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Abstract

Everyday, we make difficult choices under uncertainties. The decision making process be-

comes even more complicated when more agents get involved: one must consider their in-

teractions and conflicts of interest because the final outcome is based not only on an agent’s

decision but on everybody’s.

In insurance industry, companies try to avoid making large claim payments to policyholders

(commonly known as insureds) by purchasing reinsurance policies from reinsurance compa-

nies (the reinsurer). Each policy details conditions upon which the reinsurer pays a share of

the claim to the insurance company (also known as the cedent or the insurer). To reach an

agreement, the interests of both parties must be taken into consideration. In this thesis, we will

discuss approaches for constructing optimal reinsurance policies that are beneficial to both the

insurer and the reinsurer.

Likewise, we have similar situations in real estate industry, where sellers and buyers nego-

tiate contracts. For example, the difference between the seller’s selling price and the buyer’s

budget (commonly referred to as the buyer’s reservation price) affects the intensity of buyer

arrivals, the bargaining process and its rate of success, as well as many other parameters. We

will explore the likelihood of the buyer purchasing a property given factors such as the buyer’s

reservation price and the negotiated selling prices, which may or may not be dependent random

variables.

Of course, these are just two illustrative scenarios that make our results more intuitive and

better appreciated from the practical point of view, which has been a very important consider-

ation throughout the thesis. Furthermore, it will be easily seen when reading the thesis that our

developed and discussed methodologies can be adapted to numerous other scenarios, which

may in turn require making certain adjustments to our results. Nevertheless, we are confident

that the herein developed considerations are very general in nature and can already be used to

facilitate decision making.

Keywords: Decision making, insurer, reinsurer, real estate, buyer, seller, reservation price,

likelihood, Poisson process, premium calculation principle, risk measure, value-at-risk, condi-

tional tail expectation, copula, order statistic, background risk, systematic risk.
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Chapter 1

Introduction

Life is full of choices. People make choices they feel good about (cf., e.g., Gilboa, 2011) by

examining various factors such as uncertainties and the presence of competing decision makers,

whose responses to different choices may be different. In our thesis, we discuss applications of

decision theory to insurance and real estate industries. The similarity between these two areas

is that there are at least two parties that negotiate contracts.

1.1 Methods and forms of reinsurance

In insurance industry, in order to cover all claim payments, companies transfer a part of the risk

exposure to other parties. An example of such parties is a reinsurance company. By purchasing

a reinsurance policy, the insurer enters into an agreement with the reinsurer to share the loss.

There are two methods of reinsurance: facultative reinsurance and treaty reinsurance.

Definition 1.1.1 (cf., e.g., Bruggeman, 2010) Under facultative reinsurance, the primary in-

surer determines as to whether or not reinsurance is desirable, and the reinsurance company

decides as to whether or not to accept or refuse any risk offered to her/him.

Definition 1.1.2 (cf., e.g., Bruggeman, 2010) Treaty reinsurance is a contract where the pri-

mary insurer has agreed to automatically cede the risks defined in the reinsurance contract to

the reinsurer, and the reinsurer has agreed to accept that share of risks.

Under facultative reinsurance, negotiations take place separately for each insurance policy

that is reinsured. Under treaty reinsurance, the insurer and the reinsurer negotiate a contract

1



2 Chapter 1. Introduction

that includes multiple insurance policies issued by the insurer. For each insurance policy, the

reinsurer covers a specified share of the claim. Under each method of reinsurance, there are

two types: proportional reinsurance and non-proportional reinsurance.

Definition 1.1.3 (cf., e.g., Schwepcke and Arndt, 2004) In proportional reinsurance, the sums

insured, the claims, and the original premiums are divided up proportionally between the direct

insurer and the reinsurer.

One main form of proportional reinsurance is quota share.

Definition 1.1.4 (cf., e.g., Dror and Preker, 2002) Under a quota share reinsurance contract,

the primary insurer cedes a fixed percentage of every exposure it insures within the class of

business covered by the contract. The reinsurer receives a share of the premium (less a ceding

commission) and pays the same percentage of each loss.

Non-proportional reinsurance is defined as follows:

Definition 1.1.5 (cf., e.g., Schwepcke and Arndt, 2004) In non-proportional reinsurance, the

reinsurer insures her/his cedent against the economic loss the latter stands to suffer in the event

of specific events occurring. The amount of indemnity paid to the cedent by the reinsurer

depends entirely on the size of the loss. The reinsurer reimburses the part of the claim pay-

ment made by the direct insurer to her/his insured in excess of a specified amount and up to a

prearranged limit.

One main form of non-proportional reinsurance is excess of loss.

Definition 1.1.6 (cf., e.g., Sundt, 1984) For excess of loss reinsurance, of each claim exceed-

ing a fixed priority, which is also known as the retention, the reinsurer pays the exceeding

amount, usually limited to a specified maximum (the policy limit).

Although there are other forms of reinsurance, for the sake of simplicity, in the thesis

we only consider the excess of loss and quota share forms. For the rest of the thesis, unless

otherwise stated, we denote the total claim amount by X, the insurer’s share of the total amount

by XI , and the reinsurer’s share by XR. When an insurance policy issued by the insurer is

reinsured in the form of excess of loss reinsurance, the insurer pays

XI =

 X if X ≤ R,

R if X > R,
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where R > 0 is the retention, and the reinsurer pays

XR =

 0 if X ≤ R,

X − R if X > R.

When an insurance policy issued by the insurer is reinsured in the form of quota share reinsur-

ance, the insurer pays

XI = αX,

where 0 < α < 1, and the reinsurer pays the remaining part

XR = (1 − α)X.

1.2 Brief literature review on optimal reinsurance

Various studies related to optimal reinsurance have been reported in the literature. Given the

reinsurer’s pricing rule discussed by Lane (2000), and Kreps and Major (2001), Bu (2005)

considers finding optimal reinsurance by maximizing the insurer’s expected net income minus

some function of its variance that accounts for the associated uncertainty. Daykin et al. (1994),

Gajek and Zagrodny (2000), and Kaluszka (2001) construct an optimal reinsurance contract

by minimizing the variance of the insurer’s retained loss subject to the pricing rule of the

reinsurance contract and the insurer’s budget. Guerra and Centeno (2008) obtain an optimal

reinsurance policy by maximizing the insurer’s expected utility. Pesonen (1984), Goovaerts et

al. (2001), Schmidli (2004), Gajek and Zagrodny (2004), and Liang and Guo (2007) take the

insurer’s survival probability into consideration. Cai and Tan (2007), Cai et al. (2008), and

Tan et al. (2009) optimize a reinsurance contract under the value-at-risk and conditional tail

expectation risk measures.

Although not mentioned as often, optimal reinsurance strategies that are beneficial to both

the insurer and the reinsurer have also been reported. See, for example, Ignatov et al. (2004),

and Dimitrova and Kaishev (2010). In Chapter 2, we will discuss in detail some of the optimal

criteria in the literature.



4 Chapter 1. Introduction

1.3 An overview of Chapters 3 and 4

In Chapter 3, we introduce our first approach for finding optimal reinsurance that is beneficial

to both the insurer and the reinsurer. Consider the following problem: The insurer underwrites

an insurance policy with deductible d > 0. Then the total amount payable to the insureds is

(X − d)+ =

 0 if X ≤ d,

X − d if X > d.

Recall now the method of facultative reinsurance, in which negotiations between the insurer

and the reinsurer take place for each insurance policy issued by the insurer. The insurer decides

to purchase an excess of loss reinsurance policy with retention R > 0 and policy limit L > 0.

When the claim size exceeds the reinsurer’s policy limit L, a third party gets involved and

covers the remaining amount. Let XG be the third party’s share of the claim. Then XI , XR, and

XG are given by

XI = (X ∧ R) − (X ∧ d),

XR = (X ∧ L) − (X ∧ R),

XG = X − (X ∧ L),

where ∧ means the minimum of the two values.

Note 1.3.1 Reinsurance companies themselves sometimes also need to purchase reinsurance.

Hence, one example of the third party is another reinsurance company. In this case, the rein-

surer (known as the retrocedent) passes on parts of the risk he/she has taken on from the direct

insurer to another reinsurer (known as the retrocessionaire). For additional information, we

refer to Schwepcke and Arndt (2004). Note that in this thesis, for the sake of simplicity, we as-

sume that the insurer establishes reinsurance agreements with one reinsurer. In the real world,

multiple reinsurers may be involved in the agreements. The reinsurer who sets the terms of

the reinsurance contract is known as the lead reinsurer. The other reinsurers are known as the

following reinsurers. When an insurance company collapses, special programs are in place to

respond to unpaid claims of policyholders under policies issued by that insurance company.

One example of such programs is the Property and Casualty Insurance Compensation Corpo-

ration (PACICC).
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When the insurer does not share the claim with other parties, the variance of the amount

payable to the insureds is

Var[(X − d)+].

When the insurer, the reinsurer, and the third party pay their shares of the claim, the variance

of the amount payable to the insureds becomes the sum of the variances of XI , XR, and XG, that

is,

Var[XI] + Var[XR] + Var[XG].

The difference between Var[(X − d)+] and Var[XI]+Var[XR]+Var[XG] is called the variance

reduction when the claim is shared. Based on this idea, we propose and explore an optimal

criterion called the variance reduction approach. We then obtain an optimal reinsurance policy

that is beneficial to the insurer, the reinsurer, and the third party.

In addition, in Chapter 3, we shall use the variance reduction approach to obtain an optimal

reinsurance contract by the method of treaty reinsurance, in which multiple insurance policies

issued by the insurer are reinsured. Excess of loss reinsurance is assumed with no policy limit,

and no third party is involved. Two scenarios will be discussed in the cases when the claim size

of each insurance policy can be independent or dependent on time. The dependent case will be

discussed in detail in Chapter 4.

1.4 Value-at-risk and conditional tail expectation

Here we consider finding optimal reinsurance using risk measures. The value-at-risk (VaR)

and the conditional tail expectation (CT E) are two of the most well known risk measures. We

define the VaR as follows (cf., e.g., Denuit et al., 2005):

Definition 1.4.1 The VaR is the maximum amount of money that may be lost on a portfolio

over a given period of time, with a given level of confidence. Specifically, the VaR at a given

confidence level 1 − α (0 < α < 1) over the considered time period is given by the smallest

number x ∈ R such that the probability of a loss greater than x does not exceed α. The VaR of

a random variable X at the confidence level 1 − α is defined as

VaRX(α) = inf{x : P(X > x) ≤ α}. (1.1)
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The CT E is defined as follows (cf., e.g., Denuit et al., 2005):

Definition 1.4.2 The CT E is the expected value of X given that X exceeds a threshold value.

Specifically, the CT E of X at the confidence level 1 − α is defined as

CT EX(α) = E[X | X ≥ VaRX(α)]. (1.2)

Note 1.4.3 The conditional tail expectation can be viewed as a weighted premium calcula-

tion principle when the weight function is an indicator function. For additional information,

we refer to Furman and Landsman (2006), and Furman and Zitikis (2008). Various statisti-

cal inferential tools for the estimation and comparison of conditional tail expectations have

been developed. For example, we refer to Brazauskas et al. (2008), and Necir et al. (2010).

Properties that risk measures may satisfy include non-excessive loading, non-negative loading,

translativity, constancy, subadditivity, comonotonic additivity, positive homogeneity, mono-

tonicity, continuity with respect to convergence in distribution, and objectivity. Risk measures

that satisfy translativity, positive homogeneity, subadditivity, and monotonicity are known as

coherent risk measures. For additional information on these properties, we refer to Denuit et

al. (2005). By finding the asymptotic distribution for the difference between empirical es-

timators of two risk measures, one can use non-parametric and parametric approaches. For

additional information on these approaches, we refer to Jones and Zitikis (2005). For details

on how empirical estimators of risk measures are obtained, we refer to Jones and Zitikis (2003,

2007). Jones et al. (2006) extend the empirical tests for the comparison of two risk measures

by constructing tests for the equality of three or more risk measure values.

1.5 An overview of Chapter 5

In Chapter 5, we consider a CT E-based approach for constructing an optimal reinsurance con-

tract. Under facultative reinsurance, the insurer purchases an excess of loss reinsurance policy

with retention R > 0. Then the CT Es of XI and XR at a given confidence level 1−α are defined

as

CT EXI (α,R) =
1
α

E[XI1{XI ≥ VaRXI (α,R)}]

and
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CT EXR(α,R) =
1
α

E[XR1{XR ≥ VaRXR(α,R)}],

respectively, where 1 denotes the indicator function. We have the equation

Cov[XI1{XI ≥ VaRXI (α,R)}, XR1{XR ≥ VaRXR(α,R)}]

= E[XI1{XI ≥ VaRXI (α,R)}XR1{XR ≥ VaRXR(α,R)}]

− E[XI1{XI ≥ VaRXI (α,R)}]E[XR1{XR ≥ VaRXR(α,R)}].

In Chapter 5, we will explain why Cov[XI1{XI ≥ VaRXI (α,R)}, XR1{XR ≥ VaRXR(α,R)}] is

a special case of Cov[XI , XR], and we shall also show that an optimal reinsurance contract

can be obtained when we maximize Cov[XI1{XI ≥ VaRXI (α,R)}, XR1{XR ≥ VaRXR(α,R)}]

with respect to R. To illustrate, we shall then find the optimal retention when X follows the

exponential distribution and also the two-parameter Pareto distribution.

1.6 An overview of Chapter 6

In Chapter 6, we shall discuss a problem in the real estate industry: Consider a buyer who

wants to purchase a property, and suppose that there are a number of similar properties on the

market for sale. The buyer looks at the offers, one at a time, with a reservation price in mind.

If the negotiated selling price is below the buyer’s reservation price, the buyer purchases the

property immediately and avoids the risk of losing the property to another potential buyer. If

the negotiated selling price is above the buyer’s reservation price, then the buyer moves on to

the next offer. Unlike the case considered by Stigler (1962) and Gastwirth (1976), we assume

that if the buyer passes on an offer, he/she does not have the option to go back and review it.

This scenario is as realistic as the one of Stigler (1962) and Gastwirth (1976) because sellers

and real estate agents often have multiple buying offers and, therefore, may not wait for one

potential buyer’s reply. The search ends when the buyer purchases a property with a negotiated

selling price lower than her/his reservation price. If all of the properties under consideration

are being sold at a price higher than the reservation price, then the buyer does not purchase a

property.

In Chapter 6, the probability of the buyer purchasing a property will be formulated under

various assumptions. We will start by assuming that a buyer’s reservation price stays the same,
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and that the random variables of the negotiated selling prices are independent and identically

distributed (i.i.d.). One or more of these assumptions will then be dropped. When random

variables of the negotiated selling prices are dependent, we consider three ways to model their

dependence: direct representation, copula representation, and background risk model. As an

illustrative example, we shall calculate the probability of a buyer purchasing a condominium

or a detached property in the London and St. Thomas area. The data are readily available in

the London and St. Thomas Association of Realtors statistical report for the year 2012.

1.7 An overview of Chapter 7

In Chapter 7, we shall summarize the proposed methodologies and main results in this thesis.

In addition, we shall also provide directions for future research.



Chapter 2

Optimal reinsurance: an overview

In this chapter, we recall and discuss some of the criteria that have been used in past studies for

finding optimal reinsurance, including:

• Minimizing the variance of the insurer’s retained loss (Section 2.1).

• Maximizing insurer’s expected utility (Section 2.2).

• Finding an optimal reinsurance policy based on the insurer’s survival probability (Section

2.3).

• Minimizing the CT E and VaR of the insurer’s total cost (Section 2.4).

• Constructing an optimal reinsurance policy based on the probability of joint survival and

the expected profit given joint survival (Section 2.5).

Of course, we have to note at the very outset that we will not be able to go into very detailed

descriptions and discussions of the criteria, but we shall give a good flavour of the criteria.

2.1 Minimizing the variance of the insurer’s retained loss

Kaluszka (2001) considers the following problem: The insurer pays a fixed premium amount

for the reinsurance coverage. Three illustrative premium principles for determining the rein-

surance premium pR are provided by the following equations:

pR = (1 + θ)E[XR], (2.1)

9
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pR = E[XR] + θ
√

Var[XR], (2.2)

pR = E[XR] + θ
Var[XR]
E[XR]

, (2.3)

where θ > 0 is the premium loading coefficient. For the rest of this chapter, we denote the

general reinsurance premium and the premium loading coefficient by pR and θ, respectively.

Note 2.1.1 Three main methods are used to obtain premium principles: the ad hoc method, the

characterization method, and the economic method. It is important to note that these methods

are not mutually exclusive. For example, the Proportional Hazards Premium Principle can

be derived using both the characterization method and the economic method. For additional

information on the methods of developing premium principles, we refer to Young (2004). We

also refer to Furman and Zitikis (2008, 2009), where a class of premium calculation principles,

called weighted premiums and based on weighted loss distributions, has been discussed.

Kaluszka (2001) considers finding an optimal reinsurance contract by minimizing Var[X −

XR], which is the variance of the insurer’s retained loss, subject to the value of reinsurance

premium pR. The variance Var[X − XR] is minimized when the form of reinsurance is a com-

bination of excess of loss and quota share, that is,

XR = α(X − R)+,

where 0 < α ≤ 1 and R > 0.

The problem is now to determine α and R. Recall two of the methods for finding pR, which

are given in equations (2.2) and (2.3). We rewrite E[XR] as a function of pR and
√

Var[XR],

that is, f (pR,
√

Var[XR]). Kaluszka (2001) shows that if E[X] > f (pR,Var[X]), then α and R

exist and satisfy the following two equations:

−E[(R − X)+] f ′2(pR, αVar[(X − R)+]) = (1 − α)Var[(X − R)+]

and

αE[(X − R)+] = f (pR, αVar[(X − R)+]),
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where

0 < R < sup{x : P[X > x] > 0}

and

f ′2(pR, z) =
∂

∂z
f (pR, z) for z > 0.

2.2 Maximizing insurer’s expected utility

Suppose that the insurer’s profit ΠI for a given period is

ΠI = pI − pR − (X − XR),

where pI is the premium that the insurer has collected from the insureds. Guerra and Centeno

(2008) consider obtaining an optimal reinsurance policy by maximizing the expected utility

function EX[U(ΠI)], where U(x) = −e−cx for x ∈ R and c > 0. Let

G(z,Ω(x)) =
∫ ∞

0
exp{−z(pI − pR − (x −Ω(x)))} fX(x)dx, z > 0,

where fX is the density function of X, and the function Ω(x) maps each possible value of the

claims for a given period into the corresponding value refunded under the reinsurance policy

for x ≥ 0. By definition, the adjustment coefficient z1 is the unique solution to G(z1,Ω(x)) =

1. When EX[U(ΠI)] = −G(c,Ω(x)), Guerra and Centeno (2008) show that to maximize

EX[U(ΠI)], one must find the form of the function Ω(x) such that the adjustment coefficient is

maximized.

Note 2.2.1 Here we provide some additional information on the expected utility theory (cf.,

e.g., Barbera et al., 2004). In economic theory, utility is usually understood as a numerical

representation of a preference relation. Expected utility theory imposes a particular set of

consistency conditions, which imply that the choice under uncertainty can be represented as the

maximization of the expectation of the utility of consequences. According to the von Neumann

and Morgenstern theory (cf., e.g., von Neumann and Morgenstern, 1953), utility functions of

risk averters and risk seekers are concave and convex, respectively. Utility functions that have

both concave and convex regions have been discussed as well. One example is the S-shaped

utility function (cf., e.g., Broll et al., 2010).



12 Chapter 2. Optimal reinsurance: an overview

2.3 Finding an optimal reinsurance policy based on the in-

surer’s survival probability

Gajek and Zagrodny (2004) take the insurer’s survival probability into consideration. During

a considered period of time, let v be the value of the initial surplus. Furthermore, let pI be

the premium amount that the insurer has collected from the insureds. Finally, let p be the

maximum amount that the insurer can spend on the reinsurance policy. Then the insurer’s asset

after purchasing the reinsurance policy is v + pI − p. When P[X < v + pI] = 1, then the

insurance company has enough assets to cover the claim amount. However, the insurer will

seek help when 0 < P[X < v + pI] < 1. Gajek and Zagrodny (2004) discuss two scenarios

when P[X < v + pI] < 1, which we briefly review next.

The insurer needs to pay the premium πR(E[Ω1(X)]) for the reinsurance protection, where

πR is an increasing function and Ω1(X) is the part of the total claim amount covered by the

reinsurer. When πR(E[(X − (v + pI − p))+]) ≤ p, the insurer can afford purchasing excess of

loss reinsurance with retention v + pI − p. The insurer’s probability of ruin is then reduced to

zero since the insurer is paying for the full reinsurance protection. Gajek and Zagrodny (2004)

prove that in this case the optimal form of reinsurance is excess of loss with retention R∗, where

R∗ is the maximum value of R ≥ 0 such that

πR(E[(X − R)+]) ≤ v + pI − R.

When πR(E[(X − (v+ pI − p))+]) > p, the insurer’s probability of ruin is larger than zero. If the

distribution of X is continuous and πR(x+(1−FX(v+pI−p))(p−πR(x))) ≤ p for 0 ≤ x ≤ π−1
R (p),

then an optimal reinsurance policy is obtained when the reinsurer’s share of the claim is written

in the following form:

Ω∗1(x) =


0 if 0 ≤ x ≤ v + pI − p,

x − v − pI + p if v + pI − p < x ≤ L,

0 if x > L,

where L is such that

p = πR(E[Ω∗1]).
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2.4 Minimizing the CT E and VaR of the insurer’s total cost

Cai and Tan (2007) discuss the construction of an optimal reinsurance contract in the excess

of loss form under VaR and CT E risk measures: Suppose that the insurer purchases excess of

loss reinsurance with retention R > 0. Then

VaRXI (α,R) =

 R if 0 < R ≤ S −1
X (α),

S −1
X (α) if R > S −1

X (α),

where S X is the survival function of X and 0 < α < S X(0). Next, let T be the insurer’s total

cost in the presence of reinsurance, which is given by

T = XI + πR(E[(X − R)+]),

where πR is defined in Section 2.3. Using the formula for the VaR of a random variable X at

the confidence level 1 − α, which is given in equation (1.1), we have

VaRT (α,R) =

 R + πR(E[(X − R)+]) if 0 < R ≤ S −1
X (α),

S −1
X (α) + πR(E[(X − R)+]) if R > S −1

X (α),

where 0 < α < S X(0). Cai and Tan (2007) consider minimizing VaRT (α,R) with respect to R,

that is,

min
R

VaRT (α,R).

They show that the optimal retention R∗1 exists if and only if

α <
1

1 + θ
< S X(0)

and

S −1
X (α) ≥ S −1

X

( 1
1 + θ

)
+ πR

(( 1
1 + θ

))
.

When R∗1 exists, it is given by

R∗1 = S −1
X

( 1
1 + θ

)
.

Next, using the formula for the CT E of X at the confidence level 1 − α, which is given in

equation (1.2), we have
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CT ET (α,R) =

 R + πR(E[(X − R)+]) if 0 < R ≤ S −1
X (α),

S −1
X (α) + πR(E[(X − R)+]) + 1

α

∫ R

S −1
X (α)

S X(x)dx if R > S −1
X (α).

Cai and Tan (2007) consider minimizing CT ET (α,R) with respect to R, that is,

min
R

CT ET (α,R),

and show that the optimal retention R∗2 exists if and only if

0 < α ≤ 1
1 + θ

< S X(0).

When R∗2 exists, it is given by

R∗2 = S −1
X

( 1
1 + θ

)
for α <

1
1 + θ

,

R∗2 ≥ S −1
X

( 1
1 + θ

)
for α =

1
1 + θ

.

2.5 An optimal criterion that is beneficial to both the insurer

and the reinsurer

In this section, we review the work of Dimitrova and Kaishev (2010), in which an optimal

reinsurance policy that is beneficial to both the insurer and the reinsurer is constructed. If the

inter-claim times, say τ1, τ2, . . . , are identically and exponentially distributed with parameter

λ > 0, then the arrival time of the first claim is T1 = τ1, the arrival time of the second claim is

T2 = τ1 + τ2, and so on. Let N(t) be the number of claims that arrive up to and including the

time t. Furthermore, let X1, X2, . . . be the claim sizes. Then for every i ≥ 1, the insurer’s share

of the ith claim is

Xi,I = (Xi ∧ R) + (Xi − L)+,

where R is the retention and L is the policy limit (0 < R < L), and the reinsurer’s share is

Xi,R = min((Xi − R)+, L − R).
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The insurer and the reinsurer also share the premium income, which is given by

h(t) = hI(t) + hR(t),

where

• h(t) is the aggregate premium income up to and including the time t;

• hI(t) is the insurer’s share of the premium income up to and including the time t;

• hR(t) is the reinsurer’s share up to and including the time t.

The functions h, hI , and hR are non-negative and non-decreasing. Consequently, the in-

surer’s profit up to and including the time t is

ΠI(t) = hI(t) −
N(t)∑
i=1

XI
i ,

and the reinsurer’s profit up to and including the time t is

ΠR(t) = hR(t) −
N(t)∑
i=1

XR
i .

Let TI be the insurer’s time of ruin, and let TR be the reinsurer’s time of ruin. Dimitrova

and Kaishev (2010) search for a common solution for both the insurer and the reinsurer by

using the following optimal criterion: Suppose that h(t) = hI(t) + hR(t), hI(t) = ah(t), and

hR(t) = (1 − a)h(t) for 0 ≤ a ≤ 1. Then the retention R∗ and the policy limit L∗ of the optimal

reinsurance policy are such that 1 − P[TI > x,TR > x] is minimized subject to

E[ΠI(x) | TI > x,TR > x]
E[ΠR(x) | TI > x,TR > x]

=
a

1 − a
,

where x ≥ 0.



Chapter 3

The variance reduction approach

In this chapter, we develop optimal reinsurance by reducing the variance of the amount payable

to the insureds. Consider the following problem assuming the method of facultative reinsur-

ance: The insurer underwrites an insurance policy with deductible d > 0 and decides to acquire

an excess of loss reinsurance policy from the reinsurer with retention R > 0 and policy limit

L > 0, where d < R < L. When the claim size exceeds the policy limit L, the reinsurer seeks

help from a third party to cover the remaining amount.

Although the decisions of all three parties affect the final outcome, we assume that the

insurer does not negotiate directly with the third party. This assumption is reasonable since the

insurer does not care how the reinsurer covers the amount exceeding the retention, as long as

it is covered. Furthermore, we assume that the retention is decided between the insurer and the

reinsurer, and that the policy limit is determined between the reinsurer and the third party.

Let XG be the third party’s share of the claim. Then we have

XI = (X ∧ R) − (X ∧ d),

XR = (X ∧ L) − (X ∧ R),

XG = X − (X ∧ L).

The variance of the amount payable to the insureds is

16



17

Var[(X − d)+] = E[(X − d)2
+] − (E[(X − d)+])2

= E[(X − (X ∧ d))2] − (E[X − (X ∧ d)])2

= E[X2] + E[(X ∧ d)2] − 2E[X(X ∧ d)] − (E[X])2 − (E[X ∧ d])2

+ 2E[X]E[X ∧ d].

Similarly, the variance of the insurer’s share of the claim is given by

Var[XI] = E[X2
I ] − (E[XI])2

= E[((X ∧ R) − (X ∧ d))2] − (E[X ∧ R] − E[X ∧ d])2

= E[(X ∧ R)2] + E[(X ∧ d)2] − 2E[(X ∧ R)(X ∧ d)] − (E[X ∧ R])2

− (E[X ∧ d])2 + 2E[X ∧ R]E[X ∧ d].

The variance of the reinsurer’s share of the claim is given by

Var[XR] = E[X2
R] − (E[XR])2

= E[((X ∧ L) − (X ∧ R))2] − (E[X ∧ L] − E[X ∧ R])2

= E[(X ∧ L)2] + E[(X ∧ R)2] − 2E[(X ∧ L)(X ∧ R)] − (E[X ∧ L])2

− (E[X ∧ R])2 + 2E[X ∧ L]E[X ∧ R].

Finally, the variance of the third party’s share of the claim is given by

Var[XG] = E[X2
G] − (E[XG])2

= E[(X − (X ∧ L))2] − [E(X) − E(X ∧ L)]2

= E[X2] + E[(X ∧ L)2] − 2E[X(X ∧ L)] − (E[X])2 − (E[X ∧ L])2

+ 2E[X]E[X ∧ L].

