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Abstract 

Sepsis is characterized by a severe systemic inflammatory response to infection that is 

associated with high morbidity and mortality despite optimal care. Invariant natural killer T 

(iNKT) cells are potent regulatory lymphocytes that can produce pro- and/or anti-inflammatory 

cytokines, thus shaping the course and nature of immune responses; however, little is known 

about their role in sepsis. We demonstrate here that patients with sepsis/severe sepsis have 

significantly elevated proportions of circulating iNKT cells in their peripheral blood, as 

compared to non-septic patients. We therefore investigated iNKT cells in mice with intra-

abdominal sepsis (IAS). Our data show that iNKT cells are pathogenic in IAS, and that T helper 

(Th)2-type polarization of iNKT cells using the synthetic glycolipid OCH significantly reduced 

mortality from IAS. This reduction in mortality is associated with the systemic elevation of the 

anti-inflammatory cytokine interleukin (IL)-13, and reduction of several pro-inflammatory 

cytokines within the spleen, notably IL-17. Finally, we show that administration of OCH in 

septic mice is associated with significantly reduced apoptosis of splenic T and B lymphocytes, as 

well as macrophages, but not natural killer cells. We propose that modulation of iNKT cell 

responses towards a Th2 phenotype may be an effective therapeutic strategy in sepsis.  
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1.1 Introduction to Sepsis 

1.1.1 Epidemiology of Sepsis 

Sepsis is defined as an overwhelming systemic inflammatory response to an infection [1]. 

It is one of the leading causes of death among patients in non-coronary intensive care units [2, 3], 

and the tenth leading cause of death overall in North America [4]. With a mortality rate of 20% 

to 50% in the acute setting [5], sepsis also substantially reduces the quality of life among 

survivors [6, 7]. The management of sepsis also presents a huge financial burden for the 

healthcare system: the care of septic patients costs as much as $50,000 per patient [8], resulting 

in an economic burden of nearly $17 billion annually in Canada and the United States [2]. It is 

more worrisome that a 75% increase in the number of patients diagnosed with severe sepsis has 

been observed over the past two decades. This may be explained partly by the improved care of 

the increasing number of individuals surviving into their 70s, 80s, and 90s and by the associated 

co-morbidities of the elderly, including cancer and diabetes [9]. Therefore, as the general 

population continues to age, the incidence of sepsis is projected to increase significantly in the 

forthcoming years, leading, for example, to over 1 million cases of severe sepsis in 2020 in the 

United States alone [2]. 

1.1.2 Diagnosis of Sepsis 

Definitions of sepsis, severe sepsis, and septic shock were previously based on expert 

advice, using criteria that identified progression of the infection along with appropriate 

physiological responses [10]. In particular, the presence of the systemic inflammatory response 

syndrome (SIRS; Table 1) was suggested to be a precursor of severe sepsis [11].   
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Table 1: Clinical criteria for severe inflammatory response syndrome (SIRS). 

SIRS Criteria 

At least two or more of the following: 

1. Temperature  >38°C or < 36°C 

2. Heart Rate > 90/min 

3. Respiratory Rate > 20/min or PaCO2 < 32 mmHg 

4. White Blood Cell Count >12 × 109 / L or < 4 × 109 / L 
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However, studies illustrating the limited value of SIRS criteria in predicting the risk of 

developing organ dysfunction, shock, and death [12-14], prompted the development of new 

scoring systems and clinical criteria. Consequently, the 2001 International Sepsis Definitions 

Conference (ISDC), sponsored by the Society for Critical Care Medicine (SCCM), the European 

Society of Intensive Care Medicine (ESICM), the American College of Chest Physicians 

(ACCP), the American Thoracic Society (ATS), and the Surgical Infection Society (SIS), 

expanded the list of signs and symptoms of sepsis (Tables 2 and 3) to reflect clinical bedside 

experience [15]. These definitions of sepsis, severe sepsis, and septic shock were also based on 

consensus guidelines and expert opinion, and exhibit broad physician endorsement. Additionally, 

evidence-based recommendations from the Surviving Sepsis Campaign (SSC) Management 

Guidelines Committee [16] provided treatment algorithms to appropriately resuscitate and 

manage patients with sepsis. 
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Table 2: Diagnostic criteria for sepsis. 

Infection, documented or suspected, and two or more of the following: 
General variables 

Fever (>38.3°C) 

Hypothermia (core temperature <36°C) 

Heart rate >90 min-1 or >2 SD above the normal value for age 

Tachypnea 

Altered mental status 

Significant edema or positive fluid balance (>20 mL/kg over 24 hrs) 

Hyperglycemia (plasma glucose >140 mg/dL or 7.7 mmol/L) in the absence of 

diabetes 

Inflammatory variables 

Leukocytosis (WBC count >12,000 µL-1) 

Leukopenia (WBC count <4000 µL-1) 

Normal WBC count with >10% immature forms 

Plasma C-reactive protein >2 SD above the normal value 

Plasma procalcitonin >2 SD above the normal value 

Hemodynamic variables 

Arterial hypotension (SBP <90 mm Hg; MAP <70 mm Hg; or an SBP decrease >40 

mm Hg in adults or >2 SD below normal for age) 

Organ dysfunction variables 

Arterial hypoxemia (PaO2/FIO2  <300) 

Acute oliguria (urine output <0.5 mL/Kg hr or 45 mmol/L for at least 2 hrs, despite 

adequate fluid resuscitation) 

Creatinine increase >0.5 mg/dL or 44.2 µmol/L 

Coagulation abnormalities (INR >1.5 or a PTT >60 secs) 

Ileus (absent bowel sounds) 

Thrombocytopenia (platelet count, <100,000/µL) 

Hyperbilirubinemia (plasma total bilirubin >4 mg/dL or 70 µmol/L) 

Tissue perfusion variables 

Hyperlactatemia (> upper limit of lab normal) 

Decreased capillary refill or mottling 

Abbreviations: WBC: white blood cell; SBP: systolic blood pressure; MAP: mean arterial 

pressure; INR: international normalized ratio; aPTT: activated partial thromboplastin time.  
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Table 3: Diagnostic criteria for severe sepsis. 

Severe sepsis - sepsis-induced tissue hypoperfusion or organ dysfunction (any of the 

following thought to be due to the infection): 
Sepsis-induced hypotension 

Lactate greater than the upper limits of normal laboratory results 

Urine output <0.5 mL/kg.hr for >2 hrs, despite adequate fluid resuscitation 

ALI with PaO2/FIO2 <250 in the absence of pneumonia as infection source 

ALI with PaO2/FIO2 <200 in the presence of pneumonia as infection source 

Creatinine >2.0 mg/dL (176.8 µmol/L) 

Bilirubin >2 mg/dL (34.2 µmol/L) 

Platelet count <100,000 

Coagulopathy (INR > 1.5) 
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1.2 Management of Sepsis 

The management and treatment of sepsis has evolved dramatically over the last forty 

years [17, 18]. While there is an abundance of treatment algorithms for managing patients with 

sepsis, I will briefly highlight the most critical therapeutic strategies, as recommended by the 

Surviving Sepsis Campaign [16, 19, 20]. 

1.2.1 Early Goal-Directed Therapy 

The landmark study by Rivers et al [21] emphasized the concept of early goal-directed 

therapy (EGDT) in the treatment of sepsis: measures to improve physiological parameters, such 

as blood pressure and tissue oxygen delivery, immediately upon diagnosis of sepsis significantly 

reduced patient mortality, disease severity scores, and severity and duration of organ dysfunction 

[22]. These measures included the use of fluids, vasopressors, and packed red cells, and early 

initiation of mechanical ventilation to attain physiologically-normal hemodynamic parameters as 

rapidly as possible. The overwhelmingly positive results reported by Rivers et al prompted 

hospitals to deploy “sepsis teams” and “critical care outreach teams” to manage patients with 

severe infections in the wards [20, 23-26], resulting in improved clinical outcomes [27]. 

1.2.2 Antibiotic Therapy 

Early parenteral broad-spectrum antimicrobial therapy significantly improves clinical 

outcomes in sepsis [28]. Antibiotic administration within four hours of diagnosing elderly 

patients (age over 65) with community-acquired pneumonia significantly reduced in-hospital 

mortality, 30-day mortality, and length of stay in hospital [28]. Every additional hour without 

antibiotics increased the risk for death in hypotensive septic patients by 7.6% during the first 6 

hours [29]. However, treatment effectively targeting the responsible pathogen is critical [30], 

since the ineffectiveness of antimicrobial treatment against a micro-organism identified in blood 
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cultures is strongly associated with death [31]. Compliance with the SSC guidelines, however, 

remains low with respect to antibiotic administration: the mean delay to first infusion of 

antibiotics remained in excess of 3 hours [23], and as many as 68% of patients did not receive 

their first dose within this period [19]. 

1.2.3 Hemodynamic Resuscitation 

Efficient restoration of circulating blood volume is the primary goal of resuscitation in 

septic patients [32], although modalities of treatment continue to evolve. The use of crystalloids 

rather than colloids is supported by current literature. While both result in similar ejection stroke 

volume and oxygen delivery [33],  patients receiving colloids had greater renal impairment [34]. 

The use of albumin in sepsis also remains controversial. Although it was the first product to be 

broadly used for intravenous fluid loading, a meta-analysis comparing albumin with other fluid 

loading agents identified an increased risk for death among patients who received albumin for 

supportive treatment during shock [35]. In septic patients with hypoalbuminemia, however, the 

use of albumin improved fluid loading [36], although its cost-effectiveness has been questioned 

[37]. Since the publication of the EGDT results by Rivers et al [21], the transfusion of packed 

red cells has also been regarded as a valuable approach to improving tissue oxygenation. Liberal 

transfusion of blood, however, has been shown to be potentially ineffective [38, 39]. However, in 

the setting of severe sepsis and septic shock the theoretical risks appear balanced by the benefits 

in terms of tissue oxygenation [40]. 

1.2.4 Vasoactive Drugs 

Vasopressors may allow therapies to be applied earlier and more aggressively in order to 

improve physiological parameters [41], although their influence on mortality is unclear [42]. 

Norepinephrine and dobutamine improve hepatic and splanchnic circulation [43], while 
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dopamine and epinephrine are vasoconstrictors that also increase cardiac output. However, the 

latter may cause harmful metabolic effects if used inappropriately [44]. Vasopressin (an 

analogue of anti-diuretic hormone) is recommended as a second-line vasopressor, although it 

may be used as a first-line agent in the treatment of septic shock in select cases [45, 46]. 

1.2.5 Adjunct Therapeutic Strategies 

Low tidal volume mechanical ventilation and strict blood glucose control are crucial 

components of the care provided to critically-ill patients. Low tidal volume (≤ 6 ml/kg) improves 

survival in patients with acute respiratory distress syndrome [47, 48], compared to “standard” 

mechanical ventilation (12 ml/kg). Landmark studies by van den Berghe et al [49] suggested that 

aggressive insulin therapy improved 30-day survival in critically-ill patients, and dramatically 

reduced their morbidity and length of hospital stay. 

1.2.6 Prognosis in Sepsis 

Earlier identification of patients with sepsis (through guidelines and training of healthcare 

personnel) and improved treatment algorithms have significantly reduced the early mortality in 

sepsis [17]. Most patients survive the early hyper-inflammatory phase of sepsis and enter a more 

protracted phase [50, 51]: more than 70% of deaths in sepsis occur after the first 3 days of the 

disorder, with many deaths occurring weeks later. If the patient dies in the first few days, death 

will probably have been caused by cytokine-driven hyper-inflammation and multiple organ 

failure, especially cardiovascular collapse (Figure 1). In many situations of protracted sepsis, 

however, death is due to the family's decision to change from aggressive support measures to 

comfort measures because of the patient's many, severe pre-existing comorbidities and small 

probability of meaningful recovery. 
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Figure 1: Inflammatory responses among septic patients. 

This figure was adapted from Hotchkiss et al [17]. (A) The initial response in otherwise-healthy 

patients with severe sepsis is characterized by an overwhelming hyper-inflammatory phase with 

fever, hyperdynamic circulation, and shock. Deaths during this phase are generally due to 

cardiovascular collapse, metabolic and physiologic disruption, and multi-organ failure. (B) In 

elderly patients with numerous comorbidities that impair immune response, sepsis results in a 

blunted or absent hyper-inflammatory phase. Patients rapidly develop impaired immunity and an 

anti-inflammatory state, and may die from secondary infections. (C) Some patients with sepsis 

alternate between hyper- and hypo-inflammatory states, especially if they develop superimposing 

infections. They eventually become severely immunosuppressed and may die from secondary 

infections or organ failure.  
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In a post-mortem study, Torgersen et al determined that 80% of surgical patients 

admitted to an intensive care unit had unresolved septic foci; only 52 of 97 autopsy-confirmed 

pneumonias were appropriately diagnosed during their intensive-care admission. Additionally, 

peritonitis accounted for many unresolved septic foci. While such ongoing infections are not 

necessarily the main cause of death, the real cause of death and organ failure in most patients 

dying of sepsis is still unclear. 

1.3 Immunology of Sepsis 

1.3.1 Immunological Mechanisms in Sepsis 

In sepsis, systemic exposure to pathogenic microbial lipids initiates a complex and 

dysregulated immune response [18, 52, 53]. Macrophages and antigen-presenting cells (APCs) 

recognize and phagocytose invading bacteria. These cells subsequently produce pro-

inflammatory cytokines, including interleukin (IL)-1β, tumour necrosis factor (TNF), and IL-6, 

as well as chemokines such as IL-8 [18]. Following the recruitment of neutrophils and 

lymphocytes, and the resulting surge of more pro-inflammatory cytokines such as interferon 

(IFN)-γ [54-57], some patients develop an overwhelming hyper-inflammatory response with 

systemic physiological effects [18]. The intensity of this initial hyper-inflammatory phase is 

determined by factors such as pathogen virulence, bacterial load, host genetic factors, age, and 

patient comorbidities. In 30% of cases, mortality occurs within the first 72 hours because of the 

cytokine-storm-mediated inflammatory response that leads to septic shock and multiple organ 

failure. 

Opposing anti-inflammatory processes are also concomitantly initiated to mitigate the 

pro-inflammatory state. Studies of circulating cytokines in 464 patients with community-
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acquired infections demonstrated that, in addition to pro-inflammatory cytokines, concentrations 

of the potent anti-inflammatory cytokine interleukin 10 (IL-10) were significantly increased [58]: 

additionally, a high ratio of IL-10  to TNF-α correlated with mortality in these patients. Other 

studies have also documented a global cytokine depression in sepsis, with reduced production of 

pro- and anti-inflammatory cytokines [59-61]. When whole blood from patients with and without 

sepsis was stimulated with endotoxin, the production of TNF-α, IL-1β, and IL-6 from septic 

patients was less than 10–20% of that found in non-septic patients [59]. Lipopolysaccharide-

stimulated monocytes from septic patients had profoundly decreased production of TNF-α, IL-

1β, and IL-6, compared to controls [60]. Similarly, when Sinistro et al stimulated blood 

monocytes from septic and non-septic patients, fewer than 5% of monocytes from the septic 

group produced cytokines, compared with roughly 15-20% of monocytes from non-septic 

patients [62]. In a study by Weighardt et al, postoperative sepsis was associated with defects in 

production of both proinflammatory and anti-inflammatory cytokines when monocytes were 

stimulated by lipopolysaccharide [63]. These results indicate that patients with sepsis either 

rapidly produce both pro- and anti-inflammatory cytokines, or produce a predominance of anti-

inflammatory cytokines, or produce reduced levels of cytokines overall. 

1.3.2 Immunosuppression in Sepsis 

Immunosuppression also occurs in individual organs during sepsis. In a study by Boomer 

et al [64], lipopolysaccharide-stimulated splenocytes from patients with sepsis had reduced 

production of both proinflammatory and anti-inflammatory cytokines, less than 10% of that in 

patients without sepsis. Both spleens and lungs showed upregulated expression of selected 

inhibitory receptors including programmed cell death 1 (PD-1), expansion of suppressor cells (T 

regulatory cells and myeloid derived suppressor cells), and concomitant downregulation of 
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activation pathways [64]. These results confirm that sepsis decreases the response of cells of the 

innate and adaptive immune systems, and that multiple mechanisms of immunosuppression 

occur in different organs. 

Critically-ill patients who have normal immunity before admission may become 

profoundly immune-compromised during protracted sepsis as a result of immunosuppression: 

weakly-virulent or opportunistic pathogens, such as Stenotrophomonas, Acinetobacter, 

Enterococcus, Pseudomonas, and Candida, especially affect septic patients with severely 

depressed host immunity [65, 66]. Additionally, the reactivation of cytomegalovirus (CMV) and 

herpes simplex virus (HSV) occurred in approximately 33% and 21%, respectively, of critically-

ill patients with sepsis who were immune-competent prior to their infection [67, 68]. Meakins et 

al [69] noted that patients with sepsis and trauma had loss of delayed type hypersensitivity 

response to common recall antigens such as measles and mumps, a finding that correlated with 

mortality. 

1.3.3 Apoptosis in Sepsis 

Apoptosis of the innate and adaptive immune systems plays a critical role in the anti-

inflammatory and immunosuppressive host response during sepsis. Hotchkiss et al observed a 

striking apoptosis-induced loss of cells of the innate and adaptive immune systems in the spleen, 

including CD4+ and CD8+ T cells, B cells, and dendritic cells [70, 71]. During a life-threatening 

infection when clonal expansion of lymphocytes should be occurring, the loss of immune cells is 

particularly striking, and occurs in all ages, including pediatric and neonatal patients with sepsis 

[72, 73]. In addition to the widespread apoptosis that occurs in the spleen during sepsis [70, 74-

76], Le Tulzo et al observed a marked increase in apoptosis among circulating lymphocytes 

obtained from patients in septic shock compared to critically ill non-septic patients [77]. This 
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phenomenon is believed to lead to a profound and persistent lymphopenia that is associated with 

poor outcome. 

Caspases are the key enzymes involved in apoptosis, and also play critical regulatory 

roles in the inflammatory response [78, 79]. They may be divided into two functionally distinct 

subfamilies: those involved in apoptosis (caspase-2, caspase-3, caspase-6, caspase-7, caspase-8, 

caspase-9 and caspase-10) and those related to cytokine processing and regulation of 

inflammation (caspase-1, caspase-4, caspase-5 and caspase-12) [80, 81]. The pro-inflammatory 

caspases, such as caspase-1 and caspase-5, are activated after assembly of an intracellular 

structure, designated the inflammasome, and mediate the cleavage and activation of several pro-

inflammatory cytokines, including IL-1β and IL-18 [80].  

