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Abstract 

Heart failure patients face a five-year 50% mortality rate, due to impaired cardiac function 

and hypertrophy of the heart. Probiotics are live microorganisms which when administered in 

adequate amounts confer a health benefit on the host. Considering the established 

cardiovascular benefits of some probiotics, including reduction of cholesterol and 

hypertension, it was hypothesized that probiotics can improve outcomes of heart failure. 

Probiotics or controls were administered orally to an animal model for heart failure. Those 

receiving probiotics showed a significant improvement in cardiac hypertrophy and an 

attenuation of heart failure compared to control. No changes in gut microbial composition 

occurred. An in vitro model for cardiomyocyte hypertrophy examined the mechanistic action 

of probiotics in preventing cardiac hypertrophy. Studies showed that probiotics confer a 

direct anti-hypertrophic benefit to cardiomyocytes. These results support the hypothesis that 

probiotics can improve outcomes of heart failure and present a novel treatment strategy for 

heart failure. 
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1 Focus of the thesis 

The purpose of this research was to investigate the potential for probiotic lactobacilli as a 

therapy for heart failure. While research has shown that lactobacilli can influence 

cardiovascular health through modulating cholesterol and inflammation, a study showing 

that pretreatment of animals with probiotic Lactobacillus could ameliorate damage 

caused by coronary artery ligation injury and subsequent perfusion, formed the impetus 

for the present thesis. Until our work, no studies had tested whether probiotic 

administration post-ligation injury could improve outcomes of heart failure. Therefore, 

the focus of the thesis was a series of in vivo and in vitro experiments that explored the 

ability of probiotic Lactobacillus to reduce the hallmark features of heart failure, namely 

ventricular remodeling and the associated cardiac hypertrophy, and to investigate what 

mechanism may be involved. 

1.1 Heart anatomy and physiology 

The human heart is a muscular pump comprised of 4 chambers: The left and right atria, 

and the left and right ventricles. Deoxygenated and nutrient-poor blood is delivered to the 

heart from the superior and inferior vena cava into the right atrium. Atrial systole pushes 

blood from the right atrium through the tricuspid valve and into the right ventricle. 

Ventricular systole pumps blood through the pulmonary valve into the pulmonary artery, 

and blood eventually reaches the lungs for gas exchange. Oxygenated blood then returns 

to the heart through the pulmonary vein into the left atrium. Atrial systolic contractions 

push blood through the bicuspid valve into the left ventricle (LV). The LV is the largest 

and strongest chamber of the heart, and is responsible for pumping oxygenated blood into 

the aorta during ventricular systole contractions. The aorta then bifurcates and delivers 

oxygenated blood to tissues throughout the body. 

Rhythmic muscle contractions are an involuntary event controlled by electrical impulses 

originating from the sinoatrial (SA) node in the right atrium. The atrial ventricular (AV) 

node relays the impulses to the Purkinje fibers of the right and LV, which coordinate 

ventricular systole. In ventricular diastole, muscle relaxation and reduced volume of 

blood in the ventricles allows blood to passively flow from the atria through the tricuspid 
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and bicuspid valves into the right and LV respectively. This change in pressure triggers 

atrial systole, and the contraction forces the remaining blood out of the atria. Ventricular 

filling completes the cardiac cycle, and after the diastolic relaxation period, ventricular 

systole occurs again through electrical impulses from the SA node.  

The muscle tissue of the heart is called the myocardium. It is a thick, middle layer of 

heart tissue enclosed by the external-most and protective pericardial layer, and the inner-

most endocardium. The basic cellular unit of the myocardium is the single-nucleated 

cardiomyocyte. These form striated chains of sarcomeres – the basic contractile unit of 

cardiac muscle. Repeating sections of sarcomeres, make up myofibrils – the basic unit of 

muscle. Similar to skeletal muscle, the striation of sarcomeres is formed by alternating 

thick and thin protein filaments, actin and myosin. Involuntary electrical impulses 

originating at the SA node cause a depolarization of the cardiomyocyte membrane, 

opening calcium ion channels.  

Muscle contraction is triggered by an influx of calcium ions, allowing myosin to bind to 

actin. This causes a shortening of the sarcomere, similar to the sliding filament model in 

skeletal muscle. The repolarization of cellular calcium ion concentration across the 

membrane causes myosin to unbind actin, resulting in muscle relaxation. Coordinated 

contraction and relaxation of the myocardium allows for steady movement of blood in 

and out of the chambers of the heart. This rhythmic flow of blood is required to sustain 

life. As tissues throughout the body continuously consume oxygen and nutrients, it is 

essential for blood to properly replenish this supply. Any mechanical dysfunction in 

blood flow presents serious implications to the patient. A cardiovascular even causing a 

limited oxygen supply to the heart can result in impaired cardiac function and blood 

pumping. Decreased cardiac output overall puts a patient at a major health risk.  

1.2 Methods for cardiovascular research 

Cardiovascular research involves methods and avenues of research that range from 

cardiomyocyte cell culture to human clinical trials. Each has its own unique advantages, 

disadvantages and appropriate applications.  
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1.2.1 Cell culture 

Since the first isolation of the perfused mammalian heart in 1895, advances in cell culture 

techniques have allowed direct manipulation of cardiomyocytes and provide a wealth of 

knowledge in cardiac physiology1. The obvious advantage of using cardiomyocyte cell 

culture is the increased versatility, reduced cost, and convenient methodology as 

compared to animal or clinical studies1-3. While immortalized cardiac cell lines, 

carcinoma cells, and embryonic cardiac cell lines are available, the use of primary cells 

has more physiological relevance to animal studies2. Cardiomyocyte isolation, culture, 

and maintenance has brought insight on cellular structure and physiology using 

techniques such as microscopy, electrophysiology, calcium imaging, RNA and protein 

biochemistry, and immunohistochemistry1. Primary cardiomyocytes isolated from murine 

animals are most commonly used because the murine model is a widely accepted small 

animal cardiac model4-6, the animals are easy to handle, relatively inexpensive, and 

produce a sufficient amount of cells that can be used for studies within 24 hours of 

isolation1,2. Primary cardiomyocytes are isolated from either the neonatal or adult heart, 

both of which cell types are highly differentiated non-regenerating2,3,7. This allows for 

pharmacological and molecular manipulation in a controlled environment without the 

interference of cell division or the influence of other cell types. A caveat is the need to 

harvest fresh cells for each experiment without the convenience of passing and storing 

cells. Two of the major differences between the neonatal and adult cardiomyocytes lie in 

isolation techniques and their distinct adaptations to culture conditions. Litters of 10-20 

pups are often sufficient for neonatal cardiomyocyte studies and are less expensive than 

adults8. Neonatal cardiomyocytes are generally described as easier to harvest and culture 

than adult cardiomyocytes because they are less sensitive to Ca2+ in the isolation 

medium2,7,8. Neonatal cardiomyocytes attach readily to culture dishes and adapt quickly 

to culture conditions, as evidenced by the beating of cells as early as 2-3 days after 

plating7,9. This is advantageous and important because experimentation can begin soon 

after isolation, minimizing the length of time required in culture. Consistent isolation 

methods and culture conditions are essential for neonatal cardiomyocyte culture because, 

depending on the age of the cells, they can still possess some embryonic gene expression 

and might divide in culture9,10. The gene expression and protein production of these 
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immature and mitotic neonatal cardiomyocytes is different from their post-mitotic adult 

counterparts, therefore comparing cells from different cultures types should be taken with 

care1,9,10. Ideally the experimental design for neonatal cardiomyocyte studies requires 

isolation of cardiomyocytes from litters of the exact same age and identical culture 

conditions. Once this is controlled for, neonatal cardiomyocytes are very useful tools for 

cardiovascular research. They respond to pharmacological and physiological treatments 

similar to adult cardiomyocytes, and are widely used for gene and protein expression, 

histological, and contractility experiments1.  

Adult cardiomyocytes represent mature, differentiated heart cells that must undergo 

elaborate cytoskeletal adjustments in culture7. This makes them less flexible in cell 

culture, but without the complication of potential mitotic activity. Isolated adult 

cardiomyocytes are commonly used to model cardiac ischemia and hypoxia, as well as 

contractile mechanics, gene and protein expression, and electrophysiology3. These cells 

also have the advantage of representing the in vivo cardiac model closer than neonatal 

cardiomyocytes, as in vivo rat experiments are usually performed on adults.  

1.2.2 Animal models 

The ideal animal model for cardiovascular research is one that closely mimics the 

anatomy and physiology of the human heart and responds to stimuli similar to humans5. 

Factors such as phylogenetics, size, life span, cost, and development of end-stage 

diseases are all important when choosing an animal model for cardiovascular research.  

The use of large animals presents several advantages and disadvantages. Large animal 

models are physically, and in some cases phylogenetically, closer to humans than small 

animal models, making studies more physiologically relevant4,6. Larger animals are often 

easier to perform surgical procedures and imaging assessments, 11 however, their longer 

life span and high cost of maintenance makes them very expensive and time consuming 

to use4. 

Small animal models are popular for cardiovascular research primarily because they are 

inexpensive, convenient to house and maintain, have a relatively short gestation period, 
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and therefore can produce large sample sizes over a short period of time11,12. The rat, in 

particular, is one of the most popular models as its size compared to mice makes it easier 

to perform open-chest surgical procedures such as coronary ligation, as well as MRI and 

echocardiography imaging and the use of conductance catheters12. However, with the 

development of transgenic and knock-out mouse strains, the murine model is often used 

to investigate novel targets for pharmacological and molecular therapy12. Blood pressure 

monitoring is feasible in rats and mice using the tail-cuff method, whether other rodent 

models without a long tail, such as the guinea pig, are more difficult to use for these types 

of measurements.  

1.3 Overview of cardiovascular disease 

Cardiovascular disease (CVD) is defined as a group of disorders of the heart and the 

blood vessels that supply the heart, brain, and extremities13. CVD is accompanied by a 

myriad of symptoms and dysfunctions, from hypertension to cardiomyopathy. Its 

prevalence is increasing across the globe13, representing an immense burden to health 

care systems. In Canada, CVD is the leading cause of hospitalization and accounts for 29 

per cent of all deaths per year14. Treating CVD costs the Canadian economy $21 billion 

per annum15.  The steady increase in CVD cases internationally is largely attributed to an 

imbalanced or poor diet and sedentary lifestyle13. Overnutrition and lack of regular 

physical activity leading to obesity have negative consequences for the heart13. While 

widespread campaigns for awareness and the promotion of improved diet and lifestyle 

habits are among the principal strategies for reducing this trend, from a clinical 

perspective, innovative approaches are needed to help prevent, intervene, and manage 

CVD. Heart failure (HF) is defined as “the inability of the heart to pump a sufficient 

amount of blood to meet the demands of the body at normal filling pressures”16. HF is a 

complex syndrome and in many cases is considered the final outcome of several 

manifestations of CVD. Myocardial infarction (MI) or heart attack, coronary heart 

disease, hypertension and chronic inflammation, are all examples of confounding factors 

that instigate and perpetuate HF. 
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1.3.1 Risk factors and prevalence of heart failure 

The rate of mortality from CVD has decreased over recent years, due to improved acute 

medical care, primarily rapid reperfusion17. However, the irreversible damage to the heart 

associated with coronary heart disease and MI resulting in death of tissue, places patients 

at high risk for HF. As a result, there are a growing number of patients surviving MI but 

at high risk of HF. The prevalence of HF increases with age: 1 percent of Canadians over 

65 and 4 percent of Canadians over 70 have HF16. With the ageing trend of the Canadian 

population, HF will impact the lives of many people in the years to come.  Currently in 

Canada, 55,000 individuals are diagnosed with HF yearly, joining the half million already 

living with the condition16. Once HF has manifested, the prognosis is bleak: 50 percent of 

patients will die within the first five years of diagnosis18. One explanation is that a 

portion of patients do not visit the doctor until the pathologies become symptomatic and 

affect their everyday life. By then, the disease has progressed into later stages of HF with 

irreversible damage. Research into mechanisms for reversing the many features of HF is 

of great interest, as the standard treatments today are generally unable to rescue the 

damage caused by MI and HF, and instead are targeted at reducing co-morbidities of HF, 

including hypertension and arrhythmia. For these reasons, novel approaches to preventing 

HF are desired. 

1.3.2 Symptoms and the diagnosis of heart failure 

The pathologies of heart failure can be acute, but by-and-large they manifest as a chronic 

deterioration of heart function19. Several criteria and classification systems are 

recognized for diagnosing HF19. The New York Heart Association (NYHA) classification 

is the most commonly used system based on self-reports of patient’s daily activities and 

quality of life20. Physicians classify patients with heart failure into 4 categories (I-IV), 

from stage I representing mild, asymptomatic HF without any limitations on physical 

activity, to stage IV representing severe HF with the inability to perform any physical 

exercise without significant discomfort20. While this diagnostic system is popular, it is 

limited to ability of the patient to recognize a symptom and consult a physician. Patients 

in stage I and II HF do not experience symptoms severe enough to motivate a visit to the 

doctor. Meanwhile, cardiac dysfunction progresses in the absence of intervention. Other 
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classification and diagnosis systems require physical exams detecting evidence of cardiac 

dysfunction based on chest radiographs19. While these methods have proven to be 

sensitive and predictive, they require the patient to experience symptoms and discomfort 

and then consult with a physician. Efforts to improve the early detection and treatment of 

HF in Canada rely on disease management programs (DMPs), comprising intensive 

therapy that includes drugs, education, monitoring, and caregiver assignment16. Patients 

in the emergent and urgent categories of HF are primary candidates for DMPs and are 

targeted to undergo evaluation within 24 hours to 2 weeks of the presentation of risks or 

signs and symptoms. These categories include post-heart transplant, post-MI, and 

myocarditis patients. Timely intervention for HF in the emerging and urgent categories 

has resulted in a 30% reduction in death and re-hospitalization rates after 18 months of 

follow-up and disease management16. This emphasizes the imperative to provide timely 

access to intervention and treatment in high-risk HF patients, ultimately reducing 

mortality and the costs associated with HF. 

1.3.3 Hallmark features, treatments, and outcomes of heart failure 

HF as a disease has several features, all in which result in the impaired ability of the 

ventricles to fill and/or eject blood. Heart failure occurs most commonly in patients with 

previous MI21. In the event of MI, the blocked blood flow from the coronary arteries to 

the myocardium leads to necrosis and ischemia of cardiomyocytes22. Treatment strategies 

for MI involve the prompt restoration of blood flow, using thrombolytic drugs, stents and 

catheters, or bypass surgery, all in an effort to reduce the infarct size. Any duration spent 

with blocked blood flow to the myocardium, will inevitably cause oxidative stress, 

ischemia, necrosis and infarction. As a result, the heart undergoes a healing process in 

efforts to recover from the damage sustained. While the process of post-MI repair and 

remodeling is not entirely understood, there are highly regulated events involved that 

become pathological in HF23. 

1.3.4 The immune response 

The degradation by matrix metalloproteinases (MMPs) of the existing extracellular 

matrix (ECM) and coronary vasculature in the infarction region occurs within the one 
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week post-MI21. Remodeling of the ECM is shown to play a significant role in several 

vascular disorders, and MMP expression increases in HF23. With the production of 

reactive oxygen species (ROS), necrosis, and ECM degradation, there follows an immune 

reaction22. Pro-inflammatory cytokines and chemokines are released and macrophages 

are recruited to clear debris, and promote cardiac healing and scar formation around the 

damaged tissue24. However, chronic inflammation and macrophage recruitment can lead 

to additional cell death and perpetuate the myocardial remodeling process. Some 

important pro-inflammatory cytokines implicated in the progression of HF include 

tumour necrosis factor (TNF)-α, interleukin (IL)-1 and IL-6, macrophage inflammatory 

protein (MIP)-2, monocyte chemoattractant protein (MCP)-124,25. These cytokines 

exacerbate myocardial and hemodynamic dysfunction and are typically up-regulated in 

chronic HF. While the repair and healing process involving these agents are necessary 

post-MI, there is a fine balance between promoting and preventing inflammation. IL-10 is 

an important anti-inflammatory cytokine known to down-regulate the production of TNF- 

α, IL-1, and IL-625. The antagonistic role of IL-10 is thought to be beneficial in HF 

patients. Increased expression and plasma concentration of IL-10 has been shown to 

improve cardiac mechanical function in rats and patients with HF25,26. However, the 

protective nature of IL-10 is disputed as HF patients show varying levels of increased or 

decreased plasma IL-1025. Overall, evidence suggests that the short-term and initial pro-

inflammatory response becomes maladaptive in HF over time. Thus, anti-inflammatory 

mediators such as IL-10 play an important role in the immune response to MI and HF, 

and use of such mediators is being considered as a therapy27. It remains to be seen if these 

will be successful. In inflammatory bowel disease, administration of anti-TNF-α 

antibodies (Infliximab) has shown some benefits28, while administration of IL-10 by a 

genetically engineered food-grade bacterium, Lactococcus lactis, has some pre-clinical 

evidence but awaits confirmation in patients with colonic inflammation29.  

1.3.5 Ventricular remodeling and hypertrophy 

Following the immediate inflammatory reaction post-MI, a regulated process of cardiac 

remodeling takes place. Ventricular remodeling is defined as genome expression 

resulting in molecular, cellular, and interstitial changes30. Clinically, this process is 



10 

 

manifested as changes in size, shape, and function of the heart, and is considered a 

determinant of heart failure30. MI stands as the most common instigator of cardiac 

remodeling, and the changes also occur in patients with other cardiac pathologies such as 

stenosis, hypertension, and myocarditis30. In post-MI patients, within the first week of 

ECM degradation by MMPs, phagocytic macrophages are recruited to the infarct site for 

digestion and removal of infarcted tissue21. Fibrogenic mediators, such as transforming 

growth factor (TGF)-β, then increase the synthesis of collagen by myofibroblasts to 

replace the degraded ECM and form scar tissue21,31. Scar tissue formation is evident 

around week 2 post-MI and continues for over 8 weeks21. This process of wound healing 

provides some potential for the infarct site to function again as the contractile properties 

of myofibroblasts generate small and strong scars with the potential to bear load31. 

However, the inevitable build-up of collagen in the infarct area and beyond also causes 

ventricular stiffness and dysfunction31.  

