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Abstract 

The purpose of this thesis was to test the hypothesis that changes in circulating sex 

hormone levels are associated with changes in muscle sympathetic nerve activity. The 

hypothesis was tested through the comparison of low- (early follicular [EF]) and high-

hormone (midluteal [ML]) phases of the menstrual cycle and of hormonal contraceptive use 

(low hormone [LH] versus high hormone [HH]). The microneurography technique was used 

to compare both the frequency and size of bursts in muscle sympathetic nerve activity 

(MSNA) at baseline and during two sympatho-excitatory maneuvers: baroreceptor unloading 

elicited through lower body negative pressure, and chemoreflex stimulation elicited through a 

hypoxic-hypercapnic end-inspiratory apnea. Sympathetic responses to chemoreflex 

stimulation were also compared between women and men. All associations between MSNA 

and hormone phases occurred similarly between users and non-users of hormonal 

contraceptives. At baseline, MSNA was relatively elevated during the high hormone phases 

(ML and HH), at which point baseline sympathetic activity was similar to that observed in 

men. However, stimulation of the chemoreflex resulted in greater sympathetic activation 

during the low hormone phases (EF and LH) relative to the high hormone phases. Further, 

this hormone phase effect was mediated largely by greater increases in burst size, rather than 

the burst frequency component. This may indicate that central integration sites for MSNA are 

affected by circulating sex hormone levels. Finally, the sympathetic responses to 

baroreceptor unloading were graded to reductions in stroke volume, which, in turn, were 

affected by hormone levels. However, no evidence was observed to suggest a change in the 

central integration of baroreceptor afferent input occurred across phases of the menstrual 

cycle or hormonal contraceptive use in terms of baroreflex function. Together, these studies 
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confirm that sympathetic nerve activity at baseline and sympathetic recruitment during 

chemoreflex stimulation are affected by hormone phase, while baroreceptor-mediated 

responses are not affected by the transition from low (EF and LH) to high hormone phases 

(ML and HH).  
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Chapter 1  

1 Introduction 

1.1 Overview 
Cardiovascular disease risk is reduced in premenopausal women relative to age-

matched men (Rosenthal & Oparil, 2000;Young et al., 1993;Eaker et al., 1989) (Figure 

1.1, for example). Following menopause, this relative cardioprotection is lost such that 

cardiovascular disease risk is increased significantly in post-menopausal women (Rosano 

et al., 2007). The sympathetic nervous system has been implicated as a contributor to the 

loss of premenopausal cardioprotection based on its importance in the control of 

cardiovascular function (Wallin & Charkoudian, 2007) and the positive associations 

which exist between heightened sympathetic nerve activity and incidence of 

cardiovascular disease (Leimbach, Jr. et al., 1986;Yamada et al., 1989;Miyajima et al., 

1991;Carlson et al., 1993). Accordingly, examinations of baseline conditions have 

indicated that sympathetic nerve activity is elevated in men compared to pre-menopausal 

women (Ng et al., 1993;Matsukawa et al., 1998;Narkiewicz et al., 2005). Moreover, 

sympathetic nerve activity increases following menopause, matching or exceeding levels 

observed in similarly aged men (Matsukawa et al., 1998;Narkiewicz et al., 2005) (Figure 

1.2). Together, the similar patterns of sex- and age-related changes in sympathetic nerve 

activity and cardiovascular disease support a possible role for the sympathetic nervous 

system in the reduced incidence of cardiovascular morbidity in premenopausal women. 

However, the source of the relative sympatho-inhibition in premenopausal women is less 

clear. 
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Figure 1.1: Prevalence of hypertension in men and women. 

Hypertension is more prevalent in young men than young women, but this sex difference 

disappears following menopause. Reproduced with permission from Nature Publishing 

Group: Journal of Human Hypertension (Rosenthal & Oparil, 2000). 
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MSNA is lower in young women than in age-matched men. In middle aged and older 

adults, MSNA is similar or greater in women than in men. Adapted with permission from 

Lippincott Williams and Wilkins/Wolters Kluwer Health: Hypertension (Narkiewicz et 

al., 2005).  

Figure 1.2: Baseline sympathetic nerve activity in men and women 
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Circulating concentrations of estrogen and progesterone are elevated in women 

relative to men and are dramatically reduced in women following menopause (Conte & 

Grumbach, 2007). Together with the data summarized above, this suggests that sex 

hormones may affect sympathetic regulation in women with important cardiovascular 

consequences. Further support for this hypothesis has come from women with polycystic 

ovary syndrome. In these women, levels of circulating testosterone and baseline 

sympathetic nerve activity are elevated relative to control subjects (Sverrisdottir et al., 

2008). However, both the polycystic ovary syndrome and post-menopausal conditions 

represent alterations to the normal hormonal milieu which is observed in healthy young 

premenopausal women. The concept that sex hormones exert an influence over levels of 

sympathetic nerve activity and potentially contribute to the  high degree of interindividual 

variability in baseline sympathetic nervous system activity which is observed in young 

healthy subjects (Joyner et al., 2010;Wallin, 2006) has only been examined relatively 

recently.  

The sympathetic effects of "normal" fluctuations in hormone levels have been 

examined through the study of the menstrual cycle, which is associated with large 

endogenous fluctuations in circulating estrogen and progesterone. Several such studies 

have observed relative increases in baseline sympathetic nerve activity during the 

menstrual cycle phase associated with heightened levels of both estrogen and 

progesterone, the midluteal phase, in comparison to the early follicular phase which is 

associated with low levels of estrogen and progesterone (Minson et al., 2000a;Park & 

Middlekauff, 2009;Middlekauff et al., 2012;Carter et al., 2013). While these data support 

a possible link between sex hormones and sympathetic regulation in young healthy 
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women, it is important to consider that an almost equal number of studies have failed to 

observe the same effect (Carter et al., 2009b;Fu et al., 2009;Carter & Lawrence, 2007). 

The lack of ubiquity in these results might imply that the association between 

sympathetic nerve activity and menstrual cycle phase is a mild one. It is also possible that 

this association is strengthened during sympatho-excitation: studies of sympathetic 

responses to the sympatho-excitatory stress of baroreceptor unloading have consistently 

observed greater sympathetic nerve activity in the midluteal phase of the menstrual cycle 

than during the early follicular phase (Fu et al., 2009;Carter et al., 2009b). Also, the 

differences in sympathetic activity between menstrual cycle phase appear to be most 

pronounced during the most severe phases of baroreceptor unloading (Fu et al., 

2009;Carter et al., 2009b). Therefore, one purpose of these studies was to assess whether 

menstrual cycle-driven fluctuations in hormone levels affect sympathetic outflow during 

states of high reflex stress. To achieve this objective, sympathetic regulation across the 

menstrual cycle was measured during baroreceptor unloading evoked using high levels of 

lower body negative pressure and during chemoreflex activation which is known to be 

associated with large increases in sympathetic nerve activity (Morgan et al., 1995;Saito et 

al., 1988).  

A notable addendum to this field of research is the consideration of women whose 

endogenous fluctuations of sex hormones are impeded and supplemented by synthetic, 

exogenous hormones. This is an important issue given that at least 20% of women of 

child-bearing age currently use hormonal contraceptives (Mosher & Jones, 2010) which 

alter the types and profile of monthly variations in hormones levels. The influence of 

hormonal contraceptive use on sympathetic regulation has become the focus of a few 
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recent studies which have targeted similar hormone phases as those studied across the 

menstrual cycle (specifically, the low-hormone, inactive phase of contraceptive use 

versus the high-hormone, active phase) (Minson et al., 2000b;Carter et al., 

2009a;Middlekauff et al., 2012). However, the effects of hormonal contraceptive use on 

sympathetic regulation have been under-studied relative to menstrual cycle studies, and to 

date only one study has directly compared the two (Middlekauff et al., 2012). Therefore, 

another purpose of these studies was to establish the effects of hormonal contraceptive 

use on sympathetic regulation patterns.  

The overall objective of this research is to understand the effects of sex hormones 

on sympathetic nerve activity by comparing the responses to sympatho-excitatory 

maneuvers during the low and high hormone phases of the menstrual cycle and of 

hormonal contraceptive use. The working hypothesis of these studies is that hormone 

phase affects sympathetic nerve activity particularly during reflex activation. This, in 

turn, affects the observation of male-female differences in sympathetic regulation.  

Study 1. Hormone phase influences neurovascular responses to high levels of lower 

body negative pressure. 

Purpose: To compare MSNA responses to moderate to high levels of lower body 

negative pressure between low- and high-hormone phases of both the regular 

menstrual cycle and hormonal contraceptive use. 

Hypothesis: Hormone phase (regardless of group) would affect sympathetic 

responses such that in both groups of women the higher hormone phases would be 

associated with greater sympathetic responses than the lower hormone phases.  
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Study 2. Hormone phase dependency of neural responses to chemoreflex-driven 

sympatho-excitation in young women using hormonal contraceptives.  

Purpose: To compare muscle sympathetic nerve activation patterns between low 

and high hormone phases of exogenous contraceptive hormone use across a range 

of chemoreflexive stimuli. 

Hypothesis: Baseline and reflex sympathetic nerve activation would be greater in 

the high hormone phase relative to the low hormone phase of hormonal 

contraceptive use. 

Study 3. Sex and menstrual cycle effects on sympathetic responses to chemoreflex 

stimulation.  

Purposes: (1) To compare sympathetic responses between men and women 

during a severe chemoreflex stress, and (2) to determine whether the menstrual 

cycle is associated with changes in chemoreflex-driven sympatho-excitation. 

Hypotheses: (1) Acute hypercapnia-hypoxia would be associated with greater 

increases in sympathetic activity in young healthy women relative to men; (2) the 

low hormone phase of the menstrual cycle would be associated with greater 

increases in sympathetic activity than the high hormone phase. 
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1.2 Muscle Sympathetic Nerve Activity 
 The study of the activity of the sympathetic nervous system was greatly advanced 

by the development of the microneurographic technique by Hagbarth and Vallbo in the 

late 1960s (Hagbarth & Vallbo, 1968). In this technique, a recording electrode is inserted 

into a nerve and advanced in close proximity to efferent sympathetic nerve fibres which 

innervate the vasculature of peripheral muscles. Microneurography allows for the direct, 

real-time recording of muscle sympathetic nerve activity (MSNA) which has paved the 

way for decades of studies detailing sympathetic regulation mechanisms. 

 The microneurography technique involves the use of two tungsten electrodes, one 

of which is inserted percutaneously 1-3 cm from the active recording site and serves as 

reference electrode. The other is the recording electrode and is inserted transcutanously, 

commonly into the peroneal nerve. This nerve is ideal for the study of MSNA as it is 

easily accessible, relatively large, and contains a large number of efferent sympathetic 

neurons (Tompkins et al., 2013). As described by Delius and colleagues, adequate 

MSNA recording sites are determined through the observation of several criteria (Delius 

et al., 1972). The MSNA signal produces pulse synchronous bursts of activity which 

increase in frequency during apnea and are unaffected by arousal to a loud noise or light 

brushing of the skin (rather, these last two criteria are characteristic of skin sympathetic 

neurons). Signal processing methods are then used to amplify (e.g., 75 000x), filter 

(bandpass: 700-2000 Hz), rectify, and integrate (0.1s time constant) the raw sympathetic 

signal, producing the characteristic bursts of activity which are initiated during diastole 

(Figure 1.3). 
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Figure 1.3: Analysis of the muscle sympathetic nerve activity signal. 

Bursts of activity which are initiated during diastole are clearly visible following signal 

processing.  
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A total quantification of the integrated MSNA signal consists of two components 

which appear to be regulated differently: burst frequency and burst size, often referred to 

as burst amplitude. The firing frequency is expressed as either burst frequency or burst 

incidence.  Burst frequency is expressed in bursts per minute, while burst incidence 

involves a normalization of burst frequency to heart rate and is expressed as bursts per 

hundred heart beats. In this way, burst incidence reflects baroreceptor processing of 

efferent MSNA.  

While the methods used to quantify the frequency component of the integrated 

MSNA signal are widely accepted and reproducible over time (Sundlof & Wallin, 

1977;Kimmerly et al., 2004), the quantification of the amplitude component is more 

complicated. The complication lies in the meaning of the absolute amplitude signal and 

its implications for interindividual comparisons. Absolute burst amplitude, expressed as a 

voltage, is an indication of the number (Ninomiya et al., 1993) and size (Steinback et al., 

2010b) of neurons within the recording range of the electrode and is affected by electrode 

position. In the absence of a change in recording site, changes in burst amplitude can be 

interpreted to indicate alterations in the central regulation of MSNA burst amplitude. On 

the other hand, the extent to which the regulation of burst amplitude differs between 

subjects cannot be derived from measures of absolute burst voltages. Sverrisdottir and 

colleagues have used a method of normalization which allows for interindividual burst 

amplitude comparisons which isolates the burst amplitude component of MSNA from the 

burst frequency component (Sverrisdottir et al., 2000). This method of burst amplitude 

analysis involves the normalization of all baseline bursts to a given burst (for example, 

the largest burst in the baseline period). The normalized burst amplitudes are then divided 
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into bins, and the frequency with which each bin occurs is graphed. The statistical 

characteristics of these distribution curves can then be compared between subjects in 

terms of mean, median, and/or modes. Similar to burst frequency measures, this method 

of determining burst amplitude has been shown to be reproducible between test dates 

(Kimmerly et al., 2004).  

Twenty years ago, Malpas and colleagues put forward the hypothesis that the 

frequency of sympathetic bursts is controlled independently from the number of active 

sympathetic fibres within a given burst of activity (Malpas, 1995). Several experiments 

have provided support for this hypothesis (Malpas & Ninomiya, 1992b;Malpas & 

Ninomiya, 1992a;Sverrisdottir et al., 2000), including observations of altered 

sympathetic burst amplitude in the presence of unchanged burst frequency during mental 

stress (Hjemdahl et al., 1989), hypoxic stimulation (Malpas et al., 1996), local heating 

(DiBona & Jones, 1998), and baroreceptor stimulation (DiBona et al., 1997). A 

hypothetical model by which sympathetic burst amplitude and frequency are regulated 

independently stipulates that a variety of afferent inputs converge on unknown central 

sites of sympathetic integration to cause graded activation of sympathetic efferent 

pathways (i.e. the control of burst amplitude). Baroreceptor afferent feedback is then 

thought to act as a gating mechanism to either allow or disallow a burst of efferent 

sympathetic activity (i.e. the control of burst frequency) (Kienbaum et al., 2001) (Figure 

1.4). Within the context of this model, it is conceivable that an increase in burst 

frequency could occur in conjunction with a reduction in burst amplitude (Kienbaum et 

al., 2001). Such a possibility warrants the reporting of both burst frequency and burst 

amplitude measures when examining sympathetic responsiveness.   
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Figure 1.4: Hypothetical model for arterial baroreceptor influence on sympathetic 

nerve activity.  

Baroreceptor afferent activity (left) is incorporated with other inputs to create a graded 

influence which is reflected by burst amplitude. The gating of the resultant burst strength 

is then regulated largely by the baroreceptors, affecting the frequency with which efferent 

sympathetic bursts occur. Reproduced with permission from John Wiley and Sons: 

Journal of Physiology (Kienbaum et al., 2001).   
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1.3 Sympathetic Activity during Baroreceptor Unloading 
 The orthostatic stress which arises during upright posture due to the effect of 

gravity is associated with the peripheral pooling of blood. This, in turn, can limit venous 

return and reduce cardiac output, thereby threatening the maintenance of an arterial 

pressure necessary to adequately perfuse the body with blood. Such a reduction in cardiac 

output is detected by the mechano-sensitive baroreceptors which are unloaded by the 

associated reduction in local blood pressure. The subsequent reduction in the firing rates 

of baroreceptor afferent projections to central sympathetic sites are integrated to produce 

sympatho-excitation which is graded to the level of baroreceptor unloading and evokes an 

increase in peripheral resistance in an effort to maintain mean arterial pressure (Victor & 

Leimbach, Jr., 1987;Rowell, 1993;Johnson et al., 1974) .  

 In a laboratory setting, microneurographic recordings of MSNA are difficult to 

measure during the transition from supine to standing as the movements involved can 

dislodge the recording electrode and/or necessitate the activation of postural muscles 

which confound the MSNA signal. Methods which simulate orthostasis such as head-up 

tilt and lower body negative pressure (LBNP) have been developed to allow subjects to 

maintain relaxation in the leg in which MSNA is being recorded, thus avoiding these 

issues. Lower body negative pressure also excludes the sympathetic effects of vestibular 

otolith stimulation which occur during head-up tilt (Ray, 2000;Kaufmann et al., 2002). 

During LBNP, suction is created around the lower body below the level of the iliac crests 

which draws blood into the vascular beds contained therein. This method allows for 

careful titrations of the sympathetic response as suction can be controlled with great 

precision. Applications of LBNP as low as -5 mmHg have been associated with small but 
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significant increases in MSNA with no change in mean arterial blood pressure (Victor & 

Leimbach, Jr., 1987). Progressive increases in suction are associated with graded 

increases in MSNA (Sundlof & Wallin, 1978;Victor & Leimbach, Jr., 1987) which occur 

in response to the LBNP-induced reductions in stroke volume (Figure 1.5) (Ryan et al., 

2011). Recently, Ichinose and colleagues (Ichinose et al., 2004;Ichinose et al., 2006) 

demonstrated that increases in the amplitudes and firing frequencies of sympathetic 

bursts may depend on the severity of LBNP. Their data indicate that at levels of LBNP up 

to approximately -30 mmHg, increases in total MSNA are achieved through increases in 

both firing frequencies and burst amplitudes, while at higher levels of suction increases in 

total MSNA are achieved primarily through elevations in burst amplitude (Ichinose et al., 

2006;Ichinose et al., 2004). 
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Muscle sympathetic nerve activity (MSNA) is negatively related with stroke volume 

during a progressive LBNP protocol to presyncope. Reproduced from an open access 

article under the terms of the Creative Commons Attribution Non Commercial License 

(Ryan et al., 2012). 

 

  

Figure 1.5: Relationship between sympathetic nerve activity and stroke volume 

during baroreceptor unloading. 
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1.4 Sympathetic Activity during Chemoreflex Stimulation 
 The activation of the chemoreflex is associated with a large sympatho-excitatory 

response (Morgan et al., 1995;Saito et al., 1988). Chemoreceptors are located both 

peripherally and centrally, with different sensitivities to the nature of the chemoreflex 

stress – central chemoreceptors are sensitive to circulating carbon dioxide, while 

peripheral chemoreceptors are sensitive to both oxygen and carbon dioxide (Kara et al., 

2003). Similar to the effects of baroreceptor unloading, chemoreceptor stimulation 

produces increases in MSNA which are graded to the intensity and duration of the 

chemoreflex stimulus (Smith & Muenter, 2000). Importantly, the effects of hypoxia and 

hypercapnia are additive, such that combined hypoxia-hypercapnia produces a greater 

increase in MSNA than either hypoxia or hypercapnia alone (Somers et al., 1989). 

Chemoreflex stress has also been shown to elevate both components of the sympathetic 

signal, that is, the amplitude and the firing frequency of integrated bursts (Steinback et 

al., 2009;Malpas et al., 1996). 

 Independent of chemoreflex stress, there also exists a respiratory modulation of 

sympathetic nerve activity. Muscle sympathetic nerve activity is increased during 

expiration and inhibited during inspiration (Eckberg et al., 1985;Hagbarth & Vallbo, 

1968), an effect mediated by pulmonary stretch receptors which are activated during 

inspiration (Seals et al., 1993). As a result of the sympatho-inhibitory influence of the 

lung stretch receptors, the sympathetic responses to chemoreflex stress are amplified 

during the absence of active respiration, such as during an apnea maneuver (Steinback et 

al., 2010a;Narkiewicz et al., 1999) (Figure 1.6).  Therefore, a combination of hypoxic-
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hypercapnic and apneic stress evokes very large increases in MSNA (Steinback et al., 

2010a). 
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Hypoxia was generated through breathing of a 10% oxygen gas mixture which was 

titrated to maintain isocapnia. A 10-second end-expiratory apnea immediately followed 

the 3-minute period of hypoxic breathing. The mean sympathetic response to apnea was a 

50% increase over that observed during hypoxic breathing alone. ECG, 

electrocardiogram; HR, heart rate; O2 Sat, oxygen saturation; VE, ventilation rate; MAP, 

mean arterial pressure. Adapted with permission from Lippincott Williams and 

Wilkins/Wolters Kluwer Health: Circulation (Narkiewicz et al., 1999).  

Figure 1.6: Sympathetic nerve activity during hypoxia with and without apnea. 
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1.5 Hormone Fluctuations across the Menstrual Cycle 
The primary endogenous sex hormones which have been hypothesized to affect 

sympathetic regulation are 17-β-estradiol (E2) and progesterone (Carter et al., 2013). 

Circulating concentrations of these hormones change dramatically over the menstrual 

cycle and thus provide opportunities to study the effects of nadirs and peaks of E2 and 

progesterone. In a normal 28 day menstrual cycle, the first 14 days constitute the 

follicular phase which involves the ovarian maturation of a primary oocyte, while the 

latter 14 days are referred to as the luteal phase and are associated with the preparation of 

the uterus for the possible implantation of a fertilized oocyte (Conte & Grumbach, 2007). 

The progression of these events is regulated by circulating sex hormones.  

The follicular phase begins with menstruation, which is triggered by falling blood 

plasma concentrations of progesterone and E2 (Figure 1.7). Thus, the early follicular 

phase is associated with a nadir in circulating E2 and progesterone. During the late 

follicular phase, the ovaries produce testosterone which is immediately and locally 

converted to E2 by the enzyme aromatase.  The resultant E2 circulates through the body, 

and, at the level of the hypothalamus, initiates a positive feedback loop with the ovaries 

to dramatically increase further production of E2 (Conte & Grumbach, 2007). Thus, the 

late follicular phase is associated with high levels of circulating E2 while progesterone 

levels remain low. The follicular phase ends with ovulation, during which E2 levels are 

reduced following termination of the positive feedback loop, and the oocyte is released 

for potential fertilization.  
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Adapted with permission from John Wiley and Sons: Journal of Physiology (Wenner & 

Stachenfeld, 2012).  