Next, we follow Borch (1974) and find an optimal criterion that is beneficial to the insurer,

the reinsurer, and the third party. If the insurance company does not share the claim with other

parties, then the variance of the amount payable to the insureds is Var[(X−d)+]. When the three

parties share the claim, the variance of the amount payable to the insureds becomes Var[XI] +

Var[XR] + Var[XG]. The difference between Var[(X − d)+] and Var[XI] + Var[XR] + Var[XG]
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is known as the variance reduction when the claim is shared. Our developed methodology

is based on this idea. We call it the variance reduction approach. The rest of this chapter is

organized as follows:

• In Section 3.1, we establish the optimal criterion as maximizing Cov[XI , XR] and/or

Cov[XR, XG].

• In Section 3.2, we check if the correlation coefficient can be used as an alternative opti-

mal criterion.

• In Section 3.3, we find the optimal retention R∗ and/or the optimal policy limit L∗ under

various scenarios.

• In Section 3.4, we use the variance reduction approach assuming the method of treaty

reinsurance. We find the optimal retention when the insurer and the reinsurer negotiate a

reinsurance contract in the excess of loss form that includes multiple insurance policies

issued by the insurer, and when the claim size of each insurance policy is independent of

time.

3.1 Establishing the optimal criterion

When the insurer negotiates with the reinsurer to determine the retention R, the two parties

share the amount

XI + XR = (X ∧ L) − (X ∧ d).

Without sharing, the variance of this amount is

Var[XI + XR].

When the risk is shared between the insurer and the reinsurer, the variance becomes

Var[XI] + Var[XR].

We can write

Var[XI + XR] = Var[XI] + Var[XR] + 2Cov[XI , XR].
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Our goal is to maximize the difference between Var[XI + XR] and Var[XI] + Var[XR]. To do

so, we need to maximize the covariance Cov[XI , XR] with respect to the retention R.

When the reinsurer and the third party communicate to determine the policy limit L, they

share the amount

XR + XG = X − (X ∧ R).

Without sharing, the variance of this amount is

Var[XR + XG].

When the risk is shared between the reinsurer and the third party, the variance becomes

Var[XR] + Var[XG].

Similar to negotiations between the insurer and the reinsurer, we wish to maximize the differ-

ence between Var[XR + XG] and Var[XR] +Var[XG]. In other words, we need to maximize the

covariance Cov[XR, XG] with respect to the policy limit L.

Next, we obtain expressions for the covariances Cov[XI , XR] and Cov[XR, XG].

Note 3.1.1 Covariance plays pivotal roles when solving a number of problems in actuarial

science, statistics, economics, and finance. In our model, a closed-form expression for the

covariance can be obtained. However, in many scenarios, this can be a challenging task. One

possible solution to the task is the covariance decomposition. For details, we refer to Furman

and Zitikis (2010). In addition to finding closed-form expressions, studies related to estimating

the covariance of two random variables have also been reported in the literature. One example

is the Grüss-type bound for the covariance of two transformed random variables (cf., e.g.,

Zitikis, 2009; Egozcue et al., 2010, 2011b).

Theorem 3.1.2 Let the excess of loss reinsurance policy have retention R > 0 and policy limit

L > 0. Then the covariances Cov[XI , XR] and Cov[XR, XG] are given by

Cov[XI , XR] =
∫ R

d
FX(y)dy

∫ L

R
S X(y)dy, (3.1)
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Cov[XR, XG] =
∫ L

R
FX(y)dy

∫ ∞

L
S X(y)dy, (3.2)

where FX is the distribution function of X and S X is the survival function of X.

Proof We begin with the covariance of XI and XR, which can be written as follows:

Cov[XI , XR] = E[XIXR] − E[XI]E[XR].

Recall that

XI = (X ∧ R) − (X ∧ d),

XR = (X ∧ L) − (X ∧ R),

XG = X − (X ∧ L).

Using these representations, the covariance becomes

Cov[XI, XR] = E[((X ∧ R) − (X ∧ d))((X ∧ L) − (X ∧ R))] − E[(X ∧ R) − (X ∧ d)]

× E[(X ∧ L) − (X ∧ R)]

= (E[(X ∧ R)(X ∧ L)] − E[X ∧ R]E[X ∧ L])

− (E[(X ∧ d)(X ∧ L)] − E[X ∧ d]E[X ∧ L])

− (E[(X ∧ R)2] − (E[X ∧ R])2)

+ (E[(X ∧ d)(X ∧ R)] − E[X ∧ d]E[X ∧ R]).

Next, we write Cov[XI, XR] in terms of the distribution function of X and obtain

Cov[XI , XR]

=

(
R2 − 2

∫ R

0
yFX(y)dy + R

∫ L

0
(1 − FX(y))dy − R

∫ R

0
(1 − FX(y))dy −

∫ d

0
(1 − FX(y))dy

×
∫ L

0
(1 − FX(y))dy

)
−

(
d2 − 2

∫ d

0
yFX(y)dy + d

∫ L

0
(1 − FX(y))dy − d

∫ d

0
(1 − FX(y))dy

−
∫ d

0
(1 − FX(y))dy

∫ L

0
(1 − FX(y))dy

)
−

(
R2 − 2

∫ R

0
yFX(y)dy −

( ∫ R

0
(1 − FX(y))dy

)2)
+

(
d2−2

∫ d

0
yFX(y)dy+d

∫ R

0
(1−FX(y))dy−d

∫ d

0
(1−FX(y))dy−

∫ d

0
(1−FX(y))dy

∫ R

0
(1−FX(y))dy

)
.
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Consequently, we have

Cov[XI , XR] =
∫ R

d
FX(y)dy

∫ L

R
S X(y)dy.

Similarly, we derive an expression for Cov[XR, XG]. The result is provided in equation (3.2).

This completes the proof of Theorem 3.1.2. �

We note from Theorem 3.1.2 that the covariances are non-negative. In other words, the

difference between Var[XI +XR] and Var[XI]+Var[XR] is positive, and the difference between

Var[XR + XG] and Var[XR] + Var[XG] is positive. This confirms the fact that the variance of

the amount payable to the insureds is reduced when the claim is shared.

Note 3.1.3 Determining the sign of the covariance of two real-valued transformations of a

random variable can be challenging in some cases. For additional information, we refer to

Egozcue et al. (2011a).

Since the correlation coefficient is written in terms of the covariance, a natural question to

ask is whether we can maximize the correlation coefficients Corr[XI , XR] and Corr[XR, XG]

instead. In what follows, we use a numerical example to check if maximizing the correlation

coefficient could be a suitable criterion for optimizing the reinsurance policy.

3.2 An illustrative example

We assume throughout this section that the total claim amount X follows a discrete distribution,

and that only one insurance policy is issued by the insurer with no deductible, that is, d = 0.

The insurance policy is then reinsured. The excess of loss reinsurance policy has retention R

and policy limit L. We assume that the claim amount never exceeds the policy limit. Hence,

no third party gets involved. Denote the optimal retention that maximizes Cov[XI , XR] by R1,

and the optimal retention that maximizes Corr[XI , XR] by R2. Next, to check if R1 and R2 can

be obtained, we present an illustrative example.

Suppose that for 0 < x1 < x2 ≤ L, the loss X is of the following form:

X =

 x1 with probability p1,

x2 with probability p2,
(3.3)
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where p1 + p2 = 1 and p1 > p2. Next, we shall derive an expression for Cov[XI , XR] and find

R1.

Theorem 3.2.1 Suppose X follows the discrete distribution given by equation (3.3). Further-

more, let the retention of the excess of loss reinsurance policy be R > 0. Then the covariance

of XI and XR is given by

Cov[XI , XR] =


0 when R ≤ x1,

(Rp1 − x1 p1)(x2 − R)p2 when x1 < R ≤ x2,

0 when R > x2.

(3.4)

Moreover, the optimal retention R1 that maximizes Cov[XI , XR] is

R1 =
x1 + x2

2
. (3.5)

Proof Given distribution (3.3) of X, the covariance of XI and XR can be written as follows:

Cov[XI , XR] = (x1 ∧ R)(x1 − R)+p1 + (x2 ∧ R)(x2 − R)+p2

− ((x1 ∧ R)p1 + (x2 ∧ R)p2)((x1 − R)+p1 + (x2 − R)+p2).

We now rewrite Cov[XI , XR] for R ≤ x1, x1 < R ≤ x2, and R > x2. When R ≤ x1, the covariance

becomes

Cov[XI , XR] = R(x1 − R)p1 + R(x2 − R)p2 − (Rp1 + Rp2)((x1 − R)p1 + (x2 − R)p2)

= R(1 − p1 − p2)((x1 − R)p1 + (x2 − R)p2).

Since p1 + p2 = 1, we obtain

Cov[XI , XR] = 0.

When x1 < R ≤ x2, the covariance becomes

Cov[XI , XR] = R(x2 − R)p2 − (x1 p1 + Rp2)(x2 − R)p2

= (Rp1 − x1 p1)(x2 − R)p2.

When R > x2, we have (x1 − R)+ = 0 and (x2 − R)+ = 0. Hence, the covariance becomes
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Cov[XI , XR] = 0.

From these formulas, we see that the covariance is maximized when x1 < R ≤ x2.

To obtain the retention that maximizes Cov[XI , XR], we first need to calculate the critical

point(s) of Cov[XI , XR], and then find the critical point that maximizes Cov[XI , XR], which is

the optimal retention. We begin by finding the critical point(s) of Cov[XI , XR] for x1 < R ≤ x2.

Definition 3.2.2 (cf., e.g., Larson and Edwards, 2010) A critical, or stationary, point of a dif-

ferentiable function is any value in its domain where its derivative is 0.

From this definition, we obtain the critical point(s) by differentiating Cov[XI , XR] with

respect to R and equating the first derivative to zero, that is,

∂

∂R
Cov[XI , XR] = 0.

We then solve for R. The solution, which we denote by R̃1, is given by

R̃1 =
x1 + x2

2
.

Next, we show that this critical point R̃1 maximizes Cov[XI , XR]. This can be achieved using

the second-derivative test.

Definition 3.2.3 (cf., e.g., Larson and Edwards, 2010) The second-derivative test is a criterion

for determining whether a given critical point of a real function of one variable is a local

maximum or a local minimum using the value of the second derivative at the point. The test

states that if the function f is twice differentiable at a critical point x (i.e. f ′(x) = 0), then we

have the following three statements:

• If f ′′(x) < 0, then f has a local maximum at x.

• If f ′′(x) > 0, then f has a local minimum at x.

• If f ′′(x) = 0, then x is the inflection point.

Therefore, we need to show that the second derivative of Cov[XI , XR] with respect to R

evaluated at R̃1 is negative, that is,

(
∂

∂R

)2

Cov[XI , XR]
∣∣∣∣∣
R=R̃1

< 0.
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The second derivative of Cov[XI , XR] with respect to R is given by

(
∂

∂R

)2

Cov[XI, XR] = −2p1 p2.

Since −2p1 p2 < 0, we conclude that R1 maximizes Cov[XI , XR]. This completes the proof of

Theorem 3.2.1. �

To illustrate graphically, in Figure 3.1, we plot R versus Cov[XI , XR] when x1 = 10, x2 =

1000, p1 = 0.9, and p2 = 0.1. Note that Cov[XI , XR] is maximized when R = 505.

Figure 3.1: Retention R versus Cov[XI , XR] with Cov[XI , XR] given by equation (3.4).

Next, we find the retention that maximizes Corr[XI, XR].

Lemma 3.2.4 Under conditions of Theorem 3.2.1, the correlation coefficient between XI and

XR is given by

Corr[XI, XR] = 1 for x1 < R ≤ x2,

and it is undefined for other values of R.

Proof The correlation coefficient between XI and XR can be written as follows:

Corr[XI , XR] =
Cov[XI , XR]

√
Var(XI)

√
Var(XR)

,



3.2. An illustrative example 25

where

Var[XI] = ((x1 ∧ R)2 p1 + (x2 ∧ R)2 p2) − ((x1 ∧ R)p1 + (x2 ∧ R)p2)2

and

Var[XR] = ((x1 − R)2
+p1 + (x2 − R)2

+p2) − ((x1 − R)+p1 + (x2 − R)+p2)2.

Next, we rewrite Corr[XI , XR] for R ≤ x1, x1 < R ≤ x2, and R > x2. When R ≤ x1, we obtain

Var[XI] = R2 p1 + R2 p2 − (Rp1 + Rp2)2

= R(Rp1 + Rp2)(1 − p1 − p2).

Since p1+ p2 = 1, we have that the variance Var[XI] = 0. Therefore, the correlation coefficient

between XI and XR is undefined. When x1 < R ≤ x2, we obtain

Var[XI] = x2
1 p1 + R2 p2 − (x1 p1 + Rp2)2

= p1 p2(x1 − R)2

and

Var[XR] = (x2 − R)2 p2 − [(x2 − R)p2]2

= p1 p2(x2 − R)2.

Then the correlation coefficient becomes

Corr[XI, XR] =
(Rp1 − x1 p1)(x2 − R)p2√

p1 p2(x1 − R)2
√

p1 p2(x2 − R)2

= 1.

When R > x2, we have (x1 − R)+ = 0 and (x2 − R)+ = 0. Consequently,

Var[XR] = 0.

Therefore, the correlation coefficient between XI and XR is undefined. This completes the proof

of Theorem 3.2.4. �
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From this example, and the same conclusion actually holds if the binary distribution in (3.3)

is replaced by any distribution that has any finite number of points, we note that the optimal

retention R1 that maximizes Cov[XI , XR] can be obtained. However, no optimal retention is ob-

tained when we maximize Corr[XI, XR] with respect to the retention. Therefore, we conclude

that maximizing the correlation coefficient is not a suitable criterion for finding an optimal

reinsurance policy.

3.3 Covariance maximization in the presence of insurer, rein-

surer, and a third party

We now construct an optimal reinsurance policy by maximizing Cov[XI , XR] and/or Cov[XR, XG].

We assume that X follows a two-parameter Pareto distribution. Furthermore, we assume that

the deductible d of the insurance policy issued by the insurer is fixed and known. The rest of

this section is organized as follows:

• In Subsection 5.4.2, we discuss some properties of a two-parameter Pareto distribution.

• In Subsection 3.3.2, we obtain the optimal retention R∗ that maximizes Cov[XI, XR] when

the policy limit L is fixed and the retention R is still to be determined.

• In Subsection 3.3.3, we find the optimal policy limit L∗ that maximizes Cov[XR, XG]

when R is fixed and L is still to be determined.

• In Subsection 3.3.4, we find the optimal retention and the optimal policy limit when both

R and L are still to be determined.

3.3.1 Two-parameter Pareto distribution

The probability density function (PDF) and the cumulative distribution function (CDF) of a

two-parameter Pareto random variable with parameters α > 1 and θ > 0 are given by

fX(x) =
αθα

(x + θ)α+1 (3.6)

and

FX(x) = 1 −
(
θ

x + θ

)α
, (3.7)
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respectively. The Pareto distribution is a heavy-tailed distribution.

Definition 3.3.1 (cf., e.g., Asmussen, 2003) Heavy-tailed distributions are probability distri-

butions whose tails are not exponentially bounded, that is, they have heavier tails than the

exponential distribution. In many applications it is the right tail of the distribution that is of in-

terest, but a distribution may have a heavy left tail, or both tails may be heavy. The distribution

of a random variable Y with cumulative distribution function F is said to have a heavy right tail

if

lim
y→∞

eλyP[Y > y] = ∞ for all λ > 0.

3.3.2 Finding the retention

In the next theorem, we find an optimal retention when the policy limit is already determined.

Theorem 3.3.2 Suppose X follows a two-parameter Pareto distribution with parameters α > 1

and θ > 0. Let the deductible d > 0 of the insurance policy issued by the insurer be fixed.

Furthermore, let the policy limit L > 0 of the reinsurance contract be fixed. Then the optimal

retention R∗ of the reinsurance contract that maximizes the covariance of XI and XR must satisfy

the following two properties:

θα (L + θ)1−α − θ2α (R∗ + θ)−α (L + θ)1−α − θα (R∗ + θ)1−α
+ 2 θ2α (R∗ + θ)−2α+1

− R∗θα (R∗ + θ)−α + R∗θα (R∗ + θ)−α α + dθα (R∗ + θ)−α − dθα (R∗ + θ)−α α

− θ2α (R∗ + θ)−α (d + θ)1−α = 0 (3.8)

and

αθ2α(d + θ)α−1(R∗ + θ)α−1 − 2θα(1 − α)(d + θ)α−1(R∗ + θ)α(L + θ)α−1

+ 2(1 − 2α)θ2α(d + θ)α−1(L + θ)α−1 + (α(R∗ − d)θα(1 − α)(d + θ)α−1

+ αθ2α)(R∗ + θ)α−1(L + θ)α−1 < 0. (3.9)

Proof Given the distribution of X, by differentiating Cov[XI, XR] with respect to R, we obtain
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∂

∂R
Cov[XI , XR] =

θα

1 − α(L + θ)−α+1 − θ
2α

1 − α(R + θ)−α(L + θ)−α+1 − θα

1 − α (R + θ)−α+1

+
θ2α

1 − α(R + θ)−2α+1 − (R − d)
(
θ

R + θ

)α
+
θ2α

1 − α(R + θ)−2α+1

− θ
2α

1 − α(R + θ)−α(d + θ)−α+1. (3.10)

Next, we set
∂

∂R
Cov[XI , XR] = 0,

and then solve for R. Using the “solve” feature of Maple, the solution, which we denote by R̃,

must satisfy

θα(L + θ)1−α − θ2α(R̃ + θ)−α(L + θ)1−α − θα(R̃ + θ)1−α + 2 θ2α(R̃ + θ)−2α+1 − R̃θα(R̃ + θ)−α

+ R̃θα(R̃ + θ)−αα + dθα(R̃ + θ)−α − dθα(R̃ + θ)−αα − θ2α(R̃ + θ)−α(d + θ)1−α = 0,

which is the first condition that the optimal retention must satisfy, reported as equation (3.8)

above. The critical point R̃ maximizes Cov[XI, XR] if

(
∂

∂R

)2

Cov[XI , XR]
∣∣∣∣∣
R=R̃
< 0. (3.11)

The second derivative of Cov[XI , XR] with respect to R is given by

(
∂

∂R

)2

Cov[XI, XR] =
αθ2α

(1 − α)(L + θ)α−1(R + θ)α+1 −
2θα

(R + θ)α
+ 2(1 − 2α)

θ2α

(1 − α)(R + θ)2α

+
α(R − d)θα(1 − α)(d + θ)α−1 + αθ2α

(1 − α)(d + θ)α−1(R + θ)α+1 .

Condition (3.11) is satisfied if

αθ2α(d + θ)α−1(R̃ + θ)α−1 − 2θα(1 − α)(d + θ)α−1(R̃ + θ)α(L + θ)α−1

+ 2(1 − 2α)θ2α(d + θ)α−1(L + θ)α−1 + (α(R̃ − d)θα(1 − α)(d + θ)α−1

+ αθ2α)(R̃ + θ)α−1(L + θ)α−1 < 0,

which is the second condition that the optimal retention must satisfy, and it is given in (3.9).

This completes the proof of Theorem 3.3.2. �



3.3. Covariance maximization in the presence of insurer, reinsurer, and a third party 29

To illustrate graphically, in Figure 3.2, we plot R versus Cov[XI , XR] when α = 3, θ = 100,

d = 100, and L = 1000. Note that Cov[XI , XR] is maximized when R = 269.4882275.

Figure 3.2: Retention R versus Cov[XI , XR] when L is fixed and known.

3.3.3 Finding the policy limit

In the next theorem, we find an optimal policy limit when the retention is already determined.

Theorem 3.3.3 Suppose X follows the two-parameter Pareto distribution with parameters

α > 1 and θ > 0. Let the deductible d > 0 of the insurance policy issued by the insurer

be fixed. Furthermore, let the retention R > 0 of the reinsurance contract be fixed. Then the

optimal policy limit L∗ of the reinsurance contract that maximizes Cov[XR, XG] must satisfy the

following two properties:

− θα (L∗ + θ)1−α
+ 2 θ2α (L∗ + θ)−2α+1 − L∗θα (L∗ + θ)−α + L∗θα (L∗ + θ)−α α + Rθα (L∗ + θ)−α

− Rθα (L∗ + θ)−α α − θ2α (L∗ + θ)−α (R + θ)1−α = 0 (3.12)

and

(α − 1)θα(R + θ)α−1(L∗ + θ)α + 2θ2α(1 − 2α)(R + θ)α−1 − θα(1 − α)(R + θ)α−1(L∗ + θ)α

+ α(L∗ − R)θα(1 − α)(R + θ)α−1(L∗ + θ)α−1 + αθ(L∗ + θ)α−1 < 0. (3.13)
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Proof Similar to the proof of Theorem 3.3.2, given the distribution of X, we first find the

critical point(s) of Cov[XR, XG] by differentiating Cov[XR, XG] with respect to L. We have the

equation

∂

∂L
Cov[XR, XG] = − θα

(1 − α)(L + θ)α−1 +
θ2α

(1 − α)(L + θ)2α−1 − L
(
θ

L + θ

)α
+
θ2α

1 − α (L + θ)−2α+1

+ R
(
θ

L + θ

)α
− θ

1 − α(R + θ)−α+1(L + θ)−α.

(3.14)

Next, we set
∂

∂L
Cov[XR, XG] = 0,

and solve for L. Using the “solve” feature of Maple, the solution, which we denote by L̃, must

satisfy

− θα(L̃ + θ)1−α + 2 θ2α(L̃ + θ)−2α+1 − L̃θα(L̃ + θ)−α + L̃θα(L̃ + θ)−αα + Rθα(L̃ + θ)−α

− Rθα(L̃ + θ)−αα − θ2α(L̃ + θ)−α(R + θ)1−α = 0,

which is the first condition the optimal policy limit must satisfy, and it is reported as equation

(3.12). The critical point L̃ maximizes Cov[XR, XG] if

(
∂

∂L

)2

Cov[XR, XG]
∣∣∣∣∣
L=L̃
< 0. (3.15)

The second derivative of Cov[XR, XG] with respect to L is given by

(
∂

∂L

)2

Cov[XR, XG] = − θα

(L + θ)α
+

2θ2α(1 − 2α)
(1 − α)(L + θ)2α −

θα

(L + θ)α
+
α(L − R)θα

(L + θ)α+1

+
αθ

(1 − α)(R + θ)α−1(L + θ)α+1 .

Condition (3.15) is satisfied if

(α − 1)θα(R + θ)α−1(L̃ + θ)α + 2θ2α(1 − 2α)(R + θ)α−1 − θα(1 − α)(R + θ)α−1(L̃ + θ)α

+ α(L̃ − R)θα(1 − α)(R + θ)α−1(L̃ + θ)α−1 + αθ(L̃ + θ)α−1 < 0,

which is the second condition that the optimal policy limit must satisfy, and it is given in (3.13).
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This completes the proof of Theorem 3.3.3. �

To illustrate graphically, in Figure 3.3, we plot L versus Cov[XR, XG] when α = 3, θ = 100,

d = 100, and R = 900. Note that Cov[XR, XG] is maximized when L = 1900.500.

Figure 3.3: Policy limit L versus Cov[XR, XG] when R is fixed and known.

3.3.4 Finding the retention and the policy limit

When both R and L are still negotiable, we plot Cov[XI, XR] as a function of R and L in Figure

3.4, and Cov[XR, XG] as a function of R and L in Figure 3.5. We assume α = 3, θ = 100,

and d = 100. We note that it is difficult to obtain closed-form expressions for R∗ and L∗ that

maximize both Cov[XI , XR] and Cov[XR, XG]. Hence, we shall use a decision-theory based

approach, which looks particularly attractive from the practical point of view.

Recall from Theorem 3.3.2 that every time we change the value of L, a new optimal reten-

tion R∗ that maximizes Cov[XI, XR] is obtained. In Figure 3.6, we plot L versus R∗, where R∗

satisfies the two conditions for the optimal retention given in (3.8) and (3.9). Similarly, from

Theorem 3.3.3, each time we change the value of R, a new optimal policy limit L∗ that maxi-

mizes Cov[XR, XG] is obtained. In Figure 3.7, we plot R versus L∗, where L∗ satisfies the two

conditions for the optimal policy limit given in (3.12) and (3.13). Note that in Figure 3.6, the

optimal retention R∗ converges to 313.29 when L becomes large. However, in Figure 3.7, the

optimal policy limit L∗ is 729.53 when R = 313.29, which is considerably less than the value
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Figure 3.4: The covariance of XI and XR as a function of R and L.

Figure 3.5: The covariance of XR and XG as a function of R and L.

of L corresponding to R∗ = 313.29 in Figure 3.6. Next, we consider a negotiation process that

helps the insurer and the reinsurer reach an agreement on R∗ and L∗.

We begin the first round of negotiations by maximizing Cov[XI , XR] with respect to R. At

this stage, we assume that the undecided policy limit is very large. The solution, which we

denote by R∗, is 313.29 since we know from Figure 3.6 that the optimal retention converges

to this value when the policy limit becomes large. The reinsurer then communicates with
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Figure 3.6: Policy limit L versus retention R∗.

Figure 3.7: Retention R versus policy limit L∗.

the third party given the retention. By maximizing Cov[XR, XG] with respect to L given that

R = 313.29, we obtain the solution L∗, which is equal to 729.53. This concludes the first round

of negotiations. Next, the reinsurer provides the information about the new policy limit to the

insurer and another round of negotiations begins between the insurer and the reinsurer. We

maximize Cov[XI, XR] with respect to R given that the policy limit is L = 729.53. Then the

new optimal retention is R∗ = 248.48. Next, the reinsurer communicates with the third party to
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obtain a new optimal policy limit L∗ that maximizes Cov[XR, XG] when R = 248.48. The new

optimal policy limit is 601.133. This concludes the second round of negotiations. At the end

of each round, we obtain a new pair of R∗ and L∗. An agreement is reached when R∗ and L∗

both converge to a number. In Table 3.1, we present R∗ and L∗ for the first thirteen rounds of

negotiations. Note that in the end, we obtain R∗ = 227.885 and L∗ = 560.486.

R∗ L∗

313.291 729.530
248.483 601.133
233.562 571.678
229.500 563.671
228.348 561.400
228.018 560.749
227.923 560.562
227.896 560.508
227.888 560.492
227.886 560.488
227.885 560.487
227.885 560.486
227.885 560.486

Table 3.1: Optimal R∗ and L∗ in the first thirteen rounds of negotiations when α = 3, θ = 100,
and d = 100.

3.4 Covariance maximization: multiple policy claims

We have obtained an optimal reinsurance policy using the variance reduction approach under

facultative reinsurance. What happens when we assume the method of treaty reinsurance?

Consider the following problem: During a given time period, the insurer issues a number

of insurance policies. Let N be the number of insurance policies issued that require a claim

payment from the insurer in the given time period. Furthermore, let the claim sizes, say X1,

X2, . . . , be i.i.d. random variables, with each Xi having the same distribution as X. Each

claim size Xi is also independent of time. The insurer then purchases a reinsurance contract

that ensures reinsurance coverage for all insurance policies the insurer had issued. For each

insurance policy included in the reinsurance contract, the reinsurer covers the claim amount

exceeding R when a claim payment needs to be made. Then the insurer’s share of all claims is

given by
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XI =

N∑
i=1

(Xi ∧ R),

and the reinsurer’s share of all claims is given by

XR =

N∑
i=1

(Xi − R)+.

The rest of this section is organized as follows:

• In Subsection 3.4.1, we present an expression for Cov[XI , XR].

• In Subsection 3.4.2, we compare the critical points of Cov[XI , XR] and Cov[(X∧R), (X−

R)+]. Note that the latter covariance arises when only one insurance policy requires a

claim payment during the given time period.

• In Subsection 3.4.3, we use four illustrative examples to show how the optimal retention

R∗ is affected by parameter values of the distribution of N.

3.4.1 Covariance between the insurer’s and the reinsurer’s shares of the

claims

Here we derive an expression for Cov[XI , XR].

Theorem 3.4.1 Suppose that N follows a discrete distribution. Furthermore, assume that the

random variables X1, X2, . . . are i.i.d. Finally, under treaty reinsurance in the excess of loss

form, let the retention be R > 0. Then the covariance between XI and XR is given by

Cov[XI , XR] = E[N]RE[(X − R)+] + Var[N]E[X ∧ R]E[(X − R)+]

− E[N]E[X ∧ R]E[(X − R)+]. (3.16)

Proof The covariance between XI and XR can be written as follows:

Cov[XI , XR] = E[XIXR] − E[XI]E[XR]. (3.17)

We next calculate the three expectations on the right-hand side of equation (3.17). We begin

with the expectation of the product XIXR. To calculate the expectation, we consider the law of
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iterated expectations.

Definition 3.4.2 (cf., e.g., Weiss et al., 2006) The law of iterated expectations states that if X

is an integrable random variable and Y is any random variable, not necessarily integrable, on

the same probability space, then E[X] = E[E[X | Y]].