The loss of functional myocardium causes an increase in blood volume in the ventricle 

that is not properly cleared with contraction. The increased load and ventricular wall 

stress is sensed by cardiomyocytes which undergo compensatory changes to the cellular 

architecture of the ventricle. Because cardiomyocytes are terminally differentiated and 

cannot divide, they instead respond to wall stress by cell stretching/lengthening to 

increase wall thickness32-34. This abnormal growth of cardiomyocytes, termed cardiac 

hypertrophy, is a hallmark feature of HF35-37. Hypertrophy is an adaptive response that 

initially increases the mass of the functional myocardium, distributes wall stress, and 

normalizes resting cardiac output36,38. Chronically, this response becomes maladaptive, 

due to poor contractility of hypertrophic cardiomyocytes, which leads to a decrease in 

cardiac output, increased rate of apoptosis and fibrosis, and increased risk for cardiac 

arrhythmias35,36. For these reasons, cardiac hypertrophy is a very important therapeutic 

target for heart failure patients. Modern treatments of heart failure, including β-blockers 

and angiotensin converting enzyme (ACE)-inhibitors have been shown to improve 

hypertrophy by reducing the heart rate and hemodynamic load, which reduces the stress 

stimulus for cardiomyocyte growth37. More targeted approaches to attenuating 

maladaptive hypertrophy are desired.  
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1.3.6 The hormone response 

Post-MI, a hormone-mediated recovery process takes place in an effort to maintain 

mechanical function of the heart. These hormones are often considered biomarkers of HF 

and represent the compensatory response. Atrial natriuretic peptide (ANP) is a hormone 

secreted primarily by the atria that has diuretic, natriuretic, and vasodilator properties39,40. 

Ventricular expression of ANP can be induced in conditions of hypertension, wall stress 

and ventricular load, and increased ventricular mass39,40. ANP production is strongly 

correlated to cardiomyocyte size, where a higher incidence of ANP expressing 

cardiomyocytes is found in cells with larger diameters41,42. Increased levels of ventricular 

ANP expression in animal and cell models of cardiac hypertrophy and HF have been 

thoroughly documented41,43,44. In these conditions, it is thought that ANP acts to reduce 

cardiac load and wall stress through its anti-hypertensive properties42. Accordingly, 

ventricular ANP expression is strongly correlated with cardiac hypertrophy and is used 

extensively in vitro and in vivo as an indicator of hypertrophy and HF39,41.  

In HF, contractile dysfunction leads to a decrease in cardiac output45 which then 

determines arterial circulation. This is sensed by β-adrenergic receptors in the ventricle 

walls which drive sympathetic nervous system output to increase contractility, cardiac 

load, and heart rate30. Decreased cardiac output also triggers the renin-angiotensin-

aldosterone system. These renal hormones promote water retention, vasoconstriction and 

increase blood pressure to maintain blood flow to vital organs. To the heart, activation of 

this system has deleterious effects and exacerbate pre-existing co-morbidities of HF such 

as hypertension. Angiotensin II, a potent vasoconstrictor, autocrine and endocrine 

hormone produced by heart cells, induces cardiac hypertrophy through its hypertensive 

properties36,46. Cardiomyocytes enlarge due to the increased vascular resistance of blood 

flow and, as a consequence, ventricular ANP production is activated32,46. It has also been 

suggested that angiotensin II activity via the β-adrenergic pathway causes cardiac 

hypertrophy independent of hypertension45-47. For these reasons, drugs blocking the 

action of the hormones in the renin-angiotensin-aldosterone system have become some of 

the most effective therapies for HF45,48-50. ACE-inhibitors reduce the activity of the renin-

angiotensin-aldosterone system by preventing the conversion of angiotensin I to 
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angiotensin II. As a result, vasoconstrictive and hypertrophic action of angiotensin II is 

reduced. Short-term β-adrenergic blockage also improves ventricular function and 

decreases morbidity and mortality in patients with HF51. β-blockers overall have 

improved survival in post-MI and chronic HF patients, and in combination with ACE-

inhibitors are considered the first-line drug therapy for HF patients33,49,50.  

Hormones that are unrelated to hemodynamic regulation are also involved in HF. Leptin 

is a hormone chiefly secreted by adipocytes that plays an important role in energy 

balance, appetite, and metabolism. Leptin has been associated with several mechanisms 

of pathogenesis in obesity and type II diabetes, both of which are risk factors for HF52,53. 

Furthermore, elevated plasma leptin levels are associated with increased risk coronary 

heart disease (CHD) and hypertension, independent of obesity and diabetes53,54. As such, 

leptin is a proposed biomarker and independent risk factor for myocardial infarction, 

ischemic heart diseases, CHD and HF52,55-57. While adipocytes are the major source of 

leptin, evidenced by high plasma leptin levels in individuals with increased adiposity58, 

the heart has shown to both secrete and express receptors for leptin56. The cardiovascular 

actions of leptin are in part based on the stimulation of the sympathetic nervous system 

that is thought to cause a hypertensive effect54,55. The stimulation of the β-adrenergic 

pathway by leptin receptors in the heart upregulates angiotensin II expression, which in 

turn stimulates increased leptin secretion by adipocytes52. Leptin can also potentiate 

secretion of pro-inflammatory cytokines such as TNF-α, IL-2, and IL-652, all of which are 

upregulated in HF, as previously discussed. Leptin is has been shown to promote 

atherogenesis, cardiac hypertrophy, and is elevated in post-MI and HF patients52,57,59,60. 

Overall, leptin participates in a viscous cycle of inflammation and β-adrenergic 

activation, causing cardiac pathologies that are deleterious to HF patients. 

1.4 The human microbiome: a dynamic ecosystem 

The human body is host to dynamic microbial communities that have an increasingly 

recognized impact on human health. The gut, skin, vagina, urinary tract and oral cavity 

are among sites where microbial communities exist in an equilibrium that is required for 

proper function and health61. As a whole, the genomes, activity, size, compositions and 

surrounding ecosystems of these communities represent the human microbiome61. 
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Formerly, the organisms in body sites were investigated using traditional laboratory 

cultivation techniques. This limited the identification and enumeration of the 

communities due to the inability to cultivate many species. With the advancement of 

culture-independent techniques, the composition of the human microbiome and the role it 

plays in our health, have become better understood. Recent research, notably championed 

by the Human Microbiome Project (HMP) consortium62, has attempted to characterize 

“normal” microbiota composition of various sites throughout the body63-65. Using high-

throughput next-generation DNA sequencing of the 16S rRNA genome, the analysis of 

over 4000 specimens collected from 242 adults revealed that each site has a characteristic 

microbiome, with constituents adapted to specific niches61,63,64. The gut, for example, is 

generally dominated by two phyla: Firmicutes and Bacteriodetes, while other phyla, 

including Proteobacteria and Actinobacteria, exist in smaller proportions66,67. The gut 

bacteria perform a multitude of functions from the transformation of bile acids, 

breakdown of insoluble fibers, to the production of specific vitamins and cofactors68. 

Despite individuals having somewhat unique microbiota patterns in the gut, many 

functions appear to be shared. Even with large numbers of organisms (greater than 1014) 

present, the addition of organisms in comparatively low numbers (109 or less) such as in 

the form of probiotics or alternatively pathogens, can still significantly affect the host 

through their production of metabolic by-products- toxins as in the case of the latter69,70, 

bacteriocins, modulation of other host factors such as the immune system71-73   

1.4.1 Microbial dysbiosis: Etiology for disease? 

The critical role of the microbiome in host health is illustrated by the fact that a shift to 

dysbiosis is now associated to several gastrointestinal diseases including inflammatory 

bowel disease, C. difficile associated diarrhea, colon cancer and other forms of enteritis74-

76. In the oral cavity, a disruption of the homeostatic function of commensal bacteria 

caused by the colonization of a single pathogenic species can lead to periodontitis and 

other gingival diseases77,78. In the vagina, a displacement of commensal Lactobacillus 

species by various anaerobes is characteristic of bacterial vaginosis, a condition that 

causes an increased risk of endometriosis, pregnancy complications, and pre-term 

labour79-81. 
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While the incidence of microbial-associated disease at the primary site of colonization is 

intuitive, the impact of dysbiosis is much more far-reaching. There is mounting evidence 

that bacteria in the gut can influence distal sites, and for example contribute to the 

development of metabolic syndrome82,83. In addition, individuals with type II diabetes 

and obesity have a gut microbial composition of less diversity compared to that of 

healthy individuals84 and the balance of Firmicutes and Bacteriodetes shifts to one with a 

dominance of the former84-86. Studies also demonstrate a link between the brain and gut 

microbiota associated with a variety of neurological conditions, including appetite 

disorders, multiple sclerosis, hepatic encephalopathy, and Autism Spectrum Disorder 

(ASD)87-91. Several mouse models have demonstrated that the gut microbiota can convey 

neurological signals via vagus nerve stimulation, immune-modulatory signaling, and 

neuroendocrine pathway signalling92,93. Furthermore, is has been anecdotally reported 

that antibiotic and probiotic use, presumably altering the gut microbiome, causes 

behavioral changes and clinical improvements in children with ASD94,95. Although the 

mechanisms for these relationships are not entirely elucidated, it is clear that microbes in 

one site can influence overall health status. 

1.4.2 The oral microbiome and CVD 

The oral microbiome comprises a population that can withstand exposure to the external 

environment and a diverse range of conditions. With over 700 species of bacteria 

identified in the oral cavity, and diverse surfaces in which the organisms can colonize, 

from the hard teeth to the deep gingival tissue pockets, the options for propagating are 

many, and the result is distinct patterns in the different niches96. The oral microbiome 

plays an important role in the health status of the host, and a shift in microbial 

composition can cause numerous local infections including periodontitis, caries, 

gingivitis, and tonsillitis96-98. In addition, it has been implicated in several systemic 

diseases, including CVD. There is a strong clinical association with chronic periodontal 

disease and increased risk for atherosclerosis, hyperlipidaemia, CHD, stroke, and MI98-

101.  

Periodontitis is a severe infection that attacks both the soft tissue and bone supporting the 

teeth101. Opportunistic oral pathogens overgrow in periodontal pockets and release 
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proteolytic enzymes that break down host tissue101. These pathogens are extremely 

difficult to eradicate and the disease often manifests over chronic periods of time. 

Pathogens implicated in periodontitis are often detected in blood cultures, as they are able 

to enter systemic circulation via the compromised oral mucous membrane102,103. The 

access to organs throughout the body represents a major risk for inflammation and 

infection. It is the chronic nature, however, of periodontitis that is thought to increase the 

risk for CVD104. Cross-sectional studies suggest that the inflammatory factors associated 

with periodontitis, such as C-reactive protein, plasma fibrinogen, IL-6, and 

hyperlipidaemia, are responsible for the increased risk of CVD98,101,104,105. Cohort studies 

have found positive dose-dependent associations between chronic periodontitis and the 

incidence of CHD in men less than 60 years old, independent of pre-existing CVD risk 

factors (including old age)103,105,106. While these associations have been documented for 

well over 25 years, there is significant variability among studies and subjects104. The 

advent of deep genome sequencing has led to an increased effort to track shifts in the 

microbial community between health and disease. Changes in the oral microbiota occur 

in response to treatment for periodontal disease, with several genera of periodontal 

pathogens depleted in patients who had undergone treatment107. This line of research may 

shed light on the mechanistic role of periodontal pathogens in CVD, by comparing the 

plaque microbiota of periodontal patients at risk for CVD with healthy, matched controls.  

1.4.3 Gut microbiota, diet, CVD 

In the so-called ‘Western world’, the prevalence of CVD coincides with other chronic 

conditions such as obesity, type II diabetes, and gut inflammation. Metabolic disease, 

which includes hypercholesterolemia, diabetes, and obesity, is largely diet-dependent and 

is a key preventable risk factor for CVD. It has been well documented that individuals 

with obesity have a gut microbiome profile distinct from those of lean subjects66,86,108,109. 

In diet-induced obesity, overnutrition can alter composition of the gut microbiome, with 

dietary nutrients influencing the growth of certain species. Diets rich in cholesterol, 

saturated fats, and simple carbohydrates are associated with gut microbiomes rich in the 

Firmicutes phylum67,110. In obese individuals, the decreased proportion of Bacteriodetes 

in comparison to Firmicutes is normalized with a low-calorie diet-associated weight 
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loss67. Conceivably, these obesity-associated microbiome profiles feature organisms that 

are more adept at processing the energy-rich diets. This theory is supported by 

metagenomic and biochemical analyses showing that the core gut microbiome of obese 

individuals has an increased capacity for energy harvesting, compared to lean 

individuals111. This capacity was characterized by the genomic expression of KEGG 

pathways associated with starch/sucrose metabolism, galactose metabolism, and 

butanoate metabolism111. When the gut microbiota from normal mice is transplanted into 

germ-free recipients, there is an increase in weight and adiposity without any increase in 

food consumption67. This indicates that the increased energy harvesting capacity is 

transmissible. The modern Western diet, high in refined sugars and lipids but lacking 

complex fermentable fibers, is seemingly mismatched with the capacity of our ancestral 

microbiota. This consequently results in less diversity and a shifted microbiome 

profile110. It has been suggested that a return to ancestral diets, consisting mainly of plant-

based complex fibers and low in red meat, can help promote the proliferation of the 

beneficial microbes considered indigenous to our gut112.  

Epidemiological studies indicate that vegetarians and vegans have lower blood 

cholesterol and lower risk for CVD compared to omnivores112,113. The elimination of red 

meat from the diet can be beneficial for cardiovascular health114,115. It has been reported 

recently that gut microbes play a significant role in the metabolic processing of red meat. 

Dietary carnitine and phosphotidyl choline, predominantly from red meat, is converted to 

trimethylamine (TMA) by gut microbes116. TMA is then converted to the proatherogenic 

metabolite trimethylamine-N-oxide (TMAO), which accelerates atherosclerosis in 

mice116. The conversion of dietary carnitine to TMAO is gut microbe dependent, as 

individuals receiving oral antibiotics for a week prior to consuming red meat experienced 

a complete suppression of endogenous TMAO production116. The same study also 

reported that vegetarians and vegans had significantly lower fasting baseline TMAO 

levels, compared to omnivores116. Correspondingly, vegetarian and vegans had 

significantly higher abundance of Bacteriodes and lower abundance of Prevotella species 

in the gut microbiome than omnivores, and a decreased risk for coronary heart disease 

and the traditional risk factors for CVD such as hypertension, atherosclerosis, peripheral 

artery disease, and stenosis116. As vegetarian and vegan diets typically consist of very 
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high portions of plant fibres, fermentable substrates and low dietary carnitine, all of 

which are metabolized by gut microbes, this provides strong evidence for a role of the 

microbiota in CVD.  

In terms of prevention and treatment strategies, these findings data are extraordinarily 

valuable. The increased adiposity, angiogenesis, blood flow, and cardiac output 

associated with overnutrition and obesity is a major risk factor for hypertension and 

hyperlipidemia; major risk factors for atherosclerosis, MI and coronary heart disease, all 

of which predispose to congestive HF117. If modulation of the gut microbiome can 

interrupt this progression at any point, there is a potential to improve an individual’s 

cardiovascular health. Developing the most efficacious method of manipulating a 

dysbiotic microbiota with no detriment to the host, represents a novel area of 

investigation for diseases like CVD.  

1.5 Modulation of the human microbiome 

As our understanding of the elaborate relationship between the human microbiome and 

the host expands, strategies for modulating the microbiome have evolved. Modern 

medicine has relied heavily on the prescription of antibiotics in efforts to eradicate 

infectious pathogens. Some episodes induced by C. difficile, E. coli, Salmonella spp., and 

H. pylori can be controlled with the use of antibiotics118, however not without significant 

detriment to the host. Antibiotics are relatively non-discriminating agents, unable to 

distinguish between pathogenic and non-pathogenic bacteria. As a result, antibiotic use 

disrupts the microbiome and eliminates endogenous bacteria that perform vital functions 

for our health. Antibiotic-associated diarrhea occurs in at least 20% of antibiotic users, 

due to the decreased fermentation capacity and malabsorption in the gut119,120. Antibiotic 

use can lead to secondary infections, when opportunistic pathogens normally suppressed 

by endogenous microbes are able to proliferate. For these reasons, the widespread 

prescription of antibiotics has been discouraged, and alternative methods are being 

explored.  

Probiotic therapy is one such method that has gained increasing attention among 

consumers, health practitioners, and researchers. The accumulating reports of the health 
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benefits of probiotic products in the laboratory and the clinical setting have catapulted 

novel strategies for probiotic use for diseases to the gastrointestinal system and beyond. 

1.5.1 Probiotics to restore homeostasis 

The consumption of bacteria is not a modern trend; ancient diets featured fermented food 

products from various grains, vegetables, beans, fish, and dairy products. In fact, it was 

the observation of the overall good health and longevity of certain ethnic Europeans 

consuming fermented foods that brought modern-day prominence to probiotics121. Today, 

the United Nations and World Health Organization and many other organizations define 

probiotics as live microorganisms which when administered in adequate amounts confer 

a health benefit on the host79.  

Despite most regulatory authorities not allowing disease claims for foods without 

pharmaceutical level supporting studies, there is strong clinical evidence supporting 

probiotic foods and supplements treating bacterial vaginosis122, diarrhea123,124, and 

irritable bowel syndrome124-128, as well as improving the management of  Helicobacter 

pylori129 and Clostridium dificile-associated diarrhea130. In most cases, the effects are 

strain specific and the precise mechanisms for the action not well elucidated. There are 

several ways in which probiotics interact with the host. First, the introduction of a 

probiotic species into a bacteria-harboring environment can alter the existing community 

dynamic. Probiotics have demonstrated competition against pathogens and deleterious 

organisms, interfering with their ability to infect the host131,132.  Various mechanisms 

have been studied including production of bacteriocins, biosurfactants and simple 

competitive exclusion72,133,134. The net effect of suppressing pathogenic activity can be 

restoration to a 'healthy' equilibrium of the microbial community. Second, probiotics 

participate in epithelial cross talk with the host immune system135. The gut epithelium is a 

major barrier against foreign pathogens and antigens. Probiotics not only improve the 

integrity of the epithelial barrier136, but also interact with toll-like receptors and 

transcription factors that regulate inflammatory responses137,138. This immune-modulating 

effect has proven beneficial not only for local gastrointestinal diseases such as 

inflammatory bowel disease and necrotizing enterocolitis135,137, but also distal conditions 

such as rheumatoid arthritis139. Third, probiotics are producers of many metabolites, 
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enzymes, co-factors and vitamins that are active in modulating our health. For example, 

the fermentation of carbohydrates by probiotics results in the production of short chain 

fatty acids, such as acetate or propionate, which are used as energy sources by the host68. 

Certain probiotic strains produce vitamin K, B2, B12, and folate140-143, which are utilized 

by the host. 

1.6 Probiotics: Evidence for reducing risk factors for 
CVD 

1.6.1 Via interference with periodontal disease 

The use of probiotics in the oral cavity has been investigated for reducing pathogenic 

agents in several types of oral disease. For example, L. rhamnosus and L. reuteri strains 

have shown to reduce the number of S. mutans, a caries pathogen, when consumed in 

yogurt or milk144,145. Similarly, the consumption of probiotic cheese and S. salivarius 

reduced the prevalence of oral Candida in an elderly population146. Streptococcus 

salivarius K12 is a probiotic strain shown to release large amounts of bacteriocins into 

the saliva that compete with pathogenic microbes147. The strain is commercially available 

in lozenge and chewing gum forms and has been shown to reduce oral candidiasis in a 

mouse model148, malodor in patient with halitosis149, and inhibit baseline secretion of IL-

8 while activating the anti-inflammatory pathway of nuclear factor (NF)-κB in human 

bronchial cells challenged with Pseudomonas aeruginosa150. 

