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Abstract 
Tornadoes can produce some of the strongest winds on earth; these highly localized 

storms can cause massive damage. Assessments of tornado wind speeds are done using post-

event observations of damage via the Enhanced Fujita Scale.   

A very commonly observed failure occurs at the roof-to-wall connection where the roof 

breaks up or flies away, typically leaving the walls in place. However, once the roof is gone the 

walls are more vulnerable to the wind. If a wall subsequently fails, it increases the risk of injury 

or death for occupants. Significant research has been done for failures of roof-to-wall 

connections and roof failure wind loads. In contrast, little work has been done pertaining to how 

the walls perform when there is no roof in place.  

 In the current study, experiments were performed on a full-scale, two storey residential 

structure with no roof. The objectives of the study were (i) to determine the wind loads and wind 

speeds required to cause exterior wall failure after the roof-to-wall connections had already 

failed, and (ii) to develop low-cost recommendations for strengthening wood-frame houses and, 

thereby, reducing risk to occupants during severe storms such as tornadoes. 

 It was found that the capacity of the walls of the test house significantly exceeded 

Canadian (Ontario) design loads when clad in brick veneer. The interior wall placement and 

connections between the exterior and interior walls are shown to have a significant effect on 

overall capacity. For vinyl-clad houses, increasing the stiffness of the corners of the walls will 

also increase capacity – which appears to be the primary structural benefit of brick cladding. 

Keywords: Tornado, Full-scale, Wood-Frame, Brick Veneer, Wind Damage, Enhanced Fujita 

Scale, Wall Failure. 
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Chapter 1: Introduction 
 Tornadoes have been responsible for an average of 84 deaths (NOAA 1948-2012) and 

insurance claims of US $4.9 billion (Insurance Information Institute, 2014) each year in the 

United States. In 2011, an unusually active year, more than 550 people died due to tornadoes 

(Simmons and Sutter, 2012) in the United States. Canada also experiences an average of 80 

tornadoes a year (Environment Canada, 2013). While the majority of tornadoes are weak, 

classified as EF0 or EF1, there is still a considerable number of stronger and more damaging 

tornadoes (EF2 or greater) each year. It is clear that tornadoes represent a significant threat that 

causes severe damage and numerous injuries/deaths. 

 Due to the strength and localized nature of tornadoes, anemometers are rarely in the path 

of a tornado and, if present, are likely to be destroyed during the event.  Because of this, 

classification of tornadoes was previously done using the Fujita Scale (Fujita, 1971) and 

currently is done using the Enhanced Fujita (EF) Scale (Fujita, 1971 and Texas Tech University, 

2006). The scales equate levels of damage observed, after a tornado has occurred, to wind speed. 

The Fujita scale was originally developed by Fujita in 1971, and then the Enhanced Fujita Scale 

by Texas Tech University in 2006. Development of the EF scale was done by bringing together 

many different tornado related experts to modify of the original guidelines and provide much 

more detailed descriptions of damage, including different specific damage indicators. 

 In the EF scale, 28 different damage indicators are used (Texas Tech University, 2006).  

Each damage indicator corresponds to a different type of structure (e.g., one- and two- family 

residential, multi-family residential, etc.) and has an associated number of degrees of damage 

(DOD). Each degree of damage has estimated, lower- and upper-bound wind speeds. This allows 

a damage investigator to rate quickly the damage levels and wind speeds while increasing the 
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Table 1.1 - The 10 degrees of damage associated with FR12 (from Texas Tech University, 2006) 

 

consistency of tornado ratings performed by different people in different regions. The wind 

speed range for each degree of damage was developed using information from different sources 

in different locations. This means similar damage levels will be observed for similar structures 

built to different building codes within the same degree of damage wind speed band. The focus 

of this thesis is on the damage indicator associated with one- and two-family residences, FR12. 

FR12 has 10 degrees of damage, shown in Table 1.1. Of particular interest for this thesis are 

Degrees of Damage Six and Seven, involving major damage to the roof and collapse of the 

exterior walls. In Table 1.1, “Exp” is the expected wind speed, while LB and UB are the lower 

and upper bounds for wind speed; wind speeds are presented as 3-second gust wind speeds. 

When the roof has failed, the horizontal restraint of the top walls is lost, leaving the walls more 

vulnerable. Reference pictures for Degrees of Damage Six and Seven are shown in Figures 1.1 

and 1.2 respectively. 
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1.1 Roof Vulnerability 
Roof failures are common in tornadoes; Morrison and Kopp (2012) found that due to 

load-sharing mechanisms in roof-to-wall connections, a total overturning failure of a roof is 

likely to occur. FEMA (2011) found that the roof is vulnerable to failure due to poorly 

constructed roof-to-wall connections and high wind loads on the roof; often houses with toe-

nailed connections will fail at low wind speeds (EF1 – EF2). A commonly observed problem was 

use of incorrect nail sizes for roof sheathing, for example using 6d box nails instead of 8d nails. 

Also, common defects in construction, such as misplaced, have been shown to cause a 25 to 33% 

reduction in the strength of an individual toe-nailed connection (Morrison and Kopp, 2011). This 

shows that the roof is likely to be the first major structural failure during a tornado, leaving the 

walls vulnerable.  

  

 

Figure 1.1 - A reference for degree of damage six (from 

Texas Tech University, 2006). 

 

 

Figure 1.2- A reference for degree of damage seven (from 

Texas Tech University, 2006). 
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Figure 1.3 - Tornado damage in Barrie, Ontario 1985 (from Davenport 

and Kopp, 2002). 

 

1.2 Tornado Damage Observations 

1.2.1 Barrie, Ontario 

A tornado struck the town of Barrie on May 31 1985, which was rated F4 (this was 

before the implementation of the EF scale). Figure 1.3 shows some of the damage. There is a 

vast range of damage, from massive destruction the front to minor roof damage near the back. 

The progression of damage shows the expected progression of damage as the wind speed 

increases. On the right side, where roofs are in place, shingles have been damaged. The building 

roof in right-hand foreground has failed but the exterior walls have remained intact; research has 

been done in this field (Morrison et al., 2012; Reardon, 1986; Xu et al. 1996; Kopp et al., 2011 

and Henderson et al. 2009). Moving from the right to left of the building in the foreground, the 

building goes from the roof removed and no exterior wall damage to roof and exterior walls 

removed, an example of such 

damage can be seen at A. The 

level of damage at A is 

significantly higher and more 

likely to cause injuries or 

deaths. Limited research has 

been done on the wind speeds 

required to cause the walls to 

fail after the roof has failed (as 

seen in Figure 1.3), hence the 

need to examine this type of 

house failure.  

A 
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1.2.2 Goderich Ontario 

An F3 tornado struck the town of Goderich on August 21, 2011. This was not as strong as 

the Barrie tornado, but was still a very strong tornado which caused over $100 million dollars in 

damage (Environment Canada, 2013) and significant structural damage.  

 Figure 1.4 shows a multi-

storey brick structure following 

the tornado; the top storey 

exhibits significant damage 

while the lower floors have 

remained intact. In particular, the 

roof and exterior walls have 

failed. The damage patterns at C 

and D are very similar to those 

seen after the Barrie Ontario 

tornado; the exterior wall has 

failed and the interior wall has 

not. 

1.2.3 2011 Tornado Outbreak in the Southern USA 

 2011 saw a massive and deadly outbreak of tornadoes across the United States. General 

statements and observations from the damage assessment team are summarized in the FEMA 

report on building performance (FEMA, 2012). Most residential damage was caused by wind 

speeds less than 60 m/s (135 mph); these coincide with Degrees of Damage Six and Seven for a 

FR12 structure (Table 1.1). Failure of walls was often due to a lack of lateral support after the 

roof fails. In particular, FEMA writes that, for one- and two- bedroom residential structures, 

 

Figure 1.4 -A damaged structure in Goderich, Ontario. Picture courtesy 

of Sarah Stenabaugh 

 

C 
B 

D

  D 

C 
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“when roof and ceiling or roof truss-to-wall connections fail and leave the top of the framed wall 

unsupported, walls become especially vulnerable to collapse” – (FEMA 2012, p. 4-18). 

However, the wind speeds required to cause these wall failures have not previously been directly 

studied or quantified. 

1.3 Research Objectives 
 The objectives of the research reported in this thesis are to: 

1. Determine the wind speeds required to cause wall collapse after the roof fails, particularly 

addressing the wind speeds associated with the FR12 Degrees of Damage Six and Seven. 

2. Provide recommendations on how to reduce the possibility of wall collapse after roof 

failure. 

The approach will be to use full-scale testing of the two-storey house at the Insurance 

Research Lab for Better Homes as described in the Chapter 3. This thesis will discuss the results 

of the testing by examining different types of failure observed. The significance of these effects 

with respect to stronger house construction as well as the failure pressures and associated wind 

speeds will also be considered. In the next chapter, the results from previous experimental 

studies are examined. 
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Chapter 2: Literature Review 
 The literature review is divided into two sections, each discussing previous work in the 

different areas that pertain to this project. Several different researchers have previously 

performed full-house tests; their experimental setup and results have been used extensively in the 

design of this experiment. Wall and component test results are examined because such tests are 

useful to define wall performance, deflection limits and other information. The importance of 

examining these two fields of previous research is that they reveal the effect of the addition or 

removal of different components such as the roof structure or wall claddings. 

2.1 Full-House Testing 
Most previous research and testing performed on full-scale houses is from the Cyclone 

Testing Station at James Cook University in Queensland, Australia (Reardon 1986, Reardon and 

Henderson 1996, Xu et al. 1996, etc.). Other testing has been done at Texas Tech University and 

the Insurance Institute for Business & Home Safety (IBHS) in South Carolina. Reardon (1986) 

subjected a brick veneer house to racking
1
 loads. He found under uniform racking the house 

withstood 120kN, six times the design load. At this load, there was no catastrophic failure but 

imminent signs of failure existed, such as, nails pulling out and interior wall cladding breaking 

away. The house was constructed with diagonal bracing in the walls designed to prevent racking 

deflections, however these were found to be ineffective due to the stiffness provided by the 

interior wall sheathing. In these tests, the internal walls prevented racking and uplift deflections. 

Reardon (1986) removed several interior walls to create a 9m spacing, they found the walls 

resisted three times the design racking and uplift pressure without significant distress. They also 

made observations about the strength of the brick veneer, which they found to fail in racking at a 

2.95 times the design pressure. Also highlighted was the flexibility of the brick ties; the brick 

                                                 
1
 Walls loaded horizontally, in-plane. 
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veneer and wood frame racked independently of each other because the brick ties were too 

flexible to transmit racking forces.  Based on these findings, the IRLBH house should be 

expected to significantly exceed design loads. Thus, the experiment requires design to apply 

much greater loads than the design loads and the first failures to be observed will be internal wall 

lining elements. As well, a progressive failure of the brick, preceded by significant cracking, is 

expected before the wood frame, and they are not expected to deflect, as one unit, together. 

Reardon and Henderson (1996) also tested a two storey house designed to withstand 

28m/s wind speeds. Testing was performed for pressure multiples of the local 33m/s design wind 

speed, meaning the pressure (P) associated with 33m/s was applied and then increased to 1.5*P, 

2*P, etc. During the construction of the house, racking tests were performed with a ram applying 

lateral loads at the top plate of the house. Individual wall tests were performed on the walls as 

components were added. They found that the response remained linear as different components 

were added; however the addition of 

the wall lining and tiles had the most 

significant effect on the stiffness of 

the structure to horizontal loads. 

Figure 2.1 shows their changes in 

displacement of the upper wall plate 

(top plate) as components were 

added.  

Reardon and Henderson 

(1996) also found long exterior wall  

Figure 2.1 - The change in lateral response of the upper wall plate 

(top plate) (Reardon and Henderson, 1996). 
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sections without any transverse exterior walls to be highly flexible under lateral loading. 

Therefore, that area of the house should be well instrumented and photographed during the 

experiment. Reardon and Henderson (1996) found that while the long wall section – part of a 

9x8m floor area withstood double the wind pressure due to a 33m/s wind speed and did not 

catastrophically fail, significant cracking of the brick veneer did occur. They concluded that if 

transverse walls had been built along the wall section it would have performed significantly 

better.  

Reardon and Henderson (1996) also tested a two storey section of the house which had 

interior (transverse) walls installed. It withstood 2.4 times the 33m/s wind pressure with no 

evidence of failure. It is important to note that Reardon’s test (1986) was done with the roof in 

place and the buildings were constructed to be “slightly better than the basic level of housing” 

and so would likely resist higher loads than without a roof. The increase of vulnerability of the 

walls after roof removal as identified by FEMA (FEMA, 2012) was discussed in chapter 1.  

 D’Costa and Bartlett (2003) tested a Durakit post-disaster shelter made of corrugated 

cardboard. While the results from this testing are not as relevant to the current full-scale house 

testing, the experimental setup provided useful methods which were also implemented in the 

current study. In particular, the loads were applied using whiffle trees and water barrels, a simple 

but effective solution to provide increasing loads with large deflections. Many of the loading 

concepts used by D’Costa and Bartlett were applied to the current full house tests. 
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2.2 Wall and Component Testing 
 Significant research on individual wall components has been conducted. Pei et al. (2012) 

tested wall sections, examining inter-storey drift under earthquake loads. Specifically looking at 

P-Δ effects on vertically loaded walls subject to large racking, where P is the vertical load 

applied and Δ is additional displacement caused by this load. Walls with minimal vertical 

loading can withstand 7-10% inter-storey drift and a load of approximately 21 kN before 

becoming unstable. The maximum sustainable load varied depending on differences in 

construction such as nail type and hold downs. Walls hold downs attach the bottom of the wall to 

a floor or bottom plate, walls with these in place resisted a much higher load. As the vertical load 

on the walls increased, the maximum drift at wall instability failure was significantly reduced. 

With wood frame houses, the levels of gravity loads present do not significantly limit collapse 

behaviour because of minimal P-Δ effects.  

 Pei et al. (2012) also found that the presence of wall hold downs affected the racking 

capacity of wood frame shear walls. At high loads and drift levels, wall hold downs provide an 

increase in in ductility of the wall, causing it to remain stable above 10% drift. Also, the stability 

of a wall is related to the connection of all the wall components. As different components of the 

wall (sheathing, lining, etc.) lost their connection to the framing the wall became increasingly 

unstable. Reardon and Henderson (1996) found that long unsupported walls are likely to see the 

highest transverse displacements. As these displacements occur, different components will 

become unattached and the wall will become increasingly unstable. Pei et al. (2012) found  at 5% 

drift the sheathing panels began to separate from the studs and at 7% drift the corners of panels 

become unattached. When 10% drift is reached, just before failure Pie et al. (2012) expect all of 

the sheathing to become unattached.  
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 Dolan and Heine (1997a, 1997b) found that the number, location and size of openings as 

well as the presence of corners significantly effects the shear capacity of wood-frame walls. 

They compared the racking failure loads of different shear wall specimens with different tie 

down conditions. A shear wall with no tie downs and no openings resisted 111.7kN; with no tie 

downs a shear wall with a large door and window opening only resisted 43.6kN; less than half of 

the wall with no tie downs. With end tie downs, the same two walls resisted 171.7kN and 

53.4kN; this shows how wall tie downs and openings significantly affect the overall wall 

strength.  

