
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-22-2014 12:00 AM

State Controlled Object Oriented Programming State Controlled Object Oriented Programming

Jamil Ahmed
The University of Western Ontario

Supervisor

Dr. Stephen M. Watt

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Jamil Ahmed 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Ahmed, Jamil, "State Controlled Object Oriented Programming" (2014). Electronic Thesis and Dissertation
Repository. 2024.
https://ir.lib.uwo.ca/etd/2024

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.lib.uwo.ca%2Fetd%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2024?utm_source=ir.lib.uwo.ca%2Fetd%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

STATE CONTROLLED OBJECT ORIENTED PROGRAMMING

(Thesis format: Monograph)

by

Jamil Ahmed

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

April, 2014

© Jamil Ahmed 2014

ii

Abstract

In this thesis, we examine an extension to the idea of object oriented programming to make

programs easier for people and compilers to understand. Often objects behave differently

depending on the history of past operations as well as their input that is their behavior

depends on state. We may think of the fields of an object as encoding two kinds of

information: data that makes up the useful information in the object and state that controls its

behavior. Object oriented languages do not distinguish these two. We propose that by

specifying these two, programs become clearer for people to write and understand and easier

for machines to transform and optimize.

We introduce the notion of state controlled object oriented programming, abbreviated

as “SCOOP”, which encompasses explicit support of state in objects. While introducing an

extension to object oriented programming, our objective is to minimize any burden on the

programmer while programming with SCOOP. Static detection of the current state of an

object by programming languages has been a challenge. To overcome this challenge without

compromising our objective, a technique is presented that advances contemporary work.

We propose an implementation scheme for a SCOOP compiler that effectively

synchronizes the external and internal representation of state of objects. As an implication of

this scheme, SCOOP would provide the memento design pattern by default.

We also show how a portion of an object particular to its state can be replaced

dynamically, allowing state dependent polymorphism. Further, we discuss how programs

coded in SCOOP can be model checked.

Keyword: State Oriented Programming, Object Oriented Programming, Typestate, Finite

State Automata, Dynamic Compositional Adaptation, Specification and Verification.

iii

Acknowledgments

I would like to express my heartily gratitude for being supervised by Prof. Dr. Stephen. M.

Watt. Without his guidance, mentorship, vision and shrewd insight, this work would have not

been accomplished. I am highly impressed how his extraordinary determination, humbleness,

patience and intellect overcome difficult situations not only in computing research but also in

normal day to day life. His immense support, consistently motivating attitude and willingness

to elucidate significantly contributed to this research. I have highly benefited by his skill of

not just preparing his students for thesis defense but also preparing them to research

independently.

I will always be deeply thankful to my original supervisor Prof. Dr. Sheng Yu. Although his

precious advice lasted temporally for only two year due to his sudden passing in Jan 2012, it

will enlighten my career forever. His initial work related to this thesis sparked tremendous

ideas to integrate in this research. It was a difficult time when he passed, half way into my

PhD program, and then Dr. Stephen M. Watt kindly accepted supervising me and gave me

freedom of thought.

I am thankful for the funding for my PhD program from Higher Education Commission

Pakistan, University of Karachi and Western Graduate Research Scholarship of Department

of Computer Science, Western University.

I am also thankful to my brother Sherjil Ahmed for many fruitful technical discussions. The

selfless love and care from my parents gave me the confidence to go through the entire

horizons of my PhD program and life as well.

iv

Contents

Abstract ... ii

Acknowledgments.. iii

Typographic Conventions .. viii

Abbreviations ... ix

List of Figures ... x

Chapter 1... 1

1 Introduction .. 1

1.1 State Controlled Object Oriented Programming .. 1

1.2 State Abstraction .. 3

1.3 Motivation... 4

1.4 Contribution of Thesis ... 6

1.5 Thesis Orientation ... 8

Chapter 2...10

2 Main Concepts ..10

2.1 Definitions ...10

2.2 Typestate ..11

2.3 Software Verification ..13

2.4 The Object Protocol ..13

2.5 Typestate Based Polymorphism ..14

2.6 The Typestate Invariant ..14

2.7 Typestate Extension ..14

2.8 Typestate Mapping ...15

2.9 State Preservation ...15

2.10 Dynamic Adaptation ...16

2.11 Feasible for Model Checking ...16

Chapter 3...17

3 Case Studies of SCOOP ..17

3.1 Screen Redraw Thread ..17

3.2 Electronic Workbench (EWB) Stated Process ...20

v

3.3 Electronic Workbench Stated Process With a Stated Screen Redraw Thread22

3.4 Lexical Analyzer ...24

3.5 A Simple Two Tank Pumping System ..27

3.6 CIP System ...28

3.7 Digital Counter Composed of Flip-Flops ...30

3.8 Master Detail Data Entry and Navigation Form ..30

3.9 Elevator ...32

3.10 Bank Account System ..33

3.11 Queue ..34

3.12 Iterator ..36

3.13 Printer ...38

3.14 File ...39

Chapter 4...41

4 Background and Related Work ...41

4.1 Typestate ..41

4.2 Typestate Extension and Subclassing ...43

4.3 Typestate Tracking ..43

4.4 Aliasing ..44

4.5 Typestate Invariant ...45

4.6 Dynamic Behavior Adaptation ..46

Chapter 5...47

5 A Static Typestate Checking Technique under Aliasing ..47

5.1 Introduction ..47

5.2 Presentation ..47

5.3 The SCOOP Language ..48

5.4 Stated Type System ...52

5.5 Default Typestates ..53

5.6 A Programmer’s View ...54

5.7 A Language Implementer’s View ..55

5.8 State Classes..56

5.9 Characteristics of State Classes ...57

5.10 The Proxy and State Class Architecture ..58

vi

5.11 Creating Stated Objects ..61

5.12 Functional Interface of a Stated Object ..61

5.13 Typestate Coercion ...62

5.14 The Alias Table ..63

5.15 Tracking Aliases ...64

5.16 Static Typestate Tracking ..65

5.17 Typestate Checking ...66

5.17.1 Static Typestate Checking ...66

5.17.2 Dynamic Typestate Checking ..69

5.18 Conclusion ...71

Chapter 6...72

6 The Typestate Invariant ..72

6.1 Introduction ..72

6.2 Motivation...73

6.3 Implementation of a Typestate Invariant ...75

6.4 Binding Typestate with a Typestate Invariant ..75

6.4.1 Iterator Example ...76

6.4.2 Typestate Invariant Based Default Transition of Typestate..79

6.4.3 Typestate Transition Based Modification to Typestate Invariant79

6.5 The Invariant Table ...80

6.6 Typestate Extension ..81

6.7 Typestate Invariants With Typestate Extension and Subclassing ...86

6.8 State Preservation ...89

6.8.1 Memento Design Pattern ..90

6.8.2 Memento by SCOOP ...90

6.9 Conclusion ...92

Chapter 7...93

7 Typestate Based Dynamic Compositional Adaptation ..93

7.1 Introduction ..93

7.2 Typestate as Context...94

7.3 Typestate as a First Class Language Concept ..95

7.4 Architecture ..97

vii

7.4.1 Dynamic State Class Swapping ..98

7.4.2 Checking for State Subclass ..99

7.4.3 Dynamic Typestate Object Swapping ...100

7.4.4 Dynamic Name-to-Object Binding ..101

7.5 MAPE-K Loop ...103

7.5.1 A Case Study ..104

7.6 Conclusion ...106

Chapter 8...107

8 Model Checking ..107

8.1 Model Checking SCOOP ..107

8.2 Symbolic Model Checking ...108

8.3 Automatic Checking ..109

8.4 Manual Checking ...110

8.5 Conclusion ...110

Chapter 9...112

9 Conclusion and Future Work ..112

9.1 Conclusion ...112

9.2 Future Work ..114

10 Reference ..115

APPENDIX A ..121

APPENDIX B ..127

Curriculum Vitae ...130

viii

Typographic Conventions

We use the following typographic conventions in the thesis.

Italic

State names, Typestate names.

 E.g. traversal

Courier font

Programs, Program constructs.

E.g. class

In single quotes

Program name, Class names, Object names, Names of object types, Attribute names,

Method names and Event names excluding the programs and program constructs.

E.g. ‘Progfile’

ix

Abbreviations

FSA Finite State Automata

LALR Look Ahead Left to Right

MAPE-K Manage Analyze Plan Execute Knowledge

OOP Object Oriented Programming

SCOOP State Controlled Object Oriented Programming

TSOP Typestate Oriented Programming

x

List of Figures

3.1 ‘Windows NT Thread’ Stated Object Model 19

3.2 Process’ Stated Object Model 21

3.3 ‘Lexical Analyzer’ Stated Object Model 25

3.4 ‘CIP System’ Stated Object Model 30

3.5 ‘Elevator’ Stated Object Model 33

3.6 ‘File’ Stated Object Model 40

5.1 A SCOOP Program 54

5.2 SCOOP language-generated File Stated Object 56

5.3 Proxy and State Architecture of File Stated Object 59

5.4 A Sketch of Proxy and State Class Architecture for File Stated Object in

openfile Typestate With Alias Table, Symbol Table and Invariant Table

60

5.5 A Simple Iterator Client 68

6.1 Iterator Stated Object 77

6.2 SCOOP File Stated Class 81

6.3 SCOOP-generated File Stated Class 82

6.4 SCOOP File and Imagefile Stated Class 83

6.5 SCOOP-generated File and Imagefile Stated Class 84

6.6 SCOOP File and Imagefile Stated Class With Typestate Extension 85

6.7 SCOOP-generated File and Imagefile Stated Class With Typestate

Extension

86

6.8 Typestate Extension With Subclassing 88

6.9 Memento Design Pattern 90

7.1 Openfile Typestate Structure 96

xi

7.2 Dynamic Loading by Reflection 98

7.3 Swap State Class Algorithm 99

7.4 Check State Subclass Algorithm 100

7.5 Swap Typestate Object Algorithm 101

7.6 Adjust Symbol Table Algorithm 103

7.7 IBM’s MAPE-K Loop 104

7.8 Print Manager Service 105

7.9 Managed Printing Service 106

8.1 Model Checking SCOOP 108

1

Chapter 1

1 Introduction

1.1 State Controlled Object Oriented Programming

In this thesis, we propose a “state controlled” object oriented programming language. We

also propose several related techniques aimed at making the proposed language easier for the

programmer to use in comparison with similar approaches.

One main objective of software engineering is to provide effective methods and techniques

for the design, development and maintenance of software. On its way to achieve this

objective, software engineering has advanced significantly and influenced many software

technologies, including programming languages. Programming language paradigms have

evolved from low-level machine languages to current state-of-the-art higher-level languages,

achieving better abstraction, increased readability and more flexible reusability. Object

oriented programming (OOP) is one of the main technologies used by software developers

today for developing robust software [1]. However, OOP does not allow an object to be

specified as a state machine in a convenient, readable way. Moreover, there is a significant

gap between OOP and the input languages for formal verification tools [53]. For these

reasons, OOP is still not robust enough to address many of the needs of the formal language

community. In order to overcome these limitations, many extensions to the idea of OOP have

been studied and proposed over the years.

In conventional object oriented programming languages, a software object encapsulates

attributes (data) and methods (behavior) [2], similar to a real-world object. The attributes and

methods of a software object are defined with explicit syntax. Besides attributes and

methods, real-world objects maintain “state” as an inherent characteristic. Therefore, in

2

object oriented programming, a software object modeled on the real world should also

support “state” as a built-in characteristic.

It has been argued that the inclusion of “state” in software objects makes OOP more intuitive

for the programmer. For instance, a software application may have a ‘Car’ object existing

either in an assembled state or a disassembled state. It can be observed in this examplethat a

state is not an independent entity by itself, but rather an inherent characteristic of an object.

The assembled and disassembled states of the ‘Car’ object do not exist as independent

entities; but, it makes sense that the ‘Car’ object is an independent entity that can be in the

disassembled or the assembled state. We argue that an object encapsulates its states in

addition to its attributes and methods. Therefore, an object definition should also support an

explicit syntax in order to declare its states and those of its related counterparts. This is our

main theme.

We refer to an object with explicit support of state as a “stated object” and programming with

stated objects as “State Controlled Object Oriented Programming”, which we abbreviate

“SCOOP” (we use this name both for the concept of programming in this way and for the

specific language we propose). The class to which a stated object belongs is referred to as its

“stated class”.

In standard object oriented programming, objects have attributes (data) that can be modified

by methods, so the usual objects already have “state” in this sense. But in our sense of stated

object, State Controlled Object Oriented Programming provides an explicit syntax to define

the states of an object such that the defined states are encapsulated within the object in the

same way as attributes and methods. Several definitions related to the notion of a “stated

object” are given in Section 2.1. There are other notions of state used in automata theory,

some including time, and it would be possible to explore these, but that is not the focus of the

present work.

Engineers, scientists, designers and the formal language community use finite state automata

to model systems and the objects of systems. However, there is not yet a standard to directly

3

transform a finite state model of an object to an object oriented application. This is due to the

lack of explicit formal support for states (in our sense) in standard OOP languages. For

instance, a DVD player can be viewed as a stated object that can be represented by a finite

state model. The DVD player has states off, play, pause, fast forward and reverse, and

transitions among these states. We intend to formalize the process of modeling a software

object to include a finite state automaton and to use it to increase the clarity of programs and

their representation.

The terms “state” and “typestate” are sometimes used interchangeably. In this thesis, we use

the term “state” in a general context or when discussing the usual notions of finite state

machines. We use the term “typestate” in discussions on both the theoretical and practical

aspects of software using state control [23].

In this chapter, we lay out the motivation for state-controlled object oriented programming

and present the thesis contribution as well as its orientation.

1.2 State Abstraction

Abstraction is the process in programming that allows the complexity of certain aspects of a

program to be limited to parts of the program and provides a clean interface for using those

features. For instance, object oriented features such as polymorphism and encapsulation can

be implemented in a non-object oriented programming language (such as C) by exploiting

related design patterns [3], but at the cost of complex logic to be coded by the programmer.

Alternatively, object oriented languages provide declarative syntax that abstracts the object

oriented features and reduces the complexity of code to be written by the programmer.

Similarly, in conventional object oriented programming, a programmer can write code to

maintain the state of an object, but at the cost of writing the state maintenance code himself.

Usually state maintenance code is in the form of conditional checks, state tables or in the

form of state design patterns that potentially make the object oriented code more complex.

4

Alternatively, state controlled object oriented programming provides an abstract “state”

feature which hides the complexity of the state maintenance code inside the language. The

abstract “state” of an object encapsulates the nonfunctional aspects (i.e. the state-related data

members) and the functional aspects (i.e. the behavior or methods specific to state) inside the

object.

1.3 Motivation

Stated objects can be simulated as finite state automata due to built-in abstraction of state and

state transitions. Finite state automata (FSA) deterministically allow valid transitions

(actions) and prohibit invalid transitions (actions) contingent on the current state of a system.

Therefore, finite state automata inherently support validation in that, depending on the

current state, transitions are either valid or invalid. Similarly, an object with state that can

simulate an FSA can allow invocation of valid actions (methods) and prohibit invocation of

invalid actions (methods) contingent on its current state. The ability of an object to allow or

prohibit invocation of its methods provides better support for software validation. Therefore,

by way of finite state automata functionality, SCOOP ensures that the programmer can write

safe code that prohibits method invocation and field references that are invalid for the reason

of state.

In object oriented programming, the object protocol [4] defines the set of valid methods that

can be invoked and valid fields that can be referenced. In state controlled object oriented

programming, the current typestate of a software object defines its protocol, since the

software object can assume different states during its lifetime. The SCOOP language

performs static (compile time) analysis to detect an invalid field invocation of a software

object according to the object’s current typestate. In this way, typestate is a useful tool for

enforcing the checking of the invocation of methods of software objects, which minimizes

the run time exceptions caused by invalid method invocation.

An important implication of state abstraction is that it allows the definition of a stated object

composed of stated objects. Defining a stated object composed of stated objects allows better

5

and more precise simulation of real-world scenarios. The encapsulating stated object can

have states that can be a combination of the states of encapsulated stated objects.

In conventional OOP, the state of an object is represented by the instance data members.

SCOOP, however, allows explicit declaration of the abstract states of an object. An abstract

state is accessible from outside of the object, and is bound with state-related instance data

members inside the object definition. The internal state of the object is represented by data

members that are referred to as typestate invariant. Therefore, in order to access the typestate

of an object, the programmer can access the abstract external typestate, i.e. a single piece of

information, of an object from outside the object rather than accessing many internal

typestate invariants. This mechanism does not violate the information hiding principle and

maintains a typestate of the object that is accessible from outside the object.

In conventional OOP, polymorphism is implemented either through method overloading

within a class or both method overriding and overloading in a subclass. Stated objects

introduce another dimension of polymorphism, i.e. the same method can have different

implementations in different states of the stated object.

In SCOOP, the state of an object is also a first class language entity. This implies that an

object of type “typestate” can be instantiated. As the typestate of an object encapsulates the

attributes and methods specific to it, the state of an object can be returned from a function,

can be saved in an object of type “typestate” or can be passed on as an argument to a

function.

We use SCOOP to introduce a language-based approach for dynamic adaptation. A stated

object can dynamically adapt to an entirely new typestate behavior that was not known at the

time of compiling that stated object.

6

1.4 Contribution of Thesis

This thesis advances the features and architecture for encapsulating explicit typestate in

objects for better clarity of programs, as discussed in Chapter 5. The proposed SCOOP

language, described in Section 5.3, has not been implemented. However, we present related

components and techniques to achieve the overall desired objectives of the proposed

language. We integrate many aspects of typestate and their solutions into one programming

model, SCOOP. Both an object and its typestate as a first class language concept are

introduced for the first time, to the best of our knowledge, which we argue allows for

increased flexibility of stated objects.

SCOOP provides a technique for typestate checking under aliasing. A novel “automated alias

analysis” is performed that exploits the proposed alias table, as discussed in Section 5.14 and

5.15. We propose a flow-sensitive stated type system in Section 5.4. The proposed stated

type system performs typestate analysis by using a proposed implementation technique for

stated objects, the “proxy and state class” architecture, in Section 5.10. The proposed “proxy

and state class” architecture allows static detection of invalid invocation of methods by using

the instances of state class.

Our proposed approach to static and dynamic typestate checking is without any additional

program annotation. Typestate checking is performed along with static analysis; therefore, a

separate typestate analysis phase is not required. SCOOP proposes a built-in transition

function that can be used to directly transition an object to another typestate. Further, SCOOP

proposes the translation of programmer-defined code to intermediate code that is amenable to

compiler interpretation of object typestates.

Our proposed typestate checking technique, presented in Section 5.17, generates a compile

time error or a warning for any invalid method invocation, allowing the programmer to write

safe code. If neither an error nor a warning is generated at compile time then it is assured that

the code does not contain any method invocation that is invalid for reasons of state.

7

A novel “proxy and state class” architecture that allows static typestate checking in the

presence of aliasing is proposed in Section 5.10. The proposed architecture does not impose

any limitation on aliasing and it is generalized to allow typestate extension and subclassing of

stated objects simultaneously.

A novel typestate checking technique is proposed that statically computes the set of current

possible typestates of a stated object and updates each alias of that object to be aware of that

set of typestates.

Implementation techniques for typestate invariants and invariant binding are proposed in

Sections 6.3 and 6.5 respectively. The implementation technique for typestate invariants

introduces a novel invariant table concept. The notion of invariant table is generalized

enough to allow typestate extension and sub classing simultaneously. The stated type system

proposes to synchronize the external typestate and its internal typestate invariant. Further the

proposed invariant table ensures that each typestate is aware of its typestate invariant data.

An implication of our proposed implementation technique for typestate invariants is that the

“memento” design pattern is supported by SCOOP as a built-in feature.

We propose a SCOOP language-based dynamic adaptation technique for autonomic

computing. Our proposed novel dynamic adaptation technique, based on replacing typestate-

related behavior of stated objects, allows a specific typestate-related part of an object to be

replaced dynamically. This typestate-based dynamic adaptation is also achieved due to the

generality of the proposed novel ‘proxy and state class’ architecture.

 In Section 7.4, several algorithms are introduced that can implement the dynamic swapping

of typestate behavior at run time, even in the case of sub classing and extended typestate.

We also present the ability of SCOOP programs to be directly model-checked by model

checking software.

8

1.5 Thesis Orientation

Chapter 2:

In this chapter, we present the main concepts and the features supported by our proposed

SCOOP.

Chapter 3:

In this chapter, we present several case studies of business and control-related or embedded

applications that can benefit from SCOOP. The purpose of this chapter is to demonstrate that

many programming scenarios can be thought of as finite state machines.

Chapter 4:

In this chapter, we present background and related work. Comparison is made with earlier

state oriented approaches and the distinguishing features of the proposed SCOOP are also

mentioned.

Chapter 5:

In this chapter, the basic theoretical concepts of SCOOP are discussed. The syntax of a

sample program written in the proposed SCOOP language is given in Figure 5.1. Figure 5.2

illustrates the translation of programmer-defined code by SCOOP. The architecture to

organize the states in a stated object is given in Section 5.10. In Section 5.3, a context free

grammar of the proposed SCOOP language is discussed. Later in the chapter, several related

components and techniques for static analysis of SCOOP programs are presented. Overall,

these components and techniques allow static typestate checking in the presence of aliasing.

Chapter 6:

In this chapter, we present a typestate invariant implementation technique. The use of an

invariant table is also presented. The idea of default “state preservation” by SCOOP is

introduced.

9

Chapter 7:

In this chapter, we present a dynamic adaptation technique based on replacing the “typestate

structure” of a stated object.

Chapter 8:

In this chapter, we present how SCOOP can be exploited for model checking.

Chapter 9:

We conclude the thesis and mention the future directions of work in this chapter.

10

Chapter 2

2 Main Concepts

In order to achieve the best implementation, SCOOP is based on precise definitions and well-

defined fundamental concepts. We emphasize that research in this area should differentiate

between the stated object type and typestate. Therefore, we first present the definitions of

related concepts and then we propose an architecture for SCOOP that aligns with the well-

defined fundamental concepts. At the conceptual level, our definitions coincide with the

originally proposed typestate concepts in [23], but our revision of these underlying concepts,

specific to object oriented programming, is significant.

2.1 Definitions

In OOP an object type is a description of a set of fields (data members and methods) of the

object without giving any implementation [25]. Similarly, in SCOOP a stated object type is a

description of a set of fields (data members and methods) and a set of typestates of the stated

object without giving any implementation.

