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Abstract

The duration of a forest fire depends on many factors, such as weather, fuel type and fuel mois-

ture, as well as fire management strategies. Understanding how these impact the duration of

a fire can lead to more effective suppression efforts as this information can be incorporated

into decision support systems used by fire management agencies to help allocate suppression

resources. This thesis presents a thorough survival analysis of lightning and people-caused

fires in the Intensive fire management zone of Ontario, Canada from 1989 through 2004. The

analysis is then extended to investigate spatial patterns across this region using proportional

hazards Gaussian shared frailty models. The resulting posterior estimates suggest spatial pat-

terns across this zone. A fire load model is also developed by coupling a fire occurrence model

with a survival model and is explored via simulation. Marked cluster processes were found to

nicely capture the overall fire load trend over the fire season.

Keywords: Survival analysis, proportional hazards, frailty, marked cluster process, forest fires
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Chapter 1

Introduction

The duration of a forest or wildland fire influences the area burned in Canadian forests. To

reduce the area burned, forest fires which are difficult to extinguish are of particular interest

as they pose a significant threat to forest resources across much of the Province of Ontario,

Canada. A better understanding of the variables which contribute to longer lasting forest fires

could be incorporated into decision support systems used by fire management agencies to pri-

oritize fires and allocate suppression resources.

In Canada, forest fires are ignited by lightning or by people. The ignition risk of lightning-

caused fires depends heavily on the moisture within the top layer of the forest floor, which is

often referred to as the duff layer, where a fire can smoulder until the surface of the forest floor

becomes dry enough to sustain its spread (Wotton and Martell, 2005). By contrast, the ignition

of people-caused fires is most dependent on the moisture of the fine litter fuels on the surface

of the forest floor (Wotton, 2009). Consequently, lightning and people-caused fires have been

modelled separately in the literature (Wotton and Martell, 2005; Wotton et al., 2003). The ap-

plications in this paper model lightning-caused fires and people-caused fires separately.

In this thesis, we use survival analysis methods to explore how fire weather variables affect

the duration of a forest fire. For the purpose of this study, we define the duration of a forest

fire to be the time interval from the beginning of initial attack action to the time that the fire is

1



Chapter 1. Introduction 2

declared as being under control, which we will hereafter refer to as the survival time. Survival

analysis is often employed to investigate time to some significant event (Lawless, 2003), often

in the presence of censoring and/or truncation, commonly in biostatistics and engineering. In

the biostatistics literature, the event of interest is often death or the recurrence of a disease

(e.g., Fleming and Lin, 2000), while time to product failure is often the event of interest in

engineering applications (e.g., Tsai et al., 2003). In our application, the event of interest is the

time at which a fire is declared under control.

In addition to the traditional applications, survival analysis has been applied to the lifetimes

of living organisms, including animals (Johnson et al., 2004) and trees (Ritchie et al., 2007),

extensively in ecology. However, the application of survival analysis to wildland fires has been

focused on estimating fire frequency and fire cycles involving the time required to burn an area

equal in size to the studied area (Larsen, 1997; Senici et al., 2010) by modelling the time since

a fire occurred at specific points on the landscape. In this thesis, we investigate the associations

between fire weather variables and the distribution of the survival time of a forest fire by the

means of a thorough survival analysis. We also explore the data, looking for spatial patterns in

the duration of forest fires. The objective of this research is to provide forest fire managers with

an alternative fire weather modelling technique which could be incorporated in their strategic,

tactical and operational planning systems.

To forest fire managers, the fire load represents the magnitude of the suppression efforts and

resources corresponding to fires that occur in a specific area and over a specified time interval

(Martell, 2007). In this thesis, we will specify the fire load on a given day of the fire season

to be the number of fires burning on the landscape. A simulation of the fire load is performed

by coupling a fire occurrence model with one of our survival models for a single region. The

fire occurrence is modelled using a non-homogeneous Poisson process and special forms of

cluster point processes (Cox and Isham, 1980). The survival time is then coupled to one of
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the stochastic cluster processes as a mark. These types of models have been used extensively

to model ecological occurrences including rainfall (Rodriguez-Iturbe et al., 1987) and earth-

quakes (Ogata, 1988).

The remainder of this thesis is organized as follows. A description of the study area, data and

Ontario’s fire management system is given in Chapter 2. Exploratory data analyses are also

performed. In Chapter 3, we present definitions, statistical concepts and methods which will

be applied in the study. Simple parametric log-location-scale models are then fit to the data in

Chapter 4, along with survival models that incorporate the effects of other covariates. In addi-

tion, spatial patterns across our study region are analyzed using proportional hazards Gaussian

shared frailty models and illustrated using choropleth maps. We also present the development

of a stochastic fire load model via simulation. We conclude the study with a discussion of our

results and future work in Chapter 5.



Chapter 2

The Data and Study Area

The Aviation, Forest Fire and Emergency Services (AFFES) Branch of the Ontario Ministry

of Natural Resources (OMNR) is responsible for forest fire management on Crown land in

the fire region of the Province of Ontario. Prior to 2004, this fire region (coloured area) was

partitioned into the three fire management zones shown in Figure 2.1, each of which received

different levels of protection. The strategy in the Intensive zone was to suppress all fires as soon

as suppression resources were available, in the Measured zone fires were initially attacked and

re-evaluated if extended attack was needed for containment, and in the Extensive zone fires

were left to burn so long as they did not threaten a community. Recently, the number of

zones and their corresponding management strategies have been modified (see OMNR, 2004).

Consequently, we focus our analysis on historical records of fires prior to this change in the

provincial fire management strategy.

2.1 Forest Fire Data

We studied the lifetimes of 18,183 forest fires in the Intensive zone of the Province of Ontario,

for the period 1989 through 2004, using data provided by the OMNR. That fire archive in-

cludes many fire attributes including the dates and times at which each fire was reported, when

suppression action began and when the fire was declared under control. It also includes other

4



Chapter 2. The Data and Study Area 5

Extensive
Measured
Intensive

Figure 2.1: Ontario’s fire management zones prior to 2004.

information such as the weather, vegetation or fuel type and fuel moisture associated with each

fire. Among the fires we studied, 43% were caused by lightning and 57% were caused by peo-

ple.

Martell (2007) described how fire management agencies track a forest fire’s progress through

several distinct phases. The life cycle of a fire begins with ignition, sometime later it is de-

tected and later reported to the fire management agency. Once the fire has been reported, the

duty officer or dispatcher prioritizes it, places it in the initial attack (IA) queue and dispatches

initial attack resources (e.g., airtankers and fire fighters) to begin initial attack action. A fire is

declared to be in a state of being held when it is no longer spreading but may possibly resume

spreading, and subsequently deemed under control when adequate control lines have been es-

tablished around the fire’s perimeter. The fire crews then work on extinguishing the fire from

the perimeter inwards until the fire crews have sufficiently extinguished any smoldering fuels,
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at which point the fire is then declared as out. Figure 2.2 displays the importance of effective

suppression efforts in terms of area burned over a typical fire’s lifetime (Parks, 1964). From

this figure, it is clear that understanding survival time is important, because area burned is pro-

portional to this quantity.

