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ABSTRACT

This thesis concerns itself with obtaining numericaf
solutions for viscous incompressible fluid flow in
rectangular cavities where the fluid is driven by a
uniform velocity at the top. In the past, this problem was
formulated in terms of the stream function and vorticity
and numerical solutions could only be obtained for Reynolds

numbers up to 400.

To solve the equations numerically relaxation
techniques are applied, reasons for the numerical
instabilities for higher Reynolds numbers are given, and
means of overcoming these are suggested. The superiority
of the explicit time-dependent method, as opposed to the’
implicit, with respect to computing time for this
particular problem is pointed out. A stability analysis
for the computational procedure is carried out for both
the implicit and explicit method. An expression is
derived for the maximum allowable time step for the
explicit method. It is also shown that the implicit method
is stable for all time steps, Reynolds numbers and mesh

size. In both cases the analysis is extended to include

iii



all non-linear terms in the equations. The explicit
method is then used to obtain solutions for Reynolds

numbers up to 2000.

In order to obtain numerical solutions for the
three~dimensional case, the problem must be formulated in
terms of the velocities and pressure. The difficulties
associated with this have not been analysed in the past.
It is pointed out that, in solving the Navier-Stokes
equations in terms of the velocities and pressure, use of
the straightforward method of the 5-point difference
formulation does not insure that the continuity equation
will be satisfied at future times. Reasons for these
discrepancies are derived and it is shown that, in order
to overcome these errors in the continuity equation, the
Navier-Stokes equations must be written in a special form
and the Marker-In-Cell method must be'applied for

numerical computation.

Finally, it having been established that solutions can
be obtained in terms of velocities and pressures in the
two-dimensional case, the numerical solution for the
three-dimensional time-dependent fluid flow in a rectangular
basin is consic¢ered. The FORTRAN IV computer program for

this is included as an appendix.
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CHAPTER I

INTRODUCTION

Although the basic equations governing the flow of
viscous incompressible fluids have been known for more than
a century (see early references in Rosenhead 1963), the
analytic difficulties of this fourth-order system, and
particularly the fact that the equations are strongly

~non-linear, have prevented the discovery of any truly
general method of solution. Those exact solutions as are
known correspond either to very simple geometries or to

limiting values of the parameters involved.

No detailed discussion of the general properties of
the equations or of the various methods of obtaining
approximate solutions, will be given here. This subject
has been amply and lucidly treated in many standard
references (see, for example, Rosenhead 1963; Schlichting
1968). The fact remains, however, that in spite of many
significant developments, the solutions to a large class

of problems are still unavailable.




The recent availability of large-scale digital
computers should make it possible to éolve many problems
by a direct numerical process. The numerical solution to
these problems should be helpful in the understanding of
the nature of the solutions of the Navier-Stokes equations.
One of the leaders in this field (Goldstein 1960, page 132)
has said:

"As the Reynolds number increases, there
are considerable difficulties associated
even with the numerical computation; if
sufficient effort were available, these
might, by no means, prove insuperable.
At present, the number of numerical
solutions available is still regrettably
small. Such numerical solutions would
not, by themselves, give us the
mathematical insight we should like
into the nature of the information
contained in the Navier-Stokes equations;
but it would be helpful to have a large
number of such solutions, especially if
they were presented in an easily
assimilable form, say graphically and

with the aid of cinematograph film."



Although serious work on such numerical solutions
began some years ago (see references in Thom and Apelt 1961),
it is only within the past decade that significant progress
has been made, and, even today, there are many difficulties
associated with the attempt to formulate any general approach

to such problems.

It is the purpose of the present thesis to examine in
some detail a relatively simple class of fluid flow problems,
namely those occuring in closed regions, and to outline

methods by which many of these difficulties may be overcome.

1.1 The Choice of Problem

The treatment of fluid flow problems involving a wake
region, or more generally any fluid flow past and around a
bluff obstacle, involves great difficulties ultimately
associated with the instability of the flow, the asymmetric
shedding of vortices behind the obstacle, and the resulting
highly complicated nature of the wake region. Such problems,
of course, have recently been the subject of keen interest
(Fromm 1963). However, problems not involving such a wake
region are still of interest and importance and many aspects
of the solutions are as yet not completely understood. For
example, convergence and stability of the numerical procedure
itself has been obtained only recently for other than

relatively low Reynolds numbers (Kawaguti 1961; Burggraf 1966;



Pearson 1967, for Reynolds numbers of up to 64, 400 and
1500 respectively), and, in any case, examination is
warranted to determine an efficient numerical process
for finding the solutions for these and higher Reynolds

numbers.

The particular problem of two-dimensional flow in a
closed rectangular cavity, driven for example by a shear
force on the top surface, not only exhibits these
difficulties while avoiding the involvement of a wake
region, but has the additional advantage of having been
studied experimentally for a relatively large range of
Reynolds numbers (Mills 1965; Pan and Acrivos 1967, for

up to 1000 and 4000 respectively).

This problem also is interesting in that, conceptually,
it would seem that an extension to the corresponding
three-dimensional problem would be reasonably
straightforward. Analytically, however, this is not the
case, because the relatively simple formulation available
for two-dimensional problems does not extend to the
three-dimensional case. In two dimensions, the problem
may be formulated in terms of the scalar "Stream Function",
and a set of two second-order equations can be used, the
only difficulty being involved with stability for high

Reynolds numbers and overall computer time. For three



dimensions, however, such a formulation is no longer
available and the govering equations must be written
directly in terms of velocity components. If, however,
this velocity formulation is used in the two-dimensional
problem, one encounters new difficulties. In particular,
the velocities calculated for the next time increment
will not satisfy the continuity equation and thus,
violating the condition that the fluid remains

incompressible in time.

The above three reasons would, therefore, seem to
indicate that a contribution to our understanding of such
flow problems can be made by studying the flow in a two or
three-dimensional cavity driven at a uniform speed by such

a shear force.

1.2 The Governing Egquations

The derivation of the equations of motion of a
compressible fluid is given in detail in Schlichting (1968,
chapter III and IV.) Here we shall simply state the results
for the case of two-dimensional, non-steady, incompressible
flow in the x,y-plane and proceed to put these equations in

non-dimensional form.



The equations are (Schlichting, p. 63):

E)A o 1 .
— 4+ V,VV =VP = vV2V
2t - - o -
and
V.V = 0
where
"V = (u,v),

the velocity vector with components u in the x-direction

and v in the y-direction.

P is the pressure

X Y
2 2

v2  is == 2
ax2  ay?

p is the density

To put equation (1.1) in a non-dimensional form, we define

the new variables

* = =X * = i
X a ! ¥ a
P* = P_—— ' t* = l—t-['—]

pU2 a
vV* = ¥' ’ v* = avVv
- U

where
a is some standard reference length, in our

case, it will be the width of the cavity.

U is the free-stream velocity



Substituting into equation (1.1), we obtain:

U-z- o + u.?: vk VkV* + Uz.p. y*pk = N.g y2%y*

2
Finally we divide through by g— and drop the superscripts
*, this will give the equation in non-dimensional form

+ V.9V + VP = = V2V =

2
gz V2L v2v (1.2)

[+%] QQ
e
o=

R is known as the Reynolds number and can be interpreted as

the ratio

Inertial Force _ Ua

R = Friction Force v

An alternative formulation of (1.2) can be obtained

using the so-called "Stream Function" v, defined by

which, when substituted into (1.2), will give

ay2y _ 3(v,v3¥) _ 1y
Y T y) SVhY. (L.3)

Let us now introduce the vector of vorticity defined

by

w=Vx_\_7_

which, for two-dimensional flow, reduces to
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m:éﬁﬁ

which reduces, when substituting for u and v, to
Vzu) = =W

Substituting into (1.3), one obtains

[iV]
3 (er)

o)lcu
ctie
|
E
]
ol [
<1
[
€

(1.4)

(1.5)

Equation (1.5) combined with (1.4), describes the motion

of fluid flow with respect to the stream function and vorticity.

1.3 The Finite Difference Equations

The subject of finite difference is amply treated in

various references (e.g. Hartree 1958, chapter IV). Here

we shall only write down the necessary equations for use

in this thesis.

To begin with, when a function £ is continuous,

single-valued and has continuous derivatives,we can expand

this function in terms of a Taylor series as:

f(x+h) = £(x) + hf'(x) +

NI

and also

f(x~h) = £(x) - hf'(x) +

NI

h2f'"(x) + % h3Em 4+ 0(hY)

(1.4)

h2f' (x) - % h3£'' 7+ 0(h%) (1.5)



Subtracting (l1.5) from (1.4), and rearranging results in

£' (x) = Exth) o £Le=h) 4 g (n2) (1.6)

Adding equation (1.4) and (1.5) gives-
£ (x+h) + £(x=h) = 2£(x) + h2f''(x) + 0(h%)
from this we obtain

f"(x) - f (x+h) = Zflz(x) + f(x-h) + O(hz) (1.7)

Equations (1.6) and (1.7) are central difference
approximations to the first and second order differential
terms with truncation error of order h2. £'(x) can also be

approximated with a forward difference, that is from (1.4)

f (x+h) - £(x)
h

£ (x) = + 0(h). (1.8)

Throughout the thesis, these formulations of finite
differences will be used. We now only need to show the grid

configuration used for two-dimensional problems, namely

h
*(i,j+l)

(i,3) +(i+l,j)

T

i,j-1)

(i-1,3)
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and, therefore, using (1.7), we have, for example, for

P + Py sy * Py + P,

l+1'j l_l,j
h2

o - 4 P, .
v2p = —sudtl el 4+ 0(h?).

(1.8)

To apply finite difference approximation to the square
cavity, we divide it into a total of MxN square cells of

size

o2
]
R
]
2

The quantities i and j in (1.8) range from 0 to M and 0 to
N respectively. Now it is true that, in order to achieve
higher accuracy to the differential equation, either a
better difference approximation (see Hartree 1958, chapter
IV) must be used and/or M and N must be made sufficiently
large. In this thesis, the results to be established need

only use the above difference formulations.

1.4 Summary of the Thesis

In chapter II, the various methods that have been used
to solve two-dimensional problems in terms of the stream
function formulation, are reviewed and examined. The reasons
that instabilities result from particular numerical
procedures are pointed out, and suggestions are made on how

these difficulties may be overcome. In particular,
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similarities between the methods used, to solve
time-dependent and steady-state problems, are examined

in detail.

In chapter III is presented a new analysis of
stability of the explicit time-dependent equation and,
for completeness, an analysis of the corresponding

implicit method is also presented.

In chapter IV are presented the results of
experimental computer runs, designed to test and verify
the predictions of chapter III. In addition, the methods
thereby found to be most efficient are used to solve
for a large range of Reynolds numbers (up to R=2000) the
simple two-dimensional problem. A discussion of the degree
of fineness of the grid necessary for accurate solutions

is also included.

The study of the formulation in terms of velocity
components begins in chapter Vv, with an examination of
the reasons why the continuity equation will not be

satisfied if straightforward methods are applied.

Chapter VI is devoted to a new formulation in terms
of the velocity and pressure, which allows the velocities
to be calculated in such a way that the continuity
condition remains satisfied throughout time. The

inconsistencies found in chapter V for the straightforward
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method are found no longer to occur.

In chapter VII, the same formulation that is proven
successful for two-dimensional problems is applied to
the three-dimensional time-dependent case. It is
established that the only further difficulties encountered
are those implied by computer size and time required for
solutions. The computer program, written in FORTRAN 1V,

for the three-dimensional case is presented as an appendix.



CHAPTER II
STEADY-STATE FLOW IN RECTANGULAR CAVITIES

This chapter deals with the numerical solution for the
steady-state two-dimensional flow in a rectangular cavity,
driven by a uniform velocity (say, a moving belt) on the
upper boundary. The problem has been studied numerically by
Kawaguti (1961) and by Burggraf (1966), who obtained
solutions for Reynolds numbers up to 64 and 400 respectively.
Convergence could not be obtained for larger values.
Experimental studies of this problem have also been carried

out (Pan and Acrivos 1967) for Reynolds numbers up to 4000.

In this chapter, we review the methods used by the
above and the results obtained. Also, we argue that
instabilities had to occur for high Reynolds numbers for the

methods that were used.

2.1 Formulation

We consider a fixed square cavity described by 0<x<1,
O<y<l. On the top surface we impose a constant tangential
velocity of unity to the right; all other tangential and

normal velocities are set equal to zero.

13
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The boundary conditions for the non-dimensional

Navier-Stokes equations are then:

wy(x,l) =1 , wx(x,l) =0

wy(x,O) = wx(x,O) =0 (2.1a)
v (0,y) = wy(o,y) = 0

by (Lry) = ¥ (1,y) =0 (2.1b)

Pictorially, this is represented by Figure 2.l.

U’xr ¢y=0

Figure 2.1 Boundary Conditions

For completeness, we repeat here the two-dimensional
Navier-Stokes equations (Schlichting 1968) for an
incompressible fluid restricted to steady-state flow. They
are in non-dimensional form,

V2 = =R dlv,u) (2.2)
3 (x,y)

Vzw = = (2-3)
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Here and elsewhere, w and y are the familiar

non-dimensional vorticity and stream function respectively,

and R is the non-dimensional Reynolds number.

2.2 Finite Difference Approximation and Computation

The usual way (Thom and Apelt 1961, p. 124 ff.) to
solve equations (2.2) and (2.3) is to represent them in a
finite difference form and solve the two sets of equations
by some relaxation process. The difference approximation
and notation used, was established in chapter I. We begin

by replacing (2.2) and (2.3) by

i 541 T 94,5-1 F viel,3 T Ci-1,3 7 4 vy 3
— R - . 0
= - 7 |WVi+1,3 ~ “’i-l,j) (wl,j+l - ml,]-l)
- (¢i,j+l = \Pi,j—l) (“’i+1,j - ""i-l,j)]‘ (2.4)
- . s 2 . a = .
bigen * Vi, ge1 Va3 T YL T e TR s 70
(2.5)

9
For equation (2.5), we know both ¢y and 3%, the
derivative of ¢ normal to the boundary, at all points on
the boundary. Only one of these conditions can be imposed

on (2.5) without over—-determining the solution.
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The solution is obtgined more quickly, and the problem
is simpler to formulate (Forsythe and Wasow 1960} p. 376),
if Dirichlet conditions (y specified on the boundaries) are
used. The known values of y, cannot, of course, be ignored,
but are incorporated into the solution of (2.4). To specify
boundary conditions for w, one resorts (Thom and Apelt 1961,
p. 125) to a Taylor expansion at the boundary. We illustrate

this for the left wall.

wall
j+1
(1,3)
J
j=-1
=0 1 2

Let us represent vy by a Taylor series around the

1,3
boundary points (0,3)

. = . 3y h2 (22¢ 3 2
v1,5 = V0,3 —h(;;{ + 3 (ax2>_ + 0(h?). (2.6)
, i= i=0
E L
But, by the given boundary condition
&
— =0
9%/ i=0
and, since U . = 0 then on the left wall, using

0,3




2
v2y = =w and GL%Q
0¥/ i=0
we have

A
x2 :
i=0

Substituting this into (2.6), we obtain

-2
nz V1,30

“0,3

Similarly for the right wall

w = =2 ]
M,J h2 'M-1,j

for the bottom wall

= =2
“;,0° pz Yi,1°
and for the top wall
- =2 _ 2
“y N~ Th p2 ViN-1C

For maximum speed of convergence, successive

overrelaxation (Young 1954 ) is ordinarily used. To apply

this, we rewrite the finite difference equations as



St ﬁ[mg,jﬂ e R - w’i‘,j]
¥ %%[(‘”iu,j - ‘pi-l,j)(wll:-l,j"'l - oDia
- (‘Pi,j+1 - wi,j-l)("2+l,j - “’?ii,j)] (2.8)
and

n+l n al n n+l n n+l
e = . .+ =Y. i A , . .
"’1.3 "’1,3 4[“’1,J+1 + Ip1,3-1 + ‘p1+l,3 *t¥i-1,3

n
-4y + h? w;"j] (2.9)

where a is the relaxation factor and n indicates the

particular stage of the iteration procedure.

In the relaxation process, the error of the current
approximation of the function to be solved at a grid point
is calculated and the old value of the function then is
changed in proportion to this error. In many cases, it is
desirable to make this change larger than actually required,
to ligquidate the error (residual) at each point. It is said
that we "over-relax" the error and, in this case, a>l. For

a<l, the term under-relaxation is applied.

Whenever the new values of the function w or y are

used as soon as they become available in the iteration
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procedure, and if a»l, we have "successiyve" overrelaxation,
If the field is swept completely, using only values of the
function from the previously completed sweep, we have

"simulteneous" relaxation.

The speed of convergence to the solution depends on
the size of the relaxation factor. Naturally enough, since
it so directly controls the speed of convergence, the
optimum size of this relaxation factor o has been the
subject of much investigation. As usual, however, such
explicit and complete answers as exist, are for linear
problems. For the two-dimensional Laplace equation in
rectangular coordinates, for example, the situation is
understood fairly well; Frankel (1950) showed that, as
the number of grid points, given by M and N increases,

the optimum value of o behaves like

1
2r | 1 1 {2
o"Opt > 2 - ./—-2'[1\?2- + 13-2-] . (2.10)

For non-linear equations, especially for the Navier-Stokes
equations, only slight progress has been made; generally
higher Reynolds numbers require smaller values of a. A
detailed discussion is given later in this chapter and in

chapter III.

In the computational procedure, equations (2.8) and
(2.9) are coupled together by the boundary conditions for

the vorticity equation. Each equation is iterated until
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the sum of the residuals at each point is within a
specified tolerance. The stream function is then

substituted into the difference approximation for

3 (y,v2
V4yp = =R %—;—“’-’- X (2.11)

and the sum of the absolute values of the residuals of the
finite difference equation to (2.11) at each point is taken
as a means to test the convergence of the difference form

of the Navier-Stokes equation for the steady state.
The total residual is given by

M-1 N-1

Res = ZZ |Resi’j| (2.12)

i= 1 j=l

and, whenever Res becomes less than some preset tolerance,
computation is stopped and the values of ¢ and w so far

obtained, are taken as the steady state solution.

A single application whereby each of the separate
second-order equations is solved in turn by successive
overrelaxation, and the substitution of the stream function
into the difference form of the fourth order equation, is
referred to as a "flip-flop". This is indicated by the loop

in the flowchart.



Floychart for Flip-Flop Method

Set all values

of lbi’j and wi’j

equal to zero

:l

Solve (2.8) for the

new vorticity values

using the boundary

conditions (2.7)

1

Use the new vorticity values
and the given boundary
conditions to solve
equation (2.9) for the

new stream function

|

Substitute the obtained stream
function into difference

approximation for (2.11)

Calculate boundary
values for the

vorticity equation
(2.8), use a

smoothing factor

Res Tolerance

Stop Computation

21
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2.3’Discu5510n'bf'Experimental'RESults

In examining the computational procedure, we must

consider separately two different convergence problens:

(1) Convergence of the successive
overrelaxation method for each

second order equation:

(2) Convergence of the flip-flop

method.

The linear Poisson equation presents no problem;
however, for the non-linear equation, the relaxation
factor must be reduced for larger Reynolds numbers
(Burggraf 1966). For example, it was found by experiments

that convergence can be achieved for
R = 10.0 a = 1.65
R = 90.0 o = 1.45

Tt is not possible to predict theoretically the

relaxation factor for higher Reynolds numbersl.

———————————————-————-————.——-————-——-————q———————————-————————

1 .
This is true for the successive overrelaxation method. A
theoretical analysis to predict a for the simulteneous

relaxation will be shown in chapter III.
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The values must be obtained experimentally. One way of
obtaining o for large R and assuring convergence, is to
assume a value of d, say 1.5, and then reduce « during

the iteration as required.

The effectiveness of this method is known to be
improved by limiting the number of times the o field is
iterated ("swept"), rather than continuing to sweep until
some tolerance is reached before considering the other
equation. Mills (1965) pointed out that for R=100, a
numerical solution can be successfully obtained if the w
field is only swept twice for each flip-flop. In fact, one
can show that the solution will invariably diverge for
large R if (2.8) is swept too many times at each time step;
the eigenvalues of the iteration matrix increase with R and

¢ 3

This problem need not arise with the linear Poisson
equation (2.9), the convergence of which depends only on the
mesh size and relaxation factor. In fact, it is often
profitable in practice to sweep (2.8) exactly once and (2.9)
many times for each flip-flop. The (divergent) iteration
matrix of (2.8) is then made part of a product with several
corresponding matrices of (2.9), and the eigenvalues of the
result are kept safely less than unity, while a
reasonably-sized relaxation factor for (2.8) may still be

used.
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To avoid instabilities in the flip-flop, it is
necessary to introduce a smoothing parameter SO that the
new values of the vorticity at the k+1 first flip~flop are

taken to be weighted averages of the kth flip-flop and the

values obtained from (2.7).

It is found, when using the boundary values (2.7)
without smoothing, oscillation of the vorticity on the
boundary occurs. This results in the divergence of the
f£1ip-flop method. Thus, if the xth f1ip-flop has just
been completed the new vorticity boundary values, say for

the left wall, are:
k+1 k -2 k k
. = .+ == , - . 2.13
wor'.] worj s[thllj worj] ( )

where S represents the smoothing factor. Similarly, it is
found that for Reynolds numbers greater than 50, all

values of y must be smoothened from one flip-flop to the

3
other. Usually, something of the order of p of the old value
of ¢y and % of the new is used in the computation of the
vorticity equation (Pearson 1965). Some typical values

for various Reynolds numbers are shown in Table 2.1.
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Table 2.1

Reynolds Numbers and Smoothing Factors for
20x20 grid, h=.05

Reynolds Smoothing
Numbexr Factor
60 .04
80- .03
100 .02
120 .01
140 .01

For each case shown in Table 2.1, increasing the
smoothing factor by .01 resulted in divergence of the
flip-flop, although the iteration procedure for the
non-linear Poisson equation converged. Maximum speed of
convergence is achieved by using the largest smoothing

factor possible.

2.4 Convergence of the Tteration Method

It is possible to present an analysis for the single
second-order egquation in terms of a so-called vjteration”
matrix. Any successive approximation scheme of this kind
may be represented by considering the unknown variables

as components of a vector, and the algorithm as a matrix
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multiplying this vector. Thus, we could write
Ap = £

where A is a matrix (Fox 1962) and ¢ is a vector of the
unknown values of y or w and f represents the boundary

values.

(n)

The error after n steps, say e = ¢_¢(n) will then

satisfy the equation.

e(n+l) ne(n)

= C

where C is a matrix which will depend on A and f£.

Convergence is assured if the absolute value or
modulus of each eigenvalue of the matrix is less than
unity. Let us now show how such an analysis applies to our

problem.
As an illustration, let us write eqguation (2.4) as

. . . - PR
0 341 2,5 t i,3-1 Pi,3 T viel,3 G137 Yi-1,3 i3

- 4 w s : = 0 (2.14)

where
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[}
[}

[

+

R -
i,3 2("’1+1,j - “’i-l,j)
— _R -
Pij,j =1 Z(?i+1,j wi-l,j)
_, _R _
c;,5 =1 Z(wi,j+l Vi,5-1

= R -
dj,y =1 7 4("’1,j+1 l"i,j-l)

The grid is represented by Figure 2.2,

0’4 1'4 2,4 3'4 4'4
0,3 1,3 2,3 3,3 4,3
0,2 1,2 2,2 3,2 4,2
0,1 l,l 2,]- 3Il 471
0,0 1,0 2,0 3,0 4,0

Figure 2.2
4x4 Sample Grid

The equations to describe all points are given in (2.15).
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In order to obtain the largest eigenvalue for the

successive overrelaxation method, equation (2.16) must be

put into the form of (2.8).

