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Abstract 

 

In this thesis, we examine an extension to the idea of object oriented programming to make 

programs easier for people and compilers to understand. Often objects behave differently 

depending on the history of past operations as well as their input that is their behavior 

depends on state. We may think of the fields of an object as encoding two kinds of 

information: data that makes up the useful information in the object and state that controls its 

behavior. Object oriented languages do not distinguish these two. We propose that by 

specifying these two, programs become clearer for people to write and understand and easier 

for machines to transform and optimize. 

 

We introduce the notion of state controlled object oriented programming, abbreviated 

as “SCOOP”, which encompasses explicit support of state in objects. While introducing an 

extension to object oriented programming, our objective is to minimize any burden on the 

programmer while programming with SCOOP. Static detection of the current state of an 

object by programming languages has been a challenge. To overcome this challenge without 

compromising our objective, a technique is presented that advances contemporary work.  

 

We propose an implementation scheme for a SCOOP compiler that effectively 

synchronizes the external and internal representation of state of objects. As an implication of 

this scheme, SCOOP would provide the memento design pattern by default.  

 

We also show how a portion of an object particular to its state can be replaced 

dynamically, allowing state dependent polymorphism. Further, we discuss how programs 

coded in SCOOP can be model checked.  

 

  

Keyword: State Oriented Programming, Object Oriented Programming, Typestate, Finite 

State Automata, Dynamic Compositional Adaptation, Specification and Verification. 
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Chapter 1  
 

1 Introduction 

 

1.1 State Controlled Object Oriented Programming  

 

In this thesis, we propose a “state controlled” object oriented programming language. We 

also propose several related techniques aimed at making the proposed language easier for the 

programmer to use in comparison with similar approaches. 

 

One main objective of software engineering is to provide effective methods and techniques 

for the design, development and maintenance of software. On its way to achieve this 

objective, software engineering has advanced significantly and influenced many software 

technologies, including programming languages. Programming language paradigms have 

evolved from low-level machine languages to current state-of-the-art higher-level languages, 

achieving better abstraction, increased readability and more flexible reusability. Object 

oriented programming (OOP) is one of the main technologies used by software developers 

today for developing robust software [1]. However, OOP does not allow an object to be 

specified as a state machine in a convenient, readable way. Moreover, there is a significant 

gap between OOP and the input languages for formal verification tools [53]. For these 

reasons, OOP is still not robust enough to address many of the needs of the formal language 

community. In order to overcome these limitations, many extensions to the idea of OOP have 

been studied and proposed over the years. 

 

In conventional object oriented programming languages, a software object encapsulates 

attributes (data) and methods (behavior) [2], similar to a real-world object. The attributes and 

methods of a software object are defined with explicit syntax. Besides attributes and 

methods, real-world objects maintain “state” as an inherent characteristic. Therefore, in 
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object oriented programming, a software object modeled on the real world should also 

support “state” as a built-in characteristic.  

 

It has been argued that the inclusion of “state” in software objects makes OOP more intuitive 

for the programmer. For instance, a software application may have a ‘Car’ object existing 

either in an assembled state or a disassembled state. It can be observed in this examplethat a 

state is not an independent entity by itself, but rather an inherent characteristic of an object. 

The assembled and disassembled states of the ‘Car’ object do not exist as independent 

entities; but, it makes sense that the ‘Car’ object is an independent entity that can be in the 

disassembled or the assembled state. We argue that an object encapsulates its states in 

addition to its attributes and methods. Therefore, an object definition should also support an 

explicit syntax in order to declare its states and those of its related counterparts. This is our 

main theme. 

 

We refer to an object with explicit support of state as a “stated object” and programming with 

stated objects as “State Controlled Object Oriented Programming”, which we abbreviate 

“SCOOP” (we use this name both for the concept of programming in this way and for the 

specific language we propose). The class to which a stated object belongs is referred to as its 

“stated class”.  

 

In standard object oriented programming, objects have attributes (data) that can be modified 

by methods, so the usual objects already have “state” in this sense. But in our sense of stated 

object, State Controlled Object Oriented Programming provides an explicit syntax to define 

the states of an object such that the defined states are encapsulated within the object in the 

same way as attributes and methods. Several definitions related to the notion of a “stated 

object” are given in Section 2.1. There are other notions of state used in automata theory, 

some including time, and it would be possible to explore these, but that is not the focus of the 

present work. 

 

Engineers, scientists, designers and the formal language community use finite state automata 

to model systems and the objects of systems. However, there is not yet a standard to directly 
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transform a finite state model of an object to an object oriented application. This is due to the 

lack of explicit formal support for states (in our sense) in standard OOP languages. For 

instance, a DVD player can be viewed as a stated object that can be represented by a finite 

state model. The DVD player has states off, play, pause, fast forward and reverse, and 

transitions among these states.  We intend to formalize the process of modeling a software 

object to include a finite state automaton and to use it to increase the clarity of programs and 

their representation. 

   

The terms “state” and “typestate” are sometimes used interchangeably. In this thesis, we use 

the term “state” in a general context or when discussing the usual notions of finite state 

machines.   We use the term “typestate” in discussions on both the theoretical and practical 

aspects of software using state control [23].  

 

In this chapter, we lay out the motivation for state-controlled object oriented programming 

and present the thesis contribution as well as its orientation. 

 

1.2 State Abstraction   

 

Abstraction is the process in programming that allows the complexity of certain aspects of a 

program to be limited to parts of the program and provides a clean interface for using those 

features. For instance, object oriented features such as polymorphism and encapsulation can 

be implemented in a non-object oriented programming language (such as C) by exploiting 

related design patterns [3], but at the cost of complex logic to be coded by the programmer. 

Alternatively, object oriented languages provide declarative syntax that abstracts the object 

oriented features and reduces the complexity of code to be written by the programmer. 

Similarly, in conventional object oriented programming, a programmer can write code to 

maintain the state of an object, but at the cost of writing the state maintenance code himself.  

 

Usually state maintenance code is in the form of conditional checks, state tables or in the 

form of state design patterns that potentially make the object oriented code more complex. 
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Alternatively, state controlled object oriented programming provides an abstract “state” 

feature which hides the complexity of the state maintenance code inside the language. The 

abstract “state” of an object encapsulates the nonfunctional aspects (i.e. the state-related data 

members) and the functional aspects (i.e. the behavior or methods specific to state) inside the 

object.  

1.3 Motivation 

 

Stated objects can be simulated as finite state automata due to built-in abstraction of state and 

state transitions. Finite state automata (FSA) deterministically allow valid transitions 

(actions) and prohibit invalid transitions (actions) contingent on the current state of a system. 

Therefore, finite state automata inherently support validation in that, depending on the 

current state, transitions are either valid or invalid.  Similarly, an object with state that can 

simulate an FSA can allow invocation of valid actions (methods) and prohibit invocation of 

invalid actions (methods) contingent on its current state. The ability of an object to allow or 

prohibit invocation of its methods provides better support for software validation. Therefore, 

by way of finite state automata functionality, SCOOP ensures that the programmer can write 

safe code that prohibits method invocation and field references that are invalid for the reason 

of state. 

 

In object oriented programming, the object protocol [4] defines the set of valid methods that 

can be invoked and valid fields that can be referenced. In state controlled object oriented 

programming, the current typestate of a software object defines its protocol, since the 

software object can assume different states during its lifetime. The SCOOP language 

performs static (compile time) analysis to detect an invalid field invocation of a software 

object according to the object’s current typestate. In this way, typestate is a useful tool for 

enforcing the checking of the invocation of methods of software objects, which minimizes 

the run time exceptions caused by invalid method invocation. 

 

An important implication of state abstraction is that it allows the definition of a stated object 

composed of stated objects. Defining a stated object composed of stated objects allows better 
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and more precise simulation of real-world scenarios. The encapsulating stated object can 

have states that can be a combination of the states of encapsulated stated objects. 

 

In conventional OOP, the state of an object is represented by the instance data members. 

SCOOP, however, allows explicit declaration of the abstract states of an object. An abstract 

state is accessible from outside of the object, and is bound with state-related instance data 

members inside the object definition. The internal state of the object is represented by data 

members that are referred to as typestate invariant. Therefore, in order to access the typestate 

of an object, the programmer can access the abstract external typestate, i.e. a single piece of 

information, of an object from outside the object rather than accessing many internal 

typestate invariants. This mechanism does not violate the information hiding principle and 

maintains a typestate of the object that is accessible from outside the object. 

 

In conventional OOP, polymorphism is implemented either through method overloading 

within a class or both method overriding and overloading in a subclass. Stated objects 

introduce another dimension of polymorphism, i.e. the same method can have different 

implementations in different states of the stated object.  

 

In SCOOP, the state of an object is also a first class language entity. This implies that an 

object of type “typestate” can be instantiated. As the typestate of an object encapsulates the 

attributes and methods specific to it, the state of an object can be returned from a function, 

can be saved in an object of type “typestate” or can be passed on as an argument to a 

function. 

 

We use SCOOP to introduce a language-based approach for dynamic adaptation. A stated 

object can dynamically adapt to an entirely new typestate behavior that was not known at the 

time of compiling that stated object.  
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1.4 Contribution of Thesis 

 

This thesis advances the features and architecture for encapsulating explicit typestate in 

objects for better clarity of programs, as discussed in Chapter 5. The proposed SCOOP 

language, described in Section 5.3,  has not been implemented. However, we present related 

components and techniques to achieve the overall desired objectives of the proposed 

language. We integrate many aspects of typestate and their solutions into one programming 

model, SCOOP. Both an object and its typestate as a first class language concept are 

introduced for the first time, to the best of our knowledge, which we argue allows for 

increased flexibility of stated objects.  

 

SCOOP provides a technique for typestate checking under aliasing. A novel “automated alias 

analysis” is performed that exploits the proposed alias table, as discussed in Section 5.14 and 

5.15. We propose a flow-sensitive stated type system in Section 5.4. The proposed stated 

type system performs typestate analysis by using a proposed implementation technique for 

stated objects, the “proxy and state class” architecture, in Section 5.10. The proposed “proxy 

and state class” architecture allows static detection of invalid invocation of methods by using 

the instances of state class.  

 

Our proposed approach to static and dynamic typestate checking is without any additional 

program annotation. Typestate checking is performed along with static analysis; therefore, a 

separate typestate analysis phase is not required. SCOOP proposes a built-in transition 

function that can be used to directly transition an object to another typestate. Further, SCOOP 

proposes the translation of programmer-defined code to intermediate code that is amenable to 

compiler interpretation of object typestates. 

  

Our proposed typestate checking technique, presented in Section 5.17, generates a compile 

time error or a warning for any invalid method invocation, allowing the programmer to write 

safe code. If neither an error nor a warning is generated at compile time then it is assured that 

the code does not contain any method invocation that is invalid for reasons of state. 
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A novel “proxy and state class” architecture that allows static typestate checking in the 

presence of aliasing is proposed in Section 5.10. The proposed architecture does not impose 

any limitation on aliasing and it is generalized to allow typestate extension and subclassing of 

stated objects simultaneously.  

 

A novel typestate checking technique is proposed that statically computes the set of current 

possible typestates of a stated object and updates each alias of that object to be aware of that 

set of typestates. 

 

Implementation techniques for typestate invariants and invariant binding are proposed in 

Sections 6.3 and 6.5 respectively. The implementation technique for typestate invariants 

introduces a novel invariant table concept. The notion of invariant table is generalized 

enough to allow typestate extension and sub classing simultaneously. The stated type system 

proposes to synchronize the external typestate and its internal typestate invariant. Further the 

proposed invariant table ensures that each typestate is aware of its typestate invariant data. 

An implication of our proposed implementation technique for typestate invariants is that the 

“memento” design pattern is supported by SCOOP as a built-in feature. 

 

We propose a SCOOP language-based dynamic adaptation technique for autonomic 

computing. Our proposed novel dynamic adaptation technique, based on replacing typestate-

related behavior of stated objects, allows a specific typestate-related part of an object to be 

replaced dynamically. This typestate-based dynamic adaptation is also achieved due to the 

generality of the proposed novel ‘proxy and state class’ architecture. 

 

 In Section 7.4, several algorithms are introduced that can implement the dynamic swapping 

of typestate behavior at run time, even in the case of sub classing and extended typestate.  

 

We also present the ability of SCOOP programs to be directly model-checked by model 

checking software. 
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1.5 Thesis Orientation 

 

Chapter 2: 

In this chapter, we present the main concepts and the features supported by our proposed 

SCOOP. 

 

Chapter 3: 

In this chapter, we present several case studies of business and control-related or embedded 

applications that can benefit from SCOOP. The purpose of this chapter is to demonstrate that 

many programming scenarios can be thought of as finite state machines. 

 

Chapter 4: 

In this chapter, we present background and related work. Comparison is made with earlier 

state oriented approaches and the distinguishing features of the proposed SCOOP are also 

mentioned. 

 

Chapter 5: 

In this chapter, the basic theoretical concepts of SCOOP are discussed. The syntax of a 

sample program written in the proposed SCOOP language is given in Figure 5.1. Figure 5.2 

illustrates the translation of programmer-defined code by SCOOP. The architecture to 

organize the states in a stated object is given in Section 5.10. In Section 5.3, a context free 

grammar of the proposed SCOOP language is discussed. Later in the chapter, several related 

components and techniques for static analysis of SCOOP programs are presented. Overall, 

these components and techniques allow static typestate checking in the presence of aliasing. 

 

Chapter 6: 

In this chapter, we present a typestate invariant implementation technique. The use of an 

invariant table is also presented. The idea of default “state preservation” by SCOOP is 

introduced. 
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Chapter 7: 

In this chapter, we present a dynamic adaptation technique based on replacing the “typestate 

structure” of a stated object. 

 

Chapter 8: 

In this chapter, we present how SCOOP can be exploited for model checking.  

 

Chapter 9: 

We conclude the thesis and mention the future directions of work in this chapter. 
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Chapter 2  
 

2 Main Concepts 

 

In order to achieve the best implementation, SCOOP is based on precise definitions and well-

defined fundamental concepts. We emphasize that research in this area should differentiate 

between the stated object type and typestate. Therefore, we first present the definitions of 

related concepts and then we propose an architecture for SCOOP that aligns with the well-

defined fundamental concepts. At the conceptual level, our definitions coincide with the 

originally proposed typestate concepts in [23], but our revision of these underlying concepts, 

specific to object oriented programming, is significant.  

 

2.1 Definitions  

 

In OOP an object type is a description of a set of fields (data members and methods) of the 

object without giving any implementation [25]. Similarly, in SCOOP a stated object type is a 

description of a set of fields (data members and methods) and a set of typestates of the stated 

object without giving any implementation. 

 

Definition of Typestate  

In this thesis we consider each object to have a property called its "typestate".  The typestate 

of an object has a value belonging to a finite set, and is used as a label.   As we shall see later, 

the set of methods or fields available in the object will depend on the value of the object's 

typestate, and executing methods of the object may change its typestate.  The only operations 

available on typestates are tests for equality or inequality of typestates. We write TO for the 

set of typestates available to the object O. 

 

Formally, we may identify these typesates with the set of methods and fields that are 

available when the object is in that typestate. 
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Definition of Stated Object Class 

A "stated object class" is tuple (C, T, B, M, β, μ, ν) consisting of an object class, C, together 

with a set of typestates, T, a set of field labels, B, and a set of method labels, M, together with 

three mappings β, μ and ν. 

 

The mapping β: T  2
B
 specifies the subset of fields available to an object in a given 

typestate. 

 

The mapping μ: T  2
M

, specifies the subset of methods that are available an objects in a 

given typestate.  

 

The mapping ν: T × M  2
T
 specifies the set of possible resulting typestates from invoking a 

given method from an object in a given typestate. 

   

Definition of Stated Object 

A “stated object” is an object belonging to stated object class. It may be viewed as an ordered 

pair s = (o, t) ∈ C × T, where the fields and methods available are given by β (t) and μ (t), 

respectively.   

 

2.2 Typestate 

 

In conventional OOP, an object encapsulates its fields (data) and methods (behavior) [2]. We 

propose that a typestate of an object can be thought of as a new kind of property, in addition 

to the attributes and methods of the object. The explicitly defined typestates within a class 

form part of the object interface. We refer to such a “typestate” as an external typestate of the 

object that is always publicly accessible.  
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The type of an object defines some conditions, or rules, for the object. For instance, it defines 

the selected kinds of instances that can only be assigned to the object referent. Further, the 

type defines the description of the interface of an object without implementation [25]. The 

interface includes the selected fields (data members and methods) that can only be invoked 

by the object. The conditions defined by the object type are validated by the type system. The 

type system detects, either statically or dynamically, any violation of those conditions. Type 

theory for conventional object oriented programming has been studied and has a sound 

foundation. However, type theory for OOP does not include any specification for the 

explicitly defined typestates of an object.  

 

In order to address the issues for typestate, we need to have a type system with support for 

typestates [23] rather than a conventional type system as for conventional object oriented 

programming. We refer to such a type system with typestates as a “stated type system”. 

Typestate is the theoretical basis for the state abstraction feature. Considering typestate as a 

formal representation allows a stated type system to be subject to formal reasoning. For 

example, a stated type system can perform global analysis for typestate tracking of stated 

objects.  

 

A typestate defines the conditions or rules of an object for a given state of that object, and it 

describes the state of the object without implementation. For example, it defines the fields 

(attributes and methods) particular to a state of the object. Effectively, a stated type system 

enforces the conditions defined by typestates.  

 

A stated object during its life-time holds one type but possibly transitions among its many 

typestates. A fully qualified typestate of a stated object is given by (type, typestate). E.g. the 

openfile typestate of an object of type ‘File’ can also be represented as (File, openfile) and it 

can transition to (File, closefile). It is important to highlight that when a stated object 

switches from one typestate to another, its corresponding typestate changes but its type 

remains the same. 
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2.3 Software Verification  

 

Software verification can be viewed in one way as a process performed directly by the 

programming language. In this case, verification includes static analysis, i.e. at compile time, 

to detect invalid field invocations of a software object according to the current typestate. 

Therefore, static typestate checking allows for writing safer code by finding at compile time 

whether a programmer has attempted to use a method or data member of a stated object that 

should not be accessible in its current state. This view of software verification captures the 

notion of object protocol.  

 

2.4 The Object Protocol 

 

The current typestate of an object determines the set of accessible attributes and methods that 

are available or make sense for the object. We call this the object’s “protocol” [4]. The set of 

accessible methods varies with the change of an object’s typestate. Therefore, the current 

typestate of an object controls the available behavior of the object. For instance, a method of 

an object that is available in one typestate may not be available in another typestate.  

 

In conventional object oriented programming, the typestates of an object are not explicitly 

exhibited by the object; therefore, the current typestate cannot be detected. In SCOOP we can 

directly detect the set of possible current typestates of an object because they are explicitly 

defined. 

 

The method invocations that should not be accessible in a specific typestate of an object are 

referred to as “invalid” methods. Invalid method invocations cause run time exceptions or 

unexpected results. SCOOP uses compile-time analysis to find invalid method invocations, 

thus helping programmers to write safe code. Detecting an invalid method invocation 

according to the current typestate, i.e. violation of object protocol, is contingent on whether 

the current typestate of an object can be detected or not.  
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2.5 Typestate Based Polymorphism 

 

Typestates allow a new kind of polymorphism. Different implementations of functions 

having the same signature may coexist in different typestates, leading to typestate based 

polymorphism. This feature is studied in [17, 18, 20, 21, 22, 24] and supported by SCOOP as 

well. 

 

2.6 The Typestate Invariant 

 

In conventional object oriented programming, the programmer uses attributes to represent the 

state of an object. In state controlled object oriented programming, the language processor 

recognizes the attributes (data) of an object as the typestate invariants, as discussed in 

Chapter 6. The external typestates of an object are tied up with typestate invariants. These 

attributes represent the internal state of the object. Our proposed stated type system also 

tracks the external typestate by monitoring the typestate invariants of a typestate. 

 

For instance, the openfile typestate of a ‘File’ object can be associated with the ‘filepointer’ 

attribute of the ‘File’ object. Such an association can be controlled by a rule. In this case, a 

rule can be defined such that if ‘File’ is in the openfile state then the ‘filepointer’ attribute 

must hold a valid address of a file control block in memory and cannot be null.  