Figure 1.7: Plasma hormone concentrations across a regular menstrual cycle. 
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The production of sex hormones during the luteal phase is accomplished by the 

corpus luteum, a temporary endocrine organ which is formed following ovulation (Conte 

& Grumbach, 2007). The corpus luteum synthesizes and secretes E2 and progesterone 

which act to prepare the uterine wall for implantation in the event of oocyte fertilization. 

However, E2 and progesterone also enter the circulation and as such the luteal phase is 

characterized by gradual increases in E2 and progesterone which plateau mid-way 

through the luteal phase. In the event that the oocyte is not fertilized, the corpus luteum 

degenerates, resulting in reductions in E2 and progesterone which in turn trigger 

menstruation and the beginning of a new menstrual cycle. The menstrual cycle therefore 

presents naturally occurring opportunities to study different hormonal milieus.  
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1.6 Hormonal Contraceptives 
 Many different types of hormonal contraceptives exist which act to inhibit 

ovulation and therefore prevent pregnancy. Binding to the progesterone receptor is the 

main requirement for this action, but progesterone itself is expensive and difficult to 

isolate for the purpose of hormone supplementation (Conte & Grumbach, 2007). 

Researchers have, therefore, spent the past half century developing synthetic 

progesterone analogs, called progestins. In the early development of hormonal 

contraceptive pills, the inclusion of an estrogen component was found to stabilize the 

endometrium and minimize side effects associated with contraceptive use (Burkman et 

al., 2011;Conte & Grumbach, 2007). Although progestin-only contraceptives exist, their 

use is largely restricted to special circumstances, such as women who are breast-feeding 

or who have contraindications to estrogen (Conte & Grumbach, 2007). More common are 

combined hormonal contraceptives which contain both an estrogen (ethinyl estradiol) and 

a progestin component.  

 Early generations of contraceptives included high doses of ethinyl estradiol which 

exceeded 50 µg (Conte & Grumbach, 2007). However, the majority of contraceptives 

used today contain less than 35 µg of ethinyl estradiol (Burkman et al., 2011). The 

progestin content of hormonal contraceptives has also evolved over time. This evolution 

has stemmed largely from the finding that most progestins interact not only with the 

progesterone receptor, but also with the androgen receptor (Sitruk-Ware & Nath, 2013). 

This "androgenicity" was thought to adversely affect lipid profiles and glucose tolerance 

in the early generation progestins, which were derived from testosterone (Sitruk-Ware, 

2005;Conte & Grumbach, 2007). Newer progestins, which include desogestrel, 
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gestodene, and norgestimate, were improvements on the previous generation due to 

having low androgenic activity (Speroff & DeCherney, 1993). However, progesterone 

itself is known to have antiandrogenic activity which is not mimicked by these progestins 

(Sitruk-Ware, 2005). Drospirenone is a new progestin which binds to the progesterone 

receptor with the same affinity as progesterone and has antiandrogenic activity which 

may surpass endogenous progesterone (Sitruk-Ware, 2005).  

  The development of hormonal contraceptives continues today. While the 

prevention of ovulation and therefore pregnancy is well executed by current hormonal 

contraceptives, the simulation of the physiological effects of endogenous hormones has 

not yet been achieved with current synthetic hormones (Sitruk-Ware, 2005).  
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1.7 Associations between Hormone Levels and 
Sympathetic Nerve Activity 
In a relatively new field of research, studies have begun to test women at various 

phases of the menstrual cycle to examine the effects that changes in hormonal milieus 

might exert over sympathetic regulation in young healthy women. The majority of these 

studies have focused on the early follicular (EF) and midluteal (ML) phases of the 

menstrual cycle to examine the combined effects of low (i.e. EF) or high levels of E2 and 

progesterone (i.e. ML). Fewer studies have compared low (LH) and high hormone (HH) 

phases of hormonal contraceptive use.  

Baseline studies of MSNA in recumbent subjects have, for the most part, 

demonstrated elevations in MSNA burst frequency during the ML phase relative to the 

EF phase (Middlekauff et al., 2012;Park & Middlekauff, 2009;Minson et al., 2000a). 

Several studies have reported similar baseline MSNA in EF and ML phases (Fu et al., 

2009;Carter et al., 2009b;Lawrence et al., 2008), in line with the observations from 

hormonal contraceptive users, in whom no hormone phase-dependent differences in 

baseline MSNA have been observed (Minson et al., 2000b;Middlekauff et al., 

2012;Carter et al., 2009a). It is worth noting that, of the studies which also reported 

baseline vascular resistance, none have observed a difference in vascular resistance 

between phases, regardless of hormonal contraceptive use or whether a difference in 

baseline MSNA was observed (Minson et al., 2000a;Fu et al., 2009;Minson et al., 

2000b). Similarly, the majority of studies have observed similar baseline blood pressures 

between hormone phases in both users or non-users of hormonal contraceptives (Fu et al., 
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2009;Carter et al., 2009b;Minson et al., 2000a;Middlekauff et al., 2012;Carter et al., 

2009a).  

In studies of baroreceptor unloading, both LBNP and head-up tilt (HUT) have 

been used to simulate orthostasis. These studies support a divergence between users and 

non-users of hormonal contraceptives. In non-users, greater total MSNA responses to 

baroreceptor unloading have been observed in the ML phase than the EF phase during 

both HUT and LBNP (Fu et al., 2009;Carter et al., 2009b). Although HUT activates the 

vestibulosympathetic reflex (Ray, 2000;Kaufmann et al., 2002) and has the potential to 

exaggerate the observed sympathetic responses to baroreceptor unloading (Shortt & Ray, 

1997), otolith-driven sympatho-excitation appears to be similar between EF and ML 

phases (Lawrence et al., 2008). Therefore, this hormone phase effect is thought to result 

from a baroreceptor-driven mechanism alone. However, in the majority of studies, 

differences in sympathetic baroreflex sensitivity have not been observed between EF and 

ML menstrual cycle phases (Fu et al., 2009;Carter et al., 2009b;Middlekauff et al., 2012). 

The lack of a difference in sympathetic baroreflex sensitivity, which expresses the extent 

to which MSNA increases for a given fall in DBP, implies that venous return and, 

therefore, cardiac output are reduced to a greater extent in the ML phase, thereby 

necessitating a larger sympatho-excitatory response (Fu et al., 2009).  

In the only study to date which has compared sympathetic responses to simulated 

orthostasis across hormone phases in hormonal contraceptive users, increases in total 

MSNA were similar between LH and HH phases (Carter et al., 2009a). In comparisons of 

sympathetic baroreflex sensitivity, one study observed an elevation in sympathetic 

baroreflex sensitivity in the LH phase of contraceptive use compared to the HH phase 
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(Minson et al., 2000b). However, this observation has not been repeated, with subsequent 

studies reporting similar baroreflex sensitivity between hormone phases in hormonal 

contraceptive users (Middlekauff et al., 2012;Carter et al., 2009a). 

In the study by Carter and colleagues (Carter et al., 2009b), the authors noted that, 

over the range of LBNP which was applied between -5 and -40 mmHg, the menstrual 

cycle-based differences in sympathetic activation were most visible during the higher 

levels of baroreceptor unloading. A similar trend was observed in the study by Fu and 

colleagues (Fu et al., 2009), with the differences in total MSNA appearing greatest in the 

latter 20 minutes of the 45-minute HUT protocol. Therefore, it is possible that hormone 

phase may affect sympathetic responses to a greater extent during more severe reflex 

stress. Whether this effect is baroreceptor-dependent remains to be determined. These 

questions provided an impetus for this series of studies.  

Notably, two studies which have reported an effect of hormone phase on 

sympathetic activation during baroreceptor unloading have observed these effects on total 

MSNA without a concomitant effect on MSNA burst frequency (Fu et al., 2009;Carter et 

al., 2009b). As the authors note, this strongly implies that elevations in E2 and 

progesterone are associated with specific sympatho-excitatory effects in the burst 

amplitude domain of MSNA. However, due to the limitations outlined in Section 1.2, 

MSNA burst amplitude is seldom reported. Therefore another purpose of these studies 

was to explore MSNA burst amplitude in greater detail, and led to the inclusion of 

chemoreflex stimulation in these studies as a means to evoke large increases in burst 

amplitude (Steinback et al., 2009;Malpas et al., 1996). 
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While the majority of research has focused on hormone phase effects on 

baroreceptor-drive regulation of sympathetic activity, other studies have compared high 

and low hormone phases during other sources of sympatho-excitation. These results have 

proved mostly equivocal; MSNA responses do not appear to be different between EF and 

ML menstrual cycle phases during handgrip exercise or post-exercise occlusion (Jarvis et 

al., 2011), mental stress (Carter & Lawrence, 2007), or the cold pressor test (Middlekauff 

et al., 2012;Jarvis et al., 2011). The cold pressor test has also been repeated in users of 

hormonal contraceptives, with similar sympathetic responses observed between LH and 

HH phases as well (Middlekauff et al., 2012). Taken together with MSNA responses to 

simulated orthostasis, these data suggest that if hormone phases affect neural regulation 

during sympatho-excitation, it is in a reflex-dependent manner. Interestingly, there have 

been no studies to date which have systematically compared the sympathetic responses to 

chemoreflex stimulation between hormone phases in users or non-users of hormonal 

contraceptives. The lack of research in this area was another impetus for these studies. 
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Chapter 2  

2 Hormone phases influence neurovascular responses to 
high levels of lower body negative pressure 

2.1 Introduction 
There exists an increased incidence of orthostatic intolerance in young women 

relative to young men (Montgomery et al., 1977;Christou et al., 2005;Hordinsky et al., 

1981). Orthostatic stress tolerance is contingent upon adequate neurovascular responses 

to compensate for the gravity-induced peripheral pooling of blood. As such, several 

studies have made use of the microneurography technique to determine whether a 

reduced muscle sympathetic nerve activity (MSNA) response might contribute to the 

increase in orthostatic intolerance in women. While some studies have reported that 

MSNA responses to simulated orthostasis are blunted in women relative to men 

(Kimmerly et al., 2007;Yang et al., 2012;Shoemaker et al., 2001), some studies have 

determined that MSNA responses are equivocal between the sexes (Fu et al., 2005;Fu et 

al., 2009). It is possible that differences in the concentrations of circulating sex hormones 

in the female subjects may have contributed to this discrepancy in the results, but the 

impact of changes in sex hormones on the regulation of MSNA have only recently begun 

to be elucidated.   

 Recent evidence suggests that concentrations of circulating sex hormones exert an 

influence over the regulation of baseline MSNA (Carter et al., 2013;Day et al., 2011). 

Cyclical changes in sex hormones occur across the regular menstrual cycle, and several 

studies have provided support for a relative sympatho-excitation during the high hormone 

midluteal phase of the menstrual cycle (ML) relative to the low hormone early follicular 
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phase (EF) (Minson et al., 2000a;Park & Middlekauff, 2009;Middlekauff et al., 

2012;Carter et al., 2013). Several studies have also compared sympathetic responses to 

simulated orthostasis. These stimuli cause peripheral pooling of blood which reduces 

venous return and cardiac output and threaten the maintenance of blood pressure. Muscle 

sympathetic neural responses to orthostasis elicit increases in peripheral resistance, 

thereby maintaining blood pressure at baseline levels across mild to moderate levels of 

orthostasis. Sympathetic responses to the simulated orthostasis techniques of head up tilt 

(Fu et al., 2009) and lower body negative pressure (LBNP) (Carter et al., 2009b) are 

elevated in the ML phase relative to the EF phase. Notably, the differences in the MSNA 

responses between EF and ML are greatest during the most severe stages of baroreceptor 

unloading (Fu et al., 2009;Carter et al., 2009b). These studies have also reported a lack of 

change in sympathetic baroreflex sensitivity across the menstrual cycle (Fu et al., 

2009;Carter et al., 2009b). This observation is in line with a greater vascular stress which 

arises from the same orthostatic stimulus, such as a greater fall in stroke volume. 

However, menstrual cycle differences in the orthostasis-induced reduction in stroke 

volume have not yet been observed (Fu et al., 2009).  

 In comparison with studies of the menstrual cycle in eumenorrheic women, less is 

known regarding sympathetic regulation in women taking hormonal contraceptives (HC), 

despite the fact that at least 20% of women of child-bearing age currently use hormonal 

contraceptives (HC) in the United States (Mosher & Jones, 2010). Moreover, HC use has 

been associated with small yet significant increases in blood pressures relative to control 

subjects (Hickson et al., 2011;Atthobari et al., 2007), suggesting that blood pressure 

regulation mechanisms such as the baroreflex may be affected by HC use. Indeed, recent 



38 

 

studies have indicated that phases of HC use may not mirror the menstrual cycle in their 

effects on sympathetic regulation. For instance, differences in baseline MSNA have not 

been observed between low- (LH) and high-hormone (HH) phases of HC use (Minson et 

al., 2000b;Carter et al., 2009a;Middlekauff et al., 2012). A study examining sympathetic 

responses to simulated orthostasis observed that moderate levels of LBNP (0 to -40 

mmHg) were associated with similar MSNA responses between LH and HH phases, 

during which blood pressure responses were also similar between phases (Carter et al., 

2009a). However, to the best of our knowledge there have been no studies which have 

directly compared the effects of hormone phases on sympathetic responses to simulated 

orthostasis between users and non-users of HC.   

 Therefore, the purpose of this study was to compare MSNA responses to 

moderate to high levels of LBNP between low- and high-hormone phases of both the 

regular menstrual cycle and HC use. We tested the hypothesis that hormone phase 

(regardless of group) would affect sympathetic and blood pressure responses such that in 

both groups of women the higher hormone phases (HH and ML) would be associated 

with greater sympathetic responses than the lower hormone phases (LH and EF). 

2.2 Methods 

2.2.1 Subjects 

Seventeen undergraduate and graduate students enrolled in the School of 

Kinesiology at The University of Western Ontario in London, Ontario participated in the 

study. These were recruited in two groups: users and non-users of HC. Subject 

characteristics are presented in Table 2.1. The baseline characteristics for the HC group, 
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and their MSNA responses to chemoreflex stress, have been reported previously 

(Usselman et al., 2013).  All subjects were regularly active non-smokers who were free 

of cardiovascular and respiratory disease, and were not taking any medications, with the 

exception of HC. Within users of HC, with the exception of 1 subject who was using a 

patch with norelgestromin and 1 subject using a triphasic pill containing norgestimate, all 

subjects were using monophasic combination pills with either drospirenone (2 subjects), 

desogestrel (1 subject), or levonorgestrel (3 subjects). All HCs contained 20-30 µg of 

ethinyl estradiol. Participants provided signed consent to the study protocols which were 

approved by the Health Sciences Research Ethics Board at The University of Western 

Ontario, Canada, and conformed to the standards set by the Declaration of Helsinki. 

Women in the HC group were tested between days 1 and 4 (day 1 being the first 

day of menstruation) to represent the LH phase which is associated with no contraceptive 

use or placebo use. Women taking HC were also tested between days 20 and 24 to 

represent the HH phase, associated with active hormonal contraceptive treatment. Due to 

the inhibitory effect of exogenous hormones on endogenous hormone production, there 

was no significant change in circulating levels of endogenous 17-β-estradiol or 

progesterone from LH (117 ± 89 pmol/L and 1.0 ± 0.7 nmol/L, respectively) to HH (51 ± 

18 pmol/L and 1.1 ± 0.7 nmol/L; P = 0.1 and 0.6, respectively). Non-users of HC were 

tested between days 1 and 4 of the menstrual cycle during the EF phase, and days 20-24 

during the ML phase. Significant increases in 17-β-estradiol and progesterone from EF 

(151 ± 50 pmol/L and 1.2 ± 0.5 nmol/L, respectively) to ML (638 ± 175 pmol/L and 35.8 

± 9.3 nmol/L) confirmed the target menstrual cycle phases.   



40 

 

2.2.2 Experimental Design 

Each subject visited the laboratory on 3 occasions. The first was a familiarization 

visit during which the subjects practiced the LBNP protocol and experienced all non-

invasive aspects of data acquisition. Hormone phase testing occurred following 

familiarization, and the order of hormone phase testing was counterbalanced among the 

subjects. Time of day was kept constant within each subject. Subjects arrived for test 

days a minimum of 3 hours postprandial and having abstained from exercise, caffeine, 

and alcohol for a minimum of 12 hours. Subjects were positioned supine with their legs 

and hips sealed in a LBNP chamber. The LBNP chamber was connected to a vacuum fed 

through a variable transformer (Staco Energy Products Co., Dayton, Ohio, USA) which 

allowed precise control of suction inside the chamber. After subjects had been 

instrumented for data acquisition including microneurography, 5 minutes of stable 

baseline were recorded. Subjects were then exposed to LBNP at -30, -60, and -80 mmHg. 

The order of LBNP testing was quasi-random: -60 mmHg always preceded -80 mmHg to 

ensure that all subjects could tolerate -60 before advancing to -80 mmHg. Therefore, only 

the order of -30 mmHg versus the severe levels of suction was randomized. An additional 

five minutes of baseline were recorded prior each LBNP level to account for any possible 

drift in the sympathetic or hemodynamic signals over the course of the test session. All 

LBNP levels were maintained for 3 minutes, and were tolerated in all subjects except one 

woman who reported mild nausea following LBNP -60 mmHg; LBNP -80 mmHg was 

not conducted in this subject. 
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2.2.3 Measures 

Heart rate (HR) was measured through a 3-lead electrocardiogram. Blood 

pressure waveforms were obtained through finger photoplethysmography (Finometer; 

Finapres Medical Systems, Amsterdam, The Netherlands) and calibrated to a resting 

blood pressure which was the average of three values obtained through manual 

sphygmomanometry. Cardiac output (Q) was calculated online using the Modelflow 

algorithm (Finometer). Muscle sympathetic nerve activity was assessed through 

microneurography at the peroneal nerve (Vallbo et al., 1979). Briefly, a tungsten 

recording electrode with an uninsulated tip was inserted transcutaneously and an 

additional electrode was inserted subcutaneously as reference. The recording electrode 

was maneuvered into the nerve until a recording site was obtained. Adequate recording 

sites were associated with pulse synchronous bursts of activity which increased in 

frequency during end-expiratory apnea and were unaffected by arousal to a loud noise 

(Delius et al., 1972). The MSNA signal was amplified 1000x by a preamplifier and 75x 

by a variable-gain, isolated amplifier, then band-pass filtered from 700 to 2000 Hz. The 

signal was then rectified and integrated (0.1 s time constant; model 662C-3; Iowa 

University Bioengineering, Iowa, USA). The MSNA signal was sampled at 10 000 Hz by 

an online data acquisition and analysis package (Powerlab /16SP with LabChart 7, 

ADInstruments, Colorado Springs, Colorado, USA). Hemodynamic measures were 

sampled at 1000 Hz. 

2.2.4 Data Analysis 

Mean arterial pressure (MAP), systolic (SBP), diastolic (DBP), and pulse 

pressures (PP) were calculated from the calibrated brachial blood pressure waveform. 
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Stroke volume (SV) was calculated as Q divided by HR. Total peripheral resistance 

(TPR) was calculated as MAP divided by Q. Total MSNA was calculated as burst 

frequency (bursts/min) multiplied by mean normalized burst amplitude; burst amplitudes 

were normalized within each LBNP condition by expressing all bursts relative to the 

largest burst in the preceding baseline period, which was assigned a value of 100.  

 All data were analysed statistically using mixed repeated measures analyses of 

variance (ANOVA; Statistical Analysis System V.9.1.3, SAS Institute Inc., Cary, NC, 

USA). At baseline, a 2-way mixed ANOVA assessed the main effects of group (HC vs no 

HC) and hormone phase (EF/LH vs ML/HH) on the sympathetic and hemodynamic 

outcome measures, as well as possible group x phase interactions. Responses to LBNP 

were assessed using a 3-way mixed ANOVA, which assessed the main effects of group, 

phase, and experimental condition (BSL, -30, -60, and -80 mmHg LBNP). These 

analyses on responses to baroreceptor unloading were performed in a slightly smaller 

group than baseline comparisons: 7 women taking HC and 7 women not taking HC. The 

Tukey-Kramer correction was applied in all post hoc comparisons. Alpha was set at 0.05. 

2.3 Results 
Baseline hemodynamics and MSNA characteristics are summarized in Table 2.2. 

No differences were observed in MSNA or hemodynamics between users and non-users 

of HC. A main effect of hormone phase was observed for HR which was significantly 

greater in the high versus low hormone phases. Likewise, MSNA burst frequency and 

total MSNA were elevated in the high hormone phases relative to the low hormone 

phases.  
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 Baroreceptor unloading by LBNP was associated with increases in MSNA burst 

amplitude, burst frequency, and total MSNA (Figure 2.1). A main effect of hormone 

phase indicated that higher hormone phases were associated with higher levels of total 

MSNA and burst frequency than the lower hormone phases while there was no 

significant effect of hormone phase on burst amplitude. These patterns of sympathetic 

activation were not different between users and non-users of HC.  

 The higher hormone phases were associated with higher HR and lower SV 

relative to the lower hormone phases (Figure 2.2). Conversely, the reductions in Q and 

MAP and increases in TPR were similar between low and high hormone phases. 

However, significant group x LBNP interactions were observed for MAP and TPR. These 

indicated that MAP was reduced during LBNP only in women taking HC while TPR was 

increased only in non-users of HC.  

In order to determine whether the exaggerated MSNA responses observed in the 

high hormone phases were accounted for by the greater reductions in SV, we performed 

regression analyses to determine the slope of the relationship between the change in SV 

and the change in MSNA across the 3 levels of LBNP (Figure 2.3). Significant, negative 

relationships were observed between Δ-SV and Δ-total MSNA during both low hormone 

(R = -0.7) and high hormone phases (R = -0.6), the slopes of which were not different 

between hormone phases.  