Another relevant observation from Dolan and Heine (1997a, 1997b) was that corner 

framing, the addition of a short wall segment to make a corner, provides a hold down effect. 

Providing small (2ft – 4ft) corner framing on a 40ft long wall test section provided a large 

change in the response of the wall sheathing; cracking and separation of sheathing was 

prevented. This reinforces Reardon and Henderson’s (1996) findings that intact wall sheathing 

significantly improves wall stiffness. The length of the corner framing also effects the increase in 

observed stiffness; at a displacement of approximately 25mm, a wall with a 2 foot long (600mm) 

framed corner had a peak resistance of approximately 6800lb (30.2kN), as opposed to the wall 

with a 4ft framed corner, which resisted approximately 8500lb (37.8kN). The failure behaviour 

of a wall with a framed corner was different from straight shear walls. There was noticeable rigid 

body rotation until complete separation from the bottom plate.  

 Doudak et al. (2006) found openings to have a large influence on racking stiffness - 

similar to Dolan and Heine (1997a and 1997b). The shape of the load-deflection curve found by 

Doudak et al. (2006) is of particular interest. Shown in Figure 2.2, the shape of the curve shows a 

non-linear response to a peak, followed by load softening.  
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 All of the previous 

research helps to allow for 

estimations of the failure loads, 

which should be significantly 

above pressures due to design 

wind loading. The lack of a roof 

will likely decrease the failure 

load of the 3LP test house, 

however, as the arrangement of 

framing and having all four walls intact will likely increase the failure load. If a portion of the 

house fails, it may start acting like a wall with openings but no corner framing (no resistance 

from the failed area) and different failures – such as component failures - may be observed.  

2.3 Summary 
 Significant research has been done in the areas of full house testing and wall/wall 

component testing. Wall/wall component testing often focuses on racking capabilities of walls; 

because pressures act perpendicularly to walls, the bending strength and stability of walls is 

something which has relatively limited previous research but is very important for the testing 

performed for this thesis. The full house testing has primarily focused on behaviour of the roof or 

behaviour of the structure as different components (eg. wall lining) are added. No research has 

been done in the area of full scale testing of a house after the roof has failed. The testing in this 

thesis is useful for examining and strengthening the weakest links in a wall system. 

 

 

Figure 2.2 - Load displacement curve for racking of a wall section. From: 

Doudak et al. 2006 
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Chapter 3: Experimental Design 

3.1 Details pertaining to the House Plan 
 The 3LP test house was a two storey high, wood frame construction with a brick veneer 

(shown in Figure 3.1). It was built following the Ontario Building Code at the time of 

construction (2005). During original construction, the house was inspected by more than 30 

different building inspectors from Southern Ontario, to ensure typical construction. Before the 

current testing, the house was studied by Henderson et al. (2013) who examined the response of 

a hip roof subject to fluctuating wind 

loads and Morrison et al. (2012) who 

studied the same thing, but with a 

gable roof.  This previous testing was 

done to the roof and roof-to-wall 

connections only, so they did not 

damage the house walls in any way 

that may compromise the wall testing.  

 As stated, the house was 

constructed with a wood frame and a brick veneer. These two main components of the house 

were separated by an air gap. The connection between them was made by brick ties, thin pieces 

of steel fastened to the wood frame structure and embedded in the mortar between bricks. These 

ties transmit all loads from the brick veneer to the wood frame, if these thin ties were to fail, the 

brick veneer and wood frame would transmit no load to each other unless one deflected to the 

point of bearing on the other. 

 

 

Figure 3.1 - The 3LP test house with the gable roof still in place 

viewed from the North West looking towards the South East. 

With reference to Figure 3.2, the main wall with windows which 

can be seen is wall A1-J1. 
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Figure 3.2 shows the plan of the second storey of the house with a reference grid and 

labeling of key rooms. Solid lines indicate the locations of top plates while door locations are 

indicated by 90 degree arcs. The house is divided into a 10x10 grid, shown in Figure 3.2, which 

will be referenced throughout the discussion. Diagonal hatching indicates the location of the 

stairs, while the square hatching indicates the front hall atrium, which is open through the second 

floor. The majority of the displacement instrumentation (discussed in section 3.2) was installed 

on the second storey and all the failures occurred on the second floor. Hence, only a plan for the 

second storey is shown. 

 

Figure 3.2 - Plan of second storey. 
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3.3 Load Application 

Design  

3.3.1 Whiffle Tree Design to 

Simulate Negative Pressures 

(Suctions) 

 The whiffle trees on the West, 

South and North walls applied loads 

simulating negative pressures 

(suctions, viz., outward acting loads 

from the walls).  One whiffle tree was used to apply the loads to four load pads on any quarter of 

the house. The rectangle in Figure 3.6 depicts the four load pads connected in one whiffle tree. 

Each load pad (with one shown in Figure 3.7) was connected to 3/8” galvanized steel cables 

spanning from steel separation beams and attached to the reaction frame (Figure 3.8). From there 

the cables were joined and routed up to a 4:1 pulley array (Figure 3.10) to increase the load 

applied by the “come-along” (Figure 3.11), noting that a come-along is a two-way hand winch, 

able to incrementally increase or decrease the load (on the wall). Come-alongs were used to 

apply the load due to their ability to continue to apply load to the house when under large 

displacement as well as the high level of load control and safety resulting from using them. The 

same design was used for the whiffle trees simulating negative pressures on the North (A1-J1), 

West (A1-A10) and South (A10-J10) walls. These cables were required to withstand forces four 

times greater than the force being applied to each wall. Due to the size of these loads large 

amounts of strain energy would be carried in the cables, presenting a dangerous situation if a 

cable snapped. Hence the cables were designed and tested – see Appendix B, to ensure a factor 

of safety greater than 3. 

 

Figure 3.6 - Elevation view of the East (J1-J10) wall with load 

pads installed. The red box indicates the load pads acting on one 

whiffle tree. 
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3.3.2 Load Pads- Wood Spreader Beams 

 The load pads, which were wood spreader beams (Figure 3.7), were designed to provide 

loading across four studs in order to increase the uniformity of the load. Using the Canadian 

Wood Design Manual (2005), the studs were not expected to fail under the maximum loading. 

Designed in accordance with CAN/CSA-086-01 (2005), the spreader beams were 1200mm long, 

constructed of two Spruce-Pine-Fir (S-P-F) grade beams of nominal size of 38x89mm (i.e., 

2x4s).  They were installed to bear against the drywall inside the house, with a cable loop 

swaged around them which led through a drilled hole through the wall out to the whiffle 

tree/separation beams. 

3.3.3 Design of Separation 

Beams 

 The separation beams 

(“A” in Figure 3.8) were 

attached to the steel reaction 

frame to keep the applied forces 

normal to the walls while the 

walls could be under large displacements in order to accurately simulate the pressure loads 

(which always act normal to a surface). These were steel W150x22 beams, bolted to the steel 

reaction frame. They were required to be constructed of steel in order to be strong enough to 

resist the reaction forces travelling through the pulleys.  

 

Figure 3.7 - A wood spreader beam installed at B10, on the second floor, set 

up to apply negative pressure (outwards loading). 

 

A 

B 
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Both load pads attached to the same 

separation beam were connected by one 

primary cable looped over a pulley attached 

to the secondary cable. The primary cables 

(black in Figure 3.9) loaded the house. At 

the separation beam the cables were angled 

up until they looped over a pulley attached 

to the secondary cable (blue in Figure 3.9). 

This design ensured that the loads on both 

pads were equal, as explained in Appendix 

C.  

The secondary cable is looped over another pulley and back down to connect to the 

primary cable from two different load pads that were connected to another separation beam. This 

joined the load from four individual load pads into the tertiary cable (red in Figure 3.9) applying 

as well as equalizing the load at each load pad because of the pulleys connecting each cable. 

Figure 3.9 shows a basic two-dimensional schematic of the loading setup, where the circles 

represent the pulleys and the brown hatching is the house wall. 

  

 

Figure 3.8 - A separation beam installed on the reaction 

frame. The pulleys redirect the cables from the house 

towards where they join. 
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3.3.4 Design of Pulley Array and Load Application 

 All four load pads were joined into the tertiary cable, which was connected into a pulley 

array as shown in Figure 3.9. The purpose of the pulley array was to quadruple the load applied 

by the come-along. The tertiary cable was attached to the yellow shackle at the top of the array 

(green in Figure 3.9, the shackle is visible in Figure 3.11) while the bottom of the pulley array 

was fixed to the reaction frame to prevent movement. A cable attached to the come-along ran 

down to the bottom of the pulley array, then up and down through the array twice before ending 

at the bottom. The pulley array causes a cable displacement of 40cm at the come-along to be 

reduced to 10cm at the loading point, increasing the load applied to the cable leading to the 

house by a factor of 4. 

 

Figure 3.9 - A 2-Dimensional sketch of the whiffle tree pulley setup, P represents the pulling force. 
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Figure 3.11 - Pulley Array in fully extended position. 

   

Come-alongs were used to apply the loads to the house at a controlled rate. This method 

of load application was chosen due to the level of control available. A come-along allows for 

increasing the load by increasing the tension in the cable as the cable is winched in small 

increments. During the experiment, the load was increased in 0.4kN increments. One come-along 

was tightened at a time, starting at locations J1-J5 lower (first storey level) load and working 

around the house in a clockwise direction. 

  

 

Figure 3.10 - Come-along installed on the steel reaction 

frame. 

 



20 

 

3.3.5 Design of Whiffle Trees to Simulate Positive Pressures 

 The whiffle trees connected to the East (J1-J10) wall were more of a challenge to design 

because, to simulate positive pressures, the loads had to be applied in the inward direction. To 

avoid the complex design of compression members and accommodate the continued usage of 

cabling, the wall had to be pulled from the inside of the house. This created the same force as if a 

positive force had been applied to this wall, but it removed the requirement to construct and 

support compression members across the entire area of the wall. The challenge this created was 

that the cables pulling on the wall needed to be turned from inside the house, outwards, towards 

the reaction frame without touching or interacting with the house. To achieve this on the top 

storey, steel beams dropping down from the reaction frame were connected. On the first floor, 

vertical steel columns were placed through small holes in the house floor and connected to the 

concrete strong floor, where they were anchored. 

3.3.6 Load Pad Design 

The “positive” load pads were designed to bear on the brick, instead of drywall. The 

same design was used for these load pads as was used for the “negative” load pads except that a 

one square-foot oriented-strand-

board bearing pad was added to 

each side of each load pad (as seen 

in Figure 3.12). This was done to 

avoid the possibility that the load 

pads would punch through the brick, 

causing a premature failure.  

 

  

 

Figure 3.12 - A load pad for positive loading. 
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3.3.7 First Storey Setup 

 Small holes were cut in the floor of the house in the room on the East side to allow 

W150x22 columns to pass through. These columns were positioned to provide reactions for two 

load pads in a vertical line. Therefore, a total of four columns were installed to account for all of 

the load pads on the first storey of the positively-loaded wall. The column in the South East (I9 

area) corner is shown in Figure 3.13.  

The columns were not directly fixed to the concrete strong floor, owing to the challenges 

involved with drilling bolts into the strong floor while also underneath the house. Instead the 

bottom of the column was restrained from 

translating by installing a horizontal truss 

throughout the base (see label H in Figure 

3.14). This truss was anchored to steel 

bolts connected to the curbs supporting 

the house (label G in Figure 3.14) which 

in turn were connected to the strong floor 

by Hilti drilled anchors. To prevent 

rotation of the steel columns, cable stays 

were connected from the tops to the 

strong curb under the house (label A in 

Figure 3.13) as well as cross bracing 

between the columns (B). Bracing was 

also provided outwards through the 

window (F), in case of a loading 

 

Figure 3.13 - A steel column on the first floor extending 

upwards to provide a reaction for the cables from two load 

pads. 
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imbalance between the two 

cross braced columns. 

These braces were cables 

and so unable to act in 

compression, they were 

placed in particular 

orientations to directly 

counteract the reaction 

forces from the load cables 

(C and D).  

Cables were routed out of the lower storey windows on the North and South sides of the 

building in order to prevent (i) any further holes being drilled in the house and (ii) unintended 

interactions between the house and the cables. While exiting the house, the cable leading from 

each of the load pads going to one column goes around a pulley (label E in Figure 3.13) – the 

columns essentially acting in the same way as the separation beams in the negative loading setup.   

After exiting the house, the cables are connected to a separation beam and go to a pulley 

array and come-along. The two cables passing through the South windows were joined to create 

the typical four load pads to one come-along arrangement. 

3.3.8 Second Storey Design 

Loading of the second storey of the J1-J10 (East) wall was enabled by hanging vertical 

steel dropdown beams from the reaction frame. The beams hung straight down into the rooms on 

the second floor of the house (see Figures 3.15 and 3.16). The connection at the steel reaction 

frame was designed as a pin connection (label A in Figure 3.15). This meant that it was 

 

Figure 3.14 - Horizontal truss under the East side of the house, preventing 

translation of the base of the columns. 
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necessary to brace the column, thus, two cable stay braces were installed (B) up to another beam 

on the reaction frame. When loading was applied to the wall by the primary cables (C and D) the 

cable stays became tensioned and prevented rotation of the dropdown beams. The dropdown 

beams were designed in accordance with CSA S16-09 to withstand the maximum expected 

forces during the experiments.  

As shown in Figure 3.15, the cables coming out of the house are turned nearly 180 degrees 

at the dropdown beams (E), and then join together (F). There were four nearly identical setups 

like the one in Figure 3.15. The cable (blue cable at F) from one setup is joined to the same cable 

from another dropdown setup, providing four load pads to one come-along, as with the rest of the 

house. 

 

 

Figure 3.15 - A sketch of the positive whiffle tree setup. Primary cable in black, secondary cable in blue and cable stay 

in purple. 

 

B

  B 

C

 

 A

 A

 B 

D

 

 A

 A

 B 

E

 

 A

 A

 B 

F

 

 E

 E

 E

 A

 A

 B 

A

 

 A

 A

 B 

B 

D 

E 

F 

C 

A 



24 

 

 

 

 

 

 

  

 

Figure 3.16 - Three drop down beams 
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3.4 Instrumentation Design  
 Two types of instrumentation were used for data acquisition: strain gauges and linear 

variable differential transformers (LVDTs)
2
. The strain gauges were used to read the loads 

applied to the house and the LVDTs were used to record displacements. Cameras and video 

cameras were also used in the experiments. 

3.4.1 Strain Gauges 

 Strain gauges were attached to machined aluminum bars with waisted cross sections (see 

Figure 3.17), in order to make an inexpensive load cell. Each load cell was built with two strain 

gauges, one on each side. The readings from each strain gauge were recorded separately, to 

provide redundancy in the event of a strain gauge failure (since there was no bending of the load 

cells, which were always placed between two cables). The minimum aluminum cross section was 

chosen to ensure linear elastic behaviour up to a maximum load of 15kN, so the strain gauge 

would capture load 

accurately up to that limit. 

All strain gauges were 

calibrated before the tests, as 

is described in detail in 

Appendix D.  

