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Abstract 

The forearm is a complex articular unit, with poorly understood biomechanics.  A novel 

forearm simulator to facilitate physiologic testing of cadavers for multiple clinical scenarios 

was designed, manufactured and validated.  The simulator had good repeatability and 

reproducibility. A number of outcome measurements were potentiated including the 

forearm’s resistance to rotation, radiocapitellar contact pressure and area as well as 

Interosseous Membrane (IOM) loads.  Testing of changes to forearm biomechanics due to 

radial head excision and variations of radial head arthroplasty dimensions was conducted.  

Radial head arthroplasty using the correct radial head length and diameter recreated the 

biomechanics of an intact forearm.  Radial head excision as well as an implant of non-

anatomic length or diameter created abnormal radiocapitellar joint properties and load 

transfer within the forearm. If radial head arthroplasty is clinically required, an implant that is 

similar in dimensions to the native radial head maintains native forearm biomechanics.   
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Chapter 1  

Overview:  The goal of this chapter is to explain the anatomy, biomechanics and function 

of the soft tissue and bone anatomy of the forearm.  Forearm injuries and the current 

treatments for these injuries are reviewed, with a focus on radial head fractures.  A 

review of the testing protocols and their potential limitations are also discussed. The 

objectives, hypothesis and rationale of the project are summarized.  

1.1  Anatomy of the Forearm 

1.1.1 Osseous Anatomy of the Forearm 

1.1.1.1  Forearm Osteology 

The forearm is a complex relationship of two bones: the radius and the ulna (Fig 1.1).  

This relationship is intricate, and any deviation in either bone alters the articulations 

present at either end.  The radius possesses a radial bow that is at its maximum at 60% of 

the length of the radius and is 10% of the length of the radius at maximal magnitude [1].  

This has measured at mean maximal value of 15.3 mm of radial bow in the normal arm 

[2].  Deviation of greater than 2.8mm from the mean radial bow has been shown to cause 

rotation of the forearm to be less than 80% of the normal side [2].  Normal pro/supination 

motion is approximately 77o of pronation, and 72o of supination [3] (Fig 1.2).   

Motion between the radius and ulna occurs in the rotational plane through pro/supination, 

as controlled by the fibrous interosseous membrane (IOM) and terminal articulations 

between each bone (Fig 1.1). The radius and ulna articulate at the proximal end at the 

elbow to allow flexion/extension, and at the wrist to allow circumduction.   
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Figure 1.1:  Upper Extremity Structure 
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Figure 1.2:  Forearm Rotation 
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1.1.1.2  Wrist Osteology 

 The wrist joint is comprised of a complex interaction of the five metacarpals, 

eight carpals and two forearm bones (Fig 1.3).  The interaction of these bones participates 

in the intricate function of the wrist; assisting in positioning the hand in space [4] [5].  

The wrist allows motion in flexion/extension, ulnar and radial deviation, and finally 

contributes to pronation/supination; in order of decreasing magnitude [6] [7] [8] (Fig 1.4).  

The normal motion of the wrist is 65-80o of flexion, 65-80o of extension, 10-20o of radial 

deviation, 20-35o of ulnar deviation and 5-15o of pro/supination [4].    
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Figure 1.3:  Wrist Osteology 
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Figure 1.4: Wrist Range of Motion 
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1.1.1.3  Distal Radio-Ulnar Joint Osteology 

The Distal RadioUlnar Joint (DRUJ) is the distal articulation of the forearm unit.    It 

permits both pivoting and translational motions to allow forearm pronation and 

supination (Fig 1.5) [9].  The ulnar head has articular cartilage encompassing 90-135° of 

its circumference to allow articulation within the sigmoid notch of the distal radius [10].  

The distal surface of the ulna is convex and is also covered with articular cartilage [10]. 

 At the DRUJ, the radius of curvature of the sigmoid notch is 4-7 mm greater than 

the 10 mm of ulnar head curvature, and has a curvature of 47-80o [10].  The ulnar head 

has an average inclination of 20o to the shaft of the ulna; as does the sigmoid notch [10].  

As can be inferred from the lack of congruity, stability is provided by the soft tissues 

surrounding the joint including the TFCC (triangular fibrocartilage complex).  The distal 

radius is comprised of the scaphoid and lunate facets as well as the sigmoid notch (Fig 

1.6).  
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Figure 1.5:  Distal Radio-Ulnar Joint Pro/Supination, Axial View 



9 

 

 

 

  

Figure 1.6:  Distal Radius Articulation 
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1.1.1.4  Elbow Osteology 

The elbow is made up of the articulation of three bones; the ulna, radius and humerus.  

The articulations are the ulnohumeral, radiocapitellar and the proximal radioulnar joints 

(Fig 1.1).  The radial head is elliptical in shape [11] [12].  The proximal articular surface 

is concave and appropriately referred to as the radial dish.  Articular cartilage covers 240o 

of the outer margin (Fig 1.7).  The proximal ulna is complex and is comprised of the 

radially directed lesser sigmoid notch and the humeral directed greater sigmoid notch.   

The greater sigmoid notch terminates at the olecranon tip proximally and the coranoid tip 

distally.  The distal humerus flares out to form the epicondyles medially and laterally 

with the central depression called the coronoid fossa anteriorly and the olecranon fossa 

posteriorly.  The articular components are the spherical capitellum radially and the spool 

shaped trochlea ulnarly (Fig. 1.8).  

The radiocapitellar joint is comprised of the articulation between the radial head, with the 

capitellum.  This joint is designed to allow axial loading while pivoting with pronation 

and supination as well as gliding for flexion and extension. 

The ulnohumeral joint consists of the articulation of the trochlea within the greater 

sigmoid notch.  The coronoid and olecranon tips correspond to their respective fossae of 

the humerus at the extremes of flexion and extension. 

The Proximal Radioulnar Joint (PRUJ) is formed by the outer articulation of the radial 

head within the lesser sigmoid notch; a pivoting joint to allow pronation and supination 

(Fig 1.7).    
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Figure 1.7:  PRUJ Articulation 
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Figure 1.8:  Elbow Osteology 
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1.1.2  Soft Tissue Anatomy of the Forearm 

 

1.1.2.1  Wrist Ligaments 

The distal surface of the ulna is convex and is covered by the triangular articular disc [4].  

The triangular articular disc in conjunction with associated ligaments makes up the 

triangular fibrocartilage complex (TFCC) [13].  The superficial dorsal and volar 

radioulnar ligaments insert into ulnar styloid [4] (Fig 1.9).  The deep portions of the 

radio-ulnar ligaments insert in the roughened area at the base of the styloid called the 

ulnar fovea [13].  The radioulnar ligaments originate at the dorsal and volar lip of the 

radial sigmoid notch.  The dorsal radioulnar ligament inserts into the ECU subsheath, and 

tends to be thicker than the palmar radioulnar ligament [14].  The TFCC also attaches to 

the ulnotriquetral and ulnolunate ligaments [13].  

The literature indicates that 20% of the distal radioulnar joint stability is provided by 

osseous congruity, with the remainder provided by soft tissue [15].  Maximal stability is 

in neutral, and increased pronation and supination diminishes stability[11].  The roles and 

contribution to each soft tissue element is controversial.  Some literature indicates that in 

full pronation, the volar radioulnar ligaments are taut and the dorsal lip of the sigmoid 

notch is in contact with the ulnar head.  In full supination, the dorsal radioulnar ligaments 

are taut and the volar lip of the sigmoid notch is in contact [17] [15] [10].  Others have 

found that the dorsal ligament is taut and is important in pronation while the volar 

ligament has an equally important role in supination [18] [19].  Overall it is recognized 

that the radio-ulnar ligaments have an important role in maintaining DRUJ stability [10].   

Some have shown that the TFCC is important to stabilize the DRUJ in neutral rotation, 

while the IOM is important in pronation and supination [20].  Other important soft tissue 
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stabilizers include the ECU sheath [21], however, other authors have found that the ECU 

sheath has little impact on stability [15]. 

1.1.2.2  Interosseous Membrane 

The interosseous membrane (IOM) is a complex structure.  It has also been called the 

interosseous ligament, indicating it’s similar characteristics to a ligament [22] and the 

interosseous ligament complex [23].  It has five discrete components; the central band 

(CB), accessory band (AB), distal oblique bundle (DOB), proximal oblique cord (POC) 

and the dorsal oblique cord (DOC) [24] [25] (Fig 1.10).  These bands are not consistently 

present, with the central band, accessory band and proximal oblique cord being seen in all 

specimens but the dorsal oblique accessory cord and distal oblique bundle only being 

seen in approximately 50% of cadavers in one study [25].  The central band is 9.7 mm 

(4.4-16) wide, and 1.3 mm (1-1.6) thick.  In terms of orientation, the CB has been found 

to be at a 21 to 24o angle relative to the shaft of the ulna [22].  It has a greater length of 

insertion on the ulna (42 – 46 mm) than the radius (34-42 mm) [22].  

In contrast with the substantial thickness of the CB, the AB is less than one mm in 

thickness, but varies in number from one to 5 ligaments.  The DOB is 4.4 mm (2-6) wide 

and 1.5 mm (0.5-2.6) thick on average.  The POC is 3.7 mm (1.5-8) wide and 1.1 mm 

(0.4-2) thick, similar to that of the dorsal oblique accessory cord of 3.2 mm (1.9-5) wide 

and 0.9 mm (0.5-1) thick [25].   

Biochemically, the IOM is made up of collagen with a supporting framework of elastin, 

to withstand large loads [24]. 
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Figure 1.9:  The Wrist, TFCC and Ligaments 
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Figure 1.10:  Anatomy of the IOM 
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1.1.2.3 Elbow Ligaments 

The soft tissue stabilizers of the elbow include the joint capsule and collateral ligaments.  

The joint capsule has medial and lateral thickenings that form the medial and lateral 

collateral ligaments [26] (Fig 1.11).  The medial collateral ligament is comprised of the 

anterior, middle and transverse segments which emanate from medial epicondyle [27].  

The medial collateral ligament is an important valgus stabilizer.  The anterior bundle is 

especially important, and is composed of the anterior and posterior bands [28].    The 

lateral collateral ligament is harder to differentiate from the capsule.  It is made up of the 

annular ligament, the radial and lateral ulnar collateral ligaments.  The radial collateral 

ligament originates at the lateral epicondyle and inserts into the annular ligament.  The 

lateral ulnar collateral ligament (LUCL) is an important stabilizer for varus and 

posterolateral rotatory loading.  Originating at the lateral epicondyle, it inserts on the 

crista supinatoris [29].   
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Figure 1.11:  Important Elbow Ligaments 



19 

 

1.1.2.4  Muscles  

A large number of muscles are involved in the functioning of the forearm as a unit and 

specifically the elbow and wrist joints.  Crossing the elbow are 24 musculotendinous 

units (Table 1), of which the primary muscles of interest in elbow flexion and extension 

are the biceps and triceps respectively.  There are 29 musculotendinous units cross the 

wrist [30] (Table 2).  Of these, the musculotendinous units of primary interest for wrist 

motion are the flexor carpi radialis, flexor carpi ulnaris, extensor carpi ulnaris and the 

extensor carpi radialis longus and brevis [31]. (Fig 12)  The forearm itself is stabilized by 

active units; in particular both the pronator quadratus and teres as well as the supinator 

stabilize the forearm and may alter the loads on the IOM.   
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Table 1:  Musculotendinous Units crossing the Elbow 

Action Muscles 

Flexion Brachialis 

Biceps brachii 

Brachioradialis 

Pronator teres 

Flexor carpi ulnaris 

Extension Triceps 

Anconeus 

Supination Supinator 

Brachioradialis 

Biceps brachii 

Pronation Pronator quadratus 

Pronator teres 

Flexor carpi radialis 

Wrist flexion Flexor carpi radialis 
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Flexor carpi ulnaris 

Wrist extension Extensor carpi radialis longus 

Extensor carpi radialis brevis 

Extensor carpi ulnaris 
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Table 2:  Musculotendinous Units that cross the Wrist 

Action Muscles 

Supination Supinator, Biceps Brachii 

Extension Extensor carpi radialis longus, Extensor 

carpi radialis brevis, Extensor carpi 

ulnaris 

Flexion Flexor carpi radialis longus, Flexor carpi 

radialis brevis, Flexor carpi ulnaris 

Ulnar Deviation of Wrist Flexor carpi ulnaris, Extensor carpi 

ulnaris 

Radial Deviation of Wrist Flexor carpi radialis, Extensor carpis 

radialis longus, Abductor pollicis longus, 

Extensor pollicis brevis 
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Figure 1.12:  Important Musculotendinous Units that Cross the Wrist 
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1.2  Biomechanics of the Forearm 

1.2.1  Axes of Motion 

1.2.1.1 Axis of Elbow Flexion and Extension 

The kinematic axis of flexion/extension of the ulna with respect to the humerus has been 

found to be 84o [32], 82-86o [33], 80o [34] or 86o [35] in the frontal plane.  However, 

other authors found that the axis of flexion/extension does not have a fixed position [36].  

