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Abstract

Copy number variants (CNVs) are a source of genomic variation associated with altered phe-

notypes. Somatic copy number mosaicism results when different populations of cells in an

individual differ due to de novo copy number changes (CNCs). Tissue-specific patterns of

CNCs resulting in mosaicism have yet to be characterized in the mouse, an organism frequently

used to model human diseases. Here, DNA was sampled from spleen, liver, and cerebellum

of eight highly related mice selected from a familial unit. CNVs and CNCs were detected

using the Mouse Diversity Genotyping Array with three computational methods (ConsecN,

Partek, and PennCNV). Tissue-specific patterns of CNCs were revealed, including genomic

regions of putative recurring CNCs. Genetic distance estimated using CNVs and CNCs re-

capitulated genealogical relationships. The novel framework can thus be used to identify and

analyze tissue-specific CNCs, and the results establish the need to account for CNCs in model

organisms.

Keywords: copy number variation, copy number change, copy number variable region,
mutation, single nucleotide polymorphism, genotyping, genetic distance, genetic variation,
genotyping array, structural variation, somatic mosaicism, spleen, cerebellum, liver, Mus mus-
culus, Mouse Diversity Genotyping Array
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Chapter 1

Introduction

1.1 General introduction

Genomic variability underlies many of the phenotypic differences between organisms. Over

evolutionary time, mutations arise and can be passed on to future generations through the

germline, introducing genomic variation among individuals in a population. Additionally, so-

matic mutations can occur within an individual that cause there to be genomic variation across

different tissues, termed somatic mosaicism. Such mosaicism can have phenotypic effects,

including genetic diseases that do not appear to have been inherited from either parent. Iden-

tifying such genomic alterations is necessary to understand the etiology of diseases that occur

without a pre-existing family history, to assess the accuracy of studying DNA derived from

accessible tissues (such as blood) as a proxy for studying less accessible tissues (such as the

brain), and to understand mechanisms of tissue-specific rates of mutagenesis. Despite the pop-

ularity of using the laboratory mouse as a model of human disease, somatic mosaicism is not

nearly as well studied in murine tissues. Identifying the types of mutations that contribute to

somatic mosaicism in mice and determining if there are tissue-specific patterns in accumula-

tion of mutations is crucial to our understanding of genomic variation in current mouse models

of human diseases and phenotypes.

At the population level, major sources of genomic variation between individuals have been
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identified. The completion of the Human Genome Project in 2001 ushered in the new era of

genomics, the study of all of the genetic content of an organism in the nuclear and mitochon-

drial DNA (as well as chloroplast DNA in plants).1 The successful compilation of the human

reference sequence marked a major expansion to accessible biological information. Initially,

the high degree of sequence similarity observed between individual humans was interpreted as

evidence of minimal genetic variation within our species (any two human genomes share ap-

proximately 99.9% sequence identity).2 The differences in sequence that were observed were

primarily attributed to single nucleotide polymorphisms (SNPs). SNPs are single base pair

positions in the genome at which the sequence can differ between healthy individuals, with the

less common nucleotide, or allele, maintained in the population at a frequency of at least 1%.3

It is estimated that there are approximately 10 million SNPs in the human genome distributed

over all autosomes, sex chromosomes, and the mitochondrial genome.1,4 As of 2007, the Inter-

national HapMap Consortium had successfully genotyped over 3.1 million human SNPs.5 The

abundance of SNPs in the genome, as well as their potential for phenotypic significance, makes

SNPs ideal genetic markers for genome-wide association studies (GWAS),1 the first of which

was performed on human SNP data, and uncovered an association between SNPs and macu-

lar degeneration.6 Despite the large number of SNPs in the genome, researchers have found

that SNPs alone are insufficient to be the sole source of genetic-based phenotypic variation,

including genomic variation between individual tissues.

1.1.1 Copy number variants are a significant source of genetic variation

that can impact phenotype

Just a few years after the initial drafts of the human genome sequence were published, a

class of previously undetected genomic variants emerged: structural variants (SVs) larger than

single nucleotide polymorphisms, yet smaller than chromosome aberrations observable under

the microscope.7–9 Despite the focus on SNPs as a major source of genetic variation, SVs were
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found to affect a greater proportion of the genome than SNPs.10 Grouped under this category

of submicroscopic SVs are copy number variants (CNVs), first reported independently by two

studies in 2004.11,12 A CNV is characterized as a gain or loss of a segment of genomic DNA.

This is in contrast to inversions and balanced translocations, in which the total amount of DNA

present remains unchanged after the rearrangement.13 CNVs are typically defined as structural

variants 1 kb or larger, although continued improvements to the methods used to detect CNVs

have led to the suggestion that SVs as small as 500 bp may be classified as CNVs,14 and

one review suggests the lower size boundary to be 50 bp.15 In light of the recently published

ENCODE project that reported on previously unknown functions of non-coding sequence,16

the work presented here in this thesis defines a CNV based on length alone, regardless of the

function of the sequence between its breakpoints. The term copy number polymorphism (CNP)

specifically refers to a variant that occurs in a population at a frequency of 1% or higher.12

Although the term CNP was originally used for all copy number variation, use of the term in

reference to population frequency is now considered to be analogous to that of SNP, while the

term copy number variant is now applied more widely.8

Despite the relatively short history of CNVs, they are already recognized as providing a

significant source of genomic variation between individuals.17,18 Up to 13% of any one human

genome may be affected by copy number variation. CNVs may be contributing to genomic

diversity among human populations that may previously have gone undetected at the sequence

level.19 Cumulatively, more nucleotides are affected by CNVs in the human genome than are

affected by SNPs.19 One study estimates that the genomes of two unrelated people may differ

by approximately 0.4%,20 as opposed to the 0.01% estimated by sequence identity alone.2 To

date, over 25,000 CNV loci have been identified in healthy human subjects.21,22 CNVs, like any

mutation, can be inherited.19,23 This has been demonstrated in a family study that showed the

majority of the CNVs detected in a child were inherited from either parent.23 Also similar to

other mutations, CNVs can form de novo within individuals. The frequency of de novo CNV

formation is especially interesting not only because of the large amount of genetic material
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involved in CNVs, but also because the frequency of de novo CNV formation is higher than

the frequency of point mutations.24 In humans, the rate of de novo CNV formation is estimated

to be 1.2 × 10−2 events per transmission per generation,25 while the rate of point mutations is

estimated to be 2.5 × 10−8 events per transmission per generation.26

The bulk of association studies between CNVs and disease has focused on human subjects,

but CNVs are by no means limited to Homo sapiens. That CNVs are found in our close pri-

mate relatives, including chimpanzees and rhesus macaques,27 offers the opportunity to peer

into our own evolutionary history. CNVs are present in the genomes of other mammals in-

cluding rats,28 dogs,29 cattle,30 sheep,31 goats,32 and pigs.33,34 Other classes of animals have

been found to have CNVs, such as class Aves (including chickens,35,36 turkeys,35 and Pekin

ducks37) and class Insecta (most notably Drosophila).38,39 CNVs have been catalogued in bar-

ley40 and Saccharomyces cerevisiae.41 The discovery of CNVs across kingdoms demonstrates

that CNVs are pervasive sources of genomic variation in the tree of life and can be examined

in many divergent lineages.

Of all the species in which CNVs have been identified, the laboratory mouse (Mus musculus

domesticus) is a popular model organism for studying mechanisms of human disease. We have

an extraordinary amount of data available pertaining to the biology of the mouse, including

very specific genetic and phenotypic characterizations of the inbred strains that have been de-

veloped and maintained over many generations.42 Mice and humans are both species of euthe-

rian mammals that diverged from each other approximately 75 million years ago, and currently

share approximately 85% sequence identity in coding regions.43 Long used to model human

phenotypes and genetics, mice are an ideal alternative to humans in research for a number of

reasons. Compared to the generation time of humans (estimates range from 20 to 35 years),44,45

mice have a very short generation time (about 12 weeks),46 which allows researchers to quickly

obtain several generations of one strain for a given study. Researchers are able to control both

environment and genetic background to minimize confounding variables that would normally

exist if using human subjects. Control of genetic background through selective breeding pro-
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grams has led to a wide availability of specialized strains and transgenic models with specific

traits. Access to all tissues of interest in mice increases the variety and specificity of studies

that can be designed. Additionally, our knowledge of murine genetics and breeding histories

is extensive. The initial draft sequence of the laboratory mouse genome was assembled from

female C57BL/6J mice in 2002, soon after the first draft of the human genome.43 From this

information, similarities between the mouse and human genomes have been identified. For

example, the GC content of the mouse genome is about 42%, slightly higher than the GC

content of the human genome (41%).43 Databases cataloguing all known SNPs in the mouse

genome for most inbred strains provide researchers with easy access to information useful in

association studies. The Center for Genome Dynamics SNP Database (CGDSNPdb) is a large

database of murine SNP information that can be queried on a number of factors such as strain

or genomic position.47 All of these factors contribute to the mouse maintaining an invaluable

position as an ideal model organism in which to research mutational mechanisms across mul-

tiple mammalian tissues that would otherwise be inaccessible in humans, while controlling for

genetic background and environment. Given the popularity of using the mouse as a model of

human disease, extensive efforts have been made to map CNVs in the mouse genome.48–50 As

the identification of murine SNPs facilitated genotype-phenotype associations, so too can the

identification of common murine CNVs. Additionally, by knowing what variants commonly

exist in a particular inbred mouse strain, it is possible to assess the accuracy of copy number

calls in new datasets by looking for CNVs expected in that strain.21,51,52

1.2 Differences in copy number between tissues exemplify somatic mo-

saicism

Although all tissues within a given animal are derived from the same zygote, mutations

can accumulate over the organism’s lifetime as a result from the stress of DNA replication as

well as from exposure to both endogenous and exogenous mutagens. Cell turnover rates differ
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not only between tissues, but also between cell types within a tissue.53 This variation in cell

replication rate can contribute to the overall genomic variation between tissues resulting from

replication-dependent mutational mechanisms. Mutation frequencies differ not only with age,

but with tissue type as well.54

Mutations that occur early on in development, if not lethal to the cell, can be passed on

to daughter cells as the original cell in which the mutation occurred divides, a process called

clonal expansion. Such expansion can lead to the presence of multiple cell populations that are

genetically distinct from one another within the tissues of a single organism. This phenomenon

is referred to as somatic mosaicism.55 Depending on the mutation and genes affected, somatic

mosaicism may have no observable phenotypic effect, or mosaicism may be the underlying

cause of disease, such as Sturge-Weber syndrome in humans.56 Somatic copy number mo-

saicism is the specific case when populations of somatic cells are genetically distinct from one

another as a result of a copy number change.

From the early days of CNV research, it has been acknowledged that tissues within an or-

ganism are not identical in the genetic variants they harbour. Sebat et al. performed genomic

analysis in multiple human tissues, including blood and lymphoblastoid cell lines, and ob-

served that differences in somatic copy number were restricted to gene clusters encoding T-cell

receptors or immunoglobins.12 An earlier study in inbred strains of laboratory mice found evi-

dence for somatic copy number mosaicism at multiple loci.57 The extent to which somatic copy

number mosaicism affects the genome in different tissues is unknown. Somatic copy number

mosaicism has been implicated in cancer, with evidence for mosaicism being detectable prior

to cancer diagnosis.58 Outside of tumour analysis, genetic analysis in humans is usually per-

formed on samples drawn from the blood, which is a mesoderm-derived tissue. If the variant

of interest was inherited, it will be present in all tissues, including the blood. However, if so-

matic copy number mosaicism is at play, ascertaining copy number from a blood sample may

not be accurately capturing the genetic variation underlying a particular condition that affects a

tissue other than hemopoietic tissues.59 The interpretation of gene expression analysis may be
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questionable if a CNV precipitates a gene-dosage effect in a specific tissue (such as the brain),

yet the variant is not present in the tissue being sampled (such as the blood).60

Since CNVs are defined as population-level variants (analogous to the definition of SNPs

as having two alleles that are both present at least 1% of the population), a different moniker is

necessary to distinguish de novo alterations in copy number that differ between tissues within

an individual organism from those variants that differ between individuals in a population. The

term copy number change (CNC) specifically refers to the class of large structural variants

that differ in copy number between somatic tissues within an individual organism.61 It is pos-

sible that CNVs previously reported as de novo germline mutations may instead be somatic

mutations that formed in the particular tissue that was analyzed.62

1.2.1 CNVs contribute to phenotypic variation, including complex

phenotypes and diseases

The large amount of DNA that is involved in a given CNV, whether copies of sequence

are gained or lost, begs investigation into the functional impact these variants may have on

phenotype.8 CNVs can directly encompass entire genes or parts thereof, and can span regions

that regulate gene expression. Even CNVs that lie completely outside of coding or gene regu-

latory regions may influence gene expression: CNVs can alter the expression of nearby genes

up to 450 kb beyond the breakpoint of the variant.63 Perhaps the most well known case of

gene duplications giving rise to phenotypic variation among individuals is that of the major

histocompatibility (MHC) complex. Contained within the human MHC complex coding re-

gion is the RCCX locus, which is named for the four genes RP (since renamed STK19), C4,

CYP21, and TNX, which appear in tandem to form a module. The number of modules (and

thus the number of copies of the genes) varies between individuals, and this gives rise to phe-

notypic variation in immunity between individuals.64 Common CNVs in humans are enriched

for genes involved in immunity (including the MHC complex), as well as olfaction genes and
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genes encoding secreted proteins.65,66 These biases towards adaptive phenotypes in CNV genes

are indicative of selective pressures acting on the associated phenotypes.

Any variation in the genome that influences gene expression has the potential to contribute

to phenotypic variation, and this includes dysfunction. Aneuploidy (aberration in whole chro-

mosome copy number) is well known to lead to severe phenotypic effects, such as trisomy 21 in

humans.67 Likewise, the smaller aberrations in copy number that occur due to CNVs can result

in segmental aneusomies (disorders from inappropriate gene dosage in a segment of a chro-

mosome).68,69 CNVs have been associated with many diseases including Charcot-Marie-Tooth

neuropathy,70 schizophrenia,71,72 cerebral palsy,73 Crohn’s disease,74 psoriasis,75 and osteo-

porosis,76 to name a few. CNVs also contribute to less severe phenotypes, such as differential

changes in amylase in response to diet77 and differences in HIV susceptibility.78 In the case of

copy number gains, an increase in the number of copies of a given gene can lead to an increase

in the expression of that gene.77 Copy number losses tend to be observed outside of gene re-

gions, which may result from selection acting against negative effects that may arise from the

deletion of essential genes.10 Despite the potential for deleterious effects, copy number losses

tend to be more numerous than copy number gains.14,29,48,79

Perhaps one of the most well-known examples of de novo tissue-specific genomic struc-

tural abnormalities associated with a disease phenotype is cancer.80–82 The first GWAS linking

CNVs with cancer susceptibility was performed by analyzing the genomes of patients who

were predisposed to cancer due to Li-Fraumeni syndrome.81 Patients with Li-Fraumeni syn-

drome were found to have an increased number of CNVs in comparison to healthy individuals,

particularly in regions with genes identified to be associated with cancer pathways.83 Since

then, tumour genomes have been analyzed in many cancers in an effort to better understand the

contribution of copy number variation to oncogenesis. Some CNVs are themselves a root cause

of cancer, as identified in one study of breast cancer tumour tissue.84 Other variants only arise

after tumourigenesis has begun, which is a period during which there is significant rearrange-

ment of the genome.85 Copy number variation thus plays a complex role in cancer, whether a
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CNV encompasses a dose-sensitive gene or not.

If a given CNV affects the phenotype of the organism, it does not necessarily do so in a

direct Mendelian manner. Rather than a given phenotype occurring as a result of a genetic

variant at a single locus, the phenotype instead arises from the contributions of and interac-

tions among several loci, and/or interactions between genes and environmental factors. Such

complex phenotypes, where no one locus alone is responsible for the phenotype, have been as-

sociated with the presence of CNVs. Psychiatric disorders that have challenged geneticists for

decades, such as schizophrenia and autism, exemplify complex phenotypes that are now being

linked to CNVs in some instances.86,87 Pleiotropy (multiple phenotypic effects stemming from

a single gene) is yet another mechanism by which CNVs can influence complex phenotypes.

In one human study, a duplication at 16p11.2 was associated with an elevated risk for several

disorders, including schizophrenia and congenital malformations.88 Differences in measures of

“CNV burden” (which include total length, average length, and number of CNV events in the

genome) implicate departures from population averages with disease phenotypes in the absence

of a direct association with a single CNV locus.89 The phenotypic effect of CNVs has even been

observed to be haplotype-specific, as in the case of human killer immunoglobulin-like receptor

(KIR) genes.90 Additionally, deleterious CNVs may be masked by heterozygosity, so a CNV

in a typically dose-sensitive gene may ultimately have no effect on phenotype at all.91 Thus,

the phenotypic impact of CNVs can range from no observable effect to severe disease. Pheno-

typic changes may result from direct changes in gene dosage, from indirect changes via gene

regulatory regions, or from interactions with other genomic factors such as local haplotype.

It is therefore necessary that we continue to identify CNVs and CNCs, ascertain phenotypic

associations, and elucidate the mechanisms by which CNVs and CNCs can occur.
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1.3 CNVs and CNCs are variable in origins and mechanisms

DNA replication is a cellular process that is high-risk for the formation of de novo CNVs by

a number of different mechanisms. Non-allelic homologous recombination (NAHR) is widely

considered to be one of the primary mechanisms of CNV formation, as it has a moderate-

to-high mutation rate and is associated with segmental duplications.92 Fork stalling and tem-

plate switching (FoSTeS),93 Alu-mediated recombination,94 and strand slippage can also con-

tribute to the accumulation of CNVs in replicating cells. Sequence homologies at CNV break-

points may give researchers insight into the mechanism by which the CNV was formed, par-

ticularly in cases of repair-mediated mechanisms that occur in response to double-stranded

breaks (DSBs).24,95 Repair-mediated mechanisms include break-induced replication (BIR),

microhomology-mediated break-induced replication (MMBR), and non-homologous end join-

ing (NHEJ). Even within the relatively short time in which CNVs have been intensely studied,

new research is constantly updating what we know of their mutational mechanisms. For exam-

ple, although NHEJ was once considered to be a major mechanism of de novo CNV formation,

a study of induced DSB repair in mouse embryonic stem cells demonstrated that NHEJ was

not a main source of CNVs.96

In addition to endogenous factors such as DNA replication, certain exogenous chemical

agents are known to induce CNC formation. These include clastogens that induce chromo-

some breaks, which opens up the possibility of repair-mediated mechanisms leading to faulty

DNA repair. Rats injected with 7,12-dimethylbenz[a]anthracene (DMBA) were found to have

increased copy number in genomic regions associated with tumourigenesis.97 The presence

of hydroxyurea (used to treat sickle cell disease) in cultured human cells induces CNVs that

have breakpoints characterized by microhomologies, suggesting a replication stress-mediated

mechanism.98 Considering that CNCs may result from factors including replication stress and

environmental mutagens, it is necessary that copy number assessment is performed when an-

alyzing tissues for acquired mutations, and identify whether tissue type is a factor in CNC
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formation.

1.4 A multi-tissue comparison is necessary to detect somatic copy num-

ber mosaicism

Embryonic development has been well established as a period of mutagenesis due to the

high replication rate and the opportunity for clonal expansion of mutations to occur. Copy num-

ber variants are included in the list of genomic changes that can occur during this time; chro-

mosome instability during embryonic development has been shown to produce somatic copy

number mosaicism in human tissues.99 Murine embryonic stem cell lines can differ in CNCs,

and even cells derived from the same inbred mouse strain may harbour different CNCs.100

Germ layers are formed during a process called gastrulation, which begins to occur at embry-

onic day 6.5 in the mouse.101 It is at this stage that cells in the single-layered blastula begin

to reorganize into the three distinct germ layers (the endoderm, mesoderm, and ectoderm) that

will form a multi-layered organism. Gastrulation is a critical timepoint in development, so

much so that embryologist Lewis Wolpert stated “It is not birth, marriage, or death, but gas-

trulation, which is truly the most important time in your life.” Tightly controlled mechanisms

maintain ordered development of certain tissues from each of the three germ layers.102 Tissues

derived from the endoderm include the liver, intestines, thyroid, and pancreas. Mesoderm-

derived tissues include the spleen, circulatory system, kidneys, and skeletal muscle. Finally,

the ectoderm gives rise to the central nervous system, including the brain. The detection of

CNCs that differ between tissues may depend on the germ layer from which the tissues were

derived. If a de novo copy number event occurs prior to gastrulation, it is more likely to be

present in multiple tissues derived from different germ layers. On the other hand, if a de novo

event occurs after gastrulation, it will be separated in space from cells in other germ layers, and

thus may be present only in tissues derived from that germ layer.

It has been well established that mutations accumulate over the lifetime of an animal at
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different rates in different tissues.54,103–107 The different biological function of each tissue may

contribute to variation in mutation accumulation between tissues within an animal, with some

tissues being exposed to higher levels of reactive oxygen species or increased replication, two

sources of cellular stress that may lead to DNA damage.108,109 Although research has been exe-

cuted regarding the mutation spectra in each tissue type, little is known about the accumulation

of CNCs over the course of an organism’s lifetime. Mutation types have been found to be

similar across tissues despite different mutation rates, but these analyses do not test for larger

structural variations such as CNCs.106

1.4.1 The genome of the spleen is subject to somatic hypermutation

The spleen, like the blood, is a mesoderm-derived tissue. In mice, development of the

spleen begins at embryonic day 12.5.110 Unlike the human spleen, the murine spleen is hemat-

apoietic, meaning that it is involved with blood cell production. The heterogeneous cellular

composition includes dendritic cells, granulocytes, lymphocytes, and macrophages. Many of

these cells are related to the spleen’s role in the immune system. Immunological function

renders the spleen subject to somatic hypermutation, including V(D)J recombination and base

substitutions.111,112 Additional mutagenesis in the spleen may result from a high rate of cell

turnover in the adult mouse (between 1 and 21 days, depending on cell type)53 CNVs have

been identified in the murine spleen previously, although it is not known whether these are

tissue-specific or present in other tissues.48,113

1.4.2 The genome of the cerebellum is more plastic than previously

thought

The murine cerebellum is located at the back of the brain, which itself is an ectodermal

tissue that begins development at embryonic day 10.5. The cells of the cerebellum consist
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largely of neurons (accounting for about 90% of cells), including Purkinje cells and granule

neurons.114 The largely post-mitotic nature of many cell types, including the aforementioned

Purkinje cells and granule neurons, in the cerebellum may exempt the DNA from replication-

based mutagenesis compared to other tissues in the body; however, recent evidence suggests

that the genome of the brain, including in the cerebellum, may be more plastic than previously

thought.115 Aneuploidy is known to exist in the human brain, and it has been suggested that

such mosaicism may be biologically typical and not necessarily associated with any pathol-

ogy.116,117 Similarly, aneuploidy is known to occur in the mature murine cerebellum.117 The

authors of this study rejected the possibility that CNVs may be contributing to their observa-

tions of variation in fluorescent in situ hybridization (FISH) signals for two reasons: firstly,

the assumption that CNVs are constitutive and thus would be detected in all cerebellar cells;

and secondly, the FISH probes used in this study did not overlap with any CNV loci that had

been documented at that time. We now know that large structural changes can indeed occur

during brain development.118 Advances in technology that permit single-cell genome analysis

have recently revealed copy number mosaicism among human neurons.79 The de novo varia-

tion observed in the brain thus makes the detection of CNCs as compared with other tissues

likely.

