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Abstract 

During their passage through the atmosphere meteoroids produce a hypersonic shock 

which may be recorded at the ground in the form of infrasound. The first objective of this 

project was to use global infrasound measurements to estimate the influx of large 

(meter/decameter) objects to Earth and investigate which parameters of their ablation and 

disruption can be determined using infrasound records. A second objective was to 

evaluate and extend existing cylindrical line source blast theory for meteoroids by 

combining new observations with earlier analytical models, and validate these against 

centimetre-sized optical meteor observations.  

The annual terrestrial influx of large meteoroids (kinetic energies above a threshold E) 

was found to be N=4.5E
–0.6

 where E is expressed in kilotons of TNT equivalent. This 

indicates that estimates of the influx derived from telescopic surveys of small asteroids 

near Earth are too low. Infrasound records from an event over Indonesia in 2009 were 

used to develop a technique to estimate the altitude of meteoroid terminal bursts and their 

energies. The burst altitude in this case was determined to be near 20 kilometers and the 

energy between 8 – 67 kilotons of TNT equivalent. 

Using a network of optical cameras and an Infrasound Array in southern Ontario, 

Canada, 71 centimetre-sized meteoroids were optically detected and associated with 

infrasonic signals recorded at the ground. The shock source height and its uncertainty 

along the meteor trail from raytracing was determined including wind effects due to 

gravity waves perturbations, which were found to be significant for such short range 

(<300 km) infrasound propagation. Approximately 75% of signals were attributed to 

cylindrical line source geometry, while ray deviation angles greater than 117° were 

associated with spherical shocks. The ReVelle (1974) meteor infrasound model was 

found to be accurate when using infrasound period measurements, but systematically 

under-predicted blast radii when amplitude is used. The latter can be better modelled 

assuming the wave distortion distance is <6%, as opposed to the 10% adopted by 

ReVelle. Infrasonic masses found from ReVelle’s theory deviate from photometric 

estimates largely due to meteoroid fragmentation.  
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Chapter 1 

1. Introduction 

 

If we knew what it is we were doing,  

it would not be called research, would it? 

- Albert Einstein 

 

1.1 Meteor Physics: History and Basic Background 

1.1.1 A Brief History of Meteors 

Following its rapid development after the end of World War II, meteor physics, as a sub-

discipline of astronomy, experienced a renaissance (McKinley, 1961) and evolved into a 

mature science (Beech, 1988; Doel, 1996; Brown, 1999).  

While the evolution of meteor studies as a credible scientific discipline can be traced to 

the mid-19
th

 century, following the spectacular 1833 Leonid meteor shower (Burke, 

1991; Brown, 1999), meteors had always been part of human history, either directly or 

indirectly, through religious and mythological interpretation and symbolism. Ancient 

Sumerian cuneiform writings and other subsequent records traced through history, 

including the ancient Greeks (e.g. Herodotus), Romans (e.g. AD 77 Pliny the Elder), 

ancient Chinese and Japanese, and continuing to the present age, show the importance 

attributed to meteoric phenomena (Burke, 1991; McSween, 1999; Ahn, 2003; D’Orazio, 

2007). Correspondingly, the etymology of the word meteor shows that it originates from 

ancient Hellenic, and can be directly translated as “things in the air”.  

The number of the small particles entering the Earth’s atmosphere on an annual basis 

likely exceeds the billions (Sugar, 1964), with an estimated yearly mass influx from sub-

millimetre particles of up to 60,000 tonnes (Love and Brownlee, 1993), and total global 

meteoroidal influx of up to 200,000 t (Dyrud et al., 2008). However, long time-averaged 

and all size integrated mass influx may be significantly greater (Hughes, 1997).  
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The size distribution of those particles, which may have a cometary or asteroid belt origin 

(Brownlee, 1985; Ceplecha et al., 1998; Murad and Williams, 2002), range from dust 

sized grains (Campbell-Brown and Koschny, 2004; Briani et al., 2007) to large extra-

terrestrial bodies 100s of meters in diameter (Ceplecha et al., 1998) that infrequently, as 

inferred from geological records, have the potential of ending human civilization and 

causing biological mass extinctions (O’Keefe and Ahrens, 1982). The most recent bolide 

over Chelyabinsk, Russia, the largest airburst on the Earth since the great Siberian bolide 

in 1908 (Brown et al., 2013; Popova, et al., 2013), attests to the practical importance of 

meteor studies and the need to quantify the potential impact hazard threat.  

The average size of particles impacting the Earth’s atmosphere on a daily basis is in the 

range of 10
-4

 m (Kalashnikova, 2000; Havnes and Sigernes, 2005) with a mass input peak 

near 1.5∙10
-5

 grams (Love and Brownlee, 1993).  

The diurnally dependent velocity of these particles, upon entering the Earth’s 

atmosphere, ranges from 11.2 km/s to 72.5 km/s (Baggaley, 2002) with a mass-averaged 

velocity of about 20 km/s (Taylor, 1995). The value of the mass averaged velocity has 

been a source of controversy primarily due to the results obtained from high power large 

aperture radars (Close et al., 2000; Erickson et al., 2001; Dyrud et al., 2004), although 

Nesvorny et al. (2011) suggest that these new data reflect changes in the dominant 

particle source populations as a function of size. 

A particle, while traveling in space, outside of the boundary of the Earth’s atmosphere, is 

classified as a meteoroid. Upon entering the atmosphere, the meteoroid sputters, ablates 

and may fragment as a result of frictional heating caused by hypervelocity collisions with 

the ambient atmosphere. Such a process produces ionization and luminous phenomena, 

which result from collisional de-excitation of the ablated meteoroid atoms (e.g. Murad 

and Williams, 2002). Such an event is collectively defined as a meteor.  

The ablated material in the immediate wake of the meteor forms the meteor trail of some 

initial radius. The initial radius (Jones, 1995) is a term that defines the radius of the 

ionized column of ablated meteor vapour formed immediately after the passage of the 

meteoroid. The initial radius has a strong dependence on meteor velocity, size and mass, 

but is also a function of the air density (Bronshten, 1983). In the initial stages of 
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expansion, the meteor trail can be considered a quasi-neutral plasma that contains 

approximately an equal number of ablated positive ion species as electrons.  

When the meteoroid’s size, velocity, density and composition are such that the meteoroid 

does not ablate completely in the atmosphere (Wetherill and ReVelle, 1981), the residual 

mass arriving at the surface of Earth is defined as a meteorite.  

Very bright meteors, exceeding the brightness of Venus, are generally referred to as 

fireballs or bolides (Ceplecha et al., 1998), whereas larger, more deeply penetrating 

meteoroids may be associated with shock waves which ultimately decay into low 

frequency acoustic waves (infrasound). Additionally, meteors may produce audible 

phenomena on the ground in the form of either instantaneously arriving electrophonic 

sounds, believed to be associated with electromagnetic emissions at audio frequencies 

(e.g. Wylie, 1932; Keay, 1980; Bronshten, 1983; Keay and Ceplecha, 1994), as well as 

delayed sound in the form of a sonic boom, similar to that of aircraft breaking the sound 

barrier (Ceplecha et al., 1998). 

Based on their parent sources and occurrence frequency, it is possible to classify meteors 

into sporadics and meteor showers (Jenniskens, 2006; 2008), with the latter exhibiting 

annual periodicity. Most meteor showers are produced when the Earth travels through a 

stream of particles or debris left behind by a comet orbiting the Sun, resulting in a large 

number (10s to 100s per hour) of meteors coming from a fixed point in the sky, also 

called a radiant, as seen by an observer at the ground. Named after the constellation 

coinciding with the radiant, meteor showers occur at the same time each year and can 

often be associated with specific parent objects. For example, the Leonid meteor shower 

that occurs during the month of November has its radiant in the constellation Leo and is 

associated with the comet 55P/Tempel-Tuttle (Murad and Williams, 2002; Jenniskens, 

2006).  

The size distribution of sporadic meteoroids is such that there are roughly ten times as 

many particles with a mass of 10
-4 

g than there are particles with mass of 10
-3

 g. Thus, 

meteoroids are distributed according to N = C/m
α
, where α is a constant (McIntosh, 1966; 

Belkovic, 1968), and often taken to approach unity for simplification purposes 

(McKinley, 1961) and because this value is near observational results (Ceplecha et al., 
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1998). This explains why meteoroids associated with bolides are relatively rare compared 

with common shooting stars. 

Usually meteors are studied using radar and optical means which include visual, 

photographic, video, and spectral methods (McKinley, 1961; Ceplecha et al., 1998). Less 

commonly, infrasonic and seismic observations of the shock waves produced by the 

meteor phenomena (e.g. ReVelle, 1997; Edwards and Hilderbrand, 2004; Arrowsmith et 

al., 2010; Silber et al., 2011) have been employed to define meteor properties not 

accessible by classical observational methods. The nature of infrasonic measurements in 

general makes it a valuable tool for independently determining the explosive yield of 

sources in the atmosphere, including fireballs. This technique may also yield flux and 

mass estimates for the meteoroids associated with fireballs (ReVelle, 1997; Edwards et 

al., 2008; Silber et al., 2009; Ens et al., 2012; Brown et al., 2013). This particular 

observational technique is the core of this thesis and therefore will be discussed in detail 

later in the text.  

1.1.2 The Relevance of Meteor Studies 

Our knowledge about the rest of the universe, from distant stars to humanity’s own back 

yard in the solar system, is gained from a variety of scientific disciplines. However, the 

most direct way of gaining further insight into the nature and origin of interplanetary and 

extra-terrestrial matter, as well as that of the planet-forming cloud of gas and dust that 

existed before our solar system, may be obtained from the study of meteoroids and 

meteorites (McSween, 1999). Closer to home, meteoroids are a real and ever-present 

danger to space platforms (Beech at al., 1995), thus the protection of human lives and 

spacecraft during space exploration depends strongly on understanding the nature of 

meteoric phenomena.  

Furthermore, meteor trails in the atmosphere give us an insight about mesospheric 

parameters such as diffusion, temperature and turbulence (Hocking et al., 1997; Hocking, 

1999), as well as the input of metallic ions into the atmosphere (Plane, 2012). The rain of 

such metallic atoms from above can be significant; it is estimated that the input of iron 

from meteoric deposition is the dominant form of bio-available iron in some parts of the 
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oceans (particularly off the coast of Antarctica) and thus controls growth of phyto-

plankton (Plane, 2012).  

It has been suggested that comet and asteroid impacts in the past were conducive to the 

emergence of early life on Earth, creating favourable conditions necessary for life to 

evolve and perhaps even delivering the needed ingredients (Jenniskens, 2001; Abe et al., 

2001; Jenniskens, 2004). Shocks from meteoroids can also affect and modify planetary 

surfaces, such as the surface of Venus (Zahnle, 1991). Studies of the meteoroid-

atmosphere interaction provide insight into meteoroid energy deposition, shock 

production mechanisms, flux estimates and even assist in identifying threats from 

extraterrestrial impacts, allowing appropriate hazard mitigation.    

1.1.3 The Basics of Meteor Physics  

The dynamics of meteoroid motion in the atmosphere and the resulting ionospheric 

chemical and plasma kinetics are fairly well understood (Dressler, 2001). Comprehensive 

treatments of meteor physics are given by McKinley (1961) and Bronshten (1983), and 

reviewed by Ceplecha et al. (1998).  

For most meteoroids, the main meteoroid-atmosphere interaction occurs at ionospheric 

heights (>85 km). However, larger meteoroids, capable of penetrating deeper into the 

atmosphere may cease ablation entirely while falling to the Earth in a dark flight 

(velocitymeteor < 3 km/s) (Figure 1.1). Rarely does it occur that objects of sufficiently large 

size impact Earth; these may vary from city destroyers to ones capable of obliterating the 

human civilization; however, that category of objects is not part of this review.  
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Figure 1.1: Basic terminology for meteors (from Ceplecha et al., 1998). 

 

As a meteoroid enters the rarified atmosphere, it begins to heat up due to high energy 

collisions with atmospheric molecules. The heating of the meteoroid generally begins in 

the ionospheric F-region (~150 km) and is a function of the overall size and velocity of 

the impacting body. There are some exceptions to this, such as meteoroids associated 

with the very high speed Leonid meteor shower, which begin heating up and 

subsequently produce luminosity at altitudes as high as 200 km (Popova et al., 2001). 

When the mean free path of the atmosphere at a particular height is significantly larger 

than the diameter of the meteoroid, the particle is said to be moving in the free molecular 

flow regime (Campbell-Brown and Koschny, 2004). In this flow regime, the Knudsen 

number (Kn) (the ratio of the molecular mean free path to the particle diameter) is larger 

than 10 (Popova, 2005). If the meteoroid diameter is larger than the mean free path of the 
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ambient atmosphere, and the Knudsen number is smaller than 0.01 (Ceplecha et al., 

2000), then the flow regime is termed continuum (Popova et al., 2001; Campbell-Brown 

and Koschny, 2004). For intermediate Knudsen numbers, there is a transitional flow 

regime. Meteoroids capable of producing fireballs move in the continuum flow regime 

below 90 km (Popova, 2005).  

In some cases, before the onset of ablation (i.e. very high altitude and high velocity 

meteoroids), the dominant mechanism of the mass loss is sputtering (Hill et al., 2005; 

Rogers et al., 2005). Sputtering is caused by the loss of individual atoms that get 

dislodged from the solid meteoroid lattice during high speed collisions (Öpik, 1958; 

Rogers et al., 2005). While sputtering is a relevant mass-loss mechanism for 

micrometeoroids (~10
-6

 m, <10
-12

 kg), and is a direct function of the physical 

characteristics of the target material, it is negligible in the case of slower meteoroids 

exceeding 10
-10

 kg (Rogers et al., 2005). For a single non-fragmenting body meteoroid in 

a continuum flow, ablation represents the dominant mass-loss process. The presence of 

the metallic layer in the lower ionosphere is attributed to the metal deposition from 

meteoroids that ablate in this region of the atmosphere (ReVelle, 2005; Colestock et al., 

2006; Feng et al., 2013). In continuum flow, a hydrodynamic layer forms in the front of 

the meteoroid and attenuates the rate of ablation (Öpik, 1958) by shielding the meteoroid 

surface from direct impacts with air molecules. The meteoroid type and composition play 

a significant role in ablation, as more volatile compounds ablate first at higher altitudes, 

while Ca, Al and Ti ablate last at lower heights (Vondrak et al., 2008), a process defined 

as differential ablation. The term ablation here refers to the evaporation of the material 

from the meteoroid surface, which occurs after some critical temperature, generally 

above 1800 K, has been reached (Marsh et al., 2013). It may also include the removal of 

material in the form of melted droplets. Meteoroid ablation reveals the physical and 

chemical properties of the ablating meteoroid through observation of its mass deposition, 

energy release and resulting emission spectrum (Borovička, 1993; Trigo-Rodriguez et al., 

2003).   

The kinetic energy of the incident particle colliding with the atmosphere is several orders 

of magnitude larger than the energy required to completely vaporize the meteoroid (Zinn 
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et al., 2004). Early studies suggested that the kinetic energy of the meteoroid is 

partitioned such that only 0.1% goes toward ionization, 1% toward light and the rest 

toward heating the surrounding atmosphere (Romig, 1965). More recently, however, the 

interpretation of other observations indicates that the percentage of energy distributed 

toward the production of light may be slightly larger (Ceplecha, 1996; Weryk and Brown, 

2013).  

Here, the review of the analytical treatment and fundamental equations of meteor ablation 

illustrating the dynamics of the meteoroid-atmosphere interactions is presented. 

However, it should be kept in mind that the primary focus in this work is centimetre-sized 

and larger meteoroids. These objects are large enough to always be in the continuum flow 

regime and produce a cylindrical shock wave which rapidly expands radially as a line 

source or in the case of gross fragmentation a spherical point source explosion (Ceplecha 

et al., 1998). Here, the discussion is limited to single body ablation and discrete, gross 

fragmentation (Ceplecha et al., 1993). A simplified treatment of the equations describing 

the ablation of a single particle impacting the atmosphere can be found in Zinn et al. 

(2004). It should be noted that while the dustball model (where micron sized grains are 

glued together by a volatile material to form a meteoroid) of meteor ablation proposed 

and developed by Hawkes and Jones (1975) explains certain anomalous behaviour 

observed in the ablation of faint meteoroids, it is not part of the present discussion in this 

review, as it does not pertain directly to the bolide and fireball dynamics examined in this 

work.  

Consider a meteoroid with mass (m), velocity (v), of a spherical shape with projected 

cross-sectional surface area (S) and having a drag coefficient (Γ) (defined as the fraction 

of momentum transferred to the meteoroid from the oncoming air molecules). From the 

conceptual perspective, the single spherical body with the projected surface area (S) 

enters the atmosphere (for the purpose of calculations assumed to be hydrostatic and 

isothermal) with hypersonic velocity and sweeps through a volume of air in a time 

increment (dt), transferring kinetic energy from the meteoroid to the atmosphere. 

Hypersonic velocity refers to the aerodynamic flow where the Mach number, or the ratio 
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between the speed of an object (meteoroid) and the local atmospheric speed of sound, is 

greater than 5 (Anderson, 2006).  

For a spherical meteoroid with radius r, the parameter S = πr
2 

can be related to the 

meteoroid mass m = 4/3 πρmr
3
, where ρm is the density of the meteoroid. Equating the 

radii in the aforementioned equations, one can solve for S. Generalizing the solution for 

any shape, it can be shown that: 

    (
 

  
)
   

 (1.1) 

 

where As is the dimensionless shape factor for a specific particle shape. For the sphere, As 

is 1.209, and for a cube it can range from 1 to 1.7 depending on the orientation 

(McKinley, 1961). Because of rotation, irregularly shaped bodies will have their shape 

factor approaching the value for the spherical shape, a commonly used assumption.  

The volume of the cylindrical parcel of swept air is then Svdt. The mass of the parcel can 

be considered in terms of the atmospheric density (ρa) as dma = ρaSvdt. Substituting for S 

from equation (1.1), it is possible to write the expression for the rate of changing air mass 

(ma) encountered by the meteoroid (McKinley, 1961) as:  

         (
 

  
)
   

        (1.2) 

 

Now this parcel of air with a height specific mass density will transfer momentum as a 

result of impacts with the meteoroid, resulting in a rate of change of momentum of:  

 (  )

  
  

  

  
  

  

  
 (1.3) 

 

In this volume, the air particles will gain momentum per unit time: 

 
   

  
      (
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     (1.4) 
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The term vdm/dt in equation (1.3) is negligible for small meteoroids (m dm) and is 

therefore ignored. Equating the loss of momentum per second of the meteoroid (mdv/dt) 

with the momentum gained by the air particles leads to the drag equation:  

  

  
  

       

      
   

 (1.5) 

 

where the presence of the negative sign indicates deceleration. The rate of mass loss, 

which is proportional to the kinetic energy, can be written in terms of the differential 

mass equation (McKinley, 1961), also known as the mass-loss equation (Ceplecha et al., 

1998):   

  

  
  

           

    
   

 (1.6) 

 

Above,   is the heat of ablation of the meteoroid material (or energy required to ablate a 

unit mass of the meteoroid, with dimensions: L
2
, T

-2
) and Λ is the heat transfer 

coefficient, which is a measure of efficiency of the collision process in converting kinetic 

energy into heat ( (McKinley, 1961). 

The ablated meteor vapour will decelerate from the initial meteoroid velocity as a result 

of collisions with the ambient atmosphere, and thermalization (Baggaley and Webb, 

1977) will occur after approximately 10 collisions (Jones, 1995). In general, the stopping 

distance for the ablated meteoric ions and meteor vapour rapidly decreases with 

increasing air density, and while it depends on the initial meteoroid velocity, it is 

generally in the range of several hundred meters (Zinn et al., 2004).  

The distribution of ions and electrons within the initially formed cylindrical meteor train 

is assumed to be approximately Gaussian. Following the formation of the initial trail, the 

subsequent post-adiabatic expansion and diffusion into the ambient atmosphere takes 

place under ambipolar diffusion (Jones and Jones, 1990). While an uncertainty about the 

size of the initial radius of the meteor train still persists (Baggaley and Fisher, 1980; 

Campbell-Brown and Jones, 2003; Jones and Campbell-Brown, 2005), it has been shown 

that it will strongly depend on the meteoroid velocity and that it is significantly larger 
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than the early estimate of 14 mean free paths of the ambient atmospheric region as 

proposed by Manning (1958). 

The collisional and radiative transfer of translational energy from ablated ions will also 

heat up a volume of the ambient atmosphere surrounding the meteor train. Additionally, 

in the initial stages of the meteor trail formation, a strong shock wave will form, driven 

radially outward from the cylindrical meteor train by the rapidly expanding and 

extremely hot (~4000 K (Jenniskens, 2004)) ablated meteoric material (the initial 

translational energies in the ablated ions range in the hundreds of electron volts (Jones, 

1975; Baggaley, 1980)).  

It is possible to relate the visual meteor luminosity, expressed as the absolute visual 

magnitude Mv, to the luminous power I (in watts), which is a portion of the total radiation 

in the visual bandpass (400 nm – 700 nm) having a peak sensitivity at about 560 nm. The 

absolute visual magnitude of a meteor is defined as the magnitude it would have if the 

meteor was placed in the zenith at a height of 100 km (McKinley, 1961). The expression 

for Mv has been given by Opik (1958) as: 

                 (1.7) 

 

This relation was derived from early theoretical considerations and suggests that a zero 

magnitude meteor radiates visible light at a rate of 525W (Opik, 1958). This luminous 

power depends on the spectral energy distribution of the meteor and recent observational 

measurements and related studies (e.g. Ceplecha and ReVelle, 2005; Weryk and Brown, 

2013) give somewhat different values than equation (1.7). For meteoroids which have a 

sufficient size and velocity to produce luminous phenomena, it is assumed that the light 

production in a specific bandpass (e.g. panchromatic passband, appropriate to 

photographic film on which most early meteor measurements were made) is proportional 

to the rate of change of the particle’s kinetic energy, and correspondingly proportional to 

the meteoroid mass loss rate.  

The expression for luminous power is given as: 

     

   

  
    (

  

 

  

  
   

  

  
) (1.8) 
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where the term I can be more precisely defined as the power radiated in the specific 

instrument frequency passband. The symbol τI represents the velocity dependent 

dimensionless luminous efficiency factor (Opik, 1958; Weryk and Brown, 2013) and Ek 

is the kinetic energy of the meteoroid. The term mv(dv/dt) is generally ignored for 

meteoroids with velocities exceeding 16 km/s as deceleration is negligible at higher 

speeds (Ceplecha et al., 1998). Considering that meteor light production is related to the 

mass loss, the initial mass of the meteoroid can be estimated from the observed 

luminosity by integrating equation (1.8) over the length of the entire light curve. Mass 

estimated in this way is termed photometric mass.  

The lowermost size limit of the meteoroids capable of producing a sufficiently strong 

shock wave and subsequently an infrasonic signature at the ground is not well 

constrained, but is approximately in the cm-size range.   

 

1.2 Motivation 

Brilliant streaks in the sky, known as ‘shooting stars’, are produced by extraterrestrial 

solid particles as they enter the Earth’s atmosphere at high velocities. These particles, 

ranging from sub-millimetre to several meters (and very rarely 10s and 100s of meters) in 

size, can produce a range of phenomena, from intense light to destructive shock waves 

that can induce significant damage on the ground. Shock waves decay into very low 

frequency acoustic (infrasonic) waves at long distances from the source, and as such can 

propagate over many kilometers (100s – 1000s) away from the source. Those may 

eventually be detected on the ground by sensitive microphones. Meteor phenomena 

cannot be completely replicated or produced in a controlled environment, presenting a 

challenge in studying shock waves from meteors in the form of meteor infrasound.  

The work in this thesis aims to address several still unanswered questions pertaining to 

what we can learn about meteoroids and their shock pattern using meteor infrasound, 

both experimentally and theoretically. Some of these questions are:    
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 Using infrasound only, can we determine meteoroid energy, meteor geolocation, 

meteor burst height and timing when other observational methods are not 

available?  

 Can we establish and constrain the point along the meteor trail where the 

infrasound signal originates, thus allowing us to isolate the point of acoustic 

radiation from a meteor?  

 Do meteor infrasound signals allow simple taxonomic classification based on 

their pressure-time signal alone?  

 Can signal phenomenology tell us anything about the source? 

 What is the effect of atmospheric variability on short range infrasound 

propagation?  

 What are the mechanisms behind the shock production from high altitude sources 

(e.g. fragmentation or cylindrical line source) for meteoroids that produce 

infrasound detectable at ground and how common is each type of mechanism in 

producing signals?   

 Can we independently, using infrasound only, determine meteoroid masses and 

meteoroid flux?  

 Does the existing theoretical meteor cylindrical blast wave theory as developed by 

ReVelle (1974) reproduce observations?  

 How does the ReVelle (1974) theory depend on underlying assumptions – which 

of these assumptions are robust and which may lead to errors in predicted model? 

Before answering these questions, some basics about infrasound, shock wave dynamics 

and ReVelle’s blast wave theory are presented. 
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1.3 A Brief Primer on Infrasound 

1.3.1 Physics of Sound and Infrasound 

The word acoustics stems from the Greek word ἀκουστικός (akoustikos), meaning ‘ready 

to hear’ and that from ἀκουστός (akoustos), meaning ‘heard, audible’ (Scott, 1901). The 

scientific study of sound, including its production, transmission and effects is called 

acoustics. The broad scope of acoustics, depicted by R. B. Lindsay in 1964 (Pierce, 1989 

and references therein), is shown in Figure 1.2.   

 

 

Figure 1.2: Lindsay’s wheel of acoustics describes the scope of acoustics. This diagram is 

not intended to rigorously represent all disciplines and subdisciplines (Pierce, 1989 and 

references therein). 
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Sound is a longitudinal (or pressure) wave whose particle motion is in the same direction 

as propagation, causing local regions of compression and rarefaction. In the absence of 

any external forces (e.g. gravitational) in a stationary fluid, the only type of wave that can 

exist is an acoustic wave (Beer, 1974). Sound audible to humans lies within the frequency 

range between 20 Hz and 20 kHz. Frequencies higher than 20 kHz are called ultrasound, 

while the frequencies lower than about 20 Hz are called infrasound. The lower frequency 

bound of infrasound is the natural buoyancy frequency of the atmosphere (Brunt-Väisälä 

frequency).  

As gravity is a continual force acting on the atmosphere, it creates a density gradient and 

a restoring force, behaviours not present in a homogeneous fluid. Acoustic gravity waves 

(AGW) form when the force of gravity, coupled with the magnitude of the stabilizing 

restoring force, approaches the magnitude of compressibility forces. These waves are no 

longer purely longitudinal unless they undergo vertical propagation. Wave dispersion, the 

change in phase speed with frequency, occurs in two ways, either structural (caused by 

the properties of medium) or geometric (from interference effects induced by reflections 

at boundaries). It is usually written in terms of angular frequency ω (Beer, 1974):  

ω = ω(k) 

k = 2π/λ 
(1.9) 

where k is the wave number and λ is the wavelength. In a dispersive medium, the wave 

velocity is dependent on the wavelength, meaning that waves of different wavelengths 

travel at different phase velocities. Atmospheric waves undergo structural dispersion, 

especially in connection with the internal resonant frequencies, such as the Brunt-Väisälä 

frequency (Beer, 1974). A consequence of dispersion is that the energy flow may be in a 

direction other than the phase propagation direction of the wave (Beer, 1974).  

The thermal structure of the atmosphere, driven by the absorption of the incoming and re-

radiated solar energy, plays a major role in long range acoustic propagation (Figure 1.3). 

The temperature profile of the atmosphere is not ‘stationary’, but a complex function of 

solar radiation and how that radiation is absorbed by various molecular species in the 

atmosphere. In the troposphere, the temperature decreases with altitude until a local 

minimum is reached at the tropopause, the boundary layer located approximately 7-10 

km in altitude depending on season and latitude (Beer, 1974). The temperature increases 
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up to the stratopause, where it starts to decrease again to a minimum at the mesoopause 

(80-85 km). In the thermosphere, temperature increases up the altitude of 200 km and 

then remains constant since the thermal conductivity of the gas is sufficiently high to 

absorb energy and rapidly transport it downwards (Willmore, 1970; Beer, 1974).  

 

 

 

Figure 1.3: Thermal structure of the atmosphere (from Beer, 1974). 

 

Taking the atmosphere as an ideal gas, the relationship between the pressure (p) and 

density (ρ) of the atmosphere as a function of temperature (T) can be described as  

  
    

   
 

(1.10) 
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where Mmw is the mean molecular weight, R' is the universal gas constant, defined in 

terms of Boltzmann’s constant k (k = 1.38 x 10
-23

 joule/K) and Avogadro’s number Na 

(Na = 6.02 x 10
26

 molecules/kmol/K). However, for simplicity, the specific gas constant 

R (R = R'/M) can be used to eliminate Mmw and represent R' in terms of mean molecular 

weight. If the atmospheric process is adiabatic, then from the first law of 

thermodynamics:  

              

  
  

  
 

(1.11) 

(1.12) 

where Cp is the specific heat per unit mass at a constant pressure and Cv is the specific 

heat per unit mass at a constant volume. Values of γ range from a maximum of 5/3 for 

monoatomic gas, through 7/5 for diatomic gas and down to as low as 1 for polyatomic 

gasses at high temperature (Lighthill, 1978).  

The speed of sound (c) in the atmosphere is given by:  

   
  

 
     (1.13) 

The speed of sound in air at 20°C and 1 atmosphere is 343 m/s. This was first correctly 

determined in the 1630s by the French mathematician and philosopher Marin Mersenne 

(Mersenne, 1636; Krehl, 2009). The fundamental equations of linear acoustic propagation 

are given by the linearized continuity equation, the linearized Euler’s equation and the 

state equation (Pierce, 1989): 

   

  
          

  

   

  
      

        

(1.14) 

(1.15) 

(1.16) 

where, ρ’, p’, v’ are the acoustic density, pressure and velocity, respectively, and ρ0, p0 

and v0 are the ambient values.  
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The equation of acoustic motion in a homogeneous stationary fluid is given by: 

     
 

  

    

   
   (1.17) 

where    
  

    
  

    
  

    is the three dimensional Laplacian (Beer, 1974).  

As previously mentioned, the limiting frequency for infrasound on the lower end of the 

spectrum is the Brunt-Väisälä frequency (~0.003 Hz in the lower atmosphere), or natural 

oscillation frequency of the atmosphere, given by:  

  
    

  
 

  

   

  
 (1.18) 

where     is the Brunt-Väisälä frequency,     is the Brunt-Väisälä frequency in an 

isothermal atmosphere and z is the height (Beer, 1974). As the frequency decreases, the 

wavelength becomes progressively longer, until it reaches the point where the 

gravitational restoring force becomes significant.  

1.3.2 Infrasound Propagation and Attenuation 

In considering acoustic propagation in the atmosphere, the speed of sound may be 

significantly affected by winds, especially if the channel propagation extends to the upper 

regions of the atmosphere, which is typical for infrasound. Therefore, the effective speed 

of sound (ceff) is given by sum of the adiabatic sound speed and the dot product between 

the ray normal ( ̂ ) and the wind vector ( ⃑ ): 

        ̂   ⃑  √     ̂   ⃑  (1.19) 

Daily and seasonal variations in the atmospheric temperature and wind will modify the 

effective speed of sound as shown in Figure 1.4 (Donn and Rind, 1971; Rind and Donn, 

1975).  

With the emergence of satellites, it is possible to quantify atmospheric temperature 

variations, which in turn can be applied to determine the effective sound speed in the 

atmosphere and update atmospheric models (e.g. Hedin et al., 1996). Wind fields may 

vary significantly both temporally and spatially (e.g. Donn and Rind, 1971), consequently 
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affecting the effective speed of sound in the atmosphere, either by increasing it 

(downwind propagation) or reducing it (upwind propagation). Strong seasonal reversals 

of high altitude winds can significantly affect stratospheric propagation channels, and 

introduce anisotropy in wave propagation (e.g. Garces et al., 1998). In midlatitudes, this 

propagation is predominantly west to east in winter, where the advective flow is up to 

100 m/s at ~70 km altitude, and the opposite in the summer, where the advective flow is 

up to 60 m/s at ~ 50 km altitude (Gabrielson, 1997). Downwind propagation can increase 

the phase speed and dispersion of infrasound waves such as that these quantities are 

increased, as well as enhance signal amplitude and period (Mutschlecner and Whitaker, 

2010). More recently, it has been recognized that the small scale structures in the 

atmosphere, such as gravity waves, may also significantly affect propagation (e.g. 

through partial reflection) of infrasound, especially over long distances (e.g. Chunchuzov, 

2004; Ostashev et al., 2005; Kulichkov, 2010). 

 

Figure 1.4: Model atmospheric profiles of effective speed of sound as a function of height 

and season for westward propagation in the USA (Rind and Donn, 1975). 
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Since the atmospheric temperature generally decreases as a function of height (see Fig 

1.3), sound has a tendency to bend upward (Reynolds, 1876). Depending on the 

orientation of the wave as well as atmospheric conditions (e.g. changes in wind or 

temperature), wave turn over will occur at an altitude when ceff becomes larger than its 

surface value. At this height the wave vector bends downward following Snell’s law 

(Mutschlecner and Whitaker, 2010). This scenario is further complicated in regions of 

atmospheric temperature inversion zones. 

Atmospheric waveguides (or ducts) are formed by temperature and wind variations in 

different atmospheric layers (Tolstoy, 1973; Georges and Beasley, 1977; Drob et al, 

2003; Kulichkov, 2010). Consequently, infrasonic rays emanating from a source may 

become trapped in several atmospheric waveguides (ducts), which can lead to two or 

more infrasonic phases being recorded at the receiver. ‘Zones of silence’ or ‘shadow 

zones’ are the regions where geometrical ray theory predicts that no infrasound energy 

should reach the receiver (Figure 1.5). A number of studies, both historical (e.g. Evers 

and Haak, 2010) and recent, confirm that infrasound signals (sometimes called 

anomalous signals) can still be recorded in these zones as a result of scattering and 

diffraction effects not taken into account in geometrical ray theory (Golden et al., 2007; 

Herrin et al., 2007; Green et al., 2011; McKisic, 1997). 

 

Figure 1.5: Representative infrasonic ray paths during summer in the northern 

hemisphere (from Gutenberg, 1951). Stratospheric and thermospheric waveguides are 

shown. 
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As infrasonic waves propagate outward from the source, they also undergo attenuation. 

Figure 1.6 shows the theoretical acoustic wave absorption as a function of height. 

Attenuation of sound in the atmosphere occurs due to spreading and absorption losses 

(Evans et al., 1972). Spreading losses can be uniform (spherical spreading, inverse square 

law) and nonuniform (reflection by finite boundaries, refraction, diffraction or scattering) 

(Evans et al., 1972). Atmospheric absorption occurs due to molecular relaxation 

(vibration and rotation) and classical (molecular diffusion, heat conduction and internal 

friction) effects (Evans et al., 1972; Sutherland and Bass, 2004). For the latter, internal 

friction and molecular diffusion are the largest contributors. These effects combined are a 

function of the square of the wave frequency, such that attenuation is proportional to 1/f
2
 

(Bass, 1972). Therefore, infrasonic waves are capable of propagating over very long 

distances with negligible attenuation, making them an excellent tool for studying distant 

explosive sources in the atmosphere. 

 

Figure 1.6: Theoretical acoustic wave absorption in dB/km as a function of height (after 

Georges, 1967 and from Beer, 1974). In the diagram, ωan is the acoustic frequency lower 

limit cutoff.  
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There are many sources of infrasound; both natural and anthropogenic (Figure 1.7). 

Natural sources of infrasound include ocean waves (microbaroms), avalanches (Bedard 

and Georges, 2000), lightning, aurorae, volcanoes (Evers and Haak, 2001; Garces et al., 

2008), earthquakes (Hedlin et al., 2002; Garcés and Le Pichon, 2009) and meteors 

(ReVelle, 1997; Silber et al., 2009; Brown et al, 2013). Even some animals (e.g. 

elephants, whales, giraffes) use infrasound for long range communication (e.g. Payne, 

1995). Typical pressure levels associated with different natural sources are shown in 

Table 1.1. The natural source, which is a topic of this thesis, meteor generated 

infrasound, however, can fall within typical signal periods associated with other sources, 

such as microbaroms or severe weather (Figure 1.8), complicating the identification 

process. Interpreting infrasound source characteristics may be impeded by the complex 

dynamics of the atmosphere which modifies infrasound signals sometimes producing 

irreversible modifications to the signal as it travels between the source and the receiver. 

Often, as a consequence, it is not possible to determine the nature of the source without 

ground truth information or further observational data from other techniques. Dynamic 

changes of the atmosphere, which occur on a scale shorter than the infrasound wave 

propagation time, need to be adequately quantified in order to extract information about 

the source (e.g. de Groot-Hedlin, 2010; Norris et al., 2010).  
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Figure 1.7: Sources of infrasound. 

 

 

Figure 1.8: A diagram showing infrasound wave period (ordinate) and wavelength 

(abscissa) for some typical sources (adopted from ReVelle, 2003). Meteoroids (or bolides 

in the diagram) can produce infrasound within the period range of other sources, making 

the identification process more challenging. The dashed line (BV = Brunt-Väisälä 

frequency) denotes the boundary between the acoustic and internal gravity wave regions.  
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Table 1. 1: Natural sources of infrasonic waves (from Gabrielson, 1997). 
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1.3.3 Historical Aspects of Infrasound 

The first documented instrumentally recorded infrasound dates back to 1883, when 

Krakatoa, a volcanic island in Indonesia, was almost completely eviscerated in a violent 

eruption. Starting on May 20, 1883 and reaching the peak with several explosions of 

unprecedented intensity between August 26-27, 1883, the aftermath of Krakatoa included 

pyroclastic flows, giant tsunamis, ash plumes, ash and pumice deposits, as well as the 

loudest noise ever recorded (Verbeek, 1884). The audible sound was heard as far as 4800 

km away, in Alice Springs, Australia and 4653 km away on Rodriguez Island in the 

Indian Ocean, while the sub-audible acoustic waves enveloped the entire Earth. The 

atmospheric disturbances, caused by the shock waves emanating from the intense 

explosion of Krakatoa and recorded on barometers around the world, circled the globe 

seven times (Symons, 1888).  

The first documented infrasound recording from an extraterrestrial body was not recorded 

until the early 20
th

 century. In the morning hours of June 30, 1908, an extraterrestrial 

body entered the Earth’s atmosphere and exploded approximately 5-10 km above the 

ground (Chyba et al., 1993) near the Podkamennaya Tunguska River (now Krasnoyarsk 

Krai) in Siberia, Russia, generating an intense blast wave which flattened much of the 

surrounding forest (Whipple, 1930; Krinov, 1966). It is estimated that this event released 

between 10 Mt (Hunt et al., 1960) and 20 Mt (Chyba et al., 1993) of energy (high 

explosive equivalent; 1 Mt = 4.185 x 10
15

 J). However, the origin, size and composition 

of the impactor and whether it was a comet or an asteroid (Chyba et al., 1993), remains 

unclear. The blast wave generated by this event was so intense that it generated low 

frequency acoustic waves recorded by microbarographs in England. Coincidentally, the 

microbarograph was invented only five years earlier, in 1903, by Shaw and Dines (1904). 

The recordings of the Tunguska event in Whipple (1930) represent perhaps the earliest 

published microbarograph records (Figure 1.9).         



26 

 

 

 

 

Figure 1.9: An infrasound pressure wave recording from the Tunguska explosion. This 

pressure form is a combined record from five microbarographs across the UK (Whipple, 

1930). The x-axis is in minutes. 

 

After the Tunguska explosion and until the onset of the Cold War, infrasound received 

very little attention. After the World War II, infrasound became a key technology for 

source identification and geolocation from explosive sources in the atmosphere, 

particularly nuclear explosions. The United States Air Force Technical Applications 

Centre (AFTAC) deployed a number of infrasound arrays worldwide, with sensor 

separations (6-12 km) optimized to detect large explosions (Cook and Bedard, 1972; 

ReVelle, 1997; Silber et al, 2009). Infrasonic signals emanating from nuclear explosions 

usually consist of Lamb waves (horizontally propagating waves), acoustic-gravity waves 

and various infrasonic phases. A number of approaches to estimate the explosive source 

yield from infrasound measurements were developed. These include the Lamb waves 

approach (Pierce and Posey, 1971; Pierce and Kinney, 1976), which utilizes the vertically 

evanescent surface waves; the period at maximum amplitude approach, which relates the 

period at maximum amplitude from stratospheric phases to the source energy (ReVelle, 

1997) and other amplitude-based scaling relations (e.g. Posey and Pierce, 1971). The 

summary of attenuation relations, concurrently developed by Soviet and American 

scientists to estimate nuclear explosion yield is given by Stevens et al. (2002). Some of 

these empirical relations were applied to bolides in order to estimate their energy 

(ReVelle, 1997; Silber et al., 2009).  
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As previously mentioned, one by-product of global monitoring for nuclear explosions 

was detection of infrasound from other sources. Shoemaker and Lowery (1967) 

recognized that some of the signals recorded by the AFTAC network between 1960 and 

1974, although belonging to seemingly energetic sources, were not associated with 

nuclear explosions, but with large bolides. If not for infrasound monitoring, these bolides 

would otherwise have gone undetected. This historical large bolide data set provides 

invaluable information on the influx of NEOs (ReVelle, 1997; Silber et al., 2009), 

especially since the global monitoring and recording of bolides only commenced during 

the 20
th

 century. However, with advent of satellite monitoring in the 1960s and 1970s, 

infrasound fell out of favour as a monitoring technology and entered its own ‘dark age’ 

and becoming nearly forgotten.  

The recent renaissance in infrasound studies is due to the Comprehensive Nuclear Test 

Ban Treaty (CTBT) which was opened for signature at the United Nations in on 

September 24, 1996. The CTBT Organization, stationed in Vienna, Austria, has 

implemented an International Monitoring Network (IMS), consisting of four monitoring 

technologies (radionuclide, seismic, hydroacoustic and infrasound), with stations 

distributed around the globe. A major advantage of infrasound monitoring is that it is a 

passive observational technique, fairly inexpensive and low maintenance. With the 

implementation of the IMS network, infrasound has experienced a revitalization. The 

infrasound component of the IMS consists of 60 certified arrays, 47 of which are fully 

operational (Figure 1.10), four are under construction and nine are planned as of the early 

2014 (CTBTO, 2014). While the arrays developed during the Cold War were optimized 

for monitoring large explosions, the IMS network is set up to reliably detect and 

geolocate a 1 kiloton nuclear explosion anywhere on the globe (Christie and Campus, 

2010).  
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Figure 1.10: The IMS infrasound network of the CTBTO as of the early 2014. Each 

diamond represents an individual infrasound array consisting of four or more elements. 

 

1.3.4 Infrasound Detection and Measurement Principles 

Initially, the IMS infrasound arrays were to have a basic design of 4 elements. Each 

element consists of a very sensitive microphone, capable of detecting minute pressure 

disturbances above (or below) the ambient pressure of the atmosphere (e.g. Whittaker, 

1995; Ponceau and Bosca, 2010). The amplitude (or overpressure) of an incoming wave 

is defined as: 

  
    

  
 

  

  
 (1.20) 

where A  is the amplitude, typically measured in units of pascals (Pa), p is the pressure of 

a disturbance and p0 is the ambient pressure. In a quiet environment, a sensor should be 

able to detect overpressure of about 0.1 Pa (Whittaker, 1995). Often, arrays are located in 

dense forests, where very little wind or noise interferes with the signal. Due to issues with 

aliasing, the arrays are commonly built with larger numbers of array elements and in a 

variety of configurations. A larger number of array sensors also increases the signal-to-

noise ratio, which is especially important in naturally noisy sites. The sensors, along with 

their accompanied equipment are enclosed in a vault, typically with porous hoses 
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extending outward to reduce the local wind noise (Whittaker, 1995; CTBTO, 2014). The 

operating frequency of the network is up to 20 Hz, which translates to a Nyquist 

frequency of <10 Hz. As an infrasonic wave sweeps across the array, standard signal 

processing and analysis (e.g. Brachet et al., 2010) techniques make it possible to 

determine the signal arrival time, source bearings (back azimuth or direction of arrival), 

signal trace velocity, amplitude, correlation coefficients and spectra.  

1.3.5 Meteor Infrasound 

Infrasonic waves detected at the ground offer valuable information and an insight into the 

shock wave phenomena generated by meteors. However, nonlinear influences, 

attenuation, dispersion, and other often irreversible propagation effects pose a great 

challenge when attempting to determine the source parameters such as the meteoroid’s 

mass, energy deposition and source height. Without ground truth information (eyewitness 

reports, other instruments, etc.), infrasound records alone are often not sufficient in 

determining whether infrasound is generated ballistically (cylindrical line source) or from 

fragmentation.  

Following early works on cylindrical line source related to exploding wires (Sakurai, 

1964; Plooster, 1970), lightning phenomena (Jones et al., 1968; Few, 1969) and 

subsequently meteors, (Tsikulin, 1970), ReVelle (1974; 1976) developed an analytical 

blast wave model for meteors following the nonlinear disturbance initiated by an 

equivalent explosive line source. A major goal of this thesis is to experimentally test and 

validate ReVelle’s (1974) meteor infrasound theory. This has never been done due to lack 

of observational data. 

Constraining the source parameters, shock production mechanisms and establishing the 

source function are of great importance for calibrating meteoroid energy deposition and 

mass estimates as measured by infrasound, as well as in identification and measurement 

of signals produced by meteors. Thus, ground observatories with capabilities to detect 

and accurately measure meteors with multiple instruments are a necessary first step in 

identification and characterization of meteor infrasound (see Chapter 5). From ReVelle’s 

theory, a prediction that up to ten infrasound producing meteoroids would be observed in 
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a six month period (ReVelle, 1974; Kraemer, 1977) at a single location, has yet to be 

documented for a single multi-instrument observatory (Silber and Brown, 2014). Earlier 

observational studies making use of camera systems as a cue for searching for meteor 

infrasound took place during the 1970s and the early 1980s. At that time, the Meteorite 

Observation and Recovery Program in Western Canada (Halliday et al., 1978), the U.S. 

Smithsonian Institution’s Prairie Network (McCrosky and Boeschenstein, 1965) and the 

Springhill Meteor Observatory (McKinley, 1961; Watson et al., 1976), in collaboration 

with the University of Michigan, started actively monitoring for meteor infrasound. 

Despite a five year span in active observations, only two detections were made, both by 

the Springhill Meteor Observatory in 1974 during the Geminid shower but without any 

directionality information (McIntosh et al., 1976). In 1975, the first confirmed infrasound 

signal from a meteoroid with a well-established trajectory was identified by the Prairie 

Network (McCrosky et al., 1979).  

Following the inception of the CTBT IMS network, meteor infrasound observations 

experienced a renaissance. A number of ground meteor networks were established with 

the aim of recording meteor velocities and masses using optical and radar observations 

(e.g. Oberst et al., 1998; Trigo-Rodríguez, 2005; Weryk et al., 2008). Of these networks, 

the Southern Ontario Meteor Network (SOMN) was unique in purpose and design for 

simultaneous infrasound-optical meteor measurements, allowing a sufficiently large data 

base of well characterized near field (< 300 km) meteor events generated by centimetre–

sized objects to be gathered (Silber and Brown, 2014).  

Observations of large bolides capable of generating infrasound detectable over very long 

ranges (1000s of km) further attest the need for better constraining the shock production 

mechanisms. For example, one of the still pending problems is the issue of the dominant 

period, which may significantly deviate from station to station for a given infrasound 

producing bolide as observed by multiple stations on the ground, leading to the 

conclusion that the meteor shock production mechanisms (e.g. signals coming from 

different part of trajectory) may play a more significant role than previously thought 

(ReVelle, 1997; Silber et al., 2009; Silber et al., 2011). This complicates the already 
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obfuscating process of estimating infrasound bolide energy yield (which may vary by 

several orders of magnitude) and is further discussed in Chapters 3 and 4.  

 

1.4 Thesis Aim 

The first goal of this thesis was to determine the flux of large bolides impacting the Earth 

using recently declassified infrasonic records. 

The second goal was to investigate the far-field (long range propagation) bolide 

infrasound with specific emphasis on: 

i. using infrasound only, determine meteoroid energy, meteoroid geolocation, burst 

height and timing;  

ii. investigate the issue of differences in observed dominant signal period at 

maximum amplitude as recorded by various stations and estimate the source 

height using infrasound signal properties alone; 

In addition to these goals focused on larger bolides, regional meteor infrasound was 

examined to investigate the following: 

i. use astrometric optical measurements to positively identify infrasound from 

specific meteors; 

ii. establish and constrain the point (and its uncertainty) along the meteor trail where 

the observed infrasound signal emanates; 

iii. examine the influence of atmospheric variability on near-field infrasound 

propagation; 

iv. try to establish the type of shock production at the source (fragmentation, 

spherical vs. cylindrical); 

v. develop a phenomenological classification of meteor infrasound signals based on 

pressure-time waveforms  

vi. for meteors detected optically and with infrasound use the ReVelle (1974) weak 

shock theory to provide a bottom-up estimate of the blast radius; 
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vii. test the influence of atmospheric variability, winds and Doppler shift on the weak 

shock solutions 

viii. determine an independent estimate of meteoroid mass from infrasonic signals 

alone  and compare to photometric measurements; 

ix. critically evaluate and compare ReVelle’s weak shock theory with observations; 

The remainder of the thesis is structured as follows: 

Chapter 2 presents a general review on shock waves and ReVelle’s cylindrical blast wave 

theory. 

Chapter 3 (published as Silber et al., 2009) outlines the infrasound measurements of large 

bolides recorded infrasonically by the Air Force Technical Applications Centre between 

1960 and 1974 for derivation of the influx of meter to tens of meter-sized Near Earth 

Objects impacting the Earth.  

Chapter 4 (published as Silber et al., 2011) presents a case study of instrumental 

recordings and analysis of infrasonic signals produced by a large Earth-impacting bolide, 

believed to be among the most energetic instrumentally recorded during the last century 

that occurred on 8 October, 2009 over Indonesia. This event was detected by 17 

infrasonic stations of the global International Monitoring Network. No other 

observational data, other than eyewitness accounts, exists for this event. A new technique 

to estimate the source height using infrasonic data was developed and tested. 

Furthermore, this paper deals with the well-known fact that the bolide signal periods at 

maximum amplitude generally have different values as recorded by different stations, 

which is considered an anomaly.  

Chapters 5 and 6 are an observational and theoretical pair of papers focusing on regional 

meteor infrasound. Chapter 5 (submitted as Silber and Brown, 2014) introduces the 

analysis procedures used to positively associate infrasonic signals with specific optically 

recorded meteors together with their infrasound phenomenology. The Elginfield 

infrasound array maintained by Western University, signal identification, processing and 

measurements are discussed in detail, followed by astrometric measurements. A new 
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taxonomic scheme for meteor generated infrasonic signals is proposed based on a large 

dataset of regionally recorded events. Raytracing with implementation of atmospheric 

variability was used to determine the source heights and uncertainty along the meteor 

trail for each event in the data set to investigate the type of shock production, as well as 

establish meteoroid population groups and signal phenomenology.  

Chapter 6 (to be submitted as Silber et al., 2014) builds upon the paper in Chapter 5 and 

includes the theoretical comparison of ReVelle’s weak shock theory to the observations, 

in addition to derivation of infrasonic masses and their comparison to photometric 

measurements. 

Thesis appendices are organized as follows: Appendix 1 displays the infrasound signal 

identification methodology and phenomenology plots. Appendix 2 describes the 

raytracing results for all events analysed in Chapter 5. Appendix 3 describes photometric 

corrections and experiments. Appendix 4 displays the scaled, relative photometric 

lightcurve plots for all meteors for which infrasound was detected. Appendix 5 shows the 

measured light curves and the corresponding model fits. Appendix 6 displays the model 

fit to the observed light curve and dynamics plots for all events from Chapter 6.  



34 

 

 

 

References 

Abe, S., Yano, H., Ebizuka, N., Kasuga, T., Sugimoto, M., Watanabe, J. I. (2002) Sowing 

the seeds of life: spectroscopic observations of possible prebiotic components in 

the Leonid meteor storm. Astronomical Herald, 95, 515-528. 

Ahn, S. H. (2003) Meteors and showers a millennium ago. Monthly Notices of the Royal 

Astronomical Society, 343(4), 1095-1100. 

Anderson, J. (2006) Hypersonic and High-Temperature Gas Dynamics Second Edition. 

AIAA Education Series 

Arrowsmith, S. J., Johnson, J. B., Drob, D. P., Hedlin, M. A. (2010) The seismoacoustic 

wavefield: a new paradigm in studying geophysical phenomena. Reviews of 

Geophysics, 48(4). 

Baggaley, W. J. (1980) Meteors and atmospheres. In Solid Particles in the Solar System 

(Vol. 90, pp. 85-100). 

Baggaley, W. J. (2002) Radar observations, in: Murad, E., and Williams, I. P. (Eds.) 

Meteors in the Earth's Atmosphere: Meteoroids and Cosmic Dust and Their 

Interactions with the Earth's Upper Atmosphere. Cambridge University Press. 

123–148. 

Baggaley, W. J., Fisher, G. W. (1980) Measurements of the initial radii of the ionization 

columns of bright meteors. Planetary and Space Science, 28(6), 575-580. 

