
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

3-25-2014 12:00 AM 

Indoleamine 2,3-dioxygenase confers resistance to chemotherapy Indoleamine 2,3-dioxygenase confers resistance to chemotherapy 

and γ radiation to cancer cells, independent of direct immune and  radiation to cancer cells, independent of direct immune 

involvement involvement 

Saman Maleki Vareki 
The University of Western Ontario 

Supervisor 

Dr. James Koropatnick 

The University of Western Ontario 

Graduate Program in Microbiology and Immunology 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Saman Maleki Vareki 2014 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Neoplasms Commons 

Recommended Citation Recommended Citation 
Maleki Vareki, Saman, "Indoleamine 2,3-dioxygenase confers resistance to chemotherapy and γ radiation 
to cancer cells, independent of direct immune involvement" (2014). Electronic Thesis and Dissertation 
Repository. 1936. 
https://ir.lib.uwo.ca/etd/1936 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1936&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/924?utm_source=ir.lib.uwo.ca%2Fetd%2F1936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1936?utm_source=ir.lib.uwo.ca%2Fetd%2F1936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Indoleamine 2,3-dioxygenase confers resistance to chemotherapy and γ radiation 

to cancer cells, independent of direct immune involvement 

 

 

 

(Thesis format: Monograph) 

 

 

by 

 

 

Saman Maleki Vareki 

 

 

 

Graduate Program in Microbiology & Immunology 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

The School of Graduate and Postdoctoral Studies 

The University of Western Ontario 

London, Ontario, Canada 

 

 

© Saman Maleki Vareki 2014 



 

 

 

ii 

Abstract 

Indoleamine 2,3-dioxygenase-1 (IDO) is an immunosuppressive molecule expressed by 

most human tumours. IDO levels correlate with poor prognosis in cancer patients and 

IDO inhibitors are under investigation to enhance endogenous anticancer 

immunosurveillance. Little is known regarding the immune-independent functions of 

IDO relevant to cancer therapy. In this thesis I show, for the first time, that IDO mediates 

human tumour cell resistance, in a cell-autonomous fashion, to single and combination 

treatment with a diverse group of chemotherapy drugs and γ  radiation. These drugs 

include a PARP inhibitor (olaparib), a DNA cross-linking agent (cisplatin), a folate 

antimetabolite (pemetrexed), a nucleoside analogue (gemcitabine), a base excision repair 

inhibitor (methoxyamine), an NAD+ inhibitor (FK866) and combined treatments with 

olaparib and radiation and methoxyamine and pemetrexed in the absence of immune cells. 

Antisense-mediated reduction of IDO, alone and (in a synthetic lethal approach) in 

combination with antisense to the DNA repair protein BRCA2 sensitizes human lung 

cancer cells to olaparib and cisplatin. Antisense-mediated reduction of IDO (in a 

synthetic lethal approach) in combination with antisense to thymidylate synthase 

sensitizes human lung cancer cells to pemetrexed and 5FUdR. Antisense reduction of 

IDO decreased NAD+ in human tumour cells. NAD+ is essential for PARP activity and 

these data suggest that IDO mediates treatment resistance independent of its well- 

established immunomodulatory effects, and at least partially due to a previously 

unrecognized role for IDO in DNA repair. Furthermore, increased IDO levels correlated 

with the accumulation of tumour cells in G1 and depletion of cells in the G2/M phases of 

the cell cycle, suggesting that the effects of IDO on the cell cycle may also modulate 

sensitivity to radiation and chemotherapeutic agents. IDO is a potentially valuable 

therapeutic target in cancer treatment, independent of immune function and in 

combination with other therapies. 
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Chapter 1 

1.1 Introduction synopsis 

In this chapter I briefly describe non-surgical methods common in cancer treatment, 

including chemotherapy, radiation, immunotherapy, and combinations utilizing more 

than one therapeutic approach. This review illuminates the exploration of cancer-relevant 

functions of the immunoregulatory molecule indoleamine 2,3-dioxygenase (IDO), a 

cellular enzyme potentially involved in mediating resistance to these treatments and the 

subject of this thesis. 

In the chemotherapy section, major chemotherapeutic agents used in patient 

treatment (and assessed in the context of altered IDO expression in this thesis) are 

introduced and their mechanism of action described. Cellular mechanisms mediating 

resistance to major treatment methods are then described, followed by a description of 

IDO and its known role(s) in immune regulation and cancer. 

IDO inhibitors and the effect of IDO inhibition in cancer treatment is then 

described as a background to understanding the strategies and experimental consequences 

of IDO inhibition in human tumour cell response to chemotherapy and/or radiation. 

DNA repair events in tumour cells, including base excision repair (BER) and 

homologous recombination repair (HRR) are then reviewed as a background to 

understanding IDO functions proposed, in this thesis, to be associated with those repair 

events. Poly(adenosine diphosphate-ribose) polymerase (PARP) molecules and their role 

in BER and HRR is described as a basis for understanding the hypothesis that PARP 

activity is affected by IDO activity. Because PARP activity depends on nicotinamide 

adenine dinucleotide (NAD+), and IDO mediates de novo NAD+ synthesis, NAD+ and its 

role in DNA repair is described; data presented in this thesis show that IDO 

downregulation decreases NAD+ levels in cancer cells, and NAD+ inhibition is proposed 

as a strategy to treat cancer. A role for IDO in mediating resistance to such strategies is 

described in this thesis. 

Thymidylate synthase (TS) is introduced as a background to understanding the role 

of IDO downregulation in resistance to three TS-targeting drugs (pemetrexed, 5FUdR, 

and gemcitabine), alone or in combination with TS inhibition. 
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Finally, and to assist in understanding the technology used in this thesis to 

modulate IDO and TS in human tumour cells, antisense-mediated downregulation of 

messenger RNA (mRNA) as a technology to reduce specific cellular targets, both as a 

discovery tool and as potential therapeutic strategy, is described.  

1.2  General Introduction 

Malignancy in cancer cells occurs in a stepwise fashion and is enhanced by 

genomic instability, which is a major generator of mutations that are the basis of selection 

for cells by conditions existing in host organisms (availability of nutrients, growth factors 

or lack of them, oxygenation, sensitivity to drug treatments, capacity to evade immune 

detection, and others) [1]. Genetic instability in cancer was first hypothesized by Boveri, 

based on the consequences of aneuploidy on the growth of sea urchin embryos [2]. 

Because of genomic instability, individual cancer cells each harbour on the order of 

10,000 mutations that distinguish them from a parental stem cell. Clinically detectable 

tumours contain 108-109 cells and can have more than 1011 mutations [3]. Because a high 

mutation rate and selection pressures driving Darwinian evolution are not mutually 

exclusive, genomic instability has the potential to enhance fitness of cells comprising 

tumours, such that they are well-adapted to survive and grow in their hosts [3]. However, 

it is likely that there is a maximum number of unrepaired DNA damage events and 

resulting mutations, DNA duplications, DNA translocations, and chromosomal 

abnormalities arising from DNA damage, that tumour cells can tolerate before reaching a 

limit that, when exceeded, alters cellular fitness and becomes a detriment to fitness [3]. 

This has been proposed as a reason, with the exception of P53 [4] and the DNA 

polymerase β encoding gene POLB [5], that most genes involved in DNA repair and/or 

DNA replication are intact in cancer cells [3]. A high mutation rate and resulting 

heterogeneity in tumour cell populations can also be a source of cells with resistance to 

chemotherapy, which could impede personalized medicine for cancer treatment [3]. 

Moreover, the possibility of converting a passenger mutation to a driver because of the 

changes in the tumour microenvironment due to selective pressure of internal and/or 

external factors, such as the immune system or chemotherapy, can also inhibit the 

effectiveness of cancer treatment [6]. This is an important phenomenon that should be 
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considered when proposing and testing treatments for cancer, since passenger mutations 

normally do not have any functional consequences such as conferring clonal growth 

advantage to cancer cells, but driver mutations are often selected for and they could 

confer growth or survival advantages to cancer cells [6].  

1.3 Major Non-Surgical Methods of Cancer Treatment  

1.3.1 Chemotherapy 

 Modern chemotherapy began in 1942, with the discovery of nitrogen mustard as 

an effective cancer treatment [7]. However, early observations of tumours developing 

resistance to chemotherapy after application of therapeutic drugs [8, 9] continue to the 

present day, and remain a major obstacle in the treatment of cancer patients with 

chemotherapy [10]. Traditionally, chemotherapy involves treatment with cytotoxic drugs 

that interfere with DNA synthesis and cell proliferation [11]. In the new era of 

chemotherapy, drugs also target many of the signaling networks that regulate cell 

proliferation and survival in cancer cells -- either targets that are unique to cancer cells 

(proteins or peptides not found in non-tumour cells) or that are preferentially expressed or 

depended on to mediate malignant characteristics and/or survival – in a strategy termed 

“targeted therapy” [7]. These drugs mainly consist of antibodies and small molecule 

kinase inhibitors that target specific molecules important to different signaling events, 

and that result in decreased cell proliferation and survival [11]. For example, 

Trastuzumab, a humanized monoclonal antibody that targets human epidermal growth 

factor 2 (HER2), in combination with common chemotherapy agents cisplatin plus 

capecitabine or 5-fluorouracil (5FU) is more effective than chemotherapy alone in 

increasing the median overall survival of gastric cancer patients [12]. Gefitinib, which is 

a small-molecule epidermal growth factor receptor-tyrosine kinase inhibitor, is used to 

treat patients with non-small cell lung cancer (NSCLC) [13]. 

1.3.1.1 Cisplatin  

Cisplatin (cis-diammine-dichloro-platinum) is a platinum-based chemotherapy 

drug that is commonly used to treat various forms of solid tumours including ovarian, 

testicular, and head and neck [14]. Cisplatin primarily targets DNA by forming DNA-
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protein and DNA-DNA interstrand and intrastrand crosslinks [15]. However, its cytotoxic 

function is mostly attributed to its ability to form interstrand adducts [16]. P53 plays a 

major role in cisplatin-induced apoptosis. Cisplatin is known to preferentially activate 

ATM- and RAD3-related protein kinase (ATR) that regulates the stability and 

transcriptional activity of P53 in cells [17]. Cisplatin-mediated induction and/or 

activation of P53 results in transactivation of several genes that are associated with cell 

cycle inhibition, DNA repair, and apoptosis including p21Waf1/Clip1, the DNA damage-

inducible gadd45a gene, and the pro-apoptotic gene bax [18]. The Gadd45a protein 

enhances nucleotide excision repair (NER) activity counteracting cisplatin function [19]. 

However, cisplatin-induced DNA damage can exceed cellular DNA repair capacity and 

induce apoptosis in the treated cells [14]. Translocation of the pro-apoptotic bax protein 

following cisplatin treatment triggers a cascade of events in the treated cells that finally 

results in apoptosis, including release of cytochrome c followed by the activation of 

caspase 9-caspase 3 pathway [20, 21]. 

1.3.1.2 Pemetrexed 

 Pemetrexed (Alimta) is an antifolate antimetabolite that targets multiple enzymes 

involved in both pyrimidine and purine synthesis. Those enzymes include TS, 

glycinamide ribonucleotide formyltransferase, dihydrofolate reductase, and 

aminoimidazole carboxamide ribonucleotide formyltransferase [22]. TS inhibition is the 

primary mechanism of action of pemetrexed, which results in decrease of available 

thymidine necessary for DNA synthesis [23, 24]. Pemetrexed enters the cells via the 

reduced folate carrier, the α-folate receptor, and proton-coupled folate transporter [25]. 

Inside the cell, pemetrexed has high affinity for folylpolyglutamate synthase that renders 

it to a polyglutamated form that is 60-fold more potent in TS inhibition [26]. Glutamation 

also increases the retention of pemetrexed inside the cell resulting in both extended 

exposure time and increased intracellular levels of it in treated cells [22]. Pemetrexed 

induces G1/S cell cycle arrest arising from its antifolate activity and induces P53-

independent cell death in cancer cells [22]. Combining pemetrexed with other cytotoxic 

agents has shown additive or synergistic effects both in vitro and in vivo. For example, 

combinations of pemetrexed with each of the platinum agents cisplatin, carboplatin, and 
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oxaliplatin results in either additive or greater than additive sensitivity of Calu-6 and 

H460 non-small cell lung carcinoma (NSCLC) xenografts to the treatment [27]. 

Moreover, pretreatment of H460 NSCLC xenografts with pemetrexed before fractionated 

radiation therapy delays tumour growth in mice as compared to radiation treatment alone. 

Therefore, combining pemetrexed to radiotherapy may increase the effectiveness of the 

latter [27]. 

1.3.1.3 5FUdR  

 5-Fluoro-2'-deoxyuridine (5FUdR) is a pyrimidine analog that inhibits TS, 

resulting in the depletion of intracellular thymidine monophosphate (TMP) [28]. This 

drug is approved for the treatment of a wide range of cancers including brain, colorectal, 

and liver [29-31]. 5FUdR is the deoxyribonucleoside derivative of 5FU [30]. It inhibits 

TS through 5-fluoro-2ʹ′-deoxyuridine-5ʹ′-monophosphate (FdUMP). 5FUdR enters cells 

via facilitated nucleoside transport systems [32]. Upon entry, 5FUdR is either 

phosphorylated to its active nucleotide FdUMP by thymidine kinase (TK), or cleaved to 

5FU by thymidine phosphorylase [30]. In the presence of adequate amounts of TS co-

substrate 5, 10-methylene-tetra hydrofolate (CH2-THF), FdUMP and TS form a stable 

ternary complex that strikingly increases the extent and duration of TS inhibition 

resulting in enhanced antitumour activity [33].  

1.3.1.4  Gemcitabine 

 Gemcitabine (2ʹ′, 2ʹ′-difluorodeoxycytidine) is a pyrimidine antimetabolite that is 

widely used to treat diverse malignancies, including pancreatic cancer, ovarian cancer, 

malignant mesothelioma, and NSCLC [34, 35]. Deoxycytidine kinase (dCK) 

phosphorylates gemcitabine to its cytotoxic nucleotides, gemcitabine diphosphate 

(dFdCDP) and triphosphate (dFdCTP) [36]. These phosphorylated nucleotides are 

retained inside cells [37]. Gemcitabine nucleotides inhibit deoxycytidine monophosphate 

(dCMP) deaminase and ribonucleotide reductase (RR). dCMP deaminase is responsible 

for production of deoxyuridine monophosphate (dUMP) from dCMP and RR is essential 

for the de novo synthesis of the deoxyribonucleotides required for DNA replication [35]. 
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Thus, gemcitabine inhibits cellular DNA synthesis and induces DNA fragmentation and 

apoptosis in cells [38]. 

1.3.2  Radiation 

 Invention of the linear accelerator in 1960 was a major breakthrough that made 

radiotherapy an invaluable treatment modality for local and regional tumours [7]. Today, 

radiation is used to treat approximately 50% of all cancer patients. Patient outcome after 

radiation varies among different cancers and different stages of the disease. For example, 

patients with early stage NSCLC have a much higher survival rate after radiotherapy 

compared to patients with late stage NSCLC [39]. Also, and despite all the advances in 

radiation techniques, radioresistant tumours are common and there exists an urgent need 

to increase tumour responsiveness and sensitivity to radiation treatment [39].  

1.3.3  Immunotherapy  

 The concept of cancer immunotherapy dates back to the late nineteenth century 

when William B. Coley tested cancer treatments involving administration of live and 

heat-killed bacteria and bacterial components systemically or directly into human 

tumours [40]. Cancer immunotherapy attempts to harness the power of the immune 

system to destroy cancer cells [41]. Cytokines such as interleukin-2 (IL-2) and interferon 

α (IFNα) are already being used in clinic to treat melanoma patients [41]. IL-2 is 

primarily involved in T cell proliferation and immune regulation [42]. IL-2 therapy is 

approved for hematological malignancies as well as renal cell carcinoma [41]. IFNα is a 

type I IFN with multiple functions including induction of apoptosis, as well as inhibition 

of proliferation and angiogenesis in treated cells [43].  

Monoclonal antibodies are currently also used in clinical practice. For example, 

trastuzumab (Herceptin) is a monoclonal antibody that targets Her2 on the cell surface 

and is often used to treat breast cancer. Rituximab is another antibody that targets the B 

cell surface marker CD20. Rituximab is therefore approved for the treatment of B cell 

lymphoma [44]. These antibodies can directly induce apoptosis [41], or inhibit the 

proliferation of the tumour cells by blocking growth factor receptors [45]. Furthermore, 

monoclonal antibodies can indirectly contribute to the destruction of the tumour by 
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recruiting cytotoxic cells of the immune system, such as macrophages, natural killer (NK) 

cells and T cells to the tumour microenvironment [46, 47].  

A recent advancement in the field of tumour immunotherapy is the reprograming of 

T lymphocytes to target specific antigens (Ags) on the surface of tumour cells by 

chimeric antigen receptors (CARs) [48]. CARs are genetically designed constructs 

consisting of an Ag-specific antibody molecule that is linked to a T cell signaling domain 

that can be accompanied by a co-stimulatory signal that significantly improves the 

activation of CAR-expressing T cells [49]. Since CAR-expressing T cells recognize their 

target cell in a major histocompatibility complex (MHC)-independent fashion, exploiting 

the antigen-specific properties of the monoclonal antibody, they are not affected by MHC 

downregulation at the surface of the tumour cells, a phenomenon common in most human 

cancers [49].  

Another common immunotherapy approach is to design vaccines that could either 

increase tumour immune recognition or enhance T cell antitumour function [50]. Tumour 

vaccines include whole tumour cell lysates [51], recombinant viral vectors that encoded 

tumour Ags [52], dendritic cells (DCs) loaded with tumour Ags [53], DNA vectors 

encoding tumour Ags [54], and synthetic peptides [55]. Most cancer vaccines have failed 

to extend the overall survival of patients [56]. However, two new immune-based 

treatments -- sipuleucel-T and ipilimumab have demonstrated the capacity to achieve this 

endpoint – and have now been approved by the US Food and Drug Administration (FDA) 

for the treatment of patients with metastatic prostate cancer and melanoma, respectively, 

and have focused recent attention to cancer immunotherapy [57]. Sipuleucel-T is a 

cellular immunotherapy that relies on the patient’s own antigen presenting cells (APCs) 

that have been activated in vitro with recombinant human prostatic acid phosphatase 

(PAP) and granulocyte-macrophage colony-stimulating factor (GM-CSF) [58]. PAP is 

expressed in ∼95% of prostate cancers and is primarily limited to the prostate. GM-CSF, 

on the other hand, is a major activator of immune cells, especially of the granulocyte and 

macrophage lineage, and acts as an immune adjuvant [59]. Patients who received 

sipuleucel-T showed a 4.1 month increase in their median overall survival compared to 

patients receiving placebo [58]. Ipilimumab, on the other hand, is an anti-cytotoxic T 

lymphocyte antigen 4 (CTLA-4)-blocking antibody approved by the FDA in 2011 for the 
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treatment of metastatic melanoma [60]. CTLA-4 is expressed on T cells and when bound 

to B7 ligands (CD80 and CD86) on APCs, induces inhibitory downstream T cell receptor 

signaling which inhibits T cell function [61]. CTLA-4 is also expressed on the surface of 

CD25+ FOXP3+ T regulatory cells (Tregs) and is important to their immune suppressive 

function [60]. Ipilimumab-mediated blocking of CTLA-4 increases T cell function and 

depletes Tregs [62]. Since ipilimumab’s mechanism of action is independent of the tumour 

type and is specific to T cells, this drug is also being investigated for treatment of prostate, 

lung, renal, and breast cancers [60]. 

1.3.4  Combination treatments of cancer 

 All three treatment modalities described above have the capacity, alone or in 

combination, to inhibit tumour growth partially or completely or to ablate tumours 

completely (temporarily or permanently). However, none is effective or curative in all 

cases, and its effectivness depends on histologically and molecularly defined tumour type 

and tissue origin. Because most human tumours develop resistance to individual 

therapeutic agents [63-65], combining multiple treatment methods (applied concurrently 

or sequentially) can at least partially reduce the risk of developing treatment resistance, 

and the development of new treatment combinations is an important and promising 

strategy to improve cancer therapy. Optimally-timed combination treatment of NSCLC 

cells with low dose erlotinib and paclitaxel eliminated tumour populations that were 

otherwise resistant to monotherapy with each drug at the same dose [66]. This is partially 

because combination therapy can avoid or delay the evolution of drug resistance in a 

given cancer cell. Moreover, applying high concentrations of a given drug to achieve fast 

tumour reduction rate is not necessarily the best strategy in the long term, as this could 

impose maximal selective pressure for evading mutations and acquiring resistance 

phenotypes in cancer cells. Therefore, using a combination of lower doses of multiple 

drugs can possibly delay the acquired resistance phenotype in a given tumour [66].  

Until recently, combining chemotherapy and immunotherapy was considered 

antagonistic [67] for two main reasons. First, chemotherapy reduces lymphocyte counts 

to an abnormally low level (lymphocytopenia), which results in an overall reduction in 

some forms of immune function due to the treatment imposed immunodeficiency [68]. 
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Second, it was widely accepted that most chemotherapies exert their effect by inducing 

apoptosis in cancer cells [69], an event that avoids immune stimulation and promotes 

immune quiescence and tolerance of tumour cell presence in host organisms [67]. This 

could negatively impact tumour immune surveillance (i.e., the ability of the immune 

system to recognize and eliminate neoplastic cells, thereby protecting the body from 

cancer by functioning as an extrinsic immune suppressor) [70]. However, recent 

advances in our understanding of the immune system make it clear that therapy-induced 

inhibition and death of immune cells, and the nature of therapy-induced tumour cell death, 

do not necessarily exclude combined chemo- and immunotherapy. In fact, chemotherapy 

can, under some circumstances, both induce tumour cell death and induce strong immune 

responses to cancer cells [67]. For example, chemotherapy-mediated lymphocytopenia 

induced memory CD8+ T cell proliferation and decreased Tregs in the patients with a 

positive clinical response to temozolomide (TMZ) [71]. Moreover, CD8+ T cell responses 

against specific melanoma Ags were enhanced in patients after chemotherapy, while their 

virus-specific T cell responses remained the same [71]. Thus, antitumour immune activity 

can be maintained or even increased in the face of cytotoxic antitumour chemotherapy 

[72]. Furthermore, low dose radiation enhances T cell tumour infiltration by normalizing 

tumour vasculature in melanoma xenografts and mouse pancreatic carcinoma [73]. 

1.4  Cancer  Treatment Resistance 

 Cancer cells within heterogeneous tumour cell populations harbour mutations that 

can provide fitness advantages to those subpopulations [74]. Under selective pressure 

imposed by growth conditions and/or administration of therapeutic agents in host 

organisms, resistant subpopulations can be selected for preferential survival and growth 

[74]. Some of the more common mechanisms mediating treatment resistance in cancer 

cells are described below. 

1.4.1  Resistance to Chemotherapy 

 The effectiveness of chemotherapy is often limited by undesirable, off-target 

toxicities to normal cells, and by the ability of cancer cells to develop resistance to 

therapies. There are multiple ways a cancer cell becomes resistant to a given 
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chemotherapy drug. Here I describe some of the more common mechanisms of resistance 

to chemotherapy. For example, some cancer cells express a drug efflux pump also known 

as p-glycoprotein (P-gp), which is ATP-dependent [10]. P-gp is widely expressed among 

human cancer cells and is coded by the MDR1 gene [10]. P-gp is capable of binding to a 

wide variety of hydrophobic drugs and then releasing them out of the cell and into the 

extracellular matrix. Multidrug resistance-associated protein-1 (MRP-1) is another drug 

efflux pump and a member of the ATP-binding cassette (ABC) transmembrane 

transporter superfamily that is composed of 9 proteins expressed by some cancer cells [75, 

76]. Other proteins of this superfamily are all related to MRP-1 based on gene sequence. 

These include, among others, MRP-4, MRP-5, MRP-6, MRP-7, MRP-8, and MRP-9. 

MRP-7, for instance, is a lipophilic anion transporter that confers resistance to some 

natural anticancer agents such as docetaxel, paclitaxel, vinblastine, and vincristine [77]. 

MRP-8 confers resistance to nucleoside-based analogs including 5FU and 5FUdR [78]. 

Another important ABC family member is breast cancer resistance protein (BCRP). Even 

though this protein is expressed by most normal tissues including breast, lung, placenta, 

small intestine, and liver [79], it was first isolated from a resistant breast cancer cell line, 

hence its name [80]. In normal tissues, BCRP is involved in toxin and xenobiotic efflux 

as a defensive mechanism [81]. BCRP is expressed in a wide range of hematopoietic and 

solid tumours and its expression is frequently correlated with poor patient outcome and 

chemotherapy-resistant disease [80]. In general, cancer cells expressing efflux pumps 

exhibit reduced sensitivity to multiple drugs [10]. Mutations that alter cell surface 

molecules, such as mutations in folate binding protein and/or reduced folate transporter, 

reduce their ability to bind to chemotherapeutic drugs and this can also confer resistance 

to drugs such as methotrexate [82].  

 Many other mechanisms of tumour cell drug resistance have been identified in 

addition to those involved in drug efflux or influx. First, overexpression of glutathione 

and glutathione s-transferases (GST) that are involved in thiol-mediated detoxification of 

anticancer drugs is also a known drug resistant mechanism in many cancer cells, 

especially against platinum-based drugs such as cisplatin [83, 84]. Second, chemotherapy 

drugs exert their effects by induction of apoptosis [69]. However, some cancer cells can 

become resistant to apoptosis mainly by downregulation or loss of pro-apoptotic 
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molecules or by expressing anti-apoptotic proteins [85]. For example, increased 

expression of the B cell lymphoma-2 (BCL-2) anti-apoptotic protein has been attributed 

to resistance to many chemotherapy drugs and ionizing radiation [86]. Another major 

resistance mechanism that is most relevant to this thesis is the ability of cancer cells to 

repair their DNA after chemotherapy-induced DNA damage. DNA repair mechanisms 

related to this thesis will be discussed in more detail later. In addition, most DNA repair 

mechanisms in cancer cells also play major roles in conferring resistance to 

chemotherapy drugs. For example, BER plays a vital role in tumour cell resistance to the 

alkylating agent TMZ. DNA lesions that are induced by TMZ are mostly N-methylated 

bases that are normally recognized by DNA glycosylase members involved in BER. 

Therefore, TMZ therapeutic efficiency depends on the specific activity of BER in 

targeted tumour cells [87].  

1.4.2  Resistance to Radiation 

 Radiation causes single and double strand breaks (SSBs and DSBs), damaged 

bases, and DNA abasic sites (i.e., sites where a base has been lost). Both normal and 

cancer cells can repair these forms of DNA damage by BER [88, 89]. Ionizing radiation 

enhances the activity of BER proteins at the G1 phase of the cell cycle. These proteins 

help to repair the damaged bases and inhibit radiation-induced cell killing [90]. BER 

proteins include human endonuclease III that removes damaged bases from DNA; DNA 

glycosylase that recognizes deoxyguanosine lesions; and apurinic/apyrimidinic 

endonuclease (APE1) that is involved in recognition and processing of abasic sites [90, 

91]. A key protein in the BER pathway that is mainly involved in radioresistance is poly 

ADP ribose polymerase-1 (PARP-1) [92]. Radiation-induced DNA damage increases the 

activity of PARP-1 in cancer cells. Therefore, blocking PARP-1 activity or BER in 

cancer cells by treating the cells with PARP inhibitors [93] or other drugs that can block 

BER such as methoxyamine (MX) [94] is a strategy that enhances the radiation treatment 

outcome [95]. Another DNA repair mechanism that is involved in radioresistance is HRR 

[96]. For example, overexpression of Rad51 (an HRR protein) is associated with 

radiation resistance in breast cancer type-2 susceptibility protein (BRCA2)-defective 

cancer cells [97]. 
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All the aforementioned DNA repair mechanisms that are involved in resistance to 

radiation were, in studies presented in this thesis, subjected to inhibition studies in order 

to sensitize cancer cells to various treatment methods [98] and are discussed in more 

detail below.  