Using the law of iterated expectations, we have

E[XIXR] = E
[
E
[∑

i= j

(Xi1{Xi ≤ R} + R1{Xi > R})(X j − R)1{X j > R}

+
∑
i, j

(Xi1{Xi ≤ R} + R1{Xi > R})(X j − R)1{X j > R} | N
]]

= E[E[NR(X − R)1{X > R}]] + E[N(N − 1)E[X1{X ≤ R} + R1{X > R}]

× E[(X − R)1{X > R}]]

= E[N]RE[(X − R)+] + E[N2 − N]E[X ∧ R]E[(X − R)+]. (3.18)

Similarly, the other two expectations on the right-hand side of equation (3.17) become

E[XI] = E
[
E
[ N∑

i=1

(Xi1{Xi ≤ R} + R1{Xi > R}) | N
]]

= E[N]
( ∫ R

0
xdFX(x) + R(1 − FX(R))

)
= E[N]E[X ∧ R] (3.19)

and

E[XR] = E
[
E
[ N∑

i=1

(Xi − R)1{X > R} | N
]]

= E[N]
( ∫ ∞

R
xdFX(x) − R

∫ ∞

R
dFX(x)

)
= E[N]E[(X − R)+]. (3.20)

Having thus calculated the three expectations with formulas given in equations (3.18), (3.19),

and (3.20), we obtain an expression for the covariance, which is given in equation (3.16). This

completes the proof of Theorem 3.4.1. �
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3.4.2 Comparison of critical points

We now compare the critical points of Cov[XI , XR] and Cov[(X ∧ R), (X − R)+]. Since the

critical point(s) must include the value of the optimal retention, this may show how the optimal

retention is affected by N. Let us first find the critical point(s) of Cov[XI , XR].

Theorem 3.4.3 Assume that conditions of Theorem 3.4.1 are satisfied. Furthermore, assume

that the distribution function of X is twice differentiable. Then the value R̃1 that satisfies the

equation

E[N]E[X1{X > R̃1}] = 2R̃1E[N](1 − FX(R̃1)) − (Var[N] − E[N])((1 − FX(R̃1)))

× (E[(X − R̃1)+] − E[X ∧ R̃1]) (3.21)

is a critical point of Cov[XI , XR]. Moreover, the critical point R̃1 maximizes Cov[XI, XR] if the

following condition is satisfied

E[N](R̃1 fX(R̃1) − 2(1 − FX(R̃1))) + (Var[N] − E[N])( fX(R̃1)

× (E[X ∧ R̃1] − E[(X − R̃1)+]) − 2(1 − FX(R̃1))2) < 0. (3.22)

Proof To find the critical point(s), we differentiate Cov[XI , XR] with respect to R and get:

∂

∂R
Cov[XI , XR] = E[N]

∫ ∞

R
x fX(x)dx − 2RE[N](1 − FX(R))

+ (Var[N] − E[N])(1 − FX(R))

× (E[(X − R)+] − E[X ∧ R])

= E[N]E[X1{X > R}] − 2RE[N](1 − FX(R))

+ (Var[N] − E[N])(1 − FX(R))(E[(X − R)+] − E[X ∧ R]). (3.23)

Next, we set the right-hand side of equation (3.23) to 0 and solve for R. The solution, which

we denote by R̃1, satisfies equation (3.21). The critical point R̃1 maximizes Cov[XI, XR] if

(
∂

∂R

)2

Cov[XI , XR]
∣∣∣∣∣
R=R̃1

< 0.

The second derivative can be written as follows:
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(
∂

∂R

)2

Cov[XI , XR] = E[N](R fX(R) − 2(1 − FX(R)))

+ ( fX(R)(E[X ∧ R] − E[(X − R)+]) − 2(1 − FX(R))2)

× (Var[N] − E[N]).

The critical point R̃1 that maximizes Cov[XI, XR] should satisfy the property

E[N](R̃1 fX(R̃1) − 2(1 − FX(R̃1))) + (Var[N] − E[N])( fX(R̃1)

× (E[X ∧ R̃1] − E[(X − R̃1)+]) − 2(1 − FX(R̃1))2) < 0,

which is condition (3.22). This completes the proof of Theorem 3.4.3. �

Next, we obtain the critical point(s) of Cov[(X ∧ R), (X − R)+].

Theorem 3.4.4 Suppose that under treaty reinsurance, a claim payment is required for only

one insurance policy during the given time period. Furthermore, let the distribution function

of X be differentiable. Finally, let the reinsurer cover the amount exceeding R > 0. Then the

value R̃2 is a critical point of Cov[(X ∧ R), (X − R)+] if

∫ ∞

R̃2

x fX(x)dx − 2R̃2(1 − FX(R̃2)) − (1 − FX(R̃2))(E[(X − R̃2)+] − E[X ∧ R̃2]) = 0. (3.24)

Proof We can write the covariance as follows:

Cov[(X ∧ R), (X − R)+] = E[(X ∧ R)(X − R)+] − E[X ∧ R]E[(X − R)+]

= RE[(X − R)+] − E[X ∧ R]E[(X − R)+]. (3.25)

To obtain the critical point(s) of Cov[(X∧R), (X−R)+], we differentiate Cov[(X∧R), (X−R)+]

with respect to R and get

∂

∂R
Cov[(X ∧ R), (X − R)+] =

∫ ∞

R
x fX(x)dx − 2R(1 − FX(R)) − (1 − FX(R))

× (E[(X − R)+] − E[X ∧ R]). (3.26)

We then set
∂

∂R
Cov[(X ∧ R), (X − R)+] = 0,
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and solve for R. The solution, which we denote by R̃2, must satisfy the condition for the critical

point(s) given by equation (3.24). This completes the proof of Theorem 3.4.4. �

Comparing results from Theorems 3.4.3 and 3.4.4, we note that when Var[N] = 0, then the

critical points of Cov[
∑N

i=1(Xi ∧ R),
∑N

i=1(Xi − R)+] and Cov[(X ∧ R), (X − R)+] are the same,

that is, equation (3.21) becomes equation (3.24). Next, we provide examples that show how

the optimal retention is affected by E[N] and Var[N].

3.4.3 Illustrative examples

We use four examples to demonstrate how the optimal retention R∗ is affected by the parameter

values of the distribution of N. In each example, we first obtain optimal retentions when E[N]

is fixed and Var[N] changes. Next, we find optimal retentions when Var[N] is fixed and E[N]

changes. The distributions of the random variables Xi and N used in each example are as

follows:

• In Example 3.4.5, the random variable N follows a binomial distribution and each claim

size Xi follows an exponential distribution.

• In Example 3.4.6, the random variable N follows a negative binomial distribution and

each claim size Xi follows an exponential distribution.

• In Example 3.4.7, the random variable N follows a binomial distribution and each claim

size Xi follows a two-parameter Pareto distribution.

• In Example 3.4.8, the random variable N follows a negative binomial distribution and

each claim size Xi follows a two-parameter Pareto distribution.

Recall that when N follows the binomial distribution with parameters n = 1, 2, . . . and 0 ≤ p ≤

1, then the PDF of N is given by

P[N = k] =
(
n
k

)
pk(1 − p)n−k

for k = 0, 1, . . . , n. When N follows the negative binomial distribution with parameters r > 0

and β > 0, then the PDF of N is given by

P[N = k] =
(
k + r − 1

k

)( 1
1 + β

)k( β
1 + β

)r
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for k = 0, 1, . . . . When X follows the exponential distribution with parameter θ > 0, then the

PDF of X is given by

fX(x) =
1
θ

e−x/θ, x > 0.

We let N follow either the binomial distribution or the negative binomial distribution, because

both distributions are commonly used to model the occurrence of events during the considered

period of time. We do not consider the Poisson distribution here, because the mean and the

variance of it are the same.

Example 3.4.5 Let N follow the binomial distribution with parameters n > 0 and 0 ≤ p ≤ 1.

Furthermore, let each claim size Xi follow the exponential distribution with parameter θ = 10.

Under these conditions, we find the optimal retention R∗ that maximizes Cov[XI , XR] for each

pair (n, p). Results are given in Tables 3.2 and 3.3. In detail, given the specified distributions

of N and Xi, we have the formula

Cov[XI , XR] = npRθe−R/θ + np(1 − p)θ2(1 − e−R/θ)e−R/θ − npθ2(1 − e−R/θ)e−R/θ.

From Table 3.2, we note that, for each pair (n, p), the mean E[N] is fixed, that is,

n p
2 1/2
3 1/3
4 1/4
5 1/5
6 1/6
7 1/7
8 1/8

Table 3.2: Values of n and p such that E[N] is fixed and Var[N] varies.

n p
2 1

2
3 1

2 −
1
6

√
3

4 1
2 −

1
4

√
2

5 1
2 −

1
10

√
15

6 1
2 −

1
6

√
6

7 1
2 −

1
14

√
35

8 1
2 −

1
4

√
3

Table 3.3: Values of n and p such that Var[N] is fixed and E[N] varies.
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E[N] = 1,

but the variance Var[N] varies. An optimal retention R∗ that satisfies the two conditions of

Theorem 3.4.3, which are given by (3.21) and (3.22), is obtained for each value of Var[N].

Results are provided in Table 3.4. To show graphically how R∗ is affected by Var[N], in Figure

3.8, we plot R versus Cov[XI , XR] when Var[N] = 1/2, 2/3, and 3/4, and E[N] = 1. Note that

E[N] Var[N] R∗

1 1/2 11.983
1 2/3 11.146
1 3/4 10.802
1 4/5 10.616
1 5/6 10.500
1 6/7 10.421
1 7/8 10.363

Table 3.4: Optimal retention R∗ when E[N] is fixed, N is binomial, and X is exponential.

Figure 3.8: Retention R versus Cov[XI , XR] for Var[N] = 1/2 (solid curve), 2/3 (dashed curve),
and 3/4 (dotted curve).

for fixed E[N], the optimal retention R∗ decreases when the variance Var[N] increases.

Next, from Table 3.3, we see that, for each pair (n, p),

Var[N] =
1
2
,
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but E[N] varies. An optimal retention R∗ that satisfies the two conditions in Theorem 3.4.3 is

obtained for each value of E[N]. Results are provided in Table 3.5. To show graphically how

R∗ is affected by E[N], in Figure 3.9, we plot R versus Cov[XI , XR] when the mean E[N] =

1, (3/2) − (1/2)
√

3, and 2 −
√

2, and the variance Var[N] = 1/2. Note that for fixed Var[N],

E[N] Var[N] R∗

1 1/2 11.983
3
2 −

1
2

√
3 1/2 10.657

2 −
√

2 1/2 10.432
5
2 −

1
2

√
15 1/2 10.324

3 −
√

6 1/2 10.260
7
2 −

1
2

√
35 1/2 10.217

4 − 2
√

3 1/2 10.186

Table 3.5: Optimal retention R∗ when Var[N] is fixed, N is binomial, and X is exponential.

Figure 3.9: Retention R versus Cov[XI, XR] for E[N] = 1 (solid curve), (3/2)−(1/2)
√

3 (dashed
curve), and 2 −

√
2 (dotted curve).

the optimal retention R∗ decreases when E[N] decreases. This concludes Example 3.4.5.

Example 3.4.6 Let N follow the negative binomial distribution with parameters r > 0 and

β > 0. Furthermore, let each claim size Xi follow the exponential distribution with parameter

θ = 10. Then we find the optimal retention R∗ that maximizes the covariance Cov[XI , XR]

for each pair (r, β). The results are given in Tables 3.6 and 3.7. In detail, given the specified
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distributions of N and Xi, we have the formula

Cov[XI , XR] = rβRθe−R/θ + rβ(1 + β)θ2(1 − e−R/θ)e−R/θ − rβθ2(1 − e−R/θ)e−R/θ.

From Table 3.6, note that for each pair (r, β), we have

r β

1 2
2 1
3 2/3
4 1/2
5 2/5

Table 3.6: Values of r and β such that E[N] is fixed and Var[N] varies.

r β

1 2
2 − 1

2 +
1
2

√
13

3 1
4 − 1

2 +
1
2

√
7

5 − 1
2 +

1
10

√
145

Table 3.7: Values of r and β such that Var[N] is fixed and E[N] varies.

E[N] = 2,

but Var[N] varies. An optimal retention R∗ that satisfies the two conditions of Theorem 3.4.3

is obtained for each value of Var[N]. Results are provided in Table 3.8. To show graphically

how R∗ is affected by Var[N], in Figure 3.10, we plot R versus Cov[XI , XR] when the variance

Var[N] = 6, 4, and 10/3, and the mean E[N] = 2. We note the same pattern as in Example

E[N] Var[N] R∗

2 6 7.990
2 4 8.526
2 10/3 8.841
2 3 9.047
2 14/5 9.191

Table 3.8: Optimal retention R∗ when E[N] is fixed, N is negative binomial, and X is exponen-
tial.

3.4.5, that is, for fixed E[N], the optimal retention R∗ decreases when Var[N] increases.
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Figure 3.10: Retention R versus Cov[XI, XR] for Var[N] = 6 (solid curve), 4 (dashed curve),
and 10/3 (dotted curve).

Next, from Table 3.7, we see that, for each pair (r, β),

Var[N] = 6,

but E[N] varies. An optimal retention R∗ that satisfies the two conditions of Theorem 3.4.3

is obtained for each value of E[N]. Results are provided in Table 3.9. To show graphically

how R∗ is affected by E[N], in Figure 3.11, we plot R versus Cov[XI , XR] when the mean

E[N] = 2,−1 +
√

13, and 3, and the variance Var[N] = 6. We note that for fixed Var[N], the

optimal retention R∗ increases when E[N] increases. This concludes Example 3.4.6.

E[N] Var[N] R∗

2 6 7.990
−1 +

√
13 6 8.316

3 6 8.526
−2 + 2

√
7 6 8.680

− 5
2 +

1
2

√
145 6 8.800

Table 3.9: Optimal retention R∗ when Var[N] is fixed, N is negative binomial, and X is expo-
nential.

Example 3.4.7 Let N follow the binomial distribution with parameters n > 0 and 0 ≤ p ≤ 1.

Furthermore, let each claim size Xi follow the two-parameter Pareto distribution with parame-

ters α = 5 and θ = 10. Then we obtain the optimal retention R∗ that maximizes Cov[XI , XR]
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Figure 3.11: Retention R versus Cov[XI , XR] for E[N] = 2 (solid curve), −1 +
√

13 (dashed
curve), and 3 (dotted curve).

for each pair (n, p), with results given in Tables 3.10 and 3.11. In detail, given the specified

distributions of N and Xi, we have the formula

Cov[XI, XR] = npR
θ

α − 1

(
θ

R + θ

)α−1

+ np(1 − p)
θ

α − 1

×
(
1 −

(
θ

R + θ

)α−1) θ
α − 1

(
θ

R + θ

)α−1

− np
θ

α − 1

×
(
1 −

(
θ

R + θ

)α−1) θ
α − 1

(
θ

R + θ

)α−1

.

From Table 3.10, we see that for each pair (n, p), we have the fixed mean

n p
2 1/2
3 1/3
4 1/4
5 1/5
6 1/6
7 1/7
8 1/8

Table 3.10: Values of n and p such that E[N] is fixed and Var[N] varies.

E[N] = 1,
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n p
2 1

2
3 1

2 −
1
6

√
3

4 1
2 −

1
4

√
2

5 1
2 −

1
10

√
15

6 1
2 −

1
6

√
6

7 1
2 −

1
14

√
35

8 1
2 −

1
4

√
3

Table 3.11: Values of n and p such that Var[N] is fixed and E[N] varies.

but the variance Var[N] varies. An optimal retention R∗ that satisfies the two conditions of

Theorem 3.4.3 is obtained for each value of Var[N]. Results are provided in Table 3.12. To

show graphically how R∗ is affected by Var[N], in Figure 3.12, we plot R versus Cov[XI , XR]

when the variance Var[N] = 1/2, 2/3, and 3/4, and the mean E[N] = 1.

α θ E[N] Var[N] R∗

5 10 1 1/2 7.187
5 10 1 2/3 6.610
5 10 1 3/4 6.327
5 10 1 4/5 6.160
5 10 1 5/6 6.050
5 10 1 6/7 5.972
5 10 1 7/8 5.914

Table 3.12: Optimal retention R∗ when E[N] is fixed, N is binomial, and X is two-parameter
Pareto.

Next, from Table 3.11, we see that, for each pair (n, p), the variance is

Var[N] =
1
2
,

but the mean E[N] changes. An optimal retention R∗ that satisfies the two conditions of The-

orem 3.4.3 is obtained for each value of E[N]. Results are provided in Table 3.13. To show

graphically how R∗ is affected by E[N], in Figure 3.13, we plot R versus Cov[XI , XR] when the

mean E[N] = 1, (3/2) −
√

3/2, and 2 −
√

2, and the variance Var[N] = 1/2. This concludes

Example 3.4.7.

Example 3.4.8 Let N follow the negative binomial distribution with parameters r > 0 and

β > 0. Furthermore, let each claim size Xi follow the two-parameter Pareto distribution with

the parameters α = 3 and θ = 10. Then we find the optimal retention R∗ that maximizes
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Figure 3.12: Retention R versus Cov[XI , XR] for Var[N] = 1/2 (solid curve), 2/3 (dashed
curve), and 3/4 (dotted curve).

α θ E[N] Var[N] R∗

5 10 1 1/2 7.187
5 10 3

2 −
1
2

√
3 1/2 6.198

5 10 2 −
√

2 1/2 5.984
5 10 5

2 −
1
2

√
15 1/2 5.874

5 10 3 −
√

6 1/2 5.806
5 10 7

2 −
1
2

√
35 1/2 5.761

5 10 4 − 2
√

3 1/2 5.727

Table 3.13: Optimal retention R∗ when Var[N] is fixed, N is binomial, and X is two-parameter
Pareto.

Cov[XI , XR] for each pair (r, β), with results given in Tables 3.14 and 3.15. In detail, given the

specified distributions of N and Xi, we have the formula

Cov[XI, XR] = rβR
θ

α − 1

(
θ

R + θ

)α−1

+ rβ2 θ

α − 1

(
1 −

(
θ

R + θ

)α−1) θ
α − 1

(
θ

R + θ

)α−1

.

From Table 3.14, we see that, for each pair (r, β), the mean is

E[N] = 2,

but the variance Var[N] changes. An optimal retention R∗ that satisfies the two conditions of

Theorem 3.4.3 is obtained for each value of Var[N]. Results are provided in Table 3.16. To
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Figure 3.13: Retention R versus Cov[XI , XR] for E[N] = 1 (solid curve), (3/2)−
√

3/2 (dashed
curve), and 2 −

√
2 (dotted curve).

r β

1 2
2 1
3 2/3
4 1/2
5 2/5

Table 3.14: Values of r and β such that E[N] is fixed and Var[N] varies.

r β

1 2
2 − 1

2 +
1
2

√
13

3 1
4 − 1

2 +
1
2

√
7

5 − 1
2 +

1
10

√
145

Table 3.15: Values of r and β such that Var[N] is fixed and E[N] varies.

show graphically how R∗ is affected by Var[N], in Figure 3.14, we plot R versus Cov[XI , XR]

when the variance Var[N] = 6, 4, and 10/3, and the mean E[N] = 2.

Next, from Table 3.15, we see that, for each pair (r, β), the variance is

Var[N] = 6,

but the mean E[N] varies. An optimal retention R∗ that satisfies the two conditions of Theorem
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α θ E[N] Var[N] R∗

3 10 2 6 5.874
3 10 2 4 6.956
3 10 2 10/3 7.625
3 10 2 3 8.064
3 10 2 14/5 8.370

Table 3.16: Optimal retention R∗ when E[N] is fixed, N is negative binomial, and X is two-
parameter Pareto.

Figure 3.14: Retention R versus Cov[XI, XR] for Var[N] = 6 (solid curve), 4 (dashed curve),
and 10/3 (dotted curve).

3.4.3 is obtained for each value of E[N]. Results are provided in Table 3.17. To show graphi-

cally how R∗ is affected by E[N], in Figure 3.15, we plot R versus Cov[XI , XR] when the mean

E[N] = 2,−1 +
√

13, and 3, and the variance Var[N] = 6. We observe the same pattern as in

Examples 3.4.5, 3.4.6, and 3.4.7. This concludes Example 3.4.8.

α θ E[N] Var[N] R∗

3 10 2 6 5.874
3 10 −1 +

√
13 6 6.520

3 3 10 6 6.956
3 10 −2 + 2

√
7 6 7.282

3 10 − 5
2 +

1
2

√
145 6 7.537

Table 3.17: Optimal retention R∗ when E[N] is fixed, N is negative binomial, and X is two-
parameter Pareto.
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Figure 3.15: Retention R versus Cov[XI , XR] for E[N] = 2 (solid curve), −1 +
√

13 (dashed
curve), and 3 (dotted curve).

In summary, we have shown how changing the parameter values of the distribution of N

affects the optimal retention. To obtain the optimal retention, simple assumptions are made, but

they do not always hold true in the real world. Therefore, the patterns that we have observed

in these examples will not always hold true either. Nevertheless, they are instructive.



Chapter 4

Claim sizes depend on time

In this chapter, we obtain an optimal reinsurance policy when claim sizes are dependent on

preceding inter-claim times.

During the time interval (0, t], let N(t) be the number of insurance policies that require a

claim payment from the insurer up to and including the time t. Furthermore, let T1,T2, . . . be

the claim arrival times, and let X1, X2, . . . be the corresponding claim sizes. Then the insurer’s

aggregate claim size without the reinsurance coverage up to and including the time t is
∑N(t)

i=1 Xi,

where 0 < T1 < T2 < · · · < TN(t) ≤ t, and
∑N(t)

i=1 Xi = 0 when N(t) = 0. When the policies are

reinsured, the insurer’s share of the claims is given by

XI =

N(t)∑
i=1

(Xi ∧ R),

and the reinsurer’s share of the claims is given by

XR =

N(t)∑
i=1

(Xi − R)+.

Next, let Vi be the ith inter-claim time, which is given by

Vi = Ti − Ti−1 for i ≥ 1, and T0 = 0.

We assume that each claim size Xi depends on the inter-claim time Vi. The rest of this chapter

is organized as follows:

• In Section 4.1, we define the order statistic point process and review studies in the liter-

51
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ature related to modelling claim sizes that depend on time.

• In Section 4.2, we present an expression for Cov[XI , XR].

• In Section 4.3, we present the steps for deriving Cov[XI, XR].

• In Section 4.4, we illustrate how to find the optimal retention R∗ that maximizes the

covariance Cov[XI , XR].

4.1 Order statistic point process

Since each claim size Xi depends on the inter-claim time Vi, we must understand the claim

arrival process, which is a general point process. An order statistic point process is useful for

this purpose.

Definition 4.1.1 (cf., e.g., Debrabant, 2008) A point process N(t) is an order statistic point

process if, provided P[N(t) = n] > 0 with t > 0 and n ≥ 0, the arrival times of the claims

T1,T2, . . . , Tn conditioned upon N(t) = n, are distributed like the order statistics of n i.i.d.

random variables with a common distribution function Ft(x), for x > 0, such that Ft(t) = 1.

For more on the properties of order statistic point processes, we refer to Neuts and Resnick

(1971), Crump (1975), Berg (1981), Puri (1982), and Huang and Shoung (1994). A simple

example of order statistics point processes is the homogeneous Poisson process with rate pa-

rameter λ > 0, whose definition we recall next.

Definition 4.1.2 (cf., e.g., Focardi and Fabozzi, 2004) A homogeneous Poisson process is

defined as a process N(t) that starts at zero and has independent stationary increments. In

addition, the random variable N(t) is distributed as a Poisson variable with parameter λt, where

N(t) is a time dependent discrete variable that can assume nonnegative integer values. In this

case, the distribution function Ft that we mentioned in Definition 4.1.1 is given by

Ft(x) =
x
t

for 0 ≤ x ≤ t,

which is the uniform distribution on [0, t].

We will use the homogeneous Poisson process as the point process for our model. In more

complicated cases, a non-homogeneous Poisson process with rate parameter λ(t) is assumed,
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when during the time interval (0, t], the mean is
∫ t

0
λ(t)dt. Some examples of past studies

on the topic include the estimation of the intensity function of a cyclic Poisson process (cf.,

e.g., Helmers and Zitikis, 1999; Helmers et al., 2003, 2005; Bebbington and Zitikis, 2004)

and the non-parametric estimation of the doubly periodic Poisson intensity function (cf., e.g.,

Helmers et al., 2007). Other examples of point processes include the Cox point process and

the determinantal point process. For more information, we refer to Cox and Isham (2000).

Various studies on modelling claim sizes that depend on time have been reported in the

literature. For example, by assuming that the subsequent claim size depends on the previous

inter-claim time, Albrecher and Teugels (2006) provide exponential estimates for infinite and

finite time ruin probabilities, and Boudreault et al. (2006) derive an explicit expression for the

Laplace transform of the time to ruin. Sendova and Zitikis (2012) model aggregate insurance

claims when claim sizes depend on the claim arrival times and/or the inter-claim times. For

more examples on modelling claim sizes that depend on the inter-claim times, we refer to

Albrecher and Boxma (2004), Cossette et al. (2008), Asimit and Badescu (2010), and Cheung

et al. (2010).

4.2 Expression for the covariance

To obtain the optimal retention R∗ that maximizes Cov[XI , XR], we first derive an expression

for the covariance.

Theorem 4.2.1 Suppose N(t) follows the homogeneous Poisson process with rate parameter

λ > 0. Furthermore, let each claim size Xi depend on the inter-claim time Vi. Finally, let the

conditional variables Xi | Vi = v be i.i.d. Then

Cov[XI , XR]

=

∫ t

0
λe−λv(λ(t−v)+1)E[(X1∧R)(X1−R)+ | V1 = v]dv+

∫ t

0

∫ t−y

0
λ2e−λ(y+v)((λ(t−y−v)+2)2−2)

×E[(X1 ∧R) | V1 = v]E[(X1 −R)+ | V1 = v]dvdy−
∫ t

0
λe−λv(λ(t− v)+ 1)E[(X1 ∧R) | V1 = v]dv

×
∫ t

0
λe−λv(λ(t − v) + 1)E[(X1 − R)+ | V1 = v]dv. (4.1)

Corollary 4.2.2 Suppose the conditions of Theorem 4.2.1 hold true. Furthermore, let Fl be the
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CDF of the larger claims, and let Fs be the CDF of the smaller claims. Finally, let the CDF of

the conditional variables Xi | Vi = v be given by (cf., e.g., Boudreault et al., 2006)

P[Xi ≤ x | Vi = v] = (1 − e−βv)Fl(x) + e−βvFs(x) (4.2)

for every x ≥ 0, where β ≥ 0 and 0 ≤ v ≤ t. Then

Cov[XI , XR] =
∫ t

0
λe−λv(λ(t − v) + 1)R

∫ ∞

R
(x − R)((1 − e−βv) fl(x) + e−βv fs(x))dxdv

+

∫ t

0

∫ t−y

0
λ2e−λ(y+v)(((λ(t − y − v) + 2)2) − 2)

×
{ ∫ R

0
x((1 − e−βy) fl(x) + e−βy fs(x))dx +

∫ ∞

R
R((1 − e−βy) fl(x) + e−βy fs(x))dx

}
×

∫ ∞

R
(x − R)((1 − e−βv) fl(x) + e−βv fs(x))dxdvdy

−
∫ t

0
λe−λv(λ(t − v) + 1)

{ ∫ R

0
x((1 − e−βv) fl(x) + e−βv fs(x))dx

+

∫ ∞

R
R((1 − e−βy) fl(x) + e−βy fs(x))dx

} ∫ t

0
λe−λv(λ(t − v) + 1)

×
∫ ∞

R
(x − R)((1 − e−βv) fl(x) + e−βv fs(x))dxdv, (4.3)

where fl is the PDF of larger claims and fs is the PDF of smaller claims.

Proof Given the CDF of conditional variables Xi | Vi = v, we write

E[(X1 ∧ R)(X1 − R)+|V1 = v] =
∫ ∞

R
R(x − R)((1 − e−βv) fl(x) + e−βv fs(x))dx. (4.4)

Similarly, we obtain

E[(X1 ∧ R) | V1 = v] =
∫ R

0
x((1 − e−βy) fl(x) + e−βy fs(x))dx

+

∫ ∞

R
R((1 − e−βy) fl(x) + e−βy fs(x))dx (4.5)

and

E[(X1 − R)+|Vi = v] =
∫ ∞

R
(x − R)((1 − e−βv) fl(x) + e−βv fs(x))dx. (4.6)

Recall from Theorem 4.2.1 that an expression for the covariance Cov[XI , XR] is given by equa-

tion (4.1). By substituting equations (4.4), (4.5), and (4.6) into the right-hand side of equation
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(4.1), we obtain a new expression for the covariance, which is given by equation (4.3). This

completes the proof of Corollary 4.2.2. �

4.3 Proof of Theorem 4.2.1

Here we adopt the approach in Sendova and Zitikis (2012). The covariance of XI and XR can

be written as follows:

Cov[XI , XR] = E[XIXR] − E[XI]E[XR]. (4.7)

Next, we calculate the expectations of XI and XR (Subsection 4.3.1), and the expectation of

XIXR (Subsection 4.3.2).