Baggaley, W. J., Webb, T. H. (1977) The thermalization of meteoric ionization. Journal 

of Atmospheric and Terrestrial Physics, 39(11), 1399-1403. 

Bass, H. E., Hetzer, C. H., Raspet, R. (2007) On the speed of sound in the atmosphere as 

a function of altitude and frequency. Journal of Geophysical Research: 

Atmospheres (1984–2012), 112(D15). 

Bass, H.E. (1972) Atmospheric absorption of sound: analytical expressions. J Acoust Soc 

Am, 52:821–825 

Bedard, A., Georges, T. (2000) Atmospheric infrasound. Acoustics Australia. 28(2), 47-

52. 

Beech, M. (1988) Meteor astronomy: a mature science?. Earth, Moon, and Planets, 43(2), 

187-194. 

Beech, M., Brown, P., Jones, J. (1995) The potential danger to space platforms from 

meteor storm activity. Quarterly Journal of the Royal Astronomical Society, 36, 

127. 

Beer, T. (1974) Atmospheric waves. New York, Halsted Press; London, Adam Hilger, 

Ltd., 1974. 315 p. 



35 

 

 

 

Belkovic, O. I., Pupysev, J. A. (1968) The variation of sporadic meteor radiant density 

and the mass law exponent over the Celestial Sphere. In Physics and Dynamics of 

Meteors, Vol. 33, p. 373. 

Borovička, J. (1993) A fireball spectrum analysis. Astronomy and Astrophysics, 279, 

627-645. 

Brachet, N., Brown, D., Le Bras, R., Cansi, Y., Mialle, P., Coyne, J. (2009) Monitoring 

the earth’s atmosphere with the global IMS infrasound network. In Infrasound 

Monitoring for Atmospheric Studies (pp. 77-118). Springer Netherlands. 

Briani, G., Pupillo, G., Aiello, S., Pace, E., Shore, S., Passaro, A. (2007) Study of the 

Interaction of Micrometeoroids with Earth’s Atmosphere. Memorie della Societa 

Astronomica Italiana Supplementi, 11, 89. 

Bronshten, V. A. (1983) Physics of meteoric phenomena. Fizika meteornykh iavlenii, 

Moscow, Izdatel'stvo Nauka, 1981 Dordrecht, D. Reidel Publishing Co., 1983, 

372 p. Translation., 1. 

Bronshten, V.A. (1983) Physics of Meteoric Phenomena. 372 pp. D. Reidel, Dordrecht, 

Netherlands 

Brown, P. (1999) The Leonid meteor shower: Historical visual observations. Icarus, 

138(2), 287-308. 

Brown, P. G., Assink, J. D., Astiz, L., Blaauw, R., Boslough, M. B., Borovička, J., and 26 

co-authors (2013) A 500-kiloton airburst over Chelyabinsk and an enhanced 

hazard from small impactors. Nature. 503, 238-241 

Brownlee, D. E. (1985) Cosmic dust-Collection and research. Annual Review of Earth 

and Planetary Sciences, 13, 147-173. 

Burke, J. G. (1991) Cosmic debris: meteorites in history. University of California Press. 

Campbell-Brown, M. D., Koschny, D. (2004) Model of the ablation of faint meteors. 

Astronomy and Astrophysics-Berlin Then Les Ulis, 418(2), 751-758. 

Campbell-Brown, M., Jones, J. (2003) Determining the initial radius of meteor trains: 

fragmentation. Monthly Notices of the Royal Astronomical Society, 343(3), 775-

780. 

Ceplecha, Z. (1996) Luminous efficiency based on photographic observations of the Lost 

City fireball and implications for the influx of interplanetary bodies onto Earth. 

Astronomy and Astrophysics, 311, 329-332.  

Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., 

Šimek, M. (1998) Meteor phenomena and bodies. Space Science Reviews, 84(3-

4), 327-471. 



36 

 

 

 

Ceplecha, Z., Borovička, J., Spurný, P. (2000) Dynamical behavior of meteoroids in the 

atmosphere derived from very precise photographic records. Astronomy and 

Astrophysics, 357, 1115-1122. 

Ceplecha, Z., Revelle, D. O. (2005) Fragmentation model of meteoroid motion, mass 

loss, and radiation in the atmosphere. Meteoritics & Planetary Science, 40(1), 35-

54.  

Ceplecha, Z., Spurny, P., Borovička, J., Keclikova, J. (1993) Atmospheric fragmentation 

of meteoriods. Astronomy and Astrophysics, 279, 615-626. 

Christie, D. R. Campus, P. (2010) The IMS Infrasound Network: Design and 

Establishment of Infrasound Stations, In: A. Le Pichon, E. Blanc and A. 

Hauchecorne, Eds., Infrasound Monitoring for Atmospheric Studies. Springer. 

New York, pp. 29-75 

Chunchuzov, I. P. (2004) Influence of internal gravity waves on sound propagation in the 

lower atmosphere. Meteorology and Atmospheric Physics. 85(1-3), 61-76 

Chyba, C. F., Thomas, P. J., Zahnle, K. J. (1993) The 1908 Tunguska explosion: 

atmospheric disruption of a stony asteroid. Nature, 361(6407), 40-44. 

Close, S., Hunt, S. M., Minardi, M. J., McKeen, F. M. (2000) Analysis of perseid meteor 

head echo data collected using the advanced research projects agency long‐range 

tracking and instrumentation radar (altair). Radio Science, 35(5), 1233-1240. 

Colestock, P., Close, S., Zinn, J. (2006) Theoretical and Observational Studies of Meteor 

Interactions with the Ionosphere (No. LAUR-06-113). Los Alamos National Lab, 

NM. 

Cook, R.K. and A.J. Bedard Jr (1972) On the measurement of Infrasound Q. J. Roy. 

Astro. Soc. 67,pp 5-11 

CTBTO (2014) www.ctbto.org (retrieved on 15 Feb, 2014) 

de Groot-Hedlin, C. D., Hedlin, M. A., Drob, D. P. (2010) Atmospheric variability and 

infrasound monitoring. In Infrasound monitoring for atmospheric studies (pp. 

475-507). Springer Netherlands. 

Doel, R. E. (1996) Solar System Astronomy in America, Communities, Patronage, and 

Interdisciplinary Science, 1920-1960, Vol. 1 

Donn, W. L., Rind, D. (1971) Natural infrasound as an atmospheric probe. Geophysical 

Journal of the Royal Astronomical Society, 26(1‐4), 111-133. 

D'Orazio, M. (2007) Meteorite records in the ancient Greek and Latin literature: between 

history and myth. Geological Society, London, Special Publications, 273(1), 215-

225. 

http://www.ctbto.org/


37 

 

 

 

Dressler, R. A., Murad, E. (2001) The gas-phase chemical dynamics associated with 

meteors. Chemical Dynamics in Extreme Environments, edited by RA Dressler, 

(Vol. 11). World Scientific. 268-348. 

Drob, D. P., Picone, J. M., Garcés, M. (2003) Global morphology of infrasound 

propagation. Journal of Geophysical Research: Atmospheres (1984–2012), 

108(D21) 

Dyrud, L. P., Denney, K., Close, S., Oppenheim, M., Chau, J., Ray, L. (2004) Meteor 

velocity determination with plasma physics. Atmospheric Chemistry and Physics, 

4(3), 817-824. 

Dyrud, L., Wilson, D., Boerve, S., Trulsen, J., Pecseli, H., et al. (2008) Plasma and 

electromagnetic simulations of meteor head echo radar reflections. Earth, Moon, 

and Planets, 102(1-4), 383-394. 

Edwards, W. N., Brown, P. G., Weryk, R. J., ReVelle, D. O. (2008) Infrasonic 

observations of meteoroids: Preliminary results from a coordinated optical-radar-

infrasound observing campaign. Earth, Moon, and Planets. 102(1-4), 221-229. 

Edwards, W.N., Hildebrand, A. R. (2004) SUPRACENTER: Locating fireball terminal 

bursts in the atmosphere using seismic arrivals. Meteoritics & Planetary Science, 

39(9), 1449-1460. 

Ens, T. A., Brown, P. G., Edwards, W. N., Silber, E. A. (2012) Infrasound production by 

bolides: A global statistical study. Journal of Atmospheric and Solar-Terrestrial 

Physics. 80, 208-229 

Erickson, P. J., Lind, F. D., Wendelken, S. M., Faubert, M. A. (2001) Meteor head echo 

observations using the Millstone Hill UHF incoherent scatter radar system. In 

Meteoroids 2001 Conference, Vol. 495, pp. 457-463. 

Evans, L. B., Bass, H. E., Sutherland, L. C. (1972) Atmospheric absorption of sound: 

theoretical predictions. The Journal of the Acoustical Society of America, 51, 

1565. 

Evers, L. G., Haak, H. W. (2010) The characteristics of infrasound, its propagation and 

some early history. In Infrasound Monitoring for Atmospheric Studies (pp. 3-27). 

Springer Netherlands. 

Evers, L.G. H.W. Haak. (2001) Listening to sounds from an exploding meteor and 

oceanic waves. Geophysical Research Letters. 30: 41-44 

Feng, W., Marsh, D. R., Chipperfield, M. P., Janches, D., Höffner, J., Yi, F., Plane, J. 

(2013) A global atmospheric model of meteoric iron. Journal of Geophysical 

Research: Atmospheres, 118(16), 9456-9474. 

Few, A. A. (1969) Power spectrum of thunder, J. Geophys. Res., 74, 6926-6934 

Gabrielson, T. B. (1997) Infrasound. Encyclopedia of Acoustics, Volume One, 367-372. 



38 

 

 

 

Garcés, M. A., Hansen, R. A., Lindquist, K. G. (1998) Traveltimes for infrasonic waves 

propagating in a stratified atmosphere. Geophysical Journal International, 135(1), 

255-263. 

Garces, M., Fee, D., Steffke, A., McCormack, D., Servranckx, R., Bass, H., Hetzer, C., 

Hedlin, M., Matoza, R., Yepes H., Ramon, P. (2008) Capturing the acoustic 

fingerprint of stratospheric ash injection, EOS 89(40), 377–378 

Garcés, M., Le Pichon, A. (2009) Infrasound from Earthquakes, Tsunamis and 

Volcanoes, In: R. A. Meyers, Ed., Encyclopedia of Complexity and Systems 

Science. Springer, Berlin, pp. 663-679 

Georges, T. M. (1967) Ionospheric effects of atmospheric waves. Institute for 

Telecommunication Sciences and Aeronomy. 

Georges, T. M., Beasley, W. H. (1977) Refraction of infrasound by upper‐atmospheric 

winds. The Journal of the Acoustical Society of America, 61, 28. 

Golden P., E. T. Herrin and P. T. Negraru (2007) Infrasound in the zone of silence, in 

Proceedings of the European Geophysical Union, Vienna, April 2007 

Green, D.N., Vergoz, J., Gibson, R., Le Pichon, A., Ceranna, L. (2011) Infrasound 

radiated by the Gerdec and Chelopechene explosions: propagation along 

unexpected paths. Geophysical Journal International. 185(2), 890-910. 

Gutenberg, B. (1951) Sound propagation in the atmosphere, in Compendium of 

Meteorology , T. F. Malone (ed.), American Meteorological Society 

Halliday, I., Blackwell, A. T., Griffin, A. A. (1978) The Innisfree meteorite and the 

Canadian camera network, Journal of the Royal Astronomical Society of Canada, 

72, 15-39 

Havnes, O., Sigernes, F. (2005) On the influence of background dust on radar scattering 

from meteor trails. Journal of atmospheric and solar-terrestrial physics, 67(6), 

659-664 

Hawkes, R. L., Jones, J. (1975) A quantitative model for the ablation of dustball meteors. 

Monthly Notices of the Royal Astronomical Society, 173, 339-356. 

Hedin, A.E., Fleming, E.L., Manson, A.H., Schmidlin, F.J., Avery, S.K., Clark, R.R., 

Vincent, R.A. (1996) Empirical wind model for the upper, middle and lower 

atmosphere. Journal of Atmospheric and Terrestrial Physics. 58(13), 1421-1447 

Hedlin, M.A., Garcés, M., Bass, H., Hayward, C., Herrin, G., Olson, J., Wilson, C. 

(2002) Listening to the secret sounds of earth’s atmosphere. Eos 83, 557, 564-565 

Herrin, E. T., Golden, P. W., Negraru, P. T., McKenna, M.H. (2007) Infrasound in the 

zone of silence, Proceedings of the 29th Monitoring Research Review: Ground-

Based Nuclear Explosion Monitoring Technologies, 25-27 Sep 2007, Denver, CO 



39 

 

 

 

Hill, K. A., Rogers, L. A., Hawkes, R. L. (2005) Sputtering and high altitude meteors. 

Earth, Moon, and Planets, 95(1-4), 403-412.  

Hocking, W. K. (1999) Temperatures Using radar‐meteor decay times. Geophysical 

research letters, 26(21), 3297-3300. 

Hocking, W. K., Thayaparan, T., Jones, J. (1997) Meteor decay times and their use in 

determining a diagnostic mesospheric Temperature‐pressure parameter: 

Methodology and one year of data. Geophysical research letters, 24(23), 2977-

2980. 

Hughes, D. W. (1997) Meteors and cosmic dust. Endeavour, 21(1), 31-35. 

Hunt, J. N., Palmer, R.,  Penney, W. (1960) Atmospheric waves caused by large 

explosions. Philosophical Transactions of the Royal Society of London. Series A, 

Mathematical and Physical Sciences, 252(1011), 275-315. 

Jenniskens, P. (2001) Meteors as a delivery vehicle for organic matter to the early Earth. 

In Meteoroids 2001 Conference, Vol. 495, pp. 247-254. 

Jenniskens, P. (2004) Meteor induced chemistry, ablation products, and dust in the 

middle and upper atmosphere from optical spectroscopy of meteors. Advances in 

Space Research, 33(9), 1444-1454. 

Jenniskens, P. (2008) Meteoroid streams that trace to candidate dormant comets. Icarus, 

194(1), 13-22. 

Jenniskens, P. M. M. (2006) Meteor showers and their parent comets. Cambridge 

University Press. 

Jones, D. L., Goyer, G. G., Plooster, M. N. (1968) Shock wave from a lightning 

discharge. J Geophys Res 73:3121–3127 

Jones, J. (1975) On the decay of underdense radio meteor echoes. Monthly Notices of the 

Royal Astronomical Society, 173, 637-648. 

Jones, J., Campbell‐Brown, M. (2005) The initial train radius of sporadic meteors. 

Monthly Notices of the Royal Astronomical Society, 359(3), 1131-1136. 

Jones, W. (1995) Theory of the initial radius of meteor trains. Monthly Notices of the 

Royal Astronomical Society, 275, 812-818. 

Jones, W., Jones, J. (1990) Ionic diffusion in meteor trains. Journal of Atmospheric and 

Terrestrial Physics, 52(3), 185-191. 

Kalashnikova, O., Horanyi, M., Thomas, G. E., Toon, O. B. (2000) Meteoric smoke 

production in the atmosphere. Geophysical research letters, 27(20), 3293-3296.  

Keay, C. S. (1980) Anomalous sounds from the entry of meteor fireballs. Science, 

210(4465), 11-15. 



40 

 

 

 

Keay, C. S. L., Ceplecha, Z. (1994) Rate of observation of electrophonic meteor fireballs. 

Journal of Geophysical Research: Planets (1991–2012), 99(E6), 13163-13165. 

Kraemer, D.R. (1977) Infrasound from accurately measured meteor trails, Ph.D. Thesis 

University of Michigan, Ann Arbor 

Krehl, P. O. (2009) History of shock waves, explosions and impact: a chronological and 

biographical reference. Springer. 

Krinov, E. L. (1966) Giant meteorites. Oxford, New York, Pergamon Press [1966][1st 

English ed.] Translated from the Russian by JS Romankiewicz. Translation edited 

by MM Beynon., 1. 

Kulichkov, S. (2010) On the prospects for acoustic sounding of the fine structure of the 

middle atmosphere. In Infrasound monitoring for atmospheric studies (pp. 511-

540). Springer Netherlands. 

Lighthill, J. (1978) Waves in Fluids, 504 pp. Cambridge Univ. 

Love, S. G., Brownlee, D. E. (1993) A direct measurement of the terrestrial mass 

accretion rate of cosmic dust. Science, 262(5133), 550-553. 

Manning, L. A. (1958) The initial radius of meteoric ionization trails. Journal of 

Geophysical Research, 63(1), 181-196. 

Marsh, D. R., Janches, D., Feng, W., Plane, J. (2013) A global model of meteoric sodium. 

Journal of Geophysical Research: Atmospheres, 118(19), 11-442. 

McCrosky, R. E., Boeschenstein, H. (1965) The Prairie Meteorite Network, Smithsonian 

Astrophysical Observatory Special Report #173, 1-26 

McCrosky, R. E., Shao, C. Y., Posen, A. (1979) The Prairie Network bolide data. II – 

Trajectories and light curves, Meteoritika, 38, 106-156 

McIntosh, B. A. (1966) The determination of meteor mass distribution from radar echo 

counts. Canadian Journal of Physics, 44(11), 2729-2748. 

McIntosh, B. A., Watson, M. D., ReVelle, D. O. (1976) Infrasound from a radar-observed 

meteor. Canadian Journal of Physics, 54(6), 655-662. 

McKinley, D. W. R. (1961) Meteor Science and Engineering, McGraw-Hill Inc., New 

York, N.Y 

McKisic, J.M. (1997) Infrasound and the Infrasonic Monitoring of Atmospheric Nuclear 

Explosions: A literature review. Final report PL-TR-97-2123. Department of 

Energy and Phillips Laboratory, National Tech. Information Service, p. 310. 

McSween, H. Y. (1999) Meteorites and their parent planets. Cambridge University Press. 



41 

 

 

 

Mersenne, M. (1636) Harmonie Universelle; transl. Chapman, R.: (1957). The Books on 

Instruments. Nijhoff, The Hague. 

Murad, E., Williams, I. P. (Eds.). (2002). Meteors in the Earth's Atmosphere: Meteoroids 

and Cosmic Dust and Their Interactions with the Earth's Upper Atmosphere. 

Cambridge University Press. 

Mutschlecner, J. P., Whitaker, R. W. (2010) Some atmospheric effects on infrasound 

signal amplitudes. In Infrasound Monitoring for Atmospheric Studies. (pp. 455-

474). Springer Netherlands 

Nesvorny D. J., Janches D., Vokrouhlický D., Pokorný P., Bottke W. F., Jenniskens P. 

(2011) Dynamical Model for the Zodiacal Cloud and Sporadic Meteors. The 

Astrophysical Journal 743: 129. 

Norris, D., Gibson, R., Bongiovanni, K. (2010) Numerical methods to model infrasonic 

propagation through realistic specifications of the atmosphere. In Infrasound 

monitoring for atmospheric studies (pp. 541-573). Springer Netherlands. 

Oberst, J., Molau, S., Heinlein, D., Gritzner, C., Schindler, M., Spurny, P., Ceplecha, Z., 

Rendtel, J., Betlem, H. (1998) The ‘European Fireball Network’: Current status 

and future prospects, Meteoritics and Planetary Science, 33: 49-56 

O'Keefe, J. D., Ahrens, T. J. (1982) Impact mechanics of the Cretaceous-Tertiary 

extinction bolide. Nature, 298(5870), 123-127. 

Opik, E. J. (1958) Physics of meteor flight in the atmosphere. New York, Interscience 

Publishers, 1958, 1.  

Ostashev, V.E., Chunchuzov, I.P., Wilson, D.K. (2005) Sound propagation through and 

scattering by internal gravity waves in a stably stratified atmosphere. The Journal 

of the Acoustical Society of America. 118, 3420 

Payne, R. (1995) Among Whales. Scribner, New York, NY 

Pierce, A. D. (1989) Acoustics: an introduction to its physical principles and applications. 

Acoustical Soc of America. 

Pierce, A. D., Kinney, W. A. (1976) Computational techniques for the study of 

infrasound propagation in the atmosphere. Georgia Inst of Tech Atlanta School Of 

Mechanical Engineering 

Pierce, A. D., Posey, J. W. (1971) Theory of the excitation and propagation of Lamb's 

atmospheric edge mode from nuclear explosions. Geophysical Journal of the 

Royal Astronomical Society, 26(1‐4), 341-368.  

Plane, J. M. (2012) Cosmic dust in the earth's atmosphere. Chemical Society Reviews, 

41(19), 6507-6518. 



42 

 

 

 

Plooster, M. N. (1970) Shock waves from line sources. Numerical solutions and 

experimental measurements. Physics of fluids, 13, 2665. 

Ponceau, D., Bosca, L. (2009) Low-noise broadband microbarometers. In Infrasound 

Monitoring for Atmospheric Studies (pp. 119-140). Springer Netherlands. 

Popova, O. (2005) Meteoroid ablation models. Earth, Moon, and Planets, 95(1-4), 303-

319. 

Popova, O. P., Jenniskens, P., Emel’yanenko, V., Kartashova, A., Biryukov, E., 

Khaibrakhmanov, S., et al.  (2013) Chelyabinsk Airburst, Damage Assessment, 

Meteorite Recovery, and Characterization. Science, 342(6162), 1069-1073. 

Popova, O. P., Sidneva, S. N., Strelkov, A. S., Shuvalov, V. V. (2001) Formation of 

disturbed area around fast meteor body. In Meteoroids 2001 Conference, Vol. 

495, pp. 237-245. 

Posey, J. W., Pierce, A. D. (1971) Estimation of nuclear explosion energies from 

microbarograph records, Nature, 232, 253 

ReVelle, D. O. (1974) Acoustics of meteors-effects of the atmospheric temperature and 

wind structure on the sounds produced by meteors. Ph.D. Thesis, University of 

Michigan, Ann Arbor.  

ReVelle, D. O. (1976) On meteor‐generated infrasound. Journal of Geophysical 

Research, 81(7), 1217-1230. 

ReVelle, D. O. (1997) Historical Detection of Atmospheric Impacts by Large Bolides 

Using Acoustic‐Gravity Waves. Annals of the New York Academy of Sciences. 

822(1), 284-302 

ReVelle, D. O. (2003) Bolide False Alarm Rate for the Global Infrasound Monitoring 

System, American Association for the Advancement of Science, Annual Meeting, 

Denver, Colorado, February 14, 2003 

ReVelle, D. O. (2005) The mesopause as a physical penetration boundary. Journal of 

atmospheric and solar-terrestrial physics, 67(13), 1159-1170. 

Reynolds, O. (1873) On the refraction of sound by the atmosphere. Proceedings of the 

Royal Society of London, 22(148-155), 531-548. 

Rind, D., Donn, W. L. (1975) Further use of natural infrasound as a continuous monitor 

of the upper atmosphere. Journal of Atmospheric Sciences, 32, 1694-1704. 

Rogers, L. A., Hill, K. A., Hawkes, R. L. (2005) Mass loss due to sputtering and thermal 

processes in meteoroid ablation. Planetary and Space Science, 53(13), 1341-1354.  

Romig, M. F. (1965) Physics of meteor entry. AIAA Journal, 3(3), 385-394. 



43 

 

 

 

Sakurai, A. (1964) Blast Wave Theory, (No. MRC-TSR-497). Wisconsin Univ-Madison 

Mathematics Research Center. 

Scott, R. (1901) A greek-english lexicon. Clarendon Press. 

Shaw, W. N., Dines, W. H. (1905) The study of the minor fluctuations of atmospheric 

pressure. Quarterly Journal of the Royal Meteorological Society, 31(133), 39-52. 

Shoemaker, E. M. Lowery, C. J. (1967) Airwaves associated with large fireballs and the 

frequency distribution of energy of meteoroids, Meteoritics, 3, 123-124 

Silber, E. A., Brown, P. G. (2014) Optical Observations of Meteors Generating 

Infrasound – I: Acoustic Signal Identification and Phenomenology, JASTP, 

submitted (#ATP3766) 

Silber, E. A., Le Pichon, A. Brown, P. (2011) Infrasonic Detection of a Near-Earth 

Object Impact over Indonesia on 8 October, 2009, Geophysical Research Letters, 

Vol. 38, L12201 

Silber, E. A., ReVelle, D. O., Brown, P. G., Edwards, W. N. (2009) An estimate of the 

terrestrial influx of large meteoroids from infrasonic measurements. Journal of 

Geophysical Research: Planets (1991–2012), 114(E8). 

Stevens, J. L., Divnov, I. I., Adams, D. A., Murphy, J. R., Bourchik, V. N. (2002) 

Constraints on infrasound scaling and attenuation relations from Soviet explosion 

data. pure and applied geophysics, 159(5), 1045-1062. 

Sugar, G. R. (1964) Radio propagation by reflection from meteor trails. Proceedings of 

the IEEE, 52(2), 116-136. 

Sutherland, L. C., Bass, H. E. (2004) Atmospheric absorption in the atmosphere up to 

160 km. The Journal of the Acoustical Society of America, 115, 1012. 

Symons, G. J., Judd, J. W., Strachey, S. R., Wharton, W. J. L., Evans, F. J., et al. (1888) 

The eruption of krakatoa: And subsequent phenomena. Trübner & Company 

Taylor, A. D. (1995) The Harvard radio meteor project meteor velocity distribution 

reappraised. Icarus, 116(1), 154-158. 

Tolstoy, I. (1973) Wave propagation. New York, NY (USA): McGraw-Hill, 466 p. 

Trigo-Rodríguez, J. M., Castro-Tirado, A. J., Llorca, J., Fabregat, J., Martínez, V. J., 

Reglero, V., Jelínek, M., Kubánek, P., Mateo, T., De Ugarte Postigo, A. (2005) 

The development of the Spanish Fireball Network using a new all-sky CCD 

system, In Modern Meteor Science An Interdisciplinary View (pp. 553-567). 

Springer Netherlands. 

Trigo‐Rodriguez, J. M., Llorca, J., Borovička, J., Fabregat, J. (2003) Chemical 

abundances determined from meteor spectra: I. Ratios of the main chemical 

elements. Meteoritics & Planetary Science, 38(8), 1283-1294. 



44 

 

 

 

Tsikulin, M. A. (1970). Shock waves during the movement of large meteorites in the 

atmosphere (No. NIC-Trans-3148). Naval Intelligence Command Alexandria VA 

Translation Div. 

Verbeek, R. D. M. (1884) The Krakatoa eruption. Nature, 30, 10-15. 

Vondrak, T., Plane, J. M. C., Broadley, S., Janches, D. (2008) A chemical model of 

meteoric ablation. Atmospheric Chemistry and Physics, 8(23), 7015-7031. 

Watson, M., McIntosh, B., ReVelle D. O. (1976) A meteor infrasound recording system, 

In: Acoustics, Speech, and Signal Processing, IEEE International Conference on 

ICASSP’76, 786-789 

Weryk, R. J., Brown, P. G. (2013). Simultaneous radar and video meteors-II: Photometry 

and ionisation. Planetary and Space Science. 

Weryk, R. J., Brown, P. G., Domokos, A., Edwards, W. N., Krzeminski, Z., Nudds, S. H., 

Welch, D. L. (2008) The Southern Ontario all-sky meteor camera network. Earth, 

Moon, and Planets, 102(1-4), 241-246. 

Wetherill, G. W., ReVelle, D. O. (1981) Which fireballs are meteorites? A study of the 

Prairie Network photographic meteor data. Icarus, 48(2), 308-328. 

Whipple, F. J. W. (1930) The Great Siberian Meteor, and the Waves, Seismic and Aerial, 

which it Produces. 

Whitaker, R. W. (1995) Infrasonic monitoring. Los Alamos National Lab, NM. 

Willmore, A. P. (1970) Electron and ion temperatures in the ionosphere. Space Science 

Reviews, 11(5), 607-670. 

Wylie, C. C. (1932) Sounds from meteors. Popular Astronomy, 40, 289. 

Zahnle, K. J. (1992) Airburst origin of dark shadows on Venus. Journal of Geophysical 

Research: Planets (1991–2012), 97(E6), 10243-10255. 

Zinn, J., O’Dean P. J., ReVelle, D. O. (2004) Leonid meteor ablation, energy exchange, 

and trail morphology." Advances in Space Research 33.9 (2004): 1466-1474. 

 



45 

 

 

 

Chapter 2 

2. Shock Waves 

 

No man is wise enough by himself. 

  – Titus Maccius Plautus (254 BC - 184 BC) 

 

Fundamentally, observations of meteor infrasound are possible due to hypersonic shock 

production during the ablation phase of the meteoroid. Here we review general 

characteristics of shocks in the atmosphere with emphasis on aspects relevant to meteor 

infrasound. 

2.1 A Brief Introduction to Shock Waves 

Shock waves can be generated in all four states of matter. Gyözy Zemplén provided an 

operational definition of a shock in 1905: “A shock wave is a surface of discontinuity 

propagating in a gas at which density and velocity experience abrupt changes. One can 

imagine two types of shock waves: (positive) compression shocks which propagate into 

the direction where the density of the gas is a minimum, and (negative) rarefaction waves 

which propagate into the direction of maximum density” (Krehl, 2001).  

Shock waves in the atmosphere are produced by a number of sources, both of 

anthropogenic and natural origin. Examples of the former are explosions (nuclear, 

chemical), supersonic craft, re-entry vehicles, and exploding wires, while examples of the 

latter are volcanic explosions, lightning and meteors. The intensity of a shock wave can 

be divided into two categories: the weak shock regime (waves of small, but finite 

pressure amplitude) and the strong-shock regime (waves of large pressure amplitude) 

(Krehl, 2009 and references therein). These are defined in terms of shock strength (ζ = 

p/p0), or the pressure ratio across the shock front. In the strong shock regime ζ >>1 and 

shocks propagate supersonically displaying highly non-linear effects. In the weak shock 

regime, ζ ~ 1 (or barely exceeds 1), and shocks move at the speed of sound (Sakurai, 
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1964; Krehl, 2009; Needham, 2010). It is in the weak-shock regime that the signal can be 

treated as nearly linear (Sakurai, 1964). It is also convenient to define the strength of a 

shock wave with the Mach number, a dimensionless quantity which represents the ratio 

between the shock (or an object’s) velocity (v) and the velocity (ambient speed of sound 

or va) with which a weak acoustic disturbance would travel in the undisturbed fluid (e. g. 

Hayes and Probstein, 1958; ReVelle, 1974; Emanuel, 2000): 

   
 

  
 (2.1) 

 

The earliest imagery of meteor-like shocks was first made by Ernst Mach and Peter 

Salchner (Figure 2.1) (Hoffmann, 2009; Krehl, 2009 and references therein). 

 

 

Figure 2.1: The shock wave phenomena captured by Ernst Mach and Peter Salcher in 

1896 using schlieren photography (Hoffmann, 2009 and references therein). 
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The pressure-time behaviour of an initially small disturbance may grow in nonlinear 

acoustics into a significant distortion over many thousands of wavelengths due to a 

number of cumulative, long duration evolutionary processes (Krehl, 2009). In shock 

wave physics, the waveform is confined to a single pulse (Sakurai, 1964), which at some 

distance from the source take on the ubiquitous N-wave behaviour (DuMond et al, 1946) 

associated with sonic booms (Figure 2.2).  

 

 

Figure 2.2: N wave pressure vs. time (from DuMond et al., 1946) waveform representing 

a typical sonic boom signature. 

 

Landau (1945) showed that cylindrical and spherical N-waves should decay more rapidly 

than predicted by geometrical spreading and elongate as they travel away from the 

source. The second-order weak nonlinear effects are the cause of the wave elongation (or 

increase in the wave period) and enhanced decay (Wright, 1983; Maglieri and Plotkin, 

1991), as shown in Figure 2.3. The same result was independently obtained by DuMond 

et al. (1946), albeit by a different method. DuMond et al. (1946) also attached the term N-

wave to the resultant waveform as it resembles the capital letter “N” (Figure 2.2). 
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Figure 2.3: Evolution of slightly non-linear wave forms into N-waves (from DuMond et 

al., 1946). 

A number of natural sources, such as thunder and meteors, generate shock waves in the 

form of a blast wave in the near field (Krehl, 2009). While the term shock wave is used in 

a more general context, a blast wave (Figure 2.4) is a shock wave in the air, such that it is 

accompanied by a strong wind (indicating a high dynamic pressure) as felt by an 

observer. Blast waves always propagate at supersonic velocity and at a sufficiently large 

distance from the source approach spherical geometry (Kinney and Graham, 1985; Krehl, 

2009). Blast waves are characterized by a steep pressure rise time or shock intensity (or 

peak over pressure) and have a finite duration (usually defined as the length of the 

positive phase). The air blast produces an impulse per unit area resulting from its 

overpressure (Kinney and Graham, 1985), and if the blast wave is sufficiently strong, the 

air behind it may be accelerated to high velocities, creating a strong wind which in turn 

creates a dynamic pressure on objects in its path producing destructive effects 

collectively termed blast damage (Kinney and Graham, 1985; Krehl, 2009). Energetic 

bolide events are capable of producing significant blast damage on the ground, as 

demonstrated by the recent bolide over Chelyabinsk (Brown et al., 2013). At larger 

distances away from the source, however, the blast wave undergoes distortion and may 

propagate along multiple paths resulting in a more complicated waveform (Figure 2.5). 
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Figure 2.4: Shock wave pressure vs time (from Kinney and Graham, 1985) representing a 

typical blast wave signature. 

 

Figure 2.5: Typical explosion wave pressure-time signature at long range (from ANSI, 

1983). Distortion effects as well as multi-pathing affect the appearance of the waveform 

some distance from the source. 

The complex mathematical problem of wave propagation nonlinearity was resolved using 

the similarity principle (Sedov, 1946; Taylor, 1950), in which the number of independent 

variables are decreased, such that a set of fundamental partial differential equations is 

reduced to ordinary differential equations, while retaining the essential nature of the 

nonlinear behaviour (Sakurai, 1964; Sachdev, 2004). The problem of shock waves and 

the infrasound produced by meteors has been studied over the past several decades; 

however, compared to other problems of shock dynamics, not as extensively. Generally, 

an object moving at supersonic/hypersonic speeds will generate a conical bow shock as 

shown in Figure 2.6, where the Mach angle (η) is defined as:  

 

η = sin
-1

 (1/M) (2.2) 
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Figure 2.6: Top: Sketch of the flow field of a circular cylinder with a flat face forward in 

air at M = 3 (from Hayes and Probstein, 1959). Bottom: Meteoroids produce a very 

narrow Mach cone and therefore a narrow Mach angle.   

 

Meteoroids propagate through the Earth’s atmosphere at high Mach numbers; from ~ 35 

up to 270 (e.g. Boyd, 1998) thereby producing a very narrow Mach cone (η < 1.7°), 

which can be approximated as a cylinder and has led to the concept of a meteor shock 

being equivalent to an instantaneous cylindrical line source charge (Tsikulin, 1970; 

ReVelle, 1976).  

In the early 1950s, Whitham (1952) developed the F-function, a novel approach in 

treating the flow pattern of shock signatures generated by supersonic projectiles, now 

widely used in supersonics and classical sonic boom theory (e.g. Maglieri and Plotkin, 

1991). It was realized early on that the F-function offers excellent correlation between 
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experiment and theory for low Mach numbers (up to M = ~3), but was not as successful 

at hypersonic speeds (e.g. Carlson and Maglieri, 1972; Plotkin, 1989). The Whitham F-

function theory has been recently applied to meteor shocks (Haynes and Millet, 2013), 

but detailed observational validation for meteor infrasound has not yet been obtained. We 

note, however, that this approach offers another theoretical pathway to predicting meteor 

infrasound, though we do not explore it further in this thesis.  

 

2.2 Cylindrical Line Source Model of Meteoroid shocks: ReVelle’s 

Model 

Early work on cylindrical shock waves during the 1940s and onward was done in 

connection with exploding wires (Sakurai, 1964; Plooster, 1968; 1970) and lightning 

(Jones et al., 1968; Few, 1969; Few, 1974). This theoretical and observational machinery 

was subsequently applied to meteoroids (e.g. Tsikulin, 1970; ReVelle, 1974; 1976). 

Following Lin (1954), Sakurai (1964), Few (1969), Jones et al. (1968), Plooster (1968; 

1970) and Tsikulin (1970), ReVelle (1974; 1976) developed an analytic blast wave model 

of the nonlinear disturbance initiated by an explosive line source (meteor shock); this will 

be described in detail for the remainder of this chapter and where we draw extensively on 

the original treatment of ReVelle (1974).  

Physically, as a meteoroid penetrates deeper into the denser regions of the atmosphere, 

stagnation pressure builds up (Figure 2.6) due to air molecules piling up in front of the 

body. If this stagnation pressure exceeds the internal strength of the meteoroid, gross 

fragmentation (or multiple fragmentation events) may occur, resulting in more 

complicated blast wave geometry, voiding the applicability of the cylindrical blast wave 

theory. For the cylindrical blast wave analogy to hypersonic flow to be valid (Pan and 

Sotomayer, 1972), certain conditions, in addition to M >> 1, must be satisfied.  

First, the energy release must be instantaneous, which is a good approximation for 

meteoroids which must encounter the Earth with v > 11 km/s. Second, the cylindrical line 

source approximation is only valid if v >> cs (the Mach angle still has to be very small 
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many meteoroid diameters behind the body) and v = constant (Tsikulin, 1970). Therefore 

if there is significant deceleration (v < 0.95ventry) and strong ablation, the above criteria 

for the conditions necessary for the similarity principle in the cylindrical blast wave 

theory are not met (Bronshten, 1964; ReVelle, 1974; 1976). In this model, the line source 

is also considered to be in the free field, independent of any reflections due to finite 

boundaries, such as topographical features (ReVelle, 1974).  

The cylindrical line shock decays to infrasonic waves which propagate to the ground as 

shown in Figure 2.7. Here the cylindrical line source is represented by a series of closely 

spaced discrete points. The shock wave expands radially outward in all directions away 

from the meteor trail (inset, Figure 2.7a).  

The coordinate system to describe the motion and trajectory of the meteoroid, as 

originally developed by ReVelle (1974; 1976), is shown in Figure 2.8. The plane of 

meteoroid entry is referred to as the plane of entry. In this coordinate system, the 

variables are as follows:  

φ = azimuth angle of the meteoroid heading  

φ’ = azimuth angle of a given infrasonic ray outside the entry plane 

∆φ = |φ – φ’| = infrasound ray deviation from the plane of entry (∆φ = 0 in the 

plane of entry, ∆φ = π/2 out of the entry plane, i.e. purely horizontal) 

θ = entry elevation angle from the horizontal (θ = π/2 is vertical entry) 

ε = nadir angle of the infrasonic ray with respect to the local vertical, ε ≥ θ (ε = 0 

is vertically downward, ε = θ in the plane of entry), always viewed in a plane 

perpendicular to the plane of entry. ReVelle (1974) originally defined ε as zenith 

angle pointing downward. 

x = the distance between the point along the trail and the observer in units of blast 

radii (see definition later, equation (2.9)). 

Azimuth angles, as viewed from the top looking downward, are measured clockwise from 

North. Other treatments (e.g. Edwards (2010)) have not always correctly and consistently 

defined these quantities relative to the original definitions given in ReVelle (1974). 
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Figure 2.7: (a) Main figure: A simplified diagram depicting the meteoroid moving 

downward in the direction shown by the arrow. The lines are simulated infrasound rays 

reaching a grid of observers at the ‘ground’ (small squares). Only a limited number of 

distinct rays are shown for better visualization. Inset: The head-on view of the meteoroid 

(black dot in the centre) with the outward expanding shock front (the blue edge 
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boundary) with cylindrical symmetry. The color contours represent density. (b) Side 

view. (c) Top down view.  

 

 

Figure 2.8: The coordinate system as originally defined by ReVelle (1974; 1976). The 

meteoroid trajectory is within the vertical entry plane. The variable x (eq. 2.9) refers to 

the distance between the point along the trail and the observer.  

 

The relationship between the nadir angle (ε), entry elevation angle (θ) and ray deviation 

angle (∆φ) is as follows: 

       [(  
   

 
)       ]

  

 

           
 

 
         

(2.3) 

 

and 

   
 

 
(           ) (2.4) 
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In this model, only those rays which propagate downward (Figure 2.9, Figure 2.10) and 

are direct arrivals are considered. The requirement of direct arrival limits the source-

observer distance to be less than 300 km. Only part of the shock generated along the 

trajectory will reach the observer; however, for certain propagation conditions no paths at 

all may be available between the source and the receiver. Hence meteors which produce 

infrasound may go undetected at any given receiver due to such effects 

 

Figure 2.9: A pictorial representation of the cylindrical line source and possible 

meteoroid trajectory orientations. The middle and far right box show extreme 

orientations, such as a head on collision, and an Earth grazer, respectively. The red 

arrows represent those rays which are directed away from the ground – these will not 

form the primary hypersonic boom corridor, but may get reflected by the upper 

atmosphere and return in the form of the secondary sonic boom. The blue lines depict the 

direct path. Most of these rays are expected to reach the ground, given the existence 

refractive paths.    

 

Once formed, the shock wave generated by a meteoroid is highly nonlinear, propagating 

outward at supersonic speed and absorbing the ambient air into the blast wave. The 

relaxation (or blast) radius R0 is the radius of the volume of the ‘channel’ that can be 

generated if all the explosion energy is used in performing work (pV) on the surrounding 

atmosphere, at ambient pressure (p0) (e.g. Tsikulin, 1970):  

   (
  

  
)
   

 (2.5) 
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Here, E0 is the finite amount of energy deposited by the meteoroid per unit length, and p0 

is the ambient hydrostatic atmospheric pressure (Sakurai, 1964; ReVelle, 1974). The blast 

radius, however, is expressed in a slightly different way by various authors, as shown in 

Table 2.1.  

 

Table 2.1: Examples of expressions for R0 as defined by various authors. It should be 

remarked that all of these are fundamentally the same except the proportionality constant, 

leading to a maximum difference of a factor of 3.53 (ReVelle, 1974). 

Blast Radius Definition Author 

   (
  

   
)
   

 (2.6a) Few (1969) 

   (
  

    
)
   

 (2.6b) 

Jones et al. (1968) 

Plooster (1970) 

b = 3.94 and γ = 1.4 

   (
  

    
)
   

 (2.6c) Sakurai (1964) 

   (
  

  
)
   

 (2.6d) 
Tsikulin (1970) 

standard definition 

   (
   

  
)
   

 (2.6e) 
Tsikulin (1970) 

modified definition 

  

For a non-fragmenting, single body meteoroid, the energy can also be written in terms of 

the drag force as (ReVelle, 1974): 

   
 

 
   

     (2.7) 

where CD is the wave drag coefficient and S is meteoroid cross-sectional area. 

Since the blast radius is directly related to the drag force, it can also be expressed as a 

function of Mach number and the meteoroid diameter: 

         (2.8) 

From the cylindrical blast wave similarity solution, the scaled distance (x) from the 

trajectory is given by: 
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 (2.9) 

 

where R is the actual radius of the shock front at a given time. While the similarity 

solutions to the equations of hydrodynamics are applicable within the strong shock 

region, they are not valid for x < ~0.05, mainly due to severe nonlinear non-equilibrium 

processes, annulling the notion of local thermodynamic equilibrium, and subsequently 

voiding the existence of a classical equation of state. For x > 0.05, the size of the 

meteoroid no longer has a significant effect on blast wave propagation (Tsikulin, 1970; 

ReVelle, 1974). Once the wave reaches the state of weak nonlinearity (where the pressure 

at the shock front ps ~ p0), using the Hugoniot relation between the overpressure (∆p/p0) 

and the shock front Mach number (Ma) (Lin, 1954): 

 

  
 (

  

   
)  

  (2.10) 

 

the shock front velocity approaches the local adiabatic velocity of sound (    ). When 

∆p/p0   1 (at x   1), weak shock propagation takes place and geometric acoustics 

becomes valid (Jones et al., 1968; ReVelle, 1974). Moreover, beyond x = 1, steady state 

theory is applicable (Groves, 1963). The linear sound theory is derived under the 

assumption that: 

  

  
   (2.11) 

  

  
   (2.12) 

 

In the strong shock regime, where ps/p0 > 10, the relationship between the shock front 

pressure and the ambient atmospheric pressure is given by (Jones et al., 1968): 

 

  
 

 

 (   )

 

  
 (2.13) 

 

It should be noted that the main difference in the terms ps/p0 and ∆p/p0 is simply the 

convention of writing and describing the strong shock regime (ps >> p0) and the weak 
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shock regime (ps ≤ p0), respectively. As the shock propagates outward, it will reach the 

point where the strong shock similarity principle is no longer valid. Following Jones et al. 

(1968):  

 ( )
   

 
 (   )

 

  

  
      (2.14) 

 

and 

 ( )
   

 (
 

 
)
    

{[  (
 

 
)
   

  ]

   

  }

  

        (2.15) 

 

In the limit as x  0 (eq.2.14), where ∆p/p0 > 10, attenuation is quite rapid (x
-2

), 

transitioning to x
-3/4

 as x  ∞, where ∆p/p0 < 0.04 (or M = 1.017) (Jones et al., 1968). 

Both Landau (1945) and DuMond et al. (1946) obtained that the shock strength decay in 

the axisymmetric case clearly follows x
-3/4

. Due to elevated temperature and forward 

velocity of the positive-pressure pulse, the wave steepens (Landau, 1945), becoming a 

shock resembling the well-known N-wave pressure signature in the far-field. The 

function f(x) can be slightly modified using constants YC and YD stemming from work of 

Plooster (1968). YC is Plooster’s adjustable parameter (ReVelle, 1976) which defines the 

region where the nonlinear to weak shock transition occurs, while YD describes the 

efficiency with which cylindrical blast waves are generated as compared to the results of 

an asymptotic strong shock as numerically determined by Lin (1954). The variables YC 

and YD are the same as the variables C and δ, respectively, in Plooster (1970) and ReVelle 

(1974; 1976); however they are renamed here to avoid confusion with other unrelated 

variables used in this work. The sensitivity to the final solutions in using different values 

of these parameters will be discussed later. For now we set, YC = YD = 1.   

Taking advantage of both equations (2.14) and (2.15), and using results from experiments 

(Jones et al., 1968; Tsikulin, 1970), the overpressure (for x ≥ 0.05) can now be expressed 

as: 
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The limits within which this expression is applicable are 0.04 ≤ ∆p/p0 ≤ 10 (Jones et al., 

1968). Note that this was incorrectly stated in Edwards (2010) as ∆p/p0 ≥ 10. The above 

expression can also be written as: 

  

  
 

  

   
[

      

(         )     
] (2.17) 

 

This implies that ∆p   0.0575p0 at x = 10. The assumption in the expressions above 

(equation 2.16 and equation 2.17) is that the ambient air density is uniform, which, in 

reality, is not completely true for the atmosphere proximal to the meteoroid in flight. The 

shock wave, as it travels from high altitudes down to the observer, encounters ambient 

pressures from low to high densities over many scale heights. Therefore, a correction 

term will need to be applied at a later point to account for variations in the atmospheric 

pressure between the source and the observer.  

After the shock wave has travelled the distance of approximately 10R0, where the 

disturbance is still relatively strong, but remains in the weak shock regime, its 

fundamental period (τ0) can be related to the blast radius via: 

   
       

  
 (2.18) 

 

where ca is the local ambient thermodynamic speed of sound. The factor 2.81 at x = 10 

was determined experimentally (Few, 1969) and numerically (Plooster, 1968). The 

fundamental frequency (f0) is then simply 1/τ0. The frequency of the wave at maximum 

amplitude of the pressure pulse as recorded by the receiver is referred to as the 

‘dominant’ frequency (ReVelle, 1974). The choice of 10R0 is somewhat arbitrary but it 

had arisen from the notion that nonlinear propagation effects may still be important at 

some distance from the origin (e.g. Yuldashev et al., 2010). It is also common usage to 
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 (2.16) 
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begin model calculations at 10R0 (x = 10) under the assumption that the shock is clearly 

no longer in the strong shock regime.  

From these relations, it should be clear that large meteoroids produce large blast radii, 

long fundamental periods and small fundamental frequencies. As a result given 

favourable infrasonic ray propagation paths they are more likely to produce infrasound 

detectable at the ground. As previously described, due to nonlinear effects, this 

fundamental period will lengthen as the shock propagates outward, eventually forming 

into an N-wave after it has travelled a certain distance from the source, as predicted by 

sonic boom theory (Landau, 1945; DuMond et al, 1946; Carlson and Maglieri, 1972; 

Maglier and Plotkin, 1991).   

For sufficiently large R and assuming weakly nonlinear propagation, the line source wave 

period for (x ≥ 10) is predicted to increase with range as: 

 ( )            
    (2.19) 

 

The above will be valid as long as the wave remains in the weak shock regime. Figure 

2.10 shows the geometry of the meteoroid as viewed head-on, with the strong and weak 

shock regimes and propagation considerations.  
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Figure 2.10: A head on view of the meteoroid. The grayed out area represents the region 

where the infrasonic rays will propagate downward and thus reach the observer via direct 

paths. Upward rays are not considered in this model. The plane of entry and infrasonic 

ray deviation angles are also shown. 

 

 

Far from the source, the shape of the wave at any point will mainly depend on the two 

competing processes acting on the propagating wave – dispersion, which reduces the 

overpressure and ‘stretches’ the period; and steepening, which is the cumulative effect of 

small disturbances, increasing the overpressure (ReVelle, 1974) (Figure 2.11).  
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Figure 2.11: Development of a shock front from nonlinear effects (from Towne, 1967). 

 

The precise transition, or the distortion distance, between the weak shock and linear 

regime is rather ambiguous. As per Sakurai (1964), the transition takes place when ∆p/p0 

= 10
-6

, while Morse and Ingard (1968) calculated the distortion distance (ds) to the 

‘shocked’ state as: 

   
  

    
  
  

 
(2.20) 

 

Towne (1967), however, defined the distortion distance (d’) as the distance at which the 

acoustic period decays by 10%: 

   
 

  (   )
  
  

 
  

    
  
  

 
(2.21) 

 

Thus, from (2.20) and (2.21) it follows that: 

           (2.22) 

 

      (2.23) 

 

where da is the remaining propagation distance of the disturbance before it reaches the 

observer.  

In the linear regime, equation (2.16) has to be modified to reflect the wave decay as x
-1/2

 

(Officer, 1958) by applying the correction term x
1/4 

to the numerator. Since equation 

(2.23) assumes a straight source-observer path, an additional correction term, also needs 
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to be applied to account for a non-uniform (i.e. refracting) ray path (Pierce and Thomas, 

1969), taking         (   ) : 

  ( )  (
 ( )

  
)
    ( )

  ̅
   (2.24) 

 

  ̅  
∫  ( )  

  

    

       
 (2.25) 

 

     
  

   
 (2.26) 

 

where Nc is the nonlinear propagation correction term, cobs, ρobs, zobs are the sound speed, 

atmospheric density and altitude (0 if at the ground) at the observer, respectively, and ρz 

and zz are the atmospheric density and altitude at the source, H is the scale height of the 

atmosphere, while   ̅ is the average speed of sound between the source and the observer. 

Typical values for Nc as a function of height are: 

   {
       (         )
     (       )

     

 

Nc should be included only while weak shock effects are important. However, the 

correction term Nc is usually very small (~1 as shown above); the uncertainty in density is 

many more orders of magnitude greater than Nc over vertical paths (ReVelle, 1974). For 

simplicity, ReVelle (1974) set Nc = 1 since his results coming from testing actual values 

of Nc and Nc = 1 demonstrated that the correction factor indeed plays a negligible role in 

error estimates.  

While the previous section focused on the shock period and waveform shape we now turn 

to the expected overpressure (amplitude) behaviour. For shock amplitudes, Morse and 

Ingard (1968) showed that the effects of nonlinear terms compared to viscous terms are 

not negligible until ∆p is sufficiently small so that the mean free path becomes much 

greater than displacements of particles due to wave motion. Thus, the following equation 
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applies to ‘shocked’ acoustic waves (Morse and Ingard, 1968) at distances far from the 

source: 

   

  
  (

   

   
) (

   
 

  
 
)  

  (
  

      
)   (2.27) 

 

where ps is the pressure amplitude of the ‘shocked’ disturbance, λ is the wavelength of 

the ‘shocked’ disturbance, and δ is defined as: 

   [
 

 
     (

   

  
)] (2.28) 

 

Here μ is the ordinary (shear) viscosity coefficient, ψ is the bulk (volume) viscosity 

coefficient, K is thermal conductivity of the fluid, while CP is the specific heat of the 

fluid at constant pressure. The term ps
2
 in equation (2.27) is due to viscous and heat 

conduction losses across entropy jumps at the shock fronts, while ps is due to the same 

mechanisms, but between the shock fronts (ReVelle, 1974). A more compact version of 

equation (2.27), represented in terms of coefficients A and B is given by: 

 

     (   
     )   (2.29) 
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 (2.30) 
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 (2.31) 

 

     ( )      ( ) ( )
      (2.32) 

 

The above expression (eq. 2.32) is a valid approximation if the density ratio across the 

shock front does not significantly exceed a value of unity, which is applicable in the 

regime far from the source, where ρ/ρ0 ≤ 1.5 (for x ≥ 1, Plooster, 1968). It should be 
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remarked that the original weak shock treatment was developed for an isothermal 

atmosphere; however, a more realistic, non-isothermal case is shown here. 