 One load cell was 

attached to each whiffle tree; on the section of cable immediately after the separation beam. A 

total of 16 load cells were used for the full house tests. Only one was used per whiffle tree due to 

the load equalization provided by the pulleys, as well as to reduce project expenses. The strain 

                                                 
2
 Also referred to as Displacement Transducers 

 

Figure 3.17 - Close up view of a strain gauge attached to an aluminum piece, 

forming a load cell. 
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gauges were attached at the same point on each cable to prevent losses due to pulleys from 

causing differences in load readings that do not reflect differences in the loads actually being 

applied. 

3.4.2 Linear Variable Differential Transformers 

 A major challenge for this project was ensuring that the LVDTs would make 

measurements over the full range of displacements. To obtain measurements of the 

displacements at the top plate, it was necessary to suspend wood beams and/or frames down 

from the reaction frame towards the 

house (see Figure 3.18 for one 

example). Wood beams were used 

because of their high damping, low 

cost and ease of construction. Some 

LVDTs were also mounted off of the 

top plate to measure the relative 

movement between the brick and the 

top plate (Figure 3.19). For the test 

with the brick veneer in place 39 LVDTs 

were used, while 27 were used for the 

test without brick veneer. Drawings 

detailing the LVDT locations and names 

are shown in Figure 3.20, which shows 

the instrumentation plans for the tests 

with and without the brick veneer in 

 

Figure 3.18 - LVDT NE1, with the wood beam from the steel 

reaction frame. 

 

 

Figure 3.19 - LVDT WN5, measuring relative brick-top plate 

displacement 
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place. Only the LVDTs located along the top plate are shown. Some locations, such as the North 

West (A1-D1) wall in the tests without brick veneer had 2 or more LVDTs located in a vertical 

line where only one LVDT is indicated in the plan drawing. 

 

 

Figure 3.20a - Instrumentation plan for the test with the brick veneer in place. 
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Figure 3.20b - Instrumentation plan for the test with no brick veneer in place. 
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Reference LVDTs were installed at many locations to ensure that measurements were 

accurate. Movement of the steel reaction frame was monitored by two LVDTs, one oriented 

North-South and the other East-West. No significant movement was recorded (see Appendix E 

for details). In addition, two LVDTs were installed at each corner of the base of the house, one 

normal to the wall on each side of the corner. These also indicated that there was no significant 

movement throughout the experiments (see Appendix F for details). Finally, the LVDTs reading 

displacements on the interior walls were mounted off of a gable beam in the reaction frame. To 

ensure these readings were accurate, a reference displacement transducer was also installed on 

the gable beam. Significant rotation of the gable beam during the tests rendered interior wall 

movement displacement readings unusable; this is discussed further in Appendix G.  

 Each individual LVDT has 100mm of travel, which in many places was sufficient for 

these experiments. In areas where larger displacements were expected, two LVDTs were used 

(see Figure 3.21a), offset from the each other by about 90mm, so that when the first LVDT ran 

out of travel, the other would start reading. To facilitate this, the LVDTs had thin wood skewers 

attached to them which would break off once the limit of travel was reached, shown at “A” in 

Figure 3.21a. Figure 3.21b shows one such LVDT pairing after the experiment, the skewer 

attached to the LVDT on the right hand side has snapped (“B” in Figure 3.21b). This was a 

simple solution to prevent destruction of LVDTs due to large displacements and allow for a 

larger overall displacement reading by matching and calibrating the displacement readings of 

both LVDTs to each other. 
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3.5 Experimental Control and Data Acquisition 
 A wood platform was built on the top of the reaction frame, to provide a location from 

which to control the experiments. This platform provided a bird’s eye view of the entire test 

setup, and an unobstructed view of all of the come-alongs/load application points (Figure 3.23). 

The come-alongs were suspended from the top of the reaction frame at a convenient operating 

height for a person standing on elevated pathways (catwalks) above the top plates (Figure 3.22). 

The locations for applying loads and organizing/controlling the entire experiment were 

selected to ensure all involved with the experiment were above the house while it was loaded. 

This ensured their safety from collapsing walls or falling debris Access to the catwalk and 

control platform was by a staircase on the North side of the house. This staircase had an oriented-

 

Figure 3.21a - A two LVDT setup (EN8 and EN9) 

before the experiment. 

 

 

Figure 3.21b - LVDT setup EN8 and EN9 post 

experiment. 
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strand-board shield installed along the house 

(South) side of the staircase, protecting anyone 

travelling up and down the stairs from harm. The 

catwalk location above the house was also ideal 

for observing movements of the upper floor of 

the house during the experiment.  

 National Instruments SCXI and PXI 

units, sampling at 200Hz throughout the 

experiment, were used for data acquisition. The 

duration of the experiment with brick veneer was 

approximately two hours. The sampling rate was 

chosen to capture the loads and displacements at 

the points of failure, sampling at a lower rate would have made it difficult to see any electrical 

noise from the strain gauges. The size and duration of the experiment reduced the feasibility or 

necessity of using a higher 

sampling rate. 

An important part of 

the data acquisition was 

ensuring the zero datum was 

accurate for all data. This was 

especially important because 

components such as the strain 
 

Figure 3.23 - The control platform on top of the reaction frame. 

 

 

Figure 3.22 - The catwalk on the West side of the 

house, looking South. 
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gauges were installed up to two months before the full house test. As well, the load cells to 

which the strain gauges were mounted were made of aluminum and were, therefore, susceptible 

to thermal expansion and contraction. The laboratory building was not temperature controlled, 

and so it underwent large temperature changes throughout the days of the tests. Data calibration 

and zeroing data is discussed in detail in Appendices H and I. Zero readings were taken several 

times over the course of the day before the experiments, during the experiments and after the 

experiments to capture any drift. The LVDTs showed negligible drift. However, strain gauges 

showed significant drift. Adjustment of the zero readings for the changes in thermal strain due to 

changes in the exterior temperature made the drift negligible, validating the data, as discussed in 

Appendices H and I. 

3.6 Summary 
 The experimental setup was designed to be simple and inexpensive while being able to 

capture the required data. By applying loads with come-alongs, cables and pulleys, the 

experiment was easily controllable; with the ability to quickly stop or reduce applied loads in the 

event of a problem or safety hazard. Manual loading introduced some uncertainty and variability 

to the application of the loads due to the human factor. However this was easily mitigated by 

exercising caution and care during the experiments. The results of the experiments are discussed 

in the next chapter. 
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Chapter 4 – Catastrophic Failures 
 Catastrophic failures are those failures which cause permanent and significant damage to 

the structure, making it unsafe for use. An example of such a failure would be an entire wall 

collapsing. There were three catastrophic failures which occurred during the experiments. During 

the full house test, the complete wall at A10 – J10 (i.e., the South wall) failed. In the subsequent 

test without brick veneer, two catastrophic failures occurred on the North wall, the first one 

between A1 and D1, the second between E1 and J1. This chapter describes these three failures. 

4.1 Failure of Interior-Exterior Wall Connections (on Wall A10 - 

J10) 
The A10-J10 wall failure happened after loading had caused substantial visible bending 

and displacement in all four walls, but most 

noticeably the A10 – J10 (South) and J1 – J10 

(East) walls. The top plate on the South wall 

(A10-J10) appeared to be acting as one long 

beam with the two connecting interior walls 

substantially limiting the overall displacements. 

Ultimately, it was the failure of the connections 

between the interior walls and the exterior wall 

which failed, as shown in red in Figure 4.1. The 

implications of the roles of the interior-exterior 

wall connections with respect to overall house 

strength are discussed in Section 5.1.   

 

Figure 4.1 – The segment of wall C10 - E10 after 

failure. 
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The load-displacement curve for the South wall spanning F10 – J10, shown in Figure 4.2, 

depicts the process leading up to failure. The load is plotted as net pressure across each wall.  

Pressure was calculated based on the assumption of uniform loading using the locations where 

the load pads were applied by dividing the load applied to each load pad by the relevant tributary 

area. In this Figure, the displacement is at the top plate level from displacement transducer NE1 

(Figure 3.20a), part way along the way at location I1. 

There are three main regions in this plot. The first region extends from a pressure of 0.2 

kPa to just less than 1 kPa (and is labelled as “A”). In this area, the slopes of the curve while load 

is being increased are nearly identical. Between the sections of increasing load there are small 

load drops and a slight increase in displacement in a saw-tooth type of pattern, which are referred 

to as “discontinuities”. The discontinuities are caused by two factors, namely, the loading 

method and the net loading effects, as discussed in Appendix J. In the second region (labelled as 

“B”), it is observed that the slope of the load-displacement curve is decreasing monotonically. 

 

Figure 4.2 – The load deflection curve for wall F10 – J10, from a displacement transducer at I1 
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Thus, as the load is increased, the relative displacement also increases. This continued until the 

edge of the third region (labelled as “C”), where the load could not be further increased and the 

wall was simply being winched over (at a constant load).  

In the region C, the wall cannot resist any higher load, corresponding to the onset of 

failure. The maximum resistance of a wood structure may be time dependant, decreasing as the 

load is applied more slowly. Morrison and Kopp (2011) found this to be an insignificant issue for 

failures of connections, hence, detailed examination of time effects are not considered in this 

thesis. The key failure was at the interior-exterior wall connections as shown in Figure 4.3. This 

failure occurred at a load of about 1.5 kPa. Comparing the damage shown in Figures 1.3 and 1.4 

(from tornado damage surveys) to that in these Figures, there is some similarity indicating that 

this may be a common type of failure of wall 

systems following global roof failure.   

  

 

Figure 4.3 - Damage to the house similar to what was 

observed in Barrie and Goderich. 
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4.2 Wall Failures Without Brick Veneer (the A1 – D1 Wall Failure) 
 Following the tests on the full house clad in brick veneer, the bricks were removed from 

the house and local testing was conducted on un-damaged portions of the walls. The first 

catastrophic failure for house without brick veneer is discussed here. This failure was preceded 

by large displacements and initiated with a split occurring in the top plate. Figures 4.4a – 4.4f 

show the progression of the failure as recorded by a video camera at 30 frames per second, with 

the image sequence spanning a duration of less than 0.2 seconds. Due to the large magnitude of 

the displacements which occurred with the failure, the LVDTs did not capture the dynamic 

movement of the wall immediately after the top plate failed. In Figure 4.4a the wall is still intact, 

progressing from 4.4b to 4.4d, the top plate can be seen to be splitting and a large vertical crack 

is forming in the Styrofoam beneath the top plate split. In Figures 4.4c and d, the initiation of a 

vertical crack along the edge of the corner can be seen. Finally, Figures 4.4e and f show the 

propagation of the cracks and continuation of the failure to the final displacement of the wall. 
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Figure 4.4a – Failure Time + 0:00.00

 

 

Figure 4.4b – Failure Time + 0:00.03 
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Figure 4.4c - Failure Time + 0:00.07 

 

 

Figure 4.4 d - Failure Time + 0:00.10 
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Figure 4.4f - Failure Time + 0:00.17 

 

 

 

Figure 4.4e - Failure Time + 0:00.13 
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This failure occurred because of a relative lack of stiffness in the wall and the corner. The 

bending stiffness of the top plate (which had a joint at D1) was minimal due to short overlap in 

the two top plate members (see Figure 6.6). In addition, the presence of the window may have 

played a role. These issues are examined in detail in Chapter 6. The stiffness of the corner, which 

was reduced with the removal of the bricks, also allowed the wall to rotate outwards. The effects 

of brick veneer are examined in Chapter 7.  

The load-displacement curve for this wall is relatively linear up to an applied pressure of 

about 0.8kPa. This is shown in Figure 4.5, which shows the pressure-displacement curve for an 

LVDT located at the top of the wall, about 160mm from the corner located at A1 towards B1. It 

is noted that this failure load is the same as was observed for the first failure of the full house 

with the brick attached (along wall A10 – J10, as discussed in the previous section). However, 

when wall A1-D1 failed, there was negligible damage at the current location, indicating that the 

brick veneer has a substantial effect and that the first failure would have occurred at a much 

 

Figure 4.5 - Load Displacement curve for the wall A1-D1. 
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lower load had the house been without brick veneer for the first full house test. It is also 

emphasized that the two walls have different factors which affect the performance including the 

unsupported lengths, number and location of openings, and number of interior walls connecting 

to the external wall. Dolan and Heine (1997a, 1997b) and Doudak et al. (2006) found that these 

differences significantly affect wall strength. 

4.3 Wall Failures Without Brick Veneer (the E1-J1 Wall Failure) 
 The third catastrophic failure observed during the two sets of experiments occurred 

following the failure described in Section 4.2. The double top plate of this wall (E1-J1) failed in 

shear at the location of a connection between the upper and lower members of the double top 

plate, as seen in Figure 4.6. Top plate failures are examined in detail in chapter 6, while the 

failure load and load deflection curves are examined here. 

 The load-displacement curve is shown in Figure 4.7, where a linear section can be seen, 

as shown by the red line. The Figure provides the results for the wall segment E1 – J1, with the 

displacement measured at the top plate at location F1. For lower loads, there is the typical 

increase in load and displacement, followed by a region where the load remains relatively 

constant while displacement increases. This is due to the loading and failure of the A1-D1 wall 

described in Section 4.2. When that section of the wall was on the verge of failure, load increases 

 

Figure 4.6 - Plan view of wall E1-J1 after catastrophic failure. 
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on the E1-J1 segment was stopped and increased loading was continued only on the A1-D1 wall 

segment. These results in the observed load-displacement pattern labelled as “A” in Figure 4.7. 

 In this experiment, the LVDT ran out of travel because of large wall displacements. The 

red line is a linear representation of the load-displacement relationship. It is drawn fitting to the 

data corresponding to the loading leading up to failure. As discussed, there was a pause in the 

loading at “A”, so the most important (and the majority of the) loading occurred after this point. 

Hence only that area was used for the data fit. 

 From the data, this failure occurred at a pressure of 0.6 kPa, significantly less than the 

failure load of other walls. However, it sustained the highest loads in the earlier experiments. As 

with the first full house experiment with brick veneer in place, the wall failures appear to be 

similar to damage survey observations (e.g., Figures 1.3 and 1.4) which show similar final states. 

As previously discussed, the net loading effects allow loads applied at one location to be 

 

Figure 4.7 - A load displacement curve for wall E1-J1. 

 

A 
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transferred into adjacent locations. Since the adjacent wall segment (A1-D1) had failed, little 

load could be transferred along this wall.  

The importance of a continuous load path was discussed in FEMA (2011, section 1.2.3) 

as being essential for the wind resistance of houses. The ultimate loads measured during this 

failure emphasize the need for a continuous load path to be available. Thus, it would be expected 

that a lower failure load would be observed for wall segment E1-J1 following the failure of the 

A1-D1 wall segment. 

