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ABSTRACT

The thesis is divided into five chapters. The first
contains notations and definitions. The second contains a
number of known results which give the relations between the
Abel-type methods of summability and the relations between
the Borel-type methods of summability. The others contain
a number of theorems on the relations between an Abel-type
and a Borel-type method of summability. In the third Chapter,
the results that under certain conditions, a series which is
summable'by an ordinary, ﬁ strong and an absolute Abel-type
method of summability is also summable by an ordinary, a
strong and an absolute Borel-type method of summability
respectively are given. In the last two chapters, it is proved
that under a certain kind of Tauberian conditions, a series
which is summable by an ordinary Abel-type method of

summability is also summable by an ordinary., a strong or an

absoliute Borel-type method of summability. -

The substance of Chapter III will appear in the Proceedings

of the American Mathematical Society.
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CHAPTER I

INTRODUCTION

i.1. INTRODUCTION.
It is supposed throughout the thesis that o, an(n =0, 1, ...)
are arbitrary complex numbers, B is real, o« > 0, X > -1 and N is
a non-negative integer greater than (1-8)/c.
The sequence {sn} is used as the associated sequence of the
©

partial sums of the given series ) a » that is,
n=o

The symbol M is used throughout the thesis to denote a
positive number, independent of the variables under consideration,
but not necessarily having the same value at each occurence.

The theorems and lemmas in the thesis are numbered according
to the section and chapter in which they occur, for example,

Theorem 3.2.1 is the first theorem in section 2 of chapter 3.
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Chap. 1

1.2. NOTATION.
The following notation is used throughout the thesis:
A _ m+Aay _ (A+1)(x+2)...(A+n) _
En bl (n ) - n! Y n - l’ 24., -.o;
EM = 1
o
E» =0, n = -1, -2 ;
n > k] b4 ooy
A-1 0§ A
= —A= A .
w (y) = (1+y) 2 Epe (i) s
A=l % X ¥y "
o, (¥) = (1+y) L Eis (35) s
y
u, (y) = f Au, (t)at
o
an+8-1
-] ay
a (y) = ) z 3
a,B - T(an+8)
- sn an+f-1
sa,B(Y) = nZN I'(or.n'*'B) H
TeTta  (t)at
Ay, gly) = f e “a, plt 3
o
= -y
Sa,s(y) = ae sa’s(y)
oo Y n
It is easily shown that, if z Ensn(I§;) is convergent
n=o
for all y > 0, then

yEy o3 (¥) = 0+dlo, L (3) - o, (y)].
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i o s an+f-1
It is also easil b i o i
aslly showmn that, if nZN T(an+g) 1s convergent
l for y > 0, then
d -y
—— A — -
{ ay a,B(y) e aa’s(y),
d_ s (yy=s () - s_ _(y)
dy " a,B a,B-1 o,B ?
L a (y)=1a (y) - & .(y);
dy “a,.8 g a,B8-1 a,B ®
aa’s(y) = sa,B(y) sa’6+a(y) .
E
. 1.3. DEFINITIONS.
1.3.1. Summability Methods.

A summability method is a function defined on a set of series

of complex numbers to a set of complex numbers. If a summability
(-]
method P assigns the value ¢ tc the series Z a , we say that
n=o
a_ is P summable to the sum ¢ and write

Ne~18

a = ag(P) .

It~ 8

We shall also say that the seguence {sn} is P-convergent

to the 1limit o and write

s = oi{P) .
ja i}
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A method of summability P is said to be regular if S, o(P)
whenever the sequence {sn} converges to o in the ordinary sense.
If every sequence convergent by the method P is also convergent

by the method Q, we shall say that the method Q includes the method

P, and write

v
(fa!
o

equivalent, and write

y
lle
o

A summability method P is called left-translative if

whenever

S 41 o(P) .

That P is called right-translative if

sn+l > o(P)

whenever

s, > o(P).

, If P Q and Q € P, we say that the two methods P and Q are
F
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A summability method P is said to be translative if P is

both left-translative and right-translative.

1.3.2. Abel-type Methods.

The Abel-type summability methods (AA) and (Ai) were introduced
by Borwein [1] and [5], and are defined as follows :

The Abel-type summability method (AA)

If

A+l
)

(1-x E%s x
n

fie~18
>
o]
o]

is convergent for all x in the open interval (0, 1) and tends to
o]

a finite limit o as x =+ 1-, we say that the series 2 a is
n=o
summable (AA) to the sum o, and write

z a = o(Ax) .

We also say that the sequence {sn} is (Al)-convergent to

the limit o and write
s, > G(AA) .

Evidently, s_ - O(AA) if and only if the series defining
n

oA(y) is convergent for all y > O and ol(y) tends to o as

¥ - . The method (Ao) is the ordinary Abel method (A). ﬂq

The Abel-type summability method (Ai)

If the series defining uA(y) is convergent for all y > O and Uk(y)
[ <]

tends to a finite limit o as y - «, we say that the series z a
n=o

n
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is summable (A') to the sum o, and write

= M .
Z a C(Ak)

We also say that the seguence

ris
0n
Adad
e
1]
~
b
o

—-convergent to

th 1limit o and write

s, - o(Ai) .

1.3.3. Streong Abel-tyre Methods.
Strong Abel summability was introduced by Harrington and

Hyslop [13]. Two definitions of strong Abel-type summability
were given by Flett [11]. Strong Abel-type summability [A ] has
been 1nvest1gated by Mishra who also introduced strong Abel-type
summability with index [15]. Strong Abel-type summability [Ai]
has been studied by Rizvi in his doctoral thesis [20].

Strong Abel-type summability with index p[A ]

If

y
f lo,,1(t) = o|® at = o(y) (» > 0)
(o]

=]

as y > «, we say that the series ) a is summable [Al]p to the
n=o
sum o, and write

a, = U[A}\]p ° ,

We also say that the sequence {s } is ["R P—convergent to

Ne~18

n=o

the 1limit o, and write

sn -> O'[A}\]p -
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Strong Abel-type summability with index P[Ai]p

If A > 0 and

Y
J IUA+1(t) - ol at = o(y) (p > 0)
o

oo
= as y > », we say that the series Z an is summable [Ai] to the
n=o L3
sum o, and write

zo an - G[Ai]P

We also say that the sequence {sn} is [Ai]p—convergent to

the 1limit o, and write

]
s, G[AA]p .

For p = 1, the methods [A)\]p and ,[-.AA;‘]P will be denoted by

[Ax] and [Ai], respectively.

1.3.h, Absolute Abel-type Methods.

Absolute Abel summability IAI was first defined by Whittaker
[22]. It has been subsequently investigated by various authors:
For example, Flett [10] has given a generalization, and Mishra [16]

has studied absolute Abel-type summability IAAI. Absolute Abel-type

summability |Ai| has been considered by Rizvi in his doctoral
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Absolute Abel-type summability IAll

' If ox(y) is of bounded variation in the range [0, *) and
(-]
ends to the 1limit o as y » », we say that the series 2 an is
n=o
summable IAAI to the sum ¢, and write

o
2_; an=0|AA| .

We also say that the sequence {sn} is |AA|-convergent to

the 1imit ¢, and write

s]:l > o'lAAI -

When ) = O, these reduce to Whittaker's |[A| summability [23].

Absolute Abel-type summability ]Ai]
If Ul(y) is of bounded variation in the range [0, «) and
[+
tends to the limit ¢ as y » o, we say that the series z a is

n
n=o
summable |Ai| to the sum ¢, and write

[}
nzo *n U|Ail )

We also say that the sequence {sn} is |Ai|-convergent to

the l1limit ¢, and write

Sn -> o'IA;\I -

1.3.5. Borel-type Methods.

The Borel-type summability methods (B,a,B) and (B',a,B) were
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introduced by Borwein [6] and are defined as follows:

The Borel-type summability method (B,a,B)
If the series defining sa B(y) is convergent for all y > O
R =

and Sa B(y) tends to a finite limit o as y » «», we say that the

series Y =2 (or the seguence {sn}) is summable (B,a,B) to the
n=o

sum o, and write
s > o(B,a,B) .
The (B,1,1) method is the Borel exponential (B) method.

