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Abstract 

Multi-parametric magnetic resonance imaging (mpMRI) of localized prostate 

cancer has the potential to support detection, staging and localization of tumors, as well 

as selection, delivery and monitoring of treatments. Delineating prostate cancer tumors 

on imaging could potentially further support the clinical workflow by enabling precise 

monitoring of tumor burden in active-surveillance patients, optimized targeting of image-

guided biopsies, and targeted delivery of treatments to decrease morbidity and improve 

outcomes. Evaluating the performance of mpMRI for prostate cancer imaging and 

delineation ideally includes comparison to an accurately registered reference standard, 

such as prostatectomy histology, for the locations of tumor boundaries on mpMRI. There 

are key gaps in knowledge regarding how to accurately register histological reference 

standards to imaging, and consequently further gaps in knowledge regarding the 

suitability of mpMRI for tasks, such as tumor delineation, that require such reference 

standards for evaluation.  

To obtain an understanding of the magnitude of the mpMRI-histology registration 

problem, we quantified the position, orientation and deformation of whole-mount 

histology sections relative to the formalin-fixed tissue slices from which they were cut. 

We found that (1) modeling isotropic scaling accounted for the majority of the 

deformation with a further small but statistically significant improvement from modeling 

affine transformation, and (2) due to the depth (mean±standard deviation (SD) 1.1±0.4 

mm) and orientation (mean±SD 1.5±0.9°) of the sectioning, the assumption that histology 

sections are cut from the front faces of tissue slices, common in previous approaches, 

introduced a mean error of 0.7 mm. 
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To determine the potential consequences of seemingly small registration errors 

such as described above, we investigated the impact of registration accuracy on the 

statistical power of imaging validation studies using a co-registered spatial reference 

standard (e.g. histology images) by deriving novel statistical power formulae that 

incorporate registration error. We illustrated, through a case study modeled on a prostate 

cancer imaging trial at our centre, that submillimeter differences in registration error can 

have a substantial impact on the required sample sizes (and therefore also the study cost) 

for studies aiming to detect mpMRI signal differences due to 0.5 – 2.0 cm
3
 prostate 

tumors.  

With the aim of achieving highly accurate mpMRI-histology registrations without 

disrupting the clinical pathology workflow, we developed a three-stage method for 

accurately registering 2D whole-mount histology images to pre-prostatectomy mpMRI 

that allowed flexible placement of cuts during slicing for pathology and avoided the 

assumption that histology sections are cut from the front faces of tissue slices. The 

method comprised a 3D reconstruction of histology images, followed by 3D–3D ex vivo–

in vivo and in vivo–in vivo image transformations. The 3D reconstruction method 

minimized fiducial registration error between cross-sections of non-disruptive histology- 

and ex-vivo-MRI-visible strand-shaped fiducials to reconstruct histology images into the 

coordinate system of an ex vivo MR image. We quantified the mean±standard deviation 

target registration error of the reconstruction to be 0.7±0.4 mm, based on the post-

reconstruction misalignment of intrinsic landmark pairs. We also compared our fiducial-

based reconstruction to an alternative reconstruction based on mutual-information-based 

registration, an established method for multi-modality registration. We found that the 
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mean target registration error for the fiducial-based method (0.7 mm) was lower than that 

for the mutual-information-based method (1.2 mm), and that the mutual-information-

based method was less robust to initialization error due to multiple sources of error, 

including the optimizer and the mutual information similarity metric. The second stage of 

the histology–mpMRI registration used interactively defined 3D–3D deformable thin-

plate-spline transformations to align ex vivo to in vivo MR images to compensate for 

deformation due to endorectal MR coil positioning, surgical resection and formalin 

fixation. The third stage used interactively defined 3D–3D rigid or thin-plate-spline 

transformations to co-register in vivo mpMRI images to compensate for patient motion 

and image distortion. The combined mean registration error of the histology–mpMRI 

registration was quantified to be 2 mm using manually identified intrinsic landmark pairs. 

Our data set, comprising mpMRI, target volumes contoured by four observers and 

co-registered contoured and graded histology images, was used to quantify the positive 

predictive values and variability of observer scoring of lesions following the 

Prostate Imaging Reporting and Data System (PI-RADS) guidelines, the variability of 

target volume contouring, and appropriate expansion margins from target volumes to 

achieve coverage of histologically defined cancer. The analysis of lesion scoring showed 

that a PI-RADS overall cancer likelihood of 5, denoting “highly likely cancer”, had a 

positive predictive value of 85% for Gleason 7 cancer (and 93% for lesions with volumes 

>0.5 cm
3
 measured on mpMRI) and that PI-RADS scores were positively correlated with 

histological grade (ρ=0.6). However, the analysis also showed interobserver differences 

in PI-RADS score of 0.6 to 1.2 (on a 5-point scale) and an agreement kappa value of only 

0.30. The analysis of target volume contouring showed that target volume contours with 
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suitable margins can achieve near-complete histological coverage for detected lesions, 

despite the presence of high interobserver spatial variability in target volumes.  

Prostate cancer imaging and delineation have the potential to support multiple 

stages in the management of localized prostate cancer. Targeted biopsy procedures with 

optimized targeting based on tumor delineation may help distinguish patients who need 

treatment from those who need active surveillance. Ongoing monitoring of tumor burden 

based on delineation in patients undergoing active surveillance may help identify those 

who need to progress to therapy early while the cancer is still curable. Preferentially 

targeting therapies at delineated target volumes may lower the morbidity associated with 

aggressive cancer treatment and improve outcomes in low-intermediate-risk patients. 

Measurements of the accuracy and variability of lesion scoring and target volume 

contouring on mpMRI will clarify its value in supporting these roles. 
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Chapter 1. 

  

Introduction 

Imaging of localized prostate cancer, and in particular multi-parametric magnetic 

resonance imaging (mpMRI), has the potential to support multiple stages of the clinical 

workflow, including detection, staging and localization of tumors, as well as selection, 

delivery and monitoring of treatments. Delineation of prostate cancer tumors on imaging 

has the potential for further improving the clinical workflow, potentially enabling precise 

monitoring of tumor volumes in active-surveillance patients, optimal targeting of 

biopsies, and targeted delivery of treatments with lower morbidity or improved outcomes 

for suitable patients. 

Spatially accurate comparisons of prostate images and delineations to an accepted 

reference standard for the location and clinical significance of prostate cancers, could 

support evaluation and improvement of prostate cancer imaging and lesion delineation in 

the clinical workflow. Currently, the most readily accepted reference standard for the 

location and aggressiveness of prostate cancer is histological examination of 

prostatectomy specimens. Some applications of such a histological reference standard to 

investigate prostate cancer imaging and delineation require accurate registration to the 

images being investigated. However, there are key gaps in knowledge regarding how to 

accurately register histological reference standards to imaging, and how accurate the 

registration needs to be. Consequently, there is also a gap in knowledge regarding the 

suitability of imaging for tasks, such as lesion delineation, that require such reference 
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standards for evaluation. These gaps in knowledge will be described in further detail in 

Section 1.2. 

The work described in this thesis focuses on (1) developing tools for accurately 

registering and evaluating a histological reference standard for prostate cancer imaging 

and lesion delineation, and (2) evaluating the accuracy and variability of delineating 

prostate cancer lesions on mpMRI by comparison to this accurately registered reference 

standard. This evaluation could potentially inform clinical guidelines on the suitability 

and use of mpMRI-derived target volumes for applications in localized prostate cancer 

diagnosis, treatment and monitoring. 

1.1 Background 

1.1.1 Prostate cancer epidemiology 

Prostate cancer is the most commonly diagnosed non-skin cancer in Canadian 

men, with an estimated 23,600 new diagnoses in 2014 [1]. One in eight men will be 

diagnosed with prostate cancer during his lifetime [1]. It is the third most common cause 

of male cancer death, with an estimated 4,000 deaths in Canada in 2013. Additionally, 

prostate cancer has a substantial impact on patients' ongoing quality of life, because the 

most common prostate cancer treatments have high risks of life-changing side effects and 

living with untreated cancer has a high psychological burden. 

The natural history of prostate cancer is highly variable: some prostate tumors 

become metastatic and potentially lethal, but many do not. In fact, autopsy studies of 80–

90-year-old men deceased from unrelated causes have found that 70–90% had 

histological evidence of prostate tumors [2]. As screening tests have become more 

sensitive and more widespread, more of these latent non-lethal cancers have been 
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diagnosed and treated [3], which impacts patients' quality of life. Accordingly, prostate 

cancer is commonly described as over-diagnosed and over-treated [3] (for low-risk 

patients), while, at the same time, resulting in many deaths (of high risk patients).  

Thus, key challenges in prostate cancer lie in identifying patients who do not need 

treatment, supporting therapy delivery for those that need aggressive treatment to extend 

their lives in spite of potential side effects, and developing treatment approaches for 

borderline patients that will survive with less aggressive treatments and will benefit from 

lower morbidity. 

Delineation of prostate cancer may have a role in addressing each of these 

challenges: supporting accurate stratification of patients through optimized targeted 

biopsy procedures, monitoring low-risk patients through longitudinal measurements of 

tumor burden, and targeting curative-intent therapies for both aggressive and less 

aggressive treatments.  

1.1.2 Prostate cancer diagnosis 

Detection and diagnosis of prostate cancer is performed in two stages: initial 

detection and biopsy confirmation.  

1.1.2.1 Initial detection 

Two techniques are currently widely used to initially detect prostate cancer in 

symptomatic men and as a screening tool in asymptomatic men: prostate-specific-antigen 

(PSA) testing and digital rectal examination (DRE). 

PSA testing is a procedure where a blood sample is taken, and the level of PSA, a 

protein produced primarily by prostate cells, is quantified. A PSA level above 4.0 ng/mL 
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has been considered suspicious for cancer, and positive PSA tests result in more cancer 

diagnoses than other tests [4]. However, other conditions such as prostatitis and benign 

prostatic hyperplasia (BPH) can also increase PSA levels [5]. Furthermore, in the Prostate 

Cancer Prevention Trial, 15% of men with consistently lower PSA levels had a positive 

biopsy and 2% had a positive biopsy showing high-grade cancer [6]. The increase in 

detection of latent cancer has, in part, been attributed to the sensitivity of the PSA test, 

and its application in screening populations [1]. 

DRE is a procedure wherein a physician palpates the patient’s prostate through 

the rectal wall with a gloved finger to identify tissue that has abnormally high density or 

asymmetry, properties which raise suspicion for prostate cancer [4]. DRE alone has a 

reported sensitivity of 37% and a positive predictive value (PPV) of 27%; however, DRE 

is typically used in conjunction with PSA testing where it yields an incremental 

sensitivity of 18%. In patients who would not be identified with PSA testing (i.e. PSA < 

4.0 ng/mL), the PPV was 13% [7]. 

In order to detect cancers at an earlier, more treatable stage, DRE and PSA testing 

have been widely used to screen asymptomatic men; however, the practice remains 

controversial, due to uncertainty about the benefits and risks of screening [1]. The 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial found that men who 

underwent DRE and PSA screening had a higher incidence of prostate cancer, but the 

same mortality, as a control group [8]. In contrast, the European Randomized Study of 

Screening for Prostate Cancer trial found that the men randomized to the screening group 

had a higher incidence, but lower mortality, than the control group [9]. As a result of this 

evidence, the United States Preventive Services Task Force has recommended against 



 

5 

 

screening of asymptomatic men [10]. Correctly stratifying patients identified through 

high sensitivity screening could improve mortality for high-risk patients, while avoiding 

the overtreatment of low-risk patients. 

1.1.2.2 Biopsy 

Patients with findings that are suspicious for prostate cancers will be referred for 

prostate biopsy to confirm the suspicion. Prostate biopsy is a procedure where tissue 

samples are taken from the prostate using a biopsy needle, through the rectal wall or the 

perineum, under the guidance of transrectal ultrasound. Typically 6–12 biopsy samples 

are taken using a systematic protocol that primarily samples the peripheral zone, where 

the majority of cancers are located [11, 12]. Biopsy tissue is examined microscopically to 

determine the number of cores containing cancer, and the extent of cancer in each core. 

This information is used for staging according to the "TNM Classification of Malignant 

Tumours" system (commonly abbreviated to the TNM system, where TNM refers to 

tumors nodes and metastases). For example, T1c denotes that the tumor was found in a 

needle biopsy performed as a result of a PSA test and T2a denotes that the tumor is in 

less than half of one of the prostate lobes for a palpable tumor. Cancer that is identified 

on biopsy is assessed according to the Gleason grading system by grading the 

microscopic architecture and differentiation of prostate glands on a 5 point scale [13] 

(illustrated in Figure 1.1), and reporting a Gleason score as the sum of the most prevalent 

grades. The Gleason score, clinical TNM stage and PSA levels can be used in pathologic 

and prognostic nomograms [14-16] to guide therapy selection. However, grading biopsy 

tissue remains challenging, with a 40% rate of discrepancy between biopsy and 
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prostatectomy Gleason grade [17, 18], due, in part, to challenges in acquiring 

representative samples of prostate tumors. 
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 Figure 1.1: Illustrated Gleason patterns from the updated Gleason grading system. 

Reproduced with permission from Epstein et al. The 2005 ISUP Consensus Conference 

on Gleason Grading of Prostatic Carcinoma. The American Journal of Surgical 

Pathology, 29(9) 1228–1242. 
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1.1.2.3 A potential role for imaging and lesion delineation 

Prostate cancer screening tests are sensitive, identifying many patients with low-

risk disease. Challenges remain in correctly stratifying such patients based on systematic 

biopsy. However, biopsies that are targeted at suspicious regions delineated on imaging 

may have a higher probability of sampling high-grade foci [19]. As the likelihood of 

sampling tissue from a lesion depends on its size and shape [20], accurate and precise 

delineation of intraprostatic cancer foci on imaging, and quantification of the uncertainty 

in delineation, could support the development of optimized planning of targeted biopsy 

procedures. 

1.1.3 Localized prostate cancer management 

Organ-confined prostate cancer is primarily managed with (1) expectant 

management without therapy, with low direct morbidity but with the psychological 

burden of living with untreated cancer or (2) radical therapies (radiation or surgery) that 

target the whole prostate with curative intent, with high rates of life-changing side 

effects. Emerging treatments that target the prostate cancer preferentially may offer an 

intermediate curative intent treatment with reduced side effects for suitable men. This 

section describes these treatments, and the roles that imaging and lesion delineation 

might play.  

1.1.3.1 Expectant management 

Expectant management refers to multiple approaches where the patient is not 

given treatment: watchful waiting, where treatment is delivered if the patient becomes 

symptomatic; and active surveillance, where the patient is closely monitored for signs of 
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progression with frequent biopsy and blood tests. If progression is detected, these patients 

can proceed to curative-intent treatments. In patients who do not progress, there are no 

treatments, and, therefore, no direct side effects. However, there are indirect effects that 

negatively affect patients’ quality of life, including anxiety and depression [21] and 

increased long-term erectile dysfunction rates [22]. Patients' decisions to undergo 

curative-intent treatment even without progression (7–13% of patients) have been 

attributed, in part, to these side effects [23, 24]. Expectant management is suitable for 

patients with low-risk cancer, defined by a Gleason score ≤6, PSA<10ng/ml and clinical 

stage T1c–T2a (i.e. the tumor occupies less than half of one lobe), constituting 50% of 

newly diagnosed prostate cancer [25]. In one cohort of 299 active-surveillance patients, 

the prostate-cancer-specific survival rate was 99.3% after 8 years of follow-up and only 

35% of active-surveillance patients progressed to delayed curative-intent therapy [25]. 

Although differences in recurrence rates due to delayed treatment of patients who do 

progress have not yet been demonstrated [26, 27], delayed treatment does result in higher 

pathological grade at time of treatment [27]. Thus, there may be value in identifying the 

patients who do progress earlier. Prostate cancer imaging may have a role in ongoing 

monitoring of patients on active surveillance [28]. Additionally, there may be a role for 

prostate cancer delineation in longitudinal measurements of tumor volume [29, 30], a 

factor that has been found to be correlated with Gleason grade, stage, tumor progression 

and survival and that may have independent prognostic importance [31]. 
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1.1.3.2 Prostate-focused therapies 

The most common treatments for localized prostate cancer, radical prostatectomy 

and radical radiotherapy, treat the whole prostate to the same degree with curative intent, 

and with little or no adjustment for the location of the cancer within the gland. 

1.1.3.2.1 Radical prostatectomy 

Radical prostatectomy is a procedure wherein the prostate is removed through 

open or minimally invasive surgery. Radical prostatectomy has the potential for cancer 

cure in patients with cancer that does not extend beyond the surgical margin, and is an 

appropriate treatment option for men with low−intermediate-risk prostate cancers, 

including those with organ-confined tumors containing Gleason pattern 4 or 5 [4]. 

However, prostatectomy patients have high rates of erectile dysfunction (34–90% [32, 

33]), urinary incontinence (8–13% [32, 34]) and other complications (10–30% 

perioperatively and 4–10% within a year [32, 35]). Nerve-sparing radical prostatectomy, 

in which one or both sets neurovascular bundles lateral to the prostate are not resected, 

may result in lower rates of complications [34, 36]. Prostate cancer imaging and accurate 

delineation of tumor boundaries may support selection of nerve-sparing surgeries in 

patients with unilateral or bilateral cancer that is at an acceptable distance from the 

surgical margin. 

1.1.3.2.2 Radical radiation therapy 

Radiation therapy refers to several procedures wherein the prostate is irradiated to 

damage DNA (preferentially in highly proliferative cancer cells). Examples include 

external beam radiation, where high energy x-rays generated outside the body are focused 

on the prostate from multiple angles, low-dose-rate brachytherapy where radioactive 
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seeds are permanently inserted into the prostate, and high-dose-rate brachytherapy where 

a highly radioactive emitter is moved within the prostate during the procedure and then 

removed. Radiation therapies may be suitable for low–intermediate-risk patients 

including those with PSA levels >10ng/ml and with organ-confined cancer with Gleason 

scores >7, particularly with dose escalation or adjuvant hormonal therapy [4]. As with 

radical prostatectomy, radiation therapy patients have high rates of morbidity: erectile 

dysfunction (8–50% [37, 38]), urinary complications (7–23% [38, 39]) and fecal 

incontinence (2–58% [40]). 

1.1.3.3 Lesion-focused therapies  

Emerging treatments that preferentially target the prostate cancer lesions may 

allow for escalating treatment in tumors in patients to achieve better outcomes, reducing 

treatment in healthy tissue to achieve lower morbidity, or both. 

1.1.3.3.1 Whole-gland radiation with focal boost 

After radical radiotherapy, local recurrence can occur within the prostate, which 

typically occurs at the site of the dominant lesion [41]. Advances in technologies for 

planning and delivering radiation have enabled radiation oncologists to deliver different 

doses to different regions within the prostate. Intensity-modulated-radiation-therapy-

based and brachytherapy-based delivery of whole-gland radiation, with additional dose 

delivered to intraprostatic gross tumor volumes, have been proposed as strategies to 

improve outcomes [42, 43]. An alternative approach, where a reduced dose is delivered to 

the whole gland and an additional dose is delivered to intraprostatic lesions, with the aim 

to maintain control rate while reducing toxicity, is also being considered [44]. Accurate 

and precise delineation of lesions on imaging may support the conformal delivery of 
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higher dose to the dominant lesion, potentially reducing local recurrence and/or 

improving morbidity, while minimizing dose to surrounding organs at risk. 

1.1.3.3.2 Prostate-sparing and lesion-only therapies  

Prostate cancer is multifocal in 67–82% of patients [45-47]; however, there is a 

subset of patients whose cancer is aggressive enough to require treatment but consists of 

a dominant lesion surrounded by primarily non-cancerous tissue. Furthermore, there is 

evidence that the risk of recurrence and biochemical failure, even in multifocal prostate 

cancers, depends primarily on the size and grade of only the largest focus [47]. Therefore, 

some emerging therapies aim to preserve healthy prostate tissue by leaving portions, or 

even the majority of the gland, entirely untreated. High-intensity focused ultrasound [48], 

cryotherapy [49], photodynamic therapy [50], laser ablation [51] and radiation 

therapy [52] are all being evaluated for focal therapy applications in the prostate. Control 

rates for focal therapies have not yet been well-established; however, early evidence from 

studies of several focal therapies suggests that they successfully reduce the side effects 

prevalent in radical therapies. For example, studies of cohorts undergoing cryotherapy 

have reported incontinence rates lower than 5% and erectile dysfunction rates of 10–

35% [49]. Studies of cohorts undergoing high-intensity focused ultrasound have reported 

incontinence rates less than 10% and erectile dysfunction rates of 5–11% [53]. While 

focal therapy can be delivered as a hemi- or “hockey-stick” ablation (1/2 or 3/4 of the 

prostate), based on coarse localization of prostate cancer [54], conformal delivery to 

ablate the cancer while minimizing damage to surrounding healthy tissue and organs at 

risk requires that the cancer within the prostate be delineated on imaging. A recent 

consensus panel suggested that this delineation should be performed using mpMRI [55]. 



 

13 

 

Thus, prostate cancer imaging and lesion delineation could play an important role in focal 

therapy planning. 

1.1.3.4 Summary of potential roles for imaging and lesion delineation 

Imaging and lesion delineation have several potential roles in supporting 

management of low–intermediate-risk patients. Longitudinal imaging-based 

measurements (such as tumor burden) may support earlier identification of active-

surveillance patients who would eventually progress to curative-intent therapies. 

Accurate delineation of tumors may support conformal delivery of lesion-targeted 

therapies for low–intermediate-risk patients to minimize damage to surrounding tissue 

and organs at risk, potentially further lowering side effects. Delineation of tumors may 

support focal boosting of radiotherapy dose to reduce local recurrence rates. Finally, 

imaging and lesion delineation may support the decision to deliver nerve-sparing 

surgeries for suitable candidates. Accurate and precise delineation of cancerous lesions 

on imaging could support each of these goals. 

1.1.4 Prostate cancer imaging 

Prostate cancer imaging has the potential to extract spatial information non-

invasively to support the detection, staging, grading, therapy selection, treatment 

planning and treatment delivery of primary and metastatic prostate cancer. Many imaging 

modalities can be used at different stages of the clinical workflow. mpMRI of localized 

prostate cancer is the focus of this thesis, and will be described in detail; however, the 

clinical application of ultrasound, x-ray computed tomography and nuclear imaging will 
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also be briefly discussed in the following sections. Figure 1.2 shows an illustrative 

comparison of these modalities for the same patient and anatomy.  

1.1.4.1 Magnetic resonance imaging 

MRI has shown promise for detection [56], staging [57, 58], localization [59-61], 

therapy planning [43, 55, 62], and therapy monitoring [63] for localized prostate cancer, 

and may be suitable for lymph node staging with suitable contrast agents [64]. MRI can 

provide rich anatomical and pathological detail as it enables flexible control of soft tissue 

contrast with different acquisition sequences, and can have submillimeter resolution for 

some sequences.  

The performance of individual MRI sequences for localized prostate cancer 

detection varies substantially [55], depending, in part, on the sequence used, and the 

location and grade of the cancer [65, 66]. Consensus guidelines [56] for detection of 

localized prostate cancer have been developed, recommending the use of multiple MRI 

sequences, comprising T2-weighted (T2W) imaging, and at least 2 functional sequences 

(e.g. diffusion-weighted (DW) imaging, dynamic contrast-enhanced (DCE) imaging, or 

MR spectroscopy). The cancer detection rate of the combination of T2W, DW and DCE 

imaging also varies (sensitivity: 53%–95%, specificity: 74%–96%, PPV: 51%–95%, 

negative predictive value [NPV]: 65%–94%) [67]. The following sections describe 

sequences and imaging protocols that have been investigated for imaging localized 

prostate cancer.  
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Figure 1.2: Multiple modalities of prostate cancer imaging showing approximately the 

same anatomical location. A large Gleason score 4+3 cancer with tertiary grade 5 is 

present in the anterior prostate, alongside a small region of BPH, a common feature that 

mimics cancer on many modalities. 

 

1.1.4.1.1 T2W MRI 

T2W MRI is one of the basic MRI pulse sequences. It is sensitive to the 

transverse relaxation of precessing protons, which is different, for example, between 

Cancer
(GS 4+3+5)
BPH

A) T2W MRI B) DW MRI C) ADC map

D) DCE MRI E) 3D TRUS (side fire) F)  CT

G) 18F choline PET/MR H) Histology
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dense cellular tissue and fluid-filled cystic spaces. T2W MRI clearly depicts prostate 

zonal anatomy, due to its high spatial and contrast resolution [68]. In the peripheral zone, 

dense tumors appear hypointense on T2W MRI relative to the typically bright peripheral 

zone signal, although sparse tumors may not show such contrast [69]. In the central 

gland, homogenous low-intensity, ill-defined irregular boundaries, lenticular shape and 

invasion of the anterior fibromuscular stroma have been used to identify tumors [70]. 

T2W MRI has been reported to correlate with Gleason score, potentially offering 

prognostic information [71], although there was overlap in signals between grades, and 

this finding has not been widely replicated. T2W MRI interpretation is limited by the 

similar MR appearance of non-cancerous abnormalities, including chronic prostatitis, 

atrophy, scars, BPH, and post-biopsy hemorrhage [72]. 

1.1.4.1.2 DW MRI 

DW MRI is sensitive to diffusion of water molecules which decreases with the 

increased cellular density associated with cancer [73]. Interpretation of DW MRI for 

prostate cancer uses both DW MR images and post-processed apparent diffusion 

coefficient (ADC) maps. Prostate cancer appears hyperintense on DW MR images taken 

with high b-values (a parameter controlling sensitivity to diffusion [74]). Prostate cancer 

appears hypointense on ADC maps computed from multiple DW MR images taken with 

different b-values [56]. DW MRI has superior sensitivity for central gland tumors 

compared to other MRI sequences [65, 73]. ADC values in peripheral zone tumors have 

been shown to be correlated with Gleason score, potentially providing prognostic 

information [75-78], although there is overlap in ADC values between Gleason scores. 

Interpretation of DW MRI is challenged by the low resolution (1×1 mm
2
 to 2×2 mm

2
 in-
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plane resolution with 4–5 mm spacing) of typical acquisitions [56, 73], and frequently 

suffers from distortion artifacts [74, 79]. 

1.1.4.1.3 DCE MRI 

DCE MRI is sensitive to changes in vascular characteristics associated with 

angiogenesis due to cancer [80, 81]. DCE MRI comprises a rapid temporal sequence of 

T1-weighted MR images (at 1–90 s intervals) immediately prior to and for 5–10 minutes 

after injection of a gadolinium-chelate contrast agent. The contrast agent washes in and 

out more quickly in cancerous tissue than in non-cancerous tissue. Faster sequences, 

combined with estimates of the arterial input function, allow for precise modeling of 

pharmacokinetic parameters [80, 81], some of which (e.g. the contrast transfer coefficient 

[k
trans

] and the rate constant [k
ep

]) have been correlated with the presence of cancer [82]. 

DCE MRI interpretation is challenged by patient motion and by the presence of non-

cancerous abnormalities that mimic cancer, including prostatitis in the peripheral zone, 

and highly vascularized BPH in the central gland [81]. Pharmacokinetic modeling is 

further challenged by the need to estimate the arterial input function [81]. 

1.1.4.1.4 MR spectroscopy 

MR spectroscopy (MRS) measures the spatial distribution of the relative 

concentrations of metabolites within the prostate that can be distinguished by their proton 

resonance frequencies, including choline, creatine, and citrate [83]. Cancerous tissue 

typically has elevated choline and decreased citrate compared to non-cancerous tissue. As 

the signals of choline and creatine are difficult to separate from each other [80], the 

(choline +creatine)/citrate ratio is frequently reported. MRS shows different metabolic 

ratios for tumor vs. normal tissue in the transition zone; however, signal strength and 
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interpretation remain challenging [84]. (Choline+creatine)/citrate ratios have been shown 

to be correlated with Gleason score [85], potentially providing prognostic information, 

and a retrospective study reported areas under the receiver operator characteristic curve 

from 0.70 to 0.78 for distinguishing low-grade from high-grade tumors using different 

measures based on MRS [86]. Interpretation of MRS is challenged by contamination of 

the signal from nearby lipids, high sensitivity to shimming, operator variability, and the 

presence of non-cancerous abnormalities, such as inflammation and BPH, that mimic 

cancer [80, 82-84]. 

1.1.4.1.5 Emerging MRI techniques 

Although MRI is showing promise for imaging prostate cancer, there remain 

substantial areas for improvement, particularly in detection of central gland tumors [55], 

and distinguishing cancer from confounders [72]. New imaging protocols such as 

endogenous sodium imaging [87, 88] and hyperpolarized carbon imaging [89, 90] are 

under development, and simultaneous hybrid imaging scanners incorporating positron 

emission tomography are becoming available. Additionally, new derived images 

computed from existing sequences are being evaluated, such as extrapolated high b-value 

DW images [91], diffusion compartment-model imaging [92] and alternative DCE 

parametric maps [93].  

1.1.4.2 Transrectal ultrasound 

B-mode transrectal ultrasound (TRUS) imaging is commonly used to estimate 

prostate volume, and for image guidance during biopsy and needle-based-therapy 

procedures, as it enables rapid (10–20 frames per second) visualization of the prostate 

gland and the boundary between prostate zones. Prostate cancer in the peripheral zone, 
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where the majority of lesions are located, can appear hypoechoic (darker); however, the 

sensitivity for detecting prostate cancer on TRUS is low (59%–88%) [94-97]. Several 

ultrasound techniques are being investigated for prostate cancer imaging, including color 

and power Doppler imaging and micro-bubble-contrast-enhanced imaging [96].  

1.1.4.3 X-ray computed tomography 

X-ray computed tomography (CT) imaging is commonly used in the assessment 

of metastases and in planning for whole-gland radiotherapy. CT is sensitive to differences 

in attenuation due to electron density, yielding good tissue-to-bone contrast, which 

supports detection of bone metastases [97]. CT is also used to detect lymph node 

metastases based on lymph node size and shape; round lymph nodes 8–10 mm in size or 

oval lymph nodes >10 mm in size had high specificity for metastasis [64]. Although CT 

is not used for detection of intraprostatic tumors due to poor soft tissue contrast [97], it is 

routinely used for planning whole-gland radiotherapy [4]. CT allows visualization of 

pelvic anatomy including nearby sensitive structures (e.g. the rectum and the bladder) and 

supports delineation of the prostate. Because CT and radiotherapy both involve the 

attenuation of electromagnetic radiation, measurements of electron density from CT can 

also be used in the planning of radiation therapy. Furthermore, in some external beam 

therapies, x-ray images can be acquired within the treatment system, supporting pre- or 

intraprocedural patient registration. 

1.1.4.4 Nuclear imaging  

Nuclear imaging is commonly used in the assessment of metastases, and can also 

be used to detect intraprostatic cancer. Nuclear imaging measures radiation from 

radioactive atoms incorporated into radiotracers that preferentially accumulate at sites of 
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interest, such as metastatic bone tumors or intraprostatic tumors. For detecting 

metastases, a common form of nuclear imaging involves radiolabeled diphosphonate, 

which accumulates in regions of bone damage, including metastases. These bone scans 

have high sensitivity (95%) for osteoblastic metastases in patients with PSA levels above 

20 ng/mL [97]. In prostate cancer, 
111

In capromab pendetide (marketed as ProstaScint) is 

a radiolabeled antibody that binds to the prostate specific membrane antigen (PSMA), 

which is preferentially expressed on prostate cells, including metastatic cells that 

originated from the prostate. For intraprostatic cancer detection, a number of radiotracers 

have been proposed. 18F-fluorodeoxyglucose, the most commonly used positron 

emission tomography (PET) tracer in other anatomical sites, is challenged by low 

metabolic glucose activity in prostate tumors and the masking effect of tracer 

accumulation in the bladder [98]. Several choline-based radiotracers, including 
11

C-

choline and 
18

F-fluorocholine, show higher uptake in some primary and metastatic 

prostate cancers than in healthy tissue [99] and have less accumulation in the 

bladder [100]. Preliminary evidence suggests choline-based tracers may support detection 

of central gland tumors [101] and differentiation of tumor from confounders such as BPH 

and prostatitis [99]. 

1.1.4.5 Justification for evaluating mpMRI for intraprostatic lesion delineation 

Many imaging modalities are used in the prostate cancer clinical workflow; 

however, not all of these are suitable for delineation of intraprostatic lesions. TRUS and 

CT do not have the spatial and contrast resolution to support delineation of intraprostatic 

tumors. Nuclear imaging has been used for delineation of intraprostatic tumors [102, 

103]; however, the low spatial resolution (e.g. 5 mm [104]) of clinical PET may 
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challenge accurate delineation of cancer boundaries. mpMRI has good soft tissue contrast 

showing anatomical detail, has high spatial resolution (0.5–2.0 mm in-plane [56]) and has 

shown promise for visualization of prostate cancer in detection, staging and coarse 

localization of intraprostatic cancer. Therefore, this thesis focuses on the evaluation of 

mpMRI for prostate cancer imaging and lesion delineation.  

1.1.5 Histological reference standards 

Evaluations of prostate cancer imaging and lesion delineation ideally include 

comparisons to a registered accepted reference standard. Typically, the most readily 

accepted reference standard for the presence, location and grade of prostate tumors is 

histological examination of prostate tissue (i.e., a pathologist's microscopic examination 

of tissue properties on ~4-µm-thick sections of tissue). 

1.1.5.1 Clinical importance of histology in prostate cancer 

In prostate cancer, histological examination is used at several points in the clinical 

workflow. Histological examination of biopsy tissue provides the first definitive 

diagnosis of prostate cancer, and is used as a follow-up to initial detection in screening 

populations, for ongoing monitoring in active surveillance, and to confirm recurrence in 

some post-treatment populations. Histological examination of resected prostate 

specimens is used to assess prognosis for patients post-prostatectomy [14], and to guide 

decisions about adjuvant therapy [4]. The importance of histology in the prostate cancer 

clinical workflow is due, in part, to the high prognostic value of the Gleason grading 

system. Initially developed in 1966 and updated in 2005, the Gleason grading system 

categorizes tissue based on its microscopic morphological appearance including 
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glandular differentiation and growth patterns within the stroma (Figure 1.1). It was 

initially evaluated in nearly 5000 men in randomized clinical trials, and shown to 

correlate well with survival. Since its initial development, the system has undergone 

multiple revisions [13], and has been adopted into international clinical guidelines [105]. 

1.1.5.2 Biopsy vs. prostatectomy histology as a reference standard 

For the validation of prostate cancer imaging, histological examination of biopsy 

or prostatectomy specimens has been used as a reference standard. Histology from 

prostatectomy specimens is the most powerful predictor of progression after 

prostatectomy [14], and is frequently used as the reference standard for the 

aggressiveness and location of prostate cancer [65, 71, 82, 84, 85, 106-109]. However, 

the use of prostatectomy specimens also limits the study population to patients 

undergoing prostatectomy, limiting the generalization of imaging findings to low-risk 

active surveillance and focal therapy cohorts. Histology from targeted- or template-

mapping-biopsy samples, on the other hand, could be collected for such cohorts. 

However, biopsies are small sparse samples of tissue (~1 mm in diameter). These are 

commonly used for determining the presence or absence of cancer at a targeted location, 

but precisely determining the histological boundary of cancer from such samples would 

be challenging unless the sampling was impractically dense. Spatial error in biopsy 

targeting (3.5 mm for one MR–TRUS-fusion biopsy system as estimated by a recent 

analysis [20]) and the poorer reliability for assessing grade (40% rate of over- and 

underestimating Gleason grade with respect to prostatectomy specimens [17, 18]) would 

introduce further uncertainty into the analysis. For the some evaluations of lesion 

delineation, where the accurate spatial registration is critical to precisely evaluate the 
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accuracy of lesion boundaries, prostatectomy specimen histology is the more appropriate 

reference standard, although care must be taken in generalizing findings.  

1.2 Problem domain 

1.2.1 Key gaps in knowledge 

The previous section identified applications in diagnosis, patient monitoring and 

therapy delivery where prostate cancer imaging and lesion delineation may have a role in 

the clinical workflow, and identified mpMRI as a suitable modality for this delineation 

and whole-mount histology as a suitable reference standard for evaluating the accuracy of 

delineation. Histology-based evaluation of the spatial accuracy of prostate cancer 

delineations requires that information about the histological tumor boundaries be 

registered into the spatial coordinates of the mpMR images being delineated. The 

following sections describe two key gaps in knowledge: (1) the lack of techniques for 

histology-imaging registration that are sufficiently accurate, robust and non-disruptive to 

the clinical pathology workflow; and consequently (2) the lack of knowledge about the 

accuracy and variability in lesion delineation on mpMRI which could lead to appropriate 

clinical guidelines. 

1.2.2 Research challenges 

To address these gaps in knowledge, this thesis focuses on (1) the development 

and evaluation of accurate, robust and non-disruptive techniques for registering a 

histological reference standard to mpMR images; and (2) applying these techniques for 

the evaluation of accuracy and variability of lesion contouring on mpMRI. This section 

describes key research challenges in addressing these goals. 
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1.2.2.1 Evaluation of lesion contouring 

The accuracy and variability of lesion delineation on mpMRI can be measured 

along many dimensions. Ideally, lesion contouring could be evaluated with respect to 

patient outcome; however, this would require long follow-up, and may preclude paired 

analyses evaluating the delineations of multiple observers on one image. As a surrogate, 

one can evaluate spatial boundary-error measurements between the lesions on mpMRI of 

different observers (to assess interobserver variability), and between the lesions on 

mpMRI and the underlying tumor on the histological reference standard (to assess 

accuracy). Unlike the evaluation of staging and grading from mpMRI, where only a gross 

correspondence between the same tumor on in vivo imaging and on the reference 

standard must be established, the evaluation of spatial boundary errors requires densely 

defined information about the spatial relationship between the histology and mpMR 

images. This evaluation is further complicated by uncertainty in the boundary error 

measurements due to spatial errors in the registration of the histological reference 

standard to the mpMR images. 

The complexity of information contained in a lesion delineation raises additional 

challenges. Different types of boundary errors may have different implications for 

different applications. A single type of boundary error measurement may not capture all 

of the clinically important information about the error. For example, low volumetric 

overlap may indicate poor overall accuracy of a contour, high boundary distance errors 

may indicate spicules of cancer or healthy tissue not captured by a contour, and volume 

differences may indicate a systematic over- or under-contouring of a focus. Thus, the 
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evaluation of lesion contouring requires the use of multiple metrics to yield a thorough 

assessment. 

1.2.2.2 Evaluation of registration accuracy 

The accuracy of the registration of the reference standard to the mpMR images is 

critical to the evaluation of lesion contouring accuracy, because registration error induces 

uncertainty in the boundary error measurements. There can be compromises associated 

with achieving higher accuracy [110], including greater human interaction to guide 

registration algorithms to correct solutions, higher required image quality, and higher 

computational cost. When performing research on clinical specimens, this is particularly 

important as there may be compromises between disruption to the clinical pathology 

workflow and registration accuracy. Thus, it is important to identify the maximum 

acceptable level of registration error; however, the criteria for sufficiently accurate 

registration vary depending on the application [111]. The key determinant of the 

necessary target registration error (TRE) is the central question of the research that 

depends on the registrations. For example, a registration used to identify large cancer foci 

as homologous on histology and mpMRI would have less stringent registration 

requirements than one used to measure differences in the boundaries of mpMRI lesions 

and histological foci. Establishing application-specific thresholds for maximum 

acceptable error has been identified as a key challenge in registration [110, 111].  

1.2.2.3 Registration of histology to mpMRI 

The registration of diagnostic prostate histology with mpMR images faces 

challenges due to three factors: (1) the disruptive process of acquiring histology tissue 
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from prostatectomy specimens, (2) the constraints on handling of clinical specimens, and 

(3) the properties of the resulting images. 

The cutting of histology from prostatectomy specimens is a complex and 

disruptive process. Prostate specimens are formalin-fixed (inducing shrinkage), and are 

cut into 3–5-mm-thick tissue slices (resulting in the loss of the spatial relationship 

between slices). Any water in the slices is chemically replaced with paraffin (inducing 

deformation) and a single 4-µm-thick histology section is cut from each paraffin block 

(resulting in further deformation and loss of 3D spatial information). Due to requirements 

for the archival preservation of diagnostic tissue, sections are only cut from near the faces 

of the tissue slices (resulting in a sparse sampling of tissue and loss of information about 

the 3D context of the tissue). The operator variability in the cutting of whole 

prostatectomy slices on a microtome introduces variability into the spatial relationships.  

Reconstructing the spatial relationships between histology sections is complicated 

by constraints on the allowable treatment of clinical tissue. For example, the acceptable 

imaging modalities and the duration of imaging may be constrained to avoid disrupting 

the physical appearance of tissue and its chemical reactivity. The types of fiducial 

markers that can be used may be limited by clinical needs for patient treatment (e.g. 

precluding the use of fiducials in vivo), preservation of diagnostic tissue and avoidance of 

disruptions to clinical pathology workflows and diagnoses. Additionally, these 

constraints may vary from institution to institution, potentially limiting the reuse of 

existing methods. 

Finally, several properties of the resulting images may introduce challenges for 

registration. The histology sections are sufficiently thin to be considered 2D, but the 
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histology images must be registered to a 3D image of a prostate specimen. Without the 

3D context of the histological tissue, determining out-of-plane correspondences is 

challenging. Due to the non-linear deformation between the images, the section of the 3D 

image representing the tissue from which histology was cut may not even be planar, so 

that an operator may not be able to see the corresponding tissue from both images until a 

deformable registration is nearly complete; this complicates even the interactive 

registration of these images. Finally, the types of information contained in the two images 

are substantially different, as histology images denote the chemical affinity of tissue to 

chemical dyes, and MR images reflect properties of hydrogen atoms. 

The combination of loss of 3D context from histology images, flexible 

deformation, variability in the histology acquisition processes, complex relationships 

relating image information, and constraints on the tools that can be used to mitigate these 

challenges makes the accurate registration of histology to mpMR images challenging.  

There are four criteria that I have used to evaluate approaches for registering a 

histological reference standard to mpMRI: 

 Minimally disruptive: The ideal method would work on either quartered or 

whole-mount histology collected according to usual clinical pathology protocols, 

in order to enable retrospective studies leveraging the large volume of existing 

mpMRI and histology data. Failing that, the method must not be disruptive to the 

pathological diagnosis: it should not result in changes to the collected histology 

that affect clinical diagnosis; it should not require the specimen to be out of 

formalin for an excessive amount of time; and it should not result in cutting tissue 

that is normally preserved for future diagnosis. Ideally, it would also be minimally 
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disruptive to the clinical pathology workflow. As workflows vary between 

centers, this is challenging to assess. Factors that could be considered include: 

minimizing delays that would impact the timeliness of the pathology report, 

avoiding alteration of standard cutting protocols, minimizing additional work for 

pathology assistants and pathologists, minimizing alteration of the specimen, and 

avoiding additional imaging (particularly imaging that cannot be performed in a 

pathology department). 

 Spatially accurate: The 3D target registration error [112] should be evaluated 

using homologous point features (intrinsic landmarks or extrinsic fiducials) 

distributed throughout the gland on a substantial number of subjects. This error 

should be sufficiently low for the desired application; however, the maximum 

acceptable error has not yet been established for evaluation of prostate cancer 

imaging and delineation.  

 Robust: The variability in performance and the failure rate of the method should 

be published. The method should be robust to intersubject variation in prostate 

anatomy and imaging appearance, and to the presence or absence of disease. 