4.3.1 Calculating expectations of XI and XR

We begin with the expectation of XI. To calculate the expectation, we shall take three steps:

• In the first step, we assume that each claim Xi depends on claim arrival times Ti−1 and Ti.

• In the second step, we assume that each claim Xi depends on the previous claim arrival

time Ti−1 and Vi, the inter-claim time between the (i − 1)th claim and the ith claim.

• In the third step, we assume that each claim Xi depends only on Vi, which is the condition

in our theorem.

Each claim Xi depends on claim arrival times Ti−1 and Ti

Using repeated conditioning, we have

E[XI] =
∞∑

n=1

P[N(t) = n]
{ n∑

i=1

E[Xi ∧ R | N(t) = n]
}

=

∞∑
n=1

P[N(t) = n]
{ ∫ t

0
E[X1 ∧ R | T1 = y,N(t) = n]dF1|t,n(y)

+

n∑
i=2

∫ ∫
0≤x≤y≤t

E[Xi ∧ R | Ti−1 = x,Ti = y,N(t) = n]dFi−1,i|t,n(x, y)
}
, (4.8)

where, for i ≥ 1,

Fi|t,n(y) = P[Ti ≤ y | N(t) = n] for 0 ≤ y ≤ t,
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and, for 1 ≤ i ≤ j,

Fi, j|t,n(x, y) = P[Ti ≤ x,T j ≤ y | N(t) = n] for 0 ≤ x ≤ y ≤ t.

Using formulas (2.1.6) and (2.2.1) provided by David and Nagaraja (2003), the density corre-

sponding to F1|t,n(y) is given by

f1|t,n(y) = n ft(y)(1 − Ft(y))n−1, (4.9)

and the density corresponding to Fi−1,i|t,n(x, y) is given by

fi−1,i|t,n(x, y) =
n!

(i − 2)!(n − i)!
ft(x) ft(y)F i−2

t (x)(1 − Ft(y))n−i. (4.10)

Since N(t) follows the homogeneous Poisson process with rate parameter λ, we have ft(x) = 1/t

and Ft(x) = x/t, where x ∈ [0, t]. Consequently, equation (4.9) becomes

f1|t,n(y) =
n(t − y)n−1

tn , (4.11)

and equation (4.10) becomes

fi−1,i|t,n(x, y) =
n!

(i − 2)!(n − i)!
xi−2(t − y)n−i

tn . (4.12)

By substituting equations (4.11) and (4.12) into equation (4.8), we have

E[XI] =
∞∑

n=1

P[N(t) = n]
{ ∫ t

0
E[X1 ∧ R | T1 = y]

n(t − y)n−1

tn dy +
n∑

i=2

n!
(i − 2)!(n − i)!

×
∫ t

0

∫ t

x
E[Xi ∧ R | Ti−1 = x,Ti = y]

xi−2(t − y)n−i

tn dydx
}
. (4.13)

Each claim Xi depends on the previous claim arrival time Ti−1 and Vi

By using the change of variables technique, equation (4.13) becomes
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E[XI] =
∞∑

n=1

P[N(t) = n]
{ ∫ t

0
E[X1 ∧ R | T1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

n!
(i − 2)!(n − i)!

∫ t

0

∫ t−x

0
E[Xi ∧ R | Ti−1 = x,Vi = v]

× xi−2(t − x − v)n−i

tn dvdx
}
. (4.14)

Each claim Xi depends only on Vi

Since T0 = 0 and V1 = T1 − T0, we have

E[X1 ∧ R | T1 = y] = E[X1 ∧ R | V1 = y]

and

E[Xi ∧ R | Ti−1 = x,Vi = v] = E[Xi ∧ R | Vi = v].

Then equation (4.14) becomes

E[XI] =
∞∑

n=1

P[N(t) = n]
{ ∫ t

0
E[X1 ∧ R | V1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

∫ t

0

∫ t−x

0
E[Xi ∧ R | Vi = v]

n!
(i − 2)!(n − i)!

xi−2(t − x − v)n−i

tn dvdx
}
. (4.15)

Remaining steps for finding the expectation of XI

By changing the order of integration on the right-hand side of equation (4.15), we obtain

E[XI] =
∞∑

n=1

P[N(t) = n]
{ ∫ t

0
E[X1 ∧ R | V1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

∫ t

0
E[Xi ∧ R | Vi = v]

∫ t−v

0

n!
(i − 2)!(n − i)!

xi−2(t − x − v)n−i

tn dxdv
}
, (4.16)

where

∫ t−v

0

n!
(i − 2)!(n − i)!

xi−2(t − x − v)n−i

tn dx =
n!

(i − 2)!(n − i)!
1
tn

∫ t−v

0
xi−2

(
1 − x

t − v

)n−i

(t − v)n−idx.

(4.17)

Let x = (t − v)y and dx = (t − v)dy. Then equation (4.17) becomes
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∫ t−v

0

n!
(i − 2)!(n − i)!

xi−2(t − x − v)n−i

tn dx =
n!

(i − 2)!(n − i)!
1
tn

∫ 1

0
(t − v)i−2yi−2(1 − y)n−i

× (t − v)n−i(t − v)dy

=
n!

(i − 2)!(n − i)!
(t − v)n−1

tn

∫ 1

0
yi−2(1 − y)n−idy.

(4.18)

Recall the complete beta function, which is defined as follows:

B(z,w) =
∫ 1

0
xz−1(1 − x)w−1dx,

where z,w > 0. Also recall the well-known formula for the complete beta function:

B(z,w) =
Γ(z)Γ(w)
Γ(z + w)

. (4.19)

Using equation (4.19), we rewrite equation (4.18) as follows:

∫ t−v

0

n!
(i − 2)!(n − i)!

xi−2(t − x − v)n−i

tn dx =
n!

(i − 2)!(n − i)!
(t − v)n−1

tn

(i − 2)!(n − i)!
(i − 1 + n − i + 1 − 1)!

=
n!

(i − 2)!(n − i)!
(t − v)n−1

tn

(i − 2)!(n − i)!
(n − 1)!

=
n(t − v)n−1

tn . (4.20)

By substituting equation (4.20) into equation (4.16), we obtain

E[XI] =
∞∑

n=1

P[N(t) = n]
{ ∫ t

0
E[X1 ∧ R | V1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

∫ t

0
E[Xi ∧ R | Vi = v]

n(t − v)n−1

tn dv
}

=

∞∑
n=1

P[N(t) = n]
{ n∑

i=1

∫ t

0
E[Xi ∧ R | Vi = v]

n(t − v)n−1

tn dv
}
. (4.21)

Since

P[N(t) = n] = e−λt
(λt)n

n!
,

equation (4.21) becomes
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E[XI] =
∞∑

n=1

e−λt
(λt)n

n!

{ n∑
i=1

∫ t

0
E[Xi ∧ R | Vi = v]

n(t − v)n−1

tn dv
}
. (4.22)

By rearranging terms on the right-hand side of equation (4.22), we have

E[XI] =
∫ t

0
λe−λv

∞∑
n=1

e−λ(t−v) (λ(t − v))n−1

(n − 1)!

n∑
i=1

E[Xi ∧ R | Vi = v]dv

=

∫ t

0
λe−λv

∞∑
n=0

e−λ(t−v)λ
n(t − v)n

n!

n+1∑
i=1

E[Xi ∧ R | Vi = v]dv. (4.23)

Since the conditional variables Xi | Vi are i.i.d., we have

E[Xi ∧ R | Vi = v] = E[X1 ∧ R | V1 = v] for i ≥ 1.

Therefore, equation (4.23) becomes

E[XI] =
∫ t

0
λe−λv(λ(t − v) + 1)E[X1 ∧ R | V1 = v]dv. (4.24)

Result for the expectation of XR

Similar to the way E[XI] was obtained, we obtain the equation

E[XR] =
∫ t

0
λe−λv(λ(t − v) + 1)E[(X1 − R)+ | V1 = v]dv. (4.25)

4.3.2 Finding the expectation of XIXR

We start by decomposing the expectation of XIXR as follows:

E[XIXR] =
∞∑

n=1

P[N(t) = n]
{
E
[ ∑

1≤i= j≤n

(Xi ∧ R)(X j − R)+|N(t) = n
]

+ E
[ ∑

1≤i, j≤n

(Xi ∧ R)(X j − R)+|N(t) = n
]}
. (4.26)

We first obtain expressions for the two expectations in the braces on the right-hand side of

equation (4.26). Then we calculate

∞∑
n=1

P[N(t) = n]E
[ ∑

1≤i= j≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]
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and
∞∑

n=1

P[N(t) = n]E
[ ∑

1≤i, j≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]
.

Finding the expectation of
∑

1≤i= j≤n(Xi ∧ R)(X j − R)+ | N(t) = n

To simplify the presentation, denote E[
∑

1≤i= j≤n(Xi∧R)(X j−R)+|N(t) = n] by bt. Using repeated

conditioning, for each claim Xi that depends on Ti−1 and Ti, we have

bt =

∫ t

0
E[(X1 ∧ R)(X1 − R)+|T1 = y,N(t) = n]dF1|t,n(y)

+

n∑
i=2

∫ t

0

∫ t−x

0
E[(Xi ∧ R)(Xi − R)+ | Ti−1 = x,Ti = y,N(t) = n]dFi−1,i|t,n(x, y)

=

∫ t

0
E[(X1 ∧ R)(X1 − R)+ | T1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

∫ t

0

∫ t−x

0
E[(Xi ∧ R)(Xi − R)+ | Ti−1 = x,Ti = y]

n!
(i − 2)!(n − i)!

xi−2(t − y)n−i

tn dydx.

(4.27)

Next, similar to the way an expression for E[XI] was obtained when each claim size Xi depends

only on the inter-claim time Vi, equation (4.27) becomes

bt =

∫ t

0
E[(X1 ∧ R)(X1 − R)+ | V1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

∫ t

0
E[(Xi ∧ R)(Xi − R)+ | Vi = v]

∫ t−v

0

n!
(i − 2)!(n − i)!

xi−2(t − v − x)n−i

tn dxdv

=

∫ t

0
E[(X1 ∧ R)(X1 − R)+ | V1 = y]

n(t − y)n−1

tn dy

+

n∑
i=2

∫ t

0
E[(Xi ∧ R)(Xi − R)+ | Vi = v]

n(t − v)n−1

tn dv

=

n∑
i=1

∫ t

0
E[(Xi ∧ R)(Xi − R)+ | Vi = v]

n(t − v)n−1

tn dv. (4.28)

Finding the expectation of
∑

1≤i, j≤n(Xi ∧ R)(X j − R)+ | N(t) = n when i < j and i > j

We consider two scenarios: i < j and i > j. When i < j, we denote E[
∑

1≤i< j≤n(Xi ∧ R)(X j −

R)+|N(t) = n] by ct. Then
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ct = E[(X1 ∧ R)(X2 − R)+ | N(t) = n] +
n∑

j=3

E[(X1 ∧ R)(X j − R)+ | N(t) = n]

+

n−1∑
i=2

E[(Xi ∧ R)(Xi+1 − R)+ | N(t) = n] +
n−2∑
i=2

n∑
j=i+2

E[(Xi ∧ R)(X j − R)+|N(t) = n]. (4.29)

Next, we calculate each term on the right-hand side of equation (4.29).

Finding the first term on the right-hand side of equation (4.29)

When Xi depends on Ti−1 and Ti, the expectation of (X1 ∧ R)(X2 − R)+|N(t) = n becomes

E[(X1 ∧ R)(X2 − R)+|N(t) = n] =
∫ t

0

∫ t

y
E[(X1 ∧ R)(X2 − R)+ | T1 = y,T2 = x]

× n!
(n − 2)!

(t − x)n−2

tn dxdy.

When Xi depends on Ti−1 and Vi, the expectation is

E[(X1 ∧ R)(X2 − R)+|N(t) = n] =
∫ t

0

∫ t−y

0
E[(X1 ∧ R)(X2 − R)+|T1 = y,V2 = v]

× n!
(n − 2)!

(t − y − v)n−2

tn dvdy.

When Xi depends only on Vi, the expectation becomes

E[(X1 ∧ R)(X2 − R)+|N(t) = n] = n(n − 1)
∫ t

0

∫ t−y

0
E[(X1 ∧ R)|V1 = y]E[(X2 − R)+|V2 = v]

× (t − y − v)n−2

tn dvdy. (4.30)

Finding the second term on the right-hand side of equation (4.29)

We write

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n]

=

n∑
j=3

∫ ∫ ∫
E[(X1 ∧ R)(X j − R)+ | T1 = y, T j−1 = w,T j = z,N(t) = n]dF1, j−1, j|t,n(y,w, z),

where, for 3 ≤ j ≤ n,
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F1, j−1, j|t,n(y,w, z) = P[T1 ≤ y, T j−1 ≤ w, T j ≤ z | N(t) = n]

for 0 ≤ y ≤ w ≤ z ≤ t. Using formula (2.2.2) provided by David and Nagaraja (2003), the

density corresponding to F1, j−1, j|t,n is equal to

f1, j−1, j|t,n(y,w, z) =
n!

( j − 3)!(n − j)!
ft(y) ft(w) ft(z)(Ft(w) − Ft(y)) j−3(1 − Ft(z))n− j.

When Xi depends on Ti−1 and Ti, we obtain

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n]

=

n∑
j=3

∫ t

0

∫ z

0

∫ w

0
E[(X1 ∧ R)(X j − R)+ | T1 = y,T j−1 = w,T j = z]

× n!
( j − 3)!(n − j)!

ft(y) ft(w) ft(z)(Ft(w) − Ft(y)) j−3

× (1 − Ft(z))n− jdydwdz

=

n∑
j=3

∫ t

0

∫ z

0

∫ w

0
E[(X1 ∧ R)(X j − R)+ | T1 = y,T j−1 = w,T j = z]

× n!
( j − 3)!(n − j)!

(w − y) j−3(t − z)n− j

tn dydwdz.

When Xi depends on Ti−1 and Vi, we have

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n]

=

n∑
j=3

∫ t

0

∫ t

y

∫ t−w

0
E[(X1 ∧ R)(X j − R)+|T1 = y,T j−1 = w,V j = v]

× n!
( j − 3)!(n − j)!

(w − y) j−3(t − w − v)n− j

tn dvdwdy.

When Xi depends only on Vi, we obtain

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n] =
n∑

j=3

n!
( j − 3)!(n − j)!

∫ t

0

∫ t

y

∫ t−w

0

(w − y) j−3(t − w − v)n− j

tn

× E[X1 ∧ R | V1 = y]E[(X j − R)+ | V j = v]dvdwdy.

(4.31)
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Interchanging the order of integration on the right-hand side of equation (4.31), we have

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n] =
n∑

j=3

n!
( j − 3)!(n − j)!

∫ t

0

∫ t−y

0

∫ t−v

y
E[X1 ∧ R | V1 = y]

× E[(X j − R)+ | V j = v]
(w − y) j−3(t − w − v)n− j

tn dwdvdy,
(4.32)

where

∫ t−v

y

(w − y) j−3(t − w − v)n− j

tn dw =
1
tn

∫ t−v

y
(w − y) j−3

( t − w − v
t − y − v

)n− j

(t − y − v)n− jdw. (4.33)

Let w = z(t − y − v) + y and dw = (t − y − v)dz. Then equation (4.33) becomes

∫ t−v

y

(w − y) j−3(t − w − v)n− j

tn dw =
1
tn

∫ 1

0
z j−3(1 − z)n− j(t − y − v) j−3(t − y − v)n− j

× (t − y − v)dz

=
(t − y − v)n−2

tn

∫ 1

0
z j−3(1 − z)n− jdz. (4.34)

Using the formula for the complete beta function, which is given by equation (4.19), we have

∫ 1

0
z j−3(1 − z)n− jdz =

( j − 3)!(n − j)!
(n − 2)!

.

Hence, equation (4.34) becomes

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n] =
(t − y − v)n−2

tn

( j − 3)!(n − j)!
(n − 2)!

. (4.35)

By substituting equation (4.35) into equation (4.32), we obtain

n∑
j=3

E[(X1 ∧ R)(X j − R)+|N(t) = n]

=

n∑
j=3

n(n − 1)
∫ t

0

∫ t−y

0
E[(X1 ∧ R)|V1 = y]E[(X j − R)+|V j = v]

(t − y − v)n−2

tn dvdy. (4.36)

Finding the third term on the right-hand side of equation (4.29)

Denote
∑n−1

i=2 E[(Xi ∧ R)(Xi+1 − R)+|N(t) = n] by dt. When Xi depends on Ti−1 and Ti, we have
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dt =

n−1∑
i=2

∫ ∫ ∫
E[(Xi∧R)(Xi+1−R)+ | Ti−1 = y,Ti = w,Ti+1 = z]dFi−1,i,i+1|t,n(y,w, z), (4.37)

where, for 2 ≤ i ≤ n,

Fi−1,i,i+1|t,n(y,w, z) = P[Ti−1 ≤ y,Ti ≤ w,Ti+1 ≤ z | N(t) = n]

for 0 ≤ y ≤ w ≤ z ≤ t. Using formula (2.2.2) from David and Nagaraja (2003), the density

corresponding to Fi−1,i,i+1|t,n is equal to

fi−1,i,i+1|t,n(y,w, z) =
n!

(i − 2)!(n − i − 1)!
ft(y) ft(w) ft(z)Ft(y)i−2(1 − Ft(z))n−i−1. (4.38)

Hence, equation (4.37) becomes

dt =

n−1∑
i=2

∫ t

0

∫ z

0

∫ w

0
E[(Xi ∧ R)(Xi+1 − R)+ | Ti−1 = y,Ti = w,Ti+1 = z]

× n!
(i − 2)!(n − i − 1)!

yi−2(t − z)n−i−1

tn dydwdz. (4.39)

When Xi depends on Ti−1 and Vi, equation (4.39) is

dt =

n−1∑
i=2

∫ t

0

∫ t−y

0

∫ t−y−u

0
E[(Xi ∧ R)(Xi+1 − R)+|Ti−1 = y,Vi = u,Vi+1 = v]

× n!
(i − 2)!(n − i − 1)!

yi−2(t − y − u − v)n−i−1

tn dvdudy. (4.40)

When Xi depends only on Vi, similar to the way
∑n

j=3 E[(X1 ∧ R)(X j − R)+|N(t) = n] was

obtained, equation (4.40) becomes

dt =

n−1∑
i=2

n(n − 1)
∫ t

0

∫ t−u

0
E[(Xi ∧ R) | Vi = u]E[(Xi+1 − R)+ | Vi+1 = v]

(t − u − v)n−2

tn dvdu.

(4.41)

Finding the fourth term on the right-hand side of equation (4.29)

Denote
∑n−2

i=2
∑n

j=i+2 E[(Xi ∧ R)(X j − R)+|N(t) = n] by et. When Xi depends on Ti−1 and Ti, we

have
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et =

n−2∑
i=2

n∑
j=i+2

{ ∫ ∫ ∫ ∫
E1dFi−1,i, j−1, j|t,n(x, y,w, z)

}
,

where

E1 = E[(Xi ∧ R)(X j − R)+ | Ti−1 = x,Ti = y, T j−1 = w,T j = z]

and

Fi−1,i, j−1, j|t,n(x, y,w, z) = P[Ti−1 ≤ x,Ti ≤ y,T j−1 ≤ w, T j ≤ z | N(t) = n]

for 2 ≤ i < j ≤ n, j − i ≥ 2, and 0 ≤ x ≤ y ≤ w ≤ z ≤ t. Using formula (2.2.2) from David and

Nagaraja (2003), the density corresponding to Fi−1,i, j−1, j|t,n is equal to

fi−1,i, j−1, j|t,n(x, y,w, z)

=
n!

(i − 2)!( j − i − 2)!(n − j)!
ft(x) ft(y) ft(w) ft(z)F i−2

t (x)(Ft(w) − Ft(y)) j−i−2(1 − Ft(z))n− j.

(4.42)

Consequently,

et =

n−2∑
i=2

n∑
j=i+2

∫ t

0

∫ z

0

∫ w

0

∫ y

0
E[(Xi ∧ R)(X j − R)+ | Ti−1 = x, Ti = y,T j−1 = w,T j = z]

× n!
(i − 2)!( j − i − 2)!(n − j)!

xi−2(w − y) j−i−2(t − z)n− j

tn dxdydwdz. (4.43)

When Xi depends on Ti−1 and Vi, equation (4.43) becomes

et =

n−2∑
i=2

n∑
j=i+2

n!
(i − 2)!( j − i − 2)!(n − j)!

×
∫ t

0

∫ t−x

0

∫ t

x+u

∫ t−w

0
E[(Xi ∧ R)(X j − R)+|Ti−1 = x,Vi = u,T j−1 = w,V j = v]

× xi−2(w − x − u) j−i−2(t − w − v)n− j

tn dvdwdudx. (4.44)

When Xi depends only on Vi, equation (4.44) becomes

et =

n−2∑
i=2

n∑
j=i+2

n!
(i − 2)!( j − i − 2)!(n − j)!

∫ t

0

∫ t−x

0

∫ t

x+u

∫ t−w

0
E[(Xi ∧ R)|Vi = u]

× E[(X j − R)+|V j = v]
xi−2(w − x − u) j−i−2(t − w − v)n− j

tn dvdwdudx. (4.45)
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Let w = w − x − u. Then equation (4.45) becomes

et =

n−2∑
i=2

n∑
j=i+2

n!
(i − 2)!( j − i − 2)!(n − j)!

∫ t

0

∫ t−x

0

∫ t−x−u

0

∫ t−x−u−w

0
E[(Xi ∧ R)|Vi = u]

× E[(X j − R)+|V j = v]
xi−2w j−i−2(t − x − u − v − w)n− j

tn dxdwdvdu. (4.46)

Rearranging terms on the right-hand side of equation (4.46), we have

et =

n−2∑
i=2

n∑
j=i+2

n!
(i − 2)!( j − i − 2)!(n − j)!

∫ t

0

∫ t−u

0
E[(Xi ∧ R)|Vi = u]E[(X j − R)+|V j = v]

×
∫ t−u−v

0

∫ t−u−v−w

0

xi−2w j−i−2(t − x − u − v − w)n− j

tn dxdwdvdu, (4.47)

where

∫ t−u−v−w

0

xi−2w j−i−2(t − x − u − v − w)n− j

tn dx =
w j−i−2

tn

∫ t−u−v−w

0
xi−2

( t − u − v − w − x
t − u − v − w

)n− j

× (t − u − v − w)n− jdx. (4.48)

Let x = (t − u − v − w)y and dx = (t − u − v − w)dy. Then equation (4.48) becomes

∫ t−u−v−w

0

xi−2w j−i−2(t − x − u − v − w)n− j

tn dx =
w j−i−2

tn

∫ 1

0
yi−2(1 − y)n− j(t − u − v − w)i−2

× (t − u − v − w)n− j(t − u − v − w)dy.

Consequently,

∫ t−u−v−w

0

xi−2w j−i−2(t − x − u − v − w)n− j

tn dx =
w j−i−2

tn (t − u − v − w)n− j+i−1

×
∫ 1

0
yi−2(1 − y)n− jdy. (4.49)

Using the formula for the complete beta function, which is given in equation (4.19), we have

∫ 1

0
yi−2(1 − y)n− jdy =

(i − 2)!(n − j)!
(n − j + i − 1)!

.

Then equation (4.49) becomes



4.3. Proof of Theorem 4.2.1 67

∫ t−u−v−w

0

xi−2w j−i−2(t − x − u − v − w)n− j

tn dx =
w j−i−2

tn (t − u − v − w)n− j+i−1

× (i − 2)!(n − j)!
(n − j + i − 1)!

. (4.50)

By substituting equation (4.50) into equation (4.47), we have

et =

n−2∑
i=2

n∑
j=i+2

n!
(i − 2)!( j − i − 2)!(n − j)!

∫ t

0

∫ t−u

0
E[(Xi ∧ R)|Vi = u]E[(X j − R)+|V j = v]

×
∫ t−u−v

0

w j−i−2(t − u − v − w)n− j+i−1

tn dwdvdu

=

n−2∑
i=2

n∑
j=i+2

n(n − 1)
∫ t

0

∫ t−u

0
E[(Xi ∧ R) | Vi = u]E[(X j − R)+|V j = v]

(t − u − v)n−2

tn dvdu,

(4.51)

where

∫ t−u−v

0

w j−i−2(t − u − v − w)n− j+i−1

tn dw =
(t − u − v)n−2

tn

( j − i − 2)!(n − j + i − 1)!
(n − 2)!

. (4.52)

Equation (4.52) is obtained using the formula for the complete beta function, which is similar

to the way equation (4.50) was obtained.

Expression for the expectation of
∑

1≤i< j≤n(Xi ∧ R)(X j − R)+ | N(t) = n

Having calculated each term on the right-hand side of equation (4.29), the expectation of∑
1≤i< j≤n(Xi ∧ R)(X j − R)+ | N(t) = n, which we denoted by c(t), becomes

ct = n(n − 1)
∫ t

0

∫ t−y

0
E[(X1 ∧ R)|V1 = y]E[(X2 − R)+|V2 = v]

(t − y − v)n−2

tn dvdy

+

n∑
j=3

n(n − 1)
∫ t

0

∫ t−y

0
E[(X1 ∧ R)|V1 = y]E[(X j − R)+|V j = v]

(t − y − v)n−2

tn dvdy

+

n−1∑
i=2

n(n − 1)
∫ t

0

∫ t−u

0
E[(Xi ∧ R)|Vi = u]E[(Xi+1 − R)+|Vi+1 = v]

(t − u − v)n−2

tn dvdu

+

n−2∑
i=2

n∑
j=i+2

n(n − 1)
∫ t

0

∫ t−u

0
E[(Xi ∧ R)|Vi = u]E[(X j − R)+|V j = v]

(t − u − v)n−2

tn dvdu

= n(n − 1)
∫ t

0

∫ t−y

0

∑
1≤i< j≤n

E[(Xi ∧ R)|Vi = y]E[(X j − R)+|V j = v]
(t − y − v)n−2

tn dvdy. (4.53)
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Expression for the expectation of
∑

1≤ j<i≤n(Xi ∧ R)(X j − R)+ | N(t) = n

Similarly to the way ct was calculated, the expectation of
∑

1≤ j<i≤n(Xi ∧ R)(X j − R)+ | N(t) = n

becomes

E
[ ∑

1≤ j<i≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]
= n(n − 1)

∫ t

0

∫ t−v

0

∑
1≤ j<i≤n

E[(Xi ∧ R) | Vi = v]

× E[(X j − R)+ | V j = y]
(t − y − v)n−2

tn dydv. (4.54)

Remaining steps for finding the expectation of XIXR

Next, we calculate the sums

∞∑
n=1

P[N(t) = n]E
[ ∑

1≤i= j≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]

and
∞∑

n=1

P[N(t) = n]E
[ ∑

1≤i, j≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]
,

which we denote by gt and ht, respectively.

Calculation of the sum gt

We have calculated the expectation in the sum gt, which is provided in equation (4.28). The

expectation is given by

E
[ ∑

1≤i= j≤n

(Xi ∧ R)(Xi − R)+|N(t) = n
]
=

n∑
i=1

∫ t

0
E[(Xi ∧ R)(Xi − R)+ | Vi = v]

n(t − v)n−1

tn dv.

Then

gt =

∞∑
n=1

P[N(t) = n]
{ n∑

i=1

∫ t

0
E[(Xi ∧ R)(Xi − R)+ | Vi = v]

n(t − v)n−1

tn dv
}
.

Since N(t) follows the homogeneous Poisson process, we have

gt =

∞∑
n=1

e−λt
(λt)n

n!