 

2.7 Typestate Extension 

 

SCOOP allows for the extension of a typestate. The typestates of an object, defined at the 

time of object definition, are not necessarily fixed but can also be extended through 

subclasses. A subclass can override the typestate of its parent class and may override all 

methods of the typestate of the parent class. Moreover, in the subclass the overridden 

typestate can be extended. Typestate extension is illustrated in Section 6.6 and Section 6.7. 
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2.8 Typestate Mapping 

 

In software systems, interacting objects are likely to have interdependent typestates. In such 

circumstances, we need to have a mechanism for mapping similar or interdependent 

typestates of the objects. For instance, a printer and a cartridge are two objects arranged in 

such a way that the printer includes a cartridge. Since the printer includes the cartridge, we 

refer to the printer as a composite object. Their behavior and typestates are also similar to 

each other. If the cartridge is in the fullcharged typestate, so is the printer. If the cartridge is 

in the halfcharged typestate, so is the printer. The mapping of similar typestates of these 

objects can enforce that whenever the printer transitions to the fullcharged typestate then the 

cartridge must also transition to the corresponding typestate.  

 

An obvious benefit of such mappings is that the programmer need not take care of 

transitioning the typestate of corresponding objects. The transition of a typestate in one 

object can automatically transition the mapped typestate of the corresponding object. This is 

illustrated in Case Study 7.5.1. 

 

2.9 State Preservation  

 

In conventional OOP, as previously mentioned, attributes (data members) represent the states 

of an object. Therefore, in order to preserve state, each and every state data member of an 

object has to be extracted by the programmer and passed on to another function one by one. 

Otherwise the programmer needs to write a separate function to package all its state data 

members in the form of a data structure, e.g. an ‘Array’. This is how state can be preserved. 

Alternatively the “memento” design pattern has to be implemented and used by the 

programmer to preserve the state. 

 

One of the contributions of our proposed state controlled object oriented programming over 

conventional object oriented programming is that the state controlled object oriented 

language maintains and is aware of all typestate data of stated objects, which can be extracted 
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just by using the external typestate name, i.e. a single piece of information. The external 

typestate data can be passed on to another stated object. This is an implication of the fact that 

state is a first class language concept in SCOOP. This “state preservation” capability allows a 

programmer to write simpler code. It is described in Section 6.8. 

 

2.10 Dynamic Adaptation 

 

Dynamic adaptation is one of the desired requirements of autonomic computing [27, 34 - 40, 

42]. SCOOP proposes that partial behavior particular to a typestate of a stated object can be 

modified dynamically. The rest of the typestates, data and behavior associated with each 

typestate remain intact. This is unlike conventional object oriented programming. In 

conventional object oriented programming, if we replace an object with another object 

instance then the entire object instance is overwritten, such that all of its typestate data and 

the behavior associated with any typestate is replaced.  

 

Such dynamic adaptation is desirable in many software development cases [41, 42]. This is 

illustrated in the ‘Queue’ stated object Case Study 3.11 and ‘File’ stated object Case Study 

3.14. We also consider the dynamic adaptation behavior of an encrypted message over a 

network in Section 7.2. 

 

2.11 Feasible for Model Checking 

 

Model checking is usually applied at the software design level rather than at the software 

source code level because source code does not exhibit any representation suitable for model 

checking. The inability to model check source code results in the inability to catch software 

bugs introduced in the source code. In order to catch errors in source code through model 

checking, we require that the source code have an abstraction that exhibits a suitable 

representation for model checking, such that a model of source code can be built. We 

demonstrate in Chapter 9 that SCOOP can be used to model check its programs. 
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Chapter 3  
 

3 Case Studies of SCOOP 

 

Many software applications and software objects adhere to the behavior of finite state 

machines. These software applications span from system level software to higher level 

applications, control-related embedded software to business applications, basic data 

structures to programming languages, robotics and automation to communication systems, 

word processing to scientific and mathematical tools etc. We argue that SCOOP is useful for 

writing these kinds of software applications because SCOOP allows object states to be 

directly encoded, leading to increased readability. Implementing these applications using 

stated objects also helps the programmer to avoid writing state maintenance code. 

 

In this chapter, we illustrate these software applications and a set of objects that behave 

similarly to FSA. In Appendix B, we illustrate a stated object coded in SCOOP. Its 

equivalent code in OOP is also presented using conditional constructs and a state design 

pattern, demonstrating that SCOOP code is more readable. 

 

3.1 Screen Redraw Thread 

 

An operating system is a system-level program that creates many threads to perform different 

tasks at the same time. In such a multitasking system, an application (e.g. a ‘digital circuit 

simulation’ application) running on the operating system, can initiate more than one thread of 

execution to perform different tasks simultaneously. When the digital circuit simulation 

application is run, the operating system creates a process and the application is loaded into 

that process. Each thread created by the ‘digital circuit simulation’ application exploits the 

corresponding operating system thread feature. The operating system, e.g. Windows, 

provides a thread object that exists in different states during its life time [8]. The state 
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diagram in Figure 3.1, from [8], shows the typical states of a thread. We argue that the thread 

object can better be represented by a stated thread object because a stated thread object has a 

default feature to maintain its states. In the case of conventional (non-stated) thread objects, 

the operating system and conventional object oriented programming language need to keep 

track of thread states by themselves. Typically a ‘Windows’ thread is in one of six states, as 

in Figure 3.1. The states of a thread object are described in Table 3.1. 

 

State Description 

ready May be scheduled for execution. The microkernel dispatcher keeps track of 

all ready threads and schedules them in priority order. 

standby A standby thread has been selected to run next on a particular processor. The 

thread waits in this state until that processor is made available. If the standby 

thread's priority is high enough, the running thread on that processor may be 

preempted in favor of the standby thread. Otherwise, the standby thread waits 

until the running thread blocks or exhausts its time slice. 

running Once the microkernel performs a thread or process switch, the standby thread 

enters the running state and begins execution and continues execution until it 

is preempted, exhausts its time slice, blocks, or terminates. In the first two 

cases, it goes back to the ready state. 

waiting A thread enters the waiting state when (1) it is blocked on an event (e.g., I/O), 

(2) it voluntarily waits for synchronization purposes, or (3) an environment 

subsystem directs the thread to suspend itself. When the waiting condition is 

satisfied, the thread moves to the Ready state if all of its resources are 

available. 

transition A thread enters this state after waiting if it is ready to run but the resources 

are not available. For example, the thread's stack may be paged out of 

memory. When the resources are available, the thread goes to the Ready state 

terminated A thread can be terminated by itself, by another thread, or when its parent 

process terminates. Once housekeeping chores are completed, the thread is 

removed from the system, or it may be retained by the executive for future re-

initialization. 

Table 3.1 ‘Windows NT Thread’ Stated Object States, from [8] 
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Figure 3.1 ‘Windows NT Thread’ Stated Object Model, from [8] 

 

In this case study, we illustrate how a ‘digital circuit simulation’ application has a distinct 

functional component that redraws the screen because of scroll bar positioning or a screen 

resize request from the user. This functional component has a ‘redraw’ function that keeps a 

record of the screen data i.e. the logic symbols and gates currently drawn by the user. The 

‘redraw’ function gets the current screen size and scroll bar position and redraws the screen 

data accordingly. If for some reason drawing the screen data is time consuming, then the 

redraw operation calls the ‘sleep’ method to temporarily suspend the drawing operation so 

that other threads can continue their task. 

 

The ‘digital circuit simulation’ application creates a separate thread, i.e. a redraw thread, and 

invokes the redraw method through the redraw thread. The operating system starts the redraw 

thread from its ready state and if no other thread is available, then the redraw thread is picked 

up and transitioned to the standby state. If the processor is available then the redraw thread is 

transitioned from the standby state to the running state right away and starts drawing the 

screen. While drawing the current screen of the simulation, the redraw function suspends the 

thread for one hundred milliseconds. After the suspension has timed out, the redraw thread is 

re-transitioned to the ready state by the operating system. If no other thread is in the queue, 

then this thread is transitioned to the standby state by the operating system and is then 



 

20 
 

brought to the running state. As soon as the redraw thread is transitioned to the running state, 

the drawing operation continues from where it was suspended. 

 

3.2 Electronic Workbench (EWB) Stated Process   

 

Usually an operating system process switches states when the operating system transfers the 

control of execution from one process to another process. Switching of process states is 

required so that a process cannot monopolize the processor. Due to this requirement to switch 

among states, the usual process object can be better represented by a stated process object 

because the stated object inherently maintains the states and transitions of the object. 

Representing a process by a stated process object also helps to reduce the responsibility of 

the operating system to track the data structures used for keeping the state information of the 

process. This is because the stated process object keeps track of its state information by 

default. According to one of the adopted standards [8], a process typically realizes seven 

states. These well-defined seven process states, given in the table below, can be used as the 

seven states of the stated process object.  

 

Table 3.2 ‘Process’ Stated Object States, from [8] 

 

In the process state diagram, Figure 3.2, from [8], a transition arc from each state to the exit 

state is implicit but not shown for clarity. However, it is possible that from any state the 

States Description 

New A process that has just been created but has not yet been admitted to the 

pool of executable processes by the operating system. 

ready A process is in main memory and is prepared to execute when given the 

opportunity. 

ready/suspend A process is in secondary memory but is available for execution as soon as 

it is loaded into main memory. 

running A process that is currently being executed.  

blocked/suspend A process is in secondary memory and awaiting an event. 

blocked A process is in main memory and awaiting an event to occur. 

Exit A process that has been released from the pool of executable processes, 

either because it halted or because it aborted for some reason. 
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process can be transitioned to the exit state either because the user decides to close the 

process or the operating system forces the process to exit. 

 

Figure 3.2  ‘Process’ Stated Object Model, from [8] 
 

Let us assume that the operating system receives a user request to initiate an Electronic 

Workbench (EWB) software application. The operating system creates the EWB stated 

process object, in the new state, so that it can load the EWB application in the EWB process 

space. The EWB application is supposed to be loaded in a single thread. Immediately after 

creating the stated process object, the operating system invokes the ‘admit’ function that 

transitions the EWB process object to the ready state and the EWB application is loaded in 

the EWB process space in main memory. If the operating system is already running enough 

processes, the EWB stated process is kept in the ready state for a period of time and the user 

has to wait. After waiting, the operating system invokes the ‘dispatch’ function to transition 

the EWB process to the running state and the EWB application starts execution. The EWB 

application is now running and the user can interact and use the EWB application as long as 

its EWB process is in the running state. 

 

When the user requests the EWB application to open an existing workbench file, the EWB 

switches to ‘file_open’ mode to wait for the user to select and issue the ‘open’ command for 

the selected file. Now the operating system realizes that the EWB application has to wait for 

an event to occur. Therefore, the operating system transitions the EWB process to its blocked 

state. When the user has selected the file to open and the ‘open’ method is invoked then the 
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operating system catches the ‘file_open’ event along with the selected file name. 

Furthermore, the operating system issues the ‘event_occurred’ command to transition the 

EWB process object from its blocked state to the ready state. If there is no other ready 

process in the ready state queue then operating system can transition the EWB process object 

to the running state immediately and the EWB application can proceed to load the selected 

file to open in the EWB application.  

 

If the EWB process is in the running state then the user can use the EWB application. If the 

user selects the ‘close’ command for the EWB application, then the operating system 

transitions the EWB process to the exit state and the EWB application is unloaded from main 

memory, i.e. the EWB application is unloaded from the EWB process space. Since the screen 

handle is not readily available, the redraw thread is transitioned to its transition state and the 

EWB process stays in its blocked state. As soon as the screen handle is released by the other 

process, the operating system triggers the ‘screen_available’ event to the EWB process while 

passing along the screen handle. Now the EWB window transitions to its ready state, triggers 

the ‘resource_ available’ event to the redraw thread that transitions the redraw thread to its 

ready state. According to the scheduling of the operating system, the redraw thread is 

transitioned to its standby state where it is eventually switched back to its running state and 

continues the screen redraw operation from where it was suspended. 

 

3.3 Electronic Workbench Stated Process With a Stated 
Screen Redraw Thread  

 

In this case study we illustrate that the software objects of Case Study 3.1 and 3.2 can be 

collectively used as stated objects. The electronic workbench (EWB) application creates a 

new thread and runs the screen redraw component on that ‘redraw’ thread. If a process is in 

the running state, it may spawn a new thread to run within the same process. In this case, the 

stated ‘process’ object is composed of a stated ‘thread’ object or a stated ‘thread’ object is a 

component of the stated ‘process’ object. The ‘process’ is referred to as the parent process 

and the spawned ‘thread’ is referred to as the child thread. The parent ‘process’ and child 

‘thread’ need to communicate and cooperate with each other. Both the ‘process’ and the 
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‘thread’ object will exist in their respective states as mentioned in the state diagrams in 

Figure 3.1 and Figure 3.2 respectively. Note that the possible state transitions of a parent 

‘process’ and child ‘thread’ can be dependent on each other. For instance, if a parent 

‘process’ goes to the exit state then the operating system can force the child ‘thread’ to 

transition to the exit state. It is also possible that the transition of the child ‘thread’ to its 

blocked state leads the operating system to transition the parent ‘process’ to its blocked state. 

The operating system allows a child ‘thread’ to be instantiated in its new state only when the 

parent ‘process’ is in the running state. In some cases, it may also be mandatory that a child 

thread can be in its running state only if the parent ‘process’ is in its running state. Such an 

interdependence of states can be defined by the state mapping feature of the stated object, in 

Section 2.8. Once the programmer has defined the interdependence between the states of 

‘process’ and ‘thread’ objects, the state controlled object oriented language will track any 

violation of the state interdependence. 

 

In this example, we illustrate the interdependence between the EWB process and its ‘screen 

redraw’ thread. The EWB application creates a separate thread and runs the screen redraw 

component on that redraw thread. The EWB process is created in its new state by the 

operating system due to the user’s request to initiate the EWB application. The operating 

system transitions the process to the ready state from its new state and then transitions the 

EWB process to the running state. When in its running state, the EWB process initiates a 

screen redraw thread in its ready typestate. The redraw thread will be immediately 

transitioned to the standby state by the operating system if there are no other threads to run. 

As the EWB process is still in its running state and the processor is not busy executing any 

other thread, the screen redraw thread is transitioned to the running state because the user has 

resized the EWB window. While redrawing the EWB screen with the redraw thread, the 

operating system can take the ‘screen handle’ from the redraw thread and assign it to another 

process. Since the screen handle, i.e. an I/O resource, is not available for the redraw thread, 

the operating system transitions the redraw thread to its waiting state. Transitioning the 

redraw thread to the waiting state also leads the operating system to transition the EWB 

process to its blocked state. At this stage, the EWB application window is disabled and the 

mouse cursor turns to its busy state as long as it is over the EWB application window.  
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3.4 Lexical Analyzer 

 

Lexical analysis is a well-known application of finite state automata. A lexical analyzer reads 

source code character by character, separates the lexemes, and generates tokens. The lexical 

analyzer recognizes a certain number of classes (categories) and generates the tokens 

corresponding to each of these classes. Whenever the lexical analyzer finds a lexeme, it 

transitions to a specific state corresponding to that lexeme so that a corresponding token can 

be generated from that specific state. Most of the states given in the table below generate a 

corresponding token, as is obvious from the state name. A state diagram for a lexical 

analyzer is given in Figure 3.3. While scanning the characters, the lexical analyzer may 

encounter separator characters, e.g. space, tab, new line, punctuation, which determine that 

the characters read so far make up a lexeme. The lexical analyzer then begins scanning from 

its initial state. While scanning source code characters from any state of the lexical analyzer, 

an invalid or erroneous character may also be found that also serves as a separator. In the 

case of an invalid character, an ‘error’ token is generated for that lexeme and control is 

transitioned back to the initial state to restart scanning from the next character to find the 

next lexeme. After scanning a single character from the initial state, the lexical analyzer 

either knows to exactly what class the lexeme belongs or to what potential class that lexeme 

may belong. In both cases the lexical analyzer transitions its control to the corresponding 

state. Below, we describe below a few possible transitions of the lexical analyzer from its 

initial state according to a single character scanned. 

 

 If the character read is a punctuation symbol, e.g. a semicolon, then the lexical analyzer 

will transition to its punctuator state. From the punctuator state, a token for punctuation 

is generated and control is transitioned back to the initial state to restart scanning from 

the next character to determine the next lexeme. 

 

 If the character read is a letter, e.g. ‘a’, then the lexical analyzer will transition to its 

identifier state because a letter means that the lexeme is potentially an identifier or a 

keyword. In the identifier state, subsequent characters are being read until a separator is 

detected so that a complete lexeme is found. Upon detection of a complete lexeme in the 
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identifier state, the identifier state will decide whether or not the lexeme belongs to a 

keyword. If the lexeme is a keyword then a ‘token’ for the keyword will be generated 

from the identifier state. Otherwise a token for the identifier will be generated and control 

will be transferred back to the initial state to restart scanning to identify the next lexeme. 

 

 If the character read is a numeric literal symbol, e.g. a digit six “6”, then the lexical 

analyzer will transition to its literal state because the complete lexeme is potentially a 

numeric literal. From the literal state, scanning continues to read the later digits of the 

number. Once a complete numeric lexeme is found, a literal token is generated from the 

literal state and control is transitioned back to the initial state to restart scanning to 

identify the next lexeme. 

             

Figure 3.3. ‘Lexical Analyzer’ Stated Object Model 

 

The states given in the following table are named after the typical token class names. A 

corresponding token is generated as soon as a complete lexeme is found in a particular state.  
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Therefore, we argue that we can better implement the lexical analyzer as a stated object that 

exists among any of its states.  

  

State Description  

initial Upon reading a single character, control of lexical analyzer is 

transitioned to either of the following states.  

identifier This state determines the lexeme by continuing to read the 

characters. When a lexeme is found, then this state searches for 

whether the lexeme belongs to a ‘keyword’, then a keyword token is 

generated, otherwise an ‘identifier’ token is generated. 

whiteSpace This state continues reading the space or tab characters unless 

another character is found. As long as any other character is found, 

control is switched back to the initial state. No token for space or tab 

etc. is generated. 

punctuators This state generates a punctuator token and pass control back to the 

initial state. 

eqOp The initial state transitions to this state if an equals symbol (=) is 

found. This state scans the next character. If the next character is not 

a valid character then the ‘equal operator’ token is generated. 

relOp Control is switched to this state if a relation operator is found. This 

state generates a token for the relational operator. 

relOp_half Control is switched to this state if a half part of the relational 

operator is read. This state reads the next half part of the relational 

operator and passes control to the relOp state. 

not  This state recognizes the not (!) operator as the first part of not equal 

to  (!=) operator and looks for the equal operator.  

plusOp This state generates a token for the ‘plus’ operator (+). 

inc_dec_Op This state generates a token for the ‘increment decrement’ operator. 

E.g. ++ or -- .   

aritOp This state generates a token for the ‘arithmetic’ operator. 

Lit This state generates a token for the ‘numeric’ literal. 

Dot This state reads the character and checks if a dot symbol is found. 

lit_float This state recognizes the decimal part of a floating literal and 

generates a token for the floating numeric literal. 

nxt_Line This state generates no token and simply decides that a next line 

character is found and transitions back to the initial state upon 

occurrence of the next character. 

Table 3.3 ‘Lexical Analyzer’ Stated Object States 
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3.5 A Simple Two Tank Pumping System  

 

In this case study, we illustrate that a two tank pumping system is a finite state model and 

therefore a software application for such a system can be directly written and better 

represented by stated objects. This example was previously used to illustrate the application 

of model checking by representing this system in a model checking language [7]. We argue, 

in Chapter 8, that if such applications are already coded as stated objects then the application 

could be transformed to a model checking language directly and conveniently. This is 

because the stated object oriented code itself exhibits the possible states of the system that 

can be used directly to make a model. Thus, stated objects increase readability for model 

checking as well.  

 

This is a case study of a simple pumping control system. The water is transferred by Pump P 

from a source Tank A to another sink Tank B. Each tank has two level meters, one to detect 

whether its level is empty and the other to detect whether its level is full. The tank level is at 

the ok state if the water level is above the empty meter but below the full meter. Initially, 

both tanks are in their empty state but water can be supplied to the source Tank A from an 

external pipe. The pump is to be transitioned to its on state as soon as the water level in Tank 

A reaches its ok state from the empty state, provided that Tank B is not in its full state. The 

pump remains in its on state as long as Tank A is not in its empty state and as long as Tank B 

is not in its full state. The pump is to be transitioned to its off state as soon as either Tank A 

transitions to its empty state or Tank B transitions to its full state. The system should not 

attempt to transition the pump to its off (on) state if it is already in its off (on) state. While 

this example may appear trivial, it may easily extend to a controller for a complex network of 

pumps and pipes to control multiple sources and sink tanks, such as those in water treatment 

facilities or chemical production plants. The possible states of the source tank A as a stated 

object are described below. 
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State Description 

empty If water level is equal to or less than Empty marker. 

Ok If water level is greater than Empty marker and less than Full marker. 

Full If water level is less than or equal to Full marker. 