 Widely implementable: The method should minimize the need for specialized 

equipment or special expertise that may not be widely available. Software 

algorithms should be made available, or be easily re-implemented. 
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1.2.3 Previous work addressing these challenges  

1.2.3.1 Evaluation of GTV contouring 

Previous evaluations of mpMRI have yielded quantifications of the sensitivity and 

specificity of staging and grading from different combinations of mpMR images, 

validated against histological information. Often this information is in the form of graded 

biopsies [76] that are corresponded with clinical imaging based on the origin of the 

biopsy. However, biopsies do not have the necessary information about the boundaries of 

foci to assess the accuracy of contouring. Evaluations of stage and grade that do compare 

against histological examination of prostatectomy specimens typically use a coarse 

partitioning of prostate anatomy [113, 114], or consensus between pathologists and 

radiologists [75] to establish correspondences between tumor foci on histology and 

mpMR images. These approaches may identify corresponding foci, but do not yield the 

spatial relationships between the histology and mpMR images required for evaluating 

contouring accuracy. Evaluations of the variability of contouring of the entire prostate 

and nearby organs at risk from imaging have been performed [115, 116]; however, these 

do not generally evaluate accuracy with respect to a histological reference standard and 

do not include measurements of cancer foci that would support focal therapy.  

Two studies have recently been performed to evaluate the accuracy and variability 

of lesion contouring for conformal focal therapy on mpMRI [106, 117]. Rischke et al. 

evaluated target volumes defined on mpMRI by 5 radiation oncologists with access to the 

MRI report, measuring the accuracy and variability as a Dice overlap coefficient with 

respect to a radiologist's delineations. These measurements, while potentially important 

in the context of therapy, may not be representative of variability of observers not 
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informed by a common previous report, and rely on a reference standard with unknown 

accuracy and variability. Anwar et al. evaluated the histological coverage of target 

volumes defined by 2D margin expansion around lesions identified on mpMRI and 

delineated on a single 2D slice of T2W MRI. The histology-MRI registration error was 

reported as 2 mm in-plane, measured using the landmarks used to define the registration 

(i.e. a fiducial registration error, which typically is lower than the target registration 

error), and out of plane error was not estimated. Histological coverage was measured by 

breaking the histological focus and MR lesion boundaries of each focus into segments 

covering equal angles (from a central point that is not specified) and measuring the mean 

differences in distances to the central point. These measurements were aggregated across 

all subjects and observers, precluding evaluation of interobserver and intersubject 

variability. Margins of 5 mm and 8 mm were identified as covering 95% and 100% of the 

measurements. 

To the best of my knowledge, there have been no studies to date evaluating the 

accuracy and variability (blinded to previous reporting on the images) of lesion contours 

in 3D against an accurately registered histological reference standard. 

1.2.3.2 Evaluation of registration accuracy 

In some applications of registration, maximum acceptable registration accuracies 

have been identified. For example, in image-guided interventions where registration can 

be used to guide the tools used in the intervention, criteria have been proposed for 

specific interventions and imaging modalities based on clinical opinion [118] or models 

of what constitutes a successful intervention [119]. In registrations used to support 

imaging evaluation studies, some criteria have been proposed for sufficient registration 
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accuracy [120]; however, these criteria have not been tied to the outcomes of the studies 

supported by the registrations. Instead of defining criteria for registration accuracy, some 

approaches instead mitigate the effect of registration error on the study outcome. 

Examples include constraining the sizes of regions analyzed [121, 122], and qualifying 

study conclusions to acknowledge error as a confounder [123]. To the best of my 

knowledge, evaluation criteria have not been identified for the registration of prostate 

histology to mpMR images for evaluation of lesion contouring, and furthermore, 

accepted approaches for defining such criteria have not been identified.  

1.2.3.3 Registration of histology to mpMRI 

Techniques used in the registration of clinical histology to in vivo images 

typically fall into two major categories: (1) techniques that alter the processes involved in 

cutting histology sections from specimens to mitigate deformation, avoid loss of spatial 

information or reduce variability; and (2) techniques that use assumptions about these 

processes and information (e.g. images or measurements) collected before, during or after 

the histology processing to virtually undo the deformation, reconstruct lost spatial 

information or account for variability. Many reconstruction methods use a combination of 

techniques from these two categories. 

One common approach to the registration of whole-mount prostate histology to in 

vivo images is to guide the cutting of prostatectomy specimens into 3–5-mm-thick tissue 

slices [107, 120, 124], typically using image-guidance and specialized cutting equipment. 

Shah et al. [124] used a 3D printer to construct a patient-specific plastic mold based on 

the in vivo MRI, with slots to guide a custom multi-bladed knife along the in vivo 

imaging plane. Jhavar et al. [125, 126] acquired images with imaging planes 
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perpendicular to the posterior wall, and then cut the prostate perpendicular to the 

posterior wall without image guidance using special cradles and multi-bladed knives to 

obtain parallel slices for processing. Rouvière et al. [127] used injected fiducials (for ex 

vivo or animal studies) to define an imaging plane, used a rotating platform within the 

MR scanner to align these fiducials horizontally, and then embedded the specimen in wax 

to enable slicing parallel to the imaging plane. These methods register histology to in vivo 

images by assuming histology sections correspond to the specified slicing plane without 

error, and align histology within this plane using a deformable 2D registration. 

Kalavagunta et al. [125] used guided slicing (similar to Jhavar et al. [125, 126]) to 

constrain orientation, but instead of assuming histology corresponded to a specified slice, 

an expert observer manually identified the corresponding slice in MRI. These methods 

constrain the position and orientation from which the histology is collected according to 

an in vivo imaging plane, which may be disruptive to the clinical pathology workflow 

when a pathologist prefers a specific orientation for diagnostic reasons. For example, the 

clinical pathology protocol at London Health Sciences Centre involves removing ~1 cm 

of the prostatic apex including the urethral sphincter for parasagittal sectioning to 

minimize the extent of surgical margin that is not visible on histology. For a specimen 

where the apex extends posterior and sufficiently inferior to the urethral sphincter (see 

Figure 1.3 or Walz et al. [128] Figure 11 for illustrations of such anatomy), a 1-cm apex 

cut perpendicular to the posterior wall may not include the sphincter. In such a case, a 

pathologist may prefer that the apex be removed with a 1-cm cut that is oblique to the 

posterior wall rather than a cut >1 cm (see Figure 1.3A) in order to minimize the amount 

of surgical margin that is not seen and assessed by the pathologist (see Figure 1.3B–C). 
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Additionally, these methods do not account for, or measure, out-of-plane error due to 

errors in the guidance of slicing, variability in the histology sectioning depth within the 

tissue slice, or error in the selection of the correct MR slice. Such underestimates of the 

target registration error impede the assessment of whether the registrations are 

sufficiently accurate for evaluating lesion contouring.  

 

Figure 1.3: Illustrative diagram showing positions of cuts for gross slicing a specimen 

where constrained slicing may be disruptive to the clinical pathology workflow. (A) Side 

view of prostate. 1-cm apex cut (for parasagittal histology) constrained to be 

perpendicular to the posterior wall (red dotted line, red arrows show 1 cm) would not 

include the urethral sphincter, but a 1-cm oblique apex cut (green solid line, green arrows 

show 1 cm) would. To include the sphincter with a constrained cut, more tissue would 

have to be included in the apex histology (blue dashed line). (B) Anterior view of apex 

after cut along blue dashed line in (A). Pathologist makes diagnosis from histology taken 

from blue lines. Red arrow denotes the extent of margin that will not be assessed for 

extraprostatic extension and positive surgical margin. (C) Anterior view of apex after cut 

along green solid line in (A). Pathologist makes diagnosis from histology taken from 

green lines. Red arrow denotes the smaller extent of margin that will not be assessed for 

extraprostatic extension and positive surgical margin. 
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A second approach to the registration of whole-mount prostate histology to in vivo 

images uses extrinsic fiducials and/or additional imaging of the 3–5 mm tissue slices to 

reconstruct the spatial relationships between histology sections after they have been cut 

according to the clinical pathology workflow. Extrinsic fiducials have been used to orient 

histology images in 2D [129, 130], under the assumption that histology sections are 

sectioned to be parallel at constant spacing. Bart et al. [130] temporarily pierced the 

prostate with approximately parallel 1 mm needles running from apex to base, cut the 

gland axially into 3-mm-thick tissue slices with parallel cuts using a meat slicer, and 

interactively reconstructed histology based on the strong assumption that the needles did 

not deflect (their report notes that the needles did, in fact, deflect). Hughes et al. [129] 

adapted this method to use 3 oblique fiducial needles and collected step-sectioned parallel 

histology at 1-mm intervals (4.5 times more densely spaced than many clinical pathology 

protocols). Hughes used an automated fiducial finding algorithm, and an iterative 

minimization of fiducial registration error under assumptions of non-deflecting needles to 

align histology in plane. Alternatively, additional imaging has been used to orient 

histology images and account for some in-plane deformation [109, 126, 131-133]. Orczyk 

et al. [133] acquired photos of the tissue slices and used the posterior wall as a landmark 

to manually align adjacent sections into a 3D structure, blinded to 3D imaging. Jackson et 

al. [126] used anatomical landmarks in photos of the tissue slices to compensate for 

deformation during histological processing. Xu et al. [132] acquired high-resolution ex 

vivo MR images of the tissue slices for this purpose. Taylor et al. [131] and Groenendaal 

et al. [109] combined the parallel-needle-fiducial approach with acquiring photographs of 

the tissue slices to compensate for deformation during histology processing and to align 
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adjacent slices. Nearly all of these methods controlled the cutting of the tissue slices to be 

evenly spaced, with the exception of Taylor et al. [131], who measured the thicknesses of 

the tissue slices after cutting. As with the guided-slicing methods, these methods assumed 

that histology sections corresponded to the front faces of the tissue slices from which they 

were cut and did not account for variability in the depth of the histology sectioning within 

the tissue slice.  

A third approach uses image content to retrospectively register histology to in 

vivo or ex vivo MR images. The registration of histology directly to in vivo images [134-

138] holds the potential for minimal disruption to the clinical workflow; however, it 

relies on the presence of image information that may be disrupted by anatomic 

variability, disease processes or changes in imaging protocols.  

Some methods required an expert to select a 2D MRI slice that corresponds to 

histology. Chappelow et al. [136] used mutual information between extracted texture 

features to register pseudo-whole-mount (PWM) histology (reconstructed from quartered 

histology) to the selected T2W MRI slice in 2D. They reported an intersection/union area 

ratio in the selected plane of 0.93 for 6 subjects. Kalavagunta et al. additionally required 

experts to contour the prostate and internal anatomy (e.g. BPH) on the PWM histology 

and the selected MR image slice. They used a variational minimization of overlap of 

these segmented regions to align histology to the selected MR image in-plane. They 

reported an in-plane TRE of 1.5 mm based on 103 intrinsic landmarks for 35 PWM 

histology sections. As Kalavagunta noted, the assumption that the expert's slice selection 

corresponds to the same cross-section of tissue is of "the utmost importance"; however, 

neither of these methods assess the validity of this assumption.  
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Other methods registered histology directly to the 3D MR image, with the 

potential to account for variability in the histology cutting depth or out-of-plane error in 

their initializations by identifying the section of the 3D image that corresponds to the 

histology that was actually cut. Unfortunately, these methods have not been evaluated 

using data sets and metrics that enable assessment of the robustness of the method or the 

expected spatial alignment of the histological reference standard. Chappelow et al. [138] 

leveraged the different sequences in mpMRI by first co-registering in vivo images, and 

then registering PWM histology to the mpMRI ensemble. Only the post-minimization 

value of the registration similarity metric was reported (for 25 subjects), which cannot be 

used to infer the accuracy of the registrations [112]. Patel et al. [134] used a mutual-

information-based image registration, modified to weight voxels within the prostate more 

heavily, to deformably align histology to in vivo mpMRI. A mean Dice overlap of 0.83 

and a mean absolute boundary distance of 0.99 mm from 2 patients were reported. Nir et 

al. [135] proposed a registration with particle-filtering-based optimization using an 

overlap metric between manual segmentations of MRI and parallel evenly-spaced 

histology images (that are not initially aligned in plane). They reported an in-plane mean 

TRE of 2.1±1.3 mm based on the alignment of visually corresponding landmarks (N is 

not reported) from 2 subjects. Prabu et al. [137] trained a statistical deformation model to 

regularize a free-form deformation-based registration. They reported an RMS TRE of 0.8 

mm based on alignment of "key structures" from 2 patients. The small sample sizes in 

these analyses make it difficult to assess the robustness of these methods. 

The use of ex vivo imaging as an intermediate registration target [139-142] allows 

more control over imaging, enabling the acquisition of higher resolution images that may 
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have more information in common with histology images. These methods address many 

of the challenges of 3D histology reconstruction, leaving as the remaining step a single-

modality 3D ex vivo to 3D in vivo prostate MR image registration. However, these 

methods still rely on the presence of image information that may be disrupted. 

Chappelow et al. [141] used mutual information between extracted texture features to 

register PWM histology to ex vivo MRI. They evaluated their registrations based on how 

well they separated the MRI intensities of cancerous and non-cancerous regions mapped 

from histology on data from 2 subjects. Zhan et al. [139] coarsely aligned and stacked 1.5 

mm step-sectioned histology images (3 times more densely spaced than many clinical 

pathology protocols), and then automatically extracted 3D landmarks on both 4 T ex vivo 

MRI and reconstructed histology images. They corresponded landmarks (using shape 

feature vectors on the boundary and intensity features within the gland) by alternately 

updating correspondences to maximizing feature similarity and updating the 

approximating thin-plate-spline transformation. They reported a 0.88 mm TRE measured 

using anatomical landmarks (N is not reported) from 5 subjects. This may be a suitable 

approach if high-field ex vivo imaging and 1.5 mm step-sectioned histology is available; 

however, the small sample size and lack of detail regarding the evaluation makes this 

assessment challenging, and the use of 1.5 mm step-sectioned histology may prevent its 

use in clinical specimens at many centers. In a follow up to this work, Ou et al. [140] 

noted that the intensity features used in this approach were disrupted by the presence of 

cancer. To address this, Ou incorporated a subsequent registration that alternately 

segmented cancerous tissue and refined the registration to maximize overlap of the 

segmented regions; however, this introduces a bias toward aligning homogenous image 
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features in the registrations that may render the registrations unsuitable for evaluating 

prostate cancer imaging and lesion delineation. Nir et al. [142] addressed the ex vivo to in 

vivo registration using a biomechanical model that incorporated elasticity measurements 

from in vivo magnetic resonance elastography (MRE), yielding a 3.1±1.4 mean TRE (or 

3.7±1.9 mm for a homogeneous elasticity model) based on the alignment of intrinsic 

landmarks (N is not reported) averaged over 6 patients. This may be a suitable approach 

for evaluating studies that already include MRE; however, the addition of vibration-

inducing equipment and MRE acquisitions into in vivo protocols for registration purposes 

may be a barrier to its wider use. 

None of the existing methods have been shown to meet all the previously 

described criteria for methods for registering a histological reference standard to imaging 

(non-disruptive, spatially accurate, robust, and widely implementable). There is a need 

for the development of more widely implementable, less disruptive methods with 

appropriate evaluation of accuracy and robustness. Consequently, there is a deficit in the 

evaluation of prostate cancer imaging [143] and in the evaluation of lesion delineation, 

which requires accurate registration. 

1.3 Thesis research questions and objectives 

To address the gaps in knowledge regarding the suitability of mpMRI for prostate 

cancer lesion delineation and the appropriate technology to evaluate prostate cancer 

imaging and lesion delineation, this thesis aims to address four research questions posed 

in this section through the completion of 7 research objectives. In doing so, this thesis 

will take steps towards addressing the 4 criteria for histology-imaging fusion methods 

described in Section 1.2.2.3 (non-disruptive, spatially accurate, robust, and widely 
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implementable) by presenting an approach to 3D histology reconstruction that (1) allows 

flexibility in the specimen slicing (to avoid disruption to the pathology diagnosis); (2) 

uses extrinsic fiducials that do not interfere with the clinical interpretation of histology 

(to avoid disruption to the pathology diagnosis) and are not dependent on intrinsic 

contrast (to improve robustness); (3) has a spatial reconstruction error of 0.7 mm and 

little sensitivity to initialization, which is evaluated using a 3D TRE computed from 232 

homologous point landmarks in 37 whole-mount histology images from 10 patients (to 

appropriately quantify accuracy and robustness). Our approach has been successfully 

implemented at University Health Network, Toronto, demonstrating its potential 

portability for more widespread use. 

1.3.1 Research questions 

 How does registration error impact the statistical power of imaging validation 

studies? This will be answered via the completion of Objective 1 below. 

 What is the performance (in terms of reconstruction error and robustness) of an 

extrinsic-fiducial-based histology reconstruction method, and how does this 

compare to alternative approaches based on image-guided slicing and intensity-

based image registration? This will be answered via the completion of Objectives 

2a and 2b below. 

 What is the variability of lesion scoring (using consensus-panel-recommended PI-

RADS guidelines [56]) and contouring on mpMRI? This will be answered via the 

achievement of Objectives 2c, 3a and 3b below. 



 

40 

 

 What are appropriate margins around observers’ target volumes to achieve 

histological coverage of detected cancers? This will be answered via the 

achievement of Objectives 2c, 3a and 3c below. 

1.3.2 Specific research objectives 

1 – Impact of registration error on imaging validation studies: to establish 

criteria for determining the necessary accuracy of histological-reference-standard 

registrations for the assessment of prostate cancer imaging. 

2a – 3D histology reconstruction: to develop methods for the 3D reconstruction 

of prostate histology based on strand-shaped fiducials, as well as alternative approaches 

based on image-guided slicing and intensity-based image registration. 

2b – 3D histology reconstruction evaluation: to quantify the reconstruction 

error and robustness (variability of error, and sensitivity to initialization) of the developed 

methods in Objective 2a. 

2c – Histology to in vivo MR image registration: to develop methods for 

registration of reconstructed 3D histology images to in vivo 3D mpMRI and quantify the 

registration accuracy. 

3a – mpMRI observer study: to coordinate a multi-observer study of prostate 

cancer lesion scoring and delineation on mpMRI. 

3b – Variability of lesion scoring and delineation: to quantify the interobserver 

and intersequence variability of lesion scoring and delineation, and factors that correlate 

with them, such as Gleason grade, anatomical location and lesion volume. 
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3c – Margin evaluation: to determine expansion margins around mpMRI-

defined gross target volumes that would, with high likelihood, result in adequate 

coverage of histological cancer. 

1.4 Thesis Outline 

1.4.1 Chapter 2: The impact of registration accuracy on imaging validation 

study design: a novel statistical power calculation 

The purpose of this work was to develop an approach for evaluating registration 

accuracy via its impact on statistical power for imaging evaluation studies that use 

registered reference standards (e.g. histology images). This work focused on studies to 

detect differences in mean image signal between normal and abnormal regions. By 

expressing registration error in terms of the overlap of the registered sampling regions 

(from reference standard images) with the true regions on the study images, the 

population mean and variance of sampled intensities could be expressed in terms of 

registration error and incorporated into the classical power calculation formula. This 

yielded a novel power calculation formula that can be arranged to answer three key 

questions affecting study design: (1) What is the maximum acceptable registration error? 

(2) How many subjects are needed? (3) What is the minimum detectable difference? A 

case study to illustrate the application of this approach was included for discussion. 

1.4.2 Chapter 3: 3D prostate histology image reconstruction: quantifying the 

impact of tissue deformation and histology section location 

The purpose of this work was to assess the impact of the histology cutting process 

on the accuracy of methods for reconstructing whole-mount histopathology images into a 
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3D spatial context. This work used pairs of intrinsic homologous landmarks identified on 

histology images and MR images of formalin-fixed prostate tissue slices before 

histological processing to identify the position and orientation from which the histology 

was originally cut. This work showed that a rigid+isotropic scale transformation 

accounted for the majority of in-plane deformation during histological processing, and 

that histology was cut from a mean depth of 1.1 mm and a mean angle of 1.5º. We 

showed that making the assumption, common in the literature, that histology is cut from 

the surface of tissue slices resulted in 0.7 mm additional error under an isotropic scaling 

deformation model. Although this error appears to be small, incorporating this error into 

the power calculations described in Chapter 2 illustrated that assumptions about the 

deformation model and position of histology section could have a substantial, and 

potentially costly, impact on the required sample sizes for imaging validation studies 

using a registered histological reference standard. 

1.4.3 Chapter 4: Registration of prostate histology images to ex vivo MR 

images via strand-shaped fiducials 

The purpose of this work was to present and evaluate a method for reconstructing 

whole-mount histology images into the 3D context of an ex vivo MRI. The method used 

previously developed histology- and MRI-visible strand-shaped fiducials to construct a 

form of stereotactic frame wrapped around and within the prostate, and minimized the 

fiducial registration error between cross-section of the fiducials visible on histology and 

the parametric curves of fiducials visible on MRI. The target registration error was 

quantified to be 0.7 mm using 3–7 pairs of intrinsic landmarks on each of 34 histology 
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images. This compared favorably to alternative algorithms based on image-guided slicing 

1.2 mm) and additional imaging of tissue slices (0.9 mm). 

1.4.4 Chapter 5: 3D prostate histology reconstruction: an evaluation of 

image-based and fiducial-based algorithms 

The purpose of this work was to compare the accuracy and robustness of the 

fiducial-based reconstruction method to an alternative method based on an established 

multimodality image-intensity-based registration method (mutual information). The two 

methods were initialized using known perturbations from the optimal reconstruction (to 

assess robustness to initialization) and using practically achievable initializations. The 

image-intensity-based registration approach showed considerable sensitivity to 

initialization, whereas the fiducial-based approach had almost zero sensitivity to 

initialization. The resulting target registration errors for the practical initializations were 

quantified to be 0.7 mm for the fiducial-based approach and 1.2 mm for the image-

registration-based approach using 232 pairs of intrinsic landmarks identified on 37 

histology images and corresponding MR images. This work concluded that the fiducial-

based approach was more accurate and more robust to initialization than the tested 

image-intensity-based registration approach. 

1.4.5 Chapter 6: Prostate cancer assessment and delineation on 3 T multi-

parametric MRI: interobserver and intersequence agreement 

The purpose of this work was to evaluate mpMRI for scoring prostate cancer 

lesions (following the Prostate Imaging Reporting and Data System [PI-RADS] [56] 

detection guidelines) and for delineating suspicious lesions on different mpMRI 
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sequences (T2W, DCE and ADC images). Four observers scored and delineated lesions 

on images from each mpMRI sequence from 17 radical prostatectomy patients. We 

measured the positive predictive values (PPVs) of lesion scores with respect to co-

registered histology, interobserver variability in lesion scoring, and the interobserver and 

intersequence variability in lesion delineation (using Dice overlap, mean absolute 

distance and absolute volume difference measures), as well as the correlation of these 

with interaction factors including lesion volume and histological grade. We found that a 

PI-RADS likelihood score of 5 (denoting highly likely cancerous) had a positive 

predictive value of 85% for Gleason 7 cancer, and a PPV of 93% if the delineated lesion 

had a volume >0.5 cm
3
. However, many false positives were observed, especially for 

lesions with PI-RADS likelihood scores of 3 and 4. The mean interobserver differences in 

the four PI-RADS scores ranged from 0.6 to 1.2 (5-point scale), with an agreement kappa 

of 0.30. ADC maps showed a trend towards superior interobserver contouring agreement 

compared to T2W or DCE images for all metrics. The observed correlation between PI-

RADS scores and post-prostatectomy Gleason scores was promising; however, the 

interobserver variability in PI-RADS scores may impede their interpretation, and the 

prevalence of high PI-RADS likelihood scores for non-cancerous lesions suggests a need 

for further investigation of mpMRI confounders. Lesion delineation showed substantial 

variability, suggesting a need for standardized contouring guidelines and training.  
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1.4.6 Chapter 7: Toward prostate cancer contouring guidelines on MRI: 

dominant lesion gross and clinical target volume coverage via accurate 

histology fusion  

The purpose of this work was to evaluate a range of clinical target volume (CTV) 

expansion margins for lesions (or gross target volumes [GTVs]) defined on mpMR 

images with respect to their likelihood of yielding adequate coverage of midgland 

histological cancer, and to evaluate CTVs resulting from margins that yield a high 

likelihood of adequate coverage. Four observers delineated lesions on images from each 

mpMRI sequence from 25 radical prostatectomy patients. Contoured and graded 

histology images were co-registered with the mpMR images. CTVs were constructed 

with 0–30 mm margins expanded isotropically (constrained to prostate tissue) from true 

positive GTVs on each sequence and from composite GTVs from multiple sequences. 

The proportion of residual midgland cancer (and, separately, high-grade midgland 

cancer) remaining outside each CTV was quantified, and prediction intervals for residual 

area were computed for each observer and for each type of single-sequence and 

composite CTV. Margins yielding high likelihood (78–91%) of leaving less than 0%, 5% 

and 10% residual cancer were identified, and the CTV absolute volumes and relative 

volumes (compared to GTVs and histological cancer) were calculated. The minimal 

margins with high likelihood of leaving 0–10% residual cancer were lowest for 

composite GTVs using delineations on T2W, DCE and ADC images; however, there was 

substantial variation between observers, with margins of 4.5–9.0 mm, 1.5–7.5 mm and 

1.5–4.5 mm for 0%, 5% and 10% residual high-grade cancer, and 6.0–11.0 mm, 5.5–10.0 

mm, and 3.0–9.5 mm for 0%, 5% and 10% residual cancer of any grade. However, the 
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volume of the resulting CTVs from these three-sequence GTV delineations with smaller 

margins was not consistently lower than the CTVs of other types with larger margins. 

Across all observers and CTV types, 50–80% of CTVs for high-grade cancer had 

volumes <10 ml, potentially suitable for focal radiation boosting, and 9–51% had 

volumes <5 ml, potentially suitable for focal laser ablation. We concluded that lesion 

delineation on mpMRI with appropriate margins has the potential to generate CTVs with 

adequate histological coverage that are deliverable with some targeted techniques, but 

that there may be value in developing methods for characterizing individual lesions, in 

developing contouring guidelines and training programs to reduce variability, and in 

investigating non-isotropic margin expansions to achieve adequate histological coverage 

with smaller CTVs. 

1.4.7 Chapter 8: Contributions of the thesis, applications and suggestions for 

future work 

This chapter summarizes the advances in knowledge related to each of the thesis’ 

research questions, and discusses practical applications of the thesis contributions along 

with corresponding directions for future research. 
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Chapter 2. 

  

The impact of registration accuracy on imaging 

validation study design: a novel statistical power 

calculation
 † 

 

2.1 Introduction 

Imaging evaluation with respect to an accepted reference standard imaging 

modality (e.g. on pathologist-contoured digital pathology images) may be a useful 

surrogate for clinical evaluation due to the resulting lower costs and shorter timeframes. 

Some aspects of these evaluations require the registration of images from the medical 

imaging modality being studied (henceforth, study images) to the images from the 

accepted reference standard modality (henceforth, reference images). Because of trade-

offs associated with achieving higher accuracy [1], it is important to identify the 

maximum acceptable level of registration error. This threshold is application-

dependent [2], and establishing application-specific thresholds for maximum acceptable 

error has been identified as a key challenge in the field [1, 2], but, to the best of our 

knowledge, criteria for acceptable registration errors have not been identified for imaging 

validation studies. 

                                                 
†A version of this chapter has been published: E. Gibson, A. Fenster, A. D. Ward, “The impact of 

registration accuracy on imaging validation study design: a novel statistical power calculation.” Medical 

Image Analysis 17:7 (2013). 
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In this work, we focus on developing such a criterion for a particular class of 

imaging validation studies: preliminary studies of the utility of an imaging modality for 

disease localization that test whether any observed differences in the mean image 

intensities (or other derived quantities) attributed to the presence of the disease (e.g. 

cancerous tissue) are significant, or whether they are merely due to chance. Measurement 

of image intensities in regions containing disease requires the localization of these 

regions on study images, which in turn requires the registration of the study images to the 

reference images, wherein the disease can be acceptably localized. An ideal (zero error) 

registration maps each ground truth delineation of disease features of interest onto the 

true region of interest (henceforth,    for the  -th such region, as depicted in Figure 2.1a) 

on the study image. A non-ideal registration (> zero error) maps the delineation onto a 

region which we denote    . Registration error is ideally quantified using a measurement 

of distance, such as the target registration error (TRE) [3-5]. However, because our 

analysis depends on aggregated measurements of image intensities within regions 

containing disease (i.e.   ), but our measurements, due to non-ideal registrations, are 

instead aggregated measurements taken from within the sampling region    , the fidelity 

of the regional overlap between    and     is paramount, and is used as a surrogate 

measure for registration accuracy. Our measure of this fidelity is the fractional overlap, 

                 , where     is the number of voxels in the region  . Fractional 

overlap, which ranges from 0 to 1, serves as our surrogate measure of registration 

accuracy throughout this chapter, with      serving as our surrogate measure of 

registration error. Mapping errors that result in smaller overlap may lead to larger 

required number of subjects to achieve a given minimum detectable difference (MDD) on 
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imaging between pathologic and benign regions. This observation leads to three key 

questions affecting study design. (1) What is the maximum acceptable registration 

error? Specifically, for a fixed number of subjects and specified MDD, what is the 

maximum acceptable image registration error? (2) How many subjects are needed? 

Specifically, for a quantified image registration error and specified MDD, what is the 

required number of subjects? (3) What is the minimum detectable difference? 

Specifically, for a fixed number of subjects and quantified image registration error, what 

is the MDD?  

The common concept connecting these questions is statistical power, a measure 

that describes the probability of a study finding a statistically significant result when 

there is an underlying difference to be found. Statistical power and its relationship to 

study designs have been actively investigated for nearly a century [6]. Calculations of 

statistical power depends on many factors, including the number of subjects in the study, 

the acceptable error rates, the size of the underlying difference, the characteristics of the 

population being analyzed, the statistical test [7], the types of hypotheses being tested [8, 

9], and the sampling methods used [10]. This statistical power is commonly expressed in 

the form of a sample size calculation that relates how many subjects to recruit for a 

particular study design or an MDD calculation that relates how small a difference can be 

detected for a particular study design. Such statistical power calculations have been 

derived for a wide variety of study designs; however, they have not been derived for 

studies where the measurements rely on imperfect image registration, and the registration 

error is an additional factor affecting statistical power. 
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In the context of studies to determine whether focal disease affects intensity on 

study images, we propose that the acceptable registration error can be defined relative to 

the studies' statistical power. Thus, in this chapter, we provide a derivation that yields the 

relationship between image registration error, number of subjects, and MDD, where 

image registration is used to determine whether the presence of particular anatomy, 

pathology or other features of interest in the underlying tissue is reflected in a change in 

the mean intensity of study image voxels corresponding to the features of interest. The 

derivation of a statistical power calculation that incorporates uncertainty due to 

registration error yields a set of three equations that can be used to answer the three 

questions enumerated above.  

A preliminary version of this work [11] derived these relationships for a 

simplified image data model that cannot account for the intervoxel correlations that are 

pervasive in medical imaging [12]. This chapter generalizes the previous work to account 

for a more realistic data model, provides a more rigorous derivation of the power 

calculation formulae, expands the scope of the validation by measuring sensitivity to a 

wider range of violations of model assumptions, expands the testing of the relationships 

by measuring error in the number of subjects, MDD and required registration accuracy 

predictions, and demonstrates the application of the theory to a case study of an imaging 

validation project underway at our institution. 

The remainder of this chapter outlines the derivation of an approximate 

relationship between fractional overlap and statistical power for one study design 

(Section 2.2), describes simulations used to validate components of the derivation 

(Section 2.3), presents the results of the simulations (Section 2.4) and discusses the 
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implications of these relationships and the application of these relationships in a case 

study (Section 2.5). Appendix A contains further mathematical details of the derivation.  

2.2 Statistical power calculations in imaging validation studies 

A statistical power calculation, such as the sample size calculation, relates the 

probability of detecting a true positive finding to other parameters of the study design 

under a probabilistic model of the populations being studied [13]. This relationship is 

based on the distribution of the test statistic, which depends on the type of statistical 

analysis used in the study, and the assumptions made in the data model. An overview of 

the data model used for this work is illustrated in Figure 2.1. 
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Figure 2.1: Overview of the data model. (a) On this axial magnetic resonance image of a 

brain, the true region of interest   , in this case a high contrast glioma for illustration 

purposes, is shown in red. Due to registration error, the sampling region     (shown in 

purple) partially overlaps the surrounding background tissue   
  (shown in cyan). Because 

the background sampling region    is surrounded by other background tissue, we do not 

model registration error for this region. (b) The distributions of voxel intensities in 

regions    and   
  (top),     (middle) and    (bottom). Because     contains samples from 

  
  and   , its voxel intensity distribution         is a mixture of the distributions for regions 

  
  (      ) and    (      ) (dotted lines). (c) The statistical properties of         are modulated 

by registration error, because it affects the proportion of samples from the component 

regions. By quantifying registration error in terms of the volume of        as a fraction 

of the volume of    , the fractional overlap, the model of its effect on the statistical 

properties of         is simplified. (d) The correlation of voxel intensities within regions    

(or similarly   ) can be expressed by decomposing the total variance   
  into two 

components, one reflecting the variation of the region means from region to region 

  
       

  , and the other residual variation from voxel to voxel within a single region. 

2.2.1 Specification of statistical analysis and data model assumptions 

In this chapter, we derive and evaluate statistical power calculations for a specific 

statistical analysis: comparing the mean of a pool of samples drawn from   identified 

sampling regions              to the mean of another pool drawn from   background 

regions             using an unpaired Student's  -test on the sample intensities, with an 
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equal number of samples   taken from each region. In this chapter, we use a data model 

that makes the following assumptions:  

I. intensities of voxels containing the features of interest        and background        

are jointly Gaussian distributed random variables that are correlated within each 

region and independent between regions (i.e.             
       

      
       

   

and             
       

      
       

  , respectively, where    is a Gaussian 

random effect on the  -th region and     is a Gaussian random effect on the  -th 

voxel in the  -th region); 

II. the interregion variances are equal for regions    and regions    (i.e.    
     

 ); 

III. when the regions    and     are not aligned, due to registration error, the 

proportions of samples that fall within        (termed the fractional overlap 

hereafter; see Figure 2.1c) are independently and identically distributed from a 

distribution     , and independent from the intensities; 

IV. the regions    and    are surrounded by background tissue, such that when there is 

registration error,     may contain a region of background tissue (denoted   
 ), but 

the sampling region for background still contains only background. Intensities of 

voxels in regions   
  are correlated within   

 , but uncorrelated with voxels in any 

   or   ; 

V. the number of regions     is large enough that the distribution of the mean of the 

pooled samples approximates a Gaussian distribution; and  

VI. the number of samples,  , from each region is constant and is large enough that     

can be approximated as an integer. 



 

69 

 

2.2.2 Derivation of the statistical power formulae incorporating registration 

error 

When there is no registration error, the test statistic 

                       

         
                   

 

  
2.1 

which is used when the variance and intraclass correlation are unknown, has a  -

distribution with      degrees of freedom, where             and             are the sample means 

and          and          are the region means of the  -th regions. Using the terminology 

introduced above in Eq. 2.1 and letting                be the minimum detectable 

difference for a two-sample  -test, we have 

     
   
     

 

 
 
   
     

 

  
  2.2 

where   is a statistical threshold                          , where              and 

             are two- and one-tailed critical values taken from the inverse cumulative 

distribution function of the  -distribution with      degrees of freedom, constraining 

type I error to   and type II error to  . This formula holds for cases where the samples 

are from Gaussian distributions and there is equal variance and equal correlation within 

each class. The first two of the assumptions in our model are derived from this. First, to 

match the distributions from the classical formula, our model assumes correlated 

Gaussian intensity distributions, although in practice, image intensities may have varying 

distributions and may be truncated by the imaging systems. Second, the classical formula 

assumes equal intra- and interregion variances; however, in the presence of correlation 



 

70 

 

the sensitivity to unequal intraregion variances is lower than the sensitivity to unequal 

interregion variances [14]. Based on these observations, only the equality of the 

interregion variances was assumed in our model. Equation 2.2 accounts for the widening 

of the standard error of the mean in the presence of correlation between the samples in 

each class. An illustrative example of such correlation is an image whose resolution is 

much lower than the voxel spacing. While the variance of a randomly selected voxel 

from a randomly selected tumor from such images would be   
  (i.e.    

     
 ), 

estimating the variance using multiple measurements within a smaller number of tumor 

regions would yield an artificially low variance, and using this variance estimate in the 

calculation of the standard error of the mean        would underestimate the standard 

error of the mean. The design factor [15] corrects for this, such that the true standard 

error of the mean is represented in the power calculation.  

For the purpose of the derivation, we rearrange this classical power formula as  

        
   
      

 

  
 
   
      

 

  
  2.3 

to isolate     
      

       , the expression for the variance of the mean of    cluster-

randomized samples from the    regions. Note that    is the minimum detectable 

difference between the means of the populations being compared (   and   ). 

When there is misregistration of the  -th region,     may overlap with the 

background region   
  that surrounds    (illustrated in Figure 2.1a) such that the pool of 

voxels sampled from     contains samples from   
 . If the intensity distributions         and 

       differ, then samples from     do not represent the same population as samples from 

  , and Equation 2.3 does not correctly describe the statistical tests being performed. At a 
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high level, to derive the statistical relationships accounting for registration error, we first 

characterize the population of samples from    , then model the statistical comparison of 

samples from     and  , and finally relate this model back to the population parameters of 

the original data model. This is described in detail as follows. 

The population of samples from     is a mixture of samples from    and samples 

from   
 , as illustrated in Figure 2.1b. The proportion of samples that contain the feature 

of interest can be quantified as the fractional overlap                   (illustrated in 

Figure 2.1c). Ignoring partial volumes,     will have            samples from    and 

             samples from   
 . Each of the samples is a Gaussian random variable 

with a distribution that depends on whether the sample is from    or from   
 .  

Noting that Equation 2.3 incorporates expressions for the mean of        and the 

variance of the mean of    cluster-randomized samples from       , we derive these same 

parameters for the population of samples from    . Because         is a mixture of two 

component distributions, the mean of the population     is a weighted mean of the means 

of the component distributions weighted by the number of samples from each component. 

Since the number of samples depends on the fractional overlap, we marginalize this 

weighted mean over the distribution of fractional overlap:  

     
                   

  
         

 
                2.4 

The variance of the mean of    cluster-randomized samples from    can be expressed as  
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where   
     

     
 ,     

  
   
 

 
    

  and     
  

   
 

 
     

 . The derivation of this 

expression is given in Appendix A. 

To model the statistical comparison of samples from regions     and   , we 

incorporate     and       
  into the classical formula in Equation 2.3, by substituting     for 

  , and substituting       
  (the variance of the mean of    cluster-randomized samples 

from regions    ) for 
   
      

 

  
 (the variance of the mean of    cluster-randomized 

samples from regions   ). Although the classical formula in Equation 2.3 is an exact 

statistical model, the formula resulting from these substitutions describes an approximate 

relationship, as the population of samples from     is not, in general, Gaussian, and so the 

distribution of the test statistic is not, in general, a  -distribution. 

This relationship can be related to the population parameters of    and    by 

noting that     is a function of the difference in population means         . This 

expression can be solved for   ,  , and   , as given in the power calculation formulae in 

equations 2.6, 2.7 and 2.8, respectively:  
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Note that the right-hand side of Equation 2.7 is a function of  , because   

                         . This equation must be solved approximately by numerical 

methods.  

2.3 Simulations 

We performed Monte Carlo simulations to assess the accuracy of the derived 

statistical model, and the sensitivity of the model to assumption violations. In each 

iteration of a simulation, we modeled an experiment comparing the sample means of 

voxels from   regions     and   regions    under the alternative hypothesis that the 

population mean intensities    and    differed by   , with two-sample  -tests of the null 

hypothesis that the population mean intensities were equal. By running multiple 

simulation iterations, a 95% confidence interval on the power of this experiment was 

estimated. Each sampled region     was modeled by sampling a fractional overlap    from 

a specified distribution, and sampling            intensity samples from       , the 

distribution of intensities of regions   , and              intensity samples from       , 

the distribution of intensities of regions   
 . Each sampled region    was modeled by 

sampling   intensity samples from       . The difference in the means of        and        was 

set to be the    predicted by the model, so that if the model were perfect, the probability 

of a negative  -test result from the simulation would match the model's type II error 

parameter  . In each simulation, 4,000,000 simulation iterations were run so that the 

width of the 95% confidence interval on the power of the simulated study was 0.001 (e.g. 

[0.7995,0.8005]). For each simulation, the model was evaluated by (1) comparing the 

simulation's power to the power predicted by the model (with all other parameters 
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matching the simulation), (2) comparing the simulation's number of subjects   and 

underlying population difference       to the number of subjects and    predicted by 

the model for the observed power (with all other parameters matching the simulation). To 

measure each different aspect of the model, a set of multiple simulations with controlled 

variation of an underlying parameter (henceforth referred to as a simulation set) was run. 

Simulation sets were run with controlled variation of  , of the population distributions of 

  ,       , and       , and of the experimental design parameters  ,   and  . Note that the 

population distributions for these experiments were not necessarily constrained by the 

model assumptions, in order to allow the testing of violations of these assumptions. 

2.3.1 Model accuracy under the specified assumptions 

To test the model accuracy under the assumptions specified in Section 2.2.1, we 

ran simulation sets using the data model specified in the derivation and parameters that 

did not violate any specified assumptions. Voxel intensity distributions were drawn from  

            
       

      
       

        2.9 

            
       

      
       

    2.10 

and the model parameters    
 ,    

 ,    
 , and    

  were varied. A variety of distributions 

of fractional overlap were tested by using the Pearson family of distributions. These 

distributions facilitate the independent manipulation of mean   , variance   
 , skew    

and kurtosis   , and include the normal distribution, giving a well-understood reference 

point when varying distribution parameters. Because fractional overlap is a proportion, 

the Pearson distributions were truncated to [0,1] and the mean and variance of fractional 

overlap did not in general match the specified    and   
 . The    and   

  used in the 
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model were estimated based on 1,000,000 samples from the distributions.   and   were 

varied over a range of values high enough to satisfy assumptions 5 and 6. Error rate 

control parameters   and   were also varied. Each of the parameters was varied 

independently in one set of simulations, with the other parameters held constant with 

values listed in Table 2.1. The ranges of the parameters varied in these simulation sets are 

described in Table 2.2. 

Table 2.1: Values of power simulation parameters in simulations where these parameters 

were held constant. 

       
     

     
     

                  

0.05 0.2 0.5 1 1 30 30 {0.5,0.7,0.9} 0.2 0 3 

 

Table 2.2: Varied data model parameters for simulation sets, denoted as     to    . 

       
     

     
     

                  

0.01 to 0.2 0.1 to 0.3 0.1 to 2 0.1 to 2 0.1 to 2 30 to 80 30 to 80 0.1 to 1 0 to 1 -1 to 1 1.5 to 10 

 

2.3.2 Model sensitivity to violations of the assumptions 

To test the sensitivity of the derived model to violations of the assumptions in 

Section 2.2.1, we constructed a more general data model, and ran sets of simulations 

varying parameters independently, with ranges of values including extremes where the 

model assumptions were violated.  

2.3.2.1 Generalized data model  

The more general data model included a separate intensity distribution         for 

voxels from background regions   
  surrounding   , and used more flexible voxel 

intensity distribution models.  
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In practice, imaging intensity distributions in normal and abnormal regions may 

vary based on the anatomy, the pathology, the imaging modality, and the digitization 

processes (such as truncation of the intensity ranges stored in the images), and would not 

in general be distributed as a Gaussian. Due to the intractable number of possible 

intensity distributions, these effects were not explored directly; instead, the sensitivity of 

the power formulae to the intensity distributions was assessed by replacing the Gaussian 

distributions with the more general Pearson distributions, a flexible class of distributions 

that can model skew and kurtosis and encompasses many common distributions including 

unbounded distributions such as the Gaussian distribution, the  -distribution and the 

gamma distribution, as well as bounded distributions such as the uniform distribution and 

the beta distribution. The generalized data model is characterized by the following 

intensity distributions: 

            
                  

                             2.11 

            
                  

                            2.12 

             
                   

                      2.13 

where           and            denote Pearson distributed random variables sampled 

once per region and once per voxel, respectively, with standard deviation  , skew   and 

kurtosis  , and    ,    ,     and      were zero-mean Gaussian random variables with 

variances    
 ,    

 ,    
 , and     

 , respectively. Note that distributions    
  and    

   (and 

distributions   
  and   

  ) share the same population parameters as they both represent 

background tissue; however, for a given   and  , separate independent samples were taken 

from these two distributions.     was sampled once per pair of regions    and    and 

added to both, to introduce correlated (matched) pairs.     and     were sampled once 
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per simulation iteration and added to all    and   , respectively, introducing correlation 

within region types (or, effectively, variability in    and    from iteration to iteration). 

     was sampled once per region    and added to    and the surrounding background 

region   
 , introducing correlation between regions and their surroundings.  