The position of this axis was found to be located within the instant center of rotation in 

circles of 3 and 1 mm in diameter on the lateral and medial sides of the elbow, 

respectively [34].  The screw displacement axis (SDA) has been descriptively located 

from the anterior aspect of the medial epicondyle, the center of the trochlea, and the 

center of the projection of the capitellum onto a parasagittal plane [35].  The position of 

the flexion axis moved with individual variations ranging from 2.1° (-1° to 1°) to 14.3° (-

6.5° to 8°) in the frontal plane and from 1.5° (-1° to 0°) to 10° (-3° to 7°) in the horizontal 

plane [36].  Others found variations of lesser magnitude of 2.5° ± 1.0° in the frontal and 

6° ± 2° in the horizontal plane [35].  However, the ultimate position of the flexion axis 

has been found to have a distal medial inclination in most studies, with a relatively small 

locus of instant center of rotation [32] [35] [37].  This has resulted in the alignment being 

in valgus in extension and varus in flexion.    
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1.2.1.2 Axis of forearm rotation 

 The axis of rotation of the forearm runs from the fovea of the ulnar head, proximally 

through the center of the radial head [3].  For the distal ½ of the ulna, the axis of rotation 

falls on the ulnar insertion of the IOM.  More proximally, it runs through the center of the 

IOM but runs through the shaft of the radius proximally.  This conceptually supports the 

CB, distal AB and DOB as being isometric and the POC and DOC lacking isometry [3].  

As the forearm pronates, the radius moves proximally, and in supination it moves 

distally.  This proximal/distal motion has a magnitude of about 1.3 mm [38].  The DRUJ 

also allows dorsal/palmar motion, as seen by dorsal movement of the radius with 

pronation, and volar movement with supination [7] [16] [39].  This translation is 

increased if the soft tissues are disrupted [16].  Although sectioning of the annular 

ligament increases the mediolateral motion of the radius with respect to the capitellum, it 

does not effect the axis of rotation of the forearm [40]. 

 

1.2.2  Biomechanics of the IOM 

The IOM has two main roles; load transmission and stabilization of the radio-ulnar  

articulations [41].  The IOM has an oblique orientation of the fibers with respect to the 

radius and ulna, with the CB at a 21 to 24o angle relative to the shaft of the ulna [22].  

The IOM’s primary function is to transmit load in the direction of the IOM.  This can be 

particularly seen in that the load to failure in the longitudinal axis has been found to be 

120N while only 0.82N in the transverse direction [42].   The magnitude of the load 

transferred by the IOM has been reported to be greater than 1000 N [43].  A significant 



26 

 

portion of this load is transmitted by the CB as the CB is three times stronger than the 

remaining components of the IOM [44].  

While one study reported that the IOM was isometric [3], most authors have measured 

changes in IOM strain during forearm rotation.  This majority in literature is consistent 

with the anatomy of the forearm as the IOM is a ligament.  Ligaments can be expected to 

tolerate more strain than other physiologic structures such as tendons.  Some studies have 

reported the IOM to be at highest strain in supination [45] [46], while others found the 

highest strain in neutral [47].  The lowest strain has been reported in pronation [46] [47] 

or in neutral rotation [48].  However, the translation of the ulna with respect to the radius 

also needs to be considered as having a role in the loads transmitted by the IOM and the 

position of the maximum tension.   

In addition to its role as an axial stabilizer, the IOM also prevents divergence of the 

radius and ulna [41].  If the IOM is partially or completely sectioned, there is resultant 

DRUJ instability [49].  In particular, the distal IOM is found to have a key stabilizing role 

[50], with the DOB of particular importance (although it is only present in 40% of the 

population) [3].   

1.2.3 Forearm Load Transmission 

The biomechanics of load transmission within the forearm are extremely complex.  As 

the IOM both transmits load as well as maintains the radio-ulnar articular relationships, 

IOM strain is affected by forearm loads applied as well as the position of the forearm.  

However, grossly it has been seen that the radiocarpal joint transmits approximately 80% 

of the applied load and the ulnocarpal joint approximately 20% of the loads applied at the 
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wrist [51] [52].  Other authors list greater forces transmitted by the ulnocarpal joint at the 

wrist of up to 30-40% of the applied load [8] [53].  However, proximal loads have been 

found to be 50% at the radius and 50% at the ulna, indicating load transfer via the IOM 

[53].  The forearm loading characteristics may be affected by the rotational position, with 

greater contact area at the radiocapitellar joint in supination than in pronation [16].   

1.2.4 Forearm Loading 

Current in-vitro studies of forearm load transfer use forces of 100-136 N in general with 

the upper limits meant to represent loading of 30 lbs through the elbow joint [45] [48] 

[54].  The literature, however, suggests that higher loads occur in vivo.  In vivo analysis 

has indicated maximal loads at the ulnohumeral articulation of 1600 N, radiohumeral of 

800 N and wrist joint loads of 2800 N at moderate activity [55].  Other literature 

demonstrates ulnohumeral loads of 3200 N with heavy lifting [56] or 2450 N and 

radiohumeral loads of 1500 N [57] under single repetition maximal contraction loading.  

Proportionality was found in other studies, indicating that the ulnohumeral loads were 

0.3-0.5 X body weight for ADL's [58]. 

1.3  Forearm Injuries 

1.3.1  Essex-Lopresti Injuries 

The Essex – Lopresti injury was relatively recently described.  Brockman in 1930 first 

described proximal translation of the radius with respect to the ulna after a radial head 

fracture [59].  Curr and Coe subsequently described an acute dislocation of the distal 

radioulnar joint (DRUJ) after a radial head fracture [60].  Essex-Lopresti described two 
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cases of a fractured radial head and acute DRUJ instability and associated it with an IOM 

lesion [61].   

An Essex-Lopresti injury is classically described as a radial head fracture, with IOM 

disruption and DRUJ instability wheras a Monteggia injury is a fracture of the ulna with 

dislocation of the radiocapitellar joint.  The nomenclature is clouded, with some stating 

that radioulnar dissociation is the acute form of this injury and an Essex-Lopresti injury is 

the more chronic form [44].  In addition to the obvious pathology at the radial head, 

physical exam of these patients may reveal tenderness diffusely over the forearm and the 

ulnar side of the wrist as well as forearm ecchymosis [44].  A bony variant has been 

described, with a fracture associated with the DRUJ injury.  This ulnar head fracture 

resulted in instability similar to the soft tissue instability seen classically, and was 

repaired with internal fixation [62].   

 The classic definition of an acute Essex-Lopresti requires surgical management as 

a chronic Essex-Lopresti injury that was initially missed can result in significant patient 

disability and are often difficult to treat [63].  However, the surgical algorithm is unclear.  

Options include radial head restoration, either with internal fixation or with arthroplasty 

for longitudinal instability, and DRUJ instability can be treated by pinning the joint or by 

reconstruction of capsular tissue and the TFCC [64].  Reconstructions of the IOM in vivo 

have been described, but are technically challenging and there are few reported cases 

[65].  The controversy of treatment is partially due to the fact the load transfer within the 

forearm is unclear, and a greater understanding of the biomechanics of the forearm is 

required.  
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1.3.2     Radial Head Fracture 

Radial head fractures are a frequent injury and are the most common fractures of the 

elbow [66].  These fractures can have significant repercussions for the patient, with 

chronic pain, stiffness, osteoarthritis, wrist symptoms, weakness and valgus alignment are 

potential residua of the injury [67].  The classification of a radial head fracture remains 

problematic, but most rely on some variant of the original description by Mason (Fig 

1.13). This system uses a three tiered system, with a type-I being undisplaced, a type II 

having displaced wedge fragment(s), and type III being comminuted [27].   
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As outcomes are often suboptimal for open reduction internal fixation of type III 

fractures [69], these fractures are commonly treated with radial head excision or 

arthroplasty.  Soft tissue disruptions which have been reported in up to 75% of patients 

with comminuted radial head fractures [70] hence radial head arthroplasty is 

recommended to increase elbow stability [71].  Radial head excision has been reported to 

have a high incidence of late instability and arthritis [72].  Interestingly, the IOM is 

abnormal on MRI in 2/3rds of Mason I fractures, suggesting the IOM can be injured even 

with minimal trauma to the radial head [73].  In a case series of 20 patients presenting 

with Essex-Lopresti injuries, 15 had a radial head excision without knowledge of the 

IOM injury.  While the clinical impact of IOM injuries has not been completely 

understood; missed Essex-Lopresti injuries often lead to suboptimal outcomes.   

1.3.3  Radial Head Fracture Treatment: Arthroplasty 

Research on radial head arthroplasty (RHA) has been focused on the effect of 

discrepancies in length of the prosthesis on forearm biomechanics, with little work on the 

effect of diameter (Fig. 1.14)  RHA with inadequate length results in increased distal 

ulnar loads and increased proximal radial displacement, with the resultant 

recommendation by some to err on over lengthening [74].  Other investigators have 

reported that in an MCL deficient elbow, increased length reduced laxity, but increased 

contact forces, while decreased length increased laxity and ulnar rotation [75] [76].  

Although studies indicate the importance of radial head length, it does not quantify the 

load changes of the forearm.   Also, the effect of diameter of the RHA has not been 

reported.  How this dimension impacts the contact area or forces at the radiocapitellar 

articulation and on IOM biomechanics and forearm load transfer is also unknown.    The  
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Figure 1.14:  Radial head dimensions of length (A) and diameter (B) 
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effect of a change in radial head length or diameter on the forearm’s resistance to rotation 

is unknown.  

1.4  Current Biomechanical Studies of the Forearm 

In-vitro testing of forearm biomechanics has been limited in a number of ways, making 

the clinical generalizability of their results limited.  Most studies have been performed 

under static loading, often at a single fixed position of elbow flexion.  Other limitations 

include invasive load cells that require sectioning of the radius or ulna, significant soft 

tissue stripping, or non-reproducible loading systems.  Measurement techniques require 

optimization, and loads are often applied in a non-physiologic manner. Also, testing has 

been almost exclusively limited to axial loading scenarios; the effect on rotation of the 

forearm through pronation and supination has not been studied.  How the radial head 

state (native, excised or RHA properties) impacts the ability of the forearm to rotate is 

unknown.  Improvements in in-vitro testing techniques are required in an effort to 

develop clearer indications for surgery and to make advances in prosthetic devices. 

1.5  Thesis Rationale 

The forearm is a complex articular unit, comprised of the movement of the radius and 

ulna both in relation to themselves as well as with the carpal bones and the humerus.  

Proximally there is articulation at the elbow and the PRUJ, and distally at the wrist and 

the DRUJ.  The complex relationship of the radius and the ulna is linked by the IOM, and 

the forearm could be considered as a single articular unit.  However its biomechanics are 

poorly understood in a static situation; much less a kinematic situation. 
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Testing of a specific area of interest on a cadaveric specimen is a balance of physiologic 

motion and appropriate constraint.  Maintenance of the cadaveric specimen's integrity as 

well as testing at physiologically meaningful loads are challenges.  Also, quantification of 

IOM loads is difficult, and often inferred in an indirect manner.  The development of a 

simulator and physiologic testing algorithm will allow forearm testing in a clinically 

meaningful manner. 

In addition to a lack of a basic understanding how the native forearm functions, the effect 

of changes to the radial head on forearm biomechanics are not well delineated.  To date 

studies on axial load transfer within the forearm have been limited by non-physiologic 

testing parameters.  To provide a greater understanding on some of the clinical outcomes 

seen for RHA, a better understanding is needed on how changes to the dimensions of the 

radial head – length and diameter – impact load transfer and radiocapitellar articular 

properties.  Comparison of the native radial head, radial head excision and radial head 

arthroplasty dimensions on forearm biomechanics is important to provide a better 

understanding on the clinical impact of specific treatment algorithms.   