As mentioned earlier, distortion and dispersion are two competing mechanisms which 

affect the wave shape; however, an assumption implicit in this theory is that the wave 

shape is known during propagation (i.e. approximately sinusoidal). Now, integration over 

the path length (s) leads to the solution to equation (2.27): 
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  ) (2.33) 

 

where it is assumed that zz ≥ z0. The generalized form of the damping factor, or 

atmospheric attenuation, for a weak shock in a non-isothermal atmosphere (ReVelle, 

1974) is given by:  

   ( )  
   

   
 

 ( )
 ( )

   ( ∫
 ( )
      

  

  
  )

   [     ( ∫
 ( )
      

  

  
  )]  

 ( )
 ( )

 (2.34) 

 

where ∆pz is the overpressure at the source height, ∆pt is the overpressure at transition 

height zt. When the condition given in equation (2.23) is satisfied (d’ > da), the absorption 

decay law for a plane sinusoidal wave, given by Evans and Sutherland (1970) takes the 

following form: 

  

   
     (    ) (2.35) 

 

where ∆s is the total path length from the source (∆s ≥ 0), and   is the total amplitude 

absorption coefficient. In general: 

                     (2.36) 

 

where   ,   ,   ,      ,      are viscosity, thermal conductivity, diffusion, radiation 

(collectively referred to as Stokes-Kirchhoff loss) and molecular relaxation absorption 
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coefficients, respectively. Since diffusion losses have a very small contribution, only 

about 0.3% of the total (Evans et al., 1972; Sutherland and Bass, 2004),    can be 

ignored (ReVelle, 1974). In his treatment, however, ReVelle (1974) also excluded the 

effects of       and     . Furthermore, the possible effects of turbulent scattering on 

wave amplitude are also excluded, even though it may at times be even more important 

than      and      for frequencies < 10 Hz. A more modern treatment for atmospheric 

absorption can be found in Sutherland and Bass (2004). It should be remarked that 

molecular vibration by nitrogen will be dominant at very high altitudes (> 130 km), thus 

for meteors (which ablate typically below 120 km) it can be neglected.  

The functional form of the total amplitude absorption coefficient (Morse and Ingard, 

1968) as a function of height is given as: 

 ( )  
  

  ( ) ( ) 
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) (2.37) 

 

where ω is the angular frequency of the oscillation (     ). Therefore, the generalized 

form of ReVelle’s (1976) damping function for a linear wave is given by: 

  ( )  
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  ) (2.38) 

 

Note that the integration limits in equation (2.38) are from the transition height (weak-to-

linear) down to the observer. The final correction term, accounting for variations in 

atmospheric density (Pierce and Thomas, 1969) is as follows: 

  ( )  
  

 ( )
(

  

 ( )
)
 

 (2.39) 

 

Before concluding this section, an additional comment should be made about the choice 

for initial amplitude (∆pz) by revisiting the coefficients YC and YD, mentioned earlier. 

Using data from exploding wires to evaluate the cylindrical line source, Plooster (1968; 

1970) used these coefficients to match the experimental results.  
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The functional form of f(x) (equation 2.15) including YC and YD can be expressed as: 
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 (2.40) 

 

A high value of YD implies that the rate of internal energy dissipation is low, thereby 

leaving more energy available for driving the leading shock (Plooster, 1968). Table 2.2 

includes all values for YC and YD found for a variety of initial conditions (Plooster, 1968).  

 

Table 2.2: A summary of initial conditions, YC and YD as found by Plooster (1968). The 

values for low density gas were not established (Plooster, 1968). The last column 

represents the values of ∆pz extrapolated to x = 10. It should be remarked that the 

published value of 0.563 p(z) in ReVelle (1976) refers to the ∆pz at x = 1. *The value of 

∆pz as determined by Jones et al. (1968) is included for the sake of completeness.    

Initial conditions YC YD 

Nonlinear to 

weak shock 

transition 

∆pz at x = 10 

Line 

source 

Constant density 

Ideal gas 
0.70 1.0 < 7 0.0805 p(z) 

Isothermal 

cylinder 

Constant density 

Real gas 
0.70 0.66 < 7 0.0680 p(z) 

Isothermal 

cylinder 

High density gas 

Ideal gas 
0.95 1.61 > 2 0.0736 p(z) 

Isothermal 

cylinder 

Best fit to 

experimental data 
0.95 2.62 ≥ 3 0.0906 p(z) 

Isothermal 

cylinder 

Low density gas 

Ideal gas 

no determination 

made 
-- -- 

Lightning* -- 1.00 1.0 10 0.0575 p(z) 

 

 

At very large distances from the cylindrical line source, where R >> L (where L is the 

line source path length), the source will appear spherical in nature. It is also at these 

longer ranges that the wave structure is more dependent on atmospheric variations rather 

than line source characteristics (ReVelle, 1974).  
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Having reviewed the basic foundation of ReVelle`s cylindrical line source blast theory of 

meteors we note that the theory predicts expected amplitudes and periods given 

knowledge at the source of the energy released per unit path length and source height. 

Chapters 5 and 6 will be devoted to validating this theory with emphasis on areas where 

the theory produces robust results in agreement with observations and vice versa.  
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Chapter 3 

3. An Estimate of the Terrestrial Influx of Bolides From 

Infrasonic Measurements 

 

A version of this chapter has been published as: 

Silber, E.A., ReVelle, D.O., Brown, P.G., Edwards, W.N. 2009. An estimate of the 

terrestrial influx of large meteoroids from infrasonic measurements. Journal of 

Geophysical Research: Planets (1991–2012), 114(E8) 

 

3.1 Introduction 

The flux of meter to tens of meter-sized meteoroids in near Earth space is poorly known. 

It is near this size threshold (below 100m) where impactors may penetrate the atmosphere 

and crater the Earth’s surface (Bland and Artemieva, 2003) and where impact effects may 

result in localized climate perturbations (cf. Toon et al., 1997).  More generally, the flux 

of meter-class meteoroids is critical to dating young planetary surfaces and understanding 

the delivery mechanisms of meteoroids from the main asteroid belt, as, for example, it is 

in the size range of meter to tens of meters where the Yarkovsky drift effect is most 

significant (Farinella et al., 1998). The most comprehensive measurement of the 

meteoroid flux in this size range to date by Brown et al. (2002) examined satellite data of 

light flashes produced by the disintegration of meter-sized objects in the Earth’s 

atmosphere. This analysis, however, was dependent on assumptions about both the 

spectral distribution and efficiency of light production which are uncertain. More 

recently, Harris (2008) has produced estimates of the flux of 10m and larger near Earth 

objects from telescopic survey data. The new Harris (2008) analysis suggests a dip of as 

much as one order of magnitude in the population relative to a constant power-law 

extrapolation (as presumed by Brown et al. (2002)) in the few tens – 100m size range. 

Both of these studies have (generally different) built-in assumptions which would make 

another, independent estimate of the flux in this size regime desirable.  
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Here we make use of the acoustic waves produced by large meteoroid impacts over a 13 

year study period to estimate the influx rate for meter-sized and larger meteoroids. 

Meteoroid impacts produce infrasound, low frequency acoustic waves below the 

frequency threshold of human hearing (~20 Hz) and above the Brunt-Väisälä frequency 

of the atmosphere ~10
-3

 Hz. These waves are of special interest as attenuation in the 

atmosphere at these frequencies is low and hence the waves can be detected over large 

distances, approaching global scales at the lowest frequencies corresponding to large 

explosive sources. It is also possible to estimate the source energies for fireballs using 

acoustic records alone (Ceplecha et al., 1998). Our data set consists of historical 

detections of airwaves from 10 large fireballs made by a global network of 

microbarometers operated by the U.S. Air Force Technical Applications Center (AFTAC) 

covering the period from the early 1960s until the mid-1970s. This data set has been 

previously analyzed in part by Shoemaker and Lowery (1967), and in complete form by 

ReVelle (1997, 2001) for the purpose of measurement of meteoroid influx rates. The 

current study differs from these earlier works in that we have digitized all the original 

hardcopy records, corrected the cylindrical pen recordings to linear scales, applied 

instrument responses to the airwave signals and re-measured all signal quantities. We 

note that the major remaining unknown correction is for wind-pipe filtering; details of the 

wind-pipe design are now lost. Here we re-examine the signal processed records 

estimating yields using the original period-approach of ReVelle (1997) and independently 

apply a recent energy-amplitude relation derived from simultaneous satellite-infrasound 

measurements (Edwards et al., 2006).  

Each infrasonic array consisted of a minimum of four microbarometer pressure sensors 

(channels), placed approximately 6-12 km apart, with two distinct passbands: (i) 

Infrasonic wave band, high frequency (HF), 3 dB down at 0.04 to 8.2 Hz, and (ii) Internal 

gravity wave band, low frequency (LF), 3 dB down at periods of 440 - 44 s (ReVelle et 

al., 2008).  The global network of these stations was designed to detect large nuclear 

explosions anywhere on the planet; hence this design is well suited to global fireball 

monitoring. The AFTAC operated network differs from the currently established 

International Monitoring System (IMS), (which is under the umbrella of the 

Comprehensive Nuclear-Test-Ban Treaty (CTBT) commission) in several respects, such 
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as the setup, sampling rates, noise processing, array element separations and signal 

processing. For example, the AFTAC operated network utilized infrasonic arrays with a 

large separation of sensor elements (6-12 km) compared to the IMS network (1-3 km), 

and a comparably lower signal-to-noise ratio compared to the IMS network. The 

complete AFTAC setup was geared towards monitoring and detections of large nuclear 

explosions, predominantly occurring in the atmosphere and yielding low frequency 

infrasound, while the IMS network is designed to detect lower yield explosions under 

ground as well as in the atmosphere with a correspondingly higher infrasonic frequency 

range. In short, the historical infrasonic records that come from the AFTAC operated 

network are profoundly unique and fundamentally different from those coming from the 

presently operated IMS network. More details of the AFTAC network, areal coverage 

and instruments can be found in ReVelle (1997). Our current analyzed data set consists of 

HF detections only, although the LF data exists and were fully digitized as well. 

We note that this data set is unique in that it covers a long time period (13.67 years) and 

has several large energy events, the detection of which set useful limits to the influx for 

larger (10m) meteoroids. One event is of particular interest, it occurred off the coast of 

South Africa on  3 August, 1963, originally estimated by ReVelle (1997) at ~1100 kt 

TNT (1 kt TNT = 4.185x10
12

 J). Our flux values will necessarily be lower limits as not 

all fireball events detected by the AFTAC network have been made available for analysis 

and only relatively deeply penetrating fireballs produce significant infrasound.  

 

3.2 Reduction Methods and Analysis 

All original waveforms were recorded to strip-chart paper as well as on magnetic tape at 

the time of observation, with events being identified in real-time by station operators who 

noted increased cross-correlation among a given station’s microbarometers. A total of ten 

events were identified as being fireballs, nine of them with a certain confirmation by 

other techniques, such as seismic and VLF (ReVelle, 1997). The only event that did not 

have confirmation by any other technique is the South African event of 3 August 1963. 

These original chart paper records were scanned in .tiff format. Even though the scans 

were saved in high resolution, they were not in a suitable state for data digitization, as the 
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original records were contaminated with various markings, such as stamps, smudges, 

handwritten measurements and dates, all entered by the equipment operators. In almost 

all cases these markings were directly on top of a waveform, impairing the clarity of the 

signal; hence, a careful image cleaning was necessary to proceed to the next step. It is 

important to note that these scanned waveforms are very large in size (up to 84,000 

pixels), limiting the choice of image manipulation software which would be capable of 

efficiently handling the clean-up procedure. For this purpose we used the open LINUX 

software program Gimp, as it can facilitate large file handling and seamless computer 

resource management (all raw waveforms can be found in the auxiliary material
1
).  

Once cleaned, the images were saved in their native form (.tiff) for archiving and further 

processing. Several MATLAB
®

 programs were written for post-processing. For example, 

it was necessary to correct for the cylindrical pen and ‘straighten’ the signal for all 

records except for events recorded in 1971 and 1972, as those were already recorded 

digitally. Figure 3.1 shows a representative example of the raw waveform as scanned 

from the paper record, and the corresponding example of this ‘straightening’, for channel 

1 of the 2 Nov 1960 event.  

                                                 
1
 Auxiliary material is available at: 

http://aquarid.physics.uwo.ca/infra_pub/2009je003334/Supplemental_material/  

http://aquarid.physics.uwo.ca/infra_pub/2009je003334/Supplemental_material/
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Figure 3.1: Channel 1, 2 Nov 1960: (a) A representative example of the segment of the 

raw waveform as scanned from the original paper record, and (b) cleaned and 

straightened (corrected for the cylindrical pen) corresponding segment of the waveform. 

At this point, the cleaned and straightened waveform is subjected to further processing in 

order to produce a final, digitized waveform which is as close as possibly attainable to the 

original one. 
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The final stages of the process generated fully digitized waveforms which are identical to 

that of the scanned original. Once this was achieved, the calibration based on the original 

paper records was applied to each waveform. This calibration consisted of three main 

components: (i) the gain setting correction, (ii) the amplitude scaling, and (iii) the 

sampling rates. An example of the finalized fully digitized and calibrated waveform for 

channel 1 of the 2 November, 1960 event is shown in Figure 3.2. 

 

Figure 3.2: A fully digitized waveform of the 2 November, 1960 event, channel 1: this is 

the same segment as in Figure 3.1, now fully digitized and calibrated. 

 

From these digitized records, we verified that the original measurements made by 

ReVelle (1997) were reproducible to within pen width uncertainty which (with the 

exception of some transcription errors) was generally found to be the case (Table 3.1 

contains all measurements of the original digitized and calibrated waveforms). The digital 
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waveforms then had the instrument response of the microphones applied (Flores and 

Vega, 1975) and a final best estimate for the original waveform was produced.   

 

Table 3.1: Summary of all ten bolide events from the historical data set, sorted by date. 

The data includes the measurements of the digitized and calibrated original waveforms: 

maximum peak-to-peak amplitude, the period at maximum amplitude and the standard 

deviation of the period. 

 

 

Event date Channel

Digitized 

Peak to 

peak 

amplitude 

(Pa)

Digitized 

Period at 

maximum 

amplitude 

(s)

Digitized 

Period 

Standard 

Deviation 

(s)

Event date Channel

Digitized 

Peak to 

peak 

amplitude 

(Pa)

Digitized 

Period at 

maximum 

amplitude 

(s)

Digitized 

Period 

Standard 

Deviation 

(s)

3-Aug-1963 JB-1 0.23 35.29 1.83 14-Apr-1972 GE-4 0.14 6.65 0.72

3-Aug-1963 JB-2 0.15 25.49 1.05 14-Apr-1972 FH-1 0.07 7.33 2.39

3-Aug-1963 JB-3 0.16 25.49 1.05 14-Apr-1972 FH-2 0.02 6.87 0.99

3-Aug-1963 JB-4 0.14 25.49 1.05 14-Apr-1972 FH-3 0.10 9.03 2.31

3-Aug-1963 PB-1 0.21 40.51 2.10 14-Apr-1972 FH-4 0.13 7.46 2.64

3-Aug-1963 PB-2 0.23 37.55 1.01 14-Apr-1972 GK-1 0.49 13.18 3.43

3-Aug-1963 PB-3 0.19 37.24 5.70 14-Apr-1972 GK-2 0.49 11.50 0.50

3-Aug-1963 PB-4 0.29 46.71 4.89 14-Apr-1972 GK-3 0.69 14.29 0.22

31-Mar-1965 MF-1 0.20 15.44 1.67 14-Apr-1972 GK-4 0.59 12.83 2.23

31-Mar-1965 MF-2 0.21 15.72 2.45 14-Apr-1972 GS-1 0.19 21.06 3.80

31-Mar-1965 MF-3 0.21 11.27 1.97 14-Apr-1972 BO-1 1.27 15.36 1.70

31-Mar-1965 MF-4 0.20 15.24 1.05 14-Apr-1972 BO-2 1.21 10.20 1.32

31-Mar-1965 PD-1 1.23 13.86 1.32 14-Apr-1972 BO-3 0.60 11.82 0.44

31-Mar-1965 PD-2 0.65 13.12 1.68 14-Apr-1972 BO-4 0.28 9.84 4.27

31-Mar-1965 PD-3 1.76 14.40 1.63 2-Nov-1960 TD-1 0.24 8.23 0.91

31-Mar-1965 PD-4 1.75 13.28 1.52 2-Nov-1960 TD-2 0.23 9.98 3.65

12-Jun-1966 FH-1 0.12 8.59 1.13 2-Nov-1960 TD-3 0.16 7.98 1.64

12-Jun-1966 FH-2 0.12 6.79 0.34 2-Nov-1960 TD-4 0.22 9.84 3.83

12-Jun-1966 FH-3 0.10 7.37 0.27 26-Sep-1962 SS-1 0.09 12.84 1.20

12-Jun-1966 FH-4 0.12 7.99 1.04 26-Sep-1962 SS-2 0.06 17.76 2.21

12-Jun-1966 GE-1 0.11 11.70 0.80 26-Sep-1962 SS-3 0.11 27.47 3.15

12-Jun-1966 GE-2 0.11 8.47 0.84 26-Sep-1962 SS-4 0.06 8.73 1.70

12-Jun-1966 GE-3 0.11 9.48 0.97 27-Sep-1962 DC-1 0.59 8.89 0.99

12-Jun-1966 GE-4 0.06 10.59 1.07 27-Sep-1962 DC-2 0.66 16.49 3.20

12-Jun-1966 MF-1 0.06 7.98 2.17 27-Sep-1962 DC-3 0.48 9.21 0.73

12-Jun-1966 MF-2 0.07 6.45 0.64 27-Sep-1962 DC-4 0.50 13.36 5.73

12-Jun-1966 MF-3 0.06 7.96 0.95 30-Nov-1964 PB-1 0.54 6.89 1.18

12-Jun-1966 MF-4 0.06 7.36 0.43 30-Nov-1964 PB-2 0.42 8.55 0.40

12-Jun-1966 RW-1 0.24 6.63 0.55 30-Nov-1964 PB-3 0.23 8.26 0.92

12-Jun-1966 RW-2 0.27 7.06 0.45 30-Nov-1964 PB-4 0.33 7.80 1.26

12-Jun-1966 RW-3 0.25 6.78 0.07 3-Jan-1965 KP-1 0.12 5.38 1.24

12-Jun-1966 RW-4 0.28 6.60 0.51 3-Jan-1965 KP-2 0.15 6.02 0.91

14-Apr-1972 GE-1 0.53 8.48 1.27 3-Jan-1965 KP-3 0.12 4.76 0.18

14-Apr-1972 GE-2 0.10 8.77 0.20 3-Jan-1965 KP-4 0.12 4.71 1.22

14-Apr-1972 GE-3 0.20 8.63 0.42 8-Jan-1971 TT-4 0.06 9.46 0.29
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Figure 3.3 shows an example of this process and the instrument response function. The 

period at the maximum amplitude of the signal and peak-to-peak amplitude were 

measured on both the instrument response corrected and original waveforms for all 

station channels.  

 

 

Figure 3.3: (a) The frequency response function adopted from Flores and Vega [1975], 

with 3 dB down between 0.04 – 8.2 Hz; (b) the original digitized (dotted line) and 

corrected waveforms (solid line) superimposed. 
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To apply the empirical yield relation from Edwards et al. (2006) it is desirable to know 

the wind conditions between the source and receiver at the time of the event. Since these 

events all occurred at a time before upper wind measurements were globally available 

(except for the NASA rocket grenade network) we could only perform statistical averages 

of the wind from more recent years data over the same great circle paths from the United 

Kingdom Meteorological Office (UKMO) model atmosphere (Swinbank and O’Neill, 

1994) to estimate the original stratospheric wind field. However, we find that the average 

wind values are often smaller than their standard deviations, making wind corrections 

almost meaningless. We choose instead to use these amplitude relations without wind 

corrections with the understanding that this will necessarily produce greater uncertainty 

in the final energy estimates. We note, however, that for very large events, the previous 

work by Edwards et al. (2006) shows the wind corrections to be relatively minor for the 

largest energy events and since most of our fireballs fall into the large energy category as 

defined by Edwards et al. (2006) we expect the impact of this simplification to be minor 

in most cases.  

 

3.3 Estimating Source Energies for Fireballs 

Estimating the source energy for a large impulsive atmospheric infrasonic source 

generally relies on empirical relations derived from sources with known provenance. 

Among these, the most often cited for fireballs is the relation first introduced by ReVelle 

(1997) derived from infrasonic measurements of ground level nuclear explosions 

recorded by AFTAC. These relations make use of the period at maximum amplitude, 

which is generally more insensitive to propagation effects than amplitude only.  

These relations are: 

)1.3(1002/58.2)log(34.3)2/log( ktEPE   

)2.3(402/61.3)log(14.4)2/log( ktEPE   

Here, E is the total energy of the event (in kilotons of TNT), P is the period (in seconds) 

at maximum amplitude of the waveform, and the factor ½ is present because these 
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relations were originally derived for nuclear explosions, where 50% of the source energy 

was presumed lost into radiation. 

Most recently, Edwards et al. (2006) examined a large number of fireballs detected 

simultaneously with infrasound and by satellite measurements and found: 

)3.3(710 35.1/3335.1/)0018.058.2(3
ktEARE hv




 

)4.3(710 74.1/3374.1/)0177.036.3(3
ktEARE hv


  

where E is the energy yield of a bolide (in tons of TNT) (presumed to be larger than 7 kt 

TNT in equation (3.3) and less than 7 kt TNT in equation (3.4)), R is the range to the 

bolide (in km), A is the maximum peak-to-peak amplitude (in Pa) and vk is the source – 

receiver wind speed (in m/s). Since it is unclear which of these relations is most 

applicable to fireballs, we use all approaches in the next section to derive energy and 

recurrence intervals. 

 

3.4 Results and Discussion 

We performed several energy calculations on digitized original and response function 

corrected waveforms, including applying the original AFTAC relations (3.1), (3.2), and 

the empirical relation equations (3.3) and (3.4) (Edwards et al., 2006). As previously 

mentioned, all events, except for the 3 August 1963 event, were reliably detected by 

methods and instruments (ReVelle, 1997) other than just infrasound. For the 3 January 

1965 event, because the signal is concentrated at such a high acoustic frequency where 

the relationship between period and yield is less sensitive to meteorological conditions 

and the range is very low, the yield is believed to be known most reliably of all the events 

in our data set. This event was subsequently used as a check on the AFTAC energies to 

scale all other events by adding a correction factor to the AFTAC period relation (3.1). 

This method reduced kinetic energy estimates of the corrected waveforms by 

approximately one half, but did not produce a significant change to the slope of the 

cumulative number vs. energy meteoroid flux profile. 
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There are 14 distinct AFTAC stations included in the data we have used. Generally few 

explosions are recorded by many stations, particularly at lower energies. This is because 

the propagation and detection of infrasound depends on signal attenuation, upper 

atmosphere wind conditions, time of the day and local noise, all of which vary 

dramatically from site to site. For comparison, the current IMS network  is designed  

generally to have a minimum two-station detection of a one kt explosion anywhere on 

Earth (Christie, 2007), but this is with 60 stations and modern digital instruments and 

signal processing. A detailed analysis of the AFTAC network sensitivity as a function of 

yield and wind conditions was performed by AFTAC during the operational years of the 

network. That system sensitivity bias is shown in Figure 3.4 and forms the basis for our 

flux corrections. Note that the probability is shown for a two-station detection where the 

range to the fireball would be unambiguously resolved with the infrasound measurements 

alone. We emphasize that the current fireball data set is only a portion of the total 

AFTAC fireball data set; some events are not included and we expect others may not 

have met the detection thresholds discussed earlier. As such, our flux values should be 

considered lower limits. 
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Figure 3.4: AFTAC: Infrasonic probability of detection as a function of yield and the 

time of year, derived for low altitude nuclear explosions and with detection declared 

using two or more infrasonic arrays (ReVelle, 1997). Winter and summer seasons are 

defined as Oct 16 – March 14 and May 16 – Aug 14 each year, respectively. Events 

falling between these dates, during times of the stratospheric wind jet transition used 

interpolated versions of the probability. 

 

The total collection duration of the AFTAC network was 13.67 years and using the 

percent coverage of Earth (Figure 3.4) as a function of yield, season and hemisphere 

(ReVelle, 1997), we computed an  equivalent time-area collection product which together 

with our infrasound derived source energies produces an equivalent meteoroid flux at the 

Earth. Our final results are shown in Figure 3.5. Note that the range to each event is 

determined by the great circle intersections from two or more stations – range errors are 

typically of the order of a few hundred kilometers at most and form a negligible 

contribution to the overall error in flux estimation. Here we exhibit the difference 

between our computed influx rate using the AFTAC – period relation and the empirical 

source energy estimate from Edwards et al. (2006) appropriate to each event depending 
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on whether it had E > 7 kt or E < 7 kt. Note that we include for comparison various other 

flux estimates from telescopic surveys of near-earth objects, satellite measurements of 

fireball light flashes in the Earth’s atmosphere and scaling from lunar crater statistics. 

The errors for our measurements are shown for each point and reflect counting statistics 

(error in ordinate) as well as the standard deviation in measured energy due to station and 

individual channel differences (error in abscissa).  

Events recorded by two or more stations generally show noticeable variations in 

estimated energy – this may due to the source shock wave originating from different 

locations along a bolide’s trajectory, variations in meteorological conditions along 

differing source-receiver paths, and factors such as local noise and seasonal variations. 

Consequently, these events are averaged across all stations and channels to give a single 

kinetic energy estimate (Table 3.2) per event. We have also computed the mean 

infrasonic signal speeds between the bolides and each receiving station for which we 

have location information and find the signal speeds to range from 258.9 – 341.2 m/s, 

consistent with stratospheric ducting in almost all cases (cf. Ceplecha et al., 1998). As 

stratospheric signal arrivals are presumed for both energy relations, this implies that the 

energy estimates are internally self-consistent. 
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Figure 3.5: Cumulative influx curve showing data from a global debiasing of all 

telescopic surveys (Harris, 2008), and from individual detailed debiased flux values from 

the Spacewatch and NEAT programs (Rabinowitz et al., 2000). Also shown are the 

equivalent impact flux inferred from lunar cratering data (Werner et al., 2002) and from 

satellite observed bolide impacts in the atmosphere (Brown et al., 2002) as well as the 

power law fit and extrapolation for these data (solid black line with N=3.7E
-0.90

). The 

NASA 2003 NEO Science Definition Team report estimated flux is shown and is well 

represented by a relationship of N=2.4E
-0.79

 (Stokes et al., 2003). Note that this power law 

is an extrapolation from larger (km-sized) NEOs. Our two new sets of data points from 

the digitized historic bolide data set using: i) the AFTAC energy-period relation 

(ReVelle, 1997) using periods derived in this work (labeled AFTAC – period 2008), and 

ii) the empirical relation using signal amplitudes (Edwards et al., 2006) are shown for 

comparison. 
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Table 3.2: Summary of all ten bolide events from the historical data set, sorted by date. 

The back azimuth entered as n/a indicates this information is not published for a 

particular station. We include results for two methods of source kinetic energy 

estimation: i) AFTAC period-energy relation (ReVelle, 1997), where equation (3.1) was 

applied to all bolide events except for the 3 August 1963 event, and equation (3.2) to the 

latter; and ii) empirical relation for E > 7 kt and E < 7 kt, where appropriate, from 

(Edwards et al., 2006). These results are based on digitized and instrument response-

corrected waveforms. For multi-station events, kinetic energy is averaged across all 

stations and channels.  Error estimates in the final energies are based on the spread in 

measurement errors. Signal velocities for the 12 Jun 1966 fireball are below that expected 

of stratospheric returns at two stations. It is possible either thermospheric returns or 

strong counter-wind returns are responsible. 

 

Event date Station

Back 

Azimuth 

(deg)

Great 

Circle 

Range 

(km)

Signal 

velocity 

(m/s)

Empirical 

Relation 

(kt)

AFTAC 

Period-

Energy 

Relation (kt)

2-Nov-60 TD n/a 4004.0 306.1 4.9549 8.4135

STDev (-) 1.9753 3.0770

STDev (+) 2.5382 4.1454

26-Sep-62 SS 173 1112.0 294.2 0.0677 81.2511

STDev (-) 0.0590 67.9152

STDev (+) 0.1004 179.5343

27-Sep-62 DC 118.7 872.7 303.0 0.4039 14.7872

STDev (-) 0.1306 11.9476

STDev (+) 0.1514 29.6139

3-Aug-63 JB 170 11282.1 298.0 1182.8468 930.2768

PB n/a 13824.0 293.5 STDev (-) 665.9478 337.3165

STDev (+) 983.2660 453.0749

30-Nov-64 PB n/a 5219.1 312.9 44.0152 9.3240

STDev (-) 29.7263 4.8407

STDev (+) 48.5490 7.6692

3-Jan-65 KP 84.1 3123.6 272.6 1.6695 1.7538

STDev (-) 0.3062 0.9263

STDev (+) 0.3318 1.4832

31-Mar-65 MF 145.8 2497.7 333.0 135.3897 39.7627

PD 196.8 3497.1 303.6 STDev (-) 88.9490 2.2432

STDev (+) 142.9545 2.3356

12-Jun-66 FH 60.6 4828.0 6.0986 5.2929

GE 77.4 6678.8 258.9 STDev (-) 1.7123 0.7829

MF 222.5 4425.7 335.3 STDev (+) 2.0424 0.8735

RW n/a 2896.8

8-Jan-71 TT n/a 13892.0 15.2560 8.0222

STDev (-) n/a n/a

STDev (+) n/a n/a

14-Apr-72 GE 220.6 3701.5 293.8 393.7589 21.5462

FH 236.4 5471.8 294.2 STDev (-) 369.8045 12.6370

GK n/a 7805.3) 316.5 STDev (+) 917.7597 21.7458

BO n/a 4345.2 341.2
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In general, the two different approaches produce flux values which are in agreement 

within error. It is notable that the flux estimates agree best with all other techniques in the 

lower energy ranges (a few kilotons and smaller) where number statistics are the best. 

However, the significant feature of this influx curve is the relatively high predicted 

impact flux at the Earth for ~10-20 m diameter objects, independent of the choice of yield 

relation.  

Caution must be exercised in interpretation at this high energy end – only a few events 

contribute to each of these points and errors in energy estimates in some cases span an 

order of magnitude. Among these is the Revelstoke fireball of 31 March 1965. Our 

energy estimates of 40 – 140 kt are order of magnitude consistent with those of 

Shoemaker (1983) who suggested 20 kt and by ReVelle (2007) whose entry modeling 

predicts energy of 13 kt. Most critical to the flux at the high end is the energy estimate for 

the 3 August 1963 bolide, the most energetic event in this data set. Depending on the 

method used, source energies range from 540 – 1990 kt, which broadly agrees with the 

recent estimate of 1100 kt (ReVelle, 1997). Shoemaker (1983) estimated this event to 

have an energy of 500 kt, while Edwards et al. (2006) found an energy of 270 ± 90 kt; 

both of these earlier estimates used the instrumentally uncorrected waveforms, having 

smaller amplitudes and lower periods than the corrected versions we employed, and 

hence are extreme lower limits. Even accounting for possible uncertainties due to upper 

air winds and variations in the observed period of the waveforms, the extreme lower 

bound for this event is > 300 kT. The nature of this one bolide remains a mystery; no 

other reports exist of the effects of this large impact (as may be expected of an event 

occurring far from land in this time period) and unlike most other events in the AFTAC 

database this one did not have independent confirmation from other techniques. It 

remains possible that this event was not a bolide but rather another source.  

The discrepancy in the infrasonically estimated flux at the 5 – 20 m size range may 

reflect a systematic overestimation in source energies by our two different techniques; 

neither has been calibrated with bolides at these high energies so we are extrapolating 

from lower bolide energy estimates for the amplitude estimates and from nuclear tests for 

the AFTAC case. Furthermore, seasonal variations play a significant role in efficiency of 
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signal propagation and detection with the summer season preferentially producing lower 

energy estimates. Alternatively, the infrasonic measurements may be detecting an 

impacting population of objects not easily seen telescopically, perhaps with low albedos. 

The order of magnitude difference in apparent flux rates in this case could reflect a large 

population of darker objects. The differences in the slopes of the distributions are harder 

to explain unless asteroid albedos change substantially over a very small size range, a 

situation we view as improbable. Satellite data, however, are also most consistent with 

the telescopic flux numbers in slope and magnitude and would not be obviously biased in 

the same way as telescopic measurements by albedo properties alone. Using these two 

energy scales, if we presume the influx follows a power law (which is only very crudely 

correct), over our observed size range we find: 

)5.3(05.4 034.0578.056.0

49.0



 EN  

)6.3(49.4 055.0603.095.0

79.0



 EN  

for the empirical yield and AFTAC-period approaches respectively. Here, N is the 

cumulative number of objects hitting the Earth per annum and E is the energy in kilotons 

TNT equivalent. These relations predict approximately one 11-12 kiloton (or larger) 

impact globally per annum, roughly a factor of 2-3 higher in energy than other 

techniques. Our relations predict a megaton event once every ~15 years, approximately 5-

10 times more frequently than telescopic surveys suggest. 

 

3.5 Conclusions 

We have presented new estimates for the flux of meter – tens of meter sized objects 

impacting the Earth based on acoustic recordings made by the AFTAC infrasound 

network during the period from the early 1960s until the mid 1970s.We have digitized 

and applied corrections to the original paper analog infrasonic records of ten large 

fireballs and then applied several different yield relations, to estimate the kinetic energy 

of each event. From these energy estimations and coverage estimates of the original 

AFTAC network, we have estimated the global meteoroid influx of meter- tens of meter 
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sizes. Our findings suggest a shallower slope of cumulative number vs. energy than is 

found from either satellite observed fireball flashes in the terrestrial atmosphere or fluxes 

inferred from telescopic surveys.  

Much of this difference is due to the very high inferred flux rate at the largest sizes 

produced due to inclusion of a single event, namely the 3 August 1963 fireball which 

occurred off the coast of South Africa. From examination of many different yield 

relations, application of plausible wind corrections and accounting for uncertainties in 

period and amplitude measurement we conclude that this large event is plausibly in the 

megaton yield range, with extreme lower energy bounds of ~300 kt. If this event is 

removed from our data set, our inferred cumulative influx values based on the AFTAC-

period relationship becomes N=6.5E
-0.76

, much closer to the slope of the NASA Science 

definition team study and largely in agreement within error to flux measurements made 

by satellite and telescopic surveys. Removal of the 3 August 1963 fireball from the curve 

using the Edwards et al. (2006) empirical relation does not change its slope significantly. 

While the difference in slope and intercept produced using our full data set may reflect a 

true difference in flux between the various recording techniques, it is also possible that 

this event is a statistical anomaly, a non-meteoric event or perhaps was of much lower 

energy but somehow produced a much larger acoustic signature than is typical for 

fireballs. From our measurements and presuming that the flux curve should follow a 

power law (equations (3.5) and (3.6)), we find that the largest annual impact event 

expected, would be in that 11-12 kiloton range, a factor of several higher than found with 

other techniques. However, at the upper end, a large event of a megaton would occur on 

the order of every 15 years, approximately 5-10 times more than that estimated using 

telescopic data. The underlying cause for the disparity between these data sets, 

particularly at the high end, remains unclear. 
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Chapter 4 

4. Infrasonic Detection of a Near-Earth Object Impact over 

Indonesia 

 

A version of this chapter has been published as: 

Silber, E. A., A. Le Pichon, and P. G. Brown (2011), Infrasonic detection of a near-Earth 

object impact over Indonesia on 8 October 2009, Geophys. Res. Lett., 38, L12201, 

doi:10.1029/2011GL047633 

 

 

4.1 Introduction 

Impacts of medium-sized (meter to 10s of meters in diameter) Near Earth Objects 

(NEOs) at the Earth may cause physical damage at ground level (e.g. Chapman and 

Morrison, 1994) and could perturb climate on regional scales (Toon et al., 1997). 

However, the impactor size at which these effects begin to occur is poorly understood 

from models (Artemieva and Bland, 2003) with little constraining observational data (cf. 

Chapman, 2008).  Records of significant NEO impacts are rare. McCord et al. (1995) 

reported a ~40 kT impactor detected by satellite over the Pacific on Feb 1, 1994 while 

Klekociuk et al. (2005) and Arrowsmith et al. (2008) report multi-instrumental 

observations of two different impactors with energies of 20-30 kilotons of TNT (1 kT = 

4.185×10
12

 J) occurring in the fall of 2004.  In all cases these events occurred over open 

ocean and much of the energetics information was compiled from records of satellite data 

or the associated airwaves detected by infrasonic stations. 

Infrasound is low frequency sound (<20 Hz down to the atmospheric Brunt-Väisälä 

frequency)which experiences little attenuation during propagation over large distances 

making it an excellent tool for studying distant explosive sources (Hedlin et al., 2002). 

Among the phenomena which have been detected and extensively studied with 
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infrasound are fireballs (bright meteors) (ReVelle, 1976, 1997; Brown et al., 2002a). 

Fireballs are produced by large meteoroids which may penetrate deep into the atmosphere 

and may generate a cylindrical ballistic shock wave and a quasi-spherical ablational 

shock during their hypersonic passage, which decays to low frequency infrasonic waves 

that propagate over great distances (Bronsthen, 1983; ReVelle, 1976; Edwards, 2010; Le 

Pichon et al., 2002a, Brown et al., 2002; Brown et al., 2003). Infrasonically detected 

impacts can provide a valuable tool in estimation and validation of the influx rate of 

meter sized and larger meteoroids (Brown et al., 2002; Silber et al., 2009), as well as 

trajectory and energetics information for interesting events which otherwise lack such 

data (e.g. the Carancas crater forming impact in Peru in 2007 (Brown et al., 2008; Le 

Pichon et al., 2008)). Here we present evidence that a significant NEO impact occurred 

on 8 October, 2009 over Indonesia based primarily on infrasound recordings of the 

infrasonic wave detected across the globe; our analysis suggests that this may have been 

one of the most energetic impactors to collide with the Earth in recent history. 

On October 8, 2009 at 2:57 UT (10:57 a.m. local time), thunder like sounds and ground 

shaking were reported near the city of Bone, South Sulawesi, Indonesia (Surya News
[1]

). 

Local eyewitnesses also reported the aftermath of an atmospheric explosion, describing a 

thick gray-white dusty smoke trail in the sky (Surya News
[2]

), which was also captured on 

amateur video (You Tube
[3]

). The video shows a smoke trail consistent with other fireball 

dust trails, such as the Tagish Lake fireball (Hildebrand et al., 2006), probable 

confirmation of the meteoric nature of the event. According to the Jakarta Globe
[4]

 news 

report there was one casualty; a nine year old with an underlying heart condition who was 

terrified by the explosion and went into shock. Several houses were also damaged in 

Bone’s Panyula village, while the police department in Bone received numerous calls and 

reports of unusual audible sounds as far as 11 km away from Latteko, Bone district, 

South Sulawesi (The Jakarta Globe
[5]

). Thomas Djamaluddin, head of the Lapan Center 

for Climate and Atmosphere Science, confirmed that the blast was caused by an 

extraterrestrial object (The Jakarta Post
[6]

). Motivated by these initial reports, we 

undertook a detailed examination of infrasonic records of all International Monitoring 

System (IMS) infrasound stations to search for possible signals from the airburst.  
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4.2 Data Collection and Analysis 

We were able to examine waveform data from 31 infrasound stations in the IMS network, 

which is operated by the Comprehensive Nuclear-Test-Ban Treaty Organization 

(CTBTO) and consists in part of 43 globally distributed infrasonic stations to detect 

nuclear explosions (CTBTO web: http://www.ctbto.org). Infrasonic data were analyzed 

for probable signals associated with the fireball using the Progressive Multi-Channel 

Correlation Method (PMCC) (Cansi, 1995) (Figure 4.1). PMCC is sensitive to coherent 

signals with very low signal-to-noise ratio (SNR) and has been successfully employed in 

searching for infrasound from other large bolides (e.g. Arrowsmith et al., 2008). It 

searches for coherent signals in frequency and time windows and selects detections of 

similar parameters to identify ‘families’ (e.g. Brachet et al., 2010). In total 17 positive 

detections were identified, using the approximate location (4.5°S, 120°E) and timing 

from media reports and expected typical stratospheric propagation speeds as a guide to 

isolate the  signal arrival on each array. The signal was remarkable in that: (i) it was 

detected by many infrasonic stations, some at extreme ranges (>17 000 km); and (ii) it 

had substantial signal energy at very low frequencies, consistent with a source of very 

high energy. Table 4.1 summarizes findings signal properties from all detecting stations.  

To ensure robustness of our period estimates, the dominant period was obtained via two 

independent techniques using the same bandpass. The dominant period at maximum 

frequency was acquired from the residual power spectral density (PSD) of the signal 

alone, and the maximum peak-to-peak amplitude was determined by measuring the zero 

crossings of the stacked waveform at each station (cf. ReVelle, 1997). This methodology 

is robust in itself, as the periods obtained using these two techniques agree to better than 

10% in all cases.  

Using the nine closest stations it was possible to perform a source geolocation (Figure 

4.2). The location of the signal was computed using an inverse location algorithm based 

on Geiger’s approach (1910) modified in order to also take station azimuth into account 

(see Coleman and Yi, 1996 for details of this method).  
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Figure 4.1: An example of the bolide infrasound signal observed at I13CL (27.13°S, 

109.36°W, Easter Island), 13 636 km from the source. The top window is the best 

estimate for the signal back-azimuth in the direction of maximum F-statistic (a measure 

of the relative coherency of the signal across all array elements in any particular window; 

essentially an SNR measure for coherent signals), the second window represents the 

apparent trace velocity of the acoustic signal across the array in the direction of the peak 

F-stat, while the third window is the raw pressure signal for one array element 

bandpassed according to the chosen frequency combination, shown in the boxes of the 

lower plot.  
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Figure 4.2: Map showing the intersection of infrasound bearings. Left: map showing nine 

closest stations; Right: area of uncertainty, geolocation ellipse. The uncertainties account 

for both propagation effects and measurement uncertainties. The best fit solution is 

obtained using the nine stations closest to the main burst. In order to determine the 

location errors, the 95% confidence ellipses are estimated by repeatedly running the 

linearized least-squares inversion with arbitrary sub-sets of the input data within ±10° and 

±30 m/s ranges of uncertainties for the azimuths (azimuths are not wind corrected) and 

celerity, respectively. 

 

4.3 Estimating the Blast Radius and Source Energy 

There are several empirical relations, relying on either the period at maximum amplitude 

or range and signal amplitude, which can be utilized in estimating source energy for 

bolides from infrasound measurements (Edwards et al., 2006). Typically, infrasonic 

period is less modified during propagation than amplitude (cf. Mutschlecner et al., 1999; 

ReVelle 1997; ReVelle 1974) and thus the period relationship is expected to be more 

robust. The Air Force Technical Application Centre (AFTAC) period-yield relations 

which are commonly used for large atmospheric explosions, are given by ReVelle (1997), 

as: 

)1.4(1002/58.2)log(34.3)2/log( ktEPE   

)2.4(402/61.3)log(14.4)2/log( ktEPE   



98 

 

 

 

Here, E is the total energy of the event (in kilotons of TNT), P is the period (in seconds) 

at maximum amplitude of the waveform. Infrasound for a given bolide event in general 

shows a large variation in observed periods from different stations (Silber et al., 2009; 

ReVelle et al., 2008; Edwards et al., 2006). The exact origin of this variation is not well 

known; large (Mton) nuclear explosions, for example, do not show period variances as 

large as we find for bolides (cf. Flores and Vega, 1975). One possibility is that signals are 

arriving from different portions of the fireball trajectory. In this interpretation, the period 

measurement at each station is a 'sample' of the size of the cylindrical blast cavity at that 

particular segment of the trail (ReVelle 1974) having an acoustically accessible path to 

the receiver. With this working hypothesis, we have developed a novel technique to 

correlate the observed period to a most probable source height and compute the 

equivalent size of the bolide blast cavity at that height and therefore synthesize the blast 

radius as a function of height from observations across multiple stations.  

As an initial step, we performed ray tracing to obtain the most likely source height as 

observed by the five closest stations, situated within 5 000 km from the event. The 

InfraMap ray tracing package (Norris and Gibson, 2001) was used to find all eigenrays 

reaching the given station for source heights extending from 15 – 55 km in 5 km 

increments at the bolide source location. The eigenray model results were then analyzed 

by comparing the model predictions to observed parameters, such as the celerity, range, 

arrival angle, ray height from the receiver, as well as the number density of the model 

eigenray population to establish the most likely source height  observed by each of the 

five stations with R < 5000 km. Using the bolide weak shock theory developed by 

ReVelle (1974), we then modeled the period decay to find the size of the blast cavity and 

the fundamental period at each height (Figure 4.3). The most probable heights for the five 

closest stations (up to 5,000 km range) were obtained using the InfraMap ray tracing 

package (Norris and Gibson, 2001) by shooting eigenrays from the source to the receiver 

between 15 km and 55 km in 5 km steps and comparing the results to observations. The 

discrimination parameters used to compare observations to the model are: signal celerity 

(x1), range (x2), arrival angle of the ray (x3), ray height from the receiver (x4) and the 

number density of rays at the source (x5=1/number of rays). We define the most likely 

model source height as having the smallest root mean square (Xrms) of the form:  
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Xrms = sqrt [(ax1
2
 + bx2

2
 + cx3

2
 + dx4

2
 + gx5

2
)/5]               (4.3) 

where a, b, c, d and g are the weighting constants (a=0.8, b=0.02, c=0.06, d=0.06, g= 

0.06). Since eigenrays coming from any particular source height to the receiver may take 

different propagation paths, and therefore exhibit large variation in values (from 220 m/s 

up to 340 m/s, depending whether the ray is thermospherically or stratospherically 

ducted, respectively), the most weight was assigned to signal celerities. The least weight 

was given to the range (the great circle distance) as there was the least amount variation 

in this quantity. The remaining weights were equally distributed among the remaining 

three quantities. Once a most probable height is established for each station with this 

methodology, we utilized the bolide weak shock treatment (ReVelle, 1974) to determine 

the fundamental period (τ) as well as the blast radius (R0) at the source for each height 

using only the observed period at each station and the known range to the source. The 

blast radius is the region of highly non-linear /strong shock proximal to the propagating 

meteoroid (given by R0 = E0/p = Md, where E0 is the drag force per unit trail length 

exerted on the meteoroid by the fluid, p is the ambient hydrostatic pressure, M is the 

Mach number, and d is the meteoroid diameter). The blast radius is related to the 

fundamental signal wave period via Tau = Cs/(2.81 Ro), where cs is the adiabatic speed 

of sound. The non-linear shock ultimately transitions into a weak shock (at one blast 

radii) and then decays into a linear wave. In this treatment, once the wave transitions to 

linear propagation, its period does not change; this is what is recorded by the receiver.  

Once a series of model estimated blast radii as a function of height were determined, we 

employed a numerical bolide entry model (ReVelle, 2001) to determine limits to the most 

likely source energy. 

With this blast radius as a function of height as our main constraint, we then applied the 

numerical entry model of ReVelle (2001) to model the blast radius and establish limits to 

the most probable source energy using plausible values for entry velocity, entry angle and 

compositional type. The numerical entry modeling (more details can be found in ReVelle, 

2001) includes full meteoroid ablation and fragmentation in a realistic atmosphere and 

calculates the meteoroid blast radius as a function of altitude. The model input entry 

parameters are as follows: initial bolide diameter and velocity, zenith angle, shape, and 



100 

 

 

 

porosity. As many of these parameters are unknown for the Indonesia bolide, we have 

chosen values typical for bolides in an effort to identify combinations that produce our 

derived trend in the blast radii as a function of height established using the weak shock 

treatment. The total range of input parameters that we explored using the model covered 

the following parameter ranges: 

 Initial bolide radius = 4 – 12 m 

 Entry velocity = 12 – 25 km/s 

 Zenith angle = 10 – 60 degrees 

 Meteoroid porosity = 5 – 50 % (ordinary to carbonaceous chondrites) 

Here we have explored initial bolide radii of 4 – 10 m, entry velocities from just above 

Earth escape (12 km/s) to approximately the mean entry velocity for NEAs colliding with 

the Earth (Brown et al., 2002), zenith angles from 10 – 60 degrees, while the meteoroid 

porosity range examined extended from those expected for chondritic bodies to highly 

porous carbonaceous chondrites (Britt and Consolmagno, 2003). 7000 runs were made 

using various combinations of these parameters and the resulting model predicted blast 

radius profile with height compared to Figure 4.3. From this range of input parameters we 

found the best fit to the modelled blast radius as a function of height was reproduced 

using: 

 Initial bolide radius = 6.5 – 10 m 

 Entry velocity = 12 – 20 km/s 

 Zenith angle = 20 – 40 degrees 

 Meteoroid porosity = 5 – 42 % (ordinary to carbonaceous chondrites) 

Using a bulk mass density of 3300 kg/m
3
 (Wilkinson and Robinson, 2000), we obtain an 

energy range between 8 kT to 67 kT. The results shown in Figure 4.4 are based on the 

following input values (these were used for the lowest energy estimate of 8 kT of TNT, 

shown in Figure 4.3):  

 Diameter = 6.5 m  
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 Entry velocity = 12.5 km/s  

 Porosity = 42 % 

 Zenith angle = 20 degrees 

 

 

Figure 4.3: The blast radius modeling results (where marker size is proportional to the 

model-inferred blast radius at the source). 
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Figure 4.4: Numerical entry modeling results. 

 

4.4 Results and Discussion  

The first bolide - related signal arrived at 04:39:51 UT to I39PW (Palau), the closest 

detecting station, while the latest signal arrived to I08BO nearly 15 hours later. Average 

signal celerities (defined by the ratio between the horizontal propagation range and the 

travel time) are between 0.27 and 0.32 km/s, which is consistent with stratospheric duct 

signal returns (Ceplecha et al., 1998). The geolocation ellipse, computed using azimuths 

and arrival times points to 4.9°S and 122.0°E with mean residuals of 2.9°. The source 

time estimated from this location is 02:52:22 UT with a residual of 1320 s (Figure 4.1).  

While recognizing the inherent limitation of combining periods across all stations as 

discussed earlier, for comparison with earlier bolide energy analyses we found the 
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combined average periods of all phase-aligned stacked waveforms at each station - this 

produced a global average of 14.8 seconds using zero crossings and 15.3 seconds using 

PSD analysis. This corresponds to a mean source energy of 43 kt of TNT and 48 kt of 

TNT, respectively, using the AFTAC period-yield relation (Equation 4.1). However, as 

emphasized earlier, since the periods observed by individual stations show a factor of five 

variation (Table 4.1), our new modeling technique has placed more solid constraints on 

upper and lower bounds beyond this traditional approach to energy estimation. We 

include results for two methods of dominant period measurements. First, the dominant 

period at maximum frequency was acquired from the residual power spectral density 

(PSD), where the latter was obtained by first computing the PSD of the entire signal, then 

using a series of identically sized windows before and after the signal to establish the 

background noise PSD and finally subtracting the noise from the total signal PSD. 

Second, the maximum peak-to-peak amplitude was determined by bandpassing the 

stacked, raw waveform using a second-order Butterworth filter and then applying the 

Hilbert Transform (Dziewonski and Hales, 1972) to obtain the peak of the envelope. We 

then computed the period at maximum amplitude by measuring the zero crossings of the 

stacked waveform at each station (e.g. ReVelle, 1997). Due to sensitivity thresholds and 

low SNR, it was not possible to reliably calculate the period for I26DE and I46RU. Ray 

tracing and numerical modeling for the five closest stations reveal a distinctive pattern of 

the increasing fundamental period, and consequently the blast radius, with decreasing 

altitude (Figure 4.3).  This implies that the short period signal originates in the upper 

portions of the fireball trail (50 km), while the long period signal emanates from an 

altitude as low as 15 km. This is consistent with the expected large blast cavity resulting 

from a terminal detonation/airburst and fragmentation, which typically accompany large 

bolide events. This gives us confidence that the technique is physically reasonable. We 

note that inclusion of stations more distant than 5 000 km does not change this basic 

picture, a finding we did not expect a priori given the large uncertainties in atmospheric 

propagation over paths in excess of ~5 000 km. This is consistent with the fact that 

bolides in general exhibit much more variation in the observed period (as much as factor 

of six), than spherical explosions do (factor of ~2). By matching our derived pattern of 

blast radii with height to entry modeling (Figure 4.4) we estimate the true total source 
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energy to be between 8 – 67 kt of TNT, corresponding to a chondritic object 6 – 10 m in 

diameter.  

 

Table 4.1: Station details and signal measurements summary. 

 

 

 

4.5 Conclusions 

The Indonesian bolide of 8 October, 2009, detected infrasonically on a global scale, was 

perhaps the most energetic event since the bolide of 1 February, 1994 (McCord et al., 

1995) and may have exceeded it in total energy. We have no other instrumental records 

of this event other than casual video records of the dust trail emphasizing again the value 

of infrasound monitoring of atmospheric explosive sources. Infrasonic waves from this 

bolide observed at 17 IMS stations are all characterized by very low frequency content, 

consistent with a large energy source and a large blast cavity (ReVelle, 1976).  