1.4.3  Resistance to Immunotherapy 

 Cancer immunotherapy, like other cancer treatment strategies, can lead to 

emergence of resistant cancer cells that hinder treatment effectiveness [99]. There are 

multiple barriers that could undermine effective immunotherapy, and the likelihood of 

their development is based on the nature of the immunotherapeutic approach [41]. 

However, some of these barriers are more common; for example, the presence of Tregs in 

the tumour microenvironment and tumour draining lymph nodes (TDLNs) [100] can 

effectively suppress tumour-specific CD8+ T cells at TDLNs, thus suppressing the 

mounting antitumour response even after adoptive transfer of tumour-primed CD4+ T 

cells in mice [101]. Another common mechanism that contributes to the failure of cellular 

immunotherapy or tumour vaccination is the loss of MHC class I on the surface of cancer 

cells. CD8+ T cells recognize their targets by examining the MHC-peptide complex on 

cell surfaces; however, cancer cells have evolved to lose their MHC molecules as a 

common mechanism of immune evasion [101]. Fortunately, this phenomenon can be 

avoided by using CAR-expressing T cells for adoptive transfer as described earlier [73]. 

Tumour cells also develop abnormal and hyperpermeable vasculature that hinders T cell 

access to tumours. Furthermore, tumour release of vascular endothelial growth factor 

(VEGF) inhibits T cell migration towards tumours from the vasculature [73]. 

Normalization of tumour vasculature by anti-VGEF therapy can significantly increase the 

effectiveness of tumour immunotherapy [102].  

1.5  Indoleamine 2,3-dioxygenase 

The immunoregulatory molecule IDO is a 45 kDa hemoprotein that is essential for 

oxidative catabolism of tryptophan in the kynurenine pathway [103]. IDO catalyzes this 

step by the oxidative cleavage of the 2,3-double bond in the indole moiety of L-

tryptophan, resulting in the production of the first kynurenine pathway metabolite, N-
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formyl kynurenine (Figure 1.1) [104]. IDO has broad substrate specificity because of its 

ability to degrade indoleamine derivatives, including L- and D-tryptophan, serotonin, 

melatonin, and tryptanine [105]. IDO degradation of tryptophan in the kynurenine 

pathway forms a series of biologically active metabolites such as quinolinic acid (QA), 

kynurenic acid (KA), and 3-hydroxykynurenine [106]. QA acts as an agonist of N-

methyl-D-aspartate (NMDA) receptors, for glutamate. QA is also neurotoxic and induces 

death in neurons through apoptosis and necrosis [107]. KA is another metabolite of the 

kynurenine pathway and is an antagonist of NMDA and nicotinic acetylcholine receptors. 

Both QA and KA are assumed to be active at peripheral sites outside the nervous system 

because of the presence of NMDA receptors in the periphery [106]. In addition to the 

above, 3-hydroxykynurenine is another neurotoxic byproduct of the kynurenine pathway 

capable of generating free radicals [108]. QA produced from IDO catabolism of 

tryptophan can be converted to NAD+ in monocytic cells including macrophages and 

microglia. Therefore, IDO can provide a source of NAD+ to cells from tryptophan 

catabolism [109]. In mice, IDO protein can be naturally found in various organs 

including prostate, epididymis, uterus, colon, lung, spleen, and bladder [110]. In humans, 

IDO can also be found in different tissues including lung, placenta, and small intestine 

[111, 112]. However, IDO can be induced in most human cells, especially APCs by 

inflammatory cytokines such as interferon gamma (IFNγ), tumour necrosis factor (TNF)-

α and infections [113, 114]. IDO expression in cells is tightly regulated at the 

transcriptional and post-translational levels. IDO mRNA transcription is promoted by 

factors such as interferon regulatory factor (IRF)-8 and the transcription factor Forkhead 

box O3 (FOXO3) [115, 116]. DNAX-activation protein 12 (DAP12), on the other hand, 

suppresses IDO mRNA transcription in cells [116]. The regulatory factor suppressor of 

cytokine signaling 3 (SOCS3) binds to IDO protein and marks it for ubiquitinylation and 

degradation [117]. The main function of IDO is to regulate the immune system and 

suppress the inflammatory response of the immune cells that will be discussed below. 

1.5.1  IDO and the Immune System 

IDO promotes innate immunity during host-pathogen interactions, while it inhibits 

adaptive immunity through suppressing pro-inflammatory responses [103]. Most 
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intracellular pathogens such as Listeria monocytogens depend on host tryptophan for 

replication [118]. As part of its role in innate immunity, IDO can directly suppress 

pathogen replication by limiting the availability of tryptophan. IDO therefore plays a vital 

antimicrobial role in suppressing the infection of Toxoplasma gondii [119], Listeria 

monocytogens [118], and many other intracellular pathogens. However, IDO’s role in 

adaptive immunity is mainly to suppress lymphocytes [103]. It mainly modifies immune 

response by two means: first, by depleting tryptophan in the cellular environment that 

would otherwise trigger amino acid-sensing signal transduction pathways in immune 

cells. This depletion leads to an arrest of T cell proliferation [120]. Second, IDO produces 

kynurenine products that are toxic for T cells and this induces their death via apoptosis 

[103]. IDO’s rapid consumption of tryptophan from the local microenvironment triggers 

a regulatory signal in T cells by inhibiting or activating molecular stress response 

pathway mediators, such as the mammalian target of rapamycin (mTOR) and general 

control non-repressed (GCN)-2 kinase, respectively [103]. The GCN2 molecule responds 

to elevated levels of uncharged tRNA induced by tryptophan insufficiency [120]. GCN2 

phosphorylates eukaryotic initiation factor (eIF2α). Phosphorylation of eIF2α results in 

general inhibition of most mRNA translation in the cell, thus blocking protein synthesis 

and arresting cell growth [121]. GCN2 activation in CD8+ T cells leads to cell cycle 

arrest and anergy [120], but its role in CD4+ T cells is more complex. Activation of 

GCN2 in CD4+ T cells blocks the differentiation of T helper (TH) 17 cells [122], but 

promotes differentiation and enhances the function of Tregs. IDO, therefore, also appears 

to suppress activated T cells by increasing the number and enhancing the function of Tregs 

(Figure 1.1) [123, 124]. 

On the other hand, IDO-mediated production of kynurenine metabolites can 

directly induce apoptosis in lymphocytes [125] and appears to suppress the activated T 

cells in three major ways. First, kynurenine metabolites promote the differentiation of 

Tregs by activating aryl hydrocarbon receptor (AHR), a central player in T cell 

differentiation [126]. Second, kynurenine-mediated AHR activation can directly suppress 

tumour-infiltrating CD8+ T cells [127]. Third, kynurenine metabolites negatively impact 

the immunogenicity of DCs [128]. Moreover, IDO appears to have additional, non-

enzymatic functions, including a signaling role in transforming growth factor (TGF) β-
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induced tolerance in plasmacytoid DCs [129]. IDO was originally reported to prevent 

allogeneic fetal rejection in mice, which is consistent with its expression in the placenta 

[130]. It suppresses the alloresponse and attenuates allograft rejection [131, 132]. 

Furthermore, IDO expression by APCs prevents graft versus host disease (GVHD) [133].  
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Figure 1. 1. IDO function. IDO is primarily involved in the breakdown of tryptophan in 

the body. IDO also suppresses immune cells through its enzymatic and signaling 

functions. Tryptophan depletion and production of kynurenine metabolites directly 

induces anergy and apoptosis in T cells and NK cells. IDO also causes CD4+ T cells to 

reprogram to Tregs that further suppress CD8+ T cells. IDO signaling also induces a stable 

regulatory phenotype in plasmacytoid DCs that further suppresses T cells (Figure 

modified from [108]).  
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Figure 1. 2. IDO suppression of immune cells. IDO decreases the activity of cytotoxic 

T cells, NK cells, and mature DCs via tryptophan depletion, toxic tryptophan catabolites, 

and induction of Tregs, MDSCs, immature DCs, and TAMs. Treg = T regulatory cell; 

MDSC = myeloid-derived suppressor cell, TAM = tumour-associated macrophage, 

immature DC = immature dendritic cell, mature DC = mature dendritic cell, NK cell = 

natural killer cell, CD8+ T cell = cytotoxic CD8+ T cell, IDO = indoleamine 2,3-

dioxygenase (Figure modified from [134]). 
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1.5.2  IDO and Cancer 

 Most human tumours express IDO [135], which contributes to tumour-induced 

tolerance and suppression of the immune system (Figure 1.2 and Table 1.1). The tumour 

suppressor BAR adapter-encoding gene Bin 1 is commonly mutated in cancers [136]. Bin 

1 genetically controls IDO. Transient or stable downregulation of Bin 1 enhances the 

basal and IFNγ-induced activity of the IDO promoter in cancer cells and macrophages. 

Conversely, ectopic expression of Bin 1 cDNA reverses IDO promoter activity in the 

same type of cells [136]. IDO induces a tolerogenic state in the tumour microenvironment 

and tumour-draining lymph nodes [134]. Tumour-draining lymph nodes are sites vital for 

T cell activation. Therefore, IDO expression by APCs at these sites effectively suppresses 

naïve T cells before they can become fully activated. Furthermore, IDO-expressing APCs 

induce Tregs at tumour-draining lymph nodes, thus enhancing the tolerogenic environment 

against effector T cells [134].  

 In the majority of patient studies, IDO expression has been correlated with 

decreased overall survival and decreased progression-free survival of the patients. For 

example, in one study, IDO expression was evaluated in samples from 138 patients with 

hepatocellular carcinoma. Lower IDO expression was correlated with high overall 

survival in the studied cancer patients [137]. Moreover, IDO has been linked to increased 

metastasis in various human cancers including NSCLC, breast cancer, and colorectal 

cancer [138-140]. Colorectal cancer patients with high tumour IDO levels have a higher 

rate of hepatic metastasis than patients with low IDO levels [140]. IDO was also 

associated with distant metastases in patients with hepatocellular tumours [137]. 

Interestingly, high IDO expression was found in advanced stages of disease in patients 

with ovarian cancer, nasopharyngeal carcinoma, and endometrial cancer [141-143].  

 IDO is also important in developing resistance to immunotherapy. The anti-

CTLA-4 antibody ipilimumab, described earlier, is effective only in a subset of 

melanoma patients, suggesting that most melanoma cells are either intrinsically resistant 

or develop resistance to this novel immunotherapy drug. It has been suggested that IDO 

plays a major role in resistance to ipilimumab [144]. In fact, in two different mouse 

tumour models (B16 melanoma and 4T1 mammary carcinoma) the anti-tumour effects of 

ipilimumab were significantly greater in IDO knockout mice and wild type mice treated 
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with the IDO inhibitor 1-methyl tryptophan (1-MT) than controls [144]. Melanoma 

tumours overexpressing IDO were resistant to antibody blockage of CTLA-4. However, 

the IDO inhibitor 1-MT could effectively reverse this phenomenon in vivo. The 

protective role of IDO inhibition depended on the presence of both CD8+ T cells and 

IFNγ in the same system [144].  
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Table 1. 1. Many human tumours express IDO. Human tumour samples were analyzed 

for IDO protein levels (table modified from [135]). 

Tumour Type 
IDO protein 

(IDO+/total tumours assayed) 

Prostatic carcinomas 11/11 

Colorectal carcinomas 10/10 

Pancreatic carcinomas 10/10 

Cervical carcinomas 10/10 

Endometrial carcinomas 5/5 

Gastric carcinomas 9/10 

Glioblastomas 9/10 

NSCLC 9/11 

Bladder carcinomas 8/10 

Ovarian carcinomas 8/10 

Head and Neck carcinomas 7/11 

Esophageal carcinomas 7/10 

Mesotheliomas 6/10 

Renal cell carcinomas 5/10 

Melanoma 11/25 

Breast carcinomas 3/10 

Thyroid carcinomas 2/10 

Lymphomas 4/18 

Small-cell lung carcinomas 2/10 

Sarcomas 2/10 

Hepatocarcinmas 2/5 

Adrenal carcinomas 2/5 

Choriocarcinomas 1/5 

Cutaneous basocellular carcinomas 1/5 

Testicular seminomas 0/5 
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1.5.3  IDO Inhibitors 

 There is compelling evidence that IDO plays a major role in suppressing the 

immune system during cancer progression [145]. Because IDO has been linked to higher 

rates of metastasis and poor patient outcome, it is an attractive target for cancer treatment 

[146]. Thus, the search for IDO inhibitors has become a very active area of research, 

particularly since the seminal work of the Van den Eynde group in 2003 that showed IDO 

could confer immunoresistance in tumours [135]. The best-known IDO inhibitor at that 

time was 1-MT, discovered in 1991, which is a tryptophan derivative with an affinity in 

the micromolar range (Ki ∼ 34 µM) [147]. The first IDO inhibitor to enter a phase I 

clinical trial, in 2008, was the D-stereoisomer of 1-MT (D-1MT; NLG8189). 

Unfortunately, the L-stereoisomer of 1-MT (L-1MT) was shown later to be an IDO 

inhibitor while the D-1MT tested in the clinical trial is not [148, 149]. Regardless, D-

1MT is currently undergoing phase II clinical trial for treatment of prostate cancer and 

metastatic breast cancer [150]. D-1MT can also bind and inhibit IDO2, a putative 

paralogue of IDO1 (IDO), although the physiological relevance of IDO2 in cancer in not 

well understood [150]. Another breakthrough in developing novel IDO inhibitors took 

place in 2006, when the 3-dimensional structure of IDO complexed with 4-

phenylimidazole (PIM) and cyanide ion (CN-) was elucidated [104]. PIM was discovered 

earlier as a modestly potent IDO inhibitor, which bound to the active site of IDO and 

inhibited its enzymatic activity in a non-competitive manner [151]. The discovery of 

three-dimensional structures of IDO, complexed with PIM and CN-, provided vital 

information for the structure-based drug design of novel IDO inhibitors [104]. In fact, the 

discovery of most newer IDO inhibitors originated from detailed analysis of the structural 

interaction between IDO and PIM.  

 Three major companies have led in the discovery of IDO inhibitors in recent 

years: 1) Newlink Genetics, focused mainly on phenyl-imidazole-derived compounds. 

They produced a number of soluble IDO inhibitors with activities in the nanomolar range. 

None of these compounds has yet progressed to clinical trials, 2) The Ludwig Institute for 

Cancer Research (LICR) works mainly on PIM analogues such as phenyl-trizoles and a 

series of amino-hydroxyquinolines, which have also not yet progressed to clinical trials, 

and 3) Incyte Corp, which has discovered a number of active IDO inhibitors with activity 
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in the nanomolar range. Their main focus is on a series of hydroxyamidines including 

INCB24360 which is under phase II clinical testing [150]. INCB24360 effectiveness has 

been assessed in comparison to tamoxifen treatment in recurrent ovarian cancer patients 

[150]. Patients with myelodysplastic syndrome (MDS) were reported to have elevated 

tryptophan metabolites in their sera. Incyte Corp, therefore, is planning to assess whether 

INCB24360 is effective in MDS patients and whether it inhibits hematopoietic progenitor 

amplification in these patients [152].  

 There are certain challenges to discovering IDO inhibitors. First, IDO’s active site 

topology is resistant to a high degree of inhibition. This is because of the relatively small 

size of IDO, which hinders the binding of large inhibitor molecules [153]. Second, IDO 

inhibition kinetics are not completely understood. Some IDO inhibitors were reported to 

bind IDO in a competitive manner and others in a non-competitive way [154]. Some 

inhibitors have been shown to bind IDO based on a redox activity [155, 156]. Therefore, 

designing better drug candidates requires a better understanding of IDO inhibition 

kinetics. The third and major challenge in developing a promising IDO inhibitor is the 

ability to translate the results of IDO inhibitors from preclinical studies into clinical 

settings, which requires compounds with appropriate bioavailability and low toxicity 

profile [157]. The encouraging aspect of blocking IDO is the mild nature of unfavorable 

side effects [157]. Importantly, there is no sign of development of spontaneous 

autoimmunity in IDO knockout mice [157]. Furthermore, the side effects of D-1MT 

during phase I clinical trials were generally mild, including reports of easily managed 

hypophysitis [150].  

 In addition to small molecule inhibitors, antisense targeting of IDO mRNA has 

been investigated in a number of preclinical settings using small interfering RNA 

(siRNA) and short hairpin RNA (shRNA). For example, siRNA knockdown of IDO 

mRNA in B16F10 mouse melanoma cells in vitro inhibited the enzymatic function of 

IDO and thus prevented tryptophan catabolism [158]. B16F10 cells cocultured with CD4+ 

and CD8+ T cells in vitro induced apoptosis in both T cell subsets. However, siRNA 

downregulation of IDO significantly reduced apoptosis in T cells [158]. IDO 

downregulation in B16F10 melanoma cells, before tumour inoculation into mice, slowed 

tumour growth in vivo. Interestingly, siRNA knockdown of IDO was more protective 
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than 1-MT in inhibiting IDO function in cancer cells [158]. Intratumoural administration 

of IDO siRNA in established tumours significantly delayed growth and decreased tumour 

size. These results were attributed to the effect of IDO inhibition in reinstalling an 

antitumour immune response against melanoma in mice [158]. Skin delivery of IDO 

siRNA in tumour-bearing mice inhibited IDO mRNA in DCs and effectively delayed 

bladder tumour growth in syngeneic mice [159]. Animals treated with IDO siRNA had a 

significant increase in their survival rate compared to the control group. Interestingly, 

local IDO siRNA treatment was more effective than systemic administration of L-1MT in 

IDO inhibition. The therapeutic effect of IDO siRNA in this model was attributed to 

CD8+ T cells, since depletion of these cells abolished the protective effect of IDO siRNA 

[159]. In another study, IDO shRNA was shown to be effective in impeding tumour 

growth in three mouse models of liver cancer, including subcutaneous, orthotopic, and 

metastatic disease [160]. The cytotoxic function of CD8+ T cells and NK cells was 

improved following IDO shRNA skin delivery [160]. In addition, IDO shRNA treatment 

of tumour-bearing animals increased the serum mRNA levels of proinflammatory 

cytokines IL-12 and IFNγ (both important in anti-tumour immunity) and decreased IL-10 

mRNA levels that suppresses anti-tumour responses [160].  

1.5.4  IDO Inhibition to Improve Chemotherapy and Radiation 

In a mouse transgenic model of breast cancer in which tumours were induced by 

expression of the oncogene Neu under the control of the mouse mammary tumour virus 

(MMTV) promoter, IDO inhibition with 1-MT has been combined with paclitaxel, a 

chemotherapeutic agent commonly used to treat breast cancer [136]. The combination 

resulted in tumour regression in tumour-bearing animals [136]. This effect was greater 

than using 1-MT or paclitaxel alone. In addition, each agent was effective at a lower dose 

than its maximally tolerated dose. Analysis of tumour sections showed evidence of higher 

tumour cell death in the combination group. Strikingly, depletion of CD4+ T cells or the 

use of T cell-deficient athymic mice instead of immunocompetent mice abolished the 

effect of combined treatment, indicating that an immune-mediated effect was involved in 

blocking IDO in the context of paclitaxel treatment [136]. In the same study, the effect of 

combining 1-MT with other chemotherapy agents with broad mechanisms of action that 
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are used to treat breast cancer was examined. 1-MT improved the therapeutic effect of 

cisplatin, cyclophosphamide, and doxorubicin (Table 1.2). The authors of the study 

concluded that combining IDO inhibition with a diverse group of chemotherapeutic 

agents could effectively increase their therapeutic activity in the treatment of breast 

cancer [136].  

 Several clinical studies have suggested that high IDO levels during treatment 

could be related to a poor response to chemotherapy and/or radiotherapy and perhaps 

contribute to resistance to therapy. In a single arm phase II study in patients with stage III 

NSCLC, serum kynurenine/tryptophan levels were measured as a surrogate marker for 

IDO activity during treatment [161]. Patients were treated with induction gemcitabine 

and carboplatin and then received concurrent carboplatin, paclitaxel, and 74 Gray (Gy) 

thoracic radiation. Cancer patients showed high IDO activity compared to healthy 

controls. This high IDO activity after chemotherapy was associated with poor patient 

outcome. However, the power of this study was limited by the relatively low number of 

patients and therefore low statistical power [161]. In another study, IDO was positively 

associated with chemoresistance in a gene expression profiling study that aimed to 

identify molecules associated with resistance to paclitaxel-based chemotherapy in ovarian 

cancer cell lines and refractory surgical ovarian cancer specimens [162]. IDO was highly 

expressed in both paclitaxel-resistant cell lines and refractory ovarian tumours but was 

absent in paclitaxel-sensitive cell lines and tumours [162]. In a clinical study that 

analyzed NSCLC patient response to platinum-based chemotherapy in a small cohort of 

patients, IDO expression in monocytes and granulocytes was analyzed pre- and post- 

treatment. The patient population that benefited from the treatment showed lower IDO 

expression in blood monocytes post-treatment [163]. All the aforementioned studies 

provide a rationale for IDO inhibition in order to sensitize tumour cells to chemotherapy 

and radiation.  
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Table 1. 2. IDO inhibition increases the effectiveness of certain chemotherapeutic 

drugs in the presence of the immune system in a mouse model of breast cancer. 

Tumour-bearing MMTV-Neu mice were treated with or without the IDO inhibitor 1-MT 

in combination with the indicated chemotherapy agents. IDO inhibition potentiated the 

effect of cisplatin, cyclophosphamide, doxorubicin, and paclitaxel. (* p < 0.05) (Table 

adapted from [136]). 

Compound Class 
Mean Tumour 
Volume ±  SEM 

(+ 1-MT) 

Mean Tumour 
Volume ±  SEM 

( - 1-MT) 

Cisplatin Alkylating agent 0.77 ± 0.18 1.7 ± 0.33 

Cyclophosphamide Alkylating agent 0.81 ± 0.12 1.4 ± 0.18 

Doxorubicin 
Antineoplastic 

antibiotic agent 
0.79 ± 0.07 1.5 ± 0.25 

5FU Antimetabolite 1.2 ± 0.20 1.1 ± 0.25 

Methotrexate Antimetabolite 1.7 ± 0.28 1.7 ± 038 

Paclitaxel Mitotic inhibitor 0.68 ± 0.11 2.4 ± 0.43 

Vinblastine Mitotic inhibitor 1.3 ± 0.19 1.2 ± 0.18 

FTI 
Signal transduction 

inhibitor 
0.67 ± 0.11 1.0 ± 0.16 

Rapamycin 
Signal transduction 

inhibitor 
0.97 ± 0.07 0.99 ± 0.25 

Tetrathiomolybdate Antiangiogenic 1.9 ± 0.52 2.0 ± 0.42 

Vehicle  1.7 ± 0.17 3.0 ± 0.44 
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1.6  DNA Repair 

DNA is the source of all genetic information in cells and its integrity is vital to life 

[164]. DNA integrity, however, can be reduced by the action of damaging environmental 

agents (e.g., ultraviolet [UV] light) and/or reduced cellular capacity for high fidelity 

DNA replication. The resulting DNA damage, whether it be caused directly or indirectly 

from faulty DNA repair, if not corrected, will result in mutation and possible 

development of genetically-based diseases such as cancer [164]. Cells have evolved 

various DNA repair mechanisms that are responsible for detection and repair of DNA 

damage, independent of the damage source but related to the type of lesion [164]. At a 

minimum, mammalian cells utilize five forms of DNA repair to cope with various types 

of DNA lesions: BER, mismatch repair (MMR), NER, and double-strand break repair, 

which includes both HRR and non-homologous end joining (NHEJ) [165]. This section 

contains a brief description of DNA repair mechanisms relevant to this thesis and specific 

molecules relevant to those mechanisms, including PARP, TS, and NAD+.  

1.7  Base Excision Repair  

 The BER pathway repairs base lesions and SSBs induced by deaminating, 

alkylating, and oxidative agents [166]. BER starts with identification of damaged bases 

by a DNA glycosylase. The glycosylase catalyzes the cleavage of an N-glycosidic bond 

to remove the damaged base to create an apurinic or apyrmidinic site (AP site) in the 

DNA strand [167]. A DNA AP endonuclease or DNA AP lyase then cleaves the DNA 

backbone resulting in a SSD nick 5’ or 3’, respectively, to the AP site. The processing 

activity of the AP endonuclease converts the newly-formed nick into a single-nucleotide 

gap. DNA polymerase β (PolB) uses the correct nucleotide to fill in the gap; polymerase 

activity is facilitated by the 3’-hydroxyl and a 5’-phosphate groups of bases flanking the 

gap. A DNA ligase completes the final repair process by sealing the nick (Figure 1.3) 

[167]. 
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There are two forms of BER: short-patch and long-patch. The difference between 

them lies mainly in the enzymes that are involved in the repair process [167]. Cells 

choose to proceed with either repair process based on the relative ATP concentration 

adjacent to the AP site and the effectiveness of the AP lyase activity of PolB [168] . 

Short-patch BER occurs more frequently at high ATP concentrations, whereas long-patch 

BER is the preferred mechanism at low ATP levels [168]. The second determining factor 

for cells to choose between short and long patch repair is the presence or absence of the 

5’-terminal deoxyribophosphate (dRP) intermediate that is produced by the AP 

endonuclease. Efficient removal of the dRP by PolB lyase activity leads to short-patch 

BER. However, failure to successfully remove the dRP results in long-patch BER, 

forming nicks that are refractory to DNA ligase action [168-170]. X-ray repair cross-

complementing protein 1 (XRCC1) is among the first proteins to be recruited to the nick 

generated by the activity of either glycosylase and/or AP endonuclease. This scaffold 

protein modulates the ATP concentration near the nick and coordinates short-patch BER 

[171]. Moreover, it interacts with ligase III and PolB [171, 172]. Long-patch BER, on the 

other hand, requires proliferating cell nuclear antigen (PCNA). This abundant nuclear 

protein coordinates the long-patch BER process by interacting with DNA polymerases δ 

and ε (PolD and PloE) and flap structure-specific endonuclease 1 (FEN1). Resistance of 

dRP to cleavage by PolB results in a switch to PolD or PolE. These DNA polymerases 

add 2-8 extra nucleotides into the repair gap, which generates a flap structure. This 

structure is then removed by FEN1 in a PCNA-dependent manner. Eventually, DNA 

ligase I seals the nick and completes the repair process [170, 173].  
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Figure 1. 3. The BER pathway. DNA glycosylase identifies and removes damaged 

bases, leaving an AP site. The AP site is then cleaved by DNA AP endonuclease leaving 

a gap in the DNA backbone. PolB then fills the gap with the correct nucleotide, based on 

its complementarity with the bound DNA strand. Finally, DNA ligase seals the nick and 

completes the repair (Figure adapted from [167]). 
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1.7.1 Base Excision Repair and Cancer 

Cancer cells are highly dependent on DNA repair for survival. Many alkylating 

agents create DNA adducts. Cancer cells need to excise and repair these adducts before 

DNA replication can occur [174]. BER executes this vital function in cancer cells. BER, 

therefore, plays a crucial role in mediating resistance to many DNA-damaging cytotoxic 

drugs in cancer cells [174]. In fact, many BER proteins are overexpressed in human 

cancers and increased resistance to therapy has been attributed to their action [175]. For 

example, AP endonuclease levels are elevated in ovarian cancer, prostate cancer, and 

osteosarcoma [175]. However, all enzymes involved in BER are also essential for normal 

cells, making therapeutic targeting of BER enzymes problematic. For example, AP1 

knockout is an embryonic lethal event in mice and AP1 is essential for the viability of 

cultured cells [176]. On the other hand, knocking down PolB, the major DNA polymerase 

in BER, increases sensitivity to chemical mutagens and irradiation, but multiple DNA 

polymerases in human cells can compensate for the lack of BER PolB [175]. Therefore, 

targeting BER proteins efficiently and specifically could be challenging. 