Ignition Report Suppression Under Control Out 

A
re

a
 B

u
rn

e
d

 

IA 

Response 

Survival 

Time 

Being  

Held 

Figure 2.2: The typical timeline of the area burned by a fire through its progression phases with
(blue) and without (black) suppression efforts.

As mentioned previously in this thesis, we define a fire’s survival time as the time between

when initial attack begins and when the fire is declared under control. These times are used

because the initial suppression time is known (the start date is less accurate since it is often
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estimated) and the amount of time that it takes to bring the fire under control is of most interest

and use to fire management agencies. This survival time is measured in hours, where decimal

places represent minutes, for our analysis. Fires with negative survival times (870 fires) that

resulted from data coding errors are removed, as well as those where the initial attack and

under control dates and times are the same (133 fires). Apart from simple data entry error,

negative survival times might have occurred because the time at which a fire was declared as

under control was not specified along with the date. In this situation, the time is recorded as

midnight which leads to problems when working with time differences between date-stamps

of short fires. Fires which have survival times of length 0 may be caused by similar mistakes

or by a fire crew arriving at a fire and deciding that suppression is not needed due to the low

intensity of the fire and expected weather (rain). These fires are removed from the dataset as in

this study we are only interested in fires which need to be suppressed.

The OMNR considers an initial attack to have been successful if a fire is brought to a state

of being held by noon on the day following the day the fire was reported or if final size is less

than 4 hectares. Roughly 97.5% of fires in Ontario are successfully contained by the initial

attack force. For this reason, the 3 fires with survival times which are greater than 1,000 hours

(just under 42 days) are removed. Some summary statistics for the data we analyze are dis-

played in Table 2.1 and histograms of the survival time of lightning and people-caused fires

which are declared under control within 2 days are displayed in Figure 2.3.

Statistic Min. 1st Qu. Median Mean 3rd Qu. Max.
Lightning 0.02 1.25 3.33 14.66 16.08 745.40

People 0.02 0.48 1.17 7.65 4.00 570.00

Table 2.1: Descriptive statistics of the survival time (in hours) of fires from the Intensive zone,
by ignition cause.
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Lightning−caused Fires

Survival Time (Hours)

0 10 20 30 40 50

0

1000

2000

3000

4000

N
um

be
r 

of
 F

ire
s

People−caused Fires

Survival Time (Hours)

0 10 20 30 40 50

0

2000

4000

6000

N
um

be
r 

of
 F

ire
s

Figure 2.3: Histograms of the survival time, in hours, of lightning (top panel) and people-
caused fires (bottom panel) which are declared under control within 2 days.
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2.2 Fire Management and Weather Variables

The initial attack response is the time between when a fire is reported and the time that initial

attack action begins. Figure 2.4 displays the histograms of the response time (in hours) for

lightning and people-caused fires. Investigation of the effect of this covariate on the survival

time of forest fires is motivated by the potential impact it may have on the final size of fires.

The size (in hectares) of a fire at the start of initial attack is also considered.

Canadian forest fire managers use the Canadian Forest Fire Danger rating System (CFFDRS)

to assess the impact of weather on fire occurrence and behaviour processes. We will be using

5 of the codes and indices from the CFFDRS that represent the cumulative impact of weather

on the moisture content of different components of a forest fuel complex and potential fire

behaviour. A thorough overview of the CFFDRS for the purpose of modelling is provided by

Wotton (2009). The Fine Fuel Moisture Code (FFMC) is a numerical rating of the moisture in

the small, readily consumed, fine fuels on the forest floor. It increases with increasing dryness

varying from saturation to a completely dry surface layer. The Initial Spread Index (ISI) is a

rating of the potential rate of spread of a fire and is based upon the wind speed and the FFMC.

The larger the ISI, the greater the fire spread rate potential. The Duff Moisture Code (DMC)

is a measure of the moisture content of the top 7 cm of the forest floor where litter starts to

decay and ranges from 0 (full saturation) from where it can increase with no upper bound. The

Drought Code (DC) is a measure of moisture content of deep layers of the forest floor and of

dead woody debris approximately 18 cm thick and accounts for long-term drying. The higher

the DC, the drier the deep organic fuel. The Build-Up Index (BUI) is a weighted mean of DMC

and DC and serves as a measure of the potential fuel available for consumption on and in the

forest floor. It is also a useful indicator of difficulty in extinguishing smouldering fires. These

fire weather variables have been historically used in forest fire occurrence prediction models;

notable examples include the logistic regression models of Woolford et al. (2011) and Wotton

and Martell (2005), as well as the Poisson regression models of Wotton et al. (2003).



Chapter 2. The Data and Study Area 10
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Figure 2.4: Histograms of the initial attack response time, in hours, of lightning (top panel)
and people-caused fires (bottom panel).



Chapter 3

Methodology

3.1 Survival Analysis

3.1.1 The Survival Time, T

The survival time, T , is a continuous and non-negative random variable which represents the

time to an event. In the analysis of lifetimes, one is most interested in the probability of

survival, S (t) = P(T > t), and the hazard rate, λ(t) =
f (t)
S (t) , where f (t) is the probability density

function of T . In the context of our research, we analyze the probability distribution for the

time until a fire is declared under control, given that it is being suppressed. Here, the hazard

or failure rate can be viewed as the probability that a fire would “die” at time t, conditional

on its survival to that point. In this sense, it can be viewed as the instantaneous rate that the

fire becomes under control. The hazard rate is important because the survival function can be

expressed as a function of this rate as

S (t) = exp

−
t∫

0

λ(u)du

 .
The remainder of Section 3.1 reviews common non-parametric, parametric and semi-parametric

methods to estimate survival probabilities or hazard rates. The proportional hazards shared

11
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frailty model and inference procedures are also introduced.

3.1.2 The Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator approximates the underlying continuous lifetime distribu-

tion using a discrete distribution (Lawless, 2003). It is a non-parametric (i.e., no assumptions

about the underlying distribution are made) technique. Estimates are made at each of the ob-

served event times. The KM estimator of the survival function is defined as

Ŝ KM(t) =
∏
j:t j≤t

(
1 −

d j

Y j

)
, t ≥ 0,

where t j denotes the observed event times, d j is the number of events which occurred at time

t j and Y j is the number of subjects at risk at time t j, j = 1, ..., n. Note that d j/Y j is a non-

parametric estimator of the hazard function since d j/n estimates f (t j) and Y j/n estimates S (t j).