{ n∑
i=1

∫ t

0
E[(Xi ∧ R)(Xi − R)+ | Vi = v]

n(t − v)n−1

tn dv
}
. (4.55)

Rearranging terms on the right-hand side of equation (4.55), we have
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gt =

∫ t

0
λe−λv

∞∑
n=1

e−λ(t−v) tnλn−1

n!

n∑
i=1

E[(Xi ∧ R)(Xi − R)+ | Vi = v]
n(t − v)n−1

tn dv

=

∫ t

0
λe−λv

∞∑
n=1

e−λ(t−v) (λ(t − v))n−1

(n − 1)!

n∑
i=1

E[(Xi ∧ R)(Xi − R)+ | Vi = v]dv

=

∫ t

0
λe−λv

∞∑
n=0

e−λ(t−v) (λ(t − v))n

n!

n∑
i=1

E[(Xi ∧ R)(Xi − R)+ | Vi = v]dv. (4.56)

By combining the two sums on the right-hand side of equation (4.56), we obtain

gt =

∫ t

0
λe−λv

N(t−v)+1∑
i=1

E[(Xi ∧ R)(Xi − R)+ | Vi = v]dv

=

∫ t

0
λe−λvE[N(t − v) + 1]E[(X1 ∧ R)(X1 − R)+ | V1 = v]dv.

Since

E[N(t − v) + 1] = λ(t − v) + 1,

we have

gt =

∫ t

0
λe−λv(λ(t − v) + 1)E[(X1 ∧ R)(X1 − R)+ | V1 = v]dv. (4.57)

Calculation of the sum ht

We need to consider two cases: i < j and i > j. Then

ht =

∞∑
n=1

P[N(t) = n]
{
E
[ ∑

1≤i< j≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]

+ E
[ ∑

1≤ j<i≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]}

=

∞∑
n=1

e−λt
(λt)n

n!

{
E
[ ∑

1≤i< j≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]

+ E
[ ∑

1≤ j<i≤n

(Xi ∧ R)(X j − R)+ | N(t) = n
]}
. (4.58)

We have calculated the two expectations in the braces on the right-hand side of equation (4.58),

and the results are provided in equations (4.53) and (4.54). Using these results, equation (4.58)

becomes
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ht =

∞∑
n=1

e−λt
(λt)n

n!

{
n(n − 1)

∫ t

0

∫ t−y

0

∑
1≤i< j≤n

E[(Xi ∧ R)|Vi = y]E[(X j − R)+|V j = v]

× (t − y − v)n−2

tn dvdy + n(n − 1)
∫ t

0

∫ t−v

0

∑
1≤ j<i≤n

E[(Xi ∧ R) | Vi = v]

× E[(X j − R)+ | V j = y]
(t − y − v)n−2

tn dydv
}

=

∞∑
n=1

e−λt
(λt)n

n!

{
n(n − 1)

∫ t

0

∫ t−y

0

∑
1≤i, j≤n

E[(Xi ∧ R) | Vi = y]E[(X j − R)+ | V j = v]

× (t − y − v)n−2

tn dvdy
}
. (4.59)

Rearranging terms on the right-hand side of equation (4.59), we have

ht =

∫ t

0

∫ t−y

0

∞∑
n=1

e−λt
(λt)n

n!

∑
1≤i, j≤n

E[(Xi ∧ R) | Vi = y]E[(X j − R)+ | V j = v]

× n(n − 1)
(t − y − v)n−2

tn dvdy

=

∫ t

0

∫ t−y

0
λ2e−λ(y+v)

∞∑
n=2

e−λ(t−y−v) (λ(t − y − v))n−2

(n − 2)!

∑
1≤i, j≤n

E[(Xi ∧ R)|Vi = y]

× E[(X j − R)+|V j = v]dvdy

=

∫ t

0

∫ t−y

0
λ2e−λ(y+v)

∞∑
n=0

e−λ(t−y−v) (λ(t − y − v))n

n!

∑
1≤i, j≤n+2

E[(Xi ∧ R)|Vi = y]

× E[(X j − R)+|V j = v]dvdy. (4.60)

By combining the two sums on the right-hand side of equation (4.60), we obtain

ht =

∫ t

0

∫ t−y

0
λ2e−λ(y+v)

∑
1≤i, j≤N(t−y−v)+2

E[(Xi ∧ R)|Vi = y]E[(X j − R)+|V j = v]dvdy

=

∫ t

0

∫ t−y

0
λ2e−λ(y+v)E[(N(t − y − v) + 2)(N(t − y − v) + 1)]E[(X1 ∧ R)|V1 = y]

× E[(X1 − R)+|V1 = v]dvdy, (4.61)

where

E[(N(t − y − v) + 2)(N(t − y − v) + 1)] = E[(N(t − y − v))2] + 3E[N(t − y − v)] + 2.

Since
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E[N(t − y − v)] = λ(t − y − v)

and

E[(N(t − y − v))2] = (E[N(t − y − v)])2 + Var[N(t − y − v)]

= λ2(t − y − v)2 + λ(t − y − v),

we obtain

E[(N(t − y − v) + 2)(N(t − y − v) + 1)] = λ2(t − y − v)2 + λ(t − y − v) + 3λ(t − y − v) + 2

= λ2(t − y − v)2 + 4λ(t − y − v) + 2

= λ2(t − y − v)2 + 4λ(t − y − v) + 4 − 2

= (λ(t − y − v) + 2)2 − 2. (4.62)

Substituting equation (4.62) into equation (4.61), we obtain

ht =

∫ t

0

∫ t−y

0
λ2e−λ(y+v)((λ(t − y − v) + 2)2 − 2)E[X1 ∧ R | V1 = y]

× E[(X1 − R)+ | V1 = v]dvdy. (4.63)

Concluding the proof

Having calculated the two sums gt and ht, the expectation E[XIXR] is obtained. Having calcu-

lated the three expectations on the right-hand side of equation (4.7), we obtain an expression

for the covariance Cov[XI , XR], which is given in equation (4.1). This completes the proof of

Theorem 4.2.1.

4.4 Finding an optimal retention

Using two examples, we shall next show how to obtain the optimal retention R∗ that maximizes

the covariance Cov[XI, XR] up to and including the time t. We shall also illustrate how R∗ is

affected by t assuming that conditions of Corollary 4.2.2 hold true.

Example 4.4.1 Assume that larger claim sizes follow the exponential distribution with param-

eter l1 > 0. Furthermore, assume that smaller claim sizes follow the exponential distribution
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with parameter s1 > 0. Hence, the probability density functions (PDFs) fl and fs are given by

the equations

fl(x) =
1
l1

e−x/l1 (4.64)

and

fs(x) =
1
s1

e−x/s1 , (4.65)

respectively, where x ≥ 0. Then we find the optimal retention R∗ that maximizes the covariance

for t = 1, 2, . . . , 15, where λ = 2, β = 1, l1 = 1000, and s1 = 10. Results for R∗ are shown

in Table 4.1. In addition, to show how R∗ is affected by t, we have plotted t versus R∗ for

t R∗

1 1062.320
2 1109.076
3 1130.102
4 1140.722
5 1146.992
6 1151.117
7 1154.036
8 1156.211
9 1157.894

10 1159.235
11 1160.328
12 1161.236
13 1162.004
14 1162.660
15 1163.228

Table 4.1: Optimal retention R∗ for t = 1, 2, . . . , 15.

t = 1, 2, . . . , 50 in Figure 4.1. This concludes Example 4.4.1.

Example 4.4.2 Assume that larger claim sizes follow the Weibull distribution with parameters

τ1 > 0 and l2 > 0. Furthermore, assume that smaller claim sizes follow the Weibull distribution

with parameters τ2 > 0 and s2 > 0. Hence, the PDFs fl and fs are given by the equations

fl(x) =
τ1

l2

( x
l2

)τ1−1

e−(x/l2)τ1 (4.66)

and

fs(x) =
τ2

s2

( x
s2

)τ2−1

e−(x/s2)τ2 , (4.67)
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Figure 4.1: Time t versus R∗ for exponential fl and fs.

respectively, where x ≥ 0. Then we obtain the optimal retention R∗ that maximizes the covari-

ance for t = 1, 2, . . . , 10, where β = 1, τ1 = τ2 = 0.5, l2 = 6, s2 = 1, and λ = 1.

The Weibull distribution with parameters τ > 0 and θ > 0 is heavy-tailed when 0 < τ < 1.

In Figure 4.2, we plot the PDF of the Weibull distribution when θ = 1, τ = 0.8, 1.5, and

5. Note that when τ = 0.8, then the distribution is heavy-tailed. When τ = 5, we have a

symmetric distribution. In this example, the Weibull distribution is always heavy-tailed since

τ1 = τ2 = 0.5.

Using Maple, we obtain R∗ for t = 1, 2, . . . , 10. Results are provided in Table 4.2. In

t R∗

1 44.190
2 46.364
3 47.327
4 47.827
5 48.119
6 48.307
7 48.438
8 48.534
9 48.608

10 48.666

Table 4.2: Optimal retention R∗ for t = 1, 2, . . . , 10.

addition, to show how R∗ is affected by t, we have plotted t versus R∗ for t = 1, 2, . . . , 10 in
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Figure 4.2: The PDF of the Weibull distribution when θ = 1, τ = 0.8 (solid curve), 1.5 (dashed
curve), and 5 (dotted curve).

Figure 4.3. This concludes Example 4.4.2.

Figure 4.3: Time t versus R∗ for Weibull fl and fs.

Summarizing this chapter, we have considered finding optimal reinsurance using the vari-

ance reduction approach under various scenarios. The assumptions we have made do not al-

ways hold true in the real world. Therefore, the patterns we have noted from the illustrative

examples will not always hold true either, but they are instructive.



Chapter 5

A CT E-based optimal criterion

5.1 Introduction

In this chapter, we discuss a CT E-based approach for constructing an optimal reinsurance

policy. Recall that the CT E of a random variable X at the confidence level 1 − α, where

0 ≤ α ≤ 1, is defined by the equation

CT EX(α) = E[X | X ≥ VaRX(α)].

Unlike the optimal criteria considered by Cai and Tan (2007), and Tan et al. (2009), we shall

find a common solution for both the insurer and the reinsurer. Specifically, consider the fol-

lowing problem:

Under facultative reinsurance, the insurer and the reinsurer agree on an excess of loss rein-

surance contract. The reinsurer needs to cover the claim amount exceeding the retention R > 0

on one insurance policy issued by the insurer. Let pR be the reinsurance policy premium, and

let T be the insurer’s total cost in the presence of reinsurance. The insurer’s total cost includes

the insurer’s share of the claim and the cost of purchasing the reinsurance policy, that is,

T = XI + pR, (5.1)

where pR = (1 + ρ)E[(X − R)+], and ρ > 0 is the premium loading coefficient.

In Section 5.2, we shall provide expressions for CT Es of T and XR at a given confidence

level 1 − α. Then, we shall show graphically that in this case it is not reasonable to obtain

75
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an optimal reinsurance policy that is beneficial to the insurer and the reinsurer by minimizing

CT Es of XI and XR with respect to R. In Section 5.3, we shall introduce our CT E-based

method that connects with the variance reduction approach discussed in Chapter 3. In Section

5.4, we shall use two illustrative examples to show how an optimal retention can be obtained

using the criterion of Section 5.3.

5.2 CT Es of T and XR at a given confidence level 1 − α

From Propositions 2.1 and 3.1 of Cai and Tan (2007), we have that the VaR and the CT E of T

can be expressed by the formulas:

VaRT (α,R) =

 R + (1 + ρ)E[(X − R)+] if 0 < R ≤ S −1
X (α),

S −1
X (α) + (1 + ρ)E[(X − R)+] if R > S −1

X (α),
(5.2)

and

CT ET (α,R) =

 R + (1 + ρ)E[(X − R)+] if 0 < R ≤ S −1
X (α),

S −1
X (α) + 1

α

∫ R

S −1
X (α)

S X(x)dx + (1 + ρ)E[(X − R)+] if R > S −1
X (α),

(5.3)

where S X is the survival function of X and α is such that 0 < α < S X(0).

Next, we calculate VaR and CT E of R. To do so, we first derive an expression for the

survival function of XR.

Theorem 5.2.1 Let the excess of loss reinsurance policy have retention R > 0. Then the

survival function of XR is given by

S XR(x) = P[X > x + R] (5.4)

for all x ≥ 0.

Proof We start by writing the survival function as follows:

S XR(x) = P[(X − R)+ > x]

= E[1{(X − R)+ > x}].
(5.5)
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The indicator function 1 can be written as follows:

1{(X − R)+ > x} =

 1 if X − R > x, X > R, or if 0 > x, X ≤ R,

0 if X − R ≤ x, X > R, or if 0 ≤ x, X ≤ R.
(5.6)

By substituting equation (5.6) into equation (5.5), we obtain

S XR(x) = P[X − R > x, X > R] + P[0 > x, X ≤ R]. (5.7)

Next, we investigate the two terms on the right-hand side of equation (5.7). Starting with the

first term, we have

P[X − R > x, X > R] =

 P[X > x + R] if 0 ≤ x < R,

P[X > x + R] if x ≥ R.
(5.8)

As to the second term, we obtain

P[0 > x, X ≤ R] =

 0 if 0 ≤ x < R,

0 if x ≥ R.
(5.9)

By substituting equations (5.8) and (5.9) into equation (5.7), we obtain

S XR(x) =

 P[X > x + R] if 0 ≤ x < R,

P[X > x + R] if x ≥ R,
(5.10)

which matches the survival function of XR given in equation (5.4). This completes the proof of

Theorem 5.2.1. �

Now we are ready to derive expressions for VaRXR(α,R) and CT EXR(α,R).

Theorem 5.2.2 Under conditions of Theorem 5.2.1, we have

VaRXR(α,R) =

 S −1
X (α) − R if 0 < R ≤ S −1

X (α),

0 if R > S −1
X (α),

(5.11)

where 0 < α < S X(0).

Proof The VaR of X at the confidence level 1 − α is given by
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VaRX(α) = S −1
X (α), (5.12)

and when the retention is R > 0, the VaR of XI at the confidence level 1 − α is given by

VaRXI (α,R) =

 R if 0 < R ≤ S −1
X (α),

S −1
X (α) if R > S −1

X (α).
(5.13)

If we can show that

VaRX(α) = VaRXI (α,R) + VaRXR(α,R), (5.14)

then by substituting equations (5.12) and (5.13) into equation (5.14), we shall obtain VaRXR(α,R).

To prove that equation (5.14) holds true, we first define comonotonicity (cf., e.g., Schmeidler,

1986).

Definition 5.2.3 Random variables Y and Z are comonotonic if

FY,Z(y, z) = min(FY(y), FZ(z)) for all y, z ≥ 0,

where FY,Z is the joint CDF of Y and Z, FY is the CDF of Y , and FZ is the CDF of Z.

Denuit et al. (2005) have shown that if random variables Y1,Y2, . . . , Yn are comonotonic

and S n =
∑n

i=1 Yi, then

VaRS n(α) =
n∑

i=1

VaRYi(α).

In our case, we have

X = XI + XR.

Wang and Dhaene (1998) have proven that XI and XR are comonotonic. Therefore, equation

(5.14) holds true, and then the formula for VaRXR(α,R) given by equation (5.11) is obtained.

This completes the proof of Theorem 5.2.2. �

Theorem 5.2.4 Under conditions of Theorem 5.2.2, we have

CT EXR(α,R) =

 S −1
X (α) − R + 1

α

∫ ∞
S −1

X (α)−R
S X(x + R)dx if 0 < R ≤ S −1

X (α),

1
α

∫ ∞
0

S X(x + R)dx if R > S −1
X (α).

(5.15)

Proof We write
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CT EXR(α,R) = E[XR | XR ≥ VaRXR(α,R)]

= E[VaRXR(α,R) + XR − VaRXR(α,R) | XR ≥ VaRXR(α,R)]

= VaRXR(α,R) +
1
α

∫ ∞

VaRXR (α,R)
S XR(x)dx. (5.16)

We have calculated the survival function of XR and the VaR of XR at a given confidence level

1 − α in equations (5.4) and (5.11). Using these results, we obtain an expression for the CT E

of XR at a given confidence level 1− α. Then calculations immediately lead to equation (5.15),

and thus complete the proof of Theorem 5.2.4. �

To exemplify the above proved formulas, we note that when X follows the exponential

distribution with mean θ > 0, we have

CT ET (α,R) =

 R + (1 + ρ)θe−R/θ if 0 < R ≤ −θ lnα,

−θ lnα + (1 + ρ)θe−R/θ + 1
α
(αθ − θe−R/θ) if R > −θ lnα,

(5.17)

and

CT EXR(α,R) =

 −θ lnα − R + θ if 0 < R ≤ −θ lnα,
1
α
θe−R/θ if R > −θ lnα.

(5.18)

Next, in Figure 5.1, we plot CT ET (α,R) and CT EXR(α,R) as functions of R when α = 0.05

and θ = 10. We see from Figure 5.1 that a common solution cannot be obtained for the insurer

and the reinsurer by minimizing CT ET (α,R) or CT EXR(α,R) with respect to R. To construct

an optimal reinsurance policy that is beneficial to both parties, we therefore consider another

CT E-based approach, which is the topic of the next section.

5.3 An optimal criterion and the variance reduction approach

We now discuss an optimal criterion that connects with the variance reduction approach con-

sidered in Chapter 3. We write

CT EXI (α,R) =
1
α

E[XI1{XI ≥ VaRXI (α,R)}] (5.19)

and

CT EXR(α,R) =
1
α

E[XR1{XR ≥ VaRXR(α,R)}]. (5.20)
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Figure 5.1: Retention R versus CT ET (α,R) (solid curve), and R versus CT EXR(α,R) (dashed
curve).

Next, we investigate the two expectations on the right-hand side of equations (5.19) and (5.20).

Denote Cov[XI1{XI ≥ VaRXI (α,R)}, XR1{XR ≥ VaRXR(α,R)}] by a1. Then

a1 = E[XI1{XI ≥ VaRXI (α,R)}XR1{XR ≥ VaRXR(α,R)}]

− E[XI1{XI ≥ VaRXI (α,R)}]E[XR1{XR ≥ VaRXR(α,R)}]. (5.21)

Note that when α approaches 1, then the terms VaRXI (α,R) and VaRXR(α,R) in the indicator

functions become small. Hence, the first term on the right-hand side of equation (5.21) con-

verges to E[XIXR] and the second term, which is the product of the two expectations on the

right-hand side of equation (5.21), converges to E[XI]E[XR]. Then we can consider a1 to be

a special case of the covariance Cov[XI , XR], which we used to obtain an optimal retention

in Chapter 3. To obtain an optimal retention that maximizes a1, we first need to obtain an

expression for a1.

Theorem 5.3.1 Under conditions of Theorem 5.2.2, we have

a1 =

 b1 when 0 < R ≤ S −1
X (α),

b2 when R > S −1
X (α),

(5.22)

where
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b1 = R
∫ ∞

S −1
X (α)

(x − R)dFX(x) − αR
( ∫ ∞

S −1
X (α)−R

S X(x + R)dx + α(S −1
X (α) − R)

)
and

b2 = R
∫ ∞

R
(x − R)dFX(x) −

( ∫ R

S −1
X (α)

S X(x)dx + αS −1
X (α)

) ∫ ∞

0
S X(x + R)dx.

Proof We investigate the three expectations on the right-hand side of equation (5.21) sepa-

rately. We begin with the first expectation:

E[XI1{XI ≥ VaRXI (α,R)}XR1{XR ≥ VaRXR(α,R)}]

= E[R(X − R)1{X ≥ S −1
X (α)}1{X ≥ R}]. (5.23)

By combining the two indicator functions on the right-hand side of equation (5.23), we obtain

E[XI1{XI ≥ VaRXI (α,R)}XR1{XR ≥ VaRXR(α,R)}] = E[R(X − R)1{X ≥ max(S −1
X (α),R)}].

(5.24)

The right-hand side of equation (5.24) can be written as follows:

E[R(X − R)1{X ≥ max(S −1
X (α),R)}] =

 R
∫ ∞

S −1
X (α)

(x − R)dFX(x) if 0 < R ≤ S −1
X (α),

R
∫ ∞

R
(x − R)dFX(x) if R > S −1

X (α).
(5.25)

Next, we calculate the expectation of XI1{XI ≥ VaRXI (α,R)} on the right-hand side of equation

(5.21) and have that

E[XI1{XI ≥ VaRXI (α,R)}] = E[(XI + VaRXI (α,R) − VaRXI (α,R))1{XI ≥ VaRXI (α,R)}]

= E[(XI − VaRXI (α,R))1{XI ≥ VaRXI (α,R)}]

+ VaRXI (α,R)P[XI ≥ VaRXI (α,R)]

= E[(XI − VaRXI (α,R))1{XI ≥ VaRXI (α,R)}] + αVaRXI (α,R).

(5.26)

The expectation on the right-hand side of equation (5.26) can be written as follows:

E[(XI − VaRXI (α,R))1{XI ≥ VaRXI (α,R)}] =
∫ ∞

VaRXI (α,R)
S XI (x)dx.

We now write the above expectation in terms of the survival function of X. We have
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E[(XI − VaRXI (α,R))1{XI ≥ VaRXI (α,R)}] =
∫ R

VaRXI (α,R)
S X(x)dx. (5.27)

Using the result for VaRXI (α,R) in equation (5.13), we have that equation (5.27) can be written

as follows:

E[(XI−VaRXI (α,R))1{XI ≥ VaRXI (α,R)}] =

 0 if 0 < R ≤ S −1
X (α),∫ R

S −1
X (α)

S X(x) if R > S −1
X (α).

(5.28)

By substituting equation (5.28) into equation (5.26), we obtain

E[(XI1{XI ≥ VaRXI (α,R)}] =

 αR if 0 < R ≤ S −1
X (α),∫ R

S −1
X (α)

S X(x)dx + αS −1
X (α) if R > S −1

X (α).
(5.29)

Similarly, we can rewrite the expectation of XR1{XR ≥ VaRXR(α,R)} on the right-hand side of

equation (5.21). We obtain the equation

E[XR1{XR ≥ VaRXR(α,R)}] = E[(XR − VaRXR(α,R))1{XR ≥ VaRXR(α,R)}] + αVaRXR(α,R).

(5.30)

The expectation on the right-hand side of equation (5.30) can be written as follows:

E[(XR − VaRXR(α,R))1{XR ≥ VaRXR(α,R)}] =
∫ ∞

VaRXR (α,R)
S XR(x)dx

=

∫ ∞

VaRXR (α,R)
S X(x + R)dx. (5.31)

Note that using the result from Theorem 5.2.1, which states that S XR(x) = S X(x + R) for x ≥ 0,

we obtain the survival function of X instead of XR on the right-hand side of equation (5.31).

Using the result for VaRXR(α,R) given in equation (5.11), we have that equation (5.31) can be

written as follows:

E[(XR−VaRXR(α,R))1{XR ≥ VaRXR(α,R)}] =


∫ ∞

S −1
X (α)−R

S X(x + R)dx if 0 < R ≤ S −1
X (α),∫ ∞

0
S X(x + R)dx if R > S −1

X (α).
(5.32)

By substituting equation (5.32) into equation (5.30), we obtain



5.4. Finding optimal retention 83

E[XR1{XR ≥ VaRXR(α,R)}] =


∫ ∞

S −1
X (α)−R

S X(x + R)dx + α(S −1
X (α) − R) if 0 < R ≤ S −1

X (α),∫ ∞
0

S X(x + R)dx if R > S −1
X (α).

(5.33)

Using the results that we have calculated for the three expectations on the right-hand side

of equation (5.21), equation (5.22) follows, which completes the proof of Theorem 5.3.1. �

5.4 Finding optimal retention

We now obtain the retention that maximizes

a1 := Cov[XI1{XI ≥ VaRXI (α,R)}, XR1{XR ≥ VaRXR(α,R)}]

when X follows the exponential distribution (Subsection 5.4.1) and also the two-parameter

Pareto distribution (Subsection 5.4.2). We call this maximizing R the optimal retention and

denote it by R∗ for the rest of this chapter.

5.4.1 Optimal retention when X is exponential

When X follows the exponential distribution with mean θ > 0, then we have

a1 =

 k1 if 0 < R ≤ −θ lnα,

k2 if R > −θ lnα,
(5.34)

where

k1 = R
∫ ∞

−θ lnα
(x − R)

1
θ

e−x/θdx − αR
( ∫ ∞

−θ lnα−R
e−(x+R)/θdx + α(−θ lnα − R)

)
(5.35)

and

k2 = R
∫ ∞

R
(x − R)

1
θ

e−x/θdx −
( ∫ R

−θ lnα
e−x/θdx − αθ lnα

) ∫ ∞

0
e−(x+R)/θdx. (5.36)

Next, we obtain values that maximize k1 and k2.

Theorem 5.4.1 Let X follow the exponential distribution with mean θ > 0. Furthermore, let

the excess of loss reinsurance policy have retention R > 0. Finally, let the given confidence
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level be 1 − α for some 0 < α < 1. Then k1, which is given by equation (5.35), is maximized at

R1 =
θ lnα − θ + αθ − αθ lnα

2α − 2
, (5.37)

and k2, which is given in equation (5.36), is maximized at

R2 = −θ(−LambertW(−2 exp{−1 − α + α lnα})), (5.38)

where LambertW is the Lambert function. Moreover, the value R2 is assumed to satisfy the

condition
R2

θ
− 2 − α + α lnα + 4e−R2/θ < 0. (5.39)

Note 5.4.2 The Lambert W function, which is also known as the product algorithm or the

omega function, is a set of functions, namely the branches of the inverse relation of the function

z = WeW , where eW is the exponential function and W is any complex number (cf., e.g., Disney

and Lambrecht, 2008).

Proof We start by finding the critical point(s) of k1. By differentiating k1 with respect to R, we

have
∂

∂R
k1 = −αθ lnα + αθ − 2αR − α2θ + α2θ lnα + 2α2R. (5.40)

Next, we set
∂

∂R
k1 = 0,

and solve for R. The solution, which we denote by R1, is given by equation (5.37). The critical

point R1 maximizes k1 if (
∂

∂R

)2

k1

∣∣∣∣∣
R=R1

< 0.

The second derivative of k1 with respect to R is

(
∂

∂R

)2

k1 = −2
∫ ∞

−θ lnα

1
θ

e−x/θdx − α
(
− e−R/θ

∫ ∞

−θ lnα−R

1
θ

e−x/θdx + e(θ lnα)/θ − α
)

− α
(
− e−R/θ

∫ ∞

−θ lnα−R

1
θ

e−x/θdx
)
− αR

(1
θ

e−R/θ
∫ ∞

−θ lnα−R

1
θ

e−x/θdx − 1
θ

e(θ lnα)/θ
)

= 2α2 − 2α < 0.

We conclude that R1 maximizes k1.
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Similarly, we obtain the critical point(s) of k2. By differentiating k2 with respect to R, we

obtain
∂

∂R
k2 = θe−R/θ − Re−R/θ + αθe−R/θ − 2θe−2R/θ − αθe−R/θ lnα. (5.41)

Then we set
∂

∂R
k2 = 0,

and solve for R using the “solve” feature in Maple. The solution, which we denote by R2, is

given by equation (5.38). The critical point R2 maximizes k2 if

(
∂

∂R

)2

k2

∣∣∣∣∣
R=R2

< 0. (5.42)

We differentiate k2 twice with respect to R and obtain

(
∂

∂R

)2

k2 = −
R
θ

e−R/θ − 2
∫ ∞

R

1
θ

e−x/θdx + 2R
1
θ

e−R/θ +
2
θ

e−2R/θ
∫ ∞

0
e−x/θdx

+ e−R/θ 1
θ

e−R/θ
∫ ∞

0
e−x/θdx − 1

θ2
e−R/θ

∫ ∞

0
e−x/θdx

( ∫ R

−θ lnα
e−x/θdx − αθ lnα

)
=

(R
θ
− 2 − α + α lnα

)
e−R/θ + 4e−2R/θ.

Condition (5.42) is satisfied provided that

(R2

θ
− 2 − α + α lnα

)
e−R2/θ + 4e−2R2/θ < 0. (5.43)

When multiplying both sides of (5.43) by eR2/θ, we obtain condition (5.39). This completes the

proof of Theorem 5.4.1. �

To illustrate graphically, we plot R versus a1 when α = 0.2 and θ = 10 (left panel in Figure

5.2), and when α = 0.6 and θ = 10 (right panel in Figure 5.2). We note that on the left panel,

the covariance a1 is maximized in the interval 0 < R ≤ −θ lnα, and the optimal retention R∗ is

equal to 13.047, which corresponds to the value of R1. On the right panel, the covariance a1 is

maximized in the interval R > −θ lnα, and the optimal retention R∗ is equal to 14.259, which

corresponds to the value of R2.
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Figure 5.2: Retention R versus a1 for 0 < R ≤ −θ lnα (solid curve) and R > −θ lnα (dotted
curve). Left panel: α = 0.2 and θ = 10. Right panel: α = 0.6 and θ = 10.