Definition of Typestate

In this thesis we consider each object to have a property called its "typestate". The typestate

of an object has a value belonging to a finite set, and is used as a label. As we shall see later,

the set of methods or fields available in the object will depend on the value of the object's

typestate, and executing methods of the object may change its typestate. The only operations

available on typestates are tests for equality or inequality of typestates. We write TO for the

set of typestates available to the object O.

Formally, we may identify these typesates with the set of methods and fields that are

available when the object is in that typestate.

11

Definition of Stated Object Class

A "stated object class" is tuple (C, T, B, M, β, μ, ν) consisting of an object class, C, together

with a set of typestates, T, a set of field labels, B, and a set of method labels, M, together with

three mappings β, μ and ν.

The mapping β: T  2
B
 specifies the subset of fields available to an object in a given

typestate.

The mapping μ: T  2
M

, specifies the subset of methods that are available an objects in a

given typestate.

The mapping ν: T × M  2
T
 specifies the set of possible resulting typestates from invoking a

given method from an object in a given typestate.

Definition of Stated Object

A “stated object” is an object belonging to stated object class. It may be viewed as an ordered

pair s = (o, t) ∈ C × T, where the fields and methods available are given by β (t) and μ (t),

respectively.

2.2 Typestate

In conventional OOP, an object encapsulates its fields (data) and methods (behavior) [2]. We

propose that a typestate of an object can be thought of as a new kind of property, in addition

to the attributes and methods of the object. The explicitly defined typestates within a class

form part of the object interface. We refer to such a “typestate” as an external typestate of the

object that is always publicly accessible.

12

The type of an object defines some conditions, or rules, for the object. For instance, it defines

the selected kinds of instances that can only be assigned to the object referent. Further, the

type defines the description of the interface of an object without implementation [25]. The

interface includes the selected fields (data members and methods) that can only be invoked

by the object. The conditions defined by the object type are validated by the type system. The

type system detects, either statically or dynamically, any violation of those conditions. Type

theory for conventional object oriented programming has been studied and has a sound

foundation. However, type theory for OOP does not include any specification for the

explicitly defined typestates of an object.

In order to address the issues for typestate, we need to have a type system with support for

typestates [23] rather than a conventional type system as for conventional object oriented

programming. We refer to such a type system with typestates as a “stated type system”.

Typestate is the theoretical basis for the state abstraction feature. Considering typestate as a

formal representation allows a stated type system to be subject to formal reasoning. For

example, a stated type system can perform global analysis for typestate tracking of stated

objects.

A typestate defines the conditions or rules of an object for a given state of that object, and it

describes the state of the object without implementation. For example, it defines the fields

(attributes and methods) particular to a state of the object. Effectively, a stated type system

enforces the conditions defined by typestates.

A stated object during its life-time holds one type but possibly transitions among its many

typestates. A fully qualified typestate of a stated object is given by (type, typestate). E.g. the

openfile typestate of an object of type ‘File’ can also be represented as (File, openfile) and it

can transition to (File, closefile). It is important to highlight that when a stated object

switches from one typestate to another, its corresponding typestate changes but its type

remains the same.

13

2.3 Software Verification

Software verification can be viewed in one way as a process performed directly by the

programming language. In this case, verification includes static analysis, i.e. at compile time,

to detect invalid field invocations of a software object according to the current typestate.

Therefore, static typestate checking allows for writing safer code by finding at compile time

whether a programmer has attempted to use a method or data member of a stated object that

should not be accessible in its current state. This view of software verification captures the

notion of object protocol.

2.4 The Object Protocol

The current typestate of an object determines the set of accessible attributes and methods that

are available or make sense for the object. We call this the object’s “protocol” [4]. The set of

accessible methods varies with the change of an object’s typestate. Therefore, the current

typestate of an object controls the available behavior of the object. For instance, a method of

an object that is available in one typestate may not be available in another typestate.

In conventional object oriented programming, the typestates of an object are not explicitly

exhibited by the object; therefore, the current typestate cannot be detected. In SCOOP we can

directly detect the set of possible current typestates of an object because they are explicitly

defined.

The method invocations that should not be accessible in a specific typestate of an object are

referred to as “invalid” methods. Invalid method invocations cause run time exceptions or

unexpected results. SCOOP uses compile-time analysis to find invalid method invocations,

thus helping programmers to write safe code. Detecting an invalid method invocation

according to the current typestate, i.e. violation of object protocol, is contingent on whether

the current typestate of an object can be detected or not.

14

2.5 Typestate Based Polymorphism

Typestates allow a new kind of polymorphism. Different implementations of functions

having the same signature may coexist in different typestates, leading to typestate based

polymorphism. This feature is studied in [17, 18, 20, 21, 22, 24] and supported by SCOOP as

well.

2.6 The Typestate Invariant

In conventional object oriented programming, the programmer uses attributes to represent the

state of an object. In state controlled object oriented programming, the language processor

recognizes the attributes (data) of an object as the typestate invariants, as discussed in

Chapter 6. The external typestates of an object are tied up with typestate invariants. These

attributes represent the internal state of the object. Our proposed stated type system also

tracks the external typestate by monitoring the typestate invariants of a typestate.

For instance, the openfile typestate of a ‘File’ object can be associated with the ‘filepointer’

attribute of the ‘File’ object. Such an association can be controlled by a rule. In this case, a

rule can be defined such that if ‘File’ is in the openfile state then the ‘filepointer’ attribute

must hold a valid address of a file control block in memory and cannot be null.

2.7 Typestate Extension

SCOOP allows for the extension of a typestate. The typestates of an object, defined at the

time of object definition, are not necessarily fixed but can also be extended through

subclasses. A subclass can override the typestate of its parent class and may override all

methods of the typestate of the parent class. Moreover, in the subclass the overridden

typestate can be extended. Typestate extension is illustrated in Section 6.6 and Section 6.7.

15

2.8 Typestate Mapping

In software systems, interacting objects are likely to have interdependent typestates. In such

circumstances, we need to have a mechanism for mapping similar or interdependent

typestates of the objects. For instance, a printer and a cartridge are two objects arranged in

such a way that the printer includes a cartridge. Since the printer includes the cartridge, we

refer to the printer as a composite object. Their behavior and typestates are also similar to

each other. If the cartridge is in the fullcharged typestate, so is the printer. If the cartridge is

in the halfcharged typestate, so is the printer. The mapping of similar typestates of these

objects can enforce that whenever the printer transitions to the fullcharged typestate then the

cartridge must also transition to the corresponding typestate.

An obvious benefit of such mappings is that the programmer need not take care of

transitioning the typestate of corresponding objects. The transition of a typestate in one

object can automatically transition the mapped typestate of the corresponding object. This is

illustrated in Case Study 7.5.1.

2.9 State Preservation

In conventional OOP, as previously mentioned, attributes (data members) represent the states

of an object. Therefore, in order to preserve state, each and every state data member of an

object has to be extracted by the programmer and passed on to another function one by one.

Otherwise the programmer needs to write a separate function to package all its state data

members in the form of a data structure, e.g. an ‘Array’. This is how state can be preserved.

Alternatively the “memento” design pattern has to be implemented and used by the

programmer to preserve the state.

One of the contributions of our proposed state controlled object oriented programming over

conventional object oriented programming is that the state controlled object oriented

language maintains and is aware of all typestate data of stated objects, which can be extracted

16

just by using the external typestate name, i.e. a single piece of information. The external

typestate data can be passed on to another stated object. This is an implication of the fact that

state is a first class language concept in SCOOP. This “state preservation” capability allows a

programmer to write simpler code. It is described in Section 6.8.

2.10 Dynamic Adaptation

Dynamic adaptation is one of the desired requirements of autonomic computing [27, 34 - 40,

42]. SCOOP proposes that partial behavior particular to a typestate of a stated object can be

modified dynamically. The rest of the typestates, data and behavior associated with each

typestate remain intact. This is unlike conventional object oriented programming. In

conventional object oriented programming, if we replace an object with another object

instance then the entire object instance is overwritten, such that all of its typestate data and

the behavior associated with any typestate is replaced.

Such dynamic adaptation is desirable in many software development cases [41, 42]. This is

illustrated in the ‘Queue’ stated object Case Study 3.11 and ‘File’ stated object Case Study

3.14. We also consider the dynamic adaptation behavior of an encrypted message over a

network in Section 7.2.

2.11 Feasible for Model Checking

Model checking is usually applied at the software design level rather than at the software

source code level because source code does not exhibit any representation suitable for model

checking. The inability to model check source code results in the inability to catch software

bugs introduced in the source code. In order to catch errors in source code through model

checking, we require that the source code have an abstraction that exhibits a suitable

representation for model checking, such that a model of source code can be built. We

demonstrate in Chapter 9 that SCOOP can be used to model check its programs.

17

Chapter 3

3 Case Studies of SCOOP

Many software applications and software objects adhere to the behavior of finite state

machines. These software applications span from system level software to higher level

applications, control-related embedded software to business applications, basic data

structures to programming languages, robotics and automation to communication systems,

word processing to scientific and mathematical tools etc. We argue that SCOOP is useful for

writing these kinds of software applications because SCOOP allows object states to be

directly encoded, leading to increased readability. Implementing these applications using

stated objects also helps the programmer to avoid writing state maintenance code.

In this chapter, we illustrate these software applications and a set of objects that behave

similarly to FSA. In Appendix B, we illustrate a stated object coded in SCOOP. Its

equivalent code in OOP is also presented using conditional constructs and a state design

pattern, demonstrating that SCOOP code is more readable.

3.1 Screen Redraw Thread

An operating system is a system-level program that creates many threads to perform different

tasks at the same time. In such a multitasking system, an application (e.g. a ‘digital circuit

simulation’ application) running on the operating system, can initiate more than one thread of

execution to perform different tasks simultaneously. When the digital circuit simulation

application is run, the operating system creates a process and the application is loaded into

that process. Each thread created by the ‘digital circuit simulation’ application exploits the

corresponding operating system thread feature. The operating system, e.g. Windows,

provides a thread object that exists in different states during its life time [8]. The state

18

diagram in Figure 3.1, from [8], shows the typical states of a thread. We argue that the thread

object can better be represented by a stated thread object because a stated thread object has a

default feature to maintain its states. In the case of conventional (non-stated) thread objects,

the operating system and conventional object oriented programming language need to keep

track of thread states by themselves. Typically a ‘Windows’ thread is in one of six states, as

in Figure 3.1. The states of a thread object are described in Table 3.1.

State Description

ready May be scheduled for execution. The microkernel dispatcher keeps track of

all ready threads and schedules them in priority order.

standby A standby thread has been selected to run next on a particular processor. The

thread waits in this state until that processor is made available. If the standby

thread's priority is high enough, the running thread on that processor may be

preempted in favor of the standby thread. Otherwise, the standby thread waits

until the running thread blocks or exhausts its time slice.

running Once the microkernel performs a thread or process switch, the standby thread

enters the running state and begins execution and continues execution until it

is preempted, exhausts its time slice, blocks, or terminates. In the first two

cases, it goes back to the ready state.

waiting A thread enters the waiting state when (1) it is blocked on an event (e.g., I/O),

(2) it voluntarily waits for synchronization purposes, or (3) an environment

subsystem directs the thread to suspend itself. When the waiting condition is

satisfied, the thread moves to the Ready state if all of its resources are

available.

transition A thread enters this state after waiting if it is ready to run but the resources

are not available. For example, the thread's stack may be paged out of

memory. When the resources are available, the thread goes to the Ready state

terminated A thread can be terminated by itself, by another thread, or when its parent

process terminates. Once housekeeping chores are completed, the thread is

removed from the system, or it may be retained by the executive for future re-

initialization.

Table 3.1 ‘Windows NT Thread’ Stated Object States, from [8]

19

Figure 3.1 ‘Windows NT Thread’ Stated Object Model, from [8]

In this case study, we illustrate how a ‘digital circuit simulation’ application has a distinct

functional component that redraws the screen because of scroll bar positioning or a screen

resize request from the user. This functional component has a ‘redraw’ function that keeps a

record of the screen data i.e. the logic symbols and gates currently drawn by the user. The

‘redraw’ function gets the current screen size and scroll bar position and redraws the screen

data accordingly. If for some reason drawing the screen data is time consuming, then the

redraw operation calls the ‘sleep’ method to temporarily suspend the drawing operation so

that other threads can continue their task.

The ‘digital circuit simulation’ application creates a separate thread, i.e. a redraw thread, and

invokes the redraw method through the redraw thread. The operating system starts the redraw

thread from its ready state and if no other thread is available, then the redraw thread is picked

up and transitioned to the standby state. If the processor is available then the redraw thread is

transitioned from the standby state to the running state right away and starts drawing the

screen. While drawing the current screen of the simulation, the redraw function suspends the

thread for one hundred milliseconds. After the suspension has timed out, the redraw thread is

re-transitioned to the ready state by the operating system. If no other thread is in the queue,

then this thread is transitioned to the standby state by the operating system and is then

20

brought to the running state. As soon as the redraw thread is transitioned to the running state,

the drawing operation continues from where it was suspended.

3.2 Electronic Workbench (EWB) Stated Process

Usually an operating system process switches states when the operating system transfers the

control of execution from one process to another process. Switching of process states is

required so that a process cannot monopolize the processor. Due to this requirement to switch

among states, the usual process object can be better represented by a stated process object

because the stated object inherently maintains the states and transitions of the object.

Representing a process by a stated process object also helps to reduce the responsibility of

the operating system to track the data structures used for keeping the state information of the

process. This is because the stated process object keeps track of its state information by

default. According to one of the adopted standards [8], a process typically realizes seven

states. These well-defined seven process states, given in the table below, can be used as the

seven states of the stated process object.

Table 3.2 ‘Process’ Stated Object States, from [8]

In the process state diagram, Figure 3.2, from [8], a transition arc from each state to the exit

state is implicit but not shown for clarity. However, it is possible that from any state the

States Description

New A process that has just been created but has not yet been admitted to the

pool of executable processes by the operating system.

ready A process is in main memory and is prepared to execute when given the

opportunity.

ready/suspend A process is in secondary memory but is available for execution as soon as

it is loaded into main memory.

running A process that is currently being executed.

blocked/suspend A process is in secondary memory and awaiting an event.

blocked A process is in main memory and awaiting an event to occur.

Exit A process that has been released from the pool of executable processes,

either because it halted or because it aborted for some reason.

21

process can be transitioned to the exit state either because the user decides to close the

process or the operating system forces the process to exit.

Figure 3.2 ‘Process’ Stated Object Model, from [8]

Let us assume that the operating system receives a user request to initiate an Electronic

Workbench (EWB) software application. The operating system creates the EWB stated

process object, in the new state, so that it can load the EWB application in the EWB process

space. The EWB application is supposed to be loaded in a single thread. Immediately after

creating the stated process object, the operating system invokes the ‘admit’ function that

transitions the EWB process object to the ready state and the EWB application is loaded in

the EWB process space in main memory. If the operating system is already running enough

processes, the EWB stated process is kept in the ready state for a period of time and the user

has to wait. After waiting, the operating system invokes the ‘dispatch’ function to transition

the EWB process to the running state and the EWB application starts execution. The EWB

application is now running and the user can interact and use the EWB application as long as

its EWB process is in the running state.

When the user requests the EWB application to open an existing workbench file, the EWB

switches to ‘file_open’ mode to wait for the user to select and issue the ‘open’ command for

the selected file. Now the operating system realizes that the EWB application has to wait for

an event to occur. Therefore, the operating system transitions the EWB process to its blocked

state. When the user has selected the file to open and the ‘open’ method is invoked then the

22

operating system catches the ‘file_open’ event along with the selected file name.

Furthermore, the operating system issues the ‘event_occurred’ command to transition the

EWB process object from its blocked state to the ready state. If there is no other ready

process in the ready state queue then operating system can transition the EWB process object

to the running state immediately and the EWB application can proceed to load the selected

file to open in the EWB application.

If the EWB process is in the running state then the user can use the EWB application. If the

user selects the ‘close’ command for the EWB application, then the operating system

transitions the EWB process to the exit state and the EWB application is unloaded from main

memory, i.e. the EWB application is unloaded from the EWB process space. Since the screen

handle is not readily available, the redraw thread is transitioned to its transition state and the

EWB process stays in its blocked state. As soon as the screen handle is released by the other

process, the operating system triggers the ‘screen_available’ event to the EWB process while

passing along the screen handle. Now the EWB window transitions to its ready state, triggers

the ‘resource_ available’ event to the redraw thread that transitions the redraw thread to its

ready state. According to the scheduling of the operating system, the redraw thread is

transitioned to its standby state where it is eventually switched back to its running state and

continues the screen redraw operation from where it was suspended.

3.3 Electronic Workbench Stated Process With a Stated
Screen Redraw Thread

In this case study we illustrate that the software objects of Case Study 3.1 and 3.2 can be

collectively used as stated objects. The electronic workbench (EWB) application creates a

new thread and runs the screen redraw component on that ‘redraw’ thread. If a process is in

the running state, it may spawn a new thread to run within the same process. In this case, the

stated ‘process’ object is composed of a stated ‘thread’ object or a stated ‘thread’ object is a

component of the stated ‘process’ object. The ‘process’ is referred to as the parent process

and the spawned ‘thread’ is referred to as the child thread. The parent ‘process’ and child

‘thread’ need to communicate and cooperate with each other. Both the ‘process’ and the

23

‘thread’ object will exist in their respective states as mentioned in the state diagrams in

Figure 3.1 and Figure 3.2 respectively. Note that the possible state transitions of a parent

‘process’ and child ‘thread’ can be dependent on each other. For instance, if a parent

‘process’ goes to the exit state then the operating system can force the child ‘thread’ to

transition to the exit state. It is also possible that the transition of the child ‘thread’ to its

blocked state leads the operating system to transition the parent ‘process’ to its blocked state.

The operating system allows a child ‘thread’ to be instantiated in its new state only when the

parent ‘process’ is in the running state. In some cases, it may also be mandatory that a child

thread can be in its running state only if the parent ‘process’ is in its running state. Such an

interdependence of states can be defined by the state mapping feature of the stated object, in

Section 2.8. Once the programmer has defined the interdependence between the states of

‘process’ and ‘thread’ objects, the state controlled object oriented language will track any

violation of the state interdependence.

In this example, we illustrate the interdependence between the EWB process and its ‘screen

redraw’ thread. The EWB application creates a separate thread and runs the screen redraw

component on that redraw thread. The EWB process is created in its new state by the

operating system due to the user’s request to initiate the EWB application. The operating

system transitions the process to the ready state from its new state and then transitions the

EWB process to the running state. When in its running state, the EWB process initiates a

screen redraw thread in its ready typestate. The redraw thread will be immediately

transitioned to the standby state by the operating system if there are no other threads to run.

As the EWB process is still in its running state and the processor is not busy executing any

other thread, the screen redraw thread is transitioned to the running state because the user has

resized the EWB window. While redrawing the EWB screen with the redraw thread, the

operating system can take the ‘screen handle’ from the redraw thread and assign it to another

process. Since the screen handle, i.e. an I/O resource, is not available for the redraw thread,

the operating system transitions the redraw thread to its waiting state. Transitioning the

redraw thread to the waiting state also leads the operating system to transition the EWB

process to its blocked state. At this stage, the EWB application window is disabled and the

mouse cursor turns to its busy state as long as it is over the EWB application window.

24

3.4 Lexical Analyzer

Lexical analysis is a well-known application of finite state automata. A lexical analyzer reads

source code character by character, separates the lexemes, and generates tokens. The lexical

analyzer recognizes a certain number of classes (categories) and generates the tokens

corresponding to each of these classes. Whenever the lexical analyzer finds a lexeme, it

transitions to a specific state corresponding to that lexeme so that a corresponding token can

be generated from that specific state. Most of the states given in the table below generate a

corresponding token, as is obvious from the state name. A state diagram for a lexical

analyzer is given in Figure 3.3. While scanning the characters, the lexical analyzer may

encounter separator characters, e.g. space, tab, new line, punctuation, which determine that

the characters read so far make up a lexeme. The lexical analyzer then begins scanning from

its initial state. While scanning source code characters from any state of the lexical analyzer,

an invalid or erroneous character may also be found that also serves as a separator. In the

case of an invalid character, an ‘error’ token is generated for that lexeme and control is

transitioned back to the initial state to restart scanning from the next character to find the

next lexeme. After scanning a single character from the initial state, the lexical analyzer

either knows to exactly what class the lexeme belongs or to what potential class that lexeme

may belong. In both cases the lexical analyzer transitions its control to the corresponding

state. Below, we describe below a few possible transitions of the lexical analyzer from its

initial state according to a single character scanned.

 If the character read is a punctuation symbol, e.g. a semicolon, then the lexical analyzer

will transition to its punctuator state. From the punctuator state, a token for punctuation

is generated and control is transitioned back to the initial state to restart scanning from

the next character to determine the next lexeme.

 If the character read is a letter, e.g. ‘a’, then the lexical analyzer will transition to its

identifier state because a letter means that the lexeme is potentially an identifier or a

keyword. In the identifier state, subsequent characters are being read until a separator is

detected so that a complete lexeme is found. Upon detection of a complete lexeme in the

25

identifier state, the identifier state will decide whether or not the lexeme belongs to a

keyword. If the lexeme is a keyword then a ‘token’ for the keyword will be generated

from the identifier state. Otherwise a token for the identifier will be generated and control

will be transferred back to the initial state to restart scanning to identify the next lexeme.

 If the character read is a numeric literal symbol, e.g. a digit six “6”, then the lexical

analyzer will transition to its literal state because the complete lexeme is potentially a

numeric literal. From the literal state, scanning continues to read the later digits of the

number. Once a complete numeric lexeme is found, a literal token is generated from the

literal state and control is transitioned back to the initial state to restart scanning to

identify the next lexeme.

Figure 3.3. ‘Lexical Analyzer’ Stated Object Model

The states given in the following table are named after the typical token class names. A

corresponding token is generated as soon as a complete lexeme is found in a particular state.

26

Therefore, we argue that we can better implement the lexical analyzer as a stated object that

exists among any of its states.