1.4.3 The liver experiences genome instability with age

The liver is an ideal tissue for genome analysis as it provides a good source of large quan-

tities of high molecular weight DNA.119 The liver develops from the endoderm at embryonic

day 9.5. Aside from the earlier time of development, the murine liver offers similarities to

each of the spleen and cerebellum in several ways. Like the cerebellum, the liver has also

shown to be affected by aneuploidy,120 and is largely homogeneous in its cell type composition,

with approximately 70% of cells being hepatocytes.121 The cell turnover rates of hepatocytes

range between 480 and 620 days.53 CNVs have been observed in the liver in both humans and
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mice.122–125 Genome stability in the murine liver changes with age, with genomic rearrange-

ments implicated in the observed increase in mutant frequency with age.107 These findings lead

us to expect de novo CNCs to be observed in the murine liver.

1.5 Genomic regions containing multiple CNV events across individuals

are copy number variable regions (CNVRs)

In contrast to an inherited CNV that occurs at a fixed chromosomal position, a copy num-

ber variable region (CNVR) is a region of the genome in which different individuals harbour

different variants that are close in proximity and/or overlap with each other.19 Estimating the

breakpoints of variants in these regions is difficult as the CNVs themselves are different be-

tween individuals. Assigning an overlap threshold when analyzing CNVs across a given set

of samples is useful as it can identify CNVRs. Previous studies have found an overlap of

40% of the length of the CNVs to be sufficient to identify CNVRs.21 When identifying CNCs

from multiple tissues, CNVR analyses may reveal genomic regions prone to acquiring de novo

CNCs, otherwise known as “hotspots”. First identified in one of the seminal 2004 publications

on copy number variation, it was noted that despite the genome-wide distribution of variants

detected in human subjects, some genomic regions harboured multiple variants.12 The authors

suggested that these regions could be “hotspots” for the formation of CNVs. CNV hotspots

in the human genome have since been observed in several discovery studies,66,126,127 and have

been associated with disease.128 The genomes of other primates, including chimpanzees and

rhesus macaques, show clusters of CNVs at sequences similar to those found in humans, with

some hotspots occurring across all three of these primate species, once sequence alignment has

been accounted for.66 The authors of this study cited high levels of gene expression in genes

occurring within these hotspots of recurring CNVs across primates as evidence that these re-

gions are under positive selection, which is perhaps preventing certain individual mutational

events from becoming fixed in a population.
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Mechanisms underlying the existence of CNV hotspots can differ between species, even

within the class Mammalia. A case study illustrating this point is one that investigated the

genomes of humans and domestic dogs to understand the role of the human positive-regulatory

domain containing 9 (PRDM9) protein in recombination. The product of the gene PRDM9

has been implicated in the initiation of the double-stranded breaks (DSBs) that occur during

meiosis in both the human and mouse genomes.129 In humans, the 13-bp binding motif for

this protein is associated with recombination hotspots,130 yet in dogs, PRDM9 is inactive. The

result is that in dogs, CNV hotspots are shifted away from regions containing the PRDM9

binding motif, and are instead found in regions with GC content peaks.29 A link between GC

content and CNVs has been noted in other mammalian genomes besides the dog. Increased

genomic GC content is driven by recombination in the human genome.131 Regions in the hu-

man genome with high GC content are known to be prone to CNV formation, with higher GC

content associated with larger CNVs.132 CNVs detected in the bovine genome have an average

GC content percentage that is elevated above the average for the rest of the genome.30

Human CNV hotspots are enriched in regions of segmental duplications, which are stretches

of DNA with high sequence identity interspersed throughout the genome.133 The high sequence

identity between these genomic regions makes them prime candidates for the NAHR mecha-

nism of CNV formation in humans, and indeed, CNVs are found to be enriched in regions

of segmental duplications.134 CNV hotspots are also present in the mouse genome, with rates

of recurrent CNV formation varying across hotspot loci.135 As in humans, murine CNVs are

enriched in regions of segmental duplications, most likely due to the high degree of sequence

identity in these regions. Similar to the dog and human genomes, regions with higher GC

content in mice are associated with increased recombination in the mouse genome.131 Addi-

tionally, there is a positive correlation between GC content and gene density in both mice and

humans,136 making GC content a prime metric to assist in the identification of CNVs and to

characterize CNVs for potential phenotypic impact.

While CNVRs are indicative of copy number events present in multiple samples, singletons
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are identified as CNVs that are detected only once in a set of samples in a given study.19,137

Within a study, singletons tend to account for a small percentage of the total number of variants

identified, 138,139 although they have a high validation rate when confirmed using secondary

CNV detection methods, giving confidence that initial singleton calls are likely not false pos-

itives.19 Singletons can severely impact phenotype, and have been associated with diseases

such as Alzheimer’s.138 Singleton losses of copy number in particular, as opposed to single-

ton gains, contribute to elevated risk of developing bipolar disorder.140,141 In addition to copy

number state, the length of singletons appears to be an important factor as well, with larger

events associated with disease phenotypes such as intellectual disabilities and bipolar disor-

der.141–144 The relative frequency of singletons as well as their potential to impact phenotype

make it necessary to include singletons in CNV analyses as they may indicate novel variants at

a population level, or if in a study investigating copy number across multiple tissue types, they

may be indicative of de novo CNC formation.

1.6 Copy number can be used to estimate genetic distance and distin-

guish between individuals and between populations

Genetic distance in the phylogenetic sense refers to a quantitative measure of the diver-

gence between two evolutionary divergent populations descended from a common ancestor.

There are many different methods that can be used to calculate genetic distance between two

populations, most of which use sequence identity to estimate divergence and construct a phy-

logenetic tree. Since CNVs can be inherited as well as form de novo, CNVs can be employed

to calculate genetic distance. The identification of CNVs in humans from multiple Chinese

populations revealed that some CNVs were shared across populations, while other CNVs were

population-specific.139 By generating phylogenetic trees from CNV data, the researchers were

able to capture genomic diversity at the population level, and reveal that genetic distance based

on CNVs was closely correlated with linguistic patterns among the populations. Similarly,
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evolutionary examination of CNVs in primates reveals that CNVs diversity is correlated with

SNP diversity, and that divergence in primate lineages can be estimated using CNV losses.145

In mice, the carefully documented breeding history of inbred strains permit accurate as-

sessment of approaches for calculating genetic distance.146 Cutler et al demonstrated that SNPs

could be used to produce phylogenetic trees that successfully capture the known relatedness of

the inbred strains.49 In that study, murine CNVs were used to construct trees that were found

to be topologically similar to SNP-based trees, showing not only that CNVs contribute to di-

vergence between inbred strains, but that genetic distance can be estimated using CNVs as a

metric. CNVs can also be used to distinguish between mice even within the same inbred strain,

most notably in C57BL/6J,147 the most commonly used inbred strain and the source of the

mouse reference genome (The Jackson Laboratory; http://jaxmice.jax.org/strain/000664.html).

Since CNVs can be used to distinguish between individuals and between populations, it

is expected that CNCs may be used to distinguish between tissues in an individual. Given

our knowledge of the inherited and de novo nature of copy number events, as well as given

evidence that there is variation in tissue biology and genome instability throughout the body of

the mouse, we can make use of breeding records and tissue availability to extend the analysis

of copy number variation from the levels of species and populations to a much finer scale of

identifying differences between tissues within a single mouse. Such investigation into somatic

copy number mosaicism can be difficult to do in isolation from confounding variables, given

the degree to which mice from the same inbred strain can differ.100 Therefore, minimizing

external sources of variation while maintaining a large enough sample size of mice requires the

use of closely related mice, much like CNV studies in humans have made use of parent/child

families.10,81,148–151 By studying mice from the same litter as well as their parents, we can make

use of multiple tissues from a given mouse, in addition to the next most closely related samples

attainable in order to better comprehend the frequency and nature of CNVs and de novo CNCs.

Additionally, the known breeding records of mice can be used as known metrics against which

estimates of genetic distance using CNV loci can be compared as has previously been done in
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humans and other primates.139,145

1.7 The trend towards increasing genetic diversity among laboratory mice

requires high-resolution technology to capture genetic variation

In theory, mice from the same inbred strain are genetically identical to one another at every

base in the genome (save for some known regions of residual heterozygosity), due to many

generations of brother-sister mating.152 In practice, genetic variation within an inbred strain

does arise.153 Spontaneous mutations occur via a multitude of mechanisms, and any mutation

may be passed on to the next generation if it were to occur in the germline. Much like in the

case of clonal expansion of a mutation within a proliferating tissue, the genomes of the mice

descended from the originating mutant will also harbour the mutation, rendering individuals

within the inbred line to be non-identical. The type of mutation and where the mutation occurs

in the genome will largely dictate whether or not it will have any phenotypic influence; some

mutations will be lethal, while others will have no observable impact on the phenotype and so

may never be discovered unless sequencing happens to be performed at that locus.

In contrast to the practice of breeding of inbred strains, in which the goal has been to

decrease population-level genetic diversity by approaching almost complete genome-wide ho-

mozygosity, there have been recent efforts to breed mice in the opposite direction, towards

increasing genome-wide heterozygosity and increasing population-wide genetic diversity. The

goal in these breeding programs is to generate populations of laboratory mice in which the

genetic diversity mirrors the genetic diversity of the human populations they are often used to

model. Such diversity-driven breeding programs include the Collaborative Cross154,155 and the

Diversity Outbred mice.156 Mouse strains developed by these projects are the result of strategic

crossings of many inbred strains plus wild-caught and wild-derived mice. In the case of the Di-

versity Outbred program, the breeding program is designed so that ultimately, every mouse will

be genetically distinct from all others. Non-traditional breeding programs such as these bring
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forth the need for a genome-wide approach for genotyping laboratory mice, as researchers can

no longer assume that the genomes of their murine subjects are mostly homozygous. In addi-

tion, the discussion surrounding genomic variation in mice thus far has been largely focused

on single base pair differences, namely point mutations and SNPs. For researchers concerned

with genetic homogeneity in mouse models, the genetic variation that arises due to structural

variants such as CNVs and CNCs is essential to characterize. To assess the genotypes of thou-

sands of SNPs present in the genome, as well as permit analysis of newly recognized structural

variants, it is necessary to develop technology that is not only high-resolution (distinctly as-

says a large number of features in the genome) but also affordable in order to capture genetic

diversity in the mouse genome for many samples.

1.8 Array-based technology permits affordable genome-wide copy num-

ber discovery

The ability to sequence whole genomes of individuals in many species has allowed re-

searchers to survey nearly all genetic content for variation. Whole genome sequencing (WGS)

methods coupled with bioinformatic analysis can detect CNVs in addition to providing the

sequenced genome.157 Similarly, exome sequencing can be used to identify CNVs in protein

coding regions while drastically reducing the amount of data through which researchers must

sift when compared to WGS.158 Designing an experiment to include multiple tissues from

closely related mice requires methods of copy number detection and analysis that are not only

capable of genome-wide assessment, but are also economically and temporally feasible. Array-

based methods can be employed for copy number detection for a fraction of the cost of both

WGS and exome sequencing, permitting affordable genome-wide copy number discovery and

the opportunity to increase sample size.

There are two main types of array-based methods for CNV discovery: array-comparative

genomic hybridization (aCGH) and genotyping arrays.159,160 One of the fundamental differ-



Chapter 1. Introduction 20

ences between these two array types is the reference to which a sample on the array is com-

pared, with aCGH arrays co-hybridizing clones of control DNA as reference with the sample,

while genotyping arrays accept one labelled DNA sample per array and comparisons to a ref-

erence are made computationally after scanning the resulting hybridization fluorescence. This

difference in array design leads to the necessity of different downstream procedures in the

interpretation of fluorescent data obtained from each array type. Because aCGH directly com-

pares two labelled samples on the same array, aCGH is frequently used in cancer research for

discovering structural variants that differ between tumour and non-tumour tissue taken from

the same patient. Each of the two samples is tagged with a different fluorescent label, so that

quantitative differences between the samples can be detected via fluorescence intensity.159 The

theory behind using array-based CNV discovery assays is based on the assumption that loci

close together are likely to have the same copy number.161

Alternatively, genotyping arrays provide the ability to assess both SNP genotypes and

copy number using the fluorescence intensity from the same set of oligonucleotide probes that

are tethered to the array.162,163 Genotyping arrays typically comprise sets of oligonucleotide

probes, with each set designed to interrogate both the A and B alleles for one SNP locus in

the genome of the organism of interest (the organism for which the array is specifically de-

signed).164 The added benefit of obtaining SNP genotypes is important when identifying copy

number losses in highly heterozygous genomes (such as the human genome), as the loss of a

segment of DNA will typically lead to loss of heterozygosity at the SNPs contained within that

region, since there isn’t a second strand from which to genotype the alleles for those SNPs.

Genotyping arrays are much more economically feasible than whole genome sequencing, and

allow for a genome-wide approach for assessing copy number by interrogating thousands of

loci in parallel on a single array. Compared to aCGH methods, the protocols for SNP genotyp-

ing arrays may also call for less sample per experiment, thus allowing for future confirmation

of putative copy number events.165 The high-resolution, low-cost, genome-wide assessment of-

fered by genotyping array platforms enables researchers to design experiments using multiple
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tissue types to explore somatic copy number mosaicism.

Not all array platforms for detecting CNVs are equal. The different designs and capabil-

ities of CNV detection platforms lead to different results. Numerous studies have performed

cross-platform comparisons of copy number data, identifying differences in resulting calls and

assessing reproducibility and accuracy.51,166 Many discovery studies have used two or more

platforms as complementary methods to identify CNVs.19,52 It is thus necessary to critically

assess new CNV detection platforms for performance prior to investigating the biology in ques-

tion.

1.9 The Mouse Diversity Genotyping Array is a high-resolution array-

based genotyping platform that can also detect copy number in the

mouse genome

Genotyping arrays for human CNV research remain the gold standard, with high-resolution

arrays such as the Affymetrix R© Genome-Wide Human 6.0 Array, providing both genotype and

copy number data.74 High-resolution technology for analysis of the human genome is available

and affordable, but comparable technology for analysis of the mouse genome has lagged be-

hind in development. For example, the Affymetrix R© Genome-Wide Human 6.0 Array tests over

900,000 SNP loci and contains an additional 900,000 invariant probes for detecting copy num-

ber, while until recently the highest resolution SNP genotyping array for the mouse was limited

to just 10,000 SNP loci.167 The Affymetrix R© Mouse Diversity Genotyping Array (MDGA) was

first introduced in 2009 as the highest-resolution genotyping array available to date for analysis

of the mouse genome.168 The MDGA was initially developed by The Jackson Laboratory (Bar

Harbor, ME) and manufactured commercially by Affymetrix R© Inc. for research use.

Starting at approximately $700 CAD per array, the MDGA is a relatively affordable op-

tion for genome-wide analysis in comparison to WGS methods (approximately $35,000 per
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sample). The MDGA contains oligonucleotide probes for 623,124 SNPs and an additional set

of 916,296 invariant genomic probes (IGPs) specifically for defining copy number. Since the

original 2009 publication, The Jackson Laboratory has provided some revisions to the anno-

tation of the SNP probes represented on the array and have recommended certain probes on

the array be eliminated from analysis based on performance criteria.169 To date, over 300 mice

have been genotyped using the MDGA, providing a rich source of genotyping information for

laboratory mice that is specific to this array.169,170

The Affymetrix R© GeneChip c© family of arrays (which includes the Affymetrix R© Genome-

Wide Human 6.0 Array, the MDGA, as well as a variety of expression arrays) is popular

amongst genetics researchers, and so there are many computational pipelines for analysis es-

tablished for these arrays. The similar design of the GeneChip c© permits the use of these estab-

lished pipelines; however, it is essential to clarify here that the novelty of the MDGA design

differentiates it from typical Affymetrix R© genotyping arrays. The unique design thus limits

the number of analysis pipelines that can be used to call copy number from this array, as the

design affects fundamental fluorescent signal corrections and summarizations necessary in the

analysis of array data.

The MDGA design is based upon the SNP-CNV hybrid model initially developed with the

Affymetrix R© Human 6.0 array. Both of these arrays combined the traditional genotyping ap-

proach of including probe sets designed to interrogate hundreds of thousands of SNP loci with

a novel approach for interrogating non-polymorphic genomic sequences.74 Probes for these

non-polymorphic sequences, numbering in the 900,000 range, were included to provide better

coverage of the human genome and interrogate regions that would otherwise be undetected by

SNP probes only, as SNPs are not uniformly distributed throughout the genome.74,171 The ulti-

mate intention to use a combination of probe types was to increase the resolution of the array

to increase the narrowing down of CNV breakpoints, as well as to better estimate the number

of copies of a particular sequence actually present in the genome.
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The physical MDGA itself is a small glass square, on which unlabelled probes are syn-

thesized.172 The area on the array surface that contains a particular probe sequence is called a

feature. Each 5 µm x 5 µm feature on the array contains approximately 1.66−6 picomoles of

identical 25 bp long single-stranded DNA probes (calculated from data communicated through

personal correspondence with an Affymetrix R© representative). The sequence that is synthe-

sized in each feature is documented in an accompanying annotation computer file, along with

the (x,y) coordinates of the feature’s position on the surface of the array. This annotation file

is used to determine which target sequence a particular feature is reporting via fluorescence

intensity.

Typically, Affymetrix R© oligonucleotide array platforms (both genotyping arrays and ex-

pression arrays) contain two types of probes for each locus assayed: perfect match (PM) probes

and mismatch (MM) probes. A sequence of interest in the genome (target sequence) is inter-

rogated by both PM and MM probes: PM probes to detect the fluorescent signal pertaining to

the sequence of interest, and mismatch (MM) probes to estimate background fluorescent noise

specific to the 25 bp sequence. For each target sequence, the MM probe is identical in sequence

to the PM probe except for the 13th position in the sequence, at which the MM probe will differ

by a single nucleotide. PM and MM probes for a given target sequence are physically adjacent

to each other on the array. Measuring and comparing the fluorescent intensities of both PM

and MM probe sets for each target sequence allows for probe-specific noise correction steps to

be taken.173 In contrast to this traditional Affymetrix R© GeneChip c© array design, the MDGA is

unique in that it contains only PM probes. Although correction steps using the MM probe sig-

nals in conjunction with PM signals are common, they cannot be employed for data acquired

from the MDGA due to the absence of MM probes, imposing a limitation on which existing

strategies can be employed to analyze this array.

It is necessary to use the most up-to-date information possible when performing microar-

ray studies of any kind. Arrays and their associated kits, documentation, libraries, and software

are often marketed as packages that provide a straightforward pipeline for analyzing biologi-
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cal information. Given the amount of research being performed on the genome of a particular

organism at any given time, and compounded with the rate of increasing accuracy in tech-

nology, the accuracy of probe set design and annotation at the time of manufacturing may be

undermined by an update in the information of even just a single gene. Dai et al. analyzed

and reorganized probe set definitions for Affymetrix R© GeneChip expression arrays, and found

significant departures in gene and transcript results from the original probe set definitions.174

Post-hoc removal of failing probesets may lead to lost information on real biological variation

and lead to ascertainment bias.169 Selecting probe sets that have been analyzed for performance

across many arrays and samples, as well as for correct annotation, is essential to limit sources

of error before genotyping and copy number calling are performed.

1.10 Array data can be used to infer SNP genotypes and copy number

A genotyping array provides data about a sample of genomic DNA in the form of raw

fluorescence intensity for each feature, which is contained in a CEL file (in the file format

.CEL).175 Each array type has a corresponding chip definition file (.CDF) which provides the

annotation for the features on the array using the (x,y) coordinates of the 2-dimensional array

surface. Raw fluorescence intensity from the array is converted into a CEL file using a specially

designed array scanner coupled with image processing methods.176 It is this CEL file that is

used to infer SNP genotypes and CNVs after correction and normalization procedures have

been applied.

Normalization procedures are usually employed to account for differences between arrays

that are non-biological, including differences in sample labelling and array production.177 For

example, batch effects are technical artefacts that can arise when comparing arrays that were

processed at different times, or in different “batches”, for which mathematical adjustments can

often be made.178 Within-array variation can also stem from the GC content of the probes.

Peaks in fluorescence intensity acquired from genotyping arrays correlate with increased GC
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content.179 This “GC waviness” can be minimized by applying mathematical corrections to

array data to account for potential differences in hybridization based on probe sequence.180

The normalized and corrected fluorescence data can then be used to call genotypes and infer

copy number.

