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Abstract 

Surface plasmon resonance (SPR) sensing for quantitative analysis of chemical reactions and 

biological interactions has become one of the most promising applications of plasmonics. This 

thesis focuses on performance analysis for plasmonic sensors and implementation of plasmonic 

optical sensors with novel nanofabrication techniques.  

A universal performance analysis model is established for general two-dimensional plasmonic 

sensors. This model is based on the fundamental facts of surface plasmon theory. The 

sensitivity only depends on excitation light wavelength as well as dielectric properties of metal 

and dielectrics. The expression involves no structure-specified parameters, which validates this 

formula in broad cases of periodic, quasiperiodic and aperiodic nanostructures. Further 

analysis reveals the intrinsic relationship between plasmonic sensor performance and essential 

physics of surface plasmon. The analytical results are compared to the sensitivities of 

previously reported plasmonic sensors in the field.  This universal model is a promising 

qualification criterion for plasmonic sensors. 

Plasmonic optical sensors are engineered into high-performance on-chip sensors, plasmonic 

optical fibers and freestanding nanomembranes. (1) Periodic nanohole arrays are patterned on 

chip by a simple and robust template-transfer approach. A spectral analysis approach is also 

developed for improving the sensor performance. This sensor is applied to demonstrate the on-

chip detection of cardiac troponin-I. (2) Plasmonic optical fibers are constructed by transferring 

periodic metal nanostructures from patterned templates onto endfaces of optical fibers using 

an epoxy adhesive. Patterned metal structures are generally extended from nanohole arrays to 

nanoslit arrays. A special plasmonic fiber is designed to simultaneously implement multimode 

refractive index sensing with remarkably narrow linewidth and high figure of merit. A real-
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time immunoassay relying on plasmonic fiber is demonstrated. Plasmonic optical fibers also 

take advantages of consistent optical responses, excellent stability during fiber bending and 

capability of spectrum filtering. (3) Large-area freestanding metal nanomembranes are 

implemented using a novel fabrication approach. The formed transferrable membranes feature 

high-quality and uniform periodic nanohole arrays. The freestanding nanomembranes exhibit 

remarkably higher transmission intensity in comparison to the nanohole arrays with same 

features on the substrate. These three modalities of plasmonic sensors possess different 

applicability to fulfill various plasmonic sensing tasks in respective scenarios. 

Keywords 

surface plasmon resonance, refractive index sensitivity, 2-D nanostructure, periodic, 

quasicrystalline, aperiodic, template transfer, nanohole array, nanoslit, plasmonics optical fiber, 

surface topography, multimode, real-time biosensing, freestanding metal nanomembrane 
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Chapter 1  

1 Introduction 

This chapter introduces the basics of surface plasmon resonance sensing and the different 

implementation of plasmonic sensors. The advanced nanofabrication techniques used in 

plasmonics including top-down lithography and unconventional methods are also 

discussed. Based on the limitation of current plasmonic sensing techniques, we define the 

objectives and scope of this research. 

1.1 Surface Plasmon Resonance Sensing 

Surface plasmon resonance (SPR) is collective oscillation resulting from the coupling of 

electromagnetic waves with free electrons.1-2 Such interaction is bound to the 

metal/dielectric interface and leads to significant field enhancement phenomena. Surface 

plasmon (SP) waves are therefore exceptionally sensitive to dielectric properties near the 

metal surface. In turn, the refractive index change at the interface will modulate the high-

concentrated electromagnetic fields generated by SPR. This unique aspect gives rise to a 

direct means to monitor surface events which could induce dielectric changes for 

plasmonic applications.  

Typical biosensing related to genomic or proteomic applications with SPR probes rely on 

the highly specific binding of a target analyte to a previously immobilized receptor at the 

metal sensor surface.3-4 The size of the most common analytes and receptors, such as 

proteins or DNA, is in the range of a few nanometers. In consequence, the recognition 
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process takes place in a few nanometers above the metal surface, where SPR puts the 

electromagnetic field into effect. The principle advantage of SPR biosensing is its ‘label-

free’ whereby the targets maintain their original properties and functions since no labels, 

e.g. fluorescent markers or magnetic beads, are involved.5-6 As a direct consequence, 

plasmonic sensors allow for real-time monitoring binding events on the sensor surface, 

thereby providing a distinct advantage over endpoint detection methods, such as ELISA 

(enzyme-linked immunosorbent assay). This feature constitutes the key of the importance 

of plasmonic sensors in biosensing applications. 

1.1.1 Propagating Plasmon Sensors 

The advances in SPR sensing technology have been remarkable since the introduction of 

SPR biomolecular sensing based on propagating SPs on flat thin metal films.7 Meanwhile, 

the commercialization of instruments such as Biacore Inc. has significantly expanded the 

scope of plasmonic utilization. In this technique, propagating SPs are typically produced 

by illuminating thin metal films through a prism in Kretschmann configuration based on 

attenuated total reflection (ATR).8-9 The prism is used to meet momentum matching 

condition which is required to excite SPR. The analysis target could be antibodies, antigens, 

DNA, viruses, cells, bacterial toxins.10 When analyte binds to the immobilized capture 

molecules on the sensor surface, changes of the dielectric environment at the surface of 

metal film alter the magnitude and the position of recorded SPR. The shift of SPR can be 

measured by angular monitoring, wavelength interrogation, or intensity measurements.  

Combined with effective surface chemistry and advanced microfluidic systems, this well-

established technique enables real-time detection and measurement of analyte binding and 
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provides quantitative information on interaction specificity, affinity constants, reaction 

kinetics and concentration as well as identifies binding partners.11-12 The conventional SPR 

sensor has played a considerable role in life science,10 food industry 13and medical 

diagnosis14. As a mature technique, propagating SPR sensing now serves as a benchmark 

for novel nanoplasmonic sensor solutions. In the research aspect, various high-sensitive 

and miniaturized SPR sensor platforms have emerged including the phase-sensitive SPR 

sensor15, waveguide SPR sensors16-18, and optical fiber SPR sensor19-22. 

1.1.2 Nanoplasmonic Sensors 

Currently most research effort on plasmonic sensor is being put onto the development of 

plasmonic nanostructures for performing real-time and label-free analyses.4, 6, 23 In 

particular, the discovery of extraordinary optical transmission (EOT) through 

subwavelength aperture arrays in optical thick metal films has prompted new research 

activities for applying optical nanostructures in the field of plasmonic sensor.24 Dielectric 

changes around nanostructured metals produce measurable variations of the SPR peak 

position and magnitude that can be recorded to perform label-free biosensing in real time. 

In comparison to propagating SPR excited using special illumination configurations, an 

important advantage of nanoplasmonic sensors on chip is the relaxed SPR excitation 

conditions, e.g. ordinary white light under normal incident, so that instruments can be made 

more compact and portable.25 Another favorite factor of nanoplasmonic sensors is the short 

penetration depth of evanescent field wave, making the sensor less sensitive to bulk 

dielectric environment changes induced by temperature fluctuations in the solvent far from 

the metal surface. 
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The performance of plasmonic sensor depends on the material, shape, size, pattern of 

nanostructures and surrounding dielectric environment.26 The selection of an appropriate 

material is of utmost importance to performance optimization for a plasmonic device. 

However, metal suffer from intrinsic ohmic losses and interband transition in the visible 

and ultraviolet regime. To date, gold and silver are still the most commonly used materials 

in plasmonics. In contrast, plasmonic structure has much more accommodation. A variety 

of periodic metal structures such as nanoparticle,27-30 nanohole arrays,25, 31-45 and nanoslit 

arrays46-54 have been applied in plasmonic sensing. Apart from periodic nanostructures, 

quasiperiodic and aperiodic and fractal aperture arrays have also been investigated and 

drawn lots of attention in plasmonics due to the absence of periodicity.55-65 In essence, it is 

possible to engineer plasmonic structures to possess desired optical properties by means of 

state-of-the-art nanofabrication techniques. 

1.2 Fabrication of Plasmonic Nanostructures 

Advanced nanofabrication technology has been promoting the rapid growth of photonics, 

electronics, optoelectronics and nanophotonics. In particularly, the development of 

nanoplasmonics tightly relies on our ability of tailoring metal nanostructures in a 

controllable way with sub-100 nm resolution.4 The optical properties of metal 

nanostructures can be tuned conveniently by making use of the nanofabrication methods 

to adjust their size, shape and structure patterns.26, 66  Plasmonic nanostructures are 

typically created using either conventional top-down techniques or emerging 

unconventional lithography methods.4 Top-down approaches involve using advanced 

techniques such as electron-beam lithography and focused-ion beam milling to pattern 
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metal nanostructures onto planar substrates. On the other hand, unconventional fabrication 

technologies enable high-resolution patterning at low costs whereby more researchers have 

opportunities to access the plasmonics. The availability of nanofabrication techniques will 

further promote basic research of plasmonics as well as lead to new applications in a wide 

range of areas such as plasmonic sensing and more. This section will introduce in detail 

the utilization of these approaches to manufacture representative metal nanostructures that 

feature special optical properties to support surface plasmon applications such as SPR 

sensing. 

1.2.1 Conventional Top-Down Approaches 

1.2.1.1 Electron-Beam Lithography 

Electron-beam lithography (EBL) utilizes a beam of electrons focused by modified electron 

microscopes to pattern nanostructures with arbitrary shapes. The focused beam of electrons 

is scanned over a surface covered with the electron-sensitive resist, thereby altering the 

solubility of the resist. The electron exposure enables selective removal of either the 

exposed or non-exposed regions by immersing the resist in a solvent. The patterned resist 

can be used as a sacrificial layer to generate nanostructures with well-controlled geometries 

on the target through deposition processes. By the subsequent process of metallization, the 

pattern can be transformed into designed metal nanostructures for plasmonic application. 

Due to its versatility and super resolution (smaller than 10 nm),67 e-beam lithography has 

been one of favorite fabrication method for advanced research in the plasmonics.68-74 
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However, the major drawback of EBL is the low-throughput and high-cost. Each 

nanostructure is lithographically defined in a serial manner. In addition, the involved lift-

off process for metallization restricts the creation of nanostructures with high aspect ratios. 

Moreover, the dependence of the exposure effect on the substrate conductivity limits the 

choice of substrates.  

1.2.1.2 Focused-Ion Beam Milling 

Focused-ion beam (FIB) milling is a fabrication technique that impinges a focused beam 

of ions (typically Ga) onto the substrate to directly write patterns. As a maskless and high-

resolution approach, FIB milling is extensively used for direct patterning of metallic 

nanostructures. Various metal nanostructures such as nanoholes arrays,24, 39, 75-77 nanoslit 

gratings,78-79 circular slits80 and V-grooves81 have been demonstrated for research in the 

field of plasmonics by FIB.  In comparison to EBL, FIB milling provides the ability of both 

2D and 3D patterning. As a result, this advantage enables us to control the light with 

plasmonic nanostructure more flexibly.  

However some limitations also exist. Traditional FIB technique mills the structures one by 

one in the same serial manner as EBL. Therefore large-area patterning is not feasible, in 

particular, for metal nanostructures. One obvious drawback is Ga ions are implanted into 

the sample surface along with FIB bombardment.82 This can reduce the performance of 

patterned plasmonic nanostructure. 
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1.2.2 Unconventional Lithography Techniques 

1.2.2.1 Nanosphere Lithography 

Nanosphere lithography (NSL) is a bottom-up nanofabrication technique capable of 

producing well-ordered two-dimensional nanoparticle arrays.83-84 NSL begins with self-

assembly of monodisperse nanospheres to form a two-dimensional deposition mask. After 

metal deposition in plasmonic applications, the nanosphere is removed by sonication of the 

sample in a solvent, leaving behind the patterned metal nanostructure arrays on the 

substrate. These plasmonic structures are extensively used for localized SPR (LSPR) 

sensing85-88 and surface-enhanced Raman spectroscopy (SERS)89-90. Detection of tumor 

markers91 and disease-related antibody92 were demonstrated based on extinction spectra of 

visible light passing through gold nanohole array and nanoparticles formed by NSL. Using 

nanoparticle-antibody conjugates, a LSPR biosensor was developed to amplify the 

wavelength shift for more sensitive detection of low-concentration analytes.93  By 

transferring the NSL patterned metalized nanospheres to a flexible substrate, a tunable 

plasmonic structure can support the polarization-dependent optical response.94 Recently, a 

novel 3D Au nanohole arrays fabricated by NSL exhibits much improved optical properties 

performance in comparison to conventional nanohole arrays.95 

1.2.2.2 Soft Lithography 

In this rapidly emerging technology, soft elastic stamps are used to replicate features by 

printing or molding nanoscale patterns.96 Metal nanostructures are patterned using either 

of self-assembled monolayers (SAM) of molecules or polymer template as an etch mask. 
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Large-area, free-standing nanohole arrays were fabricated by soft lithography used high-

resolution composite PDMS stamps as conformable phase masks.97 Direct evidence was 

disclosed for surface plasmon-mediated enhanced light transmission through these metallic 

nanohole arrays.98 A high performance plasmonic crystal structure was formed by using 

soft lithography with an elastomeric mold and subsequent metal deposition.99 This quasi-

3D plasmonic sensor is used for multispectral sensing with submonolayer binding 

sensitivity100 and imaging of molecular binding events with spatial resolution of tens of 

microns101. Although soft lithography techniques can pattern metals over large areas, the 

resolution and aspect ratio of the formed nanostructures is limited. 