The Borel-type summability method (B',a,B)
Suppose from now on that oy = © - Sy-_1° If the series
defining a_ B(y) is convergent for all y > O and AL B(y) tends
k] 3

to a fimnite 1limit g as y > =, we say that the series ) a_ (or
n=o

the sequence {sn}) is summable (B',a,B8) to the sum o, and write
s, > o(B',a,B) .

We note that [3] the convergence of the series defining

either a_ _{y) or S, B(y) for all y > 0 implies the convergence
bl 2

V-]

>

for all y > 0, of the other series.

1.3.6. Strong Borel-type Methods.
The strong Borel-type summability methods [B,a,B]p and

-

[B',a,snp were introduced by Borwein and Shawyer [8] and are

defined as Ffollows:

The strong Borel-type summability method [B,a,B]P

If the series defining 5, B(y) is convergent for all y > O and
b
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y
[ e®Is, gon(®) = Gl at = o(e¥) (» > 0)
o

[+ ]
as y - o, we say that the series z an (or the sequence {sn} )
n=o

is summable [B,a,B]P te the sum o, and write
s, > c[B,a,B]p .

The strong Borel-type summability method [B',a,B]P

If the series defining a, B(y) is convergent for all y > 0
R >

and

y
f etlAa,B—l(t) - chp at = o(e¥) (p > 0)

o0
as y > =, we say that the series ) a (or the sequence {sn} )
n=o

is summable [B',a,B]P to the sum o, and write

s, c[B',a,B]p .

When p = 1, the methods [B,a,s]p and [B',a,B]p will be

denoted by [B,a,B] and [B',a,B], respectively.

1.3.7. Absolute Borel-type Methods. .
The ideas of absolute summability of Borel's method are due
to Borel himself ([12] p.18L). The absolute Borel-type summability

methods |B,a,8| and |B',a,B| were introduced by Borwein and

E Shawyer [7] and are defined as follows:

-
g
5
z
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Absolute Borel-type summability method lB,a,Bl
Irf Sa B(y) is of bounded variation with respect to y in the
9

range [0, =), and tends to a finite limit o as y + <, we say that

[+
the series ) a (or the seguence {sr}) is summable |B,a,B| to
n=o *

the sum ¢, and write

sn->o'|B,d.,B| .

Absolute Borel-type summability method [B',a,B|
If Aa B(y) is of bounded variation with respect to y in the
]

range [0, =), and tends to a finite limit o as Yy - ©, we say that

the series a (or the sequence {sn}) is summable B',a,Bl

e~18

n=o

to the sum o, and write
s, > o|B',a,8] .

We note that a function f£(y) which is of bounded variation
with respect to y in the range [0, =), necessarily tends to a
finite limit as y » o,

(see Natanson [2T7] p. 239, corollary to Theorem 5)




CHAPTER IT

PRELIMINARY RESULTS

2.1. INTRODUCTION.

In this chapter, first we Prove a basic result which will
Play an important role in most of the theorems that are proved in
the following three chapters. We also state without proof,
certain known theorems which give intér-relations between the

various Abel-type and Borel-type methods of summability.

2.2. A BASIC RESULT.
LEMMA 2.2.1.
For X > -1, 1let v, = O, n=0,1,...,N-1 and

= I'(on+g+r)r(n+1) _
n P(an+3)r(n+}\+l) » n =N, N+1, ...,

and

oy

~~

ct

-
|

T T(A+1

-a-1 © ./t
i ) f e u/ uASa B(n)du, t >0 .

2

© .
If z anxn is convergent for lxl < 1, then

B-1 1
) = almy) @D o,

12
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here
oF(y) = (1+y)™A 1§ gr, o (LD
A & n'n n'\l+t+y i
n=o
ind t and y are related by

t ¢ _ ¥
(1+t) T 1+y :

The following two lemmas are required for the proof

of L.emma 2.2.1.

LEMMA 2.2.2.

o]

The series ) anxn converges for |[x| < 1 if and only

n=o
)

. s n
if the series z s,X¥ converges for le < 1.
n=o

PROOF.
Qo

Suppose that ) anxn converges for |[x| < 1. Since
n=o n

it~8
"
ja

is convergent to i%; for |x| < 1, we have

|
-
{
M

TH. g e

©o

n .
Hence ) s X 1is convergent for |x| < 1.
n=o

Tk
)
W
!
|.lo
)]
0
o)
13
<
o
]
R
o
8]
(+
)
0
H
"
N
}_.J

% Conversely, suppose that
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oo

, n .
. and so ) a X is convergent for |x| < 1.
n=o

This completes the proof of the lemma.

LEMMA 2.2-3.

This is due to Borwein (see [6] p. 130, with § = g=-1).

PROOF OF LEMMA 2.2.1.

By hypothesis and in view of Lemma 2.2.2, we have

s, = 0{(1+8)%*"} for a11 § > O.

¢ It follows from Lemmsa 2.2.3 that

an+B-1 . _
E %] < M(1+s)17B y [(1+8)u]®n*R-1
nin T(an+B) = nen T (an+8)
v M(1+s)17B (1¥8)u,

E as u > o, Choose 6§ such that 8t < 1, then
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-A-1 ® @ on+8-1
t f -u/t A -y |sn]u
e u ae du
+
T(A+1) neN T (an+g)
-A=1 ©
t 1-8 -u/t A Su
<M T (7T) (1+6) f e u'e du
o
= M(1-8t)"2"1 |

which is finite for each fixed t (>0).
Hence the inversion of the summation and the integration is

legitimate and we have

- - on+Bel+)
J(t) = at A7 e-u/t e ¥ ) “n” du
T(A+1) ney T(an+g)
-A=1 =) S ©o 1
_ at n -(1+ £)u _an+g+r-1
= 7—_1_‘ A+1) ngN ann""B) fo e u du
_ a_t—l-l ‘i" I‘(an+B+}\) < (-_ on+g8+)
T (a+1 2y [(an+g) n 1+t
_ g-1 A+l % A an
- (l+t) (l+t) ZN En¥n®n l+t) )
t ya
Let (m) = I% s We have
~ B-1 A+1 5 ¥ 3=
Jg(t) = a(1+t) (1+t) (J+y)x+1 Z Envnsn (l+y
B-1 A+1
= a(l-f't] (l""t Ux(y) .

This completes the proof of Lemma 2.2.1.
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. THEOREMS WHICH GIVE RELATIONS BETWEEN THE "A" METHODS AND

BETWEEN THE "A'" METHODS.

due to Borwein:

THEOREM 2.3.1.

The method (A ) Ze regular for all A > -1;

(see [1] Theorem 1)

THEOREM 2.3.2,
(A ) & (A ) for all u > A > -1;

3

(see [1] Theorem 2)

! The following four known results for (A ) methods are all
E

THEOREM 2.3. 3.
The method (AA) i8 translative for all A > -1;

(see [{1] Theorem 5)

S

. THEOREM 2.3.k.

If x > -1, a s real, s, o(AA) and (n+a)un = sn(n = 0, 1, «..),

then

u - O(Ak) .

(see [1]) Lemma 4)

The following are known results of Rizvi:



 Chap. 2 17.

THEOREM 2.3.5,

If x > -1, a is real, s, > oIAAI and (n+a.)un = s (n=0,1,...)
then

I[ u > OIAAI 3
E
iE

(see [20) Lemma 2.2)

THEOREM 2.3.6.

For » > 0 and p > 1, s, o[Ai]p if and only if s, G(Ai)

and

y
f |t %g U, (£)]P at = o(y)
(o]

'dSy-)oo;

(see [20] Theorem 3.4 and Theorem 4.5)

THECOREM 2.3.7.