Although periodontitis is a very difficult disease to cure, there is encouraging evidence 

that probiotics can contribute through reduction of periodontal pathogens and 

inflammation. In two independent clinical studies, L. reuteri significantly reduced several 

clinical indices of periodontal disease, including gingival bleeding, plaque, and microbial 

levels of periodontal pathogens151,152. Similar results have been reported using other 

lactobacilli and Bifidobacterium products, where normalization of the oral microbiota 

occurred with treatment of gingivitis and periodontitis patients153,154. L. reuteri also 

reduces the pro-inflammatory cytokines TNF-α and IL-8 in patients with gingival 

inflammation, when taken in a chewing gum for two weeks155. These studies provide 
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strong support for the use of probiotics as a therapy for oral diseases, yet mechanistically 

speaking, the data are incomplete. 

The ability of probiotic organisms to attach and colonize the oral cavity are believed to be 

important, but long-term colonization is rare156. There are conflicting reports on the 

persistence of probiotic strains in the oral cavity once treatment has been removed and it 

does not seem that colonization is a prerequisite for effective treatment in some cases157. 

Since periodontal disease is a contributing factor in CVD, the ability of probiotics to 

alleviate the former could influence the latter, although no studies with this specific aim 

have been performed. 

1.6.2 Obesity and adiposity 

The increased risk and prevalence of CVD can largely be attributed to diet and lifestyle-

derived disorders. Obesity is one of the primary risk factors for CVD, as the progression 

from overweight to obese introduces a slew of comorbidities that are detrimental to 

cardiovascular health158. The excessive energy intake and fat accumulation in obesity 

presents major risk for type II diabetes, chronic inflammation, and hyperlipidemia, all of 

which predispose to coronary heart disease, cardiac arrest, and HF158. The accumulating 

in vitro, animal, and human research suggests an opportunity for probiotics to improve 

these risks. It has been established that obese individuals have a different gut microbiome 

profile from normal weight individuals67,85,86,108, indicating a partial role of the 

microbiome in obesity. The use of probiotics to re-set the dysbiotic obese gut microbiome 

is one proposed mechanism of action.  A study performed on healthy weight mice found 

that there were significant changes in the gut microbiome as well as significant weight 

reduction in mice receiving either L. rhamnosus GG or L. sakei NR28 daily by oral 

gavage for 3 weeks159. Overall, both probiotic treatments resulted in a reduction of the 

total number of microorganisms in the gut, and the Firmicutes/Bacteriodetes ratio was 

significantly reduced159. This change in ratio was seemingly due to a reduction in 

Clostridium species belonging to the Firmicutes phylum, rather than an increase in 

Bacteriodetes organisms. There was no significant difference in food consumption 

between control and probiotic treatment groups, indicating that the significant reduction 

in epididymal fat mass was not due to a reduction of energy consumption159. Results from 
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this study indicate that the modulation of the gut microbiome with probiotic 

administration produces an anti-obesity effect that directly reduces epididymal fat mass. 

However, efforts to significantly alter the human gut microbiota using probiotics have 

shown less subtle effects160. 

In humans, the twice daily administration of a multi-strain probiotic capsule 

(Streptococcus thermophilus, Lactobacillus plantarum, Lactobacillus 

acidophilus, Lactobacillus rhamnosus, Bifidobacterium lactis, Bifidobacterium longum, 

and Bifidobacterium breve) to overweight individuals with a body mass index greater 

than 25 resulted in a significant reduction in weight, waist circumference, and serum 

cholesterol after 8 weeks161. These metabolic changes positively correlated with a 

significant increase in Lactobacillus plantarum populations and the overall ratio of gram 

negative bacteria, presumably representing the Bacteriodetes phylum161. Probiotic-

induced changes to the gut microbiome composition is not an exclusive prerequisite for 

weight and adiposity reduction. There are numerous reports of improved body fat mass 

and weight loss without any differences in gut microbial composition, suggesting and 

explicit relationship between probiotic and adipose tissue. Certain metabolites have been 

implicated to directly reduce adipose tissue mass. Conjugated linoleic acid (CLA) 

produced by certain Lactobacillus species have shown to reduce obesity and 

arteriosclerosis in mice108,162. Studies investigating CLA-producing probiotic strains have 

demonstrated that Lactobacillus rhamnosus PL60 and Lactobacillus plantarum PL62 

reduce body weight and adipose tissue mass in mice on a high fat diet in a CLA-

dependent manner, without any changes in food intake163,164. Probiotics have directly 

reduced adipocyte cell size in high fat diet mice165,166, which can improve oxidative stress 

and the subsequent chronic inflammation associated with inadequate blood supply to 

enlarged adipocytes in obesity.  

1.6.3 Cholesterol and hypertension 

One of the most thoroughly investigated applications of probiotic therapy for CVD is for 

reduction of serum cholesterol. Elevated low-density lipoprotein cholesterol (LDL-C) is a 

major risk factor for CVD167. The accumulation of LDL-C in the blood is a precursor to 

hypertension, hyperlipidaemia, and causes the formation and build-up of atherosclerotic 
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plaque in the arteries167. Meta-analyses of randomized controlled clinical trials have been 

performed to evaluate the effect of probiotic consumption on serum LDL-C and total 

cholesterol levels. Pooled data from a total 485 total participants with 'high' 'borderline 

high' and 'normal' serum cholesterol levels found that probiotic consumption significantly 

lowered LDL-C and total cholesterol levels among all categories, compared to the 

control168. The cholesterol-lowering properties of probiotics are strain and species 

specific; and among these select probiotics, there are several postulated mechanisms of 

action. Probiotics can remove cholesterol from the gut by incorporating cholesterol in to 

the cellular membrane during growth and proliferation. In vitro studies using 

fluorescently tagged cholesterol molecules have tracked the incorporation into the 

cellular membrane by several strains of lactococci and lactobacilli169,170. Cholesterol can 

also be converted to coprostanol by probiotics expressing cholesterol reductase170. 

Coprostanol is subsequently excreted in feces, potentially reducing cholesterol absorption 

in the gut. 

Perhaps the most accepted mechanism is the processing of bile acids in the gut by Gram-

positive organisms including Lactobacillus, Bifidobacterium, and Bacteriodetes171. 

Metabolism of cholesterol, a precursor of bile acids, is mediated through gut microbes 

expressing the enzyme bile salt hydrolase (BSH). Probiotic strains with high BSH 

activity promote the deconjugation of bile acids to secondary amino acid conjugates172. 

When these are then excreted, and cholesterol is broken down to replace the processed 

bile salts. Overall, this process promotes the catabolism of cholesterol and reduces serum 

cholesterol levels171. There is considerable variability in BSH activity among probiotic 

species, indicating that genes, which encode it, are likely to be horizontally acquired173. It 

is also known that many probiotic strains express more than one BSH homologue171. This 

might maximize survival because of the variable exposure to different forms of bile salt 

conjugation in the gut. Further research is required to precisely identify the mechanism of 

the BSH gene and activity, especially with regards to the kinetics of bile salt transport.  

Most of the above mechanisms have been exclusively explored in vitro, and more animal 

and human trials are required. However, regardless of the mechanism implied, the 
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extensive meta-analyses on human clinical trials indicate that the use of probiotics to 

lower serum cholesterol is a promising prevention strategy for CVD. 

Hypertension, closely tied to hypercholesterolemia, is a major risk factor for CVD174. 

About 30% of Americans are hypertensive, doubling their risk for developing the 

disease174. Reducing hypertension alone, using diuretics, ACE-inhibitors and β-blockers 

is about 30% less effective than reducing hypertension by treating hypercholesterolemia 

in hypertensive patients174. This suggests that not only does probiotic therapy improve 

lipid blood chemistry, but it also can improve hypertension and outcomes for CVD 

patients. Meta-analysis of fourteen randomized placebo-controlled clinical trials with 702 

participants showed that probiotic fermented milk significantly reduced both systolic and 

diastolic blood pressure in pre-hypertensive and hypertensive patients175. Certain 

probiotic strains produce peptides with ACE-inhibitory activity through the proteolysis 

and fermentation of milk proteins176,177. When growth of certain Lactobacillus and 

Bifidobacterium strains was enhanced using fermentation substrates, or prebiotics (inulin, 

pectin, fructo-oligosaccharides, and mannitol), proteolytic activity and ACE inhibition 

was proportionally increased177. Further research on maximizing the production and 

evaluating the activity of these peptides in vivo is required. 

By reducing cholesterol and hypertension, two of the most prevalent risk factors for 

CVD, the risk for developing coronary heart disease, atherosclerosis, heart attack, and 

stroke is reduced by nearly half174. The strong clinical evidence for the attenuation of 

hypercholesterolemia and hypertension with probiotic consumption brings encouraging 

support for the treatment of CVD with probiotics. 

1.6.4 Direct cardioprotection against apoptosis and ischemic injury 

Until recently, probiotic applications for cardiovascular health were limited to metabolic 

and diet-associated processes. The aforementioned evidence for probiotic therapy for 

CVD pertains mostly to symptoms of CVD that are precursory to direct heart damage 

incurred by coronary artery disease, myocarditis, MI, and HF. We wanted to explore 

whether probiotics can provide a direct, cardioprotective effect to the heart that results in 

reduced ischemic injury and improved cardiac function, following an ischemic event. If 
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coronary arteries become occluded, the blocked blood supply to the heart muscle can 

cause tissue ischemia and infarction. If a patient survives MI, there is a risk for 

progression to HF and chronic inflammation, as the damaged heart struggles to maintain 

its regular work capacity. Reduction of ischemic injury and infarction is critical to 

improving the outcomes of MI patients.  

The protective role of probiotics against apoptotic injury was first investigated in 

intestinal cells. While exploring the mechanisms of action against inflammatory bowel 

disease, it was found the L. rhamnosus GG prevented TNF-α, IL-1α, and interferon 

(IFN)-γ-induced apoptosis in mouse colon cells178. This was achieved through both 

activation of the anti-apoptotic Akt pathway, and inhibition of the pro-apoptotic p38 

mitogen-activated protein kinase pathway178. The purification of L. rhamnosus GG 

supernatant identified a novel protein, p75, to be responsible136. The effect of this protein 

on ischemia/reperfusion (I/R) induced heart cell injury was evaluated using a rat model. 

The pre-treatment of rats with the purified p75 protein isolated from L. rhamnosus GG 30 

minutes prior to I/R surgery significantly attenuated heart tissue infarction in a dose-

dependent manner. This phenotype was reportedly generated by enhanced expression of 

heat shock proteins with p75 pretreatment179, suggesting that proteins produced by 

Lactobacillus have a direct cardioprotective effect against ischemic injury. Further 

mechanistic research is required, as the isolated p75 protein delivered in a bolus, 

bypassed the gastrointestinal system. Studies examining the production and kinetics of 

p75 from L. rhamnosus GG within the gut could contribute to an understanding of the 

role of the microbiome in this phenotype. 

Recently, a rat study demonstrated that oral consumption of a probiotic could be 

cardioprotective. Animals administered the probiotic drink marketed as “GoodBelly”, 

containing Lactobacillus plantarum 299v, in their drinking water for up to 14 days before 

I/R heart surgery, had a 29% reduction in ischemia and a 23% improvement in post-

ischemic mechanical function, as measured by left ventricular diastolic pressure180. This 

cardioprotection seemed to be gut microbiome-dependent, as administration of 

vancomycin generated the same phenotype. It was found that the attenuated ischemia was 

independent of cytokine mediation, but dependent on serum leptin reduction. There was a 
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significant increase in serum leptin post-I/R that was significantly attenuated with 

GoodBelly and vancomycin pretreatment180. Pretreatment with leptin abolished the 

cardioprotection confirming that this molecule played a key role in the process. Leptin is 

a hormone mainly produced by adipocytes but also by cardiomyocytes, and is typically 

upregulated in CVDs such as HF and hypertension. This novel finding linking 

communication between the gut and heart through hormone signaling, warranted further 

research into the cardioprotective properties of probiotics. 

 We decided to determine whether probiotic treatment post-ligation injury without 

reperfusion could confer benefits reported with probiotic pre-treatment. In addition, we 

wanted to further investigate the mechanisms by which probiotic activity worked.  

1.7 Hypothesis and objectives 

My hypothesis was that the administration of Lactobacillus probiotic strains will have a 

beneficial effect on the outcome of myocardial infarction-induced heart failure and provide 

a direct benefit to cardiac tissue through gut-bloodstream mediators. 

Objective 1: Assess the effect of oral probiotic administration on the outcomes of gut 

microbial composition and MI-induced heart failure in a rat coronary artery ligation 

model. 

My aim was to determine the effect of probiotic administration after the MI event. This 

study assessed changes in the gut microbiota associated with probiotic administration. 

Objective 2: Assess the effect of direct probiotic administration on cardiomyocytes 

expressing the hypertrophic response associated with heart failure. 

Using chemical agents to induce hypertrophy, my aim was to evaluate the effect of co-

culturing cardiomyocytes with probiotic lactobacilli. I examined both morphological and 

molecular changes of cardiomyocytes in co-culture. Using a variety of tools for generating 

different probiotic treatments, this in vitro model tested if probiotics directly interact with 

and benefit cardiomyocytes and help elucidate potential mechanisms. 
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Chapter 2 : Materials and Methods 
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2 Overview of experiments 

The experiments performed for this thesis can generally be divided into two groups: in 

vivo animal studies, and mechanistic in vitro studies. The specific designs for all 

experiments performed are described in detail in the next sections. 

2.1 The effect of probiotic administration on the 
outcome of heart failure in the rat  

In collaboration with Dr. Morris Karmazyn (Department of Pharmacology and 

Physiology, Western University), a study was designed to investigate the outcome of 

probiotic therapy for heart failure in the rat. There were two stages: First, a 4 week pilot 

study was performed on 15 animals using 2 different probiotic strains. This served as a 

proof-of-concept assessment. Next, a 6 week comprehensive study using 60 animals and 

only one probiotic treatment was performed. The methods described in this section have 

been published and are described in detail below181. 

2.1.1 Probiotic culture and treatment preparation 

In the 4 week pilot study, two different probiotic strains were prepared as treatments: 

Lactobacillus rhamnosus GR-1 or Lactobacillus plantarum 299v. L. plantarum 299v was 

chosen because it was the probiotic strain in the commercially available drink 

(GoodBelly, NextFoods, Boulder, CO, USA) that was demonstrated to have 

cardioprotective effects against I/R injury to the heart180. L. rhamnosus GR-1 was chosen 

because it has been extensively characterized by several laboratories and has been shown 

benefit the gastrointestinal and urogenital tracts182,183. In addition, the genome sequence 

for L. rhamnosus GR-1 was available within our group, which may have provided further 

tools for analysis. 

All media for bacterial culture were acquired from Becton and Dickinson (BD, 

Mississauga, ON). All strains were grown under anaerobic conditions at 37°C, using the 

GasPak™ system (BD). Details on each strain are provided in table 1. 

L. plantarum 299v was isolated from a sample of GoodBelly by inoculating de Man, 

Rogosa, Sharpe (MRS) broth with the drink using an inoculation loop. The broth was 
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grown for 15 hours then streaked onto MRS agar and grown again for another 15 hours. 

After 3 subsequent sub-cultures were performed, 2-3 single isolated colonies were added 

to MRS broth (20% glycerol) in a sterile cyrotube for long term storage at -80°C. Freezer 

stocks of L. rhamnosus GR-1 were maintained in the same media at -80°C. The L. 

plantarum 299v strain was identified by polymerase chain reaction (PCR) using an 

Eppendorf Mastercycler® PCR machine (Eppendorf, Hamburg, Germany). 

Frozen stocks of both L. plantarum 299v and L. rhamnosus GR-1 were resuscitated by 

propagating in MRS broth, as described above. Isolated colonies were streaked onto MRS 

agar to prepare a sub-culture. Single colonies were used to inoculate 3 ml of MRS broth, 

and in turn used to inoculate 500 mL MRS broth. After growth, the cells were centrifuged 

at 1600 x g for 20 minutes. The supernatant was completely removed, and the cells 

washed twice with cold sterile phosphate buffered saline (PBS). The pellet was 

resuspended in 25 mL 10% sterile skim milk (Nestlé, Markham, ON) to a concentration 

of 3.0 x 1010 colony forming units (CFU)/mL. Aliquots of 100 µL of L. rhamnosus GR-1 

in skim milk, or skim milk alone as a placebo control, were placed in sterile 1.5 mL 

Eppendorf tubes to create individual daily treatments. These were stored at -20°C until 

use.  

Bacterial cell numbers were confirmed by serial dilution and bacteriological plate count. 

In addition, aliquots were subjected to freeze-thaws to reconfirm the bacterial numbers 

present and to ensure the placebo was not contaminated. 
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Table 1. Probiotic strains and preferred growth media used in animal studies  

 Strain Source Non-selective 

growth media 

Selective growth 

media 

L. plantarum 299v GoodBelly 

probiotic drink 

isolate 

(NextFoods) 

MRS broth/agar LPSM  

L. rhamnosus GR-1 Distal urethral 

clinical isolate 

MRS broth/agar  MRS FA 

MRS: de Man, Rogosa, Sharpe Lactobacillus culture medium 

LPSM: Lactobacillus plantarum selective medium184 

MRS FA: de Man, Rogosa Sharpe Lactobacillus culture medium with the addition of 32 

µg/mL fusidic acid (FA) 
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2.1.2 Animals 

The animal experiments were approved by the Animal Use Subcommittee of Western 

University and a copy of the the Animal Use Protocol is provided in the appendix. 

Procedures adhered to the guidelines of the Canadian Council on Animal Care (Ottawa, 

ON). The experiments were performed on male Sprague-Dawley rats weighing between 

175-225 grams (body weight was determined immediately prior to commencing the 

study). Animals were randomly assigned treatment groups as outlined in table 2. Animals 

were fed a standard chow diet throughout the studies. 

2.1.3 Coronary artery ligation model for heart failure in the rat 

Heart failure was induced using a sustained coronary artery ligation (CAL) model. Rats 

were anesthetized by intraperitoneal injection with pentobarbital sodium (5 mg/kg body 

weight), intubated, and artificially ventilated using a rodent respirator (model 683, 

Harvard Apparatus). To induce myocardial infarction in the LV, the left main coronary 

artery was ligated using a silk suture. For sham operation, the suture was placed in the 

exact fashion, then was removed without any tying. All animals were housed singly per 

cage after surgery. The animals sustained ligation for either 4 or 6 weeks without any 

reperfusion of the coronary artery, then were euthanized for further analysis. The surgery 

was performed by Dr. Karmazyn's staff, and the analyses performed for each trial are 

listed in table 3. 

2.1.4 Probiotic administration 

Probiotic administration was provided immediately following the CAL or sham surgery. 