44 

 

Table 2.1: Subject characteristics 

 
 
 
 
 
 
 
 
 
 
 
 
 

Values are mean ± standard deviation. BMI, body mass index; HC, hormonal 

contraceptives. 

  

 HC Users Non-Users of 
HC 

n 8 9 

Age (y) 24 ± 3 24 ± 3 

Height (cm) 167 ± 3 166 ± 6 

Weight (kg) 60 ± 4 64 ± 9 

BMI (kg • m2) 22 ± 2 23 ± 3 
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Table 2.2: Baseline hemodynamics and muscle sympathetic nerve activity 

 
Values in central columns are mean ± standard deviation in women taking hormonal 

contraceptives (n=8) during low- (LH) and high-hormone (HH) phases and in women not 

taking exogenous hormones during early follicular (EF) and midluteal (ML) phases of the 

menstrual cycle. Rightmost columns are split-plot ANOVA P values for the main effect 

of hormone phases (EF/LH versus ML/HH). No significant main effects of  group (HC 

users versus non-users of HC) or phase x group interactions were observed. HC, 

hormonal contraceptives; MAP, mean arterial pressure; SBP, systolic blood pressure; 

DBP, diastolic blood pressure; PP, pulse pressure; HR, heart rate; Q, cardiac output; SV, 

stroke volume; TPR, total peripheral resistance; MSNA, muscle sympathetic nerve 

activity.   

 HC Users Non-Users of HC Hormone 
Phase 

P Value  LH HH EF ML 

MAP (mmHg) 92 ± 4 96 ± 9 86 ± 6 84 ± 6 0.5 

SBP (mmHg) 119 ± 10 123 ± 14 114 ± 13 112 ± 10 0.7 

DBP (mmHg) 68 ± 4 70 ± 8 67 ± 9 67 ± 4 0.7 

PP (mmHg) 51 ± 7 53 ± 10 48 ± 18 44 ± 10 0.7 

HR (beats · min-1) 64 ± 8 68 ± 13 61 ± 7 64 ± 7 0.03 

Q (L · min-1) 5.1 ± 0.7 5.6 ± 1.0 4.9 ± 1.0 5.1 ± 1.0 0.2 

SV (mL) 81 ± 13 83 ± 10 80 ± 10 80 ± 14 0.7 

TPR (mmHg  
· L-1 · min-1) 18 ± 2 18 ± 3 18 ± 3 17 ± 5 0.7 

MSNA burst 
frequency 
(bursts · min-1) 

11 ± 7 16 ± 8 10 ± 5 14 ± 6 <0.01 

Total MSNA (a.u.) 493 ± 303 740 ± 398 466 ± 203 740 ± 306 <0.01 
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Figure 2.1: Sympathetic nerve activity during lower body negative pressure across 

hormone phases. 

Total muscle sympathetic nerve activity (MSNA) was elevated in the menstrual cycle 

phases associated with elevated hormones (ML and HH) relative to the low hormone 

phases (EF and LH) across all levels of baroreceptor unloading, regardless of exogenous 

hormone use. HC, hormonal contraceptives; EF, early follicular; LH, low hormone; ML, 

midluteal; HH, high hormone; BSL, baseline. Values are means ± standard deviations. 
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Figure 2.2: Hemodynamic responses to lower body negative pressure across 

hormone phases  

Stroke volume (SV) was lower during the high hormone phases (HH and ML) relative to 

the low hormone phases (LH and EF), while heart rate (HR) was higher during the high 

hormone phases, thus cardiac output (Q) was similar between phases. All of SV, HR, and 

Q were similar between women taking and not taking hormonal contraceptives. LBNP 

was associated with an increase in total peripheral resistance (TPR) only in women not 

taking contraceptives. Mean arterial pressure (MAP) was reduced during LBNP only in 

women taking contraceptives. Values are means ± standard deviations.  
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Figure 2.3: Associations between stroke volume and sympathetic nerve activity 

during lower body negative pressure 

The change in stroke volume (SV) during lower body negative pressure (LBNP) was 

negatively associated with the change in total muscle sympathetic nerve activity (MSNA) 

in both low hormone and high hormone conditions. The slopes of the SV-MSNA 

relationships were similar between hormone phases (-75 ± 55 a.u./mL vs -110 ± 58 

a.u./mL, low hormones vs high hormones; P=0.2). Thin lines are individual subject data 

across LBNP -30, -60, and -80; thick lines represent the mean relationships between Δ-

SV and Δ-MSNA.  

  



49 

 

2.4 Discussion 
This study compared sympathetic responses to moderate to severe levels of LBNP 

during low and high hormone phases of the endogenous menstrual cycle and exogenous 

hormonal contraceptive use. We observed several main findings. First, baseline MSNA 

levels were similar between users and non-users of HC. In both groups of women, MSNA 

burst frequency and total MSNA were reduced during the lower hormone phases (LH and 

EF) compared to the higher hormone phases (HH and ML). Second, the sympathetic 

responses to LBNP were greater in the higher hormone phases than the lower hormone 

phases of both groups. In users and non-users of HC, the exaggerated sympatho-

excitation associated with the higher hormone phase occurred in response to greater falls 

in SV, suggesting a relative increase in the severity of baroreceptor unloading in the 

higher hormone phases compared with the lower hormone phases. Finally, an LBNP-

driven increase in TPR was observed only in women not taking HC. No increase in TPR 

was observed in women taking HC, and as such, HC users experienced a significant fall 

in MAP, which was not observed in non-users of HC. Together, these data indicate that 

higher hormone phases of the menstrual cycle and HC use are associated with greater 

baroreceptor-mediated increases in sympathetic nerve activity than the lower hormone 

phases. However, the resultant end-organ responses associated with sympathetic nerve 

activation may be affected by HC use.  

 An increase in baseline MSNA from the low hormone to the high hormone phase 

has been observed several times in non-users of HC, with heightened MSNA observed in 

the ML phase of the menstrual cycle relative to the EF phase (Minson et al., 2000a;Park 

& Middlekauff, 2009;Middlekauff et al., 2012;Carter et al., 2013). However, a similar 
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pattern has not yet been observed across low and high hormone phases of HC use 

(Minson et al., 2000b;Carter et al., 2009a;Middlekauff et al., 2012). It is possible that 

differences between endogenous hormones and the exogenous hormones in 

contraceptives may contribute to this discrepancy. Significant correlations have been 

observed between the magnitude of the increases in endogenous 17-β-estradiol (E2) and 

progesterone from EF to ML and the increase in MSNA burst frequency across the 

menstrual cycle (Carter et al., 2013). Specifically, the largest ML phase-driven increases 

in MSNA coincided with limited increases in E2 and larger increases in progesterone, in 

support of a sympatho-inhibitory influence of E2 and a sympatho-excitatory influence of 

progesterone (Carter et al., 2013). Along similar lines, some progestins commonly used 

in HC have androgenic properties, and an androgenic hormonal milieu has been 

associated with elevations in baseline MSNA in a clinical population of women 

(Sverrisdottir et al., 2008). Therefore, while the increased progestin concentrations 

associated with the HH phase of HC use could potentially elevate MSNA, all of the 

progestins contained in the contraceptives used in the present study have low androgenic 

activity (Speroff & DeCherney, 1993) and/or antiandrogenic activity (Fuhrmann et al., 

1996). Thus, it remains unclear why an increase in MSNA was observed in the women 

taking HC in the present study, in contrast to the previous studies (Minson et al., 

2000b;Carter et al., 2009a;Middlekauff et al., 2012).  

 Previous studies examining the sympathetic responses to baroreceptor unloading 

across the menstrual cycle in women in non-users of HC have used mild to moderate 

LBNP (-5 to -40 mmHg) (Carter et al., 2009b) and prolonged 60° head-up tilt (Fu et al., 

2009).  Both studies observed greater increases in total MSNA in the ML phase than the 
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EF phase. On the other hand, the same effect has not been observed in women taking HC: 

graded LBNP up to -40 mmHg resulted in similar MSNA responses between LH and HH 

phases of HC use (Carter et al., 2009a). However, in each of these previous studies, 

hemodynamic responses to baroreceptor unloading were similar between hormone phases 

(Carter et al., 2009a;Carter et al., 2009b;Fu et al., 2009), in contrast with the present 

study.   

In the present study, acute, severe LBNP was used to evoke large sympatho-

excitatory responses driven by baroreceptor unloading. Unlike previous studies, the SV 

stimulus and MSNA response were greater in high hormone phases (ML and HH) than 

low hormone phases (EF and LH).  Total MSNA increases were linearly related to the 

decrements in SV in both low and high hormone conditions. Moreover, the slope of this 

relationship was similar between hormone phases, indicating similar baroreceptor-driven 

MSNA sensitivity across hormone phases. In other words, these results indicate that the 

greater sympathetic response in high hormone phases was due to greater baroreceptor 

unloading rather than a centrally driven amplification of the efferent sympathetic 

response. These observations confirm those of Middlekauff and colleagues (Middlekauff 

et al., 2012) who showed that sympathetic baroreflex sensitivity was similar between low 

and high hormone phases of both the menstrual cycle and HC use as assessed by the 

modified Oxford test. On the other hand, Minson and colleagues have also used the 

modified Oxford model of baroreflex assessment in comparisons of hormone phases in 

users and non-users of HC, and observed greater sympathetic baroreflex sensitivity in the 

ML phase of the endogenous menstrual cycle relative to the EF phase (Minson et al., 

2000a) while users of HC experience increased sympathetic baroreflex sensitivity in the 
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LH phase relative to the HH phase (Minson et al., 2000b). Thus, although evidence exists 

to indicate that sympathetic responses to a given stimulus of baroreceptor unloading are 

similar between women taking and not taking HC, further work is required in this area.  

In the present study, the only statistical difference between the users and non-

users of HC was observed in the hemodynamic outcomes during LBNP.  In women not 

taking exogenous hormones, LBNP was associated with a small but significant increase 

in TPR, an effect which was not observed in the users of HC. The reduction in cardiac 

output during LBNP was similar between both groups of women, therefore MAP was 

maintained in non-users of HC but reduced in users of HC. These data are suggestive of a 

reduced neurovascular response to an acute orthostatic challenge in women taking HC. 

Previously, Carter and colleagues repeated a graded LBNP protocol from -5 to -40 

mmHg in women across the endogenous menstrual cycle and in women taking HC in 

both the low and high hormone phases (Carter et al., 2009b;Carter et al., 2009a). In these 

studies, the authors observed no significant changes in MAP with LBNP in either group 

of women. However, their levels of LBNP were less severe than those used in the current 

study. The combined data illustrate the potential deleterious impact of HC on 

neurovascular and blood pressure control, but an effect that is observed only at high 

levels of stress.  

Limitations 

 The type of hormonal contraceptive was not controlled in this study, and although 

all subjects were using combination formulations, the type of progestin varied among the 

subjects. Given the varying effects that different progestins exert over endothelial 
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function (Meendering et al., 2010;Meendering et al., 2009;Torgrimson et al., 2007), it is 

unclear to what extent the hemodynamic measures in this study were affected by the 

range of HC types. Also, this experimental design compared phases in which 

progesterone or progestins were elevated at the same time as E2 or ethinyl estradiol. 

These hormones are thought to exert opposing influences over sympathetic regulation 

(Carter et al., 2013), and in the present design we could not tease apart these separate and 

perhaps competing influences.  

Perspectives 

 In this study we did not observe a difference in sympathetic regulation between 

users and non-users of hormonal contraceptives. In both groups, similar lower body 

negative pressure stimuli were associated with greater reductions in SV in the high 

hormone phases, implying more severe venous pooling occurred for a given level of 

negative pressure relative to the low hormone phases. As a result, the sympathetic 

responses to lower body negative pressure were greater during the high hormone phases 

than the low hormone phases. However, the subsequent increase in total peripheral 

vascular resistance was dependent on whether or not a woman was taking hormonal 

contraceptives. Women taking hormonal contraceptives lacked the reflex increase in 

vascular resistance during baroreceptor unloading, and as a result mean arterial pressure 

was not maintained during LBNP as it was in women not taking exogenous hormones. 

These results suggest that both hormone phase and use of HC influence the regulation of 

blood pressure during acute orthostasis in young healthy women.  
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Chapter 3  

3 Hormone phase dependency of neural responses to 
chemoreflex-driven sympatho-excitation in young women 
using hormonal contraceptives 
(Published in J Appl Physiol 115(10): 1415-1422, 2013. Used with permission – see 

Appendix D) 

3.1 Introduction 
Endogenous female sex hormones affect autonomic regulation of the heart and 

vasculature (Saleh et al., 2005;Herbison et al., 2000). Concentrations of circulating sex 

hormones fluctuate across the regular menstrual cycle, and recent studies (Minson et al., 

2000a;Park & Middlekauff, 2009;Middlekauff et al., 2012;Carter et al., 2009b;Jones et 

al., 1996;Fu et al., 2009;Jarvis et al., 2011;Carter & Lawrence, 2007) have used the 

measurement of muscle sympathetic nerve activity (MSNA) to examine whether the 

menstrual cycle affects neural regulation of the peripheral muscle vasculature (Wallin et 

al., 1974). However, despite the high prevalence of oral contraceptive use (Mosher & 

Jones, 2010), relatively few studies have investigated the possible influence that 

fluctuations in exogenous sex hormone levels, brought on through hormonal 

contraceptive use, exert on MSNA.  

Studies that have examined the effect of the menstrual cycle on sympathetic 

activation in young eumenorrheic women not taking hormonal supplementation most 

often compare the early follicular phase, associated with the nadir of estrogen and 

progesterone levels, to the mid-luteal phase, associated with an elevated plateau of these 

hormones. Some (Minson et al., 2000a;Park & Middlekauff, 2009;Middlekauff et al., 
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2012;Carter et al., 2013), but not all (Carter et al., 2009b;Jones et al., 1996;Fu et al., 

2009;Jarvis et al., 2011;Carter & Lawrence, 2007), studies have observed elevated 

baseline MSNA during the mid-luteal phase of the menstrual cycle relative to the early 

follicular phase. Hormone phase-dependent effects on MSNA have been observed during 

baroreceptor unloading (Carter et al., 2009b;Fu et al., 2009) and following mental stress 

(Carter & Lawrence, 2007), with larger MSNA responses and greater baroreflex 

sensitivity (Minson et al., 2000a) during the mid-luteal phase. Thus, the high-hormone 

mid-luteal phase is associated with heightened MSNA relative to the low-hormone early 

follicular phase under conditions of normally-fluctuating endogenous sex hormones.  

While the bulk of recent research has focused on the impact of endogenous sex 

hormone fluctuations in eumenorrheic women, fewer studies have examined the effects 

of exogenous hormone supplementation on MSNA regulation in young healthy women. 

Hormonal contraceptive use has been associated with elevated systolic blood pressures 

(Le-Ha et al., 2012;Hickson et al., 2011) through elevations in arterial stiffness (Hickson 

et al., 2011), which could be attributable to altered patterns of sympathetic outflow in 

these women compared to those previously observed in eumenorrheic women. Thus, in 

order to examine patterns of sympathetic outflow during contraceptive use, three previous 

studies made observations of MSNA at two phases of hormone levels – the low hormone 

phase (LH; brought on through placebo pills or cessation of active pill ingestion) and the 

high hormone phase (HH; the monthly plateau of EE and progestin ingestion). To date, 

the comparison of LH and HH phases has not revealed differences in absolute levels of 

baseline MSNA (Minson et al., 2000b;Carter et al., 2009a;Middlekauff et al., 2012). That 

is, women taking oral contraceptives appear to lack the reduction in MSNA which occurs 
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during the early follicular phase in eumenorrheic women not taking contraceptives. 

However, one study observed higher baseline mean and diastolic blood pressures during 

LH unaccompanied by a difference in MSNA from HH (Minson et al., 2000b), 

suggesting either a change in the transduction of the neural signal into a vascular 

outcome, or a change in central baroreflex integration from LH to HH. To the latter end, 

sympathetic baroreflex sensitivity elicited through the modified Oxford method may be 

greater during the LH phase relative to HH (Minson et al., 2000b) although others have 

failed to replicate that finding using the same technique (Middlekauff et al., 2012) or 

spontaneous measures of sensitivity (Carter et al., 2009a). Similarly, mild to moderate 

levels of lower body negative pressure (Carter et al., 2009a) have elicited similar MSNA 

responses in each hormone phase. Given the severe vasoactive consequences of the 

modified Oxford technique which involves pharmacologically induced depressor 

(nitroprusside) and pressor (phenylephrine) effects (Rudas et al., 1999), it is possible that 

the influence of hormone phase on MSNA control may be observed only under 

conditions of severe stress. Another stressor known to elicit large changes in sympathetic 

discharge patterns is chemoreflex stress (Steinback et al., 2010;Malpas & Ninomiya, 

1992a), but this has not yet been examined in women taking hormonal contraceptives. 

Thus, both the nature and severity of reflex stress may be important in determining sex-

hormone specific effects on sympathetic reflex activation. Taken together, previous 

research suggests that sympathetic regulation may be affected by fluctuations in 

exogenous hormones, although the low hormone-low MSNA, high hormone-high MSNA 

pattern observed in the conditions of cycling endogenous hormones has yet to be 

observed under conditions of contraceptive use.  
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Therefore, the purpose of this study was to compare muscle sympathetic nerve 

activation patterns during LH versus HH phases of exogenous contraceptive hormone use 

across a range of chemoreflexive stimuli. We hypothesized that baseline MSNA and 

sympathetic reflex responses would be greater in the HH phase relative to the LH phase 

of hormonal contraceptive use. 

3.2 Methods 

3.2.1 Participants 

Ten healthy female participants were enrolled in the study after providing written 

informed consent; repeated nerve sites in each hormone phase were obtained in seven 

participants. The seven research subjects were 24 ± 2 years of age, 167 ± 4 cm in height 

and 60 ± 4 kg in weight (BMI  = 22 ± 2 kg/m2). They were healthy non-smokers who had 

no history of cardiovascular or respiratory disease. All participants were physically 

active, performing a combination of aerobic and resistance exercise an average of 4 times 

each week, 50 minutes per day.  Participants were not taking any medications with the 

exception of hormonal contraceptives. Average age of menarche was 12 ± 1 years. 

Hormonal contraceptive data are presented in Table 3.1. All protocols were approved by 

the Health Sciences Research Ethics Board at The University of Western Ontario, 

Canada, and conformed to the Helsinki Accord.  

3.2.2 Experimental Design 

Prior to data collection, all participants attended a familiarization session in the 

same laboratory used for testing at which time they practiced the test protocol and 

experienced the non-invasive components of data acquisition. On test dates, participants 
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arrived at the laboratory at least 3 hours postprandial and having abstained from alcohol, 

caffeine, and other stimulants for 12 hours. Participants were studied twice: during the 

low hormone phase (LH; day 1-4; day 1 = the first day of menses) and during the high 

hormone phase (HH; day 20-24). Phases were designated based on the daily doses of the 

contraceptives. Test sessions were conducted at the same time of day for each subject, 

and the order of hormone phase data collection was counterbalanced among participants. 

3.2.3 Rebreathing and End-Inspiratory Apnea Protocol 

Participants were supine and breathed through a mouthpiece (series 9060, Hans 

Rudolph, Inc., Kansas City, MO) attached to a three-way valve which allowed the subject 

to breathe either room air, or through a Y-connector (VacuMed, Ventura, CA) leading to 

two 3-litre breathing bags. Participants were instrumented with a pulse oximetry ear clip 

(Dura-Y D-YSE, Covidien-Nellcor, Boulder, CO) connected to a pulse oximeter 

(OxiMax N-560, Covidien-Nellcor) to monitor blood oxygen saturation throughout the 

protocol. Gases were analyzed using an infrared carbon dioxide sensor and optical 

oxygen detector fed from a damped micro vacuum sampling pump (ML206 Gas 

Analyzer, ADInstruments, Colorado Springs, CO). These values were calibrated using 

ambient air pressure values and converted to online measurements of oxygen (PO2) and 

carbon dioxide (PCO2) partial pressures. Prior to beginning baseline, subjects filled the 

breathing bags with expired air in preparation for the rebreathing period which followed 

the five minutes of baseline recording.  After baseline collection, the 3-way valve was 

turned to initiate rebreathing, a procedure to induce progressive hypoxia and hypercapnia 

and thereby maximize the sympatho-excitatory stress evoked during the subsequent 

apnea. Once PO2 reached 70 Torr, subjects were instructed to perform the maximal end-
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inspiratory apnea on their next inspiration. Upon exhalation at voluntary cessation of the 

apnea, subjects breathed twice in and out of the bags to allow measurement of the end-

apnea PO2 and PCO2.  

3.2.4 Measurements 

Heart rate (HR) was measured through a standard three-lead electrocardiogram. A 

blood pressure waveform was obtained through finger photoplethysmography while 

online calculations produced continuous brachial artery pressure waveforms and cardiac 

output (Q) measures (Finometer; Finapres Medical Systems, Amsterdam, The 

Netherlands).  

Multiunit recordings of postganglionic sympathetic nerve activity were obtained 

from the peroneal nerve of the right leg by microneurography. When test dates were 

separated by fewer than 4 weeks, microneurography was performed on the left leg on the 

second visit. A tungsten microelectrode (35 mm long, 200 µm diameter, tapered to a 1-5 

µm tip) was inserted transcutaneously into the nerve posterior to the fibular head. A 

reference electrode was positioned subcutaneously 1-3 cm from the recording site. A 

suitable sympathetic nerve site produced a characteristic pulse-synchronous burst pattern 

which increased firing frequency in response to a voluntary apnea but was not associated 

with skin paresthesias or skin afferent activity and was not affected by arousal to a loud 

noise. Neuronal recordings were amplified 1000 times by a preamplifier and 75 times by 

a variable-gain, isolated amplifier before being band-pass filtered at 700 – 2000 Hz and 

then rectified and integrated to obtain a mean voltage neurogram (0.1 s time constant) 

(model 662C-3; Iowa University Bioengineering). Raw, filtered, and integrated MSNA 
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data were sampled at 10 000 Hz (Powerlab Software, ADInstruments). All data were 

stored for offline analysis. 