5.4.2 Optimal retention when X is the two-parameter Pareto

When X follows the two-parameter Pareto distribution with parameters a > 1 and b > 0, then

we have

a1 =

 k3 when 0 < R ≤ b/(α1/a) − b,

k4 when R > b/(α1/a) − b,
(5.44)

where

k3 = R
∫ ∞

b/(α1/a)−b
(x−R)

aba

(x + b)a+1 dx−αR
( ∫ ∞

b/(α1/a)−b−R

( b
x + b + R

)a

dx+α
( b
α1/a −b−R

))
(5.45)

and

k4 = R
∫ ∞

R
(x − R)

aba

(x + b)a+1 dx −
( ∫ R

b/(α1/a)−b

( b
x + b

)a

dx + α
( b
α1/a − b

)) ∫ ∞

0

( b
x + b + R

)a

dx.

(5.46)

Next, we obtain values that maximize k3 and k4.

Theorem 5.4.3 Let X follow the two-parameter Pareto distribution with parameters a > 1 and

b > 0. Furthermore, let the excess of loss reinsurance policy have retention R > 0. Finally, let

the confidence level be 1− α for some 0 < α < 1. Then k3, which is given in equation (5.45), is

maximized at

R3 =
1
α − 2

(
− b

a − 1
α−1/a − α−1/ab + b + α(a−1)/a b

a − 1
+ α(a−1)/ab − αb

)
, (5.47)
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and the value R4 that maximizes k4, which is given in equation (5.46), must satisfy the following

two conditions:

b
a − 1

( b
b + R2

)a−1

− R2

( b
b + R2

)a

− 2b2a

(a − 1)(b + R2)2a−1 + aba+1α(a−1)/a − aαba+1 + αba+1 = 0,

(5.48)

−
( b
b + R2

)a

+aR2
ba

(b + R2)a+1+(2a−1)
2b2a

(a − 1)(b + R2)2a−
a2ba+1α(a−1)/a − a2αba+1 + aαba+1

(a − 1)(b + R2)a+1 < 0.

(5.49)

Proof We start by finding the critical point(s) of k3. By differentiating k3 with respect to R, we

obtain

∂

∂R
k3 =

( b
a − 1

α(a−1)/a +

( b
α1/a − b

)
α − Rα

)
− Rα − α

(
− b

(1 − a)α(1−a)/a + α
( b
α1/a − b − R

))
+ α2R

=
b

a − 1
α(a−1)/a +

( b
α1/a − b

)
α − 2αR + α

b
(1 − a)α(1−a)/a − α

2 b
α1/a + α

2b + α2R. (5.50)

Next, we set
∂

∂R
k3 = 0,

and solve for R. The solution, which we denote by R3, is provided by equation (5.47). The

critical point R3 maximizes k3 if (
∂

∂R

)2

k3

∣∣∣∣∣
R=R3

< 0.

This is equivalent to −2α+ α2 < 0, which always holds. Therefore, we conclude that the value

R3 maximizes k3.

Similarly, we obtain the critical point(s) of k4. By differentiating k4 with respect to R, we

obtain

∂

∂R
k4 =

( b
a − 1

( b
b + R

)a−1

+ R
( b
b + R

)a)
+ R

( ba

a − 1
(1 − a)(b + R)−a +

( b
b + R

)a

− aRba(b + R)−a−1
)
− 2R

( b
b + R

)a

+ aR2ba(b + R)−a−1 − ba

a − 1
(1 − a)(b + R)−a

×
( ba

1 − a
(b + R)−a+1 − ba

1 − a

( b
α1/a

)−a+1

+ α
( b
α1/a − b

))
− ba

a − 1
(b + R)−a+1 ba

1 − a
(1 − a)(b + R)−a.
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Then

∂

∂R
k4 =

b
a − 1

( b
b + R

)a−1

− R
( b
b + R

)a

− 2b2a

(a − 1)(b + R)2a−1 + aba+1α(a−1)/a − aαba+1 + αba+1.

(5.51)

We set
∂

∂R
k4 = 0,

and solve for R. The solution, which we denote by R4, satisfies condition (5.48). The critical

point R4 maximizes k4 if the second derivative of k4 with respect to R evaluated at R4 is negative.

The second derivative of k4 with respect to R is

(
∂

∂R

)2

k4 =
ba

a − 1
(1 − a)(b + R)−a + aRba(b + R)−a−1 − 2b2a

a − 1
(1 − 2a)(b + R)−2a

− a(b + R)−a−1 aba+1α(a−1)/a − aαba+1 + αba+1

a − 1

= −
( b
b + R

)a

+ aR
ba

(b + R)a+1 + (2a − 1)
2b2a

(a − 1)(b + R)2a

− a2ba+1α(a−1)/a − a2αba+1 + aαba+1

(a − 1)(b + R)a+1 .

We note that (
∂

∂R

)2

k4

∣∣∣∣∣
R=R4

< 0

if condition (5.49) is satisfied. In other words, condition (5.49) must be satisfied for k4 to be

maximized at R4. This completes the proof of Theorem 5.4.3. �

To illustrate graphically, we plot R versus a1 when α = 0.05, a = 3, and b = 10 (left panel

in Figure 5.3), and when α = 0.5, a = 3, and b = 10 (right panel in Figure 5.3). On the left

panel, the covariance a1 is maximized in the interval 0 < R ≤ b/(α1/a) − b, and the optimal

retention R∗ is equal to 14.964, which corresponds to the value of R3. On the right panel, the

covariance a1 is maximized in the interval R > b/(α1/a) − b, and the optimal retention R∗ is

equal to 15.922, which corresponds to the value of R4.
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Figure 5.3: Retention R versus a1 for 0 < R ≤ b/(α1/a) − b (solid curve) and R > b/(α1/a) − b
(dotted curve). Left panel: α = 0.05, a = 3, and b = 10. Right panel: α = 0.5, a = 3, and
b = 10.



Chapter 6

Likelihood of purchasing a property

6.1 Introduction

When buying or negotiating selling properties, a number of factors could influence the out-

come. Among them are the seller’s reservation (i.e., minimal) price, the shape of the negotiated

selling price distribution, and the buyer’s reservation (i.e., maximal affordable) price. Various

studies of these key factors have been reported in the literature.

For example, Rothschild (1974) discusses an optimal search strategy from the buyer’s per-

spective that focuses on minimizing the total cost of buying properties. The buyer’s reserva-

tion price is determined based on the total expected expense from searching and purchasing.

Gastwirth (1976) considers a model for obtaining the expected minimal price after searching

through a number of targets. Egozcue et al. (2013) derive an optimal strategy that maximizes

the expected real estate selling price when only one of the two remaining buyers has made an

offer.

Various distributions of the negotiated selling prices have been discussed. Some examples

are the uniform distribution (Stigler, 1962), the normal distribution (Nelson, 1970), and the

triangular distribution (Gastwirth, 1976).

Other approaches to modelling negotiated selling prices include the hedonic pricing model

discussed in Gundimeda (2006), the repeated negotiated selling method considered by Baroni

et al. (2007), and the replication method suggested by Lai et al. (2008).

Our research has been motivated by the following problem: Consider a buyer who wants

to purchase a property, and suppose that there are a number of similar properties on the market

90
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for sale. The buyer has a reservation price in mind and looks at the offers one at a time. If

the negotiated selling price is below the buyer’s reservation price, the buyer purchases the

property immediately and avoids the risk of losing the property to another potential buyer. If

the negotiated selling price is above the buyer’s reservation price, then the buyer moves on to

the next offer. Unlike in the case considered by Stigler (1962) and Gastwirth (1976), we assume

that if the buyer passes on an offer, he/she does not have the option to go back and review it.

This scenario is as realistic as those of Stigler (1962) and Gastwirth (1976) because sellers

and real estate agents often have multiple buying offers and, therefore, may not wait for one

potential buyer’s reply. The search ends when the buyer purchases a property with a negotiated

selling price lower than her/his reservation price. If all of the properties under consideration

are being sold at a price higher than the reservation price, then the buyer does not purchase a

property.

The rest of this chapter is organized as follows:

• In Section 6.2, we derive a formula for the probability of purchasing a property during

a specified time period under the simplest yet practically possible scenario. We assume

that the buyer’s reservation price does not change during the search period. Furthermore,

we assume that the negotiated selling prices are i.i.d. random variables.

• In Section 6.3, we consider various scenarios under which one or more assumptions made

in Section 6.2 no longer hold true and obtain a formula for the probability of buying a

property during a given time interval for each case.

• In Sections 6.4 and 6.5, we discuss modelling the dependence among negotiated selling

prices. Three methods are considered including direct representation, copula representa-

tion, and background risk model.

• In Section 6.6, we review past studies on finding the bounds and direct representations of

the tail probability for some discrete distributions. We may need the results from these

studies to calculate the probability of buying a property.

• In Section 6.7, we calculate the (unconditional) probability of the buyer purchasing one

condominium or one detached property in the London and St. Thomas area under as-

sumptions made in Section 6.2.
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6.2 An illustrative case

We are interested in the probability of the buyer purchasing a property during a search time-

interval, say (t0, t1]. Whatever the initial impression we have gotten about the problem, it is

far from trivial. To unearth the crux of the matter, we next provide an illustrative solution in a

highly simplified, yet reasonable, scenario.

Let H be a binary random variable taking on two values: 1 if a property is purchased during

the time period (t0, t1] and 0 otherwise. Naturally, the number of properties that interest the

buyer and are available on the market during the noted time period is random, and we denote

it by N, which can take on any integer value n = 0, 1, . . . (e.g., N might follow the Poisson

distribution). The rule of total probability immediately gives us the equation

P[H = 1] =
∞∑

n=1

P[H = 1 | N = n]P[N = n], (6.1)

where the summation starts at n = 1 because the probability P[H = 1 | N = 0] is obviously

equal to 0: you cannot buy a property if there is not any on the market. The above equation has

reduced our problem of calculating P[H = 1] to that of calculating the conditional probability

P[H = 1 | N = n] of purchasing a property for every n ≥ 1 when there are n properties on

the market during the search period (t0, t1]. To successfully proceed further, we need to make

additional assumptions on the model, which we shall do later. An illustrative example follows

next.

We assume the simplest yet practically reasonable model: First, during the search period,

let the buyer’s budget stay the same and, therefore, her/his reservation price is the same for ev-

ery property to be considered irrespectively on the time of negotiations and/or sale during the

search period. Furthermore, we assume that the properties that the buyer is targeting have simi-

lar features and that the sellers hold similar negotiating power. Hence, the (abstract) negotiated

selling prices, say Zn,1,Zn,2, . . . , Zn,n, follow the same distribution for each property consid-

ered. Next, we assume that the sellers of the properties do not communicate with each other

on the negotiated selling matters. Therefore, the negotiated selling prices Zn,1,Zn,2, . . . , Zn,n

become independent random variables. In summary, we assume for the rest of this section

that Zn,1,Zn,2, . . . , Zn,n are i.i.d. random variables. Denote the CDF of each of these random

variables Zn,i by ζ, that is,
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ζ(x) = P[Zn,i ≤ x]

for every x ≥ 0.

Let the buyer’s reservation price be u. Then, for every n ≥ 1, the probability P[H = 1 |

N = n] is equal to 1 − (1 − ζ(u))n, where (1 − ζ(u))n is the probability that the buyer is unable

to purchase a property after the search since the price of every searched property on the market

exceeds the buyer’s reservation price. Hence, we have the formula

P[H = 1] = 1 − P[N = 0] −
∞∑

n=1

(1 − ζ(u))nP[N = n]

= 1 −G(1 − ζ(u)), (6.2)

where G(y) :=
∑∞

n=0 ynP[N = n] is the probability generating function of N.

Example 6.2.1 Let N follow the Poisson distribution with some mean, which we denote by

µt0,t1 , with subindices t0 and t1 because it depends on the search time-interval (t0, t1]. Then the

probability generating function G is given by

G(y) = exp{−(1 − y)µt0,t1}.

Therefore, equation (6.2) becomes

P[H = 1] = 1 − exp
{ − ζ(u)µt0,t1

}
. (6.3)

Equation (6.3) is useful from the practical point of view because it allows us to estimate the

probability P[H = 1] given values of the parameters u, t0, and t1, as well as either historical

data or some knowledge-based considerations to get an estimate of the mean µ(t0, t1]. Next, we

view the mean µt0,t1 of the underlying Poisson process governed by an intensity function λ(t),

which gives the expression µ(t0, t1] =
∫ t1

t0
λ(t)dt. In this case, we have the equation

P[H = 1] = 1 − exp
{
− ζ(u)

∫ t1

t0
λ(t)dt

}
. (6.4)

This equation is particularly useful to see the dynamics of the probability of purchasing a

property when the search period (t0, t1] varies, which can be utilized by the buyer to make
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certain time adjustments to her/his property-hunting strategy.

So far, we have presented formulas for the likelihood of the successful purchasing of a

property under simplified assumptions. Yet, the obtained results are illuminating and convey

basic features of what we shall see in the following sections under relaxed and thus more

practical assumptions.

6.3 The likelihood of purchasing

This section consists of four subsections, where we impose, step by step, additional simpli-

fying assumptions. Table 6.1 overviews the subsections from the viewpoint of assumptions.

Naturally, the first subsection is the most general.

Negotiated sales price
Subsection Identically distributed Independent

6.3.1 - -
6.3.2 - X
6.3.3 X -
6.3.4 X X

Table 6.1: An overview of the following subsections.

6.3.1 Most general case

We now drop all the assumptions made in Section 6.2. In other words, the reservation price may

or may not be the same for each property available on the market. We shall denote the reserva-

tion prices by un,1, un,2, . . . , un,n. Furthermore, the sales prices may or may not be independent.

Finally, the sales prices may or may not be identically distributed. Under these circumstances,

we next derive an expression for the conditional probability Pn[H = 1] := P[H = 1 | N = n].

Theorem 6.3.1 In the most general case, the conditional probability of the buyer purchasing

a property is given by

Pn[H = 1] = Pn[Zn,1 ≤ un,1] + Pn[H = 1 | Zn,1 > un,1]Pn[Zn,1 > un,1], (6.5)

where, for n = 0, 1, we have

Pn[H = 1 | Zn,1 > un,1] = 0,
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and for n = 2, we have

Pn[H = 1 | Zn,1 > un,1] = Pn[Zn,2 ≤ un,2 | Zn,1 > un,1],

and for n ≥ 3, we have

Pn[H = 1 | Zn,1 > un,1] = Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]

+

n∑
j=3

(
Pn[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏
k=2

Pn[Zn,k > un,k | Zn,k−1 > un,k−1]
)
.

Proof When n = 0, 1, then Pn[H = 1 | Zn,1 > un,1] = 0, and when n = 2, then Pn[H = 1 | Zn,1 >

un,1] = Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]. Next, we shall prove that for every i = 1, 2, . . . , n − 2 with

n ≥ 3, we have

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,i > un,i]

= Pn[Zn,i+1 ≤ un,i+1 | Zn,1 > un,1, . . . ,Zn,i > un,i] + Pn[H = 1 | Zn,1 > un,1, . . . , Zn,i+1 > un,i+1]

× Pn[Zn,i+1 > un,i+1 | Zn,1 > un,1, . . . , Zn,i > un,i], (6.6)

and furthermore, for i = n − 1 and n ≥ 2, we have

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = Pn[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1].

(6.7)

Note from equations (6.6) and (6.7) that for i = 1, 2, . . . , n − 1 with n ≥ 3, we have

Pn[H = 1 | Zn,1 > un,1, . . . ,Zn,i > un,i] = Pn[Zn,i+1 ≤ un,i+1 | Zn,1 > un,1, . . . , Zn,i > un,i]

+

n∑
j=i+2

(
Pn[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏

k=i+1

Pn[Zn,k > un,k | Zn,1 > un,1, . . . , Zn,k−1 > un,k−1]
)
,

and for i = 1 with n ≥ 3, we have
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Pn[H = 1 | Zn,1 > un,1]

= Pn[Zn,2 ≤ un,2 | Zn,1 > un,1] +
n∑

j=3

(
Pn[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏
k=2

Pn[Zn,k > un,k | Zn,k−1 > un,k−1]
)
.

This would complete the proof of Theorem 6.3.1. Hence, our goal is to establish equations

(6.6) and (6.7).

At the time of the first offer, there are two possible outcomes: First, if the selling price

is below un,1, then the buyer will purchase the first property and Pn[H = 1 | Zn,1 ≤ un,1] = 1.

Second, if the first offer is above un,1, then the buyer will not purchase the property, and instead,

will move on to the second property. The conditional probability of the buyer purchasing a

property can then be expanded in the following way:

Pn[H = 1] = Pn[H = 1,Zn,1 ≤ un,1] + Pn[H = 1,Zn,1 > un,1]

= Pn[H = 1 | Zn,1 ≤ un,1]Pn[Zn,1 ≤ un,1] + Pn[H = 1 | Zn,1 > un,1]Pn[Zn,1 > un,1]

= Pn[Zn,1 ≤ un,1] + Pn[H = 1 | Zn,1 > un,1]Pn[Zn,1 > un,1].

When checking the second property, the buyer will once again face two outcomes. The selling

price is either below un,2 or above un,2. We would then need to expand Pn[H = 1 | Zn,1 > un,1]

in the following way:

Pn[H = 1 | Zn,1 > un,1] = Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]

+ Pn[H = 1 | Zn,1 > un,1,Zn,2 > un,2]Pn[Zn,2 > un,2 | Zn,1 > un,1].

This process will continue until the final offer. Similar to the expansion of Pn[H = 1 | Zn,1 >

un,1], we have

Pn[H = 1 | Zn,1 > un,1, Zn,2 > un,2] = Pn[Zn,3 ≤ un,3 | Zn,1 > un,1,Zn,2 > un,2]

+ Pn[H = 1 | Zn,1 > un,1, Zn,2 > un,2,Zn,3 > un,3]

× Pn[Zn,3 > un,3 | Zn,1 > un,1,Zn,2 > un,2].
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Analogously, we have

Pn[H = 1 | Zn,1 > un,1, . . . ,Zn,n−2 > un,n−2] = Pn[Zn,n−1 ≤ un,n−1 | Zn,1 > un,1, . . . , Zn,n−2 > un,n−2]

+ Pn[Zn,n−1 > un,n−1 | Zn,1 > un,1, . . . , Zn,n−2 > un,n−2]

× Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1].

When the buyer checks the final offer, he/she has two choices remaining: If the price is below

un,n, then the buyer will purchase the property and Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n ≤ un,n] = 1.

If the price is above un,n, then the buyer will not make a purchase and Pn[H = 1 | Zn,1 >

un,1, . . . , Zn,n > un,n] = 0. Therefore,

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]

= Pn[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] + Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n > un,n]

× Pn[Zn,n > un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1].

Then we obtain

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = Pn[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1].

In order to express Pn[H = 1 | Zn,1 > un,1] in terms of the conditional distribution function of

Zn,i+1 | Zn,1, . . . , Zn,i, we start with the expression for Pn[H = 1 | Zn,1 > un,1, . . . ,Zn,n−1 > un,n−1].

Then we work backwards to find Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−2 > un,n−2], and so on. In

general, for i = 1, 2, . . . , n− 2 with n ≥ 3, we obtain equation (6.6) and for i = n− 1, we obtain

equation (6.7). This completes the proof of Theorem 6.3.1. �

From equation (6.1) and Theorem 6.3.1, we immediately obtain the formula

P[H = 1] = s1 + s2 + s3, (6.8)

where

s1 =

∞∑
n=1

Pn[Zn,1 ≤ un,1]P[N = n],

s2 =

∞∑
n=2

Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]Pn[Zn,1 > un,1]P[N = n],
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and

s3 =

∞∑
n=3

Pn[Zn,1 > un,1]
n∑

j=3

Pn[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏
k=2

Pn[Zn,k > un,k | Zn,1 > un,1, . . . , Zn,k−1 > un,k−1]P[N = n].

When the negotiated selling prices Zn,1,Zn,2, . . . , Zn,n are independent of the number N of

properties on sale, the conditional probability Pn becomes the unconditional P. We then obtain

the formula

P[H = 1] = P[Zn,1 ≤ un,1](1 − P[N = 0])

+ P[Zn,2 ≤ un,2 | Zn,1 > un,1]P[Zn,1 > un,1](1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

P[Zn,1 > un,1]P[Zn, j ≤ un, j | Zn,i > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏
k=2

P[Zn,k > un,k | Zn,1 > un,1, . . . ,Zn,k−1 > un,k−1]P[N ≥ j]. (6.9)

Next, if we assume that the number N of properties on sale during the search interval

(t0, t1] follows the Poisson distribution with mean µt0,t1 , then P[N = 0] in equation (6.9) can be

replaced by exp{−µt0,t1}, and P[N ≥ k] by
∑∞

i=k(µ
i
t0,t1/i!) exp{−µt0,t1}.

6.3.2 Independent negotiated selling prices

Here we drop the assumption that the reservation price is the same for each property available

on the market. We also drop the assumption that the sales prices are identically distributed.

Under these circumstances, we next obtain an expression for Pn[H = 1].

Corollary 6.3.2 Let the sales prices be independent. Then we obtain the following expression

for the conditional probability of buying a property:

Pn[H = 1] = Pn[Zn,1 ≤ un,1] + Pn[H = 1 | Zn,1 > un,1]Pn[Zn,1 > un,1], (6.10)

where
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Pn[H = 1 | Zn,1 > un,1]

=


0 when n = 0, 1,

Pn[Zn,2 ≤ un,2] when n = 2,

Pn[Zn,2 ≤ un,2] +
∑n

j=3

(
Pn[Zn, j ≤ un, j]

∏ j−1
k=2 Pn[Zn,k > un,k]

)
when n ≥ 3.

(6.11)

Proof We shall prove that, for i = 1, 2, . . . , n − 2 with n ≥ 3, the conditional probability

Pn[H = 1 | Zn,1 > un,1] can be obtained using the following recursive relationship:

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,i > un,i]

= Pn[Zn,i+1 ≤ un,i+1] + Pn[H = 1 | Zn,1 > un,1, . . . , Zn,i+1 > un,i+1]Pn[Zn,i+1 > un,i+1], (6.12)

and for i = n − 1 with n ≥ 2,

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = Pn[Zn,n ≤ un,n]. (6.13)

Note that from equations (6.12) and (6.13), for i = 1, 2, . . . , n − 1 with n ≥ 3, we immediately

get

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,i > un,i]

= Pn[Zn,i+1 ≤ un,i+1] +
n∑

j=i+2

(
Pn[Zn, j ≤ un, j]

j−1∏
k=i+1

Pn[Zn,k > un,k]
)
.

When i = 1 with n ≥ 3, we have

Pn[H = 1 | Zn,1 > un,1] = Pn[Zn,2 ≤ un,2] +
n∑

j=3

(
Pn[Zn, j ≤ un, j]

j−1∏
k=2

Pn[Zn,k > un,k]
)
.

When we set k = 1 with n = 0 or 1, we have

Pn[H = 1 | Zn,1 > un,1] = 0,

and when n = 2, we have

Pn[H = 1 | Zn,1 > un,1] = Pn[Zn,2 ≤ un,2].
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This would complete the proof of Corollary 6.3.2. Hence, to complete the proof of the corol-

lary, we need to establish equations (6.12) and (6.13).

Similar to the proof of Theorem 6.3.1, we have

Pn[H = 1] = Pn[H = 1,Zn,1 ≤ un,1] + Pn[H = 1,Zn,1 > un,1]

= Pn[H = 1 | Zn,1 ≤ un,1]Pn[Zn,1 ≤ un,1]

+ Pn[H = 1 | Zn,1 > un,1]Pn[Zn,1 > un,1]

= Pn[Zn,1 ≤ un,1] + Pn[H = 1 | Zn,1 > un,1]Pn[Zn,1 > un,1].

Then we write

Pn[H = 1 | Zn,1 > un,1] = Pn[H = 1 | Zn,1 > un,1,Zn,2 ≤ un,2]Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]

+ Pn[H = 1 | Zn,1 > un,1,Zn,2 > un,2]Pn[Zn,2 > un,2 | Zn,1 > un,1]

= Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]

+ Pn[H = 1 | Zn,1 > un,1,Zn,2 > un,2]Pn[Zn,2 > un,2 | Zn,1 > un,1]

= Pn[Zn,2 ≤ un,2] + Pn[H = 1 | Zn,1 > un,1, Zn,2 > un,2]Pn[Zn,2 > un,2].

Since Zn,1 and Zn,2 are independent of each other, we have the equation Pn[Zn,2 ≤ un,2 | Zn,1 >

un,1] = Pn[Zn,2 ≤ un,2]. Similarly, we have

Pn[H = 1 | Zn,1 > un,1, Zn,2 > un,2] = Pn[Zn,3 ≤ un,3]

+ Pn[H = 1 | Zn,1 > un,1, Zn,2 > un,2,Zn,3 > un,3]

× Pn[Zn,3 > un,3].

Proceeding in a similar fashion, we obtain

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−2 > un,n−2]

= Pn[Zn,n−1 ≤ un,n−1] + Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]Pn[Zn,n−1 > un,n−1].

Finally, for Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1], we have

Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = Pn[Zn,n ≤ un,n].
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In order to express Pn[H = 1 | Zn,1 > un,1] in terms of the distribution function of Zn,i, we

start with Pn[H = 1 | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1], then work backwards to find Pn[H = 1 |

Zn,1 > un,1, . . . , Zn,n−2 > un,n−2], and so on. In general, for i = 1, 2, . . . , n − 2 with n ≥ 3, we

obtain equation (6.12), and when i = n− 1, then we obtain equation (6.13). This completes the

proof of Corollary 6.3.2. �

From equation (6.1) and Corollary 6.3.2, we have that the (unconditional) probability of

the buyer purchasing a property is given by

P[H = 1] =
∞∑

n=1

Pn[Zn,1 ≤ un,1]P[N = n] +
∞∑

n=2

Pn[Zn,2 ≤ un,2]Pn[Zn,1 > un,1]P[N = n]

+

∞∑
n=3

Pn[Z1 > u1]
n∑

j=3

(
Pn[Zn, j ≤ un, j]

j−1∏
k=2

Pn[Zn,k > un,k]
)
P[N = n]. (6.14)

When the negotiated selling prices are independent of the number N of properties on sale,

the (unconditional) probability of the buyer purchasing a property becomes

P[H = 1] = P[Zn,1 ≤ un,1](1 − P[N = 0])

+ P[Zn,2 ≤ un,2]P[Zn,1 > un,1](1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

P[Zn,1 > un,1]P[Zn, j ≤ un, j]
( j−1∏

k=2

P[Zn,k > un,k]
)
P[N ≥ j]. (6.15)

6.3.3 Identically distributed negotiated selling prices

Here we drop the assumption that the reservation price is the same for each property on sale.

We also drop the assumption that the negotiated selling prices are independent. Under these

circumstances, we next derive an expression for Pn[H = 1].

Corollary 6.3.3 Let the distributions of the sales prices be identical. Then we obtain the fol-

lowing expression for the conditional probability of buying a property:

Pn[H = 1] = ζn(un,1) + Pn[H = 1 | Zn,1 > un,1](1 − ζn(un,1)), (6.16)

where
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Pn[H = 1 | Zn,1 > un,1]

=



0 when n = 0, 1,

Pn[Zn,2 ≤ un,2 | Zn,1 > un,1] when n = 2,

Pn[Zn,2 ≤ un,2 | Zn,1 > un,1]

+
∑n

j=3

(
Pn[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]

×∏ j−1
k=2 Pn[Zn,k > un,k | Zn,k−1 > un,k−1]

)
when n ≥ 3.

(6.17)

Proof The proof is similar to that of Theorem 6.3.1. The main difference is that we now

assume that the sales prices are identically distributed, that is, they follow the same distribution

as that of a random variable Z. This concludes the proof of Corollary 6.3.3. �

From equation (6.1) and Corollary 6.3.3, we immediately obtain the (unconditional) prob-

ability of the buyer purchasing a property:

P[H = 1] =
∞∑

n=1

ζn(un,1)P[N = n] +
∞∑

n=2

Pn[Zn,2 ≤ un,2 | Zn,1 > un,1](1 − ζn(un,1))P[N = n]

+

∞∑
n=3

(1 − ζn(un,1))
n∑

j=3

Pn[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏
k=2

Pn[Zn,k > un,k | Zn,1 > un,1, . . . , Zn,k−1 > un,k−1]P[N = n], (6.18)

where

ζn(u) = Pn[Z ≤ u].

When the negotiated selling prices are independent of the number N of properties on sale,

the conditional probability Pn becomes the unconditional P, and ζn becomes ζ, which has been

defined in Section 6.2. Therefore, we have

P[H = 1] = ζ(un,1)(1 − P[N = 0])

+ P[Zn,2 ≤ un,2 | Zn,1 > un,1](1 − ζ(u1))(1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

(1 − ζ(un,1))P[Zn, j ≤ un, j | Zn,i > un,1, . . . , Zn, j−1 > un, j−1]

×
j−1∏
k=2

P[Zn,k > un,k | Zn,1 > un,1, . . . , Zn,k−1 > un,k−1]P[N ≥ j]. (6.19)
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6.3.4 IID negotiated selling prices

We now drop the assumption that the buyer’s reservation price stays the same and derive an

expression for Pn[H = 1].

