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Abstract

Object matching of free-form surfaces is a key issue in the Computer-Aided Inspection
because it aligns the design model and the manufactured product in the same coordinate
system for a reliable conformance checking of the physical part to the specifications
defined at the design stage. Presented in this thesis is a novel approach for robust initial
matching of free-form objects represented by point cloud data while no prior information
on correspondence or initial transformation is available. Delaunay pole sphere, obtained
from the computational geometric technique Delaunay triangulation, has been employed
as the specific property for searching correspondence instead of any intrinsic differential
properties of the shape because no estimation method used to estimate the differential
properties from a set of discrete noisy points can guarantee the accﬁracy of the estimated
value. Being the property of a point set, Delaunay pole sphere is also invariant under any
rigid body transformation with less deviation than any other intrinsic differential
properties.

The proposed approach decreases the correspondence search dramatically by
selecting only a reference triangle with three points from one object with specific
properties and extracts the correspondent points having same properties from the second
object. After the correspondence information is established, the iterative closest point
(ICP) algorithm, whose effectiveness entirely relies on the correct initial correspondence

information, is incorporated with the proposed algorithm to obtain a robust object

il




matching. The concept of preprocessing of the measurement data set is introduced before
correspondence search is initiated. To combat the detrimental effect of the noise, a point
density reduction approach has also been implemented.

Extensive simulations have been carried out to show the effectiveness of the
proposed algorithm. An analysis of the simulation results demonstrate that a robust and
efficient method of initial matching has been achieved when the prior information about
the correspondence or transformation is not provided.

Keywords: Initial matching, Localization, Registration, Correspondence search,

Delaunay pole sphere, Free-form surfaces, Rigid body transformation.
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Chapter 1

Introduction

The global demand on design and manufacturing of high precision products with
complex sculptured surfaces has grown apace over the last decade and the growth is
anticipated to continue over the next decade. The emergence in demand in design and
manufacturing of increasingly sophisticated modern machinery necessitates the requisite
advancement of Computer-Aided Design and Manufacturing (CAD/CAM) systems. The
long-lasting attention devoted to this area can be traced to the large number of
applications where almost all product data are created and stored in digital form using
computer systems and directly provided as input to computer aided manufacturing
systems to produce physical products. It is almost impossible to obtain a product with
rigorous conformity to the specifications due to the ineluctable inaccuracy of the

manufacturing process. In order to solve this problem, the designer introduces tolerances

on each effective dimension of the product to be manufactured so that it can fulfill its
function correctly. Inspection is the process that enables one to develop a comparison of a
physical part to the specifications defined at the design stage.

To reduce time and cost, in industry, inspection is usually performed by human

controllers based on a sampling of products rather than on the entire production.
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Nevertheless, due to both the functional and aesthetic requirements of components and
assemblies, particularly in automotive, aerospace and medical industries, all of the parts
must be inspected because even the smallest defect is unacceptable and must be

identified. The aim, therefore, is to incorporate automated inspection due to its main

attractive features (e.g., consistency, repeatability, improved safety for inspectors,

assessable criteria, and real-time operation).

1.1 Background and Motivation

In the CAD/CAM and graphics community, 3D model descriptions are typically
described with CAD systems using digital data. The amplest shape variety can be
modeled by free-form surfaces that are typically defined as Non-Uniform Rational B-
Spline (NURBS) form which is widely accepted as an industry standard tool for the
representation and design of product geometry [46]. NURBS is the mathematical
representation of 3D geometry that can accurately describe any shape from a simple 2D
line, circle, arc, or curve to the most complex 3D organic free-form surface or solid.

Because of their flexibility and accuracy, NURBS models can be used in any process

from illustration and animation to manufacturing.

Free-form surfaces and objects are often defined in intuitive rather than formal
manner. In [13], Campbell and Flynn regarded free-form as a general characterization of
an object whose surfaces are not of a more easily recognized class such as planar and/or
natural quadratic surfaces. On the other hand, Besl [10] defined a free-form surface to be
a smooth surface such that the surface normal is well defined and continuous almost

everywhere, except at vertices, edges, and cusps. Since there is no other restriction on the

2
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free-form surface, it is not constrained to be polyhedral or piecewise-quadric.
Discontinuities in surface depth, surface normal or curvature may be present anywhere on
the object and the curves that connect these points of discontinuity may meet or diverge

smoothly [10]. The shape of the object can be arbitrary. Typical examples of

representative objects with free-form surfaces used in manufacturing fields include ship
hulls, marine propellers, automobile bodies, aircraft fairing surfaces, and biomedical
replicated organs which can be represented in digital form using NURBS surface patches,
polyhedral surfaces, and range data. Without the need to build an object prototype, CAD
packages with capabilities to model free-form surfaces allow users to design, analyze,
and test parts. Free-form surfaces are also applied in terrain modeling for cartographic
applications. In this thesis, the terms “object with free-form surfaces” and “free-form
objects” have been used interchangeably.

Although significant progress has been made in precision machining of free-form
surfaces, inspection of surfaces remain a tedious job and has not been well studied [27].
The surface to be inspected can be measured by various ways such as using coordinate
measuring machine (CMM) and laser scanner. Qver the past few decades, coordinate

measuring machines have found increasing demand as reliable devices for gathering

dimensional data used in measurement and inspection applications. CMM, a contact
device composed of electronic contact sensors, is the standard machine for the inspection
of parts in industry as it is a flexible means of providing high-accuracy, high-throughput
measurement, and is more cost effective than expensive custom gages used in many
manufacturing operations. The CMM can also be fully automated and linked to a CAD

system as well as used to measure and verify Geometric Dimensioning and Tolerancing

3
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(GD&T) call outs. On the other hand, since the contact sensors can damage the surface of
some product, the development of inspection system using computer vision sensors

which are non-contact measurement devices is mandatory for the inspection of parts built

of soft materials. A wide range of mold makers are adopting the emerging technology of
3D laser scanning in order to substantially reduce the time and cost of reverse
engineering and inspection tasks. Optical systems, such as laser-based sensors, allow a
great density of measurement points in a short time (more than 20,000 points per second)
which drastically increases the inspection speed, whereas CMM are capable of much
higher precision.

The measurement data obtained from CMM/laser scanner are required to be
compared with the design model to determine whether the surface is out of tolerance. A
critical issue in inspection is to align the design model and the manufactured part in time
as closely as possible so that quality of that part can be examined properly online or
offline. This process of aligning two objects is called object matching. Three dimensional
object matching is a key issue in computer aided inspection, computer vision, and
computer graphics. The term registration refers to matching when it is used in the areas
of computer vision [11], whereas the term localization refers to matching when it is used
in the areas of computer aided inspection [45]. Matching is employed in several
applications. The localization technique is mostly applied for automatic mspection in the
manufacturing process. Matching is important in machine vision for scene integration and

object recognition, such as in medical image scanning (i.e., MRI), robotic autonomous

navigation, and automatic production lines. It can also be used in the intellectual property

protection of CAD model [33] and in congruence of different geometric representation.

4
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Locating a part in a desire position and orientation and to maintain the position
throughout the manufacturing process is also another significant application of object

matching. Matching can also be applied in determining the relative altitude of a rigid

object with respect to a reference.

Localization or registration aims at finding the best rigid body transformation
which aligns two objects as closely as possible. The key factor in finding the best
transformation in localization is the correspondence search between two surfaces. For
matching of complex sculptured surfaces, many methods have been proposed so far.
Minimization of a squared distance metric objective function of two objects is a
commonly used matching method because of its ease and performance. But, for a case
when no a priori information for the correspondence or initial transformation is available,
which is generally the case, the direct distance minimization approach is of no use. The
availability of the initial correspondence information is the key issue for the solution

scheme to localization. An iterative search method can be employed to find the best

transformation if and only if there is a good initial estimate of correspondence available.
For this iterative process, correspondence can be provided by the user, but then it comes
to the issue of human error, and the matching process does not provide the optimal
solution. With no good initial estimate, the iterative approaches may end up being
trapped in a local minimum so that a successful localization can not be obtained. Hence,
only with the availability of very good initial information of the correspondence, a
computationally efficient optimal localization can be obtained. In this thesis, we focus
our attention to the problem pertaining to initial matching providing a priori information

of the correspondence which has not been studied well so far.

5
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1.2 Objectives

The objective of automated inspection system is to compare a finite sample of
measurement data obtained from manufactured part with its design model such that the
quality of the product can be verified under certain criteria. Performing inspection of
manufactured product typically requires the following three stages: (i) a data capture
stage which samples the 3D real world object in design model using the CAD software
and the produced part to obtain the measurement data, (ii) a data localization stage which
aligns the design model with the measurement data, and (iii) a data verification stage.

In order to qualify a part, the measurement data set is usually compared against
the specified tolerance of the reference design model. Alignment of the product’s design
coordinate system with its measurement coordinate system is the best possible way to
make the comparison. In the process of bringing the measurement surface and the
corresponding design model in a common coordinate system, the design coordinate
system 1s taken as the reference. How to locate the product’s design coordinate system in
the measurement coordinate system is the prime concern of the inspection process. The
determination of positions and orientations of the design coordinate system of a part with
respect to the measurement coordinate system is referred to as localization. The basic
goal of localization is to find the best rigid body transformation parameters to align the
two coordinate systems, which means to find the rotation matrix and translation vector

between the coordinate frames. This process can be further explained by taking resort to

the inspection model as shown in Figure 1.1 (modified version of figure [27]).




Figure 1.1: Schematic of the inspection model.

A measurement point Q, in the measurement coordinate frame (x’,’,z") denoted
by the position vector q, corresponds to the point P in the design coordinate frame
(x,,z) denoted by the position vectorp,, where i =1,2, ..., N and N is the number of

points. Because of the manufacturing error, which happens in practice, the design

coordinate frame does not coincide with the measurement coordinate frame. This is the

reason behind the CAD data point P, not being the same as the measurement data
pointQ;. The relationship between the two frames can be represented by the following
equation

q, = R(p; +Ap,)+t (1.1)
where Ap, is the distance between two surfaces at point p,; R is the rotational matrix

and t is the translation vector from the reference design coordinate system to the

compared measurement coordinate system. Since neither the rotation matrix and




translation vector nor the corresponding point set is known, the problem at hand can be

formulated by the least-square approach. This leads the objective function given by
. s 2
III%I‘HZHq,- —(Rp, +t)“ . (1.2)
o=l

In minimizing this objective function, the information about the actual corresponding
point sets is to be known.

To this end, the primary objective of the thesis is to develop an initial matching
algorithm for automated inspection system to handle the point (sampled data from
parametric surface such as NURBS surface) versus point (measurement data) cases when
no a priori information on correspondence or initial transformation is available.

A computational geometric tool which exploits the property of the point density

of the data set under investigation has been incorporated. In particular, Delaunay pole

sphere, obtained from the computational geometric technique Delaunay triangulation
[56], has been chosen as the localization tool because of its efficient and attractive
properties to facilitate the correspondence search in performing object matching. A novel
approach illustrating the preprocessing of data sets before initiating the proposed

algorithm is also discussed. Figure 1.2 represents an overview of the proposed approach.

1.3 Literature Review

The problem of finding a match between three dimensional free-form objects attracted
considerable research attention during the last decade. In this section, a summary of some
of the previous work related to the areas of object matching is presented. This is not

meant to be a comprehensive literature survey, but will provide the readers with the



background references on some of the ongoing research in the subject areas. This will

yield a perspective on the techniques presented in this thesis.

Real world
Object
CAD
g
Model
___________________________ 1
|
———————————————— ' |
' |
.- . | |
Manufactured Initial Matching | . '
» |
Product Matching ) Algorithm { Verification i
|
|
CMM/Laser|\  \ /o | :
s Localization :
Measurement [/ ~~ T T T T T T T T T T T T T T T T T T T T T
Data Automated Inspection

Figure 1.2: An overview of the proposed approach.

1.3.1 Matching with Known Correspondence

The correspondence search between two sculptured surfaces plays the major role in
finding the best transformation to achieve the object matching. If such correspondence is
known, transformation can be accomplished using closed form solution. An excellent
overview regarding the problem of matching free-form surfaces can be found in [10].
One of the earliest significant approaches on registering two-free form surfaces was
presented by Faugeras and Hebert [20]. They successfully applied the registration method
to develop a system that recognizes and locates for the alignment of automobile parts in
3D space. In this method, model objects are represented in terms of linear features such

as points, lines, and planes. The problem known as absolute orientation has several

AT
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closed-form, optimal solution methods in the literature. Absolute orientation seeks to
align two sets of feature points, whose three-dimensional locations have been measured
or reconstructed in two reference frames. Faugeras and Hebert [20] and Homrn [24]
proposed a closed-form solution for the least-square problem of absolute orientation.
They employed quaternions to perform rigid body transformation between two coordinate
systems given measurements of the coordinates of a set of points that are not collinear.
The minimization of a cost function has been solved for rigid body transformation in a
quadratic form of a unit quaternion which is a 4D vector that determines a 3D rotation
matrix. The objective function in [24] is optimized with respect to rotation by finding the

eigenvector corresponding to the maximum eigenvalue of a 4x 4 matrix determined from

vl
centroid-referred point coordinates instead of the minimum eigenvalue. Walker et al, [57] ;i
interpreted the rotation quaternion in terms of the axis-angle representation by the Euler :‘:
1

Symmetric Parameters. In other words, the orientation of the 3x1 vector component %i
-l

specifies the axis of rotation and the norm of the vector and scalar component are related ‘ ‘i
ol

to the rotation angle about this axis. Horn et al. [25] pointed out that these methods are “

not entirely novel, since the same problem had already been treated in the Psychometry

(Quantitative Psychology) literature [50], [51] in the name of Procrustes Analysis. The
method reported in [25] provides the rigid body transformation between two coordinate
systems given measurements of the coordinates of a set of points that are not collinear
using a matrix square-root solution.