2.3.2.2 Simulation sets 

Two types of simulation sets were run to assess the sensitivity of the model to 

violations of the assumptions. First, parameters from the original data model were varied 

to violate the assumptions of the derivation. The parameters   and   were independently 

varied through a range (2–30) that potentially violated the assumptions that these values 

were sufficiently large. The ratio    
     

  was varied from 0.25 to 4 to violate the 

assumption of equality of interregion variances. Because the sensitivity of the  -test to 

non-Gaussian populations is known to increase with lower   [16], the variations 

described in Table 2.2 (apart from  ) were repeated with      and     . Second, 

the additional parameters introduced in the generalized data model representing skew 

   ,    ,     and    ) and kurtosis (   ,    ,     and    ) of voxel intensity 

distributions and correlations between regions (   
 ,    

 ,    
 , and     

 ) were varied. 

Skew parameters were varied from -1 to 1, and set to 0 when not being varied. Kurtosis 

parameters were varied from 1.5 to 10, and set to 3 (the kurtosis of the normal 

distribution) when not being varied. Correlation variances were varied from 0.1 to 2, and 

set to 0 when not being varied. Other parameters were set according to Table 2.1. As 

above, the variations were repeated with      and     .  
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2.3.2.3 Statistical analysis 

Statistical analysis was performed in SPSS 21 (IBM SPSS, 2010, Chicago, IL). 

For the simulation sets following the assumptions of the derivation, the accuracy of the 

model was assessed based on the maximum relative error in the model's prediction of the 

simulated number of subjects and MDD, and the maximum absolute error in power 

across all the levels of the varied parameter in the simulation set. The sensitivity of the 

model to variation of model parameters was assessed using a linear regression with the 

power as the dependent variable and the varied parameter as the independent variable, 

averaged over the three levels of    (except in the case of varying   , where there was no 

averaging). For the regression assessing sensitivity to the parameter  , the null 

hypothesis was that the linear coefficient of   was -1, as the power of an ideal model 

should be    . For the other regressions, the null hypothesis, corresponding to no 

sensitivity to parameter variation, was that the linear coefficient of the varied parameter 

was 0. For the simulations violating the assumptions of the derivation, the sensitivity of 

the model to these violations was assessed by (1) using separate linear regression for 

    ,     , and     , with the power as the dependent variable and the varied 

parameter as the independent variable, averaged over three levels of   , and (2) 

identifying the ranges of each parameter where the model predicted the number of 

subjects and MDD to within 1% relative error and the power to within 0.01 absolute 

error. The simulation set varying   was assessed using a single linear regression.  
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2.4 Results 

2.4.1 Simulation sets following assumptions  

The simulations were run for all simulation sets that followed the assumptions of 

the derivation. Table 2.3 shows the linear sensitivities of the model's predicted power to 

the varied parameter for the simulation sets described in Table 2.2 that met two criteria: 

(1) regression detected a significant effect (      ) and (2) the magnitude of the effect 

was        . For the remaining parameters, (   
     

 ,    
 ,    

 ,  ,  ,   ,   , and 

  ), the test failed to detect a significant effect or detected an effect        . Under the 

assumptions of the derivation, the model predicted the power to within 0.003 of the 

simulation power, predicted the number of subjects to within 0.8% relative error from the 

simulation number of subjects, and predicted the MDD to within 0.5% relative error from 

the simulation MDD for all parameter levels for all simulations sets.  

2.4.2 Simulation sets violating assumptions 

Simulations were run for all the simulation sets that violated the assumptions of 

the derivation. Table 2.4 shows the linear sensitivities of the model's predicted power to 

the varied parameter for the simulation sets violating the model assumptions that met two 

criteria for any of the three levels of  : (1) regression detected a significant effect 

(      ) and (2) the magnitude of the effect was        . For the remaining 

parameters, (   
 ,    

 ,    ,    ,    ,    ,    ,  ,  ,   ,    
 ,    

 ,    
 , and     

 ), the test 

failed to detect a significant effect or detected an effect         . Simulation sets for 

parameters where the model erred in the prediction of the number of subjects by more 

than 1% for any of the parameter levels with any    or any   are shown in Figure 2.2 for 
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the original data model, and shown in Figure 2.3 for the generalized data model. In these 

figures, the  -axes indicate the relative percentage difference between the number of 

subjects predicted by the model and the simulations. A value of 0% indicates that the 

model exactly predicted the simulation results. Values of     and     indicate that the 

model under- and overestimated the number of subjects, respectively. Parameter ranges 

where the model predicted the simulated power to within 0.01 absolute error and the 

simulated number of subjects and MDD to within 1% relative error are given in Table 

2.5. 

Table 2.3: Sensitivity of the power prediction error to variation in model parameters, 

under the assumptions of the derivation. The linear coefficients of the varied parameter 

are shown only for simulation sets that met two criteria: (1) regression detected a 

significant effect (      ) and (2) the magnitude of the effect was        . 

Parameters    
     

 ,    
 ,    

 ,  ,  ,   ,   , and   , where the test failed to find a 

significant effect or the magnitude of the effect was        , were omitted from the 

table. An ideal model would yield a linear coefficient of 0, except for the simulation set 

varying  , which should yield a linear coefficient of -1. 

        

Linear coefficient (1/unit of parameter variation) 0.015 -0.999 0.003 

Table 2.4: Sensitivity of the power prediction error to variation in model parameters, for 

simulation sets violating the assumptions of the derivation. The linear coefficients and the 

intercepts are shown only for simulation sets that met two criteria for any level of  : (1) 

regression detected a significant effect (      ) and (2) the magnitude of the effect was 

       . Parameters    
 ,    

 ,    ,    ,    ,    ,    ,  ,  ,   ,    
 ,    

 ,    
 , and     

 , 

where the test failed to find a significant effect or the magnitude of the effect was 

        for all levels of  , were omitted from the table. An ideal model would yield a 

linear coefficient of 0, except for the simulation set varying  , which should yield a linear 

coefficient of -1. Simulation sets that yielded effects         are denoted with a *. 

          
     

                       

Linear 

coefficient 

30 0.015 -0.999 0.001 0.006 -0.015 * 0.003 * * 

20 0.027 -0.993 0.002 0.008 -0.019 0.001 0.004 * -0.001 

10 0.054 -0.987 0.003 0.01 -0.026 0.001 * 0.001 -0.001 
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Table 2.5: Parameter ranges where the model predicted the simulated power to within 

0.01 absolute error and the simulated number of subjects and MDD to within 1% relative 

error. Ranges are denoted     to     if the whole range of rested parameter values fit 

these criteria. Otherwise,     and/or     were replaced with the identified lower and/or 

upper bound that did fit the criteria. Parameters where errors were below these thresholds 

throughout the tested range were omitted (   
     

 ,    
 ,    

 ,    ,    ,    ,    ,   ,   , 

   
 ,    

 ,    
 ,     

 ). 

       
     

                          

30 
    to 

    

    to 

    

     to 

    

     to 

    

    to 

    
    to     to     

    to 

    

    to 

    

20 
    to 

    
    to   

     to 

    
  to     

    to 

    
    to     to     

    to 

    

    to 

    

10 
     to 

     
    to          to     to         to       to     to     

    to 

    

    to 

    

 

As   was decreased, for the simulation sets that otherwise followed the 

assumptions, the model error increased for all simulation sets. For     , the model 

predicted the power to within 0.008 of the simulation power, predicted the number of 

subjects to within 2% relative error from the number of subjects in the simulation, and 

predicted the minimum detectable difference to within 1.1% relative error from the 

simulation minimum detectable difference for all parameter levels for all simulation sets. 
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Figure 2.2: Simulation sets testing model accuracy under the original data model, for 

parameters that yielded >1% relative error in the number of subjects at any level of 

             or                 . The remaining parameters (   
 ,    

 ,   ,   , 

   
     

 , and  ) showed <1% error in the predicted number of subjects for all 

simulation sets. Each curve represents the relative error in the predicted number of 

subjects for a particular   and    for varying parameter levels. An ideal model would 

yield a horizontal line at 0% for all levels of   and   . Multiple lines with different 

slopes, or different shapes suggest that there is an interaction between the sensitivity to 

the parameter being varied and   or   . Negative relative errors mean the model 

underestimated the number of subjects, potentially leading to an underpowered study. 

Positive relative errors mean the model overestimated the number of subjects, resulting in 

potentially inefficient use of resources.  
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Figure 2.3: Simulation sets testing model accuracy under the generalized data model, for 

parameters that yielded >1% relative error in the predicted number of subjects at any 

level of              or                 . The remaining parameters (  ,   ,    
 , 

   ,    ,    
 ,    ,    ,    

 ,    
 ,    

 ,     
 ,  ,   ,   , and  ) showed <1% error in the 

predicted number of subjects for all simulation sets. Each curve represents the relative 

error in the predicted number of subjects for a particular   and    for varying parameter 

levels. An ideal model would yield a horizontal line at 0% for all levels of   and   . 

Multiple lines with different slopes, or different shapes suggest that there is an interaction 

between the sensitivity to the parameter being varied and   or   . Negative relative 

errors mean the model underestimated the number of subjects, potentially leading to an 

underpowered study. Positive relative errors mean the model overestimated the number 

of subjects, resulting in potentially inefficient use of resources. 



 

84 

 

2.5 Discussion 

In this work, we derived a set of novel statistical power formulae that directly 

model registration error for a statistical test of the difference in signal intensity between 

foreground and background regions, accounting for correlation within these regions.  

This work provides a derivation of a statistical power calculation incorporating 

image registration uncertainty and addressing three central questions in the design of 

imaging validation studies. (1) Eq. 2.6: What is the maximum acceptable registration 

error? (2) Eq. 2.7: How many subjects are needed? (3) Eq. 2.8: What is the MDD 

between normal and pathologic image regions? Specifically, we derived an approximate 

relationship between an arbitrary distribution of fractional overlap and the statistics of a 

study design, elucidating a relationship between registration error, number of subjects 

and statistical power, yielding a set of three equations that are central to the design of 

imaging validation studies. 

These relationships could be used in several applications. During study design, 

Eq. 2.7 or 2.8 could be used to evaluate or control the power, after estimating imaging 

properties and registration errors, while Eq. 2.6 could be used to guide the selection of 

registration algorithms under the constraints of a study design. During algorithm 

development, Eq. 2.6 could be used to assess whether an algorithm has sufficient 

accuracy for a particular application. 

2.5.1 Simulations 

We ran Monte Carlo simulations to test the fidelity of our model both when our 

assumptions were met and when some of them were violated. When the assumptions of 

the derivation were met, the model predicted the number of subjects and MDD to within 
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1% error of the simulation and the power to within 0.01 absolute error of the simulation 

for all of the simulation sets. When the assumptions of the derivation were met, the 

source of the residual error is the deviation of the distribution of voxel intensities in the 

sampling region from the Gaussian distribution assumed by the classical power 

calculation. The simulations suggest that this source of error is negligible over the range 

of parameters simulated. 

When the assumptions were violated, the model still predicted the number of 

subjects, MDD and power of the simulation to within 11% over all tested parameter 

values. The model was most sensitive to the combination of a skewed distribution of 

regional mean intensities and low  . The parameter ranges shown in Table 2.5 and 

Figures 2.2 and 2.3 may suggest study parameter ranges for which this model is 

appropriate. For example, the model's accuracy decreases as the number of samples   

decreases below 6 and as the number of subjects   decreases below 4, suggesting that the 

model may not be appropriate for studies where the pathological regions occupy fewer 

than 6 voxels, or the study includes fewer than 4 subjects. In addition to serving to 

evaluate the statistical model, Figure 2.3 may also serve as a guideline for compensating 

for known deviations from the assumed model. For example, if it is known that the 

distribution of the background voxels has a positive skew of 1, a conservative study 

design could recommend an additional 4% beyond the number of subjects predicted by 

the model.  

2.5.2 Fractional overlap relates registration error to study outcome 

The post-registration misalignment of many homologous landmarks not used to 

define the registration (often quantified as the TRE) is considered to be the ideal general 
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metric for measuring registration error [4, 5]. In the study design addressed in this work, 

where image signals averaged within foreground and background regions are compared, 

the test statistic, and thus the study outcome, is invariant to some types of registration 

error. Specifically, two different registrations that map a point on the study image to 

different points that are both within the region    will yield the same test statistic. 

Because of this invariance, the statistical power of such a study is more directly tied to a 

surrogate measure for registration error that shares this invariance. Furthermore, as 

fractional overlap for a sampling region is linearly related to the average signal inside the 

sampling region, it is readily integrated into the derivation, which is a desirable feature 

for a surrogate measure. 

2.5.3 Estimating fractional overlap 

The presented power formulae depend on estimates of two population parameters 

of the distribution of fractional overlap for the registration methods and data used in a 

study. The statistical properties of fractional overlap have not yet been well characterized 

in the general case, and methods for estimating its population parameters have not yet 

been standardized. Thus, the practical use of the formulae requires careful consideration 

to be made in selecting an approach to this parameter estimation that is appropriate to the 

problem at hand. One possible approach [11] would estimate    and   
  from a quantified 

target registration error [3], under assumptions of having translational registration errors 

distributed as a 3D Gaussian, and having spherical regions of known volumes. Depending 

on the study, these assumptions may be overly strong. An alternative approach to 

estimating the mean fractional overlap that avoids the assumption of spherical regions 

with known volumes would be to (1) characterize the distribution of tumor shapes (e.g., 
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as a sample of tumor shapes taken from pilot data), (2) characterize the distribution of 

registration errors (e.g., as a distribution of per-region translations modeled as a 3D 

Gaussian distribution whose covariance is defined based on a quantified TRE), (3) 

repeatedly sample from these distributions and measure the fractional overlap for each 

sample, and (4) estimate the population mean and standard deviation of fractional overlap 

as the sample mean and standard deviation. The characterization of the statistical 

properties of these approaches, and the development of generalized approaches to 

estimating fractional overlap, would support the application of the power calculation 

formulae. 

2.5.4 Case study 

The application of these power calculations can be illustrated through a sample 

size calculation for a case study, modeled closely after a prostate cancer imaging 

validation study currently taking place at our institution. In this study, patients scheduled 

for radical prostatectomy (surgical removal of the prostate) undergo in vivo imaging 

before surgery using multi-parametric magnetic resonance (MR) imaging (structural, 

diffusion weighted and dynamic contrast-enhanced (DCE) sequences). These images 

could be processed to yield derived images (T2 maps from structural imaging, the 

average diffusion coefficient (ADC) from diffusion weighted MRI, and both the contrast 

transfer coefficient        and the contrast leakage    from DCE MRI). Following 

surgery, the prostate specimens are processed for whole-mount histology [17] and are 

digitized, annotated by a pathologist to identify cancer of different grades [18], and 

reconstructed and registered to the in vivo images. The contemporary per-patient cost for 

this study underway in our center is approximately $10,000 USD, so correctly estimating 
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the required number of subjects is important. Although these data can be applied to 

answer many questions, in this illustration we calculate the number of subjects for a 

hypothesis testing whether these modalities show significant signal differences between 

cancer and benign regions in the prostatic peripheral zone, known to harbor the majority 

of prostate cancer [19].  

To predict the required number of subjects for such a study, we can use 

Equation 2.7. In order to use this equation, we need to specify three study design 

parameters: (1)  , the acceptable false positive error rate (chosen as 0.05, in our case 

study);  , the acceptable false negative error rate (chosen as 0.2 in our case study); and 

  , the minimum magnitude of signal difference we need to distinguish with these error 

rates. For our case study, we estimated the differences in mean intensities from the 

literature: Langer et al. [20] reported medians and ranges (from which means and 

variances can be estimated [21]) for the intensity in tumor and benign tissue in the 

prostatic peripheral zone for T2, ADC,        and    images. We also need to estimate 6 

model parameters:  

I.  , the average number of samples per tumor, which can be calculated as the 

average tumor volume divided by the volume of an image voxel. For this case 

study, we assume an even distribution of tumors with 0.5 cc, 1 cc and 2 cc 

volumes. 

II.   
 , the variance of tumor voxel intensities. For this case study, we used the 

variance estimated from statistics reported by Langer et al. [20] for tumor 

peripheral zone tissue for T2, ADC,        and   . 



 

89 

 

III.   
 , the variance of background voxels. For this case study, we used the variance 

estimated from statistics reported by Langer et al. [20] for benign peripheral zone 

tissue for T2, ADC,        and   . 

IV.  , the interclass correlation coefficient relating the relative contributions of intra- 

and interregion variances to the total variance of voxel intensities. This parameter 

is typically assumed to be equal for both classes, and so can represent    
      

  

   
   or    

      
     

  . This can be estimated from the literature, or calculated 

from pilot data as   
     

    
  , where   

  is the variance of the mean intensities of 

tumor regions and   
  is the variance of tumor voxels after subtracting the mean 

intensity for each tumor. For this case study, without pilot data or information from 

the literature specifying  , we used a conservative estimate of    . 

V.   , the mean fractional overlap of our tumor sampling regions with the underlying 

tumor for our registration algorithm. For this case study, we estimated    using the 

first approach described in Section 2.5.3, i.e., estimating    from a TRE estimate 

under the assumptions of spherical tumors and 3D Gaussian translational error, and 

using the same tumor volumes as used for estimating  . For this case study, we 

explored multiple levels of TRE. 

VI.   
 , the variance of fractional overlap of our registration algorithm. For the case 

study, this was also estimated using the first approach described in Section 2.5.3. 

From these parameters, we can calculate 4 derived parameters: (1)    
  

       
 , (2)   

      
    

  , (3)     
    

             , and (4)     
  

  
               . The number of subjects can be calculated by substituting these 

parameters and                             into Equation 2.7 and solving numerically 
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for the fixed point of   [22]. For the case study, this was performed by expressing the 

right hand side of Equation 2.7 as      and finding the zero-crossing of        using 

an iterative solver implemented as       in Matlab R2011b (The Mathworks Inc., 

Natick, MA). 

Because it may be necessary to estimate   in the absence of pilot data or reported 

values, an intuitive understanding of   is important. The effect of   can be understood by 

comparing the variance of the mean of cluster-randomized samples in the absence of 

correlation     
     

       , and in the presence of correlation,     
     

   

  
 

        
 .   has an effect equivalent to changing the number of independent samples 

that can be collected from each region. Since the power depends on the total number of 

independent samples, the number of subjects needed is inversely proportional to the 

number of independent samples per region. Assuming     (i.e. effectively 1 sample 

per region) would yield a conservative estimate of the necessary number of subjects. As 

initial data is collected during the study and better estimates for   can be made, the study 

may reassess the required number of subjects. For example,       (i.e. effectively ~2 

samples per region) would halve the required number of subjects. 

If we had an ideal zero-error registration, we could apply the classical power 

calculation in Equation 2.2 by solving for  , substituting in this study's parameter 

estimates for  ,  ,  ,   
 ,   

  and  , and numerically solving for the fixed point of  . This 

would yield an estimated number of subjects for each modality: 28 for T2, 13 for ADC, 

188 for       , and 772 for   . In practice, since histology-in vivo MR image 

registrations have error, Equation 2.7 predicts the functional relationship between number 

of subjects and registration error using this study's parameter estimates (shown in Figure 
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2.4). In this relationship, the  -axis is target registration error, from which we calculated 

the mean and variance of fractional overlap [11]. For a target registration error of 1 mm, 

we would predict a required number of subjects of 36 for T2, 15 for ADC, 208 for 

      , and 889 for   . For a target registration error of 2.5 mm, we would predict a 

required number of subjects of 48 for T2, 19 for ADC, 243 for       , and 1090 for   , 

in which case, the classical power calculation underestimated the number of subjects by 

as much as 40%. 

 

Figure 2.4: Relationship between estimated required number of subjects and target 

registration error (TRE) for 4 imaging modalities (note the differing  -axis scales 

illustrating the variable sensitivity of the required number of subjects to TRE for the 

different modalities). An estimate of the required number of subjects using the classical 

power formula (marked with circles) will underestimate the required number of subjects 

when there is registration error. This relationship also illustrates the high potential impact 

for improving registration error in the context of imaging validation studies. Based on 

contemporary per-patient cost for a study underway in our center, the per-patient cost is 

more than $10,000 USD, so reducing the required number of subjects can have a 

substantial impact on the overall study cost. 

In practice, several methods have been proposed for reconstruction of prostate 

histology to in vivo MR imaging. The required number of subjects (and thus the study 

cost) varies as a function of the registration error. Figure 2.4 shows this relationship, 

demonstrating the value in improving registration accuracy. 
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2.5.5 Limitations 

The novel power calculations derived in this work should be considered in the 

context of two key limitations. First, the classical power calculation on which this work 

builds assumes that the samples being compared are drawn from a Gaussian distribution. 

In the presence of registration error, one sample may no longer be Gaussian, causing the 

distribution of the   statistic to deviate from a  -distribution. Thus, this work relies on the 

robustness of the  -test to non-Gaussian distributions. Second, the derivations in this 

work are exact under strong assumptions. Because statistical power calculations 

inherently depend on the particular statistical analysis being performed, the derived 

power calculations can be directly applied only in the context of the described statistical 

design. The approach used in this derivation, however, may facilitate derivations of 

power calculations suitable for other statistical designs. The specific data models 

assumed in the derivation may not perfectly describe data for a given problem; however, 

the analysis of sensitivity to violations of these assumptions should allow users to assess 

whether the model is appropriate for a given experiment. Third, due to the assumptions of 

the classical power formula from which the novel power calculation formulae were 

derived, our model assumes that the interregion variances    
  and    

  are equal. 

Depending on the study, this assumption may be violated if, for example, the variability 

of the pathology from subject to subject results in more variable appearance between 

pathological regions than between benign regions. Prediction errors due to such 

violations are shown in Figure 2.3. Fourth, the power calculation formulae depend on the 

estimation of the mean and standard deviation of fractional overlap, which are required 

for the application of the formulae. The statistics of fractional overlap, and their 
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dependence on registration method and data, are not as well characterized as those of 

other registration metrics such as TRE. The two approaches to this estimation discussed 

in the case study, one using strong assumptions about region shapes and the distribution 

of TRE, and one incorporating region shape information from pilot data, may warrant 

further investigation. 

2.6 Conclusions 

In this work, we derived novel power calculations relating registration error to the 

minimum detectable difference and the number of subjects. These power calculation 

formulae enable imaging researchers to answer three central questions in the design of 

certain imaging validation studies: (1) What is the maximum acceptable registration 

error? (2) How many subjects are needed? (3) What is the minimum detectable difference 

between normal and pathologic image regions? These formulae were accurate to within 

1% error when the model's assumptions were followed, and the sensitivity of the model 

to violations of the assumptions was characterized. The case study presented in this work 

highlighted the importance of adjusting the number of subjects to account for registration 

error, showing that the classical power calculation underestimated the required number of 

subjects by as much as 40% for a study design modeled closely after an ongoing imaging 

validation project in our center. 
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Chapter 3. 

  

3D prostate histology image reconstruction: quantifying 

the impact of tissue deformation and histology section 

location
 † 

 

3.1 Introduction 

Determining the 3D spatial relationship between corresponding histology and in 

vivo images, for the purpose of evaluating prostate cancer imaging. is often performed in 

two steps: (1) a reconstruction of histology images to a 3D ex vivo spatial context, and (2) 

an alignment of reconstructed histology to in vivo images. 

The challenges in 3D histology reconstruction can be illustrated in the context of 

the process of collecting histology from radical prostatectomy specimens, which typically 

proceeds as follows (shown in the first row of Figure 3.1). After surgery, the prostate is 

fixed in a formalin solution and then cut into 3–5-mm-thick tissue slices at the pathology 

bench. These tissue slices proceed through a series of chemical baths to replace water in 

the tissue with paraffin, and the slices are embedded in a block of translucent paraffin. 

This block is mounted to a microtome by hand, aligned by eye to square the tissue face 

(as seen through the translucent paraffin) with the microtome blade, and tissue is cut until 

a full cross-section can be collected. Once a sufficient depth has been reached, the 

                                                 
† A version of this chapter has been published: E. Gibson, M. Gaed, J. A. Gómez, M. Moussa, S. Pautler, J. 

L. Chin, C. Crukley, G. S. Bauman, A. Fenster, A. D. Ward, “3D prostate histology image reconstruction: 

Quantifying the impact of tissue deformation and histology section location.” J Pathol Inform 4:31 (2013). 
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operator cuts a 4 μm histological section, allows it to expand on a water bath to flatten the 

section, and mounts it on a glass slide. 

 

Figure 3.1: Overview of specimen processing, imaging and analysis. 

The 3D reconstruction of histology consists of retroactively determining the 

positions of the cutting and the deformation of the tissue to determine the original 3D 

spatial relationships of histological tissue, a process that remains an active area of 

research [1-4]. 2D to 3D deformable reconstructions for clinical prostate specimens have 

many degrees of freedom and sparse out-of-plane information content. A common 

approach to mitigate these challenges is to make simplifying assumptions about the 
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spatial relationship of histological tissue to the corresponding tissue in the specimen. 

Some assumptions made in existing approaches for 3D histology reconstruction are 

enumerated below. The focus of this chapter is on testing the strength of the first two 

assumptions in this list. 

 The deformation of the histological tissue after coarse slicing fits a specified 

constrained deformation model, such as the rigid [1], rigid + isotropic scaling 

(referred to as similarity throughout this chapter) [5, 6], affine [2, 7], or thin-plate-

spline (TPS) [8, 9] deformation models. This is referred to as the deformation 

model assumption throughout this chapter. 

 Each histological section corresponds to the front face of the 3–5-mm-thick tissue 

slice from which it was taken [3, 5-7, 9-11]. This is referred to as the front face 

assumption throughout this chapter.  

 Each histological section corresponds to a planar surface in the specimen [1-3, 7, 

10, 11]. 

 Each histological section corresponds to a surface in the specimen defined 

prospectively by carefully controlling the position and orientation of the cuts 

made during specimen slicing [3, 10, 12, 13]. 

 The histological sections correspond to parallel, evenly spaced surfaces in the 

specimen (typically justified based on controlled cutting of tissue slices) which 

are determined retrospectively using additional imaging (typically photographs of 

the faces of tissue slices) during or after the slicing of specimens into thick tissue 

slices [5, 7, 9, 11]. 
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By constraining the allowable spatial relationship between each histology section 

and the tissue from which it was cut, these assumptions may simplify the registration 

problem by decreasing the degrees of freedom but may also impact the accuracy of 3D 

reconstruction methods. In the context of imaging validation studies that evaluate 

imaging modalities by comparison to a 3D reconstructed histological reference, 

reconstruction accuracy affects the statistical power (i.e. the probability of a study finding 

an existing statistically significant effect) of studies that apply the reconstruction 

methods [14, 15]. Because of this relationship, 3D histology image reconstructions with 

greater error create a requirement for more patients to be enrolled in the study, which can 

have a substantial impact on the cost of the study (see discussion for an illustrative case 

study) or run the risk of improperly evaluating the imaging modality if the study is 

underpowered for the error inherent in the technique. Thus, it is important to consider 

these simplifying assumptions, and their impact on reconstruction error, in the 

development and/or selection of reconstruction methods for such studies. 

The strengths of these assumptions depend on their fidelity to the processes the 

tissue undergo throughout the preparation of histological sections. For example, the 

correspondence of the histological sections to the front faces of tissue slices depends in 

part on the skill and experience of the microtome operator determining the paraffin block 

face orientation and cutting depth. This task is complicated by the fact that the tissue face 

is hidden behind a translucent layer of paraffin, challenging the assessment of tissue face 

orientation until the tissue has already been exposed by the microtome blade and thus 

sectioned. The strengths of these assumptions, and their impact on the reconstruction 

error, have not, to the best of our knowledge, been quantified in the literature. This 
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complicates the selection of appropriate assumptions for reconstruction method 

developers, and also complicates the selection of reconstruction methods (that may 

incorporate such assumptions) for study designers. 

In this work, our objective was to quantify the spatial relationships between 

histological sections, paraffin-embedded blocks, and the corresponding tissue slices from 

which the sections were taken to answer three questions, referred to according to the 

following enumeration throughout this chapter. 

 Question 1: How does prostate tissue deform during histology processing? 

Specifically, with what accuracy can rigid, similarity, affine or TPS deformation 

models align homologous landmarks on histology sections (Figure 3.2f, labeled 

ℎ   ), on the cut paraffin-embedded tissue blocks (Figure 3.2e, labeled     ) and on 

MR images of formalin-fixed tissue slices (Figure 3.2c-d, labeled     ). This 

question constitutes a test of the strength of the deformation model assumption.  

 Question 2: What spatial misalignment of the tissue sections is induced by 

microtome cutting? Specifically, relative to the front faces of the tissue slices, 

from what depth (Figure 3.2c, labeled   ) and at what orientation (Figure 3.2c, 

labeled 𝜃 ) are histology sections taken? This question constitutes a test of the 

strength of the front face assumption. 

 Question 3: How does the choice of reconstruction model affect the accuracy of 

histology reconstructions? A reconstruction model is defined in this chapter by a 

choice of one of four deformation models (rigid, affine, similarity, TPS), and a 

choice of whether or not to make the front face assumption. This question 

resolves to the following two more specific questions: for all possible 
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reconstruction models as defined above, (1) what are the target registration errors 

(TRE) and (2) the fiducial registration errors (FRE) of least-squares best-fit 

landmark-based reconstructions?  

These questions constitute an evaluation of the impact on registration error of 

making the deformation model assumption and the front face assumption. The answers to 

these questions were quantified using homologous landmarks manually identified on 

histology images, paraffin block face images, and MR images of the tissue slices, and the 

resulting errors were evaluated in the context of a type of imaging validation study that 

relies on histology image reconstruction.  

3.2 Materials and methods 

3.2.1 Materials and imaging 

As part of an ongoing prospective imaging validation study, we obtained prostate 

specimens from 6 subjects after radical prostatectomy with the following inclusion 

criteria: (1) male, (2) age 18 years or older, and (3) clinical prostate cancer stage T1 or T2 

with histological confirmation from biopsy. The exclusion criteria were: (1) prior therapy 

for prostate cancer, (2) use of 5-alpha reductase inhibitors within 6 months of the study 

start, (3) inability to comply with preoperative imaging, (4) allergy to contrast agents, (5) 

sickle cell or other anemias, (6) hip prosthesis, (7) sources of artifact within the pelvis, 

and (8) contraindications to MRI. This research was approved by our institutional human 

subjects research ethics board, and informed consent was obtained from each subject. 

An overview of the processing, imaging and measurement of these data is shown 

in Figure 3.1. After resection, fixation (10% buffered formalin for 48 hours), and marking 

with fiducial strands [3], the prostatic apex was removed and the mid-gland was gross-
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sectioned into 4.4-mm-thick tissue slices (3–5 per specimen, 21 total). MR images of 

these tissue slices were acquired using a Discovery MR750 (GE Healthcare, Waukesha, 

WI, USA) at 3 T using an endorectal coil (Prostate eCoil, Medrad, Inc., Warrendale, PA, 

USA). Tissue slices were immobilized in tissue processing and embedding cassettes and 

immersed in Christo-Lube (Lubrication Technology Inc., Franklin Furnace, OH, USA) to 

provide a black background and minimize boundary artifacts on imaging. Imaging used a 

T1-weighted protocol (3D SPGR, TR 6.5 ms, TE 2.5 ms, bandwidth ±31.25 kHz, 8 

averages, FOV 14×14×6.2 cm, slice thickness 0.4 mm, 256×192 matrix, 312 slices, flip 

angle 15°, 25 min) and a T2-weighted protocol (3D FSE, TR 2000 ms, TE 151.5 ms, 

bandwidth ±125 kHz, 3 averages, FOV 14×14×6.2 cm, slice thickness 0.4 mm, 320×192 

matrix, 312 slices, 25 min). These images are referred to as tissue slice MR images 

throughout this chapter. 

Following MR imaging, formalin-fixed tissue slices were decalcified in a 

hydrochloric acid/chelating agent solution (Cal-Ex Decalcifier, Fisher Chemical, Ottawa, 

Canada) overnight and then dehydrated and embedded in paraffin using a series of 

chemical baths of formalin, ethanol, xylene and paraplast under our hospital's standard 

clinical pathology laboratory protocol for large blocks (wherein the duration of ethanol, 

xylene and paraplast are lengthened). The full processing schedule is given in Appendix 

B. 

The embedded blocks were sectioned by one of fifteen clinical histotechnologists 

in our hospital’s clinical pathology laboratory. Each block was mounted by hand on the 

chuck of a microtome (RM2245 or RM2255, Leica Biosystems, Nussloch, Germany), 

and the operator attempted to align the front face of the tissue, as seen through the semi-
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transparent paraffin covering, with the cutting axis by manually adjusting mechanical 

control knobs on the microtome. Sections were repeatedly cut until a full cross-section of 

the tissue block was reached. A final 4 μm section was cut from the block, floated on a 

hot water bath to remove distortion and mounted on a positively-charged glass slide. All 

sections were stained with hematoxylin and eosin.  

After the clinical pathology assessment was complete, stained histology sections 

were digitized on a ScanScope GL (Aperio Technologies, Vista, CA, USA) bright field 

slide scanning system with a 0.5 μm pixel size. These images are referred to as histology 

images throughout this chapter. 

Photographs of the exposed face of paraffin-embedded tissue blocks were 

acquired using a Pentax K200D with an SMC Pentax D FA 100 mm F2.8 macro lens 

(Pentax Imaging Company, Denver, CO, USA). The camera was attached to the camera-

mount column of the photography table to ensure the optical axis was perpendicular to 

the tissue blocks. Labels containing a 4 mm long scale marker were affixed to the cut 

surfaces, and used to calibrate the pixel size of the images. These images are referred to 

as paraffin images throughout.  

Three sections were excluded from our analysis, because we identified an 

insufficient number of homologous landmarks on the three imaging modalities 

(histology, paraffin, and tissue slice MR images). Five sets of homologous landmarks 

were necessary for our evaluation; see discussion for details. 

3.2.2 Methods 

Our method is illustrated in the “Analysis” portion of Figure 3.1, and is 

summarized at a high level as follows. To characterize prostate tissue deformation due to 
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histology processing (Question 1), we determined the class of deformation that best 

mapped tissue on histology sections to the homologous tissue on the paraffin block faces 

and on the formalin-fixed tissue slices. Specifically, we assessed which of the four 

evaluated classes of transformation (rigid, similarity, affine or TPS) best mapped 

homologous landmarks on histology images (Figure 3.2f, labeled     ), on paraffin 

images (Figure 3.2e, labeled     ) and on tissue slice MR images (Figure 3.2c-d, labeled 

    ). To measure the spatial misalignment of tissue sections induced by microtome 

cutting (Question 2), we characterized the locations from which histology sections were 

taken from within tissue slices, by estimating the depth (Figure 3.2c, labeled   ) and the 

orientation (Figure 3.2c, labeled 𝜃 ) relative to the front face of the tissue slice from 

which the histology sections were taken. To assess the impact of the choice 

reconstruction model (i.e. choice of deformation model, plus choice of whether or not to 

make the front face assumption) on 3D reconstruction error (Question 3), we estimated 

two reconstruction error measures, the TRE and the FRE, using different reconstruction 

models. The impact of these assumptions will depend, in part, on the reconstruction 

algorithm that is used. We used least-squares best-fit alignment of manually identified 

homologous intrinsic fiducials for these measurements. This approach is parameter-free, 

has an analytic solution for each considered reconstruction model and has an accuracy 

that depends only on the number and placement of fiducials and not on image properties. 

In the four subsections that follow, we describe the details of the selection of these 

landmarks, as well as the details of the methods used to address each of the three central 

questions of this work. 
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Figure 3.2: Schematic representations of tissue, landmarks and measurements, including 

(a) a surface rendering of a tissue slice MR image; (b) a schematic rendering of the tissue 

slice with front face fiducials     , and the best-fit front face plane   ; (c) a projected side 

view of the tissue slice as oriented over the microtome blade with front face fiducials     , 

the best fit front face plane   , histology-visible landmarks     , the best-fit histology 

section plane   , the orientation 𝜃  and the depth measurement   ; (d) a schematic 

rendering of the tissue slice with histology-visible landmarks and best-fit histology 

section plane   ; (e) a schematic rendering of the paraffin block face after histological 

sectioning showing homologous landmarks      and (f) a schematic rendering of the 

corresponding histology section with homologous landmarks ℎ   . 

3.2.3 Identification of landmarks and tissue slice faces 

All of these measurements rely on identifying homologous landmarks in histology 

images, paraffin images and tissue slice MR images. For each tissue slice, we identified 

7–15 distinct landmarks (162 in total), comprising the centers of atrophic ducts, cysts and 

corpora amylaceae with diameters less than 1 mm. Illustrative examples of these images 

and identified homologous landmarks are shown in Figure 3.3. The positions of the 

landmarks (2D for histology and paraffin images, 3D for tissue slice MR images) on 

these modalities are denoted     ,     , and     , respectively, for  -th landmark on the  -

th tissue slice. Landmarks were interactively localized using 3D Slicer (Surgical Planning 

Lab, Harvard Medical School, Boston, USA), which required that the histology images 

be loaded into random-access memory; as the full resolution images typically occupy 15–
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20 GB, we downsampled them to a 30 × 30 µm voxel size for landmark identification, 

yielding images 10–40 MB in size. 

 

Figure 3.3: Illustrative examples of the T1-weighted tissue slice MR (left), paraffin 

(middle) and histology (right) images transformed by a best-fit affine transformation 

aligning manually identified landmarks. The three highlighted regions in row 1 are shown 

magnified in rows 2, 3 and 4, with corresponding landmarks denoted by arrows. 
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We estimated the front face of the  -th tissue slice by first manually identifying 

seven 3D points  𝒇            evenly distributed across the face of the  -th tissue slice 

on the tissue slice MR image (approximately in the configuration shown in Figure 3.2b), 

and then computing the least-squares best-fit plane    to these points. 

Because variability in landmark localization introduces uncertainty into spatial 

relationships measured in this work, the fiducial localization error (FLE) was estimated 

on histology (    ), paraffin (    ) and tissue slice MR (      images. Based on 

previous measurements using these histology images and MR images of intact prostate 

specimens using the same protocols [16],      and      were taken to be 0.05 mm and 

0.16 mm respectively. These measurements quantified FLE as an unbiased estimator of 

the standard deviation of repeated localizations of landmarks.      was estimated to be 

0.05 mm, the same as     , because the types of fiducials and the pixel sizes were 

similar (30 µm for histology images, 18 µm for paraffin images). 

3.2.4 Tissue deformation due to histology processing (Question 1) 

To assess the fidelity of the different deformation models, we quantified 

deformation between formalin-fixed tissue slices, paraffin blocks and histology sections 

under each of the models. Thus, we assessed the deformation due to three histology 

processes: (1) paraffin processing and embedding (denoted with superscript  ←  , 

corresponding to the transformation   
 ← 

 from the paraffin images [ ] to the tissue slice 

MR images [ ]), (2) histological sectioning and mounting (denoted with superscript 

 ← ℎ, corresponding to the transformation   
 ← 

 from the histology images [ℎ] to the 

paraffin images [ ]), and (3) the combination of both processes (denoted with superscript 
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 ← ℎ, corresponding to the transformation   
 ←  from the histology images [ℎ] to the 

tissue slice MR images [ ]).  

Deformation models were compared using the mean TRE of homologous 

landmark pairs identified on images before and after each process after landmark-based 

registrations constrained by 4 deformation models of increasing flexibility: rigid, 

similarity (rigid + isotropic scaling), affine (rigid + scaling + skewing), and non-linear 

TPS [17]. The mean TRE was estimated as the misalignment between homologous 

landmarks after transformation by a least-squares best-fit transformation constrained by 

the deformation model, and was calculated using a leave-one-out cross-validation:  

    ←        
                  

             
 ←                 3.1 

where       
 ←   

 is the transformation of type                                  that 

best maps the vector of image landmarks                            from the  -th 

slice on the source modality    ℎ    to the vector of image landmarks       

                     from the  -th slice on the target modality        ,      tissue 

slices, and   denotes which landmark is left out. For example,  
           

 ←       
is the best-fit 

rigid transformation for the second tissue slice that maps from histology to tissue slice 

MR image coordinates that is fit to all but the third identified fiducial. 

The sensitivity of these measurements to FLE depends on the spatial 

configuration and number of landmarks identified for each tissue slice. For example, the 

best-fit transformation, and hence the leave-one-out TRE, of a section with few 

landmarks centrally clustered near the urethra and one landmark near the prostate 

boundary could be more sensitive to a misplaced landmark than that of a section with 

many widely-spaced landmarks. Although relationships between TRE and FLE with 
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respect to spatial distribution of the landmarks have been characterized for rigid 

transformations [18], to the best of our knowledge there is no closed form solution for 

calculating this sensitivity for a leave-one-out TRE for all four deformation models. 

Thus, we assessed this sensitivity instead by Monte Carlo simulation. For each tissue 

slice, landmarks on histology, paraffin, and tissue MR images were modeled as      

   ,         , and         , respectively, where     is a 2D Gaussian random 

variable sampled for each landmark with   and   components distributed as     
    

 

 
 , 

and     is a 3D Gaussian random variable sampled for each landmark with  ,   and   

components distributed as     
    

 

 
 . For each tissue slice, the TRE measurements were 

calculated for 5,000 sets of perturbed landmarks, and the standard deviation of these 

measurements was calculated. The sensitivity of the TRE measurements to FLE was 

quantified as the average of these standard deviations across all tissue slices. The number 

of samples was chosen such that the standard error of the standard deviation would be 1% 

of the standard deviation itself. 

3.2.5 Spatial misalignment of tissue sections induced by microtome cutting 

(Question 2) 

To assess the strength of the front face assumption, we quantified the depth and 

orientation of histology sections relative to the front face of the tissue slices from which 

they were cut. The depth and orientation of each histology section were both estimated 

based on the spatial relationship between two planes: the best-fit plane    through the 

points identified on the front face of the tissue slice in the tissue slice MR image and the 

plane   , an estimate of the tissue from which histology section was cut, computed as the 
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best-fit plane through the landmark points                in the tissue slice MR image 

corresponding to homologous landmarks visible on the histology image. The orientation 

𝜃  of the  -th histology section within the corresponding tissue slice was measured as the 

angle between the normal of plane    and plane   : specifically, 𝜃               

         where      is the 3D unit normal of plane  . The depth    of the  -th histology 

section from within the tissue slice was measured as the minimum, average and 

maximum distances from the tissue points    (the intersection of plane    with tissue 

identified on tissue slice MR) to the front face plane   : specifically,        

                ,                      and                        , 

where        is the distance from 3D point   to the plane  . Tissue points on the tissue 

slice MR image were identified by a threshold-based segmentation of the T1-weighted 

tissue slice MR image using a manually selected threshold, followed by manual editing.  

The sensitivity of these measurements to FLE also depends on the spatial 

configuration and number of landmarks identified for each tissue slice. For example, the 

estimated orientation of a section with few landmarks centrally clustered near the urethra 

could be more sensitive to a misplaced landmark than that of a section with many widely-

spaced landmarks. Because, to the best of our knowledge, there is no closed form 

solution for calculating this sensitivity with respect to spatial distribution of the 

landmarks, we assessed it instead by Monte Carlo simulation. For each tissue slice, 

histology-visible landmarks on tissue slice MR images were modeled as         , and 

front face landmarks were modeled as 𝒇       . As was done for Question 1, the 

sensitivity of the depth and orientation measurements to FLE was measured as the mean, 
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across all tissue slices, of the standard deviation of each measure across 5,000 sets of 

perturbed landmarks. 