Genotyping arrays such as the MDGA require an algorithm to determine the genotype of

each SNP locus interrogated by the microarray. These algorithms take into account the fluo-

rescence intensity of all probes used to interrogate each locus (in the case of the MDGA this

is eight probes per locus), and calculate the most probable genotype, returned by the algorithm

as AA (homozygous A), BB (homozygous B), or AB (heterozygous), where A represents the

allele present in the C57BL/6J (reference) genome, and B represents an alternative allele. The

algorithm recommended for use with the MDGA is a variation on BRLMM (Bayesian Robust

Linear Modeling using Mahalanobis Distance) called BRLMM-P (the P stands for perfect-

match, as the MDGA has only perfect-match probes).181 This algorithm looks at the clustering

properties of each genotype for each probeset and calls the most likely genotype based on the

summarization of each allele’s fluorescent intensities for a particular SNP. Most probesets yield

fluorescence intensities that can be graphed as three distinct clusters, with one cluster for each

genotype call (AA, AB, and BB). Although the shape and position of each cluster is predicted

before the algorithm is run (the prior cluster), the algorithm will re-adjust the clusters as it runs

with a given set of CEL files (creating posterior clusters). From these posterior clusters, silhou-

ette scores are calculated for each data point (which represents a single sample’s summarized

fluorescence intensity value for the SNP locus in question) to assess the clustering.182 A data

point that has a silhouette score below a predetermined threshold is considered to have failed

genotyping, as it was not placed near enough to one of the genotyping clusters to confidently

call a genotype. When a silhouette score falls below this threshold, the algorithm will return

a “NoCall”, indicating that the algorithm was unable to genotype the SNP in question for a

particular sample.
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1.10.1 Runs of consecutive “NoCalls” may indicate deletions

In some instances, the SNP-calling algorithm is unable to return a genotype, and in these

cases the result “NoCall” is returned instead. There are several reasons that a “NoCall” may

be returned instead of a genotype. The genotyping algorithm itself will have some error rate

associated with it; this also means that some of the SNPs that appear to have genotyped well

(assigned either AA, AB, or BB) may in reality be a different genotype or a “NoCall”. Typ-

ically, a “NoCall” results from low fluorescence intensities from both allele probes (private

correspondence with Affymetrix R©). A “NoCall” may also indicate hemizygosity at that locus,

as the genotyping algorithms are not capable of returning a hemizygous call.183 Another pos-

sibility that a “NoCall” may occur is a two-copy deletion, which in a diploid genome would

indicate a copy number of zero. These calls are returned for a single base pair position in the

genome (the SNP of interest that is interrogated by a given probeset), but it is possible that

two or more “NoCalls” that occur consecutively along a chromosome may indicate a larger

deletion, based on the principle that genetic markers that are physically close together on a

chromosome are likely to have the same underlying copy number.161,184 Similarly, a recent ef-

fort by Standfuß et al used the MDGA for copy number analysis of tumour tissue, but did so

in the absence of genome-wide algorithms designed for the array.85 First, the authors identi-

fied normalized SNP probe intensities that differed from a reference intensity calculated from

normal tissue samples. Next, they identified groups of consecutive SNPs that reported similar

normalized SNP probe intensities, which were interpreted as relative copy number for each

SNP. The advantage of using consecutive genotype calls, as opposed to raw fluorescence inten-

sities, is that it allows for the detection of putative deletions in a genome-wide discovery study

that does not have the benefit of a case-control study design, as would be necessary with the

Standfuß et al. approach.
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1.11 CNVs can be detected from genotyping array data using algorithms

Computational methods to detect copy number events using microarray platforms range

from commercially available software packages that allow researchers to input and analyze

data using prescribed workflows (such as Partek R© Genomics Suite and Golden Helix R© SNP

and Variation Suite), to open-source bioinformatics programs that can be downloaded from the

Internet and invoked through the command line. The open-source programs tend to be more

suited for more advanced bioinformatics users of R, Perl, Python, and other such programming

languages, while the commercial programs offer streamlined workflows with graphical user

interfaces that are more user-friendly. When choosing which tool to use for a particular study,

there are important considerations.

A number of algorithms are designed for specific platforms, such as CNstream for Illumina

arrays and TAPS (Tumor Aberration Prediction Suite) for tumour samples on Affymetrix ar-

rays.185,186 MouseDivGeno, an open-source R package, is the only software package designed

specifically to handle the unique design of the MDGA. MouseDivGeno uses an algorithm

called SimpleCNV, which detects CNVs by comparing the sample CEL files with a single

user-selected CEL file designated as the reference. The problem with this one-to-one com-

parison is that it is highly subject to any variation present in the reference. Conversely, other

algorithms require over a hundred CEL files to be run simultaneously with the test samples

in order to call genotypes accurately and account for interchip variation. Given the lack of

MDGA copy number work in the literature, MouseDivGeno was not deemed suitable for copy

number detection at this time.

Other algorithms are capable of analyzing data from multiple platforms, permitting re-

searchers to choose from a number of tools for a given array. But, like there is variation across

platforms for detecting copy number, there is variation across the bioinformatic tools available

to analyze data from each platform.21 Different tools employ different strategies to handle the
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same data, and the differences in the resulting copy number calls reflect these different strate-

gies. Numerous studies have aimed to establish factors affecting the concordance of CNV calls

made with different tools.19,51,187,188 Due to the complex nature of CNVs and the differences

in calling methods, they are difficult to ascertain with identical breakpoints across algorithms,

even given the same set of array data.51 In cases where SNP genotypes are highly concordant

between different genotyping algorithms on a given set of arrays, the concordance of CNV

calls derived from the same fluorescent signals may still be very low between algorithms.189

For these reasons, many concordance studies recommend using multiple algorithms or software

packages to call copy number in any given study.34,165,189–191 Baross et al. recommend a mini-

mum of two software packages, and to proceed using only the union of the two datasets in any

downstream analysis.189 Analyzing only CNVs found in common across multiple algorithms

has been found to lower the rate of obtaining false-positive calls.51,141

1.11.1 CNVs can be detected with Hidden Markov Model-based

algorithms

Bioinformatics is a relatively new discipline in biology, but many of its core principles are

built upon well-established foundations in mathematics and statistics. A widely used exam-

ple of the application of statistical approaches in bioinformatics is the Hidden Markov Model

(HMM). When applied to CNV analysis, HMM is a stochastic approach for detecting regions

that depart from the normal diploid state of the mouse genome (two for autosomes) and op-

erates under the assumption that there exists a predetermined probability of a state transition;

that is, the probability of moving from state A to state B given a certain set of circumstances

(Figure 1.1). In copy number detection, the Hidden Markov Model is a profiling method to

detect copy number based on established probabilities of state observations and state transi-

tions, where state is the number of copies of a particular region present in the genome. In the

application of HMM to copy number detection in a diploid genome, state transition probability
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Figure 1.1: Schematic diagram of a Hidden Markov Model for detecting copy number

variation. Beginning with the starting copy number (CN) state in the sequence CNstart, the

transition to any other copy number state n has a transition state probability a.
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can be understood as follows: given the current copy number state of 2, there is a strong prob-

ability that the next state will remain 2, equal probability that the state will move to either 3 or

1, and a lower probability that the next state will jump to 4 or 0. There are other factors that

may influence the algorithm’s decision to call a different copy number state as it moves along

the genome. The collection of fluorescence intensities representing genomic loci interrogated

by an array are understood by HMM-based algorithms as individual observations, which are

ordered according to genomic position to provide a sequence of observations. Sufficiently high

fluorescence intensity readings for SNP probes that interrogate a particular genomic region

may push the algorithm to call a state transition to a higher copy number, even in the presence

of a lower state transition probability.

Partek R© Genomics Suite
TM

(herein referred to as Partek) offers two different algorithms for

detecting copy number from array data: genomic segmentation and HMM. Genomic segmen-

tation is Partek’s proprietary method that is based on circular binary segmentation.192 Partek

recommends genomic segmentation when analyzing heterogeneous tissue samples such as tu-

mour tissue (personal communication with a Partek representative).193 For DNA samples ex-

pected to be more homogenous (that is, non-cancerous), the HMM method is recommended.

Partek only became available for the MDGA in April 2011. At the time that the present exper-

imental work was completed, Partek did not officially support copy number analysis using the

MDGA. The unique array design and format of the accompanying annotation for the MDGA

renders the invariant genomic probes (IGPs) currently unreadable by the software. Therefore,

the ability to use Partek to call copy number using the MDGA is currently limited to using SNP

probes only.

PennCNV is an open source HMM-based program to detect copy number from array

data.194 The first publication introducing PennCNV noted that the program is capable of de-

tecting smaller CNVs.194 Eckel-Passow et al. performed a CNV-calling software comparison

for the Affymetrix R© Human 6.0 array, assessing the performance of PennCNV, Affymetrix R©

Power Tools, Aroma.Affymetrix, and CRLMM.188 PennCNV was ultimately recommended by
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the authors for the analysis of locus-level copy number as well as summarized segmented data,

noting that PennCNV displayed minimal bias and variability when compared with the other

methods.188 In a previous microarray study, the HMM model in PennCNV and the genomic

segmentation model Partek produced similar results,137 while in a different study, Partek was

found to call the fewest and largest events.195 It is thus expected that using the HMM model

in Partek will produce results that are highly concordant with the PennCNV model as well,

although it is also expected that Partek events will be longer than PennCNV events. Using

genotyping results as well as the two HMM-based algorithms in Partek and PennCNV will

provide multiple assessments of copy number across the same set of arrays to offer intensive

and robust measures of somatic copy number mosaicism.

1.11.2 CNV detection algorithms often call more losses than gains

The increased frequency of copy number losses relative to copy number gains has been

documented in several CNV discovery studies.14,29,48,50,79 Mathematically, it is easier for an

algorithm to detect a loss in copy number from the fluorescence signals received from microar-

rays. This is because for a diploid genome, to have a one-copy deletion requires the intensity

to be halved relative to the diploid reference signal, while a one-copy gain requires the inten-

sity to be increased by 50%. Some arrays are also more biased towards calling more losses

than gains.51 Previous studies using aCGH methods have found more losses than gains, but

have cited this detection bias as the likely cause of these results.74,113 However, the more recent

sequencing-based CNV detection methods employed by Quinlan et al. confirmed that losses

are more frequent in the mouse genome than gains.92
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1.12 Resolving CNVRs from events called from array data

A common problem when using array-based techniques lies in identifying copy number

events that are found to occur across multiple samples at the same CNV locus (a fixed chromo-

somal position).7,19 Array-based CNV detection platforms and their associated algorithms do

not have high enough resolution to give definitive CNV breakpoints down to base-pair resolu-

tion. Instead, the start and end positions returned with each CNV call are breakpoint estimates.

For example, a CNV that is inherited within a family should theoretically have the exact same

start and end position in the genomes of all family members that possess it; that is, the CNV

should occur at the identical CNV locus in each person. But due to the noisiness of breakpoint

estimates, the start and end positions for the CNV in each person may vary, making the CNV

appear larger, smaller, or shifted in location among related family members. Similarly, the start

and end positions of variants that are not inherited, but occur in CNVRs, may also appear to

have different breakpoints.

It is therefore necessary to assess overlap of genomic location in the copy number calls

made in multiple samples. This can be done manually by assessing the start and end positions

of each event in relation to the start and end positions of nearby events in other samples;

however, this approach is time consuming, labour-intensive, and prone to human error (citing

personal experience). Computational automation of this step would provide quick reporting

of overlap across samples. This solution is achieved by the novel program Hotspot Detector

for Copy Number Variants (HD-CNV).196 This custom software was developed by the authors

tailored to my requirements for source files and the ability to adjust settings for the present

study. HD-CNV takes information about CNV events detected by other CNV calling methods,

such as Partek or PennCNV, scans across the start and end positions of each event, and then

defines a “merge” if the smaller event overlaps the larger event by a user-specified percentage

threshold (the default is 40% of the length of the smaller event).21 The program will also define

a “family” based on a user-specified percentage threshold higher than that for a merge. Events
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that are found to be contained within a merge as defined by HD-CNV are referred to as merge-

associated events. Events that do not overlap with events in any other samples are identified as

singletons, as they represent the only copy number events that occur at that genomic location

in the sample set.

Although the large amount of genetics research that has been carried out in the mouse has

permitted more CNV analysis in Mus musculus than any other organism after humans, the

amount and accessibility of data pertaining to murine CNVs still lags behind that of human

CNVs. Previously reported structural variants in the mouse genome are publicly available in

NCBI’S Database of Genomic Structural Variation (dbVar);197 however, dbVAR does not al-

low researchers to upload custom tracks to compare in-house data alongside database entries

in the viewer. Converesely, the University of California Santa Cruz (UCSC) Genome Browser

allows users to upload custom tracks to the browser, but as of January 2014, the browser did

not provide the option of accessing data on previously reported CNVs in the mouse genome

(although CNV data are available for the human genome).198,199 Current limitations in analyz-

ing genomic data present challenges that, despite other benefits of using the mouse as a study

animal, must be overcome to move our understanding of genomic variation forward.

Approaches taken to calculate false-positive rates for data from the Affymetrix R© Genome-

Wide Human 6.0 Array inspect SNPs contained within putative deletions for heterozygous

genotyping calls, which should not be present in a deletion segment.188,189 For genomes with a

high degree of heterozygosity (such as the human genome), identifying loss of heterozygosity

is informative. The same approach is not applicable to organisms with a high degree of ho-

mozygosity, such as inbred laboratory mice which are expected to be homozygous at nearly

every SNP. A false-positive rate has yet to be established for copy number events called from

the MDGA. Estimates of false positive rates made using data from the Affymetrix R© Genome-

Wide Human 6.0 Array vary between calling algorithms. False-positive rates using CRLMM

and PennCNV have been estimated at 26% and 24%, respectively.188 The false-negative rate

of the array is difficult to quantify, as the amount of a given genome that is not called as being
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copy number variable is much greater than the amount of the genome that is affected by CNVs.

Despite this difficulty, researchers can make use of the tools and data available from previous

studies. Here, the in-house construction of an annotated, accessible, and interactive database of

previously discovered mouse CNVs provides a list of common variants that could be expected

to be present in the strain of laboratory mouse under investigation.

1.13 Purpose and specific aims

For the first time, the contribution of somatic copy number mosaicism to the genomic di-

versity among a group of highly related mice will be investigated using the Mouse Diversity

Genotyping Array. Given the novelty of the array and the limitations both in existing copy

number data for the mouse in general, and in the available copy number analysis pipelines that

can assess MDGA data, the work presented in this thesis will establish and evaluate the concor-

dance of three methods for calling copy number and ultimately detect putative somatic copy

number mosaicism. Computational approaches will be developed to identify tissue-specific

recurrent events in two somatic tissues. The contribution of somatic mosaicism to overall ge-

nomic diversity among samples taken from multiple tissues in a group of highly related mice

will be assessed using CNV- and CNC-based approaches to estimate genetic distance. Due

to the inherited nature of many CNVs, it is expected that genetic distance as estimated using

CNVs will reflect the known relationships between individual mice. If somatic mosaicism

exists within individuals, it is expected that tissues within a given individual will have an es-

timated genetic distance greater than zero despite being derived from the same zygote. The

analysis of CNVRs identified across samples will identify putative genomic regions of recur-

rent tissue-specific CNC formation.

Aim 1: Identify and characterize copy number events with three calling methods for

the Mouse Diversity Genotyping Array

To date there has been no genome-wide analysis of CNVs using the MDGA, in part due



Chapter 1. Introduction 36

to the relatively recent development and novelty of the MDGA, and because there are few

methods capable of handling the unique design of this array. Before analysis of somatic copy

number variation can take place, it is the first goal of this study to develop and compare three

independent approaches for detecting putative copy number events using the SNP probes on

MDGA. I will develop the “ConsecN” calling method, which uses runs of consecutive “No-

Call” genotypes identified in the genotyping results. This method will be used for the first

time to detect putative deletions in the absence of other CNV detection methods for this array.

The second method will be the application of HMM Region Detection available in Partek R©

Genomics Suite
TM

. The third method for copy number detection will be the HMM-based al-

gorithm used by PennCNV. The data collected through these three methods will be compared

to assess concordance between independent CNV detection methods. Characteristics of events

including event length and GC content will be assessed for each calling method to determine

relative biases in copy number calls.

Aim 2: Develop an accessible resource of previously discovered murine CNVs

In the absence of an accessible and interactive database of known CNVs in the mouse

genome, I will complete a literature survey and gather data on previously detected CNVs and

CNVRs reported for different mouse strains and tissues. I will compile these data into a format

that can be uploaded into a publicly available genome browser for further analysis. I will then

assess each of the CNV calling methods used in the present study for any overlap with entries

documented in the newly constructed database as well as identify previously found CNVs and

CNVRs that the methods in this study are able to detect.

d

Aim 3: Determine if the putative events detected by each method capture the known

relatedness between samples

I will assess the degree to which CNV events called with each of the three CNV calling

methods capture the known relatedness between samples. To do this, I will develop a method
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of estimating genetic distance between any two samples based on CNV data collected for each

sample. Using this measure of genetic distance, I will generate phylogenetic-style trees from

copy number data collected by each of the three calling methods, and compare these trees to

the known relationships between samples documented in a pedigree.

d

Aim 4: Assess tissue-specific differences in copy number for evidence of somatic copy

number mosaicism

Events will be analyzed for overlap across samples to distinguish singletons and merges.

The tissue-specific nature of events will be assessed by performing pairwise analyses between

tissue samples taken from the same mouse, identifying putative CNVs and putative CNCs.

Across mice, putative CNCs occurring in merges will shed light on genomic regions prone to

harbouring CNCs in a tissue-specific manner.
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Materials and Methods

2.1 Experimental design

2.1.1 Selecting related mice bred on two inbred mouse strain genetic

backgrounds

All protocols were approved by The Canadian Council on Animal Care (Appendix A).

Eight related mice from the breeding colony maintained by our laboratory at the University

of Western Ontario were selected for analysis and denoted “Hill Laboratory samples”. Each

mouse was individually identified by a numeric label following an in-house numbering system

specific to our laboratory, and the known relationships between the mice based on in-house

breeding records were documented in a pedigree (Figure 2.1).200 Founder mice (mice 300.6,

900.3, 300.7, and 900.5) were originally obtained from The Jackson Laboratory (Bar Harbor,

ME). Mice 300.6 and 300.7 were bred on a pure C57BL/6J inbred strain background. Mice

900.3 and 900.5 were F1 hybrids between inbred mice from strains C57BL/6J and CBA/CaJ.

The selected mice, in addition to founders 300.6 and 900.3, were chosen to include three pairs

38
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of brothers (904.11 and 904.9, 911.49 and 911.50, and 911.143 and 911.148) that have vary-

ing expected genetic background ratios between C57BL/6J and CBA/CaJ, calculated based on

their pedigree and documented in Table 2.1. The first pair of brothers (904.9 and 904.11) are

the offspring of mouse 300.6 and mouse 900.3 and are expected to be 75% C57BL/6J and 25%

CBA/CaJ. The second pair of brothers (911.49 and 911.50) are third-generation offspring of

mouse 904.9 and are expected to be 7% C57BL/6J and 93% CBA/CaJ. The third pair of broth-

ers (911.143 and 911.148) are third cousins to 911.49 and 911.50 and are also expected to be

7% C57BL/6J and 93% CBA/CaJ.

2.1.2 Selecting paired somatic tissues for detecting somatic copy

number mosaicism

Wherever possible, two tissues from each mouse were selected to enable between-tissue

comparisons (Table 2.1). Both the spleen (SP) and cerebellum (CL) were selected for mice

300.6, 904.9, 904.11, 911.49, and 911.50. Replicates of both tissues from mouse 911.50 (de-

noted by rpt) were used to assess reproducibility. These replicates represent different sections

from the same tissue. For mouse 900.3, spleen and liver (LI) were used due to the unavailability

of the cerebellum. For the remaining pair of brothers (911.143 and 911.148), only the cere-

bellum was available for each mouse. The three mice for which only one tissue was available

were excluded from between-tissue analyses.

2.2 Obtaining raw data from the Mouse Diversity Genotyping Array as-

sociated files

A description of DNA extraction and hybridization procedures is described in Appendix

B (Supplementary Methods). All analyses presented in this thesis are based on data obtained

from the Mouse Diversity Genotyping Array (MDGA; Affymterix R©, Santa Clara, CA and The
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Figure 2.1: Pedigree of highly related mice bred on genetic backgrounds of two inbred

strains. (A) Mice used in this study are indicated by asterisks (*). The expected percentage

of C57BL/6J genetic background is indicated below the representation of each mouse in the

pedigree. The remaining percentage (if any) is assumed to be from CBA/CaJ background based

on breeding records. (B) Mice used in this study are plotted on a scale that ranges between

pure C57BL/6J genetic background and pure CBA/CaJ genetic background, based on breeding

records.
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Table 2.1: Origin and genetic background of the sixteen Hill Laboratory
tissue samples analyzed with the MDGA.

Sample IDa Tissue Type Sexb Mouse Age
(months)

Ratio of
C57BL/6J:CBA/CaJ

300.6SP Spleen M 10.4 100:0
300.6CL Cerebellum M 10.4 100:0
900.3SP Spleen F 11.3 50:50
900.3LI Liver F 11.3 50:50
904.11SP Spleen M 7.7 75:25
904.11CL Cerebellum M 7.7 75:25
904.9SP Spleen M 7.7 75:25
904.9CL Cerebellum M 7.7 75:25
911.50SP Spleen M 8.7 7:93
911.50CL Cerebellum M 8.7 7:93
911.50SPrpt Spleen M 8.7 7:93
911.50CLrpt Cerebellum M 8.7 7:93
911.49SP Spleen M 8.7 7:93
911.49CL Cerebellum M 8.7 7:93
911.143CL Cerebellum M 15.2 7:93
911.148CL Cerebellum M 15.2 7:93

a Alphanumeric identifier for each sample. Numeral identifies the mouse, letters
identify tissue (SP=spleen, CL=cerebellum, LI=liver), rpt identifies a tissue
replicate

b M = male, F = female
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Jackson Laboratory, Bar Harbor, ME). The raw data obtained from each array were in the form

of a CEL file (with file extension .CEL). CEL files contain the fluorescence intensity value in

relative fluorescent units (RFUs) for each array feature represented in the array image acquired

from optically scanning the physical array. CEL files were obtained for analysis as described

in Appendix B (Supplementary Methods).

The Center for Genome Dynamics (CGD) at The Jackson Laboratory (Bar Harbor, ME)

digitally provides through its website 351 CEL files obtained from the Center’s in-house projects

using the MDGA.201 These CEL files were obtained from arrays hybridized with DNA ex-

tracted from the tail tissue of mice representing several categories of mice that differ in the

degree of genetic diversity between mice. These categories range from low genetic diversity

between mice (classical laboratory strains of Mus musculus domesticus), to higher genetic di-

versity between mice (including wild-derived strains, wild-caught mice, and mice of different

subspecies such as Mus musculus spretus).169 Genotyping work using the 351 CEL files com-

pleted in the Hill Laboratory defined a subset of 335 CGD CEL files that passed a minimum

genotyping call rate of at least 97%, defined as at least 97% of SNPs being successfully as-

signed a genotype call (AA, AB, or BB).202 For the work presented here, this subset of 335

CEL files (referred to as the 335 CGD set) was downloaded from the CGD website.