1.6  Objectives 

 The objectives for this study were: 

1. To create an upper extremity simulator that would provide a means of forearm 

testing in a repeatable and reproducible way both in dynamic and static loading 

conditions. 

2. To examine the effect of radial head state (native vs excision vs arthroplasty) on 

IOM tension 
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3. To examine the effect of radial head implant length on IOM tension, 

radiocapitellar force and radiocapitellar contact area.    

4. To examine the effect of radial head implant diameter on IOM tension,  

radiocapitellar contact force and radiocapitellar contact area. 
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Chapter 2  

1 A Novel Forearm Simulator:  Design and Validation 

Overview:  To enable testing of the biomechanics of the forearm, a unique simulator was 

designed to analyze clinically meaningful loading conditions.  This chapter outlines the 

design rationale as well as describes the features of the forearm simulator.  Validation 

testing of the simulator and the outcome measurement tools are also reported.   

Publication: This work has not been submitted for publication. 

2.1 Introduction 

As described in Chapter 1, the forearm is a complex articular unit.  Current simulators 

designed for benchtop testing employ denuded forearms(1), conduct osteotomies of the 

humerus (2) or radius and ulna (3) (4) (5) (6), or test aspects of the forearm (such as the 

radiocapitellar joint) in isolation (7).  Many systems apply significant constraint to the 

upper extremity during testing (8) (9).  The limitations of these systems and the desire to 

test the forearm as a unit for a variety of clinically meaningful scenarios led to the 

creation of a forearm simulator.   

This device was designed and built to allow testing of cadaveric specimens as close to 

physiologic loading conditions as possible (Fig 2.1, App 1).  Design parameters were 

selected to allow testing in a variety of biomechanical scenarios involving the elbow, 

forearm or wrist.  The simulator required the ability to restrict or enable motion in three 

dimensions of translation and rotation of each of the rigid bodies of the radius, ulna and 

humerus.  The ability to precisely control the direction, magnitude and rate of axial load 

application to the hand as well as passively rotate the forearm under position or torque 

control was important.  Testing in different positions of elbow flexion and extension, as 

well as forearm pronation and supination, was also required for potential testing 

scenarios.     
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Figure 2.1:  Isometric view of a computer based model of the simulator.  Modelled is a 

simulated cadaveric arm, with the metacarpals and humerus potted for rigid fixation.  The 

active units as well as the IOM load transducer are labelled. 
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2.2  Methods 

2.2.1  Simulator Materials 

 Stainless steel type 316 (S31600) was selected for the testing device and fittings, 

due to machinability and high strength.  The ability to resist corrosion in saline and 

cleaning products as well as ease of cleaning was also advantageous (13).  Delrin was 

chosen for some components as it is inexpensive, had good strength and corrosion 

resistance, and is easy to machine. Delrin also has been shown to have minimal adhesion 

and static friction characteristics, allowing motion between components (14).   

2.2.2  Degrees of Freedom 

 Normal activities involving the upper extremity involve forces transferred via the 

hand.  These forces, and the reaction forces created by the muscles of the forearm, are 

transferred at the articulations of the forearm.  To create a simulator capable of 

physiologic loading of the forearm, the most simplistic design would involve rigid 

fixation of the osseous bodies of the forearm, apply loads, and record soft tissue or joint 

reaction forces.  However, this does not accurately represent the complexity of the upper 

extremity, and applies unwanted internal forces as a result of constraint.  The simulator 

was designed to have multiple degrees of freedom (DOF) to allow minimal constraint, 

precise load positioning, and allowance for a variety of specimen sizes.  Where possible, 

each DOF had the ability to be constrained or not.  A total of 17 DOF was provided, 

seven at the wrist and seven at the elbow with the remaining 3 DOF to allow adjustability 

at the ulnar attachment when used (Fig 2.2(A)).  Slots with bolts (Fig 2.2(B)) to allow  
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(A) 

 

(B)                                      (C)   

 

Figure 2.2:  The degrees of freedom potentiated by the simulator; a total of 17 included in 

the final design (A).  Detail image demonstrating bolts within a slot that allowed 

translation (B).  Delrin tongue and groove construct (circled) at the humerus mount (C). 
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translation or pivoting were used predominantly on the upper aspect of the simulator, 

where the load was applied to the metacarpals.  This construct was preferred to allow 

adjustability as well as strength when the final position of the arm was selected.  In 

contrast, the ulna and humerus mounts were selected to optimize mobility, with 

secondary goals of minimizing constraint.  To allow the humerus to more precisely align 

with the loading of the forearm as well as prevent abnormal loading at the elbow due to 

constraint, the humerus was allowed to horizontally translate as well as rotate.  Motion in 

translation was enabled by mounting the humerus mount on lubricated Delrin rails in a 

tongue and groove pattern.  Similarly, rotation was enabled by slotting the circumference 

of the cylindrical humerus mount and fitting this slot into a lubricated Delrin collar for a 

circular tongue and groove construct (Fig 2.2(C)).   Lubrication was utilized in the tongue 

and groove constructs to decrease friction, and allow the specimen to move to a position 

of lower reactionary forces; thereby decreasing the constraint and associated forces 

within the specimen. 

 The simulator has the capability to allow the ulna to be constrained to a fixed 

mount rather than including the humerus.  Using a Delrin mount, the ulna’s connection 

could be optimized for each specimen.  If only partially constrained, this mount allowed 

translation by low friction roller track bearings as well as bolted mount points in slots to 

allow translation.   

2.2.3  Pronation/Supination 

Forearm rotation through pronation and supination was found on pilot tests to 

require less than 3 Nm of torque.  To provide smooth motion in a highly controlled 

fashion, a servo motor was selected rather than a stepper motor or a pneumatic motor.  
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The Animatics SM2315DT servo motor (Moog Animatics ®, Santa Clara CA, USA) has 

an incorporated amplifier and motion control system (App 2).  This motor produces a  

torque of 0.4 Nm, and rotates to a maximum revolutions per minute (RPM) of 4700.  As 

the output torque was too low a reduction gear ratio was employed.   The gearbox 

selected was the Animatics single stage GH23P22 (App 2b).  This provided a 22:1 gear 

ratio to allow the servo motor to provide the design parameter outputs.  Motor torque 

multiplied by gear ratio provides an output torque of 8.8 Nm (22X0.4).  The design safety 

factor for torque is 2.5, and higher than the reported physiologic torque (10). 

2.2.4   Axial Loading 

Axial loads are transmitted through the forearm with upper extremity activity and 

therefore were a critical aspect of creating a simulator.  The capability of testing via 

compression as well as distraction was a design criteria.  Physiologic forces at the 

articulations of the forearm are high (11).  However, preliminary testing necessitated 

testing lower than 200 N as testing above 200 N resulted in mid-carpal instability during 

pilot testing.  An axial load of 160 N was selected as other investigators have reported 

that axial loads of over 200 N did not affect the load sharing results (12).  Precise control 

of a constant load while the point of load application translates was a design necessity.  

The ability of the device to translate was required due to the characteristics of the forearm 

loading, the relative change in radial length during forearm rotation while other rigid 

bodies of the upper extremity remained fixed, interspecimen variability, as well as the 

ease of mounting each specimen.  Axial loading was applied by a pneumatic actuator 

(Model FOD-094-S, Bimba®, University Park, IL, USA) (App 3).  This specific actuator 

was selected as this cylinder features a double acting, double ended rod.  The double 
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ended feature of a pneumatic cylinder allowed for protrusion of the central rod of the 

cylinder from both ends of the cylinder, and is a single component.  This feature allowed 

rotational forces to be applied and transmitted independent of axial loads.  The double 

acting feature of the actuator allowed both compressive and distraction loads to be 

applied.  To apply an appropriate load, a 1-1/16” diameter cylinder was selected.  Power 

Factor is defined as the output force produced by the pneumatic cylinder as impacted by 

the input pressure with a fixed cross sectional area of the inside of the cylinder.  Given 

that the power factor for a 1-1/16” cylinder is 0.88, and the available pneumatic source 

pressure was 100 psi, the actuator can produce 400 N of force.  This represents a 2.5 X 

safety factor of design capability to testing requirements.  The length of travel of this 

cylinder is 101 mm to allow both for appropriate loading of the specimen, as well as 

allow ease of mounting.   

To allow application of a constant load with precision, a load cell (Futek® Model MBA 

600, Irvine, CA) was interfaced between the load application and the specimen (App 4).  

This also allowed measurement of the reaction forces of the forearm to the applied forces.  

A closed-loop feedback with a custom software controller allowed precise maintenance 

of the desired load applied.  The manufacturer’s calibration constants and National 

Institute of Standards and Technology (NIST) calibration certificate were utilized.   

2.2.5  Torque Measurement 

Reaction forces to rotation were measured using a load cell (Futek® Model MBA 600, 

Irvine, CA)(App 4) that was rigidly fixed to the servomotor which applied the rotational 

torque as well as the load to the metacarpals.  This torque was recorded in a continuous 
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manner.  Again, the manufacturer’s calibration constants and NIST calibration certificate 

were utilized.   

2.2.6  IOM Load Cell 

Minimal dissection of the IOM while recording the forces was important.  To do so, a 

custom load cell was constructed.  A pair of strain gauges (Vishay Micro-

Measurements®, 120 Ω, 90o rosette, Raleigh, NC) were affixed to a strip of spring steel 

9.5 x6.5 x 0.32 mm (Fig. 2.3(A)).  Utilizing a three point bending concept, the load cell 

was woven through the fibers of the IOM (Fig 2.3(B)).  The load cell was calibrated by 

weaving it through the fibers of a synthetic material and utilizing hanging weights.  Using 

IOM tissue for calibration was not found to be technically possible due to the obliquity of 

the fibers to the bone as well as the friable nature of the tissue.  Temperature was 

controlled and maintained throughout testing. 

2.2.7  Radiocapitellar Joint Pressure  

To determine the contact area and pressure at the radiocapitellar joint, a thin rectangular 

film sensor was utilized (K-Scan system, Model 4201, I-Scan 5.761 software, Tekscan®, 

South Boston, MA)(App 5).  This sensor was larger than required for the radiocapitellar 

joint space.  Initial attempts to trim the sensor to fit the specimen’s intra-articular space 

caused early failure and a lack of reliability of the device.  Attempts to provide a 

watertight seal to the cut edges were not successful.  Therefore, the sensor was marked to 

produce consistent positioning of the sensor as well as any deformation points.  The 

peaks of contact pressure and area at points of deformation were manually removed when 

testing had been completed.   
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(A) 

 
 

 

(B)  

 

Figure 2.3:  Custom load created to allow direct measurement of IOM tension during 

pronation-supination testing of the forearm.  (A) Pair of strain gauges attached to a strip 

of spring steel.  (B) Woven through the fibers of the IOM, and sutured to the IOM tissue  

Ulna 

Central Band of IOM 

Strain gauges 

Optical Tracker Mount 
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2.2.8   Motion Measurement 

The ability to track the motion of each rigid body of the upper extremity (ulna, radius and 

humerus) during testing was also selected as an important design feature.  To do so, the 

precision of optical tracking systems was selected, and the load bearing aspects of the 

simulator were designed to allow open access to the specimen to facilitate continuous 

tracking (App 6 (A)).  Also, the simulator was painted a flat black to decrease the 

reflection of infrared beams.  As part of the validation of this system, active (signals sent 

to recording device) and passive (central device emits signal and records reflected signal 

to determine position) trackers were affixed to the radius, ulna and humerus using an 

external fixator (App 6(B)).  Pilot testing indicated that active tracking was possible 

through a complete range of pronation and supination.   

2.2.9  Reproducibility/Repeatability Testing 

Expertise using the simulator was gained in preliminary testing using six specimens.  

Reproducibility and repeatability testing was done prior to proceeding with the final 

protocol using a single thawed cadaveric upper extremity specimen (68 yo female).  The 

fingers were disarticulated at the metacarpo-phalangeal joints, and the thumb at the 

carpo-metacarpal joint.  The metacarpals were stripped of all soft tissues, leaving the 

tendinous insertions at the bases and the joint capsules intact.  The humeral shaft was 

denuded starting 8 cm above the elbow joint.   A dorsal trapdoor was made using a 

Thompson approach to access the central band of the IOM, and the extensor digitorum 

communis was resected over the central band of the IOM.  The remainder of the soft 

tissue was retained, and retracted toward the ulna to expose the IOM for 10 cm directly 



53 

 

overlying the central portion of the IOM.  Two 8 mm long parallel slits were made 4 mm 

apart in the central band parallel to the IOM fibers.  The strain gauge was woven into the 

central band of the IOM using two parallel slits 4 mm apart and secured using 5.0 silk 

suture (Ethicon, San Antonio, TX).   