Williams and Bennamoun [58] reported a new algorithm for performing the
simultaneous rigid registration of multiple corresponding point sets. The minimization of

a least-square cost function is proposed to solve the registration problem and it is also

10
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shown that the cost function can be simplified to a quadratic expression involving
‘ unknown rotations and a constant matrix. The global point registration technique
proposed in this paper is a generalization of the well known pairwise registration method
reported by Arun et al. [5] which uses the singular value decomposition (SVD) to
compute the optimal registration parameters in the presence of point correspondences.
This approach gives a closed-form solution for the 3D rigid transformation between two
3D point sets. The method first reduces the unknown translation parameters, shifting all
points to the center of gravity, and calculates the unknown rotation matrix using the SVD
of a 3x3 matrix, finally computes the translation parameters. They also compared the

difference of computation times between the techniques using the SVD, quaternions, and

¢
nonlinear iterations for the problem. Their results show that the computation time is about .
u
f the same as using the SVD or the quaternions method whereas the iteration method takes {
L]
a somewhat longer time. The primary limitation of this method is that it relies on the

probable existence of reasonably large planar regions within a free-form shape. The

techniques reported in [25] and [5] sometimes fail to provide a correct rotation matrix and
give a reflection instead when the data are severely corrupted. However, if the points are
not coplanar this is not a problem. Umeyama [55] provided modifications to [5] to ensure
that a correct rotation matrix, instead of a reflection, is computed when the data are noisy.
Another eigensystem is analyzed when the translation and rotation components are
represented using dual quaternions'' as reported in [57]. The motivation for the dual
quaternions for estimating rigid transformation technique is that other rigid

transformation estimation techniques first determine optimal orientation and thus use this

"' A dual number is defined as z = a + &b, where a, b are real numbers and & is defined as &’ =0,

governing a special multiplication rule (a + £b)(c + £d) = ac + € (ad + bc).

11
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solution to obtain translation (e.g., [5]), resulting in the accumulation of error in this
computation. This approach solves for both relative orientation and position by
minimizing a single cost function. With identical sets of point correspondences, the
technique using dual quaternions provides similar accuracy to the SVD technique [5] for
estimating rotation, but improved accuracy for estimating translation.

Sahoo and Menq [49] used tactile systems for sensing complex sculptured
surfaces. They presented a method which determines position and orientation of an object
by minimizing the sum of the squared distances of the measurement points from the
surface of the object with respect to the parameters of transformation. Butler [12]
provides a comparison of tactile methods and their performance. An obvious shortcoming
of the method presented in [49] is that it needs to solve a set of six highly non-linear
equations that requires an undesirable amount of computation time. The problem
becomes worse for the case in which a large number of measurement data is required. To
overcome this problem, a modified pseudoinverse-based algorithm called optimal match
algorithm that aligns the measurement data with the design data in CAD-directed

dimensional inspection is reported in [41]. This approach determines actual measured

points by minimizing the sum of the squared distances of the measurement data from the
surface of the part with respect to the parameters of a rigid body transformation. It has
been shown that this modified algorithm is approximately 10 times faster than the
algorithm reported in [49]. For many design and manufacturing engineering applications,
free-form surfaces are often assigned a profile tolerance to control the variation. The
inspection of a free-form surface is done by making an independent comparison between

measured data and its design model with respect to its individual profile tolerance.
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Inspection of this type of tolerance has been studied by a large number of researchers
([19], [22], [28], [30], [41], and [49]). An excellent review on this topic can be found in
[35]. Some effort has been carried out to perform free-form surface inspection with a
related profile tolerance. A system with a tolerance specification module and a
comparative analysis module is reported in [29]. The free-form surface tolerances may
have a relationship with more than one datum and the datum features may deviate from
their designs. To resolve this situation, Huang and Gu extended their techniques and
proposed the inspection of individual free-form surfaces [28] to the inspection of
sculptured surfaces with design datums [27]. Recently, Li and Gu [36] proposed a
localization technique based on two steps, firstly, they localize the measurement data to
the CAD model based on the datum reference information and then depending on the
information of the free-form surface, further localization is obtained. The correspondence
search of the later step also entirely depends on the qualified datum feature information
or the closest point concept. In another recent work [37], to establish the correspondence
for localization, Li and Gu proposed the idea of surface feature extraction. They used the
direction of mean and Gaussian curvature to define different types of free-form surface
shapes. Most of the methods mentioned in this section are theoretically clear and also

practical, but the correspondence must be established before the methods are applied.

1.3.2 Matching without Knowledge of Correspondence

The correspondence search between two object surfaces is a key issue in finding the best
transformation for matching problem and a solution scheme for establishing

correspondence depends on the availability of initial correspondence information. If such
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correspondence is available, the problem at hand becomes trivial and the transformation
can be easily computed using the algorithms based on methods such as unit quaternions
[24] and least square fitting or the SVD approach [5], [41]. On the other hand, if
knowledge about initial correspondence is not available, correspondence information
between objects must be established to estimate the transformation. Once initial
correspondence information is estimated accurately, an optimum transformation can be
achieved through iteration by minimizing a mean square distance metric object function
which involves six degrees of freedom for matching, such as the iterative closest point
(ICP) algorithm [11], and its variants [53], [48]. The ICP algorithm is an iterative decent
algorithm which can be applied to different data set including point, polygon, curve, and
surface. The matching method is based on the search of the closest point from a point to a
point set, a curve, or a surface, and utilizes the result to find two corresponding point sets.
Then the unit quaternion method is used to find the rigid transformation between the two
point sets. After that, the rigid transformation is applied to the points of one set and the
process is repeated until the sum of squared distances is minimized. The ICP algorithm is
based on the assumption that one point set is a subset of the other. When this assumption
is not satisfied, mismatches happen which negatively influence the convergence of the
ICP to correct solution [21]. To resolve this problem, several variations and
improvements of the ICP method have been reported, e.g., in [40], [9], but there are still
some unresolved problem. Exhaustive search for the nearest point makes this approach
computationally expensive [52]. Another drawback of this method is that it requires
every point in one surface to have a corresponding point on the other surface. As an

alternative to this search problem, Chen and Medioni [15] proposed a technique to find

14




an optimal transformation based on estimated hypothetical transformations. This idea was
originally reported in [47]. In [18], Dorai ef al. extended the work of Chen and Medioni
to an optimal weighted least-squares framework. They proposed and implemented a
complete prototype system for registering and integrating multiple 3D object views from
range data which can then be used to construct geometric models of the objects. Sharp et
al. [53] generalizes the ICP algorithm to include Euclidean invariant features to provide a
more effective algorithm. A similar approach proposed by Zhang [60] dealt with outlier,
occlusion, appearance and disappearance incorporating a threshold technique using
robust statistics to limit the maximum distance between points. The statistical analysis is
utilized to filter out poorly matched data points.

Okatani and Deguchi [43] proposed a novel method for fine registration of two
range images from different viewpoints taking into account the properties of the
measurement error of the range data where the error distribution is different for each
point in the image and is dependent on both the viewing direction and the distance to the

object surface. Without any available information about correspondence, Bergevin et al.

[7] proposed a technique to estimate the 3D rigid transformation between two range
views of a complex object. In [8], Bergevin et al. proposed simultaneous registering of
multiple range images to avoid the accumulation of the errors in the sequential estimation
of transformation.

One stream of research considered some global properties of the object such as
extended Gaussian image (EGI) [23], [32] and other orientation-based descriptors [42],
[38], [39] which represents the 3D objects in terms of their surface-normal distributions

on a unit sphere with appropriate support functions. Another stream of research reported
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various complex surface representation schemes using some local properties of each
point. They include the splash representation of Stein and Medioni [54], the point
signature of Chua and Jarvis [14], the shape spectrum scheme of Dorai and Jain [17], the
surface signatures from simplex meshes of Yamany er al. [59], the harmonic shape
images of Zhang and Hebert [61], and the spin image representation proposed by Johnson
and Hebert [31]. The method in [54] utilizes changes in surface orientation to match local
patches of surfaces. Chua and Jarvis [14] formulated a new representation (the point
signature) which follows along the same line as [54]. The point signature is different in
that it does not encode information about the normals around the points of interest; rather
it encodes the minimum distances of points on a 3D contour to a reference plane. In [31],
pairwise registration is accomplished using spin images, an alternative representation for
finding point correspondences. The final transformation is refined and verified using a
modified ICP algorithm. The spin images are 2D histograms of the surface locations
around a point. The spin images representation [31] is a 2D image that accumulates
information about a surface patch while splashes [54] and point signatures [14] are 1D

representations that accumulate surface information along a 3D curve. Because these

local properties encode the coordinates of points on the surface of an object with respect
to a local basis, it is a local description of the global shape of the object and is invariant to
rigid transformation. All these methods require extensive computational searches among
the correspondence possibilities between two objects’ points which are not practical for
real time processing.

Recently, Ko ez al. [33] proposed a method to use three non-collinear points with

different curvature values in one object and their possible correspondent points in another
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object to decrease the possibilities search. They developed a global matching method to
handle the point vs. NURBS surface and the NURBS surface vs. NURBS surface cases
when no a priori information on correspondence or initial transformation is provided.
Matching is performed by using two intrinsic surface properties, the Gaussian and the
mean curvature, as object features. With rough tolerances, this method uses the ICP
algorithm to obtain refined localization. The main deficiency of this algorithm is that it
can deal only with the point vs. surface or surface vs. surface matching cases so that it
can not be used for free-form objects in discrete data points. Moreover, since they are
using the mean and Gaussian curvature for correspondence search, while dealing with the
point vs. surface case, estimation of curvature from a set of discrete data points is needed.
Being a second order differential property, curvature is sensitive to the corrupted data.
So, accurate estimation of curvatures values from a set of data with noise is almost
impossible. No estimation method used to estimate the curvatures can guarantee the
accurate value for curvature, since the accuracy depends on the estimation method, the
digitization devices etc. For the solution of this curvature estimation problem, Ko ef al.

suggested scanning a region around a point several times and then to use the curvature

estimation method, which is not a practical solution and can not guarantee the accuracy
of the estimation method either.

Taking these into consideration, a novel approach for robust initial matching of
free-form objects represented by point cloud data providing optimal initial estimation of
transformation or correspondence is provided. Delaunay pole sphere has been employed
as the localization tool in this work with great efficiency instead of any intrinsic

properties of the shape.
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1.4 Organization of the Thesis

This thesis is concerned with localization which is a generic problem in the Computer-
Aided Inspection (CAI). This localization problem consists of the matching of the CAD
model of an object with its measurement data set to verify the quality of the product.

The thesis is organized as follows. In the first Chapter, the work has been
motivated in the context of initial object matching. A brief review of the available
literature is given on the problems of matching 3D sculptured surfaces with and without
any initial information of correspondence or transformation. In Chapter 2, the
fundamental concepts and methods to compute rigid body transformations (rotation and
translation) as well as the overview of the ICP algorithm is provided.

Chapter 3 introduces Delaunay pole sphere, a new invariant property, as the
localization tool and describes the method of its construction. The reasons for choosing

this property as an effective tool for the proposed initial matching algorithm have also

been discussed. In Chapter 4, the concept of preprocessing of the measurement data set
before initiating the correspondence search for the proposed approach is introduced.

The proposed initial matching algorithm providing estimated transformation
parameters to achieve free-form object matching without the availability of initial
correspondence information is presented in Chapter 5. The details of the approach along
with its implementation technique have also been discussed. Chapter 6 shows extensive
simulation results to evaluate the performance of the proposed al gorithm.

Finally, it is concluded in Chapter 7 with the major contributions of the thesis and

the avenues for further research.
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Chapter 2

Relevant Mathematical Principles

The basic goal of localization or registration is to find the best rigid body or Euclidean

transformations which align two free-form objects as closely as possible. A unique

property of these transformations is that they preserve the shape of the objects that they
act on. In the context of this thesis, rigid body transformations consist only of translations
and rotations which correspond intuitively to our notions of real rigid bodies which can
not be scaled or stretched in any way.