State Description

initial Upon reading a single character, control of lexical analyzer is

transitioned to either of the following states.

identifier This state determines the lexeme by continuing to read the

characters. When a lexeme is found, then this state searches for

whether the lexeme belongs to a ‘keyword’, then a keyword token is

generated, otherwise an ‘identifier’ token is generated.

whiteSpace This state continues reading the space or tab characters unless

another character is found. As long as any other character is found,

control is switched back to the initial state. No token for space or tab

etc. is generated.

punctuators This state generates a punctuator token and pass control back to the

initial state.

eqOp The initial state transitions to this state if an equals symbol (=) is

found. This state scans the next character. If the next character is not

a valid character then the ‘equal operator’ token is generated.

relOp Control is switched to this state if a relation operator is found. This

state generates a token for the relational operator.

relOp_half Control is switched to this state if a half part of the relational

operator is read. This state reads the next half part of the relational

operator and passes control to the relOp state.

not This state recognizes the not (!) operator as the first part of not equal

to (!=) operator and looks for the equal operator.

plusOp This state generates a token for the ‘plus’ operator (+).

inc_dec_Op This state generates a token for the ‘increment decrement’ operator.

E.g. ++ or -- .

aritOp This state generates a token for the ‘arithmetic’ operator.

Lit This state generates a token for the ‘numeric’ literal.

Dot This state reads the character and checks if a dot symbol is found.

lit_float This state recognizes the decimal part of a floating literal and

generates a token for the floating numeric literal.

nxt_Line This state generates no token and simply decides that a next line

character is found and transitions back to the initial state upon

occurrence of the next character.

Table 3.3 ‘Lexical Analyzer’ Stated Object States

27

3.5 A Simple Two Tank Pumping System

In this case study, we illustrate that a two tank pumping system is a finite state model and

therefore a software application for such a system can be directly written and better

represented by stated objects. This example was previously used to illustrate the application

of model checking by representing this system in a model checking language [7]. We argue,

in Chapter 8, that if such applications are already coded as stated objects then the application

could be transformed to a model checking language directly and conveniently. This is

because the stated object oriented code itself exhibits the possible states of the system that

can be used directly to make a model. Thus, stated objects increase readability for model

checking as well.

This is a case study of a simple pumping control system. The water is transferred by Pump P

from a source Tank A to another sink Tank B. Each tank has two level meters, one to detect

whether its level is empty and the other to detect whether its level is full. The tank level is at

the ok state if the water level is above the empty meter but below the full meter. Initially,

both tanks are in their empty state but water can be supplied to the source Tank A from an

external pipe. The pump is to be transitioned to its on state as soon as the water level in Tank

A reaches its ok state from the empty state, provided that Tank B is not in its full state. The

pump remains in its on state as long as Tank A is not in its empty state and as long as Tank B

is not in its full state. The pump is to be transitioned to its off state as soon as either Tank A

transitions to its empty state or Tank B transitions to its full state. The system should not

attempt to transition the pump to its off (on) state if it is already in its off (on) state. While

this example may appear trivial, it may easily extend to a controller for a complex network of

pumps and pipes to control multiple sources and sink tanks, such as those in water treatment

facilities or chemical production plants. The possible states of the source tank A as a stated

object are described below.

28

State Description

empty If water level is equal to or less than Empty marker.

Ok If water level is greater than Empty marker and less than Full marker.

Full If water level is less than or equal to Full marker.

Table 3.4 ‘Tank A’ Stated Object States

The possible states of sink Tank B as a stated object are as below.

State Description

empty If water level is equal to or less than Empty marker.

Ok If water level is greater than Empty marker and less than Full marker.

Full If water level is less than or equal to Full marker.

Table 3.5 ‘Tank B’ Stated Object States

The possible states of the pump as a stated object are as below.

State Description

On If pump is switched on.

Off If pump is switched off.

Table 3.6 ‘Pump’ Stated Object States

3.6 CIP System

A cleaning in place (CIP) pumping system can be modeled by a finite state automaton

(Figure 3.4);therefore, a software application for such a system can be directly written and

better represented by stated objects. The transitions in Figure 3.4 represent the events of the

CIP system. Upon any occurrence of an event, the system triggers the corresponding

transition. We argue, in Chapter 8, that if such applications are already coded as stated

objects then the application could be transformed to a model checking language directly and

conveniently.

This case study is a customized case of a typical CIP system that is often used in the

chemical industry. The system has three pumps (P1, P2 and P3) and three tanks (A, B and C).

Each tank has two level meters, one to detect whether its level is empty and the other to

detect whether its level is full. The tank level is at the ok state if the solution level is above

29

the empty meter but below the full meter. Each pump can be transitioned to its on state or off

state. Initially, all three tanks are in their empty state and all pumps are in their off state.

Pump P1 pumps the solution to Tank A, P2 pumps the solution from Tank A to B and C.

Finally P3 pumps the solution out of the three Tanks A, B and C to vacate the tanks and

output the CIP return. A combination of different states of these Tanks and Pumps will make

up the states of the whole system.

Pump P1 is transitioned to its on state manually. As soon as the solution level in Tank A

reaches its ok state from the empty state, then pump P2 transitions to its on state and pumps

the solution from Tank A to Tanks B and C, provided that Tank B and C are not in their full

state. Pump P2 remains in its on state as long as Tank A is not in its empty state and Tank B

or C are not in their full state. As soon as Tank A reaches its full state, pump P1 transitions

to its off state. Pump P2 transitions to its off state as soon as Tank B or C transitions to its full

state. As soon as Tank B or C transitions to its full state then pump P3 transistions to its on

state. The system should not attempt to transition a pump to its off (on) state if it is already in

its off (on) state. We define the overall states of the system in terms of combinations of

different states of the Pumps and Tanks as below.

State Description

K P1=off, P2=off, P3=off, A=empty, B=empty, C=empty

L P1=on, P2=off, P3=off, A=empty, B=empty, C=empty

M P1=on, P2=on, P3=off, A=ok, B=empty, C=empty

N P1=on, P2=on, P3=off, A=ok, B= ok, C= ok

O P1=off, P2=on, P3=off, A=full, B=ok, C=ok

P P1=off, P2=on, P3=off, A=ok, B=ok, C=ok

Q P1=off, P2=off, P3=off, A=ok, B=full, C=full

R P1=off, P2=off, P3=off, A=empty, B=full, C=full

Table 3.7 ‘CIP System’ Stated Object States

30

Figure 3.4 ‘CIP System’ Stated Object Model

3.7 Digital Counter Composed of Flip-Flops

In this case study, we show that a digital counter can be made up of flip flops [9]. Each flip-

flop has two states: enabled (ebl) or disabled (dbl). Therefore, flip flops can be viewed as

stated objects. Two flip-flops can exhibit a combination of states as ebl-ebl, dbl-dbl, ebl-dbl

and dbl-ebl. These combination states can be viewed as the states of a counter stated object

that is composed of these two flip-flops. Therefore, a digital counter with n flip-flops is a

stated object having 2
n
 states as it is composed of a number of flip-flop stated objects.

3.8 Master Detail Data Entry and Navigation Form

In this case study, we show that a typical ‘data entry and navigation form’ for a database

application can have many display states and can be coded with a stated ‘Form’ object. Both

the GUI and the underlying mechanism of this ‘Form’ object demonstrate the FSA

functionality. To display data from a one-to-many underlying table of a database, we often

use a typical ‘Form’ which has two parts. The first part displays data from one row of the

master table and the second part of the ‘Form’ display all the detail data rows corresponding

to the row shown in the first part. In other words, the first part displays one row from the

master table and the second part could possibly display many rows from the detail table

corresponding to the one row displayed in the first part of the ‘Form’. Initially when the

31

‘Form’ is loaded then it is possible that there is no row in the table to display, so the ‘Form’

will be displayed without any data, i.e. in the empty_form state. If the ‘Form’ has at least one

row in the master table then the ‘Form’ will display the first row and will be in the

display_first_row state.

The ‘Form’ has two kinds of buttons: navigation and data buttons. Using the navigation

buttons, the user can move to other records. Using the data buttons, the user can modify the

data of rows. The buttons can be enabled or disabled depending on the current state of the

‘Form’. Using the NEXT navigation buttons on the ‘Form’, the user can invoke the ‘next’

method of the ‘Form’ to display the next row and the ‘Form’ will transition to the

display_intermediate_rows state from the display_first_row state. The ‘next’ method of the

display_first_row state will transition the ‘Form’ to the display_intermediate_rows state if

there are more than two rows in the underlying master table. The ‘next’ method of the

display_first_row state will transition the ‘Form’ to the display_last_row state, if there are

only two rows in the underlying master table. Similarly, the user can also invoke the ‘edit’ or

‘addnew’ methods and the ‘Form’ will transition to the corresponding display state. From the

edit or addnew state, the user may attempt to invoke either the ‘save’ method to save the data

or the ‘cancel’ method to exit the ‘edit’ or ‘addnew’ method. The ‘cancel’ method transitions

the ‘Form’ to the same previous state from where the ‘edit’ or ‘addnew’ method was

invoked. This shows that the stated object may also act as a mechanism to track its last state

or a history of its previous state transitions. The table below shows all the states of the

‘Master Detail Data Entry and Navigation Form’ as a stated object.

32

State Description

empty_form There is no row in the table to display therefore the ‘Form’

displays all empty fields and all navigation and data buttons

are disabled except the ‘AddNew’ button. All fields are

disabled.

display_first_row The first row from the table is shown and the navigation

and data buttons are enabled. All fields are disabled.

display_intermediate_rows The intermediate rows from the table are shown. The

navigation and data buttons are disabled. All fields are

disabled.

display_last_row The last row is shown. All buttons are enabled except the

Next button. All fields are disabled.

Edit All fields are enabled. All buttons are disabled except the

Cancel and Save buttons.

Addnew All fields are enabled. All buttons are disabled except the

Cancel and Save buttons.

Table 3.8 ‘Master Detail Data Entry and Navigation Form’ Stated Object States

3.9 Elevator

We illustrate from [11] a state-machine model of an elevator. A software application may

need to simulate an elevator as a stated object. For simplicity in this case study, the elevator

does not actually change floors. The only possible input to the elevator is to open or close its

doors, or do nothing. So, the possible inputs to this machine could be to invoke the methods

‘command_open’, ‘command_close’ and ‘no_command’.

The doors of an elevator do not open or close instantaneously, so we model the elevator to

assume four possible states as opened, closing, closed, and opening states. These states

correspond to the doors being fully open, starting to close, being fully closed, and starting to

open, respectively.

In the closed state, if the elevator is commanded to open, it goes into the opening state. In the

opening state, the ‘command_open’ or ‘no_command’ inputs cause a transition to the opened

state. In the opening state, the ‘command_close’ input causes a transition to the closing state,

which is displayed in the table below.

33

State Description

opened The door has been completely opened.

closing The door is closing but not completely closed.

closed The door has been completely closed.

opening The door is opening but not completely opened.

Table 3.9 ‘Elevator’ Stated Object states, from [11]

Figure 3.5 ‘Elevator’ Stated Object Model, from [11]

3.10 Bank Account System

We now study an online banking application that performs the job of printing an account

statement. We suppose that the application is comprised of two basic components (1) A

‘print manager web service’ and (2) A ‘managed printing web service’. The ‘print manager

web service’ monitors relevant system parameters to determine the mode of printing. The

‘managed printing web service’ actually sends the printing job to the printer.

The banking application provides an online interface to clients so that they can request to

print their account statement. Clients of the application will connect to the managed printing

service through a web interface. The ‘managed printing service’ as a stated object either

streams all print requests only to a main printer, or distributes the print requests between a

34

main printer and a support printer. Therefore, printing is performed either in the streaming

state or in the distribution state. The ‘print manager web service’ periodically analyzes the

relevant information, e.g. the number of clients connected, and accordingly triggers any

change of state to the ‘managed printing web service’.

The state to be assumed by the ‘managed printing service’ is determined based on the

number of connected clients. The ‘print manager service’ keeps track of the total number of

connected clients. If the number of clients increases beyond a set threshold, the print manager

invokes an event to the managed printer to transition it to the distribution state. Otherwise it

transitions or keeps it in the streaming state. Therefore, the ‘manager service’ controls the

state transition of the ‘managed service’ and the ‘managed service’ continues the print job

accordingly.

State Description

streaming All print requests are sent to a single printer.

distribution All print requests are distributed among the available printers.

Table 3.10 ‘Managed Printing Web Service’ Stated Object States

3.11 Queue

In this case study, dynamic adaptation features of the functional and non-functional aspects

of state controlled object oriented language are illustrated. When we use the term “client-side

code”, we mean the code fragment that creates an object instance of the stated object. In this

example, we use the notion of “abstract class” from OOP. The objects of an “abstract class”

cannot be instantiated but can be declared. Object instances of its compatible classes can be

assigned to the declared reference of the “abstract class”. Let us consider a Queue abstract

class. The client-side code can declare an abstract stated object Q of Queue as below.

Queue Q;

35

An ArrQueue is an array-based stated queue object with empty and nonempty states. An

array in the nonempty state keeps state data, i.e. the non-functional aspect, of ArrQueue,

while put, get and isfull are the methods, i.e. the functional interface, of ArrQueue.

A HashQueue is a hash table-based stated queue object with empty and nonempty states. A

hash table in the nonempty state keeps the state data for the HashQueue while put, get

and isfull form the functional interface for HashQueue.

In the client-side code, an object of ArrQueue can be instantiated and assigned to the Q

object as below:

Q=new ArrQueue();

An object of HashQueue can be instantiated as below:

HQ=new HashQueue();

Suppose Q is currently assigned an instance of ArrQueue. On the client side, this Q is

populated. When the client realizes that the array-based queue object Q is not sufficient to

allocate more data then, at first, the data in the ‘array’ of ArrQueue can be passed on to the

HQ using the following method:

HQ.updatestate(Q.nonempty);

The above updatestate custom method has to be written by the programmer in the

HashQueue stated class to transfer the data of ‘array’ to the ‘hash table’. Secondly the

client could dynamically replace the nonempty state of the ArrQueue object with the

nonempty state of the HashQueue object. In SCOOP, this replacement is as simple as the

following statement:

Q.nonempty=HQ.nonempty;

36

The statement above transforms the nonempty state of the array-based Q stated object to the

nonempty state of the hash table-based HQ stated object. Note that the nonempty state of

ArrQueue has an array-based implementation while the nonempty state of HashQueue

has a hash table-based implementation. We elaborate in Chapter 7 on how SCOOP

implements this dynamic typestate replacement.

The advantage is that only the partial behavior of the Q object is adapted at run time and the

rest of the states, data and behavior associated with each state remain intact. In conventional

object oriented programming, if we replace an array-based queue with another hash table-

based queue then the entire array-based object instance is overwritten. All of its state data

and behavior associated with any state is replaced. In the case of a stated object, after

dynamically adapting the behavior of one state, the behavior particular to the rest of the states

of the stated object remains as it was and may still be used as before. In the table below, we

show the possible states of the Queue stated object.

Table 3.11 ‘Queue’ Stated Object States

3.12 Iterator

In this case study, we show the binding of the external states of a stated object with its

internal state invariant data. The complete code sample of a stated iterator object is given in

Figure 6.1. The iterator is a programming construct that performs custom iteration over a data

structure. The stated iterator object of Figure 6.1 is taken from standard OOP ‘iterator’ code

from [6] and transformed into SCOOP code. The iterator definition encapsulates the logic to

iterate the data structure which may be simple or complex depending on the data structure.

The iterator can also be considered to maintain its abstract states during its traversal. For

instance, the iterator may be in the initial state when it has not started iteration. The iterator

State Description

empty The Queue is empty.

nonempty The Queue is not empty i.e. has at least one data element.

37

may be in the traversal state during its iteration and in the end state when iteration is

completed. The iterator can have many internal states, for the following reasons:

 The iterator may encapsulate a complex data structure, e.g. a two dimensional array

which has a number of states during its traversal.

 The iterator may encapsulate another iterator which has a number of states.

We introduce three states for the iterator as mentioned above, i.e. initial, traversal and end.

The step() function in the sample code of Figure 6.1 iterates the iterator, HIter, a step

forward. When the current state of the iterator HIter is set to traversal, then this state

serves as an external and formal representation of its internal state. Internally, this state is

represented by its state invariant data members. For the traversal state, the state invariant

data members are i, j and htbuckc. The traversal state holds as long as the following

rule is true:

 if (j==0 AND i < htbuckc)

Similarly, we have another rule for the end state of iterator HIter:

if (I == htbuckc)

And for the initial state, the rule is:

if (j== -1 AND i < htbuckc)

Since the step() function iterates an iterator a step onward, it makes sense to allow the

step() function in both the initial and traversal states because the iterator can iterate next

in each of these states. Making the step() function available in both states illustrates state-

based polymorphism, as mentioned in Section 2.5. As soon as the iterator transitions to the

end state, forward iteration becomes illegal.

38

State Description

initial The iterator is at the first record of data.

traversal The iterator is at any part of the record of data except first or last

record.

End The iterator is at the last record of data.

Table 3.12 ‘Iterator’ Stated Object States

3.13 Printer

In this case study, we illustrate a stated printer object. It is assumed that the printer can be in

either the fullcharged or in the halfcharged state. Printing can be performed in either of the

states, but with different functionality. The fullcharged state of the printer may abstract over

its internal invariant data, such as ‘cartridge ink level’ and ‘cartridge last replaced’. Values

for each of these data members collectively or individually may cause the state of the printer

to transition from the fullcharged to the halfcharged state, if either ‘cartridge ink level’ goes

below 50% or ‘cartridge last replaced’ exceeds 20 days. The states of the stated printer

object are presented in the table below.

State Description

fullcharged In this state the printer will perform dark printing.

halfcharged In this state the printer will perform dim printing.

Table 3.13 ‘Printer’ Stated Object States

Moreover, the stated object printer can be composed of a stated object cartridge. In this case,

the states of the printer object can be mapped to the corresponding states of the cartridge

object. Intuitively, a transition in the cartridge state may trigger the corresponding transition

in the state of the printer object and vice versa. Such a mapping of a stated object with its

composed stated object has not yet been studied.

39

3.14 File

In this case study of stated objects from [18], we argue that only the partial behavior

particular to a state of a stated object is replaceable, rather than replacing a complete object at

run time. For instance, an ‘ImageFile’ object may need to adapt a new ‘read’ behavior at run

time so that it can read an image from a newly connected device that was not known at

compile time, because its mechanism to read an image from a newly connected device is

different. Since ‘read’ is a behavior particular to the openfile state of the ‘ImageFile’ object,

the behavior associated only with the openfile state of the ImageFile needs to be replaced at

run time without compiling the original ‘ImageFile’ object again.

Let us suppose there is a ‘File’ object, written by a programmer. The code of the ‘File’ object

is compiled in a program, ‘ProgFile’. The programmer intends to enable ‘ProgFile’ such that

if ‘ProgFile’ has compiled and run then at run time the ‘ProgFile’ can input a new behavior

for the ‘read’ method of the openfile state of the ‘File’ object. Therefore, the programmer

also writes the client code for a ‘File’ object in the ‘ProgFile’ program so that ‘ProgFile’ can

input a new ‘read()’ method for the openfile state of the ‘File’ objects as desired. ‘ProgFile’

is then compiled with the code of ‘File’ object and its client. The same programmer, or

another programmer, writes a separate program ‘ProgNewFile’ which has either a new ‘File’

object or a new openfile state that encapsulates a different ‘read()’ behavior for the openfile

state of the ‘File’ object. The code of the new ‘File’ object or a new openfile state is

compiled and placed into a separate library.

When ‘ProgFile’ is run, it can input a new openfile behavior from ‘ProgNewFile’ and replace

it with the original openfile state. Therefore, the new ‘read()’ behavior (method) goes into

effect. We illustrate the states of a stated ‘File’ object, in the table below.

40

Table 3.14 ‘File’ Stated Object States

Figure 3.6 ‘File’ Stated Object Model

State Description

openfile The file is open but not at the last record.

closefile The file is closed.

Eof The file is open but at the last record.

41

Chapter 4

4 Background and Related Work

Finite state automata (FSA) have been a significant tool for modeling diverse kinds of

systems. State charts [15] are an extended version of FSA which can model more

sophisticated aspects of systems such as nested states. State charts have also been effectively

used in modeling the design of software systems [15]. Due to their significance, software

engineers have attempted to use state charts directly in the implementation of software in

addition to simply modeling the design of software systems. One of the attempts to leverage

state charts in the implementation of software is the state design pattern [16]. Conventionally

the design and implementation of control-related software applications has been widely

modeled by state charts [15]. The significance of state charts in software modeling can be

seen by the fact that the design of business-related applications is increasingly modeled by

workflow [46]. “Workflow” is a concept similar to state charts that is primarily used to

model the design of business-related applications. Researchers have attempted to make use of

workflow directly in the implementation of business-related software [47] so that state can be

directly encoded by the programming language.

The main drawback preventing software engineers from exploiting these tools for direct use

in programming is the lack of explicit support for typestate in programming languages.

4.1 Typestate

The term “typestate” was initially used from the perspective of imperative programming [23]

for software reliability and software validation using primitive data types. Later, the concept

of typestate was incorporated into the object concept of OOP [17 - 22, 24, 28].

42

Typestate related behavior in standard OOP is analyzed by analysis tools [4, 5, 14, 26, 60]

that attempt to capture the typestates of an object separately from an object oriented program.

This separately captured typestate is called typestate property. The object oriented program is

then analyzed to check whether the program violates that typestate property. In contrast,

SCOOP allows ‘typestate’ as an explicitly defined integral part of an object that can be

accessed directly and analyzed as proposed by Sheng [17], Aldrich [18, 24] and Fähndrich

[20].

Typestate-Oriented programming, abbreviated as TSOP, [18, 24] is a previously proposed

programming paradigm similar to SCOOP. TSOP requires modeling software in terms of the

state of an object rather than in terms of the object itself. The strength of TSOP is that it

represents the state of an object as a first class language concept and as a unit entity of

programming which helps to implement the state transition of the object by the TSOP

language. But this strength exists at the cost of not representing the object as a first class

entity as in conventional OOP. Our proposed SCOOP language, described in Chapter 5, adds

the state feature to objects similar to the approach proposed by Sheng [17], Aldrich [18, 28],

Fähndrich [20] and Sterkin [21], but in addition, we propose both the object as well as its

typestates as first class language entities.

Our approach to static and dynamic typestate checking does not require any additional

annotation like “access permission” or “state guarantee”, as proposed by Aldrich [22, 24, 28],

nor does it require annotations like “key”, as proposed by Fahndrich [27]. We refer to our

approach as “user friendly” because it does not require the programmer to learn and use any

additional annotations except typestate annotations. Our approach does not constrain

typestate transitioning in the presence of aliasing, unlike the approach of Fähndrich [20],

where the typestate of “maybe aliased” objects cannot transition. Fähndrich [20] proposes

transitioning of the typestate of an object only if the object is not aliased. In our setting, all

objects are “maybe aliased”. Our typestate aware stated type system tracks the current

typestate transitions of the object and reflects it to all of its aliases.