3.2.5 Data Analysis 

Rebreathing data were selected based on PO2: all data between 85 and 70 Torr 

PO2 (i.e. prior to the beginning of the apnea) were averaged to generate mean responses 

to rebreathing. Apnea data were divided into two halves corresponding to an initial phase 

of relative neural suppression to be followed by a larger sympathetic response.  

Therefore, apnea data for each subject were averaged in two phases hereafter referred to 

as the initial phase (APN-P1) and the latter phase (APN-P2). All relative changes were 

calculated against the 5-minute baseline period.   

After calibrating the reconstructed brachial blood pressure signal to a manual 

sphygmomanometer blood pressure reading obtained at rest, the brachial arterial blood 

pressure waveform was used to calculate systolic blood pressure (SBP), diastolic blood 

pressure (DBP), pulse pressure (PP), and mean arterial pressure (MAP). Total peripheral 

resistance (TPR) was calculated as MAP/Q.   

Sympathetic activity was quantified as burst frequency (bursts/min) and burst 

incidence (bursts/100 heartbeats). Burst amplitudes were normalized to the largest burst 

recorded during the baseline period, which was given a value of 100. To examine burst 

amplitude at LH and HH during baseline conditions, burst amplitude distribution curves 

were generated and the medians of the distributions were compared (Sverrisdottir et al., 

2000). Total MSNA in each condition was calculated as the mean normalized burst 

amplitude x burst frequency.  
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3.2.6 Statistical Analysis 

 Baseline data were compared between LH and HH using 1-tailed paired t-tests. A 

two-way repeated measures ANOVA was used to examine the main effects of hormone 

phase (LH vs HH) and experimental condition (baseline, rebreathing, APN-P1, and APN-

P2) on the outcome measures. Point-wise comparisons for chemoreflex conditions were 

conducted using two-tailed paired t-tests. Post hoc comparisons were corrected using the 

Bonferroni correction. Alpha was set at 0.05. 
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3.3 Results 
Chemoreflex characteristics are presented in Table 3.2; respiration rate, PO2, and 

PCO2 were similar between LH and HH during baseline, rebreathing, and following 

cessation of the apnea.  

Baseline levels of MAP, SBP, DBP, PP, and TPR were similar between LH and 

HH phases (Table 3.3).  Small differences in HR and Q between phases did not reach 

statistical significance. Baseline MSNA burst incidence and burst frequency were greater 

in the HH phase relative to the LH phase, a pattern observed in the majority of subjects 

(Figure 3.1).  Median MSNA burst amplitude was not different between LH and HH 

(Figure 3.2). 

A sample tracing of a representative subject completing the chemoreflex protocol 

in the LH phase is presented in Figure 3.3.  

The hemodynamic consequences of rebreathing were similar between hormone 

phases (Figure 3.4). Specifically, rebreathing during LH and HH elicited similar levels of 

MAP (P=0.72), Q (P=0.23), and HR (P=0.26). TPR was unchanged during rebreathing 

and was similar between hormone phases.  

 Compared with baseline, rebreathing was associated with significant elevations in 

MSNA burst frequency and amplitude (P<0.05) in both hormone phases (Figure 3.4). The 

HH phase produced higher absolute levels of MSNA burst frequency and burst incidence. 

However, when MSNA firing patterns were expressed relative to baseline levels, no 

differences between LH and HH were observed in rebreathe MSNA levels (Figure 3.5).  
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 Apnea.  Apneas were maintained for similar durations in each hormone phase (22 

± 11 vs 22 ± 7 s, LH vs HH, P=0.90). Relative to APN-P1, APN-P2 produced larger 

increases in MAP and TPR and was associated with a reduction in Q (P<0.05; Figure 

3.4). Changes in these hemodynamics were not statistically different between LH and HH 

during either APN-P1 or APN-P2.  

 Both apnea segments elicited significant increases in all MSNA variables from 

baseline (P<0.01; Figure 3.4). Burst frequency rose to similar absolute levels in each 

hormone phase during APN-P1 (P=0.15) and APN-P2 (P=0.36). As a result of the 

baseline hormone phase-based differences in MSNA firing frequency, the relative 

increases in burst frequency (P=0.03) and incidence (P=0.02) were greater in the LH 

phase than the HH phase in APN-P1 but not APN-P2 (frequency: P=0.11; incidence: 

P=0.23; Figure 3.5). Conversely, burst amplitude increased similarly between hormone 

phases in APN-P1 (P=0.63) while APN-P2 elicited a greater increase in burst amplitude 

in the LH compared to the HH phase (P=0.04; Figure 3.4). Together, these changes in 

burst characteristics contributed to a similar total MSNA response in APN-P1 between 

LH and HH (P=0.49) but a greater total MSNA response in LH than HH in APN-P2 

(P=0.02).  
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Table 3.1: Hormonal contraceptive data 

Contraceptive Type n Daily  
EE dose (µg) 

Daily progestin 
dose(s) (mg) 

Alesse monophasic pill 1 20 0.1 
Aviane monophasic pill 1 20 0.1 

Evra 
monophasic 
transdermal 

patch 
1 35* 0.2* 

Minovral monophasic pill 1 30 0.15 
Tri-Cyclen Lo triphasic pill 1 25 0.18, 0.215, 0.25 

Yasmin monophasic pill 1 30 3 
Yaz monophasic pill 1 20 3 

Mean ± S.D.: 26 ± 6 0.8 ± 1.2 
 
Data obtained from pharmaceutical websites. Triphasic pill data presented as week 1, 

week 2, week 3. *=estimated daily dose. EE, ethinyl estradiol. 
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Table 3.2: Baseline and chemoreflex respiration characteristics 

 Respiration Rate 
(breaths/min) PO2 (torr) PCO2 (torr) 

 LH HH LH HH LH HH 

Baseline 13 ± 3 13 ± 4 126 ± 5 126 ± 6 18 ± 4 18 ± 4 

Rebreathe 13 ± 4 12 ± 4 79 ± 1 79 ± 1 45 ± 4 44 ± 4 

End-Apnea - - 62 ± 3 62 ± 3 49 ± 4 47 ± 4 

Data presented as mean ± standard deviation. PO2 = partial pressure of oxygen; PCO2 = 

partial pressure of carbon dioxide; LH = low hormone phase; HH = high hormone phase.  
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Table 3.3: Baseline hemodynamic and muscle sympathetic nerve activity 

Data presented as mean ± standard deviation. MAP = mean arterial pressure; HR = heart 

rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; PP = pulse pressure; 

Q = cardiac output; TPR = total peripheral resistance; MSNA = muscle sympathetic 

nerve activity. 

  

Variable Low Hormone 
Phase 

High 
Hormone 

Phase 

P 
Value 

MAP (mmHg) 99 ± 14 103 ± 14 0.22 

HR (beats · min-1) 64 ± 8 71 ± 11 0.06 

SBP (mmHg) 128 ± 16 129 ± 16 0.43 

DBP (mmHg) 70 ± 5 73 ± 12 0.15 

PP (mmHg) 57 ± 13 55 ± 9 0.36 

Q (L · min-1) 5.1 ± 0.7 5.8 ± 0.9 0.08 

TPR (mmHg · L-1 · min-1) 20 ± 4 18 ± 2 0.14 

MSNA burst incidence (bursts · 100 

heartbeats-1) 
16 ± 8 23 ± 9 0.03 

MSNA burst frequency (bursts · min-1) 11 ± 6 16 ± 8 0.02 

Total MSNA (a.u.) 522 ± 270 744 ± 350 0.04 
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Figure 3.1: Individual patterns of sympathetic burst frequency and incidence. 

The majority of subjects increased muscle sympathetic nerve activity (MSNA) firing 

rates from low (LH) to high hormone phases (HH). Closed circles with error bars 

represent LH mean ± standard deviation; open circles with error bars represent HH mean 

± standard deviation. *P<0.05 vs LH.  
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Figure 3.2: Sympathetic burst amplitude distributions at baseline. 

Medians of the distributions were not different between LH and HH phases (P=0.22). 

Data are presented as mean ± standard deviation.  
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Figure 3.3: Sample tracing from a subject performing the rebreathing and apnea 

protocol. 

Data are from low hormone phase. Lines at top represent data selected for analysis. BSL 

= baseline; APN-P1 = initial half of apnea; APN-P2 = latter half of apnea; PO2 = partial 

pressure of oxygen; PCO2 = partial pressure of carbon dioxide; MSNA = muscle 

sympathetic nerve activity; BP = blood pressure; HR = heart rate. 
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Figure 3.4: Hemodynamics and sympathetic activity responses. 

A main effect of chemoreflex was observed across all measures. Significant hormone 
phase x chemoreflex condition interactions were observed in burst frequency and burst 
amplitude. *P<0.05 vs BSL; †P<0.05 LH vs HH. Data are presented as mean ± standard 
deviation. COND = chemoreflex condition; LH = low hormone phase; HH = high 
hormone phase.   
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Figure 3.5: Relative changes from baseline in sympathetic characteristics. 
Greater increases in muscle sympathetic nerve activity (MSNA) in response to 

chemoreflex stimulation were observed in the low hormone (LH) phase compared to the 

high hormone (HH) phase of hormonal contraceptive use. No significant Phase x 

Condition interactions were observed. Data are presented as mean ± standard deviation. 

COND = chemoreflex condition.   
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3.4 Discussion 
This study was the first to observe differences in baseline levels of MSNA 

between hormone phases in women taking hormonal contraceptives. Specifically, we 

observed elevations in baseline MSNA burst frequency and burst incidence with no 

change in baseline burst amplitude distribution from the low- to the high-hormone phase 

of hormonal contraceptive use. In addition to baseline effects, hormonal contraceptives 

also affected the reflex increase in MSNA, but in a manner that was different than 

baseline effects. Specifically, severe chemoreflex stimulation elicited greater increases 

from baseline in sympathetic firing frequency and burst amplitude in the LH phase 

relative to the HH phase. Importantly, the greater chemoreflex response in the LH phase 

included a shift in burst amplitude distribution suggesting greater neuronal recruitment.  

Therefore, these data suggest that endogenous hormone phase affects the regulation of 

muscle sympathetic nerve activity both at baseline and during chemoreflex stress.  

 In the current study, elevated baseline MSNA in the HH phase relative to the LH 

phase was observed without concurrent change to blood pressure, Q, or TPR. While 

previous studies have not observed baseline differences in MSNA between LH and HH 

(Minson et al., 2000b;Carter et al., 2009a;Middlekauff et al., 2012), Minson and 

colleagues (Minson et al., 2000b) observed reduced baseline MAP and diastolic blood 

pressure, with elevated calf blood flow and a trend toward reduced calf vascular 

resistance (P=0.06) during the HH phase relative to LH. In the presence of similar 

MSNA, this points to a reduction in the transduction of the neural signal into a vascular 

outcome in the HH phase of hormonal contraceptive use, which is consistent with the 

data from the present study.  It is possible that changes to the hormonal milieu induced 



77 

 

through contraceptive use may contribute to the change in baseline sympathetic 

regulation, as research conducted in eumenorrheic women without hormonal 

supplementation suggests that the concentrations of circulating hormones affect baseline 

MSNA. A recent study by Carter and colleagues (Carter et al., 2013) retrospectively 

correlated circulating concentrations of estradiol and progesterone to resting MSNA in 30 

young premenopausal women who were not taking any exogenous hormones. In their 

analysis comparing the magnitude of the change in hormone levels from the early 

follicular to the mid-luteal phase to the magnitude of the increase in MSNA across the 

menstrual cycle, the authors observed that smallest changes in the ratio of estradiol to 

progesterone were associated with the greatest increases in baseline MSNA (Carter et al., 

2013), suggesting that increasing levels of progesterone promote sympathoexcitation, 

while elevated levels of estradiol are associated with sympathoinhibition. Furthermore, 

sex hormones are well known to be vasoactive; the influence estrogens exert over the 

vasculature has been the subject of thorough review (Miller & Duckles, 2008). Estradiol 

administration enhances basal nitric oxide release in resistance arteries (Sudhir et al., 

1996), which would counteract MSNA-induced vasoconstriction. Conversely, 

progesterone antagonizes the vasodilatory properties of estradiol observed during FMD 

(Miner et al., 2011). Together, these data support a hormonal basis for the menstrual 

cycle-based changes in MSNA observed in eumenorrheic women since the mid-luteal 

phase, associated with high progesterone and estradiol, is associated with heightened 

MSNA (Minson et al., 2000a;Park & Middlekauff, 2009;Middlekauff et al., 2012;Carter 

et al., 2013). Similar patterns observed in the present study suggest that it is the hormone 

levels which are driving phase-based changes in MSNA in women taking hormonal 
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contraceptives. However, it is important to note that endogenous and exogenous 

hormones differ in their physiological effects. Ethinyl estradiol is not oxidized the same 

way as endogenous estradiol, thus its potency is much greater than the endogenous 

counterpart (Kuhl, 2005). Endogenous progesterone and the synthetic progestins vary in 

their progestogenic, antiestrogenic, and androgenic effects, dependent on the presence of 

molecular subgroups which determine receptor binding (Kuhl, 2005). Even within the 

realm of synthetic hormones, the vascular effects of various progestins are dependent on 

the precise progestin studied (Meendering et al., 2010;Meendering et al., 2009). Thus, 

caution must be taken when applying conclusions based on endogenous hormones to 

exogenous hormonal supplementation. This issue is further confounded due to the 

complexities involved in quantifying the hormonal milieu in women supplementing 

endogenous hormone production with exogenous hormones. Bioavailability of exogenous 

hormones varies among individuals (Goldzieher & Stanczyk, 2008), metabolites of 

hormones may remain in tissue for days following cessation of contraceptive use 

(Wenner & Stachenfeld, 2012), and endogenous production of hormones can increase 

during hormonal contraceptive withdrawal (van Heusden & Fauser, 1999). A complete 

picture of circulating hormone levels in women taking hormonal contraceptives would 

therefore require the measurement of both exogenous and endogenous levels of sex 

hormones. However, conventional ELISA techniques are plagued by cross-reactivity 

between ethinyl estradiol and 17β-estradiol. This issue requires further attention with 

precise quantification of hormone levels, such as those achieved through mass 

spectrometry, in order to determine the extent to which circulating hormones exert an 

influence over baseline MSNA.  
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 The present study was the first to compare chemoreflex-induced increases in 

MSNA across the phases of hormonal contraceptive use. The application of progressive 

chemoreflex stress (i.e. rebreathing then apnea) revealed hormone phase-specific effects 

based on severity of chemoreflex stimulation. For instance, mild chemoreflex stimulation 

during rebreathing did not change overall patterns of MSNA from those observed at 

baseline. However, despite the lower baseline levels of MSNA, the LH phase was 

associated with greater relative changes in MSNA burst frequency and incidence during 

the initial phase of apnea, as well as greater increases in burst amplitude in the latter 

phase of the apnea, such that total MSNA in the LH phase exceeded that observed in the 

HH phase during the most severe chemoreflex condition examined in this study. These 

observations suggest that elevated baseline activity in HH may encroach upon the ceiling 

of maximal sympathetic outflow. The current observations are supported by previous 

observations insofar that mild to moderate baroreceptor unloading (Carter et al., 2009a) 

did not elicit hormone phase-dependent differences in MSNA regulation while 

application of the modified Oxford method, which induces large, supraphysiological 

fluctuations in MAP, revealed greater sympathetic baroreflex sensitivity in subjects in the 

LH phase (Minson et al., 2000b).  Therefore, it appears to be important to examine a 

range of severities in sympatho-excitatory stimuli when examining the effects of 

hormonal contraceptive use on sympathetic regulation.  

The most commonly reported characteristics of MSNA are burst frequency, a 

general indicator of efferent sympathetic outflow (what the end organ “sees”), and burst 

incidence, which takes into account the central integration of beat-to-beat afferent 

feedback originating from the baroreceptors. Burst amplitude, however, is reported less 
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often, yet is correlated to the magnitude of vascular responses (Fairfax et al., 2013) and is 

controlled in a manner different from burst frequency (Sverrisdottir et al., 

2000;Kienbaum et al., 2001;Malpas & Ninomiya, 1992b). This supports the presence of 

two discrete mechanisms by which vasoconstrictor signals might be altered: strength and 

occurrence of sympathetic bursts (Kienbaum et al., 2001). The quantification of burst 

amplitude presents a difficulty, as raw amplitude values are indicative of recording 

electrode placement within the nerve (Vallbo et al., 1979) and/or axonal recruitment 

(Ninomiya et al., 1993). However, when  raw burst amplitude voltages are normalized 

and expressed as burst distribution plots, changes in the distribution of burst amplitude 

have been shown to discriminate between conditions where similar levels of burst 

frequency were observed (Sverrisdottir et al., 2000;Shoemaker et al., 2001). In the 

present study, the distribution of burst amplitude was similar between LH and HH during 

conditions in which burst frequency and incidence were different between hormone 

phases. In the latter half of the apnea condition, however, in which firing frequencies had 

approached maximal levels and no longer differed between LH and HH, burst amplitude 

increased in the LH phase, resulting in overall greater total MSNA in the LH phase 

relative to the HH phase during severe chemoreflex stress. These data emphasize the 

importance of burst amplitude as a mechanism by which alterations to peripheral nerve 

activity may be accomplished, particularly when burst frequencies are at or near maximal 

levels.  

Limitations 

 The end-inspiratory apnea protocol was designed to maximize sympathetic 

activation. Although the technique would affect primarily a change in chemoreflex stress, 



81 

 

the increases in intrathoracic pressures which accompany such apneas will also affect 

cardiac function and baroreflex contributions to the response. Also, the chemoreflex 

protocol induced concurrent hypercapnia and hypoxia. Therefore, whether hormone 

phase has an effect on the singular stimulus of hypoxia or hypercapnia on MSNA remains 

unknown.   

Importantly, the participants in the current study were taking different hormonal 

contraceptives, with one subject taking a transdermal patch and one subject taking a 

triphasic pill formulation. While all contraceptives contained relatively similar amounts 

of EE, the type and amount of progestin varied, and these factors are known to affect 

vascular function (Meendering et al., 2010;Meendering et al., 2009). Therefore, it is 

unclear how the specific types of hormonal contraceptives contributed to our findings.  

Conclusions 

 The data from the present study support the conclusion that exogenous sex 

hormones exert an effect on baseline sympathetic outflow, in a manner which similar to 

that observed in studies examining regularly cycling women not taking hormonal 

contraceptives (Minson et al., 2000a;Park & Middlekauff, 2009;Middlekauff et al., 

2012;Carter et al., 2013). Specifically, baseline MSNA was higher in the high hormone 

phase. Moreover, chemoreflex-driven sympathetic responses (both burst frequency and 

amplitude) were smaller in the HH versus the LH phase. Thus, the higher baseline MSNA 

levels in HH did not translate into high maximal levels of sympathetic outflow. 

Observations of similar hemodynamic outcomes in the face of altered MSNA imply a 
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contraceptive phase-dependent change in the transduction of neural inputs into vascular 

outcomes.  
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Chapter 4  

4 Sex and menstrual cycle effects on sympathetic 
responses to chemoreflex activation 

4.1 Introduction 
Rates of cardiovascular morbidity and mortality tend to be lower in premenopausal 

women than in age-matched men (Rosenthal & Oparil, 2000;Eaker et al., 1989;Criqui et 

al., 1985). Included in the category of morbidity are the sleep apnea syndromes, which 

are more prevalent in men than in women (Young et al., 1993). Sleep-disordered 

breathing is associated with elevated MSNA (Hedner et al., 1988;Carlson et al., 1993) 

and is an independent risk factor for hypertension (Hla et al., 1994), an association which 

may be strengthened in men relative to women (Nieto et al., 2000). However, the factors 

contributing to the elevated risk in men are not yet well established (Jordan & McEvoy, 

2003).  

Given that individuals with sleep apnea experience repeated bouts of hypoxia and 

hypercapnia over the course of a night, the relative female protection from sleep apnea 

may stem from an improved ability to respond to chemoreflex stress. In a study of the 

sympathetic responses to acute hypoxic stress in humans, muscle sympathetic nerve 

activity increased with a shorter latency in women relative to men, and following 

cessation of hypoxia returned back to baseline levels faster than men (Jones et al., 1999). 

Together with data indicating that females are better able to survive prolonged exposure 

to hypoxia than males (Britton & Kline, 1945), these data support a sex effect on 

sympathetic regulation in response to hypoxic stress. However, the apneic events which 

accompany sleep apnea are associated with a combination of hypoxia and hypercapnia, 
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and it is not yet known whether the sympathetic response to this combined stimulus 

differs between men and women.  

In the consideration of sympathetic regulation mechanisms in women, several 

recent studies suggest that menstrual cycle should be taken into account. For instance, 

several studies have observed that muscle sympathetic nerve activity (MSNA) peaks 

during the midluteal (ML) phase of the menstrual cycle, associated with elevations in 

17β-oestradiol (E2) and progesterone (P4), and declines during the early follicular (EF) 

phase, associated with the nadir of E2 and P4 (Minson et al., 2000;Park & Middlekauff, 

2009;Middlekauff et al., 2012;Carter et al., 2013). This same pattern has been observed 

during baroreceptor unloading, which elicits reflex increases in MSNA that are larger in 

the ML phase than in the EF phase (Fu et al., 2009;Carter et al., 2009). Furthermore, the 

differences in MSNA responses between menstrual cycle phases are exaggerated as the 

magnitude of baroreceptor unloading is increased (Fu et al., 2009;Carter et al., 2009), 

suggesting that the observation of menstrual cycle-based effects on sympathetic 

regulation may depend on the intensity of the stimulus. This hypothesis may be an 

important point to consider when examining responses to the chemoreflex, as the 

stimulation of the chemoreflex is known to elicit large increases in sympathetic nerve 

activity (Morgan et al., 1995;Saito et al., 1988) which are graded to the intensity and 

duration of the stimulus (Smith & Muenter, 2000).  