The main challenges of the problem lie in identifying an objective function that
can quantify the quality of the alignment between the objects and in defining a procedure

to modify and refine current estimates of the transformation parameters in a way that the

similarity measure or the objective function is optimized. The primary goal in this chapter
is to introduce all the important definitions and approaches associated with the estimation
of rigid body transformations that can be useful in the sequel. ICP algorithm is
incorporated in our proposed initial matching approach for performing localization of
rigid 3D shapes after correspondence information between objects is established. The

overview of the ICP algorithm will also be introduced in this chapter.
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2.1 Rigid Body Transformations

A rigid body is an object which is a collection of particles/points such that the distance
between any two particles/points remains fixed, regardless of any motions of the object or

transformations applied on the object. Hence, if a(#) and b(¢) are two points on a rigid

body at time ¢, a and b must satisfy the following conditions as the object moves.
|a@®) =b(@)| =|a( —1) - b(z - 1)| =] a(0) ~b(0) | = constant. 2.1
A rigid motion of an object is a continuous movement of the points in the object such that
\ the distance between any two points remains fixed at all times. The net movement of a
rigid body from one place to another via a rigid motion is called a rigid displacement.
’ Generally, a rigid displacement may consist of both translation and rotation of the object.
A translation can be thought of as a transformation consisting of a constant offset or
sliding, with no rotation or distortion, of an object from one position to another. A
‘ composite of two (or any even numbered) reflections over parallel lines will result in a
translation. In » dimensional Euclidean space, a translation is simply specified as a
vector giving the offset in each of the n coordinates. On the other hand, a transformation
is a rotation if and only if it is the composite of two successive reflections through
intersecting lines. A rotation is an orientation-preserving®' orthogonal transformation

such that the object turns by an angle about a fixed point.
Let us consider an object which can be described as a subset O in R’.
Considering two points a,b € O, the vector k € R’ connecting a to b is given by

k =b —a. Naturally, the action of a rigid transformation on points of an object induces an

>! A nonsingular linear map f : R" — R" is orientation-preserving if det( f) > 0.

20

e ——



action on vectors. If a map f:0 — R’ represents a rigid displacement, then vector

transform according to

f.(K) = f(b)- f(a). (22)
Since rigid motions do not alter distances between points on a rigid body, a necessary
condition for a mapping f:0 — R’ to represent a rigid motion is that distances be

preserved by the mapping. However, this condition is not sufficient since it allows
, internal reflections, which are not physically realizable. Hence, a mapping might preserve

i distance but not the orientation. For example, the mapping [x, y, z] =[x, y, — 2]
\ preserves distances but reflects points in the body about the xy plane. In order to avoid

" this possibility, it is required that the cross product between vectors in the object also be

preserved. To this end, the concept of rigid body transformation comes into the mind. A

mapping f: R’ — R’ is arigid body transform if it satisfies the following properties:

} L. Length is preserved, i.e., | f(a) - f(b)|=|a=b| Va,beR’.

2. The cross product is preserved, i.e., f,(kxu) = f,(k)x f,(u) Vk,ue R’.
, Rigid body transformation restricts the searched transformation to be a combination of
translations and rotations which are sufficient to describe the movement of rigid objects.
The accurate estimation of 3D rigid body transformations builds the basis for
object matching techniques. To this end, Arun ef al. [5] proposed a well known pairwise
localization method which gives a closed-form solution for the 3D rigid body
transformation between two 3D point sets. This method uses the SVD technique to
compute the optimal localization parameters in the presence of point correspondences. To

avoid the possibilities of reflections, another approach based on unit quaternions [24] is
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preferred over SVD approach in two and three dimensions which also gives an optimal
closed-form solution. However, the SVD approach can be generalized to n dimensions
and would be the method of choice for n >3 in any n— dimensional applications. A give

brief overviews of these approaches is given in this section.

2.1.1 SVD Approach

Two free-form objects to be matched can be described as point sets denoted by

X ={x,,X,,....,xy} and Y ={y,,y,,....y,} assuming that the correspondence of the
point sets are known or established earlier. x; andy,, {i=1,2,..., N}, are considered to

be 3x1 column vector. The points in the two objects with the same subscript mean that
they represent 3D correspondences. Given the localization parameters 3x3 rotation

matrix R and 3x1 translation vector t, any point x, in the first object is related to its
corresponding point y, in the second object according to the following relation

vy, =Rx, +t (2.3)
The aim of the problem at hand is to find the rotation matrix R and translation vector t,

which minimize the following objective function
N
. 2
min > [y, - (Rx, +t)[". (2.4)
"=l

The problem can be reformulated in a manner which decouples the computation of t from
that of R by referring the coordinates to the respective centroids of each point set. Let R

and t be the least-squares solution to (2.3). It has been shown in [26] that {y,} and

{x = lixi +1} have the same centroid. Hence, it gives
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y=X (2.5)
where
1 N
y=— . 2.6
y NZ?Q (2.6)
1 N
X=—) X. 2.7
NZ 2.7)
1 & B A
X'=—) x' =RX +t. 2.8
NZ (2.8)
Defining
g, =X, —-X (2.9)
h, =y, -y (2.10)

equation (2.4) turns into the following minimizing problem

N
min [, -Rg,[". (2.11)
=l

In this way the original problem is resolved into two parts. The first is to find R to

minimize (2.11) and the second is to estimate t as given by

A

t=y-Rx. (2.12)

<

The SVD algorithm for computing R is based on the singular value decomposition of a
3x3 matrix as explained below. After calculating X, ¥, {g,}, and {h,} a 3x3 matrix is

computed defined by
N
H:=)gh’ (2.13)
i=1

where the superscript ()" denotes the transpose operator. Next, the SVD of H is

computed given by
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H=UXYV’. (2.14)
After computation of the SVD, a new 3x3 matrix D is formed as
D=VU". (2.15)

Finally, the determinant of D, det(D)is calculated.

A

If the det(D)=+1, then estimated rotation matrix R is set equal to D, and

solved for t as noted previously. If the determinant of D is negative, then it indicates the
situation of reflection and the algorithm fails. The reader is referred to the original paper

[5] for more details and proof of the SVD algorithm to accomplish pairwise localization.

2.1.2 Unit Quaternions Approach

A quaternion can be thought of as a generalization of a complex number with a real part
and three different imaginary parts or as a composite of a 3x1 vector and a scalar.

Mathematically, the unit quaternion can be defined as a 4D vector
q:=[qg,, 915492 Q3]T (2.16)
where ¢, >0 and ¢ +¢] +q; +q7 =1. The quaternion representation makes the

minimization of (2.4) equivalent to the maximization of a quadratic form of a unit
quaternion [24]. The optimal rotation matrix is formed from the unit quaternion that is the
unit eigenvector corresponding to the most positive eigenvalue of a 4 x4 matrix whose
components are generated from the cross-covariance matrix between the given pairs of

point sets. Using (2.6) and (2.7), the cross-covariance matrix Q,, of the point sets X and

Y 1s given by

Q, =22 [ %) - = L5 v w7 @17)




Next, the cyclic components of the anti-symmetric matrix B, = (Q, - Qiy]ij are used to

form a column vector given by A=[B,,, B,,, B,,]". By using this vector, a symmetric

4 x 4 matrix is formed as

S tr(Q,,) AT

(2.18)
A Q,, +Q’ —tr(Q,)I,

where tr(-) indicates trace of a matrix and I, is the 3x 3 identity matrix. Finally, eigen

decomposition of the matrix S is computed. The unit eigenvector corresponding to the
maximum eigenvalue of S represents the unit quaternion q =[gq,, q,,¢,,q,]" which is

used to derive optimal 3 x 3 rotation matrix given by

qg +q12 —QZ2 _Q32 2(%‘]2 _qOQ3) 2(Q1q3 +QOQ2)
R, =| 269.9,+90:) 96 +9 -4 —45 29,95 —9,9,) |- (2.19)
2(9,95 — 904,) 2(9,95 +9,9,) qg +Q32 "’%2 _q;

The optimal translation vector t_, is obtained by the difference between the transformed

opt

centroids of the first point set and the second one. Hence,

A

o =Y —R_X. (2.20)
This approach uses only the centroids and the cross-covariance matrix of the given pair of
point sets, and it gives a closed-form solution if more than three pairs of points are given.
We use this approach in our proposed algorithm to compute optimal transformation
parameters, after establishing the correspondences between the point sets.

The above two methods give closed-form solution if and only if the

correspondences between the point sets are known. We present next a widely used
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algorithm to estimate transformation parameters between paired 3D shapes without

preliminary correspondences.

2.2 Iterative Closest Point Algorithm

Up to now, several approaches have been proposed for 3D data localization. The iconic
algorithm introduced by Besl and McKay [11] is a standard solution to the general
purpose problem for the localization of rigid 3D shapes without preliminary point
correspondences, which they refer to as the iterative closest point (ICP) algorithm.
Rusinkiewicz and Levoy [48], who suggested that iterative correspondence point is a
better expansion for the abbreviation of the ICP than the original iterative closest point,
presented an excellent summary with new results on the acceleration of the ICP

algorithm. The ICP algorithm is composed of two different procedures:

1. Search of the corresponding point and hence, generation of the temporary point

correspondences, and
2. Estimation of the 3D rigid transformations from the point correspondences.
These two procedures are iterated until the two given shapes are localized by the
estimated transformation matrix. ICP starts with two point sets and an initial guess for
their relative rigid body transformation, and iteratively refines the transformation by

repeatedly generating pairs of corresponding points from the point sets and minimizing

an error metric.
We consider two independently derived sets of 3D points which correspond to a

single shape. The algorithm aims a measurement point set (the data set D) of N , boints,

{d,.d,,....d, } is rigidly transformed to be in best alignment with the corresponding

26

R,



‘ CAD model (the model set M) of N, points, {m,,m,,..., m, }. Let “d—m” be the

Euclidean distance between points deD and meM. For each point

d,.{i=12,...,N,} there exists at least one point on the surface of M which is closer to
d; than any other points in M. This is the closest point m,. The basic idea behind the

{ - ICP algorithm is that under certain conditions, the point correspondence furnished by sets
of closest points is the approximation to the true point correspondence which is not
! plausible for many practical situations, specifically when data sets are transformed in a
random manner. Moreover, ICP algorithm considers an identity matrix as the initial
transformation information to transform the measurement data which means that the
algorithm starts with two original raw data sets without any transformation. Hence, the

first updated new data set can be expressed as D,_, = D. The ICP algorithms depicted in

Figure 2.1 can be summarized as follows:

Step 1. For each data point in D,,,, the closest point on the surface of the CAD model

M is computed. Consequently, a point sequence {m,,m,,..., m y, 3 I M to

!

the data point sequence {d;, d), ...»d’y } in D, can be obtained where each

point d}, {i=1,2,..., N,} corresponds to the point m,{i=12,...,N,} with
the same index.
Step 2. With the correspondence established from Step 1, the transformation matrix T

is computed such that the transformed data points T(d,) are closest to their

corresponding points m;, where the objective function turns into the

27

..



minimizing problem given by
N, s
mTin;Hmi -T@,)| . (2.21)

This least squares problem can be solved explicitly, see e.g., [24], [11]. An
| overview of the computation of the rigid body transformation was presented in

{ previous section.
Step 3. The transformation obtained from Step 2 is applied to the original data in D
) i.e., the points in data set are updated via D, = T(D).
Step 4. Step 1-3 are repeated, as long as the change in mean-square error (MSE) falls
below a preset positive threshold 7. The MSE is computed between points

inD . and the corresponding closest points of the CAD model.

Instead of seeking real physical correspondences, the ICP algorithm tries to search

the correspondence between data point sets by finding closest points iteratively. This

affects the computation of the optimum transformation using the algorithm based on the
known correspondences of the data sets. Since ICP is a non-linear local search algorithm,
it suffers from many problems commonly associated with local searches, such as slow
convergence and the tendency to fall into local minima. The ICP algorithm always
converges monotonically to a local minimum with respect to the mean-square distance
objective function [11]. It requires a good initial transformation to converge acceptably.
To solve this problem, we take resort to the Delaunay pole sphere, a computational
geometric tool invariant under any rigid body transformations, to establish the effective

point correspondence information for achieving efficient initial matching.