3.1.3 Log-Location-Scale Models

Log-location-scale models are a class of parametric models commonly used to model lifetime

data. The lifetime random variable, T , has a log-location-scale model if its survival function

can be written in the form

S (t) = S 0

(
log(t) − u

b

)
,

where S 0 is a fully specified survival function with positive support and u ∈ R and b > 0 are the

location and scale parameters which shift and affect the spread of the distribution, respectively.

The three most commonly used log-location-scale models are the Weibull, lognormal, and

loglogistic. They are obtained when S 0(t) is the extreme value, normal, or logistic survival

function, respectively. The location and scale parameters are estimated from the data using

maximum likelihood. First, we define the likelihood function, L, as a function of the unknown
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parameters for a given parametric model. For complete data, the likelihood function of n

observations x1, ..., xn is

L ≡ L(θ) =

n∏
i=1

f (xi; θ),

where f is the density function of the parametric model with parameter vector θ. The max-

imum likelihood estimates of the parameters are obtained by maximizing the log-likelihood

function, l(θ) = logL(θ).

Non-parametric survival estimates can be used as a method of comparing models (Lawless,

2003). Using this approach, the appropriateness of each log-location-scale parametric model

can be determined by examining how closely the fitted survival probabilities follow the KM

estimates. Non-parametric models are useful comparison tools as they are true to the data and

only make the assumption that the data are independent; they do not impose a distribution upon

the data.

The KM estimator and log-location-scale methods produce simpler models in the sense that

they don’t incorporate effects of other independent variables or covariates. The accelerated

failure time (AFT) model is a parametric regression model which takes into account the effect

of covariates on the survival function. It is a log-location-scale distribution of the form

S (t | x) = S 0

(
log t − u(x)

b

)
,

where the location parameter is dependent on the covariate vector, x, and is often assumed to

be a linear function of p covariates. That is, u(x) =
p∑

i=1
βixi, where the β’s are parameters to be

estimated. The AFT model makes the assumption that the effect of covariates is equivalent to

altering the rate at which time passes. If the linear function of the covariates, u(x), is greater

than 0 then the covariate vector is decelerating the time scale, or equivalently, increasing the
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survival probability across time. Similarly, if u(x) < 0 then the covariate vector is accelerating

the time scale or decreasing the survival probability across time.

3.1.4 The Cox Proportional Hazards Model

The Cox proportional hazards (PH) model is a widely used semi-parametric method for survival

analysis that can incorporate covariate effects. The hazard rate is modelled as

λ j(t | x j) = λ0(t)ex′jβ, j = 1, ..., n

where j indexes the observations, λ0 is the baseline hazard rate, x j is the covariate vector and

β is the associated parameter vector of length p. The baseline hazard rate can be viewed as

the hazard function when all covariates are 0. The covariates then have a multiplicative effect

on this baseline. In this application of the Cox PH model, our main interest is in quantifying

the effects of the covariates. The Cox PH model is commonly built using forward selection

of covariates, details of which will be provided in Section 3.1.6. The effect of the covariates,

ex′jβ, is parametrically estimated without considering the baseline by maximizing Cox (1972,

1975)’s partial likelihood,

L(β) =

n∏
j=1

ex′jβ∑
kεR j

ex′kβ
,

where R j is the set of observations which are at risk for an event (fires not under control) at

the time of the jth observation. This likelihood is partial as it involves only the parameters of

interest and the baseline hazard is considered a nuisance function which subsequently may be

non-parametrically estimated using estimators given by Breslow (1972) or Efron (1977), for

example. If parameterized in terms of the survival function, the Cox PH model takes the form

S j(t | x j) = S 0(t)e
x′jβ .
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3.1.5 The Proportional Hazards Shared Frailty Model

The purpose of frailty models is to describe the excess risk, or frailty, for distinct categories.

The main idea is that there are greater correlations among data within these categories or clus-

ters. In the application of the Cox Proportional Hazards model, these within cluster dependen-

cies cause non-proportionality of the hazards and loss of precision of the estimated parame-

ters. This problem is remedied by implementing a multivariable mixed-effects survival model,

namely the shared frailty model. The shared frailty model is such that each observation be-

longs to only one of the distinct categories, all observations within a category share a common

frailty, and the frailties from different categories are independent (Therneau et al., 2003). The

hazard rate from the proportional hazards shared frailty model is

λi j(t) = λ0(t)ex′i jβ+ωi , j = 1, ..., ni, i = 1, ..., s

where j indexes the observations in category i, xi j is the covariate vector of length p with as-

sociated parameter vector β and ωi is the random effect term of category i. The distribution

and mean of the random effects must be specified, while the variance is left unspecified. The

choice of the distribution of the random effects is based on the dependence structure present in

the data being modeled. In practice, the most common choices include the gamma distribution

with mean 1 and the normal distribution with mean 0, the latter of which will be applied in this

thesis as it allows flexibility in modelling data with various dependence structures. We will

also demonstrate that this normal frailty term is appropriate for our data later in this thesis. In

the case of shared frailty models, where each observation belongs to only one category and the

observations within a category have a common random effect term,
s∑

i=1
ni = n.

Penalized regression models are used to estimate Cox PH models with frailty terms (Ripatti

and Palmgren, 2000). When fitting such models, the random effects are added to survival mod-

els as constrained, unobserved continuous covariates which are assumed to follow a probability
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distribution. The penalized partial log-likelihood, `ppl, consists of adding a penalty function,

`penalty, to the partial log-likelihood, `partial, as a constraint as follows:

`ppl = `partial − `penalty

=

s∑
i=1

ni∑
j=1

log

 ex′i jβ+ωi∑
qwεRi j

ex′qwβ+ωq

 − `penalty.

In the case of normally distributed random effects with mean 0 and variance γ, the penalty

function is 1
2

s∑
i=1

[
ω2

i
γ

+ log(2πγ)
]
. The tuning parameter of the penalty function is the random

effect variance, γ, which penalizes for extremely large absolute values of ωi.

The parameter estimation is done by starting with an initial guess of γ̂, and using the Newton-

Raphson method to solve for β̂ and ω̂i from the estimating equations based on the first partial

derivatives of the penalized partial log-likelihood above. Then, β and ωi are fixed at these max-

imized values and an estimating equation based on the approximate marginal log-likelihood is

solved for a new value of γ̂, more details of which may be found in Ripatti and Palmgren

(2000). These two steps are iterated until convergence.

3.1.6 Model Selection

Model selection aims to find the subset of covariates which will result in the best fitting model.