IAiI i:IALI for all x» > u > oO.

(see [20]) Theorem 2.2) ‘

The following results are due to Mishra:

! THEOREM 2. 3.8.
3
-
3
E
E

For » > -1 gnd p > 1, s, ~ G[A}\]P if and only if s, - o(AA)

and

y a P
f It g o, ()] dt = o(y)
(o]
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Sy > o
(see [ 18] Theorem 4)
HEOREM 2.3.9. )
c IAul for all A 2 u > -1;
(see [16] Theorem 1)
THEOREM 2.3.10.

3
|lA,| € [A.] for all A > -1.
(see [16]) Theorem 6)
2.4. THEOREMS WHICH GIVE RELATIONS BETWEEN THE
THE "A'" METHODS.

The following is a result due to Borwein:

THEOREM 2.4.1.

(A3) » (A,_,) for all A > O.

(see [5] Theorem 2)

18.

"A" METHODS AND

The following analogous results for strong and absuvlute

Abel-type methods are due to Rizvi:

THEOREM 2.4.2.

For X > 0 and p > 1, [Ai]p 2 [Ax—l]p >

(see [20] Theorem 3.7 and Theorem 4.7)




(see [ 20] Theorem 2.5)

2.5. THEOREMS WHICH GIVE RELATIONS BETWEEN THE METHODS "B" AND
BETWEEN THE METHODS "B'",

The following known results are due to Borwein and Shawyer:

THEOREM 2.5.1.

Chap. 2 19.
THEOREM 2.L4. 3.

I For A > O, IAil a IAl_ll .

E

E

(1) Ifs = o|B,a,B| then s, > o(B,a,8) ;

(ii) Ifr s, o|B',a,B| then s, oc(B',a,B);

(see [7] Theorem 1)

THEOREM 2.5.2.

(i) PFor p =2 1, s, o[B,a,B]p if and only if s, o(B,a,B)

. and

Yy P
f etls& B(t)l at = o(eY)
o >
asy+oo;
(ii) For p 21, s > G[B',a,B]P if and only if s, > o(B',a,B)

and

y

f e®lar _(£)|P at = o(eY)
o @B

as y - o,

(see [7] Theorem 11 and [8] Theorem 11*, respectively)
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iT

. THEOREM 2.6.2.

.6. THEOREMS WHICH GIVE RELATIONS BETWEEN THE "B" METHODS AND
THE "B'" METHODS.

The following is due to Borwein:

HEOREM 2.6.1.
s, > c(B',a,B) Zf and only <if s~ oc(B,a,8 +1).
(see [4] Theorem 4)

The following analogous results for strong and absolute

summability are due to Borwein and Shawyer:

For p > 1, s, ~ o[B',a,B]P if and only if s, ~ o[B,a, B+1]P;

(see [7] Theorem 18 and [8] Theorem 18*, respectively)

THEOREM 2.6. 3.

s, > o|B',a,8| Zf and only if s, > o|B,a, B+1].

E (see [7] Theorem 17)




CHAPTER III
RELATIONS BETWEEN ABEL-TYPE AND

BOREL-TYPE METHODS OF SUMMABILITY, I

1. INTRODUCTION.
It can be shown that a series summable by the Abel
7%thod is not necessarily summable by the Borel exponential
;thod of summability, and that a series which is summable by
’%e Borel exponential method is not, in general, summable by
.;e Abel method of summability, but that under certain
fonditions, both methods will sum the same series to the
v;ame sum. We will discuss in this chapter that under certain
 onditions, 8 series which is summable by a Borel-type method
%s also summable by an Abel-type method of summability to the
s ame sum. In other direction, that under certain conditions,
series which is summable by an Abel-type method is also
'@summable by a Borel-type method of summability to the same
;sum, will be discussed in the next two chapters. '
; In 1931 Doetsch proved the following: B

21
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THEOREM A.

If (Z) + o(B) and

s
T n
(2Z) ) a x" i8 convergent for |x| < 1, then
n=o
s > o(a)
(see (] Satz 1)

In 1961 Wxzodarski pPproved the following generalization

of Theorem A, that is

THEOREM B.

Ifr (Z) s~ o(B,a,B) and

(i) ) anxn i8 convergent for |x| < 1, then
s, > o(a) .

(see [28] Theorem 7)

The last result was extended by Shawyer to absolute

summability, that is

THEOREM C.

If (1) s, > olne.s| and I

s
n

(2Z) Y anxn 18 convergent for |x| < 1, then
n=o

s, = cIAI .

(see [21] Theorem 2)
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The main object of this chapter is to replace the Abel
method by the more general Abel-type method and give result

for ordinary, strong and absolute summability.

3.2. STATEMENT OF THEOREMS.

THEOREM 3.2.1.

If (i) + o(B,a,B) and

S

[--]
(i) ) anxn i8 convergent for |x| < 1, then
n=o ,

for all A > -1

s, O(AA) .

We note that Theorem B is a special case that A = O.

THEOREM 3.2.2.

If (<) s, > o(B,a,8) and

<o
(iz) Y anxn i8 convergent for |x| < 1, then

for all A» > -1 and p > 1 ‘

s, G[AA]p .

In view of Theorem 2.3.8, Theorem 3.2.1 is a special case

of Theorem 3.2.2.

THEOREM 3.2.3.

If (Z) s, o[B,a,B]q, a 2 1 and



-]
(22) ) anxn i8 convergent for |x| < 1, then
n=o

for all x > -1 and p > 1

s, > O[AA]p .

HEOREM 3.2.L4.

If (Z) s |B,a,8| and

-]
(i2) ) anxn i8 convergent for |x| < 1, then

for all A > -1

s, ~ola | .

We note that Theorem C is a special case that A = 0.
The following are analogous results which g€ive relations

between the "B'" methods and the "A'" methods:

THEOREM 3.2.5.
' If (Z) s, o(B',a,B) and
(1) E anxn i8 convergent for |x| < 1, then ‘
n=o
for all » > O

]
s, U(Al) .

THEOREM 3.2.6.

If (Z) s, > o(B',a,B) and
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(22) )) anxn i8 convergent for |x| < 1, then

for all X > O and p 2 1

]
s, * c[A)‘]p .

THEOREM 3.2.T7.

If () s, o[B',a,B]q, qQ > 1, and

[~ -]
(<) )) anxn i8 convergent for |x| < 1, then

for all x > 0 and p 2 1

]
s, [AA]p .

Finally, we have

THEOREM 2.2.8.

If (z) + o|B',a,8| and

n

(ii) a x° is comvergent for Ix| < 1, then

es~18 0
o]

n=o

for all » > O

s, * o|Ai| . ‘!.llllllllll

We may demonstrate these relations by the following

-4

. n .
diagram: under the conditions that nzo a x is convergent

for |x| < 1, A >0, p 21 eandq 21,
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TABLE I
s > o|B',a,B] => 5, lclAi|
s, o[B',u,B]q = . s - o[Ai D
l !
s~ o(B',a,B8) = s, * O(Ai)
1 i
s_ > o(%:a,e) => s jio(AA_l)
s a[B,a,B]q => s O[Al-llp
f T
s, - o|B,a,B| => s, = clAl-ll .

3.3. PRELIMINARY RESULTS.
The following lemmas are required for the proof of

those theorems stated in the previous section:

3

LEMMA 3.3.1. (D. Borwein, Personal Communication)

Suppose that - = < a <'b g =.. bet o<

b
F(w) = f g(w,u)f(u)du
a

where g(w,u)f(u)eL(a,b) for all w > k.

If, for all u in (a,b) —

rm

|dwg(w,u)| < h(u), where h(u)f(u)eL(a,b),

then

[ b
|aF (w) | ;f h(u)|£(u)|au.
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PROOF.
Let k = wo < wl < ... < wm, then for all m
m=1 (b m-1
r=o0 ‘a r=0
rb -
s [ tlagetew il fan
Ja k v
rb
| < h(u)|£(u)lau .
| ‘a
]
, Hence

o b
[ laF(uw)| =< I h(u)|£(u)ldu .