1.7.2  Base Excision Repair Inhibition in Cancer Treatment 

BER can be effectively blocked by the alkoxyamine derivative MX, which 

specifically reacts with the aldehyde group in the sugar moiety formed in the DNA abasic 

site following the glycosylase removal of the damaged base. This forms a stable MX-

bound AP site that is refractory to the AP endonuclease lyase activity and PolB function 

necessary for completion of repair [177]. MX has been shown to be active in sensitizing 

various forms of human tumours to chemotherapy and radiation. For example, MX 

combined with the alkylating agent TMZ induced more DNA damage in T98G 

glioblastoma cells than treatment with TMZ alone. MX also sensitized TMZ-resistant 

T98G cells to the TMZ [178]. Moreover, MX combination treatment with pemetrexed 

resensitized pemetrexed-resistance lung cancer cell lines to this drug [179]. The 

sensitizing effect of MX in this study was attributed to the dual inactivation of uracil 

DNA glycosylase (UDG) and topoisomerase IIα (topo IIα) in cancer cells. MX stably 

bound to the AP site effectively trapped UDG and topo IIα at the AP site. Since tumour 

cells express higher levels of these enzymes than normal bone marrow (BM) cells, it was 
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suggested that MX potentiated the pemetrexed effect with minimal hematopoietic toxicity 

[179]. In another study, combination treatment with MX and TMZ sensitized platinum-

resistant ovarian cancer cells to TMZ cytotoxicity, increased DNA damage in tumour 

cells, and enhanced apoptosis [180]. A phase I study of combined MX and TMZ in 

patients with advanced solid tumours is currently under way [181]. In another phase I 

study that is currently recruiting patients, combined MX and fludarabine phosphate is 

being tested in patients with hematological malignancies [182]. A phase I study of 

combined MX and pemetrexed is already completed and several phase II studies in 

multiple indications including NSCLC are planned [179].  

1.8 Homologous Recombination Repair 

 HRR is a DNA repair process conserved across all species [183]. It serves as a 

high fidelity template-dependent repair mechanism for double-strand breaks (DSBs), 

DNA gaps, and DNA interstrand crosslinks (ICLs)(Figure 1.4). HRR is essential to 

preserve genomic integrity and avoid tumour progression. The first step in HRR starts 

with Rad51, a protein with DNA binding and ATPase properties, which positions the 

invading 3’ end on a DNA strand and forms a nucleoprotein filament. Rad51 recruitment 

to the DNA damage site is facilitated by BRCA1, which is also involved in processing 

DSBs. Another central protein to HRR is the tumour suppressor protein BRCA2 [179, 

184]. BRCA1 and BRCA2 mutations predispose women to ovarian and breast cancers 

[185]. BRCA2 is also involved in recruiting Rad51 to DSBs through the eight BRC 

repeats of BRCA2 protein that bind to Rad51. Upon binding to RAD51, BRCA2 binds to 

single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) through its DNA-

binding domain. Cells lacking BRCA2 are defective in HRR. In fact, BRCA2-deficient 

cells cannot recruit Rad51 to DSBs [186]. Therefore, targeting BRCA2 in cancer cells is 

of great interest as a therapeutic strategy [187]. SiRNA-mediated reduction of BRCA2 

decreased the proliferation rate of A549 adenocarcinoma cells, even in the absence of 

drug treatment, likely because of increased DNA damage due to genomic instability 

mediated by decreased DNA repair [187]. Moreover, the cytotoxic effect of the alkylating 

agents cisplatin and melphalan was significantly enhanced after siRNA downregulation 

of BRCA2 in A549 and Hela cells [187]. 
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Figure 1. 4. Homologous recombination repair of DSB. 1-2: Radiation induces DSBs. 

3: Efficient 5’ to 3’ resection of DSB ends allows recruitment of the single-stranded 

DNA-binding complex and Rad51. The complex begins HRR by positioning the invading 

3’ end on a DNA strand and forming a nucleoprotein filament. BRCA1 facilitates RAD51 

recruitment to the damaged site. BRCA1 association with histones near sites of DNA 

damage depends on histone γH2AX. 4: Strand invasion of 3’ ssDNA overhangs into a 

homologous sequence allows the completion of DNA synthesis at the invading end. This 

is followed by the second DSB end capture and formation of an intermediate. 5: DNA 

synthesis to the gap and ligation to form a crossover. DSBs = double strand breaks. 

ssDNA = single strand DNA (Figure adapted from [188]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

36 

1.9  PARPs and DNA Repair 

 PARP-1 is the most studied member of the PARP superfamily. PARP-1 is a 

molecular sensor of DNA breaks and plays a crucial role in organizing their repair 

(Figure 1.5). The catalytic activity of PARP-1 increases dramatically (over 500-fold) on 

binding to DNA breaks [189]. It catalyzes the covalent transfer of ADP-ribose units from 

the NAD+ substrate to the γ-carboxyl group of glutamic acid residues on a variety of 

acceptor proteins, a process called heteromodification [189]. These acceptor proteins are 

normally associated with DNA regulation and modification. PARP-1 can also poly-ADP-

ribosylate itself (automodification). Through poly-ADP-ribosylation of its partner 

proteins, PARP-1 regulates chromatin structure and DNA metabolism [189]. PARP-1 

partner proteins include high mobility group (HMG) proteins, histones, DNA helicases, 

topoisomerases I and II, BER and single-strand break repair (SSBR) factors, and different 

transcription factors. PARP-1 is important in genomic integrity [190-192] and the 

induction of cell death in injured tissues [193]. PARP-2, the second member of the PARP 

family, is also activated by DNA breaks [194]. PARP-2 is required for efficient repair of 

SSBs in DNA and for genomic integrity [195, 196]. Although there are other PARP 

family members, they are less important in DNA repair. Both PARP-1 and PARP-2 

regulate multiple DNA repair mechanisms in cells. Therefore, they are vital for the 

survival of cancer cells, particularly those affected by chemotherapy and radiation [197]. 

Some of the interactions between PARP molecules and DNA repair mechanisms that are 

relevant to this thesis are described next.  
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Figure 1. 5. PARP function during DNA damage and repair. PARP proteins use 

NAD+ molecules as substrates for mono- and/or poly-ADP ribosylation of acceptor 

proteins such as XRCC1. PARP function is crucial for the recruitment of acceptor 

proteins to the site of DNA damage. PARP = poly(adenosine diphosphate-ribose) 

polymerase. NAD+ = nicotinamide adenine dinucleotide. NAM = nicotinamide (Figure 

adapted from [198]). 
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1.9.1  PARP-1 and XRCC1 

 Poly-ADP-ribosylated PARP-1 preferentially interacts with XRCC1, the 

BER/SSBR scaffold protein [199]. In vivo, in the context of locally induced SSBs or 

DSBs, recruitment of XRCC1 to the damaged area of DNA is strictly dependent on poly-

ADP-ribosylation [200]. Chemical inhibition of polymer of ADP-ribose (PAR) formation 

abolishes XRCC1 recruitment to the damaged site [200], consistent with observations 

made in irradiated PARP-1-/- cells [189]. Inhibition of XRCC1 recruitment to the 

damaged area of DNA subsequently affects DNA repair processes such as BER and 

SSBR, because XRCC1 mediates DNA repair by stimulating DNA repair enzymes [201]. 

In response to base damage, PARP-1 and XRCC1 also interact with the chromosome-

organizing complex condensin I to allow efficient BER through modifying the local 

chromatin and organizing the structure of DNA [202].  

1.9.2  PARP-2 and XRCC1 

 PARP-2 also interacts with XRCC1 and other BER/SSBR proteins including 

DNA ligase III and DNA polymerase β [196]. Cells lacking PARP-2 have enhanced 

sensitivity to genotoxic agents and have delayed SSB rejoining [190, 196]. However, 

unlike PARP-1, XRCC1 recruitment to the site of DNA damage and recognition of SSBs 

does not require PARP-2, suggesting that PARP-2 functions at later stages of DNA repair 

[189].  

1.9.3  PARP-1 and Homologous Recombination Repair 

 A direct role for PARP-1 in DSB repair has not yet been demonstrated. PARP-1 

appears not to be required for HRR-mediated DNA DSB repair [203]. Indeed, Rad51 foci 

are still generated in the absence of PARP-1. More importantly, DSB repair is functional 

in PARP-1 inhibited cells [203]. Furthermore, PARP-1 does not colocalize to RAD51 

foci [204]. However, inhibition of PARP-1 results in increased HRR, suggesting an 

important role for PARP-1 in genomic instability [203]. This provides further rationale 

for blocking HRR in the context of PARP-1 inhibition in cancer cells, which could 

overwhelm the DNA repair machinery of cancer cells and induce apoptosis.  
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1.9.4  Inhibiting PARP in Cancer Treatment 

 PARP-1 is overexpressed in many human cancers and has been linked to poor 

prognosis [205]. Through the BER pathway, PARP plays a vital role in the repair of the 

SSBs, and blocking PARP leads to DSBs in DNA. Tumour cells with impaired or low 

level PARP activity depend heavily on HRR to survive. Thus, tumours with mutated 

BRCA1/2 genes (important in HRR) have elevated sensitivity to PARP inhibitors [206, 

207]. A randomized, phase II clinical study in high grade serous ovarian cancer patients 

with HRR deficiency showed that blocking PARP increased progression-free survival 

compared to treatment with placebo [208]. Olaparib is a potent oral PARP inhibitor [209, 

210]. Olaparib has antitumour activity at non-toxic doses in phase I/II monotherapy 

studies in ovarian cancer patients with BRCA1/2 mutations [211, 212]. PARP inhibition 

enhanced the effect of DNA-damaging cytotoxic drugs such as cisplatin and 

cyclophosphamide, presumably due to inhibition of BER [213]. This effect could also be 

observed in human tumour cells with PTEN deficiency: PTEN plays a role in the 

expression of Rad51 and, therefore, PTEN-deficient cells lack HRR [214].  

1.10  Nicotinamide Adenine Dinucleotide  

 NAD+ plays a vital role in many biological and biochemical functions in cells. 

NAD+ biosynthesis proceeds through both de novo and salvage pathways. De novo 

biosynthesis of NAD+ is linked to IDO [215]. NAD+ is also important for DNA repair 

and contributes to cancer cell survival and drug resistance [215]. NAD+ biosynthesis and 

function in DNA repair are described below.  

1.10.1  De Novo NAD+ Biosynthesis 

 Cells depend highly on NAD+ for many biological processes [215]. In most 

eukaryotic cells, tryptophan is the NAD+ precursor in the de novo pathway, where 

tryptophan is converted to QA via kynurenine (Figure 1.6). The tryptophan-catabolizing 

enzymes IDO and tryptophan 2,3-dioxygenase (TDO) catalyze the first step in NAD+ 

production in all eukaryotic cells. IDO is expressed in most tissues, whereas TDO is 

primarily a liver enzyme [215]. The first step in the kynurenine pathway is oxidation of 

tryptophan to N-formylkynurenine by IDO or TDO (Figure 1.6.) [216]. Kynurenine 
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formidase (KFase) then removes the formyl group by catalyzing N-formylkynurenine 

hydrolysis to produce kynurenine [217]. The hydroxylase enzyme 3-monooxygenase 

(KMO) then hydroxylases kynurenine to generte 3-hydroxykynurenine [218]. In the next 

step, kynureninase cleaves the amino acid side chain of 3-hydroxyhynurenine to form 3-

hydroxyanthranilate. In the last step of kynurenine pathway, QA is generated by complex 

oxidative rearrangement of 3-hydroxyanthranilate by 3-hydroxyanthranilate-3,4-

dioxygenase (HAD) [219-221]. QA is the NAD+ building block through the de novo 

pathway. QA phosphoribosyltransferase (QAPRT) uses QA to produce nicotinic acid 

mononucleotide (NAMN), which is subsequently converted to NA adenine dinucleotide 

(NAAD). Finally, NAD synthase (NADS) converts NAAD to NAD+ (Figure 1.6) [222].  
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Figure 1. 6. De novo NAD+ production. In the first step of the kynurenine pathway, 

IDO or TDO catabolize tryptophan to generate N-formylkynurenine. Kynurenine 

formidase (KFase) then produces kynurenine from N-formylkynurenine. In the next step, 

hydroxylase enzyme 3-monooxygenase (KMO) hydroxylyses kynurenine to make 3-

hydroxykynurenine. Kynureninase then forms 3-hydroxyanthranilate from 3-

hydroxykynurenine. In the last step of the kynurenine pathway, oxidative rearrangement 

of 3-hydroxyanthranilate by 3-hydroxyanthranilate-3,4-dioxygenase (HAD) yields 

quinolinic acid (QA), which is then converted into nicotinic acid mononucleotide 

(NAMN) by QA phosphoribosyltransferase (QAPRT). Next, NAM mononucleotide 

adenylyltransferase (NMNAT) produces NAAD from NAMN. Finally, NAD synthase 

uses NAAD to produce NAD+ as the final product of this pathway (Figure adapted from 

[198]).  
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1.10.2  Salvage Pathway of NAD+ Biosynthesis 

 The building blocks of NAD+ in the salvage pathway are nicotinamide (NAM), 

nicotinic acid (NA), and nicotinamide riboside (NR) [223, 224]. NAM and NA are used 

by two different phosphoribosyltransferases for production of NAM mononucleotides 

(NMN) and NA mononucleotides (NAMN), respectively. These molecules are used in 

two distinct salvage pathways to produce NAD+ [215]. NMN adenylyltransferase 

subsequently converts NMN into NAD+. NAMN, on the other hand, is converted to 

NAAD by NMN adenylyltransferase (NMNAT) and finally NAD+ is produced from 

NAAD by NAD synthase [222]. Finally, in a third salvage pathway, NR can be used as a 

NAD+ precursor. NR kinase (NRK) phosphorylates NR to make NMN, which can be 

then directly converted to NAD+ [215].  

1.11  NAD+ and DNA Repair 

NAD+ is the substrate for mono- and poly-ADP-ribosylation in cells [189]. In this 

reaction, breakage of the glycosidic bond between NAM and ribose consumes parent 

NAD+ and donates ADP-ribose to an acceptor molecule. As described above, poly-ADP 

ribosylation is essential for DNA repair and genomic stability in cells [215]. This 

phenomenon was first reported by Chambon et al., who described how liver nuclear 

extracts synthesized poly-ADP-ribose upon addition of NAD+ [225]. This finding led to 

the understanding of how ADP-ribose is linked to an amino acid acceptor and not 

transferred to an acetyl group, which takes place with most sirtuins [226]. In cells, PARP 

enzymes are responsible for building ADP-ribosyl groups into polymers from NAD+ 

[189]. The PARP family of proteins may have as many as 17 members and is the most 

abundant of the ADP-ribosyl transferases. All these enzymes share a similar active site in 

their structures [227]. PARP-1 is the most studied member of PARP family and is 

responsible for most PARP activity in cells [198]. As previously described, PARP-1 is a 

ubiquitous nuclear protein that responds to DNA damage. Moreover, DNA damage 

stimulates NAD+ biosynthesis because of the need to cleave more NAD+ for poly-ADP-

ribosylation by PARPs [228]. In fact, NAD+ availability has been shown to affect the 

length of poly-ADP-ribosyl polymer synthesis by PARP-1 [228]. In addition, DNA repair 

occurs faster in the presence of higher NAD+ levels or in cells with active NAD+ 
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biosynthesis [228]. Some studies suggest that PARP activation might not depend on 

NAD+, due to the low Km of PARP-NAD+ association (20-80 µM) [198]. Furthermore, 

PARP binding to DNA breaks via its DNA-binding domain seems to regulate PARP 

catalytic activity [229]. However, despite possible limitations on the role of NAD+ on 

PARP activity, PARP function has an important impact on NAD+ metabolism. PARP 

activity is the main mediator of NAD+ catabolism in cells, and high PARP activity 

reduces intracellular NAD+ [230, 231]. Since cells depend highly on NAD+ for survival, 

PARP activity induces cells to produce NAD+ through de novo and/or salvage pathways 

[198, 232]. Treatment of cells with genotoxic agents that damage DNA leads to sustained 

PARP activity in a short period of time and decreases NAD+ by 10-20%. This can be 

detrimental to cells since NAD+ depletion decreases ATP production [230, 231, 233]. It is 

conceivable that cancer cells possess increased NAD+ production to overcome constant 

depletion of NAD+ consumed in the course of PARP-mediated DNA repair necessitated 

by genomic instability and concomitant accumulation of DNA damage [234, 235]. 

Interestingly, NMPRTase, a key enzyme in the NAD+ salvage pathway, is upregulated in 

human colorectal cancers. This suggests that human tumours increase their production of 

NAD+ as a survival mechanism [236, 237].  

1.12  NAD+ Inhibition as a Strategy for Cancer Treatment 

 As mentioned above, tumours depend highly on NAD+ and possess high NAD+ 

turnover due to high PARP activity [189, 227, 235, 238, 239]. Therefore, blocking NAD+ 

production is an attractive approach to sensitize cancer cells to PARP-mediated depletion 

of NAD+ and induction of apoptosis [240]. The NAD+ precursors NM and NA in most 

human tissues are obtained from the diet. Tryptophan, on the other hand, is not a major 

source of tissue NAD+ in humans [241]. These data provide a rationale for targeting the 

NAD+ salvage pathway in cancer cells. FK866 is an effective small-molecule inhibitor of 

that pathway. It non-competitively blocks NMPRTase and consequently decreases 

cellular levels of NAD+, and induces apoptosis in cancer cells with little side effects on 

healthy cells because of their lower rate of catabolic depletion of NAD+ by PARP [242]. 

FK866 administered in vitro begins to reduce intracellular NAD+ by ∼50% in HepG2 

liver carcinoma cells as early as 8 hours after addition [242]. As mentioned above, NAD+ 
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is a necessary coenzyme for ATP production and blocking NAD+ production by FK866 

treatment drops ATP production in HepG2 cells after 3 days of drug treatment [242]. 

This is important, since ATP enables cells to undergo apoptosis which requires sufficient 

energy for nuclear condensation and subsequent DNA degradation and 

phosphatidylserine transfer to the cell surface to facilitate phagocytic removal of dead 

cell particles [242, 243]. FK866 selectively blocks NAD+ synthesis by blocking the NAM 

pathway of NAD production. However, a high concentration of NAM (10 mM) is able to 

reverse the inhibitory effect of FK866 in HepG2 cells. Moreover, 1mM NA also 

antagonizes the antiproliferative activity of FK866. Thus, increased amounts of NAD+ 

precursors could antagonize FK866 function [242]. 

1.13 Thymidylate Synthase  

 BER induces resistance to pemetrexed, a thymidylate synthase (TS)-targeting 

drug [179]. TS is a key rate-limiting enzyme in DNA synthesis and is responsible for de 

novo synthesis of deoxythymidine-5’-monophosphate (dTMP) through methylation of 

dUMP by a methyl donor [244]. Since DNA replication and repair is largely dependent 

on the dTMP pool, cell proliferation depends on TS [245]. Intriguingly, most human 

tumours have elevated levels of TS mRNA and protein. Ectopic expression of TS in 

normal cells can lead to a variety of malignant phenotypes in cells including: anchorage 

independent growth, hyperplasia, foci formation, and tumour formation in 

immunodeficient mice [246, 247]. 

1.13.1  TS Inhibition in Cancer 

 TS has been a target in cancer treatment since the late 1950s [248]. The TS 

inhibitor 5FU remains the drug of choice for colorectal cancer patients in both adjuvant 

and palliative care since its initial application in the 1950s [249]. In recent years a 

combination of 5FU with other chemotherapeutic anticancer drugs and biological agents, 

including bevacizumab and cetuximab, have successfully increased the response of 

patients with metastatic colorectal cancer to treatment [249]. TS-targeting drugs have 

anti-tumour activity against other types of cancers including NSCLC, and the TS-

targeting drug pemetrexed, in combination with cisplatin, is now administered in the first 
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line to treat advanced non-squamous NSCLC [250]. A common mechanism of resistance 

to TS-targeting drugs is through increased TS mRNA translation after binding of TS 

inhibitors to TS protein both in vitro and in patients [251, 252]. The underlying 

mechanism of this phenomenon is the ability of TS protein to bind to its own mRNA at 

two different sequences to repress translation [253]. However, binding of TS-targeting 

drugs to TS protein reduces TS interaction with TS mRNA. This leads to decreased TS 

protein-mediated translational repression, increased TS mRNA translation, increased 

amounts of TS protein and, ultimately, resistance to TS protein-targeting drugs due to 

target overproduction [245]. To overcome this common problem, antisense targeting of 

TS mRNA in conjunction with TS-inhibitors has been shown to sensitize a variety of 

human tumour cell lines to TS-targeting drugs including raltitrexed, 5FU, and 5FUdR 

[254]. Moreover, concurrent targeting of TS mRNA and BRCA2 or TK mRNA with 

antisense oligodeoxynucleotides (ODNs) or siRNA sensitizes cancer cells to a number of 

chemotherapy drugs in vitro [187, 255].  

1.14  Targeting mRNA with RNA Interference 

 Silencing RNA through RNA interference (RNAi) is a post-transcriptional 

process that results in sequence-specific gene silencing. Double-stranded RNA (dsRNA) 

molecules are first introduced into target cells. Dicer, an RNase III family member, then 

cleaves the dsRNA molecules into 19-23 nucleotide fragments (siRNAs) that contain a 5’ 

phosphorylated end and an unphosphorylated 3’ end with two unpaired nucleotide 

overhangs. The unwindase activity of Argonaute (Ago)-2 unwinds the siRNA duplex into 

two single strands: the guide and passenger strands. The guide strand is incorporated into 

the RNA-induced silencing complex (RISC) and the passenger strand is degraded. The 

RISC complex then finds endogenous RNA complementary to the guide strand and 

cleaves the target RNA through the separate endonuclease activity of Ago-2 [256].  

 RNAi is a powerful tool to regulate gene expression. Hence, it is emerging as a 

form of treatment for many human diseases including cancer [257]. Antisense molecules 

combined with conventional treatments can be used to induce synthetic or 

complementary lethality in human cancers [187]. Preclinical studies have revealed the 

effectiveness of RNAi in silencing cancer-related genes [258]. RNAi targeting of many 
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RNAs regulating critical characteristics of tumour cells in vivo (including tumour growth, 

metastasis, chemoresistance, and angiogenesis) has resulted in favorable outcomes [258]. 
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Chapter 2 

2  Thesis Hypotheses: 

1- IDO confers resistance to the chemotherapeutic anticancer drugs cisplatin, 5FUdR, 

pemetrexed, gemcitabine, olaparib, methoxyamine, and FK866 and γ radiation in cancer 

cells. 

2- IDO downregulation sensitizes cancer cells to the chemotherapeutic anticancer drugs 

cisplatin, 5FUdR, pemetrexed, gemcitabine, olaparib, methoxyamine, and FK866 and γ 

radiation. 

2.1  Thesis Objectives 

A) To reduce IDO mRNA levels using an antisense shRNA expression vector in human 

lung adenocarcinoma A549 cells, human cervical adenocarcinoma HeLa cells, and 

human lung adenocarcinoma H441 cells, in order to generate clonal human tumour cell 

populations with: a) cytokine-inducible IDO (A549 and HeLa), b) cytokine-inducible 

IDO downregulated by antisense IDO shRNA (A549 and HeLa), and c) basal IDO 

expression downregulated by antisense IDO shRNA (H441).  

 

B) To assess the effect of IDO downregulation on human tumour cell sensitivity to the 

chemotherapeutic drugs cisplatin, olaparib, 5FUdR, pemetrexed, gemcitabine, 

methoxyamine, and FK866; or ionizing radiation; in the clonal human tumour cell 

populations. 

 

C) To assess the effect of combined downregulation of IDO and TS on human tumour 

cell sensitivity to chemotherapeutic drugs 5FUdR and pemetrexed. 

 

D) To assess the effect of combined downregulation of IDO and BRCA2 on human 

tumour cell sensitivity to chemotherapeutic drugs olaparib and cisplatin. 

 

E) To assess the effect of IDO downregulation on human tumour cell sensitivity to 

combined treatments of pemetrexed and methoxyamine.  
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F) To assess the effect of IDO downregulation on human tumour cell sensitivity to 

combined treatments of γ radiation and olaparib.  

2.2  Thesis Overview 

The immune regulatory molecule IDO plays an important and still largely 

unexplored immune-independent role in the tumour cell response to some common forms 

of cancer treatment including chemotherapy (cisplatin, olaparib, 5FUdR, pemetrexed, 

gemcitabine, methoxyamine, and FK866) and therapeutic ionizing γ radiation. The 

importance of IDO in immune evasion and metastasis of cancer cells is well established 

[135]. Moreover, targeting IDO with 1-MT improves the effectiveness of some 

chemotherapy drugs in the context of an intact immune system in mouse models [136]. 

Here, for the first time, I show the importance of targeting IDO in human cancer cell 

resistance to the chemotherapy drugs cisplatin, olaparib, pemetrexed, gemcitabine, 

methoxyamine, and FK866 and γ radiation in vitro and in the absence of immune cells. 

 Conventional IDO inhibitors target IDO’s enzymatic function and not its 

signaling function. The approach I have employed to target IDO has been to use RNAi: a 

strategy to block IDO expression prior to protein synthesis (i.e., by reducing IDO mRNA 

levels) that has certain advantages over conventional inhibition of the enzymatic function 

of IDO protein. For example, targeting IDO mRNA will, by reducing the amount of IDO 

protein, reduce both its well-described enzymatic function (tryptophan degradation) and 

putative, but poorly explored signaling and other function(s). 

To assay these, the first step was to stably transfect human adenocarcinoma A549 

and HeLa cells with vectors directing expression of anti-IDO shRNA (capable of 

mediating degradation of IDO mRNA) or scrambled shRNA (scr shRNA, incapable of 

downregulating any known human RNA sequences). Next, and because A549 and HeLa 

cells express IDO in vitro only after cytokine induction [259, 260], 44 and 6 stably 

transfected A549 and HeLa clones, respectively, were treated with IFNγ to determine 

whether anti-IDO shRNA incorporation altered IDO mRNA and/or protein levels 

compared to control, non-targeting, scrambled shRNA (scr-shRNA) incorporation. 

Because IDO expression is causally associated with reduced proliferation [145], the 
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functionality of IFNγ-induced IDO was determined by assessing the proliferation rate of 

cells after IFNγ induction of IDO in cells harbouring: a) anti-IDO shRNA or, b) scr 

shRNA). The prediction was that IFNγ treatment would reduce proliferation more 

effectively in cells with scr shRNA (and unimpeded induction of IDO) than in cells with 

anti-IDO shRNA (and specific reduction in capacity to synthesize IDO). Moreover, 

differences in proliferation associated with changes in IDO level (and not IFNγ 

treatment) would be evidence that the critical factor was IDO and not other effects of 

IFNγ treatment. We also determined whether IDO expression affected cell cycle 

progression in A549 cells. We found that IDO induced cell cycle arrest at G1, and that 

anti-IDO shRNA abolished this effect in A549 cells. 

 Since IDO is responsible for de novo synthesis of NAD+ as a product of 

enzymatic degradation of tryptophan in mammalian cells, the level of NAD+ levels in 

A549 cells expressing high levels of IDO after IFNγ induction (scr shRNA-transfected 

cells) and those with reduced IDO expression (anti-IDO shRNA-transfected cells) was 

assessed. On the basis of evidence presented in the Results section, we concluded that 

anti-IDO shRNA reduced NAD+ levels in A549 cells. 

 Because NAD+ is required for PARP activity, we assessed the effect of antisense-

mediated knockdown of IDO on the sensitivity of A549 and HeLa cells to the PARP 

inhibitor olaparib. IDO-producing A549 human tumour cells exhibited elevated 

resistance to olaparib while anti-IDO shRNA ablated that resistance in that cell line. 

