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_this type have led are well known. (fhe molecular hypo-’
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This dissertation is a contribution to the theoﬂ§ of
theories. Specifftally, it corfcerns the intérpfefation of
_ o _ ' o 3
principle theories as opposed to constructive theories.
, & >

The distinction is due to Finstein, and is basically this:

In the case of constructive theories the idea is tqQ reduce .
.a wide class of diverse systems to component systems of a Y

particular kind. The existence claims to which theories of

A

thesis of the kinetic theory of thermodynamic systems is an

example,) Classical discussions of' the reality of theoretical®

copcepts have focussed on constructive-theopies. . Principle

theories have a differfnt aim. These theories introduce .

N a _ 4
abstract structural constraints which events are held to

satisfy. Theories of spéce-time structure provide_ghe most -

- accessible illustration of»principle theories. In this work
v © )

the concept 'of a principle theory is extended to include'

theories of "logical structure. ’5 _ %ﬁ

Interpretations .-6f principle theories show in what

.}
fundamental respects they are related to preceding theories.
' - ¢

For example, the special theory of.relafivity represents the-
LY

! transition from Newtonian mechanics to Maxwell's electrodynamics

" as involving a modification of the structure of space-time.

It is'in this sense that the special theory of relativity is
an interpretation of ¢lassical electrodyhamics. g
Classical mechanics and quantum mechanics are represented

as principle theories of logical structure. (Theories of .

’

LA
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this‘type are called "statistical theories" or sometimes, - .

\

"phase spacevtﬁeories".) The logical structure qf a physical
]

systein is understood as imposing the most general constraint
on the occurrence and non-occurrence of events. 4
The logical structures of quantum mechanics include the

Booléqn algebras of classical mechanics. Such structures

represent the possibility structure of events, that is,
. . . :

rq?ghly speaking, they represent the way in which- the proper-

4

ties of a physical éystem hang togethér. The quantum theory  °

has shown that significantly'different assumptions may be

made concerning this structure. ‘ ~

Chapter II formulates a general concept of completeness-
ol D
applicable to statistical theories. The analysis arises-

naturally from the‘c3nsideratioh of Gleason's theoxem and - -

E
\

iFQ corollaries and depends on the notion of a proper.

extension of a statistical theory. Extensions are defined

+ f
relative to a category of algebraic structures representing

; . ¢ s ]
the phase spaces of the theory and a su%table concept of

statistical state. Basically,-complete statistical theories

ave no proper extensions. This notion of completeness is

t

a mathemati¢a1 propgrty-of a certain class of algebraic

structures rather #han a metamathematical one. There exists .
e . S :
an important model-theoretic connection between completeness &

14

and the formal thqpry of this class of structures; this is .-

ekplained in Chapter I. Bﬁt,the concept of completeness
does not depend on this connection.

A c@nsequence of this analysis is that classical mechanics

! . . ) “~

£
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and- quantum mechanlcs .are complete in exactly the same sense.‘.

[
~

In neither theory do there ex1st extensions 1n the. category
of algebralc strs—¥%res assoc1ated with their phase spaces,

As pr1nc1p1e theorles, classikcal mechanlcs and quan%um

o

mechanics specify different kinds of -constraimts on the

possible events open to a physical system, and each theory

is ‘complete relative to the category of algebraic struj}ures

* L4

deflned

.

. The charactenlstlc feature of the loglcal structures of

quantum mechanics is the failure of sem1-31mpllo;ty, which

»

alwgySFholds in Booleén algebras. Chapter III examines the

-

theory oﬁ truth for phase space theorles. If the discussion’

> .

of this chapter is borrect semi- 31mp11c1ty is 1rrelevant to
~

the classical concept of truth as correspondence, though it

@
is deeidedly not irrelevant to the classical theory of

- {

logical structure.' This means that the concept of truth

/

‘( . is the-same in both classiozl and quantum mechanics; in
. . i particular, both theories afe bivalent. .

4' ‘—’! “'ﬁ




PREFACE

L
. This dissértation consists of three papers which were

prepared for’separate phblication. ‘They appear here with-
out modification. With the exception of Chapter II, each
paper is largely self-contained. This has led to a slight

\\\\ overlap in the mathematical exbosition of Chapters™I d III.

Chap%er I, "The Interpretétion‘af Quantum Mechapics", -
» was written- in collaboration w1th Jeffrey BUD.
- Numbers of works c1ted refer to the  Referendes follow1ng

each chapter. The Bibliography-is 4 cumulative list of

works\cited. |
Professors Leach, Hockney, and Hooker of the Philosophy
6f Science Program at f?e ﬁniversityigf Western Ontario
provided an éimosphefe in which I éould‘freely pursue my
research interests. Without their support, it is unllkely
that thls work would have been completed.
I wish to thank Jeffrey Bub and Hllary Putnam for

introducing me to the issues deq}t with in.this’ the51s.




- TABLE OF CONTENTS

. N

CERTIFICATE OF EXAMINATION ..... et s e e e re et e e ii
ABSTRACT ....... S S .. idd
PREFACE .....c0eu... .....:....f ........ e e e e vi
TABLE OF CONTENTS ....evvon.-. e R S £
CHAPTER I .~ THE INTERPRETATION OF QUANYUM MECHANICS. 1
| 0. Introduction R R 1
1. Space-Time Theofies U R
2.' Phase-Séace Theoéieg ""t"""‘;""""" 8
3. Validity and Imbeddablllty ............:.:.. 15

-+ The Bas%p Problem cetsssasemiacieste s anas 31 r

Alternative Representations ....... cesesaaas 4O

o ——

6. Conclusion ................th......!lﬁz..... by
‘ﬁ-’. Footnotes 't ........ ......;:..:..;...;.......' bs -
References ..:.:....................;...:... u8
CHAP?ER II - FUNDAMENTAL STATIST;CAL'THEORIES ...;.. 51
a. Lntfodudtion ;-w-..-.....-;--f..--..-.--i..- .51
1. The completeneqs Problem for

" Statistical Theories .....ovieeeveeeaceses 55 :

Refer‘ences .....".Q.I.l'.‘...l..l...l:..l.l! '68

, CHAPTER III - THE POMIBILITY STRUCTURE OF . _

-

PHYSICAL SYSTEMS ....iveevunasenens 1077

. L - X . 'IU +
0-i Introductlon ...‘.'..”'v"'.’.‘.........‘..“.. 70

s

v

at



1. Preliminary Notions ..... et etrcaer e

2. Partial Boolean Algebras and .

Orthomodular Posets .,.......dz..........]; -82

" 3. Applications to the Problem of Hidden

¢ Variables ...... s esesean e et e
4. Idempotents as Propositions ........i...evuun.
‘ 5 - "-Anomolies " ¢ o9 9 0 " .-. e« & 0 & & & & 0 0 & 0 & S S G "I S BB .

References «..eevveveveeransn Chireerae e

* ! -

|
BIBLIOGRAPHY ...cevvvrnernnnnnnnnnnnns et es et e
3 % - i
»
. .
rJ ‘



The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/




Chapter 1

The Interpretation of Quantum Mechanics ¥

«..no solution of the problem is. _
possible as long as in adherence
to the tendencies of Huyghens and
Mach one disregards the structure
of the world.

Hermann Weyl ([21] p. 105)

0. Introduction _ - o .

The quantum theory 1is intérpreted in the technicai
(semaptical)vsense. By an interpretation of quantum mechanics
_we mean something much less precise. As a rough approximation,
an intefpretétion of a théqry should show in what fundamental

A

respects the theory is related to preceding theories. In the

case of the quantum theory this means understanding the transi-

tion from classical mechanics to elementary (i.e. non-relati-
vistic) quantum mechanics.

To beéinmwith, we distinguish between two types of
physical thedry: 'prindiﬁ{e' theories and 'constructive'
theéries.l The difference i3 basically this: In the case of
constructive theories The idea is to reduce a wide class of
diverse systems to component systems of\é particular kin@.
The existence claims to which theories of this type have led
‘are well known - especially in the casé.of'the molecular hypo-~
thesis of the kinetic theory. Tﬁe dlassicai discussions of
the reality of theoretical concepts have focussed on theories

of this<type. Principle theories have a different aim.f These

theories introduce abstract, structural constraints which evemts

-

are held to sa'l:i,sfy.2

I



- depends on Kochen and Specker‘s crucial Theorem Uu.

In this paper, classical amd quantum mechanics are

represented as a particular type of principle theory. We

y .

call theories of this type fphasé space theories' or 'theories

of logical structure' since the type of structural constraint

AY ~

they introduce cohcerns the'iﬁgical structure of events, and
this is given by theApHése’space of the theory.a_'The logical =«
strnucture of a physical system is understood as imposing the.

most general constraint on the occyrfence and non-occurrence

of events.

In Section 1 we consider the concept of an abstract
strqcturaluconstraint in the moqf famil®ar context of space-~

time\;heories. This motivates the preliminary discugsion,

in Section 2, .0f our concept of logical.structure.
L ; . ‘ o . .
Section 3 presents an elémentary‘character;zatlon of

the imbeddability relations between the-ﬁhase space structures

4 L

of classical and' quantum mechanics. We mean this in the
\ _ . . , |
technical sense, i.e¢., in terms of the validity of elementary

5

or fifst—ordgr propoSitiongliformulae. 'The characterization
A N L}

o

As is well-known, ﬁpe set S of stafistical sta%es of »
the quantum theory does not contain any states that are dis- ‘
pefsion free. 1In Section 4 we discuss this in the light of
Kochen and Speckéf's Theorem 1. 1In thié section,‘he also
compare the quantum theory‘with-classica;'staﬂggtiqal mechanics.
We conclude this section gy relating ouar interg;etation of the
quantum theory in terms of logical stducture to théooriginal

proposal of Birkhoff and ven Neumann [2].

2 ’ ¢
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THe mathematical discussion df this paper is based on

Kochen and, Specker's concept of afﬁartial Bodlean algebra.

In Section 5, we considef'%wo altérnafﬁvg fepresentations of
Hilbert space: %Ephoﬁodular partial

ly opdered sets (posets) o
[ \ - .
) . .
and orthomodular Pattices.
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1. Space-Time Theories .p

W o

- The fblibwing discussion iscbaséd on the formylations .
4 . ' : N

of Anderson [1] and Tragtman {18,191, However the central ~
. . . . G\:‘,
idea of this section, viz? the distinction between coordinate e

,"e . . ' é;%

transformatlons and syﬁhetrles, orlglnates with Weyl. (See,

g [213 Section 13.) e | S ¢
Dencte by E the set of all possible histories of physi-

cal systqms, and by T‘fhe subset of physical hlstorles that

1 ¥ &

MBy actually- occur, i.e., the higtories Ln'? are dynamically
; p0851b1e or allowed by the’ phy51cal laws. The structural

‘ .
constralnts of a space-tlme theory may be understood in terms

"o

of the concept of a symmetry.’ By thls we mean an automorphism

-
of E on E which CaPPles F int® F ‘Symmetries thus preserve
) o )
the laws of motion, whlch determlne"the subset T of E. The o

¢ = o Q

.spaceqxlme %trﬁcture of a physical theory is glven by the

& N - %

1nvarr&nts of 1ts symmetry group.

It is clearly p0531b1e to restrict F on theé . aesum?tlon

&

ZIFQ\J . ‘that aopartlcular symmetry group obtain;, we areathen restrlct; ‘
| ing the character of physical laws op the’basis of space-time
'structure? For exampke, the transition from Newtonian
. mechanics to spec%alﬁ;%lativity consists in a @gdfffCation
of the éymmetfy group f;om fhe ihhomogeneéus‘Galilean group

" to the, Poincarvé group '(inhomogeneous Lorentz group). The
T, Q2 '
two fundamental invariants. 2{ the cla381cal gymmetry group, 0

the Euclldlan metrlc, and absolute time, waraodropped altogether.

°

- Space~time structure is-determined by the Maxwell-Lorentz

,
]

3 4 i ' s
theory, and the classical laws afe modified: new law of motion <

s o x .= - .
o for rapidly ‘moving mass points. .
g - :, Q ‘ _’ -

L
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A theory of space-time structure, if korrect, tells

us something perfectly objective afout the world. There is
_ ; an important miéconcéption of the ;elation of relativity
principles'to thg role of coordinates in physics which
suggests, that af‘least‘the chéice of spaée—time metiric is

largeiy, if~ﬁot wholl&, a mattéb\of convegéipn or desériptivé
simblicity. We discuss this -matter here since it anticipates

' : issues wﬁicﬁ widl arise later in cénnection with the quantum
theor';. »-

LTo see what is involved, it suffices to consider the
‘p%inciple of general relativity. To begin with, we distin-
. w

guish this prin&éple from the principle of general covarianée.

As we use the term (éf.'Anderson (1], Section 4.2), genefally

covariant theories have the property that the transform of a <
/ ¢

o solution of an equation is the solution of the transformed

L

/
‘ .0 .
equation for 'arbitrary' coordinate transformatioﬁs. That is

2

to say, general coQariahﬁe requires that the coordinates
should not occur, essentially in the formulation of physical
f%ws. ‘Roughly $peaking, the posgibility of a generally -
covariant‘formu;afion of physical laws is mainly a mathematical
develbpment; which was initiated by Minkowski. o /
@ - ' In going from special to generaq‘ relativitys the sym- ¢
metry group is enlarged to include all diffeomorphisms, i.e.
all maps which ppgservé the topological and differential
stpuct&ne of spac;-time. In the general theory metrical

’ ] s » .

§tructures do not occur among the invariants of the space-

time symmetry group. This is expressed by saying that the-7

'
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metric is not, an absolute element of the general theory, but

q ’

a dynamical variable which appears as a component in tﬁe
histories in F. The local validity of tﬂé special theofy
requires that for infinitesimal’regions of space-time the
metric must assumé (fiat) Minquskian values. |

. _ The important point-to.notice in the transition from
" special to\Zenerél relativity theory is that it gbncerns the
symmetry group, not merZIy the covariance éroup of the theory.
-In contrast.to general relati¥ity, the principle of éeneral'

\. "

covariance 1is compatible with the existence of a symmetry

L

group which is properly included in the det of all diffeo-
morphisgs. For example, in, a generally covariant formulation

of special relativity, we may replace the ceoordinates by their
' »
curvilinear transforms. But this leaves invariant the Minkowski

tensor which represents- an absolute element of the special’
theory. 1In general relativity, there are tio absolute metrical

elements. ' : ‘
- 0 -

So iong as these two principles are not kept cleariy ’
distinct, the generalization of a relativity principie, |
together Qith the corregionding change in space-time struc-
ture which this induces, will appear to be a purely formal

development. This is because it geeme plauéible to view a

J

change in the covariance,groﬁp df(? theory as largely a matter
e

’

of mathematical conveniehce. But ven if this were true, it
‘'would be irrelevant to the interpretation of relativity

’ ’ ‘
principles; since they concern the gymmetry group,not the

covariance group of the theory. Siyilarly, hypotheses con-

cerning the metric depend on relativity principles, and thus
J . s - 2 Lo
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N | ' | \ I 7
on the symmetry group, not the covariance group of the theory.
But the character of the symmetry group, and therefore the J
metricai‘strugture of space-time, Xs independent-of how we
describe the dynamically possible histories'in E. §o even if

it were possible to show that the choice of covariance group

is conventional, nothing ‘would follow concerning the choice of

symmetry group.

(Notice, even the c1aim~tﬁat the covariance group is
conventional cannot be completely correct, since the require-
ment of generai‘covarfénce restricts the class of mathematical
objects yhich may r?pr;sent physical magnitudés, and, to this
extent, restriets Fhe actual content of-fhe theory. On-this

- - .
see Trautman's discussion.)



2, Phase Space Theories5

The fundamental problem for a phase space theory is

the representation problems It is required to find a phase

space structure and a ?robability algorithm which correctly
represen%é the tétality of all possible events‘aSSSCiated
with a certain class of physical systems. In classic;l
particle mechanics an event is represented by a point in a
subset @ of.6N dimensional Euclidian space, where the"6§-
tuple (ql,t..,q3ﬁ,pl,...,p3g) of regi numbers denotes thg{
coordinates of position é;d momentum of the N components.
In quantum mechanics an event is fepresented by a ray in )
a separable Hilbert dpace H. In this section, we confine
oﬁr attention to phase space structures.

Consider the set of all intéfvals of the real line,
R, half-open (on the right).” Tha Borel subsets of R are e

the sets contained in the o-ring generated by this set. A

. theoretical proposition about the. system asserts that the

value of a physical magnitude lies in dne of these intervals.

In the case of basic propésitioné (i.e., basic theoreticél' /
ﬁropositiqns) the intervals are atoms in fhe field of Borel
subsets of §: .
We may imagine that the propositioné,of a‘phage space
theory exéress the.result of ideal - i.e., non~interfering - \
measurements. In the case of basic pfopogztions, the mé.atsi.w(-::I
ments are also infinitely precise. =

Now consider the system at a particular inétént. 'The'

n
greatest lower bound Ai{ai}’ ieI (I is just some index set)

of the set of all the basic propositions true of the system




N

-

- ¥

e )

-

at that instant is called an atom or atomic proposition.

jBaéH’atomic proposition determines an ultrafilter in the

- ‘algebra of thedretj_ca]. propositions. |

Notice, theoretical propositions are algebéaic objects’
and the strycture of theoretical propositions is an algebrgic
structure of a certain kind. 'For example, in the commutative
algebra 59, theoretical propositions dre associated with' the
‘characteristic functions of the Borel subsets of f; in the set
of self-adjoint operators on a separable Hilbert space, theore-
tlcal propositions correspond to the projection operatonér
We adopt the following notatiomral convention: T denotes{the
algebra of theoretical propositions of an arbitrary phase
space theory; C, the algebra of propositions'of classical‘ v
mechanic?,‘and’g, of quantum mechanics. *

The phase space of Ehe theory provides an alternatzvea
way of viewing this structuré in terms of the topology of
the spaée. Fop example, in the case,;of classical mechanics,

-

the poi?ts in § correspond one-Eo-one with m&ximally consis-
tent sets of theorefical prbpositioﬁs, i.e., with'ultrafii%ers
in the Boolean algebra’of theoretical préboéitionst Now let
S(C) denote the Stone space of C (thg set of all ultrafilters -
in C). The Stone isomorphism h: C+S(C) which maps a theoretical
proposition onto tﬁe)set of ultrafilters which contain it
preserves the structure of C. Because of the correspondence
between the points of § and the E?trafllters of S(C), we may. .

replace the Stone 4pace of C by 2. Then Q is the Boolean

space of C; and h is an isqmorphism of C onto the perfect and
\Q({ R . ’ i

v ) : /




-

: i A0

reduced field F(R) of simultaneously open and closed.subsetg

.

of 9. Under this mapping the imagé of a consistent set oY
propositions fi.é., a proper filter jn C) is a non-empty
0 £

closed subset of 2. An ultrafilter in € corresponds to a

singleton subset._.{w} of Q. The unit filter in C is associated

with the whole space, and the dual of the unit filter, the

-

zero ideal, with the.empty set.

In classical mechanics, atomic events in-the history

" of a system are represented by the points in 2, or the ultra- '

filters in g,“so that the algebra B of all possible events
associated with a physical system is a‘Bdolean algebra.

The theoretical propositions of‘quintum mechanics form
a partial Boolean algebra. This structure may be viewed as
a collection Q = {Q;}; 1 of Boolean algebras such that for
every i,wﬁEI there is a kgl such that gingj = Q. and if
@ys+..,a, are elements of Q = diel{gi} such that any two of\
them lie in a common Q., then there is a kel such that al;...;,

;a'egk. Q is a partial Boolean algebra if we restrict the
t

“algebraic operations to elements in Q which lie in a common

Boolean alfebra gi' For the quantum theory, Q is taken to be

4isomorphic to partial BdgiéénAalgebrg of linear subspaces
of a suitable Hilbert space, A partial Boolean algebra may
be pictured as 'built up' from its maximai Boolean subalgebras.
In terms of this representation,- -the phase space of the
quantum theory is just the isomorphic colleXtion of Boolean °
spaces corresponding to the Boolgan algebras gi. Just as in

1

classical mechanics, an atomic event is represented by an

-
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ultrafilter in Q or the image of this.filter in the collection

A}

. | \Ef Boolean spaces coqresponding to Q, so that the algebra A

“ of all 5ossib1e events is a:particular type’ of partial Boolean
algébrau - ’
~ For our purposes, it is.éufficiéQj to distinguish between
Boolean and non~Boolean systems of-evenFs. The logicgl struc- - ‘

ture of an ‘individual event is Boolean*or non-Boolean according ..

| “to.whether the physical system-to which it belongs is or is. .

el b

not Booleari. The distinction dgperds on a reflexive and symme-e
trlc blnary relatlon of é%mpatlbilltyu; Let A denote the set
\

of all p0531b1e atomic events whlch a Jphase space theory

Ey

associates with a physical gystem. If the relation of compati:
bility is trénsitimg in A, the system ip'hoolean.' This is the
case in classical mechanics. The huaﬁtum theory generalizes

the logical structures of classical physics by introdysing,

T

a relation. of compatibility which is net transitive in X,
This Aeads to a’class‘ of event str';u‘ctur'es‘ which differ strongly
from claggical logica® structures in-the sense that they are

not even\i beddable-ihto a Boolean algebra.

