\mu_2\sigma;\mathbf{x},c)d\mu_1d\mu_2d\sigma_1\alpha \exp\left\{-a^2A^2(\mathbf{x},\mu_1,\mu_2,c)/\sigma_1^2\right\} \frac{d\mu_1d\mu_2d\sigma_1}{\sigma_1^{2n+1}}$$

where

$$A^{2}(\mathbf{x}, \mu_{1}, \mu_{2}, c) = \sum_{j=1}^{n} [(\mathbf{x}_{1j} - \mu_{1})^{2} - 2\rho(\mathbf{x}_{1j} - \mu)(\mathbf{x}_{2j} - \mu_{2})/c + (\mathbf{x}_{2j} - \mu_{2})^{2}/c^{2}]$$
$$= n \left\{ s_{1}^{2} + (\mu_{1} - \bar{\mathbf{x}}_{1})^{2} - 2\rho[s_{12} + (\mu_{1} - \bar{\mathbf{x}}_{1})(\mu_{2} - \bar{\mathbf{x}}_{2})] + s_{2}^{2} + (\mu_{2} - \bar{\mathbf{x}}_{2})^{2}/c^{2} \right\}$$

Therefore the structural distribution for μ_{l} and $\mu_{2},$ based on $\chi,$ is

$$g(\mu_{1},\mu_{2}:x,c)d\mu_{1}d\mu_{2}\alpha\int_{0}^{\infty} exp\left\{-a^{2}A^{2}(x,\mu_{1},\mu_{2},c)/\sigma_{1}^{2}\right\} \frac{d\sigma_{1}\cdot d\mu_{1}d\mu_{2}}{\sigma_{1}^{2n+1}}$$

$$\alpha \qquad \frac{d\mu_1 d\mu_2}{\{a^2 A^2(x,\mu_1,\mu_2,c)\}^n}$$

$$\frac{d\mu}{\left\{s^{2}+(\mu_{1}-\bar{x}_{1})^{2}-2\rho(\mu_{1}-\bar{x}_{1})(\mu_{2}-\bar{x}_{2})/c+(\mu_{2}-\bar{x}_{2})^{2}/c^{2}\right\}^{n}}$$

 $\alpha \frac{d\mu_1 d\mu_2}{\left\{1 + (t_1^*, t_2^*)R^{*-1}(t_1^*, t_2^*)'/(2n-2)\right\}^{(2n-2+2)/2}}$

where $s^2 = s_1^2 - 2\rho s_{12}/c + s_2^2/c^2$, $t_1^* = (2n-2)^{1/2}(\mu_1 - \bar{x}_1)/s$, $t_2^* = (2n-2)^{1/2}(\mu_2 - \bar{x}_2)/s$, and R^{*-1} is the matrix

 $\begin{pmatrix} 1 & -\rho/c \\ -\rho/c & 1/c^2 \end{pmatrix}$

Therefore the variables t_1^* and t_2^* have a bivariate t-distribution characterized by the matrix R^{*-1} . Note that

$$R^{*} = \begin{pmatrix} 1 & -\rho/c \\ -\rho/c & 1/c^{2} \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} 1/(1-\rho^{2}) & \rho c/(1-\rho^{2}) \\ \rho c/(1-\rho^{2}) & c^{2}/(1-\rho^{2}) \end{pmatrix}.$$

Let $t_1 = t_1^* - t_2^*$, and $t_2 = t_2^*$. Then t_1 and t_2 has a bivariate t-distribution characterized by R^{-1} where R^{-1} is

$$R = \begin{pmatrix} 1 & -1 \\ \\ 0 & 1 \end{pmatrix} R * \begin{pmatrix} 1 & 0 \\ \\ \\ -1 & 1 \end{pmatrix}$$

 $= \begin{pmatrix} (1-2pc+c^{2})/(1-p^{2}) & (pc-c^{2})/(1-p^{2}) \\ (pc-c^{2})/(1-p^{2}) & c^{2}/(1-p^{2}) \end{pmatrix}$

Therefore the marginal distribution for t_1 has a Student's t-distribution with (2n-2) degrees of freedom characterized by $[(1-\rho^2)/(1-2\rho c+c^2)]$. Since $t_1 = t_1^*-t_2^* = (2n-2)^{1/2}(\mu-\bar{x}_1+\bar{x}_2)/s$, it follows that the structural distribution for μ , based on \bar{x} , is

67.

State .

$$g(\mu: \underline{x}, c) d\mu \alpha \frac{d\mu}{\{1 + (\mu - \overline{x}_{1} + \overline{x}_{2})^{2}(1 - \rho^{2})/s^{2}c^{2}(1 - 2\rho/c + 1/c^{2})\}^{(2n-1)/2}}$$

The constant of proportionality $K(\rho,n,c)$ is

$$K(\rho,n,c) = \Gamma(\frac{2n-1}{2}) \left\{ \pi^{1/2} \Gamma(\frac{2n-2}{2}) \left[\frac{1-\rho^2}{s^2 c^2 (1-2\rho/c+1/c^2)} \right]^{1/2} \right\}^{-1}$$

Furthermore, we note that the variable

$$t(\rho,n,c) = (2n-2)^{1/2} (\mu - \bar{x}_1 + \bar{x}_2) (1-\rho^2)^{1/2} / \{sc(1-2\rho/c+1/c^2)^{1/2}\}$$

has a Student's t-distribution with (2n-2) degrees of freedom. Therefore the structural distribution for μ , based on χ , can be rewritten in the form

$$\mu = (\bar{x}_1 - \bar{x}_2) - \left\{ \frac{sc(1-2\rho/c+1/c^2)^{1/2}}{[(2n-2)(1-\rho^2)]^{1/2}} \right\} t(\rho, n, c).$$

The following two particular cases are of interest:

(i) When
$$\rho = 0$$
, we have

$$\mu = x_1 - \bar{x}_2 - \left\{ \frac{c^2(1+1/c^2)}{(2n-2)} (s_1^2 + s_2^2/c^2) \right\}^{1/2} t(0,n,c);$$

and

(ii) When $\rho = 0$ and c = 1, we have

$$\mu = \bar{x}_1 - \bar{x}_2 - \{(s_1^2 + s_2^2)/(n-1)\}^{1/2} t(0, n, 1)$$

which agree with the results of the particular cases (i) and (ii) of Section 3.3 respectively.

3.6. A GENERALIZATION OF BEHRENS-FISHER PROBLEM FOR INDEPENDENT

<u>POPULATIONS WITH KNOWN RATIOS OF STANDARD DEVIATIONS</u>: In this section we consider a generalization of the Behrens-Fisher problem considered in Section 3.3. Let k be a fixed integer greater than two. Suppose we have the following k independent measurement models:

$$\begin{cases} x_{ij} = \mu_{i} + \sigma_{i}e_{ij}, j = 1, 2, \dots, n_{i}, \\ (2\pi)^{-n_{i}/2} \exp\left\{-\sum_{j=1}^{n_{i}}e_{ij}^{2}/2\right\} \prod_{j=1}^{n_{i}}de_{ij} \end{cases}$$

for each i = 1,2,...,k. Based on the above structural models, our purpose is to derive the structural distribution for (k-1) differences of two means $\mu_i^* = \mu_1 - \mu_i$, i = 2, 3, ..., k, under the condition that the (k-1) ratios $\sigma_i^* = \sigma_i / \sigma_1$, i = 2,3,...,k, of the corresponding standard deviations are known. The case for k = 3, is considered with greater details.

The structural distribution for μ_1 , ..., μ_k , σ_1 ,..., σ_k , based on $x_i = (x_{i1}, \dots, x_{in_i})$, $i = 1, 2, \dots, k$, is $g(\mu_1, \dots, \mu_k, \sigma_1, \dots, \sigma_k; x_1, \dots, x_{k}) \stackrel{k}{\underset{i=1}{\prod}} d\mu_i d\sigma_i$ $\alpha \exp\left\{-\sum_{i=1}^k \frac{n_i}{2\sigma_i^2} \left[(\mu_i - \bar{x}_i)^2 + s_i^2\right]\right\} \cdot \prod_{i=1}^k \left\{\sigma_i^{-(n_i+1)} d\mu_i d\sigma_i\right\}$.

Applying the substitutions

$$\begin{cases} \mu_{i} = \mu_{i}, i = 1, 2, \dots, k \\ \sigma_{1} = \sigma_{1} \\ \sigma_{i}^{*} = \sigma_{i} / \sigma_{1}, i = 2, 3, \dots, k \end{cases}$$

having jacobian $\sigma_1^{(k-1)}$, we obtain the structural distribution for μ_i , i = 1, 2, ..., k, σ_1 and σ_1^* , i = 2, 3, ..., k, based on x_{01} , ..., x_{0k}^* , as

 $g(\mu_{1}, \dots, \mu_{k}, \sigma_{1}, \sigma_{2}^{*}, \dots, \sigma_{k}^{*}; x_{1}, \dots, x_{N}) \prod_{i=1}^{k} d\mu_{i} \cdot d\sigma_{1} \cdot \prod_{i=2}^{k} d\sigma_{i}^{*}$ $\alpha \exp\left\{-\sum_{i=1}^{k} \frac{n_{i}}{2(\sigma_{1}\sigma_{i}^{*})^{2}} \left[(\mu_{i} - \bar{x}_{i})^{2} + s_{i}^{2}\right]\right\} \sigma_{1}^{k-1} \prod_{i=1}^{k} (\sigma_{1}\sigma_{i}^{*})^{-(n_{i}+1)} d\mu_{i} \cdot d\sigma_{1} \cdot \prod_{i=2}^{k} d\sigma_{i}^{*}$

where $\sigma_{1}^{*} = 1$. By conditioning on $\sigma_{i}^{*} = c_{i}$, $i = 2, 3, ..., k, c_{1} = 1$, we obtain the structural distribution for μ_{i} , i = 1, 2, ..., k, and σ_{1} , based on x_{1} , ..., x_{k} , as

$$g(\mu_1,\ldots,\mu_k,\sigma_1: \chi_1,\ldots,\chi_k, \xi) d\sigma_1 \cdot \prod_{i=1}^k d\mu_i$$

$$\alpha \exp \left\{ - \sum_{i=1}^{k} \frac{n_{i}}{2\sigma_{1}^{2}c_{i}^{2}} \left[(\mu_{i} - \bar{x})^{2} + s_{i}^{2} \right] \right\} \sigma_{1}^{-(N+1)} d\sigma_{1} \cdot \prod_{i=1}^{k} d\mu_{i}$$

where $c_{1} = (c_{2}, c_{3}, \ldots, c_{k})$ and $N = \sum_{i=1}^{k} n_{i}$. By eliminating σ_{1}

from the last expression, we obtain

$$g(\mu_{1}, \dots, \mu_{k}; \chi_{1}, \dots, \chi_{k}, \chi_{k}, \chi_{k}) \stackrel{k}{\underset{i=1}{\prod}} d\mu_{i}$$
$$= \int_{0}^{\infty} g(\mu_{1}, \dots, \mu_{k}, \sigma_{1}; \chi_{1}, \dots, \chi_{k}, \chi_{k}) d\sigma_{1} \cdot \stackrel{k}{\underset{i=1}{\prod}} d\mu_{i}$$

$$\alpha \frac{\prod_{i=1}^{k} d\mu_{i}}{\left\{\sum_{\substack{i=1\\i=1\\c_{i}}}^{k} \frac{n_{i}}{c_{i}^{2}} \left[(\mu_{i}-\bar{x}_{i})^{2}+s_{i}^{2}\right]\right\}^{N/2}}$$

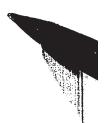
$$\alpha \quad \frac{\underset{i=1}{\overset{k}{\underset{i=1}{1 \atop i=1}} d\mu_{i}}}{\left\{ 1 + \sum_{i=1}^{k} n_{i} (\mu_{i} - \bar{x}_{i})^{2} / (c_{i}^{2} s^{2}) \right\}^{N/2}}$$

$$\alpha \frac{\prod_{i=1}^{k} d\mu_{i}}{\left\{1+t*'R*^{-1}t*/(N-k)\right\}}$$

where $s^{2} = \sum_{i=1}^{k} n_{i} s_{i}^{2} / c_{i}^{2}$, $t^{*'} = (t^{*}_{1}, \ldots, t^{*}_{k})$, $t^{*}_{i} = (N-k)^{1/2} (\mu_{i} - \bar{x}_{i}) / s^{2}$, $i = 1, 2, \ldots, k$ and R^{*-1} is a $k \times k$ diagonal matrix

$$R^{*-1} = diag(n_1, n_2/c_2^2, \dots, n_k/c_k).$$

Therefore the variables t_{i}^{*} , i = 1, 2, ..., k has a multivariate t-distribution of order k and characterized by the matrix R^{*-1} . Define



ŝ

71.

$$(t_{1}, t_{2}, \dots, t_{k})' = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} (t_{1}^{*}, t_{2}^{*}, \dots, t_{k}^{*})'$$
$$= A(t_{1}^{*}, t_{2}^{*}, \dots, t_{k}^{*})', \text{ say.}$$

Then the variables t_1, t_2, \ldots, t_k has a multivariate t-distribution of order k and characterized by the matrix R^{-1} , where

R = AR*A'

$$=\begin{pmatrix} 1/n_{1}+c_{2}^{2}/n_{2} & & * \\ 1/n_{1} & 1/n_{1}+c_{3}^{2}/n_{3} & & \\ \vdots & & \ddots & & \\ 1/n_{1} & \cdots & 1/n_{1}+c_{k}^{2}/n_{k} \\ 1/n_{1} & \cdots & 1/n_{1} & c_{k}^{2}/n_{k} \end{pmatrix}$$

$$= \begin{pmatrix} R_{1} & * \\ \vdots & \vdots \\ \vdots & \vdots \\ 1/n_{1} \cdots 1/n_{1} & c_{k}^{2}/n_{k} \end{pmatrix}$$

72.

۴.

r i

ł

It follows that the marginal distribution for t_1, t_2, \dots, t_{k-1} is a multivariate t-distribution of order (k-1) and characterized by the matrix R_1^{-1} . But

$$t_{i} = t_{1}^{*} - t_{i+1}^{*}$$
$$= (N-k)^{1/2} (\mu_{i+1}^{*} - \bar{x}_{1}^{+} + \bar{x}_{i+1}^{-}), \mu_{i+1}^{*} = \mu_{1}^{-} \mu_{i+1}^{-}, i=1,2,...,(k-1),$$

so that the structural distribution for μ_2^* , ..., μ_k^* , based on x_1 , ..., $x_{\vee k}$, is given by

$$\alpha \frac{g(\mu_{2}^{*}, \dots, \mu_{k}^{*}; x_{1}^{*}, \dots, x_{k}^{*}, c) \prod_{i=2}^{K} d\mu_{i}^{*}}{\left\{ \frac{\prod_{i=2}^{d} d\mu_{i}^{*}}{\left\{ 1 + t' R_{1}^{-1} t/(N-k) \right\}^{(N-k+k-1)/2}} \right\}}$$

where $t = (t_1, t_2, \dots, t_{k-1})$. The constant of proportionality is

$$\frac{\Gamma\left(\frac{n-1}{2}\right)|R_{1}|^{-1/2}(N-k)^{(k-1)/2}}{\left\{\pi\left(N-k\right)\right\}^{(k-1)/2}\Gamma\left(\frac{N-k}{2}\right)s^{k-1}}$$

$$\frac{\Gamma\left(\frac{n-1}{2}\right)|R_{1}|^{-1/2}}{(\pi s^{2})^{(k-1)/2}\Gamma\left(\frac{N-k}{2}\right)} \cdot$$

=

Dunnett and Sobel (1954) have also considered multivariate generalization of t-distribution. In that paper, they obtained expressions for probability integral for the bivariate case:

 $P_{n}(h,k;\rho) = \int_{-\infty}^{k} \int_{-\infty}^{h} g_{n}(t_{1},t_{2};\rho)dt_{1}dt_{2}$

.