Let us partition (Young 1954; Fox 1962) the matrix A

as follows (the following, in fact, holds for the NxN case).
A=B~-L-10U

where
B is a diagonal matrix
L is a lower triangular matrix

U is an upper triangular matrix

then

(B-L-U) w = £

or

Rearranging (2.14), we have

n+l n+1 n n = 4 o
wj 5-1Pi,5 * ©i-1,5%,5 * 91,3+41%1,5 T ©1i+1,3%,3 “i,5
N \‘—“”"’"’\v’“ﬂ—--/}

generates -L generates -U gives B
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This set of equations in matrix form is

an+l = Lwn+1 4+ Ul + £

where n indicates the stage of the iteration procedure.

Therefore,
oI+l = ~1l(zentl + U + £)

To get this into the form of (2.8), add and subtract ol
on the right hand side, incorporating the relaxation

factor, we then have
mn+l = u)n + o [B—l(Lwn+l + an + £f) - wn] (2.17)

(2.17) is the matrix form for the vorticity equation (2.8).

Rearrangement of (2.17) gives
n+1 1.1 -1 n, -1
w = [I—aB L] [(l—on) I+aB U ] w +oB (2.18)

where I is a unit matrix.
Define the error after n+l iterations as

e T =W = wo (2.19)

where w, is the steady state solution. Substitution of

(2.19) into (2.18) gives

en+l = [I-aB-lL] [ (1-a) I+(1B-1U] en (2.20)
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The criteria for convergence of the iteration

procedure is that the modulus of the largest eigenvalue of

-1
[I—aB_lL] [ (1-a) I+aB"1U]

must be less than unity.

For grids of sizes of approximately up to 10x10, the
eigenvalues of the iteration matrix can be calculated
directly, using existing computer programs. For larger
grids, one cannot calculate the eigenvalues directly, unless
a very large computer is available; and even this has its
1imit. Since only the largest eigenvalue is required to
establish convergence or not, the following process

(Fox 1964) may be used for larger grids.

Pick any arbitrary vector

o

It is known that, if the eigenvalues are distinct,
the corresponding eigenvectors form a complete system, that

is, for any vector w
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w = Clml + 02w2 + eee e + Ckwk

where the mi's are the eigenvectors and the c's are

constants. Let us multiply both sides by the matrix A;

then

Now, if lx1|>|xi| for i=2,3...k, then as n»«
n n
A v Cl)\l wl

If we take successive ratios, we have

+ n+l
altl, eida Ten | \
n n
Aw clklml

This method was used to obtain the largest eigenvalue
for a 10x10 grid. It was found that for a 20x2C grid, the
largest eigenvalue was complex. Figure 2.3 gives the
relationship between the relaxation factor used and the

corresponding maximum eigenvalue.



34

0-¢ 8-

1-:0=Y 40} senjpausbiz ¢.g ainbiy
~0 10}9D4 UOIJDXD|8Y

9l v

¢l Ol 80 9-:0

T J T 0o
/7/7'</XVYN 404 376V1S

10t

UOIDXD|8) SNOBUDYNWIS
UOLDXD|LIBAD BAISS800NG — — == -0-G




Relaxation Factor o

20

o)

35

- ——«=Simultaneous Overrelaxation
Successive Relaxation

UNSTABLE REGION

STABLE REGION

0

| | i
100 200 300 400
Reynolds Numbers
Figure 2-4 Stability Region for h=-1



For the simultaneous relaxation method (Fox 1962),
using similar arguments; we obtain e+l = B~1l(1tU)e™
and again for convergence the modulus of the largest
eigenvalue of B-l(L+U) must be less than unity. In all
cases, the relaxation factor for the simultaneous

relaxation method must be a:}.

Figure 2.4 shows the stability region of the
iteration processes for a 10x10 grid versus Reynolds

numbers.

2.5 The Time-Dependent Equation

The problem may also be solved by finding the

steady-state solution of the time-dependent equations

)
€
@

= (wlw) + %{Vzw (2.213-)

B(XIY)

Q
ot

and

W2y = -u (2.21b)

where the boundary conditions are those given earlier in

this chapter, and the initial conditions are
v =w =20 in 0<x<l t<0 (2.22)

Once the steady-state solution has been reached, the

system (2.21) should have the same solution as the probiem
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studied earlier in the chapter; here we simply wish to

point out similarities between the two approaches.

To begin with, the stability of the linear case of

(2.21la), namely

is well understood. For example, it is known (see e.qg.

Richtmyer and Morton 1967, p. 189) that stability will be

assured if

t
h2

>

1 .
g (2.23)

)

this is for the simplest explicit finite difference equation.
Other forms can be devised, including explicit forms forms
(DuFort and Frankel 1953), which have better stability
properties than the straight forward method, however, it

was recognized by DuFort and Frankel themselves, and pointed
out by Pearson (1965) experimentally, that the truncation
error is larger for this method than for the simple explicit

form.

The non-linear explicit time-dependent difference
equation of the simplest kind is equivalent to the simulteneous
relaxation form of the steady-state problem. FoOX (2.21a), the

simplest formulation is



38

Jerat At t + oF t t
i,3 i3 Yz | ei,54 Toes, -t vien, g T CinL,g

t t t
+ - -
4h2 [(wl-*-l,j lpi-l,Q (mi,j'*'l mirj“l)
(5,50 -
wi'j+1_ ,] ( l+l,j l—l ;) (2.24)

while for the steady-state problem, for simultaneous
relaxation, one writes

n
mi"llj

n
- “’i,j]
g _ n _ n
* 16 [(“’i+1,j wi—l,')@i,kj+l ‘*’i,j-l)
- - n _ ..n
(pi,j+1 ‘”i,j-l) (ni+l,j “’i-l,j)] (2.25)

The stability criteria for the two equations are, of

n+l

- I:l . o n n n
“i, T %1,3 7 4[“i,j+1 MR VS S U B O B

course, idential if, and only if,

AL =
ha

a
4
For small Reynolds numbers (2.23) infers that we are
limited by a<l for the stability of the steady-state

problem, if simultaneous relaxation is to be used;

simultaneous overrelaxation is inherently unstable.
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For larger Reynolds numbers, stability of the time
dependent equations can also be analysed for both explicit

and implicit formulation, and it is the subject of the

next chapter.



CHAPTER III

STABILITY ANALYSIS OF THE EXPLICIT
TWO-DIMENSIONAL TIME-DEPENDENT

NAVIER-STOKES EQUATION.

In the past, only the linear case of the
time-dependent Navier-Stokes equations, that is to say,
the case in which the convection terms are omitted, has
been subjected to a strict convergence analysis. As we
pointed out in the previous chapter, for that case the

stability criteria is

t
h2

>

<

el
e L

For the nonlinear case, Thom and Apelt (1961, p. 136)
have obtained a criteria for convergence, based on the
"mesh Reynolds number", which indicates the size of the

mesh required for convergence (see chapter IV).

For explicit limitations on the size of the time
step, however, the pest available criteria seems to be
that of Fromm (1963). His requirement, in summary, is

that

40
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Rh2
At < minimum [=—, - h
- 4" Jul + |v]

and is derived from an argument, similar to that beginning
this chapter. It is our purpose to examine this criteria

in more detail. We will find a limitation for the time step
for the explicit method at any stage of the problem. This
will lead to a method whereby the computer can be programmed

to adjust its own time step in a highly efficient way.

For completeness, we include a summary of the
demonstration that an appropriate implicit time-dependent
method is stable in the present context, for all values of
the time step; however, we shall show in chapter IV that
this is not necessarily the most important criteria for

practical problem—-solving on available machines.

3.1 Stability Analysis of the Explicit Form

Let us write the finite difference equation of the

explicit two-dimensional vorticity equation as:

At
= — . . s . .+ . = 4w, o
“i,3 “i,5 + ha[;l,j+l + ®i,3-1 + R wi-1,3 ®5,3

"Ltv w - W 2 +u-.<w. . = W j
oh!| 'i,3 i,j+l i,j-1 i,J i+l1l,3 1—1,3-

(3.1)
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where v, . = :l-.@, -
i,3 2h\'i+l,j i-1,3

L= 4( -
ulrj 2h wilj"'l wirj"l

and the time t is to be understood when no superscript is

written.

The stability of this scheme will be analysed by a
procedure very similar to that used by O'Brien, Hyman,

and Kaplan (1951) and Fromm (1963) .

We assume that there exists an error at each point,

defined by

where wg 5 is some reference level of the vorticity which
14

can be taken as the steady-state solution.

Substituting into equation (3.1), we have:

t+At _ _A_E_ ) ' o he.
€5,5 - %i,3 ' mm? [Ei,j+l + e 4-1 7 fi+l,] + €51, 51,;]

At - €. .
) fﬁ["i,j (Ei.j+1 B ei,j—JL) Ml % (€i+1.j 51—1,3)]

(3.2)
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The error on the boundary is zero and we may thus
expand the error difference equation in a finite double
series of orthogonal functions. The choice of frequencies
of the harmonics must be such that the sum reduces to the

correct boundary conditions. Let us choose

M-1 N-1 . .
T EorneKklleKkzj
p.—-‘ q:
where
(2p+1)
1= =2z
k,= (23;l)n

r is the "growth factor" of the error n is the number of

time steps,e0 is some reference level, may be taken as one,

« is /=1
Substituting into equation (3.2), examining each term in

the series, and dividing through by
rneKklleKkzj

€0

one obtains

kk -kk kk -k

2 2 1 1

r =1 + At [e + e + e + e - 4]
2

Rh

- -kk
L (eKk2 - e Kkz) +u, . (eKkl -e " 1)
2h i,J i, .
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Kkl -'pKkl
Now cos k; = R ;.e‘ -
kki kki

sin ky = 2 -2-Ke

so that
r=1+21]2cos x, + 2 x, - 4
Eﬁi CcOSs 2 cOos 1

- 53_[2 Vi,j sin k2 + 2 ui,j sin kl]
which becomes

k k
r=l-§Ltsin2—l+sin2—2-
Rh? 2 2

- 'K_ﬁz[vi,j sin kp + uj g sin kl] (3.3)

This is a complex number and the condition for
convergence requires that the modulus of r be less than

unity. So we insist that

2
/ k k
12 = _ At el in2-2
1>|r|? = \ Hz|sin* 3 + sin 2]
At 2
+IT-[V, 51nk2+ui,J 51nkl] '2_0
or 2
1642 , K1 ., k2
lll S7TRE <s:Ln _E + sin —E
k k
Rh? 2 2
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Let a = sinz—-]2= + sin2—§ (3.4)
and b=v. .sin k. +u, . sin k (3.5)
J i,3

then the above requirement is simply that

r) a 0

2 Lo
1>|xr|2 =1+ 160t o _ 8AL , , (AE) p250
- R2h" Rh? h -
The right hand inequality is trivially satisfied; the only

requirement is then that

At 1

<
Rh2 — R2h2b2
2a + ha

(3.6)

[The linear criteria is easily recaptured if we set b=0,

however, this will be improved upon in a moment. ]

Our problem is now to find a theoretical minimum. As it
turns out, this will be too strict in the sense that this
minimum is not actually attained anywhere in the grid, and

that in practice, At need not be chosen quite this small.

We assume that the convection velocity at any one grid \

point is fixed

(i’j) i’j
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and set u. . = u cosh

u sins®

<
1l

substituting into (3.5), we obtain

b = u (sin® sin k2 + cos6 sin kl)

At 1

<
Rh2 — R2h2u?c?
2a + B8a

thus {3.7)

where

c = siné sin k2 + cosb sin kl

The problem now is to minimize, since this will give
us maximum At allowable, the right hand side of (3.7) over

kl' k2 and 6 as a function of R, u and h.

2h212a2
We let Q = 2a + B_Q_ég-—-c—- (3.8)
a

and for maximum Q, the three necessary conditions are:

22112 ~2 212922
-3—Q= 1__R_b;—u—q—sinkl+g_b‘_2—g—-cosecoskl=0
Bkl 16a2 4a
(3.9)
R2h2u?c?
4a

212412 ~2
59 = [l - R7h7u'c sin® cos kp = 0

Tea? ]sin ko +

(3.10)
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3Q _ R2h2u?c? . . .
38 = =0 cosb sin k2 - sind sin kl =0 (3.11)

Equation (3.11) implies that

ok
sin *2
tane =
sin k) (3.12)
or c =0 ;

However, ¢ = 0 would imply that sin kl = sin k2 =0

giving a maximum value of Q = 4.
This is a maximum for the linear case.
Equations (3.9) and (3.10) combined give rise to

(3.13)

Since both (3.12) and (3.13) must hold, we infer that
o
cos kl = cos k2 and, therefore, 6 = 45° or 225 .
o
Ssimilarly, we may have k; = 21 = ky which gives 6 = 135
or 315°.

This indicates that the maximum value of Q will occur
at velocities with direction of 45° in any one of the four

gquadrants. With no loss in generality, we may consider

o
p = 45 and kl = k2
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Now we have

k k R2h2u? (sine sink + cosp sin k )2
2 |sin2-& —2]4- : : _ 1

= - + in? 2
Q 3 s5in > g - k”‘ v
8 (sin'Z‘__l_ + Sin'z_2)
2 2
which can be reduced to
k R2h2u?2 sin?k
0 =4 sin2—= + 1
2 .k
8 sinz—l
2
or 212192 2k1 kl
R2h2u2 4 sin —-zcos2 k
0=4+ 2 _ 4cos?-1
kq 2
8 sin? =
Therefore,
2h2,2 k
0 =4 +[§ 2 I %cosz—% (3.14)

Equation (3.14) shows that the maximum value of Q is

4 if R2h2u2 < 8

max R2h2u2

2

if R2h2u? > 8.

In terms of At, sufficient stability criteria for the

explicit equation (3.1) are, therefore,

At < 1 : R2h2u2 < 8 (3.15)
Rh2 4
At < 2 . 21212
=7 - ®wtaz | * h*u® > 8 (3-16)
1
> 4+ w2 . |? for | | = |v, .|

: ; 2 u, .| = v, .

where u is the maximum|vy . + Uj or 1%4,4 i,3

for all mesh points (i,3J).
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In practice; the maximum yvelocity u may not occur at
a 45° inclined to the horizontal axis. Therefore, using
equation (3.16) may result in a smaller time step than it
is actually necessary to use. A way to get around this is
to maximize Q only with respect to kl’ k2 and not 8. In this
case, we have ui,j and Vi,j in the equation for Q and, thus,
for maximum Q, the conditions are:

30 kq kq R2h?2 2abu:.LL_.l cosk

s 1
- = 2 sin-—= cos—5 + <
ok, 2 2 8 [ a2
) .'kl .kl
_ b 51n—7cos—7 _ o
a2
and
2abv., . cosk
Q-2 sinEz cosEg + thz[ 1,J 2
ak, 2 2 8 L 22
b2 sin—=cos—=
_ 2 2 =0
a2
This will give the relation:
~tan kl= Vi'rj_
tan k u., .
2 i,J
and, therefore, we can calculate k2 from
u- -
k. = tan_l[ XrJ tan k ] (3.17)
2 Vs = 1l
i,]
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Equation (3.17) and (3.6) may be used to obtain the

experimental time step, as this will give, in most cases,

a larger value for At than from

At 2
RhZ — R2h2u?

However, this may be offset by the exﬁra computations
involved to solve for k2 in equation (3.17). In general,
one assumes values for kl and using the velocities at the
grids point to be considered, the value of k2 is calculated.
Tn this fashion, one searches for the maximum Q over all

the grids. More will be said about this in chapter IV.

3.2 Stability Analysis of the Implicit Form

We shall restrict ourselves to the Crank-Nicolson

(1947) method, where each value of the stream function and
t+At_ t
I

vorticity on every mesh point, aside from e

14

is replaced by
(mt + oEFAEY .

1
w . . - 7 . . .
2 lr] llj

The linear case of the implicit method is stable for all
time steps (Richtmyer and Morton 1967, p. 189). Pearson
(1965) used this method and indicated that experiments
have shown it to be stable for the nonlinear case; even
for high Reynolds numbers. Tt is the purpose of this

section to show that the Crank-Nicholson implicit difference
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form of the Navier-Stokes equation is stable for all time

steps and Reynolds numbers.

Let us write equation (3.1) in the implicit

Crank-Nicholson form

o, .= w., ., + M T JErAt
i,) i,] Rh2 i, j+1 i,3 “i+1,5 “i-1,3
t+at t t t t t
. + . s . . . - .
4 ©f,5 Wi, 5+1 + Wi, 5-1 o051, +051,9 4‘”1,]]
_ At <Vt+At ])( t+at Lt _ tHAt
8h j wi 341 T Yi, 341 T ¥i,3-1

- ) ( t+at (mt+At + .t _ trat
r] -1 l] i+1,3 i+1,3 i-1,3

. ;
mi—l,j)] (3.18)

For the stability analysis of this method, we use again

the procedure of O0'Brien, Hyman and Kaplan (1951) .

For convenience of notation replace

(t“,\t + vt ) by 2 V.

i,] i,J] i,]
and ( t+it ut .) by 2 uf .
i,J i,] 1,3

By similar arguments to the ones used for the stability

analysis of the explicit method, we obtain

— At -
r =1+ EEEE[COS kl + cos k2 -4 + r<?os kl + cos k2 4j]

- AE v* sin k, + T u* sin k., + vf . sin k +uf ., sin k
Sh|F Vi3 2 i,3 1 i3 2 i,J
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Solving for r, we f£ind

_ 2At (- » X1 .2 K2y _ Atk (* :
1l Rh2 sin 5 + sin 3) > Vi,j sin k2
* .
+ u, . Sin k])
1,]
(3.19)
2At kl k Atk *
l+———('n2 +-z_Z)+_( :
— si -3 sin 5 >h Vi,j sin k2
+ u’.‘ . sin kl)
1,7
where e = /=1

For equation (3.1) to be stable, we must have the

condition that

Let

lr| < 1.

a = =

k k
28t (in? —% + sin? —22>

Rh?
b=-A-—t- v’f . sin k_ t+ U, ,sink])
2h i,] 2 1,3
_ l-a-xb
then r= 1+atxkb
—a2-bh2~
or r = 1-a2-b2-x2b
1+2a+a2+b?
_52-p2)2 2
thus \rlz = (1 a b ) + (Zb)_

(1+2a+a?+b?)?
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and from this it follows the condition for |r|2<l is
4a(1+2a+a?+b?) > 0 (3.20)

Now a and b2 are always positive for any value of the
forward time step and, therefore, equation (3.20) will
always hold. This implies that the jteration procedure for
the time-dependent vorticity equation in the Crank-Nicolson
finite difference form is stable for all values of At, R
and h. Notice that, although our eguation was in a sense
linearized by substitution of average velocities, the

*

i,5° and would
’

conclusion still holds for arbitrary u;,j and v

appear to be general.



CHAPTER IV

IMPLICIT VERSUS EXPLICIT METHOD AND NUMERICAL

RESULTS

Tt has been shown that the Crank-Nicolson implicit
method is stable for all time steps. It seems natural, in
order to obtain the steady-state solution in the fewest
time steps, this method should be adopted. However, we
have to ask ourselves, does the implicit method save
computing time? This may be the case in some problems
(Pearson 1965), however, it warrants some investigation
for the problem considered here, with respect to computer
time used, solution for higher Reynolds numbers and

accuracy of the method.

4.1 Formulation of the Implicit Method

The implicit finite difference equation can be solved
in several ways. One would be to solve the set of
simultaneous equations by a standard method such as
Gaussian elimination. However, whenever the system of
equations becomes tooO large, one has to revert to iterative

procedures.
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since in chapter III, stability analysis was performed
for the Crank-Nicolgon method, we shall restrict ourselyes

to the latter case.

In order to use the successive overrelaxation

procedure, let us rewrite equation (3.18) as

[ teat . tHAt £+AL t+at ]
©i,3+1 T 9i,5-1 T “i+1,3 T Yi-1,)
At
. . . . + —
i,] 1,3] 2Rh? t £ £ £

|+ oei, 4 T i, towie1,3 T vi-1,5

_ t+At (t+At ot _ trat
8h Ji 1,3 541 T 01,941 T %i,3-1

_ t+At t+at , t - ErAt
,3 -1 ,3 Yi+1,3 i+l, 3 i-1,7

t
- mi_1’j>] (4.1)

where
_ 1
s = — 5 ‘
1+ —
. t+At . . he
In the process of solving for wy 5 all terms involving t

superscript t, v§+§t and u: gt are known. 1t was pointed out
14

in the beginning of chapter II, that for the successive

overrelaxation method, values on the grid are used in the

iteration process as soon as they become available.
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To express this in notational form, a superscript n or n+l
must be added to the vorticity terms involying t+At; For
simplification of the notation; whenever the superscript

with respect to time is missing, t+at is to be understood,

that is
mn+1 _ m(t+At), n+l
i, 3 7 Ti.3
n _  {(t+at),n
“i,3 T “i,3
. . t+At . .
Adding and subtracting wj i on the right hand side
r

of (4.1), incorporating a relaxation factor and dropping
all superscript t+at on the vorticity terms, we have for

the iteration procedure:

n+l n | t 1.n
. . = . .+ . . - .
wllj wll] as{élrj B wlrj

At n n+l + mn + u)n+l ]
SRnz | i,i+l wi,j-1 i+l, 3 i-1,3
t t t ., t
[+ ©i,5+1 wi,5-1 7 “i+l,] twi1,5 4 “i,5
At t+At t n n+1 t
- 8—[(1,3 + Vi,j) (“’i,j+l i, 9-1 7 %i, 3+l
t (t+At + o (wn o
- wirj-l uilj i,] i+l,3 i-1,]
t _ t 4.2
*0i41,3 “’i-l,j)] (4.2)

where o again is the relaxation factor and n represents

the number of sweeps over the mesh.
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The computational steps outlined; are essentially the
same as used by Pearson (1965). We shall only describe the
steps involved in going from time t to t+At. In general, to
consider one time step, one must obtain a first approximation
for yt+dt and ot*2%, and then follow the same procedure as
outlined in the flip-flop method to obtain more accurate

values of vy and w at time t+at.

The steps may be summed up as follows:

1) Obtain a first approximation of m§+§t
14

at all interior points by using the
explicit representation of the

vorticity equation.

2) Calculate the first approximation of

t+At

Vi, 5 using v2y = -w. This is carried

out using successive overrelaxation.

3) Calculate the boundary conditions for
(4.2) by the same method as described

in chapter II, i.e. for the left wall
= =2 ,
0,5 = & V1.3

where the y's are the values obtained



4)

5)

6)

7)

8)

from step 3. A smoothing factor must
be used and the proportion of old to
new boundary value will again depend

on the Reynolds number.

Calculate the new values of m§+§t
14

represented by w2+% in equation (4.2),
’

’

using successive overrelaxation.