1.2.2.3 Nanoimprint Lithography 

Nanoimprint Lithography (NIL) accomplishes pattern transfer by imprint a hard stamp with 

nanoscale surface-relief features into a resist cast on a substrate at a controlled temperature 

and pressure.102 Unlike photon- or electron-induced resist reaction in traditional 

lithography approaches, NIL relies on the mechanical deformation. Thus the resolution of 

NIL is not limited by light diffraction or beam scattering, but depends solely on the smallest 

attainable features by stamp fabrication. The ultimate resolution of NIL is on the order of 

sub-10 nm.103 Being a next generation lithography candidate, NIL has the merits of high-

throughput and low-cost, thereby being suitable for large-scale patterning of plasmonic 

structures.104 Large-area subwavelength aperture arrays fabricated using NIL show high 

refractive index sensitivities.105 Resonant metal gratings fabricated using NIL was 

incorporated into micromechanical and microfluidic devices.106 Extraordinary light 

transmission was also demonstrated with subwavelength holes blocked by metal disks 
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above the opaque thin metal film.107 A metal/dielectric/metal stack “fishnet” structure 

fabricated by NIL reveals a SP induced negative refractive index at near and mid-IR 

range.108 The obvious drawback of NIL is molds often get contaminated by liquid resists 

and may be damaged due to high pressure during pattern transfer. 

1.2.2.4 Nanostencil Lithography 

Nanostencil lithography (NSL) transfers nanoscale patterns to any planar surface by direct 

deposition of materials through a stencil as shadow-mask in a single step. NSL enables 

fabrication of plasmonic metal nanostructures with high reliability and uniformity. The 

resolution and area of final pattern depend on the pre-patterned stencil which is fabricated 

on suspended membrane using EBL of FIB milling. The major advantage of NSL is that 

the stencil can be reuse to pattern the same nanostructures with high repeatability, which 

facilitates high throughput nanofabrication applications. Since no resists is involved in 

NSL, it allows for patterning nanostructures on different types of substrates109 and 

eliminate the possibility of contaminations. The presented nanostructures demonstrated a 

major improvement in resolution down to ∼50 and ∼20 nm. Meanwhile this lift-off free 

technique enables fabrication of nanostructures with high aspect ratios. The Infrared 

plasmonic nanorod antenna arrays fabricated by NSL were demonstrated to support 

spectrally sharp collective resonances in vibration spectroscopy.110 NSL can also achieve 

nanopatterning on a wide range of unconventional and non-planar substrates.111 By 

patterning plasmonic nanorod arrays on thin flexible films, their optical responses can be 

actively tuned by mechanical stretching the substrate. On the other hand, high-resolution 

patterning requires a suspended thin membrane on stencil mask which can be easily broken. 
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Furthermore, the evaporation of metal through the mask may gradually clog the apertures 

on the stencil. 

One similar technique as NSL is a lift-off free nanofabrication method, which explores the 

additive metal nanostructures left on the stencil after deposition rather than those on the 

substrate.112 This approach sacrifices the recyclability of NSL mask due to using the 

nanostructure with the stencil together. However, the suspended plasmonic nanostructures 

feature very high optical performance and targeted delivery of analytes due to throughout 

nanohole openings,113 which are both of great importance for biosensing application. The 

integrated nanoplasmonic-nanofluidic biosensors can actively transport virus analytes for 

rapid and ultrasensitive detection31 and even enable seeing protein monolayers with naked 

eye32. In addition, this integration facilitates the implementation of plasmonic sensing on 

lightweight and portable device for point-of-care applications in resource-limited 

settings.114 

1.2.2.5 Interference Lithography 

Interference lithography (IL) makes use of interference of laser beams incident from 

different directions to generate interference patterns, which consists of a periodic standing 

wave and is recorded on the photoresist. Thus IL requires no advanced exposure optics or 

photomask. IL has proven its ability to generate uniform two dimensional patterns over a 

large area.115 The obvious drawback is IL cannot produce complex shape or pattern due to 

the limitation of interference pattern. However, regular nanostructures in plasmonics 

consist of simple periodic patterns (e.g. periodic arrays of particles, holes, slits) and do not 

require arbitrary pattern generation. In this context, IL is a simple and useful method for 
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fabrication of these types of plasmonic nanostructures in large area. Nanohole arrays were 

fabricated by IL as high-resolution surface plasmon resonance sensor with linewidth-

optimized transmittance116 and spectral sensitivity117. A bimetallic nanodot array was 

obtained by a lift-off procedure after IL for tuning surface plasmon resonance.118 

Multiscale nanohole arrays in thin gold films patterned by IL combined with soft 

lithography were used to study the dispersion properties of plasmonic lattices consisting of 

near-infinite arrays and superlattices.119 With the same method, nanopyramidal gratings 

were developed to improve the sensitivities of plasmonic biosensors using the angle-

dependent resonances of molded plasmonic crystals,120-121 and anisotropic three-

dimensional nanohole arrays were used to selectively excited and manipulate surface 

plasmons on the same substrate.122 Moreover, large-scale plasmonic microarrays was 

patterned for label-free high-throughput screening of large libraries of pharmaceutical 

compounds and biomolecular interactions.123 Recently, a plasmonic gold mushroom arrays 

developed by IL exhibited refractive index sensing figures of merit approaching the 

theoretical limit.124  

1.3 Motivation  

Many excellent plasmonic sensors have been demonstrated in the field of biosensing, 

chemical imaging and spectroscopy due to present rapid advances in nanofabrication 

technologies and computational electrodynamics. Nonetheless, some unsolved basic 

theoretical problems still restrict our understanding of the intrinsic physics and principle 

behind phenomena. For instance, the plasmonic sensor performance intensively depends 

on the pattern of the nanostructures due to nature of SPR. We can certainly compare the 
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performance of different sensors using indicators such as refractive index sensitivity and 

figure of merit. However whether the experimental performance of one sensor achieves 

that it intrinsically has, is unclear. Thus a universal performance analysis model for general 

plasmonic nanostructures is of theoretic importance and highly desirable for performance 

assessment. On the other hand, extensive utilization of plasmonic sensors requires effective 

and high-quality fabrication techniques to pattern metal nanostructures in various 

modalities. Meanwhile practical application demands that plasmonic sensor systems own 

the merit of flexibility and robustness for different scenarios. The implementation of such 

plasmonic sensors would have great promises to far extend the scope of plasmonics 

utilization in biological and chemical community.  

1.4 Objectives and Outline 

The overall objectives of this thesis are (i) to address the performance analysis for general 

two-dimensional plasmonic nanostructures and (ii) to develop novel nanofabrication 

methods and platforms for plasmonic sensing. 

The main body of the thesis is organized into the independent portions of the original 

research performed towards the aforementioned objectives. An overview of the following 

chapters describes the content and link of each chapter with the objectives. 

Chapter 2 introduces the theoretical background including dielectric constant of metals, 

dispersion relation of surface plasmon and extraordinary optical transmission of nanohole 

arrays, which are necessary for understanding SPR fundamentals. 
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Chapter 3 proposes the universal performance analysis model based on momentum 

matching condition for SPR excitation. A sensitivity expression is established using the 

momentum matching condition of SPR excitation for any tow-dimensional nanohole Bravais 

lattices. The sensitivity only depends on excitation light wavelength as well as dielectric 

properties of metal and dielectrics. A series of phenomena in plasmonic sensing are 

successfully explained using this quantitative model. The nanohole arrays are proved to have 

larger intrinsic sensitivity compared to nanoparticle LSPR sensors. The expression involves no 

structure-specified parameters, which validates this formula in broad cases of periodic, 

quasiperiodic and aperiodic nanostructures. The analytical results are compared to the 

sensitivities of previously reported plasmonic sensors in the field.  

Chapter 4 describes a high-performance on-chip plasmonic nanohole array sensor fabricated 

by a novel template transfer scheme for simple and repeatable production of high-quality 

nanostructures on substrates for biosensing. By the sensitivity comparison between two 

nanohole array sensors with different morphology, the in-hole surface is verified to have higher 

sensitivity. A spectral analysis approach is also developed for improving the sensor 

performance. This sensor is applied to demonstrate the on-chip detection of cardiac troponin-

I. 

Chapter 5 describes the implementation of plasmonic optical fiber as a high-performance 

flexible nanoprobe for real-time biosensing. Plasmonic optical fibers are constructed by 

transferring periodic metal nanostructures from patterned templates onto endfaces of optical 

fibers. Patterned metal structures are generally extended from nanohole arrays to nanoslit 

arrays. By adjusting the viscosity of adhesive layers, surface topography of metal structures 

can be controlled. The specially designed plasmonic fiber can work in multimode at the same 
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time in refractive index sensing with remarkably narrow linewidth and high figure of merit. A 

real-time immunoassay relying on plasmonic fiber is demonstrated. Plasmonic optical fibers 

also take advantages of consistent optical responses, excellent stability during fiber bending 

and capability of spectrum filtering. 

Chapter 6 presents a large-area freestanding metal nanomembrane implemented using a 

novel fabrication approach. This technique is same applicable to freestanding nanoslit 

fabrication. The formed membranes feature high-quality, uniform and throughout periodic 

nanohole arrays and is transferrable to unconventional surfaces. The freestanding 

nanomembranes exhibit remarkably enhanced transmission intensity in comparison to the 

nanohole arrays with same features on the substrate. 

Chapter 7 concludes the previous work towards performance analysis and engineering of 

plasmonic sensing, along with directions of future research.   
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Chapter 2  

2 Fundamentals of Plasmonics 

In this chapter, the most important facts and phenomena of plasmonics is summarized, 

including dielectric function of metals, dispersion relation of surface plasmon, spatial 

properties of surface plasmon field and extraordinary optical transmission of nanohole 

arrays. The purpose of this introduction is to give a background for the theory analysis in 

Chapter 3 for convenience. 

2.1 Dielectric Constant of Metals  

The interaction between metals and electromagnetic fields can be explained based on 

classic Maxwell’s equations. Even metal nanostructures down to sizes of about ten 

nanometers can be successfully described without a need of quantum mechanics.1 Many of 

the fundamental optical properties of the metal are firmly understood by a plasma concept, 

where the free electrons of a metal are treated as an electron liquid with bulk number 

density n moving against a fixed background of positive ion cores. The "volume plasmons" 

will oscillate in response to an external electromagnetic field. This motion is damped by 

each other’s collisions of electrons with a characteristic frequency γ. By solving kinetic 

equation of oscillation and substituting the result into Maxwell’s equations, we arrive at a 

complex dielectric function of the free electron liquid: 

𝜺(𝝎) = 𝟏 −
𝝎𝒑

𝟐

𝝎𝟐+𝒊𝜸𝝎
                 (2-1) 
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where 𝜔𝑝 = √
𝑛𝑒2

𝜀0𝑚
 is the plasma frequency of the free electron with mass m and 

elementary charge e, 𝜀0 is the electric permittivity of vacuum. This dielectric function 𝜀(𝜔) 

known as the Drude model2 describes the dispersive properties of metal, which provides 

the basis of all discussed optical phenomena. For large frequencies close to 𝜔𝑝, 𝜀(𝜔) is 

predominantly real,  

𝜺(𝝎) = 𝟏 −
𝝎𝒑

𝟐

𝝎𝟐
               (2-2) 

which can be regarded as the dielectric function of the undamped free electron. 

2.2 Dispersion Relation of Surface Plasmon 

Surface plasmon (SP) is an important conceptual extension of the bulk plasmon.3 

Maxwell's theory shows electron charges on a metal boundary can perform coherent 

oscillation.4 The oscillation frequency ω is associated to its wave vector 𝑘 by a dispersion 

relation 𝜔(𝑘). Given the simplest configuration (Figure 2-1) of a semi-infinite plane metal 

surface with the dielectric function 𝜀𝑚 = 𝜀𝑚
′ + 𝜀𝑚

′′ ,  adjacent to a dielectric 𝜀𝑑 such as air 

or vacuum, one can obtain the following equations by solving Maxwell's equations with 

boundary conditions,  

𝒌𝒛𝟏

𝜺𝒎
+

𝒌𝒛𝟐

𝜺𝒅
= 𝟎        (2-3) 

𝒌𝒔𝒑
𝟐 + 𝒌𝒛𝟏

𝟐 = 𝜺𝒎 (
𝝎

𝒄
)

𝟐
            (2-4) 
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𝒌𝒔𝒑
𝟐 + 𝒌𝒛𝟐

𝟐 = 𝜺𝒅 (
𝝎

𝒄
)

𝟐
          (2-5) 

where 𝑘𝑧1and 𝑘𝑧2 are the respective component of the wave vector perpendicular to the 

interface in the metal and dielectric, 𝑘𝑠𝑝 is the wave vector of SP, c is the velocity of light 

in vacuum. 

 

Figure 2-1 Configuration for SPs at the interface between a metal and a dielectric. 

From these equations, the dispersion relation of SP can be written as 

𝒌𝒔𝒑 =
𝝎

𝒄
√

𝜺𝒎𝜺𝒅

𝜺𝒎+𝜺𝒅
         (2-6) 

The real part of 𝑘𝑠𝑝 is  

𝒌𝒔𝒑
′ =

𝝎

𝒄
√

𝜺𝒎
′ 𝜺𝒅

𝜺𝒎
′ +𝜺𝒅

        (2-7) 
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To get a real 𝑘𝑠𝑝
′ , one needs 𝜀𝑚

′  < 0 and |𝜀𝑚
′ | > 𝜀𝑑, which can be fulfilled in a metal such 

as Ag and Au. The imaginary part of 𝑘𝑠𝑝 is 

𝒌𝒔𝒑
′′ =

𝝎

𝒄
√(

𝜺𝒎
′ 𝜺𝒅

𝜺𝒎
′ +𝜺𝒅

)
𝟑

𝜺𝒎
′′

𝟐(𝜺𝒎
′ )

𝟐    (2-8) 

which determines the internal damping and absorption. Insert the free electron dielectric 

function (2-2) into (2-6), and we can get the characteristic surface plasmon frequency when 

𝑘𝑠𝑝 → ∞ 

𝝎𝒔𝒑 =
𝝎𝒑

√𝟏+𝜺𝒅
              (2-9) 

The dispersion curve 𝑘𝑠𝑝 lies right of the light line (see Figure 2-2), which means that 

surface plasmons have a longer wave vector than light waves of the same energy, so that 

freely propagating light cannot directly excite the SPs due to such wave vector gap. 

