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Abstract 

With the development of nanotechnology, piezoelectric nanostructures have attracted a surge 

of interests in research communities for the potential applications as transistors, sensors, 

actuators, resonators and energy harvesters in nanoelectromechanical systems (NEMS) due 

to their high electromechanical coupling and unique features at the nano-scale. Piezoelectric 

nanomaterials have been characterized to possess size-dependent electromechanical coupling 

properties from both experimental and theoretical perspectives. Therefore it is of great 

importance to investigate the physical mechanisms of these distinct nano-scale structure 

features in order to fulfill the design and application of those piezoelectricity-based 

nanodevices.  

Due to large surface to volume ratio and manifest strain gradients typically present in 

nanostructures, surface effects and flexoelectricity are commonly believed to be responsible 

for the size-dependent electromechanical properties of piezoelectric nanomaterials. This 

thesis aims to develop modified continuum mechanics models with the consideration of the 

surface effects and the flexoelectricity to theoretically investigate such size effects. Based on 

the classical Kirchhoff plate model and the extended linear piezoelectricity theory, the 

influence of flexoelectricity on the static bending and the transverse vibration of a 

piezoelectric nanoplate (PNP) is firstly examined. Then the surface effects including the 

residual surface stress, the surface elasticity and the surface piezoelectricity are further 

incorporated to develop a more comprehensive modified Kirchhoff plate model in addition to 

the flexoelectricity. Variational principle is adopted to derive the governing equations and the 

corresponding boundary conditions for a clamped PNP.  

Ritz approximate solutions for the static bending and the free vibration of the PNP 

indicate that the influence of the flexoelectricity and the surface effects is more prominent for 

thinner plates with smaller thickness. The simulation results also demonstrate that such size 

effects on the electromechanical coupling behaviors of the PNP are sensitive to the surface 

material properties, the applied electrical load and the plate dimensions. Moreover, it also 

suggests that the possible frequency tuning of PNP-based resonators through the applied 

electric voltage could be modified by either the flexoelectricity or the surface effects.  
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The current work is claimed to provide increased understanding on the fundamental 

physics of the size-dependent electromechanical coupling properties of piezoelectric 

nanostructures and thus benefit the design and applications of PNP-based nanodevices. 
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Chapter 1  

1 Introduction  

1.1 Piezoelectric nanomaterials and their size-dependent 

properties 

Piezoelectric materials represent a particularly interesting class of smart materials, 

possessing highly efficient electromechanical coupling, i.e., piezoelectricity, which is a 

unique feature for non-centrosymmetric dielectric materials. For such kind of crystals, the 

center of the positive charge coincides with the center of the negative charge without any 

applied force, resulting in zero polarization. However, when an external force is applied, 

the centers of the positive and negative charges undergo relative displacement with 

respect to each other and induce a dipole moment. Those dipole moments give rise to the 

polarization. In contrast, for centrosymmetric crystals, the centers of the positive and 

negative charges still coincide with each other even under uniform strains. Thus no 

polarization is induced in the crystals, indicating no piezoelectricity for centrosymmetric 

dielectrics. The direct piezoelectric effect is defined as the change in electric field with 

the applied mechanical stress or strain and the generation of the stress or strain in 

response to the applied electric field is accordingly referred as the converse piezoelectric 

effect (Cady, 1946; Lew et al., 2011). With the development of nanotechnology and 

synthesis techniques, a variety of piezoelectric nanomaterials have been synthesized 

under different growth conditions. In general, nanostructured materials are defined as 

materials with morphological features on the nano-scale, which are smaller than one tenth 
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of a micrometer in at least one direction (Mishra and Sethy, 2013). Those nanostructures 

can be classified into three groups based on their dimensions (Fang et al., 2013), 

including zero-dimensional (0D) nanoparticles (Capsal et al., 2011); one-dimensional 

(1D) piezoelectric nanostructures such as nanowires (Wang et al., 2006), nanotubes (She 

et al., 2007), nanobelts (Wang et al., 2007), and etc.; and two-dimensional (2D) 

piezoelectric nanostructures such as nanofilms (Yamano et al., 2012) and nanoribbons 

(Qi et al., 2010). Such nanostructured materials may possess special physical and 

mechanical properties stemming from their nano-scale features. In particular, the 

enhanced electromechanical coupling of piezoelectric nanomaterials makes them 

attractive for the potential applications as generators, sensors and transducers. (Wang et 

al., 2006; Sun et al., 2010; Lew et al., 2011; Fang et al., 2013) in nanoelectromechanical 

systems (NEMS). In order to further explore the piezoelectric nanomaterials and apply 

them commercially, it is of great importance to get a thorough and comprehensive 

understanding of their electromechanical coupling properties at the nano-scale. 

It was reported from the existing experimental observations that the physical 

properties of piezoelectric nanostructures are different from their bulk counterparts when 

their characteristic size scales down to the nano-scale. For example, the elastic moduli of 

ZnO nanowires were found to increase pronouncedly with the decreasing diameter of the 

nanowires when the nanowire size was reduced to a certain small value, demonstrating 

the size-dependent features of nanomaterials (Stan et al., 2007; Agrawal et al., 2008; 

Chen et al., 2006).  The effective piezoelectric coefficient of ZnO nanobelts was 

experimentally determined through a piezoresponse force microscopy by Zhao et al. 

(2004) and it was demonstrated to be significantly larger than that of the bulk ZnO. In 
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addition to the experimental work, computational methods have also been adopted to 

capture the size-dependent properties of piezoelectric nanomaterials. For example, 

Kulkarni et al. (2005) conducted molecular dynamic simulations to investigate the 

ultimate tensile stress and the Young’s modulus of the ZnO nanobelts when subjected to 

tensile loadings. It was found in this work that the elastic response was dependent on the 

orientation and size of the nanobelts. Agrawal and Espinosa (2011) also found the giant 

size dependence of the piezoelectric coefficient of ZnO and GaN nanowires by 

performing the first principle-based density function theory calculation. In order to fulfill 

the potential applications of the piezoelectric nanomaterials, it is essential to understand 

the origins and underlying physics of such size dependency of the electromechanical 

coupling. 

1.2 Literature review 

1.2.1 Size-dependence attributes: flexoelectricity and surface effects  

Due to the manifest strain gradients and large surface to volume ratio typically presented 

in the nanostructured materials, flexoelectricity and surface effects are commonly 

believed to be responsible for the size-dependent properties of nanostructured materials.  

Flexoelectricity is defined as a spontaneous polarization in dielectrics in response to 

strain gradients or nonuniform strain fields. In contrast to the traditional 

electromechanical coupling, i.e., piezoelectricity which only exists in the non-

centrosymmetric dielectrics, flexoelectricity is a universal effect present in all dielectric 

materials since the strain gradients locally break the inversion symmetry of the material 

structure and thus lead to polarization even in the centrosymmetric dielectrics 
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(Maranganti and Sharma, 2009). Phenomenologically, the polarization induced by the 

flexoelectricity is proportional to the strain gradients and the flexoelectric coefficients. In 

general, such flexoelectric effect is less significant compared to the piezoelectric effect 

for macro-scale piezoelectric materials due to the relative small values of the flexoelectric 

coefficients. However, the flexoelectricity may become comparable when the 

characteristic size of the structure scales down to the nano-scale (Majdoub et al., 2008) 

since the strain gradients are inversely proportional to the structure characteristic size. 

Therefore it is necessary to incorporate the size-dependent flexoelectric effect in 

investigating the electromechanical coupling behaviors of piezoelectric nanomaterials. A 

thorough and comprehensive review of the fundamental physics, influences and potential 

applications of the flexoelectricity in solids has been conducted by Nguyen et al. (2013), 

Yudin and Tagantsev (2013) and Zubko et al. (2013).  

In parallel to the flexoelectricity, surface effects also play a significant role in 

characterizing the size effects of piezoelectric materials at nano-scale. Due to the 

different constraints of the surface atoms and the bulk ones, the energy associated with 

the atoms at and near the surface is different from the atoms in the bulk (Streitz et al., 

1994) rendering the formation of the free surface energy in the solids. The concept of the 

surface stress was introduced by Gibbs (1906) as the work-conjugate to surface strain 

with respect to surface energy. Since the effect of surfaces on the nearby atoms generally 

extends to a few atomic layers acting like a transition interphase, the Gibbs idealization 

ascribes the surface energy and the surface stress to a “mathematical surface” with zero 

thickness. The effect of surface stress is generally not considered in the conventional 

continuum solid mechanics theories (Wang et al., 2011). However, neglecting such effect 
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will no longer be accurate when the characteristic size of the materials scales down to the 

nanometers due to the large surface to volume ratio typically present in the 

nanostructures. Such surface effects may significantly contribute to the size-dependent 

properties of nanomaterials. For elastic nanomaterials, a general continuum model 

incorporating the surface effects was elaborated by Gurtin and Murdoch (1975). Under a 

reasonable assumption, a surface can be regarded as a thin layer with negligible thickness 

adhered to the bulk without slipping (Cammarata, 1994; Miller and Shenoy, 2000). The 

constitutive and equilibrium equations for the surface layer are different from those in the 

bulk of the solid. 

The size effects on the electromechanical coupling behaviors of piezoelectric 

nanostructures have recently stimulated a surge of interests in the research communities.  

This literature review will elaborate the current state of art research about the size-

dependent surface effects and the flexoelectricity in the following sections. 

1.2.2 Characterization and influence of the flexoelectricity 

Tagantsev (1985) developed a phenomenological description of the flexoelectricity and 

suggested that the flexoelectric coefficients might be proportional to the dielectric 

susceptibility. This perception was later justified by a series of experimental work 

conducted by Ma and Cross (2001; 2002; 2005; 2006). Additionally, the flexoelectric 

coefficients of some dielectrics such as BaTiO3 and SrTiO3 were computed via the first 

principle theory and the ab initio calculation (Hong and Vanderbilt 2013; Xu et al., 2013; 

Yin and Qu, 2014). These investigations provide basis for further quantitatively 

characterizing the flexoelectric effect in dielectrics.  
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It was reported in the literature that the flexoelectricity opens new avenues for 

tuning the physical properties of nanoferroelectrics. For example, Lee et al. (2011) has 

demonstrated that the flexoelectricity can modify the domain configurations and the 

hysteresis loop of the ferroelectric epitaxial thin films. The dielectric constants of the 

ferroelectric epitaxial thin films were found to reduce due to the flexoelectricity (Gatalan 

et al., 2004). It was explained by Majdoub et al. (2009) that the dead layer effect caused 

by the flexoelectricity was responsible for the lower capacity of the nanocapacitors. 

Moreover, the apparent piezoelectric coefficients of piezoelectric nanostructures were 

found to be magnified by the flexoelectricity (Majdoub et al., 2008). Due to this 

enhanced electromechanical coupling induced by the flexoelectricity, it was also 

proposed by Fousek et al. (1999) and Sharma et al. (2010) that the mechanism of 

flexoelectricity allows the possibility of creating piezoelectric materials by using non-

piezoelectric constituents. Eliseev et al. (2009) studied the property changes for the 

ferroelectric thin pills and nanowires with Landau-Ginsburg-Devonshire 

phenomenological approach and demonstrated that the flexoelectricity alters unit-cell 

symmetry and renormalizes all the polar, piezoelectric, and dielectric properties of the 

nanostructures. Chen and Soh (2012) also adopted the Landau-Ginsburg-Devonshire 

phenomenological model to capture the influence of the flexoelectricity upon the electric 

polarization in bilayer nanocomposite thin films and pointed out that the flexoelectricity 

induced polarization becomes more prominent with the decreasing film thickness. 

Tagantsev and Yurkov (2012) phenomenologically suggested that the standard 

mechanical boundary conditions of the nanostructures might be modified by the 

flexoelectricity.    
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In order to further explore the flexoelectric effect, it is essential to establish 

theoretical frameworks with the consideration of this nano-scale structure feature. Some 

efforts have been devoted in this aspect. Based on the linear piezoelectricity theory 

developed by Toupin (1956), Maranganti et al. (2006) proposed a mathematical 

framework for nonpiezoelectric dielectrics accounting for the flexoelectricity and 

provided explicit analytical solutions for the general embedded mismatched inclusion 

problem. Shen and Hu (Hu and Shen, 2010; Shen and Hu, 2010) established a more 

comprehensive theoretical model incorporating the flexoelectricity, surface effects and 

electrostatic force for the nanosized dielectrics. Based on these theoretical fundamentals, 

the influence of the flexoelectricity on the physical and mechanical properties of 

piezoelectric nanostructures has been theoretically investigated. For example, Majdoub et 

al. (2008) reported the giant enhancement of the apparent piezoelectric coefficient of 

piezoelectric and nonpiezoelectric nanobeams by using a modified Euler beam model 

with the incorporation of the flexoelectric effect, which was also validated by atomistic 

simulation results. The effect of flexoelectricity on the electric potential generated in bent 

ZnO nanowires has been investigate by Liu et al. (2012). The simulation results suggest 

that the consideration of the flexoelectricity may bridge the gap between the results from 

the classical piezoelectricity theory and the experimental measurements for nano-scale 

dielectrics. Based on the modified Euler-Bernoulli beam and Timoshenko beam theories 

with the consideration of the flexoelectricity, the electroelastic responses and the 

vibrational behaviors of one-dimensional bending piezoelectric nanostructures have been 

studied by Yan and Jiang (2013a; 2013b) and it was found that the flexoelectric effect is 

more manifest for the thinner beams with smaller thickness. However, the theoretical 

modeling of the effect of the flexoelectricity upon the electromechanical coupling 
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behaviors of piezoelectric nanostructures is far from complete and sufficient. Therefore it 

is necessary to further uncover the flexoelectric effect on the size-dependent properties of 

piezoelectric nanomaterials with modified continuum modeling methods. 