Apoptosis may be induced through two different pathways: a death receptor-initiated 

caspase-8-mediated pathway and a mitochondrion-initiated caspase-9-mediated pathway [82, 

83]. Either caspase-8 or caspase-9 can activate caspase-3, which is a crucial apoptotic protease in 

the apoptotic cell-death mechanism. Caspase-8 can be activated by several ligands of the 

different death receptors, including TNF-α, a key cytokine that increases in patients with sepsis, 

and CD95L (also known as FasL). The mitochondrial pathway can be activated by a diverse 

range of stimuli, including reactive oxygen species, radiation and chemotherapeutic agents [84]. 

Apoptosis contributes to immunosuppression during sepsis through the deletion of critical 

effector cells including T and B cells, and the induction of anergy (the inability of a lymphocyte 

to mount a complete response against a specific antigen) and T helper 2 (Th2)-cell responses in 

surviving immune cells. The apoptosis of T and B cells significantly impairs the adaptive 

immune response, and, by disabling the cross-talk between the adaptive and innate immune 
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systems, also impairs the latter [17, 64, 74]. The apoptosis-induced reduction in the number of 

dendritic cells (DCs), the most potent APCs, further compromises the innate and adaptive 

immune responses [85]. Apoptosis also induces anergy and T helper 2 (Th2)-cell responses in 

surviving immune cells [86, 87]. Furthermore, the uptake of apoptotic cells by macrophages and 

DCs stimulates the release of anti-inflammatory cytokines, including IL-10 and transforming 

growth factor-β (TGF-β), and suppresses the release of pro-inflammatory cytokines [87]. This 

potential link between the release of IL-10 by apoptotic cells and immune suppression in sepsis 

is underscored by studies showing that the circulating concentration of IL-10 is predictive of a 

fatal outcome in patients with sepsis [58, 88]. In addition, uptake of apoptotic cells by 

macrophages and DCs does not induce the expression of co-stimulatory molecules: therefore, T 

cells that come into contact with APCs that have ingested apoptotic cells might either become 

anergic or undergo apoptosis themselves [87]. 

1.3.4 Immunotherapy of Sepsis 

Given the increasing knowledge about the mechanisms and effectors in sepsis, more than 

thirty clinical trials of immunotherapeutic agents were initiated. The results were disheartening: 

none showed any benefit and even worse, some drugs demonstrated reduced survival rates [89, 

90] and were prematurely terminated. The paucity of knowledge about the molecular 

pathophysiology of sepsis, the inability of animal models to correctly mimic the 

pathophysiological processes leading to sepsis in humans, and the inability to account for the 

influence of risk factors such as age, nutrition, gender, and various other co-morbidities in 

patients [90] were identified as the key reasons for the failure of these trials.  
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Table 4: Immunotherapeutic agents that have failed in human sepsis trials. 

Immunotherapeutic Target Drug Company Result Ref. 

Treatment with anti-endotoxins     

Anti-endotoxin antibodies Nebacumab Withdrawn Increased mortality [91] 

LPS analogs Eritoran Eisai No effect on mortality [92] 

Treatment with antagonists to 

specific mediators 

    

TNF     

Anti-TNF antibodies Afelimomab Abbott Marginal reduction in 

mortality 

[93] 

TNF receptors Lenercept Genentech No effect on mortality [94] 

IL-1 or IL-1RA Anakinra Amgen No effect in mortality [95] 

Coagulants     

Antithrombin Antithrombin 

III  

Grifols No effect on mortality [96] 

Activated protein C Drotrecogin 

alpha, rAPC 

Eli Lilly Increased mortality [97] 

Tissue factor pathway 

inhibitor 

Tifacogin Novartis No effect on mortality [98] 

PAF     

PAF antagonists Lexipafant British 

Biotechnolo

gy Ltd. 

No effect on mortality [99] 

PAF-acetylhydrolase rPAF-AH  No effect on mortality [100] 

PLA2: PLA2 inhibitor Varespladib Anthera 

Pharmaceuti

cals 

No survival benefit [101] 

Immunostimulation therapy     

Immunoglobulins IVIG N/A No effect on mortality [102] 

Granulocyte colony-

stimulating factor, IFN-γ 

Immunonutrition 

Molgramosti

m 

Zenotech Reduced ventilator-

dependent days and ICU 

stay 

[103] 

Nonspecific interventions     

Corticosteroid therapy Steroids N/A 

(Generic) 

No effect on mortality [104] 

High-output hemofiltration - N/A No evidence for use [105] 

  



17 

 

Since most patients rapidly progress to an immunosuppressive state, the focus of 

immunotherapeutic approaches has shifted to the development of methods to augment host 

immunity. Granulocyte macrophage colony stimulating factor (GM-CSF), a cytokine that 

activates and induces production of neutrophils and monocytes or macrophages, has shown 

potential as a treatment agent in sepsis [106, 107]. Patients who were in the immunosuppressive 

phase of sepsis (as determined by persistent decreases in monocyte HLA-DR expression, a 

common abnormality in sepsis), were treated with GM-CSF and had restoration of HLA-DR 

expression, fewer ventilator-dependent days, and shorter hospital and intensive care unit days 

[106]. In a paediatric sepsis study, Hall et al [107] treated immunosuppressed patients with GM-

CSF, which reduced the incidence of new nosocomial infections. 

Another immunotherapeutic agent is interleukin 7 (IL-7), a cytokine that has been termed 

the “maestro of the immune system” because of its diverse effects on immunity [108-112]. IL-7 

induces proliferation of naive and memory T cells, thereby supporting the replenishment of 

lymphocytes, which are relentlessly depleted during sepsis [64, 70, 71, 113]. In clinical trials at 

the National Cancer Institute (NCI), it caused a doubling of circulating CD4+ and CD8+ T cells, 

and an increase in size of spleen and peripheral lymph nodes by roughly 50% [110]. Similarly, 

IL-7 significantly increased the levels of circulating CD4+ and CD8+ T cells in HIV-infected 

patients with persistently low CD4+ T cells despite effective viral suppression [114]. IL-7 

therefore reverses profound lymphopenia, a major pathological abnormality in sepsis. IL-7 also 

has other additional actions that are highly beneficial in sepsis [109, 111, 112]: it increases the 

ability of T cells to become activated, potentially restoring functional capacity of hyporesponsive 

or exhausted T cells which typify sepsis [115, 116]; increases expression of cell-adhesion 
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molecules, which enhance trafficking of T cells to sites of infection [115] and increases T-cell 

receptor diversity, leading to more potent immunity against pathogens [111, 114]. 

IL-7 has shown efficacy both clinically and in animal models of infection. A case report 

of a patient with idiopathic low CD4 T cells with progressive multifocal leukoencephalopathy 

(PML) showed that IL-7 caused rapid increases in lymphocytes, decreased circulating JC virus, 

and led to disease resolution [117]. In mice that were chronically infected with lymphocytic 

choriomeningitis, IL-7 treatment enhanced T-cell recruitment to the infected site and increased 

T-cell numbers, thereby improving viral clearance [111]. Unsinger et al showed that IL-7 

restored the delayed type hypersensitivity response, decreased sepsis-induced lymphocyte 

apoptosis, reversed sepsis-induced depression of IFN-γ (a cytokine that is essential for 

macrophage activation), and improved survival in murine polymicrobial sepsis [115]. IL-7 was 

also found to be beneficial in a fungal sepsis model that reproduces the delayed secondary 

infections typical of patients in intensive care units [118]. IL-7 was able to reverse sepsis-

induced T-cell alterations in septic shock patients [116]. Ex-vivo treatment of patients' cells with 

IL-7 corrected multiple sepsis-induced defects including CD4+ and CD8+ T cell proliferation, 

IFN-γ production, STAT5 phosphorylation, and Bcl-2 induction to that of healthy controls. This 

functional restoration indicates that the IL-7 pathway remains fully operative during sepsis [116]. 

IL-7 is in clinical trials in patients with cancer, HIV-1, and PML. It has been well 

tolerated in more than 200 patients and, unlike IL-2, a closely-related cytokine, it rarely induces 

fever, capillary leak syndrome, or other clinical abnormalities associated with excessive pro-

inflammatory cytokines [110, 119]. Because of its diverse beneficial effects on immunity and 

excellent safety record, investigators at the National Cancer Institute have consistently ranked 

IL-7 as one of the top potential immunotherapeutic molecules [120]. Because of its many 
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beneficial effects on immunity, reported efficacy in bacterial, fungal, and animal sepsis models, 

and clinical track record, IL-7 is believed to have enormous promise in the treatment of sepsis. 

Another exciting immunomodulatory therapy that holds much potential in sepsis involves 

blockade of negative costimulatory molecules present on T cells. The negative costimulatory 

molecule PD-1 is inducibly expressed on CD4+ and CD8+ T cells [121, 122]. Signalling through 

PD-1 inhibits the ability of T cells to proliferate, produce cytokines, or perform cytotoxic 

functions. Persistent antigenic exposure as occurs in chronic viral infections such as HIV-1 and 

viral hepatitis leads to excessive PD-1 expression and exhausted T cells [123, 124]. Antibody 

blockade of PD-1 or its ligand (PD-L1) can reverse T-cell dysfunction and induce pathogen 

clearance [124]. Similarly, three independent groups showed that blockade of the PD-1 pathway 

improves survival in clinically relevant animal models of bacterial and fungal sepsis [125, 126]. 

PD-1 over-expression on circulating T cells from patients with sepsis correlated with decreased 

T-cell proliferative capacity, increased secondary nosocomial infections, and mortality 

[127]. Thus, expression of PD-1 or PD-L1 on circulating immune cells could function as a 

valuable biomarker for the selection of candidates for blockade therapy. Importantly, post-

mortem study of patients with sepsis showed that PD-L1 was highly expressed on tissue 

parenchymal cells, including endothelial cells, thereby providing opportunity for pathway 

activation [128]. 

Another immunostimulatory cytokine receiving renewed interest as a potential 

therapeutic agent in sepsis is IFN-γ, a potent monocyte, macrophage, and NK cell activator, 

which produced encouraging results in a small trial of patients with sepsis. Docke et al 

[129] treated patients with sepsis whose monocytes had reduced HLA-DR expression and 
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produced decreased amounts of TNF-α after lipopolysaccharide stimulation. IFN-γ treatment 

reversed the sepsis-induced monocyte dysfunction and resulted in eight of nine patients 

successfully resolving the septic insult. Nalos et al reported on use of IFN-γ in a patient with 

persistent staphylococcal sepsis [130]. IFN-γ therapy resulted in increased monocyte expression 

of HLA-DR, increased numbers of IL-17-producing CD4+ T cells, and clinical resolution of the 

sepsis. IFN-γ is approved for treatment of fungal sepsis in patients with chronic granulomatous 

disease. In a randomized controlled trial, Jarvis et al [131] treated HIV patients who had 

cryptococcal meningitis with IFN-γ: patients treated with IFN-γ had more rapid clearing of 

cerebrospinal fluid than control patients. 

Other molecules in early stages of testing have also shown efficacy in clinically relevant 

animal models of sepsis. IL-15 is a pluripotent cytokine closely related to interleukin 7 [132] that 

also acts on CD4+ and CD8+ T cells to induce proliferation and prevent apoptosis. A potential 

advantage of IL-15 compared with IL-7 is its potent immunostimulatory and proliferative effects 

on natural killer (NK) cells and dendritic cells. These cells have important roles in fighting 

infection and are also severely depleted in sepsis. Inoue et al [132] reported that IL-15 blocked 

sepsis-induced apoptosis of CD8+ T cells, NK cells, and dendritic cells, and improved survival in 

sepsis due to cecal ligation and puncture and in primary pseudomonas pneumonia. The B and T 

lymphocyte attenuator (BTLA) is an immunoregulatory receptor expressed by various innate and 

adaptive immune cells. Activation of BTLA induces a potent immunosuppressive effect on T 

cells and other immune cells. Adler et al [133] reported that BTLA null mice showed reduced 

parasitaemia and faster clearing of malaria in a murine model of infection. Results in the cecal 

ligation and puncture model of murine sepsis show similar protective effects: BTLA-null mice 

have increased survival and reduced organ injury compared with wild-type mice [133]. 
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Lastly, anti-apoptotic therapies have also shown promise in early pre-clinical studies of 

sepsis [113, 134, 135]. Mice that overexpress B-cell lymphoma 2 (BCL-2; a protein known to 

protect against apoptosis mediated through the mitochondrial pathway) in T or B cells are almost 

completely protected from sepsis-induced lymphocyte apoptosis [113]. In rat cardiomyocytes 

exposed to endotoxin, Carlson et al observed that TNF-α-induced caspase activation that 

subsequently caused cardiac dysfunction [78]. Lancel et al also demonstrated that caspases also 

caused contractile dysfunction in cardiac myocytes exposed to endotoxin [79]; however, the 

broad-spectrum caspase inhibitor zVAD.fmk (N-benzlyoxycarbonyl-valylalanyl- aspartyl-

fluoromethylketone) had a protective effect on endotoxin-exposed myocytes. zVAD.fmk also 

provided significant neuroprotection by reducing hippocampal neuronal cell death in 

pneumococcal meningitis [136], and improved survival in a mouse model of cecal ligation and 

puncture [134, 137]. Despite these favourable results, the use of caspase inhibitors for treating 

sepsis may not be feasible for multiple reasons. Firstly, it is necessary to have a persistent and 

nearly complete caspase inhibition to prevent cell death, because even a small amount of 

activated caspase-3 is sufficient to initiate genomic DNA breakdown and lead to apoptotic cell 

death [138]. Secondly, caspases have many functions in addition to their roles as cell-death 

proteases and regulators of inflammation, including being essential for lymphocyte activation, 

proliferation and protective immunity; blocking caspases therefore may have unintended 

negative consequences by blocking the patient’s ability to mount an effective immune response. 

Despite the challenges of developing immune-based therapy for a disease as complex as sepsis, 

novel immune-adjuvants and immunomodulatory treatments offer hope in the battle against this 

disease. 
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1.4 Natural Killer T Cells and Sepsis 

1.4.1 Characterization of Natural Killer T Cells 

In the last decade, there has been increasing interest in natural killer T cells, a unique 

population of lymphocytes that plays a central role as effectors and regulators of the septic 

response by interacting with both the innate and adaptive immune systems [139]. 

NKT cells were originally defined in mice as a CD4-CD8- population that co-expresses 

the T cell receptor (TCR) and NK1.1, a natural killer (NK) cell surface marker in certain mouse 

strains [140]. Subsequent studies, however, have shown that a subset of NK1.1- cells may also 

exhibit characteristics of NKT cells [141]. These cells can be broadly categorized into type I or 

invariant NKT (iNKT) cells and type II NKT cells [141]. Unlike conventional T cells which 

recognize peptide antigens presented in the context of the major Histocompatibility Complex 

(MHC) class I or II molecules, NKT cells recognize glycolipid antigens presented on the MHC 

class I-like molecule CD1d [141, 142]. CD1d is a member of a family of CD1 glycoprotein 

molecules expressed on various APCs associated with β2-microglobulin [142]. Type I and II 

NKT cells differ in the diversity of their TCRs and their known ligands. iNKT cells express 

semi-invariant α/β TCRs consisting of an invariant Vα14/Jα18 chain in mice (Vα24/Jα18 in 

humans; Figure 2) and a limited set of β chains [141]. Despite having well-characterized TCRs, 

the endogenous ligands of iNKT cells are ill defined. Alpha-galactosylceramide (α-GalCer), a 

synthetic glycosphingolipid (GSL) initially derived from a marine sponge, is the prototype 

agonist of iNKT cells and a powerful tool in studying the impact of NKT cell activation on 

microbial immunity [143]. In contrast to iNKT cells, type II NKT cells are nonresponsive to α-

GalCer and possess a more diverse TCR repertoire [140, 141]. NKT cells promptly secrete large 

amounts of Th1 and Th2 cytokines including IFN-γ and IL-4, respectively, upon stimulation 
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[144, 145], leading to the activation of macrophages, B cells, NK cells, and dendritic cells as 

well as effector T cells (Figure 3). In addition to cytokine production, NKT cells also possess 

cytotoxic effector activity by way of lysis of target cells that is dependent on perforin and FasL 

[146, 147].  
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Figure 2: Antigens and Receptors of invariant Natural Killer T (iNKT) cells. 

iNKT cells have a semi-invariant T cell receptor (TCR) with restricted antigen-binding ability, 

whereas conventional T cells possess diverse TCRs which can recognize a multitude of antigens. 

iNKT cells bind glycolipid antigens presented in the context of an MHC Class I-like molecule 

CD1d, in stark contrast to conventional CD4+ and CD8+ T cells which bind peptide antigens 

presented in MHC Class II and I molecules, respectively.  
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Figure 3: Factors released by invariant Natural Killer T (iNKT) cells. 

iNKT cells rapidly release many cytokines and chemokines upon activation, which in turn have 

regulatory effects on numerous effector cells of the innate and adaptive immune systems. 
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Functional differences have been reported for NKT cells that differentially express CD4 

[148, 149], NK1.1 [150-152] and other surface molecules [153] and may also exist between 

NKT cells from different organs [154, 155]. There is no clear consensus on this issue, but it is 

important to recognize that the composition and origin of NKT cells may affect their overall 

response. For that reason, it is highly recommended that functional assays be assessed in context 

of the origin and phenotype of NKT cells at the beginning and end of experiments. 

1.4.2 NKT Cells in Experimental Animal Models 

Various experimental models [156-161] have established NKT cells as the principal 

initiators of an excessive pro-inflammatory response that promotes lethality in sepsis and 

endotoxic shock. In mice, two consecutive injections of LPS stimulate NK1.1+ T cells [162] to 

release large amounts of IFN-γ [163], which results in a lethal endotoxemia. LPS also activates 

and increases the cytotoxicity of NKT cells in the liver through IL-12 produced by Kupffer cells 

[164]. Additionally, when mice were depleted of NKT cells and NK cells by anti-NK1.1 

antibody, the mice released less IFN-γ, and had reduced mortality when injected with LPS [156]: 

a similar result was observed in mice deficient in Beta 2-microglobulin (β2m−/−) and lacking 

most of their NK1.1+ αβ T cells [156]. iNKT cell-deficient (Jα18-/-) mice also had a significant 

survival advantage when injected with LPS, with concurrently lower serum levels of IFN-γ [160] 

and TNF-α than wild-type C57BL/6 mice [157]. While IFN-γ produced by iNKT cells facilitates 

pathogen clearance [165], mortality remains unaffected [160], suggesting that the complete 

activation of the pro-inflammatory cascade, which is important for the proper clearance of 

infection, may have deleterious consequences when overly activated. In Jα18−/− mice injected 

with LPS, NK cell activation and production of IFN-γ were also significantly reduced, 
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suggesting a role for iNKT cells in amplifying the immune response by rapidly activating other 

immune cell types [160]. 

In the cecal ligation and puncture (CLP) sepsis model, pre-treatment with monoclonal 

antibody (mAb) blocking CD1d was shown to reduce CLP-induced mortality compared to IgG-

treated controls and to suppress plasma and splenic levels of the Th2 cytokine IL-10 [166]. 