M. Negel and

ţ

where

$$g_{n}(t_{1},t_{2}:\rho) = \frac{1}{2\pi(1-\rho^{2})} \left\{ 1 + \frac{t_{1}^{2}-2\rho t_{1}t_{2}+t_{2}^{2}}{n(1-\rho^{2})} \right\}^{-(n+2)/2} .$$

The expressions are:

$$P_{n}(h,k;\rho) = \frac{1}{2\pi} \arctan \frac{\sqrt{(1-\rho^{2})}}{-\rho} + \frac{k}{4\sqrt{(n\pi)}} \int_{j=1}^{l_{2}n} \frac{\Gamma(j-\frac{1}{2})}{\Gamma(j)} \frac{1}{(1+k^{2}/n)^{j-1/2}} [1+sgn(h-\rhok)I_{x(n,h,k)}(\frac{1}{2},j-\frac{1}{2})] + \frac{h}{4\sqrt{(n\pi)}} \int_{j=1}^{l_{2}n} \frac{\Gamma(j-\frac{1}{2})}{\Gamma(j)} \frac{1}{(1+k^{2}/n)^{j-1/2}} [1+sgn(k-\rhoh)I_{x(n,k,h)}(\frac{1}{2},j-\frac{1}{2})],$$

for even n; and

$$\begin{split} & P_{n}(h,k;\rho) \\ &= \frac{1}{2\pi} \arctan \left\{ \sqrt{n} \left[\frac{-(h+k)(hk+\rho n) - (hk-n)/(h^{2}-2\rho hk+k^{2}+n[1-\rho^{2}])}{(hk-n)(hk+\rho n) - n(h+k)/(h^{2}-2\rho hk+k^{2}+n[1-\rho^{2}])} \right] \right\} \\ &+ \frac{k}{4\sqrt{(n\pi)}} \sum_{j=1}^{\frac{1}{2}(n-1)} \frac{\Gamma(j)}{\Gamma(j+\frac{1}{2})} \frac{1}{(1+k^{2}/n)^{j}} \left[1+sgn(h-\rho k)I_{x}(n,h,k)(\frac{1}{2},j) \right] \\ &+ \frac{h}{4\sqrt{(n\pi)}} \sum_{j=1}^{\frac{1}{2}(n-1)} \frac{\Gamma(j)}{\Gamma(j+\frac{1}{2})} \frac{1}{(1+h^{2}/n)^{j}} \left[1+sgn(k-\rho h)I_{x}(n,k,h)(\frac{1}{2},j) \right], \end{split}$$

for odd n, where

$$sgn(x) = \begin{cases} +1 , & \text{if } x \ge 0, \\ -1 , & \text{otherwise}; \end{cases}$$
$$x(m,h,k) = \frac{(h-\rho k)^2}{(h-\rho k)^2 + (1-\rho^2)(m+k^2)} ,$$
$$I_x(\frac{1}{2}, j-\frac{1}{2}) = \frac{2}{\pi} \arctan \sqrt{(\frac{x}{1-x})} + \frac{2}{\pi} \sqrt{x(1-x)} \int_{1=0}^{j-2} \frac{4^j(j)^2}{(2j+1)!} (1-x)^j ,$$

and

$$I_{x}(\frac{1}{2},j) = \sqrt{x} \sum_{i=0}^{j-1} \frac{(2i)!}{4^{i}(i!)^{2}} (1-x)^{i}$$
.

They also provided numerical values for $P_n(h,k;\rho)$ with h=k=t. These values are tablulated in two tables for t = 0.00(0.25)2.50(0.50)10.0 and n=1(1)30(3)45(15)120, 150, 300, 600, ∞ , for $\rho = 0.50$ and -0.50.

We note from the symmetry of $g_n(t_1, t_2; \rho)$ that $P_n(h,k; \rho) = P_n(k,h; \rho)$ for any h and k. We have computed numerical values for $P_n(h,k; \rho)$ for selected values of h,k=0.00(0.25)3.50, n = l(1)30, and $\rho = -0.75(0.25)0.75$. Only those numerical values for h = k = t are tabulated in tables given at the end of this section. All computations were carried out by the IBM 7040 computer with all inputs and outputs to eight decimal places. They are rounded to five decimal places in the tables given below. In comparing some of these numerical values with those tabluated in Tables 1 and 2 of Dunnett and Sobel (1954), we find that our results agree with theirs except for a few cases which differ mostly by one or two units in the fifth decimal places. On the differences is as close as one unit in the second decimal place. For example



N	ρ	t	$P_n(t,t;\rho)$		
l	-0.50	1.75	0.69338093	0.69336	
l	-0.50	2.00	0.72582472	0.71332	
14 1	-0.50	0.75	0.55031971	0.55033	
2	0.50	0.75	0.60699224	0.60697	
6	0.50	3.00	0.97892956	0.97894	

where the values in the last column are taken from Dunnett and Sobel's paper, while the fourth column are our computed values given with eight decimal places before rounding.

The relationship between h, P, ρ and n, where P is the quantities given in the bodies of the following tables, are given by

 $P = \int_{-\infty}^{h} \int_{-\infty}^{h} \left\{ 2\pi (1-\rho^2) \right\}^{-1} \cdot \left\{ 1 + \frac{u^2 - 2\rho uv + v^2}{n(1-\rho^2)} \right\}^{-(n+2)/2} du dv.$

ł

Probability Integral of Bivariate t-distribution with ρ =-0.75

n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1	0.71503	0.74283	0.76594	0.78541	0.80200	0.81628	0.82869
2	81885	84852	87191	89056	90560	91786	92796
3	86144	89061	91270	92957	94257	95270	96067
4	88419	91256	93337	94872	96013	96867	97514
5	89821	92581	94556	95972	96992	97732	98273
6	90765	93460	95349	96672	97600	98254	98718
7	91442	94082	95902	97150	98006	98594	99001
8	91951	94544	96306	97494	98293	98830	99192
9	92346	94900	96614	97752	98504	99000	99328
10	92662	95182	96855	97952	98504	99128	99427
11	92920	95411	97049	98111	98792	99226	99503
12	93135	95600	97209	98240	98893	99304	99562
13	93316	95759	97341	98346	98976	99367	99609
14	93471	95895	97453	98436	99045	99419	99646
15	93606	96011	97549	98511	99103	99462	99678
16	93723	96113	97633	98577	99152	99498	99704
17	93826	96202	97705	98633	99195	99529	99726
18	93918	96280	97769	98683	99231	99555	99744
19	94000	96351	97826	98727	99264	99579	99760
20	94074	96414	97877	98725	99292	99579	99774
21 22 23 24 25	94140 94200 94256 94306 94352	96470 96522 96568 96611 96650	97922 97963 98001 98035 98066	98800 98831 98860 98885 98885 98909	99318 99341 99361 99379 99379	99617 99633 99647 99660 99671	997887 99798 99807 99816 99823
26 27 28 29 30	94395 94435 94471 94506 94538	96686 96720 96751 96779 96806	98121 98145 98167	98968 98984	99450	99708	

Probability Integral of Bivariate t-distribution with ρ =-0.75

n/h	0.25	0.50	0.75	1.00	1.25	1.50	1.75
1 2 3 4 5	0.26044 26993 27368 27568 27691	0.36554 38889 39817 40313 40620	0.46120 50259 51957 52878 53455	0.54022 59968 62478 63863 64740	0.60327 67778 70974 72750 73881	0.65333 73892 77566 79605 80900	0.69338 78635 82580 84747 86111
6 7 8 9 10	27774 27835 27880 27916 27945	40829 40980 41095 41185 41257	53851 54139 54359 54531 54670	65345 65788 66126 66393 66608	74663 75237 75675 76021 76302	81794 82449 82948 83342 833661	87046 87727 88245 88651 88978
11 12 13 14 15	27968 27988 28005 28019 28031	41316 41366 41408 41444 41476	54784 54880 54962 55032 55033	66786 66936 67063 67172 67268	76533 76727 76893 77036 77160	83923 84144 84331 84493 84493 84633	89247 89472 89663 89827 89970
16 17 18 19 20	28042 28052 28061 28068 28068	41503 41528 41549 41569 41586	55147 55194 55236 55274 55308	67352 67426 67492 67551 67605	77269 77366 77452 77529 77599	84757 84866 84963 85051 85129	90095 90205 90304 90392 90471
21 22 23 24 25	28081 28087 28092 28097 28102	41602 41617 41630 41642 41653	55339 55367 55393 55417 55438	67738 67775	77663 77720 77773 77822 77866	85201 85266 85325 85380 85430	90543 90608 90668 90723 90774
26 27 28 29 30	28106 28109 28113 28116 28119	41682 41690	55477 55494 55510	67871 67898 67923	77946 77982 78015	85520 85560 85597	90903 90941

Probability Integral of Bivariate t-distribution with $\ensuremath{\rho=-0.50}$

n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1 2 3 4 5	0.72582 82320 86365 88547 8 <u>9</u> 902	0.75247 85202 89222 91341 92631	0.77465 87479 91391 93396 94588	0.79334 89296 93050 94914 95993	0.80928 90763 94330 96043 97007	0.82301 91960 95328 96890 97742	0.83495 92947 96114 97531 98280
6 7 8 9 10	90820 91482 91981 92369 92681	93492 94103 94559 94911 95191	95368 95914 96314 96619 96859	96684 97157 97499 97755 97755 97954	97607 98010 98295 98506 98667	98259 98597 98831 99001 99128	98721 99002 99193 99 328 99428
11 12 13 14 15	92935 93148 93327 93481 93614	95418 95605 95763 95898 96014	97052 97211 97343 97455 97550	98112 98241 98347 98436 98512	98793 98894 98976 99045 99103	99227 99305 99367 99419 99462	99503 99562 99609 99647 99678
16 17 18 19 20	93730 93832 93924 94005 94078	96115 96204 96282 96352 96415	97633 97706 97770 97826 97877	98577 98633 98683 98727 98725	99152 99195 99232 99264 99292	99498 99529 99555 99579 99579	99704 99726 99744 99760 99774
21 22 23 24 25	94144 94204 94259 94309 94356	96523 96569 96612	98001 98035	98831 98860 98885	99318 99341 99361 99379 99379 99396	99617 99633 99647 99660 99671	99787 99798 99807 99816 99823
26 27 28 29 30	94398 94438 94474 94508 94540	96720 96751 96780	98121 98145 98168	98950 98968 98985	99425 99438 99450	99691 99700 99708	99842 99848

Probability Integral of Bivariate t-distribution with ρ =-0.50

t. S

Í

ţ

n/h	0.25	0.50	0.75	1.00	1.25	1.50	1.75
1	0.29975	0.39758	0.48688	0.56118	0.62081	0.66833	0.70645
2	30907	41957	52517	61617	69004	74825	79363
3	31276	42829	54074	63920	71958	78250	83067
4	31472	43293	54915	65184	73596	80152	85107
5	31594	43581	55440	65982	74638	81361	86396
6	31676	4 3776	55799	66531	75358	82198	87282
7	31735	43918	56060	66933	75886	82810	87929
8	31780	44025	56258	67239	76290	83279	88421
9	31815	44109	56413	67480	76608	83648	88808
10	31844	44176	56539	67675	76866	83947	89120
11	31867	44231	56642	67835	77079	84194	89378
12	31886	44278	56728	67970	77258	84401	89593
13	31903	44317	56802	68085	77410	84577	89776
14	31917	44351	56865	68184	77541	84730	89934
15	31929	44380	56920	68270	77656	84862	90071
16	31940	44406	56968	68345	77756	84978	90191
17	31949	44428	57010	68412	77845	85081	90297
18	31958	44449	57048	68471	77925	85173	90392
19	31965	44467	57082	68525	77996	85255	90477
20	31972	44483	57113	68573	78060	85330	90553
21 22 23 24 25	31978 31984 31989 31994 31998	44498 44511 44523 44535 44535 44545	57141 57166 57189 57210 57230	68726	78172 78220 78265		90622 90685 90743 90796 90845
26 27 28 29 30	32002 32006 32009 32012 32015	44555 44564 44572 44579 44579 44587	57264 57280 57294	68812 68837 68859	78379 78412 78443	85737 85772	91006

-

Probability Integral of Bivariate t-distribution with ρ =-0.25

ł

n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1 2 3 4 5	0.73739 82900 86720 88791 90082	0.76283 85674 89488 91510 92748	0.78402 87869 91594 93516 94666	0.80190 89624 93207 95001 96046	0.81715 91042 94455 96107 97043	0.83030 92200 95428 96938 97768	0.84173 93155 96196 97568 98298
6 7 8 9 10	90961 91596 92076 92451 92752	93577 94169 94612 94954 95226	95422 95952 96343 96642 96878	96718 97180 97515 97768 97768 97964	97630 98025 98305 98513 98513 98672	98274 98606 98837 99005 99131	98731 99008 99197 99330 99429
11 12 13 14 15	92998 93204 93378 93528 93528	95448 95632 95787 95919 96033	97067 97223 97353 97464 97558	98120 98247 98352 98440 98515	98796 98897 98979 99047 99047 99104	99229 99306 99368 99420 99462	99504 99563 99609 99647 99678
16 17 18 19 20	93770 93870 93959 94039 94110	96132 96219 96296 96365 96427	97640 97712 97775 97832 97882	98729	99153 99196 99232 99265 99293	99498 99529 99556 99 579 99 579	99704 99726 99744 99761 99775
21 22 23 24 25	94175 94234 94287 94386 94382	96483 96534 96580	97967 98004 98038	98833 98861 98886	99361 99380	99660 99671	99787 99798 99807 99816 99823
26 27 28 29 30	94423 94462 94498 94531 94552	96696 96729 96759 96788	98097 98124 98148 98148	98951 98969 98985	99426 99439 99450	99691 99700 99708	99837 99842 99848

Probability Integral of Bivariate t-distribution with ρ =-0.25

1.1

Probability Integral of t-distribution with $\rho {=} 0.00$

n/h	0.25	0.50	0.75	1.00	1.25	1.50	1.75
1 2 3 4 5	0.33735 34659 35025 35219 35340	0.42963 45081 45920 46367 46644	0.51344 54960 56424 57212 57703	0.58333 63490 65635 66808 67546	0.63959 70444 73196 74716 75680	0.68454 75949 79148 80920 82046	0.72065 80255 83727 85638 86846
6 7 8 9 10	35421 35480 35525 35560 35588	46832 46968 47071 47152 47217	58039 58282 58467 58612 58729	68054 68424 68706 68927 69106	76346 76833 77206 77499 77737	82824 83394 83830 84173 84451	87678 88284 88747 89110 89404
11 12 13 14 15	35611 35630 35647 35661 35673	47270 47314 47352 47385 47413	58825 58905 58973 59032 59083	69254 69378 69483 69574 69573	77933 78098 78238 78359 78464	84681 84874 85038 85179 85302	89646 89849 90021 90170 90299
16 17 18 19 20	35683 35693 35701 35709 35715	47437 47459 47479 47496	59128 59167 59203 59234 59263	69722 69783 69838 69887 69931	78556 78638 78711 78777 78836	85411 85507 85592 85669 85738	90412 90513 90602 90682 90754
21 22 23 24 25	35722 35727 35732 35737 35737 35741	47526 47539 47551 47561	59288 59312 59333 59353	70007 70040 70071	79024	85801 85858 85910 85958 86002	91030
26 27 28 29 30	35745 35749 35752 35755 35755	47581 47589 47597 47597 47601	59403 59418 59431	3 70149 3 70172 70193	79129 79159 79187	86081 86116 86149	91112 91148 91182

Probability Integral of t-distribution With $\rho \text{=} 0.00$

n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1 2 3 4 5	0.75000 83621 87213 89163 90381	0.77416 86266 89863 91775 92949	0.79430 88362 91884 93708 94804	0.81129 90041 93436 95143 96142	0.82580 91398 94637 96214 97111	0.83831 92507 95576 97020 97817	0.84918 93423 96317 97631 98335
6 7 8 9 10	91211 91812 92267 92623 92909	93738 94302 94724 95052 95313	95526 96035 96411 96699 96926	96787 97233 97556 97800 97991	97676 98058 98330 98532 98687	98306 98628 98853 99017 99140	98753 99023 99207 99338 99434
11 12 13 14 15	93144 93339 93505 93648 93772	95526 95703 95852 95979 96089	97109 97260 97387 97494 97586	98143 98266 98369 98455 98528	98809 98907 98987 99054 99111	99236 99312 99373 99423 99466	99508 99566 99612 99649 99680
16 17 18 19 20	93880 93975 94060 94136 94205	96185 96269 96344 96410 96470		98592 98647 98695 98738 98736	99237	99501 99532 99558 99581 99601	99705 99727 99745 99761 99775
21 22 23 24 25	94266 94323 94374 94421 94421 94465	96524 96573 96618 96658	97984 98021 98054	98868 98893	99344 99364 99382	99648 99661 99672	99816 99824
26 27 28 29 30	94505 94542 94576 94608 94638	96730 96762 96792 96819	98112 98137 98161 98183	98956 98974 98979	99428 99440 99452	99692 99701 99709	99837 99843 99848

ł

FIU	Jubillug	Integra	0. 0				
n/h	0.25	0.50	0.75	1.00	1.25	1.50	1.75
1 2 3 4 5	0.37549 38468 38832 39026 39146	0.46308 48369 49187 49623 49892	0.54187 57639 59034 59783 60250	0.60745 65617 67635 68734 69424	0.66027 72127 74699 76115 77011	0.70251 77288 80276 81925 82971	0.73649 81335 84578 86360 87484
6 7 8 9 10	39227 39286 393 3 0 39365 39393	50076 50208 50309 50387 50450	60569 60800 60975 61112 61223	69898 70243 70506 70712 70879	77629 78081 78425 78697 7 8916	83693 84221 84624 84942 85199	88258 88822 89251 89590 89862
11 12 13 14 15	39416 39435 39451 39465 39477	50502 50545 50582 50614 50641	61314 61390 61455 61510 61559	71016 71131 71229 71313 71386	79098 79250 79379 79490 79587	85411 85590 85741 85872 85986	90087 90276 90436 90574 90694
16 17 18 19 20	39488 39497 39505 39513 39520	50686 50705 50722	61702	71451 71507 71558 71604 71644	79815 79876	86086 86174 86253 86324 86388	90799 90893 90976 91050 91117
21 22 23 24 25	39526 39531 39536 39541 39545	50764 50775 50786	61775 61796 61814	71715 71746 71775	80024 80066 80103	86632	91373
26 27 28 29 30	39549 39553 39556 39559 39559	50813 50821 50821	61862 61875 61888	71847 71868 71888	80200 80228 80254	86704 86737 86767	91450 91484 91515