1.2.3 Investigation on the surface effects 

Pioneered by Gurtin and Murdoch (1975), an underlying framework addressing the 

surface elasticity theory was developed to incorporate the surface effects. According to 

the surface elasticity theory, the nanostructure is decomposed into a bulk part and a 

surface part, in which the surface can be modeled as a thin layer with negligible thickness. 

The material properties and constitutive equations for the surface are different from those 

of the corresponding bulk counterpart. It is worth mentioning that the distinct surface 

material parameters can be obtained by experiment measurements and atomistic 

simulations. For example, Izumi et al. (2004) have successfully calculated the residual 

surface stress and the surface elastic constants of the crystal and amorphous silicon by 

molecular dynamics method. Shenoy (2005) also developed a method for the 

determination of the surface elastic constants of some metallic crystals based on the 

embedded atom simulations. Dai et al. (2011) have highlighted the concept of surface 

piezoelectricity and calculated the surface piezoelectric constants of ZnO, SrTiO3 and 

BaTiO3 by using a combination of a theoretical framework and atomistic calculations. 

The size-dependent properties of nanostructures have been extensively investigated 

from both experimental measurements (Zhao et al., 2004; Tabib-Azar et al., 2005; Chen 

et al., 2006; Jing et al., 2006; Ni and Li, 2006; Stan et al., 2007) and atomistic 

simulations (Zhang et al., 2008; Kulkarni et al., 2005; Makeev et al., 2006; Rudd and Lee, 

2008; Agrawal et al., 2009; Hu and Pan, 2009). However, due to the extreme difficulty of 
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experiments performed on nanostructures and the computing expensiveness of the 

atomistic simulations, it is natural to resort to the modified continuum theories with the 

incorporation of structure features for modeling the size-dependent physical properties of 

nanostructured materials due to the efficiency of such a method.  

The size-dependent properties of elastic nanomaterials are commonly believed to 

attribute to the surface effects. Based on the linear surface elasticity model developed by 

Gurtin and Murdoch (1975), the size-dependent properties of nanostructures due to the 

surface effects have been widely explored by the modified continuum models from both 

the static and dynamic aspects. Miller and Shenoy (2000) characterized the difference of 

the effective stiffness of nanosized structural elements from the model incorporating the 

surface effects and the standard continuum mechanics approach. It was found that such 

difference depends on the size of the structures which was in good agreement with the 

direct atomistic simulations. Based on the modified Euler-Bernoulli beam model and the 

generalized Young-Laplace equations, the effects of surface elasticity and surface stress 

upon the elastic properties of static bending nanowires with different boundary conditions 

have been investigated by He and Lilley (2008). Wang and Feng (2007; 2009) addressed 

the effects of the residual surface stress and the surface elasticity upon the buckling and 

vibrational behavior of the nanowires. Moreover, some attention has also been paid to 

investigate the surface effects upon the mechanical properties of the two dimensional 

nanostructures. For example, Lu et al. (2006) proposed a modified plate theory and 

accordingly derived the governing equations for both the Kirchhoff plate model and 

Mindlin plate model with the consideration of the surface effects. This work provided a 

theoretical basis for performing the size-dependent static and dynamic analysis of the 
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plate-like nanostructures. Later Assadi et al. (2010) conducted the dynamic analysis of 

the nanoplate with surface effects based on the modified Kirchhoff plate model. It was 

reported that the discrepancy between the dynamic characteristics obtained from the 

modified continuum model and those from the classical continuum theory increases 

significantly for the plates with smaller thicknesses and larger aspect ratios.   

Nevertheless, the surface elasticity model may be insufficient to accurately predict 

the size-dependent properties of piezoelectric nanomaterials due to the exclusion of the 

surface piezoelectricity. By extending from the surface elasticity model, Huang and Yu 

(2006) established the fundamental framework for the surface piezoelectricity model with 

the consideration of the surface piezoelectricity in addition to the residual surface stress 

and the surface elasticity. Their work demonstrated that the surface piezoelectricity 

significantly influences the stress and electric fields of a piezoelectric ring when the ring 

size scales down to nanometers. Based on this surface piezoelectricity model, Zhang et al. 

(2012) examined the surface effects on the buckling of piezoelectric nanofilms subjected 

to the electrical loading. The results in their work indicated that such influence on the 

critical buckling voltage of the piezoelectric nanofilm is sensitive to the film thickness, 

the length-to-thickness ratio and the sign of the residual surface stress. The surface effects 

on the wrinkling of a piezoelectric nanofilm on a compliant substrate were analytically 

investigated by Li et al. (2011) which revealed that such effects are dependent on the film 

thickness. Moreover, Yan and Jiang (2011a; 2011b; 2012a; 2012b) have systematically 

conducted modified continuum mechanics modeling to predict the static and dynamic 

behaviors of piezoelectric nanobeams/nanowires and nanoplates with the consideration of 

the surface effects. It was reported from their simulation work that the electromechanical 
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responses, bending, vibrational and buckling behaviors of the piezoelectric 

nanostructures are size-dependent and are prominently influenced by the surface effects. 

Accordingly, it is of great importance to take the effects of the residual surface stress, 

surface elasticity and the surface piezoelectricity into account in investigating the 

electromechanical coupling of the piezoelectric nanostructures. 

1.3 Objectives 

Both the experimental measurements and theoretical studies unambiguously present the 

size-dependence of the electromechanical coupling properties of piezoelectric 

nanomaterials. A full understanding on such characteristic nano-scale features is 

necessary for better design and applications of piezoelectricity-based nanodevices. Since 

plate structure is one of the fundamental building blocks for the device applications, the 

current work will focus on a piezoelectric nanoplate. The main objective of this thesis is 

to provide a fundamental understanding of the physics governing the size-dependent 

electromechanical coupling behaviors of a clamped piezoelectric nanoplate based on a 

modified Kirchhoff plate model with the incorporation of the nano-scale features of the 

structure. Specific work includes: 

(1) Investigating the flexoelectric effect on the electroelastic responses and 

vibrational behaviors of a piezoelectric nanoplate.  

(2) Investigating the size effects on the electromechanical coupling fields of a 

bending piezoelectric nanoplate due to surface effects and flexoelectricity. 
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1.4 Thesis outline 

Chapter 1 presents a general introduction to the piezoelectric nanomaterials and their 

size-dependent properties and reviews existing studies on the flexoelectricity and the 

surface effects. 

In Chapter 2, a modified Kirchhoff plate model with the consideration of the 

flexoelectricity is developed. Simulation results will be presented and interpreted to show 

how the flexoelectricity influences the static bending and free vibrational behaviors of a 

clamped piezoelectric nanoplate. 

A more comprehensive model with the consideration of both the surface effects and the 

flexoelectricity is proposed in Chapter 3. Simulation results are demonstrated to show the 

combined influences of flexoelectricity and surface on the electromechanical coupling 

properties of a clamped bending piezoelectric nanoplate. 

Chapter 4 summarizes and concludes the thesis and provides some recommendations for 

the future work. 
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Chapter 2  

2 Flexoelectric effect on the electroelastic responses and 

vibrational behaviors of a piezoelectric nanoplate  

2.1 Introduction 

Electromechanical coupling, referring to the interplay between electric fields and 

mechanical fields, has been widely explored in the development of piezoelectricity-based 

devices in transduction technology, including transducers, sensors, resonators and energy 

harvesters (Yang, 2006). Such a conventional electromechanical coupling, in particular 

between the electric polarization and a uniform strain, is a unique feature for non-

centrosymmetric dielectric materials, such as piezoelectric materials. In contrast, 

flexoelectricity, referring to the spontaneous polarization in response to a nonuniform 

strain or a strain gradient, is a universal effect in all classes of dielectric materials even in 

the centrosymmetric crystals. A rational physical interpretation of this phenomenon is the 

local breaking of inversion symmetry of the material structure caused by the strain 

gradient, rendering the formation of dipole moments and thus the induced polarization 

(Maranganti and Sharma, 2009). Recently, Zubko et al. (2013), Nguyen et al. (2013), 

Yudin and Tagantsev (2013) have conducted a thorough and comprehensive review 

elaborating the fundamentals of the flexoelectricity in solids, its consequences in the 

physical properties of nano-scale systems and the potential applications of this 

electromechanical phenomenon. For example, it was interpreted in the literature that the 

flexoelectricity is responsible for modifying some physical characteristics of 
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ferroelectrics, including the shifts of domain configurations and the ferroelectric 

hysteresis loop (Lee et al., 2011),  the reduction of dielectric constant (Catalan et al., 2004; 

2005), the vanishing of switchable spontaneous polarization (Chu et al., 2004), and the 

degradation of capacitance of ferroelectric capacitors due to the formation of a non-

switchable dead layer (Majdoub et al., 2009). Since the flexoelectricity induced electric 

polarization may enable the effective electromechanical coupling responses in non-

piezoelectric dielectric materials, it is promising to create piezoelectric composite 

materials without using any piezoelectric constituents, which was first proposed by 

Fousek et al. (1999) and further explored by the same group and others (Fu et al., 2007; 

Zhu et al., 2006; Sharma et al., 2007; 2010). The essence of the design concept in these 

works is to create inhomogeneous strain field in the active constituent dispersed in the 

matrix material of the composites, inducing the electric polarization due to the 

flexoelectricity. As a net effect, a piezoelectricity is achieved for the composites in 

response to either a mechanical load or an electrical load. It was also found in the 

literature that the flexoelectricity could be exploited for polarization control mechanically 

instead of electrically for the potential applications in non-volatile memory devices (Lu et 

al., 2012).  

Phenomenologically, this strain gradient induced polarization due to the 

flexoelectricity is proportional to the flexoelectric coefficient and the magnitude of the 

strain gradient. Pioneered by Ma and Cross, a series of experiments were conducted on a 

variety of bulk ferroelectric ceramics to quantitatively estimate the flexoelectric effect by 

measuring their flexoelectric coefficients (Ma and Cross, 2001; 2002; 2005; 2006). It was 

revealed in their work that the flexoelectric coefficient of ferroelectrics scales with their 
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dielectric permittivity. Ponomareva et al. (2012) further elucidated that the flexoelectric 

coefficient is also temperature dependent. In general, such a flexoelectric effect is rather 

insignificant relative to the piezoelectric effect in macro-scale piezoelectric materials.  

However, due to the fact that the strain gradient is inversely proportional to the 

characteristic size of the structures (Majdoub, 2008), the flexoelectricity triggered by the 

strain gradient is expected to become more prominent for the piezoelectrics at the nano-

scale. Thus the size-dependent flexoelectricity may contribute significantly to the 

electromechanical coupling of piezoelectric materials at the nano-scale and it is necessary 

to incorporate such an effect when investigating the static and dynamic behaviors of 

those nanostructured materials.   

     With the development of nanotechnology, flexoelectricity has re-stimulated a surge of 

scientific interests in research communities recently, as the large strain gradients often 

present in nano-scale materials may result in strong flexoelectric effect. It was found in 

the literature that the electromechanical coupling of piezoelectric nanomaterials could be 

enhanced by the flexoelectric effect (Majdoub, 2008; Ma and Cross, 2003), which may 

open new avenues for the design considerations and potential applications of 

piezoelectric nanostructures in NEMS devices (Wang, 2007). In order to fulfill the 

potential applications of those piezoelectric nanostructures as nanodevices, it is essential 

to build theoretical frameworks with the consideration of nano-scale structure features to 

understand the fundamental physics governing the electromechanical coupling of 

materials at the nano-scale. Extending from the linear piezoelectricity theory developed 

by Toupin (1956), Maranganti et al. (2006) established a mathematical framework for 

dielectrics including the effects of both the strain gradient and polarization gradient based 



25 

 

on the variational principle. Later, a more comprehensive theoretical framework 

incorporating the flexoelectricity, surface effects and electrostatic force was developed by 

Hu and Shen (Hu and Shen, 2010; Shen and Hu, 2010). Owing to those pioneering 

studies, the influence of the flexoelectricity upon the electromechanical coupling of 

piezoelectric nanomaterials could be characterized to some extent. For example, Majdoub 

et al. (2008) applied those theoretical frameworks on the Euler-Bernoulli beam model 

and found that the apparent piezoelectric coefficient of both piezoelectric and 

nonpiezoelectric nanobeams was dramatically enhanced by the flexoelectricity. The 

effect of the flexoelectricity upon the electric potential distribution in a bending ZnO 

nanowire was analytically predicted by Liu et al. (2012) which was in good agreement 

with experimental data. Based on the modified Euler-Bernoulli beam and Timoshenko 

beam models with the incorporation of the flexoelectric effect, the size-dependent 

electroelastic responses and dynamic behaviors of one-dimensional piezoelectric 

nanostructures were investigated by Yan and Jiang (2013a; 2013b).  