Take the values of the vorticity found

in step 4 and check if it satisfies

y2y = -w within a specified tolerance.

If yes, carry out step 8, else continue

with step 6.

t+at
Solve for the new values of ¥; 5

using v2y = - and the vorticity found

in step 4.

Repeat the whole procedure, beginning

at step 3.

At this point one time step is completed.
t+At .

Substitute the values of vi,5 0 found in

step 6 into the difference approximation

for
3 (y,v2y)

v4y =-R
v 3 (x,y)
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If the sum of the absolute error over
all points is less than a specified
tolerance, computation is stopped and
the values of the vorticity and

stream function found so far, are taken
as the steady-state values. The absolute

error over all points again is

1

M-1 N-
z Z IR; .| < TOL (4.3)
i=1 F=1 it

where the tolerance is specified, such
that the average error per point is less

than 1x10_5.

9) If we are not within the specified
tolerance, one more time step is considered

and we start again with step 1.

The explicit method, on the other hand, involves much

simpler computational procedures and are considered next.

4.3 Computational Method for the Explicit Equation

The essential difference in terms of computation
procedure is that for each time step the vorticity and
stream function equation are only swept once. This can be

done as we are only interested in the steady-state
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solution and, therefore, it is not necessary to solve

y2y = -» to a high degree of accuracy at each time step.
As with the implicit method, the error in the difference
equation to the fourth order differential equation is

taken as a criteria to determine when steady-state is reached.

To begin with, set all values of ¢y and w to zero. The

steps for solving the equations are:

1) Calculate the boundary values for the

vorticity equation, using (2.7).

t+at
i,3

vorticity equation in explicit form.

2) Compute w , using the time dependent

+ ] .
Here, mg ?t is calculated directly.
14

+
3) obtain yT4F

by applying successive
overrelaxation on v2y = =-w. The field is

swept only once.

4) Check if the stream function satisfies |
the difference equation to the fourth-order

equation, that is
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5) If the total residual is less than
the specified tolerance, computation

is stopped, else repeat from step 1.

4.4 Discussion of Results with Respect to Computer Time

For the comparison of the two methods, we shall
concern ourselves only with the accuracy achieved for the
solution to the difference equation after a certain number
of time steps. With this criteria in mind, the implicit
method is compared to the explicit with respect to computer

time used.

First of all, we want to determine the optimum time
steps for various Reynolds numbers for bdth methods. In
order to perform the number of runs necessary, only a
10x10 grid; h=1, and R=90 and 300 were used. The computer
times for the implicit method to achieve

M-1 N-1

:E: jz: lRi,j\i.OOl

=1 5=1

for a set of time steps is shown in figure 4.1l. On the other
hand, because of the speed of computation, the convergence
of the explicit method was measured as a function of the
number of time steps, which was taken to be 100. Figure 4.2

illustrates these results. The compute time on the IBM~7040

-
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R=300

M-I N-I

. - X I IR;, I£-00
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Figure 4:1 Computer Time for Implicit Method
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for the explicit method in each case, was about 1.7
minutes. In comparison, the best times for the implicit
method are, by interpolation from figure 4;1, 5.7 and 6;3
minutes for Reynolds numbers of 90 and 300 respectively.
Thus, for the implicit method, the computing time is

several times that of the explicit.

In practice, we have no means to predict the optimum
time step for the implicit method and, thus, will be faced
with even greater computer times. Comparative runs were also
obtained for a 20x20 grid and R=300.0, for which the

results are shown in Table 4.l.

Table 4.1

R=300.0 20x20 grid, h=.05

Method At Time steps | Compute Time EZI Ri,jl
Implicit | .01 499 31 min .048
Implicit | .033 149 18.3 min .046
Implicit | .1 74 29 min .033
Explicit | .0555 100 3.2 min .009

ComputerTimes for Implicit Versus Explicit Method

for R=300
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The size of the time step for the implicit<method will

determine the number of sweeps one must perform for each of

the linear and non-linear equations. It will increase with
larger time steps. However, one sweep of both equations is
equivalent to one time step in the explicit method. This
implies that, for each time step of the implicit method,
several time steps of the explicit method can be performed;
this is true in particular in the initial stages of
computation. One can thus come to the conclusion that, although
it is possible to use larger time steps for the implicit
method, the explicit system is by far superior in terms of

computation time.

Figure 4.2 shows the effects on the speed of convergence
for various time steps for the expiicit method. There is an
optimum time step for every combination of Reynolds number
and grid size, and it is smaller than the maximum permissible
step and still ensure stability. The region between the
optimum time step and the onset of instability can be
considered as temporal stability. By this we mean the growth
in the error is offset by the changes induced in the iteration
matrix, due to an additional time step. In other words,
considering a specific point, the iteration oscillates between
stability and instability, however, stability is more dominant.
A further increase in the size of the time step results in the

domination of the unstable growth and thus divergence OcCcurs.
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The time step can be calculated, using the nethods
indicated in chapter III. Here again we have the two

alternatives. One is to search for the maximum velocity

over all the mesh points

u = maxfu? ., + v% ,
i,] 1,3

i=l'2’ . .M-l
j=l'2, . .N—l

and choose

At = min[R—-%-z-, Elll_i] (4.4)
This results in time steps given by ® on figure 4.2. As
can be seen, they are much smaller than the maximum allowed.
A reason for this is that the theory leading to (4.4)
specifies the maximum u to be at 45° to the horizontal; In
practice, this is not the case, and, therefore; one should
use the second alternative in which one searcheé for the
maximum Q, taking into account the velocity components

uj,g and Vi 4§ in the calculations of the wave numbers

k, or k,. We let, for example, ky = Z%?l n, p=0,1,...M"1
and calculate k2 by

~lfFu. .
k, = tan [-—Ji-l— tan kl] (4.5)
2 v

i,]
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The values of k,, k2,_ui,j4and yi;j are then used to

calculate Q, using equation (3.6); In this manner, one can
search for the maximum Q over all mesh points. The time
steps obtained by this method are indicated by @ on
figure 4.2 and are much improved over the ones obtained

from (4.4).

The explicit method, for the problem considered, is
far superior over the implicit method with respect to
computing time. This is more pronounced when a finer grid
is used, as one can illustrate by going from 10x10 to a
20%x20 grid. In every case we were able to predict the
time step close to the critical value which still will
ensure stability for the explicit method. For these
reasons, all computations were carried out using the

explicit method.

4.5 Solutions for Higher Reynolds Numbers

We shall now present the steady~state solutions for
Reynolds numbers of up to 2000. The solutions obtained for
Reynolds numbers up to 400 agreed with Burggraf's (1966},
and the pattern of the stream function is similar to the
one observed in experiments (Pan and Acrivos 1966) .
Numerical results are shown for R=90, 200, 400, 1000 and

2000, in figures 4.5 to 4.9 respectively. The results were
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plotted on a CalComp plotter in the Computer Center of the
University of Western Ontario. The computer plotting
routines are not designed for contour plotting and, thus;

the unsmoothened results are presented.

The size of the vortex in the lower downstream corner
continues to increase up to Reynolds number of R=2000. This
is in full agreement with the nuﬁerical results of Burggraf
(1966) up to R=400. However, experimental work of Pan and
Acrivos (1967) indicated that beyond a value of perhaps R=500,
the size of this vortex again decreased; see figure 4.10. That
the limit of this flow for very large R should consist of an
inviscid core of constant vorticity was argued by Batchelor
(1956), and for values as high as R=100000, Mills (1965a)

observed such a flow experimentally.

However, for intermediate values of R, the comparison
between experimental and numerical results is not impressive
(Mills 1965), the experiment usually showing a larger
central flow and small or non-existent back vortex. This

discrepancy may be explained by the following argument.

The separation of flow occurs mainly because the
kinetic energy is dissipated by viscosity within the boundary
and, since turbulent boundary layer flow resists better the
tendency of separation than laminar flow, it will stick
better to the surface. As a result the corner vortex for

higher Reynolds numbers will be smaller in experimental work.
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Mills (1965) observed similar discrepancies between
computed and experimental results for fluid flow in a
rectangular cavity having a width to height ratio of 2:1.
For R=100 he observed that a second vortex appears
numerically which cannot be obtained by experiment. Mills
argues that this discrepancy is due to skin friction of
the fluid on the floor of the cavity and the surface
tension tractions in the corner which will inhibit this

weaker flow in the second vortex.

The only other work available in this subject appears
to be a recent report by Greenspan (1968) in which the
fluid appears not to separate from the wall for comparable
Reynolds numbers. In this report, however, calculations
have been carried out for very coarse grids only, and are
not likely to be valid for high Reynolds numbers. A very

fine mesh is needed for large values of R.

An approximate idea about the size of the grid can be
derived following an argument presented by Thom and Apelt
(1961, p. 136). They developed a criteria for the convergence
of the Navier-Stokes equation as a function of the mesh

Reynolds number, namely

212
qan < 20 (4.6)
\)2

where q is the average resultant velocity through the portion
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of the mesh considered, 2n is the mesh size, v is the

. . A . n .
kinematic viscosity, and %— is the mesh Reynolds number.

In chapter I we have defined the Reynolds number as

R = 22
v

Suppose we set U=q since, in the worst case, the

average mesh velocity may be equal to U, thus
= 28
_\)

R

From (4.6) we have

g?n2 a? R2n?

—_ <20
v2 a2 ca? !

but h=2n and a=1, therefore,

<20 which gives

h < 852

9
R R (4.7)

Equation (4.7) will give h=.009 for R=1000 and h=.0045 for
R=2000. In practice, a coarser grid than indicated can be

used.

For R>1000 and h=0.025, numerical oscillations of the
stream function can be observed at the right top corner.
Similar observations were pointed out by Bye (1966) and
Simuni (1964) for lower Reynolds numbers and coarser grid.
To eliminate these numerical oscillations, which have no

reality for the differential equation, a finer grid must be
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used. It is sufficient to use h=.0125 for R=1000, but it
could not be quite eliminated for R=2000. These results are
illustrated in figure 4.3 and 4.4. In order to eliminate
the oscillations for R=2000, an even finer grid than h=.0125
must be used. Due to the size of the computer available, the

computation could not be carried out.

The total computing time for R=1000 and R=2000 was
three and four hours respectively on the IBM-7040. For the
first two or three hours a 40x40 grid was used, which then
was used as the initial solution for a 80x80 grid.
Computation was stopped when the average error per grid
point was less than 5x10—6. In comparison, the computer
times quoted by Pearson (1967) to obtain solutions for
the motion of a viscous fluid between two concentric
rotating spheres for Reynolds numbers in the range of
1000 - 2000 on a mesh of 800 to 3200 points, using the
implicit method, was between one to six hours on the

IBM-7094 Mod. II. This same problem would take between

four to twenty-four hours on the IBM~-7040.
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Figure 4.5 Stream Function Solution for R=90

=

NI —

eam Function solution for R=

Figure 4.6 Str 200

74



75

Noe

Figure 4.7 Stream Function Solution for R=400

Figure 4.8 Stream Function Solution for R=1000
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CHAPTER V

INVESTIGATION OF THE SOLUTION TO THE
NAVIER-STOKES EQUATION IN TERMS OF

VELOCITIES AND PRESSURES

In the preceding chapters, we have shown how solutions
may be obtained for problems of two-dimensional steady and
non-steady flow, even for relatively large Reynolds numbers.
The formulation has been in terms of the well-known stream
function, and the only jimitations on the calculations were

those of straightforward computing power.

We are‘interested in finding a numerical method which
will allow us to solve the three-dimensional time-dependent
cavity problem. This problem was considered by Bye (1966) .
However, he assumed the sides to be far from the center and
reduced the problem essentially to the two-dimensional case,
which can be solved in terms of stream function and
vorticity. Thus he obtained only the numerical solution for
the circulation in a central vertical plane in the direction

of the applied stress.
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To consider the full three-dimensional problem, one
is forced to use the original variables of the
Navier-Stokes equations, namely the velocity components

and the pressures.

A difficulty appears when the incompressible equations
are attempted numerically, using velocity components, the
velocities at later times turn out not to satisfy the
continuity equation. This is perhaps not unreasonable,
since the continuity requirement is here expressed as an
independent requirement (as opposed to the stream function
approach, where incompressibility is imbedded in the
definition). Some mechanism must be found to make the

divergence of the velocities self-zeroing.

One way might be to introduce a kind of artificial
compressibility (oxr, for that matter, to use the full
compressible equations), sO that the bulk elasticity of the
£luid would contribute to the future velocity pattern. This
approach was tried extensively in the present study, but
without success; it was found that values of such artificial
parameters, smoothing factors and the like, which improved
the continuity situation, made other aspects of the problem
worse. In particular, when the velocity divergence was
adjusted to be self-correcting, the poisson equation for
the pressure turned out to be improperly posed (in the sense
that the condition on the Neumann boundary conditions,

coming ultimately from Gauss' theorem, was violated and



correct numerical solution was impossible).

A part of this argument has since appeared in the
literature, and that author (Chorin 1967) is rather more
optimistic about the prospects; however, he does not
present complete evidence as to whether the method works
in practice, and this aspect of the problem remains not

completely answered.

Rather than pursue the above, we £find that another
aspect of the problem must be considered, which, perhaps,
decreases the importance of such an "artificial
compressibility". This is, that there is a fundamental
inconsistency in the definition of the divergence of the
velocity, if the finite-difference formulation is carried
out in the usual way; this is true even for the
two-dimensional u-v-P formulation. This inconsistency, we
will show, implies that only under good fortune would we
be able to solve the equations, using the simplest grid
configuration, and thus a different configuration must be
used, (previously formulated, but for a rather different

reason; see Harlow and Welch 1965).

In essence, this inconsistency is easy to understand.
The new velocities are predicted by formulae involving

the terms
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or, in finite-difference form
t+At _ _t At
Yi,35 Ui, 2h[Pi+l,j Pi-l,j] Foeeee

so that the rate of change of the continuity D=V.v is given

by
(9_2) =a_(a.t_1)+a_(§;9
CR ax\dt/ 9y\3
i,3
tlip. . -2 P. . + D, .+ P. .
4h2?| "i+2,3 i,] i-2,3 i,]j+2

- . L) + . L) + ® o 000
2 Pll] Pl,j—Z]

which constitutes an expanded and different form of the
formulation of v2P from that used normally. We then argue
that no immediate way to correct this situation is available

if the velocities are positioned at the grid intersections.

In the present chapter, we examine in detail the
nature of this inconsistency; in chapter VI we demonstrate
what appears to be the simplest method of formulating the
problem in two dimensions which will allow the continuity
equation to be satisfied at t+it. The final chapter consists
simply of a demonstration that, aside from the obvious problem
of machine time, no further difficulties appear to arise in

the three-dimensional problem.
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5.1:§pxmulation of the Equations

One of the advantages of using the stream function
approach, is that the pressure no longer appears explicitly,
and the number of governing equations is reduced from three
to two. However, for the more direct formulation, we lose

this advantage and must use the three equations.

pu , 24 , y2u , 2B _ Ly

sttt W tVay Tax T RY (5.1)
BV , LAY 4 yRY 4 3B _ Ly

ST +us 4 vay + 3y gV°V (5.2)
3u |, 3V _

T 3y 0. (5.3)

In the process of solving these equations, two
difficulties arise immediately; first, there is no explicit
expression for the pressure, and thus, some artificial way
must be used to deal with this variable; second, the
explicit time-derivatives of the velocities are separate
from the continuity equation; and we have no assurance that
velocities at a later time, predicted directly from (5.1)
and (5.2), will any longer satisfy the continuity equation.

This latter problem will occupy us for some time.

To obtain an explicit expression for the pressure at
first appears to be a simple matter; one differentiates
(5.1) and (5.2) with respect to X and y respectively and

adds, bearing in mind that several terms vanish because of
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t+he continuity equation. The result is

2 2
2 + U 2u 3V oV =
2P s + 23— = + 3§— 0. (5.4)

One would expect to calculate the pressure from (5.4),

then the new values of u and v from (5.1) and (5.2), a

new pressure field, and so on. But, if this is carried

out, using the straightforward grid, for which the
velocities and pressures are calculated at the grid line
intersection, the continuity equation fails to be satisfied
at any time step. This chapter will point out the reasons

why this is so.

Greenspan, Jain, Manohar, Noble and Sakuri (1964)
suggested an alternate form of the Navier-Stokes egquations

in which they incorporated additional continuity terms uD

3u , 3V

= into equations (5.1) and (5.2)

and vD; where D =

respectively. This will lead to

su , au? suv , 9P _ 1lg2
su , duf , ou¥ 4, — = =Vu (5.5)
= T 5x T3y T % R
2

§X+w_l’+§l—+?—2=lvzv (5.6)

3t 9x 3% 3y R
and the pressure equation

2 24,2
g2p 4 22uZ 4 o WY 4 ¥~ = o. (5.7)
ax? axdy 9y

on the surface, for computational purposes, there

seems to be no reason why one system of equation should be
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preferred over the other. However, Noble (1967) pointed
out that evidence exists to indicate equations (5.5), (5.6)
and (5.7) seem to give better results. There may be an
argument that, incorporating the continuity equation into
(5.5) and (5.6), will keep the accumulation of the error
in the continuity equation at a sufficient low level at
the next time step. In any case, in the presentation
the equations used were the ones incorporating the extra
continuity terms. It is not claimed that the results obtained
in this chapter depend on which form of the Navier-Stokes

equations is used.

The above is true, i.e. the form has no effect, provided
that D=0. To be completely precise, we must note that never

will D be exactly zero, and we must consider the equation

pt+at

e, 2 (2,
D= + ot (ax + 3y At

Dt + At(— v2p + )

t+At .
so that, in fact, the value of D depends on the residual
tolerated in the solution of (5.7). To try to avoid all of
these problems, we could leave in place all terms involving D,

and write the three equations as
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%% + %;i + %%Z - uD + %§ ='E,V2u (5.8)
%‘-é+%‘;’—u+%¥3—vn+%§=%v2v (5.9)
and
R Rl L BICEL Bl

= % v2D (5.10)

Essentially, we have added and subtracted uD in (5.5)
to give (5.8) and, since D ought to be jidentically zero,
the two equations should in theory be the same. But the
inclusion of the D terms in all equations relaxes the
accuracy to which the pressure equation must be solved.
This implies that fewer sweeps are necessary over the
pressure field, and thus, will result in the saving of
computing time. In practice, then, it does appear that
there is a slight advantage to this latter formulation.

(We shall see shortly that both are inconsistent).

5.2 Difference Equations and the Corresponding Boundary

Conditions

We shall now present the difference formulation of
equations (5.8) to (5.10). The ordinary 5-point finite
difference grid formulation is used where u,V, and P are

solved for at the grid line intersections.



(i,3+1)

u,v,P
i-1,3 e— WL*. : —o it+l,j
(i,3)

!

(i,3-1)

At first glance, it does not seem that there is any
difficulty with the boundary conditions for the pressure

equation. For example, from (5.8), we have for the left

hand wall
%ﬁ = %Vzu
since on the wall
%E = %%3 = uD = 0.

The remaining boundary conditions are shown in figure 5.1.

86

2
On the top, the term %%— must be included, to take care of

the corner points.
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u=1 a‘g—lyZ B.Vz
N . o y— —

v=20 oy R EX.
v,u =0 3B _ 12
' 5% - R ©
3P _ 1lg2
3% RO v,u =0

3P _ 1ly2 e

By RV v , u=v=0

Oour point is to show that these boundary conditions, for
the formulation used, will not allow us to solve the

pressure equations.

Generally, to solve the equations (5.8) to (5.10) for
each time step, the pressure equation is solved first using
successive overrelaxation and the specified Neumann boundary
conditions. The pressures SO obtained are used to calculate
the velocities which, in turn, are used to solve the pressure

equations. The finite-difference equations used are

t+at At
= ———— . . . - . . + . . - 41.1- .
uirj ui,j + ha[ﬁl,j+l + ui,5-1 + Yit1,] Ui-1,5 1gJ

At 2 2 - . ) .
- Tﬁ[ui+l,j - uj_y,5 * 9,5+ T Wi, 31 + Piv1,3

- P, .l + AtuD, . (5.11)
i-1,3J 1,]
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t+at

=v, . v, . + V. . + v, Lt v, .
vi,j i,] Rh2[ i,j+l1 i,j-1 i+1,3 vl-l,j

F

- o)~ Alv2 L, - w2 . = .

4 vl,j Zh[vl,j+l Vl,j—l + uvl+l,j uVi-l,j
- + D. .

¥ Pilj+1 Pilj-l] Aty i,3 (5,12)

Py,5+1 * Pi,5-1 * Pisl,3 +Py1,5 4 Pi,5 7T 0,3

+At
_h2 .DF A_
- —3 (5.13)
At
where
— 12 - 2 2 . 2, - 2 .+ v .
5.5 = Wi+1,5 T 2 Ui,3 +uf_g 5 v Vi g4 T 2V, Y Vil
l - - uv, . + uv. .
3 Luvi+l,j+1 Vi1, 3-1 i-1,3+1 1-1,3—1]
_l-D +D + D.. + . # Dy q s = 4Dy
rR{7i,3+1 i,j-1 i+l,] i-1,3 1,3
L.
...1'_1D. .(u. . - . 4+ . .(D. .+1—D. '-l)
2| 1.3 i,j+1 i,j-% i, J\"1,3] i,3J
- . . . , = D. .
t Di,j(vi+l,j Vi—l,j)+ Vl,j(Dl‘l'l,j i-1, )]
27y .
R
At
and

= L T 2 S —v..].
Di,j 2h ui+l,j i-1,3 i,j+1 i,j-1
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Two problems arise with the boundary conditions for

the pressure equation. First, we do not know the u velocity
at the ‘top corner and thus are unable to calculate V2v or

v2u. Second, the pressure on the boundary is required to

calculate the velocities.

To get around these problems, it would be natural
(although incorrect) to assume that the top corners are
stagnation points and to use an extrapolation routine or
forward difference method to calculate the pressures on
the boundary. (The pressures might also be obtained by
iterating directly for the values on the boundary; however,
it is impossible to get an expression for the normal
derivative of the pressures On the corner points and it is
therefore required to guess the corner pressures. The
results of several computer runs suggested it to be best

to extrapolate for the boundary values) .