Probability Integral of Bivariate t-distribution With ρ =0.25

n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1	0.76412	0.78687	0.80585	0.82187	0.83555	0.84735	0.85761
2	84503	86997	88976	90561	91845	92895	93762
3	87863	90366	92279	93749	94890	95782	96486
4	89685	92156	93990	95355	96375	97144	97728
5	90822	93256	95020	96297	97223	97899	98395
6	91597	93996	95700	96906	97758	98363	98794
7	92159	94525	96180	97328	98121	98670	99052
8	92584	94923	96535	97635	98380	98885	99228
9	92917	95231	96807	97867	98573	99042	99354
10	93184	95477	97022	98048	98721	99161	99447
11	93404	95677	97196	98193	98838	99253	99518
12	93587	95844	97340	98311	98932	99326	99574
13	93742	95984	97460	98409	99010	99385	99618
14	93876	96104	97562	98492	99074	99434	99655
15	93992	96208	97649	98562	99129	99475	99685
16	94093	96299	97725	98623	99175	99509	99710
17	94183	96379	97792	98676	99215	99539	99731
18	94262	96449	97851	98722	99250	99565	99749
19	94334	96512	97903	98763	99281	99587	99764
20	94398	96569	97950	98763	99281	99606	99778
21 22 23 24 25	94456 94509 94557 94601 94642	96620 96667 96709 96748 96783		98888		99624 99639 99653 99665 99676	99790 99800 99810 99818 99826
26 27 28 29 30	94679 94714 94746 94777 94805	96816 96846 96874 96900 96925	98176 98199 98220	98974 98991 99007	99448 99459	99712	^ \

Probability Integral of Bivariate t-distribution With $\rho \text{=} 0.25$

n/h	0.25	0.50	0.75	1.00	1.25	1.50	1.75
1 2 3 4 5	0.41678 42592 42955 43148 43267	0.50000 52017 52818 53245 53510	0.57384 60699 62036 62755 63202	0.63497 68114 70018 71052 71701	0.68411 74145 76550 77869 78702	0.72338 78925 81702 83231 84196	0.75495 82671 85680 87326 88362
6 7 8 9 10	43348 43407 43451 43486 43513	53689 53819 53917 53994 54056	63507 63728 63895 64027 64133	72146 72470 72716 72909 73065	79275 79693 80012 80263 80466	84862 85348 85719 86011 86247	89074 89592 89987 90297 90547
11 12 13 14 15	4 35 36 4 35 55 4 35 72 4 35 85 4 35 85 4 35 98	54107 54150 54186 54217 54243	64220 64292 64354 64407 64453	73194 73301 73393 73472 73540	80633 80773 80893 80995 81085	86442 96605 86744 86864 86968	90753 90926 91073 91199 91309
16 17 18 19 20	4 3608 4 3617 4 3626 4 36 33 4 3640	54267 54288 54306 54323 54323	64494 64530 64561 64590 64616	73600 73653 73701 73743 73781	81163 81233 81295 81350 81401	87060 87141 87213 87278 87336	91406 91491 91567 91635 91696
21 22 23 24 25	43646 43652 43657 43661 43665	54351 54364 54375 54385 54385 54395	64639 64660 64680 64697 64714	73876 73903	81446 81487 81525 81560 81592	87389 87438 87482 87522 87520	91752 91802 91849 91891 91930
26 27 28 29 30	4 3669 4 3673 4 3676 4 3680 4 3683	54412 54419 54426	64743 64756 64768	73971 73990 74008	81649 81674 81698	87626 87656 87683	• • • •

Probability Integral of Bivariate t-distribution With ρ =0.50

87.

r i U	Dubilley	Integra	01 01 0				
n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1 2 3 4 5	0.78063 85607 88720 90402 91449	0.80178 87919 91038 92692 93706	0.81943 89754 92812 94394 95344	0.83432 91225 94178 95662 96533	0.84704 92417 95238 96612 97397	0.85801 93392 96067 97329 98028	0.86755 94197 96723 97874 98493
6 7 8 9 10	92163 92679 93070 93375 93621	94387 94875 95241 95525 95751	95972 96415 96743 96995 97194	97096 97487 97771 97986 98155	97893 98230 98470 98650 98788	98459 98745 98945 99092 99202	98864 99104 99268 99386 99473
11 12 13 14 15	93823 93991 94134 94256 94362	95936 96089 96219 96330 96425	97355 97487 97598 97693 97774	982 8 9 98399 98490 98567 98563	98897 98985 99057 99117 99168	99289 99357 99413 99459 99497	99540 99593 99635 99669 99697
16 17 18 19 20	94455 94538 94611 94676 94735	96648 96706	97961 98009	98782 98820	99311	99530 99558 99582 99603 99621	99721 99741 99758 99773 99786
21 22 23 24 25	94788 94837 94881 94922 94959	96848 96887 96923	98127 98159 98189	98912 98937 98960	99380 99399 99415	99637 99652 99665 99677 99687	99797 99807 99816 99824 99831
26 27 28 29 30	94993 95025 95055 95083 95108	97014 97040 97064	98263 98284 98304	99017 99033 99048	99457 99469 99479	99714 99721	99849 99853

Probability Integral of Bivariate t-distribution With ρ =0.50

÷

88.

n/h	0.25	0.50	0.75	1.00	1.25	1.50	1.75
1 2 3 4 5	0.46654 47565 47927 48119 48238	0.54517 56494 57280 57699 57959	0.61356 64537 65820 66509 66938	0.66957 71313 73104 74075 74683	0.71434 76781 79010 80228 80995	0.75000 81093 83643 85038 85916	0.77863 84465 87207 88699 89634
6 7 8 9 10	48319 48377 48421 48456 48484	58135 58262 58359 58434 58495	67230 67442 67603 67729 67830	75100 75402 75632 75813 75959	81521 81905 82197 82427 82427 82613	86520 86961 87296 87560 87773	90274 90740 91094 91371 91595
11 12 13 14 15	48506 48525 48542 48555 48567	58 545 58587 58622 58653 58679	67913 67983 68042 68093 68137	76079 76179 76265 76338 76402	82766 82894 83003 83097 83179	87948 88096 88221 88329 88422	91779 91933 92064 92177 92275
16 17 18 19 20	48578 48587 48596 48603 48610	58702 58723 58741 58757 58772	68176 68210 68240 68268 68292	76458 76507 76551 76591 76591 76627	83421	88505 88577 88642 88700 88703	92361 92437 92504 92565 92619
21 22 23 24 25	48616 48621 48626 48631 48635	58785 58797 58808 58818 58828	68315 68335 68353 68370	76740	83546 83580 83612		92669 92714 92755 92793 92828
26 27 28 29 30	48639 48643 48646 48649 48652	58836 58844 58852 58859	68401 68414 68426 68438	76803 76821 76838	83693 83716 83738	89013 89040 89064	92889 92917 92943

Probability Integral of Bivariate t-distribution With $\rho\text{=}$ 0.75

ł

n/h	2.00	2.25	2.50	2.75	3.00	3.25	3.50
1 2 3 4 5	0.80188 87102 89926 91443 92384	0.82101 89176 91998 93484 94392	0.83696 90822 93582 95001 95850	0.85043 92141 94802 96131 96908	0.86192 93209 95748 96978 97677	0.87183 94082 96488 97616 98240	0.88045 94804 97074 98102 98654
6 7 8 9 10	93022 93484 93832 94104 94323	95000 95 4 35 95760 96012 96213	96409 96803 97095 97318 97494	97409 97756 98009 98200 98349	98119 98418 98632 98791 98913	98623 98877 99055 99185 99284	98984 99197 99343 99448 99526
11 12 13 14 15	94502 94651 94778 94887 94887 94981	96377 96513 96627 96725 96810	97637 97754 97853 97936 98008	98468 98566 98646 98715 98773	99010 99088 99152 99206 99251	99360 99421 99471 99512 99546	99586 99632 99670 99700 99726
16 17 18 19 20	95063 95136 95201 95259 95311	96884 96949 97007 97058 97104	98070 98125 98173 98216 98255	98823 98867 98905 98939 98939 98969	99290 99323 99353 99378 99401	99575 99600 99621 99640 996 5 6	99747 99765 99780 99793 99805
21 22 23 24 25	95358 95401 95440 95476 95509	97146 97184 97218 97250 97250 97279	98320 98349 98375	99063	99421 99439 99456 99471 99484	99671 99684 99696 99706 99716	99815 99824 99832 99839 99845
26 27 28 29 30	95539 95568 95594 95618 95641	97353 97374	98441 98459 98477	99114 99128 99141	99508 99518 99528		

Probability Integral of Bivariate t-distribution With $\rho\text{=}0.75$

ļ

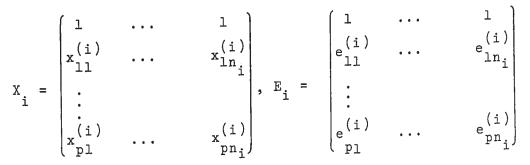
:

.

3.7. <u>MULTIVARIATE BEHRENS-FISHER PROBLEM</u>: This section deals with a multivariate generalization to the Behrens-Fisher Problem considered in Section 3.2. Let $(X_1^{(i)}, X_2^{(i)}, \dots, X_p^{(i)})$, i = 1, 2, be two independent p-variate normal distributions with mean vectors ψ_1 and ψ_2 , and covariance matrices \sum_1 and \sum_2 respectively. This problem is concerned with the derivation of the structural distribution for the difference of two means vectors, $\mu = \mu_1 - \mu_2$, based on the complete sets of observations. More precisely, we consider the following two independent multivariate models

$$\begin{cases} X_{i} = \theta_{i} E_{i} \\ f(E_{i}) dE_{i} = (2\pi)^{-n_{i} p/2} \exp\left\{-\frac{1}{2} \sum_{j=1}^{p} \sum_{k=1}^{n_{i}} (e_{jk}^{(i)})^{2} \right\}_{j=1}^{p} \prod_{k=1}^{n_{i}} de_{jk}^{(i)}, \end{cases}$$

where



and

	[1	0		0		1	0)
	µil	c(i) 11		c(i) clp			
θ _i =	•	•			=		
	μ _{ip}	c _{pl} (i)	• • •	c ⁽¹⁾ pp		(Ļi	° _i)

91.

with $|c_i| > 0$, is an element of the positive affine group on \mathbb{R}^p for each i = 1, 2. The structural distribution for μ_1 and μ_2 , based on X_1 and X_2 , is (See Fraser (1968) page 241)

$$g(\mu_{1},\mu_{2}:X_{1},X_{2})d\mu_{1}d\mu_{2}=K_{1}K_{2}\{1+n_{1}(m_{1}(x_{1})-\mu_{1})'S_{1}(x_{1})^{-1}(m_{1}(x_{1})-\mu_{1})\}^{-n_{1}/2}$$

$$\{1+n_{2}(m_{2}(x_{2})-\mu_{2})'s_{2}(x_{2})^{-1}(m_{2}(x_{2})-\mu_{2})\}^{-n_{2}/2}d\mu_{1}d\mu_{2}$$

where

$$\begin{split} \mathbf{m}_{i}(\mathbf{X}_{i})' &= (\bar{\mathbf{x}}_{1}^{(i)}, \dots, \bar{\mathbf{x}}_{p}^{(i)}), \ \bar{\mathbf{x}}_{\alpha}^{(i)} &= \sum_{k=1}^{n} \mathbf{x}_{\alpha k}^{(i)} / \mathbf{n}_{i}, \ \alpha = 1, 2, \dots, p, \\ \mathbf{S}_{i}(\mathbf{X}_{i}) &= \begin{pmatrix} \mathbf{x}_{11}^{(i)} - \bar{\mathbf{x}}_{1}^{(i)} & \dots & \mathbf{x}_{1n_{i}}^{(i)} - \bar{\mathbf{x}}_{1}^{(i)} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{p1}^{(i)} - \bar{\mathbf{x}}_{p}^{(i)} & \dots & \mathbf{x}_{pn_{i}}^{(i)} - \bar{\mathbf{x}}_{p}^{(i)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{11}^{(i)} - \bar{\mathbf{x}}_{1}^{(i)} & \dots & \mathbf{x}_{1n_{i}}^{(i)} - \bar{\mathbf{x}}_{1}^{(i)} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{p1}^{(i)} - \bar{\mathbf{x}}_{p}^{(i)} & \dots & \mathbf{x}_{pn_{i}}^{(i)} - \bar{\mathbf{x}}_{p}^{(i)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{11}^{(i)} - \bar{\mathbf{x}}_{1}^{(i)} & \dots & \mathbf{x}_{1n_{i}}^{(i)} - \bar{\mathbf{x}}_{1}^{(i)} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{p1}^{(i)} - \bar{\mathbf{x}}_{p}^{(i)} & \dots & \mathbf{x}_{pn_{i}}^{(i)} - \bar{\mathbf{x}}_{p}^{(i)} \end{pmatrix} \end{split}$$

=
$$(n_{i}S_{jk}^{(i)}),$$

and

$$K_{i} = \frac{A_{n_{i}-p} \cdot n_{i}^{p/2}}{A_{n_{i}} |s_{i}(X_{i})|^{1/2}}, A_{f} = (2\pi)^{f/2} \Gamma(f/2).$$

The structural distribution for μ , based on X and X, is

 $g(\boldsymbol{\mu}:\boldsymbol{X}_{1},\boldsymbol{X}_{2})d\boldsymbol{\mu} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(\boldsymbol{\mu}_{1},\boldsymbol{\mu}_{2}:\boldsymbol{X}_{1},\boldsymbol{X}_{2})d\boldsymbol{\mu}_{1}\cdot d\boldsymbol{\mu}$

where μ_2 of the integrand is replaced by $\mu_1 - \mu$. Further, we note that for each i = 1, 2, the structural distribution for μ_i , based on X_i , is distributed according to a relocated and rescaled multivariate t-distribution. Therefore from the result obtained in Section (3.1) and the fact that the marginal distribution of multivariate t-distribution is again a multivariate t-distribution, we obtain

$$\mu = m_{1}(X_{1}) - m_{2}(X_{2}) + \begin{pmatrix} r_{1}t_{1}^{(1)}\cos\theta_{1} - r_{1}t_{2}^{(2)}\sin\theta_{1} \\ \vdots \\ r_{p}t_{p}^{(1)}\cos\theta_{p} - r_{p}t_{p}^{(2)}\sin\theta_{p} \end{pmatrix}$$

where

$$t_{\alpha}^{(i)} = (n_{i}-1)^{1/2}(\mu_{i\alpha} - \bar{x}_{\alpha}^{(i)})/s_{\alpha\alpha}^{(i)},$$

$$r_{\alpha}^{2} = (s_{\alpha\alpha}^{(1)})^{2}/(n_{1}-1) + (s_{\alpha\alpha}^{(2)})^{2}/(n_{2}-1),$$

and

$$\tan \theta_{\alpha} = [s_{\alpha\alpha}^{(2)} / (n_2 - 1)^{1/2}] / [s_{\alpha\alpha}^{(1)} / (n_1 - 1)^{1/2}]$$

i = 1, 2, α = 1, 2, ..., p. Each of the $t_{\alpha}^{(i)}$'s is a Student's t-distribution with (n_i-1) degrees of freedom. It is of interest to notice that for p = 1, the result obtained here agrees with that derived in Section 3.2.

3.8. <u>A RELATED BEHRENS-FISHER PROBLEM</u>: This problem deals with the structural distribution for the difference of two location parameters from negative exponential distributions.

Let X_1 and X_2 be two independent negative exponential distributions:

 $f(x_i) = (1/\sigma_i) \exp \{-(x_i - \mu_i)/\sigma_i\}, x_i > \mu_i,$

93.

where μ_i and σ_i are respectively the location and scale parameters of X_i , i = 1, 2. Let $\chi_i = (x_{i1}, x_{i2}, \dots, x_{in_i})$, $n_i \ge 2$, be a sample of size n_i drawn from the distribution X_i , i = 1, 2. Our object is to obtain the structural distribution for the difference of two location parameters, $\mu = \mu_1 - \mu_2$, say, under the following three different situations:

- (i) when both scale parameters σ_1 and σ_2 are known;
- (ii) when the ratio $\sigma_2^{\prime}/\sigma_1^{\prime}$ of scale parameters is known, and
- (iii) when both scale parameters σ_1 and σ_2 are unknown.

These three cases will be taken up in order.