Except for such a few theoretical studies of modeling the flexoelectric effect upon 

the static and dynamic behaviors of one-dimensional dielectric nanostructures as 

mentioned above, investigation on the size-dependent properties of two-dimensional 

piezoelectric nanostructures induced by the flexoelectricity is even more limited. Until 

recently, Chen and Soh (2012) characterized the influence of the flexoelectricity upon the 

distribution of the electric polarization in a bending bilayer nanocomposites and it was 

found that the flexoelectricity induced polarization is dependent on the film thickness. In 

order to further uncover the flexoelectric effect on two-dimensional piezoelectric 

nanostructures, such as the piezoelectric nanoplate (PNP), the objective of the current 
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work is to develop a modified plate model based on the conventional Kirchhoff plate 

theory and the extended linear piezoelectricity theory by incorporating the flexoelectric 

effect. Simulation results will be demonstrated to show how the static bulk 

flexoelectricity influences the electroelastic responses and the vibrational behaviors of the 

piezoelectric nanoplate. It should be mentioned that the surface effects and the dynamic 

bulk flexoelectricity are ignored in this paper (Yudin and Tagantsev, 2013). Therefore, 

the current model could be claimed only to represent the trend of the influence of the 

static bulk flexoelectricity. A more comprehensive model with consideration of those 

complete structure scale features may be the future concentration. 

2.2 Formulation and solution of the problem 

 

Figure 2.1: Schematic of a clamped piezoelectric nanoplate under applied 

mechanical and electrical loads. 

In the current work, the electroelastic responses and the vibration of a clamped 

piezoelectric plate with length a, width b and thickness h as shown in figure 2.1 will be 



27 

 

investigated. A Cartesian coordinate system is adopted to describe the plate with xy plane 

being the undeformed midplane of the plate and z axis along the thickness direction. The 

plate is polarized in the z direction and subjected to an electric voltage V between the 

electrodes coated on the upper and lower surfaces of the plate. For static bending analysis, 

the plate is also subjected to a uniformly distributed load with density q. The Kirchhoff 

plate theory is adopted in the current work for modeling purpose. Correspondingly, the 

displacements of the plate can be described as 

0 ( , , , )( , , , ) ( , , ) w x y z tu x y z t u x y t z
x


 


,                                                                       (2.1a)  

0 ( , , , )( , , , ) ( , , ) w x y z tv x y z t v x y t z
y


 


,                                                                        (2.1b)                             

( , , , ) ( , , )w x y z t w x y t ,                                                                                                  (2.1c) 

where w(x, y, t) is the transverse displacement in the plate thickness direction; ( , , , )u x y z t  

and ( , , , )v x y z t  are the displacements along the x and y directions, respectively; 0( , , )u x y t  

and 0 ( , , )v x y t  are the displacements of the midplane along the x and y directions, which 

in general are induced by the applied voltage due to the electromechanical coupling of the 

piezoelectric plate. For a clamped plate with four edges fixed, it is reasonable to assume 
0 ( , , ) 0u x y t  and 0( , , ) 0v x y t   as adopted in Zhao et al. ’s work (2007) for a traditional 

piezoelectric plate, which means that the midplane displacements induced by 

electromechanical coupling are trivial according to the Kirchhoff plate theory. Thus the 

non-zero strain components can be expressed as  

2

2xx
wz

x
 
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

,                                                                                                                (2.2a) 
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Since h<<a, b for a Kirchhoff plate, the strain gradients along the x and y directions 

(for example,
3

, 3xx x
wz

x
 

 


 and
3

,y 2xx
wz

x y
 

 
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) can be ignored as compared to the 

strain gradients along the thickness direction (for example,
2

, 2xx z
w

x
 
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

and
2

, 2yy z
w

y
 

 


). 

Such an assumption was also adopted by Yan and Jiang for an Euler beam (Yan and 

Jiang, 2013a). In the following analysis, we will only consider the flexoelectricity 

induced by the strain gradients along the thickness direction, which are expressed as 

2

, 2xx z
w

x
 

 


,                                                                                                                 (2.3a) 
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,                                                                                                                 (2.3b) 

2

,xy z
w

x y
 

 
 

.                                                                                                               (2.3c) 

In order to incorporate the flexoelectric effect, the extended linear theory of 

piezoelectricity is used in the current work. It includes the coupling between the strain 

gradient and the polarization, and the coupling between the polarization gradient and the 

strain(Yudin and Tagantsev, 2013; Sharma et al., 2010; Majdoub et al., 2008; Yan and 

Jiang, 2013a). For simplicity, the higher-order couplings between the strain and the strain 

gradient, the strain gradient and the strain gradient, and the strain gradient and the 

polarization gradient are ignored in the current work as in the existing studies (Zubko et 
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al., 2013; Sharma et al., 2010; Majdoub et al., 2008; Yan and Jiang, 2013a). Under this 

assumption, the expression of the internal energy density function U is given as,  

, , , ,
1 1 1
2 2 2b kl k l ijkl ij kl ijk ij k ijkl i j k l ijkl i jk l ijkl ij k lU a P P c d P b P P f u P e P          ,                    (2.4)          

where iP  and ij  are the components for the polarization tensor and strain tensor, 

respectively. The strain tensor is defined as , ,
1 ( )
2ij i j j iu u    with ui being the 

displacement components. kla , ijklc and ijkd stand for the elements of the reciprocal 

dielectric susceptibility, elastic constant and piezoelectric constant tensors, which are 

exactly the same as those in the linear piezoelectricity theory. The other terms in equation 

(2.4) represent the higher-order couplings between the electric polarization and the strain 

fields, i.e., the interaction of polarization gradient and polarization gradient (represented 

by tensor bijkl), the strain gradient and polarization coupling (represented by tensor fijkl), 

the strain and polarization gradient coupling (represented by tensor eijkl) . It was justified 

by Sharma et al. (2010) and Shen and Hu (2010) that the flexocoupling coefficient tensor

ijkl ijklf e  . 

Thus the constitutive equations can be derived from the extended linear theory of 

piezoelectricity as (Hu and Shen, 2010), 

,
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where ij and Ei represent the traditional stress and electrical field tensors as in linear 

piezoelectricity theory, while ijm is defined as the higher order stress tensor (or moment 

stress tensor) induced by the flexoelectricity and Eij can be considered as the higher order 

local electrical force, which are all ignored in the classical piezoelectricity theory. In 

addition, the direct flexoelectricity contributes to the electric field iE  as demonstrated by 

the last term in equation (2.5c), while the inverse flexoelectric effect contributes to the 

stress field as evidenced by the last term in equation (2.5a). In the following formulation, 

the contracted notation for the subscripts of the conventional material constant tensors is 

adopted for simplicity purpose, i.e., c11=c1111, c66=c1212, d31=d311, a3333=a33 and b3333=b33. 

From Refs. (Sharma et al., 2010; Yan and Jiang, 2013a), it is concluded that the 

flexocoupling coefficient tensor is related to the flexoelectric coefficient tensor ijkl , i.e., 

( ).ijkl lm ijkm ikjm jkimf a       These two tensors have the same symmetry and the same 

number of independent components. Le Quang and He (2011) explicitly solved the 

fundamental problem to determine the number of independent components in the 

flexoelectric coefficient tensor for a given symmetry class of materials. The non-zero and 

independent flexoelectric coefficient elements ijkl  for the example material tetragonal 

BaTiO3 (point group 4mm) were given in Shu et al.’s work (2011). Thus the 

corresponding flexocoupling coefficient tensor of the tetragonal BaTiO3 can be obtained. 

Following the same convention of subscript transformation in Ref. (Shu et al., 2011), 
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1133 2233f f  can be represented by 19f . Accordingly, the electric field in equation (2.5c) 

can be expressed for a transversely isotropic piezoelectric material as 

33 31 19 , ,( ) ( )z z xx yy xx z yy zE a P d f        .                                                                  (2.6) 

When the PNP is subjected to an electric potential   across the plate thickness, the 

electric field is assumed to exist only along the thickness direction as adopted by Zhao et 

al. (2007), which is expressed in terms of the electric potential   and the higher order 

local electrical force Eij  (Hu and Shen, 2010), as 

, , ,z zx x zy y zz zE E E E
z


    


,                                                                                     (2.7) 

With the consideration of the so-called background permittivity for ferroelectrics 

(Hlinka and Marton, 2006; Tagantsev and Gerra, 2006), the Gauss’s law is expressed in 

the absence of free electric charges as, 

0 , , 0b zz z zP     ,                                                                                                       (2.8) 

where 12 1 1
0 8.85 10 C V m        is the permittivity of the vacuum or the air, and the 

background permittivity 6.62b   is taken for BaTiO3 when the electric field is parallel to 

the polarization (Tagantsev and Gerra, 2006). In the following formulation, 0 b    is 

adopted for simplicity. Combining equations (2.6)-(2.8) and the electric boundary 

conditions, i.e., 0ij jE n   and ( )
2
h V  and ( ) 0

2
h

   when the plate is subjected to an 

electrical voltage V across the plate thickness, the electric potential, the polarization and 

the electric field can be derived in terms of the plate transverse displacement w and the 

applied voltage V as 
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    (2.9a) 

2 2 2 2
31 33 19

2 2 2 2
33 33
2 2

33 19
2 2

33 2 2

( ) ( )
1 1

( ) ,
2

z

z z

h h

d w w V a f w wE z
a x y h a x y

a f h w w e e
b x y e e

 

 


 




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   
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 
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                                            (2.9b) 
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a x y a h a a x y

f h w w e e
b x y e e

 

 

 
 







    
    

     

  
 

 


                                   (2.9c) 

where 33

33

1 a
b





 . It should be noted that without the consideration of the effects of 

the strain gradient and the polarization gradient, the expressions for the electric fields 

reduces to the classical ones.                 

Substituting equation (2.9c) into equations (2.5a) and (2.5b), both the traditional 

stresses and the higher order stresses can be determined. Therefore, the electroelastic 

fields of the PNP are completely solved if the transverse displacement w is determined 

under the applied mechanical and electrical loads. For example, the traditional stresses 

are determined in terms of the transverse displacement w and the applied voltage V as  
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                                  (2.10a)  
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       (2.10b)                                                            

2

662xy
wc z

x y
 

 
 

.                                                                                                      (2.10c) 

In order to determine the transverse displacement of the PNP, Hamilton’s principle 

is adopted in the current work to derive the governing equation and the mechanical 

boundary conditions of the plate (Yan and Jiang, 2013b; Rao, 2007), i.e.,  

2

1

( ) 0
t

t
Hd K W dt


      ,                                                                                    (2.11) 

where   is the entire volume of the plate. , , ,

1
2 z z z zH U P       (Toupin, 1956) is 

the electric enthalpy density with U being the internal energy density defined by 

equation (2.4). Manipulating equations (2.5a), (2.5b), (2.5c) and (2.5d) and equation 

(2.4), the expression of the internal energy density can be reduced to

,, ,
1

( 2 )
2

E Pzz z zxx xx yy yy xy xy xxz xx z yyz yy z z zU E P                . K is the kinetic 

energy defined as 
223

21
[ ]

2 12

h w w
K hw dxdy

x y
 

 
 

 

             


 


 
for the plate, where  is the 

mass density and the dot “.” represents the derivation with respect to time t. It should be 

mentioned that the so-called dynamic flexoelectric effect, which has been 
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phenomenologically described by Tagantsev (1986) and Yudin and Tagantsev (2013) is 

not considered here. In addition, for a clamped PNP with in-plane displacement 

constraint, the work done by external forces is defined as

1 2 2[ ( ) ( ) 2 ( )]
2 xx yy xy

w w w wW qwdxdy N N N dxdy
x y x y

   
    

   
 with xxN , yyN  and xyN  

being the resultant in-plane forces due to the electromechanical coupling. These in-plane 

forces are defined as
2 2

2
2 2

2

31 19 31

33 33 33

( ) ,
(1 )

h

hxx xx
d f h w w d

N dz V
a x y aa




 
   

 

2 2

2
2 2

2

31 19 31

33 33 33

( )
(1 )

h

hyy yy
d f h w w d

N dz V
a x y aa




 
   

  and 2

2

0.
h

hxy xyN dz


  Obviously, the 

flexoelectricity also contributes to these forces as indicated by the first term in their 

expressions. It should be noticed that if the applied voltage is positive and sufficient 

large, the resultant in-plane forces may become compressive and result in the 

mechanical buckling of the plate. 