43

We introduce a transition function trans() as used in the iterator example, in Section

6.4.1. This function has not yet been proposed by any of the earlier approaches that are

similar to SCOOP. Our proposed trans() function, illustrated in Section 6.4.1,

introduces an additional capability for the programmer to perform a valid transition on an

object from outside of the object at any point in time during the lifetime of the object.

SCOOP, with the help of the trans() function, enables an object to act like a statechart as

proposed by Sterkin [21]. Sheng [17], Aldrich [18, 28] and Fähndrich [20] proposed state

transitioning of an object only by method invocation. Our proposed additional trans()

method can be used for direct transition of an object to a valid typestate, as illustrated in the

step() function of the iterator example in 6.4.1. Sterkin [21] proposed an approach similar

to our proposed trans() function but in his approach the overall language design lacks

object oriented features.

4.2 Typestate Extension and Subclassing

SCOOP also supports typestate extension along with subclassing (behavioral subtyping) of

stated objects. Fähndrich [20] allowed subclassing of stated objects but typestate extension is

not supported. Aldrich [24] allowed typestate extension but subclassing is not defined when

programming with typestate. Aldrich’s [28] work allowed typestate extension with behavioral

subtyping but neither an implementation architecture for typestate nor aliasing or static

typestate checking are discussed. We illustrate typestate extension in Section 6.6 and 6.7.

4.3 Typestate Tracking

Typestate tracking, as mentioned in Section 5.16, refers to the process by which a stated type

system is aware of the current typestate of the stated object at any point in time.

Fähndrich [27] present a technique that associates the concept of a “key” with an object such

that the “key”, rather than the object itself, actually switches between typestates and assumes

typestate transitions. By definition, the compiler always uses the object’s “key” to reference

44

the actual object in order to track typestate transitions through aliases. However, it is not

defined how the type checker will detect the “key” of an object when it detects an alias of

that object. Furthermore, the type checker needs to maintain this extra “key” for each object,

which is a burden. The programmer also needs to learn to use a new notion and syntax to

declare the objects with “keys” so that the type checker can track the transition of typestates

through the “keys”. Fähndrich [27] acknowledges that their proposed technique has

limitations for aliasing. The notion of typestate invariant is not discussed.

Jonathan Aldrich [28] presents typestate as a separate but built-in feature of the object that is

similar to our approach. But, the state of an object is not assumed to be a first class language

concept. In our approach, both the object and its state are first class language concepts.

Furthermore, Jonathan Aldrich [28] does not define typestate tracking or typestate checking.

4.4 Aliasing

At an abstract level, our approach to alias tracking is similar to the “integrated verifier

technique” of Fink [26]; but, this approach treats typestate as a separate entity whereas our

approach treats typestate as a built-in feature of a stated object. Fink’s [26] proposed

technique does not define the implementation of how to keep the current typestate of a stated

object. Neither does it define how to update the current typestate, nor how to keep the aliases.

We detail our technique as compared to the work of Fink [26] by mentioning the

implementation aspects. For the implementation of typestate, we introduce ‘state class’ as a

concrete representation of the typestate of a stated object and also introduce an alias table.

Further we introduce a single location in the symbol table to keep the current typestate of an

object so that all aliases may be statically aware of their current typestate.

45

4.5 Typestate Invariant

Jonathan Aldrich [28] illustrates that Java I/O and JDBC can be modeled with typestate

invariants. We illustrate the use of typestate invariants in Chapter 6. Aldrich [28] defines

typestate invariance, but the architecture of how typestate invariant is maintained by the

language is not mentioned. We present an implementation technique for typestate invariants

in Section 6.5. Moreover, Aldrich [28] does not define typestate checking.

Manuel Fähndrich [29] illustrates that an array reader and a lexer can be modeled with

typestate invariants. He incorporates the notion of typestate into objects in a similar way to

our concept in that there can be explicitly defined external typestates of objects. However,

Fähndrich limits an object to only one possible typestate in such a way that the object will

either be in its one possible typestate, i.e. the object is valid, or it will not be in that typestate,

i.e. the object is invalid. Furthermore, Fähndrich defines the notion of internal representation

of typestate by the data members of an object and describes that the external typestate is

bound with the internal typestate data, i.e. typestate invariants. Fähndrich’s [29] presented

internal typestate data is termed “object invariant” rather than typestate invariant because

there is only one typestate that controls an object. In our case, we allow multiple typestates

for an object and each typestate may have distinct internal typestate invariants.

Manuel Fähndrich [20] notes that a typestate holds a predicate over an attribute (data

member) of an object and its values. However, there is no construct given by Fähndrich [20]

which the programmer can use to define the predicate that binds the typestate with the

attribute and its values.

In order to facilitate aliasing, Manuel Fähndrich [30] employs “adoption and focus”

operations to a linear type system. With these operations, the type checker can assume must-

alias properties for a limited program scope. In contrast, our approach does not limit aliasing

over the program scope.

46

4.6 Dynamic Behavior Adaptation

Dynamic behavior adaptation is one of the well-stated requirements of autonomic computing

[32, 34, 35, 36]. The MAPE-K loop, shown in Figure 7.7, of autonomic computing provides

an architecture for dynamic behavior adaptation. Different approaches have been proposed

for capturing the sensor and effector requirement of the MAPE-K loop. We propose that state

controlled object oriented programming can be effectively exploited in order to fulfill the

sensor and effector requirement of the MAPE-K loop. Considering Example 3.10, the

variable of the print manager that holds the number of connected clients will serve as a

sensor, and the corresponding polymorphic, adaptable, ‘print’ behaviors will serve as

effectors of the MAPE-K loop.

Many programming language based approaches to ‘dynamic compositional adaptation’ have

been proposed [41, 42] to achieve autonomic and autonomous computing. Sadjadi [48]

studied an earlier taxonomy of dynamic compositional adaptation approaches. To the best of

our knowledge, no earlier state oriented programming models [17, 18, 20, 21, 24] support

typestate-based dynamic compositional adaptation, nor have any prior compositional

adaptation approaches proposed the dynamic adaptation of state related behavior of software

objects.

47

Chapter 5

5 A Static Typestate Checking Technique under Aliasing

5.1 Introduction

In this chapter we introduce the aliasing behavior of our proposed SCOOP programming

language. We also introduce several components of SCOOP that collectively contribute to a

proposed typestate checking technique.

An elegant typestate checking technique in the presence of aliasing is presented in [18, 22,

24], but this technique comes at the cost of requiring the programmer to learn the new

concepts of “access permission” and “state guarantee” and use their corresponding notations.

In this chapter, we illustrate that the same results can be achieved with SCOOP without using

any extra annotations. Our proposed typestate checking does not constrain aliasing in any

way. Our proposed typestate checking technique statically computes the set of current

possible typestates of a stated object and also makes any aliases of that object aware of that

set of typestates.

5.2 Presentation

In order to address the issues of typestate, we need to have a type system with support for

typestates [26] rather than the conventional type system of imperative programming

languages. We refer to such a type system with typestate support as a “stated type system”. In

the literature, a stated type system is also referred to as a “typestate system”. We propose a

“stated type system” along with its implementation technique, “proxy and stated class”

architecture. For the implementation of typestate by the compiler, we introduce a new kind of

48

nested class, in Section 5.8, which we call “state class” that is hidden from the programmer

and implemented internally by the compiler.

Our newly introduced constructs can be used by the programmer to declare the typestates of

an object. However, these typestate declaration constructs are optional. The “typestate

structure” is declared in the stated class. It has a lexical scope in its stated class that encloses

the attributes and methods of a particular typestate. Transforming each programmer-defined

typestate structure, as in Figure 5.1, to a state class, as in Figure 5.2, allows the typestates to

be used as a unit entity and first class language concept.

In the following sections, we introduce the programming constructs which declare the

external typestates of a stated object from the programmer’s point of view and present the

language implementer’s view. In subsequent sections, we introduce our “proxy and state

class” architecture.

5.3 The SCOOP Language

In Appendix A we have given a context free grammar for parsing SCOOP programs. This is

an earlier Java-like grammar with some added and some modified productions to parse

SCOOP language constructs. In the appendix, we have marked some productions with the

letter ‘S’ to indicate that these productions are particular to our proposed SCOOP language.

As usual in a parser grammar, there are two kinds of symbols. We define our convention for

the grammar symbols in the table below.

49

Kind of Symbols Description Examples

Terminals Keywords and Operators in small

alphabets

int, public, statebinding,

+, ++,

Identifiers in small alphabets id, o_id, st_id

Non Terminals enclosed in angle brackets <var_dec>, <class>,

<stm>

Table 5.1 SCOOP Grammar Symbols

We discuss in some detail below a few of the productions for parsing SCOOP language

constructs. The numbering of the productions we use is according to the numbering in

Appendix A.

Production no. 4 in Appendix A is as follows

<class>  <st_dec_list> class cls_id { <cls_body> }

This production allows parsing the stated class declaration, e.g. the File class in Figure 5.1.

The <st_dec_list> non-terminal would parse the declaration of state name of a class just

before parsing the keyword class.

Production no. 5 in Appendix A is as follows

<st_dec_list>  [state (<st_list>)]

This production allows parsing the state name of a stated class using the <st_list> non-

terminal. It is derived from Production no. 4.

Production no. 6 in Appendix A is as follows

<st_dec_list>  Є

This production allows stopping the expansion of parsing the list of state names of a class.

Production no. 7 in Appendix A is as follows

<st_list>  <st_list> , <st_id>

50

This production allows parsing the repetition of state names while parsing the declaration of

the list of state names using Production no. 5.

Production no. 8 in Appendix A is as follows

<st_list>  <st_id>

This production allows parsing the single state name when there is only one state declared for

a class.

Production no. 9 in Appendix A is as follows

<st_id>  st_id

This production allows parsing the actual state name given by the programmer. In this

production we represent the actual state name by the terminal st_id.

Production no. 10 in Appendix A is as follows

<cls_body>  <var_dec_list> < st_binding> <cls_m_list> <c_s_m_list>

This production allows parsing the internal body of a class and is derived from Production

no. 4. As is obvious, the class body should first of all allow the variable declaration, followed

by a state binding, followed by a list of the methods of the class, followed by the list of the

state structures in the class.

Production no. 18 in Appendix A is as follows

<st_binding>  statebinding { <b_list> }

This production allows parsing the state binding and is derived from Production no. 10. The

<b_list> non-terminal allows parsing the list of binding state name, with a binding rule.

Production no. 19 in Appendix A is as follows

<b_list>  <b_list> , <bind>

51

This production allows parsing the binding of state names with the binding rule. This is

derived from Production no. 18.

Production no. 77 in Appendix A is as follows

<c_s_m_list><c_s_m_list> <c_s_method>

This production allows parsing of the list of state structures, i.e. a possible repetition of many

state structures. It is derived from Production no. 10. An example of a state structure is given

in Figure 7.1.

Production no. 78 in Appendix A is as follows

<c_s_method>  <s_list> { <s_v_d_lst><s_m_list> }

This production allows parsing a single state structure. It is derived from Production no. 78.

The <s_list> non-terminal would parse the state name of the state structure. An example of a

state structure is given in Figure 7.1

Production no. 79 in Appendix A is as follows

<s_m_list> <s_m_list> <s_method>

This production allows parsing the list of methods in the state structure, i.e. a list of methods

particular to a state. It is derived from Production no. 79.

Production no. 81 in Appendix A is as follows

<s_method><r_type><m_id>(<arg_list>)<s_end_list>{<s_m_body>}

This production allows parsing a method in the state structure, i.e. a method particular to a

state. The <s_end_list> non-terminal would parse the output state of this method. It is

derived from Production no. 80.

Production no. 90 in Appendix A is as follows

<st_stm>this.trans(st_id);

52

This production allows parsing the ‘trans()’ method as a language keyword. Note that this

parsing is possible only from the body of a method i.e. it is particular to a state.

Production no. 115, in appendix A is as follows

<s_list>  [st_id]:[st_id]

This production allows parsing the state name of a state structure. The colon separates the

state names of the parent class and the subclass. It is derived from Production no. 79.

5.4 Stated Type System

Our flow sensitive “stated type system” validates typestate declarations, typestate

transitioning, typestate equivalence, typestate casting, and static and dynamic typestate

checking for stated objects. It performs this static analysis with the help of several features.

These features include state class (Section 5.8), typestate coercion (Section 5.13), finding

aliases with the help of an alias table (Section 5.14) and typestate checking (Section 5.17).

Any operation on a stated object or occurrence of any statement that refers to a stated object

or its alias is validated by the stated type system. For validation, the stated type system

evaluates the current typestate of a stated object. More specifically, upon any occurrence of a

method invocation on a stated object that causes a typestate transition, the stated type system

statically updates the typestate (output state) of the stated object. This static update of the

typestate is achieved by means of typestate coercion as mentioned in Section 5.13. If a

definite output typestate cannot be decided, then the set of possible output typestates is

statically associated with the stated object reference.

53

5.5 Default Typestates

The SCOOP language supports two default typestates for any stated object. These typestates

are always part of a stated object typestate set by default. Any field invocation will be invalid

while the object is in either of these default typestates.

The first default typestate is null. For each stated object, as soon as an object is deleted from

memory or its reference is set to null, the stated object reference is assumed to be in the null

typestate. An object reference that has been declared and not instantiated yet also assumes

the null typestate.

The other default typestate is undefined. Each stated object is assumed to be in one of its

declared typestates at any point in time. If, due to some problem (e.g. a function that changes

the typestate of the object does not return properly) the current typestate of a stated object

cannot be determined, then the stated type system transitions the object to its default

undefined typestate. Occasionally, an object could be instantiated but its internal typestate

representation data may not yet be assigned values compatible with any of its declared

external typestates. In this case, the object also assumes the undefined typestate.

The undefined typestate of a stated object corresponds to what is typically referred to as the

error state of finite state automata. When a finite state automaton receives an invalid input

for which there is no transition defined from the current state, it transitions to the error state.

Our SCOOP language contains a built-in “typestate interface” from which each stated object

is extended (inherited) by default. The “typestate interface” provides the null and undefined

default typestates for each stated object.

54

5.6 A Programmer’s View

We present example code for the classic File stated object in Figure 5.1 according to our

proposed SCOOP syntax.

[state(openfile,closefile=start,eof)] //declaring the typestates of File
class File{

 string name; //this field is accessible in every state
 public sharedmethod(){} //this method is accessible in every state
 [openfile]{
 public string file_desc;
 public read()[openfile | eof]
 {..
 }
 public display()[openfile]
 {…

 print(“original openfile”);….
 }
 public close()[closefile]
 {….

 this.trans (closefile);…..
 }
 }
 [eof]:[openfile]{ //eof typestate structure
 public override close()[closefile]
 {….
 //eof is the extension of openfile typestate
 base.close();.. // therefore read() method is not available
 } // because at eof further reading is not possible
 }
 [closefile]{ //closefile typestate structure
 public open()[openfile]
 {..
 this.trans(openfile);...
 }
 }
}
class client{

 File f=new File (); //an object of closefile typestate is created
 f.open(); //f transitions to openfile typestate
 f.name=”file1”;
 f.close(); //f transitions to closefile typestate
 f.name=”file2”;
 prinf(f.name); //this statements prints “file2”
 f.close(); //error detected statically i.e.
 //“close() not found in the current typestate

 //closefile of f”
}

 Figure 5.1: A SCOOP Program

55

5.7 A Language Implementer’s View

The programmer-defined code in Figure 5.1 is transformed to the intermediate code in Figure

5.2 by the SCOOP compiler according to our proposed “proxy and state class” architecture.

class File{ //transformed proxy stated class File

 enum state{openfile,closefile,eof} // translated by compiler
 string name;
 state curr_st;
 public File()
 {
 openfile of=new openfile();
 closefile cf=new closefile();
 closefile ef=new eof ();
 }
 public sharedmethod(){}
 public void trans(state st)
 {
 if(st==openfile)

 this= of; //typestate of this is statically coerced to openfile
 else if (st==closefile)

 this= cf; //typestate of this is statically coerced to closefile
 }

class openfile{ // a special kind of nested class i.e. “state class”
 public string file_desc;
 public close()[closefile]
 {….
 this.trans (closefile);
 }
 public read() [openfile | eof]
 {...
 }
 public display()[openfile]
 {…

 print(“original openfile state display”);….
 }
}

class eof:openfile{…… //a special kind of nested class i.e. “state class”
 public override close()[closefile]

 {….
 base.close();..
 }
}

class closefile{ //a special kind of nested class i.e “state class”
 public open()[openfile]
 {….

 this.trans(openfile);…..
 }
 }
}

56

Figure 5.2 SCOOP language-generated File Stated Object.

As in the code given in Figure 5.2, the “stated class”, i.e. File class, serves as the proxy

class for the encapsulated ‘state classes’, i.e. openfile, closefile and eof. The

instances of ‘state classes’, e.g. of and cf, are called typestate objects. The File stated

class in Figure 5.2 is transformed according to our “proxy and state class” architecture and

shown in Figure 5.3.

5.8 State Classes

We introduce a new kind of class and name it “state class” as it represents a state of a stated

object. A “state class” is an implementation of a typestate. A state class is an inner class

coupled with a few additional characteristics so that it can fulfill the typestate requirements,

according to our proposed architecture. However, the programmer writing a stated class, as

shown in Figure 5.1, declares the typestate and typestate dependent fields (data members and

methods) inside the stated class and is unaware of the existence of the “state class”. The

“state class” generated by the language and hidden from the programmer, as shown in Figure

5.2, contains only the fields specific to its typestate, e.g. file_desc in the openfile

typestate class. Since a state class represents a typestate of an object and the typestate of an

object is an inherent characteristic, it is quite natural to define the “state class” as a nested

class within the stated class.

class client{

 File f=new File(); //an object of initial typestate (e.g. closefile) is created
 //by overloaded ‘new’ operator for stateful class. The type
 //system upon occurrence of ‘=’ would coerce the typestate of
 //‘f’ to closefile statically.
 f.open();
 f.name=”file1”;
 f.close();
 f.name=”file2”;
 prinf(f.name); //it prints file2

 f.close(); //error detected statically i.e. “close() not found in the

 //current typestate closefile of ‘f’”
}

57

5.9 Characteristics of State Classes

We introduce the characteristics of state classes, which are designed such that that they can

not only be used as an appropriate implementation of typestate but can also fit into our

proposed “proxy and state class” architecture to achieve our desired objectives. Each state

class keeps a reference to its proxy class.

Proxy-State Compatibility: All objects of state classes, e.g. of or cf in Figure 5.2, are

compatible with their encapsulating proxy stated object, e.g. f in Figure 5.2, such that an

instance of any state class can be assigned to the reference of stated class, e.g. this=of, in

Figure 5.2. This characteristic is technically similar to the inheritance relation, in which

subclass objects can be assigned to a parent class reference. However, state classes are not

subclasses of their encapsulating stated class. This characteristic is required to implement

typestate transition for the stated object.

Single-Proxy Data: Each object of a state class, encapsulated in its stated object, will have

access and share a single copy of the fields of its proxy stated object. This characteristic is

similar to the inheritance relation, in which subclass objects share the same fields as their

parent class. However, state classes are not subclasses of their encapsulating stated class.

Contrary to the inheritance relation, an instance of a state class does not keep a separate

instance of its stated class. Each object of a state class shares a single instance of its proxy

stated object and the same data members of the single instance of the stated object are shared

among each typestate object. This characteristic is required so that in the case of typestate

transition of the stated object, all shared data of the encapsulating “stated object” can be

accessed seamlessly. Let us consider the snippet below:

f.open();

f.name=”file1”;

f.close();

f.name=”file2”;

f.open();

prinf(f.name);

58

The last statement of this snippet prints “file2” because the attribute ‘name’ of the ‘File’ class

is shared among every state of f and is not particular to one state class. Each state class keeps

a reference to its proxy class.

5.10 The Proxy and State Class Architecture

The proxy and state class architecture is the scheme by which the typestates are organized in

stated objects, as illustrated in Figure 5.3. A state controlled object oriented compiler would

transform the programmer defined stated class, e.g. File in Figure 5.1, to the “proxy and

state class” code as in Figure 5.2.

An alias table and symbol table are used as supporting components within the proxy and state

class architecture for stated objects to achieve the desired typestate checking. The alias table

is defined in Section 5.14. The use of the symbol table is mentioned in Section 5.14 and 5.16.

Figure 5.3 sketches the stated object of the File class of Figure 5.2 that gives an idea of

how a stated object is organized in memory by the SCOOP language. In Figure 5.4, we

demonstrate an expanded sketch of the same object of the File class with the supporting

components of our proxy and state class architecture, i.e. the typestate entry in the symbol

table, the alias table for the object of the File class while in openfile typestate and the

invariant table with an entry of typestate invariant for the openfile typestate. The ‘g’ and ‘h’

are the aliases of ‘f’. The invariant table, in Section 6.5, is also a relevant component but it is

not used directly for typestate checking. The stated type system, in Section 5.4, performs

typestate checking with the help of these components as demonstrated in Figure 5.4.

For each typestate of the programmer-defined stated class, a state class is generated as an

inner class inside the transformed stated class. Objects of inner state classes, i.e. typestate

objects, are created inside the transformed stated class. The typestate objects are referred to

by the instance references, e.g. of and cf, of the transformed stated class. An additional

‘trans()’ function is generated to implement typestate transitions. The transformed stated

class serves as a proxy for the state classes and typestate objects.

59

Figure 5.3 Proxy and State Architecture of File Stated Object

Figure 5.1 illustrates a File stated class from the perspective of a programmer. The File

stated object has two typestates: closefile and openfile. Any typestate can be extended. For

example, eof is an extension of the openfile state, as in the following snippet of Figure 5.1.

[eof]:[openfile]{ }

Extended typestates, e.g. eof, are called state subclasses and are represented by a subclass of

the parent state class in the transformed code, as in Figure 5.2. Inheritance of an object, e.g.

File, is the same as in conventional OOP. A specialized File, e.g. ImageFile or TextFile, can

seamlessly extend the File class as in conventional OOP. Therefore, the extension of a

typestate to its specialized typestate and the extension of an object to its specialized child

object are not in conflict. Typestate extension is illustrated in Section 6.6 and 6.7.

In order to achieve typestate checking in a language with aliasing, our proposed architecture

resolves the following challenges.

 A typestate transition of a stated object either via the stated object referent or via any of

its aliases should be detected statically to prevent any illegal invocation of a field of the

stated object.