A typical pboundary condition would then be, taking the

jeft wall as an example

wall

j+1

-1 i=0 1 2
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2P 1
——— = u . + u . + . + -
(ax)i=0 Rhf[ 1,5 7 %1,5 7 Yo,3+41 7 Yo,3-1 4u0,j]

On the wall %§ = 0, therefore, %§-= 0 which gives

uy 4 = U_y and, therefore
(& -2y

The iteration procedure thus defined for the pressure
did not converge. Regardless of the Reynolds number or the
size of the mesh, the residual at each point of the grid
approached a constant value and it did not change when
further iterations were applied. At the same time, the
continuity equation D could also not be satisfiéd. The fact
that the error for the iteration procedure approached a
constant at each point, that is, the impossibility of
solving the pressure equation, suggests that the problem
itself may be improperly posed. We note that for equation
(5.10) Neumann boundary conditions are imposed, and,.
therefore, must satisfy a consistency condition coming
ultimately from Gauss' theorem, namely that the integral

3P

of D around the boundary must be equal to the area

integral of Vv?P.
Let us demand that Dt"'rAt = 0 in (5.10), then we can

write

v2p + ¢ = 0
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where

242 24,2
32u? . ,3uv_ . 32vZ _ pau _ _lyzp - D
IX aX3y Yy X 3y X 3y R At

We must have 11
2 Y2
O/JV P dx dy oL ds

11

P _
f'é?l ds = //¢dx dy. (5.14)

00

or

In order to find the proper boundary conditions,
equation (5.14) must be computéd not from (5.14), but

directly from the equation. In discrete form (5.14) is

N

M

. _p, . +P, =P, +EP.—P.+P.
ZO[Pl,O i,l i,N l,N-l] [ 0,3 1,3 M,3
i=

J=0

M-1 N-1
- P A= o, . (5.15)

where ¢, . is as defined previously. If we now carry out
i,]

this summation process, we will be left on the left-hand
side with valueé of P around the houndaries, in fact just
that combination giving all normal derivatives. Thus we
can pick out values that must be assumed, let us say by
the boundary values of P, in terms of their immediate
neighbours only. For the left-hand wall, for example,

(5.15) leads to the requirement that
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u .
2
P = P - __LJ- + u2 - —h— u

Thus we have an explicit set of values of P on the boundary

and (5.13) must be well-posed.

A similar form to (5.16) can be obtained, for example,
when differentiating (5.8) with respect to x and using the
resulting equation to obtain the pressures on the boundary,

namely

a (ég . a2uz , p2uv , aZP 1 52 au
ot \ox ax? IXIY 3x2 R X

which, for the left hand wall, becomes

32P _ lyp du _ 22u? (5.17)
R X 3x?2

In difference form, this is
2 11/° (au
- , = - .+ === + (=
Py,5 7 2P0,5 % P-1,3 2 4,3 R[(alej 5% —1,j]

and, substituting for P_l 5 using

14
3P _ 2 i
(BX)_ - Rh?2 U1,3
i=0
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However, since u; s =u ., it can be assumed that
r3] -1,]
u . = o
2,35 = (I+e) vy 5

where |e| is some small number, and thus, equation (5.18)

reduces to

b b 4P - 2u 42
0,3 1,3 1,5 Rh 1,3 aRn (5.19)

¢ can be obtained from equations (5.16) and (5.19) by

comparing coefficients, which gives

_2u1,4 <}At-Rh£> 5
€T, . At - *
2,3

5.3 Investigation of the Numerical Error in the Continuity

Eguation

Although it is now possible to obtain a solution for
the pressure equation at each time step, the continuity
equation cannot be satisfied with the calculated
velocities. This seems, at first, to be a contradiction,
especially when considering that the residual error at

each mesh point from the pressure equation is of the order

h2 _t+At
.__D
At

and, if h2=aAt, then the residual error is equal to the

error in the continuity equation for the next time step.
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The only explanation for this must be that there is a

discrepancy in the definition of the "continuity" itself.

To begin with, let us observe that the continuity
equation can also be checked by substituting the
velocities at time t+At, obtained from equations (5.11)

and (5.12) into

DEFAt = Loluttdt - ubttdt o yEHAE _ ytrot (5.20)
i,J i+l,] i-1,3 i,j+1 i, j-1

We shall now show that the terms cbtained in substituting
these velocities into (5.20) are not in agreement with

the terms obtained from the pressure equation (5.13).

For convenience, ignore all terms involving D. This

in no way will influence the results to be shown. The

1 [ erar _ eeot
2h| i+1,3 i-1,3

terms for

can directly be obtained from (5.11) and are:

t+at  _ tHAt o - u - R
Bii1,4 " Yi-1,3 T Ui+l,] i-1,3 T RRZ|i+2,] i,3
- + . . - 1, .

Uy T 8,5 Bael, g4l T TinL 34

+ Ui41,5-1 7 Yi-1,3-1 7 4(“i+l,j B ui-l,j]

_ é_t, 2 - 2 u? + u? .+ uv, . -
2h[ui+2,j i,3 i-2,73 i+1,5+1



- u

+ P
similar for the
Vi, j+1 T Vi, j-1

Vi-1,3+1

%1%

i+2,3 T2 Pi,5 ¢ Pi-2,j]

uv, . +
i+1,j-1 uvi—l,j-l

term, we have

Vi,j+1 ~ Vi,5-1 ¢t %ﬁf[;i+1,j+l

= Viel,3-1 T Vi-1,5+1 7 Vi-1,3-1

t V5,942 T Vi3 T Vi, 3-2

-4 (i1 - "i,j-l)]

- %[Vi,ju - 2vi 5tV 5o
U541 T Wiel, -1 T i-1, 34

+-

(5.21)

uvi_g,4-1 ¥ Pi,ge2 T 2 Fi,5 7 Pi,j—Z]
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(5.22)

Adding these two equations will give DttAt, Each term

from the combined equation on the right hand side is now

compared to the terms in the finite difference pressure

equation. We note that terms involving the coefficient

At
Rh?

tabular form.

—— combine to give %EE(VD).

The results are shown in
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C/t [/z-T C'T C/T-T ]
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The differences in these terms are as a direct result in
the two methods of approximating the second order

derivatives. In one case, from the pressure equation, we

have:
222 _ L |p . - 2 P + P 5.2
5x2  h2| i+l,] i,] i-1,7 (5.23)

whereas, for the terms coming from (5.21), we actually use

3 op _ 3 (Pi+1,§ ~ Pi-1,9
X X X 2h
P- . - 2 0 . + P- .
— i+2,3 Pl,j i-2,3 (5.24)
4h? :

In the latter, an expanded grid is implied, that is, only

every second point is used.

(i,3+2)

(i=-2,3) (i,3) (i+2,3)

(i,?-z)
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. s 242 2y2
This is also true for'@—gc andr@g§r. Our conclusion th
: X2, dy”. : on =hen
is that direct calculation of the divergence of the velocity
in two ways in the equations implies that, in one place,

the ordinary calculations of v2P is used, and in another

the expanded formulation (5.24).

The two different forms of the difference approximation
to the second order egquation are numerically equal when the
pressure gradient is constant, or, perhaps, for some
exceptional points. In most cases, however, the two terms
will not be equal. It is because of this discrepancy, that
the two ways of obtaining the continuity equations are
incompatible. The same conclusion can be reached when
using the Navier-Stokes equations in their original form,
without the inclusion of the continuity terms. One could
say that the continuity equation appears to be satisfied
from the pressure equation (5.13); but when the stream

function, which can be obtained using

u 3y or VvV Y

14

is substituted into the finite difference form of

3 (p,729)

by me
vy Ra(x,y)

it is found that the fourth order egquation is not

satisfied.
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A slight improvement can be achieved if a finer grid
is used. In the limit, as h becomes very small, the correct
solution ought to be obtained, however, computationally,
this is an impossibility. For this reason, this straight-
forward method of calculating the velocities directly is
discarded. In the next chapter, an alternative approach

is discussed.



CHAPTER VI
' ALTERNATIVE METHOD TO SOLVE THE NAVIER~STOKES

EQUATIONS IN TERMS OF VELOCITIES AND PRESSURES

So far, we have established that the velocites
calculated at the intersection of two grid lines, do not
necessarily satisfy the continuity equation throughout time.
We are thus looking for a method which will be consistent

in the apparent grid size used for the continuity equation.

Harlow and Welch (1965) described a new method to
solve the Navier-Stokes equations in terms of velocities
and pressures. In their system, the continuity equation is
satisfied not at the grid line intersectioh, according to
a kind of five-point formula, but rather over a single cell.
This certainly reduces the effective grid size, more over,
it allows us to escape the difficulties pointed out in

chapter V with respect to the continuity equation.

In order to study a number of problems involving free
boundaries, mixtures of fluids and so forth, Harlow and

his co-workers have developed what they refer to variously

100
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as the c", or Marker-And-Cell, or the "PIC", or

Particle-In-Cell approach; (Fromm 1963; Harlow and Welch
1965; Harlow, Shannon and Welch 1965; Daly and Pracht 1968).
This method involves calculating the pressure and velocity
divergence at the center of a square cell, and the

velocities themselves on its edges.

Tt will be shown in this chapter that the MAC method
eliminates the inconsistencies inherent in the formulation
of the Laplacian operation in the pressure equation. At
the same time, we will establish the form the Navier-Stokes
equation must be for numerical computation. Finally, some

numerical results will be pointed out.

We shall employ the same methods as used in chapter V,
to show these results. To begin with, let us define the
new set-up of the grid configuration and the corresponding

difference equations.

6.1 Grid Configuration and Difference Equations

In this new method by Harlow and Welch (1965), the
pressure is calculated in the middle of each cell and the
velocities on the sides of the cells. The notation and

position of all the variables are shown below.
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V‘ L) V- .
lrj+§ 1+l,]+%
7N -e-
P. . P .
$ l,2+l i+1,3#1 L,
ui--,j+1 ﬁu. . i+2—,j+]_
2 l+'§,j+1
. . .
V1,3+§ Vl+l,j+%
P
Pi,j i+1,3
+u. 1 . * fui+ 3 ¢ ui+1,j+
l_EIJ 2!
« 1 1
v, .1 2,373
1) P —

Figure 6.1 Notation and Position of Variables
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For the purpose of discussion, let us recall

%%+-%1{3+%;-—V-+%£-uD=%V2u (6.1)
%% + %ﬁ! + %%3 + %% - vD = % v2v (6.2)
and
3D , 3%uZ ,32uv a2v2 _ pau _ ,3D
it 9x? axdy  dy? X ax

- D%% - v%% + V2P = % v2D (6.3)

The difference approximations to these equations,

using the MAC method in explicit form, are:

t+At At
u, 1 . =u,,1 . T 5. 3 ., +u., 1 . +
l+§'l] 1+'2'I] Rh? l+5_‘r] 1-%5,]

+ 1 - 4 u,,l - Atly2
Yitd,j+1 T Titg,3-1 i+:,3 5| %i+1,5

2 -

- u¢ . + uv, . - uv, . + P, . P, .

i,] 1+%,j+% l+%,j-% i+l,] 1,3]
F+ét1 =v, ..1 %t LS 3 + V, 1 TV ! 1 4+L
i,3+5 i,j+3 = Rh? 1,3+ i, 3-3 +1,3+5 i-1,3+3



lo4

and
- n2pt . 4+ P; s41 * Pi 4-1 * Pj + Py 4
i, i, 3+l i,3-1 i+1,3 i-1,3 4 Pi,3
At
+ u? .- 2u? . + u? 4 v2 - 2v2 , + Vi
i+l,J i,] i-1,3 i,j+1 vi,j Vi,j-l
+ 2 [uvi+_1_ '+l - uvi_i_l 1 - uv, 1 _+1 + uv, 1 . 1]
27373 213772 1=30373 1-3.373%
-hflu,,1 . - u:_1 . D. . - h D. . - D .1 u
its,] i-%,3 | .3 2 i+l,] i-1,3) ".3
-h v, 2,1 = vy 2 1|D; 5~ hip, . - D.: = Ve s
i,343 i, j-5 | .3 2 i,3+1 i,3-1) 2.3
1 + 4 T
- Llpy, 541 * Ds,go1 * Pis1,3 T V-1 T Pi,3
p
t+At
_ =h?D
Any value of u, v or b, which is not available at a
designated point, is obtained by
u, =+ = 1 fw.,1 . +u;_1 )
i,] 2 1+5,3 1-5+]
Ve = = J—‘ (V. 1 + V. - l)
i,J 2 1r:l+'£ 1,J7%
= l 4+ D. -)
Di,4+¢1 7 2 (Di,j+l i3
: )
= = D . .
Pisl,] 2( 141,35 i
u. .1 1 = l(é. 1 . u, 1 . ;)
i+-§,j+§' 2\ it+3.3] J.+§-,j+
1
= =(v, R A A 1)
Vi+%,3+-12- 2( i+l,J+3 i,3+3
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Again the continuity term on the right hand side of (6.6)

will be proportional to the error at each mesh point when

solving for the pressure. We now only have to show that

the terms in the finite difference equation

t+at 1 1 1 )
D =% Ui+, - Wi-1,3 + Vi, 4z T Vi,j—% (6.7)

obtained when substituting the velocities from (6.4) and

. t+ . X
(6.5) into D At _re the same as in the pressure equation

(6.6) . Already it has been shown that the critical terms

are the second order partial differentials. For the moment,

for illustrative purpose, let us ignore all terms involving

: . 22P 32P
D and take only that involving and .
ax? ay?

In the process of obtaining
L( - sl s
n\i+3,3 ul—%,3>

from (6.4) the pressure terms become

Piy1,5 - 2P%1,3 7 Pi1,5 °
A similar form holds for

Loy a - 1,5o1)

h ilj+% 1i,]°% !

and thus

1
v2p = =|P. . . . . . -
h2[?l,j+l + Pl,j—l + P1+l,j + P:L—l,j 4 Pi,j] o
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which is the same as in equation (6.6) .

Tf this is carried out for all other terms not
involving D, they all turn out to be identical to the texms
in equation (6.6). Also at time t=0, D=0 and, if the
pressure equation is solved accurately at each time'step;
the continuity equation over each mesh cell will be
satisfied. This will ensure that all D terms in the
Navier-Stokes equations contribute a negligible amount
and can be ignored. Tncluding the D terms does not
really add complications to the program, but rather saves

computer time.

Before discussing numerical results, we still have to
consider the Navier-Stokes equations in their original
form; this is, without incorporating continuity terms into
the velocity equations. Immediately one can see that the
pressure terms v2p will be in the proper format. Let us

look at the term v%% at the point (i+%,j).

The difference approximation for this term is

. . -u.,1 .=
3u 1+%,j+l l+5,j—i]

V§§ = Vi+%rj 2h

. . S
However, Vi+l 3 is not known at the grid point (i+%,3)
2'

and must be obtained by extrapolation. From the following

configuration
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ui+1 i+l
2{3
-+l Vi a4l Vs sl
Ity —=i, Jtge—t=i+13it; +—
uit#,]+l
——l—"' 1 3 L)
i,3%8 — ity I-o—
ui+%, -1
'1
i+z,
Vi+1 3 can be obtained in several ways, namely,
'2'1

1
i+3,3 z("i+1,j+§ * "i.j-%)

1
RS ((FTCTe i R vis1,5-1)

. =l( 4+ V. .1
V1+%,j 2 vl,j+% v1+l,j—§)

Numerically, these expressions for V;,l 4 are not equal
2

and it is thus not possible to get a good value for the
v-velocity as we know not which one to take. In fact, the
second relation implies that

v2y = 0 at the point (i+%,j)



gimilar difficulties arise for ug

..1. We are forced to the
IJ+2

conclusion that the Navier-Stokes equations must not be used

without incorporating the continuity terms into the velocity

equations.

In summary then, the two

investigated are:

and the grid configurations,

variables,

—i(i

oo
ol

o
o I

@
o]

@l
el

are:

u?
oxX

uv
oX

+ Y _ y4p
X
2
+ &~ vp
£h's
ou 9P
+ v 4 2%
Vay © ax
+ v 4 2E
Yy oy

L

Method I

Ordinary

systems of equations

3P 1l 2
4+ = = = V4u

9xX R 1
+-3—P=lV2V

Yy R

1 o2
= = V-cu

R

1 II
=—V2

R v

showing the position of the |

V
u Ei,j u
V.
Method II
MAC
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Grid I

Grid II
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We have shown in chapter y that the continuity

equation is inconsistent when using equations I or II with
the ordinary grid. Equation II and method II require
approximation of velocities which distort the physical
system. At the same time, this combination introduces an
inconsistency in the continuity equation with respect to
the pressure and velocity equations. The only combination
which avoids these difficulties is equation I and method II;
the MAC method. For this,the terms in the continuity
equation obtained from the pressure equation are the same
as the terms obtained when substituting for the velocities

directly. In table form, this is summed up by

Egations I Equations II
Terms uD, etc. included Terms uD, etc. excluded
cannot satisfy cannot satisfy
> continuity equation, continuity equation,
_g pressure boundary pressure boundary
g conditions inaccurate conditions inaccurate

Do not use Do not use

Approximations
to velocities
introduces unjustifyable

Acceptable L
P velocity conditions

MAC

within the cavity.

Do not use
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The boundary conditions for the pressure equation
can be obtained from the velocity equation. No problem is
associated with these conditions, except for the top
corner cells. Before dealing with them, let us consider
the left hand wall, and show how the boundary values are

obtained for this typical boundary.

.. 3
i+3 - 4-r—
! v
Jt+3
= ﬁ%u(lmu
-1 v
2
173
il L1 ._3 )
1==7 i== i=2 i=3
Outside Inside
The u-velocity equation is
au u? uv 3P _ 1 g2 (6.8)
= dus , uwv _ yp + = = £ V°u
ot M 9X * 3y X R

and on the wall u=0, v=0 so that
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o

(3.13) 2.
o%) T EnZ U3,3° (6.9)

3:3

Similarly, for the bottom wall, we have

3y Rh? i,

i,

(6.10)

N+
Njw

and similar expressions hold for the right and top walls.

The corner points need to be dealt with separately.
The bottom corners present no problem, as we know the
velocity at the corner is equal to zero and the boundary
condition (6.9) and (6.10) can be applied. The top corners
appear to present some difficulties. The horizontal velocity
at the corners is not known and, at first, one could assume
this to be a stagnation point and, thus, put g=v=0 at these
points. Care must then be taken to incorporate %g # 0 on the

top boundary corner cells into the pressure boundary equation.
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To be more general, let us assume a velocity of u_,
Oiuci;; on the top corner points and then develop a general

expression for the normal pressure derivatives.

For example, take the left top corner cell.

2
Yy
=0
u=u v=0
- ¥y u=l
u=v=0
(1,N)
32_—. [ ]
3% 1l jvi

On the top boundary of the cell we have

au _ c _ _ 9y
sy = 5y

99X h

From the velocity equations, the boundary conditions

then become
2P 1

)

v2u

w
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and in finite difference form

P

_ L ]
(Bx)l . RhZ[ué,N tu et Yner e T8 uJ;,N]
27

We know u_) N u and, using the averaging method
2!

Njw

N

defined earlier for velocities not lying on the required

points, we have

_Uypyo Nt Ui/2,N+1
U = =
c 2

from which

ul =
E,N'i'l c

and thus

5P 2 ;

" ==5lus yt © ] 6.11

(Bx)l N ha[ E’N C ( )
2’

On the top, the normal derivative is

QE =.lv2v_§l’.2.
Y R 3y

1
l,N+-2-

which is approximated by

2
3E = = -(l-u)—l; Ly 1—(l-u)
dy Rh2 [vl,N—% c n|\2 1,N-3 c

2
- 1y 1 (6.12)
4 V1 /N=%5

A similar expression can pe obtained for the right top

corner cell.



6.3 Discussion of Computing Procedure and Results

The pressure equation (6.6) is solved by successive
overrelaxation, and using the Neumann boundary conditions

specified.

Since we leave all D terms in the equation, it is not
essential to solve the pressure equation to a high accuracy
as it would be if they were omitted; the D terms have a
correcting influence on the equations, which allows us to
admit a greater tolerance criterion when solving the
pressure equation. Therefore, the pressure equation can be
iterated fewer times and this fact, in turn, saves

computing time.

The steady-state was assumed to be reached when the
pressure values did not change from one time stép to the
next. This meant that the error in the pressure equation
was also small which, in turn, assured that the continuity

equation was satisfied.

Computations were performed for Reynolds number 10,
90 and 200. The results obtained agreed with those from
the stream function approach. The same numerical time steps
computed for the explicit method in chapter IV could be

used. In every case, numerical stability was observed.
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It only remains to see the effect of the corner
points on the solution. To establish this, several runs
were performed for constant Reynolds number and mesh size
and various top corner velocities u,- In each case for
different uc's, the solutions were identical. It appears
that corner velocity has no effect on the solution, as
long as the boundary value equations (6.11l) and (6.12) are

used. Care must be taken that the corner point is also
32v?
ay?

considered when computing in the pressure equation.

Once it was established that this method can be used
to solve the two-dimensional time dependent Navier-Stokes
equation, the method was directly applied to
three-dimensional time dependent case. The final chapter

deals with the results.



CHAPTER VII

THREE-DIMENS IONAI, TIME~-DEPENDENT FLOW IN A

RECTANGULAR BASIN

The Navier-Stokes equation, written in terms of the
velocities and pressure, as in chapter VI, can now be
solved for three-dimensional time-dependent problems. It
turns out to be only a matter of simple extension from the
two-dimensional case. All arguments brought forward in the

previous chapter still hold.

7.1 Problem Definition

For illustration, we shall take a rectangular (in fact
a cubical) basin, which, on the top, is acted upon by a
belt moving to the right with non-dimensional velocity of

unity.

If w is the velocity in the z-direction, then the

boundary conditions are:
u=1l, v=w=0 on the top surface,
u=v=w=0 on all other boundaries,

u=v=w=0 at tiO
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Then the equations describing the system are, in

non-dimensional form:

%% + u%ﬁ + v%% + w%% + %5 = % v2u (7.1)
%l€+ug—:’{+v%‘§+w-g-5—z’+g—§=%vzv (7.2)
%% + u%§ + v%% + wsg + %% = % V2w (7.3)

Dz%{+%—‘§+%‘é’=o (7.4)
where V2 = ke + cka + 32 .

ax2 ay? 3z2

Just as for the two-dimensional case, the equations
must be written with additional continuity terms incorporated.
Thus, adding and subtracting uD from (7.1), vD from (7.2)

and wD from (7.3), we have, after rearranging,

u du? duv duw P 1 .o

gu + &= - = = Vv4u 7.5
ot T % * A% T D d ub R ( )
3V Juv 3v? IVW 3P 1 .2

= + + + + & - vD = £ VeV (7.6)
ot X Y 3Z Y R ’
dw , duw . VW 4 dw2 . 3B _ yp = 1 g2y (7.7)
ot IX Y 22 02z R

pifferentiating (7.5), (7.6) and (7.7), with respect
to X, ¥, 2 respectively and adding the resulting equations,

we obtain for the Poisson equation for P
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2442 22 2452 2 2 2
3D dcu +.3 v-e 4 o<W + 2,3 uv + 2cuw + 34VW

+ 2 2 2
at X 3y 9z 9X3y 3X32 dydz
_ pdu _ ,3D _ pav _ 3D _ aw _ 9D 2p = & y2
Da us D3 V3 Daz W + V4P = 2 veD (7.8)

7.2 Notation and Difference Equations

For the finite difference equation in three-dimensions,

the following notation will be used;

-

where (i,j,k) describe the x,y,z-directions respectively.