All associated MDGA files and subsequent analyses were based on the most current Mus

musculus reference sequence (NCBI Build 37, UCSC version mm9), as this was the reference

for which the MDGA probes were designed. Associated files included a list of 526,162 SNPs

represented on the MDGA selected for strict probeset design for optimal performance in geno-

typing and copy number analysis.202 The MDGA library files (CD MOUSEDIVm520650 rev2)

and MDGA annotation files were downloaded from the Affymetrix R© website.172 FASTA files,

sequence files, and cytoband files for UCSC Genome Browser mouse genome version mm9

(Golden Path) were downloaded from the UCSC Genome Browser database203 and accessed

locally.
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2.3 Genotyping DNA samples hybridized to the Mouse Diversity Geno-

typing Array with a filtered SNP list

All samples hybridized to the Mouse Diversity Genotyping Array were genotyped using the

corresponding CEL files with Affymetrix R© Genotyping Console v. 4.1.2 (Affymetrix R©) with

the AGCC library files.204 The CEL files for the sixteen samples were imported alongside the

335 CGD set. Gender information was imputed for each CEL file for computation of genotypes

on the X and Y chromosomes. For the 526,162 autosomal, sex, and mitochondrial SNPs that

were present in the filtered SNP list provided by S. Eitutis,202 SNP genotyping was performed

using the BRLMM-P algorithm (default settings, confidence score threshold = 0.1).181,202 Sam-

ples that had genotype calls assigned to at least 97% of SNP loci were considered to be passing

samples and were retained for analysis. Samples that had genotyping call rates below 97%

were identified as failing the genotyping step, and these samples were removed from further

analysis.205 The call rate for sample 300.6SP failed the 97% threshold and was removed from

further analysis. The passing samples were genotyped a second time. After the second geno-

typing round, all SNPs that did not have a genotyping call rate of at least 97% were removed.

This removal step resulted in 470,339 remaining SNPs that were genotyped with an overall call

rate of at least 97%. Affymetrix R© Genotyping Console permits visualization of how each SNP

is genotyped for a given set of CEL files by graphing the log ratio for each sample against the

strength of the fluorescence intensity. For a sample to be genotyped successfully at a particular

SNP, the probesets interrogating the SNP must have sufficient fluorescence intensity to be clus-

tered, as well as have a silhouette score above the predetermined threshold (here, the silhouette

score must be greater than 0.1).181,182

Of these 470,339 SNPs, the SNPs that map to the autosomes were selected to create a final

filtered list containing 451,538 autosomal SNPs. The filtered autosomal SNP list was used for

all further analysis. The genomic positions of the SNPs were plotted across the 19 autosomes
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and visualized using Circos (Canada’s Michael Smith Genomic Sciences Centre, Vancouver,

BC; Figure 2.2).206 The average distance between SNPs on the autosomes was calculated to

be 5.3 kb ± 0.074 SEM. The smallest distance between two SNPs was 12 bp, and this was the

smallest inter-SNP distance noted for all nineteen autosomes. The largest inter-SNP distance

was 7.5 Mb and is evident by a visible gap in SNP coverage on chromosome 7.

2.4 Detecting putative copy number variation using three approaches

Three methods were employed to independently call copy number events from CEL files

obtained for the total of fifteen Hill Laboratory samples from eight mice (Figure 2.3). The

three methods were ConsecN (genotyping-based), Partek R© Genomics Suite
TM

(Hidden Markov

Model-based), and PennCNV (also Hidden Markov Model-based).

2.4.1 Calling putative copy number events with the novel “ConsecN”

approach

All analyses using genotyping “NoCalls” were performed using Microsoft R© Excel
TM

2010

(Microsoft R©, Redmond, WA). The genotyping results from Affymetrix R© Genotyping Console

for the fifteen Hill Laboratory samples that passed the genotyping step were ordered by chro-

mosome position. Within each sample, occurrences of two or more consecutive SNP loci that

failed to return a genotype call (instead returned as “NoCall”) were scored as a single puta-

tive copy number event. All ConsecN events were classified as deletions due to the inability

to identify increased fluorescence intensity from genotyping calls alone. Event lengths were

calculated by subtracting the genomic location of the last SNP in the event from the genomic

location of the first SNP in the event.
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Figure 2.2: The distribution of SNP loci interrogated by the Mouse Diversity Genotyping

Array across the 19 murine autosomes. Outer circle: Ideogram approximates locations

of bands observed on Geimsa-stained chromosomes. Inner circle: Individual SNP loci are

plotted as red dots against the corresponding genomic location on the respective chromosome.

Regions that are SNP-dense appear as red spikes. Gaps in SNP coverage are evident by areas

on the inner circle lacking red dots. The black arrow next to chromosome 7 indicates the largest

gap between SNPs found on the autosomes (7.5 Mb).
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Figure 2.3: Workflow to call copy number events with ConsecN, Partek, and PennCNV

and identifying CNV events that overlap between samples using HD-CNV. CNV events

were called independently by ConsecN, Partek, and PennCNV. CNV events were then analyzed

for overlap between samples with HD-CNV, which defines singletons and merges.
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2.4.2 Calculating the upper bound of the probability of the occurrence

of two consecutive “NoCalls” by chance

The upper bound of the posterior probability of a consecutive run of an n number of con-

secutive SNPs returning “NoCall” can be calculated on a per-sample basis, given the known

number of SNPs assayed by the MDGA and the number of “NoCalls” returned in total for

that sample. This upper bound on the probability makes the assumption that the occurrence

of the second “NoCall” in a run is dependent on the first “NoCall” in the run only inasmuch

as it affects the remaining number of SNPs to draw from. The probability of two consecutive

“NoCalls” occurring in a sample A can be expressed as

P(NoCall and NoCall)A = P(NoCall)A × P(NoCall a f ter NoCall)A

where P is probability. The probability P of the first occurrence of a “NoCall” can be expressed

as

P(NoCall)A =
NA

LA

where N is the number of SNPs that failed to genotype and were returned as “NoCalls”, and

L is the total number of SNPs assayed by the array. The probability of the second “NoCall”

immediately following the first is given as

P(NoCall a f ter NoCall)A =
(NA − 1)
(TA − 1)

where the pool of remaining “No Calls” is decreased by 1 (NA-1) and the pool of all remain-

ing SNPs is decreased by 1 (TA-1). The possible number of occurrences of two consecutive

“NoCalls” was determined by dividing the number of “NoCalls” found in each sample by 2

(values were rounded down to the nearest whole number). The number of two consecutive

“NoCalls” expected in each sample was estimated by multiplying the probability of observing
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two consecutive “NoCalls” by the possible number of occurrences. These values reflect the

occurrence of exactly two consecutive “NoCalls”. Because ConsecN events are defined as two

or more consecutive “NoCalls”, the occurrence of a ConsecN event containing three or more

consecutive “NoCalls” will have a lower probability and be expected to occur less frequently

than the estimates described here.

2.4.3 Calling putative copy number events with Partek R© Genomics

SuiteTM

All analyses were carried out with Partek R© Genomics Suite
TM

version 6.12.1227 (St Louis,

MO), henceforth referred to as Partek. Library files were downloaded from the Affymetrix R©

website automatically from within the Partek software. Genomic properties were based on

Golden Path reference files for Mus musculus UCSC genome version mm9 based on the

C57BL/6J strain, downloaded manually from within Partek following prompts.

In the 335 CGD CEL file set, there are seven CEL files representing seven C57BL/6J mice

(4 male, 3 female). These seven C57BL/6J CEL files (herein referred to as the pure C57BL/6J

reference samples) were selected to construct a pure C57BL/6J reference dataset to which Hill

Laboratory samples would be compared to call copy number events within Partek.

The raw CEL files from the fifteen Hill Laboratory samples were imported simultaneously

with the pure C57BL/6J reference samples. Advanced import settings were selected to employ

Robust Multichip Average (RMA) background correction.207 Sequence and cytoband files were

downloaded manually from the UCSC Genome Browser sequence and annotation downloads

site and manually selected in Partek.203 After import, the following sample attributes were

specified: “Sample type” (specifying sample or reference), “tissue” (spleen, cerebellum, liver,

or tail), and “C57BL/6J degree” (the proportion of C57BL/6J alleles expected given the mixed

genetic background of some of the mice).



Chapter 2. Materials andMethods 52

The full list of probes represented on the MDGA was filtered to include only the 451,538

autosomal SNP probes. Fluorescent intensities for these SNPs were adjusted for probe GC

content and probe sequence in each CEL file.180 The sample CEL files were normalized to the

constructed baseline using the pure C57BL/6J reference samples as the control category. Quan-

tile normalization was performed.187 The control category was subsequently removed from the

spreadsheet. The unpaired copy number operation (which allows all samples to be compared to

a common reference) was selected to generate locus-level copy number from the allele-specific

signal intensities documented in each CEL file. The locus-level copy number was summarized

and pure C57BL/6J reference samples were selected to construct the reference.

HMM (Hidden Markov Model) Region Detection was selected to identify regions of ampli-

fication and deletion across the genome. HMM Region Detection was run on the log2 ratios of

the signal intensities, in accordance with Partek’s in-software recommendation to use logged

values if the histogram of the intensity values is more normally distributed in logged space

versus unlogged space (Figure 2.4).208 The following parameters were selected to remain at

Partek default values: minimum genomic markers per region = 3;60 maximum probability =

0.99;209 sigma = 1;210 genomic decay = 0 (disabled). Despite an extensive literature survey,

no precedent for the optimal genomic decay parameter in calling mouse copy number seems to

exist. Studies reporting the genomic decay parameters in human research are limited in num-

ber, and among those that do report genomic decay parameters, values anywhere between 10

and 10 million bp are given.208–210

2.4.4 Calling copy number with PennCNV

PennCNV’s integrated genotyping step, which uses Affymetrix R© PowerTools, requires at

least 100 CEL files to be run together in order to cluster the genotypes correctly.211 Using

fewer CEL files would require a default clustering file to be used by the software, but the

documentation warns that the resulting CNV calls may not be reliable.211 For this reason, all
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Figure 2.4: Signal intensities of MDGA probesets are normally distributed when repre-

sented as log2 ratios. Partek locus-level copy number data in (A) linear space and (B) logged

space. “Sampletype” is a manually imputed category in which “B6Ref” denotes the seven pure

C57BL/6J reference samples (downloaded from the Centre for Genome Dynamics,201 and se-

lected to construct the copy number reference in Partek), and “Samples” represents the fifteen

experimental samples.
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335 CGD CEL files (including the seven pure C57BL/6J reference sample CEL files used

for Partek analysis) were run through PennCNV with the Hill Laboratory sample CEL files.

PennCNV uses the files selected as a reference (in this case, the 335 CGD files) for reference

calculations only, and does not output copy number for these files.211

The probe sets for the fifteen Hill Laboratory samples were summarized similarly to the

Partek protocol using RMA background correction and median polish summary.191 Unlike

Partek, PennCNV does not offer full quantile normalization due to computing restraints, and

sketch quantile normalization was employed instead.212 The marker list was filtered to use only

the 470,339 SNPs on autosomes and sex chromosomes identified by the SNP list provided by

S. Eitutis.202 PennCNV returns a “confidence score” for each event, which is an integer that

indicates how likely it is for a CNV to occur in the region being reported, although the exact

mathematical model used by PennCNV to calculate this score is not in the documentation.213

Previous studies have used a minimum confidence score of 10 for events called by PennCNV,

and the same cutoff value is employed here.214,215 The raw list of copy number events was

filtered to include autosomes only, thereby using only the 451,538 autosomal SNPs for further

copy number analysis.

2.5 Analyzing putative copy number events by ConsecN, Partek, and

PennCNV

The copy number events called by each of ConsecN, Partek, and PennCNV were analyzed

independently but following identical workflows. Only events called on the nineteen autosomes

were analyzed in this study due to a limitation in Partek regarding properly reading MDGA

annotations for the sex and mitochondrial chromosomes.
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2.5.1 Calculating lengths of copy number events

The lengths of ConsecN copy number events were calculated by subtracting the start po-

sition from the end position, where start position is the position of the first SNP locus calling

an event and the end position is the position of the last SNP locus calling an event. Partek

determines the start position of an event by taking the midpoint between the last marker (in this

thesis, SNP locus) in the unchanged region before the event and the first marker in the changed

region within the event. Partek calculates the end position in a similar manner, but where the

end position is the midpoint between the last marker inside the event and the first marker after

the event. PennCNV denotes the start and end position of a given copy number event as the first

and last SNP locus in the event, respectively. The length originally returned in the PennCNV

output is calculated by subtracting the coordinate of the last SNP from the coordinate of the

first SNP and adding 1. In this analysis, length was recalculated for PennCNV events by only

subtracting the position of the last SNP from the position of the first SNP; this was to match

the length calculation for ConsecN to minimize between-method variation.

2.5.2 Filtering putative copy number events by marker density and

variant length

To reduce the chance of falsely calling large variants with a relatively low number of mark-

ers, copy number events were filtered based on marker density. Marker density was calculated

by dividing the number SNPs contained within the boundaries of the event by the length of

the event in base pairs. Events with a marker density of fewer than 1.3 markers per 10 kb

were removed from the dataset (Supplementary Table D.1). This cutoff was derived from the

cutoff of 4 markers per 10 kb used by Pamphlett et al. for CNV analysis using the Affymetrix R©

Genome-Wide Human 6.0 Array.60
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2.6 Analyzing copy number events that overlap between samples

Copy number event data from ConsecN, Partek, and PennCNV were imported indepen-

dently into Microsoft R© Excel
TM

2010 and formatted according to the requirements for Hotspot

Detector for Copy Number Variants (HD-CNV).196 HD-CNV was run with the following pa-

rameters: minimum percent overlap for a merge = 40%, minimum percent overlap for a family

= 99%, and reciprocal overlap selected. Reciprocal overlap reiterates the merging algorithm

to merge together events that may not overlap themselves, but are both overlapped by a single

larger event (Figure 2.5). Running HD-CNV with reciprocal overlap is beneficial when analyz-

ing complex regions that may contain both large and small CNV events by preventing multiple

merges forming in the same genomic region. This practice prevents overestimating the number

of merges formed across samples by preventing double-counting of the same region.

The output from HD-CNV comprises a set of two .csv files for each chromosome: one

file containing data for each CNV event, and one file containing data for each merge that was

formed from the data. Copy number event data were separated based on whether an event

was included in a merge or not. Copy number events included in merges were referred to as

“merge-associated events” (Figure 2.6). Merge-associated events, by definition, were found to

overlap at least one other event in at least one other Hill Laboratory sample. Copy number

events that were not included in any merge were referred to as “singletons”, as they were not

found to overlap with events called in any other Hill Laboratory sample.

2.6.1 Visualizing singletons and merges in UCSC Genome Browser

Optional output from HD-CNV includes a summary file, which contains genomic location

information for individual CNV events as well as singletons and merges for all chromosomes.

This summary file is a BEDdetail file.198 BEDdetail files are formatted in such a way that

multiple “tracks” can be documented in each file, which are UCSC Genome Browser’s way
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Figure 2.5: Screenshot of UCSC Genome Browser with custom track display showing a

merge locus on chromosome 13 called with ConsecN method and HD-CNV (A) with reciprocal

overlap selected, and (B) without reciprocal overlap selected. Thick black arrows illustrate the

resulting merge or merges formed (blue lines) from the events found in the Hill Laboratory

samples (red lines).
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Figure 2.6: HD-CNV groups copy number events in different samples as “merges” if they

overlap in genomic location. Copy number events that were included in a merge are defined

here as merge-associated events. Copy number events that did not merge with any other events

are defined here as singletons.
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of grouping types of genomic information. For example, a user can select tracks that contain

information about genes, SNPs, RNA transcripts, repeat elements, or many other datasets. Any

one BEDdetail file can contain multiple defined tracks. BEDdetail files output from HD-CNV

were uploaded to UCSC Genome Browser and visually inspected for correct merging.

2.6.2 Quantifying average GC content of copy number events

GC content values for singletons, merge-associated events, and merges called with each

CNV calling method were calculated using the BEDTools command suite, which provides

tools specifically for analyzing BEDdetail files.216

2.7 Evaluating concordance between events and merges defined from

three CNV calling methods

To analyze the concordance in CNV event calls between ConsecN, Partek, and PennCNV,

singletons and merges defined by each method were compared with the other two calling meth-

ods for any overlap. Singletons and merges were analyzed separately (Figure 2.7).

2.7.1 Identifying singletons that overlap between CNV calling methods

Singletons defined by HD-CNV analysis for each CNV calling method were consolidated

into a single file. The resulting three files were then cross-examined for any overlap between

singleton loci identified by each of the three methods using the subcommand multiIntersectBed

in BEDTools (an unpublished update to the original release; personal correspondence with A.

Quinlan).216 The minimum overlap between singletons was set to one base.165

Due to size discrepancies in singletons called by the different CNV event calling methods,

it is possible for two or more singletons from one method to overlap with one larger singleton
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Figure 2.7: Workflow for assessing concordance of CNV calls between three CNV calling

methods. Singletons called by HD-CNV from ConsecN, Partek, and PennCNV were ana-

lyzed for overlap between methods using BEDtools. Merges called by HD-CNV from all three

calling methods were also analyzed for overlap between methods using BEDtools.
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from another method. For this reason, the total genomic region containing the singletons found

to overlap is referred to as an “overlapping singleton locus”. If there was any overlap between

singletons, the overlapping singleton locus boundaries were taken to be the outermost start and

end positions from all singleton events involved in the overlap.

2.7.2 Identifying merges that overlap between CNV calling methods

Similar to overlapping singleton analysis, the merges defined by HD-CNV for each CNV

calling method were consolidated into a single file for each method, which were then cross-

examined for overlap using multiIntersectBed in BEDTools. Minimum overlap between

merges was set to one base.165 As with overlapping singleton analysis, size discrepancies in

merges allowed the possibility for two or more merges from one CNV event calling method to

overlap with one larger merge from another method. The genomic regions comprising merges

that overlap with one another are referred to as “overlapping merge loci”.

2.8 Estimating genetic distance using CNV calls

2.8.1 Calculating genetic distance based on the known pedigree of mice

The pedigree constructed from in-house breeding records was used to determine the coeffi-

cient of relatedness (r) between each sample. Tissues from the same individual were assigned

an r value of one, based on the null hypothesis that tissues within an individual are isogenic

(no somatic mosaicism). The r values between tissues taken from different mice were calcu-

lated based on the traditional between-individual relationships. The r values were then used to

construct a distance matrix.
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2.8.2 Calculating genetic distance with a modification to sharing

analysis

Pairwise genetic distance was calculated using a modification to the sharing analysis ap-

proach first introduced by Lou et al.139 The authors calculated the proportion of human CNVRs

shared between different Chinese populations (sharing proportion, designated here as SP) as

SP =
CNVRsi, j

CNVRs j

where CNVRsi, j is the average number of shared CNVRs between individuals from populations

i and j, and CNVRs j is the total number of CNVRs detected in population j.

In the current study, genetic distance is calculated between various tissue samples taken

from mice in one sample population, as opposed to genetic distance being calculated for av-

erages across multiple populations as done by Lou et al (Figure 2.8). Since we are using the

exact number of shared loci for each sample, we eliminate the need to average CNVR counts

across populations. The denominator in the modified equation becomes the total number of

CNV loci called with the respective CNV calling method (ConsecN, Partek, or PennCNV).

This number is the sum of singleton loci and merge loci. Each CNV locus is treated as being

analogous to a SNP locus, but instead of a single base pair position having two different alleles

(A or B), the CNV locus has two different states (unchanged from the reference or changed

from the reference as a gain or a loss).

Since a singleton by definition is present only in one sample from one mouse in the dataset,

it is not necessary to determine how often it is shared with other samples, as the answer is

always zero. Instead, a singleton is interpreted as being a CNV locus at which a single sam-

ple has the changed state, while all other samples share with each other the unchanged state.

Merges, on the other hand, comprise events in different samples that overlap to some degree.

We interpret a merge as occupying one locus, and so each merge is scored as such. Similar to
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Figure 2.8: Workflow for estimating genetic distance using shared CNV loci. Singletons

and merges identified by HD-CNV from copy number events called by one of the three calling

methods (ConsecN, Partek, or PennCNV) were used to produce distance matrices based on

shared CNV loci between each sample. Distance matrices were used to generate phylogenetic

trees using the BIONJ algorithm. This workflow was repeated for copy number events from

each of ConsecN, Partek, and PennCNV.
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the scoring of singletons, a merge locus will have both a changed and an unchanged state, with

the only difference from singletons being that multiple samples will share the changed state, as

opposed to just one sample existing in the changed state.

For each locus called as a copy number event in at least one sample, each sample is com-

pared pairwise with every other sample to score which samples share the same state. The

sharing proportion SP is calculated as:

SP =
Ci, j

(S + M)n

where the numerator is C number of shared CNV loci between samples i and j, and the de-

nominator is the sum of singleton loci S and merge loci M present in the sample population

n.

2.8.3 Constructing trees from genetic distances calculated from shared

CNV loci

The total number of shared loci for each pairwise comparison between samples was recorded

in a symmetrical matrix, in which the columns and rows represent each of the fifteen samples.

Each value in this matrix was then divided by the total number of CNV loci found within the

respective CNV calling method to generate a symmetrical similarity matrix. The dissimilarity

matrix was then calculated by subtracting the similarity matrix from 1. Each dissimilarity ma-

trix was then loaded into R (v. 2.15.0). Phylogeny estimation was accomplished with BIONJ,

a modification to the neighbour-joining algorithm,217 executed with the BIONJ command in

the R package ape (Analysis of Phylogenetics and Evolution, v.3.0-8).218 The output from

BIONJ was read into the program FigTree (v.1.4.0; http://tree.bio.ed.ac.uk/software/figtree/) to

produce graphical trees. All trees produced were unrooted.
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2.8.4 Comparing trees to assess contribution of somatic copy number

mosaicism to genetic distance

Two independent methods were used to compare the topologies of the three trees gener-

ated from genetic distance calculated by modified sharing proportion (ConsecN, Partek, and

PennCNV) and the tree generated using the coefficient of relatedness r (Pedigree). The first

comparison of tree topologies was made by counting the number of nodes separating all pairs

of samples in a given tree. This node separation value was calculated pairwise between each

sample. This was performed for each tree. For each tree, node separation values were placed in

a matrix that followed a similar format to the matrices used to identify shared CNV loci. Tree

comparisons were then made pairwise between all four trees by coupling values that occupied

the same position in each matrix and performing Spearman’s rank correlation. The second

tree topology comparison was made using the sum of the branch lengths separating all pairs of

samples in a given tree. For each tree, branch lengths were summed pairwise between all sam-

ples, and sums were placed in a matrix specific to that tree. Like node separation, between-tree

comparison was made by coupling values that occupied the same position in each branch sums

matrix. The correlation between paired values was analyzed by performing Pearson’s product

moment correlation for two trees at a time.