Table 3.4 ‘Tank A’ Stated Object States 

The possible states of sink Tank B as a stated object are as below. 

State Description 

empty If water level is equal to or less than Empty marker. 

Ok If water level is greater than Empty marker and less than Full marker. 

Full If water level is less than or equal to Full marker. 

Table 3.5 ‘Tank B’ Stated Object States 

 

The possible states of the pump as a stated object are as below. 

State Description 

On If pump is switched on. 

Off If pump is switched off. 

Table 3.6 ‘Pump’ Stated Object States 

 

3.6 CIP System 

 

A cleaning in place (CIP) pumping system can be modeled by a finite state automaton 

(Figure 3.4);therefore, a software application for such a system can be directly written and 

better represented by stated objects. The transitions in Figure 3.4 represent the events of the 

CIP system. Upon any occurrence of an event, the system triggers the corresponding 

transition. We argue, in Chapter 8, that if such applications are already coded as stated 

objects then the application could be transformed to a model checking language directly and 

conveniently.  

 

This case study is a customized case of a typical CIP system that is often used in the 

chemical industry. The system has three pumps (P1, P2 and P3) and three tanks (A, B and C).  

Each tank has two level meters, one to detect whether its level is empty and the other to 

detect whether its level is full. The tank level is at the ok state if the solution level is above 
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the empty meter but below the full meter. Each pump can be transitioned to its on state or off 

state. Initially, all three tanks are in their empty state and all pumps are in their off state. 

Pump P1 pumps the solution to Tank A, P2 pumps the solution from Tank A to B and C. 

Finally P3 pumps the solution out of the three Tanks A, B and C to vacate the tanks and 

output the CIP return. A combination of different states of these Tanks and Pumps will make 

up the states of the whole system. 

 

Pump P1 is transitioned to its on state manually. As soon as the solution level in Tank A 

reaches its ok state from the empty state, then pump P2 transitions to its on state and pumps 

the solution from Tank A to Tanks B and C, provided that Tank B and C are not in their full 

state. Pump P2 remains in its on state as long as Tank A is not in its empty state and Tank B 

or C are not in their full state.  As soon as Tank A reaches its full state, pump P1 transitions 

to its off state. Pump P2 transitions to its off state as soon as Tank B or C transitions to its full 

state. As soon as Tank B or C transitions to its full state then pump P3 transistions to its on 

state. The system should not attempt to transition a pump to its off (on) state if it is already in 

its off (on) state. We define the overall states of the system in terms of combinations of 

different states of the Pumps and Tanks as below. 

 

 

State Description 

K P1=off, P2=off, P3=off, A=empty, B=empty, C=empty 

L P1=on, P2=off, P3=off, A=empty, B=empty, C=empty 

M P1=on, P2=on, P3=off, A=ok, B=empty, C=empty 

N P1=on, P2=on, P3=off, A=ok, B= ok, C= ok 

O P1=off, P2=on, P3=off, A=full, B=ok, C=ok 

P P1=off, P2=on, P3=off, A=ok, B=ok, C=ok 

Q P1=off, P2=off, P3=off, A=ok, B=full, C=full 

R P1=off, P2=off, P3=off, A=empty, B=full, C=full 

Table 3.7 ‘CIP System’ Stated Object States 
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Figure 3.4 ‘CIP System’ Stated Object Model 

 

3.7 Digital Counter Composed of Flip-Flops 

 

In this case study, we show that a digital counter can be made up of flip flops [9]. Each flip-

flop has two states: enabled (ebl) or disabled (dbl). Therefore, flip flops can be viewed as 

stated objects. Two flip-flops can exhibit a combination of states as ebl-ebl, dbl-dbl, ebl-dbl 

and dbl-ebl. These combination states can be viewed as the states of a counter stated object 

that is composed of these two flip-flops. Therefore, a digital counter with n flip-flops is a 

stated object having 2
n
 states as it is composed of a number of flip-flop stated objects. 

 

3.8 Master Detail Data Entry and Navigation Form 

 

In this case study, we show that a typical ‘data entry and navigation form’ for a database 

application can have many display states and can be coded with a stated ‘Form’ object. Both 

the GUI and the underlying mechanism of this ‘Form’ object demonstrate the FSA 

functionality. To display data from a one-to-many underlying table of a database, we often 

use a typical ‘Form’ which has two parts. The first part displays data from one row of the 

master table and the second part of the ‘Form’ display all the detail data rows corresponding 

to the row shown in the first part. In other words, the first part displays one row from the 

master table and the second part could possibly display many rows from the detail table 

corresponding to the one row displayed in the first part of the ‘Form’. Initially when the 



 

31 
 

‘Form’ is loaded then it is possible that there is no row in the table to display, so the ‘Form’ 

will be displayed without any data, i.e. in the empty_form state. If the ‘Form’ has at least one 

row in the master table then the ‘Form’ will display the first row and will be in the 

display_first_row state.  

 

The ‘Form’ has two kinds of buttons: navigation and data buttons. Using the navigation 

buttons, the user can move to other records. Using the data buttons, the user can modify the 

data of rows. The buttons can be enabled or disabled depending on the current state of the 

‘Form’. Using the NEXT navigation buttons on the ‘Form’, the user can invoke the ‘next’ 

method of the ‘Form’ to display the next row and the ‘Form’ will transition to the 

display_intermediate_rows state from the display_first_row state. The ‘next’ method of the 

display_first_row state will transition the ‘Form’ to the display_intermediate_rows state if 

there are more than two rows in the underlying master table. The ‘next’ method of the 

display_first_row state will transition the ‘Form’ to the display_last_row state, if there are 

only two rows in the underlying master table. Similarly, the user can also invoke the ‘edit’ or 

‘addnew’ methods and the ‘Form’ will transition to the corresponding display state. From the 

edit or addnew state, the user may attempt to invoke either the ‘save’ method to save the data 

or the ‘cancel’ method to exit the ‘edit’ or ‘addnew’ method. The ‘cancel’ method transitions 

the ‘Form’ to the same previous state from where the ‘edit’ or ‘addnew’ method was 

invoked. This shows that the stated object may also act as a mechanism to track its last state 

or a history of its previous state transitions. The table below shows all the states of the 

‘Master Detail Data Entry and Navigation Form’ as a stated object. 
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State Description 

empty_form There is no row in the table to display therefore the ‘Form’ 

displays all empty fields and all navigation and data buttons 

are disabled except the ‘AddNew’ button. All fields are 

disabled. 

display_first_row The first row from the table is shown and the navigation 

and data buttons are enabled. All fields are disabled. 

display_intermediate_rows The intermediate rows from the table are shown. The 

navigation and data buttons are disabled. All fields are 

disabled. 

display_last_row The last row is shown. All buttons are enabled except the 

Next button. All fields are disabled. 

Edit All fields are enabled. All buttons are disabled except the 

Cancel and Save buttons. 

Addnew All fields are enabled. All buttons are disabled except the 

Cancel and Save buttons. 

Table 3.8 ‘Master Detail Data Entry and Navigation Form’ Stated Object States 

 

3.9 Elevator 

 

We illustrate from [11] a state-machine model of an elevator. A software application may 

need to simulate an elevator as a stated object. For simplicity in this case study, the elevator 

does not actually change floors. The only possible input to the elevator is to open or close its 

doors, or do nothing. So, the possible inputs to this machine could be to invoke the methods 

‘command_open’, ‘command_close’ and ‘no_command’. 

 

The doors of an elevator do not open or close instantaneously, so we model the elevator to 

assume four possible states as opened, closing, closed, and opening states. These states 

correspond to the doors being fully open, starting to close, being fully closed, and starting to 

open, respectively.  

 

In the closed state, if the elevator is commanded to open, it goes into the opening state. In the 

opening state, the ‘command_open’ or ‘no_command’ inputs cause a transition to the opened 

state. In the opening state, the ‘command_close’ input causes a transition to the closing state, 

which is displayed in the table below. 
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State Description 

opened The door has been completely opened.  

closing The door is closing but not completely closed.  

closed The door has been completely closed.  

opening The door is opening but not completely opened.  

Table 3.9 ‘Elevator’ Stated Object states, from [11] 

 

Figure 3.5 ‘Elevator’ Stated Object Model, from [11] 

 

3.10 Bank Account System 

 

We now study an online banking application that performs the job of printing an account 

statement. We suppose that the application is comprised of two basic components (1) A 

‘print manager web service’ and (2) A ‘managed printing web service’. The ‘print manager 

web service’ monitors relevant system parameters to determine the mode of printing. The 

‘managed printing web service’ actually sends the printing job to the printer. 

 

The banking application provides an online interface to clients so that they can request to 

print their account statement.  Clients of the application will connect to the managed printing 

service through a web interface. The ‘managed printing service’ as a stated object either 

streams all print requests only to a main printer, or distributes the print requests between a 
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main printer and a support printer. Therefore, printing is performed either in the streaming 

state or in the distribution state. The ‘print manager web service’ periodically analyzes the 

relevant information, e.g. the number of clients connected, and accordingly triggers any 

change of state to the ‘managed printing web service’. 

 

The state to be assumed by the ‘managed printing service’ is determined based on the 

number of connected clients. The ‘print manager service’ keeps track of the total number of 

connected clients. If the number of clients increases beyond a set threshold, the print manager 

invokes an event to the managed printer to transition it to the distribution state. Otherwise it 

transitions or keeps it in the streaming state. Therefore, the ‘manager service’ controls the 

state transition of the ‘managed service’ and the ‘managed service’ continues the print job 

accordingly.  

 

State Description 

streaming All print requests are sent to a single printer. 

distribution All print requests are distributed among the available printers. 

Table 3.10 ‘Managed Printing Web Service’ Stated Object States 

 

3.11 Queue 

 

In this case study, dynamic adaptation features of the functional and non-functional aspects 

of state controlled object oriented language are illustrated. When we use the term “client-side 

code”, we mean the code fragment that creates an object instance of the stated object. In this 

example, we use the notion of “abstract class” from OOP. The objects of an “abstract class” 

cannot be instantiated but can be declared. Object instances of its compatible classes can be 

assigned to the declared reference of the “abstract class”. Let us consider a Queue abstract 

class. The client-side code can declare an abstract stated object Q of Queue as below. 

 

Queue Q; 
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An ArrQueue is an array-based stated queue object with empty and nonempty states. An 

array in the nonempty state keeps state data, i.e. the non-functional aspect, of ArrQueue, 

while put, get and isfull are the methods, i.e. the functional interface, of ArrQueue. 

 

A HashQueue is a hash table-based stated queue object with empty and nonempty states. A 

hash table in the nonempty state keeps the state data for the HashQueue while put, get 

and isfull form the functional interface for HashQueue. 

 

In the client-side code, an object of ArrQueue can be instantiated and assigned to the Q 

object as below: 

 

Q=new ArrQueue(); 

 

An object of HashQueue can be instantiated as below: 

 

HQ=new HashQueue(); 

 

 

Suppose Q is currently assigned an instance of ArrQueue. On the client side, this Q is 

populated. When the client realizes that the array-based queue object Q is not sufficient to 

allocate more data then, at first, the data in the ‘array’ of ArrQueue can be passed on to the 

HQ using the following method: 

 

HQ.updatestate(Q.nonempty); 

 

The above updatestate custom method has to be written by the programmer in the 

HashQueue stated class to transfer the data of ‘array’ to the ‘hash table’. Secondly the 

client could dynamically replace the nonempty state of the ArrQueue object with the 

nonempty state of the HashQueue object. In SCOOP, this replacement is as simple as the 

following statement: 

 

Q.nonempty=HQ.nonempty; 



 

36 
 

 

The statement above transforms the nonempty state of the array-based Q stated object to the 

nonempty state of the hash table-based HQ stated object. Note that the nonempty state of 

ArrQueue has an array-based implementation while the nonempty state of HashQueue 

has a hash table-based implementation. We elaborate in Chapter 7 on how SCOOP 

implements this dynamic typestate replacement. 

 

The advantage is that only the partial behavior of the Q object is adapted at run time and the 

rest of the states, data and behavior associated with each state remain intact. In conventional 

object oriented programming, if we replace an array-based queue with another hash table-

based queue then the entire array-based object instance is overwritten. All of its state data 

and behavior associated with any state is replaced. In the case of a stated object, after 

dynamically adapting the behavior of one state, the behavior particular to the rest of the states 

of the stated object remains as it was and may still be used as before. In the table below, we 

show the possible states of the Queue stated object. 

 

 

 

Table 3.11 ‘Queue’ Stated Object States 

 

3.12 Iterator 

 

In this case study, we show the binding of the external states of a stated object with its 

internal state invariant data. The complete code sample of a stated iterator object is given in 

Figure 6.1. The iterator is a programming construct that performs custom iteration over a data 

structure. The stated iterator object of Figure 6.1 is taken from standard OOP ‘iterator’ code 

from [6] and transformed into SCOOP code. The iterator definition encapsulates the logic to 

iterate the data structure which may be simple or complex depending on the data structure. 

The iterator can also be considered to maintain its abstract states during its traversal. For 

instance, the iterator may be in the initial state when it has not started iteration. The iterator 

State Description 

empty The Queue is empty. 

nonempty The Queue is not empty i.e. has at least one data element. 
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may be in the traversal state during its iteration and in the end state when iteration is 

completed.  The iterator can have many internal states, for the following reasons: 

 

 The iterator may encapsulate a complex data structure, e.g. a two dimensional array 

which has a number of states during its traversal. 

 The iterator may encapsulate another iterator which has a number of states. 

 

We introduce three states for the iterator as mentioned above, i.e. initial, traversal and end. 

The step() function in the sample code of Figure 6.1 iterates the iterator, HIter, a step 

forward. When the current state of the iterator HIter is set to traversal, then this state 

serves as an external and formal representation of its internal state. Internally, this state is 

represented by its state invariant data members. For the traversal state, the state invariant 

data members are i, j and htbuckc. The traversal state  holds as long as the following 

rule is true: 

 

 if ( j==0 AND i < htbuckc) 

 

Similarly, we have another rule for the end state of iterator HIter: 

 

if ( I == htbuckc) 

 

And for the initial state, the rule is: 

 

if   ( j== -1 AND i < htbuckc) 

 

Since the step() function iterates an iterator a step onward, it makes sense to allow the 

step() function in both the initial and traversal states because the iterator can iterate next 

in each of these states. Making the step() function available in both states illustrates state-

based polymorphism, as mentioned in Section 2.5. As soon as the iterator transitions to the 

end state, forward iteration becomes illegal. 
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State Description 

initial The iterator is at the first record of data. 

traversal The iterator is at any part of the record of data except first or last 

record. 

End The iterator is at the last record of data. 

Table 3.12 ‘Iterator’ Stated Object States 

 

3.13 Printer 

 

In this case study, we illustrate a stated printer object. It is assumed that the printer can be in 

either the  fullcharged or in the halfcharged state. Printing can be performed in either of the 

states, but with different functionality. The fullcharged state of the printer may abstract over 

its internal invariant data, such as ‘cartridge ink level’ and ‘cartridge last replaced’. Values 

for each of these data members collectively or individually may cause the state of the printer 

to transition from the fullcharged to the halfcharged state, if either ‘cartridge ink level’ goes 

below 50% or ‘cartridge last replaced’ exceeds 20 days.  The states of the stated printer 

object are presented in the table below. 

 

State Description 

fullcharged In this state the printer will perform dark printing. 

halfcharged In this state the printer will perform dim printing. 

Table 3.13 ‘Printer’ Stated Object States 

 

Moreover, the stated object printer can be composed of a stated object cartridge. In this case, 

the states of the printer object can be mapped to the corresponding states of the cartridge 

object. Intuitively, a transition in the cartridge state may trigger the corresponding transition 

in the state of the printer object and vice versa. Such a mapping of a stated object with its 

composed stated object has not yet been studied. 
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3.14 File 

 

In this case study of stated objects from [18], we argue that only the partial behavior 

particular to a state of a stated object is replaceable, rather than replacing a complete object at 

run time. For instance, an ‘ImageFile’ object may need to adapt a new ‘read’ behavior at run 

time so that it can read an image from a newly connected device that was not known at 

compile time, because its mechanism to read an image from a newly connected device is 

different. Since ‘read’ is a behavior particular to the openfile state of the ‘ImageFile’ object, 

the behavior associated only with the openfile state of the ImageFile needs to be replaced at 

run time without compiling the original ‘ImageFile’ object again. 

 

Let us suppose there is a ‘File’ object, written by a programmer. The code of the ‘File’ object 

is compiled in a program, ‘ProgFile’. The programmer intends to enable ‘ProgFile’ such that 

if ‘ProgFile’ has compiled and run then at run time the ‘ProgFile’ can input a new behavior 

for the ‘read’ method of the openfile state of the ‘File’ object. Therefore, the programmer 

also writes the client code for a ‘File’ object in the ‘ProgFile’ program so that ‘ProgFile’ can 

input a new ‘read()’ method for the openfile state of the ‘File’ objects as desired. ‘ProgFile’ 

is then compiled with the code of ‘File’ object and its client. The same programmer, or 

another programmer, writes a separate program ‘ProgNewFile’ which has either a new ‘File’ 

object or a new openfile state that encapsulates a different ‘read()’ behavior for the openfile 

state of the ‘File’ object. The code of the new ‘File’ object or a new openfile state is 

compiled and placed into a separate library.  

 

When ‘ProgFile’ is run, it can input a new openfile behavior from ‘ProgNewFile’ and replace 

it with the original openfile state. Therefore, the new ‘read()’ behavior (method) goes into 

effect. We illustrate the states of a stated ‘File’ object, in the table below. 
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Table 3.14 ‘File’ Stated Object States 

 

 

 

 

Figure 3.6 ‘File’ Stated Object Model 

State Description 

openfile The file is open but not at the last record. 

closefile The file is closed. 

Eof The file is open but at the last record. 
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Chapter 4  
 

4 Background and Related Work 

 

Finite state automata (FSA) have been a significant tool for modeling diverse kinds of 

systems. State charts [15] are an extended version of FSA which can model more 

sophisticated aspects of systems such as nested states. State charts have also been effectively 

used in modeling the design of software systems [15]. Due to their significance, software 

engineers have attempted to use state charts directly in the implementation of software in 

addition to simply modeling the design of software systems. One of the attempts to leverage 

state charts in the implementation of software is the state design pattern [16]. Conventionally 

the design and implementation of control-related software applications has been widely 

modeled by state charts [15]. The significance of state charts in software modeling can be 

seen by the fact that the design of business-related applications is increasingly modeled by 

workflow [46]. “Workflow” is a concept similar to state charts that is primarily used to 

model the design of business-related applications. Researchers have attempted to make use of 

workflow directly in the implementation of business-related software [47] so that state can be 

directly encoded by the programming language. 

 

The main drawback preventing software engineers from exploiting these tools for direct use 

in programming is the lack of explicit support for typestate in programming languages.  

 

4.1 Typestate 

 

The term “typestate” was initially used from the perspective of imperative programming [23] 

for software reliability and software validation using primitive data types. Later, the concept 

of typestate was incorporated into the object concept of OOP [17 - 22, 24, 28].  
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Typestate related behavior in standard OOP is analyzed by analysis tools [4, 5, 14, 26, 60] 

that attempt to capture the typestates of an object separately from an object oriented program. 

This separately captured typestate is called typestate property. The object oriented program is 

then analyzed to check whether the program violates that typestate property. In contrast, 

SCOOP allows ‘typestate’ as an explicitly defined integral part of an object that can be 

accessed directly and analyzed as proposed by Sheng [17], Aldrich [18, 24] and Fähndrich 

[20]. 

 

Typestate-Oriented programming, abbreviated as TSOP, [18, 24] is a previously proposed 

programming paradigm similar to SCOOP. TSOP requires modeling software in terms of the 

state of an object rather than in terms of the object itself. The strength of TSOP is that it 

represents the state of an object as a first class language concept and as a unit entity of 

programming which helps to implement the state transition of the object by the TSOP 

language. But this strength exists at the cost of not representing the object as a first class 

entity as in conventional OOP. Our proposed SCOOP language, described in Chapter 5, adds 

the state feature to objects similar to the approach proposed by Sheng [17], Aldrich [18, 28], 

Fähndrich [20] and Sterkin [21], but in addition, we propose both the object as well as its 

typestates as first class language entities.  

 

Our approach to static and dynamic typestate checking does not require any additional 

annotation like “access permission” or “state guarantee”, as proposed by Aldrich [22, 24, 28], 

nor does it require annotations like “key”, as proposed by Fahndrich [27]. We refer to our 

approach as “user friendly” because it does not require the programmer to learn and use any 

additional annotations except typestate annotations. Our approach does not constrain 

typestate transitioning in the presence of aliasing, unlike the approach of Fähndrich [20], 

where the typestate of “maybe aliased” objects cannot transition. Fähndrich [20] proposes 

transitioning of the typestate of an object only if the object is not aliased. In our setting, all 

objects are “maybe aliased”. Our typestate aware stated type system tracks the current 

typestate transitions of the object and reflects it to all of its aliases. 