Therefore momentum-matching techniques such as prism or grating coupling are required 

to compensate the missing momentum for the excitation of SP oscillation. These charge 

oscillations momentarily trap an electromagnetic field which decay exponentially into the 

space perpendicular (z direction) to the surface and have their maximum at the interface, 

as is characteristic for surface waves. This implies the evanescent nature of SPs, which 

explains their sensitivity to dielectric environment at the surface.  
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Figure 2-2 Dispersion curve of SP, always lying right of the light line, with surface 

plasmon frequency 𝝎𝒔𝒑. 

2.3 Field Penetration Depth 

As mentioned above, the field intensity of the SPs decreases exponentially as 𝑒−|𝑘𝑧𝑖||𝑧| 

(Figure 2-3), normal to the surface. The penetration depth is a measure of how deep 

electromagnetic field can penetrate into a material. It is defined as the depth at which the 

field intensity falls to 1 𝑒⁄  (about 37%) of its original value at the interface. In this context,  

|𝒛𝒊| =
𝟏

|𝒌𝒛𝒊|
     (2-10) 

For metal with 𝜀𝑚, 



34 

 

𝒛𝟏 = −
𝒄

𝝎
√

|𝜺𝒎
′ +𝜺𝒅|

𝜺𝒎
′𝟐          (2-11) 

For dielectric with 𝜀𝑑 

 𝒛𝟐 =
𝒄

𝝎
√

|𝜺𝒎
′ +𝜺𝒅|

𝜺𝒅
𝟐         (2-12) 

The field distribution in z direction determined by penetration depth is of critical 

importance to plasmonic sensor performance, which will be discussed in Chapter 3. 

 

Figure 2-3 Field distribution in the z direction perpendicular to the interface, 

implying an evanescent feature.  
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2.4 Propagation Length 

The intensity of SP wave propagating along a smooth surface decreases according to 

𝑒−2𝑘𝑠𝑝
′′

𝑥. The propagation length is defined as L after which the intensity decreases to 1 𝑒⁄ . 

𝑳 =
𝟏

𝟐𝒌𝒔𝒑
′′ =

𝝀

𝟐𝝅
√(

𝜺𝒎
′ +𝜺𝒅

𝜺𝒎
′ 𝜺𝒅

)
𝟑

(𝜺𝒎
′ )𝟐

𝜺𝒎
′′     (2-13) 

The propagation length of Au and Ag in air is plotted in Figure 2-4 using the respective 

dielectric constants for Au and Ag.5 Obviously Ag has larger propagation length than that 

of Au. In the visible and near-infrared region, the larger the wavelength of exciting light is, 

the longer propagation length SPs have. 
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Figure 2-4 SPs propagation lengths of Au and Ag in air and water respectively, 

showing a strong dependence on excitation wavelength. 

2.5 Extraordinary Optical Transmission  

Among numerous plasmonic nanostructures, periodic nanohole arrays have so far been one 

of most intensively investigated structures owing to their extraordinary optical 

transmission, where the transmission efficiency can exceed unity normalized to the area of 

the holes.6-9 Such phenomena are attributed to surface plasmon resonance (SPR) induced 

by periodic surface patterns with which their spectral properties can be tuned and scaled. 

As mentioned above, these two-dimensional periodic gratings can indeed transform light 

into SPs by providing the additional momentum for the coupling process. The process can 
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be understood to have three steps: the resonant coupling of light to SPs on the input surface, 

tunneling through the holes to the output surface and re-emission from the output surface.  

 

Figure 2-5 Periodic nanohole array supporting extraordinary optical transmission. 

By applying the above momentum-matching condition to a two-dimensional square array 

of nanoholes with lattice constant P, the coupling process follows the law of momentum 

conservation: 

 𝒌𝟎 𝒔𝒊𝒏 𝜽 ± 𝒊𝑮𝒙 ± 𝒋𝑮𝒚 = 𝒌𝒔𝒑             (2-14) 

where 𝑘0 is the wave vector of the incident light with incident angle θ, 𝐺𝑥  and 𝐺𝑦  the 

reciprocal lattice vectors for a square lattice with 𝐺𝑥 = 𝐺𝑦 = 2𝜋/𝑃 , and i, j are the 

scattering orders that couple the incident light. 

√(
𝟐𝝅

𝝀
𝒔𝒊𝒏 𝜽 + 𝒊

𝟐𝝅

𝑷
)

𝟐
+ (𝒋

𝟐𝝅

𝑷
)

𝟐
=

𝝎

𝒄
√

𝜺𝒎
′ 𝜺𝒅

𝜺𝒎
′ +𝜺𝒅

        (2-15) 
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In a first approximation that the film has no significant change in the plasmon dispersion 

and no coupling between the front and back surfaces of the metal film, the transmission 

peak position 𝜆𝑚 at normal incidence (𝜃 = 0) are given by:10 

𝝀𝒎 =
𝑷

√𝒊𝟐+𝒋𝟐
√

𝜺𝒎
′ 𝜺𝒅

𝜺𝒎
′ +𝜺𝒅

      (2-16) 

This equation is widely accepted in the SPR peak determination for nanohole arrays.11-14 

According to this equation, the SPR wavelengths depend on structure of the nanohole 

arrays and dielectric properties of media. The following facts are worth noting: as the 

periodicity of nanohole array increases, its SPR peak shifts to longer wavelength for the 

same order mode; on the other hand, due to |𝜀𝑚
′ | ≫ 𝜀𝑑  at visible and near-infrared, 𝜀𝑑 

dominates the combination term of dielectric constants whereby the SPR peak has higher 

wavelength when the nanohole array is in contact with the dielectric with higher 𝜀𝑑. 
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Chapter 3  

3 Universal Optical Performance Analysis 

In this chapter, a universal model of performance analysis for nanoplasmonic sensors is 

established based on standard surface plasmon theory. From the analysis of nanohole arrays, 

a sensitivity formula is deduced by using the momentum matching condition of surface 

plasmon resonance excitation. This expression is applicable to general two-dimensional 

plasmonic nanostructures including periodic, quasiperiodic and aperiodic arrays. The 

analytical results calculated with this model are compared with the sensitivity data in 

previous publications which are subject to the same principle of surface plasmon resonance. 

3.1 Performance Characteristics 

To quantify and compare the performance of sensors, the most commonly used parameter 

is sensitivity, which indicates the sensor signal change responding to the measured quantity 

change. In surface plasmon resonance (SPR) sensing, spectral peak wavelength1-2, 

intensity3-4 and phase5-6 have all been explored as the sensor signals, among which the peak 

wavelength given as Equation (2-16) in Chapter 2 is the most commonly employed signal 

for nanohole array sensors. Typically the SPR peak position shifts with the change of 

refractive index n of the surrounding dielectric environment. Thus refractive index sensing 

sensitivity is defined as  

𝑺 =
𝜟𝝀

𝜟𝒏
     (3-1) 
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Where 𝛥𝜆 is the wavelength shift of SPR peak postion and n is the change of refractive 

index in the surrounding environment with dielectric constant 𝜀𝑑 = 𝑛2.  

In some cases, using sensitivity alone may have one drawback that a substantial broadening 

of the resonance peaks accompanies with the increase of sensitivity, thereby reducing the 

resolution and enlarging the limit of detection. On the other hand, contradiction may arise 

when we compare the sensitivities between in wavelength and energy domains.7 To 

overcome above problems and take the resolution into account, a characteristic of figure of 

merit (FOM) is defined as8 

𝑭𝑶𝑴 =
𝑺

𝑭𝑾𝑯𝑴 
          (3-2) 

where S is the refractive index sensitivity and FWHM is the full width at half-maximum of 

the corresponding SPR peak. It has been proved that the FOM in wavelength and energy 

scales are equivalent under certain condition.7 

As an important characteristic, Q-factor or quality factor has been extensively used to 

describe how damped a resonator is in mechanics, electronics and optics. Q-factor is 

defined as 

𝑸 =
𝝀

𝑭𝑾𝑯𝑴
         (3-3) 

where λ is resonant wavelength. However, in the research of SPR, it has been less used, 

compared to sensitivity and FOM. We will demonstrate it is of equal importance in the 

following analysis. 
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3.2 Performance Analysis of Nanohole Array Sensors 

Owing to the simplicity of nanohole arrays, numerous configurations and geometries have 

been studied for SPR sensing applications. Given the above non-analytical characteristics, 

the performance of nanohole array sensors has generally been evaluated by various 

experiments and numerical simulations. Provided certain metallic material, nanohole array 

sensors with various configurations in terms of periodicity and pattern, e.g. square and 

hexagonal arrays, could have very distinct optical response. Overall, there is no obvious 

method to choose a configuration to maximize performances. Since different geometry 

parameters always couple together in sensor performance determination, it is complicated 

to optimize all of them at the same time. Therefore a structure-related performance analysis 

model could not be applicable to different geometries. This is the reason why most 

sensitivity analyses are based on experience expression and numerical methods. A 

performance model without explicit structure parameters might be applicable to various 

geometries of nanohole arrays.  

3.2.1 Analytical Performance Modeling 

In mathematics, if peak position 𝜆𝑚 from Equation (2-16) is directly differentiated against 

the refractive index n using Equation (3-1), the sensitivity S would retain the structure 

parameters of P, i and j. Since these parameters exist as the same combination in S as that 

in 𝜆𝑚, they can be cancelled together by dividing the sensitivity S to 𝜆𝑚, i.e. 
𝑆

𝜆𝑚
. Beyond 

mathematics, 
𝑆

𝜆𝑚
 should have an explicit physical origin to be a qualified characteristic. 
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Dividing FWHM upon numerator and denominator of 
𝑆

𝜆𝑚
 , the result is exactly equal to 

𝐹𝑂𝑀

𝑄
, which reveals its intrinsic meaning from a physical point of view. 

By the derivation in Appendix I,  

𝑭𝑶𝑴

𝑸
=

𝑺

𝝀𝒎
=

𝜺𝒎
′

𝒏(𝜺𝒎
′ +𝒏𝟐)

              (3-4) 

This expression suggests the ratio of sensitivity to peak wavelength depends on the 

dielectric properties of the metal and analyte. If the device is positioned in air (n = 1), 

𝑺

𝝀𝒎
=

𝜺𝒎
′

𝜺𝒎
′ +𝟏

       (3-5) 

For all the other two-dimensional Bravais lattices of nanoholes including oblique, 

rectangular, rhombic, and hexagonal arrays, as well as nanoslit arrays, the same relation 

can be obtained since all of them has similar expression for SPR peak wavelength, e.g. 

𝜆𝑚 =
𝑃

√
4

3
(𝑖2+𝑖𝑗+𝑗2)

√
𝜀𝑚

′ 𝜀𝑑

𝜀𝑚
′ +𝜀𝑑

 for hexagonal nanohole arrays9 and 𝜆𝑚 =
𝑃

𝑖
√

𝜀𝑚
′ 𝜀𝑑

𝜀𝑚
′ +𝜀𝑑

 for 

nanoslit arrays10, in which geometric and dielectric parameters do not convolute with each 

other. This result suggests the ratio of sensitivity to peak wavelength is independent of the 

geometries of two-dimensional periodic nanohole arrays. 
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3.2.2 Analytical Expression of Performance Characteristics 

From Equation (3-4), the sensitivity of nanohole array sensors can be explicitly defined in 

an analytical format, 

 𝑺 =
𝝀𝒎

𝒏
⋅

𝜺𝒎
′

(𝜺𝒎
′ +𝒏𝟐)

          (3-6) 

This sensitivity expression explains why nanohole arrays of different patterns on the same 

metallic material with the same resonance wavelength show very similar sensitivities. The 

sensitivities plotted for Au and Ag in Figure 3-1 show a roughly linear increase as the peak 

position is shifted to longer wavelength. Despite different dielectric properties they own, 

Au and Ag have almost equal sensitivities in the same dielectric. Given |𝜀𝑚
′ | ≫ 𝑛2  at 

visible and near-infrared region, we can safely give an approximation 𝑆 ≈
𝜆𝑚

𝑛
, which 

confirms the SPR peaks at the same wavelength show higher sensitivity in the analyte with 

lower refractive index. In particular, 𝑆 ≈ 𝜆𝑚  in air (n=1) and 𝑆 ≈ 0.75𝜆𝑚  in water 

(n=1.33).  This implies that measurements in air are more sensitive compared with that in 

aqueous solution. 
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Figure 3-1 Sensitivity of Au and Ag nanohole array sensors in air and water 

respectively.  

In addition, this analytical format of sensitivity can give us more insight into the interaction 

in plasmonic sensing. Intuitively, in the case of homogenous dielectric analyte, the 

sensitivity depends on the field distribution inside the dielectric in all three spatial 

dimensions. Since electromagnetic field of surface plasmon (SP) decays along the interface 

as well as in the perpendicular direction, a proper model should simultaneously consider 

both factors. The attenuation of SP field along both directions is respectively characterized 

by penetration depth and propagation length, which both show strong dependence on the 

SPR wavelength 𝜆𝑚 as discussed in Section 2.4. The longer penetration (propagation) of 
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the field at higher SPR wavelength provides a larger sensing volume to refractive index 

changes, thereby increasing the sensitivity. Therefore the presence of 𝜆𝑚 in Equation 3-6 

originates from the overall field attenuations. Since the SPR linewidth is related to 

propagation length, i.e. longer propagation length implies a smaller FWHM, this sensitivity 

expression intrinsically contains the partial factor of FWHM which is involved in 

traditional FOM definition.  