Rats were provided 1 dose/day of probiotic in their drinking water for ad libitum 

consumption for either 4 or 6 weeks. The water was changed daily. The specific surgeries 

and probiotic treatments are listed in table 2. Based on typical daily water consumption, it 

was estimated that the average probiotic dose in the active treatment group was 1.5 x 109 

CFU/day. 
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Table 2. Surgery and treatment assignments for animal studies 

CAL: coronary artery ligation 

 

 

 

 

 

 Group # Surgery Treatment 

4 week pilot study 

(n=5/group) 

1 

2 

3 

CAL 

CAL 

CAL 

Water 

L. plantarum 299v 

L. rhamnosus GR-1 

6 week study 

(n=10/group) 

1 

2 

Sham 

Sham 

Water 

L. rhamnosus GR-1 

3 CAL Water 

4 

5 

6 

CAL 

CAL 

CAL 

L. rhamnosus GR-1 

Sterile skim milk 

4 weeks  L. rhamnosus 

GR-1 + 2 weeks sterile 

skim milk  
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Table 3.  Analyses performed for animal studies 

 

 

 

 

 

 

 

 

 

 

2.1.5 Echocardiography 

Echocardiography evaluations were performed on each animal prior to CAL surgery and 

probiotic treatment (week 0), and every 2 weeks thereafter until sacrifice. Rats were 

Study Parameters measured  

4 week pilot study 

(n=5/group) 

Left ventricular hypertrophy, cardiac mechanical 

function, bacterial cultivation of digesta 

6 week study 

(n=10/group) 

Left ventricular hypertrophy, cardiac mechanical 

function, left ventricular internal dimensions, 

hemodynamics, blood cytokine and adipokine 

concentrations, bacterial cultivation of digesta, 

microbial profile analysis of cecum digesta 
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anesthetized with 2% isoflurane, placed in supine position on a heated platform. Images 

were analyzed using the Vevo 770 Protocol-Based Measurements software 

(VisualSonics, Canada) and calculations for the dimensions of the LV diameter were 

taken using M-Mode 2 dimensional echocardiography images. Doppler measurements 

were taken to determine peak early diastolic filling velocity (E wave), peak late diastolic 

filling velocity (A wave), and E/A ratios. The echocardiography evaluations were 

performed by Dr. Karmazyn's staff. The same reader conducted all evaluations blindly. 

2.1.6 Hemodynamic measurement 

Hemodynamic measurement was taken immediately prior to sacrifice, 6 weeks after CAL 

or sham surgery. Rats were anesthetized with pentobarbital sodium (50 mg/kg body 

weight), and an anterior thoracotomy was performed. The LV was catheterized once via 

the right carotid artery using a 2.0F P-V Mikro-Tip catheter (Millar Instruments, USA), 

and the left ventricular systolic and diastolic pressures were measured. The hemodynamic 

measurement was performed by Dr. Karmazyn's staff.  

2.1.7 Blood collection and chemokine/cytokine analysis 

Immediately following hemodynamic measurements, 4 mL of blood was collected by 

terminal bleeding directly from the heart and kept on ice in Vacutainer™ 10.8 mg K2 

EDTA blood collection tubes (BD) until processing. Blood samples were centrifuged at 

1000 x g for 10 minutes and plasma was stored at -80°C. The following nine cytokines 

were chosen from The MILLIPLEX® MAP Rat Cytokine/Chemokine Magnetic Bead 

Panel (EMD Millipore, Billerica, MA, USA) for blood cytokine analysis: Fractalkine, 

GRO/KC, IFN-γ, IL-1α, IL-6, MCP-1α, MIP-1α, RANTES, and TNF-α. Blood plasma 

samples were thawed to room temperature and the assay and analysis was performed 

following the manufacturers protocol for the Bio-Plex 200® system (Bio-Rad, 

Mississauga, ON). 

2.1.8 Heart weight measurement and tissue processing 

At sacrifice, the hearts were removed from the animals, images were obtained, and the 

whole heart and dissected LV were weighed. Fifty to one hundred milligrams of tissue 
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from the LV (non-ischemic region) of each heart from the six week-long study was 

collected and stored at -80C for later ANP gene expression. 

2.1.9 ANP gene expression analysis of left ventricular tissue 

RNA was collected from the non-ischemic region of left ventricular tissue using QIAzol 

Reagent (QIAGEN, Mississauga, ON) as per the manufacturer’s instructions. Reverse 

transcription (RT) of RNA into cDNA for real-time quantitative polymerase chain 

reaction (qPCR) analysis of ANP gene expression was performed using M-MLV Reverse 

Transcriptase (Invitrogen, Burlington, ON) as per the manufacturer’s protocol. The real-

time qPCR reactions were performed using SYBR Green Master Mix (Applied 

Biosystems, USA), and gene products were quantified using a DNA Engine Opticon 2 

thermal cycler. PCR conditions and primer sequences are summarized in table 4. The 

housekeeping gene, 18S rRNA, was measured and quantified to normalize gene 

expression levels using the standard curve method. The analysis was performed by Dr. 

Karmazyn’s staff. 
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Table 4. Gene primer sequences and cycle conditions used for real-time quantitative PCR 

analysis of heart tissue 

Gene Forward Primer Sequence  

(5’-3’) 

Reverse Primers sequence 

(5’-3’) 

ANP CTGCTAGACCACCTGGAGGA AAGCTGTTGCAGCCTAGTCC 

18S rRNA GTAATCCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 

Cycle 

conditions 

40 x (30 seconds @ 95°C , 25 seconds @ 60°C, 30 seconds @ 72°C) 

ANP: atrial natriuretic peptide 
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2.1.10 Cecum digesta sample collection and bacterial cultivation 

After sacrifice, the cecum and colon were removed immediately. Three grams of cecum 

and colon digesta were collected and frozen at -80°C until further use, or immediately 

used for cultivation experiments. Fresh cecum and colon digesta (0.3 g each) were 

resuspended in 1 mL sterile PBS. Serial dilutions (10-3-10-8) were made and 10 µL of 

each was drop-plated in triplicate. The selective growth media listed in table 1 were used 

to isolate colonies of both L. rhamnosus GR-1 and L. plantarum 299v. For isolating L. 

rhamnosus GR-1, 32 µg/mL fusidic acid (FA) (Sigma, Mississauga, ON) was filter 

sterilized and added to sterile MRS agar. For isolating L. plantarum 299v, Lactobacillus 

plantarum Selective Media (LPSM) was used184. This medium has the same MRS 

formulation except for the replacement of dextrose with sorbitol, and the addition of 

0.02g/L bromocresol purple, and later 0.02 g/L filter sterilized ciprofloxacin to the sterile 

agar medium. In the presence of bromocresol purple, the production of acid from sorbitol 

by L. plantarum 299v turns the originally purple media yellow. MRS agar, MRS FA and 

LPSM plates were incubated at 37C anaerobically for 48 hours and colonies were 

enumerated. 

2.1.11 Cecum microbiota analysis 

Both the colon and cecum samples were cultivated on selective media immediately 

following sacrifice. Once the colonies were isolated and enumerated it became apparent 

that both sites had similar bacterial abundance. It has been reported that nearly all 

endogenous metabolic activity by gut bacteria in the rat occurs in the cecum and colon 

only185. Based on the levels of short chain fatty acids detected, the gut microbiota of the 

cecum is more robust in fermenting and metabolism than the colon185. As metabolite 

levels are indicative of the function and activity of the endogenous bacteria, this suggests 

that the majority of gut microbial activity in the rat is housed in the cecum. Based on this, 

and the similar results from the cultivation of cecum and colon digesta, it was decided to 

consolidate the next-generation sequencing 16S rRNA gene analysis by investigating the 

microbiota of cecum digesta only. 
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Cecum digesta samples from the six week study were thawed to room temperature and 

DNA was extracted using the QIAamp DNA stool mini stool kit (QIAGEN) according to 

the manufacturer’s protocol with the following additional steps: approximately 0.2 grams 

of digesta was suspended in the lysis buffer with a 90 second bead beating step prior to 

95°C lysis. For optimal DNA yield, all centrifuge times were doubled and the final 

incubation with the Buffer AE elution buffer was increased to 2 minutes. DNA from each 

sample was immediately quantified using a Qubit® 2.0 fluorometer (Life Technologies, 

Burlington, ON), and stored at -80°C. 

2.1.12 Amplification of bacterial DNA  

The V6 hypervariable region of the 16S rRNA gene was amplified from DNA template 

extracted from each cecum digesta sample (refer to table 5 for primer sequences and 

cycle conditions). Each left forward 5’ primer (V6LT) was tagged with a unique barcode 

sequence at the 3’ end. This barcode enabled identification of the samples after the 

sequencing. The right reverse primer (V6RT) contained an Ion Torrent adapter sequence 

on the 5’ end.  

Forty µL PCR reactions were prepared using 5 µL of DNA template per reaction, or 5 µL 

of nuclease-free water as negative control. Each PCR reaction contained 1.5 mM MgCl2 

0.8 µM each primer, 4 µL 10X PCR buffer (Invitrogen), 0.2 mM dNTPs, 0.05U GO Taq 

polymerase (Invitrogen), and 0.1 µL 5% bovine serum albumin (Sigma). PCR was 

performed as described using an Eppendorf Mastercycler® PCR machine (Eppendorf). 

Amplification products were quantified using Qubit® fluorometer (Life Technologies) to 

determine DNA concentration, and equimolar quantities were pooled and purified using 

the QIAquick PCR purification kit (Invitrogen). V6 16S rRNA next-generation 

sequencing using the Ion Torrent platform (Life Technologies) was then performed at the 

London Regional Genomics Center, Robarts Research Institute, Western University, as 

per the Center’s standard operating procedure. 
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Table 5. Primer sequences and cycle conditions used for PCR amplification of DNA 

extracted from cecum digesta samples.  

16S rRNA gene  Primer sequence (5’-3’) 

V6LT CCATCTCATCCCTGCGTGTCTCCGACTCAG 

V6RT AC(A or G)ACACGAGCTGACGAC 

PCR cycle 

conditions 

1 X (2 minutes @ 95°C) 

25 X (1 minute @ 95°C, 1 minute @ 55°C, 1 minute @ 72°C) 

V6LT: Left forward V6 primer 

V6RT: Right reverse V6 primer 
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2.1.13 Sequence Analysis 

Raw sequence data was filtered, processed, and analyzed using a modified version of a 

data analysis pipeline developed by Dr. Gregory Gloor (Department of Biochemistry, 

Western University)186. Custom Perl scripts were used to assign barcoded reads to each 

individual sample. For quality control, each bar-coded sequence required a minimum 500 

reads. Reads were discarded that weren’t within 70 – 90 base-pairs in length between the 

right and left primers. To avoid erroneous taxonomic assignment that is intrinsic to Ion 

Torrent sequencing in cases of low abundance reads, sequences present at less than 0.5% 

abundance were not kept for analysis. Sequences present at 0.5% abundance and greater 

were clustered by similarity to a seed sequence at 97% identity using Uclust version 

3.0.617187. The most abundant sequence in each cluster was designated as a 

representative operational taxonomic unit (OTU). Taxonomic assignments were made 

using Seqmatch from the Ribosomal Database Project188. Seqmatch data was parsed and 

matched using the Greengenes database189. For multiple top matches with equal scores, 

the highest common taxonomy was assigned to a given OTU. Classification was assigned 

at either the family or genus level if the sequence alignment was less than a 95% match. 

Taxonomic assignments were then arranged and presented using QIIME for 16S rRNA 

analysis190 and microbial communities from each sample were compared using weighted 

UniFrac beta-diversity analysis191. 
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2.2 The effect of probiotic administration on 
hypertrophic cardiomyocytes cultured in vitro 

To assess the effect of probiotic administration on cultured cardiomyocytes, co-culture 

assays were developed using neonatal rat ventricular cardiomyocytes (NVCM). Primary 

NVCM cultures were isolated from 1-3 day old neonatal Sprague-Dawley rat pups by lab 

staff of Dr. Karmazyn as previously described43 and in accordance with the guideline of 

the Canadian Council on Animal Care (Ottawa, ON). For experiments, NVCM isolated 

from the same litter were pooled to represent one biological replicate (one “n” value). I 

developed assays to evaluate the effect of probiotic treatment on hypertrophic NVCM, 

using cell surface area and gene expression measurements as indices of hypertrophy. The 

specific procedures for each assay are described below. 

2.2.1  Neonatal rat ventricular cardiomyocyte culture 

NVCM were plated on Primaria™ (Falcon) culture dishes at optimal concentrations for 

each co-culture experiment: 3 × 104 cells to allow room for growth and visualization for 

cell surface area measurements and 6 × 104 cells to ensure sufficient RNA production for 

gene expression experiments. Two mL of warm culture medium (table 6) was added to 

each dish and the cells were maintained at 37°C 5% CO2. After 48 hours, cells were 

washed with warm PBS-ABC (table 7) and the culture media was changed daily 

thereafter. All reagents were tissue culture grade and filter sterilized or autoclaved. The 

NVCM cell culture medium was adjusted to a pH of 7.10. Cells were maintained for 

either 3 days for cell surface area experiments, or 5 days for gene expression 

experiments, before commencing each experiment. 
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Table 6. Culture medium reagents for NVCM cell culture 

Chemical Name Manufacturer/ 

Catalogue # 

Concentration 

DMEMF12 + HEPES Gibco 11330-032 1L 

NaHCO3 Sigma/S6014 30 mM 

Fetal Calf Serum Gibco 12483-020 10% 

Transferrin Sigma/T-0665 10 mg/L 

Insulin Sigma/I-5500 10 mg/L 

Penicillin/Streptomycin Gibco/15140-122 1% 

Bromodeoxyuridine Sigma/B-5002 0.1 mM 

Linoleic Acid Sigma/L-1012 5 mg/L 

Bovine Serum Albumin 

(Fraction V) 

Gibco/15260-037 2 g/L 

MEM Non-essential Amino 

Acids 

Sigma/A-4403 1% 

Vitamin x 100 Gibco/11120-052 0.1% 

Sodium Selenite Sigma 10 µg/L 

Pyruvic acid Sigma 3mM 

L-Ascorbic Acid  100 uM 
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Table 7. PBS solutions for NVCM cell culture 

Reagent Chemical Concentration  

PBS A NaCl 

KCl 

Na2HPO4·7H2O 

KH2PO4 

10 g/L 

0.250 g/L 

2.71 g/L 

0.250 g/L 

PBS B CaCl2·2H2O 1.32 g/L 

PBS C MgCl2·6H2O 2.13 g/L 

PBS ABCi PBS A 

PBS B 

PBS C 

80% 

10% 

10% 

PBS: phosphate buffered saline 

iPBS ABC was prepared fresh from PBS A, PBS B, PBS C stocks at the beginning of 

each NVCM cell culture experiment. 
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2.2.2 Probiotic cultures and conditions 

Five probiotic strains were used for NVCM co-culture experiments:  Lactobacillus 

rhamnosus GR-1, Lactobacillus rhamnosus CMPG10200, Lactobacillus reuteri RC-14, 

Lactobacillus plantarum 299v, and Streptococcus salivarius K12.  

Lactobacillus rhamnosus CMPG10200 is a mutant L. rhamnosus GR-1 strain (details are 

provided in the next section). L. reuteri RC-14 is a vaginal clinical isolate, and S. 

salivarius K12 is a probiotic strain used for oral health in the probiotic lozenge BLIS 

K12® (BLIS Technologies, Dunedin, Otago, New Zealand). S. salivarius K12 was grown 

in Todd Hewitt broth/agar. 

The strains were resuscitated from -80°C freezer stocks kept at the Canadian Centre for 

Human Microbiome and Probiotic Research (London, Ontario, Canada) and propagated 

to second sub-cultures as described in the previous section. All strains were grown to 109 

CFU/mL, anaerobically using the GasPak™ system (BD) at 37°C. 

2.2.3 Msp1 knock out L. rhamnosus GR-1 strain CMPG10200 

The major secreted protein (Msp1) produced by L. rhamnosus GR-1 is homologous to 

p75192, the protein produced by L. rhamnosus GG that has shown to have anti-apoptotic 

activity in intestinal cells136 and confers protection against I/R in the heart179. The Msp1 

knock out mutant strain was kindly provided by Dr. Sarah Lebeer (Department of 

Bioengineering, University of Antwerp, Belgium). The strain was constructed by 

insertational mutagenesis192. Briefly, an internal fragment of the msp1 gene was 

amplified by PCR and cloned into pCRII-TOPO vector. (Invitrogen). The vector was 

digested with EcoRI and further ligated into an erythromycin-resistant vector. E. coli 

TOP10F was transformed using this ligation product and the suicide vector was then 

electroporated to L. rhamnosus GR-1. L. rhamnosus CMPG10200 was grown in MRS 

broth/agar with the addition of 5 µg/mL erythromycin. 

The Msp1 protein is a cell wall hydrolase that is necessary for daughter cell separation192. 

This protein was of interest because in previous studies it was shown to protect against 

ischemic injury in the heart and prevented stress-induced cellular apoptosis in intestinal 
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epithelial cells136,178,179,193. Prior to receiving the strain, the absence of Msp1 knock-out 

was confirmed by Western blot using anti-Msp1 antiserum. Microscopic examination of 

the mutant also confirmed the absence of Msp1: While the mutant is able to grow to the 

same density as the wild-type (WT), there is a clear defect of cell wall separation 

visualized by bright-field microscopy (figure 1). 
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Figure 1: Phase-contrast images of WT GR-1 and CMPG10200 strains  

(a) WT GR-1 (40x); (b) CMPG10200 (40x); (c) WT GR-1 (100x). Arrows indicate WT 

sites of cell septa; (d) CMPG10200 (100x) 
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2.2.4 Probiotic treatment preparation 

The probiotic treatments designed for the NVCM/probiotic co-culture experiments are 

listed in table 8. Following resuscitation and propagation, 10 mL of the appropriate broth 

media was inoculated from a single isolated colony of each probiotic strain from an agar 

plate, and the culture was grown anaerobically at 37°C as described above. The broth 

culture (109 CFU/mL) was used as the standard probiotic treatment for each strain. All 

cultures were serially diluted and drop-plated onto the appropriate agar media to confirm 

concentration. 

To create the probiotic-conditioned media (PCM) with probiotic cells removed, 1 mL of 

the broth culture was placed in a clean, sterile, microcentrifuge tube and centrifuged at 

12,000 x g at 4°C for 5 minutes. The supernatant was carefully collected without 

disturbing the bacterial pellet and transferred to a new, sterile microcentrifuge tube. This 

centrifugation step was repeated, and the supernatant was transferred to a new sterile 

microcentrifuge tube, to be used as the PCM treatment. Samples of the PCM treatments 

were plated onto MRS agar to ensure no probiotic cells could be detected by cultivation. 

Aliquots of the PCM were also either heat denatured (HD) by incubation at 80°C for 30 

minutes or incubated in a 1:1 trypsin-EDTA (Gibco, Burlington, ON) solution at 37°C for 

20 minutes. The trypsin-PCM (Tryp PCM) solution was then treated with a 0.05% trypsin 

soybean inhibitor Glycine max (Sigma) to eliminate trypsin activity on the NVCM 

culture. For filtered PCM treatments, the probiotic PCM was filtered using Centricon 

Plus-20 centrifugal filters according to manufacturer’s instructions (Millipore). Both the 

filtrate and retentate were collected and applied as a treatment.  