 



 

43 
 

We introduce a transition function trans() as used in the iterator example, in Section 

6.4.1. This function has not yet been proposed by any of the earlier approaches that are 

similar to SCOOP. Our proposed trans() function, illustrated in Section 6.4.1,  

introduces an additional capability for the programmer to perform a valid transition on an 

object from outside of the object at any point in time during the lifetime of the object. 

SCOOP, with the help of the trans() function, enables an object to act like a statechart as 

proposed by Sterkin [21]. Sheng [17], Aldrich [18, 28] and Fähndrich [20] proposed state 

transitioning of an object only by method invocation. Our proposed additional trans() 

method can be used for direct transition of an object to a valid typestate, as illustrated in the 

step() function of the iterator example in 6.4.1. Sterkin [21] proposed an approach similar 

to our proposed trans() function but in his approach the overall language design lacks 

object oriented features. 

 

4.2 Typestate Extension and Subclassing 

 

SCOOP also supports typestate extension along with subclassing (behavioral subtyping) of 

stated objects. Fähndrich [20] allowed subclassing of stated objects but typestate extension is 

not supported. Aldrich [24] allowed typestate extension but subclassing is not defined when 

programming with typestate. Aldrich’s [28] work allowed typestate extension with behavioral 

subtyping but neither an implementation architecture for typestate nor aliasing or static 

typestate checking are discussed. We illustrate typestate extension in Section 6.6 and 6.7. 

 

4.3 Typestate Tracking 

 

Typestate tracking, as mentioned in Section 5.16, refers to the process by which a stated type 

system is aware of the current typestate of the stated object at any point in time.   

 

Fähndrich  [27] present a technique that associates the concept of a “key” with an object such 

that the “key”, rather than the object itself, actually switches between typestates and assumes 

typestate transitions. By definition, the compiler always uses the object’s “key” to reference 
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the actual object in order to track typestate transitions through aliases. However, it is not 

defined how the type checker will detect the “key” of an object when it detects an alias of 

that object. Furthermore, the type checker needs to maintain this extra “key” for each object, 

which is a burden. The programmer also needs to learn to use a new notion and syntax to 

declare the objects with “keys” so that the type checker can track the transition of typestates 

through the “keys”. Fähndrich [27] acknowledges that their proposed technique has 

limitations for aliasing. The notion of typestate invariant is not discussed. 

  

Jonathan Aldrich [28] presents typestate as a separate but built-in feature of the object that is 

similar to our approach. But, the state of an object is not assumed to be a first class language 

concept. In our approach, both the object and its state are first class language concepts. 

Furthermore, Jonathan Aldrich [28] does not define typestate tracking or typestate checking. 

 

4.4 Aliasing 

 

At an abstract level, our approach to alias tracking is similar to the “integrated verifier 

technique” of Fink [26]; but, this approach treats typestate as a separate entity whereas our 

approach treats typestate as a built-in feature of a stated object. Fink’s [26] proposed 

technique does not define the implementation of how to keep the current typestate of a stated 

object. Neither does it define how to update the current typestate, nor how to keep the aliases. 

We detail our technique as compared to the work of Fink [26] by mentioning the 

implementation aspects. For the implementation of typestate, we introduce ‘state class’ as a 

concrete representation of the typestate of a stated object and also introduce an alias table. 

Further we introduce a single location in the symbol table to keep the current typestate of an 

object so that all aliases may be statically aware of their current typestate.  
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4.5 Typestate Invariant 

 

Jonathan Aldrich [28] illustrates that Java I/O and JDBC can be modeled with typestate 

invariants. We illustrate the use of typestate invariants in Chapter 6. Aldrich [28] defines 

typestate invariance, but the architecture of how typestate invariant is maintained by the 

language is not mentioned. We present an implementation technique for typestate invariants 

in Section 6.5. Moreover, Aldrich [28] does not define typestate checking. 

 

Manuel Fähndrich [29] illustrates that an array reader and a lexer can be modeled with 

typestate invariants. He incorporates the notion of typestate into objects in a similar way to 

our concept in that there can be explicitly defined external typestates of objects. However, 

Fähndrich limits an object to only one possible typestate in such a way that the object will 

either be in its one possible typestate, i.e. the object is valid, or it will not be in that typestate, 

i.e. the object is invalid. Furthermore, Fähndrich defines the notion of internal representation 

of typestate by the data members of an object and describes that the external typestate is 

bound with the internal typestate data, i.e. typestate invariants. Fähndrich’s [29]  presented 

internal typestate data is termed “object invariant” rather than typestate invariant because 

there is only one typestate that controls an object. In our case, we allow multiple typestates 

for an object and each typestate may have distinct internal typestate invariants.  

 

Manuel Fähndrich [20] notes that a typestate holds a predicate over an attribute (data 

member) of an object and its values. However, there is no construct given by Fähndrich [20] 

which the programmer can use to define the predicate that binds the typestate with the 

attribute and its values. 

 

In order to facilitate aliasing, Manuel Fähndrich [30] employs “adoption and focus” 

operations to a linear type system. With these operations, the type checker can assume must-

alias properties for a limited program scope. In contrast, our approach does not limit aliasing 

over the program scope. 
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4.6 Dynamic Behavior Adaptation 

 

Dynamic behavior adaptation is one of the well-stated requirements of autonomic computing 

[32, 34, 35, 36]. The MAPE-K loop, shown in Figure 7.7, of autonomic computing provides 

an architecture for dynamic behavior adaptation. Different approaches have been proposed 

for capturing the sensor and effector requirement of the MAPE-K loop. We propose that state 

controlled object oriented programming can be effectively exploited in order to fulfill the 

sensor and effector requirement of the MAPE-K loop. Considering Example 3.10, the 

variable of the print manager that holds the number of connected clients will serve as a 

sensor, and the corresponding polymorphic, adaptable, ‘print’ behaviors will serve as 

effectors of the MAPE-K loop. 

 

 

Many programming language based approaches to ‘dynamic compositional adaptation’ have 

been proposed [41, 42] to achieve autonomic and autonomous computing. Sadjadi [48] 

studied an earlier taxonomy of dynamic compositional adaptation approaches. To the best of 

our knowledge, no earlier state oriented programming models [17, 18, 20, 21, 24] support 

typestate-based dynamic compositional adaptation, nor have any prior compositional 

adaptation approaches proposed the dynamic adaptation of state related behavior of software 

objects. 
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Chapter 5  
 

5 A Static Typestate Checking Technique under Aliasing 

 

5.1 Introduction 

 

In this chapter we introduce the aliasing behavior of our proposed SCOOP programming 

language. We also introduce several components of SCOOP that collectively contribute to a 

proposed typestate checking technique.  

 

An elegant typestate checking technique in the presence of aliasing is presented in [18, 22, 

24], but this technique comes at the cost of requiring the programmer to learn the new 

concepts of “access permission” and “state guarantee” and use their corresponding notations. 

In this chapter, we illustrate that the same results can be achieved with SCOOP without using 

any extra annotations. Our proposed typestate checking does not constrain aliasing in any 

way. Our proposed typestate checking technique statically computes the set of current 

possible typestates of a stated object and also makes any aliases of that object aware of that 

set of typestates. 

  

5.2 Presentation 

 

In order to address the issues of typestate, we need to have a type system with support for 

typestates [26] rather than the conventional type system of imperative programming 

languages. We refer to such a type system with typestate support as a “stated type system”. In 

the literature, a stated type system is also referred to as a “typestate system”. We propose a 

“stated type system” along with its implementation technique, “proxy and stated class” 

architecture. For the implementation of typestate by the compiler, we introduce a new kind of 
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nested class, in Section 5.8, which we call “state class” that is hidden from the programmer 

and implemented internally by the compiler.  

 

Our newly introduced constructs can be used by the programmer to declare the typestates of 

an object. However, these typestate declaration constructs are optional. The “typestate 

structure” is declared in the stated class. It has a lexical scope in its stated class that encloses 

the attributes and methods of a particular typestate. Transforming each programmer-defined 

typestate structure, as in Figure 5.1, to a state class, as in Figure 5.2, allows the typestates to 

be used as a unit entity and first class language concept.  

 

In the following sections, we introduce the programming constructs which declare the 

external typestates of a stated object from the programmer’s point of view and present the 

language implementer’s view. In subsequent sections, we introduce our “proxy and state 

class” architecture. 

 

5.3 The SCOOP Language 

 

In Appendix A we have given a context free grammar for parsing SCOOP programs. This is 

an earlier Java-like grammar with some added and some modified productions to parse 

SCOOP language constructs. In the appendix, we have marked some productions with the 

letter ‘S’ to indicate that these productions are particular to our proposed SCOOP language. 

As usual in a parser grammar, there are two kinds of symbols. We define our convention for 

the grammar symbols in the table below. 
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Kind of Symbols Description Examples 

Terminals Keywords and Operators in small 

alphabets 

int, public, statebinding, 

+, ++, 

Identifiers in small alphabets id, o_id, st_id 

Non Terminals enclosed in angle brackets <var_dec>, <class>, 

<stm> 

Table 5.1 SCOOP Grammar Symbols  

 

We discuss in some detail below a few of the productions for parsing SCOOP language 

constructs. The numbering of the productions we use is according to the numbering in 

Appendix A. 

 

Production no. 4 in Appendix A is as follows 

<class>  <st_dec_list>  class  cls_id { <cls_body> } 

This production allows parsing the stated class declaration, e.g. the File class in Figure 5.1. 

The <st_dec_list> non-terminal would parse the declaration of state name of a class just 

before parsing the keyword class.  

 

Production no. 5 in Appendix A is as follows 

<st_dec_list>  [  state ( <st_list> ) ] 

This production allows parsing the state name of a stated class using the <st_list> non-

terminal. It is derived from Production no. 4. 

 

Production no. 6 in Appendix A is as follows 

<st_dec_list>  Є 

This production allows stopping the expansion of parsing the list of state names of a class.  

 

Production no. 7 in Appendix A is as follows 

<st_list>  <st_list> , <st_id> 
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This production allows parsing the repetition of state names while parsing the declaration of 

the list of state names using Production no. 5. 

  

Production no. 8 in Appendix A is as follows 

<st_list>  <st_id> 

This production allows parsing the single state name when there is only one state declared for 

a class.  

 

Production no. 9 in Appendix A is as follows 

<st_id>  st_id 

This production allows parsing the actual state name given by the programmer. In this 

production we represent the actual state name by the terminal   st_id. 

  

Production no. 10 in Appendix A is as follows 

<cls_body>  <var_dec_list> < st_binding> <cls_m_list> <c_s_m_list> 

This production allows parsing the internal body of a class and is derived from Production 

no. 4. As is obvious, the class body should first of all allow the variable declaration, followed 

by a state binding, followed by a list of the methods of the class, followed by the list of the 

state structures in the class. 

 

Production no. 18 in Appendix A is as follows 

<st_binding>  statebinding { <b_list>  }   

This production allows parsing the state binding and is derived from Production no. 10. The 

<b_list>  non-terminal allows parsing the list of binding state name, with a binding rule. 

 

Production no. 19 in Appendix A is as follows 

<b_list>  <b_list>  ,  <bind> 



 

51 
 

This production allows parsing the binding of state names with the binding rule. This is 

derived from Production no. 18. 

 

Production no. 77 in Appendix A is as follows 

<c_s_m_list><c_s_m_list> <c_s_method> 

This production allows parsing of the list of state structures, i.e. a possible repetition of many 

state structures. It is derived from Production no. 10. An example of a state structure is given 

in Figure 7.1.  

 

Production no. 78 in Appendix A is as follows 

<c_s_method>  <s_list> { <s_v_d_lst><s_m_list> } 

This production allows parsing a single state structure. It is derived from Production no. 78.  

The <s_list> non-terminal would parse the state name of the state structure. An example of a 

state structure is given in Figure 7.1 

 

Production no. 79 in Appendix A is as follows 

<s_m_list> <s_m_list> <s_method> 

This production allows parsing the list of methods in the state structure, i.e. a list of methods 

particular to a state. It is derived from Production no. 79. 

 

Production no. 81 in Appendix  A is as follows 

<s_method><r_type><m_id>(<arg_list>)<s_end_list>{<s_m_body>} 

This production allows parsing a method in the state structure, i.e. a method particular to a 

state.  The <s_end_list> non-terminal would parse the output state of this method. It is 

derived from Production no. 80. 

 

Production no. 90 in Appendix  A is as follows 

<st_stm>this.trans(st_id); 
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This production allows parsing the ‘trans()’ method as a language keyword. Note that this 

parsing is possible only from the body of a method i.e. it is particular to a state.  

 

Production no. 115, in appendix A is as follows 

<s_list>  [st_id]:[ st_id] 

This production allows parsing the state name of a state structure. The colon separates the 

state names of the parent class and the subclass. It is derived from Production no. 79. 

 

5.4 Stated Type System 

 

Our flow sensitive “stated type system” validates typestate declarations, typestate 

transitioning, typestate equivalence, typestate casting, and static and dynamic typestate 

checking for stated objects. It performs this static analysis with the help of several features. 

These features include state class (Section 5.8), typestate coercion (Section 5.13), finding 

aliases with the help of an alias table (Section 5.14) and typestate checking (Section 5.17). 

 

Any operation on a stated object or occurrence of any statement that refers to a stated object 

or its alias is validated by the stated type system. For validation, the stated type system 

evaluates the current typestate of a stated object. More specifically, upon any occurrence of a 

method invocation on a stated object that causes a typestate transition, the stated type system 

statically updates the typestate (output state) of the stated object. This static update of the 

typestate is achieved by means of typestate coercion as mentioned in Section 5.13. If a 

definite output typestate cannot be decided, then the set of possible output typestates is 

statically associated with the stated object reference.  
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5.5 Default Typestates 

 

The SCOOP language supports two default typestates for any stated object. These typestates 

are always part of a stated object typestate set by default. Any field invocation will be invalid 

while the object is in either of these default typestates.  

 

The first default typestate is null. For each stated object, as soon as an object is deleted from 

memory or its reference is set to null, the stated object reference is assumed to be in the null 

typestate. An object reference that has been declared and not instantiated yet also assumes 

the null typestate. 

 

The other default typestate is undefined. Each stated object is assumed to be in one of its 

declared typestates at any point in time. If, due to some problem (e.g. a function that changes 

the typestate of the object does not return properly) the current typestate of a stated object 

cannot be determined, then the stated type system transitions the object to its default 

undefined typestate. Occasionally, an object could be instantiated but its internal typestate 

representation data may not yet be assigned values compatible with any of its declared 

external typestates. In this case, the object also assumes the undefined typestate.  

 

The undefined typestate of a stated object corresponds to what is typically referred to as the 

error state of finite state automata. When a finite state automaton receives an invalid input 

for which there is no transition defined from the current state, it transitions to the error state. 

Our SCOOP language contains a built-in “typestate interface” from which each stated object 

is extended (inherited) by default. The “typestate interface” provides the null and undefined 

default typestates for each stated object.  
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5.6 A Programmer’s View 

We present example code for the classic File stated object in Figure 5.1 according to our 

proposed SCOOP syntax. 

 

[state(openfile,closefile=start,eof)]   //declaring the typestates of  File 
class File{ 

     string name;                                                          //this field is accessible  in every state 
     public sharedmethod(){}                                //this method is accessible in every state      
     [openfile]{                                                
          public string file_desc; 
          public read()[openfile | eof] 
    {.. 
    } 
          public display()[openfile] 
    {… 

               print(“original openfile”);…. 
    } 
          public  close()[closefile] 
    {…. 

      this.trans (closefile);….. 
         }  
     } 
     [eof]:[openfile]{                                              //eof typestate structure 
          public override close()[closefile] 
    {….   
                                                                                            //eof is the extension of openfile typestate  
                base.close();..                                         // therefore read() method is not available   
          }                                 // because at eof further reading is not possible                                        
     }                             
     [closefile]{                        //closefile typestate structure 
    public open()[openfile] 
    {.. 
       this.trans(openfile);... 
          }    
  } 
} 
class client{ 

  File f=new File ();                                         //an object of closefile typestate  is created 
    f.open();                                                                  //f transitions to openfile typestate 
    f.name=”file1”; 
    f.close();                                                               //f transitions to closefile typestate 
    f.name=”file2”; 
    prinf(f.name);                                                     //this statements prints  “file2” 
    f.close();                                                               //error detected statically i.e.  
                                                                                           //“close() not found in the current typestate  

                                                                                                    //closefile of f” 
} 

 Figure 5.1: A SCOOP Program 
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5.7 A Language Implementer’s View  

 

The programmer-defined code in Figure 5.1 is transformed to the intermediate code in Figure 

5.2 by the SCOOP compiler according to our proposed “proxy and state class” architecture. 

class File{                                             //transformed proxy stated class  File 

    enum state{openfile,closefile,eof}          // translated by compiler  
    string name;  
    state curr_st; 
    public File() 
  {   
     openfile  of=new openfile();   
            closefile cf=new closefile(); 
            closefile ef=new eof (); 
    }  
    public sharedmethod(){} 
    public void trans(state st) 
  {  
     if(st==openfile) 

               this= of;                                                       //typestate of  this is statically coerced  to openfile                                                                          
     else if (st==closefile) 

               this= cf;                                                       //typestate of this is statically coerced to closefile 
  } 

      
class openfile{                                                           // a special kind of nested class i.e. “state class” 
        public string file_desc; 
        public close()[closefile] 
   {…. 
               this.trans (closefile); 
   } 
        public read() [openfile | eof] 
   {... 
   } 
        public display()[openfile] 
   {… 

               print(“original openfile state display”);…. 
        } 
} 

class eof:openfile{……                                         //a special kind of nested class i.e. “state class” 
   public override close()[closefile] 

   {…. 
               base.close();.. 
   } 
} 

class closefile{                                                        //a special kind of nested class i.e “state class” 
       public open()[openfile] 
   {…. 

               this.trans(openfile);….. 
   } 
 } 
} 
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Figure 5.2 SCOOP language-generated File Stated Object. 

 

As in the code given in Figure 5.2, the “stated class”, i.e. File class, serves as the proxy 

class for the encapsulated ‘state classes’, i.e. openfile, closefile and eof. The 

instances of ‘state classes’, e.g. of and cf, are called typestate objects. The File stated 

class in Figure 5.2 is transformed according to our “proxy and state class” architecture and 

shown in Figure 5.3. 

 

5.8 State Classes 

 

We introduce a new kind of class and name it “state class” as it represents a state of a stated 

object. A “state class” is an implementation of a typestate. A state class is an inner class 

coupled with a few additional characteristics so that it can fulfill the typestate requirements, 

according to our proposed architecture. However, the programmer writing a stated class, as 

shown in Figure 5.1, declares the typestate and typestate dependent fields (data members and 

methods) inside the stated class and is unaware of the existence of the “state class”. The 

“state class” generated by the language and hidden from the programmer, as shown in Figure 

5.2, contains only the fields specific to its typestate, e.g. file_desc in the openfile 

typestate class. Since a state class represents a typestate of an object and the typestate of an 

object is an inherent characteristic, it is quite natural to define the “state class” as a nested 

class within the stated class.  

 

class client{ 

      File f=new File();                      //an object of initial typestate ( e.g. closefile) is created  
                                                                       //by overloaded ‘new’ operator for stateful class. The type  
                                                                       //system upon occurrence of ‘=’ would coerce the typestate of  
                                                                       //‘f’ to closefile statically. 
       f.open();  
       f.name=”file1”;  
       f.close(); 
       f.name=”file2”; 
       prinf(f.name);                              //it prints file2 

       f.close();                                       //error detected statically i.e. “close() not found in the  

                                                                      //current typestate closefile of ‘f’” 
} 
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5.9 Characteristics of State Classes 

 

We introduce the characteristics of state classes, which are designed such that that they can 

not only be used as an appropriate implementation of typestate but can also fit into our 

proposed “proxy and state class” architecture to achieve our desired objectives. Each state 

class keeps a reference to its proxy class. 

 

Proxy-State Compatibility:  All objects of state classes, e.g. of or cf in Figure 5.2, are 

compatible with their encapsulating proxy stated object, e.g. f in Figure 5.2, such that an 

instance of any state class can be assigned to the reference of stated class, e.g. this=of, in 

Figure 5.2. This characteristic is technically similar to the inheritance relation, in which 

subclass objects can be assigned to a parent class reference. However, state classes are not 

subclasses of their encapsulating stated class. This characteristic is required to implement 

typestate transition for the stated object. 