(i) When both scale parameters σ_1 and σ_2 are known: In this case, we can assume, without loss of generality, that $\sigma_1 = \sigma_2 = 1$. The structural distribution for μ is based on the following independent structural models

$$\begin{cases} x_{ij} = \mu_{i} + e_{ij}, \quad e_{ij} > 0, \ j = 1, 2, \dots, n_{i}, \\ e_{xp} \left\{ -\sum_{j=1}^{n_{i}} e_{ij} \right\}_{j=1}^{n_{i}} de_{ij} \end{cases}$$

i = 1, 2. Let

$$\begin{aligned} \chi_{1} &= (x_{1(k_{1})}, \dots, x_{1(k_{1})}, \dots, x_{1(k_{r})}, \dots, x_{1(k_{r})})^{1 \le k_{1} \le k_{1} \le \ell_{1} \le \dots \le k_{r} \le \ell_{r} \le n_{1}, \\ \text{and} \\ \chi_{2} &= (x_{2(k_{1})}, \dots, x_{2(\ell_{1})})^{1 \le k_{2}} \le (k_{s})^{1 \le k_{1} \le \ell_{1} \le \ell_{1} \le \dots \le k_{s} \le \ell_{s} \le n_{2}, \end{aligned}$$

be respectively multiply Type II censored responses for X_i , i = 1, 2. From the independence of the above two structural models and the result of Example (2.6.7), we conclude that the

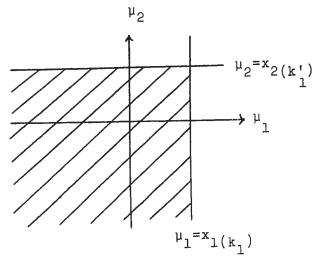
structural distribution for μ_1 and μ_2 , based on χ_1 and χ_2 , is

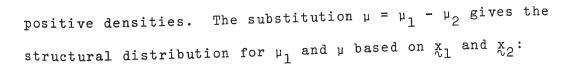
$$g(\mu_{1},\mu_{2}:x_{1},x_{2})d\mu_{1}d\mu_{2} = K(1-\exp\{-x_{1}(k_{1})^{+}\mu_{1}\})^{k_{1}-1}(1-\exp\{-x_{2}(k_{1}^{+})^{+}\mu_{2}\})^{k_{1}^{+}-1} \cdot \exp\{(n_{1}-k_{1}+1)\mu_{1}^{+}(n_{2}-k_{1}^{+}+1)\mu_{2}\}d\mu_{1}d\mu_{2},$$

for $-\infty < \mu_{1} < x_{1}(k_{1})$ and $-\infty < \mu_{2} < x_{2}(k_{1}^{+})$, and where

$$K = \frac{\exp\{-(n_1-k_1+1)x_1(k_1')^{-(n_2-k_1'+1)x_2(k_1')}\}}{\beta(k_1,n_1-k_1+1)\cdot\beta(k_1',n_2-k_1'+1)}$$

The following diagram gives the region for which points (μ_1, μ_2) having





95.

$$g(\mu_1,\mu;\chi_1,\chi_2)d\mu_1d\mu=K(1-exp\{-x_1(k_1)+\mu_1\})^{k_1-1}\cdot(1-exp\{-x_2(k_1)+\mu_1-\mu\})^{k_1-1}$$

$$\exp\{(n_{1}-k_{1}+1)\mu_{1}+(n_{2}-k_{1}+1)(\mu_{1}-\mu)\}d\mu_{1}d\mu$$

for $-\infty < \mu_{1} < x_{1(k_{1})}$, $-\infty < \mu < \infty$. The desired structural distribution is then obtained by integrating out μ_{1} . For $\mu \ge \mu_{0} = x_{1(k_{1})} - x_{2(k_{2}')}$, we have

$$g(\mu: x_{1}, x_{2}) d\mu = \int_{-\infty}^{x_{1}(k_{1})} g(\mu_{1}, \mu: x_{1}, x_{2}) d\mu_{1} d\mu$$

Making use of the substitution

$$t = \exp\{-x_{l(k_{l})} + \mu_{l}\}$$

the last integral reduces to

$$g(\mu: \chi_{1}, \chi_{2}) d\mu = Kexp\{Nx_{1}(k_{1})^{-(n_{2}-k_{1}+1)\mu}\}$$

$$\int_{0}^{1} (1-t)^{k_{1}-1} (1-t) exp\{x_{1}(k_{1})^{-x_{2}(k_{1}')^{-\mu}}\})^{k_{1}'-1} t^{N-1} dt \cdot d\mu$$

 $= K \exp\{Nx_{l(k_{1})}^{-(n_{2}-k_{1}^{\prime}+1)\mu}\} \cdot \int_{0}^{1} (1-t)^{k_{1}^{\prime}-1} [\sum_{i=0}^{k_{1}^{\prime}-1} (-1)^{i} (\frac{k_{1}^{\prime}-1}{i}) \exp\{i(x_{l(k_{1})}^{-x_{2}(k_{1}^{\prime})}^{-\mu})\}t^{N+i-1}dtd\mu \\ = K \exp\{Nx_{l(k_{1})}^{-(n_{2}-k_{1}^{\prime}+1)\mu}\}\sum_{i=0}^{k_{1}^{\prime}-1} (-1)^{i} (\frac{k_{1}^{\prime}-1}{i}) \exp\{i(x_{l(k_{1})}^{-x_{2}(k_{1}^{\prime})}^{-\mu})\} \cdot \beta(k_{1}, N+i)$

where N = $n_1 + n_2 - (k_1 + k_1') + 2$. The preceeding simplification involves the expanding of the term $(1 - t \exp\{x_{1(k_1)} - x_{2(k_1')} - \mu\})$ according to the Binomial Theorem, and then the integration is carried out term-by-term. Similarly for $\mu \leq \mu_0$, we have

$$g(\mu: x_{1}, x_{2}) d\mu = \int_{-\infty}^{\mu+x_{2}(k_{1}')} g(\mu_{1}, \mu: x_{1}, x_{2}) d\mu_{1} d\mu.$$

Applying the substitution

 $t = exp\{-x_2(k_1)^{+\mu} - \mu\}$

and carrying out the integration in the same manner as before, we obtain

$$g(\mu: x_{1}, x_{2})d\mu = Kexp\{Nx_{2(k_{1}')} + (n_{1}-k_{1}+1)\mu\} \sum_{i=0}^{k_{1}-1} (-1)^{i} {k_{1}-1 \choose i} \cdot$$

 $\exp\{i(x_{2(k_{1}')}^{-x_{1(k_{1})}})^{+\mu}\}\beta(k_{1}, N+i).$

Combining together we have the structural distribution for μ based on χ_1 and χ_2 :

$$g(\mu: x_{1}, x_{2}) d\mu = \begin{cases} \operatorname{Kexp} \{ Nx_{2}(k_{1}')^{+(n_{1}-k_{1}+1)\mu} \} \sum_{i=0}^{k_{1}-1} (-1)^{i} {k_{1}-1 \choose i} \exp\{i(x_{2}(k_{1}')^{-x_{1}}(k_{1})^{+\mu})\} \cdot \\ \circ \beta(k_{1}, N+i) & \text{for } \mu \leq \mu_{0}, \\ \operatorname{Kexp} \{ Nx_{1}(k_{1}) + (n_{2}-k_{1}'+1)\mu \} \sum_{i=0}^{k_{1}'-1} (-1)^{i} {k_{1}'-1 \choose i} \exp\{i(x_{1}(k_{1})^{-x_{2}}(k_{1}')^{-\mu})\} \cdot \\ \circ \beta(k_{1}', N+i) & \text{for } \mu \geq \mu_{0} \end{cases}$$

In particular, when $k_1 = k'_1 = 1$, we obtain the structural distribution for μ based on the complete sets of responses (ordered or unordered):

$$g(\mu: x_{1}, x_{2}) d\mu = \begin{cases} \frac{n_{1}n_{2}}{n_{1}+n_{2}} \exp\{n_{1}(x_{2(1)}-x_{1(1)}+\mu)\}, & \mu \leq \mu_{0} \\ \\ \frac{n_{1}n_{2}}{n_{1}+n_{2}} \exp\{n_{2}(x_{1(1)}-x_{2(1)}-\mu)\}, & \mu \geq \mu_{0} \end{cases},$$

where $\mu_{0} = x_{1(1)} - x_{2(1)}$.

(ii) When the ratio σ_2/σ_1 of scale parameters is known: In this case, the desired structural distribution is derived from the following independent structural models:

(3.8.1)
$$\begin{cases} x_{ij} = \mu_{i} + \sigma_{i}e_{ij}, e_{ij} > 0, j = 1, 2, ..., n_{i}, \\ n_{i} & n_{i} \\ exp\{-\sum_{j=1}^{n_{i}}e_{j}\} \prod_{i=1}^{n_{d}}de_{ij}, \\ j=1 & j = 1 \end{cases}$$

i = 1,2. Let $x_{1} = (x_{1(1)}, x_{1(2)}, \dots, x_{1(k)}), 2 \le k \le n_{1}, x_{2} = (x_{2(1)}, x_{2(2)}, \dots, x_{2(k)}), 2 \le k \le n_{2}, \text{ be Type II}$ singlely censored responses at the right. We wish to derive the structural distribution for $\mu = \mu_{1} - \mu_{2}$, based on χ_{1} and χ_{2} , under the condition that $\sigma_{2}/\sigma_{1} = c$ for some positive known real number c. From the results of Example (2.6.9), we have the structural distribution for $\mu_{1}, \mu_{2}, \sigma_{1}$ and σ_{2} based on χ_{1} and χ_{2} :

$$g(\mu_{1},\mu_{2},\sigma_{1},\sigma_{2};\chi_{1},\chi_{2})d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}$$

$$\alpha \exp\left\{-(n_{1}-k)\frac{x_{1}(k)^{-\mu}}{\sigma_{1}} - \sum_{i=1}^{k} \frac{x_{1}(i)^{-\mu_{1}}}{\sigma_{1}} - (n_{2}-k)\frac{x_{2}(k)^{-\mu_{2}}}{\sigma_{2}} \sum_{i=1}^{k} \frac{x_{2}(i)^{-\mu_{2}}}{\sigma_{2}}\right\}$$

$$\sigma_{1}^{-(k+1)}\sigma_{2}^{-(k+1)}d\mu_{1}d\mu_{2}d\sigma_{1}d\sigma_{2}$$
for $-\infty < \mu_{1} < x_{1}(1), -\infty < \mu_{2} < x_{2}(1), \sigma_{1} > 0$ and $\sigma_{2} > 0$.

Then by applying the substitution

$$\begin{cases} \mu_{1} = \mu_{1} \\ \mu = \mu_{1} - \mu_{2} \\ \sigma_{1} = \sigma_{1} \\ \sigma = \sigma_{2} / \sigma_{1} \end{cases},$$

and then conditioning on $\sigma = c$, we obtain the structural distribution for μ_1, μ, σ_1 , based on x_1 and x_2 :

$$g(\mu_{1},\mu,\sigma_{1};\chi_{1},\chi_{2},c)d\mu_{1}d\sigma_{1}d\mu$$

$$\alpha \exp\left\{-\left[(n_{1}-k)(x_{1(k)}-\mu_{1})+\sum_{i=1}^{k}(x_{1(i)}-\mu_{1})\right]/\sigma_{1}-\left[(n_{2}-k)(x_{2(k)}-\mu_{1}+\mu)/c-\sum_{i=1}^{k}(x_{2(i)}-\mu_{1}+\mu)/c\right]/\sigma\right\}\cdot\sigma_{1}^{-(k+\ell+1)}d\mu_{1}d\sigma_{1}d\mu,$$

for $-\infty < \mu_{1} < x_{1(1)}$, $-\infty < \mu < \infty$ and $\sigma_{1} > 0$. Putting $n_{1}\bar{x}_{1}^{*} = (n_{1}-k)x_{1(k)} + \sum_{i=1}^{k} x_{1(i)}$,

and

$$n_2 \bar{x}_2^* = (n_2 - \ell) x_2(\ell)^+ \sum_{i=1}^{\ell} x_2(i)^i$$

a basa a ana a basa sheeta ee

 $\frac{1}{2}$

then

$$(n_1-k)(x_1(k)-\mu_1) + \sum_{i=1}^{k} (x_1(i)-\mu) = n_1(\bar{x}_1^*-\mu_1),$$

and

$$\binom{n_{2}-\ell}{2}\binom{x_{2}}{2}\binom{-\mu_{1}+\mu}{2} + \sum_{i=1}^{\ell}\binom{x_{2}}{2}\binom{-\mu_{1}+\mu}{1} = \binom{x_{2}}{2}\binom{x_{2}^{*}-\mu_{1}+\mu}{1}.$$

Thus we have

where $A(\chi_1, \chi_2, \mu_1, \mu, c) = n_1(\bar{\chi}_1^*, \mu_1) + n_2(\bar{\chi}_2^* - \mu_1 + \mu)/c$. Hence by integrating out σ_1 over the range $(0, \infty)$, we obtain $g(\mu_1, \mu; \chi_1, \chi_2, c) d\mu_1 d\mu \alpha \int_0^\infty exp\{-A(\chi_1, \chi_2, \mu_1, \mu, c)/\sigma\} \sigma_1^{(k+\ell+1)} d\sigma_1 \cdot d\mu_1 d\mu$ $\alpha \{ A(\chi_1, \chi_2, \mu_1, \mu, c) \}^{-(k+\ell)}$.

Finally, by eliminating μ_1 , we obtain the desired structural distribution:

$$g(\mu: \chi_{1}, \chi_{2}, c) d\mu \alpha \begin{cases} \int_{-\infty}^{\mu+\chi_{2}(1)} \{A(\chi_{1}, \chi_{2}, \mu_{1}, \mu, c)\}^{-(k+\ell)} d\mu_{1} \cdot d\mu, \mu \leq \mu_{0} \\ \int_{-\infty}^{\chi_{1}(1)} \{A(\chi_{1}, \chi_{2}, \mu_{1}, \mu, c)\} & d\mu_{1} \cdot d\mu, \mu \geq \mu_{0} \end{cases}$$

where $\mu_0 = x_{1(1)} - x_{2(1)}$. Now

$$\int_{-\infty}^{x_{1(1)}} \{A(x_{1}, x_{2}, \mu_{1}, \mu, c)\}^{-(k+\ell)} d\mu_{1}$$

$$= \int_{-\infty}^{x_{1(1)}} \frac{d\mu_{1}}{\{n_{1}(\bar{x}_{1}^{*}-\mu_{1})+n_{2}(\bar{x}_{2}^{*}-\mu_{1}+\mu)/c\}^{k+\ell}}$$

$$= \frac{(n_{1}+n_{2}/c)^{-1}}{(k+\ell-1)} \{n_{1}(\bar{x}_{1}^{*}-x_{1(1)})+n_{2}(\bar{x}_{2}^{*}-x_{1(1)}+\mu)/c\}^{-(k+\ell-1)};$$

and similarly

$$= \frac{\binom{n_{1}+n_{2}/c}{-\infty}}{\binom{n_{1}+n_{2}/c}{k+\ell-1}} \{ n_{1} [\bar{x}_{1}^{*} - (\mu + x_{2}(1))] + n_{2} [\bar{x}_{2}^{*} - (\mu + x_{2}(1)] + \mu]/c \}^{-(k+\ell-1)}.$$

Therefore the structural distribution for μ , based on χ and χ_2, is

$$g(\mu; \underline{x}_{1}, \underline{x}_{2}, c) d\mu = \begin{cases} \frac{Kd\mu}{\{n_{1}(\bar{x}_{1}^{*}-\mu-x_{2}(1))+n(\bar{x}_{2}^{*}-x_{2}(1))/c\}^{k+\ell-1}, \mu \leq \mu_{0}, \\ \frac{Kd\mu}{\{n_{1}(\bar{x}_{1}^{*}-x_{1}(1))+n_{2}(\bar{x}_{2}^{*}-x_{1}(1)^{+\mu})/c\}^{k+\ell-1}, \mu \geq \mu_{0} \end{cases}$$

where the normalizing constant factor K is given by

$$\begin{split} \kappa^{-1} &= \int_{-\infty}^{\mu_{0}} \frac{d\mu}{\{n_{1}(\bar{x}_{1}^{*}-\mu-x_{2(1)})+n_{2}(\bar{x}_{2}^{*}-x_{2(1)})/c\}^{k+\ell-1}} \\ &+ \int_{\mu_{0}}^{\infty} \frac{d\mu}{\{n_{1}(\bar{x}_{1}^{*}-x_{1(1)})+n_{2}(\bar{x}_{2}^{*}-x_{1(1)}+\mu)/c\}^{k+\ell-1}} \end{split}$$

101.