The basin is divided up into grid-cubes of dimensions

h. The points at which the velocities are located are shown

in figure (7.1).
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The continuity equation is satisfied over a grid-cube

and can be written as:
Di 4 i 1.y o4 ovs sal oy o= ovs sl
i,j.;k T n l+—,j k ~ 1-5,j,k i, j+3,k i,3-5,k
+ W, . - W, . 7.
wl,j,k+% wl,j,k—%] (7.9)

In finite difference form then, the Navier-Stokes

equation in three-dimensions, are

t+ot At
= =—1lu, . . Lo U .
l+£,j,k u1+% j.k + ha[?l+%,j,k + ul—%,j,k .ul+%,j+l,k
t Uyl 5-1,k T Yael, g,k T Mg, g,k T 6 ui+§,j,k]
+ uv,

- At1,2 - u?
H"[ui+1,j,k Ui, 3.k 1+-,3+2,k

- RS U | + uw - uw.,l . 1
Wits, -3,k l+"rJ kg itz,3/k=3

- P. . 7.10)
+ Piy1,9,k Pl'J'k] + At uDl+_ 3,k (
t+at, = + A )y 3 . +v, .1, +V, L1
Vi,g+s,k T Vi, g4k Rh2[ 1,543,k i,d-g.k  AFL vk N

| -6 Vs o,1
+ Vi-l,j+-;j,k + j+— x+1 * Vl,j+5,k—l 1,j+§,4

At |, 2 - v2 . - uv

1,1
1‘513+§lk
- 1 . - P.

| (7.11)
+ At VDl,:]'*'Elk
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At
. s 1 = W, = 1 + =——|W: = 3 + W.
i3kt 0 T3k Rh?-[ 13,647 7 Vi kg

t WG G4 ke T WL §-1 kel P Vi g ke

* wi—lrjrk+% -6 wi,j,k+%]

AtY..2 - w2

- vw. . 1 1
l,j—E,k+§

- uw, _1 . 1 + vw, .,1 1
1-Eljlk+§ llj+§lk+5

. - P, . .. 1 7.12
* Plr]rk+l Pll]r;] + At WDl:Jrk+E ( )

and

- . . . + P' .
Piv1,5,k T Pi-1,5,k ¥ Pi,j+1,k + Py 5-1,k i,3,k+1

h2 t+At

s 5 i s o= === Dj 3 7.13
+ Pirjrk‘l -6 Plljlk + ¢1r3 At Dllj ( )

where
= u? - 2 + u? R 2
Qirj ui+lljlk 2 uilj:k i-1,3,k i,j+l,k
- 2 2 + w2, - 2w
2 Virjlk * Vi,j—l,k i,j,k+l i,j,k

+ w? + 2luv, 1 | 1 -uv, 1 .1
i,j, k-1 1+§:J+Elk l+§lj 21k
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uw. ,1 . l

llj+'2",k+'§ 1’3+5'k-5 VWi'j_-}_\ k+~l-

h4D: .
+ vw, . 1 N Y |
11]‘5,k—3 At

h(u. 1 . ) h
1+2131k 1"r]rk i,j,k 2 uirjrk (Di+11jlk

- D, _ .)-h(v..l -
i-1,3.,k i,j+3,k Vi,j—%,k Di,j,k
by (
. D. . -
2 i,J,k i,j+1,k Dirj'lr¥> - h'(wirjlk+%

- Wi s 1)'D. . - n W, . (D. . - D '
llj' b l’j'k 2 l,j'k l'J’k+l i’j,k"l

2
h2
- — VD . .
= ()i, (7.14)

7.3 Discussion of Computational Procedure

The computational procedure for the three-dimensional

problem is similar to the two-dimensional one. The pressure

equation (7.13) is solved by successive overrelaxation. The

relaxation factors taken were of the same magnitude as for

the two-dimensional problems. The pressures SO obtained for

time t and the velocities at t are used to calculate the

velocities at time t+At. Next the pressure equation was

solved again, etc. Computation was stopped when the change

n pressure from one time step to the next was within the
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required tolerance.

For small Reynolds numbers, the time step to use to
assure stability, can be taken as an extension of the

linear two-dimensional case, which will lead to

Rh?2
- 6

The three-dimensional problem requires a great deal
of computing time, even for a coarse grid. For example,
for R=10, sixty time steps took twenty-five minutes of
computer time. The average error on the grid points, for
the pressure equation, was reduced to 1.5x1076 after

sixty steps.



APPENDIX

COMPUTER PROGRAM FOR NUMERICAL SOLUTION
FOR FLUID FLOW IN A RECTANGULAR

BASIN

The following is the listing for the computer program
to obtain numerical solutions for time-dependent
three-dimensional incompressible viscous flow in a

rectangular basin.

The program is written in FORTRAN-IV for the IBM-7040
computer having 32K, 36 bits word memory. The description
of the program parameters are given at the beginning of

the program listing.
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THIS PROGRAM CALCULATES THE TIME DEPENDENT THREF-DIMENSIONAL FLUID
FLOW IN A RFCTANGULAR BASIN IN TERMS OF THE VELOCITIES AND PRESSURES

SYMROLS USED

U.VeW ARF THF VELOCITIES IN THE XeY+Z-DIRECTION RESPECTIVELY
P PRESSURE VALUES

PHT CONTAINS ALL REMAINING TERMS IN THE PRESSURE EQUATION
RES TOTAL RFSIDUAL OF THF LINEAR PRESSURE EQUATION

CONT CONTINUITY EQUATION

PR NNRMAL PRESSURE DERIVATIVE ON THE RIGHT WALL

PL NNRMAL PRESSURE DERIVATIVE ON THE LEFT WALL

PT NORMAL PRFSSURE DERIVATIVE ON THE TOP WALL

PR NORMAL PRESSURE DERIVATIVE ON THE BOTTOM WALL

PF NORMAL PRESSURE DERIVATIVE ON THE FRONT WALL

PP NORMAL PRESSURE DERIVATIVE ON THE BACK WALL

REL RELAXATION FACTOR '

M GRTD LINES IN THE X-DIRECTION

N GRID LINES IN THE Y-DIRECTION

L GRID LTNES IN THE Z-DIRECTION

R REYNOLDS NUMBER

NT TIME STFP

H MESH SIZF

TOL TOLFRANCE TO WHICH THE POISSON EQUATION MUST BRE SQLVED

THF PROGRAM IS DESIGNED FOR A 10%10%10 GRID SYSTEM AND R=10
THIS CAN BF CHANGED BY A CHANGE IN THE DIMENSION STATEMENTS
ANN ADJUSTING THE VARIABLES MeNeL ReNTLHTOL

ﬁ.‘"b."5ﬂﬂﬂﬁﬁﬁnﬂnﬁﬁnnﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬁ

aEalel

DTMFNSTION U(12-12.12)-V(12-12~12).H(12.12.12,oC(lZlequ)o
19“1‘12012.12‘Qp(12012'12"RES(IZQIZ'IZ‘OCONT(IZQIZ'IZ"
2PR(l?-lZ‘-pT(12-12’.PL(12.12)-PP(12-12)oPB(IZoIZ)qPF(IZ'IZ)

M=11 ‘

N=11

=11

H=0al

R=10.0

NT=0401

N1l=N-1

M1=M-1

L1=L-1

RFL=1465

M2=M+1]

N2=N+1

L2=1 +1

WRITF(6.2)

C
C INITIALIZATION OF UeVoeW
C
NO 10 I=1.M
o 10 J=1eN



YOO

C
C
C

C
t
C

10

20

co

GF

40

¥y

50

U

no 10 K=1.1

U(TedeK)I=0a0 126
V(l.\’QK‘=0.0 ‘
W(TledeKI=0a0

N3=N=-?

MI3=M=?

L3=1-2

N 20 J=2.N1

NO 20 K=2.L
“‘MZQJ.K'=1.0

T =0.05

no 30 1 T=1.60

no 18 T=1,M?2

N0 15 Jd=1.N2

NN 18 K=lal2
PHI(T.J.K¥=0.0
(‘.(I-J-Kl=0.0
RFS(TeJeK¥=00
IF(LTaFQe1) GO TO 851
A=DT/ (R&HXH)

MPUTF ) AT TIMF T+DT
NFRAL TNTERINR POINTS

NN 40 T=3.M1

NO 40 J=2.N1

RFS (T-J.K\=U(I.J.K’+A*(U(I+10J-K)+U(I‘1'J1K)+U(IqJ+1vK)
1"'“(11\"‘1 .K)+ll‘IQJQK+1‘+l](I.J!K-l)_b.*lj(I'J'K,)
?—UT/H*IO.?S*((U(I.J+1-K’+U(I-JoK"**Z'(U(I'J-K)+U(IqJ’vi’)**?)
3+0=75*((U(T+1.J.K‘+U(IoJcK))*(V(IvJ+lqK’+V(IqJ¢K)’-(U(I.J.K)+
4“(I-l-J.K"*(V(I—qu+loK‘+V(I-quoK))+(U(11J0K‘+U(IvJvK+13)*
S(H(TOJQK'+W‘IOJ+1'K)’-(‘,(I'J!K'+U(I'JQK—I,)*(w(IIJ'K—1’+w(I'J+1V
6K‘1‘,)+p‘l-J+vi'-p(IvJoK"+0.5*DT*U(I.JQK)*(CUNT(IvJvK‘
7+CONT(Tod+1K))

CONTTNIUIF

FOR BOTTOM CFLLS FRONT FNGE

1=?
K=?

NnOo 50 J=2.N1

RFS (TqJ-K‘=U(IoJcK‘+A*(U(I+1~J~K'+U(IvJ-vi)+U(IoJ+1'K’
1+ll(T-.I.K+l\—8.0*ll(I-J.K)l o
2=-NT/H%* (0. 265% (U T.J.K)+UL I.J+1.K) '**2—0.25*(U(I.J1K)+U( ToJd=1sKY)*%7
%+0.?5*‘”(rQJ.K,+U(I+10J!K’,*(V(I'JQK‘+V(I'J+1!K),+0°25*(U(IVJQK,
4%U(T-J-K+1)\*(W(IoJ~K)+N(IoJ+1.K,)+p(I'J+11K,—P(IquK))
5+0.5*DT*U(I.J.K)*(CONT(IoJcK)+CONT(I-J+loK)’

CONTINUF

Q

ROTTAM CFLL BACK EDNGF

2
L

T
K

SHERE

e R AR



NO &0 J4=7.N1 127
RES(TedeK)=t{Toed o KI+AX(U(T+LeJoeKI+U(Ted=1eKI+U(T4J+14K)
14+U(TedeK=11=80%U(TeJdeK))
D ITHHE (0 25% (U(T o J oK) +U( T J+1 1K) 1 %¥2=025% (Ul T, oK) +UIT4J=1,K) ) %2
3400 25% (UL Ted e KI+UCT+Le oK) IXIVIT o JeKV VI Tad+1 oK) V=00 25% (U1, J4K)
4ol Tod K= 1IN TodoK=1)+W (T J+LoK=1114P{T1J+1+KI=P(T,JaK)}
E4+0.5%NT* U TedoKV*(CONT( T4 JKI+CONTIT+J+1.K})
60 CONTINUF . : ‘

C
C U REMAINING ROTTOM CELLS
C
1=2
nO 70 d4=27.N1
no 70 K=20L1
RES(T.J.Ki=U(I.J.K)+A*(U(I+1¢JvK‘+U(IoJ-vi)+U(IvJ+19K)
l+ll('l.J'K-I)HI(I-J.K+1\—7.0*U(T«J.K))
?-DT*H*(O.?S*(U(I-JoK'+U(IQJ+10K“**2‘0.25*(U(IchK'+U(I-J’vi))**2
3*0.25*(U(1+10JGK‘+U(IOJQK' 1R(VI(]J+] vK,"'V(IoJ'K‘,“'OoZS*(U( T.J.K)
L# N To.chQ‘l"*(N‘IQJQK)""N(IOJ+10K')"0025*(U(IvJoK)+U( TeJeK=1) )%
5{wl ‘-J-K—"'Q'N(IvJ‘.'loK'l‘ ‘+P(I'\'+10K,-D(IQJQK' ""005*”1’*”(10\"}()*
6‘CﬂNT(T.J+l.K‘#C0NT(I'JQK)‘
70 CONTINUF
C
C U TNP CFLLS FRONT FDGE
C

1

)
=2

NN 80 Jd=2?.N1
RFS(IchK)=U(IvJ-K)+A*(U(I-I-J-K)+U(IoJ+vi’+U(IvJ—loK)
14’”(‘0.’.'("'1“‘8.0*”( I‘JoK,"'Z.O'
2=NT/HX(0a25% (ULTJ.K)+UL IoJ4+1.K)1%X2=0025%(U( TadsKY+D( Ted=1aeK) ) EX2
3-0.?5*(”(T-JvK’+U(T—10JoK’!*(V(MloJoK’+V(M1.J+1-K))*OoZE*(U(I-J.K)
GHU(TedeK+1) Y X(WL(T eJeKY#WLT vJ+1oK’)+p(IcJ+1'K3—P(IquV))
5+0.5*DT*U(TcJoK'*(CONT(IvJoK)+C0NT(19J+10K‘)
80 CONTTINUF
v
¢ U TNP CFLLS RACK FDGF
C
T=M
K=t
NnOD 90 J4=2.N1
QFS‘I-JoK'=U(I-JvK‘+A*(U(I-chqK)+U(IqJ+1vK)+U(IcJ”1vK)
+( -JoK—l'-B.O*U(IvJoK‘+2.0)
;-AT;H*(O.?S*(U(IchK’+U(I-J+1-K"**Z—Oozs*(U(IchK’+U(TvJ’vi“**Z
3—0.?5*(U(]-J-K'+U(I-I.J.K‘)*(V(Ml-JqK’+V(M1§J*1cK‘)—0925*(U(IquK)
4+U(TcJoK—l"*(N(!oJcK—l,+N(IoJ+1¢K—1)‘+P(IvJ+10K’-P(IkoK))
5+0.5*DT*U(InJ'K'*(CONT(IoJoK,+CDNT(IvJ+1vK))

90 CONTINUF ‘
C

C U FOR RFMATNING TOP CELLS
C

T=M

PN 110 J=2.N1

NO0 110 K=3.L1

RFS(I.J.K):U(I.J.K)+A*(U(I-1~J.KD+U(IoJ+1.K)+U(I'J-1vK’



C
C
C

C
C
C

C
G
C

C

C

C

128
14Ut TedeK+1¥+U( I'J'K"l"?‘O*U(10J'K’+2¢0,

7—DTIH*(0.?5*((U(IoJ#l.K)+U(IoJ.Ki)**Z-(U(IoJoKl+U(InJ-19K))**2)+

30.?5*(°(““0J0K‘+U( I=-1eJ.K) ,*‘V(M10J+1'K'+V(M1'JQK)‘+(U(I'J!K)+
GUITedoeKE1IIE(WIT oJeKIHWIIT e JHLl oK) ) =(U(T 4 JoKI+U(TodoeK=1)1%

S(H(I.J'K-l)+H(I-J+1.K-1\’$+P(IqJ+loK)-P(I.JqK))+0.5*DT*U(I.J.K)*

6(CONTITJKIH+CONT(TaI+1.K))

110 CONTINUF

\! AT REMAINING FRONT WALL CELLS

K=?

NO 100 T=3.M1

NO 100 .0=2.N1
RFS‘IQJ'K’=”('QJQK’+A*'U(I+1[J!K)+U(I-1'J!K)+U(IJJ+11K)
1+l’(IQJ-IOK‘+l,(!CJQK+1‘-7.0*U(IQJ'K"
?-DT/H*(O.?S*((U(YoJ.K)+U(I-J+loK‘)**2-(U(IvJvK)+U(IvJ-vi))**2)
3+0.?5*((U(T+1.J.K‘+U(11J0K),*(V(IqJ+loK)+V(IvJvK)’-(U(IquK)
4+"(l-chcK"*(V(1—1.J+1nK)+V(I‘10JoK\’+(U(IquK’+U(InJvK+1))
q*(“(IoJ.K‘+H(loJ+loK‘,)+P(IqJ+loK)-P(IvJoK"+0o5*DT*U(IquK,
6*(CUNT(‘oJoK‘+CONT(IoJ+1.K’)

100 CONTINIIF

U AT RFMAINTNG BACK WALL CELLS

K=L

NO 105 T=3.M1

NO 105 J=2.N1
RFS(I.J.K\=U(I.J=K)+A*(U(I+1.J.K)+U(I-1.J.K)+U(I.J+1.K|
1+U(I.J—1.K)+U(I.J.K—l\—7.0*U(I.J.Kl)
?-DTIH*(O.ZS*((U(I.J.K)+U(I.J+1.K‘)**2-(U(I'Jqu+U(I.J—1.K))**2)
3+0.75*((U(I+1.J.K!+U(I.JoK)l*(V(I.J+1.K)+V(I.J'K)\
4-(U(I.J.K!+U(I—1.JoK)l*(V(I*l.J+1.K)+V(I—1.J.K))—(U(I.J.K)
5+U(I.J.K-1))*(N(I.J.K—1)+N(I-J+1-K-1))l+P(I.J+1.K)-P(I,J.K))
6+0.5*DT*(CONT(I.J.K)+CONT(I.J+1.Kl’*U(I-J.K)

105 CONTTNUF

COMPUTF Vv AT T+DT AT ALL INTERIOR POINTS

AN 120 1=2.M1

DO 120 J=3.N1

no 170 K=3.L1
C(I-JQK‘=V(IQJQK‘+A*(V(‘O K1)
1+VI( T+1-JQK’+V(I’IOJQK‘-bo*V(IQJ.
Z—DT/H*(G.?S*((V(IquK‘+V(I+ch-K’)**2—(V(IquK)+V(I-loJoK))**Z)
3"'0.?5*((”(TCJQK)+U(I"l’loJcK’ yx(V( IOJQK,‘"V(I'J“'IQ
4+U(I-J—I.K\‘*(V(IcJ-K‘+V(IoJ—ch"+(V(IquK)+V(I-J9K+1‘)*

S{W( 'oJ-K,“'H( T+1ede
6K—1l)’*P(I+l~J-K‘-p(IcJ-K,|+0.

TV(TedeK)

5*DT*(CONT(I+1chK)+CONT(I.J.K’)*

120 CONTINUF

Vv AT LFFT HAND WALL FRONT EDGE

J=2
K=2

JCK+1)+V(I'JQK-1 y+Vi{ I.J+1!K)+V(IQJ—1'K)

K))=(U(I+1.Jd-1:K)

K)i-(V(IoJ.K)+V(IquK-llb*(H(IcJ-K—1)+N(I+1qu

A



NO 130 1=2.M1 129
C('oJoK‘=V('-J.K‘+A*(V(‘quK+l‘4V(IQJ*IQK‘*V(I*levK‘+V(I'11J'K)
1-Ra0FVI{TeJeK))
?-nr,H*(o.?s*((V(IOJQK,+V(I+1!J!K,,**2-(V(I'JQK)+V(I—1'J9K’,**2,
4075 ((U(TeJdeK)+U(TI+1ed oK) 1R(V(IedeKI+V(TeI+1eK) 1+(V(T,JeK)+
4V(10JoK#l”*(H(IchK’+“(I+10J0K‘"+P(I+1.J0K‘-p(loJoK"+
SO.S*DT*V(T.J.K’*(CONT(I+1.J.K\+CDNT(I.J.K')

130 CONTINUF

s Be R

Vv AT LFFT HAND WALL BACK FDGE
Jd=2?
K=t
NO 140 T=2.M1
C(IQJ-K'=V(TQJ0K‘+A*(V(IoJ+1cK)+V(I+1'J0K)+V(I-1vJvK’*V(IchK-l)
1-R.O0%VI{T.JeKI) ‘
7-DTIH*(O.?5*(‘V(IcJoK’+V(I+1-J.K)’**2-(V(IvJoK‘*V(I-lquK"**2)
3+O.75*((U(I.JqK)*U(I+1chK))*(V(I-JvK)+V(IoJ+1qK’,-(V(IvJoK‘*
4V('.J0K—l|'*(N(IoJoK-l‘+H(I+1.J.K-1’)‘+P(I+1.J'K)-P(IvJoK,)
5+0.5*UT*(CONT(I+1.J.K'+C0NT(I'J0K)'*V(IkoK) .
140 CONTINUF
C
¢ V AT LEFT HAND WALL <REMAINING POINTS
C
J=2
Na 150 Y=2.M1
NO 150 K=3.0L1
C‘Ic.ch)-’-V(I.JQK""A*(V(IQJQK"‘I)*'V(IoJQK'l""V(I"lQJ!K,"'V(I-leqK’
1+V(‘QJ""IQK"'-’.*V(I!JQK“ .
?-DT/H*(O.?S*‘(V(I-JQK’+V(I+1¢JQK,’**2‘(V(IvJvK)+V(I*1vJ9K)’**2’
3+0.75*((U(IoJ-K’+U(I+1~JvK"*(V(IoJoK)+V(I'J+11K)‘+(V(11JqK’+
4V(loJ-K*l‘\*(H(’-JoK‘+N(I+1¢J-K‘)-(V(IquK)+V(IoJ'K—1"*
5(“('QJQK—1)+H(I+1.JQK—1‘,’+P(I+1'J'K‘_p(I'J!K,’+005*DT*V(IQJQK)*
6(CONT(TQ-'!K'+CONT(I+1'JQK')
150 CONTTNUF
C
C V AT RIGHT HAND WALL FRONT EDGF ‘
(.
J=N
K=2
NO 160 T=2.M1 N
C(IOJQK,=V(IcJQK,+A*(V(IQJ’IQK""V(I*‘levK)"V(I'levK)*‘V(IkoK"'ll
1-8a0%V{TeJeK))
?-DT/H*(O.?S*((V(IoJoK)+V(I+1.J-K)'**2—(V(IquK’+V(I—11JvK)‘**2’
3+0.75*(-(”(I+1.J-1.K‘+U(!qJ—qu’)*(V(I'JoK)+V(IvJ’vi))+(W(IkoK)
334+W( I"'l'J'K"*
4(V(InJ-K’+V(IoJoK+1")+P(I+1chK‘—P(IvJvK' ) 40o5%DT:V(TaJdo
qK\*(CﬂNT(IoJ-K)+CONT(I+loJoK“
160 CONTINUF
C
C V AT RIGHT HAND WALL EACK EDGE
C
J=N
K=l

nO 170 [=2.M}

o et 1 v A



130

C(I.J.K)SV(loJoKl+A*(V(IcJ-loKD+V(I+1cJ.K‘+V(I-1oJcK)+V(IkoK-li

1-8.0%V(TedeK))
2—DT/HX(0e25%( (V(TedeKI+V{T+1eJsK))*%2~
3+0.25*(—(U(I+loJ~1.Kl+U(I-J'loK'l*(V(I

(VIIeJoKI4VII=-1,J.K))*%2)
e JeK) V(T J-1.K) )~

4(V(IcJ.K\+V(IoJ.K—l\)*(H(I.J.K-1)+H(I+1'JoK-1!|)+P(I+19JcK’-
SPII.J.K)\+0.5*DT*V(I.J.K!*(CONT(IkoK)+CONT(I+1chK))

170 CONTINUF

C

C V AT RIGHT HAND WALL <.REMAINING CELLS

C
J=N
nn 180 1=2.M1
NO 180 K=3.L1
C(‘OJ.K‘=V(I'J'K‘+A*(V(IOJ'K+1'+V(I'J9
1*V(IoJ-loK‘-7.0*V(anoK,‘

?-DTIH*(O.?S*((V(I.J.K'+V(I+1-JoK’)**2-

3+0.25*(—(U(I+1~J-1-K|+U(IoJ-lqK)\*(V(I
4(V(l.J.Kl+V(I.J.K+1‘)*(H(I-JoKl+H(I+1q
5*(“(I.J.K-l)+H(l+1.JoK-1)l)+P(l+1vJvK)
6*(CnNT(I+l.J.K!+CONT(IoJoK’)
180 CONTINUF
C
¢ V AT FRONT WALL REMAINING CELLS
C
K=2
N0 190 1=2.M1
N0 190 J=3.N1

c‘IQJOK,=V(tQJ'K‘+A*(V(I!J+1‘K‘+V(IQJ-

1+V(I.J-K+1!—7.0*V(I.J.K\l

K-1‘+V(I+1'J!K)+V(!-IOJ'K’

(V(IvJvK‘+V(I'1'J'K’)**2‘
oJ'K’+V(IcJ-19K“+
J'K"-(V(I'JQK)+V(IQJ'K-1”
-P(I'J'K"+0.5*DT*V(I'J'K‘

1!K,+V(I+1'J'K,+v(I-l'JQK,

?-DTIH*(O.?S*((V(I.J.K)+V(I+1.J.K))**2-(V(I-J.K)+V(I—1'J'K))**2)
3+0.25*((U(I.J.K\+U(I+1'J.Ki)*(V(I-J-K)+V(IoJ+1-K))-(U(I+19J—1.K)

4+U(I.J—l.Kl)*(V(I.J.K)+V(IcJ-1cKl)+(V(

I'J'K‘+V(I'J'K+1))*

S(H(I-J.K)+N(I+1-J.K)\)+P(I+1.J.K|—P(loJcK‘)+0.5*DT*V(I¢J.K)*

6(CONT(I+1-JcK\+CONT(I.J.Kil
190 CONTINUE

C
C V AT BRACK WALL REMAINING CELL
C

K=L

nO 700 1=2.M1

nn 200 J=3.N1

C(I-J.Kl:V([.J.K)+A*(V(I.J+1.K)+V(I.J-

1+V(I-J.K—l\—?.O*V(I.J.K))
?-DTIH*(0.25*((V(IoJ-K3+V(I+1v

3+0.?5*((U(IoJ.Ki+U(I+11JoK))*(V(IoJ-K'+V(IqJ+
4+U(I.J—I.K\l*(V(I.J.K)*V(IcJ—loKl)—(V(IoJoK)+V(Iv
S(H(I.J.K-l|+H(I+1oJoK-1‘))+P(I+1.J.KV—P(I'JcK\‘+0.