4.4 Conclusions 
 After examining the three catastrophic failures which occurred during the experiments, it 

is clear there are several types of failure of wall systems (when there is no roof in place). Each of 

these failures will be examined in greater detail in the subsequent chapters. The ultimate load of 

Wall A10-J10 with the brick veneer still in place was found to be 1.5 kPa when the connection 

between an interior wall with the exterior wall failed. Without the brick veneer, wall segments 

A1-D1 and E1-J1 failed at 1.5 kPa and 0.6 kPa, respectively. Since the first failure without brick 

veneer had easily sustained a load of 1.5 kPa when the brick veneer was in place, the current 

results indicate that the brick veneer played a significant role in increasing the capacity of the 

walls compared to the case without brick veneer. In addition, the difference between the Wall 

A1-D1 and E1-J1 failure loads (both without brick veneer) indicate the importance of the walls 

remaining intact in maintaining the capacity of the system. When there was no continuous load 

path, the failure loads decreased significantly. 
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Chapter 5: Effect of Interior Wall Connections to the 

Exterior Walls 
 Catastrophic failure of Wall A10 to J10 occurred due to a failure of the interior to exterior 

wall connections located at D10 and F10, as discussed in Section 4.1. This chapter discusses in 

detail the role of the two interior walls located at D10 and F10. 

5.1 Failure Progression at D10 and F10 
 If observed in real time, the failure of the two joints located at D10 and F10 appears to be 

simultaneous. However, a frame-by-frame analysis shows a different story. Failure first occurred 

at the joint at D10, followed by the joint at F10. Figures 5.1 to 5.4 show the progression of the 

failure: Figure 5.1 shows the wall in its unloaded state, Figure 5.2 shows the loaded wall 

immediately prior to failure, Figure 5.3 shows the wall after failure of the joint at D10 and Figure 

5.4 shows the wall after failure of the joint at F10. Joint failures in each figure are identified by 

circles. 

 

  

 

Figure 5.1 - Wall D10 - F10 before loading. 
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 D10 F10

 
 D10 
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Figure 6.1 - Unloaded wall D10 - F10. 

 

 

Figure 5.2 - Wall D10 - F10 loaded immediately prior to failure. 

 

 

Figure 5.3 - Wall D10-F10 as the joint as D10 is failing. 

 

 

Figure5.4 - Wall D10 - F10 after both joints have failed. 

 

D10

 
 D10 

F10

 
 D10 
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Figure 5.5 – External wall top plate load paths along the wall spanning from A10 to J10 with and without the connection at 

D10. 

 

Examination of these four Figures reveals how and why this failure happened. In Figure 

5.1, a small gap can be seen at the connection at D10; this connection was the first part of the 

wall to fail. The nails from the interior to the exterior wall at D10 pulled out of the exterior wall 

in tension. They can be seen after pullout in Figure 5.4. 

 When the connection at D10 fails, the interior wall is no longer providing a restraint at 

the exterior top plate. Because Wall D10 is perpendicular to the loaded wall it transferred the 

out-of-plane (shear) forces in the exterior wall into racking forces in the interior wall, which is 

strong in this aspect. A result of the joint failing is loss of this load path. Following the failure at 

D10, the loads being applied to the exterior wall between A10 and F10 must be restrained at joint 

F10 and the corners. This immediately increases the net loads at joint F10, causing this joint to 

fail and catastrophic failure of the entire wall. A schematic of the change in load path is shown in 

Figure 5.5, which shows the approximate load path before the failure at D10 (top) and then after 

the failure at D10 (bottom). The Figure shows a basic approximation of how the reaction forces 

at the interior-exterior wall connections change when the connection at D10 fails. Thus, the 

connection strengths at the interior-exterior wall interfaces are extremely important for the 

strength of the entire exterior wall. 

∑     

R 

R 

R R 
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5.2 Interior Wall Placement Effects on Wall Displacements 
 Although no catastrophic failure occurred on the East wall (J1 – J10), displacements of 

up to 120 mm occurred along J6 – J10 (in the Master Bedroom). The scale of these 

displacements and the lack of failure was largely affected by the placement of the interior walls. 

LVDTs were placed at J1, J3, J6, J8/9 and J10 in order to measure the movement of the top plate. 

The displacement readings at lower load levels – up to 1.0kPa are shown in Figure 5.6, higher 

load levels are not shown to allow for better illustration of the two different behaviors observed. 

The zero displacement at the corners is assumed, based on the comparison between the effects of 

loading the East side on West side deflections, and vice-versa, since there were no noticeable 

racking effects across the house. In the Figure, the thick vertical black lines represent the 

locations of interior walls. The thin vertical red lines represent the points where the loads were 

applied. There were three LVDTs in the master bedroom, and two in the den. No LVDTs were 

placed in the bathroom due to quantities of available instrumentation. 

 

Figure 5.6- Wall J1 - J10 LVDT readings at increasing loads. 

 

Den 
Master Bedroom Bathroom 
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Two patterns can be observed in the data. First, during the early stages of loading 

(0.5kPa, 0.6kPa and 0.6kPa
3
), more movements of the whole wall are seen. As the load 

increases, the behaviour changes, showing more local deflections with a maximum occurring 

near the middle of the Master Bedroom wall segment.  

In the bathroom, there were no LVDTs, so no quantitative measurement could be made. 

Despite a vertical line of loads being applied in the middle of that room, where the maximum 

possible top plate bending effects would be seen, there was no bending noticed of this top plate 

(from observations and a qualitative analysis of photographs, such as Figure 5.7). The same 

loads were applied to this room as the master bedroom, which saw significant bending. This may 

be because the unsupported length of the bathroom wall is only 2/3 of the unsupported length of 

the master bedroom wall. For simplicity, if the walls are assumed to be simply supported beams 

subjected to a uniformly distributed load, the maximum deflection is governed by the span, l, to 

the power of four, as given by equation 5.1. 

                                                 
3
 Due to required readjustments of the come-alongs during the experiment, the load of 0.6kPa was achieved twice, 

during the readjustment the load decreased. 

 

Figure 5.7 - Wall J7-J3 (left to right) under load. 
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Assuming uniform loading across all exterior walls (per the experimental design) and that 

Young’s Modulus (E) and the Moment of Inertia (I) are constant, then the deflection is almost 

entirely controlled by the unsupported length of each wall. For the difference between the 

bedroom and bathroom this translates into a fivefold increase in deflections from the bathroom to 

the bedroom (ignoring possible differences in the displacements at the ends of the segments). 

Clearly, more evenly spaced interior walls would increase the overall exterior wall strength and 

reduce the wall deflections in large rooms. Of course, stiffening of the wall would also help by 

adding wall studs or an additional top plate member. 

At the point of failure on the south wall, the maximum displacements on the east wall 

were about 120 mm. This again points to the importance of the connections under suction loads, 

since the interior-exterior wall connections under the positive pressures on the east (windward) 

wall would not fail; rather the structural members would have to fail. Since the capacity of the 

connections under pull-out are the weak link, the south wall failed first. This suggests that 

increasing fastener strengths between the interior and exterior walls, say by using hurricane 

straps or screws, would increase the resilience of the walls should the roof fail first. 

5.3 Conclusions 
Two main conclusions can be drawn from the observations of the effects of wind loading 

on the interior-exterior wall connections. The first is that, when acted upon by negative pressure, 

the strength of interior-to-exterior wall connections directly affects the overall capacity of the 

exterior wall. Increasing the capacity of these connections, say by using hurricane straps or 

screws, would allow larger displacements of the wall and lead to failures of structural members 
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(instead of connections) at higher wind loads (i.e., higher wind speeds). The second conclusion is 

that the placement of interior walls affects the local bending, specifically in larger rooms. 

Obviously, smaller rooms and more interior walls would create a stronger house once the roof 

has failed. This is contrary to current house plans which typically feature large master bedrooms 

and “open concept” plans, which is contrary to known flexural beam theory and deflection as 

well as this research. Longer unsupported spans require additional wall stiffness to resist the 

same loads.  
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Chapter 6: Top Plate Failures 
 Failures of the top plate were observed in these tests, as discussed in Chapter 4. These 

failures are examined in this chapter. A top plate is a beam on top of the wall studs which 

extends on the top of all walls in a house/structure. The top plate in the 3LP house was 

constructed as a double top plate, with two 2”x4” members stacked on top of each other to form 

a 4”x4” member. Double top plates are very common for construction as they are required by 

section 9.23.11.3 of the Ontario Building Code 2010 unless a loadbearing wall contains a lintel 

beam provided the lintel forms a tie across the lintel; or if concentrated loads from ceilings, 

floors and roofs are not more than 50mm to one side of the supporting studs. Non-loadbearing 

walls are also permitted to have single top plates, however all exterior walls are loadbearing.  

Failures of the top plate are represented by three dominant failure modes: cracking of the top 

plate through nailed sections; and separation of the two top plate members due to a small overlap 

between member ends and splitting of the top plate due to high displacement.  

6.1 Cracking of the Top Plate  
Cracking of the top plate occurred in several locations; Figure 6.1 shows a span of the 

East wall, the segment from J7 to J3. With closer examination (Figure 6.2), it can be seen that the 

top plate has cracked along the line of the nails (point A in Figure 6.1). This is a failure of the 

member due to overall deflection of the wall and the nails being placed too close to the edge of 

the top plate member. In addition, the bottom member of the top plate failed further along (B, or 

Figure 6.3) and moved out of alignment with the top member, as shown in Figure 6.3. 
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 The failure of these members reduces the ability of these members to transfer load 

through the basic load path across the top plate, transferring the out-of-plane (shear) force into 

racking forces in the interior walls. Therefore, it can be stated that placement of  a few additional 

(or better placed) shear connectors (nails) between the two top plate members would increase the 

strength of the wall. As well, better control over the distance between top plate edge and the nails 

would reduce cracking and this type of failure. 

 Cracking and failure of the top plate also occurred in the North wall spanning from E1 to 

J1 in the tests without brick veneer. This was the second catastrophic failure which occurred 

during the tests without 

brick veneer, occurring 

after the failure of the 

adjacent wall segment 

(A1 – D1), as discussed 

in Section 4.3. Failure 

of the top plate 

occurred at an area with 
 

Figure 6.2 - Close up of top plate crack (A in figure 6.1) J6. 

 

 

Figure 6.1 - Looking along the East wall from J7 – J3. 

 

A – Located at J6 
B 

B 
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a relatively small overlap between 

connections on the upper and lower top 

plates. Figure 6.4 shows the wall under 

load prior to failure, with the location 

of the point of failure labeled “C”. 

Figure 6.5 shows this location after 

failure.  

Before the failure occurred, 

there was a visible slipping at the joint 

in the upper top plate at the location of 

the nails. The wood in the connection failed, causing the top plate to become two members 

pinned at D (instead of one long member subject to bending). As with the previous failure, more 

nails placed closer to the center of the member would have created a stronger connection and 

given a higher failure load. 

 

Figure 6.4 - The North East wall prior to failure E1 – J1. 

 

C D 

 

Figure 6.3 - Close up view of top plate slip (B in figure 6.2) J4-J5. 
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 .A conclusion which can 

be gained from this is that the 

overlap of the top plate and the 

strength of the shear connection 

between the two top plate 

members effects the strength of 

the wall. If there had been more 

nails spaced with a longer 

overlap, it is likely the wall 

would have withstood a higher load before failing. 

6.2 Top Plate Overlap Failures 
 There were two instances of top-plate-overlap related failure, the first occurring at 

location D1 during the tests without brick veneer. In this case, a lack of overlap between the two 

top plate members allowed for significantly increased rotation and deflection of the top plate 

members in the adjacent room (A1-D1). The second instance was during the full house test (with 

brick veneer), at location F10, after the failure of the interior-exterior wall connections the top 

plate failed, causing increased deflections. This latter failure will not be discussed further.  

Figure 6.6 shows the result of minimal overlap of the top plate members from the first 

instance discussed above. This joint has allowed almost free rotation of the top plate in the 

adjacent room (A1 – D1) this pin-like behavior and resulting room A1-D1 deflections is further 

examined in Appendix K. Because of the connection to the interior wall, the upper member of 

the top plate ends to allow space for the interior wall top plate to be connected. The lower 

member of the exterior wall top plate does not extend very far beyond this connection (towards 

 

Figure 6.5 - The failure location on the North East wall H1-I1. 
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the left in Figure 6.6). The type of connection in Figure 6.6, when observed in a plan view 

appears to behave like a simple pin support, providing minimal rotational resistance, as if the top 

of the wall was acting like a flexural beam. 

 The wall below would have influenced the rotational behaviour, but a full 3-dimesional 

analysis was outside the scope of this thesis. Rotation of the lower member of the top plate 

relative to the upper member of the top plate is easily visible in Figure 6.7, just to the left of the 

point where the interior wall enters from the top of the image. In the background (D1) of Figure 

6.7, it can be seen how the rotation of the top plate is effecting the overall displacement of the 

wall, by allowing a much higher maximum displacement. The difference in deflection which 

could be affected by more rotational resistance depends on how much fixity is added. If one end 

of a wall span is built to resist rotation, the maximum deflection under the same load will be 

 

Figure 6.6 – Minimal top plate overlap located at D1. 
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approximately 40% of the maximum deflection if neither end of the wall span resists rotation. If 

both ends are fixed, it would be 20% of the deflection if neither end resisted rotation. These 

differences are based on standard flexural beam deflections as shown in equation 6.1, using the 

same E, I, w and L for all calculations. 

                                                       
    

     
                 

                                                
   

     
                 

                                                  
  

     
                 

  

 

Figure 6.7 – Exterior wall looking from A1 – foreground and D1 – background. 
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The differences presented do not account for the 3-dimensionality of the wall, they 

consider two dimensional bending of the wall which is visible looking in plan. Inclusion of the 

effect of the wall below the top plate would add very significant and difficult to quantify 

properties to the wall. The wall would be reducing the overall top plate deflections, but how 

much would depend on the construction of the wall and level of fixity with the floor. To 

accurately capture the full wall displacement a finite element model would likely have to be used 

and this is outside the scope of this thesis; hence only a 2-dimensional beam model is considered 

here. 

6.3 Splitting Due to Large Displacements 
 There was one failure of top plate splitting due to large displacements, which occurred 

during the tests without brick veneer on the exterior wall spanning A1 to D1, first discussed in 

Section 4.2. This wall is shown in Figure 6.8 immediately prior to failure; the location of failure 

is labeled point F. The top plate is subjected to deflection of approximately 70mm in this picture, 

representing a significant amount of strain energy in the top plate. 

 This failure shows the importance of the overlap between the members of the top plate. 

Point “A” in Figure 6.9 shows how the top plate has acted as a joint in the wall allowing 

E 

 

Figure 6.8 - The top plate of exterior wall A1-D1, immediately before failure. 

 

A 
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significant rotation. This is the joint is also shown in 

Figure 6.6; and as previously discussed, if the 

overlap between the top plate members had been 

larger there would have been significant resistance 

to the large deflection observed because of added 

rotational resistance (equation 6.1). A reduction in 

the deflection would have reduced the strain on the 

top plate and a failure by splitting would not have 

been observed and the wall would have withstood a 

higher load. In the tests with the brick veneer in 

place, the resistance was provided by the bricks (as 

discussed in the next chapter) and the wall 

withstood the same net loads with much lower 

displacements. For vinyl clad walls, increased wall stiffness is required to achieve the same 

performance. An important note about this type of failure is that it is unlikely to be observed in 

post event damage surveys. Generally, damage surveys find connection failures, and there are 

relatively few material failures of this type (FEMA 2011) 

6.4 Conclusions 
 Based on the three different failure types observed for top plates, two main conclusions 

can be drawn. First, additional shear connectors and shear connectors placed farther from the 

edges of the beam would reduce cracking and failure. The Ontario Building Code 2010  (OBC 

2010) section 9.23.11.4 requires joints in top plates to be staggered at least one stud spacing. 