After positioning the wrist in neutral in all planes and the third metacarpal in line with the 

direction of the applied loads, the metacarpals were transversely pinned in position.  The 

metacarpals were then potted using bone cement.  The humerus was also potted using 

bone cement.  The forearm was taken through a range of motion of pronation and 

supination and the elbow through a range of flexion and extension to ensure minimal 

resistance to motion as well as recording the range of rotation possible.  This range of 

pronation and supination was then precisely repeated by the simulator throughout testing.  

Two kilogram weights were sutured to the tendons of the brachialis, biceps and four 

kilograms to the triceps tendons using No. 2 Ethibond® (Ethicon, San Antonio, TX), 

with maintenance of the direction of pull using adjustable pulleys.   

The common extensor tendon and the underlying annular ligament were split to provide a 

direct lateral approach to the radial head.  Although a small portion of the radial collateral 

ligament was released off the humerus to provide adequate exposure, the humeral and 

ulnar attachments of the lateral ulnar collateral ligament were preserved.  The annular 

ligament, radial collateral ligament and common extensor tendon split were repaired in 

layers using interrupted No. 2 Ethibond® sutures (Ethicon, San Antonio, TX) at each 

stage of the testing protocol.     
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Reproducibility and repeatability testing was done with the native radial head under 

active motion.  Each arm was tested through a full range of pronation and supination for 

three cycles to condition the specimen.  All testing was done at 240 N of axial load, and 

positions of elbow flexion of 0, 45 and 90 degrees was done to ensure that reproducibility 

and repeatability was not effected by position.  For repeatability testing, the IOM tension 

was measured continuously for a total of five cycles.  Between each cycle, the test was 

halted, and the axial load removed.  The load was re-applied, and another cycle of 

pronation and supination was conducted.  To test for reproducibility, the specimen was 

removed from the forearm simulator after the first sequence of repeatability testing.  

Although it was not possible to remove the cement around the bone without damaging the 

metacarpals, the mounting points were disconnected from the simulator.  The metacarpal 

and humeral pots were then remounted.  The test sequence above was then reapplied.  

Repeatability testing was conducted once more, with the same outcomes being measured.    

2.3  Results 

Repeatability of the IOM load sensor was good with a Pearson correlation coefficient of 

greater than 0.9 and a mean standard deviation of <0.1.  Assessment of the load sensor 

calibration ex-vivo revealed a high Pearson correlation of 0.98. Contact area had good 

repeatability, with a Pearson correlation of greater than >0.5.  However, contact pressure 

had only a medium Pearson correlation suggesting these measurements were less reliable 

(r=0.4).  Repeatability of torque outcomes using a Pearson correlation was found to be 

0.95, with an average standard deviation of less than 0.1.  Reproducibility testing 
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conducted revealed good correlation for torque measures (Pearson 0.85, mean standard 

deviation <0.1), with moderate correlation for the IOM testing (0.52).   

2.4  Discussion 

Design and construction of this novel forearm simulator was completed in an iterative 

fashion.  Testing using the simulator demonstrated the ability to test with the soft tissues 

largely intact.  The design was demonstrated to allow axial loads to be applied in a 

controlled fashion while testing during active forearm rotation.  Continuous measurement 

of the IOM tension using a novel testing system was demonstrated to be possible with 

good repeatability and reproducibility.  Quantifying IOM tension is important to 

understand load transfer within the forearm, and this system will allow for testing of 

clinically important scenarios.  The clinical meaning of torque, the rotational resistance of 

the forearm to rotation, has not been fully delineated.  However, it likely includes an 

aggregate effect of articular forces, and does provide another useful metric for 

understanding the biomechanics of the forearm.  Validation testing demonstrated 

continuous measurement of forearm torque was possible with good repeatability and 

reproducibility.  Radiocapitellar contact properties were successfully quantified as well.  

The repeatability and reproducibility measures were not as strong as other outcomes 

measured.  The radiocapitellar joint areas had good repeatability, however, the contact 

pressure measures were less reliable.  The reasons for this are potentially multi-factorial.  

Physical deformation of the sensor due to the limitations of space within the 

radiocapitellar joint was necessary.  This required manual interpretation and removal of 

these areas of deformation in contact force and area outcomes.  Although carefully 
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marked to attempt to place the sensor in the same position each time, re-insertion in the 

exact same position may not have been possible.  Use of a custom sized sensor would 

strengthen future testing.      

The design and reproducibility and repeatability testing of the simulator did have some 

weaknesses.  Tekscan was used to measure the articular contact area and pressure and as 

outlined above, validation testing demonstrated precision limitations of the Tekscan 

outcomes, particularly contact pressure.  Although preliminary testing demonstrated that 

testing while recording forearm kinematics with the optical tracking system was possible, 

outcomes were not quantified or validated.  Under higher axial loads, mid-carpal 

instability occurred, limiting the simulator’s ability to test more provocative loading 

magnitudes.  The simulator was designed to have multiple degrees of freedom with the 

ability to selectively constrain depending on the testing protocol.  However, there was 

likely some frictional resistance in these planes of motion, particularly under axial loads, 

which were not quantified.    

Strengths of this simulator are that it allows testing in a physiologically relevant way 

while allowing measurement of the IOM loading conditions as well as radiocapitellar 

joint contact mechanics.    A variety of clinically important questions can be tested that 

relate to the wrist, elbow or forearm.  Measurement of multiple outcomes while being 

minimally invasive allows clinically important data to be collected.  Unique measurement 

tools and the means of load application allow testing of specific forearm properties with 

minimal soft tissue dissection using this forearm simulator.   
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2.5  Conclusions 

A forearm simulator with multiple degrees of freedom, loading and measurement tools 

was designed, built, and tested for repeatability and reproducibility.  The potential to 

enable multiple clinically relevant testing scenarios was achieved.  
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Chapter 3  

Effect of Radial Head Excision and Arthroplasty on 

Interosseous Membrane Tension 

Overview:  Radial head excision as well as radial head arthroplasty have been described 

as a treatment for complex radial head fractures.  However, how each treatment changes 

load transfer within the forearm is not understood.  This chapter compares interosseous 

membrane tension after both radial head excision and arthroplasty to the native radial 

head state under static and dynamic loading conditions.   

Publication: Lanting BA, Ferreira LM, Johnson JA, Athwal GS, King GJ. The effect of 

excision of the radial head and metallic radial head replacement on the tension in the 

interosseous membrane. Bone Joint J. 2013 Oct; 95-B (10): 1383-7 

3.1 Introduction 

Radial head fractures are common, with the majority being minimally displaced and 

successfully treated non-operatively [1].  Surgical management may be required for more 

displaced fractures.  Open reduction and internal fixation, while successful for simple 

displaced fractures, has been less reliable when treating fragmented and osteopenic 

fractures due to a higher incidence of complications [2]. Treatment of comminuted radial 

head fractures may include excision or arthroplasty; the optimal treatment is unknown 

[3].   

In long-term studies, radial head excision has been shown to have satisfactory functional 

outcomes in spite of a high incidence of osteoarthritic changes [4] and concerns with 

proximal radial migration [5].  Other literature supports the effectiveness of metallic 

radial head arthroplasty [6].  No randomized studies have compared the outcomes of 

radial head excision and arthroplasty.  Soft tissue injuries of the elbow are common with 
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comminuted radial head fractures, [7] as interosseous membrane (IOM) damage has been 

demonstrated to be common in even relatively low energy fractures [8].   

The purpose of this study was to examine the effect of radial head excision and 

arthroplasty on forearm biomechanics as compared to the native radial head.  The 

magnitude of IOM tension, position of the maximum IOM tension, and characterization 

of the IOM tension profile were examined. 

3.2 Materials and Methods 

An in-vitro forearm motion simulator, as described in Chapter 2,  was developed in an 

effort to recreate the biomechanical forces transmitted through the forearm in a 

physiologic manner.  The simulator (Fig. 3.1) was designed to produce axial loading of 

the forearm while simultaneously generating automated passive pronation and supination.  

This device allowed unconstrained motion through the carpus, radius, ulna and elbow.  

The humeral mount permitted medial-lateral translation, varus-valgus angulation, and 

axial rotation.  Multiple degrees of freedom were incorporated into the simulator to 

ensure adjustability for each specimen, and to allow forearm loading with minimal 

constraint. The metacarpals were potted in bone cement such that the third metacarpal 

was in-line with the axis of the applied load, and the forearm was aligned with the 

applied load prior to potting the humerus. 

Axial loading was applied through the metacarpals by a pneumatic actuator (Model FOD-

094-S, Bimba®, University Park, IL) and governed by a custom software controller using 

closed-loop feedback from a load cell (Futek® Model MBA 600, Irvine, CA).  Forearm 

pronation and supination motion was driven by a servomotor (Model SM2315-DT, 

Animatics®, Santa Clara, CA), with a cycle of rotation from pronation to supination and 

back to pronation in six seconds.  To measure tension in the interosseous membrane 

(IOM), a custom load cell was constructed with a pair of strain gauges (Vishay Micro-

Measurements®, 120 Ω, 90o rosette, Raleigh, NC) affixed to a strip of spring steel 9.5 

x6.5 x 0.32 (Fig. 3.2).  The load cell was woven over and under the IOM fibers, and this 

produced a bending axis via a three point loading construct.  After calibration, the load 

cell was able to quantify IOM tension in real-time under kinematic loading conditions. 
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Figure 3.1 The dynamic forearm simulator, modeled with a specimen mounted in the 

metacarpal and humeral pots. 
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Figure 3.2 The load transducer, woven into the central band of the IOM 

   

  

Ulna 

Central Band of IOM 

Strain gauges 



64 

 

Six cadaveric specimens (mean age 65, range 52-72 yrs) were prepared for testing.  The 

specimens were included only if there was no prior fracture or evidence of arthritis, based 

on pre-testing Computed Tomography (CT) scans.  The arms were thawed at room 

temperature for 16 hours.  The fingers were disarticulated at the metacarpo-phalangeal 

joints, and the metacarpals were stripped of all soft tissues.  The thumb was disarticulated 

at the carpo-metacarpal joint.  The tendinous insertions to the metacarpal bases were 

maintained, as were the joint capsules of the wrist and carpal bones.  All soft tissue was 

stripped off the humeral shaft starting 8 cm above the elbow joint.   Via a Thompson 

approach, a volar trapdoor was made to access the central band of the IOM, hinging the 

soft tissue at the ulna.  The extensor digitorum comminus was resected over the central 

band of the IOM.  The remainder of the musculotendinous units were gently retracted to 

expose the IOM for a distance of 10 cm directly overlying the central portion of the IOM.  

The proximal and distal portions of the IOM were sectioned to isolate the central band.  

Two 8 mm long parallel slits were made 4 mm apart in the central band parallel to the 

IOM fibers.  Both ends of the load sensing device were then inserted into the slits, thus 

weaving it into the central band of the IOM.  Small holes at each end of the load cell were 

used to secure it to the IOM using 5.0 silk suture (Ethicon, San Antonio, TX) (Fig 3.2).   

A Steinman pin was temporarily placed transversely through the metacarpals and the 

specimen was positioned with the wrist in neutral in all planes, and potted using bone 

cement with the third metacarpal in line with the applied loading vector.  The elbow was 

flexed to 90°, and the forearm and carpus aligned with the applied axial load.  The 

humerus was potted, and the limits of forearm rotation for each specimen were assessed 

manually and recorded by servomotor position feedback.  These terminal ranges of 

motion were then precisely repeated throughout all trials.  Static muscle forces across the 

elbow were simulated with weights by suturing cables to the tendons of the brachialis, 

biceps and triceps using No. 2 Ethibond® (Ethicon, San Antonio, TX).  Two kg were 

applied to the brachialis and biceps brachii, and 4 kg to the triceps [9].   Muscle lines-of-

action were maintained with an arrangement of adjustable pulleys. 

A direct lateral approach to the radial head was performed by splitting the common 

extensor tendon and the underlying annular ligament.  A small portion of the radial 
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collateral ligament was released off the humerus to provide adequate exposure to resect 

and replace the radial head, but the humeral and ulnar attachments of the lateral ulnar 

collateral ligament were preserved.  A microsagittal saw was used to make the radial 

neck cut.  The native radial head diameter and length was measured using calipers and 

the optimal radial head arthroplasty size was selected.  The radial canal was hand reamed 

and a trial radial stem and head were inserted (Evolve®, Wright Medical Technology, 

Arlington, TN).  The annular ligament, radial collateral ligament and common extensor 

tendon split were repaired in layers using interrupted No. 2 Ethibond® sutures (Ethicon, 

San Antonio, TX).   