Applying the variational principle of equation (2.11), the governing equation of the 

PNP with the consideration of the flexoelectric effect is derived as  

4 4 4 2 2 2
231 31 19

11 12 664 4 2 2 2 2
33 33 33

2 2 3 2 2
31 19

2 2 2 2
33 33

( ) 2( 2 ) ( ) 2 ( )
(1 )

2 ( ) 0,
(1 ) 12

w w w d w w d f h wD D D V
x y x y a x y a a x y
d f h w w h w w hw q

a a x y x y








     
     

        

   
     

    
  

     

(2.12) 

with 

2 3 2 2 2 2 22 2
31 19 19 33 31

11 11 2
33 33 33 33 332 2

( ) ,
(1 ) 12 (1 ) 2 (1 )

h h

h h
d h f h f h e e b d hD c

a a a b ae e

 

 

 
   






    

  
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               (2.13a) 
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366
66 12

cD h .                                                                                                               (2.13c) 

If the flexoelectric effect is excluded, the governing equation (2.12) reduces to 

equation (2.16) in Yan and Jiang’s work (2012a) without the consideration of the surface 

effects, which represents the transverse motion equation of a conventional piezoelectric 

plate based on the Kirchhoff plate theory. It is identified from the expressions of D11 and 

D12 that the flexoelectricity decreases the effective bending rigidity as compared to the 

conventional piezoelectric plate. When the plate thickness scales down to nanometers, 

according to the values of the flexoelectric coefficients provided in the work of 

Ponomareva et al. (2012), Yan and Jiang (2013a), Chen and Soh (2012) and Eliseev et al. 

(2009), the reduction of the bending rigidity due to the flexoelectricity becomes 

comparable to the values of traditional D11 and D12. Therefore, it is necessary to 

incorporate the flexoelectricity to investigate the static and dynamic behaviors of the 

piezoelectric plates with nano-scale thickness. However, D11 and D12 must be ensured 

positive to keep the mechanical stability of the plate. It should be mentioned that the 

current model ignore the surface elasticity and surface piezoelectricity which have been 

demonstrated to increase the bending rigidity of the piezoelectric nanostructures 

prominently (Yan and Jiang, 2011; Li et al., 2011). In addition, the current model also 

neglects the effect of surface flexoelectricity (Yudin and Tagantsev, 2013; Tagantsev, 

2012; Stengel, 2013) to make the analysis more mathematically tractable.  Without 

considering those surface effects and the higher order gradient terms (the coupling 

between strain gradient and strain gradient for example), the current model aims to 
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provide a theoretical prediction on the trend of the effect of pure bulk flexoelectricity 

upon the static and dynamic bending behaviors of a PNP.  

In addition, the corresponding mechanical boundary conditions for the clamped PNP 

are also derived from the variational principle as 0w  and 0w
n





at the four edges, 

which yields 

0w  and 0w
x





   at 0x  and x a ;                                                                      (2.14a) 

0w  and 0w
y





   at 0y  and y b .                                                                      (2.14b) 

Thus the static and dynamic responses of the bending PNP will be determined by 

solving the nonlinear partial differential governing equation (2.12) with the consideration 

of the mechanical boundary conditions (2.14a) and (2.14b). 

2.2.1 Electroelastic responses of a static bending PNP 

For the static bending of a PNP, the governing equation is reduced from equation (2.12) 

by ignoring the inertial terms, i.e.,  

4 4 4 2 2
31

11 12 664 4 2 2 2 2
33

2 2 2
231 19 31 19

2 2
33 33 33 33

( ) 2( 2 ) ( )

2 ( ) 2 0,
(1 ) (1 )

w w w d w wD D D V
x y x y a x y
d f h w d f h w w q

a a x y a a x y 

    
    

     

  
   

     

                                      (2.15) 

In order to perform bending analysis of the PNP, Ritz method (Reddy, 2007) is 

adopted to get the approximate solution of equation (2.15). In this solution scheme, the 

weak form of the variational statement of equation (2.15) is expressed as 
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                     (2.16) 

According to the Ritz method, the solution of the transverse displacement of the PNP is 

approximated in the form of (Reddy, 2007), 

1 1
( , ) ( ) ( )

m n

ij i j
i j

w x y A X x Y y
 

 ,                                                                                      (2.17) 

where ijA are the constants to be determined, and ( )iX x and ( )jY y are coordinate 

functions satisfying the plate boundary conditions. For the clamped plate, the expressions 

of ( )iX x and ( )jY y  are given as (Reddy, 2007) 

1 2 3

( ) 2
i i i

i
x x xX x
a a a

  
            
     

,                                                                                                        (2.18a) 

1 2 3

( ) 2 .
j j j

j
y y yY y
b b b

  
            
     

                                                                           (2.18b)               

Obviously, these coordinate functions satisfy the mechanical boundary conditions of the 

clamped plate. Substituting equation (2.17) into equation (2.16) results in, 

       2R A M A F                                                                                                (2.19)                        
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                          (2.21)  

and                  kl k lF qX Y dxdy  .                                                                              (2.22) 

Solving the nonlinear algebraic equation (2.19), the unknown constants Aij in the vector A 

can be determined. Correspondingly, the electroelastic fields are determined by 

substituting equation (2.17) into equations (2.9) and (2.10). 

For the considered range of the material properties, the plate dimensions and applied 

mechanical and electrical loads, the plate undergoes infinitesimal deformation. The 

distribution of the nonlinear terms 
2

231 19

33 33

2 ( )
(1 )
d f h w

a a x y
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  
 and 

2 2
31 19

2 2
33 33

2
(1 )
d f h w w

a a x y
 
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 in 

equation (2.15) is checked and it was found that these terms could be neglected as 

compared with the other terms. Therefore, the governing equation for the static bending 

of the PNP is simplified as a linear partial differential equation, i.e.,  
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and its weak form of the variational statement is expressed as 
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                       (2.24) 

Similarly, by applying the Ritz method, the unknown constants Aij in equation (2.17) can 

be determined from the following linear algebraic equations,  

    ,R A F                                                                                                                (2.25) 

with ( )( )ij klR  and klF  given before. 

2.2.2 Free vibration of a PNP 

For the free vibration of a PNP without the applied mechanical load q, the governing 

equation (2.12) can be simplified by neglecting the nonlinear terms as 
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                                       (2.26) 

The harmonic solution of equation (2.26) takes the form of 

( , , ) ( , ) i tw x y t W x y e  ,                                                                                                  (2.27) 
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where   is the resonant frequency and W represents the mode shape of the vibration. 

Substituting equation (2.27) into equation (2.26) results in  
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                                (2.28) 

Similar to the static bending analysis of the PNP, Ritz method is also adopted to get 

the approximate solution and the same procedure is conducted. The weak form of 

variational statement of equation (2.28) is presented as  
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(2.29) 

Similarly, the transverse vibration mode shape W (x, y) is approximated as 

1 1

( , ) ( ) ( )
m n

ij i j
i j

W x y A X x Y y
 

 ,                                                                                     (2.30) 

with ( )iX x  and ( )jY y  given in the previous section, which satisfy the mechanical 

boundary conditions of the clamped PNP. Substituting equation (2.30) into equation 

(2.29), we get: 

       2( ) 0R B A  ,                                                                                               (2.31) 

with ( )( )ij klR derived in the previous section and  
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The resonant frequency can thus be determined by solving the characteristic equation of 

equation (2.31).  

In the following section, the effect of the flexoelectricity on the elelctroelastic 

responses and the dynamic behaviors of the PNP will be further demonstrated through 

case studies. It is worth mentioning that without the consideration of the flexoelectricity, 

all the equations can be reduced to the corresponding equations from the conventional 

piezoelectric plate. 

2.3 Results and discussions 

In this section, in order to demonstrate the effect of the flexoelectricity on the static and 

dynamic responses of a piezoelectric nanoplate (PNP), BiTiO3 is taken as an example 

material as the case study. The bulk elastic, piezoelectric and dielectric constants for the 

plate under the plane strain condition are calculated as 11=167.55GPa,c 12 =78.15 GPa,c

66 44.7 GPa,c  8
33 0.79 10  V m/Ca    and 8

31 =3.5 10  V/md   based on the information 

provided in Ref. (Giannakopoulos and Suresh, 1999). 9 3 2
33 1 10 /b Jm C  is taken 

according to Refs. (Maranganti et al., 2006; Eliseev et al., 2009). Due to the lack of the 

exact value for the flexocoupling constant in the literature, 19 =10 Vf  is adopted in the 

current calculation for illustration purpose according to Refs. (Zubko et al., 2013; 

Ponomareva et al., 2012; Tagantsev, 1986). The distributed load q is set as 0.1 pN/nm2 to 

ensure that the plate undergoes small deformation. In current work, three terms for the 
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coordinate functions are used in the Ritz method to approximate the transverse 

displacement (e.g. m = 3, n = 3) to ensure the convergence of the solution. 

Firstly, the effect of the flexoelectricity upon the static bending of a PNP is 

examined. For a nanoplate with fixed dimension ratio 50a b h   under both electrical 

and mechanical loads, the variation of the normalized maximum deflection ( 0/ Vw w ) at the 

middle of the plate ( 0.5 ,  0.5x a y b  ) with the plate thickness h is plotted in figure 2.2, 

where 0
Vw is the maximum deflection of the plate under the same applied loads without the 

consideration of the flexoelectric effect. As shown in this figure, the flexoelectricity 

results in a softer elastic behavior of the plate since a larger deflection is induced in the 

plate with the incorporation of the flexoelectric effect. In addition, the flexoelectric effect 

is size-dependent and more prominent for the thinner plate with smaller thickness. With 

the increase of the plate thickness h , the flexoelectric effect diminishes with all the 

curves approaching unity as expected. It is interesting to see from this figure that the 

applied electric potential V alters the flexoelctric effect upon the bending behavior of the 

PNP. For example, when a positive voltage is applied, the effect of the flexoelectricity 

upon the static bending of the PNP is magnified with the increase of the magnitute of the 

applied voltage. However, such a flexoelectric effect is reduced with the increase of the 

magnitute of an electrical voltage applied in the opposite direction . 
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Figure 2.2: Variation of normalized maximum deflection with plate thickness under 

different voltage (a = b = 50h). 

In order to see how the flexoelectric effect changes with the plate length to thickness 

ratio, figure 2.3 depicts the variation of the normalized maximum deflection of a square 

PNP ( a b ) with length to thickness ratio ( /a h ) under different voltage. The thickness 

of the PNP is set as 20h  nm. From this figure, it is concluded that length to thickness 

ratio /a h , in combination with the applied voltage, also influences the effect of the 

flexoelectricity upon the static bending of the plate. For example, the effect of the 

flexoelectricity is independent of the length to thickness ratio (a / h) without the applied 

voltage as indicated by the straight line for the case of 0V  V. However, when a 

positive voltage is applied, the effect of the flexoelectricity is enhanced by increasing the 

length to thickness ratio /a h , while an opposite trend is observed under a negative 

applied voltage. The reason behind this phenomenon is that the applied voltage induces 
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in-plane forces for the midplane of the plate due to the electromechanical coupling, which 

in turn affect the stiffness of the plate and the strain gradient, resulting in a varying 

flexoelectric effect. The results shown in figure 2.2 and figure 2.3 clearly demonstrate 

that the flexoelectric effect upon the elastic field of a PNP depends on the plate thickness, 

length to thickness ratio and the applied electrical load, indicating the significance of 

considering flexoelectricity in predicting the PNP static bending behavior.  

 

Figure 2.3: Variation of normalized maximum deflection with length to thickness 

ratio under different voltage (a = b). 

It is expected that the consideration of the strain gradients and the polarization 

gradients will influence the electric field distribution. For the plates with different 

thickness, for example, h = 20 nm or 200 nm, figures 2.4(a) and 2.4(b) plot the 

distribution of the electric field density E along the thickness direction at the middle of 
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the plate (x = 0.5a, y = 0.5b) when the applied voltage V = -0.1 V. For the plate with 

smaller thickness, the flexoelectricity has a significant effect upon the electric field 

distribution as evidenced by the discrepancy between the current and the classical 

solutions in figure 2.4(a). However, when the plate thickness becomes larger (h = 200 nm 

for example), the flexoelectricity has negligible influence upon the electric field 

distribution except near the surfaces of the plate as shown in figure 2.4(b). The 

discrepancy of the electric field near the surfaces with the consideration of the 

flexoelectricity is a typical boundary behavior for a gradient theory also observed for a 

plate with polarization gradient (Mindlin, 1969) and a circular cylindrical shell with 

electric field gradient (Yang et al., 2004).  
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Figure 2.4: Electric field distribution along thickness direction at the middle of the 

plate with different thickness (a) h = 20 nm and (b) h = 200 nm. 