Although CD1d mAbs were thought to have enhanced Th1 responses [167, 168], these studies 

looked at conditions in which there is deficient protective immunity by iNKT cells and examined 

the ability of these antibodies to bypass iNKT activation and directly stimulate CD1d+ APCs. 

Similarly, Jα18−/− mice were used to show that iNKT cell deficiency significantly decreased 

septic mortality and ameliorated the systemic pro-inflammatory response [159]. 

Despite contradictory findings on the relative contribution of iNKT cells to a Th1 or Th2 

response, these results consistently implicate a detrimental effect of NKT cell activation in 

polymicrobial sepsis. These studies constitute growing evidence for the large contribution of 

NKT cells to the dysregulated and overwhelming pro-inflammatory response in polymicrobial 

sepsis and endotoxic shock. Although many strong correlations have been made between septic 

mortality and NKT cell activation and cytokine production, researchers are still far from 

delineating and demonstrating the exact mechanism by which NKT cells participate in the septic 

immune response, or how their activity is regulated in general. 

1.4.3 Mechanisms of iNKT Cell Activation 

The mechanism by which iNKT cells are activated by microbial infection remains 

unclear. A “direct” pathway, in which the TCR of iNKT cells recognizes the glycosphingolipid 

cell-wall components of microbial pathogens such as Sphingomonas bacteria, has been reported 
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[169]. This early activation of iNKT cells appears to be important for bacterial clearance, 

because CD1d−/− and Jα18−/− mice were impaired in their ability to clear Sphingomonas [170]. 

Other studies have proposed a combination of two signals to culminate in IFN-γ secretion by 

iNKT cells: a weak response that is initially generated from the recognition of CD1d-presented 

endogenous glycosphingolipid antigens, followed by a stronger activation of the IL-12 receptor 

on iNKT cells by APC-derived IL-12 [171, 172]. IL-12 alone cannot activate iNKT cells when 

dendritic cells are absent, providing further evidence that recognition of self-ligand is an 

essential part of this indirect pathway [171, 172]. In a third mechanism, iNKT cells may be 

activated by IL-12 and IL-18 derived from APCs. In IL-12−/− and IL-18−/− mice, production of 

IFN-γ by iNKT cells was impaired in response to LPS, although not completely abrogated [160]. 

The addition of recombinant IL-12 or IL-18 to iNKT cells was sufficient to induce a measurable 

amount of IFN-γ production [160]. The addition of anti-CD1d Ab to co-cultures of iNKT cells 

with DCs and LPS also did not affect IFN-γ production [160]. All these pathways may be active 

during polymicrobial sepsis, due to the systemic release of many microbial stimuli, and may 

form part of a positive feedback loop whereby IFN-γ produced by iNKT cells further activates 

APCs [160]. Nevertheless, these mechanisms of iNKT cell activation quickly amplify the innate 

immune response to infection and contribute to the rapid development of the hyperinflammatory 

response in sepsis. 

A remarkable and unique feature of iNKT cells is their ability to swiftly secrete copious 

amounts of Th1- and Th2-type cytokines after stimulation without de novo cytokine mRNA 

synthesis [173, 174]. iNKT cells contain preformed mRNA for these cytokines, which may 

explain the rapidity with which they are secreted. Hence, they are believed to be responsible for 

the first wave of cytokine release early in the course of immune responses, potentially shaping 
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the course of subsequent adaptive responses. The paradoxical ability of iNKT cells to either 

promote or suppress immune responses presents a classical “double-edged sword” dilemma of 

immune regulation [175], which can be attributed at least in part to the ability these cells to 

produce enormous quantities of Th1 cytokines, Th2 cytokines, or both. 

Although natural killer (NK) cells are also known to be potent producers of IFN-γ and 

play an important role in promulgating sepsis by migrating to the peritoneal cavity and 

upregulating the pro-inflammatory activities of myeloid cells [176], studies have shown that 

NKT cells rapidly activate NK cells to initiate the inflammatory process: administration of α-

GalCer rapidly activated NK cells to produce IFN-γ and upregulated their expression of the early 

activation marker CD69 within hours of exposure [177]. This provides more evidence for the 

pivotal role of NKT cells as a bridge between innate and adaptive immunity. 

1.4.4 iNKT Cells in Human Populations 

In mice, up to 30% of liver lymphocytes are NKT cells, but levels elsewhere are usually 

0.1–1.0% [178, 179]. In humans, however, NKT cell frequencies are typically lower [180], and 

can vary 100-fold between healthy individuals. In the thymus, iNKT cell frequencies are at least 

100-fold lower in humans [179], whereas only 1% of hepatic lymphocytes are NKT cells [181]. 

While the tetramer binds NKT cells in mice and humans, human NKT cells can also be identified 

with anti-Vα24 (or 6B11, an antibody specific for the CDR3 region of the TCRα chain used by 

human NKT cells) and anti-Vβ11 [182, 183]: a reliable Vα14-specific antibody is not available 

for mice. 

As blood is often the only source of human NKT cells, findings are often extrapolated to 

NKT cells in general. This is a risky assumption because the frequency and function of NKT 
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cells from different organs may be unrelated [155, 180, 184]. In non-obese diabetic (NOD) mice, 

for example, systemic NKT cell deficiencies are evident in all locations except blood [180]. It is 

unclear whether a similar phenomenon exists for humans, but it cannot be assumed that blood 

NKT cells are representative of NKT cells in other organs, even from the same donor. 

Surprisingly, however, iNKT cells comprise 15% of hematopoietic cells obtained from human 

omentum, the highest frequency of cells found to date within any organ in the human body: this 

finding suggests that the omentum may play a key role in mediating immune-based responses to 

intra-abdominal pathology [185]. 

1.4.5 iNKT Cells as Targets for Immunotherapy 

Given the ability of NKT cells to bridge innate and adaptive immunity and their extensive 

immunoregulatory roles, manipulation of these cells provides a promising therapeutic strategy 

for sepsis and inflammation. α-Galactosylceramide (α-GalCer), the prototype iNKT cell 

glycolipid ligand [186] has been used both experimentally and in several clinical trials in patients 

with malignancies such as melanoma [187-189] and viral diseases [189, 190]. Depending on the 

length and time of in vivo exposure to α-GalCer, iNKT cells may be strongly polarized towards a 

Th1-like phenotype [158, 191] or a Th2-like phenotype [192, 193]. While the Th1 phenotype 

appears to be mediated by dendritic cell (DC) maturation and its presentation of α-GalCer [158, 

191], the Th2 phenotype, induced by repeated injection of α-GalCer, may be due to iNKT cell 

anergy [194, 195]: iNKT cells may have a blunted response to DC stimulation with reduced 

production of IFN-γ. Concomitant administration of α-GalCer and LPS protected mice from 

sepsis [196, 197], and was associated with significantly lower serum levels of Th1 cytokines 

(including IFN-γ and TNF-α), and higher levels of Th2 cytokines such as IL-10 [196, 197]. 
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Recent availability of several αGalCer analogs that exhibit distinct immunomodulatory 

properties now allows for more comprehensive examination of iNKT cell function and the 

consequences of their manipulation in transplant recipients (Figure 4). KRN7000, a synthetic 

αGalCer, which selectively stimulates iNKT cells [186] and leads to the production of both pro- 

(Th1) and anti-inflammatory (Th2) cytokines, has been used in several models of 

allotransplantation. KRN7000 administration after γ irradiation and allogeneic bone marrow 

transplantation was reported to reduce morbidity and mortality associated with murine graft-

versus-host disease in two independent studies [198, 199]. In contrast, treatment of cardiac 

allograft recipients with KRN7000 failed to prevent rejection in a BALB/c-to-B6 model [200]. It 

is possible that cytokine environments in which alloreactive T cells are primed in these models 

may be different. Irradiation shifts the cytokine profile of iNKT cells towards a Th2-promoting 

phenotype, which may contribute greatly to the beneficial effects of αGalCer in graft-versus-host 

disease models [199, 201]. In comparison, Th1- and Th2-type cytokines concomitantly produced 

after KRN7000 administration, may cancel each other out leading to no beneficial net effects in 

the above cardiac allograft model or other similar conditions.  
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Figure 4: Select glycolipid agonists of iNKT cells. 

From top to bottom, α-GalCer, OCH, and C20:2 are glycolipids which respectively skew the iNKT 

cell response towards a Th1, Th2, and Th2 phenotype. 
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OCH, a sphingosine-truncated analog of α-GalCer with known Th2-polarizing properties 

[202] has exerted promising effects in the treatment of several experimental autoimmune 

diseases [201, 203] where a destructive Th1-type response is suspected to play a role in the 

disease pathogenesis: by ameliorating autoreactive T cells [188], OCH mitigated disease severity 

in non-obese diabetic (NOD) mice [204] experimental autoimmune encephalomyelitis [202] and 

collagen-induced arthritis (CIA) [205, 206]. Walker et al demonstrated that treatment with OCH 

can not only prevent, but also cure disease symptoms in a humanized mouse model of 

citrullinated fibrinogen-induced RA [207]. OCH also delayed Th1-mediated cardiac allograft 

rejection in two mouse models [208]. 

Another promising Th2-biasing glycolipid is C20:2, a variant of α-GalCer consisting of a 

fatty acyl side chain truncated from C26 to C20 that has two sites of unsaturation at carbons 11 

and 14. C20:2 induces Th2-biased cytokine production [209] in vivo, and has a similar binding 

affinity to CD1d as α-GalCer [210]. In vivo, C20:2 results in an overall reduced pro-

inflammatory cytokine (IFN-γ) secretion, reduced iNKT cell expansion, and reduced activation 

of T, B and NK cells [209, 211]. Its effects, however, do not last beyond six hours [209]. When 

given in multiple doses, C20:2 significantly delayed and reduced the incidence of Type 1 

Diabetes (T1D) in NOD mice [209, 211]. 

Tailoring the type of NKT cell stimulation to promote a pro- or anti-inflammatory 

response has exciting implications for the future potential of NKT cell-based therapies for 

various clinical conditions [212, 213]. Although more work is needed to determine what specific 

factors trigger NKT cells to assume a Th1 or Th2-like phenotype during sepsis, the work done in 

animal models so far provides insight on the contribution of NKT cells to inflammation and 

injury, and an important foundation upon which to build a more targeted immunotherapy. 
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1.5 The Greater Omentum 

1.5.1 Anatomy and Embryology of the Greater Omentum 

The greater omentum has been identified as a rich source of iNKT cells in humans [185], 

although little is known about its immune mechanisms.  The greater omentum is a large fold of 

visceral peritoneum that hangs down from the stomach, and drapes over much of the small 

bowel, hanging as low as the pelvis [214]. Its descending and ascending portions fuse to form a 

four-layer vascular fatty apron, with a space contiguous with the lesser sac. Several prominent, 

hypertrophied folds within the greater omentum and adhesins between organs can be identified: 

the gastrocolic ligament between the stomach and the transverse colon; the gastrosplenic 

ligament that connects between the stomach and the spleen; and, occasionally, the splenorenal 

ligament which adheres the spleen to the left kidney. The right and left gastroepiploic vessels, 

which derive from the gastroduodenal and splenic arteries respectively, provide the blood supply 

to the greater omentum. The greater omentum develops from the dorsal mesentery that connects 

the stomach to the posterior abdominal wall. During gastric development, the stomach undergoes 

a 90° clockwise rotation along the axis of the embryo, so that structures posterior to the stomach 

are moved to the left, and anterior structures are moved to the right. As a result, the dorsal 

mesentery folds over on itself, forming a pouch with its blind end on the left side of the embryo. 

A second 90° clockwise rotation of the stomach along the frontal plane moves left-sided 

structures inferiorly, and right-sided structures superiorly. Consequently, the blind-ended sac 

(also called the lesser sac) formed by the dorsal mesentery is brought inferiorly, where it assumes 

its final position as the greater omentum. The greater omentum subsequently enlarges to drape 

over the majority of the small and large intestines. 
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In the mouse, the greater omentum consists of a band of intra-abdominal adipose tissue 

running from the distal spleen to the duodenal lobe of the pancreas [215, 216]. Murine and 

human greater omenta share many micro-anatomical features despite some differences in gross 

appearance [214]. In both, the omentum is a mobile structure that moves with gut peristalsis in a 

small volume of intra-peritoneal fluid. This movement is thought to be essential for the omentum 

to access injured or infected peritoneal surfaces where it adheres and facilitates repair processes: 

as the “abdominal policeman,” the omentum restores order by surrounding the compromised site, 

sealing microperforations, localizing inflammation, limiting the spread of infection, and 

provoking revascularization and tissue regeneration [214, 215, 217]. Surgical transposition of 

omental pedicles or flaps to injured body sites has been used for over a century for this purpose 

[218, 219]. Because of the presence of peritoneal fluid, however, the omentum is also a common 

location for neoplastic intraperitoneal seeding and infectious processes. 

1.5.2 Histopathology of the Greater Omentum 

The omentum in both mice and humans is composed of two mesothelial sheets enclosing 

adipocytes embedded in loose connective tissue interspersed with islands of compact tissue, 

known as “milky spots” [214, 220]. These spots contain macrophages, B cells, T cells, mast cells 

and DCs [217], and are reactive structures that increase in size and number in response to 

peritoneal inflammatory stimuli. Among the intra-abdominal adipose tissues, the greater 

omentum is unique because it is thought to function in peritoneal surveillance and as an access 

route for blood leukocytes entering the resting [221, 222] and inflamed [220] peritoneal cavity. 

Milky spots develop a more organized structure where T and B cells segregate as in secondary 

lymphoid tissues [223, 224]. This structural organization originally led to the proposal that milky 

spots were themselves secondary lymphoid organs [224]. However, segregation of B and T cell 
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areas was not observed in the resting omentum [223, 225]. These findings have led to the view 

that the greater omentum is an inflammation-induced lymphoid structure that lacks the defining 

characteristics of secondary lymphoid tissues, such as resident professional APCs, permanence 

in basic structure, and segregation of B and T cell regions in the absence of antigenic stimulation 

or inflammation. 

1.5.3 Immunology of the Greater Omentum 

Although controversy still exists around its precise immunological definition, the 

omentum has been demonstrated to play an important role in both innate and adaptive immunity 

[221, 226]. For example, the fetal omentum is critical to the development of B cells, and may 

play an important role in the homeostasis of this cell population in adult mice and humans [227, 

228]. In another study, the omentum was observed to contain large populations of stem cells 

known as myeloid-derived suppressor cells (MDSCs) when mice were subjected to intra-

abdominal sepsis [229]: these cells secrete a variety of factors including those with 

immunosuppressive functions and provide a regenerative microenvironment for injured tissues to 

limit the area of damage and to mount a regenerative response [229]. Shah et al [229] suggest 

that the presence of functional mesenchymal stem cells (MSCs) is a part of the mechanism by 

which the omentum imposes tissue healing support on the damaged tissues. While expression of 

stem cell markers and angiogenic growth factors were previously identified as contributing 

factors to the regenerative properties of the omentum, Shah et al demonstrated that activated 

omentum has at least two functionally distinct groups of cells that can facilitate regeneration of 

damaged tissue: immunomodulatory CD45+Gr1+ MDSCs; and CD45− cells that have the ability 

to suppress Th17 cells. A striking feature of the omentum is that, unlike secondary lymphoid 

organs such as lymph nodes or spleen, it enlarges in response to foreign objects and acquires a 
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large number of immunomodulatory cells along with cells with stem cell function. This type of 

response has not been recognized for any other organ and is quite unique to the omentum. 

1.6 Hypothesis 

I hypothesize that expansion of the circulating iNKT cell population will occur in patients 

with sepsis and severe sepsis. I further hypothesize that the administration of Th2-polarizing 

glycolipid agonists of iNKT cells will significantly reduce sepsis severity by limiting the release 

and subsequent production of pro-inflammatory Th1 cytokines. 

1.7 Specific Objectives 

I developed several specific objectives in order to test my hypotheses: 

1) Prospectively evaluate the frequency and proportion of circulating iNKT cells in 

patients admitted to the intensive care unit with sepsis, severe sepsis, or septic shock. 

2) Develop and validate a mouse model of acute intra-abdominal sepsis that is 

characterized by a marked pro-inflammatory response and leads to early mortality. 

3) Assess the effect of Th1- and Th2-polarizing iNKT cell agonists on sepsis severity in 

the animal model of sepsis. 
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2.1 Ethics 

All animal experimentation was carried out in strict accordance with the 

recommendations and guidelines established by the Canadian Council on Animal Care as well as 

institutional regulations. The protocols were approved by the Western University Animal Care 

and Veterinary Services (Approval number: 2008-034-01). 

For the study involving human subjects, approval of the study protocol for both the 

scientific and ethical aspects was obtained from the Western University Research Ethics Board 

for Health Sciences Research Involving Human Subjects (Approval number: REB103036). 

2.2 Mice 

Female C57BL/6J (B6) mice, 10–14 weeks of age, were purchased from Charles River 

Canada Inc. (St. Constant, Quebec, Canada). J18−/− mice, which lack iNKT cells [230], were 

based on a B6 background and obtained from Dr. Luc Van Kaer (Vanderbilt University, 

Nashville, TN, USA). The development of the lymphoid organs in J18−/− mice is 

macroscopically normal, and the numbers of total lymphocytes are not significantly different 

from Jα18+/+ mice with the exception of a complete loss of the Vα14 NKT subpopulation of 

NKT cells [230]. GFP-expressing transgenic mice are B6 mice with omnipresent enhanced GFP 

expression under the β-actin promoter, and were kindly provided by Dr. Stephen Kerfoot 

(Western University, London, Ontario) for a limited number of experiments. 

Animals had an average weight of 22.5 g (range, 21-25 g) prior to the start of the 

experiments. Animal husbandry conditions included a room temperature of 23°C, humidity of 

50%, and a 12-hour light-dark cycle (dark from 1900h to 0700h). Bedding in cages consisted of 

sawdust and wood shavings, while corn mash and water (in a stoppered-bottle with a nose-
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activated nozzle) was available for mice to feed ad libitum. Cages also contained an igloo to 

allow nesting. Animals were housed with one to three cage mates, and were allowed to adapt to 

laboratory conditions for at least 3 days prior to experiments. 

2.3 Mouse Intra-abdominal Sepsis Model 

2.3.1 Preparation of Fecal Slurry 

The solution used to cause IAS was made by the following procedure: fresh feces were 

collected from the lower cecum of euthanized donor mice, weighed, and mixed with a calculated 

volume of saline solution to give a fecal concentration of 90 mg/mL. To ensure reproducibility, 

the procedure was standardized by the use of fresh solution prepared from mice living in the 

same conditions as the experimental animals. The fecal solution (FS) was pressed through a 70-

μm nylon mesh strainer (BD Biosciences, Franklin, NJ) to remove particulate matter. 

