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Abstract 

Silicone hydrogels have been extensively studied in the fields of contact lenses, tissue 

engineering, and drug delivery due to their good biocompatibility, high oxygen permeability, 

and proper light transmission. However, their applications in biomedical devices are limited 

by protein adsorption and bacterial contamination because of the hydrophobic surface of 

silicone, which will cause more irreversible protein adsorption. Several physical methods can 

be applied to create a hydrophilic surface on hydrogels, such as spin coating, physical vapor 

deposition, dip coating, drop casting, etc. Compared to the conventional methods, the matrix 

assisted pulsed laser evaporation (MAPLE) is suitable to produce biopolymer/polymer film 

with a contamination-free manner. In this thesis, hydrophilic polymer, polyethylene glycol 

(PEG) and polyvinylpyrrolidone (PVP), were deposited by MAPLE with a pulsed Nd:YAG 

532 nm laser for the surface hydrophilicity modification. The polymer coatings were 

characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force 

microscopy (AFM). Our results demonstrate that protein adsorption decreases 28.2% and 

18.7% with the surface modifications by PEG and PVP, respectively. In addition, the 

polymer coated silicone hydrogels do not impose toxic effect on mouse NIH/3T3 cells.  

Normally, protein fouling can lead to biofilm contamination caused by the growth of 

bacteria. Therefore, we further deposit hybrid nanocomposite on silicone hydrogels to inhibit 

the growth of bacteria. Silver nanoparticles incorporating with PVP (Ag-PVP NPs) were 

developed through a photochemical method without addition of reductive reagents. On the 

other hand, sol-gel method was applied to incorporate ZnO nanoparticles into PEG (ZnO-

PEG NPs). MAPLE process was applied to deposit the two different nanocomposites on the 

silicone hydrogels, respectively. Our results indicate that the silicone hydrogels with Ag-PVP 

nanocomposite coating can reduce 28.2% of the protein adsorption compared to silicone 

hydrogels without coating, while ZnO-PEG coating is able to reduce 30% protein adsorption. 

The cytotoxicity study shows that the nanocomposite coated silicone hydrogels do not 

impose toxic effect on mouse NIH/3T3 cells. In addition, MAPLE-deposited Ag-PVP and 

ZnO-PEG nanocomposite coatings can inhibit bacterial growth significantly. Our result show 

that Ag-PVP nanocomposite coating can eliminate almost all the E.coli after 8 hours’ 

culturing; the relative numbers of E.coli on the ZnO-PEG coated silicone hydrogel approach 
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to zero when the culturing time is 4 hours. In addition, the thickness and roughness of Ag-

PVP film over time were measured by AFM. The result shows that MAPLE process is a time 

dependent (linear) deposition, and it is able to create homogenous thin films (roughness is 

lower than 30 nm). MAPLE shows good ability to control the thickness in the deposition of 

organic molecules and nanoparticles, which maintains the chemical backbone of polymers, 

and prevents contamination. 

Keywords 

Silicone hydrogel; Polyethylene glycol (PEG); Polyvinylpyrrolidone (PVP); Silver 

nanoparticles; Zinc oxide nanoparticles; Surface coating; Matrix assisted pulsed laser 

evaporation (MAPLE); protein adsorption; Antibacterial property. 
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Chapter 1  

1 Introduction 

1.1 Biocompatible hydrogel 

Hydrogels have been one of the best choice materials for biomedical applications because of 

their unique biocompatibility, large extent on their bulk structure, flexible methods of 

synthesis, high water content, wide range of constituents, and desirable physical 

characteristics [1,2]. Hydrogels can be divided into two groups. The first is synthetic 

hydrogels (PHEMA [3], PEG [4], PVA [5] and silicone [6]), and the second is biological 

hydrogels (collagen [7], hyaluronic acid (HA) [8], fibrin [9]). Synthetic hydrogels can be 

synthesized using various chemical methods (such as photo-initiated and thermal-initiated 

polymerization). Photo-polymerization can minimize the invasive effect during synthesis, 

which is an important issue for biomedical material. Therefore, a number of hydrogels are 

free radical photo-polymerized in vivo and in vitro with the help of photo-initiators under 

visible or ultraviolet (UV) light [10]. Hydrogels have been extensively used in tissue 

engineering [11], controlled drug delivery [12], medical and biological sensors [13], and 

contact lenses [6]. 

For contact lens, there are several types of hydrogels that have been used in the past fifty 

years, such as PMMA, PHEMA and silicone hydrogels. For now, PHEMA and silicone are 

still the most commonly used lens materials. Comparing to PHEMA hydrogels, silicone 

hydrogels show higher oxygen permeability because of its different oxygen transport 

mechanism which is transported through siloxane-phase rather than water [14]. Therefore, 

silicone-based hydrogels have been used for the studies of topical ocular drug delivery and 

implanting medical devices. 

1.2 Challenges of silicone hydrogels used as contact lens 
material 

Silicone hydrogels are polymers consisting of silicon-oxygen bonds (siloxane), which can 

lead to higher oxygen permeability than other conventional hydrogel [15]. As a result, 

silicone hydrogel can fulfill the requirements of wearing lenses under open, closed eye 
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conditions and even long-term [16]. However, silicone hydrogel contains lots of siloxane, 

which is relatively hydrophobic, and different from amine and hydroxyl groups, which are 

hydrophilic. Hydrophobic surface will cause irreversible protein adsorption to form protein 

film, which will cause that microbial colonization and subsequent biofilm formation [17–19]. 

To be used as implant materials/devices, suitable hydrophilic surface is the key. 

Consequently, the surface treatment of silicone hydrogels is very important to allow them to 

be used for biomedical devices, especially for contact lenses. 

1.3 Surface modification methods 

Surface modification can be divided into physical and chemical methods. Chemical vapor 

deposition (CVD) [20] and wet chemical methods [21] have been applied for converting 

hydrophobic surfaces to hydrophilic surfaces by chemically adding suitable functional groups 

or coatings. Unfortunately, CVD process normally requires the use of toxic, corrosive, 

flammable and/or explosive precursor gases, and high temperature, which will decompose 

the structure of biomaterial [22]. Furthermore, wet chemical method introduces additional 

chemical agents, which normally incur adverse results such as the toxic effects. In addition, 

chemical methods rely on the use of surface-specific chemistries, which means they are not 

general and cannot be applied to a wide range of surfaces or substrates [23]. 

Physical methods have been applied for hydrogel surface modification recently, including 

spin coating [24], dip coating [25] and physical vapor deposition (PVD) [26]. Although spin 

coating and dip coating are much more environmentally-friendly compared to chemical 

methods, they all need to make direct contact with solvents. It is hard to control the thickness 

of films compared to PVD. PVD can prevent solvent contamination to produce highly pure 

coating with controllable thickness at atomic level or nanometer level, and it can be divided 

into four categories such as vacuum evaporation, sputter deposition, arc vapor deposition and 

ion plating [22,27]. However, traditional PVD method needs high temperature, electron beam 

or high voltage, which will break the structure of the polymers or nanoparticles. The methods 

mentioned above have their own advantages and drawbacks, and all can only be applied for 

specific range of materials. The ability to deposit a wide class of materials and protect the 

target material structures would be a great advantage for silicone hydrogel surface 

modification. 
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Matrix assisted pulsed laser evaporation (MAPLE) is a laser assisted physical vapor 

deposition technique that derives from the pulsed laser deposition (PLD) [28]. It offers an 

alternative and proper method to deposit polymer, biomaterial and nanocomposite films onto 

substrate, especially for fragile compounds such as carbohydrates and biological materials 

[29]. Actually, MAPLE provides a gentle mechanism to obtain homogeneous films of high 

molecular weight organic materials whose thickness can be accurately controlled, and also 

maintain their functions without laser induced damage [30]. Moreover, MAPLE is a non-

contact deposition technique, and thus eliminates a major source of contamination and can be 

integrated with other sterile processes [31]. 

The mechanism of MAPLE process is shown in Figure 1.1. The target material is diluted into 

a highly volatile non-interacting light-adsorbing solvent with the weight concentration lower 

than 5% normally. Liquid nitrogen is used to freeze the target solution to liquid nitrogen 

temperature. The frozen target is irradiated by pulsed laser beam with fluence of 50-300 

mJ/cm2 under vacuum of 1x10-6 Torr that was achieved by turbo pump. Each laser pulse 

produces a plume containing both the volatile solvent and the heavier polymer molecules or 

nanocomposite. The solvents are pumped away while the polymer or nanocomposite is 

deposited onto the substrate [30,32,33]. 

1.4 Desired materials to promote surface property for contact 
lens 

Polyethylene glycol (PEG) based polymers [34], polyvinylpyrrolidone (PVP) [35,36], 

zwitterionic materials [37], carbohydrates [38] and peptide-like polymers [39] are able to 

provide a hydrophilic surface, as a result they are commonly used to modify biomaterials’ 

surface to obtain a protein resistance surface. PEG and PVP are the most commonly used 

polymers for hydrophilic surface modification due to their good biocompatibility, high ratio 

hydrophilic chemical group, stable chemical structure and inexpensive price. 

Microbial contamination will increase the risk of infection, which is one of the most serious 

complications in body implants and contact lenses. Ag NPs and ZnO NPs have been used to 

coat biomedical products to inhibit bacteria growth [40,41]. PEG and PVP could also be used 

biocompatible stabilizers which can introduce functional groups on the surface of 

nanoparticles to provide them with water-soluble ability so as to meet the various biological 
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and biomedical needs [42,43]. Moreover, Ag-PVP and ZnO-PEG nanocomposite films on 

hydrogel can produce hydrophilic surfaces, which are also important as introduced.  

 

Figure 1.1 Scheme of MAPLE deposition mechanism 

1.5 Thesis objectives 

According to the current development of hydrogel contact lenses, high oxygen permeability 

is an essential factor for long-term wearing contact lenses. But silicone hydrogels with high 

oxygen permeability very easily cause irreversible protein adsorption due to its relatively 

hydrophobic properties. Irreversible protein adsorption will cause adverse clinical events and 

even lead to bacteria adhesion. Consequently, this thesis focuses on development of suitable 

coatings by using MAPLE deposition. The detailed objectives are listed as follows: 

(1) Design and deposit polymers on silicone hydrogels using MAPLE to minimize the 

protein absorption.  

(2) Design and deposit nanoparticles on silicone hydrogels using MAPLE to enhance 

their anti-microbial efficiency.  

(3) Understand the effects of MAPLE process on the deposition of polymers and 

nanoparticles through different characterizations. 
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1.6 Thesis overview 

An overview of my thesis is presented as follows: 

Chapter 2: This chapter reviews the general applications of hydrogel especially for the 

contact lenses. Silicone hydrogel used for contact lenses has several advantages, for instance, 

high oxygen permeability and good mechanical properties. However, protein fouling and 

microbial contamination of silicone hydrogel are two major challenges for its application in 

contact lenses and other biomedical devices. Thus, surface modification is a solution to solve 

these problems. In this chapter, different surface modification techniques are described and 

compared, including spin coating, dip coating and laser assisted coating (PLD and MAPLE). 

A detailed literature review on MAPLE process is included this chapter. 

Chapter 3: This chapter describes all experimental procedures for synthesizing silicone 

hydrogel, Ag-PVP nanoparticles, and ZnO-PEG nanoparticles. Meanwhile, MAPLE 

deposition parameters corresponding to polymers and nanoparticles used in my research 

work are introduced in this chapter. Furthermore, different characterization methods, protein 

adsorption protocol and antimicrobial assay are also presented. 

Chapter 4: Two different types of polymers, PEG and PVP are deposited onto the surface of 

silicone hydrogel by MAPLE deposition in this chapter. FTIR and AFM were carried out to 

measure the samples after MAPLE deposition. In addition, protein adsorption tests indicate 

that both polymers could reduce non-specific protein adsorption and slightly improve 

mechanical at the same time. Cytotoxicity tests were applied to test the biocompatibility. 

Chapter 5: This chapter focuses on synthesizing, characterization and depositing two 

different nanoparticles, Ag-PVP NPs and ZnO-PEG NPs as well as their nanocomposite 

films. MAPLE technique was used to deposit these nanocomposites onto silicone hydrogel. 

Protein adsorption and antimicrobial assay were carried out to measure the improvement. 

The results show that nanocomposite coated silicone hydrogels can inhibit bacterial growth 

and reduce protein adsorption. Meanwhile, the cytotoxicity results show that all samples’ cell 

viability are above 80 %. 

Chapter 6: This chapter gives a summary and conclusions of the research project. Future 

work on MAPLE system and nanocomposite synthesis are introduced and discussed as well.  
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Chapter 2  

2 Background and literature review 

There are several important requirements for long-term wearing contact lens materials 

including high oxygen permeability, properly mechanical strength, good biocompatibility, 

anti-biofouling property and others which depend on specific situations. This chapter 

introduces different hydrogels and figures out one type, which obtains all the important 

requirements mentioned above. Biofouling is a serious problem for biomedical material 

especially for contact lens material [1]. This problem will not only limit the function of 

biomaterials but also cause adverse clinical problems. Surface modification is one of the 

most efficient ways to increase biomaterial’s property. Existing chemical and physical 

methods for the surface treatment of commercial contact lens materials have been discussed 

here. Among them, matrix assisted pulsed laser evaporation (MAPLE) is a new 

contamination free surface modification system, which is especially suitable for biomaterials 

modification [2]. The mechanism and different parameters of MAPLE is also introduced in 

this chapter. 

2.1 Hydrogel 

Hydrogels are interconnected polymer chains, which can be formed from soluble monomers 

and/or multifunctional polymers (macromers) and connected together by crosslinkers. 

Hydrogels also consist of hydrophilic polymer chains to form three-dimensional (3D) 

networks, which have high water content (up to thousands of times their dry weight) [3]. As a 

result they have been extensively used as micro-device bases, tissue engineering scaffold, 

contact lens materials, etc. 