Based on the failures observed, all the top plates were built in accordance with this code. The 

 

Figure 6.9 - Wall section B1 immediately after 

failure. 
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joint at D1 where the wall rotated would appear to not be in compliance, except that the code 

contains additional sentences pertaining to corners and intersections, which only have a 

minimum fastening requirement
4
. After observing the experimental results, it is apparent that 

more control of the overlap of the joints of the two top plate, especially at  wall intersections, 

would increase the flexural strength of the walls. This is a specification in the International 

Residential Code 2012 (IRC 2012), section R602.3.2 states: “[…] a double top plate installed to 

provide overlapping at corners and intersections with bearing partitions. End joints in top plates 

shall be offset at least 24 inches.” Changing of the OBC 2010 to  more closely reflect the IRC 

2012 would result in an increase in the required overlap of top plate members. This would 

decrease rotations and deflections along the top plate, specifically near the joints, increasing the 

overall wall capacity. 

 

 

 

 

 

  

                                                 
4
 9.23.11.4 (4) Ties referenced to in Sentences (2) and (3) shall be the equivalent of not less than 75mm by 159mm 

by 0.91mm thick galvanized steel nailed into each wall with at least three 63mm nails. 
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Chapter 7: Effects of Brick Veneer on Exterior Wall 

Corners 
 A popular method of construction in Southern Ontario has a brick veneer on the front of 

the house and vinyl siding on the sides and back of the house. This is done because brick 

construction is more expensive than vinyl construction, but the brick is more aesthetically 

appealing. The IRLBH house was built with a brick veneer on all four walls.  The first tests 

performed on the house had the brick veneer in place on all four walls; two of the walls were not 

significantly damaged and so the brick veneer was removed and the house tested again. This 

allowed for a direct comparison of wall behaviour with and without a brick veneer. This chapter 

examines the effects of brick veneer on wall performance. 

7.1 Corner Rigidity with No Brick Veneer  
In the tests without brick veneer, the corner was visibly opening (shown in Figure 7.1), 

which was not observed in the full house tests with brick veneer. Figure 7.2 shows a sketch of 

how the opening angle was obtained from the wall displacement data. The applied torque on 

opening angle were calculated using equations 7.1 and 7.2 The total opening angle at the corner 

was calculated for the test with no 

brick veneer, as shown in Figure 

7.3.  

Figure 7.1a - The corner located at A1 with no brick before loading. 
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Figure 7.1b and 7.1 c – From left to right, the corner located at A1, progressively throughout the test with no brick 

veneer. The far right picture is after failure. 
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The total angle is the change 

increase in corner angle from 90 degrees.  

Failure occurred at a load of 17.7 kNm, 

and an angle of 15 degrees. Most of the 

total angle was on one side of the corner, namely, on the wall spanning A1-D1 where the failure 

occurred (discussed in Section 4.2). The angle of the other wall (A1-A4) at the point of failure 

was 3.7 degrees, while the angle along wall segment A1-D1 was 11.6 degrees. (The two different 

angles were calculated using the deflection from each wall based on the assumption that the 

entire corner did not twist. This observation is supported by the photographs in Figure 7.1.) 

 

Figure 7.3 - The full angle of opening of the North West corner during the test with no brick veneer. 

 

 

Figure 7.2 - Corner angle calculation drawing 
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7.2 Corner Rigidity with the Brick Veneer Present 
 No catastrophic failure of wall A1-A4 occurred during the tests with brick veneer in 

place; meaning no breaking of the top plate, falling brick or detachment from interior walls. 

However, the wall failed by the definition of being unable to resist more load. At an applied 

torque of 16.0 kNm, the load carried by the wall dropped significantly while the angle increased, 

suggesting the maximum capacity of the wall had been reached - as can be seen in Figure 7.4 

Figure 7.4 only shows half of the total angle, the opening of wall A1-A4, the total angle was not 

calculated due to a malfunctioning strain gauge which rendered accurate total angle calculation 

impossible. The strain gauge on the North side of the corner (wall A1-D1) malfunctioned and did 

not produce any useable data, thus the opening angle of that corner could not be calculated. 

  

 

Figure 7.4 - Applied torque - opening angle curve for the corner on wall A1-A4 during the full house test. 
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7.3 Comparison of Corner Stiffness with and without brick veneer 
 Comparison between the two tests was only performed for the corner at A1 with respect 

to the wall spanning from A1 – A4 (North end of the West wall). This comparison is shown in 

Figure 7.5. At the failure load from the tests without brick veneer (7.5 kNm), the angle θ was 3.7 

degrees. The angle theta for the corner with brick veneer at a load of 7.5 kNm was 1.0 degrees. 

Thus, the deflection without the brick at that point is 3.8 times greater than the deflection with 

the brick.  It can also be seen that the maximum load resisted by the corner effectively doubled 

from 7.5 kNm to 16.0 kNm from with no brick veneer to with brick veneer respectively. Thus, 

the brick veneer adds considerable stiffness to the corner by reducing deflections at equivalent 

loads. This increase is due to the stiffness of the brick corner, which behaves similar to a fixed 

corner, allowing little rotation and opening and preventing the wood frame from being able to 

open. 

 

  

 

Figure 7.5 - West side of the North corner response comparison with and without the brick veneer. 
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7.4 Conclusions 
It was observed that the presence of brick veneer around the circumference of the house 

significantly increased the capacity by reducing the wall deflections. In particular, the 

experimental results show that the presence of brick veneer provided a significant increase in the 

strength and stiffness at the corners. The brick veneer increased the rotational resistance of the 

corner. The effect of this increase was shown in equation 6.1; basically decreasing maximum 

displacements by up to 60%.  At the load causing wall failure, the included angle at the corner 

without a brick veneer was observed to be almost a factor of 4 higher than when the brick veneer 

was present. 
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Chapter 8: Second Floor Diaphragm Effects 

8.1 Wall Deflections at Location B1 
A vertical line of LVDTs was installed at B1 spanning from the second floor to the top 

plate as indicated by the markers in Figure 8.1; spaced approximately every 600mm up to a 

height of 2400mm. This line of LVDTs happened to be placed directly in line with the location at 

which the top plate failed catastrophically in the tests without brick veneer. Analysis of this line 

of displacement transducers showed the wall to be rotating about the connection between the 

wall base and the second floor, as shown in Figure 8.1. The responses for 3.8kN and 4.55kN do 

not show the reading from the displacement transducer at the top of the wall because it ran out of 

travel and so provides no more useful data past this point. In all cases, 0mm of displacement is 

assumed at 0mm of height because of the linear response over the bottom half of the wall as well 

as from experimental observations. The bottom two LVDT readings have an average ratio of 

1.98 for the displacement quotient from the LVDT 600mm and 1200mm off the floor. There is 

very little variation in that ratio, with a standard deviation of 0.03.  

 

Figure 8.1 - Profiles of the North Wall deflection at different loads 
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Figure 8.2 - Second storey floor-wall connection post failure 

 

The data shows a significant increase in the displacement from the LVDT located at 

1800mm to the LVDT on the top plate (2400mm). Because the wall is rotating outwards about 

the bottom and not bowing outwards with a local maximum in the middle – as it would if the top 

plate was attached to a firm diaphragm. 

 

8.2 Removal of Wall at F10 – J10 
Another argument for separate treatment of the first and second stories is the attachment 

of the base of the second storey wall to the second storey floor. The base was nailed into the top 

of the floor, creating a pin-like connection. Figure 8.2 shows a close up of the floor – wall 

connection after from the exterior wall between F10 and J10, after the catastrophic failure of this 

wall occurred. A gap can be seen under the wall (“A”) in the area where it has rotated away from 

the floor. When the wall was removed, no damage to the second floor was observed. It was 

found that the floor-wall connections were nailed between the wall framing and the wood floor, 

and would primarily resist horizontal movements of the wall base. This meant that deflections 

and rotations of the wall pulled the nails straight out of the floor with limited resistance. 

A 

Inside of Exterior Wall 

 

Second Floor 
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 If rotational resistance was installed, it would 

decrease the top plate displacements, in a way shown in 

Figure 8.3, where F represents the deflected shape of a 

vertical member with a fixed connection, and P represents 

the deflected shape with a pinned connection. Even partial 

fixity, which could be provided by something as simple as 

a Simpson Strong-Tie, would increase the rotational 

resistance. 

 

8.3 Conclusions 
 There was no visible damage or deflections on the first floor after the tests were 

completed. This shows how the second floor was effectively resisting deflection as well as 

allowing the load to distribute across the house and facilitating a load path down to the ground 

which was free of load concentrations which may cause damage. Meaning a better wall-to-floor 

connection on the second floor would have resulted in a higher overall resistance. This result is 

unique because most other full scale testing of houses was not able to continue applying load in a 

controlled manner under such significant displacements. Most often testing would stop after the 

peak load was sustained because this is the most interesting point for failure loads, as is used for 

the failure wind speeds during the next chapter. The testing in this thesis allowed a unique 

perspective on the later stages of the failure and the mechanics of the failure – such as the second 

storey wall rotating off of the first storey.  Results from this testing concerning what happens 

during failure and specific failures provide an interesting insight which allows for more specific 

recommendations on increasing the strength of residential construction. 

 

Figure 8.3 - Deflection difference due to 

fixity. 
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Chapter 9: Analysis of Failure Wind Speeds 
 Using the wind load coefficients from the ASCE 7-10 (2010) and NBCC (2010) and the 

failure pressure from the tests, the wind speeds associated with the observed failures will be 

calculated. Then, these wind speeds will be compared with the expected wind speeds from the  

Enhanced Fujita and Fujita scales for one- and two- family residences for degrees of damage six 

and seven.  

It is important to note that the wind speeds calculated are straight line wind speeds and 

not tornado winds. Tornado winds have increased temporal and directional variation; they also 

tend to have a significantly shorter duration than other high wind events. However, design codes 

to not have specific tornado wind design requirements and use wind loads as calculated in 

sections 9.1 and 9.2. Limited knowledge is available about exactly what winds are occurring 

inside a tornado due to a lack of actual measurements and that each tornado is not the same size, 

shape and intensity, so it is impossible to truly know exact failure wind speeds in a tornado. 

However, using the design wind speeds from recognized standards will give an appropriate and 

applicable range of wind speeds. 

9.1 ASCE7-10 Wind Speeds 
 Using the (GCp) values for wind pressures on a building in the area that failed (side 

walls), a wind speed was calculated. The structure was considered normal importance, while all 

of the other adjustment factors were calculated as per ASCE7-10 as if the structure was in open 

terrain
5
, noting the a directionality factor, Kd of 1.0 was used, to correspond with the worst 

possible wind direction. Wind speeds were considered with the structure in both open and in 

suburban terrains. Equation 9.3 shows how the calculation was performed when including 

                                                 
5
 Open terrain: “level terrain with only scattered buildings, trees or other obstructions, open water or shorelines.” 

Ontario Building Code 2010 4.1.7.1 (5)(a) 
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internal pressures, with the results summarized in Table 9.1. The calculated failure wind speed 

based on the measured failure pressure in open terrain was 62.2m/s neglecting the internal 

pressure coefficient and 46.6 m/s including the internal pressure coefficient, GCpi = +/-0.55. In 

suburban terrain the failure wind speeds were 70.6m/s and 52.8m/s, not including and including 

internal pressures these results are included in Table 9.1. 

 ̂                   √
          

                   
               

9.3 NBCC 2010 Wind Speeds 
Using a similar procedure that was adopted for ASCE7-10, the wind speed corresponding 

with the failure pressure observed was calculated. Equation (9.4) shows the procedure used to 

calculate the NBCC design wind pressure (q), and Equation (9.5) to change from wind pressure 

to wind speed. NBCC wind speeds are 10m, mean hourly wind speeds, and so are translated into 

10m, 3 second gust speeds using Equation (9.6). The ratio for changing from mean hourly to 3 

second gust speeds comes from the Durst curve (ASCE 7-10, 2010). The wind speeds were 

calculated considering internal pressures and not considering internal pressures. When 

considered, the internal pressure coefficient was +/-0.7, as if the house was partially enclosed. 

Partial enclosure of the house was chosen to generate the largest range of wind speeds and 

simulate the worst case scenario, as if several windows or doors were open or broken which is 

quite possible to occur. The house was considered in both open and suburban terrain. The 

calculated 3 second gust failure wind speed using NBCC 2010 with the house in open terrain was 

64.6m/s when not considering internal pressures and 46.5m/s when internal pressures are 

considered; in suburban terrain the wind speeds were 73.3m/s and 52.7m/s. These results are 

included in Table 9.1. 
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Table 9.1 - Comparison of Failure Wind Speeds 

Wind Speed Calculation Method Failure Wind Speed (m/s) 

ASCE 7-10 

Open Terrain 
Cpi=0.55 46.6 

Cpi=0 62.2 

Suburban Terrain 
Cpi=0.55 52.8 

Cpi=0 70.6 

NBCC 2010 

Open Terrain 
Cpi=0.7 46.5 

Cpi=0 64.6 

Suburban Terrain 
Cpi=0.7 52.7 

Cpi=0 73.3 
 

 The two codes produce highly similar but not identical results for each situation. 

Differences between the two codes come from underlying methodology in the calculations such 

as the incorporation of 3 second gusts in ASCE 7-10 and requiring a post calculation translation 

to 3 second gusts in NBCC 2010. The open terrain situations have lower design wind speeds 

because there is less turbulence and less disturbance of wind flow along the ground, so higher 

wind speeds closer to the ground. This changes the overall wind speed profile to create higher 

loads lower down on the structure. To account for the increased roughness along the ground in 

suburban terrain, the 10m wind speed required to produce the same forces are therefore higher.  
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9.4 Fujita Scale Comparison 
 The failure wind speed was found to be in the range between 46.5 m/s and 73.3 m/s. This 

relates to a tornado which would be rated from upper end of EF1 to the top of EF3 to cause 

failure of the exterior walls. For the Fujita scale, the building would be expected to fail in the 

range from the upper end of an F1 tornado up to the lower end of an F3 tornado. In relation to 

degree of damage six and seven for FR12, the expected wind speeds are 46.5-63m/s and 50.5-

68.4m/s respectively. These wind speed ranges are completely encompassed by the wind speed 

required for failure of the IRLBH test house, suggesting the test house performed as would be 

expected. If the IRLBH test house is a good representation of typical Canadian house 

construction, it is a good indicator the EF scale is a reasonably accurate regarding wind speeds 

required to cause wall collapse of brick-clad houses. For vinyl-clad walls, the failure wind speeds 

would be lower. 
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Chapter 10: Building Code Loads and Tornado Design 

Recommendations 
 This chapter presents the design wind loads from the National Building Code (NBCC, 

2010) and compares these to house performance. Potential changes which could be applied in 

order to prevent these failures from occurring are also discussed.  