6*(CONT(I.J.K)+CONT(I+1.J.K))
200 CONTINUF

C
C W AT ALL INTERTIOR CELLS
C

nn 210 1=3.M1

po 210 J=3.N1

no 210 K=2.11

10K‘+V(I+19JQK’+V(I-1!JVK)

J-Kl)**Z—(V(IoJ.K|+V(I-1'J.K‘)**2\

1-K)\—(U(I+1.J-11K)
JeK=1))*
5&NTEV(TeJeK)

Q



PHI(loJoK’GH(IkoK)+A*(H(IvJvK+l’*H(!vJvK'1’+H(I+quvK’ 13l
1+W(1-=-1 chK‘Q“(ItJ*lQK,+H(IoJ‘ltK"b.O*"(choK, ) -
7DT/H*(0.25*((H(IcJoK‘*H(I-JoK+1'|**2'(“(19J|K'*“(IkoK-l”**Z,
3*0.25*(("(‘lJtK’*U‘IvJvK#l"*‘“(IoJcK’*“(IvJ*ch"“
“(U(!QJ-IQK‘+“(IOJ-1.K+1’,*(“(I'JOK’+“(I'J-1'K"+(v(lOJ'K'
5+V(I-J-K+l"*(“(IkoK'+H(I*IOJOK"—(V(I-levK'*V(I-levK+1)’
6*(“‘IoJcK’+H(I-choK,"*P(IvJoK*l)‘P(I'JqK”+Oo5*DT*H(IkoK’*
T(CONT(T<JKIHFCONT(ToJeK+11)

210 CONTINUF

C
C W AT RIGHT HAND WALL BOTTOM EDGE CELLS
C

1=2

J=N

NO 220 Ks2.L1
PHI( IoJ-K'zw(IoJOK“"A*(“(I'J-IOK".’“(I*'IOJ'K,"'H(IvJvK"’l)*’N(I'JqK"l’

1-8.0*“( IIJQK,‘
?—DTIH*(O.?S#((H(l.J.K!+H(IoJ¢K+1$!**2-(H(I.J.K)+H(I.JcK-l))**Z)
1+0.25*(—(U(I.J-l-Ki+U(I.J-1.K+1’l*(H(I.J.K)+H(I-J—1.K¥)+
4(V(I-J.K|+V(I-J.K+1|)*(H(I.J-KD+H(I+1.J.Kl))+P(I.J.K+1]
S—P(I.J.KlI+0.5*DT*H(I-J.K)*(CONT(I.J.K!+CONT(I.J.K+1))

220 CONTINUFE

C
C W AT RIGHT HAND WALL TOP EDGE CELLS
C
T=M
J=N
NN 230 K=2.L1
pHI(I-J-K)=H(IoJoK)+A*(N(IoJ-lqK)+H(I°1-JqK)+N(IkoK+1’+W(IquK-l)
I-B.O#H(IoJ.KH
?—DT*H*(O.?5*((H(IoJ'K‘+N(IqJ.K+1))**2‘(“(IvJvK‘+H(IvJoK-1)‘**2)
3+0.75*'—(U( 1 oJ‘vi""U(IoJ"loK"‘l, YE(W(Tede K)"‘“(I'J-IQK”
4-(V(I-10J.K|+V(I-loJoK+1‘)*(H(IvJ-K'+H(I°1vJoK))’*P(IvJvK+1)
S-P(I-J.K‘)+0.5*DT*N(I.J.K'*(CUNT(IqJ-K)+CONT(IvJvK+1)’
230 CONTINUE
C
C W AT LEFT HAND WALL BOTTOM EDGE CELLS
C
1=2
J=2
no 240 K=2.11
PHI(T-J-K’=H(I.JcK'+A*(N(IvJ*ch)+H(I+1~JcK)*N(IvJvK+1)+W(IquK’l)
1-8.0%W(TeJeKI)
2°nT/H*(O.?5*((H(I-JcK)+H(I-J0K+1))**Z—(N(I'JvK)*H(IvJoK°1))**2)
3+0.25*((U(T:J-K)*U(IoJcK+l))*(H(IcJoK)+N(IvJ+10K')+ q.l
4(V(l-JoK‘+V(IcJoK+1“*(U(IvJoK)+H(I+1.J.K))’+P(IvJ-K+1)
5-P(I-J.K‘)+0.5*DT*H(IoJcK)*(CUNT(IchK)+CONT(InJvK+1))
?40 CONTINUE
C
C W AT LFFT HAND WALL TOP €EDGE CELLS
C
1=M
4=2
NO 250 K=2.L1 .
PHI(I-J.K|=H(I~J-K)+A*(H(IcJ+1¢K)*W(I-1'JoK’+H(IoJ9K+1‘+W(IvJ'K-1)
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132
1’8.0*“(I'J.K‘,
7-DT/H*(0.75*((H(loJoK‘*N(IoJcK+1)’**2-(H(IquK’*W(I}JoK-l"**Z)
%+0.25*((U(I-J.K)+U(I-JqK+1H*(H(I.JoK)+H(I.J+1.K)l—
4(V(I-loJoK‘+V(l‘quvK*l"*(N(I¢J0K|+H(I'le'K’)'+P(IvJvK+1,’
SP(IoJoK"+0.5*DT*H(I.J-K'*(CONT(IoJoK)+CONT(I'JoK+1’)

250 CONTINUF
C
C W AT REMAINING RIGHT WALL CELLS
C
J=N
N0 260 T=3.M1
N0 260 K=2.L1
PHI(I.J.K)zu(IoJ.K)+A*(H(I.J—1.Kl+N(I+1oJ.Kl+N(I-le.K)
1+u(I.J.K+1i+u(I.J.K-ll—?.O*H(I.J.K!‘
?-DT/H*(O.ZS*((H(IoJcK)+H(I.JqK+l"**2-(W(IoJcK)*ﬂ(IquK-l)‘**Z)
340, 25%( -(U(IoJ‘loK)+U(IcJ—loK+1)’*(W(I-J;K)+H(I~J-11K)'
4+(V(IQJQK"”V(IOJ!K+1)'*(w(I'J.K,"'“(I+1'J.K"-(V(I_1!J'K,+
5V(T-l-J.K+1‘)*(“(IcJoK,+H(I’loJoK')’+p(lquK+1)—P(IqJ9K,’
6+O.5*DT*U(IoJoK’*(CONT(IquK)+CUNT(IvJoK+l)’
260 CONTINUE
C
€ W AT RFMAINING LEFT WALL CELLS
C
J=2
NO 270 I=3.M1
NnO 270 K=2.L1
PH‘(IQJ.K‘=N(I-J-K)+A*(N(InJ+1qK‘+H(I*levK'+W(I-1vJ-K,
1+H(IOJcK+l‘+H(IvJvK’l"‘?.O*w(IQJOK’)
Z—DT/H*(O.ZS*((H(I'JoK’+U(IquK+1))**2—(H(IOJ0K,+W(I'JvK-l))**2)
3*0.25*((“(1-J'K)+U(IquK+1‘)*(H(IoJcK)+H(IqJ*lqK)‘+(V(IvJvK,
4+V(T-JcK+l))*(H(IchK)+H(I+1.J.K"-(V(I—lquK'+V(I‘10JqK¢1’)
5*(“(1.J-K‘+H(I-1.J.Kl))+P(IvJoK#l‘—p(I-JQK',*O.S*DT*H(I'JQK,
6*(CﬂNT(IoJ.K\+CONT(I'JqK+1"
270 CONTINUF
C.
C W AT RFMAINING ROTTOM WALL CELLS
C
1=?
nNO 280 J=3.N1
nNO 280 K=2.L1
PHI(I.J.K):H(I.J.K\+A*(H(I.J+1.K\+N(I.J—I.K)+N(I+1.J.K)
1+u‘I'J!K‘.’l‘+u(I.J!K-l’-7.0*“(IOJ.K))
?-DT/H*(O.?S*((H(IoJ.K)+H(IquK+1))**2—(W(IquK)+H(IvJvK-l)‘**Z’
34‘0.75*((“(IkoK'ﬁ’U(I.JvK"'l,,*(H(IvJoK“"H(IvJ"‘vi‘)
4—“!(IoJ"l-K""U(IcJ-ch*l),*(H(IqJ'K'+H(IoJ"1vK))+(V(I'JqK)
5+V(IOJ-K+1“*(H(IchK"“H(I*’lOJQK,,’+P(I'JvK+1“‘P(IvJvK"
6+0.5*DT*H(IquK’*(CUNT(IchK)+CONT(I'JcK+1)’

280 CONTINUF
C
C W AT REMAINING TOP WALL CFLLS
C
I=M
nn 290 J=3.N1

N0 290 K=2.11

PHI(I.J.K)=H(I.JoK‘+A*(H(I—1qJ.K)+H(I.J+1.K‘+H(I¢J—11K)
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1 4% ICJ'K’I"‘H(IOJQK-I‘-7.°‘“(I'J.K’,
?-DTIH*(O.ZS*((H(IoJoK‘+U(IoJoK+1"**2°(W(IchK)+ﬂ(IvJvK-l,’**2'
3*0.25*((U(loJoKi+U(IoJoK*1')*(H(IoJoK\*N(IoJ*loKl’-(U(I.J—vi’
4+U(loJ'loK#l"*(H(IoJoK‘+H(IoJ-loK"-(V(I—loJoK*l)*V(I-l'JoKl3
5*(H|ToJ-K‘+H(I-l.J-K"\+P(I.J.K+1'-P(IcJoK"+005*DT*H(IoJ'K)
6X(CONT(TeJKIFCONT(I S K+l
290 CONTTINUE
DO 300 I=1.M
D0 300 .J=1.N
NO 300 K=l.bL
"‘IQJ'K"RFS(I'J'K‘
VITeJdeK¥=C(T,deK)
300 WlI«JaKI=PHI(T.JoK)

CALCULATION OF CONTINUITY

NC 350 I=z=2.M
D0 350 J=2.N
N0 350 K=2.L
CDNT(I.J.KD:(U(I.J.K‘-U(I.J-I-K|+V(I.J.K)-V(I-I'J-K)+H(I'JqK)
1-Wl{TeJeK=111/H
350 CONTINUE
J=2
J7=N
N0 360 T=32.M
DO 360 K=2.L
CﬂNT(I.J-l.K!:-CONT(I-J.K)
360 CGNT(I.JZ+1.K)=—CUNT(I-JZ.K)
I1=2
17=M
NO 370 J=2.N
NN 370 K=2.L
CONT(I—I.J.K)=—CONT(I-J.K)
370 CONT(IZ+1.J.K)=-CONT(IZ.J-K)
K=2
KZ=L
NO 380 [=2.8
N0 380 J=2.N
CDNT(I.J.K-1)=-CONT(IoJoK’
3180 CONT(I.J.KZ+1)=-CUNT(I.J.KZ)

COMPUTATION OF PRESSURE VALUES
FIRST CALCULATE PHI

851 NN 400 1=3.M1
DN 400 J=3.N1

no 400 K=3.L1
PHI(I-J-K)=0.25*((U(I'JcK'+U(IoJ+loK))**2—2.*(U(19JvK)+U(IoJ—l'K))

l**2+(U(‘oJ“ch)+U(IcJ-20K',**Z+(V(IchK'+V(I*1chK)‘**2-2.*
2(v( 'QJQK"’V( I-1eJeK} '**24’(\’(1’1.\".(’
34V I-ZOJ.K‘ ‘**2‘*("(19"1’(""“( IvJvK"’l’ ) %%2-2,4

4**?,4»(5‘(I.J.K-1l+H(I.J.K—2) ) *%2}
547.*(0.25*((U(I+10J.K‘+U(I-J-K‘)*(V(IvJvK‘+V(I-J+vi“
6—(U(IoJcK’+U(I-loJoK"*(V(I-chnK,+V(I-1|J+10K))-(U(I+1vJ—19K‘

*(W(IadeKI+W(TedsK=1))
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T+ U(IoJ-loK"*(V(loJcK'+V(IoJ-vi’)+(U(IoJ'1vK)+U(I-l.J-vi’!
8*(V(I‘10J0K‘#V(I’lQJ‘loK"+(U(IOJQK,5U‘IOJQK41’,*(H(IvJQK,*
OW(Ied+1.K) )
400 CONTINUE
NO 410 T1=3,M1
N0 410 J=3.N1
NO 410 K=3,.L1

PHI(I.J-K‘zPHI(I.J.Ki-((U(IcJoK)+U(IvJoK-l))*(H(IquK-1’+U(IcJ+1c
1K—1‘!-(U(I.J-1.K)+U(I.J-loK+1')*(H(IcJ.K’#N(I.J—loK,)+(U(I'J—1oK)

?+U(l-J-1.K-li)*(H(I-JoK—1’+H(IoJ-loK-ll)*(V(loJoK)+V(IkoK+1)’
3*(H(IcJoK\0H(I+quoK\!-(V(IoJ.K)+V(IcJ'K-l))*(H(IcJoK—ll+H(I+1o
4JoK—lll-(V(I-l.J.K’*V(I-l-J.K+1!l*(H(I.J.K|+H(I°1oJoK))
5+(V(I-loJ.Kl+V(I-1'J.K-1!l*(N(IcJoK-1)+H(I-1'JoK-1))‘*0.50
410 CONTINUE
NO 420 I=2.M
DO 420 J=2-N
NG 420 K=2.L
PHI(I.J.K|=PHI(I.J.K)—H*((U(I.J.K’—U(IoJ-l,Ki)*CONT(IquK)
l+0.25*(U(I.J.K)+U(I-J-ch’l*(CONT(I.J+1.Kl—CONT(I.J—1'K))
?+(V(IoJoK)-V(I-qu.K))*CONT(IoJoK)+0.25*(V(IoJ'K’+V(I-loJoK"*
Q(CONT(I+1.JoK|—CONT(I-l-JoK|i+(H(IchKl-H(IoJoK-l’)*CDNT(IchK)
4+0.?5*(H(l-JoK!+H(!oJoK-1))*(CUNT(I.JoK+1)-CONT(I'JoK-1)l,
S—I.IR*(CDNT(I.J.K+1)+CGNT(IoJoK—1)+CDNT(IcJ+1qK)+CONT(IqJ—l-K)+
6CONT(I+1.J.K)+CONT(I-l.J.K‘-b.O*CONT(I.J'K)l-H*HIDT*CDNT(I'JqK!
470 CONTINUF

PHI FOR RANTTOM WALL
I=2

no 425 J=3.N1
non 425 K=3.11

PHI(I.J-K)=O.25*((U(I.J-K|+U(I-J+1.K))**2-2.*(U(I9J1K'+U(IoJ—1vK))

1**2#(“(1-J-1.K)+U(IvJ“ZoK')**2+(V(IkoK)+V(I+10JoK"**2-(V(11J'K)
7+V(‘—1.J¢K"**2+(H(ItJvK'*N(IcJ-K*l“**Z-Z.*(H(IquK‘+H(IvJoK*l‘)
3**?+(H(I-J-K-1i*w(IcJoK‘Z"**2‘
4+?.*(0.25*((U(I+1.JcKl+U(IchK')*(V(IoJ'K)+V(IvJ+1vK)"(U(I+1v
SJ-IQK""U‘IQJ-IQK‘,*(V(I'JOK'fv‘IQJ—IQK,,+(U(IQJQK‘+U(IvJoK+1),
6*(“(IoJcK)+H(IcJ+ch)’—(U(IchK)+U(IvJoK-1"*(N(IchK-l)*H(IoJ+lv
7K-l‘|—(U(I-J-l-K‘*U(IvJ‘vi+1)’*(W(IquK)+H(IoJ-1nK’)+(U(10J-lqK)
8+Ul1 cJ"l-K"l"*(N(Iv-!OK-I‘*'H(I!J"l K-1) Y+ (vt IvJvK)""'V(I!JvK*‘l”
9*(“(I-JnK‘+H(I*10JoK‘)"+PH!(I'J0K'

PHI(I.J.Ki=PHI(I.J.K‘-O.S*(V(I~J.K)+V(IquK—l)!*(H(IqJ.K—1)+H(I+19

1J.K-11)
475 CONTINUF

PHT FOR BOTTOM FRONT EDGE

1=2
K=2
NO 430 J=3.N1

PHI(I.J-K‘=0.25*((U(I.JoK)+U(I.J+1oKi)**2-2.*(U(I'JvK)+U(IsJ‘lqK))

l**2+(U(I.J-l.K'+U(I.J-2-K))**2+(V(IoJ'K'+V(I+1.JcK¥)**2-(V(I'J.K!

24viI-1 Jo KV XX2+ (W (T
3+2.*(0:25*((U(l+1.JoKD+U(IoJoK\i*(V(IoJ.K‘+V(IoJ+loK))
4-(U(I+1-J-1-Ki+U(IoJ~1oKll*(V(I.J'K)+V(I'J-1'K\l+(U(I'JoK)+

J.K)+H(I-J-K+1l)**2-(“(I'J.K\+H(I'JvK-1))**2)
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SUCTedeKe1 IV E(HIT o doKI+W( ToJ+1 oKD I=(ULT¢J=1,KI+U(T4J=1,K+1)}
6*(U(loJ.Kl+H(I.J—l.K’)#(V(I'J-K)+V(IquKfl‘)*(H(I:J.K;+H(I+10JoK))

TIV4PHI(T JSK)D
430 CONTINUE

PHI FOR RAOYTOM BACK EDGE

1=2

K=L

NO 440 J=3.HN1

PHI(TedoeKI=0e25% ((U(T4JeK)+U(TsJ+1
1**2+(U(I.J-loK)+U(!oJ-2.KD)**2+(V(
24V IT=1ed K) 1 %XE24+ (W T JK-1V 4N (I e
23%%2) +2,0%(0e25%((U(T4JeK)+U(I+14J
4-(U(I+1.J-1.K|+U(I.J-l.K))*(V(I.J.
SU(I.J.K-ll)*(H(I.J.K-1‘+H(IoJ+1oK—
6*(“(I.J.K—ll+H(I.J-I.K-I)’-(V(I-J.
TWT 4L e doeK=11 11 V4+PHI(T+SeK)

440 CONTINUE

PHT ROTTOM RIGHT EDGE

1=2

J=N

NN 450 K=3.011

PHI(IcJoK‘=0.25*((U(IoJ“loK
1**2+(V(1-J-K1+V(I+11J.K"**2'(V(Iv
2“(ToJ.K+1"**2-2.*(“(1.J0K'+H(Ich
3%%2 ) *2.0*(0025*(-(U(I+10J‘10
4-'“(IqJ‘loK'+U(IOJ‘10K+1’)*(H(Iko
5“(‘-J—10K-1‘)*‘N(IchK-l'+H(IvJ-1v
6*(“(I-JoK\+“(I+10J'K"-(V(IoJc
7H(I+10J.K-1""+th(IQJQK‘

450 CONTINUF

PHI POTTOM LEFT EDNGE

2
?

T
Jd
nn 460 kK=3.L1
pHI(I.J.K‘=0.25*((U(ICJQK
1+(V(I-J.K|+V(‘+1.J0K')**2‘
?H‘IOJQK+1“**2-2.
3%%2) +2.0*(0.25*((U(I+ch-K‘+U(Iq
4+(U(I.J.K‘+U(loJcK+l')*(H(IcJoK'
5*(“(I-J.K-l’+H(IvJ+loK‘1))+(V(Iv

6J.K)\-(V(I-J.K)+V(I-J.K—1)l*(H(I-J.

460 CONTINUF

PHT ROTTOM LEFT FRONT CORNER

1=2
J=2
K=2

PHI(Y.J.K!=0.25*((U(I-J.K\#U(4~J+10K)l**Z—(U(IoJ.