28

ﬁ



Measurement CAD Model
Point Set, D Point Set, M

L ]

\ Y A 4

/ Initial Estimationof 3D Transformation

Dnew =D

’ h 4

For Each Point of D

new?>

Find the Closest Pointin M

y

Compute Optimized Transformation T

Between D and the Closest Points of M

A 4

Rigid Transformation of Data Point Set D

Do, =T(D)

No

Final Estimationof

3D Transformation T

Figure 2.1: Flowchart of the ICP algorithm.
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\ Chapter 3
| Delaunay Pole Sphere: The Localization

Tool

The efficacious computational geometric tool that has been used in the proposed

algorithm for initial matching of two point cloud data is the Delaunay pole sphere. Since

1t is necessary to establish the correspondence relationship between the input point sets,
an optimal property of those point sets has been used to extract the required
correspondence information. This property comes from the omnipresent Voronoi diagram
and its geometric dual, the Delaunay triangulation [56]. These well known algorithms are
the fundamental topics in computational geometry and have been rediscovered or applied
in many applications because of their unique and predictable outcomes. This Chapter
introduces the basic concept of the computational geometric techniques and the new
invariant property, Delaunay pole sphere, derived from those techniques. The reasons for

choosing this property as an effective tool for initial matching pertaining to the proposed

algorithm have also been discussed.
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3.1 Voronoi Diagram

Voronoi diagram has different applications in many practical fields as well as within the
field of computer science, in particular, computational geometry. A Voronoi diagram of a
set of points is a collection of regions that divide up the plane. The Voronoi diagram can
be considered as a set of convex polygons in two dimension, and convex polyhedron in
three dimension where each Voronoi region is termed as cell. Each input point, which is
commonly referred to as site, is contained within a cell and every spatial location within
that cell is closer to that site than to any other site in the set. Figure 3.1 is the depiction of
a two dimensional example of a Voronoi diagram.

For mathematical representation of the concept of Voronoi diagram, let
P:.= {pl,pz,...,pn} 3.1
be defined as a set of » distinct points in the plane. The Voronoi diagram of P is the
subdivision of the plane into n cells, one for each site in P, with the property that a

point q lies in the cell corresponding to asite p, , {i =1,2,...,n} if and only if

dist(q, p,) <dist(q, p,) for each p;eP with j#iand {j=1,2,...,n} (3.2)
where dist(.,.) represents the Euclidean distance between the two points of its argument.

The boundary between two adjacent regions which is called the Voronoi edge is a line
segment and this edge is the perpendicular bisector of the segment joining the two sites.

Each of the cell vertices has at least four equidistant sites in 3D.
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Cell Site

Input points Voronoi diagram of the input point sets

Figure 3.1: 2D representation of a Voronoi diagram.

3.2 Delaunay Triangulation

A well known topic of computational geometry which is also known in various fields is
the problem of triangulating a set of points. Among all the triangulation methods used,
Delaunay triangulation, the geometric dual of the Voronoi diagram, is the most widely
used one. It has several practical implementations such as height interpolation and mesh
generation. For a set of input points, the Delaunay triangulation is an extension of the
Voronoi diagram with a different emphasis placed on the set of input sites. Instead of
being partitioned into cells, the sites of Delaunay triangulation become the vertices of

triangles in two dimensions and of tetrahedrons in three dimensions. In Delaunay

triangulation, the vertices of the triangle specify a circum-circle in 2D, whereas the
vertices of tetrahedron specify a circum-sphere in 3D that contains no other sites in the
set. Therefore, the vertices of each Voronoi cell become the centres of Delaunay spheres.

The calculation of the circum-sphere of the tetrahedron is described in Appendix A.
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Delaunay triangle

Voronoi cell

Circum - circle Voronoi vertex

Figure 3.2: Depiction of Delaunay triangulation, Voronoi diagram, and the circum-circle.

Figure 3.2 represents the combined view of Delaunay triangulation and Voronoi
diagram to describe their interrelationship, and the circum-circle at Voronoi vertex. The

Quick hull algorithm [6] is used in this thesis for the calculation of the Delaunay

triangulation and Voronoi diagram by considering its efficiency. Because of being dual,
computing either the Delaunay triangulation or the Voronoi diagram automatically gives
the other one. This Quickhull algorithm used for the calculation of Delaunay

triangulation is taken from the publicly available C++ code of CGAL (Computational

Geometry Algorithms Library) [62].

3.3 Delaunay Pole Sphere

In Delaunay triangulation, the vertices of the Delaunay tetrahedron form Delaunay sphere
that contains no other sites inside the sphere. Amenta ef al. [3] introduced the concept of
poles which are a subset of the Voronoi vertices of the point set. Each site is associated

with two poles which are defined as the furthest vertices of each Voronoi cell that lie on
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cach side of the surface. But they mentioned in their later work [4] that their surface
reconstruction algorithm does not work well for sharp edges. This is because the Voronoi
cell of a sample point set on a sharp edge is not long and thin so that the assumption
‘ under which they choose the poles for sharp edges is not correct. To this end, a new pole
construction method is proposed for this work.
‘ To accomplish the pole construction, the Delaunay cell clustering method
proposed by OuYang and Feng [44] is implemented because of its simplicity and
efficiency. Triangular mesh has been constructed using this method as it treats the points
from corner area and the points from sharp area in the same manner whereas most of the
surface reconstruction methods fail to reconstruct mesh properly while dealing with
randomly sampled points. For each site, the incident Delaunay spheres are divided into
two groups by its closed local Delaunay triangular mesh. The separation of the Delaunay
spheres occurs along the curve or surface as the point density increases. This separation
results all the Delaunay spheres for each point to be clustered into two groups. From each
group, the Delaunay sphere of maximum size is estimated and will be referred to as
Delaunay pole spheres hereinafter. Being a property of the point set, Delaunay pole
sphere is invariant under any rigid body transformation which makes it an efficient tool

for object matching. In this thesis, the Delaunay pole spheres are used with great efficacy.

3.4 Medial Axis

| In recent years, potential use of medial axis in various geometric modeling applications

has received a great deal of attention. The work has been driven by a wide variety of
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interest and areas of applications such as image processing, computer vision, solid

modeling, and mesh generation as a skeleton shape representation [16].

Medial axis circle —— 5. | .~

Medial axis »

Closed curve ———»

Figure 3.3: Representation of the medial axis and the medial axis circle of a closed curve.

The medial axis of a geometric object in 3D, also referred to in the literature as
the skeleton, is defined as the locus of centers of the theoretical maximum empty spheres
at each site. More generally, the medial axis of a shape is the group of centers of spheres
that touch at least two points of the surface of the object. The theoretical maximum empty
sphere, termed as a medial axis sphere, is the one which does not have any other part of

the surface contained within it, and have their centres along the normal direction of the

surface at every site and touch at least one other site on the surface. A closed curve, its

medial axis, and the maximum empty circles within it are represented in Figure 3.3.

3.5 Reasons for Selecting Delaunay Pole Sphere

This section focuses on the reasons for selecting Delaunay pole spheres as the

localization tool used in the proposed approach to accomplish the initial matching.
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Medial axis spheres

Curve with sample points

Surface normal

Delaunay pole spheres

Figure 3.4: Representation of Delaunay spheres and corresponding medial axis of a site.

3.5.1 Medial Axis Approximation

Even though the medial axis provides the theoretical representation of the shape of a
surface, there are no robust algorithms currently available that can generate the exact
medial axes of all shapes and thus the corresponding sphere radii are difficult to obtain,
Hence, it is difficult to construct the medial axis of a shape in three dimensions.

In many instances, the Delaunay pole spheres have been used to approximate the
medial axis spheres e.g., [2], although the validity of this approximation can not be
guaranteed because of the possibility of their centres being arbitrarily far from each other
[3]. Figure 3.4 represents the interrelationship between the Delaunay pole spheres and the
corresponding medial axis spheres in two dimensions.

When the sample points are sufficiently dense, the concept of pole introduced by
Amenta and Bern [3] is almost similar to our concept of pole used in this research work.

According to [1], for sufficiently dense sample points, the Voronoi cell of every sample
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point appears naturally long and slim, and is approximately perpendicular to the
boundary of the object which is represented in Figure 3.5 modified from [1]. The reason
behind this happening is that the Voronoi cell is bounded by the proximity of other
samples on the same local patch of surface while the direction of the cell is tangent to the
surface. Even though the Voronoi cell of the sample point extends perpendicularly away
from the surface, the sample point stops to be the closest surface point and samples on the
some other patch of the surface might be closer. For this reason, the Voronoi cell of the
sample point can not advance much further than the medial axis. Hence, for the densely
sampled point sets, the Voronoi vertices at the two ends of the slender, long, and almost
perpendicular Voronoi cell should lie near the medial axis. Therefore, two poles are
roughly in the opposite direction and the pole direction from a site to its poles
approximates the surface normal at that site provided the sampling condition is dense.
This is one of the reasons that motivate the use of Delaunay pole sphere as an effective

localization tool.

Voronoi cell of
densely sampled area

Figure 3.5: The Voronoi diagram representing the densely sampled area.

3.5.2 Performance Evaluation

The Delaunay triangulation is a global structure which is the volume representation of the

surface for dense sampling. The Delaunay pole spheres are referred to as the largest




Delaunay spheres on each side of the surface. The selection of the Delaunay pole spheres

as the localization tool leads to the necessity of validating the properties of Delaunay pole

sphere and comparing it with other existing geometric tools used for the same purpose.
( Since Delaunay triangulation is the property of a number of points, some tests have been
carried out to ensure that the deviation of the Delaunay pole sphere with the change of
number of sample points remains within a tolerable limit. To conduct these performance
tests, three types of simulated point sets have been used which are sampled from the
parametric surface representation, NURBS. NURBS has been chosen over other
parametric forms because of its wide acceptability in the industries as the standard tool
for the representation and design of product geometry. With different geometric
representations of the surfaces as shown in Figure 3.6, the three NURBS surfaces
represented by point sets is termed here as Point Set 1, Point Set 2, and Point Set 3,
respectively. For these tests, each test surface is sampled uniformly and randomly using
same number of points. 20,000 points have been taken as the reference data set and the
numbers of points have been reduced from 100% to 10%. To compare the deviation of

Delaunay pole sphere between the reference data set and the reduced data set,

characteristic points of each point set have been considered. This is because the
characteristic points are defined in this work as those points that represent the distinct
features of any free-form surface and our localization algorithm is based on these
characteristic points. The identification of characteristic points in this research work will

| be discussed in details in a later chapter.
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(a) Point Set 1

(b) Point Set 2

(c) Point Set 3
Figure 3.6: Simulated point sets used to examine the Delaunay pole sphere performance.
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Figure 3.7: Average deviation and RMS values of Delaunay pole spheres for

characteristic points in uniformly sampled Point Set 1with reduced point densities.
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Figure 3.8: Average deviation and RMS values of Delaunay pole spheres for

characteristic points in randomly sampled Point Set 1with reduced point densities.
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Table 3.1: Result details of Delaunay pole sphere deviation analysis for
randomly sampled Point Set 1.

Point  Percentage of  Density Number of Average RMS
Number Original Set by Length Characteristic Deviation Value
(%) Paints (%) (%)
| 1 2,000 10 1.897 56 11.1 124
, 2 4,000 20 1.359 88 7.7 174
i 3 6,000 30 1.103 90 10.0 21.8
' 4 8,000 40 0.950 138 57 154
5 10,000 50 0.856 150 42 15.3
| 6 12,000 60 0.774 172 52 16.3
7 14,000 70 0.716 215 3.8 14.9
l] 8 16,000 80 0.667 270 3.8 14.7
| 9 18,000 90 0.629 275 23 1.7
| 10 20,000 100 0.599 311 0.0 0.0

Figure 3.7 (a) and Figure 3.7 (b) represent the average deviation and the RMS
value of Delaunay pole sphere radii, respectively using uniformly sampled Point Set 1. It

has been shown that the maximum average deviation is less than 18% and the maximum

RMS value is less than 7%. It has also been presented that when the difference between
the point numbers of reference point set and the reduced point set lessens, generally the
average deviation also decreases. Similar result using randomly sampled Point Set 1is
depicted in Figure 3.8. Table 3.1 shows the detailed test result illustrating number of
points, number of characteristics points, average density of point set, average deviation,
and the RMS value of the reduced point sets using the randomly sampled Point Set 1. In
this test case, it has been shown that the maximum average deviation is 11.1% and the
maximum RMS value is 12.4% where the average deviation has the trend to decrease

while difference between numbers of two point sets becomes less.
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Figure 3.9: Average deviation and RMS values of Delaunay pole spheres for

characteristic points in uniformly sampled Point Set 2 with reduced point densities.
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Figure 3.10: Average deviation and RMS values of Delaunay pole spheres for

characteristic points in randomly sampled Point Set 2 with reduced point densities.
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Table 3.2: Result details of Delaunay pole sphere deviation analysis for

randomly sampled Point Set 2.