[—

Thise distinction between élassidal and non-classical
t _ T L

- logical structures does not coinﬁidé‘wifh the distinction

-

~ between clasgical and non-cléssical fl%malblogics. That 13,
non-lmbeddablllty 1nto a Boéﬁean algebra is a necessary condl-
'tlon for the loglcal struct;re of a system of events to be
con31dered non-cladssical. But the non-ela381ca1 logics usually
considered in the literature determiné classicdl logical
structures. ﬁ;ch formal loglc is a33001ated w1th a character-

istic algebra the Llndenbaudearskl algebra of the logic.
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This 001nc1des w1th the loglcal structure determlned by the |

-«

2

formal logic. The Pseudo-Boolean alg&bra:s6 assoclated with

e 1

Intuitionist logic and the modal systems of Lew1s c01n01de )

- ;

with distributive lattlces. So the theorem of Machele (1]
applies: for each such algebra,.there is a Béolean 1m$edd1ngt
Apd by a result of Peremans [151; the“imbedding.is constructive.
‘ /Gfact that there exist strongly dlfferent theorgtlcal
conceptldns of - the loglcal structure of a physical system in-
dicates that this is as objective a component of the world as
the events themselwes. At leést this is the major considera-
tion in favor of realism elsewhere in science. ‘If it is \\
maintained thét,loéical structufe is conventional it must be
possible to shoy that there is so;ething which the question
of logical strueture does not share with other theoretical
issues which-would justify such an interpretation. For |
examplg,,it is generally required that cpnvéntiqns be
dispensible. Hence, if thé chdice ofinon;Boolean logical
structure were conventional, it.should be possig;e to refor-

. . N - .

malate the theory without this choice. But the logical '\

-

structure of the quahtum thepry does not have this character.
. ’ . . .

Notice, in_this connection, that we maintain a sharp
distinction between logical structure in the sense of the

phase space structure and the syntag and semantics of the

]
I

formal language L in whlch the prop081t10ns of T are recon-
structed. The choice of phase space is dlrectly related to
the representation problem, and therefore, to the guantum

theory. The syntax and gsemantics of L raises-a completely



v

4 N : . > o 13
Qifferent set\of problems. The events ®hich.the propositions

of T describe are representef in a certain algebraié\stggpture.
" This is given- by the phase space which the theory associates.
with the physical system considered. - Now on any reconstruction

of the theory, this structure is retained, whategerithe choice

L5

of L. Thus the syntax and semantics of L - i.e., logical
Structure in the conventiofal sense -~ is not thgoréticarly

important.

There 1s another respect in which our approach differs

from accounts- which use the concept of a theoretlcal prop081-

f

- tion: Usuallywthe«concept of a theoretical prop051tion is
introduced in order”to 1dent1fy a phase space theory with

the pair (T,9) con31st1ng of the system T of its theoretlcal

4

prop051t1ﬁns, and set S of its statistical states. Now the

v

properties asserted by theoretical propositions are ellmentary
or first-order propertie%) so they are-expressible in an ele-
mentary language. But mosf'theoreticail§ interesting pro-

perties are not even general first-order properties; i.e.,

‘operties P such that-a structure has P if and only if it
is a model of some (possibly infinite) set I of first order
sentences. TFor example, the property of being a Euclidean

spSce is not a general first rder property.1lThis istrue

of other space-time properties as.well. Since, in ‘our

interpretation, such properties are an essential component
« . - N
of principle theories, the identification of a theory with a

first-order reconstructlon of the system of its theoret%sal

propositions is not justified.

-’ - 1




\‘ ‘(:,4‘

N

14

Finally,.i; ié necessary to consider the objection
that the concept of logical structure introduced here involves
an unjustifiable extension of 'logic'. Insofar as this is
not a completely verbal issue, it overlogks several important
considerations.

(A) It is possible to characterize the.difference
between the classical and qugptum mechanical” phase spaces in
terms of the Vhiidiﬁy and refutébility gf cléssical tautolo-
gies, the so-called 'propositions of logic'. The concept of
Qalidity employed in this éﬁaracterization is a géneralization
of the claSsical concept of validity in a straight-forward
- sense. Both of these points will be explained in detail in
the discussion of Kochen and Spegcker's work.

(B) The phase space structures with which we are con-
cerned are Boolean algebras.or genﬁgalizations of Boolean
algebras. From a mathematical point of view, classical
propositional }oglc is essentially a Boolean algebra when
equivalent sentences are '1dent1f1ed‘ There is also the
well-known equivalence of the representation theory of
Boq&ean algebras with the metatheory of classical logic.

(C) The identification of logic, or logical-structure -
with the syntax and semantics of formal languages- ;é bylno
means a necessary delimitation of the subject but ig due to

C .
a particular point of view: viz., Formalism. Thus, in part,’

-

4

this paper.may be viewed “as a rejection of Formalism as an

adequate theory of the application of logic in physics.
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3. Validity and.Imbeddability‘
This section is essentially an exposition'and clarifi-

cation of the Jgrk of Kochen and Specker. For the mos; part,

we adopt their notation and terminology.

A partial algebra ovér a field K is a set A with a

reflexive and.symmetrie binary relation <« (termed 'compati-
bility'), closed under the operations 6f addition and multi:
plication, which are defined only from <+ to A, and the
operation of scalar multiplication from g'x A to A. That.is:

(1)  «» c AxA ’
(ij) every element of A is compétibie,ﬁdth itself
(iii) if a is compatible with b, then b is compatible

with a, for all a, beA
(iv) 1if any a, b, ceA are mutually compatibley thn v
- (a+b)++c, ab++c, and la+*b for all rekK.

In addition, éhere is a unit eiement"l whith is compatible with
every element of A, and if a,b,c are mutually compatible,

s )
then the values of the pol§nomials in a,b,c form a commutative

14

algebra over the field K.

A partial algebra over the field Z, of two elements is

termed a partial Boolean algebra. The Bdolean operation

v and ' may be defined in terms of the ring 0perétio in the

usual way:

“
t

aAp.= ab . ~
avb = a +b - ab’

~ . /"
a' =1-2a

If a,b,c are mutually compatible, then the values of the poly-

nomials in a,b,c form a Boolean algebra.
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Clearly, if B is a set of mutually compatible ele-

ments in a partlal algebra A, then B generates a commutative
sub-algebra in A; and in the case of a partlal Boolean alge- |
bra(A,'g generates a.Boolean sub—algeb%a in A. Just as thg

d . set of idempotent elements of a commutative algebra forms

& Boolean algebma, so the set "of idemPotents of a partial

algebra forms a partial Boolean algebra A partial Boolean

<, &

algebra may also be deflned dlrect' in terms of the Boolean

'~ operations A,V and '. A pd 'al Boolean algebra assoc1ated

with a Hllbert sPaCe .nay be rega d as=<a partlally ordered

set w1th a reflexive and symmetric relation of compatibility,

_euch that each maximal compatlble subset 1is a Boolean algebra.
We restrict the dlscu551on now to partial Boolean - ®

algebfas. A homomorphlsm, h between two partial Boolean

algebras, A and A’, is a map h:A+A' which preserves the-al-

gebralc operatlons, i.e. for all'compatlble'a, beA:.

h(a)+h(bd) .
hfa+b) = hla) .+ H(b) .
o h(ab) = h(a)h(b) oo -
. B .h(l)‘=l. e r |

o

A homomorphism -is an imbedding if it is one-to-one, and .into.

'A weak imbedding is a homomorphism which is an imbedding on ~

Boolean sub-algebras oﬁ'A More preclsely, a homomorphism, h,
of A into A' is a weak 1mbedd1ng if h(a), # B(b) whenever a+»b
and a#b in A, k '

A neceseary‘andisufficientgcondigion for the lmbed-

o ‘ ’/'
dapility of a partial Boolear algebra A into a Boolean algebra B,

L] . o
) H .
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i}ig that for every pair of distinct elements a, beA there
: RS , I '

'

exists a homomogphism*h?A+§2 whf%h separates them in 22’
y M

i.ey.such that h(a) # h(b) in Z,. This is Kochen and

Specker's Theorem O. Ehé result depends on the semi-

Q

simplicity property of Boolean algebras, i.e. essentially,
[ i « - -
the homomorphism or ultrafilter theorem. ’
; N . . T eas
- The ¢counterpart of Theorem O for weak imbeddability

is,the féilowing: A necessary and sufficient conditidn for

&
< a Boolean algebra B is that for every non-zero element acA

o there exists a homomorphismh:A-@2 such that h(a) # 0.
A propositional,or Boolean function ¢(xl:...,xn)
4

-may: be regarded as a polyn%mial ové¥,§2. To say that a
_partidular’propositionai function,e.g. the function

e
[

Xy A (szxéZIE (xleb) A Xg

s .

is a classical tautolbgy, is to say that every substitution

of elements°f%6m a Booleah algebra B forfthe variables

) A . X

‘We seek a generaliza-
[ Y

XX, 5Xg yields the unit element in B.

tion of ®his c¢classical notion of \}alidi,ty to include sub-

% kel

Rroggfe that a propositional:function such as the above is
Vali

. in a partial Boolean algebra A if every ‘'meaningful'’

[

substitution of}el@ments fpomrA:yields the unit element in A.

A 'meaningful' substitution is one which satisfies the com-
fc" o2 t . .
patibility relations; ofjherwise the partial operations are

- undefined in A. In this particular case, we require that the

> @

&lements al,az,a3 of A substituted for. x,,x,,X, satigfy the

e © 4 ‘

P , ’ .

¢ G,

LAY
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the weak imbeddability of a parti;I Bgolean algebra A into ‘l
. k!

. . L4
stitutions from pé%tial Boolean algebras. Kochen and Specker

-

-



conditions: - o e .

11‘ o aé Hhas

> g

241 2

\ al :—-) a2 A b\aa ) > 5] i ) < e
ap M8y TRy o | | A
V. o ay A_Fa2Aa3) > (alNaz) A ag. o ‘

1
’

. This notion is:formalized in the following definition:
Let a = <aj;...,a > be an element in An, the n-fold

‘Cabtesian product A’x...xA of the partial Boolean algebra A.

The domain, Q¢, in A of a propositional function ¢(xl,,..,xn)

is defgned recursively, together with a recursive d%finitionc

of a map ¢i (corresponding to ¢) from Q¢ into A: as follows:
(1) If } %ﬁ the‘polfnomial 1, then Q¢ = A" and ¢*(a) = 1.
(2) If ¢ is the deynomial xi(i=£,..?,n), then Q¢= An, °

and ¢%(a) = a;.. . . g

(3) If ¢_= ¥8X (where 8 is either + or.), then D, con-

4 E - . 8ists of those sequénces a which belong: to the

‘ ‘ 'intersection ¢f the domains of ¥ and x {i.e. aeg¢n2_),

and also sdtisfy the compatibility condition y*(a)«

' - x*(a). The map ¢*(a) is defined by ¢*(a) = Y*(a)

o B %X*(fa)' ¥ 4 )
The-definition” of ‘the domain of a propositional function

- .

" in a given partial Booledh algebra A serves to make precise

the notion of a '‘meaningful' substitution, while the map ¢*

4 ; .
defines tle value of the polynomial in A for edch such sdPsti-

tution.
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" The statement that the idéhtity

I

. ¢(x1,.:.,xn) = 1 X \ ,
helds in A is to be understood in the sense-that
co S
. ¢*(a) = 1 : !
for all aeg¢. » 3
The statemént that the identity
¢(x1?...,xn) g*W(xl,...,xn)

hg§a§7in A is to be understood in the sensd that
T e = R@) . - ¢

’ for all aeg¢n2wi

Now, the generalized definition of validity is
< ¥
thisé: A propositional function ¢(x1,...,xn)[i.e. a Boolean
function - a polynomial over gz].}s valid in the partial

Boolean algebra A if the identity ¢ = 1 holds'in A.

¢ is }efutable in A if for some aeg¢,¢*(ak = 0.,in A.
¢ is logically yalid in the‘generalized sense, i.e. Q-
valid, if ¢ is walid in every partial Bgolean algebra A. If

the choice of A is restricted to Boolean algebras, this defini-

-
-

tion of validity coincides with the usual definition: the set

» . .
of valid propositional formulae is just the set of classical
tautologies. Thus t?e recursive definition of the domain of. {

a propositional function coupled with the recursive defini-

tion of the map ¢* just generalizes the classical, Boolean

4 -

interpretation of ¢.

1

It is important to appreciate the distinction between
the validity of ‘a Boolean function o

L2 £ ‘
in a partial Boolean algebra A, and the hqldihé of the identity .
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Y = ¥

in A. To say that y=x is valid in A is to say that

(p=x) = 1 ‘ —
in A{ i.e. writing ¢ = (Y=x), we require that

¢p*(a) = 1 | ;' ' "

: : o

for every sequence aeg¢ngx satisfying the additional compa-
tibility condition _

y*(a) **'x*(a). o ' o
But . for the identity y=yx to ﬂold in A, we require that y*(a) =
x*(a) for gxggx_éeqﬁence aegwngx, not only thoee se§uences
satisfying the additieﬂal compatibility condition y*(a) <+ x*(a).
;Thus, the set of admissable sequences acA” is dmaller inwthe
case of the validity of the biconditional than in the case of
the identity. If the iéentity heias in A then certainly the
bicondltlonal is valid in A, but the conﬁ//se is not in general
true. The valldlty of the blcondltlonal amounts to the hold-
ing of the identity for the restricted set of sequences which
satisfy the compatibility condition W*(a? ~ x*(a).
AN For ekamﬁle, let ¢ = (P=x) be the classical tautology:
‘il A-(XZsz) z (xles) v (xles).
‘¢ is not enly.valid”in eyery'partial Boolean élgebra, iteis
also the case that the ideﬁtity

* Xy A (xQQka) =‘{xle2) v (xle3)

holds in every A.. Fop if a = <a;)saysan> eD

-

4y ¥ 84

. S
Rk |
a; ** a,

But then ays ags a3, generate a Booledn algebra. It follows

-



that ‘ .

a; A (a2Va3) = @glAaz) v (alAaiif
and hence

a; A (a2va3) > (alAaz)'V (ajraz).
Thus, every sequence aeg¢ngx automatically satisfies the

compafibilixy condition y*(a) ++ x*(a).

In the case of & partial Boolean aigebra A imbeddable
inté a Boolean algebra, the validity of the biconditional

i

Y=x 1in gz (i.€. the classical tautologousness of the bicondi-.
-tional) entaiis the hol&ing qf the idéntity Y=x in A. Thus,
in the case of imbeddability (and’only in this _case):
Y=y is valid :'Ln‘_Z_,2 S
is equivalent to
y=x holds in A. i \
_Tﬁis is a consequenée of Kochen and Specker's Theorem
4, to which we now turn. ,
Kochen and Specker's fheorem u es%ablisheS'an elemen-
%ary conditioﬁ for the iﬁbeddability of a partial Boolean
algebra into a Boolean algebra. This clarifies the relation-
shipJbetween the validity of classical tautologies in a
7§artial Boolean algebra A and the imbeddability of A iﬁto a
Boolean algebra. The statement ;f the theéorem is as follows:
(1) A necessary and suffiéient condition for .the im-
.beddability of a partiéa Boolean algebra A into
a Boolean algebra is the-holding of the.correspond-
i ing identity ¢=x in A fd%vsvery classical tautology
-1 of the form ¥=x. ) |
S
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(2) A neceséary and sufficient condition' for the weak

imbeddability of a partial Boolean algebra A into
"+, a Boolean algebra is the validity in.A of every
.classical tautology.

(3) A necessary and sufficient condition for the

existence of-a homomorphism from a partial
/////C£_<\.Boolean algebra A into a Boolean algebra is the
) irrefutability in A of every classical tautology.

The first part of the theorem states that A is im-

beddable into a Boolean algebra if and only if; for every
Boolean function of the form y=x which is valid in 2, (i.e.
for which the_identity (Y=x) = 1 holds in §2), Y=x 1is valid
in A. - - !

‘ If A is imbeddable into a Boolean algebra and ¢ is a
_propositional formula not valid in A, i.e.

Codx(a) £ 1

for some aeQ¢ in A, then by Theorem 0 thereis a homomorphism

onto 52 such that

N .
akom

h(¢*(a)) # h(l)

. ¢*(h(a)) # 1 in Z,, ‘
‘hence ¢ is not valid in Z,.. Thus if A is imbeddable into a P
Boolean algebra, all classical tautologies are-valid in A.’

(If we assume thaékthe theorem holds;ythis may be'
proved directly, as follows; Supposé‘that for every fautology
of the form ¢=¢, ¢=¢y is valid in A. Now let x be a classical

kautology. Then

Xz1
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is a classical tautology, where 1 is the constant Boolean’
function: It follows that 4 o - ' A

x=1 |

holds it A, is.e. that x is valid in A.)

| The difference between weak imﬁeddability and (strong)
imbeddaﬁility for the set of functions valid in A is just
'this: In the case of weak imbedd;bility, all the classical
tautologies are vélid in A (and in general‘éheré are also
functions valid in-A which are not classical tautologies).
In the case of (strong) imbeddability, all the classical tau-
tologies are valid in&A. There may also be functions valid
in A which are not classical tau?ologiés. But‘here we know
in addition that if ng.is a clesiical tautology,‘then
y=x holds in A.

Thus, for weak imbeddability, if ¥=x is a classical
tautology (i.e. if Y=y is valid in gz), we know that‘wEx is
valid in A (by the second part Af the theorem), but we cannot
conclude that ¥=x holds in A. 1In the case of (strong) im- .
beddapllity, this inference is legitimate, i.e. from the-

validity of a biconditional in Zgs we may infer that the

corresponding identity holds in A.' This means that in the ™

case of imbeddability we may infer theholding of the identify
¢fX ‘

?smm(;he validity of the biconditional; i.é; from
(=x) = 1 in A, '

4

whenever yzx is a classical" tautology, as well as the converse i

(N

(which follows immediately from the ‘definition -of validity for

an identity). T ,

A
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Notice that we cannot conclude that only the classical
tautologies are valid in A if'A is imbeddable into a Boolean
"algebra;it does not follow that if A is imbeddable, and ¢ is valid in

A,then ¢is valid in Z For, to say that ¢ is valid in A is

2
to say that

¢*(a) = 1 in A
for every aeQ¢ in A, and to-say that ¢ is valid in Z, is to
say that

¢*(a) = 1 in Z, |
for every asbéiin 52' But the‘imbedding into B may only use
a proper subset of'the sequences in gg associated with the
elements of B. We can conclude that all and only the-classical
tautologies are valid in A ohly if the imbedding is an iso-
morphism. |

We give an exposition here only qf éhe proof of the
first part‘of the theorem. e

The necessity,of°fhe condition is relatively easy to
" prove. We are required to show that the holding of the
corresponding idertity Yy=x in A for evefy»classical tauto%péps‘
of the form Y=x is a necessary condition for the 1mbeddab111ty
‘of A into a Boolean algebra. In other words, we are required

to show that if A is imbeddable, then for every blcondltlonal

p=x which is a cla531§a1 tautology (i.e. which is valid in Z ),.

»

the correspond%pg identity ¥=x holds in A, -
Suppose A is imbeddable into.a Boolean algebra, and
that ¥=x is a classical tautology. We must show that this

entails that the identity ¥=x holds in A, We show this by -
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proving that

Y#x in A
leads to a contradiction.

| If yv#x in A, then for some aegwngxz

v*(a) # x*(a). - -
Now, by Theorem 0, since A .is imbeddable into a Boolean
algebra, for each b, ceA(b#c) there exists:a homomorphism
h: A+§2 such that ,

h(b) # h(C) — o ., .4/
and so there exists a homomorphism h: A+§2 such that:

h(y*(a)) # h(x*(a))
or

w*(h(al)”'“’h(an)) # xf(h(al),...,h(an)).
In other words, <h(a1),..,,h(an)> is an admissable sequence

in Zg such'fhaf‘u'
W*(h(al),...,ﬁ(an)) # x*(h(al),...,h(an)).
This means that v#x in 52, and so the biconditional Y=y is

not valid in 22, i.e. ¥=x is not a classical tautology, .

. ) ’ N .
contrary to‘our original assumption.

9

.o (Notice, it woulé not in géﬁérél be permissable to
infer the non—validi%y of the biconditional y=x from the
f;ct that the idgnfity y=x failed to hold in a partial Boolean
algebra. fhis inference-is, however, obviously ;e itimate .
‘in Z,-) - | |

To prove the suffipiené& of the cbndition, we\must

show that the holding of the correspohding identity W?X in A

.
~for every classical tautology entails the impeddability of A

P
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into a Boolean Algebra. Kochen-and Specker prove the contra-
-positive; if A is not imbeddable into a Boolean algebra,
then there exists a»clafsical tautoiogy Y=x such that for
some,aeg¢ngw, w?x.is not valid in A.

Let 51 denote ﬁhe set of positive statemepts from the
diagram of A, i.e. the sentences formulated in §5me first- by
order language L which déscribe all equations of the form
at = y or &n = ¢ which subsist among elements of A,

Let K, be the set of seﬁtencés formulated in L des-
cribing the class of Boolean algebras.