The original bacterial pellet from the PCM treatment preparation was saved, washed with 

ice cold sterile PBS, and centrifuged at 12,000 x g at 4°C. The supernatant was discarded 

and the pellet was resuspended in 1 mL of sterile PBS. The pellet was then vortexed 

thoroughly and the suspension was used as the live probiotic cell treatment, with PCM 

removed. Aliquots of these cells were heat-killed (HK) by incubation at 80°C for 30 

minutes. These cells were plated onto MRS agar to ensure no live probiotic cells were 

present. 
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All volumes of probiotic treatments used in the co-culture experiments were 50 µL, 

unless otherwise stated. The average concentration of all probiotic cultures used in each 

experiment was 109 CFU/mL. 
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Table 8. Probiotic treatments for NVCM co-culture studies. 

Probiotic Strain Treatment 

L. rhamnosus GR-1 

 

 

 

Standard probiotic treatment (GR-1) 

Live cells suspended in PBS (GR-1 cells) 

Heat-killed cells suspended in PBS (HK GR-1 cells) 

PCM (GR-1 PCM) 

Heat-denatured PCM (HD PCM) 

Centrifugal filtered PCM (PCM Filtrate/Retentate) 

Trypsinized PCM (Tryp PCM) 

L. rhamnosus CMPG10200 Standard probiotic treatment (CMPG10200) 

Live cells suspended in PBS (CMPG10200 cells) 

PCM (CMPG10200 PCM) 

L. plantarum 299v Standard probiotic treatment (299v) 

L. reuteri RC-14 Standard probiotic treatment (RC-14) 

S. salivarius K12 Standard probiotic treatment (K12) 
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2.2.5 Induction of hypertrophy and probiotic administration 

To induce hypertrophy in NVCM, the α1-adrenergic receptor agonist phenylephrine (PE) 

was applied to the cells. Following 3 days of culture for cell surface area experiments and 

5 days for gene expression experiments, 10 µM PE was added to each dish. After gently 

swirling to distribute the PE, a probiotic treatment was immediately added to the NVCM 

in triplicate. The dishes were gently swirled again, and incubated at 37°C, 5% CO2 for 24 

hours. After the 24 hour co-culture, the medium was removed from each dish and 

replaced with PBS. Media containing probiotic cells were spread-plated to determine 

viability after the 24 hour co-culture. 

2.2.6 Cell surface area measurement and analysis 

The physical effect of probiotic administration on hypertrophic NVCM was evaluated by 

taking cell surface area measurements. Cells were viewed and images were obtained 

using phase contrast microscopy with the Nikon Eclipse TE2000 inverted microscope 

(Nikon Instruments Inc., USA). Surface area measurements of 50 random cells from at 

least 5 fields of view per dish (20x objective) were conducted blindly using the calibrated 

NIS-Elements BR software (Nikon Instruments Inc., USA). The average cell surface area 

per dish was used to calculate a total average cell surface area per treatment. The fold 

change in surface area was determined by dividing the treatment average by the control 

average. All experiments were repeated independently at least 5 times. 

2.2.7 Gene expression of hypertrophic markers in NVCM co-
cultured with probiotics 

In order to confirm that the change in cell surface area was due to an attenuation of 

hypertrophy, the gene expression of the hypertrophic markers ANP and α-skeletal actin 

(aSKA) were measured after a 24 hour treatment period. The analysis was performed 

using the real-time qPCR technique, and all experiments were repeated independently 3 

times. 
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2.2.8 RNA extraction and purification 

Following the 24 hour treatment period, the medium was aspirated off each dish and 

stored in sterile a microcentrifuge tube at 4°C for later bacterial enumeration. 1 mL of 

TRIzol (Invitrogen) was added to each dish. The cells were scraped thoroughly off of 

each dish using a plastic cell scraper and the TRIzol mixture was transferred to an 

RNase-free 1.5 mL microcentrifuge tube, vortexed, and incubated at room temperature 

for 10 minutes. Two hundred µL of chloroform was added to each tube, vortexed 

vigorously, and incubated at room temperature for 10 minutes. The tubes were then 

centrifuged at 16,000 x g for 15 minutes at 4°C. 500 µL of the upper aqueous phase 

containing RNA was carefully transferred into a new RNase-free microcentrifuge tube. 

500 µL of 100% ethanol was added to each tube containing the aqueous RNA and the 

tubes were vortexed for 20 seconds. 500 µL of the ethanol-RNA mixture was transferred 

to a PureLink® RNA spin column (Life Technologies). The column was centrifuged at 

12,000 x g for 15 seconds, and the flow through was discarded. This was repeated until 

all of the ethanol-RNA mixture was passed through the column. Following the 

PureLink® RNA mini kit protocol for binding, washing, and elution (Life Technologies), 

RNA was recovered and quantified using the NanoDrop 1000 spectrophotometer 

(Thermo Fisher Scientific, USA). Purity of RNA was quantified using 260/280 and 

260/230 ratios. RNA quality cut-off was set at >1.75 and >1.8 for 260/280 and 260/230, 

respectively. RNA quality was also confirmed by viewing products via electrophoresis in 

a 1% agarose gel using 1x TAE stained with ethidium bromide, and viewed under UV 

light using AlphaImager (Alpha Innotech Corporation, USA).  

RNA samples falling under the quality limits underwent an ethanol precipitation protocol 

as follows: 3 µL of sodium acetate and 90 µL of 100% ethanol were added to each RNA 

sample for overnight precipitation at -20°C. The next day, RNA samples were 

centrifuged at 16,000 x g for 20 minutes at 4°C. The supernatant was discarded and the 

pellet containing crude RNA was resuspended in ice-cold 70% nuclease-free ethanol, 

vortexed, and centrifuged at 16,000 x g for 20 minutes at 4°C. This step was repeated 

once more. All the ethanol was removed from each tube using a fine pipette tip, and the 

tubes were left open for 1 minute to evaporate the last of the ethanol. The crude RNA was 
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then resuspended in 15 µL nuclease-free water, and quality was assessed using the 

NanoDrop 1000 spectrophotometer, as described above. RNA samples were stored at -

20°C until further processing. 

2.2.9 Reverse transcription 

Samples of RNA ranging from 300 ng – 2 µg were used as a template for RT PCR. 

cDNA was synthesized using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Canada). The master mix and cycle conditions for RT are listed in 

table 9.  

Ten µL of the RT master mix was combined and mixed with 10 uL of RNA sample (or 

10 uL of nuclease-free water for the negative control) in an RNAase-free 96-well plate, 

creating a 20 µL reaction. The PCR reaction was carried out in an Eppendorf 

Mastercycler® PCR machine (Eppendorf). cDNA concentration was measured on all 

negative controls and 3 random cDNA samples using a Qubit® 2.0 fluorometer (Life 

Technologies) to confirm successful RT. The cDNA was then diluted into 340 µL of 

nuclease-free water and stored at -20°C until further use. 
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Table 9. Master Mix components for reverse transcription 

Component Volume/reaction (µL) 

10x RT Buffer 2.0 

25x dNTP Mix (100mM) 0.8 

10x RT Random Primers 2.0 

Multiscribe™ Reverse Transcriptase 1.0 

Nuclease-free water 4.2 

Final Volume 10 

 

PCR conditions 

10 minutes @ 25°C  

120 minutes @ 37°C  

5 minutes @ 85°C  

RT: Reverse transcription 

dNTP: deoxyribonucleotide triphosphate 
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2.2.10  Quantitative real-time PCR  

 qPCR was used to evaluate the gene expression of the hypertrophic markers atrial 

natriuretic peptide (ANP) and α-skeletal actin (aSKA), relative to a housekeeping gene, 

in this case 18S rRNA. ANP, aSKA and 18S rRNA primer sequences were designed 

using the Primer-BLAST tool from the National Center for Biotechnology Information 

(NCBI)194. The sequences are listed in table 10.  

The primers were stored in a stock solution containing 800 nM of both forward and 

reverse primer. Prior to running the cDNA samples, the primers were validated using 

serial dilutions of a positive control cDNA sample. Five µL of each serial dilution was 

combined in triplicate with 10 µL Power SYBR Green Master Mix (Life Technologies), 

and 5 µL of the 800 nM primer stock solution. The PCR reaction was then carried out in 

a 384-well reaction plate using the 7900 HT Sequence Detection System (SDS) and 

primer efficiencies were determined using SDS 2.3 Sequencing Software (Applied 

Biosystems, Life Technologies). The efficiencies for 18S rRNA, ANP and aSKA 

respectively were 97.24, 97.50 and 98.03%. The PCR products were then viewed via 

electrophoresis in a 3% agarose gel using 1x TAE stained with ethidium bromide, and 

viewed under UV light using AlphaImager (Alpha Innotech Corporation, Santa Clara, 

CA, USA) (figure 2).  

After primer validation, cDNA samples were used as template for qPCR reactions. 5 µL 

of each cDNA sample was combined in triplicate with 10 µL Power SYBR Green Master 

Mix (Life Technologies), and 5 µL of 800 nM primer stock solution. Each reaction was 

carried out in triplicate for all 3 primers in a 384-well reaction plate using the same 

machine and method as above.  

2.2.11  Real-time quantitative PCR data analysis 

Analysis was carried out using RQ Manager 1.2 Data Analyzer (Applied Biosystems, 

Life Technologies). Relative gene expression of aSKA and ANP was determined using 

18S rRNA as the endogenous control. Gene expression in a treatment cDNA sample 
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measured in terms of relative quantification (RQ), using the comparative threshold cycle 

(Ct) method. The Ct of the PCR reaction in which aSKA or ANP was detected was 

compared to the Ct of detection for 18S rRNA. The total difference in Ct over 40 cycles 

of PCR is then used to determine the RQ of a sample. RQ represents the fold change in 

gene expression compared to a calibrator (untreated control cDNA sample). The RQ of 

the calibrator = 1. The standard deviation (SD) of Ct values was used to determine the 

quality of the technical replicates in each sample. If the SD was over 0.25, the RQ value 

for that sample was considered unreliable and was not used in the data analysis. 
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Table 10. Genes and primer sequences used for quantitative real-time PCR. 

Gene Primer Sequence  

 

aSKA (NM_019212.2) 

Forward: 5’-CAGAGTCAGAGCAGCAGAAACT-3’ 

Reverse: 5’-GTTGTCACACACAAGAGCGG-3’ 

Product size: 71 base pairs (BP) 

 

ANP (NM_012612.2) 

Forward: 5’-CCCTCCGATAGATCTGCCCT-3’  

Reverse: 5’-TTCGGTACCGGAAGCTGTTG-3’ 

Product size: 148 BP 

 

18S rRNA 

(NR_046237.1) 

Forward: 5’-GTAACCCGTTGAACCCCATT-3’  

Reverse: 5’-CCATCCAATCGGTAGTAGCG-3’ 

Product size: 148 BP 

PCR cycle conditions 40x (10 minutes @ 95°C, 15 seconds @ 60°C) 
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Figure 2. PCR products from primer validation for real-time qPCR 
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2.3 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism 5 and statistical analysis 

reports for all NVCM experiments are provided in the appendix. 

Data from CAL animal studies were reported as means ± standard error. 

Echocardiographic data were analyzed using 2-way analysis of variance (ANOVA) with 

repeated measures and a post hoc Tukey test and all other data were analyzed using a 1-

way ANOVA followed by a post hoc Tukey test. Differences were considered significant 

when P < 0.05. Statistical analysis for the next-generation sequencing data was 

performed using Uclust187, QIIME190, UniFrac191, and a modified version of a data 

analysis pipeline published by Dr. Gregory Gloor186,195.  

For NVCM experiments, technical triplicates for each experiment were performed on at 

least 3 biological replicates. Data reported are means of biological replicates ± standard 

deviation. Differences between means of the treatments were compared using a 1-way 

ANOVA followed by a post hoc Tukey test, or by a Student’s t-test. Differences were 

considered significant when P < 0.05. 
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Chapter 3 : Results 
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3 Results 

3.1 Probiotic administration attenuates heart failure in 
the rat 

In both the 4 week pilot study and the 6 week study, probiotic administration attenuated 

several parameters of HF after MI induced by CAL surgery. Overall, none of the 

surgeries or treatments exerted any effect of body weight growth throughout the trials. In 

terms of the outcome of HF, animals receiving L. rhamnosus GR-1 for 4 weeks, followed 

by a 2 week treatment cessation period had the identical outcome as animals receiving L. 

rhamnosus GR-1 for the entire 6 week trial. Herein, the data corresponding to “GR-1” 

represents to the 6 week treatment group only. There was also no difference in outcome 

in animals on the control skim milk treatment versus the control water treatment. Because 

there was no sham group on skim milk treatment, it was decided to use the water control 

group for the data analysis. Herein, the data corresponding to “water” represents the 

control group for either sham or CAL operated animals. The outcomes on specific indices 

for HF are described in detail in following sections.  

3.1.1 Probiotic administration attenuates cardiac hypertrophy 

Cardiac hypertrophy was measured by comparing the LV weight (LVW) to total body 

weight (BW) for each animal. An increase in the LVW/BW ratio indicates left ventricular 

hypertrophy. In both studies, CAL significantly increased LVW (P < 0.05). Figures 3 and 

4 show that this was significantly attenuated by both L. rhamnosus GR-1 and L. 

plantarum 299v administration (P < 0.05). 

In the 6 week-long study, hypertrophy was also measured by ANP gene expression in the 

LV. CAL significantly increased ANP expression, indicating a hypertrophic response in 

the LV, 6 weeks post-surgery (P < 0.05). This response was nearly normalized with L. 

rhamnosus GR-1 administration (figure 4). 
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Figure 3. LVW/BW ratios in animals subjected to 4 weeks of CAL 

The left ventricle of each animal was dissected and weighed at the end the study period. 

The LVW/BW ratio was significantly reduced by GR-1 and 299v treatment. Error bars 

indicate ± SEM (n=5). *P < 0.05 compared to CAL. 

 

 

 

 

 

 



61 

 

 

 

Figure 4. LVW/BW ratios and LV ANP gene expression in animals subjected to CAL or 

sham surgery for 6 weeks 

The left ventricle of each animal was dissected, weighed, and processed for qPCR at the 

end the study period. Gene expression of ANP was normalized to the 18S rRNA 

housekeeping gene and is reported as a ratio to 18S rRNA expression. Error bars indicate 

± SEM (n=10). * P < 0.05 compared to the sham group; #P < 0.05 compared to CAL + 

water. 
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3.1.2 Probiotic administration attenuates LV dysfunction post-CAL 

Cardiac mechanical function was assessed by serial echocardiography. Animals were 

analyzed immediately prior to surgery and probiotic treatment, and every two weeks 

thereafter. Figures 5 and 6 show data from LV echocardiographic analyses performed 

over the 4 week pilot study and the 6 week study respectively. CAL induced a significant 

decrease in ejection fraction (EF) and fractional shortening (FS) and a significant increase 

in early wave to atrial wave (E/A) ratio over the duration of both studies (P < 0.05). L. 

rhamnosus GR-1 and L. plantarum 299v administration resulted in near-normalization of 

these parameters. The left ventricular internal diameters (LVID) were also assessed in the 

6 week-long study. Representative echocardiography images and the LVID systolic 

(LVIDs) and LVID diastolic (LVIDd) are shown in figure 7. CAL significantly increased 

LVID over 6 weeks (P < 0.05), although this was significantly attenuated with L. 

rhamnosus GR-1 administration. 
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Figure 5. Echocardiography data collected every 2 weeks for 4 weeks total of sustained 

CAL 

GR-1 and 299v treatment attenuated the CAL-induced decrease in EF and FS and CAL-

induced increase in E/A ratio. Error bars indicate ± SEM (n=5). * P < 0.05 from CAL + 

GR-1 and CAL + 299v; #P < 0.05 compared to week zero. 
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Figure 6. Echocardiography data collected every 2 weeks for 6 weeks total of sustained 

CAL or sham surgery 

GR-1 administration significantly attenuated the CAL-induced reduction in ejection 

fraction and fractional shortening and increase in E/A ratio in animals over the 6 week 

trial period. Error bars indicate ± SEM (n=10). * P < 0.05 compared to the CAL + GR-1, 

sham + GR-1, and sham + water groups; +P < 0.05 from week zero (n=10). 
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Figure 7. Representative images and corresponding quantified diastolic and systolic left 

ventricular internal diameters from echocardiography evaluations 

GR-1 treatment significantly attenuated the CAL-induced increase in LVID over the 6 

week trial period. Error bars indicate ± SEM (n=10). *P < 0.05 compared to the CAL + 

GR-1, sham + GR-1, and sham + water groups; +P < 0.05 from week zero. 

 

 

 

 

 



66 

 

3.1.3 Probiotic administration attenuates hemodynamic 
dysfunction function post-CAL 

At the end of the 6 week study, animals were subjected to catheter-based hemodynamic 

analyses and the data is summarized in figure 8. The hemodynamic data indicates systolic 

and diastolic dysfunction were induced by CAL. The left ventricular end systolic pressure 

(LVSP) significantly decreased with CAL (P < 0.05), while the left ventricular end 

diastolic pressure (LVEDP) significantly increased (P < 0.05). These abnormalities were 

significantly improved with L. rhamnosus GR-1 treatment (P < 0.05). Similarly, there 

was a significant reduction in cardiac output and stroke volume after 6 weeks of sustained 

CAL that was attenuated with L. rhamnosus GR-1 treatment (P < 0.05). 
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Figure 8. Hemodynamic parameters assessed by cardiac catheterization after 6 weeks of 

sustained CAL  

CAL induced abnormalities in left ventricular end systolic and diastolic pressure (LVSP, 

LVEDP), cardiac output, and stroke volume after the 6 week trial period. These 

abnormalities were significantly improved with GR-1 treatment. Error bars indicate ± 

SEM (n=10). *P < 0.05 compared to respective sham group. #P < 0.05 compared to CAL 

+ water group. 
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3.2 Probiotic administration has no effect on serum 
cytokine levels 

To determine whether or not probiotic administration alters the levels of inflammatory 

factors involved in the cardiac remodeling process, serum samples were assayed for 

levels of 9 cytokines after the 6 week CAL period. Any individual sample within a group 

where a cytokine was not detected was excluded from the analysis. TNF-α values for all 

samples fell below the threshold detection limit and therefore the data are not reported. 