2.9 Constructing a local database of previously reported murine CNVs

To facilitate the comparison of copy number events called by each of the three CNV call-

ing methods to murine CNVs previously reported in the literature, a local database was con-

structed. This database was constructed using supplementary data of the mouse CNV discovery

studies included in the NCBI Database of Known Structural Variation (dbVar; http://www.ncbi

.nlm.nih.gov/dbvar/ accessed April 2012)197 which included genomic coordinates (chromo-

some, start position, and end position) for all copy number events (Supplementary Table C.1).
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Genomic coordinates, mouse strain, and copy number state were used to create each entry in

the database, with each entry representing either a CNV or a CNVR, depending on the informa-

tion available in the given study. Database entries were formatted in BEDdetail format to allow

allow construction of custom track files. Due to the large number of entries in the database

(17,128 entries in total), each dataset was formatted as a separate track, with one track per

BEDdetail file. The following custom tracks were constructed from previously published data

(where n is number of entries in each track):

• Previously Reported CNV Amplifications (Agam et al.)50 [n=499]

• Previously Reported CNV Deletions (Agam et al.)50 [n=1477]

• Previously Reported CNV Regions (Agam et al.)50 [n=783]

• Previously Reported CNV Amplifications (Egan et al.)135 [n=38]

• Previously Reported CNV Deletions (Egan et al.)135 [n=38]

• Previously Reported CNVs State Unspecified (Cahan et al.)113 [n=1302]

• Previously Reported CNVs State Unspecified (Cutler et al.)219 [n=1981]

• Previously Reported CNVs State Unspecified (Henrichsen et al.)63 [n=1460]

• Previously Reported CNVs State Unspecified (Quinlan et al.)92 [n=9550]

All individual tracks were uploaded to UCSC Genome Browser locally for browsing (Fig-

ure 2.9).

To investigate overlap between events called in Hill Laboratory samples and events de-

tailed in the database, all custom tracks were incorporated into a single BEDdetail file. The

intersectBED command in BEDTools (v.2.17.0) was used to find overlap between copy num-

ber events called in the present study and CNVs and CNVRs previously documented in the

literature.216 Database entries overlapping the copy number events from the present study were

also scored for presence in C57BL/6J mice. CBA/CaJ mice were not represented in the stud-

ies included in the database and so CBA/CaJ copy number events could not be assessed in a

strain-specific manner.
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Figure 2.9: Screen capture of custom tracks uploaded to UCSC Genome Browser showing

database entries that map to chromosome 1 (1qa1-1qC2). The custom tracks represent CNV

gains, losses, unspecified copy number state, or CNVRs depending on the study from which

data were summarized.



C
h
a
pt
e
r

2.M
at
e
r
ia
ls
a
n
d

M
e
t
h
o
d
s

73



Chapter 2. Materials andMethods 74

2.10 Identifying putatively inherited CNVs and de novo CNCs

Only mice with two tissues available were included in the analysis of events shared be-

tween tissues (mice 904.9, 904.11, 911.49, 911.50, and 900.3). Tissue comparisons were made

between tissues within individual mice (Figure 2.10). All tissue comparisons were automated

using custom macro programs written in Visual Basic for Applications for Microsoft R© Excel
TM

2010.

As HD-CNV identified copy number events that were found to overlap between samples,

only merges were analyzed to identify events shared between two tissues in the same mouse.

Singletons were excluded from tissue comparisons because they were not found to overlap

any other events by the minimum cutoff of 40%, and so were not considered to be shared

between tissues. For each mouse, merges that contained events from both tissues were scored

as containing copy number events shared between tissues and were termed “shared events”

(Figure 2.11). As merges were scored on a mouse-by-mouse basis, it was possible for a given

merge to be scored multiple times across mice. The start and end positions of two copy number

events found to be shared between tissues were defined as the start and end positions of the

merge in which both events occurred.

All singletons defined by HD-CNV were automatically scored as putative CNCs due to the

fact they did not overlap with any other samples in the Hill Laboratory sample set, including

the other tissue of the same mouse. Merges were analyzed on a mouse-by-mouse basis. Merges

which contained an event from only one of the two tissues for a given mouse were scored as

CNCs for the tissue containing the copy number event. For example, if Merge 1 contains an

event in the spleen of mouse 904.9 but does not contain an event from the cerebellum of the

same mouse, the sample 904.9SP (spleen) gets a score. As merges were scored on a mouse-

by-mouse basis, it was possible for a given merge to be counted multiple times, once in each

mouse that had a copy number event occur in the merge.
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Figure 2.10: Workflow for identifying putatively inherited CNVs and de novo CNCs. (A)

Singletons identified by HD-CNV from copy number events called by one of the three call-

ing methods (ConsecN, Partek, or PennCNV) were analyzed to identify putative CNCs. (B)

Merges identified by HD-CNV from copy number events called by one of the three calling

methods (ConsecN, Partek, or PennCNV) were analyzed to identify putative tissue-specific

CNCs and putative CNVs.
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Figure 2.11: Illustration demonstrating the scoring of putative inherited CNVs, CNCs,

and tissue-specific CNCs.
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Merges that contained events from only one tissue type were scored as putative “tissue-

specific” CNCs. This scoring was done on a merge-by-merge basis. Merges that contained

only events found in the spleen of the mice included in the tissue analysis (900.3, 904.9, 904.11,

911.49 and 911.50) were scored as spleen-only. Similarly, merges that contained only events

found in the cerebellum among these mice were scored as cerebellum-only. Since there was

only one liver sample available (mouse 900.3), sample 900.3LI was not included in tissue-

specific CNC analysis (although 900.3SP was retained).

2.11 Statistical analyses

All statistics were performed in R (v.2.15.0).220 The distributions of all one-dimensional

data were tested for normality with the Lilliefors Kolmogorov-Smirnov test. Data presented in

the results are normally distributed unless deviations from the normal distribution are noted.

Genotyping call rates for the Hill Laboratory samples and the 335 CGD dataset were tested for

significant differences between groups using the Kruskal-Wallis rank sums test. Comparisons

of length and GC content were made between copy number events found with each CNV

calling method (ConsecN, Partek, and PennCNV). Comparisons of length and GC content

were also made between singletons and merges, as well as between gains and losses where

applicable. Copy number event lengths and GC content were tested for significant differences

using the Kruskal-Wallis rank sums test.

Dissimilarity distance matrices were compared using Mantel tests to determine if the matri-

ces used to construct phylogenetic trees were different. Mantel tests were performed using the

function mantel.test in the R package ape with 10,000 permutations. Topological compar-

isons between phylogenetic trees based on node separation were made using Spearman’s rank

correlation for discrete data. Comparisons between trees based on branch length sums were

made using Pearson’s product moment correlation for continuous data.



Chapter 3

Results

3.1 Fifteen Hill Laboratory samples passed the genotyping step

Of the sixteen Hill Laboratory samples that were genotyped from the MDGA using the

filtered SNP list, fifteen samples passed the minimum genotyping call rate of 97% (Table 3.1).

The sole sample that failed the minimum call rate was the spleen of mouse 300.6 (a C57BL/6J

mouse, with a call rate of 96.26%). This sample was removed from all subsequent analysis,

and no tissue comparisons were made for this individual. The distribution of genotyping call

rates of the Hill Laboratory samples was skewed left, with higher call rates being more fre-

quent (D=0.1554, p<0.001). The median genotyping call rate for the Hill Laboratory samples

was 99.93%. The genotyping call rates of the Hill Laboratory samples were not found to be

significantly different from the 335 CGD set call rates (median 99.66%; H=108.9781, 123 d.f.,

p=0.813).

Of the fifteen Hill Laboratory samples that passed genotyping, the lowest genotyping call

rate was for sample 900.3LI (98.99%) as it had the highest number of SNPs that failed to be

successfully genotyped (4741 “NoCalls”). All other samples had genotyping call rates of over

80
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Table 3.1: Genotyping call rates from the final round of genotyping for each of the Hill Laboratory
samples hybridized to the Mouse Diversity Genotyping Array. Genotyping was performed using
Affymetrix R© Genotyping Console (v. 4.1.2).

Number of SNPs Genotypeda

Sample ID AA BB AB NoCall Overall Genotyping
Call Rate (%)b

300.6SPc - - - - -
300.6CL 465149 4046 828 316 99.14
900.3SP 387447 29566 49141 4185 99.11
900.3LI 387071 29406 49121 4741 98.99
904.11SP 414254 369 55451 265 99.94
904.11CL 414275 370 55344 350 99.93
904.9SP 409587 404 60019 329 99.93
904.9CL 409488 406 60155 290 99.94
911.50SP 374542 66071 29588 138 99.97
911.50CL 374186 65908 29627 618 99.87
911.50SPrpt 373829 65856 29463 1191 99.75
911.50CLrpt 373167 65697 29645 1830 99.60
911.49SP 374493 59364 36215 267 99.94
911.49CL 374514 59360 36143 322 99.93
911.143CL 376520 60361 33246 212 99.96
911.148CL 376485 59535 34082 237 99.95
a Successful genotype calls are as follows: AA = homozygous for the A allele, BB = homozygous

for the B allele, or AB = heterozygous (both A and B allele present). Failed genotype calls are
indicated by NoCall

b Call rate is the percentage of successful genotype calls (AA, BB, or AB)
c This sample failed the first round of genotyping with a call rate of 96.34%, and was removed

from subsequent genotyping rounds and CNV analysis
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99.10%. The sample with the highest genotyping call rate (and therefore lowest number of

“NoCalls”) was sample 911.50SP, with a call rate of 99.97% and 138 “NoCalls”.

3.2 Putative copy number events were called by ConsecN, Partek, and

PennCNV

Putative copy number events were detected in the fifteen Hill Laboratory samples that

passed genotyping. Data were filtered at multiple points in the analysis of MDGA data based

on stringent criteria to minimize false positives (Figure 3.1). The resulting copy number events

were characterized by copy number state (gain or loss), length, marker density, and GC content.

3.2.1 The copy number events called by each method differed in number

and copy number state

All events found with the ConsecN method were classified as deletions. The ConsecN

approach found 264 copy number events called in total on the autosomes for the fifteen Hill

Laboratory samples (Table 3.2). This number was reduced to 239 events after filtering out

events that had a marker density below the cutoff value of 1.3 markers per 10 kb. ConsecN

events were called in thirteen of the fifteen samples. Neither tissue from mouse 904.9 had any

ConsecN events called.

For the seven pure C57BL/6J CGD mice used to construct the reference copy number,

Partek did not call any change in copy number. Initially, Partek called 242 autosomal copy

number events in total for the fifteen Hill Laboratory samples. This number was reduced to

224 after filtering events with low marker density. Partek was the only method that called copy

number gains, detecting 195 gains in total for the fifteen samples. Losses accounted for 29 of

the copy number events called by Partek.
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Figure 3.1: Applying quality control measures at multiple steps of copy number analy-

sis. Quality control measures were applied for probe set selection, genotyping call rate, copy

number event length, marker density, and confidence score (confidence score available for Pen-

nCNV only).
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Table 3.2: Number of copy number events in each sample as called indepen-
dently by ConsecN, Partek, and PennCNV following filtering steps.

Sample ID ConsecN
(Losses)

Partek
(Gains)

Partek
(Losses)

PennCNV
(Losses)

300.6SP 77 0 2 217
900.3SP 34 6 4 148
900.3LI 62 6 4 173
904.11SP 3 18 1 49
904.11CL 4 15 1 80
904.9SP 0 22 1 19
904.9CL 0 10 1 112
911.50SP 5 9 2 92
911.50CL 6 10 1 178
911.50SPrpt 10 10 2 59
911.50CLrpt 18 21 3 136
911.49SP 5 12 1 124
911.49CL 4 20 1 144
911.143CL 4 23 2 134
911.148CL 7 13 3 103

Total 239 195 29 1768
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PennCNV called the most copy number events of the three methods, initially calling 1998

autosomal events in total for the fifteen Hill Laboratory samples. Filtering by marker density

and confidence score reduced this number to 1768. PennCNV originally called both gains and

losses, although only losses remained in the filtered dataset.

3.2.2 ConsecN called occurrences of two consecutive “NoCalls” more

frequently than expected by chance

After genotyping SNPs, the occurrences of “NoCalls” in each sample were counted, and

the probability of observing two “NoCalls” in a row was calculated for each sample. The

expected occurrence of ConsecN events was less than 1 for all samples, given the number of

“NoCalls”. The probability of observing two consecutive “NoCalls” given the total number

of “NoCalls” observed within a given sample was highest in sample 900.3LI. This sample had

4741 “NoCalls” returned, yielding an expected number of ConsecN events of 2.41×10−1 (Table

3.3). In this sample, 62 ConsecN events were observed (a fold difference of 2.57×102).

3.2.3 “NoCalls” do not result strictly from low fluorescence

Visual inspection of SNP clustering reveal variation in the fluorescence intensity of “No-

Calls” (Figure 3.2). Some “NoCalls” result from low fluorescence intensity for a particular

probeset, but not all “NoCalls” follow this pattern of low fluorescence intensity. Other “No-

Calls” have fluorescence intensities comparable to successful genotype calls for the same SNP,

but appear to fall between posterior clusters in such a way that they cannot be accurately called

as either the heterozygous call or the homozygous call. These SNP loci are designated as

“NoCalls” due to their low silhouette score, which assesses the quality of the clustering classi-

fication for each data point.

The only samples in which no ConsecN events were observed were the spleen and the cere-
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Table 3.3: Upper bound estimate of the probability of obtaining two consecutive failed genotypes (“NoCalls”).

Sample ID Number of
“NoCalls”

observed
in sample

Number of
possible pairs
of “NoCalls”a

Probability of
Two Consecutive

“NoCalls”b

Number of
expected
ConsecN

events given
observed

“NoCalls”c

Number of
observed
ConsecN

events

Fold difference
between

observed and
expected

300.6SP 316 158 4.50×10−7 7.11×10−5 77 1.08×106

900.3SP 4185 2093 7.92×10−5 1.66×10−1 34 2.05×102

900.3LI 4741 2371 1.02×10−4 2.41×10−1 62 2.57×102

904.11SP 265 133 3.16×10−7 4.19×10−5 3 7.16×104

904.11CL 350 175 5.52×10−7 9.66×10−5 4 4.14×104

904.9SP 329 165 4.88×10−7 8.02×10−5 0 N/Ad

904.9CL 290 145 3.79×10−7 5.49×10−5 0 N/A
911.50SP 138 69 8.55×10−8 5.90×10−6 5 8.48×105

911.50CL 618 309 1.72×10−6 5.33×10−4 6 1.13×104

911.50SPrpt 1191 596 6.41×10−6 3.82×10−3 10 2.62×103

911.50CLrpt 1830 915 1.51×10−5 1.38×10−2 18 1.30×103

911.49SP 267 134 3.21×10−7 4.29×10−5 5 1.17×105

911.49CL 322 161 4.67×10−7 7.52×10−5 4 5.32×104

911.143CL 212 106 2.02×10−7 2.14×10−5 4 1.87×105

911.148CL 237 119 2.53×10−7 3.00×10−5 7 2.34×105

a Given the number of NoCalls returned in the genotyping step for each sample. Rounded to the nearest whole number.
b P(NoCall and NoCall)A = P(NoCall)A × P(NoCall a f ter NoCall)A
c Number of possible pairs of “NoCalls” × Probability of Two Consecutive “NoCalls”
d Fold difference could not be determined in the absence of observed events
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Figure 3.2: A “NoCall” represents a SNP in a given sample that fails to cluster with

the majority of other samples based on fluorescence intensity ratios for the two alleles

at that locus. Three clusters exist for the three genotype calls, homozygous AA (green),

heterozygous AB (blue), and homozygous BB (red). Before genotyping, expected fluorescence

intensities are clustered as prior clusters indicated by dotted lines. As the genotyping algorithm

progresses, the actual fluorescence intensities from the CEL files are plotted and posterior

clusters are indicated by solid lines. (A) “NoCalls” (grey) can result from probes that are

returning fluorescence intensity but fall in between the clusters formed for heterozygous and

homozygous calls. (B) “NoCalls” can also result from probes that do not return sufficient

fluorescence intensity to be able to be clustered into a genotype call.
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bellum of mouse 904.9. The probabilities of observing two consecutive “NoCalls” in the geno-

typing results for the spleen and cerebellum of mouse 904.9 were 4.88×10−7 and 3.79×10−7, re-

spectively. Sample 300.6SP had the most ConsecN events called, with 77 events observed (316

“NoCalls”, with a probability of detecting two consecutive “NoCalls” = 4.5 ×10−7). Sample

300.6SP also had the largest fold difference between expected and observed ConsecN events

(expected 7.11×10−5 ConsecN events, fold difference of 1.08×106).

3.3 Characterization of copy number events called with ConsecN, Partek,

and PennCNV

3.3.1 Each of the three CNV calling methods detected copy number

events of different lengths

With gains and losses grouped together, the distributions of the lengths of copy number

events for each of the three calling methods were skewed right, with smaller events more

frequent (p<0.001). Event lengths were not similar across calling methods, with Partek calling

longer events (median length of 2.2 Mb) and ConsecN calling shorter events (median length of

335 bp; Figure 3.3). The median length of PennCNV events was 2.49 kb.

The lengths of copy number events called by ConsecN ranged from 14 bp to 50,584 bp

(both of these extreme values were called in sample 911.50CLrpt). The shortest event called

by Partek was 5996 bp (911.148CL), while the largest was 14,018,633 bp (904.11CL). The

shortest event called by PennCNV was 8,437 bp (911.50SP) and the largest was 13,280,763

bp (900.3SP). On average for each sample, the proportion of the genome affected by ConsecN

events was 1.50 ×10−3%, by Partek events 1.76%, and by PennCNV events 0.85%, based on

the Golden Path length of the mouse genome.
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Figure 3.3: Spread of copy number event length data for events called by ConsecN,

Partek, and PennCNV. Partek called copy number events with the longest lengths of the three

calling methods (p<0.001).
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3.3.2 The marker density of copy number events is correlated with CNV

length

The median marker densities for ConsecN, Partek, and PennCNV events were 59.70 mark-

ers per 10 kb, 1.87 markers per 10 kb, and 1.92 markers per 10 kb, respectively. The dis-

tributions of marker densities for each of the three calling methods were skewed right, with

a few events in each method having higher numbers of SNPs for their length compared with

the median (p<0.001 for each of ConsecN, Partek, and PennCNV). Event marker density was

not equal across calling methods (H=510.2211, df=2, p<0.001), with the marker density of

ConsecN events called higher than marker density of events called by either Partek or Pen-

nCNV (p<0.001; Figure 3.4). Events called by Partek and PennCNV did not differ in marker

density (W=198584, p=0.9332). Marker density was highly correlated with event length in

the putative CNVs detected with ConsecN (R2=0.9866; Figure 3.5). The correlation between

marker density and event length was weaker in the events detected with Partek (R2=0.2564)

and PennCNV (R2=0.3242).

3.3.3 Copy number events called by ConsecN, Partek, and PennCNV

differ in GC content

The GC content of copy number events was not the same across the three calling meth-

ods (H=158.2928, 1 d.f., p<0.001; Figure 3.6). ConsecN had the widest range of GC con-

tent percentages (22.50%-60.82%), while Partek events displayed the smallest range (34.56%-

50.91%). ConsecN events also had the highest median GC content of the three calling methods,

with a median GC content of 44.0%. PennCNV called events with the lowest GC content of the

three calling methods (median=38.1%) The median GC content of the Partek events (41.15%)

was the closest to the overall GC content of the mouse genome (42%).
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Figure 3.4: Spread of copy number event marker density for events called by ConsecN,

Partek, and PennCNV. ConsecN called copy number events with the highest marker density

of the three calling methods (p<0.001).
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Figure 3.5: Marker density is correlated with copy number event length in putative CNVs

detected using SNP probes on the Mouse Diversity Genotyping Array. Copy number event

marker density was calculated by dividing the number of SNP loci used to report each copy

number event by the length of the event in base pairs. Logged values for event marker den-

sity are plotted against logged values of event length. (A) ConsecN events demonstrate a

strong Pearson correlation (R2=0.9866) between event marker density and length. (B) Partek

events demonstrate a weak Pearson correlation (R2=0.2564) between event marker density and

length. (C) PennCNV events demonstrate a weak Pearson correlation (R2=0.3242) between

event marker density and length.
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Figure 3.6: Spread of copy number event GC content for events called by ConsecN,

Partek, and PennCNV. ConsecN called copy number events with the highest GC content

of the three calling methods (p<0.001).
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3.4 Characterization of copy number events as merge-associated events

or singletons

3.4.1 Each of the three calling methods detects singletons in the dataset

Of the 239 events called by ConsecN in the fifteen Hill Laboratory samples, HD-CNV

found 186 events that did not overlap with any other events in other samples, and were thus

classified as singletons (77.82% of events). Of the 224 Partek events, 37 (16.52%) were clas-

sified as singletons. Singletons accounted for 515 (29.13%) of the 1768 events called by Pen-

nCNV. Partek and PennCNV were similar to each other in that more events were classified as

merge-associated events than were classified as singletons. Partek was the only method to call

both gains and losses, and so singleton and merge-associated event analysis was further sub-

divided according to copy number state; however, statistics could not be performed for Partek

singleton losses due to small sample size (n=4).

3.4.2 Some copy number events are present in the same genomic

location across multiple samples

Of the 239 events called by ConsecN in the fifteen Hill Laboratory samples, HD-CNV

found 53 events (22.18%) that were classified as merge-associated events, as they overlapped

events occurring in other samples in the dataset by at least 40% of the length of the small-

est event. The 53 merge-associated events called by ConsecN formed 17 merges. Although

ConsecN called events on all 19 autosomes, merges were found only on chromosomes 1, 3-

5, 7-9, and 13-15 (Figure 3.7). Chromosome 15 had the most ConsecN merges, with five

events located between base pair positions 16116961-16295795. Of the 224 Partek events, 187

(83.48%) were classified as merge-associated events. HD-CNV called 187 merge-associated

events from the Partek events which formed 41 merges (Figure 3.8). Partek merges were called
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Figure 3.7: The autosomal distribution of ConsecN copy number events and merges.

Outer circle: Ideogram approximates locations of bands observed on Geimsa-stained chro-

mosomes. Middle circle: Each copy number event called by ConsecN is plotted against the

corresponding genomic location and shown as a black line. Inner circle: Each merge called

by HD-CNV for ConsecN copy number events is plotted against the corresponding genomic

location and shown as a blue line.
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Figure 3.8: The autosomal distribution of Partek copy number events and merges. Outer

circle: Ideogram approximates locations of bands observed on Geimsa-stained chromosomes.

Middle circle: Each copy number event called by Partek is plotted against the corresponding

genomic location and shown as a black line. Inner circle: Each merge called by HD-CNV for

Partek copy number events is plotted against the corresponding genomic location and shown

as a blue line.
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for all chromosomes except chromosome 18 (Partek did not call any copy number events on

this chromosome). PennCNV called 1768 events, of which 515 (29.13%) were classified as

singletons and 1253 (70.87%) classified as merge-associated. From the 1253 merge-associated

PennCNV events, 451 merges were found (Figure 3.9). PennCNV merges were found on all

19 autosomes.