However, IDO-producing HeLa cells did not show the same phenomenon.  

 PARP activity is essential for some DNA repair pathways including BER. In light 

of results revealing the involvement of IDO in mediating resistance to olaparib in A549 

cells, we assessed the effect of IDO upregulation and antisense-mediated IDO reduction 

on the capacity of the BER inhibitor FK866 to reduce A549 cell proliferation. IDO 

conferred resistance to FK866, an effect that was abolished by anti-IDO shRNA in A549 

cells. Overall, IDO expression mediated resistance to PARP inhibition by olaparib and 

BER inhibition by FK866, both important processes in repair of DNA damage to tumour 

cells induced by chemotherapy or radiation. 

 To expand observations beyond chemotherapy, the effect of IDO upregulation 

and downregulation on A549 and HeLa cell sensitivity to γ radiation was assessed. IDO 
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conferred resistance to γ radiation in IDO-expressing cells and anti-IDO shRNA reversed 

that resistance. Since γ radiation induces double strand breaks in DNA, we examined the 

effect of IDO on sensitivity to cisplatin (an alkylating agent that causes DNA DSBs). 

IDO downregulation sensitized cancer cells to cisplatin. Moreover, IDO conferred 

resistance to cisplatin similar to γ radiation. Because olaparib has been reported to 

sensitize human tumour cells to ionizing radiation [261], the capacity of IDO 

upregulation or downregulation to alter sensitivity to combined treatment with γ radiation 

and olaparib was examined. As described below (Results), IDO induced resistance to the 

combined treatment in A549 cells and IDO downregulation decreased this phenomenon.  

 Since BER is involved in resistance to the TS-targeting drug pemetrexed, and 

IDO conferred resistance to BER inhibition in cancer cells, we assessed whether 

upregulation or downregulation of IDO prior to monotherapy or combined treatment with 

pemetrexed and the BER inhibitor methoxyamine affected cancer cells sensitivity to 

these drugs. IDO increased cell resistance to both monotherapy and combined treatment 

with the two drugs. IDO downregulation reduced this phenomenon. 

 IDO downregulation sensitized cancer cells to monotherapy with the TS-targeting 

drug pemetrexed or gemcitabine, but not to another TS-targeting drug 5FUdR. On the 

other hand, concurrent reduction of IDO and TS using antisense shRNA and siRNA, 

respectively, sensitized A549 cells to both drugs. These data implicate IDO as a mediator 

of resistance to TS-targeting drugs in general, and particularly in the context of antisense-

reduced TS. 

 Lastly, we examined the effect of concurrent antisense-mediated reduction of IDO 

and BRCA2 on A549 cell sensitivity to either olaparib or cisplatin. Concurrent BRCA2 

and IDO downregulation sensitized cancer cells to each of these drugs to a greater degree 

than expected based on the sensitizing effect of knockdown of either target alone (i.e., 

more than additive). 

 In an additional series of experiments, human H441 epithelial adenocarcinoma-

derived cells, which naturally express IDO without the need for cytokine induction [262], 

were assessed for sensitivity to cisplatin. They were stably transfected with anti-IDO 

shRNA or control scr-shRNA. IDO mRNA levels were measured in clonal populations 

and cells with low IDO levels were compared to populations with high IDO levels with 
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respect to cisplatin sensitivity, and compared with data obtained after IFNγ-induced IDO 

expression in human A549 lung tumour-derived and human HeLa cervical tumour-

derived cells with respect to drug sensitivity. Similar to A549 and HeLa cells, IDO 

downregulation sensitized H441 cells to cisplatin. 
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Chapter 3 

3 Materials and Methods 

3.1  Cell Culture 

Human lung adenocarcinoma A549 cells, human cervical adenocarcinoma HeLa 

cells, and human lung papillary adenocarcinoma H441 cells were obtained from the 

American Type Culture Collection (ATCC), and maintained in Minimal Essential 

Medium α (MEMα), Dulbecco’s Modified Eagle Medium (DMEM), and Roswell Park 

Memorial Institute medium (RPMI)-1640, respectively. Cultured media were 

supplemented with 10% fetal bovine serum (FBS)(Gibco, Life Technologies, Carlsbad, 

California, USA, catalogue # 325-043-EL), 100 units/ml penicillin and 100 µg 

streptomycin (pen/strep)(Gibco, Life Technologies, Carlsbad, California, USA, catalogue 

# 15140-122) in 70 cm2 flasks (Sigma-Aldrich, St. Louis, Missouri, USA). Cells were 

maintained in an incubator and kept at 37°C in 5% CO2. For most experiments, cells were 

allowed to proliferate to no more than 70-80% of maximum occupancy on tissue culture 

plastic (i.e., 70-80% confluent). Trypsin/EDTA (Wisent, Inc., Quebec, Canada) was used 

to detach cells from flasks. To detach cells, they were first rinsed with sterile Dulbecco’s 

phosphate buffered saline (PBS)(Wisent, Inc., Quebec, Canada) to remove residual FBS. 

PBS was then aspirated and 1 ml of trypsin/EDTA was added to the cells. Cells were 

returned to the incubator for 2-3 minutes then 9 ml of growth medium was added to the 

cells to neutralize the trypsin/EDTA. Harvested cells were then analyzed as described 

below. 

3.2  Cytotoxic Drugs 

 Olaparib (AZD2281) was purchased from Selleckchem (Houston, Texas, USA). 

5FUdR was purchased from Sigma Chemical Co. (St. Louis, Missouri, USA). 

Pemetrexed (Alimta, manufactured by Eli Lilly and Co., Toronto, Ontario, Canada) and 

cisplatin (Platinol, manufactured by Bristol-Myers Squibb, Montreal, Quebec, Canada) 

were obtained from the pharmacy at London Health Sciences Centre (London, Ontario, 
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Canada). Methoxyamine and FK866 were purchased from Sigma-Aldrich (St. Louis, 

Missouri, USA). 

3.3  Stable IDO Downregulation 

3.3.1  Bacterial Strain, Growth, and Preparation of Competent Cells 

 The Escherichia coli (E.coli) strain DH5α was used for plasmid amplification. 

Bacteria were grown in Luria-Bertani (LB) broth, Miller (Bioshop Canada Inc, 

Burlington, ON) overnight in a shaking incubator at 37°C. To transform bacterial cells 

with foreign DNA (plasmid), they were first rendered competent as follows: An 

overnight bacterial culture (4 ml) was transferred into fresh LB broth (70 ml) in a 250 ml 

Erlenmeyer flask and incubated in a shaking incubator at 37°C for 2 hours. The optical 

density (OD) of the bacterial culture at 600 nm was measured relative to sterile LB 

medium (blank control). When OD600 nm reached 0.354 the bacteria were transformed 

with plasmid as follows. The bacterial culture was centrifuged at 4000 g for 10 minutes at 

4°C. The supernatant was discarded and the cell pellet gently suspended (vortexing was 

avoided) in 25 ml of sterile, ice-cold transformation solution (10 mM morpholinopropane 

sulfonic acid (MOPS), pH 7.0; 10 mM rubidium chloride (RbCl). The bacteria were then 

centrifuged (4000 X g, 10 min, 4°C). The supernatant was discarded and the cell pellet 

was resuspended in 25 ml of filtered sterile, cold transformation solution II (MOPS, pH 

6.5; 50 mM CaCl2; 10 mM RbCl). The bacterial suspension was left on ice for 1 h and 

cells were then recovered by centrifugation (4000 X g, 10 min, 4°C). The supernatant 

was aspirated without disturbing the bacterial pellet. Transformation solution II (5 ml) 

was then added to the pellet, resulting in competent cells ready for transformation. 

Competent bacteria were used immediately, after up to 2 weeks after storage at 4o C, or 

after storage at -20o C in 10% glycerol. 

3.3.1.1 Bacterial Transformation with Plasmids  

 Anti-IDO shRNA (1 µg) and non-targeting scrambled control shRNA [Qiagen 

KH01328P SureSilencingTM Puromycin vector (human IDO1, catalogue # 336314)] were 

added to separate tubes of competent bacteria (150 µl) and mixed gently. The puromycin 
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vector pGeneClipTM (Figure 3.1) contains a beta-lactamase (ampicillin resistance) region 

that allows transformed bacteria to become resistant to ampicillin. This vector also 

contains a puromycin-N-acetyltransferase coding region that confers puromycin 

resistance to successfully-transfected mammalian cells, to allow clonal selection. There 

were four different anti-IDO shRNA sequences and one non-targeting scrambled control 

shRNA (Table 3.1). Each shRNA sequence was individually inserted into the plasmid 

vector as part of an insert sequence. The loop structure of the shRNA consists of the 

sequence CTTCCTGTCA. The insert sequence containing each shRNA was inserted 

between positions 438 and 439 in the plasmid vector. Each shRNA inserted into the 

plasmid vector targets a different exon on the IDO1 gene. The plasmid vectors were used 

to transform E.coli strain DH5α before plasmid purification. The plasmid- DH5α mixture 

was kept on ice for 25 min, then heat-shocked (2.5 min, 42°C) followed by incubation at 

4o C for 2 min. LB broth (1 ml) was then added to the bacteria, followed by incubation at 

37°C for 1 hour in a shaking incubator. Bacteria were centrifuged at 6000 X g for 2 min 

and the majority of the supernatant was removed leaving 50-100 µl. The bacterial pellet 

was resuspended in the remaining supernatant and spread on LB agar plates (containing 

50 µg/ml ampicillin to select for transformed cells). Transformed cells were grown 

overnight at 37° C. Non-transformed bacteria were cultured on agar plates with and 

without ampicillin as a control experiment to confirm the activity of ampicillin. 
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Table 3. 1. SureSilencing shRNA plasmid sequences. Each anti-IDO shRNA sequence 

targets a specific exon on the IDO gene. Each shRNA sequence was inserted into a 

plasmid vector. Those vectors were propagated in bacteria then purified and used to 

stably transfect cancer cells. 

shRNA ID Insert Sequence 

1 AGACTGCAGTAAAGGATTCTT 

2 GTGACTAAGTACATCCTGATT 

3 CAGTGTTCTTCGCATATATTT 

4 TCCTCCAGGACATGAGAAGAT 

NC (control) GGAATCTCATTCGATGCATAC 
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Figure 3. 1. The puromycin-resistant vector pGeneClipTM. Anti-IDO shRNA 

sequences or non-targeting scrambled shRNA control sequence were separately inserted 

into this vector prior to stable transfection of mammalian cells. The vector contains an 

ampicillin resistance region to allow the transformed bacteria to grow in the presence of 

ampicillin in order to propagate the plasmid, and a puromycin-N-acetyltransferase coding 

region that allows stably transfected cells to grow in the presence of puromycin.  
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3.3.1.2 Plasmid Purification 

 After growing bacteria on plates overnight, single colonies were inoculated by 

sterile pipette into 2.5 ml of LB medium containing 50 µg/ml ampicillin. The bacterial 

culture was incubated in a shaking incubator at 37° C for 5 hours, inoculated into 250 ml 

of LB medium containing 50 µg/ml ampicillin, and then grown overnight at 37° C with 

shaking. Plasmids were purified from these bacterial cultures using Qiagen HiSpeed 

plasmid maxi kits (Qiagen, catalog # 12662) according to the following protocol that was 

described by the manufacturer: 

Bacterial cells were harvested by centrifugation at 6000 X g for 15 minutes at 4° 

C. The supernatant was discarded and the bacterial pellet suspended in 10 ml of buffer P1 

containing RNase A (100 µg/ml), Tris base (50 mM, pH 8.0), and EDTA (10 mM) that 

was provided in the kit (added immediately prior to use) to lyse bacteria. Buffer P2 (10 

ml) containing NaOH (200 mM) and 1% SDS (w/v) was then added (without vortexing, 

to avoid shearing genomic DNA), mixed, and incubated for 5 min at 25o C. After 

incubation, 10 ml of chilled buffer P3 containing potassium acetate (3.0 mM, pH 5.5) was 

added to the lysate and mixed immediately by inverting 4-6 times. The lysate was then 

poured into the barrel of QIAfilter Maxi cartridges, incubated for 10 minutes, and then 

allowed to empty by gravity flow after adding 10 ml of QBT buffer [750 mM NaCl, 50 

mM MOPS (pH 7.0), 15% isopropanol (v/v), and 0.15% Triton X-100 (v/v)]. Non-

plasmid DNA material remaining in the cartridge was eluted using the supplied syringe 

plunger, the cartridge contents were washed with 60 ml of QC buffer [1.0 M NaCl, 50 

mM MOPS (pH 7.0), and 15% isopropanol (v/v)] by gravity flow, and plasmid DNA was 

eluted in 15 ml of QF buffer [1.25 M NaCl, 50 mM Tris-base (pH 8.5), and 15% 

isopropanol v/v]. The eluted DNA was precipitated by adding 10.5 ml room temperature 

isopropanol followed by incubation for 5 min. The elute/isopropanol mixture was then 

filtered to immobilize plasmid DNA on a QIA filter membrane, washed with 2 ml of 70% 

ethanol, air dried, and dissolved in 0.5 ml of Tris-EDTA (TE) buffer (pH 8.0).  
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3.3.2  Plasmid Quality Control and Diagnostic Restriction Digest 

 To verify that purified plasmids contained the desired shRNA inserts, a plasmid 

quality control by Pst I restriction enzyme digestion was carried out. Plasmids containing 

shRNA inserts were expected to generate two diagnostic bands 3209 bp and 1402 bp 

upon digestion. All 5 plasmid samples described in section 3.4.2 were used for this 

experiment (anti-IDO shRNA plasmids 1-4 and scrambled control shRNA plasmid). Each 

reaction contained 1.2 µg plasmid DNA, 2 µl of the 10x reaction mix, 0.5 µl Pst I enzyme, 

and sufficient sterile water to achieve a final volume of 20 µl. Restriction digestion 

proceeded at 37° C for one hour before separating the digestion products on the basis of 

electrophoretic mobility through a 1% agarose gel. As a negative control for each sample, 

1 µg of each supercoiled plasmid (uncleaved) was assessed by gel electrophoresis.  

3.3.2.1 Ethanol Precipitation of DNA 

 To maximize plasmid concentrations before transfection of cancer cells, plasmids 

were precipitated in ethanol and resuspended in 100-200 µl of TE buffer to obtain a final 

concentration of a 1 µg/µl for each plasmid.  

3.3.2.2  Linearization of shRNA Plasmids for A549 Stable Transfection 

 To increase the efficiency of plasmid integration into the genomic DNA, plasmid 

linearization was performed as described below: 

Anti-IDO shRNA 2 and scrambled shRNA plasmids (40 µg) were linearized using Sca I 

restriction enzyme (Fermentas, 10 U/µl, Hanover, MD) using the protocol and buffers 

supplied by the manufacturer. The reaction mix was: 5 µl Buffer (10x concentration), 40 

µl DNA, 6 µl Sca I enzyme, 4 µl dH2O. Restriction cleavage proceeded at 37°C for 3 h, 

followed by ethanol precipitation. Precipitated plasmids were dissolved in dH2O to a final 

concentration of 1 µg/µl.  
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3.3.2.3 Stable Transfection of A549, HeLa, and H441 Cells with anti-IDO shRNA 

or Scrambled shRNA Plasmids 

Human A549, HeLa, and H441 cells were stably transfected with a vector 

expressing short hairpin RNA (shRNA) antisense to human IDO1, or a scrambled, non-

targeting control shRNA (SuperArray, Mississauga, ON), using Lipofectamine 2000 

(LFA2K)(Invitrogen, Burlington, ON, Canada) according to the manufacturer's 

instructions. Anti-IDO shRNA 2 exerts the most robust IDO downregulation in human 

SW480 colorectal adenocarcinoma cells (Dr. M.D. Andersen, Center for Cancer 

Immunotherapy, Herlev University hospital, Denmark, personal communication). 

Therefore, we used plasmid shRNA 2 and scrambled control shRNA to stably transfect 

A549 and HeLa cells. We stably tranfected H441 cells with each plasmid shRNAs (1, 2, 

3 and 4) and scrambled control shRNA. H441 (1 x 106) were cultured overnight in 25 

cm2 flasks in 2 ml of AMEM supplemented with 10% FBS. On the day of transfection 

with shRNA, cells were approximately 70% confluent. For transfection, 10 µg of anti-

IDO gene-specific plasmid expressing shRNA or scrambled control shRNA was mixed 

with 10 µl LFA2K and 125 µl serum-free MEMα. The mixture was then incubated for 20 

minutes in room temperature to allow shRNA:LFA2K complex formation. After 

incubation, 250 µl of the mixture was added to each flask of cells. At 4 h after 

transfection, culture medium was exchanged for fresh MEMα containing 10% fetal 

bovine serum. Cells were washed with PBS (1x) and trypsinized 24 h later, and seeded 

into a 14 cm mammalian tissue culture dish in 30 ml MEMα supplemented with 10% 

FBS. Cells were allowed to proliferate in culture for 72 h, followed by replacement with 

fresh medium containing 2 µg/ml puromycin (Bioshop, Burlington, ON). Medium was 

replaced every 3 days with fresh medium containing 2 µg/ml puromycin. Stably-

transfected cells formed colonies, and single colonies (approximately 30 transfected with 

each of the shRNA-expressing plasmids) were selected and grown in 48-well plates in 0.8 

ml MEMα supplemented with 10% FBS and 2 µg/ml puromycin. When confluent, cells 

were transferred to 6-well plates and were cultured in triplicate. A549 and HeLa cells 

were then treated with IFNγ (25 ng/ml) and IDO mRNA and protein levels were 
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measured by qPCR and immunoblotting, respectively. Since H441 cells express IDO 

endogenously, IDO mRNA was directly measured in the selected clones by qPCR. 

3.4  Transient Transfection of A549 Cells with anti-IDO shRNA or Scrambled 

shRNA Plasmids 

 To test the capability of each shRNA to transiently downregulate IDO, A549 cells 

were transfected with 8 µg of each plasmid using a modification of established protocols 

(Plasmid DNA transfection LipofectamineTM 2000 transfection guideline, Invitrogen, 

Burlington, ON, Canada). A549 cells (7 x 105) were cultured in 25 cm2 flasks in 2 ml of 

MEMα supplemented with 10% FBS. Each plasmid (8 µg) was added to 20 µl of LFA2K 

for 20 min at 25o C to allow shRNA: LFA2K complex formation. Cells were transfected 

by adding a mixture of plasmids and LFA2K (250 µl total volume) and incubating for 4 h 

at 37° C. Fresh medium containing IFNγ (16 ng/ml, R&D Systems, Minneapolis, MN)(4 

ml) was added to each flask. Total RNA was isolated 24 h after transfection and cDNA 

generated from those isolated RNAs. Semi-quantitative PCR analysis of IDO and 

GAPDH cDNAs in each sample was performed to assess IDO downregulation by each 

plasmid. 

3.5  RNA Isolation 

A549 and HeLa cells were cultured overnight and then the growth medium was 

replaced with medium containing IFNγ (25, 50 or 100 ng/ml). RNA was isolated from 

A549 and HeLa cells 20 h after IFNγ treatment. Cells were washed with PBS twice. 

Trizol reagent (1 ml, Invitrogen) was added to each flask to lyse cells directly. The cell 

lysate was pipetted up and down several times and then transferred to 1.5 ml 

microcentrifuge tubes. Chloroform (200 µl) was added to each cell lysate and vortexed 

for 10 sec, followed by incubation for 5 min at 25o C. Samples were centrifuged at 20000 

X g at 4° C. The top aqueous phase (450-500 µl, containing RNA) was transferred into a 

new microcentrifuge tube. Isopropyl alcohol (600 µl) was added to precipitate the RNA. 

Samples were vortexed and incubated at room temperature for 10 min, centrifuged at 

20000 X g for 20 min at 4°C. The supernatant was discarded and the RNA pellet was 
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washed twice with 1 ml of 70% ethanol, air dried, and dissolved in 20 µl of DEPC-

treated water measurement of RNA concentration by NanoDrop® analysis. 

  

3.6  IDO mRNA Detection via Conventional PCR 

Isolated mRNA (1 µg) was used to synthesize cDNA by reverse transcription using 

MMLV-RT (Invitrogen). PCR amplification of IDO cDNA proceeded as follows: 95°C, 

5 min; 95°C, 30 s; 57°C, 30 s; 72°C, 30 s; 95°C, 30 (39 times); 72°C, 10 min; 4°C 

GAPDH cDNA was similarly amplified except for 24 rather than 39 amplifications at 

step 5. The reverse and forward primer sequences for IDO and GAPDH are shown in 

Table 3.2. To visualize PCR amplification products, 25 µl of PCR product was added to 6 

µl of Orange-G loading dye in glycerol, mixed, and separated by electrophoresis through 

a 1.5% non-denaturing agarose gel. A sample (1 µg) of the RNA used to generate cDNA 

was similarly separated by gel electrophoresis to visually determine RNA integrity.  

3.7 IDO mRNA Quantitation by Real-Time PCR 

 A549 and HeLa clonally-selected populations stably-transfected with anti-IDO 

shRNA or non-targeting scrambled control shRNA were collected 24 h after treatment 

with IFNγ (25 ng/ml, R&D Systems, Minneapolis, MN). H441 clonal populations, stably 

transfected with anti-IDO shRNA or non-targeting scrambled control shRNA were 

collected 24-36 h post cell culture without IFNγ treatment. Cells were lysed (Trizol 

reagent, Invitrogen) and total RNA isolated according to the manufacturer's instructions. 

cDNA was synthesized by reverse transcription (MMLV-RT) using 1 µg of purified 

RNA. IDO and 18S rRNA or GAPDH (control housekeeping genes) levels were 

measured simultaneously by multiplex real-time PCR amplification using a TaqMan 

IDO1 gene expression assay kit (Applied Biosystems, Carlsbad, CA).  
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Table 3. 2. IDO and GAPDH PCR primer sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDO Forward primer 5'-TAATGGCACACGCTATGGAA-3' 

IDO Reverse primer 3'-GGAAGGACAAACTCACGGACT-5' 

GAPDH Forward primer 5'-TATTGGGCGCCTGGTCACCA-3' 

GAPDH Reverse primer 3'-CCACCTTCTTGATGTCATCA-5' 
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3.8  IDO, BRCA2 and TS Protein Detection and Measurement 

 A549 and HeLa cells were cultured in 75 cm2 flasks and treated with IFNγ (25 

ng/ml). Cells were incubated for 48 h, washed twice with ice-cold PBS, harvested, and 

sonicated. Lysed cells were centrifuged at 20,000 X g for 15 min at 4° C and the 

supernatant collected and stored at -80° C for future use. Protein extracts (20 µg) were 

quantified by BioRad protein assay, separated by electrophoresis through a 12% 

polyacrylamide gel, and then electro-transferred to a nitrocellulose membrane. Primary 

monoclonal antibodies against IDO (Abcam, Cambridge, UK) and actin (Sigma, St. 

Louis, MO) were used to detect and quantify these proteins. Secondary anti-mouse and 

anti-rabbit IgG (peroxidase-linked whole antibodies; GE Healthcare Life Sciences), were 

bound to primary IDO and actin antibodies, respectively. The antibody-protein 

complexes were visualized using a Storm scanner (GE Healthcare Life Sciences). 

BRCA2 protein was assessed in A549 cells similar to the method to detect IDO 

protein except that BRCA2 monoclonal rabbit antibody (Cell Signaling Technology # 

90125, Danvers, MA, USA) was used to detect and quantify BRCA2 protein. A Ready 

Gel Tris-HCL gradient gel 4-15% (Cat # 161-1158, BioRad) was used to separate the 

proteins. Trans-blot Turbo transfer pack (Mini format) 0.2 µM PVDF (cat # 170-4150, 

BioRad) was used for the transfer of proteins from the gel to the PVDF membrane. 

 TS protein was assessed in A549 cells similar to the method to detect IDO and 

BRCA2 protein except that TS monoclonal antibody (Taiho Pharmaceutical, Hanno-City, 

Japan) was kindly provided by Dr. Masakazu Fukushima (Taiho Pharmaceuticals, Hanno 

Research Center, Hanno-City, Japan). Protein samples were isolated at 96 h post-siRNA 

transfection of A549 cells. 

3.9 NAD+ Quantification 

NAD+ levels were measured in A549 clonal populations stably transfected with 

plasmids directing expression of anti-IDO shRNA or scrambled shRNA, using a 

NAD+/NADH quantification Kit (BioVision, Milpitas, CA; Catalog#K337- 100). Briefly, 

2 x 105 cells were seeded into 25 cm2 flasks and grown overnight. Medium was replaced 
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16-24 h later with 3 ml of fresh growth medium containing IFNγ (25 ng/ml). Cells were 

washed 48 h later with ice-cold PBS, pelleted by centrifugation, and extracted using 2 

freeze/thaw cycles and NADH/NAD extraction buffer (400 µl). NADt (total NAD 

including NADH and NAD) was detected in 50 µl of extracted samples after addition of 

NAD cycling buffer and NAD cycling enzyme mix to a total volume of 100 µl. NADH 

levels were measured in a similar fashion in aliquots where NAD+ was degraded 

beforehand by heating the samples to 60° C for 30 min. NAD+ levels were calculated by 

subtracting NADH levels from NADt levels. Samples were read at OD 450 nm using a 

Wallac Victor2 plate reader (Perkin Elmer Life Sciences, Waltham, MA). 

3.10 Cell Cycle Analysis 

A549 cells (2x105) were cultured overnight and then IFNγ (25 ng/ml) was added 

(vehicle only was added to control cells). After 48 h, cells were washed with PBS, 

trypsinized, and fixed in 70% ice-cold ethanol. Cells were washed with PBS 24 h after 

fixation and resuspended in 1 ml of propidium iodide (20 µg/ml) (Sigma Aldrich, St. 

Louis, MO) and 0.1% Triton X-100 (BDH Chemicals, Poole, UK) staining solution with 

RNAse A (Bioshop, Burlington, ON, Canada) for 15 minutes at 37o C. The stage of cell 

cycle was analyzed using a BD FACSCalibur flow cytometer (BD Biosciences, Franklin 

Lakes, NJ) and FlowJo software (Tree Star, Inc., Ashland, OR, USA). 

3.11 Olaparib Treatment 

A549 and HeLa cells (5x104) were seeded into 25 cm2 flasks in 2 ml of MEMα and 

DMEM supplemented with 10% FBS plus pen/strep, respectively. Medium was replaced 

with fresh growth medium with or without IFNγ (25 ng/ml) 16-24 h after seeding. 

Twenty-four or 48 h after addition of IFNγ, medium was replaced with fresh medium 

containing olaparib (1, 1.5 or 5 µM). Three days after addition of olaparib, cells were 

washed to remove the dead cells and particles and adherent cells were trypsinized and 

enumerated using a Coulter counter (Beckman, Mississauga, ON). Viability of the 

counted cells was confirmed by trypan blue exclusion. 
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3.12  γ  Radiation Treatment 

A549 and HeLa cells (5x104) were seeded into 25 cm2 flasks in 2 ml of growth 

medium. Culture media was replaced with medium with or without IFNγ (25 ng/ml) 16-

24 h later. Cells were exposed to γ radiation (4 Gy) using a 60Co irradiator (London, 

Ontario, Canada) or a Varian Clinical 21EX Linear accelerator (Varian Medical System, 

Palo Alto, CA) using a 6 MV X ray beam (40 x 40 cm with 1.5 cm water equivalent 

buildup material) 48 h after addition of IFNγ. After irradiation, medium was replaced 

with fresh growth medium without IFNγ and cells were allowed to proliferate for 72 h. 

Cells were then trypsinized and live cells were enumerated using a Coulter counter. 

3.13  Combined Treatment with Radiation and Olaparib 

A549 and HeLa cells (5x104) were grown and irradiated as described above. 