Hydrogels have been used as contact lens material for about 50 years. During this period of 

time, different types of hydrogels have appeared. With the increasing demands for contact 

lens functions and comfort, new monomers and synthetic methods have been continuously 

discovered by scientists. There are several types of synthetic hydrogels, which have been 

used as contact lens materials in the past decades. Polymethylmethacrylate (PMMA) was the 

first commercial example used for contact lens in 1936 [4]. The monomer of PMMA 

hydrogel is shown in Figure 2.1(a). Poly-(2-Hydroxyethyl methacrylate) (PHEMA) hydrogel 
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was first introduced by Wichterle in 1960s and came into industry in 1970s, which made a 

huge improvement in the area of contact lens material. Figure 2.1(b) shows the main 

monomer (HEMA) of PHEMA hydrogel. PHEMA is a soft contact lens material that 

copolymerizes with other hydrophilic or non-hydrophilic monomers [5]. PHEMA is 

economical and very stable hydrogel with several excellent properties such as transparency, 

durability, sterilizability, hydrophilicity, and water-insolubility [6]. Therefore, PHEMA is 

one of the most popular hydrogels used for contact lens recently. But this hydrogel transmit 

gases (oxygen and carbon dioxide) through the aqueous phase, which limit this materials use 

for long-term wearing contact lens. Consequently, researchers are trying to add monomers or 

modify the surface of PHEMA hydrogel to improve the oxygen permeability [7]. However, 

modification cannot change the mechanism of oxygen transport in PHEMA and PMMA 

hydrogels, and it is difficult to increase the oxygen permeability substantially. Therefore, a 

more efficient way to overcome this challenge is developing a new material with a different 

gas transport mechanism. 

2.2 Silicone hydrogel 

The silicone hydrogel contact lens was first marketed in 1998 [8]. A different gas transport 

mechanism was introduced in this type of material. As we know, the gas permeability in 

polymer films and membranes are critical aspects in food packaging, protective coating, 

membrane separation processes and biomedical materials. For contact lenses, high oxygen 

permeability is a vital factor for long term wearing [9]. Silicone hydrogel has siloxane groups 

(Si-O-Si) that can carry large amounts of oxygen because oxygen is transported easier 

through the siloxane-phase than water phase [10]. Figure 2.1(c) shows the siloxane groups on 

the main monomer (TRIS) of silicone hydrogel. This new transport mechanism of silicone 

hydrogel results in higher oxygen transmissibility than conventional hydrogels.  

Javier Pozuelo et al. [11] compared the oxygen permeability between conventional hydrogel 

and silicone hydrogel. The result showed that oxygen permeability of silicone hydrogel 

increased more than 10 times compared to conventional hydrogel that transport the oxygen 

though aqueous phase. The development of highly oxygen permeable silicone hydrogel 

contact lens materials has been a chief development in its vision correction. Meanwhile, 

silicone hydrogel also combine the softness and comfort of PHEMA based hydrogels, which 
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is one of the most important reasons why contact lens manufacturing changed focus from soft 

lens hydrogel to silicone hydrogel [9]. Contact lenses made from these materials satisfy the 

metabolic needs of the cornea, maintain its physiological health, and can be worn constantly 

for up to a month [12]. 

However, silicone hydrogel still requires modification to improve comfort and 

biocompatibility for long term wearing. There are two very important factors for long-term 

wearing experience of contact lenses. One is oxygen permeability, which has been introduced 

above, and the other is biofouling resistance property including protein fouling/ lipid fouling 

resistance and antimicrobial property. Silicone hydrogel is able to improve the oxygen 

permeability, but protein and lipid fouling is a very tough problem, as the tear film 

component is very complex with more than 400 types of proteins with a wide pH charge 

from 1 to 11 [13]. Even worse, the mechanism of interaction between protein in tear film and 

contact lenses are still not quite clear. Several reports show that the proteins adsorb on most 

biomaterials in a few seconds of their exposure, which will cause adverse clinical events due 

to inflammation and bacterial infection [8,14,15]. Consequently, the ability to control protein 

adsorption and bacterial infection is an important evaluation of this biomaterial [16]. 
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Figure 2.1 (a) monomer of PMMA hydrogel, (b) monomer of PHEMA hydrogel and 

(c)Monomer of Silicone hydrogel. 

2.3 Biofouling mechanism, effects and solutions 

Biofouling is the accumulation of proteins, cells and other biological materials on a surface, 

and biofouling is a great challenge for biomaterial applications, especially for biosensors, 

prosthetic devices and contact lenses [17]. The fouling is caused by the interaction between 

the membrane surfaces and the foulants that include biological substances in many different 

forms. Protein and bacteria are common foulants, which are extensively studied by 

researchers in biomedical field because protein fouling and bacteria adhesion will cause 

damage and limit the function of numerous biomedical devices and even cause adverse 

clinical events [18]. 

2.3.1 Protein fouling 

Protein adsorbs onto the surface of biomedical device will reduce the efficiency and cause 

harmful side effects, such as stopping flow through separation and affinity columns and 

porous membranes, which will lead to thrombus formation or fibrosis and scar tissue 

formation [19–21]. Therefore, the use of protein resistant surfaces is an effective way to 

increase the performance of biomedical device [21]. Moreover, protein adsorption and the 
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subsequent protein layer formation will lead to microbial colonization and subsequent 

biofilm formation [1]. Figure 2.2 illustrates the protein fouling and bacteria adhesion process 

on biomaterial surface. The protein fouling on contact lenses easily causes several adverse 

clinical events such as microbial keratitis (MK), contact lens induced acute red eye(CLARE), 

asymptomatic infiltrative keratitis (AIK), asymptomatic infiltrates (AI), etc. [22] Therefore, 

low protein fouling is an essential requirement for long time wearing contact lenses. 

 

Figure 2.2 Mechanism of biofilm formation from protein adsorption. 

Protein adsorption on contact lenses is mainly influenced by the lens material, the protein 

concentration, protein structure and charge of the proteins within the tear film [13]. Protein 

adsorption involves van der Waals force, hydrophobic and electrostatic interactions, and 

hydrogen bonding, which is a complex process and still not quite clear [23]. The surface 

property of material plays an important role in protein adsorption. The environmental 

surfaces that interact with protein can be divided into two categories. One is hydrophilic 

surface and the other is hydrophobic surface. Paul Roach et al. [24] analyzed the adsorption 
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behavior of bovine serum albumin (BSA) and fibrinogen on hydrophilic (OH) surface and 

hydrophobic (CH3) surface separately. The results show that hydrophilic surface absorbs 

more protein than hydrophobic surface. However, hydrophobic surface causes irreversible 

protein adsorption, which threatens individuals’ health. 

Protein is folded in a three-dimensional structure that is metastable. When a protein adsorbs 

onto a solid surface, the hydrophobic (non-polar) amino acids will be protected inside of the 

protein molecule and hydrophilic(polar) amino acids side chain will be held outside to 

interact with their environment [13]. If the surface is hydrophobic, the protein molecules tend 

to rearrange the structure to reach a lower Gibbs energy [24,25]. The hydrophobic amino 

acids inside will interact with the hydrophobic surface of hydrogels, which will lead to the 

unfolding of the protein structure [13,26]. The unfolded proteins also known as denatured 

protein on hydrophobic surface is irreversible. These denatured proteins will also interact 

with other proteins, which may cause protein aggregation and cause adverse clinical events 

[8,15]. However, hydrophilic surface will not denature the protein structure. Consequently, 

hydrophilic surface modification will be an efficient way to prevent irreversible protein 

adsorption on biomedical materials. 

2.3.1.1 Solutions of protein fouling 

There are two methods to prevent irreversible protein adsorption on biomaterials. One is to 

provide a protein resistance surface (defense method), and the other is to coat protein 

degrading films (attack method) [1]. Polyethylene glycol (PEG) based polymers, 

polyvinylpyrrolidone (PVP), zwitterionic materials, carbohydrates and peptide-like polymers 

are common used polymers to modify the surface of biomaterials with a protein resistance 

surface.  

Polyethylene glycol (PEG) is a polyether compound used in many industrial and biomedical 

applications. PEG has excellent properties including low toxicity, high hydrophilicity and 

low biodegradability [27]. Consequently, PEG is a very common used surface stabilizer and 

surface modification polymer. Although various materials have been reported to inhibit 

nonspecific adhesion of proteins, PEG and its derivatives are popular surface modification 

polymers [28]. Several techniques are chosen to immobilize PEG-based polymers, such as 

chemical adsorption, physical adsorption, covalent attachment, and graft copolymerization 
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[29]. Paul T. Charles et al. [30] incorporated three different PEG molecules into galactose-

based polyarcylate hydrogels, and the result showed the non-specific protein adsorption was 

reduced. Benjamin S. Flavel et al. [31] grafted PEG onto an amine terminated silicon wafer. 

This method of attaching PEG proved to be an efficient way to reduce non-specific protein 

adsorption. Jiang Wu et al. [32] compared the interaction between protein and PEG/ 

poly(sulfobetaine methacrylate) (zwitterionic polymer). Both polymers have weak or 

undetectable interaction with proteins. According to its good biocompatibility and high 

protein resistance, PEG has been chosen as one of hydrophilic polymers to modify silicone 

hydrogel surface in my project. 

Polyvinylpyrrolidone (PVP) is an important water soluble synthetic polymers, which has 

many ideal properties including low toxicity, chemical stability, and good biocompatibility 

[36], and has been extensively used in daily chemical industry, food, biomedical field, etc. 

[33] Therefore, PVP is another common used polymer to improve the hydrophilicity and 

antifouling properties of the hydrophobic polymer materials [34,35]. Louise Elizabeth Smith 

et al. [33] tested the direct and indirect contact between PVP and several types of cell from 

the human body, and results showed that PVP is generally tissue-compatible and non-

irritating to skin, eye, and mucous membrane. Masato Matsuda et al. [37] hydrophilized 

dialysis membranes with PVP, which showed that the membranes after modification are able 

to inhibit the fibrinogen and human serum albumin adsorption. Currently, commercial PVP is 

treated as a prospective hydrophilic and antifouling surface modification reagent comparable 

to PEG. 

The “attack” method to reduce irreversible protein adsorption is to incorporate proteases into 

coating. Proteases are enzymes, which are involved to digest long protein chains into shorter 

fragments by breaking down the peptide bonds that link amino acid residues. Prashanth Asuri 

et al. [38] incorporated serum protease onto single-walled carbon nanotubes to provide 

nanotube-enzyme composites film to resist protein adsorption, and the result showed that this 

film resisted up to 99% nonspecific protein adsorption. 

2.3.2 Microbial contamination 

Microbial contamination is a serious issue in health care, food industry and many other 

fields, so there have been considerable efforts over decades to find out solutions [39,40]. The 
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attachment of bacteria to a surface leads to subsequent colonization resulting in the formation 

of a biofilm [1]. Biofilms are matrix-enclosed microbial accretions that adhere to biological 

or non-biological surfaces, which represent an important and partial understood mode of 

bacteria growth [41]. Biofilms formation will cause more bacterial adhesion. Two types of 

interactions contribute to the bacteria adhesion on the surface of biomedical device. One is 

the formation of a protein layer and the other is nonspecific interaction. Biofilm formation on 

implant surfaces and subsequent infectious complications are also a frequent failure of many 

biomedical devices, such as total hip arthroplasties, indwelling voice prostheses, vascular or 

urinary catheters [42]. Recently, typically treatment method for this problem is replacing the 

contaminated device and antibiotic therapy at the same time, which cost additional health 

care [43]. The development of antimicrobial reagents and surface coatings has been attracting 

increasing attention in recent years. 

Similar with the methods used to prevent protein adsorption, there are also two major 

approaches to inhibit bacteria growth on the surface of biomaterials. One is so called 

“attack”, and the other is “defend”. The attack approach is coating an antimicrobial material 

film onto the surface to kill bacteria, such as drugs, short peptides, cationic polymers, 

antibiotics, inorganic nanoparticles, etc. [44] Xiang Li et al. [45] immobilized two 

commercialized peptides (RK1 and RK2) onto a silicone surface, and the peptide-coated 

silicone surface performed outstanding microbial inhibiting activity towards bacteria and 

fungi in urine and PBS buffer. 

The “defend” approach is to create a non-fouling coating, such as PEG, PVP, zwitterionic 

and their derivative polymers, to resist bacterial adhesion [44]. PEG is a well-known 

polymer, which is used to reduce protein adsorption and further avoid biofilm formation. 

Zwitterionic polymers involve anionic and cationic groups along with their chains, which 

allocate ultra-hydrophilicity and stay neutrally charged at the same time [46]. Consequently, 

zwitterionic polymers coating is an alternative way to decrease protein adsorption and inhibit 

bacteria attachment as well. Gang Cheng et al. [47] grafted zwitterionic poly (carboxybetaine 

methacrylate) via atom transfer radical polymerization onto glass surface for long-term 

bacterial resistance test. The results showed that after more than 100 hours, the bacteria 

attachment was reduced more than 90% compared to bare glass. 
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2.3.2.1 Silver-based materials 

Silver nanoparticles (Ag NPs) have been studied over the past 120 years [48], because Ag 

NPs have extraordinary physico-chemical properties including high electrical and thermal 

conductivity, chemical stability, surface plasmon resonance, antimicrobial property, surface-

enhanced Raman scattering, and catalytic activity [49]. In the field of antibacterial property, 

silver metal and silver ions were extensively used for ages [50]. Kshipra Naik et al. [51] used 

sol-gel method to coat AgCl-TiO2 nanocomposite onto a glass surface for the aim of 

controlling biofilm formation, and the results showed the nanocomposite coated glass was 

able to inhibit the growth of Escherichia coli, Staphylococcus epidermidis and Pseudomonas 

aeruginosa growth. Siddhartha Shrivastava et al. [52] synthesized Ag NPs (around 10-15 

nm), which showed potent antibacterial property and was tested by E. coli, ampicillin-

resistant E. coli, multi-drug resistant S. typhi and S. aureus. Due to their antibacterial effect, 

Ag NPs have been used to coat numerous medical instruments and products [53]. 