LEMMA 3.3.2.

Suppose that m is a positive integer and that

m D n+c
r

S ——— s
d n+e n
r=1 r r

where br, c

m
> d_ and e are all real with T 4 # 0 and

r

r=1
m
T (dn +e ) #0 foreach n=0,1, ... . Ifs_ > o(A ), then
r r n A
r=1
m br .
pu > NI == o(A,) “where A > -1.
n o | A
r=1 r
PROOF.

In view of Theorem 2.3.4, for each real number k, and for A>-1
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n

n+k O(Ax) - -
t follows that
bn+c b cd-be b
dn+e °n d %n + 2 5n a G(Al) ?

dn +de
for all real b,c,d and e with 4 # O and dn+e # O for each
=O’ l, *® & o *

The conclusion then follows immediately by repeatedly using

the above result.

LEMMA 3.3.3.
Let A > -1, and B be defined as in Lemma 3.3.32. If

s, > o[All, then

PROOF.

In view of Theorem 2.3.5, for each real number k and A > =1

S

n . .
=+ - olal - - ‘

The conclusion then follows by applying the same argument

as in the proof of the previous lemma.
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LEMMA 3.3.h4,.

For A > -1, Let

-A=1 o

-t -
I(t) = TOFI) . e

u/t uAf(u)du, for all t > 0.

If f(u) » 0 a8 u » », then I(t) » 6 ag t » w.

PROOF.
This is a special case of a standard result.

(see [12] Theorem 6)

LEMMA 3.3.5.

-]
If A > -1, then the series ) Egs x? is convergent
n=o

for |x| < 1 if and only if the series anxn 18 convergent

he~88

n=o
for |x| < 1.
PROOF.
Since

EA . nA

n r(a+1)
as n > «», we have that

lim lEzll/n 1.




ap. 3 30.

- -4
[t follows that the radius of convergence of Z Els <2 is
© n=o
qual to the radius of convergence of Z s _xn
n=o0
Y virtue of Lemma 2.2.2, the conclusion follows immediately.

EMMA 3.3.6.

Let

rgan+§+1%rgn+l) _
v = T(an+g)T(n+r+1) ° for n = N, N+1, ...,

0, otherwise.

- -]
If s, > o(B,a,B8) and J anxn i8 convergent for |x| < 1,
n=o
then for all A > -1

A
v s, > @ O(Al) .
PROOF.
Let J(t) be defined as in Lemma 2.2.1, that is

= X -u/t A
J(t) = T fo e u’s_ B(u)du, t > 0.

>

B-1 A+l
J(t) = “[I§¥] (%E%] o;(y) s

where

g n
(1+y)-k-l Z EA\’nsn [—L] s

o{(y) 5

By Lemma 2.2.1 ‘
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1+y

hypothesis, S, B(u) *> o0 as u > », it follows from Lemma 3.3.k

at

J(t) + o

t > =, Also, we have

i+y 1
1+t a

> and t > o if and only if y -+ =,

oi(y) + alo

(- -4
S y &> o, Furthermore, it is easily shown that Z v,S x?
n=o

is convergent for |[x| < 1. Therefore, in view of Lemma 3.3.5

and by definition

A
v s, > a O(Al) . ‘

. This completes the proof.

LEMMA 3.3.7.

Let Vo be defined as in the previous lemma. For A > -1,
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s, UIB,a,Bl, then

A
v s, +a olel .

OOF.

In view of Lemma 2.2.1, we have
g-1 A+l
- t l+y »
J(t) “[I:?] [1+t] OA(F) s

o¥(y) = = 3(t)A (£)A,(¢), say,

B-1 A+l
_ [1+t (14t
A (t) = [’%‘J and A,(t) = [IIEJ

or h > 0, it is easy to show that Al(t) and A2(t) are of
ounded variation with respect to t in [h, «).

For t > h > 0, we have

—A=1 @
ot —u/t _A
J(t) = TOFI jo e u Sa’s(u)du

1

[--J
-vV_AX\
= FOy [, T p e |

By assumption, (u) is of bounded variation with respect

SG,B

to u in [0, =), thus

fh 4,5, 4 (tv)] ;[o 55 g(u)lan < u.
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It follows from Lemmsa 3.3.1 that

- -]
1 -
fh lJ'(t)ldt :_MIO Im—e uukldu

= M L]

Thus J(t) is of bounded variation with respect to t in [h, =),
iand so, o:(y) is of bounded variation with respect to y in

. the range (g, «), where g€, greater than zero, is dependent

on h. Since %; o:(y) is continuous in [0, g], it follows
"that o;(y) is of bounded variation with respect to y in [0, )

In view of Theorem 2.5.1 (i), by assumption
s, > o(B,a,B) .
By virtue of the previous lemma, we have
A
v s > a o(AA) .
Thus by definition

A
v s, > ¢a alAll .

3.4. PROOFS OF THE THEOREMS.
3.4.1. Proof of Theorem 3.2.1.
In view of Theorem 2.3.2, we may assume that A is an

integer. By Lemma 3.3.6, we have

A
v s, +a o(Ax) s

‘
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where

v = F'tan+g8+A )r(n+l
n ''(an+g)r(n+a+1

(an+B+2-1) (an+g+r-2)...(an+Bg).
(n+2)(n+2r-1).. . (n+1)

» n > N.

By Lemma 3.3.2, we have
S =8 v i—-‘ o(a) .
n
This completes the proof.

3.4.2. Proof of Theorem 3.2.2.
In view of Theorem 2.3.8, by the previous theorem, it

is sufficient to prove that

x p
f yl%; ol(y)l dy = .o(x)
o

as x > o, Since

y & o, (y) = (x+1)lo

e (v) - o, (y)],

A+l

and by virtue of the previous theorem again, we have

6141 (¥) - o, (y) = o(1)
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y + o, Thus for all p > 1, we have

d D
Yla; o, (¥)| = o(2)

fo ylg o,(y)]| ay = o(x)

S X -+ o,

his completes the proof.
-4.3. Proof of Theorem 3.2.3.

For all q 2 1, in view of Theorem 2.5.2(i), we have,

he assumption that

s, o[B,a,B]q

implies that

o) -
n

It follows from Theorem 3.2.2 that for all A > -1 and P 21
s, O[AA]P .

This completes “‘he proof.
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4L.4. Proof of Theorem 3.2.4.

In view of Theorem 2.3.9, we may assume that A is an

teger. By Lemma 3.3.7, we have

Vasan aAa|AA| s

.= I{on+B+2A)T(n+1)
Vgt Flan+g8)r(n+a+1
_ San+§+1-l§§an+§+x-2)...(an+§)_.
- n+1) (n+a=-1)...(n+1) » o 2 N.

By Lemma 3.3.3, we have

nnwv
n n

This completes the proof.

3.4.5. Proof of Theorem 3.2.5.

In view of Theorem 2.6.1, by assumption

S -> o(B,a, B+l)-
n

Since Theorem 3.2.1 is valid for all a > O and all real g ,

we have for all ) > =1

s, * O(AA) .
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heorem 2.4.1, we have

1
5p > o(Al)

all A > -1. It follows immediately that for all A > O

t
s a(Al) .

is completes the proof.

4.6. Proof of Theorem 3.2.6.

In view of Theorem 2.6.1, by assumption
s, o(B,a,B8+1).

ince Theorem 3.2.2 is valid for all a > 0 and all real B,

e have for all A > -1 and a2ll p 2> 1

s, * o[AA]p .

n view of Theorem 2.4.2, we have

s+ O[AA+1]p >

for all A > -=1. It follows immediately that for all ) >0 and

P >21
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]
s, o[A)‘]p .

8 completes the proof.