 

Single-Proxy Data: Each object of a state class, encapsulated in its stated object, will have 

access and share a single copy of the fields of its proxy stated object. This characteristic is 

similar to the inheritance relation, in which subclass objects share the same fields as their 

parent class. However, state classes are not subclasses of their encapsulating stated class. 

Contrary to the inheritance relation, an instance of a state class does not keep a separate 

instance of its stated class. Each object of a state class shares a single instance of its proxy 

stated object and the same data members of the single instance of the stated object are shared 

among each typestate object. This characteristic is required so that in the case of typestate 

transition of the stated object, all shared data of the encapsulating “stated object” can be 

accessed seamlessly. Let us consider the snippet below: 

 

f.open(); 

f.name=”file1”; 

f.close(); 

f.name=”file2”; 

f.open(); 

prinf(f.name);  
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The last statement of this snippet prints “file2” because the attribute ‘name’ of the ‘File’ class 

is shared among every state of f and is not particular to one state class. Each state class keeps 

a reference to its proxy class. 

 

5.10 The Proxy and State Class Architecture 

 

The proxy and state class architecture is the scheme by which the typestates are organized in 

stated objects, as illustrated in Figure 5.3. A state controlled object oriented compiler would 

transform the programmer defined stated class, e.g. File in Figure 5.1, to the “proxy and 

state class” code as in Figure 5.2.  

 

An alias table and symbol table are used as supporting components within the proxy and state 

class architecture for stated objects to achieve the desired typestate checking. The alias table 

is defined in Section 5.14. The use of the symbol table is mentioned in Section 5.14 and 5.16. 

Figure 5.3 sketches the stated object of the File class of Figure 5.2 that gives an idea of 

how a stated object is organized in memory by the SCOOP language. In Figure 5.4, we 

demonstrate an expanded sketch of the same object of the File class with the supporting 

components of our proxy and state class architecture, i.e. the typestate entry in the symbol 

table, the alias table for the object of the File class while in openfile typestate and the 

invariant table with an entry of typestate invariant for the openfile typestate. The ‘g’ and ‘h’ 

are the aliases of ‘f’. The invariant table, in Section 6.5, is also a relevant component but it is 

not used directly for typestate checking.  The stated type system, in Section 5.4, performs 

typestate checking with the help of these components as demonstrated in Figure 5.4. 

 

For each typestate of the programmer-defined stated class, a state class is generated as an 

inner class inside the transformed stated class. Objects of inner state classes, i.e. typestate 

objects, are created inside the transformed stated class. The typestate objects are referred to 

by the instance references, e.g. of and cf, of the transformed stated class. An additional 

‘trans()’ function is generated to implement typestate transitions. The transformed stated 

class serves as a proxy for the state classes and typestate objects.  
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Figure 5.3   Proxy and State Architecture of File Stated Object 

 

Figure 5.1 illustrates a File stated class from the perspective of a programmer. The File 

stated object has two typestates: closefile and openfile. Any typestate can be extended. For 

example, eof is an extension of the openfile state, as in the following snippet of Figure 5.1.  

 

[eof]:[openfile]{      } 

 

Extended typestates, e.g. eof, are called state subclasses and are represented by a subclass of 

the parent state class in the transformed code, as in Figure 5.2. Inheritance of an object, e.g. 

File, is the same as in conventional OOP. A specialized File, e.g. ImageFile or TextFile, can 

seamlessly extend the File class as in conventional OOP. Therefore, the extension of a 

typestate to its specialized typestate and the extension of an object to its specialized child 

object are not in conflict. Typestate extension is illustrated in Section 6.6 and 6.7. 

 

In order to achieve typestate checking in a language with aliasing, our proposed architecture 

resolves the following challenges. 

 

 A typestate transition of a stated object either via the stated object referent or via any of 

its aliases should be detected statically to prevent any illegal invocation of a field of the 

stated object. 
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 All aliases of a stated object should be statically aware of the current possible set of 

typestates of the stated object preventing any illegal method invocation or field reference. 

 

The strength of our architecture is that it resolves these two above-mentioned challenges 

without requiring a programmer to learn new annotations to address these issues. The 

components and features which work together to achieve the desired objectives of our 

architecture are presented in the following sections.  

 

 

Figure 5.4  A Sketch of Proxy and State Class Architecture for a File Stated Object in 

the openfile Typestate with Alias Table, Symbol Table and Invariant Table 
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5.11 Creating Stated Objects 

 

For creating an instance of a stated object, SCOOP provides an overloaded new operator to 

instantiate a stated object. The overloaded new operator has the following characteristics, 

illustrated with reference to the code in Figure 5.2. 

 

 The overloaded new operator instantiates a stated object, e.g. f, such that the inner 

typestate objects, e.g. of or cf, of its nested state classes will be compatible with f (just 

as subclass objects are compatible and can be assigned to super class references). 

 When a stated object f of a type, e.g. File, is created then it can be coerced to any of its 

state classes, e.g. openfile or closefile. Even if it is coerced and points to any of 

its typestate objects, the fields of the original instance of File are accessible by f. 

 

Stated Objects in Memory  

 

As we have mentioned, a transformed stated object has two major components i.e. the proxy 

class and the state class. Each state class will keep a reference to its proxy class. If a stated 

object is in a particular typestate then it means that the stated object reference is assigned the 

instance of that particular ‘state class’. A state transition of a stated object from its current 

typestate to another typestate requires that the current ‘state class’ instance in the stated 

object reference be replaced by another “state class” instance. In order to replace the current 

“state class” instance with another “state class” instance, we require that each “state class” 

should hold the reference of its proxy class instance. This is because only the proxy class 

instance knows the references of all its state class instances.  

 

5.12 Functional Interface of a Stated Object 

 

Associating the output typestate (post condition) with the functional interface of the object is 

at the core of SCOOP’s objective to achieve static typestate checking. As in Figure 5.1, each 

function declaration has associated square brackets [] to define its output typestate as below: 
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public void close()[closefile]{...this.trans (closefile);..} 

 

The associated output typestate of a method enforces that the object must transition to its 

associated output typestate when the function returns. Furthermore, the stated type system 

statically coerces the current typestate of the receiver of close() to the output typestate, 

i.e. closefile, when the invocation statement of close() occurs. However, such 

coercion is only possible if there is only one possible output typestate of a function. The 

reasoning for associating output typestate with the stated object reference is given in Section 

5.17.1. 

 

It should be noted that the functions of a class can be enclosed in any of the typestates of the 

object. The typestate encapsulating a function represents that the function belongs to that 

particular typestate only. This implies that the encapsulating typestate is the precondition for 

that function, i.e. the function is only available if the stated object is in that particular 

typestate. Different functions which have the same name, return type and arguments may 

coexist in different typestates leading to typestate based polymorphism. A data member or a 

method of an object can also be explicitly defined as available in more than one typestate, 

e.g. the step() method of the iterator example in Section 6.4.1.  If a field is not 

encapsulated in any typestate or there is no precondition typestate associated with a field, 

then that field is available to the stated object instance irrespective of any typestate. 

 

5.13 Typestate Coercion 

 

The “Proxy-State Compatibility” characteristic, mentioned in Section 5.9, allows the 

assignment of “typestate objects” into the reference of the proxy stated object. This is how 

our architecture implements state transitions of stated objects. As in Figure 5.2, at any point 

in time, one of the typestate objects, e.g. of or cf, must be assigned to the reference of the 

stated object, e.g. f. If f is assigned of, i.e. f=of, then this implies that f is transitioned to 

the openfile typestate. The stated type system, before assigning of to f, statically coerces (or 

casts) f from its current typestate to the openfile typestate. Similarly, if f is assigned cf, i.e. 

f=cf, this implies that f is transitioned to the closefile typestate. Therefore, the stated type 
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system, before assigning cf to f, statically coerces f from its current typestate, openfile to 

the other typestate, closefile.  

 

From an implementation viewpoint, typestates, e.g. openfile or closefile, are actually 

represented by “state classes”. The current typestate of an object is kept at a single location, 

i.e. at a symbol table entry for the original reference of the object. Therefore, the static 

typestate coercion of f actually inserts the name of either of the “state classes” in the symbol 

table entry corresponding to f. When an object f of a class, e.g. File, is created, it can be 

coerced to any of its state classes, e.g. openfile or closefile. Even if it is coerced, the common 

fields of the original instance of File are accessible through the object instances of the state 

classes.  

 

5.14 The Alias Table 

 

There may be many aliases of an object’s original referent. Similar to a symbol table, the 

stated type system statically maintains an alias table as a repository for all of the aliases of 

the original referent of each object. There is a single alias table for each stated object. The 

current typestate of an object is kept at a single location only, i.e. at a symbol table entry of 

the original reference of the object. All aliases and the original referent of the stated object 

recognize their current typestate through that single location. All aliases of an object in the 

alias table point to the symbol table entry of their original object reference to read their 

current typestate. We need to maintain an alias table as well as a single location in the 

symbol table to hold the current typestate of the object, so that whenever a stated object 

changes its typestate, the typestate transition is updated to that one single location and 

reflected to all of the aliases. Updating a typestate transition to all the aliases of a stated 

object statically prevents any illegal field invocation of the stated object by any of its aliases.  

 

An operation on a stated object may cause the transition of the object in either of the many 

possible output typestates. In that case, one possible current typestate cannot be determined 

statically and cannot be assigned to that symbol table entry statically. Therefore, the symbol 
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table entry for holding the current typestate is instead assigned a set of possible current 

typestates. The actual current typestate of the object taken from the set of possible current 

typestates is determined at run time, i.e. when the object actually transitions to a typestate at 

run time. We have introduced the implementation of typestate transitions with the help of 

typestate coercion and proxy-state compatibility. 

 

5.15 Tracking Aliases   

 

The SCOOP language would perform an “automated alias analysis” during the parsing of the 

whole program. Therefore, this alias analysis performs whole program analysis. All aliases of 

each object are detected while parsing the program as described below. 

 

Keeping track of the aliases of a stated object requires checking of: 

 

 the assignment operator (=) 

 parameter passing to method calls 

 

While parsing the source code, upon any occurrence of the assignment operator (=) for a 

stated object, the stated type system, in addition to the usual type checking of the LHS and 

RHS of the assignment operator, also performs the following operations: 

 

1. Store Aliases: If the RHS of the assignment operator is a stated object reference and the 

LHS is the intended alias of the RHS, then the LHS is added to the alias table. 

 

2. Typestate Casting: The pointer of newly inserted LHS alias would be set to the typestate 

entry of the original object reference in the symbol table. 
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5.16 Static Typestate Tracking 

 

The term “static typestate tracking” represents the mechanism for the previously discussed 

stated type system. This statically keeps the typestate of objects and their aliases updated in 

the symbol table with the help of typestate coercion. The coercion operation is completely 

defined in Section 5.13. 

 

Below we discuss a few code segments with reference to the program in Figure 5.1. 

Upon any occurrence of the trans() function within each static lexical scope, e.g. an if-

else lexical scope or a for-loop lexical scope, the stated type system performs the following 

operations statically: 

 

 The typestate of the receiver of the trans() function is coerced (casted) into the 

typestate to which transition is intended. 

 

 The typestate of all aliases of the receiver of the trans() function is coerced (casted) 

into the typestate to which the transition is intended. 

 

Methods can transition the typestate of the receiver object upon their return. It is important 

that such methods specify their output typestate, so that the typestate of the receiver can be 

appropriately coerced. Let us consider the following code snippet: 

 

public void close()[closefile]{..this.trans (closefile);..} 

 

When the invocation statement of close() occurs, e.g. f.close(), the stated type 

system statically coerces the current typestate of the receiver of close() to the closefile 

typestate. This coercion is implemented by updating the typestate entry in the symbol table. 

The significance of associating the output typestate with each method signature is illustrated 

in Section 5.17.1.  
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5.17 Typestate Checking 

 

If the current typestate of an object is known, then the accessible fields of the stated object 

can be determined. Therefore, checking the current typestate of an object is crucial to 

SCOOP. The current typestate of an object can be determined at compile time i.e. statically. 

However, the prerequisite of static typestate checking is that every method must describe 

only one possible output typestate (post condition) of its receiver. As long as this prerequisite 

is met, our technique completely resolves static typestate checking in the presence of aliasing 

without requiring any additional annotations.  

  

Many practical situations require methods for allowing more than one possible output 

typestate (post condition). For example, the step() method of our iterator object HIter, 

in Section 6.4, has two possible output typestates, traversal and end. In this case, the exact 

current typestate of the object cannot be determined statically when such a method would 

have returned. If the exact current typestate of the object cannot be determined statically then 

we have to rely on dynamic typestate checking. However, dynamic typestate analysis is able 

to exploit the information, i.e. a set of possible typestates, already deduced by static typestate 

analysis.  

 

5.17.1 Static Typestate Checking 

 

Static typestate checking is challenging, especially in the presence of aliasing. However, with 

the help of our proposed architecture, given in Section 5.10, our stated type system 

accomplishes typestate checking statically without requiring any extra annotation as in [18, 

24]. With the help of static typestate tracking, mentioned above, each stated object and 

aliases statically knows its current typestate. Since a stated object knows its current and 

updated typestate, the stated type system can statically compute all available fields (data 

members and methods) of the current typestate of the object. Now, let us consider the 

following snippet from the client-side code of Figure 5.1. 

 



 

67 
 

f.close();  

f.name=“file2”;  

prinf(f.name); 

f.close(); 

 

The second call to close() method is invalid because the first occurrence of f.close() 

has statically coerced f to the closefile typestate. A file already in closefile typestate cannot 

be closed again. Therefore, static typestate checking would statically prompt the error as 

below: 

 

“close() not found in the current typestate closefile of f”. 

 

 Such an error can be statically detected if the following two conditions are met: 

 

 The current typestate of the object is statically known at any point in time. 

  

 The available fields of the object, depending upon its current typestate, can be computed 

statically.  

 

In our setting the first condition is met by “static typestate tracking”. When the first call of 

f.close() occurs, the typestate of f is statically coerced to closefile by the “static 

typestate tracking” mechanism of the stated type system. The stated type system can perform 

such a coercion only because it knows from the signature of close() that the output state 

of close() is closefile. It is, therefore, necessary for each method to specify its output state 

for the appropriate typestate coercion of the receiver. 

 

The second condition is met easily. Upon the second occurrence of f.close(), the current 

typestate of f, i.e. closefile, is statically known. Therefore, the available fields of the current 

closefile typestate can be computed from its state class, i.e. closefile, and it can be 

determined that the method close() is not available in the closefile state class. This 

second condition is met so conveniently due to our natural representation of typestate as a 

distinct state class. Let us consider another code snippet:. 
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void m(File f, File g){ f.close();print(g.file_desc); } 

 

The field file_desc of a File object points to a low level resource only when the file is in 

openfile typestate. Due to possible aliasing, f and g may refer to the same object. In this case 

the method signature and body are still well typed due to our technique for handling aliases. 

Upon the occurrence of f.close(), the stated type system would coerce the typestate of f 

to closefile. This coerced typestate will also be reflected in all of its aliases, including g. 

Since the typestate of g is statically known to be closefile and in the closefile typestate the 

statement g.file_desc is invalid, the field file_desc is not available in the closefile 

typestate. Therefore, the stated type system would statically prompt the error as below: 

 

“The field file_desc does not belong to the current typestate closefile of  g”. 

 

In order to illustrate the generality of our proposed typestate checking technique, we take 

another example of a simple iterator client from [22] as below: 

 

Collection c=new….                                                                       //legal 

Iterator it=c.iterator();                                                      //legal 

if(it.hasNext()  &&  c.size() == 3) {                         //legal 

   c.remove(it.next());                                                           // legal  

if(it.hasNext())                                                                            //ILLEGAL 

} 

Figure 5.5 A Simple Iterator Client 

 

This sample code is modified from the sample code in [22] for simplicity, but illustrates the 

same intentionally seeded illegal invocation of a function. We show that our proposed 

technique can smoothly detect this illegal invocation statically without requiring the 

programmer to write any complex annotations as in [22]. In this example code, the object it 

of the iterator class iterates over the Collection c. This code presents an interesting 

scenario in which the iterator iterates to its next data member, and stays (points) at that 

data member, but that data member is deleted by Collection c at which the iterator is 
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located. Since the current data member has been deleted, calling the it.hasNext() 

function on the deleted (or null) data member is an invalid function invocation. In [22], an 

elegant but complex technique is presented to statically catch this invalid invocation. 

However, our technique is very simple and does not require the programmer to write any 

extra annotation. With the global analysis of our stated type system, as soon as the 

it.next() data member is passed on as an argument to the c.remove() function, the  

stated type system detects that the parameter n in the signature of c.remove(Node n) is 

an alias of it.next(). As soon as c.remove(Node n) deletes its received parameter n 

from c, the stated type system detects that the typestate of this alias n is transitioned to the 

null typestate. Therefore, the typestate of the original argument it.next() is also 

transitioned to the null typestate because all aliases of an object share the same typestate. In 

the subsequent statement, it.hasNext() is invoked and the stated type system knows 

statically that the data member to which it.hasNext() points has transitioned to the 

null typestate. A data member in its null typestate cannot access any of its methods or 

attributes, therefore, it is statically detected. 

 

5.17.2 Dynamic Typestate Checking 

 

The typestate analysis problem requires detecting the current typestate of a stated object at 

any location of the program either statically or dynamically. In other words, it requires 

finding what typestate the object has reached at any location of the program. The typestate 

analysis problem is undecidable statically. There are many practical scenarios in which the 

typestate of a stated object cannot be detected at compile time. This is because we may never 

know until run time what the output typestate will be when an invoked method returns. 

Therefore, violations of invoking a typestate dependent field cannot be determined unless the 

object has actually transitioned to a particular typestate at run time. Let us consider the code 

snippet below: 
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File f=new File(); 

f.open(); 

f.read();  

f.read(); 

 

Intuitively the first call to read() can either transition f to the eof typestate or keep it in the 

same openfile typestate because there are two possible output typestates for read(). 

Therefore, only at run time, i.e. via dynamic typestate checking, can it be determined whether 

the second call of read() is a valid call or not. This is because the read() method is not 

available if f has transitioned to eof typestate as a result of first call to read(). Since, the 

read() method has two possible output typestates, our static typestate tracking mechanism 

cannot coerce f into any one possible typestate so the static typestate check is not very 

helpful. In such cases, the compiler can generate runtime assertions to find the actual 

typestate of f at run time and coerce f accordingly. The “proxy and state class” architecture 

would still work seamlessly at run time and with the help of dynamic typestate coercion, the 

available fields of the current typestate of f can be detected. 

 

In this example, the current typestate of f cannot be statically determined when the first call 

of f.read() returns because the method f.read() has more than one output typestate. 

The second call to f.read() may be invalid if the first call to f.read() has transitioned 

f to the eof typestate. In such cases, if the second call to f.read() is invalid then an 

exception would be raised at run time. If the programmer has not handled the exception in 

the code then the program will crash at run time. However a SCOOP compiler can statically 

detect that the second call of f.read() may be invalid because of the first call that 

transitions f to the eof typestate. Therefore, upon such a detection, the SCOOP compiler can 

statically check whether the programmer has enclosed the second call of f.read() inside 

the proper exception handling scope. If the compiler discovers that the second call to 

f.read() is not enclosed in exception handling code, then the SCOOP compiler would 

generate a warning statically for the programmer to enclose the second call of f.read() 

within appropriate exception handling scope. Such a warning generated by the SCOOP 

compiler will make a significant impact on avoiding unexpected program crashes due to 
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inconsistent typestates. This is our contribution as no previous study has attempted to avoid 

such typestate inconsistencies by generating these warnings statically.  

 

5.18 Conclusion 

 

To the best of our knowledge, the presented static and dynamic typestate checking techniques 

are the only techniques presented so far that include both of the following: 

 

 Defines the implementation architecture, i.e. given in Section 5.10, for typestate 

checking.  

 Works in the presence of aliasing and does not require a programmer to learn and use any 

additional annotations. 

 

We claim that our proposed technique allows effective software testing through user friendly 

typestate checking. 
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Chapter 6  
 

6 The Typestate Invariant  

 

6.1 Introduction 

 

In state controlled object oriented programming, the explicit external typestates of an object 

are declared in the object definition. The binding rule associated with each typestate is 

verified by the stated type system. In this chapter we introduce how the stated type system 

would implement the validation of the typestate binding rule. We represent the set of 

explicitly declared typestates of a stated object as TO.  

 

“TO” is the set of typestates associated to an object O. 

 

The SCOOP language recognizes the attributes and the values of the attributes that represent 

the internal typestate of that object. These attributes along with their defined values are 

referred to as the typestate invariant. The external typestate and its corresponding typestate 

invariants are bound with each other in the object definition. This binding is defined via an 

invariant binding rule (state predicate).  