2.3.2 Induction of Sepsis 

For sepsis induction, each mouse was given an intraperitoneal (i.p.) injection of 0.5 mL 

of FS using a syringe and 27G needle (4 mg of FS per 1 g body weight). Sham mice were 

injected with sterile normal saline (NS). Pain (either from the injection or from FS) was assessed 

using facial expression as described by Langford et al [231], as well as body posture and 

vocalization. Analgesia was provided by a subcutaneous injection of buprenorphine (0.1mg/kg). 

2.3.3 Monitoring of Mice 

Monitoring of the health of the animals was conducted by two investigators every 2 hours 

after the induction of sepsis for 12 hours, and then every hour thereafter: one of the investigators 

was blinded to the treatment. Mice were evaluated while they were still in their cages (with the 

lids removed for better visualization). 
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2.3.4 Euthanasia of Mice 

At the conclusion of the experiments, animals were sacrificed and post-mortem 

laparotomy was performed in order to collect tissues. Mice were anesthetized with 100 mg/kg 

ketamine (Bioniche Life Sciences, Belleville, ON) and 5 mg/kg xylazine (Bayer AG, 

Leverkusen, Germany), and euthanized by cardiac puncture using a 27G needle and 3-mL 

syringe. 

2.4 Development of the Murine Sepsis Score 

In this project, a scoring system (the murine sepsis score, MSS) was developed to assess 

and monitor disease severity, and serve as a humane surrogate to death as an endpoint. In a pilot 

study involving thirty mice that were given 90 mg/mL FS and observed over 24 hours, a 

veterinarian from the Animal Care and Veterinary Services (Ian Welch, ACVS, Western 

University), and two researchers from our group assessed the mice jointly using variables that 

have been described in the literature [231-233]. Certain variables such as temperature and weight 

loss did not change during the experimental timeline, while fewer than 5% of mice needed 

analgesia for pain immediately after the fecal slurry injection. Consequently, the final variables 

that were incorporated into the MSS (Table 5) included spontaneous activity, response to touch 

and auditory stimuli, posture, respiration rate and quality (laboured breathing or gasping), and 

appearance (i.e. degree of piloerection). Each of these variables are given a score between 0 and 

4 (Table 5). Mice were euthanized if the MSS at any given time point was greater than 21, or if 

the points ascribed to respiratory rate or quality increased by more than 3.  
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Table 5: Murine Sepsis Score (MSS) 

Appearance 

0- Coat is smooth 

1- Patches of hair piloerected 

2- Majority of back is piloerected 

3- Piloerection may or may not be present, mouse appears “puffy” 

4- Piloerection may or may not be present, mouse appears emaciated 

Level of consciousness 

0- Mouse is active and moving 

1- Mouse is moving but avoids standing upright 

2- Mouse is slow moving 

3- Mouse is not moving without provocation 

4- Mouse does not move even when provoked 

Response to stimulus 

0- Mouse responds immediately to auditory stimulus or touch 

1- Slow or no response to auditory stimulus, responsive to touch 

2- No response to auditory stimulus, moves away in response to touch 

3- No response to auditory stimulus, some movement in response to touch 

4- No response to auditory stimulus, little or no movement in response to touch 

Activity 

0- Mouse is any of: eating, drinking, climbing, running, fighting 

1- Mouse is moving around bottom of cage 

2- Mouse is stationary with occasional investigative movements 

3- Mouse is stationary 

4- Mouse experiencing tremors, particularly in the hind legs 

Eyes 

0- Open 

1- Eyes not fully open, possibly with secretions 

2- Eyes at least half closed, possibly with secretions 

3- Eyes half closed or more, possibly with secretions 

4- Eyes closed or mily 

Respiration rate 

0- Normal, rapid mouse respiration 

1- Slightly decreased respiration (rate not quantifiable by eye) 

2- Moderately reduced respiration (rate at the upper range of quantifying by eye) 

3- Severely reduced respiration (rate easily countable by eye, 0.5s between breaths) 

4- Extremely reduced respiration (> 1s between breaths) 

Respiration quality 

0- Normal 

1- Brief periods of laboured breathing 

2- Laboured, no gasping 

3- Laboured with intermittent gasps 

4- Gasping 
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2.5 Glycolipids 

Lyophilized OCH was generously supplied by the National Institutes of Health (NIH) 

Tetramer Core Facility (Atlanta, GA, USA). Each vial containing 0.2 mg of OCH was 

solubilized in 1 mL of sterile distilled water and stored as aliquots at 4°C until use. KRN7000 

was synthesized, solubilized at 1 mg/ml in dimethylsulfoxide (DMSO) and stored as aliquots at 

−20°C until use [234]; the control vehicle was 2% DMSO in phosphate-buffered saline (PBS). 

C20:2 was synthesized as described previously [235] and dissolved in a vehicle solution 

containing PBS, 0.02% Tween 20, and 0.1% DMSO. The resulting stock solution was stored in 

aliquots at −20 °C. Aliquots were re-warmed and sonicated prior to use. For in vivo experiments, 

mice were injected i.p. with a single dose of glycolipid (4 µg/dose) [209]. In experiments where 

mice were induced with IAS, glycolipids were administered 15-20 minutes after the injection of 

fecal slurry to allow the animals to recover in between injections. 

2.6 Antibodies 

2.6.1 Mouse 

Allophycocyanin (APC)-conjugated PBS-57-loaded and -unloaded CD1d tetramers for 

staining mouse iNKT cells were provided by the NIH Tetramer Core Facility (Emory University, 

Atlanta, GA, USA) [209]. Fluorescein isothiocyanate (FITC)-conjugated anti-TCR-β (H57-597) 

and phycoerythrin (PE)-conjugated anti-CD69 (H1·2F3) monoclonal antibodies (mAbs) were 

purchased from eBiosciences (San Diego, CA, USA) or BD Biosciences (Mississauga, ON, 

Canada). PE-conjugated anti-B220/CD45R and anti-CD8 mAbs, as well as FITC-conjugated 

anti-CD3 mAbs were purchased from BD Biosciences (Table 6). 
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2.6.2 Human 

APC-conjugated PBS-57-loaded and -unloaded CD1d tetramers for staining human iNKT 

cells were provided by the NIH Tetramer Core Facility (Emory University, Atlanta, GA, USA) 

while FITC-conjugated anti-CD3 (SK7), PE-conjugated anti-CD56 (B159), and peridinin 

chlorophyll protein complex (PerCP)-conjugated anti-CD56 were obtained from BD Biosciences 

(Table 6). 
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Table 6: Antibodies used for flow cytometry in mouse and human studies. 

Species Target Fluorochrome Identifies Source Volume 

(µL) 

Mouse CD3 APC T Cells eBiosciences 1 

 CD45R (B220) APC B Cells eBiosciences 1 

 TCRβ FITC T Cells eBiosciences 1 

 NK1.1 PE NK and NKT 

Cells 

eBiosciences 1 

 CD1d tetramer- 

PBS-57 unloaded 

APC Control for iNKT 

Cells 

NIH 1 

 CD1d tetramer-

PBS-57 loaded 

APC iNKT Cells NIH 1 

 F4/80 APC Macrophages eBiosciences 1 

 Anti 7-AAD - Dead cells Life 

Technologies 

0.5 

 Annexin V FITC Apoptotic Cells eBioscience 2.5 

Human CD3 FITC T Cells eBioscience 1 

 Vα24 PE iNKT Cells NIH 1 

 CD1d tetramer- 

PBS-57 unloaded 

APC Control for iNKT 

Cells 

NIH 1 

 CD1d tetramer-

PBS-57 loaded 

APC iNKT Cells NIH 1 

 CD56 PE NK and NKT 

Cells 

eBioscience 1 
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2.7 Bacterial CFU Counts 

2.7.1 Tissue Homogenization for CFU 

Whole hearts, lungs, and kidneys (left and right) were removed from euthanized mice, 

taking care to dissect away lymph nodes, and homogenized in 5 mL of PBS. Homogenates were 

serially diluted 1:10 in PBS and plated on bovine heart infusion (BHI) agar. Plates were grown 

aerobically at 37° overnight to determine tissue CFU. 

2.7.2 Peripheral Blood CFU Determination 

10 µL of intra-cardiac blood was collected in a syringe from the right ventricle during 

euthanasia and cardiac puncture, serially diluted 1:10 with PBS, and plated on BHI agar to 

determine blood CFU. 

2.8 Preparation of mouse hepatic, splenic, and omental cell suspensions 

To obtain hepatic lymphoid mononuclear cells, mice were euthanized, and livers were 

flushed with sterile PBS before they were harvested and pressed through a 40-µm nylon mesh. 

The resulting homogenate was washed in cold PBS, resuspended in a 33.75% Percoll PLUS 

solution (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and spun at 700 × g for 12 min at 

room temperature. The pelleted cells were then treated with ACK lysis buffer to remove 

erythrocytes and washed in cold PBS prior to staining. 

To obtain omental lymphoid mononuclear cells, mice were euthanized, and the spleens, 

pancreas, and omenta were removed en-bloc and suspended in ice-cold PBS. The omenta floated 

above the spleen-pancreas complex and were removed and processed similar to the liver, as 

described above. Spleens were processed with a tissue homogenizer, and the resulting 
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homogenate was washed in cold PBS. The pelleted cells were treated with ACK lysis buffer for 

4 minutes to remove erythrocytes, and washed in cold PBS prior to staining. 

2.9 Adoptive Transfer of iNKT Cells into Jα18-/- Mice 

Hepatic mononuclear cells and splenocytes were isolated, as previously described, from 

GFP-expressing transgenic mice. CD4+ T cell populations were obtained using EasySep® Mouse 

CD4+ T cell enrichment kit (Stem Cell Technologies, Vancouver, British Columbia, Canada) as 

per manufacturer’s instructions. iNKT cells were further enriched by sorting with anti-TCRβ and 

CD1d tetramer on a FACSAriaIII flow cytometric cell sorter (London Regional Flow Cytometry 

Facility, London, Ontario). Cell populations were used only when purity was >95% as 

determined by flow cytometry. For the adoptive transfer experiments, 5 × 105 iNKT cells were 

transferred i.v. into Jα18−/− mice. Twelve hours after the transfer, mice were given IAS and 

monitored as already described. 

2.10 Flow Cytometry 

Mouse hepatic, splenic, and omental cells (1 × 106), and human peripheral blood 

mononuclear cells (PBMCs) and omental cells (1 × 106) were placed in fluorescence activated 

cell sorter (FACS) tubes (BD Biosciences, San Jose, CA, USA), and washed with cold FACS 

buffer [PBS + 2% fetal bovine serum (FBS) + 0.1% sodium azide]. Mouse cells were incubated 

with 5 µg/ml anti-mouse CD16/CD32 mAb (clone 2·4G2, Fc-block, eBiosciences) for 20 min on 

ice before staining with fluorescent mAbs or tetramer diluted in FACS buffer at 4°C for 30 min. 

Human cells were stained with fluorescent mAbs or tetramer diluted in FACS buffer at 4°C for 

40 min. 
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Cells were then washed and flow cytometry was performed using FACSCanto II and 

FACSDiva software. Analyses were conducted using FlowJo software (Treestar, Ashland, OR, 

USA). The gating strategy used for analysis of apoptotic cells is shown in Figure 5. 
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Figure 5: Gating strategy to identify the percentage of apoptotic and necrotic immune cell 

populations. 

CD3-APC (for the detection of T cells) is shown as an example, but the same strategy was used 

for macrophages (F480-APC), B cells (B220-APC), and Natural Killer (NK) cells (NK1.1-PE). 
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2.11 Enzyme-Linked Immunosorbent Assay (ELISA) 

Mouse IL-4 and IFN-γ ELISA kits were purchased from eBioscience, and were used to 

assess serum from experimental animals. Kits were run as specified by the manufacturer in 

Costar ELISA plates (Immunohistochemistry Technologies, Bloomington, MN). Plates were 

read at OD450 and at the reference OD570. 

2.12 Multiplex Cytokine Analysis 

Serum was analyzed by bead-based multiplex assay for 32 different cytokines, 

chemokines, and growth factors (Eve Technologies, Calgary, Alberta, Canada) including 

granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating 

factor (GM-CSF), interferon-gamma (IFN-γ), interleukin (IL)-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, 

IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IP-10, keratinocyte 

chemo-attractant (KC), leukemia inhibitory factor (LIF), lipopolysaccharide-induced CXC 

chemokine (LIX), monocyte chemotactic protein (MCP)-1, monocyte-colony stimulating factor 

(M-CSF), monokine induced by gamma interferon (MIG), macrophage inflammatory protein 

(MIP)-1α, MIP-1β, MIP-2, Regulated on Activation, Normal T cell Expressed and Secreted 

(RANTES), tumour necrosis factor (TNF)-α, and vascular endothelial growth factor (VEGF). 

Multiplex data was visualized using a cytokine heat map that was generated using the 

web-based program Matrix2png [236]. The mean for each row of cytokine values was set at 0 

with white representing values greater than 0, and brown lower than 0. 

2.13 Serum Biochemistry 

Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and 

lipase, expressed as U/L, as well as creatinine (expressed as mg/dL), glucose (mg/dL), and 
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albumin (expressed as mg/dL) were estimated using a commercially-available diagnostic kits 

(Catachem Inc., Oxford, CT) according to the manufacturer’s instructions. 

2.14 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

Total RNA was isolated from hepatic, splenic, and omental tissues using the TRIzol 

reagent (Invitrogen, Burlington, Ontario) and resuspended in nuclease-free water (Invitrogen). 

Quality control of samples was carried out using a Nanodrop ND-1000 spectrophotometer. 

cDNA was prepared using 1000ng of RNA by Superscript III RNase H- Reverse Transcriptase 

with oligo dT priming (Invitrogen). Quantitative real-time PCR reactions were carried out in 

triplicate from every transcription reaction using the ABI Prism 7900HT apparatus (Perkin 

Elmer) with Taqman (Invitrogen) probes. The sequences of the primers and Taqman probes 

(Invitrogen) used in this study were as follows (GenBank Accession number S75451.1)[178]: 

Vα14: 5’−TGGGAGATACTCAGCAACTCTGG−3’; Jα18: 

5’−CAGGTATGACAATCAGCTGAGTCC−3’; Vα14 Probe FAM: 5’−FAM-

CACCCTGCTGGATGACACTGCCAC-TAMRA−3’. Quantitative analysis was performed by 

ΔΔCt method by using the Taqman GAPDH Gene Expression Assay (Invitrogen) as an internal 

control. The sequence that was examined for design of quantitative primers was 5’- 

GATGCTAAGCACAGCACGCTGCACATCACAGCCACCCTGCTGGATGACACTGCCAC

CTACATCTGTGTGGTGGGGG//ATAGAGGTTCAGCCTTAGGGAGGCTGCATTTTGGAG

CTGGGACTCAGCTGATTGTCATACCTGA-3’ (// refers to the exon-splice site between Vα14 

and Jα18 segments of the invariant TCR). Annealing temperatures for the primer-probe sets were 

at 60ºC for both the invariant TCR and GAPDH. 
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2.15 Histology 

2.15.1 Organ Isolation 

Mice were euthanized as described above. Organs were surgically removed without tool 

marks and were placed in 10-volumes of fresh 10% neutral buffered formalin (BDH, VWR, 

West Chester, PA, USA). 

2.15.2 Histology Tissue Processing  

Soft tissues (spleen, liver, intestine, peritoneum, and omentum) were further fixed in 

formalin for 48 hours at 4°C, changed daily. Organs were rinsed in 1 PBS before being re-

suspended in 10-volumes of 1 PBS twice a day for three days, and washed in 10-volumes of 

70% ethanol twice and stored in 70% ethanol until processed. Fixed tissues were placed in 4 mm 

Fisherbrand TRU-Flow tissue cassettes. Formalin-fixed cassetted tissues in 70% ethanol were sent to 

The Robarts Research Institute Molecular Pathology Core Facility for processing in preparation for 

embedding in wax. Cassettes were processed in Leica ASP300 fully enclosed paraffin wax tissue 

processor overnight and were transferred into a warm wax bath and embedded in paraffin wax. 

Embedded tissues were stored at room temperature until sectioning. 

Tissues were sectioned on a microtome HM335E Microtome Leica in the Robarts Research 

Institute Molecular Pathology Core Facility using MB35 Premier Microtome blades (Thermo 

Scientific) into 5 micron sections. Serial sections were collected for head sections, and representative 

sections were cut for the spleen. Sections were mounted on Fisherbrand Superfrost Plus microscope 

slides (Fisher Scientific, Fair Lawn, NJ, USA) and were dried at 45°C for 48 hours prior to 

storage/staining. 
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2.15.3 Haematoxylin and Eosin Staining of Processed Tissue  

Tissues were stained with haematoxylin and eosin in a Leica Autostainer XL. Slides were 

allowed to dry and Fisher Finest Premium Cover Glass (Fisher Scientific, Fair Lawn, NJ, USA) 

cover slips were affixed to the slides using Cytoseal 60 low viscosity mounting medium 

(Richard-Allen Scientific, Kalamazoo, MI, USA). Cover-slipped slides were dried for at least 24 

hours horizontally before vertical storage. 

2.15.4 Terminal Deoxynucleotidyl Transferase dUTP Nick End Labelling (TUNEL) Assay 

This procedure was performed manually as described previously [237]. Briefly, 4-µm 

sections were deparaffinized in xylenes, rehydrated in graded alcohols, and rinsed in distilled 

water. Antigen unmasking was accomplished using freshly prepared Proteinase K solution (10 

μg/mL) for 60 min at 37°C. After washing twice with distilled water, sections were incubated 

with TdT enzyme (75 U/mL) and digoxigenin-11-UTP (5 nmol) for 90min at 37°C. The slides 

were then washed in SSC buffer (150 mmol NaCL, 15 mmol sodium citrate, pH 7.0), followed 

by Tris-HCl buffer (10 mmol in 150 mmol NaCl, pH 8.2) for 1 min per wash. A blocking agent 

was used to prevent non-specific binding and sections were developed with a Fab fragment 

against digoxigenin linked to alkaline phosphatase and fast red chromogen. Sections were then 

washed and counter stained. 

2.15.5 Histopathological Evaluation 

Slides were evaluated in collaboration with two pathologists (Drs. Aaron Haig and Ian 

Welch, Department of Pathology, Western University, London, Ontario). After all slides were 

observed, evaluation criteria were determined for each tissue type. The relative number of 

lymphocytes present, the presence of cell necrosis and apoptosis, and other factors relating to 



54 

 

inflammatory change were assessed. The presence and severity of these findings were used to 

determine differences in histological pathology in the mice. 