Point  Percentage of  Density Number of Average RMS
Number  Original Set by Length Characteristic Deviation Value
(%) Points (%) (%)
1 2,000 10 1.870 27 4.1 4.1
2 4,000 20 1.303 54 24 24
3 6,000 30 1.050 53 3.1 10.0
4 8,000 40 0.904 79 1.3 21
5 10,000 50 0.812 123 1.3 3.8
6 12,000 60 0.737 154 1.1 4.9
7 14,000 70 0.683 200 2.0 10.6
8 16,000 80 0.636 251 1.6 8.6
9 18,000 90 0.602 290 1.0 5.2
10 20,000 100 0.569 312 0.0 0.0

The average deviation and the RMS value of Delaunay pole spheres using
uniformly sampled Point Set 2 is depicted in Figure 3.9 (a) and Figure 3.9 (b),
respectively. It has been shown that the maximum average deviation is below 5%, and the
maximum RMS value is less than 15%. Figure 3.10 also displays (a) the average
deviation and (b) the RMS value using sampled Point Set 2, but the point sets are
sampled randomly. The detailed test results using randomly sampled Point Set 2 is
presented in Table 3.2. It has been shown that the maximum average deviation is 4.1%
and the maximum RMS value is 10.6%.

The final test results using Point Set 3 is delineated in Figures 3.10 and 3.11, the
former one employing uniformly sampled points and the later one with randomly
sampled points from the test surface. The detailed test results for randomly sampled

points using Point Set 3 are illustrated in Table 3.3.
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Figure 3.11: Average deviation and RMS values of Delaunay pole spheres for

characteristic points in uniformly sampled Point Set 3 with reduced point densities.
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Figure 3.12: Average deviation and RMS values of Delaunay pole spheres for

characteristic points in randomly sampled Point Set 3 with reduced point densities.
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Table 3.3 Result details of Delaunay pole sphere deviation analysis for randomly

sampled Point Set 3.
Point  Percentage of  Density Number of Average RMS
Number Original Set by Length Characteristic Deviation Value
(%) Points (%) (%)
1 2,000 10 1.846 45 19.0 20.0
2 4,000 20 1.322 87 7.0 7.6
3 6,000 30 1.067 117 33 4.0
4 8,000 40 0.926 175 29 9.1
5 10,000 50 0.875 180 2.1 5.5
6 12,000 60 0.753 225 1.6 6.5
1 7 14,000 70 0.725 204 21 9.3
8 16,000 80 0.646 299 1.4 7.0
’ 9 18,000 90 0.610 329 1.2 6.9
10 20,000 100 0.582 377 0.0 0.0

The above tests involving three different types of surface representations and two
different types of sampling arrangements of the point sets prove that regardless of the

representation and distribution of the points, the range of average deviation for Delaunay

pole sphere varies between 4% to 30%, among which most of the average deviation value
lies{)elow 15%, which propelled the selection of the Delaunay sphere as an efficient

| localization tool in our proposed algorithm.

3.5.3 Comparison with Intrinsic Differential Properties

The primal idea behind the correspondence search for matching problem is to identify
some specific properties of sample points obtained from one surface and try to find the
same properties from the other surface. Therefore, while choosing the specific properties,
it should be kept in mind that those properties have to be robustly extractable. For

matching two free-from surfaces, several existing work tries to utilize some intrinsic
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differential properties of the surface, such as curvatures. For the surfaces with known
geometric representation, the calculation of curvature is pretty straightforward. But, for
the practical data sets, the estimation of curvature is still a big domain of research where
many work yet to be done. It is well known that the accuracy of estimated curvature can
not be guaranteed such that it can be used as an efficient feature for extracting the same
feature from the other surface. This motivated not to choose any intrinsic properties of
the surfaces for this work to localize two free-from surfaces. Like the performance test
described in the last section, some detailed tests have been conducted using the Point Set
1, Point Set 2, and Point Set 3 to compare the average deviation of estimated Gaussian
curvature with that of the Delaunay pole sphere. These tests are performed using the
uniformly sample point sets for all the cases. Same number of characteristic points has
been used for the calculation of the estimated Gaussian curvature and the Delaunay pole
sphere.

Table 3.4 represents the detailed analysis results of Delaunay pole sphere and
Gaussian curvature for uniformly sampled Point Set 1. It clearly appears from the table
that, for same point set, the average deviation using Delaunay pole sphere is far below
than the average deviation utilizing estimated Gaussian curvature. It shows that the
maximum average deviation for estimated Gaussian curvature is 97.9%, whereas the
maximum average deviation for Delaunay pole sphere is only 17.7%.

The result details of Delaunay pole sphere and Gaussian curvature analysis using
uniformly sampled Point Set 2 is presented in Table 3.5 which also prove that the average
deviation of Delaunay pole sphere is significantly less than that of the estimated Gaussian

curvature. It has been shown that the maximum value of the Delaunay pole sphere
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average deviation is 4.2% which is too low compared to 415.3%, the maximum value of
the estimated Gaussian curvature average deviation.

The test results of Table 3.5 are performed using uniformly sampled Point Set 3.
These results are also represented to verify that for same number of points, the average
deviation of Delaunay pole sphere is distinctly less than the average deviation of the
estimated Gaussian curvature.

All these results clearly prove that, for unknown geometric representations such
as point cloud, the deviation of estimated curvature calculation is immense. As discussed
earlier, for matching two free-form surfaces or two point sets, a specific property ought to
be found from one point set which would have to be easily identified from the other set.
Considering this aspect, a property with such huge average deviation clearly can not be a

good choice for localization.

| Table 3.4: Result details of Delaunay pole sphere and Gaussian curvature
{ analysis for uniformly sampled Point Set 1.

N Point Percentage of Density Number of Delaunay Pole Sphere Gaussian Curvature
Number Original Set by Length Characteristic Average RMS Average RMS
(%) Points Deviation  Value Deviation Value
(%) (%) (%) (%)
1 2,000 10 2.894 5 17.7 6.7 27.4 35.6
2 4,000 20 1.633 4 5.5 3.5 97.9 130.2
3 6,000 30 1.251 4 4.2 3.2 33.0 10.8
4 8,000 40 1.063 7 1.6 1.0 28.2 141
5 10,000 50 0.943 7 0.7 0.9 351 23.9
6 12,000 60 0.866 13 20 4.9 385 30.2
7 14,000 70 0.811 21 0.4 0.7 27.6 24.2
8 16,000 80 0.764 16 0.7 1.3 34.9 29.8
9 18,000 90 0.729 17 04 0.6 22.4 26.8
10 20,000 100 0.696 10 0.0 0.0 0.0 0.0
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Table 3.5: Result details of Delaunay pole sphere and Gaussian curvature
analysis for uniformly sampled Point Set 2.

Point Percentage of Density Number of Delaunay Pole Sphere Gaussian Curvature
Number Original Set by Length Characteristic Average RMS Average RMS
(%) Points Deviation  Value Deviation Value
(%) (%) (%) (%)
1 2,000 10 2.684 4 1.5 1.0 415.3 388.6
2 4,000 20 1.533 8 2.1 17 83.3 25.0
3 6,000 30 1.168 6 1.1 0.9 82.0 54.9
4 8,000 40 0.990 9 0.6 0.5 78.0 77.8
5 10,000 50 0.893 9 0.5 0.3 128.1 1565.9
6 12,000 60 0.820 19 3.3 10.7 119.5 137.8
7 14,000 70 0.771 27 4.2 12.2 84.1 149.8
8 16,000 80 0.731 36 1.1 1.3 118.9 193.0
9 18,000 90 0.700 42 27 79 93.5 141.5
10 20,000 100 0.668 7 0.0 0.0 0.0 0.0
Table 3.6: Result details of Delaunay pole sphere and Gaussian curvature
analysis for uniformly sampled Point Set 3.
N
Point Percentage of Density Number of Delaunay Pole Sphere Gaussian Curvature
Number Original Set by Length Characteristic Points  Average RMS Average RMS
(%) Deviation Value  Deviation Value
(%) (%) (%) (%)
1 2,000 10 2.771 22 304 22,6 147 1 279.1
2 4,000 20 1.637 25 8.9 6.6 109.0 293.7
3 6,000 30 1.214 31 4.0 3.2 126.3 327.8
4 8,000 40 1.028 31 1.8 1.5 160.8 303.5
5 10,000 50 0.898 31 1.3 09 161.4 447.3
6 12,000 60 0.837 36 0.9 1.1 90.3 206.7
7 14,000 70 0.781 37 0.5 0.9 71.7 196.8
8 16,000 80 0.738 37 04 1.0 43.3 111.5
9 18,000 90 0.706 38 0.3 0.6 14.3 247
10 20,000 100 0.675 38 0.0 0.0 0.0 0.0
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On the contrary, as focused in the earlier section, in many existing literatures
Delaunay pole sphere has been approximated as the medial axis which is the theoretical
representation of the surface. With less average deviation between two different point
sets, the radius of Delaunay pole sphere can extract the corresponding radius of Delaunay
pole sphere from the other point set easily. Moreover, being the property of a point set,
Delaunay triangulation only depends on the distribution and density of the points. They
are also steady under any rigid body transformation (rotation and translation). Keeping all
these in mind, Delaunay pole sphere has been chosen in this research work as a robust

tool for the initial matching algorithm.
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Chapter 4

Preprocessing Prior to Initial Matching

Data preprocessing is a concept of process performed on source data to prepare it for
another processing procedure. It transforms the raw data into a format that will be more
casily and effectively processed for further operation. Since the basic idea behind the
three dimensional object matching for computer aided inspection system is to align two
objects as closely as possible, two source datasets are of interest in the context of this
thesis. Among those two, one is the design model or CAD model represented by the point
cloud data which can be termed as the reference data set whereas the other one is the
measurement point set obtained from the contact or non-contact measuring devices. To
accomplish the accurate correspondence search, whether the two input datasets should g0
through a processing step before starting the proposed algorithm for localization or
should be used directly as the raw datasets is a significant issue to be considered. This
Chapter deals with the basic concepts pertaining to preprocessing steps before initial

matching is initiated.
4.1 Preprocessing Data Set

The CAD model is usually represented by the parametric form of NURBS formulation.

With known mathematical formulation, dealing with the design model is straightforward
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and points can be conveniently sampled from the theoretical surface using different
sampling techniques. When the sample points are sufficiently dense, those points can be
treated as the true representation of the shape of the surface. In this work, the CAD
surface is always sampled dense enough so that it can represent the geometry of the
| object properly and hence no preprocessing is performed on the raw data points obtained
from the CAD surface in the proposed approach. On the other hand, the manufactured
product is usually measured by the CMM machine or scanned by some scanning devices
such as laser scanner from which the point sets are obtained in discrete data form.
Measuring point sets from the manufactured product depends on many factors such as
different types of measurement devices used, scanning direction, and scanning speed. All
these factors make the nature of measurement data highly unpredictable and this data
attains further interest of processing to smoothen out its fuzzy characteristics. To this end,

in this work the measurement data set is considered for preprocessing while needed.

4.2 Method of Preprocessing

The goal of the localization is to find the relative position and orientation of one point set
obtained from the measurement data with respect to the point set obtained from the CAD
model. Given the two input data point sets from measurement data and CAD model, the
proposed method is started by preprocessing the measurement data (if needed) according
to the following steps.

Point Spacing Calculation: At first, the average point spacing of the
measurement data set, p,, and the average point spacing of the CAD model, p,, have

been calculated.
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Figure 4.1: Depiction of neighboring points of the i th point.

The point spacing calculation performed in this work is based on the distance

criterion. The point spacing of the ith point of data set is defined in this work as given by

pi=2t 1)

where N; is total number of local neighboring points of the ith point and d; ; 1s the

distance between the ith point and its jth neighboring point. Figure 4.1 shows the

respective distance between the ith point and the five neighboring points of its local
mesh. The average point spacing of each point set is calculated by taking average of the
point spacing of all the points of that set. Triangular mesh has been constructed using the
Delaunay cell clustering method proposed by OuYang and Feng [44]. After the
construction of the closed local mesh for each point i, surrounding points of the mesh for
that point have been considered as its neighboring points for purpose of point spacing

calculation.
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Point Spacing Comparison: After the average point spacing for both the
measurement point set and the CAD model point set has been computed, a comparison
between the average point spacing is made. If the CAD model set is denser than the
measurement point set that means if the average point spacing of the CAD model is

smaller than that of the measurement data, i.e., p,, < po,, it is considered as the stable

situation for performing the localization. In this case, no processing on any of the data set
is performed that means the source data set is kept as it is. On the other hand, if the
measurement point is denser, this point set has to be processed to a suitable form. No
processing is performed on the CAD model point set as usual.

Processing Based on Point Spacing: The measurement point set with higher
density is processed such that its density becomes lower. Since the new invariant
property, Delaunay pole sphere, used for initial matching in this work is derived from the
computational geometric technique, Delaunay triangulation which is a property of point

density, the measurement points are reduced in such a way that the average point spacing

of the CAD model and the measurement point becomes similar. For making the point
spacing alike, measurement points are thrown out from the measurement point cloud in a
uniform manner so that it does not affect the distribution of the point set and the
representation of the surface. A user defined parameter; the density reduced factor u, is
introduced for reducing the density to a desired level. As the motivation behind this
preprocessing step is to make the density of both point sets similar, the density reduced
factor u is assigned to be 1 for preprocessing. As an example, to reduce the density of the
measurement point set to half of the density of the CAD model point set, the density

reduced factor u will be 2. Depending on the noise of the data set, this value of the
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density reduced factor might vary to smoothen out the noise effect, which will be shown

elaborately in a subsequent chapter.