Corollary 6.3.4 Let the sales prices be i.i.d. Then the conditional probability of the buyer

purchasing a property is given by

Pn[H = 1] = ζn(un,1) + Pn[H = 1 | Zn,1 > un,1](1 − ζn(un,1)), (6.20)

where

Pn[H = 1 | Zn,1 > un,1]

=


0 when n = 0, 1,

ζn(un,2) when n = 2,

ζn(un,2) +
∑n

j=3

(
ζn(un, j)

∏ j−1
k=2(1 − ζn(un,k))

)
when n ≥ 3.

(6.21)

Proof The proof of Corollary 6.3.4 is similar to that of Corollary 6.3.2. The main difference is

that the random variables of the sales prices are now identically distributed, say, like a random

variable Z. This concludes the proof of Corollary 6.3.4. �

From equation (6.1) and Corollary 6.3.4, we have the formula

P[H = 1] =
∞∑

n=1

ζn(un,1)P[N = n] +
∞∑

n=2

ζn(un,2)(1 − ζn(un,1))P[N = n]

+

∞∑
n=3

(1 − ζn(un,1))
n∑

j=3

(
ζn(un, j)

j−1∏
k=2

(1 − ζn(un,k))
)
P[N = n]. (6.22)

Next, when the negotiated selling price Z is independent of the number N of properties

on sale, then the conditional probability Pn becomes the unconditional P, and ζn becomes ζ.

Consequently, we have

P[H = 1] = m1 + m2 + m3, (6.23)

where

m1 = ζ(un,1)(1 − P[N = 0]),

m2 = ζ(un,2)(1 − ζ(un,1))(1 − P[N = 0] − P[N = 1]),
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and

m3 =

∞∑
j=3

(1 − ζ(un,1))ζ(un, j)
( j−1∏

k=2

(1 − ζ(un,k)
)
P[N ≥ j].

Note that when the reservation price stays the same, say u, equation (6.23) becomes equation

(6.2) given in Section 6.2.

6.4 Modelling price dependence

The dependence has come into our above considerations via the conditional probability P[Zn, j ≤

un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1], which can also be written as follows:

P[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 > un, j−1] = 1 −
P[Zn,1 > un,1, . . . , Zn, j > un, j]

P[Zn,1 > un,1, . . . , Zn, j−1 > un, j−1]
. (6.24)

Hence, in general, we have to learn how to calculate, or estimate, the joint survival probability

of the negotiated selling prices. In what follows, we shall discuss direct representations of the

joint survival probability as well as via survival copulas. These are the topics of Subsections

6.4.1 and 6.4.2, respectively.

6.4.1 Direct representation

Here we present three direct representations of the joint survival function. They come from

various studies in the literature and are very popular in actuarial literature.

Multivariate Pareto of the second kind

The joint survival function of the multivariate Pareto of the second kind is given by (cf., e.g.,

Arnold, 1983; Asimit et al., 2010)

P[X1 > x1, . . . , Xn > xn] =
( n∑

i=1

xi − µn,i

θi
+ 1

)−a

(6.25)

for xi ≥ µn,i with µn,i ∈ R and i = 1, 2, . . . , n, where θi > 0 and a > 0.
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Marshall and Olkin’s multivariate exponential distribution

The joint survival function of the Marshall and Olkin’s (1967) multivariate exponential distri-

bution is given by

P[X1 > x1, . . . , Xn > xn] = exp
{
−

n∑
i=1

λixi − λn+1 max(x1, x2, . . . , xn)
}

(6.26)

for xi > 0 with i = 1, 2, . . . , n, where λi > 0 and λn+1 ≥ 0.

Multivariate Weibull distribution

The joint survival function of the multivariate Weibull distribution is given by (cf., e.g., Hougaard,

1986)

P[X1 > x1, . . . , Xn > xn] = exp
{
−

( n∑
i=1

θix
p
i

)l}
(6.27)

for xi ≥ 0 with i = 1, 2, . . . , n, where l > 0, p > 0, and θi > 0.

6.4.2 Copula representation

We now consider using the survival copula to obtain the joint survival function. A copula is

defined as follows (cf., e.g., Nelson, 2006):

Definition 6.4.1 A copula is a multivariate probability distribution for which the marginal

probability distribution of each variable is uniform.

The copula representation of a joint survival function is given by (cf., e.g., Nelson, 2006)

P[X1 > x1, X2 > x2, . . . , Xn > xn] = C̄(S X1(x1), S X2(x2), . . . , S Xn(xn)) (6.28)

for xi ∈ R with i = 1, 2, . . . , n, where C̄ is the survival copula and S i is the survival function

of Xi. From equation (6.28), we note that to find the copula representation of a joint survival

function, marginal survival functions must be obtained. To illustrate, we next present the sur-

vival copula that can be used to obtain the joint survival function of the multivariate Pareto

distribution of the second kind. Its marginal survival functions are given by

S Xi(xi) =
( xi − µn,i

θi
+ 1

)−a

(6.29)
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for xi ≥ µn,i with i = 1, 2, . . . , n.

Lemma 6.4.2 The joint survival function of the multivariate Pareto distribution in equation

(6.25) can be obtained using the following survival copula (Clayton copula):

C̄(S X1(x1), S X2(x2), . . . , S Xn(xn)) =
( n∑

i=1

(S Xi(xi))−1/a − n + 1
)−a

. (6.30)

Proof We start with the equation

xi − µn,i

θi
=

(( xi − µn,i

θi
+ 1

)−a)−1/a

− 1

= (S Xi(xi))−1/a − 1. (6.31)

Now we recall the joint survival function of the multivariate Pareto distribution, which is given

in equation (6.25). Next, we replace the term (xi − µn,i)/θi by the expression on the right-hand

side of equation (6.31). Then we obtain the survival copula given in equation (6.30). This

completes the proof of Theorem 6.4.2. �

Note 6.4.3 Schweizer and Wolff (1981) have shown Kendall’s tau of two variables X and Y is

given by a/(a + 2). The Clayton copula belongs to the family of Archimedean copulas. Some

of the other commonly known copulas in this family include the Ali-Mikhail-Haq, Gumbel,

Frank, and Joe copulas.

Next, we discuss using a background risk model to describe dependencies among negoti-

ated selling prices.

6.5 Background risk

We begin by introducing the background risk, which can be viewed as follows (cf., e.g., Gollier,

2001): Since decision making under uncertainty often takes place in the presence of multiple

risks, choices about endogenous risks must sometimes be made while facing exogenous risks

that are independent of the endogenous risks and not under the control of the agent. Such

exogenous risks are known as background risks.

Coming now back to our real estate problem, we assume that the negotiated selling prices

are affected by either the additive background risk or the multiplicative background risk. Specif-
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ically, under the additive background risk, the negotiated selling prices are given by

Zn,i = Yi + Y0 (6.32)

for i = 1, 2, . . . , n, and in the case of the multiplicative background risk, the negotiated selling

prices are given by

Zn,i = Y0Yi, (6.33)

where Y0 denotes the background price. Random variables Yi of the negotiated selling prices

(stand-alone prices) without the presence of the background risk are assumed to be i.i.d. and

independent of Y0.

The additive and multiplicative background risks have been very popular. Vernic (1997)

has modelled the number of claims reported to the insurance company during a given time

interval in the presence of an additive background risk. Guiso et al. (1996) have discussed

how the demand for risky assets is affected by additive background risks. Alai et al. (2013)

have considered the effect an additive background risk has on the survival time of individual

policyholders. Doherty and Schlesinger (1983), and Meyer and Meyer (1998) have shown

that the outcome of an optimal insurance policy is different when an additive background risk

exists. For more on the application of the additive background risk, we refer to Pratt and

Zeckhauser (1987), Kimball (1993), Gollier and Pratt (1996), and Vernic (2000). Asimit et

al. (2013) have evaluated risk measures, premiums, and capital allocation based on dependent

multi-losses, which follow the multivariate Pareto distribution of the second kind. The losses

in their model become dependent when a multiplicative background risk is present. For more

on the application of the multiplicative background risk, we refer to Nachman (1982) and Pratt

(1988).

Various studies in the literature have been reported related to the technique for finding a

pair of dependent random variables from three or more random variables that may or may not

be independent. This is commonly known as the trivariate reduction technique. The trivari-

ate reduction technique has been used to derive various bivariate distributions, including the

Cherian’s bivariate gamma distribution (Gupta and Nadarajah, 2006) and the bivariate Marshall

and Olkin’s exponential distribution (Marshall and Olkin, 1967).

The idea behind using the background risk to model the dependence among negotiated sell-



108 Chapter 6. Likelihood of purchasing a property

ing prices is to create dependent random variables from more than two initially independent

random variables. In our case, random variables Y0,Y1, . . . , Yn are independent but Zn,1, Zn,2,

. . . , Zn,n are dependent. Next, we obtain expressions for P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 >

un,n−1] and the (unconditional) probability P[H = 1] of the buyer purchasing a property un-

der additive or multiplicative background risks. Results are presented in the following two

subsections.

6.5.1 Additive background price

Under the additive background risk, we first obtain an expression for P[Zn,n ≤ un,n | Zn,1 >

un,1, . . . , Zn,n−1 > un,n−1].

Theorem 6.5.1 Assume that the additive background risk is present. Furthermore, assume

that the distribution of each Yi is the same as that of the random variable Y for i = 1, 2, . . . , n.

Then we have the formula

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = 1 − E[
∏n

i=1 F̄Y(un,i − Y0)]

E[
∏n−1

i=1 F̄Y(un,i − Y0)]
. (6.34)

Proof Recall the expression for the conditional probability P[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 >

un, j−1] given in equation (6.24). We need to calculate the two terms P[Zn,1 > un,1, . . . , Zn,n >

un,n] and P[Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] on the right-hand side of equation (6.24). We start

with the first term, which can be written as follows:

P[Zn,1 > un,1, . . . , Zn,n > un,n] = E[1{Zn,1 > un,1, . . . , Zn,n > un,n}].

Since Zn,i = Y0 + Yi for i = 1, 2, . . . , n, using the law of iterated expectations, we have

P[Zn,1 > un,1, . . . , Zn,n > un,n] = E[E[1{Y0 + Y1 > un,1, . . . , Y0 + Yn > un,n} | Y0]]

= E[E[1{Y1 > un,1 − Y0, . . . , Yn > un,n − Y0}]]

= E[E[1{Y1 > un,1 − Y0} . . . 1{Yn > un,n − Y0}]]

= E[E[1{Y1 > un,1 − Y0}] . . .E[1{Yn > un,n − Y0}]]

= E
[ n∏

i=1

F̄Y(un,i − Y0)
]
. (6.35)



6.5. Background risk 109

Similarly, the second term on the right-hand side of equation (6.24) becomes

P[Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = E
[ n−1∏

i=1

F̄Y(un,i − Y0)
]
. (6.36)

Having thus calculated the two terms on the right-hand side of equation (6.24), we obtain

a new expression for the conditional probability P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1],

which is given by equation (6.34). This completes the proof of Theorem 6.5.1. �

Suppose that un,1 = un,2 = · · · = un,n = u. Then from Theorem 6.5.1, we immediately get

P[H = 1] = EY0[FY(u − Y0)](1 − P[N = 0])

+

(
1 − E[(F̄Y(u − Y0))2]

E[F̄Y(u − Y0)]

)
(1 − EY0[FY(u − Y0)])(1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

(1 − EY0[FY(u − Y0)])
(
1 − E[(F̄Y(u − Y0)) j]

E[(F̄Y(u − Y0)) j−1]

)

×
j−1∏
k=2

E[(F̄Y(u − Y0))k]
E[(F̄Y(u − Y0))k−1]

P[N ≥ j]. (6.37)

When the number of properties on sale during the time interval (t0, t1] follows the Poisson

distribution with rate parameter λ > 0, equation (6.37) becomes

P[H = 1] = EY0[FY(u − Y0)](1 − e−λ(t1−t0))

+

(
1 − E[(F̄Y(u − Y0))2]]

E[F̄Y(u − Y0)]

)
(1 − EY0[FY(u − Y0)])

× (1 − e−λ(t1−t0) − λ(t1 − t0)e−λ(t1−t0))

+

∞∑
j=3

(1 − EY0[FY(u − Y0)])
(
1 − E[(F̄Y(u − Y0)) j]

E[(F̄Y(u − Y0)) j−1]

)

×
j−1∏
k=2

E[(F̄Y(u − Y0))k]
E[(F̄Y(u − Y0))k−1]

P[N ≥ j].

Next, we assume that the stand-alone prices follow the two-parameter exponential distri-

bution with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, we assume that the reservation price

stays the same, that is, un,1 = un,2 = · · · = un,n = u. Then the conditional probability given by

equation (6.34) in the presence of the additive background risk becomes
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P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]

= 1 − EY0[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]
EY0[exp{−(n − 1)λ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

. (6.38)

We next obtain expressions for P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] and P[H = 1]

when Y0 follows the two-parameter exponential distribution, the uniform distribution, and the

log-normal distribution. Throughout the following consideration of the three distributions, we

assume that the conditions of Theorem 6.5.1 are satisfied.

Exponential background prices

Recall that the PDF of Y0 that follows the two-parameter exponential distribution with param-

eters λ0 > 0 and µ0 > 0 for y ≥ µ0 is given by

fY0(y) = λ0e−λ0(y−µ0).

Theorem 6.5.2 Let the stand-alone prices follow the two-parameter exponential distribution

with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, let Y0 follow the two-parameter exponential

distribution with parameters λ0 > 0 and µ0 ≥ 0. Then we have the formula

P[Zn,n ≤ u | Zn,1 > u, . . . , Zn,n−1 > u] = 1 − h1(n)
h1(n − 1)

, (6.39)

where, for j = n − 1 and n,

h1( j) = 1{u − µ1 ≤ µ0} + 1{u − µ1 > µ0}λ0

( 1
λ1 j − λ0

exp{−λ0(u − µ0 − µ1)}

− 1
λ1 j − λ0

exp{−λ1 j(u − µ0 − µ1)}
)
. (6.40)

Proof Recall the conditional probability given in equation (6.38), which is

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]

= 1 − EY0[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]
EY0[exp{−(n − 1)λ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

.

Next, we calculate the numerator and the denominator on the right-hand side of equation (6.38).

We begin with the numerator. When Y0 follows the two-parameter exponential distribution, we
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have

EY0[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

=

∫ ∞

µ0

exp{−λ1n(u − y − µ1)1{y < u − µ1}}λ0e−λ0(y−µ0)dy.

By considering the scenarios u − µ1 ≤ µ0 and u − µ1 > µ0, we obtain

EY0[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

= 1{u − µ1 ≤ µ0} + 1{u − µ1 > µ0}λ0

( 1
λ1n − λ0

exp{−λ0(u − µ0 − µ1)}

− 1
λ1n − λ0

exp{−λ1n(u − µ0 − µ1)}
)
. (6.41)

Similarly, the denominator on the right-hand side of equation (6.38) becomes

EY0[exp{−(n − 1)λ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

= 1{u − µ1 ≤ µ0} + 1{u − µ1 > µ0}λ0

( 1
λ1(n − 1) − λ0

exp{−λ0(u − µ0 − µ1)}

− 1
λ1(n − 1) − λ0

exp{−λ1(n − 1)(u − µ0 − µ1)}
)
. (6.42)

Having thus calculated the numerator and the denominator, we obtain the conditional prob-

ability P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] given by equations (6.39) and (6.40). This

completes the proof of Theorem 6.5.2. �

From Theorem 6.5.2 and the formula for the (unconditional) probability of the buyer pur-

chasing a property in the most general case, which is given by equation (6.9), we immediately

get

P[H = 1] = w1(1 − P[N = 0]) +
(
1 − h1(2)

h1(1)

)
(1 − w1)(1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

(1 − w1)
(
1 − h1( j)

h1( j − 1)

) j−1∏
k=2

h1(k)
h1(k − 1)

P[N ≥ j],

where

w1 = 1{u − µ1 > µ0}
(
1 − λ0

( 1
λ1 − λ0

exp{−λ0(u − µ0 − µ1)} − 1
λ1 − λ0

exp{−λ1(u − µ0 − µ1)}
))
.
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Uniform background prices

Recall that the PDF of Y0 that follows the uniform distribution with parameters a and b is given

by

fY0(y) =
1

b − a
.

Theorem 6.5.3 Let the stand-alone prices follow the two-parameter exponential distribution

with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, let Y0 follow the uniform (a, b) distribution.

Then we have the formula

P[Zn,n ≤ u | Zn,1 > u, . . . , Zn,n−1 > u] = 1 − h2(n)
h2(n − 1)

, (6.43)

where, for j = n − 1 and n,

h2( j) = I{u − µ1 ≤ a} + I{a < u − µ1 ≤ b}
( 1
b − a

( 1
λ1 j
− 1
λ1 j

e−λ1 j(u−a−µ1)
))

+ I{u − µ1 > b}
( 1
b − a

( 1
λ1 j

e−λ1 j(u−b−µ1) − 1
λ1 j

e−λ1 j(u−a−µ1)
))
. (6.44)

Proof Similar to the proof of Theorem 6.5.2, we calculate the numerator and the denominator

on the right-hand side of equation (6.38). We begin with the numerator. Since Y0 follows the

uniform distribution, we have

EY0[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

=

∫ b

a
exp{−λ1n(u − y − µ1)1{y < u − µ1}}

1
b − a

dy.

By considering the three scenarios u − µ1 ≤ a, a < u − µ1 ≤ b, and u − µ1 > b, we obtain

EY0[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

= 1{u − µ1 ≤ a} +
( 1
b − a

( 1
λ1n
− 1
λ1n

exp{−λ1n(u − a − µ1)}
))

1{a < u − µ1 ≤ b}

+

( 1
b − a

( 1
λ1n

exp{−λ1n(u − b − µ1)} − 1
λ1n

exp{−λ1n(u − a − µ1)}
))

× 1{u − µ1 > b}. (6.45)

Similarly, the denominator on the right-hand side of equation (6.38) is written as follows:
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EY0[exp{−(n − 1)λ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

= 1{u− µ1 ≤ a}+
( 1
b − a

( 1
λ1(n − 1)

− 1
λ1(n − 1)

exp{−λ1(n− 1)(u− a− µ1)}
))

1{a < u− µ1 ≤ b}

+

( 1
b − a

( 1
λ1(n − 1)

exp{−λ1(n − 1)(u − b − µ1)} − 1
λ1(n − 1)

exp{−λ1(n − 1)(u − a − µ1)}
))

× 1{u − µ1 > b}. (6.46)

Having thus calculated the numerator and the denominator in equations (6.45) and (6.46),

we calculate the conditional probability P[Zn,n ≤ u | Zn,1 > u, . . . , Zn,n−1 > u] and arrive at

equations (6.43) and (6.44). This completes the proof of Theorem 6.5.3. �

From Theorem 6.5.3 and the formula for the (unconditional) probability of the buyer pur-

chasing a property given by equation (6.9), we immediately get

P[H = 1] = w2(1 − P[N = 0]) +
(
1 − h2(2)

h2(1)

)
(1 − w2)(1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

(1 − w2)
(
1 − h2( j)

h2( j − 1)

) j−1∏
k=2

h2(k)
h2(k − 1)

P[N ≥ j],

where

w2 = 1{a < u − µ1 ≤ b}
(
1 − 1

b − a

( 1
λ1
− 1
λ1

exp{−λ1(u − a − µ1)}
))

+ 1{u − µ1 > b}
(
1 − 1

b − a

( 1
λ1

exp{−λ1(u − b − µ1)} − 1
λ1

exp{−λ1(u − a − µ1)}
))
.

Log-normal background prices

Recall that the PDF of Y0 that follows the three-parameter log-normal distribution with param-

eters µ ∈ R, σ > 0, and γ ≥ 0 is given by

fY0(y) =
1

(y − γ)σ
√

2π
exp

{
− (ln(y − γ) − µ)2

2σ2

}
.

Theorem 6.5.4 Let the stand-alone prices follow the two-parameter exponential distribution

with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, let Y0 follow the three-parameter log-normal

distribution with parameters µ ∈ R, σ > 0, and γ ≥ 0. Then we have the formula

P[Zn,n ≤ u | Zn,1 > u, . . . , Zn,n−1 > u] = 1 − E[(h∗(G0,1))n]
E[(h∗(G0,1))n−1]

, (6.47)
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where G0,1 follows the standard normal distribution and the function h∗(x) is given by

h∗(x) = exp
{
(−λ1u + λ1µ1 + λ1γ + λ1 exp{µ + σx})1

{
x <

ln(u − µ1 − γ) − µ
σ

}}
. (6.48)

Proof Similar to the proof of Theorem 6.5.2, we calculate the numerator and the denominator

on the right-hand side of equation (6.38). We begin with the numerator:

E[exp{−nλ1(u−Y0−µ1)1{Y0 < u−µ1}}] = E[exp{(−λ1u+λ1µ1+λ1Y0)n1{Y0 < u−µ1}}]. (6.49)

The background price Y0 is given by

Y0 = exp{µ + σG0,1} + γ. (6.50)

By substituting equation (6.50) into equation (6.49), we obtain

E[exp{−nλ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

= E
[

exp
{
(−λ1u + λ1µ1 + λ1γ + λ1 exp{µ + σG0,1} + γ)n1

{
G0,1 <

ln(u − µ1 − γ) − µ
σ

}}]
.

(6.51)

Similarly, the denominator on the right-hand side of equation (6.38) is written as follows:

E[exp{−(n − 1)λ1(u − Y0 − µ1)1{Y0 < u − µ1}}]

= E
[

exp
{
(−λ1u+λ1µ1 +λ1γ+λ1 exp{µ+σG0,1}+γ)(n− 1)1

{
G0,1 <

ln(u − µ1 − γ) − µ
σ

}}]
.

(6.52)

Having thus calculated the numerator and the denominator in equations (6.51) and (6.52),

we obtain the conditional probability P[Zn,n ≤ u | Zn,1 > u, . . . , Zn,n−1 > u] and establish

equations (6.47) and (6.48). This completes the proof of Theorem 6.5.4. �

From Theorem 6.5.4 and the formula for the (unconditional) probability of the buyer pur-

chasing a property given by equation (6.9), we immediately get

P[H = 1] = n1 + n2 + n3,
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where

n1 = (1 − E[h∗(G0,1)])(1 − P[N = 0]),

n2 =

(
1 − E[(h∗(G0,1))2]

E[h∗(G0,1)]

)
E[h∗(G0,1)](1 − P[N = 0] − P[N = 1]),

and

n3 =

∞∑
j=3

E[h∗(G0,1)]
(
1 − E[(h∗(G0,1)) j]

E[(h∗(G0,1)) j−1]

) j−1∏
k=2

E[(h∗(G0,1))k]
E[(h∗(G0,1))k−1]

P[N ≥ j].

6.5.2 Multiplicative background price

Under the multiplicative background risk, the negotiated selling price Zn,i is given in equation

(6.33). We next obtain an expression for P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1].

Theorem 6.5.5 Assume that the multiplicative background risk is present. Furthermore, as-

sume that the distribution of each Yi is the same as that of the random variable Y. Then we

have

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = 1 − EY0[
∏n

i=1 F̄Y(un,i/Y0)]

EY0[
∏n−1

i=1 F̄Y(un,i/Y0)]
. (6.53)

Proof Recall the expression for the conditional probability P[Zn, j ≤ un, j | Zn,1 > un,1, . . . , Zn, j−1 >

un, j−1] given in equation (6.24). Hence, we need to calculate the two terms P[Zn,1 > un,1, . . . , Zn,n >

un,n] and P[Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] on the right-hand side of equation (6.24). We start

with the first term, which can be written as follows:

P[Zn,1 > un,1, . . . , Zn,n > un,n] = E[1{Zn,1 > un,1, . . . , Zn,n > un,n}].

Since Zn,i = Y0Yi for i = 1, 2, . . . , n, we have

P[Zn,1 > un,1, . . . , Zn,n > un,n] = E[1{Y0Y1 > un,1, . . . , Y0Yn > un,n}].

Using the law of iterated expectations, we obtain
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P[Zn,1 > un,1, . . . , Zn,n > un,n] = EY0[EY[1{Y0Y1, . . . , Y0Yn > un,n} | Y0]]

= EY0

[
EY

[
1
{
Y1 >

un,1

Y0
, . . . , Yn >

un,n

Y0

}]]
= EY0

[ n∏
i=1

F̄Y

(un,i

Y0

)]
. (6.54)

Similarly, the second term on the right-hand side of equation (6.24) can be written as follows:

P[Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = EY0

[ n−1∏
i=1

F̄Y

(un,i

Y0

)]
. (6.55)

Using equations (6.54) and (6.55), we calculate the conditional probability P[Zn,n ≤ un,n |

Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] and arrive at equation (6.53). This completes the proof of

Theorem 6.5.5. �

Next, we assume that the stand-alone prices Yi follow the two-parameter exponential dis-

tribution with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, we assume that the reservation

price stays the same, that is, let un,1 = un,2 = · · · = un,n = u. Then the conditional probability

becomes

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]

= 1 − EY0[exp{−λ1n(u/Y0 − µ1)1{u/Y0 > µ1}}]
EY0[exp{−λ1(n − 1)(u/Y0 − µ1)1{u/Y0 > µ1}}]

. (6.56)

Using this formula, we obtain expressions for P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]

and P[H = 1] when Y0 follows the two-parameter exponential distribution, the uniform distri-

bution, and the log-normal distribution. Throughout the following consideration of the three

distributions, we assume that conditions of Theorem 6.5.5 are satisfied.

Exponential background prices

Theorem 6.5.6 Let the stand-alone prices follow the two-parameter exponential distribution

with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, let Y0 follow the two-parameter exponential

distribution with parameters λ0 > 0 and µ0 ≥ 0. Then we have the formula

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = 1 − g1(n)
g1(n − 1)

, (6.57)
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where, for j = n − 1 and n,

g1( j) = 1{u/µ1 ≤ µ0} + 1{u/µ1 > µ0}
∫ u/µ1

µ0

e−λ1 j((u/y)−µ1)λ0e−λ0(y−µ0)dy. (6.58)

Proof Recall the conditional probability given in equation (6.56), which is

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1]

= 1 − EY0[exp{−λ1n(u/Y0 − µ1)1{u/Y0 > µ1}}]
EY0[exp{−λ1(n − 1)(u/Y0 − µ1)1{u/Y0 > µ1}}]

.

Next, we calculate the numerator and the denominator on the right-hand side of this equation.

We begin with the numerator. When Y0 follows the two-parameter exponential distribution, we

have

EY0

[
exp

{
− λ1n

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= 1

{ u
µ1
≤ µ0

}
+ 1

{ u
µ1
> µ0

} ∫ u/µ1

µ0

exp
{
− λ1n

(u
y
− µ1

)}
λ0 exp{−λ0(y − µ0)}dy. (6.59)

The denominator can be written as follows:

E
[

exp
{
− λ1(n − 1)

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= 1

{ u
µ1
≤ µ0

}
+ 1

{ u
µ1
> µ0

} ∫ u/µ1

µ0

exp
{
− λ1(n − 1)

(u
y
− µ1

)}
λ0 exp{−λ0(y − µ0)}dy. (6.60)

Having thus calculated the numerator and the denominator in equations (6.59) and (6.60),

we calculate the conditional probability P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] and

obtain equations (6.57) and (6.58). This completes the proof of Theorem 6.5.6. �

From Theorem 6.5.6 and the formula for the (unconditional) probability of the buyer pur-

chasing a property given in equation (6.9), we immediately get

P[H = 1] = (1 − g1(1))(1 − P[N = 0]) +
(
1 − g1(2)

g1(1)

)
g1(1)(1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

g1(1)
(
1 − g1( j)

g1( j − 1)

) j−1∏
k=2

g1(k)
g1(k − 1)

P[N ≥ j].
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Uniform background prices

Theorem 6.5.7 Let the stand-alone prices follow the two-parameter exponential distribution

with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, let Y0 follow the uniform distribution (a, b).