Immediately after irradiation, medium was replaced with fresh medium containing 

olaparib (5 µM) and cells were allowed to proliferate in culture for 72 h. Cells were then 

trypsinized and live cells were enumerated using a Coulter counter. 

3.14  Cisplatin, Gemcitabine, Pemetrexed, and 5FUdR Treatment 

A549 cells (5x104) were seeded into 25 cm2 flasks in 2 ml of MEMα supplemented 

with 10% FBS containing pen/strep. Medium was replaced with fresh growth medium 

with or without IFNγ (25 ng/ml) 16-24 h after seeding. Twenty-four or 48 h after addition 

of IFNγ, medium was replaced with fresh medium containing either cisplatin (4 or 8 µM), 

gemcitabine (10 nM), pemetrexed (200 nM), or 5FUdR (40 nM). Three days after 

addition of drugs, cells were washed to remove the dead cells and particles. Adherent 

cells were trypsinized and enumerated using a Coulter counter (Beckman, Mississauga, 

ON). Viability of the counted cells was confirmed by trypan blue exclusion. H441 cells 

(5x104) were seeded into 6-well plates in 3 ml of RPMI-1640 supplemented with 20% 

FBS plus pen/strep and grown overnight. Medium was replaced the next day with 4 ml of 

fresh growth medium containing cisplatin (5 or 10 µM). Cells were allowed to proliferate 

for 8 days. On day 5 after initial culture, 2 ml fresh medium was added to each well. At 

the end of the experiment cells were washed to remove the dead cells and particles. 
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Adherent cells were trypsinized and enumerated using a Coulter counter (Beckman, 

Mississauga, ON).  

3.15 Blocking NAD+ Synthesis by FK866 Treatment 

A549 cells (5x104) were seeded into 25 cm2 flasks in 2 ml of MEMα supplemented 

with 10% FBS plus pen/strep. Medium was replaced with fresh growth medium with or 

without IFNγ (25 ng/ml) 16-24 h after seeding. Forty-eight h after addition of IFNγ, 

medium was replaced with fresh medium containing FK866 (5 nM). Three days after 

addition of FK866, cells were washed to remove the dead cells and particles and adherent 

cells were trypsinized and enumerated using a Coulter counter (Beckman, Mississauga, 

ON). Viability of the counted cells was confirmed by trypan blue exclusion. 

3.16 Blocking BER by Methoxyamine Treatment 

A549 cells (5x104) were seeded into 25 cm2 flasks in 2 ml of MEMα supplemented 

with 10% FBS plus pen/strep. Medium was replaced with fresh growth medium with or 

without IFNγ (25 ng/ml) 16-24 h after seeding. Forty-eight h after addition of IFNγ, 

medium was replaced with fresh medium containing methoxyamine (MX)(3 mM). Three 

days after addition of MX, cells were washed to remove the dead cells and particles and 

adherent cells were trypsinized and enumerated using a Coulter counter (Beckman, 

Mississauga, ON). Viability of the counted cells was confirmed by trypan blue exclusion. 

3.17 Combined Treatment with Pemetrexed and MX 

A549 cells (5x104) were grown and co-treated with pemetrexed (30 nM) and MX (3 mM) 

as described above. Cells were allowed to proliferate in culture for 72 h. Cells were then 

trypsinized and live cells were enumerated using a Coulter counter. 

3.18 IDO siRNA Transfection 

Human IDO siRNA [OnTarget Plus SMARTPool IDO (Dharmacon RNAi 

Technologies)] was used to transfect A549 and H441 cells (Table 3.3). IDO siRNA (10 

nM) and control non-targeting siRNA (2.5 nM) in serum-free MEMα and LFA2K (2.5 

µg/ml) were incubated together for 20 min. The siRNA:LFA2K mix was then added to 
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A549 and H441 cells that had been seeded, in triplicate, at 2 x105 cells per 25 cm2 flask 

24 h beforehand. In case of A549 cells, at 4 h after addition of siRNA:LFA2K, media 

were exchanged for fresh growth medium containing IFNγ (16 ng/ml). In another method, 

A549 cells were treated with IFNγ (50 ng/ml) 6 h before siRNA transfection. 

Transfection was conducted as above. At 4 h post transfection fresh medium containing 

IFNγ (50 ng/ml) was added to the A549 cells. H441 cells that endogenously express IDO, 

without induction with added cytokines, were similarly transfected with IDO siRNA as 

above, without IFNγ induction. RNA was isolated from the cells 24 h post-siRNA 

transfection. cDNA was synthesized and IDO and GAPDH cDNAs amplified by PCR. 
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Table 3. 3. ON-Target Plus® IDO1, TS and BRCA2 siRNA target mRNA sequences. 

siRNA ID Targeted RNA Target mRNA Sequence 

Target 

Position in 

mRNA 

Transcript 
IDO A IDO1 mRNA 5’-UCACCAAAUCCACGAUCAU-3’ 1281-1299 

IDO B IDO1 mRNA 5’-UUUCAGUGUUCUUCGCAUA-3’ 422-440 

IDO C IDO1 mRNA 5’-GUAUGAAGGGUUCUGGGAA-3’ 1383-1401 

IDO D IDO1 mRNA 5’- GAACGGGACACUUUGCUAA-3’ 1213-1231 

TS #3 TS mRNA 5′-ACAGAGAUAUGGAAUCAGA-3′ 
 

576-594 

TS #4 TS mRNA 5′-GGACUUGGGCCCAGUUUAU-3′ 
 

526-544 

BRCA2 BRCA2 mRNA 5′-GAAACGGACUUGCUAUUUA-3′ 4285-4303 

BRCA2 BRCA2 mRNA 5′-GGUAUCAGAUGCUUCAUUA-3′ 558-576 

BRCA2 BRCA2 mRNA 5′-GAAGAAUGCAGGUUUAAUA-3′ 1949-1967 

BRCA2 BRCA2 mRNA 5′-UAAGGAACGUCAAGAGAUA-3′ 7242-7260 

Control No Target 5’-UGGUUUACAUGUUGUGUGA-3’  
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3.19 BRCA2 siRNA Transfection and Drug Treatment 

Concentrations of siRNAs targeting human BRCA2 [OnTarget Plus SMARTPool 

BRCA2 (Dharmacon RNAi Technologies)] (Table 3.3) that reduced target mRNAs by 

approximately 70% by 24 h after transfection were determined (10 nM). BRCA2 siRNA 

(10 nM) and control non-targeting siRNA (2.5 nM) in serum-free MEMα and LFA2K 

(2.5 µg/ml) were incubated together for 20 min. The siRNA:LFA2K mix was then added 

to A549 cells that had been seeded, in triplicate, at 2 x105 cells per 25 cm2 flask 24 h 

beforehand. At 4 h after addition of siRNA:LFA2K, medium was exchanged for fresh 

growth medium containing IFNγ (25 ng/ml). Medium was replaced with fresh medium 

containing olaparib or cisplatin 16-24 h later. Tumour cell proliferation was enumerated 

72 h later using a Coulter counter. 

3.20 TS siRNA Transfection and Drug Treatment 

TS siRNA number 3 or TS siRNA number 4 (Table 3.3) (targeting different regions 

of human TS mRNA)[OnTarget Plus (Dharmacon RNAi Technologies, Lafayette, CO, 

USA)] that reduced target mRNAs by approximately 70% by 24 h after transfection, were 

used to downregulate TS mRNA in A549 cancer cells. TS siRNA (5 nM) and control 

non-targeting siRNA (5 nM) in serum-free MEMα and LFA2K (2.5 µg/ml) were 

incubated together for 20 min. The siRNA:LFA2K mix was then added to A549 cells that 

had been seeded, in triplicate, at 2 x105 cells per 25 cm2 flask 24 h beforehand. At 4 h 

after addition of siRNA:LFA2K, media was exchanged for fresh growth medium 

containing IFNγ (25 ng/ml). Medium was replaced with fresh medium containing 

pemetrexed, 5FUdR, or gemcitabine 48 h later. Tumour cell proliferation was enumerated 

72 h later using a Coulter counter. 

A549 cells were transiently transfected with either control siRNA or TS siRNA for 4 h. 

Cultured medium was then replaced with growth medium containing IFNγ (16 ng/ml). 

RNA was isolated from cells 24 h post-transfection and IDO and TS mRNA were 

measured by PCR.  
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3.21 Puromycin Treatment of A549 Cells 

A549, HeLa, and H441 cells (5 x 105) were seeded in a 10 cm2 plastic tissue culture 

dish in 5 ml of growth medium overnight. Puromycin (0, 1, 2, 4, 6, or 8 µg/ml) was added 

to the cells. Cell growth was monitored by visual microscopy daily. The lowest 

concentration that killed all cells was chosen to maintain the stably-transfected A549, 

HeLa and H441 cells. 

3.22  Colony Forming Assay after Irradiation 

A549 clonal populations were seeded in 25 cm2 flasks in 2 ml of growth medium 

overnight. Cultured medium was replaced by fresh medium with or without IFNγ (25 

ng/ml) and maintained for 48 h. Cells were then irradiated (4 Gy) or not (control cells). 

All cells were trypsinized and 300 cells were seeded in 6 well plates in 4 ml of growth 

medium. Medium was replaced with fresh medium 72 h later. Cells were allowed to 

proliferate for a total 7 days. Medium was aspirated and cells were washed with PBS and 

stained with 0.5% crystal violet for 45 min at 20o C. Cells were washed twice with dH2O 

and colonies were counted. The number of colonies in each treatment group was divided 

by the number of colonies in the control and multiplied by 100 to estimate % colony 

formation. 

3.23 Statistical Analysis 

Student’s t test (2-tailed) was used to determine differences between two means. 

One-way ANOVA was used to assess differences among multiple means. A p value of 

0.05 was selected a priori to indicate significant differences. In some analyses, data were 

pooled from A549 and HeLa clonal populations that expressed anti-IDO shRNA and 

compared to the pooled measurements of multiple clones expressing scrambled control 

shRNA. Tumours are heterogenous populations and each clonal population, although 

relatively similar to other clones because of their derivation from a common parent, 

potentially has differences due to variation induced by ongoing genomic instability. 

Combining tumour clones allows examinination of the role of IDO in drug sensitivity and 

resistance in a heterogenous cancer population originating from the same parental cell 

line. Observing meaningful statistical differences in radiation and drug sensitivity in 
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examined clones provides clear evidence for the importance of IDO downregulation in 

cancer cells despite other differences among cells.  
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Chapter 4 

4 Results 

4.1  IDO Induction in A549 and HeLa Cells 

IDO plays a major role in suppressing the immune response during tumour progression. 

Most human tumours express IDO in vivo [135], but IDO protein is undetectable in A549 

and HeLa cells in vitro until induced by IFNγ. Therefore, IFNγ was used to induce IDO 

in A549 and HeLa cells in these studies as described in chapter 3, section 3.5. RNA 

quality was tested from representative samples (Figure 4.1), cDNA was synthesized, and 

IDO and GAPDH mRNA levels determined using the synthesized cDNA (Table 3.2 

shows primer sequences). IFNγ strongly induced IDO mRNA in both A549 and HeLa 

adenocarcinoma cells (Figures 4.2 and 4.3). Since all IFNγ concentrations induced IDO 

mRNA in cancer cells, and to limit non-IDO related effects of IFNγ, 25 ng/ml IFNγ was 

used to induce IDO in subsequent experiments unless otherwise noted. This strongly 

induced IDO mRNA and protein in both A549 and HeLa cells. In the next step, we 

measured A549 IDO protein levels after IFNγ treatment as described (Chapter 3, section 

3.8). IFNγ (25 ng/ml) induced IDO protein in A549 cells (Figure 4.4).  
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Figure 4. 1. Quality of RNA isolated from A549 cells ± IFNγ (50 ng/ml). A549 cells 

were cultured overnight then treated with or without IFNγ (50 ng/ml). RNA was isolated 

20 h post-IFNγ treatment. RNA samples were separated on a 1.5% agarose gel to confirm 

RNA integrity. Top bands are 25S rRNA and the lower bands are 18s rRNA. Lanes 1-2: 

A549 cells without IFNγ treatment. Lanes 3-5, A549 cells with IFNγ treatment. 
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Figure 4. 2. IDO mRNA levels in A549 cells ± IFNγ (25, 50 or 100 ng/ml). A549 cells 

were treated with or without IFNγ (25, 50 or 100 ng/ml) and RNA was isolated 20 h later. 

cDNA was synthesized from the isolated RNA (1 µg) and then used as the template for 

IDO and GAPDH cDNA amplification by PCR. Top bands represent IDO and the lower 

bands represent the housekeeping gene GAPDH. PCR amplification products were 

separated by electrophoresis through a 1.5% non-denaturing agarose gel. Lane 1: 

Molecular weight ladder for GAPDH. Lane 2-4: A549 cells without IFNγ treatment. Lane 

5-7: A549 cells with IFNγ treatment (25 ng/ml). Lane 8-10: A549 cells with IFNγ 

treatment (50 ng/ml). Lane 11-13: A549 cells with IFNγ treatment (100 ng/ml). Lane 14: 

non-template control. Lane 15: Molecular weight ladder for IDO. The GAPDH PCR 

product is 750 bp and IDO PCR product is 800 bp. 
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Figure 4. 3. IDO mRNA levels in HeLa cells ± IFNγ (25, 50 or 100 ng/ml). HeLa cells 

were treated with or without IFNγ (25, 50 or 100 ng/ml) and RNA was isolated 20 h later. 

cDNA was synthesized from the isolated RNA (1 µg) and then used as the template for 

IDO and GAPDH cDNA amplification by PCR. Top bands represent IDO and the lower 

bands represent the housekeeping gene GAPDH. PCR amplification products were 

separated by electrophoresis through a 1.5% non-denaturing agarose gel. Lane 1-3: HeLa 

cells without IFNγ treatment. Lane 4-6: HeLa cells with IFNγ treatment (25 ng/ml). Lane 

7-9: HeLa cells with IFNγ treatment (50 ng/ml). Lane 10-12: HeLa cells with IFNγ 

treatment (100 ng/ml). Lane 13: non-template control. Lane 14: Molecular weight ladder 

for GAPDH. Lane 15: Molecular weight ladder for IDO. The GAPDH PCR product is 

750 bp and IDO PCR product is 800 bp. 
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Figure 4. 4. IDO protein levels in A549 cells ± IFNγ (25 ng/ml). A549 cells were 

treated with or without IFNγ (25 ng/ml) and lysed 48 h later. Immunoblots were probed 

for IDO and α actin. The top bands represent IDO and the lower bands represent α actin. 

Lane 1: A549 cells with IFNγ treatment. Lane 2: A549 cells without IFNγ treatment. 
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4.2 IDO mRNA Levels in H441 Cells 

H441 human lung adenocarcinoma cells endogenously express IDO [262][personal 

communication, Dr. Vios Karanikas (Cancer Immunology unit, department of 

Immunology, University of Thessaly, Greece)]. IDO mRNA levels were measured in 

H441 cells 24 h after culture (without IFNγ treatment). H441 cells endogenously express 

IDO mRNA and do not require IFNγ induction (Figure 4.5).  
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Figure 4. 5. IDO mRNA levels in H441 cells. H441 cells were cultured for 24 h 

(without IFNγ treatment) and RNA isolated. cDNA was synthesized from the isolated 

RNA (1 µg) and then used as the template for IDO and GAPDH cDNA amplification by 

PCR. Top bands represent IDO and the lower bands represent the housekeeping gene 

GAPDH. PCR amplification products were separated by electrophoresis through a 1.5% 

non-denaturing agarose gel. Lane 1: Molecular weight ladder for GAPDH. Lane 2-4: 

H441 cells without IFNγ treatment (three replicates). Lane 5: non-template control. Lane 

6: Molecular weight ladder for IDO. GAPDH PCR product is 750 bp and IDO PCR 

product is 800 bp. 
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4.3  IDO siRNA Downregulation in A549 and H441 Cells 

 In order to study the effect of IDO on tumour cell response to chemotherapy and 

radiation, we reduced IDO mRNA in A549 cells by siRNA transfection. We transfected 

A549 cells with 4 different IDO siRNAs (siRNAs A, B, C, and D) using two different 

methods (described in Chapter 3, Section 3.18). IDO-expressing H441 cells were 

similarly transfected with 4 different IDO siRNAs but without IFNγ induction. As shown, 

siRNA did not appreciably reduce IDO mRNA in tumour cells (Figures 4.6 A-B, 4.7, 4.8). 

The numerical reductions in IDO mRNA observed after siRNA transfection (PCR-

generated bands quantified using GelEval 1.37 software), were: 

 

A549 cells: IDO siRNA A: 20% reduction, IDO siRNA B: 4% reduction, IDO siRNA C: 

14% reduction, IDO siRNA D: 30% reduction. 

H441 cells: IDO siRNA A: no reduction, IDO siRNA B 0%, IDO siRNA C 50%, IDO 

siRNA D 10% downregulation. 

 

Note that these did not achieve statistical significance. 

 

The minimal capacity of IDO siRNA to reduce IDO mRNA was confirmed by qPCR 

(Figure 4.8 and Figure 4.9).  

4.4  Plasmid Quality Control and Diagnostic Restriction Digest (anti-IDO shRNA 

Stable Transfection) 

 To analyze the purified plasmids isolated from bacteria, we digested plasmid 

DNA with Pst I (described in Chapter 3, Section 3.3.2). The undigested plasmid was used 

as negative control. Plasmids containing the desired shRNA generated 2 diagnostic bands 

(3200 bp and 1400 bp) when separated by gel electrophoresis (Figure 4.10).  
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Figure 4. 6. IDO mRNA levels in A549 cells after transfection with IDO siRNA. A, 

A549 cells were treated with IFNγ (50 ng/ml) 6 h before transfection. A549 cells were 

transfected with IDO siRNA. Growth medium containing IFNγ (25 ng/ml) was added to 

the cells 4 h after transfection. RNA was isolated from cells 24 h post transfection and 

cDNA was synthesized. Generated cDNA was used for PCR amplification of IDO and 

GAPDH cDNA. B, A549 cells were transfected with IDO siRNA. Growth medium 

containing IFNγ (25 ng/ml) was added to the cells 4 h after transfection. RNA was 

isolated from cells 24 h post-transfection and cDNA was synthesized using that RNA as 

template. Generated cDNA was used for PCR amplification of IDO and GAPDH cDNA 

to quantitate relative IDO mRNA. Lanes 1-3: A549 cells treated with medium (no 

transfection). Lanes 4-6: A549 cells transfected with LFA2K only. Lanes 7-9: A549 cells 

transfected with control (ctl) 2 siRNA. Lanes 10-12: A549 cells transfected with IDO 

siRNA A. Lanes 13-15: A549 cells transfected with siRNA B. Lanes 16-18: A549 cells 

transfected with siRNA C. Lanes 19-21: A549 cells transfected with siRNA D. Lane 22: 

non-template control (ntc) for PCR. The top bands represent IDO and lower bands 

represent GAPDH.  
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Figure 4. 7. IDO mRNA levels in H441 cells after transfection with IDO siRNA. 

H441 cells were transfected with IDO siRNA. Growth medium was added to the cells 4 h 

after transfection. RNA was isolated from cells 24 h post transfection and cDNA was 

synthesized. Generated cDNA was used for PCR amplification of IDO and GAPDH 

cDNA. Lanes 1-3: H441 cells treated with medium (no transfection). Lanes 4-6: H441 

cells transfected with LFA2K only. Lanes 7-9: H441 cells transfected with control (ctl) 2 

siRNA. Lanes 10-12: H441 cells transfected with IDO siRNA A. Lanes 13-15: H441 

cells transfected with siRNA B. Lanes 16-18: H441 cells transfected with siRNA C. 

Lanes 19-21: H441 cells transfected with siRNA D. The top bands represent IDO and 

lower bands represent GAPDH.  
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Figure 4. 8. qPCR analysis of IDO mRNA in A549 cells following siRNA 

transfection. A549 cells were transfected with IDO siRNA. Growth medium containing 

IFNγ (25 ng/ml) was added to the cells 4 h after transfection. RNA was isolated from 

cells 24 h post transfection and cDNA was synthesized. Generated cDNA was used for 

qPCR analysis of IDO and GAPDH mRNA. Results from all groups were normalized to 

control siRNA. Medium, treated with cultured medium only. LFA2K, treated with 

Lipofectamine 2000 only. Control siRNA, transfected with control siRNA. IDO siRNA A, 

transfected with IDO siRNA A. IDO siRNA B, transfected with IDO siRNA B. IDO 

siRNA C, transfected with IDO siRNA C. IDO siRNA D, transfected with IDO siRNA D. 

Each bar represents the mean of 3 values (n=3 for determination of each value from 3 

independent experiments) ± SEM.  
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Figure 4. 9. qPCR analysis of IDO mRNA in H441 cells following siRNA 

transfection. H441 cells were transfected with IDO siRNA. Growth medium containing 

was added to the cells 4 h after transfection. RNA was isolated from cells 24 h post 

transfection and cDNA was synthesized. Generated cDNA was used for qPCR analysis of 

IDO and GAPDH mRNA. Results from all groups were normalized to control siRNA. 

Medium, cells were treated with cultured medium only. LFA2K, treated with 

Lipofectamine 2000 only. Control siRNA, transfected with control siRNA. IDO siRNA A, 

transfected with IDO siRNA A. IDO siRNA B, transfected with IDO siRNA B. IDO 

siRNA C, transfected with IDO siRNA C. IDO siRNA D, transfected with IDO siRNA D. 

Each bar represents the mean of 3 values (n=3 for determination of each value from 3 

independent experiments) ± SEM.  
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Figure 4. 10. Pst 1 digestion to confirm the presence of IDO shRNA in the 

expression vector. Pst I cleavage generates two DNA bands diagnostic for IDO shRNA 

(3200 bp and 1400 bp). Purified plasmids were digested with the restriction enzyme Pst I 

for one hour at 37° C to confirm the presence of desired shRNA. The final products of 

digestion along with undigested supercoiled plasmids were separated on a 1% agarose gel. 

Lane 1: Molecular weight ladder. Lane 2, Pst I-digested plasmid containing shRNA 1. 

Lane 3: undigested supercoiled plasmid containing shRNA 1. Lane 4: Pst I-digested 

plasmid containing shRNA 2. Lane 5: undigested supercoiled plasmid containing shRNA 

2. Lane 6: Pst I-digested plasmid containing shRNA 3. Lane 7: undigested supercoiled 

plasmid containing shRNA 3. Lane 8: Pst I-digested plasmid containing shRNA 4. Lane 

9: undigested supercoiled plasmid containing shRNA 4. Lane 10: Pst I-digested plasmid 

containing scrambled shRNA. Lane 11: undigested supercoiled plasmid containing 

scrambled shRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

98 

4.5 IDO mRNA Quantification in A549 and H441 Clonal Population 

To measure IDO mRNA levels in the stable cell lines, RNA was isolated from 

stably-transfected A549 and H441 clonally-selected populations as described (Chapter 3, 

Section 3.5). IDO mRNA and 18S rRNA levels were measured simultaneously by 

multiplex real-time PCR amplification (Figure 4.11) as described (Chapter 3, Section 3.7). 

Several A549 clonal cell lines, which are NC-3, NC-10, NC-30, 2-4, 2-6, and 2-18 were 

selected for further analysis based on the degree of shRNA-associated reduction in IDO 

mRNA levels after IFNγ induction (Figure 4.12). Similarly, several H441 clonal 

populations were selected for analysis based on IDO mRNA reduction in these naturally-

IDO expressing clones (Figure 4.13). 
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Figure 4. 11. IDO mRNA quantification in A549 clonal populations. A549 clonal 

populations were treated with IFNγ (25 ng/ml) for 24 h. RNA was isolated and used to 

generate cDNA. IDO mRNA and 18S rRNA levels were assessed simultaneously by 

multiplex qPCR amplification. A, white bars, A549 clonal cells transfected with 

scrambled control shRNA and B, black bars A549 clonal cells transfected with anti-IDO 

shRNA. Each bar represents the mean of 3 values (n=3 for determination of each value) ± 

SEM. 
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Figure 4. 12. IDO mRNA levels in selected A549 clonal cell lines. A549 cell lines 

stably-transfected with anti-IDO shRNA (2-4, 2-6, and 2-18) or scrambled shRNA (NC-3, 

NC-10, and NC-30) were treated with IFNγ (25 ng/ml) for 24 h. IDO mRNA and 18S 

rRNA were quantified 24 h post-IFNγ treatment by qPCR. White bars: A549 clonal cells 

transfected with scrambled control shRNA. Black bars: A549 clonal cells transfected 

with anti-IDO shRNA. The selected clones were used for future experiments. Each bar 

represents the mean of 3 values (n=3 for determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 13. IDO mRNA quantification in H441 clonal populations. H441 clonal 

populations stably transfected with scrambled shRNA or anti-IDO shRNA were cultured 

for 24 h without IFNγ treatmen). RNA was isolated from cells and used to generate 

cDNA. IDO mRNA and 18S rRNA levels were measured simultaneously by multiplex 

qPCR amplification. From left to right: Scrambled shRNA, H441 cells transfected with 

scrambled shRNA. Anti-IDO shRNA #1, H441 cells transfected with anti-IDO 

shRNA#1. Anti-IDO shRNA #2, H441 cells transfected with anti-IDO shRNA #2. Anti-

IDO shRNA #3, H441 cells transfected with anti-IDO shRNA #3. Anti-IDO shRNA #4, 

H441 cells transfected with anti-IDO shRNA #4. All clones are normalized to clone 2-16, 

which exhibited the lowest IDO mRNA level. Each bar represents the mean of 3 values 

(n=3 for determination of each value) ± SEM. 
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4.6 IDO Protein Levels in A549 and HeLa Clonal Populations 

 IDO protein levels were measured in A549 and HeLa selected clonal populations 

as described (Chapter 3, Section 3.8). Anti-IDO shRNA decreased IDO protein levels in 

A549 and HeLa clonal populations compared to non-targeting control shRNA, 

respectively (Figures 4.14 and 4.15). 

4.7 IDO Levels are Inversely Correlated with Tumour Cell Proliferation 

 IDO expression is correlated with decreased proliferation [135]. Therefore, the 

effect of anti-IDO shRNA on IDO-mediated slow growth was examined. A549 and HeLa 

cell clonal populations were treated with IFNγ (25 ng/ml) and allowed to proliferate for 

72 h. High IDO levels were associated with reduced proliferation of A549 and HeLa 

clonal cells, and the presence of anti-IDO shRNA attenuated IFNγ-induced reduction in 

proliferation (Figures 4.16 and 4.17). These data suggest that IFNγ-induced IDO protein 

is functional in these cells and that anti-IDO shRNA reduces IDO function. 

4.8 IDO Effect on A549 Cell Cycle 

 IDO-mediated depletion of tryptophan induces cell cycle arrest in T cells at the G1 

phase of the cell cycle [263]. We therefore determined whether IDO-induced reduction in 

growth of cancer cells was associated with altered cell cycle. A549 cells were cultured 

with and without IFNγ for 48 h. The cell cycle was then measured as described in section 

3.12. IFNγ induction of IDO increased the number of cells in G1 by 10% and decreased 

the numbers in G2/M in cells expressing scrambled control shRNA by the same amount. 