3.4.3 The median lengths of singletons and merge-associated events

differ between CNV calling methods

The lengths of ConsecN singletons (median=337 bp) were not different from the lengths of

merge-associated events (median=1,622 bp; H=0.392, df=1, p=0.5312; Figure 3.10). Before

accounting for copy number state, the lengths of Partek singletons (median=1,538 kb) were

significantly shorter than the lengths of merge-associated events (median=2,592 kb; H=8.8835,

df=1, p=0.003). Partek events were then split according to copy number state. Singleton losses

(median=32 kb) were too few in number (n=4) to statistically compare lengths with singleton

gains (median=1,744 kb) or merge-associated losses (median=9.8 kb). The lengths of singleton

gains (median=1,862 kb) were significantly shorter than the lengths of merge-associated gains

(median=3,625 kb; H= 14.4694, df=1, p<0.001). PennCNV singletons (median=250 kb) were

similar in length to PennCNV merge-associated events (median=249 kb; H=2783.713, 1 d.f.,

p=0.2903).

The proportion of the genome affected by copy number events is a function of both the

number and length of events. Based on the Golden Path length of the mouse genome, ConsecN

singletons affected an average of 35,084 bp ± 15,971 in each sample, while merge-associated

events affected an average of 5,731 bp ± 1,762 per sample. Partek singletons affected on

average 3,806,384 bp ± 1,815,005 in each sample, while merge-associated events affected an

average of 44,105,371 bp ± 4,974,297 per sample. PennCNV singletons affected an average of

13,292,831 bp ± 5311420 in each sample, while merge-associated events affected an average
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Figure 3.9: The autosomal distribution of PennCNV copy number events and merges.

Outer circle: Ideogram approximates locations of bands observed on Geimsa-stained chro-

mosomes. Middle circle: Each copy number event called by PennCNV is plotted against the

corresponding genomic location and shown as a black line. Inner circle: Each merge called

by HD-CNV for PennCNV copy number events is plotted against the corresponding genomic

location and shown as a blue line.
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Figure 3.10: Spread of the length values calculated for singletons and merges called by

HD-CNV for copy number events detected with each of ConsecN, Partek, and PennCNV.

(A) The lengths of ConsecN singletons and merge-associated events were similar. (B) The

lengths of Partek singleton gains were shorter than merge-associated gains (p<0.001). (C) The

lengths of PennCNV singletons and merge-associated events did not differ.
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of 9,822,690 bp ± 1,396,849 per sample.

3.4.4 Marker density differs between singletons and merge-associated

events

ConsecN merge-associated events had a higher marker density (median 106.38 markers

per 10 kb) than ConsecN singletons (median 59.35 markers per 10 kb; H=332.7322, 1 d.f.,

p<0.001; Figure 3.11). In events called by Partek, merge-associated events also had a higher

marker density (median 1.88 markers per 10 kb) than singletons (median 1.77 markers per

10 kb; H=244.1718, 1 d.f., p<0.001). When Partek events were split based on gains versus

losses, singleton gains had a lower median marker density (1.742 markers per 10 kb) than

merge-associated gains (1.837 markers per 10 kb, H=201.4678, 1 d.f., p<0.001). Partek merge-

associated losses had a higher marker density (median 2.160 markers per 10 kb) than merge-

associated gains (median 1.837 markers per 10 kb; H=221.6754, 1 d.f., p<0.001). PennCNV

events differed from ConsecN and Partek events in that singletons had a higher marker density

(median 1.133 markers per 10 kb) than merge-associated events (median 1.83 markers per 10

kb; H=1306.132, 1 d.f., p<0.001).

3.4.5 GC content differed between singletons and merge-associated

events for Partek and PennCNV events

ConsecN singletons had a median GC content of 44.02%, while merge-associated events

had a median GC content of 42.45%. The GC content of ConsecN events was similar be-

tween singletons and merge-associated events (H=0.4019, 1 d.f., p=0.5261; Figure 3.12). Of

the Partek events, merge-associated gains had a higher GC content (median=41.15%) than

singleton gains (median=38.70%; H=314.4831, 1 d.f., p<0.001). Merge-associated losses

had a higher GC content (median=46.76%) than merge-associated gains (median=41.15%;
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Figure 3.11: Spread of copy number event marker density values calculated for sin-

gletons and merges called by HD-CNV for copy number events detected with each of

ConsecN, Partek, and PennCNV. (A) ConsecN singletons had lower marker densities than

merge-associated events (p<0.001). (B) Partek singleton gains had lower marker densities

than merge-associated gains (p<0.001), which in turn had lower marker densities than merge-

associated losses. (C) PennCNV singletons had higher marker densities than merge-associated

events (p<0.001).
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Figure 3.12: Spread of copy number event GC content calculated for singletons and

merges called by HD-CNV for copy number events detected with each of ConsecN,

Partek, and PennCNV. (A) The GC content of ConsecN events did not differ between sin-

gletons and merges. (B) Partek singleton gains had lower GC content than merge-associated

gains, which in turn had lower GC content than merge-associated losses (p<0.001). (C) Pen-

nCNV singletons had higher GC content than merge-associated events (p<0.001).
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H=325.7643, 1 d.f., p<0.001). PennCNV singletons had a higher GC content (40.45%) than

PennCNV merge-associated events (38.10%; H=125.5902, 1 d.f., p<0.001).

3.5 Each CNV calling method detects some events that overlap with pre-

viously documented CNVs or CNVRs

Three ConsecN merges overlapped with previously detected CNVs, of which only one was

previously found in a C57BL/6J mouse (Table 3.4).219 Thirty of the 239 total events (12.55%)

detected with ConsecN were found to overlap previously found CNVs. Of the 17 merges de-

tected with ConsecN, three (17.60%) were found to overlap with previously reported events.

Two hundred fifteen of the 224 total events (95.98%) detected with Partek were found to over-

lap previously found CNVs. Of the 41 merges detected with Partek, 38 (92.68%) were found

to overlap with previously reported events. Of the 239 total events detected with PennCNV,

1123 (63.52%) were found to overlap previously found CNVs. Of the 451 merges detected

with PennCNV, 346 (76.72%) were found to overlap with previously reported events.

3.6 Genetic distance between samples can be estimated using CNVs and

CNCs

The Pedigree difference matrix, generated using coefficients of relatedness between sam-

ples, was similar to the Partek matrix (Z=19.48397, p=0.025); however, the Pedigree matrix

was unrelated to both the ConsecN and PennCNV matrices. The ConsecN and PennCNV ma-

trices were similar to one another (Z=4.559409, p<0.001). The Partek matrix was unrelated to

both the ConsecN (Z=3.82386, p=0.750) and PennCNV (Z=6.172546, p=0.789) matrices.

Four unrooted additive phylogenetic trees were produced: the “Pedigree” tree constructed

from the coefficient of relatedness r between samples, in addition to the three trees constructed
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Table 3.4: Number of copy number events and merges called by ConsecN, Partek, and PennCNV that overlap with entries in the
database of previously documented murine CNVs and CNVRs.

texttexttextextextextextextextextextextext
Number of copy number events that overlap

with database entries

Number of copy
number events that

overlap with
C57BL/6J entriesa

Number of merges
that overlap with
database entries

Number of
database entries

that overlap with
copy number

events

Singletons Merge-associated Total

ConsecN 27
(14.52%)

texttexttext3
(5.66%)

30
(12.55%)

texttext text 2
(0.84%)

texttexttext 1
(5.88%)

texttexttext 73
(0.43%)

Partek 36
(97.30%)

texttext 179
(95.72%)

215
(95.98%)

texttexttext 85
(37.95%)

texttext 38 (92.68%) texttext 10 958
(63.98%)

PennCNV 334
(64.85%)

texttext 789
(62.97%)

1123
(63.52%)

texttexttext 110
(6.22%)

texttext 346
(76.72%)

texttext 6457
(37.70%)

a C57BL/6J entries were sourced from Henrichsen et al.63
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from genetic distance measures based on sharing proportion of CNV loci (ConsecN, Partek,

and PennCNV; Figure 3.13). In the Pedigree tree, tissues from the same mouse were not

permitted to have any genetic distance between them as imputed by the theoretical coefficient

of relatedness (r=1). The distance between mice characterized by the highest number of nodes

is the separation between mouse 300.6 and both 911.49 and 911.50, with five nodes. However,

this relationship did not have the highest branch length sum (0.9248); instead, the separation

between mouse 300.6 and mouse 911.143 tied with 300.6 and 911.148 for the greatest branch

length sum (1.0446 for both relationships). All pairs of brothers were placed close to each

other except for mice 904.9 and 904.11. Although the tree placed mouse 904.9 between 300.6

and 900.3, 904.9’s brother 904.11 was placed at a further distance from both 300.6 and 900.3

than 904.9.

In the ConsecN tree, tissues from the same mouse clustered together for mice 900.3, 904.9,

and 904.11. Both samples of mouse 911.50’s spleen clustered together, which in turn were

close to the replicate of 911.50’s cerebellum. The first cerebellum sample from 911.50 was

separated from the replicate by two nodes and a branch length sum of 0.0953. The cerebella of

brothers 911.143 and 911.148 were separated by four nodes and a branch length sum of 0.466.

The ConsecN tree shows a deep split between the spleen and liver of mouse 900.3 (separation

of one node, branch length sum of 0.4236). The separation between mouse 300.6 and the two

tissues of mouse 900.3 was even greater with a separation of two nodes and branch length sums

of 0.5374 (300.6CL-900.3SP) and 0.6738 (300.6CL-900.3SP).

Overall, the Partek tree demonstrates more bifurcation than the other trees, evident by the

higher number of nodes formed. All tissue pairs were separated by one node only, except for

the tissues of 904.9 and the cerebellar samples from 911.50. The two 911.50 spleen samples

were separated from each other by fewer nodes and shorter branch lengths than they were

separated from the corresponding cerebellum samples. Though the original cerebellum sample

clustered closely with the two spleen samples, the cerebellum replicate 911.50CL was more

distant from this cluster. For all mice, pairs of brothers were always plotted near each other.
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Figure 3.13: Unrooted phylogenetic trees generated based on shared CNV loci between

individual samples. Branches of the same colour indicate tissues from the same mouse. (A)

Pedigree (B) ConsecN (C) Partek (D) PennCNV.



Chapter 3. Results 119



Chapter 3. Results 120

Mice 300.6 and 900.3 clustered together, but with less distance between the individual samples

than in the Pedigree or ConsecN trees.

Like the Pedigree, ConsecN, and Partek trees, the PennCNV tree also places the tissue

samples from mice 300.6 and 900.3 together. The PennCNV tree shows both 911.50 tissue

replicates closer to 300.6 and 900.3, followed by the tissues from the brothers 904.9 and 904.11.

For this pair of brothers, rather than the two tissues from within each mouse clustering together,

the tissues were clustered by tissue type rather than which mouse they were sampled from. The

spleen samples from 904.9 and 904.11 were separated by two nodes and a branch length sum

of 0.0762, while the cerebellum samples were separated from each other by one node and

a branch length sum of 0.1408. The cerebellum samples from mice 904.9 and 904.11 were

separated from their corresponding spleen samples by 3 and 4 nodes, respectively. This pair of

brothers separated the 911.50 replicate samples previously discussed from the original 911.50

samples, the spleen and cerebellum of which were separated by two nodes and a branch length

sum of 0.2268. The cerebella of the brothers 911.143 and 911.148 were clustered together,

separated by one node and a branch length sum of 0.1696. Finally, both tissues from mouse

911.49 were clustered together, although they were separated from the 911.50 samples.

3.6.1 Partek and PennCNV trees, but not the ConsecN tree, are

topologically similar to the Pedigree tree

The four trees were compared pairwise using two methods of topological comparisons. The

first comparison was made using the number of nodes separating each pair of samples in the

trees and performing a Spearman’s rank correlation between each pair of trees (resulting in six

topological comparisons). This comparison found that all four trees were similar to each other

(p<0.001 for all six tree comparisons).

There are fewer significant relationships between phylogenetic trees when comparing trees

based on the sums of branch lengths that separate each pair of samples. The Partek tree was
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weakly correlated with the Pedigree tree (r(103)=0.3971562, p<0.001). The Pedigree tree was

also weakly correlated with the PennCNV tree (r(103)=0.3512727, p<0.001). The PennCNV

tree in turn was correlated with the ConsecN tree (r(103)=0.5947334, p<0.001). All trees

except for the Pedigree tree were correlated with only one other tree using the branch length

sum method of comparison. All other correlations were not significant.

3.7 There is a low degree of concordance in copy number events between

the three CNV calling methods

Few of the singletons discovered within each CNV calling method were found to overlap

with singletons found in the other two CNV detection methods. In total, 739 singletons were

found using all three CNV calling methods, but only four overlapping singleton loci encom-

passed events found by all three CNV detection methods (Figure 3.14). ConsecN and Partek

had the fewest number of overlapping singletons (three singleton loci), while ConsecN and

PennCNV had the greatest number of overlapping singletons (23 singleton loci). Partek and

PennCNV singletons overlapped at 14 loci. Singletons that overlapped between CNV calling

methods were frequently called in different tissue samples. Two of the three ConsecN-Partek

singleton loci contained singletons found in the same sample (one locus comprised single-

tons found in 911.143CL). One of the 23 singleton loci that overlapped between ConsecN

and Partek comprised singletons found in the liver of mouse 900.3. Similarly, one of the 14

Partek-PennCNV overlapping singleton loci comprised events called in 900.3SP. The remain-

ing overlapping singleton loci comprised singletons from different samples.

One overlapping merge locus was found that comprised merges from all three CNV calling

methods. Partek and PennCNV shared 14 merge loci, while ConsecN and Partek shared three

merge loci. ConsecN and PennCNV had no overlapping merges. There was a low degree of

consistency in the samples represented in merges that overlapped between calling methods.

Only one overlapping merge locus contained identical samples across calling methods. This
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Figure 3.14: Number of singleton loci and number of merge loci that overlap among the

three CNV calling methods. (A) The overlap of singleton loci among ConsecN, Partek, and

PennCNV, where N indicates the total number of singletons detected by each method. (B)

The overlap of merge loci among ConsecN, Partek, and PennCNV, where N indicates the total

number of merge loci detected by each method.
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overlapping merge locus comprised events found in both spleen and liver of mouse 900.3 called

by both ConsecN and Partek. The one overlapping merge locus that comprised merges from

all three CNV calling methods contained events in samples 911.143CL and 911.148CL called

by each of ConsecN, Partek, and PennCNV, although the PennCNV merge also contained

events found in mice 911.49 and 911.50. One Partek-PennCNV overlapping merge locus con-

tained events called by both methods in sample 911.50CLrpt, and another Partek-PennCNV

overlapping merge locus contained events called by both methods in samples 911.143CL and

911.49CL. The remaining overlapping merge loci comprised events from different samples,

with each sample in the overlapping merge loci represented in only one of the constituent

merges.

3.8 Tissue pairs from the same mouse demonstrate both similarities and

differences in copy number events

ConsecN called the fewest number of shared copy number events in the six tissue pairs

(from five mice, including the 911.50 replicates), with 14 shared events in total (Figure 3.15).

Partek called 64 shared events, while PennCNV called the most shared events with 284. Events

called in the liver only were limited to mouse 900.3. Events called in the cerebellum only

within tissue pairs were most frequent in the PennCNV-called events (447), followed by Partek

(27), then by ConsecN (23). Events called in the spleen only within tissue pairs were again

most frequent in the PennCNV-called events (207); however, ConsecN called more spleen-

only events within tissue pairs (43) than Partek (24).

Mouse 900.3 was the only mouse with the liver substituted for the cerebellum. This mouse

had five copy number events shared between the spleen and liver called by ConsecN, 8 shared

events called by Partek, and 81 shared events called by PennCNV. It was the only mouse in

which ConsecN called more events than Partek. ConsecN called fewer spleen-only events (29)

than liver-only events (57). Partek called two tissue-specific events in both spleen and liver.
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Figure 3.15: Number of copy number events that occur in one or both tissues as detected

by three CNV calling methods. The number of copy number events that occur in spleen only,

cerebellum only, liver only, or shared between the two tissues assayed for each individual as

called by three CNV calling methods. (A) The total number of copy number events for five

mice that each had two tissues sampled. The remaining graphs show the number of shared

and tissue-specific events for individual mice: (B) Mouse 900.3 (spleen and liver); (C) Mouse

904.9 (cerebellum and spleen); (D) Mouse 904.11 (cerebellum and spleen); (E) Mouse 911.50

(cerebellum and spleen for both the original and replicate); and (F) Mouse 911.49 (cerebellum

and spleen).
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Similar to ConsecN, PennCNV called fewer spleen-only events (67) than liver-only events

(92).

In mouse 904.9, ConsecN did not call any copy number events. Of the events Partek called

in mouse 904.9, events at 10 loci were found in both the spleen and cerebellum. Partek found

more spleen-only events (13) than cerebellum-only events (1) in this mouse. PennCNV found

more cerebellum-only events (107) than spleen-only events (14), while only five loci were

found to have events in both spleen and cerebellum.

In mouse 904.11, the brother of 904.9, ConsecN called one shared event between the spleen

and the cerebellum. All other events occurred in only one of the two tissues, with two events

found only in the spleen and three events found only in the cerebellum. Partek called more

shared events than ConsecN, calling 15 shared events between the tissues. Partek did not call

any events that were in the spleen only, but did detect eight events found only in the cerebellum.

PennCNV called the most events, with 83 events shared between the tissues, 41 found only in

the spleen, and 61 found only in the cerebellum.

Mouse 911.49 had the highest ratio of shared events to tissue-specific events of the five mice

analyzed. ConsecN called two shared events between the spleen and cerebellum, Partek called

13 shared events, and PennCNV called 83 shared events. ConsecN called three spleen-only

events and two cerebellum-only events. All the events called by Partek in the spleen of mouse

911.49 were shared with the cerebellum; however, the cerebellum was found to have eight

events not shared with the spleen. Like Partek, PennCNV also found more cerebellum-only

events (61) than spleen-only events (41).

Both replicates of tissues sampled from mouse 911.50 had similar numbers of events shared

between tissues as called by each of the three CNV calling methods. ConsecN called two

shared events in 911.50 and four shared events in 911.50rpt. Partek called 10 shared events

in 911.50 and eight in 911.50rpt. PennCNV called the most shared events in both repli-

cates, with 43 shared events in 911.50 and 40 shared events in 911.50rpt. ConsecN found
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fewer spleen-only events than cerebellum-only events in both replicates. In 911.50, ConsecN

called three spleen-only events and four cerebellum-only events. The difference between tis-

sues was greater in the 911.50rpt samples, with ConsecN calling six spleen-only events and 14

cerebellum-only events. Although Partek called the same number of tissue-specific events in

both tissues in 911.50 (one tissue-specific event in the spleen and one in the cerebellum), Partek

called fewer spleen-only events (4) than cerebellum-only events (16) in the replicate 911.50rpt.

PennCNV called fewer spleen-only events than cerebellum-only in both replicates. In the

first 911.50 tissue pair there were 49 spleen-only events called by PennCNV, compared to 135

cerebellum-only. In 911.50rpt, PennCNV called 19 spleen-only events and 96 cerebellum-only

events.

In the samples in which ConsecN called events, ConsecN found more events that were

cerebellum-only or liver-only than spleen-only in mice 904.11 and 911.50 (both replicates).

ConsecN called more spleen-only events in mouse 911.49, with three spleen-only events com-

pared to two cerebellum-only events. Partek called the same number of copy number events

unique to one tissue for both tissues of mice 911.50 (original) and mouse 900.3. Partek called

more spleen-only than cerebellum-only events in the brothers 904.9 and 904.11, and more

cerebellum-only events than spleen-only events in the brothers 911.49 and 911.50 (replicate).

PennCNV always found fewer events that occurred only in the spleen than in the other paired

tissue (cerebellum or liver).

3.8.1 Merges identify genomic regions across different samples that

contain overlapping copy number events

The only merge to contain events from all fifteen samples was found with copy number

events called by Partek (chr.14, MergeID002). All events in this merge were called as dele-

tions. This merge was not found to overlap with events found by either ConsecN or PennCNV;

however, it did overlap several entries in the database, including entries detailing events previ-
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ously found in C57BL/6J mice. Further inspection of this region using UCSC Genome Browser

revealed the sequence to align with regions on human chromosome 8. This merge encompassed

several whole genes in the mouse genome, including ectonucleoside triphosphate diphospho-

hydrolase 4 (Entpd4; human ortholog ENTPD4 on chr.8), solute carrier family 25, member

37 (Slc25a37; human ortholog SLC25A37 on chr.8), and envelope glycoprotein syncytin-B

(D930020E02Rik; no human ortholog). The merge also overlapped part of lysyl oxidase-like 2

(Loxl2).

Some merges contained events that were detected in only one tissue type. A merge was

defined as tissue-specific if all events composing the merge were detected in one tissue type

(for example, spleen) and not detected in the paired tissue within the same mouse. Looking at

only mice from which two tissues were sampled, all three methods detected at least one tissue-

specific merge (Figure 3.16). ConsecN detected no spleen-specific merges and one cerebellum-

specific merge. Partek also detected no spleen-specific merges and one cerebellum-specific

merge. PennCNV detected 12 spleen-specific merges and 54 cerebellum-specific merges.
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Figure 3.16: Number of tissue-specific merges detected in each of the spleen (SP) and the

cerebellum (CL) by three copy number calling methods. More cerebellum-specific merges

than spleen-specific merges were found by each of ConsecN, Partek, and PennCNV. Tissue

pairing analysis permitted the inclusion of six spleen samples and five cerebellum samples.
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Chapter 4

Discussion

4.1 General Discussion

This study reports the first genome-wide analysis of somatic copy number mosaicism using

the novel Mouse Diversity Genotyping Array. Somatic copy number mosaicism was identified

as differences in genomic copy number state (identified as copy number changes, or CNCs)

between two somatic tissues within individual mice. All mice in this study for which two

tissues were sampled exhibited CNCs as detected by at least two methods of calling copy

number. Looking across mice, the spleen tended to have fewer CNCs than the cerebellum.

Tissue-specific merges were identified in both spleen and cerebellum, although cerebellum-

specific merges were detected across CNV calling methods, and called most frequently by

PennCNV. The sample population, which includes mice from different inbred genetic back-

grounds as well as their descendants with mixed inbred strain genetic backgrounds, provides a

group in which individuals have different degrees of genetic relatedness that is known prior to

CNV analysis. With the added benefit of a documented pedigree, this permits the analysis of

variants across multiple levels of genetic relatedness, from within-individual tissue samples to

132
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familial-level relationships. Furthermore, the application of novel software to identify putative

CNVRs across tissues samples identifies genomic regions that may be susceptible to recurrent

formation events, particularly in a tissue-specific manner. Applying quality control measures

including background correction of array data and minimum marker density in copy number

events is critical to minimize false-positive copy number calls. The construction of a locally

accessible database of previously documented CNVs and CNVRs provides the opportunity to

assess the genomic coordinates of putative copy number events for any overlap with events

identified in published studies that represent a variety of tissues, strains, platforms, and algo-

rithms. It is within the critical experimental framework I have presented in this thesis that we

can identify putative copy number changes contributing to somatic copy number mosaicism in

the mouse.