As discussed in the previous section, a spontaneous electric polarization along the 

plate thickness direction will be induced by the strain gradient in the PNP, which is 

indicated in equation (2.9c). Within the range of the thickness considered in this work, 

the varying terms along the thickness are relatively negligible compared with the other 

fixed terms. Thus we can assume that the polarization is constant across the plate 

thickness. Figure 2.5 plots the in-plane distribution of the polarization for a square plate 

( 50a b h  , 20h  nm) under a negative applied voltage (V = -0.1 V). Without the 

consideration of the flexoelectricity, the polarization uniformly distributes in the plate as 

indicated by the flat plane in this figure, which is purely induced by the applied electric 

voltage. However, the flexoelectricity significantly influences the in-plane distribution of 

the polarization, resulting in a non-uniform profile. For example, the polarization 
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increases near the sides of the plate, while it decreases when approaching the center area 

of the plate under the current loading condition. However, if the applied voltage changes 

its direction, an opposite trend for the in-plane polarization distribution is observed, but 

not shown here. In order to show the dependence of flexoelectricity on the size of the 

plate, the variation of the polarization for some particular points of a square plate 

( 50a b h  ) against its thickness is plotted in figure 2.6. As indicated in both figures 

2.6(a) and 2.6(b), the flexoelectricity has greater influences on the polarization of the 

plate with smaller thickness. Such an effect diminishes when the plate thickness is getting 

bigger and eventually the results approach those of the conventional Kirchhoff plate 

model without the consideration of the flexoelectricity.  It is also observed from figures 

2.6(a) and 2.6(b) that the flexoelectric effect upon the polarization depends on the 

direction of the applied voltage, which plays an opposite role in determining the 

magnitude of the polarization. For example, for a particular point at the end of the plate 

( 0,  0.5x y b  ), the flexoelectricity increases the magnitute of polarization with a 

negative applied voltage. However, the polarization is reduced by the flexoelectricity at 

the same point when the applied voltage becomes positive. From the results in all these 

figures, it could be concluded that the effect of the flexoelectricity upon the electroelastic 

fields of the bending plate depends on both its size and the applied electrical load 

including amplitude and direction.   
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Figure 2.5: In-plane distribution of polarization in a PNP under V = -0.1 V (h = 20 

nm), Blue flat surface: classical solution without flexoelectricity; Yellow curved 

surface: with flexoelectricity. 
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Figure 2.6: Variation of polarization with plate thickness at different locations of the 

plate under different voltage (a) V = -0.1 V and (b) V = 0.1 V. 
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In order to investigate the effect of the flexoelectricity on the vibrational behavior of 

the PNP, its fundamental resonant frequency is examined. Figure 2.7 depicts the variation 

of the normalized resonant frequency of a square nanoplate ( 50a b h  ) with the plate 

thickness h  under different applied electrical loads. 0  is the resonant frequency of the 

nanoplate without considering both the flexoelectric effect and the applied voltage. As 

revealed in this figure, the flexoelecricity decreases the resonant frequency of the plate 

significantly for the plate with smaller thickness, indicating the necessity of incorporating 

the flexoelectric effect in characterizing the vibrational behavior of the PNP. However, 

with the increase of the plate thickness, the flexoelectric effect upon the resonant 

frequency diminishes and the normalized resonant frequency tends to approach a constant. 

It is also observed in this figure that flexoelectric effect upon the resonant frequency is 

dependent on the applied electrical load, i.e., a positive electric potential enhances the 

flexoelectric effect upon the resonant frequency while such a trend is reversed when a 

negative electric potential is applied. The discrepancy among the curves in this figure 

suggests a possible way for frequency tuning of the PNP by adjusting the applied 

electrical loads, which has been well discussed in Refs. (Yan and Jiang, 2012a; 2012b). 

Such a frequency tuning concept originates from the intrinsic electromechanical coupling 

of the piezoelectric materials, while it is significantly influenced by the flexoelectricity. 

Thus, the flexoelectricity may modify the frequency tuning process of the PNP-based 

resonators. Exclusion of the flexoelectric effect in the design of PNP as resonators may 

lead substantial errors.  
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Figure 2.7: Variation of normalized resonant frequency with plate thickness for a 

plate under different voltage (a = b = 50h). 

In order to see how the flexoelectric effect varies with the in-plane dimension aspect 

ratio of the plate, the normalized resonant frequency 0/ V  of a PNP versus the plate 

thickness h under different applied voltage (V = -0.2 V, 0 V, and 0.2 V, for example) is 

plotted in figure 2.8 for the plate ( 50a h ) with different in-plane dimensions /a b . 0
V  

is the resonant frequency for the plate without the consideration of the flexoelectricity. 

For the case when the plate is subject to a negative voltage, it is observed in figure 2.8 (a) 

that with the increase of the in-plane aspect ratio /a b , i.e., the plate is becoming 

narrower when a  is fixed, the influence of the flexoelectricity is getting bigger.  Once the 

plate aspect ratio /a b  is sufficient large, / 10a b   for example, the flexoelectric effect 

upon the resonant frequency of the plate will not change with the aspect ratio. Under this 
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situation, the plate reduces to a beam model and its resonant frequency is independent of 

its width (i.e., the dimension b for the plate), which is consistent with the formulation (20) 

in Ref. (Yan and Jiang, 2013b). However, when the plate is subject to a positive voltage, 

the flexoelectricity has more influence upon the vibration of a plate than a beam as 

indicated in figure 2.8 (b). Without any applied voltage, the flexoelectricity effect on the 

resonant frequency does not change with the plate in-plane aspect ratio as expected in 

figure 2.8 (c). Therefore, it is concluded from the results in figures 2.7 and 2.8 that the 

influence of the flexoelectricity upon the resonant frequency of the PNP depends on both 

the plate size and applied electrical load. 
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Figure 2.8: Variation of normalized resonant frequency with plate thickness for the 

plate with different aspect ratio a/b under different voltage (a = 50h) (a) V = -0.2 V, 

(b) V = 0.2 V and (c) V = 0 V. 
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2.4 Conclusions 

In this work, a modified piezoelectric plate model based on the conventional Kirchhoff 

plate theory and the extended linear piezoelectricity theory with the consideration of the 

flexoelectric effect is developed to investigate the electroelastic responses and the 

vibrational behaviors of a piezoelectric nanoplate (PNP). Simulation results indicate that 

the flexoelectric effect upon the electroelastic fields and the resonant frequency of the 

PNP is more prominent for thinner plates with smaller thickness while it decays with the 

increase of the plate thickness. It is also observed that the influence of the flexoelectricity 

upon the static and dynamic behaviors of the PNP is sensitive to the applied electrical 

loading and the plate in-plane dimensions.  The variation of the resonant frequency of the 

plate with the applied electric voltage proposes a possible approach for frequency tuning 

of the PNP-based resonators, which could be modified by the flexoelectric effect. 

Without considering the surface effects and some other higher order coupling terms in the 

extended linear piezoelectricity theory, the current work can be claimed as helpful for 

understanding the trend of the pure static flexoelectric effect upon the size-dependent 

physical and mechanical properties of the piezoelectric nanoplates, suggesting that the 

flexoelectricity could modify both the static and dynamic performance of the PNP-based 

nanodevices. 
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Chapter 3  

3 Size effects on electromechanical coupling fields of a 

bending piezoelectric nanoplate due to surface effects 

and flexoelectricity 

3.1 Introduction   

Recently, piezoelectric nanostructures have attracted a surge of interests in research 

communities for the potential applications as transistors, sensors and energy harvesters in 

the nanoelectromechanical systems (NEMS) due to their high electromechanical coupling 

and unique features at the nano-scale (Wang et al., 2006; Lao et al., 2007; Park et al., 

2010). In order to fulfill these applications of piezoelectric nanostructures, it is essential 

to get a thorough and comprehensive understanding on the electromechanical coupling 

behaviors of piezoelectric materials at the nano-scale.  

It has been reported from experimental observations and atomistic simulations that 

the elastic properties and the piezoelectric coefficients of piezoelectric materials are size-

dependent when their characteristic size scales down to the nano-scale, which 

distinguishes them from their macroscopic bulk counterparts (Stan et al., 2007; Zhao et 

al., 2004; Chen et al., 2006; Kulkarni et al., 2005; Zhang et al., 2010).  It is thus of great 

importance to understand the origin and the underlying mechanisms of such size 

dependence in order to accurately characterize the electromechanical coupling of the 

piezoelectric nanostructures. Due to the large ratio of surface area to volume typically 
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presented in nanomaterials, surface effects have been commonly believed to contribute to 

their size-dependent properties.  Based on the linear surface elasticity theory developed 

by Gurtin and Murdoch (1975), the size-dependent properties of nanostructures 

originating from the surface effects have been widely investigated by the modified 

continuum models from both static and dynamic perspectives (Miller and Shenoy, 2000; 

Song et al., 2011; Wang et al., 2007; 2009; Wang and Feng, 2007; He and Lilley, 2008a; 

2008b; Lu et al., 2006; Assadi et al., 2010). However, for piezoelectric nanomaterials, 

such a surface elasticity model may fail to accurately predict their size-dependent 

properties due to the negligence of the surface piezoelectricity.  Huang and Yu (2006) did 

pioneering work for developing the framework of a surface piezoelectricity model with 

the incorporation of the surface piezoelectricity in addition to the residual surface stress 

and the surface elasticity. Based on this model, Yan and Jiang and others (zhang et al., 

2012; Yan and Jiang, 2011a; 2011b; 2012a; 2012b; Li et al., 2011) have systematically 

conducted theoretical modeling to explore the size-dependent static and dynamic 

responses of piezoelectric nanobeams, nanofilms and nanoplates. It was reported from 

these studies that the electromechanical responses, bending, wrinkling, vibrational and 

buckling behaviors of the piezoelectric nanostructures are size-dependent and are 

significantly influenced by the surface effects. 

In addition to the surface effects, flexoelectricity which refers to a spontaneous 

polarization induced by strain gradients is also believed to play an important role in 

characterizing the size-dependent properties of dielectrics at the nano-scale. It was 

interpreted that the strain gradients or non-uniform strain fields can locally break the 

inversion symmetry of the materials and thus induce the polarization in the structures 
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(Maranganti and Sharma, 2009). Therefore, the flexoelectricity is a universal effect in all 

dielectrics even in centrosymmetric crystals. In general, such flexoelectric effect is rather 

insignificant relative to the piezoelectric effect for macro-scale piezoelectric materials. 

However, due to the large strain gradients typically exhibited in nanomaterials, the 

flexoelectricity becomes manifest and may significantly influence the electromechanical 

behaviors of nano-scale piezoelectrics.  A thorough and comprehensive review of the 

physical fundamentals, effects and possible applications of the flexoelectricity in solids 

has been conducted by Nguyen et al (2013), Yudin and Tagantsev (2013) and Zubko et al 

(2013). In recent years, efforts have been made by researchers to provide increased 

understanding on this delicate effect from both experimental and theoretical aspects. For 

example, a series of experiments have been conducted by Ma and Cross (2001; 2002; 

2005; 2006) to quantitatively investigate the flexoelectricity by measuring the 

flexoelectric coefficients of ferroelectric ceramics, which were found to scale with their 

dielectric permittivity. In addition, some pioneering theoretical frameworks have been 

established to account for the flexoelectricity (Maranganti et al., 2006; Hu and Shen, 

2010) by extending from the linear piezoelectricity developed by Toupin (1956). Based 

on these fundamental frameworks, the flexoelectric effect on the electromechanical 

coupling behaviors of piezoelectric nanostructures has been investigated and it was found 

that the flexoelectricity is responsible for the size-dependent electroelastic responses of 

piezoelectric nanomaterials (Majdoub, 2008; Yan and Jiang, 2013a; 2013b; Ma and Cross, 

2003; Liu et al., 2012; Chen and Soh, 2012). Therefore, the flexoelectricity is another 

significant factor needed to be considered for characterizing the electromechanical 

coupling of piezoelectric nanomaterials.  
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In order to capture all these nano-scale structure features as discussed above, Hu and 

Shen (2010) have successfully established a theoretical framework by proposing an 

electric enthalpy variational principle for nanosized dielectrics, in which the surface 

effects, the flexoelectricity and the electrostatic force were considered. Nevertheless, to 

the authors' best knowledge, theoretical studies of modeling the effects of both the 

surface and flexoelectricity upon the electromechanical coupling behaviors of 

piezoelectric nanostructures are very limited. Until recently, Xu et al. (2014) investigated 

the static bending of a piezoelectric nanobeam by a modified Euler-Bernoulli beam 

model with the consideration of the combined effects of the surface and the 

flexoelectricity. It was found that the size-dependent properties of the piezoelectric 

beams may not be accurately characterized when the influence of either the surface 

effects or the flexoelectricity is ignored. However the study of the effects of the 

flexoelectricity and the surface upon two-dimensional piezoelectric nanostructures has 

not been reported thus far. Therefore, the objective of the current work is to develop a 

modified Kirchhoff plate model incorporating the effects of the residual surface stress, 

the surface elasticity, the surface piezoelectricity and the flexoelectricity to predict the 

electroelastic responses and the vibrational behaviors of a bending piezoelectric 

nanoplate (PNP). We aim to provide increased understanding on the size-dependent 

properties of piezoelectric nanostructures. 