There are several methods to synthesize Ag NPs, such as chemical, physical, photochemical 

and biological methods [54]. Different particle nanostructure can be synthesized by proper 

control of the nucleation, subsequent growth stages and corresponding selection stabilizer 

(chemical method), such as sphere, cube, tetrahedron, octahedron, bar, spheroid, right 

bipyramid, beam, decahedron, wire and rod, polygonal plates, branched structures and 

hollow structures [55]. Metal precursors, reducing reagents and stabilizing reagents are three 

main components of the reactions of chemical method [54]. Generally citrate, glucose, 

ethylene glycol, or sodium borohydride have been used as chemical reducing agents to 

reduce soluble silver salts into Ag NPs [56]. There are several types of polymeric stabilizer 

used to prevent synthesized Ag NPs form aggregation and control the particle size and shape, 

including polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG) 

and sodium oleate [57]. The uniform size distribution of chemical method can be controlled 

by adjusting the reducing and stabilizing agents, trying to generate all nuclei at the same time 

and keeping the same subsequent growth. Dongjo Kim et al. [58] compared two different 

chemical methods and several parameters to synthesize size controllable and high mono-

dispersible spherical Ag NPs.  
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Compared with chemical method, photochemical method has several advantages. First, it can 

be used to more easily control the formation process of nanoparticles due to the controllable 

photo irradiation time and energy. Second, the synthesis is a clean, convenient and 

environmentally-friendly process. Third, this method is able to synthesize nanoparticles 

under various mediums such as aqueous, emulsion, glasses, polymer films, and even cells 

[54]. Mansor Bin Ahmad et al. [59] chose chitosan and PEG as stabilizers and used 

photochemical method to synthesize Ag NPs in aqueous medium. Because they did not add 

any reducing reagent and hazard stabilizer, their synthesis process is an environmentally-

friendly method. Therefore, we choose UV irradiation as reduction resource to synthesize Ag 

NPs in our project. The synthesis process is easy to control by changing different irradiation 

time, and also we add ethylene glycol as reducing agent, which speeds up the reaction. 

Moreover, the fabrication process is a gentle process, which happens under room temperature 

and atmosphere pressure. 

2.3.2.2 Zinc-based materials 

Zinc-based materials have shown an excellent resistance against corrosion and performed 

good antibacterial activity [60]. ZnO nanoparticles (NPs) and ZnO nanorods have been 

shown excellent performance to inhibit bacterial growth [40,61], but some papers showed 

that ZnO is toxic to host human cells at relatively high concentrations. Hopefully they are not 

expected to be toxic at very low concentration [62]. Nicole Jones et al. [63] proved that ZnO 

NPs can control the spreading of bacterial infections after testing the antibacterial property 

from a broad spectrum of microorganisms. As a common semiconductor, ZnO is one of the 

most broadly studied metal oxides for the use in solar cell, sensors, ultraviolet nanolaser and 

blue-light-emitting diodes (LEDs) [64]. Numerous methods have been applied to synthesize 

ZnO film, such as magnetron sputtering, chemical vapor deposition, pulsed-laser deposition 

(PLD), metal organic chemical-vapor deposition (MOCVD) and hydride or halide vapor-

phase epitaxy (HVPE) [65,66]. Due to the above properties, ZnO NPs are ideal nanoparticles 

for silicone surface modification. 

2.4 Surface modification methods for hydrogels 

Surface modification is providing new physical, chemical or biological characteristics, which 

are different from the ones on the surface of original materials. Nonspecific protein 
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adsorption and bacterial infection of hydrogels are essential challenges for biomedical 

application. Hence, surface modification for hydrogels is a commonly used method to solve 

this problem. Different physical and chemical surface modification techniques have been 

used to add functional groups onto biomaterials by depositing complex polymers, 

nanomaterials and others, such as surface plasma treatment, wet chemical methods, spin 

coating, dip coating, and laser assisted surface coating techniques, etc.  

Plasma treatment is a technique that is applied in order to add reactive functional groups to 

organic materials surface by using an inorganic gas radiofrequency [67]. Different 

controllable parameters of plasma treatment (such as gas composition and plasma conditions, 

ions, electrons, etc.) will lead to etching, activation and crosslinking of polymers [68]. 

Yingming Wang et al. [67] modified the surface of fluorosilicone acrylate contact lenses to 

improve hydrophilic property by plasma treatment. The hydrophilic surface will cause less 

proteins and lipids on its surface and reduce bacteria adhesion at the same time. Shantanu 

Bhattacharya et al. [69] also applied oxygen plasma treatment to convert the hydrophobic 

PDMS surface to hydrophilic. Plasma treatment can be used for large scale manufacturing. 

However, plasma treatment can not only add various functional groups under plasma 

exposure, but also cause aging problems which do not have long-time stability [68]. 

Surface grafting is a popular chemical surface modification method. End functionalized 

chains are necessary for grafting the polymer to the surface of solid materials by 

polymerization [70]. Susan J. Sofia et al. [71] grafted poly(ethylene oxide) (PEO) polymer to 

silicon with covalent bond. The PEO grafted surface was able to reduce three types of protein 

(cytochrome-c, albumin, and fibronectin) adsorption. Jing Jing Wang et al. [72] used 

poly(ethylene glycol) methyl ether acrylate (PEGMA) to modify the surface of silicone 

hydrogel to reduce protein adsorption by UV irradiation. The results showed that the 

PEGMA grafted silicone maintained its high oxygen permeability, transparency and 

mechanical property, and also efficiently changed the hydrophobic surface to hydrophilic. 

Although chemical method can provide more stable covalent bonding with the substrate, 

chemical reaction requires different type of chemicals which is toxic to human cells even at 

extremely low concentration. Meanwhile, there should be active groups on substrate surface 

or polymer chains. Therefore, these methods could only modify surfaces, which have specific 

active groups. 
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Spin coating is usually applied to produce a thin film on a plate substrate. After adding some 

coating materials onto the center of the substrate, the substrate start to rotate at high speed to 

form a homogenous film by centrifugal force [73]. Figure 2.3 is the schematic of spin 

coating. Due to the large scale production property, spin coating is a popular physical coating 

method for deposition polymer films. Aline F. Dário et al. [74] used spin coating to deposit 

cellulose acetate butyrate (CAB) and poly (methylmethacrylate) onto Si wafers. The result 

showed the thickness of films was affected by the concentration of the polymer in solution, 

polymer molecular weight, spinning velocity and spinning time. Also they systematically 

investigated how the solvent composition used for polymer dissolution affects the porous 

structures of spin-coated polymers films. Typically only 2-5% of the material dispensed onto 

the substrate was efficiently used for spin coating, while the remaining 95-98 % is flung off 

in to the coating bowl and disposed [75]. Therefore, spin coating wastes too many coating 

materials. 

 

Figure 2.3 Schematic of spin coating. 
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Dip coating technique is also very attractive due to its simplicity, low cost, and high 

reproducibility [76]. The mechanism of dip coating is shown in Figure 2.4. The procedure of 

dip coating involves in inserting the objects, which need to be coated into the bath of coating 

solution, removing it, and then letting it air dry, so it is able to coat 3D objects. James 

Sibarani et al. [77] applied a simple dip coating method to modify the poly(dimethyl 

siloxane) (PDMS) surface with hydrophilic polymers such as poly(2-methacryloyloxylethyl 

phosphorylcholine(MPC)-co-n-butyl methacrylate) (PMB) and poly(MPC-co-2-ethylhexyl 

methacrylate-co-2-(N,N-dimethylamino)ethyl methacrylate) (PMED). The hydrophilicity of 

these polymers modified surface has been increased. Therefore they are able to reduce 56-

90% protein adsorption compared with uncoated samples. D. Petti et al. [78] also used dip 

coating method to functionalize a gold surface with copolymer (copoly(DMA-NAS-MAPS)). 

The methods mentioned above have their advantages and drawbacks. However, all the 

methods would make direct contact with solvents or other chemicals during modification. In 

addition, each of the methods only allows limited organic molecules to be coated or grafted 

on the surface of biomaterials. As a result, scientists focus on developing a new method, 

 

Figure 2.4 Schematic of dip coating. 

 



24 

 

 

Figure 2.5 Schematic of PLD. 

 

which is able to modify surface with a wide range of molecules.  

2.5 Laser assisted surface coating 

Recently pulsed laser deposition (PLD) is extensively used for the production of thin films, 

and it shows numerous advantages compared to conventional deposition methods [79]. 

Figure 2.5 shows the schematic of the PLD system. PLD is able to make an accurate control 

of both the crystalline state of synthesized materials and their adherence to the substrate. 

PLD avoids contaminants during deposition process and provides various pressure in the 

chamber[80]. Further, the PLD process is a suitable method for the growth of oxide materials 

due to the energetic oxygen plasma created by the pulsed laser and controllable oxygen 

pressure [81]. Arun Aravind et al. [82] analyzed the surface morphology of ZnO film by 

SEM under different laser resource (KrF laser-248 nm and Nd:YAG laser-266 nm), substrate 

temperature (400 °C, 500 °C, 600 °C and 700 °C) and various oxygen pressure of the 

chamber (0.005mbar, 0.05 mbar and 0.5 mbar). According to characterization of XRD, 

FESEM, Raman scattering and PL, the authors concluded 500 °C (TS) and 0.05 mbar (pO2) is 
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Figure 2.6 Schematic of MAPLE deposition. 

the optimized deposition condition. Therefore, various high-quality coatings have been 

produced by this method with the help of low temperature, controlled pressure and thickness. 

Although PLD has lots of advantages for metals [83], semiconductors [84] and alloys [85], it 

is not suitable for organic materials because of the high energy, which will break the 

molecule structure. The matrix assisted pulsed laser evaporation (MAPLE) can be used to 

fulfill the requirements of depositing a wide range of complex organic materials, and also 

protect the structure of organic molecules. MAPLE is derived from pulsed laser deposition 

(PLD). The main difference between PLD and MAPLE is that MAPLE system contains the 

target preparation. Figure 2.6 shows the schematic MAPLE deposition chamber. In MAPLE 

process, the target material is embedded in a volatile solvent matrix to produce a frozen 

target [86]. Liquid nitrogen is used to freeze the target. After that, a laser beam is used to 

irradiate the frozen target. During the process, the energy is mainly absorbed by the solvent 
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and converted into thermal energy that allows the solvent to vaporize [87]. The solvent 

adsorbs thermal energy, which is vaporized and pumped away. The target polymer molecules 

or nanoparticles receive enough kinetic energy to be transferred in the gas phase and 

deposited as thin films on suitable substrates. Most of the laser energy is absorbed by the 

solvent of the matrix rather than target material, which helps to minimize their photochemical 

decomposition [88]. MAPLE causes nearly no damage to the target molecules but the target 

molecules can also be ejected from the target. Meanwhile, the chamber is under vacuum 

during MAPLE process, which protects the target materials from solvent and gas 

contamination. MAPLE process is able to achieve homogeneous, ultra-thin, well adherent 

coatings over large surfaces or preferred areas with accurate thickness control, and maintain 

the chemical structure and the physiochemical properties of the organic/ polymer molecules/ 

nanocomposite in the target [89,90]. The wavelength of the laser beam is an important 

parameter in MAPLE system. Up to now, depositions have been carried out with a wide 

range of wavelengths such as 193 nm, 248 nm, 266 nm, 355 nm, 532 nm and even IR range 

(table 2.1). The use of less energetic radiation, such as long wavelength, can decrease the 

photochemical decomposition of target polymer molecules, because long wavelength 

radiation is not energetic enough for electronic excitation [89]. Therefore, we chose Nd: 

YAG laser with wavelength (λem) at 532 nm for MAPLE deposition. 

2.6 Materials used for MAPLE deposition 

Many papers have demonstrated that a wide range of polymers, biomolecules and 

nanoparticles can be deposited to form thin films without significant damage of their 

chemical structure and function under appropriate laser wavelength, fluence, frequency, 

deposition time, target-to-substrate distance, target temperature, chamber pressure and type 

of solvent. 

Polymer is extensively used in MAPLE process especially for biomaterial modification. L. 

Rusen et al. [91] deposited poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether 

copolymer, which was dissolved in chloroform (0.5-0.15 wt %). Nd: YAG laser with a 

wavelength of 266 nm, 6 ns pulse duration and 10 Hz repetition rate was used as irradiation 

resource. The results showed that the polymer films produced by MAPLE demonstrated a 

quite similar structure with the original copolymer. Irina Alexandra Paun et al. [92] focused 
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on depositing PEG with different molecular weights by MAPLE process. The different 

molecular weight PEG molecular were dissolved in water (1 wt %) and the laser resource is 

also 266nm and 10 Hz repetition rate. The results indicated that polymer molecular weight 

significantly affects the properties of the film deposited by MAPLE, so polymer molecular is 

needed to take into consideration for MAPLE deposition.  

Protein is an essential functional biomolecule in biological system. However, it is hard to 

maintain its function after modification because of the fragile structure. Therefore, MAPLE 

was carried out to deposit protein and protect its function at the same time. B. R. Ringeisen et 

al. [93] was the first group to use MAPLE process to successfully deposit protein pattern 

onto substrate in 2001. They have deposited uniform thin films of insulin and horseradish 

peroxidase ranging from 10 nm to about 1 um. The result showed that the laser irradiation 

did not change the protein’s mass but maintained its ability. C.A. Mateiand et al. [94] 

deposited lysozyme and myoglobin onto DTU Fotonik. They chose 355nm Nd:YAG laser 

and a pulse length of 6 ns to irradiate the water ice matrix and the target concentration was 1 

wt %, and some fragmentation occurred. Valentina Dinca et al.[95] chose 266 nm with 5-7 ns 

pulse duration laser to deposit antitumor compounds (including lactoferrin and cisplatin) and 

biodegradable polycaprolactone (PCL) polymer onto the substrate (silicon and glass) without 

any significant chemical damage. They used a modified target system which can separate the 

above three different compounds. The PCL was dissolved in toluene (0.5 wt %), and two 

proteins were dissolved in water (1.5 wt %). 

Nanoscale science and technology have appeared over the past decade as the leading edge of 

science and technology [96]. Due to the high surface to volume ratio, nanoscale material has 

been used in our daily life recently, especially the inorganic nanoparticles, which are able to 

withstand harsh process conditions [97]. For biomedical application, nanoparticles play an 

important role in the area of bioimaging, drug delivery, bacterial inhibition, etc. Daniel C. 

Mayo et al. [98] used resonant infrared MAPLE to deposit TiO2 nanoparticle film onto 

Silicon wafer. Er:YAG laser (λ = 2.94 μm) energy can by adsorbed by -OH group. The 

authors used SEM to analyze the influence of different target concentration, solvent and laser 

fluence. The result indicated that tert-butanol and other butyl alcohol isomers provided more 

benefits than water. Angel Perez del Pino et al. [99] fabricated single well nanotubes thin 

film on glass substrate by MAPLE process. Surface morphology of nanotube film was 
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characterized by TEM and AFM depending on different fluence of laser resource. R. 

Cristescu et al. [100] have also deposited Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic 

acid/cefepime (core/shell/adsorption-shell) nanoparticles onto polishing silicon wafer using 

MAPLE technique with a KrF 248 nm laser. With the AFM image analyzing, they concluded 

that the roughness of Fe3O4 nanocomposite film was higher than drop-cast deposited film. 