 

For instance, the openfile typestate of a File object can be bound with the file_path 

attribute of f by having a binding rule such that if f is in the openfile typestate then the 

file_path attribute should hold a valid memory address of an opened file, i.e. it cannot be 

null. Therefore, the typestate invariant rule for the openfile typestate can be represented as 

below. 

 

file_path !=null 

 

The typestate and its invariant are bound as illustrated in the snippet below from Figure 5.2.   
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 [statebinding{ openfile : ( file_path !=null ) }] 

 

The stated type system validates at any point in time whether each of the external typestates 

of the object complies with the binding rule that binds the typestate invariant with its external 

typestate. A modification in the value of a bound typestate invariant would also be verified 

by the stated type system to check whether the modified value complies with its binding rule. 

In case there is a violation of a binding rule of the current typestate, either the object would 

be forced to transition to another typestate that complies with the binding rule, or the object 

would be transitioned to an undefined typestate as mentioned in Section 5.5. It should be 

noted that the undefined typestate is a default typestate available for each stated object. 

 

We argue that the typestate and the typestate invariant are associated with the stated object 

instance instead of the stated class. Therefore, the typestate and typestate invariant are not 

captured with respect to the subclass hierarchy. 

 

6.2 Motivation 

 

An explicitly defined external typestate of an object that is bound with its internal typestate 

data (typestate invariant) allows simpler and easier programming for the user of the stated 

object because the stated object itself ensures that the external typestate and internal typestate 

representing data are synchronized.  

 

The advantage of a typestate invariant is that the programmer does not need to know the 

complex internal invariant binding rule to realize the current typestate of the object. The user 

of a stated object can simply access the external typestate, i.e. a single piece of information, 

to find the current typestate rather than bothering with the complex rules concerning the 

typestate invariant to realize the current typestate of the object.  
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Binding external typestate with the internal typestate invariants provides better information 

hiding. An internal typestate invariant does not need to be exposed outside the object, and the 

user of the object can realize the internal typestate invariants through the external typestates. 

 

For instance, the fullcharged external typestate of a printer stated object may abstract over 

typestate invariants such as ‘cartridge ink level’ and ‘cartridge last replaced’. The values of 

each of these typestate invariants may collectively or individually cause the printer typestate 

to transition from the fullcharged to the halfcharged typestate in the case that either 

‘cartridge ink level’ goes below 50% or ‘cartridge last replaced’ exceeds 20 days. Such a 

transition of state may also depend on some correlation between the internal typestate 

invariants (although this is beyond our present scope). The user of the printer object does not 

need to know the internal typestate representation, e.g. whether the ‘cartridge ink level’ goes 

below 50% or ‘cartridge last replaced’ exceeds 20 days, in order to realize the current 

typestate of the printer stated object.  Therefore, to determine the current typestate of an 

object, the user of the stated object can write a simpler piece of code, as shown below: 

 

if printer.curr_state == printer.fullcharged then    

 

rather than writing the following piece of code: 

 

if(printer.cartridge_ink_level>50AND 

                    printer.cartridge_last replaced>20) then    

 

SCOOP-supported typestate invariants imply that the compiler provides the memento design 

pattern by default, and the programmer does not need to bother with writing code to extract, 

save, and restore the state specific data in order to preserve the state of an object as illustrated 

in Section 6.8 
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6.3 Implementation of a Typestate Invariant 

 

In the literature, the notion of a typestate invariant has already been studied. In this chapter, 

we study how to implement typestate invariants. 

 

In order to implement typestate tracking and invariant binding, we propose the use of an 

invariant table. The invariant table serves as the architecture for maintaining and tracking 

typestate invariants. In Section 6.5, we explain how typestate invariants are maintained with 

the help of an invariant table. The proposed use of the invariant table also supports typestate 

extension and subclassing simultaneously.  

 

6.4 Binding Typestate with a Typestate Invariant  

 

The binding of an object’s external typestate with its typestate invariants is defined by our 

proposed state binding construct as illustrated in Section 6.1  

 

We refer to the state predicate concept of [20] as the binding rule and introduce our 

[statebinding] keyword to declare a binding rule. The binding rule can optionally be 

used by the programmer to bind the values of the object’s typestate invariant with its 

typestate. 

 

Our [statebinding] keyword enforces that the current external typestate should be 

compliant with its binding rule at every point in time.  

 

For any method that changes the typestate of an object, the stated type system verifies that 

the typestate invariant binding rule holds for the post condition typestate when that method 

returns. This verification performed by the stated type system also applies to the overridden 

method in a subclass. Therefore, the type system also ensures that overridden methods in the 

subclass leave the object according to the post condition typestate of the method. 
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6.4.1 Iterator Example 

 

An iterator is a programming construct that performs custom iteration over a data structure. 

During an iteration, the iterator object switches between different states that can be suitably 

modeled by a stated object. We take an object based iterator example from [6] and present it 

using our proposed state controlled syntax in Figure 6.1. This example is also referred to in 

Case Study 3.12.  

 

In this example, we illustrate the typestate binding keyword as below. 

 

[statebinding]{ initial :( j== -1 AND i < htbuckc)] 

 

The above statement binds the instance variables, i.e. the internal representation of the 

typestate, with the typestate name, i.e. the externally accessible typestate, of the iterator 

object HIter, in Figure 6.1. Here, the binding keyword binds the initial external typestate 

with the range of values of j, i and htbuckc.  

 

The instance variable i represents the index of the element currently pointed by the iterator. 

The value of htbuckc represents the index of the last element of the iterator. The defined 

range of values is the invariant of the initial external typestate of the iterator object HIter. 

Once the binding between a typestate and its typestate invariant is defined, then the typestate 

transition also modifies the values of the bound typestate invariant by default as mentioned in 

Section 6.4.3. Alternatively, modification of the values of the bound typestate invariant may 

also force the transition of the corresponding typestate of the object as mentioned in Section 

6.4.2.  
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Figure 6.1 Iterator Stated Object 

 

The binding rule that binds a typestate with its internal typestate invariant data members, is 

true as long as the iterator is in that typestate. For instance, for the traversal typestate, the 

stated type system makes sure that as long as the binding rule for the traversal typestate is 

true, then the step() function is accessible. For the traversal typestate, the typestate 

[state{ initial , traversal , end }] 
template <typename Key, typename Val> 
class HIter : public Iter<Val> { 
HTable<Key,Val> *ht; 
HBlock<Key,Val> *blk; 
int i, j; 
[statebinding{initial  :( j== -1 AND i < ht->buckc),  
              traversal:( j==0 AND i < ht->buckc),  
              end      :( i== ht->buckc)}] 
public: 
HIter(HTable<Key,Val> *ht0) [initial]{ 
this.trans(initial);   
ht = ht0; 
i = 0; 

j = -1;                                                                   // ++j will gives entv[0] i.e. j is 0 

while (i < ht->buckc) {                             //this loop find first non-empty 

     blk = ht->buckv[i];                     // block 
blk = ht->buckv[i]; 
if (blk && blk->entc > 0) break; 
i++; 

} 
this.step(); 

} 
[initial,traversal] 
void step()[ traversal | end] 
{ 
this.trans(traversal);   
if (++j < blk->entc) return; 

j = 0;                                                                      // Try start of a block. 

blk = blk->next;                                             // Try next block in chain. 
if (blk && blk->entc > 0) return; 

i++;                                                                           // Try next chain. 
while (i < ht->buckc) { 
blk = ht->buckv[i]; 
if (blk && blk->entc > 0) break; 
i++; 

} 

if(i==ht->buckc)                                              //these two statements in grey are  

      this.trans('end');               //shown for brevity but  are not  

                                                                                    // part of this code.  
} 
Val value() { return blk->entv[j].val; } 
bool empty() { return i == ht->buckc; } 

}; 
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invariants are i, j and tbuckc. The traversal typestate will hold as long as the 

following rule is true:  

 

[statebinding{traversal:( j==0 AND i < htbuckc)}] 

 

Similarly for the end typestate of the iterator, the typestate invariants (i and htbuckc) 

are bound as below: 

 

[statebinding{ end :( i== htbuckc)}] 

 

And for the initial typestate, the typestate invariants (j, i and htbuckc) are bound 

as below: 

 

[statebinding{ initial :( j== -1 AND i < htbuckc)}] 

 

The following statement 

 

[statebinding{ initial :( j== -1AND i < htbuckc),   

traversal :( j==0 AND i < htbuckc),  end :( i== ht->buckc)}] 

 

from Figure 6.1 collectively declares the binding of the internal typestate invariants with the 

corresponding external typestates. Furthermore, it defines the range of values (binding rules) 

of those internal typestate invariants for which the corresponding external typestate holds. 

 

Once the binding is defined, it is the responsibility of the stated type system to monitor the 

internal typestate invariants and their current values with the help of the invariant table 

according to the typestate binding rule. The stated type system then keeps track of any non-

compliance of the binding rules and makes the typestate transition accordingly.  

 

The two statements in grey, in Figure 6.1, are shown for brevity but are not the part of the 

code. This conditional  transition  is deduced and internally implemented by the SCOOP 
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language due to the defined typestate invariant rule and post condition of the step() 

method.   

 

6.4.2 Typestate Invariant Based Default Transition of Typestate 

 

To the best of our knowledge, previous studies have only considered the effect of typestate 

transitions on typestate invariants. The converse, i.e. the effect of changes in typestate 

invariants on typestate transitions, has not yet been studied. 

 

While binding the typestate invariant with an external typestate, we can also define the range 

of data domains for which the typestate invariant should hold under that external typestate. 

This range of values of a typestate invariant serves as the internal representation for the 

corresponding external typestate. As soon as the values of a bound typestate invariant go out 

of the specified range, i.e. the binding rule is violated for that specific external typestate, then 

the bounded external typestate is transitioned to the other external typestate according to the 

current values of its invariant.  

 

For instance, at the return of the step() function, the stated  type system validates the 

binding rule of the end typestate, if i == htbuckc. The grey lines of code in the 

step() function show that the typestate transition conditional to the bound typestate 

invariant is internally implemented by the SCOOP language. This default transition of 

typestate is achieved with the help of the invariant table that is discussed in Section 6.5. 

 

6.4.3 Typestate Transition Based Modification to Typestate 
Invariant 

 

The user of a stated object can explicitly transition the stated object from its current typestate 

to another typestate. For instance, while the iterator object is in the traversal typestate, the 

client-side code can invoke the following method: 
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iterator.trans(end) 

 

The above code not only transitions the iterator object to the end typestate but also enforces 

the end typestate invariants. Therefore, the stated type system sets up the end typestate 

invariant, i.e. i == htbuckc, by modifying the value of i. This default modification to 

the typestate invariant is recorded in the invariant table mentioned in Section 6.5. 

 

6.5 The Invariant Table 

 

The SCOOP compiler creates a specific hash table data structure called the “invariant table” 

for each stated object. The invariant table is created along with the symbol table. One of its 

main uses is to hold the bindings between typestates and their invariants. Each typestate 

name of a stated object is an entry in the invariant table in the same way that each variable or 

object name is an entry in the symbol table. Each row in the invariant table holds the 

typestate name, its typestate invariant, its binding rule, and a flag to mark whether the 

binding rule is true or false. If the flag for a specific typestate is true then that specific 

typestate is the current typestate of the object. The stated type system, at any point in time, 

evaluates the binding rule and sets the flag accordingly for any given typestate name entry in 

the invariant table. 

 

The invariant table always holds two default typestate names for each stated object, i.e. the 

null and undefined typestates. As previously mentioned, whenever a stated object points to a 

null reference then it is in the null typestate. Whenever there is no typestate binding rule that 

evaluates to be true for a stated object then the object is transitioned to the undefined 

typestate.  

 

The stated type system always points to a typestate name in the invariant table corresponding 

to the current typestate of a stated object. In other words, for each stated object, the stated 

type system always points to that typestate entry in the invariant table which has its flag set 

to true. If the binding rule of the current typestate is evaluated as false, then a recovery 

operation is performed by the SCOOP compiler that either transitions the typestate of the 
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object to the typestate for which the binding rule is true in the invariant table, or transitions 

the object to the default undefined typestate. The default undefined typestate is mentioned in 

Section 5.5. 

 

Table 6.1 illustrates an invariant table for the iterator stated object, given in Figure 6.1, while 

it is in the traversal typestate. 

 

Typestate Invariant Invariant rule Valid 

null This this == null False 

error This this ≠ null AND this.curr_tstate ∉ Titerator False 

initial j,i, 

htbuckc 
j== -1 AND i < htbuckc False 

traversal j, i, 

htbuckc 
j==0 AND i < htbuckc True 

end j, i, 

htbuckc 
i== htbuckc False 

Table 6.1 

 

6.6 Typestate Extension 

 

In this section we illustrate typestate extension with a few variations in our code fragments. 

The sample code in Figure 6.2 is a SCOOP program. It includes a File class with 

an openfile typestate, closefile typestate and eof as an extension of the  openfile typestate.     

 

[state(openfile,closefile,eof)]    
class File{ 
     string name;                                             
 
     [openfile]{                                                
          public  read()[openfile | eof]{..} 
     } 
 
     [eof]:[openfile]{                            
                ………… 
     }                             
 
     [closefile]{               
      ……… 
     }    
} 

Figure 6.2 SCOOP File Stated Class  
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The sample code in Figure 6.3 is the SCOOP generated translation of the code given in 

Figure 6.2. 

 

class File{                                             
    enum state {openfile, closefile,eof}     
    string name;  
    state curr_st;  
          
    class openfile{                                                         // openfile ‘state class’         
        public read() [openfile | eof]{...}         
    } 
 

    class eof:openfile{……                                        // eof ‘state class’ 

                    ….. 
  } 

    class closefile{                                              // closefile ‘state class’ 
                    …………. 
    } 
} 

 

Figure 6.3 SCOOP-generated File Stated Class 

 

 

The sample code in Figure 6.4 is a SCOOP program. It includes a File class and an 

Imagefile as its subclass. The File class has an openfile typestate, a closefile 

typestate and an eof typestate as an extension of the openfile typestate.  The Imagefile 

overrides the openfile, closefile and eof typestates of the parent class File. 
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[state(openfile,closefile,eof)]    
class File{ 
     string name;                                             
 
     [openfile]{                                                
          public read()[openfile | eof]{... 
    } 
     } 
 
     [eof]:[openfile]{                            
                ………… 
     }                             
 
     [closefile]{               
      ……… 
     }    
} 
 
class Imagefile:File{ 
     ... 
     [openfile]{    
        .... 
  } 
  [closefile]{ 
    ... 
  }  
     [eof]:[openfile]{                            
                ………… 
     }                             
 
     } 
} 

Figure 6.4 SCOOP File and Imagefile Stated Class  

 

 

The sample code in Figure 6.5 is the SCOOP generated translation of the code given in 

Figure 6.4.  
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class File{                                             
    enum state {openfile, closefile, eof}     
    string name;  
    state curr_st;  
          
    class openfile{                                                              //openfile ‘state class’ 
         
        public read() [openfile | eof]{... 
   } 
    } 
 

    class eof:openfile{……                                          // eof ‘state class’ 

                    ….. 
  } 

    class closefile{                                                //closefile ‘state class’ 
                    …………. 
    } 
} 
class Imagefile:File{ 
  enum state {openfile, closefile, eof}     
 

    class openfile{                                                            //openfile ‘state class’         
        public read() [openfile | eof]{... 
   } 
    } 
 

    class eof:openfile{……                                           // eof ‘state class’ 

                    ….. 
  } 

    class closefile{                                                // closefile ‘state class’ 
                    …………. 
    } 
} 

 

Figure 6.5 SCOOP-generated File and Imagefile Stated Class 

 

The sample code in Figure 6.6 is a SCOOP program. It includes a File class and an 

Imagefile as its subclass. The File class has the openfile  and closefile typestates. The 

programmer in the Imagefile subclass overrides the openfile typestate and then extends 

the openfile typestate by the eof typestate.  
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[state(openfile,closefile,eof)]    
class File{ 
     string name;                                             
 
     [openfile]{                                                
          public read()[openfile]{... 
    } 
     } 
 
     [closefile]{               
      ……… 
     }    
} 
class Imagefile:File{ 
     ... 

     [openfile]{    
        .... 
  } 
  [closefile]{ 
    ... 
  }  
     [eof]:[openfile]{                            
                ………… 
     }                             
 
     } 
} 

Figure 6.6 SCOOP File and Imagefile Stated Class With Typestate Extension 

 

 

 

The sample code in Figure 6.7 is the SCOOP generated translation of the code given in 

Figure 6.6.  
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class File{                                             
    enum state {openfile, closefile, eof}     
    string name;  
    state curr_st;  
          
    class openfile{                                                                                    // openfile ‘state class’ 
         
        public read() [openfile | eof]{... 
   } 
    } 
     
    class closefile{                                                                         // closefile ‘state class’ 
                    …………. 
    } 
} 

 
class Imagefile:File{ 
  enum state {openfile, closefile, eof}     
    class openfile{                                                                                    // openfile ‘state class’ 
         
        public read() [openfile | eof]{... 
   } 
    } 
 

    class eof:openfile{……                                                                   // eof ‘state class’ 

                    ….. 
  } 

    class closefile{                                                                         // closefile ‘state class’ 
                    …………. 
    } 
} 

 

Figure 6.7 SCOOP-generated File and Imagefile Stated Class With Typestate 

Extension 

 

6.7 Typestate Invariants With Typestate Extension and 
Subclassing 

 

As mentioned, SCOOP supports “typestate” as a third kind of field for an object. In Figure 

6.8, we illustrate a File stated object definition and ImageFile as its subclass definition.    

 

TFile ={ openfile, closefile, eof } 

and, TImageFile ={ openfile, closefile, eof } 

  

In our setting, each typestate of an object is always public for the object instance. The 

typestates of the superclass are inherited by the subclass so that the subclass knows the 
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typestates of its superclass. However, in order to make the typestates of the superclass part of 

the subclass interface, the typestates of the superclass need to be explicitly declared 

(overridden) in the subclass so that the overridden typestates are accessible to the object 

instance of the subclass along with any new typestates of the subclass. A subclass can choose 

to override as many typestates of its superclass as it needs to. Figure 7.1 illustrates a typestate 

structure. The complete typestate structure from the superclass can also be optionally 

overridden in the subclass. Moreover, the subclass allows for overriding of the typestate 

invariant for the overridden typestate with a new binding as illustrated in Figure 6.8. For 

instance, for a File superclass, there is a field file_path and the typestate invariant rule 

for openfile typestate of File can be coded as below: 

 

file_path!=null 

 

The Imagefile subclass has an attribute image. The instance of the Imagefile 

subclass reads an image from the location file_path and loads it in its image attribute. 

Therefore, the Imagefile subclass can override the binding rule for its openfile typestate 

that formulates the overall binding rule as shown below: 

 

file_path != null AND image!=null 
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Figure 6.8 Typestate Extension With Subclassing 

[state(openfile,closefile=start,eof)] 

class File{                      //beginning of File class 

  string name;                                                //this field is accessible in every states 
  string file_path; 
 [statebinding{ openfile :( file_path !=null ) }] 

   public sharedmethod(){}                     //this method is accessible in every typestates      

 
 [openfile]{    
   public string file_desc;      
        public  read()[openfile | eof]{...} 
        public display()[openfile]{ 
     print(“original openfile state display”);..} 
     public  close()[closefile]{.. 
        this.trans (closefile);... 

     }  
  } 
     [closefile]{ 
     public  open(string file_path_arg)[openfile]{... 
        this.trans(openfile);... 
     }    
     } 
  [eof]:[openfile]{ ... 
     }    

}                                //end of File class 
 
 
[state(openfile,closefile=start,eof)] 
class Imagefile:File{ 
 [statebinding{ openfile:( base.file_path !=null AND  
                                    this.image != null )}] 
   [openfile]{    
   string image; 
   public override read()[openfile]{ 
   } 
   public override display()[openfile]{.. 
     print(“image of openfile state”);.. 
   } 
   public  override close()[closefile]{.. 
     this.trans (closefile); ... 
   }  
 } 
 [closefile]{ 
   public open(string file_path_arg)[openfile]{... 
     this.trans(openfile);... 
   }   
    } 
} 
 
 
 
class cls_main{ 
   static void main(){ 
     Imagefile imfl = new Imagefile();      
     Imfl.open(“d:\imfl.bmp”); 
   } 
} 
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SCOOP allows the typestate extension of the openfile typestate to the eof typestate and the 

inheritance of File to ImageFile along with the overriding of the binding rule in the 

ImageFile subclass, which can be composed in a single program, as illustrated in Figure 

6.2. Table 6.2 shows a partial illustration of the invariant table for the File stated object 

while it is in the openfile typestate.  