10.1 NBCC 2010 Design Wind Pressure 
 Design of houses is based on Part 9 of NBCC, which is a prescriptive standard. The 

NBCC design wind pressure was calculated for this type of structure using Equation 10.1, which 

corresponds to the wind load calculation procedure presented.  

                                        

To perform this calculation, the following assumptions are made: where Iw is the importance 

factor, q is the reference pressure, Ce is the exposure coefficient and Cp and Cg are the pressure 

and gust coefficients respectively, found in the building code commentaries 

- Normal importance (Iw=1.0) 

- Roof in place, because this is consistent with the design of the structure. 

- Suburban terrain (Ce) 

- Structure located in London, where the reference pressure is 0.79kPa 

- The structure is category 1 for internal pressures, with few openings (windows sealed).   

- The pressure (p) is multiplied by the ultimate limit states factor of 1.4. 

The design pressures for the different walls are shown in Table 10.1. It is important to note that 

each wall requires designing for the worst positive and negative pressures. Because the structure 

is small, the edge zones of the walls encompass the entire wall, so the edge zone values apply 

across the full wall width. 



74 

 

Table 10.1 - Factored design pressures 

  
Factored Design Pressure 

(kPa) 

Windward Wall 0.63 

Side Wall -0.59 

Leeward Wall -0.59 
 

Given these design pressures, the tests indicate clearly that the walls without roof met or 

exceeded the design requirements when the catastrophic failure occurred, the first at a pressure 

of -1.5 kPa. Thus, the walls of a brick veneer, double-top-plate wood-frame house will most 

likely not fail at the ultimate code wind pressures specified by the NBCC. This implies houses 

constructed to code in Ontario are significantly stronger than what is specified by the minimum 

wind load requirements. 

10.2 Tornado Resilience Design Recommendations 
 The recommendations presented herein are intended to be easily implemented and 

inexpensive to apply in order to improve the resilience of wood-frame houses to tornadoes: 

1) Ensure adequate double top plate member overlap to increase the strength of top plate 

connections: this can be accomplished by either of the following methods. 

a. Regulation of the overlap of the two members in a double top plate. 

Specifically requiring a minimum distance between an interior to exterior wall 

connection and the end of the lower top plate member. This will prevent large 

wall rotations and increase shear force transfer between the two top plate 

members. As a result the walls will be stronger. This change requires no 

additional construction materials and thus would be inexpensive to implement.  
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b. Required placement of metal connection plate (such as a Simpson Strong Tie 

mending plate) on top of top plate connections. This would increase the 

transfer of forces between the joints in the top plate. 

2) Stiffening of long unsupported walls: Large local deflections were observed in the 

longest unsupported wall spans. The length of wall at which this becomes critical is 

unknown, however, and requires further research. The following two alternatives can 

achieve this goal: 

a. Placement of additional studs and a third top plate member. This will increase 

the overall stiffness of the wall and create a stronger load path. 

b. Mid-span lateral bracing of the top plate. Installation of a tie running through 

the ceiling which provides lateral bracing and stability to the top plate 

member, creating a load path midway through the wall reducing maximum 

moments and shear forces. 

3) Increase the strength of interior to exterior wall connections: This inexpensive change 

would increase the overall strength of an exterior wall. Interior walls provide a load 

path for wind-induced shear forces travelling through the exterior wall. Installation of 

Simpson Strong Ties at each connection; this would require very little effort or 

expense complete. 

4) Extension of brick veneer around front corners: Change the relatively common 

practice of installing a brick veneer on the front of a house only. As has been clearly 

shown, brick extended around the corners would significantly increase the strength 

and stiffness of the corners and the adjacent walls. If it is impractical to extend brick 
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around the corners, specifically for the back corners where both sides of the corner 

are vinyl clad, stiffening of the corner framing would also provide a strength increase. 

5) Increase the Stiffness of the Back Corners: Because many houses are constructed with 

vinyl siding on the back and sides, it is fairly impractical to suggest brick veneer be 

installed around the back two corners and not the remainder of the house (which 

would be expensive and time consuming). Instead, the addition of metal angles, wood 

beams or other ways to increase the stiffness and opening resistance of the back 

corners would positively effect the overall house strength. 
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Chapter 11: Summary of Conclusions and 

Recommendations for Future Work 

11.1 Conclusions 
 In the research reported in this thesis, two tests have been performed on a two storey 

house: the first with the brick veneer in place, the second without. The house was loaded to 

simulate uniform wind pressure with positive pressure on the windward wall, and negative 

pressures on the side and leeward walls. Three catastrophic failures were observed and the 

mechanisms involved were analyzed.  Based on these observations and analyses, the following 

conclusions can be made: 

1. Small, inexpensive changes to the construction of residential structures would cause a 

significant increase to the ultimate strength of individual walls and the structure as a 

whole. These changes are all intended to maintain a continuous load path and prevent 

local failures that disrupt the load path. The changes include: controlling double top plate 

member overlap, increasing interior to exterior wall connection strength and extending 

brick veneer around corners or significantly increasing the rigidity of corners. 

2. The observed loads causing failure of the test specimen correspond to wind speeds that 

considerably exceeded the NBCC 2010 design wind speeds. Although the structure is 

more vulnerable to collapse after failure of the roof, the walls of the two-storey test 

specimen were able to resist larger wind forces than is required by these design codes. 

3. Exterior wall failure after roof loss appears to require an EF-3 tornado with the wind 

speeds reasonably consistent with DOD-7 in the EF-Scale. 

4. If no basement or safe room is available, small windowless rooms on lower floors will 

provide the safest refuge during a tornado. While the walls on the upper floor were 



78 

 

experiencing significant deflection and catastrophic failures, the lower floor walls did not 

noticeably deflect and were not significantly damaged. As loads increased, local 

deflections of unsupported walls occurred because the unsupported wall did not have 

sufficient stiffness. Hence, smaller and lower floor rooms are much safer in a tornado 

because local deflections of the walls are less likely and so the lower floors are safer. 

11.2 Recommendations for Future Testing 
 There are several projects, which if undertaken would allow for refining of the building 

code  recommendations as well as increasing the accuracy of the failure wind speed estimates.  

1. Finite element modeling of the house and exterior walls. Because the failure mechanisms 

are now better known, the model can easily be verified for accuracy. A finite element 

model would allow for variation of the construction practices – changing the strength of 

connections due to poor or perfect construction for example. Allowing for generation of a 

more accurate range and distribution of wind speeds expected for this level of damage. 

This would increase the accuracy of damage surveys and wind speed estimates. 

2. Examine the effectiveness of top plate overlap changes. Test top plates in flexure to 

simulate the bending observed in the full house tests. By changing the overlap of the two 

top plate members, an optimum overlap for strength could be determined. As well, the 

effect of changing the number and/or placement of shear connectors could be examined. 

3. Examination of the extension of brick veneer. Test wood and brick corners to determine 

the distance around a corner a brick veneer needs to be extended to get the optimum 

resistance to opening and deflection resistance. As well, the examination of alternative 

methods to stiffen the corner without the application of brick veneer, this is especially 

relevant to the corners at the rear of the house. 
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4. Examination of potential methods to stiffen long unsupported walls to reduce local 

deflections. To determine if an additional top plate member or additional wall studs could 

significantly increase out of plane wall stiffness.  
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Appendix A: New South Wall Top Plate for the House Test 

with No Brick Veneer 
 For the house test with no brick veneer, it was required to install new members to 

simulate the stiffness of a top plate along wall A10-J10. Because the wall was destroyed in the 

full house test, the exterior wall A1-A10 had very little stiffness. In order to be able to perform 

an accurate test (specifically on the A1 corner) new stiffness was needed. A long wood beam 

was installed where wall A10-J10 used to run. This provided the required stiffness, it is shown in 

Figure J1. 

 

Figure J1 - The false top plate installed at A10-E10 to increase the stiffness of wall A1-J1. 
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Appendix B: Cable Tension Strength Test 

June 25 2013 11h00 
 

A 3/8” Galvanized steel wire rope with two swaged loops (Figure G1) was tested in tension until 

failure. The purpose of this test was to determine the ultimate tensile strength as well as the 

strength of the swaged connections relative to the expected ultimate strength of the cable. The 

listed breaking strength of the wire rope is 14 400lbs and the swages are recommended to be 

considered to have 80% of the ultimate strength of the cable. The wire rope construction is 7x19 

and was shipped from WebRiggingSupply.com in the USA. The experiment was run in the 

structures lab at the University of Western Ontario (UWO). The load was increased until failure 

of the cable occurred. The setup is shown in Figure G2.  

 

Figure G1 - The tested cable post failure 

 

Figure G2 (LEFT)  - The experimental setup. Figure G3 (RIGHT) - Bottom of experimental setup, showing how the loop 

was held in place 
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Results and Discussion 

Failure Load: 56.4 kN (12 600lbs) 

Loading Rate: 6 MPa/min 

 Failure occurred by slippage of the upper wire through the swage (as shown in Figures 

G4a and G4b), this failure mode was sudden and caused an instant relief of the applied load. At 

this point no further loading was applied. While sudden, this failure did not cause total failure of 

the cable, which is good for safety of the experiment. However, it is likely that total failure of the 

cable would occur very shortly after this initial failure. 

 

Figure G4a (LEFT) - An unfailed swaged cable connection .         Figure G4b (RIGHT) - The swaged cable connection 

post failure 

 

Conclusion 

 The failure load is 87.5% of the breaking strength of the cable, which is a higher result 

than expected based on information provided by the swag company.  The maximum tensile load 

expected in any individual cable is 15kN (3350lb), thus meaning the connections have a factor of 

safety of 3.64.  
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Appendix C – Load Equalization Setup 
The load which was applied by one come-along was ensured to be equally divided among the 

four load pads by the usage of pulleys at the separation points, as shown in Figure H1. One 

cable, called the primary loading cable which goes from one load pad, out to the separation 

beam, through a pulley and back to another load pad on the house. Pulleys were used at each of 

the cable splits instead of just loops because the tension in the cables coming out of each sides of 

the cables is always equal, so when the geometry changed during the experiment the loads 

applied to the walls remains uniform. Figure H1 shows a sketch of the setup from where the 

tertiary cable comes down from the come-along and pulley array to where the four different 

cables go to their respective locations in the house.  

 

Figure H1 - Sketch showing the general pulley and cable arrangement to equally split the load across four load pads 
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Figure 2 - Cable Separation point from primary loading cable to secondary cable. 
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Appendix D– Strain Gauge Calibration Test 
 The strain gauges required calibration in order to determine the loads corresponding with 

various strain readings. A test was set up as shown in Figure F1, up to four load cells (with strain 

gauges attached) were put in series with a come-along and a digital load cell. The load was 

increased by tensioning the come-along. The strain readings were recorded over a period of 10 

seconds at 200Hz at four different loads. 10 seconds was used to capture enough data points to 

see any changing load, while avoiding any possible drift or small plastic deformation of the load 

cells due to loading before the real test. The load shown by the digital load cell was recorded for 

each time strain readings were recorded. 

 Using the four points, average strain readings were plotted against the load and the data 

fit to a straight line. The data was fit to a straight line because the loads applied were within the 

linear-elastic range of the load cells. As expected, the data from each gauge fit almost perfectly 

to a straight line, with r
2
 values in the area of 0.999 helping to confirm correct setup and good 

testing procedures. Two strain gauges were attached to each load cell, one on each side. This 

provided a backup if one of the gauges failed during the experiment as well as could record any 

bending of the load cell during loading. 

 

Figure F1 - Strain gauge calibration test setup. From left to right, come-along to apply load, three load cells and 

digital load cell. 
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Figure F3 - Strain readings and line fit for strain gauge "1", to show the accuracy of the line fit. 
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Analysis of the data showed great consistency in the slope of the load-strain lines, but 

differences in the intercepts. This difference is due to differences in the wiring, soldering, etc. 

Plots from eight of the strain gauges are shown in Figure F1, only eight of the strain gauges plots 

are shown to keep the Figure from becoming too convoluted. The data shows that if the strain 

readings at zero load are removed from the strain reading, all the load cells give consistent and 

accurate data. When full house experiment was conducted, the loads around the house were able 

to be accurately controlled and the data properly analysed because of the know zeros and 

calibration data for the load cells/strain gauges.  
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Appendix E– Reaction Frame Movements 
 An important consideration for the validation of the displacement measurements taken 

was the movement of the reaction frame, which most of the LVDTs were mounted on. LVDTs 

were mounted on a wood frame built outwards from a different steel frame (not attached to any 

other parts of the experiments, see Figure D1) to read any movements in the reaction frame 

during the experiment. The results showed insignificant movement of the reaction frame in both 

the North-South and East-West directions. Figures D2 and D3 show time histories of the reaction 

frame movements over the course of the full house test. 

 

 

 

 

Figure D1- Built frame for recording reaction frame movements 
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Figure D2 – East – West movements of the reaction frame. 

 

 

Figure D3 – North-South movements of the reaction frame. 
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Appendix F: Movements of the Base of the House 
 The base of the house was connected to concrete curbs by either load cells or wood 

blocks. Before the test, it was thought that the net load on during the full house test may cause 

lateral movement of the entire house. Any lateral movement of the base of the house would 

cause erroneous displacement readings at the top plate. To check for movements, LVDTs were 

placed at each corner at the base level of the house, as shown in Figure C1. There were no 

significant movements of the base of the house during the experiment; this is shown in Figures 

C2-C10, which show the time history plots for the house base LVDTs. Some of the plots appear 

to drift, which may be indicative of house movement. However, the maximum of any of these 

movements is 0.3mm, which is insignificantly small, between 0.2 and 1% of maximum 

displacements in the experiment. 

 

Figure C1 - A base LVDT located facing North at the South West 

Corner. 
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Appendix G: Gable Beam 

Rotation 
 During the experimental setup, it was 

noted that if the drop down steel beams for 

the second storey positive whiffle trees 

moved at all, there was noticeable twisting in 

the gable beam they were attached to on the 

reaction frame. This was a potential problem 

because some of the LVDTs measuring 

interior wall movements were mounted off 

of this gable beam and if the beam rotated, it 

would cause a change in the displacement 

reading of these LVDTs. To compensate for 

this, an LVDT was placed at the midspan of 

the gable beam, measuring any rotation of 

the beam – Figure E1. Some rotation was 

measured throughout the experiment (see 

Figure E2). This rotation requires great care 

to be taken when observing the displacements from any LVDTs mounted off of this gable beam. 

The entire interior wall LVDTS were mounted off of wood frames mounted between the rotating 

gable and the next gable along (not rotating). Based on the rotation and the lever arm for the drop 

down wood frame, an estimate of the rotation induced displacement can be made, which makes 

the interior wall LVDT data usable for analysis. In Figure E3, the gable rotation (in mm) is 

compared with the interior wall LVDT IS8 reading. This LVDT was located at the top of the 

 

Figure E1 - LVDT dropping down from higher up on the 

reaction frame to record gable beam rotations. 
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stairs on the inside of the house, mounted off of the gable beam very close to where the rotation 

was measured. It is apparent from the Figure that the displacement reading of IS8 is directly 

correlated to the rotation of the gable beam. Because IS8 is mounted on a longer lever arm which 

would cause a larger displacement under the same rotation, the reading or IS8 was divided in 

half and the plotted against the rotation of the gable beam, this is shown in Figure E4.  The IS8 

reading was chosen to be divided in half as opposed to a fraction with a closer correlation to the 

different in lever arms because the wood beam dropping down from the gable beam is not 

perfectly stiff and is braced, so when the gable beam rotated, some of that rotation was absorbed 

by the beam itself. There were no measurements on the curvature of the wooden beam, so an 

accurate factor cannot be determined. From observing Figure E4 as well as what occurred during 

the experiment, it would appear that the interior walls at that point did not move at all. 
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Figure E2 - Time history of Gable Beam rotation. 