3.2.6 Impact of reconstruction model on 3D reconstruction error (Question 

3) 

For a reconstruction algorithm that uses a particular reconstruction model (i.e. a 

specified deformation model with or without the front face assumption), reconstruction 

accuracy may decrease if the true spatial relationships between histology sections and the 

tissue slices from which they were cut are different from the assumed constraints. While 

the impact will depend on the 3D reconstruction methods used, it can be explored by 

examining reconstructions based on the least-squares best-fit transformation of identified 

homologous intrinsic landmarks under various reconstruction models. This reconstruction 

approach was chosen because the reconstructions are parameter-free, they can be solved 

analytically avoiding reconstruction errors due to local optima, and their accuracy 

depends only on the number and placement of the fiducials and not on image properties.  

The impact of the reconstruction model was quantified using the TRE (calculated 

in a leave-one-out manner). This is analogous to the TRE described in Equation 3.1, but 

with an expanded set of transformation types    that includes the deformation types 

                               both with and without an additional constraint 

imposed by the front face assumption. Because the TPS transformation is an interpolating 

spline (i.e. source fiducials used to define the transformation are mapped exactly to target 

fiducials) and target fiducials may lie at a non-zero depth from the front face, the front 

face assumption cannot be directly applied. However, a transformation that does satisfy 

the front face assumption can be realized by first projecting the target fiducials used to 
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define the transformation onto the front face, and then defining a TPS transformation 

from source fiducials to the projected target fiducials. For rigid, similarity and affine 

transformations, the constrained least-squares fitting (constrained by the front face 

assumption) of transformed source fiducials to target fiducials is mathematically 

equivalent to the unconstrained least-squares fitting of transformed source fiducials to the 

projected the target fiducials. Thus, for the reconstructions where the front face 

assumption was made, the target fiducials were projected onto the front face for all four 

deformation models. The sensitivity of TRE to FLE was quantified as for the TRE in 

Question 1. 

In addition to quantifying the reconstruction error for these particular 

reconstructions, we can also calculate the lower bound on reconstruction error as 

measured by the identified landmarks for any possible reconstruction algorithm 

constrained by a particular reconstruction model. This lower bound is quantified as the 

FRE,  

     ←         
                  

       
 ←                  3.2 

where       
 ←    

 is the transformation of type    (the expanded set of transformation types 

described in the previous paragraph) that best maps the vector of image landmarks 

                    from the  -th slice on the source modality    ℎ    to the vector 

of image landmarks                     from the  -th slice on the target modality 

        and      tissue slices. Note that unlike the TRE, the FRE includes all 

fiducials when fitting the transformation       
 ←    

, and represents a lower bound on the 

TRE as measured using the identified intrinsic landmarks. Because the TPS 
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transformation is an interpolating spline (i.e. source fiducials used to define the 

transformation are mapped exactly to target fiducials) the FRE of an unconstrained TPS 

transformation is 0, by construction, for any configuration of fiducials. The sensitivity of 

FRE to FLE was quantified as for the TRE in Question 1. 

3.2.7 Statistical analysis 

Statistical analyses were performed in SPSS 20 (IBM, Chicago, USA). The depth 

and orientation measurements were characterized with descriptive statistics (mean and 

standard deviation) and 95% confidence intervals (CI) on the means were computed. 

Correlations of the depth measurements with the orientation were assessed using pairwise 

Spearman correlations.  

The TRE measurements quantifying deformation during paraffin processing and 

embedding, histological sectioning and mounting, and the combination of both processes 

were characterized with descriptive statistics. We assessed differences in mean TRE 

between the deformation models using separate 1-way repeated-measures analysis of 

variance (ANOVA) tests with Greenhouse–Geisser correction for asphericity with the 

deformation model as the factor. Pairwise post hoc analysis of adjacent levels (i.e. rigid 

vs. similarity, similarity vs. affine and affine vs. TPS deformation models) was performed 

by constructing 95% CI on the differences in mean TRE. 

To assess the impact of reconstruction assumptions, we assessed the differences in 

mean TRE using a 2-way repeated-measures ANOVA with a Greenhouse–Geisser 

correction for asphericity, with the two assumptions (the deformation model assumption 

and the front face assumption) as factors. Pairwise post hoc analysis was performed by 

constructing 95% CI on the difference in FRE and TRE due to the front face assumption 
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under each deformation model, and on the pairwise differences due to the deformation 

model between adjacent levels with and without the front face assumption. Note that the 

FRE of a reconstruction under stricter assumptions is mathematically guaranteed to be 

equal to or higher than the FRE under relaxed assumption. For example, the rigid 

deformation assumption is stricter than the affine deformation assumption, and the front 

face assumption is stricter than eliminating that assumption. 

3.3 Results 

3.3.1 Tissue deformation due to histology processing (Question 1) 

The key finding regarding tissue deformation was that modeling isotropic scaling 

as in the similarity deformation model improved the mean TRE by 0.8–1.0 mm, while 

modeling skew or thin-plate-spline deformation improved the mean TRE by less than 0.1 

mm (bolded intervals in the first row of Table 3.1). The mean and standard deviation of 

TRE for the three histology processes under the four deformation models are shown in 

Table 3.2. For the combined deformation from tissue slice to histology section (shown in 

the first row of Tables 3.1 and 3.2 and as a box plot in Figure 3.4), the similarity model 

had a significantly lower mean TRE than the rigid model and the affine model has a 

significantly lower mean TRE than the similarity model (by 0.9 mm and 0.06 mm 

differences respectively), but post hoc analyses failed to show a statistically significant 

difference between the affine and TPS deformation models (0.005 mm difference). 
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Table 3.1: Post hoc analyses comparing mean TRE under varying deformation models: 

95% CI of TRE for model A – model B. Key findings are shown in bold. 

Deformation model A Rigid Similarity Affine 

Deformation model B Similarity Affine Thin-plate spline 

Tissue slice MR to histology images [0.78,0.98] [0.03,0.10] [-0.02,0.02] 

Tissue slice MR to paraffin images [1.07,1.31] [-0.04,0.01] [-0.03,0.01] 

Paraffin to histology images [0.12,0.20] [0.02,0.07] [-0.01,0.02] 

Table 3.2: Mean±SD TRE (mm) for four models of deformation during histological 

processing stages. Statistical comparisons (performed between adjacent columns) where 

the statistical tests failed to detect a significant difference are connected by lines. 

First image Second image Rigid Similarity Affine Thin-plate spline 

Tissue slice MR Histology 1.44±0.73 0.56±0.31 0.50±0.27 0.50±0.28 

Tissue slice MR Paraffin 1.71±0.82 0.52±0.26 0.54±0.26 0.54±0.28 

Paraffin Histology 0.42±0.27 0.26±0.18 0.22±0.14 0.21±0.14 

 

Figure 3.4: Box plot showing the target registration errors of homologous landmarks 

under four deformation models for the tissue deformation due to histological processing 

and cutting. These results correspond to the descriptive statistics shown in the first row of 

Table 3.1. 

For the intermediate deformation due to paraffin embedding (second row of 

Tables 3.1 and 3.2), the rigid model had a significantly higher mean TRE than the 

similarity model (by a 1.2 mm difference), but post hoc analyses failed to show a 

0

1

2

3

4

Rigid Similarity Affine TPS

T
a
rg

e
t 
re

g
is

tr
a
ti
o
n
 e

rr
o
r 

(m
m

)



 

116 

 

statistically significant difference between the other models (differences < 0.03 mm). For 

the intermediate deformation due to histological sectioning (third row of Tables 3.1 and 

3.2), the affine model had a significantly lower mean TRE (by 0.05 mm) than the 

similarity model and the similarity model had a significantly lower mean TRE (by 0.2 

mm) than the rigid model. Post hoc analyses failed to show a statistically significant 

difference between the affine and TPS deformation models (0.009 mm difference). The 

sensitivities of the TRE to the observed FLE ranged from 0.05 to 0.13 mm. 

3.3.2 Spatial misalignment of tissue sections induced by microtome cutting 

(Question 2) 

The key finding regarding the spatial misalignment of tissue sections was that the 

95% confidence interval on the mean of orientation was 1.1 to 1.9° and the 95% 

confidence interval on the mean of mean depth was 0.9 to 1.3 mm (bolded intervals in the 

second column of Table 3.3). The distributions of depth and orientation measurements 

are shown in Figure 3.5, and the correlation plots of orientation with the minimum 

(Spearman r = -0.4), mean (Spearman r = 0.4) and maximum (Spearman r = 0.75) section 

depth measures are shown in Figure 3.6. A subset of the tissue slices, chosen to illustrate 

the range of depths and orientations, are shown in Figure 3.7 with the front face    and 

the best fit plane to    superimposed. The standard deviation, 95% CI on the mean, and 

sensitivity to FLE for the orientation, minimum section depth, mean section depth, and 

maximum section depth are shown in Table 3.3. 
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Figure 3.5: Histograms of histology section depths and orientations. The subset of tissue 

slices illustrated in Figure 3.7 is shown in dark gray. 

 

Figure 3.6: Correlation of minimum, mean and maximum histology section depths with 

orientations. Tissue slices corresponding to sections marked with circles are shown in 

Figure 3.7. 
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Figure 3.7: Renderings of the spatial relationships between tissue slices, histology-visible 

landmarks, front face plane and histology section planes for 10 tissue slices, ordered by 

increasing mean depth from left to right. Each tissue slice is shown as a silhouette 

projected along            , the cross-product of the front face and histology section 

plane normals. With this projection, the front face plane    and histology section plane    
can be represented as solid and dashed lines respectively. The projected histology-visible 

landmarks      are shown as circles. 

Table 3.3: Descriptive statistics for the orientation, minimum depth, mean depth and 

maximum depth of histology sections relative to the tissue blocks from which they were 

cut. Sensitivity to FLE was quantified as the mean of the standard deviation of 

measurements in a Monte Carlo simulation with perturbed landmark positions. Key 

findings are shown in bold. 

 
Standard deviation 95% CI on mean Sensitivity to FLE 

Orientation (°) 0.9 [1.1,1.9] 0.30 

Minimum depth (mm) 0.4 [0.4,0.7] 0.12 

Mean depth (mm) 0.4 [0.9,1.3] 0.05 

Maximum depth (mm) 0.6 [1.4,1.9] 0.13 
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3.3.3 Impact of reconstruction model on 3D reconstruction error (Question 

3) 

The two key findings regarding the impact of the reconstruction model on 3D 

reconstruction error were as follows. (1) Modeling isotropic scaling (as in the similarity 

deformation model) improved the mean TRE by 0.5 to 0.7 mm if the front face 

assumption was made and by 0.8 to 1.0 mm if the front face assumption was not made, 

but modeling skew or thin-plate-spline deformation improved mean TRE by less than 0.1 

mm (bolded intervals in Table 3.4). (2) Under a similarity deformation model, the front 

face assumption increased the mean TRE by 0.6 mm to 0.8 mm (bolded interval in Table 

3.5). The mean and standard deviation of TRE and FRE for the intrinsic landmark-based 

reconstructions are shown in Tables 3.6 and 3.7, respectively. The 95% CI for the 

difference in TRE and FRE due to deformation model and due to the front face 

assumption are shown in Tables 3.4 and 3.5, respectively. The sensitivities of the TRE to 

the observed FLE ranged from 0.10 to 0.13 mm. The sensitivities of the FLE to the 

observed FLE were 0 mm (by construction) for the reconstruction model comprising the 

thin-plate-spline deformation model without the front face assumption and 0.07 to 0.09 

mm for the remaining reconstruction models.  
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Table 3.4: Post hoc analyses comparing TRE/FRE after intrinsic landmark reconstruction 

under varying deformation models: 95% CI of TRE/FRE for model A – model B.  

Key findings are shown in bold. 

Deformation model A Rigid Similarity Affine 

Deformation model B Similarity Affine 
Thin plate 

spline 

95% CI of mean TRE (mm) with front 

face assumption 
[0.54,0.70] [0.01,0.06] [-0.01,0.01] 

95% CI of mean TRE (mm) without 

front face assumption 
[0.78,0.98] [0.03,0.10] [-0.02,0.02] 

95% CI of mean FRE (mm) with front 

face assumption 
[0.47,0.62] [0.03,0.06] [0.04,0.07] 

95% CI of mean FRE (mm) without 

front face assumption 
[0.75,0.94] [0.07,0.13] [0.29,0.35]

 †
 

†. The FRE after an unconstrained thin-plate-spline transformation is 0 mm by construction. 

Table 3.5: Post hoc analyses comparing TRE/FRE after intrinsic landmark reconstruction 

under varying deformation models: 95% CI for of the difference between reconstruction 

with and without the front face assumption. 

 
Rigid Similarity Affine Thin-plate spline 

95% CI of mean TRE (mm) [0.36,0.46] [0.60,0.75] [0.63,0.77] [0.62,0.77] 

95% CI of mean FRE (mm) [0.40,0.51] [0.68,0.83] [0.74,0.89] [1.00,1.15]
 †
 

†. The FRE after an unconstrained thin-plate-spline transformation is 0 mm by construction. 

Table 3.6: Mean±SD TRE after intrinsic landmark reconstruction under varying 

constraints. Statistical comparisons (performed between adjacent columns and rows) 

where the statistical tests failed to detect a significant difference are connected by lines. 

 
Rigid Similarity Affine Thin-plate spline 

With front face assumption 1.85±0.71 1.23±0.48 1.20±0.47 1.20±0.47 

Without front face assumption 1.44±0.73 0.56±0.31 0.50±0.27 0.50±0.28 

Table 3.7: Mean±SD FRE after intrinsic landmark reconstruction under varying 

constraints. All statistical comparisons (performed between adjacent columns and rows) 

showed significant differences. 

 
Rigid Similarity Affine Thin-plate spline 

With front face assumption 1.72±0.66 1.18±0.48 1.13±0.48 1.08±0.50 

Without front face assumption 1.27±0.66 0.42±0.25 0.32±0.19 0±0
 †
 

†. The FRE after an unconstrained thin plate spline transformation is 0 by construction. 
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3.4 Discussion 

In vivo prostate imaging is increasingly being validated against 3D reconstructed 

histology images [19-22]. Many algorithms for 3D reconstruction limit the degrees of 

freedom by making simplifying assumptions about the cutting of histology sections from 

the prostate gland which may affect the accuracy of reconstruction. This work explored 

two such assumptions: the deformation model assumption that histology sections have 

been deformed under a specified deformation model relative to the fixed tissue, and the 

front face assumption that histology sections correspond to the front face of the tissue 

slice from which it was cut. Operator variability in sectioning could lead to histology 

sections that are not taken coincident with or parallel to the front face of the tissue slice, 

and the cumulative deformation of the histology section due to dehydration, cutting, 

water-bath expansion and slide-mounting processes may not be accurately modeled by 

the chosen transformation. In this work, we quantified the spatial relationship between 

histology images and the formalin-fixed tissue slices from which they were taken and 

evaluated the impact of the reconstruction model assumptions on 3D reconstruction error.  

3.4.1 Tissue deformation due to histology processing (Question 1) 

Modeling the deformation due to paraffin processing and histological sectioning 

as affine deformation yielded the lowest mean TRE (0.5 mm), although the difference 

between the affine and similarity models was 0.06 mm, and our analysis failed to show a 

statistically significant difference between the affine and TPS models. The 0.5 mm TRE 

under the affine and TPS deformation model is larger than the 0.2 mm FLE, suggesting 

that there is some submillimeter-scale non-affine deformation that occurs, but that is not 
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well-captured by the interpolation of the TPS deformation model with the landmark 

configurations identified in this work. 

The analysis of deformation from tissue block MR to paraffin images suggests 

that most of the deformation during the paraffin processing is characterized by isotropic 

scaling, which is consistent with the dehydration that occurs during this process. The 

analysis of deformation from paraffin to histology images suggests that some further 

affine deformation occurs during histological sectioning, which is consistent with 

anisotropic cutting forces that are applied during sectioning. The larger mean TRE across 

all deformation models and the larger change in TRE with isotropic scaling for the 

paraffin processing compared to the microtome sectioning suggests that paraffin 

processing is the source of most of the observed deformation. Notably, the mean TRE of 

the combined processes under the rigid deformation model is less than that of the paraffin 

processing alone, which is consistent with expansion on the water bath partially 

cancelling out contraction due to dehydration during paraffin processing.  

To perform these analyses, at least five sets of homologous landmarks were 

required; in particular, four sets of landmarks are required for a 2D−3D TPS 

transformation to define a non-affine transformation and a fifth is needed to enable the 

leave-one-out evaluation. Three histology sections were omitted from the analysis 

because fewer than five sets of landmarks were identifiable. 

3.4.2 Spatial misalignment of tissue sections induced by microtome cutting 

(Question 2) 

The histology sections were taken at a mean depth of 1.1 mm, and were taken at 

an average angle of 1.5° relative to the front face. To illustrate these values, a histology 
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section cut with the mean depth and the mean orientation from a hypothetical tissue slice 

30 mm in diameter (typical for our sample of tissue slices), would be 0.7 mm from the 

front face at the closest point and 1.5 mm from the front face at the furthest point.  

The standard deviations of the orientation (0.9°) and depth measurements (0.4 

mm) are greater than would be expected due to the 0.16 mm FLE alone, suggesting that 

there is operator variability in the alignment of the tissue block face with the microtome 

blade and in the depth of cutting. The variability in the minimum section depth suggests 

that the variability in depth is not directly caused by variability in tissue block alignment; 

if the variability in depth of cutting were the result of variability in tissue block alignment 

followed by consistently cutting until a full cross-section of tissue were barely reached, 

we would expect the minimum depth to have low variability. We speculate that the 

continued cutting beyond the best-fit front face plane could be due to concavity of the 

tissue front face that can be introduced during paraffin embedding, which would require a 

deeper cut to achieve a full face. This continued cutting could also be due to the practice 

of removing the paraffin block from the microtome to cool the cutting surface with ice, 

leading to variability in the orientation when the block is replaced.  

The impact of the observed variability in depth and orientation on the relative 

spatial relationship of histology sections in a 3D reconstruction can be seen in Figure 3.8, 

where the tissue slices were sliced to be parallel at an even spacing (by embedding the 

specimen in an agar gel and cutting it on a rotary slicer), but after an alignment of tissue 

slice MR images (and accompanying registered histology sections) with an MR image of 

the intact ex vivo specimen with a 0.5 mm TRE, the non-parallel and uneven spacing of 

the three midgland histology images can be seen. 
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Figure 3.8: 3D reconstruction of three histology sections aligned (with a mean TRE of 

0.5 mm) to an anterior view of 3D surface rendering of the corresponding intact ex vivo 

prostate gland with seminal vesicles, illustrating the potential for non-parallel, non-

evenly-spaced histological tissue sections. 

3.4.3 Impact of reconstruction model on 3D reconstruction error (Question 

3) 

If a reconstruction algorithm used a reconstruction model wherein histology 

sections corresponded to the front faces of tissue slices, the lower bound of the 

achievable mean TRE for any of the tested deformation models would be 1.1 mm (for the 

affine and TPS deformation models), suggesting that to achieve submillimeter 
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reconstruction error, the front face assumption should not be made. For a reconstruction 

model unconstrained by the front face assumption using an affine deformation model, the 

lower bound of the mean TRE is 0.3 mm (the corresponding lower bound of the mean 

TRE for the TPS model is 0 mm by construction and therefore does not provide for an 

informative comparison). The improvement in TRE for modeling isotropic scaling (from 

rigid to similarity deformation models) was 0.78 to 0.98 mm when the front face 

assumption was not made, but the improvement from the similarity deformation model to 

the more flexible affine and TPS deformation models was less than 0.1 mm, suggesting 

that a similarity transformation may be sufficient. Note that this reconstruction error is 

only a component of the overall registration error from the histology images to in vivo 

images; Groenendaal et al. [5] and Orczyk et al. [23] presented two methods for the 

registration of reconstructed ex vivo images to in vivo images with reported errors of 2.1 

mm and 1.6 mm, which would, under the assumption that these errors are independent, be 

added in quadrature with reconstruction error. 

It is important to interpret these reconstruction errors in the context of the 

application in which the reconstructions could be used. A recent model (described in 

Chapter 2) quantifying the impact of registration error on the statistical power (and thus 

the required sample size) of imaging validation studies [14, 15] can be used to relate the 

differences in reconstruction error in these experiments to an appropriate application. 

This can be illustrated through the scenario of an imaging validation study testing for 

differences between the mean imaging signal of tumors and normal tissue regions, under 

the assumptions that the tumors are spherical foci of the smallest clinically significant 

volume (0.2 cm
3
) [24] and that reconstruction error can be modeled as an isotropic 
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Gaussian. For this scenario, our reconstruction is combined with a registration of 

reconstructed histology to in vivo images with mean TRE 2.1 mm (as reported by 

Groenendaal et al. [5]). In this scenario, we can compare the required sample sizes for the 

imaging validation study over a range of reconstruction errors as compared to an 

arbitrarily chosen baseline. In this illustration, we use landmark-based reconstruction 

under the similarity deformation model and the front face assumption with a mean TRE 

of 1.23 mm as the baseline. The relative required sample sizes for reconstruction errors 

ranging from 0.3 – 2.0 mm mean TRE are shown in Figure 3.9, with each of the assessed 

combinations of assumptions marked. Between the worst and best performing sets of 

assumptions, there is a 1.5-fold difference in required sample size. Based on per-patient 

costs of $10,000, from an ongoing imaging validation study in our centre with 66 

subjects, a 1.5-fold reduction in sample size could yield savings of $220,000 for the same 

statistical power. 
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Figure 3.9: Sample sizes, relative to an arbitrarily chosen baseline, for imaging 

validation studies of image signal differences between cancerous and background tissue 

for 0.2 cm
3
 cancer foci, under assumptions that foci are spherical and reconstruction error 

can be modeled as a translation error distributed as a 3D Gaussian and is combined in 

quadrature with a 2.1 mm TRE due to registration to in vivo imaging. Reconstructions 

under differing deformation assumptions, and with or without the front face assumption 

are indicated, with the reconstruction using a similarity transform and the front face 

assumption arbitrarily chosen as the 100% baseline reference. 

3.4.4 Limitations of cutting measurement 

The conclusions of this work should be considered in the context of the 

limitations of the performed experiments. This study had four notable limitations. First, 

the process of sectioning tissue for histological examination varies between laboratories 

and many aspects of the processing can affect the sectioning distortion, and possibly the 

amount of trimming before a full cross-section is successfully cut. Examples include 

tissue type, embedding medium, water-bath duration and temperature [21], knife quality 

and angle [25], and possibly operator skill. It is also unclear how these results would 

generalize when prostate tissue slices are cut into quarters before paraffin processing, an 
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approach adopted in many clinical laboratories. While this study used histological 

sections sectioned by multiple histotechnologists, the use of a consistent processing 

protocol in a single clinical laboratory prevented us from assessing the impact of these 

other factors on the identified spatial relationships. A second limitation of the study is 

that the fidelity of the TPS deformation to the true underlying deformation is limited in 

part by the number of homologous landmarks identifiable on tissue slice MR, histology 

and paraffin block face images. It is not clear if the 7–15 landmarks identified per section 

are sufficient to characterize the unknown underlying deformation. If 7–15 landmarks are 

too few, then the TPS model may not capture the underlying deformation (resulting in a 

higher reported TRE) even if the deformation could be well-described by a TPS model. A 

third limitation of the study is that only one non-linear deformation model was assessed 

in this study, although there are an infinite number of such models. This work does, 

however, suggest an upper bound of less than 0.5 mm for the possible improvement that 

could be derived from better non-linear deformation models. Fourth, our assessment of 

the impact of the reconstruction errors on the statistical power of imaging validation 

studies examines the histology image reconstruction in isolation; if the reconstruction 

were followed by additional processing, such as 3D image registration, the impact of the 

reconstruction errors would be challenging to isolate, and was not assessed by this study. 

In conclusion, this work addressed three questions, as follows. (1) How does 

prostate tissue deform during histology processing? (2) What spatial misalignment of the 

tissue sections is induced by microtome cutting? (3) How does the choice of 

reconstruction model affect the accuracy of histology reconstructions? The key 

conclusions from these investigations are that for accurate 3D reconstruction of whole-
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mount histology, the reconstruction model should not assume that histology corresponds 

to the front face of the tissue slices from which it was cut as such an assumption yields a 

higher mean TRE by 0.6 to 0.8 mm, and should use a similarity deformation model as the 

mean TRE under this model is 0.5 to 0.7 mm lower than that of a rigid deformation 

model and within 0.1 mm of the affine and thin-plate-spline deformation models with 

more degrees of freedom. The mean TRE of 0.56 mm was measured for the least-squares 

best-fit fiducial-based reconstruction using a similarity deformation model without the 

front face assumption. Additionally, our characterization of the misalignment of histology 

sections revealed a mean section depth of 1.1 mm (with maximum depths as high as 2.8 

mm) and a mean section orientation of 1.5° (with orientations as high as 4.2°), which 

may support commensurate heuristics in 3D reconstruction. Finally, in the context of 

imaging validation studies testing for imaging signal differences between cancerous and 

background tissue for the smallest clinically significant prostate cancer foci by 

correlation with reconstructed histology images, the range of reconstruction errors seen in 

this work would result in a 1.5-fold difference in the required sample size for such a 

study under our modeling assumptions, potentially translating to a difference of hundreds 

of thousands of dollars.  
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Chapter 4. 

  

Registration of prostate histology images to ex vivo MR 

images via strand-shaped fiducials
 † 

 

4.1 Introduction 

The registration of histology to in vivo images faces several challenges. First, it is 

a multi-modality registration (e.g. from histology to MRI). Second, deformations induced 

by the imaging (e.g. due to the MRI endorectal receive coil), resection, and fixation 

processes are best modeled by non-rigid transformations. Finally, each section is taken 

from a variable position and orientation within a separate 3−5-mm-thick tissue block, so 

adjacent histology images are sparsely and irregularly spaced, and non-parallel. The 

variability and sparseness of histology image spacing introduces substantial challenges to 

the reconstruction of a 3D histology image for 3D registration. Differences in image 

content and scale, and substantial non-linear deformations introduce challenges to direct 

2D to 3D registration. 

Acquiring ex vivo prostate 3D images can address these challenges. In vivo to ex 

vivo image registration can compensate for tissue distortion due to surgical resection and 

fixation. Histology to ex vivo image registration can then compensate for slicing 

variability and the reduced distortion due to tissue shrinkage and sectioning during 

                                                 
† A version of this chapter has been published: E. Gibson, C. Crukley, M. Gaed, J. A. Gómez, M. Moussa, 

J. L. Chin, G. S. Bauman, A. Fenster, A. D. Ward, “Registration of prostate histology images to ex vivo MR 

images via strand-shape fiducials.” J Magn Reson Imaging 36:6 (2012). 
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histoprocessing. Many previous methods (described in detail in Section 1.2.3.3) approach 

histology to ex vivo image registration by guiding the slicing of the ex vivo specimen, in 

order to approximately constrain the positions and orientations of the tissue slices from 

which each section was cut, or by retrospectively registering histology-ex vivo MR 

images using manual or automated image-based registration methods (with additional 

images optionally acquired during specimen preparation). None of the existing work 

meets the criteria for histology-imaging registration discussed earlier in Section 1.2.2.3: 

(1) permitting specimen slicing and sectioning according to normal clinical pathology 

protocols, (2) providing registrations whose accuracies are robust to varying appearance 

of the prostate on imaging and pathology, (3) providing a quantitative evaluation of the 

registration error using a 3D target registration error (TRE), and supporting wide 

implementation by avoiding the use of specialized equipment. 

In this study, we present and evaluate a method for registration of histology to ex 

vivo prostate MR images, developed in our laboratory, that takes steps towards meeting 

these criteria. The method utilizes strand-shaped fiducial markers that allow the 

determination of the location and orientation of each section without constraining the 

slicing of the specimen. Using non-anatomical fiducials provides robustness to variations 

in the appearance of the prostate on MR and histology images. Our registration method 

was evaluated using intrinsic anatomical landmarks and compared to previous methods. 

We also demonstrated that a proposed local registration optimization can be used to 

improve registrations provided by previous methods. 
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4.2 Materials and methods 

This study was conducted with the approval of the Human Subjects Research 

Ethics Board of our institution and the informed consent of all subjects. 

4.2.1 Materials 

We obtained nine prostate specimens after radical prostatectomy with the 

following inclusion criteria: age 18 years or older, and histologically confirmed clinical 

prostate cancer stage T1 or T2. The exclusion criteria were: prior therapy for prostate 

cancer, use of 5-alpha reductase inhibitors within 6 months of the study start, inability to 

comply with preoperative imaging, allergy to contrast agents, sickle cell or other 

anemias, hip prosthesis, sources of artifact within the pelvis, and contraindications to 

MRI. 

4.2.2 Ex vivo MR imaging 

MR images were acquired for all specimens using a Discovery MR750 (GE 

Healthcare, Waukesha, WI, USA) at 3 T. After resection, formalin fixation (10% 

buffered formalin for 48 hours), and marking with fiducial strands [1], specimens were 

immobilized in a syringe filled with Christo-Lube (Lubrication Technology Inc., Franklin 

Furnace, OH, USA) to provide a black background and minimize boundary artifacts. 

Using an endorectal coil (Prostate eCoil, Medrad, Inc., Warrendale, PA, USA) placed 

flush with the syringe, specimens were imaged using a T1-weighted (3D SPGR, TR 6.5 

ms, TE 2.5 ms, bandwidth ±31.25 kHz, 8 averages, FOV 140×140×62 mm, slice 

thickness 0.4 mm, slice spacing 0.2 mm, 256×192 matrix, 312 slices, flip angle 15°, 25 

min) protocol used in the registration and validation and a T2-weighted (3D FSE, TR 
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2000 ms, TE 151.5 ms, bandwidth ±125 kHz, 3 averages, FOV 140×140×62 mm, slice 

thickness 0.4 mm, slice spacing 0.2 mm, 320×192 matrix, 312 slices, 25 min) used only 

in the validation. Each specimen was then coarsely sliced into whole-mount tissue blocks 

4.4 mm thick, as required by clinical protocol. As part of another study from which our 

specimens were obtained, each specimen was sliced using image guidance to yield cuts 

coincident with in vivo MR imaging planes [1]. For each specimen, all tissue blocks were 

separated and immobilized in tissue processing cassettes, immersed in Christo-Lube, and 

imaged using the same coils. MR protocols were as above but with a larger FOV to cover 

the separated tissue blocks. These images are referred to as block MR images hereafter. 

4.2.3 Digital histology imaging 

After standard whole-mount paraffin embedding, a 4-μm-thick section was cut 

from each midgland tissue block and stained with hematoxylin and eosin. The resulting 

34 slides were digitized on a ScanScope GL (Aperio Technologies, Vista, CA, USA) 

bright field slide scanning system with a 0.5 μm resolution, and downsampled to a 30 μm 

resolution. 

4.3 Methods 

The overall process of our method is outlined in Figure 4.1. 
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Figure 4.1: Specimen processing overview. 

4.3.1 Fiducial marking 

Two sets of strand-shaped fiducials visible on T1-weighted MR and histology 

images (details in [1]) were added to all specimens, running from apex to base: 7 surface-

mounted fiducials and 3 internal fiducials. External fiducials consisted of cylindrical 

strands of lamb kidney cortex (16-gauge biopsy, 31±6 mm mean±standard deviation (SD) 

length) infused with a 1:40 solution of Magnevist (Bayer AG, Germany) gadolinium 

contrast and 10% buffered formalin. They were rigidly affixed to the surface of the 

specimen with Loctite 411 toughened, heat-resistant, ethyl cyanoacrylate adhesive 

(Henkel Inc., Germany) along the entire length of the fiducial. Internal fiducials consisted 

of cotton thread infused with a 1:40 solution of Magnevist and blue Tissue Marking Dye 

(Triangle Biomedical Sciences Inc., Durham, NC, USA). Internal fiducials were inserted 

by (1) introducing an 18-gauge cannula and stylet with a Quincke-type point (BD 

Medical Inc, Franklin Lakes, NJ, USA), which is designed for clean tissue separation 

without damage, (2) removing the stylet, (3) inserting the thread through the cannula and 

(4) removing the cannula leaving the thread in place. The resiliency to deformation of 

formalin-fixed prostate tissue and the flexibility of the cotton thread minimize the 

potential for distortion of the prostate during the insertion of the internal fiducial.  
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Given two potential planes in the MR image, each fiducial would intersect the two 

planes at two different points in the planes. Thus, the intersections of all fiducials on any 

given plane form a set of points with a particular configuration. The layout of fiducials 

was designed to maximize the difference in the configurations of points for the possible 

cutting planes. This facilitates the registration of each histology image to the correct 

plane in the MR image by matching the configuration of fiducial cross-sections. The 

layout of the fiducials is illustrated in Figure 4.2. Neighboring pairs of surface-mounted 

fiducials were placed at approximate 45° angles to each other, with 4 roughly inferior-

superior (           ) and 3 oblique (        ) fiducials. This makes the 

configuration of fiducial cross-sections on an intersecting plane sensitive to the inferior-

superior position and orientation of the plane.  
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Figure 4.2: Fiducial configuration showing prostate surface (a and b) and a cross-section 

along the dotted line (c). These fiducial markers are visible on histology images (d). 

Insets (e and f) show enlarged views of h10 and h1 respectively. 

The centerlines of fiducial tracks were manually localized on the T1-weighted 

MR images at ~1 mm intervals, using 3D Slicer (Surgical Planning Lab, Harvard Medical 

School, Boston, USA), and interpolated to ~0.2 mm intervals using cubic splines. 

Fiducials, shown in Figures 4.2e-f and 4.3c-d, were readily identifiable on histology and 

MR images. In some histology images, some fiducial cross-sections were absent due to 
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the section not intersecting the fiducial or due to detachment during processing. These 

sections were registered using only the remaining fiducial cross-sections. 

 

Figure 4.3: Co-registered T1-weighted MR images of the whole specimen (a) and a 

tissue block (b). Barely visible (e.g. large arrows) or invisible (e.g. small arrows) ducts on 

the whole specimen image are visible on the tissue block image due to Christo-Lube 

contrast. Labeled arrows show the appearance of surface-mounted (c) and internal (d) 

fiducials, respectively, on the T1W MR image. 

4.3.2 2D−3D histology to MR image registration algorithm 

4.3.2.1 Definitions of algorithm terms  

On MR images, the  -th fiducial track forms a 3D parametric curve       

      , as illustrated on    in Figure 4.2b. On the histology image, the cross-section of 

the  -th fiducial gives a 2D point    (Figure 4.2d), which corresponds to some 3D point 

along the corresponding fiducial track. For the 10 fiducial cross-section points in each 

histology image, any possible correspondence can be encoded as a 10D vector   

             . For example,                                             denotes that the 

first fiducial cross-section on the histology image corresponds to the point 40% along the 

length of the first fiducial track on the MR image, measured from the apex, and all other 

a b

cd
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cross-sections correspond to the midpoints of their respective tracks. Each   determines a 

least-squares best-fit 2D−3D affine transformation    mapping fiducial cross-sections on 

the histology image to their corresponding points on the MR image.  

4.3.2.2 Algorithm step 1: identify an initial plane on MR image 

corresponding to each histology image 

Finding the MR image plane corresponding to a histology image involves finding 

the correspondence vector   , defined as 

         
 

              
 

  

   
  4.1 

yielding the smallest squared residual error after the affine transformation     which 

transforms the histology image to its corresponding MR image plane.  

An exhaustive search of the 10D correspondence space to find this vector would 

be computationally prohibitive, and a greedy minimization may tend to find local minima 

far from the global minimum. For an efficient, broad search of the space of 

correspondences, we manually selected a triplet of fiducials            corresponding to 

three dimensions of  , defining a 3D correspondence vector                , and the 

unique 2D−3D affine transformation    that maps               to 

                            . We performed an exhaustive search of this reduced space 

of 3D correspondence vectors. This yielded a 3D correspondence vector    with the 

minimal residual computed from all 10 fiducials, 

         
 

                  
 

  

   
  4.2 

where        is the closest point to   on parametric curve  .  
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The fiducial triplets were manually selected to include widely spaced fiducials, 

including at least one diagonal fiducial. When all fiducials were present, the triplet 

        (i.e.,   ,  , and    in Figure 4.2(a-b)) was used. The plane defined by the 

points                        was taken to be the MR image plane corresponding to the 

histology image. 

4.3.2.3 Algorithm step 2: compute an affine transformation mapping each 

histology image to its corresponding MR image plane  

The next step was to compute a 10D correspondence vector   , defining an affine 

transformation     (which utilizes the spatial information provided by all 10 fiducial 

markers) mapping the histology image onto the MR image. 

We construct    based on the plane defined in step 1, such that each fiducial cross-

section    corresponds to the closest point on    to the defined plane.     is defined as, 

          
  

     
         

           
         

      

            
         

4.3 

4.3.2.4 Algorithm step 3: refine the fiducial correspondence using local 

optimization and compute affine transformation 

    is intended to yield a near-optimal histology to MR image alignment. To find 

the optimal correspondence vector   , we used a Nelder-Mead greedy simplex 

minimization [2] of the squared residual FRE in the 10D correspondence space (Equation 

4.1), initialized with   . This yields the correspondence vector at the nearest optimum in 

the 10D correspondence space, giving a corresponding affine transformation.  
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4.3.3 Validation 

TREs for all specimens were used to evaluate the registration [3]. TREs were 

calculated as the 3D post-registration misalignments of small anatomical landmarks 

identified on histology and MR images.  

Identifying homologous landmarks on histology and MR images is 

challenging [4] due to a large 3D search space, a lack of 3D context on histology images 

and few identifiably homologous structures. We developed a protocol for identifying 

such landmarks on histology and whole-gland ex vivo MR images by constraining the 

search using an approximate alignment informed by "block MR" images of the sliced 

tissue blocks, acquired using the same MR imaging protocol described above. The 

smaller search space and higher contrast features (as shown in Figure 4.3) due to 

infiltration of Christo-Lube into ducts exposed by specimen slicing facilitate aligning 

histology to block MR images; similar image content and 3D context facilitate aligning 

block to whole-gland MR images. Landmarks included the centers of atrophic ducts, 

cysts and corpora amylaceae (or parts thereof) with diameters less than     , which are 

large enough to be resolved on the ex vivo MR images (voxel size 0.27×0.27×0.20 mm). 

Homology of these landmarks was evaluated based on spatial relationships with nearby 

salient features. Potential landmarks without nearby salient features, or for which the 

nearby salient features did not uniquely constrain the correspondence, were not included 

as landmarks. Landmarks were identified by one observer under advisement from 2 

genitourinary pathologists and 1 radiologist with expertise in prostate imaging. 

Measurement of TREs based on localized landmarks incorporates error from the 

registration and error in localizing the landmarks. The target localization error (TLE) of 
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landmarks on each modality was quantified as an unbiased estimator of the standard 

deviation of repeated localizations of the same landmark [3], at least one day apart: 

     
 

 
 

 

   
       

 

 
     

 

   

 

  

   

 

   

  4.4 

where      is the  -th localization of the  -th fiducial,      landmarks, and     

repeated localizations of each landmark. The TLE on histology images (    ) used 

landmarks pre-specified on MR images, while the TLE on MR images (    ) used 

landmarks pre-specified on histology images. Landmarks for this assessment comprised 

all landmarks from 3 blocks from 3 randomly chosen specimens for calculating     , 

and a separate 3 blocks for calculating     . 

4.3.4 Experiments 

We conducted four experiments: (1) to evaluate the proposed method, (2) to 

compare the accuracy of the proposed method, where the plane selection and registration 

is informed by fiducial correspondence, to a previous approach, where the plane selection 

is informed by image-guided slicing, (3) to determine the reduction in TRE provided by 

the internal fiducials, and (4) to determine the reduction in TRE provided by the 

augmentation of the proposed method to use an additional set of images as an 

intermediate registration target.  

4.3.4.1 Experiment 1: To evaluate the proposed method 

To assess the accuracy of the proposed method, TREs were calculated after steps 

2 and 3 of the algorithm. We documented the fiducial cross-sections that were absent on 

histology images and correlated the number of remaining fiducials with the mean TRE. 
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To assess the anisotropy of the TRE, we analyzed the post-registration misalignment 

vector for each landmark pair, denoted      for the  -th landmark pair, in the MR image 

coordinate space. We computed the 3D principal component analysis (PCA) of these 

vectors using MATLAB (The Mathworks Inc., Natick, MA) yielding the directions of 

maximum variance, and the variance of error along these directions. An isotropic TRE 

would yield 3 equal variances. To examine anisotropy related to the histology images, 

which are not all parallel, we also decomposed each      into in-plane and out-of-plane 

components, and computed an aggregate in-plane and out-of-plane variance: 

                                               4.5 

                                    4.6 

where    is the unit normal of the corresponding histology plane, and N = 184 fiducials. 

For an isotropic TRE, in-plane variance, being the sum of two equal 1-dimensional 

variances, would be twice the size of the out-of-plane variance. 

4.3.4.2 Experiment 2: To compare the proposed method to a previous method based on 

image-guided slicing [1] 

The proposed method was compared to a previous method [1] to evaluate which 

had a lower mean TRE. Because the specimens used in this study were obtained from 

another study where specimens were sliced using image-guided slicing defined in the 

previous method, slicing planes from the previous method were known. In the previous 

work, these slicing planes were taken to be the MR image plane corresponding to the 

histology image. To directly compare the previous method to the proposed method, 

algorithm steps 2 and 3 were applied to these slicing planes to yield affine registrations. 

This was accomplished by defining                        to contain three non-collinear 
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points on the slicing plane for algorithm step 2 for the previous method. A TRE was 

calculated after step 2, to compare the previous method against the proposed method, and 

after step 3, to evaluate the effect of local optimization on the previous method. 

4.3.4.3 Experiment 3: To compare the accuracy of the method with and without the use 

of internal fiducials 

To assess the effect of using only surface-mounted fiducials (to reduce the 

processing time required and render the method suitable to pathology environments 

prohibiting internal fiducials), we computed a TRE for the proposed algorithm, excluding 

the internal fiducials, with and without the local optimization. 

4.3.4.4 Experiment 4: To evaluate the effect of incorporating information from block MR 

images 

Since each section is cut from a tissue block, each histology image corresponds to 

the prostate region corresponding to that block. However, in algorithm step 1, the entire 

lengths of the fiducial strands, including parts outside of the corresponding block, are 

searched. In principle, step 1 could associate a histology image with a plane outside the 

block from which it came. To overcome this potential problem, previous approaches [4-

11] have used additional images as intermediate registration targets. Testing this 

approach, we replaced algorithm step 1 with a procedure, based on [11], wherein the 

plane search described in step 1 was run for each histology image using the 

corresponding block MR image taken prior to sectioning. As in [11], least-squares best-

fit rigid transformations of the fiducial markers was used to place these planes within the 

whole-gland MR image. We subsequently carried out algorithm steps 2 and 3 as above, 

computed a TRE, and compared it to that yielded by the proposed method. 
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4.3.5 Statistical analysis  

Statistical analyses were performed in Prism 5.04 (Graphpad Software, Inc., San 

Diego, USA). To compensate for the positive skew in the measured TREs, data were 

transformed using a square-root function. To compare the mean TREs of the different 

methods, we used a repeated-measures ANOVA of the transformed TREs from each 

method, followed by post hoc analyses with Bonferroni multiple-comparison correction. 

After the square-root transformation, the TRE distribution for the proposed method 

without internal fiducials remained non-normal (D'Agostino & Pearson omnibus 

normality test; p<0.0001). To confirm the findings involving this method, Wilcoxon 

matched-pairs signed-rank tests were performed. 

To assess relative accuracy, pairwise post hoc analyses tested for a difference in 

the mean TRE between the proposed method and three alternative methods: image-

guided slicing, tissue block imaging, and the proposed method without internal fiducials. 

To evaluate whether the local optimization improved the previous image-guided slicing 

method [1], post hoc analysis tested for a difference in the mean TRE of the previous 

method with and without local optimization. Confidence intervals on these differences 

were estimated using the same analysis on the untransformed data; these intervals must 

be interpreted with the non-normality of the underlying data in mind. To assess the 

interchangeability of initialization methods, we generated two Bland-Altman plots 

comparing the proposed method to the image-guided method with local optimization, and 

the tissue block imaging method with local optimization. 