To the best of our knowledge, no studies have systematically compared MSNA 

responses to chemoreflex stimulation between EF and ML. However, our laboratory 

recently examined chemoreflex regulation in women who were regular users of hormonal 

contraceptives (Usselman et al., 2013). In those women, the low hormone phase of 
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hormonal contraceptive use was associated with a greater sympatho-excitatory response 

to chemoreflex activation than the high hormone phase (Usselman et al., 2013). If these 

results are generalized to pertain to endogenous hormone phases, this may indicate that 

lower levels of circulating hormones are associated with greater chemoreflex-induced 

increases in MSNA than higher hormone levels. 

Therefore, the purpose of the present study was to compare sympathetic responses 

between men and women during acute, severe chemoreflex stress. We tested the 

hypothesis that hypercapnic-hypoxic rebreathing and apnea would be associated with 

greater increases in MSNA in young healthy women relative to men. To determine 

whether the menstrual cycle is associated with changes in chemoreflex-driven sympatho-

excitation, we compared sympathetic responses in women during the early follicular (EF) 

and midluteal (ML) phases of the menstrual cycle. We tested the hypothesis that the EF 

phase would be associated with greater increases in MSNA than the ML phase. 

4.2 Methods 

4.2.1 Subjects 

Subjects were eligible to participate if they were healthy, non-smoking, free of 

cardiovascular and respiratory disease, and not taking any medications. All women 

reported regular menstrual cycles of approximately 28 days' duration. Data were collected 

from eighteen undergraduate and graduate students enrolled at The University of Western 

Ontario in London, Ontario: nine females (24 ± 3 y, 166 ± 6 cm, 64 ± 9 kg; mean ± 

standard deviation) and nine males (26 ± 2 y, 179 ± 4 cm, 82 ± 11 kg). All participants 

provided written, informed consent. The protocols were approved by the Health Sciences 
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Research Ethics Board at The University of Western Ontario, Canada and conformed to 

the standards set by the latest revision of the Declaration of Helsinki. All subjects were 

physically active, engaging in both endurance and resistance exercise on a regular basis 

(women: 4 ± 2 bouts/week, 81 ± 43 min/bout; men: 5 ± 2 bouts/week, 66 ± 25 min/bout). 

4.2.2 Experimental Design 

Women were tested during EF (days 1-4 after the onset of menstruation) and ML 

(days 20-24) phases of the menstrual cycle. The order of menstrual cycle phase testing 

was counter-balanced. Menstrual cycle phases were confirmed through analysis of the 

hormonal milieu, including measures for E2 (Enhanced Estradiol eE2 assay; Siemens 

ADVIA Centaur Immunoassay System; Siemens Healthcare, Erlangen, Germany), P4 

(Progesterone [PRGE] assay; Siemens ADVIA Centaur Immunoassay System), and 

testosterone (T; Elecsys Testosterone II assay; Roche Cobas e411 Analyzer; Roche 

Diagnostics, Basel, Switzerland) (Table 4.1). Time of day was held constant within each 

subject across test days. 
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Table 4.1: Serum sex hormone levels in women and men 

 
 
 
 
 
 
 
 
 
 

Data presented as mean ± standard deviation. Assay reference ranges, E2: men, ≤ 146 
pmol/L; EF phase, 72-529 pmol/L; ML phase, 205-786 pmol/L; P4: EF phase, 0.5-4.5 
nmol/L; ML phase, 14.0-89.0 nmol/L; T: men, 8.6-29.0 nmol/L; women, 0.3-1.7 nmol/L. 
*P<0.05 versus EF, †P<0.05 versus ML. 
  

 Women 
Men 

 EF ML 

E2 (pmol · L-1) 151 ± 50† 638 ± 175 161 ± 64† 

P4 (nmol · L-1) 1.2 ± 0.5† 35.8 ± 9.3 1.5 ± 0.3† 

T (nmol · L-1) 1.0 ± 0.2 1.0 ± 0.4 19.6 ± 6.5*† 
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Before testing, all subjects attended a familiarization session during which they 

became accustomed to the experimental protocols and the non-invasive aspects of data 

acquisition. On test dates, subjects arrived at the laboratory having fasted for 3 hours, and 

having abstained from caffeine, alcohol, and exercise for 12 hours. Subjects were 

positioned supine and were instrumented following an intravenous blood draw from the 

antecubital vein for the assessment of hormone levels. Sympathetic nerve sites were 

located using microneurography.  

4.2.3 End-Inspiratory Apnea Protocol 
Participants breathed through a mouthpiece (series 9060, Hans Rudolph, Inc., 

Kansas City, MO) attached to a three-way valve which opened to either room air or a Y-

connector (VacuMed, Ventura, CA) leading to two 3-litre rebreathing bags. A nose clip 

prevented nasal breathing (series 9015, Hans Rudolph) and a pulse oximetry ear clip 

(Dura-Y D-YSE, Covidien-Nellcor, Boulder, CO) connected to a pulse oximeter 

(OxiMax N-560, Covidien-Nellcor) was used to monitor blood oxygen saturation. Gases 

were analyzed online using an infrared carbon dioxide sensor and an optical oxygen 

detector fed from a damped micro vacuum sampling pump (ML206 Gas Analyzer, 

ADInstruments, Colorado Springs, CO). In order to maximize the sympatho-excitatory 

stress, a period of rebreathing was conducted immediately preceding the end-inspiratory 

apnea. The order of testing was conducted as follows: (1) subjects filled the rebreathing 

bags with expired air; (2) five minutes of baseline during room air breathing; (3) 

rebreathing to induce progressive hypoxia-hypercapnia; (4) at 70 Torr PO2, maximal end-

inspiratory apnea; (5) upon termination of apnea, subjects breathed twice in and out of 
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the bags for quantification of end-apnea hypoxia-hypercapnia; (6) three minutes of 

recovery data.  

4.2.4 Measurements 

Sympathetic nerve activity was assessed using the microneurographic technique 

(Vallbo et al., 1979). A tungsten recording electrode (diameter: 200 µm, length: 35 mm) 

with an uninsulated 1-5 µm tip was inserted transcutaneously into the peroneal nerve and 

a reference electrode was inserted subcutaneously 1-3 cm from the recording site. 

Adequate MSNA recording sites produced pulse-synchronous bursts of activity which 

increased in frequency during apnea maneuvers and were unaffected by arousal to a loud 

noise (Delius et al., 1972). The MSNA signal was amplified 1000 times by a preamplifier 

and 75 times by a variable-gain, isolated amplifier and then band-pass filtered (700-2000 

Hz). The signal was then rectified and integrated (time constant 0.1 s) (model 662C-3; 

Iowa University Bioengineering, Iowa, USA).  

 Baseline blood pressures were assessed using manual sphygmomanometry; the 

average of three blood pressure values was used to calibrate beat-to-beat blood pressures 

obtained through photoplethysmographic methods (Finometer; Finapres Medical 

Systems, Amsterdam, The Netherlands). Cardiac output (Q) was calculated using the 

Modelflow algorithm in the Finometer. Heart rate (HR) was measured using a standard 3-

lead electrocardiogram. All signals were sampled at 1000 Hz with an online data 

acquisition and analysis package (PowerLab /16SP with LabChart 7, ADInstruments, 

Colorado Springs, Colorado, USA) except MSNA, which was sampled at 10 000 Hz.     
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4.2.5 Data Analysis 

Data from the final section of rebreathing (PO2 between 80 and 70 Torr) were 

averaged to reflect hypercapnia-hypoxia while breathing. Apnea data were divided into 

two halves, corresponding to an initial phase of relative neural suppression (APN-P1) 

followed by the largest sympathetic response occurring during the latter half of the apnea 

(APN-P2). Recovery data were averaged over the final two minutes of recovery, after 

values had returned to baseline levels.  

The brachial blood pressure waveform was analyzed to determine mean (MAP), 

systolic (SBP), and diastolic (DBP) blood pressures. Body surface area was estimated 

using the Mosteller formula (Mosteller, 1987;Lam & Leung, 1988) and was used to 

normalize Q and Q-derived measures to body size in men and women. Q and stroke 

volume were divided by body surface area to determine cardiac index (Qi) and stroke 

volume index (SVi), respectively. Total peripheral resistance (TPR) was calculated as 

MAP/Q. 

 Sympathetic firing frequency was quantified as burst frequency (bursts/min). The 

amplitude component was considered because of its importance in distinguishing 

between conditions which have similar burst frequencies (Sverrisdottir et al., 2000) and 

because burst amplitude is regulated in a manner distinct from burst frequency 

(Kienbaum et al., 2001;Malpas & Ninomiya, 1992) which may reflect axonal recruitment 

(Steinback et al., 2010b;Salmanpour et al., 2011). The amplitude component was 

considered in three ways. Baseline amplitudes were compared between groups and 

conditions through the comparison of frequency probability distribution curves. In this 

baseline analysis, all bursts were scaled to the largest burst in each recording which was 
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assigned a value of 100. The median value of each curve was then used to compare 

normalized burst amplitudes between groups (Sverrisdottir et al., 2000;Kimmerly et al., 

2004). Next, to evaluate changes in burst amplitude during chemoreflex stimulation, all 

burst amplitude voltages during apnea were normalized to the largest amplitude achieved 

during the previous baseline period. The mean normalized burst amplitude during each 

condition was then used to compare between groups. Finally, raw voltages were also 

compared between baseline and recovery periods to validate burst amplitude measures by 

ensuring that sympathetic nerve sites had not shifted during the chemoreflex protocol.  

A representation of the total MSNA signal was calculated by multiplying mean 

normalized burst amplitude by burst frequency. In women, baseline total MSNA was 

regressed against concentrations of circulating sex hormones in the EF phase and in the 

ML phase to determine whether baseline MSNA was graded to the level of circulating 

E2, P4, or T in either phase. Also, to determine whether the magnitude of the increase in 

baseline MSNA from the EF to the ML phase was associated with the magnitude of the 

change in circulating sex hormone concentrations, EF total MSNA levels and sex 

hormone concentrations were subtracted from ML values in each subject. The resulting 

delta values were then regressed against each other.  

4.2.6 Statistical Analyses 

Comparisons of hormones and baseline measures were conducted using paired 

(EF vs ML) or unpaired (men vs EF and ML) T-tests; the alpha value for these and all 

post hoc comparisons were corrected for multiple comparisons using the Bonferroni 

method. Hemodynamic and sympathetic responses to chemoreflex stimulation were 
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analyzed using three separate mixed ANOVAs, comparing (1) EF to ML, (2) men to EF, 

and (3) men to ML. 

4.3 Results 
Baseline subject characteristics are presented in Table 4.2. Sympathetic burst 

frequency and total activity were greater in the ML phase of the menstrual cycle than the 

EF phase. As a result, total MSNA and burst frequency were greater in men than women 

in the EF phase but similar between men and women in the ML phase. Baseline MSNA 

burst amplitude distribution median values were similar between EF (46 ± 13), ML (51 ± 

9), or men (44 ± 7 a.u.). In women, no significant correlations between baseline total 

MSNA and concentrations of circulating E2, P4, or T were observed in either the EF 

phase or the ML phase when the menstrual cycle phases were examined independently 

(Figure 4.1). A significant, positive relationship was observed between the magnitude of 

the ML-phase induced increase in total MSNA and the menstrual cycle-induced increase 

in P4, although this relationship was not observed between total MSNA and E2 or T.  

Apnea characteristics are presented in Table 4.3. Apneas were maintained for 

similar durations and post-apnea PO2 reached similar levels in all groups. Post-apnea 

PCO2 was similar between EF and ML phases, but higher in men relative to the ML 

phase (P=0.01). 

Chemoreflex stimulation was associated with progressive increases in total 

MSNA during rebreathing, APN-P1, and APN-P2 conditions due to elevations in MSNA 

burst frequency and amplitude (Figure 4.2). The increases in total MSNA, burst 

frequency, and burst amplitude were greater in the EF than the ML phase. A statistical 
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interaction between menstrual cycle phase and chemoreflex condition indicated that the 

difference in total MSNA and burst amplitude between EF and ML phases was most 

pronounced during APN-P2. The increases in total MSNA and in burst frequency were 

greater in women in the EF phase than in men, while burst amplitude was not 

significantly different between women and men. All changes in MSNA were similar 

between men and women in the ML phase.  

Individual patterns of changes in MSNA from EF to ML menstrual cycle phases 

are presented in Figure 4.3; from EF to ML menstrual cycle phases, the majority of 

women experienced an increase in baseline total MSNA, and a reduction in peak total 

MSNA as evoked by chemoreflex activation.  

 Hemodynamic responses to chemoreflex stimulation were similar between men 

and women and across menstrual cycle phases with the exception of HR, which was 

greater in women than men (Figure 4.4).  
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Table 4.2: Baseline hemodynamics and sympathetic nerve activity in women and 

men 

Data are mean ± standard deviation. EF, early follicular phase; ML, midluteal phase; 
MAP, mean arterial pressure; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; HR, heart rate; SVi, stroke volume index; Qi, cardiac index; TPR, total 
peripheral resistance; MSNA, muscle sympathetic nerve activity. * P<0.05 vs EF; † 
P<0.05 vs ML 

  

  

 Women  
Men   EF ML 

MAP (mmHg) 86 ± 6 84 ± 6 92 ± 8† 
SBP (mmHg) 114 ± 13 112 ± 11 127 ± 9*† 
DBP (mmHg) 67 ± 9 67 ± 4 73 ± 7 
HR (beats · min-1) 61 ± 7 64 ± 7 54 ± 7*† 
SVi (mL · m2) 47 ± 8 46 ± 7 51 ± 7 
Qi (L · min-1 · m2)  2.9 ± 0.8 3.0 ± 0.6 2.7 ± 0.5 
TPR (mmHg · L-1 · min-1)  18 ± 3 17 ± 5 17 ± 3 
MSNA burst frequency 
   (bursts · min-1) 10 ± 5 14 ± 7* 18 ± 5* 

Total MSNA (a.u.) 466 ± 203 714 ± 317* 854 ± 239* 
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Table 4.3: Apnea characteristics in men and women 

 
 
 
 
 
 
 
 
 
 
 

Data presented as mean ± standard deviation. PO2 = partial pressure of oxygen; PCO2 = 
partial pressure of carbon dioxide; EF = early follicular; ML = midluteal. 
  

 Women 
Men 

 EF ML 

Apnea Duration  
(s) 21 ± 7 22 ± 10 26 ± 8 

End-Apnea PO2 
(Torr) 61 ± 4 61 ± 6 59 ± 4 

End-Apnea PCO2 
(Torr) 54 ± 4 51 ± 3 56 ± 4 
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Figure 4.1: Associations between sympathetic nerve activity and circulating sex 
hormone concentrations at baseline. 
No significant associations between sex hormone concentrations and total muscle 
sympathetic nerve activity (MSNA) were observed in either menstrual cycle phase alone 
(panel A). However, the magnitude of the change in total MSNA from EF to ML was 
positively related to the change in circulating progesterone across the menstrual cycle 
(panel B). EF, early follicular; ML, midluteal. 
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Figure 4.2: Sympathetic responses to chemoreflex stimulation. 

Chemoreflex stimulation was associated with progressive increases in Δ-total MSNA, Δ-
burst amplitude, and Δ-burst frequency in men and women in early follicular (EF) and 
midluteal (ML) menstrual cycle phases (all P<0.001). Δ-Total MSNA and Δ-burst 
frequency were greater in the EF phase relative to both the ML phase and to men. Δ-
Burst amplitude was greater in the EF phase than ML, but not significantly different from 
men. Men had similar MSNA responses as women in the ML phase in all comparisons. 
Significant phase x chemoreflex interactions were observed in Δ-total MSNA (P=0.02) 
and Δ-burst amplitude (P=0.02).Data are mean ± standard deviation. * denotes P<0.05, 
EF vs ML; MSNA, muscle sympathetic nerve activity; BSL, baseline; REBR, 
rebreathing; APN-P1, initial half of apnea; APN-P2, latter half of apnea; REC, recovery.   
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Figure 4.3: Individual patterns of total muscle sympathetic nerve activity across the 

menstrual cycle. 

Panel A contains individual data from all women at baseline; circles and error bars are 

means and standard deviations of EF and ML phases; * denotes P< 0.05 versus EF. Panel 

B shows tracings of 15s of baseline recordings from a representative subject during EF 

and ML phases. Panel C contains individual data from all women during the latter half of 

the apnea (APN-P2). Panel D shows tracings of the end-inspiratory apnea performed 

during EF and ML phases. 

 



103 

 

M
A

P 
(m

m
H

g)

70

90

110

130
Women, EF
Women, ML 
Men

H
R

 (b
pm

)

0
20
40
60
80

100

Q
i (

L/
m

in
/m

2 )

2

3

4

5

BSL REBR APN-P1 APN-P2 REC

TP
R

 (m
m

H
g/

L/
m

in
)

10

15

20

25

30

Men vs EF: P=0.04
Men vs ML: P=0.008

 

Figure 4.4: Hemodynamic responses to chemoreflex stimulation. 

Chemoreceptor stimulation was associated with significant changes in mean arterial 

pressure (MAP), heart rate (HR), cardiac index (Qi), and total peripheral resistance (TPR) 

(all P<0.01). Heart rate was higher in women than men. Data are mean ± standard 

deviation. BSL, baseline; REBR, rebreathing; APN-P1, initial apnea half; APN-P2, latter 

apnea half; REC, recovery.  2 
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4.4 Discussion 
In this study, we examined menstrual cycle- and sex-specific regulation of sympathetic 

nerve activity during severe chemoreflex stimulation. We observed that severe 

chemoreflex stimulation elicits reflex increases in total MSNA which are larger in 

women in the EF phase of the menstrual cycle in comparison with men and also with 

women in the ML phase. This occurred as a result of elevations in the burst frequency 

component of MSNA which exceeded those observed in men and in women in the ML 

phase. On the other hand, the chemoreflex response in the burst amplitude component of 

MSNA was affected by menstrual cycle phase, but was not different between men and 

women. We also observed that, across all conditions, patterns of MSNA were similar 

between men and women in the ML phase. Overall, these data indicate that baseline 

MSNA and the sympatho-excitatory responses to severe chemoreflex stress differ 

between men and women, but only when women are measured during the EF phase of the 

menstrual cycle.  

 Many previous studies have compared baseline MSNA between young healthy 

women and men. The first direct comparison of MSNA between men and women, made 

by Ng and colleagues, demonstrated greater resting MSNA burst frequency in men 

relative to women (Ng et al., 1993). Since then, this finding has been reproduced (Jones 

et al., 1996b;Ng et al., 1993;Shoemaker et al., 2001;Matsukawa et al., 1998;Yang et al., 

2012;Jones et al., 1996a;Hart et al., 2009), albeit not consistently (Kimmerly et al., 

2007;Fu et al., 2009;Fu et al., 2005;Jones et al., 1999;Narkiewicz et al., 2005). Of these 

studies, only a few have accounted for menstrual cycle phase in the female subjects 

(Kimmerly et al., 2007;Yang et al., 2012;Hart et al., 2009;Fu et al., 2009). It is likely that 
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this has contributed to the lack of consistency in the observation of sex differences in 

these studies, as elevations in midluteal baseline MSNA have been observed relative to 

the early follicular phase (Minson et al., 2000;Park & Middlekauff, 2009;Middlekauff et 

al., 2012;Carter et al., 2013). Although this observation has not been universal (Carter et 

al., 2009;Jones et al., 1996b;Fu et al., 2009;Jarvis et al., 2011;Carter & Lawrence, 2007), 

recent evidence suggests that changes concentrations of circulating sex hormones, which 

are altered across the menstrual cycle, are associated with changes in baseline MSNA 

(Carter et al., 2013;Day et al., 2011). These studies indicate that acute increases in 

circulating P4 mediate a sympatho-excitatory effect, while increases in E2 promote 

sympatho-inhibition (Carter et al., 2013;Day et al., 2011).However, one study quantified 

the extent to which a ratio of E2-to-P4 was associated with baseline MSNA, and 

determined that only approximately 27% of the variance in MSNA was explained by 

alterations in these sex hormones (Carter et al., 2013). The authors suggested that 

increases in testosterone might occur across the menstrual cycle and contribute to the ML 

phase sympatho-excitation. In the present study we observed no change in testosterone 

across the menstrual cycle, and no associations between testosterone concentrations and 

baseline MSNA. On the other hand, the present data support a positive association 

between the increase in P4 from EF to ML menstrual cycle phases and the magnitude of 

the elevation in resting MSNA.  

 In the present study we also compared sex and menstrual cycle effects on MSNA 

regulation during a strong chemoreflex stimulus. In coupling the sympatho-excitatory 

effect of combined hypoxia-hypercapnia (Morgan et al., 1995) with the elimination of the 

sympatho-inhibitory effect of the thoracic afferent nerves through the use of apnea 
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(Somers et al., 1989;Steinback et al., 2010a), the stimulus was designed to elicit a 

maximal or near-maximal elevation in MSNA.  During chemoreflex activation, increases 

in total MSNA and MSNA burst frequency were greatest in women in the EF phase of 

the menstrual cycle and exceeded the MSNA responses observed in men and in the ML 

phase of the menstrual cycle. These data are in partial support of the previous work which 

reported hypoxia-driven increases in total MSNA which were evoked with a shorter 

latency in women than in men (Jones et al., 1999). However, this previous study did not 

systematically study the effect of menstrual cycle on sympathetic responses to 

chemoreflex stimulation (Jones et al., 1999). Our data, which indicate that chemoreflex-

driven increases in MSNA were similar between men and women in the ML phase, 

suggest that chemoreflex responses are not regulated equally across the menstrual cycle. 

To the best of our knowledge, this is the first study to systematically study sympathetic 

responses to chemoreflex stimulation across the menstrual cycle. However, our 

laboratory recently conducted a similar study in regular users of hormonal contraceptives 

(Usselman et al., 2013). In that previous study, during chemoreflex activation the low-

hormone phase of hormonal contraceptive use was associated with a greater total MSNA 

response than the high-hormone phase (Usselman et al., 2013). Together, these data 

indicate that the patterns of sympathetic responses to severe chemoreflex stress appear to 

be similar between users and non-users of hormonal contraceptives.  