Write K=K vK L / © -

It is vary importanf to bear in mind throughout the
following that giis‘a subset of the sentences in’lL, the first-
_order language in which the Boolean agioms are formulated,
anq in which relations of khé fOij a+B = Y and-&n = ¢ wpich
subsist among elements of A are'formulateq.

Now, the models of the get of sentences K, are all‘
homomorphic images of A. Hence, the qléss of 'all models of
K cdmprises all.homomorphic‘images bf A which are Boolean
algebras. ‘

If A is not imbeddable into a Boolean algebra, then,

by Theorem 0O, there exists a pair of elements a,beA such fhaﬁ

no homomorphism onto 22 will separateqthem. That is, a and b

L

are two distinct elements in A which: are *dentified by every,

homomorphism ogto gzi

<

If a and b are hot.sepap d by any_homomorphism onto

Z,, then they cannot be separated by a homomorpﬁism into- any

»

. ’ hatv
.

-



Boolean élgebra (by the homomorphism theorem, or the semi-
. simpiici{y property of Boolean algebras). That is to say, N
a and b are identified in every model of K (since the models

of K are just a class of Boolean algebras, viz. those which

\
are homomorphic images of A).

Thus :

KFney2 =2

~ S~ N
(where h(A) is the class of Boolean algebras which are ho-

momorphic images of A). Note that asb is to be understood

<
-~

here as a sentence in the first-order language L.

" By the completeness.of L, we hgve:
KFasb. .. B ¥

. .. -

By the (syntactic) compactness of L, a=p;féllowé from a finite

subset L of K,, where .
Y] .
‘( ) N . L) .
L= {aj+3j = Yj’gknk = Ckllsqﬁv’;f5fm}'ﬂ .
Hence: ] . H . o
EZULF a=b :
‘or -, -, '
K2 ,{Aj”kh} F a=b . : '. .
where : . ’ . o
SR B S

is a finite conjunction of sentences of L. Hence by the de-

duction théorem for [:

-t
L]

KZF Ay L >~ a=b

.
(]

Clearly, Aj,kh is logicélly equivalent to the con-

junction -

.

Aj,k{"‘j*f’j*Yj = 0, Eemtg, =,0{1sjsn, lsksm}

of sentences of L, which is logicaily equivalent to the sentence:

- .
/
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v ,k{“j+5j”j’ Eknkﬂ;kllsJSn, l<ksm} = 0 -

where the sign v is to be understood as the supremum or lgast’

upper bound in the partial Boolean algebra A. That is,

vj’k{aj+8j+yj, Eknk+;k|1$]5n, 1<ksm)

denotes an element in A: the least upper bound of all the

>

elements of the form aj+8j+yj, and Eknk+ck. The sentence

asserting that the least upper bound of all these elements is
zero is equivalent to the conjunction of all the sentences
asserting separately that d.+sj+y. = 0(l<j<n) and Eknk+ck= 0(1l<ksm).

] 3.
It follows immediately that:

. o 3y = = L
Ezr'(Vj,k{aj+8j+fj"Eknk+ckllsjsn’ l<ksm} = 0) : a=b.
Write:
plagseeest ) } -

" = Vj,k{aj+3j+75’ gknk+ck|153$n, 1sks<m}.

Then: o )

. T2

KoF playseeesz ) = 0 > asb. o

R Since the constantsal,...,cm, a,b do not .occcur in §2,
' they may be replaced by variables‘xl,...,xm,x, y to obtain:
~ EZF p(xl,;u.,xm) = 0 > xzy.

We have now shown that the conditional::

p(xl"”’xm‘) =0 T XEY,

which is to be understood as a formula in Ly is valid in all °

Boolean algebras.

Let
Y denote x + p

X denoteiy *>p



/

i.e. ¥ and X are Boolean functions, explicitly:
<

29

[

VP is fhe'function 1 -x+p - (1=x)p
X is the function 1 - & + p - (1-y)p.
‘Since: ¢
p.= 0 + x=y
-ﬁ//}{is vaiid in all Booleanfhlgebras, it follows that the identity
V=X
holds in 12,'i.e.
v¥(a) = x*(a)
for every sequence aeg¢ngx. For, suygg?e under some sub-

stitution for the variables x .,xm,'that'p*(a) = 0. Then

15+
because p=0 > x=y is valid in 22’ we have: ¢ B
v¥(a) = x*(a),

If, under some substitution p*(a) = 1, we have:

Y*(a)

1= x*(a).
Since the identity

- -
V=X

holds in Z,, it follows that ‘ : :

2’
V=X

<

is valid in §2, i.e. that y=x is a classical tautology. But

y=X does not hold in A. TFor, substituting the sequence

<Ay sl a,b> of elements from A for the'yariables (xl,...,
xm,x,y) yields the value 1-a for ¥ anﬂ.lnb for x. Thg? isg
under this valuation for Y.and x in A, we have | '
Yk = 1-a . ¢
and ¢
x* = 1-b ' : ' .
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Thus, in,the case Of a.partial Boolean algebra. A for

which there is no Boolean imbedding, there. is a biconditional, -

¥=x, whigh is a classieal tautolagy, and a sequence <ay,.-.>%n,
a,b> ngngx under which the cprrespondiﬁg identity, Y=y, does

ndt hold in A. This proves the' theorem.

o

‘o

Q
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4. The Basic Problem v ) .

The set g of stqtistical‘states of quantum mechanics
does notccgntain states which are dispersion free. This is
‘t?edpropefty of the quantum theory.which generate§ the problem
gf 'ihterpretatipn'; i.e.,‘the problem is to understand the

‘abéence of dispersion free states. )

‘ A sté%isticai stéte Wngis a map w:i + [0,1] such thaf
w(i5 = 1 and w(vi{a;}) = Ljv(a)) if'{ai} is a disjoint .sequence.
That is, a statistical state is a gene?alizediprobability as-

‘ .signment to the theoretical proposi%ions of the theéry which
satisfies the ué%al.conditions for a probability ﬁeasureyén
//*\'" each maximgl compatible subset of the partial Booleaﬁ algebra
-~ T. ighe probability algorithm of a phaée ®pace theory is a
fggc%ion P which assigns to each maghitude A 4nd each state Y,
a probabi%ity measure on-g.' EAw(U) denotgs the probability
that in\?h; state y the value of the magnitude A lies in U.
“For dispersion free states, the pfobapility assigned to each
magnitude reduces to an atomic measure concentrated on the

<

It is not difficult to show that ¥ isTdis;éTsion

(. value of°A
free if and only if ¢ is a homomorphism of i onto Z.» (See
e.g., Gudder [8] for a proof.).

In classical mechanics;thé'algébré B of events is a
Boolean algebra, so‘there“is a one-to-one correspéndence
betweeA atomic events aéé ;hd two-valuea thomomorphisms on B.
This prdperty is preserved in the algebra of theoretical pro-
positions. Thué when B is a Boolean algebra, each atomic
i

event determfnes a two-vadued hoﬁomorphiém, and hence, a

dispersion free state, on T. ' '

P a ' ’ v
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Each event in B is represented bi—uniquelx}by a point
- o
weR,since the field of subsets of @ is perfect and reduced.
A
Each point weQ determines a two-valued homomorphism on F(Q),

and therefore, a dispersioq free state on‘g. Conversely,

" since C is isomorphic to F(Q), woh-l, where h is the Stone

isomorphism, is a statistical state ‘on Q.

A dispersion free state on Q may be replaced by the

' point wéQ which determines it. A ciaésical“mechanicél state -

is just the phase point which determines w when y is dlsper-
siorn free. THus l clasélcal mechanical state corresponds t&
an atomgc p;oposition in C. Because C . is a Boolean algebra,
eacﬁ atom in C determines a homomorphism onto Z,, and hence
a dispersion freg"statistical state.

In a.-Boolean algebra, eggh aeé determines a maximal
propér filter F in B; similarly,gin a partial Boolgan algebra

each aeﬁ,'determines a quimal proper fil%er F if A. Notice,

in case A is a Boolean algebra, each maximal proper filter in

“A m%¥ be used to deéfine a homompfﬁhism onto°§2 by the condi-

tiq’, h€¢a) = 1, if acF and h(a) = 0 if afF. This possibility

»

depends on the distributivity’%f Boolean algebras,for.this

»

impliés that maximal proper filters in A are prime filters.8

“

If the ultrafilters in A are not prime, we may have af¢f and
a'#f, but leF, and therefore, ava'eF. Hence, the correspondence
between ultrafilters in A qpa two-valued homomorphisms on A

breaks down. This means that the correspondence between atomic

)

propositions (or events) and fgz-valued homomorphisms breaks

k74
down®
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Notice, even if the ultrafilters in A are not primé,‘
A may be the homomorphic image éf a Boolean algebra. If thiéu :
_ is the case, there exist homomorphisms ﬁ:AjQZ,\however, tﬁese ?%
"are not in;general determined by maximal proper filters in A.
In general, event structure; which determine\dispersion
free states on the associated algebra of theoreticé? propo-~
sitions include all those that may be mapped homomorphically

into a Boolean algebra, since, by the homomorphism theorem,

every  Boolean algebra admits‘hpmomorphisms onto 52. All the
event structures isqmorphic to or containing the paftial
Boolean glgehra E(Ha)ﬂo% linear subspaces of a three dimensional
Hilbert spa}:eg fall outside of this class. ByaKocheﬁ ang
Specker's Theorem 1, for each such A there are no ﬁomomorphiéms
-onto gz, hence, no two-valued homomorphisms on the partial
Boolean algebra Q of thgoretical propositions associatéd with
A. Because of the equi&alénce between two-valued homomor-
phisms and dispersion free states, there are no dispersion
- free states on Q. . ‘
ﬂ ‘Tﬁus the absence of dispersion fret states on Q is

a direct consequence of the fact that A is a particuld? type

of partial Boolean, algebra, just as the existenée of disper-

sion free states on C is é»consequenée of fact that B is a

Boolean'algebra.10

The fact that there are no homomorphisms h:Q+Z, must

A ’
be sharply distinguished from the question of the -bivalence
of the languagé L in which‘the theoretical propositions, are

formulated. It is tri&gally posgible to make .bivalent as-

4

d
.
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signments of truth values, to the propositions of Q, and

M 2

therefore, to the cofrésponding sentences of L: Let every
proposition associated with an event in an ultrafilter in
A-be true, and every proposition associated with an event

outside the filter, false. Since the ultrafilters in A are
9

not prime filters, the bivalent assignment of truth values

to L is not induced by a homomorphism of A .omto Z But

2.
since the homomorphism theorem is equivalent to Stone's

+

representation theorem, this is to be expected, if A is

strongly non-Boolean. 6>

8

In the view advanced here, events bieA incompatible
!oglcal structure of

with an event aeA are excluded by the

fhe system; the chief advantage of the . bivalent truth value

sassignment defined above is that it makes this fact explicit.

This definition has the consequence that it is a sufficient

but not a necessavy condition for the truth of a disjunction
‘ , ] . ¢ :
that/oneaéf the disjuncts bé true. For example, the pro-

positional formula™ .z . - ‘ -1
X HX 4K - Ko XX
i7] %% iT3%k .

in L is tiuq whenever it is interpreted over three mutually

compatible events ai,aj,akeé_sincg

o
o
i

“e
a;v ajv 3 = ) -
Now the trivial event (i.e., 1) is compatible with every event’
and ig a mémﬁef of every filter. But it dqgé not follow that
exactly one of every tfiple of mutually combatible atomic

propositions is true. : ,
" o 0

w
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u Tt may be objected that such a truth value aésignmeétf
is 'unintuitive'. But this is sure1§ a pséﬁdo—problem. For
if the quantum théory is assumed, the models M of L;épg

~ A
isomorphic to B(#,). Therefore the ultrafilters 'in M are not ~\\
prime filters. Thus, so‘?ar as the event structures are con-
cerned, this property is preserved in any ré&onstruction ofl
the theory. The ob}ection is interésting only if it is
couﬁled with a classical solution to the representation pro-
blem. But this problem is left‘dntoucﬁed?by the choice of L.

N &

In the remainder of this sé&ction we chpépe~tﬁe quantum
theory with classical'statistical mechanics, since for Ehis
theory it is also true that dispersion free states are not
theoretically fundamental. This is done in two stages: We
begin by considering why dispersion E%ee states are not
theoretically important in statisticai‘mechaniés.,”Next,ﬂwe
examine the sense in-which the description of statistital Y
mechanics is incomplete relativetaﬁambwténian descriptiofi,

<

We conclude this section with some remarks on the interpreta-

"

‘tion of Birkhoff and von Neumann.
Classical mechanics and 6lassica1 statistical mechanics
share the same phase space as #qll“as‘the same dynamics. Thus

for statistical mechanics a dispersion free state is determined

v

|

by the classical mechanical state of the éystem. Just as in
classical mechanics, physical magnitudes'éeo are associated
with functions in g? = {f,: @R} from Q into %hé Borel sub-
sets of R. ‘Each A is aesociat;d with a family of subsets of
@ by the inverse image - : .

- / f-;l(U).=-{m|fA(w)f:U} / v

Y




of the-Borel subsets of R under.the map corresponding to A.

In statistical mechanics Q is also a sample space, so that a
point wef is also interpreted a$ the phase point of a s§mple
.system in an ensemble of similar systems. |

Now for a certain class K of regions of the sample

space, there are macroscopic magnitudes, i.e. properties of

the ensemble, with values concentrated on a small -subset of

R.ll

of 'claﬁ.cal thermodynamms. For some AcK, and’ any dlS‘tI‘l-

;Hése magnltudes obey the ﬂhenomenologlcal equations

bution of phase points in A, the values of each macro-
scopic magnitude remain concentrated on a small subset of K.
This is to be expeéted; for the basic Ngwﬁonian laws_are
symmetric with respect to %ime, hence the law of motion of an
individgai system is time-symmetric. But the phenomenologi-
cal laws ave irreversible;'if the macroscopic mégnitudes were
not iﬁdependent of the precise location of the phase point,
the macroscopic laws would be reversible, not irreversible.
Therefore the theofetical upimportance of the classical mechanii
cal state is a necessary condition for the successful appli-
cation of statistical mechanics to thermodynamic systems.i2
The application of the laws of Newtonian physics to a
thermodyriamic system requires too fine a specification of the
classical mechanical state. The slightest discrepancy amplifies
‘very rapidly and renders the initial specification theoretically
useless. Because of this difficulty, w&iforgo a complete des-

c;iption in terms of the classical mechanical state in favor of
[+] u
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v an incomplete description involving a proper subset S' of the /
statistical states ¥:F(Q) + [0,1]. Relative to this des-

cription, there exist magnithdes‘é, Be0 such that

P, (U) =

Pay Pgy (V) | .

4 ) . g
for every Borel set UcR and every yeS'. A and B are equiva-

»

Tent with respect to the set S' of statistical states. There-

fore, C contains theoretical propositions of the form

s fA(w)eU : . N i
i
and —
» which are equivalent with respect to §'.A’By extending S'

to S it is possible to distinguish these magnitudes together g
with the theoretical propositions corresponding to them. Thus,
the statistical description in terms of §8' is %pcomplete
relative to\the ciassical déscription in the sense that the'
egtension t9 S leads to an imbedding of this description into
the c1ass§cal description. Foﬁ;this reasoh, the absence of
dispension’free states may be taken to me;n that, relative to
classical physics, the description of statistical mechanics
is based on incomplete knowledge of the exact classical state
of the system.

Now in the.case of quantum mechanics, the absence of . .
dispersion free sfates cannot be understood in thié.wéy. Fof
if A is a partial Boolean algebra of events corresponding to -

a Hilbert space of at least three dimensiofs, there is no

imbedding of A into a Boolean algebra; hem@e, there is no
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~

imbedding of the pértial Boolean algebra Q -of theoretical
proposi&ions associated with A into a classical (iwé. -
Boolean) description. This follows from Kochen and Specker's
Theorem 1, because the existence of two=-valued homomorphisms
ES'a necegsary condition for the imbeddability o{ Q into a |

Boolean algebra. There even exist finite subalgebras Q.of . R

Q which are not imbeddable inte a Boolean algebra. D contains

pairs of propositions such that a#b but h(a) = h(b) for every

homomorphism h:D+Z,. If D is weakly imbeddable, & and b will

[

have to be incompatible. This follows immediately from the
definitions of strong and. weak imbeddability, or more p%e-

cisely, from Kochen and Specker's‘Théorem 0 and its couhterpart -

for weak iﬁbeddings. . o )
. : /
It is often suggested that the quantum theory is more
*" A
vague than classical physics in the sense that there are dis-

v~

tinctions wh%?h can be made in classical physics which are
ill-defined in the quantum theory. The,opposi%e is the case -
there are finér distinctions possible in the quantum mechanical
case than in the classicajl case. 'The a and b apove are in a
sense distinguishable quantuﬁ Qgchan%ﬁally, but not classically,
i.e.” not in terms of homomorphisms onto Z,. Intuitively, R
there exist completély symmetric but distinct elements in a
non-imbeddable A. |

Though Birkhoff and von ﬁeumann recognize tQatAthe
“ algebra of theoretical propositions of quantum_mechanicsiis

not a Boolean-algebra, they do not consider the possibility

of imbedding Q into.a Boolean algebra, and.thus, into a

classical descriptior. This is due to their conception of the
- % {
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" pole of the classical mechanical state in statistical‘mechanicsL

.mechanics: first, it is 'convenient' to do so, and secondly,

. the world, and our knowledge of the world, makes it impos-

' menfally incoherent, the non-Boolean character of Q may merely

39.

In their view there are basically two reasons for

@

ignoring the exact classical description in-statistical

-

knowledge of the phase point reiuires,e‘degree of precision

which ;E’ie imposeible tq;obtain experimentally. While this -«
ie!certainly true, it*ﬁS‘ﬁot an Fnalyéis of the relationship
between the twe‘%heories.. Stefistical ﬁeehanioe.can igﬁore
the classical state‘becéuee it -Yeals with irrevefeible pro- .
cesses, anqlfhese must be iﬁdeﬁénden%_of the:exact ﬁhase point
of the system. This account is eomﬁiﬁedluiih a particularly -

naive confusion of reference with evidence, Binkhoff’anq‘von'

Neumann are thus led to the view that it is meaningless to

-

2

suppoee that the system is’’always in .a staté corresponding to
[t e e ‘ o e
a point in Q; i.e., the exact classital description is not

/

relevant to statistical mechanies on largely independent,
epistemological grounds. But blurring'the’distiﬂction'betyeen
sible to distinguish a Boolean description based on incomplete
knowledge from a complete non~Boolean descfiptioﬁ. Since the

concept of the exact state of a gystem is considered funda-.

express the impossibility of knowing the complete classical
state. Because of thig unclarity, Birkhoff and von Neumang!

have only succeeded in reformulating the orthodox interpreta-

14

tion. Though their discussion is couched in terms of the

logical structure of quantum propositions it suffers from all

—

the ambiguities of the conventional view.
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5. Alternative Representations

.In this section we consider alternative representa-~
tions of the Hilbert space structure of quantum mechanics,

viz.: orthomodular posets, and orthomodular lattices.t®

It is clear that the partial Boolean algebra of subspaces of
a ﬁiibert,space may be extended to an orthomodular poset
,byysimply defining the order relat%on in each maximal Boolean
sub—slggbra in the usual way; and even to .an or{homodular
- ~ lattice by defining g.l.b. and l.u.b. for incompatible ele-
- , ments. Thus the‘mathemaéical differences are not essential.
’

In the lattice and poset approaches there are ba31ca11y

.. two propertles that are held to distinguish Q from C: non-.

- o distributivzty, and the existence of incompatible pairs. -

Neither corresponds to noq-imbeddsbility.v Because of this,

interpretations bsé;d on theseh?epfesentations suf fer fromxthé IS

- same ambiguity as the view of Biryhoff ?nd von Neumann. .}

The prthomodulsr 1a£¥i¢e16.H2 of linear sﬁbqugss'of a

Afwo‘éimensiosal Hilbert space is isomorphic to the lattice of
subspaces through a poznt.ln ordznary t#o-dlmensional Euclidian

. spacer In th;s representstlon, campatibllxty corresponds to
orthogonality, i. e. two .Yinear subspaces are compatible if
and only if they-are orthogonal in the sense of elementary
geomstry (Thus a¢+b, if a id a subspace of bs ) Joins, e
meets, and complements correspend to spans , intersections, and

- uorthoconplqnents. The unit of the. 1attice is ths whole space,

- andqthe zqro is associated with the zero-dimensional subspacs

.7 op origin. It is obvious from Kochen and .Specker's Theorem 0
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that ‘the partial Boolean algebra g(Hz) associated with H2

is imbeddable into a Boolear algebra.

v

. . Since B(H,) is imbeddable into a Boolean algebra, the

- “3istributive law

»

. a A (bve) = (aab) v (aac)
"of classical logic holds. In fact the identity holds in §(H2).

This is not peculiar fo B(Hz), for the distributive identity

is Q-valued, i.e. valid in all partial Boolean algebras.17

-

Clearly, non-distributivity, in thé sense of failure of the
. distributive law of classical logic, depends on the definition
of validity. . More interestingly: even when the propositional
(i.e. Boo&ean)”functions in L are interpreted as lattice
polynomials’y, the failure of the distributive law does not
correspond to nop-jmbed&agiiity.