60

 All aliases of a stated object should be statically aware of the current possible set of

typestates of the stated object preventing any illegal method invocation or field reference.

The strength of our architecture is that it resolves these two above-mentioned challenges

without requiring a programmer to learn new annotations to address these issues. The

components and features which work together to achieve the desired objectives of our

architecture are presented in the following sections.

Figure 5.4 A Sketch of Proxy and State Class Architecture for a File Stated Object in

the openfile Typestate with Alias Table, Symbol Table and Invariant Table

61

5.11 Creating Stated Objects

For creating an instance of a stated object, SCOOP provides an overloaded new operator to

instantiate a stated object. The overloaded new operator has the following characteristics,

illustrated with reference to the code in Figure 5.2.

 The overloaded new operator instantiates a stated object, e.g. f, such that the inner

typestate objects, e.g. of or cf, of its nested state classes will be compatible with f (just

as subclass objects are compatible and can be assigned to super class references).

 When a stated object f of a type, e.g. File, is created then it can be coerced to any of its

state classes, e.g. openfile or closefile. Even if it is coerced and points to any of

its typestate objects, the fields of the original instance of File are accessible by f.

Stated Objects in Memory

As we have mentioned, a transformed stated object has two major components i.e. the proxy

class and the state class. Each state class will keep a reference to its proxy class. If a stated

object is in a particular typestate then it means that the stated object reference is assigned the

instance of that particular ‘state class’. A state transition of a stated object from its current

typestate to another typestate requires that the current ‘state class’ instance in the stated

object reference be replaced by another “state class” instance. In order to replace the current

“state class” instance with another “state class” instance, we require that each “state class”

should hold the reference of its proxy class instance. This is because only the proxy class

instance knows the references of all its state class instances.

5.12 Functional Interface of a Stated Object

Associating the output typestate (post condition) with the functional interface of the object is

at the core of SCOOP’s objective to achieve static typestate checking. As in Figure 5.1, each

function declaration has associated square brackets [] to define its output typestate as below:

62

public void close()[closefile]{...this.trans (closefile);..}

The associated output typestate of a method enforces that the object must transition to its

associated output typestate when the function returns. Furthermore, the stated type system

statically coerces the current typestate of the receiver of close() to the output typestate,

i.e. closefile, when the invocation statement of close() occurs. However, such

coercion is only possible if there is only one possible output typestate of a function. The

reasoning for associating output typestate with the stated object reference is given in Section

5.17.1.

It should be noted that the functions of a class can be enclosed in any of the typestates of the

object. The typestate encapsulating a function represents that the function belongs to that

particular typestate only. This implies that the encapsulating typestate is the precondition for

that function, i.e. the function is only available if the stated object is in that particular

typestate. Different functions which have the same name, return type and arguments may

coexist in different typestates leading to typestate based polymorphism. A data member or a

method of an object can also be explicitly defined as available in more than one typestate,

e.g. the step() method of the iterator example in Section 6.4.1. If a field is not

encapsulated in any typestate or there is no precondition typestate associated with a field,

then that field is available to the stated object instance irrespective of any typestate.

5.13 Typestate Coercion

The “Proxy-State Compatibility” characteristic, mentioned in Section 5.9, allows the

assignment of “typestate objects” into the reference of the proxy stated object. This is how

our architecture implements state transitions of stated objects. As in Figure 5.2, at any point

in time, one of the typestate objects, e.g. of or cf, must be assigned to the reference of the

stated object, e.g. f. If f is assigned of, i.e. f=of, then this implies that f is transitioned to

the openfile typestate. The stated type system, before assigning of to f, statically coerces (or

casts) f from its current typestate to the openfile typestate. Similarly, if f is assigned cf, i.e.

f=cf, this implies that f is transitioned to the closefile typestate. Therefore, the stated type

63

system, before assigning cf to f, statically coerces f from its current typestate, openfile to

the other typestate, closefile.

From an implementation viewpoint, typestates, e.g. openfile or closefile, are actually

represented by “state classes”. The current typestate of an object is kept at a single location,

i.e. at a symbol table entry for the original reference of the object. Therefore, the static

typestate coercion of f actually inserts the name of either of the “state classes” in the symbol

table entry corresponding to f. When an object f of a class, e.g. File, is created, it can be

coerced to any of its state classes, e.g. openfile or closefile. Even if it is coerced, the common

fields of the original instance of File are accessible through the object instances of the state

classes.

5.14 The Alias Table

There may be many aliases of an object’s original referent. Similar to a symbol table, the

stated type system statically maintains an alias table as a repository for all of the aliases of

the original referent of each object. There is a single alias table for each stated object. The

current typestate of an object is kept at a single location only, i.e. at a symbol table entry of

the original reference of the object. All aliases and the original referent of the stated object

recognize their current typestate through that single location. All aliases of an object in the

alias table point to the symbol table entry of their original object reference to read their

current typestate. We need to maintain an alias table as well as a single location in the

symbol table to hold the current typestate of the object, so that whenever a stated object

changes its typestate, the typestate transition is updated to that one single location and

reflected to all of the aliases. Updating a typestate transition to all the aliases of a stated

object statically prevents any illegal field invocation of the stated object by any of its aliases.

An operation on a stated object may cause the transition of the object in either of the many

possible output typestates. In that case, one possible current typestate cannot be determined

statically and cannot be assigned to that symbol table entry statically. Therefore, the symbol

64

table entry for holding the current typestate is instead assigned a set of possible current

typestates. The actual current typestate of the object taken from the set of possible current

typestates is determined at run time, i.e. when the object actually transitions to a typestate at

run time. We have introduced the implementation of typestate transitions with the help of

typestate coercion and proxy-state compatibility.

5.15 Tracking Aliases

The SCOOP language would perform an “automated alias analysis” during the parsing of the

whole program. Therefore, this alias analysis performs whole program analysis. All aliases of

each object are detected while parsing the program as described below.

Keeping track of the aliases of a stated object requires checking of:

 the assignment operator (=)

 parameter passing to method calls

While parsing the source code, upon any occurrence of the assignment operator (=) for a

stated object, the stated type system, in addition to the usual type checking of the LHS and

RHS of the assignment operator, also performs the following operations:

1. Store Aliases: If the RHS of the assignment operator is a stated object reference and the

LHS is the intended alias of the RHS, then the LHS is added to the alias table.

2. Typestate Casting: The pointer of newly inserted LHS alias would be set to the typestate

entry of the original object reference in the symbol table.

65

5.16 Static Typestate Tracking

The term “static typestate tracking” represents the mechanism for the previously discussed

stated type system. This statically keeps the typestate of objects and their aliases updated in

the symbol table with the help of typestate coercion. The coercion operation is completely

defined in Section 5.13.

Below we discuss a few code segments with reference to the program in Figure 5.1.

Upon any occurrence of the trans() function within each static lexical scope, e.g. an if-

else lexical scope or a for-loop lexical scope, the stated type system performs the following

operations statically:

 The typestate of the receiver of the trans() function is coerced (casted) into the

typestate to which transition is intended.

 The typestate of all aliases of the receiver of the trans() function is coerced (casted)

into the typestate to which the transition is intended.

Methods can transition the typestate of the receiver object upon their return. It is important

that such methods specify their output typestate, so that the typestate of the receiver can be

appropriately coerced. Let us consider the following code snippet:

public void close()[closefile]{..this.trans (closefile);..}

When the invocation statement of close() occurs, e.g. f.close(), the stated type

system statically coerces the current typestate of the receiver of close() to the closefile

typestate. This coercion is implemented by updating the typestate entry in the symbol table.

The significance of associating the output typestate with each method signature is illustrated

in Section 5.17.1.

66

5.17 Typestate Checking

If the current typestate of an object is known, then the accessible fields of the stated object

can be determined. Therefore, checking the current typestate of an object is crucial to

SCOOP. The current typestate of an object can be determined at compile time i.e. statically.

However, the prerequisite of static typestate checking is that every method must describe

only one possible output typestate (post condition) of its receiver. As long as this prerequisite

is met, our technique completely resolves static typestate checking in the presence of aliasing

without requiring any additional annotations.

Many practical situations require methods for allowing more than one possible output

typestate (post condition). For example, the step() method of our iterator object HIter,

in Section 6.4, has two possible output typestates, traversal and end. In this case, the exact

current typestate of the object cannot be determined statically when such a method would

have returned. If the exact current typestate of the object cannot be determined statically then

we have to rely on dynamic typestate checking. However, dynamic typestate analysis is able

to exploit the information, i.e. a set of possible typestates, already deduced by static typestate

analysis.

5.17.1 Static Typestate Checking

Static typestate checking is challenging, especially in the presence of aliasing. However, with

the help of our proposed architecture, given in Section 5.10, our stated type system

accomplishes typestate checking statically without requiring any extra annotation as in [18,

24]. With the help of static typestate tracking, mentioned above, each stated object and

aliases statically knows its current typestate. Since a stated object knows its current and

updated typestate, the stated type system can statically compute all available fields (data

members and methods) of the current typestate of the object. Now, let us consider the

following snippet from the client-side code of Figure 5.1.

67

f.close();

f.name=“file2”;

prinf(f.name);

f.close();

The second call to close() method is invalid because the first occurrence of f.close()

has statically coerced f to the closefile typestate. A file already in closefile typestate cannot

be closed again. Therefore, static typestate checking would statically prompt the error as

below:

“close() not found in the current typestate closefile of f”.

 Such an error can be statically detected if the following two conditions are met:

 The current typestate of the object is statically known at any point in time.

 The available fields of the object, depending upon its current typestate, can be computed

statically.

In our setting the first condition is met by “static typestate tracking”. When the first call of

f.close() occurs, the typestate of f is statically coerced to closefile by the “static

typestate tracking” mechanism of the stated type system. The stated type system can perform

such a coercion only because it knows from the signature of close() that the output state

of close() is closefile. It is, therefore, necessary for each method to specify its output state

for the appropriate typestate coercion of the receiver.

The second condition is met easily. Upon the second occurrence of f.close(), the current

typestate of f, i.e. closefile, is statically known. Therefore, the available fields of the current

closefile typestate can be computed from its state class, i.e. closefile, and it can be

determined that the method close() is not available in the closefile state class. This

second condition is met so conveniently due to our natural representation of typestate as a

distinct state class. Let us consider another code snippet:.

68

void m(File f, File g){ f.close();print(g.file_desc); }

The field file_desc of a File object points to a low level resource only when the file is in

openfile typestate. Due to possible aliasing, f and g may refer to the same object. In this case

the method signature and body are still well typed due to our technique for handling aliases.

Upon the occurrence of f.close(), the stated type system would coerce the typestate of f

to closefile. This coerced typestate will also be reflected in all of its aliases, including g.

Since the typestate of g is statically known to be closefile and in the closefile typestate the

statement g.file_desc is invalid, the field file_desc is not available in the closefile

typestate. Therefore, the stated type system would statically prompt the error as below:

“The field file_desc does not belong to the current typestate closefile of g”.

In order to illustrate the generality of our proposed typestate checking technique, we take

another example of a simple iterator client from [22] as below:

Collection c=new…. //legal

Iterator it=c.iterator(); //legal

if(it.hasNext() && c.size() == 3) { //legal

 c.remove(it.next()); // legal

if(it.hasNext()) //ILLEGAL

}

Figure 5.5 A Simple Iterator Client

This sample code is modified from the sample code in [22] for simplicity, but illustrates the

same intentionally seeded illegal invocation of a function. We show that our proposed

technique can smoothly detect this illegal invocation statically without requiring the

programmer to write any complex annotations as in [22]. In this example code, the object it

of the iterator class iterates over the Collection c. This code presents an interesting

scenario in which the iterator iterates to its next data member, and stays (points) at that

data member, but that data member is deleted by Collection c at which the iterator is

69

located. Since the current data member has been deleted, calling the it.hasNext()

function on the deleted (or null) data member is an invalid function invocation. In [22], an

elegant but complex technique is presented to statically catch this invalid invocation.

However, our technique is very simple and does not require the programmer to write any

extra annotation. With the global analysis of our stated type system, as soon as the

it.next() data member is passed on as an argument to the c.remove() function, the

stated type system detects that the parameter n in the signature of c.remove(Node n) is

an alias of it.next(). As soon as c.remove(Node n) deletes its received parameter n

from c, the stated type system detects that the typestate of this alias n is transitioned to the

null typestate. Therefore, the typestate of the original argument it.next() is also

transitioned to the null typestate because all aliases of an object share the same typestate. In

the subsequent statement, it.hasNext() is invoked and the stated type system knows

statically that the data member to which it.hasNext() points has transitioned to the

null typestate. A data member in its null typestate cannot access any of its methods or

attributes, therefore, it is statically detected.

5.17.2 Dynamic Typestate Checking

The typestate analysis problem requires detecting the current typestate of a stated object at

any location of the program either statically or dynamically. In other words, it requires

finding what typestate the object has reached at any location of the program. The typestate

analysis problem is undecidable statically. There are many practical scenarios in which the

typestate of a stated object cannot be detected at compile time. This is because we may never

know until run time what the output typestate will be when an invoked method returns.

Therefore, violations of invoking a typestate dependent field cannot be determined unless the

object has actually transitioned to a particular typestate at run time. Let us consider the code

snippet below:

70

File f=new File();

f.open();

f.read();

f.read();

Intuitively the first call to read() can either transition f to the eof typestate or keep it in the

same openfile typestate because there are two possible output typestates for read().

Therefore, only at run time, i.e. via dynamic typestate checking, can it be determined whether

the second call of read() is a valid call or not. This is because the read() method is not

available if f has transitioned to eof typestate as a result of first call to read(). Since, the

read() method has two possible output typestates, our static typestate tracking mechanism

cannot coerce f into any one possible typestate so the static typestate check is not very

helpful. In such cases, the compiler can generate runtime assertions to find the actual

typestate of f at run time and coerce f accordingly. The “proxy and state class” architecture

would still work seamlessly at run time and with the help of dynamic typestate coercion, the

available fields of the current typestate of f can be detected.

In this example, the current typestate of f cannot be statically determined when the first call

of f.read() returns because the method f.read() has more than one output typestate.

The second call to f.read() may be invalid if the first call to f.read() has transitioned

f to the eof typestate. In such cases, if the second call to f.read() is invalid then an

exception would be raised at run time. If the programmer has not handled the exception in

the code then the program will crash at run time. However a SCOOP compiler can statically

detect that the second call of f.read() may be invalid because of the first call that

transitions f to the eof typestate. Therefore, upon such a detection, the SCOOP compiler can

statically check whether the programmer has enclosed the second call of f.read() inside

the proper exception handling scope. If the compiler discovers that the second call to

f.read() is not enclosed in exception handling code, then the SCOOP compiler would

generate a warning statically for the programmer to enclose the second call of f.read()

within appropriate exception handling scope. Such a warning generated by the SCOOP

compiler will make a significant impact on avoiding unexpected program crashes due to

71

inconsistent typestates. This is our contribution as no previous study has attempted to avoid

such typestate inconsistencies by generating these warnings statically.

5.18 Conclusion

To the best of our knowledge, the presented static and dynamic typestate checking techniques

are the only techniques presented so far that include both of the following:

 Defines the implementation architecture, i.e. given in Section 5.10, for typestate

checking.

 Works in the presence of aliasing and does not require a programmer to learn and use any

additional annotations.

We claim that our proposed technique allows effective software testing through user friendly

typestate checking.

72

Chapter 6

6 The Typestate Invariant

6.1 Introduction

In state controlled object oriented programming, the explicit external typestates of an object

are declared in the object definition. The binding rule associated with each typestate is

verified by the stated type system. In this chapter we introduce how the stated type system

would implement the validation of the typestate binding rule. We represent the set of

explicitly declared typestates of a stated object as TO.

“TO” is the set of typestates associated to an object O.

The SCOOP language recognizes the attributes and the values of the attributes that represent

the internal typestate of that object. These attributes along with their defined values are

referred to as the typestate invariant. The external typestate and its corresponding typestate

invariants are bound with each other in the object definition. This binding is defined via an

invariant binding rule (state predicate).

For instance, the openfile typestate of a File object can be bound with the file_path

attribute of f by having a binding rule such that if f is in the openfile typestate then the

file_path attribute should hold a valid memory address of an opened file, i.e. it cannot be

null. Therefore, the typestate invariant rule for the openfile typestate can be represented as

below.

file_path !=null

The typestate and its invariant are bound as illustrated in the snippet below from Figure 5.2.

73

 [statebinding{ openfile : (file_path !=null) }]

The stated type system validates at any point in time whether each of the external typestates

of the object complies with the binding rule that binds the typestate invariant with its external

typestate. A modification in the value of a bound typestate invariant would also be verified

by the stated type system to check whether the modified value complies with its binding rule.

In case there is a violation of a binding rule of the current typestate, either the object would

be forced to transition to another typestate that complies with the binding rule, or the object

would be transitioned to an undefined typestate as mentioned in Section 5.5. It should be

noted that the undefined typestate is a default typestate available for each stated object.

We argue that the typestate and the typestate invariant are associated with the stated object

instance instead of the stated class. Therefore, the typestate and typestate invariant are not

captured with respect to the subclass hierarchy.

6.2 Motivation

An explicitly defined external typestate of an object that is bound with its internal typestate

data (typestate invariant) allows simpler and easier programming for the user of the stated

object because the stated object itself ensures that the external typestate and internal typestate

representing data are synchronized.

The advantage of a typestate invariant is that the programmer does not need to know the

complex internal invariant binding rule to realize the current typestate of the object. The user

of a stated object can simply access the external typestate, i.e. a single piece of information,

to find the current typestate rather than bothering with the complex rules concerning the

typestate invariant to realize the current typestate of the object.

74

Binding external typestate with the internal typestate invariants provides better information

hiding. An internal typestate invariant does not need to be exposed outside the object, and the

user of the object can realize the internal typestate invariants through the external typestates.

For instance, the fullcharged external typestate of a printer stated object may abstract over

typestate invariants such as ‘cartridge ink level’ and ‘cartridge last replaced’. The values of

each of these typestate invariants may collectively or individually cause the printer typestate

to transition from the fullcharged to the halfcharged typestate in the case that either

‘cartridge ink level’ goes below 50% or ‘cartridge last replaced’ exceeds 20 days. Such a

transition of state may also depend on some correlation between the internal typestate

invariants (although this is beyond our present scope). The user of the printer object does not

need to know the internal typestate representation, e.g. whether the ‘cartridge ink level’ goes

below 50% or ‘cartridge last replaced’ exceeds 20 days, in order to realize the current

typestate of the printer stated object. Therefore, to determine the current typestate of an

object, the user of the stated object can write a simpler piece of code, as shown below:

if printer.curr_state == printer.fullcharged then

rather than writing the following piece of code:

if(printer.cartridge_ink_level>50AND

 printer.cartridge_last replaced>20) then

SCOOP-supported typestate invariants imply that the compiler provides the memento design

pattern by default, and the programmer does not need to bother with writing code to extract,

save, and restore the state specific data in order to preserve the state of an object as illustrated

in Section 6.8

75

6.3 Implementation of a Typestate Invariant

In the literature, the notion of a typestate invariant has already been studied. In this chapter,

we study how to implement typestate invariants.

In order to implement typestate tracking and invariant binding, we propose the use of an

invariant table. The invariant table serves as the architecture for maintaining and tracking

typestate invariants. In Section 6.5, we explain how typestate invariants are maintained with

the help of an invariant table. The proposed use of the invariant table also supports typestate

extension and subclassing simultaneously.

6.4 Binding Typestate with a Typestate Invariant

The binding of an object’s external typestate with its typestate invariants is defined by our

proposed state binding construct as illustrated in Section 6.1

We refer to the state predicate concept of [20] as the binding rule and introduce our

[statebinding] keyword to declare a binding rule. The binding rule can optionally be

used by the programmer to bind the values of the object’s typestate invariant with its

typestate.

Our [statebinding] keyword enforces that the current external typestate should be

compliant with its binding rule at every point in time.

For any method that changes the typestate of an object, the stated type system verifies that

the typestate invariant binding rule holds for the post condition typestate when that method

returns. This verification performed by the stated type system also applies to the overridden

method in a subclass. Therefore, the type system also ensures that overridden methods in the

subclass leave the object according to the post condition typestate of the method.

76

6.4.1 Iterator Example

An iterator is a programming construct that performs custom iteration over a data structure.

During an iteration, the iterator object switches between different states that can be suitably

modeled by a stated object. We take an object based iterator example from [6] and present it

using our proposed state controlled syntax in Figure 6.1. This example is also referred to in

Case Study 3.12.

In this example, we illustrate the typestate binding keyword as below.

[statebinding]{ initial :(j== -1 AND i < htbuckc)]

The above statement binds the instance variables, i.e. the internal representation of the

typestate, with the typestate name, i.e. the externally accessible typestate, of the iterator

object HIter, in Figure 6.1. Here, the binding keyword binds the initial external typestate

with the range of values of j, i and htbuckc.

The instance variable i represents the index of the element currently pointed by the iterator.

The value of htbuckc represents the index of the last element of the iterator. The defined

range of values is the invariant of the initial external typestate of the iterator object HIter.

Once the binding between a typestate and its typestate invariant is defined, then the typestate

transition also modifies the values of the bound typestate invariant by default as mentioned in

Section 6.4.3. Alternatively, modification of the values of the bound typestate invariant may

also force the transition of the corresponding typestate of the object as mentioned in Section

6.4.2.