ł

ł

$$= [(k+\ell-2)n_1]^{-1} \{n_1(\bar{x}_1^*-x_{1(1)}^{+}x_{2(1)}^{-}x_{2(1)}^{+}n_2(\bar{x}_2^*-x_{2(1)}^{-})/c\}^{-(k+\ell-2)} + c[(k+\ell-2)n_2]^{-1} \{n_1(\bar{x}_1^*-x_{1(1)}^{+})^{+}n_2(\bar{x}_2^*-x_{1(1)}^{+}x_{1(1)}^{-}x_{2(1)}^{-})/c\}^{-(k+\ell-2)} \\ = \frac{n_1c+n_2}{(k+\ell-2)n_1n_2} \{n_1(\bar{x}_1^*-x_{1(1)}^{-})^{+}n_2(\bar{x}_2^*-x_{2(1)}^{-})/c\}^{-(k+\ell-2)}.$$

The particular case $k=n_1$, $\ell = n_2$ and c = 1 of the above result agrees with the result obtained by Pitman (1939).

(iii) When both scale parameters σ_1 and σ_2 are unknown: The structural model (3.8.1) is used here again. Here, our object is to find the structural distribution for μ based on the complete sets of responses. Let $x_i = (x_{i1}, x_{i2}, \dots, x_{in_i})$, and $x_{i(1)} = \min x_i$. The structural distribution for μ_i , σ_i based on x_i are

$$g(\mu_{i},\sigma_{i}:x_{i})d\mu_{i}d\sigma_{i}=K_{i}\exp\{-n_{i}(\bar{x}_{i}-\mu_{i})/\sigma_{i}\}\sigma_{i}^{-(n_{i}+1)}d\mu_{i}d\sigma_{i},$$

for $\mu_{i} < x_{i(1)}, \sigma_{i} > 0$, where $K_{i}=n_{i}(n_{i}-1)[n_{i}(\bar{x}_{i}-x_{i(1)})^{n_{i}-1}/\Gamma(n_{i}),$
 $n_{i}\bar{x}_{i} = \sum_{j=1}^{n_{i}} x_{ij}, i = 1, 2.$ Note that
$$\int_{0}^{\infty} \exp\{-n_{i}(\bar{x}_{i}-\mu_{i})/\sigma_{i}\}\sigma_{i}^{-(n_{i}+1)}d\sigma_{i}$$
$$= \int_{0}^{\infty} \exp\{-n_{i}(\bar{x}_{i}-\mu_{i})t\}t^{n_{i}-1}dt$$
$$= \{n_{i}(\bar{x}_{i}-\mu_{i})\}^{-n_{i}}\Gamma(n_{i}).$$

Therefore the structural distribution for μ_1, μ_2 , based on χ_1 and χ_2 is $g(\mu_1, \mu_2; \chi_1, \chi_2) d\mu_1 d\mu_2 = K\{(\bar{x}_1 - \mu_1)^{n_1}(\bar{x}_2 - \mu_2)^{n_2}\}^{-1} d\mu_1 d\mu_2$

for $-\infty < \mu_1 < x_{1(1)}, -\infty < \mu_2 < x_{2(1)}, and$

$$K = K_1 \cdot K_2 n_1^{-n_1} n_2^{-n_2} \Gamma(n_1) \Gamma(n_2)$$

= $(n_1^{-1})(n_2^{-1})(\bar{x}_1^{-x_1}(1))^{n_1^{-1}}(\bar{x}_2^{-x_2}(1))^{n_2^{-1}}$.

Hence, by letting $\mu = \mu_1 - \mu_2$, $\mu_1 = \mu_1$, we obtain the desired structural distribution for μ based on x_1 and x_2 :

$$g(\mu; \chi_{1}, \chi_{2})d = \begin{cases} \kappa \int_{-\infty}^{\mu+\chi_{2}(1)} \left\{ \left(\bar{x}_{1} - \mu_{1}\right)^{n_{1}} \left(\bar{x}_{2} - \mu_{1} + \mu\right)^{n_{2}}\right\}^{-1} d\mu_{1} \cdot d\mu, \ \mu \leq \mu_{0} \\ \kappa \int_{-\infty}^{\chi_{1}(1)} \left\{ \left(\bar{x}_{1} - \mu_{1}\right)^{n_{1}} \left(\bar{x}_{2} - \mu_{1} + \mu\right)^{n_{2}}\right\}^{-1} d\mu_{1} \cdot d\mu, \ \mu \geq \mu_{0} \end{cases}$$

반

ş

where $\mu_0 = x_{1(1)} - x_{2(1)}$.

CHAPTER 4

DISTRIBUTIONS OF SOME SAMPLE CORRELATION COEFFICIENTS AND SAMPLE CORRELATION MATRICES

4.1. INTRODUCTION: In this chapter, we are mainly concerned with the distribution of

(i) two sample correlation coefficients; and

(ii) two sample correlation matrices.

The method employed here is the so-called method of "likelihood modulation". To do this, a conditional structural model is introduced in each case in order to provide a marginal likelihood function for the parameter concerned. Therefore, in the following section, we give an introduction to conditional structural model and marginal likelihood.

4.2. AN INTRODUCTION TO CONDITIONAL STRUCTURAL MODEL AND MARGINAL LIKELIHOOD: A conditional structural model

$$\begin{cases} x = \theta e \\ f(e; \lambda) de \end{cases}$$

is a model that is partly structural and partly classical. The error variable e has a distribution depends on an additional

quantity λ which is unknown. If the additional quantity λ is known, then the conditional structural model becomes an ordinary structural model. In this section, we obtain the marginal likelihood function for λ based on the orbit.

Let $[\chi]$ be a transformation variable for the conditional structural model. The conditional distribution for [e], given the orbit $D(e) = D(\chi) = D$, is

(4.2.1)
$$K_{\lambda}(D)f([e]D:\lambda)\frac{J_{N}(e)}{J_{L}(e)}d[e]$$

which is usually depending on the unknown quantity λ (for details see Fraser (1968)). Thus the marginal pdf for the orbit D can be obtained by dividing the full pdf f(e: λ)de by the conditional pdf (4.2.1):

$$\frac{1}{K_{\lambda}(D)} = \frac{J_{L}(g)}{J_{N}(g)} \frac{dg}{d[g]}$$

Therefore the marginal pdf based on the differentials at the point χ rather than at e on the orbit D is

$$\frac{1}{K_{\lambda}(D)} \frac{J_{L}(\chi)}{J_{N}(\chi)} \frac{d\chi}{d[\chi]}$$

Hence the marginal likelihood function for λ based on D is

$$L(D:\lambda) = R^{+}(D)/K_{\lambda}(D)$$

where $R^+(D)$ is the mapping that carries any orbit D to the set $(0,\infty)$.

4.3. <u>DISTRIBUTION OF A SAMPLE CORRELATION COEFFICIENT I</u>: Let $(x_{11}, x_{21}), (x_{12}, x_{22}), \dots, (x_{1n}, x_{2n})$ be a sample of size n drawn from a bivariate normal distribution (X_1, X_2) with mean μ_1 and μ_2 and covariance matrix

$$\Sigma = \begin{pmatrix} \sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \\ \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2} \end{pmatrix}$$

The pdf for
$$(X_1, X_2)$$
 is

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}(1-\rho^{2})^{1/2}} \exp\left\{-\frac{1}{2(1-\rho^{2})} \left[\frac{(x_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} 2\rho\frac{x_{1}-\mu_{1}}{\sigma_{1}} \cdot \frac{x_{2}-\mu_{2}}{\sigma_{2}} + \frac{(x_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\}$$

It is well-known that the MLE $\hat{\rho}$ for ρ is

$$\hat{\rho} = S_{12}(x) / [S_1(x)S_2(x)]$$

where $nS_{12}(x) = \sum (x_{1j} - \overline{x}_1) (x_{2j} - \overline{x}_2)$

$$nS_{i}^{2}(x) = \sum (x_{ij} - \overline{x}_{i})^{2}, i = 1, 2$$

and $n\overline{x}_{i} = \sum x_{ij}, i = 1, 2, and where \sum_{j=1}^{n} \sum_{j=1}^{n}$. The general

distribution for $\hat{\rho}$ has been derived by Fisher (1915) by means of geometrical approach. It has been obtained also by Fraser (1968) by the method of likelihood modulation of the special distribution (i.e., distribution for $\hat{\rho}$ when $\rho = 0$). Now, if the variances of the two marginal distributions are equal, that is $\sigma_1^2 = \sigma_2^2$, then MLE for ρ becomes

$$r = \rho^* = 2S_{12}(x)/S^2(x)$$

where $S^2(\chi) = S_1^2(\chi) + S_2^2(\chi)$. The general distribution for r has been given by DeLury (1938) under the assumption that $\sigma_1^2 = \sigma_2^2$. Mehta and Gurland (1969) also obtain the general distribution for r where the assumption that $\sigma_1^2 = \sigma_2^2$ is released. In this section we show how the general distribution for r, under the condition $\sigma_1^2 = \sigma_2^2$, can be obtained by the method of likelihood modulation.

We associate the above sample with the following conditional structural model

$$\begin{bmatrix} 1 \\ x_{1i} \\ x_{2i} \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mu_{1} & \sigma & 0 \\ \mu_{2} & 0 & \sigma \end{bmatrix} \begin{pmatrix} 1 \\ e_{1i} \\ e_{2i} \end{bmatrix}, \quad i = 1, 2, ..., n,$$
$$\prod_{i=1}^{n} \begin{bmatrix} \frac{1}{2\pi(1-\rho^{2})^{1/2}} \exp\left\{-\frac{e_{1i}^{2}-2\rho e_{1i}e_{2i}+e_{2i}^{2}}{2(1-\rho^{2})}\right\} de_{1i}de_{i} \end{bmatrix}$$

with additional quantity p. Take

$$\begin{bmatrix} x \\ x \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \bar{x}_{1} & S(x) & 0 \\ \bar{x}_{2} & 0 & S(x) \end{pmatrix}$$

be our transformation variable. The reference point $D = \begin{pmatrix} d \\ \sqrt{1} \end{pmatrix}$ is

,

$$d_{i} = \left(\frac{x_{11} - \bar{x}_{i}}{S(\chi)}, \frac{x_{i2} - \bar{x}_{i}}{S(\chi)}, \dots, \frac{x_{in} - \bar{x}_{i}}{S(\chi)}\right)$$

$$= \left(\frac{\stackrel{e_{i1}-\bar{e}_{i}}{S(e_{i})}}{S(e_{i})}, \frac{\stackrel{e_{i2}-\bar{e}_{i}}{S(e_{i})}}{S(e_{i})}, \dots, \frac{\stackrel{e_{in}-\bar{e}_{i}}{S(e_{i})}}{S(e_{i})}\right)$$

i = 1, 2. The conditional distribution for [e], given the orbit D, is

$$\begin{split} \bar{f}(\bar{e}_{1},\bar{e}_{2},S(e):\underline{d}_{1},\underline{d}_{2})d\bar{e}_{1}d\bar{e}_{2}dS(\underline{e}) \\ &= K_{\rho}(\underline{d}_{1},\underline{d}_{2})\prod_{j=1}^{n}f(\bar{e}_{1}+S(\underline{e})d_{1j},\bar{e}_{2}+S(\underline{e})d_{2j})S(\underline{e})^{2n-3}d\bar{e}_{1}d\bar{e}_{2}dS(\underline{e}) \\ &= K_{\rho}(\underline{d}_{1},\underline{d}_{2})[2\pi(1-\rho^{2})^{1/2}]^{-n}exp\{-y^{2}\}S(\underline{e})^{2n-3}d\bar{e}_{1}d\bar{e}_{2}dS(\underline{e}) \\ &\text{where} \\ y^{2}=\{2(1-\rho^{2})\}^{-1}\sum\{(\bar{e}_{1}+S(\underline{e})d_{1j})^{2}-2\rho(\bar{e}_{1}+S(\underline{e})d_{1j})(\bar{e}_{2}+S(\underline{e})de_{2j}) \\ &+ (\bar{e}_{2}+S(e)d_{2j})^{2}\} . \end{split}$$

Note that we have

(i)
$$\sum (\bar{e}_{i} + S(e_{i})d_{ij})^{2} = \sum (\bar{e}_{i}^{2} + S(e_{i})^{2}d_{ij}^{2} + 2\bar{e}_{i}S(e_{i})d_{ij})$$

= $n\bar{e}_{i}^{2} + S(e_{i})^{2}\Delta_{ij}^{2}$,

since $\sum d_{ij} = 0;$

(ii)
$$\sum (d_{1j}^2 + d_{2j}^2) = \sum [(e_{1j} - \bar{e}_1)^2 + (e_{2j} - \bar{e}_2)^2]/S(e)^2$$

= $(S_1(e_1)^2 + S_2(e_1)^2)/S(e_1)^2$
= n;

and

$$(iii) \sum (\bar{e}_{1} + S(e_{1})d_{1j}) (\bar{e}_{2} + S(e_{1})d_{2j}) = \sum (\bar{e}_{1}\bar{e}_{2} + S(e_{1})^{2}d_{1j}d_{2j} + \bar{e}_{2}d_{1j} + \bar{e}_{1}d_{2j})$$
$$= n(\bar{e}_{1}\bar{e}_{2} + rS(e_{1})^{2}/2)$$

since

$$\sum_{j=1}^{d} d_{2j} = n \{ \sum_{j=\bar{e}_{1}}^{d} (e_{2j} - \bar{e}_{2})/n \} / S(e_{j})^{2}$$

= nr/2.

Therefore

$$y^{2} = \{2(1-\rho^{2})\}^{-1} \cdot \{ne_{1}^{-2} + n\bar{e}_{2} + nS(e_{1})^{2} - 2\rho n(\bar{e}_{1}\bar{e}_{2} + rS(e_{1})^{2}/2)\}$$
$$= \{2(1-\rho^{2})\}^{-1} \cdot \{n(\bar{e}_{1} - 2\rho\bar{e}_{1}\bar{e}_{2} + \bar{e}_{2})^{2} + nS(e_{1})^{2}(1-\rho r)\}.$$

The normalizing constant factor $K_{\rho}(d_1, d_2)$ can be obtained by integration:

$$\begin{split} \kappa_{\rho}(d_{1}, d_{2})^{-1} &= \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\bar{f}(\bar{e}_{1}, \bar{e}_{2}, S(\bar{e}_{1}); d_{1}, d_{2}) d\bar{e}_{1} d\bar{e}_{2} dS(\bar{e}_{1})}{\kappa_{\rho}(d_{1}, d_{2})} \\ &= (2\pi(1-\rho^{2})^{1/2})^{-n} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} exp \left\{ -\frac{n(\bar{e}_{1}^{2}-2\rho\bar{e}_{1}\bar{e}_{2}+\bar{e}_{2}^{2}) + nS(\bar{e}_{1}^{2}(1-\rho_{r}^{2})}{2(1-\rho^{2})} \right\} \\ &\cdot S(\bar{e}_{1})^{2n-3} d\bar{e}_{1} d\bar{e}_{2} dS(\bar{e}_{1}) \end{split}$$

$$= [(2\pi)(1-\rho^{2})^{1/2}]^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} exp \left\{ -\frac{n(e_{1}^{-2}-2\rho\bar{e}_{1}\bar{e}_{2}+\bar{e}_{2}^{2})}{2(1-\rho)^{2}} \right\} d\sqrt{n}\bar{e}_{1} d\sqrt{n}\bar{e}_{2} \cdot \frac{n(1-\rho r)s(e_{1})^{2}}{2(1-\rho^{2})} \left\{ -\frac{n(1-\rho r)s(e_{1})^{2}}{2(1-\rho^{2})} \right\} s(e_{1})^{2n-3} ds(e_{1})$$

$$= \frac{1}{n(2\pi)^{n-1}(1-\rho^2)^{(n-1)/2}} \left[\frac{2(1-\rho^2)}{n}\right]^{(2n-3)/2} \int_{0}^{\infty} \exp\left\{-(1-\rho r)z\right\} z^{(2n-3)/2}$$

$$\frac{2(1-\rho^2)\cdot \sqrt{n}\cdot z^{-1/2}}{2n[2(1-\rho^2)]^{1/2}} dz$$

$$= \frac{(1-\rho^2)(n-1)/2}{(2\pi)^{n-1} \cdot n^{n+1}} \int_0^\infty \exp\{-(1-\rho r)z\} z^{(n-1)-1} dz$$

$$= \frac{(1-\rho^2)^{(n-1)/2} \Gamma(n-1)}{(2\pi)^{n-1} \cdot n^{n+1} (1-\rho r)^{n-1}} \cdot$$

The preceeding simplification involves two steps. First, express the integral into the product of two integrals: the first of which is unity. In calculating the second integral the substitution

$$z = nS(e)^2 / [2(1-\rho^2)]$$

is made. Therefore the marginal likelihood function for ρ based on the orbit $\ensuremath{\mathcal{R}}$ is

$$L(d_1, d_2; \rho) = R^+(D)/K_{\rho}(d_1, d_2).$$

110.