L3

Similarly, there are clearly incompatible elements in
H2§ yet H2 may be imbedded into a Boolean algebra. So the

existence of incompatible pairs must be distinguished from

non-imbeddability. "’

The work of iZierler and Schlesinger [22] shows that
there always exists a map h:A+B from an orthomodular poset A

into a Boolean algebra which preserves the ofdering and ortho-

complementatiqn: That is,
_ | (i) _if asb,then h(a) s h(b)
" (ii) - h(a') = h(a)'.
The map is also monoﬁorphic 80 that; .

o ~ (iii) if h(a) s h(b),then asb,
- o ™ » Notice it does not follow that such a map preserves

ldttice meets and joins, for although the ordering of elements

~

<
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above and below a and b is preserved in the image h(A) of A

in B, there may be an element of B smalleq (in B) than the

image of any element above a and b in A, so that this element

would qualify as h(a) v h(b) and not h(aVb).‘ That is, fof

ény xeA, such that avbsx in A, n

~ h(avp) < h(x), -

but the smallest element above h(a) and h(b) might be an

element in B which is not the image of any element in A.
Zierler and Schlgsiné;r show further tﬁat there AQes

nof in general exist a map satisfying conditions (1)-(iii)

.which also preserves the latﬁice operations for compatible

elements. Now this is Ylready clear from the work of Kochen

and Specker, since independently of the qqestion of the

preservétion‘of ordér,‘meets add joins cannét be preserved

in the case of parfial Boolean algebras associated with Hilbert |

spaces of three or more dimensions. On, any representation,

what is fundamental about the non-Boolean stru#tures of quantum

s

mechanics is that they are not imbeddable into a Boolean algebra,
and éiis depends on the fact that «* is not tpansitive in é.
In‘tﬁis sense, the order structure is redundant.

(Notice non-transitivity of <> in é is not the same
as ﬁoﬁ—transiti&ity 'of «+4n A. For every element in A is
compatible with the unit. Thus if Ecmpatibility is transitive
in A, then every.element is compatible with evéry ot¥r: a+e+l

and l«+b implies a+«+b. That ié, there are no incompatible

- 'pairs. Conversely if «+ = AxA, ++ 1is obviously.transitive.

b
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Thus traffSitivity of <> in A is equivalent to «*> = AxA.)

One finql point: It seems natural to understand the
generalization of the order relation in a Boolean algebra as °

a generalized implication.  However this leads to difficulties.

By a result of Féy [61], implicé}ion cannot be defined as in

3

classical logic by
a »b if and only if a' v b = 1.

For in an orthomodular poset or orthomodular lattice, if the

’

relation
L 4 ’ ' ]
a'vb=1
/
is transitive, the poset or lattice is a Boolean algebra.

‘For this reason it has been argued (e.g. by Gudder amd Greechie
[9]) that the transition from classical to quantum mechanics

5
is not properly concerned with logic. But in view of Kochen

and Specker's Theorem 4, this is obviously a purely verbal

issue.

.
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\ 6: Conclusion
It remains to be shown how the discussion of this paper
leads to a solution of the 'measufgmgnt problem'. This
subject,atogether with a complete discussion of the role of
probabilities on non-Boolean' event structures, will be dealt
with in a separate paper. The present paper clarifies what

is required of an interpretation of the quantum theory: The

problem is to explain the transition from classical mechanics
to quantum mechanics,)&iven‘that the set S8 of statistical

. &> - .
states of the quantum theory does not contain dispersion free

- - >

states. It also explaiﬁs the sense in which quantum méchanics

and classical mechanics -ewe theories of the world's logical
étructure. This, in conjunctio; with Theoremsl énd 4 of

Kochen -and Specker, completely solves the problem of ;nterp;e- I
tation. 'Clarification of the probiem.of hidden variables, in

the sense of the importance of Gleason's Theorem and its
corollaries, is immediate: such results have the-character

of completeness theorems for the logical‘struétures‘df quantum
mechanics. The whole discussion rests on the distinction. g
between logical structure in the sense of the syntai and *
sémantics of a formal language, and the logical structure of
events. This distinction is completely anaL§§ous to the
one‘Brawn in Section 1 between cgordinate transformations and
symmetr¥ies. Only the first component of each pair involves ,

: <] .
conventional elements. Logical structure and space-time

symmetries are objective structural properties of the world.

> /

o,
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’ FOOTNOTES

1. This distinction is supgested by Einstein [4]. We have ¢
retained his terminoldéy. Cf. also [51, pp. 53ff.

Le]

. . e .
2. There are theories which are clearly both constructive
and principle theories, e.g. classical statistical
mechanics.

. 3
3. Notice that in Bub [3], 'phase space theory' denotés a

classical phase space theory. 'We extend the use of the
term here to include any theory in which the concept of
logical structure occurs explicitly. .2
4, This gﬁeorem.is prove% in [131. Unless'otherw{;;—;;E}Y
catéd, all refergg;es to Kochen and Specker, are to this
: paper. - |
_ 5.” This paper assumes some atquaihtance with the representa- |
tion.theory of Boolean algebras. See, e.g. Sikorski [17],
éhapter‘I.
6. For a chq;acterization of thésg algebras, see Rasiowa
and Sikorski [161].
7. Koghqg and Specker use thé term'commeasurability' to refer.
to this relation, clearly suggesting_thatvthe relation
should\berunderstéod in terms of simultaneous measurability.

This is at least misleading, since the simultaneous

measurabilﬁty of two magnitudes is a consequence of the

0 fact that they are compatible; but compatibility is not
operationally definable in terms of simultaneous measur-
ability. [Cf. the discussion below ‘fi.e. Section 4) of

Birkhoff and von Neumann. ]
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9.

10.

11.

12.

<

-

13.

"by a homomorphiSm onto §2.- ' s . °
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‘See Rasiowa and Sikorski [16], Chapter I, Section 9,
G * L]

3

for a discussion of this point.
For definiteness, we restrict the discussion of this

section to partial Boolean algebras of this class. . *

c"

In geheral, for a Hilbert space of three or more dimensions,

o

all possible statistical states on the Bartiel Bodlean
algebra of linear subspages are generated by the statistical
operators according‘to the algorithm of the quantum.theory.
That is to say, the probabilify algorithm of the fheory~
generates all p0551b1e statxﬁ%lcal states on Q. (This is
essentially the content of Gleason s theorem [7].) Yet

the set-S of statlstlca% states does not contain sta;es “a
which afe dispersion free. S0,~hy the euuivalencevbetween

two-valued homomorphisms and dispersiomn free states, an

extension of the theory which recovers th37correspondence

‘between events and two-valued homomorphisms does.not exikt.

H is thé class of’Bbrel subsets of\Q modulo Borel sets
] . a . <
of Lebesgue measure zero. SThis class is identical with

the class of Lebésgue measurable subsets of Q modulo sets

of Lebesgue measure zero (see e.g. Halmos [10], Sectlon

15). : ' -
, I . R Y
This hag the character of a randomness assumption. It

is also a suffic1ent condltlon for applylng statistical
mechanics  to thermodynamlc systems. For a thorough=

discussion see var Kampen [20], Chapter 1.

By Stohe's epresemtation theorem, every pair of distinct -
: ’ 't ' e =

elements %ﬁ a Boolean algebpa‘must‘be'distinguishable
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16.

17.

— . /
T 47

In its origiﬁal‘forq; Heisenberg's interpretation was

compatible with the existence of a clasgical mechanical

- . -

state. This assumption was later rejected by Heisenberg

<

and Bohr and replaced by the thesis that an atomic_ system

cannot be‘significantly Qesé:ibed independently of a

" measurement process. SR

Birkhoff and von Neumann assume an orthocomplemented,

modular lattice. This assumes more structure than an

.orthomodular lattice. (See Jauch [11], Chapter 5,

3

Section 6, for a more detailed discussion of this point.)

For our purposes, the difference is not important, and

-

everything said concerning orthomodpiar lattices may be

exfended to the lattice of Birkhoff and von Neumann.

For simplicity of expositdon we restrict the discussion .
, [N °

to lattices.
Cf. Section 3, above. For.a generalization, se%;Kochen

and Specker [12Q;‘Section 6.

™

[<i
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' Chapter II .

Fundamenxal’StatisticaL Theories

lO. Introdué;ion.

‘ -‘.Eiﬁ%teén argued thgt since quantum mechanics is not
a fundamental theory, it gannot bé regarded as in any sense
final. (See especially [3] and [1], on which this discus-
sion is b&sed.)\ The concept of a fundamental statistical
theory may be roughly ekplained as follows. Let us suppose
that a certain c;ass K of physical systems may b; knowr
with complete precision. TFor any system of this class it
is possible to completely specify its type and its sté?e.
Both pieces of infépmatio --the possible types of system,
. _and ihgir possible s?ates--afe theory relative. What is
assumed is that for any Slih K there is no extra-theoretical
:limit on the amount of information obtaiffable concerniﬁg S.
I shall say that a statistical theﬁry is fundamentai if it
is based on a maximal amount of -information concerning the
systems of K. That is to.say, for a fundamental theory,
the degree of imprecision of our knowledge may be ignored,
s;nce fhe theory is supposed to hold even when ‘this is

made arbitrari1§ small. By contrast, a,étatisfical theory
which is not fﬁndamehfél,iélexplicitly deéigned‘to'take ac-

o -

count of the case where, for whatever reasons, a maximal
.

amount of information is not available. -

For example, in classical statistical mechanicg, the

. ! : - ,
theoretically important states are characterized by some

positive dispersion. In this case the d{spersion is easily




explained in terms
of the exact phase
theory is given by
the time evolution
the possible phase
with™dispersion fre

states of .classical

The, pure stétisticalostates of the quantum theory are
not dispersion free.

“cantly statistical.

concerned is, Under

’ statjtleal theory

- In the case

question favored by

| 52
of the incompleteness of our knowledge
poiife of the systém. The fundamental -
classical mechanics which represents
of therphase point of the-sfstem, and
points .are in one-to-one correspondence

[ ~->

e states; these are the pure statlstlcal

YN N

mechanics.

In tﬁié sense, the theory is signifi-
The problem with Wthh thls pdber is
,what condltlons is a 51gn1f1cantly -
eorrectly regardéﬁ as fundamental?
of atomtc systems, the response to this-

many physicists.conSists in denying .

4 .. . .
that any theory can be fundamental in the sense just outlined.

" (Cf. e.g. Pauli's 1

!

etters 115 and 116 to Born in [1] as well

as the subsequent commentary by Born.) Knowledge of the

systems dealt with

complete in the sense that any predictively adequate theory

by,tﬁe quantum theory is essentially-in- . = -

-

must accept the existence of a significant restriction on

what can be known concerning this class of systems. c

Beglnnlng with Helsenberg 8 Y-ray mlcroscope thought

experiment, there is a long series of quasi-physical argu-

ments aimed at making this view plausible. All of these

arguments aﬁpeal to the operational incompatiyility of.

o

direct meagurements

of certain pairs of physical magnitudes.

This is quite irrelevant as’Einstein showed. His argument
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may be briefly reconstructed as follows.

Two systems S1 and 82 are coupled if there exist

magnitudes A% and A§ af S, and Sz(resﬁectively) such that -
‘the probability that A} = A, is 1 (0) if and only if the
. probability that A§ = Aj is 0(1). (It is a theorem that

any two quantum mechanical systems which interact and then.
separate are coupled im this sense. A classic example is
given by a pair of spin-%, particles in the singlet spin
state.)' In any theory admitting the existence of coupled
systems; it is<unnecesssryyto interact directly with Sl’
say, in order to determine the value of the magnitude A%;

) it suffices to measure the magnitude A§ of Sé. Since the
2 . .systems are spacially separated, this cannot possibly af-
i . . - /a . 4 -
fQC't Slu ) - . . ‘ -

The fact that quantum mechanlcs admits the exlstence
of coupled systems mearis that the theory does not support

b T -
the usual (operatlonlst) ‘interpretation of the statlstlcal

character of the theoryl ‘T;e idea- th;t our knowledge is-
i ‘essentrally lncomplete assumes that a dlrect measurement of
. ainv magnitudeg is not poss1ble. This of coursé may wel;»
be true. The diffieulty is that direct measurements are
.not necessary for determining the values of the A%; more-'
over, this fact is a consequence of the quantum theory.
Einstein mede a definitive contribution to this phase of
the problem by shoding that the rejection of verificationism

// removes any methodological objection to fundamental theories

14

( ”/ of atomic systems.

Nl
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The solution developed in this paper js thdt a statis-

-*

tical théory is fundamental only if it is.iomplete; moreover
the quantum theory is complete. Hence, Giis analysis re- .
,moves‘q'furfher objection to regarding quantdm mechanics as

a fdndamentalltheory. Clearly the major problen with this

&
»

.

.appfoach ia/%hat completepess is éppareqtly'inconSESteht

with the significahtly statistical character of the quantum

-

theory. o | — co

3y

N “" - ! - g - ‘n
The account of completeness presented in Section 1

v *

is based on a critical analysis of Bub's very important
work, "On the'Completeness of Quantum Mechanics". This
. ' c

paper assumes familiarity with the concepts and theorems of

£71.
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1. The Compléteness of Statistical Theories.

-Let us consider the statistical theory of a fixed
system S. Such a theory consists of an algebra M of physi-
cai magnitudes (it is assumed that M is at least a partial
algebra) together with a set S of statistical states. Ele-
ments v e S aséign probabilities to ranges of values of

--magnitudes in M: for each AeM, and yeS, P (U) denotes

A,y
the probabllity that the value of the magnltude A lies in

the (measurable) subset U of Real numbers. (P :F(R)+[0,1]

A,p'=

ié the distribution function of the magnitude A determined
by ¥.) ‘ ”

The two alg rafc structures.of relevaqce to this
aiscussion are: M ig the partial algébra RQ of real valued
functions on a classical phase space. .ﬁ is the partial
algebra N(H) of self-adjoint operators on a separable
Hiibert space. These correspond, respectively, to classi-
cal and quantum mechaniés. Compatibility ii.interpreted
as cOmmutativity: For Al, A, in M,A,+>A if'and only.if

2 =271 2 3

A1A2 = A2A1 It is a theorem thai_:.A1 and A2 commute 1if

4 .

and only if there exf¥ts a CeM affd Borel functions g;: RoR

(i =.1,2) such that A; = gi(C). Linear sums and products

of compatible magnitudes may be defined By the linear sum
-~ N -

ang_prod&cf of the associated functions g; Explicitly:

)(C)

AAL + AA) = (A

171 7 A2 181 * 228

(A, A eR) and

l’
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The subalgebra of idempotent elements of M form a

partial Boolean algebra %. In the case of RQ this is the
subalgebra B of characteristic functions on Q. This is

- isomorphic to the field F(2) of (measurable) subsets. of

Q. -Eor N(H), this is the partial Boelean algebra N of
projéction ope{atérs. .N is iéémorphic to the partial
Boolean algebra B(H) of closed linear subspaces of H.

(Let u,n,'Adénote the épag) intersecfiﬁn,'and orthocomple-

ment of the subspaces in H. Then for a,b, in H, a++b if

thereJexist mutually orthogonal subspa%@p ai, bl’ c éﬁch

that a = alUc and b = bluc. The operations u,n are restric;gﬁ

to «+. H is the unit of B(H) Snd {0} is the 0 of B(H).]

Physical properties are introduced in terms of the
magnitudes A in M as follows. Take a real number A in the
range of A. Then A = X (this is read{"the'value‘gf A is ™)
is a property of S. More generally, given a sﬁbset q of R

and ‘magnitude A, AeU -- the value of A lies in U -- repre-

sents a property of'theisysteﬁ S. L

~

Von Neumann ([9] Ch. III. 5) observed that every
. \ © - ’
property of S is nepresentéd by an idemaﬁtent magnitude in
R o »
L. This is simply seen in the case of classical mechanics.

Y

. Q L i
Let f be a subset of n-dimensional Euclidian space. An . °
J - ! .
elementary event in the history of S is represented by a
point in Q. 'As is weill-known, an eveﬁt_m is associated

-

~

!
with a pure statistical state of classical mechanics: the /

2-valued measure on F(Q) determined by w. Now let fp De a

. 2
real valued function in RQ representing the magnitude A. A

f
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property AeU holds for S if and only if S is in a state w ’
such that f,(w)eU. - Let T denote the subset fgl(U) of Q.

It is clear that § has the property AeU if and only if the
state w of S lies in I'. The préperty AcU is said to be
associated 'with T. 'In general there are many ﬁfoperties
Ai € Uj such that f;?(Uj)'= I for some UjeR. Now let a

i :
be the characteristic function of I', and let P be a propertJ

e

associated with I'. By the correspondence between pro-
c W

perties.of S and subsets: of 1y 1t follows that every pro-u"

perty P is represented by the characteristic function a, in '

&

the " sense that P holds if and only if S is in a state w such
that a(w) = 1. Since a is two valued this is equivalent to
a(w),? 0. .

The éituatiqn in'quantum mechénics is exactly analo-
gous. Elementary events, represented by rays K in H, are
associated with pure étatistical states. In quantum mechanics
statistical states are given by measures on the closed linear
subspaces of H. The pure state associated with K is deter-
mined by taking the ‘square of the norm of the projection

o " .
of a unit vector:lying in g onto each suﬁspace of H. Since
Fhere is a one-to-one’ correspondence whicﬁ asspﬁgétes each’
projection operator ‘with the subspace which is its range,
this determines a probability measure on N. Recall atoms
in B are characteristic functions of singleton subse?é‘{m}
of F(Q). N is also atomic. An atom in N is a projection

”»

operator onto a one-dimensional subspace of H.. Thus in each

&

theory, there is a one-tofone correspondence between elementary
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events and atoms in L.

To summarize: Every magnitude may be replaced by a:-
set of properties, and every proéerty_corrgsponds to a two- §§
valued quantity, i.e. to an idempotent magnitﬁde. (For this
reason it suffices to consider the algebra L of idempbtent® .
magnitudes.) The correspondence.is not one-to-one since
very ﬁany properties are associated with the same subset :of
2 (or subspace of H), and theréfope, represented by the same
idempoteat magnitude. There is a one-one correspondence
between idempoteht magnitudes and equivalence classes of

B

propertie§ represented by the same idempotent in L. An

<

idempotent may therefore be thought of as the equivalence
class of propepties it represents.

For any statistical thebry,_w; may distinguish,IWO‘
wéyslof viewing the algebra of idenmpotent magnitudes. First,
L may beiregarded as an abstract property of physféal magni-
tudes: iq this case, the idempotents in g are simply postulated
_as having the structure L. The algebraic stfucturenint oduced
in this way is termed the logigd} space El of a statistical

theory. (Bub [2] p. 45.) The ch2racteristic feature of Ly

, ‘
is that its introduction is independent of statistical con-

-4

~ .

sideratiégs.

Tﬁere is another way of viewing fhe algebraic struc-
ture of a stétistical theory: Let M\;;N?anset'of physical
magnitudes: No algebraic structure is’assuﬁéd for M. Rather
an algebraic structure is defined in terms of the distribu-

v’

tion functions Py v of the magnitudes AeM by writing Al¥+Ah
- H

p -
\ ¢ ¢
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if there gs a CeM and functions gyt R+R (i = 1,2) such that
_ -1 N | . .

. for all UcR and yeS. I.e. the magnitudes A, and AZ are

1
compatible if they are-statistically equivalent.to gi(C).

The definition of the partial operations is given in terms

of the associated functions as before. The resﬁlting struc-_ )
ture M, is déteﬁmined by the set S of statistical states of

the theory. The subafgebra of idempétents of ﬁz is termed o
(£21 p.;HS) the logical space Lz; it is distidﬁﬁished from . )

El by. its depéndence on the relation of statistical equiva-

lencé.

2

It is‘important to recognize that the elements of El )
and L, are the same. Each logical space consists of the

subset of idempotent magnitudes in M or the equivalence classes

o
o

of properties which they represent. Since L1 and L2 are
1ndepgndently spec1fled they may be structurally dlfferent

Here it is essentlal to be very clear: Although .the relatlon

1)

of statlstlcal equivalence i's obviobusly an equivalence |,

I relatlon on El’

stqygture'of El’ so that Ei and L2 may not even be homo-

it is not necessarily compatible with the

- , v ] T .
4 morphlc. . ) .

S

W1th1n this framework, Bub has proposed a general

-

criterion for the completepess of statistical theorles A ,
. statistical theory is sald to be complete if and only if

. the logical épaces El“and L, ape'isomorphic (2] p. u45).
. - n ) -
The groblem of demonstrating the isomorphism of the two

[

logicalsspaces is the completeness problem for a statistical

5 - ? . - '
. o ’ 5
. 12 . ’ . . * i
v .
) ¥
. . ,
B .

&
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. theory Gleason s theorem C4] establlshes that all genera-

-

" lized probablllty measures on B(H) are given by the statls—

.- .5;cal é&gorlthm of quantum’mechanlcs. (Here ;t is necessary . o
_x\.

.to assume.that H is at least three dlmen51onal ) Gleason's

theorem is regarded as hav1ng 3013;d the completeness problem

j"\”' ’ -2
5 ‘for quantum mechanies in thl§ senge.