77

Figure 6.1 Iterator Stated Object

The binding rule that binds a typestate with its internal typestate invariant data members, is

true as long as the iterator is in that typestate. For instance, for the traversal typestate, the

stated type system makes sure that as long as the binding rule for the traversal typestate is

true, then the step() function is accessible. For the traversal typestate, the typestate

[state{ initial , traversal , end }]
template <typename Key, typename Val>
class HIter : public Iter<Val> {
HTable<Key,Val> *ht;
HBlock<Key,Val> *blk;
int i, j;
[statebinding{initial :(j== -1 AND i < ht->buckc),
 traversal:(j==0 AND i < ht->buckc),
 end :(i== ht->buckc)}]
public:
HIter(HTable<Key,Val> *ht0) [initial]{
this.trans(initial);
ht = ht0;
i = 0;

j = -1; // ++j will gives entv[0] i.e. j is 0

while (i < ht->buckc) { //this loop find first non-empty

 blk = ht->buckv[i]; // block
blk = ht->buckv[i];
if (blk && blk->entc > 0) break;
i++;

}
this.step();

}
[initial,traversal]
void step()[traversal | end]
{
this.trans(traversal);
if (++j < blk->entc) return;

j = 0; // Try start of a block.

blk = blk->next; // Try next block in chain.
if (blk && blk->entc > 0) return;

i++; // Try next chain.
while (i < ht->buckc) {
blk = ht->buckv[i];
if (blk && blk->entc > 0) break;
i++;

}

if(i==ht->buckc) //these two statements in grey are

 this.trans('end'); //shown for brevity but are not

 // part of this code.
}
Val value() { return blk->entv[j].val; }
bool empty() { return i == ht->buckc; }

};

78

invariants are i, j and tbuckc. The traversal typestate will hold as long as the

following rule is true:

[statebinding{traversal:(j==0 AND i < htbuckc)}]

Similarly for the end typestate of the iterator, the typestate invariants (i and htbuckc)

are bound as below:

[statebinding{ end :(i== htbuckc)}]

And for the initial typestate, the typestate invariants (j, i and htbuckc) are bound

as below:

[statebinding{ initial :(j== -1 AND i < htbuckc)}]

The following statement

[statebinding{ initial :(j== -1AND i < htbuckc),

traversal :(j==0 AND i < htbuckc), end :(i== ht->buckc)}]

from Figure 6.1 collectively declares the binding of the internal typestate invariants with the

corresponding external typestates. Furthermore, it defines the range of values (binding rules)

of those internal typestate invariants for which the corresponding external typestate holds.

Once the binding is defined, it is the responsibility of the stated type system to monitor the

internal typestate invariants and their current values with the help of the invariant table

according to the typestate binding rule. The stated type system then keeps track of any non-

compliance of the binding rules and makes the typestate transition accordingly.

The two statements in grey, in Figure 6.1, are shown for brevity but are not the part of the

code. This conditional transition is deduced and internally implemented by the SCOOP

79

language due to the defined typestate invariant rule and post condition of the step()

method.

6.4.2 Typestate Invariant Based Default Transition of Typestate

To the best of our knowledge, previous studies have only considered the effect of typestate

transitions on typestate invariants. The converse, i.e. the effect of changes in typestate

invariants on typestate transitions, has not yet been studied.

While binding the typestate invariant with an external typestate, we can also define the range

of data domains for which the typestate invariant should hold under that external typestate.

This range of values of a typestate invariant serves as the internal representation for the

corresponding external typestate. As soon as the values of a bound typestate invariant go out

of the specified range, i.e. the binding rule is violated for that specific external typestate, then

the bounded external typestate is transitioned to the other external typestate according to the

current values of its invariant.

For instance, at the return of the step() function, the stated type system validates the

binding rule of the end typestate, if i == htbuckc. The grey lines of code in the

step() function show that the typestate transition conditional to the bound typestate

invariant is internally implemented by the SCOOP language. This default transition of

typestate is achieved with the help of the invariant table that is discussed in Section 6.5.

6.4.3 Typestate Transition Based Modification to Typestate
Invariant

The user of a stated object can explicitly transition the stated object from its current typestate

to another typestate. For instance, while the iterator object is in the traversal typestate, the

client-side code can invoke the following method:

80

iterator.trans(end)

The above code not only transitions the iterator object to the end typestate but also enforces

the end typestate invariants. Therefore, the stated type system sets up the end typestate

invariant, i.e. i == htbuckc, by modifying the value of i. This default modification to

the typestate invariant is recorded in the invariant table mentioned in Section 6.5.

6.5 The Invariant Table

The SCOOP compiler creates a specific hash table data structure called the “invariant table”

for each stated object. The invariant table is created along with the symbol table. One of its

main uses is to hold the bindings between typestates and their invariants. Each typestate

name of a stated object is an entry in the invariant table in the same way that each variable or

object name is an entry in the symbol table. Each row in the invariant table holds the

typestate name, its typestate invariant, its binding rule, and a flag to mark whether the

binding rule is true or false. If the flag for a specific typestate is true then that specific

typestate is the current typestate of the object. The stated type system, at any point in time,

evaluates the binding rule and sets the flag accordingly for any given typestate name entry in

the invariant table.

The invariant table always holds two default typestate names for each stated object, i.e. the

null and undefined typestates. As previously mentioned, whenever a stated object points to a

null reference then it is in the null typestate. Whenever there is no typestate binding rule that

evaluates to be true for a stated object then the object is transitioned to the undefined

typestate.

The stated type system always points to a typestate name in the invariant table corresponding

to the current typestate of a stated object. In other words, for each stated object, the stated

type system always points to that typestate entry in the invariant table which has its flag set

to true. If the binding rule of the current typestate is evaluated as false, then a recovery

operation is performed by the SCOOP compiler that either transitions the typestate of the

81

object to the typestate for which the binding rule is true in the invariant table, or transitions

the object to the default undefined typestate. The default undefined typestate is mentioned in

Section 5.5.

Table 6.1 illustrates an invariant table for the iterator stated object, given in Figure 6.1, while

it is in the traversal typestate.

Typestate Invariant Invariant rule Valid

null This this == null False

error This this ≠ null AND this.curr_tstate ∉ Titerator False

initial j,i,

htbuckc
j== -1 AND i < htbuckc False

traversal j, i,

htbuckc
j==0 AND i < htbuckc True

end j, i,

htbuckc
i== htbuckc False

Table 6.1

6.6 Typestate Extension

In this section we illustrate typestate extension with a few variations in our code fragments.

The sample code in Figure 6.2 is a SCOOP program. It includes a File class with

an openfile typestate, closefile typestate and eof as an extension of the openfile typestate.

[state(openfile,closefile,eof)]
class File{
 string name;

 [openfile]{
 public read()[openfile | eof]{..}
 }

 [eof]:[openfile]{
 …………
 }

 [closefile]{
 ………
 }
}

Figure 6.2 SCOOP File Stated Class

82

The sample code in Figure 6.3 is the SCOOP generated translation of the code given in

Figure 6.2.

class File{
 enum state {openfile, closefile,eof}
 string name;
 state curr_st;

 class openfile{ // openfile ‘state class’
 public read() [openfile | eof]{...}
 }

 class eof:openfile{…… // eof ‘state class’

 …..
 }

 class closefile{ // closefile ‘state class’
 ………….
 }
}

Figure 6.3 SCOOP-generated File Stated Class

The sample code in Figure 6.4 is a SCOOP program. It includes a File class and an

Imagefile as its subclass. The File class has an openfile typestate, a closefile

typestate and an eof typestate as an extension of the openfile typestate. The Imagefile

overrides the openfile, closefile and eof typestates of the parent class File.

83

[state(openfile,closefile,eof)]
class File{
 string name;

 [openfile]{
 public read()[openfile | eof]{...
 }
 }

 [eof]:[openfile]{
 …………
 }

 [closefile]{
 ………
 }
}

class Imagefile:File{
 ...
 [openfile]{

 }
 [closefile]{
 ...
 }
 [eof]:[openfile]{
 …………
 }

 }
}

Figure 6.4 SCOOP File and Imagefile Stated Class

The sample code in Figure 6.5 is the SCOOP generated translation of the code given in

Figure 6.4.

84

class File{
 enum state {openfile, closefile, eof}
 string name;
 state curr_st;

 class openfile{ //openfile ‘state class’

 public read() [openfile | eof]{...
 }
 }

 class eof:openfile{…… // eof ‘state class’

 …..
 }

 class closefile{ //closefile ‘state class’
 ………….
 }
}
class Imagefile:File{
 enum state {openfile, closefile, eof}

 class openfile{ //openfile ‘state class’
 public read() [openfile | eof]{...
 }
 }

 class eof:openfile{…… // eof ‘state class’

 …..
 }

 class closefile{ // closefile ‘state class’
 ………….
 }
}

Figure 6.5 SCOOP-generated File and Imagefile Stated Class

The sample code in Figure 6.6 is a SCOOP program. It includes a File class and an

Imagefile as its subclass. The File class has the openfile and closefile typestates. The

programmer in the Imagefile subclass overrides the openfile typestate and then extends

the openfile typestate by the eof typestate.

85

[state(openfile,closefile,eof)]
class File{
 string name;

 [openfile]{
 public read()[openfile]{...
 }
 }

 [closefile]{
 ………
 }
}
class Imagefile:File{
 ...

 [openfile]{

 }
 [closefile]{
 ...
 }
 [eof]:[openfile]{
 …………
 }

 }
}

Figure 6.6 SCOOP File and Imagefile Stated Class With Typestate Extension

The sample code in Figure 6.7 is the SCOOP generated translation of the code given in

Figure 6.6.

86

class File{
 enum state {openfile, closefile, eof}
 string name;
 state curr_st;

 class openfile{ // openfile ‘state class’

 public read() [openfile | eof]{...
 }
 }

 class closefile{ // closefile ‘state class’
 ………….
 }
}

class Imagefile:File{
 enum state {openfile, closefile, eof}
 class openfile{ // openfile ‘state class’

 public read() [openfile | eof]{...
 }
 }

 class eof:openfile{…… // eof ‘state class’

 …..
 }

 class closefile{ // closefile ‘state class’
 ………….
 }
}

Figure 6.7 SCOOP-generated File and Imagefile Stated Class With Typestate

Extension

6.7 Typestate Invariants With Typestate Extension and
Subclassing

As mentioned, SCOOP supports “typestate” as a third kind of field for an object. In Figure

6.8, we illustrate a File stated object definition and ImageFile as its subclass definition.

TFile ={ openfile, closefile, eof }

and, TImageFile ={ openfile, closefile, eof }

In our setting, each typestate of an object is always public for the object instance. The

typestates of the superclass are inherited by the subclass so that the subclass knows the

87

typestates of its superclass. However, in order to make the typestates of the superclass part of

the subclass interface, the typestates of the superclass need to be explicitly declared

(overridden) in the subclass so that the overridden typestates are accessible to the object

instance of the subclass along with any new typestates of the subclass. A subclass can choose

to override as many typestates of its superclass as it needs to. Figure 7.1 illustrates a typestate

structure. The complete typestate structure from the superclass can also be optionally

overridden in the subclass. Moreover, the subclass allows for overriding of the typestate

invariant for the overridden typestate with a new binding as illustrated in Figure 6.8. For

instance, for a File superclass, there is a field file_path and the typestate invariant rule

for openfile typestate of File can be coded as below:

file_path!=null

The Imagefile subclass has an attribute image. The instance of the Imagefile

subclass reads an image from the location file_path and loads it in its image attribute.

Therefore, the Imagefile subclass can override the binding rule for its openfile typestate

that formulates the overall binding rule as shown below:

file_path != null AND image!=null

88

Figure 6.8 Typestate Extension With Subclassing

[state(openfile,closefile=start,eof)]

class File{ //beginning of File class

 string name; //this field is accessible in every states
 string file_path;
 [statebinding{ openfile :(file_path !=null) }]

 public sharedmethod(){} //this method is accessible in every typestates

 [openfile]{
 public string file_desc;
 public read()[openfile | eof]{...}
 public display()[openfile]{
 print(“original openfile state display”);..}
 public close()[closefile]{..
 this.trans (closefile);...

 }
 }
 [closefile]{
 public open(string file_path_arg)[openfile]{...
 this.trans(openfile);...
 }
 }
 [eof]:[openfile]{ ...
 }

} //end of File class

[state(openfile,closefile=start,eof)]
class Imagefile:File{
 [statebinding{ openfile:(base.file_path !=null AND
 this.image != null)}]
 [openfile]{
 string image;
 public override read()[openfile]{
 }
 public override display()[openfile]{..
 print(“image of openfile state”);..
 }
 public override close()[closefile]{..
 this.trans (closefile); ...
 }
 }
 [closefile]{
 public open(string file_path_arg)[openfile]{...
 this.trans(openfile);...
 }
 }
}

class cls_main{
 static void main(){
 Imagefile imfl = new Imagefile();
 Imfl.open(“d:\imfl.bmp”);
 }
}

89

SCOOP allows the typestate extension of the openfile typestate to the eof typestate and the

inheritance of File to ImageFile along with the overriding of the binding rule in the

ImageFile subclass, which can be composed in a single program, as illustrated in Figure

6.2. Table 6.2 shows a partial illustration of the invariant table for the File stated object

while it is in the openfile typestate.

Table 6.2. Partial Invariant Table of File Stated Object

Table 6.3 shows a partial illustration of the invariant table for the ImageFile stated object

while it is in the openfile typestate.

Typestate Invariant Invariant rule Valid

openfile base.file_path,

this.image

base.file_path !=null AND

this.image!= null

True

Table 6.3. Partial Invariant Table of ImageFile Stated Object

Each stated object instance has only one invariant table regardless of the fact that the stated

object instance is an instance of a subclass or superclass. In [20], Manuel Fähndrich proposes

that each subclass instance should keep a separate frame for each of its superclasses. This can

become cumbersome.

6.8 State Preservation

Since SCOOP inherently captures the state of a stated object, it can preserve the state data by

default. Case Study 3.11 illustrates the capability of the SCOOP language to provide the

memento design pattern by default to preserve the state of an object.

Typestate Invariant Invariant rule Valid

openfile file_path file_path != null True

90

6.8.1 Memento Design Pattern

In conventional OOP, the memento design pattern [44] is a behavioral design pattern that

extracts the state (data members) of an object outside that object, holds the state of the object

and then restores the held state back to the same object. The ‘originator’ is the object whose

state is extracted and saved outside of it. The object that temporarily stores the state of the

originator object is called the ‘memento’ object, and the ‘caretaker’ is another object that

holds the ‘memento’ object. In addition to these objects (memento and caretaker), the

programmer needs to write two additional functions in the originator object definition. One

of those functions returns the original state so that the original state of the object can be

saved outside of the object. Another function simply receives the originally saved state so

that it can be restored. The memento design pattern is implemented using these additional

objects and functions. Note that in the context of conventional OOP, the term “state” means

the data members of the object.

Figure 6.9 Memento Design Pattern

6.8.2 Memento by SCOOP

As an implication of the use of the invariant table, SCOOP provides the memento design

pattern by default. In order to take advantage of memento functionality, the programmer

neither needs to write any additional functions to extract and restore state nor code any

additional memento or caretaker classes (in contrast to conventional OOP). Therefore, in

comparison to conventional object oriented programming, SCOOP reduces the burden on the

91

programmer of writing additional code. SCOOP can provide such built-in functionality due

to the following characteristics:

 Each typestate is a first class language concept.

 Each external typestate and its associated typestate invariant data have already been

defined in the object definition.

 Typestate invariant data members are already recorded separately in the invariant table.

A user of a stated object within client-side code can therefore extract the internal state

because the SCOOP compiler already knows the data members particular to a typestate of the

stated object. Furthermore, in SCOOP, we can define an object of a “typestate” that serves as

an equivalent to the memento object of conventional OOP. In Figure 7.1, we present the

openfile typestate structure. Internally, SCOOP implements each typestate structure as a

“state class” that allows the declaration and creation of an object instance of a typestate

structure.

We illustrate the memento design pattern with the SCOOP language with reference to the

ImageFile example given in Figure 6.8. The client-side SCOOP code snippet below

creates an object im_fl that serves as an equivalent to the memento object of the memento

design pattern in conventional OOP.

Imagefile:[openfile] im_fl_saved = new Imagefile:[openfile];

The above client-side code snippet creates an object of the openfile typestate which is valid

in our proposed SCOOP language because, internal to the language, each typestate is

represented by a distinct “state class”.

The code snippet below extracts the openfile typestate of the object.

im_fl_saved = imfl.openfile;

92

The above statement copies the openfile typestate data members to the im_fl_saved

object. The code snippet below closes the already opened file, opens another file, and loads

its image.

imfl.close();

imfl.open(“d:\imfl1.bmp”);

Now the imfl contains the image of the newly opened ImageFile.

The code snippet below restores the original state of the image from the im_fl_saved

object.

imfl.openfile = im_fl_saved;

6.9 Conclusion

In this chapter, we investigate how typestate invariants can be used to specify the properties

of an object. Typestate invariants allow the synchronization of the internal and external

typestates of an object. A modification in the value of the bound internal typestate invariants

is verified by the stated type system when the object changes its typestate and vice versa. The

implementation mechanism for typestate invariants presented in this chapter is compatible

with subtyping and typestate extension simultaneously. Our technique also provides a default

memento pattern from the language.

93

Chapter 7

7 Typestate Based Dynamic Compositional Adaptation

The direct support of dynamic behavior by a programming language is called “dynamic

compositional adaptation” [41]. Context-oriented programming [37] and aspect-oriented

programming [59] have been exploited for dynamic behavior adaptation in autonomic

computing [33]. We propose that dynamic compositional adaptation can be realized by the

dynamic replacement of partial behaviors of software objects, where the behavior specific to

a given state or typestate of an object is replaced at run time. Meaning, a specific typestate

structure of an object is replaced with a new typestate structure at run time. Such dynamic

composition is referred to as typestate-based dynamic compositional adaptation. In this

chapter, we investigate typestate-based dynamic compositional adaptation using SCOOP. We

also present algorithms, in Section 7.4, to replace the typestate specific part of a software

object.

7.1 Introduction

Dynamic Software Update (DSU) [51] is a desired feature in some contexts of software

engineering. In the context of autonomic computing [33, 34], DSU is referred to as dynamic

behavior adaptation [35, 40] and it is one of the well-stated requirements of autonomic

computing. DSU requires software to adapt new functional or nonfunctional features at run

time, i.e. to update the code without restarting or recompiling the software. The dynamic

adaptation of the software assists in the self-configuration, self-healing, self-management,

self-optimization and self-protection requirements of autonomic computing.

We propose dynamic compositional adaptation by dynamically replacing typestates of

objects. A stated object allows some of its methods (behaviors) to be accessible regardless of

94

its current typestate, but some methods (behaviors) are particular to a specific typestate and

are accessible only if the object is currently in that typestate. The set of methods (behavior)

particular to the typestate of an object represents a partial behavior of that object. Therefore,

the complete behavior of a stated object is distributed among many partial behaviors. SCOOP

allows dynamic replacement of partial behaviors such that only typestate specific partial

behavior of an object is replaced, rather than replacing the entire object. Typestate-based

compositional adaptation of objects is desirable in many software applications, as mentioned

in [41, 43]. We believe that typestate-based dynamic compositional adaptation benefits

mostly the self-healing and self-configuration aspects of autonomic computing.

The implementation of typestate replacement depends mainly on the internal architecture of

the objects. In our setting, the organization of typestates in stated objects is based on our

architecture, which is explained in Section 5.10. We argue that our proposed ‘proxy and state

class’ architecture allows typestate swapping at run time as easily as it would be performed

by the algorithms presented in Section 7.4.

7.2 Typestate as Context

Context-aware adaptation is also one of the desired and well-studied functionalities of

software [50]. We argue that a specific typestate of an object, say ‘O’, can be viewed as the

context for other objects that interact with the object ‘O’. A transition of a typestate of object

‘O’ reflects a change in context for the other objects. Therefore, our proposed typestate-based

dynamic compositional adaptation serves the purpose of context-aware adaptation.

There are many programming scenarios that require software to be able to adapt to a varying

context. Such a scenario can typically occur in dynamic wireless network conditions, TCP

network congestion, fault tolerant components, air traffic control and life-support systems

where the cost and safety of application restart can be prohibitive. Typestate-based dynamic

compositional adaptation overcomes the cost of application restarts whenever typestate-

associated behavior adaptation or context-associated behavior adaptation is desired.

95

Built-in support for typestate-based dynamic adaptation of software objects according to their

changing context allows for easier means to achieve dynamic adaptation. Let us consider a

simple cryptography scenario for a computer network. A ‘message’ is sent over a network

through a bus in its encrypted state. As long as the ‘message’ is passing across the network, it

is supposed to be in the encrypted state. However, as soon as the ‘message’ is received at the

terminal, its environment or context has changed from bus to terminal and requires the

‘message’ to transition to its decrypted state. The functional or behavioral aspect of the

decryption of a ‘message’ may need to adapt depending on the terminal where it is received.

Our proposed stated object not only has the built-in capability to transition to its decrypted

typestate, but it can also adapt to a new decryption functionality according to the kind of

terminal where it is received.

7.3 Typestate as a First Class Language Concept

In Figure 7.1, we illustrate the typestate structure from Figure 6.8. As already mentioned, we

propose that in addition to the object, the object’s typestate is also a first class language

concept in SCOOP. Therefore, typestate structure can be passed to a function as a parameter,

it can be received as a function argument and it can also be returned from a function. This

implies that a stated object can dynamically replace its existing typestate (i.e. typestate

structure) with an entirely new typestate structure. However, the new typestate structure must

be compatible with the previous “typestate object” that adapts to it. The new typestate

structure is assumed to be compatible with the previous one if it retains the same interface as

that of the previous one. This compatibility is required so that all interdependent objects keep

working as before.

For instance, suppose we are creating an image application. An imagefile object, as in

Figure 6.8, may need to read an image from a device, e.g. a scanner or a camera. The

programmer writes the read() function of the openfile typestate of the ImageFile

96

object, which can read the image from these devices that were known at the time of

compiling the ImageFile object. After the ImageFile has been compiled and executed,

a new device is connected to the system. The read() mechanism to read an image from the

newly connected device is different from the read() mechanism with which the

ImageFile was initially compiled. Therefore, an ImageFile object may need to

dynamically adapt a new read() method so that it can read an image from a newly

connected device that was unknown at compile time. In particular, the ImageFile object

needs to dynamically adapt the new read() method without recompiling. We propose that

a separately compiled new read() method replaces the earlier read() method of the

ImageFile object. Since read() is a behavior particular to the openfile typestate of the

ImageFile object, it is very likely that the related data, or any other function of the

openfile typestate also need to adapt with the newly replaced read() method. Therefore,

the behavior that is associated with only the openfile typestate of the ImageFile needs to

be dynamically replaced or adapted. The programmer-defined “typestate structure” of the

openfile typestate of the ImageFile taken from Figure 6.8, which is intended to be

replaced, is shown in Figure 7.1.

[openfile]{
 string image;
 public override read()[openfile] {}
 public override display()[openfile]{
 print(“image of openfile state”);
 }
 public override close()[closefile]{..this.trans (closefile);..}

}

Figure 7.1 Openfile Typestate Structure

In SCOOP, each typestate structure defined by the programmer is translated to a specific

kind of state class that is hidden from the programmer. The instances of each state class are

called typestate objects.

97

7.4 Architecture

We propose that at run time a stated object allows the replacement of the partial behavior

associated with any of its typestates other than its current typestate. Replacing the typestate

associated behavior will depend mainly on the architecture with which the typestate is

organized inside the stated object.