 An interesting observation in this study was the difference between menstrual 

cycle phases in the regulation of the burst amplitude component of MSNA. During the 

EF phase, burst amplitude increased during the most severe phase of chemoreflex 

stimulation, an increase which was not observed during the ML phase. A similar finding 
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was observed in our previous work with regular users of hormonal contraceptives: an 

increase in burst amplitude was observed in the low hormone phase of contraceptive use 

which exceeded that observed in the high hormone phase (Usselman et al., 2013). Also, 

in both the users of hormonal contraceptives and the women examined in the present 

study, the increases in burst amplitude contributed to an overall augmentation of the total 

MSNA response in the low hormone phases relative to the high hormone phases. While 

an elevated burst frequency response was also observed in the EF phase relative to the 

ML, these data might suggest that severe chemoreflex activation preferentially excites the 

burst amplitude, or strength, component of the MSNA signal, an effect which is amplified 

when circulating sex hormone levels are lower. Whether this is due to the removal of an 

inhibitory influence of sex hormones over the amplitude component requires further 

study.  

Limitations 

 Menstrual cycle phases were selected based on the desire to test the nadir of 

hormone secretions (i.e. EF) against a prolonged increase in E2 and P4 production (ML). 

However, we did not study the late follicular phase. In light of our findings, the study of 

this phase would present an interesting opportunity to observe elevated E2 without a 

concurrent change in P4, and perhaps further elucidate the relationship between E2 and 

MSNA.  

 The chemoreflex stress used in this study was designed to elicit large sympatho-

excitatory responses from the subjects. However, the protocol was not designed to 
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differentiate between the specific hemodynamic and sympathetic effects of hypoxia and 

hypercapnia (Steinback et al., 2009).  

 In summary, baseline MSNA burst frequency and total MSNA were affected by 

both sex and the menstrual cycle, and the observation of baseline sex differences were 

menstrual cycle-dependent. Similarly, chemoreflex stimulation produced menstrual 

cycle-dependent sex effects, but to the opposite effect: increases in MSNA burst 

frequency and total MSNA were greater in women than in men, and greater in the EF 

phase than the ML phase of the menstrual cycle.  The menstrual cycle also affected 

MSNA burst amplitude, with larger increases in amplitude in the EF phase relative to the 

ML phase. The results suggest that, when possible, future studies examining sex 

differences in sympathetic activation should include consideration for menstrual cycle 

phase. Future studies may also benefit from examining MSNA in women in more than 

one menstrual cycle phase to generate a more complete picture of factors affecting 

sympathetic regulation in women.   
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Chapter 5  

5 General Discussion 

5.1 Perspectives 
A relatively high level of sympathetic nerve activity is observed in young men in 

comparison with young women (Ng et al., 1993;Matsukawa et al., 1998;Narkiewicz et 

al., 2005). This is thought to be linked to men's higher risk of cardiovascular disease, 

from which women appear to be relatively protected until menopause (Rosenthal & 

Oparil, 2000;Young et al., 1993;Eaker et al., 1989). It is not known, however, why 

women lose this cardioprotection following menopause (Rosano et al., 2007). Similar to 

post-menopausal women, an elevated risk of cardiovascular disease is also present in 

women with polycystic ovary syndrome (Meyer et al., 2012;Ehrmann et al., 

2006;Schlaich et al., 2011). Like post-menopausal women, polycystic ovary syndrome is 

also associated with a change in the sex hormone milieu and an increase in baseline 

sympathetic nerve activity (Abbott et al., 2002;Sverrisdottir et al., 2008). In both cases, 

the roles that sex hormones might play in the alterations to sympathetic and/or 

cardiovascular control are not well described. Also, although synthetic hormone 

supplementation is prescribed as a matter of course in both conditions, the effects of 

synthetic hormones on sympathetic regulation are not well known. Even in young, 

healthy women, knowledge regarding interactions between changes in sex hormones and 

sympathetic regulation has only begun to emerge in the past 15 years. Therefore, in these 

studies we sought to generate a more in-depth understanding of how sympathetic 

regulation patterns relate to changes in hormone levels. We examined acute changes in 

sex hormone levels in young, healthy women free of cardiovascular disease and 
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hormonal abnormalities with the hope that a greater understanding of normal interactions 

between sex hormones and MSNA might help to shed light on the mechanisms which are 

disturbed in clinical states.  

5.2 Major Findings  
 In this series of studies we observed several novel findings regarding interactions 

between sex hormones and MSNA which occur across the menstrual cycle and across 

phases of hormonal contraceptive use. A major finding of these studies was that 

associations between sympathetic nerve activity and hormone phase were not dependent 

on the source of the alteration to the hormonal milieu (i.e. across the menstrual cycle or 

as a result of the use of hormonal contraceptives). In contrast with previous studies 

(Middlekauff et al., 2012;Minson et al., 2000b;Minson et al., 2000a;Carter et al., 

2009a;Carter et al., 2009b), we observed similar muscle sympathetic nerve activation 

patterns between the early follicular phase of the menstrual cycle and the low hormone 

phase of contraceptive use, as well as between the midluteal phase of the menstrual cycle 

and the high hormone phase of contraceptive use. Furthermore, these similarities were 

observed under all conditions, including at baseline and during baroreceptor unloading 

and chemoreflex stimulation. These results imply that the changes in endogenous 

hormones which occur across the menstrual cycle exert a similar influence over the 

regulation of MSNA as the changes in the exogenous hormones contained within the 

hormonal contraceptives used by our subjects. However, it is important to note that while 

all contraceptives used in this study were combination formulations with low doses of 

estradiol and low-androgenic activity progestins, we did not control for the specific type 

of hormonal contraceptive in these studies. Therefore, further research is required to 
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determine why certain hormonal contraceptives may mimic the sympathetic effects of 

endogenous hormones while others may not.  

Another major finding of these studies was that high hormone phases were 

associated with relative elevations in baseline sympathetic nerve activity in comparison 

with the low hormone phases, a trend which was reversed during large, chemoreflex-

induced sympatho-excitatory stress. The hypoxic-hypercapnic end-inspiratory apnea 

produced larger reflex increases in MSNA in the lower hormone phases than those 

observed during the higher hormone phases (see Table 5.1 for a summary of findings). 

Although this observation was initially unanticipated (see Chapter 3), known sex 

differences in sympathetic regulation may provide support for these results. For instance, 

large-scale studies have reported that baseline MSNA is higher in young men than young 

women (Ng et al., 1993;Matsukawa et al., 1998;Narkiewicz et al., 2005). On other hand, 

it has been reported that chemoreflex-driven increases in MSNA are greater in women 

than in men (Jones et al., 1999). These results could be interpreted to indicate that the 

factors which drive relative increases in MSNA at baseline are not effective during 

chemoreflex-driven sympatho-excitation, during which other mechanisms contribute to 

increases in MSNA.  

A main finding of Study 1 (Chapter 2) stemmed from the observation of greater 

reductions in stroke volume for a given lower body negative pressure stimulus during the 

high hormone phases when compared to the low hormone phases. This had not been 

observed by previous studies of simulated orthostasis (Fu et al., 2009;Carter et al., 

2009b;Carter et al., 2009a), although it had been hypothesized to occur (Fu et al., 2009). 

The greater drop in stroke volume implied that a greater unloading of the baroreceptors 
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occurred in the high hormone phases for an equivalent orthostatic stress. Following the 

subsequent normalization of the sympathetic responses relative to baroreceptor stimuli, 

we observed no difference between hormone phases in the sympathetic responses to 

baroreceptor unloading. These data imply that the integration of afferent baroreceptor 

information is unaffected by hormone phase, as had been reported previously (Fu et al., 

2009;Carter et al., 2009b;Middlekauff et al., 2012). 
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Table 5.1: Summary of muscle sympathetic nerve activity results 

  

 

 

 

 

 

 

 

Low (LO) hormone phases are EF phase of menstrual cycle and LH phase of hormonal 

contraceptive use; high (HI) hormone phases are ML phase of menstrual cycle and HH 

phase of hormonal contraceptive use.  

† Stroke volume was lower in ML and HH than in EF and LH, indicating greater 

baroreceptor unloading in these phases. 

†† When normalized to the fall in stroke volume, these responses were no longer 

different between high and low hormone phases.  

‡ Both indicators of chemoreflex stress (partial pressures of oxygen and carbon dioxide) 

and the duration of the apnea were similar between low and high hormone phases, 

indicating a similar sympatho-excitatory stimulus.  

  

 Strength of 
Stimulus 

Total MSNA 
Response 

MSNA Burst 
Frequency 
Response 

MSNA Burst 
Amplitude 
Response 

Baseline - HI > LO HI > LO LO = HI 

Baroreceptor 
Unloading (LBNP) HI > LO †    HI > LO ††    HI > LO †† LO = HI 

Chemoreflex 
Stimulation (Hypoxic-
Hypercapnic Apnea) 

LO = HI ‡ LO > HI LO > HI LO > HI 
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 In this series of studies, separate consideration was given to the regulation of the 

individual components of total MSNA: burst frequency and burst amplitude. This was 

done within the context of the hypothesis that baroreceptor feedback gates efferent 

sympathetic activity, thereby affecting MSNA burst frequency, while other peripheral 

inputs are integrated to regulate MSNA burst amplitude (Malpas, 1995;Kienbaum et al., 

2001). Baseline MSNA recordings indicated a relative increase of MSNA burst frequency 

in the high hormone phases with no change in the regulation of burst amplitude. 

However, chemoreflex activation was associated with a reversal of this trend as greater 

levels of burst frequency were observed in the low hormone phases. Severe chemoreflex 

stimulation was also associated with a large increase in MSNA burst amplitude in the low 

hormone phases which was not observed in the high hormone phases. The baseline data 

suggest that a relatively elevated sex hormone milieu appears to promote the 

augmentation of the burst frequency component of MSNA, which is thought to be 

regulated centrally through a baroreceptor-related mechanism (Kienbaum et al., 2001). 

However, the chemoreflex data suggest that an elevated sex hormone milieu may exert a 

sympatho-inhibitory effect over the burst amplitude component of MSNA. Therefore, 

large reflexive increases in burst amplitude are achieved only in low hormone phases. 

An interesting caveat to the data presented here is that the changes in sympathetic 

responses observed across hormone phases were not coupled with similar changes in 

peripheral resistance. A lack of congruity between MSNA and peripheral resistance has 

been reported previously in young women (Hart et al., 2009). Several explanations have 

been put forth to account for this, including the buffering of the sympathetic signal by 

activation of vasodilatory beta-adrenoreceptors (Hart et al., 2011). Alternatively, the 
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vascular production of nitric oxide is increased by elevations in circulating estradiol 

(Sudhir et al., 1996). An increase in circulating nitric oxide during the midluteal phase of 

the menstrual cycle would exert a dilatory influence over the vasculature, counteracting 

the vasoconstrictor influence of MSNA. Although we did not measure these vascular 

factors in the present study, future research targeting these mechanisms and addressing 

whether they are affected by changes in circulating sex hormones would provide further 

insight into the present findings.   

 In the context of sex hormone effects on sympathetic regulation, future research 

might also address the separate consideration of sex hormones in their possible effects on 

sympathetic nerve activity. The late follicular phase of the menstrual presents an 

opportunity to study sympathetic regulation during an increase in estradiol which is 

unaccompanied by a change in progesterone (Ettinger et al., 1998;Miner et al., 2011). 

Alternatively, short-term changes in circulating hormone concentrations can be elicited 

experimentally through the use of gonadotropin releasing hormone antagonist therapy, 

which dramatically reduces ovarian production of estradiol and progesterone. Estradiol 

and progesterone can then be added back to the subjects independently to examine their 

unique effects. This technique has been coupled with microneurography once to date 

(Day et al., 2011), and while the study was conducted in a small group of women, the 

data indicate a significant sympatho-inhibitory effect of estrogen, and a trend towards a 

sympatho-excitatory effect of progesterone. Further work in this area would shed more 

light on the roles of sex hormones in the regulation of MSNA, and could have 

implications for the development of hormonal treatments of sympathetic irregularities 

within the clinical realm.  
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5.3 Conclusions 
In this series of studies, we have demonstrated for the first time that sympathetic 

responses to chemoreflex stimulation are affected by hormone phases associated with the 

menstrual cycle and hormonal contraceptive use. We have also provided the first 

evidence that the baseline and reflex sympathetic influences of the endogenous hormones 

of the menstrual cycle may not differ from those exerted by synthetic hormones 

contained within contraceptives. Collectively, these studies confirm that MSNA 

recruitment is affected by hormone phase, but in a reflex-specific manner. 
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LETTER OF INFORMATION 
 

Sex-Specific Hormone Levels and Reflex Sympathoexcitation 
 
Principal Investigator:   Dr. J. Kevin Shoemaker 
 
Research Coordinator:   Charlotte W. Usselman, M.Sc. 
 
Sponsor:     Natural Sciences and Engineering Research Council of 
Canada 
 
 You are being invited to participate in a research study that will examine how 
male and female hormone levels influence the nervous system. Before agreeing to 
participate, please read this Letter of Information. If you would like more details 
regarding something mentioned in this letter, or information not included here, please 
ask. Take time to read this carefully and to understand the following information. You 
will receive a copy of this letter to keep as your own. A total of 30 people will participate 
in this study.  
 
Introduction 
 
 The nervous system plays an important role in controlling your heart rate and 
blood pressure. Interestingly, it appears that the nervous system is influenced by the sex 
hormones which circulate in your body (for example, estrogen and testosterone). To 
better understand how hormones influence the nervous system, this study has two 
purposes. The first purpose is to compare the nervous systems of men and women. The 
second purpose is to compare the nervous systems of women at two different phases of 
the menstrual cycle.  
 
 The study will take place on three separate days. The first day will be a 
familiarization session, lasting approximately 45 minutes. On this day the procedures will 
be explained and practiced so that you are comfortable with all aspects of the study. The 
remaining two sessions will each last approximately 3 hours. If you agree to participate, 
on each day you will be required to come to the laboratory approximately three hours 
following a light meal, and after having avoided exercise, alcohol, smoking, nicorette 
gum, recreational drugs, coffee, tea, soft drinks and chocolate for at least 12 hours. On 
arrival at the laboratory you will be asked questions about the medical history of you and 
your family.  
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Participant Inclusion/Exclusion Criteria 
 
 You will not be included in the study if you are under 18 or over 35 years of age. 
You will not be included in the study if you are, or think you could be, pregnant. In 
addition, you will not be included in the study if you are a smoker. Also, you will not be 
included in the study if you have any of the following: a resting blood pressure above 
139/85 or below 100/55, respiratory disorders (e.g. asthma) or illnesses (e.g. bronchitis), 
cardiovascular disorders (e.g. Raynaud’s disease), metabolic diseases (e.g. diabetes), or a 
history of fainting.  
 
Measurements 
 
 If you agree to participate in this study, testing will be conducted at the 
Neurovascular Research Laboratory, Room 3110 Thames Hall at The University of 
Western Ontario. The testing procedure will involve the measurement of several 
cardiovascular variables during the 3-hour testing period: 
 

1. Small adhesive electrodes will be placed on your chest to record the electrical 
heart rate tracing (electrocardiogram; ECG).  

 
2. A small cuff will be placed around one finger and a blood pressure cuff will be 

placed around the upper portion of the same arm. These cuffs are used to measure 
your blood pressure. When activated, the finger cuff will inflate with air and you 
should feel a pulsating sensation on your finger.  

 
3. An elastic strap will be placed around your chest to monitor changes in breathing 

rate and depth.  

 
4. Small probes will be clipped on to one earlobe and one of your toes. These probes 

emit a light that passes easily through the earlobe and toe and lets us measure the 
amount of oxygen in your blood. 

 
5. To examine your blood vessels, ultrasound probes will be placed on top of the 

skin at your elbow and at the base of your neck in order to measure the size of 
your vessels and the amount of blood flowing through them. These probes are 
similar to those used on pregnant women for imaging of an unborn child.   

 
6. You are being asked to undergo a procedure called “microneurography”. This 

procedure has two phases. First, the position of a nerve that runs very close to 
your skin just on the outside of the knee will be located by touch. Second, a thin 
tungsten electrode (similar to an acupuncture needle, about the size of a large 
human hair) will be inserted through the intact skin and positioned just under the 
skin about 2-3 cm from the nerve site. This will be followed by the placement of a 
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second tungsten electrode through the intact skin into this nerve (called the 
peroneal nerve). This second electrode will be manipulated gently until the 
appropriate recording site is found. The microelectrodes are sterilized before use 
and the area of skin around the knee is cleansed with alcohol before and after the 
procedure.  

 
7. You will lie down on a table, with your legs and hips sealed inside a box that is 

connected to a vacuum source. This box is designed to produce suction (negative 
pressure) around your lower body. This mimics the effects of standing in terms of 
cardiovascular and nervous system responses. You will undergo 1-3 levels of 
lower body suction, starting at -60 mmHg (this level is comparable to standing 
upright) up to a maximum of -80 mmHg, for no longer than 2 minutes at a time.  

 
8. During a portion of the experiment you will be given a mouthpiece to place in 

your mouth, which allows you to breathe normally. This mouthpiece will be 
attached to a valve that opens to either room air or a bag. At rest you will breathe 
room air. During one of the protocols the valve will be turned so that you will be 
breathing in and out of the bag. By breathing in and out of the bag we will be 
altering the amounts of oxygen and carbon dioxide in your blood. This will cause 
your rate and depth of breathing to increase, and will last for approximately 5 
minutes. Immediately following this “rebreathing”, we will also ask you to hold 
your breath for “as long as possible”; in most individuals this will not be longer 
than 30 seconds.  

 
Procedures 
 
 Each day of testing will last approximately two hours, and will be carried out 
according to the order and timing illustrated in the following diagram. The procedures 
and measures used on each day will be identical.  
 

 
1. We will begin by setting up the devices listed above in the “Measurements” 

section. This will take approximately 20 minutes. During this period you will 
simply be required to lie down and rest on a padded table.  

2. Next, a small plastic tube will be inserted into a vein in your elbow by a registered 
nurse. This tube will be connected to a device that measures blood pressure in that 
vein. Also, blood will be taken from this tube at one time during the test. The total 
amount of blood withdrawn will not exceed 10 mL (2 teaspoons). The blood 
samples will be measured for sex hormones as well as hormones that regulate 
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blood pressure and blood vessels (e.g. estrogen, testosterone, progesterone, c-
reactive protein).  

3. Following the blood draw, we will begin the process of locating a recording site 
in your peroneal nerve through microneurography. While 1 hour has been allotted 
for the process, this is a maximum. It is possible that a suitable recording site 
could be found within the 1 hour time frame.  

4. You will be asked to lay quietly and rest for a 10 minute “baseline” period. 

5. Breathing Task: 

1. This task will be performed with the mouthpiece in your mouth (see 
“Measurements”, item 8). To begin, the valve will be turned from room air to the 
bag, and you will be asked to breathe in and out of the bag. You will continue to 
breathe in and out of the bag until the gases in the bag change a desired amount. 
At this point you will be asked to take in one more breath, and then hold your 
breath for as long as possible. When you cannot hold your breath any longer, you 
will exhale, then take 2 final breaths in and out of the bag. The valve will then be 
turned back to room air.  

6. You will be asked to lay quietly and rest for at least 5 minutes.  

7. Lower Body Suction Task: 

While lying quietly on your back, lower body suction of -60 mmHg will be 
applied for a duration of 2 minutes, after which you will be allowed at least 2 
minutes to recover. You will be asked to brace yourself with one leg (the opposite 
leg used for microneurography) during suction. Lower body suction will then be 
increased in 10 mmHg increments up to -80 mmHg, with at least 2 minutes of rest 
between each level.  

 As indicated above, the entire procedure will take approximately 3 hours to 
complete on each test day. Upon completion of the experiment you will rise slowly from 
the table into a seated position. After approximately 30-60 seconds of sitting you will be 
permitted to stand beside the bed and move about the lab when you feel comfortable to 
do so.  

Risks 

ECG 
The adhesive on the electrodes used to measure your heart rate may cause a small rash to 
develop under the electrode. However, this rash should disappear in a day or two.  
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Blood Pressure Cuff 
There are no known risks of using the finger cuff methods (Finometer) of examining 
arterial blood pressure. With the finger cuff the finger tip may turn a little blue and feel 
numb during the prolonged test sessions but this resolves immediately when the cuff is 
removed. Standard arm cuff blood pressure measures of arterial pressure will also be 
obtained periodically, a method that has no known risks. 
 
Ultrasound 
There are no known harmful effects with standard diagnostic ultrasound techniques. 
 
Blood Oxygen Saturation 
There are no known risks associated with the use of this device. 
 
Blood Draw 
There is a small risk of bruising or infection when collecting blood from your vein. Some 
participants may experience mild pain and discomfort and some may feel nauseated or 
dizzy when blood is taken.  
 
Microneurography 
Insertion of the microneurography electrodes within the nerve may cause some “pins and 
needles” or muscle cramping sensations. These sensations disappear immediately by 
changing electrode position. There will be no sensations when the needle is in the correct 
position. There is small chance of these sensations occurring around the area of needle 
insertion immediately following the study and a less than 1% chance of these sensations 
persisting longer than one day. Other extremely rare reactions include infection and/or 
bleeding when the electrode is removed. Once in place there is no discomfort from the 
electrodes. You will be advised to partake only in normal day-to-day activities and 
abstain from aggressive physical effort or exercise for 24 hours after the study, such as 
lifting weights, running or competitive sports. 
 
Lower Body Suction 
During lower body suction you may feel faint or dizzy. These symptoms may lead to 
actual fainting. To ensure this does not happen, we will ask you to inform us if you feel 
any of the following symptoms: nausea, light-headedness, tunnel vision, blurry vision, 
excessive heat and/or sweating. These symptoms are alleviated quickly by turning off the 
lower body suction. You may stop the test at any time. Also, we will be monitoring you 
throughout the experiment to ensure that you are okay and we will stop the test if we feel 
that it is necessary. 
 