Y4U(T e J=2,K) ) R%2=

K‘+U(IQJ-10

KI+V(Iede

YHUCT o J+1 . K) ) %%2~
(V(TeJdeK)#V(I-14Jo
*(“(IoJoKl"’“( Toede
JeKIIE(V(Ia
+W(IsJ4le
J'K|+V‘IvJv

vK)'**2-2.*(U(IvJvK‘+U(IoJ-loK’)
l'JCK,+V(I+1'J'K,'**2-(V(I'J1K’
K=2) 1 %%2=(W{I o JsKI+W(IoJeK=-1))
dKIIE(V(T o JeKI#VIIoJ41.K))
KY+VITod=1eKY)=(UC(TI,JaK)+

1+ (U(T4J-1.KI+U(T43-1,K=1))
K)+V(I'J'K-1,‘*(H(I'JQK-1‘+

(U(I'JQK,*U(I'J-IQK))
JQK‘+V(I-1'JOK"**2+(H(I'J'K‘+
K—l"**2+(H(IkoK-1‘+H(IvJsK°2"
K))*(V(IvJoK’+V(I-J-11K’)
K‘+H(IQJ“10K)‘*(U(IOJ-IOK‘+
K-l,,+(V(I'J'K,+V(IQJ'K+1"
K=11)%(W{IsJeK=-1)+

N

(U(IQJOK)+U(IQJ-19K"**2
Ky ) %24 (W(TaJaKY+
1‘)**2*(”(1.J0K-1)+H(IcJoK-Z)‘
J!K‘+V(IQJ+1'K"
K‘,-(U‘I'J!K,+U(IQJ'K-1"
K+1))*(N(I'JqK‘+H(I+1'
K‘1‘+W(1+1chK-1"))+PHI(I¢JOK‘

K=

KY+UC T4 J=1.K) ) %X2
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T (WIT e JaKI4WIToJe K41 I ZX2=(W(TeJoK)4W{ToIeK=1))%%2+
LVITHL e JeKI4VIT o oK) 12V (Ted o KISV T=14JaK) )*%2)
242,0%(0425%( (U(T4+1eJeKIFULToJeKIIXIV(TGJoKIEVIIJ+14K))

BT deKeLIHUT o JeKIIE(WIT e JeKI4W(T o J4L o KN HIVIT U KI4V(ToJeK+1))

GRLM(TedKISUITHL o dKINII4PHI(T I K)

PHTI ROTTYNM RIGHT FRONT CORNER

NZNV

T
"
K=2
PHIC(T«JoaK)=0625%( (ULT o J=1eK)+UCT+J=2,K)I%%x2=(U T+ J+KI+U(T4J~14K})
1224 (VIT41ed oKVI4VITod oK) I XX2=(V(ToJoKI4#VII=1adsKI)ER24+(W(T,JoK)+
2W(Tede K112 (W(TodoKI+W(TsJoK=1))*%2})
342 0%( 00 25% (= (UCT+14J-1eKI+U(T43=1+K) I R(V(TsJeKI+V(I,J=1,K))
G=(UlTed=1 oK)+ T o J=1 oK+ I IR(W{T o JoKI4W(ToJ=1oKII+(V(I oK)+
SVITado K411 IX(WIToJoKISWIT+10JeK) DI I4PHI(T,JI4K)

PHI RAQTTOM RIGHT BACK CORNER

I=2

J=N

K=L

PHI(I.J.K’=0.25*((U(IoJ~1.K)+U(IoJ-Z-K)‘**2-(U(!.JcK)+U(I'J-1qK))
1*%24+(V(T JeKIHV(T 4L eJeK) I RE2=( V(T4 JeKI+VITI=14JsK) I **2+(W(I,J,
2K=114W(TedeK=2) 1 %k%2=(W(TeJoKI+W(IeJsK=1))*%%2)
3+2.0*(0.25*(-(U(I+1.J-1-K)+U(IqJ-lqu)*(V(IkoK)+V(I'J—1cK))
&+(U(I.J-l.K)+U(IoJ-vi—lii*(H(IcJ.K-1)+H(I.J—1oK—1\)-(V(I'JoK)
5+V(I.J-K—l)l*(H(I-J-K-1)+H(I+1-JoK—ll)))+PHI(I.J.K)

PHI BOTTOM LEFT BACK CORNER

Honh
~ NN

1
J
K

PHI(I.J.K'=0.25*((U(I.J.K)+U(I.J+1'K))**2—(U(I.J9K)+U(IoJ-l'K))**Z

l+(V(I.J.K|+V(I+loJ-K))**Z—CV(I-J.K)+V(I-1.J'K))**2+(H(IoJ'K-1)
24W(ToedoK=211%¥2=(W(ToJsKI+W(TsJeK=1))%%x2)
3+?.0*(0.25*((U(I+1.J.K|+U(IkoK’)*(V(I.JcK)+V(IoJ+11Kl)
4-(“(I.J.K)+U(I.J.K—1|)*(H(IcJoK-1i+H(IoJ+1-K-1)’—(V(I'JoK)
5+V(I.J.K-i!)*(H(I.JoK-1'+N(I+1-J.K—1)))’+PHI(I.J-K)

PHT LEFT HAND SIDE WALL
J=2

no 470 I=3.M1
NO 470 K=3.11

PHI(I.J-K‘=O.25*((U(I.J.K)+U([oJ+1.K))**2—(U(I.JvK)+U(I;J-vi‘l**Z

l+(V(I.J.K)+V(I+1.J.Ki)**2-2.*(V(IoJ'K)+V(I—1'J-K))**2+(V(I-1.J.K)
7+V( ‘—?‘CJOK"**2+(H(I.JQK‘+“(IQJ1K+1,'**2"2.*("(I'J'K)"“(IQJ'K"I’)
3**2+(H(IcJ-K—1)+H(I.JeK-Zli**Z) +2.0*(0.25*((U(I+1.J.K)+U(I.J.K))
4*‘V(IOJ.K""V(I.J*I.K"‘(U( I‘J'
S.Kil+(U(I.J.K!+U(I.J-K+1)l*(H(I.J.Kl+H(ch+1oK))—(U(IvJ'K)+U(IqJ.
6K—l))*(H(I-J.K-1)+H(IoJ+1.K-1)i+(V(IchK)+V(I-J'K+1))*(H(I.J'K)
7+H(I+1.J.K')—(V(IcJ.K)+V(I.J'K—I)l*(H(I.J-K-1)+W(I+1'JqK-1))

KI4U(T=10Jde KN R(VII=1sJe KI+V(I-1,J+1

Q
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14 (W T eJeKI4W(T,JdeK+1) JRE2—(W(ToJoK)+W{ TeJoK=1))%%2+
I(V(T#I-J-K\+V(I.J0K|)**2°(V(choK'#V(!‘loJ-K),**2)
2*2.0*(0.?5*((U(l+loJoK)¥U‘loJoK"*(V(loJoK’*V(IoJ*vi"
3*("(I-J-K#ll+U3!anK',*(H(IoJoK)ﬁH(10J+10K"*(V(I.JvK‘+V(IquK*l)’
4*(“(!0.'0K'+“(I’10J'K,”)"PHI(I-J-K,

PHT ROTTOM RIGHT FRONT CORNER

1=2

J=N

K=2

PHICT «JoeK1=0e25%((UIT o J=1 e KIH+U(ToJ=24K)I%X2= (U T o JoKI+U{ Tod=1,K1})
15524 (VII4Yad oKI+VIT e JoKI I XX2=(V(ToeJoKI4V{T=1oeJeK) I XKk24{W(T,JoK)+
2W(Tedoe K411V RX2 (W T KI4+W(ToJeK=1))%%k2)
342 0%(0e25%(=(UT410J=1eKI+U(ToJ=1eKIIX(V(TIJsKI+V(T,4J=1,K))
G=(UCTed=1 oKV 4U T o U=1 e K+II I R(W(T o JoKI+W (T oJ=1+K}II+(V(I,JeK)+
SVII e Je K+1IIER(WIToJeKISWITI+L0JeKIIIIHPHI(T 4 J,K)

PHI RAOTTOM RIGHT BACK CORNER

I=2

J=N

K=L

PHIC(T e deK)=0425%({U(T o J=1eKI+U(TeJ=2+K) )2~ (U(T+JoK}+U(TvJ=1.K))
1%%24 (VT cJeKI4VIT410J oK) IRX2-(VITeJoKI+VII=14JoK)}%%2+(W(TWJ,
2K=114W(TeJeK=2) ) **2-(W{TeJoK)+W(TeJsK=1))%%2)
342.0%(0425%(—=(U(T+14J=1eKI4U(T2ad=1KIIX{V(TeJeKI+V(T,J=-14K)})
64MUCTI=1eKI4U(T o=l oK=11)%(WIToJeK=1V4WI{ToJ=1,K=1))={(VIIsJsK)
S4VITedeK=11 1 %k(M{ToJeK=11+W{TI+1eJsK=1)})I4+PHI(T4+J.K)

PHT BOTTOM LEFT BACK CORNER \

Xl ™
non i
~ NN

PHI(T e JoK)=0a25%( (U(TedeK)+U(T oI+ K)IR#H2-(U(T+JKI+U(TsJ=14K)I%%2
14(V(T e JeKISVIT4+L e J oK) I EK2=(V(TeJeKI+V(I=1,JsK) I %%x24+(W(I,JsK=-1)
24W( T o daK=21 %Rk (W(T oK +W(ToJoeK=1))%%2)

342, 0%( 0025k f (U T4 eJoKI+UCToJeKIIX(V(TJoKIHVIILI+1,K1)
H=(1I{TedeKIHU(TJeK-1} ,*(H(I'JOK"I""H(I'J"'IQK“I"-(V(IquK)
5“'V( I'J'K-l"*(u(IOJOK’I""H(I"’I.J’K-I,»',+pHI(I'J'K)

PHT LEFT HAND SIDE WALL

J=2
NN 470 I=3.M1

N0 470 K=3.L1 4
PHI(I-J.Kl=0.25*((U(I-J-K)*U(IoJ+1.K))**2-(U(I'JqK)+U(IvJ-loK))**2

+ . .K’+V(I+1.J.K‘)**2-2.*(V(IcJ-K)+V(I-l'JoK))**2+(V(I-19JcK)
;+€¥§12fJ.K)i**2+(H(I.JoK)+H(IqJ.K+1)'**2—2.*(H(I‘J-K)+N(I.JoK-1))
3%k24(W(TeJoK-1V4W( ToJeK=2) ) %%2) 42e0%(0e25%((U(I+1,J.K}+U(T,4JsK))
4*(V(I.J.K'+V(I.J+1.K!)—(U(IcJ.K|+U(I-ch.K!)*(V(I-le'K)+V(I—loJ+1
S.K))+(U(I.J.K)+U(I.JoK+1))*(H(I.J.KD+H(I.J+1.K))—(U(IoJoK)+U(IsJ-
6K-l))*(H(I-J.K-l)fw(loJ+1.K-1)’+(V(I.J.K)+V(I.JoK+1))*(H(I.J'K)
7+H(I+1-J.K|)-(V(I.J.K)+V(I-J'K—l)’*(H(IcJoK-1)+w(I+1'JvK—1))
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B=(VIT=1edeK)+VII=1eJeK+1 M) *(W(TeJoK)+W(I~14JeK))

G+ (VAI=1eJ oK) 4VIT=14JeK=1) I %W T, JoK= - -
470 CONTINUF odo s JoK=114W(T=14JsK=11 )1 ) +PHI (T+J,K)

C
C PHI RIGHT HAND SINF WALL
C
J=N
NO 480 T=3.M1
NO 480 K=3.01
PHYI(T e JoK¥1=0o25%( (U T4 J=1eK)+U(T4J=2.K))%%2=(U(I,J K}+U(I,JI-1,K))
124 (VIT o JeKI#V(I41 o JoK) 1EX2=-2,k (VT oJeKI4+V(I~1oJ oK) I%E24(V(I-1,J,
2KI4VIT=24JeKI 124 (Wl TaJeKI4W( ToJo K1) 1 %%2-2, %(W{I+JeKI+W(I,J,K-1)}
BVEE24 (WL «JeK=114W( T JeK=2)1%%2142,0%(0625*(-(U(T+1,J-1,KI+U(T.J-1
GoKIVRIVITadoKI4VITed=1+KII+(U(T o J=14KI+U(I=14J=1.K)I%E(VII-1,J,K)
E4VIT=1ad=1e KNV =(U(TJ-1K)F+U(T «J=1oK+1 )V (W{ToJsKI+W(TII-14K})
64 (UCTed=1 KV +U(T ¢ J=1eK=110%(W T odeK=1)4W{I4J=1eK-1)IH(V(IsJuaK}+V(]
Tede KLV E(W{TaJoKIEWET 41 oJoKI )= (V(ToJoeKI+VIToJeK=11I*(HW(IyJeK=1)+
BWIT4LedeK=110=(V(I=1edeKIH+V(I=1eJeK+1IIE(W(I,JoKI+H(I-14J.K})
Oa(VIT=T e d oKV 4VIT=1eJoK=11 12 (W(T e JeK=114W(I-10deK=1)) ) I4+PHI(T4J4K)
480 CONTINUE

PHT BACK WALL

la e Ra

K=L
NO 485 [=3.,M1
N0 485 Jx=3.N1
PHI(I.J.K‘=0.25*((U(I-J+1.K)+U(IcJoKl)**2-2.*(U(IvJ'K)+U(I'J-1.K))
l**2+(U(I.J-l.K)+U(I-J-Z-Kll**2+(V(I+1.J.Ki+V(I-J'K’)**2-2.*(V(I.J
2.K)+V(I—I.J.K')**2+(V(I—1.J.K)+V(I-Z'J.K))**2+(H(I.J.K-l)+H(IcJo
AK=2) 12— (W (T ed e KIH+N( T oS eK—1))%%2) 4+2e0%(0625%((UCTI+1,J,K)I+U(T.Jy
4K!)*(V(I.J.K)+V(IcJ+l.Kl|—(U(I-J.K)+U(I-l.J'K))*(V(I-l.JoK|+V(I-1v
5J+1.K|‘-(U(I+l.J-l.K)#U(IcJ—ch|)*(V(IvJ.K)+V(IoJ—11K))+(U(IvJ-1v
6K)+U(I-l-J-l.K)i*(V(I-l'JoKl+V(I-le—lqK))—(U(I.J.K)+U(I.JvK-1”*
7(“(I.JoK—l)+H(I-J#1.K-1))+(U(I.J-1.K)+U(IoJ—vi-l,)*(H(I'JqK-1)+
BWI(T ed=1eK=1)1=(V(IadosKI+V(IoJeK=1))% (WET o JoK=1)4W(I41,J.K-1))
9+(V(I-loJ.K)+V(I—l.J.K-l))*(H(IcJ.K-1)+H(I-1cJoK-1))))+PHI(I.J4K)
485 CONTINUF
C
C PHY FRONT WALL
c Q
K=2
N0 490 J=3.N1

N0 490 T=3.M1
PHI(I.J.Kl=0.25*(iU(I.J.Kl+U(I.J+1-K))**2-2.*(U(IoJoK)+U(I'J-1cK‘)

1**2+(U(]-J—10K)+U(!oJ—ZqK"**2+(V(IvJoK,*V(I+1vJvK"**2‘2.*(V(IvJ
2-K’4V(I—l.J-K))**ZG(V(I—chcK,*V(I-Z.JvK’)**2*(H‘IvJ'K’+H(I'JqK*l)
3 '**2-(“(IoJcK'+H(IkoK-1')**2) +2.0*(0.25*((U(I+10J1K,+U(10JvK))
4*(V(IcJoK’+V(IoJ+loK')-(U(IvJvK'+U(I-1vJoK),*(V(I-I'JQK,+V(I-1qJ+1
50K"—(U(I*loJ*loK’+U(IcJ—loK"*(V(IvJ'K'+V(IoJ-1vK)’+(U(IQJ-loK’+
6U(I-1'J—10K"*(V(I-lkoK’+V(I-1cJ’loK))+(U(IvJvK’*U(IquK+1))*
7‘“(I-JoK’+H(IoJ+loK“-(U(IvJ-10K’+U(IqJ‘loK*l"*(H(IvJ'K‘+H(IvJ-1q
BK"‘Q‘(V(IQJOK"GV(IQJQK"I"*(“(IOJOK,“H(I"’IOJOK,’
9-(V(I*chcK,+V(I-10JqK*l"*(“(IQJ'K)*U(I—I'JqK")’*PHI(IvJoK)

490 CONTINUE
c



C PHI FRONT WALL LEFT EDGE 138
C
K=?
J=2?
no 500 I=3.M1 .
PHI(IoJoK"0.25*((U(IvJoK'+U(IoJ+vi')**2-(U(I.J-K‘+U(IqJ'vi,)**Z
1+(V(IoJ-K\+V(I+1oJoK,‘**2‘2.*(V(IoJoK!*V(I'leoK))**2+(V(I-loJcK)
?@V(T-?.J.K"**2+(“(IOJ0K,*N([oJ.K*ll,**2'(“(I.JvK)*W(IvJ'K-l,)**Z)
3+2¢0*(0.25*((U(I*loJoK)+U(IvJoK’)*(V(IoJoK)*V(IoJ+10K’)'(U(I,J'K’
4+U(I-l-J.K‘\*(V(I-l.J.K'fV(I-l.J*vi’i*(U(IoJ'K’+U(IquK+1,)*
S{W(TeJeK)+WI IQJ+10K"+(V(IOJQK'+V(IoJQK#l,,*(“(I‘JOK,*N(I+1'J9K"
6-(V(I-1-J.K.+V(I-l.J.K#l"*(H(IoJoK3+H(I-chvK"’)*PHI(IkoK)
S00 CNANTINUFE

C
C PHI FRONT WALL RIGHT EDGE
C
K=2
J=N
NOD S05 I=3.M1
PHI(I-J-K!SO.ZS*((U(I.J-vi)+U(ToJ—ZoKl‘**2—(U(I.J‘K‘+U(IqJ—1~K))
1 %524 (VI TedoKISV( 1+1.J.K) VR%2-2,%(V( I'JQK'+V(I-1'JQK) YR%x24+(V(I=-1.J
?oK)+V(I—?.J:K’\**2+(H(I-J-KI+H(IoJ'K+1))**2-(N(IvJvK)+N(IquK-l))
2A%%2) +2.0*(0.25*(-(U(I+le-loKl+U(IoJPl.K"*(V(IqJnKl+V(IoJ-le))
4+(U(I.J—l.K|+U(I—loJ‘loK))*(V(I-lquK)+V(I-loJ-l'K‘)—(U(I-J-Iin
5+U(loJ°loK+l"*(H(choK)+H(IoJ-vi’,+(V(I.JoK)+V(IvJoK*1))* _
6‘“( IOJQK“““( I+1'JQK’ ”(V(I‘IQJQK,Q'V(I“lkoK"l, '*(N(I!JQK'*’“( I'lv
TI. KNV I4PHI( T JeK)
505 CONTINUF
C
¢ PHI BACK WALL RIGHT EDGE
C
K=L
J=N \
NN 510 I=3.M1
PHI(I.J-K)=O.25*((U(IoJ*ch'+U(IvJ-20K))**2—(U(10JvK)+U(I'J—I'K))
1**2+(V(I-J.K’+V(I+1oJcK)‘**2-2.*(V(IchK)+V(I-quvK,)**2*(V(I‘1vJ
2-K‘+V(I—Z-J.K)l**2+(w(IvJ-K-1)+H(IvJvK-2’!**2-(H(IvJvK)+W(IcJoK-l) ‘
3'**7|+2.0*(0.25*(-(U(I+1-J-1.K)*U(IvJ-IvK"*(V(IvJvK,+V(I'J-lqK))
4+(UlIoJ-loK\+U(I~1oJ-loK"*(V(I-levK‘+V(I-l-J-vi)’+(U(IqJ—1vK)
5+U(I-J—1-K-1,)*(H(I-JcK—1)+N(IoJ-ch-ll)-(V(I;JvK)+V(IvJvK—1))*
6(H(!-J.K-l)+H(I+1.J.K—1')+(V(I—loJoKi*V(I—levK—l')*(W(IvJvK—1)+
7N(I-l-JoK—1’|)'+PHI(I.J-K)
510 CONTTNUF
C
C PHI BACK WALL LEFT FDGE
C
K=L
J=2

N0 520 T=3.M1
PHI(I.J.K‘=0.25*((U(I-JoK)+U(I.J+1.Kl!**2-(U(I'J.K)+U(IoJ-loK))**Z

+ eJeKVI4VI( I"".oJoK’ ,**2-2.*(V( IoJoK“'V( I—IOJ'K‘ ’**2+(V(I_1'J'K’
;*3¥(I‘I"ZGJ.K‘ '**2+(H(IOJOK-1”"N( I.JQK‘Z"**2‘(“‘1!\1"("““( TeJeK=11)
3%k%2) +2¢0*(0.25*((U(I+10JOK'+U(IQJQK’,*(V(IQJQK,+V(I'J+19K,,
4-(”(IoJoK‘+U(I-1-JoK"*(V(I‘loJcK’+V(I-1cJ+1cK‘“(U(IvJvK‘+U(Iqu
SK-I"*l“(IoJ'K-1)+H(I-J+1'K’1’)‘(V(I'JoK‘+V(IoJ'K-1),*(H(IquK-l)



C
C

C

C
C
C

C
C
C
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64W(E4+1 0 doK=1114(V{I=10JeKI4V(I=1sJeK=1) ) * (W - _ _
71 V4PHT (T JoK) ’ . PRI J,K=1)+W(I-1,J,K=1))

520 CONTINUE

PHI TOP WALL CELLS

T=M

NN 530 J=3.,N1

NO 530 K=3,L1
PHI(I.J.Klso.zs*((U(I.J.K)+U(I-J+1oK))**2-2.*(U(I.J.K!+U(I.J-l.K))
l**2+(U(I.J-l.K)+U(I.J-ZoKl!**2+(V(I-l.J.K)+V(I—Z'J.K’t**z—(V(I-JvK
2!+V(I-1.J.K)|**2+(H(I.J.K)+H(InJ.K+1))**2-2.*(H(I.J.K|+H(I.J.K-l!)
3**2+(H(I.J.K-1l+w(I.J.K-Z))**2’+2.0*(0.25*(-(U(I.J'K)+U(I-qu.K))
4*(V(I-1.J.K|+VlI-l.J+1.Ki)+(U(I.J-l.K)+U(I-1.J—1.K))*(V(I-l.J'K)+
SV(I-I.J-I.K)!+(U(I.J.K)+U(loJoK+l|)*(H(I.J.K)+H(I.J+1'K))—(U(I'J,K
6)+U(I.J.K-l)\*(H(I.J.K-1)+H(IoJ+1.K-1‘)-(U(l.J—l.Kl+U(I.J-l.K*l))*
7(H(I.J.K|+H(I.J-I.Kl)+(U(I.J—l.K)+U(I.J-1.K-1))*(H(I'J.K-1)+H(In
BJ-I.K-I!l-(V(l-l.J.K|+V(I-1cJ'K+1))*(H(I.J.K)+H(I—1.J.K))+(V(I-1'J
9.Ki+V(I—1.J.K-1))*(H(IaJ.K-1D+H(I—l.J.K-l))l)+PHI(I.J.K)

PHI(I.J.K)zPHI(I.J.Kl+(0.5*(V(I.J.K!+V(I-1'J.K)!+U(M2,J—1.K)-
IU(MZ.J.Kl\**2—0.25*(V(I.J.Kl+V(I-l-J.Kl)**Z

530 CONTINUF

PHI TOP WALL FRONT EDGE

I=M

K=?