The presence of anti-IDO shRNA in cells treated with IFNγ abolished the increase in the 

number of cells in G1 and the decrease in the number of cells in G2/M (Figure 4.18). 
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Figure 4. 14. IDO protein levels in A549 clonal cell populations with and without 

IFNγ  (25 ng/ml) treatment. IDO was induced in A549 clonal populations by IFNγ 

treatment (25 ng/ml) for 48 h. Non-treated A549 clonal cells were used to determine the 

basal level of IDO without IFNγ induction by immunoblot. A549 cells untransfected with 

plasmids harbouring shRNA were used as controls (WT).  
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Figure 4. 15. IDO protein levels in HeLa clonal cells with and without IFNγ  (25 

ng/ml) treatment. IDO was induced in HeLa clonal populations by IFNγ treatment (25 

ng/ml) for 48 h and assessed by immunoblot. Untreated HeLa clonal cell populations 

were used to determine the basal level of IDO without IFNγ induction.  
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Figure 4. 16. IDO slows proliferation of A549 cells and anti-IDO shRNA attenuates 

the IDO-mediated reduction in proliferation. A549 clonal populations were cultured 

with and without IFNγ (25 ng/ml) for 72 h. Tumour cells were washed with PBS and 

trypsinized. Tumour cell proliferation was enumerated by cell counting. Each bar 

represents the mean of 3 independent experiments (n=3 for determination of each value) 

± SEM (*P < 0.05). 
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Figure 4. 17. IDO slows proliferation of HeLa cells and anti-IDO shRNA attenuates 

IDO-mediated reduction in proliferation. HeLa clonal cell populations were cultured 

with and without IFNγ (25 ng/ml) for 72 h. Tumour cells were washed with PBS and 

trypsinized. Tumour cell proliferation was enumerated by cell counting. Each bar 

represents the mean of 3 independent experiments (n=3 for determination of each value) 

± SEM (*P < 0.05). 
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Figure 4. 18. IDO mediated the increased accumulation of cells in G1 and decreased 

accumulation in G2/M in A549 cells. Tumour cells were cultured overnight, treated with 

or without IFNγ (25 ng/ml) for 48 h, and analyzed for cell cycle compartmentalization as 

described in Materials and Methods. Each bar represents pooled data to generate mean 

values from 3 independent clonal populations harbouring scrambled control shRNA or 

anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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4.9  IDO Downregulation Decreases Intracellular NAD+ 

 IDO is responsible for de novo synthesis of NAD+ from tryptophan. Whether or 

not anti-IDO shRNA decreased NAD+ levels in A549 cells (as described in Chapter 3, 

Section 3.9) was examined. Anti-IDO shRNA decreased NAD+ levels in A549 clonal 

populations by 60% (Figure 4.19).  

4.10  IDO Mediates Resistance to the NAD+ Inhibitor FK866 

 FK866 is a pharmacological inhibitor of NAD+ synthesis from the salvage 

pathway and is being evaluated for clinical anticancer efficacy [264]. IDO inhibition 

decreased NAD+ levels in A549 cells by approximately 60% (Figure 4.19), similar to the 

degree of reduction of NAD+ induced in human tumour cells by FK866 [242]. I 

hypothesized that the IDO-mediated increase in NAD+ had the potential to counter the 

therapeutic effect of FK866. To test this hypothesis, I induced IDO in A549 clonal 

populations with IFNγ (25 ng/ml) for 48 h and then treated the cells with FK866 as 

described (Chapter 3, Section 3.15). IDO increased the resistance of A549 clonal cells to 

FK866 and anti-IDO shRNA partially decreased this effect (Figure 4.20). Clone 2-4 

(containing anti-IDO shRNA) has a greater amount of IDO than clones 2-6 and 2-18 

(Figures 4.14 and 4.20) and was also more resistant than those clones to the effect of 

FK866 (Figure 4.20). There was a relatively modest positive linear correlation (R2=0.54) 

between IDO protein levels and resistance to FK866 (Figure 4.20, Panel C).  
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Figure 4. 19. IDO downregulation decreased NAD+ in A549 cells. A549 clonal cell 

populations were treated with IFNγ (25 ng/ml) for 48 h. Lysates were prepared from 

treated cells and total NAD (NADt) and NADH were measured. NAD+ levels were 

calculated by subtracting NADH from NADt. Each bar represents the mean of 3 values 

(n=3 for determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 20. A549 clonal cell population sensitivity to FK866 (5 nM) before and 

after IDO induction. Panels A-B present data for each of 6 individual clonal 

populations before and after IDO induction. A549 clonal cell populations were cultured 

with or without IFNγ (25 ng/ml) for 48 h. Medium was then replaced with fresh growth 

medium containing FK866 (5 nM) and cells were allowed to proliferate for 72 h. Cells 

were then trypsinized and live cells were enumerated. White bars: A549 clones 

transfected with scrambled shRNA. Gray bars: A549 cells transfected with anti-IDO 

shRNA. Each bar represents the mean of 3 values (n=3 for determination of each value) ± 

SD. Panel C: Correlation analysis of the relationship between IDO protein content 

(relative to actin) and clonal population resistance to FK866 (proliferation relative to 

untreated control cells). 
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4.11 IDO in Tumour Cells Mediates Resistance to Olaparib 

NAD+ is necessary for PARP activity [215] and anti-IDO shRNA decreased NAD+ 

levels in A549 cells. Therefore, the capacity of IDO to increase tumour cell resistance to 

olaparib, and the capacity of anti-IDO shRNA to reverse this effect, was assessed. A549 

and HeLa clonal cell populations were treated with olaparib as described (Chapter 3, 

Section 3.11). IDO downregulation sensitized A549 cells to low dose olaparib by 16% 

(p= 4 x 10-4)(Figures 4.21 and 4.22). Similarly, IDO downregulation sensitized A549 

cells to high doses of olaparib by 18% (p= 1 x 10-3)(Figures 4.23 and 4.24). Cells with 

unimpeded IDO expression after IFNγ induction had increased resistance to olaparib (i.e., 

increased IDO was associated with reduced drug effectiveness), while antisense-

downregulation of IDO during and after IFNγ induction resulted in sensitivity to olaparib 

equal to that of cells untreated with IFNγ (Figure 4.25). Some HeLa clonal cells showed a 

similar pattern of sensitivity to olaparib in the absence of IDO. However, their sensitivity 

was less potent compared to A549 cells (Figure 4.26 and 4.27). These results show that 

IDO expression in tumour cells confers resistance to olaparib and, since all clonal 

populations were treated identically with IFNγ, the observed resistance to olaparib was 

due solely to the presence of shRNA (and, by extension, IDO knockdown) and not effects 

of IFNγ unrelated to IDO. 
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Figure 4. 21. A549 clonal cell population sensitivity to low dose olaparib (1.5 µM) 

before and after IDO induction. Panels A-B present data for each of 6 individual clonal 

populations before and after IDO induction. A549 clonal populations were cultured with 

or without IFNγ (25 ng/ml) for 48 h. Cultured medium was then replaced with fresh 

growth medium containing olaparib (1.5 µM) and cells were allowed to proliferate for 72 

h. Cells were then trypsinized and live cells were enumerated using a Coulter counter. 

White bars represent A549 clones transfected with scrambled shRNA and gray bars 

represent A549 cells transfected with anti-IDO shRNA. Each bar represents the mean of 

3 values (n=3 for determination of each value) ± SD. Significant changes are shown in 

pooled results (Figure 4.22). 
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Figure 4. 22. Sensitivity of clonal A549 populations to low dose olaparib (1.5 µM) 

before (A) and after (B) IDO induction. Data shown in Figure 4.21 were pooled to 

generate mean values from 3 independent clonal populations harbouring scrambled 

control shRNA or anti-IDO shRNA, and each bar represents the mean of those 3 values 

(n=3 for determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 23. A549 clone sensitivity to high dose olaparib (5 µM) before and after 

IDO induction. Panels A-B present data for each of 6 individual clonal populations 

before and after IDO induction. A549 clonal populations were cultured with or without 

IFNγ (25 ng/ml) for 48 h. Cultured medium was then replaced with fresh growth medium 

containing olaparib (5 µM) and cells were allowed to proliferate for 72 h. Cells were then 

trypsinized and live cells were enumerated using a Coulter counter. White bars represent 

A549 clones transfected with scrambled shRNA and gray bars represent A549 cells 

transfected with anti-IDO shRNA. Each bar represents the mean of 3 values (n=3 for 

determination of each value) ± SD. Significant changes are shown in pooled results 

(Figure 4.24). 
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Figure 4. 24. Sensitivity of clonal A549 populations to high dose olaparib (5 µM) 

before (A) and after (B) IDO induction. Data shown in Figure 4.23 were pooled to 

generate mean values from 3 independent clonal populations harbouring scrambled 

control shRNA or anti-IDO shRNA, and each bar represents the mean of the 3 values 

(n=3 for determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 25. Induction of IDO in A549 clonal cell populations decreases the 

effectiveness of olaparib. Results were obtained from 3 independent clonal cell 

populations with scrambled control shRNA or anti-IDO shRNA, and each bar represents 

the mean of the 3 values (n=3 for determination of each value) ± SEM (*p < 0.05). 
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Figure 4. 26. HeLa clone sensitivity to high dose olaparib (5 µM) before and after 

IDO induction. Panels A-B present data for each of 6 individual clonal populations 

before and after IDO induction. HeLa clonal populations were cultured with or without 

IFNγ (25 ng/ml) for 48 h. Cultured medium was then replaced with fresh growth medium 

containing olaparib (5 µM) and cells were allowed to proliferate for 72 h. Cells were then 

trypsinized and live cells were enumerated using a Coulter counter. White bars represent 

HeLa clones transfected with scrambled shRNA and gray bars represent HeLa cells 

transfected with anti-IDO shRNA. Each bar represents the mean of 3 values (n=3 for 

determination of each value) ± SD. Significant changes are shown in pooled results 

(Figure 4.27). 
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Figure 4. 27. Sensitivity of clonal HeLa populations to high dose olaparib (5 µM) 

before (A) and after (B) IDO induction. Data shown in Figure 4.26 were pooled to 

generate mean values from 3 independent clonal populations harbouring scrambled 

control shRNA or anti-IDO shRNA, and each bar represents the mean of the 3 values 

(n=3 for determination of each value) ± SEM (*P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

136 

4.12 IDO Mediates Resistance to γ  Radiation in Cancer Cells 

 In view of the potential for IDO to modulate PARP activity, it was hypothesized 

that human tumour cell IDO mediates resistance to ionizing γ  radiation. We irradiated 

A549 and HeLa clonal cell lines as described (Chapter 3, Section 3.12). IDO 

downregulation sensitized A549 and HeLa cells to radiation by approximately 20% 

(P=2.6 x 10-7) and 10% (P=0.021), respectively (Figures 4.28, 4.29, 4.31, 4.32, and 4.33). 

A549 and HeLa clones untreated with IFNγ (i.e., lacking IDO) were equally sensitive to 

radiation regardless of whether or not they harboured anti-IDO shRNA. In addition, IDO 

induced by IFNγ treatment of A549 clones lacking anti-IDO shRNA (i.e., stably 

expressing only control scrambled shRNA) increased resistance to γ radiation by 

approximately 15%, compared with no change in clones harbouring anti-IDO shRNA 

(Figures 4.30). A trend toward a similar response was observed in HeLa cells, but did not 

achieve statistical significance (Figure 4.34).  
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Figure 4. 28. A549 clone sensitivity to γ  radiation (4 Gy) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. A549 clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h. Cultured cells were then irradiated (4 Gy) then the medium was then 

replaced with fresh growth medium and cells were allowed to proliferate for 72 h. Cells 

were then trypsinized and live cells were enumerated using a Coulter counter. White bars 

represent A549 clones transfected with scrambled shRNA and gray bars represent A549 

cells transfected with anti-IDO shRNA. Each bar represents the mean of the 3 values 

(n=3 for determination of each value) ± SD. Significant changes are shown in pooled 

results (Figure 4.29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

139 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

140 

Figure 4. 29. Sensitivity of clonal A549 populations to γ  radiation (4 Gy) before (A) 

and after (B) IDO induction. Data shown in Figure 4.28 were pooled to generate mean 

values from 3 independent clonal populations harbouring scrambled control shRNA or 

anti-IDO shRNA, and each bar represents the mean of the 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 30. Induction of IDO in A549 clonal cell induces resistance to γ  radiation. 

Results were obtained from 3 independent clonal cell populations with scrambled control 

shRNA or anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P<0.05). 
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Figure 4. 31. Induction of IDO in A549 clonal cell induces resistance to γ  radiation. 

A549 cells were induced with IFNγ (25 ng/ml) for 48 h. Cells were then γ irradiated (4 

Gy), trypsinized and 300 cells were seeded in 6-well plates. Colonies were stained with 

0.5% crystal violet 7 days later. Each bar represents the mean of 3 values (n=3 for 

determination of each value) ± SEM (* P < 0.05). 
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Figure 4. 32. HeLa clone sensitivity to γ  radiation (4 Gy) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. HeLa clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h. Cultured cells were then irradiated (4 Gy) then the medium was then 

replaced with fresh growth medium and cells were allowed to proliferate for 72 h. Cells 

were then trypsinized and live cells were enumerated using a Coulter counter. White bars 

represent HeLa clones transfected with scrambled shRNA and gray bars represent HeLa 

cells transfected with anti-IDO shRNA. Each bar represents the mean of the 3 values 

(n=3 for determination of each value) ± SD. Significant changes are shown in pooled 

results (Figure 4.33). 
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Figure 4. 33. Sensitivity of clonal HeLa populations to γ  radiation (4 Gy) before (A) 

and after (B) IDO induction. Data shown in Figure 4.32 were pooled to generate mean 

values from 3 independent clonal populations harbouring scrambled control shRNA or 

anti-IDO shRNA, and each bar represents the mean of the 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 34. Induction of IDO in HeLa clonal cell populations and association with 

resistance to γ  radiation. Results were obtained from 3 independent clonal cell 

populations with scrambled control shRNA or anti-IDO shRNA, and each bar represents 

the mean of those 3 values (n=3 for determination of each value) ± SEM (p = 0.06). A 

trend toward increased resistance to γ radiation with increased IDO was observed but did 

not achieve statistical significance. 
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4.13  IDO in Human Tumour Cells Mediates Resistance to Combined γ  Radiation 

and PARP Inhibition 

In light of the common clinical use of combination therapies and the common goal 

of causing DNA damage and subsequently inhibiting DNA repair through the use of γ  

radiation and PARP inhibitors, respectively, it was of interest to determine the effect of 

IDO on cancer cell sensitivity to the combination of these treatments. We tested this 

questions by inducing IDO in A549 and HeLa clones as described (Chapter 3, Section 

3.13). Prior to treatment with IFNγ, all clonal A549 populations harbouring either anti-

IDO shRNA or control scrambled shRNA were equally sensitive to combined treatment 

(Figures 4.35 and 4.36). In the case of HeLa clonal cell populations, those harbouring 

scrambled shRNA were more sensitive to combination treatment than clonal cells with 

anti-IDO shRNA (Figures 4.38 and 4.39). After IDO induction by IFNγ, A549 and HeLa 

clones harbouring anti-IDO shRNA were approximately 30% and 20% more sensitive to 

combined treatment with γ  radiation and olaparib, respectively, than similarly-treated 

clones harbouring control scrambled shRNA (p<0.05)(Figures 4.35 and 4.38). In addition, 

in A549 clonal cell populations, IFNγ induced IDO-mediated resistance to the 

antiproliferative effects of combined olaparib and γ  radiation, but anti-IDO shRNA 

abolished that resistance (Figure 4.37). HeLa clonal populations showed a similar trend 

but that trend did not achieve statistical significance (Figure 4.40). 
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Figure 4. 35. A549 sensitivity to combined γ  irradiation (4 Gy) and olaparib (5 µM) 

treatment before (A) and after (B) IDO induction. A549 cells were induced with with 

or without IFNγ (25 ng/ml) for 48 h. Cells were then treated with γ radiation (4 Gy) and 

the medium was immediately replaced with fresh growth medium with olaparib (5 µM). 

Cells were allowed to proliferate for 72 h. Results were obtained from independent 

measurements of proliferation of three A549 clonal populations (2 independent 

experiments for each population) with control scrambled shRNA and 3 with anti-IDO 

shRNA. Bars represent the means of those 3 independent measurements (n=3 for each 

measurement) ± SEM (*p<0.05). White bars represent A549 clones transfected with 

scrambled shRNA and gray bars represent A549 cells transfected with anti-IDO shRNA. 

Each bar represents the mean of the 3 values (n=3 for determination of each value) ± SD. 

Significant changes are shown in pooled results (Figure 4.36). 
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Figure 4. 36. Sensitivity of clonal A549 populations to combined γ  radiation (4 Gy) 

and olaparib (5 µM) treatment before (A) and after (B) IDO induction. Data shown 

in Figure 4.35 were pooled to generate mean values from 3 independent clonal 

populations harbouring scrambled control shRNA or anti-IDO shRNA, and each bar 

represents the mean of those 3 values (n=3 for determination of each value) ± SEM (*P < 

0.05).  
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Figure 4. 37. Induction of IDO in A549 clonal cell induces resistance to combined γ  

radiation and olaparib treatment. Results were obtained from 3 independent clonal cell 

populations with scrambled control shRNA or anti-IDO shRNA, and each bar represents 

the mean of those 3 values (n=3 for determination of each value) ± SEM (*p<0.05). 
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Figure 4. 38. HeLa sensitivity to combined γ  irradiation (4 Gy) and olaparib (5 µM) 

treatment before (A) and after (B) IDO induction. HeLa cells were induced with with 

or without IFNγ (25 ng/ml) for 48 h. Then the cells were treated with γ radiation (4 Gy) 

and the medium was immediately replaced with fresh growth medium harbouring 

olaparib (5 µM). Cells were allowed to proliferate for 72 h. Results were obtained from 

independent measurements of proliferation of 3 HeLa clonal populations (2 independent 

experiments for each population) with control scrambled shRNA and 3 with anti-IDO 

shRNA. Bars represent the means of those 3 independent measurements (n=3 for each 

measurement) ± SEM (*p<0.05). White bars represent HeLa clones transfected with 

scrambled shRNA and gray bars represent HeLa cells transfected with anti-IDO shRNA. 

Each bar represents the mean of the 3 values (n=3 for determination of each value) ± SD. 

Significant changes are shown in pooled results (Figure 4.39). 
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Figure 4. 39. Sensitivity of clonal HeLa populations to combined γ  radiation (4 Gy) 

and olaparib (5 µM) treatment before (A) and after (B) IDO induction. Data shown 

in Figure 4.38 were pooled to generate mean values from 3 independent clonal 

populations harbouring scrambled control shRNA or anti-IDO shRNA, and each bar 

represents the mean of those 3 values (n=3 for determination of each value) ± SEM (*P < 

0.05). 
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Figure 4. 40. Antisense reduction of IDO in A549 clonal cell reduces resistance to 

combined γ  radiation and olaparib treatment. Results were obtained from 3 

independent clonal cell populations with scrambled control shRNA or anti-IDO shRNA, 

and each bar represents the mean of those 3 values (n=3 for determination of each value) 

± SEM (*p<0.05). Increased IDO in these cells induced a trend toward increased cell 

survival in the presence of olaparib but that trend did not achieve statistical significance 

(p=0.07). 
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4.14 IDO in Human Tumour Cells Mediates Resistance to the Base Excision Repair 

Inhibitor Methoxyamine  

NAD+ is required for PARP function and PARP is essential for recruitment of the 

BER scaffold protein XRCC1 to damaged DNA [200]. In light of our observation that 

IDO plays a role in mediating resistance to the PARP inhibitor olaparib, the capacity of 

IDO to mediate resistance to the BER inhibitor methoxyamine was examined. A549 cells 

were treated with or without IFNγ (25 ng/ml) for 48 h to induce IDO. Tumour cells were 

then treated with methoxyamine as described (Chapter 3, Section 3.16). IDO 

downregulation sensitized cancer cells to methoxyamine (Figures 4.41 and 4.42). Of 

particular note, A549 clone 2-4, although it is stably transfected with anti-IDO shRNA, 

had a higher level of IDO than anti-IDO shRNA-containing clones 2-6 and 2-18 (Figure 

4.12) and showed a higher degree of methoxyamine resistance than shRNA-transfected 

clones with lower levels of IDO (Figure 4.41, Panel C, showing a moderate correlation 

between IDO level and methoxyamine resistance [R2 = 0.83]). In addition, IFNγ induced 

IDO-mediated resistance to the antiproliferative effects of methoxyamine, and anti-IDO 

shRNA abolished that resistance (Figure 4.43). 

4.15  IDO in Human Tumour Cells Mediates Resistance to the TS-targeting Drug 

Pemetrexed 

Thymidylate synthase (TS) is important in DNA repair and DNA synthesis and is 

overexpressed in most human cancers [245]. The TS-targeting drug pemetrexed is 

commonly used to treat multiple types of human cancer including NSCLC and colorectal 

cancer [179]. BER is reported to be important in cancer cell resistance to this drug. The 

sensitivity of A549 clonal populations to pemetrexed in the presence of IDO was 

therefore tested. Clonal A549 cell populations were treated with pemetrexed as described 

in chapter 3, section 3.14. IDO downregulation sensitized cancer cells to pemetrexed 

(Figures 4.44 and 4.45). Furthermore, IFNγ-induced IDO decreased the effectiveness of 

pemetrexed in IDO-expressing cancer cells but the IDO-mediated decrease in pemetrexed 

effectiveness was reduced in A549 clonal cell populations harbouring anti-IDO shRNA 

(Figure 4.46). 
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Figure 4. 41. A549 clone sensitivity to methoxyamine (3 mM) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. A549 clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h. Cultured medium was then replaced with fresh growth medium 

containing methoxyamine (3 mM) and cells were allowed to proliferate for 72 h. Cells 

were then trypsinized and live cells were enumerated. White bars represent A549 clones 

transfected with scrambled shRNA and gray bars represent A549 cells transfected with 

anti-IDO shRNA. Each bar represents the mean of 3 values (n=3 for determination of 

each value) ± SD. Significant changes are shown in pooled results (Figure 4.42). Panel 

C: relationship between IDO protein level (relative to actin) and resistance to 

methpxyamine (MX) (proliferation relative to untreated control cells). The R2 value of 

0.83 represents a moderate positive relationship. 
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Figure 4. 42. Sensitivity of clonal A549 populations to methoxyamine (3 mM) before 

(A) and after (B) IDO induction. Data shown in Figure 4.41 were pooled to generate 

mean values from 3 independent clonal populations harbouring scrambled control shRNA 

or anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 43. Induction of IDO in A549 clonal cell induces resistance to 

methoxyamine (3 mM). Results were obtained from 3 independent clonal cell 

populations with scrambled control shRNA or anti-IDO shRNA, and each bar represents 

the mean of those 3 values (n=3 for determination of each value) ± SEM (*p < 0.05). 
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Figure 4. 44. A549 clone sensitivity to pemetrexed (200 nM) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. A549 clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h, then with pemetrexed (200 nM), and enumerated 72 h later. White bars 

represent A549 clones transfected with scrambled shRNA and gray bars represent A549 

cells transfected with anti-IDO shRNA. Each bar represents the mean of 3 values (n=3 

for determination of each value) ± SD. Significant changes are shown in pooled results 

(Figure 4.45). 
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Figure 4. 45. Sensitivity of clonal A549 populations to pemetrexed (200 nM) before 

(A) and after (B) IDO induction. Data shown in Figure 4.44 were pooled to generate 

mean values from 3 independent clonal populations harbouring scrambled control shRNA 

or anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 46. Induction of IDO in A549 clonal cell induces resistance to pemetrexed 

(200 nM). Results were obtained from 3 independent clonal cell populations with 

scrambled control shRNA or anti-IDO shRNA, and each bar represents the mean of those 

3 values (n=3 for determination of each value) ± SEM (*p < 0.05). 
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4.16  IDO in Human Tumour Cells Mediates Resistance to Combined Treatment of 

Pemetrexed and Methoxyamine 

A phase I clinical trial of combined methoxyamine and pemetrexed has been 

completed and phase II clinical trials of that drug combination in multiple indications 

including NSCLC are planned [179]. In view of our observation of IDO-mediated 

resistance to both pemetrexed and methoxyamine, it was hypothesized that IDO could 

induce resistance to combined methoxyamine and pemetrexed treatment. To test this 

hypothesis, IDO was induced in A549 clonal cell populations and then those populations 

were treated with a combination of pemetrexed (30 nM) and methoxyamine (3 mM) as 

described in chapter 3, section 3.17. IDO downregulation sensitized cancer cells to 

combined treatment (Figures 4.47 and 4.48). Moreover, IFNγ-induced IDO mediated 

resistance to the combined pemetrexed and methoxyamine treatment and resistance was 

reduced in the presence of anti-IDO shRNA (Figure 4.49). It should be noted that, 

although it is stably transfected with anti-IDO shRNA, clone 2-4 has a higher level of 

IDO than other clonal A549 populations containing anti-IDO shRNA (clones 2-6 and 2-

18)(Figure 4. 12). Clone 2-4 was more resistant to combined pemetrexed and 

methoxyamine treatment than clones 2-6 and 2-18, consistent with the existence of a 

relationship between the amount of IDO in tumour cells and their resistance to combined 

treatment with these two drugs (Figure 4.47, Panel C, R2=0.70). 
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Figure 4. 47. A549 clone sensitivity to combined pemetrexed (30 nM) and 

methoxyamine (3 mM) treatment before and after IDO induction. Panels A-B 

present data for each of 6 individual clonal populations before and after IDO induction. 

A549 clonal populations were cultured with or without IFNγ (25 ng/ml) for 48 h. 

Cultured medium was then replaced with fresh growth medium containing pemetrexed 

(30 nM) and methoxyamine. Tumour cells were then allowed to proliferate for 72 h. 

Finally, cells were trypsinized and live cells were enumerated using a Coulter counter. 

White bars represent A549 clones transfected with scrambled shRNA and gray bars 

represent A549 cells transfected with anti-IDO shRNA. Each bar represents the mean of 

3 values (n=3 for determination of each value) ± SD. Significant changes are shown in 

pooled results (Figure 4.48). Panel C: relationship between IDO protein (relative to 

actin) and clonal population resistance to combined pemetrexed and methoxyamine (MX) 

treatment proliferation relative to untreated control cells). The R2 value of 0.7 represents a 

moderate positive relationship. 
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Figure 4. 48. Sensitivity of clonal A549 populations to combined pemetrexed (30 

nM) and methoxyamine (3 mM) treatment before (A) and after (B) IDO induction. 

Data shown in Figure 4.47 were pooled to generate mean values from 3 independent 

clonal populations harbouring scrambled control shRNA or anti-IDO shRNA, and each 

bar represents the mean of those 3 values (n=3 for determination of each value) ± SEM 

(*P< 0.05). 
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Figure 4. 49. Induction of IDO in A549 clonal cell induces resistance to combined 

pemetrexed (30 nM) and methoxyamine (3 mM) treatment. Results were obtained 

from 3 independent clonal cell populations with scrambled control shRNA or anti-IDO 

shRNA, and each bar represents the mean of those 3 values (n=3 for determination of 

each value) ± SEM (*p<0.05). 
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4.17  The Effect of IDO Downregulation in Human Tumour Cells Sensitivity to 

other TS-targeting Drugs (5FUdR and Gemcitabine)  

 Because IDO downregulation sensitized cancer cells to the TS-targeting drug 

pemetrexed (Figure 4.44 and 4.45), we hypothesized that IDO downregulation could 

sensitize cancer cells to other TS-targeting drugs commonly used in clinic, including 

5FUdR and gemcitabine. Cancer cells were treated with IFNγ (25 ng/ml) for 48 h and 

then 5FUdR or gemcitabine as described in chapter 3, section 3.14. IDO downregulation 

did not sensitize cancer cells to 5FUdR (Figures 4.50 and 4.51), but did increase 

sensitivity to gemcitabine (Figure 4.52 and 4.53). I should note that 5FUdR treatment 

equally reduced proliferation in both scrambled control shRNA and anti-IDO shRNA 

harbouring clonal populations before and after IFNγ treatment (Figures 4.50 and 4.51).  
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Figure 4. 50. A549 clone sensitivity to 5FUdR (200 nM) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. A549 clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h and then 5FUdR (200 nM) for 72 h at which time live cells were 

enumerated by Coulter counting. White bars represent A549 clones transfected with 

scrambled shRNA and gray bars represent A549 cells transfected with anti-IDO shRNA. 