For all the other detectable values, there were no significant changes in concentration 

across all the groups (figure 9). 
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Figure 9. Concentration of 8 pro-inflammatory cytokines detected in plasma of animals 

taken 6 weeks post-CAL or sham surgery  

There was no significant difference in concentration of any of the cytokines across all 

treatment groups (n=6-10) 
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3.3 Probiotic administration improves CAL-induced 
increase in plasma leptin to adiponectin concentration 
ratio 

Two adipokines, leptin and adiponectin, were assayed for serum concentration following 

6 weeks of CAL. These adipokines are considered to have antagonistic function against 

each other, and are associated with chronic HF47,52,196. CAL significantly increased serum 

leptin levels (P < 0.05) but not serum adiponectin. There was a two-fold increase in 

leptin, when normalized to adiponectin. These CAL-induced changes were significantly 

attenuated with L. rhamnosus GR-1 administration (P < 0.05). These data are 

summarized in figure 10. 
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Figure 10. Plasma leptin and adiponectin levels 6 weeks post-CAL and sham surgery 

GR-1 treatment significantly attenuated the CAL-induced increase in plasma leptin levels 

and plasma leptin/adiponectin ratio. Error bars indicate ± SEM (n=8). *P < 0.05 

compared to sham + water; #P < 0.05 compared to CAL + water. 
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3.4 Probiotic lactobacilli were found viable in the 
cecum and colon digesta 

L. rhamnosus GR-1 and L. plantarum 299v were readily cultivated from fresh cecum and 

colon digesta samples on selective MRS agar (table 11 and table 12). The successful 

cultivation of L. plantarum 299v was indicated by the purple LPSM agar turning bright 

yellow due to sorbitol fermentation by L. plantarum 299v. Neither L. rhamnosus GR-1 

nor L. plantarum 299v were successfully cultivated on selective media from digesta 

samples of rats in milk or water controls. Representative images of isolated colonies are 

displayed in figure 11. 
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Table 11. Cultivation of probiotic colonies on selective agar media from cecum and 

colon digesta samples collected 4 weeks post-CAL. The data represents the average 

CFU/mL in each group (n=10) 

 Cecum (CFU/mL) Colon (CFU/mL) 

Group MRS FA LSPM  MRS FA LPSM 

CAL Not detected Not detected Not detected Not detected 

GR-1 6.59 x 108  Not detected 1.52 x 109 Not detected 

299v Not detected 5.77 x 105 Not detected 5.49 x 105 
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Table 12. Cultivation of probiotic colonies on selective agar media from cecum and 

colon digesta samples collected 6 weeks post-CAL or sham surgery. The data represents 

the average CFU/mL in each group (n=10) 

Group Cecum (CFU/mL) Colon (CFU/mL) 

1 (Sham + water) Not detected Not detected 

2 (Sham + GR-1) 8.71 x 107 8.81 x 107 

3 (CAL + water) Not detected Not detected 

4 (CAL + GR-1) 6.73 x 107 5.67 x 107 

5 (CAL + skim milk) Not detected Not detected 

6 (CAL + GR-1 4wks/milk 

2wks) 

7.56 x 104 6.58 x 104 
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Figure 11. Representative images of agar plates inoculated with cecum digesta from 

animals from the 4 week pilot study 

Top: Purple LPSM plate inoculated with cecum digesta from the CAL only group 

showing no cultivation of bacteria Middle: The originally purple LPSM plate turned 

yellow after inoculation by cecum digesta from the 299v group and produced isolated 

colonies. Bottom: Isolated colonies on MRS FA plate inoculated with cecum digesta 

from the GR-1 group. 
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3.5 Probiotic administration does not affect the 
microbial composition of cecum digesta 

Sequencing of the V6 region of the 16S rRNA gene generated 2,254,397 total usable 

reads from 60 cecum digesta samples collected from the animals in the 6 week study. 

Three samples did not run successfully and were excluded from the analysis (1 each from 

group 2, 3, and 5). Using a minimum of 0.5% abundance threshold for any sample and a 

≥97% sequence identity, there were a total 242 distinct organizational taxonomic units 

(OTU) groupings (figure 12). GR-1 was not detected in any of the 60 individual samples. 

A heat map displaying the 50 most abundant OTUs detected in the cecum digesta 

samples was generated and is displayed in figure 13. Community level variance was 

evaluated using the ANOSIM nonparametric statistical method in QIIME. There was no 

significant variance in microbial composition across the 6 treatment groups (R=0.1308). 

Although OTU 0 appears to have variable abundance, one-way ANOVA testing indicates 

that the variation is not significant (P > 0.05). Overall, there was no distinct grouping of 

community compositions in any of the 60 samples, with respect to probiotic 

administration. Weighted β-diversity UniFrac analysis-generated Principal Coordinate 

Analysis (PCoA) plots were generated to display the dissimilarities in community 

compositions of each sample (figure 14). There was no distinct grouping cecum digesta 

samples from rats that received CAL surgery compared to sham, or rats that received L. 

rhamnosus GR-1 compared the placebo treatment. This indicates that the both the CAL 

surgery and probiotic treatment did not induce significant changes to the microbial 

composition of the gut after 6 weeks of treatment. 
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Figure 12. Bar plot displaying the microbial composition of cecum digesta 

 Each vertical bar represents the microbial profile of one individual animal (n=57). Each 

colour represents a specific OTU detected in the digesta sample by 16S rRNA next-

generation sequencing (see colour legend). The amount of each colour in the vertical bar 

represents the relative abundance of the OTU.  
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Legend to accompany figure 10 bar plot. Each OTU was assigned taxonomy based on 

BLAST (NCBI) and Greengenes gene sequence alignment. Alignments with less that 

97% identity were classified no higher than the genus level. 

 



79 

 

 

Legend (continued) to accompany figure 10 bar plot. Each OTU was assigned taxonomy 

based on BLAST (NCBI) and Greengenes gene sequence alignment. Alignments with 

less that 97% identity were classified no higher than the genus level. 
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Figure 13. Heat map displaying the 50 most abundant OTUs detected in cecum digesta 

samples using 16S rRNA next-generation sequencing 

Each vertical bar represents the cecum digesta microbiota of one individual animal 

(n=57). 
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Figure 14. Weighted β-diversity UniFrac analysis-generated PCoA plots 

The plots display dissimilarities in microbial community compositions of each sample. 

Samples with highly dissimilar microbial compositions are spaced far apart from each 

other. A: PCoA plot of communities from animals receiving sham surgery with skim 

milk treatment compared to animals receiving CAL surgery with skim milk treatment. B: 

The comparison of communities from animals on GR-1 treatment versus control 

treatment (skim milk or water).  
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3.6 Probiotics co-cultured with neonatal rat ventricular 
cardiomyocytes (NVCM) attenuate phenylephrine-
induced hypertrophy 

It was hypothesized that probiotics will provide a direct beneficial effect to 

cardiomyocytes under conditions that simulate HF. To test this, probiotic treatments were 

applied to NVCM culture following the administration of PE – a hypertrophic agent. To 

assess the outcome of the probiotic NVCM co-culture, the cell surface area of the cell and 

gene expression of hypertrophic markers was measured after 24 hours of treatment. 

Except for the average cell surface area data across all biological replicates, expressed in 

µm2, the treatment-induced changes are reported as the fold change compared to the 

control. NVCM isolated from different litters may inherently grow at slightly different 

rates and sizes and therefore the fold change in surface area and gene expression was 

calculated to account for those differences. Fold change calculations are the ratio of 

treated to untreated measurements and the values represent one biological replicate. 

3.6.1 PE administration induces hypertrophy in NVCM 

In order to determine the hypertrophic response to PE administration, and to rule out that 

MRS broth affects the growth of cultured NVCM, 50 µL of sterile MRS broth was added 

NVCM culture with or without PE. Twenty four hour PE exposure induced an average 

1.41-fold increase in NVCM surface area, compared to untreated control cells. PE with 

MRS broth induced a 1.35 fold increase in cell surface area. The difference in cell surface 

area compared to both of these treatments was statistically significant (P < 0.05), but 

difference between the two PE treatments without MRS broth was not significant (P = 

0.52). Without PE, The average fold change in surface area of cells cultured with MRS 

broth compared untreated cells after 24 hours was 1.02. A student’s t-test, was performed 

to determine the difference between MRS broth-treated and untreated cells. The 

difference was not significant (P = 0.75).  

 The gene expression of the hypertrophic markers ANP and aSKA was evaluated to 

confirm a hypertrophic response in NVCM exposed to PE. The administration of PE 
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induced a 1.91-fold and 1.51-fold increase in gene expression of ANP and aSKA, 

respectively. The administration of PE with 50 µL of sterile MRS broth induced a 2.01-

fold increase in gene expression of ANP, and a 2.10-fold of aSKA. The difference in 

ANP expression with both PE and PE + MRS broth compared to untreated cells was 

statistically significant (P < 0.05), but the difference between the two PE treatments was 

not statistically significant. There was no statistically significant difference in expression 

of aSKA between PE and untreated cells (P = 0.0921), likely because of the high 

standard deviation in the PE group. There was, however, a significant difference in aSKA 

expression between MRS broth and PE + MRS broth (P < 0.01).  

The administration of MRS broth without PE produced a 0.96 and 0.79-fold change in 

gene expression of ANP and aSKA, respectively, over 24 hours, compared to untreated 

cells. A student’s t-test was performed to determine the difference in gene expression 

between untreated and MRS broth-treated NVCM. The expression of ANP and aSKA 

were both found to be not significantly different (P = 0.1160 and P = 0.1909, 

respectively). 

These results confirm that PE administration induced hypertrophy over 24 hours in 

NVCM. The presence of sterile MRS broth has no effect on the growth of NVCM. 
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Figure 15. PE induces hypertrophy in NVCM 

A: The NVCM surface area following 24 hour MRS broth culture with or without the 

administration of PE (n=5). B: The fold change in NVCM surface area compared to 

untreated (control) cells, following 24 hour MRS broth culture with or without the 

administration of PE (n=5). C, D: The fold change in gene expression of ANP and aSKA, 

respectively in NVCM (n=3). *P < 0.05 and **P < 0.01 compared to control and MRS 

broth. Error bars indicate the standard deviation. 
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3.6.2 L. rhamnosus GR-1, L. plantarum 299v, and S. salivarius 
K12 co-cultured with NVCM did not affect viability of NVCM 

NVCM co-cultured with L. rhamnosus GR-1, L. plantarum 299v, and S. salivarius K12 

had normal cell morphology after 24 hours, as indicated by the representative 

micrographs in figure 16. In addition, the cells were spontaneously beating, an indication 

(however not a prerequisite) of NVCM viability. The probiotics were also successfully 

isolated from the culture media 24 hours after co-culture with NVCM, indicating that 

they were not susceptible to the penicillin/streptomycin antibiotic solution in the NVCM 

culture medium.  

The majority of NVCM co-cultured with L. reuteri RC-14 did not survive the 24 hour 

treatment period, as evidenced by loss of cell attachment and abnormal morphology 

(figure 16). A scarce number of NVCM cultured with L. reuteri RC-14 were beating after 

the 24 hour treatment period.  The L. reuteri RC-14 cells also did not survive the 

treatment period, as they were unsuccessfully isolated from the culture medium. 
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Figure 16. Representative micrographs illustrating NVCM exposed to PE alone or with 

probiotics 

The control NVCM were either untreated, or co-cultured with MRS broth. Original 

magnification = 20× 
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3.6.3 L. rhamnosus GR-1 administration inhibits PE-induced 
hypertrophy in NVCM 

When L. rhamnosus GR-1 was co-cultured with NVCM immediately following PE 

administration, there was no increase in NVCM surface area compared to untreated cells. 

The inhibition of hypertrophy was confirmed by the gene expression of ANP and aSKA 

relative to untreated cells. The expression of both hypertrophic markers was significantly 

reduced when NVCM cells exposed to PE were co-cultured with L. rhamnosus GR-1 (P 

< 0.05). 

To confirm the presumption the live probiotic cells are required to confer an anti-

hypertrophic effect, L. rhamnosus GR-1 cells were HK by incubation at 80°C for 30 

minutes. HK GR-1 cells and live GR-1 cells had the same average cell surface area, 

however, when the data was normalized by calculating the fold change in cell surface 

area, there was a loss of anti-hypertrophic activity in HK GR-1 cells. The difference in 

gene expression of ANP in PE-treated NVCM without HK GR-1 cells and PE-treated 

NVCM with HK GR-1 cells was not statistically significant. For both ANP and aSKA, 

there was a slight increase in gene expression with HK GR-1 cells, compared to live L. 

rhamnosus GR-1. The increase, however, was not statistically significant. (P = 0.35 and 

0.36 for ANP and aSKA respectively). These data are summarized in figure 17. 
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Figure 17. L. rhamnosus GR-1 inhibits PE-induced hypertrophy in NVCM  

A: The NVCM surface area following 24 hour co-culture with GR-1 (n=5). B: The fold 

change in NVCM surface area compared to untreated (control) cells, following 24 hour 

co-culture with GR-1 (n=5). C, D: The fold change in gene expression of ANP and aSKA 

in NVCM (n=3). Unless otherwise stated, all volumes of GR-1 treatments were 50 µL (1 

x 109 CFU/mL stock culture). *P < 0.05 and **P < 0.01 compared to all other treatments. 

#P < 0.05 compared to PE + MRS broth. Error bars indicate the standard deviation. 
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3.6.4 Inhibition of the PE-induced hypertrophy in NVCM is not 
probiotic strain specific 

The attenuation of PE-induced hypertrophy by probiotics was not limited to the L. 

rhamnosus GR-1 strain. Based on the cell surface area and gene expression of ANP and 

aSKA after 24-hour co-culture, L. plantarum 299v and S. salivarius K12 inhibited the 

PE-induced hypertrophy in NVCM. There was a significant decrease in ANP and aSKA 

gene expression in NVCM co-cultured with L. plantarum 299v compared to the control 

(P < 0.05). These data are summarized in figure 18. 
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Figure 18. L. plantarum 299v and S salivarius K12 inhibits PE-induced hypertrophy in 

NVCM 

A: The NVCM surface area following 24 hour co-culture with 299v and K12 (n=5). B: 

The fold change in NVCM surface area compared to untreated cells, following 24 hour 

co-culture with 299v and K12 (n=5). C, D: The fold change in gene expression of ANP 

and aSKA compared to untreated NVCM after 24 hour co-culture with 299v and K12 

(n=3). All volumes of 299v and K12 treatments were 50 µL (1 x 109 CFU/mL stock 

culture). *P < 0.05 and **P < 0.01 compared to all other treatments. +P < 0.05 compared 

to MRS broth. Error bars indicate the standard deviation. 
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3.6.5 Msp1 is not required for inhibiting PE-induced increase in 
NVCM surface area 

Msp1 produced by Lactobacillus rhamnosus was of interest because it has shown to 

protect against ischemic injury and stress induced apoptosis in the heart and small 

intestine. We obtained a mutant msp1 knock out L. rhamnosus GR-1 strain to test 

whether or not this protein is beneficial to NVCM. When CMPG10200 was co-cultured 

with NVCM immediately following PE administration, there was a similar inhibition of 

PE-induced increase in NVCM surface area as seen with the WT L. rhamnosus GR-1 

strain (figure 19). This suggests that the protein Msp1 is not required for preventing cell 

surface area increase in NVCM exposed to PE, and therefore, gene expression analysis 

using this strain was not pursued.  
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Figure 19. L. rhamnosus GR-1 Msp1 knock out strain CMPG10200 inhibits PE-induced 

hypertrophy in NVCM  

Top: The NVCM surface area following 24 hour co-culture with CMPG10200 (n=5). 

Bottom: The fold change in NVCM surface area compared to untreated cells, following 

24 hour co-culture CMPG10200 (n=5). All volumes of CMPG10200 treatments were 50 

µL (1 x 109 CFU/mL stock culture). **P < 0.01 compared to all other treatments. Error 

bars indicate the standard deviation. 
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3.6.6 PE-induced hypertrophy in NVCM is attenuated by PCM 
treatment alone 

When NVCM were treated with GR-1 PCM void of any live bacteria, the PE-induced 

increase in cell surface area and gene expression of ANP and aSKA was significantly 

attenuated, similar to treatments with live probiotic cells (P < 0.05). I hypothesized that 

PCM contains a soluble protein that could directly prevent PE-induced increase in cell 

surface area. Various assays were performed to test this hypothesis, and the results are 

summarized in figure 20. First, Attempts were made to elucidate the size of the potential 

anti-hypertrophic factor by centrifugally filtering the PCM. While the overall surface area 

of cells indicates that both the filtrate and retentate retained an anti-hypertrophic effect, 

the fold-change in cell surface area indicates that this effect was lost.  

Second, the proteins were destabilized by heat denaturing the PCM by a 30 minute 

incubation at 80°C and by trypsin treatment. Heat denaturation resulted in a loss of anti-

hypertrophic activity of the PCM, as indicated by the fold change in NVCM surface area 

and ANP gene expression. In NVCM co-cultured trypsin-treated PCM, the attenuation of 

PE-induced increase in ANP gene expression was lost. There was an increase in PE-

induced aSKA gene expression with HD and trypsin-treated PCM compared to regular 

PCM, however the difference was not significant. Heat denatured PCM significantly 

attenuated the PE-induced increase in aSKA expression (P < 0.05). 
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Figure 20. PCM inhibits the PE-induced hypertrophy in NVCM 

A. NVCM surface area following 24 hour co-culture with various PCM treatments (n=5). 

B: The fold change in NVCM surface area compared to untreated cells, following 24 

hour co-culture with various PCM treatments (n=5). C, D: The fold change in gene 

expression of ANP and aSKA compared to untreated NVCM after 24 hour co-culture 

with various PCM treatments (n=3). Unless otherwise stated, all PCM volumes were 50 

µL. *P < 0.05 and **P < 0.01 compared to all other treatments. #P < 0.05 compared to PE 

+ MRS broth. ×P < 0.05 compared to PE + Tryp GR-1 PCM.  Error bars indicate the 

standard deviation. 
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Chapter 4 : Discussion 
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4 Discussion 

This thesis describes novel applications of probiotic lactobacilli to cardiovascular health. 

Using an animal model and in vitro experimentation, Lactobacillus rhamnosus GR-1, a 

probiotic known to transit the intestinal tract and confer benefits there and in the 

urogenital tract, was found to induce improved modeling of heart tissue following 

ligation injury simulate a heart attack. These results are the first to report that probiotic 

administration can attenuate cardiac hypertrophy and HF in a rat model, and can protect 

against hypertrophy in cardiomyocyte culture. This work adds to those studies already 

described in the existing literature showing that probiotic administration can confer 

cardiovascular health benefits via: (i) reduction of hypertension through production of 

ACE-inhibitory peptides in the gut175-177, (ii) reduction of serum cholesterol by strains 

expressing BSH174,197 or by active reduction and excretion of cholesterol 169,170 and (iii) 

their protection against cardiac ischemia/reperfusion injury179,180. 

With the incidence of CVD worldwide reaching alarming rates, there is a need for novel 

prevention and treatment strategies. The five-year 50% mortality rate for HF patients 

indicates that early detection and treatment is critical to improving outcomes. Previous to 

the research for this thesis, the use of probiotics as a treatment for HF has never been 

investigated. The present research suggests a unique application for probiotics and sheds 

light on a potential novel mechanism of action of probiotics.  