N0 540 J=3.N1
PHI(IoJcK‘=O.25*((U(IqJ-K)+U(IvJ+loK"**2-2.*(U(IvJvK’+U(IoJ-1vK)’
1**2+(U(IoJ-loK)+U(IoJ°2¢K"**2*(V(I‘leoK)*V(I‘ZvJoK)'**Z‘(V(IoJ'
?K,+V‘I-10JOK‘,**2+(“‘I'JQK,+H(I'J'K+1,,**2-(H(IQJ'K‘+H(I'J'K-l)) “
3%%2) +2.*(0.25*(-(U(1vJvK'+U(I'1chK‘,*(V(l—lquK)+V(I°1'J+1'K"
4"’(“(an‘loK‘*U(I—le‘loK"*(V(I’lecK,+V(I-le-vi”"’(U(IQJQK,‘"
Su(IQJOK+1“*(H(I!JQK'+"(IOJ+1'K,,—(U(I'J—IVK,+U(I'J-1'K+1"*
6(“(1.J.K’+H(IoJ’loK’,-(V(I-loJoK)+V(I-1'JoK*1))*(N(IvJoK)+H(I—loJ
7oKV I4PHTI(T «deK) :

PH‘(IcJoK’szI(leoK""’(O.S*(V(IvJoK""V(I-le'K' ,'.'U(MZQJ-I'K,-
lu(“?oJ'K"**2'0.25*(V(IQJ'K’+V(I-l'JQK,’**Z

540 CONTINUF

PHI FOR TOP WALL BACK EDGE

T=M
K=L
NN 550 J=3.N1
PHI(I-J-K"O.ZS*((U(IoJoK)+U(IqJ+loK)‘**2‘2.*(U(IquK)*U(I'J-vi‘)
1**?+(U(I.J—10K‘+U(I.J-Z-K"**2+(V(I—1.J~K’+V(I—Z.J-K))**Z-(V(I'J'K
2’+V(I-l-J-K"**2+(H(I.J0K-1'+H(IkoK-Z))**2-(H(IvJoK)+H(I'JvK—l“
3%%2) +2.*(O.25*(—(U(IoJoK'+U(I—loJoK))*(V(I-levK‘+V(I—1cJ+19K"
44(U(T.d-1 oK,"U(I‘lQJ‘loK"*(V( I‘levK"'V( I“le‘vi’ y-(ul( TedeK)#
5U(IoJoK—l"*(H(IchK—l’*H(IoJ+loK-1,)+(U(I:J—1.K,+U(I'J~11K—1))*
6(H(I-J-K-li+H(IoJ°loK-l)'+(V(I—1.J.K’+V(l‘loJoK-l,’*(H(IkoK-1\+
7H(IvloJcK-l‘"‘+PHI(I.J.K)
PH'(!oJcK'SPHI(IoJoK‘+(0.5*(V(IvJoK)*V(I-loJcK))+U(M2.J-1~K)~
1U|M2-J0K‘,**Z-0;25*(V(IoJcK)*V(I-loJoK’)**Z



636 6§50 CONTINUE 140
C .
¢ PHI FOR TAOP WALL LEFT EDGF
C

T=M

J=2

DO 560 K=3,.L1

DHI(!.J.KI*O.ZS*((U(IcJ.K!+U(I.J+1.KD)**2-(U(IoJoK)+U(IoJ-loK))**Z
l+(V(I-1.J-Kl#V(I-2.J.K))**2—(V(IoJoK)+V(I-loJ.Kl)**2+(H(I.J.K)+
?N(I-J.K+l)!**2-2.*(ﬂ(I-J.K)+H(I.J.K-ll)**2+(w(IquK-1)+H(IoJ-K-2))
3%%2) +2.0*(0.?5*(—(U(I.J'Kl4U(I-I'JcK))*(V(l—qu.Kl+V(I-loJ+1'K))
4+(U(!.J.K)+U(I.JoK+1)l*(H(I.JoKl+H(I-J+1oK)l-(U(I.J.Kl+U(I'JvK-1))
5*(“(I.J.K-l$+H(I.J+l.K—1)l-(V(I-loJ.K)+V(I-l-J~K+1))*(H(I.J.K)+
6H(I—I.J.K)|+(V(I-l.J.K)+V(I—l.J.K-lll*(H(I'J.K-1)+H(I-quoK-l))))
T+PHI(TJ.K)

PHI(I.J.K\szI(I.J.K)+(O.5*(V(IoJ.K)+V(I-1.J.K))+U(M2oJ-lqK)-
1U(N7.J.K)i**Z—O.ZS*(V(I.J.K)+V(I-ch.Ki)**Z

560 CONTINUF

C
C PHI FOR TOP WALL RIGHT EDGE
C

T=M

J=N

N0 570 K=3.L1

PHI(I.J.K\SO.ZS*((U(I.J-I.K)+U(I-J-20K))**2—(U(I»J.K)+U(IqJ-lqK),
1**2+(V(I-l.J.KI+V(I-2.J.Kl)**2-(V(I.J.K)+V(I-I.J'K))**2+(H(I.JoK)
2+H(I.J.K+1)l**Z-Z.*(H(I.J.K)+H(I.J.K-l))**2+(H(I.J.K—1)+H(Iqu
3K=211%%2) +2.0*(0.25*((U(IoJ-loK)+U(I-1cJ-1'K))*(V(I-qu'K)+
4V(I—1.J—1.K\)-(U(IoJ-loK‘+U(I.J-1'K+1)l*(H(IoJ.K)+H(IvJ-vi’)+
S(U(I-J-I.K)+U(I.J-loK-l)l*(H(I-J.K-1l+H(I-J~1qK-1))—(V(I-I.J.K)+
6V(I—1.J.K+l)'*(H(IoJ.K)+H(l—loJ'K))+(V(I—1quKl+V(I—chqK-l))
7*(“(I.J.K—l’*ﬂol-l.JoK—l)))’*PHI(IcJ.K’

PHI(T o JeKI=PHI(T¢JKI+(0a5* (VI TedoKI4V(I-14J4K) Y+U (M2, J-1.K) - ‘
IUIM?.J-K‘l**Z-O.ZS*(V(I.J.K)+V(I-qu.K))**Z

570 CONTINUF

C
¢ PHI FOR LEFT TOP FRONT CORNER
C
I=M
J=2
K=2
PHI(I.J.K'=O.25*((U(IquK'+U(IoJ+10K,)**2-(U(IchK’+U(IcJ-11K"**2
l+(V(l-loJoK’+V(I—20JvK,’**2—(V(IquK)+V(I-leoK))**Z*(w(IoJoK)+
2 WlTedeK41131%%2) +2.0*(0.25*(’(U(1koK’*U(I-levK‘)*(V(I-I'JcK)
3+V(I-10J41oK"+(U(I'J0K‘+U(IvJvK+1"*(U(IQJQK’*W(10J+19K)|
k—(V(I-loJoK)+V(l—1.JqK+l"*(N(IcJoK)+H(I“1vJ'K))"-0.25*(“(1.J.K)
54‘“(‘oJ-K“l“**Z*pHI(IvJoK'
pHI(IanK‘gPHI(IQJQK“.‘(OQS*(V(I'JQK,"'V(I"IQJOK))"’U(MZQJ"].'K"
lU(NZoJ-K)'**?-0,25*(V(IchK,*V(I-lkoK,)**2
C
C PHI FOR RIGHT TOP FRONT CORNER
C

A
nnn
vNZ X



C
C
C

C
C
C
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PHI(TedoeK1=0a25%( (U(T4J=1sKI4+U(TeJ=2,K) ) *%2=(U(I+J+KI+U(T,J=-1,K))
1**2+(V(I-1.J.Kl+V(l-Z.J.K'l**Z-(V(I.J.K)+V(I-1vJoKl'**2+(N(IoJ-K)
24U T oK+ I EX2= (W T oI KI+W(T o JaK=1)1%%2) + 20%(0425%((U(1,4J-1,
BRI T=1 e d=1 oKD R(V(T=1edo KI4V(I=104J=1eK) I=(U(ToJ=1.K}+
4U(I.J-loK+li)*(H(I.JoK)+H(IoJ-loK))-(V(I-l.J.K)+V(I-l-JvK+1))
SE(W(TedoeKI+W(I=10JeK} DI I+PHI( T4 JoK)

PHI(l.JoK)tPHI(I.J.K)+(0.5*1V(I.J.K)+V(I—1.J.Kl)+U(M2.J-1oK)-
UM« JeK V) ¥% 2204 25% (VT oo KI4VII=14sJeK) ) %*2

PHI FOR RIGHT TOP BACK CORNER

L4+(U(T -
5+(V(I-l.J.Kl+V(I-l.J'K-l))*(H(IchK-1)+H(I—1
PHI(I-J.K\:PHI(I.J.K)+(0.5*(V(I'J'K)+V(I-lko

PH

I=M
J=N
={.

PHI(T«JeKIZ0e25%x((U(I -
l**?+(V(l-loJoK‘+V(I-Z-J.K"**2-(V(I-J.K‘+V(I
24 (M(Tede K1) 4WI( I.JQK-z,'**z‘(N(I'JQK’+H(IQJ'K‘
32.0*(0.?5*((“(IoJ‘loK)+U(I-11J‘loK)’*(V(I—loJ'
l'K'+U(I.J-ch-l"*(W(IchK-1)+N(IqJ-1'K°1‘)

e JeK=111)V14PHI(T,J,K)
K)V+U(M2,4J-1,K)~

IU(M?.J-K)l**2—0.25*(V(I.J.KI+V(I—l'JoK))**2

1 FOR BACK LFFT TCP CORNER

I=M
J=2
K=l

PHI(I.JwK'=0.?5*((U(IoJ.K)+U(I.J+11Ki

10K‘+U(IQJ'ZOK,’**2'(U(IQJQK,+U(IvJ—vi“
“led oK) ) %%2

1))%%2) +
KY+V(I-1+3-1.K))

)**2-(U(I.J.K)+U(IqJ-I'K))**2

1+(V(I-I-J.K)+V(I—Z-J.K)l**Z—(V(I'J‘K\+V(I°1-J0K))**2+(H(I-J»K-1)
?+H(I-J-K-21)**2—(H(I.J-K)+H(I.JcK—ll)**Z) +20%(06e25%(=(U(14J,K)
3+U(1—1.J.Ki‘*(V(I—l-J.K\+V(I—1.J+1.K))—(U(IvJ.K)+U(IquK—1\)
4*(“(I.J-K—l'+H(I.J+1~K-11)+(V(I-l.J.K)+V(I—1-J.K-1)’*

SIH(I.J.K—1|+H(I-1-JoK-l)l))+PHI(I.J.K)
SE(V(TedoKI+V(I=10dsK)

pH‘(IOJOK‘::pHI‘IQJQ

K)+(0.

IH(M?.J.K))**2-0.25*(V(I.J.K)+V(I-l-J.K))**Z

COMPUTATION OF PRESSURE BOUNDARY VALUES

PB=ROTTOM.PT=TOP.PL=LEFT'PR

310

320

330

A=2e /{REHEH)

no 310 I=2.M

no 310 K=?2.L
PLIT.KI=A%U(T.2.K)
PR(TK)I=AZU(TN1K)
no 320 J=2.N

NO 320 1=2.M
PE(TdVI=A%W(TeJe2)
PP(T.J)=A%W(TI.JoL1D
NO 330 J=2.N

DO 330 K=2.L
PR(JKI=A%RV(2.deK)
N0 340 J=2.N

nO 340 K=2.L

=R IGHT . PF=FRONT ., PP=BACK

J4U(M2, 3=14K) = ‘

. mammarenea i
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S YR

PT(JKI=AR(V(MLeJKI=UIM2.JeK)+UIM2J=-14K))

1=-((0e5%V (ML JeKI=U(M2:JsK)+U(M ~1le *%2-
240 CONT RUE . . 20Jv1eK)1%%2-0,25%V(M1eJ K)%%2)/H

C
C PRESSURE CALCULATIONS
C
K3=0
850 NN &00 T=2.M
N0 600 J=2.N
00 600 K=2.L
IF(T1eF0e2eANNeJoEQe 2o ANDe Ko EQe2) GO TO 610
IF({1eF0e2eANDe JoEQe 2. ANDos Ko EQelL Y GO TO 620
IF(1eF0e2e ANDeJe EQOeNoeANDaKoEQe2) GO TO 630
IF(1aEQ0e?eANDeJeEQeNeANDeKaEQel) GO TO 640 !
IF(1eFOuMeANDeJoFOe 2 ANDo Ko EQe 2) GO TO 650 :
IF(1eFQeMeANNGJeFOe 2 ANDe Ko EQalL ) GO TO 660 :
IF(I.EO.M.AND.J.EO.N.AND.K.EO.Z) GO TO 670
IF(!.FO.M.AND.J.EO.N.AND.K.EO.L) GO TO 680
IF(I.GT.Z.AND.J.GT.?.AND.K.GT.Z.AND.I.LT.M.AND.J.LT.N.AND.K.LToL)
160 TO €05
I1F(1eE0e?eANDeKoeEQe2) GO TO 690
IF(1eF0e2e ANDe Ja EQeNY) GO TO 700
IF( TeEQe2.ANDoKaEQeL} GO TO 710
IF(1.F0e2.ANDeJeEQe2) GO TO 720
IF(I1eEQeMe ANDoKe EQe2) GO TO 730
IF(ToFOeMe ANDoJo EQ.NY GO TO 740 :
TIF({T1<FOoMe ANDaKeEQelL) GO TO 750 .
IF(1.ECMaANDo JoEQe2) GO TO0 760 i
IF(JeFOe2e ANDaKeEQe2i 6O TO 762
IF(JoF0e2e ANDeKe EQalL) GO T0O 764
IF(JeEOQNe ANDaKa EQe2) GO TO 766
IF{JeFOeNe ANDLKa EQel) G0 TO 768
I1F(T1.EQe?2) GO TO 770
IF(T.EQ.M) GO TO 780
1F(J.FCe2) GO YO 790
IF{J.EQ.N} GO TO 800
1F(K.F0O.?) GO TO 810
IF(K.EQeL) GO TO 820
605 P(I.J.KD=P(IoJ.K)+RELI6.0*(P(I-J.K+1)+P(IoJ.K-1)+P(I.J+1vK)+
IP(I-J—I-K\+P(I+1-J.K)+P(I-l.J'Kl-b.*P(I-J.K)+PHI(I.J'K))
G0 TO 600
610 P(I-J.K)=P(I.J.K)+RELI6.0*(P(IcJoK+1)+P(I+1.JvK)+P(I'J+1.K)-
13.*9(I.J.K)-H*(PB(J.K)+PL(I.K!+PF(I.J))+PHI(I.J-K3)
GO TOo 600
620 P(I.J.Kl:P(I.J-K)+REL/6.0*(P(I.J.K-1)+P(IqJ+1.K)*P(I+1-JqK)
1-3.*P(I.J.K)+H*(PP(I-J|-PL(I.Ki-PB(JoKl)+PHI(I.J-K))
GO TO 600 .
630 P(I.J.K):P(I.J.K)+RELI6.0*(P(I+1.JoK’+P(IqJ—ch)+P(I'J.K+1)
1-3.0*P(I.J.K)+H*(PR(!.K)-PF(I.J)—PB(J.K))+PHI(I.J.K!)
GO TO 600
640 P(I.J.K!:P(I.J.K)+REL16.0*(P(I+1.J'K)+P(!=J—1.K)+P(I.J.K—1)
I-B.O*P(I.J.K)+H*(PR(I-K)+PP(I.J)-PB(J'K))+PHI(IvJ-K))
GO TN 600
650 P(I.J.K)=P(I.J-K)+REL/6.0*(P(I—l-J.K)+P(I.J+1\J)+P(IvJsK+1) §
1-%.0*P(I.J.K\+H*(PT(J.K)—PL(I.Kl-PF(I-J))+PHI(I.J'K)) i
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G0 TO 600
660 PLToJeKI=P(TedeK)+REL/600%(PI=10JsK)4P(T4J+1sKI+P(I+JsK=1})
1—%.0*P(!.J.K\*H*(PT(J.K)+PP(IoJ’—PL(IoK))ﬁPHI(IoJcK’)
GO TN 600
&€70 P(!.J.Kl=P(l.J.Kl+REL16.0*(P(I-I.J.K)+P(I.J-I.K)+P(IgJ.K+1)
1-3.0*P(I.J.K)+H¥(PT(J.K)+PR(I.KD—PF(Ile’+PHI(I.J.K))
GO Tn 600 .
680 P('QJ.K'SP(‘.J'K'+REL’6.0*(p(I"l'JOK"’P(I'J-l QK,"P(IQJCK-].’
1—3.0*9(I.J-Kl+H*(PT(J.KD+PR(I.K)+PP(IcJ)|+PHI(IoJoK))
GO Tn 600
690 P(I.J.K)=P(I.J.K)+REL16.0*(P(I+1.J.K!+P(I.J*l.Ki+P(IcJ-1.F)
l+P(I.J.K+l|-4.0*P(I.J.K’-H*(PB(J~K)+PF(I.J))+PHI(IvJ.K)9
GO T0 600
700 P(I.J-Ki:P(I.J.K)+REL16.0*(P(I+1.J.K)+P(I.J-1.K)+P(I.J.K+1) ‘
14P(TedoK=1)=bo0*P(T¢JeK)+H*X(PRITIKI=PB(JK)I+PHI(T4d4KD) 3
G0 TO 600
710 P(!.J.K|=P(I.J.K)+REL16.0*(P(I+1oJoK)+P(IoJ+1-K)+P(I.J—lqK)
1+P(I.J.K-ll-4.0*P(I.J-K)+H*(PP(IoJ)—PB(J.K))+PHI(I.JoK)) i
GO T0 600 £
720 P(T.J.K\:P(I.J.K)+REL16.0*(P(I+1.J.K)+P(I'J+1.KI+P(IoJoK+1) -
1+P(I.J.K-l)-h.O*P(I.J.K)-H*(PL(I.Kl+PB(J.K))+PHI(I.J.K))
GO TO 600
730 P(l.J.K):P(I.J.K)+REL16.0*(P(I-loJ.K)+P(I'J—1-K)+P(IqJ+1.K)
1+P(I.J.K+1)-4.0*P(I.J.K)+H*(PT(J.K'-PF(I.J))+PHI(I.J.K)\
G0 TO 600
740 P(I.J.K)=P(I.J.K)+REL16.0*(P(I-l.J-K)+P(I.J-1-K)+P(IqJ'K+1’
1+P(I.J-K-l’-4.0*P(I.J.K)+H*(PT(J.K|+PR(I.K))+PHI(I.J.K))
GO TO 600
750 P(I.J.K):P(I.J.K|+REL/6.0*(P(I-l.J.K)+P(I.J+1.K)+P(I.J-l-K)
1+P(I-J.K-l)—4.0*9(I.J.K)+H*(PT(J.K)+9P(I.J))+PHI(!.J.K))
GO TO 600
760 P(I.J.K):P(I.J.K)+REL/6.0*(P(I-l.J.K!+P(I.J+1.K)+P(IquK+1)
1+P(I-J.K—l)-&.O*P(I.J.K)+H*(PT(J.K)-PL(I.K))+PHI(I.J.K))
GO TO 600
767 P(I.J.K\:P(I.J.K)+RELI6.0*(P(I+1.J.K)+P(I-1.J.K)+P(IoJ+1.K)+
IP(I.J.K+1‘-4.0*P(I.J.K)-H*(PL(I.K'+PF(I.J))+PHI(I-J.K))
GO To 600
764 P(I.J.K)=P(I.J.K)+REL16.0*(P(I+1'J.KI+P(I—l-J.K)+P(IqJ+1¢K)+
1P(I.J.K—1\-4.0*P(I.J.KJ+H*(PP(I.J)—PL(I.K))+PHI(IquK))
GO TO 600
766 P(I.J.K):P(I.J.K)+REL/6.0*(P(I+1.J.K)+P(I-1~J.K)+P(I'J-lqK)+
1P(I.J.K+l)-4.0*P(I.J.K)+H*(PR(I.K)-PF(I.J))+PHI(IvJ'K))
GO Ta 600
768 P(I.J.K):P(I-J.K)+RELI6.0*(P(I+1.J.Kl+P(I—1'J-K)+P(IvJ-loK)+
IP(I.J-K—ID-Q.O*P(I.J-K)+H*(PR(I-K)+PP(I.J)’*PHI(I-J'K’)
GO 70 600
770 P(TqJ.Kl=P(I.J.K‘+REL/6.0*(P(I+1-J.K)+P(I.J+1.K)+P(IqJ-lqK)
1+P(!.J.K+l\+P(I.J-K—l)aS.O*P(I.J.K)-H*PB(J.K)+PHI(I.J.K))
GO TO 600
780 p(IQJQK,=p(IoJcK’+REL’6¢O*(P(I"leoK""’p(IQJ“‘vi)"'p(IvJ-loK,
1+P(I.J.K+l)+P(IoJ.K-I)-S.O*P(I'J'K)+H*PT(J.K)+PHI(IqJ.K))
GO0 TOo 600
790 P(!.J.K):P(I.J.K)+REL/6.0*(P(l+1chK)+P(I—loJoK)+P(I.J+1.K)
1+P(I.J.K+1’+P(I.J.K-l)-S.O*P(I'J.Kl-H*PL(IqK)+PHI(IqJ.K))

GO TO 600
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800 PlTeJeKIZP(TeJKISREL/60%(P(I+1eJoKI4P(TI=14JoKI+P(T,I-1,K)
14P(TedeK+114P(1edoK=11=5,0%P (14 JsKI+HXPRUIKI+PHI(I,J.K))
GO TD 600
R10 PlIedeK)IZP(TeJeKI+REL/6a0*(P(I4+14JeKI+P(I-1sJsKI+P(T,J+1,.K)
14P(Tad=l e KI+F(T¢JoaK+11=5,0%P (1o JoK)=H*¥PF{T+JI+PHI(I,JsK))
GO TO 600
870 PUIedeK)=P(TeJoeKV+REL/600%(P(I+1edaKI4P(I=1sJsKI+P(1,J+1,K)

14P(Ted=1eKI4P(TeJeK=11=5,0%P(TadsKI+H*PP (T1,J)+PHI(T,JsK))
600 CONTINUF

K3=K3+1
IFIK3I/05%05,NFeK3) GO TO 850

e A ETAL SR T

C
C CALCULATION OF RESIDUALS
C
TRFS=040
N0 830 I=3.M1
NN &30 J=3.N1
NO B30 K=3.l1
0=P(I+1.JoK)+P(I—loJ.K!+P(ch*l'K)+P(IvJ-lqK)+P(I.JqK+1)
1+P(I-J-K-l)-6.0*P(I-J.KD+PHI(IoJ.K‘
RFS(TeJdeKI=0
TRES=TRFS+ARS ()
830 CONTINUF
IF(TRFS.GTL,TOLY GO TO 850
IF(TRFSeGTa1le 0E04) STOP :
WRTTE(6e5) TRES+K34ReHOT.LT
IF(LT/20%20.NE.LT} GO TO 30
WRITF(642)
K=6 !
I=M2+1
NO0 860 TT1=1.M2
I=1-1
860 HRITF(6.1)(U(IQJ.K).J=1-Nl
WRITF(6.T)
WRITF(6.3)
K=6
T=M21
nO 870 I1=1.M
I=1-1
§70 NRITE(b.l)(V(I'JoK)oJ=1-N2l
WRITE(6.T)
WRITF(6.4)
J=9
1=M2+1
NO 880 T1=1.M2
I1=7-1
WRITE(6.8)
nO 5000 K=2.L
nO 5000 1=2.M
5000 WRITF(6.1) (CONT(I.J-K)-J=2.N)
WRITF(6.8)
30 CONTINUF
sTOP
1 FﬂRMAT(SX-12F10.6)

RS DR L A




145

2 FORMAT(1H1.10X.10HU-VELOCITY)
3 FORMAT(1H ,10X.10HV-VELOCITY)
4 FORMAT(1H +10X+10HW-VELOCITY)
5 EORMAT(10X«6HT-RESaE1346¢6H ITER=,1446H REYe=F7ol43H H=F6e3,4H DT=
1F7eb4e?Xe 10HTIME-STEP=LTS)
7 FORMAT(///) ;
R FORMAT(1H1) ;
END :
5
3
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