In the perpendicular direction, the field is distributed between the metal and dielectric 

according to Equation 2-11 and 2-12 in Chapter 2. It is their relative dielectric property that 

actually governs how SP field penetrates into the dielectric analyte, thereby determining 

the sensor’s sensitivity. Thus, a relative penetration is defined by normalization of scalar 

penetration depth 𝑧𝑖  as  

𝒑𝒊 =
𝒛𝒊

∑ 𝒛
     (3-7) 

which can represent the relative fraction of the SP field in the media. Accordingly, for 

dielectric, 

 
𝒛𝟐

𝒛𝟏+𝒛𝟐
=

𝒄

𝝎
√

|𝜺𝒎
′ +𝜺𝒅|

𝜺𝒅
𝟐

−
𝒄

𝝎
√

|𝜺𝒎
′ +𝜺𝒅|

𝜺𝒎
′𝟐 +

𝒄

𝝎
√

|𝜺𝒎
′ +𝜺𝒅|

𝜺𝒅
𝟐

=
𝜺𝒎

′

𝜺𝒎
′ +𝒏𝟐

   (3-8) 

Therefore the dielectric constant combination in Equation 3-6 comes from the relative field 

distribution in the perpendicular direction to the surface. 
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In brief, this analytic expression defines plasmonic sensitivity based on the primary 

physical facts of both electromagnetic field and dielectric property of media, rather than 

variable nanostructure geometry. 

3.3 Comparison to Localized SPR Sensors 

SPs on nanoparticles and in nanohole arrays clearly have the same physical origin and are 

both sensitive to the refractive index changes. Their sensing performance has been 

analyzed from simplified theoretical models for localized SPR. The sensitivity of localized 

SPR can be derived from a dipole polarizability resonance condition of an ellipsoidal 

particle in the quasistatic limit as,11  

𝒔𝑳𝑺𝑷𝑹 =
𝟐𝜺𝒎

′

𝒏
𝒅𝜺𝒎

′

𝒅𝝀

         (3-9) 

In this case, the sensitivity of nanoparticles is mainly dominated by the dielectric property 

and spectral position of the localized SPR, whereas the shape of the nanoparticle plays a 

secondary role, selecting the resonance wavelength. According to the above analysis, 

similar claim is valid for the case of nanohole array sensors, in which the structures of 

nanohole arrays serves the same purpose. The theoretical sensitivities of nanohole arrays 

and nanoparticles are plotted in Figure 3-2. The sensitivity of nanohole arrays is much 

higher in the visible range, whereas the nanoparticles’ sensitivity is gradually approaching 

parallel to that of nanohole arrays at near-infrared. Hence the nanohole array sensors are in 

theory the better choices in terms of sensitivity in comparison to those based on 

nanoparticles. 
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Figure 3-2 Theoretical sensitivities of nanohole arrays and nanoparticles in air. 

3.4 Sensitivity Qualification  

Sensitivities of plasmonic sensors have been independently measured by many experiment 

and numerical simulations using various two-dimensional metal nanostructures. Our 

theoretical results can be evaluated using those plasmonic sensors which are subject to the 

same principle of surface plasmon resonance. Thus a series of published data about 

sensitivity listed in Table 3-1, are chosen to compare with our theoretical values.   
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Table 3-1 Experimental or simulated sensitivities of two-dimensional plasmonic 

sensors 

Publication  

SPR 

wavelength 

(nm) 

Metal/ 

Dielectric 

Sensitivity 

(nm/RIU) 

Large-scale plasmonic microarrays for label-

free high-throughput screening12 

880 Au/Water 615 

Seeing protein monolayers with naked eye 

through plasmonic Fano resonances13 

845 Au/water 690 

Integrated nanoplasmonic-nanofluidic 

biosensors with targeted delivery of analytes 

14 

889 Au/water 630 

Attomolar protein detection using in-hole 

surface plasmon resonance15 

720 Au/water 650 

On-chip surface-based detection with 

nanohole arrays16 

606 Au/water 333 

Nanoholes as nanochannels: flow-through 

plasmonic sensing17 

620 Au/water 324 

A miniaturized sensor consisting of 

concentric metallic nanorings on the end 

facet of an optical fiber18 

1200 Au/Alcohol 900 
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Focused ion beam fabrication of metallic 

nanostructures on end faces of optical fibers 

for chemical sensing applications19 

670 Au/water ~500 

EOT or Kretschmann configuration? 

Comparative study of the plasmonic modes 

in gold nanohole arrays 20 

710 Au/water 530 

Screening plasmonic materials using 

pyramidal gratings21 

650 Ag/water 410 

Quantitative multispectral biosensing and 1D 

imaging using quasi-3D plasmonic crystals3 

1023 Au/water ~700 

Periodic nanohole arrays with shape-

enhanced plasmon resonance as real-time 

biosensors22 

850 Au/water 600 

Template-stripped smooth Ag nanohole 

arrays with silica shells for surface plasmon 

resonance biosensing23 

700 Ag/water 450 

Linewidth-optimized extraordinary optical 

transmission in water with template-stripped 

metallic nanohole arrays2 

720 Ag/water 494 

FDTD in reference 2 720 Ag/water 524 

Nanohole-based surface plasmon resonance 

instruments with improved spectral 

resolution quantify a broad range of 

antibody-ligand binding kinetics24 

710 Au/water 481 
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Real-time full-spectral imaging and affinity 

measurements from 50 microfluidic channels 

using nanohole surface plasmon resonance25 

710 Ag/water 470 

Ultrasmooth metallic films with buried 

nanostructures for backside reflection-mode 

plasmonic biosensing26 

700 Au/water 410 

Spectral sensitivity of two-dimensional 

nanohole array surface plasmon polariton 

resonance sensor27 

1532 Au/ water 1520 

Development of a mass-producible on-chip 

plasmonic nanohole array biosensor28 

740 Au/ water 495 

Rational design of high performance surface 

plasmon resonance sensors based on two-

dimensional metallic hole arrays29 

975 Au/ water 754 

High-resolution surface plasmon resonance 

sensor based on linewidth-optimized 

nanohole array transmittance30 

1510 Au/ water 1022 

Sensitive biosensor array using surface 

plasmon resonance on metallic nanoslits10 

805 Au/water 668 

Comparisons of surface plasmon sensitivities 

in periodic gold nanostructures31 

830 Au/water 650 

Intensity sensitivity of gold nanostructures 

and its application for high-throughput 

biosensing32 

790 Au/water 575 
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Optimization of periodic gold nanostructures 

for intensity-sensitive detection33 

666 Au/water 478 

Enhancing surface plasmon detection using 

template-stripped gold nanoslit arrays on 

plastic films34 

693 Au/water 451 

Optofluidic platform for real-time monitoring 

of live cell secretory activities using Fano 

resonance in gold nanoslits35 

680 Au/water 470 

Plasmonic nanohole arrays for monitoring 

growth of bacteria and antibiotic 

susceptibility test36 

625 Au/water 409 

Plasmonic gold mushroom arrays with 

refractive index sensing figures of merit 

approaching the theoretical limit37 

1250 Ag/water 1015 

Large-area subwavelength aperture arrays 

fabricated using nanoimprint lithography38 

720 Ag/water 513 

The above published sensitivities and the results calculated from our sensitivity formula 

are plotted against SPR wavelengths (Figure 3-3). It is observed that the experimental 

sensitivities are somewhat lower than theoretical values at the visible range. This 

degradation can be attributed to coupling effects from substrates and radiation damping 

induced by nanostructures in real cases, which have been both ignored in our model. In 

addition, some experimental peaks are red-shifted compared with the predicted values due 

to Fano-type interaction.39  Therefore the sensitivity of experimental peak should be 

compared to that of a somewhat lower wavelength in our model, which would make our 
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prediction more precise. On the other hand, both sensitivities coincide well with each other 

in the near-infrared. Overall, our performance model predicts the range and trend of 

sensitivity change. 

 

Figure 3-3 Theoretical and experimental sensitivities of two-dimensional 

nanoplasmonic sensors. 

3.5 Generalization to Quasiperiodic and Aperiodic 

Structures 

Revisiting the above sensitivity formula for periodic nanohole array sensors, we find it not 

only provides a geometry-irrelevant expression but also discloses the essence of plasmonic 
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sensing. Since the wave vector of SPs is always larger than that of light with the same 

frequency, a momentum gap exists between the SPs and light. An additional momentum G 

is always required to meet the resonance condition for the coupling of photons into SPs 

according to,  

𝒌𝒊𝒏𝒄 + 𝑮 = 𝒌𝒔𝒑
′      (3-10) 

where G is the reciprocal lattice vector for Bravais lattices. Above sensitivity analysis 

reveals it is SPR itself that essentially determines the sensor performances regardless of 

the way to produce it. Metal nanostructures only act as a coupling media to generate SPR 

rather than directly determine the final performances.  

Beyond the Bravais lattices, quasicrystals (with long-range order but no short-range order) 

and aperiodic aperture arrays (without long-range or short-range order) were also 

demonstrated to support SPR.40-46 Instead of reciprocal lattice vectors, quasicrystals and 

aperiodic structures are characterized by discrete Fourier transform vectors in their 

structure factors. The discrete Fourier transform vectors of quasicrystals have unusual n-

fold rotational symmetry with n=5, 8, 12, and so on; the structure factor of aperiodic 

apertures possesses even more unusual rotational symmetry. Sharp transmission 

resonances appear at frequencies that closely match these discrete Fourier transform 

vectors. These vectors in reciprocal space are in fact equal to different wave-vectors 𝑘𝑠𝑝
′ , 

corresponding to various SPR peak wavelengths in normal incident.43 In this context, we 

can always eliminate these geometry-related parameters, i.e. general lattice vector for 

quasicrystals and aperiodic arrays, in a same manner as the deduction of sensitivity in 

Appendix 1. Hence our sensitivity expression is applicable to any two-dimensional 
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aperture arrays that have discrete Fourier transform vectors in their geometrical structure 

factor. It is expected that some non-periodic nanohole arrays would equally possess good 

optical performance thereby being used for sensing application. 

3.6 Conclusions 

In conclusion, a universal model of performance analysis for nanoplasmonic sensors is 

developed based on standard surface plasmon theory. Beginning with the analysis of 

nanohole arrays, a sensitivity formula is established using the momentum matching 

condition of SPR excitation for any tow-dimensional nanohole Bravais lattices. This 

expression includes no geometric parameters that normally appear in previous analytical 

methods, but only essential elements involved in SPR sensing. This quantitative model 

successfully explains a series of phenomena such as (1) sensitivity roughly linearly 

increase as the SPR position shifts to longer wavelength; (2) different patterns with the 

same SPR wavelength show very similar sensitivities; (3) nanostructures with different 

metals have similar sensitivity at the same wavelength; (4) SPR show higher sensitivity in 

the analyte with lower refractive index. The previously published sensitivity data are 

compared with the analytical results calculated with this expression, which is proved to be 

valid in performance analysis for plasmonic sensors. The comparison between nanohole 

arrays and nanoparticle LSPR sensors manifests the former has larger intrinsic sensitivity. 

The expression is further extended to general two-dimensional plasmonic nanostructure 

including quasiperiodic and aperiodic arrays.  
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Chapter 4  

4 Plasmonic Nanohole Array Sensors Fabricated by 

Template Transfer 

Nanohole array type of surface plasmon resonance sensors provides a promising platform 

for label-free biosensing on the surface. For their extensive use, an efficient fabrication 

procedure to make nanoscale features on metallic films is required. We develop a simple 

and robust template-transfer approach to structure periodic nanohole arrays in optically 

thick Au films on poly(dimethylsiloxane) (PDMS) substrates. This technique significantly 

simplifies the process of sensor fabrication and reduces the cost of the device. An approach 

of spectral analysis is also developed for improving the sensor performance. The sensitivity 

of the resulting sensor to refractive index changes is 522 nm/RIU (refractive index unit) 

and the resolution is improved to 2 × 10-5 RIU, which are among the best reported values 

for localized surface plasmon resonance sensors. We also demonstrate the limit of detection 

of this sensor for cardiac troponin I. 

4.1 Introduction 

Surface plasmon resonance (SPR) sensing has become a widely applied optical approach 

to monitor biomolecular events not only for life science research, but also for drug 

discovery.1 In principal, the resonant spectra of SPR vary with changes of the local 

refractive index induced by molecular binding. The common way of exciting SPR is to 

illuminate a thin Au film through an optical prism in a Kretschmann configuration.2 
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Commercially available SPR systems enable label-free interaction analysis in real-time and 

offer quantitative information on specificity, concentration, kinetics and affinity. Beyond 

propagating SPR, plasmonic nanostructures such as nanohole arrays on metal films can 

launch SPR.3-4 In contrast to complicate optical design and precise alignment in prism-

based SPR sensors, nanohole arrays exhibit enhanced extraordinary optical transmission 

(EOT) from normally incident light using a simple microscope setup.5 The merits of 

nanohole arrays also include small detection volume and tuneable resonant wavelength.6-8  

Nanoplasmonics has been developing fast because of recent nanofabrication 

advancements.9-10 Existing techniques for fabrication of nanophotonic patterns can be 

classified into two main categories. One category is traditional methods including focused 

ion beam (FIB) milling,11-13 electron beam lithography (EBL)14-15 and deep UV 

lithography16. Performed with advanced techniques and large equipment, these methods 

are robust and can create structures with high resolution. However they are either time-

consuming or require complex and expensive systems. On the other hand, template 

approaches involving soft lithography,17 nanoimprint lithography,18-19 colloidal 

lithography20 and so on, can make nanostructures in a more efficient and cost-effective way 

due to the use of templates with relief patterns. Besides, recent developments in the 

coupling between plasmonic and photonic modes also show great promise in sensing 

application.21-23 All of these techniques have facilitated fundamental studies of 

nanoplasmonics and also demonstrated the potential of sensing capability enhancement. 

However, applications to date have been mostly limited to model systems partly due to the 

high cost or low throughput of fabrication schemes. The field would greatly benefit from a 

simpler fabrication method without using any exposure tools, photomasks, or soft stamps.  