4.1 The salutary effects of probiotic administration in 
the CAL-induced rat model of heart failure 

In a preliminary 4 week-long pilot study, the benefit of two probiotic strains on the 

outcome of heart failure in rats was evaluated using the CAL model for MI-induced HF 

in rats. The CAL model differs from the I/R surgery used previously to examine L. 

plantarum 299v, in that there is no release of the infarction-inducing ligature throughout 

the duration of the study. Considering that both L. plantarum 299v and L. rhamnosus 

GR-1 demonstrated identical benefit to rats in terms of echocardiography imaging, the 

salutary effect of this probiotic therapy is likely not strain or species specific. This is an 

interesting point, considering the extremely different ecological environments from 
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which each of these strains was isolated. L. plantarum 299v is a strain isolated from the 

human gastrointestinal tract and is marketed as a treatment to relieve symptoms of 

irritable bowel syndrome128. L. rhamnosus GR-1 is a distal urethral strain that has the 

ability to reduce urogenital pathogens and is used to treat bacterial vaginosis134,183,198 and 

prevent UTI134,199-201 as well as enhance immunity in HIV patients202,203. The ability of 

these two strains to improve outcomes of HF speaks to the universality of some of the 

health benefits conferred by probiotics and their ability to affect organs throughout the 

entire body204,205. 

To follow-up on the pilot study, a 6 week-long study was performed including sham-

operated and placebo control groups using L. rhamnosus GR-1 alone. To determine the 

effect of treatment cessation, one group of animals received L. rhamnosus GR-1 for the 

initial 4 weeks post-CAL surgery and then were placed on a placebo treatment for the 

remaining 2 weeks. Identical beneficial effects of L. rhamnosus GR-1 were evident in 

this group as for the group on L. rhamnosus GR-1 treatment for the entire 6 week period. 

This suggests that the probiotic induced an effect early after surgery. Since this study did 

not include L. rhamnosus GR-1 treatment for only the final few weeks of the trial, it is 

difficult to estimate an exact timeframe. Although MI-induced damage to the 

myocardium cannot be entirely prevented, the subsequent compensatory response of 

cardiac remodeling and maladaptive hypertrophy begins as early as 2-3 days after 

injury30. Preventing the progression of this response is key for preventing the progression 

of HF16,30. Probiotic L. plantarum (WCFS1 as distinct from 299v) can induce differential 

expression of gene reporters within an hour after ingestion206, thus it is reasonable to 

imagine an effect within days for GR-1. 

The ability to improve cardiac remodeling and ventricular dysfunction in patients with 

HF, likewise, is a treatment of great interest. Using the same model for CAL-induced HF 

in the rat as this study, it has been demonstrated that ginseng, administered in drinking 

water to rats 4 weeks post-surgery, can reverse established CAL-induced hypertrophy207. 

Unlike the probiotic mechanism examined herein, ginseng has been reported to act by 

upregulating the expression of MMP-2 and MMP-9208. This is particularly interesting as 

it indicates more than one way to improve heart function. Although, to verify that these 



98 

 

effects are not somehow rat specific, it would be important to test the concept in another 

animal and in humans.  

4.1.1 The effect of probiotic therapy on cardiac function, 
hemodynamics and cardiac hypertrophy in the CAL model 
for heart failure 

Echocardiography and cardiac catheterization, widely used in the clinic to track HF, were 

used to monitor the effect of CAL surgery. With the added benefit of ex vivo analysis of 

blood and heart tissue following euthanasia of the animals at the end point of the studies, 

this provided novel insight into the effect of probiotic therapy on the outcome of HF and 

the potential clinical applications. 

Echocardiography is an essential diagnostic tool for diagnosing and tracking HF. This 

non-invasive method is used to image physical abnormalities of the heart as well as 

overall cardiac mechanical function. Indices such as FS, EF, and E/A ratio, all of which 

were analyzed here, are especially important in detecting LV dysfunction. EF values 

indicate the amount of blood that is pumped out of the ventricle with each contraction. 

Healthy values range between 55 and 60%, whereas HF patients can have EF under 

40%209. A low EF can result in inadequate blood circulation for the physiological needs 

of the body. Half of HF patients have reduced EF, while the others are patients with 

preserved EF, also known as diastolic LV dysfunction210. The latter experience normal 

systolic contraction, but abnormal ventricular filling during diastolic contraction 

(ventricular relaxation).While the outcome of HF with preserved EF is similar to that in 

patients with reduced EF, patients with the former risk misdiagnosis and lack of proper 

treatment due to the inability to detect diastolic LV dysfunction210. Accordingly, other 

parameters, such as FS and the E/A ratio are important for tracking HF.  

Both FS and E/A ratio are a measure of LV function. FS is a ratio of diastolic dimension 

of the ventricle compared to systolic. Decreased FS suggests either diastolic dysfunction 

(the LV does not properly relax), or systolic dysfunction (the LV does not contract 

enough). The E/A ratio is obtained by tracking the velocity of blood flow across the 

mitral valve into the LV. The early (E) wave represents passive filling during ventricular 
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diastole, while the atrial or after (A) wave represents active filling with atrial systole. In 

healthy patients, the E wave is slightly greater than the A wave, however in HF, the A 

wave is greater than the E wave, indicating diastolic dysfunction211. The E/A ratio, 

therefore, is useful for detecting diastolic dysfunction where EF may still be preserved. 

Serial echocardiography performed throughout these studies indicated that L. rhamnosus 

GR-1 and L. plantarum 299v administration not only attenuated the deterioration in 

cardiac mechanical function caused by CAL surgery, but essentially normalized the 

parameters that were assessed. Remarkably, animals on probiotics experienced no 

significant changes in EF, FS, or E/A ratio compared to sham operated animals over the 

duration of the studies. As demonstrated in the echocardiography data, the consequences 

of CAL-induced myocardial infarction in terms of these parameter manifested within two 

weeks post-surgery. This supports the notion that the salutary effects of probiotic 

administration on these animals occur early after CAL surgery and are maintained even 

as therapy is withdrawn.  

Abnormalities in the hemodynamic properties of the heart are a strong risk factor and 

diagnostic marker for HF. Following myocardial infarction, the damage sustained to the 

myocardium sets off compensatory changes that result in an increase in blood volume 

and pressure within the LV. At the same time, infarction also compromises the 

contractility of the LV, which results in a decreased output and increased overload of 

blood in the LV with each rhythmic cycle. These pathologies perpetuate the 

hemodynamic abnormalities of the LV, and become a major complication in HF patients. 

To monitor hemodynamic properties, catheterization is often required. Results from this 

minimally invasive technique are usually compared to echocardiograms and are used as a 

diagnostic tool for vascular and hemodynamic abnormalities. LVEDP is a reflection of 

intravascular volume and pressure that affects ventricular performance, and is an 

important parameter for tracking HF212. Elevated LVEDP is common following MI and 

may result in clinical manifestation of HF, however, due to several other confounding 

factors, it is a poor independent predictor of HF212. 
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The catheter-based hemodynamic assessment on animals after 6 weeks of sustained CAL 

indicate that the surgery induced several hemodynamic abnormalities in the LV. Similar 

to EF, the cardiac output and stroke volume was significantly reduced in animals with 

CAL, indicating an insufficient volume of blood cycling out of the heart. The LVEDP 

was also increased, confirming a manifestation of HF induced by CAL surgery. All of 

these pathologies were significantly attenuated with L. rhamnosus GR-1 administration, 

but not normalized. This is likely because the infarction of the LV causes irreversible 

damage to the heart that results in an unpreventable increase in LVEDP, regardless of any 

treatment administered post-infarction. 

Rather than evaluate the direct damage sustained to the LV by CAL surgery, this CAL 

model was designed to assess the compensatory response that initiates and progresses 

with HF. Because there was no release of the ligation or reperfusion of the coronary 

artery, the CAL surgery induced cardiac hypertrophy that is a hallmark feature of HF and 

occurs secondary to myocardial infarction. This hypertrophic response is one of the key 

therapeutic targets for HF patients, as the initially adaptive hypertrophy eventually 

becomes maladaptive, and often coincides with impaired EF, cardiac output, and 

increased LVEDP. The compromised cardiac mechanical function in HF may be 

considered a direct consequence and symptom of the maladaptive compensatory response 

that occurs after MI. The evidence of improved cardiac mechanical function and LVEDP 

in CAL animals receiving L. rhamnosus GR-1 treatment suggests that the underlying 

mechanism lies in an attenuation of the maladaptive compensatory response to MI. 

Indeed, upon assessing cardiac hypertrophy, L. rhamnosus GR-1 significantly attenuated 

the CAL-induced increase in LVW and ANP gene expression. In the four week study, a 

reduction in cardiac hypertrophy by L. plantarum 299v was also determined by 

LVW/BW assessment. This impressive outcome suggests a novel application for 

probiotics. Related studies have explored the use of probiotics as a protective treatment 

prior to a major cardiac event such as MI, while these results indicate that probiotics are 

also effective in improving the recovery following such an event. 

Clinically, these findings have major implications. The immediate intervention strategies 

for reducing the severity of ischemia during MI have improved mortality in recent years, 
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yet the risk of developing HF still remains high17. The recovery process that precedes and 

persists throughout the stages of HF is a critical therapeutic target post-MI. The 

parameters analyzed in these studies are among some of the key factors for diagnosing 

HF, as well as therapeutic targets. The current treatment strategies rely on β-blockers and 

ACE-inhibitors to reduce contractility, slow the heart rate, and reduce blood pressure210. 

While these drugs can improve the symptoms of HF, there still remains a therapy to be 

developed that will effectively prevent HF. Newly diagnosed HF patients unfortunately 

face the reality of long-term medication in order to manage the disease. HF is most 

common in adults over 65 years old213 and often these patients are already taking 

medication for other chronic conditions. The impact of chronic medication plays a 

significant role in patients’ lives. First, the cost of HF medication in addition to other 

medications, is substantial. A study assessing the cost of HF medication to outpatients in 

the US found that medication for HF alone cost $340 per month213. For patients with HF 

and other non-cardiovascular comorbidities such as chronic obstructive pulmonary 

disease and diabetes, medication costs $600 per month213. The cost of medication for 

patients with severe heart failure was significantly higher than those with mild heart 

failure, indicating that as the disease progresses, more medication is required213. For 

patients without access to health insurance and lacking personal financial resources, these 

costs stand as a strong deterrent for medication compliance. Prescribed dosing may be 

altered or stopped altogether to decrease cost. Lack of sufficient medication can 

exacerbate the progression of HF and eventually result in hospitalization and further 

economic burden. Based on the suggested retail price of a product containing one of the 

probiotic strains tested here and assuming the dosing would remain the same then the cost 

would be less than $40 per month. While it is unlikely that probiotics will entirely replace 

current treatment regimens for heart failure, combination therapy could improve the 

financing.  

Probiotics also provide additional benefits that cannot be offered by standard HF 

medications. In addition to high cost, the chronic use of HF medications such as β-

blockers and ACE-inhibitors, or any pharmacological agent, brings risk of adverse side 

effects. The most common side effects of both β-blockers and ACE-inhibitors are cough, 

dizziness, hypotension, and bradycardia214,215. Impaired renal function is a risk with 
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ACE-inhibitor medication that increases proportionally to dose. This side effects are 

often managed by additional medication which altogether complicates the issue of costs 

and risks associated with chronic medication. Again, non-compliance may become a 

serious issue for patients unable to cope with the requirements of chronic medication. The 

use of a probiotic, with very low occurrence of adverse effects and several systemic 

nutritional and health benefits, in addition to or as a replacement for pharmaceutical 

drugs, is worthy of consideration for preventing progression of HF while minimizing 

adverse effects of chronic medication. The ability of L. rhamnosus GR-1 and L. 

plantarum 299v to prevent the CAL-induced HF is an exciting finding. Neither strain has 

been evaluated for ACE-inhibitory activity, however other L. rhamnosus and L. 

plantarum strains have both been reported to produce ACE-inhibitory peptides and have 

potential in antihypertensive therapy177,216.  

4.1.2  The effect of probiotic administration on adipokine signaling 

The role of adipokine signaling in cardiovascular health is of great interest as a potential 

therapeutic target, as clinical and animal studies suggest that leptin production and 

circulation is upregulated in CVD47,52,57,59,196. Leptin, a 16 kDA peptide, is widely known 

for the important role it plays in energy metabolism and food intake. Receptors in the 

hypothalamus interact with leptin to cause an overall feeling of satiety, resulting in food 

intake inhibition and an increase energy expenditure56. Mutations in the leptin gene, ob, 

cause obesity in mice, where knock out animals are three times as heavy and have a five-

fold increase in body fat content compared to wildtype217. Similar to insulin, 

complications in leptin signaling have become a major issue with obesity. Insulin 

resistance caused by obesity drives excessive leptin production, which can also lead to 

leptin resistance53. The role of the gut microbiome in adipokine signaling has generated 

interest, due to the advances in next-generation sequencing that enable the evaluation of 

community-level differences in microbiota composition with a given state of disease218. 

16S rRNA sequencing of the gut microbiota of leptin-deficient mice has revealed a major 

reduction of the Bacteriodetes phyla and increase in Firmicutes219, similar to the gut 

microbial profile of obese individuals67,86.  The role the constituent bacteria in each phyla 



103 

 

plays in the pathogenesis of obesity is not well understood, and attempts to identify 

particular species directly involved in obesity are ongoing.  

One theory relates to the emerging concept of the microbiome-gut-brain axis. There is 

indirect and direct evidence that bidirectional signaling mediated by the gut microbiota 

occurs between the gut and the brain. Altered composition of the gut microbiota has been 

clinically reported in patients with autism and short-term improvement of symptoms are 

reported with antibiotic treatment88,96. Psychiatric symptoms of stress and anxiety trigger 

flare-ups in irritable bowel syndrome and inflammatory bowel disease patients220,221. 

Animal studies on the gut-brain axis have provided direct evidence for a role of the gut 

microbiota. Germ-free animals have lower corticosterone levels in response to stress and 

display less stress and anxiety-like behavior than animals colonized with specific 

pathogens. The colonization of commensal bacteria in the germ-free animals resulted in a 

normalization of these behaviours222. The possibility exists that similar gut-derived 

influences on the brain may involve adipocytes and leptin signaling in the hypothalamus. 

A way to investigate this would involve monitoring the leptin levels and food 

consumption of germ-free, specific pathogen, and/or probiotic-colonized mice with and 

without mutations of the leptin gene, ob. Depending on the composition or manipulation 

of the gut microbiota composition, there may or may not be a difference in leptin-related 

food consumption and energy metabolism. 

In addition to metabolism, leptin is involved in cardiovascular health. It is considered a 

deleterious hormone in HF223. High levels of circulating leptin are common in HF 

patients, and leptin activity exacerbates inflammation and hypertrophy52,57,59,196. While 

the cardiac pathologies associated with leptin are often tied to obesity, the deleterious 

effect of leptin in HF can also occur independent of obesity224. This is likely because 

leptin is not exclusively produced by adipose tissue, but also by the heart56. The study 

performed by Lam et al.180 revealed that pre-administration of L. plantarum 299v prior to 

I/R in the heart significantly reduced circulating leptin levels and ischemic injury to the 

heart. The cardioprotection conferred by L. plantarum 299v against ischemic injury was 

abolished when leptin was administered to the rats prior to the surgery. This indicates a 
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pivotal role of leptin in the mechanism of action of L. plantarum 299v against ischemic 

injury.  

In the present CAL model for HF, it is apparent that L. rhamnosus GR-1 also conferred 

an anti-leptin effect. As expected, blood analysis indicated a significant increase in 

absolute plasma leptin concentration after 6 weeks of sustained CAL. This was entirely 

blocked with L. rhamnosus GR-1 administration, resulting in positive outcomes in 

cardiac function. Theoretically, a significant decrease in leptin should cause a reduction 

in satiety and increase in food consumption. Probiotics have reduced circulating leptin 

levels in other models of disease, but it is rarely without any associated change in body 

weight or adiposity225-227. There was no observed weight gain or change in eating habits 

in animals with reduced plasma leptin in this study.  

We surprisingly saw a trend that L. rhamnosus GR-1 administration to sham-operated 

animals caused an increase in absolute plasma leptin, to the same level as CAL-operated 

animals without L. rhamnosus GR-1. As there was no indication of under-eating in these 

animals, nor any significant weight loss, presumably this increase in leptin did not result 

in any adverse metabolic outcomes. This result makes it difficult to speculate on the role 

of leptin in this model, however clinical studies indicate that the concentration of leptin 

relative to adiponectin is a more important marker for CVD than the absolute plasma 

leptin concentration 223,228. The substantial increase in plasma leptin to adiponectin ratio 

in CAL-operated animals was significantly attenuated by L. rhamnosus GR-1 

administration. The was still an increase in the leptin to adiponectin ratio in sham-

operated animals administered L. rhamnosus GR-1 compared to the control, however this 

difference was not statistically significant. It is possible that there is a healthy range of 

activity of these two adipokines that is influenced or managed by L. rhamnosus GR-1. 

Physiologically, the relationship between leptin and adiponectin is somewhat mutually 

exclusive; when one is upregulated, the other is downregulated, and the two generally 

have opposing systemic effects. However, considering the complexity of the diseases 

these adipokines are associated with, including HF, it is difficult to ascertain the cause 

and effect relationship between L. rhamnosus GR-1 and leptin activity. This study 

indicates that the attenuation of HF by probiotic administration was in part mediated by 
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reduction of leptin activity, however it cannot be determined from this data whether 

leptin levels were reduced because of the improved parameters of cardiac function and 

remodeling, or whether it was the reduction of circulating leptin by probiotics that helped 

improve the cardiac abnormalities. Future studies could include exogenous administration 

of leptin along with probiotics, or the use of leptin deficient animals. 

4.2 Exploring the mechanisms responsible for the 
attenuation of HF by L. rhamnosus GR-1 

The CAL animal studies were designed to investigate whether probiotics attenuated HF, 

and if so, whether it was via modulation of the existing gut microbiota and/or 

inflammatory signaling. In addition, mechanistic in vitro studies were performed on 

primary cardiomyocytes isolated from the neonatal rat heart.  

4.2.1 The role of cytokines 

The initial inflammatory response to MI is a pre-requisite for the healing process of 

phagocytosis and scar formation to take place, however, chronic inflammation can be 

detrimental as it causes additional cell death and promotes cardiac remodeling24. HF is 

often associated with chronic inflammation in which pro-inflammatory cytokine 

parameters are elevated in patients222. IL-6, TNF-α, fractalkine are among the several of 

the pro-inflammatory cytokines that positively correlate to severity of MI, impaired 

survival post-MI, as well as poor short-term and long-term clinical outcomes229. 

Reducing inflammation in HF patients is important for managing disease progression. 

Animal experiments have suggested that anti-inflammatory therapies might be beneficial 

in HF, however translating these findings to a clinical setting has been widely 

unsuccessful, as there is likely no one common inflammatory pathway involved230. While 

the use of probiotics as an anti-inflammatory therapy for HF has not been explored, there 

are many studies showing that certain probiotic strains, including L. rhamnosus GR-1, 

confer anti-inflammatory effects231-233. In the gut epithelium, probiotics interact with toll-

like receptors and transcription factors that regulate widespread inflammatory responses, 

resulting in benefits for gastrointestinal diseases such as inflammatory bowel disease and 

necrotizing enterocolitis137,138 and also for distal inflammatory diseases such as 
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rheumatoid arthritis139. Genetically engineering probiotics for the production of anti-

inflammatory factors, such as IL-10, is a strategy for colonic inflammation that is 

currently under clinical investigation29. 