Forward selection is a model building approach which applies a stepwise search algorithm (see

e.g., Venables and Ripley, 2002) in order to select covariates through the use of the Akaike

information criterion (AIC), where a smaller AIC represents a better fit (Therneau and Gramb-

sch, 2000). Beginning with the null model, the covariate which decreases the AIC the most

is added to the model, one at a time, until the addition of any remaining covariates does not

decrease the AIC. In the case of close fits, this method establishes a preference for simpler

models by using the number of parameters as a penalty term.
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3.2 Point Processes

This section introduces point process methods and estimation procedures with emphasis on

simulation procedures.

3.2.1 Homogeneous Poisson Processes

A point process is a stochastic process of point occurrences. When the points are restricted

to vary only temporally, the process is called “on the line” which refers to the time-axis. The

homogeneous Poisson process is the simplest point process where the points occur completely

randomly in time. This process has independent non-overlapping time increments and the

number of events in any such increment of length a, N(a), has a Poisson distribution with

rate λa, where λ is the intensity of the Poisson process. The times between any 2 points, the

increment lengths, are independent and exponentially distributed with rate λ. The simulation

of a homogeneous Poisson process is therefore straightforward.

3.2.2 Non-Homogeneous Poisson Processes

A non-homogeneous Poisson process has an intensity which varies temporally, λ(t). For this

process, the number of events in the increment (a, b] has a Poisson distribution with rate
b∫

a
λ(t)dt and non-overlapping increments are independent. In contrast to the homogeneous

Poisson process, the number of events in an increment is dependent on its start and end points,

along with its length; this makes the process non-stationary.

Thinning, introduced by Lewis and Shedler (1979), is a convenient method for simulating a

non-homogeneous Poisson process. It involves simulating a homogeneous Poisson process

with constant rate function, λu, which dominates the desired rate function, λ(t), for all t in the

desired interval. A generated point at time t is then independently rejected with probability{
1 − λ(t)

λu

}
. A simple way to achieve this rejection rate is to generate an independent standard
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uniform random variable, ui, for each generated point i and reject the point if ui >
λ(ti)
λu

.

3.2.3 Parent-Child Cluster Processes

A cluster process consists of a point process which generates cluster origins (parents) and an-

other point process which associates points (offspring) to each parent with specified location

about the parent (Cox and Isham, 1980). The overall cluster process may or may not include

the parents as points in practice, but it is of note that these parents are purely conceptual and

do not have physical representations.

The Bartlett-Lewis process is a special cluster process in which a Poisson process generates

the parents, a point process generates the offspring of each parent, and the offspring are po-

sitioned such that the increments between points are independent and identically distributed

according to some distribution, starting from the parent. The Neyman-Scott process differs

from the Bartlett-Lewis only in that the offspring are independently and identically distributed

away from the parent. For both cluster processes, there is typically a stopping rule either for

the total number of points generated, or for the number of offspring generated for each cluster

parent.

3.2.4 Estimating λ(t)

The intensity of the non-homogeneous Poisson process will be estimated using a Poisson gen-

eralized additive model (GAM), first introduced by Hastie et al. (1986). This regression model

relates the conditional mean of the response, µ = µ(x), to a linear combination of smooth func-

tions of covariates, x, using the log link function. For a single covariate, x, this model takes the

form:

log(µ) = β0 + f (x),
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where β0 is the intercept which is estimated parametrically and f is a smooth function, which,

in our application is estimated using a thin plate regression spline (Duchon, 1977) basis. Penal-

ized iteratively reweighted least squares, conditional on a smoothing parameter, is implemented

to fit the model, details of which may be found in Wood (2006). The smoothing parameter is

estimated by generalized cross-validation.

The results from the implementation of the methods introduced in this chapter will be pre-

sented in Chapter 4.



Chapter 4

Results

4.1 Survival Analysis

The methods discussed in Section 3.1 are implemented in R using the survival package of

Therneau (2014) and the results are presented in the remainder of this section.

4.1.1 Kaplan-Meier Estimator

The KM estimates of the survival curves of both lighting-caused and people-caused fires are

displayed in Figure 4.1. Examination of these curves clearly shows that people-caused fires

tend to have smaller survival probabilities and reveals two noticeable periods at which the

curves exhibit a short-lived plateau rather than continually decreasing as expected. These

plateaux occur near the 8 and 32 hour marks which suggests that they may be caused by sup-

pression being stalled overnight.

4.1.2 Log-Location-Scale Models

The Weibull, the lognormal, and the loglogistic survival models are plotted for lightning-caused

fires and people-caused fires in Figure 4.2. These results suggest that the fits of these parametric

models are reasonable, however they do not adequately capture the features demonstrated by

20
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Figure 4.1: Kaplan-Meier survival curves of lightning (blue lines) and people-caused fires
(black lines) with 95% confidence limits (dashed lines).
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Figure 4.2: KM estimates (solid black lines) with 95% confidence limits (dashed black lines)
and Weibull (green lines), lognormal (blue lines) and loglogistic (red lines) estimates of sur-
vival probabilities of lightning-caused fires (top panel) and people-caused fires (bottom panel).
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the KM estimates in the left-tails of the distributions. This suggests that models which account

for the effect of covariates should be explored. Examining the AIC values for each of these

fitted models suggests that the Weibull distribution is the preferred log-location-scale model

for both types of fires. Therefore, this distribution is employed to fit AFT models, the results

of which are summarized in Table 4.1.

Lightning-Caused Fires
Parameter Estimate (Std. Error) P-Value

IA Response 0.0122 (0.0012) <0.001
FFMC 0.0140 (0.0018) <0.001

ISI 0.0220 (0.0080) 0.0058
Size at IA 0.0006 (0.0002) <0.001

DC 0.0009 (0.0003) 0.0102
DMC 0.0287 (0.0049) <0.001
BUI -0.0258 (0.0047) <0.001

People-Caused Fires
Parameter Estimate (Std. Error) P-Value

FFMC 0.0093 (0.0023) <0.001
ISI 0.0518 (0.0068) <0.001

Size at IA 0.0587 (0.0044) <0.001
DC 0.0028 (0.0004) <0.001

DMC 0.0242 (0.0065) <0.001
BUI -0.0207 (0.0061) <0.001

Table 4.1: Parameter estimates, standard errors (Std. Errors) and p-values from the fitted AFT
Weibull models of lightning (top panel) and people-caused (bottom panel) fires.