Additionally, the accuracy of the proposed method inside and outside the 

peripheral zone was compared using an unpaired t-test omitting landmarks with indefinite 
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classification, and the accuracy of the proposed method with and without internal 

fiducials omitting sections with missing fiducial cross-sections was performed using a 

paired t-test. Finally, to assess the robustness of the proposed method to missing fiducial 

cross-sections, a Spearman correlation test was performed between the TRE for each 

landmark and the number of fiducial cross-sections on the section containing the 

landmark. 

4.4 Results 

The proposed method required ~3 hours per specimen including fiducial 

application (90 minutes), imaging (80 minutes), fiducial localization (12 minutes) and 

registration computation (59±11 seconds). Our application of previous methods using 

block MR images [11] and image-guided slicing [1] required ~5 and ~11 hours per 

specimen, respectively, for all processing steps.  

The landmark localization protocol yielded 3–7 homologous landmark pairs on 

each of 3–5 sections per specimen, totaling 184 landmarks on 34 histology images. 

Figure 4.4 shows histology and MR images of 5 homologous landmark pairs and nearby 

salient features, confirmed by a genitourinary pathologist (J.A.G.) and a radiologist 

specializing in prostate imaging (C.R.). These landmarks were located in the peripheral 

zone (75/184), transitional zone (66/184), central zone (8/184) and anterior fibromuscular 

stroma (11/184); 24/184 landmarks were not definitively categorized. The spatial 

distribution of the landmarks is illustrated in Figure 4.5, showing the landmarks evenly 

distributed throughout the posterior midgland. Few landmarks were near the apex and 

base, because only midgland sections were included in this analysis, and few landmarks 

were near the anterior due to a lack of salient features in the anterior fibromuscular 
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stroma. The TLE on histology images was 50 μm, relative to a pixel size of 30×30 μm
2
. 

The TLE on MR images was 0.16 mm, relative to a voxel size of 0.27×0.27×0.2 mm
3
.  

 

Figure 4.4: Homologous landmark pairs (large white arrows), used for evaluation of the 

registration algorithm, shown on histology images (top) and on the corresponding oblique 

slices on T2 (middle) and T1 (bottom) MR images. Small black arrows denote salient 

nearby features used to corroborate the established landmark correspondence. Salient 

features in these images include corpora amylaceae (labeled *), the urethra (labeled +), 

extrinsic fiducials (labeled °) and atrophic ducts (unlabeled).  
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Figure 4.5: Distribution of landmarks within the prostate specimens. Each landmark is 

shown with its AP, LR and IS position within the specimen normalized such that the 

extents of the resected prostate gland are from 0 to 1 for each specimen. Each one is 

marked as to the anatomical zone where it is located: peripheral zone (PZ), transition 

zone (TZ), central zone (CZ) and anterior fibromuscular stroma (AFS). The 24 landmarks 

with indefinite classification were omitted.  

Three histology and MR images co-registered using the proposed method are 

shown in Figure 4.6. The proposed method yielded a mean TRE of 0.71 ± 0.38 mm. An 

unpaired t-test failed to show a significant difference between the mean TRE inside and 

outside the peripheral zone (p=0.75, 95% CI,-0.14 to 0.11 mm). This TRE is anisotropic, 

with variances of 0.33, 0.13 and 0.09 mm
2
; the principal direction of variation is [0.45,-

0.12,-0.88], which is not aligned to the MR image axes. The out-of-plane variance is 0.39 

mm
2
, larger than the largest variance of the 3D PCA. The in-plane variance is 0.24 mm

2
, 

a factor of 3 lower than the 0.78 mm2 that would be expected for an isotropic TRE. 
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Figure 4.6: Three histology images registered to ex vivo MR images using the proposed 

registration method. Example validation landmarks are shown by arrows. 

The proportion of fiducial cross-sections absent on histology images was 20/340, 

7 due to the section not passing through the fiducial, and 13 due to detachment during 

specimen cutting or processing. As a result, 7/34, 5/34 and 1/34 sections were registered 

using 9, 8 and 7 fiducial cross-sections, respectively. The Spearman correlation test failed 

to show a correlation between TRE and the number of fiducial cross-sections used 

(p=0.25, 95% CI for r: -0.23 to 0.06). 

The mean and standard deviation of the TREs before and after local optimization 

are shown in Table 4.1 for four registrations: the proposed method, the proposed method 

without internal fiducials, the method using tissue block imaging, and the method using 

image-guided slicing. The TRE data are shown in Figure 4.7 for the five registrations 
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examined in the discussed experiments, and the post hoc analyses are summarized in 

Table 4.2.  

 

Figure 4.7: Box plot of TREs for five registrations with 5–95% whiskers. 
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Table 4.1: Mean TREs of the registration methods with and without local optimization.  

 

Proposed 

method 

Image-guided 

slicing 

method 

Tissue block 

imaging 

method 

Proposed 

method without 

internal 

fiducials 

Mean±SD TRE (mm) 

without local optimization 
0.76±0.43 1.21±0.74 0.86±0.50 0.95±0.84 

Mean±SD TRE (mm) with 

local optimization 
0.71±0.38 0.71±0.37 0.70±0.36 0.92±0.82 

Table 4.2: Statistical analysis of accuracy of methods. Each row represents a paired t-test 

of TREs of landmarks between two methods. 

Method A Method B 

p-value  
h0: 

           
                          

95% CI (mm) 

of 
                             

Image-guided slicing Proposed w/ LO < 0.0001 [0.38,0.63] 

Image-guided slicing 
Image-guided slicing 

w/ LO 
< 0.0001 [0.38,0.62] 

Image-guided slicing 

w/ LO 
Proposed w/ LO > 0.05 [-0.12,0.13] 

Proposed w/ LO w/o 

internal 
Proposed w/ LO < 0.0001 [0.09,0.34] 

Tissue block imaging 

w/ LO 
Proposed w/ LO > 0.05 [-0.13,0.11] 

 

The proposed registration had a lower mean TRE (p<0.0001) than that using 

image-guided slicing. Applying local optimization to the method using image-guided 

slicing improves the TRE (p<0.0001). The post hoc analysis failed to show a statistically 

significant difference between the mean TRE of the proposed registration and the method 

using image-guided slicing with local optimization (p>0.05, 95% CI, -0.12 to 0.13 mm). 

A Bland-Altman comparison of these methods is shown in Figure 4.8a. 
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Figure 4.8: Bland-Altman plots comparing TREs with local optimization after 

initializations using the proposed method (TREP) and (a) the tissue block imaging 

(TRETBI) and (b) the image-guided slicing with local refinement (TREIGSLO). Each point 

represents one landmark pair. 

The mean TRE for the proposed method with internal fiducials was lower than 

that without internal fiducials (p<0.0001 using ANOVA post hoc analysis, p=0.0006 

using non-parametric confirmation). Notably, for the method without internal fiducials, 

all 9 of the outliers seen in Figure 4.7 are from sections with missing fiducial cross-

sections. Omitting sections with missing fiducial cross-sections, the difference in mean 

TRE with (0.67 mm) and without (0.75 mm) internal fiducials was less significant 

(p=0.024, 95% CI,0.01 to 0.14 mm using t-test; p=0.15 using non-parametric 

confirmation).  

Post hoc analysis comparing the proposed method to the method incorporating 

block MR images failed to show a statistically significant difference between the mean 

TREs (p>0.05, 95% CI,-0.13 to 0.11 mm). A Bland-Altman comparison of these methods 

is shown in Figure 4.8b. 

4.5 Discussion 

In this chapter, we proposed a method for registration of histology to ex vivo MR 

images with submillimeter accuracy that reduces the processing time over a previously 
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adopted method. Our registration uses a controlled spatial configuration of non-

anatomical fiducials to address the challenges of 2D to 3D multimodality registration. We 

register histology to ex vivo MR images acquired using a similar arrangement to that used 

in clinical in vivo prostate MRI (3 T magnet, T1- and T2-weighted sequences, endorectal 

receive coil). Thus, our method addresses many challenges of the full registration of 

histology to in vivo MR images, leaving as the remaining step (outside the scope of the 

present work) a single-modality 3D ex vivo-in vivo prostate MR image registration, a task 

addressed in previous work [4] using standard methods. Furthermore, the histology to ex 

vivo image registration can be used directly in validation studies of ex vivo imaging (e.g. 

[12]).  

While some disruption of clinical workflow is inevitable when using an 

intermediate registration to ex vivo imaging, our method reduces the extra-clinical 

processing time required to collect data for registration from 11 hours using a previous 

workflow [1] to 3 hours; a reduction of 70%. This 3-hour processing time could be 

integrated into existing clinical workflows with no delay to the clinical diagnosis by 

scheduling the processing around specimen batch processing schedules, which was not 

generally possible with the 11-hour workflow.  

The maximum acceptable registration error for registration-based validations 

depends on application-specific information regarding (a) the size of the regions of 

interest to be registered, (b) the imaging properties of these regions, (c) the type of 

analysis and (d) the power of the analysis. Large registration error may constrain the size 

of region that can be included in an analysis [13, 14], or may underestimate the 

differences between benign and cancerous tissues on imaging [15]. When the registration 
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error is unknown, studies must err on the side of caution, excluding more small regions 

than necessary, or searching for smaller effects than necessary. The measurement of TRE 

is challenging [4] as it requires the identification of homologous landmarks in histology 

images and other medical images, and it is therefore frequently omitted in analyses of 

these registration techniques [4, 16, 17]. In prostate histology to ex vivo MR image 

registration, few efforts have been made to report TRE: Kimm et al. [18] reported a 2D 

TRE of 0.86 mm based on 3 sections from a single specimen including non-anatomical 

landmarks in their measurement, Zhan et al. [19] and Ou et al. [20] reported TREs of 0.82 

mm and 0.79 mm using anatomical landmarks with no further indication of the number or 

type of landmarks used, or whether the TRE was 2D or 3D. The proposed landmark 

localization framework enabled the localization of 184 landmarks to robustly quantify the 

3D TRE of the proposed registration for 34 sections from 9 subjects. The TLE is 

sufficiently small that localization variability does not dominate the measurement of TRE 

using these landmarks. While these TLEs are large relative to the differences in mean 

TRE between methods, the use of repeated-measures ANOVA comparisons and paired 

post hoc analyses mitigates the effect of TLE in these comparisons. 

The mean±SD TRE for the proposed method was found to be 0.71±0.38 mm, 

more accurate than the previously adopted method based on image-guided slicing 

1.21±0.74 mm. The size of the smallest clinically relevant cancer focus is a topic of 

controversy, with thresholds from 0.2 cc [21] – 0.5 cc [22]. The mean TRE is sufficient to 

achieve an     overlap of a hypothetical spherical 0.2 cc tumor. If used as a component 

of a histology image to in vivo image registration, the mean error of the combined 

registration would be added in quadrature, assuming independent errors. For example, if 
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the ex vivo to in vivo registration also had a mean TRE of 0.71 mm, the mean combined 

error would yield a 75% overlap of a 0.2 cc tumor, or an 85% overlap of a 0.5 mm tumor.  

The anisotropic variance of the TRE, highest in the direction perpendicular to the 

histology plane, could have several causes: out-of-plane deformation of the tissue during 

slicing or histology processing, poor sensitivity of the configuration of fiducial cross-

sections to the plane selection, or higher out-of-plane error in locating the landmarks. 

This last effect is consistent with the landmark location procedure: the landmarks on MR 

images were typically placed at the center of an anatomical feature, and on histology 

images, the center of an anatomical feature can only be accurately identified in the 

histology image plane.  

The proposed local optimization can also be leveraged to improve previous 

registration methods to achieve similar accuracy. The difference in mean TRE between 

the proposed method and the image-guided slicing registration with local optimization is 

less than 0.13 mm, with 95% confidence. The high agreement between landmark TREs 

seen in the Bland-Altman plot in Figure 4.8a suggests that this improved image-guided 

slicing registration can provide equivalent registration accuracy to the proposed method 

in specific research contexts where histology interrogation of particular MR imaging 

planes is required. In all other research contexts, the proposed method is applicable and 

provides a substantially faster, less clinically disruptive solution. The proposed method 

augmented with block MR images also has high agreement between landmark TREs; 

however, there is no clear research context where this method would be required, 

suggesting the additional complexity and delay is not warranted. 
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While the rigid fixation of external fiducial markers to the prostate surface by the 

cyanoacrylate adhesive inhibits fiducial markers from moving along the surface, it is 

possible for cross-sections of the fiducial markers to detach entirely, which occurred for 

4% of fiducial marker cross-sections. An additional 2% of fiducial marker cross-sections 

were not visible on histology images due to the sections not intersecting with the fiducial 

markers. The proposed method was robust to the absence of 1–3 of the fiducial cross-

sections on histology images. There is, however, a theoretical limit to this robustness, as 

the method will not function with fewer than 4 fiducials as the residual fiducial 

registration error being minimized would be uniformly zero. 

The proposed registration method can be used with or without internal fiducials, 

although we observed a trade-off between method simplification (by eliminating internal 

fiducials) and accuracy. Registrations of sections with no absent fiducials were more 

accurate, suggesting that the proposed method without internal fiducials is less robust to 

loss of fiducials. Elimination of internal fiducials may still be warranted if required by an 

institution’s pathology workflow and our reported accuracy is sufficient for the study. In 

this case, careful handling to ensure slicing through the fiducials and to avoid the loss of 

surface-mounted fiducials may increase the registration accuracy. 

An ideal error measurement of an image registration algorithm informs as to the 

post-registration misalignment of anatomically homologous points. The most 

straightforward approach to obtaining this information is to identify homologous point 

landmark pairs in the images to be registered and compute an aggregate of the post-

registration Euclidean distances between them (e.g. yielding a mean TRE). The use of 

non-point structural landmarks (e.g. via the introduction of additional strand-shaped 
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fiducial markers to be used only for validation) complicates the error calculation due to 

the need to establish an accurate point correspondence across these more complex 

structures, which may be an ill-posed problem. In our application, this would involve the 

computation of a correspondence between the points defined by the cross-sections of the 

strand-shaped fiducial markers on the histology images and the space curves visible in 

the MR images. Because the location of the histological section is unknown, it is 

ambiguous which point along the curve on the MR image corresponds to the point on the 

histology image. The approach used in our study avoids this ambiguity by identifying 

homologous point landmarks in the histology and MR images.  

One limitation of the method is that the registration assumes there is an affine 

transformation between histology and post-fixation ex vivo images. This assumption is 

supported by preliminary work [11] and the work described in Chapter 3 using the same 

whole-mount histology processing protocol. However, if this assumption is violated, the 

registration could be adapted to incorporate more flexible non-linear transformations. A 

second limitation is that all specimens were sliced according to the constraints of the 

ongoing study from which specimens were drawn. While this allowed a comparison of 

registration accuracy on the same specimens, it prevented a measurement of the range of 

acceptable variation in slicing orientations recoverable by the proposed registration and 

local optimization. We hypothesize that the method is robust to a wide range of slicing 

angles as long as the slicing plane passes through the applied fiducial strands.  

In conclusion, the proposed method for histology image – ex vivo MR prostate 

image registration yields submillimeter registration error of 0.71 mm while reducing the 

processing time by 8 hours (70% reduction) relative to a currently adopted method. It 



 

160 

 

does not require guidance of specimen slicing, does not require block face or tissue block 

imaging as an intermediate registration target, and does not depend on the stable 

appearance of images that may be disrupted by the disease process. 
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Chapter 5. 

  

3D prostate histology reconstruction: an evaluation of 

image-based and fiducial-based algorithms
 † 

 

5.1 Introduction 

Reconstruction methods based on the registration of 2D digital histology images 

to in vivo [1-6] or ex vivo [7-9] 3D images (referred to as registration-based 

reconstruction methods throughout this chapter) hold the potential for automated 3D 

histology image reconstruction with fewer assumptions about the relative positions of the 

histology sections and less disruption of pathologists’ tissue slicing workflows. 

Furthermore, the reconstructions generated by these methods result in histology images 

that are inherently registered to a volumetric 3D image, further facilitating the co-

registration with clinical images. Some such registration algorithms use only intrinsic 

image information and allow existing specimen handling processes to be used with 

minimal alteration beyond the additional imaging; however, this type of registration 

algorithm relies on the presence of intrinsic image features that may vary due to 

anatomical variation and, as noted by Ou et al. [7], by the presence of cancer foci, the 

very tissue these methods aim to align. To mitigate this dependence, other registration 

algorithms use image information derived from extrinsic fiducial markers applied to 

                                                 
† A version of this chapter has been published: E. Gibson, M. Gaed, J. A. Gómez, M. Moussa, C. 

Romagnoli, S. Pautler, J. L. Chin, C. Crukley, G. S. Bauman, A. Fenster and A. D. Ward, "3D prostate 

histology reconstruction: an evaluation of image-based and fiducial-based algorithms," Medical Physics 40, 

093501 (2013). 
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specimens before imaging, which increases robustness to image variation, but requires 

additional specimen handling.  

This work explores this trade-off for registration-based reconstruction methods 

between intrinsic information-based and extrinsic fiducial-based registration algorithms 

via a direct comparison of the registration errors of four algorithms on the same data set 

quantified as a 3D TRE using homologous landmarks. This comparison comprised three 

experiments measuring the registration errors of these algorithms, measuring the 

sensitivity of the performance of each algorithm to initialization, and identifying the 

sources of any substantial registration errors that were observed. This work builds on our 

laboratory’s previous image-guided slicing [10] method based on an altered pathology 

workflow using image guidance to prospectively control the slicing of the specimen, and 

on our subsequent extrinsic-fiducial-registration-based reconstruction method (Chapter 

4) [11] that eliminated image-guided slicing to reduce this workflow disruption. In this 

work, we investigated an intrinsic image-information-based registration that could further 

reduce workflow disruption by eliminating the need for extrinsic fiducial markers and 

compared it to our previous extrinsic-fiducial-registration-based reconstruction method. 

To the best of our knowledge, this represents the first direct comparison between 

intrinsic-image-registration-based and extrinsic-fiducial-registration-based prostate 

histology reconstruction methods on the same data set with error quantified as a 3D TRE. 

5.2 Materials and methods 

5.2.1 Patient selection and imaging 

We obtained twelve radical prostatectomy specimens from patients with prostate 

cancer being treated by one of three collaborating urologists and surgical oncologists. 
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The inclusion criteria were: (1) age 18 or older, (2) having histologically confirmed 

clinical prostate cancer of stage T1 or T2 on a previous biopsy, and (3) suitable for and 

consenting to radical prostatectomy. The exclusion criteria were: (1) prior therapy for 

prostate cancer, (2) use of 5-alpha reductase inhibitors within 6 months of the study start, 

(3) inability to comply with preoperative imaging, (4) allergy to contrast agents, (5) 

sickle cell or other anemias, (6) sources of artifact within the pelvis such as hip and 

penile prostheses, and (7) contraindications to MRI such as electronic implants, metal in 

the orbit, cerebral aneurysm clips, claustrophobia and morbid obesity. The subjects' ages 

ranged from 47 to 69 years. The specimens had volumes (estimated from transrectal 

ultrasound at biopsy) ranging from 19 to 49 cm
3
 and biopsy Gleason scores of 6 or 7. 

This study was approved by the University of Western Ontario Human Subjects Research 

Ethics Board, and informed consent was obtained from each subject. 

Prostatectomy specimens were formalin fixed in 10% buffered formalin for 48 

hours and marked with strand-shaped fiducial markers approximately 1 mm in diameter 

on the exterior of the specimen and internal to the specimen (illustrated in Figure 5.1) that 

are visible on histology and MR images [11]. After adding fiducial markers, the intact 

specimens were imaged ex vivo in a 3 T GE Discovery MR750 (GE Healthcare, 

Waukesha, WI, USA) with an endorectal coil (Prostate eCoil, Medrad, Inc., Warrendale, 

PA, USA) using a T1-weighted protocol (3D SPGR, TR 6.5 ms, TE 2.5 ms, bandwidth 

±31.25 kHz, 8 averages, FOV 140×140×62 mm, image slice thickness 0.4 mm, image 

slice spacing 0.2 mm, 256×192 matrix, 312 image slices, flip angle 15°, 25 minutes) and 

a T2-weighted protocol (3D FSE, TR 2000 ms, TE 151.5 ms, bandwidth ±125 kHz, 3 

averages, FOV 140×140×62 mm, image slice thickness 0.4 mm, image slice spacing 0.2 
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mm, 320×192 matrix, 312 image slices, 25 minutes). During MR imaging, specimens 

were immobilized in a syringe filled with Christo-Lube (Lubrication Technology Inc., 

Franklin Furnace, OH, USA) to provide low signal in the background and minimize 

boundary artifacts.  

As part of another study from which our specimens were obtained, removal of the 

prostatic apex was performed using image guidance to yield cuts coincident with in vivo 

MR imaging planes obtained preoperatively, and the midgland was cut into 4.4±0.2-mm-

thick tissue slices using a rotary slicer to yield parallel cuts [10]. After gross slicing, the 

resulting tissue slices were immobilized in tissue processing cassettes, immersed in 

Christo-Lube and imaged using the same imaging protocol. To distinguish these images 

from the whole-gland images described above, these images are referred to as tissue slice 

MR images hereafter. 

After standard whole-mount paraffin embedding, a 4 μm histology section was 

cut from each midgland tissue slice and stained with hematoxylin and eosin. After 

staining, histology sections were digitized on a ScanScope GL (Aperio Technologies, 

Vista, CA, USA) bright field slide scanner, and downsampled to a 30 µm pixel size.  

5.2.1.1 3D reconstruction methods 

We evaluated four 3D registration-based reconstruction methods corresponding to 

four registration algorithms. Specifically, for each histology image independently, each 

algorithm computed a 2D–3D affine transformation from each histology image to the 

space of the corresponding whole-gland MR image by minimizing a similarity metric   

over a constrained search space of linear transformations  , yielding a transformation 
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             5.1 

where    is the  -th scalar histology image,    is the whole-gland MR image from the 

corresponding specimen, and          maps the histology image plane   into a plane 

      in the whole-gland MR image space. The minimization was performed using a 

local iterative Nelder–Mead simplex algorithm implemented in Matlab R2011b (The 

Mathworks Inc., Natick, MA) as fminsearch. This minimization was initialized using an 

affine transformation, the construction of which differed in different experiments. The 

differences between the algorithms were the choice of the similarity metric   [mutual 

information (   ) or fiducial registration error (    )] and the search space   [affine 

transformations (  ) or fiducial-constrained affine transformations (  )]. Each algorithm 

is correspondingly denoted      .  

Two similarity metrics were used: mutual information (   ) and fiducial 

registration error (    ).     measures the negative normalized mutual information [12] 

(MI) of a 2D histogram relating image intensities from    and the oblique image slice 

through    defined by the plane      , resampled at the coordinates of the transformed 

histology image. Three parameters that may affect the performance of the metric were 

varied in this work: the number of joint 2D intensity histogram bins, the color channel 

used for    , and the choice of MRI sequence. As these parameters are varied in the 

experiments, their selection will be described in Section 5.2.3. To avoid using fiducial 

information in    , voxels containing fiducials were excluded from the histogram 

calculation.      measures the post-transformation misalignment between strand-shaped 

fiducial markers identified on    and   . Internal and external fiducial strands were 

attached to the specimen before imaging as shown in Figure 5.1. The  -th fiducial strand 
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on    was semi-automatically localized as a 3D parametric curve                  . The 

center of the cross-section of the  -th fiducial marker on    was manually localized as a 

2D point     .      is the sum of squared 3D distances for each fiducial between          

and the closest point on      to the plane      .  

 

Figure 5.1: Schematic of strand-shaped fiducial markers (1–10), with parameterized 3D 

fiducial space curve m4 indicated with arrows, and histology showing 2D fiducial cross-

sections (boxed) with h4 and h10 inset. 

Two search spaces were used: affine transformations (  ) and fiducial-

constrained affine transformations (  ).    is the space of 2D–3D affine 

transformations, realized by optimizing over the uppermost 9 matrix elements of a 4×3 

homogeneous transformation matrix.    is a subspace of    used in previous work [11] 

that includes only transformations that can be realized from a best-fit affine mapping of 

the vector of 2D fiducial points                     to a vector of 3D fiducial points 

                                      . This space was realized by optimizing over the 
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vector of curve parameters,                       . Constraining the search space in this way 

is a trade-off between eliminating solutions (and potentially local minima) known to be 

non-optimal, and potentially introducing new local minima not present in the initial 

search space. This trade-off is illustrated in Figure 5.2. 

 
 (a) (b) 

Figure 5.2: Constraining the search space in an optimization reduces the number of 

possible solutions to be considered, but may introduce local minima. On this illustrative 

metric in a 2D search space (surface view (a) and 2D view (b), with darker intensity 

representing lower values), the red curves show two monotonically decreasing paths an 

unconstrained optimizer might take, one ending at the global optimum (red circle) and 

one ending at a local minimum (red x). If it is known a priori that the optimal solution for 

the metric lies on the cyan dashed line, an optimization could search just these solutions, 

avoiding solutions and local minima known to be suboptimal (off the cyan dashed line); 

however, this constrained space may have local optima (e.g. the cyan x) not present in the 

unconstrained space. 

5.2.2 Metrics for algorithm evaluation 

5.2.2.1 Target registration error 

We quantified the registration error of each algorithm using the mean TRE [13], i.e. the 

mean post-registration 3D Euclidean distance between corresponding pairs of 

homologous landmarks on the whole-gland MR images and on the reconstructed 
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histological images, averaged over 232 landmarks from 37 sections taken from 10 

specimens.  

These point landmarks (3–16 landmarks per section) were interactively identified 

using 3D Slicer by one observer under advisement from 2 genitourinary pathologists 

(J.A.G. and M.M.) and 1 radiologist (C.R.) with expertise in prostate imaging. 

Landmarks included the centers of atrophic ducts, cysts, and corpora amylaceae, and 

were selected based on salient shape characteristics and the presence of nearby salient 

features that uniquely constrained the correspondence. Illustrative examples of these 

landmarks are shown in Figure 5.3. 
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Figure 5.3: Homologous landmark pairs (large white arrows), used for evaluation of the 

registration algorithms, shown on histology images (top) and on the corresponding 

oblique image slices on T2 (middle) and T1 (bottom) MR images. Small black arrows 

denote salient nearby features used to corroborate the established landmark 

correspondence, but not used as landmarks themselves. Salient features in these images 

include corpora amylaceae (labeled *), the urethra (labeled +), extrinsic fiducials 

(labeled °) and atrophic ducts (unlabeled). Figure reproduced here with permission from 

the Journal of Magnetic Resonance Imaging [11]. 

5.2.2.2 Sensitivity to initialization 

The sensitivity of the algorithms' mean TRE to initialization error was evaluated 

by initializing the algorithms at sets of different transformations, including the “ideal” 

section-specific least squares best-fit 2D–3D affine transformation aligning homologous 

landmarks on histology and MR images   , and also at four sets of transformations that 

deviated from    by controlled rotations, translations and scaling factors.    is computed 

as, 
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  5.2 

where      is the  -th landmark in the  -th histology image,      is the homologous 

landmark in the corresponding whole-gland MR image, and    is the number of 

landmarks identified in the  -th histology image. Sensitivity was quantified as the linear 

coefficient of a general linear model relating post-registration TRE to the absolute 

rotation, translation or scaling change of the initialization from   . Because identification 

of    is sensitive to error in the placement of the landmarks, sections with fewer than 5 

identified landmarks were excluded from this calculation; thus, a total of 28 sections, 

taken from 10 specimens, were used. 

5.2.2.3 Quantifying contribution of the sources of post-registration TRE 

The landmark localization error (LLE) (measuring the repeatability of the 

landmark placement) was quantified as an unbiased estimator of the standard deviation of 

seven repeated localizations (at least one day apart) of 16 landmarks identified on MR 

and histology [11]. This metric was measured independently for histology and MR 

images. 

The landmark registration error (LRE) (measuring the combined effect of error in 

localizing landmarks and the distance from the correct homology to the closest point in 

the search space) was quantified as the mean residual misalignment of homologous 

landmarks after applying the best-fit transformation from the search space, 
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where    is the number of sections. To mitigate under-estimation of LRE due to 

overfitting, sections with fewer than 5 identified landmarks were excluded from this 

calculation; in total,    
  

        landmarks from       sections were used.  

We explored the relative impacts of two other sources of error (the similarity 

metric not having a globally optimal value at the best transformation in the search space, 

and the optimizer not converging to the globally optimal value) by examining the 

similarity metric values after minimization. Ideally, the similarity metric value at 

  would be the global minimum of the similarity metric function (i.e. 

                                and the minimization would converge to this 

transformation (            ); in this case, the difference in metric values          

                                . If           , the optimizer did not find the 

global minimum of the similarity metric function. If           , the global minimum of 

the similarity function was not at   . We quantified the relative contributions of these 

sources of error as the proportion of minimizations that resulted in            to those 

that resulted in           . 

5.2.3 Experimental design 

We conducted three experiments in this work. In the first experiment (Section 

5.2.3.1), the registration errors of four algorithms for the registration of 2D prostate 

histology images to 3D ex vivo MR images were compared by measuring the post-

registration TRE of intrinsic homologous point landmarks when initialized with a 

straightforward initialization involving aligning the histology images in 2D, stacking 

them at even intervals and aligning the stack to the ex vivo MR image. The algorithms 
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differed in the optimized similarity metric (mutual information or fiducial registration 

error) and the search space examined (affine transformations or a subset of affine 

transformations constrained by the spatial configuration of fiducial markers). In the 

second experiment (Section 5.2.3.2), the sensitivities of TRE to initializations that 

deviated from the best-fit transformation for these four algorithms were compared by 

varying the initialization and recording the resulting TREs. In the third experiment 

(Section 5.2.3.3), the causes of substantial registration errors were explored by 

quantifying contributions to error from five possible sources: (1) the selection of 

parameters of the similarity metric, (2) the incorrect localization of the homologous 

landmarks, (3) the correct transformation not being part of the search space, (4) the 

similarity metric not having a globally optimal value at the best transformation in the 

search space, and (5) the optimizer not converging to the globally optimal value. 

The first two experiments required the selection of a single configuration of the 

three MI parameters described in Section 5.2.1.1. Rather than resorting to ad hoc 

parameter selection, we used the nine histology images from two randomly selected 

specimens from our data set to guide the selection of the MI parameters. For these nine 

histology images,     at the best-fit affine registration (identified using homologous 

intrinsic landmarks) was minimized over all parameter combinations (histopathology 

image color channel chosen from red, green, blue, and the mean of all three; MRI 

sequence chosen from the T1-weighted and T2 weighted sequences; and number   of 

joint intensity histogram bins chosen from {6, 16, 32, 64, 128}). This procedure yielded 

one set of parameters giving the lowest     (the blue channel of the histology image, the 

T1-weighted MRI sequence and    ); this set is henceforth referred to as the selected 



 

175 

 

MI parameter set. The two specimens used to determine the selected MI parameter set 

were not used in any of our experiments; thus, for all three experiments, our results were 

calculated based only on the remaining 10 specimens in our data set. 

5.2.3.1 Algorithm performance with practical initialization 

To assess the algorithm performance in practical applications, we initialized each 

algorithm using a transformation that can be practically achieved by researchers able to 

control, and collect data during the coarse slicing of the specimen. With this initialization, 

we executed each algorithm, and computed the post-registration TRE. To define the 

initialization, extrinsic fiducials were stacked into a 3D volume by (1) identifying the 

vector  𝒇    𝒇      𝒇      of 2D points of extrinsic fiducial cross-sections on the front 

face of the  -th tissue slice in a standard 2D coordinate system, (2) stacking these vectors 

at 4.4 mm intervals (i.e. the quantified gross slicing thickness [10]) to yield a 3D point 

set, (3) computing a rigid transform     mapping the 3D point set to the fiducial marker 

curves                     in the whole-gland MR image using the iterative closest 

points algorithm [14], and (4) computing the best-fit affine initialization transformation 

    mapping                     to     𝒇       𝒇         𝒇      for each section  . In this 

work, the vector  𝒇    𝒇      𝒇      was determined by interactively identifying the 

inferior-most point of each fiducial on tissue slice MR images that were manually 

registered to whole-gland MR images, and projecting these points onto the plane at the 

front face of the superior-most tissue slice; however, an analogous vector 

 𝒇    𝒇      𝒇      could also be identified by photography of the specimen in a common 

coordinate system after each cut during gross sectioning, as performed by Breen et 

al. [15]. For this experiment,     used the selected MI parameter set. 
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5.2.3.2 Sensitivity of algorithm accuracy to initialization variation 

Due to the variability in imaging data sets and initialization methods, initialization 

errors may deviate from those in the experiment described above. Accordingly, the 

sensitivity of the algorithms' registration error to initialization error was assessed. Each 

algorithm was initialized with the best-fit affine transformation    and also with four sets 

of transformations that deviated from    by controlled rotations, translations or scaling 

factors, and the post-registration TRE was calculated. The first and second sets of 

transformations varied the initialization by rotations about the AP axis and about the LR 

axis, respectively, with rotations in both sets ranging from -15° to 15° in 3° increments. 

The AP and LR axes were determined by manually aligning the whole-gland MR images 

in 3D Slicer. The third set of transformations varied the initialization by translations in 

the inferior direction normal to the plane        ranging from -10 mm to 10 mm of 

translation in 1 mm increments. The fourth set of transformations varied the initialization 

by scaling factors from -10% to 10% in 2.5% increments. For each type of deviation from 

  , a linear coefficient of sensitivity was calculated as described in Section 5.2.2.2. For 

this experiment,     used the selected MI parameter set. 

5.2.3.3 Sources of error for mutual information 

Based on preliminary observations of the results of these experiments, we were 

motivated to explore the relative contributions of four causes of error to the observed 

TRE. To quantify variability in landmark localization, we computed the LLE for 

histology and MR images. To quantify error caused by the combined effect of landmark 

localization and search space we computed the LRE for   . To quantify the relative 

prevalence of errors in the optimizer and in the similarity metric, we computed the 
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difference between the similarity metric value at the post-optimization transformation and 

at the landmark-based best fit transformation (           
) as discussed in Section 5.2.2.3. 

To explore the impact of parameter selection on the observed errors, the accuracy and 

sensitivity to initialization experiments (described in Sections 5.2.3.1 and 5.2.3.2) were 

run for          with all combinations of the     parameters described in Section 

5.2.3. (i.e. different histology color channels, MRI sequences and histogram sizes). 

5.2.4 Statistical analysis 

Statistical analyses were performed in SPSS 19 (SPSS, Inc., Chicago, USA). 

ANOVA tests used repeated measures ANOVA with Greenhouse–Geisser corrections for 

asphericity, and used a threshold of        for significance. For experiment 1, the 

improvement in mean TRE from the pre-registration initialization to the post-registration 

transformation was assessed using a 1-way ANOVA and pairwise post hoc analyses 

between the TRE at initialization compared to the TRE after each of the algorithms. 

Differences in the mean TRE due to the search space (   or   ) and the similarity metric 

(    or     ) were assessed using a 2-way ANOVA and pairwise post hoc analyses. For 

experiment 2, the sensitivities of the algorithms to the four types of initialization errors 

(rotational about AP and LR axes, translational, and scaling) were assessed using four 

separate 2-way ANOVAs. In each ANOVA, the factors were the choice of algorithm and 

the rotational, translational or scaling deviations of the initialization from  . In post hoc 

analyses for each algorithm, we modeled sensitivity as a general linear model relating 

post-registration TRE to the absolute rotation, translation or scale of the initialization 

from   , estimating the linear coefficient as a measure of sensitivity. The sensitivity of 

the mean TRE of algorithms using     to the choice of MRI sequence, histology image 
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channel and number of histogram bins was assessed using a 3-way ANOVA and post hoc 

analyses. The relative contributions of sources of error were estimated with point 

estimates for the LLE, LRE, and the proportion of            
 above and below zero for 

the practical initializations and each set of perturbed initializations for each set of     

parameters. 

5.3 Results 

5.3.1 Algorithm performance with practical initialization 

The key finding of this experiment was that the choice of similarity metric 

affected the mean TRE, with the landmark-based similarity metric outperforming the 

intensity-based similarity metric: algorithms using      had a mean TRE of 0.7±0.4 

mm, an improvement of 0.5–0.7 mm from the initialization (with mean TRE 1.3±0.6 

mm), whereas algorithms using     had a mean TRE of 1.2±0.7 mm, an improvement of 

0.1–0.2 mm from the initialization. 

Results for individual algorithms, and computational times are shown in Table 

5.1. An illustrative registration from the practical initializations is shown in Figure 5.4a. 

All algorithms showed a statistically significant improvement in mean TRE over 

initialization. The 2-way ANOVA of TRE showed a significant difference due to choice 

of metric but failed to find a difference due to the choice of search space and failed to 

find an interaction between the two factors. Pairwise post hoc analyses (shown in Table 

5.2) showed that (1) algorithms using      yielded a lower mean TRE than those using 

    for algorithms using both search spaces, and (2) the difference in mean TREs due to 

the choice of search space was less than 0.12 mm with 95% confidence. 
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 (a) (b) 

Figure 5.4: Illustrative registrations from (a) the practical initialization experiment and 

(b) the initialization offset by 5 mm translational error from the sensitivity experiment, 

showing a posterior view of a surface rendering of the prostate with sections (represented 

by colored planes) reconstructed via 4 different transformations: the initialization (red), 

the transformation given by          (yellow), the transformation given by           
(blue), and the best-fit transformation (green). Corresponding oblique image slices of the 

T1-weighted MR image are shown in the “Init”, “MI”, “FRE”, and “Opt” panels, 

respectively. The H&E-stained histology image is shown in the “Hist” panel. 
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Table 5.1: Comparison of the algorithms after practical initialization: mean ± standard 

deviation of TRE, 95% confidence interval (CI) on the improvement over the 

initialization    (i.e.,                , and mean computational time per section of the 

four registration algorithms, (columns 2 to 5).  

    ; 

      
   ;         ; 

      
   ;         

TRE (mm) 0.7 ± 0.4 1.2 ± 0.7 0.7 ± 0.4 1.2 ± 0.7 1.3 ± 0.6 

               

(mm) 

[0.55,0.70] [0.05,0.22] [0.53,0.69] [0.06,0.23]  

Computation time (s) 2 32 9 38  

Table 5.2: 95% CI on mean TRE difference for similarity metrics and search spaces 

across initialization algorithms.  

Factor held constant                

Pairwise difference analyzed                

      

   

      

95% CI on mean TRE 

difference  

[-0.03,0.00] [-0.10,0.12] [0.40,0.57] [0.38,0.55] 

5.3.2 Sensitivity of algorithm accuracy to initialization variation 

The key finding from this experiment was that the landmark-based algorithm 

using an affine transformation (           showed negligible sensitivity to initialization 

error, while the other three algorithms showed greater sensitivity.  

95% CI on the sensitivity coefficients for each type of initialization error for each 

algorithm are shown in Table 5.3, and the graphical relationships are shown in Figure 5.5. 

An illustrative registration from the sensitivity experiment is shown in Figure 5.4b. The 

ANOVA showed significant effects of sensitivity to initialization. The    ;      

algorithm shows an asymmetry in the sensitivity to translational offset; the distributions 

of TRE for translational offsets (Figure 5.6a) are bimodal for extreme inferior 

translational offsets, and this variation was correlated (      ) with the extent of tissue 

in the inferior direction normal to the plane      of the best-fit histological section 

(Figure 5.6b). 
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Table 5.3: Sensitivity of mean TRE to initialization error quantified as 95% CI on the 

sensitivity coefficients of general linear models. 

Perturbation    ;         ;        ;         ;     
AP rotation (mm/° rotation AP) [0.00,0.01] [0.15,0.17] [0.00,0.00] [0.06,0.07] 

LR rotation (mm/° rotation LR) [0.00,0.01] [0.10,0.12] [0.00,0.01] [0.05,0.06] 

Translation (mm/mm translation) [0.00,0.00] [0.57,0.61] [0.22,0.26] [0.70,0.74] 

Scaling (mm/% scale) [0.00,0.00] [0.06,0.08] [0.00,0.00] [0.00,0.00] 

 

 
 (a) (b) 

 
 (c) (d) 

Figure 5.5: Sensitivity of mean TRE to four types of initialization error: rotation about 

the (a) AP and (b) LR axes, (c) translation, and (d) scaling. 
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 (a) (b) 

Figure 5.6: (a) Violin plot showing the distribution of TRE for the {T  A; MMI  } algorithm 

for translational initialization error; (b) scatter plot of TRE vs. the extent of tissue in the 

inferior direction normal to the plane      of the best-fit transformation.  

5.3.3 Sources of error for mutual information 

The key findings for this experiment were (1) the observed mutual information-

based registration errors were not fully explained by landmark localization and landmark 

registration errors, and (2) in more than 80% of cases, the mutual information metric 

value at the ideal registration was not the globally optimal value, suggesting that the 

mutual information metric may not be ideally suited to these cases. More specifically, (1) 

the landmark localization error values were 0.05 mm and 0.16 mm on histology and MR 

images, respectively, and the landmark registration error was 0.29 mm, insufficient to 

account for the observed registration errors with mutual information, and (2) across the 

40 sets of mutual information parameters tested, the proportion of optimizations that 

resulted in metric values less than those at the best fit transformation (         
  , 

showing evidence of errors due to the similarity metric) ranged from 81% to 98%. 

Figure 5.7 shows the distribution of          
 over all histology sections for each 

perturbed initialization for          
 using the selected MI parameter set. For the 

perturbed initializations, with the     parameters used in experiments 1 and 2, we 
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observed that 18% of the optimizations in our sample resulted in          
   and 82% 

resulted in          
  . Of the optimizations that resulted in          

  , the 

majority (10% of all optimizations) resulted from initializations that were translated from 

   by    mm.  

The lowest mean TRE for all of the parameter combinations was 1.2±0.7 mm, 

using the selected MI parameter set. Mean TRE was sensitive to MRI sequence selection, 

histology channel selection and number of histogram bins, and there were significant 

interactions between the factors. Sensitivity to MRI sequence selection was the most 

significant effect where all algorithms using the T2-weighted MRI sequence had higher 

mean TRE than all those using the T1-weighted MRI sequence (95% CI on the difference 

of estimated marginal means: [0.78,0.97] mm). Within the algorithms using the T1-

weighted MRI sequence, a post hoc 2-way ANOVA showed that mean TRE was 

sensitive to the number of histogram bins, but failed to detect sensitivity to the choice of 

histology channel or interaction between the factors. Among the algorithms using the T1-

weighted MRI sequence, the 95% CI on the difference between the parameter 

combination with the lowest mean TRE (the selected MI parameter set using the blue 

histology channel, the T1-weighted MRI sequence and    ) and the highest mean TRE 

(using the blue histology channel, the T1-weighted MRI sequence and     ) was 

[0.07,0.22] mm. On our sample of 10 specimens, no MI parameter combination yielded a 

lower mean TRE than the selected MI parameter set that was used in experiments 1 and 

2. 
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 (a) (b) 

 
 (c) (d) 

Figure 5.7: Violin plots showing the distribution of DMI for four types of initialization 

error: rotation about the AP (a) and LR (b) axes, translation (c), and scaling (d). Each 

data point represents one run of the          algorithm;           
   (above the blue 

line) shows that the optimizer did not find the global minimum, while           
   

(below the blue line) shows that the similarity metric had values lower than that of the 

best-fit transformation. 

5.4 Discussion 

In this chapter, we have performed a comparison of accuracy and sensitivity to 

initialization for four registration-based 3D histology reconstruction algorithms on the 

same data set, comparing registration algorithms that use intrinsic image information with 

algorithms that use extrinsic fiducial information. Specifically, we explored the effects of 

using    , a similarity metric based on the mutual information of intrinsic image 

information, compared to using     , a similarity metric introduced in previous 

work [11] based on the fiducial registration error of extrinsic fiducials. We also explored 
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the impact of using the transformation spaces   , comprising the unconstrained set of 

affine transforms, compared to using   , a transformation space used in previous 

work [11] comprising a subset of affine transforms constrained to align extrinsic 

fiducials.  