4.1.1 Tissues differ in number and location of copy number events

Under the alternate hypothesis that replication in rapidly dividing cells is responsible for the

formation of de novo CNCs, it would be expected that of the three tissues sampled in this study,

the liver and spleen would have more CNCs. The one liver sample in this study was shown to

have a relatively high burden of copy number events compared with the other tissues sampled.

Although the murine liver is prone to rapid accumulation of genomic rearrangements with age,

that pattern was seen previously in mice over 27 months of age, while the age of the mouse

in this study was 11.3 months, indicating a younger time point at which these rearrangements

may be observable.107 Despite finding a higher number of tissue-specific CNCs in the liver,

the restricted sample size of only one sample in this study prevents any conclusion from being

drawn regarding the accumulation of de novo hepatic CNCs in the mouse; however, the results

indicate that the murine liver should be investigated further to see if this burden is consistently

high.

The spleen shares many features of the murine liver, including high replication rate and
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a role in immune function.53,111 If replication or immune function were the main drivers of

increased CNC formation, it would be expected that a similar pattern would be seen across

the spleen samples in this study. This was not the case. Within individual mice, there tended

to be fewer spleen-specific events than cerebellum- or liver-specific events. Additionally, if

somatic hypermutation is a contributor to increased CNC formation in the genome, it would be

expected that CNCs in the spleen would be frequent and overlap in immunologically-relevant

gene regions.12 Given the lack of spleen-specific merges in two detection methods and the

lower number of spleen-specific merges found with PennCNV, it seems unlikely that somatic

hypermutation is driving hotspots for CNC formation across the genome of the murine spleen.

That being said, the spleen was not exempt from tissue-specific events occurring, though these

events tended to be either singletons or merge-associated events that overlapped with events in

non-splenic tissues.

The high number of cerebellum-specific events detected in this study contrasts with what

would be expected if replication was a major contributor of de novo CNC formation, as the

cerebellum was considered to be largely post-mitotic.53 The cerebellum-specific events identi-

fied in this study support recent evidence that the genome of the cerebellum is more subject to

genomic rearrangements than previously thought, and somatic copy number mosaicism exists

even between neurons.79,115,118 Despite these recent discoveries that make the occurrence of

cerebellum-specific events less surprising, it is unknown as to exactly why cerebellum-specific

events would not only match, but actually outnumber the events found to occur in only spleen

or liver, two tissues with higher cell turnover rates as well as immunological function.

There are several possible reasons that may account for the observed differences between

tissues beyond cellular replication. Array platforms, including the MDGA, require a certain

amount of DNA for preparation and hybridization protocols. In addition to a sufficient sig-

nal:noise ratio, there must be enough cells in the amplified DNA sample that have a copy

number change in a particular genomic region that to be reflected in the fluorescence intensity.

For example, if only a select few cells contain a deletion in a region, any associated decrease
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in fluorescence intensity will be drowned out by the signal produced by cells in the tissue con-

taining two copies of the region. Additionally, what type of cells in the tissue are subject to

copy number formation, and whether the cells containing a gain or loss are in sufficient quan-

tities, are key factors in the detection of de novo copy number changes. Although the spleen

is subject to somatic hypermutation, this may be limited to V(D)J recombination, deamination

of cytosine, and base substitutions, rather than changes in copy number across the genome.112

Compounded with a high cell turnover rate, if a copy number change in a particular region does

form de novo in the spleen, the CNCs may not be present in a high enough number of cells

and those cells may not live long enough to be in sufficient quantities to be detected by array

methods. It is perhaps more likely that the spleen CNCs detected in this study are a result of

developmental copy number changes in progenitor cells that give rise to clonal expansion of a

particular CNC. The developmental source of de novo CNCs may be consistent with cerebel-

lar CNCs as well, as the cerebellum is largely post-mitotic. The long-lived nature of neurons

permits cell lineages containing CNCs that formed in development that, if not lethal, are able

to persist in the tissue and thus be in sufficient quantity to be picked up by array methods.

The recent identification of somatic copy number mosaicism among human neurons suggests

a developmental source of genomic instability that may persist in a cell lineage.79 Clonal ex-

pansion of neuron precursors and the very low cell turnover rate in the cerebellum are likely to

contribute to the higher number of cerebellum-specific events identified in this study.

Although biases in copy number detection may stem from tissue-specific factors in DNA

isolation procedures,221 whether these biases could account for the prevalence of CNCs in the

cerebella of the mice in this study is not yet known. Further work using alternative methods,

such as quantitative PCR, to confirm the copy number status in the regions identified using the

MDGA and subsequent analysis pipeline will give insight into the extent to which isolation

biases may influence array-based copy number detection. If confirmed, the results from this

study could have widespread implications in how researchers approach association studies and

diagnostic procedures, particularly those that use DNA isolated from blood as a proxy for
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variants occurring in the brain.

4.2 Merges may be representative of inherited variants, polymorphic re-

gions, or hotspots for de novo CNC formation

Merges as described in this study are initially a catch-all for any collection of events across

two or more samples that overlap reciprocally by 40% of the length of the smallest event or

greater.196 Thus, merges may represent inherited variants (which may be polymorphic at the

population level), multiple de novo variants, or some mix of the two. CNVs are often inherited,

and thus it is expected that events from different samples will overlap in their genomic regions,

particularly in a group of highly related mice such as those included in this study. For example,

the only merge to contain events from all fifteen samples was found with Partek events (chr.14).

As it was found in all samples, it is likely an inherited variant present in the colony that differs

from the C57BL/6J mice used as the reference. To contrast this merge, some merges contain

events strictly from one tissue type across multiple mice, with no events called in the paired

tissue for the mice represented in the merge. These tissue-specific merge events were very

few and far between, and often included only two events. Despite low numbers, across all

three detection methods, cerebellum-specific merges were more prevalent than spleen-specific

merges (liver-specific merges were not possible as there was only one liver sample). This

was most pronounced in the results from PennCNV, which called many more cerebellum-

specific merges than spleen-specific merges. It is unknown whether this result is due to there

being an overall higher number of cerebellum-specific events in these mice, and thus a higher

likelihood of overlap by chance, or whether cerebellum-specific merges occur due to some kind

of pressure resulting in localized changes in copy number.

Copy number events were detected in functionally relevant regions. Further inspection of

the Partek-detected merge that contained events from all fifteen samples as described above

(chr.14) can provide a case study in functional relevance. CNV studies examining the human
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genome have identified copy number losses at the LOXL2 locus on human chromosome 8.14,222

The human gene LOXL2 has been identified as a targeted gain leading to overexpression.223

The increased expression of LOXL2 was first linked to breast cancer,224 followed by colon and

esophageal cancers.225 If confirmed, this deletion may have implications for phenotypic studies

using mice from this colony. This merge serves as a preliminary example of the potential func-

tional impact of CNVs identified in mice. It also underscores the importance of gene dosage

for certain genes and the functional role changes in copy number can play in the development

of disease. Although full functional characterization of all putative copy number events is be-

yond the scope of this study, the events detected provide the foundation for future validation

and phenotypic characterization.

4.3 Generating trees based on shared copy number loci reveals different

levels of genomic variation in a group of highly related samples

Visual inspection of the trees generated from genetic distance calculated from shared CNV

loci reveals the samples cluster in the manner in which they would be expected based on the

known relationships between the samples. When all samples are compared with each other

in a pairwise fashion, different levels of relatedness are recovered, with more closely related

samples having shorter between-sample branch lengths, while more distantly related samples

have longer between-sample branch lengths. Tissues taken from the same mouse tend to have

the shortest distances, tissues taken from mice that were littermates have longer distances, and

tissues from more distantly related mice are further apart again in the trees. These expected

patterns are illustrated in the Pedigree tree, and recovering these patterns in the Partek and

PennCNV tree (and to a lesser extent, the ConsecN tree) gives confidence that the genetic

distance calculated from the CNVs and CNCs identified by each method are reflecting the

known genetic relatedness.

Tissues from the same mouse cluster together in the pedigree tree due to the coefficient of
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relatedness (r) between tissues of the same mouse being imputed as one (assuming no variation

between somatic tissues of the same mouse). The pedigree tree correctly places the relative

distance between mice based on the estimated admixture between C57BL/6J and CBA/CaJ

genetic background.226

The trees also support the identification of putative CNCs between tissues within an in-

dividual mouse. Although the two tissues sampled from one individual often cluster closer to

each other than to any other samples (expected since these tissues derive from the same zygote),

in the trees generated from copy number events detected by each method the two tissues from

the same individual are actually separated by some degree of distance. This distance between

tissue samples is in stark contrast to the zero-distance illustrated by the Pedigree tree, which

represents the null hypothesis that tissues within an individual do not differ in copy number.

The observed distances illustrate the findings that some events are not shared between tissues

in an individual, and may ultimately indicate the presence of CNCs, supporting the hypothesis

that somatic copy number mosaicism is present and detectable between tissues in the same

mouse.

4.4 The novel pipeline for array-based data analysis provides an experi-

mental framework for detecting somatic copy number mosaicism

Somatic copy number mosaicism can be detected using the MDGA by employing careful

experimental design that includes sampling more than one tissue per individual. The one-

sample-per-array design required when using array-based genotyping platforms such as the

MDGA permits individual samples to be analyzed in comparison to a selected reference out-

side of the samples included in the experiment, as compared to array comparative genomic

hybridization (aCGH) in which two samples compete on the same array, or whole genome se-

quencing which is costly to perform on multiple tissues. Using a genotyping array offers the

opportunity to expand the sample size of a particular study while maintaining a constant refer-
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ence. The CNCs identified in the present study are identified as such due to the absence of a

change in copy number in the same genomic region in the corresponding paired tissue included

in this study. Whether or not a given multi-tissue study will detect evidence of somatic copy

number mosaicism depends on the tissues chosen for analysis.57,135

4.4.1 The detection of losses and gains differs between detection

methods

In total, this study found more copy number losses than gains, which is consistent with the

literature.14,29,48,50,79,92,113 While ConsecN is inherently restricted to only detect putative losses,

Partek and PennCNV are capable of detecting both gains and losses (although there were no

PennCNV gains that remained in the dataset after filtering). The detection of more gains than

losses with Partek is contrary to previous CNV detection studies using the software.60,137 The

two HMM-based methods that should both be capable of detecting gains and losses are thus at

odds in this particular metric, despite calling copy number events from the same array data.

4.4.2 The lengths and marker densities of putative copy number events

are highly correlated

In their genotyping array-based analysis of murine CNVs, Henrichsen et al used an in-

house HMM-based approach and identified copy number events that ranged in size from 43 kb

to over 3.3 Mb, with a size median of 61 kb.63 The median length of Partek events fall within

this range (median length of 2.2 Mb), with ConsecN and PennCNV calling shorter events

(median lengths of 335 bp and 2.49 kb, respectively). ConsecN was not forced to include more

than two consecutive markers, allowing it to call smaller putative events in genomic regions

with lower inter-SNP spacing. Likewise, the authors of the PennCNV program state that the

ability of PennCNV to call relatively shorter events provides evidence that the breakpoints are
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being called at “higher resolution”,194 which could account for the lower median event length.

The size distribution patterns found in this study reflect the CNV size distributions previously

found in humans and rhesus macaques, suggesting that events in larger size categories are

more infrequent than those closer to the lower size boundary of 1 kb in length.66,145 As such,

the frequency of smaller events detected in this study may be more indicative of the algorithms’

abilities to allow for smaller events to be called, as well as the resolution of the array itself.

The application of marker density as a filtering step contributes to lowering the median

event length for each method as well. All three methods called events that were subsequently

removed due to low marker density. Marker density appears highly correlated with event

length, with marker density decreasing as length increases. The right-skewed nature of the

marker density distributions for each calling method demonstrates that most events are well

represented by SNPs, and the frequency of very large events tagged by few markers is very

low. Indeed, fewer than 12% of the total events called in each method are removed due to

lower marker density. The strongest correlation between marker density and length was found

for events called by ConsecN. Partek and PennCNV events showed less correlation between

marker density and event length than ConsecN. One interpretation of this result is that the Con-

secN method is a better predictor of inter-SNP distance rather than true copy number variants.

Since marker density is calculated using length, it is likely that the strong correlation between

marker density and length is a result of the very few SNPs present in the calculation having

little modifying effect on this proportional relationship.

Applying a filtering step based on marker density seeks to limit downstream analysis to

only events that are well tagged by genetic markers to increase confidence that the event is

real (that is, exists in a changed copy number state in the genome in vivo). Although requir-

ing a minimum number of markers used to call a copy number event provides a first step in

ensuring multiple markers are reporting similar copy number states across a segment of the

genome, the addition of a marker density cutoff (in this study, the cutoff value is 1.3 markers

per 10 kb) increases the reliability of the calls being made.60 If the events detected from array
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data using a particular algorithm are real, increasing the array density (number of genomic re-

gions interrogated by oligonucleotides on the array) will lead to a higher event marker density,

since more markers will be used to call the copy number in a given genomic region. Events

that were dropped from the present analyses due to low marker density may be recovered if

future analyses interrogate more loci across the genome; for example, by including the fluores-

cence intensities reported from the invariant genomic probes already present on the MDGA.

Additionally, interrogating more loci may permit increasing the minimum number of markers

required to call an event from the three minimum markers used currently.

4.4.3 Putative copy number events show variation in GC content

The medians of GC content of the copy number events found by each method in this study

(ConsecN 44.0%, Partek 41.15%, PennCNV 38.1%) do not deviate greatly from the overall GC

content of the mouse genome, which is about 42%.43 What stands out is the variation around

this median as well as the variability between the three calling methods. The GC content

of murine CNVs has not been explicitly reported before this study. Despite the lack of an

established range of GC content in murine CNVs, it had been expected that the GC content

of mouse CNVs would be near or slightly above the genome-wide GC content average based

on CNV studies in humans and dogs, as well as based on the known correlation between GC

content and recombination (a known factor in CNV formation) in mice.29,30,131,136 Here, more

events with higher GC content were called by ConsecN and PennCNV; however, these same

methods show a large number of events with lower GC content as well. Partek events show a

tighter range of GC content values, which may be indicative of a bias in the Partek algorithm

towards calling fewer and longer events, eliminating regional variation in GC content.
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4.4.4 The length of a copy number event may influence whether it is

classified as a singleton or a merge

Due to the requirement of percent overlap between events to call a merge, the length of the

events called by a given method may influence whether an event is classified as a singleton or a

merge. ConsecN and PennCNV called shorter events than Partek. Subsequent analysis revealed

no difference in length between singletons and merge-associated events called by ConsecN and

PennCNV. Partek merge-associated events were significantly longer than singletons. This is in

contrast to results found in previous studies that have compared the lengths of singletons to the

lengths of CNVs found in multiple samples. These studies found that singletons were longer

in length than the recurrent events, especially in cases of singleton deletions.141,143

After separating events based on copy number state (gains or losses), it was found that

singletons called within ConsecN and PennCNV, despite all being called as deletions, were not

found to differ in length from merge-associated events called by the same method. Given that

events called by Partek were the longest, and that Partek merge-associated events were longer

than singletons contrary to previous studies, it is possible that the overall length of the events

called influences whether two or more events are found to overlap with one another.

4.5 Construction of an accessible database of previously discovered murine

CNVs and CNVRs permits researchers to identify common and de

novo variants

Compiling the genomic coordinates of previously detected murine CNVs and CNVRs into

an accessible and interactive database resulted in a summary of six studies (accessed May

2012). The database now contains 17,128 entries representing several inbred strains of the

laboratory mouse, including C57BL/6J. By using other bioinformatic tools, such as BEDTools
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Suite and the UCSC Genome Browser, the entries in the constructed database can be explored

for their genomic context as well as compared to other lists of genomic coordinates to assess

overlap with previously documented CNVs, genes, or other genomic features.

It is essential that researchers do not automatically discount copy number events identified

in new studies that do not overlap with entries in such a database. Although ascertainment

bias is a known source of sampling error in genomics research,169 common CNVs (despite

occurring at a higher frequency in the population) are paradoxically more difficult to detect

than rare variants using arrays.137 If several arrays in a dataset contain variants in the same

region, it is more difficult during normalization procedures to establish a clear reference signal,

making it more difficult for algorithms to call departures from the reference.137 It is important

to be aware of the limitations such a database can provide, and understand that not all entries

are equal in terms of experimental design, platform, or calling algorithm. Not all entries will

have been confirmed with secondary methods. Even the database constructed in the present

study contains events discovered by very different procedures including aCGH and paired-end

sequencing. None of the current entries in the database were found using genotyping arrays,

and so there are no MDGA-ascertained variants to which results in this study can be compared

directly.

The importance of the database stands in the continued accumulation of and reference

to results from many studies. Using the present study as an example, the ability to compare

detected CNVs in a given inbred strain to the results from previous studies using the same strain

provides an estimate of the current method’s success in detecting known variants. Additionally,

such a comparison provides an opportunity to identify previously undocumented variants that

the new method is capable of detecting. Results can be replicated for a given strain across

multiple studies using different copy number detection and platforms. Aggregating results from

many discovery studies may provide the opportunity for meta-analyses to observe patterns that

emerge only with a multitude of samples. Future studies that observe unexpected patterns SNP

genotypes or gene expression may find the underlying cause is associated with copy number
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variation if genomic coordinates are queried in a database of murine CNVs. Although constant

curation of such a database requires time and resources, it is hoped that as the accuracy of

CNV detection methods improves, so too can the accuracy of the information indexed in such

repositories.

4.6 Advantages and limitations of microarray-based CNV discovery

The resolution of genotyping array platforms continues to increase, allowing for the in-

clusion of more probes, both for interrogating previously missed loci as well as increasing

the accuracy with which loci are analysed. Genotyping arrays have also become more afford-

able, and are often the most economically feasible method for CNV detection on a per-sample

basis. Despite these attractive features that make genotyping arrays among the most popular

platforms for CNV detection, they do come with their own limitations. It is important to under-

stand these limitations and take known sources of bias and error into account when performing

CNV analyses from genotyping array data.

By using only probes for known SNPs in this study, it is likely that the number of CNVs

detected here is lower than what may actually be present in the samples. Like the Affymetrix R©

Human 6.0 Array, the Mouse Diversity Genotyping Array contains an additional 900,000 IGPs

that interrogate invariant regions in the genome.168 Although excluded from the present study

on the grounds that the ConsecN and Partek methods were unable to use these probes, future

CNV detection work with the MDGA may be improved once the IGPs have been thoroughly

vetted for performance and sequence accuracy, thereby increasing the resolution of the array

and opening up previously poorly tagged regions of the mouse genome to copy number analy-

sis.

Preprocessing steps used in the analysis of array data may lead to underestimation of copy

number events. The quantile normalization step used in the RMA background correction ap-

plied here in the application of Partek and PennCNV has been shown to yield a high degree of
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inter-array correlation, and this artificial correlation is particularly noticeable at small sample

sizes (between 2 and 100 arrays).173 As a smaller number of arrays was used in the normaliza-

tion step in the application of Partek in this study, the Partek results presented here may have

been more affected than PennCNV by this reduction in overall fluorescence variation between

arrays. PennCNV was run with a high enough number of arrays that the artificial correlation

effect would have been negligible.173

The sole sample that failed to pass the minimum genotyping call rate was the spleen of

mouse 300.6. Of the samples that passed the minimum genotyping call rate, the liver and the

spleen from mouse 900.3 had the lowest call rates (98.99% and 99.11%, respectively). This

was to be expected as mouse 900.3 was an F1 hybrid of C57BL/6J and CBA/CaJ, and it has

been established that increased heterozygosity within a mouse makes genotyping with an array

platform more difficult.169,181 Although using a subset of SNP probes on the array results in

an increased average inter-SNP distance as compared to the manufacturer’s advertised mean

interprobe distance of 4.3 kb, the high genotyping call rates indicate that the filtered SNP list

used here has successfully excluded poorly performing probes, and thus the fluorescence data

being reported by the remaining probes is more reliable.202

4.7 Evaluation of the novel ConsecN method for calling putative copy

number deletions

The variation in fluorescence intensity of SNP loci designated as “NoCalls” indicates that

a “NoCall” designation does not always indicate insufficient fluorescence intensity. Without

assessing the genotype clustering performance of each SNP, this method may be calling false-

positives in terms of identifying deletions. The probability of two “NoCalls” occurring consec-

utively along a chromosome as presented here is strictly a theoretical model and does not take

into account the biological phenomenon of genetic linkage, by which two genetic markers are

more likely to be inherited together if they are physically closer to one another along a chromo-
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some. The physical inter-SNP distance was not considered in the initial step of identifying the

two or more consecutive “NoCalls”, but was accounted for in the downstream step of filtering

events based on marker density.

4.7.1 Characteristics of ConsecN events are not consistent with events

called by other methods

Of the three methods used to detect putative CNVs in this study, ConsecN appears to be

the outlier. Although genotyping calls have previously been used to infer copy number dele-

tions,10,183 these approaches yielded the detection of losses in the kilobase range. The putative

events called by ConsecN are short, both relative to the events called by Partek and PennCNV

and relative to the generally accepted minimum size of a CNV (1 kb or greater). Unlike Partek

and PennCNV, these short events were permitted to be included in this study by relaxing length

requirements for this method due to the limitations of seeking consecutive SNPs with failed

genotyping calls as opposed to consecutive SNPs with lower fluorescence intensity. If drop-

ping the minimum size restriction was the only reason for the inclusion of short events, and if

ConsecN was indeed capable of calling real CNVs, it would be expected that the lower end of

the length distribution would be more populated with events, without the loss of events in the

higher end of the length distribution. This was not the case in this study. Despite calling more

short events, ConsecN failed to detect events that would be of lengths that follow the generally

accepted definition of CNVs being 1 kb or greater in length. For the longer events that Con-

secN did call, we can look to marker density to estimate how confident we can be that these

are real events. The relationship between event length and marker density was the strongest for

ConsecN. This, in combination with the tendency to call shorter events, suggests that ConsecN

cannot be relied upon to call large structural variants with confidence, as the marker density

drops off with large events.