The implementation of forward selection (e.g., Venables and Ripley, 2002) results in fitting

the model for lightning-caused fires with all covariates included, while the model for people-

caused fires includes all variables except the initial attack response time. All parameter esti-

mates, with the exception of BUI, are positive which suggests that increases in these variables

are associated with an increased survival probability. The fitted AFT survival curves, along
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with the KM estimates and 95% confidence limits of the survival curves, are displayed in Fig-

ure 4.3. These graphs suggest that the parametric AFT models over-smooth the data and do

not adequately capture the characteristics which were displayed by the KM estimates of the

survival curves. These log-location-scale models do, however, appear to do an adequate job of

describing the overall trend in survival probability.

4.1.3 Cox Proportional Hazards Model

The Cox PH model, as described in Section 3.1.4, is fit to the survival time of lightning and

people-caused fires. The same covariates as in the AFT models are selected. The summaries of

the fitted models for lightning-caused fires and people-caused fires are displayed in Table 4.2.

Lightning-Caused Fires
Parameter Estimate (Std. Error) P-Value

IA Response -0.0067 (<0.001) <0.001
FFMC -0.0093 (0.0011) <0.001

ISI -0.0127 (0.0052) 0.0147
Size at IA -0.0003 (<0.001) 0.0040

DC -0.0005 (<0.001) 0.0223
DMC -0.0142 (0.0031) <0.001
BUI 0.0133 (0.0031) <0.001

People-Caused Fires
Parameter Estimate (Std. Error) P-Value
Size at IA -0.0252 (0.0024) <0.001

FFMC -0.0061 (0.0013) <0.001
ISI -0.0256 (0.0040) <0.001
DC -0.0014 (0.0002) <0.001

DMC -0.0129 (0.0038) <0.001
BUI 0.0109 (0.0036) 0.0021

Table 4.2: Parameter estimates, standard errors (Std. Errors) and p-values from the fitted Cox
PH models of lightning (top panel) and people-caused (bottom panel) fires.
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Figure 4.3: Fitted survival curves of lightning (top panel) and people-caused (bottom panel)
fires at covariate values representative of a typical fire, as fit by the AFT Weibull model (blue
lines) and the KM estimates (solid black lines) of survival probabilities with 95% confidence
limits (dashed black lines).
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Similarly to the AFT model, all parameter estimates, except BUI, are negative which indicates

a decreased hazard rate, or equivalently, an increased survival time with increasing parame-

ter values. The positive BUI parameter estimate is likely due to a dependence between it and

another variable. Table 4.3 displays the marginal improvements in the AIC at each stage of

the forward selection of covariates in these Cox PH models. The structure of the implemented

stepwise selection guarantees an improvement in fit at each stage, however overfitting may oc-

cur. A general rule of thumb to avoid overfitting is that a marginal decrease in the AIC of less

than 2 suggests that there is not substantial evidence which indicates a gain of information in

the model with the additional covariate, relative to the previous model (Burnham and Ander-

son, 2004). Based on this rule, the Cox PH models of both lightning and people-caused fires

would not include DMC and BUI.

Figure 4.4 displays the fitted Cox PH survival curves of lightning and people-caused fires (with

all selected covariates), along with the KM estimates and 95% confidence limits of the survival

curves. These graphs suggest that the Cox PH models capture the important characteristics

which were displayed by the KM estimates of the survival curves. The Cox PH model is more

flexible than the AFT model because its baseline distribution is left unspecified.

4.1.4 Proportional Hazards Shared Frailty Model

The Cox proportional hazards model assumes that the effects of covariates on the baseline haz-

ard rate is proportional over time (with vertical shifts) and that the survival times of fires are

independent; these assumptions will be violated when there is correlation among certain fires.

Since the Province of Ontario has vast forest landscapes, the survival times of fires will be af-

fected differently by the previously modeled covariates in dissimilar regions, thereby creating

spatial correlation between fires within similar sections of Ontario. Martell and Sun (2008) par-

titioned the province into small polygons referred to as fire management compartments (FMCs)

which are displayed in Figure 4.5. This partition was constructed by overlaying the map of fire
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Lightning-Caused Fires
Model AIC Marginal Decrease
Null 115304.7 -

IA Response 115108.6 196.1
FFMC 114939.8 168.8

Size at IA 114924.2 15.6
ISI 114916.5 7.7
DC 114913.6 2.9

DMC 114913.1 0.5
BUI 114893.9 19.2

People-Caused Fires
Model AIC Marginal Decrease
Null 133389.9 -

Size at IA 133137.7 252.2
ISI 132988.0 149.7
DC 132874.5 113.5

FFMC 132854.1 20.4
DMC 132852.8 1.3
BUI 132845.1 7.7

Table 4.3: The AIC and marginal decrease in AIC at each stage of the forward selection of
covariates in the Cox PH models of lightning (top panel) and people-caused (bottom panel)
fires.

management zones in Ontario, displayed in Figure 2.1, with a digital map of the forest sections

from the forest region classification system of Rowe (1972). Conditional on these compart-

ments, the survival times of the fires may now be appropriately modeled as each FMC can be

assumed to be approximately internally homogeneous with respect to ecological characteristics

such as fuel, weather and topography as well as fire management strategy. The implementation

of a shared frailty model, in which each fire belongs to only one compartment and the fires

within a compartment have a common random effect, allows the assumption that the fires have

independent survival times, conditional on the random effect terms.
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Figure 4.4: Fitted survival curves of lightning (top panel) and people-caused (bottom panel)
fires at covariate values representative of a typical fire, as fit by the Cox PH model (blue lines)
and the KM estimates (solid black lines) of survival probabilities with 95% confidence limits
(dashed black lines).
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Figure 4.5: The partition of Ontario into fire management compartments.
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A semiparametric PH shared frailty model with zero-mean normally distributed random effects

is fit to lightning and people-caused fires by maximizing the penalized partial likelihoods as

described in Section 3.1.5. The fixed effects used in these models are the same as in the non-

frailty models to allow for appropriate comparisons. The parameter estimates, standard errors

and p-values of the fixed effects from the fitted models are displayed in Table 4.4.

Lightning-Caused Fires
Parameter Estimate (Std. Error) P-Value

IA Response -0.0067 (0.0008) < 0.001
FFMC -0.0092 (0.0012) < 0.001

ISI -0.0103 (0.0052) 0.047
Size at IA -0.0002 (0.0001) 0.009

DC -0.0004 (0.0002) 0.067
DMC -0.0150 (0.0031) < 0.001
BUI 0.0127 (0.0031) < 0.001

People-Caused Fires
Parameter Estimate (Std. Error) P-Value

FFMC -0.0060 (0.0013) < 0.001
ISI -0.0253 (0.0040) < 0.001

Size at IA -0.0249 (0.0024) < 0.001
DC -0.0014 (0.0002) < 0.001

DMC -0.0128 (0.0038) < 0.001
BUI 0.0104 (0.0036) 0.004

Table 4.4: Parameter estimates, standard errors (Std. Errors) and p-values of the fixed effects
from the fitted proportional hazards shared frailty model of lightning (top panel) and people-
caused fires (bottom panel).