As we propose, a stated object internally implements each of its typestate structures as a

distinct and lightweight “typestate object”. This lightweight “typestate object”, shown in

Figure 5.2, is hidden from the programmer.

We need to maintain typestate associated behavior in typestate objects, so that the stated

object that encapsulates all typestate objects does not become cumbersome in the memory.

There are as many internal typestate objects as the number of typestates of a stated object.

Therefore, the problem of dynamically modifying typestate-associated behavior reduces to

replace the existing “typestate object” reference with the new “typestate object” reference.

All existing and new typestate objects are extended (inherited) by a built-in ‘typestate

interface’ provided by the compiler, so that they are type compatible. We investigate the

minimum attributes required for the typestate associated reference object so that the stated

object can be as lightweight as possible. The overall swapping of the original typestate object

with a new typestate object is implemented by the four basic algorithms below.

 Swap the new “state class” with the original “state class”, as discussed in Section 7.4.1.

 If the original “typestate object” is an instance of the “state subclass”, adjust the new

“typestate object” to the “state subclass” hierarchy, as discussed in Section 7.4.2.

 Swap the new “typestate object” with the original “typestate object”, as discussed in

Section 7.4.3.

 Adjust the new typestate object entry in the symbol table, as discussed in Section 7.4.4.

98

7.4.1 Dynamic State Class Swapping

In order to replace an existing “typestate object” with a new “typestate object”, we first need

to swap the state class corresponding to the existing typestate object with the state class of

the new typestate object.

We introduce a swap_stateclass (Type typeNew, String replaceWith)

algorithm, in Figure 7.3, that performs all the checks and operations to convert a new

standalone state class, namely typeNew, into the existing nested state class of the proxy

stated class. In order to implement this algorithm, a reflection technique to dynamically load

a standalone class is used. The argument typeNew is the new standalone state class. The

second argument replaceWith is the typestate name of the original state class that needs

to be swapped with typeNew. This way of dynamically loading a class, instantiating its

instance, and invoking its functions is possible in modern OO languages like C++, Java and

C# using the reflection technique [45]. For instance, in C#, a standalone class, say new_cls,

from a standalone assembly file, say asm, can be loaded, as tp, in a program using the code

in Figure 7.2:

String new_cls; //name of the new class to load

Assembly asm;

String type; //fully qualified name of the new class to be loaded

Type tp; // this will hold the new loaded class

String asm_path; //path of assembly file that contains the standalone class

asm=Assembly.LoadFile(@asm_path);

type= asm.toString + “.” + new_cls;

tp= asm.GetType(type);

Figure 7.2 Dynamic Loading by Reflection

The above code fragment can be used to load a standalone class, as in the algorithm shown in

Figure 7.3. Once a separately compiled standalone class has been loaded into memory then

its instance can be created in the usual way.

99

swap_stateclass (Type typeNew, String replaceWith)

Type cls;

original_cls= classOf(replaceWith);//class of ‘replaceWith’ typestate is

 //returned

if (typeNew.IsClass) AND interfaceOf(typeNew)==

interfaceOf(original_cls) then

o load the ‘typeNew’ class using reflection technique.

o replace the ‘original_cls’ class with the ‘typeNew’ class.

if the ‘original_cls’ class has state subclass(s) then

o make the ‘typeNew’ class the parent of all these state

subclass(s).

end if

end if

end swap_stateclass

Figure 7.3 Swap State Class Algorithm

7.4.2 Checking for State Subclass

It is possible that the new state class, i.e. typeNew, has to be replaced with the existing state

class, i.e. exst_cls, which is a state subclass, i.e. an extension of a typestate. For instance

as in Figure 6.8, the exst_cls class, i.e. eof, is an extension of the openfile typestate.

Therefore, in the code of Figure 5.2, it is a subclass of the openfile state class. The new

state class typeNew may need to replace the eof state subclass. In this case, the algorithm,

shown in Figure 7.4, is invoked to dynamically transform a standalone state class typeNew

into a state subclass.

100

check_state_subclass(Type typeNew ,Type exst_cls)

if the existing state class ‘exst_cls’ is the state

subclass then

o ‘typeNew’ class should already have overridden

methods of all virtual methods of the parent class

corresponding to the its parent typestate.

o vtable of ‘typeNew’ class will already have entries

for any of its virtual, non virtual and overridden

methods.

o create a new vtable by copying the vtable from

‘exst_cls’ state subclass.

o replace virtual method entries of newly created

vtable by the corresponding entries of overridden

methods from vtable of standalone class.

o Append all other virtual and non-virtual method

entries of ‘typeNew’ vtable into the newly created

vtabel.

o replace the original vtable of ‘typeNew’ class by

newly created vtable.

end if

end check_state_subclass

Figure 7.4 Check State Subclass Algorithm

7.4.3 Dynamic Typestate Object Swapping

We put forward the algorithm, swap_tstate_object, in Figure 7.5, to dynamically

swap a new typestate object instance of a new state class with an existing typestate object

instance. The existing typestate objects are instances of nested state classes encapsulated

within the stated class. Each stated class, as given in Section 5.7, contains the referent of each

existing typestate object. The new typestate object remains a standalone typestate object until

it replaces the existing typestate object. The algorithm swap_tstate_object validates

all preliminaries while replacing a new typestate object with an existing typestate object. The

new typestate object is an instance of its corresponding state class.

101

swap_tstate_object ()

o create a typestate object of newly replaced state

class.

o assign the state data of the original typestate

object to the new typestate object using built-in

memento pattern.

o Assign the newly created typestate object to its

referent declared in the encapsulating stated class.

end swap_tstate_object

Figure 7.5 Swap Typestate Object Algorithm

This algorithm exploits SCOOP’s built-in memento design pattern, given in Section 6.8.2, so

that the new typestate object retains the same state as that of the original typestate object. The

last step of this algorithm invokes the algorithm adjust_sym_table, described in

Section 7.4.4, to adjust the corresponding entry in the symbol table for the new “typestate

object”.

7.4.4 Dynamic Name-to-Object Binding

Name-to-Object binding is the mechanism by which a name (object reference) is assigned the

address of an object instance allocated in the heap. The set of object instance types, which

can be assigned to a name or object reference, is known at compile time. This set of object

instance types includes either the instance of the declared type of the object reference or its

subclasses. This name-to-object binding mechanism is dynamic in case an instance of

subclass is assigned to a name (referent) of the base class. This is because such a binding can

only be resolved at runtime as the compiler cannot be sure of what subtype object instance

this name of the base type would be pointing to at runtime. However, as we have mentioned

in Section 5.9, an instance of a “state class” is compatible with a “stated object” and therefore

may be assigned to the referent of the stated object. We propose that a fully and entirely

102

standalone state class be loaded at run time and then transformed into a nested class of the

stated class.

In a language with static scoping, the compiler can use an ‘insert’ operation to place a name-

to-object or reference-to-instance binding into the symbol table. This binding makes up the

referencing environment [32]. We propose a “dynamic name-to-object binding” mechanism

which allows assigning at run time an object instance of an entirely new class to the name

(object reference) of the declared type. However, the mechanism requires that the new state

class type be compatible with the declared type of the object reference. “Dynamic name-to-

object binding” works similarly to “dynamic method binding”. Dynamic method binding is

achieved by replacing a new method’s address in the virtual method table (vtable) of an

object. Similarly, ‘dynamic name-to-object binding’ is achieved by replacing, at run time, the

address of a new typestate object instance in the symbol table for static scoping and in the

central reference table for dynamic scoping. This new typestate object instance is created

from an entirely new state class and replaces the address of the previous typestate object

instance in the symbol table in order to establish the new binding of name (object reference)

with newly created typestate object instance. Therefore, such a new binding can only be

resolved at runtime as the compiler cannot be sure of the object instance this name (object

reference) would be pointing to at runtime. The SCOOP compiler invokes the algorithm

adjust_sym_table of Figure 7.6 to adjust the address of the new typestate object

instance in the symbol table. This algorithm is invoked from the last step of the algorithm

given in Figure 7.4.

103

adjust_sym_table(prevObj, newObj)

int add;

add=lookup(prevObj) //the address of symbol table entry for prevObj is

 //looked up in symbol table and returned

if typeof(prevObj)== typeof(newObj) then

 insertAt(add,newObj) //newObj name is replaced with

 //prevObj name in the symbol table

else

 return error // prevObj and newObj are not compatible

end if

end adjust_sym_table

Figure 7.6 Adjust Symbol Table Algorithm

7.5 MAPE-K Loop

Dynamic behavior adaptation [35, 36, 37, 38, 39, 40] is one of the well-stated requirements

of autonomic computing [33, 34]. The so-called MAPE-K loop, Figure 7.7, of autonomic

computing defines an abstract architecture to achieve dynamic behavior adaptation [33, 34].

Different approaches have been proposed for capturing the sensor and effector requirements

of the MAPE-K loop, such as layers in context oriented programming [37] and

refraction/transmutation in Adaptive Java in [42, 52]. We exploit typestate and typestate-

based polymorphism as a natural fit for the sensor and effector requirements, respectively.

According to our proposed approach, dynamic behavior adaptation is achieved by swapping

the typestates at run time. Typestate based polymorphism may be more flexible if a typestate

is dynamically adapted.

104

Figure 7.7 IBM’s MAPE-K Loop

7.5.1 A Case Study

We return to the online banking application case study first presented in Section 3.10. In this

example, the number of connected clients will determine exactly what typestate the

‘managed printing service’ will assume. If the number of clients increases beyond a set

threshold, the ‘managed printing service’ transitions to the distribution typestate, otherwise it

transitions or stays in the streaming typestate. The number of connected clients is used as an

internal typestate invariant bound with the external typestate through a binding rule.

We show the ‘print manager service’ in Figure 7.8 that corresponds to the autonomic

manager of the MAPE-K loop of Figure 7.7. In Figure 7.8, we also illustrate a standalone

newdistribution typestate. The ‘print manager service’ loads the newdistribution typestate

object using the code given in Figure 7.2. The ‘monitor’ function of the ‘print manager

service’ periodically analyzes the relevant information and plans to trigger a typestate

adaptation to the ‘managed printing service’. The events received by the ‘print manager’

serve as the ‘sensors’ of the MAPE-K loop. An example of such an event is when a new

support printer is deployed in the system. This ‘monitor’ function is invoked according to a

policy defined by the ‘print manager’. This policy includes the monitoring, analysis, planning

105

and execution phases of the MAPE-K loop (that is beyond our scope at present). For the sake

of simplicity, we assume that the ‘monitor’ function is invoked by an event.

If the administrator decides to deploy an additional support printer to the application, the

‘print’ behavior of the distribution typestate must realize the existence of a new support

printer at run time. In such a circumstance, the ‘managed printing service’ can dynamically

adapt to a standalone newdistribution typestate object encapsulating the new ‘print’ behavior

that distributes print requests among all printers.

Figure 7.8 Printing Manager Service

The ‘print manager service’ may keep a reference to the ‘managed printing service’, i.e.

mprinting. As shown in Figure 7.8, the ‘print manager service’ triggers the following

statement:

mprinting.distribution=newdistribution;

The above statement replaces the existing distribution typestate of mprinting with the

newdistribution typestate. This statement internally uses the four algorithms, given in Section

7.5, to ensure seamless typestate-based dynamic adaptation. Furthermore, this statement

serves as an ‘effector’ of the MAPE-K loop.

We show in Figure 7.9 that the previous distribution typestate object of the ‘managed

printing service’ is replaced with a newdistribution typestate object.

106

Figure 7.9 Managed Printing Service

7.6 Conclusion

We have shown how the typestates of an object can be exploited for dynamic behavior

adaptation. Furthermore, typestate is also an intuitive requirement for the dynamic adaptation

of software components. The case study examined integrates the use of typestate for dynamic

behavior adaptation.

107

Chapter 8

8 Model Checking

Model checking is usually applied at the software design level rather than at the software

source code level, which is at least partially due to the fact that source code does not have

any representation suitable for model checking. There are very few approaches [58] to model

checking the source code of conventional object oriented programs. We observe that a

program may contain some statements that violate the intended design of its model. For

example, a program may have statements that violate the object protocol. Such statements are

bugs that may be caught by model checking tools. However, the inability to model check the

source code results in the inability to catch these kinds of bugs. In order to catch these kinds

of bugs in the source code through model checking, we require the source code to have an

abstraction with a suitable representation for model checking. We argue that a state

controlled object oriented language allows specifying the object behavior by abstracting the

state of the object. Transitions among the states or typestates can also be specified.

8.1 Model Checking SCOOP

Imperative programming languages, including OOP, are more useful in terms of describing

software systems with operations, flow of operations, and performing operations on data.

Formal verification tools are purpose-built to specify simple state machine representations of

a system [55]. SCOOP combines both the simplicity of specifying a state machine

representation of a software object and the strength of OOP.

State controlled object oriented source code exhibits a representation of objects that can be

directly captured by formal verification tools, such as NuSMV [57], for model checking.

Conventional object oriented language lacks such a representation of objects. Case study 3.14

108

of the File stated object is described in the SCOOP source code in Figure 5.1 and can be

read conveniently as a finite state model as shown in Figure 3.7.

Mbeddr [56] is a tool that allows specifying the state machine representation of software

objects. However, mbeddr [56] source code lacks the strength of OOP. In mbeddr, a

programmer writes the source code of an object in the form of a state machine using mbeddr

[56]. Mbeddr [56] can directly translate the programmer defined source code to another

source code that is understandable as a model by NuSMV [57].

In this chapter, we compare SCOOP code with that of mbeddr. The description of objects, i.e.

in the form of a state machine, written in mbeddr is quite analogous to the SCOOP source

code. Therefore, we assume that SCOOP source code can also be directly translated to the

source code that is understandable by NuSMV as a model.

Figure 8.1 Model Checking SCOOP

Figure 8.1 demonstrates a model checking tool, e.g. NuSMV, that can input a SCOOP

generated model and a property to check whether the SCOOP software object complies with

the property.

8.2 Symbolic Model Checking

As discussed in [55], there are many properties that can be checked on the state machine

description of a software object. The checking of a property over a state machine model

verifies whether the property holds true for that model. The model checker checks the

property in every possible system run. If a required property holds true for a given model

SCOOP generated

model

Property

Output

Model

Checking Tool

109

then it assures that the model correctly holds that property. Otherwise, the model does not

correctly represent the required property and therefore should be rectified. All these

properties may be divided into two categories i.e. automatic checking and manual checking.

In the following sections, we illustrate properties of each of these categories that can also be

checked for the SCOOP-generated model.

8.3 Automatic Checking

Some properties can be checked by the model checking tool itself as default properties. We

therefore refer to such property checking as “automatic checking”. Below we discuss one

such property which checks whether all states of the model are reachable.

The Reachability Property

The “reachability property” checks whether all states of a model are reachable. We illustrate

the computation tree logic formula, CTL [54], to represent the reachability property from

[55] for the openfile state of the ‘File’ stated object model as below.

SPEC AG _current_state!= openfile

The above property written in CTL formulae can be defined in the following words.

“In all possible system runs, it is true in every state that

 none of these each states is the openfile state”.

If the NuSMV finds the above property to be False for the File stated object model, it

implies that the openfile state is reachable, hence it is a success scenario.

If the NuSMV finds the above property to be True for the File stated object model, it

implies that the openfile state is not reachable and hence it is not a success scenario.

110

8.4 Manual Checking

There may be many custom properties that a programmer intends to check for his or her

model using temporal logic formulae [54]. One of these properties is discussed below.

The ‘P is false before R Property’

This property, from [55], checks whether a condition P can be true before R. We illustrate

this property in connection with the model of the ‘File’ stated object discussed in Case Study

3.14. The same model is specified in Figure 5.1 and drawn in Figure 3.7.

P is false Before R.

P: file is read

R: file is in openfile state

Therefore, this property is evaluated as below.

“file is read” is false Before “file is in openfile state”

The above property says that the stated File object should not be read unless it is in the

openfile state. As long as this property is true for the File stated object model, the model is

correct for that property. Otherwise, the model attempts to read the File that is not in the

openfile state. Clearly these kinds of bugs introduced in the software are a violation of object

protocol.

8.5 Conclusion

Software testing and analysis of programs performed by a programming language includes

static analysis to detect any violation of object protocols. In this chapter, we demonstrated

111

that the capability of SCOOP to specify object protocols can be exploited to detect violations

of these protocols statically through model checking.

112

Chapter 9

9 Conclusion and Future Work

9.1 Conclusion

This thesis introduces applications of a particular formal method in software engineering. We

have investigated multiple aspects of integrating finite state machines into an object oriented

language, creating a new style we call “state controlled object oriented programming”, which

we abbreviate as SCOOP. Situations arise in many software settings where objects are based

either implicitly or explicitly on finite state machines. When the machine's state is encoded

in ordinary programming variables, it obscures the natural abstractions. Through SCOOP, it

is possible for programs to be easier to understand by people and by software tools.

The notion of typestate checking is used to enforce object protocol, taking into account

object state. There are basically two types of approaches that are used to capture the typestate

of an object. One approach is to perform an analysis of the programs that are coded in a

conventional imperative programming language. This analysis deduces the typestate

information of the objects and uses this information to perform typestate checking. Another

approach, the one we have advocated, is to write programs in a programming language with

explicit support of typestate so that programs inherently capture the typestate information. In

this approach, the programming language can directly perform typestate checking.

Static typestate checking cannot absolutely find the current typestate of an object because in

some cases the current typestate of the object cannot be determined until run time. We have

shown how the typestate information can be used for dynamic typestate checking as well as

for dynamic form of polymorphism.

Our proposed language does not require a programmer to learn and use any extra annotations

except typestate annotations and does not impose any constraints on aliasing.

113

One feature of SCOOP is a typestate checking technique that enforces an object protocol

consistent with the internal state of objects. An important aspect of typestate is that the

external and internal representations of typestate can be synchronized. We introduce an

implementation technique to perform this operation effectively. An implication of this

implementation technique is that SCOOP provides the “memento” design pattern by default.

We further propose to exploit typestate for dynamic compositional adaptation, allowing an

object to effectively and dynamically adapt its typestate-related partial behavior. By doing so,

we propose that typestate can also serve autonomic computing. Typestate adaptation without

state preservation may not be very helpful in practical scenarios. We have shown that our

typestate adaptation technique can exploit the default “memento” feature for easier state

preservation. Since we are not only exploring novel techniques but also drawing a synergy

between them, a realm of related implementation research exists. The improvement of

algorithms from the implementation viewpoint should be investigated.

We illustrate that objects with explicit support of state are more intuitive to use as both the

managed component and manager component of autonomic computing. We also illustrate

that the explicit support of state in the object can benefit GUI frameworks as well as data

structures.

Object Protocol is the central concept of typestate checking and software validation as

discussed in this thesis.

In order to obtain practical benefit of our proposed techniques, we have to allocate resources

to implement the SCOOP language. Developing a new programming language is a time and

resource consuming process. However, the training of the software developers to adapt

SCOOP is not a challenge due to its intuitive and OOP like constructs.

114

9.2 Future Work

The proposed SCOOP language can be implemented with a compiler. Before or during the

implementation of such a compiler, the following aspects should be further investigated for

the implementation of details:

 Algorithms that can generate graphical state machine diagrams of the stated objects based

on the source code. Similarly, algorithms that generate the diagrams that show the

interaction between the related stated objects.

 According to the proposed ‘proxy and state class’ technique, the representation of the

“state class” and the lightweight “typestate object” for the optimized implementation of

the typestate of stated object can be explored. For instance, as in [54], the ‘state’ of the

program is proposed to be implemented symbolically rather than explicitly with the help

of binary decision diagrams to effectively combat the state explosion problem.

 The proposed architecture in Section 5.15 identifies certain statements of the SCOOP

code that create aliases of the stated objects. Optimized analyses similar to “pointer

analysis” algorithms can be investigated that efficiently find these statements that create

aliases.

 In Figure 6.1, we show that the SCOOP language can deduce the conditional transition

based on the post-condition of the method and typestate invariant binding rule. We can

investigate further to find an algorithm that analyze the programmer defined source code

and deduce the check points in the code where such conditional transitions should be

implemented by the SCOOP language.

115

10 Reference

[1] Timothy Budd. An Introduction to Object-Oriented Programming. (3rd Edition).

[2] Martin Abadi and Luca Cardlli. A Theory of Objects. Springer, Chapter 6, pp 57–76.

Chapter 11, pp 141–152. 1996.

[3] Samek Miro. Portable Inheritance and Polymorphism in C. Embedded Systems

Programming, Volume 10. pp 54–67, March 1997.

[4] Nels E. Beckman, Duri Kim, Jonathan Aldrich. An Empirical Study of Object Protocols

in the Wild. Proceedings of the 25th European Conference on Object-Oriented

Programming, Lancaster, UK. pp 2–26, July 2011.

[5] Y. Yang, A. Gringauze, D. Wu, H. Rohde, J. Yang. Detecting Data Race and Atomicity

Violation via Typestate-Guided Static Analysis. Tech. Rep. MSR-TR-2008-108,

Microsoft Research, Aug. 2008.

[6] Stephen M. Watt. A Technique for Generic Iteration and its optimization. In Proceedings

of the ACM SIGPLAN Workshop on Generic Programming. pp 76–86. 2006.

[7] Girish Keshav Palshikar. An Introduction to Model Checking.

http://www.embedded.com/design/embedded/4024929/An-introduction-to-model-

checking

[Valid on 19 March, 2014]

[8] William Stalling. Operating System-Internals and Design Principles. 7th Edition. 2011.

[9] Linda Null, Julia Lobur. The Essentials of Computer Organization and Architecture.

Third Edition. pp 146–157. 2012

[10] Miro Samek, Paul Montgomery. State-Oriented Programming. Embedded Systems

Programming. pp 22–43, Aug, 2000.

[11] Basic Object Oriented Programming and State Machines. pp 1-15.

http://courses.csail.mit.edu/6.01/spring08/handouts/week3/week3-notes.pdf

[Valid on 19 March, 2014]

[12] Walter Cazzola, Ahmed Ghoneim, Gunter Saake. Software Evolution Through Dynamic

Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer, and Mark D.