Larger roughness means an extended active surface in biological systems. The structure of 

nanoparticles deposited by MAPLE process normally has small changes such as the size and 

the film roughness compared to drop-cast method, but it is similar to the original target 

material. The function is also maintained according to the recent reports. As a result, MAPLE 

is one of the most efficient ways to fabricate nanocomposite thin film onto biomaterials. Also 

some other experimental details about MAPLE deposition have been displayed in Table 2.1. 



Table 2.1 Summary of Organic or Inorganic films deposited by MAPLE process. 

Materials /Solvents Substrate 
Number 
of pulse 

Fluence, 
(J/cm2) 

Laser frequency 
(Hz) 

Wavelength 
(nm) 

Pressure 
 

Target 
(°C) 

TiO2 NPs/DDW 
(0.02 wt %) [88] 

silica, alumina 
(Al2O3) slabs 

6,500 0.55 10 193/248 10-3-10-4Pa LNT 

Poly(d,l-lactide)/ Ethyl Acetate 
(1wt % and 4 wt %) [101] 

Polished Si 
substrate 

30,000 0.5 10 248 7.5 Pa -100 

Fullerenes(C60)/Anisole 
(0.67 wt %) [102] 

Si wafer N.A. 0.5-4 N.A. N.A. 10-4 -1 mbar RT 

PEG-block-PCL 
Me/chloroform(0.5–1.5 wt %) 

[103] 
Glass coverslips N.A. 0.2-0.9 10 266 2-3 x 10-3 Pa LNT 

SnO2 NPs/toluene (0.2 wt %)[104] Si wafer 6000 0.35 10 248 5×10−4 Pa -160 

PEG/ isopropanol (1 wt %)[105] 
Quartz crystal 
microbalance 

1800 2-10 2 355 10-6 mbar LNT 

PEG/ DDW (10 wt %) [106] Si wafer 95,000 0.1 N.A. 355 2x10-4 Pa -170 

Polythiophene 
/chloroform 

(0.56 wt %) [89] 
Glass 20,000 

0.094 
/0.034 
/0.115 

N.A. 
355/532 

/1064 
2.3 x 10−7 

Torr 
-187 

Pure toluene[107] PDMS 10,000 0.06-0.25 10 193 5 x 10-4 Pa LNT 

lysozyme /water 
(1 wt %) [108] 

Si wafer 50-550 2 N.A. 355 5 x10-5 mbar LNT 

Dendrimer precursor/ 
dichloromethane(0.5-1.5 wt %) 

[109] 
Heated NaCl lens 

1500-
2500 

7.5 1 11010 N.A. LNT 
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2.7 Our contribution  

MAPLE technique has been applied to modify the surface of biomaterials for about 15 

years. Different types of polymers (natural and synthetic polymers) and nanomaterials 

(nanoparticles and nanorods) were chosen to customize surface properties in order to 

reduce specific defects of different materials. Non-specific protein adsorption and 

bacteria that attach on the surface of contact lens or other biomaterials will cause huge 

adverse clinical problems. As a result, lots of biomedical researchers try to avoid these 

drawbacks by testing different modification methods. However, there are not too many 

people focusing on reducing non-specific protein adsorption and inhibiting bacteria 

growth by MAPLE deposition, which is a contamination free system especially suitable 

for biomedical device surface modification. 

According to the result of recent papers, some polymers have the ability to reduce non-

specific protein adsorption such as PEG and PVP [30,37]. Chapter 4 focuses on the 

deposition of these polymers using MAPLE technique and studying the non-protein 

sticking property. Meanwhile, we are thinking about combining the nanotechnology with 

the MAPLE technique to create a multifunctional surface that can reduce non-specific 

protein adsorption and inhibit bacteria growth at the same time. It is well known that Ag 

NPs and ZnO NPs are able to eliminate different types of bacteria demonstrated by 

thousands of researchers. Therefore, we decided to use PEG and PVP as stabilizers to 

synthesize two types of hybrid nanoparticles (Ag-PVP NPs and ZnO-PEG NPs), and then 

use MAPLE to deposit nanocomposite film on silicone hydrogel. To our best knowledge, 

we are the first to deposit Ag-PVP NPs and ZnO-PEG NPs via MAPLE deposition for 

now. 

2.8 Summary 

Hydrogel is a commonly used material in biomedical application. PMMA, PHEMA and 

silicone are three typical hydrogels applied as commercial contact lens materials, but they 

both have advantages and disadvantages. Silicone hydrogel attracts lots of attention from 

contact lens industries due to its high oxygen permeability ability compared to other 
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types of hydrogel. However, silicone is easier to cause biofouling problems including 

irreversible protein adsorption and bacteria attachment because of its hydrophobic 

surface. Biofouling is a main drawback for long term wearing contact lenses. Hence, 

surface modification methods are carried out to modify it including chemical and 

physical methods. MAPLE technique has been reported as an efficient way to modify the 

biomaterial surface without gas, solvent or other chemical contamination during 

deposition process. Recently, MAPLE has been applied to fabricate polymer, 

biomolecule and nanocomposite thin films and maintain the original materials’ properties 

at the same time. There are many parameters that can be used to control thin film 

formation during MAPLE process, such as laser wavelength, laser fluence, laser 

frequency, total pulses during deposition, chamber pressure, target temperature, substrate 

temperature, type of solvent, target concentration, target-substrate distance, target/ 

substrate rotate frequency, and deposition time. Surface modification with hydrophilic 

polymer is an efficient way to reduce irreversible protein adsorption. Silver and zinc 

based nanomaterials have been extensively used as antibacterial reagents. MAPLE is an 

ideal biomaterials modification system to deposit polymer and nanocomposite films with 

controllable thickness. 
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Chapter 3  

3 Experiment procedures 

In this chapter, the experiment details of this project are introduced: (1) the synthesis of 

silicone hydrogel. (2) Ag-PVP nanoparticle and ZnO-PEG nanoparticle. (3) Polymers 

(PEG and PVP) and nanocomposites (Ag-PVP and ZnO-PEG) coatings produced by 

using MAPLE technique. (4) The characterization methods. (5) Protein adsorption and 

antimicrobial test. 

3.1 Synthesis of silicone hydrogel 

The silicone hydrogel was synthesized through photo-polymerization, which is developed 

by Kim et al. [1] 3 ml of 3-methacryloxypropy-tris(trimethylsiloxy)silane (TRIS), bis-

alpha,omega-(methacryloxypropyl)polydimethylsiloxane (PDMS) and N,N-

Dimethylacrylamide (DMA) was mixed by the volume ratio of 4:1:2 and then added 15 

μl of ethylene glycol dimethacrylate (EGDMA) and 0.3 ml ethanol into the mixture. 

Nitrogen was purged into the mixture for 15 min before 8 mg of Diphenyl(2,4,6-

trimethylbenzoyl)phosphine oxide (photo-initiator)was added and stirred for 5 min. 

Figure 3.1 shows the chemical structures of monomers, cross-linker, macromer, photo-

initiator as well as produced silicone. After that the mixture was photo-polymerized 

under UV irradiation for 50 min to form complete crosslinking. 30% Ethanol was used to 

wash the hydrogel after photo-polymerization. 
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Figure 3.1 Schematic illustration of silicone photo initiated crosslinking reaction. 
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3.2 Synthesis of nanoparticles 

3.2.1 Silver nanoparticles 

Silver nanoparticles were synthesized from silver nitrate by photo reduction reaction. 

Polyvinylpyrrolidone (PVP), which molecular weight is 10000, was used as stabilizer 

during reduction reaction. To synthesize Ag-PVP NPs, it is necessary to keep the 

synthesis process from oxygen to prevent oxidation reactions during formation of Ag 

NPs. 100 ml ethylene glycol was added into 250 ml flask and then nitrogen gas used for 

10 min to remove the oxygen in the ethylene glycol. Dissolve 1.5 g PVP in the ethylene 

glycol under stirring for 0.5 hour until it is fully dissolved. 1 gram of silver nitrate was 

added to the mixture solution. After silver nitrate was fully dissolved, keep the solution 

under irradiation of UV environment for 24 hours. The synthesis process of Ag NPs is 

shown in Figure 3.2. Centrifuge was used to get the Ag NPs out of reaction solution and 

wash Ag NPs with the mixture of ethanol and acetone solution [2,3]. 
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Figure 3.2 Schematic illustration of Ag-PVP nanoparticles synthesis. 

3.2.2 Zinc oxide (ZnO) nanoparticle 

PEG stabilizing ZnO nanoparticles (ZnO-PEG NPs) were prepared by a sol-gel method 

where precursor is zinc acetate dehydrate [Zn (CH3COOH)2·2H2O]. The brief experiment 

process is described here. 5.508 g of Zn(CH3COOH)2·2H2O and PEG were dissolved in 

300 ml of ethanol with a weight ratio of 10:1 (Zn: PEG). Mixture solution was stirred at 

80 °C for 24 hours and then washed three to four times by methanol. Then it was calcined 

in the furnace at 150 °C for 2 h [4]. The synthesis equation is shown as Eq.3.1  

Zn (CH3COO)2  +  2 CH3CH2OH → ZnO +  2 CH3COOCH2CH2  +  H2O 

          Eq.3.1 

3.3 MAPLE parameters 

MAPLE (PVD Products, Inc., USA) deposition is a contamination free surface 

modification system, which is able to protect the structure of organic target materials and 

create thickness controllable films. Figure 3.3 shows the MAPLE system and the 
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deposition chamber. For this project, MAPLE was applied to deposit polymers and 

inorganic nanoparticles.  

 

Figure 3.3 Illustration of MAPLE system and deposition chamber. 

3.3.1 Polymer deposition 

Thin film of polymer on the surface of silicone hydrogel was fabricated by MAPLE 

deposition. Polymers (PEG and PVP) were diluted in isopropanol with a concentration of 

4 wt % and 1 wt % separately, and then liquid nitrogen was used to freeze the target 

solution. The laser used for deposition has the wavelength of 532 nm (λem), the frequency 

10 Hz and the fluence about 1 J/cm2. The temperature of the substrate is around 25 °C 

during the deposition. The depositions last for 2 hours and were conducted at a 

background pressure of 1× 10-6 Torr with a substrate-to-target distance of 6 cm. Figure 

3.4 shows the chemical structure of two polymers we used, one is PVP (10,000) and the 

other is PEG (200) [5]. 
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Figure 3.4 Chemical structures of (a) PVP and (b) PEG. 

3.3.2 Nanoparticle deposition 

Nanocomposite thin films (Ag-PVP and ZnO-PEG) on the surface of silicone hydrogel 

were fabricated by MAPLE deposition. Nanoparticles were diluted in isopropanol with a 

concentration of 0.5 wt %, after that liquid nitrogen was used to freeze the target solution. 

Nd: YAG laser at the wavelength 532 nm (λem) was used as the resource for MAPLE 

deposition. The ZnO-PEG NPs depositions lasted for 1 hour. The Ag-PVP NPs were 

deposited by different time (10 min, 20 min, 30 min and 60 min). All depositions were 

conducted at a background pressure of 1× 10-6 Torr with a substrate-to-target distance of 

6 cm. 

3.4 Product characterization 

The size and shape of nanoparticles before MAPLE and after MAPLE were observed by 

Transmission Electron Microscope (TEM, Philips CM10). The polymer films produce by 

MAPLE deposition was determined by Fourier Transform Infrared Spectroscopy (FTIR, 

Bruker FTIR-IFS 55) and Atomic Force Microscopy (AFM, Dimension 3100, Veeco 

Inc). The nanocomposite films after deposition was confirmed by UV-Visible 

Spectroscopy (UV-3600 Shimadzu, Japan), X-ray Diffraction (XRD, Rigaku RU-

200BVH) and Energy-dispersive X-ray Spectroscopy (EDX, Hitachi 3400s), 

Photoluminescence Spectroscopy (PL, PTI QuantaMaster™ 40), Scanning Electron 
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Figure 3.5 Preparation of copper grid for TEM observation after MAPLE 

deposition. 

Microscopy (SEM, Hitachi 3400s) and Atomic Force Microscope (AFM, Veeco 

Dimension 3100). Then Micro BCA assay (Thermo Scientific, U.S.A.) was carried out to 

measure the protein adsorption on each sample. The antibacterial property and 

mechanical strength were also measured. Last was the cytotoxicity test by MTT assay. 

3.4.1 Transmission electron microscopy 

Transmission electron microscopy (TEM) is a microscopy technique. A beam of 

electrons is transmitted through an ultra-thin specimen, and then interacts with the 

specimen as it passes through. An image is formed from the interaction of the electrons 

transmitted through the specimen; and the image is magnified and focused onto an 

imaging device or detected by a camera. The micrographs of Ag-PVP and ZnO-PEG NPs 

were examined by a Phillips CM10 TEM. The TEM samples, which used to characterize 

the nanoparticles before MAPLE deposition, were prepared by placing a drop of 

nanoparticles solution directly on a carbon coated copper grid (200 meshes). The samples 

were air dried before TEM examination. The samples after MAPLE deposition was 

prepared by placing the grid on the substrate during MAPLE process shown in Figure 

3.5. 
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3.4.2 Fourier transform infrared spectroscopy  

Fourier Transform Infrared spectroscopy (FTIR) is a technique, which is used to obtain 

an infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a 

solid, liquid or gas. FTIR is based on the theory that each chemical group has 

characterized absorption infrared spectrum. In this project, FTIR was utilized to study the 

chemical structure of hydrogel and polymers, interaction of nanoparticles and surfactants, 

and the interaction between hydrogel and coating materials. And it is also used to confirm 

the presence of polymer films on silicone hydrogel produced by MAPLE process. The 

samples were scanned by FTIR in the range of 600–4000 cm-1 with a 1 cm-1 resolution. 

The instrument used air as background. 

3.4.3 Ultraviolet–Visible spectroscopy 

Ultraviolet–Visible Spectroscopy (UV-Vis) includes absorption spectroscopy and 

reflectance spectroscopy in the ultraviolet-visible spectral region, and it plays an 

important role in analytical chemistry. UV-Vis also has been extensively used in 

chemistry, physics and life sciences [6]. UV-Vis was carried out to confirm the surface 

plasmon resonance (SPR) of Ag-PVP NPs in solution and on the surface of silicone 

hydrogel. UV-Vis is also used to check the size and the shape of the synthesized Ag-PVP 

NPs. For antimicrobial test, UV-Vis is applied to measure the concentration of E.coli in 

PBS solution. 