 

 

Figure E3 - Time history of IS8 and Gable Beam rotation. 
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Figure E4 - Half of the IS8 displacement reading compared with the Gable Beam displacement reading. 
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Appendix H: Justifying Accuracy of Data – Full House Test 
 Several steps were taken to ensure that the data used for analysis was accurate as well as 

consistent. Specifically, ensuring that the data set used to zero the loads and displacements were 

correct and did not drift during the experiment. The equipment used for data acquisition was 

turned on the day before the experiment and left running overnight and through the day until the 

experiment was completed in order to reduce electronic drift.  

 Zero readings were acquired at 09h30, 11h40 and 14h30 on the day of the experiment to 

allow for the observation of any long term drift of the equipment due to temperature changes, 

electronic drift, or any other factors. The experiment took place between 18h30 and 20h20. 

There were no usable zero readings between 14h30 and 18h30 due to adjustments and fixes 

being applied to the rigging during this time; so at no one time was the entire house completely 

unloaded. Temperature changes appeared to cause a significant difference in the data for the load 

cells, this overall trend is shown in Figure A1 which shows the normalized hourly temperature 

compared with the average normalized zero strain gauge readings.  

 

Figure A1 - Normalized Hourly Temperatures and Normalized Average Zero Readings 
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Load Cells/Strain Gauges 
 The load cells were made of aluminum and had one strain gauge attached to each side 

(see Figure A2). Each gage was wired separately (named A and B sides) so that in the event of 

the failure of one strain gauge, there would still be usable load readings from that load cell.  

  The aluminum is subject to thermal expansion and contraction; this would cause a 

difference in the strain reading of the DAQ. Equation A1shows the strain caused by a 

temperature difference. Each of the strain gages was connected to the DAQ in a quarter 

Wheatstone bridge setup. The voltage reading change expected with this setup is shown in 

equation A2. Hourly temperature data for the experiment day (Environment Canada) was used to 

determine the temperature at each time when a zero reading was taken. By application of the 

equations, the strain and voltage change for the DAQ could be calculated (table A1). 

                              

             [  ⁄   ]      
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Figure A2 - Aluminum load cell with strain gage attached. 
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Here Vo is voltage reading, VEX is excitation voltage (6.25V) and GF is the gauge factor (2.1). In 

the table, the initial strain is set to zero because that is the initial zero reading. The change in 

temperature occurs between each of the zero points. Temperature readings were linearly 

interpolated from data taken at the start of every hour. 

Table A1 - Change in temperature and corresponding expected voltage changes for the 

three zero readings 

Time 
Temperature 

(°C) 
Ɛ Vo 

09h30 19.35 0 0 

11h40 22.80 0.0121 0.0392 

14h30 24.90 0.0194 0.0623 

 

The temperature effects of strain readings would cause an increase in the zero strain 

readings as the day progressed. This trend is visible in Figure A3, which shows the normalized A 

side strain gauge reading for all the load cells. All but one strain gauge (East South Lower) show 

a similar trend and similar normalized values, this strain gauge is discussed in detail later.  To 

account for the thermal strain in the zero readings, the expected change in voltage was scaled 

according to the scale used for the output data from the DAQ (100, for readability purposes) and 

then subtracted from the output strain data. The results show significantly less drift upward drift, 

and instead show much less change in the zero strain values as time progresses (Figure A4). 

There is one exception; the strain gauge on the North West Upper B side, which shows 

significant downwards drift across the zeros, this strain gauge is discussed in detail later. The 

average normalized drift at each time in 0.98, 0.96 and 0.97 for 09h30, 11h40 and 14h30 

respectively, strain values were normalized due to the differences in zero values. The zero values 

for the different strain gauges varied very significantly. This variance is not a problem as it is due 

to wire length variation and other similar factors. Normalization allows for a direct comparison 
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between all the different strain readings. These are very small drift values and represent an 

insignificantly small difference in the load being applied to the house; the average of the 

maximum difference
6
 at each gauge being 0.16kN, representing approximately 2% of the 

average maximum applied loads.  

 

Figure A3 - Normalized strain gauge readings for all zero points. 

                                                 
6
 Maximum difference between zeros: the maximum zero value minus the minimum zero value observed by that 

strain gauge. 
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Figure A4 - Zero strain readings when thermal strain is accounted for 
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Figure A6 - East South Lower setup before the morning zeroing 

 

East South Lower Strain Gauge 

The strain gauge located on the East South lower A side had an initial normalized zero 

reading of 0.574, while the zero readings on the B side of the same load cell had normalized zero 

readings for the second and third data sets of 0.626 and 0.670. This change is shown in Figure 

A5 caused suspicion that something had occurred between the 09h30 zeroing and the 11h30 

zeroing to cause a significant change in the strain on this load cell.  

 

Figure A5 - Original normalized zero strain readings for the East South Lower load cell. 

 From the data it would appear 

that the data from the A side started 

recording to the B side channel and vice 

versa. There is no evidence to support 

this hypothesis. However, notes from the 

day of the experiment suggest a potential 

source of the problem. Figure A6 shows 
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the lower East South strain gauge in its setup before the 09h30 data zeroing. As part of the final 

setup between the morning zeroing and the next zeroing, the wooden load pad had its location 

adjusted to remove a geometric problem with the cable rigging. Instead of the load cell passing 

overtop – as shown in the photo, it was moved to pass underneath the load pad instead. This 

switch did not change the loading being applied to the walls of the house (0kN). However, it did 

change the bending stress on the load cell, from one side to the other. When the first zeroing data 

point is swapped from each side the resulting normalized data is highly sensible compared to the 

remainder of the strain gauges (see Figure A7). The first zeroing data point is switched to 

simulate the same bending stress on each side for the 09h30 zeroing as is observed for the 11h40 

and 14h30 zeroings. The data shown in Figure A7 has not had thermal strain accounted for, when 

accounting for thermal strain, the readings have even less variance from the first – last zeroing. 

 

Figure A7 - Zero strain readings for Ease South lower load cell when the first zero point is switched. 
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North West Upper Strain Gauge 

 

 

 When the strain gauge zeros on the North West Upper load cell are adjusted for 

temperature, the normalized value from the B side drops from 1.00 at the 09h30 zeroing to 0.81 

and 0.80 at the 11h40 and 14h30 zeroings respectively. The strain gauge on the A side of the 

North West Upper load cell did not function correctly and so provides no usable readings. A 

potential explanation for why the zero strain readings trended downwards instead of upwards is a 

fix which was applied to the load cell at 13h20. This load cell had pulled tight up against a 

horizontal beam on the react frame (see Figure A8), and it was expected to cause problems 

during the running of the test. A quick fix solution was performed by encasing the load cell in a 

‘PVC tube, which was allowed to slide along the beam while preventing bending of the load cell 

(Figure A9). This does not explain why the zero changed between 09h30 and 11h40, as the fix 

Figure A8 - North West Upper Load Cell After 

Adjustment, before PVC fix 
Figure A9 - North West Upper Load Cell After PVC fix 



A28 

 

was applied after. It was noted in the experimental log that the North West Upper load cell was 

giving odd readings at 12h11, before the PVC fix was applied.  

When the strain from this load cell during the experiment is examined, it appears to 

increase in appropriate intervals based on the established linear load-strain relationship. This 

suggests that the gauge was functioning properly after the fix was applied. In order to be able to 

attain usable loading information for this portion of the house, the zeroing will be done in the 

same manner as for all the other zeros; using only the final zeroing data and disregarding the first 

two zeros as inaccurate.  
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Thermal Adjustment of Strain Zero Readings to Acquire 

Experimental Zeros 
 Due to the insignificance of the difference in zero strain readings between all three 

zeroing times after an adjustment for thermal strain has been performed, the zeros from 14h40 

will be used as the actual zeros for the experiment. These zeros are being used because 14h40 is 

when the maximum exterior temperature is reached. After this point, the temperature inside the 

laboratory building did not cool down. Therefore, these are the most accurate zeros to use for the 

experiment. Figure A10 shows the forecast change in normalized strain (average across all 

channels) based on the hourly temperatures and associated thermal strain in the load cells.  The 

forecast normalized strain shown is following the outside temperature. As previously noted, the 

indoor temperature trend did not follow the outdoor temperature trend after the maximum 

temperature was reached, so following the forecast normalized strain would end up reducing the 

strain and load readings too much and give lower than actual loads. 

 

Figure A10- Temperature Adjusted Normalized Strain 
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 The average normalized zero strain readings around the experiment time are shown in 

table A2. There is a change in the normalized zero strain reading over the course of the 

experiment. To account for this and maintain the accuracy of the strain readings used, the strain 

data will be zeroed using linear functions (equation A3). This allows for the most accurate 

calculation of the loads throughout the experiment. The final zeroing time will be used as the 1.0 

normalized values, and values will be calculated off of that. The equation shown uses expected 

changes a linear interpolation between each hour of the actual expected change in strain reading 

(voltage). This is because the change in strain will be the same across all load cells, so the 

equation will be applicable to all. 

                               
 

    
                   

    
                        

                              
 

    
                   

    
                     

                                
 

    
                   

    
                     

Table A2 - Average normalized zero strain due to thermal effects. 

Time 
Normalized 

Strain 

18h00 0.960 

19h00 0.932 

20h00 0.916 

20h30 0.912 
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Displacement Transducers 
 Most displacement transducers were mounted off of the galvanized reaction 

frame, which has a high coefficient of thermal expansion. Due to the setup of the laboratory 

building, fairly large temperature differentials were experienced over the course of the day on 

which the experiment was run. Thus, it was expected that there would be differential expansion 

of the reaction  frame because it is not fully symmetrical.  Figure A11, shows that almost all of 

the displacement transducers have a drift of less than 2mm. With the scale of the experimental 

deflections, this amount of drift is acceptable. Some displacement transducers have significantly 

larger drift and must be addressed. These transducers are: West North 9, East North 8, North 

East 5 and East North 4.  

 

 

Figure A11 - Drift in displacement transducers in mm 
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Table A3- Zero displacement 

data for WN9 

Time 
WN9 Reading 

(mm) 

09h30 10.534 

11h40 19.455 

14h30 19.223 
 

 

Figure A12 - Displacement Transducer WN9 

 

 

West North 9 

 Located at the bottom of the West side of the house, at the North end, this displacement 

transducer records 

movements of the foundation; 

it is shown in Figure A12. Its 

zero data is shown in table 

A3. 

 The final two 

readings are very consistent, 

but the first reading is not. It 

is expected that the 

displacement transducer or stand was adjusted slightly during the final walk around/displacement 

transducer check, which was performed at 10h20 – between the first 

and second zero readings. To account for this, the first zero reading 

will not be used for this displacement transducer. This is acceptable 

because of the steadiness of the readings of the other displacement 

transducers which worked for all three zeros. Using only two zero 

points (which are consistent) is not expected to have a significant 

effect on the experimental results. 
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Figure A13 - Displacement Transducer North East 5 

 

Table A4 - Zero readings from 

North East 5 

Time 
NE5 Reading 

(mm) 

09h30 3.170 

11h40 6.750 

14h30 3.699 
 

 

Figure A14- Close up of the DT connection 

to the metal plate at the base of the house 

 

North East 5 

 This displacement transducer was located at the East end of the North side of the base of 

the house. Figure A13 shows the transducer and its connection to the base of the house. As 

shown in table A4, the displacement readings at 09h30 and 14h30 are consistent with each other. 

However, the reading from 11h40 is significantly different. It is suspected that the angle of the 

displacement transducer (DT) may have been adjusted slightly. As can be seen in Figure A13, 

the DT was on a slight downwards angle, just below an amount of hardened wood glue (close up 

shown in Figure A14).  One explanation for the reading change 

is that the transducer was adjusted to be level during the final 

walk around at 10h30, which then would have it contacting the 

hardened glue, but it slipped off sometime between 11h40 and 

14h30.  

For this displacement transducer, the final zero point will be used as the zero value. It is 

important to note that because of this DT’s location, its main function is to ensure that there was 

not movement of the foundation of the house. As the value of read by the displacement 
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transducer remained constant throughout the experiment and the evidence suggests no drift of the 

displacement transducer readings over time, the final zeroing value is acceptable to use as a zero 

for this transducer. 

East North 8 

 Pictured in Figure A15, the  displacement transducer East North 8 was mounted on 2x4” 

wood members dropping down from the reaction frame. It was located on the East wall of the 

master bedroom, midway between the corner with the South wall and where the interior wall for 

the ensuite bathroom connected to the exterior wall. The readings from this DT are shown in 

table A5. The first two displacement readings are very consistent, however the final reading is 

not. There is no noted (or observed in photographs) pictures showing changes in the setup or 

orientation of this displacement transducer. As well, while the react frame is expected to have 

undergone some thermal expansion and contraction throughout 

the experiment/experiment day, the first two readings are 

insignificantly different. There was enough change in 

temperature between the first two zeroing times that if thermal 

expansion was affecting the DT readings, it would be noticable. 

As well, no other DT’s appeared to be singficantly effected by 

thermal expansion/contraction of the reaction frame, so this is 

likely not the cause of the change in zero reading. 

 

 
 

Figure A15 - Displacement 

Transducers EN8 (right) and EN9 

(left) before the test. 
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Table A5 - Zero readings for 

displacement transducer EN8. 

Time 
EN8 Reading 

(mm) 

09h30 4.497 

11h40 4.655 

14h30 11.875 
 

East North 4 

 The drift in East North 4 was quite small (~3mm), but 

still big enough to warrant a more detailed examination. There 

were no noted adjustments to this LVDT (seen in Figure A16), 

so that is not the reason for the change in displacement reading. 

However, with a drift as small as it was, this is unlikely to be the reason for this drift. One 

possible explanation for the change in displacement reading is slippage of the skewer attached to 

the LVDT. The angle of the skewer may have slightly slipped/moved, which would cause a 

small change in displacement reading. Another explanation is differential expansion of the 

reaction frame, this is 

examined in more detail later. 

  

 

Figure A16 - LVDTs EN4 (closest) and EN5 (farthest away). 
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Appendix I: Justifying Data Accuracy for the Wall Test with 

No Brick Veneer 
 

Strain Gauges 
 The load cells used were the same as used in the full wall test of the house. The same 

argument is used to justify the accuracy of the load data for this experiment as the full 

experiment. Figure I1 shows the normalized zero strain readings and normalized hourly 

temperature readings throughout the day before and morning of the experiment. The results show 

the trend which is expected based off of the previous experiment, the zero strain readings are 

correlated with the ambient temperature. The data acquisition system was left on from before the 

first zeroing until after the experiment concluded, in order to prevent electronic components from 

less predictable thermal strain and resulting drift. 