Not only did ConsecN call fewer large events than the other two methods, the events that
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ConsecN did call did not overlap well with previously found events documented in the con-

structed database, with only 12.55% of ConsecN events overlapping with database entries. Of

the database entries, ConsecN had the lowest rate of detection, with only 0.42% of entries in the

database overlapping with ConsecN events. Given that all of the mice in this study have some

degree of C57BL/6J background, and that the database included C57BL/6J events detected by

Henrichsen et al,63 it would be expected that more C57BL/6J events would have be ascertained

by ConsecN. There is a strong possibility that ConsecN is missing events that should have been

detected.

Additionally, the GC content of ConsecN events is highly variable, ranging from 22.50% to

60.82%. ConsecN picks up events with very low GC content, even lower than the average GC

content of the mouse genome which is around 42%.43 Although little is known about the GC

content of murine CNVs, we would expect the GC content to be on the higher side from what

we know about CNVs in other mammals. Human CNVs tend to occur in GC-rich regions,132

as do CNVs detected in the dog.29 The short lengths of the ConsecN events is most likely

contributing to the wide range of percent GC content observed with this method.

When CNV loci shared between samples are used to calculate genetic distance, events

called by ConsecN result in a difference matrix that is similar only to the PennCNV matrix.

Most importantly, the ConsecN matrix is dissimilar to the Pedigree matrix which was generated

using the known genetic relatedness of the closely related samples. The resulting trees further

underscore the separation of ConsecN events from events called by Partek and PennCNV. As

with the difference matrices, the ConsecN tree was similar in topology only to PennCNV, and

dissimilar to the Pedigree and Partek trees.

Consecutive SNPs genotyped as homozygous may be indicative of small deletions below

the standard minimum CNV size of 1 kb, as has been found previously in analysis of human

SNPs.184 In humans, the high degree of heterozygosity permits the inclusion of homozygous

runs in deletion analysis; however, this is much more difficult to perform in laboratory mice



Chapter 4. Discussion 148

due to the extensive inbreeding resulting in mostly homozygous SNPs across the genome. The

high degree of homozygosity in laboratory mice limits the use of homozygous runs for deletion

detection. The trend towards increasing diversity in laboratory mouse populations with the

Diversity Outbred project may make screening for putative deletions using only genotype calls

in the future more robust with the addition of consecutive homozygous SNPs as candidate

regions. At this time, using only “NoCalls” with the MDGA returns events uncharacteristic of

what would be expected from CNVs (in length, GC content, and overlap with database entries),

ConsecN does not appear to be an ideal method to detect putative copy number losses. Instead,

a number of the smaller events (under 1 kb) called by ConsecN may be small deletions.

4.8 Evaluation of Partek and PennCNV as Hidden Markov Model-based

methods of calling copy number

Of the three methods used in this study to detect copy number, Partek and PennCNV are

the most similar to each other in that they both employ Hidden Markov Model-based algo-

rithms that use fluorescence data obtained from all SNP probes on the filtered SNP list, while

ConsecN only counts SNP loci for which genotyping failed. Additionally, both Partek and

PennCNV were run with similar user-set parameters including normalization and background

correction procedures as well as minimum number of markers used to call a copy number event.

Partek and PennCNV had the highest concordance as measured by the number of overlapping

loci called by the two methods. Despite these similarities, the events called by Partek and

PennCNV were not equivalent, obviated by the many more events called by PennCNV than

Partek. Further inspection of the copy number events called by each of the methods revealed

that Partek called fewer but longer events than PennCNV. This pattern is consistent with a pre-

vious study that used Partek and PennCNV in addition to three other algorithms to call copy

number from Illumina arrays, which also found Partek called the fewest but largest events.195

Comparing the genetic distance matrices and trees associated with each calling method to
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the matrix and tree calculated from the pedigree allows the assessment of a given method’s

ability to detect copy number events that reflect the expected genetic distance between sam-

ples. The difference matrix calculated from Partek’s shared and unshared CNVs was the only

difference matrix found to be statistically similar to the Pedigree tree. Additionally, the result-

ing Partek tree (as well as the PennCNV tree) was found to be similar to the Pedigree tree.

These results suggest that Partek may be the most likely of the three methods to be calling

CNVs that reflect the known genetic relationships between samples. It is important to remem-

ber here that the Pedigree tree is forced to cluster tissues from the same mouse together, as

tissue samples from the same mouse were imputed to have a coefficient of relatedness value

of zero. As a result, if a calling method is less likely to pick up on CNCs between tissues,

it may be more apt to appear topologically similar to the Pedigree tree. This appears be the

case with Partek, which called more events shared between tissues within individual mice than

events that were in only one of the two tissues. That Partek may be less likely to pick up de

novo CNCs is strengthened by the fact that Partek called the highest percentage of copy num-

ber events that overlap previously discovered CNVs documented in the database with (95.98%

of Partek events). Conversely, even though PennCNV called more events, a lower percentage

of these events were found to overlap the database (63.52% of PennCNV events). Taking this

result together with the finding that the PennCNV tree is topologically similar to the Pedigree

tree suggests that PennCNV may be calling smaller events that are being missed by Partek.

The Partek-Pedigree and PennCNV-Pedigree tree similarities in the absence of a Partek-

PennCNV tree agreement, in addition to a low degree of concordance in calls between meth-

ods, suggests that there are inherent biases in the calling methods. Pinto et al suggested that the

different results obtained by using various methods indicate that the methods themselves may

not be better or worse overall in the detection of CNVs, but instead offer “different strengths”.51

The “different strengths” of Partek and PennCNV may be evident by looking closer at the char-

acterizations of the copy number events called by each method. Despite calling longer events

overall, Partek was the only method to find a difference in lengths between singletons and
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merge-associated events. Although both Partek and PennCNV events had strong correlations

between marker density and event length, splitting events into singletons and merge-associated

events revealed that while marker density was higher in merge-associated events than single-

tons for Partek, the opposite was true for PennCNV. This suggests that Partek may be less

likely to call copy number events in genomic regions that are more poorly tagged with SNPs.

Additionally, the narrow range of GC content in Partek events may indicate a bias in the ge-

nomic regions in which the algorithm is capable of detecting events. The smaller events called

by PennCNV and the shift away from regions previously found to harbour CNVs may indicate

that PennCNV is capable of detecting previously unknown or de novo variants.

4.8.1 The effect of reference selection on HMM-driven copy number

detection

With all other factors being equal (sample data, HMM parameters) or as similar as possible

(quantile normalization with Partek and sketch quantile normalization with PennCNV), the

difference in the CNV calls made by these two software packages is most likely due to the

choice of reference used in each approach. Since CNVs are called as departures from the

constructed reference, the composition of the data used to construct the reference may influence

whether an event is called in any given genomic region in an experimental sample. With

mice, the reference genome is constructed from the C57BL/6J inbred strain.43 The MDGA

was designed with this in mind, with the A allele for nearly all SNPs based on the genotype

carried by C57BL/6J.168 Constructing a copy number reference based on CEL files from pure

C57BL/6J mice, as was done in Partek in this study, followed this C57BL/6J-based approach in

order to call CNVs that differed from the C57BL/6J reference. As noted by Marioni et al, the

choice of reference sample influences whether a segment of DNA is regarded as a gain, loss, or

“normal;”227 and this is evident when comparing the resulting Partek calls to PennCNV calls.

Although PennCNV called CNVs from the same sample set as Partek and run with similar
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HMM parameters, the present application of PennCNV used a very different composition of

CEL files as the reference. PennCNV was run with the 335 CGD CEL files, while Partek

was run with the seven pure C57BL/6J CGD CEL files. The difference in the two subsets of

CGD CEL files used lies in both the number of CEL files and the genetic diversity of the mice

represented by those files.

When tackling the issue of reference diversity, it is useful to compare mouse genomic re-

search to human genomic research. As a species, humans are genetically diverse, even within

a single population, and individual genomes have a high degree of heterozygosity. This is in

contrast to the controlled genetic background of inbred strains of laboratory mice, in which

individual mice from one strain are nearly identical to one another, and the genomes of indi-

viduals are highly homozygous. Genomic research in humans often makes use of the HapMap

population as a reference set. The first study to use the HapMap population to aid in the de-

tection of CNVs was performed by Komura et al and used a novel algorithm to detect CNVs

within the HapMap population.162 The introduction of the MDGA as a copy number detection

platform for the laboratory mouse has permitted the generation of CEL files from samples taken

from hundreds of mice of different genetic backgrounds. These are the samples which make up

the CGD set of CEL files used in this study. By using the 335 CGD CEL files that passed the

genotyping step, we can best approximate the diversity seen in the HapMap population but for

a diverse set of mice. The drastic differences between Partek and PennCNV results, given the

same array data, underscore the necessity of selecting the appropriate reference number and

composition.

4.9 Future directions

Scherer et al. (2007) stress that genome-wide discovery methods, including array-based

methods, are best interpreted as screening assays to find regions of the genome that have an “in-

creased probability” of being variable in copy number.7 The independent validation of CNVs
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discovered with oligonucleotide arrays presents a new set of challenges, as validation methods

all have their own drawbacks in inherent biases, limitations, and cost. However, genotyping

arrays continue to be valuable tools for CNV, and now, CNC, discovery experiments. The

identification of putative tissue-specific regions of de novo CNC formation in mice may have

strong implications for our understanding of how the genome may change over the lifetime of

an individual, as well as for how we diagnoses genetic diseases.

The dynamic nature of the fields of genomics and bioinformatics means that methods and

interpretations must constantly be re-evaluated and revised as the associated technologies are

advanced and optimized. The exclusion of poorly performing probe sets, updates to the se-

quence and annotation of the reference genome, and better algorithms for detection and back-

ground correction not only lead to improved research methods and more accurate results, but

also invalidates the accuracy of previous entries into databases to which new data are com-

pared. Updating probe set annotations and filtering out poorly performing probe sets can have

a significant impact on array performance and the interpretation of array results.174,202

4.10 Summary

Acknowledging that CNVs are both inherited and can form de novo in the germline and

somatic tissues is absolutely necessary to increase accuracy in associative studies. The impact

of CNVs and CNCs on variation in phenotypes, both normal and pathogenic, renders the de-

velopment and optimization of experimental frameworks in which to investigate somatic copy

number mosaicism a priority. The novelty of the Mouse Diversity Genotyping Array and the

complexity of studying somatic copy number mosaicism presented the challenge to develop a

new analysis pipeline, which was solved here by employing novel approaches and custom soft-

ware to result in three different methods for identifying and analyzing CNVs and CNCs in the

mouse. Despite low concordance rates between the three CNV detection methods as demon-

strated by comparing the CNV loci called in each method, the abilities of Partek and PennCNV



Chapter 4. Discussion 153

to call CNVs that can be used to recapitulate the known genetic relationships between samples

used in this study suggests that the methods are still capable of detecting true biological vari-

ants. The discovery of putative hotspots for recurrent tissue-specific CNC formation in the

mouse, particularly in the cerebellum, is a significant biological finding that sheds light on ge-

nomic changes in the brain, and may ultimately lead to a better understanding of neurological

disorders that have not yet been associated with underlying genetic variation. The charac-

terization of somatic copy number mosaicism in the laboratory mouse is essential, especially

when using the mouse to study mutational mechanisms and model human diseases. This study

serves to provide a robust framework within which future somatic copy number mosaicism

studies can be designed and performed, highlighting key experimental procedures including

using filtered array probes, comparing calls to a database of known variants, and identifying

steps that introduce variation between calling methods such as reference selection. As a result,

patterns in somatic copy number mosaicism can be identified and further investigated for their

contribution to the overall genomic diversity in Mus musculus.
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Appendix B

Supplementary Methods

B.1 Filtering the list of SNP probesets for optimal genotyping

Of the 623,324 SNP loci assayed by the MDGA,168 a filtered list containing 526,162 SNPs

was used for the first genotyping run using Affymetrix R© Genotyping Console
TM

as outlined by

Eitutis (2013).202 After this first genotyping round, CEL files that did not reach a SNP mini-

mum calling rate of 97% were removed from the analysis. After CEL file removal, a second

round of genotyping was performed on the passing CEL files using the subset of 526,162 SNPs.

After the second genotyping round, all SNPs that did not meet the minimum criterion of 97%

genotyping call rate were removed. This removal step resulted in 470,339 remaining SNPs that

were genotyped with an overall call rate of 97%.

B.2 Animal care and housing

All protocols were approved by the University of Western Ontario Animal Use Subcom-

mittee (Appendix A). The male founder mouse in this study (300.6) was an inbred C57Bl/6J

Big Blue R© mouse homozygous for the Big Blue R© Lambda LIZ (LacI/Z) bacteriophage shut-

tle vector (Taconic Farms, Germantown, NY; Table B.1). The Big Blue R© transgenic mutation
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Table B.1: Quality control measures for high molecular weight genomic DNA extractions. Source adapted from Eitutis
(2013).202

Sample ID Big
Blue R©

Genotypea

Aif
Genotypeb

Tissue
Type

Tissue
Mass
(mg)

DNA
Extraction
Protocolc

Sample
Processing
Locationd

[DNA]
(µg/µL)

260/280
Ratio

260/230
Ratio

300.6SP +/+ XY SP 9.1 Gentra LRGC 0.26 1.9 2.44
300.6CL +/+ XY CL 42 Gentra LRGC 0.1 1.81 1.43
900.3SP -/- XhqX SP 9.4 Gentra LRGC 0.48 1.87 2.42
900.3LI -/- XhqX LI 10 Gentra LRGC 0.22 1.82 1.44
904.11SP +/- XhqY SP 30 Wizard JAX 1.69 1.82 2.23
904.11CL +/- XhqY CL 40 Wizard JAX 0.37 1.76 1.34
904.9SP +/- XhqY SP 50 Wizard JAX 1.35 1.85 2.16
904.9CL +/- XhqY CL 60 Wizard JAX 0.27 1.74 1.31
911.50SP ND XY SP 30 Wizard JAX 1.53 1.83 2.28
911.50CL ND XY CL 70 Wizard JAX 0.3 1.76 1.33
911.50SPrpte ND XY SP 8.6 Wizard JAX 0.25 1.88 2.33
911.50CLrpt ND XY CL 11 Wizard JAX 0.1 1.88 2.34
911.49SP ND XY SP 30 Wizard JAX 1.84 1.84 2.23
911.49CL ND XY CL 60 Wizard JAX 0.28 1.73 1.27
911.143CL -/- XY CL 40 Wizard JAX 0.19 1.73 1.16
911.148CL -/- XY CL 40 Wizard JAX 0.19 1.72 1.13

a Presence or absence of the Big Blue R© construct
b Presence or absence of the sex-linked harlequin (hq) mutation in Aif
c Gentra = Gentra R© Puregene R© Kit, Wizard = Wizard R© Genomic DNA Purification Kit
d JAX = The Jackson Laboratory (Bar Harbor, Maine), LRGC = London Regional Genomics Centre (London, Ontario)
e rpt = replicate (for tissues sampled from mouse 911.50)
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detection construct was used in this mouse strain in separate studies of spontaneous muta-

tions and baseline endogenous mutation frequencies and patterns in individual tissues were

observed.106,228,229 The female founder mouse in this study (900.3) is a carrier of a retroviral

insertion downregulating the Apoptosis-inducing factor (Aif ) gene referred to as the harlequin

(hq) mutation (B6CBA Ca Aw-J/APdcd8Hq/J; The Jackson Laboratory, Bar Harbor, ME). Analy-

sis of spontaneous mutations in a gene target using individual tissues of mice with deficiencies

in AIF revealed near baseline endogenous mutation frequencies and patterns.230 The proce-

dures for genotyping mice for the presence of the Big Blue R© construct and the Aif mutation

have been published previously.230

Mice were housed in a Canadian Council on Animal Care approved facility with a 14/10

hour light/dark cycle at a relative humidity of 44 to 66% with a constant temperature of 21 ±

1◦C. Mice were fed a standard diet (PMI Foods, St. Louis, MO) and given water ad libitum.

Mice were not intentionally exposed to any known mutagen, so any observed departures from

the reference sets were inferred to be either tissue-specific or spontaneous biological phenom-

ena.

B.3 Tissue harvest and storage

Mice were euthanized by carbon dioxide (CO2) inhalation at the following middle-adulthood

ages: 300.6 at 10.4 months; 900.3 at 11.3 months; 904.9 and 904.11 at 7.7 months; 911.50 and

911.49 at 8.7 months; and 911.143 and 911.148 at 15.2 months (Table B.1). The spleen, cere-

bellum, and liver were harvested and flash frozen in liquid nitrogen prior to long-term storage

at -80◦C.
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B.4 DNA extraction and preparation

Tissues were removed from freezer storage and a portion of each tissue was taken for DNA

extraction, with the remaining portion returned to the freezer for long-term storage (Table B.1).

DNA was isolated, prepared, and hybridized to arrays in two separate batches: the first being

the initial 10-sample batch in which the tissues were sent to The Jackson Laboratory (Bar

Harbor, Maine), and the second batch being additional samples (including one repeat each

of mouse 911.50’s spleen and cerebellum) sent to The London Regional Genomics Centre

(LRGC; London, Ontario). Table B.1 indicates which samples were prepared, hybridized,

and scanned at The Jackson Laboratory and which samples were prepared, hybridized, and

scanned at The London Regional Genomics Centre (henceforth referred to as “JAX samples”

and “LRGC samples”, respectively).

The Jackson Laboratory received spleen and cerebellum samples, from which their tech-

nicians extracted high molecular weight DNA using the phenol-chloroform extraction proto-

col specified by the Affymetrix R© Genome-Wide Human SNP Nsp/Sty 6.0 Assay Kit 5.0/6.0

(Affymetrix R© Genome-Wide Human SNP Nsp/Sty 6.0 user guide, 2008). The London Re-

gional Genomics Centre received spleen, liver, and cerebellum samples, from which their tech-

nicians prepared high molecular weight DNA using the Gentra R© Puregene R© (Qiagen, Mis-

sissauga, ON) extraction protocol. Both centres prepared high molecular weight DNA for

hybridization to the Mouse Diversity Genotyping Array and carried out hybridization steps in

accordance with the Affymetrix R© Genome-Wide Human SNP Nsp/Sty 6.0 user guide, with one

DNA sample per array. Fluorescence intensities for each array were measured with Affymetrix R©

GeneChip scanner as relative fluorescence units (RFUs) on a scale from 21 to 216 (private cor-

respondence with D. Carter, London Regional Genomics Centre). Fluorescence data for each

array was quantified in CEL files (one CEL file per array) to be used for bioinformatic analysis.
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This appendix contains supplementary tables.

189



A
ppe
n
d
ix

C
.S
u
pple
m
e
n
ta
r
y

T
a
b
le
s

190

Table C.1: Details of previous CNV discovery studies used
to construct the custom database. C57BL/6J strain appears
as red text.

Study Platforma CNV Calling
Software

Mouse Tissues Mouse Strains CNV or
CNVR
State(s)

Agam et al
201050

aCGH
(NimbleGen
Mouse 2.1M
array)

SW-ARRAY231 unspecifiedb A/J, AKR/J, BALB/cJ,
C3H/HeJ, CBA/J, DBA/2J
and LP/J

CNV gains,
CNV
losses,
CNVRs

Cahan et al
2009113

aCGH (custom
tiling array)

wuHMM232 spleen, liver,
kidney, tail

SWR/J, SM/J, SJL/J, PL/J,
NZB/BlNJ, NOD/Ltj, LG/J,
KK/HlJ, FVB/NJ, DBA/2J,
C58/J, C57L/J, C3H/HeJ,
BTBR T+ tf/J, BALB/cByJ,
AKR/J, A/J, 129X1/SvJ,
129S1/SvImJ

unspecified
state CNVs

Continues on next page
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Table C.1 – continued from previous page

Study Platforma CNV Calling
Software

Mouse Tissues Mouse Strains CNV or
CNVR
State(s)

Cutler et al
2007219

aCGH (Agilent
244K Mouse
Genome Array)

GLAD233 tail or
unspecifiedc

129S1/SvImJ, 129X1/SvJ,
A/J, AKR/J, BALB/cJ,
BTBR T+ tf/J, BUB/BnJ,
C3H/HeJ, C57BL/10J,
C57BLKS/J, C57BR/cdJ,
C57L/J, C58/J, CAST/EiJ,
CBA/J, CE/J, CZECHII/EiJ,
DBA/1J, DBA/2J, FVB/Ntac,
I/LnJ, JF1/Ms, KK/HIJ, LP/J,
MA/MyJ, MOLF/EiJ,
MSM/Ms, NOD/LtJ,
NON/LtJ, NZB/BINJ,
NZW/LacJ, PERA/EiJ, PL/J,
PWK/PhJ, RIIIS/J, SEA/GnJ,
SJL/J, SM/J, SPRET/EiJ,
SWR/J, WSB/EiJ

unspecified
state CNVs

Egan et al
2007135

ROMA (custom
array)

custom HMM
methods

liver, tail C57BL/6J substrains CNV gains,
CNV losses

Henrichsen
et al
200963

aCGH custom
time-dependent
HMM63

liver C57BL/6J, 129S2, A/J,
AKR/J, BALB/cByJ, C3HeJ,
C3HeB/FeJ, CAST/Ei,
DBA/2J, LP/J, PL/J,
Spret/Ei, SJL/J

unspecified
state CNVs

Continues on next page
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Table C.1 – continued from previous page

Study Platforma CNV Calling
Software

Mouse Tissues Mouse Strains CNV or
CNVR
State(s)

Quinlan et
al 201092

paired-end
sequencing,
whole-genome
shotgun
sequencing

HYDRA92 unspecifiedd DBA/2 unspecified
state CNVs

a aCGH = array comparative genomic hybridization; ROMA = representative oligonucleotide array
b authors acquired DNA from the Jackson Laboratory
c authors acquired additional DNA from the Jackson Laboratory
d authors acquired sequence reads from the NCBI Trace Archive (http://www.ncbi.nlm.nih.gov/Traces)



Appendix D

Calculations

D.1 Marker density cutoff calculations

Table D.1: Marker density calculations.

Number of features
represented

Affymetrix R©

Human 6.0
MDGA

(Filtered
SNPs only)

# SNP probes 906,600 470,339
+ + +

# CN probes 946,000 0

Total # of array
probes

1,852,600 470,339
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Number of features
represented

Affymetrix R©

Human 6.0
MDGA

(Filtered
SNPs only)

Total # of array probes 1,852,600 470,339
. ÷ ÷

Golden Path Length
(bp)

3,093,120,360 2,716,965,481

Features per genomic
bp

6.0−4 1.7−4

Number of features represented Affymetrix R© Human 6.0
Features per genomic base pair 6.0−4

. ÷

Marker density cutoff60 0.0004

Ratio 1.5

Probe count MDGA (Filtered SNPs only)
Probes per genomic base pair 1.7−4

. ÷

Ratio 1.5

Marker density cutoff 0.00013
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