3.4.4 X-ray diffraction 

Powder X-ray Diffraction (XRD) patterns were recorded by Rigaku RU-200BVH 

diffractometer employing a Co-Kα source (γ=1.7892 Å). XRD is able to measure the 

average spacings between layers or rows of atoms, determine the orientation of a single 

crystal or grain, find the crystal structure of an unknown material, and measure the size, 

shape and internal stress of small crystalline regions. For this project, the ZnO-PEG 

nanocomposite on silicone hydrogel was checked by XRD pattern compared to the 

standard reference (JCPDS no. 36-1451). The XRD patterns of ZnO-PEG NPs and ZnO-

PEG nanocomposite film were compared in order to figure out if there is crystal damage 

after MAPLE deposition. 
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3.4.5 Scanning electron microscopy 

Scanning Electron Microscopy (SEM) is a type of electron microscope, which generates 

images by scanning the surface of the samples with focused electron beam. When the 

electron beam interacts with the sample surface, the electron will be scattered and 

absorbed, which can be detected by specific detector. For sample preparation, specimens 

must be electrically conductive on the surface and also electrically grounded to prevent 

the accumulation of electrostatic charge. Therefore, organic samples need to coat 

conductive materials on the surface. In my project, bare silicone and ZnO-PEG coated 

silicone were coated with gold by HummerVI Sputter Coater. The surface morphology 

and Energy-dispersive X-ray spectroscopy (EDX) spectra were measured by SEM 

(Hitachi 3400s) at 10 kV. 

3.4.6 Atomic force microscopy 

Atomic Force Microscopy (AFM) is a high resolution scanning probe microscopy, which 

is able to observe the surface topography of a sample. It can be also used to measure 

thickness and roughness of the coating on the surface of substrate. All experiments were 

performed under tapping mode with atomic force microscope (AFM, Dimension 3100, 

Veeco Inc). A silicon nitride cantilever from Nanoscience with a nominal spring constant 

of 40 N/m and a tip radius of around 10 nm was used. When probe approaches the 

specimen surface, forces between probe and specimen may induce a deflection of the 

cantilever, which will be detected by a laser spot reflected from the top of cantilever into 

photodiode. In this project, the surface topography of PEG coated, PVP coated, Ag-PVP 

nanocomposite coated cover glass were examined by AFM. The film was scratched with 

a sharp tweezers to expose the glass substrate for thickness measurement.  

3.4.7 Fluorescence spectroscopy 

Fluorescence Spectroscopy is an instrument, which can be used to analyze the 

fluorescence from the samples, and it is also called as spectrofluorometer. It was used to 

measure the fluorescent property of ZnO-PEG nanoparticles solution and ZnO-PEG 

nanocomposite film on the surface of silicone. The equipment we use is QuantaMaster™ 

40 Spectrofluorometer purchased from Photon Technology International Inc. 
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3.4.8 Mechanical test 

A 1 x 1 cm sample of bare silicone hydrogel and target material coated silicone hydrogels 

were mounted in a BioTester 5000 test system (CellScale Biomaterials Testing, 

Waterloo, Ontario) by using the mounting system. The samples were stretched uniaxial 

with a loading of 0.2 N applied on the tensile test consistently. Meanwhile, the images of 

the deformation of the specimens were captured using a 1280x960 pixel charge coupled 

device CCD-camera. The stress and strain produced in order to understand the Stress-

Strain curves of different samples and their Young’s modulus (E), which is described as 

the Eq. 3.2 below. The slope of the Stress-strain curve is the Young’s modulus (E) of the 

measured sample. Young’s modulus is another way to display the stiffness property of a 

material.  

E =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
=

𝜎

ɛ
=

𝐹
𝐴⁄

𝛿𝐿
𝐿0

⁄
 

          Eq.3.2 

Where E is the Young’s modulus in Pascal (Pa), F the force applied in Newton (N), A the 

area perpendicular to the force vector (m2), δL the displacement of the materials (m), and 

L0 the original length of the materials (m).  

3.4.9 Cell viability test  

In vitro cell viability and cell proliferation is determined using the reduction of 

tetrazolium salt. It is now a widely accepted method of examining cell proliferation. 

Yellow tetrasolium MTT (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) 

is reduced by metabolically active cells. This is due in part to dehydrogenase enzymes 

generating intracellular purple formazan that can be solubilized and quantified by 

spectrophotometric means. 3T3 mouse fibroblast cells cultured in DMEM supplemented 

with 10% fetal bovine serum, and 1% penicillin and streptomycin. Cells were incubated 

under sterile conditions in 37 C with 5% CO2. Approximately 1×105 cells, determined 

by cell counting using a haemocytometer was seeded onto the bottom of 24 well plates 

and left to incubate overnight to ensure adhesion to the plate. Samples were added the 
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next day and left to incubate for 24 hours under sterile conditions. After 24 hours, the 

samples were removed and the media aspirated. 40 µl of 0.5% MTT solution, sterile 

filtered through 0.2um filter, was added to each well. Wells were made up to 500uL with 

cell media and left to incubate for 4 hours. The media was aspirated and rinsed twice with 

sterile PBS. Cells were lyzed and the formazan dissolved with 200 µl of DMSO. 150 µl 

from each well was pipetted into 96 cell plates for spectrophotometric analysis at 490nm. 

3.5 Protein adsorption assay 

Protein adsorption of artificial implants leads to protein fouling, which cause 

inflammatory response to human body, therefore the protein adsorption of hydrogels is 

another important index and was tested. Firstly, the samples (1cm × 1 cm) were 

immersed in PBS (phosphate buffer solution) for 24 hours, and then soaked in 0.5 mg/ml 

BSA-PBS solution for 3 hours at 37 °C. After that, PBS was used to rinse the samples 3 

times to remove the non-absorbed BSA on the surface of hydrogel. After that the samples 

were immersed in 1 wt % SDS-PBS solution and sonicated for 20 minutes to completely 

detach BSA from hydrogel surface to the solution. Finally, the BCA protein assay kit 

(Micro BCATM Protein Assay Kit, Thermo Scientific, U.S.A.) was used to determine the 

protein concentration in SDS-PBS solution with a UV-Vis plate reader at the wavelength 

of 562 nm. 

3.6 Thin film antimicrobial assay 

The antibacterial activity of Ag-PVP and ZnO-PEG nanocomposite deposited silicone 

hydrogels obtained against the bacteria Escherichia coli (E.coli) was studied by the so-

called antibacterial drop-test [7,8]. E.coli (strain W3110) were used as the experimental 

bacteria and cultured on the medium at 37°C for 18-24 h. Cultured bacteria were added in 

10 ml PBS solution to reach the concentration of 108 CFU/ml approximately. The PBS 

bacteria solution was diluted to 106 CFU/ml for the ‘drop-test’ antibacterial experiments. 

Four groups of samples were prepared at the same area of 1 cm2. UV light and PBS 

solution was used to sterilize and wash the samples. Sample groups are control (glass 

coverslip), bare silicone, Ag-PVP coated silicone and ZnO-PEG coated silicone. The 

samples were placed into sterilized 90 mm Petri dishes. Then 100 μl PBS solutions with 
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E.coli at a concentration of 106 CFU/ml were dropped onto the surface of each sample. 

The samples were laid at ambient temperature for a period of time (such as 1, 2, 4, 8, 12 

hours). After each time period the bacteria containing drops were washed from the glass 

surfaces using 5 ml PBS in the sterilized Petri dish. Then 10 μl of each bacteria 

suspension was spread on the LB Agar plate. The number of surviving bacteria on the 

Petri dishes was counted after incubation for 24 h at 37°C. The relative numbers, which is 

the counted number of sample plate divided by the counted number of control plate, was 

used to show the results. 

  



56 

 

3.7 Reference 

[1] Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone 

hydrogel contact lenses. Biomaterials 2008;29:2259–69. 

[2] Ahmad M Bin, Tay MY, Shameli K, Hussein MZ, Lim JJ. Green Synthesis and 

Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without 

any Reducing Agent. Int J Mol Sci 2011;12:4872–84. 

[3] Wei Q, Li B, Li C, Wang J, Wang W, Yang X. PVP-capped silver nanoparticles as 

catalysts for polymerization of alkylsilanes to siloxane composite microspheres. J 

Mater Chem 2006;16:3606. 

[4] Tshabalala MA, Dejene BF, Swart HC. Synthesis and characterization of ZnO 

nanoparticles using polyethylene glycol (PEG). Phys B Condens Matter 

2012;407:1668–71. 

[5] Yin P, Engineering B, Studies P. Hydrogel-based Nanocomposites and Laser-

assisted Surface Modification for Biomedical Application Hydrogel-based 

Nanocomposites and Laser-assisted Surface Modification for Biomedical 

Application 2012. 

[6] Douglas A. Skoog. Principles of instrumental analysis. 4th ed. Toronto: Fort 

Worth; 1992. 

[7] Sun S, Sun B, Zhang W, Wang D. Preparation and antibacterial activity of Ag – 

TiO 2 composite film by liquid phase deposition ( LPD ) method. Bull Mater Sci 

2008;31:61–6. 

[8] Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, et al. 

TiO 2 ( Fe 3q ) nanostructured thin films with antibacterial properties. Thin Solid 

Films 2003;433:186–90.  

 



57 

 

Chapter 4  

4 Polymer films deposited by MAPLE process to reduce 
protein adsorption 

Silicone hydrogel is a contact lens material used for long-term wearing because it has a 

different oxygen transport mechanism, which is transported through siloxane-phase rather 

than water [1]. However, silicone hydrogel still requires modification to improve comfort 

and biocompatibility for long term wearing. There are two important factors for long-

term wearing experience of contact lenses. One is high oxygen permeability, which has 

been improved by the new transport mechanism of silicone, and the other is protein and 

lipid fouling resistance. As discussed in Chapter 2, hydrophobic surface will cause 

irreversible protein adsorption, which lead to numerous adverse clinical events [2,3]. 

Meanwhile, protein adsorption and the subsequent  protein layer formation on the surface 

of biomedical implants will lead to microbial colonization and subsequent biofilm 

formation [4]. 

Due to the drawbacks of chemical structure, silicone hydrogel cannot keep the same level 

of hydrophilicity as PHEMA hydrogel [5]. Therefore, modification is needed for silicone 

hydrogel to reduce protein adsorption, which is caused by hydrophobic surfaces. Two 

main methods could be applied to modify silicone hydrogel. One is to incorporate 

hydrophilic monomers into the chemical structure, and the other is to modify the surface 

to improve the surface property. Surface modification is the most efficient way. There are 

many physical, chemical and even laser assisted surface modification methods. Among 

them, MAPLE deposition is one of the best choice for depositing polymers onto 

biomedical device without gas, solvent or other chemical contamination, and protecting 

the polymers’ structure at the same time [6]. Consequently, MAPLE is an ideal surface 

modification method for silicone hydrogel modification in order to obtain a protein 

resistant surface, which is especially important property for long-term wearing contact 

lenses and other implant biological material. 
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Figure 4.1 FTIR spectra of (a) bare PEG, (b) Silicone-PEG, and (c) bare silicone 

hydrogel. 

4.1 Characterization of PEG deposited by MAPLE process 

The mechanism of protein adsorption was introduced in chapter 2. Hydrophilic surface 

will lead to less irreversible protein adsorption. Therefore, the problem of nonspecific 

adsorption can be prevented by modify the substrate surface with a material that could 

reduce protein adsorption; such materials are typically hydrophilic and zwitterionic 

materials [7]. Poly (ethylene glycol) (PEG) is a biocompatible polyester compound, 

which is extensively used in our daily life from industrial products to medical application. 

Due to the C=O bond and -OH bond in PEG structure, it is a water solvable polymers. 

Therefore PEG has played an important role in reducing and eliminating protein 

adsorption to surfaces [8,9]. 

4.1.1 FTIR analysis of PEG on silicone hydrogel 

FTIR was carried out to investigate chemical groups on bare silicone and the PEG thin 
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film on the surface of silicone hydrogel. Figure 4.1 shows the FTIR spectra of bare PEG, 

PEG coated silicone hydrogel (Silicone-PEG) and bare silicone hydrogel. The bands at 

1721 cm-1, 1644 cm-1, 1250 cm-1  and 1040 cm-1 all stand for the vibration of C=O group 

from silicone hydrogel shown in Figure 4.1(c). The band around 2957 cm-1 belongs to the 

stretching vibration of C-H from silicone. All these band introduced above are not 

affected by MAPLE deposition (Figure 4.1(b)). Compared Figure 4.1 (a) and (b), we can 

find out that PEG and PEG coated silicone have the band at 3407 cm-1 and 3502 cm-1 

respectively, which represent stretching vibration of the O-H in PEG molecule [10]. 

There is no -OH group in bare silicone shown in Figure 4.1(c). All spectra in Figure 4.1 

have the band between 1455 cm-1 and 1475 cm-1, which indicates the C-H bending 

vibration from CH2 group of PEG or silicone hydrogel [11]. Due to the overlap of Figure 

4.1 (a) and (c), the C-H band shift from 1472 cm-1 to 1463 cm-1 shown in Figure 4.1(b). 

The appearance of O-H stretching vibration and the shift of C-H bending vibration from 

Figure 4.1 (b) confirm that PEG has been deposited onto the silicone hydrogel by 

MAPLE process. 

4.1.2 AFM images of PEG thin film 

AFM was applied to observe the surface morphology and measure the thickness and 

roughness of PEG thin film on glass coverslip produced by MAPLE deposition. Figure 

4.2 shows 3D AFM image of PEG thin film. Before measurement we scratched the edge 

of the sample first, and then used the vertical distance between the surface of the film and 

the surface of glass coverslip to get the thickness. This 3D image also confirms the 

presence of PEG thin film. Figure 4.2 shows the thickness of this PEG film is around 155 

nm after 2 hours deposition, which indicates MAPLE process is able to produce an ultra-

thin (nano-level) film. Meanwhile the roughness of PEG film is only 10.6 nm, which 

confirms the PEG film is homogenous. 
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Figure 4.2 PEG film on the surface of cover glass measured by AFM. 