5.4.1 Evaluating histology reconstruction methods 

Two criteria that are important in the evaluation of methods for the 3D 

reconstruction of histology from clinical specimens are the disruption to the clinical 

workflow and the accuracy of the reconstruction.  

5.4.1.1 Disruption to the clinical workflow 

Because the specimens are used clinically, care must be taken to minimize 

unnecessary disruption to the clinical use of the data for the sake of research. The clinical 

workflow can be disrupted in several ways, including altering which tissue is cut for 

histological examination, altering the appearance of histology sections or altering the 

timeline of processing by introducing additional processing steps. 

Several existing reconstruction methods control which tissue is cut for 

histological examination by constraining the slicing of the specimen into 3–5-mm-thick 

tissue slices, so that histology is taken from tissue that approximately corresponds to in 

vivo imaging planes [10, 16-18]. The spatial relationships of these histology sections may 

differ from those normally used for diagnosis by a pathologist.  

Retrospective methods, including registration-based reconstruction methods that 

use registration algorithms based on extrinsic fiducial information [11, 19, 20] or intrinsic 

image information (as described in this work and elsewhere [4-9]), as well as other 
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retrospective methods [21, 22], avoid the disruption of controlling which tissue is cut for 

histological examination by retrospectively determining the spatial relationships between 

histology sections regardless of how they were cut, enabling the slicing of histology 

according to the pathologists’ workflow. Many approaches achieve this by adding 

extrinsic fiducials to the prostate specimen; however, care must be taken to avoid 

disrupting the appearance of the histology by adding features that would not typically 

appear on histology or removing/moving tissue when fiducials are introduced within the 

prostate. By using intrinsic image information, the mutual information-based registration 

algorithm described in this work and other such methods [2-9, 23] avoid this challenge.  

The use of additional ex vivo imaging for registration, as seen in the methods 

presented in this work and other existing work, may disrupt the processing timeline of the 

pathology laboratory, which some methods [21] avoid by relying on known geometrical 

properties of their extrinsic fiducials.  

5.4.1.2 Accuracy of the reconstruction 

The accuracy of the reconstruction (and the accuracy of the following registration 

to in vivo imaging) may constrain the types of questions that can be asked of the data and 

may impact the power of some statistical analyses of the data (Chapter 2) [24]. A 

comparison of the accuracy of reconstruction methods is challenging, due to the variety 

of methods for quantifying accuracy.  

Some methods do not report reconstruction errors as point-to-point distances, 

instead using surrogates such as overlap of the prostate gland [8, 25], prostate boundary 

distances [2, 22], qualitative assessment of tumor alignment [6, 18], post-optimization 

similarity metric values [6], or image intensity properties [9]. 
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Even reconstruction errors reported as distance must be interpreted carefully, 

considering the modalities involved in the reconstruction, the method of measurement, 

the dimensionality of the measurement and the errors that may be omitted from the 

measurement. Previous work in our laboratory using a guided-slicing approach measured 

reconstruction error from histology to in vivo images comprising a 2D in-plane mean 

error of 1.1±0.7 mm based on intrinsic landmarks and a root-mean-square error in the 

position of the slicing plane of 0.9 mm based on physical measurements. However, these 

measurements were made under an assumption that histology corresponded to the front 

faces of the thick tissue slices (referred to as the front face assumption hereafter), and as 

the mean distance of whole-mount prostate histology sections from the front face has 

been estimated to be ~1 mm (Chapter 3) [26] these errors may underestimate the total 

error accordingly. Park et al. measured reconstruction errors of 3.74 and 2.26 mm based 

on a distance between medial axes of foci contoured on histology and in vivo images. 

Direct comparison with these errors is challenging, as they represent reconstruction to 

align with in vivo images, where there is more deformation.  

Groenendaal et al. reported an error of 2.2±0.5 mm from histology to in vivo 

images, but broke the error down into a histology—fixed tissue image TRE component of 

0.7±0.3 mm based on extrinsic landmarks which similarly held the front face assumption, 

and a fixed tissue to in vivo image error component of 2.1±0.5 mm. Orczyk et al. broke 

the error into a histology-fresh tissue slice image FRE (where the landmarks used for 

error calculation were also used to compute the transformation, typically underestimating 

the TRE) component of 0.9±0.3 mm measured using intrinsic anatomical landmarks that 

did not measure out-of-plane error due to the 3D reconstruction and held the front face 
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assumption, and a reconstructed specimen—in vivo image FRE of 1.6±0.3 mm. Kimm et 

al. reported 2D displacements (interpretable as a surrogate for a distance-based 

reconstruction error) from histology to fixed tissue of 1.2±0.6 mm and 0.9±0.4 mm for 

two methods measured using the misalignment of intrinsic landmarks using a metric that 

is invariant to rotational and translational error and that may underestimate error relative 

to a 2D TRE, and that held the front face assumption. Nir et al. reported a mean±SD 2D 

TRE of 1.5±0.9 mm using intrinsic fiducials. Prabu et al. reported a mean 2D TRE of 1.4 

mm using intrinsic landmarks. Two pieces of related work by Zhan et al. and Ou et al. 

used intrinsic landmarks to measure TREs of 0.8 mm and 0.6–1.0±0.43–0.79 mm (range 

is for landmarks chosen by 2 observers), respectively. The identity and number of the 

intrinsic landmarks are not specified, and it is not clear if the calculated TREs are 2D or 

3D. Recent work by Hughes et al. reported a 2D TRE of 0.6±0.5 mm using one extrinsic 

landmark per section and a 3-fiducial FRE of 0.1±0.1 mm on a beef liver surrogate and a 

3-fiducial FRE of 0.2±0.1 mm on prostate specimens. 

To the best of our knowledge, no existing publications have directly compared the 

accuracy of intrinsic image registration-based algorithms to extrinsic fiducial registration-

based reconstruction algorithms on the same data set and measured the error as a 3D TRE 

based on homologous landmarks localized in 3D on the 3D images (to avoid 

underestimation due to the front face assumption). Our work addresses this gap in 

knowledge by comparing our previously developed fiducial-based algorithm to an 

intrinsic image-based algorithm using mutual information, measuring the 3D TRE using 

232 homologous intrinsic point landmarks localized in 3D on the ex vivo MR images. 

The fiducial-based reconstructions yielded a 3D TRE of 0.7±0.4 mm, among the highest 
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accuracies of current fiducial-based methods. The methods based on mutual information 

of image intensities yielded a 3D TRE of 1.2±0.7 mm, suggesting that more complex 

intensity-based methods, such as those of Zhan et al. and Ou et al, may be necessary to 

eliminate the use of fiducial markers while achieving accuracies as low as the most 

accurate fiducial-based methods. 

There is no TRE value that is universally accepted as necessary and sufficient for 

all applications of 3D prostate histology reconstruction. The necessary TRE depends 

principally on the central question of the research study served by the 3D histology 

reconstruction algorithm. More specifically, as it has recently been shown that TRE can 

affect the statistical power and the number of subjects needed to answer a research 

question (Chapter 2) [24], answering one particular research question (e.g. localization of 

small, high-grade prostate cancer on imaging) could require a 3D histology algorithm 

with a submillimeter TRE, whereas a different question (e.g. coarse identification of 

larger prostate tumors) could be answerable using an algorithm with a multi-millimeter 

TRE. Determination of the necessary and sufficient TRE can be done in detail in the 

context of a typical application of 3D histology reconstruction methods: studies 

evaluating imaging modalities by correspondence with a histological reference standard. 

In such studies, error in the alignment of ground truth information to the images being 

validated introduces uncertainty that prohibits certain analyses or reduces the statistical 

power. The recent introduction of a sample size calculation that incorporates quantified 

registration error (Chapter 2) [24] provides an avenue to quantify the impact of the 

algorithms' mean TRE in imaging validation studies, assuming reconstruction error 

dominates registration error. The sample size calculation addresses imaging validation 
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studies to detect a difference in the mean signal intensity between regions of interest 

(ROI) on images from a modality under study based on ROI defined on registered images 

from a reference standard modality. It augments the classical power calculation formulae 

by modeling the impact of the mean and variance of registration accuracy on the study 

power (and thus the required sample size), showing that higher registration accuracy 

leads to higher study power or a lower required sample size. Because it also provides a 

mapping from TRE to the registration error parameters used in the calculation (under the 

assumption of spherical regions of interest of specified volume, and 3D Gaussian-

distributed target registration error), we can use this relationship to assess the impact of 

mean TRE from different algorithms.  

The potential impact of small improvements in TRE can be elucidated by 

applying this sample size calculation in the context of a simplified case study. For a 

hypothetical imaging validation study of signal differences between tumor and benign 

tissue for the smallest clinically significant prostate cancer focus (0.2 cc [27]), the sample 

size calculation predicts (assuming equal image intensity variance of tumor and benign 

tissue) that an algorithm with a mean TRE of 1.2 mm (        ) would need 7% fewer 

subjects than would be needed with a mean TRE of 1.3 mm (pre-optimization), while an 

algorithm with a mean TRE of 0.7 mm (         ) would need 27% fewer subjects. 

Considering the high per-subject cost of imaging validation studies (e.g. a contemporary 

cost of more than $10,000 USD per subject for the study on which this chapter is based), 

we observe that using a more accurate reconstruction can have a substantial impact on the 

overall cost of a study. For example, in the ongoing imaging validation study of 66 

subjects at our center, the above sample size reduction of 7% resulting from a 0.1 mm 
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improvement in TRE could translate to a need for 4 fewer subjects, resulting in a savings 

of approximately $40,000 USD. 

5.4.2 Algorithm performance with practical initialization 

When initialized with the described practical initialization (with a TRE of 1.3 

mm), all algorithms significantly improved the mean TRE. Since the choice of practical 

initialization was inspired by several existing histology reconstruction methods that 

identify the front faces of tissue slices via guided sectioning or tissue slice imaging, these 

results suggest that the accuracy of existing reconstruction methods could be improved by 

applying these algorithms. Although          showed a small improvement over 

initialization without the use of fiducial markers, the size of the difference (95% CI: 0.05 

to 0.22 mm) should be considered when assessing its value for refining an image-guided-

slicing reconstruction method. 

Our experiments failed to detect a significant difference in mean TRE between 

algorithms due to the choice of search space used. As the difference in mean TRE was 

less than 0.12 mm, and the mean computational times of all four algorithms was less than 

40 seconds per section, constraining the search space to the fiducials may not warrant the 

added complexity. 

5.4.3 Sensitivity of algorithm accuracy to initialization variation 

The sensitivity of algorithms using      to initialization error was lower than that 

of algorithms using    .   
        showed no material change in mean TRE across the 

range of initializations tested. This suggests that this algorithm can be used without the 

need for accurate initialization. The algorithms using     were more sensitive to 
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rotational, translational and, in the case of         , scaling initialization, suggesting 

that algorithms using     should be initialized close to the correct transformation. The 

algorithm using          was less sensitive to translation in the inferior direction, 

particularly for the more inferior sections. The initial translation in the inferior direction 

combined with the narrowing of the apical region resulted in initializations with poor 

overlap of tissue. We speculate that superior translation (compensating for the 

initialization error) could rapidly improve the overlap (and the metric value), thus 

directing the optimizer in that direction. This effect would be less pronounced for more 

superior sections and for initialization errors in the superior direction because the cross-

section of the tissue in the midgland and base would not change as quickly with 

superior/inferior translation. As in the previous experiment, constraining the search space 

to the fiducial markers does not appear to improve the sensitivity of algorithms using 

either similarity metric. 

The range of initializations was chosen to model realistic use cases. The range of 

rotational offsets tested reflects variation seen in unguided specimen slicing [28]. The 

broad range of translational offsets was chosen because the variation of this property in 

the usual clinical setting was unknown. The range of scaling factors was chosen by 

dividing a reported scaling factor between in vivo tissue and fixed tissue (0.96) by 

reported scaling factors between in vivo and histology (0.87 to 0.96) [29], yielding a 

scaling factor from histology to fixed tissue (1.00 to 1.10). The tested range was extended 

to be from 0.90 to 1.10 for symmetry. The use of ranges that span realistic use cases 

suggests that these results may be generalizable to practical use cases.  
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5.4.4 Sources of error for mutual information 

The high sensitivity of the mean TRE of the          algorithm to initialization 

error, and the marginal improvement over the initialization motivated a deeper 

exploration of the causes of these errors for this algorithm. 

The four sources of post-registration TRE described in Section 5.2.2.3 are 

interrelated, and cannot be measured directly without knowledge of the true image 

homology (for error due to landmark placement and erroneous search space) and the 

complex interactions between the search space, the similarity metric, the data and the 

optimizer (for errors due to the similarity metric and the optimizer). However, 

quantifying aspects of these errors may elucidate their relative contributions. The upper 

bound for the sum of the LRE (reflecting variability in landmark placement) and LLE 

(reflecting manual landmark alignment that cannot be accounted for by affine 

deformation), which occurs when they are perfectly correlated, was only 0.48 mm, 

suggesting the majority of the residual error after registration with          is due to 

other sources. Measurements of            
 show that errors due to the optimizer 

converging to a local minimum, as well as errors due to the optimizer converging to a 

global or local minimum whose metric value is less than that at the best-fit 

transformation, are present. Thus, it appears that both the image similarity metric and the 

optimizer may be sources of error contributing to our measured TRE. We observe from 

Figure 5.7 that for optimizations initialized close to the best-fit transformation, the image 

similarity metric seems to be the dominant contributing factor to the TRE, whereas for 

initializations far from the best-fit transformation, we observe more frequently that the 
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optimizer converges to a local optimum. This brings into question the suitability of using 

the mutual information of these modalities for this task. 

The variation of MI parameters suggests that these results were not disrupted by 

error due to a suboptimal selection of parameters. While the TRE was sensitive to 

parameter variation, and in particular to the choice of MRI sequence used, the reported 

TRE values in our experiment measuring registration accuracy after practical 

initialization were the lowest for any tested combination of MI parameters, and the 

evidence of errors due to the similarity metric was present for all tested parameters.  

5.4.5 Limitations 

The conclusions of this work should be considered in the context of the scope of 

our experiments. Our experiments tested a single image-based similarity metric, mutual 

information, against a single fiducial-based similarity metric. Mutual information was 

tested as it is a commonly chosen metric for intermodality registrations; however, the 

poor performance of mutual information in this application cannot be generalized to other 

intensity-based metrics. This work tested a range of values for several parameters of 

mutual information; however, mutual information has other tunable parameters that were 

not varied, including spacing of histogram bins and sampling patterns. An exhaustive 

search of the parameter space of     was beyond the scope of this work. It should also 

be noted that while sensitivities to rotational, translational and scaling initialization error 

were assessed independently, the interactions between these sensitivities and the 

sensitivities to anisotropic scaling were not investigated. Finally, the specimens, drawn 

from another study, were cut into tissue slices following an image-guided slicing 
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approach; thus, the variability of histology section orientations relative to the prostate 

gland may be less than seen in typical clinical workflows. 

5.4.6 Conclusion 

This work compares the accuracy and sensitivity to initialization of 3D prostate 

histology registration-based reconstruction algorithms. Minimizing a mutual information-

based image similarity metric over affine transformations yielded a mean TRE of 1.2 mm 

when initialized using a practical initialization (pre-optimization mean TRE 1.3 mm), and 

was sensitive to the initialization error. Errors due to both the optimizer and the mutual 

information-based similarity metric contributed to the residual error, with the latter more 

common when optimizations were initialized close to the best-fit transformation. In 

contrast, minimizing a fiducial registration error-based metric over affine transformations 

yielded a mean TRE of 0.7 mm, with no material change in mean TRE across 

initializations representing the full range of clinical use cases. Thus, for registration-

based reconstruction methods, we recommend the use of the extrinsic-fiducial-based 

registration algorithm using affine transformations. If the application of fiducials is 

prohibited and assuming MR imaging sequences equivalent to those used in this study, 

the MI-based algorithm could be used to achieve a 0.1 to 0.2 mm improvement in 

registration error, with the caveat that accurate initialization may be critical to its 

performance. For an imaging validation study to detect a difference in the image intensity 

of tumor and benign tissue for the smallest clinically significant prostate cancer focus 

(0.2 cc [27]), the mutual information-based algorithm could reduce the number of 

subjects needed by 7% compared to an approach based on stacking aligned histology 
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images on the front faces of tissue slices at a fixed spacing, while the fiducial-

registration-error-based algorithm could reduce the number of subjects needed by 27%. 
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Chapter 6. 

  

Prostate cancer assessment and delineation on 3 T 

multi-parametric MRI: interobserver and 

intersequence agreement
 † 

 

6.1 Introduction 

Accurate delineation of suspected intraprostatic cancer foci on imaging is 

important for many aspects of treatment planning for men with localized prostate cancer. 

For example, the use of targeted biopsy procedures may enhance the probability of 

sampling high-grade foci [1], thus improving the ability to stratify men between 

intervention or careful monitoring with active surveillance. Estimations of cancer volume 

may have prognostic importance complementary to Gleason grade [2]. For many patients 

with intermediate-grade localized prostate cancer, focal therapy may be an appropriate 

treatment option with lower risk of morbidity than radical prostatectomy or radiotherapy 

[3, 4]. Focal therapies, including cryotherapy [3], focal laser ablation [5] and high-

intensity focused ultrasound [6], normally aim to treat prostate cancer under image 

guidance by focusing treatment on cancerous lesions identified and delineated on pre-

                                                 
† A version of this chapter is in preparation for submission: E. Gibson, C. Romagnoli, M. Bastian-Jordan, 

D. W. Cool, Z. Kassam, M. Gaed, M. Moussa, J. A. Gómez, S. Pautler, J. L. Chin, C. Crukley, G. S. 

Bauman, A. Fenster, A. D. Ward, “Prostate cancer assessment and delineation on 3 T multi-parametric 

MRI: interobserver and intersequence agreement” Radiology (in preparation). 
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treatment images. Accurate and precise delineation of these lesions on imaging is of 

critical importance because untreated aggressive prostate cancer increases the risk of 

recurrence, while treatment of healthy tissue and surrounding organs at risk increases the 

risk of morbidity. Furthermore, for men with more advanced cancers, treatment 

intensification using focal radiotherapy boosts to intraprostatic gross tumor volumes has 

been proposed as a strategy to improve outcomes [7, 8]. 

mpMRI has shown promise for detection [9, 10], staging [11] and sextant 

localization [12-14] of prostate cancer. mpMRI can include T2W [9, 15], DW [16], DCE 

[11, 17] and MR spectroscopy [18, 19] images, as well as parametric maps derived from 

these images, such as ADC [20, 21] maps. The European Society of Urogenital 

Radiology has recently published clinical guidelines [10] for prostate mpMRI, including 

a structured reporting scoring system (PI-RADS) which includes, for each lesion, scores 

for each sequence and a score for likelihood of cancer. Such guidelines are aimed at 

scoring lesions and localizing them to standardized prostate regions. However, the use of 

mpMRI for delineation (identifying the boundaries of suspicious regions on imaging) of 

prostate cancer lesions has not yet been widely studied [22, 23]. 

In this study, we investigated the variability of prostate cancer scoring and 

delineation on images from three 3 T mpMRI sequences: T2W, ADC and DCE images. 

Specifically, for lesions scored to be equivocal, likely cancerous or highly likely 

cancerous (PI-RADS likelihood scores 3 – 5), we addressed the following four questions. 

(1) What is the agreement in PI-RADS likelihood and sequence-specific scores (referred 

to hereafter as interobserver score agreement)? (2) What is the average agreement in 

delineated suspicious regions (measured using the Dice overlap coefficient, the mean 
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absolute distance between boundaries, and the absolute volume difference) between 

observers on images from each of these sequences (referred to hereafter as interobserver 

contour agreement)? (3) What is the average agreement in delineated suspicious regions 

between images from the different sequences (referred to hereafter as intersequence 

contour agreement)? (4) What are the interactions of interobserver score agreement, 

interobserver contour agreement and intersequence contour agreement with the 

histological grade, anatomical location and volume of the lesions? 

6.2 Materials and methods  

6.2.1 Participants 

The study was approved by the human subjects research ethics board of our 

institution, and written informed consent was obtained from all subjects prior to 

enrollment. 107 patients were screened for this study between March 2010 and December 

2011, selected from patients being treated for prostate cancer by three collaborating 

urologists and surgical oncologists (including S.P. and J.L.C., with 13 and 30 years of 

experience, respectively). The inclusion criteria were: (1) age 18 or older, (2) clinical 

stage T1 or T2 prostate cancer histologically confirmed on previous biopsy, and (3) 

suitability for and willingness to undergo radical prostatectomy. The exclusion criteria 

(with the numbers excluded in parentheses) were: (1) prior therapy for prostate cancer 

(n=8); (2) use of 5-alpha reductase inhibitors within 6 months of the study start (n=6); (3) 

inability to comply with preoperative imaging (n=1); (4) allergy to contrast agents (n=0); 

(5) sickle cell or other anemias (n=0); (6) insufficient renal function (n=1); (7) sources of 

artifact within the pelvis, such as hip and penile prostheses (n=1); (8) contraindications to 

MRI such as electronic implants, metal in the orbit, cerebral aneurysm clips, 
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claustrophobia and morbid obesity (n=11); and (9) prostate sizes exceeding the 

dimensions of 5.1 cm × 7.6 cm (2 inch × 3 inch) whole-mount histology slides (n=15). In 

total, 17 subjects were included in this study. The demographics and clinical 

characteristics of these subjects are given in Table 6.1. 

Table 6.1: Subject demographics and clinical characteristics.  

Patient age median, range (y)  63, 45–68 

PSA level median, range (ng/mL)  4.8, 1.3–11.2 

Prostate volume estimated from transrectal ultrasound  

median, range (cm
3
)  35, 19–49 

Pathologic stage (number of subjects)  

 T2c 12 

 T3a 5 

Patient overall Gleason score  

(number of subjects) 

 

 3+3 5 

 3+4 11 

 4+3 1 

6.2.2 Imaging 

Subjects were imaged before radical prostatectomy in a 3 T GE Discovery 

MR750 (GE Healthcare, Waukesha, WI, USA) with an endorectal coil (Prostate eCoil, 

Medrad, Inc., Warrendale, PA, USA). The imaging protocol included T2W 2D fast spin 

echo, DCE 3D spoiled gradient-recalled echo, and DW 2D echo-planar sequences, with 

parameters shown in Table 6.2. All phases of the DCE images, without computed 

pharmacokinetic maps, were available for interpretation during scoring and delineation 

tasks. DW images were post-processed on the MRI system console to generate ADC 

images, and both were available for interpretation during scoring and delineation tasks. 
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Table 6.2: MRI sequence parameters.  

Sequence  T2W DCE DW 

Repetition time (ms) 4000–13000 5.6–5.9 4000 

Echo time (ms) 156–164 2.1–2.2 70–77 

Bandwidth (kHz) 31.25 31.25 125.00 

Number of excitations 2 1–2 3 

Field of view (cm) 14 14 14 

Slice thickness (mm) 2.2 2.8 3.3–3.6 

Slice spacing (mm) 2.2 1.4 3.3–3.6 

Matrix 320 × 192 256 × 192 128 × 256 

Number of slices 40 42 20–34 

Flip angle (°) 90 15 90 

Temporal spacing (s) N/A 90 N/A 

6.2.3 Lesion scoring and delineation 

Images from each subject were independently read, blinded to histopathological 

reports, by four observers who were aware of the inclusion criteria for the study: a 

radiology resident (D.W.C.), a radiology fellow (M.B.-J.) and two radiologists (C.R. and 

Z.K.) with 4.5, 2, 5.5, and 2 years of experience in prostate MRI assessment, 

respectively. For each lesion, observers followed the process illustrated in Figure 6.1, and 

described below, for lesion scoring and delineation. Images were assessed following the 

PI-RADS guidelines [10] using ClearCanvas Workstation 7.1 (ClearCanvas Inc., 

Toronto, Canada). These guidelines specify recording, for each lesion, the location within 

a 27-segment template, a 5-point likelihood score [denoting that clinically significant 

cancer is (1) highly unlikely, (2) unlikely, (3) equivocal, (4) likely or (5) highly likely] as 

well as separate 5-point sequence-specific scores for each sequence assessed (i.e. three 

scores; one for each of the T2W, ADC and DCE sequences in our study) where higher 

scores indicate image features associated with cancer. In this study, this record 
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(henceforth referred to as a score assignment) was made only for lesions (henceforth 

referred to as scored lesions) having a PI-RADS likelihood score of 3 (“equivocal”) or 

greater. By a priori agreement, if a scored lesion recorded by at least one observer has no 

corresponding score assignment recorded by another observer, a default PI-RADS 

likelihood score of 2, denoting “unlikely cancerous”, was assigned for the latter observer. 

On each sequence (i.e. T2W, DCE and ADC), each observer delineated a suspicious 

region corresponding to each scored lesion that the observer felt could be contoured. In 

this chapter, the term composite suspicious region refers to the union of the suspicious 

regions (from different sequences) for a scored lesion recorded by an observer. 

Delineations of suspicious regions were performed in ITK-SNAP 2.4 (www.itksnap.org) 

using either the paintbrush or polygon mode (at the observer’s discretion), yielding a 

binary label map depicting each suspicious region. For DCE images, suspicious regions 

were delineated on one phase chosen by the observer. If one or more images was 

considered by an observer to be non-diagnostic due to imaging artifacts, that observer 

could decline to record the corresponding PI-RADS scores and/or to delineate the 

corresponding suspicious regions for that image; these missing data were excluded from 

the measurements of agreement. 
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Figure 6.1: Observers' process for generating the PI-RADS scores and suspicious regions 

analyzed in this study. Thin arrows denote process flow. Thick arrows denote data 

(images, suspicious region contours, and PI-RADS scores). 

6.2.4 Interobserver lesion correspondence  

To calculate interobserver contour and score agreements, correspondences of 

scored lesions between different observers were defined. Between observers, two scored 
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lesions were taken to correspond if their composite suspicious regions overlapped. This 

correspondence approach was intended to yield aggregate lesions which were spatially 

distinct, and therefore each set of corresponding scored lesions is referred to in aggregate 

as a distinct lesion in this chapter. For two cases, the overlap of composite suspicious 

regions did not yield unambiguous lesion correspondence. In these cases, suspicious 

regions were manually corresponded (as described in detail in Appendix B).  

6.2.5 Interobserver score agreement  

The interobserver score agreement was quantified as the average of the absolute 

differences in PI-RADS likelihood and sequence-specific scores between pairs of 

observers for corresponding scored lesions. We further quantified agreement in PI-RADS 

likelihood scores using Schouten's weighted kappa [24] and using the proportion of 

distinct lesions with four-observer consensus on classifying scored lesions with respect to 

2 thresholds: <3 (highly unlikely or unlikely cancer) vs. ≥3 (equivocal, likely or highly 

likely cancerous) and <4 (unlikely cancer or equivocal) vs. ≥4 (likely or highly likely 

cancer). The interactions of PI-RADS scores and interobserver score agreement with 

histological grade, anatomical location (i.e. peripheral zone or non-peripheral zone) and 

volume were quantified using correlation coefficients. 

6.2.6 Interobserver contour agreement  

For each of the sequences, the interobserver contour agreement for corresponding 

suspicious regions was measured using three pairwise metrics: (1) the Dice overlap 

coefficient, (2) the symmetric mean absolute distance (MAD) and (3) the absolute 

difference between volumes. When suspicious regions corresponded across more than 
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two observers, the agreement was averaged across all pairwise comparisons. The Dice 

overlap was computed as the volume of the overlap of two suspicious regions divided by 

the average volume of the two suspicious regions. The symmetric MAD was computed 

by (a) resampling two suspicious regions onto a 3D isotropic grid with a voxel side 

length of 0.25 mm (approximately the smallest voxel dimension in the data set) using 

nearest neighbor interpolation; (b) computing the average 3D Euclidean distance from 

each voxel on the boundary of the first resampled suspicious region to the nearest voxel 

on the boundary of the second resampled suspicious region, and vice versa from the 

second resampled suspicious region to the first; and (c) averaging the two average 

distances. Correlations of the interobserver contour agreements with the histological 

grade, anatomical location, lesion volume as measured on MRI, mean PI-RADS 

likelihood score and the mean PI-RADS sequence-specific score (for the same sequence) 

were assessed. 

6.2.7 Intersequence contour agreement  

For each pair of sequences, the intersequence contour agreement for suspicious 

regions for the same scored lesion was measured using the same three pairwise metrics as 

described in the previous section. When suspicious regions for the same scored lesion 

were identified on a pair of sequences by more than one observer, the metrics were 

averaged across the observers. To account for different imaging grids for different 

sequences, distortion and patient motion, each metric in this analysis was computed by 

(1) interactively rigidly registering the MR images to a common reference frame using 

3D Slicer 3.6 (Surgical Planning Lab, Harvard Medical School, Boston, USA), (2) 

resampling the suspicious regions onto a common 0.25 mm isotropic grid using nearest-
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neighbor interpolation and (3) computing the three pairwise metrics on the resampled 

suspicious regions. The mean intersequence target registration error was estimated to be 

1 mm using intrinsic landmarks (comprising small atrophic cysts in regions of benign 

hyperplasia or in the peripheral zone) on images from 3 subjects (4−6 landmark pairs per 

image pair, 41 landmark pairs in total). Correlations of the intersequence contour 

agreements with the histological grade, anatomical location, lesion volume as measured 

on MRI, and mean likelihood score were assessed. 

Score assignment was performed on all sequences together; however, delineation 

of suspicious regions was performed on each sequence separately, and each observer 

made a subjective judgment of whether or not he/she could adequately delineate on each 

sequence a suspicious region corresponding to each scored lesion. For each sequence, we 

therefore also calculated the ratio of the number of delineated suspicious regions to the 

number of scored lesions. The ideal value of this ratio is 1, where every scored lesion 

was also contoured. 

6.2.8 Interaction factors 

6.2.8.1 Histological grade 

To determine the histological grade for each distinct lesion, digitized histology 

images from the prostatectomy specimens were examined, and the resulting histological 

grades were assigned to distinct lesions based on their corresponding composite 

suspicious regions on MR images. Histology images were independently contoured and 

graded in ImageScope 10 (Aperio Technologies, Vista, CA, USA) using a pen-enabled 

21.5 inch widescreen display (Cintiq 22HD, Wacom Co., Ltd., Otone, Japan) at a 20x 
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equivalent scale (illustrative contours are shown in Figure 6.2) by a clinician (M.G., with 

2.5 years of experience in contouring prostate cancer contours on digital histology under 

the training and supervision of J.A.G. and M.M., genitourinary pathologists with 13 and 

22 years of experience, respectively) blinded to mpMRI. These contours and grades were 

edited if required and confirmed by a genitourinary pathologist (J.A.G. or M.M.) blinded 

to mpMRI. Regions on histological images were delineated as non-cancerous or with a 

Gleason score [25] of 3+3, 3+4, 4+3 or 4+4. The interpretation of these scores is as 

follows. A score of the form A+A (e.g. 3+3) denotes that only Gleason grade A (e.g. 3) 

was present. A score of the form A+B (e.g. 3+4) denotes that Gleason grades A and B 

(e.g. 3 and 4) were present and grade A (e.g. 3) tissue occupied more than 50% of the 

total area of the region. For scores of the form A+B, the exact proportions of Gleason A 

and Gleason B tissue within the region were not recorded due to practical considerations 

arising from the fine-scale admixing of tissues of the different grades. Correspondence 

establishment between distinct lesions identified on MRI and histological regions was 

facilitated by a submillimeter-accurate 3D reconstruction of the mid-gland histology 

sections (Chapter 4) [26]. This reconstruction makes explicit the plane-to-plane 

correspondence between each 2D histology section and the 3D context of an ex vivo MRI 

acquired prior to cutting the specimen and was intended to reduce the impact of observer 

variability during the subsequent interactive visual correspondence of the reconstructed 

histology with the MR images. Because histological regions were contoured and graded 

at a smaller scale than the MR suspicious regions and the relative proportions of tissues 

of different grades for histological regions with scores of the form A+B could not 

practically be recorded, the proportion of grade 3 and 4 within distinct lesions on MRI 
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containing both grades was estimated as an area-weighted average of the grades of 

histological regions, assigning 100% of the area when only one grade was present and 

assigning 75% of the area to the more prevalent grade and 25% of the area to the less 

prevalent grade when more than one grade was present. In this chapter, the terms non-

cancerous lesions, cancerous lesions, and Gleason 7 lesions refer, respectively, to MRI-

defined distinct lesions that did not corresponding to histological cancer, that 

corresponded to any histological cancer, and that corresponded to aggregated histological 

regions with Gleason score 7. 

  

Figure 6.2: Illustrative (a) T2W, (b) ADC and (c) DCE mpMRI images for 3 subjects, 

showing suspicious regions from 4 observers (yellow, magenta, cyan and red contours). 

The Gleason scores (GS) and mean overall likelihood scores (OL) for each lesion are 

shown on the left side, and sequence-specific scores are shown with each image. Panel 

(d) shows post-prostatectomy histology corresponding to the distinct lesion in the top row 

with insets showing the fine-scale contouring of Gleason 3+3 (yellow), 3+4 (cyan), 4+3 

(green) and 4+4 (black) regions.  
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6.2.8.2 Anatomical location 

Because of the differences in mpMRI appearance of tumors in the peripheral zone 

from those elsewhere in the prostate [10, 27, 28], the anatomical location of each distinct 

lesion was categorized as either peripheral zone or non-peripheral zone for the purpose of 

correlation analysis. 

6.2.8.3 PI-RADS scores 

For the correlation of interobserver contour agreement (on each sequence for all 

three metrics) and intersequence contour agreement (on each pair of sequences for all 

three metrics) with PI-RADS scores, the scores were averaged over the observers. 

6.2.8.4 Tumor volume 

Tumor volumes for the analyses in this study were estimated as the average of 

volumes of corresponding suspicious regions. For analyzing positive predictive values 

(PPVs) of PI-RADS likelihood scores as a function of tumor volume on MRI, volumes 

were averaged over all sequences for one observer. For the correlation of interobserver 

and intersequence contour agreements with tumor volumes, volumes were averaged over 

all observers and all sequences. 

6.2.9 Statistical analysis 

Statistical analysis was performed using Matlab R2013a (The Mathworks Inc., 

Natick, USA). Reported overall PI-RADS likelihood scores included six non-integer 

scores lying between 2 and 3 (two lesions), 3 and 4 (one lesion), and 4 and 5 (three 

lesions); these were coded as scores of 2.5 (and excluded from analysis), 3.5 (and 

included) and 4.5 (and included), respectively. Similarly, reported sequence-specific PI-
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RADS scores included five non-integer scores lying between 2 and 3 (one lesion) and 4 

and 5 (four lesions), which were coded as scores of 2.5 and 4.5 (and included), 

respectively. Differences in PPVs for different PI-RADS likelihood scores were assessed 

using 95% confidence intervals on differences in proportions (combined Wilson score 

without continuity correction [29]). Interobserver score agreements were estimated as a 

mean and standard deviation of the score differences, and using Schouten's weighted 

kappa [24]. Spearman’s rank correlation test was used to calculate correlations of 

interobserver score agreements and PI-RADS scores with histological grade (coded as 

ordinals: non-cancerous < Gleason 3+3 < Gleason 3+4 < Gleason 4+3), location (coded 

as 0 for non-peripheral zone and 1 for peripheral zone) and volume. Interobserver and 

intersequence contour agreements were estimated as the mean and standard deviation for 

each metric. For each metric, Wilcoxon signed rank tests were used to compare the 

interobserver contour agreement across sequences, corrected for multiple comparisons 

using Bonferroni-Holm correction [30]. Spearman’s rank correlation test was used to 

calculate correlations of interobserver and intersequence contour agreements with 

histological grade (coded as above), location (coded as above), volume, mean PI-RADS 

likelihood score and mean PI-RADS sequence-specific scores (for interobserver contour 

agreement). We corrected for multiple comparisons using Bonferroni-Holm correction 

(separately for the interobserver and intersequence contour agreements). 

6.3 Results  

Overall, 49 distinct lesions were identified as having a PI-RADS likelihood score 

≥3 by at least one of the observers, yielding 104 score assignments (each distinct lesion 

could be scored by 1 – 4 observers). 26 distinct lesions (and 68 score assignments) 
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corresponded to histological foci, of which 19 distinct lesions (and 48 score assignments) 

had mean contoured volumes ≥0.2 cm
3
 (the smallest clinically significant cancer 

according to [31]) and 9 distinct lesions (and 28 score assignments) had mean contoured 

volumes ≥0.5 cm
3
 (the smallest clinically significant cancer according to [32]). The PPVs 

of score assignments with PI-RADS likelihood scores of 3, 4 and 5 for any histological 

cancer and for Gleason 7 cancer, are given in Table 6.3. PPVs for PI-RADS likelihood 

scores of 5 were higher than those for PI-RADS likelihood scores of 3 or 4; however, we 

had insufficient power to statistically distinguish between PPVs for PI-RADS likelihood 

scores of 3 vs. 4.  
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Table 6.3: Positive predictive values (PPVs) for any histological cancer and for Gleason 

7 cancer of score assignments with PI-RADS likelihood scores of 3, 4 and 5, 

individually, and scores above thresholds ≥3 and ≥4, broken down by lesion volume on 

mpMRI. 

Lesion volume on mpMRI PI-RADS likelihood score Positive predictive value 

  Any cancer Gleason 7 

 3 59% (23/39) 46% (18/39) 

 4 50% (17/34) 41% (14/34) 

Any volume 5 89% (24/27) 85% (23/27) 

 ≥3 65% (68/104) 57% (59/104) 

 ≥4 69% (44/64) 63% (40/64) 

 3 52% (12/23) 43% (10/23) 

 4 52% (12/23) 43% (10/23) 

> 0.2 cm
3
 5 87% (20/23) 83% (19/23) 

 ≥3 66% (48/73) 59% (43/73) 

 ≥4 71% (35/49) 65% (32/49) 

 3 100% (6/6) 83% (5/6) 

 4 57% (8/14) 50% (7/14) 

> 0.5 cm
3
 5 93% (13/14) 93% (13/14) 

 ≥3 80% (28/35) 74% (26/35) 

 ≥4 76% (22/29) 72% (21/29) 

6.3.1 Image assessment 

The key findings from this analysis were that (1) the mean PI-RADS likelihood 

score was correlated with histological grade and volume, (2) interobserver score 

agreement in PI-RADS likelihood scores yielded a kappa value of 0.30, and observers 

agreed more frequently on assigning likelihood scores <4 (unlikely cancerous or 

equivocal) vs. ≥4 (likely or highly likely cancerous) than on assigning <3 (unlikely 

cancerous) vs. ≥3 (equivocal, likely or highly likely cancerous), and (3) the mean 

interobserver differences in PI-RADS likelihood and sequence specific scores ranged 

from 0.6 to 1.2 points over a 5-point scale.  
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The PI-RADS likelihood scores were broken down by histological grade (Figure 

6.3) and mean suspicious region volume (Figure 6.4). Analogous graphs for PI-RADS 

sequence-specific scores are included in Appendix C. As a basis for interpretation of 

these graphs, consider the task of robustly reporting histological foci with Gleason score 

3+3 or higher as cancerous lesions. For this task, the ideal breakdown depicted in these 

graphs would show no non-cancerous foci recorded (i.e. as PI-RADS 3/“equivocal” or 

higher), and all lesions corresponding to cancerous foci recorded and given a PI-RADS 

likelihood score ≥4 by all 4 observers. In contrast, Figure 3 shows that 20 score 

assignments with PI-RADS likelihood scores of 4 or 5, denoting likely or highly likely 

cancerous lesions, were recorded for non-cancerous lesions (demarcated by the dotted 

box on Figure 3). Additionally, 16 of 26 cancerous lesions and 9 of 19 Gleason 7 lesions 

that were assessed and recorded by at least one observer, were denoted as a PI-RADS 

likelihood score of 2 for one or more other observers (recall that by a priori agreement, a 

default likelihood score of 2 was assigned for all observers that did not make a score 

assignment for a distinct lesion recorded by at least one observer). The Gleason 7 false 

negatives are demarcated by the dashed box on Figure 3. Figure 3 does, however, suggest 

a positive relationship between PI-RADS likelihood scores and histological grade. 

Similarly, Figure 4 shows a positive relationship between PI-RADS likelihood scores and 

volume as measured on mpMRI. We identified significant correlations of the mean PI-

RADS likelihood score with volume (ρ=0.6, p=0.0001) and histological grade (ρ=0.6, 

p=0.0001). The correlation between histological grade and volume (ρ=0.3, p=0.051) was 

lower, but approached significance (without multiple comparison correction).We also 

identified trends of correlation (p<0.05 before multiple comparison correction) relating 
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histological grade to the T2W, DCE and ADC PI-RADS scores (ρ=0.3) and relating 

volume to the T2W PI-RADS scores (ρ=0.4).  

 

 Figure 6.3: PI-RADS likelihood scores for lesions broken down by histological grade. 

Each vertical solid line corresponds to a distinct lesion, with horizontal dashes at the PI-

RADS likelihood score for each observer. For each grade, Tukey box plots show the 

interquartile range (IQR), median (dotted line), mean (dashed line), and range of data 

within 1.5 × IQR of the IQR (whiskers). The dotted box denotes “false positives” where 

the PI-RADS likelihood scores denote likely or highly likely cancer for non-cancerous 

lesions. The dashed box denotes “higher grade false negatives” where the observer did 

not record a PI-RADS score for a Gleason 7 lesion. Note that by a priori agreement, a 

default likelihood score of 2 was assigned for all observers that did not make a score 

assignment for a distinct lesion recorded by at least one observer. 
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Figure 6.4: PI-RADS likelihood scores for lesions broken down by mean suspicious 

region volume. Each vertical solid line corresponds to a distinct lesion, with horizontal 

dashes at the PI-RADS likelihood score for each observer. For each volume range, Tukey 

box plots show the interquartile range (IQR), median (dotted line), mean (dashed line), 

and range of data within 1.5 × IQR of the IQR (whiskers). Note that by a priori 

agreement, a default likelihood score of 2 was assigned for all observers that did not 

make a score assignment for a distinct lesion recorded by at least one observer.  

The interobserver score agreement for PI-RADS likelihood scores yielded a 

kappa value of 0.30 across all distinct lesions. On the subsets of cancerous lesions and 

Gleason 7 lesions, the weighted kappa values were 0.35 and 0.34, respectively. 

Interobserver score agreement for assigning likelihood scores <3 vs. ≥3 and <4 vs. ≥4, 

for all distinct lesions, for cancerous lesions, for Gleason 7 lesions and for distinct 

lesions with volumes ≥0.5 cm
3
 are shown in Table 6.4, suggesting higher agreement in 

distinguishing PI-RADS likelihood scores <4 from ≥4 than in distinguishing scores <3 

from ≥3, and slightly higher agreement for more clinically significant lesions (in terms of 
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grade and lesion volume as measured on MRI). The mean ± SD interobserver difference 

in likelihood, T2W, DCE and ADC PI-RADS scores were 0.8 ± 0.4, 0.6 ± 0.6, 1.2 ± 0.9 

and 0.6 ± 0.5 respectively. On Gleason 7 lesions, the differences were 0.9 ± 0.5, 0.7 ± 

0.6, 1.3 ± 0.8 and 0.6 ± 0.5, respectively. Our analysis failed to detect correlations 

relating interobserver score agreement to histological grade, anatomical location or 

volume. 

Table 6.4: Interobserver agreement in assigning PI-RADS likelihood scores for two 

thresholds.  

 Threshold <3 vs. ≥3 Threshold <4 vs. ≥4 

 Weighted 

kappa 

Consensus 

proportion 

Weighted 

kappa 

Consensus 

proportion 

All scored lesions 0.17 24% (12/49) 0.38 47% (23/49) 

Cancerous lesions 0.26 38% (10/26) 0.44 46% (12/26) 

Gleason 7 lesions 0.23 53% (10/19) 0.43 47% (9/19) 

Scored lesions  

with volumes ≥ 

0.5 cm
3
 

0.24 50% (7/14) 0.45 50% (7/14) 

The threshold <3 vs. ≥3 separates unlikely cancerous from equivocal or likely cancerous. The threshold <4 

vs. ≥4 separates unlikely cancerous or equivocal from likely cancerous findings. 