2.16 Patients 

2.16.1 Inclusion Criteria 

Patients aged 18 years and older with a diagnosis of severe sepsis or septic shock upon 

admission to the Medical-Surgical Intensive Care Unit (MS-ICU) at London Health Sciences 

Centre-University Hospital (LHSC-UH) and the Critical Care and Trauma Centre (CCTC) at 

London Health Sciences Centre-Victoria Hospital (LHSC-VH) were prospectively recruited 

from July 2012 to December 2012. The first day following ICU admission was considered day 1 

in the analysis. Sepsis was defined as suspected infection in the presence of two or more 

systemic inflammatory response syndrome criteria [15]. Severe sepsis was defined as sepsis plus 

sepsis-induced organ dysfunction or tissue hypoperfusion [15]. Sepsis-induced hypotension was 

defined as systolic blood pressure (SBP) < 90 mmHg, mean arterial pressure < 70 mmHg or SBP 

decrease > 40 mmHg or < 2 SD below normal for age in the absence of other causes of 

hypotension. Septic shock was defined as hypotension (SBP < 90 mmHg) despite adequate fluid 

resuscitation (> 1,500 ml) or the use of vasoactive agents [15]. Severity of illness was assessed 

on the basis of two scores: the Acute Physiology and Chronic Health Evaluation II (APACHE II) 

score (Table 7) for the first 24 hours following diagnosis [238, 239]; and the Mannheim 

Peritonitis Score (Table 8) for patients with intra-abdominal sepsis [240]. 

To calculate the APACHE II score, twelve common physiological and laboratory values 

(temperature, mean arterial pressure, heart rate, respiratory rate, oxygenation (PaO2 or A-aDo2), 

arterial pH, serum sodium, serum potassium, serum creatinine, haematocrit, white blood cell 
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count and Glasgow Coma Score) are marked from 0 to 4, with 0 being the normal, and 4 being 

the most abnormal (Table 7). The sum of these values is added to a mark adjusting for patient 

age and a mark adjusting for chronic health problems (severe organ insufficiency or 

immunocompromised patients) to arrive at the APACHE II score. 
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Table 7: APACHE II Scoring System 

Variable +4 +3 +2 +1 0 +1 +2 +3 +4 

Temperature 

(°C) 

≥ 41 39-40.9  38.5-

38.9 

36-38.4 34-35.9 32-33.9 30-31.9 ≤ 29.9 

Mean 

Arterial BP 

(mm Hg) 

≥160 130-159 110-129  70-109  50-69  ≤ 49 

Heart Rate 

(min-1) 

≥ 180 140-179 110-139  70-109  55-69 40-54 ≤ 39 

Respiratory 

Rate (min-1) 

≥ 50 35-49  25-34 12-24 10-11 6-9  ≤ 5 

A-aPO2 (if 

FiO2>50%) 

≥ 500 350-499 200-349  < 200     

PaO2 (if 

FiO2<50%) 

    > 70 61-70  55-60 < 55 

Arterial pH ≥ 7.7 7.6-7.69  7.5-7.59 7.33-

7.49 

 7.25-

7.32 

7.15-

7.24 

< 7.15 

Serum 

HCO3
- 

≥ 52 41-51.9  32-40.9 23-31.9  18-21.9 15-17.9 < 15 

Serum Na+ 

(mmol/L) 

≥ 180 160-179 155-159 150-154 130-149  120-129 111-119 ≤ 110 

Serum K+ 

(mmol/L) 

≥ 7 6-6.9  5.5-5.9 3.5-5.4 3-3.4 2.5-2.9  < 2.5 

Serum 

Creatinine 

(g/dL) 

≥ 3.5 2-3.4 1.5-1.9  0.6-1.4  < 0.6   

Hematocrit ≥ 60  50-59.9 46-49.9 30-45.9  20-29.9  < 20 

WBC Count ≥ 40  20-39.9 15-19.9 3-14.9  1-2.9  < 1 

Age (y)1     < 44  45-54 55-64  
1 ADD: 5 points if age is 65-74 yrs; 6 points if age >75 yrs 

Chronic Health Adjustment: 

ADD: 2 points if patients have had elective surgery or for non-surgical patients. 5 points for emergency surgery 

1. Biopsy-proven cirrhosis 

2. New York Heart Association Class  IV Congestive Heart Failure 

3. Severe COPD (hypercapnic; requiring home O2; pulmonary hypertension) 

4. Chronic dialysis 

5. Immune-compromised (HIV; immunosuppressive medications) 

APACHE II score is calculated by adding all the points accumulated by a patient in the first 24 hours of his/her 

admission to the ICU.  
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Table 8: Mannheim Peritonitis Score (MPI) 

Variable Score 

Age > 50 years 5 

Female gender 5 

Organ failure* 7 

Malignancy 4 

Pre-operative duration of peritonitis > 24 hours 4 

Origin of sepsis not colonic 4 

Diffuse generalized peritonitis 6 

Exudate 6 

    Clear 0 

    Cloudy or purulent 6 

    Feculent 12 
*Definitions of organ failure: Kidney: creatinine >177 µmol/L, urea > 167 µmol/L, oliguria < 20 

mL/h; Lung: pO2 < 50 mmHg; pCO2 > 50 mmHg; Shock: hypodynamic or hyperdynamic; 

Intestinal obstruction (only if profound): Paralysis > 24h or complete mechanical ileus 
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2.16.2 Exclusion Criteria 

Exclusion criteria were the presence of immunodeficiency or concomitant 

immunosuppressive therapy, pregnancy, Do Not Resuscitate (DNR) status and cardiac arrest. 

Informed consent was obtained directly from each patient or his or her legal representative 

before enrolment. 

2.17 Microbiological Diagnostics 

Standard cultures in biological samples guided by the presumptive source of the septic 

insult were performed to assess the presence of bacterial and fungal infection. Species 

identification and biotyping was conducted by matrix-assisted laser desorption ionization–time 

of flight mass spectrometry (MALDI-TOF MS; MALDI Biotyper, Bruker Daltonics, Germany). 

Potentially contaminant microorganisms were not considered. 

2.18 Isolation and Staining of Leukocytes from Human Peripheral Blood 

Human blood was collected in heparinized vacuum tubes, diluted 1:1 with RPMI, layered 

over pre-warmed Ficoll and spun at 700 × g for one hour. PBMCs were removed by pipetting and 

washed in 40 ml of warm RPMI, pelleted for 5 minutes at 700 × g, and resuspended in cRPMI. Cells 

were assessed for viability by trypan blue. Cells were then washed and stained with anti-CD3ε-

FITC (clone HIT3a, BD Pharmingen) and anti-CD69-PE (clone FN50, eBioscience) mAbs, 

along with human CD1d tetramer. 

2.19 Statistical Analysis 

All data were maintained in Microsoft Excel 2010 (Microsoft, Redmond, WA), and were 

analyzed using Graphpad Prism Version 5.01 (Graphpad, La Jolla, California). In all analyses, 

two-tailed P values less than 0.05 were considered statistically significant. 
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For murine experiments, statistical comparisons were performed using analysis of 

variance (ANOVA) or Mann-Whitney U test where appropriate. Survival curves were calculated 

by the Kaplan-Meier method. 

Each of the seven variables measured as part of the MSS consisted of five possible scores 

(0 to 4). The internal consistency of the MSS and each of the variables was assessed by 

Cronbach’s alpha. Inter-rater reliability of the MSS was also assessed by calculating the 

intraclass coefficient (ICC), comparing each assessor’s independent scores  for each mouse 

(sham and septic) at 2, 12, 14, 16, 18, 20, and 24 hours. Additionally, the ability of the MSS to 

discriminate between sham and septic mice was tested using the receiver operating characteristic 

(ROC) curve, and by quantifying the area under the curve (AUC) [241]. An AUC between 0.7 

and 0.8 is classified as “acceptable,” and an AUC between 0.8 and 0.9 is considered to have an 

“excellent” discrimination [241]. For the MSS, the score giving the best Youden index was 

determined to be the cutoff point [242]: the sensitivity, specificity, and positive and negative 

predictive values were calculated based on this score. To ensure that the MSS reflected the 

severity of the septic insult, correlations between the sepsis score and serum pro-inflammatory 

cytokine levels were performed by calculating the Pearson correlation coefficient (Pearson’s r) 

with 95% confidence intervals. 

Biochemistry and cytokine data obtained at all the time points for sham mice were pooled 

together and employed as a common control group, as Friedman’s test indicated no differences 

over time. Data obtained from mice with IAS were considered independently. Differences 

between groups were analyzed by applying non-parametric ANOVA (Kruskal-Wallis) tests, 

followed by post-hoc pairwise multiple comparisons by Dunn’s method. For cytokine analyses, 

data from multiple experiments were pooled and analyzed by one-way ANOVA with post-hoc 
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comparisons using Tukey’s tests. Group sizes reported for data varied over time, reflecting the 

mortality rate in septic animals.  

For human subjects, differences between groups were assessed using the Mann–Whitney 

U-test or Chi-square test for continuous and categorical variables, respectively. Survival curves 

were calculated by the Kaplan-Meier method.  
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3.1 Peripheral blood iNKT cells are elevated in patients with sepsis/severe 

sepsis 

We first sought to determine if patients with sepsis had an altered frequency of iNKT 

cells in their peripheral blood compared to non-septic patients. We prospectively evaluated thirty 

patients who were admitted to the London Health Sciences Centre (LHSC) Critical Care and 

Trauma Centre (CCTC) for sepsis or non-sepsis-related critical illness; 23 patients were 

diagnosed with sepsis/severe sepsis, while 7 patients were non-septic trauma patients (Table 9). 

In the non-septic group, 3 patients (43%) had sustained traumatic head injuries and 4 patients 

(57%) had emergency surgery for trauma (2 liver resections; 1 abdominal aortic surgery; 1 spine 

stabilization operation). Groups were similar in age and severity of illness, as calculated by the 

APACHEII score [238]. However, the gender distribution was significantly different between the 

two groups, with a preponderance of males in the non-septic group (p< 0.0001). Most of the 

patients in the septic group had intra-abdominal sepsis (44%) or lower respiratory tract infections 

(39%) as confirmed by diagnostic tests. In 30% and 17% of septic patients respectively, a single 

Gram-positive or Gram-negative pathogen was identified, while multiple organisms were 

identified in 30% of the septic group. In 17% of septic patients, the microbial agent was not 

identified, while 1 patient (4%) had fungal candidemia (Table 9). 

When lymphocyte subpopulations were assessed by flow cytometry and compared, the 

septic group had a higher median percentage of T cells among total lymphocytes (57.8% versus 

36.7% in the non-septic group, p= 0.039) (Table 10; Figure 6a and b). Moreover, the iNKT:T 

cell ratio was significantly higher in the septic group (Table 10). Patients in the septic group 

stayed in hospital for a significantly longer time (25.2 days versus 12.8 days, p= 0.045 by Mann 

Whitney U test), although in-hospital mortality was similar between the two groups (Table 10).  
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Table 9: Demographics and clinical characteristics of study patients 

Demographic and clinical characteristics Non-septic 

(n = 7) 

Septic 

(n = 23) 

P Value 

Median Age (years) 61 59 0.433 

Gender   < 0.0001 

     Male 6 13  

     Female 1 10  

Mean APACHEII Score 23 16 0.377 

Comorbidities, n:   0.689 

     Cardiovascular Disease 4 4  

     COPD 1 7  

     Chronic Renal Failure or Dialysis 0 0  

     Diabetes mellitus types 1 and 2 2 4  

     Alcohol abuse 1 1  

     Hypertension 3 7  

     Neoplasia 1 4  

     Obesity 2 1  

Diagnostic at ICU admission, n:    

     Sepsis - 14 - 

     Severe Sepsis - 4 - 

     Septic Shock - 0 - 

Presumed Source of Infection, n:    

     Lower respiratory tract/pneumonia - 6 - 

     Urogenital - 1 - 

     Intra-abdominal - 9 - 

     Catheter- or device-Related - 0 - 

     Skin (soft tissues) - 2 - 

     Prosthesis - 0 - 

     Central nervous system - 0 - 

     Other/unknown - 0 - 

Documented microbial agent, n:    

     Gram-positive - 5 - 

     Gram-negative - 4 - 

     Fungi - 1 - 

     Polymicrobial - 4 - 

     None/Unknown - 4 - 
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Table 10: Outcomes of study patients. 

Variable Non-Septic 

(n = 7) 

Septic 

(n = 23) 

P Value 

Median White Blood Cell Count  10.6 11.5 0.182 

Lymphocytes, %1 16.2 17.6 0.252 

Lymphocyte Subset Populations2    

     T cells, % 36.7 57.8 0.039 

     NK cells, % 5.19 12.25 0.274 

     NKT cells, % 0.45 1.88 0.262 

     NKT:T cell ratio, % 0.011 0.029 0.274 

     iNKT cells, % 0.0041 0.00569 0.138 

     iNKT:T cell ratio, % 0.0090 0.020 0.047 

Mean Hospital Stay (range), days 12.8 (0-38) 25.2 (4-55) 0.045 

Mortality, n (%) 3 (43) 5 (28) 0.955 

Cause of Mortality, n (%)   0.293 

     Multi-organ failure 1 (14) 4 (17)  

     Cardiac arrest 1 (14) 0 (0)  

     Withdrawal of care 1 (14) 1 (4.3)  

1Expressed as a percentage of the total sample analyzed on flow cytometry 

2Expressed as a percentage of lymphocytes. Median populations are presented. 
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Figure 6: Characterization of iNKT cell populations in the sera of critically-ill patients. 

(a) Representative flow cytometry plots of peripheral blood sampled from a septic and non-septic 

patient. (b) Histograms (median ± SEM) comparing frequency of T cells, NK cells, and iNKT:T 

cell ratios in septic and non-septic patients in the intensive care unit. *p< 0.05 by Mann Whitney 

U test (C) Kaplan-Meier survival curves from time of blood collection to time of discharge. 
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3.2 Validation of the MSS in a mouse model of IAS 

We next sought to validate the MSS as a humane and effective surrogate to death as an 

endpoint in our mouse model of IAS, and correlate it with disease severity. A total of 300 mice 

were used in all the experiments that were conducted independently over a period of two years, 

to develop the mouse model of IAS and the MSS, and to validate the latter. Compared to sham-

treated mice (n= 60), which had a survival of 100% throughout the experimental timeline, mice 

with IAS had a survival rate of 0% for 180 mg/mL FS (n= 20), 25% for 90 mg/mL FS (n= 200) 

and 40% for 45 mg/mL FS (n= 20) at 24 hours post-FIP induction (Figure 7A). For subsequent 

experiments, we used a FS concentration of 90 mg/mL to mimic the clinical mortality of 70-80% 

in severe untreated intra-abdominal sepsis [243, 244]: MSS for FIP mice at this concentration are 

shown in Figure 7B. Compared to sham-treated mice with a mean score of 1 after 24 hours, FIP-

treated mice had significantly higher (p <0.0001) sepsis scores. Between 0 to 11 hours post-FIP 

induction, mouse scores remained relatively consistent as assessed by independent observers, 

with mild piloerection and decreased movement. After 12 hours, septic mice appeared to 

progressively manifest additional symptoms including decreased respiratory rate, increasingly 

laboured breathing and minimal response to auditory and tactile stimuli. Between 12 to 17 hours 

post-FIP induction, variability in sepsis severity scores was observed to be due to differences in 

respiratory rates and quality of breathing as well as response to tactile and auditory stimuli. The 

intra-class correlation coefficient for comparison between the blinded and non-blinded assessors 

of septic mice was 0.96 (95% CI: 0.92 - 0.98), indicating excellent inter-rater reliability. The 

Cronbach alpha coefficient was 0.92, indicating excellent internal consistency of the MSS. 

For a concentration of 90 mg/mL FS, we calculated a mortality rate of 42% within 1 hour 

of attaining a score of 10, and a mortality of 75% within 2 hours of attaining a score of 10. Fifty-
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seven percent of mice that reached a score of 15 died or had to be euthanized (as per ethics 

guidelines) within 1 hour, and 86% of mice that reached a score of 15 died within 2 hours. Based 

on the ROC curve generated for the MSS (Figure 7D), the AUC (95% confidence interval) was 

0.825 (0.752 - 0.898) with a p value < 0.0001, suggesting that the scoring system has excellent 

discriminatory power. An MSS of 3 (Youden score of 0.61) was selected as the cut-off point for 

mice that progressed to severe sepsis post-FIP induction: the sensitivity (±95% C.I.) and 

specificity (±95% C.I.) of this score was 57% (47-67%) and 100% (82-100%), respectively. 

When organs were homogenized and plated on agar, bacterial growth was observed in all 

tissues, including liver, spleen, heart, lung, and kidneys (Figure 7C). Consistent with the 

polymicrobial nature of the model, significant variations in colony size (ranging from 1-3 mm in 

diameter), colour (white, brown, and yellow), and CFU counts were observed. Bacterial counts 

were not observed in any organs recovered from sham mice (data not shown). We did not 

observe a correlation between sepsis score and CFU counts in FIP mice. 
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Figure 7: Characterization of a mouse model of acute intra-abdominal sepsis (IAS). 

(A) Mouse survival over time versus concentration of fecal solution (FS; n = 20 mice per 

concentration of FS). (B) Murine Sepsis Score (MSS) over time of mice that were administered 

90 mg/mL FS (n = 20, 1 representative experiment). (C) Viable bacterial colony forming units 

(CFU) recovered from solid organs of mice treated with 90 mg/mL FS, at the time of euthanasia 

(n = 5). (D) Receiver-operator curve (ROC) evaluating the sensitivity and specificity of the MSS 

in differentiating healthy mice from those that progress to septic shock and death. 
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On necropsy, FIP mice were observed to have developed diffuse intestinal distension 

compared to uninfected control mice (Figure 8). In addition, FIP mice had peritoneal and 

mesenteric lymphadenopathy, and rarely developed abscesses. We also routinely observed the 

presence of a yellow fibrin film on the surfaces of the intra-abdominal organs, most notably 

overlying the liver and spleen. We did not identify any grossly visible areas of necrosis or 

ischemia within the organs. In mice that were euthanized due to severe respiratory distress, we 

observed minor pulmonary haemorrhage and the lungs appeared edematous. 
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Figure 8: Necropsy of naïve and septic B6 mice. 

Macroscopic intra-abdominal view of control (left) and 90mg/mL FIP mouse (right) at 24h 

reveals significant intestinal distension in the latter (size bar, 1 cm). 
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Serum biochemistry demonstrated significantly elevated AST and ALT levels in the FIP 

group at 6, 12, 18, and 24 hours post-sepsis induction (p < 0.001) compared to the sham group 

(Figure 9A). However, both AST and ALT levels peaked at 6 to 12 hours in septic mice: while 

the AST levels declined and rose again at 18 and 24 hours respectively, the ALT levels fell 

sharply at 18 and 24 hours. A linear correlation between liver transaminases and MSS was only 

significant for the first 12 hours of the experimental timeline, but was non-significant for the 

entire duration (24 hours) of the experiment. Serum glucose and creatinine did not demonstrate 

significant changes over time in the FIP group (Figure 9B, C). Serum albumin levels decreased 

significantly at 3 and 12 hours post-sepsis compared to the sham group (p = 0.0057 and p = 

0.018, respectively), but there was no difference in albumin levels after 24 hours (Figure 9D). 