Both active motion and static testing were conducted. For the active series, each arm was 

tested through a full range of pronation and supination for three cycles for each radial 

head state at 160 N.  IOM tension was measured continuously, with the third cycle used 

for data analysis.  The arm was then tested statically in neutral rotation.  The load was 

applied at a rate of 8 N/s to 160 N.  The forearm was tested with the native radial head, 

with the radial head excised, and with the radial head replaced.  The IOM tension 

recorded was plotted, and a line of best fit applied.  The slope of this line of best fit was 

measured, and recorded as the rate of increase of IOM tension. 

3.2.1 Statistical Methods 

One and two-way ANOVA were utilized to calculate statistical significance, defined as 

p<0.05, for the dependent variable of IOM tension.  Repeatability was assessed by 

determining linear dependence using the Pearson correlation coefficient of the IOM load 

sensor of sequential testing with the same test series. 

3.3 Results 

The system demonstrated good repeatability, with the IOM load sensor having a Pearson 

correlation coefficient of greater than 0.9, and a standard deviation of 0.7.   

IOM tension increased after radial head excision during forearm rotation under a constant 

load, to almost double the values for the native or arthroplasty radial head states 

(p=0.007) (Fig. 3.3).  There was no significant difference in IOM tension between the  
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Figure 3.3 Maximum IOM tension in response to a constant (160N) axial load with 

dynamic forearm rotation with three radial head states:  native, arthroplasty, excision.  

Normalized to the native radial head values. 
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native radial head and radial head arthroplasty states (p=0.09).   Maximal IOM tension 

was measured in neutral rotation with both the native and replaced radial head. When the 

radial head was excised, maximal IOM tension occurred with the forearm in pronation. 

Under dynamic axial loading, the rate of increase in IOM tension was more rapid when 

the radial head was excised than for the native or arthroplasty states (p=0.02), (Fig 4- 

representative specimen) as well as the average rate of increase for each specimen (Fig 

5).  When the radial head was excised, the rate of tension increase occurred at a higher 

rate than either the native or radial head arthroplasty states (p = 0.02).  However, 

following radial head replacement, there was no difference in the rate of increase of IOM 

tension compared to the native radial head (p=0.78).  The average rate of IOM tension 

increase was lower than the rate of applied axial load (Fig 4). 
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Figure 3.4 IOM response to axial loading under three radial head states:  native, 

arthroplasty, excision in a static position under increasing axial loads for a single 

representative specimen 
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Figure 3.5 Rate of IOM response to axial loading under three radial head states:  native, 

arthroplasty, and excision in a static position under increasing axial loads as calculated 

from the slope of the best line of fit to the measured IOM tension, error bars indicate one 

standard deviation. 
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3.4 Discussion 

The forearm simulator permitted physiologic testing of the forearm in a repeatable way.  

This enabled us to quantify the effect of axial loading and radial head excision and 

arthroplasty on IOM tension.  The axial loads applied in this study were higher than in 

previous reports [1] [10] [11] to reflect the higher loads that can occur physiologically 

[12].   

Direct instrumentation of the IOM with a calibrated strain gauge-based load cell has 

advantages over calculated IOM tension.  In most previous studies, the relationship 

between the IOM and radio-ulnar loading has been indirectly determined from strain 

gauges implanted in the osteotomized radius and ulna [13] [14] [15].  IOM tension has 

only been directly measured in one study, using an arthroscopically implantable force 

probe.  However, although the IOM wasn’t violated for measurement of the IOM tension, 

osteotomies of the radius and ulna were used, and no radial head arthroplasty group was 

included [13].  Thus, direct comparison to the current study is not possible.   

The position of the greatest IOM tension has been found to occur in a variety of forearm 

rotations.  Some literature describes the position of greatest IOM tension to be in neutral 

[16] [14] [17], or supination [10] [18].  Other studies report that the IOM is isometric 

[19].  In this study, the position of maximal IOM tension in an intact forearm was found 

to be in neutral.  This was also found with the radial head arthroplasty.  With the radial 

head excised, the IOM load was maximal in pronation; which is in keeping with other 

studies [16].  In pronation, the radius crosses over the ulna.  If the radial head is excised, 

proximal control of the radio-ulnar relationship is lost, which may require greater IOM 

tension to maintain this relationship. 

Excision of the radial head alters the radioulnar relationship; creating different IOM 

tensions than found in the intact or arthroplasty states.   Excision of the radial head 

resulted in an increase in IOM tension; the average change was greater than double the 

values seen with the radial head intact or replaced (Fig 3.3).   
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It was found that the radial head state has an impact on soft tissue loading of the forearm.  

The observed increase in IOM tension found if the radial head is excised may lead to the 

potential for attritional failure over time.   Also, the fact that the IOM tension is not 

changed when the radial head is replaced as compared to the native radial head is 

clinically important.  This indicates that radial head arthroplasty may allow the forearm to 

maintain normal biomechanics and load transfer between the radius and ulna.  If the IOM 

was damaged during trauma to the forearm that caused the radial head fracture, the IOM 

may be able to heal normally if the radial head is replaced.  Given the challenges treating 

chronic longitudinal radioulnar dissociation [20], this potentially eliminates a significant 

clinical complication.   

The ability to dynamically load the forearm and measure IOM forces has allowed the 

characterization of the IOM forces under a changing axial load.  In a neutral position, 

there was no statistical difference in the increase in IOM tension between the native and 

radial head arthroplasty states.  The absolute values of the IOM tension after radial head 

arthroplasty are lower in the single specimen displayed (3.4), but this may be due to a 

slight lengthening of the radial head compared to the native head.  However, when the 

radial head was excised, the biomechanics of the forearm are changed.  As a result, the 

amount of load the IOM transfers increased at a higher rate.  The increased rate of IOM 

tension increase is intuitive, but has not been reported in the literature previously.  The 

average rate of increase of IOM tension was less than the rate of applied axial load in all 

radial head states.  The potential for load to be transferred via other soft tissue structures 

or differential rates of stress relaxation may explain this; however, it is unclear as to why 

this occurs.  Also, the initial readings of IOM tension indicated a baseline tension of 50 

N.  This may be due to an introduction of tension to the IOM when the strain gauge is 

woven between the fibers, but may also be due to resting tension of the IOM.   

The IOM response to the radial head state has clinical implications.  Higher magnitudes 

of IOM tension under constant axial loads as well as greater increases in IOM tension 

under changing axial loads may impact patient outcomes both for short and long term 

scenarios.  If treated with a radial head excision, rehabilitation should be protective of the 

IOM, with low force activities to allow associated soft tissue injuries of the forearm to 
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heal. This would include focusing on active pronation and supination exercises initially, 

with decreased emphasis on axial loading exercises.  The patient should be counseled that 

permanent restrictions may be appropriate due to the potential for attritional damage with 

delayed radio-ulnar longitudinal drift [5].  If treated with a radial head arthroplasty, the 

forearm biomechanics are restored, so higher intensity rehabilitation can be re-instituted 

soon after surgery.  Although there is clinical controversy about whether the IOM does 

heal, a correctly sized radial head would maintain the biomechanics of the forearm, and 

allow the potential for IOM healing.  The patient potentially would be able to tolerate 

higher impact activities long term with a lower risk of attritional changes to the IOM.   

This was an in-vitro cadaveric study with elderly specimens, which has inherent 

limitations.  Whether the results of this study can be directly applied to younger patients’ 

in-vivo remains to be confirmed. Associated LCL injuries were not modelled.  Although 

proximal and distal sectioning of the IOM may be considered a weakness, it was done in 

recognition of the fact that the central band is the most important portion of the IOM 

[16], and that it is a discrete structure amenable to the novel measurement techniques 

used.  The uncemented stem of the radial head replacement is the same as those used 

clinically.  However, the hand reaming technique used may have variability between 

tests, and therefore may result in changes to the radio-capitellar and therefore IOM 

biomechanics. 

Among the strengths of this study was the forearm simulator, which allowed a unique 

perspective on the load transfer characteristics of the forearm.  The forearm was tested 

with minimal constraint while retaining its osseous integrity and an intact soft tissue 

envelope.  Computer controlled dynamic loading enabled accuracy of both axial loads 

and rotational speeds.  A novel approach to IOM tension measurements allowed dynamic 

and direct measurements of the forces transmitted. 

3.5 Conclusion 

This study demonstrated that radial head excision markedly increases IOM loading and 

alters load sharing across the radius and ulna.  However, insertion of a correctly sized 

metallic radial head arthroplasty recreates near normal forearm biomechanics, with no 
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change in IOM loading characteristics.  This information may have a role in clinical 

decision making as well as the rehabilitation of the forearm after radial head fractures. 
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Chapter 4  

2 The Effect of Radial Head Implant Length on 

Radiocapitellar Articular Properties and Load Transfer 

within the Forearm 

Overview:  The effect of radial head implant length on forearm biomechanics is not well 

understood.  This study examined the influence of an increase or decrease in radial head 

implant length on forearm load transfer as measured by interosseous membrane tension, 

and changes in radiocapitellar contact properties.  

Publication:  Lanting BA, Ferreira LM, Johnson JA, King GJ, Athwal GS. The Effect of 

Radial Head Implant Length on Radiocapitellar Articular Properties and Load Transfer 

within the Forearm. J Orthop Trauma. [Epub ahead of print], 2013 Oct 

4.1 Introduction 

Radial head fractures are common, with the majority being minimally displaced and 

successfully treated non-operatively (1).  Surgical management may be required for more 

displaced fractures.  Open reduction and internal fixation, while successful for simple 

displaced fractures, has been less reliable when treating fragmented and osteopenic 

fractures due to a higher incidence of complications (2). Comminuted radial head 

fractures have a high incidence of associated ligamentous and osseous injuries, which 

often precludes radial head excision.  For these reasons, radial head arthroplasty is 

increasingly utilized for fractures with greater levels of comminution with high patient 

satisfaction (3).   

Arthroplasty is technically demanding due to the complex anatomy of the elbow.  The 

combination of osseous comminution and disruption of the soft tissue envelope can make 

accurate assessment of the appropriate radial head implant length challenging.   Although 

the effect of radial head implant length on forearm biomechanics has not been well 

delineated, placement of a radial head implant that is longer than the native radial head 
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has been clinically associated with the development of stiffness, pain and capitellar wear 

(4,5).  The purpose of this study, therefore, was to examine the effect of radial head 

implant length on forearm biomechanics; specifically the effects of increasing or 

decreasing implant length on interosseous membrane (IOM) tension and radiocapitellar 

joint contact area and pressure. 

4.2 Materials and Methods 

The in-vitro forearm motion simulator described in Chapter 2 was employed.  The 

simulator (Fig. 4.1) was designed to produce axial loading of the forearm while 

simultaneously generating automated passive pronation and supination.  This device 

allowed unconstrained motion through the carpus, radius, ulna and elbow.  The humeral 

mount permitted medial-lateral translation, varus-valgus angulation, and axial rotation.  

Multiple degrees of freedom were incorporated into the simulator to ensure adjustability 

for each specimen, and to allow loading in a physiologic manner with minimal constraint.  

The metacarpals were potted such that the third metacarpal was in-line with the axis of 

the applied load (6), and the forearm was aligned with the applied load prior to potting 

the humerus.   
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Figure 4.1: The testing simulator, modeled with a specimen mounted in the metacarpal 

and humeral pots.  
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Axial loading was applied through the metacarpals by a pneumatic actuator (Model FOD-

094-S, Bimba®, University Park, IL) and governed by a custom software controller using 

closed-loop feedback from a load cell (Futek® Model MBA 600, Irvine, CA).  Forearm 

pronation and supination motion was driven by a servomotor (Model SM2315-DT, 

Animatics®, Santa Clara, CA), with a cycle of rotation from pronation to supination and 

back to pronation in six seconds.  To measure tension in the interosseous membrane 

(IOM), a custom load cell was constructed with a pair of strain gauges (Vishay Micro-

Measurements®, 120 Ω, 90o rosette, Raleigh, NC) affixed to a strip of spring steel 9.5 

x6.5 x 0.32 mm in a layout which compensated for changes in temperature (Fig 4.2).  The 

load cell was designed to be woven over and under the IOM fibers, with its bending axis 

created via a three point loading construct.  The sensor was calibrated by weaving the 

device through synthetic material and hanging weights on it.  Calibrating using excised 

IOM tissue was not found to be possible due to tissue integrity, calibrating using an IOM 

with bone blocks not reproducible due to challenges of hanging weights in line with the 

IOM fibres on obliquely oriented bones.  After calibration, the load cell was able to 

quantify IOM tension in real-time under dynamic loading conditions.  Radiocapitellar 

contact area and pressure were measured in real-time using a flexible, thin pressure 

sensor array (K-Scan system, Model 4201, I-Scan 5.761 software, Tekscan®, South 

Boston, MA) interposed in the joint.  The position of the inserted Tekscan® was marked.  