 

 

 

Table 6.2. Partial Invariant Table of File Stated Object 

 

Table 6.3 shows a partial illustration of the invariant table for the ImageFile stated object 

while it is in the openfile typestate.  

  

 

 

Typestate Invariant Invariant rule Valid 

openfile base.file_path, 

this.image 

base.file_path !=null AND 

this.image!= null   

True 

Table 6.3. Partial Invariant Table of ImageFile Stated Object 

 

Each stated object instance has only one invariant table regardless of the fact that the stated 

object instance is an instance of a subclass or superclass. In [20], Manuel Fähndrich proposes 

that each subclass instance should keep a separate frame for each of its superclasses. This can 

become cumbersome. 

 

6.8 State Preservation 

 

Since SCOOP inherently captures the state of a stated object, it can preserve the state data by 

default. Case Study 3.11 illustrates the capability of the SCOOP language to provide the 

memento design pattern by default to preserve the state of an object. 

 

Typestate Invariant Invariant rule Valid 

openfile file_path file_path != null True 
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6.8.1 Memento Design Pattern 

 

In conventional OOP, the memento design pattern [44] is a behavioral design pattern that 

extracts the state (data members) of an object outside that object, holds the state of the object 

and then restores the held state back to the same object. The ‘originator’ is the object whose 

state is extracted and saved outside of it. The object that temporarily stores the state of the 

originator object is called the ‘memento’ object, and the ‘caretaker’ is another object that 

holds the ‘memento’ object. In addition to these objects (memento and caretaker), the 

programmer needs to write two additional functions in the originator object definition. One 

of those functions returns the original state so that the original state of the object can be 

saved outside of the object. Another function simply receives the originally saved state so 

that it can be restored. The memento design pattern is implemented using these additional 

objects and functions. Note that in the context of conventional OOP, the term “state” means 

the data members of the object. 

 

 

Figure 6.9 Memento Design Pattern 

6.8.2 Memento by SCOOP 

 

As an implication of the use of the invariant table, SCOOP provides the memento design 

pattern by default. In order to take advantage of memento functionality, the programmer 

neither needs to write any additional functions to extract and restore state nor code any 

additional memento or caretaker classes (in contrast to conventional OOP). Therefore, in 

comparison to conventional object oriented programming, SCOOP reduces the burden on the 
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programmer of writing additional code. SCOOP can provide such built-in functionality due 

to the following characteristics: 

 

 Each typestate is a first class language concept. 

 Each external typestate and its associated typestate invariant data have already been 

defined in the object definition. 

 Typestate invariant data members are already recorded separately in the invariant table.  

 

A user of a stated object within client-side code can therefore extract the internal state 

because the SCOOP compiler already knows the data members particular to a typestate of the 

stated object. Furthermore, in SCOOP, we can define an object of a “typestate” that serves as 

an equivalent to the memento object of conventional OOP. In Figure 7.1, we present the 

openfile typestate structure. Internally, SCOOP implements each typestate structure as a 

“state class” that allows the declaration and creation of an object instance of a typestate 

structure. 

 

We illustrate the memento design pattern with the SCOOP language with reference to the 

ImageFile example given in Figure 6.8. The client-side SCOOP code snippet below 

creates an object im_fl that serves as an equivalent to the memento object of the memento 

design pattern in conventional OOP. 

 

Imagefile:[openfile] im_fl_saved = new Imagefile:[openfile]; 

 

The above client-side code snippet creates an object of the openfile typestate which is valid 

in our proposed SCOOP language because, internal to the language, each typestate is 

represented by a distinct “state class”. 

 

The code snippet below extracts the openfile typestate of the object. 

 

im_fl_saved = imfl.openfile;  
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The above statement copies the openfile typestate data members to the im_fl_saved 

object. The code snippet below closes the already opened file, opens another file, and loads 

its image. 

 

imfl.close(); 

imfl.open(“d:\imfl1.bmp”); 

 

Now the imfl contains the image of the newly opened ImageFile.  

 

The code snippet below restores the original state of the image from the im_fl_saved 

object. 

 

imfl.openfile = im_fl_saved;  

 

6.9 Conclusion 

 

In this chapter, we investigate how typestate invariants can be used to specify the properties 

of an object. Typestate invariants allow the synchronization of the internal and external 

typestates of an object. A modification in the value of the bound internal typestate invariants 

is verified by the stated type system when the object changes its typestate and vice versa. The 

implementation mechanism for typestate invariants presented in this chapter is compatible 

with subtyping and typestate extension simultaneously. Our technique also provides a default 

memento pattern from the language. 
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Chapter 7  
 

7 Typestate Based Dynamic Compositional Adaptation 

 

The direct support of dynamic behavior by a programming language is called “dynamic 

compositional adaptation” [41]. Context-oriented programming [37] and aspect-oriented 

programming [59] have been exploited for dynamic behavior adaptation in autonomic 

computing [33]. We propose that dynamic compositional adaptation can be realized by the 

dynamic replacement of partial behaviors of software objects, where the behavior specific to 

a given state or typestate of an object is replaced at run time. Meaning, a specific typestate 

structure of an object is replaced with a new typestate structure at run time. Such dynamic 

composition is referred to as typestate-based dynamic compositional adaptation. In this 

chapter, we investigate typestate-based dynamic compositional adaptation using SCOOP. We 

also present algorithms, in Section 7.4, to replace the typestate specific part of a software 

object. 

 

7.1 Introduction 

 

Dynamic Software Update (DSU) [51] is a desired feature in some contexts of software 

engineering. In the context of autonomic computing [33, 34], DSU is referred to as dynamic 

behavior adaptation [35, 40] and it is one of the well-stated requirements of autonomic 

computing. DSU requires software to adapt new functional or nonfunctional features at run 

time, i.e. to update the code without restarting or recompiling the software. The dynamic 

adaptation of the software assists in the self-configuration, self-healing, self-management, 

self-optimization and self-protection requirements of autonomic computing.  

 

We propose dynamic compositional adaptation by dynamically replacing typestates of 

objects. A stated object allows some of its methods (behaviors) to be accessible regardless of 
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its current typestate, but some methods (behaviors) are particular to a specific typestate and 

are accessible only if the object is currently in that typestate. The set of methods (behavior) 

particular to the typestate of an object represents a partial behavior of that object. Therefore, 

the complete behavior of a stated object is distributed among many partial behaviors. SCOOP 

allows dynamic replacement of partial behaviors such that only typestate specific partial 

behavior of an object is replaced, rather than replacing the entire object. Typestate-based 

compositional adaptation of objects is desirable in many software applications, as mentioned 

in [41, 43]. We believe that typestate-based dynamic compositional adaptation benefits 

mostly the self-healing and self-configuration aspects of autonomic computing.  

 

The implementation of typestate replacement depends mainly on the internal architecture of 

the objects. In our setting, the organization of typestates in stated objects is based on our 

architecture, which is explained in Section 5.10. We argue that our proposed ‘proxy and state 

class’ architecture allows typestate swapping at run time as easily as it would be performed 

by the algorithms presented in Section 7.4. 

 

7.2 Typestate as Context 

 

Context-aware adaptation is also one of the desired and well-studied functionalities of 

software [50]. We argue that a specific typestate of an object, say ‘O’, can be viewed as the 

context for other objects that interact with the object ‘O’. A transition of a typestate of object 

‘O’ reflects a change in context for the other objects. Therefore, our proposed typestate-based 

dynamic compositional adaptation serves the purpose of context-aware adaptation.  

 

There are many programming scenarios that require software to be able to adapt to a varying 

context. Such a scenario can typically occur in dynamic wireless network conditions, TCP 

network congestion, fault tolerant components, air traffic control and life-support systems 

where the cost and safety of application restart can be prohibitive. Typestate-based dynamic 

compositional adaptation overcomes the cost of application restarts whenever typestate-

associated behavior adaptation or context-associated behavior adaptation is desired.  
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Built-in support for typestate-based dynamic adaptation of software objects according to their 

changing context allows for easier means to achieve dynamic adaptation. Let us consider a 

simple cryptography scenario for a computer network. A ‘message’ is sent over a network 

through a bus in its encrypted state. As long as the ‘message’ is passing across the network, it 

is supposed to be in the encrypted state. However, as soon as the ‘message’ is received at the 

terminal, its environment or context has changed from bus to terminal and requires the 

‘message’ to transition to its decrypted state. The functional or behavioral aspect of the 

decryption of a ‘message’ may need to adapt depending on the terminal where it is received. 

Our proposed stated object not only has the built-in capability to transition to its decrypted 

typestate, but it can also adapt to a new decryption functionality according to the kind of 

terminal where it is received.  

 

 

7.3 Typestate as a First Class Language Concept 

 

In Figure 7.1, we illustrate the typestate structure from Figure 6.8. As already mentioned, we 

propose that in addition to the object, the object’s typestate is also a first class language 

concept in SCOOP. Therefore, typestate structure can be passed to a function as a parameter, 

it can be received as a function argument and it can also be returned from a function. This 

implies that a stated object can dynamically replace its existing typestate (i.e. typestate 

structure) with an entirely new typestate structure. However, the new typestate structure must 

be compatible with the previous “typestate object” that adapts to it. The new typestate 

structure is assumed to be compatible with the previous one if it retains the same interface as 

that of the previous one. This compatibility is required so that all interdependent objects keep 

working as before. 

 

For instance, suppose we are creating an image application. An imagefile object, as in 

Figure 6.8, may need to read an image from a device, e.g. a scanner or a camera. The 

programmer writes the read() function of the openfile typestate of the ImageFile 
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object, which can read the image from these devices that were known at the time of 

compiling the ImageFile object. After the ImageFile has been compiled and executed, 

a new device is connected to the system. The read() mechanism to read an image from the 

newly connected device is different from the read() mechanism with which the 

ImageFile was initially compiled. Therefore, an ImageFile object may need to 

dynamically adapt a new read() method so that it can read an image from a newly 

connected device that was unknown at compile time. In particular, the ImageFile object 

needs to dynamically adapt the new read() method without recompiling. We propose that 

a separately compiled new read() method replaces the earlier read() method of the 

ImageFile object. Since read() is a behavior particular to the openfile typestate of the 

ImageFile object, it is very likely that the related data, or any other function of the 

openfile typestate also need to adapt with the newly replaced read() method. Therefore, 

the behavior that is associated with only the openfile typestate of the ImageFile needs to 

be dynamically replaced or adapted. The programmer-defined “typestate structure” of the 

openfile typestate of the ImageFile taken from Figure 6.8, which is intended to be 

replaced, is shown in Figure 7.1. 

 

[openfile]{    
 string image; 
 public override read()[openfile]  {} 
 public override display()[openfile]{ 
        print(“image of openfile state”); 
                                    } 
 public override close()[closefile]{..this.trans (closefile);..}  
 
} 

Figure 7.1 Openfile Typestate Structure 

 

In SCOOP, each typestate structure defined by the programmer is translated to a specific 

kind of state class that is hidden from the programmer. The instances of each state class are 

called typestate objects.  
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7.4 Architecture 

 

We propose that at run time a stated object allows the replacement of the partial behavior 

associated with any of its typestates other than its current typestate. Replacing the typestate 

associated behavior will depend mainly on the architecture with which the typestate is 

organized inside the stated object.  

 

As we propose, a stated object internally implements each of its typestate structures as a 

distinct and lightweight “typestate object”. This lightweight “typestate object”, shown in 

Figure 5.2, is hidden from the programmer. 

 

We need to maintain typestate associated behavior in typestate objects, so that the stated 

object that encapsulates all typestate objects does not become cumbersome in the memory. 

There are as many internal typestate objects as the number of typestates of a stated object. 

Therefore, the problem of dynamically modifying typestate-associated behavior reduces to 

replace the existing “typestate object” reference with the new “typestate object” reference. 

All existing and new typestate objects are extended (inherited) by a built-in ‘typestate 

interface’ provided by the compiler, so that they are type compatible. We investigate the 

minimum attributes required for the typestate associated reference object so that the stated 

object can be as lightweight as possible. The overall swapping of the original typestate object 

with a new typestate object is implemented by the four basic algorithms below. 

 

 Swap the new “state class” with the original “state class”, as discussed in Section 7.4.1. 

 If the original “typestate object” is an instance of the “state subclass”, adjust the new 

“typestate object” to the “state subclass” hierarchy, as discussed in Section 7.4.2. 

 Swap the new “typestate object” with the original “typestate object”, as discussed in 

Section 7.4.3. 

 Adjust the new typestate object entry in the symbol table, as discussed in Section 7.4.4. 

 

 

 



 

98 
 

7.4.1 Dynamic State Class Swapping 

 

In order to replace an existing “typestate object” with a new “typestate object”, we first need 

to swap the state class corresponding to the existing typestate object with the state class of 

the new typestate object.  

 

We introduce a swap_stateclass (Type typeNew, String replaceWith) 

algorithm, in Figure 7.3, that performs all the checks and operations to convert a new 

standalone state class, namely typeNew, into the existing nested state class of the proxy 

stated class. In order to implement this algorithm, a reflection technique to dynamically load 

a standalone class is used. The argument typeNew is the new standalone state class. The 

second argument replaceWith is the typestate name of the original state class that needs 

to be swapped with typeNew. This way of dynamically loading a class, instantiating its 

instance, and invoking its functions is possible in modern OO languages like C++, Java and 

C# using the reflection technique [45]. For instance, in C#, a standalone class, say new_cls, 

from a standalone assembly file, say asm, can be loaded, as tp, in a program using the code 

in Figure 7.2: 

  

String new_cls;          //name of the new class to load 

Assembly asm;            

String type;                 //fully qualified name of the new class to be loaded 

Type tp;                          // this will hold the new loaded class 

String asm_path;        //path of assembly file that contains the standalone class  

asm=Assembly.LoadFile(@asm_path); 

type= asm.toString + “.” + new_cls;             

tp= asm.GetType(type);      

Figure 7.2 Dynamic Loading by Reflection 

 

The above code fragment can be used to load a standalone class, as in the algorithm shown in 

Figure 7.3. Once a separately compiled standalone class has been loaded into memory then 

its instance can be created in the usual way. 
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swap_stateclass (Type typeNew, String replaceWith) 

Type cls; 

original_cls= classOf(replaceWith);//class of ‘replaceWith’ typestate is  

                                                                                    //returned 

if (typeNew.IsClass) AND interfaceOf(typeNew)== 

interfaceOf(original_cls) then  

o load the ‘typeNew’ class using reflection technique. 

o replace the ‘original_cls’ class with the ‘typeNew’ class. 

if the ‘original_cls’ class has state subclass(s) then 

o make the ‘typeNew’ class the parent of all these state 

subclass(s). 

end if 

end if 

end swap_stateclass 

Figure 7.3 Swap State Class Algorithm 

 

7.4.2 Checking for State Subclass 

 

It is possible that the new state class, i.e. typeNew, has to be replaced with the existing state 

class, i.e. exst_cls, which is a state subclass, i.e. an extension of a typestate. For instance 

as in Figure 6.8, the exst_cls class, i.e. eof, is an extension of the openfile typestate. 

Therefore, in the code of Figure 5.2, it is a subclass of the openfile state class. The new 

state class typeNew may need to replace the eof state subclass. In this case, the algorithm, 

shown in Figure 7.4, is invoked to dynamically transform a standalone state class typeNew 

into  a state subclass. 
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check_state_subclass(Type typeNew ,Type exst_cls) 

if the existing state class ‘exst_cls’ is the state 

subclass then 

o ‘typeNew’ class should already have overridden 

methods of all virtual methods of the parent class 

corresponding to the its parent typestate.  

o vtable of ‘typeNew’ class will already have entries 

for any of its virtual, non virtual and overridden 

methods. 

o create a new vtable by copying the vtable from 

‘exst_cls’ state subclass. 

o replace virtual method entries of newly created 

vtable by the corresponding entries of overridden 

methods from vtable of standalone class. 

o Append all other virtual and non-virtual method 

entries of ‘typeNew’ vtable into the newly created 

vtabel. 

o replace the original vtable of ‘typeNew’ class by 

newly created vtable. 

end if 

end check_state_subclass 

Figure 7.4 Check State Subclass Algorithm 

 

7.4.3 Dynamic Typestate Object Swapping 

 

We put forward the algorithm, swap_tstate_object, in Figure 7.5, to dynamically 

swap a new typestate object instance of a new state class with an existing typestate object 

instance. The existing typestate objects are instances of nested state classes encapsulated 

within the stated class. Each stated class, as given in Section 5.7, contains the referent of each 

existing typestate object. The new typestate object remains a standalone typestate object until 

it replaces the existing typestate object. The algorithm swap_tstate_object validates 

all preliminaries while replacing a new typestate object with an existing typestate object. The 

new typestate object is an instance of its corresponding state class. 
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swap_tstate_object () 

o create a typestate object of newly replaced state 

class. 

o assign the state data of the original typestate 

object to the new typestate object using built-in 

memento pattern. 

o Assign the newly created typestate object to its 

referent declared in the encapsulating stated class. 

end swap_tstate_object 

Figure 7.5 Swap Typestate Object Algorithm  

 

This algorithm exploits SCOOP’s built-in memento design pattern, given in Section 6.8.2, so 

that the new typestate object retains the same state as that of the original typestate object. The 

last step of this algorithm invokes the algorithm adjust_sym_table, described in 

Section 7.4.4, to adjust the corresponding entry in the symbol table for the new “typestate 

object”. 

 

7.4.4 Dynamic Name-to-Object Binding 

 

Name-to-Object binding is the mechanism by which a name (object reference) is assigned the 

address of an object instance allocated in the heap. The set of object instance types, which 

can be assigned to a name or object reference, is known at compile time. This set of object 

instance types includes either the instance of the declared type of the object reference or its 

subclasses. This name-to-object binding mechanism is dynamic in case an instance of 

subclass is assigned to a name (referent) of the base class. This is because such a binding can 

only be resolved at runtime as the compiler cannot be sure of what subtype object instance 

this name of the base type would be pointing to at runtime. However, as we have mentioned 

in Section 5.9, an instance of a “state class” is compatible with a “stated object” and therefore 

may be assigned to the referent of the stated object. We propose that a fully and entirely 
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standalone state class be loaded at run time and then transformed into a nested class of the 

stated class. 

 

In a language with static scoping, the compiler can use an ‘insert’ operation to place a name-

to-object or reference-to-instance binding into the symbol table. This binding makes up the 

referencing environment [32]. We propose a “dynamic name-to-object binding” mechanism 

which allows assigning at run time an object instance of an entirely new class to the name 

(object reference) of the declared type. However, the mechanism requires that the new state 

class type be compatible with the declared type of the object reference. “Dynamic name-to-

object binding” works similarly to “dynamic method binding”. Dynamic method binding is 

achieved by replacing a new method’s address in the virtual method table (vtable) of an 

object. Similarly, ‘dynamic name-to-object binding’ is achieved by replacing, at run time, the 

address of a new typestate object instance in the symbol table for static scoping and in the 

central reference table for dynamic scoping. This new typestate object instance is created 

from an entirely new state class and replaces the address of the previous typestate object 

instance in the symbol table in order to establish the new binding of name (object reference) 

with newly created typestate object instance. Therefore, such a new binding can only be 

resolved at runtime as the compiler cannot be sure of the object instance this name (object 

reference) would be pointing to at runtime. The SCOOP compiler invokes the algorithm 

adjust_sym_table of Figure 7.6 to adjust the address of the new typestate object 

instance in the symbol table. This algorithm is invoked from the last step of the algorithm 

given in Figure 7.4.  
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adjust_sym_table(prevObj, newObj) 

int add; 

add=lookup(prevObj)    //the address of symbol table entry for prevObj is         

                                                                 //looked up in symbol table and returned 

if typeof(prevObj)== typeof(newObj) then 

      insertAt(add,newObj) //newObj name is replaced with  

                                                                              //prevObj name in the symbol table 

else                                                                                          

          return error     // prevObj and newObj are not compatible 

end if 

end  adjust_sym_table 

Figure 7.6 Adjust Symbol Table Algorithm  

 

7.5 MAPE-K Loop 

 

Dynamic behavior adaptation [35, 36, 37, 38, 39, 40] is one of the well-stated requirements 

of autonomic computing [33, 34]. The so-called MAPE-K loop, Figure 7.7, of autonomic 

computing defines an abstract architecture to achieve dynamic behavior adaptation [33, 34]. 

Different approaches have been proposed for capturing the sensor and effector requirements 

of the MAPE-K loop, such as layers in context oriented programming [37] and 

refraction/transmutation in Adaptive Java in [42, 52].  We exploit typestate and typestate-

based polymorphism as a natural fit for the sensor and effector requirements, respectively. 