6.3.2 Interobserver and intersequence contour agreement 

The key findings from this analysis were (1) that observers chose to delineate 

suspicious regions on T2W (103/104 score assignments) and ADC (96/104) images more 

frequently than on DCE (87/104) images; (2) ADC images had marginally superior 

interobserver contour agreement (not significant after multiple comparison correction) 

for all three measures compared to T2W images and DCE images; and (3) for all pairs of 

sequences, intersequence absolute differences in suspicious region volumes were 

correlated with PI-RADS likelihood scores and average suspicious region volumes.  
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The mean and standard deviation of the interobserver and intersequence contour 

agreement measurements are shown in Table 6.5. The mean Dice overlap ranged from 

0.3 to 0.5. The mean MAD ranged from 1.5 to 2.4 mm; for comparison, the mean ± 

standard deviation of the distinct lesions' longest diameters (averaged over all suspicious 

regions corresponding to each distinct lesion) was 15.0 ± 5.0 mm. The mean differences 

in absolute volume ranged from 0.2 to 0.5 cm
3
; for comparison, the mean ± standard 

deviation of the distinct lesions' volumes (averaged over all suspicious regions 

corresponding to each distinct lesion) was 0.5 ± 0.9 cm
3
. When including only Gleason 7 

lesions, the interobserver and intersequence contour agreement were within 0.05 (Dice 

overlap), 0.2 mm (MAD) and 0.1 cm
3
 (absolute difference in volume) of those for all 

distinct lesions reported in Table 6.5. Our analysis failed to detect significant differences 

in interobserver contour agreement between the sequences; however, the interobserver 

contour agreement on ADC images was marginally superior for all 3 measures in our 

data, and the intersequence contour agreement between ADC and T2W was marginally 

superior than agreement between other pairs of sequences. 
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Table 6.5: Interobserver and intersequence contour agreement, and comparison of 

interobserver contour agreement across sequences. 

  Dice 

overlap 

mean ± SD 

MAD  

mean ± SD 

(mm) 

Absolute difference in 

volume  

mean ± SD (cm
3
) 

Interobserver 

contour  

agreement  

T2W 0.4 ± 0.2 2.4 ± 2.2 0.5 ± 0.6 

DCE 0.4 ± 0.3 2.2 ± 1.6 0.5 ± 0.7 

ADC 0.5 ± 0.2 1.8 ± 1.9 0.5 ± 0.5 

Intersequence 

contour 

agreement 

T2W – DCE  0.4 ± 0.2 1.6 ± 0.9 0.2 ± 0.3 

T2W – ADC 0.4 ± 0.1 1.5 ± 0.8 0.2 ± 0.2 

ADC – DCE 0.3 ± 0.2 2.0 ± 1.1 0.2 ± 0.5 

SD denotes standard deviation, MAD denotes mean absolute distance between two contour boundaries, 

Dice denotes the overlapping volume as a fraction of the average volume of two contours. See Section 

6.2.6 for details. 

Table 6.6 shows the correlation coefficients between interobserver and 

intersequence contour agreement and each of the interaction factors: the volume; the 

histological grade; the anatomical location; the PI-RADS likelihood score; and, for 

interobserver contour agreement, the corresponding PI-RADS sequence-specific scores. 

The intersequence absolute differences in contoured volumes were correlated with tumor 

volume (0.7<ρ<0.8) and PI-RADS likelihood score (0.5<ρ<0.6) on all sequences, and the 

Dice overlap was correlated with the volume for ADC–DCE images. The interobserver 

absolute differences in contoured volumes were correlated with volume as well 

(0.5<ρ<0.8), and the interobserver Dice overlaps were correlated with the PI-RADS 

likelihood score on DCE. Our analysis failed to detect significant correlation of either the 

interobserver or intersequence contour agreements with histological grade, anatomical 

location or PI-RADS sequence specific scores. 
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Table 6.6: Spearman correlation coefficients* of interobserver and intersequence contour 

agreement with interaction factors.  

   Volume 

 

Histological 

grade 

Anatomical 

location 

PI-RADS 

likelihood 

score 

PI-RADS 

sequence–

specific 

score 

In
te

ro
b

se
rv

e
r
 

T2W 

Dice 0.1 0.0 0.1 0.5 0.5 

MAD 0.3 0.1 -0.3 -0.1 -0.3 

ΔVolume  0.8 0.4 0.1 0.4 0.4 

DCE 

Dice 0.1 0.3 -0.1 0.7 0.5 

MAD 0.2 -0.1 0.0 -0.5 -0.5 

ΔVolume  0.5 0.5 0.2 0.2 0.2 

ADC 

Dice 0.0 -0.2 0.5 0.2 0.2 

MAD 0.4 0.2 -0.5 0.0 -0.1 

ΔVolume  0.6 0.3 -0.1 0.4 0.2 

In
te

rs
eq

u
en

ce
 

T2W – DCE  Dice 0.3 0.2 0.0 0.2 N/a 

MAD 0.3 0.0 0.0 0.2 N/a 

ΔVolume  0.7 0.3 0.0 0.6 N/a 

T2W – ADC  Dice 0.4 0.0 -0.1 0.3 N/a 

MAD 0.0 0.2 0.1 0.1 N/a 

ΔVolume  0.7 0.3 0.1 0.5 N/a 

ADC – DCE Dice 0.5 0.2 -0.1 0.3 N/a 

MAD -0.2 0.1 0.2 -0.1 N/a 

ΔVolume  0.8 0.3 0.1 0.6 N/a 

*Each value in the table represents the correlation coefficient between an interaction factor (by column; see 

Section 6.2.8 for details) and a contour agreement metric (by row; see Section 6.2.6 for details). MAD 

denotes mean absolute distance between two suspicious region boundaries, Dice denotes the overlapping 

volume as a fraction of the average volume of two suspicious regions, ΔVolume denotes absolute 

difference in suspicious region volume. Bolded elements were significant (α=0.05) after multiple 

comparison correction. Bold italicized coefficients were significant (α=0.05) before, but not after multiple 

comparison correction. 



 

223 

 

6.4 Discussion  

The accuracy and precision of localizing cancerous lesions is critical to the 

evaluation and clinical application of lesion-focused biopsies as well as lesion-focused 

therapies, such as cryotherapy, focal-laser ablation, high-intensity focused ultrasound, 

and lesion-targeted radiation boost.  

This work investigated the variability in prostate cancer scoring and delineation 

on mpMRI to address the following four questions. (1) What is the interobserver 

agreement in scoring lesions as equivocal, likely cancerous or highly likely cancerous, 

following the PI-RADS guidelines? (2) What is the interobserver agreement in regions 

delineated on T2W, DCE and ADC images? (3) What is the intersequence agreement in 

regions delineated by an observer on these sequences? (4) What are the interactions 

between these aspects of agreement with the histological grade, anatomical location, and 

volume? In this study, prostate cancer PI-RADS scoring and contouring on T2W, ADC 

and DCE 3 T MRI show promise: likelihood scores correlated with Gleason grade and 

scores of 5 had an 85% PPV for Gleason 7 cancer, but we observed high interobserver 

score and contour variability. 

The use of mpMRI for prostate cancer detection and staging has been widely 

reported [9-11, 17, 19-21, 33], and consensus guidelines have been proposed, including 

the PI-RADS structured reporting system used in this study [10]. In our data set, score 

assignments with PI-RADS overall likelihood scores of 5 had an 85% (23/27) PPV for 

Gleason 7 cancer, whereas those with likelihood scores of 3 and 4 had substantially lower 

PPVs of 46% (18/39) and 41% (14/34), respectively. A similar difference was seen in the 

PPVs for any cancer. In the context of clinical guidelines regarding the use of the PI-
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RADS likelihood score to inform the decision to apply focal therapy to the lesion, setting 

a threshold criterion for the PI-RADS likelihood scores may be valuable; in our study, 

likelihood scores ≥3, ≥4 and =5 had PPVs of 65% (68/104), 69% (44/64) and 89% 

(24/27). Although the small number of Gleason 4+3 tumors in our study precludes strong 

conclusions, we also observed that 75% (9/12) of the score assignments corresponding to 

Gleason 4+3 foci had PI-RADS likelihood scores >4 (including 2 likelihood scores coded 

as 4.5). The prevalence of score assignments with PI-RADS likelihood scores denoting 

likely (17 score assignments) or highly likely (3 score assignments) cancer that did not 

correspond to histological foci suggests that further investigation of image features acting 

as confounders [34, 35] in PI-RADS scoring (particularly PI-RADS likelihood scores of 

4) could be valuable. Such false positive score assignments were made by all four 

observers. There were 26 cancerous lesions identified by the observers, for which there 

was the potential for 104 score assignments (26 cancerous lesions × 4 observers = 104 

potential sets of PI-RADS scores). Of these potential score assignments, there were 36 

false negative instances where the observer did not assign a PI-RADS likelihood score of 

3 or higher. For Gleason 6 lesions, the proportion of these false negatives was higher than 

for Gleason 7 lesions, which is consistent with previously described challenges in 

detecting lower grade cancer on mpMRI [36], and may have marginal clinical 

significance [37]. However, there were 17 false negative instances for Gleason 7 lesions, 

which potentially have higher clinical significance. All four observers made such false 

negative assessments. Note that these data may underestimate the false negative rate, as 

they exclude histological foci not recorded by any observer. The performance of mpMRI 

seen in this study may reflect, in part, the predominantly lower grade cancers in our study 
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population (with patient Gleason scores of G3+3 [n=5], G3+4 [n=11], and G4+3 [n=1], 

with no higher grade cancer), compared to previous studies [23]. Such a lower grade 

cohort may be more reflective of early stage cancer populations than a typical radical 

prostatectomy cohort. 

We observed a correlation of ρ=0.6 between histological grade and the PI-RADS 

likelihood score, and trends towards correlation for each of the sequence-specific scores. 

However, our analysis of interobserver score agreement yielded a weighted kappa value 

of 0.30 (consistent with the fair to moderate agreement reported in recent evaluations of 

PI-RADS assessments [38, 39]), and there was a 0.6 – 1.2 point average interobserver 

difference in the assignment of PI-RADS scores. This interobserver variability may 

represent a barrier that needs to be overcome to realize the potential of PI-RADS 

assessment. The high variability in PI-RADS DCE scores, in particular, may be related to 

the use of a low-temporal-resolution (90 seconds per phase) DCE protocol, or the lack of 

pharmacokinetic DCE maps; our investigation of this issue is currently ongoing. 

mpMRI assessment has also been shown to support localization of cancer to 

prostate sextants [12-14]. This study complements existing studies of regional 

localization by directly evaluating the observer delineation of suspicious regions that 

could be used to define target volumes for lesion-focused diagnostics and therapies, and 

comparing delineations performed on different image sequences. The interobserver 

variability measured in this study suggests that there can be substantial disagreement 

regarding where the boundaries of such delineations should be. This variability injects 

uncertainty into clinical investigations of focal therapy, and may represent a barrier that 

needs to be overcome for the clinical implementation of focal therapy using mpMRI. The 
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intersequence variability observed in this study suggests that the choice of sequence for 

delineation may affect the resulting target volumes, and a marginally improved 

interobserver contour agreement for ADC images suggests further investigation of 

contouring on ADC images. 

The conclusions of this study should be considered in the context of its 

limitations. Because each observer performed the scoring and delineation tasks 

independently of the other observers, interobserver lesion correspondence was defined a 

posteriori based on the overlap of composite suspicious regions, complicating accurate 

correspondence. For example, in theory, two partially overlapping suspicious regions 

intended by different observers to denote two distinct lesions could have been 

corresponded as a single distinct lesion. Alternately, a distinct lesion delineated as one 

lesion by one observer and as two separate lesions by another observer might have no 

well defined one-to-one correspondence between lesions. Such errors could result in 

overestimation of interobserver variability. This was mitigated by visual inspection of all 

corresponded regions, and manual correspondence was used in the two cases where it 

was deemed necessary. Observers' intersequence lesion correspondence was also 

complicated by patient motion between imaging sequences (1 – 13 mm in-plane and 2 – 

10 mm out-of-plane), forcing the observers to mentally register the images during the 

score assignment on mpMRI. In calculating intersequence contour agreement metrics, 

however, rigid image registration with 1 mm mean target registration error was used to 

reduce metric error due to misalignment. The sample included in this study was small and 

contained only three tumors with Gleason score 4+3, only one subject whose overall 

Gleason score was 4+3, and no cancer with Gleason pattern 5. Although interobserver 
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score and contour agreement may be different on such a sample than on one including 

more advanced cancers, our sample may be more representative a group of patients 

suitable for focal therapy. Other limitations include a small number of readers and 

variability in experience of the readers. Examination of correlation of the lesion boundary 

as delineated by the radiologist against the histological boundary was out of the scope of 

this study – this analysis would be necessary to evaluate the accuracy of delineation 

strategies on mpMRI (e.g. whether a target should be delineated on a single sequence, or 

computed from the overlap or combination of delineations on multiple sequences). 

In conclusion, lesion assessments following the PI-RADS guidelines yielded 

cancer likelihood scores that correlated with Gleason scores assessed on post-

prostatectomy histology. Scoring a lesion on mpMRI as having a PI-RADS likelihood 

score of 5 had a PPV of 85% for Gleason 7 cancer, with PPV of 93% for such lesions 

having volumes of > 0.5 cm
3
 measured on mpMRI. However, interobserver agreement in 

the PI-RADS likelihood score yielded a weighted kappa value of 0.30 and average 

interobserver differences in the PI-RADS likelihood and sequence specific scores were 

0.6 –1.2 points over a 5 point scale, suggesting variability that may impede interpretation 

of PI-RADS assessments. The prevalence of PI-RADS likelihood scores denoting likely 

or highly likely cancer for histologically non-cancerous lesions suggests a need for 

further investigation of image features that confound PI-RADS assessments. The 

delineation of suspicious regions was performed more frequently on T2W and ADC 

images than on DCE images. Suspicious regions delineated on ADC images showed a 

trend towards superior interobserver agreement compared to T2W and DCE images (with 

an average interobserver boundary distance of 1.8 mm for ADC images vs. 2.4 mm and 
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2.2 mm for T2W and DCE images, respectively). This suggests further investigation of 

contouring on ADC images instead of, or in addition to, contouring on the more 

commonly used T2W images and perhaps the inclusion of additional imaging 

information (e.g. pharmacokinetic maps computed from DCE).  
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Chapter 7. 

  

Toward prostate cancer contouring guidelines on MRI: 

dominant lesion gross and clinical target volume 

coverage via accurate histology fusion
  † 

7.1 Introduction 

Delineation of prostate cancer target volumes on imaging has the potential to 

contribute to the treatment of men with low-intermediate-risk, localized prostate cancer. 

Therapies targeted at delineated lesions, including focal laser ablation [1], 

cryotherapy [2], and high-intensity focused ultrasound [3], may be suitable curative-

intent treatments for many men with low-intermediate-risk cancers, and have lower 

morbidity than radical prostatectomy or radiation therapy [2, 4]. For men with more 

advanced cancers undergoing radiation therapy, focal boosting of the radiation dose 

within a delineated dominant lesion target volume may reduce the rate of recurrence at 

the dominant lesion and improve outcomes [5, 6]. Over-contouring the actual extent of 

cancer could result in increased damage to prostate tissue and surrounding sensitive 

                                                 
† A preliminary analysis of the data presented in this chapter have been accepted for presentation: 

E. Gibson, M. Gaed, J. A. Gómez, M. Moussa, C. Romagnoli, Z. Kassam, M. Bastian-Jordan, D. W. Cool, 

S. Pautler, J. L. Chin, C. Crukley, G. S. Bauman, A. Fenster, A. D. Ward. "Toward prostate cancer 

contouring guidelines on MRI: dominant lesion gross and clinical target volume coverage via accurate 

histology fusion." To be presented at the American Society for Radiation Oncology Annual Meeting; San 

Francisco, USA; September 2014. A version of this chapter is in preparation for submission: E. Gibson, 

C. Romagnoli, M. Bastian-Jordan, D. W. Cool, Z. Kassam, M. Gaed, M. Moussa, J. A. Gómez, S. Pautler, 

J. L. Chin, C. Crukley, G. S. Bauman, A. Fenster, A. D. Ward, “Toward prostate cancer contouring 

guidelines on MRI: dominant lesion gross and clinical target volume coverage via accurate histology 

fusion” Radiology (in preparation). 
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organs, while under-contouring could result in delivering a lower than intended treatment 

dose to cancerous tissue. 

mpMRI has shown promise for detecting [7, 8] and staging [9] prostate cancer, as 

well as approximate localization of cancer to a sextant of the prostate [10-12]. The 

suitability and optimal use of mpMRI for accurately and precisely delineating 

intraprostatic cancer target volumes, however, has not been well characterized. A recent 

evaluation of delineations within single 2D MRI slices [13] suggests that delineations of 

the visible cancer (hereafter referred to as gross target volumes or GTVs) do not cover all 

histologically identified cancerous tissue for detected cancers, and that adding margins to 

GTVs to account for cancer not visible on imaging (creating clinical target volumes or 

CTVs) may be a suitable approach to achieve adequate histological coverage (defined as 

95% in their analysis). However, a 2D analysis that uses 2D instead of 3D GTVs and that 

excludes cancer extending in the inferior-superior direction may underestimate the 

necessary margins. There is, therefore, a need to evaluate margins in a 3D context for 

CTVs defined in 3D (as would be done in practice). 

Selection of appropriate margins is complex and depends on many factors 

including predictions of how far cancer typically extends beyond GTVs, the treatment-

modality-specific effects of spatially over- and under-treating the cancer and the 

treatment-modality-specific feasibility of treating CTVs with specific shapes and sizes. 

For example, focal laser ablation increases temperatures within a defined volume of 

tissue surrounding the tip of an inserted optic laser fiber and the number of fiber 

applications in a procedure is limited by time and cost; thus, the volume of a CTV is 

important to assessing the feasibility of treatment with this modality.  
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Accurate registration of prostatectomy histology to mpMRI (and corresponding 

GTVs and CTVs) enables the retrospective estimation of the histological cancer covered 

by CTVs with specified margins, characterizing the typical extension of cancer beyond 

GTVs. Although the extent of histological cancer is not known at treatment, prediction 

intervals for histological coverage at specified margins could inform decisions about 

appropriate margins for unseen patients.  

In this pilot study, we investigated the spatial relationships of GTVs contoured on 

different mpMRI sequences and CTVs with isotropic margin expansion from the GTVs 

to the prostate volume and to histologically identified cancer. Specifically, we addressed 

the following three questions: 

 Question 1: What margins must be added to delineated GTVs to achieve 

adequate coverage of histological cancer? Specifically, for true positive GTVs 

detected following PI-RADS guidelines, what margin expansion will yield, with 

high likelihood, CTVs that leave 0%, 5% and 10% residual cancer from 

corresponding histologically identified cancer foci (Gleason score ≥6) and high-

grade cancer foci (Gleason score ≥7)?  

 Question 2: What are the volumes of CTVs defined using such margins? The 

answer to this question illuminates the feasibility of delivering treatment to the 

CTVs using different focal therapy modalities. 

 Question 3: What are the relative volumes of the CTVs defined using such 

margins with respect to the corresponding GTVs and the corresponding 

histological foci? The answer to this question provides information regarding the 
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necessary volumetric expansions of the GTVs, and amount of non-cancerous 

parenchyma that would be treated within the GTVs. 

7.2 Materials and methods 

This study was conducted with the approval of the Human Subjects Research 

Ethics Board of our institution and with the informed consent of all subjects. 

7.2.1 Participants 

Our study population comprised 25 men selected from patients being treated for 

prostate cancer by one of three collaborating urologists. The demographics and clinical 

characteristics of these subjects are given in Table 7.1. 107 patients were screened for 

this study between March 2010 and December 2011. Inclusion criteria included (1) age 

18 or older, (2) clinical stage T1 or T2 prostate cancer confirmed on previous biopsy, and 

(3) suitability for and willingness to undergo radical prostatectomy. The exclusion criteria 

were (1) previous prostate cancer therapy (n=8); (2) use of 5-alpha reductase inhibitors in 

the 6 month period prior to enrollment in the study (n=6); (3) inability to undergo 

imaging prior to the surgery (n=1); (3) allergies to the contrast agents (n=0); (5) sickle 

cell or other anemia (n=0); (6) insufficient renal function (n=1); (7) sources of imaging 

artifacts in the pelvis (e.g. hip or penile prostheses) (n=1); (8) contraindications to MRI 

such as metal in the orbit, cerebral aneurysm clips, claustrophobia and morbid obesity 

(n=11); and (9) prostate sizes exceeding the dimensions of 2 inch by 3 inch whole-mount 

histology slides (n=15).  
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Table 7.1: Subject demographics and clinical characteristics.  

Patient age median, range (y)  63, 45–72 

PSA level median, range (ng/mL)  4.7, 1.3–18.8 

Prostate volume estimated from transrectal ultrasound 

median, range (cm3)  35, 19–49 

Pathological stage (number of subjects)  

 pT2c 17 

 pT3a 7 

 pT3b 1 

Patient overall Gleason score  

(number of subjects) 

 

 3+3 6 

 3+4 17 

 3+4+5 1 

 4+3 1 

 

7.2.2 Imaging 

We acquired mpMRI of the prostate 19±8 weeks (mean±SD) weeks post-biopsy 

and 2±1 (mean±SD) weeks before surgery. mpMRI were acquired on a 3 T GE 

Discovery MR750 (GE Healthcare, Waukesha, WI, USA) with an endorectal coil 

(Prostate eCoil, Medrad, Inc., Warrendale, PA, USA) using T2-weighted (T2W), 

dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) clinical sequences 

detailed in Table 7.2. An additional high-resolution T2W image was also acquired to 

support registration (also detailed in Table 7.2). DW images were processed on the MRI 

console to generate apparent diffusion coefficient (ADC) maps. Images from any 

sequence where 3 of the 4 radiologist noted that the images were non-diagnostic or 

suffered from artifacts or distortion were excluded from the analysis; four ADC images 

were excluded based on this criterion. 
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Table 7.2: mpMRI sequence details.  

Sequence  Clinical T2W Clinical DCE Clinical DWI High resolution 

T2W 

Repetition time (ms) 4000–13000 5.6–5.9 4000 2000 

Echo time (ms) 156–164 2.1–2.2 70–77 144–177 

Bandwidth (kHz) 31.25 31.25 125.00 125 

Number of excitations 2 1–2 3 0.5–2 

Field of view (cm) 14 14 14 14 

Slice thickness (mm) 2.2 2.8 3.3–3.6 1.4 

Slice spacing (mm) 2.2 1.4 3.3–3.6 0.7 

Matrix 320 × 192 256 × 192 128 × 256 320 × 192 

Number of slices 40 42 20–34 84–144 

Flip angle (°) 90 15 90 90 

b-value N/A N/A 600–800 N/A 

Temporal spacing (s) N/A 90 N/A N/A 

 

After resection, the prostate gland was fixed for at least 48 hours in 10% buffered 

formalin. MRI- and histology-visible fiducials [14] were affixed to the specimen and ex 

vivo MR images of the gland were acquired to support histology fusion [15] (described in 

Section 7.2.5). The prostatic apex and base were removed for parasagittal histology, and 

the midgland was cut into 4.4 mm slices using a rotary cutter and was processed using 

our clinical laboratory’s whole-mount histology protocol. Only the midgland histology 

was used in the analysis in this study. Histology was stained with hematoxylin and eosin, 

and digitized using a ScanScope GL (Aperio Technologies, Vista, CA, USA) bright field 

slide scanner at 20x magnification (yielding a 0.5 μm pixel size). 

7.2.3 Lesion scoring and delineation 

mpMRI images were independently read, blinded to histopathological results, by 

four observers, comprising one radiology resident (D.W.C.) and three radiologists (C.R., 
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M.B.-J., and Z.K.) with 5, 6, 2.5 and 2.5 years of experience in prostate MRI assessment, 

respectively. Observers identified lesions using all mpMRI sequences together, and 

following the PI-RADS guidelines [8] assessed the overall likelihood score. For lesions 

judged to be equivocal (PI-RADS likelihood score of 3), likely cancer (4) or highly likely 

cancer (5), the observer attempted to delineate the lesions on images from each of the 

mpMRI sequences. Images were read using ClearCanvas 7.1 (ClearCanvas Inc., Toronto, 

Canada). Lesions were delineated on all image slices using a pen-enabled 21.5 inch 

widescreen display (Cintiq 22HD, Wacom Co., Ltd., Otone, Japan) with ITK-SNAP 2.4 

software (www.itksnap.org) in polygon or paintbrush mode. 

7.2.4 Histological contouring and grading 

Histology images were delineated and graded, blinded to MR imaging, by a 

clinician (M.G.) with 3 years of experience in contouring prostate cancer on digital 

histology images under the supervision of 2 genitourinary pathologists (J.A.G. and M.M.) 

with 13 and 22 years of experience, respectively. Each region of homogenous or 

intermingled Gleason grade was graded and delineated, as illustrated in Figure 7.1. The 

resulting contours were edited, if required, and confirmed by one of the pathologists. 

Histology images were delineated and graded using a pen-enabled 21.5 inch widescreen 

display (Cintiq 22HD, Wacom Co., Ltd., Otone, Japan) with ImageScope 10 software 

(Aperio Technologies, Vista, CA, USA). 



 

240 

 

 

Figure 7.1: Illustrative example of a contoured and graded H&E-stained whole-mount 

histology image (A) with magnified insets (B) and (C), showing homogenous Gleason 

3+3 (brown), intermingled Gleason 3+4 (dark green), intermingled Gleason 4+3 (purple), 

and prostatic intraepithelial neoplasia (light green) contours. 

7.2.5 Histology-mpMRI registration 

Histology images, and the corresponding contours, were registered to the mpMR 

images using a three stage registration. First, the histology images were reconstructed 

into the 3D context of ex vivo MR images using a method employing histology- and 

MRI-visible strand-shaped fiducial markers (Chapter 4) [15]. This method minimizes the 

fiducial registration error, under the space of affine transformations, between cross-

sections of fiducial markers identified on histology and the corresponding curves of the 

strand-shaped fiducial markers on ex vivo MRI. Second, the ex vivo MR images (and 

corresponding histology and contours) were transformed into the space of the high 

resolution T2W in vivo image using a thin-plate-spline (TPS) deformation [16] computed 

from 33–91 control points defined interactively in 3D Slicer 4.2 (Surgical Planning Lab, 

Harvard Medical School, Boston, USA). Finally, the images from the three mpMRI 

sequences were registered to the high resolution 3D T2W image using a rigid 

transformation defined interactively in 3D Slicer. Where residual non-rigid spatial 

distortion was observed between in vivo images (which occurred in 6 ADC images), it 

was mitigated using an interactively defined TPS deformation. 

A B

B

C
C
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The target registration error (TRE) for the histology reconstruction has been 

previously reported (Chapter 4) [15]. The TRE for the rigid mpMRI co-registration was 

estimated by identifying pairs of homologous landmarks and measuring the post-

transformation 3D Euclidean distance between corresponding pairs. The TRE for the TPS 

deformations (ex vivo–in vivo registration and in vivo–in vivo distortion correction) was 

estimated using a leave-one-control-point-pair-out estimate, 

         
       

         
 
     

    7.1 

where    
  and    

 
 are the   -th control point pair (in the moving and fixed image, 

respectively) for the  -th image pair,         is the TPS deformation defined using all 

except the   -th control point pair, and    is the number of control point pairs in the  -th 

image pair. 

7.2.6 Histology fusion 

Because the histology was contoured and graded at a fine scale (see Figure 7.1), 

histology contours were aggregated into foci. Within each histology image, contours 

within 2 mm were considered to be part of the same aggregated histological focus. To 

aggregate contours between adjacent histology images, contours were reconstructed into 

3D (in the space of the ex vivo image) and projected onto a plane midway between the 

reconstructed histology images; any contours that overlapped were considered to be part 

of the same aggregated histological focus. Aggregated foci smaller than 0.1 cm
3
 

(estimated using planimetry as the in-plane area times the histological spacing) with a 

Gleason score of 3+3 were excluded from analysis. True positive GTVs were identified 

by the first author (not involved in mpMRI or histology contouring) using the co-
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registered contoured histology and mpMRI images. Where two observer GTVs 

corresponded to a single aggregated focus, the union of the GTVs was considered as a 

single GTV. 

7.2.7 CTV definition 

Single-sequence CTVs were defined by expanding GTVs on images from each 

sequence (T2W, DCE and ADC) by 3D isotropic margins from 0–30 mm at 0.5 mm 

intervals, with the CTVs constrained to lie within the prostate. Binary masks representing 

the isotropic expansion of the GTVs (computed in the delineated image) were 

transformed to the high resolution T2W image space using the co-registration 

transformations described in Section 7.2.5. Binary masks of the prostate volume, 

computed by thresholding an ex vivo MRI of the resected specimen, were also 

transformed to the high resolution T2W image space, and used to constrain the CTVs to 

the prostate volumes. 

In addition to the single-sequence CTVs, composite CTVs were defined by the 

union of single-sequence CTVs for each pair of mpMRI sequence (i.e. T2W+DCE, 

T2W+ADC and (DCE+ADC) and for the union of all three sequences (i.e. 

T2W+DCE+ADC). For true positive findings where an observer declined to contour on 

one of the sequences, composite CTVs including that sequence were not defined. 

7.2.8 Histological coverage 

The coverage of histologically identified cancer in the midgland was estimated for 

CTVs corresponding to each true positive GTV. Following a stereological approach [17], 

the volumetric proportion of residual cancer was estimated from the proportion by area 
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on the histology sections as the ratio between the total area of residual cancer and the 

total area of cancer across histology samples. CTVs were sampled along the best-fit 

oblique plane to the deformably co-registered histology surface, and histology contours 

were projected on this oblique plane. The histology contours and CTVs were discretized 

onto a 0.27 mm grid (matching the in-plane spacing of the highest resolution in vivo MR 

image). The proportional residual area of cancer for each CTV was computed as the 

proportion of discretized histology pixels containing cancer from the corresponding 

aggregated focus that were not contained within the CTV. The proportional residual area 

of high-grade cancer for each CTV was computed similarly, limiting the analysis to 

pixels containing Gleason grades 4 or 5, and excluding aggregated foci containing only 

Gleason grade 3. To the best of our knowledge, the prognostic impact of small volumes 

of residual cancer post-treatment are not known and may vary with treatment modality, 

challenging the definition of adequate histological coverage. To mitigate this uncertainty, 

we investigated 3 thresholds for residual cancer area: 0%, 5% (following [13]) and 10% 

residual area. 

In order to identify the minimum margin with a high likelihood of achieving the 

specified residual area for a new patient, considering intertumor variability, we computed 

one-sided non-parametric prediction intervals (PIs) for the percentage of residual cancer 

area and for the percentage of residual high-grade cancer. PIs were computed for each 

observer for each type of CTV (3 single-sequence and 4 composite types) at each margin 

size. The confidence level and construction of the PIs are described in Section 7.2.10.  
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7.2.9 CTV volumetrics 

Since individual sequences may consistently over- or under-estimate the extent of 

cancer and different margins could be specified for each CTV type to account for this, 

CTV volumetric analyses across CTV types were based on a fixed residual area criterion 

instead of fixed margin sizes (see discussion for more details). Specifically, for each 

observer and CTV type, the smallest margin that yielded a residual area prediction 

interval upper bound <5% was defined as the PI margin. Different CTV types were 

compared at their respective PI margins. The 5% residual area criterion corresponds to an 

adequate coverage threshold described in previous literature [13].  

We computed the absolute volumes of the CTVs with PI margins, in the space of 

the high resolution T2W image. We compared these volumes to 2 thresholds: 4.5 cm
3
, 

based on reported volumes for focal laser ablations [18]; and 10 cm
3
, based on reported 

volumes for focal radiation boosting [6]. We also computed the relative sizes of the 

CTVs with PI margins with respect to the volumes of the GTVs, in the space of the high 

resolution T2W image. The volume ratios between the CTVs and GTVs were expressed 

as scaling factors (defined as the cube roots of the volume ratios) representing the 

equivalent expansions in each dimension. We computed the relative volumes of the 

CTVs with respect to the histologically identified cancers in a manner similar to the 

residual area calculation, using planimetrics in the space of the best-fit oblique planes to 

the deformably co-registered histology images. The volume ratios between the CTVs and 

cancer foci were expressed as scaling factors (defined as the square roots of the 

planimetric volume ratios) representing the equivalent expansion in each dimension. 
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7.2.10 Statistical analysis 

Statistical analyses were performed in SPSS 21 (IBM Corp., Armonk, NY). The 

impact of tumor and observer variability (as random effects) and the incremental effect of 

contouring on each sequence (as fixed effects) on the minimum margin required to 

achieve 95% coverage were tested using a mixed-effects ANOVA (with an observer × 

tumor interaction term and pairwise sequence inclusion interaction terms). Relative 

contributions of tumor and observer variability to margin variability were computed as 

variance components under the same mixed-effects model. Non-parametric, one-sided 

prediction intervals of residual cancer and residual high-grade cancer were calculated 

aggregated over the N true positive CTVs for each observer for each CTV type at each 

margin size. The confidence levels chosen for these intervals were (N–1)/(N+1), such that 

the prediction interval upper bound corresponded to the penultimate order statistic of the 

sample [19]. This mitigated the sensitivity to outliers of the highest confidence level 

prediction interval (corresponding to the maximum on the sample). 

7.3 Results 

In our data set, 23/25 subjects had midgland aggregated foci included in the 

analysis, yielding 59 aggregated foci. Of the foci larger than 0.1 cm
3

, 76% (22/29) were 

contoured by at least one observer, whereas only 13% (4/30) of the smaller foci were 

contoured. The numbers of foci and the subset that were contoured are shown in Table 

7.3, broken down by volume and Gleason score. Since each focus could be contoured by 

1–4 observers, 72 sets of true positive GTVs were contoured and analyzed. Observers 1–

4 contours 20, 16, 23 and 13 sets of true positive GTVs, respectively. An illustrative set 

of true positive GTVs and selected corresponding CTVs are shown in Figure 7.2. 
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Figure 7.2: Illustrative set of true positive GTVs for a Gleason 3+4 sparse cancer. 

Column A shows 4 sections of midgland histology with regions of Gleason 7 cancer 

(green) and Gleason 6 cancer (cyan) highlighted. Columns B–D show corresponding 

oblique sections through the T2W, DCE and ADC images respectively, with overlaid 

boundaries for the corresponding GTVs (magenta), and CTVs with PI margins for 0% 

(solid line), 5% (dashed) and 10% (dotted) residual area for any cancer (green) and for 

high-grade cancer (yellow). 
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Table 7.3: For each volume range and Gleason score: number of aggregate foci (subset 

with at least on true positive GTV). 

 Volume (cm
3
) 

  <0.1  0.1–0.2 0.2–0.5 >0.5 

Gleason score 6 excluded 5 (3) 3 (1) 1 (1) 

Gleason score 7 30 (4) 8 (7) 9 (7) 3 (3) 

 

The key findings from our analysis were that (1) much of the variance in required 

margin size could be attributed to tumor variability, (2) the required margins to achieve 

0%, 5% and 10% residual cancer with high probability was smallest (4.5–9.0 mm, 1.5–

7.5 mm and 1.5–4.5, respectively, for residual high-grade cancer, and 6.0–11.0 mm, 5.5–

10.0 mm, and 3.0–9.5 mm, respectively, for any residual cancer) for composite GTVs 

defined as the union of T2W, DCE and ADC GTVs; (3) these margins were lower than 

the margins for single-sequence GTVs but in many cases not lower than the margins for 

at least one 2-sequence GTV; and (4) the lower margins for 2- and 3-sequence composite 

GTVs did not result in clear reductions in volumes of the resulting CTVs in cases where 

the difference was <2 mm.  

The residual areas as a function of margin size for each tumor individually are 

included in Appendix D. The per-tumor analysis of required margin to achieve adequate 

coverage of histological cancer was conducted for both all cancer and high-grade cancer, 

and at three thresholds for residual area (0%, 5% and 10%). The mean required margins 

(aggregated over all tumors, CTV types and observers) ranged from 3.5–6.8 mm for all 

cancer and from 2.4–5.0 mm for high-grade cancer. The maximum required margins in 

these analyses ranged from 15–22 mm for all cancer, and 16.5–21 mm for high-grade 

cancer. Details of these analyses are given in Table 7.4. For the 10% residual high-grade 
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cancer analysis, one set of GTVs required margins 6–8 standard deviations above the 

mean required margins for the remaining data. Table 7.4 shows the details of this analysis 

with the corresponding CTVs included and excluded. Excluding this analysis, all three 

random effects were significant factors in the required margins: tumor variability 

(p<0.001), tumor-observer interaction (p<0.001) and observer variability (p≤0.03). In the 

10% residual high-grade cancer analysis with all CTVs included, only the tumor-observer 

interaction was significant; however, with the aforementioned GTV excluded, all three 

random factors were significant. The factors representing additional delineation of 

images from each of the sequences were all significant, with an average reduction in 

required margin of 0.8–1.1 mm for contouring DCE GTVs, 0.3–0.7 mm for contouring 

T2W GTVs and 0.1–0.6 mm for contouring ADC GTVs. Consistently significant 

interaction effects between the addition of T2W and DCE GTVs suggest that their 

incremental values depend on the presence or absence of the other GTV. The variance 

component analysis suggests that tumor variability is the largest contributor to variability 

in required margins; however, tumor-observer interaction and observer effects were also 

significant. 
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Table 7.4: Per-tumor statistical analysis of the minimum margins required to achieve 

specified residual areas. The variance components represent the relative weighting of 

different sources of random variability on the per-tumor margin variability. The final 3 

rows show estimates of the incremental value of delineating images from an additional 

MR sequence, in terms of how much it decreased the margin, on average. The analysis in 

the final column (marked with *) excludes one set of GTVs that required margins 6–8 

standard deviations higher than the mean of the remaining data. 

 Residual cancer Residual high-grade cancer 

 0% 5% 10% 0% 5% 10% 10%* 

Descriptive statistics on minimum margin (mm) 

Mean 6.8 4.7 3.5 5.0 3.3 2.4 2.2 

Minimum 0 0 0 0 0 0 0 

Maximum 22 18 15 21 18 16.5 11 

Variance components of minimum margin (%) 

VarTumor 71 49 43 48 44 2 23 

VarTumor-Observer 10 24 27 18 20 65 23 

VarObserver 5 7 8 10 11 7 9 

VarUnmodeled 13 20 22 24 25 26 45 

Incremental decrease in minimum margin for contouring additional images (mm) 

T2W 0.7 0.5 0.4 0.3 0.3 0.4 0.4 

DCE 1.0 0.9 0.8 1.1 0.9 0.8 0.8 

ADC 0.6 0.5 0.4 0.4 0.3 0.2 0.1 

 

The residual area PI upper bounds for all CTV types for each observer for all 

cancer and for high-grade cancer are shown in Figure 7.3, as a function of margin size. 

The PI margins (the smallest margin where the PI upper bound was <5% residual cancer) 

ranged widely from 5.5–14.0 mm for coverage of all cancer, and from 1.5–11.0 mm for 

high-grade cancer. The PI margins for all cancer and for high-grade cancer are 

summarized in Figure 7.4 and Figure 7.5, respectively. In general, for all observers, for 

all three thresholds on residual area for both all cancer and high-grade cancer, the PI 

margins for the three-sequence composite GTVs (defined as the union of T2W, DCE and 

ADC GTVs) were lower than the PI margins for single-sequence GTVs, with the 
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exception of three cases where the T2W PI margin was the same as the three-sequence 

margin for one observer. However, the PI margins for the 3-sequence composite GTVs 

were not consistently lower than those for the 2-sequence GTVs. The lowest required 

margins for high-grade cancer were 4.5 mm, 1.5 mm and 1.5 mm, for 0%, 5% and 10% 

residual area, respectively, for 3-sequence composite CTVs; however, the number of 

GTVs considered in this estimate was lower (due to fewer included true positive GTVs), 

resulting in a lower confidence level (78%) for these PIs. The 90% confidence PI margins 

for this observer/CTV type were 7.5 mm, 3 mm, and 2.5 mm for 0%, 5% and 10% 

residual area, respectively. 
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Figure 7.3: Upper bound on residual cancer (left) and high-grade cancer (right) 

prediction intervals for 4 observers (rows). Legend denotes CTV types by the first initials 

of the sequences (T=T2W, D=DCE, A=ADC), with the PI confidence level in 

parentheses. The 5% and 10% residual area levels are marked by the horizontal lines. 
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Figure 7.4: PI margins for coverage of low- and high-grade cancer for 4 observers 

(denoted by symbols) for 0%, 5% and 10% residual area for each CTV type. CTV types 

are denoted by the first initials of the sequences (T=T2W, D=DCE, A=ADC) 

 

Figure 7.5: PI margins for coverage of high-grade cancer for 4 observers (denoted by 

symbols) for 0%, 5% and 10% residual area for each CTV type. CTV types are denoted 

by the first initials of the sequences (T=T2W, D=DCE, A=ADC) 

The volumes of CTVs with PI margins for all cancer and for high-grade cancer 

are shown in Figure 7.6 and Figure 7.7, respectively. The median volumes of CTVs and 

the proportions of CTVs with PI margins smaller than 10 cm
3
 and smaller than 4.5 cm

3
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are given in Table 7.5. Of the 53 and 67 outliers shown in the 24 graphs in Figure 7.6 and 

Figure 7.7, respectively, 45/53 and 60/67 correspond to one histological focus, with a 21-

mm longest diameter on whole-mount histology, substantial Gleason grade 4, and 

extraprostatic extension near the bladder neck. The two other foci that led to the 

remaining 8/53 and 7/67 outliers were large diffuse cancers, one Gleason score 3+3 with 

a largest diameter of 36 mm and extraprostatic extension, and one Gleason score 3+4 

with tertiary grade 5, with a largest diameter of 24 mm and extraprostatic extension. 

Median CTV volumes for composite CTVs with PI margins were neither consistently 

lower nor consistently higher than those for single-sequence CTVs. However, for cases 

where the difference between the single-sequence and composite PI margins was < 2 mm, 

the median single-sequence-CTV volumes were smaller by 0–4 cm
3
, while for cases 

where the difference was ≥2, the median single-sequence-CTV volumes were larger by 

0–16 cm
3
.  

Table 7.5: Volumes of CTVs with PI margins. 

 Residual cancer Residual high-grade cancer 

 0% 5% 10% 0% 5% 10% 

Median volume T2W (cm
3
) 16.3 9.8 6.7 9.2 5.8 4.2 

Median volume DCE (cm
3
) 16.8 12.0 8.1 10.4 7.0 4.3 

Median volume ADC (cm
3
) 16.5 13.5 11.3 13.4 8.9 6.7 

Median volume T2W+DCE (cm
3
) 15.8 10.1 6.7 8.4 6.1 3.7 

Median volume T2W+ADC (cm
3
) 12.7 10.5 6.8 10.3 6.3 4.7 

Median volume DCE+ADC (cm
3
) 14.4 11.7 7.0 9.1 5.4 3.2 

Median volume T2W+DCE+ADC (cm
3
) 12.4 10.7 6.0 8.3 5.1 3.2 

Median volume (pooled) (cm
3
) 15.4 11.4 7.7 10.3 6.4 4.4 

Proportion with volume ≤4.5 cm
3 
 0% 3% 22% 9% 32% 51% 

Proportion with volume 4.5–10.0 cm
3 
 20% 39% 41% 40% 35% 28% 

Proportion with volume >10.0 cm
3 

 80% 58% 38% 51% 33% 21% 
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The expansion factors of the CTVs relative to their corresponding GTVs are 

shown in Figure 7.8 for each observer and level of residual PCa area. There are two key 

observations to be made from these plots.  First, the CTVs with PI margin were 

substantially expanded from the delineated GTVs with median linear expansion factors of 

1.3–4.9.  Second, the median expansion factors for 3-sequence composite GTVs were 

consistently lower than those for single sequence GTVs. Note, however, that 3-sequence 

composite GTVs are by construction at least as large, and typically larger, than single-

sequence GTVs. 