We observed a trend towards higher lipase levels at 24 hours post-sepsis but there was 

significant variability in lipase activity among individual mice in the FIP group (Figure 9E). 
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Figure 9: Serum biochemistry of B6 mice with IAS. 

Blood serum biochemistry of (A) liver enzymes aspartate transaminase (AST) and alanine 

aminotransferase (ALT), (B) Glucose, (C) Creatinine, (D) Albumin, and (E) Lipase (n = 4 in 

donor group; n = 12 for sham group; n ≥ 4 per group at 3 h, 12 h, 16 h, 18 h, and 24 h). Mean 

values shown with SEM error bars.  * p <0.05, ** p <0.01, *** p <0.001.  
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Histological examination of the tissues demonstrated different degrees of pathology in 

various organs at 24 hours after FIP (Figure 10). In the lung, we observed mild edema in the 

alveolar spaces and leukocyte accumulation in the peripheries of pulmonary arterioles. In the 

liver of mice with FIP, parenchymal cells demonstrated vacuolization, limited necrosis, and loss 

of organization and structure. We also occasionally observed capsular edema and recruitment of 

inflammatory cells onto the liver surface. The spleen demonstrated significant changes post-

sepsis, with expansion of the white pulp, and widespread cellular apoptosis, which was also 

confirmed by TUNEL staining (Figure 10). At higher concentrations of FS (180 mg/mL), 

pathological changes associated with damage and inflammation could be observed within 12 

hours of insult (data not shown). We also observed pathological changes in the small intestine 

(Figure 10), characterized by the loss of goblet cells and loss of villi. We did not observe the 

accumulation of neutrophils or other leukocytes within the submucosa, but we occasionally 

observed necrosis and debris on the serosal surfaces of the gastrointestinal tract. We did not 

observe pathological changes in the hearts or brains of septic mice at 24 hours (data not shown). 
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Figure 10: Histology of sham-treated and septic B6 mice. 

Representative tissues from sham-treated and septic mice at 24h developed with TUNEL or 

haematoxylin and eosin (size bar, 50µm). 
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Analysis of cytokine levels by multiplex array showed a rapid, sustained, and significant 

increase of the putative markers of experimental sepsis, namely IL-1β, IL-6, IL-10, and TNF-α, 

in FIP mice over a 24-hour period (p < 0.001) versus the sham group (Figure 11). Additionally, 

we observed increased levels of eotaxin, M-CSF, MIG, MIP-1α, MIP-1β, MIP2, IL-5 and IL-15. 

IL-5 and IL-15 returned to baseline levels by 12 hours; however, IL-5 was detected at 

significantly increased levels at 24 hours, compared to the control group (p < 0.001). Results of 

additional analysed cytokines, which are well described in septic models, are shown in Table 11. 
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Figure 11: Serum cytokines and chemokines in septic B6 mice. 

Sham and FIP (90 mg/mL) cytokine and chemokine levels (pg/mL) at 3, 12, and 24h post FIP 

induction. Mean serum protein concentrations ± SEM are shown (n = 12 for sham group; n ≥ 3 

for 3, 12, and 24h groups). *p <0.05, **p <0.01, ***p <0.001. 

  



77 

 

Table 11: Changes in concentrations of chemokines and cytokines in sham- and 90 mg/mL FS-

treated mice with IAS. 

Cytokine / 

Chemokine 
Sham IAS 

P 

Value 

  3h 12h 24h  

IL-1α 81.14 ± 22.79 313.91 ± 25.18 ND 1089.33 ± 141.89 <0.001 

IL-12p40 10.14 ± 4.10 66.01 ± 13.74 0.91 ± 0.91 86.76 ± 8.97 <0.001 

IL-12p70 39.81 ± 24.53 48.14 ± 17.62 28.78 ± 17.15 70.83 ± 36.10 ns 

IL-13 218.93 ± 31.44 413.71 ± 17.57 315.23 ± 39.11 812.51 ± 171.84 <0.001 

IL-17A 5.45 ± 1.13 403.32 ± 132.46 103.32 ± 33.20 1954.34 ± 538.63 <0.001 

IP-10 

(CXCL10) 
59.42 ± 9.45 553.66 ± 223.84 155.26 ± 51.19 1059.87 ± 98.50 <0.001 

KC (CXCL1) 
556.53 ± 

121.08 
30212.64 ± 109.51 28136.57 ± 2005.17 30600.09 ± 84.61 <0.001 

LIF 0.95 ± 0.46 60.67 ± 16.62 31.58 ± 6.64 377.38 ± 66.71 <0.001 

G-CSF 

(CSF3) 

1159.18 ± 

289.34 
39854.47 ± 224.65 39942.15 ± 207.13 39855.60 ± 335.01 <0.001 

GM-CSF 

(CSF2) 
46.33 ± 5.53 212.57 ± 19.99 92.79 ± 19.11 349.34 ± 29.02 <0.001 

MCP-1 34.51 ± 6.32 3568.44 ± 1114.53 1182.31 ± 85.60 27602.38 ± 806.52 <0.001 

RANTES 

(CCL5) 
17.96 ± 4.15 106.74 ± 14.70 108.34 ± 19.58 1321.31 ± 147.91 <0.001 

VEGF 2.67 ± 1.14 5.01 ± 0.81 13.75 ± 12.11 5.24 ± 2.19 ns 

Mean concentrations ± SEM are given in pg/mL (n = 12 for sham mice; n = 3 in the 3h, 12h, and 

24h FIP groups respectively; ns: not significant; ND: not determined).  
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3.3 iNKT cells are pathogenic in intra-abdominal sepsis 

Given our finding of elevated iNKT cell proportions in human sepsis/severe sepsis, and 

the multiple studies that have demonstrated the pathogenicity of iNKT cells in animal models 

mimicking chronic polymicrobial sepsis [159], we studied iNKT cells in our mouse model of 

IAS. Since iNKT cells can rapidly produce pro- and/or anti-inflammatory cytokines in response 

to stimuli and shape the subsequent immune responses in various diseases [174, 235], we 

hypothesized that these cells would affect disease severity and survival in IAS. Compared to 

C57BL/6 (B6) mice, we observed a significant reduction in sepsis severity (Figure 12a) and 

mortality (Figure 12b) in Jα18-/- mice, which selectively lack iNKT cells [230]. Whereas an 

intra-peritoneal injection of a fecal slurry solution (90 mg/mL) in B6 mice resulted in 100% 

mortality at 24 hours, the sham B6 and Jα18-/- groups, which were injected with normal saline, as 

well as the septic Jα18-/- group, remained alive. On necropsy, we observed discrete abscess 

collections overlying the intestines and liver in septic Jα18-/- mice, whereas septic B6 mice 

developed intestinal distension and edema without abscess formation (Figure 13). 
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Figure 12: iNKT cells are pathogenic in intra-abdominal sepsis (IAS). 

(a) B6 and iNKT-deficient Jα18-/- mice (n= 6) were injected with fecal slurry (90mg/mL) to 

induce IAS and monitored during the experimental timeline. Murine sepsis scores were 

significantly higher compared to sham-treated B6 and Jα18-/- mice (injected i.p. with normal 

saline [NS]) and Jα18-/- mice with IAS (n= 6 for sham B6 and Jα18-/- mice each, n= 10, n= 6 for 

septic B6 and Jα18-/- mice respectively). ***p< 0.001 by two-way ANOVA test. (b) Mortality 

for B6 mice with IAS were significantly higher than sham B6 and Jα18-/- mice, as well as septic 

Jα18-/- mice (n= 6 for sham B6 and Jα18-/- mice each, n= 10, n= 6 for septic B6 and Jα18-/- mice 

respectively). ***p< 0.001 by log-rank test 
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Figure 13:  Necropsy of sham and septic B6 and Jα18-/- mice. 

On necropsy, septic B6 mice had significant intestinal distension (white arrow) compared to 

sham-treated B6 mice. The omentum (black arrow) was also enlarged in septic B6 mice. Jα18-/- 

mice formed discrete abscesses (white arrowheads) overlying the liver and intestines, with no 

intestinal distension (size bar, 0.5 cm).  
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To assess whether iNKT cells were migrating to the omentum or proliferating within 

their native tissues, we adoptively transferred 5×105 GFP-expressing iNKT cells from transgenic 

mice into Jα18-/- mice through a tail-vein injection. After 18 hours, we induced sepsis by 

intraperitoneal administration of fecal slurry (90 mg/mL) and monitored mice for 24 hours. Mice 

that received iNKT cells fared worse than Jα18-/- that did not receive iNKT cells (Figure 14), 

with respect to disease severity. None of the mice in either group died at the end of the 

experimental timeline. Together, these results confirm the pathogenic nature of iNKT cells in 

IAS. 
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Figure 14: Adoptive transfer of iNKT cells into iNKT-deficient mice. 

Splenic and hepatic iNKT cells were isolated and sorted from GFP-expressing transgenic mice, 

and injected i.v. into Jα18-/- mice. After 18 hours, mice were administered a fecal slurry (90 

mg/mL) to induce IAS and monitored for 24 hours. Adoptive transfer of iNKT cells increased 

the severity of sepsis (a) compared to Jα18-/- mice that did not receive iNKT cells. (b) 

Adoptively-transferred iNKT cells moved into the omentum of Jα18-/- mice following IAS, as 

detected by flow cytometry, compared to adoptively-transferred iNKT cells in sham Jα18-/- mice. 
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3.4 Tissue-specific distribution of iNKT cells is altered in IAS 

Previous animal studies using a model of chronic polymicrobial sepsis found that the 

frequency of hepatic iNKT cells declined significantly, whereas splenic iNKT cells remained 

unchanged [159]. We sought to determine whether a similar occurrence would be observed in 

acute IAS. Furthermore, we hypothesized that the omentum, which has been described as the 

“policeman of the abdomen” for its ability to migrate to and mitigate inflammatory reactions 

[229] may accommodate increased numbers of iNKT cells post-sepsis. 

Using flow cytometry, we determined the frequencies of TCRβ+CD1d tetramer- 

conventional T cells and TCRβ+CD1d tetramer+ iNKT cells in the spleen, liver and omentum. In 

the spleen (Figure 15a), the percentage of conventional T cells declined significantly post-sepsis 

from 44.5% to 31.2% (p= 0.0128). The percentage of splenic iNKT cells also reduced 

significantly post-sepsis from 1.18% to 0.33% (p= 0.0046). In the liver (Figure 15a), there was 

no difference in the tissue-specific distribution of iNKT or T cells. In the omentum (Figure 15a), 

the percentage of T cells increased significantly post-sepsis from 12.78% to 38% (p= 0.0095), 

and the percentage of iNKT cells were also significantly elevated post-sepsis from 0.58% to 

5.5% (p= 0.040). 

We also sought to quantify the transcriptional expression of the invariant TCR following 

IAS, because the surface receptors of iNKT cells (including the TCR and NK1.1) can be down-

regulated upon activation [245, 246], and become undetectable by flow cytometry using standard 

reagents [245]. Using the Taqman assay with custom designed primers that overlap the invariant 

TCR Vα14-Jα18 splice site and amplify a portion of the TCR [173, 178], we observed significant 

increases in the transcriptional expression of the invariant TCR within the spleen, liver, and 

omentum post-sepsis (Figure 15b). Together, these results demonstrate that the tissue-specific 
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distribution of iNKT cells is altered significantly during IAS, and that the transcription of the 

invariant TCR is increased post-sepsis. 
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Figure 15: Tissue-specific distribution of iNKT cells is altered during IAS 

(a) The distribution of T and iNKT cells in the spleen and omentum is altered significantly in 

IAS, but remains unchanged in the liver (n= 7, n= 10 in sham and IAS groups respectively). 

Percentages of cell populations are represented as means ± SEMs. *** p<0.0001, ** p<0.001, * 

p<0.05 by Mann Whitney U test (b) Quantitative RT-PCR detecting iNKT cells in the spleen, 

liver, and omentum. 
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3.5 Th2-polarized iNKT cells reduce disease severity in IAS 

Multiple groups, including ours, have examined the use of glycolipids to modulate 

cytokine responses in iNKT cells, and ameliorate disease severity in mouse models of 

autoimmune diseases such as Type 1 Diabetes [204, 209] and rheumatoid arthritis [205-207]. 

Since the acute phase of intra-abdominal sepsis is primarily characterized by a marked pro-

inflammatory or Th1-type response that contributes to mortality [14, 18, 56, 57, 70], we 

hypothesized that administration of a Th2-polarizing glycolipid would reduce disease severity in 

sepsis. OCH is an iNKT cell agonist which results in a Th2-biased cytokine profile when 

administered in vivo [202, 235]. Similar to previous studies by our group and others [209, 235, 

247], we demonstrated that the i.p. injection of OCH into naïve B6 mice results in a rapid peak 

of serum IL-4 at 2 hours, and is then significantly reduced at 12 to 24 hours (Figure 16); in 

contrast, serum levels of the Th1 cytokine IFN-γ peaked at 12 hours, but was almost 

undetectable at 24 hours (Figure 16). The administration of the prototypical iNKT cell agonist 

KRN7000 [186] resulted in elevated serum levels of IFN-γ between 12 and 24 hours (Figure 

16). The IL-4: IFN-γ ratio calculated based on the peak values of these cytokines was higher for 

OCH compared to KRN7000, confirming that OCH promotes a Th2-dominant cytokine response 

in vivo. 
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Figure 16: Effect of glycolipid agonists on cytokine expression in naïve B6 mice. 

Naïve B6 mice were injected i.p. with 4 µg OCH, KRN7000 or C20:2, and bled at 2, 12, and 24 

hours post-injection. Serum samples were assayed for IL-4 and IFN-γ by enzyme-linked 

immunosorbent assay (ELISA). Each data point shows mean (± SEM) of two or three mice from 

one representative experiment. Vehicle-treated mice had cytokine levels below limits of 

detection. 
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Treatment with OCH prolonged survival in septic mice compared to both vehicle and 

KRN7000 treatments (Figure 17a). Median survival for OCH-treated mice was 28 hours 

compared to 24 and 22 hours for vehicle- and KRN7000-treated mice, respectively (p< 0.0001 

by log-rank test). Mice in the OCH group survived beyond 24 hours, whereas mortality for 

vehicle- and KRN7000-treated mice was 100% by 24 hours. OCH-treated mice (Figure 17b) 

also had a significantly lower MSS (± SEM) of 13 ± 0.53 after 24 h compared to vehicle- and 

KRN7000-treated mice with IAS (20 ± 0.33 and 18 ± 0.74 respectively, p< 0.0001 by two-way 

ANOVA with Bonferroni post-test). There were no statistical differences in MSS between the 

vehicle and KRN7000 treatments (p= 0.8 by two-way ANOVA with Bonferroni post-test). 

The reduced MSS for OCH-treated mice derived from significant improvements in 

respiratory status, an important clinical predictor of mortality in sepsis [5, 16, 48, 248]. Most 

vehicle- and KRN7000-treated mice developed respiratory distress (laboured breathing and 

reduced respiratory rates) by 15 hours post-sepsis, unlike OCH-treated mice that continued to 

have relatively normal respiratory rates even at 24 hours. OCH-treated mice were also more 

responsive to auditory and touch stimuli whereas vehicle- and KRN7000- treated mice remained 

non-responsive and slow-moving or stationary. In addition, we did not observe any differences in 

disease severity between vehicle- and OCH-treated J18-/- mice with IAS (Figure 17c), 

confirming that the beneficial effects of OCH on sepsis severity and mortality in B6 mice are 

linked to the specific modulation of iNKT cells. Vehicle-treated J18-/- mice had a mean (± 

SEM) MSS of 8.7 (± 0.33) whereas OCH-treated J18-/- mice had a mean (± SEM) MSS of 9.3 

(± 0.33; p= 0.10 by two-way ANOVA with Bonferroni post-test). 
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Figure 17:  Th2-polarizing glycolipid OCH reduces disease severity in IAS. 

(a) OCH-treated B6 mice had significantly prolonged survival compared to vehicle- and 

KRN7000-treated mice (n= 19, n= 15, n= 8 for OCH, vehicle, and KRN7000 groups 

respectively). ***p< 0.001 by log-rank test (b) OCH-treated mice demonstrated significantly 

reduced disease severity compared to vehicle-treated and KRN7000-treated mice (n= 19, n= 15, 

and n= 8 mice respectively for OCH, KRN7000, and vehicle groups). ***p <0.001 by two-way 

ANOVA with Bonferroni post-test. (c) iNKT-deficient Jα18-/- mice were given fecal slurry (FS; 
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90mg/mL) to induce intra-abdominal sepsis (IAS) and concomitantly treated with OCH or 

vehicle. Murine sepsis scores were similar between vehicle and OCH-treated mice (n= 3 per 

group). (d and e) Administration of OCH and KRN7000 resulted in significantly reduced 

detection of iNKT cells among septic B6 mice compared to vehicle treatments. The percentages 

of T cells remained unchanged with administration of iNKT-specific glycolipid agonists (n= 6, 

n= 4, n= 6, and n= 3 for vehicle, OCH, Vehicle (KRN7000) and KRN7000 groups respectively). 

*p <0.05, **p <0.01 by Mann-Whitney U test. (f) Bacterial counts in blood and multiple organs 

were similar between vehicle-, OCH-, and KRN7000-treated mice with sepsis (n= 7-9 per 

group). Data are representative of at least three independent experiments.  
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Next, we analyzed the spleens and livers of septic mice treated with the glycolipid 

agonists but did not detect differences in splenic or hepatic T cell distributions (Figure 17d and e 

respectively). We did not determine any differences in splenic T cell distributions (Figure 17d) 

when septic mice were treated with OCH (29.7%), vehicle (35.0%), or KRN7000 (33.2%; p= 

0.42). Hepatic T cell distribution was also unchanged between OCH (55.9%), vehicle (56.8%) 

and KRN7000 treatments (58.2%, p= 0.44) (Figure 17e). However, we had significantly reduced 

detection of iNKT cells in the spleen and liver following glycolipid treatment (Figure 17d and 

e). Splenic iNKT cells reduced from 1.2% in vehicle-treated mice to 0.30% in OCH-treated mice 

(p= 0.010) and 0.04% in KRN7000-treated mice (p= 0.0090). Hepatic iNKT cells reduced from 

1.3% in vehicle-treated mice to 0.44% in OCH-treated mice (p= 0.0021) and 0.22% in 

KRN7000-treated mice (p= 0.0003). This likely reflects the down-regulation of the surface TCR 

that occurs with administration of glycolipid agonists, as shown previously by our group and 

others [[207, 235, 247, 249]; Figure 17e). In particular, we observed a significantly lower 

detection of iNKT cells following KRN7000 treatment compared to treatment with OCH. The 

differential degree to which the glycolipids down-regulate the surface TCR is a reflection of their 

differential binding kinetics to iNKT cells. While OCH and KRN7000 down-regulate the surface 

TCR within 4-12 hours post administration, KRN7000 is approximately 10-fold more potent at 

down-regulating the TCR after 24 hours [249], leading to the results we observed in Figure 17. 