Breathing Protocol 
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The rebreathing protocol may last for a duration of up to 5 minutes. Subsequent breath-
holding may last for a duration of up to 30 seconds. The decreasing amount of oxygen 
and increasing amount of carbon dioxide may give you a sensation of breathlessness. 
This sensation will go away immediately when you are switched to breathe room air. In 
the case that you become uncomfortable due to the breathless sensation, you will be 
returned immediately to air breathing which will alleviate the sensation. The increase in 
carbon dioxide in the air you breathe during rebreathing may cause a slight headache to 
occur, which will be reversed immediately upon returning to breathing room air. 
Decreases in oxygen much greater than used here carry the risk of dizziness or fainting. 
To date, the reduction in blood oxygen as used in this study has been conducted on 83 
individuals. In one of these participants, the study was stopped early because the 
individual became dizzy. Given the limited number of people that this procedure has been 
conducted on, the exact level of risk has not yet been determined. To ensure your safety 
during these studies your blood oxygen content will be monitored continuously and we 
will return you to breathing room air if the amount of oxygen in your blood decreases 
below 80%. Also, your heart rate and blood pressure will be monitored continuously. The 
study will be stopped if your heart rate or blood pressure fall to levels below normal for 
more than 10 heart beats. You may stop the test at any time. 
 
Staying Still 
During the experiment, you will have to remain still in a lying down position for 2 hours. 
You may develop a sore back in the middle of the experiment. These sensations will 
diminish very quickly when you sit up from the bed after the experiment.  
 
 

In the event that you suffer injury as a result of participating in this research no 
compensation will be provided for you by The University of Western Ontario, or the 
Researchers. You still have all your legal rights. Nothing said here about treatment or 
compensation in any way alters your right to recover damages.  
 
Alternatives to Participating 
 

You may choose not to participate in this study. 
 
Benefits to You if You Take Part in the Study 
 

There are no direct benefits to you as a result of participating in this study. 
 
Voluntary Participation 
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You are encouraged to ask questions regarding the purpose of this study and the 
outcome of your testing. Participation in this study is voluntary. You may refuse to 
participate, refuse to answer any questions, or withdraw from the study at any time with 
no effect on your academic or employment status. We ask that you do not get involved 
with any other study while you are involved in this study. However, participation in this 
study will not stop you from being involved in future studies. You do not waive any legal 
rights by signing the consent form.  
 
Confidentiality 
 
 All information that you provide will be kept strictly confidential. No information 
that could reveal your identity will be released to anyone unless disclosure is required 
legally. All of the information collected for this study will be stored in a locked filing 
cabinet or a password-protected computer that will only be accessible to the research 
team. To further protect your confidentiality, your name will be replaced with a subject 
ID number on all documents. 
 
 Representatives of The University of Western Ontario Health Sciences Research 
Ethics Board may contact you or require access to your study-related records or may 
follow up with you to monitor the conduct of the research. 
 
Compensation 
 
 You will be reimbursed for travel and/or parking expenses (not exceeding $20 per 
visit). 
 
Publication of Results 
  

Published results from this study will not identify you by name. New findings 
from this study may be forwarded to each interested participant upon request. You may 
keep a copy of this letter of information.  
 
Contact Persons 
 

If you have any questions regarding this study, please feel free to contact: 
 
 Dr. Kevin Shoemaker 
 (519) 661-2111 ext. 85759 
 Room 3110 Thames Hall 
 The University of Western Ontario 
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If you have any questions about your rights as a participant or about the conduct 

of the study you may contact The University of Western Ontario Office of Research 
Ethics, 519-661-3036 or email ethics@uwo.ca. 

 
 
 
 
  

 
 
 

LETTER OF INFORMED CONSENT 
 

Sex-Specific Hormone Levels and Reflex Sympathoexcitation 
 
Principal Investigator:   Dr. J. Kevin Shoemaker 
 
Research Coordinator:   Charlotte W. Usselman, M.Sc. 

 

I have read the Letter of Information, have had the nature of the study explained to 
me, and I agree to participate. All questions have been answered to my satisfaction. 

 

_______________________________ _______________________________ 
Name of participant (Please print)  Name of person obtaining consent 
 
 
 
_______________________________ _______________________________ 
Signature of participant   Signature of person obtaining consent 
 
 
 
_____________________    _____________________ 
Date       Date 

  

mailto:ethics@uwo.ca
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LETTER OF INFORMATION 
 

Sex-Specific Hormone Levels and Reflex Sympathoinhibition 
 
Principal Investigator:   Dr. J. Kevin Shoemaker 
 
Research Coordinator:   Charlotte W. Usselman, M.Sc. 
 
Sponsor:     Natural Sciences and Engineering Research Council of 
Canada 
 
 You are being invited to participate in a research study that will examine how 
male and female hormone levels influence the nervous system. Before agreeing to 
participate, please read this Letter of Information. If you would like more details 
regarding something mentioned in this letter, or information not included here, please 
ask. Take time to read this carefully and to understand the following information. You 
will receive a copy of this letter to keep as your own. A total of 50 people will participate 
in this study. 
 
Introduction 
 
 The nervous system plays an important role in controlling your heart rate and 
blood pressure. Interestingly, it appears that the nervous system is influenced by the sex 
hormones which circulate in your body (for example, estrogen and testosterone). To 
better understand how hormones influence the nervous system, this study has two 
purposes. The first purpose is to compare the nervous systems of men and women. The 
second purpose is to compare the nervous systems of women at two different phases of 
the menstrual cycle.  
 
 The study will take place on three separate days. The first day will be a 
familiarization session, lasting approximately 45 minutes. On this day the procedures will 
be explained and practiced so that you are comfortable with all aspects of the study. The 
remaining two sessions will each last approximately 3 hours. If you agree to participate, 
on each day you will be required to come to the laboratory approximately three hours 
following a light meal, and after having avoided exercise, alcohol, smoking, nicorette 
gum, recreational drugs, coffee, tea, soft drinks and chocolate for at least 12 hours. On 
arrival at the laboratory you will be asked questions about the medical history of you and 
your family.  
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Participant Inclusion/Exclusion Criteria 
 
 You will not be included in the study if you are under 18 or over 35 years of age. 
You will not be included in the study if you are, or think you could be, pregnant. In 
addition, you will not be included in the study if you are a smoker. Also, you will not be 
included in the study if you have any of the following: a resting blood pressure above 
139/85 or below 100/55, respiratory disorders (e.g. asthma) or illnesses (e.g. bronchitis), 
cardiovascular disorders (e.g. Raynaud’s disease), metabolic diseases (e.g. diabetes), or a 
history of fainting.  
 
Measurements 
 
 If you agree to participate in this study, testing will be conducted at the 
Neurovascular Research Laboratory, Room 3110 Thames Hall at The University of 
Western Ontario. The testing procedure will involve the measurement of several 
cardiovascular variables: 
 

1. Small adhesive electrodes will be placed on your chest to record the electrical 
heart rate tracing (electrocardiogram; ECG).  

 
2. A small cuff will be placed around one finger and a blood pressure cuff will be 

placed around the upper portion of the same arm. These cuffs are used to measure 
your blood pressure. When activated, the finger cuff will inflate with air and you 
should feel a pulsating sensation on your finger.  

 
3. An elastic strap will be placed around your chest to monitor changes in breathing 

rate and depth. 

 
4. A small probe will be clipped on one of your toes. This probe emits a light that 

passes through the toe and lets us measure the amount of oxygen in your blood.  

 
5. To examine your blood vessels, ultrasound probes will be placed on top of the 

skin at your elbow and at the base of your neck in order to measure the size of 
your vessels and the amount of blood flowing through them. These probes are 
similar to those used on pregnant women for imaging of an unborn child.   

 
6. You are being asked to undergo a procedure called “microneurography”. This 

procedure has two phases. First, the position of a nerve that runs very close to 
your skin just on the outside of the knee will be located by touch. Second, a thin 
tungsten electrode (similar to an acupuncture needle, about the size of a large 
human hair) will be inserted through the intact skin and positioned just under the 
skin about 2-3 cm from the nerve site. This will be followed by the placement of a 
second tungsten electrode through the intact skin into this nerve (called the 
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peroneal nerve). This second electrode will be manipulated gently until the 
appropriate recording site is found. The microelectrodes are sterilized before use 
and the area of skin around the knee is cleansed with alcohol before and after the 
procedure.  

 
7. You will lie down on a table which can be tilted automatically. You will be tilted 

to a slight head-down position (6° from the horizontal plane) for 1 minute periods. 
This will cause a small increase in the amount of blood in your chest, and a small 
decrease in the amount of blood contained in your legs.  

 
8. You will be asked to perform a very mild handgrip exercise task. During this task 

you will squeeze a small air-filled bag at a level that requires 5% of your maximal 
voluntary strength (i.e. the hardest you can possibly squeeze the bag) for 1 minute 
periods.  

 
9. You will be asked to breathe at a rate of 15 breaths per second. A metronome set 

to the same rate will assist you in maintaining this pattern.  

 
10. During (6) and (7), you will be lying down with your legs and hips sealed inside a 

box that is connected to a vacuum source. This box is designed to produce suction 
(negative pressure) around your lower body. This mimics the effects of standing 
in terms of cardiovascular and nervous system responses. During two of the tilt 
tests, and two of the handgrips, the vacuum source will be turned on to a lower 
body suction level of -30 mmHg. This is a mild to moderate level of suction, less 
stressful than standing up. 

 
Procedures 
 
 Each day of testing will last approximately two hours, and will be carried out 
according to the order and timing illustrated in the following diagram. The three 
experimental protocols (head-down tilt, handgrip, and paced breathing) are illustrated as 
“A”, “B”, and “C” because you will determine the order in which they are carried out by 
rolling a dice. The order of protocols determined on the first day of testing will be 
repeated on the second day of testing.   
 

 
1. We will begin by setting up the devices listed above in the “Measurements” 

section. This will take approximately 20 minutes. During this period you will 
simply be required to lie down and rest on a padded table.  
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2. Next, a small plastic tube will be inserted into a vein in your elbow by a registered 
nurse. This tube will be connected to a device that measures blood pressure in that 
vein. Also, blood will be taken from this tube at one time during the test. The total 
amount of blood withdrawn will not exceed 10 mL (2 teaspoons). The blood 
samples will be measured for sex hormones as well as hormones that regulate 
blood pressure and blood vessels (e.g. estrogen, testosterone, progesterone, c-
reactive protein). 

3. Following the blood draw, we will begin the process of locating a recording site 
in your peroneal nerve through microneurography. While 1 hour has been allotted 
for the process, this is a maximum. It is possible that a suitable recording site 
could be found within the 1 hour time frame.  

4. You will be asked to lay quietly and rest for a 10 minute “baseline” period. 

5. Head-Down Tilt Task: 

To begin, you will lie horizontally (zero degrees of tilt) on the table with your 
lower body sealed inside a box (see “Measurements”, item 8). In total, you will be 
tilted to a head-down position (6 degrees of tilt) 4 times. Two of the tilts will be 
completed without lower body suction, and will last 2 minutes each. In the 
remainder of the trials, we will first turn on lower body suction to -30 mmHg for 
2 minutes. At this, you will be tilted head-down. That is, you will be tilted while 
suction is applied to your lower body. You will then be returned to the horizontal 
position for a final 2 minutes of lower body suction. This will be followed by 2 
minutes of rest.  

6. You will be asked to lay quietly and rest for at least 5 minutes. 
  

7. Handgrip Task: 

Before beginning the handgrip task, you will be asked to squeeze a small air-filled 
bag as hard as you can. This represents handgrip exercise at 100%. For the rest of 
the task, you will squeeze the bag at 5% of your maximal strength for 1 minute at 
a time. You will be able to see a screen that tells you how hard you are squeezing. 
You will complete 4 trials in total. Similar to the tilt task, you will perform 2 trials 
consisting of handgrip alone, and the other two trials will consist of a combination 
of lower body suction and handgrip. Each handgrip trial will be followed by 1 
minute of quiet rest. 

8. Paced Breathing Task: 
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During this task, you will be asked to breathe in time with a metronome, which 
will be set to 15 breaths per minute. That is, you will breathe in and out every 4 
seconds for a total of 5 minutes.  

  

As indicated above, the entire procedure will take approximately 3 hours to 
complete on each test day. Upon completion of the experiment you will rise slowly from 
the table into a seated position. After approximately 30-60 seconds of sitting you will be 
permitted to stand beside the bed and move about the lab when you feel comfortable to 
do so.  

Risks 

ECG 
The adhesive on the electrodes used to measure your heart rate may cause a small rash to 
develop under the electrode. However, this rash should disappear in a day or two.  
 
Blood Pressure Cuff 
There are no known risks of using the finger cuff methods (Finometer) of examining 
arterial blood pressure. With the finger cuff the finger tip may turn a little blue and feel 
numb during the prolonged test sessions but this resolves immediately when the cuff is 
removed. Standard arm cuff blood pressure measures of arterial pressure will also be 
obtained periodically, a method that has no known risks. 
 
Ultrasound 
There are no known harmful effects with standard diagnostic ultrasound techniques. 
 
Blood Oxygen Saturation 
There are no known risks associated with the use of this device. 
 
Blood Draw 
There is a small risk of bruising or infection when collecting blood from your vein. Some 
participants may experience mild pain and discomfort and some may feel nauseated or 
dizzy when blood is taken.  
 
Head-Down Tilt 
There are no known risks associated with the mild level of head-down tilt used in this 
protocol. Head-down tilt is commonly used in physiotherapy. 
 
Handgrip 
There are no known risks associated with the low intensity of handgrip exercise used in 
this protocol.  
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Microneurography 
Insertion of the microneurography electrodes within the nerve may cause some “pins and 
needles” or muscle cramping sensations. These sensations disappear immediately by 
changing electrode position. There will be no sensations when the needle is in the correct 
position. There is small chance of these sensations occurring around the area of needle 
insertion immediately following the study and a less than 1% chance of these sensations 
persisting longer than one day. Other extremely rare reactions include infection and/or 
bleeding when the electrode is removed. Once in place there is no discomfort from the 
electrodes. You will be advised to partake only in normal day-to-day activities and 
abstain from aggressive physical effort or exercise for 24 hours after the study, such as 
lifting weights, running or competitive sports. 
 
Lower Body Suction 
During lower body suction you may feel faint or dizzy. These symptoms may lead to 
actual fainting. To ensure this does not happen, we will ask you to inform us if you feel 
any of the following symptoms: nausea, light-headedness, tunnel vision, blurry vision, 
excessive heat and/or sweating. These symptoms are alleviated quickly by turning off the 
lower body suction. You may stop the test at any time. Also, we will be monitoring you 
throughout the experiment to ensure that you are okay and we will stop the test if we feel 
that it is necessary. 
 
Paced Breathing 
There are no known risks associated with paced breathing. This technique is commonly 
used during meditation. 
 
Staying Still 
During the experiment, you will have to remain still in a lying down position for 2 hours. 
You may develop a sore back in the middle of the experiment. These sensations will 
diminish very quickly when you sit up from the bed after the experiment.  
 
 

In the event that you suffer injury as a result of participating in this research no 
compensation will be provided for you by The University of Western Ontario, or the 
Researchers. You still have all your legal rights. Nothing said here about treatment or 
compensation in any way alters your right to recover damages.  
 
Alternatives to Participating 
 

You may choose not to participate in this study. 
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Benefits to You if You Take Part in the Study 
 

There are no direct benefits to you as a result of participating in this study. 
 
Voluntary Participation 
 

You are encouraged to ask questions regarding the purpose of this study and the 
outcome of your testing. Participation in this study is voluntary. You may refuse to 
participate, refuse to answer any questions, or withdraw from the study at any time with 
no effect on your academic or employment status. We ask that you do not get involved 
with any other study while you are involved in this study. However, participation in this 
study will not stop you from being involved in future studies. You do not waive any legal 
rights by signing the consent form.  
 
Confidentiality 
 
 All information that you provide will be kept strictly confidential. No information 
that could reveal your identity will be released to anyone unless disclosure is required 
legally. All of the information collected for this study will be stored in a locked filing 
cabinet or a password-protected computer that will only be accessible to the research 
team. To further protect your confidentiality, your name will be replaced with a subject 
ID number on all documents. 
 
 Representatives of The University of Western Ontario Health Sciences Research 
Ethics Board may contact you or require access to your study-related records or may 
follow up with you to monitor the conduct of the research. 
 
Compensation 
 
 You will be reimbursed for travel and/or parking expenses (not exceeding $20 per 
visit). 
 
Publication of Results 
  

Published results from this study will not identify you by name. New findings 
from this study may be forwarded to each interested participant upon request. You may 
keep a copy of this letter of information.  
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Contact Persons 
 

If you have any questions regarding this study, please feel free to contact: 
 
 Dr. Kevin Shoemaker 
 (519) 661-2111 ext. 85759 
 Room 3110 Thames Hall 
 The University of Western Ontario 
 

If you have any questions about your rights as a participant or about the conduct 
of the study you may contact The University of Western Ontario Office of Research 
Ethics, 519-661-3036 or email ethics@uwo.ca. 

 
 
 
 
 
 
 
  

mailto:ethics@uwo.ca
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LETTER OF INFORMED CONSENT 
 

Sex-Specific Hormone Levels and Reflex Sympathoinhibition 
 
Principal Investigator:   Dr. J. Kevin Shoemaker 
 
Research Coordinator:   Charlotte W. Usselman, M.Sc. 

 

I have read the Letter of Information, have had the nature of the study explained to 
me, and I agree to participate. All questions have been answered to my satisfaction. 

 

_______________________________ _______________________________ 
Name of participant (Please print)  Name of person obtaining consent 
 
 
 
_______________________________ _______________________________ 
Signature of participant   Signature of person obtaining consent 
 
 
 
_____________________    _____________________ 
Date       Date 
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2. Permission granted free of charge for material in print is also usually granted for any 
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amended to achieve as nearly as possible the same economic effect as the original 
provision, and the legality, validity and enforceability of the remaining provisions 
of this Agreement shall not be affected or impaired thereby. 
10. The failure of either party to enforce any term or condition of this Agreement 
shall not constitute a waiver of either party's right to enforce each and every term 
and condition of this Agreement. No breach under this agreement shall be deemed 
waived or excused by either party unless such waiver or consent is in writing 
signed by the party granting such waiver or consent. The waiver by or consent of a 
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party to a breach of any provision of this Agreement shall not operate or be 
construed as a waiver of or consent to any other or subsequent breach by such 
other party. 
11. This Agreement may not be assigned (including by operation of law or 
otherwise) by you without WILEY's prior written consent. 
12. Any fee required for this permission shall be non-refundable after thirty (30) 
days from receipt 
13. These terms and conditions together with CCC's Billing and Payment terms 
and conditions (which are incorporated herein) form the entire agreement between 
you and WILEY concerning this licensing transaction and (in the absence of 
fraud) supersedes all prior agreements and representations of the parties, oral or 
written. This Agreement may not be amended except in writing signed by both 
parties. This Agreement shall be binding upon and inure to the benefit of the 
parties' successors, legal representatives, and authorized assigns. 
14. In the event of any conflict between your obligations established by these 
terms and conditions and those established by CCC's Billing and Payment terms 
and conditions, these terms and conditions shall prevail. 
15. WILEY expressly reserves all rights not specifically granted in the 
combination of (i) the license details provided by you and accepted in the course 
of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing 
and Payment terms and conditions. 
16. This Agreement will be void if the Type of Use, Format, Circulation, or 
Requestor Type was misrepresented during the licensing process. 
17. This Agreement shall be governed by and construed in accordance with the 
laws of the State of New York, USA, without regards to such state's conflict of 
law rules. Any legal action, suit or proceeding arising out of or relating to these 
Terms and Conditions or the breach thereof shall be instituted in a court of 
competent jurisdiction in New York County in the State of New York in the 
United States of America and each party hereby consents and submits to the 
personal jurisdiction of such court, waives any objection to venue in such court 
and consents to service of process by registered or certified mail, return receipt 
requested, at the last known address of such party. 
 
Wiley Open Access Terms and Conditions 
 
Wiley publishes Open Access articles in both its Wiley Open Access Journals 
program [http://www.wileyopenaccess.com/view/index.html] and as Online Open 
articles in its subscription journals. The majority of Wiley Open Access Journals 
have adopted the Creative Commons Attribution License (CC BY) which permits 
the unrestricted use, distribution, reproduction, adaptation and commercial 
exploitation of the article in any medium. No permission is required to use the 
article in this way provided that the article is properly cited and other license terms 
are observed. A small number of Wiley Open Access journals have retained the 
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Creative Commons Attribution Non Commercial License (CC BY-NC), which 
permits use, distribution and reproduction in any medium, provided the original 
work is properly cited and is not used for commercial purposes.  
Online Open articles - Authors selecting Online Open are, unless particular 
exceptions apply, offered a choice of Creative Commons licenses. They may 
therefore select from the CC BY, the CC BY-NC and the Attribution-
NoDerivatives (CC BY-NC-ND). The CC BY-NC-ND is more restrictive than the 
CC BY-NC as it does not permit adaptations or modifications without rights 
holder consent.  
Wiley Open Access articles are protected by copyright and are posted to 
repositories and websites in accordance with the terms of the applicable Creative 
Commons license referenced on the article. At the time of deposit, Wiley Open 
Access articles include all changes made during peer review, copyediting, and 
publishing. Repositories and websites that host the article are responsible 
for incorporating any publisher-supplied amendments or retractions issued 
subsequently.  
Wiley Open Access articles are also available without charge on Wiley's 
publishing platform, Wiley Online Library or any successor sites. 
 