4.2 Characterization of PVP deposited by MAPLE process 

Polyvinylpyrrolidone (PVP) is a synthetic polymer, and has been extensively used in 

biomedical applications for a long time since it was first discovered in Germany in 1930 

[12]. PVP has several beneficial properties, which make it suitable for biomedical 

applications such as high water solubility, chemical stability, good biocompatibility, and 

biological inertness [13,14]. Therefore, PVP is an ideal polymer for surface modification 

to reduce nonspecific protein adsorption [15]. 

4.2.1 FTIR analysis of PVP on silicone hydrogel 
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Figure 4.3 FTIR spectra of (a) PVP, (b) Silicone-PVP, and (c) bare silicone 

hydrogel. 

FTIR was used to study if PVP film deposited onto silicone hydrogel by MAPLE 

process. Figure 4.3 shows the FTIR spectra of bare PVP, PVP coated silicone (Silicone-

PVP) as well as bare silicone. PVP can easily adsorb water from environment. Therefore, 

PVP has the peak around 3417cm-1, which is O-H stretching vibration band as shown in 

Figure 4.3(a). Bare silicone hydrogel do not have any band between 3670 cm-1 and 3230 

cm-1, which demonstrate there is no -OH group on silicone hydrogel. Meanwhile, there is 

a band of C-H vibration at 1493cm-1 shown in Figure 4.3(a) [16], which is not presented 

in Figure 4.3(c). However, C-H (1494cm-1) and O-H (3467cm-1) vibration bands (come 

from PVP) show up in the spectrum of Silicone-PVP, which confirm that the PVP shows 

up on the surface of silicone after MAPLE deposition. 

4.2.2 AFM images of PVP thin film 

In order to observe the surface morphology and measure the thickness and roughness of 

PEG thin film on glass coverslip produced by MAPLE deposition, AFM was carried out 
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Figure 4.4 PVP film on the surface of cover glass measured by AFM. 

 to scan the surface of PVP coated surface after 2 hours deposition by MAPLE. Figure 4.4 

shows 3D morphology of PVP thin film. After scratching the edge of the sample, we use 

the vertical distance between the surface of the film and the surface of glass coverslip to 

get the thickness. The thickness of this PVP film is around 45.4 nm, and the roughness of 

PEG film is 14.8 nm. This 3D image also helps to confirm the presence of homogenous 

PEG thin film produced by MAPLE. 

4.3 Protein adsorption 

Micro BCA method was used to measure the protein adsorption property of silicone and 

polymers coated silicone. Figure 4.5 shows BSA adsorption of bare silicone, PEG coated 

silicone and PVP coated silicone are 6.11µg/cm2, 4.39 µg/cm2, 4.97 

µg/cm2respectively.The BSA adsorbed on the surface of PEG thin film and PVP thin film 

decreases to 71.8% and 81.3% respectively after comparing with bare silicone. PEG and 

PVP have been demonstrated that they have the property to reduce non-specific protein 

adsorption [10,17]. PVP and PEG provided a more hydrophilic surface than bare silicone 

due to the C=O and -OH from their chains. It is well known that BSA is an globular 
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protein and its hydrophobic (non-polar) amino acids are protected inside of the protein 

molecule and hydrophilic(polar) amino acids side chain will be held outside to interact 

with their environment [2,10]. When the BSA interacts with hydrophobic surface, the 

protein core will try to interact with the hydrophobic surface in order to reach lower 

Gibbs energy, which will denature the protein structure. On the other side, when BSA 

interacts with hydrophilic surface, it will easily adsorb onto the surface without structure 

change, so it is not hard to wash the protein off. Consequently, polymer coated silicone 

will adsorb less protein than bare silicone hydrogel. 

4.4 Young’s modulus 

The values of the Young’s modulus (E) are shown in Table 4.1, which are obtained from 

the slope of Stress-Strain curves. Table 4.1 shows the Young’s Modulus of silicone 

 

Figure 4.5 BSA adsorption of silicone, Silicone-PEG, and Silicone-PVP. 



64 

 

hydrogel increases from 0.7083 MPa to 0.7668 MPa and 0.7236 MPa separately after 

coating PEG and PVP by MAPLE process, which means the stiffness of silicone 

hydrogel can be slightly increased by PEG and PVP thin film on the surface. According 

to previous research, the young’s modulus range of human skin is between 0.42 MPa and 

0.85 MPa depending on different ages[18]. Young’s modulus of polymers coated silicone 

hydrogels still in this range after modification, which means it is suitable to be used as 

biological materials. 

Table 4.1 Young’s Modulus (E) of silicone and polymer coated silicone hydrogel. 

 Silicone Silicone-PEG Silicone-PVP 

E (MPa) 0.7083 ± 0.1640 0.7668 ± 0.1790 0.7236 ± 0.0796 

4.5 Cell viability of hydrogels 

It is known that modified silicone hydrogels are supposed to contact with cells as contact 

lens materials or other body implants. Therefore, the biocompatibility test of the silicone 

and polymer coated hydrogel is an important measurement. The cell response to silicone, 

Silicone-PEG and Silicone-PVP were investigated using NIH/3T3 mouse fibroblast cells. 

Samples were soaked into culture medium and incubated with cells for 24 h. Figure 4.6 

indicates that the cell viability of silicone, Silicone-PEG and Silicone-PVP are 146.5%, 

129.3% and 108.3% individually. Bare silicone has the highest number which is 

confirmed that silicone hydrogel is a biocompatible material. Meanwhile all the samples’ 

cell viability reaches higher than 100%, which demonstrates that PEG and PVP coated 

silicone do not cause harmful effects to the cells.  
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4.6 Conclusion 

MAPLE technique is suitable for silicone hydrogel surface modification with PEG and 

PVP. The presence of polymers (PEG and PVP) on silicone hydrogel is confirmed by 

FTIR and AFM. According to result FTIR spectra, PEG and PVP polymers coated 

silicone have the –OH vibration band which demonstrate MAPLE produced polymer 

films is able to modify the surface to obtain hydrophilic property. AFM images indicate 

the polymers are homogenously spread (the roughness is around 10-15 nm) on the 

surface of silicone with the thickness of nanometer level. Followed by protein adsorption 

test, the polymer coated silicone show good protein resistance property, which can reduce 

28.2% (PEG) and 18.7% (PVP) BSA adsorption compared to bare silicone. Moreover, 

The Young’s modulus of polymer coated silicone hydrogels are increased from 0.7083 

MPa to 0.7668 MPa (PEG coating) and 0.7236 MPa (PVP coating) separately. It is 

 

Figure 4.6 Cell viability of control, Silicone, Silicone-PEG and Silicone-PVP. 
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expected that this PEG and PVP coated silicone hydrogel produced by MAPLE process 

can be used as a potential long-term wearing contact lens or other biological implants 

material due to its protein resistance.  
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Chapter 5  

5 Nanocomposite film deposited by MAPLE process to 
reduce protein adsorption and inhibit bacteria growth 

Nanomaterials have been extensively used in the past decade because of their distinctive 

physical and chemical properties. Nanocomposite is defined as a multiphase solid 

material where one of the phases has at least one dimension less than 100 

nanometers(nm) [1]. Due to the different structures, compositions and properties of the 

constituents in a nanocomposite, it serves various functions. The products made from 

nanocomposite are usually multifunctional. 

Silicone hydrogels are polymers with a backbone consisting entirely of silicon-oxygen 

bonds (siloxane), which is responsible for their high gas permeability, so silicone 

hydrogel can provide higher oxygen permeability than PHEMA based contact lens 

materials [2]. Therefore silicone hydrogel is especially suitable for continuous wear due 

to their higher oxygen permeability over conventional hydrogel lenses [3]. However 

some drawbacks still exist, such as bacterial attachment and protein adsorption on its 

surface. 

Nanocomposite coating for silicone hydrogel can offer a multifunctional surface to lessen 

the drawbacks of bare silicone hydrogel. MAPLE process is able to deposit sensitive 

materials on the subtract surface to remain undamaged due to the low target material 

concentration and frozen matrix target provide by liquid nitrogen [4]. MAPLE has been 

used to successfully deposit a wide range of nanoparticle films, including thin-film 

carbon nanoparticle layers [5], SnO2 nanoparticle layers [6] and TiO2 

nanoparticle/nanorod thin films [7], where fine control of deposited nanoparticle size was 

achieved [8]. 

5.1 Characterization of Ag-PVP nanoparticles and Ag-PVP 
nanocomposite thin film deposited by MAPLE process 

Silver nanoparticles (Ag NPs) have emerged as one of the most popular research areas in 

the field of nanotechnology due to their well-known effectiveness in biomedical, 
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electronic, catalytic and optical applications [9]. Silver metal and silver ions have been 

known as effective antimicrobial reagents for a long time especially in the biomedical 

field, where they have been used for wound or burn dressings, catheters and bone cement 

[10]. Ag-PVP nanoparticles (Ag-PVP NPs) were used to modify the silicone hydrogel by 

MAPLE process to inhibit bacteria growth on silicone hydrogel surface. The antibacterial 

mechanism of Ag NPs is still not very clear. One of the most popular theories is that Ag 

NPs release silver ions, and silver ions are known to cause damages to bacterial DNA, 

proteins, enzymes, as well as the bacterial cell wall. The other is Ag NPs will interact 

with the cell wall and then destroy the metabolic response [11]. Although there are other 

theories, these two are the most extensively agreed upon. In order to synthesize Ag-PVP 

NPs, PVP was used as a stabilizer that will control the particle size, size distribution, 

shape, dispersion, etc. PVP is a also hydrophilic polymer, which will be unaffected by the 

changes in pH and ionic strength and will also help to provide a hydrophilic surface [12]. 

In this part, Ag-PVP NPs were used to modify the surface of silicone hydrogel to form an 

antimicrobial and hydrophilic surface. MAPLE deposition was carried out to prevent 

environment contamination during the coating process and create a homogenous film on 

silicone hydrogel. 

5.1.1 TEM observation of Ag-PVP NPs 

Figure 5.1 (a) shows the TEM micrograph of Ag-PVP NPs synthesized by UV-reduction. 

Figure 1 (b) is the TEM micrograph of Ag-PVP NPs deposited on Cu grid by MAPLE 

process. The scale is 100 nm. The insert small figures of Figure 5.1 (a) and (b) depict the 

size distribution. The average size of Ag-PVP NPs after MAPLE process is 11.61nm ± 

3.58nm, which is bigger than Ag-PVP NPs that do not participate in MAPLE process 

(11.29 nm ± 1.88 nm). The size distribution is also broadened by MAPLE process at the 

same time. Surface Plasmon Resonance (SPR) property of Ag-PVP NPs is one of the 

most important reasons why the particle size of Ag-PVP NPs is changed by MAPLE 

process.  



71 

 

 

Figure 5.1 TEM micrograph of (a) Ag-PVP NPs, and (b) Ag-PVP NPs on 

substrate after MAPLE process. 
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Figure 5.2 FTIR spectra of PVP, (b) Ag-PVP NPs, (c) Ag-PVP nanocomposite 

coated silicone, and (d) bare silicone hydrogel. 

When laser irradiates the frozen target, the isopropanol adsorbs the energy of 532nm laser 

and then starts to melt. After the isopropanol melts, the plasmon in the silver particles 

absorb photons from the 532nm laser and the electrons become excited, which produce a 

rapid temperature rise of Ag NPs. Due to less energy lost in the solution, the silver 

particle melts and becomes liquid[13]. When the temperature of the silver particles 

reaches the boiling point, atom sand/or small particles are ejected through vaporization 

into the surrounding solvent[14,15]. As a result, the reduction of particle size happened. 

However, the small particles are very unstable in the solution and they tend to aggregate 

onto the surface of other silver particles, which leads to the size of some silver particles 

to increase[13]. Therefore, the size of Ag-PVP NPs becomes non-uniform after MAPLE 

process. 

5.1.2 FTIR analysis 

The main chemical groups of pure PVP, Ag-PVP NPs, bare silicone and Ag-PVP 
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Figure 5.3 FTIR Spectra of (a) Silicone-Ag-PVP (MAPLE), and (b) Ag-PVP NPs 

coated silicone (Air dry). 

nanocomposite coated silicone hydrogel (Silicone-Ag-PVP) were examined by FTIR. 

Figure 5.2 (a) shows the FTIR spectrum of the pure PVP, and the bands of 1287 cm-1, 

1072cm-1 and 1017cm-1 indicates the C-N vibration band from PVP [16]. Figure 5.2 (b) is 

the FTIR spectrum of Ag-PVP NPs. C-N vibration band in Figure 5.2 (b) red shift to 

1290 cm-1, 1075 cm-1 and 1019 cm-1 compared with bare PVP, which confirm the silver 

atom is coordinated with N of the PVP [17]. The vibration band of C=O as shown in 

Figure 5.2 (b) is also red shifted from 1651 cm-1 to 1655 cm-1, which indicates 

coordination band between silver atom and C unit from PVP [18]. 

Figure 5.2 (c) and (d) are the FTIR spectra of Silicone-Ag-PVP as well as bare silicone 

hydrogel. The bands at 1723 cm-1, 1644 cm-1, 1250 cm-1 and 1038 cm-1 are all stand for 

C=O vibration bands of silicone hydrogel shown in Figure 5.2 (d). After MAPLE 

process, most of the C=O vibration bands of silicone-Ag-PVP keep the same only the 
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band of 1644cm-1 shifted to 1651 cm-1 compared to Figure 2(d). The shift of C=O 

vibration band is because the overlap of C=O vibration from Ag-PVP NPs (1655 cm-1) 

and bare silicone (1644 cm-1). From Figure 5.2(c) we can find out that Silicone-Ag-PVP 

also has the C-N (1289 cm-1) vibration band, which doesn’t exist on bare silicone 

hydrogel (Figure 2(d)). Owing to the PVP’s adsorption of water in the environment, PVP 

has the peak of 3411 which is O-H stretching vibration band as shown in Figure 5.2(a). 

Figure 5.2(c) shows silicone hydrogel after MAPLE process also has -OH group. The 

shift of C=O vibration and the presence of C-N vibration and O-H stretching vibration in 

Figure 5.2 (c) demonstrate the PVP from Ag-PVP NPs is deposited on silicone hydrogel. 

However, FTIR spectra cannot confirm whether Ag NPs were deposited on silicone 

together with PVP. Thus other characterization methods need to be applied to test 

Silicone-Ag-PVP. 