.T. Proof of Theorem 3.2.7.

In view of Theorem 2.5.2(ii), for all Q9 > 1, by assumption

s o(B',a,B).

Theorem 3.2.6, we have for all A > 0 and all p 21

]

his completes the proof.

-4.8. Proof of Theorem 3.2.8.

In view of Theorem 2.6.3, by assumption

-

s, > o|B,a,B+1l] .

Since Theorem 3.4.4 is valid for all a > O and all real B,

it follows immediately that for all A > -1
s, > o]AAI .

Thus, in view of Theorem 2.4.3



s, > olal s

ere A > -=1. Hence for all A > 0

s, > clAiI .

is completes the proof.




CHAPTER IV
RELATIONS BETWEEN ABEL-TYPE AND

BOREL-TYPE METHODS OF SUMMABILITY, II

.l1. INTRODUCTION.

In 1931, Doetsch proved the result that under a certain
ind of Tauberian condition, a series which is summable by
he Abel method is also summable by the Borel method to the

ame sumg; that is

If (Z) s+ o(a);

(1) s i3 real for each n = 0,1,..., and
n
© a x x (%)
P n+l _ e
(iii) nzo -3 = OL(;—) , then

s, o(B).

(see [ 9] p. 405)

(*) £(x) = oL(g(x)) means that there is a positive constant M

i such that f£(x) > -Mg(x) for large x, where g(x) > 0 for all x.

4o
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The main object of this chapter is to replace the Abel

hod and the Borel method by the more general Abel-type
hod and the Borel-type method, respectively. The relations
tween strong and absolute methods of summability are also

vestigated.

In this chapter, we only consider methods AA for which

v

0. ©Negative values of A will be considered in the next
apter. Because of the inclusion AA - Au wvhenever A > u > -1
heorem 2.3.2), we will state our theorems only for the case

= 0 and note that they also hold whenever 2 > 0.

It is supposed, for convenience, in this chapter, that

is real for each n = 0, 1, ... .

«.2. DEFINITIONS AND PRELIMINARY RESULTS.
A real function f£(x), defined for x > 0, is said to

e slowly decreasing if

lim inf {f(x) - £(y)} > O

y-)oo,x>y,x/y'*1.

The following preliminary results are required for the

proofs of the theorems stated in the subseguent section:




MA L.2.1.

If (z) I(y) = f e Ytaa(t) is convergent for all y > 0;
o

(iZ7) I(y) > o as y > 0 and

(i22) a(t) Zs slowly decreasing,

a(t) » o

(see [22] Theorem 105)

LEMMA L4.2.2. ([12] p. 125)
If £(x) 28 differentiable and xf'(x) = 0,.(1), then f£(x)

i8 slowly decreasing.

PROOF.

We have

-

y
£{y) - £(x) = J £r{t)dat
X

> -Mlog ¥ .

Hence, under the conditions that

x+m,y>xandy/x"*1,
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we have

lim inf {f(y) - f£(x)} > o.

Thus f(x) is slowly decreasing by definition.

LEMMA L4.2.3.
If £(x) = OL(g(x)), then for large x, there is a

positive constant M such that
[£(x)]| < £(x) + M g(x) .

PROOF.

If £(x) > O, the result is obvious; if £(x) < 0, then

l2(x) |= - £(x) <M g(x)
= 2Mg(x) - Mg(x)

< 2Mg(x) + £(x) .

This completes the proof.

LEMMA L4.2.)4,
If £(x) = OR(g(x))(*) s then for large x, there is

(*) f£(x) = oR(g(x)) means that there is a positive constant M

such that f(x) < Mg(x) for large x, where g(x) > 0 for all x.
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ositive constant M such that

[e(x)] <M g(x) - £(x) .

OF.

If £(x) < 0, the result is obvious; if £(x) > 0, then
[£(x)] = £(x)
< Mg(x)

= 2Mg(x) - Mg(x)

Mg(x) - £(x).

lIA

S completes the proof.

3. STATEMENTS OF THEOREMS.

If () s, c(A) and

(ZZ) S, B(u) i8 slowly decreasing, then
2

MARK. 1In view of Theorem 2.3.2, we can replace (A) by (AA)
the above theorem, where A > O. This comment will apply

each of the following theorems.

Sn > O(B,asB) . -
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HEOREM L4.3.2.
(1) IFf (1) s, * oc(A) and

(£1) uSA’B(u) = OL(l), then

s, - o[B,a,B8]:

(11) IFf (2) s, o(A) and

(z2) uS&’B(u) = OR(l), then

s, o[B,a,B].
Each of the other theorems in this section can be stated
n parts corresponding to the parts of Theorem hL.3.2, we shall
nly state the parts corresponding to (I) in each case; the
roofs of the other parts are obtained by using corresponding

emmas in the previous section.

HEOREM Lk.3.3.
If (i) s+ o(Aa) and

(i) S;,B(u) = 0,(¢(u)), where

u¢(u) = o(1)

f ¢(u)du < =« for some k > 0, then
k

s = o|B,a,B8| .
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THEOREM L4.3.L4.
If () s_ + o(A) and

(i) A B(u) i8 slowly decreasing, then

s, * o(B',a,B) .

THEOREM- 4. 3.5.
If (Z) s, o(A) and

() uA;,B(u) = 0,(1), then

s, * o[B',a,B] .

THEOREM L4.3.6.
If (z) s, * c(A) and

(iZ) A&’B(u) = € (¢(u)), where

u¢(u) = 0(1)

and

- -]
I ¢$(u)du < « for some k > 0, then
k

s, > alBtoasel -

We see from the above theorems that when more stringent

conditions are imposed, stronger conclusions are obtained.
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We denote condition (ii) of Theorem L4.3.3 and condition

(ii) of Theorem L4.3.6 by c(S) and c(A), respectively; that is

c(s): s B(u) = OL(¢(u)), vhere u¢(u) 0(1) and ¢(u) is

integrable over (k,=) for some k > O;

C(A): A& B(u) = OL(¢(u)), where ué(u) 0(1) and ¢(u) is

integrable over (k,») for some k > O.

A table showing the relations between the hypotheses and

conclusions of the above theorems is given below.

TABLE II
For A > 0 and if a_ is real for each n = 0, 1, ...

s, * c(Ax) and C(A) => S, ~ OlB',G,BI;
) !

s, O(AA) and uA;’B(u) = OL(l) => s, o[B',a,8];
ﬂ A 4

s »> o(A,) and A (u) is slowly decreasing=ds_ - o(B',a,8);

n A a,B n

Tr

s_ - c(AA) and §_ B(u) is slowly decreasing=)s - o(B,a,8); ‘
k]

7 f

s - G(AA) and u8;,B(u) = OL(l) => s, o[B,a,B];

1 1

s, » o(A,) end c(s) > s, *+ o|lB,a,8] .
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L.k, PROOFS OF THE THEOREMS.

L.4h.1. Proof-of Theoreir: 4. 331..

Let

J(t) = % f e'“/tsa g(uw)au, t > o.
o E 4

-]

- n
Since ) a x is convergent for |x| < 1, we know (as in
n=o

the proof of Lemma 2.2.1) that

g-1
J(t) = “[iéij [%{%J o2(y),

where

(1+y)~ %

og(y)

e 8

[ ]
ni{l+y
n=o

= oo(y),

and t and y are related by

1+y

We note that t » » if and only if y » «, and that

i+ty | 1
1+t a

as t -+ o,



Chap. U4 Lo,

Thus
J(t) » ¢

as t > o ,
On the other hand, since

eu

|s (u)|< M e for each € > 0, where M_ depends on ¢,
a,B = g €

it follows that

J(t) = I e/ as_ s()
o >

In view of Lemma 4.2.1, we have that

Sa,B(u) +> 0
as u > o,

This completes the proof.

4Y.4.2, Proof of Theorem 4.3.2.