J

No® the firstupointpto notice is that the isomorphism
e 3 . ’
iy ‘condition is, ip'most cases,'automatically satisfied. So

oL far as any actually prioposed statistical theory is concerned,

- -
¢ . . -

Ly is defined as L,- But if this is the kase, the completei o

ﬁess problem is trivial: It might be argued that .intro-,

7

ducing L1 in this way obscures the fact that it is always,

-

_p0551b1e to construct a statlstléal theory where the iso-

morphlsm conditlon doeé’ndt héld. A constructlon of this

type amounts to a relnterpretatlon of the statlstlcal theory;
e in the case of ﬁhe quantum theory, hlddennvarlable theories

may be. Viewed as beinterpretations in this_sense.,.It_would
. N . 2 : o~ o
appear that the iscmorbhism‘gohditionfis intended to exclude'

a relnterpretatlon based on-a structurally different Ll on

the greound that such & theory 15 1ncomp1ete This sug-

¢ " gests that the 1somorphzsm condltlon is of Jhe greatest

1mportance when con31der1ng theorles of this typeo What %" "

. ’ o

=:\ B is &%clear 1s ‘that hldden'varlable relnterpretatlonslare L
¢ R ]

unsatlsfactory beéause theYy are incomplete. I will return L

.5 thls question in a. moment. At th poxnt I want to -~ .77

’ . P
v . examlne the case Rf theorles fog whlch t

~ hd e, S

;'statlstlcal equlvalence'ls compatlble "with the operations .

‘relation on} T

.- . S < . L -

. -
] ’ and relatlons of Ll T  ® IR .o ‘ .

*a
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£ A set of statistlical states on L, is full if and _

. . =1
only if it is order-determining. 1I.e.'if y(a) < w{ﬁ)"for

all YeS implies‘asb, a, b in L Llearly, if statistlcal

ll
equivalence is“éompatible with Ly then El and EZ are:iso-

morphic if and only if°S is a full set of statistical

» .,

! states..

w

L, has a full set of states.

There even éxist partial Boolean_algebras which admit no

- It is not @vial that L

states. (See Greechie and Gudder [5] Sect. 7 for a discus-
v ’ ’ > .
sion and referencés.) The difficulty is that even if it

can be shown that S is full on Ll,’and hence that L, and L,

are isomorphic, the existence of possible extensions of the
theory would remain an open question. An extension is de-
fined as follows Let-h\hL > Li be a homomorphism between

the two partlal Boolean algebras Ll and Ei. Let S and S’

. . deriote the associated sets of statistical Statés. Then
. P'eS' is an exfension of yesS if‘g = $'oh. S' is an extension
of S if every yeS has'an extension in 'S'. The statistical

Vtheory (Li, §') is an extension of the theory (Ll,S)'%f s!

is an extension of S and h is an 1mbedd1ng The extension
a2 .

is Qroper if for someo¢ €,8', W'IH%L 1 #v.
. - - Now Gleason s "thearem excludes certain ek%tensions of
- ;
’ . the quantum theory. For loglcal spaces represented by B(H),

Gleason's theorem is equivalent to the general result that
y - e
the qogntum theory has no proper extensions in the category .
- . ‘., . ’ ) - R
s of ‘partial Boolean algebras.. A Boolean extension may be

» -.f . ) [ | B k . v
. ¢ defined as an extension for qﬁlch Ll is a Boolean algebra. '

% » A . " L4
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Theorems 0 and 1 of [7] imply that the quantum theory has
no Boolean extensions. This is a similar (but weaker)

result céncerning & sub-category of the.category of partial

Boolean algebras. K¢

It is claimed that the isbmorphism condition fully
explicates *the sense in which Gleason's theorem may be

regarded as a cémpleteness theorem for quantum mechanics.
: ts

’

But *he existence of extensions is simply ignored by this

-

condition, since isomorphism concerns only the structures

L, and L A priori, there is no .reason to expect that

1 2°
completeness in this sense is incompatible with the exis-

- E

 J

-

tence of imbeddings of L leading to extensions of the

15
theory. This is a' defect, since an analysis of completeness
|

~in quantum mechanics should capture the full scope of the

problem solved by Gleason. y
. .

This'is perhaps more clearly a difficulty for an

t

analysis which explic¢itly treats completeness as the iso-
- 4 ’ .

s . .
morphism of two compatible logical spaces. I say this because

[ 4

-

if Bub intends comple;eness to apply onlyvto those statis-

» tical theories for’whicﬁ statistical equivalence is compagible
with the structdrq of L;5 then tﬁ; whole motivation for
r:z;bding Ll and L, as independent logical spaces becomes
obscure. This distinction seems basic to the whole analysis.
The difficulfy is that it is not especiallf?relgyant to at
least one phase of the completeness problem; it fails, to

provide an explication of the mathematical problem solved

by Gleason's theorem and its corrollaries. To put this =

v
> &

- & )

]
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=2
leads to two 1ndependent logical spaces; the 1somorph1§?
condltlon establishes a connection between the two structures.
The problem is, how are we to regard this connection?
Jotice that Ez is essentially the logical space deter-:
mined by infinitely precise measurements performed on in-
finitely many copies of S. L, i§ explained by the assump-

2

tion .ef an ‘underlying logical structure El' In other words,

EZ forms the ideal evidential basis for the hyﬁofhesis that

the algebraic structure of L is given by El’ and the isgmor-
phism condition is just the.simﬁlest restriction on the
structure of El which is consistent with the structure
determined by Ly- The important poiqt which the distincEion
between L, and L, clarifies is that L, represents a struc-
tural assump{ion which occurs quite explicitly in the deri-
vation of the (ideal) sfétisticai predictions of the theory.
The problem of completeneéé raises a furthér question,viz.,
Does the algebraic structure determined by the isomorphism
condition occur essentially, or is i? possiblé to régaﬁd

it as merel§ a yroperty of a particular formulq;%on of,the
theory? - “

VThe discussion of Gleason's theorem suggests that a
statistical theory (El’ S) is complete.if it has no proper
extensions. Coﬁpleteness ¥n this sense is'compafible with
the fact that the quantum theory does not corgain dispersion-
free states: If the logical space El were imbeddable into

a Boolean algebra; quantum mechanics would be an incomplete

/

P S Y
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\ . . . &
\theofy, since by the fundamental property of Boolean algebras,

\El must admit two-vdlued measures. But there exist non-
\Boolean logical spaces, represented g;‘B(H).‘ For this class
of logical spaces, Gleason'g theorem implies that the quantum
tﬁeory is compiete,ieven though S does not contain twd-valued
measures.

This agaiysis assumes‘that completenéés is relative

“to a caf®gory of algebraic structures. It might be ob-
jected that this amounts to an un;ecessary weakening of the
"concept of completeness. Intuitively it may seeétthat a
statistical theory is complete only if it contains all
statistical states. 1In §%her wérds, completenéss should
depend only on the membership of* S, so that a statistical

- theory 1is incomplete if it fails to inciudg dispersion free
states.” |

The first point to notice is that this’suggestion

only appears to make completénéséﬁindepend;nt of some under-
lying notion of algébr@ic structure. If»a theory must
contain dispersion free statés, the only\complete theories

. arg those for which El Aay be hémgmorphically‘mapped into
a Boolean algebra. (This is basically a consequence of
Theorem 0 of [7].) The inclusion of additioﬂa; sta%es
therefo;e limits the class of logical structures compatible
with>the c;mpleteness of a statistical th%ory to the cate-
gory of parti;l Bo;Zean algebras-which afe homomorphically

" related.to a Boolean algebfa. (See [7] Sect. 5 for a defini-

tion of this concept.) Every logical space of a complete

’
o
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theory is represented by an object of this category. From
" the point of view of possible extensions of a statistical

theory, this modification results in a mathematicall

b

weaker concept of completeness.: The category of pértial
Boolean algebras which are homomorphically related to a
Boolean algebra is a proper sucategory of éhe category of
al} partial Boolean gléebras.‘ So the coﬁ leteness problem

is limited to showing that there are no extensions in this
: |
. o
sub-category. ° » N

Secondly, this objection has a certain initial
plausibility when it is implicitly assumed that the _non-

existence of two-valued homomorphisms has the same signi-

o

ficance iﬁsboth imbeddable and non-imbeddable sStructures.

In the case where El is imbeddable. into a Boolean algebra,

Aistinctions are possible which are obscured by the absence
of disperﬁion free states. E.g. this is true of the non-
atomic lattice of idempotent macroscopic magnitudes of
c;assical statistical mechanics. Now the cése of ‘a ngn-
imbeddable L, is very.differenté N contains pairs of
idempotents such that a*# b but h(a) = h(b) for every
homomorphism h: N+Z, Thﬁs a ané b are éistinguishable
quantum mechanically, but not classically? i.e. not in

4

L d . -~

terms of a homomorphism onto Z
A ' ]

2 (= the two element Boolean

algebra).

To summarize this discussion of [2]: The distinction
between L, and L, clarifies the fact that the intrpduction
of an algebra of idempotents represents an additional ex-

~

4
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planatory assumption of a étazégtical theory. This struc-

ture occurs essentially in determining the set of statis-

- tical states of the theory. In, the case of quantum mechanics,

the nature of this assumption was first made cdmpletely
explicit by von Nguménn. Completeness means that L; has

no proper extehsions. The quantum theory is complete with
respect to -the category of partial Boolean aléebraé. This

is the content of Gleason's theorem. By éfoné's representa-
tion theoreim (or more acéu?atély, by the representation
theorem for Boolean o-algebras of Loomis and Sikorski), clas-
sical mechanics’is complete réiative to the category of
Boolean algebras. (Since this ﬁakes the theory of states

on a Boolean algebra a sub-theory of the theory of measures .

on an arbitrary field of setg.) It is in this sefise --

. the same sense in both cases -- that quantum mechanics and

classical mechanics are complete statistical theories.

-~

One final remark concerning the distinctién between El

and Eé:‘There is a similarly named, but otherwise very dif-
ferent distinction giveh by van Fraassen. In [8] elements

6f,,Ll are theoretical statements; they correspond to what I

called properties. For van Fraassen L1 is a set of objects
. . .

which is not necessarily related to the algebra of idempotent

magnitudes of the theory. Elements ofeL, are statements of

2
the form: "The value of\é is certainly in U" or "The value of

.A lies in U with probability Ael0,1]". Van’Fraassen{s hl afd

L, are distinguished by their elements; Ll and L, consist of

essentiafly different statements. Moreover no structure is

J
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,assdqgg for Ll' Two algebraic structures are imposed on the

statements of Ll' (Cf. [8] Sections II.4 'and II.5.) Each

of these is based on the set S of statistical states of the
theory, and therefore correspond to- logical spaces of the
type EZ'

For van Fraassen, logical structures occur only at the
level of the evidential basis of a statistical fheory, and
never as explanatory principles. This isea diétortiqp of what

actually occurs in either cl?ssical or quantum mechanics. In

’ *

both cases the algebraic structure introduced by El occurs

™

’ , e e as ~
‘explicitly and essentially in the assignment of probabilities
fo the ranges of values of the magnitudes of the theory. This
is the principle introduced by quantum mechanics which leads

to the significantly statistical character of the theory. The

-

fact that L., is not imbeddable into a logical spaee which admits

1

two-valued measures shows that the stétistica; character. of the
theory is an essential (component of this assumption and sup-

ports the view that quantum mechanics is a fundamental theory.

g

)
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Chapter III

~

The Possibil#zty Structure of Physi&al Systems

0. Introduction. . -
/ .

This paper develops the logical interpretation of
b noM-relativistic quantum mechanics {ﬁitially proposed’ by.

/' -
. Hilary. Putnam [11]. YXSee Slso (1] and [2].) The main

features of this interpretation are briefly summarized in,

s . ¢

this introduction.

Certain physical theories.postulatg abstract structural
constraints which events are held tq satisfy. §uch theories
are termed "principle theofies". IE!grprefatiSns of ‘principle
theories aim to explain their relation to the theories they re-
place. Intefpretations are tﬁerefope concerned with the naturé

“of the-transitions be;ween theories.
Theories of space-time structure provide the most acces-

sible illustration of principle theories. TFor, example, Newtonian

mechanics in the absence of gravitation reprdéents the ui-

‘71 ’

-

dimensional geometry of space-time by the,inﬂomogeneous Galilean
group, which acts transitively in the cléss Jf free motions,
i.e. t;:.inhomogeneous.Galilean grbup is the gymmetfy group
of the free motions: it is a subgroup of the symmetry group
. of évery mechanical system, -and the largest such subgroup.
Einstein's special brinciple of relativit; is the hypothesis
'that the symmetry group of the free motions is the Poincaré
group. The transition from the Galilean group to the Poincaré

group is associated with a corresponding modification in space-

. ‘ o _5.
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time structure. . The absolute time and Euclidean metric.

[

of Newtonian. mechanics are dropped altogether, and the ‘ ‘]
metrical relationslﬁf space-time afe determined by the -
Minkowski tensor. '

The special tﬁéory of- relativity represents the
transition from Newtonian Mechanics to Maxwell's electro- ¢
dynamics as involving a modification of the structure of

space-time. In this sense, the special theorg may be re-

garded- as an -interpretation of classical electrodynamics.

Theoretical transitions in the class of space-time
theories suggest an analogous approach to the interpretation
of-quantum mechanics. In this view, classical and qﬁantuﬁ
mechanics are-represented as a’particular type of principlé
‘theory. I call theo;ies of this type "theories of logical
structure" ( or sometimes "phase space theories"), since ’
the type of structural'constraiﬁt they  introduce concerns
the logical structure of events and this is given by the
algebra of idempotent magnitudes of the theory, The logical .
. o v .

structure of a physical system imposes the most general kind

of constraint on the occurrence and non-occurrence of events.

The event structures of classical mechanics are esséntially
Bgolean algebras. The logical structure of a quantum mechan%cal
system is represented by the partial Boolean algebra’of sub-
spaces of a Hilbert space. In general, this is not impgddable
into a Boolean algebra. ’ .
The matheﬁatical investigations of Kochen and Specker

[9] lead to a general concept of completeness applicable to

i, Ma. i
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phase space theories. The explication depends on the notion

of a proper extension of a phase space theory. :thensibns

‘I.

are defined relative to a category of algebraic- structures

(representing the phase spaces of' the theory) and a suitable

Vconcept-of statistical state: Let A demote the paftial Boo-
o N :
lean algebra of idempotents, S the sét of statistical

statés b on A.Suppose there is an imbedding ¢ carrying A into

- . . .
A' such that for every yeS, ¢ = y'e¢, where ¥* is a statisti-

q

cal state on A'. ‘Then the theory (A', S') is an extension of °
the “theory (A,S). The extension is proper if for fame y' e 8,

Y'|¢[A] # ¥. Complete phase spac%‘theerieé have no .proper

)

extensions. « ) U
) e

A proper extension of a phaée space theory must not be

confused with the more usual notion of a proper extension of L
] A . —~ ..
a formal #eory. Besdides trivializing the notion, this would

. . : . ) -
imply that compléfgness is a.prope of the theory's formali-
zatign. This, however, is not the c@ge The relevant-notion

" of completenesé is a mathematical' property of a certain class

of algebraic structures rather ‘than a metamathematical one.

©
.

There exists an important comrnection betweenfcompleteﬂess and
sthe formal Egeory of this class of structures, but the concept
. i ‘ ! 3

of coempleteness does not depend on tdigjconnectioh.

‘o

- A great deal .qf unclarity hasksurrounded the problem

. * ' 4 H
v, c:*! of completeness in quantum mechanics. An impor¥ant consequence
. i . ’
e : L e N
of thismanaly31s,1s that classical mech%Plcs and quantum

mechand cs* are complete in’exactly”the same sense. In neither
, R PR S s \ nt
theory do there exist &xtensions in, the category of algebraic

structures é&sociated.with their réspective %hase spaces.f_As\

!

principle theories, classical mechanics and quantum mechanics
o . » ) (] ’




specify different kinds of nstraints on the possible events

_open to a phy51cal stem, i.e.'they.detevmine different

p0351bf11ty structures of events,. and each theory-is complete
relatlve‘to the category of algeLralc structures defined.
b Einally,'the approach to phase space theories out-
lined here has interesting consequences for the nature og )
lqgical truth.; Thejloéical Structures of quantum mechanide

include the Boolean algebras of classical mechanics.' Sudh

structures, represent the p0351b111ty structure of events,

' that is, roughly speaklng, they repreSent the-way in whlch

the propertleé of a-phy51cal system hang together. The

quantum theory has sbown that 31gn1flcantly dlfferenijas—

sumptlons may be made concernlng this ‘structure. Now clas-

‘

sical propositional validity is essentially validity in the
Categery B of general-Boolean algebres. The choice'of Bpolean_
algebrds, ‘has an émplrlcal Justnflcatlon in class1cal mechanlcs,

for the magnltudes of thls theory form a commutat1Ve algebra

»~

'and therefore the subalgebra_of 1ngpotent magnitudes form a

;Booleah algebra.? When viewed in this way, the justificatidn
3 | T ﬁ A
.of classical validity is intimately bound up with themLogicai

structures.postulated by classical mechaniecs. The Quantum
L S . . ) * : : . . - .
theory extends this class of structures to include all -partial

Boolean algebras'of.a certain tybe. ¥he Boolean imbedda- "

"-fbility pfopefties of these structures haye a modelJtheoretig-

/ B . - i
Aéharacterizatidh‘in-terms of thé validity of c¢lassical tau-
Lo ' e e F L
tdlogfgp., Now 'a consequence of the work of Kochén and Specker
» - l\ ’

3

is that there exists a classical tautology which is quantum




:

uf

. . ,
L o L L
I L) v

™ e EEEECE R 22
% - R T S . :
mechanically refutable (i.e. refutﬁ%leﬂiq a partial Boolean

~

algebpa—efnih\‘guantum theory) In this %enge; classical

¢

‘logic is' false, and the truth of loglcv an %mplr;éal ques—

‘+1 . ]\‘ . & -, . . .‘ ° »J .’o .‘

i
\

TOhe remark on the mgthematfcal éxposition: All / "

qua11f1Catlons ﬁhgardlng measurablllty, v1f., the restric-

.

tion to Borel functlons, Borel subsets, ‘and Boolean o- alge-«

-

4]
bras, have bean omitted. 'This merely means that the expo;!

+

tion is not as general as it mlghf’Qe ] SR .

¢ » ) :

\ " ;.A - . t
‘ ' - ‘ : o 7




1., Preliminary Notions!:

A partial, algebra over a field K is a set A with a <
- S Bl jf

»

reflexive and symmetric binary relation ++ (termed "compati-

cy sl : . ) I
bility") suchr that A is closed under the operation of scalar

°

_multiplicetion from K x A to A, and the operations of addi-~ |
tion and myltiplication defined from «+ to A. That is:

(1) «> c A x A

A

(ii) every element of A ic compatible yith itself ,

'(iii) 1if a is compatible with by then b is‘compétible with a,
for all a, beA

(iv) If any a,ﬁ,ceA are mutually compatible,: then (a+b)«-c,

°

b++c, and Aa++b for all xek. «

In addltlon, there is. a unit element 1 which is compatible

wlthgeyery elegeht of A, and if a,b,c are mutually compatible,

then the values of the polynomials in a,b,c form a commuta-
L §

o

' tive- elgebra over the’ field K.

e A pa§t1al algebra over the field 22 of two elements

V

is termed a partlal Boolean algebra. The Boolean operatlons

P N » .
A,v and ' may be defined in terms of the_ ring operations ®
in the usual way:

2,

aab = ab .
.avb = a+b-ab - .

S
a' = l-a.

If a,b,c are mutuelly compatible, then the values of the - .
polynomials in a,b,c, form & Bodlean algebra.
'\Clearly, if B is a set of mutuglly, compatible eleé

mentsa.in a partlal algebra A, thep B generates a cdmmuta-.

I

tlve'aak-algebra in A; and,ln the. case of a partlal Booleat algebra
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a Boolean algebra, so the set of idempotents,of a partial

3

76

[\

A,’B generates a Boolean sub-algebra in. A Just as the

)

set of {dempotent elements of a commutatlve algebra formfi
b

14

algebra forms a partial Boolean algebra.

We shall be mainly concerned with partial” Boolean

algebras. A homomorphism, h, between two partial. B&olean

algebras, A and A', is a map h:A + A which preserves the
algebraic operations, i.e. for all compatible a, SeA:

h(a) <+ h(b)

. -4
h(a+b) = h(a) + h{b)
h(ab) = h(a)h(b)
> h(1) =1 ' o .

lA homomorphism is an imbeddfng if i% is one-to-oﬁe.

A weak imheddinéiis a homomorphism which is an im-
beQEgng_on.Boolean sub;aléebras of A. More precisgiy, a

homomorpbgsm~ h, of A into A' is a weak imbedding if h(a) #
kd

-

h(b) whenever a++b and a # b in A. So that in the case of “

. @ weak 1mbedd1ng, 1ncompat1ble elements may be mapped onto

the'same element.
An algebra is simple if its only pfoper filter is

the unit filfer 11}. Zz-%s.fhe oniy simple Booleah algebra.