65 

 

Solid objects of different size, shape and composition have been transferred to various 

substrates by kinetically controlling adhesion between different interfaces.24 This 

technique offers the capability to transfer nanostructures with high fidelity and productivity. 

However, the same approach has not been realized in the field of nanoplasmonics. Here for 

the first time we combine template transfer with precisely patterned Si substrates to 

fabricate nanohole array plasmonic sensors. This method enables creating intact and 

uniform nanoholes by only two simple steps. Sensors fabricated by the template transfer 

approach are featured in high sensitivity. Another merit is the template can be repeatedly 

used many times, thereby reducing the cost and time consumption of nanofabrication. In 

addition, this process does not require any additional resist processing, etching, or lift-off. 

Thus it can generate fresh surfaces without any contamination compared to other 

nanofabrication techniques based on chemistry processing. This is of great benefit 

especially in biological applications. Although our current work is focused on 

subwavelength holes in continuous Au films, the template transfer technique is equally 

applicable to fabrication of other nanoplasmonic architectures such as nanoparticles and 

nanorings. 

4.2 Experimental Procedure 

4.2.1 Fabrication of Si Template 

The Si template of the nanohole array was patterned using EBL followed by deep ion 

etching (as shown in Figure 4-1a). A 100 nm thick poly(methyl methacrylate) (PMMA) 

resist was spin-coated on a Si wafer. An e-beam lithography system (LEO 1530 equipped 

with a nanopattern generation system) was used to pattern square arrays of circular 
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nanoholes with 200 nm diameter and 600 nm pitch on the PMMA layer. The features were 

then transferred to the Si substrate using a deep reactive ion etching machine (Alcatel 

601E). After removing the PMMA mask in piranha solution (3:1 mixture of concentrated 

sulfuric acid and 30% hydrogen peroxide), the template is ready for Au deposition and 

transfer. Figure 4-1b shows the scanning electron microscope (SEM) image of the 

fabricated template. It is noted that alternative techniques other than EBL can also been 

employed to fabricate the template. 

 

Figure 4-1 (a) Schematic for the fabrication process of Si templates. (b) Scanning 

electron microscope (SEM) image of the Si template with circular pits. Scale bar, 2µm. 

The diameter of the nanoholes and the periodicity of the array are 200 and 600 nm, 

respectively. 
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4.2.2 Transfer of Au Nanohole Arrays 

Nanohole array sensors are produced by template transfer of featured Au films, shown in 

Figure 4-2a. The template was thoroughly rinsed with ultrapure water and dried with N2. 

A 100 nm thick Au film was then deposited onto it without adhesion layer at a deposition 

rate of 0.1 nm/s using electron-beam evaporation at ~5 × 10-6 Pa. Au nanohole arrays 

formed on the top surface of the template were then transferred to PDMS (Sylgard 184, 

Dow Corning) substrates. The use of PDMS is due to its optical transparency, simplicity 

of fabrication, low cost and biocompatibility. PDMS pre-polymer mixture (1:10) was cast 

on the patterned Au film and cured at room temperature to avoid distortion after 

polymerization. Because the cured PDMS is soft, cracks or wrinkles may occur on the 

pattern during peeling it from the template. Hence a microscope slide was attached to the 

PDMS layer as a backplane to prevent the film bending during the stripping process. Due 

to the weaker adhesion of Au to the Si surface than PDMS, detaching PDMS from the 

template resulted in transfer of the Au film with nanohole arrays onto the PDMS substrate. 

Besides curing PDMS, we can also transfer the nanohole array with a flat PDMS slice by 

means of conformal contact to and removal from the template. In this method, the adhesion 

between the PDMS slice and the Au film depends on the separation rate. Peeling the 

structure away from the template at a sufficiently high velocity (typically faster than 10 

cm/s)24 leads to enough strong adhesion that can lift the Au film away from the template. 

Numerous trials here have confirmed that it is unnecessary to utilize special chemical or 

physical treatments to enhance the adhesion between Au films and PDMS slices. Figure 

4-2b and c show the uniformity and roundness of the transferred Au nanohole array with 
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various magnified views. Because Si wafer can be very smooth, patterned Au surfaces have 

smoothness similar to that of the template, which can increase the propagation length of 

surface plasmons.25 After cleaning with Au etchant followed by piranha solution, the 

template can be reused for a new cycle of transfer without damage. Currently the transfer 

is performed manually in the simplest implementation. For large scale fabrication, 

mechanical transfer tools such as liner and rotate stages can be assembled to manipulate 

substrates and templates, which can accomplish better control in terms of efficiency and 

quality. In combination with a large template capable of forming several tens of sensors 

for one time Au deposition, the cost can be reduced to less than $1 per nanohole array 

sensor. 
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Figure 4-2 (a) Schematic for transfer of Au nanohole arrays from the Si template to 

PDMS substrates. (b) SEM image of the nanohole array transferred to PDMS. The 

scale bar is 2 µm. The inset shows an optical microscope image of total 40,000 holes 

in a 120 ×120 µm2 area of Au film. (c) Enlarged SEM image. The scale bar is 200 nm. 

4.2.3 Optical Measurement 

Figure 4-3 shows the schematic of the setup for transmission measurement at normal 

incidence. A halogen light source was provided to illuminate the Au nanohole array 
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through a microscope objective (10×, NA = 0.25). The transmitted light was collected 

under normal excitation with a fiber-coupled spectrometer (USB4000, Ocean optics). To 

examine the bulk sensitivity of Au nanohole arrays to changes in the refractive index, 

optical transmission spectra were measured as the sensor surface was covered with various 

concentrations (5-20 wt %) of aqueous sucrose solution with refractive indexes ranging 

from 1.3403 to 1.3639. 

 

Figure 4-3 Schematic of the measurement setup to record the transmission spectra 

at normal incident. 
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4.2.4 Cardiac Troponin-I Immunoassay 

To demonstrate the performance of the nanohole array as a label-free biosensor, the cardiac 

troponin I (cTnI, 23876 Da, Sigma) was chosen as the analyte. The immunoassay for cTnI 

is schematically shown in Figure 4-4. Nanohole array sensors were firstly incubated in a 1 

µM anti-cTnI (~26 kDa, Sigma) for 1 hour. Anti-cTnI physically adsorbed onto the Au 

surface at room temperature. 1% Bovine serum albumin (BSA, Sigma) was then used to 

block the surface to eliminate the nonspecific binding. The immunoreaction was performed 

by incubating the sensor in a 40 nM cTnI at room temperature for 1 hour. Before each 

spectrum acquisition, the sensor surface was washed with deionized water to remove the 

unbound residues and dried with N2. 

 

Figure 4-4 Schematic of immunoassay with the nanohole array sensor for cTnI. 
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4.3 Results and Discussions 

4.3.1 Optical Properties 

The sensing principle of plasmonic devices bases on the SPR sensitivity to the refractive 

index change adjacent to the metallic surface. Figure 4-5a and b show optical transmission 

spectra of these two types of Au nanohole arrays respectively, in sucrose solutions with 

different refractive indexes. Each curve was obtained by averaging 100 original spectra in 

order to decrease the noise level. It is noteworthy that the transmission efficiency for 

normal incidence is typically low due to diffraction losses. The multiple transmission 

maxima and minima originate from the couplings of the incident light and the surface 

plasmons on both sides of the Au nanohole film.26 The positions of these peaks and troughs 

depend on array periodicity, film thickness, hole size and shape, as well as the refractive 

index of the surrounding medium. As the refractive indexes increase, the peak red-shifts 

occur at wavelengths of 765 nm and 743 nm for two sensors transferred by two different 

methods, respectively. These spectral shifts arise from the surface plasmons at the interface 

between Au and the aqueous solution. In contrast, the peaks around 570 nm almost remain 

at the same positions because they are subject to the SPR at the interface between Au and 

the PDMS substrate, which is not exposed to the sucrose solution. The minima near 650 

nm in both cases are associated with Wood’s anomalies due to light diffracted parallel to 

the Au surface and also remain stationary for refractive index changes.26 
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Figure 4-5(a) Transmission spectra of the nanohole array (hole diameter: 200 nm, 

periodicity: 600 nm) in a 100 nm Au film stripped by curing PDMS. The refractive 

indexes of sucrose solution covered on the Au film vary from 1.3403 to 1.3639. The 

SEM inset demonstrates the high magnified nanohole structure. After curing, PDMS 

blocks nanoholes, keeping their inner surfaces from external environment. (b) 

Transmission spectra of the nanohole array transferred by direct contact with a 

PDMS slice with the same feature as that in (a). The inset shows the enlarged SEM 

image of a hollow hole. (c) Bulk refractive index sensitivity measurements of the 

fabricated nanohole arrays. By fitting points of spectral shifts to linear curves, the 

bulk sensitivities are determined to be 167 nm/RIU for the peak at 765 nm in (a) and 

522 nm/RIU for the peak at 743 nm in (b) respectively. 
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To optimize the sensing performance, we compared the sensitivities between nanohole 

array sensors transferred by curing PDMS and those transferred by contacting PDMS 

slices. Fig. 3c indicates that the measured spectral shifts of these peaks linearly respond to 

refractive index changes, as shown in Figure 4-5a and b. The measured spectral sensitivity 

of this transmission maximum is 167 nm/RIU for the nanohole array stripped after curing 

PDMS. However, the sensor formed by direct contact and detachment shows a 522 nm/RIU 

sensitivity in the corresponding maximum, which is a 3-fold increase compared to the 

former. We attribute this sensitivity enhancement to the high sensitivity of in-hole surface 

to refractive index changes, which is consistent with previous reports on both sensing 

confinement27 and selective binding results28. In the scheme of cure-based transfer, PDMS 

flowed into the holes and finally clogged them, thereby disabling in-hole area to sense the 

refractive index changes induced by the alteration of sucrose concentrations. Besides, the 

presence of PDMS decreases the effective refractive index changes around the Au 

nanoholes. In contrast, the highly sensitive surface in the nanoholes detached with PDMS 

lamina was directly exposed to external dielectric environment and thus significantly 

enhanced the sensitivity. This bulk refractive index sensitivity is also higher than those of 

previous reported periodic nanohole arrays fabricated by FIB milling (400 nm/RIU),5 EBL 

(393 nm/RIU)14 and soft interference lithography (286 nm/RIU)17. 

4.3.2 Optimizing the Sensor Performance 

One of key issues in the field of SPR sensing is how to improve the limit of detection by 

reducing the uncertainty in determining the resonance position.29 Given that the recorded 

spectra are discrete and the wavelength resolution is limited by the spectrometer, it is 
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impossible to directly determine peak positions with higher precision than that of the 

spectrometer. In order to track the peak shift with high resolution, various peak position 

tracking algorithms were evaluated for conventional SPR or LSPR.30-32 In our work, we 

developed an algorithm by fitting an original spectrum to a high degree polynomial by a 

least square procedure using the following equations: 

𝑻𝒇𝒊𝒕(𝝀) = ∑ 𝒑𝒌𝝀𝒌𝒏

𝒌=𝟎
              (4-1) 

𝑹𝟐 = ∑ [𝑻(𝝀𝒊) − 𝑻𝒇𝒊𝒕(𝝀𝒊)]
𝟐

𝝀𝒊∈𝑺     (4-2) 

𝝏(𝑹𝟐)

𝝏𝒑𝒌
= 𝟎              (4-3) 

where 𝑛  is the polynomial degree, 𝑝𝑘  is the coefficient defining the polynomial, 𝑇  is 

recorded discrete transmission data, 𝑅2 is the sum of the squares of the vertical deviations 

of a set of transmission data points in a wavelength span 𝑆, which is initially chosen as the 

full width at half-maximum of the peak. The peak position is calculated from the 

polynomial expression 𝑇𝑓𝑖𝑡. This method minimizes the sum of the residual squares of the 

spectral points from the polynomial curve. Theoretically, it removes the resolution 

limitation imposed by the spectrometer and enables tracking peak positions with arbitrary 

precision. We applied this algorithm (𝑛 = 9) to tracking peak positions in above sensitivity 

determination, revealing a sharp linear relation between peak shifts and refractive index 

changes as shown in Figure 4-5c. An R-square value 0.998 of the linear curve fitting proves 

its feasibility and effectiveness in peak tracking.  

The sensor’s resolution in such case is mainly governed by the noise level, which can be 

estimated from the statistical standard deviation (SD) of peak positions calculated by the 
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above algorithm. Since the background shot noise of the nanohole system primarily comes 

from the light source and the spectrometer, it is possible to reduce the noise level by 

summing a number of spectra. By averaging up to 100 frames over 30 times, the spectral 

noise (SD) can be reduced from 0.27nm to 0.01 nm, as shown in Figure 4-6. This 

improvement is similar to that of the centroid algorithm31 in terms of optimization level. 

However, our algorithm is simpler and thus more suitable for on-chip implementation. 

Using the measured bulk refractive index sensitivity of 522 nm/RIU, the best refractive 

index resolution of the system is better than 2 × 10−5 RIU, comparable to the state-of-art 

SPR sensors.1 
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Figure 4-6 Background noise (SD) with the numbers of spectra averaging in tracking 

peak positions. The shot noise is reduced to 0.01 nm by averaging 100 transmission 

spectra. The inset shows a plot of variation of peak positions for 100 spectra averages. 