Then we have the formula

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = 1 − g2(n)
g2(n − 1)

, (6.61)

where, for j = n and n − 1,

g2( j) = 1
{ u
µ1
≤ a

}
+ 1

{
a <

u
µ1
≤ b

} 1
b − a

eλ1µ1 j
∫ u/µ1

a
e−λ1 ju/ydy

+ 1
{ u
µ1
> b

} 1
b − a

eλ1µ1 j
∫ b

a
e−λ1 ju/ydy. (6.62)

Proof Similar to the proof of Theorem 6.5.6, we calculate the numerator and the denominator

on the right-hand side of equation (6.56). We begin with the numerator. When Y0 follows the

uniform distribution, we have

EY0

[
exp

{
− λ1n

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
=

∫ b

a
exp

{
− λ1

(u
y
− µ1

)
1
{
y <

u
µ1

}} 1
b − a

dy.

By considering the scenarios u/µ1 ≤ a, a < u/µ1 ≤ b, and u/µ1 > b, we obtain

EY0

[
exp

{
− λ1n

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= 1

{ u
µ1
≤ a

}
+ 1

{
a <

u
µ1
≤ b

} 1
b − a

exp{λ1µ1n}
∫ u/µ1

a
exp

{
− λ1

nu
y

}
dy

+ 1
{ u
µ1
> b

} 1
b − a

exp{λ1µ1n}
∫ b

a
exp

{
− λ1

nu
y

}
dy. (6.63)

Similarly, the denominator can be written as follows:

EY0

[
exp

{
− λ1(n − 1)

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= 1

{ u
µ1
≤ a

}
+ 1

{
a <

u
µ1
≤ b

} 1
b − a

eλ1µ1(n−1)
∫ u/µ1

a
e−λ1(n−1)u/ydy

+ 1
{ u
µ1
> b

} 1
b − a

eλ1µ1(n−1)
∫ b

a
e−λ1(n−1)u/ydy. (6.64)
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Using these results for the numerator and the denominator in equations (6.63) and (6.64),

we calculate the conditional probability P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] and

obtain equations (6.61) and (6.62). This completes the proof of Theorem 6.5.7. �

From Theorem 6.5.7 and the formula for the (unconditional) probability of the buyer pur-

chasing a property given in equation (6.9), we immediately get

P[H = 1] = (1 − g2(1))(1 − P[N = 0])

+

(
1 − g2(2)

g2(1)

)
g2(1)(1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

g2(1)
(
1 − g2( j)

g2( j − 1)

) j−1∏
k=2

g2(k)
g2(k − 1)

P[N ≥ j].

Log-normal background prices

Theorem 6.5.8 Let the stand-alone prices follow the two-parameter exponential distribution

with parameters λ1 > 0 and µ1 ≥ 0. Furthermore, let Y0 follow the three-parameter log-normal

distribution with parameters µ ∈ R, σ > 0, and γ ≥ 0. Then the conditional probability given

in equation (6.56) becomes

P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] = 1 − E[(g∗(G0,1))n]
E[(g∗(G0,1))n−1]

, (6.65)

where G0,1 follows the standard normal distribution and the function g∗(x) is given by

g∗(x) = exp
{
λ1

( u
exp{µ + σx} + γ − µ1

)
1
{
x <

ln(u/µ1 − γ) − µ
σ

}}
. (6.66)

Proof Similar to the proof of Theorem 6.5.6, we calculate the numerator and the denominator

on the right-hand side of equation (6.56). We begin with the numerator:

EY0

[
exp

{
− λ1n

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= EY0

[
exp

{
− λ1

( u
Y0
− µ1

)
n1

{
Y0 <

u
µ1

}}]
. (6.67)

The background price is given by

Y0 = exp{µ + σG0,1} + γ. (6.68)

By substituting equation (6.68) into equation (6.67), we obtain
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EY0

[
exp

{
− λ1n

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= E

[
exp

{
− λ1

( u
exp{µ + σG0,1} + γ

− µ1

)
n1

{
G0,1 <

ln(u/µ1 − γ − µ)
σ

}}]
. (6.69)

Similarly, the denominator can be written as follows:

EY0

[
exp

{
− λ1(n − 1)

( u
Y0
− µ1

)
1
{ u

Y0
> µ1

}}]
= E

[
exp

{
− λ1

( u
exp{µ + σG0,1} + γ

− µ1

)
(n − 1)1

{
G0,1 <

ln(u/µ1 − γ) − µ
σ

}}]
. (6.70)

Using the above results for the numerator and the denominator, we calculate the conditional

probability P[Zn,n ≤ un,n | Zn,1 > un,1, . . . , Zn,n−1 > un,n−1] and arrive at equations (6.65) and

(6.66). This completes the proof of Theorem 6.5.8. �

From Theorem 6.5.8 and the formula for the (unconditional) probability of the buyer pur-

chasing a property given in equation (6.9), we immediately get

P[H = 1] = (1 − E[g∗(G0,1)])(1 − P[N = 0])

+

(
1 − E[(g∗(G0,1))2]

E[g∗(G0,1)]

)
E[g∗(G0,1)](1 − P[N = 0] − P[N = 1])

+

∞∑
j=3

E[g∗(G0,1)]
(
1 − E[(g∗(G0,1)) j]

E[(g∗(G0,1)) j−1]

) j−1∏
k=2

E[(g∗(G0,1))k]
E[(g∗(G0,1))k−1]

P[N ≥ j].

Note that when the negotiated selling prices are independent of the number of properties

on sale, the probability P[H = 1] of the buyer purchasing one property is written in terms of

P[N ≥ j] for j = 1, 2, . . . . Hence, we must obtain the tail probability P[N ≥ j] and thus

next review literature studies related to finding the bounds and direct representations of the tail

probabilities for discrete distributions.

6.6 Literature review related to bounds on tail probabilities

for discrete distributions

Various methods for obtaining the bounds and direct representations of the tail probabilities

for discrete distributions have been reported in the literature. Approaches based on the Markov
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inequality include: the Chernoff bound (Chernoff, 1952), the moment bound (Philips and Nel-

son, 1995), the factorial moment bound (Naveau, 1997), and the fractional moments (Goria

and Tagliani, 2003).

In addition to Markov inequality based techniques, Peizer and Pratt (1968), Pratt (1968),

Glynn (1987), and Fox and Glynn (1988) have considered the normal approximation method.

Gideon and Gurland (1971) have used a weighted sum of exponential distributions to estimate

the tail probability. Andrews (1973) has introduced the Andrews approximation. Ross (1998)

and Klar (2000) have discussed the importance sampling identity approach.

Next, we present the bounds and direct representations of the tail probabilities for the Pois-

son, negative binomial, binomial, log-series, and zeta distributions that we have found in the

literature.

Tail probability of the Poisson distribution

When a random variable N follows the Poisson distribution with mean λ > 0, then the proba-

bility mass function of N is given by

P[N = n] = e−λ
λn

n!
for n = 0, 1, 2, . . . .

Gideon and Gurland (1971) have used the chi-squared distribution to obtain

P[N ≥ n] ≈ 1 − P[χ2
v > 2λ] + P[N = n],

where v = 2(n+ 1). Recall that a chi-squared distribution with k degrees of freedom, which we

denote by χ2
k , is the distribution of a sum of the squares of k independent standard normal ran-

dom variables (cf., e.g., Timm, 2002). Furthermore, Glynn (1987) has obtained the following

upper bound

P[N ≥ n] ≤
(
1 −

(
λ

n + 1

)m)−1 n+m−1∑
k=n

e−λ
λk

k!
,

where n > λ− 1 and m ≥ 1. For more results on the tail probability of the Poisson distribution,

we refer to Gross and Hosmer (1978), and Klar (2000).
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Tail probability of the negative binomial distribution

When N follows the negative binomial distribution with parameters r > 0 and β > 0, then the

probability mass function of N is given by

P[N = n] =
(
r + n − 1

n

)( 1
1 + β

)r( β
1 + β

)n

for n = 0, 1, . . . .

Best and Gipps (1974) have shown that

P[N > n] ≈ 1 −
∫ n+0.5+r(1−p1)/(2−p1)

h
g
(
y;

4r(1 − p1)
(2 − p1)2 ,

2 − p1

2p1

)
dy,

where

p1 =
1

1 + β
,

h = max
(
0,

r(1 − p1)
2 − p1

− 0.5
)
,

and

g(y; a, b) =
1

baΓ(a)
ya−1e−y/b

for y > 0, a > 0, and b > 0. Klar (2000) has proven that if r > 1 and n ≥ r(1 − p1)/p1, then

1
p1

P[N = n] < P[N ≥ n] <
(
1 − n + r

n + 1
(1 − p1)

)−1

P[N = n],

and if r < 1 and n ≥ r(1 − p1)/p1, then

(
1 − n + r

n + 1
(1 − p1)

)−1

P[N = n] < P[N ≥ n] <
1
p1

P[N = n].

Tail probability of the binomial distribution

When N follows a binomial distribution with parameters m = 1, 2, . . . and 0 ≤ p ≤ 1, then the

probability mass function of N is given by

P[N = n] =
(
m
n

)
pn(1 − p)m−n for n = 0, 1, . . . ,m.

Klar (2000) has shown that for mp ≤ n ≤ m, the lower and upper bounds of P[N ≥ n] are as

follows:
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(
m
n

)
pn(1 − p)m−n ≤ P[N ≥ n] ≤ (n + 1)(1 − p)

n + 1 − (m + 1)p

(
m
n

)
pn(1 − p)m−n.

For more on the tail probability of the binomial distribution, we refer to Gross and Hosmer

(1978).

Tail probability of the log-series distribution

When N follows the log-series distribution with parameter 0 ≤ p < 1, then the probability

mass function of N is given by

P[N = n] =
−1

ln(1 − p)
pn

n
for n = 1, 2, . . . .

Klar (2000) has presented the following lower and upper bounds of P[N ≥ n]:

(
1 − np

n + 1

)−1 −1
ln(1 − p)

pn

n
< P[N ≥ n] < (1 − p)−1 −1

ln(1 − p)
pn

n
.

Tail probability of the zeta distribution

When N follows the zeta distribution with parameter s > 1, then the probability mass function

of N is given by

P[N = n] =
n−s

ζ1(s)
for n = 1, 2, . . . ,

where ζ1(s) =
∑∞

k=1 1/ks. Klar (2000) has obtained the following lower and upper bounds of

P[N ≥ n]:
n

s − 1
n−s

ζ1(s)
< P[N ≥ n] <

( n
n − 1

)s−1 n
s − 1

n−s

ζ1(s)

for n ≥ 2.

6.7 An illustrative example

We now calculate the (unconditional) probability of purchasing a condominium or a detached

property in the London and St. Thomas area under assumptions made in Section 6.2. The data,

which are reported in the London and St. Thomas Association of Realtors statistical report

from the year 2012, includes the average prices of condominiums and detached properties

for each month in the year 2012, which we reproduce in Table 6.2. The average number of
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condominiums and detached properties sold, and their variances for each month from the year

2003 to 2012 are reproduced in Table 6.6.

Note from equation (6.2) that to calculate P[H = 1], we first need to obtain ζ, which is the

CDF of each Zn,i, and then G(1 − ζ(u)), which is the probability generating function of N. In

other words, we need to find parameter values for the distributions of Zn,i and N.

The rest of this section is organized as follows: In Subsection 6.7.1, we obtain expressions

for ζ when the negotiated selling prices follow the exponential, uniform, and log-normal dis-

tributions. We then estimate the parameter values of these distributions for condominiums and

detached properties sold in May and December of 2012. In Subsection 6.7.2, we find a suitable

distribution to model the number of condominiums and detached properties available on the

market. In Subsection 6.7.3, we present plots of the (unconditional) probabilities of purchas-

ing condominiums and detached properties in the months of May and December of 2012, for

various negotiated selling price distributions.

6.7.1 Parameter estimates of the negotiated selling price distributions

Here we consider three distributions for the negotiated selling prices: the exponential, uni-

form, and log-normal distributions. When negotiated selling prices follow the two-parameter

exponential distribution with parameters λ > 0 and u0, then we have

ζ(u) = 1 − exp{−λ(u − u0)} for u > u0 ≥ 0.

When negotiated selling prices follow the uniform distribution (u0, u1), for 0 ≤ u0 < u < u1,

we have

ζ(u) =
u − u0

u1 − u0
.

When negotiated selling prices follow the three-parameter log-normal distribution with param-

eters µ1 ∈ R, σ > 0, and u0 ≥ 0, then we have

ζ(u) = Φ
( ln(u − u0) − µ1

σ

)
for u > u0.

Next, we estimate parameter values of the three selling price distributions for condomini-

ums and detached properties sold in the months of May and December of 2012. The parameter
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estimates are based on the average prices of condominiums and detached properties in the Lon-

don and St. Thomas area for each month in the year 2012, which are presented in Table 6.2.

The sample data are taken from London St. Thomas Association of Realtors statistical report

from the year 2012.

Month Condominiums Detached properties
January 169, 069 236, 101
February 169, 897 252, 523
March 170, 193 251, 533
April 166, 717 266, 457
May 169, 358 265, 756
June 180, 749 252, 451
July 176, 594 260, 172
August 174, 475 242, 042
September 160, 869 246, 376
October 182, 223 257, 302
November 164, 593 252, 259
December 168, 304 254, 740

Table 6.2: Average prices of condominiums and detached properties.

Parameter estimates for condominiums sold in May of 2012

From Table 6.2, we see that the average price for condominiums sold in May is $169, 358. The

lowest average price is $160, 869 in September. To estimate parameter values of the negotiated

selling price distribution for condominiums sold in May, we equate the mean of the selling

price distribution to $169, 360. This value is obtained by rounding up from the average price

$169, 358 in May. We also equate the minimum negotiated selling price to $150, 000, which is

$10869 less than the lowest average price of $160, 869. Next, we obtain parameter estimates

for the two-parameter exponential, uniform, and three-parameter log-normal distributions.

Assume that Zn,i follows the two-parameter exponential distribution with parameters λ and

u0, where u0 is the minimum negotiated selling price for condominiums sold in May, and thus

u0 = 150, 000. (6.71)

Since the mean is $169, 360, we have u0 + (1/λ) = 169, 360. Hence, we immediately get

λ =
1

19360
.
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Assume that Zn,i follows the uniform distribution (u0, u1), where u0 is the minimum negoti-

ated selling price for condominiums sold in the month of May, and thus

u0 = 150, 000. (6.72)

Since the mean of the uniform distribution is $169, 360, we have (u0+u1)/2 = 169, 360. Hence,

we immediately get

u1 = 188, 720.

Assume that Zn,i follows the three-parameter log-normal distribution with parameters u0,

µ1, and σ, where u0 is the minimum negotiated selling price for condominiums in the month of

May, and thus

u0 = 150, 000. (6.73)

The mean of the three-parameter log-normal distribution is $169, 360. Assume that the stan-

dard deviation of the log-normal distribution is the same as that of the average price of con-

dominiums from January to December, which is $6338. Then u0 + eµ1+σ
2/2 = 169, 360 and

e2µ1+σ
2
(eσ

2 − 1) = 63382. Hence, we immediately get

µ1 = 9.8 and σ = 0.35.

Parameter estimates for condominiums sold in December of 2012

From Table 6.2, we see that the average price of condominiums sold in December is $168, 304.

To estimate parameter values of the negotiated selling price distribution for condominiums

sold in December, we equate the mean of the selling price distribution to $168, 300 (rounding

down from $168, 304). The minimum negotiated selling price remains at $150, 000. Similar to

the parameter estimates for condominiums sold in May, the following results are obtained for

condominiums sold in December:

• When negotiated selling prices follow the two-parameter exponential distribution, then

the parameter estimates are u0 = 150, 000 and λ = 1/18300.

• When negotiated selling prices follow the uniform distribution, then the parameter esti-

mates are u0 = 150, 000 and u1 = 186, 600.



6.7. An illustrative example 127

• When negotiated selling prices follow the three-parameter log-normal distribution, then

the parameter estimates are u0 = 150, 000, µ1 = 9.7, and σ = 0.37.

Parameter estimates for detached properties sold in May of 2012

From Table 6.2, we see that the average price for detached properties sold in May is $265, 756,

and the lowest average price of detached properties is $242, 042 in August. To estimate pa-

rameter values of the selling price distribution for detached properties sold in May, we equate

the mean of the selling price distribution to $265, 800 (rounding up from $265, 756). We also

equate the minimum selling price to $230, 000, which is $12042 less than the minimum aver-

age price of $242, 042. Similar to the parameter estimates for condominiums sold in May, the

following results are obtained for detached properties sold in May:

• When negotiated selling prices follow the two-parameter exponential distribution, then

the parameter estimates are u0 = 230, 000 and λ = 1/35800.

• When negotiated selling prices follow the uniform distribution, then the parameter esti-

mates are u0 = 230, 000 and u1 = 301, 600.

• When negotiated selling prices follow the three-parameter log-normal distribution, then

the parameter estimates are u0 = 230, 000, µ1 = 10.5, and σ = 0.25.

Parameter estimates for detached properties sold in December of 2012

From Table 6.2, we see that the average price of detached properties sold is $254, 740 in De-

cember. To estimate parameter values of the negotiated selling price distribution for detached

properties sold in December, we equate the mean of the negotiated selling price distribution

to $254, 700 (rounding down from $254, 740). The minimum negotiated selling price remains

at $230, 000. Similar to the parameter estimates for condominiums sold in May, the following

results are obtained for detached properties sold in December:

• When negotiated selling prices follow the two-parameter exponential distribution, then

the parameter estimates are u0 = 230, 000 and λ = 1/24700.

• When negotiated selling prices follow the uniform distribution, then the parameter esti-

mates are u0 = 230, 000 and u1 = 279, 400.
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• When negotiated selling prices follow the three-parameter log-normal distribution, then

the parameter estimates are u0 = 230, 000, µ1 = 10.1, and σ = 0.35.

Results are presented in Tables 6.3, 6.4, and 6.5.

Condominiums Detached properties
Month u0 λ u0 λ

May 150, 000 1/19360 230, 000 1/35800
December 150, 000 1/18300 230, 000 1/24700

Table 6.3: Parameter values of the two-parameter exponential distribution.

Condominiums Detached properties
Month u0 u1 u0 u1

May 150, 000 188, 720 230, 000 301, 600
December 150, 000 186, 600 230, 000 279, 400

Table 6.4: Parameter values of the uniform distribution.

Condominiums Detached properties
Month u0 µ1 σ u0 µ1 σ

May 150, 000 9.8 0.35 230, 000 10.5 0.25
December 150, 000 9.7 0.37 230, 000 10.1 0.35

Table 6.5: Parameter values of the log-normal distribution.

6.7.2 Finding the distribution of N

In Table 6.6, we have recorded the average number of condominiums and detached properties

sold, as well as their variances for all months from the year 2003 to 2012. Although the number

of properties sold is not the same as the number of properties available on the market, this is the

most relevant information we have managed to gather over the 10-year period. Note that there

is a significant difference between the mean and the variance of properties sold each month.

Hence, it is not appropriate to assume that N follows the Poisson distribution. We shall next

find a more suitable discrete distribution for the random variable of the number N of properties

available on the market. We consider five discrete distributions: binomial, log-series, zeta,

hypergeometric, and negative binomial.
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Condominiums Detached
Month Average Variance Average Variance
January 116 8682 337 9698
February 132 280 490 2765
March 157 645 669 6243
April 170 420 706 3656
May 191 673 762 5592
June 180 401 733 2965
July 169 1047 673 4795
August 155 554 612 3650
September 131 300 549 2152
October 121 357 518 1322
November 106 259 467 4738
December 82 68 300 1253

Table 6.6: The averages and variances of sold properties for each month from the year 2003 to
2012 (numbers are rounded down to the nearest integer).

The binomial distribution

When N follows the binomial distribution with parameters n = 1, 2, . . . and 0 ≤ p ≤ 1, then

the expectation and the variance of N are given by

E[N] = np and Var[N] = np(1 − p).

Note that E[N] ≥ Var[N] always holds true. This contradicts results in Table 6.6, except

for condominiums sold in December. We now equate E[N] and Var[N] to the mean and the

variance of the number of condominiums sold in December. Hence, np = 82, and np(1 − p) =

68. Consequently,

n = 480 and p = 0.171.

The log-series distribution

When N follows the log-series distribution with parameter 0 ≤ p < 1, then the expectation and

the variance of N are given by

E[N] =
−1

ln(1 − p)
p

1 − p

and

Var[N] = −p
p + ln(1 − p)

(1 − p)2(ln(1 − p))2 .
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If we equate E[N] and Var[N] to the mean and the variance of the number of condomini-

ums and detached properties sold in each month, no solution can be obtained. Therefore, we

conclude that the log-series distribution is not suitable for N.

The zeta distribution

When N follows the zeta distribution with parameter s > 1, then the expectation and the

variance of N are given by

E[N] =
ζ1(s − 1)
ζ1(s)

for s > 2

and

Var[N] =
ζ1(s)ζ1(s − 2) − (ζ1(s − 1))2

(ζ1(s))2 for s > 3,

where

ζ1(s) =
∞∑

n=1

1/ns.

Standard packages are available to compute ζ1(s). For the sake of simplicity, we consider other

discrete distributions.

The hypergeometric distribution

When N follows the hypergeometric distribution with parameters n (n = 0, 1, . . . ,M), M (M =

0, 1, . . . ), and K (K = 0, 1, . . . ,M), such that max(0, n + K − M) ≤ k ≤ min(K, n), then the

probability mass function, the expectation, and the variance of N are given by

P[N = k] =

(
K
k

)(
M−K
n−k

)(
M
n

) ,

E[N] = n
K
M
,

Var[N] = n
K
M

M − K
M

M − n
M − 1

.

We note that E[N] ≥ Var[N] always holds true. The conclusion is similar to that of the

binomial distribution, that is, the hypergeometric distribution is not suitable for modelling the
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distribution of N, except for the number of condominiums available in December.

The negative binomial distribution

When N follows a negative binomial distribution with parameters r > 0 and β > 0, then the

expectation and the variance of N are given by

E[N] = rβ and Var[N] = rβ(1 + β).

Next, we equate E[N] and Var[N] to the mean and the variance of the number of condominiums

and detached properties sold in each month. For condominiums sold in January, we have

rβ = 116 and rβ(1 + β) = 8682.

Consequently,

r = 1.571 and β = 73.845.

Similarly, we obtain parameter estimates for r and β for the number of condominiums and

detached properties available in each month. Results are presented in Table 6.7. We see that

Condominiums Detached
Month r β r β

January 1.571 73.845 12.132 27.777
February 117.730 1.121 105.538 4.643
March 50.510 3.108 80.294 8.332
April 115.600 1.470 168.961 4.178
May 75.687 2.524 120.216 6.338
June 146.606 1.228 240.721 3.045
July 32.530 5.195 109.881 6.125
August 60.213 2.574 123.286 4.964
September 101.544 1.290 188.023 2.920
October 62.038 1.950 333.736 1.552
November 73.438 1.443 51.063 9.146
December −480.286 −0.171 94.439 3.177

Table 6.7: Negative binomial distribution with parameters r and β.

the negative binomial distribution is a reasonable choice for the distribution of N, except for

condominiums available in December. Hence, we use the binomial distribution to model the

number of condominiums available in December.
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6.7.3 Plots of the probabilities of purchasing a property

Here we plot the probabilities of a buyer purchasing a condominium or a detached property in

May and December. For the negotiated selling price distributions, we use results of Tables 6.3,

6.4, and 6.5. For the distribution of N, our assumptions are as follows:

• The number of condominiums available on the market in May follows the negative bino-

mial distribution with parameters r = 75.687 and β = 2.524.

• The number of condominiums available on the market in December follows the binomial

distribution with parameters n = 480 and p = 0.171.

• The number of detached properties available on the market in May follows the negative

binomial distribution with parameters r = 120.216 and β = 6.338.

• The number of detached properties available on the market in December follows the

negative binomial distribution with parameters r = 94.439 and β = 3.177.

Figure 6.1: The probabilities of purchasing condominiums (left panel) and detached properties
(right panel) in May (solid line) and December (dashed line) when negotiated selling prices
follow the exponential distribution.
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Figure 6.2: The probabilities of purchasing condominiums (left panel) and detached properties
(right panel) in May (solid line) and December (dashed line) when negotiated selling prices
follow the uniform distribution.

Figure 6.3: The probabilities of purchasing condominiums (left panel) and detached properties
(right panel) in May (solid line) and December (dashed line) when negotiated selling prices
follow the log-normal distribution.
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Concluding remarks and future work

7.1 Concluding remarks

When multiple parties are involved in the decision making process, the final outcome depends

on everybody’s decision. To illustrate how decisions might be made in such situations, we have

considered two scenarios: one in insurance and another in real estate industries. Of course,

numerous other scenarios can be considered, but each of them usually carries some specific

features that cannot always be generalized easily or naturally.

Specifically, in the insurance industry, we have discussed two criteria for finding an optimal

reinsurance policy that is beneficial to both the insurer and the reinsurer. The variance reduc-

tion approach was the first introduced criterion. We have shown that to maximize the variance

reduction, the covariance(s) should be maximized. We have also demonstrated through a nu-

merical example that maximizing the correlation coefficient with respect to the retention is not

a suitable criterion.

Under facultative reinsurance, we have considered using the variance reduction approach

to find optimal reinsurance in three cases. In the first case, conditions for the optimal retention

have been obtained when the policy limit is already determined. In the second case, conditions

for the optimal policy limit have been derived when the retention is already determined. In

the final case, we have proposed a negotiation process when both the retention and the policy

limit are still negotiable. Numerical results have been presented for the first thirteen rounds of

negotiations.

Under treaty reinsurance, we have used the variance reduction approach to optimize the

134
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reinsurance policy in two cases. In the first case, the claim size of each insurance policy is

independent of time. We have used four examples to illustrate how the optimal retention is

affected by parameter values of the distribution of the number of claims that require a claim

payment during a considered time interval. In the second case, claim sizes depend on preceding

inter-claim times. By adopting the approach of Sendova and Zitikis (2012), we have obtained

an explicit expression for the covariance of the insurer’s and the reinsurer’s shares of claims.

Next, to illustrate how the optimal retention is affected by time, two numerical examples have

been presented.

In addition to the variance reduction approach, we considered a method based on the CT E.

A connection between these two methods has been established. Explicit expressions for the

CT Es of the insurer’s and the reinsurer’s shares of the claim have also been presented. Fur-

thermore, we have obtained the optimal retention using the CT E-based criterion when the total

claim amount follows the exponential distribution and also the two-parameter Pareto distribu-

tion.

As to the illustrative scenario in the real estate industry, we have formulated the probability

of the buyer purchasing one property under various scenarios. We started by assuming that the

reservation price stays the same, and that the negotiated selling prices are i.i.d. One or more of

these assumptions were then dropped as our research progressed.

When the assumption of independent negotiated selling prices was dropped, three methods

for modelling the dependence structure among selling prices were discussed. Under the method

of direct representation, joint survival functions of several multivariate distributions from past

studies have been provided. Next, under the method of copula representation, we have used the

multivariate Pareto distribution of the second kind as an example to show how the joint survival

function can be obtained from the survival copula. Finally, the additive and multiplicative

background risk models have been discussed in detail.

In an illustrative example for properties in the London and St. Thomas area, we have ob-

tained parameter estimates for three negotiated selling price distributions. Furthermore, we

have successfully determined distributions that are suitable for modelling the number of con-

dominiums and detached properties available on the market. Finally, we have calculated the

probability of the buyer purchasing a condominium or a detached property in two months: May

and December.

Overall, this thesis proposes methodologies that facilitate decision making when multi-
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ple parties are involved in the process. Certain adjustments may be required to make the

methodologies more attractive from the practical point of view. Nevertheless, the developed

approaches are very general in nature and can be applied to various fields beyond insurance

and real estate.

7.2 Future work

In the first illustrative scenario, we have proposed methodologies for optimizing reinsurance

policies in the excess of loss form. We plan to apply the proposed methodologies to other

forms of reinsurance policies (e.g., quota share reinsurance). Furthermore, when the variance

reduction approach was applied under treaty reinsurance, we assumed independent claim sizes.

We will extend our model to include dependent claim sizes. Finally, we only considered the

CT E-based criterion under facultative reinsurance. We plan to also investigate the case when

the method of treaty reinsurance is assumed.

In the second illustrative scenario, we have assumed only the buyer and the seller are in-

volved in buying or negotiating selling properties. We plan to consider the involvement of

agents. We can also extend our model to include other factors (e.g., inflation) that influence the

negotiated selling prices. Furthermore, to incorporate the feature of seasonal trends, we plan

to use the Poisson process with a variety of periodic and other intensity functions to model the

number of properties available on the market (cf., e.g., Bebbington and Zitikis, 2004).

Finally, it is important to keep in mind that situations like the one just discussed about

buying or selling arise in a variety of contexts, including of course insurance: indeed, a person

may have a budget in mind and searches for an insurance policy to purchase. In short, the

results of this thesis can be extended to a multitude of scenarios, well beyond the two illustrative

ones considered in the thesis.
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