A necessary and sufficient condition for the imbeddability

a

of a partial Booleaﬁ)algebraaA Qﬁto a Boolean algebra B, is

that for every pair of distinct g¢lements a, beA there exists

a homomorphlsm h: A+Z whlch separates them in 22’ i.e. such

that y(a) #‘th) in Zzi This is Koe en and Spgcker's
e

m 0. The result dépends on the semi-simplicity prb-:

s

LY




7Y
perty of Boolean algebras, i.e. the fact that every Booleanj .
algebra is imbeddable into a direct union of the simple

Boolean algebra Z,.

The direct union of a family {B\i}ie‘I of Bogjean alge-

bras is defined on the set of all sequences {ai} of

_ iel
elements of the Bi' The operations are defined point-wise,
. ) _ s

i.e. )
3! o= {a.} ‘
tajhier = {aghier
lajbierV (bydyer = fag v bidi g
- !
* taghierr Oydier = fay A Dyl

The dire?t product of—tbe Bi is essentially the closure of

the direcé¢t union under the operation of forming i%omorphic

images.

» N .
. Semi-simplicity is equivalent to the homomorphism

theorem: Every Booléan algebra admits a two-valued homo- ¢

morphism, i.e. a homomorphism onto 22. ’ o . «

The semi-simplicity property and the hombmq{phism
theorem gre alternativé.formulations of Stone's representa-.
*‘tion‘theorem and the ultrafilter theorem (respectively).

This is a consequence of the fact that in“every Boolean
\ .

. - . . o
A v algebra there i1s a natural one-to-one correspondence betweern
ultrafilters and two-valued homomorphisms. Let S be the
‘ : , Stone space of a Boolean algebra B. " (S is the set of all

ultrafilters in B). <Let P(S). denote the Boolean algebra
“ . . ]
of all subsets.of S. "Replacing ultrafiltef§ by two-valued
y »
homomorphisms and subsets of S by the sequence of yalu%b of ,}
; /

¢ |-

* 1 4 .
.o /
LR . &3




their characteristic functions yiélds Z§ -- the direct union

of 22 to the power of S -- from P(S). .In this context,' the

Stone isomarphism becomes the imbedding k:B*Zg given by

-«

k(a) = {htsa)}tes.

The mathemafical connection of these ideas to logic
’ ' :

atys€s in the following way. Propositional formulae are
regérded as Boolean polynomials in & sujtable first-order
languagé L. 'Realizations.of L are 6bjecté in the category

B bflgene?al Boolean algebras. A formula ¢(xl,...,xn) is
Zélassically valid (C-valid).if, for any B in.B every sub-
stitution of elements for the variables Xqsee e sX yields the

unit of B. If ¢ is'a propositional formula not>ya1id in B,

i.e. if ¢(a) # 1 for some a = (al,... n i , then
¢(k(a)) £ 1 in Zg,'wheré k(a) = (k(al),...,k(an)), so that ¢
is refutable in Zz. Hence, by semi-simplicity, classical,

vélidity is .equivalent’ to. tautologousness, i.e. validity

in Z,. . o B
5 a - - >
Now extend the class of realizations of L to the

category of partial Boolean'algebras. Validity in a partial

o

Boolean algebra N depends on the domain of a ppopositioni&'

formula. ¢(xl,..l,xn) is valid in N if eveYy substitution
]

of elements from thiwdomain"of ¢ yields the unit of N. The.

concept of the domaih of a propositional formula may be

—
simply explained by an example. .
"

“Let ¢ =.¥ = x be the propositional formula

L 4

.
v




3) z (xl A x23 v (x, A x.)

X, A (x, VvV x 1

1 2 3
The domain of ,¢ is the set of all elements a = (ai,ag,aa)

of N such that:

- 4--»" L
.al a2
. ai a3
*'")a *
a7 3
al*"’(z‘.’.as)
(al_A a2) > (al A a33

a, A (a, v a3) > (al A aéY v (a2 A a

,a\lz ; 30> \ A

for only then will thé'pperations appearing in ¢ be defined

r %‘ .

It follows from the fibst three compatibilities that 7

in N.

any three elements in the domain of ¢ geﬁefafe a Boolean
algebra, and hence, satisfy the distributive law. Hence ¢
4 -
., is valid in all partlal Booltean algebras [Notlce also that

theuéast three compatlb;lltles arq therefore. redundant. ]

. -
AL LY

The generalized inition of propositional validity

4. . 7 R ri .
.is: A propositional formula is Q-valid if it is valid in

H

. ‘ - -all bartial.Boolean aigebfas. 'The notion of Q-validity is
4 | formalize&?in [81]. ' . '
f The fundamental model-thegretic result in tﬂis field
) is: ' o

(i)*A partial Boolean algebra N is imbeddable into a
Boolean algebra iff for every: q13331ca1 tautology of the
form ¢zy Fhe corresponding 1dént1ty ¢ Yis valld in N,

e. ¢(a) = ¥(a) holds for. all a in the intersection of, the

- s ¥




‘8u.
~domains of ¢ and ¥.
(ii) N is.weakly imbeddable into a.Boolean algebra
iff every ciaSsical tautology is valid An N.

2
E

"~ . (iii) There is a homomgrphism from N into a Boolean

[ L

. aigebra iff every classical tautology is not refutable in
| ‘N. [This is-Theorem 4 of ([97. (See [2] for an exposition
. of the proof of th}s theorem. ) j‘

Notice that both C-validity andgQ-validity have been
defined algebra;cally,kas the vgiid@t;_of propositional
formulae in certain-:algebraic categories. In the case;of
classical validity; this definitién differs sharply from
more usual characterizationé. Because of the'equ;valence
of Qalidigy in B and validity in Zys classical propositionél

validity isgdefined as validity in the two-element matrix

~  or truth-table <{0,1};{1}, v, ->, where {1} is the set of
'&Qesignated elements and v and - have their well-known

" matrix definitions. ¢(x .,xn) is a classical téutology

‘1-7' I,.‘

if it yields the ﬁésignated value 1 for all substitutions

of the elements 0 and-1l for the variables'xl,.:.,x

The transition to Q-validity is greatly simplified

n
when cléssical validity is understoed algebraical}y.. But

. ; there i another reasgn éor'reblacing the matrix definition.

| First, it should be cleaf that a definition of classical

vglidity is not merely a stipulation. Rather, one coAcept

(or group of concgpts) proved ver& fruitful in initiating

¢

. » . P
the modern mathematical development of logic,-and a defini- .

tion of validity should provide some explication of this




concept. The matrix definition is misleadiné since it igiiiés
the connection of classical propositional logic with the
Ehebry of Boolean glgebras. This connection is important
. " for the whole development éf the subject. For example, on
the matrix definition it is trivial that classical proposi-
'tignal vaiidify is effective. But vhen classi;al validity
 is defined algebraically, effectiveness depends on semi-
. simplicity,‘which is decidedly npn-trivial. Hence the
'y algebraic definition suggests that effectitgg;ss‘ﬁid not
play, a major role in the initial fqrmulafion of mathematical
logic, and in %act, considerations of this type actuaglly
occur much later: viz., whenlthe scope of logic came to be

-

drawn in terms pf the distinﬁtion between syntax and semantics.

.

v
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2. Partial Boolean Algebras and-Orthomodular Posets. '
“« . :
Bvery partial Boolean algebra is isomorphic to a
collection L = {Li; iel} of Boolean-algebras satisfying
the following conditions: ~ "
(1) The L; have a common 1. ;
e ) Li Lj 1 N
(ii) If a ¢ LinLj, then a = a (li = ortho-
-complémention relative to Li,etc.) v

(iii) If a, b ¢ Linﬁaq then a A, b f a A. b.

(iv) "Let L = u{Li: ieI}. Given any a,b,c in L
sucﬂ that'any two*of them 1i§ in a common Li’ there egis%s
an Lj suéﬁ‘th?t a,b.,c € Lj‘ -

Families of Boolean algebras satisfying (i) - (iv) 0

are called logical structures. (Notite, the first three

conditions simply insure that in any logical structure the
. ¥ :

aperation of taking the intersection of two algebras‘makes

sense.) The partial Boolean algebra.associated with a

logical structure is defined on L = uL: a«+b iff there is

an Li containing a,b. The 1 of L is the common 1 of all

1. . - _ "
the Li' at = a * for some Li. If a++b, then aab = a As b~
¢ -«
. A p .
€or some isI. {The zero and jein of L are thought of , Lo
o ’ . 5
as being defined in the usual way.) L/ . -

A partial Boolean algebra is said to be transitive

if asb, i.e. aAb = a, and bsc implies a<+c, in which case

¥ ]
.asc. Logical structurqi-associated,hith transitive partial
Boolean ‘algebras satisf&lthe further condition:

(v) If as;b and bsjc, there is ap L, such that a,b,cel, .

L

o i
) J
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Orthomodular posets are perhaps more familiar in the
present_qu;ext; They are structures P = <P,s,v,A;1,0,l>
wﬁere < 1s a partial order on P and 1 is an orthocomplemen-
ta£ion;‘l and 0 arg gpeatest and least. elements, .and v,aA
are the l.u.b. and g.l.b. with respect to s. P is weakiy
modular: avb eﬁists whene&ér a is orthogonal to b (i.e.
asb{), and if asb, then av(baal) = h. Iish any orthomodular
pddet it is possible to define a relation C of compatibility:
acChb if there exist mutually orthogohal eléments al,bl,é .

such .that a = a, ve and b = b1 ve. (I.e., a and b gre

compatible if they are orthogonal except for an overlap.)

-

The representation theory for orthomudular posets
L] » -
2

. ‘l ’
has been established by Finch [3] (Theorems 1l.1.and 3.1).

The logical structures considered by Finch differ from those .

associated with transitive partial Boolean algebras with

respect to condition (iy). In [3] this is replaced by the

i
-

weaker - . ' _ .
(iv') Suppose as;b, = for some a,b e L,. If asjc and

_L i P
bg,c k then there is_an mEI such that a,b,ceLﬁ. That is,

- in an orthomodular poset we may have that a, b € Li;‘a; cst;

and b, cel,, but there is no Lﬁ containing a,b,c.

A compatible orthomodular poset is one which satisfies'

-

the cdndition: (a v b) C ¢ whenever a,b,c are pairwise -

v
\

compatible:. This is a necessary and sufficient condition

- ”

for every set of mutually}compatible elements to be con-

. . " [ 3
tained in 4 Boolean subalgebra obe. PR " e

There is a very simple conqecfion between or§h6ﬁédular
. Y

¢ - -
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posets and partial Boolean algebras: Every compatiblé®ortho-

' » . e .
modular poset is a transitive partial Boolean algebra and

-~ conversely. : ¢ : -
I have presented the connection between orthomodular
podets and partial Boolean algebras in terms of their repre-
. sentation theory. A direct proof of these remafks has been

'given by Gudder in [6]. His formulation is based.on the

notion of an associative pagfial Boolean algebra: Suppose
a++b and b«+*c, a,b,celL. Then L‘is assocﬁative,’if (;Ab)++c
iff a«>(bAc), and hence (aAb)ac = aA(bAc). (By q,lemma.
o;Engder and Schelp ([7] Leﬁ;ELi;?) a partial Boolean
algebra is associative if and only)if it is transitive.)
// Gudder showg that every associative partial Boolean algebra
. ' 1is a compatible orthomodular poset, and converse%z;/(Theorems
2.3 and 2.4.) G - . ‘ -
The parntial Boolean algebra‘B(H) of closed linear sub-
spaces of é separable Hilbert sﬁace is a traﬁsitﬁve partial
Boolean algebra. The partial ordering ig giQen by the
subspace . relation, and tha opgrations of meet, join-and
orthocomplement are representé@'ﬁy the intersection, span
and o%thogonql complement of subspaces. ‘Th zero of B(H)
is the 0-dimensional subépace, and the unit7§s the wh&!%
ace H. The definition of <+~ is a++b;‘if aCb, i.e. if
there are mutually 6rthogona1‘ subspace‘ ai,bl,c such that
- b‘=.blvc, and‘g = a;vc. ﬁquiv&lently; the subspaces éf H

s

form a compatible orthomodular poset.
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that H is partially ordered wyich is retained in the general

concept of an orthomodular poseW. The concept of a partial
Boolean algebra is based on the ompatibiiity structure of &
H since it presérves the fact that every triple of pairwise
compatible subspaces is contained in a Boolean subalgebra of

[y

T e

o

2
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3. Applicationshto the Problem of Hidden Variables.

o

_Partial Boolean algebras were introducegd by Kochen
and Specker in c;hnectlon with the prgﬁlem of hidden:
variables. ThlS is characterlzed as the problem of, 1m-
beddlng the non- commutatlve partlal algebra of s€1f ad301nt

operators on H into the commutative algebra of ‘real valued

functions on a.classical probability-space. Their first
. .

. -theorem iafws‘that there are no two-valuéd homomorphisms on

a finite subalgebra:of tﬁe partial Boolean algebra B(E3)
of lines through‘a-point in opdinary three dimensiehalx
Euclidian space. It follo&s féom this that fbe@e\aFe§@3\ -
two-valued homomorphiams orr B(H). (It is necesaary to as-

sume that the dimension of H be at least three.) Hence,

by Theorem 0 there is no imbedding of B(H) into a Boolean

' algébfa. "But the partiai'Boolean algebra of subspaces of

4

H 1s isomorphic to the subalgebra of idempotent operators
-

on H Hence the partial algebra of physical magnitudes is

. e+ a
St . . . e

not imbeddable into a commutafive algebra.

By the equivaleﬁce of two-valued homomorphisms and -
pd-valued probablllty measures (or dispersion free states)
the absence of two valued homomorphlsms is anigmmedlate- <
corrollary tg Gleason 5 theorem An independént proof of
thls corrollary was flrst given- by Bell. (See [11] p. 69f,
for an expbsition of the proof.) Kochen and Specker's ‘
prpof>differs from Bell's since it does net depedd.én the

denseness of the unit sphere in H.

There is an interesting reformulation of the imbedding
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problem in terms of the concept of ahoglcal structur\é?
¢

(éﬁégested by a paper of Maczynski [101). This actually
. . ® . ‘ . .

«®

chafacterizes the Bfoblém of finding a weak imbedding bf}a

partial Boolean algebra into a Boolean algebra. The problem

" '

L

be furth#r generalized by the concept of a homomérphic

,relation, but wé shall not consider this hepg (éeé [§3<Secp. .
. e 5). ~Thé'interest of the réformulation from our poiﬁt‘of
v1;; is that it clarlfleé an lmportant dlstlnctlon, viz. the
distinction between a Booiean theory based .on thevldegpotent T

magnltudes of quantum mechan;cs_@nd'ahBoolean pepresen%atlon.~
. S A N

‘magnitudes. ; . °

he logical structure .a o=

of the algebra Qf-jdempote

' ) Q‘et N
< : o

’01ated w1th B(H) for a three dime

/.

ieIl 4 ote
L5 2759
ional Hilbert space.
' 4 !
‘\ {fq: B.+Bj, i, jel} 1@ the set of inclusion hdémomorphismg

{ from B into Bj ‘fi ; the 1dent1ty map~ thice that1

: fk ° fi = fk, 51nce'N isra loglca structure. Write B,

;S
. ) - X ‘ . 3
- if there is an fq.v A Booleap/representation of N ;5 a

—~ - pair (C,lfhi}{el) QHeﬁéiC-is a'non-degenerate'Booléan_élgebra
and each h,: Bi+C is an imbedding‘céﬁrying B, into C such
:‘thét the following chditions are.satisfied: ot
w"\ ) ’ 4 L b 4

- S - (1) uh LB. l.gegerates C. ‘-

_ 1€I " : ‘
%'y - o (ii) I.f‘ Bi'C'Bi’ithe"n h; = h [fJ[B 1. ’ .
v : (if1) Given Hny (C', {h'i ) satlsfylng (1) and (ii) .

?

- tbere 1sah unlque homomonphlsm h:C+C' such that

, . . . . . . .
3 A .

.o hoh. =-h'. D 5 . ‘ i . .

1 1 — y : . . 4 2o o

L] - . ) L

. .The predence pf“bonaition'(ii)»impliéé?thét a Booledn repre-

‘ se on of N is a weak iﬁbedding‘of B(H) ipto €.
o p o

» b

i o
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Suppose»that (F' {k.}.EI) is the direct product. of

the B That is to say, take the Car5e51an product X = 11 X.

lEI\ i
of the spaces X,. Associate each Ys{(Xi) with a subset of
X by the mapping . N
Y +L(xsX|xieY}:’ o e

. .o o ' ,
The field product F(X) of the F(X,;) is.the field generated
by the‘union of the images of the E(Xi) under this cor-

respondence. F(X) contains an isomorphic copy of each E(Xi),
and hence, an isomorphic image of each Bik *

’ : 1

Condition (ii) distinguishes a Boolgfn representation

~of the @i from their direct product. . To see this copsider

an element a in Bi;Bi. a is mapped by‘ki ortto the set of

points in X whose i=th coordinate is an ultrafilter in B&

.

‘containing a. The image of a =‘fi(a) under kj is the set

of‘$oints whose #5-th coordinate is‘an ultrafilteg in Bj

. conta;ning'a. It is clear that in general ki(a) ? kj(aQ.
Givep the direct product, we may always obtain a' '

structure satisfyiné condition (iij, but this is not neces-

sarllyna Boolean representatlon« ‘To do this we proceed as

— lelows. Let 'I be*the 1dea1 in F generated by all elements

; . - - 3 3 - )
of the form: ki(a? kj(fifa))\u kj(fi(a)) ki(a). For X;

LY

Y in F def%ﬁe X~Y if _X-Y iJYbX/E I. E/I id the set of -
equivalence classes of elements of g’under theélelation ., T
Lef ¢:F » E/I ﬂe %he canonical homomorphism from F into
'fhe quotiéht a}gebra F/I. Write k; = ¢°ki. Then (F/I,

{k}

) is the direct limit of N. The direct 1limit is a
: . . .
Boolean representation if, and.oply if, it is non-degenerate.

iel

’
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It is always'possibfg to eqnstruct é Boolearn theory - -
[ based on the idempotghtvmagnitudes in the Bi simply by
taking the direct product of the loggéal siructure. This
cd}reéponds to Kochen and’Specker's trivial hidden vqriaﬁle‘
éonstruction. Such a theory is excluded by condition (ii),
»%or this condition makes the problem an i;bedding problem.
Rejecting tﬁis-characterizatidn of the problem is therefore
- equivalent to weakening the notipn of a Boolean representa-

) « tion. of a logical structure. But this overlooks the fact

that exactly the same condition occurs in classical mechanics

. " since, of the two representations, (F, {ki}ieI) and (EF/I,

), classical mechanics usésithe direct limit, not

t
O6)se1 u

the direct product. Hence, cofidition (ii), or equivalently,
< k
the condition of weak imbeddability, can hardly be regarded -

as an ad hoc restriction, arbitrariiy introduced to ex&lude

classical extensions of the quantum theory. : ’ /
‘ Orthémodular‘poéets are m;;nly associatéd with the

"quantum logéc" formulation of quantum mecﬁanics. This
represents a new axiomatic approach to tﬁe theory which-

aims at éeﬁeralizing von Neumann's presentation in terms of>
Hilbert space. ‘The principal question here is: "To what |
extent cam von Neumann's formulation be recovered without
exﬁlieitly using the concept of Hilbert Spage". This ié a

#mathematical investigation, moéivated by mainly mathematical

considerations. In this latter respect, it differs, not

only. from Kochen and Specker's investigations, but from von

Neumann's as well. 7




o ' Before von Neumann's treatiée, the relationship
between wave mechanics'and matriwxsmechanics was obscure.
For example, Dirac and Jordan viewed the 31m11ar1ty between
the two theories in terms of a "correspondence" between

the "geints” over which matrices in matrfx mechanics and
differential operators in wave mechanics‘ére defined :— an
idea which could not be consistently maintained as von Neumann
showed. Von Neumann's formalization of thﬁee two theories
" in terms of Hilbert,EPeee was based on the observation that
the‘algebraic structure of physical magnitudes is the same
in both matrix and wave mechanics. 'This structure is re-
presented by the non-commutative algebra of self-adjoint”
operators on-a separable Hilbert space. ‘The Hilbert space’

formalization is thus motivated by a question concerning the

relationship between these qu theories, and von Neumann

/
presented_the definitive clarification &f the precise respect

—

in which wave mechanics and matrix mechanics dre equivalent.
In the quantum logic approach, the problem of hidden

variables consists in showing that in any acceptable generali-

zation of the theory there are no dlsper816n free states. ,

@

Now the diﬁficulties with the notion of an acceptable gener-

/
/

elization/@re obvious enough. However equally serigus
‘problems erise in conneetion-with the notion of a generali-
zation of qnantnm mechanics. ‘For ex;mplé,-why’ehould a
generalizatidn in any way preserve the algebraic'strﬁcture
© of the theory? For this may be an 1nessent1a1 feature of

the theory s formulation, and therefore, not properly part

-

<




&

) ¢ ’ %‘tgb
of any generalization of the theory. This is the criticism

-

usually urged against hidden variable theorems.