3.2 Formulation and solution of the problem 

The problem envisaged in the current work is a clamped PNP with length a, width b and 

thickness h as depicted in figure 3.1. A Cartesian coordinate system is used to describe 

the plate with xy-plane in the undeformed midplane of the plate and z-axis along the 
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thickness direction. The poling direction of the plate is along the z-axis. The plate is 

under an electric voltage V between the upper and lower surfaces. When considering the 

static bending of the plate, it is also subjected to a uniformly distributed mechanical load 

q. Firstly, we will introduce the fundamental theories describing the electromechanical 

coupling behaviors of the piezoelectric plates at the nano-scale.  

 

Figure 3.1: Schematic of a clamped piezoelectric nanoplate composed of bulk and 

surfaces, subjected to electrical and mechanical loads. 

3.2.1 Extended linear piezoelectricity theory with surface effects and 

flexoelectricity 

As concluded in Shen and Hu’s framework (2010), in order to take the surface effects 

into consideration, the plate itself is decomposed into a bulk part and surface layers with 

negligible thickness as shown in figure 3.1. Meanwhile, the flexoelectric effect is 
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incorporated into the extended linear theory of piezoelectricity by the coupling between 

the strain gradient and the polarization, the coupling between the polarization gradient 

and the strain and the product of the polarization gradient and polarization gradient 

(Yudin and Tagantsev, 2013; Majdoub et al., 2008; Sharma et al., 2012).  Thus the 

general expression of the bulk internal energy density Ub can be expressed as: 

, , , ,
1 1 1 .
2 2 2b kl k l ijkl ij kl ijk ij k ijkl i j k l ijkl i jk l ijkl ij k lU a P P c d P b P P f u P e P                               (3.1) 

The first three terms in equation (3.1) represent the conventional electromechanical 

coupling where Pi is the polarization tensor and ij  is the strain tensor defined as

, ,
1 ( )
2ij i j j iu u    with iu  being the displacement vector; ija , ijklc and ijkd are the 

conventional material constant tensors which stand for the reciprocal dielectric 

susceptibility, elastic constant and piezoelectric constant, respectively. Different from the 

conventional linear piezoelectricity, the extra terms in equation (3.1) represent the higher 

order couplings. In particular, bijkl stands for the higher-order coupling between the 

polarization gradient and the polarization gradient; fijkl and eijkl are the effective 

flexocoupling coefficient tensors renormalized by the surface contribution which always 

arise from a linear combination of both effects of bulk flexoelectricity and surface 

piezoelectricity (Stengel, 2013) with fijkl representing the strain gradient and polarization 

coupling (direct flexoelectricity) and eijkl representing the strain and polarization gradient 

coupling (converse flexoelectricity). According to Refs. (Shen and Hu, 2010; Sharma et 

al., 2012), these two flexocoupling coefficient tensors were justified to satisfy fijkl = -eijkl. 

It should be noted that in the current work, the effects of the higher-order couplings 

between the strain and the strain gradient, the strain gradient and the strain gradient, and 
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the strain gradient and the polarization gradient are neglected for simplicity as assumed in 

the Refs. (Zubko et al., 2013; Majdoub et al., 2008; Yan and Jiang, 2013a; Sharma et al., 

2012). 

Correspondingly, the constitutive equations for the bulk can be derived from the 

internal energy density as (Hu and Shen, 2010; Shen and Hu, 2010) 

,
b

ij ijkl kl ijk k ijkl k l
ij

U c d P e P 



   


,                                                                               (3.2a) 

,

b
ijm ijmk k

i jm

U f P
u

 
 


,                                                                                                    (3.2b) 

,
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i ij j jki jk jkli j kl
i

UE a P d f u
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


   


                                                                               (3.2c) 

 
,

,

b
ij ijkl k l klij kl

i j

UE b P e
P




  


                                                                                           (3.2d)
 

where ij and Ei  represent the conventional stress and electrical field tensors. However, 

these conventional quantities are influenced by the flexoelectricity, i.e. the direct 

flexoelectric effect contributes to the electrical field while the converse flexoelectric 

effect contributes to the stress field. The flexoelectric effect is also demonstrated by the 

development of higher order stress tensor (or moment stress tensor) ijm  and the higher 

order local electrical force Eij, which disappear in the conventional linear piezoelectricity 

theory.  

Manipulating equations (3.1) and (3.2), the bulk internal energy density Ub can be 

rewritten as 
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, ,
1 1 1 1 .
2 2 2 2b k k ij ij ij i j i jm ijmU E P E P u                                                                         (3.3) 

According to Toupin’s work (1956), the bulk electric enthalpy density can be separated 

into the bulk internal energy density and a remainder, which was expressed in (Shen and 

Hu, 2010) as 

, , ,

1
2

.i i i ib bH U P                                                                                                    (3.4) 

With the consideration of the surface effects, i.e., the residual surface stress, the 

surface elasticity and the surface piezoelectricity, the surface internal energy density Us 

can be expressed as a function in terms of the surface strain and the surface polarization 

from the framework of (Shen and Hu, 2010), i.e., 

0
1 1
2 2

s s s s s s s s s s
s sU U a P P c d P                                                                (3.5) 

which is similar to the formulation adopted in Refs. (Huang and Yu, 2006; Liang et al., 

2014). sP  is the surface polarization tensor and   is the surface strain tensor which is 

defined as , ,
1 ( )
2

s s su u        with su  being  the surface displacement. sa , sc , and 

sd are the surface reciprocal dielectric susceptibility tensor, the surface elastic constant 

tensor and the surface piezoelectric constant tensor, respectively.   is the residual 

surface stress tensor which takes 0
     according to the surface elasticity theory 

(Shen and Hu, 2010; Liang et al., 2014). It should be noted that the surface 

flexoelectricity (both direct and converse) are ignored in equation (3.5). However, as 

discussed in (Yudin and Tagantsev, 2013), for materials with higher dielectric constants 
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(e.g. BaTiO3), the contribution of the surface flexoelectricity is of minor importance and 

thus it is reasonable to ignore it in the formulation. In this paper, the Greek indices run 

from 1 to 2 representing the quantities in the surface while the Latin indices run from 1 to 

3 representing the corresponding ones in the bulk.  

Correspondingly, the constitutive equations for the surface part take the form of 

,s s s s ss
s

U c d P     


 



    


                                                                            (3.6a) 

,s s s s ssUE a P d
P    



  


                                                                                         (3.6b) 

where s
  is the surface stress tensor and sE is the surface electric field vector.  

Combining equations (3.5), (3.6a) and (3.6b), the surface internal energy density can 

be rewritten as  

0
1 1 1 .
2 2 2

s s s s s
s sU U E P                                                                                   (3.7) 

Similar to the corresponding bulk electric enthalpy, the surface electric enthalpy can be 

determined as (Shen and Hu, 2010), 

 , ,s s
s sH U P                                                                                                                (3.8) 

where s is the surface electric potential which is continuous cross the surface. 
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3.2.2 Modified Kirchhoff plate model 

In this section, the modified Kirchhoff plate theory with the consideration of the surface 

effects and the flexoelectricity is developed to investigate the size-dependent bending 

behaviors of the clamped piezoelectric nanoplate. For a clamped plate, it is reasonable to 

set the midplane displacement, generally induced by the electromechanical coupling, as 

zero (Zhao et al., 2007). Therefore, the in-plane displacements of the plate can be 

expressed in terms of the transverse displacement w(x, y, t) according to the Kirchhoff 

plate theory as 

( , , )( , , , ) w x y tu x y z t z
x


 


,                                                                                           (3.9a)                      

( , , )( , , , ) w x y tv x y z t z
y


 


,                                                                                           (3.9b)  

where ( , , , )u x y z t  and ( , , , )v x y z t  are the in-plane displacements of the plate along the x-

axis and y-axis, respectively. Thus the non-zero strains can be obtain as 

2

2xx
wz

x



 


,                                                                                                               (3.10a) 

2

2yy
wz

y
 

 


,                                                                                                              (3.10b)  

2

.xy
wz

x y
 

 
 

                                                                                                             (3.10c) 

Since the thickness of the Kirchhoff plate is much smaller than the in-plane dimensions, 

the strain gradients along the x and y directions are negligible compared to the strain 

gradients along the thickness direction similarly to the Euler beam model in Yan and 
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Jiang’s work (2013a). Correspondingly, the nonzero components for the strain gradients 

can be expressed as   

2

, 2xx z
w

x



 


,                                                                                                               (3.11a) 

2

, 2yy z
w

y
 
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

,                                                                                                               (3.11b) 

2

,xy z
w

x y
 

 
 

.                                                                                                             (3.11c) 

In order to present the formulation in a simple way, the contracted notation for the 

subscripts of the material constant tensors is adopted here, i.e., c11=c1111, c66=c1212, 

d31=d311, a3333=a33 and b3333=b33. According to the relationship between the flexocoupling 

coefficient tensor fijkl and the flexoelectric coefficient tensor ijkl  (Yan and Jiang, 2013a; 

Sharma et al., 2012), i.e., ( )ijkl lm ijkm ikjm jkimf a      , and the provided number of the 

non-zero and independent flexoelectric coefficient elements ijkl  in a matrix form for a 

given symmetry class of materials in Refs. (Shu et al., 2011; Quang and He, 2011), the 

corresponding flexocoupling coefficient tensor of the example material of tetragonal 

BaTiO3 (point group 4mm) can be obtained. Following the same subscript transformation 

in Ref. (Shu et al., 2011),  1133 2233f f  can be represented by f19. Substituting equations 

(3.10) and (3.11) into equations (3.2c) and (3.2d), the electric field Ei which is assumed 

to exist in the z direction only (Zhao et al., 2007) and the higher order electric field Eij for 

a transversely isotropic material can be derived as 

 
2 2 2 2

33 31 192 2 2 2( ) ( ),z z
w w w wE a P d z z f

x y x y
   

      
   

                                             (3.12a) 



72 

 

 3133 , ,zx z zE b P                                                                                                           (3.12b) 

3233 z,z ,zyE b P                                                                                                             (3.12c) 

2 2

33 , 19 2 2( ).zz z z
w wE b P f z z

x y
 

   
 

                                                                          (3.12d) 

When the plate is subjected to an electric potential   across its thickness, the 

equilibrium equation involving the electric potential , electric field Ei and the higher 

order electric field Eij should be satisfied as (Shen and Hu, 2010),  

, , , 0.z zx x zy y zz zE E E E
z


    


                                                                                  (3.13) 

In the absence of free electric charges, the Gauss’s law requires 

, , 0,zz z zP                                                                                                               (3.14) 

where 0 b    with the consideration of the so-called background permittivity for 

ferroelectrics (Tagantsev and Gerra, 2006). 12 1 1
0 8.85 10 C V m        is the 

permittivity of the air, and 6.62b   is the background permittivity for the example 

material BaTiO3 when its electric field is parallel to the polarization (Tagantsev and Gerra, 

2006). 

By means of equations (3.12)-(3.14) and the electric boundary conditions 0,ij jE n 

( )
2
h V  and ( ) 0

2
h

   for the current case, the electric potential, the polarization and 

the electric field can be derived in terms of the plate transverse displacement w and the 

applied voltage V as, 
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where 33

33

1 a
b





 .  

After the derivation of these electric fields, the traditional stresses can be 

determined from the constitutive equation (3.2a) in terms of the applied voltage and the 

transverse displacement, i.e.,   
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Additionally, the surface stresses can also be derived in terms of the applied voltage and 

the transverse deflection from the surface constitutive equation (3.6a) as 
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It is worth mentioning that the expressions of all the bulk electroelastic fields are 

consistent with those according to the classical piezoelectricity theory if the 

flexoelectricity and the surface effects are excluded.   