4.3.3 Using Nanohole Arrays in Biosensing 

cTnI is regarded as a critical biomarker in diagnosis of myocardial infarction owing to its 

presence only resulting from cardiac muscle tissue injury. Because the Au film is freshly 

stripped from the Si template with PDMS slices, it can be directly used for biosensing 

without cleaning the sensor surface with chemical solution, thereby reducing the possibility 

of contamination. Transmission spectra of the nanohole array sensor in the immunoassay 

for cTnI are presented in Figure 4-7a. It is noted that the transmission spectrum in air 

undergoes a remarkable change in comparison to that in liquid. The peak ascribed to 
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surface plasmons in the Au/liquid surface blue shifts to around 600 nm due to the decrease 

of refractive index. Meanwhile, two transmission maxima appear at the wavelength of 680 

nm and 800 nm respectively. Molecular binding on the Au surface changes the local 

refractive index, which in turn shifts the positions of these spectral features. The spectral 

peak at 600 nm has a highest shift of 1.996 nm (as shown in Figure 4-7b) due to cTnI 

binding. We point out that no attempts at this stage have been made to optimize the 

platform performances for biosensing. However considering the noise level of 0.01 nm, the 

signal-to-noise ratio is ~200 for peak shifts upon cTnI binding. The analytical sensitivity 

is defined as the concentration at two standard deviations from a blank sample. It can be 

calculated the detection limit of current system is less than 0.4 nM. The detection resolution 

can be further improved by employing self-assembled linker layers on the Au surface and 

high S/N ratio optical detection systems. 
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Figure 4-7 (a) Optical transmission spectra measurements of the Au nanohole array 

as a biosensor. The concentration of cTnI solution incubated on the sensor is 40 nM. 

(b) SPR shifts at 600 nm measured after the addition of anti-cTnI, BSA, and cTnI. 

4.4 Conclusions 

In summary, we have demonstrated a high-performance plasmonic sensor based on 

transmission through nanohole arrays fabricated by template transfer. This technique is 

capable of high-throughput and low-cost production as the templates can repeatedly 

duplicate nanohole arrays in a simple two-step process of Au evaporation and transfer. The 

simplicity of template transfer also permits the potential of direct integration of nanohole 

arrays into microfluidic systems. By comparing the sensitivity of sensors transferred by 

two methods, the in-hole surface is confirmed to enhance the detection ability of sensing 

refractive index changes. The sensor has a 522nm/RIU sensitivity and can resolve 
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refractive index changes down to 2 × 10−5 RIU via effective peak position tracking and 

spectra averaging without requiring any temperature control. Furthermore, this instrument 

is capable of quantifying cTnI at relatively low concentrations only with a standard 

microscope and off-the-shelf optical components. All of these advantages enable the 

nanohole array sensor to be a promising option for nanoplasmonics biosensing. 
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Chapter 5  

5 Plasmonic Optical Fiber 

Surface plasmon resonance (SPR) on metal nanostructures offers a promising route for 

manipulation and interrogation of light in the subwavelength regime. However, the utility 

of SPR structures is largely limited by currently used complex nanofabrication methods 

and relatively sophisticated optical components. In this chapter, to relieve these 

restrictions, plasmonic optical fibers are constructed by transferring periodic metal 

nanostructures from patterned templates onto endfaces of optical fibers using an epoxy 

adhesive. Patterned metal structures are generally extended from two-dimensional (2D) 

nanohole arrays to one-dimensional (1D) nanoslit arrays. By controlling viscosity of the 

adhesive layer, diverse surface topographies of metal structures are realized with the same 

template. We design a special plasmonic fiber that simultaneously implements multimode 

refractive index sensing (transmission and reflection) with remarkably narrow linewidth 

(6.6 nm) and high figure of merit (60.7), which are both among the best reported values for 

SPR sensors. We demonstrate a real-time immunoassay relying on plasmonic fiber for the 

first time. Plasmonic optical fibers also take advantages of consistent optical responses, 

excellent stability during fiber bending and capability of spectrum filtering. These features 

enable our plasmonic fibers to open up an alternative avenue for the general community in 

biosensing and nanoplasmonics. 
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5.1 Introduction 

Surface plasmon resonance (SPR) is collective oscillation resulting from the coupling of 

electromagnetic waves with free electrons at the metal/dielectric interfaces. Such 

interaction in metal nanostructures leads to significant field enhancement phenomena such 

as the extraordinary optical transmission (EOT).1 Since electromagnetic fields are 

concentrated and channelled beyond the diffraction limit, SPR can be used to detect light-

matter interactions and produce special spectra in an extremely compact dimension. This 

unique aspect gives rise to a wealth of plasmonic applications from label-free biosensing, 

chemical imaging, surface-enhanced spectroscopies2 to colour generation3. However, 

functional plasmonic devices are usually confined to planar substrates and rely on bulky 

optical infrastructures such as lasers, prisms and/or microscopes for operation. Broad 

applications of such optical setups are still restricted due to the use of their optical elements 

for focusing and alignment. For instance, analytes have to be collected and transferred from 

their in situ environment to laboratory settings. As a result, such procedures may have 

changed the original states of analytes and probably induced large deviation from the real 

values to be detected, especially for biosensing. A miniaturized, portable and accessible 

plasmonic platform is highly desirable for practical application.4  

Among numerous optical platforms, optical fiber serves as a versatile medium due to its 

advantages of lightweight, small size, cost effectiveness, flexibility and robustness. The 

implementation of active plasmonic elements on optical fibers can thus significantly 

simplify the optical design and release their dependence on some sophisticated optical 

elements, making the nanoplasmonic sensors with great versatility and accessibility. This 
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would allow us to perform remote and in vivo tasks such as biological sensing in living 

organisms. This combination would have the possibility to far extend the scope of 

plasmonics utilization in biological and chemical community. 

However, small dimension and large aspect ratio of the optical fiber render it challenging 

to deploy metal nanostructures on the endface. Generally two strategies have been explored 

to fabricate plasmonic nanostructures on fiber facets. One direction is in situ patterning the 

endface of the optical fiber. As a common nanofabrication method, electron-beam 

lithography (EBL) was used to fabricate metal nanorings5, nanodots6 and hybrid 

nanostructures7 on fibers due to its high resolution. However, EBL requires special 

apparatus to host the optical fiber; nevertheless spin-coating is still susceptible to produce 

an uneven resist layer around the perimeter on small facets.7 Focused ion beam (FIB) was 

utilized to mill nanohole arrays on various types of optical fibers.8-9 The drawbacks of FIB 

milling are the potential for substrate contamination by ions10 and its low yield. Optical 

fiber surface-enhanced Raman scattering (SERS) sensors were demonstrated using 

nanoimprint lithography to replicate nanostructures of the cicada wing11-12 and the 

anodized aluminum oxide (AAO)12. This method needs precise translation stages and 

cameras for accurate alignment during imprinting. Since metal is coated after imprinting 

and covers the entire tip surface, it is impossible to form the duty-cycle structures via this 

method. 

The other strategy separates pattern generation from optical fibers and then transfers the 

as-prepared metal structures onto the fiber tips. This division avoids the difficulty of 

directly patterning structures on unusual substrates like optical fibers incompatible with 

conventional fabrication. For instance, arbitrary metal nanoscale features were stripped via 
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a sacrificial thiol-ene film from a patterned substrate and then transferred to the optical 

fiber facets.13-14 This approach is serial and each array must be written individually by EBL. 

Another facile method depends on nanoskiving using a microtome to section thin metal 

nanostructures embedded in epoxy.15 However, this skiving technique is not capable of 

producing large areas of structured films due to its high level cutting force. Besides, defects 

could occur because of the mechanical stresses of sectioning and creases on the slabs might 

take place during transfer.[15] Moreover, metal structures transferred by both methods could 

easily break away from the fiber tips in harsh conditions for lack of robust bonding. None 

of these plasmonic fibers have been applied to real-time biosensing. 

In this chapter, we develop plasmonic optical fibers patterned with various periodic metal 

nanostructures on the tips by a template transfer method. This facile approach allows for 

realizing high-quality and large-area general plasmonic structures from nanohole arrays to 

nanoslit arrays on optical fibers by two extremely simple steps: deposition and transfer.16-

17 The realization of final plasmonic structures only depends on the patterns of used 

templates. Besides, distinct surface topographies of transferred metal structures are 

achieved with the same template by controlling the viscosity of the adhesive layer. The 

reuse of the templates and robustness of this technique ensure high yield. Using an Au 

nanohole array fiber, we demonstrate a high-performance refractive index nanoprobe 

simultaneously in transmission-reflection multimode. Furthermore, we report the first real-

time immunoassay using the plasmonic optical fiber as a practical application in biosensing 

perspectives. The plasmonic fiber also shows high stability during bending and unique 

spectrum filtering property. 
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5.2 Results and Discussion 

5.2.1 Fabrication and Characterization of Plasmonic Fiber 

The fabrication procedure of plasmonic optical fibers is summarized in Figure 5-1a. 

Diverse nanostructures such as nanoholes and nanoslits are pre-patterned on Si templates, 

on which Au is vertically deposited by electron-beam evaporation. During the Au 

deposition on the Si template, corresponding metal nanostructures are naturally formed. A 

thermal-curing epoxy as an adhesion layer is applied onto one polished facet of an optical 

fiber and then heated to become sticky. Afterwards, the template coated with Au is attached 

to the epoxy adhesive. The fiber ferrule acts as a holder to support the template on top until 

the epoxy is completely cured by way of heating. The Au on the reliefs of the template is 

left on the fiber endface via detaching the template. The intact and uniform metal pattern 

covers the entire fiber tips typically in diameter of several millimeters, as shown in Fig. 1b. 

This entire coverage eliminates the edge effect in many methods based on spin-coating.7, 

13-14 Distinct color can be observed from different angles due to diffraction by coupling 

white light into the fiber from the distal end without metal. This fabrication can be equally 

applied to complex fiber structures. For instance, a six-around-one plasmonic fiber bundle 

is demonstrated on the right-bottom in Figure 5-1b, which allows for carrying more signal 

than a single assembly and thus lowering the random noise. This multiple-in-one design 

can also facilitate high-throughput multiplex screening in a parallel and compact fashion. 
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Figure 5-1 (a) Schematic of the fabrication process of plasmonic optical fiber by 

patterning the fiber endface. The metal is deposited on the pre-patterned Si template 

with the designed nanostructure. After pre-heating the epoxy adhesive on the fiber 

tip to be sticky, the template is attached to and detached from the fiber tip, resulting 
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in the transfer of the metal on relief to the fiber facet. (b) Photographs of plasmonic 

optical fibers with Au nanostructures on the tips. Two fibers on the right are 

illuminated by coupling white light from the distant ends. Diameters of the fiber cores 

are all 600 µm; diameters of the fiber tips are 3.2 mm (left and right-top) and 6.7 mm 

(right-bottom) respectively. 

Various Au nanostructures on the fiber endfaces are demonstrated in scanning electron 

microscopy (SEM) images in Figure 5-2a-c, including the hexagonal nanohole array, the 

square nanohole array and the nanoslit array respectively. Fine grain boundary on the Au 

film shown in Figure 5-2a visually implies a minimal surface roughness similar to that of 

Si wafer, which facilitate the surface plasmon propagation.18-19 The photographs of 

diffraction patterns produced by the corresponding plasmonic fibers are shown in Figure 

5-2d-f when white light is coupled from the ends without patterns. Both SEM images and 

diffraction patterns confirm the high quality of plasmonic structures that cover the entire 

facets of the optical fibers without defects.  
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Figure 5-2 (a-c) SEM images of the Au hexagonal nanohole array, square nanohole 

array and nanoslit array on the fiber tips. The periodicities of the nanostructures are 

700 nm, 600 nm and 500 nm, respectively. All scale bars are 500 nm. (d-f) Photographs 

of the far-field optical diffraction patterns produced by correspondingly illuminating 

(a-c) with white light coupled from the other bare ends of plasmonic fibers. 



94 

 

Furthermore, metal nanostructures on different parts of a template can be selectively 

transferred to optical fibers to form diverse topographies. As mentioned above, pre-heating 

increases the viscosity of the epoxy adhesive so that the epoxy would only touch the reliefs 

on the template surface. In turn, only the metal on the reliefs are consequently transferred 

to the fiber tip. In contrast, the uncured original epoxy with a low viscosity could flow into 

the pits on the template due to capillary force, resulting in the transfer of the entire metal 

on both reliefs and pits. Figure 5-3a shows an array of Au nanoslits, between which the 

cured epoxy is exposed. Its continuous counterpart nanoridges transferred from the same 

template is shown in Figure 5-3b aligned with Figure 5-3a. By removing the Au on the 

ridges, the epoxy underneath is distinctly revealed. This variation of the transfer method 

allows for manufacture of three-dimensional (3D) hybrid nanostructures on the fiber7 in a 

simple way.  
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Figure 5-3 SEM images of the Au periodic nanoslits transferred from the same 

template with (a) and without (b) the step of pre-heating the epoxy adhesive on the 

fiber tip. Two images are aligned vertically for comparison. The dash rectangle 

highlights the distinct parts for better visualization. The inset in (b) reveals the epoxy 

under the Au nanoridges. All scale bars are 500 nm. 
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To obtain the transmission and reflection at the same time, we build a fiber assembly 

comprising three single fibers connected together by a Y-shape splitter, schematically 

shown in Figure 5-4a. The Au hexagonal nanohole array with 700 nm period in Figure 5-2a 

is attached to the common end as a SPR sensor. The reason to choose the hexagonal hole 

array is it can reduce the resonance cross-talk compared to the square hole array with the 

same lattice constant.3 On the other hand, the array periodicity of 700 nm is chosen to 

position SPR peak in the accessible range of our spectrometer when aqueous solutions flow 

over. In this multimode configuration, the light transmitted through the nanohole array is 

directly collected by a face-to-face configured single fiber coupled to a spectrometer 

(transmission mode); meanwhile reflected signal is redirected through one of bifurcated 

legs into the other spectrometer (reflection mode). When this multimode plasmonic fiber 

naturally works in reflection mode only, no alignment or flow cell is required and thus it 

could get into human body, which would enable remote and in vivo biomolecule sensing. 