These and eimilar difficulties are undercut by
Kochen ané Specker's formuiation of the problem as(;n imbedi_
ding problem. Rirst, this‘restricts the issue to the rela-

tionship bgtween.two giggg theories% viz., quantum mechanics.

and classical mechanics. The question is basically this:

"Is quantum mechanicS a complete statistical theory? Or is

it statistical in the sense of classicaa'stetiétical mechanics?-
. . . } ' _ .
In this case the absence of dispersion free states is the

result of incomplete knowledge. Secondly, it completes the,
program initiated by von Neumann: In Mathematical Foundations

[0
it ‘was shown that the peculiarity of wave mechanics and

matrix mechanics consists in the algebraic_ structure of

their physical magnitudes. The solution to the imbedding
problem shows. that this algebraic structure occurs essen-
tially, and therefere cannot be regarded as a property ef

the theory's formulation.
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‘ 4. Idempotents as Prg%ositioﬁe. !

x> To ﬂ%gln with, let us considetr the ré{;tlonshlp

~between¢the propertles of . a phy31ca1 system and quanf*t&ee/’”\‘*“**”
“ftaklngvvalues 1n”k Let Q be ‘a subset of n—dlmen31onal . o
- Euclidian space. "In cla951cé1 partlcle mechanlcs a phy51cah!

quaﬁtit§'is répresented by a function in B%. Take a

@  quantity A and real number.) in the range of fAeRQ. Then

' - B - -
“

fA = A (this is read "the value of fA is A") represents a.

property of the physical system S. More generaliy, given

o A and a subset U of R,‘fAe U (the value of fAelies in U) .. ,:,x

A

represents a property of S.

\ To define the holding of a proﬁerty we shall require

the notion of a state of S. This must not be confused Wlth

.

a statistical state. A’'state is simply an event in' the

-»

history of S. 1In classical mechanics an event is repreeented .
‘ N )
by a point w in Q. As is well known, an event .représented

by w is associated with a pure statisticaluetate:‘the two- -~
valued measure on F(}) determined b; w3 but the ooﬂeepi of .
. an event is’ not a statistical concept g q% )
- The property fA e VU holds for 'S f% and only if S is - 3 \

in a- state such that fA(w) £ U. Notice,’ 1Q,von Neumann's

ferminolqu ([13] p. 2i49) f, € U is then said to Bewa
AR

[N

- property of the state w. This is misleading, as will be
shown in connection with quantum mechanics. ,
‘ - Let us Jow consider the representatlon of propertles

! of S by 1dempotent magnltudes. Le't I' denote the9 subset fA )

of Q It ig clear that S has‘the.property fA-e U if and only




)

X

“idempotents form % Boolean rlng with unit 1 = xQ, i.e. a

if'the"state w -Of-S lies in I'. The property fA € p is
said to'be‘associeted with r. In.general there are many
properties £y € U. such that f (U ) = T for sbne U <R
Now let Xr belthe characterlstlclfunctlon of T, and let

P be a property associated with T. By the correspondence
between:properties of 5 _and subsets of {, it follows that

every property P is represented by the characteristic

functlon#xr, in the sense that P holds if and only\ if S

is in a state w such that“xr(w) = 1, Since Xp is two
X
valued thls is equivalent: to xr(w) # 0. This is the formu-

lation employed by von Neumann ([131] Ch III. 5).

Now .the characteristic functions of the subsets of

Q are just the subset of idempotent elements in rY, The

<

Boolean algebra. To 51mp11fy the notatlon let B denote

the Boolean subalgebra of idempotents in RQ. Elements of
B will be derioted by a,b,c... . WheTever lattice operations
A

are used, it is assumed that they~have been defined in terms

of the ring operatiofls in the usual way. | . ’
To summarize, weyhave seen that every magndtﬁde may

be replaced'by a set of properties, and that every property

corresponds to a two v;iued quantity, i.e. idempotent magni-

tude in B. The Qorrespondence is not one-to-one, since very
many properties are q89001ated with' the same subset of Q "
and therefore represented by ‘the .same idempotent magnltude.
Sgnce a is also a magnitude in RQ, a=1, (or a# 0) is

~

é}so'a-property of S jnst as‘fA = A is a property of S. Here




" the property a = l represﬁhté & whole class of pfoperties

e~

.
of the fér?f €. U._ ; >
" That ldempotents may be regarded as prope31t10ne lS
.jusilfléd by the followin conslderatlons. For each a 1&
% We may defiqe:,a is Egggf(l.e. a =1, a'f.O) if "and only
. if S is in a state sucﬁ that aw) = 1. (;ince afiS\fQO
valuéd ;hls 1s equivalent to a(w) .# 0.) I.e. a is true.

©

if and only if S has any (and therefore all) of the ﬂro—

'pertles represenyed by a. Also,

' is true iff.1 - a(w) =

a v b is true iff alw) + blw) - alw)blw) = 1,

>
- so that the lattice operations ' and v in B represent the

3
- operations of negation'and disjunction of classieal‘logic.
In a similar way tre other proposifional connectives may
be identified wifh‘the correspon@ing Boolean operatiogs. .

_‘[Note, etrictly 2peaking' B should be regarded as the-
_Lindengaum-Tarski alge?pa of a suigable formal languaée L,
' apd truth then defined for eentences"for L. TFor our purposes,
'thie woﬁld introduce an unn¢cessary complication.]
The distinction drawn between states and statistical
‘states is expressed—notatienally as foilows.. Let a ¢ B.
If T write &(a), this denotes the probab;llty of the propo-

b4

sition a in the pure state defermlned by . " But, a(w)

‘-denotes the truth value of A for the gﬂate w._ In 6ther

words, if 1 wrlte w(a), 1 e, if LW appears as a function, _

' -“lg-

then 1t denotes a'@moﬁabillty measures but when w appears

as an argument, it denoteg a state. .

%
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Notice, in classical mechanigs we always have

"w(a) = a(w). ' 3 . ’ Y

.

This depends ¢n the fact that the pure states;.like the

propositions are two valued. For this r&ason it is«possible

*

to define the truth of a proposition a in B by writing
a is true-iff 8 is in a state ® ‘such that w(a).=

a' is true iff 1 - wka) = 1,
Sl %
a v b is true iff w(a) +w(b) - w(a)w(b) = 1.
N ] [}
3This Hefinitioncis formally equivalent to the one given

earlier. But the cdnception of'truth which underlies the.
two aéfinitians'is very different. This definitiqn identi-
fies truth with probability eéualxto'l, so that a proposi—\)
tion is true\oﬁly if the statistieal,state of S assigns it
;pfbbability 1. That is.to say, for g ppopgsition a to be
typue, the éystem mu;t be in a pure étatistical state w

such thet uia) = 1., o o . |

In .classical mechanics each w in Q determines a two-

valued homomorphisin h:B+Z;.

to a two-valued measure w on F(Q). Substituting h for the

Each h correspoﬂd? biuniquely

probablllty measure determlnedkby w yields a formally
equlvai;nt deflnltlon of truth This ‘definition is related
to the one given in van)Fraassen [12] as folﬁbws. A pos-
sible world is 3 classical tputh value as31gnmentmto the.
propositionquf.B._ Each such horld is represented byig
two-ualued homomorphiéu. A prop091tlon 19 true only 1f it

is /true in some posslble world, i.es only if n(a) = 1, for

some h1B*ZQ. Thls is a necessary condltion for the truth

/

~

o%ad. (a is true if this truth value a351gnment is deter-
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© ”
mined by the actual world.) The mistake underlying the
identification of truth with probahility equal to 1 is
transparent. It is, less obvious that exactly the same mis-
conception underlies this definition.

First, notice that if a possible world is repre-
sented by a state or emenf (rather than a two-velued homo-.
morphism), the resulting definition coincides with the one
given here, i.e. with a(w) = 1. It {s_not the concept of
a possible world which poses a problem, but the ihterpreta-
tion of a poeeibie‘world‘as a two—valuedvhomomorphism. For
this has thelconsequence that the truth of an atomic propo-

sition is defined only if the truth or falsity of every

. other proposition ig also specified. But this is certainly

not requlred by the correspondence theory of truth. To put
: s 1mply, on’ any reasonable deflnltlon, the truth

of the prop031t10n (a) "It is raining"” depends, n -on the
E ]
truth or falsity of every other prop081t10n,,but ]ust on

* the state of the weather. ThlS is independent of wheth

+

\or not our knowledge of +the. truth of (a) depends on our,

"~ knowledge of the truth of other prop031t10ns. It is thls-

"

simple 1n51ght wh1ch 1s preserved in the. correspondence

theory, and whlch is given up when, in the deflnltlon of

the truth of (a), it is required that h(a) = 1..
We may summarize this discussion of the definition
. * .
of "truth" in clagsical mechanics. Classically a state is

associated with a two-valued measure and a two-valued
. -]

homomorphism. Because the Boolean algebra of;eubsets of Q@

-

/ ot s
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is perfect and reduced, this essoeiation is 5iunique. There
are thefefore three formally equivalent d;}initions of "a is
true": A) a(w) = 1, B) w(a) =1 and C) h(a) = 1. In tﬁe
first definition the truth of a is exclusively:determined
by‘the state ofAS: A proposition é is true if:and only if
the system has (;ny) oﬁe'of the properties reﬁfesented by§§
Each’of the other two definitions imposes an additional
requirement.on the truth of a. 1In tﬁe case of B, a must
have a probability equal to 1. If the definition is h(a)
= 1, then the truth of a requires that the truth or falsity
of eve;y other proposition in B is also given. The formal
equlvalence, which holds class1ca11y, does not mean that A,
. B, and C are expllcatlons of equlvalent conceptions of truth
The conceptlon underlying B is remarkably like the pragmatic
theory of truth,'while ¢ is similar to the doctrine of
interngl relations of the coheren;e theory. vBofh concep-
tions of truth cohfuse,the meaning or reference of the pro- ‘
position "a is true" with eonsiderétioﬁs tﬂatqare strictly
evidential in character.

Thus far we have concentrated-on classical mechanics,
but the situation in quantum mechanics is exactly analogous.
The idempétent megniéﬁdee, i.e. thejpropositi?ns a in fhe
partial Boolean algebra N are p"]ection operators acting
on a suitable Hilbert space H. A state or eveht of a

system S-is represented by a (unlt) ray K in H Each event -

1
K is asspciated with .a pure statzstlcal state. In quantum

mechanics,‘statistiqal states ere given by measures on the




e

in classical mechanics a statistical state is a measure on L

98

closeg linear subspaces of H. The pure state associated
. : : . o/
with K is determined by taking the square of the norm Qf

the projection of a unit vector lying in K onto each sub- .

¢ b4

space of H. Since by Theorem 12 of von Neumann [13],

there is a one-to-ong correspondence which associates each
. - {

projection operator with the subspace in H¢which is 1its

range, this determines a probability meaSure on N. Recall,

the field F(Q) of subsets of Q. There the correspondence
between spbsets and propositions is trivial. Note, atoms
ig B are the characteristic functions associated with single-

o

ton subsets {w} of F(Q). N'is also atomic. An atom in N

is a projection operator onto a one-dimensional subspace of
’ . v

H. Thus in each theory there is a one-~to-one €orrespondence
between events and atomié propositions.

Quantum mechanics is probabilistic in the sense that

¢

the set‘S ofxstatisfical stétes does not include two-valued

b

measures. This meams that the expectation (o average)

-

'value is never dispersion free for all magnitudes -- even

in the case of pure statistical states. But exactly the
same «magnitudes, and therefore, exactly the same propositions,‘

occur in both classical andlquantum mechanics; that is,the

_ propositions of both B and N make assertions about properties

of. physical systems, not ensembles of sich systems, In
quantum mechanlcs there are no statlstlcal states which
determine a probability of 1l or 0 for every a in N, and

which may therefore be regarded as two-valued truth “value




as described for classical mechaniecs, and the truth of-a'
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-assignments#to the 'propositions of N. Althougﬁ{the statis- -

tical state determines the probability of "every a in N, the

corresponding event does not determine the truth’values of
all propositions. i

LY

Suppose that the event represent€d by K determines

the truth or .falsity of a. Then the situation is exactly

and a v b is definea by writing

a"is‘true iff 1 - aék) = 1

avbis true‘iff'a(K) + b(K) - a(K)b(K) = 1.:
That is,<the partlal operations ', v of N represent the

logical opepatlons of negation and dls]unctlon of class1ca1

; © -
loglc.' (Recall,;hat in a partial Boolear algebra a v b
exists iff a and b are compatiblg.) w ‘
< Of course, the identity L‘ ‘ 2o

a(k) = K(a) A o

Pl

cannot hold in quantum mechanics. (It is poésiblé to make .
it hold by identifying the tfuxh value of a in the‘state K

with the probabilit§\éssigned to a by the statistical state

determined by K, i.e. by stipufating that a(Kfsc K(a). But

there is no more juétification'for identifying truth with
3 / L

probability in quantum mechanics, than there is in classi-

cal mechanics. . . . Xl ’ . -0
It follows from what has be®n sayd'so far that an . )
\ n

event does not detetmine all propertles\bf S. Here it ‘

A

1mportant to be extremely clear& Let us conq&der a speciflc ,

property - P Then there are states K such that K does not o
a P}

determlne whether P holqy or fails to hold. But P is a
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o

property of S and it'is a%Ways determinate whether or not
P holds for 5:' The answer to %his question_is‘containeé
in Sy though not ih every eQéht.?n the history of S. The - B
determinateness efufﬂe hblding 5? p is completely independent

of Qhethegfor not the hoLding of P is determined by every
/state of $.%1 regard this claim as'ceq;rél to the logicai | e
"intaerpretation ofoquaétpmzmecﬁanics._ . - |
This is bbécure‘if'it'is aséumed that P is g property,
of a state Fathe? than a proﬁerty of S and th;t S has only"
a single state K..:It is true t@at there is a single statis-
Egggl state which describes $. The u;iqueness of the
statistical statel of § is rejuired by quantum gechanics;cas

it is by classicai mechanics. The claim that S has a unique

\. . : >
statistical state must not‘Pe-confused with a certain
interpfetafion of mixed states. If S is represented. by
the mixed state - - §

. “W = E_ Wi K“i . ‘n '. ‘ ) . A- . l::.
L4 * N "

theé%:his is understood to mean that: S is in tbe-pure‘state

K; with weight w,. But we may also have ; - .o
wegpw kb | '
. i i 1 .. T
. ‘ | . “ 4 yam
with W, # w' and Ki # K'. That is, there is no theoretical
R -1 e e 1 :

basis for singling.out any one representation of W. But‘of
course this is complétély‘iddqpendent of whether or not
B . . .

theré is any Bésis'for'supposing 8 to be in a unique'étatis-
tical gtat€.’ The ;bint is"s;mbly this: There i& a unique
- ? : ..

representation of the %fatis;ical state of § in the theory,
|

but’ thére is no ,unique réprésentatiOn of the mixture W in
f p .

tefms of pﬁre states. . -

~
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. In gpantum mechanics a system - S has a: 51ngle statls-
- 4 6: . " ! >
tical state. But S-has many states - enough to determine
< .

s

f S the fruth value of each a in N. 1In bo%h classical mechanics’

. : .1 & . .
. : ‘ eam‘quan'(:um mechanbcs, evéi% a in R or B is true or false,

d }f a 15 falsesr, than a' is true. This is a cong quence
o

ﬂ.'hof the act tha,; both algebras are idempotent, hence evéry
& in N or B takes .only the values 0 (false) and 1° {true).
7 Co But P is also semi-simple, and therefome admits two-valued

. measures. The correspendence between two-valued measures
& v .

& and events means that each event determines a ¥wo-valued
o - . Y )
> truth value assignment to 411 ‘the propositions of B. This

. T , . e . -E . .
is to be contrasted withw which, is not gem1751mp1e (Theorem
. o , / (’ N
' - b Q\ . * -
. 1 of [9]), hence there is no extension of N°which recovers -

’ ' T2 o. Q e 5 '
tge comrespondencé between eveﬂ%g and stwo-valued measures.

-

n

The stgucture‘ef;N-makes it necessary to diétinguish‘

o . an eveﬁtof?om a possible world since,”intuitively, a possible
. t s ) fr @ .
;["NJ world should deteérmine all properties of S. But 3 has many

i ' ) '

] ]

more properties than are repfesehted‘by the. propositions -

o

whosemtruth xs degermined by K. Hence K cannet be regarded
as a p0331b1e worfd in this sense. The su%?&tlon is rather
as fgllows: In c15381cal mechanics a.single point*% in @

representg a’ p0331b1e wnrld g8ince a’ gingle’ event determines -
all propertles of S In quantum.ﬁéchanlcs, a.posszble world

‘ e o . - o
is represented only by the whole 108&:3; space N, since no

“

one event determines all prpperties of S. TQis suggests that
’{}he usefulness &4f the concept of a pqssible'ﬁorla.is re-

[ ]
N LI -

stricted to the classical gase. - " o

’ | 4 e . ‘
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In quantum mechanics a pure statiistical state of S

is significantly probabilistic in the sense that pure
. oo [
states are not degenerate statistical states as 4in clas-

sical mechanics. 'But unlike classical statistical mechanics,

thig does not arise from an incompleteness in the theory,

gince it is impoésiﬁle to iﬂ;roduce éao;valued measures, -

given the logic;l structure of N. fﬁ classical statistical

mechanics the'degeneraée statistical states, i.e. the'two;
» »

' valué& megsureé, are recoverable by imbedding the algebra

of idempotent macroscopic magnitudes into an atomic Boolean
A -

. alggbra. But N is atomic, and there are no (proper) ex-

. ’ \.\ v
- tensions of N; in particular there are no Boolean extensions.

- So far it has been shown that the classical cbncepts

of truth and logical structure are largely independent, and
. h i
that the concept of truth is the same in both classical and

| quantum mechanics’. In particular, any‘forﬁal\langhage L,

"]

. which. is based on N, i.e. for_%hich N is the Lindenbaum-

'Tarski Alggbra, is bivalent. L differs from a classical
O iangu&ée in .the follow?ng respect."A sentence ¢ of L »

correéponds to an element a of thé logical structure N.
This is-exaétly as in classical logic. ' But uﬁ;ike the '}
:glassipal case, a is never aSSOCiaEfd with a two-valued

" homomorphism on N. To put this slightly differently: A
Boolean representation of the fact that ever; gsentence ¢
is ‘true or f;Ese reqniéeé that the corre;ponding a in B ié

i

representable by the sequence k(a) of its truth values under

i

all possible truth value assignments. Semi-simplieity in- .
- . s s . ’ :
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sures that.this is always the case. Now every sentence ¢
of L is true or false, and only true or false. For L is
bivaient if N is idempotent, i.e. if for every a in N,
aAa = a. But the failure of semi-simplicity means that -
there is_np_BoSlean representation_Qf this fact. Whether
every pr position a in N (ané“heQ:;j>gvery sentence ¢ in L)
is ‘true or false depends exclusively on a. ' The bivalence
6; L is independent of how tife corresponding propositions
in N are interreléted.' ThT; is obviqusly not true if bi-
valence is repres;kted by semi-simplicity. |

Tt has been maiﬁtained (e.g. by van Fratssen [12]
and Eriedmann € Glymouf [u])that’there is a problem with
'f$plying the ,classical concept of ;ruth to elements of N.
This problem does not arise for propositions in B or in a
mgximal Booiean subaigebra Bi of N, since B and Bi each
admit two-vai;ed homomorphisms. If the discussion of this
s;ction is correct, semi-simplicity_}s irrelevant to the |

elassical concept of truth, so that new "semantic anaiyses"-

‘of”quantum mechanics are completeiy ancillary.



Ay

'5. "Anomolies".

I sﬁall now briefly consﬁ@er the bearing of this
discussion on the paradoxes or anqholies of quantum mechanics.
(A complete discussion'is contained in a forthco;ing paper
with Jeffrey Bub.) “ It seems likeiy that all of the paradoxes
have essentially‘the following’foEm. There exist two statis-

. e
tical states, one pure, the other-a mixture, which are the

same for a given Elass.of'idempotents, but which are generally
distiﬁct. The pure state correctly charactérizes the system
(i.e. it is confirmed’experimentally). Such a state génerates
a collection of propoéitions asserting the pﬁobability that
the systeﬁ has ? qerfain property. A mixed state givés fhe
probability that the system is in a give;~pure state, and

frém this the probability that S has a cert;in property is

inferred. TFor example suppose we are interested in a pro-

‘berty P\Qit that the pure state of S is neither 0 nor'1 for'
“ FY - . -

‘_the proposition a in N representing P. One might suppose

* that S is really characterized by a mixture, so that S is

in a pure state K with é-Certain.weight w such thét K assigns a
a probability of 1 or 0. But Fhis is exoluded thePreticdlly
(by the fdct that pure states are not reducible to mixtures)
'és“well as experiménéally. |

| - The situation just described arises in the two slit
experiment.. (This is the only case I sghall explicitly'éoh-
sider.) Recal} that the statistical state4of tﬁe ¢lectron
ig experimentally determined by.examin@ng‘the diffraction
,patfern which appears on the emulsion opposite the screen

after verv manv electrons have‘been emitted by tge source.