(1)

In view of Lemma U4.2.2, condition (ii) implies that

s B(u) is slowly decreasing, so that by the previous theorem
a,

Sa,B(u) v e

as u > <« ,
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By virtue of Theorem 2.5.2 (i), it is sufficient to

show that

y
f e®lsy g(t)lat = o(e¥)
o k4

as y > «,

In view of Lemma L4.2.3, condition (ii) implies that

there is a positive constant M such that

M
L t —
ISa,B(u)l = SQ’B(u) + for large u,

so that
fy etls; g(t)lat = Iyo etls; glt)lat + ]y e®s g(t)at + 7 !fz at
o » o ’ Y, s v,
= Il + 12 + 13, say.
It is clear that ‘
I. = o(eY¥) ana I_ = o(e¥)

as y > «,
Also

y
II2I=|eysa,8(y) + M - I e
Yo

Yy
= eylsa,s(y) - o] + M+ J etlsa,g(t) - olat

Yo
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= o(eY)+ as y_ .=,

Thus
Y oe, ., .
Io e |Sa’8(t)|dt = o(e”)

as y - =,

This completes the proof of part (I).

(11)

Let

Ta,B(u) = -Sa,B(u) for each u > O,

then
' =
uT a,B(u) OL(l),

and so by Lemma L4.2.2, T, (u) is slowly decreasing.

»B8
It is clear that

[ e-u/tT (u)du » -o
o @,8

as u > o,

It follows from Theorem L4.3.1 that

T B(u) > -0

>

as u > oo,

51.
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That is

S, B(u) + 0

as u > «,

Furthermore

fy els' _(t)]at = Iy eblTr _(u)]at
o a,B o a,B ?

and since uT; B(u) = OL(l), by applying the same argument
9

as in the proof of part (I); we have that
Y
et|T' (t)]at = o(e¥)
o @8

as y > =,

Thus

[y etlsa’e(t)|dy = o(e¥)
)

Therefore

s - o[B,a,B] .
n

This completes the proof of part (11).

2ure oemell
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h.h.3. Proof of Theorem 4.3.3.

The conditions

S;’B(u) = OL(¢(u)) and u¢(u) = 0(1)

together imply that

uS;,B(u) = OL(l).

By virtue of Theorem L4.3.2. (I) and Theorem 2.5.2 (i)
Sn -»> O(BsasB)-

It is therefore sufficient to show that Sa B(u) is of bounded
b ]

variation with respect to u in the range [0,=).
In view of Lemma L.2.3, there is a positive constant M
such that for all u > u_ > k,

o‘

Is,

a,B(u)I < S;,B(u) + M¢(u) .

Since

IQ $(u)du < =,
k

it follows that

IQ |S; 8(u)ldu < J S;,B(u)du + MI é(u)du
u i u
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Furthermore, S°' (u) is continuous in [O,u ]. Hence S (u)
a,B o a,B
is of bounded variation with respect to u in the range [0,»).

This completes the proof.

h.h.h. Proof of Theorem 4.3.4.

Let

I(t) =

o L

[o e-u/tAa’B(u)du .

Since ) anxn is convergent for |x| < 1, it follows that
n=o

a = o{(1+5)2} for all & > O.

By applying the same argument as in the proof of Lemma 2.2.1,

we have
A (u) = O(eus) .
a,f
Hence
[® —u/t
I(t) = e aa B(u)
4 fe) a’
can+ -1
I -u/t _-u E °n du
N-1 n
t B ¥
= (-].Tt_) O'o(y) (l+t) (l+y) nZo Sn (l+y) °

where t and y are related by

t )G = L
1+t 1+y
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Since s, c(A), it follows that
I(t) » o

as t +> o

By virtue of Lemma L4.2.1, we have

A (u) » o
a,B
as u » o .

This completes the proof.

4L.k.5. Proof of Theorem 4.3.5.
In view of Lemma 4.2.2, condition (ii) implies that AG’B(u)

is slowly decreasing, so that by the previous theorem

Aa 8(u) .

k4

as u > = . -

By virtue of Theorem 2.5.2 (ii), it is sufficient to show

that

v etIA' (u)]at = o(e¥)
o GQB

as y -»> oo .
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In view of Lemma 4.2.3, condition (ii) implies that there is

a positive constant M such that
|A' (w)] < A' _(u) + ¥ for 1arge a
G,‘B = "a,B u g ?

so that

t

d'lﬂ

Yy o4 Yo ¢ y oo y
I e |A' _(t)]at _<_I e’ |ar _(t)lat + j e’A' _(t)at + u[ at
o a,B a,8 a,B

° o Yo

= I + I + I

1 2 3° S8y

It is clear that
I. = o(e¥) and I_ = o(eY)

as y »> o .

Also ‘
y

Thus




Chap. L4 5T7.

This completes the proof.

4.4.6. Praof-of Theorem 4.3.6.

The conditions that

A;’B(u) = OL(¢(u))

and

ué(u) = o(1)
imply that

uA&’B(u) = OL(l).

It follows from Theorem 4.3.5 and Theorem 2.5.2 (ii) that

s, > o(B',a,8). -

Hence, it is sufficient to show that Aa,B(u) is of bounded

variation with respect to u in the range [0,=).
By virtue of Lemma 4.2.3, there is a positive constant M such

that for u >2u 2>k

(o]

IA;,B(u)I s Ay g(u) + Mo(u) .



%
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Since ¢(u) is integrable over[uo,w), it follows that

I |A;’B(u)|du < =,

u
(o]

Furthermore, A& 8(u) is continuous in [O,uo], so that
;]
Aa B(u) is of bounded variation with respect to u in the
?
range [0,=).

This completes the proof.




CHAPTER V
RELATIONS BETWEEN ABEL-TYPE AND

BOREL-TYPE METHODS OF SUMMABILITY, III

5.1. INTRODUCTION.

We have proved in the previous chapter some theorems
which give relations between an Abel-type method (Al) (in
the case that A > 0O) and an ordinary, a strong or an absolute
Borel-type method, respectively.

The object of this chapter is to prove analogous results
for which -1 < A < O.

It is supposed for convenience, in this chapter, that

a, is real for each n = 0, 1, ... .

5.2. DEFINITIONS AND PRELIMINARY RESULTS.

. -
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Let
<o [~ -]
— n —
p(x) = ] p.x, q(x)= 7 q_ x
n=o =
and denote the radii of convergence of these power series

by rp and rq respectively.

Let

l [~ -]
p (x) = (%7 Z P,S X

and

1
qs(x) = Tx7

If r > 0 and X pnsnxn is convergent in the open interval
n=o

(o, rp), and if ps(x) tends to a finite limit ¢ as x - rST s

we write

s, + o(P). ‘

This defines the summability method (P); the method (Q),

associated with the sequence {qn}, is defined similarly.

Ir
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then the summability method (P) is equivalent to the Abel-type

method (AA) defined in the first chapter.

Let

( 1 .
T(an+g8) ° nz N
P =9
| O ’ 0O <n < N.
In view of Lemma 2.2.3,
E xan+8-1 . Ei
n=N T(an+g) o

as X > =, Substituting y for xa and then writing x for Yy

gives

1
1 ax(B-l)/a e-x“

p(x)

1
Then setting u = x® , it follows that

an+g8-1
%o ae ) s -

l o0
s_x
p(x) n£° Pn®n new r(an+g)

so that the associated method (P) is equivalent to the Borel-

type method (B,a,B) defined in chapter 1.
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A sequence {un} is said to be an m-sequence (moment -
sequence) if
1
u, o= I t%ax(t) (n =0, 1, ...),
o
vhere x(t) is a real function of bounded variation in the
interval [0, 1]; if in addition
1 n
“niaf tlax*(t)] (0 < 6§ <1, n=N,8§+1,...),
o

where x*(t), the associated normalized function of x(t), is

defined by

o, t = 03
x*(t) = {2{x(t+)= (£-)}-x(0), 0 < t < 1;
x(1) - x(o), t =1,

we call the sequence {un} an E-sequence.