Our best estimate of the object’s energy (8 – 67 kt of TNT) is derived from an inferred 

blast radius pattern matched to entry modeling and suggests an object 6 – 10 m in 

diameter. Based on the flux rate from Brown et al. (2002), such objects are expected to 

Distance (km) Station ID

Latitude 

(deg)

Longitude 

(deg)

True Back 

Azimuth 

(deg)

Observed 

Back 

Azimuth 

(deg) Arrival time

Signal 

Duration 

(s)

Minimum 

Celerity 

(m/s)

Maximum 

Celerity 

(m/s)

Peak-to-

peak 

Amplitude 

via PMCC  

(Pa)

Peak-to-

peak 

Amplitude 

via 

MatSeis  

(Pa)

Period at 

max 

Amplitude  

via PSD  

(s)

2099 I39PW 7.5 134.5 230 264 04 :39 :51 1235 283 340 ... 1.57 18.22

2291 I07AU -19.9 134.3 316 318 04 :55 :46 850 287 320 2.823 3.091 6.77

3350 I04AU -34.6 116.4 7 9 05 :59 :18 1370 271 305 0.471 0.526 7.23

4920 I30JP 35.3 140.3 210 211 07 :33 :43 1280 280 302 0.642 0.6077 7.06

5009 I05AU -42.5 147.7 319 319 07 :37 :01 690 280 292 0.542 0.874 23.95

5386 I22FR -22.2 166.8 284 285 07 :45 :08 1340 290 312 0.165 0.127 6.92

5543 I45RU 44.2 132.0 196 197 08 :04 :54 1450 278 300 1.192 1.1873 14.02

7296 I46RU 53.9 84.8 222 224 09 :46 :19 1490 281 298 0.803 ... ...

7323 I44RU 53.1 157.7 141 141 09 :49 :46 2450 268 294 0.363 0.7896 15.24

8577 I55US -77.7 167.6 311 305 10 :55 :07 1060 289 299 0.168 0.145 14.06

10573 I53US 64.9 -147.9 270 270 12 :49 :47 830 291 297 0.488 0.418 11.81

11594 I26DE 48.8 13.7 80 80 14 :28 :51 185 278 279 0.04 ... ...

11900 I18DK 6.7 -4.9 350 340 14 :15 :26 1100 284 292 0.693 0.645 23.62

12767 I56US 48.3 -117.1 293 322 14 :54 :45 1520 286 292 0.765 0.764 13.03

13636 I13CL 15.3 -23.2 244 240 16 :26 :53 1310 273 281 0.618 0.606 16.43

13926 I17CI -33.7 -78.8 91 87 17 :05 :34 615 270 274 0.128 0.1347 12.04

17509 I08BO -16.2 -68.5 203 218 18 :54 :45 30 ... 305 ... 0.933 16.71
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impact the Earth on average every 2 – 10 years, while the infrasonic flux rate from Silber 

et al. (2009) suggests an impact every 5 years. Global events of such magnitude can be 

utilized to calibrate infrasonic location and propagation tools at global scale, evaluate 

energy yield formula, and event timing.  Our large uncertainty in energy for this event 

can only be refined if additional instrumental records of this unique event become 

available.  
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Chapter 5 

5. Optical Observations of Meteors Generating Infrasound – I: 

Acoustic Signal Identification and Phenomenology 

 

A version of this chapter has been submitted for a publication as: 

Silber, E. A., and P. G. Brown (2014) Optical Observations of Meteors Generating 

Infrasound – I: Acoustic Signal Identification and Phenomenology, Journal of 

Atmospheric and Solar-Terrestrial Physics, manuscript # ATP3766, in revision 

 

 

5.1 Introduction 

Low frequency sound extending from below the human hearing range of 20 Hz and down 

to the natural oscillation frequency of the atmosphere (Brunt-Väisälä frequency) is 

known as infrasound (Beer, 1974; Jones, 1982). There are many sources of infrasound, 

both natural and anthropogenic. Some examples of natural sources are ocean waves 

(microbaroms), storms, lightning, aurorae, volcanoes (Evers and Haak, 2001; Garcés et 

al., 2003a; Garcés, et al., 2003b; Rieppe et al, 1996), avalanches (Bedard and Georges, 

2000) and earthquakes (Hedlin et al., 2002; Garcés and LePichon, 2009), while some 

animal species (Payne, 1995; von Muggenthaler, et al., 2003; Günther et al., 2004) use 

infrasound for long range communication (elephants, giraffes, whales). Examples of 

anthropogenic sources are heavy machinery, mining activities, nuclear and chemical 

explosions, missile launches, helicopters, and supersonic jets (Hedlin et al., 2002). 

Infrasonic waves undergo little attenuation at ground level compared to audible sound 

because the attenuation is proportional to the square of frequency (Bass et al., 1972; 

Sutherland and Bass, 2004). This means that infrasound can be used for global 

monitoring of explosions. Since the mid-1990s the International Monitoring System 

(IMS) of the Comprehensive Test-Ban Treaty Organization (CTBTO) in Vienna, Austria, 

utilizes infrasound as one of its monitoring technologies. At present, the IMS has 45 
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certified and fully operational global infrasound stations (Christie and Campus, 2010; 

www.ctbto.org). 

Meteors are one of the most elusive sources of infrasound. When small cosmic particles, 

also known as meteoroids, collide with the Earth’s atmosphere at hypersonic velocities 

(11.2 – 72.8 km/s), they produce a wide range of phenomena, including heat, light, and 

ionization (collectively known as a meteor) as well as an atmospheric shock (Ceplecha et 

al., 1998). If a meteoroid survives its flight through the atmosphere and makes it all the 

way to the ground, it becomes a meteorite. These objects contain invaluable information 

about the dynamics and composition of the solar nebula, hence aiding in understanding of 

the early Solar System. A typical visual meteor is produced by a particle larger than 1 

mm; however, the size limit is a strong function of the entry velocity (Ceplecha et al., 

1998). 

The most famous historical example of meteor infrasound occurred on June 30, 1908, 

when a large meteoroid exploded over the Podkamennaya Tunguska River, generating an 

intense shock wave (Chyba et al., 1993). It was later discovered that infrasound generated 

during this massive explosion travelled twice around the globe and was recorded by 

microbarometers in Europe, primarily in England (Whipple, 1930). After the event, 

meteor infrasound observations became rare, only to be reinvigorated during the Cold 

War when infrasound was used to monitor nuclear explosions. It was realized however, 

that some explosive sources were not nuclear explosions, but in fact large meteoroid (1 – 

10 m in size) airbursts (ReVelle, 1997; Silber et al., 2009). A theoretical treatment 

predicting the nature of infrasound generated by meteoroids was first developed in 1974 

(ReVelle, 1974, 1976). However, the difficulty in unambiguously identifying infrasound 

produced by a particular meteor has left much of this theory unverified (e.g. Kraemer, 

1977). Recently, Haynes and Millet (2013) have adapted the Whitham sonic boom theory 

(Whitham, 1974) to produce a theoretical model to predict the overpressure and period 

from meteor shocks.  

In general, infrasound source characteristics (such as energy) are often estimated by 

purely empirical means (e.g. Mutschlecner and Whitaker, 2010); however, this process is 

of limited use for meteor infrasound where the source altitudes are very high and few 
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empirical measurements exist. Consequently, a strong need exists for a large dataset of 

meteor events with independently known speed, trajectories and energies as a first step in 

validating theoretical frameworks.  

During the late 1970s and early 1980s, there were attempts by several groups (McIntosh 

et al, 1976; Kraemer, 1977) to observe bright meteors simultaneously with optical, radar 

and infrasound instruments. In five years of observations only two events were positively 

detected (Kraemer, 1977). It was not until the inception of the IMS network that some 

well documented cases of infrasound from meteors were observed (ReVelle and 

Whitaker, 1999; Evers and Haak, 2003). More recently, several regional optical meteor 

networks emerged using modern technologies to monitor bright meteors (e.g. Oberst et 

al, 1998), resulting in an additional handful of meteor infrasound observations (Edwards 

et al, 2008). 

In most cases, meteor infrasound signals have been associated with meteors whose flight 

characteristics were poorly known, limiting the ability to validate ReVelle’s (1974, 1976) 

analytic meteor infrasound theory. In addition to validating existing models, the 

frequency of occurrence of meteor infrasound from any given location remains poorly 

known as does the diversity of the meteor infrasound source functions - either cylindrical 

(associated with the main ballistic wave) or spherical (associated with fragmentation 

event) and their relative importance. The relationship between the meteor energy 

deposition as a function of height and shock production as well as  the effects of the 

varying atmospheric conditions on meteor infrasound propagation remain only partially 

explored.  

To address these questions, we have measured a large dataset of meteors with the purpose 

of model testing and statistical studies. This has been accomplished by associating 

infrasound from meteors (also referred to as events) using optical measurements as a cue 

to search for meteor infrasound. We employed the Southern Ontario Meteor Network 

(SOMN) (Weryk et al., 2007; Brown et al., 2010) which uses integrated optical, and 

infrasound technologies to monitor, detect and measure the trajectory of bright regional 

meteor events. Between 2006 and 2011, a total of 6989 meteor events were recorded 

optically and of these 80 were also infrasonically detected. The advantage of studying 
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short range (< 300 km) infrasonic events is that these direct signals are detected before 

they undergo substantial (and sometimes poorly defined) modifications during 

propagation due to atmospheric variability.  

The specific goals of this coordinated optical-infrasound meteor study are to: (i) use 

astrometric optical measurements to positively identify infrasound from meteors; (ii) 

establish and constrain the point (and its uncertainty) along the meteor trail where the 

infrasound signal emanates; (iii) estimate the potential importance of atmospheric 

variability due to winds on meteor infrasound propagation; (iv) determine the type of 

shock production mechanism for meteor generated infrasound; and (v) classify meteor 

infrasound and correlate meteor infrasound classes using pressure-time waveforms. A 

major goal is to develop an observational foundation for future work to understand the 

underlying physical mechanisms which modify meteor infrasound signals and relate to 

sonic boom theory.  

The second paper in this study will use the results from this work as the basis to critically 

evaluate the meteor weak shock theory of ReVelle (1974; 1976) as applied to meteors 

and use photometric measurements of infrasonically detected meteors to compare masses 

derived infrasonically from photometric/dynamic measurements. 

Our paper builds upon an earlier study (Edwards et al., 2008) and extends it by using a 

large data base of optically detected meteor generated infrasound events (in the current 

study 71 vs. 12 simultaneously detected events in the earlier study). Our work also has an 

implementation of a new methodology for infrasonic signal association, verification and 

measurement and it uses an improved optical meteor astrometric measurement technique, 

hence providing better ground truth and constraints. With a larger ensemble of events we 

have also been able to develop a taxonomy of infrasound signal classification and define 

a new algorithm for determining the meteor shock source heights. Finally, this study 

takes into consideration atmospheric variations in meteor infrasound propagation and 

interpretation to constrain the uncertainty in source height.  

Our global goals in this and the forthcoming paper are to: (i) critically examine the weak 

shock theory developed for meteors (ReVelle, 1976) experimentally, (ii) use weak shock 

theory to provide a bottom up estimate (using the infrasound signal alone) of the meteor 
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blast radius and compare this with the equivalent blast radius from entry modelling as 

determined photometrically, and (iii) develop a homogenous dataset of meteor infrasound 

detections with known source characteristics (trajectory, energy, speed) for statistical 

examination of shock characteristics. Point (iii) will also allow others to test and compare 

infrasound shock models, both analytic and numerical. In the following sections, we first 

present a detailed instrumentation description of the infrasound array and cameras used in 

this study followed by our infrasound and optical measurement methodology. Our criteria 

for meteor infrasound detection and association is then developed together with a 

proposed meteor infrasound classification system. Next we discuss the identification of 

the source height for our meteor infrasound signals using a ray trace model with a Monte 

Carlo implementation of gravity waves to simulate wind variability. The final section 

presents our overall results, together with a discussion and conclusions.  

 

5.2 Instrumentation 

The first step in our study is to identify infrasound from meteors by correlating bright 

meteors detected optically with local infrasound observations. We begin by describing 

the infrasound array used in this study.  

5.2.1 Infrasound Array 

The Elginfield Infrasound Array (ELFO), situated near the town of Elginfield 

(43º.1907N, 81º.3152W, 322 m), some 20 km north of London, Ontario, Canada, is a 

four sensor tripartite (microbarograph) array, positioned in a traditional triangular 

formation with an off-centre central element (Figure 5.1).  
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Figure 5.1: (a) ELFO vault diagram; (b) plane view of the array configuration of ELFO. 

 

Since it is expected from theory (ReVelle, 1976) that infrasound from regional (< 300 km 

range) meteors will have a peak infrasound frequency in the range of ~1 Hz, the array 

element spacing was optimized for this frequency (Christie et al, 2011). Each 

microbarograph is placed in a vault designed to protect it from the elements and minimize 

temperature variations and all vaults are located in forest to reduce noise. The sensors are 

12-port Chapparals, model 2.5 made by Chapparal Physics, with a flat response (3 dB 

points) from 0.1 to 200 Hz. Three elements use 15m long porous garden hoses laid out in 

a star pattern to minimize the local wind noise (Christie and Campus, 2010), while the 

fourth element (Northwest Element) features a wind shelter, built in August 2007. A 

snow fence is installed around all elements to further reduce local wind noise. Data from 
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each element is digitized at 100 Hz and transmitted via a buried and steel armoured 

TECK cable to a centralized data system, where it is stored locally and streamed to 

Natural Resources Canada in Ottawa. A GPS antenna at each element enables timing to 

be embedded in the data stream. 

Since beginning operation on January 25, 2006, the array has been continuously 

collecting infrasound data, capturing signals produced by a number of phenomena, such 

as machinery, lightning, storms, mining activities, local explosions, etc. During the time 

period of this study, the array has experienced occasional temporary equipment issues. 

For example, the sensor at the Centre Element experienced systematic gain problems, 

where the amplitude was either higher or lower by some factor (~0.5 – 2x). In the 

summer of 2009, a delay in the sensor replacement resulted in only three functional array 

channels for a period of several months. Regular preventative maintenance visits are 

conducted in order to inspect all equipment, perform repairs (e.g. re-install snow fence) 

and replacements if necessary (e.g. garden hoses can break down due to elements or 

animal interference). 

The most prominent source of seasonally dependent persistent background noise is the 

Niagara Falls, located about 150 km NE from London. From late April to early October, 

it produces a constant coherent signal with the mean frequency of 2 Hz, which falls 

within the same frequency range as most meteors, and hence reduces detection efficiency 

during those months. Figure 5.2 shows the infrasound noise level and variation as a 

function of local time of day at ELFO during the summer of 2006. In contrast with earlier 

studies (e.g. Kraemer, 1977) which detected ~1 meteor/year, during our study we find on 

average about one optically measured meteor is infrasonically detected per month at 

ELFO. This meteor infrasound data base is particularly unique as meteor infrasound is 

correlated with meteor optical data obtained with a multi-station all-sky camera network. 

This has allowed detection of small, short-range meteor infrasound events and ensures 

robust confirmation of each meteor infrasound event based on timing and directionality 

determined from optical data as described later. 
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Figure 5.2: A power spectral density (PSD) plot for the entire array for the summer 2006 

showing the noise levels as a function of day/night hour. The average noise levels at 

ELFO at 10 Hz, 1 Hz and 0.1 Hz are ~10
-4

 Pa
2
/Hz, ~10

-3
 Pa

2
/Hz and ~10

-1
 Pa

2
/Hz, 

respectively. 

 

We note that not every meteor will produce infrasound detectable at the ground, and not 

every meteor that does produce infrasound is detected by all-sky cameras, the latter being 

limited to night-time operations under clear skies. Here we consider only those events 

which are simultaneously recorded by at least two stations of the all-sky camera network 

(thus permitting trajectory solutions) as well as having an associated infrasound signal. 

We provide average detection frequency estimates and lower energy bounds in the results 

section based on these considerations, updating the earlier work by Edwards et al (2008). 

5.2.2 All Sky Camera System 

The All-Sky and Guided Automatic and Realtime Detection (ASGARD) camera network 

is comprised of 8 stations throughout Southwestern Ontario (Figure 5.3).  

These use 8-bit HiCam HB-710E cameras with Sony Hole Accumulation Diode (HAD) 

CCDs and Rainbow L163VDC4 1.6-3.4 mm f/1.4 lenses producing all-sky views from 

each station (see Figure 5.4 for an of example all-sky view from a typical camera).  
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Figure 5.3: The locations of the All-Sky Cameras (yellow circles) of the Southwestern 

Ontario Meteor Network (SOMN). The white triangle shows the location of ELFO.  

 

 

Figure 5.4: An example of a stacked (100 frames) video image showing a meteor 

captured by one of the all sky cameras. North is shown by the arrow. This particular 

event has a long trail. Most of the events have much shorter trails and are often low in the 

horizon, where the atmospheric collecting area is largest. 
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The cameras operate with a gamma setting of 0.45. Each camera is enclosed in a 

waterproof 30cm in diameter acrylic dome, and set up to observe the entire sky (Weryk et 

al., 2007) during the night. Each site records video at 29.97 frames per second with 640 x 

480 pixel resolution, corresponding to a pixel scale of 0.2 degrees resulting in typical 

trajectory solutions on order of ~ 250 m precision. The system hardware and software are 

described in Weryk et al. (2007) and Brown et al (2010). 

The all-sky camera system uses an automated detection algorithm in real time (Weryk et 

al., 2007), triggered by bright visual meteors (brighter than -2 magnitude). Meteors of 

this brightness correspond roughly to masses ranging from 100g (at 15 km/s) to 0.1g at 

70 km/s (Jacchia et al., 1967). When a meteor is detected by two or more cameras, an 

automated astrometric solution (Table 5.1 and Figure 5.5) is also produced and saved 

together with raw video comprising 30 frames prior to and 30 frames post event. All 

stations have Network Time Protocol (NTP) calibrated time using GPS signals. For this 

study, automated astrometric solutions were used only for initial optical meteor 

association to locate infrasound detections; all final astrometric solutions were obtained 

using manual processing in IDL. 

Table 5.1: A sample output from the automated optical meteor astrometric solutions. N is 

the number of cameras detecting the event and used in the trajectory solution, Q* is the 

maximum angle between camera’s local observation planes of the meteor, shw indicates 

if the event is associated with a known meteor shower using the three letter codes from 

the International Astronomical Union (http://www.ta3.sk/IAUC22DB/MDC2007/), vel 

and err are the entry speed and error (in km/s), respectively, H_beg and H_end are the 

begin and end heights in km, respectively. 

 

date time N Q* shw vel err H_beg H_end

20131125 10:44:03 2 75.8 ... 57.4 3.9 105.5 94.1

20131125 10:33:26 3 48.2 ... 60.6 2.4 106 96.5

20131125 08:44:44 4 89.5 ... 68.6 0.7 113 89.8

20131125 08:36:05 2 48.6 ... 67.7 3.2 107.1 98.4

20131125 08:14:50 2 79.5 LEO 67.8 1.4 112.4 102.5

20131125 07:41:19 2 41.7 ... 30.4 0 87.7 72.6

20131125 07:28:17 2 24.5 NOO 44.8 1.1 95.2 81.9

20131125 06:35:39 2 57.9 NOO 40.1 1.3 89.2 76.4

20131125 03:54:53 3 74.5 ... 57.8 5 95.9 90.7

20131125 03:53:16 3 76.2 ... 60.6 0.4 108.2 86.6

20131125 03:42:27 2 13.1 ... 29 1.6 88.2 80

20131124 23:54:28 4 88.6 ... 28.4 1 99.1 65

20131124 11:24:58 2 40.6 ... 53.4 3.2 94.2 84.3

20131124 10:44:56 2 55.5 LEO 67.4 6.5 106.7 90.4
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The meteor astrometric measurements for this study are used to establish the begin and 

end points of the luminous meteor trail (latitude, longitude and height), radiant (apparent 

direction in the sky from which a meteor emanates) as well as the meteor speed at any 

point of the trajectory. These quantities are used to associate potential infrasound signals 

with meteors and identify source heights of the infrasound signal as described later. In 

this initial study we focus on astrometry, trajectory solutions and establishing the 

infrasound source height for each event. The second paper in this series presents 

photometry and entry modelling of our dataset to compare predictions of infrasound weak 

shock theory to observations. 

 

Figure 5.5: An automated trajectory solution for a meteor event recorded by three 

cameras of the ASGARD system. The top left panel shows the apparent path of the 

meteor as seen from the three different camera sites where the event was detected. The 

upper right panel shows the apparent height vs. model height of the meteor where the 

latter uses an average constant speed of 13.5 km/s - the curved lines demonstrate that the 

meteor noticeably decelerated. The bottom plots show the individual meteor picks on 

each frame projected to the meteor trail - deviations are shown from the horizontal and 

vertical relative to the best fit straight line solution in the atmosphere. 
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5.3 Methodology 

5.3.1 Astrometry 

5.3.1.1 Astrometric Plates 

To make precise measurements of the position in the sky and movement of a meteor 

detected by a camera, calibrations of the plates use known stars to establish plates which 

map x,y pixel coordinates to  local coordinates (elevation and azimuth). Since cameras 

can move slightly and lose calibration over time, for the highest degree of accuracy in 

astrometry it is helpful to ensure that the camera plates are made from stellar observations 

as close to the time of the meteor event as possible. Each camera produces a number of 

calibration images throughout the night (typically every 20 – 30 minutes) which can later 

be used for making astrometric plates. For the automated system, new plates are normally 

generated every 30 – 45 days using Meteor Analysis (METAL), in-house software 

(Weryk et al, 2007; Weryk and Brown, 2012), which uses the RedSky routine to define 

the plate (Borovička et al, 1995). The sensitivity of the cameras allows use of stars to 

magnitude +3.5 for calibration in 30 second image stacks, where the magnitude refers to 

a stellar magnitude in the R band found in the SKY2000v4 catalogue (Myers et al, 2002).  

In order to do astrometric measurements for each optical/infrasonic meteor in this study, 

first it was necessary to make new plates for each camera and for each night having an 

event. To make useable plates for any given camera, the all-sky calibration images have 

to satisfy the condition that there have to be at least nine identifiable stars throughout the 

entire image, but less than ~50, after which plate residuals slowly increase due to random 

errors. However, this is not always possible to achieve due to weather. To overcome this 

shortcoming, the plates are made using multiple images spanning several hours. For those 

nights which remain cloudy throughout, the plates are made on the closest clear night 

(ideally a day or two before or after the actual event date). Even though there are 

instances of two or more meteor events analysed in this study occurring within a time 

frame of order a week, the new plates were still produced for each night to ensure 

astrometric solution accuracy. Since astrometric stellar fits undergo significant 

degradation at low elevations (high zenith angle), it is most desirable to choose 
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calibration stars at elevations 20º or more above the horizon, where a plate fit solution 

has smaller stellar residuals (< 0.2 degrees). However, since many optically detected 

meteors which produce infrasound tend to be low to the horizon, it is desirable to select a 

good balance of stars throughout the entire image and at all elevations. In this process we 

use plates where the mean residuals (difference between the fit position and the actual 

position for stars used in the fit) do not exceed 0.2 degrees. As the functional form of the 

fit has nine degrees of freedom at least 9 stars are needed to make a plate fit. This initial 

fit is later refined by adding more stars. METAL displays the star residuals on the screen, 

thus allowing for outliers to be removed interactively. The plate can be fit and re-fit at 

any point until a desired average or maximum stellar residual is achieved. The interested 

reader is referred to Weryk et al. (2007), Brown et al. (2010), and Weryk and Brown 

(2012) for further details about METAL.  

5.3.1.2 Astrometric Data Reduction and Event Time 

Although it was possible to generate astrometric trajectory solutions using automated 

picks, these solutions generally had high residuals (>0.2 km) and often were affected by 

unusual effects, such as hot pixels, weather conditions (i.e. overcast), blemishes or 

reflections on the dome, meteor fragmentation, very bright flares and occasional insects 

that adversely affect the quality of the automated picks (positions of the meteor as a 

function of time in the plane of the sky). Therefore, manual reductions were performed 

for the final set of complete trajectory solutions for those meteor events having a 

probable infrasound signal association based on the initial automated solution. 

Once the plates were made, in-house programs/functions written in IDL were used to 

generate astrometric solutions for each event. The procedure includes: (i) select images 

containing the meteor; (ii) use either automated meteor position picks or a rough version 

of the manual picks as an approximate guideline in selecting new meteor picks manually, 

(iii) apply the plate; (iv) generate a trajectory solution using the software MILIG 

(Borovička, 1990); (v) verify if the solution is acceptable (i.e. residuals from each camera 

are less than 0.2 km from the trajectory straight line solution and good (<10%) average 

speed agreement among all cameras); (vi) repeat as necessary until the solution meets the 

residual and interstation speed consistency (Figure 5.6). Each frame had the meteor 
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position measured using a manual centroid, since an automatic centroid may suffer from 

undesirable shifting under certain conditions, such as pixels being close to a star, in very 

dim and/or overly bright regions (e.g. blooming and oversaturation).  

The other criteria we use to define a good astrometric solution also include: the 

intersecting planes of any two cameras have to be at an angle (Q) of more than 20º (in 

most instances the trajectory solution is unstable and unreliable otherwise), the entire 

meteor trail should be clearly visible, the meteor should be at elevation of >20º above the 

horizon from cameras used in the solution and the event lasts at least 10 frames. 

Complications in reduction occur due to poor sky conditions, flares on the meteor trail 

and spurious reflections on the camera dome. These complications are dealt with 

manually on an event by event basis. For example, many optically detected meteors 

which produce infrasound tend to be low to the horizon, making the astrometric 

reductions less accurate as the pixel scale is larger at low elevations. In these cases, the 

trajectory solution is made using local plate fits, obtained by concentrating on the sky 

region around the meteor and choosing nearby stars rather than stars throughout the 

image. Due to poor sky conditions and/or poor camera angle view geometry, astrometric 

solutions were judged to be of low quality for four optical events having simultaneous 

infrasound signals and rejected from the final simultaneous infrasound - optical meteor 

data set.  

We computed the event time, accounting for both any interstation camera time 

discrepancies and time of the first detected frame for each camera. Establishing absolute 

timing is important in raytracing analysis, when the ray travel time (time between the 

airwave arrival time and the event start time measured by the camera) has to be known 

accurately. We estimate the absolute time from any one camera based upon the first 

frame used for astrometry by subtracting from the trigger time any additional frames 

from a particular camera where manual examination shows the meteor to be visible. All 

event start times from all cameras included in the astrometric solution were averaged to 

give one global event start time. The standard deviations of the averaged camera times 

were generally less than one second, except in two cases, which were manually corrected 

when raytracing was performed (further discussed in Section 3.5). This is the estimated 
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maximum uncertainty in our travel time due to uncertainty in the absolute camera event 

time. The time error was included in our overall travel time uncertainty for each event 

start time using the standard deviation between cameras calculated in the previous step 

and applied to the total uncertainty/error in the observed signal travel time.  

 

 

Figure 5.6: A flowchart showing the process of generating astrometric solution from an 

automated solution. 

 

5.3.2 Meteor Infrasound Signal Identification 

Two software packages are used to identify possible infrasonic signals, MatSeis1.7 

(Harris and Young, 1997; Young et al., 2002) and the Progressive Multi-Channel 

Correlation (PMCC) algorithm (Cansi, 1995; Cansi and Klinger, 1997; Garcès et al., 

2003a). MatSeis (Figure 5.7) implements the standard form of cross-correlation of the 

output between each element of the array and performs beamforming of the signals 

across the array (Evers and Haak, 2001). PMCC (Figure 5.8) is sensitive to signals with 

very low signal-to-noise ratio (SNR) and uses element pair-wise correlation techniques to 

declare detections on the basis of signal coherency and back azimuth identifying return 
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‘families’ in time and frequency space (Cansi and Klinger, 1997; Cansi and LePichon, 

2009).  

Even though the near field events, especially if they are discrete point source explosions 

(expected to be produced from fragmenting meteoroids), tend to produce diverging 

spherical waves, the plane wave geometry approximation in both MatSeis and PMCC is 

still fairly good when calculating the back azimuth from sources many times further away 

than the array size; however, it should be noted that the wave distortion effects and 

atmospheric variability, winds in particular, may produce additional uncertainty. For 

example, the observed back azimuth deviations for far field infrasonic events due to the 

variability of atmospheric winds can be as large as ±15° (Garcés, 2013).     

Even when a positive detection is found (here defined as an SNR of at least 3 dB) in the 

correlation indicating a coherent infrasonic wave crossing the array, the infrasonic signal 

cannot be confidently associated with a source without additional information. An 

infrasonic signal at short range from a typical local meteor is usually short in duration (1–

10s is typical), and in the majority of cases appears as a single N-wave with duration on 

order of seconds. Thus, it is imperative to have some sort of discriminative methodology 

which allows for convincing association of meteor events with an infrasound signal.  
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Figure 5.7: An example of a meteor infrasound signal displayed in InfraTool (MatSeis 

1.7). The top window is the F-statistic, a measure of the relative coherency of the signal 

across the array elements, the second window is the apparent trace velocity of the 

infrasound signal across the array in the direction of the peak F-stat, and the third window 

shows the best estimate for the signal back-azimuth. The fourth window shows the 

bandpassed raw pressure signal for the Centre Element of ELFO. 
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Figure 5.8: Results from array processing using the PMCC algorithm. The top window 

gives the observed azimuth, the middle window represents the trace velocity of the 

signal, while the bottom window shows the bandpassed raw pressure signal for all four 

array elements. 

 

Here we use the automated optical trajectory solutions from each detected meteor for 

each night, with the date, time, begin and end coordinates and altitudes as inputs, to 

calculate the following values for both the meteor begin and end points as seen from 

ELFO: the expected back azimuth, range (great circle path between the source and 

receiver) and expected travel and arrival time for tropospheric (0.340 km/s average speed 

or celerity), stratospheric (0.285 km/s) and thermospheric (0.220 km/s) signals. Using 

these values as guides, we then perform a targeted search for possible infrasonic signals 

at ELFO associated with the meteor. Although it is not likely to observe thermospheric 

arrivals for near field events, we still perform a full signal search (from fastest possible to 

slowest possible celerity). A typical ground-projected distance for most of the camera 

detected meteors is on average 120 km (and up to 250 km) from ELFO; thus if the meteor 

trail has a significant horizontal length (on order of tens of kilometers) and depending on 

the overall spatial geometry of the meteor relative to ELFO, the expected back azimuth, 

range and travel time windows may vary significantly between the begin point and the 

end point. This is especially important during meteor showers, when many bright meteors 

are detected in a single night. Note that we check all meteors optically detected 
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independent of brightness, where the optical network limiting meteor magnitude is near -

2 (corresponding to gram-sized meteoroids at speeds of 40 km/s). The travel time search 

‘window’ thresholds are bounded by the expected signal travel times given the fastest and 

the slowest infrasonic celerity at the begin point and end point, as well as the closest 

point to the array with an added five seconds of buffer. Due to the close range of most 

events to the array, when calculating expected arrival times, we include the true distance 

(3D) from the source to the receiver, rather than ground projected horizontal distance. 

The search ‘window’ thresholds for back azimuth are given by the azimuthal fan sweep 

from the begin point up to the end point (with a 5° buffer at each end to account for other 

possible deviations due to the measurement uncertainty, atmospheric effects and array 

response). 

For each optical meteor, a search for possible infrasonic detections is performed using 

both MatSeis and PMCC guided by the expected arrival time and back azimuth windows. 

These two quantities are expected to be much more constrained than trace velocity (or 

signal elevation angle) (McIntosh and ReVelle, 1984). Both signal search approaches 

(MatSeis and PMCC) are expected to have a high degree of confidence when declaring a 

positive detection (i.e. within the expected travel time and back azimuth window), which 

is then flagged for further analysis. 

To search for possible signals from typical, small regional meteor events using MatSeis, 

we used the following detection parameter ranges: window size 7 – 10s, window overlap 

50 – 70%, Butterworth bandpass 2
nd

 order filter cutoffs between 0.2-1 Hz on the lower 

end and 2 Hz up to 45 Hz on the upper end. A series of separate independent runs 

employing different filter and window settings within these ranges for each possible 

event are used for every meteor to isolate a possible associated infrasound signal 

recorded by ELFO. Additionally, the correlation and Fisher F-statistics (Melton and 

Bailey, 1957) have to be above the background values (F-statistics >3) for a positive 

detection to be declared. Even if the arrival time and back azimuth fall within the 

previously determined search window, before any coherent event is declared a possible 

correlated detection, it has to satisfy the additional conditions that the back azimuth and 

trace velocity have small standard deviations (<2º and < 0.010 km/s, respectively), 
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without any abrupt variations or spread within the correlation window. Other nearby 

moving signal sources (e.g. storms, helicopters) generally give infrasonic signals with a 

spread over several or even tens of degrees in the back azimuth, last for many tens of 

seconds and in some cases show significant variations in trace velocity; characteristics 

not typically expected for most meteors. Therefore, such coherent signals would not 

qualify as possible correlated meteor detections. Based on our experience examining 

meteor infrasound signals in the past, we also rejected signals which had the following 

characteristics: signals containing only high frequency (>15 Hz) content, repetitive 

signals (more than 4 impulsive instances in 15 or less seconds), signals with trace 

velocity < 0.30 km/s, and long duration signal clusters (>30s).  

Typical detection parameter settings for PMCC were as follows: 5 – 8s window length 

with 5s time step with default ‘family’ settings (e.g. Brachet et al., 2010; Cansi and 

LePichon, 2009). The Chebyshev filter parameters were: 2
nd 

order, 15 bands with ripple 

size of 0.005. As with MatSeis, a series of independent runs are performed to search for 

‘families’. Once a ’family’ is detected, additional runs are performed to narrow down the 

frequency range, arrival time, duration and other signal characteristics. 

The results from both MatSeis and PMCC are then compared to look for inconsistencies 

with the detected signal and determine whether a given positive detection is associated 

within the window range of our criteria for each meteor. All signal properties found by 

PMCC were recorded and then used as a secondary means of event and signal 

measurement verification by comparing to MatSeis results. 

The uncertainty in the signal onset (arrival time) was set to 1s, in order to account for 

potential windowing and intrinsic biases, including the probable discrepancies between 

MatSeis and PMCC, though we expect in most cases we have localized the start time 

with better precision. We found empirically that the signal arrival times as calculated in 

both MatSeis and PMCC generally agree within ~1s for the majority of our meteor 

infrasound events.  

Once positive detections are declared correlated with an optical meteor and selected for 

further processing, manual optical astrometric solutions are used to re-run the MATLAB
®

 

program in order to refine the timing, distance and back azimuth predictions. These new 
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values are then used to further check the observations against predicted quantities 

according to our criteria. If necessary, the entire process of signal detection is repeated. 

This happens in cases of a significant difference between the automated and manual 

optical astrometric trajectory solutions, which in turn affects the expected back azimuth 

and propagation time. In only five cases did this secondary check produce a rejection 

after initial acceptance on the basis of the automated solutions (of ~ 80 initial events), 

suggesting a <10% loss rate due to poor initial automated optical solutions. 

5.3.3 Signal Measurements 

Following positive infrasound signal correlations with an optical meteor, the meteor 

infrasonic signal parameters were measured, using the measurement technique described 

in Ens et al. (2012).   

The dominant signal period was calculated using two separate approaches; first, by 

measuring the zero crossings of the waveform at the maximum Hilbert envelope (max 

peak-to-peak amplitude) and second, by finding the inverse of the frequency at the 

maximum signal PSD after subtracting the noise. In contrast to the Ens et al. (2012) 

procedure, where the signal is stacked using a best beam across the array and where long 

duration, often high SNR infrasonic bolide signals on large arrays were examined, here 

signal measurements on each separate channel were performed. This included calculating 

the maximum amplitude, peak-to-peak amplitude and the period at maximum amplitude 

to check for any intra-array discrepancies. As there were periods when one of the 

elements (Centre Element) experienced digitizing issues and thus the amplitude was 

either systematically higher or lower by some factor (~2x or 0.5) than the rest of the 

elements, this approach ensured our amplitudes, in particular, did not suffer biases due to 

equipment problems. In cases where one element was rejected from amplitude 

measurements, while all four channels were used in cross-correlating, beamforming the 

period and isolating the signal, the remaining three channels were used for the maximum 

and peak-to-peak amplitude measurements. The final signals quantities measured for our 

meteor infrasound database are given in Table 5.2 and Table 5.3. 
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Table 5.2: Infrasound signal measurements for meteors optically observed and which 

produced a single infrasonic arrival. Event time denotes the onset of luminous trail as 

seen by the All-Sky cameras. The remaining columns represent the signal parameters 

observed at the infrasound array. 

  

Date

Observed 

Travel 

T ime

Observed 

Back 

Azimuth ±

Trace 

Velocity

Dominant 

Freq

Dominant 

Period ± Max Amp ± P2P Amp ± Amp SNR

Integrated 

Energy 

SNR

hh mm ss s ° ° km/s Hz s s Pa Pa Pa Pa

20060419 4 21 28 345 319.9 2.8 0.488 2.2 0.53 0.02 0.05 0.01 0.09 0.03 29.5 3.5

20060419 7 5 56 280 144.5 0 0.42 9.6 0.12 0.07 0.10 0.04 0.13 0.07 29.7 4.3

20060813 9 42 26 554 147.0 0.3 0.358 1.0 0.98 0.06 0.03 0.01 0.05 0.02 18.3 8.1

20061101 6 46 12 527 275.3 1.4 0.421 0.6 1.55 0.44 0.05 0.01 0.08 0.02 13.4 4.9

20061104 3 29 29 354 293.1 0.1 0.439 6.4 0.16 0.00 0.06 0.02 0.09 0.03 29.7 5.2

20061121 10 45 46 526 133.5 1.8 0.395 0.8 1.18 0.11 0.03 0.01 0.06 0.01 16.7 4.3

20070125 10 2 5 398 289.4 4.1 0.601 0.9 1.35 0.03 0.06 0.01 0.08 0.02 7.6 5.6

20070421 9 21 1 636 36.7 0.6 0.379 1.7 0.64 0.04 0.02 0.00 0.03 0.01 18.8 6.8

20070511 7 41 14 439 326.1 1.1 0.442 1.4 0.80 0.04 0.01 0.00 0.02 0.01 14.9 6.9

20070725 4 42 44 392 25.6 2.4 0.425 2.7 0.38 0.06 0.03 0.02 0.05 0.04 31.7 6.0

20070727 4 51 58 467 29.9 0.4 0.41 1.1 0.94 0.08 0.06 0.01 0.09 0.03 20.0 5.4

20070917 7 55 43 572 259.3 0.3 0.368 0.9 1.07 0.12 0.06 0.01 0.09 0.01 28.7 11.8

20071004 4 55 9 557 19.5 0.2 0.352 1.9 0.52 0.03 0.13 0.01 0.15 0.02 41.8 12.0

20071004 5 19 27 307 98.6 0.7 0.345 7.5 0.15 0.04 0.05 0.05 0.08 0.10 43.5 6.3

20071021 10 26 25 700 38.9 3.1 0.347 0.5 2.21 0.03 0.11 0.00 0.20 0.01 51.0 72.4

20071130 10 28 49 645 64.0 0.4 0.332 1.3 0.81 0.18 0.10 0.01 0.12 0.02 12.5 6.2

20071215 11 18 13 318 66.3 4.4 0.397 2.1 0.42 0.06 0.11 0.05 0.17 0.10 39.0 10.6

20080325 0 42 3 341 305.0 4 0.379 7.0 0.14 0.01 0.10 0.06 0.14 0.12 47.2 9.3

20080520 3 29 47 288 80.9 0.5 0.439 10.0 0.11 0.00 0.05 0.05 0.09 0.10 47.2 7.9

20080602 5 44 44 505 221.6 1.6 0.378 0.4 2.56 0.36 0.07 0.01 0.11 0.01 24.2 15.2

20080801 4 22 20 348 329.9 6.4 0.494 2.8 0.33 0.01 0.07 0.02 0.10 0.03 33.7 13.2

20080801 8 19 30 375 350.0 2.4 0.628 0.8 1.40 0.09 0.09 0.01 0.14 0.03 19.4 12.3

20080804 4 17 14 393 148.4 0.3 0.439 2.5 0.44 0.02 0.01 0.01 0.03 0.01 10.7 3.8

20080812 6 0 34 424 197.4 0.5 0.451 2.0 0.53 0.05 0.02 0.00 0.03 0.01 18.5 10.1

20080908 4 3 12 592 292.0 1.5 0.352 0.6 1.63 0.10 0.04 0.01 0.07 0.01 30.5 16.2

20081005 1 50 12 406 337.8 0.3 0.372 6.3 0.19 0.01 0.06 0.03 0.10 0.06 42.1 7.2

20081018 6 53 39 292 83.7 0.2 0.367 12.9 0.07 0.00 0.07 0.13 0.12 0.26 50.4 16.4

20081028 3 17 35 240 306.5 0.7 0.379 11.1 0.10 0.01 0.06 0.06 0.10 0.12 33.1 7.1

20081102 6 13 26 576 292.2 9.5 0.372 2.3 0.44 0.03 0.08 0.04 0.12 0.08 32.6 8.1

20081107 7 34 16 378 330.4 0.6 0.494 1.5 0.59 0.05 0.06 0.01 0.09 0.01 23.9 8.5

20090126 7 16 24 320 231.4 0 0.831 2.2 0.34 0.09 0.13 0.04 0.21 0.08 32.2 16.7

20090523 7 7 25 428 62.2 0.1 0.41 3.0 0.35 0.02 0.20 0.04 0.32 0.07 64.3 18.1

20090530 6 35 20 312 254.3 0.6 0.451 5.3 0.19 0.09 0.07 0.04 0.11 0.07 24.4 3.3

20090709 5 24 23 460 357.1 3.3 0.349 1.7 0.58 0.08 0.10 0.01 0.15 0.02 15.0 4.5

20090813 6 47 53 540 356.9 0.2 0.366 2.9 0.31 0.03 0.02 0.00 0.03 0.00 15.0 1.8

20090906 1 27 55 460 269.0 1.8 0.409 1.9 0.51 0.10 0.02 0.01 0.03 0.01 6.8 2.0

20090917 1 20 38 429 358.0 2.1 0.401 3.0 0.37 0.12 0.08 0.02 0.13 0.04 22.4 13.5

20091025 11 5 58 579 15.0 1.3 0.349 1.3 0.91 0.11 0.03 0.01 0.05 0.02 14.1 8.0

20100111 5 41 5 450 313.8 0.4 0.383 2.6 0.38 0.13 0.15 0.08 0.21 0.16 4.5 0.5

20100307 6 3 26 480 300.1 1.2 0.417 0.7 1.54 0.46 0.08 0.01 0.11 0.01 8.2 2.6

20100309 7 40 44 376 295.0 0.9 0.416 2.0 0.54 0.04 0.15 0.07 0.25 0.13 37.1 3.5

20100316 5 7 44 492 297.3 0.1 0.362 2.4 0.42 0.04 0.10 0.02 0.13 0.04 13.8 1.8

20100421 4 49 43 709 5.7 0.5 0.36 1.0 1.21 0.27 0.05 0.01 0.07 0.01 20.9 8.9

20100423 8 32 35 567 100.5 0.6 0.345 1.9 0.51 0.04 0.03 0.00 0.05 0.01 11.1 3.1

20100429 5 21 35 617 320.4 0.5 0.363 0.9 0.99 0.35 0.07 0.01 0.11 0.02 24.7 8.0

20100814 3 0 42 686 298.2 1.2 0.332 1.2 0.76 0.09 0.04 0.02 0.07 0.05 5.4 1.1

20100914 5 42 26 667 107.2 0.3 0.357 1.3 0.73 0.17 0.04 0.01 0.05 0.02 16.5 4.5

20101129 9 12 44 425 22.4 1.5 0.349 2.6 0.38 0.03 0.09 0.02 0.10 0.05 13.6 5.9

20110208 8 59 33 437 340.3 0.7 0.381 1.8 0.53 0.04 0.13 0.03 0.24 0.05 24.1 4.7

20110402 8 46 52 529 0.0 0.1 0.374 2.3 0.39 0.04 0.05 0.00 0.08 0.01 24.2 4.1

20110520 6 2 9 565 62.5 0.3 0.385 1.9 0.65 0.02 0.03 0.01 0.06 0.01 17.3 5.3

20110630 3 39 38 535 186.2 0.3 0.348 3.0 0.40 0.00 0.03 0.01 0.04 0.02 8.6 3.4

20110808 5 22 6 565 170.2 0.4 0.368 1.5 0.50 0.03 0.03 0.01 0.04 0.02 12.0 4.4

20111005 5 8 53 407 306.6 0.8 0.379 4.6 0.18 0.01 0.13 0.06 0.20 0.12 68.9 15.5

20111202 0 31 4 449 339.1 0.8 0.381 2.8 0.38 0.11 0.15 0.06 0.21 0.12 24.3 7.0

Event T ime
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Table 5.3: Infrasound signal measurements for optical meteors which produced more than 

one distinct infrasound arrival. 

 

 

5.3.4 Raytracing and Atmospheric Variability Modelling 

Having linked infrasonic signals with optical meteor events and performed signal 

measurements, the next step in event characterization is establishing where along the 

optical meteor trail the infrasonic signal originates. This was done by raytracing using the 

range independent SUPRACENTER program (Edwards and Hildebrand, 2004) and a real 

atmospheric profile for the day of each event. The raytracing results provide expected 

model timing and model arrival direction of the infrasound signal at ELFO which are 

then compared with the observed signal. The total uncertainty in signal arrival time 

consists of the event start time uncertainty (generally <1s except in two cases; see Section 

Date

Observed 

Travel 

T ime

Observed 

Back 

Azimuth ±

Trace 

Velocity

Dominant 

Freq

Dominant 

Period ± Max Amp ± P2P Amp ±

Amp 

SNR

Integrated 

Energy 

SNR

hh mm ss s ° ° km/s Hz s s Pa Pa Pa Pa

20060305 5 15 36 349 342.6 0.9 0.381 3.5 0.33 0.02 0.11 0.04 0.18 0.08 50.8 3.6

20060305 5 15 36 358 343.7 1.2 0.357 2.1 0.44 0.09 0.05 0.01 0.07 0.01 17.0 3.8

20060305 5 15 36 359 342.8 1.2 0.357 3.0 0.29 0.04 0.04 0.01 0.06 0.02 16.4 4.3

20060405 3 3 27 394 86.4 0.4 0.335 3.9 0.34 0.07 0.10 0.07 0.15 0.14 33.0 7.1

20060405 3 3 27 397 86.6 0.3 0.339 2.9 0.31 0.05 0.08 0.03 0.10 0.05 25.2 1.1

20060805 8 38 50 427 255.5 1.3 0.372 0.9 1.19 0.10 0.49 0.10 0.68 0.20 162.9 30.8

20060805 8 38 50 450 257 0.2 0.41 0.6 2.01 0.17 0.10 0.02 0.18 0.05 44.5 0.4

20061223 6 27 26 479 341.4 1.6 0.381 2.0 0.53 0.07 0.05 0.03 0.09 0.05 28.9 9.3

20061223 6 27 26 489 346.3 1 0.351 1.0 0.96 0.05 0.09 0.04 0.15 0.07 21.2 8.7

20061223 6 27 26 516 346.4 0.9 0.386 1.2 0.74 0.06 0.18 0.07 0.31 0.14 53.3 48.8

20070102 10 42 3 579 33.1 0.3 0.358 0.8 1.30 0.17 0.04 0.01 0.07 0.02 11.1 2.9

20070102 10 42 3 581 32.8 0.3 0.372 2.0 0.51 0.07 0.04 0.02 0.05 0.05 9.8 3.4

20080511 4 22 17 371 24.8 0.4 0.516 1.3 0.77 0.03 0.03 0.01 0.04 0.01 13.8 2.8

20080511 4 22 17 381 24.8 0.4 0.425 2.9 0.36 0.00 0.01 0.00 0.02 0.01 13.2 2.7

20080612 5 58 29 388 71.2 0.2 0.408 3.5 0.25 0.00 0.04 0.01 0.06 0.02 13.8 0.3

20080612 5 58 29 391 64.7 0.2 0.425 1.4 0.72 0.09 0.10 0.04 0.16 0.07 42.4 20.3

20080812 3 27 25 400 170.3 0.3 0.446 1.5 0.62 0.13 0.20 0.06 0.35 0.12 110.1 20.2

20080812 3 27 25 406 176.2 0.6 0.431 1.6 0.66 0.17 0.11 0.01 0.15 0.02 3.9 0.3

20080812 8 19 29 554 249.4 0.1 0.349 1.6 0.59 0.05 0.02 0.00 0.03 0.01 16.5 6.5

20080812 8 19 29 557 249.8 0.5 0.349 1.8 0.58 0.01 0.02 0.00 0.03 0.01 14.0 2.8

20090428 4 43 37 456 53.6 1.7 0.345 4.1 0.21 0.03 0.16 0.03 0.22 0.06 45.1 4.6

20090428 4 43 37 460 55.3 1.5 0.345 2.7 0.32 0.01 0.06 0.02 0.11 0.04 26.3 6.4

20090812 7 55 58 522 204.5 1.2 0.372 1.6 0.59 0.05 0.09 0.02 0.16 0.03 26.6 1.0

20090812 7 55 58 525 204.3 1.1 0.372 1.8 0.58 0.01 0.07 0.01 0.09 0.02 10.9 1.0

20090825 1 14 35 811 46.2 0.1 0.349 1.2 0.76 0.10 0.07 0.03 0.12 0.05 18.0 1.6

20090825 1 14 35 835 47.2 0 0.348 1.5 0.54 0.01 0.03 0.01 0.05 0.02 5.6 1.4

20090825 1 14 35 842 47.4 0.4 0.348 1.8 0.58 0.03 0.03 0.01 0.05 0.02 6.0 1.3

20090926 1 2 58 424 82.8 0.8 0.347 2.0 0.59 0.01 0.28 0.02 0.49 0.04 112.2 50.0

20090926 1 2 58 439 79.7 0.1 0.363 2.2 0.49 0.03 0.05 0.01 0.08 0.02 3.2 0.4

20100530 7 0 31 530 324.4 0.4 0.358 1.5 0.64 0.01 0.03 0.01 0.06 0.02 16.1 1.7

20100530 7 0 31 535 325.2 0.1 0.358 1.9 0.84 0.21 0.03 0.01 0.05 0.01 10.9 1.7

20100802 7 18 25 406 74.5 0.3 0.417 4.0 0.22 0.00 0.03 0.01 0.06 0.02 16.1 1.7

20100802 7 18 25 410 73.7 0.1 0.417 1.6 0.30 0.01 0.03 0.01 0.05 0.01 10.9 1.7

20110815 5 50 16 550 328.3 0.4 0.347 2.0 0.66 0.02 0.04 0.02 0.06 0.04 14.5 2.1

20110815 5 50 16 556 328.9 0.4 0.372 1.2 0.87 0.09 0.03 0.01 0.05 0.02 9.0 1.1

Event T ime
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3.1) and uncertainty produced by signal processing (1s). A non-isothermal and vertically 

inhomogeneous realistic atmospheric profile for each event was generated using wind 

data from the daily United Kingdom Meteorological Office (UKMO) assimilated dataset 

(Swinbank and O’Neill, 1994). The UKMO data extends to only 50-70 km in altitude; 

thus to reconstruct the atmospheric profile (atmospheric pressure, temperature and 

horizontal winds) from that point to 200 km altitude, HMW95 (Horizontal Wind Model; 

Hedin et al., 1996) and the NRL-MSIS00 (Naval Research Laboratories – Mass 

Spectrometer and Incoherent Scatter Radar; Picone et al., 2002) models were combined 

by a smooth spline interpolation following the same procedure as adopted by Edwards et 

al. (2008).  

Typically, optical meteor events last for 30 video frames or less; each frame corresponds 

to a different portion along the meteor’s path. For raytracing, we used 100 discrete 

heights along the meteor trajectory (latitude, longitude and altitude) as source ‘points’ for 

raytracing. A version of the SUPRACENTER (Edwards and Hildebrand, 2004) was used 

to follow rays from each model point along the meteor trajectory (Figure 5.9) toward the 

infrasound station and find probable arrivals, which we define as any rays which arrive 

within 1 km from the central element, horizontally or vertically.  

Note that we only follow direct arrivals– ducted arrivals are not computed. The modelled 

infrasound travel times are adjusted for the finite meteor flight time. The modelled 

quantities recorded for each discrete point along the trajectory are travel time, back 

azimuth and elevation angle at the receiver (station) and ray takeoff angle β, which is the 

angle between the meteor velocity and the ray wave vector as well as vertical and 

infrasound ray elevation angle at the source. 
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Figure 5.9: Meteor trail raytrace modeling procedure. Black circles depict distinct source 

points along the trail which are used for raytracing. Infrasonic rays are generated at each 

point source and propagated towards the array; however, for simplification, only one ray 

is shown here. The ray deviation angle is the angle of the infrasonic ray wave vector and 

the meteor velocity vector (in 3D), referred to as angle β. 

 

Using our average atmosphere we found that many events showed no model propagation 

path or only a model propagation path from the part of the trajectory when winds were 

applied, though a signal was clearly recorded at the infrasound array. This emphasizes 

how the atmospheric variability and scattering can play a significant role in infrasound 

signal propagation (Balachandran et al., 1971; Brown and Hall, 1978; Green et al, 2011). 