4.3 Justification of Preprocessing

Two main reasons play the important role for considering the measurement point set to
go through the steps of checking the density and preprocessing the set depending on the
| density requirement, instead of using the source data sets directly for initial matching.
The availability of correspondent points and the deviation due to the noise are the two

prime reasons for introducing the concept of preprocessing.

4.3.1 Availability of Correspondence

For the correspondence search in localization, the correspondent points of the
measurement data have to be extracted from the CAD model with the help of some
specific properties of the measurement points. While using the efficient property, the
i Delaunay pole sphere, of some characteristic points of the measurement data set to find
out the correspondent points from the CAD model, points with the similar value of that
property must have to be present in the CAD model. If the measurement point set is
denser than the CAD model point, the size of Delaunay pole sphere of the measurement
data might be too small compared to the Delaunay pole sphere of the CAD model set,
which might create the uncertainties of finding the corresponding point from the CAD
model with same or within tolerance Delaunay pole sphere size. If those corresponding
points do not exist in the CAD model data set, the reference measurement points will try

to do the best possible search from the CAD model sets with increased tolerance. Hence,
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the characteristic measurement points used for the correspondence search might end up
finding the wrong correspondent points from the CAD model. There is a possibility for
these wrong corresponding points to be found in a position far away from the correct
position. This will end up with wrong initial transformation information, and the
localization of the CAD model and measurement point will not be obtained. On the other
hand, if the measurement point set is less dense than the CAD model point, the Delaunay
pole sphere size of the measurement point might be bigger than that of the CAD model
point, which still can pick up the corresponding point from CAD model within the
tolerable Delaunay pole sphere size.

To avoid this situation, we try to make sure that measurement point density is
always less than the CAD model point density. Hence, the comparison of density
between the CAD model points and the measurement points has been performed before
starting the initial matching algorithm, and the excess measurement points are thrown

away in a uniform manner for reducing the density of the measurement data set.

4.3.2 Deviation Due to Measurement Error and Noise

For measuring the manufactured products, contact and non-contact devices are used
among which the contact device, CMM is the high accuracy device whereas the non-
contact device, laser scanner is a high speed device but not as accurate. The measurement
data contains measurement error whose properties depend on both the distance from the
surface to the viewpoint and the relative orientation of the surface to the viewing
direction. As a result, the properties of measurement error are different for each point.

The data obtained from laser scanner devices always have noise which is smaller than the

58



tolerance of the used instruments. Noise in the measurement process can be considered as
any difference in the data that is not directly attributable to the surface being measured.
Any change in the test environment can cause noise in the measurement. It affects the
accuracy and the repeatability of the measurement and the noisy data do not allow a
correct interpretation of the object details.

To examine the behavior of noise on the point sets, some tests have been
conducted using three simulated point sets which are sampled from the surfaces with
different representation of NURBS formulation as mentioned in Chapter 3. Delaunay
pole sphere, the invariant property, used for initial matching in the proposed approach has
been used in this test.

Each test surface has been sampled uniformly and Gaussian noise (10%) has been
added to each point along its normal direction. The point density has been reduced with
respect to a reference density and the nature of the average deviation of the Delaunay
pole sphere has been examined for these noisy data. Figure 4.2 (a) depicts the average
deviation and Figure 4.2 (b) displays the RMS value of the Delaunay pole sphere radii,
respectively, using the characteristic points with varying densities for Point Set 1. We
added 10% noise with the measurement sampled data for both cases. Similar results have
been shown in Figures 4.3 and 4.4 for Point Set 2 and Point Set 3, respectively.

All these test results depict the trend for deviation of Delaunay pole sphere for the
noisy data set. It clearly shows that reducing the density reduces the average deviation of

the Delaunay pole sphere radii.
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Figure 4.2: Average deviation and RMS values of Delaunay pole spheres for characteristic

points in uniformly sampled Point Set 1 with 10% noise and reduced densities.
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Figure 4.3: Average deviation and RMS values of Delaunay pole spheres for
characteristic points in uniformly sampled Point Set 2 with 10% noise and reduced

densities.
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Since the vertices of the Delaunay tetrahedron forms the Delaunay sphere, in case
’, of noisy data, the change in the x, y, z coordinates of the densely sampled measurement
; points has more probability of producing a different Delaunay sphere with higher
deviation with respect to the original one. Reducing the point density has a very high
possibility of smoothing out the noise effect on the size of the Delaunay sphere.

To this end, when the measurement point set is denser than the CAD model point

set, preprocessing has been performed on the measurement data set by reducing its
density. Due to the irregular nature of the noise, it is tedious to estimate the optimum
level of the density reduction. We consider the threshold for density reduction such that
average point spacing of the measurement points is of approximately equal to the average
point spacing of the CAD model points. The proposed initial matching algorithm

incorporating preprocessed data set will be discussed next.
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| Chapter 5

Initial Matching Algorithm

This chapter investigates the problem of initial matching of free-from objects in the
context of automatic inspection system to establish correspondences between the point
cloud data obtained from those objects while no a priori information of transformation or
correspondence is available. The goal of inspection is to check a given product for
identifying manufacturing errors and to visualize and classify the deviations. An
automated inspection system can be investigated as follows: a product is manufactured
according to the design specified in its CAD model. The manufactured product is
measured with different measuring devices resulting 3D point cloud data from the surface
of this product. Thereby, the CAD model describes the ideal shape of the object and will
be available in a coordinate system that is different to that of the 3D data point set
obtained from the measuring devices. To this end, it is of interest to find the optimal
transformation parameters (translation and rotation) that aligns or localizes the
measurement point cloud to the CAD model. The correspondence information between
the CAD model and the point cloud is the key factor in finding the best transformation to

perform the localization between two point sets.
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Based on an effective computational geometric tool which is invariant under any
rigid body transformations, in this chapter, we propose a robust estimation approach in
estimating transformation parameters to achieve free-form object matching without the

availability of initial correspondence information.

5.1 Procedure of the Algorithm

In this section, the proposed robust initial matching approach is introduced in a sequential
manner. For initiating the algorithm, as explained in the previous chapter, the

measurement data set is preprocessed if the average density of the CAD model set, p v 18
greater than the average density of measurement point set, p,. After preprocessing the

measurement data while needed, this proposed approach comprises the following steps.

3.1.1 Delaunay Triangulation and Mesh Construction

The proposed initial matching algorithm is initiated by the Delaunay triangulation of the
input point sets. The point set sampled from the CAD model and the point set obtained
from the preprocessed measurement data are considered as the input point sets for the
proposed algorithm. Next, triangular mesh is constructed using the Delaunay cell
clustering method reported in [44] in order to obtain the Delaunay pole sphere, an
efficient tool to accomplish localization. As discussed in the preceding chapter, for each
point, its local Delaunay triangular mesh is calculated maintaining all local triangular
mesh directions constant and all the Delaunay spheres of each point are divided into two

groups by using this constructed local mesh.
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Figure 5.1: Identified characteristic points of one-sided view of the Stanford Bunny.

Hereinafter, these two groups are considered to be in the two sides, termed as
inside and outside respectively, along the sampled curve/surface. From each side, the
sphere of maximum size is chosen as the Delaunay pole sphere. In this work, the

Delaunay pole spheres will be utilized to establish correspondence search.

5.1.2 Characteristic Points Identification

Since the characteristic points are the points with distinct features of the data set, at first
the characteristic points of the measurement point set are calculated to establish an
optimal correspondent relationship between the CAD model and the measurement data
set. After constructing the local mesh for each point of the measurement data set, points

which follow certain conditions are treated as the feature points or the characteristic

66




points of the data set. Two fundamental criterions for being the characteristic points are
mentioned below. Hence, a point is considered as the characteristic point if
1. each neighboring point of its closed local mesh can form closed local mesh by
itself, and
2. Delaunay pole sphere of this point on any side (inside or outside) is less than that
of any other local neighboring points on the same side.
Figure 5.1 represents the characteristic points computed from one of the practical data
set, the Stanford Bunny [63], used to test the proposed algorithm which will be shown in
the next chapter. In this test, the points obtained by scanning one-sided view of the bunny

are considered as the measurement point set.

5.1.3 IllI-Conditioned Points Removal

Objects often have regions that are not easily accessible to scanning and so remain
undersampled or unsampled. Some points in undersampled regions are needed to be
removed from the measurement data set before further processing since the points in
these regions might affect the effectiveness of the correspondence search. After
constructing the triangular mesh for the measurement data set, points which construct
closed local mesh are considered as the stable points and are used for further processing.
If a point does not have a closed local mesh, it means either the point is on the boundary
of the surface or in a hole. This point is referred to as an ill-conditioned point and is not
considered anymore. These points were not evaluated due to the fact that the Delaunay

spheres had the potential of generating an infinite solution in these regions.
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3.1.4 Reference Triangle Selection

The proposed algorithm reduces the correspondence search drastically by choosing three
points with specific properties from the measurement data and extracting three
corresponding points from the CAD model having the same properties. After identifying .

the characteristic points as well as removing the ill-conditioned points from measurement

Figure 5.2: Selected reference triangle of one-sided view of the Stanford Bunny.

data set, a reference triangle has been selected from those characteristic points to obtain a
good initial estimate of transformation. To this end, minimum Delaunay pole spheres are
calculated for all the characteristics points of the measurement data set on each side of
the curve/surface. The computed minimum Delaunay pole sphere on one side of the
surface is taken as the first point and the computed minimum Delaunay pole sphere on

the other side is taken as the second point of the triangle. The third point of the triangle is
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chosen such that the first two selected points construct the maximum triangular area with
the third point. The reason behind selecting the third point in this manner is to cover the
region of the whole point set as much as possible.

Figure 5.2 depicts the selected reference triangle on the practical test data,

Stanford Bunny. In this figure, p, and p, are the points of minimum Delaunay pole
spheres on both side, respectively, and p, is the point which constructs the maximum

triangular area with p,and p, .

5.1.5 Correspondent Triangle Search

Once a reference triangle is selected from the measurement data set, the correspondent
triangle has to be extracted from the CAD model point cloud satisfying some
predetermined constraints. Since identifying the correct correspondent triangle provides
the correct transformation information, these constraints have to be chosen in an efficient
manner. Two criterions have been used in this work for searching the correspondent
triangle of the reference triangle; among those two, the first one is the Delaunay pole
sphere criterion whereas the second one is the triangular edge criterion. How these

criterions are imposed are described next.

Criterion Based on Delaunay Pole Sphere

Based on the Delaunay pole sphere radii of the three vertices of the reference triangle, a
bunch of corresponding points for each vertex is obtained from the CAD model. The
minimum Delaunay pole sphere radius of the Delaunay pole spheres on both sides of

each vertex of the reference triangle is used as the search criterion. For each vertex, the
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entire CAD model set is searched to find out all the possible corresponding points whose
Delaunay pole sphere radii are within a certain tolerance of the reference Delaunay pole

sphere radius.
Two Delaunay pole sphere radii pertaining to both sides of ith vertex of the

reference triangle as 7' and 7/, {i=1,2, 3}, is denoted respectively. The minimum
Delaunay pole sphere radius between 7' and 7, is denoted by /., . For each vertex, p, of
the reference triangle, the entire CAD model point set M of N,, points,

{m,,m,,...,m, } is searched in such a way that it satisfies the following criterion

wl=rl ty Vm,eM, {k=1,2} and {j =1,2,...,N,} (5.1)

where w/ and w/ are the Delaunay pole sphere radii pertaining to both sides of the

jthpoint of the set M, respectively, and ' is the user-defined tolerance value for

corresponding search of ith vertex of the reference triangle. From (5.1), it can be seen
that a number of points from the CAD model can be obtained corresponding to each

vertex of the reference triangle.

Criterion Based on Triangular Edge

After a group of corresponding points for each vertex of the reference triangle is
identified satisfying the above criterion, the edge of the reference triangle criterion is
used to obtain the corresponding triangle from the CAD model. To achieve this purpose,
the length of each triangular edge of the reference triangle is computed and is used as the
reference length to search the corresponding triangular edges from the CAD model within

a user-defined tolerance.
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For each vertex p,,{i=1,2,3} of the reference triangle, three corresponding
points {q,,q,,q,} are selected from those identified corresponding points to construct

the corresponding triangle from the CAD model in such a way that it satisfies the

following Euclidean distance constrains simultaneously

Wipl =P, -[a, _‘IzH){Sgl (5.2)
(o, ~p.l~Ja: - a:])|<¢* (53)
‘(”p3 -p.f-la; _ql“)’S - (5.4)

where ¢, {i=1,2,3} is the user-defined tolerance for corresponding search of ith edge

of the reference triangle. Depending on the user-defined tolerance ¢°, the number of

corresponding triangles obtained from the CAD model might vary from one to many.