Ryan, editors, Objects, Agents and Features: Structuring Mechanisms for Contemporary

Software, Lecture Notes in Computer Science 2975, pp 69–84. Springer, July 2004.

http://link.springer.com/content/pdf/10.1007%2F978-3-540-25930-5_5.pdf

http://dl.acm.org/citation.cfm?id=2032501&CFID=261156244&CFTOKEN=97334891
http://dl.acm.org/citation.cfm?id=2032501&CFID=261156244&CFTOKEN=97334891
http://dl.acm.org/citation.cfm?id=2032501&CFID=261156244&CFTOKEN=97334891
http://www.embedded.com/design/embedded/4024929/An-introduction-to-model-checking
http://www.embedded.com/design/embedded/4024929/An-introduction-to-model-checking
http://courses.csail.mit.edu/6.01/spring08/handouts/week3/week3-notes.pdf

116

[13] Jamil Ahmed, Sheng Yu. Adding Autonomy into Object. In Proceedings of the

International Conference on the Foundation of Computer Science. pp 136–141. 2011.

http://world-comp.org/p2011/FCS4822.pdf

[Valid on 19 March, 2014]

[14] Patrick Lam,Viktor Kuncak , Martin Rinard. Generalized Typestate Checking for Data

Structure Consistency. In proceedings of the 6th International Conference on

Verification, Model Checking and Abstract Interpretation. pp 430–447. 2005.

[15] David Harel. Statecharts: A Visual Formalism For Complex Systems. In Science of

Computer Programming. pp 231–274, 1987.

[16] Erich Gamma et al. Design Patterns–Elements of Reusable Object-Oriented Software.

Addison-Wesley. pp 316–325. 1995.

[17] Haitong Wu, Sheng Yu. Adding State into Object. In Proceedings of the International

Conference on Programming Languages and Compilers, pp 101–107. 2005.

[18] Jonathan Aldrich, Joshua Sunshine. Typestate-Oriented Programming. In Proceeding of

the 24th ACM SIGPLAN conference companion on Object oriented programming

systems languages and applications, pp 1015–1022. ACM, 2009.

[19] H. Xu, Sheng Yu. Type Theory and Language Constructs for Objects with States.

Electronic Notes in Theoretical Computer Science,135(3). pp 141–151, 2006.

[20] Robert DeLine and Manuel Fähndrich. Typestates for Objects. In European Conference

on Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science, vol.

3086, pp. 465–490. Springer-Verlag (2004).

[21] Asher Sterkin. State-Oriented Programming. In Proceedings of Multiparadigm

Programming with Object-Oriented Languages. pp 1–32. 2008.

[22] Kevin Bierhoff and Jonathan Aldrich. Modular Typestate Checking of Aliased Objects.

In Proc. 22nd ACM Conference on Object-Oriented Programming Systems, Languages

and Applications (OOPSLA). pp 301–320, October 2007.

[23] Robert E. Strom and Shaula Yemini. Typestate: A Programming Language Concept for

Enhancing Software Reliability. IEEE Transactions on Software Engineering, VOL. SE-

12, NO.1. pp 157–171, Jan 1986.

http://world-comp.org/p2011/FCS4822.pdf
file:///C:/Documents%20and%20Settings/jahmed6/Application%20Data/Microsoft/Word/H.%20Xu
http://researchr.org/alias/s.-yu
http://researchr.org/publication/XuY06%3A0
http://researchr.org/journal/entcs/home

117

[24] R. Wolff, R. Garcia, Eric Tanter, and J. Aldrich. Gradual Typestate. In Proceeding of the

25th European Conference on Object-Oriented Programming (ECOOP). pp 459–483.

July 2011.

[25] Sheng Yu. Class-is-Type is Inadequate for Object Reuse. ACM SIGPLAN Notices, v.36

n.6. pp 50–59, June 2001.

[26] Stephen Fink , Eran Yahav , Nurit Dor , G. Ramalingam , Emmanuel Geay. Effective

Typestate Verification in the Presence of Aliasing. In Proceedings of the 2006

International Symposium on Software Testing and Analysis, Portland,

USA. pp 133–144. July 2006.

[27] Robert DeLine, Manuel Fahndrich. Enforcing High-Level Protocols in Low-Level

Software. In Proceedings of the ACM SIGPLAN 2001 conference on Programming

Language Design and Implementation (PLDI). pp 59–69. May 2001.

[28] Kevin Bierhoff, Jonathan Aldrich. Lightweight Object Specification with Typestates. In

Proceedings of the 10th European software engineering conference held jointly with 13th

ACM SIGSOFT international symposium on Foundations of Software Engineering. pp

217–226. Sep 2005.

[29] Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, Wolfram Schulte.

Verification of Object-Oriented Programs with Invariants. In Journal of Object

Technology, vol. 3, no. 6, Special issue: ECOOP 2003 Workshop on FTfJP, pp. 27–56.

June 2004.

[30] Manuel Fahndrich, Robert DeLine. Adoption and Focus: Practical Linear Types for

Imperative Programming. In Proceedings of the ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation (PLDI), Germany. pp. 13–24, May

2002.

[31] Viktor Kuncak, Patrick Lam, Martin Rinard. Role Analysis. In Proceedings of the 29th

ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages

(POPL). pp 17–32. Jan 2002.

[32] Michael L. Scott. Programming Language Pragmatics. Third Edition.

[33] IBM. An Architectural Blueprint for Autonomic Computing. Technical Report, 2003.

http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

[Valid on 19 March, 2014]

http://dl.acm.org/citation.cfm?id=1146254&CFID=152571224&CFTOKEN=23809812
http://dl.acm.org/citation.cfm?id=1146254&CFID=152571224&CFTOKEN=23809812
http://dl.acm.org/citation.cfm?id=1146254&CFID=152571224&CFTOKEN=23809812
http://dl.acm.org/citation.cfm?id=1146254&CFID=152571224&CFTOKEN=23809812
http://dl.acm.org/citation.cfm?id=1146254&CFID=152571224&CFTOKEN=23809812
http://dl.acm.org/citation.cfm?id=512532&CFID=282347158&CFTOKEN=93793948
http://dl.acm.org/citation.cfm?id=512532&CFID=282347158&CFTOKEN=93793948
http://dl.acm.org/citation.cfm?id=512532&CFID=282347158&CFTOKEN=93793948

118

[34] Kephart, J. O. Research Challenges of Autonomic Computing. In Proceedings of the 27th

international conference on Software engineering (ICSE). pp 15–22. May 2005.

[35] Klein C, Schmid R, Leuxner C, Sitou W, Spanfelner B. A Survey of Context Adaptation

in Autonomic Computing. In Proceedings of the Fourth International Conference on

Autonomic and Autonomous Systems (ICAS). pp 106–111. March 2008.

[36] Jorge Fox , Siobhán Clarke. Exploring Approaches to Dynamic Adaptation. Proceedings

of the 3rd International DiscCoTec Workshop on Middleware-Application Interaction. pp

19–24, Lisbon, Portugal. June 2009.

[37] Guido Salvaneschi, Carlo Ghezzi, Matteo Pradella. Context-Oriented Programming: A

Programming Paradigm for Autonomic Systems. In Journal the Computing Research

Repository (CoRR). May 2011.

[38] Marc Schanne, Tom Gelhausen, Walter F. Tichy. Adding Autonomic Functionality to

Object-Oriented Applications. In Proceedings of the 14th International Workshop on

Database and Expert Systems Applications. pp 725, September 2003.

[39] Alessandro Orso, Anup Rao, and Mary Jean Harrold. A Technique for Dynamic

Updating of Java Software. In Proceedings of the IEEE International Conference on

Software Maintenance (ICSM). pp 649. October 2002.

[40] E. P. Kasten, P. K. Mckinley, S. M. Sadjadi, R. E. K. Stirewalt. Separating Introspection

and Intercession to Support Metamorphic Distributed Systems. In Proceedings of the

22nd International Conference on Distributed Computing Systems (ICDCS), pp 465–472.

July 2002.

[41] Kasten, E.P, McKinley, P.K. Perimorph: Run-Time Composition and State Management

for Adaptive Systems. In Proceedings of the 24th International Conference on

Distributed Computing Systems Workshops, pp 332–337, March 2004.

[42] Philip K. McKinley, Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. Composing

Adaptive Software. In Journal Computer,volume 37, pp 56–64, July 2004.

[43] Christopher M. Hayden, Edward K. Smith, Michael Hicks, Jeffrey S. Foster. State

Transfer for Clear and Efficient Runtime Upgrades. In Proceedings of the 27th

International Conference on Data Engineering Workshops. p.179–184. April 2011.

[44] Erich Gamma , Richard Helm , Ralph Johnson, John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. pp 283.

http://www.amazon.ca/s/189-4337108-8859748?_encoding=UTF8&field-author=Erich%20Gamma&search-alias=books-ca
http://www.amazon.ca/s/189-4337108-8859748?_encoding=UTF8&field-author=Richard%20Helm&search-alias=books-ca
http://www.amazon.ca/s/189-4337108-8859748?_encoding=UTF8&field-author=Ralph%20Johnson&search-alias=books-ca
http://www.amazon.ca/s/189-4337108-8859748?_encoding=UTF8&field-author=John%20Vlissides&search-alias=books-ca

119

[45] http://msdn.microsoft.com/en-us/library/vstudio/f7ykdhsy(v=vs.100).aspx;

[Valid on 19 March, 2014]

http://msdn.microsoft.com/en-us/library/ms227224(v=vs.80).aspx.

[Valid on 19 March, 2014]

[46] D.Hollingsworth. The Workflow Reference Model. Workflow Management Coalition.

Document number TC00-1003-Issue 1.1 edn. January 1995.

[47] Zef Hemel, Ruben Verhaaf, Eelco Visser. WebWorkFlow: An Object-Oriented

Workflow Modeling Language for Web Application. In Proceeding of the Model Driven

Engineering Languages and Systems (MODELS). pp 113–127. October 2008.

http://link.springer.com/chapter/10.1007%2F978-3-540-87875-9_8#page-1

[Valid on 19 March, 2014]

[48] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. A

Taxonomy of Compositional Adaptation. Technical Report MSU-CSE-04-17, 2004.

[49] N. Gui, V. De Florio, H. Sun and C. Blondia. ACCADA: A Framework for Continuous

Context-Aware Deployment and Adaptation. In Proceeding of 11th International

Symposium on Stabilization, Safety, and Security of Distributed Systems, Lyon, France,

LNCS 5873, pp 325–340, Springer Verlag, November 2009.

[50] Amir Hammami, Thierry Villemur, Tom Guerout. Towards Context-aware Deployment

and Reconfiguration. 22nd Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises. pp 86–91. June 2013.

[51] Miedes, E., Munoz-Escoi, F.D. A Survey About Dynamic Software Updating.

Tech. Rep. ITI-SIDI-2012/004, Instituto Universitario Mixto Tecnologico de Inform-

atica, Universitat ´Politecnica de Valencia. 2012.

http://web.iti.upv.es/~fmunyoz/research/pdf/TR-ITI-SIDI-2012003.pdf

[Valid on 19 March, 2014]

[52] E. P. Kasten and P. K. McKinley. Adaptive Java: Refractive and Transmutative Support

for Adaptive Software. Tech. Rep MSU-CSE-01-30 Department of Computer Science

and Engineering, Michigan State University, East Lansing, Michigan, USA, December

2001.

[53] M. Voelter and D. Ratiu, Language Engineering as an Enabler for Incrementally Defined

Formal Analyses. In Formal Methods in Software Engineering: Rigorous and Agile

Approaches (FormSERA). pp 9–15 June 2012.

http://msdn.microsoft.com/en-us/library/vstudio/f7ykdhsy(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/%20ms227224(v=vs.80).aspx
http://link.springer.com/search?facet-author=%22Zef+Hemel%22
http://link.springer.com/search?facet-author=%22Ruben+Verhaaf%22
http://link.springer.com/search?facet-author=%22Eelco+Visser%22
http://link.springer.com/chapter/10.1007%2F978-3-540-87875-9_8#page-1
http://web.iti.upv.es/~fmunyoz/research/pdf/TR-ITI-SIDI-2012003.pdf

120

[54] J. R. Burch , E. M. Clarke , K. L. McMillan , D. L. Dill , L. J. Hwang. Symbolic Model

Checking: 10
20

 States and Beyond. In Journal Information and Computation, v.98 n.2, pp

142–170. June 1992.

[55] Christoph Rosenberger. Model Checking for State Machine with mbeddr and NuSMV.

HSR, Hochschule für Technik Rapperswil, 2013.

http://mbeddr.com/files/modelcheckingforstate-machineswithmbeddrandnusmv.pdf

[Valid on 19 March, 2014]

[56] mbeddr c userguide. http://mbeddr.com. [Valid on 19 March, 2014]

[57] Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco Pistore

and Marco Roveri. NuSMV 2.5 Tutorial.

http://nusmv.fbk.eu/NuSMV/tutorial/index.html.

[Valid on 19 March, 2014]

[58] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs. In

Journal Automated Software Engineering, Volume 10 Issue 2. pp 203–232. April 2003.

[59] Philip Greenwood, Lynne Blair. Using Dynamic Aspect-Oriented Programming to

Implement an autonomic System. In Proceeding of Dynamic Aspects Workshop

(DAW04), pp 76–88. March 2004.

[60] Eric Bodden. Efficient Hybrid Typestate Analysis by Determining Continuation-

Equivalent States. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, Cape Town, South Africa. pp 5–14. May 2010.

http://dl.acm.org/citation.cfm?id=162046&CFID=327559901&CFTOKEN=61088092
http://mbeddr.com/files/modelcheckingforstate-machineswithmbeddrandnusmv.pdf
http://mbeddr.com/
http://nusmv.fbk.eu/NuSMV/tutorial/index.html
http://dl.acm.org/citation.cfm?id=1806805&CFID=447860096&CFTOKEN=31356559
http://dl.acm.org/citation.cfm?id=1806805&CFID=447860096&CFTOKEN=31356559
http://dl.acm.org/citation.cfm?id=1806805&CFID=447860096&CFTOKEN=31356559

121

APPENDIX A

LALR Context Free Grammar for SCOOP

Prd

Productions

1 <program>  <cls_list> $$

2 <cls_list>  <cls_list> <class>

3 <cls_list>  Є

4 <class>  <st_dec_list> class cls_id { <cls_body> } S

5 <st_dec_list>  [state (<st_list>)] S

6 <st_dec_list>  Є S

7 <st_list>  <st_list> , <st_id> S

8 <st_list>  <st_id> S

9 <st_id>  st_id S

10 <cls_body>  <var_dec_list> < st_binding> <cls_m_list> <c_s_m_list> S

11 <var_dec_list><var_dec_list> <var_dec> ;

12 <var_dec_list>  Є

13 <var_dec><vd_start><vd_rest>

14 <vd_start>  <pub-prv><dt> id

15 <dt>  int

16 <dt>  string

17 <dt>  cl_id

122

18 <st_binding>  statebinding { <b_list> } S

19 <b_list>  <b_list> , <bind> S

20 <b_list>  <bind> S

21 <bind>  st_id : (<rel_exp>) S

22 < st_binding>  Є S

23 <cls_m_list>  <cls_m_list> <cls_method>

24 <cls_m_list>  Є

25 <cls_method>  <pub-prv> <r_type> <m_id> (<arg_list>) { <m_body> }

26 <pub-prv>  public

27 <pub-prv> private

28 <r_type>  <dt>

29 <m_id>  m_id

30 <arg_list>  Є

31 <arg_list>  <args>

32 <args> <args>, <arg>

33 <args><arg>

34 <arg> <dt> id

35 <m_body>  <var_dec_list> <stm_list>

36 <stm_list>  <stm_list> <stm>

37 <stm_list>  Є

38 <stm>  <lhs> = <exp>;

39 <stm>  read (id) ;

40 <stm>  print <exp>;

123

41 <stm>  o_id.m_id(<param_list>);

42 <vd_new>  = new ID ()

43 <stm>  if (<rel_exp>) {<stm_list> } <else>

44 <else> else {<stm_list>}

45 <else>  Є

46 <stm> while(<rel_exp>){<stm_list> }

47 <stm>for(<init><mid>;<last>) { <stm_list>}

48 <rel_exp><rel_exp> <rel_op> <rel_term>

49 <rel_term> <rel_bool_fac>

50 <rel_exp> <rel_term>

51 <rel_term>  <rel_fac><comp_op><rel_fac>

52 <rel_bool_fac>  bool_id

53 <rel_fac>  id

54 <rel_fac>  num

55 < rel_fac >  o_id.p_id

56 <rel_op>  AND

57 <rel_op>  OR

58 <comp_op>  ==

59 <comp_op>  !=

60 <comp_op>  >

61 <comp_op>  <

62 <comp_op>  <=

124

63 <comp_op>  >=

64 <exp>  <term>

65 <exp>  <exp> <add_op> <term>

66 <term>  <factor>

67 <term>  <term> <mult_op> <factor>

68 <factor>  (<exp>)

69 <factor>  id

70 <factor>  o_id.p_id

71 <factor>  num

72 <add_op>  +

73 <add_op>  -

74 <mult_op> *

75 <mult_op> /

76 <c_s_m_list> Є

77 <c_s_m_list><c_s_m_list> <c_s_method> S

78 <c_s_method>  <s_list> { <s_v_d_lst><s_m_list> } S

79 <s_m_list> <s_m_list> <s_method> S

80 <s_m_list>  <s_method> S

81 <s_method><r_type><m_id>(<arg_list>)<s_end_list>{<s_m_body>} S

82 <s_end_list>  [<s_e_list>] S

83 <s_list>  <s_list> , <s_id> S

84 <s_list>  <s_id> S

125

85 <s_e_list> <s_e_list> | st_id S

86 <s_e_list>  st_id S

87 <s_m_body> <var_dec_list> <s_stm_list>

88 <s_stm_list> <s_stm_list> <st_stm>

89 <s_stm_list>  Є

90 <st_stm>this.trans(st_id); S

91 <st_stm><lhs> = <exp>;

92 <st_stm> read (id) ;

93 <st_stm> print <exp>;

94 <st_stm> o_id.m_id(<param_list>);

95 <st_stm> o_id.m_id(<param_list>);

96 <st_stm> while(<rel_exp>){<s_stm_list> }

97 <st_stm> for(<init><mid>;<last>) { <s_stm_list> }

98 < st_stm>  if (<rel_exp>) {<s_stm_list>}<s_else>

99 <s_else>  else {<s_stm_list>}

100 <s_else>  Є

101 <init> id = num;

102 <mid><rel_exp>

103 <last>id <in_dec>

104 <in_dec> ++

105 <in_dec> --

106 <lhs>id

126

107 <lhs> o_id.p_id

108 <param_list><params>

109 <params><params>,<factor>

110 <params><factor>

111 <param_list> Є

112 <new> Є

113 <cl_id> cl_id

114 <s_id>  [st_id] S

115 <s_list>  [st_id]:[st_id] S

116 <vd_rest>  <vd_simple> S

117 <vd_rest> <vd_new> S

118 <vd_simple>  <vd_simple> , id S

119 <vd_simple>  Є S

120 <vd_new>  Є S

121 <s_v_d_lst>  <s_v_d_lst><s_v_d> ; S

122 <s_v_d_lst>  Є S

123 <s_v_d><s_vd_start><vd_rest> S

124 < s_vd_start>  <dt> id S

127

APPENDIX B

SCOOP vs OOP

Example 1

This is an example code for the printing object, managed_printing, of a banking

application that prints the account statement of the account holders. The printing is carried

out in either streaming or distribution state. We illustrate the code in SCOOP as well as in

two possible variations in OOP. We argue that this example shows the increased readability

and easier encoding of SCOOP as compare to OOP while encoding these kinds of objects.

SCOOP Managed Printing Service

[state(streaming=start, distribution)]
class managed_printing //managed_printing_service
{

[streaming]
{
 void print_acc_statement()[streaming]{
 //send print to the main printer only

System.out.println("print in streaming");
}

}
[distribution]
{

 void print_acc_statement()[distribution]{
 //send print to the all connected printers

System.out.println("print in distribution");
}

 }
}
class client{
 public static void main(String args[]){

managed_printing prnt_client=new managed_printing();
prnt_client.print_acc_statement();
prnt_client.trans(distribution);

prnt_client.print_acc_statement();
 }
}

128

OOP Managed Printing Service //using conditional constructs

public class managed_printing { //managed_printing_service

private String state="";
public void setState(String state){

this.state=state;
}
public void print_acc_statement (){

if(state.equalsIgnoreCase("streaming")){
System.out.println("print in streaming");

}
else if(state.equalsIgnoreCase("distribution")){

System.out.println("print in distribution");
}

}
}
class client{

public static void main(String args[]){

 managed_printing prnt_client=new managed_printing();
 prnt_client.setState("streaming");
 prnt_client.print_acc_statement();
 prnt_client.setState("distribution");
 prnt_client.print_acc_statement();

 }

}

129

OOP Managed Printing Service //using state design pattern

public interface State {

public void print_acc_statement ();
}

public class streaming_state implements State {

public void print_acc_statement() { //override
System.out.println("streaming");

}
}

public class distribution_state implements State {

public void print_acc_statement(){ //override

System.out.println("distribution");
}

}

public class PrintContext implements State {

private State print_State;

public void setState(State state) {

this.print_State = state;
}
public State getState() {

return this.print_State;
 }

public void print_acc_statement(){
this.print_State.print_acc_statement();

 }
}

public class client {

public static void main(String[] args) {
 PrintContext prnt_client = new PrintContext();
 State print_streaming = new streaming_state();
 State print_distribution = new distribution_state ();
 prnt_client.setState(print_streaming);
 prnt_client.print_acc_statement();
 prnt_client.setState(print_distribution);
 prnt_client.print_acc_statement();

 }
}

130

Curriculum Vitae

Name Jamil Ahmed

Post-Secondary

Education

Masters of Computer Science 06/2000–6/2002

The University of Karachi,

Pakistan.

Bachelor of Science 06/1996–05/1999

The University of Karachi,

Pakistan.

Related Work

Experience

Research Assistant 01/2009–30/2014

The University of Western Ontario

Canada.

Teaching Assistant 01/2012–04/2012,

The University of Western Ontario 01/2013–04/2013,

Canada. 01/2014–04/2014

 Lecturer 06/2003–06/2009

The University of Karachi,

Pakistan.

 Software Engineer 06/2002–05/2003

Softech Microsystem, Karachi,

Pakistan.

AWARDS

PhD WGRS Scholarship 01/2012–04/2012,

The University of Western Ontario, 01/2013–08/2013,

Canada. 01/2014–04/2014

 PhD Scholarship 01/2009–30/2012

The Higher Education Commission,

Pakistan.

	State Controlled Object Oriented Programming
	Recommended Citation

	State Controlled Object Oriented Programming