Hourly, daily and seasonal variations in atmospheric infrasound propagation have been 

observed and well documented (e.g. Le Pichon et al., 2005; 2009). Many factors affect 

the propagation and detection of infrasound including attenuation (e.g. molecular 

absorption of sound in the air), non-linear effects, atmospheric turbulence, the effect of 

the ground surface on acoustic reflection, temperature and wind stratification, barriers, 

scattering, and atmospheric tidal effects (Brown and Hall, 1978; Ostashev, 2002; 

Sutherland and Bass, 2004; Kulichkov, 2010; Hedlin et al., 2012). Among these, gravity 

waves in particular (e.g. Hines and Reddy, 1967; Fritts and Alexander, 2003; Nappo, 

2012) have been previously identified as having a significant impact on infrasound signal 

propagation as they perturb the local wind field on short timescales (Chunchuzov, 2004; 

Ostashev et al., 2005; Green et al, 2011). Furthermore, gravity waves are especially 

important in perturbing the average windfield in the stratosphere and lower thermosphere, 
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since this is where the gravity wave amplitudes and scale heights are the largest (e.g. 

Walterscheid and Hocking, 1991; Gardner et al., 1993; Fritts and Alexander, 2003; 

Bhattacharyya et al., 2003; Mutschlecner and Whitaker, 2006).  

In more general terms, the scattering of infrasonic energy in the middle and upper 

atmosphere has also been recognized (Chunchuzov, 2004; Kulichkov, 2004; Ostashev et 

al., 2005; Millett et al., 2007), albeit still not fully understood. Case studies involving 

well documented large explosive events, such as the Buncefield oil depot explosion in the 

UK (Ceranna et al., 2009) and the Misty Picture experiment at White Sands Missile 

Range in New Mexico, USA (Gainville et al., 2010) have explicitly demonstrated 

noticeable effects on propagation produced by gravity wave perturbations. 

However, the implications of gravity-wave induced wind perturbations on regional (near-

field, <300 km) infrasound propagation from high altitude explosive sources have not 

been comprehensively investigated due to a lack of sufficient data. Because we expect 

wind perturbations to affect the propagation of meteor infrasound a priori, we have 

implemented a Monte Carlo - type approach to estimate the sensitivity of our raytrace 

solution to uncertainties in the wind field produced by gravity waves. We note that this is 

only one of several sources of uncertainty in infrasound propagation at regional distances; 

scattering, diffraction and local reflections may also play a role, but we do not explore 

these further in this work. Many physical models of gravity waves exist (e.g. Mengel et 

al., 1995; Fritts and Alexander, 2003); however for the purpose of this study we used the 

gravity wave wind perturbation scheme implemented in the InfraMap raytracing software 

(Norris and Gibson, 2001; Gibson and Norris, 2000; 2003). Note that the perturbation to 

the temperature field (and hence indirectly to the sound speed) due to gravity waves is 

ignored, as this is much smaller than the direct perturbations to the effective sound speed 

through gravity wave-induced wind variability at our heights of interest.  

In this approach the vertical mean wind profile is perturbed, using the Gardner et al 

(1993) gravity wave model to simulate the spectral character of gravity waves with height 

and a random-phase technique (Peitgen and Saupe, 1998). This model has been shown to 

explain propagation in shadow zones and counter-wind returns for other infrasound 

sources (Green et al, 2011). In our case the gravity-wave wind perturbation model 
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provides an estimate of the variation in modelled travel-time and backazimuth due to 

variability in the atmosphere, resulting in a source height uncertainty.  

To estimate the maximum expected deviation in model travel time and back azimuth due 

to gravity waves, perturbations along the great circle propagation path (tailwind or 

headwind) and transverse to the great circle propagation path (crosswind) were applied to 

each atmospheric profile (Gibson and Norris, 2000). In total, 1400 perturbation 

realizations in vertical wind profile per event were generated and then applied to each 

UKMO-HWM95 profile, forming a sample of 1400 individual atmospheric profiles, upon 

which raytracing was performed once again for each event. With the exception of a very 

small number of events (~10), nearly all meteors showed accessible propagation paths 

along the entire meteor trail. An example of some gravity wave perturbation realizations 

are shown in Figure 5.10.  

 

 

Figure 5.10: An example of a gravity wave perturbed wind speed as a function of 

altitude. The black and gray lines represent a sample of two separate realizations applied 

to the to the UKMO-HWM07 mean wind model (red line). For ray-trace modelling, 1400 

realizations were applied to the mean atmospheric profile for each event and the resulting 

spread in travel times and backazimuths recorded. 
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5.3.5 Analysis of Raytracing Results 

From the raytracing for each point on the meteor trajectory, we have the expected travel 

time, back azimuth, arrival elevation angle, the horizontal range (along the great circle 

path), total range, signal celerity and ray deviation from the trajectory (angle between the 

meteor velocity vector and the infrasound ray launch direction, Figure 5.11) at ELFO. 

When combined with the infrasound meteor measurements this produces residuals in the 

time, the back azimuth and the elevation angle between the model rays and the 

observations at the ELFO array. Our final dataset consists of 71 meteor infrasound events 

having a common optical record. To determine where along the meteor trail the 

infrasound signal originates, the raytracing model results were compared with the 

observed travel time, back azimuth and elevation angle measured at ELFO.  

The ray deviation from the trajectory is important in understanding the nature of the 

shock production. On theoretical grounds, we expect that there are two types of shock 

production mechanisms – ablational, due to fragmentation; and ballistic, due to the 

production of cylindrical line source shock along the entire trail (ReVelle, 1976; 

Bronshten, 1983). A 90 degree ray deviation angle (±25°) is indicative of the ballistic 

shock (ReVelle, 1976; Brown et al., 2007) and a cylindrical line source geometry, while 

the ablational shock is expected to be more omnidirectional. However, it remains 

unknown which of these shock modes is dominant at small meteoroid sizes and what the 

range of allowable deviation from 90° for true ballistic shocks is. Quantifying these 

unknowns is one of the goals of this study.   

Uncertainties in the signal arrival elevation at ELFO were computed assuming a possible 

variation of up to 7°C in the local temperature, which was measured either by a weather 

station located at ELFO or by UKMO model estimates of the surface temperature.  

Our raytracing model using Monte Carlo perturbation realizations produces a ‘cloud’ of 

possible airwave arrivals from each point along the trajectory. To decide from this 

ensemble the most likely shock source heights, we developed an algorithm to find the 

best estimate for the source shock height and its associated uncertainty.  
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The algorithm works as follows: from our model runs, four modelled arrival quantities 

were extracted to compare with the observations – travel time, back azimuth, elevation 

angle and ray deviation from the trajectory. The travel time was used as the primary 

source height discriminant while the back azimuth was used as a secondary discriminant. 

We note that the ray arrival elevation angle can vary significantly and is the least reliable 

measure of all observed quantities (McIntosh and ReVelle, 1984), as atmospheric 

turbulence, for example, may cause local temperature changes of 5°C in a few seconds 

(Embleton, 1996).  As a result, it was not used to determine the final source heights, only 

as a tertiary check with the first two quantities. The best estimate of source height then 

produces an estimate for the ray launch angle, and its deviation from 90 degrees gives an 

indication of the shock type (ballistic = 90 ± 25 degrees, ablational = any angle). While 

the majority of the solutions appeared to have a height solution (i.e. fall within the range 

of the observed quantity and its uncertainty) (S), some solutions were degenerate (could 

have two possible height solutions) (D), or showed no solution (i.e. did not fall within the 

observed quantity and our range of adopted uncertainty) (NS).   

Even for events showing unique source height solutions, the two quantities used to define 

source height independently (travel time and back azimuth) would frequently have height 

solutions which differed from each other, in some instances by up to as much as 20 km 

much, larger than the uncertainty from the various realizations). To reconcile these 

differences we developed a set of heuristic rules to try and best objectively quantify the 

height uncertainty based on our experience with past solutions. For events showing 

multiple signal arrivals, each arrival was treated as a distinct infrasonic 'signal'. The 

algorithmic logic for deciding on a best estimate for source height and error is 

summarized in Figure 5.12.  
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Figure 5.11: An example composite plot showing the travel time (upper left), back 

azimuth (upper right) and arrival elevation angle (lower left) for an event on May 11, 

2007 occurring at 07:41 UT. The lower right plot is the ray launch deviation angle as a 

function of height along the meteor trail. The blue points represent modelled arrivals for 

1400 gravity wave realizations for this event. The yellow model points in all plots are the 

simulation means along the meteor trail for each height (averaging along the x-axis). The 

vertical solid black line corresponds to the observed quantity with its uncertainty (dotted 

line), except in the case of ray deviation angle, which is simply a reference to the 

expected ballistic angle (90°). This particular event is an example which shows a unique 

solution as defined by our height selection algorithm. The composite plot also shows that 

the back azimuth determined model source height differs from the model source height 

determined by the travel time residuals. 
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Figure 5.12: The flow chart showing the logic used for calculating the meteor shock 

source heights and associated parameters. 

 

For each modelled quantity, the absolute value of the difference between each model run 

and observation is first computed, as shown in equation (5.1) - we refer to these as the 

model residuals. Here, res is the residual, Qobs is the observed and experimentally 

measured quantity, while Qmodel is the modelled quantity: 

res = |Qobs – Qmodel| (5.1) 

All residuals lying within a window containing the observed value and its uncertainty 

were found. A model residual of zero indicates quantitative agreement between the model 

value and the measurement (Figure 5.13). This produces a 2-dimensional grid with all the 

possible heights along one dimension, and the model residuals along the other dimension 

where all residuals are weighted equally. Even though the arrival ray elevation angle and 

launch ray deviation angle from the trajectory were not used to establish the source 

height, the residuals were still calculated in order to get an overall sense of the goodness 
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of the solution in qualitative terms. To make a best estimate for source height, we use 

equally weighted measurement residuals of source height from the travel time and 

backazimuths produced by the model runs (equation (5.1)), first using only those 

residuals within the measurement error (red points in Figure 5.13). 

If no residuals are found within the measurement uncertainty window the range of 

allowable residuals was increased beyond the one sigma in measurement uncertainty. 

Here we used expected uncertainties in the atmospheric models and back azimuth 

uncertainties to gauge the size of the initial allowable increases starting at 1% for travel 

time (which translates to 1% variation in signal celerity), 1.5° for back azimuth, 5° for 

elevation angle and 10° for the ray deviation angle. These values are chosen based on the 

expectation that the signal celerity may vary by a few percent and back azimuth is often 

not exactly a plane wave in the near field (Pearce and Posey, 1973; Picone et al., 1997; 

Brown et al, 2003). The choices for the elevation angle and ray deviation were arbitrarily 

set to the above mentioned values, as these quantities were not used to determine the 

shock source height but only as a secondary check.  

The final shock source height selection was made primarily based on the arrival times, 

with the back azimuth as a secondary measurement, except for degenerate solutions. In 

the cases where the two source height solutions were possible for modelled travel times a 

subjective determination of the best fit was made, using the best fit height from the back 

azimuth to isolate the most likely ‘true’ source height. We note that the high fidelity 

astrometric solutions (±0.2 km for begin and end points in horizontal and vertical 

directions) in this study allow for accurate trajectory measurements and event timing, 

thus final source heights matched to the model  travel times will have atmospheric 

variability as the main source of uncertainty.  
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Figure 5.13: A residuals composite plot showing the difference between the model values 

for each realization and the observed value. Red points show the residuals contained 

within the height-residual grid where model points agree with observations within the 

observational uncertainty. Here the ray deviation angle residuals are relative to a ballistic 

arrival (i.e. residual of zero = 90 degree ray deviation angle). 

The implementation of the atmospheric variability in both the direction along and 

transverse to the propagation path from source to receiver delineates our maximum 

expected deviations in travel time and back azimuth. Direct arrival, short range (<300 km 

as in this study) infrasound signals do not undergo significant ducting (channeling) and 

thus do not suffer from additional modification as seen in far-field (long distance) 

propagation. To determine the quality of the final source height solution, the travel time 

and back azimuth residuals were evaluated. The quality of the solutions were classified 

by the amount the estimated source height primary parameter deviates (percent in travel 

time and degrees in back azimuth) from the observed quantity. If both travel time and 

back azimuth were within 1% and 1°, respectively, then the solution was deemed well 

constrained and of high quality (solution quality Type SA). For the remainder of the 
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solution quality categories (SB = 2% or 2°, SC = 3% or 3°, SD = 4-5% or 4-5°, SF = >5% 

or >5°), the event was assigned based on the highest deviation of either travel time or 

back azimuth. For example, if the travel time was within 2%, but back azimuth deviation 

was greater than 5°, the event was assigned to the SF quality category.  

5.4 Results and Discussion 

The initial 80 simultaneously detected infrasound events were reduced to 71 as some 

events did not have useable optical astrometric solutions while for others there was no 

raytracing solution, or there were no direct arrivals. The lowermost limit on the detection 

rate of the array during the 6 year period covered in this study is approximately 1% - out 

of the total sample of 6989 optically detected meteors, ~80 were also detected by 

infrasound. This translates into an average of one meteor optical detection on our network 

producing noticeable infrasound at ELFO per month. However, not all these automated 

solutions represent physically reasonable solutions as evidenced by unreasonable begin 

height, end height and entry velocity. Furthermore, the true total infrasonic detection rate 

is 3-4 times higher accounting for daylight, weather conditions and moonlight which 

restrict the optical detections to a 20%-30% duty cycle throughout the entire year. This 

implies that for a site with the noise characteristics of ELFO approximately one meteor 

per week is expected to be detected infrasonically as a direct arrival. Though rarer, 

bolides producing ducted infrasonic arrivals (energies above 1 kiloton TNT) on a nearly 

global scale are expected a few times per year (Brown et al., 2013). On this basis we 

expect direct arrival meteor infrasound from regional sources to be the dominant type of 

meteor infrasound detectable at any one station by close to an order of magnitude. We 

emphasize that identification of an infrasound signal with a meteor or bolide requires 

separate cuing (in our case optical detection) as the meteor infrasound signal is 

indistinguishable from most other infrasound sources.  In this sense, most meteor 

infrasound signals can be expected to go unrecognized in the absence of other 

information. The distribution of begin and end heights for all optically detected meteors, 

irrespective of infrasound production, as well as the infrasound detected fraction as a 

function of end height for our study, are shown in Figure 5.14. It is clear that deep 

penetrating fireballs are much more likely, compared to those ending at higher altitudes, 
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to produce infrasound detectable at the ground; however, only a very small number of all 

optical meteors detected by the SOMN network penetrate below 50 km. For example, 

only about 13% of all SOMN detected meteors have their end height below 70 km, 4% 

reach below 60 km, while <1% of our optically detected gram-sized and larger meteors 

have their end heights between 20-40 km. We note, however, that the sole event with an 

end height below 30 km is the meteorite-dropping Grimsby fireball (Brown et al., 2011); 

the rest of our data have end heights above 30 km. Our final dataset of events and their 

astrometric measurements are shown in Table 5.4. Out of 71 events, 55 had associated 

single infrasound arrivals and 16 produced multiple infrasound arrivals. The 16 multi 

arrival events produced 35 separate infrasound signal arrivals (three events were triple 

arrivals, while the remaining 13 were double arrivals).  

 

 

Figure 5.14: Left: Distribution of begin and end heights for ASGARD meteors from 

2006-mid 2013. Outliers and events beyond the upper and lower cutoff limits are 

excluded. Outliers arise as a result of non-converging automated solutions or incorrect 

picks. Right: Detection rate of infrasonic meteor signals from simultaneously observed 

optical events for the entire network as a function of end height during the period 

between 2006 and 2011 in 10 km bins. The percentage represents the ratio between the 

number with end height of our final data set of all infrasound producing meteors (71 

events) and all optically detected meteors in the given height bin during the 6 year period 

as a function of height. The count number (given at the top of the vertical bar in each bin) 

represents the total number of optically detected meteors in that height bin (3934 out of 

6989 events were in the end height range between 20 – 90 km). 
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Table 5.4: All astrometric measurements. N is the number of cameras which recorded the 

event, meteor azimuth and zenith angles refer to the location of the meteor radiant 

(direction in the sky), and meteor trajectory length is the ground projected length. 

 

Date N

Entry 

Velocity ±

Meteor 

Azimuth

Meteor 

Zenith

Begin 

Height

End 

Height

Meteor 

Trajectory 

Length

Meteor 

Flight 

T ime

Camera 

Error 

T ime

hh mm ss km/s km/s ° ° ° ° km s s

20060419 4 21 28 2 18.8 0.6 13.1 64.1 81.3 68.1 26.7 1.57 0.22

20060419 7 5 56 3 14.2 0.1 98.9 56.1 72.0 47.7 35.6 3.30 0.53

20060813 9 42 26 3 62.7 0.3 216.1 19.2 105.4 75.8 10.1 0.50 0.04

20061101 6 46 12 4 57.1 0.9 245.2 14.7 106.0 83.4 5.8 0.40 0.05

20061104 3 29 29 2 30.3 0.4 293.8 35.7 89.9 65.8 17.1 1.03 0.01

20061121 10 45 46 5 71.1 1.3 325.2 25.8 124.3 83.0 19.5 0.63 0.32

20070125 10 2 5 2 71.2 0.4 340.0 75.0 119.2 88.5 109.5 1.64 0.30

20070421 9 21 1 3 33.3 1.0 144.5 14.6 104.4 70.2 8.7 1.00 0.13

20070511 7 41 14 3 64.5 0.6 297.4 52.9 111.1 92.7 23.8 0.47 0.21

20070725 4 42 44 3 26.3 0.2 344.6 34.2 91.5 72.8 12.5 0.87 0.09

20070727 4 51 58 3 26.3 0.0 350.8 51.2 96.2 70.6 31.3 1.57 0.79

20070917 7 55 43 2 59.5 0.3 224.4 40.5 103.7 87.1 13.9 0.33 0.09

20071004 4 55 9 3 28.9 0.5 156.5 47.0 97.3 69.6 29.1 1.37 0.13

20071004 5 19 27 3 16.1 0.2 36.2 53.1 75.9 45.1 40.5 3.50 0.35

20071021 10 26 25 6 75.6 2.7 24.5 22.4 130.8 81.7 19.8 0.70 0.06

20071130 10 28 49 3 71.7 0.5 357.3 25.0 112.9 73.5 18.1 0.60 0.02

20071215 11 18 13 5 35.7 0.5 96.3 44.6 93.6 60.7 31.8 1.30 0.41

20080325 0 42 3 6 13.5 0.3 15.3 45.3 76.2 32.8 43.3 5.21 0.47

20080520 3 29 47 4 14.1 0.1 104.2 29.5 75.2 40.4 19.4 3.24 16.26

20080602 5 44 44 6 63.5 0.7 269.1 61.2 118.1 90.0 49.6 0.90 2.92

20080801 4 22 20 4 23.6 0.4 344.0 50.6 93.3 78.9 17.3 0.93 0.24

20080801 8 19 30 7 65.2 1.2 314.9 68.3 115.5 92.4 56.5 0.97 0.98

20080804 4 17 14 5 58.3 0.3 218.2 59.8 110.7 80.3 50.8 1.00 0.49

20080812 6 0 34 5 60.7 3.5 222.6 48.5 105.9 89.6 18.2 0.43 0.47

20080908 4 3 12 5 62.3 1.2 265.5 56.1 117.6 81.7 52.0 1.04 0.10

20081005 1 50 12 3 22.8 1.5 278.0 24.0 88.4 43.4 18.4 2.10 0.37

20081018 6 53 39 3 21.3 0.3 74.1 38.9 84.1 49.8 27.2 2.24 0.57

20081028 3 17 35 3 15.8 0.1 0.4 57.1 81.2 41.1 60.9 5.21 0.19

20081102 6 13 26 6 31.1 0.7 356.7 28.2 96.5 62.6 17.9 1.33 0.08

20081107 7 34 16 6 70.2 0.9 297.2 62.0 113.5 81.5 58.5 0.97 0.34

20090126 7 16 24 5 67.7 0.9 272.4 75.0 115.6 81.7 119.6 1.87 0.49

20090523 7 7 25 4 29.5 1.0 40.2 42.4 95.9 72.4 21.1 1.14 0.12

20090530 6 35 20 4 17.3 1.2 213.4 59.6 81.7 60.3 35.9 2.47 0.80

20090709 5 24 23 5 18.6 0.7 53.6 39.9 90.2 75.2 12.4 1.03 0.15

20090813 6 47 53 6 60.9 0.4 228.4 42.1 116.2 74.2 37.0 0.94 0.01

20090906 1 27 55 4 60.6 0.4 213.8 69.9 110.9 77.4 88.4 2.50 0.61

20090917 1 20 38 6 23.0 0.4 296.9 65.4 85.7 72.4 28.5 1.60 0.90

20091025 11 5 58 4 28.7 0.3 284.1 88.4 72.6 69.2 92.2 3.40 0.46

20100111 5 41 5 3 54.6 0.4 239.0 73.0 93.9 63.4 95.5 1.47 0.88

20100307 6 3 26 4 49.0 1.3 257.0 53.3 105.8 93.0 16.9 0.43 0.16

20100309 7 40 44 6 48.3 0.9 259.2 44.1 106.9 67.2 37.6 1.17 0.10

20100316 5 7 44 6 22.0 0.3 8.3 60.5 78.0 48.6 51.2 2.08 0.30

20100421 4 49 43 6 46.2 2.0 281.5 48.1 108.5 74.6 37.0 1.07 0.09

20100423 8 32 35 6 48.8 1.1 308.6 13.5 103.4 71.6 7.5 0.63 0.13

20100429 5 21 35 4 46.3 0.8 268.4 49.3 105.7 89.9 18.0 0.50 0.05

20100814 3 0 42 4 57.7 1.1 207.4 65.6 112.9 80.3 69.8 1.34 0.09

20100914 5 42 26 4 43.9 0.1 175.7 40.5 104.4 79.4 20.9 0.73 0.09

20101129 9 12 44 3 29.2 0.4 82.7 42.7 100.1 56.5 39.4 2.10 0.03

20110208 8 59 33 3 59.2 2.6 290.2 28.2 112.8 71.9 21.5 0.80 0.04

20110402 8 46 52 4 28.4 0.4 53.9 53.4 94.8 73.3 28.4 1.30 0.42

20110520 6 2 9 3 23.5 0.8 21.6 51.5 95.7 84.1 14.3 0.80 0.22

20110630 3 39 38 6 33.7 0.3 209.2 23.6 100.5 71.7 12.4 0.87 0.16

20110808 5 22 6 5 24.8 0.4 156.1 49.3 86.6 39.9 53.3 2.84 0.10

20111005 5 8 53 3 29.2 0.2 342.2 43.4 96.2 64.5 29.5 1.50 0.12

20111202 0 31 4 4 26.9 0.1 265.1 67.8 97.0 53.8 101.8 4.40 0.42

20060305 5 15 36 3 18.6 0.1 8.8 30.9 81.2 35.5 27.0 3.17 0.30

20060405 3 3 27 2 11.5 1.7 89.7 26.9 67.8 36.4 15.7 3.54 0.76

20060805 8 38 50 4 67.5 2.7 268.5 29.3 126.4 74.5 28.5 0.80 0.19

20061223 6 27 26 4 22.9 0.8 29.7 32.1 91.5 31.1 37.2 3.00 0.93

20070102 10 42 3 2 43.6 2.6 242.8 30.0 94.0 66.2 15.8 0.77 0.04

20080511 4 22 17 4 21.7 0.3 20.6 67.1 95.2 77.3 41.5 1.97 0.72

20080612 5 58 29 3 15.5 0.4 130.6 52.2 88.3 69.7 23.7 1.97 0.14

20080812 3 27 25 2 59.4 0.8 211.0 64.0 115.8 77.0 77.2 1.47 0.75

20080812 8 19 29 3 56.2 1.4 224.9 28.1 105.7 82.0 12.4 0.47 0.34

20090428 4 43 37 4 18.2 0.0 351.0 32.8 83.5 38.0 29.0 2.97 0.29

20090812 7 55 58 3 58.7 0.2 225.7 32.6 108.5 80.4 17.7 0.57 0.80

20090825 1 14 35 4 23.4 1.6 297.0 48.5 85.4 45.7 44.1 2.50 0.40

20090926 1 2 58 7 20.5 1.2 129.4 36.3 100.5 19.6 56.3 6.07 0.03

20100530 7 0 31 4 28.4 0.5 16.3 61.9 96.0 78.3 32.5 1.33 0.06

20100802 7 18 25 3 41.2 3.2 358.3 57.8 93.6 64.8 44.9 1.27 0.18

20110815 5 50 16 2 57.1 2.2 292.1 30.5 104.3 77.7 15.4 0.57 0.21

Event T ime
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5.4.1 Infrasound Signal Taxonomy and Phenomenology 

The summary of infrasonic signal characteristics as measured for meteors producing 

single infrasound arrivals is shown in Table 5.2 and for meteors which produced multi 

infrasound arrival events in Table 5.3. All analysed signal celerities are consistent with 

the refractive, direct path propagation from the source to the receiver.  

Using our dataset of 71 meteor infrasound events, a new taxonomic classification was 

developed based on the pressure-time coda of the signal. While the majority of the 

signals in our dataset showed N-wave (DuMond et al., 1946) type arrivals typical of sonic 

boom signatures (Whitham, 1952; Seebass, 1967; Crow, 1969; Gottlieb and Ritzel, 

1988), some signals have double or even triple N-waves, while others exhibit more 

complex features, such as variability in amplitude, wave appearance, ripples, and humps. 

Additionally, there were some signals which appeared ‘diffuse’, meaning that they have 

four or more pressure cycle maxima, all with comparable amplitudes meaning it is 

difficult to discern specific N-wave features. The amplitude and duration of the N-wave 

signature are linked to the body’s shape and speed following Whitham’s F-function 

theory and the sonic boom area rule (Whitham, 1952; Seebass, 1967). However, we do 

not specifically investigate these here, as the main focus of our study is the signal 

phenomenology, our intent being to lay the observational foundations for future 

theoretical studies. 

Note we only use the apparent shape of pressure vs. time for classification. The 

theoretical interpretation and treatment are left for future studies. Our infrasound 

taxonomic signal classification is described in Table 5.5 and shown in Figure 5.15. Class 

I signals clearly dominate the data set. In total, 57% of all arrivals were Class I signals, 

while 22% were Class II, 7% Class III and 14% Class IV signals. Table 5.6 summarizes 

all signal and source height properties associated with each meteor infrasound taxonomic 

class.  

 

 

 



147 

 

 

 

 

Table 5.5: Proposed meteor infrasound signal classification taxonomy. 

 

 

 

 

Class I 

 
Single N-wave  

- Clean, no noticeable features, a single most prominent and 

complete cycle with the P2P amplitude significantly above any 

other cycles within the signal portion of the waveform (any other 

peak which is less than one ½ of the P2P amplitude would not be 

counted) 

Class II Double N-wave 
- Clean, no noticeable features, two prominent and complete 

cycles similar in size, with the main (dominant) cycle 

significantly above any others within the signal segment and 

with the second peak at least 1/2 the P2P amplitude (any other 

peak which is less than one ½ of the P2P amplitude would not be 

counted) 

Class III 

 
Triple N-wave 

- Clean, no noticeable features, similar in size, classification same 

as above 

Class IV 

 
Diffuse 

- 4+ complete cycles all within 1/2 the P2P amplitude of the 

dominant cycle 

- If the signal is barely above the noise (low SNR), then it is 

classified as the class IV 

Subclasses a - with a slowly decaying wavetrain and/or trailing reverberations 

(noticeable for additional 1+ cycles) 

b – subtle to noticeable additional features within the main wave/cycle 

(humps, ripples, spikes, dips, widening (but not a typical U-wave), etc) 

confined to the main cycle 

c – complex. Presence of ‘sub-cycles’ and other complex features in the 

main cycle and beyond. ‘c’ can also be considered a combination of ‘a’ 

+ ‘b’. Presence of leading reverberations. 

d – mixed U- and N- waves (instead of a typical sharp turn as seen in N-

waves, a U-wave displays significant widening, after which it gets its 

destination) 

Signal phase  

(first motion above 

RMS) 

(+) Positive phase 

(-) Negative phase 

 Positive phase (+) 

Negative phase (-) 

Indistinguishable (indeterminate) phase (*) 
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Figure 5.15: Examples of each taxonomic class. 
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Table 5.6: Summary of infrasound signal characteristics by taxonomic class. 

 

 

Meteor generated infrasound signals with slowly decaying wavetrains (in this study 

referred to as subclass ‘a’), as well as double and triple brief cycle pulses with nearly 

identical amplitudes were also observed and reported by Edwards (2010). These peculiar 

types of multiple N-wave signals are defined in our classification table as Class II and 

Class III. Edwards (2010) suggested that these repeating N-wave like pulses could be due 

to the relaxation of the atmosphere as it restores itself to the ambient levels. Alternatively, 

local turbulence in the lowest layers of the atmosphere could cause some of these 

distortions as has been found for sonic booms (e.g. Pierce, 1968; Hayes et al., 1971).  

These waveform signatures, however, are not unique to meteor generated infrasound. 

Gainville et al. (2010) modelled the infrasonic waveforms from the Misty Picture 

experiment (a spherical blast induced by the explosion of ammonium nitrate and fuel oil 

(ANFO)) and showed the measured waveforms as recorded at the Alpine, White River 

and Roosevelt sites, all of which were within a few hundred kilometers from the source 

(248 km, 324 km and 431 km, respectively). The waveform from Alpine bears a close 

resemblance to the Class II signals typically observed in our study (irrespective of the 

frequency content and signal amplitude). The signals in our study originated at high 

altitudes and had a direct propagation path to the detection location, while the signal from 

Alpine was a thermospherically refracted arrival. We note that the typical signal 

Source 

Altitude 

(km)

Signal 

celerity 

(km/s)

Total range 

(km)

Horiz 

range (km)

Ray 

deviation 

(°)

Sh 

parameter

Meteor 

Entry 

Velocity 

(km/s)

Begin 

Altitude 

(km)

End 

Altitude 

(km)

Flight Time 

(s)

Trace 

Velocity 

(km/s)

Dominant 

Freq (Hz)

Dominant 

Period (s)

Max 

Amplitude 

(Pa)

P2P 

Amplitude 

(Pa)

Bolide 

Integrated 

Energy 

SNR

Avg 77.5 0.306 140.6 115.3 102.0 0.6 38.5 97.6 65.6 1.7 0.394 2.64 0.70 0.09 0.14 8.50

Std. dev. 15.6 0.015 32.8 36.3 16.7 0.3 20.1 15.5 17.2 1.2 0.080 2.56 0.50 0.07 0.10 11.16

Min 38.1 0.274 73.3 47.4 75.2 0.1 11.5 67.8 31.1 0.4 0.332 0.39 0.10 0.02 0.03 0.28

Max 111.4 0.334 216.6 198.6 146.7 1.0 75.6 130.8 93.0 5.2 0.831 12.89 2.60 0.49 0.68 72.40

Avg 78.2 0.313 151.8 127.8 99.4 0.6 37.3 97.6 63.2 2.2 0.393 2.29 0.60 0.07 0.12 9.15

Std. dev. 17.0 0.015 28.0 33.4 13.7 0.3 17.7 12.0 22.0 1.8 0.057 1.70 0.30 0.06 0.11 14.13

Min 20.2 0.288 113.1 72.5 70.3 0.0 13.5 72.6 19.6 0.3 0.332 0.88 0.10 0.01 0.02 0.31

Max 102.7 0.336 206.9 189.7 122.6 1.0 71.2 119.2 88.5 6.1 0.601 7.03 1.30 0.28 0.49 50.03

Avg 77.0 0.298 118.1 87.9 92.2 0.8 35.8 95.2 71.7 1.5 0.429 3.63 0.40 0.05 0.08 9.59

Std. dev. 19.7 0.008 16.0 15.1 3.2 0.1 21.3 13.3 20.1 1.1 0.049 3.16 0.20 0.03 0.04 3.24

Min 46.9 0.287 92.6 68.2 87.0 0.5 14.1 75.2 40.4 0.4 0.349 1.37 0.10 0.01 0.02 5.92

Max 101.0 0.307 132.6 108.2 95.9 0.9 64.5 111.1 92.7 3.2 0.494 9.96 0.80 0.09 0.13 13.55

Avg 78.6 0.309 174.8 150.6 111.7 0.6 40.8 99.6 65.3 1.6 0.386 2.01 0.70 0.04 0.06 3.94

Std. dev. 17.9 0.019 57.9 69.9 17.8 0.3 19.0 12.2 19.5 1.0 0.050 1.43 0.40 0.02 0.03 2.46

Min 46.4 0.282 111.7 59.3 83.9 0.0 21.7 85.4 31.1 0.4 0.348 0.59 0.20 0.01 0.03 1.34

Max 103.8 0.338 277.1 267.9 151.5 1.0 71.1 124.3 83.4 3.0 0.52 6.25 1.60 0.07 0.12 9.26

Class I   (51 arrivals)

Class II   (20 arrivals)

Class III   (6 arrivals)

Class IV   (13 arrivals)
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amplitudes in our study are at least two orders of magnitude smaller than those of the 

Misty Picture experiment. Gainville et al. (2010) showed that both scattering and 

nonlinear effects influence the shock front evolution and propagation and local effects 

near the receiver array may affect our meteor infrasound signals in a similar manner.   

Brown et al. (2007) suggested that a very high temperature region near the edge of the 

blast cavity induced by rapid deposition of energy as the meteoroid propagates through 

the atmosphere may enable, due to non-linear refractive effects, outward shocks to have 

ray deviations up to 25° from the ballistic regime. Successive shocks, potentially 

originating at different points along the hypersonic path (cylindrical line source) may 

then undergo interference (e.g. converging shocks) and produce a complex flow pattern, 

similar to that around an axisymmetric slender body (e.g. Whitham, 1952). For example, 

a ballistic shock (which reaches an observer at the ground) from a certain height may get 

‘mixed’ with a refracted ray emanating from an adjacent portion of the trail, thus forming 

complex shock features at the source. Meteoroids which fragment and have two or more 

distinct fragments with independent shocks might also produce multiple N-wave 

signatures provided the transverse spread is of order 100m or more, values consistent 

with transverse spread for some larger meteorite producing fireballs (Borovička and 

Kalenda, 2003). Moreover, events with ballistic arrivals having fragmentation episodes 

within a few kilometers of the specular point would have the cylindrical and spherical N-

waves arrive close in time. Further studies and numerical modelling are needed to 

investigate the connection between the non-linear and refractive effects, and shock 

pattern at the source and their subsequent manifestations in the waveform as received by 

the observer.    

Infrasound observations from the large sample of events in this study suggest that 

Subclass ‘a’ can be generated anywhere in the meteor region (middle and upper 

atmosphere) and it does not show any particular association to source altitudes. Signal 

class also shows no correlation with source heights, suggesting that there is no 

association between these two parameters.    

The correlation between the signal peak-to-peak amplitude and the signal class is shown 

in Figure 5.16. There is a general pattern in the peak-to-peak signal amplitude, which 
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shows an apparent decrease as the taxonomic class increases. This may hint at a change 

in the acoustic radiation efficiency with an angle from the ballistic direction or that longer 

duration shocks showing more N wave cycles have a larger wavetrain to "spread" similar 

energy and hence the peak amplitudes appear to be smaller. Indeed, classical Whitham’s 

theory indicates that the quantity pressure x duration is conserved and hence the longer 

durations of the higher classes would expect to be correlated with attenuated amplitudes.  

However, the underlying cause of this correlation for meteor infrasound remains unclear. 

‘Outliers’, which appear to be far beyond the peak-to-peak amplitude limits of any of the 

other meteors, are associated with higher energy bright fireballs which exhibit evident 

gross fragmentation events; one of these ‘outliers’ is the Grimsby meteorite-producing 

fireball (Brown et al., 2011). These large events more strongly reinforce the correlation 

between the signal class and peak-to-peak amplitude.  

 

 

Figure 5.16: The relationship between the peak-to-peak amplitude of the meteor 

infrasound signal as a function of signal class. There is an evident fall-off in amplitude as 

the signal class increases. 
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The dominant signal frequency shows a clear relationship with range, as expected (Figure 

5.17). As a zeroth order empirical discriminant for direct arrival meteor infrasound we 

can use the upper envelope shown in Figure 5.17 to estimate the maximum likely 

detection range for typical regional meteor events using dominant frequency: 

Frequency(R) = 2.05 + 290 exp(-R/31) (5.2) 

where the dominant signal frequency in Hz and R is the range in km.  

 

 

Figure 5.17:  The observed fall-off in the dominant signal frequency of bright regional 

fireballs as a function of range. The exponential decay curve is given by equation (5.2). 

 

5.4.2 Shock Source Heights and Entry Velocity Distributions 

Using our new algorithm to determine the shock source heights from raytracing using a 

sequence of 1400 InfraMap gravity wave perturbation realizations, we found best 

estimates for the height (and its uncertainty) along the meteor path where the infrasound 

was produced and subsequently detected at ELFO for single arrivals and multi arrival 
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events. These results are summarized in Table 5.7 and Table 5.8, respectively. For the 

purpose of quantifying the shock source parameters, each infrasound arrival was treated 

as a separate event. An overview map with the ground trajectories showing the point 

along the meteor trail where the infrasound is produced as detected at ELFO is shown in 

Figure 5.18.  

  

 

Figure 5.18: A map of Southwestern Ontario and surrounding lakes showing the array 

(middle) and the spatial orientation of ground projected meteor trajectories for all events 

(orange lines), including the point along the trail where infrasound was produced and 

subsequently detected at ELFO (yellow circles). 

 

Overall, we find that the travel time is the most robust estimator for the true shock source 

heights; secondary estimates from other parameters usually agreed with the height found 

from travel time residuals. Taking into account gravity-wave induced variability through 
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our model we were able to match all observed arrivals, demonstrating in a model sense 

that wind perturbations can be a major factor in permitting infrasound propagation paths 

which do not otherwise exist using an average atmosphere only. Typically, the model 

predicted spread in the travel time due to atmospheric variability was between 2 s and 7 s, 

and the spread in the back azimuth was 1° – 4°. Most events had source height agreement 

between both travel time and back azimuths, while others showed poorer agreement 

(Table 5.9).  

We compared our results with a previous study which explored 12 common optical-

infrasound events recorded during the period between 2006 and the early 2007 (Edwards 

et al., 2008). These were also analysed as part of our study. In terms of raytracing, the 

main difference between the two studies is that in the current study there is a much 

smaller overall spread in the source height uncertainties per event. The shock source 

heights derived in this study differ from those found previously by 7 km on average. We 

attribute this difference to three major factors: (i) better astrometric solutions (e.g. 

improvements in the processing software have been made since 2007); (ii) the 

incorporation of atmospheric variability in raytracing solutions; and (iii) the method of 

finding the source heights using our new algorithm which differs from that used in the 

Edwards et al. (2008) study. 
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Table 5.7: The raytracing results and signal classification for single arrival events. All 

raytracing parameters represent the modelled quantities at shock source height, which are 

then compared to the observed quantities to determine which source heights best match 

the observations.  Here Solution type code is: NS - no source height solution; D - 

degenerate source height solution and S - unique source height solution. 

 

  

Date

Source 

Hmean ±

Total 

Range

Hor. 

Range Ray Dev

Back 

Azimuth

Travel 

T ime

Sol 

Type

Sh 

Param

Signal 

Class

hh mm ss km km km km ° ° s

20060419 4 21 28 79.8 0.2 109.8 75.4 88.2 327.4 349 NS 0.11 I

20060419 7 5 56 54.4 1.1 83.7 63.5 80.7 143.9 279 D 0.72 I

20060813 9 42 26 80.3 0.4 175.1 155.6 122.6 146.8 554 S 0.85 II

20061101 6 46 12 85.7 0.5 178.3 156.4 121.8 273.6 527 S 0.90 IV

20061104 3 29 29 77.0 1.1 116.4 87.2 104.3 294.1 354 S 0.53 II

20061121 10 45 46 91.4 0.4 148.1 116.7 151.5 136.0 526 S 0.80 IV

20070125 10 2 5 102.7 0.5 126.6 73.7 89.3 287.5 399 S 0.53 II

20070421 9 21 1 89.6 0.4 194.6 172.7 130.8 36.5 636 S 0.43 I

20070511 7 41 14 101.0 1.2 131.9 84.8 95.9 331.7 439 S 0.55 III

20070725 4 42 44 73.3 0.5 126.7 103.3 105.5 28.6 403 NS 0.97 I

20070727 4 51 58 85.0 1.5 149.0 122.5 94.6 30.2 469 S 0.44 I

20070917 7 55 43 87.9 0.8 175.3 151.7 95.6 257.8 589 NS 0.96 II

20071004 4 55 9 83.0 0.2 166.9 144.9 146.7 18.1 557 S 0.52 I

20071004 5 19 27 46.4 0.8 92.2 79.7 82.1 96.6 311 NS 0.96 I

20071021 10 26 25 101.2 1.4 194.8 166.3 105.2 39.8 700 S 0.60 I

20071130 10 28 49 93.2 0.6 187.0 162.1 114.2 68.2 645 S 0.50 I

20071215 11 18 13 75.9 0.9 89.5 47.4 94.0 65.3 328 NS 0.54 I

20080325 0 42 3 61.6 0.6 113.1 94.9 107.4 304.9 343 S 0.34 II

20080520 3 29 47 46.9 1.0 92.6 79.8 87.0 82.2 305 NS 0.81 III

20080602 5 44 44 111.4 3.9 147.2 96.2 89.0 212.9 508 S 0.24 I

20080801 4 22 20 79.8 0.5 104.9 68.2 93.2 332.5 348 NS 0.93 III

20080801 8 19 30 92.6 0.3 110.5 60.3 86.3 346.4 373 S 0.99 I

20080804 4 17 14 90.0 0.4 121.0 80.8 108.6 140.7 392 S 0.68 IV

20080812 6 0 34 93.8 2.7 125.2 82.8 94.4 200.8 430 NS 0.74 III

20080908 4 3 12 104.3 1.0 178.3 144.6 75.2 294.2 614 NS 0.37 I

20081005 1 50 12 54.3 1.8 128.3 116.3 102.4 341.1 405 S 0.76 IV

20081018 6 53 39 67.9 1.0 86.7 53.3 101.4 84.6 303 NS 0.47 I

20081028 3 17 35 52.7 3.6 73.3 50.9 92.2 307.2 239 S 0.71 I

20081102 6 13 26 85.0 0.5 193.1 173.4 117.3 292.4 576 S 0.34 II

20081107 7 34 16 81.9 0.6 119.9 87.6 85.3 332.0 377 D 0.99 I

20090126 7 16 24 87.3 0.8 100.3 49.1 88.4 219.9 329 NS 0.83 I

20090523 7 7 25 78.1 2.3 134.7 109.8 96.0 60.8 429 S 0.76 I

20090530 6 35 20 74.0 2.5 98.5 65.7 88.1 256.1 325 NS 0.39 I

20090709 5 24 23 75.9 0.5 144.3 122.7 107.3 352.3 468 NS 0.95 I

20090813 6 47 53 75.4 0.2 166.1 148.0 144.4 359.1 541 S 0.97 I

20090906 1 27 55 103.8 1.0 138.5 91.5 92.1 282.6 469 NS 0.21 IV

20090917 1 20 38 76.6 2.1 132.6 108.2 90.3 358.4 437 NS 0.68 III

20091025 11 5 58 70.5 0.2 171.0 155.8 91.4 14.6 595 NS 0.62 II

20100111 5 41 5 78.6 1.7 151.3 129.2 100.3 326.1 458 S 0.50 I

20100307 6 3 26 103.6 0.8 153.5 113.4 99.9 304.3 480 S 0.18 I

20100309 7 40 44 77.8 0.9 124.2 96.6 102.4 297.3 375 S 0.73 I

20100316 5 7 44 75.2 0.9 161.6 143.1 94.3 301.3 493 S 0.10 I

20100421 4 49 43 86.3 0.8 216.6 198.6 109.4 5.7 709 S 0.65 I

20100423 8 32 35 76.5 0.4 166.2 147.5 136.5 100.8 566 S 0.85 I

20100429 5 21 35 93.0 1.9 191.9 167.9 94.6 322.3 622 NS 0.81 I

20100814 3 0 42 82.5 0.6 206.9 189.7 109.2 300.7 711 NS 0.93 II

20100914 5 42 26 80.6 0.6 198.1 180.9 105.8 108.1 667 S 0.96 I

20101129 9 12 44 63.7 1.0 121.6 103.5 92.2 25.3 426 S 0.83 III

20110208 8 59 33 78.0 0.5 139.5 115.6 109.8 340.6 437 S 0.85 II

20110402 8 46 52 82.7 2.8 162.1 139.4 89.5 359.6 529 S 0.56 II

20110520 6 2 9 94.5 0.7 180.0 153.2 88.0 62.0 570 NS 0.09 II

20110630 3 39 38 87.7 0.5 161.7 135.8 113.6 186.0 535 S 0.45 IV

20110808 5 22 6 63.6 0.3 179.1 167.4 70.3 169.5 565 S 0.49 II

20111005 5 8 53 77.8 4.2 131.3 105.7 97.1 307.2 407 S 0.58 I

20111202 0 31 4 64.0 0.6 148.3 133.7 91.3 339.4 448 D 0.76 I

Event T ime
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Table 5.8: The raytracing results and signal classification for multi arrival events. All 

raytracing parameters represent the modelled quantities at shock source height, which are 

then compared to the observed quantities to determine the solution viability. Here 

Solution type code is: NS - no source height solution; D - degenerate source height 

solution and S - unique source height solution. 

 

 

 

 

Date

Source 

Hmean ±

Total 

Range

Hor. 

Range Ray Dev

Back 

Azimuth

Travel 

T ime

Sol 

Type

Sh 

Param

Signal 

Class

hh mm ss km km km km ° ° s

20060305 5 15 36 54.8 2.3 113.1 99.0 91.3 346.6 349 S 0.58 I

20060305 5 15 36 38.9 1.7 114.2 107.4 93.7 346.0 358 D 0.93 I

20060305 5 15 36 38.1 1.4 114.3 107.7 93.3 346.1 358 S 0.94 I

20060405 3 3 27 63.5 3.1 117.2 98.6 90.7 86.2 400 D 0.14 I

20060405 3 3 27 60.6 2.7 116.9 100.3 87.9 86.0 398 D 0.24 I

20060805 8 38 50 87.8 0.6 124.7 88.3 110.5 254.8 427 S 0.74 I

20060805 8 38 50 101.4 0.4 130.0 81.2 112.8 254.1 450 S 0.48 I

20061223 6 27 26 54.3 2.4 157.2 147.6 98.1 341.9 480 S 0.62 IV

20061223 6 27 26 74.7 1.7 158.4 139.7 103.9 341.4 489 S 0.28 I

20061223 6 27 26 90.6 0.7 161.9 133.9 112.9 338.3 508 NS 0.01 II

20070102 10 42 3 79.7 0.2 164.4 143.7 143.2 31.8 579 S 0.52 I

20070102 10 42 3 80.3 0.3 164.9 144.0 144.6 32.6 581 S 0.49 I

20080511 4 22 17 94.6 0.4 111.7 59.3 83.9 25.5 372 S 0.03 IV

20080511 4 22 17 88.9 0.5 114.7 72.5 78.6 25.1 382 S 0.35 II

20080612 5 58 29 71.8 0.5 126.3 104.0 101.2 70.2 388 S 0.89 I

20080612 5 58 29 76.0 0.3 126.7 101.3 104.6 67.3 391 S 0.66 I

20080812 3 27 25 79.4 0.7 120.7 91.0 100.5 181.4 400 D 0.94 I

20080812 3 27 25 77.7 0.2 121.6 93.6 101.9 182.3 405 S 0.98 II

20080812 8 19 29 86.2 0.8 157.0 131.3 103.8 249.6 555 S 0.83 IV

20080812 8 19 29 87.9 0.8 157.3 130.4 104.0 250.1 558 S 0.75 IV

20090428 4 43 37 60.7 6.2 138.6 124.8 95.6 52.4 454 S 0.50 I

20090428 4 43 37 70.9 1.1 140.6 121.5 105.1 55.2 459 S 0.28 I

20090812 7 55 58 80.6 0.3 155.9 133.4 101.1 205.5 526 NS 0.99 I

20090812 7 55 58 80.5 0.3 155.9 133.4 101.1 205.5 526 S 1.00 I

20090825 1 14 35 46.4 0.3 261.4 257.2 116.0 46.0 811 S 0.98 IV

20090825 1 14 35 68.3 1.8 275.2 266.5 127.4 47.9 846 NS 0.43 IV

20090825 1 14 35 70.9 2.0 277.1 267.9 129.0 48.4 852 S 0.36 IV

20090926 1 2 58 20.2 0.9 134.8 133.2 88.3 89.0 423 S 0.99 II

20090926 1 2 58 70.8 1.0 129.9 109.1 103.9 77.0 440 D 0.37 II

20100530 7 0 31 92.7 2.4 156.4 125.9 87.2 322.7 535 NS 0.18 I

20100530 7 0 31 92.1 2.8 156.6 126.7 86.9 323.2 536 S 0.21 II

20100802 7 18 25 78.9 0.3 138.9 114.3 110.8 81.3 422 NS 0.51 II

20100802 7 18 25 78.9 0.3 138.9 114.3 110.8 81.3 422 NS 0.51 II

20110815 5 50 16 79.1 0.6 166.4 146.4 102.6 332.5 550 S 0.95 I

20110815 5 50 16 84.1 0.7 167.0 144.3 105.2 333.4 556 S 0.76 I

Event T ime
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Table 5.9: All events, categorized based on their solution quality. 

 

The raytracing solution types (unique solution (S), degenerate solution (D) and no 

solution (NS)) for all events, broken down by single and multi arrival categories, are 

shown in Figure 5.19. For events falling into the no solution category, to find an estimate 

using the travel time and thus determine the best estimated shock source altitude, the 

residuals threshold grid had to be increased. Degenerate solutions are found only in those 

events which occur at ranges of less than 150 km. We note that almost half (45%) of 

single arrival events lie within 150 km, while nearly all (94%) multi arrival events are 

found within that range. The begin/end height for optical events with detectable 

infrasound together with the inferred source shock height distributions for single arrival 

events are shown in Figure 5.20. 

 

 

Figure 5.19: Pie charts showing the distribution of raytracing solution types (S – solution, 

D – degenerate and NS – no solution). Left: Single arrival events; Right: Multi arrival 

events (all arrivals). 

 

Solution 

Viability

Travel 

time (%)

Back 

azimuth (°)

Single 

arrivals

Multi 

arrivals All

SA < 1 < 1 19 11 30

SB 1 ≤ n < 2 1 ≤ n < 2 7 8 15

SC 2 ≤ n < 3 2 ≤ n < 3 9 5 14

SD 3 ≤ n < 5 3 ≤ n < 5 12 5 17

SF ≥ 5 ≥ 5 8 6 14
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Figure 5.20: Histograms showing the distribution of begin and end optical heights from 

camera data, as well as the infrasound source height from ray trace modelling. Left: begin 

and end height distribution for all events. Right: the shock source height distribution for 

single (blue) and multi (transparent yellow) arrivals. 

 

The luminous trails for all meteoroids in this study start at altitudes between 75 – 140 km, 

and end as low as 35 km for single arrivals and 20 km for multi-arrivals. It is evident 

from Figure 5.21 that there are two distinct meteoroid populations in terms of entry 

velocity, one population has entry velocities < 40 km/s (31 single arrival events or 56%), 

while the other population has entry velocities > 40 km/s (24 single arrival events or 

44%). The same trend can be seen in the multi arrival events; nine out of 16 events are in 

the slow entry velocity population, while the remaining seven events are in the fast entry 

velocity population. These local peaks in the apparent speed of meteoroids at the Earth 

have been recorded by other systems, both optical and radar (e.g. McKinley, 1961). They 

represent asteroidal/Jupiter family comet material (low speed peaks) and the near-

isotropic comet or the Halley-type comet material (high speed peak) following the 

classification convention of Levison (1996). In this study, the slow meteoroid populations 

(<40 km/s) often produce fireballs with long lasting luminous trails (>2 s), which 

penetrate substantially deeper into the atmosphere, consistent with their stronger structure 

(Ceplecha and McCrosky, 1976). In contrast, the fast meteoroid population (>40 km/s) 

usually produce shorter lasting luminous trails (~1 s), and have end heights above 63 km, 

due to their cometary origins (Borovička, 2006). Furthermore, high velocity meteors, 
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which are mostly cometary in origin, are more likely to produce flares, which are 

associated with fragmentation processes (Ceplecha et al., 1998).  

 

Figure 5.21: Meteor entry velocity populations. There appears to be a ‘dip’ between 36 – 

43 km/s, a feature seen in most raw meteor speed distributions (e.g. Brown et al., 2004). 

The slow meteor population has their velocities < 40 km/s, while the fast population is 

defined as having the entry velocity > 40 km/s. 

 

There is a strong correlation between meteoroid entry velocity, ablation heights 

(luminous trail) and the duration of luminous flight  in the atmosphere (Ceplecha et al., 

1998) (Figure 5.21), demonstrating the correlation between entry speed, total luminous 

path length and meteoroid population types (Ceplecha and McCrosky, 1976). A summary 

of average properties and standard deviations as well as extreme values for the two 

velocity populations in the single arrival category are given in Table 5.10. These same 

properties for the entire data set are summarized in Table 5.11. The infrasound signal 

characteristics reflect the velocity-duration-altitude interdependence - namely higher 
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speed meteoroids ablate higher and have shorter durations because they are also lower in 

mass for a similar brightness threshold.  

 

Table 5.10: Optical meteor events producing single infrasonic arrivals divided into the 

slow (< 40 km/s) and the fast (> 40 km/s) meteor entry velocity population. Multi arrival 

events are excluded from this tabulation. 