Since the above two criterions for correspondence search depend on the user-
defined parameters, with large tolerance values, the number of corresponding triangles
might be too many resulting high computational time. If the number of corresponding
triangles is large, to avoid this situation, we consider reducing the number of
corresponding triangles obtained from the CAD model taking resort to the following two
aspects.

1. Since the first two vertices of the reference triangle were selected such that the
minimum Delaunay pole spheres of both vertices were on the opposite side of
each other, the first two vertices from the correspondent triangles are also checked
to find whether the tolerance satisfied Delaunay pole spheres of these two vertices
are on the opposite side or not. If those Delaunay pole spheres are on the same

side, the corresponding triangle is not considered anymore.
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2. Among all the corresponding triangles, we try to cluster the triangles in groups
such that any triangle of a particular group will represent the whole group. For
clustering a number of corresponding triangles in a group, we utilize the angle
between two triangular planes. If the angles between the planes of the triangles
are within a small threshold, they are considered as belonging to the same group.
After this clustering, we pick one triangle from each group as they will provide
the similar initial estimate of transformation information for initial matching.

Hence the number of corresponding triangles is reduced to an acceptable limit. However,
we are motivated to find out the best correspondent triangle from the CAD model
corresponding to the reference triangle of the measurement data to obtain the best initial

correspondence information which is discussed next.

3.1.6 Optimal Triangle Identification

Among the corresponding triangles obtained from the CAD model, the optimal triangle
has to be identified for estimating good initial transformation information. Since the idea
behind thé initial matching is to get an optimal initial estimate of transformation, the
Delaunay pole sphere is used to obtain the optimal triangle from the corresponding
triangles of the CAD model. Being a specific property of the point set, Delaunay pole
sphere provides the distinct feature information for the two point sets to be matched.
Moreover, since the Delaunay pole sphere for any point is constructed using three more
neighboring points, Delaunay pole sphere of each point provide more information of
surrounding points rather than only that point taken into consideration To obtain the

optimal triangle, if distance between the corresponding points were used rather than the
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Delaunay pole sphere size difference between those point sets, there would have been a
higher probability of obtaining local minimum solution. Specially, if the number of points
is too low, using distance between points might provide worse solution. Considering all
these aspects, Delaunay pole sphere was chosen over the distance for obtaining the
optimal triangle which will provide a good initial estimate of transformation.
Identification of the optimal triangle starts by computing the transformation
matrix between the reference triangle and each corresponding triangle. Using this
computed transformation information for every single corresponding triangle; all the
characteristic points from the measurement data set are transformed to align with the
CAD model. After transforming the characteristic points of the measurement data, we
compute the points from the CAD model closest to each transformed characteristic point.
For increasing the computation speed of closest point calculation, we divide the region
into grids by constructing a tree-data structure, Octree. Therefore, the closest point can be
calculated from a small region rather than searching all points in the set. We now have
two point sets with equal number of points for each corresponding triangle: one from the
measurement data and the other from the CAD model. Next, for each corresponding
triangle, sum of the differences between minimum Delaunay pole sphere radii of each
closest point pair of those two sets is evaluated. The correspondent triangle which gives
the minimum value of all the sums is considered in this work as the optimal triangle for

initial matching. Figure 5.3 depicts the identification of the optimal triangle represented

by three vertices q,,q,,and q,, respectively, from the whole view of the Stanford

Bunny, corresponding to the reference triangle represented by three vertices

P, P, and p,, respectively as shown in Figure 5.2.
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Figure 5.3: Optimal triangle obtained from the Stanford Bunny.

5.2 Implementation of the Algorithm

For implementing the proposed initial matching approach, the ICP algorithm is
incorporated which utilizes the required initial transformation parameters obtained from
the initial matching algorithm and localizes the CAD model and the measurement data
for inspecting the manufacturing error. To evaluate the performance of the proposed
algorithm, the performance index used in this work is the MSE between the localized
measurement point set and its corresponding points from the CAD model set. Another
factor for evaluating the performance is to review two data sets visually whether the CAD
model point set and the transformed measurement data set localizes efficiently.

In practical situation, measurement data is obtained in the form of discrete data

and the data set can be perturbed by the measurement error or noise. While dealing with
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this noisy data whose behavior is quite unpredictable, the proposed algorithm might not
work properly. Considering this aspect, an approach has been implemented to smoothen
out the detrimental effect of the perturbed data.

The localization technique is started with two input point sets: the CAD model
and the preprocessed measurement data. For preprocessing, the density of the
measurement data is reduced to have the similar density of the CAD model using the
density reduced factor u =1 as discussed in Chapter 4. The method for implementing the
localization algorithm can be described as follows:

1. Increasing Tolerance: Two user-defined tolerance values are set to search the
optimal correspondent triangle in the initial matching algorithm as discussed in
Section 5.1. If no correspondent triangle is available, the tolerance values are
increased within an acceptable limit to obtain the correspondent triangle. With the
increased tolerance value, the initial matching algorithm might end up finding
some corresponding triangles or might not obtain any triangle at all.

2. Cases with Availability of Correspondent Triangles: If increasing the tolerance
provides a number of correspondent triangles, the optimal triangle is identified
and the ICP algorithm is incorporated using the initial transformation information.
Next, performance of the algorithm can be evaluated using the MSE value which
can be set to a predefined value depending on the point sets to be matched. The
performance can also be evaluated visually. Depending on the performance result,
if the MSE value is within a satisfactory limit, the estimated transformation is
used as the rigid body transformation to obtain the optimal localization. On the

other hand, if the MSE value is not within a satisfactory limit, the measurement
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data is further processed by density reduction approach as discussed in step 4 until
the optimal localization is achieved.

3. Cases with No Available Correspondent Triangle: If increasing the tolerance still
does not provide any corresponding triangle, density of the measurement point set
is reduced according to the next step, step 4.

4. Processing Based on Density: For this processing based on density, we
implement a sequential density reduction approach using the ascending density
reduced factor u =u+1 in each step of density reduction for the measurement
data. As in the preprocessing u =1 has been used, in this processing u starts from
7 and is increased by 1 in every density reduction step.

5. Step after Density Reduction: After reducing density, the CAD model and the
processed measurement data set have to go through step 1 and depending on the
availability of the numbet of correspondence triangles, it either needs to follow

either step 2 or step 3.

5.3 Summary of the Algorithm

The proposed initial matching algorithm based on the Delaunay pole sphere, a
computational geometric tool invariant under any rigid body transformations, is depicted

in Figure 5.4. This algorithm can be summarized by the following steps:

Step 1. The measurement data is preprocessed if it is denser than the CAD model point
set, i.e., pp < Py - TWo point sets obtained from the preprocessed measurement

data and the CAD model are considered as the input data for the algorithm.
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Figure 5.4: Flowchart of the robust initial matching algorithm.




Step 2.

Step 3.

Step 4.

Step 5.

Delaunay pole spheres are constructed for each point of the input data by
Delaunay triangulation and Delaunay cell clustering of the point sets.
Characteristic points are identified and ill-conditioned points are removed from
the measurement data set.

Three points are selected from those characteristic points to form a reference
triangle.

Corresponding triangles are searched from the CAD model to correspond the
reference triangle and the optimal correspondent triangle is obtained which
provides the robust initial transformation information to achieve successful

localization.
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Chapter 6

Simulation Results

To investigate the effectiveness of the proposed initial matching algorithm, extensive
computer simulations have been conducted to test on different objects. All simulation
studies are intended to demonstrate the performance of the algorithm on several surfaces
having different types of shape complexities. In the context of the simulations
environment, it is considered that the objects to be matched are represented by point
cloud data. Since surfaces are sampled to form discrete data sets, different distributions of
the point cloud data have also been taken into consideration for various tests of this study.
Tests are also performed on discrete data sets perturbed by noise to demonstrate the
performance of the algorithm to combat the detrimental effects of the disturbance on data.

Surfaces have been generated using their mathematical representations to perform
a number of tests since it is easier to investigate the validity of the algorithm using these
simulated surfaces of known parameters. On the other hand, in real situation, the data set
is obtained in discrete form without any known mathematical representations of the
surface. Hence, it necessitates performing some tests using practical data sets to verify
this proposed work. In this chapter, the performance evaluation of the proposed algorithm

using these two types of test data is presented elaborately.
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6.1 Performance Test Using Simulated Data

The major advantage of using simulated data for validating the algorithm is its known
mathematical representation with known parameters. These generated surfaces can be
handled easily because the data set representing the surfaces does not show any
unpredictable behavior. Hence, it is possible to estimate the value of the expected
performance index in advance and evaluation can be carried out by comparing with the
output obtained from the algorithm. In this way, using simulated data set, it can be proved
whether the performance of the proposed algorithm is satisfactory or not. In addition, the
level of complexity to be handled by the algorithm can be tested with simulated surfaces
with different complexities, i.e., from simple surface to the complex one. These are the
reasons for considering the simulated data set for testing the proposed algorithm.

In order to test the proposed algorithm, three surfaces were generated and plotted
using NURBS formulation with different parameters in visual C++ platform. The
NURBS surface has been chosen over other representations because of its wide
acceptability in industry as a standard tool for the representation and design of product
geometry. Three surfaces generated with different complexities to evaluate the
performance of the proposed approach are depicted in Figure 6.1. These three surfaces
are bicubic NURBS surfaces with different surface patch, among which the third surface
is the simplest one in complexity, containing less characteristic points than the first two
surfaces. The representations of these simulated surfaces in discrete data format are

termed as Cloud Data I, Cloud Data II, and Cloud Data III, respectively.
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(c) Cloud Data III

Figure 6.1: Typical simulated point cloud data sets examined in the proposed approach.
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These three surfaces are generated using the following NURBS formulation [46]

with varying parameters:

> > w.p, BB, (v)
i=0 j=0

W m ,  0=<u,v<1 (6.1)
zzwi,jBi,k(u)Bj,z(V)

i=0 j=0 B

s(u,v) =

where w, ; represent the weights of the control points, p;; form a (n+1)x (m+1) mesh
of control points, B,,and B;, are the B-spline basis functions of degree k and /

defined over non-uniform and non-periodic knot vectors u and v in the # and v

directions, respectively,

W= {0, Uy ooy Uy Uy Uy oo Uy gy Uy gy Uy ey U} (6.2)
k+1equal knots r—2k~—1internal knots k+1equal knots
V=V Vs ey Vi Uy Uy ooy Uy Uy Uy sy U} (6.3)
\tﬂ_‘—d
I+1equal knots s—2/~1internal knots I+1 equal knots

where »r =n+k+1and s =m+1+1. The basis function in u direction is given by

, u,<u<u, :
Bm(u):{o —— "“
’ , otherwise
U—u u —u 6.4)
Bi,k (u) = : Bi,k—l () +- bkl Bi+1,k—1 (), k=1
ik T U kel T Ui

Each of the first two surfaces is generated with 56 (7x8) control points and the third
surface is generated with 16 (4x4) control points as shown in Appendix B. After

generating the surfaces, point clouds are obtained by sampling each simulated surface in

a uniform as well as in a random manner.

To 1nitiate the proposed initial matching algorithm, for each surface, two data sets

are generated as input to the algorithm by sampling that surface. The first data set is
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considered as the CAD model and the other data set is considered as the measurement
data. For Cloud Data I, Cloud Data II, and Cloud Data III, the CAD model is generated
by sampling respective surface in a uniform manner producing 10,000 (100x100) points
and three cases with different measurement data sets are considered for that particular
CAD model as shown below.

Case I: measurement data of 2,500 points for Cloud Data I, Cloud Data II, and
Cloud Data III is generated as a subset of the respective CAD model data set.

Case II: measurement data of 40,000 (200x 200) points for Cloud Data I and
Cloud Data II, and measurement data of 22,500 (150x150) points for Cloud Data II1, is

generated by sampling the respective surface uniformly.

Case III: measurement data of 40,000 (200x 200) points for Cloud Data I and
Cloud Data II, and measurement data of 22,500 (150 x150) points for Cloud Data III, is
generated by sampling the respective surface randomly.

After generating each measurement data set, before using as the input to the

algorithm, it is transformed to another position. This transformation is achieved using the

following 4 x 4 homogenous transformation matrix:

cosacosf cosasinfsiny —sinacosy cosasinficosy+sinasiny x,

sinacosf  sinasinfsiny +cosacosy sinasin Bcosy —cosasiny Y,

—sin 8 cos fsiny cos ffcosy z,
0 0 0 1

where «, f,and y represent rotation around the x-axis (pitch), rotation around the y-
axis (roll), and rotation around the z-axis (yaw), respectively; and X, ¥, and z,

represent translation along the x-axis, translation along the y -axis, and translation
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along the z-axis, respectively. In our simulation, «, f,and y are chosen to be

145°,310°, and 240°, respectively whereas the values of x,, y,,and z, are taken as 3.0,
7.0, and 4.0, respectively.