Anti-inflammatory processes are concomitantly initiated to mitigate pro-inflammatory 

states in sepsis, both systemically [58-61], and in individual organs [64]. These 

immunosuppressive mechanisms decrease the responsiveness of cells of the innate and adaptive 

immune systems, thereby increasing susceptibility to opportunistic and additional infections [65-

68]. Importantly, we observed that the use of OCH, which significantly reduced the production 
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of the pro-inflammatory cytokine IFN-γ [207, 209, 235], did not worsen the microbial load of 

septic mice, compared to vehicle and KRN7000 treatments (Figure 17f). Therefore, 

administration of the Th2-polarizing glycolipid OCH did not result in overt susceptibility to 

microbial infection. Additionally, OCH-treated mice that survived to 48 hours demonstrated a 

significantly lower bacterial count in all tested organs, compared to OCH-treated mice that died 

at 24 hours (data not shown). Sham mice, as expected, did not demonstrate bacterial organ 

counts (data not shown). 

Lastly, we tested the effect of a second Th2-polarizing glycolipid C20:2 on disease 

severity in IAS, to confirm whether the Th2-biased modulation of iNKT cells was responsible 

for ameliorating disease severity. C20:2 is a potent agonist with a capacity to bind and activate 

iNKT cells that is significantly stronger than OCH [209, 235]; administration of C20:2 in naïve 

B6 mice also results in a more pronounced Th2 response at 24 hours than OCH [209, 235] 

(Figure 18). When septic B6 mice were treated with C20:2, we observed a significant reduction 

in MSS between 20 and 24 hours compared to vehicle-treated mice (Figure 18), with improved 

respiratory status at observed time points. These results confirm the novelty of manipulating 

iNKT cells into a Th2-biased state for the mitigation of disease severity in IAS. However, the 

MSS continued to rise in C20:2-treated mice, in contrast to OCH, where the MSS reached a 

plateau (Figure 17b). Based on these results, we elected to focus on OCH and the means by 

which it improves mortality in IAS. 
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Figure 18: Murine Sepsis Scores for septic B6 mice treated with C20:2. 

Mice were injected with fecal slurry and C20:2 or vehicle solution and monitored for 24 hours 

(n= 5, n= 15 mice for C20:2 and vehicle groups respectively). ***p<0.001 by two-way ANOVA 

test. 

  



94 

 

3.6 The pro-inflammatory cytokine profile in IAS is ameliorated by 

administration of OCH 

In order to further understand the impact of the glycolipid agonists on the septic response, 

we assessed the concentrations of 32 cytokines and chemokines from the sera and spleens of 

vehicle-, OCH-, and KRN7000-treated septic mice, as well as sham treated mice (Figure 19a-c, 

Table 12, and Table 13). In the serum, mean concentrations of IL-17 was significantly lower in 

the OCH-treated mice compared to KRN7000-treated mice (p= 0.041 by one way ANOVA with 

post-hoc Tukey’s multiple comparison test). The concentration of IL-13 was higher in the sera of 

OCH-treated mice compared to KRN7000-treated mice (p= 0.0403 by one way ANOVA with 

post-hoc Tukey’s multiple comparison test). In the spleen, IFN-γ, IL-3, IL-4, IL-17, and TNF-α 

were significantly elevated in the KRN7000-treated group compared to the OCH-treated group. 

Therefore, the administration of OCH significantly reduces the levels of pro-inflammatory 

cytokines in IAS. 
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Figure 19: Cytokine levels in the sera and spleens of septic B6 mice. 

(a) Sera and spleen homogenates from vehicle-, OCH-, and KRN7000-treated B6 mice with 

intra-abdominal sepsis (IAS) were analyzed at 24 hours for 32 inflammatory cytokines by 

multiplex array, and displayed as a heat map (n= 4 mice per group). Concentrations of iNKT 

cell-specific cytokines are shown from sera (b) and spleen homogenates (c) of septic mice treated 
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with vehicle, OCH, or KRN7000 (n= 4-8 per group). Concentrations of cytokines are shown in 

pg/mL. *p <0.05, **p <0.01, ***p <0.001 by one-way ANOVA with post-hoc Tukey’s multiple 

comparison test. Data are representative of at least three independent experiments. 
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Table 12: Mean serum chemokines and cytokine concentrations (± SD) in B6 mice treated with 

vehicle, OCH, or KRN7000. 

Cytokine / 

Chemokine 

Sham 

(n = 4) 
IAS P Value 

  
Vehicle 

(n = 4) 

OCH 

(n = 8) 

KRN7000 

(n = 6) 
 

Eotaxin 302.2 ± 223.2 7735 ± 6174 5411 ± 3145 6841 ± 4311 0.6538 

G-CSF 283.4 ± 47.1 40342 ± 72 40868 ± 877.5 41081 ± 989.8 0.3992 

GM-CSF 48.8 ± 15.7 495 ± 169 343.6 ± 268.1 311.8 ± 221.7 0.4723 

IFN-γ 8.4 ± 14.5 311 ± 392 91.93 ± 110.5 98.85 ± 77.52 0.1852 

IL-1a 179.1 ± 179.2 1070 ± 524 1737 ± 958.7 1345 ± 241.6 0.3030 

IL-1b 12.3 ± 12.6 234 ± 141 671.6 ± 897.4 662.4 ± 1019 0.6749 

IL-2 140.4 ± 172.8 40 ± 34 94.43 ± 178.2 239.7 ± 487.5 0.5581 

IL-3 - 13 ± 9.5 14.70 ± 11.33 25.55 ± 22.56 0.3637 

IL-4 0.16 ± 0.28 2 ± 1.4 3.363 ± 2.944 4.197 ± 3.656 0.5371 

IL-5 2.57 ± 1.97 483.0 ± 320.8 455.5 ± 331.2 455.0 ± 167.2 0.9853 

IL-6 21.4 ± 0.25 26529 ± 792.8 28164 ± 1356 27887 ± 1658 0.1765 

IL-7 - 6.243 ± 10.07 3.533 ± 3.946 2.275 ± 2.917 0.5461 

IL-9 178.3 ± 202.6 479.9 ± 334.5 165.3 ± 130.2 243.7 ± 259.9 0.1134 

IL-10 - 22733 ± 11469 11187 ± 9980 15875 ± 9750 0.2135 

IL-12 (p40) - 3731 ± 7247 100.5 ± 44.28 107.3 ± 60.38 0.4602 

IL-12 (p70) 16.0 ± 3.9 24.68 ± 10.31 104.2 ± 88.68 161.6 ± 218.7 0.3824 

IL-13 270.6 ± 273.0 636.1 ± 165.2 1246 ± 626.3 775.1 ± 275.1 0.0403 

IL-15 155.6 ± 174.8 321.1 ± 203.0 215.5 ± 139.1 447.1 ± 205.7 0.0775 

IL-17 1.58 ± 2.42 3893 ± 2716 3301 ± 3184 7578 ± 3822 0.1858 

IP-10 52.4 ± 41.3 28253 ± 43784 3332 ± 4097 4227 ± 2912 0.2907 

KC 389.7 ± 369.3 29810 ± 1057 28626 ± 2871 27521 ± 3275 0.1489 

LIF - 289.0 ± 196.6 275.0 ± 137.2 343.4 ± 149.8 0.4501 
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LIX 2261 ± 3298 1848 ± 329.6 4842 ± 3144 2868 ± 518.2 0.1108 

MCP-1 28.76 ± 32.32 23343 ± 14846 21132 ± 10003 24296 ± 8448 0.7748 

M-CSF 3.93 ± 0.70 203.9 ± 48.19 1667 ± 1461 812.4 ± 828.1 0.1115 

MIG 15.4 ± 10.1 8189 ± 3622 6101 ± 4333 4268 ± 4484 0.3813 

MIP-1a 163.6 ± 108.3 5312 ± 3389 5456 ± 6949 6918 ± 6845 0.7355 

MIP-1b 88.96 ± 120.2 18193 ± 12436 9737 ± 8622 9510 ± 8843 0.7290 

MIP-2 14.8 ± 6.3 21982 ± 10040 22283 ± 5986 21423 ± 3911 0.9759 

RANTES 16.1 ± 18.7 1993 ± 1201 2838 ± 3051 1870 ± 1304 0.7007 

TNF-a 0 ± 0 296.2 ± 151.8 314.4 ± 182.1 323.3 ± 155.3 0.9688 

VEGF 3.7 ± 3.7 37.10 ± 54.55 24.45 ± 46.15 13.70 ± 19.06 0.9220 

All concentrations are in pg/mL. Comparison was made by one-way ANOVA with post-hoc 

Tukey’s multiple comparison test. P values are shown for comparison tests between OCH- and 

KRN7000-treated mice. 
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Table 13: Mean concentrations of chemokines and cytokines in spleen homogenates (± SD) of 

septic mice treated with vehicle, OCH, or KRN7000. 

Cytokine / Chemokine 
Vehicle 

(n = 1) 

OCH 

(n = 7) 

KRN7000 

(n = 6) 

P Value 

(OCH v. KRN7000) 

Eotaxin 167.17 654.3 ± 503.6 1560 ± 268.2 0.0023 

G-CSF 10794.18 9244 ± 6763 7813 ± 2679 0.5338 

GM-CSF 11.35 10.49 ± 13.94 18.68 ± 23.47 0.5867 

Ifn-γ 22.49 17.91 ± 12.77 281.7 ± 394.8 0.0221 

IL-1α 3007.60 561.5 ± 318.2 562.2 ± 234.7 0.9372 

IL-1β 417.44 54.16 ± 25.40 63.01 ± 12.34 0.4452 

IL-2 6.31 18.05 ± 10.46 17.27 ± 8.107 0.7308 

IL-3 7.03 0.8543 ± 0.9072 5.222 ± 7.079 0.0264 

IL-4 0.49 3.127 ± 1.943 15.12 ± 14.78 0.0256 

IL-5 0.44 4.594 ± 4.254 4.938 ± 1.595 0.4452 

IL-6 87.59 2396 ± 1794 2962 ± 2484 0.6282 

IL-7 5.22 6.637 ± 3.395 6.862 ± 1.686 0.5338 

IL-9 28.04 61.75 ± 26.23 76.06 ± 16.90 0.4452 

IL-10 40.05 58.01 ± 59.15 37.45 ± 13.97 0.9452 

IL-12 (p40) 268.12 12.29 ± 11.93 22.36 ± 17.07 0.7092 

IL-12 (p70) 12.22 3.837 ± 3.359 4.762 ± 2.433 0.0003 

IL-13 8.28 0.3000 ± 0.6708 4.053 ± 5.847 0.2448 

IL-15 31.90 19.22 ± 19.61 24.94 ± 14.15 0.5477 

IL-17 2.19 14.80 ± 18.33 42.80 ± 34.79 0.0367 

IP-10 3.05 483.9 ± 439.2 2507 ± 756.3 0.0088 

KC 79.33 2591 ± 2041 4814 ± 2651 0.0035 

LIF 108.17 15.71 ± 13.44 22.30 ± 5.966 0.5477 

LIX 533.31 107.9 ± 112.7 123.1 ± 166.4 0.2163 

MCP-1 1251.65 781.4 ± 702.4 1234 ± 166.7 0.0053 

M-CSF 210.76 42.50 ± 32.72 45.35 ± 20.29 0.9452 
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MIG 17.77 1870 ± 2010 7776 ± 7656 0.0596 

MIP-1α 140.71 318.1 ± 216.2 462.9 ± 143.5 0.0167 

MIP-1β 23.01 410.0 ± 282.5 698.6 ± 138.1 0.0026 

MIP-2 5915.82 4937 ± 3253 6480 ± 3191 0.0134 

RANTES 40.36 267.1 ± 225.6 316.2 ± 143.5 0.6991 

TNF-α 4.37 7.239 ± 5.841 12.10 ± 3.006 0.1979 

VEGF 3.16 7.460 ± 1.522 5.652 ± 1.646 0.0049 

All concentrations are in pg/mL. Comparison was made between OCH and KRN7000-treated 

mice by unpaired two-tailed t test.  
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3.7 Treatment with OCH significantly reduces splenocyte apoptosis in IAS 

We next sought to elucidate the reason for the improved survival among septic mice that 

were treated with OCH. When we performed histopathological analysis on the spleen, liver, and 

omentum of septic B6 mice treated with KRN7000 or OCH (Figure 20), we found a significant 

reduction of apoptotic cells within the spleens of OCH-treated mice compared to vehicle- and 

KRN7000-treated mice. The presence of karyorrhexic nuclei within clusters of cells with 

eosinophilic cytoplasm was observed in the white pulp of the spleen by hematoxylin and eosin 

staining, and subsequently confirmed as apoptotic cells by TUNEL staining, particularly in 

vehicle- and KRN7000-treated mice (Figure 20). Based on histopathological scoring by a 

pathologist blinded to the treatment, OCH-treated mice had mild apoptosis, whereas vehicle-

treated and KRN7000-treated mice had moderate and severe apoptosis respectively (Figure 21). 

In the omentum of vehicle- and KRN7000-treated mice, we noted a significant increase 

in lymphocytes whereas fewer lymphocytes were observed in the omentum of OCH-treated mice 

(Figure 20). We did not observe overt differences in liver histopathology among vehicle-, OCH-, 

and KRN-treated mice. When we examined the histology of C20:2-treated septic mice, we 

observed a decrease in apoptosis compared to KRN7000-treated mice (Figure 22). However, the 

degree of apoptosis in C20:2-treated mice was higher than OCH-treated mice with IAS. 
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Figure 20:  Histopathology of septic B6 mice treated with glycolipid agonists of iNKT cells. 

Treatment with OCH significantly reduced apoptosis within the spleen compared to vehicle- and 

KRN7000-treated mice with intra-abdominal sepsis (IAS), both by hematoxylin and eosin 

staining, as well as TUNEL staining. Lymphocyte migration to the omentum is also partially 

ameliorated in OCH-treated mice compared to vehicle- and KRN7000-treated mice. There were 

no histopathological differences in the liver. Images are representative of 4 animals per treatment 

group (n= 4 slides per animal; size bar, 50 µm). 
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Figure 21: Histopathological scoring of splenic apoptosis in B6 mice with IAS. 

Histopathological scoring of the degree of apoptosis observed within the spleens of sham and 

septic B6 mice treated with vehicle, KRN7000, or OCH (n= 4 animals per treatment group; n= 4 

slides per animal). Apoptosis was defined histologically by the presence of cell clusters with 

nuclear shrinkage (karyorrhexis), dark eosinophilic cytoplasm, intact plasma membrane, and 

relative paucity of surrounding inflammatory cells within the splenic follicles on H&E staining. 

Scores assigned to each animal by a blinded independent pathologist were as follows: 0 for 

complete absence of apoptosis; 1 for mild presence of apoptosis (0-15% per follicle); 2 for 

moderate apoptosis (16-30% per follicle); and 3 for severe apoptosis (31-45% per follicle). *** 

p< 0.0001 by two-tailed Mann Whitney U test. 
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Figure 22: Histopathology of C20:2-treated B6 mice with IAS. 

C57BL/6 (B6 mice) were injected intraperitoneally with 500 µL of FS (90 mg/mL) to induce 

IAS, and concomitantly injected with 4 µg of the glycolipid C20:2. Mice were sacrificed at 24 

hours, and the liver, spleen, and omentum were removed and processed for histopathological 

analysis. These images are representative of 5 septic B6 mice that were treated with C20:2 (size 

bar, 25 µm). 
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We then performed flow cytometry on spleens harvested from vehicle-, OCH- and 

KRN7000-treated mice with IAS to determine the immune cell populations that had undergone 

apoptosis (Figure 23). Treatment with OCH significantly reduced the apoptosis of T and B cells 

compared to vehicle- and KRN7000-treated mice. However, there were no differences in the 

frequency of apoptotic macrophages between the KRN7000 and OCH groups, although both 

treatments reduced the frequency of apoptosis significantly compared to vehicle-treated mice. 

With respect to NK cell apoptosis, we observed a trend toward reduced apoptosis in KRN7000-

treated mice. Together, these results demonstrate that different glycolipid agonists of iNKT cells 

differentially mitigate the apoptosis of splenic lymphocytes, but not NK cells and macrophages. 

Moreover, Th2-polarizing glycolipids significantly reduce lymphocyte apoptosis within the 

spleen, a critical predictor of mortality in severe sepsis and septic shock [71, 84, 134].   
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Figure 23: Analysis of apoptotic cell populations in the spleens of septic B6 mice. 

(a) Splenocytes from sham and septic B6 mice treated with OCH, KRN7000, or vehicle were 

stained for T, B, and Natural Killer (NK) cells, and macrophages, and further stained for 

Annexin V (a marker for early apoptosis) and 7-AAD viability dye. (b) Early and late apoptotic 

cells (Annexin V+ 7AAD- and Annexin V+ 7AAD+ cells, respectively) were quantified and 

compared between treatments. OCH treatment significantly reduced apoptosis among T and B 

cells, as well as macrophages, but not NK cells (n= 3-6 mice per group). *p <0.05, **p <0.01, 

***p <0.001 by one-way ANOVA with post-hoc Tukey’s multiple comparison test. Data are 

representative of 3 independent experiments. 
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4.1 Discussion 

iNKT cells exert profound and diverse regulatory functions in health and disease, 

bridging the innate and adaptive defense mechanisms in a variety of immune responses [141, 

155, 172]. Here, we demonstrate that patients with sepsis/severe sepsis have significantly 

elevated proportions of iNKT cells and that OCH, a Th2-polarizing glycolipid agonist of iNKT 

cells, profoundly reduces disease severity in IAS, with significantly reduced lymphocyte 

apoptosis within the spleen. These findings introduce iNKT cells as potential therapeutic targets 

for the treatment of sepsis. 