The posterior estimates of the random effects, ω̂i, from each FMC are extracted from the model

and applied to create the choropleth maps in Figures 4.6 and 4.7. The exponentiated posterior

estimates are interpreted as multiplicative factors on the hazard rate. Negative posterior esti-

mates imply a reduction in the hazard rate of fires, or analogously, an increase in the survival
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Figure 4.6: Choropleth maps of lightning-caused fires where each FMC is assigned a heat map
colour based on its frailty term. The top panel uses evenly spaced intervals and the bottom
panel uses an interval length equal to the standard deviation of the random effects.
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Figure 4.7: Choropleth maps of people-caused fires where each FMC is assigned a heat map
colour based on its frailty term. The top panel uses evenly spaced intervals and the bottom
panel uses an interval length equal to the standard deviation of the random effects.
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probability. As such, the choropleth maps apply the brightest red color of the heat palette to

compartments with the largest negative posterior estimates to imply greater fire danger through

to the palest yellow being applied to compartments with the largest positive posterior estimates

to imply the least fire danger.

The choropleth maps of people-caused fires do not display clear or easily interpretable trends,

however the choropleth maps of lightning-caused fires have interesting patterns. The use of

evenly-spaced intervals in the top panels allow the visualization of specific patterns. There is

a slight west to east gradient which is noticeable in the Intensive zone of the evenly-spaced

lightning-caused fires map (Figure 4.6, top panel). The bottom panels allow the visualization

of more broad spatial patterns by using interval lengths which represent standard deviations of

the random effects. The map of lightning-caused fires with standard deviation-based intervals

(Figure 4.6, bottom panel) reinforces that in the Intensive zone, the western region experiences

fires with shorter survival times.

4.1.5 Goodness of Fit

The construction of a profile likelihood-based confidence interval is used as a preliminary as-

sessment of the frailty term’s significance. For a sequence of random effect variances, the like-

lihood ratio (LR) test statistics are computed and plotted at each fixed variance. A horizontal

line is added to the plot 3.84 units below the test statistic value of the fitted frailty model, which

corresponds to a chi-squared test on 1 degree of freedom. The intersections of the horizontal

line and the profile likelihood produce a profile likelihood-based 95% confidence interval for

the variance of the random effects. The resulting plots, displayed in Figure 4.8, suggest that

the frailty terms of the models are significant in terms of this preliminary assessment since

the confidence intervals are relatively narrow. It is of note that the confidence interval for the

variance of the random effects from the frailty model of lightning-caused fires is narrower than

the confidence interval from the frailty model of people-caused fires.



Chapter 4. Results 34

0.00 0.02 0.04 0.06 0.08 0.10

600

650

700

750

Profile Likelihood of Lightning−Caused Fires

Variance of Random Effects

LR
 te

st

0.00 0.02 0.04 0.06 0.08 0.10

280

300

320

340

360

380

400

Profile Likelihood of People−Caused Fires

Variance of Random Effects

LR
 te

st

Figure 4.8: Profile likelihood-based 95% confidence intervals of the variance of the random
effects.
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Therneau and Grambsch (2000) suggests that the significance of the frailty term is more

strongly evaluated by a likelihood ratio test comparing the integrated-likelihood of the frailty

model, where the frailty terms are integrated out of the likelihood, to the Cox PH fitted likeli-

hood without a frailty term. Based on this comparison, both the lightning and people-caused

frailty models are significant improvements on the respective proportional hazards models

without frailty term. However, it is of note that this chi-squared test is conservative since

the frailty terms, eω, are constrained to be greater than or equal to zero.

Next, the suitability of the normality assumption of the frailty model is verified by fitting the

Cox PH model with additional fixed effects for the FMCs. FMC-15, the compartment in the

western region which experiences the most lightning-caused fires, is chosen as the baseline

compartment. To make the choropleth maps from the frailty model comparable to those from

the fixed effects model in Figures 4.9 and 4.10, FMC-15’s posterior estimate is subtracted from

the other posterior estimates such that the values are representative of the multiplicative differ-

ence on the hazard rate of fires in FMC-15. The fixed effect parameter estimates are similar to

the posterior random effect estimates which suggests that this modelling is robust to violation

of the normal frailty assumption.
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Figure 4.9: The parameter estimates of the compartment-specific fixed effects (top panel) and
the posterior estimates, in reference to FMC-15, from the frailty model (bottom panel) of
lightning-caused fires.
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Figure 4.10: The parameter estimates of the compartment-specific fixed effects (top panel)
and the posterior estimates, in reference to FMC-15, from the frailty model (bottom panel) of
people-caused fires.
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4.2 Fire Arrival Modelling

The modelling in the remainder of this section will be implemented on lightning-caused fire

occurrences from 1963 through 2004. Our study region is restricted to FMC-15 such that the

modelling is purely temporal.

4.2.1 Non-Homogeneous Poisson Process

A Poisson GAM with a thin-plate spline for a day of year effect is fit to the daily number of

fires. The resulting time-dependent rate is used to generate fire arrivals (fires which have been

reported) according to a non-homogeneous Poisson process. This simulation is facilitated by

thinning realizations from a homogeneous Poisson process as described in Section 3.2.2. The

resulting 95th percentiles of daily fire arrivals over 1000 simulated fire seasons and the true data

are displayed in Figure 4.11. Inspection of this figure suggests that the intensity of the Poisson

process is too small, especially near the peak (middle) of the fire season, due to the large num-

ber of days with 0 fires in the data. Table 4.5 indicates that the average number of fires per fire

season from the simulation is similar to that of the historical data, while the average number

of fire days, defined as days with 1 or more fires, per fire season from the simulation is much

larger than the historical data. This discrepancy implies that the generated fires are too spread

out and that there are not enough fires generated on the same day. An intuitively appealing way

of modelling the inherent clustering of the arrival of lightning-caused fires is by the means of

a parent-child cluster process, which will be implemented in the next section.

Average No. Fire Days Average No. Fires
Historical 29.60 (15.97) 77.50 (78.76)

Poisson Process 58.09 (5.40) 78.23 (8.41)

Table 4.5: A comparison of the average number of fire days and fires per fire season, with
standard deviations in parentheses, from the historical data and the Poisson process simulation.
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Figure 4.11: The 95th percentiles of daily fire arrivals over the fire season from 1000 runs of a
simulated non-homogeneous Poisson process (blue line) and from the true data (black line).