It was hypothesized that probiotics could improve outcomes of HF in the CAL study by 

reducing systemic inflammation. At the completion of the 6 week-long study, the blood 

levels of nine pro-inflammatory cytokines (fractalkine, GRO/KC, IFN-γ, IL-1α, IL-6, 

MCP-1α, MIP-1α, RANTES, and TNF-α) were analyzed. No change in blood cytokine 

levels was found with respect to the CAL surgery, nor was there any influence of L. 

rhamnosus GR-1 treatment on serum cytokine levels. This was a surprising result, 

considering that all other indices of HF measured were positively correlated the CAL 

surgery. However, the findings corroborate with those published by Lam et al.180  who 

reported that L. plantarum 299v administration did not affect the blood levels of 22 

cytokines measured in their I/R model. A limitation in that study was that these blood-

borne factors were analyzed only at the end-point. Blood sample collection from rats can 

be troublesome and invasive, and it is possible that the associated stress will influence 

other parameters under investigation. It is recommended to not to take blood samples 

more than once every two weeks, and many popular methods, such as retro-orbital 

bleeding, require anaesthetization234. For these reasons, we decided to only collect blood 

samples by terminal bleeding at sacrifice. Without collecting blood samples before 

surgery, immediately post-surgery, or mid-trial, the serum cytokine analysis is limited to 

only end-point data, and it cannot be concluded that neither CAL surgery nor probiotics 

influence inflammation in this model.  

4.2.2 The role of the gut microbiota 

The gut microbiome is a rich ecosystem that plays a critical role in our health. Beginning 

from the early postnatal days of colonization, the gut microbiome develops into a 

synergistic organ in which a specific equilibrium is required for optimal health. The 

microbes of the gut perform a multitude of functions, including nutrient breakdown, 

vitamin and metabolite production for absorption across the intestine68, as well as 

immune system activation and modulation82.  
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The core gut microbiota develops rapidly after birth and is generally considered stable 

throughout adulthood, however perturbations such as those brought on by environmental 

stress, disease, altered diet, can drastically alter the core gut microbial profile82. Dysbiosis 

has an impact on disease and has been associated with a wide range of conditions, from 

C. difficile infections70 to autism88. Common therapies for restoring microbial equilibrium 

involve the use of nonspecific antibiotics, however the inability of these drugs to 

discriminate between ‘good’ and ‘bad’ bacteria emphasizes the need for alternative 

therapies. Some animal studies have demonstrated that probiotic therapy can restore a 

dysbiotic gut microbiota associated with obesity159, yet other studies, including human 

clinical trials, have shown that probiotic administration results in neither probiotic 

colonization nor any over dramatic changes in species composition of the gut160. 

In the 6 week-long CAL study, we performed 16S rRNA next-generation sequencing on 

gut digesta samples for with 2 main objectives: (i) to determine whether or not the gut 

microbial profile of healthy animals differs from those with HF, and (ii) to determine 

whether or not the effects of probiotic administration on the outcome of HF is conferred 

by an alteration of the gut microbial composition.  

Among the 242 OTUs identified in the 16s rRNA next-generation sequencing analysis, L. 

rhamnosus GR-1 was not detected in cecum digesta samples. In order to maximize 

accuracy and avoid erroneous OTU assignment, the cut-off for detection and taxonomic 

assignment for each sample was set at a minimum 0.5% species abundance. The fact that 

L. rhamnosus GR-1 was not detected in this analysis indicates that it represents less than 

0.5% of the total species present in the cecum. Considering the overall diversity and 

richness of the gut microbiota (1014 organisms), the daily dose of 109 CFU of L. 

rhamnosus GR-1 would account for only 0.001% of the total bacteria present, therefore 

we were not surprised that GR-1 was not detected using the Ion Torrent platform. It is 

apparent that L. rhamnosus GR-1 cause a significant change in the composition of the 

cecum microbiota, at the community level. It is possible that the phenotype observed with 

probiotic administration occurs due to a direct interaction between the probiotics and the 

heart. While bacterial translocation across the epithelial border may occur in patients with 

compromised gut barrier permeability235, it is not thought to have occurred in this model. 
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Despite the cardiac injury sustained by CAL, the rats were otherwise in good health 

without any symptoms of gastrointestinal dysfunction. Instead, it is more likely that the 

probiotics produce one or more soluble factors, such as a small protein or metabolite that 

crossed the gut epithelial barrier and entered the blood circulation. Upon reaching the 

heart, or via factors that affect the heart, this factor(s) could potentially be responsible for 

the attenuation of cardiac remodeling, hypertrophy, and HF in the rat. 

4.2.3 The direct interaction of probiotics with cardiomyocytes in 
vitro 

To further investigate the mechanisms responsible for the attenuation of HF by L. 

rhamnosus GR-1 and L. plantarum 299v, co-culture experiments were designed using 

neonatal rat ventricular cardiomyocytes (NVCM). These terminally differentiated 

primary cells are often used for in vitro HF models because of their ideal response to 

pharmacological manipulation1. It was hypothesized that the addition of live probiotic 

cells to NVCM culture would confer cardiac benefits. The initial simple assays were 

performed to determine NVCM viability after exposure to live probiotic cells. Cell lines 

that are physiologically accustomed to bacterial exposure, such as gut epithelial cells, 

gingival cells, skin cells, or vaginal cells, may be tolerant to bacterial co-culture in vitro. 

However, in culturing cells derived from otherwise “sterile” organs, great measures are 

taken to avoid bacterial exposure. In the case of NVCM, these cells are not 

conventionally exposed to bacteria. To prevent contamination, antibiotics were added to 

the culture media. We were initially unsure, therefore if either the NVCM or probiotics 

would survive the co-culture conditions, as reports of similar co-culture techniques using 

NVCM are scarce in the literature. The heart is considered a “sterile” organ, in which 

encounters with bacterial species can result in serious infections. We were impressed to 

find that the addition of 5 x 107 CFU of L. rhamnosus GR-1 to NVCM had no adverse 

effects on cell viability or function. In fact, with the daily replacement of cell culture 

media and L. rhamnosus GR-1 cells, spontaneously beating NVCM were maintained for 

as long as seven days, which is the recommended duration of culture for these primary 

cells1. The inclusion of antibiotics in the cell culture media also seemingly did not affect 

L. rhamnosus GR-1 cell viability, as its cells were cultivated from the media after 24 
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hours. These encouraging preliminary assays seemed to support the hypothesis that 

probiotics provide a direct benefit to cardiomyocytes, independent of the gut. 

To employ a model relevant to HF, PE was to induce hypertrophy in NVCM. This α-

adrenergic receptor agonist is an agent commonly used in models of cardiac 

hypertrophy35,236,237. The effect of PE on NVCM was evaluated by calculating the cell 

surface area and gene expression of the hypertrophic markers ANP and aSKA 24 hours 

after PE exposure. To closely mimic the design of the CAL studies, each probiotic 

treatment was administered to NVCM immediately following PE exposure. Physical 

analysis on the change in cell surface area indicates that L. rhamnosus GR-1, L. 

plantarum 299v, and S. salivarius K12 administration blocks PE-induced hypertrophy in 

NVCM over 24 hours, and normal NVCM morphology and function is maintained. This 

phenotype was seen for a range of concentrations of L. rhamnosus GR-1, suggesting a 

strong potency of the treatment. The anti-hypertrophic activity of L. rhamnosus GR-1 

was confirmed by a significant attenuation of the PE-increased gene expression of both 

ANP and aSKA. This supported the hypothesis that the cardiac benefits conferred by 

probiotics in vivo and in vitro is not strain specific. Interestingly, NVCM co-cultured with 

Lactobacillus reuteri RC-14, a vaginal isolate, generally did not survive the assays. 

Attempts to isolate L. reuteri RC-14 from the culture media after the 24 hour co-culture 

were unsuccessful, indicating that the co-culture conditions were not viable for L. reuteri 

RC-14 either. This showed that not all probiotics have the same mechanism of action or 

confer the same health benefits.  It is possible that the L. reuteri RC-14 co-culture is non-

viable because it produces hydrogen peroxide in culture134.  

It was presumed that live probiotic cells are required to confer salutary cardiac benefits. 

Dead L. rhamnosus GR-1 or L. plantarum 299v cells were not administered in the CAL 

studies, however in NVCM co-culture experiments, HK L. rhamnosus GR-1 cells were 

administered. L. rhamnosus GR-1 cells were removed from the PCM, washed, and 

incubated at 80°C. After unsuccessfully cultivating these cells on MRS agar, they were 

determined non-viable. A loss of anti-hypertrophic activity was noted, as determined by 

the fold change in cell surface area and ANP gene expression. However, the difference in 

the NVCM hypertrophy of live GR-1 cells compared to HK GR-1 cells was not 
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statistically significant for all parameters measured. One possible explanation is that L. 

rhamnosus GR-1 formed a heat-stable biofilm and thus undetectable live organisms were 

still present. Another is that anti-hypertrophic factors produced by L. rhamnosus GR-1 

were present despite the heat treatment. Further experiments are warranted to explain the 

results.  

It is apparent that probiotic strains can provide direct protection to cardiomyocytes 

against hypertrophy. While cardiomyocytes will not encounter such high densities of live 

probiotic cells in vivo, soluble factors produced by the lactobacilli may cross the gut 

epithelial barrier into the blood and reach the heart.  

There is evidence that L. rhamnosus GG produces a soluble protein with anti-apoptotic 

activity that is directly protective against I/R-associated injury to the heart178,179. We were 

able to obtain a knock out mutant strain for this protein in L. rhamnosus GR-1 

CMPG10200. Its absence did not affect the outcome on the NVCM surface area, as 

CMPG10200 conferred an anti-hypertrophic effect identical to the wild type L. 

rhamnosus GR-1. Based on these results, it was decided not to continue analysis on this 

mutant, but to analyze the effect of NVCM co-culture with PCM, void of live probiotic 

cells.  

The L. rhamnosus GR-1 supernatant has been studied in other settings, and found to 

contain some biosurfactant238,239. In the present studies, when lactobacilli whole cells 

were completely removed, the PCM conferred a similar effect against PE-induced 

hypertrophy in terms of cell surface area and gene expression of ANP and aSKA, albeit 

to a lesser magnitude than the whole cell preparation. This indicated that L. rhamnosus 

GR-1 produces a factor that prevented PE-induced hypertrophy in NVCM. It was 

hypothesized that the responsible factor was a protein, and treated the PCM with trypsin, 

with the result that the effects on surface area and ANP gene expression were completely 

lost. While this effect was not as marked in aSKA, there was a slight increase in gene 

expression compared to regular PCM.  

The role of proteins derived from Lactobacillus rhamnosus GR-1in preventing 

hypertrophy was further examined by centrifugal filtration based on molecular size 
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exclusion. Filtration of the PCM through 20 nm pore size filter did not result in a 

significant difference in the average NVCM surface area compared to untreated cells, 

however the fold change in surface area indicated that anti-hypertrophic activity was lost 

in both the filtrate and retentate. This suggested that there is may be more than one 

protein responsible for attenuating hypertrophy which cannot be effectively separated by 

size. It was hoped to elucidate the heat sensitivity of these potential proteins by 

incubating the PCM at a high temperature, typically heat stable proteins are smaller in 

mass. Trypsin acts indiscriminately on proteins by cleaving peptide chains, but heat 

denaturing a solution may result in variable outcomes, depending on the nature of the 

proteins present. Large proteins are typically heat sensitive and denature at lower 

temperatures than smaller ones. Small, heat stable proteins (less than 20 kDa) have the 

potential to maintain function after heat incubation and are reported to be produced by 

various lactobacilli strains240,241. In these experiments, heat denatured PCM did not 

significantly attenuate the PE-induced increase in cell surface area (fold change) or 

increase in ANP gene expression, indicating a loss in anti-hypertrophic activity. This may 

be due to the destabilization of the protein(s) by the heat treatment. There was no 

difference in gene expression of aSKA with heat denatured PCM compared to regular 

PCM. These mixed results might suggest that the PCM affects ANP expression 

differently than aSKA, or that is more than one protein involved. 

There was a difference in the magnitude of the change of gene expression in ANP 

compared to aSKA, depending on the nature of the PCM treatment. Both of these 

hypertrophic markers are expressed during prenatal cardiac development and then are 

downregulated after birth242,243. Baseline expression of ANP and aSKA in NVCM is 

higher than adult cardiomyocytes and gene expression can be induced in both cell types 

by hormonal and hemodynamic stimuli as well as pharmacological hypertrophic 

agents242. The signaling mechanisms and pathways for ANP and aSKA differ from one 

another, and they are not equally as responsive to some stimuli. As discussed earlier, 

ANP is a vasodilator that becomes active in response to hypertension242. aSKA is 

involved in muscle formation and is associated with cellular growth243. Hypertrophic 

phenotypes, therefore, may feature activated ANP expression, while aSKA is not 

induced243. The difference lies in the nature of the stimulus used to induce hypertrophy. 



112 

 

While PE has shown to induce both ANP and aSKA expression in several models of 

cardiac hypertrophy207,237,244, other factors may affect the complex and diverse signal 

transduction pathways. In the present studies, it is possible that PCM interferes with the 

signaling pathway for PE-induced aSKA gene expression, while ANP is unaffected. 

Additional assays can be used to confirm hypertrophy, such as cellular leucine 

incorporation as a marker for protein synthesis. To continue these mechanistic studies, a 

comprehensive functional analysis of the L. rhamnosus GR-1-derived PCM should first 

be performed in order to understand exactly what factors are present in the PCM. 

The main limitation to the design of the NVCM co-culture experiments was the 

availability of NVCM. These primary cells were kindly harvested and provided by the 

Karmazyn lab, however Dr. Karmazyn’s own projects understandably took precedence 

over this one. The inability to pass and store these cells, as they are already terminally 

differentiated and do not divide, meant that the use of NVCM for these co-culture 

experiments was entirely dependent on the availability of fresh cells provided with each 

harvest. The best attempts were made to match the treatments for cell surface area 

experiments to the gene expression experiments in order to confirm the anti-hypertrophic 

activity of probiotics. Given the limited availability of cells, this was not always 

achieved. With better access to NVCM, future co-culture experiments and treatments 

should include dose and time-dependent trials, and additional manipulation of the PCM. 

In spite of the limitations, these in vitro NVCM co-culture experiments provided the 

foundation for future research into exploring the mechanism behind the attenuation of HF 

by probiotics. The next step for this model would be to test the ability of lactobacilli 

factors to cross an epithelial barrier using a transwell apparatus. These experiments will 

be required in order demonstrate that the anti-hypertrophic factors derived from L. 

rhamnosus GR-1 are able to pass through the gut and access the heart. 

As schematic diagram of the potential mechanism of action of the probiotic in vivo is 

displayed in figure. This diagram summarizes the hypotheses that were tested in this 

thesis project and the remaining questions that are left to be answered. 
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Figure 21: Schematic diagram depicting the potential mechanism of action of probiotics 

at the gut epithelium.  

1. Probiotic cells arrive at the intestinal epithelium and produce a soluble factor through 

metabolic processes. 2. The soluble factor is transported across the epithelial barrier via 

active or passive transport, and enters blood circulation. 3. The portal venous system 

transports the soluble probiotic products via the liver to the heart. Along the way, there is 

potential interaction with cholesterol and bile acids, and cytokines and hormones in the 

blood. The probiotic products then may arrive at the heart via the vena cava and provide a 

direct therapeutic benefit to the heart. 
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4.3 Clinical implications and the potential for probiotic 
therapy for heart failure patients 

Probiotics represent one of the fastest growing consumer items on the functional food and 

nutraceutical market today245.  While researchers and regulatory agencies across the 

world emphasize the importance of validating efficacy claims made by manufacturers, 

there unfortunately still exists a multitude of products with unsubstantiated claims and 

misleading applications for use. In order to ensure consumer confidence, rigorous clinical 

trials are required before a probiotic product can gain approval for therapeutic use. To 

date, Health Canada has approved only one probiotic product with cardiovascular health 

claims. This product, Cardioviva™, contains 2 billion CFU of encapsulated Lactobacillus 

reuteri NCIMB 30242 and has been clinically proven to lower LDL-cholesterol levels by 

11.6% in hypercholesterolemic adults246. This product represents decades of research and 

development into validating the activity of bile salt hydrolase and cholesterol 

sequestration by lactobacilli that has been widely reported in the literature.  

Another benefit of probiotic therapy is that cases of adverse effects are very rare. For 

both Cardioviva™ and GoodBelly containing Lactobacillus plantarum 299v, the 

potential side effects are gas and bloating within the initial days of consumption. L. 

rhamnosus GR-1 has been notified and accepted by the American Food & Drug 

Administration and has been used extensively for the maintenance of a healthy vaginal 

microbiota and for lowering the risk of bacterial vaginosis and recurrent urinary tract 

infections without side effects 122,134,183,231. With the safety of probiotic use established, 

future research into the mechanism of action, strain specificity, and dose and time-course 

regimes should be prioritized.  

A plethora of probiotic products are available to consumers and it is imperative to 

thoroughly characterize the benefits of administration for HF before recommending 

particular products in a clinical setting. The data presented in this thesis hopefully 

represents a seminal point in therapy for HF. Given the relatively safe track record of 

probiotics247 it should be relatively easy to test this concept in clinical settings and verify 

that these outcomes are not rat specific.  With the extreme unlikelihood of any adverse 

drug interactions, it is possible that probiotics can be used in addition to the current drugs 
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available for HF. Furthermore, the evidence that sterile PCM can confer anti-

hypertrophic effects may provide a natural supplement route, albeit without any health 

claims. Whether or not probiotics have an additive effect to conventional HF medication 

remains to be seen. Such combination testing would be interesting to conduct in an 

animal model.   

4.4 Conclusions 

Several conclusions can be made from the results of the studies presented in this thesis, 

all of which should be considered in the wider context of novel approaches to treating 

HF: 

(1) Oral probiotic administration immediately following myocardial infarction 

reduces the severity of HF in the rat. This is based on the measurement of several 

parameters that are similarly used as indices of HF in a clinical setting. The 

administration of two different species of probiotic Lactobacillus exerted identical 

cardiac benefits, to a drug-like effect. This implies that probiotic administration 

post-myocardial infarction may be a novel treatment strategy for HF. 

(2) The salutary effect of oral probiotic administration on the heart occurs 

independent of the composition of the gut microbiota. This is based on the 16S 

rRNA gene next-generation sequencing analysis in the CAL study and the co-

culture experiments evaluating the direct interaction of probiotic cells with 

NVCM. These findings imply that probiotics function as they pass through the 

intestine and produce effects that directly affect the heart. 

(3) Lactobacillus rhamnosus GR-1 produces one or many soluble factors in broth 

culture that independently confers an anti-hypertrophic benefit to cultured 

NVCM. This suggests that the attenuation of HF by probiotic administration 

might occur primarily through a reduction of cardiac hypertrophy and ventricular 

remodeling and based on in vitro experiments, it is likely that this anti-

hypertrophic factor is a protein.  
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