We note that ([23] p. 14 and [1%] s2k7)

1 1
[ eMtaxterl 2 [ ePlaxmeo)) -
[}

o

Hence a sequence {un} such that

1 : R,
n_ = f tax(t) > 5! t Jax(t)]|
n o o

where 0 < § <1, n = N, N+1, ..., is necessarily an m-sequence.
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The following preliminary results are required for the
proofs of the theorems stated in the following section. The

first three are all due to Borwvein:

LEMMA 5.2.1.
If 0 < T, < s then a necessary and sufficient condition

for (P) to be regular is that

e~ 8

pn(rp)n = o,

n=o

(see [2] Theorem 1)

LEMMA 5.2.2.
If (Z) g(s) is an analytic function of s = b+ic
in the region b > b such that, when b > b

and |s| is large

g(s) = Cc + O(T%TJ" where C > 03

g(v) is real for d» > b and ‘

k = g(n+v), where v > 0, v-b_ > O» then

{k_} is an m-sequence.
n

-~
o
o
- N

-~
[\
L]
L0

(see [6] Lemma 3)
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LEMMA 5.2.3.

If p, = Boa (n = 0,1,...), where {un} 18 an m-gequence,
if r, =T, 0 and (P) i8 regular, then

(Q) < (p) .

(see [ 2] Theorem A')

LEMMA 5.2.4.

Suppose that -1 < A < 0 and

_ I'(an+B+A)r(n+1) _
¥n = r(un+85rgn+x+15 (o = N, N+1, ...)

Then

s, > G(AA)

if and only if

A
ws, > a O(AA)

PROOF.

(i) Necessity.

Let t_ = s (n =0, 1, ...). In view of Theorem 2.3.3,
n n+N 2
we have that

t, > U(AA) .
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Define

_ I'(as+g+Ar)r(s+1)
gls) = P%as+8)r(s+k+17 .

It is clear that g(s) is an analytic function in the region

b > b_, where
o

b = max {-2,(-1-8-2)/a, (-1-B)/a, -2-2}+1,

By Stirling's theorem, we know that, as |s| + =
-as as+f- 1 1

F(as+B) = V271 e (as) 2 (l+0(T;T) ),

so that, as Isl +>
A 1
g(s) = o + ofr57) -

By Lemma 5.2.2,

{k 1} = {"n+N} is an m-sequence.

P = q_k (n=0, i, .--)~
n

Since k - aA as n -+ = and (Q) ; (Al) is regular, we have
n

that

oo
A+l B o_ (1-x)M p(x) » &
(1-x) Z E k x ( ) P
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Now
P, "~ (a*n?)/T(A+1)
and

o for all A > -1,

e~ 8
=)
>
il

so by Lemma 5.2.1, (P) is regular.

Since t_ - 0(Q), it follows from Lemma 5.2.3 that

t -+ o(P),
n

that is

—%—7 ¥ E;kntnxn + 0
PiXJ) n=0o :
as x »> 1l-. Thus
A+l v oA n A
(1-x) ) Ek t x > a'o

n=o

as x - 1l-, which means that

k t_ » ao(A,) .
nn
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Again, the translativity of (AA) implies that
A
ws. > oa o(AA) .
This completes the proof of the necessity part.

(ii) Sufficiency.

This part can be proved by letting f(s) = {g(s)3y~t

and by applying the same argument as in the first part.

LEMMA 5.2.5.

If £(u) i8 a function defined on -=» < u < = such that
iim inf [£(u) - £(t)] 2 O

when t » » and 0 < u-t + 0, then there are positive

numbers t , M, and M_ so that
o 1 2

£(u) - £(t) > -Ml(u-t) - M,

for all u > t > t,-

(compare [ 18], p. 25 Lemma 3)
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PROOF.
For any positive number M2 there exists a to and a § > O

such that

£(u) - £(t) > -Mif t > ty» 0 < u-t < 6 .

Now, for any u > t > to, let r be a positive integer such

that
ré + t <u+ 8 < (e+l)s + t;
then
f(u) - £(t) = £(u) - £(ré+t) + £(rs+t)-...+£(6+t)-£(t)
2 -M,(r+1).
Since ré§ = r§+t-t < u-t, we have that
.
£(u) - £(t) 2 -M, (u-t) - M, ,
where M, = M2/6.

LEMMA 5.2.6.

If Sa B(u) is slowly decreasing and
Sn _’U(Al) >
then s _ B(u) Z8 bounded for all u > O.
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COMMENT . This result can be deduced from a general theorem
due to Pitt ([19] p. 23 Theorem 10). However our
proof of the special case is simpler than Pitt's

and so we give it in full.

PROOQF.
Let

f(t) = sa B(et) for all -« < t < o,

Since t » ® and 0 < v-t - 0 if and only if

v t v-t ev/et

e > e - « and e = > 1,

so that the function f(t) satisfies the hypothesis of the

previous lemma, and from which it follows that
£(v) - £(t) 2 —Ml(v-t) - M,
for positive numbers Ml and M2 and for all t 2 t .

v
Let kx(v) = ——l_—T - (_v)kﬂ._c < v < », then

IQ k(v)dav = 1.
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Since for given € > 0O, there are tl and 8§ > 0 so that

f(v) - £f(t) > - € for t > t, and O < v-t < §,
£f(t) - £(v) 2 -€¢ for t > t, and 0 < t-v < §,
we can choose an integer p such that
1 p
= < ! k(v)dv = v
2
§p
and so obtain that

f(v) - £(t) > -pe = -c for t 2 t, and 0 £ v-t < 6P,

£(t) - £(v) > -p€ = -c for t 2 t; and 0 < t-v < &p.

Let

< oo
g(t) = I k(v-t)f(v)dv, - <t < «, and u = e ; then
- 00

i A A _ B-1 A+
s(0) = By [ e Ve, p(av = o (39T e,

b2
- o

A r(an+s+x)r(n+1) [ )n
n T(an+8)T(n+r+1) n'I+y

E

(l+u) = , and o‘{(y) = (1+y))\+1 .

()
it~8

N
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Now g(t) - axo as y + <, by Lemma 5.2.4; and g(t) - 0
as t » -», since aN+B8-1 > 0. Thus g(t) is bounded for
all t.

Let w(t) = inf f(v) end u(t) = sup £(v), then for vrt>t .,
v<t v<t °

it follows from f(v)-f(t)g.-Ml(v-t)-M2 that w(v)-w(t);-Ml(v-t)-Mz.

Now consider values of t for which t’ 2 max (to, tl) = T, where

t' = t =-.6p, we have that

t-sp o

k(v-t)f(v)dv + f k(v-t)f(v)av

t+68p
g(t) = f k(v-t)f(v)dv + f
t+8p

t-6p

t—(sp ©
> (£(€)-c)y + w(t) f K(v-t)av + £(t) |  k(v-t)dv

Jt+6p
. fm k(v-t)[£(v) - £(£)]av
t+68p
t+6p o
> P(t)y + m(f)[i - f k(v-t)dv] - I k(v-t)M, (v-t)at-M
o t-8p t+68p

> £(£)y + w(t)(1-y) - M,

since ‘

N - = Temv ll v dv
0 < f k{v-t)(v-t)dav = I k(v)vdv < TOFD) le v*log
t+48p Sp

Atl 4v = a4l ,

< 1 - e V v
sz+15 o
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so that

£(8) + wlt) (FX) g oM.
Since w(t) decreases, it follows that

n(t) + wle) (X)) g,

for all ¢>T+§, Also, for such t, we have that

t+6p t-6p T
g(t) =f k(v-t)f(v)dv+j k(v—t)f(v)dv+[ k(v-t)f(v)dv

t-3p - t+8p

t+8p t-6
<(f(t)+c)f k(v-t)dv-l-u(t')f Pk (vt )av- (A2 )[ k(v-t)w(v)av
t-6p - t+6p
+ Mfw k(v-t)dv
t+8p

- sy rl— t-6p
<2 ()y -m(t)(—;l)[f K(v-t)av + ft+6pk(v-t)dv] ‘

(l:l) [Q k(v-t)lw(v) - w(t)]lav + M
t+8p

2
=f(€3y - w(t) Liill— + M, wvhere t" =t + 8p,

so that

+ (t)
-y M < f£(t
m(t) ( ) h

for all t > T + 6p.
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Now, if w(t) +» -=» as t + =, then there exists a sequence

of tn such that
f(tn) = (u(tn) <> =0
Since
1- 2
£(t) 2 M+ (Z7) wle) ,
we have that
102yt ) > M

which is a contradiction since M is a constant and y > 1/2.
Thus w(t) is bounded below, and it follows from the
inequality,

M+ (-1%1]2 w(t) < £(t) <M - (l'-_;l) w(t),

that f(t) is bounded for all t>T+8p. Finally, since f£(t),
is clearly bounded for all t<P+8p,f(t) is bounded for all t.