Notably, areas of deformation occurred in the thin flexible transducers at the periphery of 

the confined space of the radiocapitellar joint.  These areas of deformation could not be 

recreated accurately during calibration attempts between specimens.  Therefore, absolute 

values could not be used, and intra-specimen standardization was conducted to provide a 

measure of the impact of radial head length without compromising of the integrity of the 

data presented.   

Six cadaveric specimens (mean age 65, range 52-72 yrs) were prepared for testing.  The 

fresh frozen, unembalmed specimens were included only if there was no prior fracture or  
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Figure 4.2:  Load cell sutured to the IOM after being woven into the central band of the 

IOM 
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evidence of arthritis, on pre-testing Computed Tomography (CT).  The arms were thawed 

at room temperature for 16 hours.  The fingers were disarticulated at the metacarpal-

phalangeal joints, and the metacarpals were stripped of all soft tissues.  The thumb was 

disarticulated at the carpo-metacarpal joint.  The tendinous insertions to the metacarpal 

bases were maintained, as were the joint capsules of the wrist and carpal bones.  All soft 

tissue was stripped off the humeral shaft starting 8 cm above the elbow joint.   Via a 

Thompson approach, a dorsal trapdoor was made to access the central band of the IOM, 

hinging the soft tissue at the ulna.  The extensor digitorum communis was resected over 

the central band of the IOM.  The remainder of the musculotendinous units were gently 

retracted to expose the IOM for a distance of 10 cm directly overlying the central portion 

of the IOM.  The proximal and distal portions of the IOM were sectioned to isolate the 

central band.  Two 8 mm long parallel slits were made 4 mm apart in the central band 

parallel to the IOM fibers, without damaging the IOM fibres.  Both ends of the load 

sensing device were then inserted into the slits, thus weaving it into the central band of 

the IOM.  Small holes at each end of the load cell were used to secure it to the IOM using 

5.0 silk suture (Ethicon, San Antonio, TX).   

 

A steinman pin was placed transversely through the metacarpals and the specimen was 

positioned with the wrist in neutral in all planes, and potted with the third metacarpal in 

line with the applied loading vector.  After the potting cement had cured, the metacarpal 

pin was removed.  The elbow was flexed to 90°, and the forearm and carpus aligned with 

the applied axial load.  The humerus was potted, and the limits of forearm rotation for 

each specimen were assessed manually and recorded by servomotor position feedback.  

These terminal ranges of motion were then precisely repeated by the servomotor 

throughout all trials.  Static muscle forces across the elbow were simulated with weights 

by suturing cables to the tendons of the brachialis, biceps and triceps tendons using No. 2 

Ethibond® (Ethicon, San Antonio, TX).  The magnitude of the weights applied were: 2 

kg for the brachialis and biceps brachii, and 4 kg for the triceps (7).   Muscle lines of 

action were achieved with an arrangement of adjustable pulleys. 
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A direct lateral approach to the radial head was performed by splitting the common 

extensor tendon and the underlying annular ligament.  A small portion of the radial 

collateral ligament was released off the humerus to provide adequate exposure to resect 

and replace the radial head, but the humeral and ulnar attachments of the lateral ulnar 

collateral ligament were preserved.  A microsagittal saw was used to make the radial 

neck cut four mm proximal to the head neck junction to allow testing to an increase and 

decrease of 4 mm in radial head length.  The native radial head diameter and length was 

measured using calipers (Model 500-784, Mitutoyo Digimatic®, +/- 0.01 mm, 

Mississauga, ON).  The native radial head length and diameter were selected to recreate 

the anatomic size of the native radial head; including the kerf of the saw blade.  The 

native radial head height was defined as 0, or anatomically correct, radial head length.  

The radial canal was hand reamed and a trial radial stem and head were inserted 

(Evolve®, Wright Medical Technology, Arlington, TN).  The annular ligament, radial 

collateral ligament and common extensor tendon split were repaired in layers using 

interrupted No. 2 Ethibond® sutures (Ethicon, San Antonio, TX).  The arm was then 

tested through a full range of pronation and supination for three cycles for each radial 

head length at 160 N.  The axial load applied in this study were higher than in previous 

reports (8,9,10) to reflect the higher loads that likely occur physiologically (11).  IOM 

tension was measured continuously, with the third cycle used for data analysis.  

Following testing of each implant size, the sutures were removed, and the pressure sensor 

was inserted into the radiocapitellar joint.  The arm was then tested statically in neutral 

rotation.  The applied load was continuously increased at a rate of 8 N/s to 160 N.    

Pressure and area measurements were consistently taken three seconds after achieving 

160 N of axial load, in order to allow a steady state to be reached.  The outcomes were 

assessed, and consistent areas of deformation were manually removed for both pressure 

and area measurements.  The pressure sensor was then removed, and the next trial radial 

head implant length was placed.  The annular ligament and the common extensor tendon 

split were repaired between each test condition.  The forearm was tested for five radial 

head implant lengths: -4 mm, -2 mm, 0 mm, +2 mm and +4 mm.  The sequence in which 

the radial head implant lengths were tested was randomized for each specimen. 
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4.2.1 Statistical Methods 

One way and repeated measures ANOVA were utilized to calculate statistical 

significance, defined as p<0.05, for the dependent variables of IOM tension, contact area 

and contact pressure.  Repeatability was assessed by determining linear dependence using 

the Pearson correlation coefficient of the IOM load sensor of sequential testing with the 

same test conditions series.  Power analysis was not possible due to the unique nature of 

testing. 

4.3 Results 

The simulator was found to provide good repeatability, with the IOM load sensor having 

a Pearson correlation coefficient of greater than 0.9, and a standard deviation of 0.7%.   

Interosseous membrane tension was influenced by radial head length (p=0.006) (Fig 4.3).  

Average forces recorded in the IOM with a -4 mm radial head length were almost double 

(310 N +/- 190 N) that of the applied axial load (160N). As radial head implant length 

increased, IOM tension decreased (p=0.006).  When the radial head was lengthened by 4 

mm, the IOM was unloaded; recording no load in every specimen.  When the radial head 

was lengthened by 2 mm, the IOM was unloaded in half of the specimens.  Only one 

specimen achieved an IOM tension of greater than 20 N, with a maximum tension of 70 

N.  IOM tension significantly increased when comparing the optimal radial head length to 

the -4 mm length implant (p=0.005).  IOM tension was not found to significantly increase 

for the -2 mm radial head length (p=0.288).   A negative value of IOM tension is not 

possible, but the error bars extend to negative values due to the standard deviation of 

these specimens.   

Articular contact area significantly increased with increasing axial loads (p=0.030).  

Radial head length was not found to have a statistically significant effect on contact area, 

(p=0.051) (Fig. 4.4).  From -4 mm to the correct length, radiocapitellar joint contact area 

increased with increasing radial head implant length.  However, with increased length 

beyond the correct length (+2 and +4 mm), contact area decreased.  Radial head lengths 

of 2 mm greater or less than that of the correct length did not show any statistically 

significant difference in contact area in comparison to the correct length.   
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Figure 4.3:  The effect of radial head length on IOM tension under 160 N axial loading.  

Average of six specimens shown with error bars indicating one standard deviation.  

[IOM: Interosseous membrane] 
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Figure 4.4:  The effect of radial head length on radio-capitellar contact area under 160 N 

of axial load.  Demonstrated is an initial increase in contact area as the radial head is 

lengthened to the anatomically correct length, but then a decrease in contact area as the 

radial head length is increased beyond this length.  Error bars demonstrate one standard 

deviation 
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Contact pressures normalized to the anatomically correct length were significantly 

impacted by changing radial head length (Fig. 4.5) (p=0.021).  In pairwise analysis, the 

contact pressure of the +4mm implants were significantly greater than the – 4mm lengths 

r (p=0.005).  However, a decrease in 2 mm was not found to be statistically different than 

the correct length in pairwise analysis (p=0.183). 

4.4 Discussion 

The forearm simulator permitted physiologic testing of the forearm in a repeatable way.  

This enabled determination of the effect of axial loading and radial head implant length 

on IOM tension and radiocapitellar contact area and pressure.  Direct instrumentation of 

the IOM with a calibrated strain gauge-based load cell has advantages over calculated 

IOM tension.  In most previous studies, the relationship between the IOM and radio-ulnar 

loading has been indirectly determined from strain gauges implanted in the osteotomized 

radius and ulna (12, 6, 13).  IOM tension has only been directly measured in one study, 

using an arthroscopically implantable force probe.  However, in this study, osteotomies 

of the radius and ulna were used, and no radial head arthroplasty group was included (6).  

Thus, direct comparison to the current study is not possible.   

Direct quantification of the IOM loads allowed examination of the influence of radial 

head implant length on forearm biomechanics and load transfer between the radius and 

ulna.  Increased radial head length effectively unloads the IOM, reducing the loads to 

near zero.  Shortening the radial head implant length by 4 mm produces a significant 

increase in the IOM tension (p=0.005), while shortening the radial head length by 2 mm 

does not produce a statistically significant change in IOM tension (p=0.098).  This 

highlights the sensitive nature of load transfer in the forearm to radial head implant 

length, and the importance of precise recreation of radial head length in order to maintain 

normal forearm biomechanics.  The finding that the IOM loads are higher than the 

applied axial loads when the radial head length is decreased may to be due to the fact that 

the fibers of the IOM are oblique to the long axis of the forearm (i.e. the direction of the 

applied load), thus adding a perpendicular load vector component to the net force in the 

fibers.  Unfortunately, due to the variable angle of insertion on the radius and ulna, 

calculations could not be made with validity.   
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Figure 4.5:  The effect of radial head arthroplasty length on contact pressures under 160 

N of axial load; where the contact pressures are normalized to the anatomically correct 

length.  Error bars demonstrate one standard deviation. 
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Radiocapitellar articular contact pressure increased with greater radial head implant 

length (p=0.021).  The finding that contact pressures were not significantly changed when 

the length of the radial head implant was increased or decreased by 2 mm from optimal 

may indicate that contact pressure is not as sensitive to radial head implant length as is 

IOM tension. Alternatively, this could be due to variability in the measurement of contact 

pressure as a result of transducer positioning or sensitivity.   Van Glabbeck et al (2003) 

published similar findings testing in-vitro with a custom, telescoping radial neck (5).  In 

that study, it was found that an increase in length of the radial head by 2.5 mm increased 

radiocapitellar pressure through over-stuffing.  This is similar to our study findings that 

indicate increased radial head length increases radiocapitellar pressure, however pairwise 

comparison of 2 mm increased or decreased from the optimal state did not demonstrate 

statistical significance.    

The measurement of radiocapitellar contact area has previously been reported in a 

benchtop study albeit at a lower magnitudes of applied load (16).  In that study the 

metallic radial head implants decreased contact area relative to the native articulation, 

potentially due to the implant geometry.  However, the effect of radial head implant 

length on contact area has not been previously reported within an intact forearm.  Contact 

area results differed from expected values.  Notably, contact area decreased if the radial 

head length increased or decreased, resulting in no statistically significant relationship of 

radial head length to contact area.   Intuitively, increased radiocapitellar force should 

increase contact area as the capitellar cartilage and bone deforms (17).  Given that 

increased radial head length unloads the IOM, resulting in increased loads at the 

viscoelastic radiocapitellar joint, it was expected that the contact area would 

correspondingly increase with increased radial head implant length.  However, this was 

only observed when radial head length was increased up to the anatomically correct 

length.  Radiocapitellar contact area diminished with increased radial head length in spite 

of increased radiocapitellar average pressure.  Future studies should track the kinematics 

of the implant with respect to the capitellum to evaluate this finding.  Other literature 

indicates that a change in radial head length impacts the motion kinematics of the 

forearm, which may also impact the radiocapitellar alignment (5).  Also, the soft tissues 

of the direct lateral approach could not be repaired for this portion of testing to allow 
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egress of the pressure sensor wires.  This alteration of the soft tissue envelope could 

impact the radiocapitellar articular alignment by causing non-distributed point loading.   