This marginal likelihood function for ρ can also be expressed as a ratio relative to that of $\rho = 0$:

$$L^{*}(d_{1}, d_{2}:\rho) = K_{o}(d_{1}, d_{2})/K_{\rho}(d_{1}, d_{2})$$
$$= (1-\rho^{2})^{(n-1)/2}(1-\rho r)^{-(n-1)}$$

Hence, if h(r:0)dr is the marginal pdf for r with $\rho = 0$, then

$$h(r:\rho)dr = L^*(d_{1}, d_{2}:\rho)h(r:0)dr, |r| < 1$$

is the marginal pdf for r for the general correlation coefficient ρ . For $\rho = 0$, it has been found (See DeLury (1938) or Mehta and Gurland (1969)) that

$$h(r:0)dr = \pi^{-1/2}\Gamma(n/2)\Gamma(\frac{n-1}{2})^{-1}(1-r^2)^{(n-3)/2}dr, |r| < 1.$$

Hence the general distribution for r, with correlation coefficient ρ , is

$$h(r:\rho)dr = \pi^{-1/2}\Gamma(n/2)\Gamma(\frac{n-1}{2})^{-1}(1-r)^{(n-3)/2}(1-\rho^2)^{(n-1)/2}(1-\rho r)^{-(n-1)},$$

$$|r| < 1.$$

4.4. DISTRIBUTION FOR A SAMPLE CORRELATION COEFFICIENT II:

Suppose we have the same sample as given in the last section. In addition, we assume that the means of the two

111.

marginal distributions are equal, i.e. $\mu_1 = \mu_2$. Then the MLE for ρ is

$$r = \rho^* = 2[(x_{1j} - \bar{x})(x_{2j} - \bar{x})/[nS(x_{j})^2]]$$

where $\bar{\mathbf{x}} = \frac{1}{2}(\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2)$ and $\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2$ and $S(\mathbf{x})^2$ are the same as those given the last section and $\sum_{j=1}^{n} \sum_{j=1}^{n} \cdot \mathbf{x}_j$. In this section we wish to derive

(i) the distribution for r when $\rho = 0$ by the usual method; and (ii) the distribution for r, for general correlation coefficient ρ , by means of the likelihood modulation.

Pitman (1939b) has obtained the following relation, when $\rho = 0$,

$$W = (1 + r)/(1 - r)$$
$$= \sum (u_{j} - \bar{u})^{2} / \sum (v_{j})^{2}$$

where $u_j = x_{1j} + x_{2j}$ and $v_j = x_{1j} - x_{2j}$ are independent normal variables both having variances equal to $2\sigma^2$. Hence W has the same distribution as χ^2_{n-1}/χ'^2_n where χ^2_{n-1} and χ'^2_n are independent variables each distributed like chi-square distribution with (n-1) and n degrees of freedom respectively. Therefore the pdf for W is (Cramér page 241)

$$f(W)dW = \Gamma(\frac{2n-1}{2})\left\{\Gamma(\frac{n-1}{2})\Gamma(\frac{n}{2})\right\}^{-1}W^{\frac{n-1}{2}-1}(1+W)^{-\frac{2n-1}{2}}dW .$$

Since the jacobian of the substitution W = (1+r)/(1-r) is $2/(1-r)^2$, it follows that the pdf for r with $\rho = 0$ is

$$h(r:0)dr = K \quad \frac{[(1+r)/(1-r)]^{(n-1)/2-1}}{[1+(1+r)/(1-r)]^{(2n-1)/2}} (1-r)^{-2}dr, |r| < 1$$

where $K = 2\Gamma(\frac{2n-1}{2}) \{\Gamma(\frac{n-1}{2})\Gamma(\frac{n}{2})\}^{-1}$. After a little simplification we obtain

$$h(r:0)dr = \frac{\Gamma(\frac{2n-1}{2})2^{-(2n-1)/2+1}}{\Gamma(\frac{n-1}{2}) \Gamma(\frac{n}{2})} (1+r)^{(n-1)/2-1} \cdot (1-r)^{n/2-1} dr,$$

$$|r| < 1.$$

This completes (i). In order to derive the general distribution for r, we consider the following conditional structural distribution

$$\begin{cases} \begin{pmatrix} 1 \\ x_{1j} \\ x_{2j} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mu & \sigma & 0 \\ \mu & 0 & \sigma \end{pmatrix} \begin{pmatrix} 1 \\ e_{1j} \\ e_{2j} \end{pmatrix}, \quad j = 1, 2, ..., n,$$
$$\prod_{\substack{j=1 \\ j=1}}^{n} [(2\pi(1-\rho^2)^{1/2})^{-1} \exp\left\{-\frac{e_{1j}^2 - 2\rho e_{1j} e_{2j} + e_{2j}^2}{2(1-\rho^2)}\right\}^{de_{1j} de_{2j}} \}$$

For a transformation variable, we choose

$$[x_{i}] = \begin{pmatrix} 1 & 0 & 0 \\ \overline{x} & S(x) & 0 \\ \overline{x} & 0 & S(x) \end{pmatrix}$$

which lead to the reference $D = (d_1, d_2)$ of the orbit:

$$d_{i} = \left(\frac{x_{i1} - \bar{x}}{S(\chi)}, \frac{x_{i2} - \bar{x}}{S(\chi)}, \dots, \frac{x_{in} - x}{S(\chi)}\right)$$
$$= \left(\frac{e_{i1} - \bar{e}}{S(\varrho)}, \frac{e_{i2} - \bar{e}}{S(\varrho)}, \dots, \frac{e_{in} - \bar{e}}{S(\varrho)}\right)$$

The conditional distribution for [e], given the orbit D, is

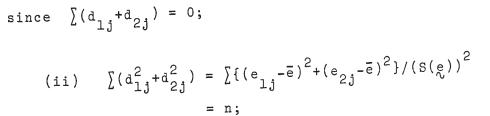
$$\begin{split} \bar{f}(\bar{e}_{1},S(e):d_{1},d_{2}) & = K_{\rho}(d_{1},d_{2}) \prod_{j=1}^{n} f(\bar{e}+S(e)d_{1j},\bar{e}+S(e)d_{2j})S(e)^{2n-2}d\bar{e}dS(e) \\ &= K_{\rho}(d_{1},d_{2}) \prod_{j=1}^{n} f(\bar{e}+S(e)d_{1j},\bar{e}+S(e)d_{2j})S(e)^{2n-2}d\bar{e}dS(e) \\ &= K_{\rho}(d_{1},d_{2})\{2\pi(1-\rho^{2})^{1/2}\}^{-1}exp\{-y^{2}\}S(e)^{2n-2}d\bar{e}dS(e) \\ & \text{where} \end{split}$$

$$y^{2} = [2(1-\rho^{2})]^{-1} [[\bar{e}+s(e)d_{1j}]^{2} - 2\rho(\bar{e}+s(e)d_{1j})(\bar{e}+s(e)d_{2j}) + (\bar{e}+s(e)d_{2j})^{2}].$$

Note that

(i)
$$\sum \left[\left(\bar{e} + S(e) d_{1j} \right)^2 + \left(\bar{e} + S(e) d_{2j} \right)^2 \right]$$

= $2n\bar{e} + S(e)^2 \sum \left(d_{1j}^2 + d_{2j}^2 \right)$



:-

and

(iii)
$$\sum (\bar{e}+S(e)d_{1j})(\bar{e}+S(e)d_{2j}) = n\bar{e}^2 + S(e)^2 \sum d_{1j}d_{2j} + S(e) \sum (d_{1j}+d_{2j})$$

= $n\bar{e}^2 + nS(e)^2 r/2$

since

$$\sum_{\substack{d_{1j} \\ d_{2j}}} = \sum_{\substack{n \\ S(e)^2}} \frac{(e_{1j}-e)(e_{2j}-e)}{n}$$
$$= nr/2.$$

Hence we have

$$y^{2} = \frac{1}{2(1-\rho)^{2}} \{2n(1-\rho)\bar{e}^{2}+nS(e)(1-\rho r)\}$$
.

The normalizing constant factor $K_\rho({\tt d}_1,{\tt d}_2)$ can be obtained by integration:

$$\begin{split} \kappa_{\rho}(\mathfrak{A}_{1},\mathfrak{A}_{2})^{-1} &= \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\tilde{r}(\tilde{e},S(\mathfrak{g});\mathfrak{A}_{1}\mathfrak{A}_{2})d\tilde{e}dS(\mathfrak{g})}{\kappa_{\rho}(\mathfrak{A}_{1},\mathfrak{A}_{2})} \\ &= \{2\pi(1-\rho^{2})^{1/2}\}^{-n} \int_{0}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\frac{2n(1-\rho)\tilde{e}^{2}+nS(\mathfrak{g})^{2}(1-\rho r)}{2(1-\rho^{2})}\right\} \cdot \\ &\quad \cdot S(\mathfrak{g})^{2n-2}d\tilde{e}dS(\mathfrak{g}) \\ &= \int_{0}^{\infty} \frac{1}{(2\pi)^{1/2}} \exp\left\{-\frac{1}{2}\frac{2n\tilde{e}^{2}}{1+\rho}\right\} d\sqrt{\frac{2n}{1+\rho}} \tilde{e} \cdot \\ &\frac{1}{(2\pi)^{n-1/2}(1-\rho^{2})^{n/2}} (\frac{1+\rho}{2n})^{1/2} \int_{0}^{\infty} \exp\left\{-\frac{n(1-\rho r)S(\mathfrak{g})^{2}}{2(1-\rho^{2})}\right\} \\ &\quad \cdot S(\mathfrak{g})^{2n-2}dS(\mathfrak{g}) \\ &= \frac{1}{(2\pi)^{n-1/2}(1-\rho^{2})^{n/2}} (\frac{1+\rho}{2n})^{1/2} \frac{1}{2} \int_{0}^{\infty} \exp\left\{-\frac{n(1-\rho r)S(\mathfrak{g})^{2}}{2(1-\rho^{2})}t\right\} t^{\frac{2n-1}{2}} - 1 dt \\ &= \frac{(1+\rho)^{1/2}\Gamma(\frac{2n-1}{2})[2(1-\rho^{2})]^{(2n-1)/2}}{2(2\pi)^{(n-1/2)}(1-\rho^{2})^{n/2}[n(1-\rho r)]^{(2n-1)/2}} \cdot \end{split}$$

Hence the marginal likelihood function for ρ , based on the orbit \underline{p} , is

$$L(\mathfrak{d}_{1},\mathfrak{d}_{2}:\rho) = \mathbb{R}^{+}(\mathfrak{p})/\mathbb{K}_{\rho}(\mathfrak{d}_{1},\mathfrak{d}_{2}),$$

or when expressed as a ratio relative to $\rho = 0$, is

$$L^{*}(\overset{d}{\sim}_{1}, \overset{d}{\sim}_{2}; \rho) = K_{o}(\overset{d}{\sim}_{1}, \overset{d}{\sim}_{2})/K_{\rho}(\overset{d}{\sim}_{1}, \overset{d}{\sim}_{2})$$
$$= (1-\rho^{2})^{(n-1)/2}(1+\rho)^{1/2}(1-\rho r)^{-(n-1/2)}.$$

Therefore the general distribution for r, with correlation coefficient ρ , is

$$h(r:\rho)dr = L^{*}(\frac{d_{1}}{\sqrt{2}}, \frac{d_{2}}{\sqrt{2}}; \rho)h(r:0)dr$$

$$= \frac{\Gamma(\frac{2n-1}{2})(1-\rho^{2})(n-1)/2(1+\rho)^{1/2}}{2^{(2n-3)/2}\Gamma(\frac{n-1}{2})\Gamma(\frac{n}{2})} (1+r)^{(n-1)/2-1} \cdot (1-r)^{n/2-1}(1-\rho r)^{-(n-1/2)}dr$$

for |r| < 1.

4.5. <u>DISTRIBUTION FOR A SAMPLE CORRELATION MATRIX I</u>: Let $\chi_i = (x_{1i}, x_{2i}, \dots, x_{pi}), i = 1, 2, \dots, n$ be a sample of size n, $n \ge p$, drawn from a p-component vector variable $X = (x_1, X_2, \dots, X_p), p > 2$, distributed according to multivariate normal distribution with means μ and covariance matrix Σ . It is well-known that the MLE for ρ_{ij} , i < j, are given by (See Anderson (1966)):

$$r_{ij} = s_{ij} / (s_{ii} s_{jj})^{1/2}$$

where

$$s_{ij} = \sum (x_{ik} - \bar{x}_i)(\bar{x}_{jk} - \bar{x}_k),$$

$$n\bar{x}_i = \sum x_{ik}$$

and where \sum stands for summation over k from 1 to n throughout the rest of this chapter. Fisher (1962) has obtained the general pdf for r_{ij} , i < j, which is expressed in an integral form. Ali, Fraser and Lee (1970) show how this sample can be associated with a conditional model, and show also that the marginal likelihood analysis of this conditional model can give the distribution of r_{ij} , i < j, for general covariance matrix \sum . They expressed the pdf in a series form. In this section and the next, we derive the distribution for two sample correlation matrices by using the same approach used by Ali, Fraser, and Lee.

From now onwards, we assume that $\mu = 0$. In this section we also assume that the variances of all the marginal distributions are equal. Then $\sum = \sigma^2 P$ for some real number $\sigma > 0$. Note that P is the correlation matrix for the vector variable X. The MLE for ρ_{ij} , i < j, are

$$r_{ij} = pS_{ij}(x)/S(x)^2,$$

where

 $s_{ij}(x) = \sum x_{ik} x_{jk}, 1 \le i < j \le p,$

ł

and

$$s(x)^2 = \sum_{i=1}^p s_{ii}(x).$$

Our aim is to derive the distribution for r_{ij} , i < j, for general covariance matrix, by using the method of marginal likelihood analysis. To do this, we associate the sample with the following conditional structural model:

$$\begin{cases} x = \theta e \\ f(e; \rho) de = (2\pi)^{-np/2} |P|^{-n/2} et_r \{-\frac{1}{2} e'P^{-1}e\} de \end{cases}$$

with additional quantity P, where

$$X = \begin{pmatrix} x_{ll} & \cdots & x_{ln} \\ \vdots & & \\ x_{pl} & \cdots & x_{pn} \end{pmatrix}, \quad e = \begin{pmatrix} e_{ll} & \cdots & e_{ln} \\ \vdots & & \\ e_{pl} & \cdots & e_{pn} \end{pmatrix}$$

and θ is a diagonal matrix of p-order with all its diagonal elements equal to $\sigma(>0)$. For a transformation variable, we take

$$\begin{bmatrix} x \\ \ddots \end{bmatrix} = \begin{pmatrix} S(x) & 0 \\ \cdot & \cdot \\ 0 & \cdot S(x) \end{pmatrix}$$

The reference of the orbit $G\chi$ is

$$D = [e]^{-1}e$$

$$= \begin{pmatrix} e_{11}/S(e) & \cdots & e_{1n}/S(e) \\ \vdots & & & \\ e_{p1}/S(e) & \cdots & e_{pn}/S(e) \end{pmatrix}$$

$$DD' = (S_{i,j}(\xi)/S(\xi)^2)$$

$$= \begin{pmatrix} t_1^2 & * \\ r_p/p & t_2^2 & \\ \vdots & & \\ r_{1p}/p & r_{2p}/p & \cdots & t_p^2 \end{pmatrix}$$

$$= R^*, \text{ say,}$$
where $t_i^2 = S_{i,i}(\xi)/S(\xi)^2$, $i = 1, 2, \dots, p$. It is clear
that $\sum_{i=1}^{p} t_i^2 = 1$. The conditional distribution for [e], given
the orbit D_i , is
$$f[\xi]:P)d[\xi]$$

$$= K_p(D)\overline{f}([\xi]D:P)S(\xi)^{pn} \frac{d[e]}{S(\xi)}$$

$$= r/2 \cdots rp/2r + r(-\frac{1}{2}p)(e)!re^{-1}(e)D)S(e)^{pn-1}dS(e)$$

Note that DD' is symmetric and is given by

$$= K_{p}(D)[|P|^{n/2}(2\pi)^{np/2}]^{-1}etr\left\{-\frac{1}{2}D'[e]'P^{-1}[e]D\right\}S(e)^{pn-1}dS(e)$$

$$= K_{p}(d)[|P|^{n/2}(2\pi)^{np/2}]^{-1}etr\left\{-\frac{1}{2}P^{-1}[e]DD'[e]'\right\}S(e)^{pn-1}dS(e).$$

Hence if $P^{-1} = (\rho^{ij})$, then

$$P^{-1}[e]DD'[e]' = \begin{pmatrix} \rho^{11} \cdots \rho^{1p} \\ \vdots \\ \rho^{p1} \cdots \rho^{pp} \end{pmatrix} \begin{pmatrix} s(e) & 0 \\ \ddots \\ 0 & s(e) \end{pmatrix} \begin{pmatrix} t_{1}^{2} & * \\ r_{12}/p & t_{2}^{2} \\ r_{1p}/p & r_{p}/p & \dots & t_{p}^{2} \end{pmatrix} \begin{pmatrix} s(e) & 0 \\ \vdots \\ 0 & s(e) \end{pmatrix}$$

ł

•

$$\begin{pmatrix} s(e)^{2} \left\{ p^{-1} \sum_{j=2}^{p} r_{j1} \rho^{j1} + \rho^{11} t_{1}^{2} \right\} & * \\ \vdots & \vdots \\ s(e)^{2} \left\{ p^{-1} \sum_{j\neq i}^{p} r_{ji} \rho^{ji} + \rho^{i1} t_{1}^{2} \right\} \\ s(e)^{2} \left\{ p^{-1} \sum_{j\neq i}^{p} r_{ji} \rho^{j1} + \rho^{i1} t_{1}^{2} \right\} \\ & \vdots \\ s(e)^{2} \left\{ p^{-1} \sum_{j\neq i}^{p} r_{ji} \rho^{jp} + \rho^{pp} t_{p}^{2} \right\} \end{pmatrix}$$

Therefore

=

$$\operatorname{tr}\left\{\frac{1}{2}P^{-1}[e]DD'[e]'\right\} = \frac{1}{2}S(e)^{2}[p^{-1}\sum_{i=1}^{p}(\sum_{j=1}^{p}r_{ji}\rho^{ji}+\rho^{ii}t_{i}^{2})]$$
$$= \alpha^{2}S(e)^{2}$$

where $\alpha^2 = \frac{1}{2}$ times the expression in the bracket. The normalizing constant factor $K_p(D)$ is

$$\begin{split} \kappa_{\rm P}({\rm D})^{-1} &= \int_{0}^{\infty} [|{\rm P}|^{n/2} (2\pi)^{n{\rm p}/2}]^{-1} \exp\left\{-\alpha^{2} {\rm S}(\frac{{\rm e}}{\nu})^{2}\right\} {\rm S}(\frac{{\rm e}}{\nu})^{{\rm pn}-1} {\rm d} {\rm S}(\frac{{\rm e}}{\nu}) \\ &= \left\{2 |{\rm P}|^{n/2} (2\pi)^{n{\rm p}/2}\right\}^{-1} \int_{0}^{\infty} \exp\{-\alpha^{2} {\rm y}\}^{\frac{{\rm pn}}{2} - 1} {\rm d} {\rm y} \\ &= \left\{2 |{\rm P}|^{n/2} (2\pi)^{n{\rm p}/2}\right\}^{-1} \Gamma(\frac{{\rm pn}}{2}) (\alpha^{2})^{-{\rm pn}/2} \quad . \end{split}$$

Therefore the marginal likelihood function for P, based on the orbit $\underset{\sim}{D},$ is

$$L^{*}(D:P) = K_{I}(D)/K_{P}(D)$$
$$= |P|^{-n/2}(\alpha_{1}^{2})^{-pn/2} ,$$

120.