The expansion factors of the CTVs relative to their corresponding histological 

foci are shown in Figure 7.9. The key observation to be made from these plots is that 

substantial non-cancerous parenchyma is covered by the CTVs with PI margins for 0%, 

5% and 10% residual cancer area for all observers, with median linear expansion factors 

of 2.7–9.3. Note that these expansion factors incorporate volume due to CTV coverage of 

regions with no cancer as well as CTV coverage of stromal regions between diffuse 

cancerous gland (not included in histological focus volumes). Scaling factors for 

composite CTVs were not consistently larger or smaller than those for single-sequence 

CTVs. 

The mean±SD TRE for the ex vivo–in vivo MR image TPS registrations was 

estimated to be 1.4±0.2 mm aggregated across TRE estimates on 25 MR image pairs. 

Each TRE estimate was calculated using 33–90 control point pairs (1482 control point 

pairs total across all MR image pairs). The mean±SD TREs for the rigid mpMRI co-

registrations to the high resolution T2W images were estimated to be 0.7±0.1 mm for the 

clinical T2W images, 1.0±0.5 mm for the DCE images, and 1.0±0.2 mm for the ADC 
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images, aggregated across TRE estimates on 3 MR image pairs. Each TRE estimate was 

calculated using 4–6 intrinsic landmark pairs (e.g. calcifications and atrophic cysts) per 

MR image pair (41 intrinsic landmark pairs total). For the distortion correction 

registering the 6 distorted ADC images to their respective high resolution T2W images, 

the mean±SD TREs was estimated to be 1.4±0.5 mm aggregated across TRE estimates on 

6 MR image pairs. Each TRE estimate was calculated using 32–65 control point pairs 

(299 control point pairs total across all 6 MR image pairs). The mean±SD TRE for the 

3D histology reconstruction was previously reported to be 0.7±0.4 mm [15] aggregated 

across 232 intrinsic landmark pairs (3–16 intrinsic landmark pairs per histology section 

for 37 histology sections). 
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Figure 7.6: Volume encompassed by CTVs with PI margins for any cancer for 4 

observers (rows) for 0%, 5% and 10% residual cancer area (columns). CTV types are 

denoted by the first initials of the sequences (T=T2W, D=DCE, A=ADC), with the PI 

margin shown above the graph. Box plots show the median, interquartile range (IQR), 

whiskers for the closest points within 1.5×IQR from the IQR, and outliers beyond the 

whiskers.  The horizontal lines mark 4.5 cm
3
 and 10 cm

3
, reported treatment volumes for 

focal laser ablation and focal radiation boosting, respectively. 
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Figure 7.7: Volume encompassed by CTVs with PI margins for high-grade cancer for 4 

observers (rows) for 0%, 5% and 10% residual high-grade cancer area (columns). CTV 

types are denoted by the first initials of the sequences (T=T2W, D=DCE, A=ADC), with 

the PI margin shown above the graph. Box plots show the median, interquartile range 

(IQR), whiskers for the closest points within 1.5×IQR from the IQR, and outliers beyond 

the whiskers. The horizontal lines mark 4.5 cm
3
 and 10 cm

3
, reported treatment volumes 

for focal laser ablation and focal radiation boosting, respectively. 
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Figure 7.8: Scaling factors of the CTVs with PI margins relative to their corresponding 

GTVs for 4 observers (rows) for 0%, 5% and 10% residual cancer area (columns). Y-axis 

shows the cube root of the volume ratio (equivalent scaling factor in each dimension). 

CTV types are denoted by the first initials of the sequences (T=T2W, D=DCE, A=ADC), 

with the PI margin shown above the graph. Box plot shows the median, interquartile 

range (IQR), whiskers for the closest points within 1.5×IQR from the IQR, and outliers 

beyond the whiskers. A similar set of graphs for high-grade cancer only is shown in 

Appendix D. 
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Figure 7.9: Scaling factors of the CTVs relative to their corresponding aggregated 

foci for 4 observers (rows) for 0%, 5% and 10% residual area (columns). Y-axis shows 

the square root of the planimetric volume ratio (equivalent scaling factor in each 

dimension). CTV types are denoted by the sequences initials (T=T2W, D=DCE, 

A=ADC), with the PI margin shown above the graph. Box plot shows the median, 

interquartile range (IQR), whiskers for the closest points within 1.5×IQR from the IQR, 

and outliers beyond the whiskers. A similar set of graphs for high-grade cancer only is 

shown in Appendix D. 
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7.4 Discussion 

Delineation of prostate cancer on imaging has the potential to support multiple 

stages of the clinical workflow. Although mpMRI has shown promise for prostate cancer 

detection, staging and localization, its suitability for delineation is not yet well-

characterized. In this work, we addressed 3 questions related to the suitability of mpMRI 

for delineating target volumes: (1) What margins must be added to delineated GTVs to 

achieve adequate coverage of histological cancer? (2) What are the volumes of CTVs 

defined using such margins? (3) What are the relative volumes of the CTVs defined using 

such margins with respect to the corresponding GTVs and the corresponding histological 

foci? 

The mean margins required for adequate coverage in our data set were 6.8 mm, 

4.7 mm and 3.5 mm for 0%, 5% and 10% residual cancer area, respectively. However, 

the margins required for adequate coverage of specific tumors in our data set ranged as 

high as 22 mm for 0% residual area, 18 mm for 5% residual area and 15 mm for 10% 

residual area. A substantial component of this variability was attributable to tumor 

variability. This suggests a strong need to characterize individual lesions during therapy 

planning to identify lesions that require larger margins. Imaging characteristics used to 

detect cancer, such as the "erased charcoal sign" or "lenticular shape" described in the PI-

RADS reporting guidelines, could be investigated to assess their correlations with tumors 

that need larger margins. 

Additional variability in required margin sizes was attributed to observer 

variability and tumor-observer interaction. Furthermore, there was considerable 

interobserver variability in the identified PI margins for each type of CTV. For CTVs 
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derived from GTVs on 1 or 2 sequences, there was interobserver variability not only in 

the sizes of the margins, but also in which modality yielded the smallest margins. This 

variability might be addressed through training targeted at delineation. Specific training 

in target volume contouring on mpMRI with histological feedback, as has been 

recommended for reading and reporting mpMRI [20], may play a role in reducing the 

observed variability and reducing required margins. Consensus guidelines for how to 

delineate target volumes for focal therapy may also reduce variability. If large 

interobserver variability remains despite training and guidelines, recommendation of 

generally applicable margin guidelines may be challenging. A possible alternative would 

be to develop benchmark databases of co-registered mpMRI and histology with tools to 

allow clinicians to characterize their own performance and develop individualized 

delineation guidelines in terms of optimal sequences and appropriate margins. 

The observed variability suggests that precise identification of the margin for 

individual tumors may be challenging and supports the use of conservative guidelines 

that take into account the variability in required margins, such as prediction interval 

upper bounds.  

The PI margins identified in this study were defined such that an observer using 

these margins on a new patient could have a high confidence (78%–91%) of leaving 0%, 

5%, or 10% residual cancer (or high-grade cancer) area beyond the CTV boundary. The 

CTVs defined based on the composite of the T2W+DCE+ADC GTVs required the 

smallest margins. These three-sequence PI margins for high-grade cancer ranged from 

4.5–9.0 mm, 1.5–7.5 mm and 1.5–4.5 mm for 0%, 5%, and 10% residual high-grade 

cancer area. For covering low and high-grade cancer, the PI margins were higher, ranging 
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from 6.0–11.0 mm, 5.5–10.0 mm, and 3.0–9.5 mm. These margins are higher than 

recently reported margins for adequate tumor coverage [13]. The reported margins are 

not directly comparable, as the previous report aggregated histology-MRI boundary 

distances across all tumors and observers. However, there are two additional key 

differences. First, our analysis was performed in 3D whereas the previous report looked 

only at a single slice of histology (the slice with the maximum cross-sectional area). 

Second, the patients included in the margin estimation in the previous study had higher 

patient Gleason scores (2 G3+3, 1 G3+4, 3 G4+3, 2 G4+4 and 2 G4+5) than patients 

included in our margin estimation (2 G3+3, 18 G3+4, 1 G4+3). Less aggressive cancers 

are harder to detect [21], and may also be harder to delineate reliably.  

Three-sequence CTVs required the smallest margins, and, with few exceptions, 

CTVs defined based on the composite GTVs from two sequences required smaller 

margins that those defined based on a single sequence. This suggests there may be a 

trade-off between the size of the required margins and the amount of target volume 

contouring required. Alternatively, there may be potential for tools that facilitate 

contouring on fused, co-registered mpMRI to reduce required margins.  

Interpreting the need for different margins for different CTV types is complex. As 

a simplified illustration, suppose that GTVs on sequence A were consistently 2 mm 

isotropically outside GTVs on sequence B. A 6-mm-margin CTV on sequence A would 

be identical to an 8-mm-margin CTV on sequence B, and contouring on sequence A with 

a 2 mm smaller margin would confer no advantage. The true situation is more complex, 

as GTVs on different sequences are not necessarily concentric. Notably, however, the 

composite GTVs (defined as the union of single-sequence GTVs) may be larger, in 
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general, than the single-sequence GTVs, which may account, in part, for the smaller 

required margins. For the volumetric analysis, this interaction is mitigated by using PI 

margins. Although composite CTVs with PI margins have smaller treatment volumes and 

cover a smaller proportion of the prostate for some observers, this is not consistent across 

observers. Thus, we are unable to conclude that contouring on multiple sequences and 

applying smaller margins reduces the CTV volumes required to get adequate histological 

coverage with high probability. In particular, where the margins differed by < 2 mm, the 

single-sequence CTVs were smaller, but where the margins differed by ≥ 2 mm, the 

three-sequence CTVs were smaller. There may, however, be other aspects of treatment 

planning where smaller required margins are advantageous. An investigation of the types 

of tissue (prostate parenchyma vs. organ-at-risk) covered by these CTVs may clarify 

whether there is a clinical need to contour GTVs on all three sequences.  

The median volumes of CTVs defined using PI margins ranged from 4–30 cm
3
, 

for CTVs with PI margins for all cancer, and from 2–16 cm
3
 for CTVs with PI margins 

for high-grade cancer, depending on the residual cancer area, the observer and CTV type. 

Assessment of whether these CTVs could be feasibly treated depends on many factors 

including the treatment modality, and the locations of the CTVs relative to organs at 

risks. However, focal laser ablations up to 4.5 cm
3
 using 2 fibers have been reported [18] 

and focal radiation boosting typically targets volumes <10 cm
3
 [6]. Based on volume 

considerations alone, 50–80% of the CTVs with PI margins for 0–10% residual high-

grade cancer area could be targeted with a modality capable of treating targets <10 cm
3
, 

and 9–51% could be targeted with a modality capable of treating targets <4.5 cm
3
. For 

the larger CTVs with PI margins for all cancer, 20–63% could be treated with a modality 
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capable of treating targets <10 cm
3
, but only 0–22% could be targeted with a modality 

capable of treating targets <4.5 cm
3
. Although there were outliers with CTV volumes 

substantially larger than these treatment volumes, they corresponded to large foci with 

extraprostatic extension that would likely not be candidates for tissue sparing focal 

therapies such as focal laser ablation.  

Considering the trade-offs between time for delineation, required margin and 

treatment constraints, one could envision multiple workflows for target volume 

delineation in focal therapy planning incorporating PI margins. In one workflow, one 

could initially attempt to delineate GTVs on all sequences. If all sequences could be 

delineated, smaller margins for three-sequence composite GTVs could be used; 

otherwise, the larger margins required for two-sequence composite or single-sequence 

GTVs could be used. In an alternative workflow, one could initially delineate a single 

sequence and apply larger margins. If the resulting CTV was feasible to deliver and met 

guidelines for sparing organs at risk, it could be delivered; otherwise, additional 

sequences could be delineated and smaller margins used, potentially resulting in target 

volumes that could more feasibly be delivered or that better spared organs at risk. 

The volumes of CTVs with PI margins were large compared to the underlying 

histological cancer (median linear expansion factor: 2.7–9.3). Some of this expansion can 

be attributed to the CTV covering stromal tissue between cancerous glands, particularly 

in diffuse cancers. However, the expansion also includes non-cancerous regions within 

the isotropic expansions used in this study. This suggests potential value in evaluating 

non-isotropic margin expansions, such as different radial and tangential expansions or 

expansion constrained to remain within the prostatic zone containing the GTV. 
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Some of the unmodeled variability in required margins may be due to registration 

error. Misalignment of a focus on the histological reference standard with respect to the 

GTVs could result in an increase or in a decrease in required margins for specified 

coverage, depending on their spatial configuration, with an overall effect of increasing 

variability and introducing a positive bias (smaller, in general, than the quantified 

registration error). Since high confidence prediction intervals are sensitive to extreme 

values, the additional variability would introduce a positive bias to the PI upper bound as 

well. 

The conclusions of this study should be considered in the context of its strengths 

and limitations. Estimates of residual and total cancer area could only be made within the 

histology sections, representing 3–5 thin surfaces within the mid-gland. If the CTV 

coverage characteristics in the apex and base differ from those in the mid-gland, our 

conclusions may not generalize to the entire prostate. Expansion of this analysis to 

include the apex and base histology is ongoing. The sparsity of the sampling, however, is 

a limitation of the clinical workflow, and may contribute to the observed variability. With 

4 observers and high interobserver variability, we were unable to draw conclusions about 

the expected performance of an unseen observer. Reporting the observer characteristics 

separately, however, did elucidate this variability and led to identifying variability as a 

key challenge. The sample size in each analysis, limited to each observer's GTVs 

separately, combined with the skewed distribution of residual areas, resulted in prediction 

interval boundaries that were sensitive to outliers. This was mitigated in our analysis by 

using lower confidence levels. Due to the fine scale of the cancer delineations on 

histology in our study, the planimetric volume estimates do not include stromal tissue that 
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would be included in more typical coarse scale delineations; thus, our volume estimations 

may be equivalent to larger histological tumor volumes reported in the literature.  

In conclusion, the delineation of GTVs on mpMRI has high interobserver 

variability in the optimal sequence(s) to use for delineation and in the expansion margins 

needed to achieve a 0–10% residual cancer area with high probability. These margins 

were smallest for targets defined by the union of delineations on T2W, DCE and ADC 

images: 4.5–9.0 mm, 1.5–7.5 mm and 1.5–4.5 mm for CTVs intended to leave 0%, 5% 

and 10% residual high-grade (Gleason score ≥7) cancer area, respectively, and 6.0–11.0 

mm, 5.5–10.0 mm, and 3.0–9.5 mm for CTVs intended to leave 0%, 5% and 10% 

residual cancer of any grade. However, the smaller margins for the composite three-

sequence GTVs did not result in consistently smaller CTVs, compared with the CTVs 

resulting from the larger margins around single-sequence GTVs. The CTVs resulting 

from these margins had volumes that may preclude focal treatment with some volume-

constrained modalities for many patients. In order to facilitate margin recommendations 

that yield CTVs that can be feasibly targeted in most patients, reduction of interobserver 

and intraobserver variability in delineation should be a priority.  
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Chapter 8. 

  

Contributions of the thesis, applications and suggestions 

for future work 

 

8.1 Contributions of the thesis 

This thesis contributes advances in methods, concepts and knowledge in several 

areas related to the four research questions posed in the introduction:  

 How does registration error impact the statistical power of imaging validation 

studies?  

 What is the performance (in terms of reconstruction error and robustness) of an 

extrinsic fiducial-based histology reconstruction method, and how does this compare 

to alternative approaches based on image-guided slicing and intensity-based image 

registration?  

 What is the variability of lesion scoring (using consensus-panel-recommended PI-

RADS guidelines [1]) and contouring on mpMRI? 

 What are appropriate margins around observers’ target volumes to achieve 

histological coverage of detected cancers?  

The following sections address contributions related to each question in turn.  
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8.1.1 Research question 1: How does registration error impact the statistical 

power of imaging validation studies? 

Chapter 2 introduced a new approach to evaluating registration error, by 

considering registration in the context of imaging validation studies seeking to make 

an inference, and evaluating registration error by its impact on the statistical power 

of a study. Registration techniques can be evaluated based on their registration error; 

however, criteria for whether a registration is sufficiently accurate are application-

dependent [2] and depend on the success criteria for the application. In the context of 

studies that aim to make an inference, one success criterion is whether the study outcome 

is a true positive, correctly rejecting the null hypothesis. Statistical power is the 

probability of rejecting the null hypothesis when it is false. By evaluating registration 

error with respect to the statistical power of a study incorporating the registration, we can 

express a success criterion for registration in terms of an established success criterion for 

the application. Thus, this thesis has advanced knowledge in registration evaluation by 

contributing a statistically justifiable approach for evaluating registration accuracy in 

studies that culminate in a statistical test.  

Chapter 2 also derived and evaluated new power calculation formulae that 

relate sample size, the minimum detectable difference and registration error in one 

class of imaging validation study. In addition to proposing an approach for evaluating 

registration accuracy, we reduced the concept to practice, by deriving statistical power 

calculation formulae for studies aiming to detect a significant signal difference between 

foreground and background regions defined using a registered reference standard, and 

applying the formulae to a case study. The derived formulae enable study designers to 



 

271 

 

answer three key questions related to study design. (1) Given a specified sample size and 

a specified effect size to detect, what is the maximum acceptable mean error for a 

registration method in this study? (2) Given a quantified registration error and a specified 

effect size to detect, what is the minimum sample size to accrue? (3) Given a specified 

sample size and a quantified registration error, how small an effect can be detected? Thus, 

this thesis advanced knowledge in registration evaluation by contributing a statistically 

rigorous way to answer key questions in the design of one class of imaging validation 

studies. 

8.1.2 Research question 2: What is the performance (in terms of 

reconstruction error and robustness) of an extrinsic fiducial-based histology 

reconstruction method, and how does this compare to alternative approaches 

based on image-guided slicing and intensity-based image registration? 

Chapter 3 characterized spatial relationships of histology sections relative to 

the tissue slices from which they were cut, and identified that an isotropic scaling 

deformation accounts for the majority of the in-plane deformation, and that the 

front face assumption— that histology sections correspond to the front face of tissue 

sections from which they were cut — introduces seemingly small but potentially 

impactful reconstruction errors. The process of acquiring histology sections involves 

chemically processing tissue slices, embedding them in paraffin, mounting them onto a 

microtome, cutting through the tissue slices until full cross-sections are exposed, cutting 

4-µm-thick sections of tissue, floating the sections on a water bath and mounting them to 

slides. These processes could potentially result in substantial removal of tissue from the 
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tissue slice and potentially induce substantial deformation. By comparing intrinsic 

landmarks on histology and MR images of the tissue slices, we identified where the 

histology sections were cut from within the tissue slices and quantified the deformation. 

Since previous histology reconstruction methods have used a wide range of 

transformations (rigid [3], similarity [4, 5], affine [6, 7], or thin-plate-spline [8, 9]) to 

account for deformation during processing, we assessed how well different 

transformations compensated for the in-plane deformation. Since many previous 

histology methods [4, 5, 7, 9-12] have made the front face assumption, we assessed its 

strength by measuring the depth and orientation of the section within the tissue slice, and 

estimated the impact on reconstruction error of making the assumption. The incremental 

error due to different in-plane deformations and the front face assumption was seemingly 

small (1.4 mm); however, analyzing the resulting reconstruction errors in the context of a 

hypothetical imaging validation study of 0.2 cm
3
 tumors (using the approach presented in 

Chapter 2), suggested that the assumption could result in a 1.5 fold increase in sample 

size. Thus, the thesis advanced knowledge in histology reconstruction by quantifying the 

strength and impact of assumptions that are commonly made in histology reconstruction. 

Chapter 4 presented a fiducial-based method for 3D reconstruction of 

histology images that was not disruptive to the clinical diagnosis, could be 

implemented with little specialized equipment (beyond ex vivo MR imaging), and 

compensates for variability described in Chapter 3. As described in Section 1.2.3.3, 

there have been three main approaches to histology reconstruction. Image-guided-slicing-

based methods that constrain the orientation of gross slicing have the potential to disrupt 

standard clinical slicing rules and typically assume histology corresponds to the front face 
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of tissue slices. Methods based on additional imaging of the specimen allow more 

flexible slicing, but also typically assume histology corresponds to the front face of tissue 

slices. Image-registration-based methods have the potential to minimize disruption to the 

clinical workflow and mitigate the variability introduced by histology sectioning; 

however, they rely on image features that may be disrupted by the presence of cancer or 

other abnormalities. The approach presented in this chapter leverages extrinsic fiducials 

to reconstruct histology to the context of an ex vivo MR image without making 

assumptions about the position of histology relative to their corresponding tissue slices, 

thereby (1) allowing flexibility in the gross slicing to suit pathologists' requirements, and 

(2) mitigating the variability introduced by histology sectioning. The use of extrinsic 

fiducials instead of intrinsic image information allows the method to be robust to imaging 

characteristics of the prostate tissue. Thus, this thesis advanced knowledge in histology 

reconstruction by presenting a new method for reconstruction that is less disruptive and 

more robust than existing approaches.  

Chapter 4 also presented an approach to identify pairs of homologous point 

fiducials on imaging to support the measurement of the TRE of histology 

reconstruction. Identification of homologous point landmarks on histology and MR 

imaging has been identified as a challenging problem, and a previous histology 

reconstruction method used this as a justification to avoid measuring TRE for their 

method [9]. Many other reconstruction methods also reported surrogates for registration 

error instead of TRE (overlap of the prostate gland [7, 8], prostate boundary 

distances [13, 14], qualitative assessment of prostate cancer tumor alignment [11, 15], 

post-optimization similarity metric values [15], or image intensity properties [16]). In this 
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chapter, we depicted and described illustrative homologous point landmarks that could be 

identified on histology and ex vivo MR, and validated the reconstruction using 184 such 

landmark pairs across 34 histology sections. Thus, this thesis advanced knowledge in 

histology reconstruction by describing homologous point landmarks that could be used to 

measure TRE between histology and ex vivo MRI. 

Chapter 4 also presented a direct comparison of the fiducial-based method to 

an alternative approach based on image-guided slicing, showing that the fiducial-

based algorithm had a lower mean error. Many existing approaches for histology 

reconstruction guided the slicing of the prostate specimen in a controlled way to facilitate 

reconstruction. In this chapter, we evaluated this approach by directly comparing it to the 

fiducial-based method presented in this chapter in terms of the TRE. To the best of my 

knowledge, this represented the first direct comparison of two substantially different 

approaches to histology reconstruction. We demonstrated that the fiducial-based method 

had a lower TRE than the image-guided-slicing-based method. This was consistent with 

the observations in Chapter 3 that assuming histology sections correspond to the front 

faces of tissue blocks, as was assumed in the image-guided-slicing-based approach, 

introduces a small incremental error. Thus, this thesis advanced knowledge in histology 

reconstruction by demonstrating the higher accuracy of the presented fiducial-based 

approach over the image-guided-slicing-based approach. 

Chapter 5 presented a direct comparison of the accuracy and robustness of 

the fiducial-based method described in Chapter 4 to an alternative image-

registration-based approach based on maximizing normalized mutual information, 

and identified that the image-registration-based approach was not a robust solution 



 

275 

 

to histology reconstruction. Decades of research in image registration have produced 

flexible tools, such as the normalized-mutual-information similarity metric [17], that have 

been widely applied to the registration of images from different modalities. One could 

imagine that a flexible image registration approach maximizing normalized mutual 

information between histology and ex vivo MR images could trivially yield an accurate 

and robust reconstruction without the need for fiducials. In this chapter, we evaluated this 

approach by directly comparing it to the fiducial-based method. We compared the 

robustness to initializations perturbed away from the reference position defined by 

manually identified landmarks, and the accuracy after a practically achievable 

initialization. While the fiducial-based approach had negligible sensitivity to 

initialization, the image-registration-based approach was sensitive to initialization and 

further analysis demonstrated that the similarity metric was less optimal at the reference 

point than at convergence points away from the reference point (suggesting that the 

similarity metric is a contributor to the lack of robustness). Thus, the thesis advanced 

knowledge in histology reconstruction by demonstrating that a non-customized image-

registration-based approach using the normalized mutual information did not yield a 

reconstruction technique robust to initialization error. This does not, however, preclude 

the possibility that image-registration-based methods customized to the task could result 

in robust histology reconstructions. 
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8.1.3 Research question 3: What is the variability of lesion scoring (using 

consensus-panel-recommended PI-RADS guidelines [1]) and contouring on 

mpMRI?  

Chapter 6 investigated lesion scoring according to the established PI-RADS 

structured reporting guidelines for mpMRI. We found a correlation between PI-

RADS overall likelihood score and Gleason grade, and corroborated recent reports 

of fair to moderate agreement in PI-RADS scores and a high (85% in our analysis) 

PPV for a PI-RADS overall likelihood score of 5. Consensus guidelines for prostate 

cancer detection and reporting on mpMRI have been published recently, and 

characterizing the performance of observers applying these guidelines may contribute to 

the evaluation and optimal use of the guidelines. In this chapter, we looked at the level of 

agreement between observers, and the relationship between lesion scoring and 

histological cancer. Our analysis of interobserver score agreement yielded a kappa of 0.3 

in the PI-RADS overall likelihood score, consistent with recent evaluations of the 

guidelines [18, 19] noting fair to moderate agreement. The high positive predictive value 

of a PI-RADS overall likelihood score of 5 was also consistent with a recent report [20], 

although their observed PPVs were somewhat higher than ours for overall likelihood 

scores of 3–5. Although these are not new findings, the contribution of findings from 

multiple centers is important to the evaluation of consensus guidelines. The correlation 

between the PI-RADS overall likelihood score and prostatectomy Gleason grade on 

whole-mount histopathology has not, to the best of my knowledge, been previously 

identified, and corroborates a previous finding of correlation between the sum of PI-

RADS sequence-specific scores and biopsy Gleason grade [21]. Thus, the thesis 
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advanced the knowledge of a lesion scoring under a consensus-recommended structured 

reporting system by presenting an unreported correlation between the PI-RADS overall 

likelihood scores and Gleason grade, and by accumulating evidence regarding the 

interobserver variability and predictive value of PI-RADS overall likelihood scores.  

Chapter 6 also investigated lesion delineation on multi-parametric MRI and 

characterized the variability in delineation between observers and between different 

mpMRI sequences. Delineations of cancer target volumes may support delivery of 

lesion focused therapies; however, the accuracy and variability of such delineations are 

not well characterized. In this study, four observers delineated lesions on different 

mpMRI sequences, enabling the measurement of variability in lesion delineation between 

observers, and between different mpMRI sequences. Although no clear advantage of any 

one sequence emerged, our descriptive measurements of contour agreement quantified 

the high variability between observers and between mpMRI sequences, a finding which 

had not been previously reported. Thus, this thesis advanced knowledge in lesion 

delineation on mpMRI by characterizing the interobserver and intersequence variability 

in contouring. 

8.1.4 Research question 4: What are appropriate margins around observers’ 

target volumes to achieve histological coverage of detected cancers? 

Chapter 7 evaluated the histological coverage of clinical target volumes 

defined on multi-parametric MR images and (1) identified a range of expansion 

margins that yielded 90%, 95% and 100% histological coverage with high 

probability in study observers; (2) identified that composing delineations on 

multiple modalities reduced the required margins, but did not consistently reduce 
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target volumes; and (3) identified intraobserver and interobserver variability as a 

priority for achieving histological coverage with high probability with target 

volumes small enough to feasibly treat. In targeted treatments, a common way to 

address uncertainty in target volumes is to add margins to the GTVs, but the appropriate 

margins for cancer GTVs defined on mpMRI are not yet established. A recent study [22] 

reported that a 5 mm margin around GTVs delineated on mpMRI was sufficient to cover 

95% of histologically defined cancer, and 8 mm was sufficient to cover 100%. However, 

this analysis aggregated histology-MRI contour distances across all observer and tumors, 

and was performed in 2D, ignoring the extent of cancer in the inferior-superior direction 

and possibly underestimating the required margins. In this chapter, we evaluated in 3D 

the histological coverage of GTVs defined on mpMRI at a range of margins, separating 

our analysis by sequence(s) used to define the GTVs and by observer. The key findings, 

described above, do not result in a clear recommendation on margins that should be used 

for focal therapy trials; however, they provide guidance on ranges of margins that could 

be considered for evaluation and elucidated the presence of substantial variability that 

may challenge the evaluation of lesion-focused therapies using target volume delineation 

on mpMRI. Thus, this chapter advanced knowledge in lesion delineation by reporting 

margin sizes to achieve 90–100% histological coverage with high confidence for four 

observers and elucidating the interobserver variability in margin sizes and variability in 

which sequences are optimal for contouring.  
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8.2 Applications and future directions 

The methods developed in this thesis support research applications in several 

directions. In the following sections, a number of these potential applications will be 

discussed, and remaining gaps in knowledge will be described. 

8.2.1 Evaluation and refinement of existing and novel imaging 

mpMRI has shown potential to support many aspects of the clinical workflow; 

however, detection of central gland tumors, assessing cancer aggressiveness and planning 

treatment remain challenging. Thus, prostate cancer imaging remains an active research 

direction. New imaging technologies are being developed, such as endogenous sodium 

imaging [23, 24] and hyperpolarized carbon imaging [25, 26]. New derived images 

computed from existing imaging are being developed, such as high b-value DW 

images [27], diffusion compartment model imaging [28] and alternative DCE parametric 

maps [29]. Computer-aided detection and delineation tools are also being developed [30, 

31]. All of these methods need to be evaluated to assess their clinical utility. Because of 

the slow natural history of prostate cancer, evaluating novel imaging technology with 

respect to outcome may introduce unacceptable delays. Initial evaluation of imaging 

technology with respect to a surrogate endpoint, such as agreement with a co-registered 

histological reference standard, has the potential to identify promising imaging 

technology early for more thorough validation in clinical trials. 

This research direction can be pursued already using techniques presented in my 

thesis, with adaptations to register the images of interest to the in vivo or ex vivo MRI. 

Preliminary investigations of 18F-fluorocholine PET/CT and PET/MR [32], endogenous 

sodium imaging [33], radiofrequency time series ultrasound [34] and derived images 
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computed from DCE MRI [29] using techniques presented in my thesis are currently 

ongoing, and a multi-centre evaluation of additional imaging technologies incorporating 

these techniques is scheduled to begin in the near future. However, this research direction 

could be facilitated substantially by the automation of an accurate registration from ex 

vivo to in vivo MRI with appropriately quantified registration error. Nir et al. [35] 

presented an approach that uses magnetic resonance elastography; however, this 

technology is not widely available and could require substantial alteration of clinical 

imaging to implement. Surface-based techniques for ultrasound to MRI registration in 

fused TRUS-MRI biopsy systems [36, 37] may be adaptable to this problem as well. 

Histology-based imaging evaluation has the potential to rapidly identify imaging 

technologies with the potential for accurate diagnosis, patient stratification and treatment 

delivery without invasive procedures and hasten their clinical evaluation and adoption. 

8.2.2 Use in clinical training  

Accuracy and variability in prostate cancer image interpretation is related to 

reader experience. Reading and reporting MRI images with pathological feedback has 

been identified as an important component of developing and maintaining expertise in 

prostate cancer image interpretation [38, 39]. Educational curricula for delineation (of 

whole prostates) have improved contouring variability, and curricula for interpretation 

involving (unregistered) pathological feedback have improved accuracy and variability in 

prostate cancer detection [40]. The development of an interactive training platform that 

presents imaging alongside a co-registered histological reference standard may support 

clinicians in developing and maintaining expertise in image interpretation and 

delineation. 
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The techniques presented in my thesis enable the accurate spatial alignment of 

histology with mpMRI. Presenting these data, which are typically not available to 

radiologists, in an interactive training platform may support training. However, effective 

presentation of this material to maximize learning may pose challenges, and substantial 

research and development may be needed to achieve the educational potential of these 

data. Educational cognitive psychology may provide direction in addressing some of 

these challenges. For example, high cognitive load due to complex interactions between 

information from multiple sources may interfere with learning and may need to be 

addressed within the training tools [41]. Embedding training tools within the context that 

the knowledge will be applied (e.g. in a radiologist's clinical picture archiving and 

communication system [PACS]) may improve learning [42]. Integrating such principles 

into a training tool may facilitate improvements in clinician performance. Furthermore, 

although ongoing training with pathological feedback has been suggested in consensus 

findings [38, 39] and unregistered pathology feedback has improved detection rates [40], 

it has not yet been demonstrated that training with co-registered pathological feedback 

will result in better patient outcomes; this hypothesis needs to be tested to demonstrate 

the clinical value of such an educational platform.  

A fused imaging-histology training platform that supports clinicians in developing 

and maintaining expertise in prostate cancer image interpretation could improve the 

accuracy and reduce the intra- and interobserver variability in imaging interpretation and 

delineation. This could enable more consistent clinical use of imaging, and more precise 

characterization of the diagnostic, prognostic and therapeutic value of imaging. It could 

support imaging applications, such as focal therapy planning, where variability remains a 
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challenge. Such a tool could also enable the wide-spread adoption of prostate cancer 

imaging beyond academic hospitals by enabling clinicians with smaller prostate imaging 

case loads to develop and maintain expertise. 

8.2.3 Development and evaluation of consensus guidelines for contouring 

Consensus guidelines have been established for many stages of the prostate 

cancer clinical workflow, including prostate cancer detection [1], focal therapy [39] and 

pathology interpretation [43]. Although mpMRI has been recommended for focal therapy 

planning [39], there are currently no clinical guidelines for how to contour prostate 

cancer lesions on mpMRI for lesion-focused therapies.  

This thesis could support the development of consensus guidelines directly by 

providing evidence regarding lesion delineation variability and predicted histological 

coverage for target volume margins, and indirectly by supporting evaluation of lesion 

delineation in future studies. One could also imagine a guideline consensus panel process 

that involved (1) the interpretation and delineation of mpMRI by panel members, (2) 

comparison to a co-registered histological reference, and (3) consensus discussion about 

the results of this comparison. However, consensus guidelines are typically developed 

based on multiple sources of information and considering a substantial body of clinical 

experience and literature. Further studies, and in particular large multi-centre studies, of 

lesion delineation are required to establish the evidence to support consensus.  

Consensus guidelines for lesion delineation on prostate cancer imaging could 

improve consistency in lesion delineation, support the meaningful comparisons of 

outcomes across studies of targeted biopsy and lesion-focused therapies, and facilitate the 

translation of such procedures to widespread clinical use.  
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8.3 Remaining gaps in histology-imaging fusion methods 

This thesis has made contributions towards addressing the 4 criteria for histology-

imaging fusion methods described in Section 1.2.3.3 (non-disruptive, spatially accurate, 

robust, and widely implementable). There remains room for further improvement in 

histology-imaging fusion methods. In particular, there is no appropriately validated 

existing method that can register histology collected following standard clinical 

pathology protocols to mpMRI images collected using standard radiology protocols, 

without collection of intermediate data. Such a method could potentially enable large 

studies leveraging retrospective imaging and pathology data, enable studies of older data 

with known patient outcome, and enable the incorporation of histology-imaging fusion 

into routine clinical reporting. Appropriate prospective evaluation of the accuracy and 

variability of such a method is critical because in retrospective or ongoing use, there may 

be insufficient information to confirm the accuracy of a fusion. Ideally, the evaluation 

would include the estimation of the distribution of target registration errors measured 

using homologous point landmarks across a data set large enough to allow the 

construction of high-confidence prediction intervals for unseen cases. The evaluation 

should also include an assessment of robustness including the variability in accuracy, and 

the rate and causes of failed registrations. Although these criteria may be challenging to 

meet, further progress towards these ideals would be valuable and meeting them could 

potentially transform the use of histology-imaging fusion in prostate cancer imaging. 
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Appendix A. Derivation of the variance of    

The variance of this distribution is the mean of the covariance matrix elements 

                     
 
        , where     is the random variable representing the 

intensity of the  -th sample, and      is the mean of    . The distribution of the  -th 

sample depends on whether the sample is from a region    (denoted      ) or   
  

(denoted      ). For any pair of samples    , there are four possible outcomes:       

and      ;       and      ;       and      ; or       and      . We denote the 

probabilities of these outcomes as    ,    ,    , and    , and the expected values of 

these outcomes as    ,    ,     and    . We can express the covariance as a weighted 

sum of the four possible outcomes: 

                                        A.1 

We can express these expected values in terms of population parameters by noting 

that                       , and                   . Expanding the 

polynomial in the expected value, and noting that           , and       

            is the covariance of    and   , yields the expressions 
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if the  -th and  -th samples are from the same sampling region, and   otherwise, where 

    if    , and   otherwise. Note that                     
 , and         

            
 , and that        and        are independent of   and  . 
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Because samples from different regions are independent (assumption 1 in Section 

2.2.1) and regions have a constant size (assumption 6 in Section 2.2.1), the covariance 

matrix is blockwise diagonal, where each block represents one sampling region. By 

isolating the terms of the expected value that are independent of   and  , we can express 

the sum of the covariance within each block as 

           
  

         
  

         
  

            
  

    
           

 

     
            

 

 

A.6 

If we express the probabilities as integrations of conditional probabilities, conditional on 

the value of the fractional overlap, and then reorder the summation terms, we show that 

     
  

                                  

  

     A.7 

and we can show that similar expressions hold for    ,    ,    ,          and 

        . The conditional probabilities can be expressed as polynomials of   , which can 

be expressed in terms of population parameters of  : 
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  A.13 

By substituting these equations into Expression A.6, we can calculate the mean over all 

covariance matrix elements to be 

 
     
  

  
   

      
     

     
    

   
    

     
       

    
 

    
  

   
 

 
 

  
A.14 

For conciseness, we introduce two new terms:   
     

     
  and     

     
    

    
 . With this notation,  

     
  can be rewritten as 
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Appendix B. Large specimen pathology processing 

schedule 

London Health Sciences Centre's standard clinical pathology laboratory protocol 

for large specimens consists of processing tissue slices through baths of graded alcohols, 

xylene, and paraplast on a Tissue-Tek vacuum infiltration tissue processor (Sakura 

Finetek USA, Inc., Torrance, USA) following the schedule shown in Table B.1.  

Table B.1: Our hospital's standard clinical pathology laboratory protocol for large 

specimens. 

Solution Duration 

(hours) 

Temperature 

(°C) 

Vacuum 

(inches) 

Pressure 

(PSI) 

80% ethanol, 20% 

formalin 

1 40 15 7 

95% ethanol, 5% formalin 2 40 15 7 

100% ethanol 1 40 15 7 

100% ethanol 2 40 15 7 

100% ethanol 2 40 15 7 

100% xylene 1 40 15 7 

100% xylene 1 40 15 7 

100% xylene 2 40 15 7 

100% paraplast 1 60 15 7 

100% paraplast 1 60 15 7 

100% paraplast 1 60 15 7 

100% paraplast 1 60 15 7 
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Appendix C. Supplementary material to Chapter 6 

C.1 Manual correspondence for two distinct lesions 

During the interobserver correspondence of suspicious regions, two cases had 

spatial relationships where overlap of composite suspicious regions did not yield one-to-

one lesion correspondences. In the first case, a composite suspicious region A1 from one 

observer overlapped in different amounts with two composite suspicious regions B1 (Dice 

metric of 0.7) and C1 (Dice metric of 0.09) defined by another observer; in this case, A1 

was taken to correspond with B1, and not with C1. In a second case, three observers each 

made a score assignment and delineated large mutually overlapping composite suspicious 

regions A2, B2 and C2 and the fourth observer made two score assignments and 

delineated two smaller composite suspicious regions D2 and E2. It was clear by inspection 

of the contours that the fourth observer contoured two subregions of the distinct lesion 

contoured by the other observers; in this case, the fourth observer's two lesions were 

taken to be a single scored lesion, the PI-RADS scores in the corresponding score 

assignments were averaged and the union of the corresponding suspicious regions were 

taken to correspond with A2, B2 and C2. 

C.2 PI-RADS sequence-specific scores broken down by grade and 

volume 

In each of the following figures, the PI-RADS sequence-specific scores (i.e. T2W, 

DCE and ADC scores) from score assignments are broken down by histological grade or 

mean suspicious region volume. Each vertical solid line corresponds to a distinct lesion, 

with horizontal dashes at the PI-RADS sequence-specific score for each observer. For 
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each grade/volume range, Tukey box plots show the interquartile range (IQR) box, 

median (dotted line), mean (dashed line), and range of data within 1.5 × IQR of the IQR 

(whiskers). Note that sequence-specific scores, unlike likelihood scores, were not 

assigned by default when no score assignment was made, so not all observers are 

represented for each distinct lesion. 

 

Figure C.1: PI-RADS T2W scores broken down by histological grade.  
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Figure C.2: PI-RADS DCE scores broken down by histological grade. 

 

Figure C.3: PI-RADS ADC scores broken down by histological grade. 
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Figure C.4: PI-RADS T2W scores broken down by mean suspicious region volume.  

 

Figure C.5: PI-RADS DCE scores broken down by mean suspicious region volume.  
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Figure C.6: PI-RADS ADC scores broken down by mean suspicious region volume.  
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Appendix D. Supplementary material to Chapter 7 

 

Figure D.1: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual GTVs delineated on T2W images for 4 observers (rows). 

Legend shows prediction interval (PI) confidence levels. The 5% and 10% residual area 

levels are marked by the horizontal lines. 
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Figure D.2: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual GTVs delineated on DCE images for 4 observers (rows). 

Legend shows prediction interval (PI) confidence levels. The 5% and 10% residual area 

levels are marked by the horizontal lines. 



 

300 

 

  

Figure D.3: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual GTVs delineated on ADC images for 4 observers 

(rows). Legend shows prediction interval (PI) confidence levels. The 5% and 10% 

residual area levels are marked by the horizontal lines.  
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Figure D.4: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual composite T2W+DCE GTVs for 4 observers (rows). 

Legend shows prediction interval (PI) confidence levels. The 5% and 10% residual area 

levels are marked by the horizontal lines. 
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Figure D.5: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual composite T2W+ADC GTVs for 4 observers (rows). 

Legend shows prediction interval (PI) confidence levels. The 5% and 10% residual area 

levels are marked by the horizontal lines.  
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Figure D.6: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual composite DCE+ADC GTVs for 4 observers (rows). 

Legend shows prediction interval (PI) confidence levels. The 5% and 10% residual area 

levels are marked by the horizontal lines. 
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Figure D.7: Residual cancer (left) and high-grade cancer (right) for CTVs expanded by 

various margins from individual composite T2W+DCE+ADC GTVs for 4 observers 

(rows). Legend shows prediction interval (PI) confidence levels. The 5% and 10% 

residual area levels are marked by the horizontal lines. 
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Figure D.8: Scaling factors of the CTVs with PI margins for high-grade cancer relative 

to their corresponding GTVs for 4 observers (rows) for 0%, 5% and 10% residual high-

grade cancer area (columns). Y-axis shows the cube root of the volume ratio (the 

equivalent scaling factor in each dimension). CTV types are denoted by the first initials 

of the sequences (T=T2W, D=DCE, A=ADC), with the PI margins for high-grade cancer 

shown above the graph. Box plots show the median, interquartile range (IQR), whiskers 

for the closest points within 1.5×IQR from the IQR, and outliers beyond the whiskers. 
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Figure D.9: Scaling factors of the CTVs relative to their corresponding aggregated 

high-grade foci for 4 observers (rows) for 0%, 5% and 10% residual area (columns). Y-

axis shows the square root of the planimetric volume ratio (the equivalent scaling factor 

in each dimension). CTV types are denoted by the first initials of the sequences (T=T2W, 

D=DCE, A=ADC), with the PI margins for high-grade cancer shown above the graph. 

Box plots show the median, interquartile range (IQR), whiskers for the closest points 

within 1.5×IQR from the IQR, and outliers beyond the whiskers. 
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Chapter 4 
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