Figure 5.3 (a) and (b) are the FTIR spectra of Ag-PVP NPs coated silicone hydrogel by 

the method of MAPLE process and Drop-Air-dry method separately. After comparing 

main vibrations from Figure 5.3 (a) and (b), there are no significant differences of the 

main bands, so Figure 5.3 indicates that MAPLE process does not break the chemical 

structure of PVP on the Ag-PVP nanocomposite. 

5.1.3 EDX of Silicone-Ag-PVP 
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Figure 5.4 EDX mapping micrograph of (a) Ag, (b) C, (c) O and (d) Si; (e) EDX 

spectrum of Silicone-Ag-PVP. 

Figure 5.4 includes the EDX mapping and EDX spectrum of the elements from Silicone-

Ag-PVP produced by MAPLE. The dots of Figure 5.4 (a), (b), (c) and (d) are the 

elements of Ag, C, O and Si from silicone and PVP individually. Figure 5.4 (e) is the 

EDX spectrum of Silicone-Ag-PVP. The presence of silver element can be evidenced by 
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Figure 5.5 UV-Vis spectra of (a) Ag-PVP nanocomposite, (b) Silicone-Ag-PVP 

(MAPLE), (c) Silicone-Ag-PVP (drop and air dry) and (d) bare silicone. 

the EDX mapping and the EDX spectrum. Figure 5.4(a) also indicates that the Ag 

element on the silicone is homogenous distributed. However, EDX spectrum and 

mapping can only confirm the existence of Ag element on the surface of silicone. 

5.1.4 Optical property of Ag-PVP NPs and Silicone-Ag-PVP 

UV-visible spectroscopy was applied to characterize Ag-PVP NPs and Silicone-Ag-PVP, 

Ag-PVP NPs drop and air dried on silicone hydrogel as well as bare silicone hydrogel. 

Typically the UV adsorption peak which is the surface plasmon resonance (SPR) band 

was affected by the size, shape, dielectric environment of nanoparticles [19]. Figure 5.5 

(a) shows the UV-Vis spectrum of Ag-PVP NPs which has SPR peak at 417 nm. Previous 

study shows that the Ag NPs will be spherical if the SPR band is around 400 nm[9]. 

Therefore, the shape of Ag-PVP NPs should be spherical as same as the result from TEM 

micrograph. Ag-PVP nanocomposite coated silicone hydrogel produced by MAPLE has 
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SPR peak at 429 nm as shown in Figure 5.5(b). Figure 5.5 (d) is the UV-Vis spectrum of 

bare silicone which does not adsorption peaks between 400 nm and 500 nm. After 

comparing Figure 5.5 (b) and (d), the presence of Ag-PVP nanocomposite thin film on 

silicone is confirmed. Figure 5.5 (c) shows spectrum of Ag-PVP nanocomposite coated 

silicone produced by drop and air dry method, and there is also the SPR band (420 nm). 

However, the SRP peak of Silicone-Ag-PVP (MAPLE) shifts from 420 to 429nm 

compared with Silicone-Ag-PVP (Air dry). The red shift of SPR is attributed to the size 

increasing of Ag-PVP NPs, which is also confirmed by TEM micrographs [19]. 

5.1.5 AFM image of Ag-PVP nanocomposite film 

AFM was used to observe the surface topography and measure the roughness and 

thickness of the Ag-PVP nanocomposite thin film on the surface of glass coverslip 

produced by MAPLE process. Before measurement we scratch the edge of the sample 

first, then use the vertical distance between the surface of the film and the surface of glass 

coverslip to get the thickness. Figure 5.6 is the AFM 3D images of Ag-PVP 

nanocomposite film on glass coverslip over different time. The thickness and roughness 

of this Ag-PVP nanocomposite film at different deposition time are shown in Table 5.1. 

Table 5.1 shows the Ag-PVP deposition is time dependent. Figure 5.7 presents the fitted 

linear line of thickness over time. During MAPLE deposition, all the parameters are fixed 

except deposition time. Therefore, the Ag-PVP nanocomposite deposition rate is 16.686 

nm/min, which can be found from the slope of the fitted line in Figure 5.7. 

Table 5.1 Thickness and roughness of Ag-PVP film over different deposition time. 

Deposition time Thickness Roughness 

10 min 58.5 nm 21 nm 

20 min 178 nm 24.6 nm 

30 min 341 nm 35 nm 

60 min 877 nm 19 nm 

 



78 

 

 

Figure 5.6 3D-AFM images of Ag-PVP film produce by MAPLE deposition in (a) 10 

min, (b) 20 min, (c) 30 min, and (d) 60 min. 
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Figure 5.7 The thickness of Ag-PVP nanocomposite films over time. 
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5.2 Characterization of ZnO-PEG nanocomposite thin film 
deposited by MAPLE process 

Zinc oxide (ZnO) is an inorganic compound extensively used in our daily life, such as 

piezoelectric transducers, optical waveguides, surface acoustic wave devices, phosphors, 

transparent conductive oxides, sensors, spin functional devices, UV-light emitters, and 

antimicrobial reagent [20]. ZnO nanoparticles exhibit strong antimicrobial properties over 

a wide range of bacteria [21]. However, the antimicrobial mechanism of ZnO 

nanoparticles is still not fully understood. The photo-catalytic generation of hydrogen 

peroxide was suggested to be one of the primary mechanisms [22]. ZnO is currently 

counted as a commonly recognized safe material by the Food and Drug Administration 

[23]. But the biocompatibility problem occurs when the size of ZnO nanoparticle is very 

small. Because the ultrafine ZnO particle will prefer to agglomerate in biological system 

[24]. As a result, Modify the ZnO surface to improve the biocompatibility property by 

polymer (such as PVP, PVA and PEG) is an efficient way. PEG is a well-known 

biocompatible polymer used in biomedical device and implant [25]. Moreover, PEG 

modified ZnO nanoparticles is easier to dissolve in isopropanol, which is used as the 

target solvent during MAPLE process. At the same time, ZnO-PEG nanocomposite can 

provide a hydrophilic surface. According to our previous study, hydrophilic surface will 

reduce the non-specific protein adsorption which is one type of biofouling.  

5.2.1 TEM observation of ZnO-PEG nanoparticles 

Figure 5.8 (a) is the TEM micrograph of PEG incorporated ZnO nanoparticles (ZnO-PEG 

NPs) synthesized by the sol-gel method. Figure 5.8 (b) is the TEM micrograph of ZnO-

PEG NPs deposited on Cu grid by MAPLE process. The insert small figures of Figure 5.8 

(a) and (b) depict the size distribution. The average size of ZnO-PEG NPs before (9.64 

nm ±2.65 nm) and after (9.55 nm ± 2.49 nm) MAPLE indicate that MAPLE process do 

not interfere the formation of ZnO-PEG NPs in terms of particle shape and size. 

Meanwhile, Figure 5.8 (b) shows the ZnO-PEG on TEM grid was homogenous. 
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Figure 5.8 TEM micrographs of (a) ZnO-PEG NPs and (b) ZnO-PEG NPs on 

substrate after MAPLE process. 
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Figure 5.9 FTIR spectra of (a) ZnO-PEG NPs, (b) Silicone hydrogel, and (c) 

ZnO-PEG coated silicone hydrogel (Silicone-ZnO-PEG). 

5.2.2 FTIR analysis 

ZnO-PEG coated silicone hydrogel (Silicone-ZnO-PEG) was examined by FTIR in 

comparison with bare silicone and ZnO-PEG NPs. Figure 5.9 (a) shows the FTIR 

spectrum of ZnO-PEG NPs, which has the O-H stretching vibration band at 3344 cm-1. 

Silicone hydrogel only have several significant C=O vibration band but no -OH group 

shown in Figure 5.9 (b). Figure 5.9 (c) is FTIR spectrum of the ZnO-PEG nanocomposite 

coated silicone produce by MAPLE. The O-H band at 3358 cm-1 in Figure 8 (c) is come 

from ZnO-PEG nanocomposite after compared with Figure 5.9 (a). Therefore, FTIR 

spectra confirm that PEG was deposited onto the surface of silicone hydrogel together 

with ZnO nanoparticle. 
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Figure 5.10 XRD patterns of (a) ZnO-PEG nanocomposite and (b) Silicone-ZnO-

PEG. 

5.2.3 X-ray diffraction 

X-ray diffraction (XRD) was applied to measure the ZnO-PEG NPs made by sol-gel 

method, and Silicone-ZnO-PEG fabricated by MAPLE process. Figure 5.10 (a) shows the 

XRD profile of ZnO-PEG NPs made by sol-gel method. The typical diffraction peaks of 

ZnO structure (JCPDS no. 36-1451) indicate the synthesized ZnO-PEG NPs have the 

wurtzite structure [24]. Figure 5.10 (b) is XRD profile of Silicone-ZnO-PEG (MAPLE). 

After comparing the peaks of Figure 5.10 (a) and (b), we can conclude that MAPLE 

deposition do not change the structure of ZnO crystal. 
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Figure 5.11 SEM images of (a) Silicone hydrogel and (b) ZnO-PEG coated 

silicone hydrogel; (c) EDX spectrum of Silicone-ZnO-PEG. 

5.2.4 SEM image and EDX spectrum 

The surface morphology of silicone and Silicone-ZnO-PEG were examined by SEM. 

Figure 5.11 (a) is the bare silicone hydrogel surface morphology. Figure 5.11 (b) shows 

ZnO-PEG nanocomposite coated silicone hydrogel surface. The ZnO-PEG granular film 

is homogenously deposited on the surface of silicone hydrogel. The element of Zinc was 

certified by the EDX spectrum from Figure 5.11 (c).  
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Figure 5.12 Fluorescent spectra of (a) ZnO-PEG NPs,(b) Air dried ZnO-PEG on 

silicone, (c) Silicone-ZnO-PEG (MAPLE) and (d) Bare silicone hydrogel. 

5.2.5 Fluorescent spectrum 

The photoluminescence (PL) of the ZnO-PEG NPs made by sol-gel method, air dried 

ZnO-PEG NPs on silicone, Silicone-ZnO-PEG made by MAPLE as well as bare silicone 

are measured by fluorescence spectrometry under excitation of 320nm (λex). Figure 5.12 

(a) shows ZnO-PEG NPs made by the sol-gel method. The typical UV emission peaks 

(378 nm) of ZnO-PEG NPs is corresponding to near band-edge emission of ZnO, which 

demonstrates the ZnO-PEG is nanostructure [27]. Figure 5.12 (c) shows Silicone-ZnO-

PEG also has emission peak at 388 nm however bare silicone (Figure 5.12(d)) has 

nothing at this wavelength. The comparison between Figure 5.12 (c) and (d) demonstrates 

that the ZnO-PEG NPs is successfully deposited by MAPLE. However the peak of ZnO-

PEG has a slightly shift from 378nm to 388 nm after MAPLE composition. 
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5.3 Application of nanocomposite films deposited by 
MAPLE process 

Silicone is a new contact lens material, which draws lots of researcher’s attention due to 

its high oxygen permeability. This property makes long-term wearing possible. However, 

silicone has its own drawback, which is not as hydrophilic as conventional contact lens 

such as PHEMA. Thus, surface modification is carried out. From characterization parts of 

this chapter, we have confirmed two surface modification nanocomposites successfully 

deposited onto the silicone surface to promote surface properties. As we know, protein 

adsorption and bacterial contamination are the main drawbacks for long-term wearing 

contact lenses. Mechanical strength and cell viability are necessary for implants in the 

biological test. As a result, this part will focus on comparison between bare and modified 

silicone hydrogels.  

5.3.1 Protein adsorption 

Non-specific protein adsorption is a huge barrier for hydrogels used as implants 

especially for contact lens, such adsorption may reduce the efficacy of the implant and 

even cause adverse human body response [28]. The protein adsorption is influenced by 

the surface characteristics of hydrogels and the properties of proteins including molecular 

weight, protein structure, net charge and conformational stability [28,29]. Additionally, 

protein adsorption and the following formation of protein films on the surfaces of 

implants will lead to microbial colonization and consequent biofilm formation [30]. The 

protein adsorption property of silicone and nanocomposite coated silicone were tested by 

micro BCA method. Figure 5.13 shows the BSA adsorption of bare silicone, ZnO-PEG 

nanocomposite coated silicone and Ag-PVP nanocomposite coated silicone are 6.11 

µg/cm2, 4.28 µg/cm2, 4.39 µg/cm2 respectively. The protein adsorbed on the 

nanocomposite coated silicone hydrogels decreased 30% (ZnO-PEG coating) and 28.2% 

(Ag-PVP coating) separately compared to bare silicone hydrogel. We speculate the result 

is mainly influenced by the polymer from nanocomposite. After MAPLE deposition, the 

stabilizers of Ag NPs and ZnO NPs (PVP and PEG individually) have been successfully 

deposited onto the silicone hydrogel, which are confirmed by FTIR spectra. PEG and 

PVP have been demonstrated that they have the property to reduce non-specific protein 
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adsorption [28,31]. Because PVP and PEG provided a more hydrophilic surface which 

will cause less irreversible protein adsorption compared to bare silicone. Previous reports 

have demonstrate that BSA is an globular protein and its hydrophobic (non-polar) amino 

acids are protected inside of the protein molecule and hydrophilic (polar) amino acids 

side chain will be held outside to interact with their environment [28,29]. When the BSA 

interacts with hydrophobic surface, the protein core tries to interact with the hydrophobic 

surface in order to reach lower Gibbs energy, which will denature the protein structure. 

On the other side, when BSA interacts with hydrophilic surface, it will easily adsorb onto 

the surface without structure change, so it is not hard to wash the protein off. Therefore, 

nanocomposite coated silicone hydrogels cause less protein adsorption than bare silicone 

hydrogel. 

 

Figure 5.13 BSA Adsorption of bare silicone, ZnO-PEG coated silicone and Ag-PVP 

coated silicone. 
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5.3.2 Antibacterial property of hydrogels 

Bacterial adhesion onto hydrogel surfaces and the subsequent formation of biofilm are 

tough problems for many biomedical implant or other biomaterials [32,33]. The 

formation of biofilm is also the reason of many persistent and chronic bacterial infections 

happened in biological system [34]. Silicone hydrogel provides a much better oxygen 

permeability compared to conventional hydrogel but the incorporation of TRIS and other 

monomers containing siloxane into hydrogel structure lead the decreasing of 

hydrophilicity, which could theoretically increase bacteria attachment [35]. Herein, 

Antimicrobial and non-fouling coatings are designed to prevent bacterial contamination 

of silicone hydrogel. Ag NPs and ZnO NPs that have been proved has the ability to 

inhibit bacterial growth were deposited onto the silicone surface by MAPLE deposition. 