 

 

Figure I1 - Normalized Temperature and Normalized Zero Strain readings before the wall test with no brick veneer. 
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Zeroes were collected at 5 different points before the experiment was run, 11h00, 12h20 

and 14h30 on October 23; and 08h50 and 09h30 on October 24
th

, with the experiment taking 

place between 09h30 and 11h00 on the 24
th

. The outside temperatures and expected change in 

voltage reading are shown in table I1.  

Table I1 - Thermal Strain and Voltage change due to outside temperature. 

Time Temperature (°C) Ɛ Vo 

11h00 5.3 0.0000 0.0000 

12h20 6.5 0.0042 0.0137 

14h30 3.6 -0.0059 -0.0059 

08h50 2.7 -0.0091 -0.0360 

09h30 3.6 -0.0059 -0.0557 

 

When the thermal changes are removed from the voltage readings, the trend of the zero 

data still has more drift than is desireable. However, when the average normalized zero strain 

readings before and after the thermal adjustments are compared (Figure I2) in this Figure, the 

adjusted readings still follow the same general shape as the adjusted readings with less extreme 

peaks. This means that removal of the temperature effects has had the effect of creating more 

consistent zero readings.  

An explanation for the adjusted zero readings following the same general trend as the 

unadjusted is the actual temperature differences. The temperatures used for thermal strain were 

calculated using outside temperatures at the time of zeroing. For the wall test with no brick 

veneer, the large hanger door to the building was left shut the whole time, due to the cold outside 

temperatures. Both the 23
rd

 and 24
th

 of October were sunny days, the sun on the outside of the 
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steel laboratory building causes a larger increase in the temperature inside than out, as well as 

retaining heat as the temperature cools down outside. The sun radiation causing a larger 

temperature increase can explain why the adjusted readings go up even after the outside 

temperature induced increase in strain is accounted for.  

 

Figure I2 - Zero strain readings from before and after thermal strain adjustment. 

 Because similar trends in the zero strain readings and trends are seen as were seen in the 

full house experiment, it can be assumed that the final zeroes, which took place directly before 

the experiment started, can be used as the actual zeroes. 
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Displacement Transducers 
 A wood frame was built dropping down from the North West corner of the react frame in 

order to capture and curvature of the wall as well as the maximum displacement before failure. 

Figure I3 shows the displacement drift in mm for each of the displacement transducers. All but 

three of the LVDTs appear to have a very small amount of drift, these LVDTs are N3, W5 and 

W6; these LVDTs will be examined in detail later.

 

Figure I3 - Displacement drift for all LVDTs 

 Figure I4 shows the displacement drift when the three problem LVDTs are not shown. 

This plot shows small drift in the displacement  (max of under 2mm) of all the LVDTs. As well, 

after the first zeroing, the displacement drift appears very small. This is shown in Figure B5, 

where the displacement drift is shown when it excludes the first zeroing time. 

 When the first zeroing time is not considered, the drift is very small; with an average 

absolute maximum drift of 0.27mm. This number is insignificantly small compared to the scale 

of the experiment being less than 0.0027%
i
 of the maximum displacements expected to be read 
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by the LVDTs during the experiment. For this reason, the final zero reading will be used as the 

zero readings for the experiment. 

 

Figure I4 - Displacement drift with problem LVDTs removed 

 

Figure I5 - Displacement drift with problem DTs removed and the first zero reading not included 
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LVDT N3 

 It was noted in the experimental log that LVDT N3 was sticking and not fluidly moving 

back and forth when tested. It is very likely that the LVDT was not giving an accurate reading 

for the first zeroes, before the final zero was taken  all the LVDTs were checked to ensure they 

were reading. This would have caused the large change between the all the regular and the last 

zero displacement readings for this LVDT. 

LVDT W5 

 LVDT W5 saw zero displacement readings which decreased every zeroing. The 

decreases totalled just less than 11mm. This LVDT had a skewer attached to span the distance 

between the wood beam and the top plate. This displacement transducer was set up to read 

outward movements of the 

wall (to lengthen); a result of 

this is there is a very slight 

spring force acting outwards 

on the wall. This force is 

insignificant in terms of loads 

on the house, but may have 

caused enough shear force in the taped connection between the skewer and the LVDT to cause 

some gradual slippage. This would result in the changes in zero displacement readings observed. 

LVDT W6 

 There was a 42.7mm change in the displacement reading for this LVDT when the final 

zero reading was taken. No adjustment in the position of the LVDT was noted, however, it is 

most likely that this is what was done. A movement of the entire house or wood frame can be 

ruled out because of the consistency of readings of other LVDTs in the area. There is also no 

 

Figure I6 - LVDT W5 in place. 
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significant change in the displacement readings for all of the other zero readings for W6, so it is 

not the electronics drifting. This supports the theory that this LVDT was simply adjusted before 

the final zeroing, which is also likely because all the LVDTs were touched/tested between the 

second last and final zero readings. 

Conclusions 
 As with the full house test data, the final set of zeroes were be used as the zeroes for this 

experiment. This is because there was no significant drift in the equipment when thermal strain 

and outliers were addressed and there was not a large temperature change between the start and 

end times of the experiment. 

 Based off of maximum LVDT draw length, with the experiment providing more displacement than the maximum 

LVDT draw. 
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Appendix J: Net Loading Effects on Top Plate Movements 
 Almost all of the load-deflection curves around the house show similar behaviour: 

namely, a section when the load increases are monotonically increasing, but then a drop in load 

accompanied by increases in displacement. This saw-tooth pattern repeats multiple times as the 

overall load applied to the walls is increased. An example of this can be seen in the red circle in 

Figure J1, which shows the load-deflection curve for a transducer (#SE1 located in square I10 in 

Figure 3.4) measuring displacements of the top-plate at the South end of the East wall. There are 

two factors which cause this behaviour: (i) overshoots and relaxing in the load application, likely 

due to the ratcheting of the come-alongs, and (ii) the load application pattern, which was 

sequential around the house as described in section 3.3.4. These two aspects are discussed in 

detail below. 

Figure J2(a) shows the load time history for the southern half of the east wall, as 

measured by one of the load cells at that position. Figure J2(b) shows portion of the time history 

 

Figure J1 - A raw load deflection curve in the Master bedroom. 
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pertaining to the red circle in Figure J1, the load shows a clear short duration overshoot during 

the loading sequence, followed by a point where the load settles to a constant magnitude (until 

the next time it is increased in the sequence). Small overshoots and settlements can be seen 

during the increase in load as well (“A”, “B” and “C” in Figure I2(b)), these overshoots show the 

tightening of the cables and minor peaks as each individual ratchet is applied to the come along. 

At the largest loads, the saw-tooth pattern remains, but the magnitude of the variation is only 

about 3% of the total load, so is inconsequential to the final loads.  

After the drop in load following the overshoot, the discontinuity continues with a slightly 

increasing displacement corresponding to no local increase in load. This change in readings is 

caused by net movement of the house when adjacent portion of the wall is loaded in sequence. 

Because the house is all one system, loading in one part of the house affects other parts of the 

house. Specifically, when the East end of the South wall (F10-J10) is loaded, causing an increase 

in deflection, the West end of the South wall (A10-E10) and the South end of the East wall (J6-

J10) will also see an increase in deflection. The increase in deflection observed by each wall 

section decreases moving further away from the area where the local load increase is applied.  

This phenomenon is explained in Figure I3, which shows two plan views of the house, 

the first with arrows indicating the location and direction of load application (left hand side). The 

right hand side shows a plan view with displacements that would be expected if all the exterior 

walls were long beams pinned at each end. Load is applied (6) and the North wall is pulled 

outwards (1). This forces a rotation at the North East corner (2), causing the East wall to want to 

bend inwards (3) - in the same direction as its loading. The inward bending of the East wall 

causes a rotation in the South East corner (4), which in turn leads to outwards movement of the 

South wall (5). 
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Figure J2(a) - Time history of the South wall East side loading. 

 

 

Figure J2(b) - Time history of the South wall East side loading, showing only the initial portion of the loading. 
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Figure J3 - A sketch illustrating how the load is transferred from one side of the house to another 
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Appendix K: Deflected Shape of A1-E1 Bedroom Wall 
 A line of six displacement transducers was installed to measure top plate movements in 

the North West bedroom during the test with no brick veneer. The intent behind the placement of 

this line of transducers was to capture the deformed shape of the wall under load. It was 

hypothesised that the closeness of the two interior walls at the East end of the room would act as 

a fixed connection and the corner would act 

more like a pinned connection. This 

hypothesis was based on observations made 

in the full house test with the brick installed. 

The displacement transducers were placed at 

intervals shown in Figure K1. Displacement 

transducer N2 did not function properly and 

could not be used for data analysis.  

 The data is presented in two, ways, first with the actual 

deflections at each load level
7
. This shows the progression of 

outwards deflection of the wall as the load increased, shown in 

Figure K3. The second way has the deflections of the wall 

normalized by the maximum deflection at that load level 

(Figure K4). This allows a more direct analysis of the 

deflected shape of the wall as loading is applied. The deflected 

shape of the wall at the top three load levels (3.5kN, 3.8kN 

and 4.5kN) are not shown because displacement transducers 

                                                 
7
 Load levels chosen using time history of loads applied to that wall. 

 

Figure K1 - North Wall LVDT arrangement for the wall 

test with no brick veneer 

 

 

Figure K2 - North wall looking from 

the West during the test with no 

brick veneer 
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N3 and N4 and N5 ran out of travel, so there is no longer enough data to accurately show the 

shape of the wall at these loads. The end points (the north west corner and where the interior wall 

connects) were set to zero values for clarity of the curve. It was acceptable to set the end values 

to zero based off of photographic evidence from the experiment as well as observations. The 

corners as well as interior walls prevented displacement of the exterior walls at the points of 

intersection. This can be seen in Figure K2, which shows the A1-J1 wall during the test with no 

brick veneer. The wall can be seen to be clearly bowing out wards but is held back at the corner 

and where the two interior walls connect near the top of the picture. The array of displacement 

transducers can also be seen. 

 

 

Figure K3- Displacement values across the North wall as the load was increased. 
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In this Figure, there are two behaviours which can be seen. The first is visible at the 

lower loads, specifically 0.1kPa -0.4kPa; at these loads, the displacement curve shows a 

maximum much closer to the middle of the span. As the load increases, the maximum load 

moves towards the point above N3, the displacement reading closest to the point of failure. The 

significance of this is that there was a weakness in the wall at this point, which is why the wall 

displaced the most here, even though it was not the center of the span, where the maximum 

displacement would be expected. 

The normalized displacement curves show a remarkable amount of consistency. 

Generally, the normalized maximum recorded displacement occurred at N3, with N4 having a 

similar value. The dark blue line showing the normalized displacement at 1.1kPa is an exception, 

with N4 being ¾ of the N3 displacement. This likely occurred because the wall was approaching 

the failure load and the point where the failure occurred was where N3 was on the wall, so the 

most stress and displacement was located there at failure. 

 

Figure K4 - Normalized Displacement values across the North wall 
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 To determine the effect of the corner and interior wall connections on the displacement, 

the average of the normalized displacement values was taken  - to create one general curve for 

the reaction of the wall. The closeness of the wall curves at different loads allowed this to be 

performed. This curve was then compared to the known displacement curves for different beam 

types; the different curve types considered are shown in table K1. 

Table K1 - Connection and loading scenarios considered for displacement curves. 

Connection Type 
Load Type 

Corner Interior Wall 

Pin Pin Uniformly Distrubuted 

Pin Pin Point Loads 

Pin Fixed Uniformly Distrubuted 

Pin Fixed Point Loads 
  The point loading cases use the location of application of the two point loads 

located at the locations where the cables pulling on the load pads were. This is based on the 

assumption that the load from the load pad is applied evenly to the two wall studs on each side of 

the cable. The load then travels up to the top plate where the displacement was measured. 

 Figure K5 shows the results from the average of the normalized actual data as well as the 

four different beam types considered. From the data, it can be observed that the North West 

corner of the house acted very close to a pinned connection. The same can be said for the other 

end of the wall, where the interior wall meets the exterior wall. This is a different result than was 

expected. 

 The behavior of the connection of the interior and exterior walls as a pin can be partly 

explained by the location of the top plate joints. At the connection, the top plate from the interior 

wall extends on top of the lower level of the top plate on the exterior. The lower level of the 

exterior wall top plate does not extend very far beyond this connection 
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 (towards the left in Figure K6). This means that only two nails are preventing rotation of the top 

plate; instead of it acting as more of a continuous member as it would if the lower top plate 

member continued further beyond the joint 

and had additional nails to prevent rotation. 

Rotation of the lower member of the top 

plate relative to the upper member of the 

top plate is easily visible in Figure K6, just 

to the left of where the interior wall enters 

from the top of the image. 

 

  

 

Figure K5- A comparison of the actual displacement curve and theoretical displacement curves for different beam 

types. 

 

 

Figure K6 - Interior-Exterior wall connection on North 

Wall, North is down. 
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Appendix L: Experiment Day Log – Sept 4 2013 
09h30: arrival at site, setting of DAQ, zero reading recorded to determine instrument drift from 

the night before. 

09h45: LVDT check with Nicole moving around moving LVDTs while I watched the DAQ 

10h20: LVDT check complete 

10h24: Walk around underway by others, a few small geometric problems fixed 

11h30: Briefing and time to start running the experiment 

11h42: Start, quick stop and restart 

12h11: pause to fix and check SWU and NWU which are giving funny strain readings 

13h20: during a fix, power to DAQ accidentally shut off. DAQ re-started to new data file 

WallTestTWO. PVC pipe cover is being installed on top of a couple questionable strain gages. 

+ve wall at 0.8kN, all others at 0.4kN. 

14h00: preparing for the restart 

14h22: go back to slack in cables, to re-acquire zeros. Lengthening of ENU come-along 

required/underway 

14h40: re-restart. Bracket pulley loop/swag slipped into a different position, created more slack 

in the system. 

15h36: up to 0.8kN all around, SWU and NWU giving odd strain readings, I suspect a zeroing 

problem. Lengthening of come-alongs is taking time, but going along. SWU is heavily loaded 

~5mm of displacement. 

16h16: working around, swages/loops on top bracket need adjustment 

18h37: re-adjusted all loops and come-alongs, starting DAQ file FOUR 

Loading Progression: 

0.4, 0.8, 1.2, 1.5, 1.8, 1.8 (re-tension after come-along adjustment, hence repeat), 2.1, 2.4, 2.7 

(kN). 

Positive wall 1.5kN – Bricks fell off above window. Creaks in the NW side 

1.8kN 

 - NE wall moving with pulls @1.8kN 
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 - SW corner moving (top) 

 - WN dropped bricks off the top 

 - visible bowing to E and S walls, they appear to be acting as one beam. 

 - loud creaking from house in most situations now 

 - come-along pulls are visible corresponding to DT changes now 

2.1kN 

- dropdowns are twisting 

- cracking in NW top plate 

20h20 – South wall fails 

20h24 – DAQ stopped, failure achieved 
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