The electrons are emitted one at a time and at iotervalsjios;'
of any length. -The statistical state K associated with both
slits open is not the weigﬁted sum of the pure~statistical

/ states K ) which assign a probability of 1 to the prop031-

| tio;; a;: l"The electron passes through sllt i" (s 1,2). s
The pﬁre state exhibts interference, while the mixed state
does oot. Now the fact that the statistical state is not

;s “ the mixture‘but another pure state is not paradoiical. By

itself this is no more puzzling.than the relativistic replace-

. ment of the c1a551ca1 addtxlon theorem for relative veloci-

\ttles. It is clear that an anomoly arises. only if there is

some reason to suppose that the statistical'state must be

Tepresented by a mixture of'the Ky -
i

The basic idea seems to be that-if the probability of

- a; is.neither 1 nor 0 in th€ state K, then the electron is
in some sense indeterminate with respect to the property a; =1
(or a; £ 0). Thls means that neither a, nor a, is true.or ,
false. On this basis it is often suggested that quantum
mechanics requires some thorough-going revision in our
space-tlme concepts the twc 's1lit experiment is anomolous
given our o!a331ca1 and relativistic conceptlons of qupe--
time. But how seriously this _suggestion should‘be considered
is unclear since it has never been gseriously developed. \ In
any case it overlooks the fact that quantum pechanics, lige
classical mechanics and relativity, assumes that the sym;

| metry grohp of all physical systems is a subgroup of the_mani—

fold mepping group, and that therefore, the theory makes pre- -

]

‘s
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cisely the same continuity‘and diffepent%gﬁility assumptioqs
as these-theories. Hence on this sugéesfion, quantum :
\\mgcigﬁic;'is a fundamentally incoherent Eheory. But the
theoretical and experimenta].."success of quantum mechanics °
is simply too great for this conclusion to be 'seriously *
considered. ) . .

-That the whole problem is misconceived, is iméediate
from the analysis of this paper. The statistical state.of
(;h!’electron is 1ndeed the pure state. This state ex?iblts
J’ln?erference, and is not to be replaced by a mixtﬁre.(_The
pure state like all of the staxisticgl states of the theory,
is sigﬁificahtly probabilistic: i.e. it assigns a probability
which is not dispefsion free on ver§ many propositions in.N.
In particular, it is nof{ 0 or 1 for a;. But each ai»i§ true
or false. Moreover, this holds for every proposition in. N.
A diﬁficulty arises when one attempts to express this fact ’
by a eimulteneeus truth value assignment EP all propositions
in N, since this is poss?ble only if N is‘gmbeddable into a

-

Boolean algeb}a.

More generaliy, quantum mechanics is indeterministic
in the sense. that the pure statlsﬁlcal states of the theory
are’ not degenerate measures concentrated on 0 and 1 es in ‘
classical mechanlcs, herce the maximal amount of* information
concerning a physical system is d&gnificantly prq?abilistic.

‘This arises from the fact that ceytaiqr'ropertiee.ere inde~

pendent, as are the idempofenteAWhiéh represent them. More

) exacg&y, the properties are strongly independent in the sense
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. that they are related to other properties in a way which ‘

: 2
excludes their being related to each other. This is the

g K

3

g significance of incompatibility.

‘ ) ° ‘ .
Indeterminism irn. this sense mus't not be confused
: (o7

@ )

with the very different concept of indeterminateness\ The

’ > .t - ‘0 L3 . . .,
na theory is indetermipiistic or significantly statistical in
the sense that the pure states take values in the ‘open

" interval (0,1). "“The ;thesis that the theory is indeterminate

”

holds that there are ppoPertiés P such that P neither holds

nor fails to hold of S.  This is not implied by indetefminism

-

nor ia it in any way required by the view that the theory

provides a maximal amount of information concerning the system.

* >

Rather, indeterminateness is suggesteg by essentially two

mistaken ideas. The first of.these is that incompatible

. <

.propositions are somehow inconsistent. But just the opposite
is tﬁgucase: since a pair of propositions are incompatible,

they cannot be inconsistent.
e The second mistake concerns the conception of the
truth of atomic ppopoéitions. . According to the correspondence

theo%iAdf truth an atomiq ﬁroposition a in N is true if and .

erties represented by a hold of S. This

only if the pr

definition is independent of'tﬁe semi-simplicity of N, so

that at any given instant exdctly one proﬁositibn in each

‘BicN is true of S. Thé essentidl point is that the absence
. of a simultaneous truth wvalue agsignment doés ﬁot°imply

-
e %

that the properties of S which, on the Hccount given here,

_.are supposed to obtain, cannot obtain simultaneously. The

1

R R RS )




opposite *iew ﬁésts on a simp}e equivqcation,-rﬁ simultanecusA
truth val&e assignment is a two-valued homqmofphism. That
‘simthaneous truth value assignments do pc% exist is a fact
‘ abcut-thé structure of N which has nothing to do with what
occurs simultaneously. Thﬁ’preperfies of S wQ}ch abtain

simultaneously include incompatible properties. But their
o ’ ‘ ' :

Alogicai strucfpre~e#cludes,the existence of\é two-valued
homomorphism,‘snd hence, of a simultancousctruth vslue
assignment touthe'édrresponding idempotént;. At asy one

- 1nstant the’ system is characterlzed by exactLy one class of
.. broperties .from eac;;% cN, and all such classes of proper-
ties obtain at the same tinme. 'But fherc,ls;no Boolean Te~

Y

presentation of this faoct. . Y
fo.sdmﬂarize this paft of the discuseion: There are'

two different accounts of 1ndeterm1nlsm which are hlstorlcalgy

1mportant. The flrst, whlch apparently goes back to Arlstotle,

re]ects biwalence A theory is 1ndetermanlst1c if it asswhes °

- L]

that thﬁfe are prop031t10ns whose truth value 1s 1ndeterm1nate.

The ,second, /ggpresented H{ the quantum theory, retdins bi-

valence whiflle re]ectlng seml-simpllclty. An 1ndeterm1ﬂ18t1c

theory is théﬁjcharacterlzed bx the aBsenoe of two-valueg

homomorphlsﬂg, and therefore, of two-vslued measures. .The -
NN coherence of 1ndeterm1nateness g%ems to rest on the Aristo=

i‘. telian metaphysic of act and potency. But nothing of . th1s
sort is required by the 1ndetqpm1nlsm of quantum mechanics.

This form of 1ndeterm;nism 1mp11es that there is n¢ Boolean

represenxatlon of th&gpropertlesxebtalnlng at a given time;

s . !
-

4
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or not P holds.

The anomolofs character of the two sllt experlment
depends on the assumptlon ‘that the system is 1hdetermlnate
with respect to theé property a; = 1, if the statistical

R »
. state is K # K . . This assumes that the usual notions of ‘

‘truth and falslty make sense only in' the .gasg of prop051-

. tions which ﬁorn a Boolean algebra. This view lies atuthe
basis of both'tne Copenhagen*and hidden veriable interpreta-
tions of tne quantum theory. "According to the Copenhagen
1nterpretatlon at each instant the system "prOJects“ ekectly
one max1mal Boolean subalgebra of-N; in a hldden varlable
1nterpretat10n all Boolean sibalgebras are represented but
their structure is Boolean. The difference 1s that the
Copenhagen 1nterpretat10n is w1111ng to consider systems

e

with properties correspondinv to at most one maximal Boolean

subalgebra in the loglcal structure associated with N. Now
the 1mp11c1t ‘restriction of {B.. ive I} to maxlmal Boplean )
subalgebras has an 1nterest1ng‘consequence:‘ If Bif 3 are
maximal Boolesn supalge?ras, then>Big35 implies Bi Q’Bi,‘
.ef.the‘1ogica1-struoture {B;: i M}'coﬁsisting of all
maximal Boolean subalgebres is total*i unordered by‘g} ‘Ib
3

\is trivially satisfied,

’

this case condition (ii) of Section
so that the direct limit of the Bi coincides'with the direct
product, which is alBoolean'representation'of {Bi: i e M}.

. g )

Thus ‘béth the Copenhagen and hidden variable inter-.

pretations are committed,to/representations of fBi: ieM}
- ‘ / : .
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'yet for any property P it 1s completely determlnate whether

L 4
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which-q<e semi-simple: In the hldden~vé%;able 1nterpretatlon

<
this requlres dropplng condltlon (ii), whlle 1n the Copé!—

s

hagen 1nterp?etat10n this is accompl}shed by Peplac1ng

{B i e I} with {B :.1 € M}. In effect both views fail to-
con81der the p0351b111ty that the propertlés of physlcal
systems exemplify the loglcalvstructure~of N. I.e. both

views completely fail as accoumsts of- the significané% of
the transition from classical mechanics to quantum mechanics.

. ] , s ' ) .-

It should be remarked that the hidden variable inter-

pretation is at least coherent. The idea that a system pro-

o

jetts a single Bi'at each instant has the apshrd‘conseguence‘

) . -, . . . a !
"~ that the system must somehow &nticipate the deci#ion of the

o & N
eXperimenter to measure a magnitude associated with Bi' This

bonsequence is avoidable only if measurements are,regard%d

as a theoretlcally opaque subeclass of physical interactions.

/

It is a strange com:znt on current investigations in founda—
L
h

tioﬁs of physics t both possipili%ies are seriously con-

sidered and widely entertained.

”
-

[The-possibility of a classical theory of the maximal
@agqgiudes was noted by Wiener and Siegel (C1u1, Appendix)’,

and dependently, by Gudder E51], who proved this theorem in

a more general context. The discussion here follows the °

v

very‘elegant;presentation of Maczynski ]

%
In conclusion, I w1sh to compare the dlscu391on 1n .

-

Sectlon 4 with von Neumann.[13] Ch. TII. 5, "Pro;ectlons as

L 2N

:‘
[]

Prop051t10ns". Pera facie there.is -only the sligh@est

difference between the conception of truth present,c_f.here
’,J 1
and the one implicitly assumed by von Neumann. :"But-the,

.
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difference has important consequences. Adopting von Neumann's

EN

abproach, one is led to propose an additional class of non- €

3

unitary time-transformations. This is the content of the
. projection postulate, which may be simply explained as
follo&s: Let us assume that a system S is in & pure state
represented by a unit ray KW in H (the H}lbert spéce as=-

spciated with S). Now suppose we find that the value of a
'y ~ 3 “

magnitude A is ai. The value a; ts associated with a ray
K 1in H. Ka represeﬂps the pure statistical state which .

o.
1 . 1.

assigns the property A = a; a probabiiity'equal to one. The
s 4 .
projeétidh\postulate requires that the statistical, state

of Saundergo a transition: K¢+'Ka. which is generally dis-
" continuous. Since theqdynamics o% the theory considers
only continuous transitions, the projection postulate re- .
presentéjan additiongl hypothesls.

.“Essentially the saﬁe idea underlies the characteriza-
tion of the probabilities of quantum mechanics as "transi-
tion" probabiiifieg.' The probability I(\p:ai)l2 which KW
assigns to A =.a; is not the probability that the property
A ='éi obtains, but rather, the probabiliﬁy‘that it will ob- .
tain. ths requires that S undergo a transition frgm the
gtaée K¢ to Kai. The»probiem of finding a théoggfiéal_ac?l
count fof such stochastic transitions has .come to be knowq -
as the "meagurement problem", since-transitionsvbf tﬂis type «
are supposed to occur wheﬂevef a measurement is performed.

. The projéction‘postulate is simply a precise charact@rization

of this class of transitions. .




If the.analysis of this paper is correct, the pro-
jection poséulate results ffom a misconcgption'of the
- " logical structure of the theory: there is nothiﬁg about

the logical Structufe which requires that a proﬁosition is
true only in cgyfain statistical. states. The proﬁection

*  postulate is therefore quite clearly ancllary to an under-
standing of the theory. Similarly, since the measurement
problem reguires the bccurence'bf.transitiops of‘the kind .

described by the projection pbstulate, it follow that this

“cannot be a real difficulty for the theory.
\



Referenqes

« [1]1 'J. Bub, The Interpretation of Quantum Mefhanics,s
Reidel, 1974.

(2] J. Bub and W. Demopoulos, "The Iﬁterpretation of

< Quantum Mechanlcs", Boston Studies ‘in the Philosophy

of Sc&ence Yol. II, ed. y R,8. Cohen and M,J..
Wartofsky, Reidel, ‘
’ » *“)

(3] P. D. Finch, "On the Structure of Quantum Logic",

Journal of Symbolic,Logic 34 (1969) 275-282..

[4] M Friedman and C. Glymour, "If Quarnta Héﬂ Loglc”

. Journal of Phllosophlcal Logic 1 (1872) 1s 28,

(sl s, Gudder, "On Hlddbn-Varlable Theorles" Journal of

‘.. Mathematical Physics 11 (1970) ual-uas

-

(61 S. Gudder, "Partial Algebraic Structgres,Associated

with 0rthom$du1af Po;ets", Pacific Journal of Mathe-
matics g;'(légz) 717-730. 0

(71 S.:Gudder‘and R. Schelp, "Coordinat%zation Pf Ortho-
compleﬁentad and Orthomodular Posets", PrOCeedings’

of the American"Mathematical Society 25 (1870)- 229-237.

[8] S. Kochen and E. P, Specker, "Log1ca1 Sggggtures Arising
in Quantum Theory" The Theory of Models, 1963 S

posium at Berkeley, compiled by 3. Addison et.al., P

North-Holland, 1965.
; \ d
,[917 S. Kochen and E. P. Specker, "The Problem of Hidden

Variables in Quantum Mechanics™, Journal of Mathematics

~__:.. 17 (1967) 59-87, *




[10] M. J.‘Wzypski, "Boolean 'Properties of Observables in
a7 ! . > . .
Axiomatic Quantum MechiPics", Reports on Mathematical .

hysies 2 (1971) .135-150. 0 | s

—\

11 H! Putnam, "Is Logic EmPirical?", Boston Studies in-

. the Philosoply of Science, Vol, V, ed. by R.S. Cohen

and M.J. Wartofsky, Reidélx 1969,

[12] *B. van Fraassen, "Semantic Analysis of Quantum Logic",

~ Contemperary Reéearch in_ the Foundations-and Philosophy’
. 4
. 5 pu— .
w of Quantum.Theory, ed. by C.A. Hooker, Reidel, 1973.

(131 J. von Neumanﬁ,1Mathematical’Fbundations of Qpantuh

-

Mech%hics, Princeton University Press, 1955,

[14] N. Wiener and A. Siegel, "The Differential-Space Theory

of Quantum Systems", Il Nuovo Cimento, supplement to
<o ) ’

~
Vol II, series X (J955) 982-1003.

.




. K - 0
N - 65 , ' ' N 4 \ ¢
B ¢ ¢ . : - 1 1 5 i
. | . BIBLIOGRAPHY o
D c,\ N ’ ’ - K &
Cal R ! Anderson, J.L. Prlnc;plos of Relat1v1ty Rhy51cs, Academic

" Press, 1967.

Birkhoff, G. and Von Neumann,.J. "The Logic obeuantum
‘ Mechanlcs" Anna;s of Mathematlcs 37 (1936) 82&r8u3 N
a R
Bbrn M. TheiBorn-Elnsteln Letters: The Correspondence °
Between Albeft Einstein and Max and Hedwig Born:
- 1916-1955 Walkér and Company, 1971.

Bub, J. (1) WOn the Pos51b111ty of a Phase Space Reconstruc-
txon of the Quantum 8tatistics: A Refutation of the

’ B ‘ Bell-Wigner Loecality Argument", Foundatlons of Physics
T 3 (1973) 29-4u,
o ’ (2) "On the Completeness of Quantum Mechanlcs" in

"Contemporary Research in the Foundations and Philosophy
of Quantum Theory, ed. by ~C. Hooker, Reidel, 197%.
. (3) The Interpretatlon of Quantum Mechanlcs, Reidel,
S A9T, o .
' o Buby J. and Demopoulos, W. "The Interpretatlon of Quantum
- ‘ ' Mechanics", 'Boston Studies in the Philosophy of Science
- Vol. XIII, ed. by R.S. Cohen and M.J. Wartofsky, i
Reidel gy 1 197u, y

s . %) >

Einstein, Anﬂfﬂhat is the.Theory of Relativity?", (1919)

Essays in Science, Philesophical Library, 1934. 3

"~ (2) "Quantum Mechanics and Reality" (1948),

s in The Born-Einstein Letters: The Correspondence

Between Albert Elnste1n ang Max and Hedwi Born.

' 1916-1955, Walker apd Company, (1971) 168-173.

. ’ ) Autoblogpaphlcal Notes (1949), Albert Eingtein:

: ?ﬂ’/osophe5‘§c1ent19t (ed bwa—A Schilpp), -Harper, ~
o . 1989, ’ K . °

~

> ”.Faf; G. "Trans;t1v1ty of Implicatlon in Orthomodular Lattlces
Acta Sci. Math..(Szeged) 28 -(1967) 267-270.

r
Finch, P.D. "On the Structure of Quantum Logic", Journal
. -0, of Symbollc Logic 34 (1965) 279~ 2282,
Frledman M. and Glynaur, . "If Quanta Had Logic", Journal
u of Phllosophlcal gic 1 (1972) 16-28. .
Gleason, A. "Measures on the Glosed Subspaces of Hllbert
; , Space" Journal of Hathematlcs and Mechanics 6 (1957)
e Bl 893. , ) v D

> -,

Greechle R. and Gudder, .S. "Quantup. Loglcs" in Contemporary,

> - . ‘ Research in the Poundations and Phileosophy of Quantum:
: Theory, ed. by_C. Hooker, Reidel, 197%,

—~—

- o 3
]




i . . , 116

Gudder, S. (1) "On “Hidden-Variable. Theon;es", Journal of
Mathematlcal Physics 11 (1970) u31~-436. i
(2) "Partjal Algebraic Structures Associated
"with Orthomodular Posets", Pacific Journal of
- ' Mathematics 41 (1972) 7172730, e
~ (3) "A Generalized Measure and Probability
Theory for the Physical Sciences", in Foundations of
Probability, Statisti€al Inference and Statistical
Theories of Science, ed. by C..Hooker and W. Harper,
Reidel (forthcoming). '
’ . .
Gudder- S.. and Greechie R. "Is Quantum Logic a Logic?™,
Helv. Phys. Acta 44 (1971) Z38<240.

3

Gudder S. and Schelp, R. "Coordinatization of Orthocomple-
R mented and Orthomodulpar Posets", Proceédings of the
. Amgrichn Mathematical Society 25 TI970) 229-237.
Z _ — . p
Halmos, P. Lectures on Booleah Algebras, Van Nostrand, 1963.

Jauch, J. Foundations of Quantum Mechanlcs, Addison-Wesley,
1968 ’ -

Kochen S. and Specker, E.P. (1) "Logical Structures Arising
in Quantum Theory", The Theory of Models, 1863 -S osium
at Berkeley, compiled by J. Addison et.al. North- .

Holland, 1965.

- | (2) "The Problem of Hidden ‘
Variables in Quantum Mechanies", Journal of Mathematics
and Mechanics 17 (1967) 59-87.

MacNeille, H.M. "Partially Ordered Sets", Trans Am. Math.

Maczynskl,'M J. "Boolean.Progertles of Observables in Axio-
matic Quantum Mechanics', Reports on Mathematical
Physics-2 (1971) 135-150. -

LY M -

% Peremans, W. "Embedding of a Dlstrlbutlve Lattice into a
Boolean Algebra", Nederl. Akad. Wetensch. Indag,K Math.
19 (1957) 73-81.

Putnam, H. "Is Logic Empirical?", Boston Studies in the
Philosophy of Science/, Vol. V, ed. By R.S. Cohen and
. M.J. Wartofsky, ﬁeldel 1969% '

-

Rasiowa H. and SlkOPSkl,”R The Mathematics of Metamathe~
maties, P.W:N. > 1963. . .

’ Sikorski, R. Boolean A¥gebras (2nd ed), Springer-Verlag,
1964.

2




117

Trautman, A. (1) Lectures on\General Relativity, Brandeis
Summer Institute, 1964, Prentice Hall, 1965.
(2) The General Theory of Relativity, Nuclear
Energy Information Center of the Polish Government,
1968. )

van Kampen, N.G. "Fundamental Problems in the Statistical
Mechanics of Irreversible Prgcesses', Fundamental
Problems. in Statistical Mechanics, Proceedings of the
NUFFIC International Summen “Course iIn Science at
Nijenrode Castle, The Netherlands, 1961, compiled by .
/ E.G.D. Cohen, North-Holland, 1962.

L P
van Fraassen, B. "Semantic'Analysisqbf Quantum Logic" in
Contemporary Research tn the Foundations and Philosophy
- of Quantum Theory, ed. by C. Hooker Reidel, 1974

.von Neumann, J. Mathematlcal Foundations of Quantum Mechanicg,
Prlnceton University Press, 1955.

Weyl, H. Philosophy of Mathematics and Natural Science
(Rev. ed.), Prlnceton University Press, 1949.

Wiener, N. and Slegel A. "The leferentlal-Space Theory of
Quantum Systems" Il Nuovo Cimento, supplement %
, Vol II, series X (I955) 982-1003.

Zierler, N. and Schlessinger, M. "Boolean Embeddings of
Ortho-Modular Sets and Quantum Logic", Duke Journal
32 (1965) 251-262. '




	Western University
	Scholarship@Western
	1974

	On The Possibility Structure Of Physical Systems
	William George Demopoulos
	Recommended Citation


	tmp.1409764916.pdf.35fAa