The findings of this study are concerning for the health of capitellar cartilage in the 

setting of an over-lengthened radial head implant.  With radial head replacement, the 

radiocapitellar surface is comprised of metal articulating on cartilage, which has been 

shown to be detrimental to cartilage in animal models (18).  Our data demonstrates that 

increased radial head implant length beyond the anatomically correct length unloads the 

IOM.  It is known that 80% of loads applied to the carpus are transferred to the distal 

radius, but only 40-60% of the applied load is transmitted by the radiocapitellar joint (8).  

The IOM has an important role in that load transfer.  It has also been shown that the 

contact area decreases with radial head implant lengths greater than optimal.  Increased 

radiocapitellar loads and decreased contact areas would be predicted to result in increased 

contact pressures, which was also quantified in the current study and was confirmed to 

increase as expected.  In addition to the non-physiologic loading of metal on cartilage, 

increased cartilage wear of the capitellar surface can therefore be expected unless radial 

head implant length is carefully recreated.  Reports describing capitellar erosions and 

cartilage thinning after radial head implantation confirm the clinical impact of these in-

vitro findings (19). 

Although an increase in radial head length is clearly detrimental to physiologic load 

transfer in the forearm and to radiocapitellar articular characteristics, shortening the radial 

head by 2 mm did not have the same impact.  Of particular interest is that shortening the 

radial head by two mm did not have a statistically significant impact on IOM tension 

(p=0.29), radiocapitellar contact area (p=0.20), or radiocapitellar articular 

pressures(p=0.18).  However, lengthening the radial head by 2 or 4 mm as well as 

decreasing the length by 4 mm were shown to have a statistically significant impact on 

IOM tension and radiocapitellar contact pressure.  It is interesting that changes in length 

did not effect contact area, whereas increased applied load did.  This may be due to 

changes in alignment at the radiocapitellar joint due to length.  Decision making intra-

operatively can be challenging due to radial head comminution, anatomic anomalies, or 

when the measured length falls between implant sizes.  If the decision between radial 
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head prosthesis lengths is not clear intra-operatively, the selection of the radial head that 

is slightly shorter may, in light of the current findings, be advisable to optimize forearm 

load transfer and radiocapitellar articulation characteristics and represent a clinical safe-

zone.   

This was an in-vitro cadaveric study using static loading with donor specimens, which 

has inherent limitations.  Whether the results can be applied to younger patients in-vivo 

remains to be confirmed. Although isolation of the central band of the IOM and potential 

for deformity on insertion may be a weakness, it was done in recognition of the fact that 

the central band is the most important portion of the IOM (13), and that it is a discrete 

structure amenable to the novel measurement techniques used.  Finally, absolute values 

for the pressure sensor could not be used, limiting the ability to correlate these findings to 

known properties of articular cartilage. 

Among the strengths of this study was the sophisticated forearm simulator, which 

allowed a unique perspective on the load transfer characteristics of the forearm.  The 

forearm was tested with minimal constraint while retaining its osseous integrity and an 

intact soft tissue envelope.  Computer controlled dynamic loading enabled accuracy of 

both axial loads and rotational speeds.  A novel approach to IOM tension measurements 

allowed dynamic and direct measurements of the forces transmitted.  Measurement of the 

contact area and pressure allowed the load transfer from the radius to the ulna via the 

IOM and radiocapitellar articular properties to be further characterized.  Examination of 

these outcomes while testing different radial head implant lengths allowed information 

regarding the effect of over- and under-lengthening to improve our understanding of the 

importance of radial head implant length. 

4.5 Conclusion 

Increasing the radial head implant length beyond the correct length was found to increase 

the radiocapitellar joint contact pressure, decrease joint contact area, and decrease IOM 

loads.  Therefore, restoration of anatomic radial head length is critical when performing 

radial head arthroplasty in order to maintain normal forearm biomechanics.  If the native 

radial head length is difficult to accurately assess, due to comminution etc, avoidance of 
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increasing the length of the radial head is important to prevent detrimental changes in the 

biomechanics of the forearm and the potential for clinically important radiocapitellar 

joint pathology. 
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Chapter 5  

3 Radial Head Implant Diameter: A Biomechanical 

Assessment of the Forgotten Dimension 

Overview:  Current research in how radial head arthroplasty changes the biomechanics 

of the forearm is concentrated on radial head length.  However, the radial head diameter 

also varies, and the changes in the biomechanics of the forearm secondary to radial head 

diameter is unknown.  This study examined the influence of radial head implant diameter 

on forearm load transfer as measured by interosseous membrane tension and 

radiocapitellar joint contact characteristics.  

Publication:  Revisions of manuscript requested by Clinical Biomechanics  

5.1 Introduction 

Radial head arthroplasty for comminuted radial head fractures results in high patient 

satisfaction, and therefore has become increasingly utilized.(1)  However, comminuted 

radial head fractures have a high incidence of associated soft tissue injuries, of which the 

interosseous membrane (IOM) is of notable concern.(2)  A number of studies have 

emerged about the importance of establishing the correct length of a radial head 

implant.(3-5)  The concept of insertion of a radial head implant that is too thick has been 

termed ‘over-lengthening’.(3)  It has been demonstrated that increasing the length of the 

radial head changes the biomechanics of the forearm, with primary impact at the 

radiocapitellar joint.(3)  This has led to the understanding that the relationship between 

the radius and the ulna is complex and the forearm itself can be considered a complex 

articulation.(6)  Little consideration, however, has been given to understanding the 

impact of changes of the radial head diameter on forearm biomechanics.  The influence 
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of diameter on the magnitude and position of IOM tension is unknown.    Moreover, how 

the radial head diameter impacts the radiocapitellar joint contact area and forces is also 

unknown.    Therefore, the purpose of this study was to examine the impact of radial head 

implant diameter on radiocapitellar contact area and force as well as the tension within 

the IOM.   

5.2 Materials and Methods 

The simulator described in Chapter 2 was used for this study.  Loading and motion of the 

forearm was conducted under computerized control via closed-loop feedback from a load 

cell (Futek® Model MBA 600, Irvine, CA) as well as position control.  Axial loading 

was applied in line with the third metacarpal using a pneumatic actuator (Model FOD-

094-S, Bimba®, University Park, IL).  The forearm was rotated through a full range of 

supination and pronation in six seconds by using a servomotor (Model SM2315-DT, 

Animatics®, Santa Clara, CA).  The ability to constrain specific degrees of freedom 

allowed focused testing.  The simulator also allowed the testing through a range of axial 

loads both dynamically as well as statically.   

The IOM tension was measured using a custom load cell.  This load cell was made by 

applying a pair of strain gauges (Vishay Micro-Measurements®, 120 Ω, 90o rosette, 

Raleigh, NC) to a strip of spring steel 9.5 x6.5 x 0.32 mm.  Based on a three point 

bending principle, the strain gauge was woven into the central band of the IOM.  The 

load cell was placed through two small parallel cuts made 4 mm apart in line with the 

fibers of the central band of the IOM, and affixed there by 5.0 silk suture (Ethicon, San 

Antonio, TX).   
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The radiocapitellar joint properties were measured utilizing flexible, thin pressure sensor 

array (K-Scan system, Model 4201, I-Scan 5.761 software, Tekscan®, South Boston, 

MA).  The radiocapitellar contact area and force were measured in situ.  The space 

available for the sensor was limited; resulting in some deformity of the sensor when in 

place.  It was found in trial specimens that the calibration outside of the arm was not 

possible due to an inability to accurately recreate the areas of deformity, and therefore the 

data was normalized to the optimal radial head implant diameter and then statistically 

analyzed.   

Five male cadaveric specimens (mean age 65, range 52-72 yrs) were thawed at room 

temperature.  Specimens were excluded if there was Computed Tomography (CT) 

evidence of a prior fracture or evidence of arthritis.  The central band of the IOM was 

approached via a trap-door skin incision that hinged on the radius.  The extensor 

digitorum communis was excised over the central band, and the load cell was woven into 

the IOM after retracting the remainder of the muscles.  While the central band was 

retained, the remainder of the IOM was released off the radius and the ulna.  The soft 

tissues were stripped off the metacarpals and the digits were disarticulated at the 

metacarpophalangeal joints.  The soft tissues were also stripped off the humerus; starting 

8 cm above the elbow joint.  The humerus and metacarpals were potted in 

polymethylmethacrylate, taking great care to line up the third metacarpal with the applied 

axial load.  Each specimen was tested within the range of motion determined for the 

individual specimen.   

A common extensor tendon split approach was utilized to access the radiocapitellar joint 

and radial head. The annular ligament was divided and the radial head exposed.  The 
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lateral ulnar collateral ligament was preserved; however, a portion of the radial collateral 

ligament was elevated off the humerus to obtain sufficient exposure of the radial head.  

After cutting the radius at the radial neck using a microsagittal saw, the radial head was 

measured using digital calipers (Model 500-784, Mitutoyo Digimatic®, +/- 0.01 mm, 

Mississauga, ON).  The radial head arthroplasty was sized to match the outer minor 

articular diameter of the native radial head, and this was defined as the anatomically 

correct head size.  After hand reaming the canal, a metal CoCr monopolar radial head 

trial (Evolve ®, Wright Medical, Arlington, Tennessee, USA) was inserted, with the 

smooth stem being implanted in the radial canal.  No. 2 Ethibond® suture (Ethicon, San 

Antonio, TX) was used to repair the common extensor tendon and the annular ligament in 

layers.   

Two testing protocols were utilized.  In both, 160 N axial loads were applied to reflect 

physiologic loads that are thought to occur clinically.(7)  The dynamic loading algorithm 

applied a constant axial load to the forearm with the elbow flexed to 90° through a full 

range of pronation and supination motion.  A complete forearm rotational cycle was 

programmed to take 6 seconds.  The third recorded cycle was utilized for continuous 

IOM tension data collection. The static loading algorithm also positioned the elbow at 

90°, and in neutral forearm rotation.  The load was increased at a constant rate of 8 N/s, 

and the IOM tension was continuously measured.  The radiocapitellar joint contact area 

and pressure were measured three seconds after 160 N had been applied to allow a steady 

state to be achieved.  The order in which radial head sizes (-2 mm, 0 mm and +2 mm) 

were tested were randomized.   
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5.2.1  Statistical Methods: 

Repeated measures ANOVA was utilized to calculate statistical significance, defined as 

p<0.05, for the dependent variables of IOM tension, contact area and contact pressure.   

5.3 Results 

The simulator was found to provide good repeatability, with the IOM load sensor having 

a Pearson correlation coefficient of greater than 0.9, and a standard deviation of 0.7%.   

The radiocapitellar contact mechanics were not affected by a change in radial head 

arthroplasty diameter.  At 160 N of axial load, the contact area was not found to differ if 

the radial head was increased or decreased in diameter by 2 mm (Fig. 5.1) (p=0.5).  

Additionally, contact forces were not impacted by changes in radial head diameter (Fig. 

5.2) (p=0.4).   

The IOM tension was found to be sensitive to radial head diameter (p=0.01).  Increasing 

the head diameter increased IOM tension (Fig. 5.3).  Increasing the radial head diameter 

from -2 to +2 increased the IOM tension 36% relative to the -2 mm head diameter.      
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Figure 5.1 The effect of radial head diameter on radiocapitellar contact area when tested 

in neutral; normalized to the correct radial head diameter (p=0.5) 

   

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Minus 2                           Correct                            Plus 2

N
o

rm
al

iz
ed

A
re

a

Diameter



102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The impact of radial head diameter on radiocapitellar contact forces when 

tested in neutral; normalized to the correct radial head diameter (p=0.4) 
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Figure 5.3 The impact of changes in Radial Head Diameter on IOM Tension when tested 

through pronation and supination (p=0.01) 
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5.4 Discussion 

Direct quantification of the IOM loads allowed examination of the influence of radial 

head implant diameter on forearm biomechanics and load transfer between the radius and 

ulna.  Radial head implant diameter was found to have a significant impact on IOM 

tension (p=0.01).  Increasing the radial head diameter increased IOM tension.  An 

increase in diameter by four mm increased IOM tension by 36% relative to the -2 mm 

diameter.  This increase in IOM tension will have an impact on proximal radioulnar joint 

(PRUJ) forces.  The increase in forces between the radius and ulna may compromise the 

radial head arthroplasty, with potential for stem loosening or the development of cartilage 

erosions within the lesser sigmoid notch; both of which may lead to pain.   