According to our proposed approach, dynamic behavior adaptation is achieved by swapping 

the typestates at run time. Typestate based polymorphism may be more flexible if a typestate 

is dynamically adapted. 
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Figure 7.7   IBM’s MAPE-K Loop 

 

7.5.1 A Case Study 

 

We return to the online banking application case study first presented in Section 3.10. In this 

example, the number of connected clients will determine exactly what typestate the 

‘managed printing service’ will assume. If the number of clients increases beyond a set 

threshold, the ‘managed printing service’ transitions to the distribution typestate, otherwise it 

transitions or stays in the streaming typestate. The number of connected clients is used as an 

internal typestate invariant bound with the external typestate through a binding rule.  

 

We show the ‘print manager service’ in Figure 7.8 that corresponds to the autonomic 

manager of the MAPE-K loop of Figure 7.7. In Figure 7.8, we also illustrate a standalone 

newdistribution typestate. The ‘print manager service’ loads the newdistribution typestate 

object using the code given in Figure 7.2.  The ‘monitor’ function of the ‘print manager 

service’ periodically analyzes the relevant information and plans to trigger a typestate 

adaptation to the ‘managed printing service’. The events received by the ‘print manager’ 

serve as the ‘sensors’ of the MAPE-K loop. An example of such an event is when a new 

support printer is deployed in the system. This ‘monitor’ function is invoked according to a 

policy defined by the ‘print manager’. This policy includes the monitoring, analysis, planning 
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and execution phases of the MAPE-K loop (that is beyond our scope at present). For the sake 

of simplicity, we assume that the ‘monitor’ function is invoked by an event. 

 

If the administrator decides to deploy an additional support printer to the application, the 

‘print’ behavior of the distribution typestate must realize the existence of a new support 

printer at run time. In such a circumstance, the ‘managed printing service’ can dynamically 

adapt to a standalone newdistribution typestate object encapsulating the new ‘print’ behavior 

that distributes print requests among all printers.  

 

 

Figure 7.8 Printing Manager Service 

 

 

The ‘print manager service’ may keep a reference to the ‘managed printing service’, i.e. 

mprinting. As shown in Figure 7.8, the ‘print manager service’ triggers the following 

statement: 

 

mprinting.distribution=newdistribution; 

 

The above statement replaces the existing distribution typestate of mprinting with the 

newdistribution typestate. This statement internally uses the four algorithms, given in Section 

7.5, to ensure seamless typestate-based dynamic adaptation. Furthermore, this statement 

serves as an ‘effector’ of the MAPE-K loop. 

 

We show in Figure 7.9 that the previous distribution typestate object of the ‘managed 

printing service’ is replaced with a newdistribution typestate object.  
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Figure 7.9 Managed Printing Service 

 

7.6 Conclusion 

 

We have shown how the typestates of an object can be exploited for dynamic behavior 

adaptation. Furthermore, typestate is also an intuitive requirement for the dynamic adaptation 

of software components. The case study examined integrates the use of typestate for dynamic 

behavior adaptation. 
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Chapter 8  
 

8 Model Checking 

 

Model checking is usually applied at the software design level rather than at the software 

source code level, which is at least partially due to the fact that source code does not have 

any representation suitable for model checking. There are very few approaches [58] to model 

checking the source code of conventional object oriented programs. We observe that a 

program may contain some statements that violate the intended design of its model. For 

example, a program may have statements that violate the object protocol. Such statements are 

bugs that may be caught by model checking tools. However, the inability to model check the 

source code results in the inability to catch these kinds of bugs. In order to catch these kinds 

of bugs in the source code through model checking, we require the source code to have an 

abstraction with a suitable representation for model checking. We argue that a state 

controlled object oriented language allows specifying the object behavior by abstracting the 

state of the object. Transitions among the states or typestates can also be specified.  

 

8.1 Model Checking SCOOP 

 

Imperative programming languages, including OOP, are more useful in terms of describing 

software systems with operations, flow of operations, and performing operations on data. 

Formal verification tools are purpose-built to specify simple state machine representations of 

a system [55]. SCOOP combines both the simplicity of specifying a state machine 

representation of a software object and the strength of OOP. 

 

State controlled object oriented source code exhibits a representation of objects that can be 

directly captured by formal verification tools, such as NuSMV [57], for model checking. 

Conventional object oriented language lacks such a representation of objects. Case study 3.14 
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of the File stated object is described in the SCOOP source code in Figure 5.1 and can be 

read conveniently as a finite state model as shown in Figure 3.7.  

 

Mbeddr [56] is a tool that allows specifying the state machine representation of software 

objects. However, mbeddr [56] source code lacks the strength of OOP. In mbeddr, a 

programmer writes the source code of an object in the form of a state machine using mbeddr 

[56]. Mbeddr [56] can directly translate the programmer defined source code to another 

source code that is understandable as a model by NuSMV [57]. 

 

In this chapter, we compare SCOOP code with that of mbeddr. The description of objects, i.e. 

in the form of a state machine, written in mbeddr is quite analogous to the SCOOP source 

code. Therefore, we assume that SCOOP source code can also be directly translated to the 

source code that is understandable by NuSMV as a model. 

 

 

Figure 8.1 Model Checking SCOOP 

 

Figure 8.1 demonstrates a model checking tool, e.g. NuSMV, that can input a SCOOP 

generated model and a property to check whether the SCOOP software object complies with 

the property.  

 

8.2 Symbolic Model Checking 

 

As discussed in [55], there are many properties that can be checked on the state machine 

description of a software object. The checking of a property over a state machine model 

verifies whether the property holds true for that model. The model checker checks the 

property in every possible system run. If a required property holds true for a given model 

SCOOP generated 

model 

Property 

Output 

Model 

Checking Tool 
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then it assures that the model correctly holds that property. Otherwise, the model does not 

correctly represent the required property and therefore should be rectified. All these 

properties may be divided into two categories i.e. automatic checking and manual checking. 

In the following sections, we illustrate properties of each of these categories that can also be 

checked for the SCOOP-generated model. 

 

8.3 Automatic Checking 

 

Some properties can be checked by the model checking tool itself as default properties. We 

therefore refer to such property checking as “automatic checking”. Below we discuss one 

such property which checks whether all states of the model are reachable. 

 

The Reachability Property 

 

The “reachability property” checks whether all states of a model are reachable. We illustrate 

the computation tree logic formula, CTL [54], to represent the reachability property from 

[55] for the openfile state of the ‘File’ stated object model as below.  

 

SPEC  AG  _current_state!= openfile 

 

The above property written in CTL formulae can be defined in the following words. 

 

“In all possible system runs, it is true in every state that 

  none of these each states is the openfile state”. 

 

If the NuSMV finds the above property to be False for the File stated object model, it 

implies that the openfile state is reachable, hence it is a success scenario. 

If the NuSMV finds the above property to be True for the File stated object model, it 

implies that the openfile state is not reachable and hence it is not a success scenario. 

  



 

110 
 

8.4 Manual Checking 

 

There may be many custom properties that a programmer intends to check for his or her 

model using temporal logic formulae [54]. One of these properties is discussed below. 

  

The ‘P is false before R Property’ 

 

This property, from [55], checks whether a condition P can be true before R. We illustrate 

this property in connection with the model of the ‘File’ stated object discussed in Case Study 

3.14. The same model is specified in Figure 5.1 and drawn in Figure 3.7.  

 

P is false Before R. 

P: file is read 

R: file is in openfile state 

 

Therefore, this property is evaluated as below. 

 

“file is read” is false Before “file is in openfile state” 

 

The above property says that the stated File object should not be read unless it is in the 

openfile state. As long as this property is true for the File stated object model, the model is 

correct for that property. Otherwise, the model attempts to read the File that is not in the 

openfile state. Clearly these kinds of bugs introduced in the software are a violation of object 

protocol. 

 

8.5 Conclusion 

 

Software testing and analysis of programs performed by a programming language includes 

static analysis to detect any violation of object protocols. In this chapter, we demonstrated 
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that the capability of SCOOP to specify object protocols can be exploited to detect violations 

of these protocols statically through model checking. 
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Chapter 9  

9 Conclusion and Future Work 

 

9.1 Conclusion 

 

This thesis introduces applications of a particular formal method in software engineering. We 

have investigated multiple aspects of integrating finite state machines into an object oriented 

language, creating a new style we call “state controlled object oriented programming”, which 

we abbreviate as SCOOP. Situations arise in many software settings where objects are based 

either implicitly or explicitly on finite state machines.  When the machine's state is encoded 

in ordinary programming variables, it obscures the natural abstractions.  Through SCOOP, it 

is possible for programs to be easier to understand by people and by software tools. 

 

The notion of typestate checking is used to enforce object protocol, taking into account 

object state. There are basically two types of approaches that are used to capture the typestate 

of an object. One approach is to perform an analysis of the programs that are coded in a 

conventional imperative programming language. This analysis deduces the typestate 

information of the objects and uses this information to perform typestate checking. Another 

approach, the one we have advocated, is to write programs in a programming language with 

explicit support of typestate so that programs inherently capture the typestate information. In 

this approach, the programming language can directly perform typestate checking.  

 

Static typestate checking cannot absolutely find the current typestate of an object because in 

some cases the current typestate of the object cannot be determined until run time. We have 

shown how the typestate information can be used for dynamic typestate checking as well as 

for dynamic form of polymorphism. 

  

Our proposed language does not require a programmer to learn and use any extra annotations 

except typestate annotations and does not impose any constraints on aliasing. 
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One feature of SCOOP is a typestate checking technique that enforces an object protocol 

consistent with the internal state of objects. An important aspect of typestate is that the 

external and internal representations of typestate can be synchronized. We introduce an 

implementation technique to perform this operation effectively. An implication of this 

implementation technique is that SCOOP provides the “memento” design pattern by default. 

 

We further propose to exploit typestate for dynamic compositional adaptation, allowing an 

object to effectively and dynamically adapt its typestate-related partial behavior. By doing so, 

we propose that typestate can also serve autonomic computing. Typestate adaptation without 

state preservation may not be very helpful in practical scenarios. We have shown that our 

typestate adaptation technique can exploit the default “memento” feature for easier state 

preservation. Since we are not only exploring novel techniques but also drawing a synergy 

between them, a realm of related implementation research exists. The improvement of 

algorithms from the implementation viewpoint should be investigated. 

 

We illustrate that objects with explicit support of state are more intuitive to use as both the 

managed component and manager component of autonomic computing. We also illustrate 

that the explicit support of state in the object can benefit GUI frameworks as well as data 

structures. 

 

Object Protocol is the central concept of typestate checking and software validation as 

discussed in this thesis. 

 

In order to obtain practical benefit of our proposed techniques, we have to allocate resources 

to implement the SCOOP language. Developing a new programming language is a time and 

resource consuming process. However, the training of the software developers to adapt 

SCOOP is not a challenge due to its intuitive and OOP like constructs. 
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9.2 Future Work 

 

The proposed SCOOP language can be implemented with a compiler. Before or during the 

implementation of such a compiler, the following aspects should be further investigated for 

the implementation of details: 

 

 Algorithms that can generate graphical state machine diagrams of the stated objects based 

on the source code. Similarly, algorithms that generate the diagrams that show the 

interaction between the related stated objects. 

 According to the proposed ‘proxy and state class’ technique, the representation of the 

“state class” and the lightweight “typestate object” for the optimized implementation of 

the typestate of  stated object can be explored. For instance, as in [54], the ‘state’ of the 

program is proposed to be implemented symbolically rather than explicitly with the help 

of binary decision diagrams to effectively combat the state explosion problem. 

 The proposed architecture in Section 5.15 identifies certain statements of the SCOOP 

code that create aliases of the stated objects. Optimized analyses similar to “pointer 

analysis” algorithms can be investigated that efficiently find these statements that create 

aliases. 

 In Figure 6.1, we show that the SCOOP language can deduce the conditional transition 

based on the post-condition of the method and typestate invariant binding rule. We can 

investigate further to find an algorithm that analyze the programmer defined source code 

and deduce the check points in the code where such conditional transitions should be 

implemented by the SCOOP language.  
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APPENDIX    A 
 

LALR Context Free Grammar for SCOOP 

 
 

 

Prd 
# 

Productions  

   
1 <program>  <cls_list>  $$  

2 <cls_list>  <cls_list> <class>  

3 <cls_list>   Є   

4 <class>  <st_dec_list>  class  cls_id { <cls_body> } S 

5 <st_dec_list>  [  state ( <st_list> ) ] S 

6 <st_dec_list>  Є S 

7 <st_list>  <st_list> , <st_id> S 

8 <st_list>  <st_id> S 

9  <st_id>  st_id S 

10 <cls_body>  <var_dec_list> < st_binding> <cls_m_list> <c_s_m_list> S 

11 <var_dec_list><var_dec_list> <var_dec>  ;  

12 <var_dec_list>   Є  

13 <var_dec><vd_start><vd_rest>  

14 <vd_start>  <pub-prv><dt> id   

15 <dt>  int  

16 <dt>  string  

17 <dt>  cl_id  
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18 <st_binding>  statebinding { <b_list>  }   S 

19 <b_list>  <b_list>  ,  <bind> S 

20 <b_list>  <bind> S 

21 <bind>  st_id  :  ( <rel_exp>  ) S 

22 < st_binding>   Є S 

23 <cls_m_list>  <cls_m_list> <cls_method>  

24 <cls_m_list>   Є  

25 <cls_method>  <pub-prv> <r_type> <m_id> ( <arg_list> ) { <m_body> }  

26 <pub-prv>  public  

27 <pub-prv> private  

28 <r_type>  <dt>  

29 <m_id>  m_id  

30 <arg_list>    Є  

31 <arg_list>   <args>  

32 <args> <args>, <arg>  

33 <args><arg>  

34 <arg> <dt> id  

35 <m_body>  <var_dec_list> <stm_list>  

36 <stm_list>  <stm_list> <stm>  

37 <stm_list>   Є   

38 <stm>  <lhs> = <exp>;  

39 <stm>  read ( id) ;  

40 <stm>  print <exp>;  



 

123 
 

41 <stm>  o_id.m_id(<param_list>);  

42 <vd_new>   = new ID ()  

43 <stm>  if (<rel_exp>) {<stm_list> } <else> 

 
 

44 <else> else {<stm_list>}  

45 <else>  Є   

46 <stm> while(<rel_exp>){<stm_list> }  

47 <stm>for(<init><mid>;<last>) { <stm_list>}  

48 <rel_exp><rel_exp> <rel_op> <rel_term>  

49 <rel_term> <rel_bool_fac>  

50 <rel_exp> <rel_term>  

51 <rel_term>  <rel_fac><comp_op><rel_fac>  

52 <rel_bool_fac>  bool_id  

53 <rel_fac>  id  

54 <rel_fac>  num  

55 < rel_fac >  o_id.p_id  

56 <rel_op>  AND  

57 <rel_op>  OR  

58 <comp_op>  ==  

59 <comp_op>  !=  

60 <comp_op>  >  

61 <comp_op>  <  

62 <comp_op>  <=  
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63 <comp_op>  >=  

64 <exp>  <term>  

65 <exp>   <exp> <add_op> <term>  

66 <term>  <factor>  

67 <term>  <term> <mult_op> <factor>  

68 <factor>  ( <exp> )  

69 <factor>  id  

70 <factor>  o_id.p_id  

71 <factor>  num  

72 <add_op>  +   

73 <add_op>  -  

74 <mult_op> *  

75 <mult_op> /   

76 <c_s_m_list>  Є  

77 <c_s_m_list><c_s_m_list> <c_s_method> S 

78 <c_s_method>  <s_list> { <s_v_d_lst><s_m_list> } S 

79 <s_m_list> <s_m_list> <s_method> S 

80 <s_m_list>  <s_method> S 

81 <s_method><r_type><m_id>(<arg_list>)<s_end_list>{<s_m_body>} S 

82 <s_end_list>  [<s_e_list>] S 

83 <s_list>  <s_list> , <s_id> S 

84 <s_list>   <s_id> S 
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85 <s_e_list> <s_e_list> | st_id S 

86 <s_e_list>  st_id S 

87 <s_m_body> <var_dec_list> <s_stm_list>  

88 <s_stm_list> <s_stm_list> <st_stm>  

89 <s_stm_list>   Є   

90 <st_stm>this.trans(st_id); S 

91 <st_stm><lhs> = <exp>;  

92 <st_stm> read ( id) ;  

93 <st_stm> print <exp>;  

94 <st_stm> o_id.m_id(<param_list>);  

95 <st_stm> o_id.m_id(<param_list>);  

96 <st_stm> while(<rel_exp>){<s_stm_list> }  

97 <st_stm> for(<init><mid>;<last>) { <s_stm_list> }  

98 < st_stm>  if (<rel_exp>) {<s_stm_list>}<s_else>  

99 <s_else>  else {<s_stm_list>}  

100 <s_else>   Є  

101 <init> id = num;  

102 <mid><rel_exp>  

103 <last>id <in_dec>  

104 <in_dec> ++  

105 <in_dec> --  

106 <lhs>id  
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107 <lhs> o_id.p_id  

108 <param_list><params>  

109 <params><params>,<factor>  

110 <params><factor>  

111 <param_list> Є  

112 <new> Є  

113 <cl_id> cl_id  

114 <s_id>  [st_id] S 

115 <s_list>  [st_id]:[ st_id] S 

116 <vd_rest>  <vd_simple> S 

117 <vd_rest> <vd_new> S 

118 <vd_simple>   <vd_simple> , id S 

119 <vd_simple>   Є S 

120 <vd_new>   Є S 

121 <s_v_d_lst>  <s_v_d_lst><s_v_d> ; S 

122 <s_v_d_lst>  Є S 

123 <s_v_d><s_vd_start><vd_rest> S 

124 < s_vd_start>  <dt> id  S 
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APPENDIX    B 

SCOOP vs OOP 

 

Example 1 

 
This is an example code for the printing object, managed_printing, of a banking 

application that prints the account statement of the account holders. The printing is carried 

out in either streaming or distribution state. We illustrate the code in SCOOP as well as in 

two possible variations in OOP. We argue that this example shows the increased readability 

and easier encoding of SCOOP as compare to OOP while encoding these kinds of objects. 

 

SCOOP Managed Printing Service 

 
[state(streaming=start, distribution)] 
class managed_printing     //managed_printing_service 
{ 

[streaming] 
{ 
  void print_acc_statement()[streaming]{  
          //send print to the main printer only  

System.out.println("print in streaming"); 
} 

} 
[distribution] 
{ 

 void print_acc_statement()[distribution]{        
     //send print to the all connected printers  

System.out.println("print in distribution"); 
} 

 } 
} 
class client{ 
   public static void main(String args[]){ 

managed_printing  prnt_client=new managed_printing(); 
prnt_client.print_acc_statement(); 
prnt_client.trans(distribution); 

prnt_client.print_acc_statement(); 
   } 
} 
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OOP Managed Printing Service                                             //using conditional constructs 

 

 
public class managed_printing {   //managed_printing_service 
 

private String state=""; 
public void setState(String state){ 

this.state=state; 
} 
public void print_acc_statement (){ 

if(state.equalsIgnoreCase("streaming")){ 
System.out.println("print in streaming"); 

} 
else if(state.equalsIgnoreCase("distribution")){ 

System.out.println("print in distribution"); 
} 

} 
} 
class client{ 

public static void main(String args[]){ 

   managed_printing  prnt_client=new managed_printing(); 
   prnt_client.setState("streaming"); 
   prnt_client.print_acc_statement(); 
   prnt_client.setState("distribution");  
   prnt_client.print_acc_statement(); 

      } 

} 
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OOP Managed Printing Service                                                 //using state design pattern 
 
public interface State { 

public void print_acc_statement (); 
} 
 
public class streaming_state implements State { 

public void print_acc_statement() {            //override 
System.out.println("streaming"); 

} 
} 
 
public class distribution_state implements State { 

public void print_acc_statement(){             //override 

System.out.println("distribution"); 
} 

} 
 
public class PrintContext implements State { 
 

private State print_State; 
 
public void setState(State state) { 

this.print_State = state; 
} 
public State getState() { 

return this.print_State; 
     } 

public void print_acc_statement(){ 
this.print_State.print_acc_statement(); 

     } 
} 
 
public class client { 

public static void main(String[] args) { 
        PrintContext prnt_client = new PrintContext(); 
        State print_streaming = new streaming_state(); 
        State print_distribution = new distribution_state (); 
        prnt_client.setState(print_streaming); 
        prnt_client.print_acc_statement(); 
        prnt_client.setState(print_distribution); 
        prnt_client.print_acc_statement(); 

     } 
} 
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