Conditions applicable to all Wiley Open Access articles:  
The authors' moral rights must not be compromised. These rights include the right 
of "paternity" (also known as "attribution" - the right for the author to be identified 
as such) and "integrity" (the right for the author not to have the work altered in 
such a way that the author's reputation or integrity may be damaged). 
Where content in the article is identified as belonging to a third party, it is the 
obligation of the user to ensure that any reuse complies with the copyright policies 
of the owner of that content. 
If article content is copied, downloaded or otherwise reused for research and other 
purposes as permitted, a link to the appropriate bibliographic citation (authors, 
journal,article title, volume, issue, page numbers, DOI and the link to the 
definitive published version on Wiley Online Library) should be maintained. 
Copyright notices and disclaimers must not be deleted. 
Creative Commons licenses are copyright licenses and do not confer any other 
rights, including but not limited to trademark or patent rights. 
Any translations, for which a prior translation agreement with Wiley has not been 
agreed, must prominently display the statement: "This is an unofficial translation 
of an article that appeared in a Wiley publication. The publisher has not endorsed 
this translation." 
 
Conditions applicable to non-commercial licenses (CC BY-NC and CC BY-NC-
ND)  
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For non-commercial and non-promotional purposes individual non-commercial 
users may access, download, copy, display and redistribute to colleagues Wiley 
Open Access articles. 
In addition, articles adopting the CC BY-NC may be adapted, translated, and text- 
and data-mined subject to the conditions above. 
 
Use by commercial "for-profit" organizations 
Use of non-commercial Wiley Open Access articles for commercial, promotional, 
or marketing purposes requires further explicit permission from Wiley and will be 
subject to a fee. Commercial purposes include: 
Copying or downloading of articles, or linking to such articles for further 
redistribution, sale or licensing;  
Copying, downloading or posting by a site or service that incorporates advertising 
with such content; 
The inclusion or incorporation of article content in other works or services (other 
than normal quotations with an appropriate citation) that is then available for sale 
or licensing, for a fee (for example, a compilation produced for marketing 
purposes, inclusion in a sales pack) 
Use of article content (other than normal quotations with appropriate citation) by 
forprofit organizations for promotional purposes 
Linking to article content in e-mails redistributed for promotional, marketing or 
educational purposes; 
Use for the purposes of monetary reward by means of sale, resale, license, loan, 
transfer or other form of commercial exploitation such as marketing products 
Print reprints of Wiley Open Access articles can be purchased from: 
corporatesales@wiley.com 
The modification or adaptation for any purpose of an article referencing the CC 
BYNC-ND License requires consent which can be requested from 
RightsLink@wiley.com . 
 
Other Terms and Conditions: 
BY CLICKING ON THE "I AGREE..." BOX, YOU ACKNOWLEDGE THAT 
YOU HAVE READ AND FULLY UNDERSTAND EACH OF THE SECTIONS 
OF AND PROVISIONS SET FORTH IN THIS AGREEMENT AND THAT 
YOU ARE IN AGREEMENT WITH AND ARE WILLING TO ACCEPT ALL 
OF YOUR OBLIGATIONS AS SET FORTH IN THIS AGREEMENT. 
v1.8 
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Figure 1.6: 
WOLTERS KLUWER HEALTH LICENSE 

TERMS AND CONDITIONS 
 

Feb 21, 2014 
 
 

 
This is a License Agreement between Charlotte W Usselman ("You") and Wolters 
Kluwer Health ("Wolters Kluwer Health") provided by Copyright Clearance 
Center ("CCC"). The license consists of your order details, the terms and 
conditions provided by Wolters Kluwer Health, and the payment terms and 
conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 
 
License Number 3333720049493 
License date Feb 21, 2014 
Licensed content publisher Wolters Kluwer Health 
Licensed content 
publication 
Circulation 
Licensed content title Selective Potentiation of Peripheral Chemoreflex Sensitivity in 
Obstructive Sleep Apnea 
Licensed content author Krzysztof Narkiewicz, Philippe J. H. van de Borne, Catherine A. 
Pesek, Mark E. Dyken, Nicola Montano, Virend K. Somers 
Licensed content date Mar 9, 1999 
Volume Number 99 
Issue Number 9 
Type of Use Dissertation/Thesis 
Requestor type Individual 
Portion Figures/table/illustration 
Number of 
figures/tables/illustrations 
1 
Figures/tables/illustrations 
used 
Figure 1 
Author of this Wolters 
Kluwer article 
No 
Title of your thesis / 
dissertation 
Sex hormones and muscle sympathetic nerve activity 
Expected completion date Apr 2014 
Estimated size(pages) 200 
Billing Type Invoice 
Billing address School of Kinesiology 
University of Western Ontario 
London, ON N6A 3K7 
Canada 
Total 0.00 USD 
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Terms and Conditions 
Terms and Conditions 

 
1. A credit line will be prominently placed and include: for books - the author(s), title of 
book, editor, copyright holder, year of publication; For journals - the author(s), title of 
article, title of journal, volume number, issue number and inclusive pages. 
2. The requestor warrants that the material shall not be used in any manner which may 
be considered derogatory to the title, content, or authors of the material, or to Wolters 
Kluwer. 
3. Permission is granted for a one time use only within 12 months from the date of this 
invoice. Rights herein do not apply to future reproductions, editions, revisions, or other 
derivative works. Once the 12-month term has expired, permission to renew must be 
submitted in writing. 
4. Permission granted is non-exclusive, and is valid throughout the world in the English 
language and the languages specified in your original request. 
5. Wolters Kluwer cannot supply the requestor with the original artwork or a "clean copy." 
6. The requestor agrees to secure written permission from the author (for book material 
only). 
7. Permission is valid if the borrowed material is original to a Wolters Kluwer imprint 
(Lippincott-Raven Publishers, Williams & Wilkins, Lea & Febiger, Harwal, Igaku-Shoin, 
Rapid Science, Little Brown & Company, Harper & Row Medical, American Journal of 
Nursing Co, and Urban & Schwarzenberg - English Language). 
8. If you opt not to use the material requested above, please notify Rightslink within 90 
days of the original invoice date. 
9. Please note that articles in the ahead-of-print stage of publication can be cited and the 
content may be re-used by including the date of access and the unique DOI number. 
Any final changes in manuscripts will be made at the time of print publication and will be 
reflected in the final electronic version of the issue.?Disclaimer: Articles appearing in the 
Published Ahead-of-Print section have been peer-reviewed and accepted for publication 
in the relevant journal and posted online before print publication. Articles appearing as 
publish ahead-of-print may contain statements, opinions, and information that have 
errors in facts, figures, or interpretation. Accordingly, Lippincott Williams & Wilkins, the 
editors and authors and their respective employees are not responsible or liable for the 
use of any such inaccurate or misleading data, opinion or information contained in the 
articles in this section. 
10. 1This permission does not apply to images that are credited to publications other 
than 
Wolters Kluwer journals. For images credited to non-Wolters Kluwer journal 
publications, you will need to obtain permission from the journal referenced in the figure 
or table legend or credit line before making any use of the image(s) or table(s). 
11. In case of Disease Colon Rectum, Plastic Reconstructive Surgery, The Green Journal, 
Critical Care Medicine, Pediatric Critical Care Medicine, the American Heart 
Publications, the American Academy of Neurology the following guideline applies: no 
drug brand/trade name or logo can be included in the same page as the material reused 
12. When requesting a permission to translate a full text article, Wolters 
Kluwer/Lippincott 
Williams & Wilkins requests to receive the pdf of the translated document 
13. “Adaptations of single figures do not require Wolters Kluwer further approval if the 
permission has been granted previously. However, the adaptation should be credited 
as follows:?Adapted with permission from Lippincott Williams and Wilkins/Wolters 
Kluwer Health: [JOURNAL NAME] (reference citation), copyright (year of publication)” 
Please note that modification of text within figures or full-text articles is strictly 
forbidden. 
14. The following statement needs to be added when reprinting the material in Open 
Access journals only: 'promotional and commercial use of the material in print, digital or 
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mobile device format is prohibited without the permission from the publisher Lippincott 
Williams & Wilkins. Please contact journalpermissions@lww.com for further information”. 
15. Other Terms and Conditions: 
v1.8 
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Figure 1.7: 

JOHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

 
Feb 21, 2014 

 
 

 
This is a License Agreement between Charlotte W Usselman ("You") and John 
Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center 
("CCC"). The license consists of your order details, the terms and conditions 
provided by John Wiley and Sons, and the payment terms and conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 
 
License Number 3333900750254 
License date Feb 21, 2014 
Licensed content publisher John Wiley and Sons 
Licensed content 
publication 
Journal of Physiology 
Licensed content title Blood pressure and water regulation: understanding sex 
hormone effects within and between men and women 
Licensed copyright line © 2012 The Authors. The Journal of Physiology © 2012 The 
Physiological Society 
Licensed content author Megan M. Wenner,Nina S. Stachenfeld 
Licensed content date Nov 5, 2012 
Start page 5949 
End page 5961 
Type of use Dissertation/Thesis 
Requestor type University/Academic 
Format Print and electronic 
Portion Figure/table 
Number of figures/tables 1 
Original Wiley figure/table 
number(s) 
Figure 1 
Will you be translating? No 
Title of your thesis / 
dissertation 
Sex hormones and muscle sympathetic nerve activity 
Expected completion date Apr 2014 
Expected size (number of 
pages) 
200 
Total 0.00 USD 
Terms and Conditions 
 

TERMS AND CONDITIONS 
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This copyrighted material is owned by or exclusively licensed to John Wiley & 
Sons, Inc. or one of its group companies (each a "Wiley Company") or a society 
for whom a Wiley Company has exclusive publishing rights in relation to a 
particular journal (collectively "WILEY"). By clicking "accept" in connection 
with completing this licensing transaction, you agree that the following terms and 
conditions apply to this transaction (along with the billing and payment terms and 
conditions established by the Copyright Clearance Center Inc., ("CCC's Billing 
and Payment terms and conditions"), at the time that you opened your RightsLink 
account (these are available at any time at http://myaccount.copyright.com). 
 
Terms and Conditions 
1. The materials you have requested permission to reproduce (the "Materials") are 
protected by copyright. 
2.You are hereby granted a personal, non-exclusive, non-sublicensable, non-
transferable, worldwide, limited license to reproduce the Materials for the purpose 
specified in the licensing process. This license is for a one-time use only with a 
maximum distribution equal to the number that you identified in the licensing 
process. Any form of republication granted by this license must be completed 
within two years of the date of the grant of this license (although copies prepared 
before may be distributed thereafter). The Materials shall not be used in any other 
manner or for any other purpose. Permission is granted subject to an appropriate 
acknowledgement given to the author, title of the material/book/journal and the 
publisher. You shall also duplicate the copyright notice that appears in the Wiley 
publication in your use of the Material. Permission is also granted on the 
understanding that nowhere in the text is a previously published source 
acknowledged for all or part of this Material. Any third party material is expressly 
excluded from this permission. 
3. With respect to the Materials, all rights are reserved. Except as expressly 
granted by the terms of the license, no part of the Materials may be copied, 
modified, adapted (except for minor reformatting required by the new 
Publication), translated, reproduced, transferred or distributed, in any form or by 
any means, and no derivative works may be made based on the Materials without 
the prior permission of the respective copyright owner. You may not alter, remove 
or suppress in any manner any copyright, trademark or other notices displayed by 
the Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, 
transfer or assign the Materials, or any of the rights granted to you hereunder to 
any other person. 
4. The Materials and all of the intellectual property rights therein shall at all times 
remain the exclusive property of John Wiley & Sons Inc or one of its related 
companies (WILEY) or their respective licensors, and your interest therein is only 
that of having possession of and the right to reproduce the Materials pursuant to 
Section 2 herein during the continuance of this Agreement. 



165 

 

You agree that you own no right, title or interest in or to the Materials or any of 
the intellectual property rights therein. You shall have no rights hereunder other 
than the license as provided for above in Section 2. No right, license or interest to 
any trademark, trade name, service mark or other branding ("Marks") of WILEY 
or its licensors is granted hereunder, and you agree that you shall not assert any 
such right, license or interest with respect thereto. 
5. NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR 
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, 
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE 
MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED 
IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY 
IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, 
SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, 
USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH 
WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS 
LICENSORS AND WAIVED BY YOU. 
6. WILEY shall have the right to terminate this Agreement immediately upon 
breach of this Agreement by you. 
7. You shall indemnify, defend and hold harmless WILEY, its Licensors and their 
respective directors, officers, agents and employees, from and against any actual 
or threatened claims, demands, causes of action or proceedings arising from any 
breach of this Agreement by you. 
8. IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU 
OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY 
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR 
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING 
OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, 
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, 
TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, 
WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, 
DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD 
PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL 
APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE 
OF ANY LIMITED REMEDY PROVIDED HEREIN. 
9. Should any provision of this Agreement be held by a court of competent 
jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed 
amended to achieve as nearly as possible the same economic effect as the original 
provision, and the legality, validity and enforceability of the remaining provisions 
of this Agreement shall not be affected or impaired thereby. 
10. The failure of either party to enforce any term or condition of this Agreement 
shall not constitute a waiver of either party's right to enforce each and every term 
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and condition of this Agreement. No breach under this agreement shall be deemed 
waived or excused by either party unless such waiver or consent is in writing 
signed by the party granting such waiver or consent. The waiver by or consent of a 
party to a breach of any provision of this Agreement shall not operate or be 
construed as a waiver of or consent to any other or subsequent breach by such 
other party. 
11. This Agreement may not be assigned (including by operation of law or 
otherwise) by you without WILEY's prior written consent. 
12. Any fee required for this permission shall be non-refundable after thirty (30) 
days from receipt 
13. These terms and conditions together with CCC's Billing and Payment terms 
and conditions (which are incorporated herein) form the entire agreement between 
you and WILEY concerning this licensing transaction and (in the absence of 
fraud) supersedes all prior agreements and representations of the parties, oral or 
written. This Agreement may not be amended except in writing signed by both 
parties. This Agreement shall be binding upon and inure to the benefit of the 
parties' successors, legal representatives, and authorized assigns. 
14. In the event of any conflict between your obligations established by these 
terms and conditions and those established by CCC's Billing and Payment terms 
and conditions, these terms and conditions shall prevail. 
15. WILEY expressly reserves all rights not specifically granted in the 
combination of (i) the license details provided by you and accepted in the course 
of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing 
and Payment terms and conditions. 
16. This Agreement will be void if the Type of Use, Format, Circulation, or 
Requestor Type was misrepresented during the licensing process. 
17. This Agreement shall be governed by and construed in accordance with the 
laws of the State of New York, USA, without regards to such state's conflict of 
law rules. Any legal action, suit or proceeding arising out of or relating to these 
Terms and Conditions or the breach thereof shall be instituted in a court of 
competent jurisdiction in New York County in the State of New York in the 
United States of America and each party hereby consents and submits to the 
personal jurisdiction of such court, waives any objection to venue in such court 
and consents to service of process by registered or certified mail, return receipt 
requested, at the last known address of such party. 
 
Wiley Open Access Terms and Conditions 
Wiley publishes Open Access articles in both its Wiley Open Access Journals 
program [http://www.wileyopenaccess.com/view/index.html] and as Online Open 
articles in its subscription journals. The majority of Wiley Open Access Journals 
have adopted the Creative Commons Attribution License (CC BY) which permits 
the unrestricted use, distribution, reproduction, adaptation and commercial 
exploitation of the article in any medium. No permission is required to use the 
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article in this way provided that the article is properly cited and other license terms 
are observed. A small number of Wiley Open Access journals have retained the 
Creative Commons Attribution Non Commercial License (CC BY-NC), which 
permits use, distribution and reproduction in any medium, provided the original 
work is properly cited and is not used for commercial purposes. 
 
Online Open articles - Authors selecting Online Open are, unless particular 
exceptions apply, offered a choice of Creative Commons licenses. They may 
therefore select from the CC BY, the CC BY-NC and the Attribution-
NoDerivatives (CC BY-NC-ND). The CC BY-NC-ND is more restrictive than the 
CC BY-NC as it does not permit adaptations or modifications without rights 
holder consent. Wiley Open Access articles are protected by copyright and are 
posted to repositories and websites in accordance with the terms of the applicable 
Creative Commons license referenced on the article. At the time of deposit, Wiley 
Open Access articles include all changes made during peer review, copyediting, 
and publishing. Repositories and websites that host the article are responsible for 
incorporating any publisher-supplied amendments or retractions issued 
subsequently. Wiley Open Access articles are also available without charge on 
Wiley's publishing platform, Wiley Online Library or any successor sites. 
 
Conditions applicable to all Wiley Open Access articles: 
The authors' moral rights must not be compromised. These rights include the right 
of "paternity" (also known as "attribution" - the right for the author to be identified 
as such) and "integrity" (the right for the author not to have the work altered in 
such a way that the author's reputation or integrity may be damaged). 
Where content in the article is identified as belonging to a third party, it is the 
obligation of the user to ensure that any reuse complies with the copyright policies 
of the owner of that content. 
If article content is copied, downloaded or otherwise reused for research and other 
purposes as permitted, a link to the appropriate bibliographic citation (authors, 
journal, article title, volume, issue, page numbers, DOI and the link to the 
definitive published version on Wiley Online Library) should be maintained. 
Copyright notices and disclaimers must not be deleted. 
Creative Commons licenses are copyright licenses and do not confer any other 
rights, including but not limited to trademark or patent rights. 
Any translations, for which a prior translation agreement with Wiley has not been 
agreed, must prominently display the statement: "This is an unofficial translation 
of an article that appeared in a Wiley publication. The publisher has not endorsed 
this translation." 
 
Conditions applicable to non-commercial licenses (CC BY-NC and CC BY-NC-
ND) 
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For non-commercial and non-promotional purposes individual non-commercial 
users may access, download, copy, display and redistribute to colleagues Wiley 
Open Access articles. 
In addition, articles adopting the CC BY-NC may be adapted, translated, and text- 
and data-mined subject to the conditions above. 
 
Use by commercial "for-profit" organizations 
Use of non-commercial Wiley Open Access articles for commercial, promotional, 
or marketing purposes requires further explicit permission from Wiley and will be 
subject to a fee. Commercial purposes include: 
Copying or downloading of articles, or linking to such articles for further 
redistribution, sale or licensing;  
Copying, downloading or posting by a site or service that incorporates advertising 
with such content; 
The inclusion or incorporation of article content in other works or services (other 
than normal quotations with an appropriate citation) that is then available for sale 
or licensing, for a fee (for example, a compilation produced for marketing 
purposes, inclusion in a sales pack) 
Use of article content (other than normal quotations with appropriate citation) by 
forprofit organizations for promotional purposes 
Linking to article content in e-mails redistributed for promotional, marketing or 
educational purposes; 
Use for the purposes of monetary reward by means of sale, resale, license, loan, 
transfer or other form of commercial exploitation such as marketing products 
Print reprints of Wiley Open Access articles can be purchased from: 
corporatesales@wiley.com 
The modification or adaptation for any purpose of an article referencing the CC 
BYNC-ND License requires consent which can be requested from 
RightsLink@wiley.com . 
 
Other Terms and Conditions: 
BY CLICKING ON THE "I AGREE..." BOX, YOU ACKNOWLEDGE THAT 
YOU HAVE READ AND FULLY UNDERSTAND EACH OF THE SECTIONS 
OF AND PROVISIONS SET FORTH IN THIS AGREEMENT AND THAT 
YOU ARE IN AGREEMENT WITH AND ARE WILLING TO ACCEPT ALL 
OF YOUR OBLIGATIONS AS SET FORTH IN THIS AGREEMENT. 
v1.8 
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Copyright 
 
The APS Journals are copyrighted for the protection of authors and the 
Society. The Mandatory Submission Form serves as the Society's 
official copyright transfer form. 
 
Rights of Authors of APS Articles 
 
For educational purposes only, authors may make copies of their own 
articles or republish parts of these articles (e.g., figures, tables), 
without charge and without requesting permission, provided that full 
acknowledgement of the source is given in the new work. Authors may 
not post a PDF of their published article on any website; instead, links 
may be posted to the article on the APS journal website. 
 
Posting of articles or parts of articles is restricted and subject to the 
conditions below: 
 
- Theses and dissertations. APS permits whole published articles to be 
reproduced without charge in dissertations and posted to thesis 
repositories. Full citation is required.  
 
- Open courseware. Articles, or parts of articles, may be posted to a 
public access courseware website. Permission must be requested from 
the APS. A copyright fee will apply during the first 12 months of the 
article’s publication by the APS. Full citation is required. 
 
- Institutional websites. The author’s published article (in whole or in 
part) may not be posted to an institutional website, neither at the 
institutional nor departmental level. This exclusion includes, but is not 
limited to, library websites and national government websites. Instead, 
a link to the article on the APS journal website should be used. (See 
also the APS Policy on Depositing Articles in PMC.) 
 
- Institutional repositories (non-theses). The author’s published article 
(in whole or in part) may not be posted to any institutional repository. 
This exclusion includes, but is not limited to, library repositories and 
national government repositories. Instead, a link to the APS journal 
website should be used. (See also the APS Policy on Depositing Articles 
in PMC.) 
 
- Author’s article in presentations. Authors may use their articles (in 
whole or in part) for presentations (e.g., at meetings and 
conferences). These presentations may be reproduced (e.g., in 
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monographs) on any type of media including, but not limited to, CDs, 
DVDs, and flash drives, for educational use only in materials arising 
from the meeting or conference such as the proceedings of a meeting 
or conference. A copyright fee will apply if there is a charge to the user 
or if the materials arising are directly or indirectly commercially 
supported. 
 
- Reuse in another journal before final publication is prohibited. 
Permission for reuse of an article (whether in whole or in part) in 
another publication is restricted to the final-published version of the 
article. If an article is currently published on the APS "publish ahead of 
print" website (Articles in PresS), then the author must wait to request 
permission to reuse the article, or any part of the article, until such 
time when the article appears in final-published form on the APS 
journal website. 
 
Authors who do not have access to a subscription and/or who are not 
APS members may: 

- purchase the article through the pay-per-view option, or 
- purchase a Toll-Free Link from APS, which will allow them to 
post a link to the APS journals website (directly to the article) 
enabling unlimited free downloads for any user accessing the 
article via this Toll-Free Link. 
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