In this thesis, we elected to utilize the fecal-induced peritonitis (FIP) model to simulate 

IAS in a reproducible and reliable fashion, and to mimic the clinical presentation and prognosis 

of acutely ill patients with IAS. Animal models that can reliably replicate the clinical 

characteristics of sepsis are essential for the study of this disease and for the development of 

novel diagnostic biomarkers [250], and new therapeutic strategies [3, 10, 18, 250-252].  The 

failure of therapies that showed promise during the preclinical stages, but yielded little benefit in 

human trials [251, 253], have highlighted the shortcomings of conventional animal models of 

sepsis [251, 252, 254]. The cecal ligation and puncture (CLP) model, often considered the “gold 

standard” among polymicrobial sepsis models [161, 232, 251, 253, 255], establishes a mixed 

bacterial infection with an inflammatory source of necrotic intestinal tissue [255-257]. It 

involves the performance of a laparotomy, ligation of the cecum in a non-obstructing manner, 

and puncture of the ligated portion to allow fecal content to leak into the normally sterile 

peritoneal cavity [161]. Despite its widespread use, however, the CLP model and its 

modifications, such as cecal ligation and incision (CLI) and colon ascendens stent peritonitis 

(CASP), is acutely dependent on operator technique [232, 251, 258, 259]: the percentage of 
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cecum that is ligated (and thus the amount of necrosis that is induced), the amount of the 

microbial dose that enters the peritoneum (which depends on the number and size of punctures 

and the pressure exerted on the cecum), the size of the incisions made in the skin and abdominal 

muscle, and even the use of different anaesthetic agents can considerably alter the outcome after 

CLP, precluding comparison between studies [161, 251, 255, 256]. Moreover, the CLP model 

more closely resembles intra-abdominal abscess formation [255, 257], which represents a 

different host response [255, 257] compared to our model. 

The FIP model is also advantageous to use because the protocol can be easily modified to 

alter disease severity and outcome, by simply varying the concentration of feces in solution. A 

further striking advantage is that the preparation of the fecal solution and the injection can be 

highly standardized; therefore, our protocol provides a controlled setting that minimizes the 

number of variables influencing outcome, and resolves the inter-operator inconsistency 

associated with the CLP, CLI, and CASP models. In addition, an identical microbial load and 

composition is given to each mouse, avoiding the potential inconsistency of each individual 

mouse’s microbiota leaking from the ligated cecum. The need for anesthesia is also obviated 

with the FIP model, removing another confounding factor that has been shown to alter innate 

immunity in animal models such as CLP [260, 261]. 

We consistently demonstrated bacterial growth in every major organ in septic mice, with 

similar tissue CFUs in independently performed experiments. While this study was limited by 

the inability to culture and identify strictly anaerobic microorganisms, we observed colonies that 

varied in size, shape, and color, confirming the polymicrobial nature of the infection. 
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In this study, we also developed a robust and comprehensive scoring system with high 

specificity and sensitivity in predicting severe sepsis and mortality during the experimental 

timeline. Our scoring system reliably predicts 1-hour and 2-hour mortality when clinical scores 

are greater than 10, with excellent discriminatory capacity. To our knowledge, the development 

of a sepsis score that can reliably predict acute mortality is novel among studies using animal 

models of acute sepsis and septic shock. Mice that attained a clinical score of 3 had 100% 

specificity for dying from sepsis during the experimental timeline. Although the murine sepsis 

score was developed in conjunction with our model, it may also potentially be used for other 

models of sepsis, including CLP. 

Histologically, we observed changes at the organ level that were inconsistently reported 

in the CLP model, likely because of surgical variability in the latter technique. In the lung, we 

did not observe extravasation of red cells and accumulation of inflammatory cells into the air 

spaces as described by Zingarelli et al [262]. Doi et al did not observe any histological changes 

in other organs with CLP [263], although they noted that CLP caused renal tubular damage 

mainly consisting of tubular vacuolization [264, 265]. Surprisingly, while we observed gross 

intestinal distension in FIP treated mice where the intestinal tract manifested subtle 

histopathological changes that have been described in other sepsis models, including the loss of 

glandular structure and intestinal epithelial villi, edema of the lamina propria, capillary 

hemorrhage, ulceration and apoptosis [266, 267]. Apoptosis was most evident in the spleen, as 

confirmed by TUNEL staining. As we demonstrated in later experiments during this thesis, T 

and B lymphocytes, NK cells, and macrophages all underwent apoptosis, corroborating similar 

results shown in the CLP model by Hotchkiss et al [70, 71]. These results corroborate human 

studies that indicate that apoptotic factors modulate lymphocyte and monocyte activity [71, 268], 
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with significant implications for immunosuppression and mortality in sepsis. The biochemistry 

data consistently suggests hepatic and possibly pancreatic dysfunction may be contributing to 

mortality, while the overwhelming cytokine dysfunction may also play a significant role, as 

suggested by other studies [268]. 

The putative cytokine markers of sepsis, including IL-1β, IL-6, IL-10 and TNF-α [18, 

269], increased significantly during the experimental timeline. For what we believe is the first 

time, however, we also demonstrate that levels of eotaxin, IL-5, IL-15, M-CSF, MIG, MIP-1α, 

MIP-1β, and MIP-2 rise significantly during sepsis. Eotaxin and IL-5 are associated with 

eosinophil recruitment and function [270], although eotaxin inhibits neutrophil recruitment 

during the acute inflammatory phase of sepsis [271]. IL-15, M-CSF, MIG, MIP-1α, MIP-1β and 

MIP-2 promote cellular differentiation, activity, survival, recruitment and chemotaxis [272-274], 

confirming the complexity of the dysregulated immune response during sepsis.  

Corroborating other studies that demonstrate pathogenicity of iNKT cells in sepsis [156, 

157, 159], iNKT-deficient Jα18-/- mice were resistant to IAS in this study. We also show that the 

tissue-specific distribution of iNKT cells is altered during IAS, with significant reductions in the 

spleen, and a concomitant rise in the omentum. The human omentum has been described as the 

“policeman of the abdomen” for its ability to adhere to sites of intra-abdominal pathology and 

prevent widespread pathogen contamination [219, 225]. Similarly, the murine omentum has been 

shown to facilitate the regeneration of damaged tissues [229]. These results, as well as the 

findings of Lynch et al, who demonstrated that the human omentum contained a rich reservoir of 

iNKT cells [185], prompted us to examine the murine omentum, wherein we observed a 

significant increase in iNKT cells post-sepsis. Our observation that the omentum became 

enlarged during IAS correlates with findings by Shah et al [229], and represents a unique feature 
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of this organ that has not been noted in other secondary lymphoid structures such as lymph nodes 

or spleens. T cells were also noted to be significantly increased in the omentum during IAS, 

corroborating observations made by Carlow et al [215] in a cecal ligation and puncture (CLP) 

model of polymicrobial sepsis. This was also confirmed by adoptive transfer experiments: iNKT 

cells that were transferred intravenously into iNKT-deficient mice moved into the omentum 

during IAS. While Barral and associates demonstrated that iNKT cells exit the spleen and enter 

the bloodstream in response to infection [275], the omentum may serve as a potential conduit for 

iNKT cells to help facilitate intra-abdominal immune response during IAS. Although it was 

beyond the scope of this study, we are currently investigating the frequency, function, and 

phenotype of omental iNKT cells in human sepsis to determine their role in regulating disease 

severity, and evaluate their prognostic significance. 

Our results with respect to the tissue-specific distribution of iNKT cells post-sepsis 

contrast the findings of Hu et al [159], who demonstrated a significant reduction in hepatic iNKT 

cells but no changes in the frequency of splenic iNKT cells, in the CLP model. We propose that 

splenic iNKT cells mobilize more readily during acute sepsis compared to hepatic iNKT cells, 

since a recent study by Barral et al [275] showed that splenic iNKT cells patrol the red pulp and 

marginal zones of the spleen, rapidly sample blood-borne antigens, and display migratory 

capabilities. This may explain our observed changes in splenic iNKT cell frequency post-sepsis, 

and additionally suggests that the iNKT cells we detected in the omentum post-sepsis may have 

originated from the spleen, given that the two organs are physically attached to each other [229]. 

Glycolipid ligands of iNKT cells have been used successfully in experimental models of 

autoimmune diseases [203-205, 207, 212] and solid-organ transplantation [208], as well as in 

clinical trials of viral infections and various types of cancer [189, 190]. KRN7000 [186] reduces 
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morbidity and mortality associated with murine graft-versus-host disease [198, 199], while OCH 

mitigated disease severity in non-obese diabetic mice [204], experimental autoimmune 

encephalomyelitis [202], and collagen-induced arthritis [205, 206]. OCH also prevented disease 

symptoms in a humanized mouse model of citrullinated fibrinogen-induced inflammatory 

arthritis [207], and delayed Th1-mediated cardiac allograft rejection in mice [208]. 

In our study, we show that the administration of OCH ameliorated the severe pro-

inflammatory Th1-type response associated with IAS and reduced mortality. Although pro-

inflammatory cytokines such as IFN-γ and TNF-α contribute to immune responses against 

bacterial infections [276], elevated levels of these cytokines are also associated with poor 

outcomes and decreased survival in sepsis [[277, 278];(Shrum et al, submitted)]. As confirmed in 

this study, the treatment of septic mice with KRN7000 resulted in a Th1-type response at 24 

hours [141, 235, 279] and did not affect disease severity. In addition, elevated levels of the Th2 

cytokine, IL-13, may be contributing to the significant improvements in respiratory status and 

disease severity that we observed in OCH-treated mice. A potent anti-inflammatory cytokine 

[280, 281], IL-13 is produced in large quantities by alveolar macrophages in the lung during 

polymicrobial sepsis [280], and has been shown to protect mice from endotoxic shock when 

administered in vivo [282]. Since a compromised respiratory status significantly increases 

morbidity and mortality in sepsis [16, 48, 248], the selective Th2-biased modulation of iNKT 

cells may provide a novel strategy to prevent this complication in the first place. 

Using serum ELISA from healthy B6 mice that were administered OCH at various time 

points, we demonstrated that the ratio of IL-4 to IFN-γ was significantly elevated compared to 

naïve B6 mice (Figure 14) with OCH administration. We also showed that in both naïve (Figure 

14) and septic B6 mice (Figure 14) that received OCH or KRN7000, we could not detect iNKT 
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cells in the liver or spleen by flow cytometry. These results also confirm the activity of 

KRN7000 and OCH as previously described [283]: the TCR of iNKT cells is downregulated 

when activated by KRN7000, thereby reducing the detection of iNKT cells by surface antigen 

staining [235, 283]. The reduced detection of hepatic and splenic iNKT cells in OCH-treated 

mice also confirms its pharmacokinetic action, down-regulating surface TCR within 4 to 12 

hours of glycolipid administration as previously reported [249]. Although treatment with 

KRN7000 resulted in potent down-regulation of iNKT-cell TCR, as observed in other studies 

[198, 235, 283], there was no effect on sepsis severity in our study. A synthetic analogue of α-

GalCer that has been used in most experimental studies [283], KRN7000 is a high-affinity ligand 

that induces the release of Th1- and Th2-type cytokines simultaneously [140, 141], although a 

single injection of KRN7000 leads to a Th1-type response after 24 hours [140, 141]. 

Following the initial hyperinflammatory response of sepsis is a prolonged 

immunosuppressive phase that may lead to secondary infections [65-68]. Although pro-

inflammatory cytokines such as IFN-γ and TNF-α are associated with increased morbidity and 

mortality in sepsis [277, 284-286], they also contribute to immune responses against bacterial 

infections [276, 287]; IFN-γ, in particular, has been shown to reverse the altered immune status 

of monocytes in human sepsis [129]. Thus, one concern with Th2-polarizing agonists of iNKT 

cells is that this may further dysregulate protective immunity, leading to the potential uninhibited 

growth of bacterial pathogens. However, we did not observe an increase in microbial load within 

the blood and organs of OCH-treated mice compared to vehicle-treated mice with IAS. Since 

OCH is a less potent agonist than KRN7000, with lower binding affinity for the invariant TCR 

compared to the latter [235, 249], the administration of a single dose of OCH may have affected 

only a portion of iNKT cells, thereby abrogating rather than eliminating the pro-inflammatory 
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response. In addition, other immune cells which are not directly affected by glycolipid 

administration may continue to participate in bacterial clearance, including NK cells, which also 

produce significant amounts of IFN-γ [276]. Any differences in microbial counts between 

KRN7000- and vehicle-treated mice may have been masked by the excessive pro-inflammatory 

response that is inherent in our sepsis model (Shrum et al, submitted). Lastly, our study also 

confirms that the manipulation of iNKT cells alone can dramatically alter outcomes in sepsis, 

given that iNKT-deficient mice are resistant to mortality from sepsis, and disease severity was 

unaffected by glycolipid treatment in these animals. 

Interestingly, the use of C20:2, another Th2-polarizing glycolipid that is significantly 

more potent at inducing a Th2 bias compared to OCH [165, 209, 288] and supresses downstream 

NK cell function [235], also mitigated sepsis severity significantly and reduced splenocyte 

apoptosis. Unlike OCH, however, mice treated with C20:2 continued to worsen, although their 

MSS remained lower than vehicle-treated mice at most observed time-points, suggesting that 

while the Th2-biased manipulation of iNKT cells may be a viable therapeutic strategy in sepsis, 

the use of a drug that is too potent may have unintended immunosuppressive consequences [84]: 

balancing the pro-inflammatory response with OCH may therefore be better at improving 

survival in IAS, rather than suppressing it with C20:2. 

For what we believe is the first time, we demonstrate that Th2-polarized iNKT cells 

significantly reduce apoptosis within the spleen, particularly among T and B lymphocytes, and 

macrophages. Apoptosis contributes to immunosuppression during sepsis through the deletion of 

critical effector cells including T and B cells, and the induction of anergy in surviving immune 

cells. The loss of T and B cells significantly impairs the adaptive immune response, and, by 

disabling the cross-talk between the adaptive and innate immune systems, also impairs the latter 



116 

 

[17, 64, 74]. Hotchkiss et al observed a striking apoptosis-induced loss of cells of the innate and 

adaptive immune systems in the spleen during sepsis, including CD4+ and CD8+ T cells, B cells, 

and dendritic cells [70, 71]. The marked increase in apoptosis among circulating lymphocytes 

[77] is also believed to contribute to the profound and persistent lymphopenia that is strongly 

associated with mortality during sepsis. 

The uptake of apoptotic cells also stimulates immune tolerance by inducing the release of 

anti-inflammatory cytokines, including IL-10 and transforming growth factor-β (TGF-β), and 

suppressing the release of pro-inflammatory cytokines [87]. This potential link between the 

release of IL-10 by apoptotic cells and immune suppression in sepsis is underscored by studies 

showing that the circulating concentration of IL-10 is predictive of a fatal outcome in patients 

with sepsis [58, 88]. In the sera of OCH-treated mice, the levels of IL-10 appear to be lower than 

vehicle- and KRN7000-treated mice, although splenic levels of IL-10 are higher in OCH-treated 

mice compared to KRN7000-treated mice. Additionally, the uptake of apoptotic cells by 

macrophages and DCs does not induce the expression of co-stimulatory molecules: therefore, T 

cells that come into contact with APCs that have ingested apoptotic cells might either become 

anergic or undergo apoptosis themselves [87]. Therefore, the significant reduction in splenic 

apoptosis may prevent T cell anergy in OCH-treated mice. Interestingly, apoptosis of NK cells 

appeared to be reduced by treatment with OCH and KRN7000, although the trend is more 

pronounced for the latter. Since NK cells also produce significant amounts of IFN-γ [276], their 

apoptosis in the spleens of vehicle- and OCH-treated mice may explain the reduced levels of 

splenic IFN-γ in these two groups. 

Interleukin-17 is significantly lower in the sera and spleen of OCH-treated mice 

compared to KRN7000- and vehicle-treated mice. This cytokine has been strongly implicated in 
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promoting mortality during sepsis, both in animal and human studies, by causing the Th17 

response. Moreover, it has been shown that blockade of apoptosis impairs the release of IL-17 

and the subsequent Th17 response in a Citrobacter rodentium infectious colitis model [289]. 

Indeed, blockade of IL-17 has been shown to improve mortality in several animal models of 

sepsis [290, 291]. IL-17 is also involved in the apoptosis of PMNs [292] and also mediates 

cardiomyocyte apoptosis [293]. Therefore, reduction of IL-17A levels may have significant 

implications in improving cardiovascular output during septic shock, although it was beyond the 

scope of our current study to assess this. Nevertheless, the evidence from our study therefore 

suggests an alternative method to reduce mortality by manipulation of regulatory T cells without 

using end-target effector drugs. 

We have also demonstrated that the proportion of circulating iNKT cells is elevated early 

in the septic process for critically-ill patients, corroborating a recently published study by 

Heffernan et al [294]. Given their propensity to rapidly produce significant quantities of pro- 

and/or anti-inflammatory cytokines, the increased proportion of iNKT cells suggests that they 

may be playing a prominent role in promulgating the immune response in septic patients. 

Furthermore, we observed that the proportion of iNKT cells is not increased in patients who have 

sustained significant inflammatory responses due to trauma, suggesting that these cells may be 

specifically responding to microbial pathogens in humans. Consequently, the detection of 

increased numbers of iNKT cells may also serve as an important biomarker to differentiate septic 

from non-septic patients early in the disease process, thereby facilitating rapid and targeted 

interventions for the disease. 

There are several limitations to this study. We did not assess the impact of iNKT cell 

modulation on the function or activity of other immune cells within the spleen or liver. Since 
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iNKT cells play an important regulatory role in the context of immune responses and may be a 

potential target for therapy in sepsis, an evaluation of their downstream effects on immune cells 

will be necessary. One particular aspect of immune cell function in the context of Th2 

modulation is that of anergy. A significant proportion of septic patients die from additional 

nosocomial infections post-admission, and immunosuppression secondary to T cell anergy has 

been proposed as a primary reason for this occurrence. The risk of dying after a septic episode 

rises significantly within the first year, and the risk of dying after surviving an episode of severe 

sepsis is significantly elevated for the next five years. A study by Perl et al [6] found that only 

40% of severe sepsis patients were alive after 4 years, while only 20% of severely septic patients 

were alive within 8 years after leaving the hospital. Additionally, a study by Benjamim and 

colleagues showed that mice treated successfully following CLP died from reinfection when they 

were exposed to pulmonary Aspergillosis several weeks later [295]. Therefore, sepsis is not only 

an acute disease with acute clinical consequences, but also a syndrome that can cause chronic 

medical problems. Consequently, proliferation and activation assays of OCH- and KRN7000-

treated mice will be necessary to determine whether the lymphocytes can still mount an effective 

immune response. 

4.2 Conclusion 

Given the failure of many immunotherapeutic drugs in the treatment of sepsis [89, 90], 

alternative agents have been sought to combat this disease with some success [106-112]. Our 

results indicate that Th2-polarized iNKT cells reduce disease severity in IAS by mitigating 

lymphocyte and macrophage apoptosis within the spleen, likely through reduction of IL-17. 

Moreover, circulating iNKT cells are increased in critically-ill patients with sepsis compared to 
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non-septic patients, and therefore they may be a potent therapeutic target in the treatment of 

sepsis. 
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