In order to determine the transverse displacement in the electroelastic fields for both 

the bulk and surfaces of the plate, Hamilton's principle is adopted in the current work 

(Yan and Jiang, 2013b; Rao, 2007), i.e.,  
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where H is the electric enthalpy including both the bulk and surface components, i.e.,  

b sH H H  . According to equations (3.3), (3.4), (3.7) and (3.8), the bulk and the 

surface electric enthalpy of the plate can be reduced to
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for the plate, where  is the 

mass density and the dot “.” represents the derivation with respect to time t. Additionally, 

W is the work done by the external forces. For the clamped PNP with four edges fixed, W 

takes the form of * * *1 2 2[ ( ) ( ) 2 ( )]
2 xx yy xy

w w w wW qwdxdy N N N dxdy
x y x y
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, where

*
xxN , *

yyN  and *
xyN  are the generalized resultant in-plane forces defined as 

* ( ) ( )s u s l
ij ij ij ijN N      with ijN  being the resultant in-plane forces for the bulk 

component and the superscripts “u ” and “l” representing the upper and lower surfaces, 

respectively. The in-plane forces for the bulk can be expressed as   
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generalized resultant in-plane forces are induced by the electric voltage due to the 

conventional electromechanical coupling. For the nano-scale plates, both the surface 
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effects and the flexoelectricity contribute to these in-plane forces which may become 

compressive depending on the direction and magnitude of the electric potential, the 

residual surface stress and the flexoelectricity.  

By conducting the variational principle of equation (3.20), the governing equation 

of the piezoelectric plate including the surface effects and the flexoelectricity can be 

derived as,  
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(3.21) 

with   
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3 266 66
66 12 2

sc cD h h  .                                                                                                  (3.22c) 

It is identified from the expressions of D11 and D12 that the flexoelectricity decreases the 

effective bending rigidity while the surface effects increase it. With the given values of 

the material property constants of the example material BaTiO3, when the thickness of the 

plate is small, e.g. at nanometers, the contribution of the flexoelectricity and surface 

effects on the effective bending rigidity becomes significant. Thus the exclusion of these 

effects might result in inaccuracy when investigating the bending behaviors of the PNP. 

However, the bending rigidity needs to be positive to ensure the stability of the plate. It 

should be pointed out that without the consideration of the surface effects and the 

flexoelectricity, the governing equation (3.21) can be reduced to the motion equation for 

a classical piezoelectric Kirchhoff plate.  

In addition, the mechanical boundary conditions for the clamped PNP can also be 

derived by the means of the variational principle as 

0w  and 0w
x





   at 0x  and x a ;                                                                       (3.23a) 

 0w  and 0w
y





   at 0y  and y b .                                                                      (3.23b) 

Thus the deflection, the corresponding electroelastic fields, and the dynamic responses of 

the bending PNP can be determined by solving the nonlinear partial differential equation 

(3.21) with the mechanical boundary conditions listed in equations (3.23).  
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3.2.3 Electroelastic responses of a static bending PNP 

For the static bending analysis of the PNP, the inertial terms are neglected and the 

governing equation (3.21) can be rewritten as 
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(3.24) 

When the plate undergoes infinitesimal deformation within the considered range of the 

material properties, the plate dimensions and applied mechanical and electrical loads, the 

distribution of the nonlinear terms 
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 in equation (3.24) is checked 

and it is found that these terms could be neglected as compared with the other terms. 

Accordingly, the nonlinear partial differential equation (3.24) could be simplified as a 

linear one, i.e., 
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In order to investigate how the surface effects and the flexoelectricity influence the 

static bending of the PNP, the Ritz method (Reddy, 2007) is adopted to get the 

approximate solution of equation (3.25), in which the weak form of the variational 

statement of equation (3.25) is expressed as, 

2 2 2 2 2 2 2 2
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2 2
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                        (3.26) 

According to the Ritz method, the transverse deflection can be approximated as 

(Reddy, 2007),  

1 1

( , ) ( ) ( )
m n

ij i j
i j

w x y A X x Y y
 

                                                                                        (3.27) 

where ijA are unknown constants to be determined, and ( )iX x and ( )jY y are coordinate 

functions which should satisfy the mechanical boundary conditions of the plate. Thus for 

the clamped plate, ( )iX x  and ( )jY y  are chosen as (Reddy, 2007) 
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,                                                                                                        (3.28a) 
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                                                                            (3.28b)               

Substituting equations (3.27) and (3.28) into equation (3.26) yields, 

    R A F                                                                                                                 (3.29)                        
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                              (3.30) 

and    .kl k lF qX Y dxdy                                                                                               (3.31)                                                                       

The unknown constants Aij can be determined by solving the linear algebraic equation 

(3.29). Thus the corresponding deflection, the electroelastic fields can be obtained 

according to equations (3.27), (3.16) and (3.17). 

3.2.4 Free vibration of a PNP 

For the analysis of the free vibration of the PNP with the consideration of the surface 

effects and the flexoelectricity, the governing equation (3.24) can be similarly reduced by 

neglecting the nonlinear terms as 
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                            (3.32) 

The harmonic solution of equation (3.32) can be expressed as 
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( , , ) ( , ) i tw x y t W x y e                                                                                                     (3.33) 

where   is the resonant frequency and W (x, y) is the vibration mode. Substituting 

equation (3.33) into equation (3.32) yields 

4 4 4 3 2 2
2

11 12 664 4 2 2 2 2

2 2
0 231 31

2 2
33 33

( ) 2( 2 ) ( )
12

2( 2 )( ) 0.
s

W W W h W WD D D
x y x y x y

d d V W WV h W
a a h x y




  

    
    

     

 
     

 

                                (3.34) 

Similarly, Ritz method is also adopted to get the approximate solution of equation (3.34) 

starting from the weak form of the variational statement of equation (3.34), i.e.,  
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(3.35) 

According to the Ritz method, the approximate form of the mode shape of the vibration is 

expressed as 
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with ( )iX x  and ( )jY y  given in the previous section, which should satisfy the mechanical 

boundary conditions of the clamped PNP. Substituting equation (3.36) into equation (3.35) 

results in 

       2( ) 0R B A                                                                                                  (3.37) 

with ( )( )ij klR derived in the previous section and  

3
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12

ji k l
ij kl i j k l j l i k

Yh X X YB hX Y X Y Y Y X X dxdy
x x y y
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             

                       (3.38) 

Thus the resonant frequency can be determined from the characteristic equation (3.37).  

It should be mentioned that the so-called dynamic flexoelectric effect (Yudin and 

Tagantsev, 2013; Tagantsev, 1986) is not considered here. Therefore, the modeling in the 

current work could be claimed to provide a qualitative prediction on the trend of the 

influence of the surface effects and the static flexoelectricity upon the electromechanical 

coupling fields of the PNP. In the following section, the analysis of how the 

flexoelectricity and the surface effects influence the size-dependent properties of a 

bending PNP will be conducted.  It is worth mentioning that all the equations derived 

above can be reduced to the ones of the classical piezoelectric plate if the higher order                                                                                                                               

couplings in the internal energy expression and the surface effects are excluded. 
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3.3 Results and discussions 

For case study, BaTiO3 is taken as an example material to investigate how the 

flexoelectricity and the surface effects influence the size-dependent bending behaviors of 

a piezoelectric nanoplate. The bulk material properties of BaTiO3 under the plane strain 

condition can be obtained as 11=167.55 GPa,c 12 =78.15 GPa,c 66 44.7 GPa,c 

8
33 0.79 10  V m/Ca    and 8

31=3.5 10  V/md   based on the information given in Ref. 

(Giannakopoulos and Suresh, 1999). 9
33 1 10b   Jm3 /C2 is chosen according to Ref 

(Maranganti et al., 2006). However the surface parameters for BaTiO3 are not completely 

available due to the lack of sufficient atomistic calculations and experiments. In the 

current work, the surface piezoelectricity is adopted as 31 0.056sd   C/m according to Ref. 

(Dai et al., 2011). Using the same approximation scheme adopted in (Huang and Yu, 

2006), the other surface elasticity constants are estimated as 11 9.72sc  N/m, 12 4.35sc 

N/m and 66 2.68sc  N/m. The residual surface stress may alter from a negative value to a 

positive value depending on the crystal plane direction (He and Lilley, 2008a). Thus we 

use the varying values for the residual surface stress from a negative one 0 1   N/m to 

a positive one 0 1  N/m, respectively (He and Lilley, 2008a; Yan and Jiang, 2012a). In 

addition, the distributed load q is set as 0.1 pN/nm2 to ensure the small deformation 

assumption. In current work, three terms for the coordinate functions are used in the Ritz 

method to approximate the transverse displacement (e.g. m = 3, n = 3) to ensure the 

convergence of the solution. 
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The influence of the flexoelectricity and the surface effects on the static bending of a 

PNP is investigated first. Figure 3.2 depicts the variation of the normalized maximum 

deflection ( 0/ Vw w ) at the middle (x = 0.5a, y = 0.5b) of a square plate (a = b = 50h) with 

the plate thickness h under an electric voltage (V = -0.1 V) and a mechanical load q, 

where 0
Vw  is the maximum deflection of the plate subjected to the same external loads 

without considering the flexoelectricity and the surface effects. It is found that both the 

flexoelectricity and the surface effects contribute to the size-dependent bending responses 

of the PNP. For example, the pure flexoelectricity softens the PNP resulting in a larger 

deflection. However, the surface effects may soften or stiffen the plate depending on the 

sign of the residual surface stress. It was explained in (Yan and Jiang, 2012b) that the 

residual surface stress induces in-plane forces which in turn affect the effective bending 

rigidity of the plate. It is thus concluded that it might lead to substantial errors if only the 

influence of the flexoelectricity or the surface effects is considered when investigating the 

electroelastic responses of a bending plate. It is also found that the influence of the 

surface effects and the flexoelectricity decays with the increase of the plate thickness as 

all the curves tend to approach unit.  Additionally, this figure shows that within the 

considered range of surface properties in the current work, the effects of surface elasticity 

and surface piezoelectricity on the static bending of the plate are not significant compared 

to the effect from the residual surface stress, especially for the plate with a relative large 

length to thickness ratio, a = b = 50h for example.  
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Figure 3.2: Variation of normalized maximum deflection with plate thickness (a = b 

= 50h, V = -0.1 V). 

In order to investigate how the combined effects of the flexoelectricity and the 

surface upon the static bending of a PNP are influenced by the plate length to thickness 

ratio and the applied electric voltage, figure 3.3 shows the variation of the normalized 

maximum deflection of a square plate (a = b) with length to thickness ratio (a/h) under 

different voltage and residual surface stress. The thickness of the plate is set as h = 20 nm. 

It can be concluded from the figure that the applied voltage influences the combined 

effects of the flexoelectricity and the surface on the static bending of the PNP. For 

example, when a positive voltage is applied, the combined effects are magnified by 

increasing the magnitude of the applied voltage, while an opposite trend is observed for a 

negative applied voltage. Figure 3.3(a) also demonstrates that the combined effects are 

enhanced with the increase of length to thickness ratio when the residual surface stress is 
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negative. When the residual surface stress becomes positive, it is interesting to point out 

that a critical length to thickness ratio (a/h)cr exists where the combined effects of the 

flexoelectricity and the surface disappear as indicated by the interception of these three 

curves associated with different applied voltages at unity in figure 3.3(b). The 

observations in figures 3.3(a) and 3.3(b) could be explained by the fact that the 

flexoelectricity always softens the bending of the PNP within the considered range of the 

material properties, the plate aspect ratio and the applied voltage, while the surface 

effects are enhanced with the increase of the plate length to thickness ratio as discussed in 

(Yan and Jiang, 2012b). Therefore, the softening behavior induced by a negative residual 

surface stress is magnified with the increase of the plate length to thickness ratio, which 

is additive to the softening behavior caused by the flexoelectricity. However, a positive 

residual surface stress always stiffens the bending of the plate, which gives an opposite 

effect upon the bending of the plate compared to the flexoelectricity. When the plate 

length to thickness ratio is less than the critical value, the softening behavior due to the 

flexoelectricity is dominant over the stiffening behavior induced by the surface effects, 

while this trend is reversed when the length to thickness ratio is greater than the critical 

value. Therefore, a transition exists with no size-dependency. From figures 3.3(a) and 

3.3(b), it is also observed that for the plate with fixed thickness, the flexoelectricity plays 

more significant role in the static bending of the plate for the plate with smaller length to 

thickness ratio a/h. However, with the increase of the length to thickness ratio, the 

influence of the surface effects is getting larger. The results in figure 3.2 and figure 3.3 

concludes that the combined effects of the flexoelectricity and the surface on the bending 

properties of a PNP depend on the plate thickness, the plate length to thickness ratio, the 

applied voltage and the residual surface stress. Thus it is necessary to take both the 
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flexoelectricity and the surface effects into consideration when predicting the static 

bending of a PNP. 
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Figure 3.3: Variation of normalized maximum deflection with plate length to 

thickness ratio under different voltage and residual surface stress (a) 0 1   N/m 

and (b) 0 1  N/m. 