4.2.2 Parent-Child Cluster Processes

The implemented Bartlett-Lewis process is assumed to have the following two-component

structure. A non-homogeneous Poisson process of rate λ(t), which is dependent on the day

of year, generates the cluster origins (parent fires), and for each parent, offspring are generated

according to a homogeneous Poisson process of rate β within 1 day from the time of the parent

fire arrival. The generated parents are also assumed to be fires, which implies that if 0 offspring

are generated for a parent, the associated cluster consists of a single fire. This cluster process

couples the two individual components independently; implications of this assumption are dis-

cussed in Chapter 5.

The rate of the non-homogeneous Poisson process, λ(t), is estimated by fitting a Poisson GAM,

with a thin-plate spline for the day of year effect, to the daily presence/absence of fires (i.e., fire
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days). The resulting time-dependent rate is displayed in Figure 4.12. A simple Poisson model

is fit to the daily fire counts from the zero-truncated data. The resulting estimated rate, β̂, rep-

resents the offspring intensity, given a fire day has been observed. These estimated parameters

are used to simulate the Bartlett-Lewis process 1000 times and the 95th percentiles of daily fire

arrivals over the fire season from the simulation and true data are displayed in Figure 4.13.

100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

Poisson GAM of Fire Days

Day of Year

λt

Figure 4.12: The estimated time-dependent rate from a Poisson GAM with day of year effect
fit to the presence/absence of fires.

The Bartlett-Lewis process specifies that the intervals between successive points are iid, which

was achieved by generating the offspring according to a homogeneous Poisson process. By

contrast, the Neyman-Scott process positions points such that they are iid from the cluster ori-

gin. This is achieved by generating offspring arrival times away from the parent fires using

independent truncated exponential(β̂) random variables (truncated above 1 day). In this case,

a stopping rule which involves a count of offspring is more suitable as this process does not

generate points sequentially. Instead, the associated number of offspring per parent is defined
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Figure 4.13: The 95th percentiles of daily fire arrivals over the fire season from 1000 runs of a
simulated Bartlett-Lewis process (blue line) and from the true data (black line).
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as β̂. Since β is the expected number of offspring over 1 day from the homogeneous Poisson

process in the Bartlett-Lewis process, the total expected number of fires from the two cluster

processes are equivalent. Figure 4.14 displays 2 historical fire seasons (1983 and 1998), along

with 2 fire seasons generated by each of the non-homogeneous Poisson, Bartlett-Lewis and

Neyman-Scott processes. This Neyman-Scott process is simulated 1000 times and the 95th

percentiles of daily fire arrivals over the fire season from the simulation and true data are dis-

played in Figure 4.15.

Figures 4.13 and 4.15 illustrate that parent-child cluster models improve the simulated arrivals

during the peak of the fire season as compared to the simple arrival process. The clustering

also significantly improves the average number of fire days per season, displayed in Table 4.6,

as they are closer to the historical value than the single Poisson process simulation.

Average No. Fire Days Average No. Fires
Historical 29.60 (15.97) 77.5 (78.76)

Bartlett-Lewis 37.91 (6.27) 78.22 (15.94)
Neyman-Scott 37.17 (6.49) 78.45 (14.58)

Table 4.6: A comparison of the average number of fire days and fires per fire season, with
standard deviations in parentheses, from the historical data, the Bartlett-Lewis simulation, and
the Neyman-Scott simulation.

4.2.3 Fire Load Simulation

A simulation of the fire load, the number of fires burning on the landscape, over a fire season

is accomplished by generating observations from a marked cluster process, where the survival

times are independent marks associated with points from the cluster process. For each arrival

time generated from the Bartlett-Lewis process, a survival time is simulated from the Weibull

AFT model which was fit in Section 4.1.2 with a covariate vector which is representative of a
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Figure 4.14: Historical fire seasons for 1983 and 1998 (top row) and fire seasons generated by
the non-homogeneous Poisson (2nd row), Bartlett-Lewis (3rd row) and Neyman-Scott (bottom
row) processes.
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Figure 4.15: The 95th percentiles of daily fire arrivals over the fire season from 1000 runs of a
simulated Neyman-Scott process (blue line) and from the true data (black line).
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typical fire. The top panel of Figure 4.16 displays each fire arrival and its survival time for a

single run of this simulation, along with the associated daily fire load over the fire season in the

bottom panel.

The results presented in this chapter will be discussed, followed by future work, in the next

chapter.
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Figure 4.16: Fire arrivals (segments) and survival times (length of segments) over the fire
season (top panel) and the associated daily fire load (bottom panel) from a single run of the
simulation.
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Conclusion

5.1 Discussion

We have presented a thorough survival analysis in the context of exploring the associations

between fire weather covariates and the distribution of the survival time of a forest fire, along

with an investigation of spatial patterns. In doing so, we have illustrated that the survival times

of forest fires are dependent on fire weather variables. The initial attack response time between

a fire being reported and the start of initial fire suppression efforts, and the fire’s size at initial

attack were statistically significant when modelling hazard rates for forest fires in Ontario. The

simple (i.e., no covariates) parametric log-location-scale models failed to capture the plateaux-

like features observed in the left-tail of the survival distributions. Although incorporating the

effect of covariates using Weibull AFT models led to improvements in fit, the estimated survival

curves were quite smooth and again failed to capture the important characteristics displayed

in the KM curves. The results from the Cox PH model were found to closely resemble the

plateaux noticed in the KM curves and this was seen for both lightning and people-caused

fires. Operationally, the left-tail of the distribution is important as most fires are declared under

control within 1 or 2 days from the onset of initial attack.

47
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In our analysis of historical forest fire data, all variables considered were included in the model

for lightning-caused fires; the fitted model for people-caused fires did not include the initial

attack response time. This supports the conjecture, and the basis of fire management, that the

longer the initial attack response time, the larger a fire becomes and the more difficult it is to

get under control. Figure 2.4 illustrated that the initial attack response time for people-caused

fires, as compared to lightning-caused fires, does not tend to be as long. This may be a result

of people-caused fires being smaller in size at the time of initial attack and because they tend

to occur near populated areas which makes them easier to access by suppression crews and

equipment. Lightning-caused fires also tend to arrive in clusters due to passing storm systems

(Woolford and Braun, 2007). This may result in multiple fires on the landscape, in relatively

close proximity to each other, which can overwhelm the fire management crews who have lim-

ited suppression resources, resulting in longer initial attack response times before suppression

action begins on some of those fires.