Figure 5-5 and Figure 5-6 show different plasmonic fibers integrated with special designed 

flow cells working in various modes.  
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Figure 5-4 Diagram of a Y-shape plasmonic fiber mounted in a flow cell for 

multimode sensing simultaneously in transmission and reflection. 
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Figure 5-5 Plasmonic optical fibers working in multimode (top and bottom-right) or 

reflection mode only (bottom-left). 
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Figure 5-6 A transmission plasmonic optical fiber. 
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5.2.2 Spectroscopic Analysis and Simulation 

The normalized transmission (as well as its finite-difference time-domain simulation, 

FDTD) and reflection spectra are plotted in Figure 5-7. SPR peaks can be clearly identified 

around 700 nm in these spectra. The experimental transmission exhibits overall agreement 

with the simulated result in shape and position; whereas the spectral linewidth of the 

resonance in experiment is slightly broader than simulation because of the divergence of 

incident light.5 The transmission for plane Au film (100 nm thickness) transferred from Si 

wafer without structures is also recorded for comparison. The single peak at 500 nm comes 

from of direct light transmission through the gold film, which could be attributed to the 

interaction between the conduction band and the d-band of Au.20 This maximum emerges 

at the same position near 500 nm in the nanohole array transmissions as well, and overlaps 

with two small peaks between 500 nm and 600 nm. 
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Figure 5-7 Normalized Au nanohole array spectra for transmission and its simulation 

as well as reflection, and the Au film transmission spectrum. 

A near-field profile is required to understand the physics associated with the spectral 

features of the plasmonic nanostructure in detail. The simulated electric field distributions 

shown in Figure 5-8 are extracted at peak wavelengths of 494 nm, 538 nm, 585 nm and 

698 nm in x-z plane and at epoxy/Au interface. The strong intensity at the center of hole 

(Figure 5-8a and e) confirms the nature of direct transmission around 500 nm. The pattern 

of field distribution from Figure 5-8b indicates that the peak at 538 nm is mediated by a 

coupling oscillation between air/Au and epoxy/Au interface. The extension of electric field 

beyond the edge of hole at epoxy/Au interface (Figure 5-8f) further implies an out-of-plane 

character of the oscillation. In contrast, in-plane oscillations at 585 nm (Figure 5-8c) and 
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698 nm (Figure 5-8d) indicate the localized surface plasmon excitations. The field profile 

for 585 nm given in Figure 5-8g displays a hexapole feature along the edge of the nanohole; 

whereas the dipole mode oscillation (Figure 5-8h) leads to strong coupling of the incident 

light near 700 nm, which effectively traps the light and results in an enhanced transmission. 
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Figure 5-8 Electric field profiles at peak wavelengths of 494 nm, 538 nm, 585 nm and 

698 nm in x-z plane (a,b,c,d, respectively) and at epoxy/Au interface (e,f,g,h, 

respectively). 

5.2.3 Optical Performance 

The plasmonic fiber is characterized as a refractive index probe using different 

concentrations of NaCl solutions through a fluidic channel. When the fiber tip is exposed 

to the solutions, narrow peaks and troughs are simultaneously recorded over reflection 

(Figure 5-9a) and transmission (Figure 5-10a) spectra between 820 nm and 920 nm. All 

the maxima and minima proportionally shift to longer wavelengths as the refractive index 

n increases. The refractive index sensitivities (Figure 5-9b and Figure 5-10b) are obtained 

by linearly fitting three peak shifts in reflection, as well as two peak shifts and two trough 

shifts in transmission. The highest sensitivities for transmission and reflection are 595 

nm/RIU (refractive index unit) and 497 nm/RIU, respectively. The overall performance of 

a SPR sensor is dominated by both the sensitivity of the resonance and its spectral 

linewidth.21 The full width at half maximum (FWHM) of the resonance with 401 nm/RIU 

sensitivity in reflection is narrowed down to 6.6 nm in 20% NaCl solution, comparable to 

the recorded narrowest resonance linewidth of 4.29 nm.22 Accordingly, figure of merit 

(FOM), defined as the refractive index sensitivity divided by the corresponding FWHM,21 

achieves 60.7 which is four times higher than the previously reported value for Au 

nanohole arrays on planar substrates.23 
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Figure 5-9 Reflection spectra (a) measured in water and NaCl solutions. The inset in 

(a) is a magnified view of the narrowest resonances in reflection. Refractive index 

sensitivities (b) obtained by linear fitting three peak shifts in (a). 
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Figure 5-10 Transmission spectra (a) measured in water and NaCl solutions and 

refractive index sensitivities (b) obtained by linear fitting two peak shifts and two 

trough shifts in (a). 
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5.2.4 Self-Assembled Monolayer (SAM) 

To examine the fiber sensor’s response to molecular adsorption on its endface, a self-

assembled monolayer (SAM) is formed by immersing the fresh fabricated fiber tip into an 

alkyl thiol (480.18 g/mol) solution. Due to the increase of the external refractive index, n, 

the 500 nm peak has a slight blue-shift in comparison with the original spectrum, as shown 

in Figure 5-11. This shift presumably results from the adsorption of SAM molecules and 

morphology change on the Au thin film.24 In contrast, the peak at 700 nm shifts 10 nm to 

longer wavelengths and exhibits characteristic of SPP–Bloch waves (BW).25-26 Additional 

small peaks present between 500 nm and 700 nm are related to high order resonance modes. 

Since the light illuminates the array in all possible directions confined by the core diameter 

and numerical aperture of the fiber, the resonant modes become more complex than those 

obtained only at normal incidence. 
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Figure 5-11 Optical transmission spectra of nanohole array fibers for SAM assembly. 

5.2.5 Real-Time Biosensing 

To demonstrate the feasibility of our plasmonic fiber for label-free and real-time biosensing, 

we further perform the immunoassay between BSA and anti-BSA, which has been 

extensively investigated.27-29 Peak shifts (Figure 5-12) are used to monitor their specific 

binding on the surface by the plasmonic fiber platform. We directly pick up the wavelength 

of the transmission maximum around 830 nm in each spectrum as the peak wavelength 

rather than use any algorithm to track it. The PBS buffer is first injected into the flow cell 

to define the baseline of peak wavelength. As the surface of freshly transferred SPR sensor 

is extremely clean, the signal is immediately steady. A 50 μg/ml BSA solution in PBS 
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buffer then flows over the Au surface on the fiber tip. A peak shift Δλ of 0.73 nm is 

observed upon BSA monolayer assembly. A subsequent PBS wash has little effect on the 

fiber response, which implies the robustness of BSA monolayer. Then, a 4.3 μg/ml anti-

BSA solution is pumped into the flow cell. After washing out the unbound anti-BSA 

molecules by PBS rinse, the binding of anti-BSA to BSA on the surface finally results in a 

0.53 nm peak shift.  

We can obtain the effective BSA layer thickness d using a well-established quantitative 

formula,27 

 ∆𝝀 = 𝑺(𝒏𝟏 − 𝒏𝟐) (𝟏 − 𝒆−
𝟐𝒅

𝒍 )    (5-1) 

where S is the bulk refractive index sensitivity of 595nm/RIU obtained in the optical 

performance experiment, 𝑛1 and 𝑛2 are the respective refractive index of protein layer and 

buffer solution, and l is the SP field penetration depth in buffer solution. Given the 

refractive index of BSA is 1.57,27 the recorded 0.73 nm peak shift corresponds to an 

effective thickness of 0.95 nm. Using the volume density of BSA (1.3 g/cm3),27 the surface 

density of this saturated protein monolayer is calculated to be 1.24 × 10−7 g/cm2. It is noted 

that BSA adsorptions on Au and some polymers with the most adsorptive surfaces show 

very similar saturation density ((1.2-1.8) × 10−7 g/cm2).28-29 
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Figure 5-12 Real-time peak shifts upon BSA assembly on the plasmonic fiber tip and 

subsequent binding between BSA and anti-BSA. The red line is a fitted curve for 

better visualization. 

Peak fluctuation of raw data results from the relative low resolution (~ 0.2 nm) of our 

spectrometer, which is unable to differentiate subtle change of binding status by direct peak 

pick-up. However, we indeed capture the real-time kinetic features during biomolecular 

binding in detail. Using complex algorithms can improve the resolution at the expense of 

considerable computation; in contrast, this simple peak pick-up method requires minimum 

calculation for such massive spectra data. This advantage would facilitate the on-chip real-

time spectroscopy analysis by using our plasmonic fiber integrated with portable 

spectrometer. 
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5.2.6 Stability, Consistency and Optimization 

The minimum bend radius is of critical importance to handle the fiber-optic based system. 

The intensity spectra of our plasmonic fiber demonstrate excellent stability in fiber bending 

test (Figure 5-13). The bending inspection begins with the long-term bend radius (24 cm) 

of the original fiber (multimode, 600 µm core diameter). The resonance wavelength is 

determined by a previous peak position tracking algorithms.16 As bend radius of the fiber 

is gradually changed from 24 cm to 15 cm, the drifts (no more than 0.15 nm) of the 

resonance wavelength are negligible, considering that the resolution of our spectrometer is 

~0.2 nm. The large shift about 0.5 nm occurs until bend radius approaches the short-term 

bend radius (12 cm) of the original fiber. This test proves that our plasmonic fiber has the 

same bend radius as that of original fiber. Such flexibility allows our plasmonic fiber to 

easily conform to various external environments in real world application. 
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Figure 5-13 Intensity spectra of a plasmonic fiber for various bending radii from 24 

cm to 12 cm. The inset shows the fluctuation of the resonance wavelengths. 

The plasmonic fibers with metal structures replicated from one same template have almost 

same spectral features due to high quality replication. Figure 5-14 shows the transmission 

spectra of two nanohole array integrated optical fibers with various core diameters (400 

µm and 600 µm) in air. The tiny peak position variation (less than 0.5 nm) for different 

diameter fibers verifies the excellent consistency of optical response of our nanoplasmonic 

fibers. 
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Figure 5-14 Optical transmission spectra of nanohole array fibers with various core 

diameters in air. 

We also preliminarily implement spectrum filtering by connecting multiple plasmonic 

fibers end-to-end. Their linkage thus allows for filtering the small spectral features and 

narrowing the linewidth of the transmission peaks. The normalized results of spectrum 

filtering are demonstrated in Figure 5-15 for comparison. When two same fibers are linked, 

the small peaks between 500 nm to 600 nm almost vanish due to filtering. By coupling 

triple fibers, the FWHM of the resonance peak around 700 nm is substantially narrowed 

down to 58.2 nm, almost half of that for single fiber (~100 nm). These effects further 

optimize the spectral character and potentially improve the optical performance (e.g. Q 

factor) of our plasmonic fibers. 
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Figure 5-15 Normalized spectra for single, double and triple plasmonic fibers 

connected end-to-end. The resonance around 700 nm is narrowed down to 58.2 nm in 

triple coupling. 

5.3 Materials and Methods 

5.3.1 Metal Deposition and Transfer 

A custom electron-beam evaporator was used to deposit 100 nm thick Au onto the Si 

template without adhesion layer. The deposition rate of 1 Å/s was maintained at ~5 ×10-6 

Pa. 1µL thermal-curing optical epoxy (301, Epoxy Technology Inc.) was applied on one 

endface of the optical fiber and pre-heated for 10 min under a halogen lamp to be sticky. 

After attaching the template to the fiber facet, the Au on the reliefs of the template firmly 
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adhered to the fiber tip via 2 h heating. The Au nanostructures were then transferred by 

detaching the template from the fiber endface. After cleaning with Au etchant followed by 

chlorinated solvents, the template can be reused for a new cycle of transfer without damage. 

5.3.2 Fabrication of Flow Cell 

The fluidic flow cell was fabricated by casting polydimethylsiloxane (PDMS) to surround 

a round steel rod with the same diameter as that of the fiber tip. The steel rod was first 

layed in a petri dish with two ends supported. The PDMS was then cast and cured at 70 °C 

overnight. After pulling the rod out of the PDMS channel, the flow cell was cut to proper 

length to accommodate the fiber tips. 

5.3.3 Bulk Refractive Index Sensing 

Refractive index solutions were made by adding NaCl into the deionized water to obtain 

various concentrations (5%, 10%, 15% and 20%) with n (1.3418, 1.3505, 1.3594, and 

1.3684, respectively). Different index solutions were injected through the flow cell 

sequentially using a syringe pump. Reflection and transmission spectra were 

simultaneously recorded by averaging 100 acquisitions with two portable spectrometers 

(USB4000, Ocean Optics Inc.) respectively. 

5.3.4 Biomelecular Sensing 

BSA, anti-BSA and PBS buffer were purchased from Sigma-Aldrich. Solutions (PBS, BSA, 

PBS, anti-BSA and PBS) were sequentially injected into the flow cell using a syringe pump 

at a flow rate of 30 µL/min. The circulation times are 15 min, 50 min, 25 min, 60 min and 
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15 min, respectively. Each spectrum is recoded with a temporal resolution of 2 s (10 ms 

integration time and 200 frame averaging). 

5.3.5 FDTD Simulations 

FDTD simulations were done using a commercial software, FDTD solutions (Lumerical 

Solutions Inc.). The simulation contained a single nanohole with periodic boundaries 

within the plane of the Au film and perfectly matched layers in the boundaries parallel to 

the Au film. Three same linearly polarized light were configured along each main 

translation direction of the hexagonal array to simulate the unpolarized light tranmitted by 

the optical fiber. The refractive indices of the epoxy adhesive was set to be 1.52. 