This completes the proof of the lemma.
LEMMA 5.2.7.
If (i) g(u) is integrable over (0,=) and

f g(u)u-ixdu # 0 for any real x;
o
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(i2) f(u) is bounded and slowly decreasing and

(Z2Z) %f g(%)f(u)du -> of g(u)du
o o

as t + o, then
f(u) - o

as u > =,

(see [12]) p.296 Theorem 233)

5.3. STATEMENTS OF THEOREMS.

Suppose from now on that -1 < A < O.

THEOREM 5.3.1.
If (z) s, > o(Ax) and

(ii) s B(u) i8 slowly decreasing, tTthen

s, > o(B,a,B).
. THEOREM 5.3.2.
If (z) s > G(Al) and

(ZZ) usa’s(u) = OL(l), then

[ > U[B,(!,B] -
n
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THEOREM 5. 3.3.

If (2) s =~ o(Ax) and

(i1) S;’B(u) = OL(¢(u)), where
u¢(u) = o(1)

and

f ¢(u)du < = for some k > 0, then
k

s o|B,a,B] .

COMMENT. At present, we can only prove the following three
theorems in the special case that o is a (positive)
integer; wve conjeeture that they will also be true

for all a > 0.

THEOREM 5.3.h4. - ‘

If (z2) s, o(Al) and
(1) A B(u) is slowly decreasing, where a is

a (positive) integer, then

s, o(B',a,B) .
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THEOREM 5.3.5.
If () s =~ O(Al) and
(iZ) uA;,B(u) = 0,(1), where o i a (positive)

integer, then
s, > olB',a,8].

THEOREM 5. 3.6.
If () s = U(Al) and
(i2) Al B(u) = OL(¢(u)), where a i8 a (positive)

integer and
u¢(u) = o(1)

with

- -]
[ $(u)du < =« for some k > 0, then
k
B! .
s, cl ,a,BI

We denote, as in the previous chapter, the conditionmns
c(s):s: 8(u) = OL(¢(u)), where u¢(u) = 0(1) and ¢(u) is
Qs

integrable over (k,») for some k > O
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c(A):A; B(u) = OL(¢(u)), where u¢(u) = 0(1) and ¢(u) is
k]
integrable over (k,») for some k > O.
The relations between the hypotheses and conclusions of the

above theorems can be illustrated in the following table:

TABLE III
s, ~ O(Ak) and c(s) = s, * o|B,a,B]
w I
' = =
s, * O(AA) and uSa’B(u) OL(l) > s, > olB,a,B8]
s, > o(Ax) and Sa,B(u) is slowly decreasing => s = o(B,a,B8)
s + o(A,) anada A (u) is slowly decreasing, = s+ o(B',a,8)
n A a,B n
a is integer TT
s, O(Al) and uA;,B(u) = OL(l), = s, > o[B',a,B]
a is integer /”‘
s, > U(Al) and C(A), a is integer => s, ~ o|B',a,8]
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S.4. PROOFS OF THEOREMS.

5.4.1. Proof of Theorem 5.3.1.

In view of Lemma 5.2.6, the hypotheses imply that Sa B(u)
k]

is bounded.

Let
g(u) = e ™r/r(a+1), u > o,
v, = P(an+8+l)F(n+l)/r(an+8)r(n+1+1), n =N, N+1, ...
and
ey = 2 [ g(2)s  (u)au
t o t a,8
-A 1 o
_ -u/t A + o
= TATl) o u Sa’s(n)du, > ?
then
B (u)dau = —_ e~ du = 1.
& T(A+1)
o o]

In view of Lemma 2.2.1, we have

+1
I(t) ( ) ox(¥),

'a(1+t
where

t \* oy
(%) T 14y

and
n

A R
o*(y) = A+1 ZK Envnsn(1+y)

(1+y) n=
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which, by virtue of Lemma 5.2.4, tends to o’y as Yy + =,

1+y - 1
1+t a

as t > o, Thus

%f 8(%)50_ B(u)du > o f g(u)dau
o i o

as t » o, In view of Lemma 5.2.7T, we have that

Sa,B(u) > g

as u > o,

This completes the proof.

5.h.2. Proof of Theorem 5.3.2.

In view of Lemma L4.2.2, hypothesis (ii) implies

that S B(u) is slowly decreasing. Hence by virtue of the
a

Previous theorem, we have that
s, > c(B,a,B).

By applying the same argument as in the proof of Theorem hy.3.2(1),

we have
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y
f etIS&’B(t)ldt = o(e¥)
o

as y + o

Therefore, by virtue of Theorem 2.5.2 (i), we obtain that

s+ olB,a,B].

This completes the proof.

5.-4.3. Proof of Theorem 5. 3. 3.

The conditions that

S' (u)

. 0, (4(u))

and

0(1)

u¢ (u)

imply that o -

which, together with condition (i), implies, by the previous

theorem, that

s -+ o(B,a,B).
n
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By applying the same argument as in the Second half of the

proof of Theorem L.3.3, we can show that S B(u) is of
a

bounded variation with respect to u in the range [0,=). Hence

s, * o|B,a,B].

This completes the proof.

5.4.4. Proof of Theorem 5.3.4.

Let

I(t) = ——(ﬁ-t-x-l T emu/t Ar o (u)
Tl . u @, ujdu .

Since

o
Py
e
b
i
]
—
i~
S
|
1
(]
St

]
e I-]
=t

H
R =

o

[+]
R =
v
™w

+
-

-~

e

o

b

v

we have that

-A-1 @ x
t e u/t u? Z 1 S (u)du.
y=1 @ a,B+y

I(t) = TOSL)

Suppose that s, > o(AA)- Then it can be shown, as in the

proof of Theorem 5.3.1, for all a > O and for all real B, that
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-A-1

- -]
-u/t _a
T(A+1) fo € w's,,g(wlau - ¢

as t -+ o .,

Hence
a
I(t)—b—z o = g

as t + o

Let

g(u) = TOs1y © u'» (u > 0) .

Then we see that

e e, jwan s o [T swan

o ~upy

B(u) is bounded follows from Lemma 5.2.6. There fore,

I(t)

as u +> o
That A
a

by virtue of Lemma 5.2.7, we have that

Aa,B(u) > g

as u + o

This completes the proof.
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5.4.5. Proof of Theorem 5. 3.5.

The proof of this theorem can be obtained by replacing

"s, g » "B" and Theorem 2.5.2 (i),
>

in the Proof of Theorem 5.3.2,
by "A 1]

a.8 "B'" and Theorem 2.5.2 (ii), respectively.
?

5.4.6. Proof of Theorem 5.3.6.

The proof of this theorem can be obtained by replacing

"SG,B", and "B"’

"B'", respectively.

in the proof of Theorem 5.3.3, by "Aa B" and
b
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