 

 

Table 5.11: Average statistics for single arrival events and multi arrival events. The 16 

multi arrival events include statistics for all 35 arrivals, except for meteor entry velocity, 

meteor flight time and meteor zenith angle, which are global across all arrivals in each 

event. 

 

Mean ± error Min Max Mean ± error Min Max

Entry Velocity (km/s) 24.4 ±  6.3 13.5 35.7 59.9 ± 8.8 43.9 75.6

Begin Point Altitude (km) 88.7 ±  9.2 72.0 104.4 111.2 ± 7.6 93.9 130.8

End Point Altitude (km) 60.7 ±  13.7 32.8 84.1 81.0 ± 8.0 63.4 93

Meteor Flight Time (s) 2.1  ± 1.3 0.8 5.2 0.9 ± 0.5 0.3 2.5

Meteor Radiant Zenith Angle (deg) 47.0 ± 15.5 14.6 88.4 47.4 ± 19.3 13.5 75

Shock Source Altitude (km) 72.3 ± 12.7 46.4 94.5 90.0 ± 10.3 75.4 111.4

Total Range (km) 132.7 ±  34.9 73.3 194.6 156.6 ± 32.0 100.3 216.6

Ray Deviation (deg) 97.8  ± 15.2 70.3 146.7 104.9 ± 18.4 75.2 151.5

Signal Trace Velocity (km/s) 0.392 ±  0.040 0.345 0.494 0.422 ± 0.111 0.332 0.831

Signal Celerity (km/s) 0.310 ±  0.015 0.274 0.336 0.305 ± 0.016 0.278 0.338

Dominant Signal Frequency (Hz) 4.24 ±  3.25 1.07 12.89 1.35 ± 0.71 0.39 2.93

Dominant Signal Period (s) 0.38 ±  0.23 0.07 0.94 0.98 ± 0.58 0.31 2.56

Signal Duration (s) 6.3 ±  1.5 3.0 10.0 7.9 ± 2.8 5.0 19.7

Slow Population (30 events) Fast Population (25 events)

Single Arrival 

Events Min Max

Multi Arrival 

Events Min Max All Events

Shock Source Height (km) 80.7 ± 14.6 46.4 111.4 73.2 ± 17.8 20.2 101.4 77.8 ± 16.2

Begin Altitude (km) 99.3 ± 14.1 72.0 130.8 95.24 ± 13.7 67.8 126.4 97.7 ± 14.0

End Altitude (km) 70.3 ± 15.2 32.8 93.0 57.7 ± 21.1 19.6 82.0 65.4 ± 18.6

Signal Celerity (km/s) 0.307 ± 0.015 0.274 0.338 0.307 ± 0.016 0.282 0.329 0.307 ± 0.016

Total Range (km) 144.0 ± 35.4 73.3 216.6  150.5 ± 41.8 111.7 277.1 146.5 ± 37.9

Horizontal Range (km) 117.7 ± 41.3 47.4 198.6 128.4 ± 47.5 59.3 267.9 121.3 ± 43.3

Horizontal Trajectory Length (km) 37.0 ± 27.4 5.8 119.6 32.7 ± 16.6 12.4 77.3 35.3 ± 23.8

Ray Deviation (deg) 101.2 ± 17.0 70.3 151.5  103.8 ± 15.0 78.6 144.6 102.2 ± 16.2

Meteor Entry Velocity (km/s) 41.2 ± 19.4 13.5 75.6  34.1 ± 18.3 11.5 67.5 38.4 ± 19.2

Meteor Fight Time (s) 1.55 ± 1.15 0.33 5.21 2.10 ± 1.42 0.47 6.07 1.8 ± 1.3

Meteor Radiant Zenith Angle (deg) 47.2 ± 17.2 13.5 88.3 42.2 ± 14.6 26.9 67.1 46.1 ± 16.7

Signal Dominant Period (s) 0.7 ± 0.5 0.1 2.6 0.6 ± 0.4 0.2 2.0 0.6 ± 0.5

Signal Dominant Frequency (Hz) 2.9 ± 2.8 0.4 12.9 2.0 ± 0.9 0.6 4.1 2.5 ± 2.3

Maximum Amplitude (Pa) 0.07 ±0.04 0.01 0.20 0.09 ± 0.08 0.01 0.49 0.07 ± 0.06

Peak-to-peak Amplitude (Pa) 0.10 ± 0.06 0.02 0.32 0.13 ± 0.10 0.02 0.68 0.12 ± 0.10

Observed Travel Time (s) 466 ± 119 240 709 489 ± 127 349 842 475 ± 122
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The shock wave, as it propagates away from the meteor source height, undergoes 

attenuation proportional to the altitude, with the high frequency content preferentially 

removed due to absorptive losses, turbulence, heat conduction and molecular relaxation 

(ReVelle, 1976). As higher velocity meteoroids deposit more energy at high altitudes and 

have correspondingly lower frequency signals reaching the ground, there is a direct 

relationship between meteor entry velocity and dominant period and dominant frequency 

of the infrasonic signal received at the array for these small regional events. In general, 

we find that the dominant signal period is significantly smaller and confined to below 1s 

in the slow entry velocity meteor population. Only low velocity meteors (< 40 km/s) 

produced infrasonic signals with dominant frequencies > 4 Hz (Figure 5.22). This 

characteristic might be exploitable for stand-alone meteor infrasound measurement as a 

means to roughly constrain entry speed. Additionally, there is a strong inverse 

relationship between the shock source height and the dominant signal frequency (Figure 

5.22). 

 

 

Figure 5.22: Left: The dominant signal frequency as a function of meteoroid entry 

velocity for meteor infrasound events in this study. The blue region denotes the slow 

velocity population (< 40 km/s), while the red region is the high velocity meteoroid 

population (> 40 km) which correspond roughly to asteroidal and cometary meteoroids, 

respectively. Right: Shock source altitude vs. dominant signal frequency.  
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Compared to the slow velocity, deep penetrating meteoroids, the high velocity, very high 

altitude (>100 km) meteoroid population is less likely to produce infrasound that 

propagates to the ground, though other studies have reported rare instances of infrasound 

from high altitude meteors, especially those associated with meteor showers (McIntosh et 

al., 1976; ReVelle and Whitaker, 1999; Brown et al., 2007). Out of the total population of 

71 single arrival events, 7 high altitude (>100 km) events generated infrasound detectable 

at the ground, suggesting that high-altitude ablation from meteoroids, even though not in 

the continuum flow, may still be capable of producing infrasound detectable at the 

surface, an effect also noted in studies of high altitude rocket-produced infrasound 

(Cotten and Donn, 1971).  

Finally, we note that meteoroids with shallow entry angles (from the horizontal) are more 

likely to produce detectable infrasound due to the line source geometry having better 

propagation paths to the ground. The entry angle distributions for all events in this data 

set, as well as the ASGARD data, are shown in Figure 5.23. 

 

Figure 5.23: The scaled distributions of meteoroid entry angles (from the vertical) for all 

optically detected events (ASGARD data) and simultaneously detected events in this 

study. In ASGARD data, the maximum is between 30° – 60°, while the simultaneously 

detected meteors in this study show a peak at 45° and another one at 15°. The meteoroids 

with small entry angles (as measured from the vertical) are more likely to produce 

infrasound via spherical shock than cylindrical line source. In our dataset, the limiting 
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meteoroid radiant zenith angle for spherical shocks is 64° (average 38°) and for 

cylindrical line source it is 88° (average 49°). 

 

5.4.3 Definition of Sh Parameter and Estimation of Shock Type 

To examine the possible shock source types (spherical vs. cylindrical) we first define a 

source height parameter (Sh) as:  

Sh = LBh-S/ L (5.3) 

where LBh-S is the path length along the trajectory from the begin point of the meteor to 

the shock source point, and L is the total path length of the entire visible meteor 

trajectory. Thus if Sh ≈ 1, the shock originates at the meteor’s luminous end point and as 

Sh  0, the shock originates closer to the luminous begin point of the meteor trail. The 

distribution of Sh for all arrivals (Figure 5.24) exhibits two peaks, one around the middle 

of the trail, and another one closer to the end point.  

 

 

Figure 5.24: The distribution of Sh parameter shown for all arrivals. 
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As expected, there is a weak inverse relationship between the shock source height and the 

Sh parameter with the shock source heights for the Sh parameter < 0.5 constrained to the 

altitude region above 60 km (Figure 5.25).  

 

 

Figure 5.25: Left: Altitude vs. Sh parameter, where the colour coded diamonds represent 

meteor entry velocity (high intensity red denotes highest velocity events, gradually 

shifting towards dark shades and to black, denoting slowest velocities). Right: The mean 

value of Sh parameter as a function of height (orange bars) in 10 km increments (bins) 

overlaid with Sh parameter as a function of height (blue diamonds). 

 

We expect the statistical behaviour of the Sh parameter to be diagnostic of the shock 

production mechanism, and thus examine this supposition further. For ballistic 

(cylindrical line) sources any portion of the trail is geometrically likely, though we expect 

a bias toward the end of the trail due to lower attenuation from lower source heights. The 

point of fragmentation, associated with spherical source geometry, depends on many 

factors, such as the meteoroid velocity, composition, tensile strength, etc. (Ceplecha, 

1998, Ceplecha and ReVelle, 2004), but such fragmentation points tend to occur lower in 

the trail, particularly for asteroidal-type meteoroids. Several well documented meteor 

events have provided valuable information shedding more light on the fragmentation and 

breakup characteristics of larger meteoroids (e.g. Borovička and Kalenda, 2003) during 

meteoroid flight through the atmosphere (e.g. Brown et al., 2003; ReVelle et al., 2004), 
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which may be similar to several deep penetrating events in our multi arrival population 

(e.g. Brown et al., 2011), but not representative of the entire population. 

In our study, five multi arrival events and eight single arrival events have ray deviation 

angles (β) greater than 115°, which may indicate spherical shock production based on 

earlier interpretations (e.g. Edwards et al., 2008). If a fragmentation episode (which we 

expect to act as a quasi omni-directional acoustic emission source) can be linked directly 

to the shock production point along the trail, then the ray deviation angle is not expected 

to be confined to the ballistic regime (90°±25°) (see Brown et al. (2007) for a discussion 

of the theoretical variance in the ballistic angle from considerations of the expected 

gradient introduced in the local sound speed by the cylindrical shock). 

Edwards et al. (2008) suggested the presence of a quasi-ballistic regime, defined as the 

region with ray deviation, β,  of 110° – 125°, where the waveform exhibits ballistic shock 

features (interpreted as a typical N-wave appearance), but does not fall within the true 

ballistic regime (in Edwards et al. (2008) referred to as 90°±20°). Following Edwards et 

al. (2008) and Edwards (2010), any signals beyond 125° would therefore suggest 

spherical shock production at the source.  

In this study we find an absence of a clear boundary in the waveform features that would 

phenomenologically distinguish ballistic shock from non-ballistic shock (identification 

based solely on the basis of N-wave appearance), or place it in the transition region. 

Spherical shocks, depending on the overall geometry and propagation effects, are also 

expected to produce N-wave signals and have ray deviations within the ballistic region 

(ray deviation angle 90°±25° as defined by Brown et al. (2007)), as the decay of any 

shock at large distances tends to exhibit N-wave behaviour due to the cumulative effects 

of non-linearity in the waveform, independent of the source characteristics (e.g. 

Whitham, 1972). This implies that the infrasound pressure-time signal alone may not be 

sufficient to clearly identify of the shock source type (point vs. line source) and that some 

information about the geometry of the source has to be known. In our dataset, a number 

of events with ray deviations larger than 125° (beyond the quasi-ballistic as defined by 

Edwards et al. (2008)) still show Class I signals (i.e. N-wave signature), interpreted 

earlier as being typical of the ballistic regime. Conversely, it is not unusual to find a Class 
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IV signal within the ballistic region (though this might still be due to a fragmentation 

event).   

To investigate this question, along with the behaviour of the Sh parameter as a function of 

shock type,  we tried to determine if flares (produced by fragmentation) in a meteor 

lightcurve were a source of infrasound at the ground, as such fragmentation episodes are 

expected to produce quasi-spherical shock sources. The photometric lightcurve for each 

event was produced following standard photometric procedures (e.g. Brown et al., 2010). 

Since the visual magnitude was not calibrated to an absolute visual magnitude at this 

stage, it was normalized to -1 for each event and the differential lighturve used to identify 

flares. An example of a brightness vs. meteoroid height lightcurve for two representative 

events is shown in Figure 5.26. The full photometric methodology and reduction 

procedure will be discussed in detail in Chapter 6.  

 

Figure 5.26: Examples of relative photometric light curves. Left: The shock source height 

was determined to have occurred at 104 km. Thus, this event most likely produced 

infrasound via hypersonic shock (cylindrical line source) as the shock source height does 

not correlate with any local brightening (flare) suggestive of a fragmentation episode. 

Right: The onset of the flare (fragmentation) coincides with the best estimate of the 

source height, suggesting that the signal was most likely produced by a spherical shock. 

On both panels the red arrow shows the most probable shock source height. For the first 

event, the ray deviation angle is 100° and for the event on the right, it is 136° degrees. 

 

If the height of the optical flare falls within the uncertainty bounds of the infrasonically 

estimated shock source height derived from raytracing, then this suggests that the shock 
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type is spherical in nature. We assume that infrasound shock source heights showing no 

association with flares are more likely to be cylindrical line sources. In all but one case 

(event 20071004) it was possible to determine the most probable nature of shock 

production based on correlation with the lightcurve. This one ambiguous event, which 

was excluded from the lightcurve shock-source type analysis, shows continuous 

fragmentation in the video records which is indicative of a spherical shock generated by a 

rapidly moving point source; however, there is an absence of a clearly defined flare in the 

light curve. The distributions of shock type in the single arrival and multi arrival event 

categories, as well as the distribution of the Sh parameter as a function of shock type, are 

shown in Figure 5.28. 

The photometric light curves were also used to establish the height of peak brightness; 

this is the region associated with the maximum energy deposition and ablation/mass loss 

along the trail (Zinn et al., 2004). The location of the peak brightness along the trail was 

used to define an Mp parameter, which is defined (in analogy with the Sh parameter) as: 

Mp = LBh-Mp/ L (5.4) 

where LBh-Mp is the path length along the trajectory from the begin point of the meteor to 

the point of peak luminosity, and L is the total path length of the entire visible meteor 

trajectory. 

This information was then used to examine the correlation between the Sh parameter and 

the Mp (Figure 5.27). We note that if the shock source height occurs at the point of peak 

luminosity Sh=Mp. 
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Figure 5.27: The Sh parameter vs Mp for 50 arrivals (single and multi arrival populations 

combined) generated by a cylindrical line source (i.e. not showing a shock source height 

which can be obviously correlated with a local maximum in the lightcurve). Due to 

complex light curve features (e.g. flares), it was not possible to determine the height of 

the peak brightness with certainty for the remaining 10 arrivals. Therefore, those arrivals 

are excluded from the plot. The dotted line is the 1:1 line.  

 

Our examination of the correlation between optical meteor flares and infrasound 

production suggests: 

(i) There are events with ray deviation angles ,β, in the ballistic regime (90°±25°) 

which are most likely generated by a spherical shock (rapidly moving point 

source or terminal burst) based on their association with a visible flare or 

fragmentation - the fraction of these events differs between the single and 

multiple meteor infrasound arrival populations as shown in Figure 5.28;  

(ii) From (i) it follows that infrasound produced in the single arrival population is 

predominantly generated by a meteor’s hypersonic passage through the 

atmosphere (cylindrical line source), while a significant portion of multi 
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arrivals tend to be produced by fragmentation. This implies that most meteor 

infrasound direct signals showing multiple arrivals are not due to atmospheric 

multi-pathing, but fragmentation based on our observed optical correlation to 

flares;   

(iii)  All events with large ray launch deviation angles (β>117°) were found to be 

associated with optical fragmentation points (flares) and hence likely originate 

from a spherical type of shock. It should be remarked that it may not be 

possible to determine this based on the infrasound signal alone;  

(iv) A small number of events (12% of cases, or 7 arrivals out of 60) which were 

not associated with flares and hence we interpret to be generated as a 

cylindrical line source have their shock source height closely associated with 

the height of maximum brightness along the luminous trail (Figure 5.27). 

Taking into account the uncertainty in the Mp parameter, this percentage may 

actually be closer to ~25%. 

(v) The Sh parameter for events showing flares is skewed towards larger values 

(i.e. closer to Sh=1), while events showing no flares (which are most likely 

ballistic shocks) are predominantly generated in the region around the middle 

of the trail (i.e. Sh ~ 0.5) (Figure 5.28). 

The Sh parameter for events showing flares is skewed towards larger values (ie. closer to 

Sh=1), while events showing no flares (which are most likely ballistic shocks) are 

predominantly generated in the region around the middle of the trail (i.e. Sh ~ 0.5).  
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Figure 5.28: Pie charts showing the distribution of spherical (S) shocks for events with 

ray deviations β ≤117°, β>117°, and cylindrical (C) shocks, where identification of a 

probable spherical shock source is defined as association with an optical flare and vice 

versa. Only one arrival in our entire data set is of ambiguous nature (A). Nearly half of 

the multi arrivals are found to be associated with probable spherical shocks, while a much 

greater proportion of the single arrivals are generated by a cylindrical shock. The 

histograms represent the distribution of the Sh parameter, separated by the shock source 

type. 

 

As shown by Zinn et al. (2004), the region of maximum luminosity is also where energy 

deposition peaks and hence is the point where the blast radius is the largest. This would 

also be the location where the refractive effects (i.e. gradient in local sound speed 

produced by the shock) are the largest. Nevertheless, point source shocks are still present 

in the ballistic region, based on the occurrence of flares in the trail along the ballistic 

launch zone, indicating that it is not only necessary to investigate the type of signal, but 

also understand the geometry of each event to uniquely associate it with a meteor 

infrasound signal and a particular source shock type. 
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 5.4.4 Multi Arrival Event Population 

Meteor infrasound signals showing multiple arrivals display source height and shock type 

characteristics different than those events with single meteor infrasound arrivals as shown 

in Table 5.11. In the majority of cases, the main arrival (i.e. arrival with the maximum 

pressure amplitude) is associated with the lowermost part of the meteor trajectory (higher 

value of Sh). There are two distinct categories of multi arrival events. One category (9 out 

of 16 events) shows shock source heights which are nearly identical within uncertainty 

for at least 2 arrivals (Group M1), while the other group (7 out of 16 events) is associated 

with clearly different shock source heights for each infrasound arrival (Group M2). Three 

events in the M1 group were most likely generated by a cylindrical line source, while the 

remaining 6 we associate with spherical shocks based on a common association with 

optical flares.   

The M2 group may be interpreted as either a ballistic shock and/or a spherical shock 

occurring at different locations along the meteor trail at different heights, while the M1 

group may be associated with different ray paths from a single source, similar to the 

cause of secondary sonic booms (Rickley and Pierce, 1980). The former was observed in 

several well documented meteorite producing fireballs (e.g. Brown et al., 2011; Brown et 

al., 2003). Fragmentation processes may lead to complex shock configurations 

(Artemieva and Shuvalov, 2001; Borovička and Kalenda, 2003). Multiple fragments, if 

sufficiently large, may each generate individual shocks (Artemieva and Shuvalov, 2001) 

that could therefore produce distinct infrasonic arrivals possibly appearing to originate 

from the same altitude, though only the Grimsby event in our dataset is large enough for 

this mechanism to be plausible. Among our multi arrival events, only one was found to 

have a shock source height at an altitude greater than 90 km (20100530); all others occur 

at lower altitudes with a mean height of 72±15 km. This suggests that meteoroids capable 

of producing multiple infrasonic signals detectable at the ground are both typically slower 

(and hence more likely to be of asteroidal origin) and/or may be intrinsically more 

energetic than a typical single arrival producing fireball. This is further supported by the 

observation that the maximum dominant frequency for the multi arrival population does 

not exceed ~4 Hz. 
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5.4.5 Correlation of Meteor Infrasound Signal Class and Ray Launch Deviation 

Angles 

In general, while meteor infrasound taxonomic classes I, II and IV are evenly spread over 

nearly all ray launch deviation angles, all class III events occur only when ray deviations 

are strictly around the ballistic regime of 90° (Figure 5.29). The significance of this 

correlation is hard to gauge as there are a very small number of Class III signals 

compared to other classes and the triple N-wave pressure signal is not obviously linked to 

any purely ballistic process. Although the multi infrasound arrival sample is smaller (16 

individual events showing a total of 35 arrivals) than the single infrasound arrival group, 

it is notable that there are no multi infrasound arrivals in Class III. Again, this may 

simply be due to small number statistics. Another interesting aspect of Class III signals is 

that they are all emanate from the meteors with the Sh parameter > 0.5, which means that 

the shock was generated in the lower ½ of the trajectory. 

 

 

Figure 5.29: Ray launch deviation angles as a function of the signal Class type. Solid 

line: single arrival event category; Dotted line: multi arrival event category (all arrivals). 

The shaded region represents the ballistic region (90°±25°) as originally defined on 

theoretical ground by Brown et al (2007). 
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5.5 Conclusions 

In this first paper in a two part series, we present the experimental investigation, 

phenomenology and analysis of a data set of meteors simultaneously detected optically 

and infrasonically. The specific goals of this coordinated optical-infrasound meteor study 

were to: (i) use astrometric optical measurements to positively identify infrasound from 

meteors; (ii) establish and constrain the point (and its uncertainty) along the meteor trail 

where the infrasound signal emanates; (iii) examine the role of atmospheric variability 

due to winds on the infrasound solution; (iv) determine the type of shock production 

mechanism for meteor generated infrasound; and (v) classify meteor infrasound and 

correlate meteor infrasound classes with structures seen in meteor infrasound signals to 

establish the foundation for future work to understand the underlying physical 

mechanisms and possibly relate to sonic boom theory. Our main conclusions related to 

these initial goals are: 

(i) Seventy one optically recorded meteor events were positively identified with 

infrasound signals using the observed travel time and arrival azimuths in 

comparison to the expected values from the measured trajectories. Among 

these data, some 16 events also produced more than one distinct infrasound 

arrival. We have found that there are two entry velocity meteor populations 

which produced infrasound detectable at the ground, slow (< 40 km/s) and fast 

(> 40 km/s), which we associate with predominantly asteroidal and cometary 

populations, respectively. These exhibit different astrometric, source height, 

and signal characteristics. The findings in this study also suggest that 

infrasound from high altitude meteors may be more common than previously 

thought. The slow and fast velocity meteoroid populations also exhibit an 

apparent upper limit on the dominant infrasound signal period and frequency. 

The slow velocity population appears to be capped at a dominant signal 

frequency of ~14 Hz, while the fast velocity population is limited to the upper 

dominant signal frequency bound of <4 Hz. There is a strong inverse 

relationship between the shock source height and the dominant signal 

frequency.  
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(ii) By comparing travel time and arrival azimuths with raytracing model values 

and incorporating the perturbations in the wind field we determined the 

altitude and uncertainty of the infrasound source height production and its 

location along the meteor trail. We find that meteors preferentially produce 

infrasound toward the end of their trails with a smaller number showing a 

preference for mid-trail production.   

(iii) We show that the atmospheric variability may play a nontrivial role even for 

short range (< 300 km) infrasound propagation from meteors, with our model 

variations due to gravity wave induced winds producing spreads in the travel 

time between 2 s and 7 s, and spreads in the back azimuth from 1° – 4° for our 

meteor dataset which averaged ~150 km in range and 70-80 km in source 

altitude. Some of the differences observed between our raytracing predictions 

and observations may also be due to scattering, diffraction and range 

dependent changes in the atmosphere which we do not explicitly examine.  

(iv) We linked the type of shock production (cylindrical and spherical) at the 

source based on whether or not the infrasound source height corresponds with 

an optical flare. We find that large deviation angles (β>117°) are generally 

associated with spherical sources (point source or a moving point source). 

Approximately one quarter of single arrival meteor infrasound events are 

associated with fragmentation episodes (spherical shocks); while almost half 

of all multi arrival events are correlated with fragmentation events. Notably, 

the multi arrival population shows a strong source height skewness to the end 

of trails; this reflects the larger masses involved as well as the predominance 

of asteroidal meteoroids in the multi-arrival category. We find that the ray 

deviation angle cannot be used as a sole discriminant of the type of shock at 

the source, as both spherical and hypersonic line sources, depending on the 

geometry and orientation with respect to the observer, may produce signals 

which apparently have ray deviation angles confined to the ballistic regime.  

(v) We have developed a new signal taxonomic scheme based on the appearance 

and qualitative characteristics of the waveforms. This taxonomic scheme may 
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be extended to infrasound signals from other explosive sources located at a 

relatively short distance from the source (within ~300 km, to remain 

consistent with our dataset). For example, N-waves are common features of 

all shocks at some distance from their sources (not only in meteors). Further 

studies, theoretical and experimental, are required to better explain certain 

shock features, such as double and triple N-waves (Table 1), and link them to 

the source and propagation effects. We also found an association between the 

signal peak-to-peak amplitude and the signal class, which may relate to the 

sonic boom equal area rule. The signal amplitude tends to decrease as a 

function of signal class; this is clearly observable when all our data is plotted. 

All four classes of signals can be found in any source (spherical or line 

source) category. 

We find that about 1% of all our optically detected meteors have associated infrasound. 

For a typical infrasound station such as ELFO we estimate that regional meteor 

infrasound events should occur on the order of once per week and dominate in numbers 

over infrasound associated with more energetic (but rarer) bolides detectable at large 

(>500 km) propagation distances. While a significant fraction of our meteors generating 

infrasound (~1/4 of single arrivals) are produced by fragmentation events, we find no 

instances where acoustic radiation is detectable more than 60° beyond the ballistic regime 

at our meteoroid sizes (grams - tens of kilograms). Indeed, the average deviation angles 

among our population are within 10°-15° of purely ballistic. This emphasizes the strong 

anisotropy in acoustic radiation for meteors which are dominated by cylindrical line 

source geometry, even in the presence of fragmentation.   

 

 

 

 



176 

 

 

 

Acknowledgements 

Funding in support for part of this project was provided by the CTBTO Young Scientist 

Award funded through the European Union Council Decision 2010/461/CFSP IV. EAS 

thanks Dr. W. K. Hocking for discussions about gravity waves, Zbyszek Krzeminski for 

his help with astrometric reductions and Jason Gill for his help with setting up a parallel 

processing machine to run raytracing. Funding in support of this work from NASA Co-

operative agreement NNX11AB76A, from the Natural Sciences and Engineering 

Research Council and the Canada Research Chairs is gratefully acknowledged. 

  



177 

 

 

 

References 

 

Artemieva, N. A., and Shuvalov, V. V. 2001. Motion of a fragmented meteoroid through 

the planetary atmosphere. Journal of geophysical research, 106(E2), 3297-3309. 

Balachandran, N. K., Donn, W. L., Kaschak, G. 1971. On the propagation of infrasound 

from rockets: Effects of winds. The Journal of the Acoustical Society of America. 

50, 397. 

Bass, H. E., Bauer, H. J., Evans, L. B. 1972. Atmospheric absorption of sound: Analytical 

expressions. The Journal of the Acoustical Society of America. 52, 821 

Bedard, A., Georges, T. 2000. Atmospheric infrasound. Acoustics Australia. 28(2), 47-

52. 

Beer, T. 1974. Atmospheric waves. New York. Halsted Press. London, Adam Hilger, 

Ltd.  315p. 

Bhattacharyya, J., Bass, H., Drob, D., Whitaker, R., ReVelle, D., Sandoval, T. 2003. 

Description and Analysis of Infrasound and Seismic Signals Recorded from the 

Watusi Explosive Experiment, in Proceedings of the 25th Seismic Research 

Review—Nuclear Explosion Monitoring: Building the Knowledge Base. LA-UR-

03-6029, Vol. 2, pp. 587–596 

Borovička J., Spurný P., Keclikova J. 1995. A new positional astrometric method for all-

sky cameras. Astronomy and Astrophysics-Supplement Series. 112: 173–178 

Borovička, J. 1990. The comparison of two methods of determining meteor trajectories 

from photographs. Bulletin of the Astronomical Institutes of Czechoslovakia. 41, 

391-396. 

Borovička, J. 1992. Astrometry with all-sky cameras. Publications of the Astronomical 

Institute of the Czechoslovak Academy of Sciences. 79. 

Borovička, J., Kalenda, P. 2003. The Morávka meteorite fall: 4. Meteoroid dynamics and 

fragmentation in the atmosphere. Meteoritics & Planetary Science. 38(7). 1023-

1043. 

Brachet, N., Brown, D., Le Bras, R., Cansi, Y., Mialle, P., Coyne, J. 2009. Monitoring 

the earth’s atmosphere with the global IMS infrasound network. In Infrasound 

Monitoring for Atmospheric Studies, pp. 77-118. Springer Netherlands. 

Bronsthen, V.A. 1983. Physics of Meteoric Phenomena. 372 pp. D. Reidel, Dordrecht, 

Netherlands. 



178 

 

 

 

Brown, E.H., Hall, F.F. 1978. Advances in atmospheric acoustics. Reviews of 

Geophysics. 16(1), 47-110. 

Brown, P. G., Assink, J. D., Astiz, L., Blaauw, R., Boslough, M. B., Borovička, J., and 26 

co-authors (2013). A 500-kiloton airburst over Chelyabinsk and an enhanced 

hazard from small impactors. Nature. 

Brown, P., McCausland, P.J.A., Fries, M., Silber, E., Edwards, W.N., Wong, D.K., 

Krzeminski, Z. 2011. The fall of the Grimsby meteorite—I: Fireball dynamics and 

orbit from radar, video, and infrasound records. Meteoritics & Planetary Science. 

46(3), 339-363. 

Brown, P., Weryk, R. J., Kohut, S., Edwards, W. N., Krzeminski, Z. 2010. Development 

of an All-Sky Video Meteor Network in Southern Ontario, Canada The ASGARD 

System. WGN, Journal of the International Meteor Organization, 38, 25-30. 

Brown, P.G., Edwards, W.N., ReVelle, D.O., Spurny, P. 2007. Acoustic analysis of 

shock production by very high-altitude meteors – I: infrasonic observations, 

dynamics and luminosity, Journal of Atmospheric and Solar-Terrestrial Physics. 

69: 600–620. 

Brown, P.G., Kalenda, P., Revelle, D.O., Boroviĉka, J. 2003. The Morávka meteorite fall: 

2. Interpretation of infrasonic and seismic data. Meteoritics & Planetary Science. 

38(7), 989-1003. 

Cansi, Y., 1995. An automatic seismic event processing for detection and location: the 

P.M.C.C. method. Geophysical Research Letters 22 (9), 1021-1024 

Cansi, Y., Klinger, Y. 1997. An automated data processing method for mini-arrays. 

Newsletter of the European Mediterranean Seismo-logical Centre. 11, 2-4 

Cansi, Y., Le Pichon, A. 2008. Infrasound Event Detection using the Progressive Multi-

Channel Correlation Algorithm,” In: D. Havelock, S. Kuwano and M. Vorlander, 

Eds., Handbook of Signal Processing in Acoustics. Springer, New York, pp. 

1424-1435. doi:10.1007/978-0-387-30441-0_77 

Cansi, Y., Le Pichon, A. 2009. Infrasound event detection using the progressive multi-

channel correlation algorithm. In Handbook of signal processing in acoustics (pp. 

1425-1435). Springer New York. 

Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., 

Šimek, M. 1998). Meteor phenomena and bodies. Space Science Reviews. 84(3-

4), 327-471. 

Ceplecha, Z., McCrosky, R. E. 1976. Fireball end heights: a diagnostic for the structure 

of meteoric material. Journal of Geophysical Research. 81(35), 6257-6275. 



179 

 

 

 

Ceranna, L., Le Pichon, A., Green, D. N., Mialle, P. 2009. The Buncefield explosion: a 

benchmark for infrasound analysis across Central Europe. Geophysical Journal 

International. 177(2), 491-508. 

Christie, D. R. Campus, P. The IMS Infrasound Network: Design and Establishment of 

Infrasound Stations, In: A. Le Pichon, E. Blanc and A. Hauchecorne, Eds., 

Infrasound Monitoring for Atmospheric Studies. Springer. New York, 2010, pp. 

29-75. doi:10.1007/978-1-4020-9508-5_2 

Chunchuzov, I. P. 2004. Influence of internal gravity waves on sound propagation in the 

lower atmosphere. Meteorology and Atmospheric Physics. 85(1-3), 61-76. 

Chyba, C.F., Thomas, P.J., Zahnle, K.J. 1993. The 1908 Tunguska explosion: 

atmospheric disruption of a stony asteroid. Nature. 361: 40-44 

Cotten, D., Donn, W. L. 1971. Sound from Apollo rockets in space. Science. 171(3971), 

565-567. 

Crow, S.C. 1969. Distortion of sonic bangs by atmospheric turbulence. Journal of Fluid 

Mechanics 37(03): 529-563. 

DuMond, J. W., Cohen, E. R., Panofsky, W. K. H., Deeds, E. 1946. A determination of 

the wave forms and laws of propagation and dissipation of ballistic shock waves. 

The Journal of the Acoustical Society of America. 18, 97. 

Edwards, W. N. 2010. Meteor generated infrasound: theory and observation. In 

Infrasound monitoring for atmospheric studies (pp. 361-414). Springer 

Netherlands. 

Edwards, W. N., Brown, P. G., Weryk, R. J., ReVelle, D. O. 2008. Infrasonic 

observations of meteoroids: Preliminary results from a coordinated optical-radar-

infrasound observing campaign. Earth, Moon, and Planets. 102(1-4), 221-229. 

Edwards, W.N., Hildebrand, A.R. 2004. SUPRACENTER: Locating fireball terminal 

bursts in the atmosphere using seismic arrivals. Meteoritics & Planetary Science, 

39(9), 1449-1460. 

Embleton, T. F. 1996. Tutorial on sound propagation outdoors. The Journal of the 

Acoustical Society of America. 100, 31. 

Ens, T. A., Brown, P. G., Edwards, W. N., Silber, E. A. 2012. Infrasound production by 

bolides: A global statistical study. Journal of Atmospheric and Solar-Terrestrial 

Physics. 80, 208-229. 

Evers, L.G. H.W. Haak. 2001. Listening to sounds from an exploding meteor and oceanic 

waves. Geophysical Research Letters. 30: 41-44. 



180 

 

 

 

Evers, L.G. Haak, H.W. 2003. Tracing a meteoric trajectory with infrasound. 

Geophysical Research Letters. 30(24): 1-4. 

Fritts, D. C., Alexander, M. J. 2003. Gravity wave dynamics and effects in the middle 

atmosphere. Reviews of geophysics. 41(1), 1003. 

Gainville, O., Blanc-Benon, P., Blanc, E., Roche, R., Millet, C., Le Piver, F., Depress, B., 

Piserchia, P. F. 2010. Misty picture: a unique experiment for the interpretation of 

the infrasound propagation from large explosive sources. In Infrasound 

Monitoring for Atmospheric Studies (pp. 575-598). Springer Netherlands. 

Garcés, M. 2013. On Infrasound Standards, Part 1: Time, Frequency, and Energy Scaling, 

InfraMatics. 2013, 2, 13-35, doi:10.4236/inframatics.2013.22002 

Garcés, M., Harris, A. Hetzer, C. Johnson, J., Rowland. S. 2003a. Infrasonic tremor 

observed at Kilauea Volcano, Hawai’i. Geophysical Research Letters. 30: 2023-

2026. 

Garcés, M., Hetzer, C. Merrifield, M. Willis, M., Aucan. J. 2003b Observations of surf 

infrasound in Hawai’i. Geophysical Research Letters. 30: 2264-226 

Garcés, M., Le Pichon, A. 2009. Infrasound from Earthquakes, Tsunamis and Volcanoes, 

In: R. A. Meyers, Ed., Encyclopedia of Complexity and Systems Science. 

Springer, Berlin, pp. 663-679. 

Gardner, C.S., Hostetler, C.A., Franke, S.J. 1993. Gravity wave models for the horizontal 

wave number spectra of atmospheric velocity and density fluctuations. Journal of 

geophysical research. 98(D1), 1035-1049. 

Gibson, R., Norris, D. (2000). The infrasound analysis tool kit InfraMap: Capabilities, 

enhancements and applications. BBN Technologies Arlington VA. 

Gibson, R.G., Norris, D.E. 2003. Integration of InfraMap with Near-Real-Time 

Atmospheric Characterizations and Applications to Infrasound Modeling, 

Proceedings of thhe 25th Seismic Research Review – Nuclear Explosion 

Monitoring ‘Building the Knowledge Base’, 23-25 September, 2003, Tuscon, AZ, 

Vol II, pp 638-645 

Gottlieb, J.J., Ritzel, D.V. 1988. Analytical study of sonic boom from supersonic 

projectiles Progress in Aerospace Sciences. 25(2): 131-188  

Green, D.N., Vergoz, J., Gibson, R., Le Pichon, A., Ceranna, L. 2011. Infrasound 

radiated by the Gerdec and Chelopechene explosions: propagation along 

unexpected paths. Geophysical Journal International. 185(2), 890-910. 

Günther, R.H., O’Connell-Rodwell, C.E., Klemperer, S.L. 2004. Seismic waves from 

elephant vocalizations: a possible communication mode?. Geophysical Research 

Letters. 31: L11602 



181 

 

 

 

Harris, M., and Young, C. 1997. MatSeis: a seismic GUI and tool-box for MATLAB. 

Seism. Res. Lett, 68(2), 267-269. 

Haynes, C. P., Millet, C. 2013. A sensitivity analysis of meteoric infrasound. Journal of 

Geophysical Research: Planets. 118, 2073-2082 

Hedin, A.E., Fleming, E.L., Manson, A.H., Schmidlin, F.J., Avery, S.K., Clark, R.R., 

Vincent, R.A. 1996. Empirical wind model for the upper, middle and lower 

atmosphere. Journal of Atmospheric and Terrestrial Physics. 58(13), 1421-1447. 

Hedlin, M. A. H., Walker, K., Drob, D. P., de Groot-Hedlin, C. D. 2012. Infrasound: 

Connecting the Solid Earth, Oceans, and Atmosphere. Annual Review of Earth 

and Planetary Sciences. 40, 327-354. 

Hedlin, M.A., Garcés, M., Bass, H., Hayward, C., Herrin, G., Olson, J., Wilson, C. 2002. 

Listening to the secret sounds of earth’s atmosphere. Eos 83 (2002). 557, 564-

565. 

Hines, C.O., Reddy, C.A. 1967. On the propagation of atmospheric gravity waves 

through regions of wind shear. Journal of Geophysical Research. 72(3), 1015-

1034. 

Jacchia, L., Verniani, F., Briggs, R. E. 1967. An analysis of the atmospheric trajectories 

of 413 precisely reduced photographic meteors. Smithsonian Contributions to 

Astrophysics. 10, 1-139. 

Jones, T.B. 1982. Generation and propagation of acoustic gravity waves. Nature. 299: 

488-290. 

Kraemer, D.R. 1977. Infrasound from accurately measured meteor trails. Ph.D. Thesis 

University of Michigan, Ann Arbor 

Kulichkov, S. 2010. On the prospects for acoustic sounding of the fine structure of the 

middle atmosphere. In Infrasound monitoring for atmospheric studies (pp. 511-

540). Springer Netherlands. 

Kulichkov, S. N. 2004. Long-range propagation and scattering of low-frequency sound 

pulses in the middle atmosphere. Meteorology and Atmospheric Physics. 85(1-3), 

47-60. 

Le Pichon, A., Blanc, E., Drob, D. 2005. Probing high-altitude winds using infrasound. 

Journal of geophysical research. 110(D20), D20104. 

Le Pichon, A., J. Vergoz, E. Blanc, J. Guilbert, L. Ceranna, L. G. Evers, N. Brachet. 

2009. Assessing the performance of the International Monitoring System 

infrasound network: Geographical coverage and temporal variabilities. J. 

Geophys. Res. 114. D08112 



182 

 

 

 

Levison, H. F. 1996. Comet taxonomy. In Completing the Inventory of the Solar System. 

Vol. 107, pp. 173-191. 

McIntosh, B. A., Watson, M. D., ReVelle, D. O. 1976. Infrasound from a radar-observed 

meteor. Canadian Journal of Physics. 54(6), 655-662. 

McIntosh, B.A., ReVelle, D.O. 1984. Traveling atmospheric pressure waves measured 

during a solar eclipse. Journal of Geophysical Research: Atmospheres (1984–

2012), 89(D3), 4953-4962. 

McIntosh, B.A., Watson, M.D., ReVelle, D.O. 1976. Infrasound from a radar-observed 

meteor. Canadian Journal of Physics. 54(6), 655-662. 

McKinley, D. W. R. 1961. Meteor science and engineering. New York, McGraw-Hill, 

1961., 1. 

Melton, B.S., Bailey, L.F. 1957. Multiple signal correlators, Geophysics, 22, 565 

Mengel, J.G., Mayr, H.G., Chan, K.L., Hines, C.O., Reddy, C.A., Arnold, N.F., Porter, 

H.S. 1995. Equatorial oscillations in the middle atmosphere generated by small 

scale gravity waves. Geophysical research letters. 22(22), 3027-3030. 

Millet, C., Robinet, J. C., and Roblin, C. 2007. On using computational aeroacoustics for 

long-range propagation of infrasounds in realistic atmospheres. Geophysical 

Research Letters. 34(14), L14814. 

Mutschlecner, J. P., Whitaker, R. W. 2010. Some atmospheric effects on infrasound 

signal amplitudes. In Infrasound Monitoring for Atmospheric Studies. (pp. 455-

474). Springer Netherlands. 

Mutschlecner, J., Whitaker, R. 2006. Infrasonic Signals from the Henderson, Nevada, 

Chemical Explosion, LA-UR-06-6458 

Myers, J. R., Sande, C. B., Miller, A. C., Warren Jr, W. H., and Tracewell, D. A. 2002. 

SKY2000 Master Catalog. Version 4. Goddard Space Flight Center. Flight 

Dynamics Division, 109. 

Nappo, C. J. 2012. An introduction to atmospheric gravity waves. International 

Geophysics. Vol. 102. Academic Press. 1st Edition.  

Norris, D., Gibson, R. 2001. InfraMAP Propagation Modeling Enhancements and the 

Study of Recent Bolide Events. 23rd Seismic Research Review: Worldwide 

Monitoring of Nuclear Explosions. Jackson Hole, Wyoming 

Oberst, J., Molau, S., Heinlein, D., Gritzner, C., Schindler, M., Spurny, P., Ceplecha, Z., 

Rendtel, J. Betlem, H. 1998. The “European Fireball Network”: current status and 

future prospects. Meteoritics & Planetary Science. 33(1), 49-56. 



183 

 

 

 

Ostashev, V. 2002. Acoustics in moving inhomogeneous media. Taylor & Francis. 

Ostashev, V.E., Chunchuzov, I.P., Wilson, D.K. 2005. Sound propagation through and 

scattering by internal gravity waves in a stably stratified atmosphere. The Journal 

of the Acoustical Society of America. 118, 3420. 

Payne, R. 1995. Among Whales. Scribner, New York, NY 

Peitgen, H., Saupe, D. eds., 1998. The Science of Fractal Images, Springer-Verlag 

Picone J. M., Hedin A. E., Coffey S. L., Lean J., Drob D. P., Neal, H., Melendez-Alvira 

D. J., Meier R. R., Mariska J. T. 1997. The Naval Research Laboratory Program 

on empirical models of the neutral upper atmosphere. In Advances in the 

astronautical sciences, edited by Hoots F. R., Kaufman B., Cefola P. J., and 

Spencer D. B. San Diego: American Astronautical Society. 2184 p. 

Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C. 2002. NRLMSISE‐00 empirical 

model of the atmosphere: Statistical comparisons and scientific issues. Journal of 

Geophysical Research: Space Physics. (1978–2012), 107(A12), SIA-15. 

Pierce, A.D., Posey, J.W. 1970. Theoretical Prediction of Acoustic-Gravity Pressure 

Waveforms Generated by Large Explosions in the Atmosphere, Technical Report 

AFCRL-70-0134, Air Force Cambridge Research Laboratories, Bedford, Mass. 

ReVelle, D. O. 2004. Recent advances in bolide entry modeling: A bolide potpourri. 

Earth, Moon, and Planets, 95(1-4), 441-476. 

Revelle, D. O., Brown, P. G., Spurný, P. 2004. Entry dynamics and 

coustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. 

Meteoritics & Planetary Science. 39(10). 1605-1626.  

ReVelle, D.O. 1974. Acoustics of meteors-effects of the atmospheric temperature and 

wind structure on the sounds produced by meteors. Ph.D. Thesis University of 

Michigan, Ann Arbor.  

ReVelle, D.O. 1976. On meteor‐generated infrasound. Journal of Geophysical Research. 

81(7), 1217-1230. 

ReVelle, D.O. 1997. Historical Detection of Atmospheric Impacts by Large Bolides 

Using Acoustic‐Gravity Waves. Annals of the New York Academy of Sciences. 

822(1), 284-302. 

Revelle, D.O., Whitaker, R.W. 1999. Infrasonic detection of a Leonid bolide: 1998 

November 17. Meteoritics & Planetary Science. 34(6), 995-1005. 

Rickley, E. J., Pierce, A. D. 1981. Detection and assessment of secondary sonic booms in 

New England. The Journal of the Acoustical Society of America. 69(S1). S100-

S100. 



184 

 

 

 

Ripepe, M., Poggi, P., Braun, T., Gordeev, E. 1996. Infrasonic waves and volcanic 

tremor at Stromboli. Geophysical research letters. 23(2), 181-184. 

Seebass, A.R. 1967. Sonic boom research, Proceedings of a conference held at the 

National Aeronautics and Space Administration. Washington, D. C., April 12, 

1967 

Silber, E.A., ReVelle, D.O., Brown, P.G., Edwards, W.N. 2009. An estimate of the 

terrestrial influx of large meteoroids from infrasonic measurements. Journal of 

Geophysical Research: Planets (1991–2012), 114(E8). 

Sutherland, L.C., Bass, H.E. 2004. Atmospheric absorption in the atmosphere up to 160 

km. The Journal of the Acoustical Society of America, 115, 1012. 

Swinbank, R., O'Neill, A. 1994. A stratosphere-troposphere data assimilation system. 

Monthly Weather Review. 122(4), 686-702. 

von Muggenthaler, E., Reinhart, P., Lympany, B., Craft, R.B. 2003. Songlike 

vocalizations from the Sumatran Rhinoceros (Dicerorhinus sumatrensis). 

Acoustics Research Letters Online. 4: 83-8. 

Walterscheid, R.L., Hocking, W.K. 1991. Stokes diffusion by atmospheric internal 

gravity waves. Journal of Atmospheric Sciences. 48, 2213-2230. 

Weryk, R. J., and Brown, P. G. 2012. Simultaneous radar and video meteors—I: Metric 

comparisons. Planetary and Space Science. 62(1), 132-152. 

Weryk, R.J., Brown, P.G., Domokos, A., Edwards, W.N., Krzeminski, Z., Nudds, S.H., 

Welch D.L.  2007. The Southern Ontario All-sky Meteor Camera Network. Earth 

Moon and Planets. doi: 10.1007/s11038-007-9183-1. 

Whipple, F. 1930. The great Siberian meteor and the waves, seismic and aerial, which it 

produced. Quarterly Journal of the Royal Meteorological Society. 56: 287-304 

Whitham, G. B. 1952. The flow pattern of a supersonic projectile. Communications on 

pure and applied mathematics. 5(3), 301-348. 

Whitham, G. B. 1974. Linear and Nonlinear Waves. Wiley-Interscience, New York. 

Young, C. J., Chael, E. P., Merchant, B. J. 2002. Version 1.7 of MatSeis and the GNEM 

R&E regional seismic analysis tools. In Proc. of the 24th Annual Seismic 

Research Symposium. 

Zinn, J., Judd, O. D. P., ReVelle, D. O. 2004. Leonid meteor ablation, energy exchange, 

and trail morphology. Advances in Space Research. 33(9). 1466-1474 

 



185 

 

 

 

Chapter 6 

6. Optical Observations of Meteors Generating Infrasound – 

II: Weak Shock Theory and Validation 

 

 

A version of this chapter was submitted for a publication as: 

Silber, E. A., Brown, P. G. and Z. Krzeminski (2014) Optical Observations of Meteors 

Generating Infrasound – II: Weak Shock Model Theory and Validation, JGR-Planets, 

submission # 2014JE004680  

 

6.1 Introduction 

6.1.1 Meteor Generated Infrasound  

Well documented and constrained observations of meteor generated infrasound (Edwards 

et al., 2008; Silber and Brown, 2014) are an indispensable prerequisite for testing, 

validating and improving theoretical hypersonic shock propagation and prediction models 

pertaining to meteors (e.g. ReVelle, 1974). However, due to the lack of a sufficiently 

large and statistically meaningful observational dataset, linking the theory to observations 

had been a challenging task, leaving this major area in planetary science underexplored.   

Infrasound is low frequency sound extending from below the range of human hearing of 

20 Hz down to the natural oscillation frequency of the atmosphere (the Brunt-Väisälä 

frequency). Due to its negligible attenuation when compared to audible sound, infrasound 

can propagate over extremely long distances (Sutherland and Bass, 2004), making it an 

excellent tool for the detection and characterization of distant explosive sources in the 

atmosphere. Infrasound studies have gained momentum with the implementation of the 

global IMS network after the Comprehensive Nuclear Test Ban Treaty (CTBT) opened 

for signature in 1996. The IMS network includes 60 infrasound stations, 45 of which are 
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presently certified and operational, designed with the goal of detecting a 1 kt (TNT 

equivalent; 1 kt = 4.185 x 10
18

 J) explosion anywhere on the globe (Christie and Campus, 

2010).  

Included among the large retinue of natural (e.g. volcanoes, earthquakes, aurora, 

lightning) (e.g. Bedard and Georges, 2000; Garces and Le Pichon, 2009) and 

anthropogenic (e.g. explosions, re-entry vehicles, supersonic aircraft) (Hedlin et al., 

2002) sources of infrasound are meteors (ReVelle, 1976; Evers and Haak, 2001). A 

number of meteoritic events have been detected and studied (e.g. Brown et al., 2008; Le 

Pichon et al., 2008; Arrowsmith et al., 2008) since the deployment of the IMS network. 

Often, no other instrumental records for these bolides are available; hence infrasound 

serves as the sole means of determining the bolide location and energy. A notable 

example of such an observation is the daylight bolide/airburst over Indonesia, which 

occurred on 8 October, 2009 and produced estimated tens of kilotons in energy (Silber et 

al., 2011).  

Most recently, on 15 February, 2013, an exceptionally energetic bolide exploded over 

Chelyabinsk, Russia, causing significant damage on the ground as well as a number of 

injuries (Brown et al., 2013; Popova et al., 2013). Such events attest to the need to better 

understand the nature of the shock wave produced by meteors. 

The shocks produced by meteoroids may be detected as infrasound signals at the ground. 

As meteoroids enter the Earth’s atmosphere at hypersonic velocities (11.2 – 72.8 km/s) 

(Ceplecha et al., 1998), corresponding to Mach numbers from ~35 to 270 (Boyd, 1998), 

they produce luminous phenomena known as a meteor through sputtering, ablation and in 

some cases fragmentation (Ceplecha et al., 1998). Meteoroids can produce two distinct 

types of shock waves which differ principally in their acoustic radiation directionality. 

Their hypersonic passage through the atmosphere may produce a ballistic shock, which 

radiates as a cylindrical line source. Episodes of gross fragmentation, where a sudden 

release of energy occurs at a nearly fixed point (ReVelle, 1974; Bronshten, 1983) may 

result in a quasi-spherical shock (e.g. Brown et al, 2007; ReVelle, 2010). 
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Meteoroids can produce two distinct types of shock waves which differ principally in 

their acoustic radiation directionality. Their hypersonic passage through the atmosphere 

may produce a ballistic shock, which radiates as a cylindrical line source. Episodes of 

gross fragmentation, where a sudden release of energy occurs at a fixed point (ReVelle, 

1974; Bronshten, 1983) may result in a quasi-spherical shock (e.g. Brown et al, 2007; 

ReVelle, 2010).  

Although infrasound does not suffer from significant attenuation over long distances, it is 

susceptible to dynamic changes that occur in the atmosphere. Nonlinear influences, 

atmospheric turbulence, gravity waves and winds, all have the potential to affect the 

infrasonic signal as it propagates between the source and the receiver (Ostashev, 2002; 

Kulichkov, 2004; Mutschlecner and Whittaker, 2010). Consequently, distant explosive 

sources, such as bolides, are generally difficult to fully model or uniquely separate from 

other impulsive sources based on infrasound records alone. 

The first complete quantitative model of meteor infrasound was developed by ReVelle 

(1974). In this model predictions are made, starting with a set of source parameters, for 

the maximum infrasound signal amplitude and dominant period at the receiver. Due to a 

lack of observational data, ReVelle’s (1974) cylindrical blast wave theory for meteors has 

never been experimentally and observationally validated. In particular, regional (<300 

km) meteor infrasound signals have been studied infrequently in favor of larger bolide 

events, despite the fact that regional meteor infrasound is likely to reveal more 

characteristics of the source shock, having been substantially less modified during the 

comparatively short propagation distances involved (Silber and Brown, 2014). 