с. 1 which is expression as a ratio relative to that P = I, the $p \times p$ identity matrix and where $\alpha_1^2 = \alpha^2 / \{P^{-1} \sum_{i=1}^p r_{ji} + t_i^2\}$. The marginal likelihood function for P depends only on DD' as a function of Q. Hence the pdf for R* for general correlation matrix P (and hence for general covariance matrix $\sum = \sigma^2 P$) can be obtained from the pdf $h(R^*:I)dR^*$ for P = I, by modulating by the marginal likelihood function $L^*(D:P)$:

$$h(R^*:P)dR^* = L^*(D:P)h(R^*:I)dR$$

Distribution for \mathbb{R}^* for $\mathbb{P} = \mathbb{I}$: For $\sum \mathbb{P} = \mathbb{I}$, it is well-known that the random matrix $(S_{ij}(x))$ (See Anderson (1966)) has a Wishart distribution whose pdf is given by

(4.5.1)
$$K|S_{ij}(x)|^{(n-p-1)/2}exp\{-\frac{1}{2}\sum_{i=1}^{p}S_{ii}(x)\}$$

where

$$\kappa^{-1} = 2^{np/2} \pi^{p(p-1)/4} \prod_{i=1}^{p} \Gamma\{(n+1-i)/2\}.$$

Consider now the substitutions:

$$\begin{cases} t'^{2} = \sum_{i=1}^{p} S_{i}(x) \\ s_{i}(x) = t^{2}t'^{2}, i = 1, 2, ..., (p-1) \\ s_{i}(x) = S_{i}(x), 1 \le i < j \le p \end{cases}$$

whose jacobian is unity. Further, we note that the jacobian

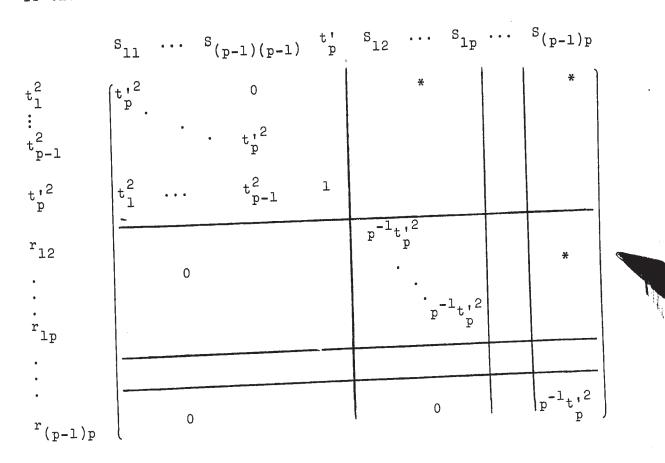
of the following substitutions:

$$t_{p}^{\prime 2} = t_{p}^{\prime 2}$$

$$S_{ii}(\chi) = t_{i}^{2}t_{p}^{\prime 2}, i = 1, 2, ..., (p-1)$$

$$S_{ij}(\chi) = p^{-1}r_{ij}t_{p}^{2}, 1 \le i \le j \le p$$

is the absolute of the determinant of the following matrix:



÷,

. . . Geo. av

which is equal to $p^{-p(p-1)/2}t_{p}^{2(p-1)+p(p-1)} = p^{-p(p-1)/2}t_{p}^{2+p-1}$. Therefore the joint pdf for R* and t_p^2 is (n-p-1)/2 t²t² p⁻¹r_{1p}t²² t²₂t²² Κ $\vdots \\ p^{-1}r_{1p}t_{p}'^{2} p^{-1}r_{2p}t_{p}'^{2} \dots t_{p}'^{2}(1-\sum_{i=1}^{p-1}t_{i}^{2})$ • $\exp\{-\frac{1}{2}t_{p}^{2}\}_{p}^{-p(p-1)/2}t_{p}^{p^{2}+p-1}dR*dt_{p}^{2}$ $= K |R^*|^{(n-p-1)/2} exp\{-\frac{1}{2}t_p^{\prime 2}\}(t_p^{\prime 2})^{(p^2+p-1)/2+\frac{1}{2}p(n-p-1)}p^{-p(p-1)/2}.$ • dR*dt,² . Integrating out t_p^2 over the range $(0,\infty)$, we obtain the pdf for R*: (n-n-1)/2

$$K_p - p(p-1)/2_2(pn+1)/2_{\Gamma((pn+1)/2)|R^*|^{(n-p-1)/2}dR^*}$$

since

123.

$$\int_{0}^{\infty} \exp\{-\frac{1}{2} t_{p}^{\prime 2}\}(t_{p}^{\prime 2})^{-\frac{1}{2}(pn-1)} dt_{p}^{\prime 2} = \Gamma(\frac{pn+1}{2})2^{(pn+1)/2}$$

Therefore the pdf R*, for general correlation matrix P, is

$$h(R^{*}:P)dR^{*} = L^{*}(D:P)h(R^{*}:I)dR$$
$$= K^{*}|P|^{-n/2}|R^{*}|^{(n-p-1)/2}\alpha_{1}^{-pn}dR^{*}$$

where

$$K^* = K \cdot p^{-p(p-1)/2} \cdot 2^{(pn+1)/2} \Gamma((pn+1)/2).$$

The desired distribution for r_{ij} can be obtained from the pdf for R* by integrating out t_i^2 , i = 1, 2, ..., (p-1).

4.6. <u>DISTRIBUTION OF A SAMPLE CORRELATION MATRIX II</u>: Let us have the same sample of the last section. We further assume here that the variances of α , $(1 \le \alpha < p)$, of the marginal distributions equal σ_1^2 and the rest of them equal $\sigma_1^2(\neq \sigma_1^2)$. Then we can, without loss of generality, assume that $\sum DPD'$ where D is a diagonal matrix of the form

(4.6.1)
$$D = \operatorname{diag}(\sigma_1, \dots, \sigma_1, \sigma_2, \dots, \sigma_2)$$

with $\sigma_1 \neq \sigma_2$ and $\sigma_1, \sigma_2 > 0$. The MLE for ρ_{ij} , $1 \le i < j \le p$, are:

$$\mathbf{r}_{\mathbf{ij}} = \begin{cases} \alpha \mathbf{S}_{\mathbf{ij}}(\mathbf{x}) / \mathbf{S}_{1}(\mathbf{x})^{2}, & 1 \leq \mathbf{i} < \mathbf{j} \leq \alpha \\ \beta \mathbf{S}_{\mathbf{ij}}(\mathbf{x}) / \mathbf{S}_{2}(\mathbf{x})^{2}, & \alpha < \mathbf{i} < \mathbf{j} \leq p \\ (\alpha\beta)^{1/2} \mathbf{S}_{\mathbf{ij}}(\mathbf{x}) / [\mathbf{S}_{1}(\mathbf{x}) \mathbf{S}_{2}(\mathbf{x})], & 1 \leq \mathbf{i} \leq \alpha < \mathbf{j} \leq p \end{cases}$$

ц. Ц where $\beta = p - \alpha$, $S_1(x)^2 = \sum_{i=1}^{\alpha} S_{ii}(x)^2$ and $S_2(x)^2 = \sum_{l=\alpha+1}^{p} S_{ii}(x)^2$. Our object is to derive the distribution for r_{ij} 's by using the method of likelihood modulation. To do this, we consider

the following associated conditional model:

$$\begin{cases} x = \theta e \\ f(e) de = (2\pi)^{-pn/2} |P|^{-n/2} etr - \left\{ \frac{1}{2} e' P^{-1} e \right\} de \end{cases}$$

where θ is p-order diagonal matrix of the form (4.6.1). We take

$$[x] = \operatorname{diag}(S_1(x) \dots S_1(x) \dots S_2(x) \dots S_2(x))$$

as our transformation variable. The reference point D of the orbit G_{X} is

$$D = \begin{cases} e_{11}/S_{1}(e_{v}) & \cdots & e_{1n}/S_{1}(e_{v}) \\ \vdots \\ e_{\alpha 1}/S_{1}(e_{v}) & \cdots & e_{\alpha n}/S_{1}(e_{v}) \\ e_{(\alpha+1)1}/S_{2}(e_{v}) & \cdots & e_{(\alpha+1)n}/S_{2}(e_{v}) \\ \vdots \\ e_{p1}/S(e_{v}) & \cdots & e_{pn}/S_{2}(e_{v}) \end{cases}$$

We note that R* = DD' is a symmetric matrix:

126. R* = $s_{11}(e)/s_{1}(e)^{2}$ $\dots s_{\alpha\alpha}(e)/s_{1}(e)^{2}$ $s_{\alpha l}(e)/s_{1}(e)^{2}$ $S_{(\alpha+1)1}(e)/[S_1(e)S_2(e)] \cdots S_{(\alpha+1)\alpha}(e)/[S_1(e)S_2(e)] S_{(\alpha+1)(\alpha+1)}(e)/S_{2}(e)^2$ $S_{p1}(e)/[S_1(e)S_2(e)] \dots S_{p\alpha}(e)/[S_1(e)S_2(e)] S_{p(\alpha+1)}(e)/S_2(e)^2$ $\ldots s_{pp}(e)/s_2(e)^2$ t^2_{α} $(\alpha\beta)^{-1/2}r_{1(\alpha+1)}$... $(\alpha\beta)^{-1/2}r_{\alpha(\alpha+1)}$ $t^{2}_{(\alpha+1)}$ $(\alpha\beta)^{-1/2}r_{\alpha p}$ $\beta^{-1}r_{(\alpha+1)p} \cdots t_{p}^{2}$ $(\alpha\beta)^{-1/2}r_{lp}$. . . The conditional distribution for [e], given the orbit D, is

 $K_{P}(D)f([e]D:P)S_{1}(e)^{\alpha n-1}S_{2}(e)^{\beta n-1}dS_{1}(e)dS_{2}(e)$ $= K_{P}(D) \operatorname{Ketr} \left\{ - \frac{1}{2} D'[e]'P^{-1}[e]D \right\} S_{1}(e)^{\alpha n - 1} S_{2}(e)^{\beta n - 1} dS_{1}(e) dS_{2}(e)$ $= K_{p}(D) \operatorname{Ketr} \left\{ - \frac{1}{2} P^{-1}[e] DD'[e] \right\} S_{1}(e)^{\alpha n - 1} S_{2}(e)^{\beta n - 1} dS_{1}(e) dS_{2}(e).$

Note that [e]DD'[e_{χ}]' is symmetric and is equal to

$$\begin{cases} s_{1}(g)^{2}t_{1}^{2} & * & * \\ \vdots \\ s_{1}(g)^{2}t_{1}^{\alpha} & \cdots & s_{1}(g)^{2}t_{4}^{\alpha} \\ \hline s_{1}(g)s_{2}(g)r_{1}(\alpha+1)^{/(\alpha\beta)^{-1}} & \cdots & s_{2}(g)^{2}t_{\alpha+1}^{2} \\ \hline s_{1}(g)s_{2}(g)r_{1p}/(\alpha\beta)^{-1} & \cdots & s_{2}(g)^{2}t_{\alpha+1}^{2} \\ \vdots \\ s_{1}(g)s_{2}(g)r_{1p}/(\alpha\beta)^{-1} & \cdots & s_{2}^{2}(g)^{2}r_{(\alpha+1)p}/\beta & \cdots & t_{p}^{2} \\ \end{cases}$$
where $t_{\alpha}^{2} = (1 - \frac{\alpha^{-1}}{i=1}t_{1}^{2})$ and $t_{p}^{2} = (1 - \frac{p^{-1}}{i=\alpha+1}t_{2}^{2})$. So if
 $p^{-1} = (\rho^{i,j})$, we have
 $p^{-1}[g]DD^{*}[g]^{*} \\ (s_{1}(g)^{2}\sum_{j=1}^{\alpha}\rho^{4j}r_{j\alpha}/\alpha+\rho^{\alpha}t_{\alpha}^{2}s_{1}(g)^{2} + \\ (s_{1}(g)s_{2}(g)\sum_{j=1}^{\alpha}\rho^{4j}r_{j\alpha}/(\alpha\beta)^{-1/2}) \\ (s_{1}(g)s_{2}(g)\sum_{j=1}^{\alpha}\rho^{(\alpha+1),j}r_{(\alpha+1,j)}/(\alpha\beta)^{-1/2} + \\ (s_{1}(g)s_{2}(g)\sum_{j=1}^{\alpha}\rho^{p,j}r_{p,j}/(\alpha\beta)^{-1/2} + \\ (s_{1}(g)s_{2}(g)\sum_{j=1}^{\alpha}\rho^{p,j}r_{p,j}/(\alpha\beta)^{-1/2} + \\ (s_{1}(g)s_{2}(g)\sum_{j=1}^{\alpha}\rho^{p,j}r_{p,j}/(\alpha\beta)^{-1/2} + \\ s_{2}(g)^{2}\sum_{j=\alpha+1}^{p,j}\rho^{p,j}r_{p,j}/\beta+\rho^{p,p}s(g)^{2}t_{p}^{2}) \end{cases}$

127.

Į.