Radiocapitellar contact area was not impacted by changes in radial head diameter within 

the range of implant diameters tested.  Although the absolute values decreased with 

increased diameter, this was not statistically significant (p=0.5).  A decrease in contact 

area with increased diameter is consistent with other literature.(8)  Liew et al found that 

decreased radial head diameter increased contact area, and it was suggested that this was 

due to an increased conformity of the radial head arthroplasty.   Additionally, contact 

forces were not affected by changes in radial head diameter within the range of implant 

diameters tested.  Although the absolute value of the contact forces appeared to show a 

decrease in contact area if the diameter was increased or decreased, this was not 

statistically significant (p=0.4).     

The forearm simulator permitted physiologic testing of the forearm in a repeatable way.  

This enabled determination of the effect of radial head implant diameter on IOM tension 

and radiocapitellar contact area and pressure.  Direct instrumentation of the IOM with a 
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calibrated strain gauge-based load cell has advantages over calculated IOM tension.  In 

previous studies, the relationship between the IOM and radio-ulnar loading has been 

indirectly determined from strain gauges implanted in the osteotomized radius and 

ulna.(9-11)  Direct instrumentation preserves the osseous integrity, and therefore 

measured values are more likely to represent actual values.   

The radial head replacement used has a symmetric geometry, and differs from the 

elliptoid shape of the native radial head.  It is not a cemented stem, and motion between 

the stem and the radius can occur.  This differs from other designs on the market.  The 

use of a cemented, rigidly fixed stem or a prosthesis that more closely replicates the 

native radial head may change the outcomes found. 

This was an in-vitro cadaveric study with a small number of donor specimens, which has 

inherent limitations.  TekScan sensor limitations prevented the use of absolute values.  

Isolation of the CB of the IOM was done as the CB is the most important portion of the 

IOM.  However, measurement of only the CB may be considered a weakness.  

Measurement of the forces through the central band of the IOM only without 

instrumentation of other portions of the membrane may be a weakness; but the central 

band is known to be the most important portion of the IOM.(11)  As measurement of the 

forces at the PRUJ was not done, thoughts on overstuffing the PRUJ via increases in 

radial head diameter are a hypothesis only.   

This study had a number of strengths. The simulator allowed computer controlled testing 

with minimal constraint and an intact boney structure under dynamic and static loading 

conditions.  With the majority of the soft tissue environment intact, measurements of the 
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load transfer within the forearm were possible in a non-invasive and continuous manner.  

The measurement of contact area and contact force allowed correlation to the IOM 

tension.   Examination of these outcomes while testing different radial head implant 

diameters allowed a unique perspective of the impact of radial head diameter changes; an 

area that is not well understood.      

5.5 Conclusions 

Changes to radial head implant diameter does not significantly change radiocapitellar 

contact area or contact forces.  However, increasing the radial head diameter was found 

to significantly increase IOM tension. 
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Chapter 6  

4 Conclusions and Future Directions 

6.1  Conclusions: Clinical Relevance  

As part of this treatise, a forearm simulator was designed, built and validated to allow 

testing in a way that more closely paralleled a physiologic environment.  This simulator 

allowed testing of multiple clinically relevant biomechanical scenarios of the forearm, 

while retaining as much of the soft tissue envelope as possible.  Testing was possible in 

multiple positions of elbow flexion and extension under controlled axial loads and 

simulated passive forearm rotation.  Unique measurement tools were utilized to quantify 

the biomechanics of targeted structures in the forearm.   

The clinical area that was focused on for this study was fractures of the radial head, 

which are common.  While reconstruction of the radial head is the preferred treatment for 

displaced fractures, comminution may prevent the successful repair of the radial head.  

These patients are usually treated with radial head excision or arthroplasty.  It is also 

known that in long term studies, patients treated with a radial head excision have an 

increase in valgus angulation and have proximal radial migration.(1)  Our data 

demonstrated that radial head excision results in significant changes to forearm 

biomechanics; with a marked increase in interosseous membrane (IOM) loading.  

Understanding the increased IOM tension that occurs secondary to radial head excision 

may provide an explanation for the proximal migration.  The importance of this finding 

may be increased by understanding that IOM injuries have been known to occur in up to 

2/3rds of all patients in whom a Mason I radial head fracture has occurred.(2)  The 

increased IOM tension has implications on rehabilitation as well.  The good clinical 

outcomes of radial head arthroplasty has been published.(3)  It is notable that the patients 

have largely recovered within six months, with minimal recovery after that.  This has lead 

to review papers suggesting that in some patients, radial head replacements are the 

preferred treatment.(1) 
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A correctly sized metallic radial head arthroplasty recreates near normal forearm 

biomechanics.  However, increasing the radial head implant length beyond normal was 

found to increase the radiocapitellar joint contact pressure, decrease joint contact area, 

and decrease IOM loads.  Changes in radial head implant diameter did not significantly 

change radiocapitellar contact area or contact forces but increasing the radial head 

diameter was found to significantly increase IOM tension.  This may have significant 

clinical relevance.  Increased IOM tension may result in mid forearm pain or increased 

PRUJ force and subsequent pain at the elbow.  Increased PRUJ forces may result in 

increased forces at the radial head replacement stem.  Literature has been published on 

the periprosthetic radiolucency at the radial head stem in over half of the patients 

assessed.(4)  Further study to examine the clinical and biomechanical effect of radial 

head diameter is warranted. 

Collectively these studies suggest that a careful measurement of the excised bone 

fragments is important to ensure that a radial head arthroplasty restores the size of the 

native radial head.  Anatomic radial head length is critical when performing radial head 

arthroplasty in order to maintain normal forearm biomechanics and load transfer. Over-

lengthening of the native radial head should be avoided to prevent detrimental changes in 

the biomechanics of the forearm with overloading of the capitellar cartilage and the 

development of secondary degenerative changes.  Radial head implant diameter is also 

important to consider as increasing the radial head diameter increases IOM tension which 

may lead to the development of forearm pain or cartilage overloading of the radial notch 

of the ulna and arthritis of that articulation. Our data supports the beneficial 

biomechanical effects of radial head replacement rather than excision, and the need for 

more accurate techniques to optimize implant sizing. 

6.2  Future Directions 

The forearm simulator will allow improvements in our understanding of forearm 

biomechanics in other clinically relevant scenarios such as bony and soft tissue disorders 

of the wrist, distal radioulnar joint, midshaft and elbow.  The measurement technique to 

assess IOM tension was unique, and can also be employed in future studies.  Changes in 
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the rate of axial loads and forearm rotation will allow further understanding of the 

biomechanics of the forearm.  The biomechanical information gained in this study may 

allow computational modelling of forearm biomechanics.  Finally, the passive motion 

and loading model used could be changed to active motion and loading to incorporate the 

dynamic units of the forearm.   

Our data provides a better understanding of how changes to the radial head effect forearm 

biomechanics.  This information can be used as a basis for clinical trials and focused 

clinical questions.  The improved understanding of the biomechanics of the forearm can 

also be used to optimize rehabilitation protocols.   
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Appendix 1:  

 

Design Images of the Forearm Simulator  
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Appendix 1:  Forearm Simulator, shown with orthogonal and isometric views   
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The Servomotor 
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Appendix 2:  The servomotor and gearbox, utilized to create the appropriate torque 
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Appendix 3:  

 

The Pneumatic Cylinder 

 

  



118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3:  The double acting, double ended pneumatic cylinder utilized 
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Appendix 4:  

 

The Load Cell 
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Appendix 4:  Load Cell; capable of measuring axial loads as well as torque 
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Appendix 5:  

 

The Articular Sensor 
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Appendix 5:  Contact pressure and area sensor (TekScan ®) that was utilized 
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Appendix 6:  

 

Optic Trackers 
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Appendix 6:  The simulator was designed to also facilitate optic tracking of the 

rigid bodies of the forearm as required.  Testing with both passive trackers (A) 

and active (circled, B) was conducted. 
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Appendix 7:  Glossary 

ADL   - Activities of daily living 

Anatomic   - Relating to the structure of the body  

Anterior   - Towards the front of the body  

Annular Ligament  - A ligament which encircles the head of the radius ensuring 

contact between the radius and PRUJ  

Arthroplasty   - Surgical reconstruction or replacement of a joint  

Articular   - Relating to a joint  

AB    - Accessory band 

Capitellum   - Smooth rounded surface on the lateral distal humerus  

which articulates with the radial dish  

Cartilage  - Smooth, firm connective tissue found on articulating surfaces of 

joints  

CB  - Central band 

Circumduction - Describes the motion of a long bone when its distal end 

circumscribes the base of a cone 

Comminuted   - To break into several small fragments  

Contact Area   - Surface area in contact between two bones  

Coronal - A vertical plane which divides the body into anterior and 

posterior portions 

Coronoid  - Triangular anterior projection on the proximal ulna which 

articulates with the radius  
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Distal    - Away from the center of the body 

DOC   - Distal oblique cord 

DRUJ    - Distal radioulnar joint, pivot-joint between the distal radius and                 

ulna  

Epicondyle  - A projection close to a knuckle shaped surface (ie: condyle), 

usually  serving as a point of attachment for ligaments from an 

adjacent joint or muscle group 

Excision   - Surgical removal  

Extension - The act of straightening a limb, or the position assumed by such a 

limb 

External Rotation  - Rotation away from the body.  

Flexion  - The act of bending a limb, or the position assumed by such a limb 

Fossa    - An anatomic depression  

Humerus   - Bone of the upper arm forming the shoulder and elbow  

Interosseous Membrane – A fibrous structure between the radius and ulna 

Internal Rotation  - Rotation towards the body  

Intramedullary Canal  - Marrow cavity of a bone  

IOM    - Interosseous membrane 

Lateral   - Away from the middle of the body  

Laxity    - Looseness  

LCL    - Lateral collateral ligament; ligament composed of the LUCL and  

the RCL  



127 

 

Lesser Sigmoid Notch - Depression on the lateral side of the coronoid which articulate 

with the radial head  

Ligament   - Fibrous connective tissue between two bones 

LUCL  - Lateral ulnar collateral ligament; extends from lateral epicondyle 

to the coronoid and serves as an important posterolateral rotational 

stabilizer  

Medial   - Towards the middle of the body  

Metacarpals  - the five bones in the hand between the wrist and the fingers 

MCL  - Medial collateral ligament; extends from medial epicondyle of 

humerus to the coronoid providing primary valgus restraint  

Morphology   - Study of size, shape and structure  

NIST - National Institute of Standards and Technology 

ORIF  - Open reduction and internal fixation; method for surgically 

repairing fracure bone using plates and/or screws  

Osseous   - Relating to bone  

Osteotomy  - A surgical division or sectioning of bone 

Physiologic - In accordance with or characteristic of the normal functioning of 

a living organism 

Posterior   - Towards the back of the body 

POC   - Proximal oblique cord 

Pronation   - Rotation towards the midline  

Prosthesis   - Artificial device extension replacing a missing body part  
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Proximal   - Towards the center of the body   

PRUJ  - Proximal radioulnar joint, articulation between the lesser sigmoid 

notch of the ulna and the circumference of the radial head  

Radial Dish  - Concavity on the proximal end of the radial head which 

articulates with the capitellum 

Radial Head  - Complex anatomic structure forming the proximal end of the 

radial which articulates with both the humerus and ulna  

RHA  - Radial head arthroplasty 

Radial Neck  - Narrow region of proxmal radius distal to the radial head  

Radius  - The lateral bone of the forearm 

RCL  - Radial collateral ligament; originates on the lateral epicondyle 

and inserts into the annular ligament serving as a primary varus 

stabilizer of the elbow  

Sagittal - Any vertical plane that divides the body into left and right sides 

SDA - Screw displacement axis 

Soft-Tissue  - Tissues that connect, support or surround other structures, not 

including bone  

Subluxate  - To partially dislocate a joint  

Supination  - Rotation away from the midline  

Trochlea - An anatomic structure that resembles a pulley at the end of the 

humerus 

Trochoginglymoid  - Type of joint composed of hinge (ginglymus) and pivot joints 

(trochoid)  
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Ulna  - The medial bone of the forearm articulating with the radius, 

humerus, and carpal bones  
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