As indicated by the expression of the electric field in equation (3.16), the 

incorporation of surface effects, the strain gradients and the polarization gradients will 

influence the distribution of the electric field. Figure 3.4 plots the distribution of the 

electric field at the middle of the plate (x = 0.5a, y = 0.5b) along the plate thickness 

direction under an applied voltage (V = -0.1 V) with different residual surface stress 

values. When the plate is very thin, e.g. h = 20 nm, the combined effects of the 

flexoelectricity and the surface have significant contribution to the electric field as 

indicated by the difference between the curves representing the current model and the 

classical solution. In addition, the electric field may be increased or decreased by the 

combined effects depending on the sign of the residual surface stress. It should be 
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mentioned that the jump of the distribution of the electric field near the surfaces is due to 

the account for the flexoelectricity, which is a typical boundary behavior for a gradient 

theory and this phenomenon was also reported in Ref. (Mindlin, 1969) for a plate with 

polarization gradient and Ref. (Yang et al., 2004) for a circular cylindrical shell with 

electric field gradient. 

 

Figure 3.4: Electric field distribution along the plate thickness direction at the 

middle of the plate. 

The combined effects of the flexoelectricity and the surface on the polarization in 

the plate are also demonstrated in the current work. By checking equation (3.17), it is 

found that the varying terms with plate thickness are relatively negligible in comparison 

to the other fixed terms within the considered range of the plate thickness. Thus we can 

assume that the polarization is uniform across the plate thickness. For different residual 



90 

 

surface stresses, figures 3.5(a) and 3.5(b) depict the variation of the polarization at 

different location of the plate against the plate thickness h when a negative voltage (V = -

0.1 V) is applied. It is found that the combined effects on the polarization are more 

significant for the plate with smaller thickness. When the thickness increases, these 

effects will eventually disappear as indicated by the fact that all the results approach 

those from the classical solution where the polarization uniformly distributes in the plate. 

As indicated by figures 3.5(a) and 3.5(b), the combined effects of the flexoelectricity and 

the surface significantly alter the distribution of the polarization. For example, under such 

an applied voltage, the polarization is increased at a particular point along the side of the 

plate (x = 0, y = 0.5b for example) while it is decreased in the middle of the plate (x = 

0.5a, y = 0.5b for example). Comparing the results from the current model with both the 

flexoelectricity and the surface effects and those only considering the flexoelectricity, it 

can be concluded that both the flexoelectricity and the surface effects contribute to the 

polarization and neglecting any individual effect will lead to inaccurate prediction. It is 

also found that the influence of the surface effects upon the polarization depends on the 

value of the residual surface stress. For example, for a particular point at the middle of 

the plate, the surface effects decrease the polarization with a negative residual surface 

stress ( 0 1   N/m for example) but increase the polarization with a positive residual 

surface stress ( 0 1   N/m for example). Thus figures 3.4 and 3.5 indicate the importance 

of considering both the flexoelectricity and the surface effects in studying the 

electroelastic responses of the piezoelectric plate at the nano-scale. 
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Figure 3.5: Variation of polarization with plate thickness at different locations of the 

plate under different residual surface stress (a) V = -0.1 V, 0 1   N/m and (b) V = -

0.1 V, 0 1  N/m. 
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The vibrational behaviors of a PNP with the consideration of both the 

flexoelectricity and the surface effects is also an important issue needed to be 

investigated. For a square plate ( 50a b h  ) subjected to a negative voltage (V = -0.1 

V), the variation of the normalized fundamental resonant frequency 0/ V   of the plate 

with the plate thickness h is plotted in figure 3.6. 0
V is the resonant frequency of the plate 

without considering both the flexoelectricity and the surface effects. It can be concluded 

that with the considered surface material parameters and the flexocoupling coefficients, 

both the surface effects and the flexoelectricity influence the resonant frequency 

significantly. For example, the flexoelectricity decreases the resonant frequency while the 

surface effects may enhance the resonant frequency with a positive residual surface stress 

but reduce the resonant frequency with a negative one. In addition, the effects of the 

surface elasticity and the surface piezoelectricity on the resonant frequency are not 

prominent for a plate with such a relatively large length to thickness ratio, a/h = 50 for 

example, as indicated by the curve representing the surface effects without considering 

the residual surface stress, i.e., 0 0  N/m. Due to the opposite trends of the 

flexoelectricity and the positive residual surface stress upon the resonant frequency, the 

size-dependent vibration may disappear. Otherwise, the combined effects are more 

pronounced for the thinner plates with smaller thickness and diminish with the increasing 

plate thickness as indicated by all the curves tending to approach a unity. Thus it is 

necessary to incorporate both the flexoelectricity and surface effects in investigating the 

dynamic response of piezoelectric devices at the nano-scale.  
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Figure 3.6: Variation of normalized resonant frequency with plate thickness h (a = b 

= 50h, V = -0.1 V). 

Figure 3.7 depicts the variation of the normalized resonant frequency of a square 

piezoelectric plate (a = b= 50h) against the plate thickness h  under different applied 

electrical loads with 0  being the resonant frequency calculated by neglecting the 

flexoelectricity, the surface effects and the applied voltage. The residual surface stress is 

set as 0 1  N/m. As indicated in the figure, the combined effects of the flexoelectricity 

and surface on the resonant frequency are dependent on the applied electric potential. For 

example, when the plate is subjected to a negative voltage, the combined effects increase 

the resonant frequency and such effects are enhanced with the increase of the magnitude 

of the applied voltage. However, when a positive voltage is applied to the plate, the 

combined effects may decrease or increase the resonant frequency depending on the 

magnitude of the applied voltage and the plate thickness. The discrepancy of the curves 
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in this figure suggests a possible way for frequency tuning by means of the applied 

voltage as discussed in Refs. (Yan and Jiang, 2012a; 2012c). However, such a frequency 

tuning process in the design of PNP resonators may be altered by the combined effects of 

the flexoelectricity and the surface.  

 

Figure 3.7: Variation of normalized resonant frequency with plate thickness for a 

plate under different voltage (a = b = 50h). 

In order to investigate how the in-plane aspect ratio influences the combined effects 

of the flexoelectricity and the surface upon the vibrational behaviors of the PNP, the 

variation of the normalized resonant frequency 0/ V  of the plate (a = 50h) against the 

plate thickness h for the plate with different aspect ratio a/b and under different voltage 

(e.g. V = -0.2 V, V = 0 V and V = 0.2 V) is depicted in figure 3.8. As revealed in the 

figure, for a fixed residual surface stress ( 0 1  N/m for example), the combined effects 
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of the flexoelectricity and the surface may decrease or increase the resonant frequency 

depending on the plate in-plane dimensions. For example, when the plate is a square (a/b 

= 1), the combined effects increase the resonant frequency with more prominent surface 

effects.  However, with the increase of the in-plane aspect ratio /a b , i.e., the plate is 

becoming narrower when a is fixed, the combined effects will reduce the resonant 

frequency as the flexoelectricity becomes dominant. In addition, when the aspect ratio a/b 

is sufficiently large, i.e., / 10a b  , the combined effects of the flexoelectricity and the 

surface on the resonant frequency will slightly change with the aspect ratio. Since a is 

fixed, large aspect ratio will reduce the current model to the Euler beam model. It was 

justified by equation (20) in Ref. (Yan and Jiang, 2013b) and equation (22) in Ref. (Yan 

and Jiang, 2011a) that the beam resonant frequency is independent of the beam width 

when the individual influence of the flexoelectricity or the surface effects are considered. 

Therefore, it can be concluded from figures 3.6, 3.7 and 3.8 that the plate dimensions, the 

residual surface stress and the applied electric voltage contribute to the combined effects 

of the flexoelectricity and the surface upon the resonant frequency of the PNP.  
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Figure 3.8: Variation of normalized resonant frequency with plate thickness for a 

plate with different aspect ratio a/b and under different voltage (a = 50h) (a) V = -0.2 

V, (b) V = 0 V and (c) V = 0.2 V. 

3.4 Conclusions 

In this work, a modified Kirchhoff plate model incorporating the surface effects and the 

flexoelectricity is developed to investigate the size-dependent properties of a bending 

piezoelectric nanoplate (PNP). The simulation results indicate that the combined 

flexoelectricity and surface effects have significant influence upon the electroelastic 

responses and the free vibration of the PNP. Such effects are size-dependent and decrease 

with the increase of the plate thickness.  Neglecting any individual effect may induce 

inaccurate characterization of the electromechanical coupling of the PNP. It can also be 

concluded that the combined effects of the surface and the flexoelectricity on the 
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electromechanical coupling behaviors of a PNP are sensitive to the values of surface 

material constants, the applied electric potential and the plate dimensions. Additionally, 

the results suggest that the frequency tuning of PNP-based resonators by adjusting the 

applied electric voltage could be modified by the flexoelectricity and the surface effects. 

This work is claimed to be helpful for further understanding the fundamental physics of 

the size-dependent electromechanical coupling behaviors of piezoelectric nanomaterials 

and provide basic guidelines for the design and applications of piezoelectric nanodevices. 
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Chapter 4  

4 Conclusions and recommendations  

4.1 Conclusions  

Piezoelectric nanostructures have recently attracted much attention with the development 

of nanotechnology for their potential applications as sensors, actuators, energy harvesters 

and etc. in nanoelectromechanical systems (NEMS) due to their intrinsic 

electromechanical coupling and unique features at the nano-scale. Existing studies have 

shown that those nanostructures present size-dependent physical and mechanical 

properties. Therefore, it is essential to explore the origins and underlying physics of such 

size effects of piezoelectric nanostructures and understand how these size effects 

influence the electromechanical coupling behaviors of the nanostructures. In this thesis, 

the size-dependent static bending and vibrational behaviors of a piezoelectric nanoplate 

have been examined by the modified continuum mechanics modeling approaches for the 

sake of efficiency and simplicity.  

The size-dependent responses of a piezoelectric nanostructural element can be 

understood by resorting to the effect of the flexoelectricity as large strain gradients 

typically present in the nanosized structures. However, continuum modeling of such 

effect on the size-dependent properties of piezoelectric nanostructures is very scarce, 

particularly for two-dimensional piezoelectric nanostructure. Therefore this thesis first 

attempted to develop a modified Kirchhoff plate model accounting for the pure 
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flexoelectricity to qualitatively predict the electromechanical coupling behaviors of the 

piezoelectric nanoplate.  

As is well addressed in the literature, the surface effects play a significant role in 

determining the size-dependent properties of nanostructures due to their large surface to 

volume ratio. Thus it is essential to incorporate the surface effects in the investigation of 

the static and dynamic behaviors of a piezoelectric nanoplate in addition to the 

flexoelectricity. Based on the surface piezoelectricity model and the extended linear 

piezoelectricity theory, this thesis established a modified Kirchhoff plate model with the 

consideration of both the surface effects and the flexoelectricity to capture the size effects 

on the electromechanical coupling fields of a bending piezoelectric nanoplate. The 

surface effects include the residual surface stress, surface elasticity, and surface 

piezoelectricity.  

From the simulation results, it can be concluded that both the surface effects and the 

flexoelectricity play significant role in the static bending and vibrational behaviors of the 

piezoelectric plate. Such size effects upon the electroelastic responses and the vibrational 

behaviors are more pronounced with the decrease of the plate thickness. In addition, the 

influence of the surface effects and the flexoelectricity are sensitive to the surface 

material parameters, applied electric voltage and the plate dimensions. It also suggests a 

possible way for frequency tuning of piezoelectric nanoplate-based resonators by altering 

the applied electrical loading, which can be modified by either the flexoelectricity or the 

surface effects. 
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4.2 Recommendations for future work 

This thesis has provided a theoretical prediction on how the surface effects and the 

flexoelectricity influence the size-dependent physical and mechanical properties of the 

piezoelectric nanostructures. However there are some limitations and issues for the 

current work that need to be addressed and some other issues needed to be further 

explored.  

In the current work, some factors that might contribute to the size effects are 

neglected for the mathematically tractable purpose, for example, the higher order 

coupling between the strain and strain gradient, and the coupling between the strain 

gradient and strain gradient. If those factors are considered, more complex governing 

equations and boundary conditions will be derived to solve this problem. Therefore 

numerical solution technique has to be pursued for these cases in the future. 

In addition, this thesis focuses on investigating the effects of the surface and the 

flexoelectricity upon the static bending and vibrational behavior of a clamped 

piezoelectric plate with four edges fixed. However, the piezoelectric nanoplates with 

other boundary conditions are necessarily needed to be studied. From the variational 

principle, the in-plane displacements and the transverse displacement are coupled. In 

addition, the mechanical boundary conditions for those plates are more complicated than 

the classical mechanical boundary conditions as they are altered by the flexoelectricity 

and the surface effects. Thus it is very difficult, if not impossible, to find the approximate 

analytical solutions for the plates.  One may resort to the numerical techniques to get the 

solutions for such cases.  
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Moreover, the current work focuses on investigating the electromechanical 

couplings of a fundamental building block, i.e., plate structure. However, from the 

application point of view, the piezoelectricity-based nanodevices are complex structures, 

which may be multi-layered nanocomposites. Due to mathematical difficulty, the 

derivation of the analytical solutions of such piezoelectric nanostructures becomes a great 

challenge. Numerical solution technique must be resorted to investigate the influence of 

the surface effects and the flexoelectricity upon the performance of those complex 

nanodevices.  
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