-254 74

Therefore
$$\operatorname{etr}\{-\frac{1}{2} P^{-1}[e]DD'[e]\}$$

= $\exp\{-(AS_1(e)^2 + BS_2(e) + CS_1(e)S_2(e))\}$

where

$$A = \frac{1}{2} \left(\sum_{i=1}^{\alpha} \rho^{ii} t_i^2 + 2 \sum_{\substack{1 \leq i \leq j \leq \alpha}} \rho^{ij} r_{ij} / \alpha \right),$$

$$B = \frac{1}{2} \left(\sum_{i=\alpha+1}^{p} \rho^{ii} t_{i}^{2} + 2 \sum_{\alpha < i < j \le p} \rho^{ij} r_{ij} / \beta \right),$$

and

$$C = \frac{1}{2} \sum_{1 \le i \le \alpha < j \le p} 2\rho^{ij} r_{ji} / (\alpha\beta)^{1/2}$$

The normalizing constant factor $K_{p}(D)$ is

$$\begin{split} K_{p}(D)^{-1} &= K \int_{0}^{\infty} \int_{0}^{\infty} \exp\{-[AS_{1}(\xi)^{2} + BS_{2}(\xi)^{2} + CS_{1}(\xi)^{2}C_{2}(\xi)^{2}] \cdot \\ &\quad S_{1}(\xi)^{\alpha n-1}S_{2}(\xi)^{\beta n-1}dS_{1}(\xi)dS_{2}(\xi) \\ &= K \int_{0}^{\infty} \int_{0}^{\infty} \exp\{-AS_{1}(\xi)^{2} - BS_{2}(\xi)^{2}\} [\sum_{i=0}^{\alpha} \frac{(-C)^{i}}{i!} S_{1}(\xi)^{i}S_{2}(\xi)^{i}] \cdot \\ &\quad S_{1}(\xi)^{\alpha n-1}S_{2}(\xi)^{\beta n-1}dS_{1}(\xi)dS_{2}(\xi) \\ &= K \int_{0}^{\infty} \int_{0}^{\infty} \sum_{i=1}^{\alpha} \frac{(-C)^{i}}{i!} \exp\{-AS_{1}(\xi)^{2} - BS_{2}(\xi)^{2}S_{1}(\xi)^{\alpha n+i-1}S_{2}(\xi)^{\beta n+i-1} \\ &\quad dS_{1}(\xi)dS_{2}(\xi) \\ &= K \frac{K}{4} \sum_{i=1}^{\alpha} \frac{(-C)^{i}}{i!} \frac{\Gamma\{(\alpha n+i)/2\}}{A(\alpha n+i)/2} \cdot \frac{\{\Gamma(\beta n+i)/2\}}{B(\beta n+i)/2} \cdot \\ &\quad For P = I, we have A = B = 1/2, C = 0, and \end{split}$$

$$\kappa_{I}(D)^{-1} = \frac{K}{4} \left(\frac{1}{2}\right)^{-pn/2} \Gamma\left(\frac{\alpha n}{2}\right) \Gamma\left(\frac{\beta n}{2}\right) \ .$$

Therefore the marginal likelihood function for P, based on D is (expressed as a ratio relative to that for P = I)

$$L^{*}(D:P) = \kappa_{I}(D)/\kappa_{P}(D)$$
$$= \left\{2^{-pn/2}\Gamma(\frac{\alpha n}{2})\Gamma(\frac{\beta n}{2})\right\}^{-1}\sum_{i=0}^{\infty} \frac{(-C)^{i}}{i!} \frac{\Gamma((\alpha n+i)/2)\Gamma((\beta n+i)/2)}{A^{(\alpha n+i)/2}B^{(\beta n+i)/2}}$$

Distribution for R* when P = I: The pdf of (S_{ij}) is given by (4.5.1). The substitutions

$$\begin{cases} s_{1}(e)^{2} = \sum_{i=1}^{\alpha} s_{ii}(e) \\ s_{2}(e)^{2} = \sum_{i=\alpha+1}^{p} s_{ii}(e) \\ s_{ii}(e) = s_{ii}(e), i = 1, 2, ..., (\alpha-1), (\alpha+1), ..., (p-1), \\ s_{ij}(e) = s_{ij}(e), 1 \le i < j \le p \end{cases}$$

has jacobian equal unity. Further, we consider a second set of substitutions:

$$\begin{cases} s_{i}(e)^{2} = s_{i}(e)^{2}, & i = 1, 2, \\ s_{i}(e) = \begin{cases} t_{i}^{2}s_{1}(e)^{2}, & i = 1, 2, \dots, (\alpha-1) \\ t_{i}^{2}s_{2}(e)^{2}, & i = (\alpha+1), \dots, (p-1) \end{cases} \\ s_{ij}(e) = \begin{cases} r_{ij}s_{1}(e)^{2}/\alpha, & 1 \le i < j \le \alpha \\ r_{ij}s_{2}(e)^{2}/\beta, & \alpha < i < j \le p \\ r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)s_{2}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)/(\alpha\beta)^{1/2}, & 1 \le i \le \alpha < j \le r_{ij}s_{1}(e)/(\alpha\beta)^{1/2}, & 1 \le r_{ij}s_{1}(e)/(\beta\beta)^{1/2}, & 1 \le r_{ij}s_{1}(e)/(\beta\beta$$

The jacobian of the substitutions can be found in a similar manner as before:

129.

p.

					نے لگ ۱۰		I .
S(p-1)p	0	o	*	o .	0	s2/8	
:							
S ₁ (α+1) ^S 1p	0	0	*	0	sls2/(αβ) ^{1/2} s ₁ s2/(αβ) ²	0	
S ₁₂ S ₁ α S	o	0	*	ດ.	o	0	
50 50 50 50 50 50 50 50 50 50 50 50 50 5	o	0	1	0	o	0	
$\left \frac{S^2}{\alpha_{n+1}} (\alpha_{n+1}) \cdots \frac{S^2}{\alpha_{n-1}} (\alpha_{n-1}) \right _{i}$	0	ດດ ທີ່	t ² t ²	0	0	0	S _{ij} =S _{ij} (e), i <u>_</u> i <j<p.< td=""></j<p.<>
3 ((_ ~) (r ~		г. 2	^ν p-1 s ² t ² t ² s ² t ² t ² α ⁻¹	² 2 	$r_{1}(\alpha+1)$ $r_{1}(\alpha+1)$ $r_{1}(\alpha+1)$	dI 	$\frac{r(p-1)p}{where S_{i}=S_{i}(e_{i}), i=1,2 \text{ and}}$

130.

The required jacobian is therefore the product of the absolute of the determinate of the diagonal submatrices of the above matrix. That is

Therefore the joint distribution for R* and $S_1(e)$ and $S_2(e)$, is

$$KJ | R^{*}[e][e]^{*}|^{(n-p-1)/2} exp\{-\frac{1}{2}(S_{1}(e)^{2}+S_{2}(e)^{2})\} dR^{*}dS_{1}(e)^{2}dS_{2}(e)^{2}.$$
Hence the pdf for R* when P = I is
$$K | R^{*}|^{(n-p-1)/2} a^{-\alpha(p-1)/2} \beta^{-\beta(p-1)/2} exp\{-\frac{1}{2}(S_{1}(e)^{2}+S_{2}(e)^{2})\} S_{1}(e)^{a}S_{2}(e)^{b}dR^{*}.$$

$$dS_{1}(e)^{2}dS_{2}(e)^{2}$$

where

a =
$$2(\alpha - 1) + \alpha(\alpha - 1) + \alpha\beta + (n - p - 1)$$

= $n\alpha - 2$,

and

$$b = 2(\beta-1) + \beta(\beta-1) + \alpha\beta + (n-p-1)$$

= n\beta-2.
Integrating out S₁(e)² and S₂(e)² over the region (0,∞)×(0,∞)

ł

132.

we obtain the pdf for R^*

$$\begin{split} h(R^*:I) dR^* &= \int_0^{\infty} \int_0^{\infty} K |R^*|^{(n-p-1)/2} \alpha^{-\alpha(p-1)/2} \beta^{-\beta(p-1)/2} \\ &= \exp\{-\frac{1}{2}(S_1(e_1)^2 + S_2(e_1)^2)\} S_1(e_1)^{n\alpha-2} S_2(e_1)^{n\beta-2} dS_1(e_1)^2 dS_2(e_1)^2 dR^* \\ &= K^* |R^*|^{(n-p-1)/2} \end{split}$$

where

$$K^* = K\alpha^{-\alpha(p-1)}\beta^{-\beta(p-1)/2} 2^{\frac{np}{2}-2} \cdot \Gamma(\frac{n}{2} - 1)\Gamma(\frac{n}{2} - 1).$$

Therefore the general distribution for R*, for general correlation matrix P, is

$$h(R^{*}:P)dR^{*} = L^{*}(D:P)h(R^{*}:I)dR^{*}$$

$$= \frac{K^{*}}{2^{pn/2}\Gamma(\frac{\alpha n}{2})\Gamma(\frac{\beta n}{2})} |R^{*}|^{(n-p-1)/2} \sum_{i=0}^{\infty} \frac{(-C)^{i}}{i!} \frac{(\frac{\alpha n+i}{2})(\frac{\beta n+i}{2})}{A^{(\alpha n+i)/2}B^{(\beta n+i)/2}} dR^{*}.$$

The distribution for r_{ij} , for general correlation matrix, can thus be obtained from the pdf for R* above by integrating out the $t_i(e)$ 'S.

BIBLIOGRAPHY

Ali, M.M., Fraser, D.A.S. and Lee, Y.S. (1970)				
Distribution of the correlation matrix. <u>Journal</u>				
of Statistical Research, Vol. 4, pp 1-15.				
Anderson, T.W. (1957) Introduction to Multivariate				
Analysis, Wiley, N.Y.				
Brown, M.B. (1967) The two-means problem a secondarily				
Bayes approach, <u>Biometrika</u> , Vol. 54, pp 85-91.				
Cornish, E.A. (1954) The multivariate t-distribution				
associated with a set of normal sample deviates.				
Aust. J. Physics, Vol. 7, pp 531-542.				
Cramér, H. (1946) <u>Mathematical Methods of Statistics</u> ,				
Princeton Univ. Press.				
DeLury, D.B. (1938) Note on correlation, Annals Math.				
Statistics, Vol. 9, pp 149-151.				
Dunnett, C.W. and Sobel, M. (1954) A bivariate general-				
ization of Student's t-distributions with tables				
for certain special cases, <u>Biometrika</u> , Vol. 41,				
nn 153-169.				
Fisher, R.A. (1915) The frequency distribution of the				
correlation coefficient in samples from an in-				
definitely large population, Biometrika, Vol. 10,				
pp 507-521.				

133.

- *9. Fisher, R.A. (1935) The Fiducial argument in statistical inference, <u>Annals Eugenics</u>, Vol. 6, pp. 391-398.
- *10. (1939) The comparison of samples with possibly unequal variances, <u>Annals Eugenics</u>, Vol. 9, pp 174-180.
- 11. _____ (1962) The simultaneous distribution for correlation coefficients, <u>Sankhja</u>, Vol. 24, pp 1-8.
- 12. Fisher, R.A. and Yates, F. (1957) <u>Statistical Tables</u> <u>for Biological, Agricultural and Medical Research</u>, 2nd edition, Oliver and Boyd, Edinburgh.
- 13. Fraser, D.A.S. (1961a) The Fiducial method and invariance, <u>Biometrika</u>, Vol. 48, pp. 261-280.
- 14. _____ (1961b) On fiducial inference, <u>Annals</u> <u>Math. Statistics</u>, Vol. 32, pp 661-676.
- 15. (1962) On the consistency of the Fiducial method, <u>J. Royal Statistical Soc</u>., Vol. 24, Ser. B. pp 425-434.
- 16. (1964a) Fiducial inference for location
 and scale parameters, <u>Biometrika</u>, Vol. 51, pp 17-24.
 17. (1964b) On local inference and information,
 - J. Royal Statistical Soc., Vol. 26, pp 253-260.

*References which are marked with an asterisk are reporduced in <u>Contribution To Mathematical Statistics</u> by R.A. Fisher (1950), Wiley, N.Y.

- Fraser, D.A.S. (1966) Structural probability and a generalization, <u>Biometrika</u>, Vol. 53, pp 1-9.
- 19. (1967a) Data transformations and the linear model, <u>Annals Math. Statistics</u>, Vol. 38, pp 1456-1465.
- 20. (1967b) Statistical models and invariance, Annals Math. Statistics, Vol. 38, pp 1061-1067.

21. (1968) <u>The Structure of Inference</u>, Wiley, N.Y.

- 22. ______(1970) Events, information processing and the structural modes, paper presented at the 'Symposium of Foundation of Statistical Inference' at the University of Waterloo, Canada.
- 23. Fraser, D.A.S. and Haq, M.S. (1969) Structural probability and prediction for multivariate model, <u>J. Royal Statistical Soc</u>., Vol. 31, Ser. B, pp 319-331.
- 24. Grundy, P.M. (1956) Fiducial distributions and prior distribution: An example in which the former cannot be associated with the latter, <u>J. Royal Statistical</u> <u>Soc</u>. Vol. 18, pp 217-221.
- 25. Gurland, J. and McCullough, R.S. (1962) Testing equality of means after a preliminary test of equality of variances, <u>Biometrika</u>, Vol. 49, pp 403-417.

- 27. Haq, M.S. (1968) Zur Prognose aus einer homoskedastischen Normaluerteilung mit Hilfte der Strukturwahrscheinlichkeit, <u>Statistische Hefte</u>, Vol. 19, pp 3-12.
- 28. (1970) Structural Analysis for the first order autoregressive stochastic models, <u>Annals Math</u>. <u>Statistics</u>, Vol. 41, pp 970-978.
- 29. James, A.T. (1954) Normal multivariate analysis and the orthogonal group. <u>Annals Math. Statistics</u>, Vol. 25, pp 40-75.
- 30. Jeffreys, H. (1948) <u>Theory of Probability</u>, 2nd edition, Oxford Univ. Press.
- 31. Kendall, M.G. and Stuart, A. (1961) <u>The Advanced Theory</u> of Statistics, Vol. 2, Charles Griffin, London.
- 32. Lehmann, E.L. (1959) <u>Testing Statistical Hypothesis</u>, Wiley, N.Y.
- 33. Lindley, D.V. (1958) Fiducial distribution and Bayes Theorem, <u>J. Royal Statistical Soc</u>., Vol. 20, Ser. B. pp 102-107.

34. Linnik, J.V. (1963a) On Wald's test. Soviet Math. Doklady, Vol. 4, pp 644-646.

35. (1963b) On the theory of tests for two normal samples, <u>Soviet Math. Doklady</u>, Vol. 4, pp 1360-1361.

36. Linnik, J.V. (1965) Randomized homogeneous tests for the Behrens-Fisher problem, <u>Selected Translation</u> <u>in Mathematical Statistics and Probability</u>, Vol. 6, pp 207-217.

37. (1966) Latest investigations on Behrens-Fisher problem, Sankhja, Vol. 28, Ser. A, pp 15-24.
38. Linnik, J.V., Romanovskii, I.V. and Sudakov, V.N. (1964) A nonrandomized homogeneous test in the Behrens-Fisher problem, Soviet Math. Doklady, Vol. 5, pp 570-572.
39. Linnik, J.V. and Salaevskii, O.V. (1963) On the analytic theory of tests for the Behrens-Fisher problem, Soviet Math. Doklady, Vol. 4, pp 580-582.

40. Mauldon, J.G. (1955) Pivotal quantities for Wisharts and related distributions, and a paradox in Fiducial theory, <u>J. Royal Statistical Soc</u>., Vol. 17, Ser. B., pp 79-85.

41. Maxwell, E.A. (1969) <u>Structural Inference and Censored</u> <u>Data</u>, Ph.D. Thesis, University of Toronto.

42. McCullough, R.S., Gurland, J. and Rosenberg, L. (1960) Small sample behavior of certain tests of the hypothesis of equal means under variance heterogeneity, <u>Biometrika</u>, Vol. 47, pp 345-353.

43. Mehta, J.S. and Gurland, J. (1969) Some properties and an application of a statistic arising in testing correlation, <u>Annals Math. Statistics</u>, Vol. 40, pp 1736-1745.

137.

di Al-

÷.

- Patil, V.H. (1964) The Behrens-Fisher problem and its
 Bayesian Solution, <u>J. Indian Statistical Association</u>
 Vol. 2, pp 21-31.
- 45. _____ (1965) Approximation to the Behrens-Fisher distributions, <u>Biometrika</u>, Vol. 52, pp 267-271.
- 46. Pitman, E.J.G. (1939a) The estimation of the location and scale parameters of a continuous population of any given form, <u>Biometrika</u>, Vol. 30, pp 391-421.
- 47. _____ (1939b) A note on normal correlation, Biometrika, Vol. 31, pp 9-12.
- 48. Romanovskaja, I.L. (1965) On the Wald test with unequal samples, <u>Proc. Steklov Institute Math</u>., No. 79, pp 69-76.
- 49. Sarhan, A.E. and Greenberg, B.G. (1962) <u>Contributions</u> to Order Statistics, Wiley, N.Y.

50. Scheffé, H. (1943) On Solution of the Behrens-Fisher problem based on the t-distribution, <u>Annals Math</u>. Statistics, Vol. 14, pp 35-44.

51. Sprott, D.A. (1960) Necessary restriction for distributions a posteriori, <u>J. Royal Statistical Soc</u>., Vol. 22, Ser. B, pp 312-318.

52. Tukey, J.W. (1955) Some examples with Fiducial relevance, <u>Annals Math. Statistics</u>, Vol. 28, pp 687-695.

- 53. Wald, A. (1955) Testing the difference between the means of two normal populations with unknown standard deviations, <u>Selected Papers In Statistics</u> <u>and Probability by A. Wald</u>, pp 669-695. (McGraw-Hill).
 54. Weir, J.B.DeV. (1966) Table of 0.1 percentage points of Behren's d, <u>Biometrika</u>, Vol. 53, pp 267-268.
 55. Welch, B.L. (1947) The generalization of "Student's" problem when several different variances are involved, <u>Biometrika</u>, Vol. 34, pp 28-35.
 56. Whitney, J.B. (1970) The use of the structural model in combining data bearing on the same characteristics,
 - 56. Whitney, J.B. (1970) The use of the structural model in combining data bearing on the same characteristics, Paper presented at the "Symposium on Foundations of Statistical Inference" at the University of Waterloo, Canada.

139.