5.4 Conclusions 

In conclusion, we have implemented plasmonic optical fibers patterned with general metal 

nanostructures on the endfaces by a simple and effective transfer method. Surface 

topography of metal structures can be controlled by adjusting the viscosity of adhesive 

layers. The specially designed multimode plasmonic fiber can work in transmission and 

reflection at the same time in refractive index sensing. The resonance of the fiber features 

spectrally narrow linewidth of 6.6 nm and high figure of merit of 60.7. For the first time, 

we introduce the real-time biosensing using the plasmonic optical fiber as a practical 

application. In addition, the spectra of our fibers possess great stability to resist mechanical 

bending. The linked plasmonic fibers show great potential for the improvement of optical 

performance and the realization of optical multiple-filter. All these advantages present our 
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plasmonic optical fiber as a versatile platform in the wide field of biosensing and 

nanoplasmonics. 
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Chapter 6  

6 Freestanding Metal Nanomembrane as Plasmonic 

Sensor 

In this chapter, large-area freestanding metal nanomembranes with periodic nanohole 

arrays are implemented using a novel fabrication approach. This technique is also capable 

of fabrication of freestanding nanoslits. The freestanding metal nanomembranes are 

characterized by SEM to demonstrate high quality and uniformity. The transmission of the 

freestanding nanomembrane show higher efficiency compared to that of nanohole arrays 

with same features on the substrate.  

6.1 Introduction 

Freestanding nanomembranes have been a theoretical and experimental interest for several 

decades since they combine nanoscale thickness and features with macroscopic lateral 

dimensions at the same time.1 Several cutting-edge freestanding ultrathin membranes made 

by inorganic matter (i.e. silicon2-3, metals4, nanoparticles5, graphene6-7, PDMS8), organic 

materials (i.e. epoxy resin9) and hybrid composite10-12 have been implemented. These 

freestanding membranes are emerging as critical elements in various sensing devices, such 

as mechanical, chemical and thermal sensors. In the scope of plasmonic sensing, 

freestanding metal membranes as miniature passive plasmonic sensors are highly desirable 

in that they can be attached to unconventional substrates incompatible to conventional 

fabrication methods. To date, several technique have been achieved for the fabrication of 
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freestanding nanoscale membranes, including spin-coating13, layer-by-layer assembly14-18, 

and monolayer self-assembled19-20. However, these approaches are not applicable to metal. 

The synthesis of large-area freestanding metal nanomembranes with submicron features is 

still a challenge and remains to be explored.  

6.2 Fabrication of Freestanding Metal Nanostructures 

6.2.1 Preparation for Fabrication 

Based on the template transfer method, we develop a new process that is capable of 

fabrication of large-area freestanding metal nanostructures. In the previous method, once 

metal structures are transferred to the target substrate, they would permanently stay on the 

cured adhesive layer of insoluble epoxy. Thus a soluble adhesive is in demand for releasing 

the transferred metal nanostructures. Accordingly, instead of epoxy, we choose 

polyvinylpyrrolidone (PVP) which is a water-soluble polymer and has good adhesion to 

various metals. On the other hand, the PVP adhesive has to be thick enough to avoid 

flowing into the nanoholes. 

On the other hand, a special holder is required to support the margin of released metal 

membranes in order to make them freestanding. First, the holder should consist of a flexible 

support (to make conformal contact with metal membranes) and a hard base (to avoid the 

deformation of the entire frame during handling). Meanwhile, the surface of the support 

which contacts with the membrane has to be smooth; otherwise, even small roughness 

would result in wrinkles, which could extend from the interface to the freestanding part for 

such thin membrane. In addition, the inner edge of the support has to be round to form 
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smooth line of contact to avoid localized strain. Based on these considerations, PDMS and 

flat glass-bottom petri dish are good choices for the support and hold respectively. A 

precisely machined round steel cylinder with diameter of 5 mm is first positioned 

perpendicularly on the glass at the bottom of petri dish. Thereafter PDMS is cast into the 

petri dish and cured at 75 °C for 2 hour. After levering the glass from the bottom and 

pulling the steel rod out of PDMS, we obtain a membrane holder with a throughout hole in 

PDMS on the bottom of petri dish. 

6.2.2 Fabrication Procedure 

Figure 6-1 summarizes the procedure for fabrication of freestanding metal nanomembranes. 

The Si template with the pattern of nanohole array is first deposited with 100 nm Au using 

e-beam deposition to form metal nanomembrane. Then PVP water solution (40% m/m) is 

dropped on the top of the template with Au nanostructures. After evaporation of water, the 

dried adhesive along with the Au membrane is levered from the template using a razor. 

Thereafter the Au membrane is attached to the PDMS in the holder to completely cover 

the throughout hole. The holder is then placed above a beaker to keep the PVA adhesive in 

contact with water. After PVA is gradually dissolved again, the holder with the metal 

nanomembrane is carefully pulled out of water. The metal nanomembrane above the hole 

on the holder becomes freestanding after water evaporation as shown in Figure 6-2. The 

diameter of the round membrane is 5 mm. Besides membranes, freestanding nanoslits are 

also implemented by the same approach using the template with nanoslit relief on the 

surface. 
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Figure 6-1 Fabrication procedure for freestanding metal nanomembranes. 

 

 

Figure 6-2 Freestanding Au nanomembrane on the PDMS holder in a petri dish. 
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Any material in sufficiently thin form becomes flexible whereby the membrane can 

conformably contact to uneven surfaces. Meanwhile, van der Waals force is strong enough 

to maintain the attachment of such thin metal nanomembranes on substrates. To 

demonstrate the freestanding metal membranes are transferrable, we lay them onto 

different substrates. The Figure 6-3 shows a metal membrane attached on the inner wall of 

a glass bottle without using any adhesive, which is impossible to be implemented by means 

of any conventional methods.  

 

Figure 6-3 Au nanohole membrane attached on the inner wall of a glass bottle. 

6.3 Characterization 

To make sure the transferred metal nanostructures is intact and as same as that on the 

template, we characterize them with SEM. Figure 6-4 demonstrates a freestanding Au 
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nanomembrane of a hexagonal nanohole array with periodicity of 700 nm and diameter of 

200 nm. The freestanding membrane has smooth surface and same well-ordered pattern as 

that of the template. To know about the in-hole morphology, we cut off a piece from the 

membrane using FIB milling. Figure 6-5 displays the cross-section of the nanomembrane, 

on which the throughout holes are opening on both surfaces of the membrane. 

 

Figure 6-4 Freestanding Au membrane with a hexagonal nanohole array with 

periodicity of 700 nm and diameter of 200 nm.  
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Figure 6-5 A cross-section of freestanding Au nanomembrane cut by FIB milling. 

When we cut out a narrow and long slit intersecting with 32 holes along one of the main 

translation axes, the edge of the long slit immediately bends up. It is noticed that the width 

of slit surprisingly becomes bigger and bigger after many times of electron imaging. We 

believe these interesting phenomena in such small dimension are worth further 

investigation on mechanical and electrical properties of these large-area freestanding metal 

nanomembranes.  
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Figure 6-6 A narrow and long slit cut by FIB milling. The edge is bent owing to strain 

release. After repeatedly imaging with SEM, the slit becomes wider than that at the 

beginning. 
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SEM images of freestanding nanoslits are shown in Figure 6-7, in which most slits stick 

together and separation appears due to unbalanced stresses on either side of some slits. 

 

 

Figure 6-7 Freestanding nanoslits. The width of the silts is 400 nm. 
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Besides SEM imaging, we also use atomic force microscopy (AFM) to characterize the 

roughness of the Au freestanding nanomembrane. All AFM experiments were performed 

on a Dimension V AFM equipped with Nanoscope controller V (Veeco, Inc.). We obtain 

AFM images (Figure 6-8) at different regions of the membrane to make sure it is intact and 

smooth. 
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Figure 6-8 AFM images of a freestanding nanohole membrane. 

6.4 Optical Property 

We record the transmission spectra of the same Au nanohole array membrane in 

freestanding format and on the substrate (refractive index 1.45). SPR transmission 

efficiency significantly increases in the freestanding nanomembrane compared to the 

nanohole array on the substrate, as shown in Figure 6-9. In the substrate case, dielectric 

materials with different dielectric constants on either side of the nanohole array film lead 

to the SPR at different wavelength. In contrast, the uniform dielectric environment in the 

freestanding case matches SP energy on both surfaces, thereby resulting in the coincidence 
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of the SPR on both surfaces and remarkable enhancement of the transmission intensity. 

According to the sensitivity analysis in Chapter 3, this field enhancement would 

significantly increase the performance of plasmonic sensors. 

 

Figure 6-9 Transmission spectra of the same nanohole array membrane in 

freestanding format and on the substrate. 

6.5  Conclusion 

In summary, a novel fabrication scheme is developed based on the previous template 

transfer technique for freestanding metal nanomembranes. This method is also applicable 

for freestanding nanoslit fabrication. The created nanomembrane with the periodic 
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nanohole array features high uniformity in large area. Some interesting behaviors during 

characterization imply this freestanding metal nanomembrane has special mechanical and 

electrical properties. In comparison to the same nanohole array on the substrate, the 

freestanding nanohole array show much higher transmission intensity, which would 

enhance the plasmonic sensing performance. 
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Chapter 7  

7 Thesis Summary and Future Direction 

This thesis focuses on two important aspects of surface plasmonic resonance sensing: 

theoretical analysis and sensor engineering. A performance analysis model has been 

proposed and plasmonic optical sensors in three modalities are respectively have been 

implemented. They are summarized according to the thesis structures as follows. In the 

end, a few future directions are discussed. 

7.1 Thesis Summary 

A universal performance analysis model for nanoplasmonic sensors is proposed in Chapter 

3 based on surface plasmon theory introduced in Chapter 2. A sensitivity expression is 

established using the momentum matching condition of SPR excitation for any tow-

dimensional nanohole Bravais lattices. The formula only consists of parameters relative to 

essential elements involved in SPR sensing. A series of phenomena in plasmonic sensing 

are successfully explained using this quantitative model, including (1) sensitivity roughly 

linearly increase as the SPR position shifts to longer wavelength; (2) different patterns with 

the same SPR wavelength show very similar sensitivities; (3) nanostructures with different 

metals have similar sensitivity at the same wavelength; (4) SPR peaks show higher 

sensitivity in the analyte with lower refractive index. The nanohole arrays are proved to 

have larger intrinsic sensitivity compared to nanoparticle LSPR sensors. The expression is 

also applicable to general two-dimensional plasmonic nanostructure including 

quasiperiodic and aperiodic arrays. The analytical model is proved to be valid in plasmonic 
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sensors performance analysis by the comparison between the published sensitivity data and 

the analytical results calculated with this model. 

Chapter 4 present a high-performance on-chip plasmonic sensor based on transmission 

through nanohole arrays fabricated by template transfer in a simple two-step process of Au 

evaporation and transfer. This novel approach is capable of low-cost and high-throughput 

fabrication of plasmonic nanostructures since the templates can be repeatedly used. By the 

sensitivity comparison between two nanohole array sensors with different morphology, the 

in-hole surface is verified to have higher sensitivity. The sensor with a 522nm/RIU 

sensitivity can resolve refractive index changes down to 2 × 10−5 RIU via spectra averaging 

and an effective peak position tracking algorithm. Moreover, this instrument is employed 

to detect cTnI at a relatively low concentration. 

Plasmonic optical fibers with general metal nanostructures from nanohole arrays to nanoslit 

arrays on the endfaces are implemented by a simple and effective transfer method in 

Chapter 5. By adjusting the viscosity of adhesive layers, surface topography of metal 

structures can be controlled. The specially designed plasmonic fiber can work in multimode 

(transmission and reflection) at the same time in refractive index sensing. This plasmonic 

fiber features remarkably narrow linewidth of 6.6 nm and high figure of merit of 60.7. A 

real-time biosensing is demonstrated using the plasmonic optical fiber for the first time. 

Furthermore, the plasmonic fibers possess great stability to resist mechanical bending. The 

linked plasmonic fibers are capable of improving optical performance and achieving 

optical multiple-filter.  
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In Chapter 6, large-area freestanding metal nanomembranes are achieved using novel 

fabrication scheme based on the template transfer method. This technique is same 

applicable to freestanding nanoslit fabrication. The formed freestanding Au 

nanomembrane with the periodic nanohole array is qualified with high uniformity. Some 

interesting behaviors during characterization suggest this freestanding metal 

nanomembrane has special mechanical and electrical properties. The freestanding 

nanohole array exhibit remarkably higher transmission intensity in comparison to the same 

nanohole array on the substrate. This feature qualifies the freestanding metal 

nanomembrane as a high performance plasmonic sensor. 

7.2 Thesis Contribution 

The two major contributions of this thesis are summarized: 

 A universal performance analysis model is established for general two-dimensional 

plasmonic sensors. This model is based on the fundamental facts of surface plasmon 

theory. The sensitivity expression discloses the relationship between plasmonic 

sensor performance and essential physics of surface plasmon.  

 Plasmonic optical sensors are engineered into high-performance on-chip sensors, 

plasmonic optical fibers and freestanding nanomembranes. These three modalities 

possess different applicability to fulfill various plasmonic sensing tasks in 

respective scenarios. 

7.3 Future Direction 

The plasmonic optical sensors implemented in this thesis will be utilized in more biological 

and biochemical application, especially in detection and monitoring of those disease-
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related biomarkers. For instance, the plasmonic optical fiber can be employed for in-vivo 

biosensing in urine or saliva. This would be a valuable tool to be capable of provide real-

time information related to disease process.  

Although the biosensors based on SPR provides ultrahigh sensitivity, compactness, and 

multiplexing capabilities, the major drawback is they lack molecular specificity. Since their 

operation completely relies on SPR responses to the refractive index changes at the 

metal/dielectric interface, this type of signals are incapable of discriminating between 

specific and nonspecific binding, which may result in false positives. On the other hand, 

surface-enhanced Raman spectroscopy (SERS) combines the advantage of SPR field 

enhancement with unique spectral features of Raman signal. To enable molecular 

specificity, the plasmonic sensors proposed in this thesis will act as SERS substrates to 

provide valuable spectroscopy tools for the identification of chemical and biological 

samples.  
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Appendices 

Appendix 1 Derivation of Sensitivity for a Periodic Nanohole Array Sensor 

Given differentiation in a relatively narrow wavelength range, we neglect the spectral 

dispersion of the metallic material, e.g. 𝜀𝑚 does not change in a very narrow 𝜆 range in the 

following deduction.  
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