Each bar represents the mean of 3 values (n=3 for determination of each value) ± SD. 

Significant changes are shown in pooled results (Figure 4.51). 
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Figure 4. 51. Sensitivity of clonal A549 populations to 5FUdR (200 nM) before (A) 

and after (B) IDO induction. Data shown in Figure 4.50 were pooled to generate mean 

values from 3 independent clonal populations harbouring scrambled control shRNA or 

anti-IDO shRNA, and each bar represents the mean of the 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

189 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

190 

 

Figure 4. 52. A549 clone sensitivity to gemcitabine (10 nM) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. A549 clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h, then treated with gemcitabine (10 nM) for 72 h, at which time live cells 

were enumerated by Coulter counting. White bars represent A549 clones transfected with 

scrambled shRNA and gray bars represent A549 cells transfected with anti-IDO shRNA. 

Each bar represents the mean of 3 values (n=3 for determination of each value) ± SD. 

Significant changes are shown in pooled results (Figure 4.53).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

191 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

192 

Figure 4. 53. Sensitivity of clonal A549 populations to gemcitabine (10 nM) before 

(A) and after (B) IDO induction. Data shown in Figure 4.52 were pooled to generate 

mean values from 3 independent clonal populations harbouring scrambled control shRNA 

or anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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4.18 The Effect of IDO Downregulation in Human Tumour Cells' Sensitivity to 

Cisplatin 

Since IDO downregulation sensitized cancer cells to γ  radiation, it was also 

determined whether IDO knockdown sensitized A549, HeLa and H441 cells to the DNA 

cross-linking agent cisplatin. We induced IDO in A549 and HeLa cells by treatment with 

IFNγ and then exposed cells to cisplatin for 72 h to determine the effect on proliferation. 

We treated H441 cells with cisplatin as described (Chapter 3, Section 3.14). IDO 

downregulation sensitized both A549 and HeLa cells to cisplatin treatment by 18% 

compared to cells without IDO reduction (p<0.05)(Figures 4.54, 4.55, 4.57, and 4.58). 

IFNγ-induced IDO mediated cancer cell resistance to cisplatin. In addition, the effect of 

IFNγ-induced IDO was reduced by anti-IDO shRNA in A549 and HeLa cells by 25% and 

18% (p<0.05), respectively (Figure 4.56 and Figure 4.59). IDO downregulation also 

sensitized natural IDO expressers (H441 cells) to cisplatin in the absence of IFNγ 

treatment (Figure 4.60).  
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Figure 4. 54. A549 clone sensitivity to cisplatin (8 µM) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. A549 clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h, then cisplatin (8 µM) for 72 h, at which time live cells were enumerated. 

White bars represent A549 clones transfected with scrambled shRNA and gray bars 

represent A549 cells transfected with anti-IDO shRNA. Each bar represents the mean of 

3 values (n=3 for determination of each value) ± SD. Significant changes are shown in 

pooled results (Figure 4.55).  
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Figure 4. 55. Sensitivity of clonal A549 populations to cisplatin (8 µM) before (A) 

and after (B) IDO induction. Data shown in Figure 4.54 were pooled to generate mean 

values from 3 independent clonal populations harbouring scrambled control shRNA or 

anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 56. Induction of IDO in A549 clonal cell induces resistance to cisplatin (8 

µM). Results were obtained from 3 independent clonal cell populations with scrambled 

control shRNA or anti-IDO shRNA, and each bar represents the mean of those 3 values 

(n=3 for determination of each value) ± SEM (*p<0.05). 
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Figure 4. 57. HeLa clone sensitivity to cisplatin (4 µM) before and after IDO 

induction. Panels A-B present data for each of 6 individual clonal populations before 

and after IDO induction. HeLa clonal populations were cultured with or without IFNγ (25 

ng/ml) for 48 h, then treated with cisplatin (8 µM) for 72 h, at which time live cells were 

enumerated. White bars represent HeLa clones transfected with scrambled shRNA and 

gray bars represent HeLa cells transfected with anti-IDO shRNA. Each bar represents the 

mean of 3 values (n=3 for determination of each value) ± SD. Significant changes are 

shown in pooled results (Figure 4.58).  
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Figure 4. 58. Sensitivity of clonal HeLa populations to cisplatin (4 µM) before (A) 

and after (B) IDO induction. Data shown in Figure 4.57 were pooled to generate mean 

values from 3 independent clonal populations harbouring scrambled control shRNA or 

anti-IDO shRNA, and each bar represents the mean of those 3 values (n=3 for 

determination of each value) ± SEM (*P < 0.05). 
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Figure 4. 59. Induction of IDO in HeLa clonal cell induces resistance to cisplatin (4 

µM). Results were obtained from 3 independent clonal cell populations with scrambled 

control shRNA or anti-IDO shRNA, and each bar represents the mean of those 3 values 

(n=3 for determination of each value) ± SEM (*p < 0.05). 
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Figure 4. 60. H441 clone sensitivity to cisplatin (5 and 10 µM). Data represents one 

H441 clone with scrambled shRNA (white bar) and 5 H441 clones cells with anti-IDO 

shRNA (black bars). H441 clonal populations were cultured overnight, then treated with 

cisplatin (5 and 10 µM) for 8 days, at which time live cells were enumerated. Each bar 

represents the mean of 3 values (n=3 for determination of each value) ± SD (*P<0.05). 

Each bar represents the mean of 3 values (n=3 for determination of each value) ± SD.  
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4.19 Thymidylate Synthase siRNA Downregulation in A549 Clonal Populations 

 TS-targeting drugs have anti-tumour activity against multiple types of cancers. 

However, increased TS mRNA levels upon treatment with TS-targeting drugs is a 

common mechanism of resistance to these agents [254] and knockdown of TS mRNA 

using anti-TS siRNA or antisense oligonucleotides sensitizes tumour cells to TS-targeting 

drugs [187, 254, 255, 265]. In view of the observation that IDO can at least partially 

mediate resistance to some TS-targeting drugs, it was hypothesized that concurrent 

downregulation of IDO and TS in cancer cells will sensitize cancer cells to these drugs to 

a greater degree than knockdown of TS alone. To test the hypothesis, A549 tumour cells 

were transfected with TS siRNA to confirm TS mRNA downregulation using this 

strategy, as described (Chapter 3, Section 3.20). TS mRNA was downregulated in A549 

cells upon TS siRNA transfection (Figure 4.61).  

4.20 Thymidylate Synthase siRNA Downregulation in A549 Clonal Populations 

after IFNγ  Induction 

 Since we ultimately wished to simultaneously downregulate TS and IDO in A549 

cells, it was necessary to determine whether siRNA transfection of A549 clones affected 

IFNγ induction of IDO and/or whether IFNγ treatment altered siRNA-mediated 

knockdown of TS. To test this, A549 cells were transiently transfected with either control 

siRNA or TS siRNA and then treated with IFNγ as described in chapter 3, section 3.20. 

IFNγ treatment did not interfere with siRNA transfection, and siRNA transfection did not 

alter IFNγ induction of IDO induction in A549 cells (Figure 4.62).  
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Figure 4. 61. TS siRNA transfection of A549 cells. A549 cells (untransfected with anti-

IDO shRNA plasmid) were transfected with control or TS siRNA. After 24 h, RNA was 

isolated and used to generate cDNA. TS and GAPDH cDNA were amplified by PCR 

from the cDNA. A: PCR products were separated by electrophoresis through a 1.5% 

agarose gel. B: PCR-generated bands were quantified using Alpha Ease FC software. 

Lanes 1 and 15: MW ladder. Lanes 2-4: control cells treated with medium alone. Lanes 

5-7: cells treated with liposomal transfection reagent (LFA2K). Lanes 8-10: cells 

transfected with control siRNA (all groups were normalized to this group). Lanes 11-13: 

cells transfected with TS siRNA. Lane 14: PCR products from reaction without template 

cDNA. Each bar represents the mean of 3 values (n=3 for determination of each value) ± 

SEM.  
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Figure 4. 62. TS siRNA downregulation in A549 cells after IFNγ  (16 ng/ml) 

treatment. A549 cells were treated with IFNγ (16 ng/ml) and then transfected with either 

control or TS siRNA for 4 h. Cultured medium was then replaced with growth medium 

containing IFNγ (16 ng/ml). RNA was isolated 24 h post transfection and used to 

synthesize cDNA. IDO, TS and GAPDH cDNAs were amplified by PCR. Lanes 1-3: 

cells treated with medium alone (control). Lanes 4-6: cells treated with liposomal 

transfection reagent (LFA2K). Lanes 7-9: cells transfected with control siRNA. Lanes 

10-12: cells transfected with TS siRNA. Lane 13: PCR products from reaction without 

template cDNA.  
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4.21 TS siRNA Downregulation in A549 Clonal Populations 

TS siRNA downregulation in A549 clonal populations was assessed after 

transfection of two different TS siRNAs targeting different regions of TS mRNA (TS 

siRNA # 3 and TS siRNA #4). All A549 clonal populations were transfected as described 

(Chapter 3, Section 3.20). TS siRNA downregulated TS protein in A549 clonal 

populations harbouring either control, non-targeting shRNA or anti-IDO shRNA at 96 h 

post-transfection (Figure 4.63).  

4.22  TS Downregulation Enhances the Capacity of IDO Downregulation to 

Sensitize A549 Cells to Pemetrexed 

TS mRNA downregulation sensitizes A549 cells to the TS-targeting drug 5FUdR 

[266]. IDO downregulation sensitized A549 cells to the TS-targeting drugs pemetrexed 

and gemcitabine (Figures 4.44 and 4.52) but not 5FUdR (Figure 4.50). To test whether 

concurrent knockdown of both TS and IDO sensitized A549 cells to anti-TS drugs more 

effectively than knockdown of IDO alone, A549 clonal populations (stably transfected 

with anti-IDO shRNA or control shRNA) were transiently transfected with TS siRNAs 

numbers 3 or 4 as described (Chapter 3, Section 3.20). Concurrent IDO and TS 

downregulation sensitized cancer cells to pemetrexed more effectively than knockdown 

of IDO alone (Figure 4.64, A-C).  
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Figure 4. 63. TS siRNA downregulation in A549 clonal populations. A549 clonal cells 

were seeded and grown overnight. TS siRNA number 3 or 4 or control siRNA was then 

used to transfect all clonal cells. Cells were lysed and protein was harvested 96 h later. 

TS protein levels were determined using antibodies against TS and actin. Results were 

quantified for each clone separately. A) TS siRNA transfection in A549 clone NC-3 (with 

control, non-targeting shRNA). (B) TS siRNA transfection of clone 2-4 (with anti-IDO 

shRNA). C) TS protein quantification results for all clonal populations. Each bar 

represents the mean of 3 values (n=3 for determination of each value) ± SEM.  
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Figure 4. 64. Concurrent IDO and TS downregulation sensitizes A549 cells to 

pemetrexed more effectively than knockdown of IDO alone. A549 cells were 

transfected with control or TS siRNA, then treated with IFNγ (25 ng/ml) for 48 h. 

Pemetrexed (30 nM) was then added and cell number enumerated after 72 h drug 

treatment. Bars indicate the mean relative number of cells (n=3 ± SD). 

A) Proliferation of clonal A549 cell populations induced with IFNγ and then treated with 

pemetrexed, but untransfected with siRNA of any kind. Gray bars indicate clones 

containing anti-IDO shRNA and white bars indicate clones containing non-targeting 

control shRNA. 

B) Proliferation of the same clonal A549 cell populations transfected with control non-

targeting siRNA, TS siRNA #3, or TS siRNA #4, induced with IFNγ, and then treated 

with pemetrexed. The bars represent values normalized to values obtained from clones 

treated with IFNγ but untreated with pemetrexed or siRNA; those cells were each 

considered to have a proliferation value of 100% after IFNγ treatment. Gray bars 

indicate clones containing anti-IDO shRNA and white bars indicate clones containing 

non-targeting control shRNA. 

C) Data for 3 individual A549 clones with anti-IDO shRNA and 3 clones with control, 

non-targeting shRNA (from panels A and B) were pooled and mean values (n=3) are 

show ± SEM (*p<0.05). Black bars indicate clones containing anti-IDO shRNA and 

white bars indicate clones containing non-targeting control shRNA. 
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4.23 IDO Downregulation Enhances the Capacity of TS Downregulation to 

Sensitize A549 Cells to 5FUdR 

Combined antisense downregulation of IDO and TS sensitized A549 cells to the 

TS-targeting drug pemetrexed to a greater degree than antisense downregulation of TS 

alone (Figure 4.64). In addition, IDO downregulation alone did not alter A549 cell 

sensitivity to 5FUdR (Figure 4.50). Therefore, the capacity of combined, concurrent 

downregulation of both IDO and TS downregulation to sensitize human tumour cells to 

5FUdR to a greater degree than TS downregulation alone was assessed. Concurrent IDO 

and TS downregulation using TS siRNAs numbers 3 or 4, combined with shRNA-

mediated reduction of IDO in response to induction with IFNγ, sensitized cancer cells to 

5FUdR to a greater degree than TS downregulation alone (30% for TS siRNA number 3 

and 15% for TS siRNA number 4 (Figure 4.65, A-C). 
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Figure 4. 65. Concurrent IDO and TS downregulation sensitizes A549 cells to 

5FUdR more effectively than knockdown of TS alone. A549 cells were transfected 

with control or TS siRNA, treated with IFNγ (25 ng/ml) for 48 h, and then with 5FUdR 

(40 nM) for 72 h, at which time the number of live cells was assessed as a measure of 

proliferation. Bars indicate mean proliferation relative to appropriate controls ± SD (n=3). 

A) Proliferation of clonal A549 cell populations induced with IFNγ and then treated with 

5FUdR, but untransfected with siRNA of any kind. Gray bars indicate clones containing 

anti-IDO shRNA and white bars indicate clones containing non-targeting control shRNA. 

B) Proliferation of the same clonal A549 cell populations transfected with control non-

targeting siRNA, TS siRNA #3, or TS siRNA #4, induced with IFNγ, and then treated 

with 5FUdR. Bars represent values normalized to values obtained from clones treated 

with IFNγ but untreated with pemetrexed or siRNA; those cells were considered to have a 

proliferation value of 100% after IFNγ treatment. Gray bars indicate clones containing 

anti-IDO shRNA and white bars indicate clones containing non-targeting control shRNA. 

C) Data for 3 individual A549 clones with anti-IDO shRNA and 3 clones with control, 

non-targeting shRNA (from panels A and B) were pooled and mean values (n=3) are 

show ± SEM (*p < 0.05). Black bars indicate clones containing anti-IDO shRNA and 

white bars indicate clones containing non-targeting control shRNA. 
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4.24  BRCA2 Downregulation in A549 Clonal Populations 

 BRCA2 is important in homologous recombination repair. Cancer cells lacking 

BRCA2 are more sensitive to olaparib and alkylating agents [208]. IDO downregulation 

sensitized cancer cells to olaparib (Figures 4.24 and 4.27) and cisplatin (Figures 4.54, 

4.57, and 4.60). It therefore hypothesized that concurrent IDO and BRCA2 

downregulation in cancer cells would further sensitize A549 tumour cells to the PARP 

inhibitor olaparib and the DNA cross-linking agent cisplatin. To test this hypothesis, 

A549 clonal cell populations were first transiently transfected with BRCA2 siRNA to 

assess the capacity to reduce BRCA2 protein. BRCA2 siRNA downregulated BRCA2 

protein in A549 cells by approximately 50% at 48 h post-transfection (Figure 4.66). 
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Figure 4. 66. siRNA downregulation of BRCA2 in A549 clones NC-3 and 2-18. A549 

cells were transiently transfected with either control siRNA or BRCA2 siRNA smart pool. 

Cell lysates were prepared and protein extracts were prepared at 48 h post-transfection. 

BRCA2 and actin antibodies were used to probe membranes. BRCA2 protein content 

relative to actin protein was reduced by 50% in clone NC-3 (control, non-targeting 

shRNA) and by 50% in clone 2-18 (anti-IDO shRNA). 
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4.25  Concurrent IDO and BRCA2 Downregulation Sensitizes A549 Cells to the 

PARP Inhibitor Olaparib More than Knockdown of Either Gene Alone 

Cancer cells harbouring BRCA2 mutations have increased sensitivity to the PARP 

inhibitor olaparib [208]. As IDO downregulation sensitized A549 adenocarcinoma cells 

to olaparib (Figure 4.24), we therefore determined whether simultaneous knockdown of 

IDO and BRCA2 would sensitize A549 cells to olaparib with a greater degree than the 

knockdown of either gene alone. Concurrent downregulation of IDO and BRCA2 

sensitized A549 cells to olaparib (75%) to a greater degree than either IDO 

downregulation (35%) or BRCA2 downregulation (30%)(Figure 4.67). These results 

suggest that combining IDO downregulation with the knockdown of the DNA repair 

molecule BRCA2 had a greater than additive effect on A549 cells.  
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Figure 4. 67. Concurrent IDO and BRCA2 downregulation sensitized cancer cells to 

olaparib to a greater degree than the knockdown of either gene alone. A549 clonal 

cells transfected with either scrambled shRNA (NC-3) or anti-IDO shRNA (2-18) were 

transiently transfected with BRCA2 siRNA, induced with IFNγ (25 ng/ml) and 24 h later, 

treated with low dose olaparib (1 µM) for 72 h. Live cells enumerated at the end of that 

time. Bars indicate the mean proliferation of cells from a representative experiment (n=3) 

± SD, relative to appropriate controls. Values were normalized to those obtained from 

clones treated with IFNγ but untreated with olaparib or siRNA; those cells were 

considered to proliferate at a 100% level after IFNγ treatment. **Different from treatment 

with either siRNA alone (* p ≤ 0.05). 
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4.26 Concurrent IDO and BRCA2 Downregulation Sensitizes A549 Cells to the 

DNA Cross-linking Agent Cisplatin More than Knockdown of Either Gene Alone 

BRCA2 is vital for repair of DNA double stranded breaks (DDSBs) [187]. As 

cisplatin cytotoxicity results in DDSBs in cancer cells [267] and IDO downregulation 

sensitized A549 cells to cisplatin (Figure 4.54), we hypothesized that concurrent 

downregulation of IDO and BRCA2 would enhance cisplatin toxicity in A549 cells 

compared to knockdown of either IDO or BRCA2 alone. A549 clonal populations (with 

and without anti-IDO shRNA) were transfected with BRCA2 siRNA to inhibit DNA 

repair, treated with IFNγ to induce IDO, and then exposed to cisplatin for 72 h to assess 

the effect on proliferation. Simultaneous knockdown of both IDO and BRCA2 sensitized 

A549 cells to cisplatin to a greater degree (70%) than either IDO knockdown alone (47%) 

or BRCA2 knockdown alone (20%) (Figure 4.68). 

4.27 Concurrent IDO and BRCA2 Downregulation does not Sensitize A549 Cells to 

5FUdR 

In view of the observation that antisense knockdown of IDO enhanced the capacity of 

antisense knockdown of TS to sensitize human tumour cells to 5FUdR (Figure 4.65), the 

capacity of antisense knockdown of IDO combined with BRCA2 knockdown to sensitize 

human tumour cells to 5FUdR was evaluated. Antisense reduction of IDO alone did not 

sensitize A549 cells to 5FUdR (Figure 4.69, lane 3 vs. lane 4), but antisense 

downregulation of BRCA2 sensitized A549 cells to 5FUdR (Figure 4.69, lane 3 vs. lane 

5). Concurrent downregulation of IDO and BRCA2 did not sensitize cancer cells to 

5FUdR to any greater degree than knockdown of BRCA2 alone (Figure 4.69, lane 5 vs. 

lane 6). These results suggest that knockdown of IDO does not contribute to sensitization 

to the TS-targeting drug 5FUdR, either alone or in combination with knockdown of 

BRCA2.  
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Figure 4. 68. Concurrent downregulation of IDO and BRCA2 sensitizes A549 to 

cisplatin in an additive fashion. A549 clonal cells transfected with either scrambled 

shRNA (NC-3) or anti-IDO shRNA (2-18) were transiently transfected with BRCA2 

siRNA, induced with IFNγ (25 ng/ml), treated with low dose cisplatin (2.3 µM), and live 

cells enumerated after 72 of drug treatment. Bars represent the means of 3 independent 

measurements of cells (with or without downregulation of IDO) after BRCA2 siRNA 

transfection + cisplatin treatment (n=3 for each measurement) ± SEM. Bars were 

normalized to values obtained from clones treated with IFNγ but untreated with cisplatin 

or siRNA; those cells were considered to proliferate at a 100% level after IFNγ treatment. 

**Different from treatment with either siRNA in combination with cisplatin (* p ≤ 0.05). 
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Figure 4. 69. Concurrent downregulation of IDO and BRCA2 did not sensitize A549 

to the TS-targeting drug 5FUdR to a greater degree than the knockdown of either 

gene alone. A549 clonal cells transfected with either scrambled shRNA (NC-3) or anti-

IDO shRNA (2-18) were transiently transfected with BRCA2 siRNA, induced with IFNγ 

(25 ng/ml) for 24 h, and then treated with 5FUdR (40 nM) for 72 h, at which time live 

cells were enumerated. Bars represent the means of 3 independent measurements of cells 

(with or without downregulation of IDO) after BRCA2 siRNA transfection + 5FUdR 

treatment (n=3 for each measurement) ± SD. Bars were normalized to values obtained 

from clones treated with IFNγ but untreated with 5FUdR or siRNA; those cells were 

considered to proliferate at a 100% level after IFNγ treatment (*p ≤ 0.05).  
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5 Chapter 5 

Discussion 

5.1  IDO Induction in A549 and HeLa Cells 

Most human tumours express IDO in vivo [135]. Various situations including 

inflammation and infection can also induce IDO in the body [268, 269]. The pro-

inflammatory cytokine IFNγ is a potent inducer of IDO in a variety of human cells 

including cancer cells [270]. A549 and HeLa cells were therefore treated in vitro with 

IFNγ and IDO mRNA and protein levels were examined. IDO is normally expressed in 

human lung [108,109] and is expressed in human lung adenocarcinomas and cervical 

cancer [68,71]. We therefore chose human cancer cell lines arising from the same organs 

and induced IDO in them with IFNγ. IFNγ-mediated IDO mRNA induction was 

measured at various times (12, 24, 48 and 72 h). IFNγ treatment induced IDO mRNA, 24 

h (Figure 4.2 and Figure 4.3) and protein, 48 h (Figure 4.4) post-treatment in both A549 

and HeLa adenocarcinoma cells (Figure 4.4 and Figure 4.15). IFNγ-mediated IDO 

mRNA is at its highest level at 24 h and begins to reduce at later time points.  

H441 adenocarcinoma cells were also examined for IDO mRNA expression without 

IFNγ treatment. H441 cells expressed IDO mRNA in the absence of IFNγ (Figure 4.5). 

These results show that IDO mRNA and protein can be induced in A549 and HeLa cells, 

and that H441 cells are available as endogenous constitutive IDO expressers. We have 

have also tested other human cancer cell lines for IDO induction including SW480 and 

Caco-2 colorectal cancer cell line. However, IFNγ treatment did not induce IDO in these 

cell lines.  

Induction of IDO with IFNγ, followed by IDO downregulation in cancer cells, 

provides a more physiologically relevant model to study IDO in cancer 

thanoverexpression of IDO mediated by stable cDNA transfection. Moreover, IFNγ 

provides the necessary post-translational modification of IDO protein that makes a fully 

functional protein [114]. We therefore chose IFNγ to induce IDO in A549 and HeLa cells.  
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5.2  IDO siRNA Downregulation in A549 and H441 Cells 

To examine IDO’s effect on drug sensitivity independent of the immune system, 

antisense siRNA was used in an attempt to first knockdown IDO in human cancer cells 

and then expose them to chemotherapy drugs. Successful transient siRNA knockdown of 

IDO mRNA has been previously demonstrated in multiple murine cancer models. In 

those models, IDO was downregulated in murine DCs and not in tumour cells [158, 159]. 

On the other hand, Mobergslien and Sioud have reported successful knockdown of IDO 

in human monocytes and DCs with an electroporation method [271], suggesting that 

siRNA could be effective in human tumour cells. I transiently transfected A549 and H441 

cells with a human IDO siRNA SMARTpool® (a commercially-available combination of 

4 different siRNAs that target different regions of human IDO mRNA)(Table 3.3). IDO 

siRNA was not capable of inhibiting IFNγ-induced IDO in A549 cells or naturally-

occurring elevated IDO mRNA in H441 cells (Figure 4.6-4.9). SiRNA downregulation of 

human IDO has been, for the most part, reported in APCs and not tumour cells. Lack of 

effectiveness in human tumour cells could be attributed to multiple factors, including 

inefficiency of transient downregulation of IDO due to a high rate of IDO gene 

transcription capable of constantly replenishing the IDO mRNA pool, induction of RNAi 

repressors, or unknown factors suppressing Argonaute endonuclease effectiveness [56]. 

A high rate of IDO gene transcription would be expected to increase IDO mRNA levels 

and reduce the effectiveness of transiently-transfected anti-IDO siRNA. Constant 

production of antisense molecules (as would be produced by stably-incorporated shRNA) 

was next considered as an approach to effectively reduce IDO in human tumour cells. 

Regardless, it was apparent that the siRNA approaches tested here were insufficiently 

effective at reducing IDO mRNA to be useful in assessing the role of IDO in mediating 

treatment sensitivity in human tumour cells. However, using only siRNA is a limitation 

to our antisense approach for transient IDO downregulation in cancer cells since we have 

not tested ribonuclease (RNase) H-dependent ODNs to downregulate IDO.Antisense 

ODNs, because they invoke a different RNAse pathway and are more stable both in vivo 

and in vitro, may be more effective agents to reduce IDO than siRNAs. 



 

 

 

236 

5.3 Stable Transfection of A549, HeLa and H441 Cells with anti-IDO shRNA 

A number of studies have successfully used shRNA to create stable knockdown of 

IDO and IDO2 in human cancer cells [272-274]. Since siRNA downregulation of IDO 

was ineffective, I used anti-IDO shRNA to stably knock down IDO in A549, HeLa and 

H441 cells. I transfected all three tumour cell lines with either anti-IDO shRNA or 

scrambled control shRNA and picked multiple clones with reduced IDO mRNA (Figure 

4.11-4.13) and protein (Figure 4.14 and Figure 4.15) for investigation. Measuring 

kynurenine/tryptophan levels in culture medium before and after IDO induction [144] or 

measuring cancer cell proliferation can assess IDO functionality in cancer cells. Since 

IDO decreases cancer cell proliferation [145], and this can be examined as a one step 

process, I tested the functionality of anti-IDO shRNA in clonal populations by assessing 

its ability to counteract IDO-mediated decreases in tumour cell proliferation. A549 and 

HeLa clonal populations with scrambled control shRNA showed decreased proliferation 

compared to clonal cells with anti-IDO shRNA (Figure 4.16 and Figure 4.17). 

Interestingly, A549 clone 2-4 with anti-IDO shRNA that was still capable of producing 

some IDO protein (Figure 4.14) showed decreased proliferation compared to other A549 

clonal populations with anti-IDO shRNA (Figure 4.16). It should be noted that IFNγ has 

some anti-proliferative effects on all cells that are independent of IDO. However, since 

all clonal populations were similarly treated with IFNγ, the observed difference in 

proliferation is solely due to IDO expression in cancer cells and not IFNγ. These results 

confirm that anti-IDO shRNA is functional in inhibiting both IDO levels and effects on 

cancer cells. 