A central goal of meteor infrasound measurements is to estimate the size of the relaxation 

or blast radius (R0), as this is equivalent to an instantaneous estimate of energy 

deposition, which is the key to defining the energetics in meteoroid ablation. Indeed, all 

meteor measurements ultimately try to relate observational information back to energetics 

either through light, ionization or shock (infrasound) production. In order to better define 

meteoroid shock production, evaluate energy deposition mechanisms and estimate 

meteoroid mass and energy, it is helpful to first investigate near field meteor infrasound 

(ranges < 300 km) for well documented and characterized meteors, because this offers the 



188 

 

 

 

most plausible route in validating the cylindrical blast wave model of meteor infrasound. 

Near field infrasonic signals are generally direct arrivals and suffer less from propagation 

effects.  

In this work, we attempt to validate the existing ReVelle (1974) meteor infrasound 

theory, using a survey of centimeter-sized and larger meteoroids recorded by a multi-

instrument meteor network (Silber and Brown, 2014). This network, designed to optically 

detect meteors which are then used as a cue to search for associated infrasonic signals, 

utilizes multiple stations containing all sky video cameras for meteor detection and an 

infrasound array located near the geographical centre of the optical network.   

6.1.2 A Brief Review of ReVelle (1974) Meteor Weak Shock Theory  

In the early 1950s, Whitham (1952) developed the F-function approach to sonic boom 

theory, a novel method of treating the flow pattern of shock signatures generated by 

supersonic projectiles, now widely used in supersonics and classical sonic boom theory 

(e.g. Maglieri and Plotkin, 1991). It was soon realized that although the F-function offers 

an excellent correlation between experiment and theory for low Mach numbers (< ~3), it 

is not an optimal tool in the hypersonic regime (e.g. Carlson and Maglieri, 1972; Plotkin, 

1989). Recently, the Whitham F-function theory has been applied to meteor infrasound 

(Haynes and Millet, 2013), but it has not yet received a detailed observational validation. 

We note, however, that this approach offers another theoretical pathway to predicting and 

interpreting meteor infrasound, though we do not explore it further in this study. 

Drawing on the early works of Lin (1954), Sakurai (1964), Few (1969), Jones et al. 

(1968), Plooster (1968; 1970) and Tsikulin (1970), ReVelle (1974; 1976) developed an 

analytic blast wave model of the nonlinear disturbance initiated by an explosive line 

source as an analog for a meteor shock.  

In cylindrical line shock theory, the magnitude of the characteristic blast wave relaxation 

radius (R0) is defined as the region of a strongly nonlinear shock.  

R0 = (E0/p0)
1/2

 (6.1) 
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Here, E0 is the energy deposited by the meteoroid per unit trail length and p0 is the 

ambient hydrostatic atmospheric pressure. Physically this is the distance from the line 

source at which the overpressure approaches the ambient atmospheric pressure. For a 

single body ablating in the atmosphere, ignoring fragmentation, the blast radius can be 

directly related to the drag force and ultimately expressed as a function of Mach number 

(M) and meteoroid diameter (dm) (ReVelle, 1974):  

R0 ~ M dm (6.2) 

While the original ReVelle (1974) model assumes propagation through an isothermal 

atmosphere, here we use an updated version incorporating a non-isothermal atmosphere.  

As shown in an earlier study (Edwards et al., 2008), the isothermal approximation leads 

to unrealistic values of signal overpressure. The following summary of ReVelle's (1974) 

meteor infrasound theory is similar to that presented in Edwards (2010), though with 

some corrections and emphasis on the approximations used by ReVelle (1974) and 

aspects of the treatment most applicable to our study. The ReVelle (1974) approach 

begins with a set of input parameters characterizing the entry conditions of the meteoroid, 

and from these initial conditions predicts the infrasonic signal overpressure (amplitude) 

and period at the ground. As part of this analysis, the blast radius and the height 

(distortion distance) at which the shock transitions from the weakly nonlinear regime to 

the linear regime is also determined. The model inputs are:  

(i) station (observer) location (latitude, longitude and elevation);  

(ii) meteoroid parameters (mass, density, velocity, and entry angle as measured 

from the horizontal);  

(iii)  infrasonic ray parameters at the source which reach the station based on ray-

tracing results (angular deviation from the meteoroid plane of entry and shock 

source location along the trajectory in terms of latitude, longitude and 

altitude).  
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In the ReVelle (1974) meteor cylindrical blast wave theory the following assumptions are 

made:  

i. The energy release must be instantaneous.   

ii. The cylindrical line source is valid only if v >> cs (the Mach angle has to be very 

small many meteoroid diameters behind the body) and v = constant (Tsikulin, 

1970). Therefore, it follows that if there is significant deceleration (v < 0.95ventry) 

and strong ablation, the above criteria are not met and the theory is invalid. 

iii. The line source is considered to be in the free field, independent of any reflections 

due to finite boundaries, such as topographical features (ReVelle, 1974).  

iv. Ballistic entry (no lifting forces present - only drag terms) 

v. The meteoroid is a spherically shaped single body and there is no fragmentation 

vi. The trajectory is a straight line (i.e. gravitational effects are negligible). The 

nonlinear blast wave theory does not include the gravity term. 

The coordinate system to describe the motion and trajectory of the meteoroid, as 

originally developed by ReVelle (1974; 1976), is described in Chapter 2. In this model, 

only those rays which propagate downward and are direct arrivals are considered (i.e. 

direct source-observer path). The predicted signal period, amplitude and overpressure 

ratio as a function of altitude are shown in Figure 6.1.  

Note that due to severe nonlinear processes, the solutions to the shock equations are not 

valid for x≤0.05, where x is the distance in units of blast radii (e.g. R/R0). Once the wave 

reaches a state of weak nonlinearity (i.e. the shock front pressure (ps) ~ ambient pressure 

(p0)), the shock velocity approaches the local adiabatic speed of sound (c). When ∆p/p0≤1 

(at x≥1), weak shock propagation takes place and geometric acoustics becomes valid 

(Jones et al., 1968; ReVelle, 1974). It is also assumed that at beginning, near the source 

(x<1), the wave energy is conserved except for spreading losses (Sakurai, 1964).  
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Figure 6.1: The change in signal (a) amplitude, (b) period and (c) overpressure ratio 

(dp/p0) as a function of height from source to receiver in a fully realistic atmosphere 

(with winds and true temperature variations with height) according to the ReVelle (1974) 

theory. In this case the meteor blast radius (R0) = 5 m, entry angle = 43°, speed = 29 km/s 

and source height = 88.7 km.  

 

Drawing upon theoretical and observational work on shock waves from lightning 

discharges (Jones et al., 1968) the functional form of the overpressure has limiting values 

of:  
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Here, γ is the specific heat ratio (γ=Cp/Cv=1.4) and ∆p/p0 is the overpressure. In the limit 

as x → 0, where ∆p/p0 > 10, attenuation is quite rapid (x
-2

), transitioning to x
-3/4

 as x → ∞, 

where ∆p/p0 < 0.04 (or M = 1.017) (Jones et al., 1968). Taking advantage of equations 

(3a) and (3b), and using results obtained from experiments (Jones et al., 1968; Tsikulin, 

1970), the overpressure (for x ≥ 0.05) can be expressed as: 
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  (6.4a) 

The limit within which this expression is applicable is 0.04 ≤ ∆p/p0 ≤ 10 (Jones et al., 

1968). The above expression can also be written as: 
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] (6.4b) 

 

After the shock wave has travelled a distance of approximately 10R0, where it is assumed 

that strong nonlinear effects are no longer important, its fundamental period (τ0) can be 

related to the initial blast radius via: τ0 = 2.81R0/c, where c is the local ambient 

thermodynamic speed of sound. The factor 2.81 at x = 10 was determined experimentally 

(Few, 1969) and found to compare favorably to numerical solutions (Plooster, 1968). The 

frequency of the wave at maximum is referred to as the ‘dominant’ frequency (ReVelle, 

1974). For a sufficiently large R, and assuming weakly nonlinear propagation, the line 

source wave period (τ) for x ≥ 10 is predicted to increase with range as: 

 ( )            
    (6.5) 

Far from the source, the shape of the wave at any point will mainly depend on the two 

competing processes acting on the propagating wave: dispersion, which reduces the 

overpressure and ‘stretches’ the period; and steepening, which is the cumulative effect of 

small disturbances, tending to increase the overpressure amplitude (ReVelle, 1974). In 

ReVelle’s (1974) model, however, it is assumed that the approximate wave shape is 

known at any point. After a short distance beyond x = 10, the waveform is assumed to 

remain an N-wave (DuMond et al., 1946) type-shape (ReVelle, 1974). 
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For the analytic implementation of ReVelle's theory, it is necessary to choose some 

transition distance from the source where we consider the shock as having moved from 

weakly nonlinear propagation to fully linear. The precise distance at which the transition 

between the weak shock and linear regime occurs is poorly defined. Physically, it occurs 

smoothly, as no finite amplitude wave propagating in the atmosphere is truly linear; this 

is always an approximation with different amplitudes along the shock travelling with 

slightly different speeds. This distance was originally introduced by Cotten et al. (1971) 

in the context of examining acoustic signals from Apollo rockets at orbital altitudes. 

Termed by Cotten et al. (1971) the "distortion distance", it is based upon Towne’s (1967) 

definition of the distance (d') required for a sinusoidal waveform to distort by 10%. 

ReVelle (1974) adopted this distance, together with the definition of Morse and Ingard 

(1968), to define the distance (ds) an initially sinusoidal wave must travel before 

becoming "shocked". Thus, it follows that ds = 6.38 d', where d' > da and da is the 

remaining propagation distance of the disturbance before it reaches the observer. Further 

details summarizing the ReVelle (1974) model are given in Chapter 2.  

In summary, according to the ReVelle (1974) weak shock model, there are two key sets 

of expressions to estimate the predicted infrasonic signal period and the amplitude at the 

ground. The first is the expression for the predicted dominant signal period in the weak 

shock regime (d'≤da). Once the shock is assumed to propagate linearly, by definition the 

period remains fixed.  

The second expression relates to the overpressure amplitude. In the weak shock regime 

the predicted maximum signal amplitude is given by: 

Δpz→obs = ( f(x) Dws(z) N
*
(z) Z

*
(z) ) p0  (6.6a) 

where f(x) is the expression given in equation (4b), N* and Z* are the correction factors 

as described in Chapter 2 and Dws is the weak shock damping coefficient.  

Once the wave transitions into a linear wave, the maximum signal amplitude is given by:   

        [        ( )
  ( )       
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where Δpz→t  is identical to the expression given in equation (6a) and Dl is the linear 

damping coefficient. The subscripts z, t and obs in equations (6a) and (6b) denote the 

source altitude, transition altitude and the receiver’s altitude, respectively, following the 

notation in ReVelle (1974).  

The ReVelle (1974) model as just described has been coded in MATLAB
®
 to allow 

comparison between the predicted amplitudes and periods of meteor infrasound at the 

ground with the observations, the focus of this paper. In our first paper in the series 

(Silber and Brown, 2014 in review), we used optical measurements to positively identify 

infrasound from specific meteors and constrain the point (and its uncertainty) along the 

meteor trail where the observed infrasound signal emanated. That work also examined 

the influence of atmospheric variability on near-field meteor infrasound propagation and 

established the type of meteor shock production at the source (spherical vs. cylindrical). 

We also developed a meteor infrasound taxonomy using the pressure-time waveforms of 

all the identified meteor events as a starting point to gain insight into the dominant 

processes which modify the meteor infrasound signal as observed at the ground.   

Here, we use the dataset constructed in the first part of our study and select the best 

constrained (ie. those for which we have accurate infrasound source heights) meteor 

events to address the following:  

i. for meteors detected optically and with infrasound, use the ReVelle (1974) weak 

shock theory to provide a bottom-up estimate of the blast radius (i.e. from 

observed amplitude and period at the ground can we self-consistently estimate the 

blast radius at the source); 

ii. test the influence of atmospheric variability, winds, Doppler shift and initial shock 

amplitude on the weak shock solutions within the context of ReVelle (1974) 

meteor infrasound theory; 

iii. determine an independent estimate of meteoroid mass/energy from infrasonic 

signals alone and compare to photometric mass/energy measurements; 
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iv. critically evaluate and compare ReVelle’s (1974) weak shock theory with 

observations, establishing which parameters/approximations in the theory are 

valid and which may require modification. 

6.2 Methodology and Results 

6.2.1 Weak Shock: Model Updates and Sensitivities 

The ReVelle (1974) weak shock model algorithm was implemented in MATLAB
®

 and 

updated to include full wind dependency, as well as Doppler shift for period (Morse and 

Ingard, 1968) as a function of altitude. The influence of the winds is reflected in the 

effective speed of sound (ceff), which is given by the sum of the adiabatic sound speed (c) 

and the dot product between the ray normal ( ̂) and the wind vector ( ⃑ ): 

        ̂   ⃑  (6.7) 

The signal amplitude is affected by winds such that the amplitude will intensify for 

downwind propagation and diminish in upwind propagation (Mutschlecner and 

Whittaker, 2010). In the linear regime, the signal period (equation 6.5), does not suffer 

any decay with distance, but the winds do induce a Doppler shift. Following Morse and 

Ingard (1968), the Doppler shift due to the wind is given by: 

     ⃑   ⃑  (6.8) 

where Ω is the intrinsic angular frequency (frequency in the reference frame of the 

moving wind with respect to the ground), ω is the angular frequency in the fixed earth 

frame of reference and  ⃑  is the wave number. Since the contribution of winds in the 

vertical direction is generally 2-4 orders of magnitude smaller than the horizontal wind 

contribution (Wallace and Hobbs, 2006; Andrews, 2010), it is neglected.  

Another addition to the weak shock model was the inclusion of updated absorption 

coefficients (Sutherland and Bass, 2004), applicable in the linear propagation regime. 

In the first part of our study (Silber and Brown, 2014) we described the influence on the 

raytracing results of small scale perturbations in the wind profile due to gravity waves on 

raytracing results. While the effects were small, they were significant enough to produce 
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propagation paths which were non-existent using the average atmosphere from the source 

to the receiver. Here we have used the same ‘perturbed’ atmospheric profiles to test the 

influence of gravity-wave-induced perturbations on the predicted signal amplitude and 

period as calculated using the weak shock model. We selected five events which span the 

global range of our final data (i.e. meteors with different entry velocity, blast radius, and 

shock heights), and ran the weak shock code using 500 ‘perturbed’ atmospheric profiles. 

For each event and each realization we computed the magnitude of the modelled 

infrasonic signal period and amplitude while simultaneously testing the effect of different 

absorption coefficients in the linear regime using the set given by ReVelle (1974) and 

that of Sutherland and Bass (2004). 

The overall effect of both winds and Doppler shift on the weak shock model was found to 

be relatively small, resulting in R0 differences of no more than 13% for the period 

(average 4%) and as high as 9% for the amplitude (average 3%). The perturbations to the 

atmospheric winds expected from gravity-waves were found to have even smaller effects 

on estimates of R0, typically of 10% or less.  

In addition, the predicted ground-level period and amplitude outputs of the weak shock 

model were tested using a synthetically generated meteor (Figure 6.2).  



197 

 

 

 

 

Figure 6.2: An example of the predicted ground-level amplitude and period of a meteor 

shock using the ReVelle (1974) theoretical model. In these figures, the meteor moves 

northward, as shown with the arrow in each plot, starting ablation at an altitude of 90 km 

and ending at 40 km. A representative realistic atmosphere was applied, accounting for 

the wind. The top two panels show the predicted (a) linear and (b) weak shock amplitude. 

The bottom two panels show the predicted (c) linear and (d) weak shock period. The 

amplitude in the linear regime has a larger magnitude than that in the weak shock regime, 

while the opposite is true for the signal period. The synthetic meteor parameters are 

shown in the lower right of plot (b). 
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6.2.2 Weak Shock: Bottom-up Modelling 

The first approach we adopt to testing the ReVelle (1974) theory is a bottom-up 

methodology. This provides an indirect method of estimating the blast radius at the 

meteor using infrasound and optical astrometric measurements of the meteor only (i.e. 

without prior independent knowledge of the meteoroid mass and density). Given the 

input parameters, all of which are known except the blast radius, the goal is to answer the 

following question: what is the magnitude of the blast radius required to produce the 

observed signal amplitude and period at the station if we assume (i) the signal remained a 

weak shock all the way to the ground and (ii) if it transitioned to the linear regime? 

Additionally, we want to define the blast radius uncertainty given the errors in signal 

measurements.  

Drawing upon the results obtained in Silber and Brown (2014), the 24 well constrained 

optical meteors which were also consistent with cylindrical line sources (as determined 

through optical measurements and raytracing) were used to observationally test the weak 

shock model. The orbital parameters and meteor shower associations for our data set are 

listed in Table 6.1. Out of these 24 events, 18 produced a single infrasonic arrival, while 

six events produced two distinct infrasonic arrivals at the station. The meteor shock 

source altitude in our data set ranges from 53 km to 103 km, the observed signal 

amplitude (Aobs) is from 0.01 Pa to 0.50 Pa, while the observed dominant signal period 

(τobs) is between 0.1 s and 2.2 s. Typical values of overpressure from meteors in this study 

are 1-2 orders of magnitude smaller than those associated with the signals from Apollo 

rockets as reported by Cotten et al. (1971), the last comparable study to this one. 

For the model to be self-consistent a single blast radius should result from the period and 

amplitude measurements. In practice, we find estimates of blast radii for period and 

amplitude independently in both linear and weak shock regimes such that the measured 

signal amplitude or period is matched within its measurement uncertainty. Therefore, for 

each amplitude/period measurement there are two pairs of theoretical quantities produced 

from ReVelle's (1974) theory: the predicted signal amplitude (Aws) and period (τws) in the 

weak shock regime, and the signal amplitude (Al) and period (τl) in the linear regime. The 

iterations began with a seed-value of the initial R0, and then based on the computed 
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results the process is repeated with a new (higher or lower) value of R0 and the results 

again compared to measurements until convergence is reached. The result of this bottom-

up procedure is a global estimate of the blast radius matching the observed amplitude or 

period assuming either weak-shock or linear propagation (Aws, τws, Al, τl). In the second 

phase of this bottom-up approach, this global modelled initial blast radius was used as an 

input to iteratively determine the minimum and maximum value of the model R0 required 

to match the observed signal (period or amplitude) within the full range of measurement 

uncertainty. 

 

Table 6.1: A summary of orbital parameters for all events in our data set. The columns 

are as follows: (1) event date, (2) Tisserand parameter, a measure of the orbital motion of 

a body with respect to Jupiter (Levison, 1996), (3) semi-major axis (AU), (4) eccentricity, 

(5) inclination (°), (6) argument of perihelion (ω) (°), (7) longitude of ascending node (°), 

(8) geocentric velocity (km/s), (9) heliocentric velocity (km/s), (10) α – right ascension of 

geocentric radiant (°), (11) δ – declination of geocentric radiant (°), (12) perihelion (AU), 

(13) aphelion (AU), (14) meteor shower associations. The meteor shower codes are: α-

Capricornids (CAP), Orionids (ORI), Perseids (PER), and Southern Taurids (STA). Note 

all angular quantities are J2000.0. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Date Tiss a e inc ω asc node vg vh α geo δ geo q per q aph Showers

20060419 2.8 3.2 0.69 2.2 195.5 29.021 10.0 38.6 153.0 20.2 0.989 5.4 --

20060805 hyp -8.4 1.12 144.9 164.9 132.716 69.0 43.1 38.7 37.1 0.996 -17.7 --

20061104 3.1 2.2 0.83 4.3 292.1 221.472 28.0 37.3 49.0 22.0 0.371 4.1 --

20070125 hyp -1.7 1.57 156.4 342.6 124.950 76.6 48.3 214.3 -28.9 0.957 -4.3 --

20070727 2.7 2.8 0.80 8.3 269.9 123.717 23.8 37.8 303.7 -9.3 0.566 5.1 CAP

20071021 1.2 2.5 0.80 172.9 94.6 27.535 63.4 37.9 95.6 20.1 0.519 4.6 ORI

20080325 3.7 1.9 0.48 7.3 358.8 184.634 7.7 36.3 95.8 -13.2 0.997 2.9 --

20080511 hyp -26.1 1.03 9.3 42.6 230.738 19.6 42.3 191.2 -25.4 0.874 -53.1 --

20080812 1.0 3.7 0.74 110.8 157.7 139.878 56.4 38.9 41.3 57.8 0.981 6.4 PER

20081028 2.7 3.2 0.71 6.9 31.6 34.961 12.1 38.8 2.4 -23.0 0.932 5.4 --

20081102 3.5 1.8 0.82 5.2 118.2 40.086 27.9 36.1 52.7 14.6 0.335 3.3 STA

20081107 hyp -8.8 1.11 152.8 10.0 45.144 71.5 43.5 130.2 1.7 0.983 -18.7 --

20090428 3.1 2.4 0.68 10.6 244.7 37.916 18.0 37.3 211.2 8.9 0.773 4.1 --

20090523 hyp -41.8 1.02 21.3 250.7 62.169 27.9 42.1 240.2 6.4 0.671 -84.3 --

20090812 0.5 5.4 0.82 111.9 154.0 139.617 57.5 39.8 44.0 57.8 0.967 9.8 PER

20090917 2.5 3.2 0.81 0.3 263.0 174.168 22.4 38.6 350.9 -3.4 0.610 5.8 --

20100421 0.4 93.7 0.99 71.7 257.8 30.847 45.3 41.9 252.1 21.2 0.610 186.9 --

20100429 1.0 5.8 0.85 82.8 229.2 38.658 47.2 40.1 274.4 27.9 0.846 10.8 --

20100530 2.5 3.0 0.86 4.6 284.4 68.652 28.2 38.1 254.4 -18.4 0.429 5.6 --

20110520 2.6 3.2 0.78 6.0 252.8 58.759 20.9 38.5 229.8 -8.5 0.699 5.8 --

20110630 1.5 7.9 0.87 45.0 187.8 97.886 28.6 40.4 274.9 61.5 1.012 14.7 --

20110808 2.3 3.8 0.74 37.1 156.9 135.191 24.2 38.9 223.8 70.6 0.980 6.6 --

20111005 2.6 2.8 0.85 7.9 103.2 11.464 27.2 38.2 19.9 0.1 0.437 5.2 --

20111202 2.9 2.4 0.81 5.5 100.8 69.314 26.0 37.9 74.8 16.8 0.461 4.4 --
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The summary of the bottom-up blast radius modelling results are presented in Figure 6.3. 

There is a significant discrepancy between the period-based blast radii and amplitude-

based blast radii in both the linear and weak shock regimes. The average blast radius 

from amplitude determinations in the linear regime is approximately 30 times smaller 

than that in the weak shock regime, indicating that the transition to linearity approach 

employed in the ReVelle (1974) weak shock model perhaps significantly underestimates 

the blast radius. In the weak shock regime, where we assume the signal can be treated as 

a weak shock all the way to the ground, we find that the amplitude-estimated R0 in most 

cases is larger than that estimated from the period, but the difference is much smaller than 

the linear case, being no more than a factor of 15 between the amplitude and period. 

Almost half of the events show agreement within uncertainty. 

 

 

Figure 6.3: The behaviour of R0 in (a) linear and (b) weak shock regimes in the bottom-

up modelling approach. In the linear regime, the amplitude blast radius appears 

underestimated relative to the R0 estimated from the period, while in the weak shock 

regime, the behaviour is reversed. In all plots, the blue line represents the 1:1 

correspondence, while the red line is the best fit.   
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6.2.3 Weak Shock: Top-Down Modelling 

6.2.3.1 Photometric Measurements 

The fundamental equations of motion (Bronshten, 1983; Ceplecha et al., 1998) for a 

meteoroid of mass m and density ρm entering the Earth’s atmosphere at velocity v are 

given by the drag and mass-loss equations:  

  

  
  

      

 
 
   

 
 

 (6.9) 

  

  
  

     
  

 
 

    

 
 

 (6.10) 

 

Here, Γ is a drag coefficient,   is the heat of ablation of the meteoroid material (or energy 

required to ablate a unit mass of the meteoroid), Λ is the heat transfer coefficient, which 

is a measure of efficiency of the collision process in converting kinetic energy into heat 

(McKinley, 1961), ρa is density of the air, and A is the dimensionless shape factor (Asphere 

= 1.209). 

The all-sky meteor camera system used for this survey and details of the astrometric 

reductions and measurements methodology are presented in Silber and Brown (2014). 

Here we briefly describe the photometric analysis.  

A series of laboratory experiments were performed to determine the camera response in 

an effort to model the effects of camera saturation (which affect many of our events). In 

the field, measurements were performed to model the lens roll-off (the apparent drop in 

sensitivity of the camera as the edges of the all-sky field are reached). The lens roll-off 

correction becomes significant for meteors as a >0.8 astronomical magnitude attenuation 

results for elevations below ~15 degrees. Other standard photometric corrections were 

applied including extinction correction (e.g. Vargas et al., 2001; Burke et al., 2010) and 

apparent instrumental magnitude converted to an absolute magnitude by referencing all 

meteors to a standard range of 100 km (McKinley, 1961).  
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Bright meteors (magnitude > -4) are typically saturated on the 8-bit cameras. In our 

laboratory setup, an artificial star of variable brightness was created using a fixed light 

source and a turning wheel with a neutral density filter of varying density following the 

procedure used by Swift et al. (2004). Standard photometric procedures (Hawkes, 2002) 

were used to determine the apparent instrumental magnitude of the artificial star and a 

power law fit between the observed and known brightness of the artificial star was then 

computed to find a correction for the saturation which we applied to meteors to deduce 

their true apparent magnitude.    

The instrumental magnitude of any given star (or meteor) varies as a function of distance 

from the optical center (or zenith distance if the camera is vertically directed) of the 

camera lens. For our cameras a star appears about 2.5 stellar magnitudes dimmer near the 

horizon than at the zenith due to the natural vignetting in the optical system. The in-field 

experiment was performed on a clear night by setting up the camera on a turntable 

attached to a fixed frame and taking a series of video frames starting from the horizon 

and sweeping through an angle of 180° through the zenith. Several bright stars then had 

their instrumental magnitudes computed as a function of distance from the optical axis to 

compute the lens roll-off which was found to functionally behave as cos
4
θ. Applying all 

these corrections we then followed standard photometric routines (Hawkes, 2002), to 

compute the light curves for each meteor in our instrumental passband. Our cameras use 

hole accumulation diode CCD chips (Weryk and Brown, 2013). The CCDs have both a 

wide passband and high QE making them extremely sensitive in low-light conditions. 

Our limiting meteor sensitivity is approximately MHAD = -2 corresponding to meteoroids 

of ~5 g or roughly 1cm in diameter at 30 km/s.   

There are two approaches which can be used to determine the mass of a meteoroid given 

optical data. First, we may appeal to empirical estimates of the magnitude-mass-speed 

determined from earlier photographic surveys (e.g. Jacchia et al. (1967)) which yields: 

MHAD = 55.34 – 8.75 log v - 2.25 log m – 1.5 log cos ZR (6.11) 

where MHAD is the absolute magnitude in the HAD bandpass, m is the mass of the 

meteoroid in grams, ZR is the zenith angle of the radiant and where the meteoroid velocity 

(v) is expressed in cgs units. The original relation was computed in the photographic 
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bandpass. We estimated the color correction term between our instrumental system and 

the photographic system, (MHAD = MPh+1.2) by assuming each meteor radiates as a 

4500K blackbody and computing the energy falling into our HAD bandpass as compared 

to the photographic bandpass following the synthetic photometry procedure described in 

Weryk and Brown (2013).  

A second approach to estimate photometric mass is to directly integrate the light emission 

(I) of the meteoroid throughout the time of its visibility: 

   
 ∫    

    
 (6.12) 

where τI is the luminous efficiency defined as the fraction of the meteoroid’s kinetic 

energy produced converted into radiation (Ceplecha et al., 1998). More about this 

approach can be found in Ceplecha et al. (1998) and Weryk and Brown (2013).      

The magnitude of the blast radius at any point along the meteor trail can be thought of as 

a ‘snapshot’ of the energy per unit path length deposited into the atmosphere by a 

meteoroid. This may also be equated to the meteoroid mass times the Mach number at 

that point assuming single body ablation (ReVelle, 1976).  

While the single body approach is much more simple if the source region along the trail 

where the shock observed at the microphone location on the Earth’s surface is produced 

close to the end of the meteor trail the total initial photometric mass poorly represents the 

actual energy/mass at the source location. If the initial mass is used to test the weak shock 

model, it produces erroneous results as the actual mass (and energy deposited per unit 

path length) would be much smaller as the initial meteoroid mass is much larger than the 

remnant mass near the end of the trail.  

6.2.3.2 The Fragmentation (FM) Model      

A third approach to estimating mass using optical data is to apply an entry model code to 

fit the observed brightness and length vs. time measured for the meteor. Here we use the 

fragmentation (FM) model of meteoroid motion, mass loss and radiation in the 

atmosphere (Ceplecha and ReVelle, 2005) to fit the observed brightness and length vs. 

time measured for the infrasound-producing meteor. As fragmentation is explicitly 
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accounted for, the FM model should provide a more realistic estimate of energy 

deposition along the trail, and thus R0.  

The first step in constructing an entry model solution was to begin with the approximate 

(starting) values for intrinsic shape density coefficient (K) and intrinsic ablation 

coefficient (σ), which are defined by the following expressions (Ceplecha and ReVelle, 

2005): 

  
 

   
 (6.13) 

  
   

    
 (6.14) 

  

The intrinsic shape density coefficient (K) and intrinsic ablation coefficient (σ) are then 

modified together with the initial mass in a forward modeling process. We do this 

statistically by first classifying each of our meteors according to the fireball types defined 

by Ceplecha and McCrosky (1976) (hereafter CM). This is done by calculating the PE 

parameter (Ceplecha and McCrosky, 1976), defined as: 

PE = log ρE + A0 log m + B0 log v + C0 log cos ZR (6.15) 

where ρE is the density of air (in cgs units) at the trajectory end height, m is the estimated 

initial mass in grams, and the meteoroid entry velocity (v) is expressed in km/s. From fits 

to a large suite of photograhphically observed fireballs, CM found A0 = -0.42, B0 = 1.49 

and C0 = -1.29. As an estimate for the initial mass we use the mass computed from 

equation (6.31) and assume a +1.2 color term between the HAD and photographic 

bandpasses. In this way we derive estimates for the PE for each of our events. The range 

of values of PE and presumed corresponding meteoroid types as proposed by CM are 

given in Table 6.2. The observed light curve from photometric measurements, in 

conjunction with the astrometric solution (event time, path length as a function of height 

and entry angle) for each event, was used to match the theoretical light curve and model 

length vs. time to observations through forward modelling (Figure 6.4). 

As our average meteoroid mass is intermediate between fireball and small camera data, 

we a priori expect our distribution of fireball types (I-III) to be intermediate between 
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these two classes, if our mass scale is reasonable. As shown in Table 6.2, within the 

limitations of our small number statistics, our distribution is broadly consistent with 

being intermediate between the percentage distribution of these two categories given by 

Ceplecha et al. (1998) indicating our choice of color term is physically reasonable.  

 

 

Table 6.2: The range of PE parameter and the associated meteoroid group presumed type, 

type of the material and representative density as given by Ceplecha et al. (1998). The 

percentage of observed meteoroids in each group according to mass category typical of 

fireball networks (mass range 0.1 - 2000 kg) and small cameras (mass range 10
-4

 kg to 

0.5 kg) as published in (Ceplecha et al., 1998) and the percentages found in this study 

(masses 10
-4

 kg to 1.0 kg). The range of values for σ and K found in our study within the 

framework of the FM model are given in the last two columns. 

 

 

PE range
Group 

type

Type of the 

meteoroid 

material

ρm 

(kg/m
3
)

% 

observed 

(fireball 

networks)

% 

observed 

(small 

cameras)

% 

observed 

(this 

study)

σ K

PE > -4.6 I

ordinary 

chondrites, 

asteroids

3700 29 5 13
0.006-

0.021

0.46- 

1.29

-4.6 ≥ PE 

> -5.25
II

carbonaceous 

chondrites, 

comets, 

asteroids

2000 33 39 37
0.002-

0.19

0.1- 

3.09

PE ≤ -5.7 IIIb
soft cometary 

material
270 9 19 37

0.001-

0.06

1.2- 

4.89

13
0.002-

0.009

1.93- 

3.29

-5.25 ≥ 

PE > -5.7
IIIa

regular 

cometary 

material

750 26 41



206 

 

 

 

 

Figure 6.4: The FM model fit to the light curve for a multi-station meteor recorded at 

07:05:56 UT on 19 April 2006. The model is matched in both (a) magnitude vs. time and 

(b) height residuals vs. time (dynamic fit). In this case the FM model provides a best fit 

of 14.18 km/s initial speed and 20 g mass. Full details can be found in Table 6.3. 

 

Depending on the shape of the light curve (e.g. obvious flares or a smooth light curve), 

the model is used to implement either a single body approach or discrete fragmentation 

points. Using the results for 15 bolides obtained by Ceplecha and ReVelle (2005) as a 

starting reference point, the following parameters were forward modeled until a best fit to 

the observed light curve as well as magnitude as a function of height and path length 

were found: K, σ, integration altitude, the initial mass, the mass loss at each 

fragmentation point (if applicable), duration of the flare, interval from the start of the 

flare until the flare maximum and part of mass fragmented as large fragments. From the 

model we have the following to match to the meteor: time, path length, altitude, velocity, 

dv/dt, mass, dm/dt, meteor luminosity, meteor magnitude, σ, K, luminous efficiency and 

zenith distance of the radiant. The summary of photometric and dynamic masses, as well 

as meteoroid types, is given in Table 6.3. While the FM model performs very well in 

matching the observed light curves, it should be noted that the final solution is 

representative, but not necessarily unique. For example, if the shape coefficient is 

increased, then similar output results are found by reducing the initial mass. These 

differences in initial parameters and their variation at fragmentation points may result in 

an uncertainty of up to factor of several in the initial mass and therefore affect the mass 
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loss in a similar fashion as a function of altitude. The ranges of the σ and K values used 

for modelling are given in Table 6.3.  

In the general case, the energy lost by the meteoroid per unit path length is: 

  

  
 (

  

 

  

  
   

  

  
) (6.16) 

To determine the blast radius using the dynamics from the FM model, we applied 

equation (6.16), also accounting for mass loss during fragmentation episodes, or single-

body mass at the height corresponding to the shock height.  
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Table 6.3: A summary of the photometric mass measurements using observed light 

curves from meteor video records. The columns are as follows (column numbers are in 

the first row): (1) meteor event date, (2) meteor velocity (km/s) at the onset of ablation, 

(3) begin height (km), (4) end height (km), (5) instrument corrected peak magnitude 

(MHAD) from the observed light curve, (6-7) minimum and maximum values of shape 

coefficient (K) (in c.g.s. units), and (8-9) minimum and maximum values of ablation 

coefficient (σ) (s
2
/km

2
) used in the FM model fitting, (10) estimated meteor mass (g) 

from equation (6.30), (11) estimated meteor mass (g) using integrated light curve, (12) 

initial (entry) meteor mass (g) from the FM model, (13) PE coefficient and (14) 

meteoroid group type. 

 

 

6.2.3.3 Top-Down Weak Shock Modelling  

To perform the top-down weak shock modelling, we start at the "top" by using the FM 

model estimates for R0 in conjunction with the other optically measured parameters for 

each meteor and calculate the predicted signal period and amplitude at the ground, 

assuming both weak shock and linear propagation. This provides an independent 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Date

Entry 

Velocity 

(km/s)

H 

begin 

(km)

H      

end 

(km)

Peak 

Mag K min K max σ min σ max

Mass 

(JVB) (g)

Mass 

(int) (g)

FM 

Model 

Mass (g) PE Type

20060419 14.2 72.0 47.7 -2.7 0.14 0.53 0.009 0.009 107.4 23.5 20.0 -4.69 II

20060805 28.4 126.4 74.5 -12.8 1.4 2.3 0.002 0.004 5927.6 432.9 74.0 -6.20 IIIB

20061104 67.5 89.9 65.8 -7.2 1.8 4.18 0.002 0.005 459.9 12.5 12.0 -6.39 IIIB

20070125 30.3 119.2 88.5 -5.9 1.99 3.69 0.001 0.004 9.5 2.7 0.9 -5.12 II

20070727 71.2 96.2 70.6 -8.2 0.46 2.68 0.002 0.004 2583.9 91.5 63.0 -6.22 IIIB

20071021 26.3 130.8 81.7 -8.8 2.5 2.5 0.004 0.004 57.5 10.6 4.3 -5.82 IIIB

20080325 75.6 76.2 32.8 -5.9 0.69 0.79 0.015 0.015 2912.0 792.9 917.0 -4.51 I

20080511 23.5 95.2 77.3 -3.8 2.54 2.54 0.06 0.06 85.8 5.2 8.0 -5.90 IIIB

20080812 33.7 105.7 82.0 -1.8 3.29 -- 0.009 -- 0.2 0.1 0.1 -4.93 II

20081028 13.5 81.2 41.1 -4.1 0.66 0.66 0.014 0.014 309.8 79.6 110.0 -4.40 I

20081102 21.7 96.5 62.6 -7.7 1.73 2.05 0.002 0.002 663.9 53.3 18.0 -5.58 IIIA

20081107 56.2 113.5 81.5 -3.1 1.99 2.59 0.003 0.006 0.4 0.2 0.1 -4.56 I

20090428 24.8 83.5 38.0 -7.2 0.14 1.09 0.003 0.005 3086.5 784.1 330.0 -4.77 II

20090523 15.8 95.9 72.4 -2.0 0.2 0.86 0.042 0.044 2.7 0.7 2.2 -5.10 II

20090812 29.2 108.5 80.4 -6.7 1.29 3.29 0.008 0.01 20.6 3.4 1.8 -5.65 IIIA

20090917 31.1 85.7 72.4 -2.7 3.05 3.05 0.004 0.004 20.7 6.6 8.5 -5.31 IIIA

20100421 70.2 108.5 74.6 -9.3 1.5 1.5 0.005 0.0055 861.5 45.7 17.0 -5.95 IIIB

20100429 18.2 105.7 89.9 -2.6 4.89 4.89 0.014 0.014 0.9 0.2 0.3 -5.79 IIIB

20100530 26.9 96.0 78.3 -0.8 2.19 2.99 0.01 0.012 1.2 0.3 0.3 -5.12 II

20110520 29.5 95.7 84.1 -3.1 2.79 2.99 0.039 0.039 21.3 2.3 2.5 -6.35 IIIB

20110630 58.7 100.5 71.7 -7.8 2.49 2.49 0.003 0.003 527.5 18.0 10.0 -6.05 IIIB

20110808 23.0 86.6 39.9 -9.3 0.99 1.49 0.002 0.002 9990.9 2586.4 1003.0 -4.77 II

20111005 46.2 96.2 64.5 -2.9 1.09 1.59 0.004 0.004 6.8 2.6 20.0 -4.78 II

20111202 46.3 97.0 53.8 -3.1 0.29 0.69 0.008 0.009 18.0 8.8 9.0 -4.06 I
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comparison between the bottom-up modeling and forms a potential cross-calibration 

between infrasonically derived energy/mass and the same photometrically estimated 

quantities.  

Figure 6.5 shows the comparison of the blast radius as obtained via FM model versus the 

blast radius from bottom-up modelling including all four outputs (the period and 

amplitude in linear and weak shock regimes). In the linear regime, the amplitude-based 

R0 from the bottom-up modelling is clearly underestimated compared to the R0 derived 

from the FM model. The comparison between the predicted signal period and amplitude 

using R0 from the top-down modelling and that observed is shown in Figure 6.6. The 

predicted signal amplitude is somewhat underestimated in the weak shock regime and 

markedly overestimated in the linear regime. The predicted signal period, however, 

shows a near 1:1 agreement with the observed period.  

 

Figure 6.5: The blast radius estimated from bottom-up modelling as compared to blast 

radii derived from application of the FM model. Tlin and Tws are the period in linear and 

weak shock regime, respectively. Alin and Aws are the amplitude in linear and weak 

shock regime, respectively. 
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Figure 6.6: (a) Signal period and (b) amplitude obtained by running the top-down weak 

shock model with input R0 as derived via FM model.  

 

6.2.4 Infrasonic Mass 

From the optical measurements of the meteor and appealing to the fireball classification 

work of Ceplecha and McCrosky (1976) it is possible to correlate the fireball type with 

its likely physical properties (i.e. density) (Ceplecha et al., 1998) (Table 6.2) and thus 

compute an infrasonic mass (Edwards et al., 2008) through m = πρdm
3
/6, assuming a 

spherical shape and single body ablation (i.e. no fragmentation) from the bottom-up 

modelling. Using equation (6.2) and the relationship between the meteoroid density and 

diameter, infrasonic mass (minfra) is then given by: 

         
  

 
(
  

 
)
 

 (6.17) 

Considering that the bottom-up modelling yields four values of blast radii as described in 

section 6.2.2, there are four resultant infrasonic masses. These are compared to 

photometric masses derived through the FM model (Figure 6.7). The infrasonic masses 

derived from the period-based R0 are in better agreement with the photometric masses 

than are the infrasonic masses derived from the amplitude-based R0 in either regime.  

Drawing upon equation (6.1), meteoroid energy can be derived from R0 (bottom-up and 

top-down) without needing to make any assumption about single body (Figure 6.8). 
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Figure 6.7: The comparison of the infrasonic and photometrically derived masses. The 

abscissa in both panels represents the equivalent photometric mass derived from the FM 

model blast radius and equation (6.17). The infrasonic masses derived from the 

amplitude-based (top panel) and period-based (bottom panel) blast radius in the linear 

and weak shock regimes are shown. The grey line is the 1:1 line in all plots. 
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Figure 6.8: Energy per unit path length comparison between the bottom-up modelling, 

where R0 is determined entirely from the infrasound signal properties at the ground, and 

the FM model. The grey line is the 1:1 line. 

 

6.3 Discussion 

The linear amplitude-derived R0 was on average 12% larger when the Sutherland and 

Bass (2004) coefficients were applied. To put this in perspective, the range of R0 from 

matching the amplitude in the linear regime was from 0.15 m to 7.4 m with the 

Sutherland and Bass (2004) coefficients and from 0.09 m to 7 m using the classical 

coefficients (ReVelle, 1974). The most significant difference was found for signals with a 

dominant frequency > 12 Hz (at the weak shock to linear regime transition altitude point). 

However, even in this case, the difference is still within the uncertainty bounds in R0 fits.  

ReVelle (1974) suggested that the lower threshold for the blast radius of meteors 

generating infrasound, which should be detectable at the ground, should be in the range 
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of ~5 m. Having well constrained observational data, we derive the blast radii between 

1.1 m and 51 m from our best fit bottom-up weak shock modelling and 0.4 – 41 m from 

the top-down FM model. A smaller blast radius is typically associated with lower source 

altitudes (< 80 km). This suggests that the original ReVelle (1974) estimate may well be 

too high by a factor of almost ten. 

The dominant signal period is more robust than signal amplitude when estimating 

meteoroid energy deposition, as it is less susceptible to adverse propagation effects in the 

atmosphere (ReVelle, 1974; Edwards et al., 2008; Ens et al., 2012). The dominant signal 

period is proportional to the blast radius, and therefore energy deposition by a meteoroid 

(mass and velocity) and the shock altitude. We remark that the signal period undergoes 

very small overall changes during propagation as it changes slowly in the weak shock 

regime (e.g. equation (6.5), Figure 6.1) and remains constant once it transitions to the 

linear regime. Therefore, the weak shock period is closer to the fundamental period at the 

source and expected to be a more robust indicator of the initial blast radius and hence 

energy of the event.  

In contrast, the signal amplitude is generally more susceptible to a myriad of changes 

during propagation. The effects of non-linearity and wave steepening, as well as the 

assumed transition point from weak shock to a linear regime of propagation, are poorly 

constrained for meteors. Indeed, accurately predicting signal amplitudes for high altitude 

infrasonic sources (e.g. meteors), especially in the linear regime has been recognized as a 

long standing problem (e.g. ReVelle, 1974; 1976; Edwards et al., 2008). Edwards et al. 

(2008) noted the significant differences in predicted amplitude for simultaneously 

observed optical-infrasound meteors, especially that in the linear regime, and determined 

that meteor infrasound reaches the ground predominately as a weak shock. While a 

similar empirical deduction can be made from Figure 6.3 in our study, this does not 

physically explain the discrepancy.  

As shown earlier through top-down modeling, we expect the period-estimated blast 

radius in either regime to be relatively close to true values, as the observed period is 

much less modified during propagation compared to the amplitude. With this in mind, it 

becomes evident that the transition altitude is a major controlling factor in the linear 
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amplitude predictions. We observe that the consistently smaller amplitude-based blast 

radius in the linear regime originates from the fact that depending on the transition 

altitude, the amplitude grows in the linear regime as a result of the change in ambient 

pressure. This leads to two questions: (i) is it possible to find the distortion distance and 

therefore a transition height which would predict both the period and amplitude such that 

the observed quantities are matched? (ii) given enough adjustment in the distortion 

distance, would any wave eventually transition to the linear regime?   

We investigated the effect of the transition altitude by varying the distortion distance. The 

distortion distance was originally defined as the distance a wave would have to travel 

before distorting by 10% (Towne, 1967). The original definition of the distortion distance 

(Towne, 1967) is: 

   
 

  (   )  
 

  

    (
  
 )

 
(6.18) 

where λ is the wavelength, Sm is the overdensity ratio (∆ρ/ρ0), c is the adiabatic speed of 

sound and Δp/p is the overpressure. The distortion distance is a constant number of 

wavelengths for waves of different frequency (Towne, 1967). There are two major 

assumptions in equation (6.18): (i) the wave is initially sinusoidal, (ii) Sm is small but not 

negligible. An intense sound wave (Sm = 10
-4

) would therefore distort by 10% within 200 

wavelengths (Towne, 1967; Cotten et al., 1971). 

By varying the constant in the denominator in the right hand side of equation (6.18) to 

reflect an ‘adjustable’ distortion distance factor and by using the weak shock period-

determined R0 value as an input, a series of bottom-up modelling runs were performed. 

These were aimed at finding simultaneously both the predicted linear regime amplitude 

and the period which would match the observed quantities within their measurement 

uncertainty (Figure 6.9). Physically, this corresponds to adopting a series of different 

distortion distance definitions (rather than using the original distance with 10% distortion 

remaining assumption) with the goal of matching the signal properties and deriving the 

new set of bottom-up R0. Henceforth, these new blast radii are referred to as the best fit 

R0. The outcome of this investigation was:  
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 It was possible to find the converging amplitude-period solution in the linear 

regime for the majority of arrivals (22/24). Three fits are as much as 20% beyond 

the measurement uncertainty bounds for amplitude, while all others are within the 

measurement uncertainty bounds for both period and amplitude.   

 When varying the constant in equation (6.18), the resultant distortion distance 

percentage is well below 6%. The distribution is shown in Figure 6.9(d). 

Moreover, it is not possible to define a set percentage that would be applicable to 

all events. Some of these values may in fact not be realistic or feasible - we are 

assuming that the entire cause of the difference in the linear amplitude vs. period 

is due to the definition of the distortion distance, an assumption probably not fully 

correct.    

 Smaller distortion distance leads to lower transition altitudes (Table 6.4). Half of 

the arrivals (12/24) had their transition height below 5 km. The maximum 

transition altitude was 25 km, with the mean altitude of 9 km; this means that no 

weak shock wave can be approximated as transitioning to a linear acoustic wave 

prior to reaching this height within the context of the original ReVelle (1974) 

model and still produce physically reasonable amplitude estimates. With the 

original definition for d’, the transition altitudes for our data were as high as 56 

km, with a mean of 33 km. Cotten et al. (1971) examined propagation of shock 

waves generated by Apollo rockets and noted that a wave would not be expected 

to be acoustic above the altitude of 35-40 km at the large blast radii characteristic 

of those vehicles. 

 Regardless of the extent of adjustment to the distortion distance, within the 

context of the ReVelle (1974) model, self-consistent amplitudes and periods are 

not possible unless some weak shock waves are assumed to never transition to 

linear waves. – i.e. even using a 0% distortion in our data set, two arrivals had no 

transition at all. However, these two arrivals also had a poor fit overall for any 

distortion distance.  

 The lower transition altitude also implies that the difference between the classical 

and Sutherland and Bass (2004) absorption coefficients is negligible in the 

frequency range of our events.   
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Figure 6.9: The best fit R0 from bottom-up modelling predictions for amplitude and 

period vs observed using (a) linear period and (b) linear amplitude. The square data 

points represent model output for the original definition for the distortion distance 

(Towne, 1967), while the diamonds represent the new values. The solid gray line is the 

1:1fit. (c) Distribution of transition altitudes for the original and new distortion distance. 

(d) Distribution of the transition altitude difference (∆Htransition) between the original and 

new distortion distance percentage values that were used to find the optimal R0 fit; note 

original definition was 10%.   
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Table 6.4: A summary of R0 as derived from the FM model. The associated outputs from 

top-down modelling are also shown. The two entries in the Taltitude, which is the 

transition height, in the “New d′” section denote events that never transition to the linear 

regime. Therefore, the original definition for d’ was used by default.  

 

 

 

We compared the infrasonic masses from the best fit R0 to the photometric masses 

(Figure 6.10(a)) and found a much better agreement (on average to within order of 

magnitude) than that resulting from the comparison between photometric and the 

infrasonic masses from R0 using the original definition of distortion distance.  

The mass from the FM model R0 should not exceed the mass used as the model input; 

however, the contrary can be observed (Figure 6.10(b)). For a single spherical body and 

no fragmentation and/or significant ablation, the blast radius can be estimated via 

equation (6.2). However, if there is fragmentation and/or significant ablation, then the 

Date Ro Ro err Tlin Tws Alin Aws Taltitude Tlin Tws Alin Aws Taltitude

20060419 1.09 0.05 0.09 0.09 0.234 0.119 10.0 0.09 0.09 0.125 0.119 1.1

20061104 2.45 0.01 0.17 0.19 0.216 0.031 25.4 0.18 0.19 0.048 0.031 7.1

20070125 25.95 0.36 1.05 1.26 1.363 0.021 55.0 1.22 1.26 0.053 0.021 12.8

20070727 11.48 0.21 0.68 0.80 0.731 0.04 38.4 0.79 0.80 0.054 0.04 5.0

20071021 66.66 5.36 2.24 2.65 2.202 0.036 54.5 2.53 2.65 0.148 0.036 19.3

20080325 5.79 0.39 0.32 0.35 0.639 0.195 16.1 0.33 0.35 0.452 0.195 12.0

20081028 2.52 0.22 0.15 0.16 0.582 0.272 10.9 0.16 0.16 0.317 0.272 2.6

20081102 5.30 0.55 0.36 0.40 0.23 0.017 33.2 0.38 0.40 0.091 0.017 22.2

20081107 0.56 0.43 0.06 0.06 0.044 0.006 25.8 0.06 0.06 0.007 0.006 1.3

20090523 1.99 0.36 0.17 0.19 0.167 0.022 26.5 0.18 0.19 0.094 0.022 19.5

20090917 4.68 0.47 0.33 0.36 0.39 0.047 27.8 0.35 0.36 0.105 0.047 11.9

20100421 15.88 0.07 0.85 0.96 0.587 0.036 36.2 0.95 0.96 0.044 0.036 3.5

20100429 8.87 0.79 0.53 0.61 0.387 0.015 42.5 0.59 0.61 0.037 0.015 12.7

20110520 9.97 0.20 0.56 0.65 0.439 0.015 42.0 0.63 0.65 0.038 0.015 11.9

20110630 7.42 0.05 0.46 0.53 0.392 0.018 40.6 0.53 0.53 0.021 0.018 2.4

20110808 12.32 0.06 0.62 0.68 0.9 0.254 17.2 0.62 0.68 0.9 0.254 17.2*

20111005 7.69 0.82 0.42 0.46 0.565 0.065 28.3 0.44 0.46 0.285 0.065 20.0

20111202 2.24 0.04 0.16 0.17 0.19 0.062 15.4 0.16 0.17 0.075 0.062 3.4

20060805 12.50 0.44 0.64 0.75 0.844 0.038 41.2 0.69 0.75 0.228 0.038 23.9

20060805 59.42 0.76 1.88 2.29 2.861 0.044 56.5 2.20 2.29 0.132 0.044 15.4

20080511 13.10 0.03 0.63 0.74 0.932 0.028 46.9 0.73 0.74 0.034 0.028 3.7

20080511 11.90 0.10 0.61 0.70 0.895 0.037 42.0 0.61 0.70 0.895 0.037 42.0*

20080812 5.75 0.19 0.38 0.43 0.326 0.02 37.0 0.43 0.43 0.021 0.02 1.4

20080812 6.34 0.15 0.40 0.46 0.348 0.018 39.1 0.46 0.46 0.02 0.018 2.2

20090428 5.11 1.08 0.31 0.33 0.486 0.171 14.6 0.32 0.33 0.306 0.171 8.7

20090428 2.28 0.01 0.18 0.19 0.165 0.037 20.2 0.19 0.19 0.043 0.037 2.8

20090812 0.76 0.08 0.08 0.09 0.05 0.007 26.7 0.09 0.09 0.008 0.007 2.6

20090812 0.75 0.07 0.08 0.09 0.049 0.007 26.6 0.09 0.09 0.011 0.007 7.6

20100530 3.35 0.13 0.26 0.31 0.198 0.008 41.8 0.30 0.31 0.014 0.008 7.7

20100530 3.29 0.14 0.26 0.30 0.196 0.009 41.1 0.30 0.30 0.011 0.009 3.6

Original d' [Towne, 1967] New d'



218 

 

 

 

contributions from the particles/fragments falling off the main body may alter the blast 

radius (Figure 6.11) such that there is an over-prediction of the meteoroid mass.  