The antibacterial effect of Ag-PVP and ZnO-PEG nanocomposite coated Silicone 

hydrogels against E. coli is evaluated by the method of film attachment. 

Previous study has showed that releasing silver ions and the interaction between silver 

and bacterial cell are the typical antibacterial mechanism of Ag NPs [36]. Hence, Coating 

an ultrathin film on the surface of silicone hydrogel to provide an antibacterial silicone 

hydrogel is very prospective. Figure 5.14 (a) shows the survived bacteria colonies on agar 

plates, which obtain from control, bare silicone, and Silicone-Ag-PVP hydrogels on 

different culture time. Obviously there bacteria survived on silicone-Ag-PVP keep 

decreasing with time. Figure 5.14(b) presents different relative numbers of bacteria 

survived on bare silicone hydrogel and Silicone-Ag-PVP by MAPLE deposition in 

different culture time. As shown in Figure 5.14 (b), the relative survived number of E.coli 

on the bare silicone stays around 85% when the culture time increases, which means bare 

silicone hydrogel do not have the ability to inhibit bacteria growth. While the relative 

number of E.coli on Silicone-Ag-PVP keep decreasing as the incubation time increasing 

from 1 hour to 12 hours. After 8 hours, the Ag-PVP nanocomposite on silicone hydrogel 

eliminate almost all the bacteria (relative number declines to 0.2%). Consequently, it is a 

prospective way to coat a thin film of Ag-PVP nanocomposite by MAPLE process to 

prevent bacterial contamination for contact lens material. 
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Zinc-based materials have shown an excellent resistance against corrosion and performed 

good antibacterial activity [37]. From Figure 5.15 (a) and (b), we can conclude that the 

silicone coated with ZnO-PEG nanocomposite killed almost all the E.coli on its surface. 

However the bare silicone do not show any potential to inhibit bacterial growth. Figure 

5.15 (c) presents the relative numbers of survived bacteria on silicone hydrogels before 

and after the deposition of ZnO-PEG nanocomposite through MAPLE deposition. As 

shown in Figure 5.15 (c), the relative survived number of E.coli on the bare silicone is 

increasing from 1.13 to 1.67 when the culture time increases from 1 hour to 12 hours. 

This means bare silicone hydrogel allows the growth of bacteria. This is one of the 

reasons why commercial silicone contact lens is not suitable for long-term wearing. 

While the relative number of E.coli on Silicone-ZnO-PEG keeps decreasing when the 

culture time increases from 1 hour to 12 hours. After 4 hours, the relative numbers of 

E.coli on the nanocomposite coated silicone hydrogel declines to 0.07 which is much 

lower than bare silicone hydrogel (1.12). The result indicates the ZnO-PEG coated 

silicone hydrogel could eliminate the growth of E.coli beyond 4 hours of culture time. 

Consequently, the MAPLE deposited ZnO-PEG coating has a strong antibacterial effect 

and may provide an efficient way to inhibit bacteria growth for contact lens material. 

The nanocomposite coatings on silicone hydrogels produced by MAPLE process show 

the significant antibacterial property. Both Ag-PVP and ZnO-PEG nanocomposite films 

can eliminate almost all the E.coli on the surface of the samples. Consequently, the 

nanocomposite coated silicone is expected for long-term wearing contact lens or other 

implant biological materials due to its antimicrobial property. 
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Figure 5.14 Plate counting of E.coli from Silicone hydrogel and Silicone-Ag-PVP 

hydrogel; (b) Antibacterial test of silicone hydrogel and Silicone-Ag-PVP. 
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Figure 5.15 (a) Plate counting of E.coli from Silicone hydrogel and Silicone-ZnO-

PEG; (b) Antibacterial test of silicone and Silicone-ZnO-PEG. 
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5.3.3 Mechanical property test 

Young’s modulus indicates the stiffness of measured material. As we know, silicone 

hydrogel has been used as contact lens material due to its high oxygen permeability and 

also it has the potential to replace the soft lens materials in the future. Proper mechanical 

strength is an important requirement for biomaterials, so it is necessary to measure the 

mechanical property of silicone hydrogel. Different body implants require different 

mechanical strength. Most of the hydrogels are elastic materials, their stiffness are 

measured by tensile modulus, also known as Young’s modulus. The tensile modulus of 

silicone hydrogel and nanocomposite coated were measured through the uniaxial tensile 

test [28]. Table 5.2 shows that the Young’s modulus of silicone hydrogel increased from 

0.7083 MPa to 0.8109 MPa and 0.8145 separately after coating Ag-PVP and ZnO-PEG 

nanocomposites by MAPLE deposition. According to previous research, the young’s 

modulus of human skin range is between 0.42 MPa and 0.85 MPa depending on different 

ages [38]. Young’s modulus of silicone hydrogel and nanocomposite coated silicone 

hydrogels are similar with human skin, which is an important factor need to take into 

consideration before it is applied as body implants and contact lenses.  

Table 5.2 Young Modulus (E) of bare silicone, Ag-PVP coated silicone and ZnO-

PEG coated silicone. 

 Bare silicone Silicone-Ag-PVP Silicone-ZnO-PEG 

E (MPa) 0.7083 ± 0.1640 0.8109 ± 0.1249 0.8145 ± 0.1244 

5.4 Cell viability of hydrogels 

Good biocompatibility of the silicone and nanocomposite coated hydrogel is critical to be 

able to be used as contact lens materials and/or other body implants. NIH/3T3 mouse 

fibroblast cells were used for cell viability test. Samples were soaked into culture medium 

and incubated with cells for 24 h. Figure 5.16 indicates that the cell viability of silicone, 

Silicone-Ag-PVP and Silicone-ZnO-PEG are 146.5%, 81.1% and 103.1% separately. 

Bare silicone has the highest which is confirmed that silicone hydrogel is a biocompatible 

material. Meanwhile all the samples’ cell viability reaches higher than 80%, which 
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Figure 5.16 Cell viability of 1 control, 2 Silicone, 3 Silicone-Ag-PVP and 4 

Silicone-ZnO-PEG. 

confirm that Ag-PVP and ZnO-PEG coated silicone do not impose toxic effect to the 

cells. 
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5.5 Conclusions 

MAPLE technique is suitable for silicone hydrogel surface modification with Ag-

PVPNPs and ZnO-PEG NPs. The Ag-PVP nanocomposite film is confirmed by FTIR, 

UV-Vis, EDX and AFM. The TEM micrographs show size increasing (from 11.29 nm to 

11.61 nm) and the broadened size distribution of Ag-PVP NPs on silicone produced by 

MAPLE. The red shift of SPR peak from UV-Vis also indicates the size increasing and 

the shape of Ag-PVP NPs. The AFM images show the homogeneous Ag-PVP 

nanocomposite film as well as thickness and roughness on different deposition time. 

Meanwhile, the thickness of Ag-PVP film is linearly increased over time, and the 

deposition rate is 16.686 nm/min. ZnO-PEG nanocomposites have been successfully 

coated on silicone hydrogel by MAPLE process. The ZnO nanoparticles (average 

diameter = 9.5 ± 2.5 nm) maintain their shape and crystal structures after MAPLE 

deposition. A slight change in terms of size and size distribution of the ZnO nanoparticles 

is observed comparing them before and after the MAPLE deposition. In addition, the 

PEG-ZnO nanocomposites coated on silicone hydrogel have been investigated by FTIR, 

EDX, XRD, PL spectra, and SEM. The ZnO-PEG nanocomposite is homogenously 

deposited on the surface of silicone. MAPLE process does not influence the polymer 

(PEG) structure. In addition, the nanocomposites coated silicone show significant protein 

resistance property, which can reduce about 28.2 % (Ag-PVP coating) and 30 % (ZnO-

PEG coating) BSA adsorption compared to bare silicone. Antimicrobial test assay further 

demonstrates that Ag-PVP and ZnO-PEG nanocomposites coated silicone have the ability 

to inhibit bacteria growth. After 4 hours incubation, ZnO-PEG coating can eliminate most 

of the bacteria on Silicone-ZnO-PEG surface (only 7% left), but E.coli keeps growing on 

bare silicone. Ag-PVP coating can kill all the bacterial on the hydrogel surface after 8 

hours incubation. Moreover, both Ag-PVP and ZnO-PEG coatings can increase Young’s 

modulus from 0.7083 MPa to 0.8109 MPa (Ag-PVP) and 0.8145 MPa (ZnO-PEG) 

individually The nanocomposites coated silicone hydrogels and bare silicone are 

biocompatible material according to the cell viability result. Therefore, it is expected this 

silicone nanocomposites (Silicone-Ag-PVP & Silicone-ZnO-PEG) produced by MAPLE 

process could be used as a potential long-term wearing contact lenses or other biological 

implants material due to their protein resistance and antimicrobial properties. 
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Chapter 6  

6 Summary and future work 

6.1 Summary 

Compared to conventional hydrogels such as PMMA and PHEMA-based hydrogels, 

silicone hydrogels show higher oxygen permeability due to the different gas transport 

mechanism, which significantly extend the wearing period of contact lens, and improve 

the comfortability level to people who wear the contact lenses. However, the surface of 

silicone hydrogels is less hydrophilic due to the siloxane group in the structure of 

silicone. Irreversible protein adsorption and biofilm formation are two major issues 

hinder the further clinical applications of silicone hydrogels. One of the most efficient 

solutions is to create a hydrophilic surface of silicone hydrogels. 

In this study, MAPLE technique was used to modify the silicone surface to reduce the 

protein adsorption and inhibit the growth of bacteria. PEG and PVP are the hydrophilic 

and biocompatible polymers to modify the silicone surface by MAPLE system. FTIR and 

AFM were used to characterize the polymer films. The roughness of PEG and PVP films 

is around 10-15 nm, which confirms the MAPLE deposited polymer films are 

homogeneous. In addition, micro BCA method was applied to measure the protein 

adsorption, and the results indicate the protein adsorption decreases to 71.8% (PEG 

coating), and 81.3% (PVP coating), respectively. The Young’s modulus of polymer 

coated silicone hydrogels are increased from 0.7083 MPa to 0.7668 MPa (PEG coating) 

and 0.7236 MPa (PVP coating) separately. In addition, the relative cell viabilities of 

different samples were carried out by using T3T cell line. No toxic effect is observed in 

the cultured cell line treated by polymer coated silicone hydrogels. 

PEG and PVP are not only suitable hydrophilic surface modification polymers but also 

commonly used stabilizers for nanoparticles, nanorods or other types of nanomaterials. 

Ag NPs and ZnO NPs have shown anti-microbial properties. Consequently, Ag NPs 

stabilized by PVP (Ag-PVP NPs) were synthesized through a photochemical method. The 

ZnO NPs stabilized by PEG (ZnO-PEG NPs) were produced from zinc acetate. 
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Furthermore, the two types of nanoparticles, Ag-PVP NPs and ZnO-PEG NPs, were 

deposited on silicone hydrogels by MAPLE process to minimize the microbial 

contamination of silicone hydrogel. The presence of PVP from Ag-PVP nanocomposite 

film produced by MAPLE process is confirmed by FTIR spectra. Ag NPs on silicone are 

confirmed by EDX and UV-Vis spectra. The size of Ag-PVP NPs changes from 11.29 

nm ± 1.88 nm to 11.61 nm ± 3.58 nm due to the SPR property of Ag NPs. The surface 

morphology of Ag-PVP nanocomposite film is observed by AFM, which indicates that 

the thickness over time is linear (deposition rate of 16.686 nm/min), and the 

nanocomposite film is homogenous (the roughness is around 20-35 nm).The presence of 

ZnO-PEG nanocomposite on silicone hydrogel is confirmed by FTIR, EDX, XRD, PL 

spectra, and SEM. According to results of TEM micrographs, XRD profiles and PL 

spectra, MAPLE process does not influence the size, shape, crystal structure and PL 

property of ZnO-PEG NPs. The size of ZnO-PEG is approximately 9.5 ± 2.5 nm. The 

SEM images indicate that the ZnO-PEG nanocomposite is homogenously deposited on 

the surface of silicone. In addition, the Ag-PVP and ZnO-PEG nanocomposite coated 

silicone hydrogels show significant protein resistance property, which can reduce about 

28.2 % and 30 % BSA adsorption compared to bare silicone. Antimicrobial test assay 

further demonstrates that Ag-PVP and ZnO-PEG nanocomposite coated silicone have the 

ability to inhibit bacteria growth. After 4 hours’ incubation, ZnO-PEG coating can 

eliminate most of the bacteria on Silicone-ZnO-PEG surface (only 7% left), while E.coli 

keeps growing on bare silicone when culturing time increases as the same time period. 

Ag-PVP coating can kill all the bacteria on the hydrogel surface after 8 hours incubation. 

Moreover, both Ag-PVP and ZnO-PEG coatings can increase Young’s modulus from 

0.7083 MPa to 0.8109 MPa (Ag-PVP) and 0.8145 MPa (ZnO-PEG) individually. The 

nanocomposite coated silicone hydrogels and bare silicone are biocompatible materials 

according to the cell viability results.  

This study indicate the MAPLE technique is a suitable surface coating system that can 

produce homogeneous polymer and nanocomposite films without significantly damaging 

the polymers. It is expected that these polymer and nanocomposite coated silicone 

hydrogels fabricated by MAPLE process could be used as potential long-term wearing 



102 

 

contact lenses or other biological implants materials due to their protein resistant and 

antimicrobial property. 

6.2 Future work 

Further research works to efficiently apply MAPLE process in surface modification are 

discussed as follows. 

 We have used the photochemical method to synthesize Ag-PVP NPs and then 

deposited the nanoparticles by MAPLE system, which is a two steps method. It 

may be possible to use laser as a resource to synthesize and deposit Ag-PVP NPs 

at the same time. The effects of MAPLE process on nanomaterials in terms of size 

and size distribution will be studied. 

 There is a limit for our MAPLE technique, which is only able to deposit one type 

of target material at one time, so my future work will try to design a new target, 

which can deposit several materials at one time without opening the chamber. 

This modification will save energy and time. 

 Our MAPLE system is recently installed an OPO which is able to allow us to 

change the wavelength to the NIR and/or IR range. Further studies will be needed 

to find out the effects of wavelength on different polymer and nanocomposite 

depositions. 
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