5.4  The Effects of IDO on the A549 Cell Cycle 

Published investigation of the characteristics of IDO is primarily in the context of the 

immune system because of the clear immune regulatory roles described for IDO. IDO-

mediated tryptophan depletion induces cell cycle arrest in T cells in G1 [275]. I 

determined whether IDO-induced reduction in growth of cancer cells was associated with 

altered cell cycle. IFNγ induction of IDO increased the number of cells in G1 and 

decreased the numbers in G2/M when cells were stably transfected with scrambled 

control shRNA. The presence of anti-IDO shRNA in cells treated with IFNγ abolished 
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the increase and decrease, respectively (Figure 4.18). To confirm these observations one 

could serum-starve the A549 tumour cells to synchronize them before IFNγ treatment. 

The increased time in G1 is important to increase the ability of tumour cells to 

undergo complete, error-free DNA repair capable of removing basal and therapy-induced 

DNA damage [276]. The increase in the number of cells in G1 seen exclusively in IDO-

expressing cell lines suggests a possible broader role for this protein in cell cycle 

checkpoint control, allowing for repair of DNA damage during G1 phase of the cell cycle 

[276, 277]. I therefore decided to examine the role of IDO in DNA repair and and 

sensitivity to drugs that induce DNA damage in cancer cells independent of the immune 

system.  

5.5  IDO Downregulation Decreases Intracellular NAD+ 

NAD+ is vital for PARP activity and DNA repair [215]. Since IDO is responsible for the 

de novo synthesis of NAD+ from tryptophan, I examined whether anti-IDO shRNA could 

decrease NAD+ levels in A549 clonal populations. After IFNγ stimulation, two 

independently-derived A549 clones expressing anti-IDO shRNA had lower amounts of 

NAD+ than two similarly-generated clones expressing scrambled control shRNA (Figure 

4.19). These data indicate that shRNA-mediated suppression of IFNγ-induced IDO 

decreases intracellular NAD+ levels and has the potential to modulate PARP function. 

DNA damage-mediated PARP-1 activation can deplete the NAD+ pool in cells, which is 

associated with inducing cellular apoptosis [278]. Therefore, IDO-mediated generation of 

NAD+ might play a protective role in cancer cells during DNA damage inducing 

treatments that normally result in hyperactivation of PARP and depletion of NAD+ 

sources in cells. This provides a rationale to examine the possible protective role of IDO 

in response to genotoxic chemotherapy and radiation in cancer cells. In addition, NAD+ 

inhibitors are under consideration and evaluation for cancer treatment. In particular, 

FK866, a pharmacological inhibitor of the NAD+ salvage pathway, is undergoing clinical 

testing as a cancer therapy [279]. FK866 efficiently blocks NAD+ production in human 

cancer cells [279]. However, a high concentration of NAD+ precursors (NAM and NA) 

from the salvage pathway is able to reverse the inhibitory effect of FK866. IDO increases 

de novo NAD+ production [220]. However, the possible inhibitory role of IDO on the 
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efficiency of this drug has never been tested. Therefore, I examined the capacity of IDO 

to decrease human tumour cell sensitivity to this candidate anticancer drug. 

5.6  IDO in Tumour Cells Mediates Resistance to the NAD+ Inhibitor FK866 

IDO inhibition decreased NAD+ levels in A549 cells by approximately 60% 

(Figure 4.19), similar to the level to which FK866 inhibits NAD+ in other cell types [242]. 

IDO was therefore induced in A549 clonal populations before treatment with FK866. 

IDO in A549 cells conferred resistance to FK866 (Figure 4.20). A549 clones express 

anti-IDO shRNA, with the exception of clone 2-4 that expressed IDO at a slightly higher 

level than the other anti-IDO shRNA-containing clones, retained sensitivity to FK866 

(Figure 4.20). Higher IDO levels were also correlated with increased resistance to FK866 

(Figure 4.20 C). This is a significant observation with respect to the capacity of FK866 to 

block NAD+ in the presence of IDO because FK866 is a potent NAD+ inhibitor that 

blocks NAD+ production through the salvage pathway [262].	   However, IDO-mediated 

NAD+ production from the de novo pathway can clearly undermine FK866 efficiency 

(Figure 4.20). In addition, tumour-infiltrating cytotoxic T cells and NK cells are major 

sources of IFNγ in the tumour microenvironment [280, 281]. As shown in Figure 4.20, 

IFNγ-mediated increases in IDO induced resistance to FK866. Therefore, blocking IDO 

in conjunction with FK866 treatment may have therapeutic value and further studies are 

required. 

5.7  IDO in Tumour Cells Mediates Resistance to Olaparib 

IDO downregulation decreased NAD+ in A549 cells (Figure 4.19). Since NAD+ is 

critical for PARP activity [214], I examined whether IDO could increase tumour cell 

resistance to olaparib (a PARP inhibitor) and whether anti-IDO shRNA could reverse this 

effect. Anti-IDO shRNA sensitized A549 and HeLa cells to olaparib (Figure 4.21-4.24 

and Figure 4.26-4.27). Moreover, A549 and HeLa cells transfected with scrambled 

shRNA had increased resistance to olaparib after IFNγ induction; the effectiveness of the 

administered dose of the drug was reduced, while antisense-downregulation of IDO 

during and after IFNγ induction resulted in sensitivity to olaparib equal to that of cells 

untreated with IFNγ (Figure 4.25 and Figure 4.27). These findings show, for the first time, 
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that IDO in tumour cells confers resistance to a PARP inhibitor, olaparib. Tumour cells 

with BRCA mutations showed high sensitivity to olaparib monotherapy [207]. However, 

secondary mutations that restored full-length BRCA2 protein in cancer patients conferred 

resistance to olaparib [282]. These data identify a new resistance mechanism to olaparib 

that is exerted by IDO and is independent of BRCA2 since A549 and HeLa cells have 

intact BRCA2. Therefore combining IDO inhibition with PARP inhibitors could offer an 

advantage over PARP inhibition monotherapy.  

5.8  IDO Mediates Resistance to γ  Radiation in Cancer Cells 

Since PARP-mediated DNA repair is important in resistance to γ radiation [95], I 

assessed whether IDO could increase A549 and HeLa cell resistance to γ radiation. A549 

and HeLa clonal populations were equally sensitive to γ radiation prior to IDO induction 

regardless of the presence of anti-IDO shRNA or scrambled shRNA (Figure 4.28-4.29 

and Figure 4.32 and 4.33). However, IFNγ-induced IDO conferred resistance to γ 

radiation in both A549 and HeLa cells. This effect was abolished by anti-IDO shRNA 

(Figure 4.30 and Figure 4.34). Tumour cell resistance to γ radiation is generally attributed 

to DNA repair mediated by PARP activity and BER [88-89]. These data show, for the 

first time, that IDO plays a role in tumour cell resistance to γ radiation. This phenomenon 

may be due to IDO-mediated increase in available NAD+ in cancer cells that supports the 

capacity of PARP to mediate DNA repair. Furthermore, increased NAD+ has been 

attributed to improved BER in cancer cells [283]. It can be speculated that the IDO-

mediated increase in NAD+ levels might increase the effectiveness of BER in cancer cells, 

thereby increasing resistance towards radiation. Future studies are required to confirm or 

modify this possibility. For example, examining the level of key BER proteins such as 

XRCC1 after γ radiation of cancer cells in the presence or absence of IDO could provide 

valuable information regarding the direct impact of IDO on BER-mediated resistance to γ 

radiation.  
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5.9  IDO in Human Tumour Cells Mediates Resistance to Combined γ  Radiation 

and PARP Inhibition 

Inducing DNA damage and subsequently inhibiting DNA repair in cancer cells is an 

attractive approach to maximize radiation-induced cell death in tumour cells [93]. I 

therefore induced IDO in A549 and HeLa cells for 48 h and then treated them with γ 

radiation to induce DNA damage, followed by culture in the presence of olaparib to 

inhibit DNA repair for 72 h. A549 and HeLa cells harboring anti-IDO shRNA were 

sensitized to combination therapy to a greater degree than cells harbouring scrambled 

shRNA (Figure 4.35-4.36 and Figure 4.38-4.39). Clonal populations with scrambled 

shRNA and capable of producing IDO showed increased resistance to combined radiation 

and PARP inhibition (Figure 4.37 and Figure 4.40). In a combination treatment study, the 

PARP inhibitor rucaparib significantly increased radiosensitivity and enhanced DNA 

damage in BRCA-proficient prostate cancer cell lines [93]. The capacity of tumour cells 

to develop resistance to combination therapy is not unexpected; these data identify IDO 

as a possible underlying molecule for this phenomenon in combination treatment with γ 

radiation and PARP inhibition. 

5.10  The Effect of IDO Downregulation on Human Tumour Cell Sensitivity to 

Cisplatin 

Since IDO downregulation sensitized cancer cells to γ  radiation, I determined 

whether IDO knockdown sensitizes A549, HeLa and H441 cells to the DNA cross-

linking agent cisplatin. IDO downregulation sensitized cancer cells to cisplatin (Figure 

4.54-4.55, Figure 4.57-4.58 and Figure 4.60). Furthermore, IDO in cancer cells decreased 

the effectiveness of the drug, and that increased effectiveness was reduced by anti-IDO 

shRNA in both A549 and HeLa cells (Figure 4.56 and Figure 4.59). Blocking IDO 

activity by the small molecule IDO inhibitor 1-MT has been previously attributed to 

increased sensitivity of mouse breast cancer cells to cisplatin in the presence of an active 

immune system [136]. This is in agreement with our results, but these data establish that 

this effect can occur in the absence of any involvement of immune cells and, perhaps 

more importantly, in human rather than rodent cancer cells. 
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5.11  IDO in Human Tumour Cells Mediates Resistance to the Base Excision 

Repair Inhibitor Methoxyamine  

IDO induced resistance to olaparib (Figure 4.25 and Figure 4.27). In addition, 

PARP is essential for the recruitment of the BER scaffold protein XRCC1 to the damaged 

area of the DNA [199]. I therefore assessed whether IDO could induce resistance to the 

BER inhibitor methoxyamine. Knocking down IDO sensitized A549 cells to 

methoxyamine (Figure 4.41 and Figure 4.42). Moreover, IDO induced high levels of 

resistance to methoxyamine in A549 cells and that resistance was abolished by anti-IDO 

shRNA (Figure 4.43). Higher IDO levels were also positively correlated to 

methoxyamine resistance in cancer cells (Figure 4.41 C). Several phase I clinical trials of 

combined methoxyamine with chemotherapy drugs are currently underway [284]. One 

clinical trial in particular has studied the combination effect of methoxyamine and the 

TS-targeting drug pemetrexed in patients with advanced refractory cancers [284]. 

Therefore, IDO-mediated potent induction of resistance to methoxyamine could provide 

critical information in designing pre-clinical and clinical studies in future. 

5.12  IDO in Human Tumour Cells Mediates Resistance to the TS-targeting Drug 

Pemetrexed 

Since BER is reported to be involved in resistance to pemetrexed [179] and IDO 

inhibited the effectiveness of the BER inhibitor methoxyamine (Figure 4.43), I decided to 

assess whether IDO downregulation sensitized cancer cells to the TS-targeting drug 

pemetrexed. Antisense knockdown of IDO sensitized A549 cells to pemetrexed (Figure 

4.44 and Figure 4.45). In addition, IDO-mediated resistance to pemetrexed was decreased 

by anti-IDO shRNA after IFNγ induction of IDO in A549 cells (Figure 4.46).  

Pemetrexed inhibition of TS results in the misincorporation of uracil into DNA. 

The BER enzyme uracil-DNA glycosylase (UNG) removes the misincorporated uracil 

and, by mediating that process, confers resistance to pemetrexed (which exerts part of its 

toxicity to tumour cells by uracil incorporation into DNA)[285]. All A549 clonal 

populations were similarly sensitive to pemetrexed before IDO induction (Figure 4.44). 

However, IDO induced resistance to pemetrexed (Figure 4.45). Therefore, further studies 
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are required to examine whether or not UNG function is affected by IDO. Examining 

UNG kinetic and substrate binding assay [60] in the presence or absence of IDO can shed 

light on the possible effect of IDO on UNG function.  

5.13  IDO in Human Tumour Cells Mediates Resistance to Combined Treatment of 

Pemetrexed and Methoxyamine 

Pemetrexed-resistant sublines of H1299 adenocarcinoma cells have elevated levels 

of UNG and combined treatment of these H1299 sublines with methoxyamine and 

pemetrexed increased their sensitivity to pemetrexed [285]. However, despite their in 

vivo IDO expression, many human cancer cell lines do not express IDO in vitro. I 

therefore decided to test whether IDO in tumour cells can mediate resistance to combined 

pemetrexed and methoxyamine treatment. IFNγ-induced IDO undermined the therapeutic 

potential of the combined treatment of pemetrexed and methoxyamine (Figure 4.47 and 

4.48). This effect was significantly reduced by anti-IDO shRNA in A549 cells (Figure 

4.47 and 4.48). Moreover, IDO levels were positively correlated with resistance to 

combined pemetrexed and methoxyamine treatment in A549 clonal cells (Figure 4.47, 

Panel C). These results provide compelling evidence for a previously unidentified role for 

IDO in induced resistance to a combination of the TS-targeting drug pemetrexed and a 

BER inhibitor methoxyamine. 

5.14  The Effect of IDO Human Tumour Cell Sensitivity to Other TS-targeting 

Drugs (5FUdR and Gemcitabine)  

Since IDO downregulation sensitized cancer cells to the TS-targeting drug 

pemetrexed, I decided to examine whether IDO downregulation could sensitize A549 

cells to other TS-targeting drugs, including 5FUdR and gemcitabine. IDO 

downregulation did not sensitize cancer cells to 5FUdR, but did sensitize them to 

gemcitabine (Figure 4.50-4.53). BER is considered to play a major role in resistance to 

gemcitabine [286]. IDO may be involved in BER-mediated gemcitabine resistance in 

these cells. Interestingly, BER has been invoked as a contributor to 5FUdR cytotoxicity 

in cancer cells due to its participation in a futile repair cycle that potentiates 5FUdR 

toxicity [287]. In futile repair, the DNA mismatch repair enzyme MutL removes some 



 

 

 

243 

parts of the newly synthesized DNA strand. However, the removed part does not contain 

the incorporated 5FUdR, FdUTP. Using the template strand that contains FdUTP for 

resynthesizing DNA results in cycles of futile mismatches and eventually cell death [61]. 

IDO-mediated enhancement of BER could, potentially, increase the cytotoxicity of 

5FUdR due to the enhancing effect of BER on futile repair. This hypothesis might 

provide a rationale for the observed lack of sensitization to 5FUdR in A549 cells with 

antisense-downregulated IDO, as observed in experiments reported in this thesis (Figure 

4.50 and Figure 4.451). On the other hand, IDO downregulation sensitized tumour cells 

to pemetrexed and gemcitabine (Figure 4.45 and 4.53). Pemetrexed and gemcitabine do 

not exert their toxicity by inducing BER futile repair [288, 289], so the hypothesis 

proposed above is consistent with the observation of sensitization to pemetrexed or 

gemcitabine by IDO reduction, but not sensitization to 5FUdR. These results suggest that 

combining IDO downregulation with chemotherapy agents does not universally sensitize 

cells to all DNA-damaging agents, but instead requires sufficient understanding of the 

mechanism of action of the chemotherapy drugs in question and the mechanism(s) by 

which IDO mediates resistance. 

5.15  Concurrent IDO and TS Downregulation Sensitized A549 Cells to Pemetrexed 

More than Knocking Down Either Gene Alone 

Knocking down TS can sensitize cancer cells to the TS-targeting drug 5FUdR 

[266]. Antisense-mediated reduction in IDO also sensitized cancer cells to some TS-

targeting drugs, including pemetrexed (Figure 4.44 and Figure 4.45). To examine 

whether combining IDO and TS downregulation sensitizes cancer cells to pemetrexed to 

a greater degree than reduction of either target alone, A549 cells were transiently 

transfected with TS siRNA, and then IDO was induced with IFNγ in all A549 clonal 

populations before exposing them to pemetrexed. As shown in Figure 4.63 and Figure 

4.64, simultaneous downregulation of IDO and TS increased the sensitivity of cancer 

cells to pemetrexed to a greater degree than reduction of either target alone. TS siRNA 

downregulation has been shown to sensitize A549 cells to pemetrexed [186]. I show here 

that combining TS and IDO downregulation further sensitized A549 cells to this drug 

(Figure 4.63 and Figure 4.64). The additive effect of TS and IDO downregulation in 
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A549 cells sensitivity to pemetrexed might result from the effect of TS downregulation 

on the available thymidylate to the cells [290] along with the IDO-mediated impact on 

BER (Figure 4.41 and Figure 4.42). These observations could provide the basis for a 

strategy to improve the effectiveness of the already-approved chemotherapeutic drug 

pemetrexed.  

5.16  Concurrent IDO and TS Downregulation Sensitizes A549 Cells to 5FUdR to a 

Greater Degree than Reduction of Either Target Alone 

Since IDO downregulation did not sensitize A549 cells to 5FUdR (Figure 4.50 and 

Figure 4.51), I determined whether combined IDO and TS downregulation could 

sensitize cancer cells to 5FUdR. As show in Figure 4.65 and Figure 4.66, concurrent IDO 

and TS downregulation did, in fact, sensitize A549 cells to 5FUdR more effectively than 

knockdown of IDO alone. This effect was less potent than observed with pemetrexed, but 

provides evidence that combining IDO and TS downregulation has potential as a 

therapeutic strategy to sensitize tumour cells to a range of TS-targeting drugs including 

pemetrexed and 5FUdR.  

5.17  Concurrent IDO and BRCA2 Downregulation did Not Sensitize A549 Cells to 

5FUdR 

To further examine whether concurrent IDO and TS downregulation have value in 

sensitizing human tumour cells to the TS-targeting drug 5FUdR, I simultaneously 

downregulated IDO and BRCA2 (a DNA repair molecule not involved in enzymatic 

reactions mediated by TS), in A549 cells followed by treatment with 5FUdR. BRCA2 

does not mediate BER [291], therefore, it is unlikely that, by targeting BRCA2 (which 

involves other, non-BER DNA repair pathways), cancer cells would be sensitized to a 

drug that requires BER for its toxicity. As shown in Figure 4.69, combining IDO and 

BRCA2 downregulation did not sensitize cancer cells to 5FUdR. These data emphasize 

the importance of simultaneous knockdown of IDO and a DNA repair molecule, to 

sensitize cancer cells to a drug that requires that specific DNA repair molecule for 

survival. In other words, reduction of IDO and BRCA2 does not appear to sensitize 

cancer cells to a drug such as 5FUdR that targets TS.  
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5.18  Concurrent IDO and BRCA2 Downregulation Sensitizes A549 Cells to the 

PARP Inhibitor Olaparib More than Knockdown of Either Gene Alone 

Cancer cells with BRCA2 mutations are sensitive to olaparib monotherapy, most 

likely because of induced-synthetic lethality [207]. IDO could modulate PARP function 

by providing more NAD+ (Figure 4.19). IDO downregulation also sensitized cancer cells 

to olaparib (Figure 4.21 and Figure 4.26). I used BRCA2 siRNA to downregulate BRCA2 

and transiently induce BRCAness in A549 cells to determine whether simultaneous 

knockdown of IDO and BRCA2 would sensitize A549 cells to olaparib to a greater 

degree than the knockdown of either gene alone. Combining IDO and BRCA2 

downregulation increased cancer cell sensitivity to olaparib more than targeting either 

gene product alone (Figure 4.67). These data support the hypothesis that sensitization of 

tumour cells to PARP inhibitors by reduction of IDO does not eliminate the capacity for 

reduction of other targets (including BRCA2) to contribute, in the context of IDO 

reduction, to enhanced sensitization of cancer cells to those PARP inhibitors. IDO 

reduction sensitizes tumour cells to PARP inhibitors independent of BRCA2 status 

(BRCA2 mutant or wild type) (Figure 4.21-4.24 and Figure 4.26-4.27); this supports the 

potential value of combining BRCA2 reduction with IDO reduction to sensitize human 

tumours to PARP inhibition, at least in tumour cells with functional BRCA2. Phase III 

trials of olaparib in ovarian cancer were terminated due to lack of increased overall 

survival in spite of evidence of olaparib-induced increase in progression-free survival 

[292]. These data support the concept of therapeutic targeting of IDO to decrease tumour 

cell resistance to PARP-inhibiting drugs such as olaparib, whether they are BRCA2 intact 

or deficient cells.  

5.19  Concurrent IDO and BRCA2 Downregulation Sensitizes A549 Cells to 

Cisplatin to Greater Degree than Knockdown of Either Target Alone 

Cisplatin induces DSBs in DNA in cancer cells [186] and BRCA2 is critical for 

repair of those breaks [186]. BRCA2 downregulation has been shown to sensitize cancer 

cells to cisplatin [186]. IDO mediates resistance to cisplatin in A549, HeLa and H441 

cells (Figure 4.56, 4.59 and Figure 4.60). I therefore determined whether simultaneous 

downregulation of IDO and BRCA2 could increase cancer cell sensitivity to cisplatin 



 

 

 

246 

more than targeting either gene product alone. As shown in Figure 4.68, simultaneous 

knockdown of IDO and BRCA2 in A549 cells enhanced cisplatin toxicity in A549 cells 

compared to knockdown of either IDO or BRCA2 alone. These data provide clear 

evidence of the capacity of targeting IDO in conjunction with targeting other molecules 

involved in DNA repair to sensitize cancer cells to chemotherapy drugs that induce DNA 

damage and increase the requirement for, and dependence on, DNA repair on cancer cells. 

  

5.20 A new function for IDO 

Most human tumours express IDO [68] and IDO is linked to immune evasion, 

immunosuppression, metastasis, and poor patient outcome [69,70]. Here we have 

identified a previously unidentified role for IDO in human cancer that was independent of 

direct involvement of immune cells. We showed that, in an in vitro model and in the 

absence of immune cells, IDO increased intracellular NAD+ levels and decreased the 

sensitivity of the tumour cells to the PARP inhibitor olaparib, a DNA cross-linking agent 

cisplatin, a folate antimetabolite pemetrexed, a nucleoside analogue gemcitabine, a base 

excision repair inhibitor methoxyamine, an NAD+ inhibitor FK866, and combined 

treatments with olaparib and radiation, and methoxyamine and pemetrexed, in the 

absence of immune cells. 

Combining 1-MT to paclitaxel has been shown to increase the effectiveness of this 

chemotherapy drug in the presence of an active immune system [76]. However, depletion 

of CD4+ T cells completely abolished that synergistic effect [76]. In our model, however, 

the lack of immune cells in the entire process verifies a tumour cell-autonomous effect 

for IDO that is not dependent on the presence of immune cells. Chemotherapy drugs and 

radiation that we used in this study actively induce DNA damage or block DNA repair in 

cancer cells. We therefore identify, in this thesis, IDO involvement in DNA repair as a 

major IDO function.  

5.21 Limitations: 

 Our findings are somewhat limited due to the use of only an in vitro model. These 

results therefore do not completely reflect what takes place in a tumour 
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microenvironment in the body. However, they are valuable as proof-of-principle for a 

new, and previously unidentified, function of IDO in cancer, independent of its 

immunosuppressive activity. We have also focused mainly on tumour cell proliferation as 

our final readout. Even though proliferation is of outmost importance in studying the 

impact of an anti-cancer treatment it does not provide detailed insight of what takes place 

as a consequence of treatment in cancer cells (for example, if reduced proliferation as a 

consequence of treatment is only because of cell cycle arrest or increased apoptosis, 

necrosis, or induced senescence in tumour cells). Reduced proliferation can also take 

place as a result of a combination of the aforementioned events. Further studies are 

therefore required to clarify the underlying mechanism of reduced proliferation in cancer 

cells in the presence of chemotherapy and radiation when combined with IDO 

downregulation in tumour cells. Finaly, we propose that IDO modulates DNA repair 

mechanisms in cancer cells by increasing intracellular NAD+. We have used multiple 

chemotherapy drugs with different mechanisms of action to induce DNA damage in 

cancer cells and consequently activate DNA repair mechanisms in the presence or 

absence of IDO. However, our findings are limited to indirect examination of DNA repair 

mechanisms. A more direct approach of studying other enzymes involved in DNA repair 

pathways (BER in IDO-downregulated or IDO-sufficient cells, for example) would have 

significantly substantiated our findings at a molecular level. However, there are currently 

limitations to such studies. For example, the only available kit to measure PARP activity 

(HT universal colorimetric PARP assay kit, cat# 4677-096-k, Trevigen, Gaithersburg, 

MD) requires lack of NAD+ in the cell lysate. Since IDO increases intracellular NAD+ the 

experimental approach on which this kit depends would not be useful to our study. To 

examine whether IDO increases the expression of DNA repair enzymes, we could 

quantify them in cancer cells in the presence or absence of IDO to show a connection 

between IDO and DNA repair. However, although this approach would assess the 

capacity of IDO to modulate the amount of DNA repair enzyme, it would not assess the 

effect of those amounts on DNA repair activity itself.  

 



 

 

 

248 

6 Chapter 6 

6.1  Significance 

Data presented in this thesis provides evidence for the identification of a new and 

previously undescribed function for IDO (i.e., independent of direct function of IDO in or 

on immune cells). IDO mediates resistance to a number of chemotherapy agents and γ 

radiation in human tumour cells. Conversely, knockdown of IDO increases the sensitivity 

of the same cells to these agents. IDO is expressed by most human cancers and cells of 

the tumour microenvironment, and its role in suppressing cytotoxic anti-tumour immune 

activity is well-described. I identify IDO as a molecule involved not only in resistance to 

immunotherapy (as reported before by others), but one that also plays a previously 

unreported role in resistance to chemotherapy and radiation. The majority of literature 

reports of in vivo IDO characteristics and function involve murine IDO in mouse tumours, 

in the context of the immune system. In this thesis, human IDO in human tumour cells 

was assessed. Furthermore, I looked at IDO effects in cancer cells in the absence of a 

functional immune system. The observations made here provide clear evidence for the 

benefit of targeting IDO. This not only avoids immunosuppression capable of hindering 

endogenous immune recognition and destruction of tumour cells, but also sensitizes 

tumour cells to conventional cancer therapies, including cytotoxic drugs and radiation in 

a cancer cell-autonomous fashion and independent of immune function. In a preclinical 

context, IDO in cancer cells can reduce the potential therapeutic effectiveness of 

anticancer therapies applied singly and in combination, and antisense knockdown of IDO 

abrogates that reduction in effectiveness – an observation revealing a previously 

undescribed, cancer cell-autonomous value for therapeutic targeting of IDO. Finally, 

TDO is overexpressed in brain tumours [293] and is involved in metabolizing tryptophan 

similar to IDO. Brain tumours are among the most resistance cancers to chemotherapy 

and radiation [293]. TDO downregulation in glioblastoma can therefore potentially 

sensitize brain tumours to radiation and some chemotherapy drugs.  
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6.2  Future Directions 

It is valuable to reproduce these in vitro results in an in vivo model without the 

immune system. Immunocompromised mice provide a useful tool for this purpose. 

Searching the available patient databases to examine whether IDO levels were correlated 

with clinical outcomes from radiation or chemotherapy agents that are tested in this study 

would also be of great value. Testing the direct effect of IDO on enzymes involved in 

BER such as DNA glycosylases could provide a clear evidence for IDO being directly 

involved in an important DNA repair pathway. Adding conditioned media to IDO-

negative cells and examining their drug sensitivity can shed light to the potential role of 

kyneurenine metabolites on IDO-mediated drug resistance. To further examine the 

underlying mechanism, we can add tryptophan or individual kynurenine metabolites to 

cultured tumour cells and measure sensitivity to chemotherapy drugs and radiation to 

provide a detailed insight of IDO’s role in drug sensitivity and drug resistance. Finally, 

comparing the effectiveness of anti-IDO shRNA with conventional IDO inhibitors such 

as 1-MT in sensitizing cancer cells to chemotherapy agents and radiation would be of 

outmost importance.  
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