 

 

Figure 6.10: The comparison of the infrasonic and photometrically derived masses. (a) 

Infrasonic mass from the best fit R0. The three points on the far left are from the two 

events, which were poorly constrained in terms of the transition height and distortion 

distance. The abscissa represents the equivalent photometric mass derived from the FM 

model blast radius and equation (6.17); (b) The comparison between the FM model input 

mass and the mass derived from the blast radius as per equation (6.17). The grey line is 

the 1:1 line in all plots. 

 

 

Figure 6.11: Blast radius produced by a single spherically shaped body. (b) Blast radius 

produced during fragmentation or significant ablation.  

 



219 

 

 

 

Therefore, in such instances, the blast radius, while a good measure of energy deposition 

by the meteoroid (R0 ~ (dE/dL)
1/2

), is not a reliable means of obtaining the meteoroid 

mass. Recall from section 6.1.2 that there are several crucial assumptions in the weak 

shock model: (i) the meteoroid is a spherically shaped single body, (ii) there is no 

fragmentation, and (iii) there is no significant deceleration and strong ablation. ReVelle 

(2010) suggested that R0 from a fragmenting bolide may be as much as 5-20 times larger 

(depending on height) than a non-fragmenting blast radius. Our study shows that strong 

ablation is indeed an important effect, even for centimeter sized meteoroids. In fact, this 

contribution is up to a factor of 10 and on average a factor of 3. Therefore, use of the R0 = 

Mdm is not valid in most cases. The blast radius estimated from purely energy-based 

(optical) considerations appears to be more robust.  

Having done bottom-up and top down analysis, and blast radius and mass comparisons, it 

is evident that without having some information about the source function (i.e. 

measurements from video observations) the signal amplitude exhibits too much scatter to 

be utilized in empirical blast radius estimates. Although the dominant signal period may 

undergo variations due to competing processes of distortion and dispersion (ReVelle, 

1974), this study demonstrates that the dominant signal period is much closer to ‘true’ 

values of R0 (e.g. Figures 6.5 and 6.6(a)). 

In Figure 6.12 we show best fit R0 derived through the bottom-up modelling. For the 

centimeter-sized meteoroids we may estimate an empirical period-R0 relation for the blast 

radius from these bottom-up values. We have divided the final fits into two distinct blast 

radius prediction populations: the short period (τobs ≤ 0.7s) and the long period (τobs > 

0.7s) based on the source altitudes. The short period population, predicting R0 ≤ 10 m, is 

confined to the shock source altitudes between 53 km and 95 km. The long period 

population, predicting R0 > 10 m, is associated with the shock source altitudes extending 

above 85 km. For short period population, the bottom-up based blast radius can be 

estimated within 1.5 meters, and for long periods within ~5 m, although the number 

statistics for the latter is small. We suspect much of the uncertainty at larger periods 

reflects the greater role fragmentation may play for larger meteoroids. The overlap 

altitude (85 – 95 km) between these two populations occurs at the mesopause and near 
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the transitional slip-flow regime for meteoroids ~1 centimetre in diameter (Campbell-

Brown and Koschny, 2004), suggesting that the weak shock model may not be correctly 

predicting R0 in the free molecular flow regime.    

For completeness, we also fitted the R0 calculated from the FM model. Recall that the FM 

based R0 is derived from the energy deposition determined by fitting optical 

measurements to the entry model. The FM based R0 has much more scatter, thus resulting 

in the blast radius estimate uncertainty of up to 17 m.  

The empirical relations for the blast radius derived from the bottom-up approach are: 

R0 = 15.4231 τ – 0.5294    (τobs ≤ 0.7s) (6.19a) 

R0 = 29.14597 τ – 11.5811    (τobs > 0.7s) (6.19b) 

Even though there are a number of simplifications and assumptions in the weak shock 

model, in its new modified form it offers a reasonable initial estimate for the blast radius 

as a function of observed signal period, and therefore energy deposition for small 

regional meteoroids, without making any assumptions about the fragmentation process. 

Consequently, this methodology could be extended to high altitude explosive sources in 

the atmosphere. The applicability of the weak shock model can also be further 

investigated and extended to spherical shocks, especially if observational data can be 

used in a similar fashion as in this study. 



221 

 

 

 

 

Figure 6.12: Blast radius from best fit bottom-up modelling versus observed signal for (a) 

the short signal period (τobs ≤ 0.7 s) and (b) the long signal period (τobs > 0.7 s) 

populations. Hs is the shock source height as derived from raytracing (Silber and Brown, 

2014).  
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6.4 Conclusions 

In this paper we extend the study of Silber and Brown (2014, in review) to critically 

investigate the analytic blast wave model of the nonlinear disturbance initiated by an 

explosive line source as an analog for a meteor shock as developed by ReVelle (1974). 

We applied the updated ReVelle (1974) model to 24 of the best constrained 

simultaneously optical and infrasound detected regional meteors to critically examine the 

weak shock model. Here we summarize our main conclusions: 

i. We analyzed the weak shock model behavior using a synthetic meteor, and 

performed the sensitivity analysis on a set of meteor events from our data set to 

examine the effect of the winds, perturbed wind fields due to gravity waves, and 

Doppler shift. The overall effect of these factors on the initial value of the blast 

radius is relatively small (<10%) for regional meteor events. 

ii. We performed bottom-up modelling using the ReVelle (1974; 1976) approach to 

determine the blast radius required to predict both the signal amplitude and period 

at the ground such that it matches that observed by the receiver within 

uncertainty. While the period-based R0 appears to have realistic values, the 

amplitude-based R0 exhibits large systematic deviations in the linear and weak 

shock regimes, as well as large deviations when compared to the period-based 

blast radius. The amplitude-based R0 estimate severely under-predicts the 

observed amplitude in the linear regime, and overestimates it in the weak shock 

regime.  

iii. Drawing upon the results from (ii), we varied the distortion distance to examine 

its effect on the weak shock to linear transition altitude. We empirically 

established that to match the observed amplitude of the meteor infrasound at the 

ground within the context of the ReVelle (1974) model, the distortion distance for 

our dataset must always be less than six percent, contrary to the proposed fixed 10 

percent (Towne, 1967). The choice of definition of the distortion distance has a 

strong effect on the predicted linear amplitude. We established the ‘best fit’ linear 

regime R0 which matched both amplitude and period within their respective 

measurement uncertainties. No one definition of modified distortion distance 
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worked for all events, but we found acceptable fits when the distortion distance 

was assumed to be of an order half or less than the original ReVelle (1974) 

adopted value. 

iv. We applied the FM entry model (Ceplecha and ReVelle, 2005) to photometric 

data as measured from video observations of meteor events to independently 

calculate the blast radius using the fundamental definition for R0 in terms of 

energy deposition per path length derived from the FM model. This blast radius 

was used as an input for top-down modelling to determine the predicted signal 

amplitude and period in both weak shock and linear regimes. Both the predicted 

period and amplitude as obtained from the best fit R0 are nearly 1:1. This validates 

the basic definition of blast radius and its fundamental linkage to energy 

deposition during the hypervelocity meteor entry. 

v. The infrasonic mass estimate is systematically larger than the mass estimated 

from FM modeling and is not a reliable predictor of the true meteoroid mass using 

any set of assumptions which we interpret as being mainly due to the ubiquitous 

presence of fragmentation during ablation of centimeter-sized meteoroids. The 

fragmentation tends to artificially increase the equivalent single-body mass, 

making infrasonically determined mass less reliable for larger events. 

vi. We derived new empirical relations which link the observed dominant signal 

period to the meteoroid blast radius: R0 = 15.4231 τ – 0.5294 (τobs ≤ 0.7s) and R0 = 

29.14597 τ – 11.5811 (τobs > 0.7s). The blast radius can be estimated to within 15 

percent. 

Even though the premise of the ReVelle (1974) weak shock model is to require some 

knowledge about the source a priori to be able to predict the signal amplitude and the 

period at receiver located at the ground, we have obtained an empirical relation which 

can be used to estimate the source blast radius for centimeter-sized bright fireballs, 

regardless of the meteoroid’s velocity, entry angle and other parameters which are 

generally difficult to determine without video observations. In conclusion, the weak 

shock model of meteor infrasound production (ReVelle, 1974) in its analytical form 

offers a good first order estimate in determining the blast radius and therefore energy 
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deposition by small meteoroids, particularly if period alone is used or if no fragmentation 

is present.  
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Chapter 7 

7. Conclusions and Future Work 

 

There is no real ending. It’s just the place where you stop the story. 

– Frank Herbert 

 

7.1 Conclusions 

The main goals of this dissertation were to investigate observationally and theoretically 

meteor infrasound, and to address several previously unanswered questions as outlined in 

Section 1.2.  

7.1.1 Conclusions from Chapter 3 

The influx rate of meteoroids hitting the Earth is most uncertain at sizes of ~10 meters. In 

Chapter 3, a declassified historical data base of 13 large bolides recorded infrasonically 

over a period of 13 years by the United States Air Force Technical Applications Center 

(AFTAC) was digitized and re-examined using modern techniques in order to refine our 

knowledge of the terrestrial influx rate at these sizes. From this infrasound study, the best 

estimate for the cumulative annual flux of impactors with energy equal to or greater than 

E (in kilotons of TNT equivalent) is N=4.5 E
-0.6

. This influx value is found to be several 

times higher than predicted from telescopic surveys and indicates that a megaton-class 

impact should occur somewhere on Earth every few decades. 

7.1.2 Conclusions from Chapter 4 

In Chapter 4, instrumental recordings of infrasonic signals produced by a large Earth-

impacting fireball, believed to be one of the most energetic instrumentally recorded 

during the last century that occurred on 8 October, 2009 over Indonesia, were analysed. 

This event, detected by 17 infrasonic stations of the global International Monitoring 

Network, generated stratospherically ducted infrasound returns at distances up to 17,500 



232 

 

 

 

km, the greatest range at which infrasound from a fireball had been detected since the 

1908 Tunguska explosion, being surpassed only by  the Chelyebinsk bolide of 15 

February 2013. A new methodology to determine the most likely source height for 

infrasound signals reaching the closest stations (within <5,000 km) was developed and 

tested.  

The measured differences in the dominant signal periods were attributed to signals 

coming from different parts of the meteoroid trail. The signal with the longest period 

most likely originated at an altitude near 20 km, suggesting that the terminal burst 

occurred near this altitude. Newly released US Government Sensor data 

(http://neo.jpl.nasa.gov/fireballs/) independently indicates the height of the terminal burst 

to have occurred at 19 km, in agreement with the height determined purely from 

infrasound records using the new methodology presented in the paper. Using the AFTAC 

infrasonic period-yield relation, it was found that the most probable source energy for this 

bolide as 8 – 67 kt of TNT equivalent explosive yield. This is in an acceptable agreement 

with the estimated energy of 33 kt from optical radiation reported at 

(http://neo.jpl.nasa.gov/fireballs/), given that optical efficiency estimates are known to be 

subject to considerable uncertainty due to assumptions required in performing their 

derivations. The satellite derived influx rate (Brown et al., 2002) indicates that impact 

events of such energy are expected only once per decade, while infrasonic influx rate 

derived in Chapter 3 indicates that such events would occur once every 5 years. The 

study of impact effects and modes of disintegration of large bolides in the atmosphere can 

provide insight into the threshold levels at which ground damage and climate 

perturbations may be caused by airbursts as exemplified by the recent Chelyabinsk 

airburst (Brown et al., 2013).  

7.1.3 Conclusions from Chapter 5 

In Chapter 5, infrasound signals from 71 simultaneously detected bright optical meteors 

were examined to investigate the phenomenology and characteristics of meteor near-field 

infrasound (< 300 km) and shock production. It was found that approximately 1% of all 

optically detected meteors recorded by the Southern Ontario Meteor Network (SOMN) 

have associated infrasound. It was found that there are two entry velocity meteor 

http://neo.jpl.nasa.gov/fireballs/
http://neo.jpl.nasa.gov/fireballs/
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populations which produced infrasound detectable at the ground, slow (< 40 km/s) and 

fast (> 40 km/s). These exhibit different astrometric, source height, and signal 

characteristics, consistent with the differing physical origins of the populations as 

asteroidal (slow) and cometary (fast). For our regional infrasound measurements, the 

slow velocity population produces maximum dominant frequency of up to ~14 Hz, while 

the fast velocity population is bounded by an upper dominant signal frequency of <4 Hz. 

There is a strong inverse relationship between the shock source height and the dominant 

signal frequency. 

A new algorithm was developed to determine the most probable point along the meteor 

trail where the infrasound signal is generated. Small scale atmospheric perturbations in 

the winds due to gravity waves were introduced to the model so to investigate their role 

on short range infrasound propagation (<300 km) and the effect on shock source heights. 

It was shown that these wind perturbations play a significant role, and also result in 

infrasound propagation paths which are not present when only averaged atmospheric 

profiles are used in the model. The findings in this study also indicate that infrasound 

generated by high altitude meteors may be more common than previously thought. 

Based on the location along the meteor trail where the infrasound signal originates, it was 

found that for centimetre-sized meteoroids most signals are associated with cylindrical 

shocks, with some ~25% of events displaying spherical shocks associated with 

fragmentation events/optical flares. The video data suggests that all events with large ray 

launch angles (β >117°) from the trajectory heading are most likely generated by a 

spherical shock as evidenced by a correlation with point-like flares in the meteor light 

curves, while infrasound produced by the meteors with ray launch angles ≤117° can be 

attributed to both a cylindrical line source and a spherical shock. It was found that 

centimetre-sized meteoroids predominantly produce infrasound toward the end of their 

trails, with a smaller number generating infrasound in the mid-trail regions. While a 

significant fraction of the observed meteors producing infrasound (~1/4 of single arrivals) 

also exhibit fragmentation events, we find no instances where acoustic emission is 

detectable more than ~60° beyond the ballistic regime at the meteoroid masses observed 

here (ranging from grams to tens of kilograms). This emphasizes the strong anisotropy in 
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acoustic emission by meteors, which is dominated by a cylindrical line source geometry, 

even in the presence of fragmentation. 

A new taxonomic signal classification scheme for meteor generated infrasound was 

established. Meteors producing multiple infrasound arrivals show a strong preference for 

infrasound source heights concentrated at the end of trails and are much more likely to be 

associated with optical flares. The new taxonomic scheme could be extended to 

infrasound signals from other explosive sources located at relatively short distance from 

the source (within ~300 km, to remain consistent with our dataset). 

7.1.4 Conclusions from Chapter 6 

In Chapter 6, 24 optically and infrasonically detected meteors were used to test, validate 

and update the meteor infrasound weak shock model (ReVelle, 1974). 

The weak shock model behaviour was examined in a sensitivity analysis to estimate the 

effects of (a) winds; (b) perturbed wind fields due to gravity waves; (c) Doppler shift; and 

(d) Sutherland and Bass (2004) absorption coefficients. The overall effect of these factors 

on the initial value of the blast radius is relatively small (~10%) for regional meteor 

events. 

A bottom-up modelling approach which uses the observed infrasound signal period and 

amplitude together with the weak shock model to predict the blast radius (R0) at altitude 

was employed. It was found that the period-based R0 appears to have realistic values. 

However, the amplitude-based R0 exhibits a large systematic deviation in the linear and 

weak shock regimes, as well as large deviations when compared to the period-based blast 

radius. The amplitude-based R0 is severely underestimated in the linear regime, and 

overestimated in the weak shock regime.  

We isolated one possible cause of the amplitude-based R0 estimate mismatch as being 

due to the Towne’s (1967) definition for the distortion distance, which was subsequently 

adopted by ReVelle (1974). Assuming this arbitrary definition is not correct, it was 

empirically determined that a modified distortion distance for the data set of <6% 

explained the linear amplitude observations, contrary to the proposed value of 10% 

(Towne, 1967). A ‘best fit’ linear regime R0 which simultaneously matched both 
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amplitude and period within their measurement uncertainties was established using this 

modified distortion distance. The Fragmentation Model of meteoroid ablation was 

applied (Ceplecha and ReVelle, 2005) to photometric data as measured from optical 

observations of meteor events to calculate independently the blast radius using the 

fundamental definition for R0 in terms of energy deposition per unit path length. This 

blast radius was used as an input for top-down modelling to determine the predicted 

signal amplitude and period in both the weak shock and linear regimes. We found good 

agreement with the observed period, while the linear amplitude using the nominal 

distortion distance of 10% was again underestimated. The predicted values of the period 

and amplitude agree when the modified distortion distance as obtained from the best fit 

R0 was used. 

New empirical relations which link the observed dominant signal period (τ) to the 

meteoroid blast radius were derived:  

R0 = 15.4231 τ – 0.5294 (for observed signals τ ≤ 0.7s) and  

R0 = 29.14597 τ – 11.5811 (for observed signals τ > 0.7s). 

  

7.2 Future Work 

Meteor generated infrasound provides valuable insights into high altitude explosive 

events in the atmosphere. There is still much to be learned from well documented 

simultaneously observed meteors; given the infrequency of such events such records 

provide invaluable data sources. To further understand meteor generated infrasound, 

propagation effects and the source function, the following possible avenues might be 

explored in the future: 

i. Validate the method for determining the likely burst altitude for long range 

propagation using other well documented events; 

ii. Expand the experimental data set of simultaneously observed regional (< 300 km) 

meteors to improve statistics; 
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iii. Automate detection techniques and algorithms to improve regional detection 

rates; 

iv. Investigate local effects on signal characteristics (e.g. ground cover, reflection);   

v. Investigate effects of turbulence in the atmosphere; 

vi. Apply an improved propagation model which includes full gravity wave 

implementation and atmospheric variability for raytracing and signal prediction;  

vii. Expand this study to investigate regional infrasound generated by spherical 

explosions (i.e. fragmenting meteoroids);  

viii. Further investigate the effects responsible for shock wave deviation angles at the 

source – (and this could be broken into two distinctive parts: first, numerically 

examine interactions of successive shocks at the source to understand how these 

may affect ray deviation angles and features seen in the shock; second, examine 

the effect of temperature near the source on ray deviations); 

ix. Revisit the taxonomic scheme from a theoretical standpoint; 

x. Rigorously (numerically and experimentally) investigate the distortion distance 

and transition altitude of a weak shock wave to the linear regime on a larger set of 

well documented events; 

xi. Modify the updated version of ReVelle’s model to validate it against infrasound 

generated by spherical shocks;  

xii. Expand the data base with meteoroids which generate infrasound at very high 

altitudes (above 85 km) to improve statistics and build upon the results found in 

this project;  

xiii. Apply the newly derived period-blast radius relation to a larger data set to 

determine its general applicability; 

xiv. Apply what was learned through the study in Chapters 5 and 6 of this thesis and 

expand to medium range bolides (distances of 300 km to 1000 kilometers from 

the observation point). 
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xv. Apply numerical modelling (e.g. hydrocode) and investigate Witham’s F-function 

(Whitham, 1952). 
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Appendix 1 

Signal Identification and Phenomenology Plots: Single and Multi 

Arrival Events 

 

This section displays in detail the meteor infrasound signal identification methodology 

and phenomenology plots analysed in Chapters 5 and 6. There are three figures shown for 

each event: (i) an example of infrasound signal displayed in InfraTool (MatSeis 1.7), (ii) 

filtered waveform for all functional channels (sensors), and (iii) best beam signal with 

Hilbert envelope. The signal classification scheme is shown in Table 5.5 (Chapter 5). The 

latter two figures show the appearance and features of infrasonic signals produced by 

regional meteors in the data set developed in Chapter 5.  

InfraTool plot: As described in detail in Chapter 5, one of the steps in signal 

identification is to search for possible signals using InfraMap within the parameters 

determined a priori (e.g. time window, back azimuth). The plots shown here represent a 

typical MatSeis output when a signal is initially identified; however, they do not 

represent the final signal measurements. The top window is either the signal correlation 

or the F-statistic, a measure of the relative coherency of the signal across the array 

elements, the second window is the apparent trace velocity of the infrasound signal across 

the array in the direction of the peak F-stat, and the third window shows the best estimate 

for the signal back-azimuth. The fourth window shows the bandpassed raw pressure 

signal for the Centre Element of ELFO.  

Filtered waveform: Filtered (2
nd

 order Butterworth) waveform as recorded at each array 

sensor. The filter bandpass for each event is shown in the associated figure title.  

Best beam plot: Phase aligned and stacked filtered signal (black) from all elements. The 

filter band is shown in figure titles. The peak of the envelope (red) represents the 

maximum amplitude, which is calculated using the Hilbert Transform (Dziewonski and 

Hales, 1972).  
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Appendix 2 

Raytracing Results: Single Arrival Events and Multi Arrival Events 

 

This section describes in detail the raytracing results for all events analysed in Chapter 5. 

There are two 4-panel plots for each event (or for each arrival for multi arrival events): (i) 

raytracing results as shown in Figure 5.11, and (ii) raytracing residuals as shown in 

Figure 5.13. Rather than repeating the two identical captions, they are described in the 

paragraph below and apply to each plot. Event dates and times are shown in figure titles. 

Each page corresponds to a single meteor event or arrival.  

Raytracing results: A composite plot showing the travel time (upper left), back azimuth 

(upper right) and arrival elevation angle (lower left) for a given event. The lower right 

plot is the ray launch deviation angle as a function of height along the meteor trail. The 

blue points represent modelled arrivals for 1400 gravity wave realizations for this event. 

The yellow model points in all plots are the simulation means along the meteor trail for 

each height (averaging along the x-axis). The vertical solid black line corresponds to the 

observed quantity with its uncertainty (dotted line), except in the case of ray deviation 

angle, which is simply a reference to the expected ballistic angle (90°). The composite 

plot also shows how the back azimuth determined model source height differs from the 

model source height determined by the travel time residuals. 

Raytracing residuals: A residuals composite plot showing the difference between the 

model values for each realization and the observed value. Red points show the residuals 

contained within the height-residual grid where model points agree with observations 

within the observational uncertainty. The ray deviation angle residuals are relative to a 

ballistic arrival (i.e. residual of zero = 90 degree ray deviation angle). 
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Appendix 3 

Photometric Corrections: A Brief Overview 

 

The camera system used by the Southern Ontario Meteor Network to gather optical data 

for simultaneous optical-infrasound meteor events includes the following hardware:  

 The camera: a Sony HiCam HB-710E (8 bit) as shown in Figure A3.1. The 

camera specifications are listed in Table A3.1.  

 The CCD (Charge Coupled Device): a 1.27 cm (0.5 inch) interlined chip with 

410K pixels, with 768 (Horizontal) X 494 (Vertical) effective pixels. It has a 

super-low illumination environment of 0.0005 Lux (F1.2 /20 IRE at AGC Max).  

 The lens: Rainbow L163VDC4P fisheye lens with a 180 degree field.  

 Power: +12VDC (energy consumption 150 mA at maximum load). 

 

 

 

Figure A3.1: Sony HiCam HB-710E (http://www.hicam.co.kr/main/710.htm).  

 

 

 

http://www.hicam.co.kr/main/710.htm
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Table A3.1: All sky camera specifications (http://www.hicam.co.kr/main/710.htm). The 

abbreviations are as follows: CCD – charged coupled device, EIA - Electronics Industries 

Association, CCIR – digital video encoding standard (International Telecommunication 

Union) 

MODEL HB-710E 

Image Device 1/2" Interline Transfer B/W Ex-view HAD CCD 
Total Pixels 811(H) x 508(V) 

Effective Pixels 768(H) x 494(V) 

Unit Cell Size [m] 8.40(H) x 9.80(V) 
Scanning System 2 : 1 Interlace 

Sync. System Internal 
TV Mode EIA 

Resolution (H) 
[TV Lines] 

580 

Video Output Composite Video Output (1 Vp-p, 75 Ohm, Unbalanced) 
AGC Max. 32 dB 

S/N Ratio (AGC Off) 50dB Over 

Gamma 0.45 / 0.65 (selectable) 
Minimum Illumination 0.0003 Lux (F-1.2 scene) 

Auto Iris Video / DC Iris 
Electronic Shutter EIA : 1/60 ~ 1/100,000 sec  

CCIR : 1/50 ~ 1/100,000 sec  
Flickerless EIA : 1/100 sec 

CCIR : 1/120 sec (optional) 
Manual Shutter EIA : 1/60 ~ 1/100,000 sec 

CCIR : 1/50 ~ 1/100,000 sec (optional) 
Lens Mount C / CS Mounted 

Supply Voltage DC +12V(¡¾10 %) 
Power Consumption 150 mA(Max) 

OperatingTemperature - 10  ~  60 ¡É 
Storage Temperature - 30  ~  80 ¡É 

Dimensions [mm] 61.5 (H) x 50.0 (V) x 53.0 (D) - Not Included Lens 
Weight [g] (Approx) 220.0 - Not Included Lens 

 

 

  

http://www.hicam.co.kr/main/710.htm
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A.3.1 Procedure for Saturation Correction 

To correct for light saturation in the camera CCD and therefore estimate the total amount 

of light reading the camera, the following laboratory experiment was constructed as 

shown in Figures A3.2 and A3.3. Here a light source is placed at the focal point of a 

Newtonian reflecting telescope with a fixed neutral density filter to reduce intensity to 

just above saturation for the camera and then rotating filter having smooth gradations in 

neutral density as a function of angle placed between the light source and the main 

mirror. This permits the light source to be smoothly attenuated from above saturation, 

through normal unsaturated detection down to the noise level of the camera (no signal 

from the source is then detectable).  The camera is placed along the main optical axis 

where the point source light is defocussed to a plane wave. The procedure for gathering 

data for estimating the saturation effect is: 

 The step motor was used to rotate the wheel in equal increments (71.47 steps over 

310°) and take 60 second image stacks in both clockwise and counter clockwise 

directions.  

 The raw images were processed using IDL and plotted in Sigma Plot. Here the log 

sum of the pixel intensity of the source is taken as a direct estimate for the source 

intensity (hereafter this is termed instrumental magnitude) following Hawkes et al 

(2002). 

 Only the best experimental data (i.e. no reflections) extending through the wheel 

and ND filters was used to determine the saturation correction. This is 

accomplished by comparing the known intensity (from the stepper motor position 

and angular position of the filter wheel) with the instrumental magnitude 

measured through the camera. Note that this produces relative changes in 

brightness but not absolute. 

 The final saturation correction fit for data and the corresponding residuals are 

shown in Figure A3.5 and Figure A3.6, respectively.  

 A sample meteor light curve, corrected for saturation and uncorrected, is shown in 

Figure A3.7.   
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Figure A3.2: The beam of light from the constant intensity lightsource (#1) is passed 

through the pinhole (front of lightsource) and then through a neutral density (ND) filter 

(#3) and the neutral density wheel (#4) before entering the eyepiece holder (#5) of the 

telescope (#6). The ND wheel is composed of the clear region through 50° and neutral 

density gradient filter (0.04 – 4) through the remaining 310° with the wheel powered by 

the stepper motor (#2).   
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Figure A3.3: The transition between the clear portion and the densest filter of the ND 

wheel is shown with the yellow arrow in the image. The experiment can be set up to run 

with the ND wheel alone, or with both the wheel and the ND filter, depending on the 

light intensity dynamic range required. The ND filter, which sits in front of the wheel, 

can range in ND value from 1 ND – 3 ND. Note that every 1 unit in ND corresponds to a 

linear factor of ten in brightness change.   

 

Figure A3.4: The camera is anchored in front of the telescope where it measures a plane 

wave which mimics characteristics of star with connections to power and the computer 

where the analog signal is digitized using a frame grabber (based on the Brooktree line of 

video capture cards).  
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Figure A3.5: The blue points correspond to the raw data, while the red line is an 

empirical best fit. The graph shows the actual (known) brightness of the source (relative 

magnitude) and the measured brightness (Instrumental Magnitude). If saturation were not 

present this would be a straight line - saturation is evident by the small change in the x-

variable relative to a large change in the y variable, reflecting the loss of photons once 

saturation is reached.  
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Figure A3.6: The residuals for the saturation correction fit between the instrumentally 

measured magnitude with saturation correction applied and the true (relative) magnitude. 

 

 

Figure A3.7: The white data points represent the camera measured light curve 

uncorrected for saturation (the roll-off correction, described in the next section, is 

included). The red data points represent the fully corrected apparent light curve – i.e. our 

best estimate of the relative magnitude of the meteor as seen from the camera..  



480 

 

 

 

 

A.3.2 Lens Roll-off Correction 

Near the edges of any lens, the amount of light reaching the sensor naturally is truncated 

(termed vignetting). To estimate the attenuation of the light from vignetting, which is 

very pronounced in wide field optics, an experiment in the field was constructed. The 

roll-off correction experiment was performed in-field during a clear, dark night. The 

experiment was set up as shown in Figure A3.8 and Figure A3.9.  

 Starting with the lens centre oriented slightly below the horizontal, the camera 

was rotated in 5° increments to sweep an angle just over 180° across the sky.  

 A one second video (30 frames) was captured at each step.  

 Additional calibration images were taken and subsequently used to generate the 

astrometric plate.  

 Multiple stars had their instrumental magnitude measured in a relative sense 

across the field of view while at a fixed elevation in the sky to estimate the lens 

roll-off correction.  

 The final lens roll-off was empirically fit as: y = a + bx
2.5 

+ cx
3
 + de

x
, where a = 

2.619384896465613, b = -1.86730696627234e-5, c = 3.689985963834343e-6 and 

d = 3.768268975434104e-40. Here x is θ in degrees, where θ is the zenith angle 

(0 degrees overhead, 90 degrees at the zenith). 

The lens roll-off correction plot and the residuals are shown in Figure A3.10 and Figure 

A3.11, respectively.   
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Figure A3.8: The camera, identical to those used for meteor measurements, attached to 

the turntable. This structure was in turn attached to a metal frame to keep the apparatus 

firmly in place once in the field. The step motor was used to turn the wheel in equal 5° 

increments. 

  

Figure A3.9: A diagram showing the orientation of the lens with respect to the sky. The 

red arrows correspond to the centre of the lens. 
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Figure A3.10: The lens roll-off correction. The blue points represent the relative 

instrumental magnitude for raw data collected during the night of the experiment, while 

the red curve is the best fit. The magnitude decreases a function of θ due to vignetting.   

 

Figure A3.11: The roll-off correction fit residuals. 

  



483 

 

 

 

Appendix 4 

Relative Magnitude Light Curves: Associations to Shock Production 

 

The plots shown in this appendix are scaled, relative photometric lightcurves for each 

meteor event for which infrasound signals were detected. These plots depict the 

relationship between the point of shock production and light curve as derived from the 

video data, as described in Chapter 5 (e.g. Figure 5.26).  

The scaled relative magnitude shown for all events has been normalized on a scale from 0 

to -1, simply to allow the point of maximum brightness (-1) to be easily portrayed. These 

light curves were also used to determine the Mp parameter as described in Chapter 5. The 

photometric corrections for saturation, lens roll-off and extinction were applied to all 

events. The choice of the camera site for any light curve in this set was based on the 

highest fidelity video data – the best site with best sky conditions for each given event 

was used to produce the relative light curve.    

The solid lines with shaded (transparent regions) correspond to the inferred shock source 

heights and their uncertainties as determined in Chapter 5. The green colour is associated 

with shock heights determined to be most likely line source-type shocks, while the red 

colour corresponds to likely spherical shocks. The identification methodology used for 

shock type is described in detail in Chapter 5. In general, flares are likely to be associated 

with spherical shock production, while the absence of flares is indicative of cylindrical 

line source. There is only one event (yellow line) for which it was not possible to 

determine with any certainty whether the type of shock is cylindrical or spherical. In 

some cases, however, the positioning of relatively small flares on the light curve alone 

was not sufficient to determine the type of shock. Sometimes, the location of the signal 

would correspond to the region between flares. Therefore, in addition to light curve 

examination, a careful inspection of frame-by-frame video records was performed to look 

for signs of visible fragmentation or continuous fragmentation to make the best possible 

estimate of shock production. 
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Appendix 5 

Light Curve Fits from the FM Model 

 

The figures in this section show each of the measured average absolute brightness light 

curves (black) and the fits (red) from the FM model for all events as described in Chapter 

6. The brightness here is given in astronomical magnitudes in the HAD CCD bandpass 

(which is close to the R astronomical bandpass). The uncertainty bounds represent the 

standard deviation in absolute brightness as measured between cameras (at least two and 

up to six cameras for some events).  Only two events have a single camera light curve 

due to adverse sky conditions at other sites. The events are named according to their date 

of appearance as YYYYMMDD. 
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Appendix 6 

Energy Deposition and Blast Radius Calculations from the FM Model 

 

The figures in this section show the model fit to the observed light curve and dynamics. 

Based on these model fits, also shown are the inferred model blast radius calculations for 

all events as described in Chapter 6 in the top-down approach.  

The figure panels show the following predictions for each simultaneous optical and 

infrasound meteor as modelled using the FM entry code: Upper left: FM predicted blast 

radius as a function of height 

 Upper right: FM estimate of meteoroid energy per path length in units of J/m as a 

function of height 

 Middle left: FM modelled meteoroid mass as a function of height 

 Middle right: FM predicted meteoroid mass ablated as part of optical flares as a 

function of height. 

 Lower left: FM modelled light curve as absolute meteor magnitude as a function 

of height 

 Lower right: FM modelled meteoroid velocity as a function of height 

The black vertical lines in each plot represent the most likely shock source height of the 

observed meteor as derived from raytracing as shown in Appendix 4. 
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 With respect to the Wiley Materials, all rights are reserved. Except as expressly 

granted by the terms of the license, no part of the Wiley Materials may be copied, 

modified, adapted (except for minor reformatting required by the new Publication), 

translated, reproduced, transferred or distributed, in any form or by any means, and 

no derivative works may be made based on the Wiley Materials without the prior 

permission of the respective copyright owner. You may not alter, remove or 

suppress in any manner any copyright, trademark or other notices displayed by the 

Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as 

security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the 

rights granted to you hereunder to any other person. 

 The Wiley Materials and all of the intellectual property rights therein shall at all 

times remain the exclusive property of John Wiley & Sons Inc, the Wiley 

Companies, or their respective licensors, and your interest therein is only that of 

having possession of and the right to reproduce the Wiley Materials pursuant to 

http://myaccount.copyright.com/
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Section 2 herein during the continuance of this Agreement. You agree that you own 

no right, title or interest in or to the Wiley Materials or any of the intellectual 

property rights therein. You shall have no rights hereunder other than the license as 

provided for above in Section 2. No right, license or interest to any trademark, trade 

name, service mark or other branding ("Marks") of WILEY or its licensors is 

granted hereunder, and you agree that you shall not assert any such right, license or 

interest with respect thereto.  

 NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR 

REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, 

EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE 

MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN 

THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED 

WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY 

QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, 

INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES 

ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED 

BY YOU 

 WILEY shall have the right to terminate this Agreement immediately upon breach 

of this Agreement by you.  

 You shall indemnify, defend and hold harmless WILEY, its Licensors and their 

respective directors, officers, agents and employees, from and against any actual or 

threatened claims, demands, causes of action or proceedings arising from any breach 

of this Agreement by you.  

 IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR 

ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY 

SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR 

PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 

CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR 

USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, 

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, 

TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, 

WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, 

FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), 

AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY 

NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY 

LIMITED REMEDY PROVIDED HEREIN.  

 Should any provision of this Agreement be held by a court of competent jurisdiction 

to be illegal, invalid, or unenforceable, that provision shall be deemed amended to 

achieve as nearly as possible the same economic effect as the original provision, and 

the legality, validity and enforceability of the remaining provisions of this 

Agreement shall not be affected or impaired thereby.  
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 The failure of either party to enforce any term or condition of this Agreement shall 

not constitute a waiver of either party's right to enforce each and every term and 

condition of this Agreement. No breach under this agreement shall be deemed 

waived or excused by either party unless such waiver or consent is in writing signed 

by the party granting such waiver or consent. The waiver by or consent of a party to 

a breach of any provision of this Agreement shall not operate or be construed as a 

waiver of or consent to any other or subsequent breach by such other party.  

 This Agreement may not be assigned (including by operation of law or otherwise) 

by you without WILEY's prior written consent. 

 Any fee required for this permission shall be non-refundable after thirty (30) days 

from receipt by the CCC.  

 These terms and conditions together with CCC�s Billing and Payment terms and 

conditions (which are incorporated herein) form the entire agreement between you 

and WILEY concerning this licensing transaction and (in the absence of fraud) 

supersedes all prior agreements and representations of the parties, oral or written. 

This Agreement may not be amended except in writing signed by both parties. This 

Agreement shall be binding upon and inure to the benefit of the parties' successors, 

legal representatives, and authorized assigns.  

 In the event of any conflict between your obligations established by these terms and 

conditions and those established by CCC�s Billing and Payment terms and 

conditions, these terms and conditions shall prevail.  

 WILEY expressly reserves all rights not specifically granted in the combination of 

(i) the license details provided by you and accepted in the course of this licensing 

transaction, (ii) these terms and conditions and (iii) CCC�s Billing and Payment 

terms and conditions. 

 This Agreement will be void if the Type of Use, Format, Circulation, or Requestor 

Type was misrepresented during the licensing process. 

 This Agreement shall be governed by and construed in accordance with the laws of 

the State of New York, USA, without regards to such state�s conflict of law rules. 

Any legal action, suit or proceeding arising out of or relating to these Terms and 

Conditions or the breach thereof shall be instituted in a court of competent 

jurisdiction in New York County in the State of New York in the United States of 

America and each party hereby consents and submits to the personal jurisdiction of 

such court, waives any objection to venue in such court and consents to service of 

process by registered or certified mail, return receipt requested, at the last known 

address of such party.  

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription 
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journals offering Online Open. Although most of the fully Open Access journals publish 

open access articles under the terms of the Creative Commons Attribution (CC BY) License 

only, the subscription journals and a few of the Open Access Journals offer a choice of 

Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license Creative 

Commons Attribution Non-Commercial (CC-BY-NC) license and Creative Commons 

Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. The license type is 

clearly identified on the article. 

Copyright in any research article in a journal published as Open Access under a Creative 

Commons License is retained by the author(s). Authors grant Wiley a license to publish the 

article and identify itself as the original publisher. Authors also grant any third party the 

right to use the article freely as long as its integrity is maintained and its original authors, 

citation details and publisher are identified as follows: [Title of Article/Author/Journal Title 

and Volume/Issue. Copyright (c) [year] [copyright owner as specified in the Journal]. Links 

to the final article on Wiley�s website are encouraged where applicable.  

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and 

transmit an article, adapt the article and make commercial use of the article. The CC-BY 

license permits commercial and non-commercial re-use of an open access article, as long as 

the author is properly attributed. 

The Creative Commons Attribution License does not affect the moral rights of authors, 

including without limitation the right not to have their work subjected to derogatory 

treatment. It also does not affect any other rights held by authors or third parties in the 

article, including without limitation the rights of privacy and publicity. Use of the article 

must not assert or imply, whether implicitly or explicitly, any connection with, endorsement 

or sponsorship of such use by the author, publisher or any other party associated with the 

article. 

For any reuse or distribution, users must include the copyright notice and make clear to 

others that the article is made available under a Creative Commons Attribution license, 

linking to the relevant Creative Commons web page.  

To the fullest extent permitted by applicable law, the article is made available as is and 

without representation or warranties of any kind whether express, implied, statutory or 

otherwise and including, without limitation, warranties of title, merchantability, fitness for a 

particular purpose, non-infringement, absence of defects, accuracy, or the presence or 

absence of errors. 

Creative Commons Attribution Non-Commercial License 

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, 

distribution and reproduction in any medium, provided the original work is properly cited 

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
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and is not used for commercial purposes.(see below)  

Creative Commons Attribution-Non-Commercial-NoDerivs License 

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) 

permits use, distribution and reproduction in any medium, provided the original work is 

properly cited, is not used for commercial purposes and no modifications or adaptations are 

made. (see below) 

Use by non-commercial users 

For non-commercial and non-promotional purposes, individual users may access, 

download, copy, display and redistribute to colleagues Wiley Open Access articles, as well 

as adapt, translate, text- and data-mine the content subject to the following conditions: 

 The authors' moral rights are not compromised. These rights include the right of 

"paternity" (also known as "attribution" - the right for the author to be identified as 

such) and "integrity" (the right for the author not to have the work altered in such a 

way that the author's reputation or integrity may be impugned).  

 Where content in the article is identified as belonging to a third party, it is the 

obligation of the user to ensure that any reuse complies with the copyright policies 

of the owner of that content.  

 If article content is copied, downloaded or otherwise reused for non-commercial 

research and education purposes, a link to the appropriate bibliographic citation 

(authors, journal, article title, volume, issue, page numbers, DOI and the link to the 

definitive published version on Wiley Online Library) should be maintained. 

Copyright notices and disclaimers must not be deleted.  

 Any translations, for which a prior translation agreement with Wiley has not been 

agreed, must prominently display the statement: "This is an unofficial translation of 

an article that appeared in a Wiley publication. The publisher has not endorsed this 

translation."  

Use by commercial "for-profit" organisations 

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes 

requires further explicit permission from Wiley and will be subject to a fee. Commercial 

purposes include: 

 Copying or downloading of articles, or linking to such articles for further 

redistribution, sale or licensing;  

 Copying, downloading or posting by a site or service that incorporates advertising 

http://creativecommons.org/licenses/by-nc-nd/3.0/
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with such content;  

 The inclusion or incorporation of article content in other works or services (other 

than normal quotations with an appropriate citation) that is then available for sale or 

licensing, for a fee (for example, a compilation produced for marketing purposes, 

inclusion in a sales pack)  

 Use of article content (other than normal quotations with appropriate citation) by 

for-profit organisations for promotional purposes  

 Linking to article content in e-mails redistributed for promotional, marketing or 

educational purposes;  

 Use for the purposes of monetary reward by means of sale, resale, licence, loan, 

transfer or other form of commercial exploitation such as marketing products  

 Print reprints of Wiley Open Access articles can be purchased from: 

corporatesales@wiley.com  

Further details can be found on Wiley Online Library 

http://olabout.wiley.com/WileyCDA/Section/id-410895.html  

Other Terms and Conditions:  

 

v1.9 

If you would like to pay for this license now, please remit this license along with your 

payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you 

will be invoiced within 48 hours of the license date. Payment should be in the form of a 

check or money order referencing your account number and this invoice number 

501297592. 

Once you receive your invoice for this order, you may pay your invoice by credit card. 

Please follow instructions provided at that time. 

 

Make Payment To: 

Copyright Clearance Center 

Dept 001 

P.O. Box 843006 

Boston, MA 02284-3006 

 

For suggestions or comments regarding this order, contact RightsLink Customer 

Support: customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-

978-646-2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable 

license for your reference. No payment is required.  

 

mailto:corporatesales@wiley.com
http://olabout.wiley.com/WileyCDA/Section/id-410895.html
mailto:customercare@copyright.com
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licensing transaction, you agree that the following terms and conditions apply to this 

transaction (along with the billing and payment terms and conditions established by the 

Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at 

the time that you opened your Rightslink account (these are available at any time at 

http://myaccount.copyright.com). 

 

Terms and Conditions 

 The materials you have requested permission to reproduce or reuse (the "Wiley 

Materials") are protected by copyright.  

 You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-

alone basis), non-transferable, worldwide, limited license to reproduce the Wiley 

Materials for the purpose specified in the licensing process. This license is for a one-

time use only and limited to any maximum distribution number specified in the 

license. The first instance of republication or reuse granted by this licence must be 

completed within two years of the date of the grant of this licence (although copies 

prepared before the end date may be distributed thereafter). The Wiley Materials 

shall not be used in any other manner or for any other purpose, beyond what is 

granted in the license. Permission is granted subject to an appropriate 

acknowledgement given to the author, title of the material/book/journal and the 

publisher. You shall also duplicate the copyright notice that appears in the Wiley 

publication in your use of the Wiley Material. Permission is also granted on the 

understanding that nowhere in the text is a previously published source 

acknowledged for all or part of this Wiley Material. Any third party content is 

expressly excluded from this permission. 

 With respect to the Wiley Materials, all rights are reserved. Except as expressly 

granted by the terms of the license, no part of the Wiley Materials may be copied, 

modified, adapted (except for minor reformatting required by the new Publication), 

translated, reproduced, transferred or distributed, in any form or by any means, and 

no derivative works may be made based on the Wiley Materials without the prior 

permission of the respective copyright owner. You may not alter, remove or 

suppress in any manner any copyright, trademark or other notices displayed by the 

Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as 

security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the 

rights granted to you hereunder to any other person. 

 The Wiley Materials and all of the intellectual property rights therein shall at all 

times remain the exclusive property of John Wiley & Sons Inc, the Wiley 

Companies, or their respective licensors, and your interest therein is only that of 

having possession of and the right to reproduce the Wiley Materials pursuant to 

Section 2 herein during the continuance of this Agreement. You agree that you own 

no right, title or interest in or to the Wiley Materials or any of the intellectual 

property rights therein. You shall have no rights hereunder other than the license as 

http://myaccount.copyright.com/
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provided for above in Section 2. No right, license or interest to any trademark, trade 

name, service mark or other branding ("Marks") of WILEY or its licensors is 

granted hereunder, and you agree that you shall not assert any such right, license or 

interest with respect thereto.  

 NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR 

REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, 

EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE 

MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN 

THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED 

WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY 

QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, 

INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES 

ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED 

BY YOU 

 WILEY shall have the right to terminate this Agreement immediately upon breach 

of this Agreement by you.  

 You shall indemnify, defend and hold harmless WILEY, its Licensors and their 

respective directors, officers, agents and employees, from and against any actual or 

threatened claims, demands, causes of action or proceedings arising from any breach 

of this Agreement by you.  

 IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR 

ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY 

SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR 

PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 

CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR 

USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, 

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, 

TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, 

WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, 

FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), 

AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY 

NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY 

LIMITED REMEDY PROVIDED HEREIN.  

 Should any provision of this Agreement be held by a court of competent jurisdiction 

to be illegal, invalid, or unenforceable, that provision shall be deemed amended to 

achieve as nearly as possible the same economic effect as the original provision, and 

the legality, validity and enforceability of the remaining provisions of this 

Agreement shall not be affected or impaired thereby.  

 The failure of either party to enforce any term or condition of this Agreement shall 

not constitute a waiver of either party's right to enforce each and every term and 

condition of this Agreement. No breach under this agreement shall be deemed 
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waived or excused by either party unless such waiver or consent is in writing signed 

by the party granting such waiver or consent. The waiver by or consent of a party to 

a breach of any provision of this Agreement shall not operate or be construed as a 

waiver of or consent to any other or subsequent breach by such other party.  

 This Agreement may not be assigned (including by operation of law or otherwise) 

by you without WILEY's prior written consent. 

 Any fee required for this permission shall be non-refundable after thirty (30) days 

from receipt by the CCC.  

 These terms and conditions together with CCC�s Billing and Payment terms and 

conditions (which are incorporated herein) form the entire agreement between you 

and WILEY concerning this licensing transaction and (in the absence of fraud) 

supersedes all prior agreements and representations of the parties, oral or written. 

This Agreement may not be amended except in writing signed by both parties. This 

Agreement shall be binding upon and inure to the benefit of the parties' successors, 

legal representatives, and authorized assigns.  

 In the event of any conflict between your obligations established by these terms and 

conditions and those established by CCC�s Billing and Payment terms and 

conditions, these terms and conditions shall prevail.  

 WILEY expressly reserves all rights not specifically granted in the combination of 

(i) the license details provided by you and accepted in the course of this licensing 

transaction, (ii) these terms and conditions and (iii) CCC�s Billing and Payment 

terms and conditions. 

 This Agreement will be void if the Type of Use, Format, Circulation, or Requestor 

Type was misrepresented during the licensing process. 

 This Agreement shall be governed by and construed in accordance with the laws of 

the State of New York, USA, without regards to such state�s conflict of law rules. 

Any legal action, suit or proceeding arising out of or relating to these Terms and 

Conditions or the breach thereof shall be instituted in a court of competent 

jurisdiction in New York County in the State of New York in the United States of 

America and each party hereby consents and submits to the personal jurisdiction of 

such court, waives any objection to venue in such court and consents to service of 

process by registered or certified mail, return receipt requested, at the last known 

address of such party.  

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription 

journals offering Online Open. Although most of the fully Open Access journals publish 

open access articles under the terms of the Creative Commons Attribution (CC BY) License 

only, the subscription journals and a few of the Open Access Journals offer a choice of 
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Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license Creative 

Commons Attribution Non-Commercial (CC-BY-NC) license and Creative Commons 

Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. The license type is 

clearly identified on the article. 

Copyright in any research article in a journal published as Open Access under a Creative 

Commons License is retained by the author(s). Authors grant Wiley a license to publish the 

article and identify itself as the original publisher. Authors also grant any third party the 

right to use the article freely as long as its integrity is maintained and its original authors, 

citation details and publisher are identified as follows: [Title of Article/Author/Journal Title 

and Volume/Issue. Copyright (c) [year] [copyright owner as specified in the Journal]. Links 

to the final article on Wiley�s website are encouraged where applicable.  

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and 

transmit an article, adapt the article and make commercial use of the article. The CC-BY 

license permits commercial and non-commercial re-use of an open access article, as long as 

the author is properly attributed. 

The Creative Commons Attribution License does not affect the moral rights of authors, 

including without limitation the right not to have their work subjected to derogatory 

treatment. It also does not affect any other rights held by authors or third parties in the 

article, including without limitation the rights of privacy and publicity. Use of the article 

must not assert or imply, whether implicitly or explicitly, any connection with, endorsement 

or sponsorship of such use by the author, publisher or any other party associated with the 

article. 

For any reuse or distribution, users must include the copyright notice and make clear to 

others that the article is made available under a Creative Commons Attribution license, 

linking to the relevant Creative Commons web page.  

To the fullest extent permitted by applicable law, the article is made available as is and 

without representation or warranties of any kind whether express, implied, statutory or 

otherwise and including, without limitation, warranties of title, merchantability, fitness for a 

particular purpose, non-infringement, absence of defects, accuracy, or the presence or 

absence of errors. 

Creative Commons Attribution Non-Commercial License 

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, 

distribution and reproduction in any medium, provided the original work is properly cited 

and is not used for commercial purposes.(see below)  

Creative Commons Attribution-Non-Commercial-NoDerivs License 

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
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The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) 

permits use, distribution and reproduction in any medium, provided the original work is 

properly cited, is not used for commercial purposes and no modifications or adaptations are 

made. (see below) 

Use by non-commercial users 

For non-commercial and non-promotional purposes, individual users may access, 

download, copy, display and redistribute to colleagues Wiley Open Access articles, as well 

as adapt, translate, text- and data-mine the content subject to the following conditions: 

 The authors' moral rights are not compromised. These rights include the right of 

"paternity" (also known as "attribution" - the right for the author to be identified as 

such) and "integrity" (the right for the author not to have the work altered in such a 

way that the author's reputation or integrity may be impugned).  

 Where content in the article is identified as belonging to a third party, it is the 

obligation of the user to ensure that any reuse complies with the copyright policies 

of the owner of that content.  

 If article content is copied, downloaded or otherwise reused for non-commercial 

research and education purposes, a link to the appropriate bibliographic citation 

(authors, journal, article title, volume, issue, page numbers, DOI and the link to the 

definitive published version on Wiley Online Library) should be maintained. 

Copyright notices and disclaimers must not be deleted.  

 Any translations, for which a prior translation agreement with Wiley has not been 

agreed, must prominently display the statement: "This is an unofficial translation of 

an article that appeared in a Wiley publication. The publisher has not endorsed this 

translation."  

Use by commercial "for-profit" organisations 

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes 

requires further explicit permission from Wiley and will be subject to a fee. Commercial 

purposes include: 

 Copying or downloading of articles, or linking to such articles for further 

redistribution, sale or licensing;  

 Copying, downloading or posting by a site or service that incorporates advertising 

with such content;  

 The inclusion or incorporation of article content in other works or services (other 

than normal quotations with an appropriate citation) that is then available for sale or 

licensing, for a fee (for example, a compilation produced for marketing purposes, 

http://creativecommons.org/licenses/by-nc-nd/3.0/
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inclusion in a sales pack)  

 Use of article content (other than normal quotations with appropriate citation) by 

for-profit organisations for promotional purposes  

 Linking to article content in e-mails redistributed for promotional, marketing or 

educational purposes;  

 Use for the purposes of monetary reward by means of sale, resale, licence, loan, 

transfer or other form of commercial exploitation such as marketing products  

 Print reprints of Wiley Open Access articles can be purchased from: 

corporatesales@wiley.com  

Further details can be found on Wiley Online Library 

http://olabout.wiley.com/WileyCDA/Section/id-410895.html  

Other Terms and Conditions:  

 

v1.9 

If you would like to pay for this license now, please remit this license along with your 

payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you 

will be invoiced within 48 hours of the license date. Payment should be in the form of a 

check or money order referencing your account number and this invoice number 

501297597. 

Once you receive your invoice for this order, you may pay your invoice by credit card. 

Please follow instructions provided at that time. 

 

Make Payment To: 

Copyright Clearance Center 

Dept 001 

P.O. Box 843006 

Boston, MA 02284-3006 

 

For suggestions or comments regarding this order, contact RightsLink Customer 

Support: customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-

978-646-2777. 

 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable 

license for your reference. No payment is required.  
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