Each of the parameter estimates from the Cox PH models, with the exception of BUI, had

a negative value which indicated an increase in the survival probability as the covariates in-

creased. This relation is consistent as a longer initial attack response time leads to a fire with a

greater size at initial attack which makes the fire more difficult to control. Also, the fire weather

variables from the CFFDRS are structured to indicate increased fire risk with increasing values,

which may result in longer survival times. The positive value of the BUI parameter estimate

may be the result of its dependence on at least one of the other variables in the models since,

by definition, the BUI is a function of the DMC and the DC (Wotton, 2009). Inspection of the

marginal improvements in the AIC at each stage of the forward selection of covariates sug-

gested that both the models for lightning and for people-caused fires should not include DMC

or BUI to avoid overfitting.

A lightning strike can cause the ignition of a fire, however the arrival of this fire, which is



Chapter 5. Conclusion 49

defined once the fire is reported, is heavily dependent on the moisture within the top layer or

on the surface of the forest floor (Wotton and Martell, 2005). This layer must exhibit conditions

such that a fire can smoulder until the forest floor is dry enough to sustain its spread. The FFMC

was a highly significant covariate in the fitted Cox PH model of lightning-caused fires. Since

the FFMC represents the moisture content in surface fuels, its significance in modelling the

survival time of lightning-caused fires is logical. In the fitted Cox PH model of people-caused

fires, the ISI was a highly significant covariate. The significance of this variable is consistent

with the nature of people-caused fires which are dependent on the moisture of the fine fuels on

the surface of the forest floor, as the ISI is based on a combination of the FFMC and the wind

speed.

The Cox PH model is based on the assumption that the effects of covariates on the base-

line hazard rate is proportional over time. This PH assumption may be tested in R using

the cox.zph function of the survival package (Therneau, 2014). Details of the formal

test are found in Grambsch and Therneau (1994). Upon formally testing the selected covari-

ates, FFMC was found to have violated the PH assumption for the model of lightning-caused

fires and similarly with size at initial attack for both models of lightning and people-caused

fires. The non-proportionalities of these covariates were further inspected, as suggested by Th-

erneau and Grambsch (2000) when dealing with large datasets. For FFMC, the range of non-

proportionality is relatively small in comparison to its range of values and the non-proportional

test outcome for size at initial attack seems to be caused by a few long fires and therefore not a

cause for concern. Both covariates were deemed appropriate in terms of interpretation and re-

tained in the models. The models were re-fit to the data excluding these long fires to investigate

whether they are driving the reported effects. The same covariates were found to be statistically

significant, the associated parameter values had the same sign and, in general, they were of the

same order of magnitude. We conclude that these long fires are not influential outliers.
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To account for spatial variability, the Cox PH models were extended to incorporate random

effects which improved the fits due to the presence of spatial correlation between the sur-

vival times of fires within a set of fire management compartments which formed a spatial

partition of Ontario’s fire region. The semi-parametric PH shared frailty models were fit with

zero-mean normally distributed random effects for each fire management compartment. These

frailty terms were assessed as significant by creating profile likelihood-based confidence inter-

vals and by performing likelihood ratio tests which compared the integrated-likelihoods of the

frailty models and the likelihoods of the models without frailty terms. Choropleth maps were

created using the posterior estimates of the random effects from each fire management com-

partment which were extracted from the fitted models. The maps from the lightning-caused

fires displayed much more prominent patterns than did the maps from the people-caused fires.

The analysis of spatial patterns in the case of lightning-caused fires is of greater importance as

lightning strokes tend to arrive in spatio-temporal clusters from storm-weather systems. From

the choropleth maps of lightning-caused fires, a slight west to east gradient was visible in the

Intensive fire management zone. Looking at more broad spatial patterns brought to light that

the western region of the Intensive zone seems to have fires with shorter survival times. This

highly populated region experiences a large proportion of lightning-caused fires and, as a re-

sult, has been provided with numerous resources, historically. The normal frailty assumption

was verified by re-creating these choropleth maps using fixed effects to represent the compart-

ment effect. The fixed effect parameter estimates were similar to the posterior random effect

estimates which suggests that this modelling is robust to violation of the normal frailty assump-

tion. In the future, these types of frailty models could be extended to regions with a greater

number of compartments, in which using fixed effects would be inappropriate due to the in-

creasing number of parameters to be estimated.

The arrivals of lightning-caused fires in a single FMC were investigated by the means of tem-

poral simulations. A non-homogeneous Poisson process, which took into account the day of
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year effect, was found to generate an appropriate number of fires per fire season on average,

but too many fire days as compared to historical data. This implied that the inherent cluster-

ing in the arrival of lightning-caused fires was not represented by this single process, and as a

result, parent-child cluster processes were considered. Special forms of the Bartlett-Lewis and

Neyman-Scott processes generated an average number of fire days per fire season which was

much closer to the historical data, as compared to the single non-homogeneous Poisson pro-

cess. Due to the large number of days with 0 fires and a purely stochastic modelling approach,

our simulations were assessed by comparing the 95th percentiles of the number of fires on each

day of the fire season from 1000 runs and from the historical data. This comparison illustrated

that the parent-child cluster processes capture the overall trend over the fire season quite well

and could possibly benefit from a third process to allow the intensity of the offspring generation

to vary with weather conditions and storm intensity. A fire load model was then developed by

independently coupling survival times, generated from the previously fitted Weibull AFT, to

the arrivals from the Bartlett-Lewis model.

5.2 Future Work

The survival time presented in this thesis was defined as the time period from the onset of

initial attack to the fire being declared under control. The survival analysis presented could

be applied to alternative time periods including using the time of ignition or report of the fire

as the lower-bound of the time period. It is of note however, that the time of ignition is often

estimated and using this lower-bound would therefore require the left-censoring be accounted

for in the model fitting. A variation of the marked cluster process could also include using

information other than the survival time as the mark such as area burned or cost of suppression.

Our future work also involves implementing refinements to both the survival and fire arrival

models presented. The values of the fire weather variable from the report dates of the fires
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were used as constant covariates in the survival models. These variables, however, are chang-

ing over the duration of the fire and could be implemented as time-varying covariates since

they are recorded daily. In terms of predicting the survival time as a fire arrives, the time-

varying covariate values could then be incorporated from weather forecasts. The arrival model

could be refined by employing a clustering algorithm (e.g., Woolford and Braun, 2007) to find

cluster origins, rather than modelling fire days. The practical interpretation, and possibly the

quality of the model, would be improved as the clusters in the parent-child cluster processes

are currently representative of fire days, while in reality, a cluster could be much shorter or

possibly span multiple days. A further refinement could be to incorporate a correlation struc-

ture between the current fire load and the mark (survival time) associated with the arrival of

an additional fire. The independence currently assumed in the coupling of the fire arrival and

survival models does not take into account resources being tied up when there are multiple fires

on the landscape which would lead to longer initial attack response times, and in turn, longer

survival times. The refined models could be used to study the potential future changes to forest

fire load under climate change scenarios.
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