Before initiating the correspondence search, the measurement data is preprocessed

while needed. For both Case II and Case III, the measurement data set of 40,000 points
is preprocessed since it is denser than the CAD model point set of 10,000 points, whereas

the measurement data of Case I is not required to be preprocessed. To show the
effectiveness of the proposed approach, mean-square error (MSE) between the two point
sets under consideration is used as the performance index.

Table 6.1 displays detailed simulation results of the localization algorithm
utilizing the proposed initial matching approach where the data sets used for this test are
generated from Cloud Data 1. The performance of the proposed approach incorporating
the ICP algorithm is compared with the direct ICP algorithm proposed in [11]. In this
example, the presence of noise has not been considered. In Table 6.2, the detailed
simulation results for a similar scenario but with added noise with different levels have
been shown. In this case, the measurement data set is sampled uniformly and the noise is
considered to be the Gaussian noise added along the normal direction of each point.
While dealing with the noisy measurement data, the measurement data sets are processed
reducing the density using the proposed density reduction approach until the optimal
solution is obtained as discussed in the previous chapter. Similar results are illustrated
using Cloud Data II in Table 6.3 without the noise and in Table 6.4 in presence of noise.
Table 6.5 and Table 6.6 display elaborate simulation results using data sets generated

from Cloud Data III with noise and without noise, respectively.
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It can be seen from all these results that ICP algorithm using initial
correspondence knowledge obtained from the proposed initial matching approach renders
overwhelming performance compared to the direct ICP algorithm. In terms of
performance index and visual observation, it is conctuded that ICP algorithm totally fails
in some scenarios e.g., for the case of the above mentioned tests, whereas the proposed
approach estimates correspondence information robustly providing optimal solution for
localization. All the test results displayed in this section dealt with simulated point clouds
which are generated from free-form surfaces of different complexities. The performance

of the proposed approach considering practical data sets is presented next.

6.2 Performance Test Using Practical Data

Even though the simulation using the theoretical surface with known parameters is an
effective way to conduct performance test, the performance of the initial matching
algorithm needs to be validated against the practical data. Therefore, tests are also carried
out in this study on two practical data sets to show the effectiveness of the proposed
algorithm. Between the two practical data sets used in this thesis, the first one is the
Stanford Bunny, the most commonly used test model in computer graphics obtained from
Stanford Computer Graphics Laboratory [63] in scanned data format. The second one is
the Dinosaur Sculpture, one of the sample data sets available from the Cyberware website
[64]. This data set is obtained using Cyberware rapid 3D scanner. Figure 6.2 (a) and
Figure 6.2 (b) delineate the whole scanned views of the two practical data sets: Stanford

Bunny and Dinosaur Sculpture, respectively.
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While the test using the Stanford Bunny is conducted, the reconstructed set of the
whole Bunny is considered as the CAD model. Two different scanned views have been
considered as the two measurement data sets where each view is scanned from single side

of the Bunny. Data sets from these two sides are obtained by scanning from two different
angles, 0° and 270°, respectively. For testing the proposed approach with the Dinosaur

Sculpture, the obtained data set is the scanned view of the whole Dinosaur Sculpture. A
subset from this data set is formed such that this subset contains half of the points of the
original obtained data and is uniformly distributed over the Dinosaur Sculpture. Hence,
the generated data set also represents the geometry of the Dinosaur and is treated in this
test as the CAD model data. The whole data set of the Dinosaur Sculpture is considered
as the measurement data set to conduct this performance test.

The simulation results using the above two practical data sets are tabulated in
Table 6.7. As expected, the proposed approach shows excellent performance to achieve a
successful localization for free-form objects. The excellence of using Delaunay pole
sphere as an invariant property of any point sets for correspondence search has been

proven again.
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Chapter 7

Conclusion and Future Directions

This chapter of the thesis concludes with a summary of the proposed approach and
avenues for further research work. In product manufacturing, it is a fundamental issue to
determine that manufactured object meets the design requirements from which it has been
made. The main objective of the research work is to obtain a better inspection system of
manufactured products by developing an improved localization technique. This thesis
addresses the problem of initial matching of free-form objects and proposes a novel
approach to solve it. Only with the availability of very good initial information of the
correspondence, a computationally efficient optimal localization can be achieved. This
motivated us to focus our attention to develop an algorithm providing optimal initial
correspondence information for object matching which has not been studied well so far.
Since any free-form surface can be represented properly by its distinct features,
the proposed initial matching algorithm takes resort to the characteristic points of that
surface. The proposed method can be applied to the free-form objects and is considered
to handle the point (sampled data from parametric surface such as NURBS surface)

versus point (discrete measurement data) cases.
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7.1 Major Contributions of the Thesis

When no prior knowledge of the transformation or correspondence is available, the

localization problem remains a tedious job. To obtain the best transformation for optimal

localization, the correspondence search between two surfaces is a key issue. On the other

hand, establishing the correspondence between two point sets depends on the availably of

the 1nitial correspondence information. T

The major contribution of this thesis can be summarized as follows:

A robust initial matching approach, which provides the initial transformation
information by an optimal correspondence search technique without any prior
information of the transformation, is proposed.

By selecting only three points for correspondence search, in this work, the time
and computational complexity of the correspondence search are reduced
dramatically.

Delaunay pole sphere, which is property of a point set and invariant under any
rigid body transformation, has been introduced as the specific property for
searching correspondence instead of any intrinsic properties of the surface.

A preprocessing technique applied to the measurement data set based on point
density is mtroduced. Moreover, if the data set is perturbed by any disturbance, a
density reduction approach has been implemented to deal with these noisy data.
Finding the optimal initial correspondence information, the proposed algorithm
can be used as the starting point for any standard localization algorithm which

depends on the good initial estimate of transformation
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7.2 Difficulties of the Proposed Approach

For establishing the correspondence information between point sets, the proposed initial
matching approach relies on three characteristic points from the measurement data with
specific properties. Hence, this algorithm requires at least three characteristic points from
the surface to establish the correspondence information and the surfaces having less than
three characteristic points can not be dealt properly with this proposed algorithm.

Because of the unpredictable nature of the data set perturbed by noise, the density
reduction approach used to implement the algorithm also depends on the availability of
the characteristic points. The density of the point set can not be reduced to combat the
detrimental effect of the noise if the reduced data set does not contain at least three
characteristic points. Moreover, in case of very noisy measurement data, the performance

of the algorithm can not be guaranteed.

7.3 Recommendations for Further Research

Although this thesis had laid an initial matching algorithm for obtaining optimal
localization, there are several issues that remain to be explored. We discuss here some
important areas where further study could be fruitfully directed, as discussed in the
following.

The initial matching algorithm requires two user-defined tolerances for searching
initial correspondence of two point sets. These tolerances are very important for the

effectiveness of the algorithm. Therefore, the theoretical basis for determination of those
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tolerances needs to be established such that the tolerance required for different types of
surfaces can be estimated in advance.

For implementing the localization algorithm, the visual checking and the user
defined value of the performance index are used for practical data set in the proposed
approach. Since the decision of the effectiveness of the method depends on this value of
the performance index, a better method for judging the goodness of fit can be
implemented.

For dealing with the noise affected measurement data set, a density reduction
approach is considered in this work. The relationship between the density reduction and
the level of noise can be established so that depending on the level of noise (if it is
known) of the data set, the density can be reduced accordingly. Moreover, as the behavior
of the noisy data set is quite unpredictable, some filtering techniques can be applied to the
noisy data to filter out the noise effects before initiating the proposed algorithm.

Taking all aspects into consideration, a suitable automatic localization system can

be implemented using the proposed initial matching approach.
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Appendix A

Calculation of Circum-Sphere

The equation for the circum-circle of a tetrahedron with polygon vertices (x,, y,, z;) for

i=12,...,4 is give by the following form

+yi+zr o ox oy z 1

x12+y12 +le Xy oz 1
XS +yi+zo ox, y, z, 1/=0 (A.1)
x32 +y32 +Z32 Xy ¥y ozy 1
xi+y§+zi Xg Yy zZy 1
Expanding the determinant of (A.1) we get
a(x* +y* +z°)+(b,x+b,y+b,z)+c =0 (A.2)
where
X »n oz 1
x z, 1
a=|"? Yo I , (A.3)
Xy 0y, zy 1
X, Yy z, 1

b, 1s the determinant obtained from the matrix

105




.2 2 2
x+y+tz ox oy oz 1
2 2, 2
XNty +tz, x, y, z, 1 (A.4)

2 2, 2
X +y;tzy X3y, oz 1

2 2 2
L X tyatzy x, v, oz, 1

by discarding the x; column (and taking a plus sign), b, is the determinant obtained

) .
from the matrix D by discarding the y, column (and taking the minus sign), b, is the

determinant obtained from the matrix D by discarding the z, column (and taking the

plus sign) given by

2 2 2
Xty +zy oy oz 1
2 2 2
X, +y,+zy, y, z, 1
N, =
Xy +ys+zy oy, ozy 1
2 2 2
X, +ty,+z, y, z, 1
2 2 2
X, +y +tzy ox oz 1
2 2 2
X, +ys+z, x, z, 1
by=—% "2 7 (A.6)
Xy +ystzy ox, oz 1
2 2 2
X, +yi+zy x, z, 1
2 2 2
X +yr+zr o x, oy 1
x+yi+zl o ox, y, 1
b=+ "2 2 72 (A7)
xy+ys+zi ox, y, 1
2 2 2
Xty tzy ox, oy, 1

and cis given by

2 2 2
X +y1 -f'Z1 X W Z,
2 2 2
X, +y,+zy, x, y, z
c="2 2 2 2 2 . (A.8)

2 2 2
Xy +yVs+Zy X3 Yy Z,

2 2 2
Xe T Ystzy X4 YV, 2y

Completing the square gives
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b Y b, b Y bI+b’+b!
a x+—=| +ay+—| +az+—=| ———"+¢=0
2a 2a 2a 4a

which is a circum-sphere of the form

(x_xo)2 +(y_yo)2 +(y_yo)2 =r?

with circum-center

b
" 2a
b

.

Yo 2a
Z, = bz

" 2a

and circum-radius

bl +b2 +b? —dac
r= .
2a
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Appendix B

Control Points of Simulated Surfaces

We simulate three test surfaces with their NURBS surface representations as explained in

Chapter 6. Each of the first two surfaces is generated with 56 (7x8) control points and

the third surface is generated with 16 (4x 4) control points as shown below.

B.1 Control Points for NURBS Surface I (Cloud

DataI)
[P] =

[(0,00,10) (1000,10) (200010) (3000.10) (4000.10) (4000,10) (6000,10) (7000,10)]
(0,10,10) (1010,00) (2010,-10) (3010,-10) (4010,-20) (5010,-10) (6010,10) (7010,10)
(0,20,10) (1020,-10) (20.20,-20) (30,20,-20) (40.20,-10) (5020,00) (6020,00) (7020,10)
(0,30,10) (1030,-10) (2030,-20) (3030,-10) (4030,00) (5030,10) (6030,00) (7030,10)|
(0,40,10) (1040,-10) (2040,00) (3040,-10) (4040,00) (5040,00) (6040,10) (7040,10)
(0,50,10) (1050,-10) (20,50,00) (30,50,10) (4050,20) (50,50,20) (6050,-10) (7050,10)
[(0.7010) (1070,10) (207010) (3070,10) (4070,10) (5070,10) (60;70,10) (70770,10)]
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B.2 Control Points for NURBS Surface II (Cloud

Data II)

[P]=
[(0000,10) (1000,-10) (2000,10) (3000,-10) (4000,10) (50,00,-10) (6000,10) (7000,-10}
(00]0,-10) (1010,10) (2010,-10) (30,10,10) (4010,-10) (5010,10) (6010,-10) (70,10,10)
(0020,00) (1020,-20) (2020,00) (3020,00) (4020,00) (5020,-20) (6020,00) (7020,00)
(0030,10) (1030,-10) (2030,10) (3030,-10) (4030,10) (5030,-10) (6030,00) (7030,-10)
(0040,10) (1040,-10) (2040,00) (3040,-10) (4040,10) (5040,-10) (6040,10) (7040,-10
(0050,-10) (1050,10) (2050,-10) (3050,10) (4050,-10) (5060,-20) (6050,-10) (7060,10)
(0070,20) (10.70,-10) (20,70,10) (30,70,-20) (40,70,20) (50,70,-10) (60,70,10) (70,70,-20)

B.3 Control Points for NURBS Surface III (Cloud

Data I1T)

[P]1=

(00,00,50) (10,00,10) (20,00,10) (30,00,-20)
(00,10,00) (10,10,-20) (20,10,10) (30,10,-20)
(00,20,00) (10,20,-10) (20,20,-20) (30,20,00) |
(00,30,20) (10,30,-20) (20,30,-10) (30,30, 60)
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